
 123

20th International Conference, FOSSACS 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017, Proceedings

Foundations
of Software Science and
Computation StructuresLN

CS
 1

02
03

AR
Co

SS
Javier Esparza
Andrzej S. Murawski (Eds.)

Lecture Notes in Computer Science 10203

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Javier Esparza • Andrzej S. Murawski (Eds.)

Foundations
of Software Science and
Computation Structures
20th International Conference, FOSSACS 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017
Proceedings

123

Editors
Javier Esparza
TU München
Garching, Bayern
Germany

Andrzej S. Murawski
University of Warwick
Coventry
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-54457-0 ISBN 978-3-662-54458-7 (eBook)
DOI 10.1007/978-3-662-54458-7

Library of Congress Control Number: 2017933275

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

ETAPS Foreword

Welcome to the proceedings of ETAPS 2017, which was held in Uppsala! It was the
first time ever that ETAPS took place in Scandinavia.

ETAPS 2017 was the 20th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program enables
participation in an exciting event, offering the possibility to meet many researchers
working in different directions in the field and to easily attend talks of different con-
ferences. Before and after the main conference, numerous satellite workshops take
place and attract many researchers from all over the globe.

ETAPS 2017 received 531 submissions in total, 159 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all authors for their interest in
ETAPS, all reviewers for their peer reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2017 was enriched by the unifying invited speakers Kim G. Larsen (Aal-
borg University, Denmark) and Michael Ernst (University of Washington, USA), as
well as the conference-specific invited speakers (FoSSaCS) Joel Ouaknine (MPI-SWS,
Germany, and University of Oxford, UK) and (TACAS) Dino Distefano (Facebook and
Queen Mary University of London, UK). In addition, ETAPS 2017 featured a public
lecture by Serge Abiteboul (Inria and ENS Cachan, France). Invited tutorials were
offered by Véronique Cortier (CNRS research director at Loria, Nancy, France) on
security and Ken McMillan (Microsoft Research Redmond, USA) on compositional
testing. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2017 took place in Uppsala, Sweden, and was organized by the Department
of Information Technology of Uppsala University. It was further supported by the
following associations and societies: ETAPS e.V., EATCS (European Association for
Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). Facebook, Microsoft, Amazon, and the city of Uppsala financially sup-
ported ETAPS 2017. The local organization team consisted of Parosh Aziz Abdulla
(general chair), Wang Yi, Björn Victor, Konstantinos Sagonas, Mohamed Faouzi Atig,
Andreina Francisco, Kaj Lampka, Tjark Weber, Yunyun Zhu, and Philipp Rümmer.

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its executive board. The ETAPS Steering Committee

consists of an executive board, and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The executive board
consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Parosh Abdulla (Uppsala), Amal Ahmed (Boston),
Christel Baier (Dresden), David Basin (Zurich), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Giuseppe Castagna (Paris), Tom Crick (Cardiff), Javier Esparza (Munich),
Jan Friso Groote (Eindhoven), Jurriaan Hage (Utrecht), Reiko Heckel (Leicester),
Marieke Huisman (Twente), Panagotios Katsaros (Thessaloniki), Ralf Küsters (Trier),
Ugo del Lago (Bologna), Kim G. Larsen (Aalborg), Axel Legay (Rennes), Matteo
Maffei (Saarbrücken), Tiziana Margaria (Limerick), Andrzej Murawski (Warwick),
Catuscia Palamidessi (Palaiseau), Julia Rubin (Vancouver), Alessandra Russo
(London), Mark Ryan (Birmingham), Don Sannella (Edinburgh), Andy Schürr
(Darmstadt), Gabriele Taentzer (Marburg), Igor Walukiewicz (Bordeaux), and Hon-
gseok Yang (Oxford).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. Finally, a big thanks to
Parosh and his local organization team for all their enormous efforts enabling a fantastic
ETAPS in Uppsala!

January 2017 Joost-Pieter Katoen

VI ETAPS Foreword

Preface

This volume contains the papers presented at the 20th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2017), which
was held April 24–27, 2017, in Uppsala, Sweden. The conference is dedicated to
foundational research with a clear significance for software science and brings together
research on theories and methods to support the analysis, integration, synthesis,
transformation, and verification of programs and software systems.

In addition to an invited talk by Joël Ouaknine (MPI-SWS Saarbrücken and
University of Oxford) on “Fundamental Algorithmic Problems and Challenges in
Dynamical and Cyber-Physical Systems,” the program consisted of 32 contributed
papers, selected from among 101 submissions. Each submission was assessed by three
or more Program Committee members. The conference management system EasyChair
was used to handle the submissions, to conduct the electronic Program Committee
discussions, and to assist with the assembly of the proceedings.

We wish to thank all the authors who submitted papers for consideration, the
members of the Program Committee for their conscientious work, and all additional
reviewers who assisted the Program Committee in the evaluation process. Finally, we
would like to thank the ETAPS organization for providing an excellent environment for
FoSSaCS, other conferences, and workshops.

January 2017 Javier Esparza
Andrzej Murawski

Organization

Program Committee

Mohamed Faouzi Atig Uppsala University, Sweden
Jos Baeten CWI (Centrum Wiskunde & Informatica),

The Netherlands
Christel Baier Technical University of Dresden, Germany
Filippo Bonchi University of Pisa, Italy
Tomáš Brázdil Masaryk University, Czech Republic
James Brotherston University College London, UK
Anuj Dawar University of Cambridge, UK
Michael Emmi Bell Labs, Nokia
Javier Esparza Technische Universität München, Germany
Rajeev Gore The Australian National University, Australia
Stefan Göller LSV, CNRS, ENS Cachan, France
Thomas Hildebrandt IT University of Copenhagen, Denmark
Delia Kesner Université Paris-Diderot, France
Słwomir Lasota Warsaw University, Poland
Anthony Widjaja Lin University of Oxford, UK
Roland Meyer TU Braunschweig, Germany
Aniello Murano Università degli Studi di Napoli Federico II, Italy
Andrzej Murawski University of Warwick, UK
Simona Ronchi Della Rocca Università di Torino, Italy
Jan Rutten CWI, The Netherlands
Margus Veanes Microsoft Research
Lijun Zhang Institute of Software, Chinese Academy

of Sciences, China

Additional Reviewers

Accattoli, Beniamino
Aceto, Luca
Adamek, Jiri
Aiswarya, C.
Altenkirch, Thorsten
Ancona, Davide
Angiuli, Carlo
Asarin, Eugene
Bacci, Giorgio
Bacci, Giovanni
Baelde, David

Basold, Henning
Belardinelli, Francesco
Benes, Nikola
Bertrand, Nathalie
Berwanger, Dietmar
Bieniusa, Annette
Birkedal, Lars
Bizjak, Aleš
Bonelli, Eduardo
Bonfante, Guillaume
Borgström, Johannes

Bozzelli, Laura
Bradfield, Julian
Brenguier, Romain
Brihaye, Thomas
Brunet, Paul
Carbone, Marco
Cardone, Felice
Castellan, Simon
Cerone, Andrea
Chaudhuri, Kaustuv
Chini, Peter
Clouston, Ranald
Colcombet, Thomas
Cosme Llópez, Enric
Crole, Roy
D’Antoni, Loris
D’Osualdo, Emanuele
Dal Lago, Ugo
Danos, Vincent
Dawson, Jeremy
Debois, Søren
Della Monica, Dario
Demangeon, Romain
Docherty, Simon
Dragoi, Cezara
Ehrhard, Thomas
Enea, Constantin
Escardo, Martin
Faggian, Claudia
Fijalkow, Nathanaël
Forejt, Vojtech
Fu, Hongfei
Galmiche, Didier
Ganty, Pierre
Garnier, Ilias
Gburek, Daniel
Ghica, Dan
Ghilezan, Silvia
Gimbert, Hugo
Gimenez, Stéphane
Goncharov, Sergey
Goubault-Larrecq, Jean
Grellois, Charles
Groote, Jan Friso
Grygiel, Katarzyna
Haase, Christoph

Hahn, Ernst Moritz
Hirschowitz, Tom
Hofman, Piotr
Hofstra, Pieter
Holik, Lukas
Horn, Florian
Horne, Ross
Hou, Zhe
Hsu, Justin
Hunter, Paul
Jaber, Guilhem
Jacobs, Bart
Jansen, David
Jansen, David N.
Jung, Jean Christoph
Kernberger, Daniel
Kiefer, Stefan
Kissinger, Aleks
Klin, Bartek
Koslowski, Jürgen
Krebbers, Robbert
Kretinsky, Jan
Kucera, Antonin
Kumar, Ramana
Kupke, Clemens
König, Barbara
Laird, James
Le, Quang Loc
Lee, Matias David
Lellmann, Bjoern
Leroux, Jérôme
Lescanne, Pierre
Licata, Daniel R.
Lozes, Etienne
Lumsdaine, Peter Lefanu
Luttik, Bas
Malvone, Vadim
Manuel, Amaldev
Manzonetto, Giulio
Mardare, Radu
Martens, Wim
Maubert, Bastien
Mazza, Damiano
McCusker, Guy
Melliès, Paul-André
Merro, Massimo

X Organization

Milius, Stefan
Mimram, Samuel
Mio, Matteo
Mousavi, Mohammadreza
Munoz Fuentes, Pablo
Muskalla, Sebastian
Møgelberg, Rasmus Ejlers
Novotný, Petr
Obdrzalek, Jan
Ong, Luke
Otop, Jan
Ouaknine, Joel
Panangaden, Prakash
Patrizi, Fabio
Pattinson, Dirk
Perelli, Giuseppe
Peron, Adriano
Perrin, Matthieu
Peters, Kirstin
Petrisan, Daniela
Petrov, Tatjana
Pitts, Andrew
Popescu, Andrei
Power, John
Pradic, Pierre
Quaas, Karin
Regis-Gianas, Yann
Rehak, Vojtech
Reniers, Michel
Rosa-Velardo, Fernando
Rot, Jurriaan
Roversi, Luca
Rowe, Reuben
Rubin, Sasha
S., Krishna
Saarikivi, Olli
Saivasan, Prakash
Salamanca, Julian
Sammartino, Matteo

Sauro, Luigi
Scherer, Gabriel
Schubert, Aleksy
Schuermann, Carsten
Schöpp, Ulrich
Scott, Phil
Seiller, Thomas
Skrzypczak, Michał
Sojakova, Kristina
Sokolova, Ana
Srba, Jiri
Srivathsan, B.
Staton, Sam
Stratulat, Sorin
Streicher, Thomas
Swamy, Nikhil
Tabareau, Nicolas
Tan, Tony
Toruńczyk, Szymon
Tsukada, Takeshi
Turrini, Andrea
Tzevelekos, Nikos
Urbat, Henning
Uustalu, Tarmo
van de Pol, Jaco
Van Raamsdonk, Femke
Veltri, Niccolò
Vortmeier, Nils
Wiedijk, Freek
Winter, Joost
Woltzenlogel Paleo, Bruno
Worrell, James
Wu, Zhilin
Zaionc, Marek
Zanasi, Fabio
Zetzsche, Georg
Zorzi, Margherita
Zunino, Roberto

Organization XI

Fundamental Algorithmic Problems
and Challenges in Dynamical
and Cyber-Physical Systems
(Abstract of Invited Talk)

Joël Ouaknine1, 2

1 Max Planck Institute for Software Systems, Saarland Informatics Campus,
Saarbrücken, Germany

2 Department of Computer Science, Oxford University, Oxford, UK

Abstract. Dynamical and cyber-physical systems, whose continuous evolution
is subject to differential equations, permeate vast areas of engineering, physics,
mathematics, and computer science. In this talk, I consider a selection of fun-
damental algorithmic problems for such systems, such as reachability, invariant
synthesis, and controllability. Although the decidability and complexity of many
of these problems are open, some partial and conditional results are known,
occasionally resting on certain number-theoretic hypotheses such as Schanuel’s
conjecture. More generally, the study of algorithmic problems for dynamical and
cyber-physical systems draws from an eclectic array of mathematical tools,
ranging from Diophantine approximation to algebraic geometry. I will present a
personal and select overview of the field and discuss areas of current active
research.

Contents

Coherence Spaces and Higher-Order Computation

Coherence Spaces and Uniform Continuity. 3
Kei Matsumoto

The Free Exponential Modality of Probabilistic Coherence Spaces 20
Raphaëlle Crubillé, Thomas Ehrhard, Michele Pagani,
and Christine Tasson

From Qualitative to Quantitative Semantics: By Change of Base. 36
James Laird

Almost Every Simply Typed k-Term Has a Long b-Reduction Sequence 53
Ryoma Sin’ya, Kazuyuki Asada, Naoki Kobayashi, and Takeshi Tsukada

Algebra and Coalgebra

Algebra, Coalgebra, and Minimization in Polynomial
Differential Equations . 71

Michele Boreale

Equational Theories of Abnormal Termination Based on Kleene Algebra 88
Konstantinos Mamouras

Companions, Codensity and Causality . 106
Damien Pous and Jurriaan Rot

Nominal Automata with Name Binding . 124
Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann

Games and Automata

On the Existence of Weak Subgame Perfect Equilibria 145
Véronique Bruyère, Stéphane Le Roux, Arno Pauly,
and Jean-François Raskin

Optimal Reachability in Divergent Weighted Timed Games 162
Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier

Bounding Average-Energy Games. 179
Patricia Bouyer, Piotr Hofman, Nicolas Markey, Mickael Randour,
and Martin Zimmermann

http://dx.doi.org/10.1007/978-3-662-54458-7_1
http://dx.doi.org/10.1007/978-3-662-54458-7_2
http://dx.doi.org/10.1007/978-3-662-54458-7_3
http://dx.doi.org/10.1007/978-3-662-54458-7_4
http://dx.doi.org/10.1007/978-3-662-54458-7_4
http://dx.doi.org/10.1007/978-3-662-54458-7_4
http://dx.doi.org/10.1007/978-3-662-54458-7_5
http://dx.doi.org/10.1007/978-3-662-54458-7_5
http://dx.doi.org/10.1007/978-3-662-54458-7_6
http://dx.doi.org/10.1007/978-3-662-54458-7_7
http://dx.doi.org/10.1007/978-3-662-54458-7_8
http://dx.doi.org/10.1007/978-3-662-54458-7_9
http://dx.doi.org/10.1007/978-3-662-54458-7_10
http://dx.doi.org/10.1007/978-3-662-54458-7_11

Logics of Repeating Values on Data Trees and Branching Counter Systems . . . 196
Sergio Abriola, Diego Figueira, and Santiago Figueira

Automata, Logic and Formal Languages

Degree of Sequentiality of Weighted Automata. 215
Laure Daviaud, Ismaël Jecker, Pierre-Alain Reynier,
and Didier Villevalois

Emptiness Under Isolation and the Value Problem for Hierarchical
Probabilistic Automata. 231

Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

Partial Derivatives for Context-Free Languages: From l-Regular
Expressions to Pushdown Automata . 248

Peter Thiemann

Dynamic Complexity of the Dyck Reachability. 265
Patricia Bouyer and Vincent Jugé

Proof Theory

Cyclic Arithmetic Is Equivalent to Peano Arithmetic 283
Alex Simpson

Classical System of Martin-Löf’s Inductive Definitions Is Not Equivalent to
Cyclic Proof System . 301

Stefano Berardi and Makoto Tatsuta

Probability

On the Relationship Between Bisimulation and Trace Equivalence
in an Approximate Probabilistic Context . 321

Gaoang Bian and Alessandro Abate

Computing Continuous-Time Markov Chains as Transformers
of Unbounded Observables. 338

Vincent Danos, Tobias Heindel, Ilias Garnier,
and Jakob Grue Simonsen

Pointless Learning. 355
Florence Clerc, Vincent Danos, Fredrik Dahlqvist, and Ilias Garnier

On Higher-Order Probabilistic Subrecursion . 370
Flavien Breuvart, Ugo Dal Lago, and Agathe Herrou

XVI Contents

http://dx.doi.org/10.1007/978-3-662-54458-7_12
http://dx.doi.org/10.1007/978-3-662-54458-7_13
http://dx.doi.org/10.1007/978-3-662-54458-7_14
http://dx.doi.org/10.1007/978-3-662-54458-7_14
http://dx.doi.org/10.1007/978-3-662-54458-7_15
http://dx.doi.org/10.1007/978-3-662-54458-7_15
http://dx.doi.org/10.1007/978-3-662-54458-7_15
http://dx.doi.org/10.1007/978-3-662-54458-7_16
http://dx.doi.org/10.1007/978-3-662-54458-7_17
http://dx.doi.org/10.1007/978-3-662-54458-7_18
http://dx.doi.org/10.1007/978-3-662-54458-7_18
http://dx.doi.org/10.1007/978-3-662-54458-7_19
http://dx.doi.org/10.1007/978-3-662-54458-7_19
http://dx.doi.org/10.1007/978-3-662-54458-7_20
http://dx.doi.org/10.1007/978-3-662-54458-7_20
http://dx.doi.org/10.1007/978-3-662-54458-7_21
http://dx.doi.org/10.1007/978-3-662-54458-7_22

Concurrency

A Truly Concurrent Game Model of the Asynchronous p-Calculus 389
Ken Sakayori and Takeshi Tsukada

Local Model Checking in a Logic for True Concurrency 407
Paolo Baldan and Tommaso Padoan

The Paths to Choreography Extraction . 424
Luís Cruz-Filipe, Kim S. Larsen, and Fabrizio Montesi

On the Undecidability of Asynchronous Session Subtyping 441
Julien Lange and Nobuko Yoshida

Lambda Calculus and Constructive Proof

A Lambda-Free Higher-Order Recursive Path Order 461
Jasmin Christian Blanchette, Uwe Waldmann, and Daniel Wand

Automated Constructivization of Proofs . 480
Frédéric Gilbert

Semantics and Category Theory

A Light Modality for Recursion . 499
Paula Severi

Unifying Guarded and Unguarded Iteration . 517
Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg

Partiality, Revisited: The Partiality Monad as a Quotient
Inductive-Inductive Type . 534

Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus

On the Semantics of Intensionality . 550
G.A. Kavvos

Author Index . 567

Contents XVII

http://dx.doi.org/10.1007/978-3-662-54458-7_23
http://dx.doi.org/10.1007/978-3-662-54458-7_23
http://dx.doi.org/10.1007/978-3-662-54458-7_24
http://dx.doi.org/10.1007/978-3-662-54458-7_25
http://dx.doi.org/10.1007/978-3-662-54458-7_26
http://dx.doi.org/10.1007/978-3-662-54458-7_27
http://dx.doi.org/10.1007/978-3-662-54458-7_28
http://dx.doi.org/10.1007/978-3-662-54458-7_29
http://dx.doi.org/10.1007/978-3-662-54458-7_30
http://dx.doi.org/10.1007/978-3-662-54458-7_31
http://dx.doi.org/10.1007/978-3-662-54458-7_31
http://dx.doi.org/10.1007/978-3-662-54458-7_32

Coherence Spaces and Higher-Order
Computation

Coherence Spaces and Uniform Continuity

Kei Matsumoto(B)

RIMS, Kyoto University, Kyoto, Japan
kmtmt@kurims.kyoto-u.ac.jp

Abstract. We consider a model of classical linear logic based on coher-
ence spaces endowed with a notion of totality. If we restrict ourselves to
total objects, each coherence space can be regarded as a uniform space
and each linear map as a uniformly continuous function. The linear expo-
nential comonad then assigns to each uniform space X the finest uniform
space !X compatible with X . By a standard realizability construction,
it is possible to consider a theory of representations in our model. Each
(separable, metrizable) uniform space, such as the real line R, can then
be represented by (a partial surjecive map from) a coherence space with
totality. The following holds under certain mild conditions: a function
between uniform spaces X and Y is uniformly continuous if and only if
it is realized by a total linear map between the coherence spaces repre-
senting X and Y.

1 Introduction

Since the inception of Scott’s domain theory in 1960’s, topology and continuity
have been playing a prominent role in denotational understanding of logic and
computation. On the other hand, uniformity and uniform continuity have not
yet been explored so much. The purpose of this paper is to bring them into
the setting of denotational semantics by relating them to another denotational
model: coherence spaces and linear maps. Our principal idea is that linear maps
should be uniformly continuous, not just in analysis, but also in denotational
semantics. The following situation, typical for computable real functions (in the
sense of [Ko91]), illustrates our idea.

Example 1. Imagine that each real number x ∈ R is presented by a rational
Cauchy sequence (xn)n∈N with |x − xn| ≤ 2−n. Let f : R → R be a computable
function which is uniformly continuous. Then there must be a function μ : N →
N, called a modulus of continuity, such that an approximation of f(x) with
precision 2−m can be computed from a single rational number xμ(m), no matter
where x is located on the real line. Thus one has to access the sequence (xn)
(regarded as an oracle) only once.

On the other hand, if f : R → R is not uniformly continuous, it admits no
uniform modulus of continuity. Hence one has to access (xn) at least twice to
obtain an approximation of f(x), once for figuring out the location of x and
thus obtaining a local modulus of continuity μ around x, and once for getting
the approximate value xμ(m).
c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 3–19, 2017.
DOI: 10.1007/978-3-662-54458-7 1

4 K. Matsumoto

Thus there is a difference in query complexity between uniformly continu-
ous and non-uniformly continuous functions. This observation leads us to an
inspiration that linear maps, whose query complexity is 1, should be somehow
related to uniformly continuous functions. To formalize this intuition, we work
with coherence spaces with totality.

Coherence spaces, introduced by Girard [Gi87], are Scott-Ershov domains
which are simply presented as undirected reflexive graphs. It was originally intro-
duced as a denotational semantics for System F, and later led to the discovery
of linear logic. One of the notable features of coherence spaces is that there are
two kinds of morphisms coexisting: stable and linear maps.

Totalities, which originate in domain theory (eg. [Gi86,No90,Be93]), are often
attached to coherence spaces (eg. [KN97]). Specifically, a totality on a coherence
space X in our sense is a set of cliques TX which is equivalent to its bi-orthogonal
T ⊥⊥
X with respect to the orthogonal relation defined by a ⊥ c ⇔ a ∩ c �= ∅

for a ∈ X and c ∈ X⊥. Totalities are usually employed to restrict objects and
morphisms to total ones to interpret well-behaved programs, while we emphasize
the role of co-totalities as uniform structures on totalities. When restricted to
“strict” ones (to be defined later), a totality TX can be seen as a set of ideal
points of a uniform space X, while the co-totality T ⊥

X as a uniform sub-basis for X.
Moreover, this allows us to prove that every “total” linear map F : X −→lin Y
is uniformly continuous (though not vice versa).

The category of coherence spaces with totality and total linear maps is a
model of classical linear logic, by simply extending the constructions on coher-
ence spaces to totalities. In this setting, the linear exponential comonad ! admits
an interesting interpretation: it assigns to each uniform space X the finest uni-
form space compatible with X. Curiously, this phenomenon seems very specific to
the coherence spaces model among various models of linear logic. Especially, the
“internal completeness” property (Proposition 1) highly depends on the graph
structure of coherence spaces.

We then apply our framework to computable analysis, where people study
computation over various continuous and analytic structures (such as Euclidean
spaces, metric spaces and Banach spaces). An essential prerequisite for argu-
ing computability over such structures is that each space should be concretely
represented. Traditional approaches use partial surjective maps (representations)
from concrete structures such as the Baire space [KW85,We00,BHW08] or Scott-
Ershov domains [Bl97,ES99,SHT08]. Instead of them, we consider partial sur-
jective maps from coherence spaces (with totality).

This program has been already launched by [MT16], where we have suitably
defined admissible representations based on coherence spaces (by importing var-
ious results from the type-two theory of effectivity [We00]). The principal result
there is as follows. Let X and Y be topological spaces admissibly represented
by coherence spaces X and Y (eg. the real line R is admissibly represented by
a coherence space R in Example 2). Then a function f : X → Y is realized
(i.e., tracked) by a stable map F : X −→st Y if and only if it is sequentially
continuous: it preserves the limit of any convergent sequence in X.

Coherence Spaces and Uniform Continuity 5

In [MT16], we also have found a linear variant of the above correspondence:
when restricted to real functions, f is realized by a linear map F : R −→lin

R if and only if it is uniformly continuous. Thus linearity indeed corresponds
to uniform continuity, at least, for real functions. While we did not have any
rationale or generalization at that time, we now have a better understanding
of uniform continuity in terms of coherence spaces with totality. We are now
able to generalize the above result on R to arbitrary chain-connected separable
metrizable uniform spaces as a consequence of the fact that total linear maps
are uniformly continuous.

Due to lack of space, some proofs are omitted and can be found in the full
version which will be available at arxiv.org.

Plan of the paper. We quickly review uniform spaces in Sect. 2.1 and coherence
spaces in Sect. 2.2. We then introduce in Sect. 3.1 the notion of (co)totality and
strictness of (anti-)cliques, which naturally extend the structure of coherence
spaces. In Sect. 3.2, we explore two uniformities induced by co-totalities and the
role of the linear exponential comonad ! in this interpretation. In Sect. 4, we
give an application of our model to computable analysis. We conclude in Sect. 5
with some future work.

2 Preliminaries

2.1 Uniform Spaces

We review some concepts regarding uniform spaces. See [Is64,Wi70] for details.
A cover of a set X is a family of subsets U ⊆ P(X) such that

⋃
U = X. Let U

and V be covers of X. We say that U refines V, written U
 V, if for every U ∈ U
there exists V ∈ V with U ⊆ V . The meet of U and V is given by U∧V := {U∩V :
U ∈ U and V ∈ V}. For x, y ∈ X, we write |x−y| < U if x, y ∈ U for some U ∈ U .
Given any A ⊆ X, we define star(A;U) := {q ∈ X : |p− q| < U for some p ∈ A}.
The star closure of U defined by U∗ := {star(U ;U) : U ∈ U} is also a cover of X.

Definition 1. A family μ of covers of X is called a uniformity if it satisfies the
following:

(U1) if U ,V ∈ μ, then U ∧ V ∈ μ;
(U2) if U ∈ μ and U
 V, then V ∈ μ;
(U3) if U ∈ μ, then there is a V ∈ μ with V∗
 U (V star-refines U).

A uniformity μ is said to be Hausdorff if it additionally satisfies the condition

(U4) if |x − y| < U for every U ∈ μX , then x = y.

A set equipped with a (Hausdorff) uniformity is called a (Hausdorff) uniform
space.

6 K. Matsumoto

The reader may be more familiar with an equivalent definition based on
entourages, which we here call the diagonal uniformity. Given any diagonal
uniformity Φ ⊆ P(X × X), one can construct a uniformity in our definition
generated by the family of all the covers {A[x] : x ∈ X}, where A ∈ Φ and
A[x] := {y ∈ X : (x, y) ∈ A}. Conversely, given any uniformity μ in our
sense, one can construct a diagonal uniformity generated by the family of all
the entourages of the form

⋃
{U × U : U ∈ U} with U ∈ μ. In this paper, we

adopt the covering definition to emphasize the correspondence between co-total
anti-cliques and uniform covers (see Sect. 3).

Let X = (X,μX) and Y = (Y, μY) be uniform spaces. A uniformly continuous
function from X to Y is a function f : X → Y satisfying that for any V ∈ μY

there exists U ∈ μX such that |x − y| < U =⇒ |f(x) − f(y)| < V for every
x, y ∈ X.

A (uniform) basis of μ is a subfamily β ⊆ μ such that for any U ∈ μ there
exists V ∈ β with V
 U . A (uniform) sub-basis of μ is a subfamily σ ⊆ μ
such that the finite meets of covers in σ form a basis: for any U ∈ μ there
exist finitely many V1, . . . ,Vn ∈ σ with V1 ∧ · · · ∧ Vn
 U . Notice that if a
family of covers satisfies the conditions (U2) and (U3) (resp. (U3)), it uniquely
generates a uniformity as a basis (resp. sub-basis). Each metric space X = (X, d)
has a canonical Hausdorff uniformity, generated by a countable basis Un :=
{B(x; 2−n) : x ∈ X}(n = 1, 2, . . .), where B(x; 2−n) is the open ball of center
x and radius 2−n. It is known that a Hausdorff uniformity is induced by some
metric if and only if it has a countable basis.

Each uniform space X = (X,μX) can be equipped with a topological struc-
ture, called the uniform topology, for which the neighborhood filter at p ∈ X
is given by {star({p};U) : U ∈ μX}. Equivalently, a set O ⊆ X is open with
respect to the uniform topology iff for any p ∈ O there exists U ∈ μX such that
star({p};U) ⊆ O. We will denote by τut(μ) the uniform topology induced by
μ, which is known to be completely regular. Uniform continuity trivially implies
topological continuity w.r.t. the uniform topologies. We say that a uniformity
μ is compatible with a topology τ if τ = τut(μ), and a topological space is uni-
formizable if there exists a uniformity which is compatible with the topology. It
is known that uniformizable (resp. Hausdorff uniformizable) topological spaces
are exactly completely regular (resp. Tychonoff) spaces.

Each completely regular space X = (X, τ) can be equipped with the finest
uniformity μfine, the uniformity which contains all of the uniformities compatible
with τ . A fine uniform space is a uniform space whose uniformity is finest w.r.t.
its uniform topology. We denote by Xfine = (X,μfine) the fine uniform space
induced by a completely regular space X.

The finest uniformity is characterized by the following property. We denote
by CReg the category of completely regular spaces and continuous functions,
and by Unif the category of uniform spaces and uniformly continuous functions.
The fine functor F : CReg −→ Unif , which assigns to each completely regular
space X the finest uniformity, is left adjoint to the topologizing functor G :

Coherence Spaces and Uniform Continuity 7

Unif −→ CReg, which assigns to each uniform space Y the uniform topology:

CReg

F
��

⊥ Unif .

G

�� (1)

Thus, for every completely regular space X and uniform space Y, f : X → Yut is
continuous iff f : Xfine → Y is uniformly continuous.

2.2 Coherence Spaces

We here recall some basics of coherence spaces. See [Gi87,Me09] for further
information.

Definition 2. A coherence space X = (X, ��) is a reflexive undirected graph:
a set X of tokens endowed with a reflexive symmetric binary relation �� on X,
called coherence.

Throughout this paper, we assume that the token set X is countable. This
assumption is quite reasonable in practice to think of tokens as computational
objects (see [As90] for the study on computability over coherence spaces).

Several variants of coherence are defined. Given tokens x, y ∈ X, we write
x�y (strict coherence) if x��y and x �= y. Notice that coherence and strict
coherence are mutually definable from each other.

A clique of a coherence space X is a set a ⊆ X such that x�� y for every
x, y ∈ a. An anti-clique of X is a set c ⊆ X such that ¬(x � y) for every x, y ∈ c.
By abuse of notation, we identify X with the set of all cliques of X. We also
use Xfin, Xmax and X⊥ for the sets of all finite, maximal and anti-cliques of
X, respectively. The coherence relation �� on X can be extended to X by
a�� b ⇐⇒ a ∪ b ∈ X for a, b ∈ X.

The set of cliques X ordered by inclusion forms a Scott domain whose com-
pact elements are finite cliques of X. The Scott topology τSco on X is generated
by {〈a〉 : a ∈ Xfin} as a basis, where 〈a〉 :=

{
b ∈ X : a ⊆ b

}
. Given any set

of cliques A ⊆ X, we also write τSco for the induced subspace topology on A.
Note that X is a T0-space, and is countably-based due to the assumption that
the token set X is countable.

Coherence spaces have a sufficiently rich structure to represent abstract
spaces. Let us first begin with a coherence space for the real line R.

Example 2 (coherence space for real numbers). Let D := Z × N, where each
pair (m,n) ∈ D is identified with the dyadic rational number m/2n. We use the
following notations. For x = (m,n) ∈ D, we define den(x) := n (the exponent of
the denominator) and [x] := [(m−1)/2n; (m+1)/2n] (the compact interval with
center x and width 2−(n−1)), and denote by Dn the set {x ∈ D | den(x) = n} for
each n ∈ N.

8 K. Matsumoto

Let R be a coherence space (D, ��) defined by x � y iff den(x) �= den(y) and
[x] ∩ [y] �= ∅. The latter condition immediately implies the inequality |x − y| ≤
2−den(x)+2−den(y), hence each maximal clique a ∈ Rmax corresponds to a rapidly-
converging Cauchy sequence {xn}n∈N (i.e., a sequence of dyadic rationals such
that xn ∈ Dn and |xn − xm| ≤ 2−n + 2−m for every n,m ∈ N).

A representation of the real line R is a partial surjective map φ :⊆ X → R

from some coherence space X. We then have a representation ρR of R defined
by ρR(a) := limn→∞ xn for all a ∈ Rmax.

Definition 3 (stable and linear maps). Let X and Y be coherence spaces.
A function F : X → Y between the set of cliques is said to be stable, written
F : X −→st Y , if it is Scott-continuous and a�� b =⇒ F (a ∩ b) = F (a) ∩ F (b)
for any a, b ∈ X.

A function F : X → Y is said to be linear, written F : X −→lin Y , if it
satisfies that a =

∑
i∈I ai =⇒ F (a) =

∑
i∈I F (ai) for any clique a ∈ X and any

family of cliques {ai}i∈I ⊆ X. Here
∑

means the disjoint union of cliques.

It is easy to check that linearity implies stability.
There are alternative definitions of stable and linear maps. Given any function

F : X −→ Y between the set of cliques, we call (a, y) ∈ Xfin × Y a minimal
pair of F if F (a) � y and there is no proper subset a′

� a such that F (a′) � y.
We denote by tr(F) the set of all minimal pairs, called the trace of F . Now, F is
stable iff it is ⊆-monotone and satisfies that: if F (a) � y, there is a unique finite
clique a0 ⊆ a such that (a0, y) ∈ tr(F).

If F is furthermore linear, the finite clique a0 ∈ Xfin must be a singleton.
Thus F is linear iff it is ⊆-monotone and satisfies that: if F (a) � y, there is a
unique token x ∈ a such that ({x}, y) ∈ tr(F). By abuse of notation, we simply
write tr(F) for the set {(x, y)|({x}, y) ∈ tr(F)} if F is supposed to be linear.

Below are some typical constructions of coherence spaces. Let Xi = (Xi, �� i)
be a coherence space for i = 1, 2. We define:

– 1 = ⊥ := ({•}, {(•, •)}).
– X1 ⊗ X2 := (X1 × X2, ��), where (z, x)�� (w, y) holds iff both z �� 1w and

x�� 2y.
– X1 −◦ X2 := (X1 × X2, ��), where (z, x)� (w, y) holds iff z �� 1w implies

x� 2y.
– !X1 := ((X1)fin, ��), where a�� b holds iff a�� 1b.

We omit the definitions of additives (& and �).
In some literature, the exponential coherence space !X is defined on the set

of finite multi-cliques of X. However, we prefer set-cliques, since we will later
restrict cliques to be ⊆-minimal (strict) ones and such cliques are eventually
ordinary sets.

A notable feature of coherence spaces is that they have two closed structures:
the cartesian closed category Stab of coherence spaces and stable maps, and the
*-autonomous category Lin of coherence spaces and linear maps equipped with
(1,⊗,−◦,⊥). Moreover, one can see ! as a linear exponential comonad on the

Coherence Spaces and Uniform Continuity 9

category Lin whose co-Kleisli category is isomorphic to Stab. In fact, a stable
map F : X −→st Y can be identified with a linear map G : !X −→lin Y so that
tr(F) = tr(G) ⊆ Xfin × Y . This leads to a linear-non-linear adjunction:

Stab

K

��
⊥ Lin .

L

�� (2)

The purpose of this paper is to establish a connection between the two adjunc-
tions (1) and (2), which will be done in Sect. 3.2 by giving a pseudo-map of
adjunctions between them.

We do not describe anymore the categorical structures of coherence spaces,
but let us just mention the following. Given any linear map F : X −→lin Y ,
its trace forms the clique tr(F) ∈ X −◦ Y . Conversely, given any clique κ ∈
X −◦ Y , the linear map κ̂ : X −→lin Y is induced as κ̂(a) := {y ∈ Y : (x, y) ∈
κ for some x ∈ a}.

3 Uniform Structures on Coherence Spaces with Totality

In this section, we introduce the notions of (co-)totality of (anti-)cliques. We then
observe that uniform structures are induced on the set of strict (i.e. ⊆-minimal)
total cliques by the corresponding strict co-totalities.

3.1 Coherence Spaces with Totality

Let X be a coherence space. Recall that given any clique a ∈ X and any anti-
clique c ∈ X⊥, a ∩ c is either empty or a singleton. If the latter is the case, we
write a ⊥ c.

Given any set of cliques A ⊆ X, we denote by A⊥ the set of anti-cliques
{c ∈ X⊥ : ∀a ∈ A. a ⊥ c}, called the orthogonal of A. One can immediately
observe the following: (i) A ⊆ A⊥⊥ ⊆ X; (ii) B ⊆ A implies A⊥ ⊆ B⊥; and
(iii) A⊥ = A⊥⊥⊥. As a consequence, A = A⊥⊥ iff it is the orthogonal of some
B ⊆ X⊥.

Definition 4 (coherence spaces with totality). A coherence space with
totality is a coherence space X equipped with a set of cliques TX ⊆ X such
that TX = T ⊥⊥

X , called a totality. Cliques in TX are said to be total.
The orthogonal T ⊥

X is called the co-totality, and its members are called co-
total anti-cliques.

It is clear that a totality TX is upward-closed with respect to ⊆, and is closed
under compatible intersections: if a, b ∈ TX and a�� b then a ∩ b ∈ TX . As a
consequence, every total clique a ∈ TX is associated with a unique minimal part
a◦ :=

⋂
{b ∈ TX : b ⊆ a} which is again total. Such a total clique is called

10 K. Matsumoto

strict (or material in the sense of ludics). We write T ◦
X for the set of strict total

cliques of X. We have TX = {b ∈ X : a ⊆ b for some a ∈ T ◦
X} = (T ◦

X)⊥⊥,
thus defining a totality is essentially equivalent to defining a strict totality. A
more direct definition of T ◦

X is as follows: a ∈ T ◦
X iff for every c ∈ (T ⊥

X)◦ there
exists x ∈ a such that x ∈ c (totality), and dually, for every x ∈ a there exists
c ∈ (T ⊥

X)◦ such that x ∈ c (strictness).
Our use of totality is directly inspired by Kristiansen and Normann [KN97],

although their use does not take into account strictness and bi-orthogonality.
Similar constructions are abundant in the literature, eg., totality spaces by
Loader [Loa94] and finiteness spaces by Ehrhard [Ehr05].

Example 3. Consider the coherence space R = (D, ��) for real numbers defined
in Example 2. The set of maximal cliques TR := Rmax is a totality on R: it is
easy to see that T ⊥

R = {Dn : n ∈ N}, hence T ⊥⊥
R = Rmax = TR. We also have

T ◦
R = Rmax due to maximality.

Example 4. The idea of Example 2 can be generalized to a more general class. Let
X = (X,μ) be a Hausdorff uniform space with a countable basis β = {Un}n∈N

consisting of countable covers. A form of the metrization theorem states that
such a space must be separable metrizable (see [Ke75] for instance).

Let B be the set {(n,U) : n ∈ N, U ∈ Un}. We define a coherence
space BX,β = (B, ��) by (n,U)� (m,V) iff n �= m and U ∩ V �= ∅ for
all (n,U), (m,V) ∈ B. Each a ∈ (BX,β)max corresponds to a sequence of sets
{Un}n∈N such that Un ∈ Un and Un ∩ Um �= ∅ for every n,m ∈ N. By the
Hausdorff property, it indicates at most one point in X. It is easy to see that
TBX,β

:= (BX,β)max is a totality on BX,β .
The separable metrizable space X has a “standard” representation δX :⊆

BX,β → X defined by δX(a) := p if p ∈
⋂

n∈N
Un �= ∅ and undefined otherwise

for every a = {Un}n∈N ∈ (BX,β)max. The definition of δX does not depend
on the choice of the countable basis β, up to isomorphisms in the category of
representations (see Sect. 4), so we will below drop the index β from the notation.

All constructions of coherence spaces are extended to totalities in a rather
canonical way. Let (X, TX) and (Y , TY) be coherence spaces with totality.
Define:

– TX⊥ := T ⊥
X ; T1 := 1max.

– TX⊗Y := (TX ⊗ TY)⊥⊥, where TX ⊗ TY consists of a ⊗ b := {(x, y) :
x ∈ a, y ∈ b} for all a ∈ TX and b ∈ TY .

– TX−◦Y := {κ ∈ (X1 −◦ X2) : κ̂[TX] ⊆ TY }.
– T !X := (! TX)⊥⊥, where ! TX consists of ! a := {a0 ∈ X : a0 ⊆fin a} for all

a ∈ TX .

The connectives ⊗ and ! admit “internal completeness” in the following sense.

Proposition 1. For any coherence spaces with totality, (TX ⊗ TY)⊥⊥◦ = T ◦
X ⊗

T ◦
Y and (! TZ)⊥⊥◦ = ! (T ◦

Z) hold.

Coherence Spaces and Uniform Continuity 11

A proof is given in the full version. This property, which is essential for the main
result of this section, seems very specific to our choice of coherence spaces model.

Let us give the definition of total functions.

Definition 5. A linear map F : X −→lin Y is called total if tr(F) ∈ TX−◦Y ,
or equivalently if F preserves totality: F [TX] ⊆ TY .

Similarly, a stable map F : X −→st Y is called total if it preserves totality.

Theorem 6. The category LinTot of coherence spaces with totality and total
linear maps is a model of classical linear logic (i.e., a ∗-autonomous category
with finite (co)products and a linear exponential (co)monad).

The proof is essentially due to [HS03].
The category StabTot of coherence spaces with totality and total stable maps

is trivially the co-Kleisli category of the linear exponential comonad ! and hence
is cartesian closed. As a consequence, we again have a linear-non-linear adjunc-
tion between StabTot and LinTot.

3.2 Uniformities Induced by Co-Totality

We shall next show that totalities on coherence spaces can be equipped with
uniform structures induced by co-totalities. Our claim can be summarized as fol-
lows. Given any coherence space with totality (X, TX), its strict totality T ◦

X

is endowed with the Scott topology τSco; it is simultaneously endowed with
the Hausdorff uniformities induced by the strict co-totalities (T ⊥

X)◦ and (T ⊥
!X)◦

which are compatible with τSco; and moreover the latter uniformity is the finest.
Recall that each finite clique a ∈ Xfin generates the upper set 〈a〉 := {b ∈

X : b ⊇ a} in such a way that “incoherence” corresponds to disjointness:

¬(x�� y) ⇐⇒ 〈x〉 ∩ 〈y〉 = ∅; ¬(a�� b) ⇐⇒ 〈a〉 ∩ 〈b〉 = ∅

for every x, y ∈ X and a, b ∈ X, where 〈x〉 stands for 〈{x}〉 by abuse of notation.
Let us use the notations 〈x〉◦ := 〈x〉 ∩ T ◦

X and 〈a〉◦ := 〈a〉 ∩ T ◦
X .

A strict co-total anti-clique of X is called a uni-cover of T ◦
X . This terminology

can be explained as follows. As noted above, an anti-clique c ∈ X⊥ can be seen
as a disjoint family of upper sets: {〈x〉◦ : x ∈ c}. Co-totality of c then means
that every a ∈ T ◦

X is contained in some 〈x〉◦ with x ∈ c. Thus T ◦
X =

∑
x∈c〈x〉◦.

Moreover, c being strict means that 〈x〉◦ is nonempty for every x ∈ c. That is,
restricting c ∈ T ⊥

X to c◦ ∈ (T ⊥
X)◦ amounts to removing all empty 〈x〉◦ from the

disjoint cover {〈x〉◦ : x ∈ c}.
On the other hand, each C ∈ (T ⊥

!X)◦ is called an unbounded-cover of T ◦
X . It is

also identified with a disjoint cover {〈a〉◦ : a ∈ C} of T ◦
X , consisting of nonempty

upper sets, so that T ◦
X =

∑
a∈C〈a〉◦.

To emphasize the uniformity aspect, we will use the notations σb
X := (T ⊥

X)◦

and βub
X := (T ⊥

!X)◦. Each uni-cover can be considered as an unbounded-cover
consisting of singletons: σb

X ⊆ βub
X by c ∈ σb

X �→ {{x} : x ∈ c} ∈ βub
X .

12 K. Matsumoto

The families σb
X and βub

X indeed generate uniformities on T ◦
X :

Proposition 2. (T ◦
X , βub

X) satisfies axioms (U1), (U3) and (U4), while
(T ◦

X , σb
X) satisfies (U3) and (U4) in Definition 1.

Proof. (U1) First notice that βub
X = (T ⊥

!X)◦ = (! TX)⊥⊥⊥◦ = (! TX)⊥◦. Given
A,B ∈ (! TX)⊥, let A ∧ B := {a ∪ b : a ∈ A, b ∈ Banda�� b}, which is indeed
the meet of the covers A and B under the identification of co-total anti-cliques
with disjoint covers, since 〈a ∪ b〉 = 〈a〉 ∩ 〈b〉 holds for all a, b ∈ X.

All we have to check is that A∧B belongs to (! TX)⊥. Then it easily follows
that if A,B belong to βub

X , so does (A ∧ B)◦. Given c ∈ TX so that !c ∈ ! TX ,
there are a ∈ A and b ∈ B such that a ∈!c and b ∈!c. Hence a ∪ b ∈!c ∩ (A∧B).

(U3) In general, we have star(U ;C) = U for any disjoint cover C of T ◦
X and

U ∈ C. Hence each A ∈ βub
X , which is disjoint, star-refines itself.

(U4) Assume that a, b ∈ T ◦
X with a �= b. Then there are x ∈ a\b and

c ∈ σb
X = (T ⊥

X)◦ such that x ∈ c by strictness of a. As a ∈ 〈x〉◦, b �∈ 〈x〉◦ and c is
a disjoint cover, this witnesses the Hausdorff property for σb

X (so for βub
X too). �

Consequently, βub
X , as uniform basis, generates a Hausdorff uniformity μub

X

called the unbounded uniformity, while σb
X , as uniform sub-basis, generates

another Hausdorff uniformity μb
X ⊆ μub

X called the bounded uniformity. The
index X will be often dropped if it is obvious from the context.

Unlike βub
X , the family σb

X is not closed under finite meets. To make it closed,
we have to extend it to βb

X ⊆ βub
X , which consists of all finite meets of uni-covers:

c1∧· · ·∧cm := {{x1, . . . , xm} ∈ X : xi ∈ ci (1 ≤ i ≤ m)}◦. Notice that c1∧· · ·∧cm
consists of cliques of size at most m, while unbounded-covers do not. That is
why μb

X is called bounded.
Although μb

X and μub
X are different as uniformities, they do induce the same

uniform topology:

Theorem 7. The (un)bounded uniformity on T ◦
X is compatible with the Scott

topology restricted to T ◦
X . That is, τut(μb) = τut(μub) = τSco.

Proof. By definition, U ⊆ T ◦
X is open with respect to τut(μub) iff for every

a ∈ U there exists A ∈ βub
X such that star({a};A) ⊆ U (see Sect. 2.1). Due to

disjointness of A, however, star({a};A) just amounts to 〈a0〉◦, where a0 is the
unique clique in A such that a ∈ 〈a0〉◦. Moreover, any finite clique a1 ∈ Xfin with
〈a1〉◦ �= ∅ is contained in some A ∈ βub

X (see the full version for the proof). All
together, U is open iff for every a ∈ U there exists a0 ∈ Xfin such that a ∈ 〈a0〉◦

iff U is open with respect to τSco.
The same reasoning works for τut(μb) too. �

The unbounded uniformity μub is hence compatible with, and finer than the
bounded uniformity μb. We can furthermore show that it is the finest uniformity
on T ◦

X . The omitted proof is found in the full version.

Coherence Spaces and Uniform Continuity 13

Theorem 8. (T ◦
X , μub

X) is a fine uniform space.

Due to internal completeness (Proposition 1), we have a bijection T ◦
X � T ◦

!X

defined by a ∈ T ◦
X ↔ ! a ∈ T ◦

!X . Notice also that βub
X = (T ⊥

!X)◦ = σb
!X and fine

uniformity is preserved under uniform homeomorphisms. These facts together
allow us to prove:

Corollary 1. The above bijection gives a uniform homeomorphism (T ◦
X , μub

X) �
(T ◦

!X , μb
!X). As a consequence, (T ◦

!X , μb
!X) is a fine uniform space.

Let (X, TX) and (Y , TY) be coherence spaces with totality and
F : X −→lin Y be a total linear map. First notice that a total linear map
can be seen as a total function between the totalities. Moreover, one can natu-
rally restrict it to the total function between the strict totalities. The strict total
function F ◦ : T ◦

X → T ◦
Y is defined by F ◦(a) := (F (a))◦ for all a ∈ T ◦

X . This
is well-defined and strict total functions are compositional due to minimality of
strict total cliques. We are now ready to establish uniform continuity of linear
maps.

Theorem 9. For any b ∈ σb
Y there exists a ∈ σb

X such that |a − b| < a ⇒
|F (a) − F (b)| < b for every a, b ∈ T ◦

X . Consequently, (i) F ◦ : T ◦
X → T ◦

Y is
uniformly continuous w.r.t. the bounded uniformities; and (ii) F ◦ : T ◦

X → T ◦
Y is

topologically continuous w.r.t. the uniform topologies.

Proof. Since LinTot is *-autonomous, one can take the transpose F⊥ :
Y ⊥ −→lin X⊥ defined by x ∈ F⊥({y}) ⇔ F ({x}) � y for every x ∈ X and
y ∈ Y . Let a := F⊥(b) ∈ X⊥. By definition, one can immediately observe that
a, b ∈ 〈x〉◦ with x ∈ a implies F (a), F (b) ∈ 〈y〉◦ with y ∈ b. �

We thus obtain a functor J : LinTot → Unif which sends a coherence space
with totality (X, TX) to the (indeed Hausdorff) uniform space (T ◦

X , μb) and a
total linear map to the corresponding uniformly continuous function which is
shown in the above theorem. There is also a functor I : StabTot → CReg send-
ing (X, TX) to the completely regular (indeed Tychonoff) space (T ◦

X , τSco) and
a total stable map to the corresponding continuous function. We now have the
following diagram, in which the two squares commute (up to natural isomor-
phisms):

CReg

F

��
⊥ Unif

G

��

StabTot

K
��

I

��

⊥ LinTot .

L

��

J

��
(3)

14 K. Matsumoto

In addition, one can show that the pair of functors 〈I, J〉 preserves an adjunction:
it is a pseudo-map of adjunctions in the sense of Jacobs [Ja99].

This combines (1) and (2), as we have planned.

4 Coherent Representations

In this section, we introduce coherent representations, a model of abstract
computations based on coherence spaces. Our motivation is to examine how
resource-sensitive properties like stability or linearity affect on computations
over topological structures.

4.1 Representations as a Realizability Model

We represent abstract spaces largely following the mainstreams of computable
analysis: the type-two theory of effectivity (TTE) [KW85,We00,BHW08] and
the theory of domain representations [Bl97,ES99,SHT08]. In both theories, com-
putations over abstract spaces are first tracked by continuous maps over their
base spaces (the Baire space B = N

ω in TTE and Scott domains in domain
representations), and then the computability notions are introduced. Following
a similar idea, we use coherence spaces to represent topological spaces as base
spaces, and track computations by stable maps just as in Examples 2 and 4 (for
the issue of computability of stable maps, see [As90]; one can impose effectivity
on coherence spaces just as in effective Scott domains).

Let us give a formal definition:

Definition 10. Let S be an arbitrary set. A tuple (X, ρ, S) is called a repre-
sentation of S if X is a coherence space and ρ :⊆ X → S is a partial surjective
map. Below, we write X

ρ−→ S, or simply ρ, for this representation.

Definition 11 (stable realizability). Let X
ρX−→ S and Y

ρY−→ T be represen-
tations of sets S and T . A function f : S → T is stably realizable with respect
to ρX and ρY if it is tracked by some stable map F : X −→st Y , that is, the
stable map F makes the following diagram commute:

X
F ��

ρX
��

Y

ρY
��

S
f �� T

(4)

We denote by StabRep the category of coherent representations and stably
realizable functions.

With the help of the theory of applicative morphisms [Lon94,Ba00,Ba02],
one can compare StabRep with other models of representations, especially with
the TTE model. A partial surjective map φ :⊆ B → S onto a set S is said to

Coherence Spaces and Uniform Continuity 15

be a TTE-representation of S. Given any TTE-representations δ and γ of sets
S and T , a function f : S → T is said to be continuously realizable if there
exists a continuous function F :⊆ B → B which tracks f as in the diagram (4).
We denote by TTERep the category of TTE-representations and continuously
realizable functions. We then obtain an applicative retraction between coherent
representations and TTE-representations. Roughly speaking, one can embed the
type-two theory of effectivity into the theory of coherent representations.

Theorem 12. The category TTERep is equivalent to a full coreflexive subcat-
egory of StabRep.

In [MT16], we have defined spanned coherent representations, which forms a
full coreflexive subcategory of StabRep equivalent to TTERep. As a conse-
quence of the theorem, various ideas and results in TTE can be imported to
spanned representations. In particular, one can import the notion of admissible
representations: representations of topological spaces which provide the best way
to encode the approximation structures. The next theorem immediately follows
from [Sc02]:

Theorem 13 ([MT16]). Let X and Y be topological spaces represented by
admissible spanned representations X

ρX−→ X and Y
ρY−→ Y. A function f :

X −→ Y is stably realizable if and only if it is sequentially continuous, that is,
it preserves the limit of any convergent sequence: xn → x ⇒ f(xn) → f(x).

For instance, the coherent representation R
ρR−→ R defined in Example 2 is

spanned and admissible. Consequently, a function f : R → R is stably realizable
w.r.t. ρR iff it is continuous (sequential continuity coincides with usual continuity
for real functions). This correspondence can be generalized to a vast class of
topological spaces (quotients of countably-based (qcb-)spaces [Sc02,Si03]).

Notice that given any topological space X, its admissible representations
are “interchangeable”: if X0

ρ0−→ X and X1
ρ1−→ X are admissible, then the

identity map id : X −→ X is realized by stable maps F : X0 −→st X1 and
G : X1 −→st X0 which reduce each representation to another.

4.2 Linear Realizability for Separable Metrizable Spaces

On the other hand, we have found in [MT16] a linear variant of the above
equivalence between stable realizability and continuity: a real function f : R → R

is linearly realizable iff it is uniformly continuous. We below try to generalize
this correspondence to separable metrizable uniform spaces, based on standard
representations defined in Example 4. Recall that given any separable metrizable
space X, its standard representation BX

δX−→ X is constructed from a countable
basis of X.

Definition 14 (linear realizability). Let X
ρX−→ S and Y

ρY−→ T be repre-
sentations. A function f : S → T is linearly realizable with respect to ρX and
ρY if it is tracked by a linear map F : X −→lin Y in the sense of the above
diagram (4).

16 K. Matsumoto

Theorem 15. The category LinRep of coherent representations and linearly
realizable functions is a model of intuitionistic linear logic (a linear category in
the sense of Bierman [Bi94]).

Proof Sketch. Recall that linear combinatory algebras (LCA) are a linear vari-
ant of partial combinatory algebras (PCA) [AL00,AHS02]. One can construct
various realizability models based on LCAs, and especially, the PER category
PER(A) over an LCA A is known to be a model of ILL as shown in [AL05].

We can naturally define an LCA Coh such that LinRep � PER(Coh).
Indeed, coherence spaces trivially have linear type structures and there also
exists a universal type, from which we obtain an untyped LCA Coh by a linear
variant of the Lietz-Streicher theorem [LS02].

Consequently, the category LinRep � PER(Coh) is a model of ILL. �

As we have seen in the previous section, any total linear maps are uniformly
continuous. We next show that any linear map F : X −→lin Y can be enhanced
with totality, if we assign suitable totalities on X and Y . Recall that for any
set A ⊆ X of cliques, its bi-orthogonal A⊥⊥ can be a totality on X, hence
is endowed with a bounded uniformity. Here is an extension lemma for the bi-
orthogonal totalities:

Lemma 1. Let A ⊆ X and B ⊆ Y be arbitrary (non-empty) sets of cliques. If
F : X −→lin Y satisfies F [A] ⊆ B then F is indeed total: F [A⊥⊥] ⊆ B⊥⊥.

The condition F [A] ⊆ B is exactly what we encounter in defining a realizable
function tracked by F . For any coherent representation X

δX−→ S, let us endow
X with the totality TX := dom(δX)⊥⊥. From the above lemma, f : S → T is
linearly realizable if and only if it is tracked by a total linear map F : X −→lin Y .
So one can say that a linearly realizable function is in fact a “totally linearly
realizable” function.

One can then observe that the standard representation BX

δX−→ X of a sepa-
rable metrizable space X is also topologically meaningful for linear realizability,
like admissible representations for stable realizability:

Theorem 16. Let X and Y be separable metrizable spaces represented by the
standard representations. Then every uniformly continuous function f : X → Y

is linearly realizable.

To obtain the converse of Theorem 16, we need to assume on X a weaker
notion of connectedness. A uniform space X = (X,μX) is chain-connected (or
sometimes called uniformly connected) if given any two points p, q ∈ X and any
uniform cover U ∈ μX , there exist finitely many U1, . . . Un ∈ U such that p ∈ U1,
Ui ∩ Ui+1 �= ∅ for every i < n, and Un � q. Ordinary connectedness implies
chain-connectedness. For instance, the set of rational numbers Q endowed with
the usual metric is chain-connected, while it is totally disconnected.

Theorem 17. Let X and Y be separable metrizable spaces represented by
the standard representations. Provided that X is chain-connected, a function
f : X → Y is linearly realizable iff it is uniformly continuous.

Coherence Spaces and Uniform Continuity 17

Proof Sketch. The “if”-direction is due to Theorem 16. We shall show the “only-
if” direction. As noted above, if f is linearly realizable, there exists a total
linear map F : BX −→lin BY which tracks f , hence F is uniformly continu-
ous w.r.t. the bounded uniformities by Theorem 9. Any standard representation
δY :⊆ BY → Y is uniformly continuous as a partial map, so is the composi-
tion δY ◦ F : dom(δX) → Y. One can show that δX is a uniform quotient by
chain-connectedness of X, hence uniform continuity of f ◦ δX = δY ◦ F implies
that of f . �

A complete proof is given in the full version.
This result substantially generalizes the already mentioned result (“linear

realizability ⇔ uniform continuity” for real functions) in [MT16].

5 Related and Future Work

Type theory. In this paper, we have proposed coherence spaces with totality as
an extension of ordinary coherence spaces, following the idea of Kristiansen and
Normann. Originally in domain theory, domains with totality are introduced by
Berger [Be93] to interpret Martin-Löf type theory using “total” elements. Since
our model of coherence spaces with totality is a linear version of this model, one
can expect that it could model intuitionistic linear type theory.

Our theory also includes a natural representation of (separable metrizable)
uniform spaces and uniformly continuous maps between them. Hence it might
lead to a denotational model of real functional programming languages (e.g.,
[Es96,ES14]) extended with other uniform spaces, where one can deal with uni-
formly continuous functions based on linear types.

Realizability theory. In the traditional setting, giving representations roughly
amounts to constructing modest sets over a PCA in the theory of realizability.
Our model of coherent representations and stable realizability is in fact consid-
ered as a modest set model over a PCA Coh constructed from coherence spaces,
which is known to be a model of intuitionistic logic [Lon94,Ba00]. Bauer then
gave an attractive paradigm [Ba05]: “Computable mathematics is a realizability
interpretation of constructive mathematics.”

On the other hand, less is known about the relationship between computable
mathematics and linear realizability theory over a LCA, for which we can build
models of intuitionistic linear logic. Since we can also construct a LCA from
coherence spaces, it is in principle possible to develop such a theory based on
our framework. We believe that exploring this direction, already mentioned in
[Ba00], will be an interesting avenue for future work.

Acknowledgement. The author is greatful to Naohiko Hoshino and Kazushige Terui
(RIMS) for useful comments, and to the anonymous referees for their thoughtful reviews
that help improve the manuscript.

This work was partly supported by JSPS Core-to-Core Program (A. Advanced
Research Networks) and by KAKENHI 25330013.

18 K. Matsumoto

References

[AHS02] Abramsky, S., Haghverdi, E., Scott, P.J.: Geometry of interaction and linear
combinatory algebras. Math. Struct. in Comput. Sci. 12(5), 625–665 (2002)

[AL00] Abramsky, S., Lenisa, M.: A fully complete PER model for ML polymorphic
types. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862,
pp. 140–155. Springer, Heidelberg (2000). doi:10.1007/3-540-44622-2 9

[AL05] Abramsky, S., Lenisa, M.: Linear realizability and full completeness for typed
lambda-calculi. Ann. Pure Appl. Logic 134(2–3), 122–168 (2005)

[As90] Asperti, A.: Stability and computability in coherent domains. Inf. Comput.
86, 115–139 (1990)

[Ba00] Bauer, A.: The Realizability Approach to Computable Analysis and Topol-
ogy. Ph.D. thesis, School of Computer Science, Carnegie Mellon University
(2000)

[Ba02] Bauer, A.: A relationship between equilogical spaces and type two effectivity.
Math. Logic Q. 48(S1), 1–15 (2002)

[Ba05] Bauer, A.: Realizability as the connection between computable and construc-
tive mathematics. In: Proceedings of CCA , Kyoto, Japan (2005)

[Be93] Berger, U.: Total sets and objects in domain theory. Ann. Pure Appl. Logic
60, 91–117 (1993)

[BHW08] Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis.
In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms,
pp. 425–491. Springer, Heidelberg (2008)

[Bi94] Bierman, G.: On intuitionistic linear logic. Ph.D. thesis, University of
Cambridge (1994)

[Bl97] Blanck, J.: Computability on topological spaces by effective domain repre-
sentations. Ph.D. thesis, Uppsala University (1997)

[Ehr05] Ehrhard, T.: Finiteness spaces. Math. Str. Comput. Sci. 15(4), 615–646
(2005)

[Es96] Escardo, M.H.: PCF extended with real numbers. Theoret. Comput. Sci.
162(1), 79–115 (1996)

[ES99] Edalat, A., Sunderhauf, P.: A domain-theoretic approach to computability
on the real line. Theoret. Comput. Sci. 210(1), 73–98 (1999)

[ES14] Escardo, M.H., Simpson, A.: Abstract datatypes for real numbers in type
theory. In: Proceedings of RTA-TLCA, pp. 208–223 (2014)

[Gi86] Girard, J.-Y.: The system F of variable types, fifteen years later. Theoret.
Comput. Sci. 45(2), 159–192 (1986)

[Gi87] Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
[HS03] Hyland, M., Schalk, A.: Glueing and orthogonality for models of linear logic.

Theo. Comput. Sci. 294(1–2), 183–231 (2003)
[Is64] Isbell, J.R.: Uniform Spaces. American Mathematical Society, Providence

(1964)
[Ja99] Jacobs, B.: Categorical Logic and Type Theory. North Holland, Amsterdam

(1999)
[Ke75] Kelley, J.L.: General Topology. Springer Science & Business Media, New

York (1975)
[KN97] Kristiansen, L., Normann, D.: Total objects in inductively defined types.

Arch. Math. Logic 36, 405–436 (1997)
[Ko91] Ko, K.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)

http://dx.doi.org/10.1007/3-540-44622-2_9

Coherence Spaces and Uniform Continuity 19

[KW85] Kreitz, C., Weihrauch, K.: Theory of representations. Theoret. Comput. Sci.
38, 35–53 (1985)

[Loa94] Loader, R.: Linear logic, totality and full completeness. In: Proceedings of
the 9th Annual IEEE Symposium on Logic in Computer Science, pp. 292–
298 (1994)

[Lon94] Longley, J.R.: Realizability Toposes and Language Semantics. Ph.D. thesis,
University of Edinburgh (1994)

[LS02] Lietz, P., Streicher, T.: Impredicativity entails untypedness. Math. Struct.
Comput. Sci. 12(3), 335–347 (2002)

[Me09] Mellies, P.-A.: Categorical semantics of linear logic. Interactive models of
computation and program behaviour. In: Panoramas et Syntheses vol. 27.
Soc. Math. de France (2009)

[MT16] Matsumoto, K., Terui, K.: Coherence spaces for real functions and operators.
Submitted (2016). http://www.kurims.kyoto-u.ac.jp/∼terui/pub.html

[No90] Normann, D.: Formalizing the notion of total information, pp. 67–94. In:
Mathematical Logic. Plenum Press (1990)

[Sc02] Schröder, M.: Extended admissibility. Theoret. Comput. Sci. 284(2), 519–
538 (2002)

[SHT08] Stoltenberg-Hansen, V., Tucker, J.V.: Computability on topological spaces
via domain representations. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New
Computational Paradigms, pp. 153–194. Springer, New York (2008)

[Si03] Simpson, A.: Towards a category of topological domains. In: Proceedings of
the of Thirteenth ALGI Workshop. RIMS, Kyoto University (2003)

[We00] Weihrauch, K.: Computable Analysis – An Introduction. Texts in Theoreti-
cal Computer Science. Springer, Heidelberg (2000)

[Wi70] Willard, S.: General Topology. Courier Corp., New York (1970)

http://www.kurims.kyoto-u.ac.jp/~terui/pub.html

The Free Exponential Modality
of Probabilistic Coherence Spaces

Raphaëlle Crubillé, Thomas Ehrhard, Michele Pagani(B),
and Christine Tasson

IRIF, UMR 8243, Université Paris Diderot, Sorbonne Paris Cité,
75205 Paris, France
pagani@irif.fr

Abstract. Probabilistic coherence spaces yield a model of linear logic
and lambda-calculus with a linear algebra flavor. Formulas/types are
associated with convex sets of R+ -valued vectors, linear logic proofs with
linear functions and λ-terms with entire functions, both mapping the con-
vex set of their domain into the one of their codomain.

Previous results show that this model is particularly precise in describ-
ing the observational equivalences between probabilistic functional
programs. We prove here that the exponential modality is the free com-
mutative comonad, giving a further mark of canonicity to the model.

1 Introduction

Linear Logic [6] (LL for short) is a resource aware logic whose relevance in the
study of the semantics of computation has been illustrated by several papers.
It has three kinds of connectives: additive, mutliplicative and exponential. The
connectives of the first two classes are determined by their logical rules: for
instance, if one introduces a second tensor product ⊗′ in the system, it is easy
to prove that A⊗B and A⊗′ B are canonically equivalent (isomorphic, actually)
for all formulas A and B. The exponential connectives behave quite differently:
one can add a second exponential modality !′ with the same rules as for ! and it
is not possible to prove that !A and !′A are equivalent in general.

This discrepancy is also well visible at the semantical level. Given a cate-
gory, the multiplicative-additive structures (if exist) are univocally character-
ized by universal properties as soon as a notion of multilinear map is given,
while various different notions of the exponential modality are possible, in gen-
eral. Well-known examples are the category Coh of coherence spaces, where the
exponential modality can be expressed by both the finite clique and the finite
multi-clique functors [7], as well as the category Rel of sets and relations, for
which [2] introduces a wide family of exponential modalities in addtion to the
more standard one based on the finite multiset functor.

Choosing an exponential interpretation in the model is not at all anodyne,
as it defines the way we express the structural rules of weakening and contrac-
tion, or, from a programming perspective, the operations of erasure and copy.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 20–35, 2017.
DOI: 10.1007/978-3-662-54458-7 2

The Free Exponential Modality of Probabilistic Coherence Spaces 21

For instance, the new exponential modalities in Rel, introduced by [2], allow to
construct non-sensible models of the untyped λ-calculus, while the models based
on the finite multiset functor are all sensible. Let us also mention that this variety
of exponentials has been used for modeling different notions of co-effects [1].

Any interpretation of the ! LL modality is an operation transforming an
object A into a commutative comonoid !A with respect to ⊗, the comultiplication
allowing one to interpret contraction, and the coneutral element allowing one to
interpret weakening. This simple fact shows that among all possible notions
of !, there might be one which is more canonical than any other, being the
terminal object in the category of commutative comonoids over A. Lafont [9]
proved in fact that the free commutative comonoid, whenever it exists, always
gives an interpretation of the exponential modality, which is then called the free
exponential modality, and written as !f .

The study of this free exponential !fA, when it exists, is particularly impor-
tant because its universal property expresses a direct connection with the tensor
product of the categorical model of LL under consideration. This fact is partic-
ularly well illustrated by [11] where it is shown that, under some fairly general
assumptions, this free exponential can be described as a kind of “symmetric infi-
nite tensor product”; we come back to this characterization later since it is at
the core of the present work.

The free exponential modality is well-kwown in both Coh and Rel, being
given respectively by the multi-clique and the multi-set functors. The goal of this
paper is to prove the existence of and to study the free exponential modality of
the category Pcoh of probabilistic coherence spaces.

Pcoh is a model of linear logic carrying both linear algebraic and proba-
bilistic intuitions. Sketched by Girard in [8], it was more deeply investigated
in [3]. Formulas/types are interpreted as suitable sets P (A), P (B),. . . of real-
valued vectors which are both Scott-closed (allowing the usual definition of fixed-
points) and convex (i.e. closed under barycentric sums). This latter feature makes
Pcoh particularly suitable for modeling (discrete) probabilistic computations:
the barycentric sum κv + ρw (for κ, ρ ∈ [0, 1], κ + ρ ≤ 1, v, w vectors) expresses
a computation which returns v with probability κ, w with probability ρ, and the
remainder 1 − (κ + ρ) is the probability that the computation diverges.

The morphisms of Pcoh are Scott-continuous and linear functions mapping
the set P (A) of vectors associated with the domain into the set P (B) associ-
ated with the codomain. These linear maps are described as (usually infinite-
dimensional) matrices and the set of these matrices is the hom-object P (A � B)
associated with linear implication. From a programming perspective, the matri-
ces in P (A � B) correspond to probabilistic programs that use their inputs
exactly once in order to compute a result. In order to interpret non-linear pro-
grams one has to choose an exponential modality. The only known ! modality of
Pcoh is the one introduced in [3], which is based on the notion of entire function
and hence we will call it the entire exponential modality and denote it with !e.
The set P (!eA � B) can be seen as a set of matrices giving the coefficients of
a power series expressing an entire function from P (A) to P (B). As usual the
interpretation of a (call-by-name) program of type A ⇒ B is represented as an
LL proof of !A � B and hence as an entire function in Pcoh.

22 R. Crubillé et al.

The entire exponential modality of Pcoh has been recently shown to be
particularly relevant for describing the observational behavior of higher-order
probabilistic programs. Namely, [4] proves that the Kleisli category associated
with !e is fully-abstract with respect to call-by-name probabilistic PCF, while
[5] proves, using the Eilenberg-Moore category, that Pcoh is fully-abstract for
a call-by-push-value version of probabilistic PCF. Let us stress that these are
indeed the only known fully-abstract models for probabilistic PCF.

It is then natural to ask whether !f exists in Pcoh and if it is the case, how
it relates with !e. In this paper we answer the first question positively and prove
that !f and !e are the same modality, in spite of their different presentations.

Our main tool is a recipe for constructing !f out of a model of the multi-
plicative additive fragment of LL, given by Melliès, Tabareau and Tasson [11].
The idea is to adapt the well-known formula defining the symmetric algebra
generated by a vector space, the latter being the free commutative monoid.
More precisely, the recipe gives (under suitable conditions) !fA as the limit of a
sequence of approximants A≤n which correspond to the equalizers of the tensor
symmetries of a suitable space (see Sect. 3). At a first sight, A≤n moves us far
away from the entire exponential !eA of [3], in fact the coefficients appearing in
A≤n are greater than those of !eA, so that one is tempted to suppose that !fA
is a space much bigger than !eA, exactly as it is the case for standard coherence
spaces where the images under the finite multi-clique functor strictly contain
those under the finite clique functor (Example 5). We prove that this is not the
case, the limit !fA of the approximants A≤n exists (Proposition 4), and, more
surprisingly, it is equal to the entire exponential modality (Proposition 5). For
any n, the coefficients of A≤n are larger than those of !eA, but as n → ∞, these
coefficients tend to be exactly those of !eA (see Sect. 4.3).

Contents of the paper. In Sect. 2, we briefly recall the semantics of LL in Pcoh
as defined in [3]. In particular, Eqs. (8) and (9) sketch the definition of the
entire exponential modality. Section 3 gives the categorical definition of the free
exponential modality and Melliés, Tabareau and Tasson’s recipe for construct-
ing it (Proposition 2). The major contributions are in Sect. 4, where we apply
this recipe to Pcoh (Propositions 3 and 4) and prove that the free exponential
modality is equal to the entire one (Proposition 5).

Notation. We write as Sn the set of permutations of the set {1, . . . , n}, the
factorial n! being its cardinality. The writing f : A ↪→ B denotes an injection
f from a set A into a set B. A multiset μ over A is a function from A to
N, Supp (μ) denoting its support {a ∈ A ; μ(a) �= 0}, and #μ its cardinality∑

a∈A μ(a). Given n ∈ N, Mn(A) is the set of multisets of cardinality n, while
Mf (A) is the set of finite multisets, i.e. Mf (A) =

⋃
n Mn(A). A multiset μ

can also be presented by listing the occurrences of its elements within brackets,
like μ = [a, a, b], as well as μ = [a2, b], for the multiset μ(a) = 2, μ(b) = 1,
Supp (μ) = {a, b}. Finally, μ 	 ν is the disjoint union of two multisets, i.e.
(μ 	 ν)(a) = μ(a) + ν(a), the empty multiset [] being its neutral element.
We denote by a a finite sequence of elements of A, ai being its i-th element.

The Free Exponential Modality of Probabilistic Coherence Spaces 23

Given such a sequence a, we denote as
∼
a the multiset of its elements, and given

a multiset μ, we write as Enum(μ) the set of all its different enumerations.
The cardinality of Enum(μ) depends on μ and can be given by the multinomial
coefficient m(μ):

∼
a=[a1, . . . , an], fora = (a1, . . . , an), (1)

Enum(μ)={(aσ(1), . . . , aσ(n)) ; σ ∈ Sn}, for μ = [a1, . . . , an], (2)

m(μ)=
#μ!

∏
a∈Supp(μ) μ(a)!

. (3)

2 The Model of Probabilistic Coherence Spaces

In order to be self-contained, we shortly recall the linear logic model based on
probabilistic coherence spaces, as defined in [3]. For the sake of brevity we will
omit the proofs of this section.

Let I be a set, for any vectors v, w ∈ (R+)I , the pairing is defined as usual

〈v, w〉 =
∑

i∈I

vi wi ∈ R
+ ∪ {∞}. (4)

Given a set P ⊆ (R+)I we define P⊥, the polar of P, as

P⊥={w ∈ (R+)I | ∀v ∈ P 〈v, w〉≤ 1}. (5)

The polar satisfies the following immediate properties: P ⊆ P⊥⊥, if P ⊆ Q then
Q⊥ ⊆ P⊥, and then P⊥ = P⊥⊥⊥.

Definition 1 ([3,8]). A probabilistic coherence space, or PCS for short, is a
pair A = (|A| ,P (A)) where |A| is a countable set called the web of A and P (A)
is a subset of (R+)|A| such that the following holds:

closedness: P (A)⊥⊥ = P(A),
boundedness: ∀a ∈ |A|, ∃μ > 0, ∀v ∈ P (A), va ≤ μ,
completeness: ∀a ∈ |A|, ∃λ > 0, λea ∈ P (A),

where ea denotes the base vector for a: (ea)b=δa,b, with δ the Kronecker delta.
The dual of a PCS A is defined by A⊥=(|A| ,P (A)⊥).

Notice that we do not require P (A) ⊆ [0, 1]|A|, we shall understand why with
the exponential construction (see Example 4).

We consider (R+ ∪ {∞})|A| endowed with the pointwise order:

v ≤ w=∀a ∈ |A| , va ≤ wa, (6)

with the lub of P ⊆ (R+ ∪ {∞})|A| given by: ∀a ∈ |A|, (supP)a= supv∈P va.
Notice that, thanks to boundedness, (sup P (A))a ∈ R

+ , we denote it by (supA)a

and call it the greatest coefficient of A along a.
The following is a variant of a theorem in [8], giving an equivalent presen-

tation of a PCS, based on the notions of Scott closure and convex closure. Its
proof is a standard application of the Hahn-Banach Theorem.

24 R. Crubillé et al.

Proposition 1 ([8]). Let I be a countable set and S ⊆ R
+I . The pair (I, S) is

a probabilistic coherence space iff:

1. S is bounded and complete (see Definition 1);
2. S is Scott closed, i.e. ∀u ≤ v ∈ S, u ∈ S, and ∀D ⊆ S directed, supD ∈ S;
3. S is convex, i.e. ∀u, v ∈ S, λ ≤ 1, λu + (1 − λ)v ∈ S.

Definition 2. The category Pcoh has as objects PCSs and the set Pcoh(A,B)
of morphisms from A to B is the set of those matrices f ∈ (R+)|A|×|B| s.t.:

∀v ∈ P (A) , f v ∈ P (B) , (7)

where f v is the usual matricial product: ∀b ∈ |B|, (f v)b=
∑

a∈|A| fa,bva.
The identity idA on A is defined as the diagonal matrix given by

(idA)a,a′ = δa,a′ . Composition of morphisms is matrix multiplication: (g◦f)a,c =∑
b∈|B| fa,bgb,c, where f ∈ Pcoh(A,B), g ∈ Pcoh(B, C), and a ∈ |A|, c ∈ |C|.

The above sum
∑

b∈|B| fa,bgb,c converges in R
+ , because f, g enjoy condition (7).

We will often use Lemma 1, allowing us to infer condition (7) for all v ∈ P (A),
just by testing it on a set G of generators of P (A) (see the proof in Appendix):

Lemma 1. Let A,B be two probabilistic coherence spaces and f be a matrix
in R

+|A|×|B|. Let G ⊆ P (A) such that: (i) G⊥⊥ = P(A), and (ii) ∀v ∈ G,
f v ∈ R

+|B|, then: f(G)⊥⊥ = f(P (A))⊥⊥.

Monoidal Structure. The bifunctor ⊗ : Pcoh × Pcoh → Pcoh is defined as

|A ⊗ B|= |A| × |B| , P (A ⊗ B)={v ⊗ w ; v ∈ P (A) , w ∈ P (B)}⊥⊥,

where (x ⊗ y)a,b=xayb, for a ∈ |A| and b ∈ |B|. The action of ⊗ on morphisms
u ∈ Pcoh(A,B) and v ∈ Pcoh(A′,B′) is defined as (u ⊗ v)(a,a′),(b,b′)=ua,bva′,b′ ,
for (a, a′) ∈ |A ⊗ A′|, (b, b′) ∈ |B ⊗ B′|. The symmetry swap ∈ Pcoh(A ⊗ B,B ⊗
A) is given by swap(a,b),(b′,a′)=δa,a′δb,b′ . The other natural isomorphisms (asso-
ciativity, neutrality) are given similarly.

In the next sections, we will often refer to the n-fold (n ∈ N) tensor product
over a PCS A, which can be presented as: |A⊗n| ={(a1, . . . , an) ; ai ∈ |A|},
and P (A⊗n) ={v1 ⊗ · · · ⊗ vn ; vi ∈ P (A)}⊥⊥. Notice that any permutation
σ ∈ Sn defines a symmetry over A⊗n, which we denote in the same way:
σ(a1,...,an),(a′

1,...,a′
n)=

∏n
i=1 δai,a′

σ(i)
. For example, the image of a vector of the

form v1 ⊗ · · · ⊗ vn under σ is vσ(1) ⊗ · · · ⊗ vσ(n). The unit of ⊗ is given by the
singleton web PCS 1=({	}, [0, 1]{�}), which is also equal to A⊗0 for any A.

The object of linear morphisms A � B is defined as

|A � B|= |A| × |B| , P (A � B)=Pcoh(A,B).

Pcoh is 	-autonomous, the dualizing object ⊥ being defined as the dual of 1
which is indeed equal to 1: ⊥=1⊥ = 1.

The Free Exponential Modality of Probabilistic Coherence Spaces 25

Cartesian Structure. Pcoh admits cartesian products of any countable family
(Ai)i∈I of PCSs, defined as

|&i∈IAi|=
⋃

i∈I

({i}×|Ai|), P (&i∈IAi)=
{

v ∈ R
+ |&i∈IAi|;∀i ∈ I, πi v ∈ P (Ai)

}

where πi v is the vector in (R+)|Ai| denoting the i-th component of v, i.e.
πi va=v(i,a). The j-th projection prj ∈ Pcoh(&i∈IAi,Aj) is prj

(i,a),b=δi,jδa,b.
Notice that the empty product yields the terminal object � defined as |�| = ∅

and � = {0}. We may write the binary product by A1 & A2, as well as any
v ∈ P (A1 & A2) by the pair (π1 v, π2 v) ∈ P (A1) × P (A2) of its components.

Example 1. All examples in this paper will be built on top of the flat inter-
pretation of the boolean type, which is defined as the space Bool=(⊥ & ⊥)⊥,
which can be equally written as 1 ⊕ 1, with ⊕ referring to the co-product. The
web |Bool| has two elements, that we denote as t and f. The set P (Bool) is
{κet + ρef ; κ + ρ ≤ 1}, that is the sub-probabilistic distributions on the base
vectors et, ef. This is because P (Bool)⊥ = P(⊥ & ⊥) = {κet + ρef ; κ, ρ ≤ 1}.

Example 2. Let us compute Bool⊗2 = Bool ⊗ Bool. By definition we have:∣
∣Bool⊗2

∣
∣ = {(t, t), (t, f), (f, t), (f, f)}, P

(
Bool⊗2

)
= {v ⊗ w ; v, w ∈

P (Bool)}⊥⊥. Using Example 1, one checks that {v ⊗ w ; v, w ∈ P (Bool)}⊥

is equal to {u ∈ R
+|Bool⊗2| ; ∀(b, b′) ∈

∣
∣Bool⊗2

∣
∣ , ub,b′ ≤ 1}. Hence, P

(
Bool⊗2

)

is the set {u ;
∑

(b,b′)∈{t,f}2 ub,b′ ≤ 1} of sub-probability distributions of pairs of
booleans.

Example 3. As for Bool � Bool, its web is |Bool � Bool| = |Bool ⊗ Bool|,
and f ∈ P (Bool � Bool) whenever ∀v ∈ P (Bool), f v ∈ P (Bool). By
Example 1, this is equivalent to ∀κ + ρ ≤ 1, f(κet + ρef)t + f(κet + ρef)f ≤ 1.
By linearity, the condition boils down to ft,t + ft,f ≤ 1 and ff,t + ff,f ≤ 1. That
is: P (Bool � Bool) is the set of stochastic matrices over {t, f}, as expected.

Exponential Structure. We recall the exponential modality given in [3] and
we call it the entire exponential modality, denoted by !e, in opposition to the
free exponential modality !f whose definition is the goal of Sect. 4. The main
result of the paper is proving that the two modalities, although different in the
presentation, actually give the same object (Proposition 5). The adjective entire
is motivated by the key property that the morphisms from A to B in the Kleisli
category associated with !e, that is the linear morphisms from !eA to B, can be
seen as entire functions from P (A) to P (B). We refer to [3] for details.

The functorial promotion !e : Pcoh → Pcoh is defined on objects as

|!eA|=Mf (|A|) , P (!eA)={v!e ; v ∈ P (A)}⊥⊥, (8)

26 R. Crubillé et al.

where v!e is the vector of (R+)Mf(|A|) defined as v!e
μ =

∏
a∈Supp(μ) v

μ(a)
a , for any

μ ∈ Mf (|A|). The action of !e on a morphism f ∈ Pcoh(A,B) is defined, for
any μ ∈ |!eA| and ν = [b1, . . . , bn] ∈ |!eB|, as:

(!ef)μ,ν=
∑

(a1,...,an) ;
[a1,...,an]=μ

n∏

i=1

fai,bi
(9)

Notice that the above sum varies on the set of different enumerations of μ. If μ
is a multiset [a, . . . , a] of support a singleton, then the sum has only one term,
while in case of multisets with no repetitions, the sum has n! terms. Remark
also that the definition is independent from the chosen enumeration of ν.

Example 4. Equation (9) introduces arbitrary large scalars, moving us away from
the intuitive setting of distributions and stochastic matrixes (see Examples 1 and
3). For an example, consider the morphism f ∈ Pcoh(Bool,1) defined by ft,∗ =
ff,∗ = 1. Remark that for any n,m ∈ N, we have: !ef[tn,fm],[�n+m] = (n+m)!

n!m! ,
which is the number of different enumerations of the multiset [tn, fm] with n
(resp. m) occurrences of t (resp. f). This shows why, in the definition of a PCS,
coefficients have to be in the whole of R+ and cannot be restricted to [0, 1].

The functorial promotion is equipped with a structure of comonad. The
counit (or dereliction) derA ∈ Pcoh(!eA,A) is defined as (derA)μ,a = δμ,[a].
The comultiplication (or digging), denoted as diggA ∈ Pcoh(!eA, !e!eA), is
given by (diggA)μ,M = δμ,

⊎
M , where

⊎
M is the multiset in |!eA| obtained

as the multiset union of the multisets in M ∈ |!e!eA|.
The PCSs !eA⊗!eB and !e (A & B) are naturally isomorphic, hence we get a

model of LL, according to the so-called new-Seely axiomatisation (see [10]). In
particular, contraction contrA ∈ Pcoh(!fA, !fA⊗!fA) and weakening weakA ∈
Pcoh(!fA,1) are given by (contrA)μ,(μ′,μ′′) = δμ,μ′
μ′′ , and (weakA)μ,� = δμ,[].

3 The Free Exponential Modality

We first recall Lafont’s axiomatisation of linear logic models (Theorem1), this is
a more restricted axiomatisation than the new-Seely one. The key notion is the
free exponential modality. We then recall a general recipe by Melliès, Tasson and
Tabareau [11] for constructing this free modality whenever specific conditions
hold (Proposition 2). Section 4 applies this recipe to Pcoh.

3.1 Lafont’s Model

By definition, the structure of an exponential modality turns an object A into a
commutative comonoid !A, with the comultiplication given by contraction and

the neutral element given by weakening: 1 !A !A⊗!A.
weak!A contr!A

The converse does not hold in general, since commutative comonoids may lack a

The Free Exponential Modality of Probabilistic Coherence Spaces 27

comonad structure (dereliction, digging, and the action on morphisms). However,
Lafont proves that in case the commutative comonoid is the free one then its
universal property allows one to canonically construct the missing structure:

Theorem 1 ([9]). A 	-autonomous category C is a model of linear logic if:

1. it has finite products and,
2. for every object A, there exists a triplet (!fA, weak!f A, contr!f A) which is the

free commutative comonoid generated by A.

Condition (2) requires the comonoid !fA to be endowed with a morphism derA ∈
C(!fA,A), such that, for all commutative comonoid C and f ∈ C(C,A), there
exists exactly one commutative comonoid morphism f† such that f†◦der!f A = f .

This corresponds to saying that the category of commutative comonoids over
A has !fA as the terminal object.

Example 5 (Coh). The first model of LL was introduced by Girard using the
notion of coherence space [6]. A coherence space A = (|A| ,A) is a pair of a set |A|,
the web, and a symmetric reflexive relation A, the coherence. The exponential
modality of the original model is given by the finite cliques functor, |!A| =
{x ⊆f |A| | ∀a, a′ ∈ x, aAa′}, while the free exponential modality |!fA| = {μ ∈
Mf (|A|) | ∀a, a′ ∈ Supp (μ) , aAa′} is given by the finite multi -cliques functor,
as shown in [12]. The morphism (der!A)† factoring !A through !fA is given by
the support relation: (der!A)† = {(Supp (μ) , μ) ; μ ∈ |!fA|}.

3.2 Melliès, Tasson and Tabareau’s Formula

Melliès et al. give a recipe for constructing free commutative comonoids in [11],
adapting the well-known formula defining the symmetric algebra generated by a
vector space in the setting of LL. This adaptation is non-trivial mainly because
the vector space construction uses biproducts, while products and coproducts
are in general distinct in LL models, and in fact this is the case for Pcoh.

The idea of [11] is to define !fA as the projective limit of the sequence of its
“approximants” A≤0, A≤1, A≤2, . . . , where an approximant A≤n is the equalizer
of the n! tensor symmetries over (A & 1)⊗n. Intuitively, the object A≤n describes
the behavior of data of type !fA when duplicated at most n times. This behavior
is given by the equalizers of the tensor symmetries because the model does not
distinguish between the evaluation order of the n copies (in categorical terms,
we are considering commutative comonoids). We start from A & 1 instead of
A because, in order to have a sequence, we need that each A≤n in some sense
encompasses its predecessors A≤0, A≤1, . . . , A≤n−1. The exact meaning of “to
encompass” is given by a family of morphisms ρn,n−1 ∈ C(A≤n �→ A≤n−1)
generated by the right projection of the product A & 1 (see Notation 2). In
standard coherence spaces, this turns out to be the simple fact that the set
of cliques of A≤n+1 contains the cliques of A≤n. In contrast, this intuition is
misleading for Pcoh (Example 8), making our construction considerably subtler.

28 R. Crubillé et al.

A≤n (A&1)⊗n

C

eq
(A&1)⊗n

.

.

.

n! symm.

f
∃!f†

(a) Universal property of A≤n, eq: ∀C, ∀f ∈
C(C, (A ⊗ 1)⊗n) invariant under ⊗ symm.,
∃!f† ∈ C(C, A≤n) commuting the diagram.

A≤n⊗B (A&1)⊗n⊗B

C

eq⊗id

. . .

n! symm.⊗id

f
∃!f†

(b) diagram defining the commutation
of A≤n with the ⊗ product.

Fig. 1. Properties of the approximants A≤n of !fA

A≤0 ⊗ B A≤1 ⊗ B A≤2 ⊗ B . . .

. . .

!fA ⊗ BC

. . . ρ∞,0 ⊗ id ρ∞,1 ⊗ id ρ∞,2 ⊗ id

ρ3,2 ⊗ idρ2,1 ⊗ idρ1,0 ⊗ id

f0 f1 f2

∃! f†

Fig. 2. Diagram defining the commutation of the limit !fA with ⊗: for every objects
B, C and family of morphisms (fi)i∈N making the diagram above commute, there exists
a unique f† ∈ C(C, !fA ⊗ B) making the diagram commute.

Notation 2. Given an object A of a symmetric monoidal category with finite
cartesian products C and a number n ∈ N, we denote by A≤n the equalizer of
the n! ⊗ symmetries of (A & 1)⊗n (Fig. 1a), whenever it exists. Moreover, we
denote by ρn+1,n the morphism C(A≤n+1, A≤n) obtained by applying the univer-
sal property of A≤n to (id⊗prr)◦eq, i.e. taking in Fig. 1a the object C = A≤n+1

and f = (id ⊗ prr) ◦ eq, with prr denoting the right projection of A & 1.

Proposition 2. ([11]). Let A be an object of a cartesian symmetric monoidal
category C, the free commutative comonoid generated by A is the limit of:

A≤0 A≤1 A≤2 A≤3 . . .
ρ4,3ρ3,2ρ2,1ρ1,0

provided that:

1. ∀n ∈ N, the equalizer A≤n exists and commutes with tensor products (Fig. 1b);
2. the limit !fA of the diagram exists and commutes with tensor products

(Fig. 2).

4 The Case of Probabilistic Coherence Spaces

In this section we prove that Pcoh is a Lafont model. First, we define the free
commutative comonad !fA (Definition 3 and Corollary 1) by applying Melliès
et al.’s recipe (Subsects. 4.1 and 4.2), then we prove that !fA is actually equiva-
lent to the entire exponential modality !eA defined in Sect. 2 (Proposition 5).

The Free Exponential Modality of Probabilistic Coherence Spaces 29

4.1 The Approximants A≤N

The first step for applying Proposition 2 is to define the approximants A≤n and to
prove that they commute with the tensor product (Condition 2 of Proposition 2).
By definition A≤n is the equalizer of the symmetries of (A & 1)⊗n, so first we
prove that the equalizer An of the symmetries of A⊗n exists for any space A
and that it commutes with ⊗ (Proposition 3), then we show (Lemma 3) that
A≤n = (A & 1)n can be directly defined from A, by means of an operator
〈u1, . . . un〉 over the vectors in P (A), crucial for the next step.

Recall from Sect. 2 that A⊗n can be described as having as web the set of
length n sequences a of elements in |A|. Recall also the notation given in Sect. 1.
Given the permutation group Sn, we define an endomorphism sn over A⊗n, by
taking the barycentric sum of the actions of Sn over A, so: sn = 1

n!

∑
σ∈Sn

σ,
which can be explicitly defined as a matrix by: (sn)a,a′ = δ∼

a,
∼
a′

1

m(
∼
a)

. In fact,

(sn)a,a′ =
#{σ∈Sn ; ∀i≤n,aσ(i)=a′

i}
n! = δ∼

a,
∼
a′

∏

a∈Supp(∼
a)(

∼
a)(a)!

n! .

Remark 1. The value of the matrix sn defined above does not depend on the

sequences a, a′ but just on their associated multisets
∼
a,

∼
a′. Hence, for any

v ∈ R
+|A⊗n|, the vector sn v ∈ R

+|A⊗| can be also presented as in R
+Mn(|A|):

(sn v)μ =
1

m(μ)

∑

a∈Enum(μ)

va, for μ ∈ Mn(|A|) (10)

which is a barycentric sum because m(μ) gives exactly the cardinality of
Enum(μ).

This “change of base” can be explained also as follows: the image-set sn (A⊗n)
of sn is a subspace of A⊗n and the “canonical base” of this subspace can be given
by Mn(|A|). A vector sn v ∈ sn (A⊗n) ⊆ A⊗ can be presented then either as a
family indexed by sequences (using the canonical base of A⊗n) or as a family
indexed by multisets (using the canonical base of sn (A⊗n)).

Lemma 2. The following are equivalent characterizations of a PCS An with
web |An| = Mn(|A|):

1. P (An) = {sn (⊗n
i=1ui) ; ui ∈ P (A)}⊥⊥,

2. P (An) = {sn u ; u ∈ P (A⊗n)}.

Proof. First, by Remark 1 notice that both sets in conditions 1 and 2 can be seen
as sets of vectors over Mn(|A|). The case 1 is a PCS by definition, while 2 can
be checked to be a PCS by means of Proposition 1. In particular, notice that 2.
is Scott closed over the web Mn(|A|), but not over |A⊗n|.

Then, the equivalence between 1 and 2 is obtained by Lemma1, taking
A = A⊗n, G = {⊗n

i=1ui ; ui ∈ P (A)}, B the set described in 2 and f = sn.
The set described in 1 is equal to f(G)⊥⊥ = f(P (A⊗n))⊥⊥ which turns out to
be the bipolar of B by Lemma 1. We conclude since B = B⊥⊥ as just remarked. ��

30 R. Crubillé et al.

Example 6. Let us illustrate the construction of An in the case where A is
the boolean space Bool (see Example 1). It is trivial to check that Bool0 is
isomorphic to 1 and Bool1 to Bool. Concerning Bool2, we have

∣
∣Bool2

∣
∣ =

{[t, f], [t, t], [f, f]}. Recall that Example 2 computes P
(
Bool⊗2

)
as the set of

sub-probability distributions over boolean pairs, so that by item 2 of Lemma 2
we have that: P

(
Bool2

)
= {w ∈ R

+M2(|Bool|) ; w[t,t] + w[f,f] + 2w[t,f] ≤ 1}.
This characterization allows us to compute: (supBool2)[t,t] =

(sup Bool2)[f,f] = 1, while (supBool2)[t,f] = 1
2 . Actually, using Eq. (10), one

can check in general: (sup Booln)μ = 1
m(μ) (recall Eq. (3)). Notice that these

coefficients are the inverses of the coefficients computed in Example 4.

Proposition 3. Let A be a PCS and n ∈ N. The object An together with the
morphism eqAn ∈ Pcoh(An,A⊗n), defined as eqAn

μ,a = δ
μ,

∼
a
, is the equalizer of

the n! symmetries of the n-fold tensor A⊗n.
Moreover, these equalizers commute with the tensor product, meaning that

for any B, the morphism eqAn ⊗ idB is the limit of the morphisms σ ⊗ idB for
σ ∈ Sn (see diagram in Fig. 1b, replacing A & 1 with A and A≤n with An).

Proof. The fact that eqAn

is a morphism in Pcoh(An,A⊗n) is immediate,
because eqAn

simply maps a vector sn u seen as a vector over the web Mn(|A|)
to the same vector seen over the web |A⊗n|. This latter is a vector of P (A⊗n)
(supposing u ∈ P (A⊗n)) because it is a barycentric sum of vectors in P (A⊗n).

We only prove the commutation with ⊗, as the universal property of the
equalizer is a direct consequence of the commutation, taking B = 1.

Let C be a PCS and f ∈ Pcoh(C,A⊗n ⊗ B) be a morphism such that
(σ ⊗ idB) ◦ f = f for any σ ∈ Sn. Then, define f† ∈ Pcoh(C,An ⊗ B) as follows:
for every c ∈ |C|, b ∈ |B|, μ ∈ |An|, f†

c,(b,μ) = fc,(b,a), where a is any enumeration
of μ (no matter which one because f is invariant under the tensor symmetries).
The fact that f† is the unique morphism commuting the diagram of Fig. 1a is
a trivial calculation. We have then to prove that it is indeed a morphism in
Pcoh(C,An ⊗ B), that means that, for any v ∈ P (C), f† v ∈ P (An ⊗ B).

Consider w ∈ P (An ⊗ B)⊥ and let us prove that 〈f† v, w〉≤ 1. This will allow

us to conclude f† v ∈ P (An ⊗ B). Define w ∈ R
+|A⊗n⊗B| as w(a,b) = 1

m(
∼
a)

w∼
a,b

.

First, notice that w ∈ P (A⊗n ⊗ B)⊥. In fact, for any u ∈ P (A⊗n), z ∈ P (B):

〈u ⊗ z, w〉 =
∑

a,b

uazbw(a,b) =
∑

a,b

uazb
1

m(
∼
a)

w∼
a,b

=
∑

μ,b

zbwμ,b

∑

a∈Enum(μ)

1
m(μ)

ua

=
∑

μ,b

zbwμ,b(sn u)μ =〈(sn u) ⊗ z, w〉≤ 1.

The last inequality is due to w ∈ P (An ⊗ B)⊥, sn u ∈ P (An) and Lemma 2.

The Free Exponential Modality of Probabilistic Coherence Spaces 31

Second, 〈f† v, w〉=〈f v, w〉. In fact,

〈f† v, w〉 =
∑

μ,b

(f† v)μ,bwμ,b =
∑

a,b

(f v)a,bw∼
a,b

m(
∼
a)

=
∑

a,b

(f v)a,bwa,b =〈f v, w〉 .

We then conclude because by hypothesis f v ∈ P (A⊗n ⊗ B). ��

Given a PCS A and n ∈ N, let us introduce the notation A≤n = (A & 1)n,
for the equalizer of the n-fold tensor symmetries of A & 1.

Lemma 3. The PCS A≤n can be presented as follows:
∣
∣A≤n

∣
∣ =

⋃

k≤n

Mk(|A|), P
(
A≤n

)
= {〈u1, . . . , un〉 ; ∀i ≤ n, ui ∈ P (A)}⊥⊥

where, for any [a1, . . . , ak] ∈
∣
∣A≤n

∣
∣,

〈u1, . . . , un〉[a1,...,ak] =
1
n!

∑

σ∈Sn

k∏

i=1

(uσ(i))ai
(11)

=
(n − k)!

n!

∑

f :{1,...,k}↪→{1,...,n}

k∏

i=1

(uf(i))ai
. (12)

Proof. First, notice that there is a bijection between
∣
∣A≤n

∣
∣ and Mn(|A|	{	}) =

|(A & 1)n| obtained just by adding the necessary number of 	’s to a multiset
in

∣
∣A≤n

∣
∣. Second, the definitions of P

(
A≤n

)
and of 〈u1, . . . , un〉 immediately

follow by remarking that the latter is a notation for sn ((u1, e�)⊗· · ·⊗ (un, e�)),
with sn the endomorphism over (A & 1)⊗n defined by Eq. (10). ��

Example 7. We have no simple characterization of Bool≤2, but Lemma 3 helps us
in computing the coefficients of its generators. For example, we have 〈et, ef〉μ = 1
if μ = [], otherwise 〈et, ef〉μ = 1

2 . While 〈et, et〉μ = 1 for any multiset of support
{et}, otherwise it is 0. One can observe in general that (supBool≤n)μ = 1 for
any multiset μ ∈

∣
∣Bool≤n

∣
∣ which is uniform (i.e. of which support is at most a

singleton), while (supBool≤n)μ < 1 for μ non-uniform.

Henceforth, we will consider A≤n as presented in Lemma 3.

4.2 The Limit !fA
The quest for a limit !fA of the family (A≤n)n requires the study of the relations
between approximants of different degree. This is done starting from the follow-
ing notions of injection and projection. Given A,B s.t. |A| ⊆ |B|, we define the
matrices injection ιA,B ∈ R

+|A|×|B| and projection ρB,A ∈ R
+|B|×|A| as follows:

(ιA,B)a,b = (ρB,A)b,a = δa,b. (13)

32 R. Crubillé et al.

The injection ιA,B maps a vector u ∈ R
+|A| to the vector (u,0) ∈ R

+|B| asso-
ciating the directions in |B| \ |A| with zero. The projection ρB,A maps a vector
(u, v) ∈ R

+|B| to its restriction u to the directions within |A|. In order to have
these matrices as morphisms in Pcoh, we have to prove that (u,0) ∈ P (B)
whenever u ∈ P (A) (resp. u ∈ P (A) whenever (u, v) ∈ P (B)).

As already remarked in Definition 2, the projection of A≤n+1 into A≤n

is actually obtained by applying the universal property to the morphism
(id ⊗ prr) ◦ eq. So we get the following immediate lemma.

Lemma 4. For any m ≥ n and A, we have: ρA≤m,A≤n ∈ Pcoh(A≤m,A≤n)

and ιA≤n⊥,A≤m⊥ ∈ Pcoh(A≤n⊥
,A≤m⊥).

The interesting point is that the dual version of Lemma 4 does not hold: in
general, the injection of A≤n into A≤n+1 (resp. projection of (A≤n+1)⊥ into
(A≤n)⊥) is not a morphism of Pcoh.

Example 8. In Example 7, we discussed 〈et, ef〉 ∈ P
(
Bool≤2

)
. Let us prove now

that ιBool≤2,Bool≤3 〈et, ef〉 /∈ P
(
Bool≤3

)
. In fact, (ιBool≤2,Bool≤3 〈et, ef〉)[t,f] =

〈et, ef〉[t,f] = 1
2 , while we can prove (sup P

(
Bool≤3

)
)[t,f] = 1

3 . The latter claim
is because P

(
Bool≤3

)
= {〈et, et, et〉, 〈et, et, ef〉, 〈et, ef, ef〉, 〈ef, ef, ef〉}⊥⊥ and

the maximal value of these generators on [t, f] is 1
3 .

One can however add a correction factor in order to embed A≤n into A≤N for
any N ≥ n, as follows. Let:

(ιcor
A,n,N)μ,ν =

⎧
⎪⎨

⎪⎩

(N−k)!qkn!
N !(n−k)! if μ = ν and #μ = k ≤ n

and q = �N
n � and r = N modn;

0 otherwise.

(14)

Lemma 5. The matrix ιcor
A,n,N is a morphism in Pcoh(A≤n,A≤N) mapping,

in particular, 〈u1, . . . , un〉 ∈ P
(
A≤n

)
to 〈uq

1, . . . , u
q
n,0r〉 ∈ P

(
A≤N

)
, where q

is the quotient �N
n � and r the remainder N modn of the euclidean division N

n .
Moreover, uq

i is a notation for ui, . . . , ui︸ ︷︷ ︸
q times

(and similarly for 0r).

Proof. One has just to prove the last part of the statement, the rest follows by
Lemma 1 because the vectors of the form 〈u1, . . . , un〉 yield a base for P

(
A≤n

)

(Lemma 3). We have, for any multiset μ = [a1, . . . , ak],

(ιcor
A,n,N 〈u1, . . . , un〉)μ =

(
(N − k)!qkn!
N !(n − k)!

)
(n − k)!

n!

∑

f :{1,...,k}↪→{1,...,n}

k∏

i=1

(uf(i))ai

=
(N − k)!

N !
qk

∑

f :{1,...,k}↪→{1,...,n}

k∏

i=1

(uf(i))ai

The Free Exponential Modality of Probabilistic Coherence Spaces 33

=
(N − k)!

N !

∑

f :{1,...,k}↪→{1,...,nq}

k∏

i=1

(u(�f(i)/q�)+1)ai

= 〈uq
1, . . . , u

q
n,0r〉μ.

where we use ↪→ to denote injective functions and where from lines 2 to 3, we
use the count qk to enlarge the codomain of the injections f indexing the sum.��

Notice that, with N = nq + r:

lim
N→∞

(N − k)!qkn!
N !(n − k)!

=
n!

nk(n − k)!
, (15)

(lim
N→∞

ιcor
A,n,N 〈u1, . . . , un〉)μ =

1
nk

∑

f :{1,...,k}↪→{1,...,n}

k∏

i=1

(uf(i))ai
. (16)

This allows us to introduce the following definition and key proposition:

Definition 3. Given A, we define !fA as:

|!fA| = Mf (|A|) , P (!fA) = {〈〈u1, . . . , un〉〉 ; n ∈ N,∀i ≤ n, ui ∈ P (A)}⊥⊥
,

where: 〈〈u1, . . . , un〉〉[a1,...,ak] = 1
nk

∑
f :{1,...,k}↪→{1,...,n}

∏k
i=1(uf(i))ai

.

Notice that whenever k > n, 〈〈u1, . . . , un〉〉[a1,...,ak] = 0.

Proposition 4. Let A be a PCS. The object !fA together with the family of
morphisms ρ!f A,A≤n ∈ Pcoh(!fA,A≤n) for n ∈ N, constitute the limit of the

chain 1
ρ← A≤1 ρ← A≤2 ρ←

Moreover, this limit commutes with the tensor product (Fig. 2).

Proof. First, we prove that ρ!f A,A≤m is a correct morphism mapping P (!fA) into
P

(
A≤m

)
, for any m. By Lemma 1 it is enough to check that any 〈〈u1, . . . , un〉〉

is mapped to the pcs P
(
A≤m

)
by ρ!f A,A≤m . As P

(
A≤m

)
= P

(
A≤m

)⊥⊥, it is

equivalent to show that for any n ∈ N, ui ∈ P (A), and w ∈ P
(
A≤m

)⊥ we have:

〈ρ!f A,A≤m 〈〈u1, . . . , un〉〉, w〉≤ 1 (17)

Lemma 4 and 5 give us, ∀N ≥ m,n, resp.: ιA≤m,A≤N w ∈ P
(
A≤N

)⊥ and
ιcor
A,n,N 〈u1, . . . , un〉 ∈ P

(
A≤N

)
. Thus the inner product between the two vec-

tors is bounded by 1. Consider then the limit of this product for N → ∞:

1 ≥ lim
N→∞

〈ιcorA,n,N 〈u1, . . . , un〉, ιA≤m,A≤N w〉
=〈〈〈u1, . . . , un〉〉, ιA≤m,!f A w〉 (Eq. (16) and Definition 3)

=〈ρ!f A,A≤m 〈〈u1, . . . , un〉〉, (ρ!f A,A≤m ◦ ιA≤m,!f A) w〉
=〈ρ!f A,A≤m 〈〈u1, . . . , un〉〉, w〉

Line 2 gives line 3 using of the definition of ι and ρ in (13).

34 R. Crubillé et al.

Now we prove that !fA together with its projections ρ!f A,A≤m is indeed a
limit cone. As for Proposition 3, we prove straight the commutation with the ⊗,
as the first part of the statement is a consequence of this latter, taking B = 1.

Take a PCS C and an N-indexed family of morphisms fn ∈ Pcoh(C,A≤n

⊗B) commuting with the chain B ρ← A≤1 ⊗ B ρ← A≤2 ⊗ B ρ← We should
define a unique f† s.t. Fig. 2 commutes. The matrix f† is defined as: f†

c,(μ,b) =
(f#μ)c,(μ,b). The fact that f† is the unique one such that Fig. 2 commutes is an
easy calculation. We should then prove that it is a morphism in Pcoh(C, !fA⊗B),
i.e. for every v ∈ P (C), f† v ∈ P (!fA ⊗ B). Since P (!fA ⊗ B) = P (!fA ⊗ B)⊥⊥,
it is equivalent to prove that: ∀w ∈ P (!fA ⊗ B)⊥, 〈f† v, w〉≤ 1.

For any n, define w ↓n∈ R
+|A≤n⊗B| as:

(w ↓n)(μ,b) =

{
n!

nk(n−k)!
w(μ,b) if #μ = k ≤ n,

0 otherwise.

Notice that, for any 〈u1, . . . , un〉 ∈ P
(
A≤n

)
and z ∈ P (B), we have the

inequality: 〈〈u1, . . . , un〉 ⊗ z, w ↓n〉=〈〈〈u1, . . . , un〉〉 ⊗ z, w〉≤ 1. We conclude that
w ↓n∈ P

(
A≤n ⊗ B

)⊥, for any n. Then we have:

1 ≥ lim
n→∞ 〈fn v, w ↓n〉= lim

n→∞ 〈(ρ!f A,A≤n ◦ f†) v, w ↓n〉 (def f†)

=〈f† v, w〉 . (Eq. (16))

��

Propositions 2, 3 and 4 give the last corollary.

Corollary 1. For any PCS A, the PCS !fA yields the free commutative
comonoid generated by A.

4.3 The Free and Entire Exponential Modalities Are the Same

How do the approximants A≤n of !fA relate with !eA? Let us consider A = Bool,
and compare the maximal coefficients of these spaces on [t, f]. It is easy
to check that (sup !eBool)[t,f] = (et+ef

2)![t,f] = 1
4 . While (supBool≤n)[t,f] =

(〈e� n
2 �

t , e
� n

2 �
f)[t,f] = (〈e� n

2 �
t , e

� n
2 �

f)[t,f], whose values are, for n = 2, 3, 4, . . . (using
Eq. (12)): 1

2 , 1
3 , 1

3 , 3
10 , 3

10 , 2
7 , . . . , 1

n(n−1)�
n
2 ��n

2 � . . . converging to 1
4 . This remark

can be generalized, showing that the approximants A≤n are actually approaching
to !eA from above, giving that their limit is equal to !eA.

Proposition 5. For any PCS A, we have !fA =!eA.

Proof. The two spaces have the same web, we prove that P (!fA) = P (!eA).
Concerning P (!fA) ⊆ P (!eA). Take any 〈〈u1, . . . , un〉〉 ∈ P (!fA), we have

〈〈u1, . . . , un〉〉 ∈ P (!eA), because 〈〈u1, . . . , un〉〉 ≤ (1
n

∑
i ui)! ∈ P (!eA).

The Free Exponential Modality of Probabilistic Coherence Spaces 35

Conversely, let un denotes u, . . . , u repeated n times in

〈〈un〉〉[a1,...,ak] =
n!

nk(n − k)!

k∏

i=1

uai
=

n!
nk(n − k)!

u!
[a1,...,ak]

.

As for k < n, n!
nk(n−k)!

is an increasing sequence converging to 1, we get that
∀u ∈ P (A), supn〈〈un〉〉 = u!. Now, u! ∈ P (!fA) since it is Scott-closed. Since u!

for u ∈ P (A) are generating P (!eA), we conclude that P (!eA) ⊆ P (!fA). ��

Acknowledgments. We thank Sam Staton, Hugh Steele, Lionel Vaux and the anony-
mous reviewers for useful comments and discussions. This work has been partly funded
by the French project ANR-14-CE25-0005 Elica and by the French-Chinese project
ANR-11-IS02-0002 and NSFC 61161130530 Locali.

References

1. Breuvart, F., Pagani, M.: Modelling coeffects in the relational semantics of linear
logic. In: Kreutzer, S. (ed.) Proceedings of the 24th EACSL Annual Conference on
Computer Science Logic, CSL15, Berlin, Germany. LIPICS (2015)

2. Carraro, A., Ehrhard, T., Salibra, A.: Exponentials with infinite multiplicities. In:
Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 170–184. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15205-4 16

3. Danos, V., Ehrhard, T.: Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Inf. Comput. 209(6), 966–991 (2011)

4. Ehrhard, T., Pagani, M., Tasson, C.: Probabilistic coherence spaces are fully
abstract for probabilistic PCF. In: Sewell, P. (ed.) The 41th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL14, San Diego, USA. ACM (2014)

5. Ehrhard, T., Tasson, C.: Probabilistic call by push value (2016). preprint http://
arxiv.org/abs/1607.04690

6. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
7. Girard, J.-Y.: Linear logic: its syntax and semantics. In: Girard, J.-Y., Lafont, Y.,

Regnier, L. (eds.) Advances in Linear Logic, London Math. Soc. Lect. Notes Ser,
vol. 222, pp. 1–42. (1995)

8. Girard, J.-Y.: Between logic and quantic: a tract. In: Ehrhard, T., Girard, J.-Y.,
Ruet, P., Scott, P. (eds.) Linear Logic in Computer Science, London Math. Soc.
Lect. Notes Ser., vol. 316. CUP (2004)

9. Lafont, Y.: Logiques, catégories et machines. Ph.D. thesis, Université Paris 7 (1988)
10. Melliès, P.-A.: Categorical semantics of linear logic. Panoramas et Synthèses, 27

(2009)
11. Melliès, P.-A., Tabareau, N., Tasson, C.: An explicit formula for the free exponen-

tial modality of linear logic. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 247–260.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02930-1 21

12. van de Wiele, J.: Manuscript (1987)

http://dx.doi.org/10.1007/978-3-642-15205-4_16
http://arxiv.org/abs/1607.04690
http://arxiv.org/abs/1607.04690
http://dx.doi.org/10.1007/978-3-642-02930-1_21

From Qualitative to Quantitative Semantics

By Change of Base

James Laird(B)

Department of Computer Science, University of Bath, Bath, UK
jiml@cs.bath.ac.uk

Abstract. We give a general description of the transition from qualita-
tive models of programming languages to quantitative ones, as a change
of base for enriched categories. This is induced by a monoidal functor
from the category of coherence spaces to the category of modules over
a complete semiring R. Using the properties of this functor, we charac-
terise the requirements for the change of base to preserve the structure
of a Lafont category (model of linear type theory with free exponen-
tial), and thus to give an adequate semantics of erratic PCF with scalar
weights from R. Moreover, this model comes with a meaning-preserving
functor from the original, qualitative one, which we may use to interpret
side-effects such as state. As an example, we show that the game seman-
tics of Idealized Algol bears a natural enrichment over the category of
coherence spaces, and thus gives rise by change of base to a R-weighted
model, which is fully abstract. We relate this to existing categories of
probabilistic games and slot games.

1 Introduction

Game semantics have been used to successfully describe intensional models of
a wide variety of programming language features. With some notable (gener-
ally ad-hoc) exceptions, these models are qualitative rather than quantitative in
character, possessing an order-theoretic structure which may be characterized as
a categorical enrichment over certain categories of domain (such as dI-domains,
qualitative domains and prime algebraic lattices). Our aim is to show that this
enriched category theory perspective may be used to systematically construct
quantitative models (and describe existing ones), using the notion of change of
base to vary the enrichment of the model, independently of its intensional struc-
ture. Specifically, we describe a monoidal functor from a category of coherence
spaces to the category of R-weighted relations, where R is a complete semi-
ring. The change of base induced by this functor allows a semantic translation
from a qualitative model, enriched over coherence spaces, to a quantitative one in
which program denotations are weighted with values in R corresponding to (e.g.)
measures of probability, security, resource usage, etcetera. We illustrate this by
example, showing that the well-known games model of Idealized Algol [1] bears

J. Laird—Research Supported by UK EPSRC Grant EP/K037633/1.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 36–52, 2017.
DOI: 10.1007/978-3-662-54458-7 3

From Qualitative to Quantitative Semantics 37

a natural enrichment over coherence spaces, and describing the fully abstract
semantics of R-weighted Idealized Algol which we obtain from it by change of
base.

Related Work. The monoidal categories we use for enrichment are based on
existing, extensonal models of computation, and logic — on the qualitative side,
coherence spaces or qualitative domains [12]. On the quantitative side, we use
the category of weighted relations over a complete semiring R (equivalently, free
R-modules and linear functions). This was introduced as a model of linear logic
by Lamarche [21] and its computational properties studied in [20] via a semantics
of R-weighted PCF.

A more general categorical characterization of these quantitative models,
abstracting their key properties, was given in [18]: any model of intuitionistic
linear logic with a free exponential and (countably) infinite biproducts yields an
adequate model of PCF weighted over its internal semiring. To arrive at such
a category using the change of base, we need to show that it preserves the free
exponential. However, this is not an enriched functor: instead, we give conditions
under which the construction of the cofree commutative comonoid given in [22],
as a limit of symmetric tensor powers, is preserved.

Change of base thus provides a simple way to identify further examples of
this categorical model, with richer internal structure than sets and weighted rela-
tions. This will allow more language features such as side effects to be captured,
and also provide a way to attack the full abstraction problem for these models
(the weighted relational models for PCF are shown not to be fully abstract in
[20]). As an illustrative example we study the games model introduced in [1]. We
show that a strictly linear (rather than affine) version of this category of games
bears a natural enrichment over coherence spaces — as foreshadowed by in [5] by
a projection into a category of (ordered) coherence spaces. Previous quantitative
models based on this category of games include Danos and Harmer’s probabilistic
games [8], in which strategies are defined by attaching probabilities to positions
of the game, and Ghica’s slot games [11], which attach resource weightings to
positions in a rather different way — by introducing a class of moves which are
persistent when other moves are hidden during composition, allowing the cost of
computation to be made explicit. We show that both may be viewed as exam-
ples obtained by our change of base construction, and that the corresponding
programming languages (Algol weighted with probabilities, and resource costs)
may be subsumed into a version of Idealized Algol with weights from a complete
semiring, for which we describe a denotational semantics. Full abstraction for
this model follows from the result in [1] with very little effort.

1.1 Enriched Categories and Change of Base

Recall that if V is a monoidal category, then a V-category C is given by a
set of its objects, a V-object C(A,B) for each pair of C-objects A and B, and
V-morphisms compA,B,C : V(A,B) ⊗ V(B,C) → V(A,C) and idA : I → C(A,A)
for each A,B,C, satisfying the expected associativity and identity diagrams in V.

38 J. Laird

Intensional semantics such as games models may be represented as V-
categories, where V captures some relations or operations on morphisms such
as partial orders or algebraic structures. This gives an extensional characteriza-
tion of the model which can be studied independently of the intensional aspect.
An example is the notion of change of base [7], which uses a monoidal functor
from V to W to transform any model in a V-category to a model in a W-category
satisfying the same equational theory.

More precisely, given monoidal categories V and W any monoidal functor
(F,m) : V → W induces a change of base which takes each V-category C to
the W-category F∗(C) over the same objects, with F∗(C)(A,B) = F (C(A,B)),
and composition and identity morphisms mC(A,B),C(B,C);F (compA,B,C) and
mI ;F (idA). A simple example is the change of base induced by the monoidal
functor V(I,) : V → Set, which sends each V-category C to its underlying cate-
gory C0. Note change of base induced by the monoidal functor F comes with an
identity-on objects, F -on-morphisms functor F0 : C0 → F∗(C)0.

Change of base preserves enriched functors and natural transformations,
giving a 2-functor F∗ from the category of V-categories to the category of
W-categories. Thus, in particular, it preserves symmetric monoidal structure,
and symmetric monoidal closure (the existence of a natural V-isomorphism
C(A ⊗ B,C) ∼= C(A,B � C). A second example: if V is symmetric monoidal
closed, and therefore enriched over itself, then any monoidal functor F : V → W
induces a change of base to a W-enriched symmetric monoidal closed category.

2 Coherence Spaces and Weighted Relations

We will describe a monoidal functor from the category of coherence spaces and
stable, continuous linear functions to the category of sets and weighted rela-
tions (a.k.a. free R-modules). Examples of categories of intensional models which
may be enriched over coherence spaces or qualitative domains are common. For
instance any symmetric monoidal closed category with a monoidal functor into
the category of coherence spaces gives a coherence space enriched category as
noted above — examples include categories of hypercoherences [9], event struc-
tures [24], concrete data structures [4] and games [5]. (However, the enriched
category of games that we describe does not arise in this way.)

A coherence space [12] D is a pair (|D|, �� D) where |D| is a set of atoms (the
web), and �� D ⊆ |D| × |D| is a symmetric and reflexive relation (coherence).
A clique X of D is a set of its atoms which is pairwise coherent: d, d′ ∈ X =⇒
d �� Dd′.

The symmetric monoidal (closed) category CSpace has coherence spaces
as objects: morphisms from D to E are cliques of the coherence space D �
E, where |D � E| = |D| × |E| and (d, e)�� D�E(d′, e′) if d �� Dd′ implies
e�� Ee′ ∧ (d 	= d′ ∨ d = d′).

In other words, morphisms are certain relations between webs, and are com-
posed accordingly — if f : C → D and g : D → E then f ; g = {(c, e) ∈
|C| × |E| | ∃d ∈ D.(c, d) ∈ f ∧ (d, e) ∈ g}. Evidently, the identity relation is a

From Qualitative to Quantitative Semantics 39

clique. The tensor product of coherence spaces is the cartesian product of their
webs and coherence relations — i.e. |D⊗E| = |D|×|E|, with (d, e)�� D⊗E(d′, e′)
if and only if d�� Dd′ and e�� Ee′. The tensor unit is the singleton coherence
space {∗}.

The cliques of a coherence space E form an atomistic (Scott) domain, and the
morphisms of CSpace correspond to linear, continuous and stable morphisms
between the corresponding domains (i.e. preserving suprema of all directed and
bounded sets, and infima of finite bounded sets).

Complete Semirings and Weighted Relations. We now recall categories of
weighted relations, which will be used to characterise the structure of quan-
titative models. They are based on monoids with an infinitary “sum” operation.

Definition 1. A complete monoid is a pair (S,Σ) of a set S with a sum oper-
ation Σ on indexed families of elements of S, satisfying the axioms:

Partition Associativity. For any partitioning of the set I into {Ij | j ∈ J},
Σi∈Iai = Σj∈JΣi∈Ijai.

Unary Sum. Σi∈{j}ai = aj.

We write 0 for the sum of the empty family, which is a neutral element for the
sum by the above axioms.

Definition 2. A (commutative) complete semiring R is a tuple (|R|, Σ, ·, 1)
such that (|R|, Σ) is a complete monoid and (|R|, ·, 1) is a commutative monoid
which distributes over Σ — i.e. Σi∈I(a · bi) = a · Σi∈Ibi.

A R-module is a monoidal action (“scalar multiplication”) of (|R|, ·, 1) on a
complete monoid (S,Σ), which is distributive on both sides — i.e. (Σi∈Iai).v =
Σi∈Iai.v and a.Σi∈Ivi = Σi∈Ia.vi.

For any complete semiring the forgetful functor from the category of R-modules
and their homomorphisms into the category of sets has a left adjoint, which
sends a set X to the “free semimodule” RX , which is the set of functions from
X into R, with the sum and scalar product defined pointwise. Resolving this
adjunction gives a commutative monad R on the category of sets and thus
a co-Kleisli category SetR with symmetric monoidal structure (given by the
product of sets). Morphisms from X to Y in this category correspond both to
R-module homomorphisms from RX to RY , and also to R-weighted relations,
with which we will henceforth identify them: maps from X×Y into R, composed
by setting (f ; g)(x, z) = Σy∈Y f(x, y) · g(y, z). The symmetric monoidal action
on weighted relations is (f ⊗ g)((u, v), (x, y)) = f(u, x) · g(v, y).

Relations weighted with continuous semirings are discussed in [20], with
examples including any complete lattice, the natural or positive real numbers
completed with a greatest element ∞, and the so-called exotic semirings. Exam-
ples of complete but not continuous semiring weights are considered in [18].

40 J. Laird

2.1 From Cliques to Weighted Relations

Note that composition of morphisms f : C → D and g : D → F in CSpace has
the following property, derived from stability.

Lemma 1. (c, e) ∈ f ; g if and only if there exists a unique d ∈ D such that
(c, d) ∈ f and (d, e) ∈ g.

Proof. Existence holds by definition. For uniqueness, suppose (c, d), (c, d′) ∈ f
and (d, e), (d′, e) ∈ g. Then d�� Dd′ and hence d = d′.

We define a functor ΦR : CSpace → SetR which sends each object to its
underlying set, and each morphism from D to E to its characteristic function —
i.e. ΦR(f)(c, d) = 1, if (c, d) ∈ f ; ΦR(f)(c, d) = 0, otherwise.

By definition, ΦR(idD) is the identity on |D| in SetR. Thus functoriality
follows from Lemma 1.

Lemma 2. ΦR(f);ΦR(g) = ΦR(f) : ΦR(g).

Proof. Suppose ΦR(f ; g)(c, e) = 1 — i.e. (c, e) ∈ f ; g. By Lemma 1 there
exists a unique d ∈ D such that (c, d) ∈ f and (d, e) ∈ g. Thus
ΦR(f)(c, d′).ΦR(f)(c, d′) = 1 if d = d′ and ΦR(f)(c, d′).ΦR(f)(c, d′) = 0 oth-
erwise. Hence ΦR(f);ΦR(g)(c, e) = Σd∈DΦR(f)(c, d).ΦR(g)(d, e) = 1.

Otherwise ΦR(f ; g)(c, e) = 0 — i.e. (c, e) 	∈ f ; g, so that for all d ∈ D,
either (c, d) 	∈ f or (d, e) 	∈ g and so ΦR(f)(c, d).ΦR(f)(c, d) = 0. Then
ΦR(f);ΦR(g)(c, e) = Σd∈DΦR(f)(c, d).ΦR(g)(d, e).

Evidently, ΦR is strict monoidal — ΦR(I) = I and ΦR(D⊗E) = ΦR(D)⊗ΦR(E),
and faithful. Thus, by change of base, for each ordered complete semiring R we
have a 2-functor ΦR

∗ from the category of (symmetric monoidal closed) CSpace-
categories to the category of (symmetric monoidal closed) SetR-categories, with
a faithful functor ΦR

0 : C0 → ΦR
∗ (C)0 for each CSpace-category C.

Remark 1. If R is idempotent (ai = a for all i ∈ I (non-empty) implies Σi∈Iai)
then functoriality no longer depends on Lemma 1 and thus the stability of mor-
phisms. Hence we may define a monoidal functor from the category of sets and
relations to the category of R-weighted relations which sends each relation to
its characteristic function, yielding a change of base from Rel-enriched to SetR
enriched categories whenever R is idempotent.

3 An Example: Games and History-Sensitive Strategies

We illustrate by describing an example of a family of quantitative games models
obtained by change of basis applied to a symmetric monoidal category of games
and “knowing” strategies enriched over coherence spaces. Its underlying category
is essentially the games model of Idealized Algol (IA) introduced by Abramsky
and McCusker in [1] and obtained by relaxing the innocence constraint on strate-
gies in the Hyland-Ong games model of PCF [14]. More precisely, we define a

From Qualitative to Quantitative Semantics 41

different “linear decomposition” of this model into a category in which mor-
phisms are truly linear, rather than affine. We also ignore the requirement of
even-prefix-closure on strategies — this does not change the denotation of pro-
grams in the model, nor its full abstraction property.

Definition 3. The arena for a game A is a labelled, bipartite directed acyclic
graph, given as a tuple (MA,M I

A,�A, λA) — where MA is a set of moves
(nodes), M I

A ⊆ MA is a specified set of initial moves (source nodes), �A⊆
MA ×(MA\M I

A) is the enabling (edge) relation and λA : MA → {O,P}×{Q,A}
is a function partitioning the moves between Player or Opponent, and labelling
them as either questions or answers, such that initial moves belong to Opponent
and each answer is enabled by a question.

A justified sequence s over A is a sequence over MA, together with a pointer from
each non-initial move b in s to some preceding move a in s such that a � b. The
set LA of legal sequences over A consists of alternating justified sequences s on A
which satisfy visibility and well-bracketing as defined in [1]. (Details are omitted
as nothing here depends on thiese particular conditions, which may be relaxed
or modified in various ways to model different combinations of computational
effects.) A game A is a pair (GA, PA) of an arena GA and a set of justified
sequences PA ⊆ LA. The key constructions are:

– A ⊗ B = (GA � GB , {s ∈ LA�B | s�A ∈ PA ∧ s�B ∈ PB}), where GA � GB is
the disjoint union of arenas — (MA + MB ,M I

A + M I
B ,�A + � BB , [λA, λB]).

– A � B = (GA � GB , {s ∈ LA�B | s�A ∈ PA ∧s�B ∈ PB}), where GA � GB

is the graft of A onto the root nodes of B — MA + MB , inr(M I
B), (�A + �B)

∪ inr(M I
B) × inl(M I

A), [λA, λB]).

3.1 Coherence Space Enrichment of Games

We will now define a CSpace-category of games, for which the underlying cat-
egory is similar to that described in [1] etc. The fact that the inclusion order
on strategies provides the latter with an enrichment over the category of cpos
and continuous functions was already used in [1], as in other games models, to
construct fixed points. Our results amount to showing that strategies form a
dI-domain under inclusion, and composition is a bilinear and stable function.
Enrichment of a category of games with coherence spaces, or similar categories,
is also implicit in earlier work, such as the definition in [5] of a monoidal functor
from a similar category of games into a category of ordered coherence spaces.
However, this depends on a number of particular features — notably the recon-
struction of a strategy on A � B from its projections on A and B, which is not
always possible, so CSpace-enrichment may be seen as a more general property.

For any game A let Coh(A) be the coherence space (PE
A , �� A), where PE

A

is the set of even-length sequences in PA and s�� At if their greatest common
prefix s � t is even length. A strategy on A is a morphism from I to Coh(A) in
CSpace, corresponding to a clique of Coh(A) — an even-branching subset of
PE

A . We define a CSpace-category in which objects are games, and the coherence
space of morphisms from A to B is Coh(A � B).

42 J. Laird

Definition 4. For S ⊆ PA�B and T ⊆ PB�C , let S|T be the set of sequences
u on A+B +C such that u�A � B ∈ S and u�B � C ∈ T . Then compA,B,C =
{((r, s), t) ∈ |Coh(A � B)| × |Coh(B � C)| × |Coh(A � C)| | ∃u ∈ {r}|{s}.u�
A � C = t}.
The identity idA : I → CSpace(A � A) is the copycat strategy on A consisting
of the sequences on PA�A for which each even prefix projects to the same (legal)
sequence on both components.

Given strategies σ : I → Coh(A � B) and τ : I → Coh(B � C), let σ; τ
be the relational composition of σ ⊗ τ with compA,B,C . This corresponds to
the parallel composition plus hiding of strategies defined in [1], and so by well-
pointedness of CSpace, satisfies the diagrams for associativity and identity. So
it remains to show that comp is stable, for which we require a further key fact
about composition — for any t ∈ σ; τ , the “interaction sequence” in σ|τ which
restricts to t is unique. This is essentially a version of the “zipping lemma” of [2].

Lemma 3. compA,B,C is a clique of Coh(A � B) ⊗ Coh(B � C) �
Coh(A � C).

We define CSpace-enriched symmetric monoidal (closed) structure on G,
given by the operation ⊗ with unit I (the game over the empty arena, with
PI = {ε}) and the morphism tensorA,B,C,D = {((r, s), t) ∈ |Coh(A � C) ⊗
Coh(B � D)| × |Coh(A ⊗ B � C ⊗ D)| | r = t�A � C ∧ s = t�B � D}. This
corresponds to the action of ⊗ on the underlying category of games defined in [1],
giving associator, unitor and twist maps making the relevant diagrams commute.
The (natural) isomorphism Coh(A ⊗ B,C) ∼= Coh(A,B � C) in CSpace yields
symmetric monoidal closure.

Note that unlike [1] and many similar models, the underlying symetric
monoidal category of games is not affine — the unit for the tensor is not a ter-
minal object — there are two morphisms from I to itself, one empty, the other
containing the empty sequence. This is a necessary consequence of CSpace-
enrichment.

For any complete semiring R, change of base yields a symmetric monoidal
closed category GR � ΦR

∗ (G) enriched in SetR. Concretely, a morphism φ :
A → B in GR

0 is a R-weighted strategy — a map from even-length plays on
A � B into R. These are composed by setting

(φ;ψ)(t) = Σ{φ(u�A � B) · ψ(u�B � C) | u ∈ LA�B |LB→C ∧ u�A � C = t}

The tensor product of R-weighted strategies φ : A → C,ψ : B → D is (φ ⊗
ψ)(s) = φ(s�A � C) · ψ(s�B � D).

The faithful, identity-on-objects, monoidal functor ΦR
0 : G0 → GR

0 sends
each deterministic strategy σ : A → B to the R-weighted strategy σR with
ΦR
0 (σ)(s) = 1 if s ∈ σ and ΦR

0 (σ)(s) = 0 otherwise.
By choosing particular semirings we may relate this category to examples in

the literature. For instance, if R is the two-element Boolean ring then morphisms
in GR

0 correspond to sets of legal sequences — i.e. non-deterministic strategies,
as in the model of may-testing studied in [13,19].

From Qualitative to Quantitative Semantics 43

If R is the probability semiring, (R∞
+ , Σ, ·, 1), then R-weighted strategies

correspond precisely to the “probabilistic pre-strategies”, introduced by Danos
and Harmer [8]. These are refined further by imposing more specfic constraints,
although the precursor model is already fully abstract for Probabilistic Algol.

If R is the tropical semiring (N∞,
⋃

,+, 0) then GR
0 corresponds to a sequen-

tial version of Ghica’s category of slot games [10]. This was introduced as a
model quantifying resources used in stateful and concurrent computation, in a
presentation rather different to weighted strategies, but equivalent to it. Assum-
ing a distinguished token $©, which does not occur in the set of moves of any
arena, we may define a sequence with costs on the game A to be an interleaving
of a sequence s ∈ PA of A with a sequence of $© moves: a strategy-with-costs on
a A is a set of such sequences. Strategies with costs σ : A → B and τ : B → C
are composed by parallel composition with hiding of moves in B, so that all slot
moves of σ and τ propagate to σ; τ . Taking the weight of a sequence with costs
to be the number of slot moves it contains, this is equivalent to the notion of
composition for T-weighted strategies — i.e. the category of strategies with costs
is isomorphic to the category GT. The original category of slot games defined in
[10] is based on a category (an interleaving model of concurrency, without the
alternation condition) which does not, in fact enrich over the category of coher-
ence spaces but does enrich over the category of relations. Thus we may change
the base of this model only to free semimodules over an idempotent semiring —
of which the tropical semiring is an instance.

4 Additives and Exponentials

We now describe how this change of base can be used to obtain a quantitative
semantics of higher-order computation — specifically, an (intuitionistic) Lafont
category [16] (a symmetric monoidal closed category C with a “free exponential”)
with countable biproducts. This notion of categorical model was shown in [18] to
yield an adequate model of PCF extended with R-module structure, as described
in Sect. 5.

A category C has set-indexed biproducts if it has all set-indexed products and
coproducts, and these are naturally isomorphic — i.e. for any family J , there
is a natural isomorphism (which we may assume to be the identity) between
the J-indexed functors Πj∈J and

∐
j∈J . Any category with infinite biproducts

bears an enrichment over the category of complete monoids and their homo-
morphisms: Given a family of morphisms {fj : A → B | j ∈ J}, let Σj∈Jfj =
ΔJ

A;
⊕

j∈J fj ;∇J
A, where ΔA

J : A →
⊕

j∈J A and ∇J
A :

⊕
j∈J A → A are the

diagonal and co-diagonal. Jf C is a symmetric monoidal closed category, then the
tensor distributes over biproducts — i.e. (

⊕
i∈J Aj) ⊗ B =

⊕
j∈J(Aj ⊗ B), as

they are colimits. The complete monoid enrichment thus extends to the monoidal
structure — i.e. the tensor is an enriched functor. Moreover, the endomorphisms
on the unit I form a complete, commutative semiring RC = (C(I, I), Σ,⊗, I) —
the internal semiring of C.

Conversely, any complete monoid enriched category may be completed with
biproducts.

44 J. Laird

Definition 5. If C is complete monoid enriched, let CΠ be the category in which
objects are set-indexed families of objects of C, and morphisms from {Ai | i ∈ I}
to {Bj | j ∈ J} are I × J-indexed sets of morphisms {fi,j : Ai → Bj | 〈i, j〉 ∈
I × J}, composed by setting (f ; g)ik = Σj∈J(fij ; gjk).

If C is a complete monoid enriched symmetric monoidal category, then we
may define the (distributive) tensor product on CΠ : {Ai |i ∈ I}⊗{Bj | j ∈ J} =
{Ai ⊗ Bj |〈i, j〉 ∈ I × J}, with (f ⊗ g)ikjl = fij ⊗ gkl.

Note that the biproduct completion of a complete commutative semiring R
(regarded as a one-object SMCC) is the category SetR.

4.1 The Cofree Commutative Comonoid

A cofree commutative comonoid on an object B in a symmetric monoidal
category C is an object (!B, δ, ε) in comon(C) (the category of commutative
commonoids and comonoid morphisms of C) with a (natural in A) isomor-
phism between C(A,B) and comon(C)(A, !B) for each commutative comonoid
(A, δA, εA). Thus C has (all) cofree commutative comonoids if and only if the
forgetful functor from comon(C) into C has a right adjoint. This (monoidal)
adjunction resolves a monoidal comonad (the free exponential) ! : C → C.

How can we relate the free exponential to change of base? In general, the
category of comonoids of a V-category is not itself V-enriched, so there is no
V-adjunction giving rise to a V-enriched free exponential. Moreover, although
the categories CSpace and SetR possess cofree commutative comonoids, these
are not preserved by ΦR (see discussion below). Instead, we describe properties of
a CSpace-enriched category which allow the construction of a free exponential
on the underlying categories, and their preservation by the functor ΦR

0 . These
are based on the existence of symmetric tensor powers:

Definition 6. A family of objects {Bi | i ∈ N} in a symmetric monoidal cate-
gory are symmetric tensor powers of B if:

– For each n there is a morphism eqn : Bn → B⊗n such that (Bn, eqn) is
an equalizer for the group G of automorphisms on B⊗n derived from the
permutations on {1, . . . , n}.

– These equalizers are preserved by the tensor product — i.e. (Bm ⊗ Bn, eqm ⊗
eqn) is an equalizer for the products of pairs of permutation automorphisms.

The category of coherence spaces has equalizers for any group G of automor-
phisms on an object D. Let ∼G be the equivalence relation on |D| induced by
G — i.e. d∼Gd′ if there exists g ∈ G with (d, d′) ∈ g. Then the equalizer for G
in CSpace is the coherence space consisting of those equivalence classes of ∼G

in which all members are coherent — {[d]G ∈ D/∼G | d∼Gd′ =⇒ d�� Dd′} —
with coherence [d]�� E [d′] if there exists d′′ ∈ |D| such that d∼Gd′′.

The category of sets and weighted relations also has equalizers for automor-
phism groups — in this case given by the set of all equivalence classes of ∼G.
Say that an automorphism group G : D ⇒ D in CSpace is coherent whenever
∼G ⊆ �� A.

From Qualitative to Quantitative Semantics 45

Proposition 1. ΦR preserves the equalizer of G if and only if it is coherent.

Note that unless �� D = |D|×|D|, the group of permutations on D⊗n in CSpace
is not coherent — e.g. if d 	�� Dd′ then (d, d′) 	�� A⊗2(d′, d). So ΦR does not preserve
symmetric tensor powers (and for essentially the same reason does notin general
preserve cofree commutative comonoids).

Given an automorphism group G : A ⇒ A in a CSpace-category, and object
B, let hB(G) = {hB(g) : C(B,A) → C(B,A) | g ∈ G} be the group of auto-
morphisms on C(A,B) in CSpace induced by Yoneda embedding. Say that G
is coherent if hB(G) is coherent for every B.

For instance, in our category of games the group of permutations on A⊗n is
coherent: an atom of Coh(B � A⊗n) is a justified sequence over MB � (MA ×
{1, . . . , n}), and the equivalence on these sequences induced by the permutation
isomorphisms on A⊗n is simply that induced by permuting the tags on moves
in A. This is coherent because it is Opponent who always plays the first move
with any given tag.

Proposition 2. ΦR
0 : C0 → CR

0 preserves equalizers for coherent groups.

Proof. Suppose (E, eq : E → A) is an equalizer for a group G : A ⇒ A.
Evidently, ΦR

0 (eq);ΦR
0 (g) = ΦR

0 (eq) for all g ∈ G so it remains to show the
universal property. Let B be any object of CR

0 (thus an object of C0). Then
hB(eq);hB(g) = hB(g) for all g ∈ G and for any f : I → C(B,A) in CSpace such
that f ;hB(g) = f for all g ∈ G, there exists a unique morphism u : I → C(B,E)
such that u;hB(eq) = f . Observe (by well-pointedness of CSpace) that this
implies that (hB(E), hB(eq)) is the equalizer for hB(G) in CSpace.

Thus (ΦR(hB(E)), ΦR(hB(eq))) is an equalizer for ΦR(hB(G)) in SetR, and
so for any f : B → E in ΦR

∗ (C), there exists a unique morphism u : B → E such
that u; eq = f as required.

If our SetR-enriched model possesses symmetric tensor powers and infinite,
distributive biproducts, this is sufficient to obtain the free exponential as the
biproduct of all symmetric tensor powers of B (the Lafont exponential) — i.e.
!B =

⊕
n∈N

Bn, which is equipped with commutative comonoid structure by
defining ε!B :!B → I = π0 and δ!B :!B →!B⊗!B = 〈πm+n; δm,n | m,n ∈ N〉,
where δm,n : Bm+n → Bm ⊗ Bn is the unique morphism such that eqm+n =
δm,n; (eqm ⊗ eqn).

Proposition 3. If C has symmetric tensor powers, then its biproduct completion
CΠ has symmetric tensor powers.

Proof. For A = {Ai | i ∈ I}, An = {AX | X ∈ Mn(I)}, where if X has support
i1, . . . , ik then AX = A

X(1)
i1

⊗ . . . ⊗ A
X(ik)
ik

.

Thus, given any CSpace-enriched category with symmetric tensor powers and
consistent permutation groups, we may obtain a Lafont category by changing
its base to SetR, and completing with biproducts. In the case of the CSpace-
category of games, G, we have already argued that the group of permutations

46 J. Laird

on each tensor power A⊗n is consistent, and therefore change of base preserves
symmetric tensor powers, if they exist. One way to define them is by decomposing
the tensor product in G using the sequoid [6,17]. The sequoid A�B is the game
(GA � GB , {t ∈ PA⊗B | ∀s � t.s�B = ε =⇒ s�A = ε}) — i.e. it is a subgame
of A ⊗ B in which the first move (if any) is always in A. Let An be the n-fold
sequoid on A — i.e. A0 = I, An+1 = A � An, so that plays in A consist of n
interleaved plays of A, opened in a fixed order.

Proposition 4. An is an n-ary symmetric tensor power.

This is established using the categorical structure underlying the sequoid — it
is a monoidal action of C upon its subcategory of strict morphisms (strategies
on A � B such that every opening move in A is followed by a move in B) —
and the fact that the tensor decomposes into the sequoid (A⊗B is the cartesian
product of A � B and B � A).1

4.2 Preservation of Cofree Commutative Comonoids

In order to lift the functor between underlying categories which is implicit in the
change of base to a functor of CCCs between the co-Kleisli categories of the free
exponential (preserving the meaning of types and terms in the λ-calculus) it is
necessary for it to preserve cofree commutative comonoids. We give conditions
for this to hold based on the construction of the latter described in [22] — i.e.
(putting it in a nutshell) as the limit of the diagram:

I
p0← A•

p1← A2
• . . . Ai

•
pi← (A•)i+1 . . .

where A• is the product A × I (more precisely, the “free pointed object” on A)
and pi : (A × I)i+1 → (A × I)i is the unique morphism given by the universal
property of the symmetric tensor power such that pi; eqi : A•i+1 → •⊗i =
eqi+1; (A⊗i

• ⊗ πr).
This is a refinement of Lafont’s construction (in categories with biproducts,

the above limit is
⊕

i∈N
Ai). To show that it is preserved by ΦR

∗ , we make
the further assumption that for each pi there is a corresponding morphism ei :
Ai

• → Ai+1
• , forming an embedding projection (e-p) pair (ei, pi) : Ai � Bi — i.e.

ei; pi = idAi• and pi; ei ≤ idAi+1 .
Given an e-p pair from D to E in the category of coherence spaces (which

corresponds to a coherence preserving injection from |D| into |E|), define p• ⊆
|E•| × |D•| by {(inl(e), inl(d)) | (d, e) ∈ p} ∪ {(e, inr(∗)) | e = inr(∗)∨ 	 ∃d ∈
D.(d, e) ∈ p}.

CSpace has limits for any chain of such pairs D0

e0,p0

� D1

e1,p1

� . . . |
⊔

D| =
{x ∈ Πi<ω|(Di)•| | ∃i.xi 	= inr(∗) ∧ ∀i ∈ ω.(xi+1, xi) ∈ (pi)•}, with x��

⊔
Dy if

xi ��yi for all i. This is also the limit for D0

ΦR(e0),Φ
R(p0)

� D1

ΦR(e1),Φ
R(p1)

� . . . in

1 This structure may all be be given in enriched form, and is therefore preserved by
change of base.

From Qualitative to Quantitative Semantics 47

SetR — i.e. ΦR preserves limits for all e-p chains. As in the case of equalizers,
we can use this fact, to show that they are preserved by ΦR

0 .

Proposition 5. If
⊔

A is a limit for the chain A0

e0,p0

� A1

e1,p1

� . . . in a

CSpace-category C, then it is a limit in CR for the chain A0

Φ(e0,p0)

� A1

ΦR(e1,p1)

�
. . .

Proof. The universal property is established as in Prop. 2 — for any B, C(B,
⊔

A)
is a limit in CSpace for the e-p chain C(B,A0) � C(B,A) � . . ., and thus
ΦR(C(B,

⊔
A)) is a limit for ΦR(C(B,A0)) � ΦR(C(B,A2)) � . . ., and hence⊔

A is a limit for A0 � A1 � . . . in CR.

Any cartesian product in C0 is a cartesian product in CR
0 (since ΦR preserves

products) and so in particular A × I is the free pointed object on A in CR
0 .

Hence, if ! is a limit for I
p0← A•

p1← . . . Ai
•

p2← . . . in C0 then it is a limit for

I
ΦR(p0)← A•

ΦR(p1)← . . . in CR
0 .

As we have observed, our category of games G0 has all symmetric tensor
powers. We also have an embedding-projection pair from An to An+1 for each
n — viz e0 = ⊥I,A, en+1 = A � en.

G does not have all products, however. In particular, the free pointed object
A× I does not exist in general — e.g. we may show that there is no object I × I
such that G(I, I × I) ∼= G(I, I) × G(I, I). However we may identify a full sub-
category of G (i.e. a collection of objects — the well-opened games) for which
products exist. A game A is well-opened if PA consists only of sequences con-
taining exactly one initial move. If A and B are well-opened then their product
A × B consists of the well-opened sequences in A ⊗ B. Moreover, if A is well-
opened then the free pointed object on A is (GA, PA ∪ε), and the limit !A for the
chain I

p0← A•
p1← . . . is the game consisting of all legal interleavings of sequences

in PA. Note also that if B is well opened then !A � B is well-opened. Hence
the “co-Kleisli” category G! in which objects are well-opened games, and mor-
phisms from A to B are morphisms from !A to B in G is Cartesian closed. This
is equivalent to the cartesian closed category of games constructed in [1], etc.
(less the even-prefix-closure condition on strategies). Since ΦR

0 (!A) is the cofree
commutative comonoid in GR

0 for each well-opened game, we have a cartesian
closed category of well-opened games and R-weighted strategies, GR

! with a
cartesian closed functor ΦR

! : G! → GR
! .

5 R-Weighted Idealized Algol

By the results in [1] we know that G! furnishes a semantics of Reynolds’ Idealized
Algol — an applied, simply-typed λ-calculus which may be considered as an
extension of PCF with integer state (conservative with respect to the operational
semantics). So applying the functor ΦR

0 : G0 → GR
0 gives us a semantics of

Idealized Algol in GR
! . Since the biproduct completion of GR

0 is an example of

48 J. Laird

the categorical model described in [18] (a Lafont category with biproducts) we
also have a semantics of R-weighted PCF in GR

! . This agrees with the semantics
of Idealized Algol on their common part (the operations and constants of PCF)
and so we may combine both models, to give an interpretation of IAR — erratic
Idealized Algol with scalar weights from R. Moreover — unlike the weighted
relational semantics of PCFR— this model is fully abstract, a property it inherits
directly from the qualitative version.

Types of Idealized Algol are formed from ground types nat, com (commands)
and var (integer references). Terms are formed by extending the λ-calculus with
fixed points, with the following constants2:

– Arithmetic, conditionals: 0 : nat, succ, pred : nat → nat, Ifz : nat → nat.
– Imperative programming: seq : com → B → B (sequential composition) and
new : (var → B) → B (new variable declaration) where B ∈ {com, nat},
assn : nat → var → com, deref : var → nat, and mkvar : nat → (nat →
com) → var (“bad variable” construction).

– R-module structure — a nondeterministic choice operator or : B → B → B
and scalar multiplication scl(k) : B → B for each k ∈ R.

The operational semantics for IAR extends that given for PCFR [20], just as
Idealized Algol extends PCF. We define a labelled transition system in which
states are configurations — pairs (P,S) of a (ground-type) program and a store
(a sequence (a1, n1), . . . , (an, nk) of pairs of a location name and integer value).
Labels are elements of the monoid (u, a) ∈ {l, r}∗ ×R and actions take the form
E[M], S u,a−→ E[M ′], S ′, where E[] is an evaluation context, given by the grammar:
E:: = [] | E M | succ E | pred E | Ifz E | seq E | assn E | (assn n) E | deref E

and M,S u,a−→ M ′,S ′ is an instance of one of the following rules:

(λx.M) N,S ε,1−→ M [N/x],S μx.M,S ε,1−→ M [μx.M/x],S
or,S l,1−→ λx.λy.x,S or,S r,1−→ λx.λy.y,S
seq skip,S ε,1−→ λx.x,S newm P,S ε,1−→ P a,S, (a,m)

(assn n) (mkvar M N),S ε,1−→ N n,S (assn n) a,S ε,1−→ skip,S[ai �→ n]

Ifz n + 1,S ε,1−→ λx.λy.y,S pred n + 1,S ε,1−→ n,S
deref(mkvar M N),S ε,1−→ M,S Ifz 0,S ε,1−→ λx.λy.x,S
deref a,S[(a, n)

ε,1−→ n,S scl(k),S ε,k−→ λx.x,S

The relation
u,a−→ is deterministic, and so we may define the weight in R of

each configuration with respect to a sequence u ∈ {l, r}∗ of branching choices:
wu(P,S) = a if P,S u1,a1−→ . . .

un,an−→ skip,S ′, where (u, a) = (u1 ·. . . un, a1 ·. . .·an),
wu(P,S ′) = 0 if there is no such sequence of reductions.

The total weight of a configuration in R is given by summing the weights
over all possible paths: w(P,S) � Σu∈{l,r}∗wu(P,S), and w(P) = w(P,).

2 We consider the variant of IA with active expressions and bad variables as in [1].

From Qualitative to Quantitative Semantics 49

From this notion of testing we derive a notion of equivalence: P ≈ Q if for
any closing compatible context C[] : com, w(C[P]) = w(C[Q]).

As discussed in [20] for PCF, the computational meaning of IAR depends
on the choice of semiring — it may be regarded as a metalanguage for a family
of “resource-sensitive” imperative programming languages and their semantics.
The weighted games models discussed previously may be viewed as instances
of this. Probabilistic games [8] are used to interpret Idealized Algol extended
with a constant coin : nat which reduces to either 0 or 1, both with probability
0.5. Thus we may interpret probabilistic Algol inside IAR by defining coin �
(scl(0.5) 0) or (scl(0.5) 1).

Slot games are used to give an interpretation of Idealized Concurrent Algol
which is sound with respect to an operational semantics which keeps track of the
(time, memory, etc.) costs of evaluation as a natural number — each reduction
rule is decorated with such a cost, and the worst-case cost is assigned to each
program. Setting R to be the tropical semiring, we may define a translation
of non-deterministic IA into IAR which is sound with respect to this notion of
evaluation, by applying a weighting to each operation corresponding to the cost
of its evaluation.

5.1 Denotational Semantics

We interpret IAR in the category of games and R-weighted strategies by extend-
ing the semantics of PCFR [20] with the image under ΦR

0 of the semantics of
the types and constants of Idealized Algol defined in [1]. (We use the version in
which each game consists of only complete sequences, in which every question is
answered.) The types com, nat and var denote the (well-opened) games Σ (with
a single question and answer) N (with a single Opponent question and Player
answers for each value n ∈ N

3) and the product N × Σω, respectively. The
arrow type S → T denotes the well-opened game !�S� � �T �. Terms-in context
x1 : S1, . . . , x :n: Sn � M : T are interpreted as morphisms from �S1�× . . .×�Sn�
to �T � in GR

! . Each of the constants C : T of Idealized Algol denotes a strategy
in G!, and thus a R-weighted strategy in GR

! .
This leaves the interpretation of the fixed point operator, which takes a term

Γ, x : T � M : T to its fixed point Γ � μx.M : T . Semantically, this cor-
responds to a parameterised fixed point operator on our cartesian closed cat-
egory of games — a map taking each endomorphism f ∈ C(B × A,A) to a
morphism fixB(f) ∈ C!(B,A) satisfying fix(f) = 〈B, fix(f)〉; f . As G! is cpo-
enriched, this may defined as (parameterised) least fixedpoint. If R is not con-
tinuously ordered, then this construction is not available but we may adopt the
alternative, described in [18], based on the existence of a bifree algebra for the
free exponential in (GR

0)Π — the object
⊕

X∈M
I, where M is the set of nested

finite multisets. This is sufficient (cf. [23]) to define a fixed point operator on the
co-Kleisli category GR

! .

3 In GR, N ∼=⊕i∈N
Σ.

50 J. Laird

The computational adequacy property for our semantics states that the
weight for a program of type com computed by the operational semantics is
equal to the weight assigned by its denotation to the single well-opened sequence
(qa) in �com�. The proof of this follows closely that of [18], defining an equiva-
lent semantics which assigns precise resouce bounds to variables indicating how
many times they are called (and in the case of recursively defined variables, a
nested finite multiset representing their call-pattern), and proving soundness for
this by a nested multiset induction. The only further requirement is a set of
equations establishing the soundness of the reduction rules for the constants of
Idealized Algol: these were already established in [1] in proving soundness for
the semantics in G.

Proposition 6. For every program P : com, �P,S�(qa) = w(P,S).

Although full abstraction fails in the semantics of PCFR in SetR [18], it holds in
our model of IAR , following readily from the definability property for the game
semantics of Idealized Algol in G.

Theorem 1 [1]. For any finite strategy σ : �T � there exists a IA term Mσ : T
such that �Mσ�G = σ.

Thus, in particular, every atomic strategy on �T � (consisting of a single legal
sequence) is definable as a term of Idealized Algol (without fixed points), and
so any finitary strategy in GR (i.e. one for which finitely many sequences have
non-zero weight) is definable as a finite weighted sum of Idealized Algol terms.

Corollary 1 (Definability for IAR). For any finitary R-weighted strategy
φ : �T � there exists a term Mφ : T such that �Mφ� = φ.

Corollary 2 (Full Abstraction for IAR). M ≈ M ′ if and only if �M� = �M ′�

Proof. This closely follows the proof in the original model — e.g. for complete-
ness suppose �M� 	≈ �M ′�, and thus there exists a complete s ∈ P�T � such that
�M�(s) 	= �M ′�(s). By the definability property, the strategy φ : �T � → �com�
such that φ(t) = 1 if t = qsa (and 0 otherwise) denotes a term N : T → com
of Idealized Algol and thus �N m�R(qa) = �M�(s) and �N M ′�(qa) = �M ′�(s).
Hence by computational adequacy, w(N M ′) 	= w(N M ′) and so P 	≈ Q as
required.

This establishes that any inequivalent terms of IAR may be separated by a term
of Idealized Algol. So, for example, our model is fully abstract for Probabilistic
Algol.

6 Conclusions and Further Directions

We have described a general way of moving from qualitative intensional models
to quantitative ones, using the notion of change of base of an enriched category.
The only really essential properties that this uses from the original model of

From Qualitative to Quantitative Semantics 51

Idealized Algol are that strategies may be viewed as certain cliques in a coherence
space and that composition is a stable, linear function, ruling out interleaving
models of concurrency, except in the case of idempotent semirings. For the sake
of simplicity, we have sidestepped mention of causal order (e.g. prefix order in
games), which gives a finer characterization of strategy behaviour. For example,
we may enrich categories over event structures [24,25] (or dI-domains [3]) — thus
a monoidal functor adding weights to event structures may be used to change
their base.

References

1. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent,
R. (eds.) Algol-like languages. Birkhauser (1997)

2. Baillot, P., Danos, V., Ehrhard, T., Regnier, L.: AJM games are a model of classical
linear logic. In: Proceedings of the Twelfth International Symposium on Logic in
Computer Science, LICS 1997 (1997)

3. Berry, G.: Stable models of typed λ-calculi. In: Ausiello, G., Böhm, C. (eds.)
ICALP 1978. LNCS, vol. 62, pp. 72–89. Springer, Heidelberg (1978). doi:10.1007/
3-540-08860-1 7

4. Berry, G., Curien, P.-L.: Sequential algorithms on concrete data structures. Theo-
ret. Comput. Sci. 20, 265–321 (1982)

5. Calderon, A., McCusker, G.: Understanding game semantics through coherence
spaces. Electron. Notes Theoret. Comput. Sci. 265, 231–244 (2010)

6. Churchill, M., Laird, J., McCusker, G.: Imperative programs as proofs via game
semantics. Ann. Pure and Appl. Logic 64, 27–94 (2013)

7. Cruttwell, G.: Normed Spaces and Change of Base for Enriched Categories. Ph.D.
thesis, Dalhousie University (2008)

8. Danos, V., Harmer, R.: Probabilistic game semantics. ACM Trans. Comput. Logic
3(3), 359–382 (2002)

9. Ehrhard, T.: Hypercoherence: a strongly stable model of linear logic. In: Girard, J.-
Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. Cambridge University
Press, Cambridge (1995)

10. Ghica, D.: Slot games: a qunatitative model of computation. In: Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 85–97 (2005)

11. Ghica, D., McCusker, G.: The regular language semantics of second-order Idealised
Algol. Theoret. Comput. Sci. 309, 469–502 (2003)

12. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University
Press, Cambridge (1990)

13. Harmer, R., McCusker, G.: A fully abstract games semantics for finite non-
determinism. In: Proceedings of the Fourteenth Annual Symposium on Logic in
Computer Science, LICS 1999. IEEE Computer Society Press (1998)

14. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II and III. Inf.
Comput. 163, 285–408 (2000)

15. Janelidze, G., Kelly, G.M.: A note on actions of a monoidal category. Theor. Appl.
Categories 9(4), 61–91 (2001)

16. Lafont, Y.: Logiques, catégories et machines. Ph.D thesis, Université Paris 7 (1988)

http://dx.doi.org/10.1007/3-540-08860-1_7
http://dx.doi.org/10.1007/3-540-08860-1_7

52 J. Laird

17. Laird J.: A categorical semantics of higher-order store. In: Proceedings of CTCS
2002, number 69 in ENTCS. Elsevier (2002)

18. Laird, J.: Fixed points in quantitative semantics. In: Proceedings of LICS 2016,
pp. 347–356. ACM (2016)

19. Laird, J., Manzonetto, G., McCusker, G.: Constructing differential categories and
deconstructing categories of games. Inf. Comput. 222, 247–264 (2013)

20. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed lambda-calculi. In: Proceedings of LICS 2013 (2013)

21. Lamarche, F.: Quantitative domains and infinitary algebras. Theoret. Comput. Sci.
94, 37–62 (1999)

22. Melliès, P.-A., Tabareau, N., Tasson, C.: An explicit formula for the free exponen-
tial modality of linear logic. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 247–260.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02930-1 21

23. Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point operators.
In: Proceedings of LICS 2000, pp. 30–41. IEEE Press (2000)

24. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2 31

25. Winskel, G.: Concurrent strategies. In: Proceedings of LICS 2011 (2011)

http://dx.doi.org/10.1007/978-3-642-02930-1_21
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/3-540-17906-2_31

Almost Every Simply Typed λ-Term Has a Long
β-Reduction Sequence

Ryoma Sin’ya(B), Kazuyuki Asada, Naoki Kobayashi, and Takeshi Tsukada

The University of Tokyo, Tokyo, Japan
ryoma@kb.is.s.u-tokyo.ac.jp

Abstract. It is well known that the length of a β-reduction sequence
of a simply typed λ-term of order k can be huge; it is as large as k-fold
exponential in the size of the λ-term in the worst case. We consider the
following relevant question about quantitative properties, instead of the
worst case: how many simply typed λ-terms have very long reduction
sequences? We provide a partial answer to this question, by showing
that asymptotically almost every simply typed λ-term of order k has
a reduction sequence as long as (k − 2)-fold exponential in the term
size, under the assumption that the arity of functions and the number
of variables that may occur in every subterm are bounded above by a
constant. The work has been motivated by quantitative analysis of the
complexity of higher-order model checking.

1 Introduction

It is well known that the length of a β-reduction sequence of a simply typed
λ-term can be extremely long. Beckmann [1] showed that, for any k ≥ 0,

max{β(t) | t is a simply typed λ-term of order k and size n} = expk(Θ(n))

where β(t) is the maximum length of the β-reduction sequences of the term t,
and expk(x) is defined by: exp0(x) � x and expk+1(x) � 2expk(x). Indeed, the
following order-k term [1]:

(Twicek)nTwicek−1 · · ·Twice2(λx.a x x)c,

where Twicej is the twice function λfσj−1 .λxσj−2 .f(f x) (with σj being the
order-j type defined by: σ0 = o and σj = σj−1 → σj−1), has a β-reduction
sequence of length expk(Ω(n)).

Although the worst-case length of the longest β-reduction sequence is well
known as above, much is not known about the average-case length of the longest
β-reduction sequence: how often does one encounter a term having a very long
β-reduction sequence? In other words, suppose we pick a simply-typed λ-term
t of order k and size n randomly ; then what is the probability that t has a
β-reduction sequence longer than a certain bound, like expk(cn) (where c is
some constant)? One may expect that, although there exists a term (like the

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 53–68, 2017.
DOI: 10.1007/978-3-662-54458-7 4

54 R. Sin’ya et al.

one above) whose reduction sequence is as long as expk(Ω(n)), such a term is
rarely encountered.

In the present paper, we provide a partial answer to the above question,
by showing that almost every simply typed λ-term of order k has a reduction
sequence as long as (k − 2)-fold exponential in the term size, under a certain
assumption. More precisely, we shall show:

lim
n→∞

#
(
{[t]α ∈ Λα

n(k, ι, ξ) | β(t) ≥ expk−2(n)}
)

#(Λα
n(k, ι, ξ))

= 1

where Λα
n(k, ι, ξ) is the set of (α-equivalence classes [−]α of) simply-typed λ-

terms such that the term size is n, the order is up to k, the (internal) arity is
up to ι ≥ k and the number of variable names is up to ξ (see the next section
for the precise definition).

To obtain the above result, we use techniques inspired by the quantitative
analysis of untyped λ-terms [2–4]. For example, David et al. [2] have shown
that almost all untyped λ-terms are strongly normalizing, whereas the result is
opposite in the corresponding combinatory logic. A more sophisticated analysis
is, however, required in our case, for considering only well-typed terms, and also
for reasoning about the length of a reduction sequence instead of a qualitative
property like strong normalization.

This work is a part of our long-term project on the quantitative analysis
of the complexity of higher-order model checking [5,6]. The higher-order model
checking asks whether the (possibly infinite) tree generated by a ground-type
term of the λY-calculus (or, a higher-order recursion scheme) satisfies a given
regular property, and it is known that the problem is k-EXPTIME complete for
order-k terms [6]. Despite the huge worst-case complexity, practical model check-
ers [7–9] have been built, which run fast for many typical inputs, and have suc-
cessfully been applied to automated verification of functional programs [10–13].
The project aims to provide a theoretical justification for it, by studying how
many inputs actually suffer from the worst-case complexity. Since the problem
appears to be hard due to recursion, as an intermediate step towards the goal,
we aimed to analyze the variant of the problem considered by Terui [14]: given
a term of the simply-typed λ-calculus (without recursion) of type Bool, decide
whether it evaluates to true or false (where Booleans are Church-encoded; see
[14] for the precise definition). Terui has shown that even for the problem, the
complexity is k-EXPTIME complete for order-(2k + 2) terms. If, contrary to
the result of the present paper, the upper-bound of the lengths of β-reduction
sequences were small for almost every term, then we could have concluded that
the decision problem above is easily solvable for most of the inputs. The result
in the present paper does not necessarily provide a negative answer to the ques-
tion above, because one need not necessarily apply β-reductions to solve Terui’s
decision problem.

The present work may also shed some light on other problems on typed
λ-calculi with exponential or higher worst-case complexity. For example, despite
DEXPTIME-completeness of ML typability [15,16], it is often said that the

Almost Every Simply Typed λ-Term 55

exponential behavior is rarely seen in practice. That is, however, based on only
empirical studies. Our technique may be used to provide a theoretical justifica-
tion (or possibly unjustification).

The rest of this paper is organized as follows. Section 2 states our main result
formally. Section 3 analyzes the asymptotic behavior of the number of typed λ-
terms of a given size. Section 4 proves the main result. Section 5 discusses related
work, and Sect. 6 concludes the paper. For the space restriction, we omit formal
proofs and give only sketches instead; see the full version [17] for details.

2 Main Result

In this section we give the precise statement of our main theorem. We denote
the cardinality of a set S by #(S), and the domain and image of a function f
by Dom(f) and Im (f), respectively.

The set of (simple) types, ranged over by τ and σ, is given by: τ :: = o | σ → τ .
Let V be a countably infinite set, which is ranged over by x, x1, x2, etc. The set
of λ-terms (or terms), ranged over by t, is defined by:

t:: = x | λxτ.t | t t x:: = x | ∗

We call elements of V ∪ {∗} variables; V ∪ {∗} is ranged over by x, x1, x2, etc.
We call the special variable ∗ an unused variable. We sometimes omit type anno-
tations and just write λx.t for λxτ.t.

Terms of our syntax can be translated to usual λ-terms by regarding elements
in V ∪{∗} as usual variables. We define the notions of free variables, closed terms,
and α-equivalence ∼α through this identification. The α-equivalence class of a
term t is written as [t]α. In this paper, we do not consider a term as an α-
equivalence class, and we always use [−]α explicitly. For a term t, we write
FV(t) for the set of all the free variables of t.

For a term t, we define the set V(t) of variables (except ∗) in t by:

V(x) � {x} V(λxτ.t) � {x} ∪ V(t) V(λ∗τ.t) � V(t) V(t1t2) � V(t1) ∪ V(t2).

Note that neither V(t) nor even #(V(t)) is preserved by α-equivalence. For
example, t = λx1.(λx2.x2)(λx3.x1) and t′ = λx1.(λx1.x1)(λ∗.x1) are α-
equivalent, but #(V(t)) = 3 and #(V(t′)) = 1.

A type environment Γ is a finite set of type bindings of the form x : τ such
that if (x : τ), (x : τ ′) ∈ Γ then τ = τ ′; sometimes we regard an environment
also as a function. Note that (∗ : τ) cannot belong to a type environment; we
do not need any type assumption for ∗ since it does not occur in terms. We give
the typing rules as follows:

x : τ � x : τ

Γ1 � t1 : σ→τ Γ2 � t2 : σ

Γ1 ∪ Γ2 � t1t2 : τ

Γ ′ � t : τ Γ ′ = Γ or Γ ′ = Γ ∪ {x : σ} x /∈ Dom(Γ)
Γ � λxσ.t : σ→τ

56 R. Sin’ya et al.

The above typing rules are equivalent to the usual ones for closed terms, and if
Γ � t : τ is derivable, then the derivation is unique. Moreover, if Γ � t : τ then
Dom(Γ) = FV(t). Below we consider only well-typed λ-terms. A pair 〈Γ ; τ〉 of Γ
and τ is called a typing. We use θ as a metavariable for typings. When Γ � t : τ
is derived, we call 〈Γ ; τ〉 a typing of a term t, and call t an inhabitant of 〈Γ ; τ〉
or a 〈Γ ; τ〉-term.

Definition 1 (size, order and internal arity of a term). The size of a term
t, written |t|, is defined by:

|x| � 1 |λxτ.t| � |t| + 1 |t1t2| � |t1| + |t2| + 1.

The order and internal arity of a type τ , written ord(τ) and iar(τ), are defined
respectively by:

ord(o) � 0 iar(o) � 0

ord(τ1 → · · · → τn → o) � max{ord(τi) + 1 | 1 ≤ i ≤ n} (n ≥ 1)

iar(τ1 → · · · → τn → o) � max({n} ∪ {iar(τi) | 1 ≤ i ≤ n}) (n ≥ 1).

For a 〈Γ ; τ〉-term t, we define the order and internal arity of Γ � t : τ written
ord(Γ � t : τ) and iar(Γ � t : τ) by:

ord(Γ � t : τ) � max{ord(τ ′) | (Γ ′ � t′ : τ ′) occurs in Δ}
iar(Γ � t : τ) � max{iar(τ ′) | (Γ ′ � t′ : τ ′) occurs in Δ}

where Δ is the (unique) derivation tree for Γ � t : τ .

Note that the notions of size, order, internal arity, and β(t) (defined in the
introduction) are well-defined with respect to α-equivalence.

Definition 2 (terms with bounds on types and variables). Let δ, ι, ξ ≥ 0
and n ≥ 1 be integers. We denote by Types(δ, ι) the set of types {τ | ord(τ) ≤
δ, iar(τ) ≤ ι}. For Γ and τ we define:

Λα
n(〈Γ ; τ〉, δ, ι, ξ) � {[t]α | Γ � t : τ, |t| = n, min

t′∈[t]α
#(V(t′)) ≤ ξ,

ord(Γ � t : τ) ≤ δ, iar(Γ � t : τ) ≤ ι}
Λα(〈Γ ; τ〉, δ, ι, ξ) �

⋃

n≥1

Λα
n(〈Γ ; τ〉, δ, ι, ξ).

Also we define:

Λα
n(δ, ι, ξ) �

⋃

τ∈Types(δ,ι)

Λα
n(〈∅; τ〉, δ, ι, ξ) Λα(δ, ι, ξ) �

⋃

n≥1

Λα
n(δ, ι, ξ).

Our main result is the following theorem, which will be proved in Sect. 4.

Theorem 1. Let δ, ι, ξ ≥ 2 be integers and let k = min{δ, ι}. Then,

lim
n→∞

#
(
{[t]α ∈ Λα

n(δ, ι, ξ) | β(t) ≥ expk−2(n)}
)

#(Λα
n(δ, ι, ξ))

= 1.

Almost Every Simply Typed λ-Term 57

Remark 1. Note that in the above theorem, the order δ, the internal arity ι
and the number ξ of variables are bounded above by a constant, independently
of the term size n. It is debatable whether the assumption is reasonable, and a
slight change of the assumption may change the result, as is the case for strong
normalization of untyped λ-term [2,4]. When λ-terms are viewed as models of
functional programs, our rationale behind the assumption is as follows. The
assumption that the size of types (hence also the order and the internal arity) is
fixed is sometimes assumed in the context of type-based program analysis [18].
The assumption on the number of variables comes from the observation that a
large program usually consists of a large number of small functions, and that
the number of variables is bounded by the size of each function.

3 Analysis of Λα
n(δ, ι, ξ)

To prove our main theorem, we first analyze some formal language theoretic
structure and properties of Λα(δ, ι, ξ): in Sect. 3.1, we construct a regular tree
grammar such that there is a size preserving bijection between its tree language
and Λα(δ, ι, ξ); in Sect. 3.2, we show that the grammar has two important prop-
erties: irreducibility and aperiodicity. Thanks to those properties, we can obtain
a simple asymptotic formula for #(Λα

n(δ, ι, ξ)) using analytic combinatorics [19].
The irreducibility and aperiodicity properties will also be used in Sect. 4 for
adjusting the size and typing of a λ-term.

3.1 Λα(δ, ι, ξ) as a Regular Tree Language

We first recall some basic definitions for regular tree grammars. A ranked alphabet
Σ is a mapping from a finite set of symbols to the set of natural numbers. For
a symbol a ∈ Dom(Σ), we call Σ(a) the rank of a. A Σ-tree is a tree composed
from symbols in Σ according to their ranks: (i) a is a Σ-tree if Σ(a) = 0,
(ii) a(T1, · · · , TΣ(a)) is a Σ-tree if Σ(a) ≥ 1 and Ti is a Σ-tree for each i ∈
{1, . . . , Σ(a)}. We use the meta-variable T for trees. The size of T , written as
|T |, is the number of nodes and leaves of T . We denote the set of all Σ-trees
by TΣ .

A regular tree grammar is a triple G = (Σ,N ,R) where (i) Σ is a ranked
alphabet; (ii) N is a finite set of non-terminals; (iii) R is a finite set of rewriting
rules of the form N −→ a(N1, · · · , NΣ(a)) where a ∈ Dom(Σ), N ∈ N and
Ni ∈ N for every i ∈ {1, . . . , Σ(a)}. A (Σ ∪ N)-tree T is a tree composed from
symbols in Σ ∪ N according to their ranks where the rank of every symbol in
N is zero (thus non-terminals appear only in leaves of T). For a tree grammar
G = (Σ,N ,R) and a non-terminal N ∈ N , the language L (G, N) of N is
defined by L (G, N) � {T ∈ TΣ | N −→∗

G T} where −→∗
G denotes the reflexive

and transitive closure of the rewriting relation −→G . We also define Ln (G, N) �
{T ∈ TΣ | N −→∗ T, |T | = n}. We often omit G and write N −→∗ N ′, L (N), and
Ln (N) for N −→∗

G N ′, L (G, N), and Ln (G, N) respectively, if G is clear from
the context. We say that N ′ is reachable from N if there exists a (Σ ∪N)-tree T

58 R. Sin’ya et al.

such that N −→∗ T and T contains N ′ as a leaf. A grammar G is unambiguous
if, for every pair of a non-terminal N and a tree T , there exists at most one
leftmost reduction sequence from N to T .

Definition 3 (grammar of Λα(δ, ι, ξ)). Let δ, ι, ξ ≥ 0 be integers and Xξ =
{x1, · · · , xξ} be a subset of V . The regular tree grammar G(δ, ι, ξ) is defined as
(Σ(δ, ι, ξ),N (δ, ι, ξ),R(δ, ι, ξ)) where:

Σ(δ, ι, ξ) � {x → 0 | x ∈ Xξ} ∪ {@ → 2}
∪ {λxτ → 1 | x ∈ {∗} ∪ Xξ, τ ∈ Types(δ − 1, ι)}

N (δ, ι, ξ) � {N〈Γ ;τ〉 | τ ∈ Types(δ, ι),Dom(Γ) ⊆ Xξ, Im (Γ) ⊆ Types(δ − 1, ι),
Γ � t : τ for some t }

R(δ, ι, ξ) � {N〈{xi:τ};τ〉 −→ xi} ∪ {N〈Γ ;σ→τ〉 −→ λ∗σ(N〈Γ ;τ〉)}
∪ {N〈Γ ;σ→τ〉 −→ λxσ

i (N〈Γ∪{xi:σ};τ〉) | i = min{j ≥ 1 | xj /∈ Dom(Γ)},

#(Γ) < ξ} ∪ {N〈Γ ;τ〉 −→ @(N〈Γ1;σ→τ〉, N〈Γ2;σ〉) | Γ = Γ1 ∪ Γ2}

Here, the special symbol @ ∈ Dom(Σ(δ, ι, ξ)) corresponds to application. For
a technical convenience, the above definition excludes from N (δ, ι, ξ) typings
which have no inhabitant. Note that Σ(δ, ι, ξ), N (δ, ι, ξ) and R(δ, ι, ξ) are finite.
To see the finiteness of N (δ, ι, ξ), notice that Xξ and Types(δ − 1, ι) are finite,
hence so is {Γ | Dom(Γ) ⊆ Xξ, Im (Γ) ⊆ Types(δ − 1, ι)}. The finiteness of
R(δ, ι, ξ) follows immediately from that of N (δ, ι, ξ).

Example 1. Let us consider the case where δ = ι = ξ = 1. The grammar G(1, 1, 1)
consists of the following.

Σ(1, 1, 1)={x1,@, λxo
1, λ∗o} N (1, 1, 1) = {N〈∅;o→o〉, N〈{x1:o};o〉N〈{x1:o};o→o〉}

R(1, 1, 1)=

⎧
⎪⎨

⎪⎩

N〈∅;o→o〉 −→ λxo
1(N〈{x1:o};o〉)

N〈{x1:o};o〉 −→ x1|@(N〈{x1:o};o→o〉, N〈{x1:o};o〉)|@(N〈∅;o→o〉, N〈{x1:o};o〉)
N〈{x1:o};o→o〉 −→ λ∗o(N〈{x1:o};o〉).

There is the obvious embedding e(δ,ι,ξ) (e for short) from trees in TΣ(δ,ι,ξ)

into λ-terms. For N〈Γ ;τ〉 ∈ N (δ, ι, ξ) we define

π
(δ,ι,ξ)
〈Γ ;τ〉 � [−]α ◦ e : L

(
N〈Γ ;τ〉

)
→ Λα(〈Γ ; τ〉, δ, ι, ξ).

We sometimes omit the superscript and/or the subscript.

Proposition 1. For δ, ι, ξ ≥ 0, π〈Γ ;τ〉 is a size-preserving bijection, and
G(δ, ι, ξ) is unambiguous.

The former part of Proposition 1 says that G(δ, ι, ξ) gives a complete repre-
sentation system of the α-equivalence classes. For [t]α ∈ Λα(〈Γ ; τ〉, δ, ι, ξ), we

define ν
(δ,ι,ξ)
〈Γ ;τ〉 ([t]α) (or ν([t]α) for short) as e(δ,ι,ξ) ◦

(
π
(δ,ι,ξ)
〈Γ ;τ〉

)−1

([t]α). The func-
tion ν normalizes variable names. For example, t = λx.x(λy.λz.z) is normalized
to ν([t]α) = λx1.x1(λ∗.λx1.x1).

Almost Every Simply Typed λ-Term 59

Due to technical reasons, we restrict the grammar G(δ, ι, ξ) to G∅(δ, ι, ξ),
which contains only non-terminals reachable from N〈∅;σ〉 for some σ (see the full
version [17] for details).

N ∅(δ, ι, ξ) � {Nθ ∈ N (δ, ι, ξ) | Nθ is reachable from some N〈∅;σ〉 ∈ N (δ, ι, ξ)}
R∅(δ, ι, ξ) � {Nθ −→ T ∈ R(δ, ι, ξ) | Nθ ∈ N ∅(δ, ι, ξ)}
G∅(δ, ι, ξ) � (Σ(δ, ι, ξ),N ∅(δ, ι, ξ),R∅(δ, ι, ξ)).

For Nθ ∈ N ∅(δ, ι, ξ), clearly L
(
G∅(δ, ι, ξ), Nθ

)
= L (G(δ, ι, ξ), Nθ). Through the

bijection π, we can show that, for any N〈Γ ;τ〉 ∈ N (δ, ι, ξ), N〈Γ ;τ〉 also belongs
to N ∅(δ, ι, ξ) if and only if there exists a term in Λα(δ, ι, ξ) whose derivation
contains a type judgment of the form Γ � t : τ .

3.2 Irreducibility and Aperiodicity

We discuss two important properties of the grammar G∅(δ, ι, ξ) where δ, ι, ξ ≥ 2:
irreducibility and aperiodicity [19].1

Definition 4 (irreducibility and aperiodicity). Let G = (Σ,N ,R) be a
regular tree grammar. We say that G is:

– non-linear if R contains at least one rule of the form N −→ a(N1, · · · , NΣ(a))
with Σ(a) ≥ 2,

– strongly connected if for any pair of non-terminals N1, N2 ∈ N , N1 is reachable
from N2,

– irreducible if G is both non-linear and strongly connected,
– aperiodic if for any non-terminal N ∈ N there exists an integer m > 0 such

that #(Ln (N)) > 0 for any n > m.

Proposition 2. G∅(δ, ι, ξ) is irreducible and aperiodic for any δ, ι, ξ ≥ 2.

The following theorem is a minor modification of Theorem VII.5 in [19],
which states the asymptotic behavior of an irreducible and aperiodic context-free
specification (see the full version [17] for details). Below, ∼ means the asymptotic
equality, i.e., f(n) ∼ g(n) ⇐⇒ limn→∞ f(n)/g(n) = 1.

Theorem 2 ([19]). Let G = (Σ,N ,R) be an unambiguous, irreducible and ape-
riodic regular tree grammar. Then there exists a constant γ(G) > 1 such that,
for any non-terminal N ∈ N , there exists a constant CN (G) > 0 such that

#(Ln (N)) ∼ CN (G)γ(G)nn−3/2.

As a corollary of Proposition 2 and Theorem 2 above, we obtain:

#(Λα
n(δ, ι, ξ)) ∼ Cγnn−3/2 (1)

where C > 0 and γ > 1 are some real constants determined by δ, ι, ξ ≥ 2. For
proving our main theorem, we use a variation of the formula (1) above, stated
as Lemma 1 later.
1 In [19], irreducibility and aperiodicity are defined for context-free specifications. Our

definition is a straightforward adaptation of the definition for regular tree grammars.

60 R. Sin’ya et al.

4 Proof of the Main Theorem

We give a proof of Theorem 1 in this section. In the rest of the paper, we denote
by log(2)(n) the 2-fold logarithm: log(2)(n) � log log n. All logarithms are base
2. The outline of the proof is as follows. We prepare a family (tn)n∈N of λ-terms
such that tn is of size Ω(log(2)(n)) and has a β-reduction sequence of length
expk(Ω(|tn|)), i.e., expk−2(Ω(n)). Then we show that almost every λ-term of
size n contains tn as a subterm. The latter is shown by adapting (a parameterized
version of) the infinite monkey theorem2 for words to simply-typed λ-terms.

To clarify the idea, let us first recall the infinite monkey theorem for words.
Let A be an alphabet, i.e., a finite non-empty set of symbols. For a word w =
a1 · · · an, we write |w| = n for the length of w. As usual, we denote by An the
set of all words of length n over A, and by A∗ the set of all finite words over A:
A∗ =

⋃
n≥0 An. For two words w,w′ ∈ A∗, we say w′ is a subword of w and write

w′ � w if w = w1w
′w2 for some words w1, w2 ∈ A∗. The infinite monkey theorem

states that, for any word w ∈ A∗, the probability that a randomly chosen word
of size n contains w as a subword tends to one if n tends to infinity.

To prove our main theorem, we need to extend the above infinite monkey
theorem to the following parameterized version3, and then further extend it
for simply-typed λ-terms instead of words. We give a proof of the following
proposition, because it will clarify the overall structure of the proof of the main
theorem.

Proposition 3. (parameterized infinite monkey theorem). Let A be an
alphabet and (wn)n be a family of words over A such that |wn| = �log(2)(n)�.
Then, we have:

lim
n→∞

#({w ∈ An | wn � w})
#(An)

= 1.

Proof. Let p(n) be 1 − #({w ∈ An | wn � w}) /#(An), i.e., the probability that
a word of size n does not contain wn. We write s(n) for �log(2)(n)� and c(n) for
�n/s(n)�. Given a word w = a1 · · · an ∈ An, let us partition it to subwords of
length s(n) as follows.

w = a1 · · · as(n)
︸ ︷︷ ︸
1-st subword

· · · a(c(n)−1)s(n)+1 · · · ac(n)s(n)
︸ ︷︷ ︸

c(n)-th subword

ac(n)s(n)+1 · · · an

Then,

p(n) ≤ “the probability that none of the i-th subword is w′′
n

=
(

#(As(n)\{wn})
#(As(n))

)c(n)

=
(

#(As(n))−1

#(As(n))

)c(n)

=
(
1 − 1

#(A)s(n)

)c(n)

.

2 It is also called as “Borges’s theorem” (cf. [19, p. 61, Note I.35]).
3 Although it is a simple extension, we are not aware of literature that explicitly

states this parameterized version.

Almost Every Simply Typed λ-Term 61

Since
(
1 − 1

#(A)s(n)

)c(n)

=
(

1 − 1

#(A)�log(2)(n)�

)n/�log(2)(n)��
tends to zero (see

the full version [17]) if n tends to infinity, we have the required result. ��

To prove an analogous result for simply-typed λ-terms, we consider below
subcontexts of a given term instead of subwords of a given word. To con-
sider “contexts up to α-equivalence”, in Sect. 4.1 we introduce the set Uν

n(δ, ι, ξ)
of “normalized” contexts (of size n and with the restriction by δ, ι and ξ),
where Uν

s(n)(δ, ι, ξ) corresponds to As(n) above, and give an upper bound of
#(Uν

n(δ, ι, ξ)). A key property used in the above proof was that any word of
length n can be partitioned to sufficiently many subwords of length log(2)(n).
Section 4.2 below shows an analogous result that any term of size n can be decom-
posed into sufficiently many subcontexts of a given size. Section 4.3 constructs a
family of contexts Explkn (called “explosive contexts”) that have very long reduc-
tion sequences; (Explkn)n corresponds to (wn)n above. Finally, Sect. 4.4 proves
the main theorem using an argument similar to (but more involved than) the
one used in the proof above.

4.1 Normalized Contexts

We first introduce some basic definitions of contexts, and then we define the
notion of a normalized context, which is a context normalized by the function ν
given in Sect. 3.1.

The set of contexts, ranged over by C, is defined by

C:: = [] | x | λxτ.C | CC

The size of C, written |C|, is defined by:

|[]| � 0 |x| � 1 |λxτ.C| � |C| + 1 |C1C2| � |C1| + |C2| + 1.

We call a context C an n-context (and define hn(C) � n) if C contains n occur-
rences of []. We use the metavariable S for 1-contexts. A 0/1-context is a term
t or a 1-context S and we use the metavariable u to denote 0/1-contexts. The
holes in C occur as leaves and we write []i for the i-th hole, which is counted in
the left-to-right order.

For C, C1, . . . , Chn(C), we write C[C1] . . . [Chn(C)] for the context obtained
by replacing []i in C with Ci for each i ≤ hn(C). For C and C ′, we write C[C ′]i
for the context obtained by replacing the i-th hole []i in C with C ′. As usual,
these substitutions may capture variables; e.g., (λx.[])[x] is λx.x. We say that
C is a subcontext of C ′ and write C � C ′ if there exist C ′′, 1 ≤ i ≤ hn(C ′′) and
C1, · · · , Chn(C) such that C ′ = C ′′[C[C1] · · · [Chn(C)]]i.

The set of context typings, ranged over by κ, is defined by: κ:: = θ1 · · · θk⇒θ
where k ∈ N and θi is a typing of the form 〈Γi; τi〉 for each 1 ≤ i ≤ k (recall that
we use θ as a metavariable for typings). A 〈Γ1; τ1〉 · · · 〈Γk; τk〉⇒〈Γ ; τ〉-context is
a k-context C such that Γ � C : τ is derivable from Γi � []i : τi. We identify a
context typing ⇒θ with the typing θ, and call a θ-context also a θ-term.

62 R. Sin’ya et al.

From now, we begin to define normalized contexts. First we consider contexts
in terms of the grammar G∅(δ, ι, ξ) given in Sect. 3.1. Let δ, ι, ξ ≥ 0. For κ =
θ1 · · · θn⇒θ such that Nθ1 , . . . , Nθn

, Nθ ∈ N (δ, ι, ξ), a (κ-)context-tree is a tree T̂

in TΣ(δ,ι,ξ)∪N (δ,ι,ξ) such that there exists a reduction Nθ −→∗ T̂ and the occur-
rences of non-terminals in T̂ (in the left-to-right order) are exactly Nθ1 , . . . , Nθn

.
We use T̂ as a metavariable for context-trees. We write L (κ, δ, ι, ξ) for the set
of all κ-context-trees. For θ1 · · · θn⇒θ-context-tree T̂ and θi

1 · · · θi
ki

⇒θi-context-
trees T̂i (i = 1, . . . , n), we define the substitution T̂ [T̂1] · · · [T̂n] as the
θ11 · · · θ1k1

· · · θn
1 · · · θn

kn
⇒θ- context-tree obtained by replacing Nθi

in T̂ with T̂i.
The set Cν(κ, δ, ι, ξ) of normalized κ-contexts is defined by:

Cν(κ, δ, ι, ξ) � e(δ,ι,ξ)κ (L (κ, δ, ι, ξ))

where e
(δ,ι,ξ)
κ is the obvious embedding from κ-context-trees to κ-contexts that

preserves the substitution (i.e., e
(δ,ι,ξ)
κ (T [T ′]) = e

(δ,ι,ξ)
κ (T)[e(δ,ι,ξ)κ (T ′)]). Further,

the sets Uν(δ, ι, ξ) and Uν
n(δ, ι, ξ) of normalized 0/1-contexts are defined by:

Uν(δ, ι, ξ) �
(⋃

Nθ∈N ∅(δ,ι,ξ)

Cν(θ, δ, ι, ξ)
) ⋃ (⋃

Nθ,Nθ′ ∈N ∅(δ,ι,ξ)

Cν(θ⇒θ′, δ, ι, ξ)
)

Uν
n(δ, ι, ξ) � {u ∈ Uν(δ, ι, ξ) | |u| = n}.

In our proof of the main theorem, the set Uν
s(n)(δ, ι, ξ) plays a role corre-

sponding to As(n) in the word case explained above. Note that in the word case
we calculated the limit of some upper bound of p(n); similarly, in our proof, we
only need an upper bound of #(Uν

n(δ, ι, ξ)), which is given as follows.

Lemma 1. (upper bound of #(Uν
n(δ, ι, ξ))). For any δ, ι, ξ ≥ 2, there exists

some constant γ(δ, ι, ξ) > 1 such that #(Uν
n(δ, ι, ξ)) = O(γ(δ, ι, ξ)n).

Proof Sketch. Given an unambiguous, irreducible and aperiodic regular tree
grammar, adding a new terminal of the form aN and a new rule of the form
N −→ aN for each non-terminal N does not change the unambiguity, irreducibil-
ity and aperiodicity. Let G∅

(δ, ι, ξ) be the grammar obtained by applying this
transformation to G∅(δ, ι, ξ). We can regard a tree of G∅

(δ, ι, ξ) as a normalized
context, with aNθ

considered a hole with typing θ. Then, clearly we have

#(Uν
n(δ, ι, ξ)) ≤ #

(
∪N∈N ∅(δ,ι,ξ)Ln

(
G∅

(δ, ι, ξ), N
))

.

Thus the required result follows from Theorem 2. ��

4.2 Decomposition

As explained in the beginning of this section, to prove the parameterized infi-
nite monkey theorem for terms, we need to decompose a λ-term into suf-
ficiently many subcontexts of the term. Thus, in this subsection, we will

Almost Every Simply Typed λ-Term 63

define a decomposition function Φ̂m (where m is a parameter) that decom-
poses a term t into (i) a (sufficiently long) sequence P of 0/1-subcontexts of t
such that every component u of P satisfies |u| ≥ m, and (ii) a “second-order”
context E (defined later), which is a remainder of extracting P from t. Figure 1
illustrates how a term is decomposed by Φ̂3. Here, the symbols [[]] in the second-
order context on the right-hand side represents the original position of each
subcontext (λy.[])x, λz.λ∗.z, and (λ∗.y)λz.z.

x

@

@

@

z
zy

@

+

Second-order context

Sequence of 0/1-subcontexts

λz

λ∗

λx

λy

λ∗

λ∗ λz

λx

λ∗

(λy.[])x · λz.λ∗.z · (λ∗.y)λz.z

Φ3

Fig. 1. Example of a decomposition

In order to define Φ̂m, let us give a precise definition of second-order contexts.
The set of second-order contexts, ranged over by E, is defined by:

E:: =[[]]θ1···θk⇒θ
n [E1] · · · [Ek] (n ∈ N) | x | λxτ.E | E1E2.

Intuitively, the second-order context is an expression having holes of the form[[]]κn
(called second-order holes). In the second-order context [[]]θ1···θk⇒θ

n [E1] · · · [Ek],
[[]]θ1···θk⇒θ

n should be filled with a θ1 · · · θk⇒θ-context of size n, yielding a term
whose typing is θ. We use the metavariable P for sequences of contexts. For a
sequence of contexts P = C1 · C2 · · · C and i ≤ �, we write #(P) for the length
�, and P �i for the i-th component Ci.

We define |[[]]κn| � n. We write shn(E) for the number of the second-
order holes in E. For i ≤ shn(E), we write E�i for the i-th second-order
hole (counted in the depth-first left-to-right pre-order). For a context C and
a second-order hole [[]]κn, we write C : [[]]κn if C is a κ-context of size n. For E and
P = C1 · C2 · · · · Cshn(E), we write P : E if Ci : E�i for each i ≤ shn(E). We dis-
tinguish between second-order contexts with different annotations; for example,
[[]]〈{x:o};o〉⇒〈{x:o};o〉

0 [x], [[]]〈{x:o};o〉⇒〈{x:o};o〉
2 [x] and [[]]〈{x:o→o};o→o〉⇒〈{x:o→o};o→o〉

2 [x]
are different from each other. Note that every term can be regarded as a second-
order context E such that shn(E) = 0.

64 R. Sin’ya et al.

The bracket [−] in a second-order context is just a syntactical representation
rather than the substitution operation of contexts. Given E and C such that
shn(E) ≥ 1 and C : E�1, we write E[[C]] for the second-order context obtained by
replacing the leftmost second-order hole of E (i.e., E�1) with C (and by interpret-
ing the syntactical bracket [−] as the substitution operation). For example, we
have: ((λx.[[]][x][x])[[]])[[λy.y[][]]] = (λx.(λy.y[][])[x][x])[[]] = (λx.λy.yxx)[[]]. Below
we actually consider only second-order contexts whose second-order holes are of
the form [[]]θn or [[]]θ

′⇒θ
n .

We are now ready to define the decomposition function Φ̂m. We first prepare
an auxiliary function Φm(t) = (E, u, P) such that (i) u is an auxiliary 0/1-
subcontext, (ii) E[[u · P]] = t, and (iii) the size of each context in P is between m
and 2m − 1. It is defined by induction on the size of t as follows:
If |t| < m, then Φm(t) � ([[]], t, ε).
If |t| ≥ m, then:

Φm(λxτ.t1) �
{

(E1, λxτ.u1, P1) if |λxτ.u1| < m

([[]][E1], [], (λxτ.u1) · P1) if |λxτ.u1| = m

where (E1, u1, P1) = Φm(t1).

Φm(t1t2) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

([[]][(E1[[u1]])(E2[[u2]])], [], P1 · P2) if |ti| ≥ m (i = 1, 2)
(E1, u1t2, P1) if |t1| ≥ m, |t2| < m, |u1t2| < m

([[]][E1], [], (u1t2) · P1) if |t1| ≥ m, |t2| < m, |u1t2| ≥ m

(E2, t1u2, P2) if |t1| < m, |t1u2| < m

([[]][E2], [], (t1u2) · P2) if |t1| < m, |t1u2| ≥ m

where (Ei, ui, Pi) = Φm(ti) (i = 1, 2).

Above, we have omitted the context-typing/size annotations of second-order
holes for simplicity (see the full version [17] for details). The decomposition
function Φ̂m is then defined by Φ̂m(t) � (E[[u]], P) where (E, u, P) = Φm(t).

In the rest of this subsection, we show key properties of Φ̂m. We say that a
0/1-context u is good for m if u is either (i) a λ-abstraction where |u| = m; or
(ii) an application u1u2 where |uj | < m for each j = 1, 2. By the definition of
Φ̂m(t) = (E,P), every component u of P is good for m.

For m ≥ 2, E and 1 ≤ i ≤ shn(E), we define Ûm
E�i(δ, ι, ξ), Λm

E (δ, ι, ξ), and
Bm

n (δ, ι, ξ) by:

Ûm
E�i(δ, ι, ξ) � {u ∈ Uν(δ, ι, ξ) | u : E�i and u is good for m}
Λm

E (δ, ι, ξ) � {[E[[u1 · · · ushn(E)]]]α | ui ∈ Ûm
E�i(δ, ι, ξ) for 1 ≤ i ≤ shn(E)}

Bm
n (δ, ι, ξ) � {E | (E,P) = Φ̂m(ν([t]α)) for some [t]α ∈ Λα

n(δ, ι, ξ)}.

Intuitively, Ûm
E�i(δ, ι, ξ) is the set of good contexts that can fill E.i, Λm

E (δ, ι, ξ)
is the set of terms obtained by filling the second-order holes of E with good
contexts, and Bm

n (δ, ι, ξ) is the set of second-order contexts that can be obtained

Almost Every Simply Typed λ-Term 65

by decomposing a term of size n. The following lemma states the key properties
of Φ̂m.

Lemma 2. (decomposition). Let δ, ι, ξ ≥ 0 and 2 ≤ m ≤ n.

1. Λα
n(δ, ι, ξ) is the disjoint union of Λm

E (δ, ι, ξ)’s, i.e., Λα
n(δ, ι, ξ) =

⊎
E∈Bm

n (δ,ι,ξ) Λm
E (δ, ι, ξ). Moreover, Φ̂m(E[[P]]) = (E,P) holds for any P ∈

∏
1≤i≤shn(E) Ûm

E�i(δ, ι, ξ).
2. m ≤ |E�i| < 2m (1 ≤ i ≤ shn(E)) for every E ∈ Bm

n (δ, ι, ξ).
3. shn(E) ≥ n/4m for every E ∈ Bm

n (δ, ι, ξ).

The second and third properties say that Φ̂m decomposes each term into suffi-
ciently many contexts of appropriate size.

4.3 Explosive Context

Here, we show that each Ûm
E�i(δ, ι, ξ) contains at least one context that has a

very long reduction sequence. To this end, we first prepare a special context
Explmk that has a long reduction sequence, and shows that at least one element
of Ûm

E�i(δ, ι, ξ) contains Explmk as a subcontext.
We define a “duplicating term” Dup � λxo.(λxo.λ∗o.x)xx, and Id � λxo.x.

For two terms t, t′ and integer n ≥ 1, we define the “ n-fold application” opera-
tion ↑n as t ↑0 t′ � t′ and t ↑n t′ � t(t ↑n−1 t′). For an integer k ≥ 2, we define an
order-k term

2k � λfτ(k)→τ(k).λxτ(k).f(fx)

where τ(i) is defined by τ(2) � o and τ(i + 1) � τ(i)→τ(i).

Definition 5. (explosive context). Let m ≥ 1 and k ≥ 2 be integers and let

t � ν
(
λxo.

(
(2k ↑m 2k−1)2k−2 · · · 22 Dup(Id x†)

))

where x† is just variable x but we put † to refer to the occurrence. We define
the explosive context Explkm (of m-fold and order k) as the 1-context obtained
by replacing the “normalized” variable x1

† in t with [].

We state key properties of Explkm below. The proof of Item 3 is the same as
that in [1]. The other items follow by straightforward calculation.

Lemma 3 (explosive).

1. ∅ � Explkm[x1] : o→o is derivable.
2. |Explkm| = 8m + 8k − 3.
3. ord(Explkm[x1]) = k, iar(Explkm[x1]) = k and #(V(Explkm)) = 2.
4. Explkm ∈ Uν(δ, ι, ξ) if δ, ι ≥ k and ξ ≥ 2.
5. If a term t satisfies Explkm � t, then β(t) ≥ expk(m) holds.

We show that at least one element of Ûm
E�i(δ, ι, ξ) contains Explkm′ as a sub-

context.

66 R. Sin’ya et al.

Lemma 4 Let δ, ι, ξ ≥ 2 be integers and k = min{δ, ι}. There exist inte-
gers b, c ≥ 2 such that, for any n ≥ 1, m′ ≥ b, E ∈ Bcm′

n (δ, ι, ξ) and
i ∈ {1, . . . , shn(E)}, Û cm′

E�i (δ, ι, ξ) contains u′ such that Explkm′ � u′.

Proof Sketch. We pick u′′ ∈ Û cm′
E�i (δ, ι, ξ) and construct u′ by replacing some

subcontext u0 of u′′ with a 0/1-context of the form S◦[Explkm′ [u◦]]. Here S◦ and
u◦ adjust the context typing and size of Explkm′ and these can be obtained by
using Proposition 2. The subcontext u0 is chosen so that the goodness of u′′ is
preserved by this replacement. ��

4.4 Proof Sketch of Theorem1

We are now ready to prove the main theorem; see the full version [17] for details.
For readability, we omit the parameters (δ, ι, ξ), and write Λα

n,Uν
n , Λm

E , Ûm
E�i and

Bm
n for Λα

n(δ, ι, ξ),Uν
n(δ, ι, ξ), Λm

E (δ, ι, ξ), Ûm
E�i(δ, ι, ξ) and Bm

n (δ, ι, ξ) respectively.
Let p(n) be the probability that a randomly chosen normalized term t in

Λα
n does not contain Explk�log(2)(n)� as a subcontext. By Item 3 of Lemma 3, it

suffices to show limn→∞ p(n) = 0. Let b and c be the constants in Lemma 4 and
let n ≥ 22

b
, m′ = �log(2)(n)� and m = cm′. Then m′ ≥ log(2)(n) ≥ b.

By Lemma 2, Λα
n can be represented as the disjoint union �E∈Bm

n
Λm

E . Let Λ
m

E

be the subset of Λm
E that does not contain Explkm′ as a subcontext. By Lemma 4,

each of Ûm
E�i contains at least one element that has Explkm′ as a subcontext.

Furthermore, since m ≤ |E�i| < 2m, we have #
(
Ûm

E�i
)

≤ #
(
Uν
2m+d

)
for some

constant d (see the full version [17]). Thus, we have

#
(
Λ

m

E

)

#(Λm
E)

≤
∏

1≤i≤shn(E)

⎛

⎝1 − 1

#
(
Ûm

E�i
)

⎞

⎠ ≤
(

1 − 1
#

(
Uν
2m+d

)

)shn(E)

≤
(

1 − 1
#

(
Uν
2m+d

)

) n
4m

(∵ Item 3 of Lemma 2).

Let q(n) be the rightmost expression. Then we have

p(n) =

∑
E∈Bm

n
#

(
Λ

m

E

)

∑
E∈Bm

n
#(Λm

E)
≤

∑
E∈Bm

n
(q(n)#(Λm

E))
∑

E∈Bm
n

#(Λm
E)

=
q(n)

∑
E∈Bm

n
#(Λm

E)
∑

E∈Bm
n

#(Λm
E)

= q(n) ≤
(

1 − 1
c′γ(δ, ι, ξ)2m

) n
4m

(∵ Lemma 1)

for sufficiently large n. Finally, we can conclude that

p(n) ≤
(

1 − 1
c′γ(δ, ι, ξ)2c�log(2)(n)�

) n
4c�log(2)(n)� −→ 0 (as n −→ ∞)

(see the full version [17] for the last convergence) as required. ��

Almost Every Simply Typed λ-Term 67

5 Related Work

As mentioned in Sect. 1, there are several pieces of work on probabilistic prop-
erties of untyped λ-terms [2–4]. David et al. [2] have shown that almost all
untyped λ-terms are strongly normalizing, whereas the result is opposite for
terms expressed in SK combinators.

Their former result implies that untyped λ-terms do not satisfy the infinite
monkey theorem, i.e., for any term t, the probability that a randomly chosen
term of size n contains t as a subterm tends to zero. Bendkowski et al. [4] proved
that almost all terms in de Brujin representation are not strongly normalizing,
by regarding the size of an index i is i + 1, instead of the constant 1. The
discrepancies among those results suggest that this kind of probabilistic property
is quite fragile and depends on the definition of the syntax and the size of terms.
Thus, the setting of our paper, especially the assumption on the boundedness of
internal arities and the number of variables is a matter of debate, and it would
be interesting to study how the result changes for different assumptions.

We are not aware of similar studies on typed λ-terms. In fact, in their paper
about combinatorial aspects of λ-terms, Grygiel and Lescanne [3] pointed out
that the combinatorial study of typed λ-terms is difficult, due to the lack of (sim-
ple) recursive definition of typed terms. In the present paper, we have avoided
the difficulty by making the assumption on the boundedness of internal arities
and the number of variables (which is, as mentioned above, subject to a debate
though).

In a larger context, our work may be viewed as an instance of the studies of
average-case complexity ([20], Chap. 10), which discusses “typical-case feasibil-
ity”. We are not aware of much work on the average-case complexity of problems
with hyper-exponential complexity.

6 Conclusion

We have shown that almost every simply-typed λ-term of order k has a β-
reduction sequence as long as (k − 2)-fold exponential in the term size, under
a certain assumption. To our knowledge, this is the first result of this kind for
typed λ-terms. A lot of questions are left for future work, such as (i) whether
our assumption (on the boundness of arities and the number of variables) is
reasonable, and how the result changes for different assumptions, (ii) whether our
result is optimal (e.g., whether almost every term has a k-fold exponentially long
reduction sequence), and (iii) whether similar results hold for Terui’s decision
problems [14] and/or the higher-order model checking problem [6].

Acknowledgment. We would like to thank anonymous referees for useful comments.
This work was supported by JSPS KAKENHI Grant Number JP15H05706.

68 R. Sin’ya et al.

References

1. Beckmann, A.: Exact bounds for lengths of reductions in typed lambda-calculus.
J. Symb. Logic 66(3), 1277–1285 (2001)

2. David, R., Grygiel, K., Kozic, J., Raffalli, C., Theyssier, G., Zaionc, M.: Asymp-
totically almost all λ-terms are strongly normalizing. Logical Method Comput. Sci.
9(2) (2013)

3. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Pro-
gram. 23(05), 594–628 (2013)

4. Bendkowski, M., Grygiel, K., Lescanne, P., Zaionc, M.: A natural counting of
lambda terms. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 183–194. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 15

5. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
In: Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002). doi:10.1007/3-540-45931-6 15

6. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006, pp. 81–90. IEEE Computer Society Press (2006)

7. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009, pp. 25–36. ACM Press (2009)

8. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: Proceedings of CSL 2013, vol. 23, pp. 129–148. LIPIcs (2013)

9. Ramsay, S., Neatherway, R., Ong, C.H.L.: An abstraction refinement approach to
higher-order model checking. In: Proceedings of POpPL 2014 (2014)

10. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. ACM SIGPLAN Not. 44, 416–428 (2009). ACM Press

11. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. ACM SIGPLAN Not. 46, 222–233 (2011). ACM Press

12. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. ACM SIGPLAN Not. 46, 587–598 (2011). ACM Press

13. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: Proceedings of PEpPM 2013, pp. 53–62. ACM Press
(2013)

14. Terui, K.: Semantic evaluation, intersection types and complexity of simply typed
lambda calculus. In: 23rd International Conference on Rewriting Techniques and
Applications (RTA 2012), vol. 15, pp. 323–338. LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2012)

15. Mairson, H.G.: Deciding ML typability is complete for deterministic exponential
time. In: POPL, pp. 382–401. ACM Press (1990)

16. Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: ML typability is dexptime-complete. In:
Arnold, A. (ed.) CAAP 1990. LNCS, vol. 431, pp. 206–220. Springer, Heidelberg
(1990). doi:10.1007/3-540-52590-4 50

17. Sin’ya, R., Asada, K., Kobayashi, N., Tsukada, T.: Almost every simply typed λ-
term has a long β-reduction sequence (full version). http://www-kb.is.s.u-tokyo.
ac.jp/ryoma/papers/fossacs17full.pdf

18. Heintze, N., McAllester, D.: Linear-time subtransitive control flow analysis. ACM
SIGPLAN Not. 32, 261–272 (1997)

19. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 1st edn. Cambridge University
Press, New York (2009)

20. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge
University Press, Cambridge (2008)

http://dx.doi.org/10.1007/978-3-662-49192-8_15
http://dx.doi.org/10.1007/978-3-662-49192-8_15
http://dx.doi.org/10.1007/3-540-45931-6_15
http://dx.doi.org/10.1007/3-540-52590-4_50
http://www-kb.is.s.u-tokyo.ac.jp/ryoma/papers/fossacs17full.pdf
http://www-kb.is.s.u-tokyo.ac.jp/ryoma/papers/fossacs17full.pdf

Algebra and Coalgebra

Algebra, Coalgebra, and Minimization
in Polynomial Differential Equations

Michele Boreale(B)

Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) “G. Parenti”,
Università di Firenze, Viale Morgagni 65, 50134 Firenze, Italy

michele.boreale@unifi.it

Abstract. We consider reasoning and minimization in systems of poly-
nomial ordinary differential equations (odes). The ring of multivariate
polynomials is employed as a syntax for denoting system behaviours.
We endow polynomials with a transition system structure based on
the concept of Lie derivative, thus inducing a notion of L-bisimulation.
Two states (variables) are proven L-bisimilar if and only if they corre-
spond to the same solution in the odes system. We then characterize
L-bisimilarity algebraically, in terms of certain ideals in the polynomial
ring that are invariant under Lie-derivation. This characterization allows
us to develop a complete algorithm, based on building an ascending chain
of ideals, for computing the largest L-bisimulation containing all valid
identities that are instances of a user-specified template. A specific largest
L-bisimulation can be used to build a reduced system of odes, equivalent
to the original one, but minimal among all those obtainable by linear
aggregation of the original equations.

Keywords: Ordinary Differential Equations · Bisimulation ·
Minimization · Gröbner bases

1 Introduction

The past few years have witnessed a surge of interest in computational mod-
els based on ordinary differential equations (odes), ranging from continuous-
time Markov chains (e.g. [3]), to process description languages oriented to
bio-chemical systems (e.g. [4,10,32]), to deterministic approximations of sto-
chastic systems (e.g. [15,31]), and to hybrid systems (e.g. [22,27,29]).

From a computational point of view, our motivations to study odes arises
from the following problems.

1. Reasoning : provide methods to automatically prove and discover identities
involving the system variables.

2. Reduction: provide methods to automatically reduce, and possibly minimize,
the number of variables and equations of a system, in such a way that the
reduced system retains all the relevant information of the original one.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 71–87, 2017.
DOI: 10.1007/978-3-662-54458-7 5

72 M. Boreale

Reasoning may help an expert (a chemist, a biologist, an engineer) to prove or
to disprove certain system properties, even before actually solving, simulating
or realizing the system. Often, the identities of interest take the form of con-
servation laws. For instance, chemical reactions often enjoy a mass conservation
law, stating that the sum of the concentrations of two or more chemical species,
is a constant. More generally, one would like tools to automatically discover all
laws of a given form. Pragmatically, before actually solving or simulating a given
system, it can be critical being able to reduce the system to a size that can be
handled by a solver or a simulator.

Our goal is showing that these issues can be dealt with by a mix of algebraic
and coalgebraic techniques. We will consider initial value problems, specified by
a system of odes of the form ẋi = fi(x1, ..., xN), for i = 1, ..., N , plus initial
conditions. The functions fis are called drifts; here we will focus on the case
where the drifts are multivariate polynomials in the variables x1, .., xN . Practi-
cally, the majority of functions found in applications is in, or can be encoded
into this format (possibly under restrictions on the initial conditions), including
exponential, trigonometric, logarithmic and rational functions.

A more detailed account of our work follows. We introduce the ring of mul-
tivariate polynomials as a syntax for denoting the behaviours induced by the
given initial value problem (Sect. 2). In other words, a behaviour is any polyno-
mial combination of the individual components xi(t) (i = 1, .., N) of the (unique)
system solution. We then endow the polynomial ring with a transition system,
based on a purely syntactic notion of Lie derivative (Sect. 3). This structure
naturally induces a notion of bisimulation over polynomials, L-bisimilarity, that
is in agreement with the underlying ode’ s. In particular, any two variables xi

and xj are L-bisimilar if and only the corresponding solutions are the same,
xi(t) = xj(t) (this generalizes to polynomial behaviours as expected). This way,
one can prove identities between two behaviours, for instance conservation laws,
by exhibiting bisimulations containing the given pair (in [8] we show how to
enhance the resulting proof technique by introducing a polynomial version of the
up to technique of [26]). In order to turn this method into a fully automated proof
procedure, we first characterize L-bisimulation algebraically, in terms of certain
ideals in the polynomial ring that are invariant under Lie-derivation (Sect. 4).
This characterization leads to an algorithm that, given a user-specified template,
returns the set of all its instances that are valid identities in the system (Sect. 5).
One may use this algorithm, for instance, to discover all the conservation laws of
the system involving terms up to a given degree. The algorithm implies building
an ascending chain of ideals until stabilization, and relies on a few basic con-
cepts from Algebraic Geometry, notably Gröbner bases [16]. The output of the
algorithm is in turn essential to build a reduced system of odes, equivalent to
the original one, but featuring a minimal number of equations and variables, in
the class of systems that can be obtained by linear aggregation from the origi-
nal one (Sect. 6). We then illustrate the results of some simple experiments we
have conducted using a prototype implementation (in Python) of our algorithms
(Sect. 7). Our approach is mostly related to some recent work on equivalences for

Algebra, Coalgebra, and Minimization in Polynomial Differential Equations 73

odes by Cardelli et al. [11] and to work in the area of hybrid systems. We discuss
this and other related work, as well as some possible directions for future work,
in the concluding section (Sect. 8). Due to space limitations, most proofs and
examples are omitted from the present version; they can be found in a technical
report available online [8].

2 Preliminaries

Let us fix an integer N ≥ 1 and a set of N distinct variables x1, ..., xN . We
will denote by x the column1 vector (x1, ..., xN)T . We let R[x] denote the set of
multivariate polynomials in the variables x1, ..., xN with coefficients in R, and
let p, q range over it. Here we regard polynomials as syntactic objects. Given an
integer d ≥ 0, by Rd[x] we denote the set of polynomials of degree ≤ d. As an
example, p = 2xy2 + (1/5)wz + yz + 1 is a polynomial of degree deg(p) = 3,
that is p ∈ R3[x, y, z, w], with monomials xy2, wz, yz and 1. Depending on the
context, with a slight abuse of notation it may be convenient to let a polynomial
denote the induced function R

N → R, defined as expected. In particular, xi can
be seen as denoting the projection on the i-th coordinate.

A (polynomial) vector field is a vector of N polynomials, F = (f1, ..., fN)T ,
seen as a function F : R

N → R
N . A vector field F and an initial condition

x0 ∈ R
N together define an initial value problem Φ = (F,x0), often written in

the following form

Φ :
{

ẋ(t) = F (x(t))
x(0) = x0.

(1)

The functions fi in F are called drifts in this context. A solution to this problem
is a differentiable function x(t) : D → R

N , for some nonempty open interval D ⊆
R containing 0, which fulfills the above two equations, that is: d

dtx(t) = F (x(t))
for each t ∈ D and x(0) = x0. By the Picard-Lindelöf theorem [2], there exists
a nonempty open interval D containing 0, over which there is a unique solution,
say x(t) = (x1(t), ..., xN (t))T , to the problem. In our case, as F is infinitely
often differentiable, the solution is seen to be analytic in D: each xi(t) admits a
Taylor series expansion in a neighborhood of 0. For definiteness, we will take the
domain of definition D of x(t) to be the largest symmetric open interval where
the Taylor expansion from 0 of each of the xi(t) converges (possibly D = R). The
resulting vector function of t, x(t), is called the time trajectory of the system.

Given a differentiable function g : E → R, for some open set E ⊆ R
N , the

Lie derivative of g along F is the function E → R defined as

LF (g)
�
= 〈∇g, F 〉 =

N∑

i=1

(
∂g

∂xi
· fi).

1 Vector means column vector, unless otherwise specified.

74 M. Boreale

The Lie derivative of the sum h+g and product h ·g functions obey the familiar
rules

LF (h + g) = LF (h) + LF (g) (2)
LF (h · g) = h · LF (g) + LF (h) · g. (3)

Note that LF (xi) = fi. Moreover if p ∈ Rd[x] then LF (p) ∈ Rd+d′ [x], for
some integer d′ ≥ 0 that depends on d and on F . This allows us to view the
Lie derivative of polynomials along a polynomial field F as a purely syntactic
mechanism, that is as a function LF : R[x] → R[x] that does not assume anything
about the solution of (1). Informally, we can view p as a program, and taking
Lie derivative of p can be interpreted as unfolding the definitions of the variables
xi’s, according to the equations in (1) and to the formal rules for product and
sum derivation, (2) and (3). We will pursue this view systematically in Sect. 3.

Example 1. Consider N = 4, x = (x, y, z, w)T and the set of polynomials R[x].
The vector field F = (xz + z, yw + z, z, w)T and the initial condition x0 =
(0, 0, 1, 1)T together define an initial value problem (with no particular physical
meaning) Φ = (F,x0). This problem can be equivalently written in the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = x(t)z(t) + z(t)
ẏ(t) = y(t)w(t) + z(t)
ż(t) = z(t)
ẇ(t) = w(t)
x(0) = x0 = (0, 0, 1, 1)T .

(4)

As an example of Lie derivative, if p = 2xy2 + wz, we have LF (p) = 4wxy2 +
2wz + 2xy2z + 4xyz + 2y2z.

The connection between time trajectories, polynomials and Lie derivatives
can be summed up as follows. For any polynomial p ∈ R[x], the function p(x(t)) :
D → R, obtained by composing p as a function with the time trajectory x(t),
is analytic: we let p(t) denote the extension of this function over the largest
symmetric open interval of convergence (possibly coinciding with R) of its Taylor
expansion from 0. We will call p(t) the polynomial behaviour induced by p and
by the initial value problem (1). The connection between Lie derivatives of p
along F and the initial value problem (1) is given by the following equations,
which can be readily checked. Here and in the sequel, we let p(x0) denote the
real number obtained by evaluating p at x0.

p(t)|t=0 = p(x0) (5)
d

dt
p(t) = (LF (p))(t). (6)

More generally, defining inductively L(0)
F (p)

�
= p and L(j+1)

F (p)
�
= LF (Lj

F (p)), we
have the following equation for the j-th derivative of p(t) (j = 0, 1, ...)

dj

dtj
p(t) = (L(j)

F (p))(t). (7)

Algebra, Coalgebra, and Minimization in Polynomial Differential Equations 75

In the sequel, we shall often abbreviate L(j)
F (p) as p(j), and shall omit the sub-

script F from LF when clear from the context.

3 Coalgebraic Semantics of Polynomial odes

In this section we show how to endow the polynomial ring with a transition
relation structure, hence giving rise to coalgebra. Bisimilarity in this coalgebra
will correspond to equality between polynomial behaviours.

We recall that a (Moore) coalgebra (see e.g. [25]) with outputs in a set O is a
triple C = (S, δ, o) where S is a set of states, δ : S → S is a transition function,
and o : S → O is an output function. A bisimulation in C is a binary relation
R ⊆ S × S such that whenever sR t then: (a) o(s) = o(t), and (b) δ(s)R δ(t).
It is an (easy) consequence of the general theory of bisimulation that a largest
bisimulation over S, called bisimilarity and denoted by ∼, exists, is the union of
all bisimulation relations, and is an equivalence relation over S.

Given an initial value problem Φ = (F,x0) of the form (1), the triple

CΦ
�
= (R[x],LF , o)

forms a coalgebra with outputs in R, where: (1) R[x] is the set of states; (2) LF

acts as the transition function; and (3) o defined as o(p)
�
= p(x0) is the output

function. Note that this definition of coalgebra is merely syntactic, and does not
presuppose anything about the solution of the given initial value problem. When
the standard definition of bisimulation over coalgebras is instantiated to CΦ, it
yields the following.

Definition 1 (L-bisimulation ∼Φ). Let Φ be an initial value problem. A
binary relation R ⊆ R[x] × R[x] is a L-bisimulation if, whenever pR q then:
(a) p(x0) = q(x0), and (b) L(p)R L(q). The largest L-bisimulation over R[x] is
denoted by ∼Φ.

We now introduce a new coalgebra with outputs in R. Let A denote the
family of real valued functions f such that f is analytic at 0 and f ’s domain
of definition coincides with the open interval of convergence of its Taylor series
(nonempty, centered at 0, possibly coinciding with R)2. We define the coalgebra
of analytic functions as

Can
�
= (A, (·)′, oan)

where (f)′ = df
dt is the standard derivative, and oan(f)

�
= f(0) is the output

function. We recall that a morphism μ between two coalgebras with outputs in
the same set, μ : C1 → C2, is a function from states to states that preserves

2 Equivalently, A is the set of power series f(t) =
∑

j≥0 ajt
j with a positive radius of

convergence.

76 M. Boreale

transitions (μ(δ1(s)) = δ2(μ(s))) and outputs (o1(s) = o2(μ(s))). It is a stan-
dard (and easy) result of coalgebra that a morphism maps bisimilar states into
bisimilar states: s ∼1 s′ implies μ(s) ∼2 μ(s′).

The coalgebra Can has a special status, in that, given any coalgebra C with
outputs in R, if there is a morphism from C to Can, this morphism is guaranteed
to be unique3. For our purposes, it is enough to focus on C = CΦ. We define
the function μ : R[x] → A as

μ(p)
�
= p(t).

Theorem 1 (coinduction). μ is the unique morphism from CΦ to Can. More-
over, the following coinduction principle is valid: p ∼Φ q in CΦ if and only if
p(t) = q(t) in A.

Theorem 1 permits proving polynomial relations among components xi(t) of
x(t), say that p(t) = q(t), by coinduction, that is, by exhibiting a suitable
L-bisimulation relating the polynomials p and q.

Example 2. For N = 2, consider the vector field F = (x2,−x1)T with the initial
value x0 = (0, 1)T . The binary relation R ⊆ R[x1, x2] × R[x1, x2] defined thus

R = {(0, 0), (x2
1 + x2

2, 1)}

is easily checked to be an L-bisimulation. Thus we have proved the polynomial
relation x2

1(t) + x2
2(t) = 1. Note that the unique solution to the given initial

value problem is the pair of functions x(t) = (sin(t), cos(t))T . This way we have
proven the familiar trigonometric identity sin(t)2 + cos(t)2 = 1.

This proof method can be greatly enhanced by a so called L-bisimulation
up to technique, in the spirit of [26]. See [8].

4 Algebraic Characterization of L-bisimilarity

We first review the notion of polynomial ideal from Algebraic Geometry, referring
the reader to e.g. [16] for a comprehensive treatment. A set of polynomials I ⊆
R[x] is an ideal if: (1) 0 ∈ I, (2) I is closed under sum +, (3) I is absorbing
under product ·, that is p ∈ I implies h · p ∈ I for each h ∈ R[x]. Given a set of
polynomials S, the ideal generated by S, denoted by

〈
S

〉
, is defined as

{
m∑

j=1

hjpj : m ≥ 0, hj ∈ R[x] and pj ∈ S, for j = 1, ..., m

}

. (8)

The polynomial coefficients hj in the above definition are called multipliers. It
can be proven that

〈
S

〉
is the smallest ideal containing S, which implies that〈 〈

S
〉 〉

=
〈

S
〉
. Any set S such that

〈
S

〉
= I is called a basis of I. Every

3 Existence of a morphism is not guaranteed, though. In this sense, Can is not final.

Algebra, Coalgebra, and Minimization in Polynomial Differential Equations 77

ideal in the polynomial ring R[x] is finitely generated, that is has a finite basis
(an instance of Hilbert’s basis theorem).

L-bisimulations can be connected to certain types of ideals. This connection
relies on Lie derivatives. First, we define the Lie derivative of any set S ⊆ R[x]
as follows

L(S)
�
= {L(p) : p ∈ S}.

We say that S is a pre-fixpoint of L if L(S) ⊆ S. L-bisimulations can be charac-
terized as particular pre-fixpoints of L that are also ideals, called invariants.

Definition 2 (invariant ideals). Let Φ = (F,x0). An ideal I is a Φ-invariant
if: (a) p(x0) = 0 for each p ∈ I, and (b) I is a pre-fixpoint of LF .

We will drop the Φ- from Φ-invariant whenever this is clear from the context.
The following definition and lemma provide the link between invariants and
L-bisimulation.

Definition 3 (kernel). The kernel of a binary relation R is ker(R)
�
= {p − q :

pR q}.

Lemma 1. Let R be a binary relation. If R is an L-bisimulation then
〈

ker(R)
〉

is an invariant. Conversely, given an invariant I, then R = {(p, q) : p − q ∈ I}
is an L-bisimulation.

Consequently, proving that p ∼Φ q is equivalent to exhibiting an invariant I
such that p−q ∈ I. A more general problem than equivalence checking is finding
all valid polynomial equations of a given form. We will illustrate an algorithm
to this purpose in the next section.

The following result sums up the different characterization of L-bisimilarity
∼Φ. In what follows, we will denote the constant zero function in A simply by
0 and consider the following set of polynomials.

ZΦ
�
= {p : p(t) is identically 0 }.

The following result also proves that ZΦ is the largest Φ-invariant.

Theorem 2 (L-bisimilarity via ideals). For any pair of polynomials p and

q: p ∼Φ q iff p − q ∈ ker(∼Φ) = ZΦ
(1)
=

{
p : p(j)(x0) = 0 for each j ≥ 0

}
=⋃

{I : I is a Φ − invariant}.

5 Computing Invariants

By Theorem 2, proving p ∼Φ q means finding an invariant I such that p − q ∈
I ⊆ ZΦ. More generally, we focus here on the problem of finding invariants that
include a user-specified set of polynomials. In the sequel, we will make use of
the following two basic facts about ideals, for whose proof we refer the reader
to [16].

78 M. Boreale

1. Any infinite ascending chain of ideals in a polynomial ring, I0 ⊆ I1 ⊆ · · · ,
stabilizes at some finite k. That is, there is k ≥ 0 such that Ik = Ik+j for
each j ≥ 0.

2. The ideal membership problem, that is, deciding whether p ∈ I, given p and
a finite set of S of generators (such that I =

〈
S

〉
), is decidable (provided

the coefficients used in p and in S can be finitely represented). The ideal
membership will be further discussed later on in the section.

The main idea is introduced by the naive algorithm presented below.

A Naive Algorithm. Suppose we want to decide whether p ∈ ZΦ. It is quite
easy to devise an algorithm that computes the smallest invariant containing p,
or returns ‘no’ in case no such invariant exists, i.e. in case p /∈ ZΦ. Consider the
successive Lie derivatives of p, p(j) = L(j)(p) for j = 0, 1, For each j ≥ 0, let

Ij
�
=

〈
{p(0), ..., p(j)}

〉
. Let m be the least integer such that either

(a) p(m)(x0) �= 0, or (b) Im = Im+1.
If (a) occurs, then p /∈ ZΦ, so we return ‘no’ (Theorem 2(1); if (b) occurs,

then Im is the least invariant containing p. Note that the integer m is well
defined: I0 ⊆ I1 ⊆ I2 ⊆ · · · forms an infinite ascending chain of ideals, which
must stabilize in a finite number of steps (fact 1 at the beginning of the section).

Checking condition (b) amounts to deciding if p(m+1) ∈ Im. This is an
instance of the ideal membership problem, which can be solved effectively. Gen-
erally speaking, given a polynomial p and finite set of polynomials S, deciding
the ideal membership p ∈ I =

〈
S

〉
can be accomplished by first transforming

S into a Gröbner basis G for I (via, e.g. the Buchberger’s algorithm), then com-
puting r, the residual of p modulo G (via a sort generalised division of p by G):
one has that p ∈ I if and only if r = 0 (again, this procedure can be carried out
effectively only if the coefficients involved in p and S are finitely representable;
in practice, one often confines to rational coefficients). We refer the reader to
[16] for further details on the ideal membership problem. Known procedures to
compute Gröbner bases have exponential worst-case time complexity, although
may perform reasonably well in some concrete cases. One should in any case
invoke such procedures parsimoniously.

Let us now introduce a more general version of the naive algorithm, which
will be also able to deal with (infinite) sets of user-specified polynomials. First,
we need to introduce the concept of template.

Templates. Polynomial templates have been introduced by Sankaranarayanan,
Sipma and Manna in [27] as a means to compactly specify sets of polynomials.
Fix a tuple of n ≥ 1 of distinct parameters, say a = (a1, ..., an), disjoint from
x. Let Lin(a), ranged over by �, be the set of linear expressions with coeffi-
cients in R and variables in a; e.g. � = 5a1 + 42a2 − 3a3 is one such expression4.
4 Differently from Sankaranarayanan et al. we do not allow linear expressions with a

constant term, such as 2 + 5a1 + 42a2 − 3a3. This minor syntactic restriction does
not practically affect the expressiveness of the resulting polynomial templates.

Algebra, Coalgebra, and Minimization in Polynomial Differential Equations 79

A template is a polynomial in Lin(a)[x], that is, a polynomial with linear expres-
sions as coefficients; we let π range over templates. For example, the following is
a template: π = (5a1 + (3/4)a3)xy2 + (7a1 + (1/5)a2)xz + (a2 + 42a3). Given a
vector v = (r1, ..., rn)T ∈ R

n, we will let �[v] ∈ R denote the result of replacing
each parameter ai with ri, and evaluating the resulting expression; we will let
π[v] ∈ R[x] denote the polynomial obtained by replacing each � with �[v] in π.
Given a set S ⊆ R

n, we let π[S] denote the set {π[v] : v ∈ S} ⊆ R[x].
The (formal) Lie derivative of π is defined as expected, once linear expressions

are treated as constants; note that L(π) is still a template. It is easy to see that
the following property is true: for each π and v, one has L(π[v]) = L(π)[v]. This
property extends as expected to the j-th Lie derivative (j ≥ 0)

L(j)(π[v]) = L(j)(π)[v]. (9)

A Double Chain Algorithm. We present an algorithm that, given a tem-
plate π with n parameters, returns a pair (V, J), where V ⊆ R

n is such that
π[Rn] ∩ ZΦ = π[V], and J is the smallest invariant that includes π[V], possi-
bly J = {0}. We first give a purely mathematical description of the algorithm,
postponing its effective representation to the next subsection. The algorithm is
based on building two chains of sets, a descending chain of vector spaces and
an (eventually) ascending chain of ideals. The ideal chain is used to detect the
stabilization of the sequence. For each i ≥ 0, consider the sets

Vi
�
= {v ∈ R

n : π(j)[v](x0) = 0 for j = 0, ..., i } (10)

Ji
�
=

〈 i⋃

j=1

π(j)[Vi]
〉
. (11)

It is easy to check that each Vi ⊆ R
n is a vector space over R of dimension ≤ n.

Now let m ≥ 0 be the least integer such that the following conditions are both
true:

Vm+1 = Vm (12)
Jm+1 = Jm. (13)

The algorithm returns (Vm, Jm). Note that the integer m is well defined: indeed,
V0 ⊇ V1 ⊇ · · · forms an infinite descending chain of finite-dimensional vector
spaces, which must stabilize in finitely many steps. In other words, we can con-
sider the least m′ such that Vm′ = Vm′+k for each k ≥ 1. Then Jm′ ⊆ Jm′+1 ⊆ · · ·
forms an infinite ascending chain of ideals, which must stabilize at some m ≥ m′.
Therefore there must be some index m such that (12) and (13) are both satisfied,
and we choose the least such m.

The next theorem states the correctness and relative completeness of this
abstract algorithm. Informally, the algorithm will output the largest space Vm

such that π[Vm] ⊆ ZΦ and the smallest invariant Jm witnessing this inclusion.
Note that, while typically the user will be interested in π[Vm], Jm as well may

80 M. Boreale

contain useful information, such as higher order, nonlinear conservation laws.
We need a technical lemma.

Lemma 2. Let Vm, Jm be the sets returned by the algorithm. Then for each
j ≥ 1, one has Vm = Vm+j and Jm = Jm+j.

Theorem 3 (correctness and relative completeness). Let Vm, Jm be the
sets returned by the algorithm for a polynomial template π.

(a) π[Vm] = ZΦ ∩ π[Rn];
(b) Jm is the smallest invariant containing π[Vm].

Proof. Concerning part (a), we first note that π[v] ∈ ZΦ ∩ π[Rn] means
(π[v])(j)(x0) = π(j)[v](x0) = 0 for each j ≥ 0 (Theorem 2(1)), which, by
definition, implies v ∈ Vj for each j ≥ 0, hence v ∈ Vm. Conversely, if
v ∈ Vm = Vm+1 = Vm+2 = · · · (here we are using Lemma 2), then by definition
(π[v])(j)(x0) = π(j)[v](x0) = 0 for each j ≥ 0, which implies that π[v] ∈ ZΦ

(again Theorem 2(1). Note that in proving both inclusions we have used prop-
erty (9).

Concerning part (b), it is enough to prove that: (1) Jm is an invariant, (2)
Jm ⊇ ZΦ ∩π[Rn], and (3) for any invariant I such that ZΦ ∩π[Rn] ⊆ I, we have
that Jm ⊆ I. We first prove (1), that Jm is an invariant. Indeed, for each v ∈ Vm

and each j = 0, ...,m−1, we have L(π(j)[v]) = π(j+1)[v] ∈ Jm by definition, while
for j = m, since v ∈ Vm = Vm+1, we have L(π(m)[v]) = π(m+1)[v] ∈ Jm+1 = Jm

(note that in both cases we have used property (9)). Concerning (2), note that
Jm ⊇ π[Vm] = ZΦ ∩ π[Rn] by virtue of part (a). Concerning (3), consider any
invariant I ⊇ ZΦ ∩ π[Rn]. We show by induction on j = 0, 1, ... that for each
v ∈ Vm, π(j)[v] ∈ I; this will imply the wanted statement. Indeed, π(0)[v] =
π[v] ∈ ZΦ ∩ π[Rn], as π[Vm] ⊆ ZΦ by (a). Assuming now that π(j)[v] ∈ I, by
invariance of I we have π(j+1)[v] = L(π(j)[v]) ∈ I (again, we have used here
property (9)).

According to Theorem 3(a), given a template π and v ∈ R
n, checking if

π[v] ∈ π[Vm] is equivalent to checking if v ∈ Vm, which can be effectively done
knowing a basis Bm of Vm. We show how to effectively compute such a basis in
the following.

Effective Representation. For i = 0, 1, ..., we have to give effective ways to:
(i) represent the sets Vi, Ji in (10) and (11); and, (ii) check the termination
conditions (12) and (13). It is quite easy to address (i) and (ii) in the case of the
vector spaces Vi. For each i, consider the linear expression π(i)(x0). By factoring
out the parameters a1, ..., an in this expression, we can write, for a suitable (row)
vector of coefficients ti = (ti1, ..., tin) ∈ R

1×n: π(i)(x0) = ti1 · a1 + · · · + tin · an

The condition on v ∈ R
n, π(i)[v](x0) = 0, can then be translated into the linear

constraint on v

ti · v = 0. (14)

Algebra, Coalgebra, and Minimization in Polynomial Differential Equations 81

Letting Ti ∈ R
i×n denote the matrix obtained by stacking the rows t1, ..., ti on

above the other, we see that Vi is the right null space of Ti. That is (here, 0i

denotes the null vector in R
i): Vi = {v ∈ R

n : Tiv = 0i }. Checking whether Vi =
Vi+1 or not amounts then to checking whether the vector ti+1 is or not linearly
dependent from the rows in Ti, which can be accomplished by standard and
efficient linear algebraic techniques. In practice, the linear constraints (14) can
be resolved and propagated via parameter elimination5 incrementally, as soon
as they are generated following computation of the derivatives π(i). Concerning
the representation of the ideals Ji, we will use the following lemma6.

Lemma 3. Let V ⊆ R
n be a vector space with B as a basis, and π1, ..., πk be

templates. Then
〈

∪k
j=1 πj [V]

〉
=

〈
∪k

j=1 πj [B]
〉
.

Now let Bi be a finite basis of Vi, which can be easily built from the matrix
Ti. By the previous lemma, ∪i

j=1π
(j)[Bi] is a finite set of generators for Ji: this

solves the representation problem. Concerning the termination condition, we
note that, after checking that actually Vi = Vi+1, checking Ji = Ji+1 reduces to
checking that π(i+1)[Bi] ⊆

〈
∪i

j=1 π(j)[Bi]
〉

= Ji (∗).
To check this inclusion, one can apply standard computer algebra techniques.

For example, one can check if π(i+1)[b] ∈ Ji for each b ∈ Bi, thus solving |Bi| ideal
membership problems, for one and the same ideal Ji. As already discussed, this
presupposes the computation of a Gröbner basis for Ji, a potentially expensive
operation. One advantage of the above algorithm, over methods proposed in
program analysis with termination conditions based on testing ideal membership
(e.g. [24]), is that (∗) is not checked at every iteration, but only when Vi+1 = Vi

(the latter a relatively inexpensive check).

Example 3. Consider the initial value problem of Example 1 and the template
π = a1x+a2y +a3z +a4w. We run the double chain algorithm with this system
and template as inputs. In what follows, v = (v1, v2, v3, v4)T will denote a generic
vector in R

4. Recall that x = (x, y, z, w)T and x0 = (0, 0, 1, 1)T .

– For each v ∈ R
4: π(0)[v](x0) = (v1x + v2y + v3z + v4w)(x0) = 0 if and only if

v ∈ V0
�
= {v : v3 = −v4}.

– For each v ∈ V0: π(1)[v](x0) = (v1xz + v1z + v2wy + v2z + v4w − v4z)(x0) = 0

if and only if v ∈ V1
�
= {v ∈ V0 : v1 = −v2}.

– For each v ∈ V1: π(2)[v](x0) = (v2w2y + v2wy + v2wz − v2xz2 − v2xz − v2z
2 +

v4w − v4z)(x0) = 0 if and only if v ∈ V2
�
= V1.

Being V2 = V1, we also check if J2 = J1. A basis of V1 is B1 = {b1, b2} with
b1 = (−1, 1, 0, 0)T and b2 = (0, 0,−1, 1)T . According to (∗), we have therefore

to check if, for � = 1, 2: π(2)[b�] ∈ J1
�
=

〈
{π(0)[b1], π(0)[b2], π(1)[b1], π(1)[b2]}

〉
.

With the help of a computer algebra system, one computes a Gröbner basis
5 E.g., if for π = a1x + a2y + a3x + a4w and x0 = (0, 0, 1, 1)T , π[v](x0) = 0 is resolved

by the substitution [a3 �→ −a4].
6 The restriction that linear expressions in templates do not contain constant terms

is crucial here.

82 M. Boreale

for J1 as G1 = {x − y, z − w}. Then one can reduce π(2)[b1] = w2y + wy +
wz − xz2 − xz − z2 modulo G1 and obtain π(2)[b1] = h1(x − y) + h2(z − w),
with h1 = −z2 −z and h2 = −wy −yz −y −z, thus proving that π(2)[b1] ∈ J1.
One proves similarly that π(2)[b2] ∈ J1. This shows that J2 = J1.

Hence the algorithm terminates with m = 1 and returns (V1, J1), or, con-
cretely, (B1, G1). In particular, x−y ∈ ZΦ, or equivalently x(t) = y(t). Similarly
for z − w.

Remark 1 (linear systems). When the system of odes is linear, that is when the
drifts fi are linear functions of the xi’s, stabilization of the chain of vector spaces
can be detected without resorting to ideals. The resulting single chain algorithm
essentially boils down to the ‘refinement’ algorithm of [6, Theorem 2]. See [8] for
details.

6 Minimization

We present a method for reducing the size of the an initial value problem. The
basic idea is projecting the original system onto a suitably chosen subspace
of R

N . Consider the subspace W ⊆ R
N of all vectors that are orthogonal to

x(t) for each t in the domain of definition D of the time trajectory, that is
W = {v ∈ R

N : 〈v , x(t)〉 = 0 for each t ∈ D}. It is not difficult to prove (see
[8]) that W = V ⊥

m , where Vm is the subspace returned by the double chain
algorithm when fed with the linear template π =

∑N
i=1 aixi. Let B the N × l

(l ≤ m + 1, N) matrix whose columns are the vectors of an orthonormal basis of
W . Then, for each t, BT x(t) are the coordinates of x(t) in the subspace W w.r.t.
the chosen basis. Consider now the following (reduced) initial value problem Ψ,
in the new variables y = (y1, ..., yl)T , obtained by projecting the original problem
Φ onto W . In [8], we prove the following result. In essence, all information about
Φ can be recovered exactly from the reduced Ψ, which is the best possible linear
reduction of Φ.

Ψ :
{

ẏ(t) = BT F (By(t))
y(0) = BT x(0). (15)

Theorem 4 (minimal exact reduction). Let y(t) be the unique analytic solu-
tion of the (reduced) problem (15). Then, x(t) = By(t). Moreover, suppose for
some N × k matrix C and vector function z(t), we have x(t) = Cz(t), for each
t ∈ D. Then k ≥ l.

7 Examples

We have put a proof-of-concept implementation7 of our algorithms at work on
a few simple examples taken from the literature. We illustrate below two cases.
7 Python code available at http://local.disia.unifi.it/boreale/papers/DoubleChain.py.

Reported execution times relative to the pypy interpreter under Windows 8 on a
core i5 machine.

http://local.disia.unifi.it/boreale/papers/DoubleChain.py

Algebra, Coalgebra, and Minimization in Polynomial Differential Equations 83

Example 1: Linearity and Weighted Automata. The purpose of this exam-
ple is to argue that, when the transition structure induced by the Lie-derivatives
is considered, L-bisimilarity is fundamentally a linear-time semantics. We first
introduce weighted automata, a more compact8 way of representing the transition
structure of the coalgebra CΦ.

x1

x2

x5

x6 x7

x8 x9

x10

x3 x4

1

2/3
1/3

1/2
1/2

1 1

1
3/2

3/4

1

1

A (finite or infinite) weighted automaton is like
an ordinary automaton, save that both states and
transitions are equipped with weights from R. Given
F and x0, we can build a weighted automaton with
monomials as states, weighted transitions given by
the rule α

λ−−→ β iff LF (α) = λβ + q for some poly-
nomial q and real λ �= 0, and where each state α is
assigned weight α(x0). As an example, consider the
weighted automaton on the right, where the state weights (not displayed) are 1
for x10, and 0 for any other state. This automaton is generated (and in fact codes
up) a system of odes with ten variables, where ẋ1 = x2, ẋ2 = (2/3)x3 +(1/3)x4

etc., with the initial condition as specified by the state weights (x1(0) = 0 etc.).
The standard linear-time semantics of weighted automata (see [5,25] and refer-
ences therein) is in full agreement with L-bisimilarity [8]. As a consequence, in
our example we have for instance that x1(t) = x5(t). In fact, when invoked with
this system and π =

∑10
i=1 aixi as inputs, the double chain algorithm terminates

at m = 2 (in about 0.3 s; being this a linear system, Gröbner bases are never
actually needed), returning π[V2] = (a1(x6 − x7) + a2(x8 − x9) + a3(x6 − x2) +
a4(x5−x1)+a5(32x8−x4)+a6(34x8−x3))[R6]. This implies the expected x1 = x5,
as well as other equivalences, and a 60% reduction in the minimal system.

θ

Example 2: Nonlinear Conservation Laws. The law of
the simple pendulum is d2

dt2 θ = g
� cos θ, where θ is the angle

from the roof to the rod measured clockwise, � is the length
of the rod and g is gravity acceleration (see picture on the
right). If we assume the initial condition θ(0) = 0, this can
be translated into the polynomial initial value problem below,
where x = (θ, ω, x, y)T . The meaning of the variables is ω = θ̇, x = cos θ and
y = sin θ. We assume for simplicity � = 1 and g = 9.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̇ = ω
ω̇ = g

�
x

ẋ = −yω
ẏ = xω

x(0) = (0, 0, �, 0)T .

For this system, the double chain algorithm reports
that there is no nontrivial linear conservation law (after
m = 6 iterations and about 0.3 s). We then ask the
algorithm to find all the conservation laws of order two,
that is we use the template (α ranges over monomials)
π =

∑
αi : deg(αi)≤2 aiαi as input. The algorithm termi-

nates after m = 16 iterations (in about 7 s). The invariant
J16 contains all the wanted conservation laws. The returned Gröbner basis for it
is G = {x2+y2−1, ω2−18y}. The first term here just expresses the trigonometric

8 At least for linear vector fields, the resulting weighted automaton is finite.

84 M. Boreale

identity (cos θ)2 + (sin θ)2 = 1. Recalling that the (tangential) speed of the bob
is v = �θ̇ = �ω, and that its vertical distance from the roof is h = � sin θ = �y, we
see that the second term, considering our numerical values for �, g, is equivalent
to the equation 1

2v2 = gh, which, when multiplied by the mass m of the bob,
yields the law of conservation of energy 1

2mv2 = mgh (acquired kinetic energy
= lost potential energy).

8 Future and Related Work

We briefly outline future work and related work below, referring the reader to
[8] for a more comprehensive discussion.

Directions for future work. Scalability is an issue, as already for simple systems
the Gröbner basis construction involved in the main algorithm can be computa-
tionally quite demanding. Further experimentation, relying on a well-engineered
implementation of the method, and considering sizeable case studies, is called
for in order to assess this aspect. Approximate reductions in the sense of System
Theory [1] are also worth investigating.

Related work. Bisimulations for weighted automata are related to our approach,
because, as argued in Sect. 7, Lie-derivation can be naturally represented by such
an automaton. Algorithms for computing largest bisimulations on finite weighted
automata have been studied by Boreale et al. [5,6]. A crucial ingredient in these
algorithms is the representation of bisimulations as finite-dimensional vector
spaces. Approximate version of this technique have also been recently considered
in relation to Markov chains [7]. As discussed in Remark 1, in the case of linear
systems, the algorithm in the present paper reduces to that of [5,6]. Algebraically,
moving from linear to polynomial systems corresponds to moving from vector
spaces to ideals, hence from linear bases to Gröbner bases. From the point of
view automata, this step leads to considering infinite weighted automata. In
this respect, the present work may be also be related to the automata-theoretic
treatment of linear odes by Fliess and Reutenauer [17].

Although there exists a rich literature dealing with linear aggregation of sys-
tems of odes (e.g. [1,19,21,30]), we are not aware of fully automated approaches
to minimization (Theorem 4) with the notable exception of a series of recent
works by Cardelli and collaborators [11–13]. Mostly related to ours is [11]. There,
for an extension of the polynomial ode format called IDOL, the authors intro-
duce two flavours of differential equivalence, called Forward (fde) and Back-
ward (bde). They provide a symbolic, SMT-based partition refining algorithms
to compute the largest equivalence of each type. While fde is unrelated with our
equivalence, bde can be compared directly to our L-bisimulation. An important
difference is that bde is stricter than necessary, as it may tell apart variables
that have the same solution. This is not the case with L-bisimilarity, which is,
in this respect, correct and complete. An important consequence of this dif-
ference is that the quotient system produced by bde is not minimal, whereas

Algebra, Coalgebra, and Minimization in Polynomial Differential Equations 85

that produced by L-bisimulation is in a precise sense. For example, bde finds no
reductions at all in the linear system9 of Sect. 7, whereas L-bisimulation, as seen,
leads to a 60% reduction. Finally, the approach of [11] and ours rely on two quite
different algorithmic decision techniques, SMT and Gröbner bases, both of which
have exponential worst-case complexity. As shown by the experiments reported
in [11], in practice bde and fde have proven quite effective at system reduction.
At the moment, we lack similar experimental evidence for L-bisimilarity.

The seminal paper of Sankaranarayanan, Sipma and Manna [27] introduced
polynomial ideals to find invariants of hybrid systems. Indeed, the study of the
safety of hybrid systems can be shown to reduce constructively to the prob-
lem of generating invariants for their differential equations [23]. The results in
[27] have been subsequently refined and simplified by Sankaranarayanan using
pseudoideals [28], which enable the discovery of polynomial invariants of a spe-
cial form. Other authors have adapted this approach to the case of imperative
programs, see e.g. [9,20,24] and references therein. Reduction and minimization
seem to be not a concern in this field.

Still in the field of formal verification of hybrid systems, mostly related to
ours is Ghorbal and Platzer’s recent work on polynomial invariants [18]. One
one hand, they characterize algebraically invariant regions of vector fields – as
opposed to initial value problems, as we do. On the other hand, they offer suf-
ficient conditions under which the trajectory induced by a specific initial value
satisfies all instances of a polynomial template (cf. [18, Proposition 3]). The
latter result compares with ours, but the resulting method appears to be not
(relatively) complete in the sense of our double chain algorithm. Moreover, the
computational prerequisites of [18] (symbolic linear programming, exponential
size matrices, symbolic root extraction) are very different from ours, and much
more demanding. Again, minimization is not addressed.

Acknowledgments. The author has benefited from stimulating discussions with
Mirco Tribastone.

References

1. Antoulas, A.C.: Approximation of Large-scale Dynamical Systems. SIAM,
Philadelphia (2005)

2. Arnold, V.I.: Ordinary Differential Equations. The MIT Press, Cambridge (1978).
ISBN 0-262-51018-9

3. Bernardo, M.: A survey of markovian behavioral equivalences. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 180–219. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-72522-0 5

4. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNet-Gen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

5. Bonchi, F., Bonsangue, M.M., Boreale, M., Rutten, J.J.M.M., Silva, A.: A coalge-
braic perspective on linear weighted automata. Inf. Comput. 211, 77–105 (2012)

9 Checked with the Erode tool by the same authors [14].

http://dx.doi.org/10.1007/978-3-540-72522-0_5

86 M. Boreale

6. Boreale, M.: Weighted bisimulation in linear algebraic form. In: Bravetti, M., Zavat-
taro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 163–177. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04081-8 12

7. Boreale, M.: Analysis of probabilistic systems via generating func-
tions and Padé approximation. In: Halldórsson, M.M., Iwama, K.,
Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135,
pp. 82–94. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47666-6 7.
http://local.disia.unifi.it/wp disia/2016/wp disia 2016 10.pdf

8. Boreale, M.: Algebra, coalgebra, and minimization in polynomial differential equa-
tions. DiSIA working paper, January 2017. http://local.disia.unifi.it/wp disia/
2017wp disia 2017 01.pdf

9. Cachera, D., Jensen, T., Jobin, A., Kirchner, F.: Inference of polynomial invariants
for imperative programs: a farewell to Gröbner bases. In: Miné, A., Schmidt, D.
(eds.) SAS 2012. LNCS, vol. 7460, pp. 58–74. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33125-1 7

10. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391(3), 190–215
(2008)

11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. In: POPL (2016)

12. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven
lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 6

13. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A., Networks, comparing
chemical reaction : a categorical and algorithmic perspective. In: LICS (2016, to
appear)

14. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: evaluation
and reduction of ordinary differential equations. http://sysma.imtlucca.it/tools/
erode/

15. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. Theor. Comput. Sci. 410(33–34), 3065–3084 (2009)

16. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics. Springer, New York (2007)

17. Fliess, M., Reutenauer, C.: Theorie de Picard-Vessiot des Systèmes Reguliers. Col-
loque Nat. CNRS-RCP567, Belle-ile sept. in Outils et Modèles Mathématiques
pour l’Automatique l’Analyse des systèmes et le tratement du signal. CNRS, 1983
(1982)

18. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential rad-
ical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 279–294. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 19.
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf

19. Li, G., Rabitz, H., Tóth, J.: A general analysis of exact nonlinear lumping in
chemical kinetics. Chem. Eng. Sci. 49(3), 343–361 (1994)

20. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004)

21. Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of
chemical reaction systems. Chem. Rev. 2(98), 391–408 (1998)

22. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008)

http://dx.doi.org/10.1007/978-3-642-04081-8_12
http://dx.doi.org/10.1007/978-3-662-47666-6_7
http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_10.pdf
http://local.disia.unifi.it/wp_disia/2017wp_disia_2017_01.pdf
http://local.disia.unifi.it/wp_disia/2017wp_disia_2017_01.pdf
http://dx.doi.org/10.1007/978-3-642-33125-1_7
http://dx.doi.org/10.1007/978-3-642-33125-1_7
http://dx.doi.org/10.1007/978-3-662-49674-9_6
http://dx.doi.org/10.1007/978-3-662-49674-9_6
http://sysma.imtlucca.it/tools/erode/
http://sysma.imtlucca.it/tools/erode/
http://dx.doi.org/10.1007/978-3-642-54862-8_19
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf

Algebra, Coalgebra, and Minimization in Polynomial Differential Equations 87

23. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)
24. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple

loops. J. Symb. Comput. 42(4), 443–476 (2007)
25. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of

streams, automata, and power series. Theor. Comput. Sci. 308(1–3), 1–53 (2003)
26. Sangiorgi, D.: Beyond bisimulation: the “up-to” techniques. In: Boer, F.S., Bon-

sangue, M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
161–171. Springer, Heidelberg (2006). doi:10.1007/11804192 8

27. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using Gröbner bases. In: POPL (2004)

28. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: HSCC 2010, pp. 221–230 (2010)

29. Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A.
(eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003).
doi:10.1007/3-540-36580-X 37

30. Tóth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on
kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997)

31. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)

32. Voit, E.O.: Biochemical systems theory: a review. ISRN Biomath. 2013, 53 (2013)

http://dx.doi.org/10.1007/11804192_8
http://dx.doi.org/10.1007/3-540-36580-X_37

Equational Theories of Abnormal Termination
Based on Kleene Algebra

Konstantinos Mamouras(B)

University of Pennsylvania, Philadelphia, USA
mamouras@seas.upenn.edu

Abstract. We study at an abstract level imperative while programs with
an explicit fail operation that causes abnormal termination or irrepara-
ble failure, and a try-catch operation for error handling. There are two
meaningful ways to define the semantics of such programs, depending on
whether the final state of the computation can be observed upon failure
or not. These two semantics give rise to different equational theories. We
investigate these two theories in the abstract framework of Kleene algebra,
and we propose two simple and intuitive equational axiomatizations. We
prove very general conservativity results, from which we also obtain decid-
ability and deductive completeness of each of our calculi with respect to
the intended semantics.

1 Introduction

The computations of imperative programs are typically divided into two dis-
tinct categories: those that terminate normally at some final state (thus possibly
yielding an output), and those that do not terminate or, as we say, that diverge.
However, for most realistic programs there is also the possibility of failure, which
has to be distinguished from normal termination. When we say failure here, we
are referring to the computational phenomenon where an executing program
has to stop immediately because something “bad” has happened that prevents
it from continuing with its computation. There are numerous examples of such
behavior: a memory access error, a division by zero, the failure of a user-defined
assertion, and so on. Depending on the context, this kind of irreparable failure
is described with various names: abnormal or abrupt termination, (uncaught)
exception, program crash, etc.

An important point to be made is that when failure is a possibility there are
two different (both very meaningful) ways of defining semantics, depending on
whether the final state of the computation can be observed upon failure or not.
Let us consider a standard way of describing the intended input-output behavior
of imperative programs by describing how they execute on an idealized machine.
This is the so called operational semantics, and it amounts to giving a detailed
description of the individual steps of the computation as it mutates the program
state. In our setting, where failure is a possibility, a computation of the program
f can take one of the following three forms:

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 88–105, 2017.
DOI: 10.1007/978-3-662-54458-7 6

Equational Theories of Abnormal Termination Based on Kleene Algebra 89

normal termination: 〈x, f〉 → 〈x′, f ′〉 → · · · → 〈y, 1〉
divergence: 〈x, f〉 → 〈x′, f ′〉 → · · ·

abnormal termination: 〈x, f〉 → 〈x′, f ′〉 → · · · → 〈y, fail(e)〉

The letters x, x′, y above represent entire program states, the constant 1 rep-
resents the program that immediately terminates normally, and the constant
fail(e) represents the program that immediately terminates abnormally with
error code (exception) e. We summarize the input-output behavior of the pro-
gram f by including the pair x �→ 〈y, 1〉 when the normally terminating com-
putation 〈x, f〉 → · · · → 〈y, 1〉 is possible, and the pair x �→ 〈y, fail(e)〉 when
the abnormally terminating computation 〈x, f〉 → · · · → 〈y, fail(e)〉 is possible.
Thus, the meaning or denotation of a program f that computes by transforming
a state space X is given by a function of type X → P (X ⊕ (X × E)), where P
denotes the powerset functor, E is the set of error codes (exceptions), and ⊕ is
the coproduct (disjoint union) operation. Intuitively, using this semantics we are
able to observe the final state of the computation upon abnormal termination.
However, it may sometimes be appropriate to disregard the final state when the
program fails. In this latter case, the meaning of the program is given by a func-
tion of type X → P (X ⊕ E). Informally, our second semantics is derived from
the first one by “forgetting” the final state in the case of failure. To sum this up:

Final state observable upon failure: X → P (X ⊕ (X × E))
Final state not observable upon failure: X → P (X ⊕ E)

In both cases, the powerset functor P allows us to accomodate nondeterminism.
That is, when a program starts at some state, there may be several possible
computations and we want to record all their possible outcomes.

These two different ways of assigning meaning to programs that we described
in the previous paragraph give rise to two distinct notions of equivalence .
Let us write f ≡ g if the programs f and g have the same meaning under the first
semantics involving functions X → P (X ⊕ (X × E)). We write ∼∼∼ to denote the
equivalence induced by the semantics involving functions X → P (X ⊕ E). An
immediate observation is that the equivalence ≡ is finer than ∼∼∼, which means
that f ≡ g implies f ∼∼∼ g. In fact, ≡ is strictly finer than ∼∼∼, because:

x := 0; fail(e) 	≡ x := 1; fail(e) x := 0; fail(e) ∼∼∼ x := 1; fail(e)

where ; is the sequential composition operation. The programs x := 0; fail(e)
and x := 1; fail(e) both terminate abnormally at states with x = 0 and x = 1
respectively. When the final states can be observed, the two programs can be
differentiated by looking at the final value of the variable x. But, when the final
states are unobservable, then the programs are semantically the same.

We are interested here in axiomatizing completely the two equational theories
given by the equivalences ≡ and ∼∼∼. Of course, this endeavor is not possible for
typical interpreted programming languages that are Turing-complete. For such
languages the equational theories are not recursively enumerable, and hence

90 K. Mamouras

they admit no complete effective axiomatization. We will therefore work in a
very abstract uninterpreted setting, where the building blocks of our imperative
programming language are abstract actions a, b, c, . . . with no fixed interpreta-
tion. This is the setting of Kleene algebra (KA) [12] and Kleene algebra with
tests (KAT) [13], whose language includes the following program structuring
operations: sequential composition ·, nondeterministic choice +, and nondeter-
ministic iteration ∗. KAT involves a special syntactic category of tests p, q, r, . . .,
which can model the guards of conditionals and while loops:

if p then f else q � p · f + ¬p · g while p do f � (p · f)∗ · ¬p

It is therefore sufficient to consider the language of KAT for logical investigations
that concern imperative nondeterministic programs with while loops.

If failure is not a possibility, then the axioms of KA and KAT are very well
suited for abstract reasoning about programs. However, if failure is possible then
the property f ·0 = 0, which is an axiom of KA, is no longer valid . The constant
0 denotes the program that always diverges, and we expect:

fail(e) · 0 = fail(e) fail(e) · 0 	= 0

This suggests that, in order to reason conveniently about programs that can
fail, we need to enrich the syntax of KAT and capture the essential properties
of the fail operation. As a first step, we introduce the simplest type discipline
necessary by distinguishing the programs that contain no occurrence of fail. In
algebraic jargon, this is a two-sorted approach: we consider a sub-sort of fail-free
programs in addition to the sort of all programs. The basic algebraic theory that
we propose, which we call FailKAT, differs from KAT by weakening the axiom
f · 0 = 0 and by introducing just one extra equation for fail(e):

f · 0 = 0, where f is a fail-free program
fail(e) · f = fail(e), where f can be any program

As we shall see, these modifications are exactly what is needed to reason about
failure (for the ≡ equivalence). They are absolutely necessary, and they intro-
duce no additional syntactic complications than what is strictly required. Even
more interestingly, we can axiomatize the coarser ∼∼∼ equivalence by adding to
the FailKAT calculus just one more equational axiom (The partial order ≤ is
defined in every KA in terms of nondeterministic choice as follows: x ≤ y iff
x + y = y. See, for example, [12].):

f · fail(e) ≤ fail(e), where f is a fail-free program.

Let us call this extended calculus FailTKAT. The above property has a straight-
forward intuitive explanation. When we are disallowed to observe the final state
upon failure, then any program that we execute before failing has no observable
effect other than possibly causing divergence (hence we have ≤ instead of =).

Equational Theories of Abnormal Termination Based on Kleene Algebra 91

i := 0

while (i < n) do
assert (0 ≤ i) ∧ (i < X.length)
X[i] := 0

i := i + 1

≡ i := 0

while (i < n) do
if (i ≥ X.length) then fail
X[i] := 0

i := i + 1

(i := 0) ≡ (i := 0); (i ≥ 0) (i ≥ 0); (X[i] := 0) ≡ (X[i] := 0); (i ≥ 0)

¬(i < X.length) ≡ (i ≥ X.length) (i ≥ 0); (i := i + 1) ≡ (i ≥ 0); (i := i + 1); (i ≥ 0)

Fig. 1. The logical system FailKAT can be used for verifying program optimizations.

We further enrich the language with a try-catch construct for exception han-
dling. The operational semantics that we consider is the standard one used in
imperative programming languages:

〈x, f〉 → 〈x′, f ′〉
〈x, try f catch(e) g〉 → 〈x′, try f ′ catch(e) g〉

〈x, try 1 catch(e) g〉 → 〈x, 1〉
〈x, try fail(e) catch(e) g〉 → 〈x, g〉

〈x, try fail(d) catch(e) g〉 → 〈x, fail(d)〉, when d 	= e

As we will prove, the following five equational axioms

try 1 catch(e) g = 1
try fail(d) catch(e) g = fail(d), when d 	= e

try fail(e) catch(e) g = g

try (f + g) catch(e)h = (try f catch(e)h) + (try g catch(e)h)
try (f · g) catch(e)h = f · (try g catch(e)h), when f is fail-free

are sufficient to derive all the algebraic properties of the try-catch construct.
We note that fail and try-catch can also be used to model several other useful
non-local control flow constructs, such as break, continue and return.

The problem of axiomatizing the algebraic properties of the try . . . catch(e) . . .
and fail(e) constructs is more than of purely mathematical interest. There are sev-
eral useful program optimizations that concern user-defined assertions and state-
ments that can cause failure. FailKAT can offer a formal compositional approach
to the verification of such program optimizations. For example, in Fig. 1 we see
a valid program optimization that simplifies a user-defined assertion, where the
statement assert p is syntactic sugar for if p then 1 else fail. The optimization is
expressed as an equation, and it can be formally proved correct using FailKAT
and some additional equations (see bottom of Fig. 1) that encode the relevant
properties of the domain of computation. Reasoning in KA and KAT under the
presence of additional equational hypotheses is studied in [17,24]. Our results here
are general enough to apply to this setting.

Our contribution. We study within the framework of Kleene algebra with tests
[13] an explicit fail operation, which is meant to model the abnormal termination

92 K. Mamouras

of imperative sequential programs, and a try-catch construct for handling excep-
tions. Our main results are the following:

– We show that every Kleene algebra with tests K can be extended conserv-
atively with a family of fail(e) constants and try . . . catch(e) . . . operations,
where e ranges over the set E of possible exceptions. The resulting structure
is the least restrictive extension of K that satisfies the axioms of FailKAT.

– From this conservativity theorem we obtain as a corollary a completeness
theorem for the class of algebras of functions X → P (X ⊕ (X × E)).

– The setting of FailTKAT requires an extended construction that works on a
subclass of Kleene algebras with tests that possess a top element �. We show
how to extend conservatively such algebras with fail and try-catch operations,
so that the extension is a FailTKAT.

– We then derive as a corollary the completeness of the calculus FailTKAT for
the equational theory induced by the coarser semantics in terms of functions
X → P (X ⊕ E).

2 Relational Models of Failure

A standard denotational way of describing the meaning of (failure-free) sequen-
tial imperative programs is using binary relations or, equivalently, functions of
type X → PX, where X is the state space and P is the powerset functor [32].
This denotational semantics agrees with the intended operational semantics,
and its advantage is that it allows us to define the meaning compositionally (by
induction on the structure of the program) using certain algebraic operations
on the carrier X → PX. In the program semantics literature, this is usually
referred to as the standard relational semantics of imperative programs.

In this section, we follow an analogous approach for the denotational seman-
tics of programs that can terminate abnormally. As we have already discussed
in the introduction, there are two different ways to define the meaning of such
programs, which lead us to consider functions of type X → P (X ⊕ (X × E))
and X → P (X ⊕ E) respectively. We will endow these sets of functions with
algebraic operations that are sufficient for interpreting the program structuring
operations. Our treatment is infinitary, since we will be considering an arbitrary
choice

∑
operation. This is more convenient for semantic investigations than a

finitary treatment, because the language is more economical (the operations 0,
+ and ∗ can all be expressed in terms of

∑
).

We write ιX,Y
1 : X → X⊕Y for the left injection map, and ιX,Y

2 : Y → X⊕Y
for the right injection map. The superscript X,Y is omitted when the types can
be inferred from the context. A function k of type X → P (X ⊕ (X × E)) is said
to be fail-free if k(x) is contained in {ι1(x) | x ∈ X} for all x ∈ X. For a set X,
we define now the algebra AX of all functions from X to P (X ⊕ (X × E)):

Equational Theories of Abnormal Termination Based on Kleene Algebra 93

AX � (A,K, ·,
∑

, 1, (faile)e∈E , (try-catche)e∈E) 1(x) � {ι1(x)}
A � functions X → P (X ⊕ (X × E)) faile(x) � {ι2(x, e)}
K � {k ∈ A | k is fail-free} (

∑
ifi)(x) �

⋃
ifi(x)

(f · g)(x) �
⋃

{g(y) | ι1(y) ∈ f(x)} ∪ {ι2(y, e) | ι2(y, e) ∈ f(x)}
(try f catche g)(x) � {ι1(y) | ι1(y) ∈ f(x)} ∪

⋃
{g(y) | ι2(y, e) ∈ f(x)} ∪

{ι2(y, d) | ι2(y, d) ∈ f(x) and d 	= e}

Definition 1 (F-Quantales). Fix a set E of exceptions. An F-quantale with
exceptions E is a two-sorted algebraic structure

(A,K, ·,
∑

, 1, (faile)e∈E , (try-catche)e∈E)

with carriers K ⊆ A, where K is the sort of fail-free elements, and A is the
sort of all elements. We require that K is closed under · and

∑
, and that the

following hold (the variables u, v, . . . range over A and x, y, . . . range over K):

(u · v) · w = u · (v · w) 1 · u = 1 u · 1 = 1 (1)
faile · u = faile (2)
∑

{u} = u (3)
∑

i(
∑

juij) =
∑

i,juij (arbitrary index sets) (4)

(
∑

iui) · v =
∑

iui · v (arbitrary index set) (5)
u · (

∑
ivi) =

∑
iu · vi (nonempty index set) (6)

x · (
∑

iyi) =
∑

ix · yi (arbitrary index set) (7)
try 1 catche u = 1 (8)

try faild catche u = faild, when d 	= e (9)
try faile catche u = u (10)

try (
∑

iui) catche w =
∑

itry ui catche w (arbitrary index set) (11)
try (x · v) catche w = x · (try v catche w) (12)

Lemma 2. The algebra of functions X → P (X ⊕ (X × E)) is an F -quantale.

3 The Basic Algebraic Theory of Failure

In this section we investigate the basic algebraic theory of abnormal termination.
One of our main goals here is to give a sound and complete axiomatization of the
equational theory (in the language of KAT with fail and try-catch) of the class
of relational F-quantales defined in Sect. 2. The axioms that we propose, which
we call FailKAT, define a class of structures with many more interesting models
other than the relational F-quantales (e.g., language models). We develop the
algebraic theory of these structures. Our development consists of several steps:

94 K. Mamouras

– We introduce the abstract class of FailKATs. Every F-quantale (with tests),
and hence every algebra of functions X → P (X ⊕ (X × E)), is a model.

– We present a general model-theoretic construction that builds a FailKAT FK
from an arbitrary KAT K. The elements of FK are pairs 〈x, ψ〉, where x is
an element of K and ψ : E → K is an E-indexed tuple of elements of K.
The component x is to be thought as the “fail-free” part, and ψ(e) is the
component that leads to failure with error code e.

– We show that the FailKAT FK can be defined equivalently in a syntactic way:
expand the signature with a family of fresh constants faile and a family of
try-catche operations, and quotient by the axioms of FailKAT.

– The aforementioned construction has several consequences, among which is
the completeness of FailKAT for the theory of relational F-quantales.

Several more useful completeness results can be obtained using the results of
[17,24], where free language models of KA with extra equations are identified.

(x + y) + z = x + (y + z)

x + y = y + x

x + x = x

x + 0 = x

(x · y) · z = x · (y · z)
1 · x = x

x · 1 = x

(x + y) · z = x · z + y · z
x · (y + z) = x · y + x · z

0 · x = 0

x · 0 = 0

1 + x · x∗ ≤ x∗ 1 + x∗ · x ≤ x∗ x · y ≤ y ⇒ x∗ · y ≤ y y · x ≤ y ⇒ y · x∗ ≤ y

Fig. 2. KA: axioms for Kleene algebras [12].

A Kleene algebra (KA) is an algebraic structure (K,+, ·,∗ , 0, 1) satisfying
the axioms of Fig. 2, which are implicitly universally quantified. The relation ≤
refers to the natural partial order on K, defined as: x ≤ y ⇐⇒ x + y = y. The
three top blocks of axioms (which do not involve the star operation) say that the
reduct (K,+, ·, 0, 1) is an idempotent semiring. We often omit the · operation
and write xy instead of x · y. A Kleene algebra with tests (KAT) is an algebraic
structure (K,B,+, ·,∗ , 0, 1,¬) with B ⊆ K, satisfying the following properties:
(i) the reduct (K,+, ·,∗ , 0, 1) is a KA, (ii) B contains 0, 1 and is closed under +
and ·, and (iii) the reduct (B,+, ·, 0, 1,¬) is a Boolean algebra.

Definition 3 (FailKAT). Fix a set E of exceptions. A KAT with failures E,
or simply FailKAT, is a three-sorted algebra

(A,K,B,+, ·,∗ , 0, 1,¬, (faile)e∈E , (try-catche)e∈E)

with B ⊆ K ⊆ A, where K is closed under +, · and ∗, and (K,B,+, ·,∗ , 0, 1,¬)
is a KAT. Moreover, (A,+, ·,∗ , 0, 1, faile, try-catche) satisfies the axioms of KA
except for u · 0 = 0, and it also satisfies the fail axiom (2) and the try-catch
axioms (8)–(12) of Definition 1. We say that K is the carrier of fail-free elements,
and A is the carrier of all elements (which may allow failure).

Equational Theories of Abnormal Termination Based on Kleene Algebra 95

For a KAT K and a set E of exceptions, we denote by KE the set of
E-indexed tuples (equivalently, the set of functions E → K). The operation
+ is defined on KE componentwise: (φ + ψ)(e) = φ(e) + ψ(e). For x ∈ K and
φ ∈ KE , we define x ·φ as follows: (x ·φ)(e) = x ·φ(e). For all elements x, y ∈ K
and every tuple φ ∈ KE , the distributivity property (x + y) · φ = (x · φ) + (y · φ)
holds. The zero tuple 0̄ is defined as 0̄(e) = 0 for all e. For a tuple φ ∈ KE , an
exception e, and an element x ∈ K, we write φ[x/e] for the tuple that agrees
with φ on E \ {e} and whose e-th component is equal to x. We say that a tuple
is of finite support if it has finitely many non-zero components. We write K〈E〉

for the set of all tuples of KE that have finite support.

Definition 4 (The Construction F). Let (K,B,+, ·,∗ , 0, 1,¬) be a KAT,
and E a set of exceptions. We define the three-sorted algebra

FK � (K × K〈E〉,K × {0̄}, B × {0̄},+, ·,∗ , 0F, 1F,¬, failFe , try-catchF
e)

with carriers K × K〈E〉, K × {0̄} and B × {0̄}, as follows:

0F � 〈0, 0̄〉 〈x, φ〉 + 〈y, ψ〉 � 〈x + y, φ + ψ〉
1F � 〈1, 0̄〉 〈x, φ〉 · 〈y, ψ〉 � 〈x · y, φ + x · ψ〉

failFe � 〈0, 0̄[1/e]〉 〈x, φ〉∗ � 〈x∗, x∗ · φ〉
¬〈p, 0̄〉 � 〈¬p, 0̄〉 try 〈x, φ〉 catche 〈y, ψ〉 � 〈x + φ(e) · y, φ[0/e] + φ(e) · ψ〉

Informally, the idea is that an element 〈x, φ〉 of FK consists of fail-free component
x, and the component φ(e) which leads to failure with error code e. From the
definition of + we get that 〈x, φ〉 ≤ 〈y, ψ〉 iff x ≤ y and φ(e) ≤ ψ(e) for all e.

Definition 4 is inspired from the operational intuition of how programs with
exceptions compute. Assuming that there is only one exception, we think of a
pair 〈x, φ〉 in FK as the program x+φ·fail. The operation · in 〈x, φ〉·〈y, ψ〉 models
sequential composition. The fail-free component of 〈x, φ〉 · 〈y, ψ〉 corresponds to
the possibility of executing x and y in sequence, and failure can result by either
executing φ or by executing x and ψ in sequence. The definitions of the rest of
the operations can be understood similarly.

Lemma 5. Let K be a KAT and E be a set of exceptions. The algebra FK is
a FailKAT, and the map x �→ 〈x, 0̄〉 is a KAT embedding of K into FK.

Definition 6 (Adjoin Elements for Failure). Let (K,B,+, ·,∗ , 0, 1,¬) be
a KAT, E be a set of exceptions, and faile for all e ∈ E be fresh distinct symbols
that denote failure or abnormal termination. We also consider for every exception
e a fresh binary operation symbol try-catche. For every element x ∈ K we intro-
duce a constant symbol cx. We define the sets TrmB(K) ⊆ Trm(K) ⊆ TrmF (K)
of algebraic terms with the following generation rules:

96 K. Mamouras

p ∈ B

cp ∈ TrmB(K)
s, t ∈ TrmB(K)

s + t, s · t, ¬s ∈ TrmB(K)
t ∈ TrmB(K)
t ∈ Trm(K)

x ∈ K
cx ∈ Trm(K)

s, t ∈ Trm(K)
s + t, s · t, t∗ ∈ Trm(K)

t ∈ Trm(K)
t ∈ TrmF (K)

faile ∈ TrmF (K)
s, t ∈ TrmF (K)

s + t, s · t, t∗, try s catche t ∈ TrmF (K)

The function cx �→ x, where x ∈ K, extends uniquely to a homomorphism
k : Trm(K) → K. The diagram of K, defined as ΔK � {s ≡ t | k(s) = k(t)},
is the set of equations s ≡ t that are true under k. In other words, ΔK is the
kernel of the homomorphism k. Finally, we define the set of equations

EK � FailKAT-Closure(ΔK)

to be the least set that contains ΔK and is closed under the axioms and rules of
FailKAT and Horn-equational logic. By the axioms and rules of equational logic,
the equations of EK define a FailKAT-congruence on TrmF (K). For a term t in
TrmF (K), we write [t]E to denote its congruence class. Define the three-sorted
algebra FK with carriers B̂ ⊆ K̂ ⊆ A as:

A � {[t]E | t ∈ TrmF (K)} K̂ � {[t]E | t ∈ Trm(K)} B̂ � {[t]E | t ∈ TrmB(K)}

Since the equations EK define a FailKAT-congruence, we can define the FailKAT
operations of FK on the equivalence classes of terms:

0F � [c0]E failFe � [faile]E [s]E + [t]E � [s + t]E ([t]E)∗ � [t∗]E

1F � [c1]E [s]E · [t]E � [s · t]E

We have thus defined the algebra FK, which has the signature of FailKATs.

Lemma 7 (Normal Form). For every term t in TrmF (K) there are fail-free
terms tP and te in Trm(K) (for every exception e that appears in t) such that
the equation t ≡ tP +

∑
ete · faile is in EK .

Proof. Since terms are finite and only finitely many exceptions occur in them,
we fix w.l.o.g. a finite E. The proof is by induction on the structure of t. If t is
a fail-free term, then notice that the equation t ≡ t +

∑
e∈E0 · faile is in EK . For

the case t = faild, we observe that faild ≡ 0+1 · faild +
∑

e�=d0 · faile is in EK . For
the induction step, we have the following equations in EK :

s + t ≡ (sP +
∑

ese · faile) + (tP +
∑

ete · faile)
≡ (sP + tP) +

∑
e∈E(se + te) · faile

s · t ≡ (sP +
∑

ese · faile) · (tP +
∑

ete · faile)
≡ sP · tP +

∑
esP · te · faile +

∑
ese · faile · (. . .)

≡ sP · tP +
∑

e(se + sP · te) · faile

Equational Theories of Abnormal Termination Based on Kleene Algebra 97

t∗ ≡ (tP +
∑

ete · faile)∗

≡ t∗P · (
∑

ete · faile · t∗P)∗

≡ t∗P · (
∑

ete · faile)∗

≡ t∗P · (1 + (
∑

ete · faile) · (
∑

ete · faile)∗)

≡ t∗P · (1 +
∑

ete · faile)
≡ t∗P +

∑
et

∗
P · te · faile

try s catchd t ≡ try (sP +
∑

ese · faile) catchd (tP +
∑

ete · faile)
≡ try sP catchd (tP +

∑
ete · faile)

+
∑

etry (se · faile) catchd (tP +
∑

ete · faile)
≡ sP · (try 1 catchd (tP +

∑
ete · faile))

+
∑

ese · (try faile catchd (tP +
∑

ete · faile))
≡ sP + sd · (tP +

∑
ete · faile) +

∑
e�=d se · faile

≡ (sP + sd · tP) +
∑

esd · te · faile +
∑

e�=d se · faile
≡ (sP + sd · tP) + sd · td · faild +

∑
e�=d (se + sd · te) · faile

We have used the property (x + y)∗ = x∗(yx∗)∗, which is a theorem of KA. ��
Theorem 8 (F and F). The FailKATs FK and FK are isomorphic.

Proof. We define the map h : TrmF (K) → FK to be the unique homomorphism
satisfying h(cx) = 〈x, 0̄〉 and h(faile) = 〈0, 0̄[1/e]〉. Notice that h sends fail-
free terms to fail-free elements of FK. By Lemma 5, FK is a FailKAT, and
therefore h(s) = h(t) for every equation s ≡ t in EK . So, we can define the map
ĥ : TrmF (K)/EK → FK by [t]E �→ h(t). In fact, ĥ is a FailKAT homomorphism
from FK to FK. Moreover, ĥ is surjective: for every 〈x, φ〉 ∈ FK, where D ⊆ E
is the finite support of φ, we have that

ĥ([cx +
∑

e∈D cφ(e) · faile]E) = h(cx +
∑

e∈D cφ(e) · faile)
= h(cx) +

∑
e∈Dh(cφ(e)) · h(faile)

= 〈x, 0̄〉 +
∑

e∈D〈φ(e), 0̄〉 · 〈0, 0̄[1/e]〉
= 〈x, 0̄〉 +

∑
e∈D〈0, φ(e) · 0̄[1/e]〉

= 〈x, φ〉.

Finally, we claim that ĥ is injective. Suppose that ĥ([s]E) = ĥ([t]E). Lemma 7
says that there are fail-free terms sP , se, tP , te (for e ∈ D ⊆ E) in Trm(K) s.t.

s ≡ sP +
∑

ese · faile t ≡ tP +
∑

ete · faile
are equations of EK . From our hypothesis above we obtain that

ĥ([s]E) = ĥ([t]E) =⇒ h(s) = h(t)
=⇒ h(sP +

∑
ese · faile) = h(tP +

∑
ete · faile)

=⇒ 〈k(sP), (k(se))e∈D〉 = 〈k(tP), (k(te))e∈D〉
=⇒ k(sP) = k(tP) and k(se) = k(te) for all e ∈ D.

98 K. Mamouras

(Recall the function k : Trm(K) → K from Definition 6.) It follows that the
equations sP ≡ tP and se ≡ te are in the diagram ΔK . So, s ≡ t is in EK . We
thus obtain that [s]E = [t]E . So, ĥ is a FailKAT isomorphism. ��

The above theorem says that the extension of a KAT K with faile elements
and try-catche operations is conservative, since the mapping x �→ 〈x, 0̄〉 embeds K
into FK ∼= FK. This is a very useful property, because it means that a language
of while-programs (whose semantics is defined by interpretation in a KAT) can
be extended naturally to accomodate the extra programming feature of failure.

Corollary 9 (Completeness for Relational Models). FailKAT is complete
for the equational theory of the class of algebras X → P (X ⊕ (X × E)).

Proof. It is known from [12,13] that KA and KAT are complete for the class of
relational models X → PX. In fact, for a fixed finite set Σ of atomic actions
and a fixed finite set B0 of atomic tests, there is a single full relational model
Rel(Σ,B0) that characterizes the theory. We fix a finite set E of exceptions.
Using the observation P (X ⊕ (X × E)) ∼= (PX) × (PX)E we can see that
the algebras X → P (X ⊕ (X × E)) and F(X → PX) (recall Definition 4) are
isomorphic. Since KAT is complete for the theory of Rel(Σ,B0), Theorem 8
implies that FailKAT is complete for the theory of FRel(Σ,B0). This means
that FailKAT is complete for the class of all relational models. ��

Let Σ be a finite set of atomic actions, and B0 be a finite set of atomic tests.
Kozen and Smith have shown in [20] that KAT is complete for Reg(Σ,B0), the
algebra of regular sets of guarded strings over Σ and B0. Theorem 8 implies that
FailKAT is complete for the algebra FReg(Σ,B0), which is therefore the free
FailKAT with action generators Σ and test generators B0.

First, we observe that the decidability of FailKAT is an easy consequence
of Lemma 7. To decide the equivalence of two terms s and t, we rewrite them
according to the proof of Lemma7 into equivalent normal forms s ≡ sP +

∑
ese ·

faile and t ≡ tP +
∑

ete · faile, where e ranges over the exceptions that appear
in s and t and all the terms sP , se, tP , te are fail-free. It follows that s ≡ t iff
sP ≡ tP and se ≡ te for all e, hence equivalence can be decided using a decision
procedure for KAT. As discussed in the previous paragraph, the language model
FReg(Σ,B0) characterizes the equational theory of FailKAT, which suggests
that an appropriate variant of Kozen’s guarded automata [14,16] can be used to
decide the equational theory in polynomial space.

Example 10. Exceptions and their handlers can be used to encode widely used
constructs of non-local control flow, such as break and continue. The program

h = while (true) do {a; (if p̄ then break); (if q̄ then continue); b}

can be shown to be equivalent to h′ = a; while p do {(if q then b); a} using
FailKAT. We abbreviate ¬p by p̄, and ¬q by q̄. The program h is encoded as fol-
lows:

Equational Theories of Abnormal Termination Based on Kleene Algebra 99

try {
while (true) do {

try {a; (if p̄ then faile); (if q̄ then faild); b} catch(d) { }
}

} catch(e) { }

Let g be the body of the while loop, and f be subprogram of the inner try-catch
statement. In the language of FailKAT, we have that f = a(p̄faile+p)(q̄faild+q)b,
g = try f catchd 1, and h = try (g∗0) catche 1. Using the FailKAT axioms we get:

f = ap̄faile + ap(q̄faild + q)b = ap̄faile + apq̄faild + apqb

g = ap̄faile + apq̄ + apqb

g∗ = ((apq̄ + apqb) + ap̄faile)
∗ = (apq̄ + apqb)∗(ap̄faile(apq̄ + apqb)∗)∗

= (apq̄ + apqb)∗(ap̄faile)
∗ = (apq̄ + apqb)∗(1 + ap̄faile)

g∗0 = (apq̄ + apqb)∗(1 + ap̄faile)0 = (apq̄ + apqb)∗ap̄faile
h = (apq̄ + apqb)∗ap̄ = (a(pq̄ + pqb))∗ap̄

h′ = a(p(qb + q̄)a)∗p̄ = a((pqb + pq̄)a)∗p̄ = (a(pqb + pq̄))∗ap̄

which means that h = h′. We have used above the theorems (x+y)∗ = x∗(yx∗)∗
and x(yx)∗ = (xy)∗x of KA.

Example 11. We will establish using FailKAT the equivalence of the programs
of Fig. 1. The program on the right-hand side is an optimized version because
it eliminates the check of the condition i ≥ 0. To streamline the presentation
we abbreviate (i := 0) by a, (X[i] := 0) by b, and (i := i + 1) by c. We also use
the abbreviations p, q and r for the tests (i < n), (0 ≤ i) and (i < X.length)
respectively, and write p̄, q̄, r̄ instead of ¬p, ¬q, ¬r respectively. The extra
hypotheses of Fig. 1 can be then written as a = aq, qb = bq, and qc = qcq.
Using these abbreviations we encode the right-hand side program of Fig. 1 as
R = a(p(r̄fail + r)bc)∗p̄ = a(pr̄fail + prbc)∗p̄ = ag∗p̄, where g = prbc + pr̄fail ,
and the left-hand side program as

L = a(p(qr + ¬(qr)fail)bc)∗p̄ = a(p(qr + (q̄ + qr̄)fail)bc)∗p̄ = ah∗p̄,

where h = pqrbc+pq̄fail +pqr̄fail . With qb = bq and qc = qcq we show qh = qhq
and hence qh∗ = q(qhq)∗ = q(qh)∗ = q(pqrbc+pqr̄fail)∗ = q(q(prbc+pr̄fail))∗.
Since qg = qgq we obtain similarly that qh∗ = q(qg)∗ = qg∗. Finally, using the
hypothesis a = aq we obtain that L = ah∗p̄ = aqh∗p̄ = aqg∗p̄ = ag∗p̄ = R.

4 A Stronger Theory of Failure

In this section we investigate a stronger (i.e., with more theorems) algebraic
theory of abnormal termination. We will write ≈ to refer to this notion of equiv-
alence to differentiate it from the weaker equivalence that we studied in Sect. 3.

100 K. Mamouras

This stronger theory, called FailTKAT, results from FailKAT by adding the
axioms

u = v =⇒ u ≈ v x · faile � faile ≈ is KA-congruence

where u, v are arbitrary elements and x is a fail-free element. As in the previous
section, our ultimate goal is to give a sound and complete axiomatization of the
relation ≈ on the algebra X → P (X ⊕ (X × E)). First, we define a projection
operation π that “forgets” the output state in the case or error:

f : X → P (X ⊕ (X × E))
π(f) : X → P (X ⊕ E)

π(f)(x) � {ι1(y) | ι1(y) ∈ f(x)} ∪
{ι2(e) | ι2(y, e) ∈ f(x)}

The ≈ equivalence can then be defined as follows: f ≈ g iff π(f) = π(g).
The operation of forgetting the output state is defined for algebras of

input/output relations in the obvious way, but it is not apparent if a more
general construction can be formulated for a subclass of Kleene algebras. As it
turns out, there exists a very natural subclass of KATs, which we call KATs
with a top element, for which this is possible.

Definition 12 (KAT With Top Element). A KAT with a top element or a
TopKAT is a structure (K,B,+, ·,∗ , 0, 1,¬,�) so that (K,B,+, ·,∗ , 0, 1,¬) is a
KAT and the top element � satisfies the inequality x ≤ � for all x ∈ K.

Intuitively, the top element � is needed to forget the state of the memory.
More precisely, right multiplication (− · �) by the top element models the pro-
jection function that eliminates the state. Without the top element we cannot
define the coarser equivalence relation ≈ using the operations of KA.

Definition 13 (Generalized≈Equivalence). Let K be a TopKAT and E be
a set of exceptions. We define for the algebra FK of Definition 4 the equivalence
relation ≈ as follows: 〈x, φ〉 ≈ 〈y, ψ〉 iff

x = y and φ(e) · � = ψ(e) · � for every e ∈ E.

The projection map π : 〈x, φ〉 �→ 〈x, φ′〉 is defined as φ′(e) = φ(e) · � for all e.
So, ≈ can be equivalently defined as: 〈x, φ〉 ≈ 〈y, ψ〉 iff π(〈x, φ〉) = π(〈y, ψ〉).

Lemma 14 (Projection). Let K be a TopKAT and E be a set of exceptions.
For the algebra FK and the projection map π of Definition 13 the following hold:

π(failFe) = 〈0, 0̄[�/e]〉 π(1F) = 1F π(0F) = 0F

π(u + v) = π(v) + π(v) π(u · v) = π(u) · π(v) π(u∗) = π(u)∗

Moreover, π(x·failFe +failFe) = π(failFe) or, equivalently, x·failFe � failFe . Note: the
variables u, v range over arbitrary elements and x ranges over fail-free elements.

Equational Theories of Abnormal Termination Based on Kleene Algebra 101

Proof. The commutation properties are easy to verify. For the second part, we
have: π(〈0, 0̄[x/e]〉+ 〈0, 0̄[1/e]〉) = π(〈0, 0̄[x+1/e]〉) = 〈0, 0̄[(x+1)�/e]〉 and also
π(〈0, 0̄[1/e]〉) = 〈0, 0̄[�/e]〉. It suffices to show that (x+1)� = � in the TopKAT
K, which is true because (x + 1)� = x� + � = �. ��

The equations of Lemma 14 that show how π commutes with the KA opera-
tions of FK imply additionally that ≈ is a KA-congruence. For example, u ≈ v
implies π(u) = π(v), which gives us π(u∗) = π(u)∗ = π(v)∗ = π(v∗) and there-
fore u∗ ≈ v∗. So, FK with ≈ is a model of the FailTKAT axioms.

We extend now Definition 6 to expand the algebra FK, where K is a TopKAT,
with a relation ≈. Similarly to the construction of the previous section, ≈ is given
as follows for terms s and t: [s]E ≈ [t]E iff s ≈ t is provable using the system
FailTKAT and the diagram of K.

Theorem 15. Let K be a TopKAT and E be a set of exceptions. The
FailTKATs (FK,≈) and (FK,≈) are isomorphic.

Proof. The proof extends the one for Theorem 8. It remains to show that for all
terms s and t: [s]E ≈ [t]E iff ĥ([s]E) ≈ ĥ([t]E). The right-to-left direction is the
interesting one. By Lemma 7, we bring s and t to their normal forms and:

ĥ([s]E) ≈ ĥ([t]E) =⇒ π(h(s)) = π(h(t))
=⇒ π(h(sP +

∑
ese · faile)) = π(h(tP +

∑
ete · faile))

=⇒ 〈k(sP), (k(se)�)e∈D〉 = 〈k(tP), (k(te)�)e∈D〉
=⇒ k(sP) = k(tP) and k(se · c�) = k(te · c�) for all e ∈ D.

It follows that sP ≡ tP and se · c� ≡ te · c� are in the diagram of K. Now,

s ≈ sP +
∑

ese · faile ≈ sP +
∑

ese · c� · faile
≈ tP +

∑
ete · c� · faile ≈ tP +

∑
ete · faile ≈ t

is provable, because x · faile ≈ x · c� · faile follows from ΔK and FailTKAT.

1 � c� ⇒ x · faile � x · c� · faile c� · faile � faile ⇒ x · c� · faile � x · faile

We thus obtain that [s]E ≈ [t]E . So, ĥ is a FailTKAT isomorphism. ��

Similarly to Theorem 8 of the previous section, we interpret Theorem 15 as
saying that an arbitrary KAT with a top element can be extended conservatively
into a KAT with failure that satisfies the additional axiom x · faile � faile. The
mapping x �→ 〈x, 0̄〉 embeds the TopKAT K into the extension (FK,≈).

Corollary 16 (Completeness for Relational Models). FailTKAT is
complete for the theory of the relation ≈ on the class of algebras X →
P (X⊕(X×E)). Notation: Recall that f ≈ g iff the projections of f and g to
functions of type X → P (X ⊕ E) (by applying π) are equal.

102 K. Mamouras

Proof (sketch). Similar to the proof of Corollary 9. We have to show that the
first-order structures X → P (X⊕(X×E)) and F(X → PX) (signature extended
with the projection π and the equivalence ≈) are isomorphic. This relies on the
observation P (X ⊕ E) ∼= (PX) × (1 ⊕ 1)E ∼= (PX) × ({∅} ⊕ {X})E . ��

In the previous section we discussed how our conservativity result for
FailKAT gives as easy consequences the existence of a free language model,
the decidability of the theory, and also suggests a way to approach the question
of complexity using guarded automata. The situation is similar for FailTKAT,
it suffices to observe that the free KAT Reg(Σ,B0) with action generators Σ
and test generators B0 has a top element: the guarded language denoted by the
expression Σ∗.

5 Related Work

As far as the basic theory of failure is concerned, the works [9,15] are closely
related to ours. In both these papers, extensions of KAT are investigated that can
be used for reasoning about nonlocal flow of control, using e.g. labels and goto
statements. Syntactically, these systems amount essentially to using matrices of
expressions, where the row index corresponds to an entry label and the column
index corresponds to an exit label. While the fail operation can be encoded
using such general constructs of nonlocal flow of control, the works [9,15] do
not address the question of whether it is possible to axiomatize fail directly, i.e.
without translation into a more complicated language. We have shown here that
this is indeed the case, which is a new result and does not follow from any of
[9,15]. The system FailKAT that we introduce here axiomatizes the properties
of failure directly, and thus offers a more convenient style of reasoning for this
computational phenomenon. More importantly, we depart completely from the
investigations of [9,15] when we consider the stronger theory FailTKAT. None
of these earlier systems can capture the properties of failure under the coarser
equivalence that we study here.

Aceto and Hennessy study in [1,2] a process algebra that includes an explicit
symbol δ for deadlock. This is somewhat similar to our fail operation, since
δ satisfies the equational property δ; x = δ. Our work is, however, markedly
distinct and contributes very different results. The work of Aceto and Hennessy
studies a notion of bisimulation preorder, which does not have the same theory
as language or trace equivalence. We axiomatize here the input-output behavior
of programs, which correponds to language (and not bisimulation) equivalence.

The literature on computational effects, monads [8,28], and algebraic oper-
ations [11,30,31] is somewhat related to our work at a conceptual level. Within
this body of work, exceptions and failure are modeled using the formalism of
monads. In sharp contrast to what we are doing here, the work on monads typ-
ically focuses on the type structure (whereas we have here only two sorts!) and
different program structuring operations (e.g., products and function abstrac-
tion) in the setting of a functional language. At a technical level, there is not

Equational Theories of Abnormal Termination Based on Kleene Algebra 103

much of an intersection between our investigations and the work on monads. The
language of KAT is generally more abstract than the monad-based formalisms,
which maybe include constructs like products, as in A×B → P (A×B), or return
values, as in A → (S → P (S × B)). Such extra constructs can easily make it
impossible to obtain any kind of useful completeness theorem. In particular, if
the language allows loops and binary products, then we can encode abstrac-
tions of imperative programs whose state can be decomposed in variables that
can be read from and written to independently. This is the case of the so-called
“two-variable while program schemes”, whose partial-correctness and equational
theory are not recursively enumerable [22]. This suggests that the abstraction
level of KA/KAT is necessary for obtaining meaningful unconditional complete-
ness theorems for programs with an iteration construct.

6 Conclusion

We have considered here two algebraic theories, called FailKAT and FailTKAT,
for imperative while programs with an explicit fail operation that causes abnor-
mal termination. The system FailKAT captures the notion of program equiva-
lence that results from a semantics that allows for the observation of the final
state upon failure. The system FailTKAT captures a coarser notion of equiva-
lence, namely when we cannot observe the final state of the computation upon
failure. Both notions of equivalence are meaningful and useful, and we have seen
that they admit simple and intuitive axiomatizations. From a technical perspec-
tive, the case of FailTKAT is more challenging and interesting.

A important direction for future work is the study of FailKAT and FailTKAT
in the coalgebraic setting. Such an investigation would contribute to the question
(posed by Kozen in [15]) of whether there is a simple coalgebraic treatment of
nonlocal flow of control involving a definition of derivatives [4,5] for the nonlocal
control flow constructs. We expect that the fail and try-catch constructs, which
are much more structured than labels and goto statements, lend themselves to
an elegant coalgebraic treatment. At a practical level, this would give rise to
simple and efficient automata-theoretic decision procedures.

Another interesting question is whether the ideas of the present paper can
be applied to other logical systems. Some apparent candidates are variations of
KAT such as NetKAT [3,7] and Nominal KA [18,19]. Abnormal termination and
nonlocal flow of control have been studied in the context of partial correctness
theories based on Hoare logic (see, for example, [6,10,29,33,34]). It seems likely
that the axioms of FailKAT can inspire axioms and rules for Hoare logics that
treat failure and exception handling, and even obtain unconditional completeness
results (see, for example, [21,23,25–27]) in the propositional setting.

104 K. Mamouras

References

1. Aceto, L., Hennessy, M.: Termination, deadlock and divergence. In: Main, M.,
Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1989. LNCS, vol. 442, pp. 301–
318. Springer, New York (1990). doi:10.1007/BFb0040264

2. Aceto, L., Hennessy, M.: Termination, deadlock, and divergence. J. ACM 39(1),
147–187 (1992)

3. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: semantic foundations for networks. In: Proceedings of the
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2014), pp. 113–126 (2014)

4. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theor. Comput. Sci. 155(2), 291–319 (1996)

5. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
6. Delbianco, G.A., Nanevski, A.: Hoare-style reasoning with (algebraic) continua-

tions. In: Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2013), pp. 363–376 (2013)

7. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic
NetKAT. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 282–309.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1 12

8. Goncharov, S., Schröder, L., Mossakowski, T.: Kleene monads: handling iteration
in a framework of generic effects. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 18–33. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03741-2 3

9. Grathwohl, N.B.B., Kozen, D., Mamouras, K.: KAT + B! In: Proceedings of the
Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic
(CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS 2014, pp. 44:1–44:10 (2014)

10. Huisman, M., Jacobs, B.: Java program verification via a Hoare logic with abrupt
termination. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303.
Springer, Heidelberg (2000). doi:10.1007/3-540-46428-X 20

11. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theor.
Comput. Sci. 357(1), 70–99 (2006)

12. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

13. Kozen, D.: Kleene algebra with tests. Trans. Programm. Lang. Syst. 19(3), 427–443
(1997)

14. Kozen, D.: Automata on guarded strings and applications. Matématica Contem-
porânea 24, 117–139 (2003)

15. Kozen, D.: Nonlocal flow of control and Kleene algebra with tests. In: Proceedings
of the 23rd Annual IEEE Symposium on Logic in Computer Science (LICS 2008),
pp. 105–117 (2008)

16. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Technical report,
Computing and Information Science, Cornell University, March 2008

17. Kozen, D., Mamouras, K.: Kleene algebra with equations. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp.
280–292. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7 24

18. Kozen, D., Mamouras, K., Petrişan, D., Silva, A.: Nominal Kleene coalgebra.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 286–298. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47666-6 23

http://dx.doi.org/10.1007/BFb0040264
http://dx.doi.org/10.1007/978-3-662-49498-1_12
http://dx.doi.org/10.1007/978-3-642-03741-2_3
http://dx.doi.org/10.1007/978-3-642-03741-2_3
http://dx.doi.org/10.1007/3-540-46428-X_20
http://dx.doi.org/10.1007/978-3-662-43951-7_24
http://dx.doi.org/10.1007/978-3-662-47666-6_23
http://dx.doi.org/10.1007/978-3-662-47666-6_23

Equational Theories of Abnormal Termination Based on Kleene Algebra 105

19. Kozen, D., Mamouras, K., Silva, A.: Completeness and incompleteness in nom-
inal Kleene algebra. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAM-
ICS 2015. LNCS, vol. 9348, pp. 51–66. Springer, Cham (2015). doi:10.1007/
978-3-319-24704-5 4

20. Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability. In:
Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259. Springer,
Heidelberg (1997). doi:10.1007/3-540-63172-0 43

21. Kozen, D., Tiuryn, J.: On the completeness of propositional Hoare logic. Inf. Sci.
139(3–4), 187–195 (2001)

22. Luckham, D.C., Park, D.M.R., Paterson, M.S.: On formalised computer programs.
J. Comput. Syst. Sci. 4(3), 220–249 (1970)

23. Mamouras, K.: On the Hoare theory of monadic recursion schemes. In: Proceedings
of the Joint Meeting of the 23rd EACSL Annual Conference on Computer Science
Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS 2014, pp. 69:1–69:10 (2014)

24. Mamouras, K.: Extensions of Kleene algebra for program verification. Ph.D. thesis,
Cornell University, Ithaca, NY, August 2015

25. Mamouras, K.: Synthesis of strategies and the Hoare logic of angelic nondeter-
minism. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 25–40. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46678-0 2

26. Mamouras, K.: The Hoare logic of deterministic and nondeterministic monadic
recursion schemes. ACM Trans. Comput. Logic (TOCL) 17(2), 13:1–13:30 (2016)

27. Mamouras, K.: Synthesis of strategies using the Hoare logic of angelic and demonic
nondeterminism. Log. Methods Comput. Sci. 12(3), 1–41 (2016)

28. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
29. von Oheimb, D.: Hoare logic for Java in Isabelle/HOL. Concurr. Comput. Pract.

Exp. 13(13), 1173–1214 (2001)
30. Plotkin, G., Power, J.: Computational effects and operations. ENTCS 73, 149–163

(2004)
31. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.)

ESOP 2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00590-9 7

32. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proceedings of
the 17th IEEE Annual Symposium on Foundations of Computer Science (FOCS
1976), pp. 109–121 (1976)

33. Saabas, A., Uustalu, T.: A compositional natural semantics and Hoare logic for
low-level languages. Theor. Comput. Sci. 373(3), 273–302 (2007)

34. Tan, G., Appel, A.W.: A compositional logic for control flow. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer, Heidel-
berg (2005). doi:10.1007/11609773 6

http://dx.doi.org/10.1007/978-3-319-24704-5_4
http://dx.doi.org/10.1007/978-3-319-24704-5_4
http://dx.doi.org/10.1007/3-540-63172-0_43
http://dx.doi.org/10.1007/978-3-662-46678-0_2
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1007/978-3-642-00590-9_7
http://dx.doi.org/10.1007/11609773_6

Companions, Codensity and Causality

Damien Pous1(B) and Jurriaan Rot2,3

1 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
Damien.Pous@ens-lyon.fr

2 Radboud University, Nijmegen, The Netherlands
3 CWI, Amsterdam, The Netherlands

jrot@cs.ru.nl

Abstract. In the context of abstract coinduction in complete lattices,
the notion of compatible function makes it possible to introduce enhance-
ments of the coinduction proof principle. The largest compatible func-
tion, called the companion, subsumes most enhancements and has been
proved to enjoy many good properties. Here we move to universal coal-
gebra, where the corresponding notion is that of a final distributive law.
We show that when it exists the final distributive law is a monad, and
that it coincides with the codensity monad of the final sequence of the
given functor. On sets, we moreover characterise this codensity monad
using a new abstract notion of causality. In particular, we recover the fact
that on streams, the functions definable by a distributive law or GSOS
specification are precisely the causal functions. Going back to enhance-
ments of the coinductive proof principle, we finally obtain that any causal
function gives rise to a valid up-to-context technique.

1 Introduction

Coinduction has been widely studied since Milner’s work on CCS [26]. In con-
currency theory, it is usually exploited to define behavioural equivalences or
preorders on processes and to obtain powerful proof principles. Coinduction can
also be used for programming languages, to define and manipulate infinite data-
structures like streams or potentially infinite trees. For instance, streams can
be defined using systems of differential equations [37]. In particular, pointwise
addition of two streams x, y can be defined by the following equations, where x0

and x′ respectively denote the head and the tail of the stream x.

(x ⊕ y)0 = x0 + y0

(x ⊕ y)′ = x′ ⊕ y′ (1)

Coinduction as a proof principle for concurrent systems can nicely be pre-
sented at the abstract level of complete lattices [30,33]: bisimilarity is the greatest

The research leading to these results has received funding from the European
Research Council (FP7/2007-2013, grant agreement nr. 320571 ; and H2020, grant
agreement nr. 678157); as well as from the LABEX MILYON (ANR-10-LABX-0070,
ANR-11-IDEX-0007) and the project PACE (ANR-12IS02001).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 106–123, 2017.
DOI: 10.1007/978-3-662-54458-7 7

Companions, Codensity and Causality 107

fixpoint of a monotone function on the complete lattice of binary relations. In
contrast, coinduction as a tool to manipulate infinite data-structures requires
one more step to be presented abstractly: moving to universal coalgebra [15].
For instance, streams are the carrier of the final coalgebra of an endofunctor on
Set, and simple systems of differential equations are just plain coalgebras.

In both cases one frequently needs enhancements of the coinduction princi-
ple [38,39]. Indeed, rather than working with plain bisimulations, which can be
rather large, one often uses “bisimulations up-to”, which are not proper bisimu-
lations but are nevertheless contained in bisimilarity [1,2,10,16,24,27,40]. The
situation with infinite data-structures is similar. For instance, defining the shuffle
product on streams is typically done using equations of the following shape,

(x ⊗ y)0 = x0 × y0

(x ⊗ y)′ = x ⊗ y′ ⊕ x′ ⊗ y
(2)

which fall out of the scope of plain coinduction due to the call to pointwise
addition [12,37].

Enhancements of the bisimulation proof method have been introduced by
Milner from the beginning [26], and further studied by Sangiorgi [38,39] and then
by the first author [30,33]. Let us recall the standard formulation of coinduction
in complete lattices: by Knaster-Tarski’s theorem [19,42], any monotone function
b on a complete lattice admits a greatest fixpoint νb that satisfies the following
coinduction principle:

x ≤ y ≤ b(y)
x ≤ νb

coinduction (3)

In words, to prove that some point x is below the greatest fixpoint, it suffices
to exhibit a point y above x which is an invariant, i.e., a post-fixpoint of b.
Enhancements, or up-to techniques, make it possible to alleviate the second
requirement: instead of working with post-fixpoints of b, one might use post-
fixpoints of b ◦ f , for carefully chosen functions f :

x ≤ y ≤ b(f(y))
x ≤ νb

coinduction up to f (4)

Taking inspiration from the work of Hur et al. [13], the first author recently
proposed to systematically use for f the largest compatible function [31], i.e.,
the largest function t such that t ◦ b ≤ b ◦ t. Such a function always exists and
is called the companion. It enjoys many good properties, the most important
one possibly being that it is a closure operator: t ◦ t = t. Parrow and Weber
also characterised it extensionally in terms of the final sequence of the function
b [29,31]:

t : x �→
∧

x≤bα

bα where

{
bλ �

∧
α<λ bα for limit ordinals

bα+1 � b(bα) for successor ordinals
(5)

108 D. Pous and J. Rot

In the present paper, we give a categorical account of these ideas, generalis-
ing them from complete lattices to universal coalgebra, in order to encompass
important instances of coinduction such as solving systems of equations on infi-
nite data-structures.

Let us first be more precise about our example on streams. We consider there
the Set functor BX = R × X, whose final coalgebra is the set R

ω of streams
over the reals. This means that any B-coalgebra (X, f) defines a function from
X to streams. Take for instance the following coalgebra over the two-elements
set 2 = {0, 1}: 0 �→ (0.3, 1), 1 �→ (0.7, 0). This coalgebra can be seen as a system
of two equations, whose unique solution is a function from 2 to R

ω, i.e., two
streams, where the first has value 0.3 at all even positions and 0.7 at all odd
positions.

In a similar manner, one can define binary operations on streams by con-
sidering coalgebras whose carrier consists of pairs of streams. For instance, the
previous system of equations characterising pointwise addition (1) is faithfully
represented by the following coalgebra:

(Rω)2 → B((Rω)2)
(x, y) �→ (x0 + y0, (x′, y′))

Unfortunately, as explained above, systems of equations defining operations like
shuffle product (2) cannot be represented easily in this way: we would need to
call pointwise addition on streams that are not yet fully defined.

To this end, one can weaken the requirement of a B-coalgebra to that of a BF -
coalgebra, when there exists a distributive law λ : FB ⇒ BF of a monad F over
B [5,12]. The proof relies on the so-called generalised powerset construction [41],
and this precisely amounts to using an up-to technique. Such a use of distributive
laws is actually rather standard in operational semantics [5,17,43]; they properly
generalise the notion of compatible function. In order to follow [31], we thus focus
on the largest distributive law.

Our first contribution consists in showing that if a functor B admits a final
distributive law (called the companion), then (1) this distributive law is that of a
monad T over B, and (2) any BT -coalgebra has a unique morphism to the final
B-coalgebra, representing a solution to the system of equations modeled by the
coalgebra (Sect. 3). In complete lattices, this corresponds to the facts that the
companion is a closure operator and that it can be used as an up-to technique.

Then we move to conditions under which the companion exists. We start
from the final sequence of the functor B, which is commonly used to obtain the
existence of a final coalgebra [3,4], and we show that the companion actually
coincides with the codensity monad of this sequence, provided that this codensity
monad exists and is preserved by B (Theorem 5.1). Those conditions are satisfied
by all polynomial functors. This link with the final sequence of the functor makes
it possible to recover Parrow and Weber’s characterisation (Eq. (5)).

We can go even further for ω-continuous endofunctors on Set: the codensity
monad of the final sequence can be characterised in terms of a new abstract
notion of causal algebra (Definition 6.1). On streams, this notion coincides with

Companions, Codensity and Causality 109

the standard notion of causality [12]: causal algebras (on streams) correspond to
operations such that the n-th value of the result only depends on the n-th first
values of the arguments. For instance, pointwise addition and shuffle product
are causal algebras for the functor SX = X2.

These two characterisations of the companion in terms of the codensity
monad and in terms of causal algebras are the key theorems of the present
paper. We study some of their consequences in Sect. 7.

First, given a causal algebra for a functor F , we get that any system of equa-
tions represented as a BF -coalgebra admits a unique solution. Such a technique
makes it possible to define shuffle product in a streamlined way, without using
distributive laws: using pointwise stream addition as a causal S-algebra, Eq. (2)
can be represented by the following BS-coalgebra:

(Rω)2 → BS((Rω)2)
(x, y) �→ (x0 × y0, ((x, y′) , (x′, y)))

(Intuitively, the inner pairs (x, y′) and (x′, y) correspond to the corecursive calls,
and thus to the shuffle products x ⊗ y′ and x′ ⊗ y; in contrast, the intermediate
pair ((x, y′) , (x′, y)) corresponds to a call to the causal algebra on S, i.e., in
this case, pointwise addition.) In the very same way, with the functor BX =
2×XA for deterministic automata, we immediately obtain the semantics of non-
deterministic automata and context-free grammars using simple causal algebras
on formal languages (Examples 7.1 and 7.2).

Second, we obtain that algebras on the final coalgebra are causal if and only if
they can be defined by a distributive law. Similar results were known to hold for
streams [12] and languages [35]. Our characterisation is more abstract and less
syntactic; the precise relationship between those results remains to be studied.

Third, we can combine our results with some recent work [6] where we rely
on (bi)fibrations to lift distributive laws on systems (e.g., automata, LTSs) to
obtain up-to techniques for coinductive predicates or relations on those systems
(e.g., language equivalence, bisimilarity, divergence). Doing so, we obtain that
every causal algebra gives rise to a valid up-to context technique (Sect. 7.3). For
instance, bisimulation up to pointwise additions and shuffle products is a valid
technique for proving stream equalities coinductively.

We conclude with an expressivity result (Sect. 8): while abstract GSOS spec-
ifications [43] seem more expressive than plain distributive laws, we show that
this is actually not the case: any algebra obtained from an abstract GSOS spec-
ification can actually be defined from a plain distributive law.

2 Preliminaries

A coalgebra for a functor B : C → C is a pair (X, f) where X is an object in C
and f : X → BX a morphism. A coalgebra homomorphism from (X, f) to (Y, g)
is a C-morphism h : X → Y such that g ◦h = Fh◦f . A coalgebra (Z, ζ) is called
final if it is final in the category of coalgebras , i.e., for every coalgebra (X, f)
there exists a unique coalgebra morphism from (X, f) to (Z, ζ).

110 D. Pous and J. Rot

An algebra for a functor F : D → D is defined dually to a coalgebra, i.e., it is
a pair (X, a) where a : FX → X, and an algebra morphism from (X, a) to (Y, b)
is a morphism h : X → Y such that h ◦ a = b ◦ Fh.

A monad is a triple (T, η, μ) where T : C → C is a functor, and η : Id ⇒
T and μ : TT ⇒ T are natural transformations called unit and multiplication
respectively, such that μ ◦ Tη = id = μ ◦ ηT and μ ◦ μT = μ ◦ Tμ.

Distributive Laws. A distributive law of a functor F : C → C over a functor
B : C → C is a natural transformation λ : FB ⇒ BF . If B has a final coalgebra
(Z, ζ), then such a λ induces a unique algebra α making the following commute.

FZ

α

��

Fζ �� FBZ
λZ �� BFZ

Bα

��
Z

ζ
�� BZ

We call α the algebra induced by λ (on the final coalgebra).
Let (T, η, μ) be a monad. A distributive law of (T, η, μ) over B is a natural

transformation λ : TB ⇒ BT such that Bη = λ◦ηB and λ◦μB = Bμ◦λT ◦Tλ.

Final Sequence. Let B : C → C be an endofunctor on a complete category C.
The final sequence is the unique ordinal-indexed sequence defined by B0 = 1
(the final object of C), Bi+1 = BBi and Bj = limi<j Bi for a limit ordinal j,
with connecting morphisms Bj,i : Bj → Bi for all i ≤ j, satisfying Bi,i = id,
Bj+1,i+1 = BBj,i and if j is a limit ordinal then (Bj,i)i<j is a limit cone.

The final sequence is a standard tool for constructing final coalgebras: if there
exists an ordinal k such that Bk+1,k is an isomorphism, then B−1

k+1,k : Bk → BBk

is a final B-coalgebra [4, Theorem 1.3] (and dually for initial algebras [3]). In
the sequel, we shall sometimes present it as a functor B̄ : Ordop → C, given by
B̄(i) = Bi and B̄(j, i) = Bj,i.

Example 2.1. Consider the functor B : Set → Set given by BX = A × X, whose
coalgebras are stream systems. Then B0 = 1 and Bi+1 = A × Bi for 0 < i < ω.
Hence, for i < ω, Bi is the set of all finite lists over A of length i. The limit Bω

consists of the set of all streams over A. For each i, j with i ≤ j, the connecting
map Bj,i maps a stream (if j = ω) or a list (if j < ω) to the prefix of length i.
The set Bω of streams is a final B-coalgebra.

Example 2.2. For the Set functor BX = 2×XA whose coalgebras are determin-
istic automata over A, Bi is (isomorphic to) the set of languages of words over
A with length below i. In particular, Bω = P(A∗) is the set of all languages, and
it is a final B-coalgebra.

A functor B : C → C is called (ω)-continuous if it preserves limits of ωop-
chains. For such a functor, Bω is the carrier of a final B-coalgebra. The functors
of stream systems and automata in the above examples are both ω-continuous.

Companions, Codensity and Causality 111

3 Properties of the Companion

Definition 3.1. Let B : C → C be a functor. The category
DL(B) of distributive laws is defined as follows. An object is a
pair (F, λ) where F : C → C is a functor and λ : FB ⇒ BF is
a natural transformation. A morphism from (F, λ) to (G, ρ)
is a natural transformation κ : F ⇒ G s.t. ρ ◦ κB = Bκ ◦ λ.
The companion of B is the final object of DL(B), if it exists.

FB

λ

��

κB �� GB

ρ

��
BF

Bκ
�� BG

Morphisms in DL(B) are a special case of morphisms of distributive laws,
see [18,22,34,44]. In the remainder of this section, we assume that the companion
of B exists, and we denote it by (T, τ). We first prove that it is a monad.

Theorem 3.1. There are unique η : Id ⇒ T and μ : TT ⇒ T such that (T, η, μ)
is a monad and τ : TB ⇒ BT is a distributive law of this monad over B.

Proof. Define η and μ as the unique morphisms from idB and τT ◦Tτ respectively
to the companion:

B

ηB

��

B

Bη

��
TB

τ �� BT

TTB

μB

��

Tτ �� TBT
τT �� BTT

Bμ

��
TB

τ �� BT

By definition, they satisfy the required axioms for τ to be a distributive law of
monad over functor. The proof that (T, η, μ) is indeed a monad is routine, using
finality of (T, τ), see the appendix [32]. 	

A distributive law λ of a monad over a functor allows one to strengthen the
coinduction principle obtained by finality, as observed in [5] (specifically its
Corollary 4.3.6), where it is called λ-coiteration. This principle allows one to
solve (co)recursive equations, see, e.g., loc. cit. and [14,25]. Since the companion
is a distributive law of a monad (Theorem 3.1) we obtain the following.

Corollary 3.1. Let (Z, ζ) be a final B-coalgebra. For every morphism f : X →
BTX there is a unique morphism f† : X → Z such that the following commutes:

X

f

��

f†
�� Z

ζ

��
BTX

BTf†
�� BTZ

Bα
�� BZ

where α is the algebra induced by the distributive law τ of the companion.

Instantiated to the complete lattice case, this is a soundness result: any invariant
up to the companion (a post-fixpoint of b ◦ t) is below the greatest fixpoint (νb).

Now assume that C has an initial object 0. One can define the final coalgebra
and the algebra induced by the companion explicitly:

112 D. Pous and J. Rot

Theorem 3.2. The B-coalgebra (T0, τ0 ◦T !B0) is final, and the algebra induced
on it by the companion is given by μ0.

More generally, the algebra induced by any distributive law factors through
the algebra μ0 induced by the companion.

Proposition 3.1. Let (T, η, μ) be the monad on the companion (Theorem 3.1).
Let λ : FB ⇒ BF be a distributive law, and α : FT0 ⇒ T0 the algebra on the
final coalgebra induced by it. Let λ̄ : F ⇒ T be the unique natural transformation
induced by finality of the companion. Then α = μ0 ◦ λ̄T0.

4 The Codensity Monad

The notion of codensity monad is a special instance of a right Kan extension,
which plays a central role in the following sections. We briefly define them here;
see [20,21,28] for a comprehensive study.

HF
κF ��

α
��

��
��

�

��
��

� IF

β�� �
��
�

��
��

G

Given F : C → D, G : C → E be two functors. Define the
category K(F,G) whose objects are pairs (H,α) of a functor
H : D → E and a natural transformation α : HF ⇒ G. A mor-
phism from (H,α) to (I, β) is a natural transformation κ : H ⇒ I
such that β ◦ κF = α.

The right Kan extension of G along F is a final object (RanF G, ε) in K(F,G);
the natural transformation ε : (RanF G)F ⇒ G is called its counit. A functor
K : E → F is said to preserve RanF G if K ◦ RanF G is a right Kan extension of
KG along F , with counit Kε : K(RanF G)F ⇒ KG.

HF
α̂F ��

α
��

��
��

�

��
��

� CF F

ε
�� ��

��
�

��
��
�

F

The codensity monad is a special case, with F = G. Explic-
itly, the codensity monad of a functor F : C → D consists of a
functor CF : D → D and a natural transformation ε : CF F ⇒ F
s.t. for every functor H : D → D and natural transformation
α : HF ⇒ F there is a unique α̂ : H ⇒ CF s.t. ε ◦ α̂F = α.

As the name suggests, CF is a monad: the unit η and the multiplication μ are
the unique natural transformations such that ε ◦ ηF = id and ε ◦ μF = ε ◦ CF ε.
In the sequel we will abbreviate the category K(F, F) as K(F).

Right Kan extensions can be computed pointwise as a limit, if sufficient limits
exist. For an object X in D, denote by ΔX : C → D the functor that maps every
object to X. By ΔX/F we denote the comma category, where an object is a pair
(Y, f) consisting of an object Y in C and an arrow f : X → FY in D, and an
arrow from (Y, f) to (Z, g) is a map h : Y → Z in C such that Fh ◦ f = g. There
is a forgetful functor (ΔX/F) → C, which remains unnamed below.

Lemma 4.1. Let F : C → D, G : C → E be functors. If, for every object X in D,
the limit lim

(
(ΔX/F) → C G−→ D

)
exists, then the right Kan extension RanF G

exists, and is given on an object X by that limit.

The codensity monad of a functor F is the right Kan extension of F along
itself. Hence, Lemma 4.1 gives us a way of computing the codensity monad.

Companions, Codensity and Causality 113

The hypotheses are met in particular if C is essentially small (equivalent to a
category with a set of objects and a set of arrows) and D is locally small and
complete. The latter conditions hold for D = Set. In that case, we have the
following concrete presentation; see, e.g., [8, Sect. 2.5] for a proof.

Lemma 4.2. Let F : C → Set be a functor, where C is essentially small. The
codensity monad CF is given by CF (X) = {α : (F−)X ⇒ F} and, for h : X → Y ,
(CF (h)(α))A : (FA)Y → FA is given by f �→ αA(f ◦ h). The natural transfor-
mation ε : CF F ⇒ F is given by εX(α : FFX ⇒ F) = αX(idFX).

5 Constructing the Companion by Codensity

It is standard in the theory of coalgebras to compute the final coalgebra of a
functor B as a limit of the final sequence B̄, see Sect. 2. In this section, we focus
on the codensity monad of the final sequence, and show that it yields—under
certain conditions—the companion of B.

The codensity monad of B̄ is final in the category of natural transformations
of the form FB̄ ⇒ B̄ (see Sect. 4), whereas the companion of B is final in the
category of distributive laws over B. The following lemma is a first step towards
connecting companion and codensity monad.

Lemma 5.1. For every λ : FB ⇒ BF there exists a unique α : FB̄ ⇒ B̄ such
that for all i ∈ Ord: αi+1 = Bαi ◦ λBi

. Moreover, if Bk+1,k is an isomorphism
for some k, then αk is the algebra induced by λ on the final coalgebra.

We turn to the main result of this section: the codensity monad of B̄ yields
the companion of B, if B preserves this codensity monad. The latter condition,
as well as the concrete form of the companion computed in this manner, becomes
clearer when we instantiate this result to the case where C is a lattice (Sect. 5.1)
and the case C = Set (Sect. 6).

Theorem 5.1. Let B̄ : Ordop → C be the final sequence of an endofunctor B.
If the codensity monad CB̄ exists and B preserves it (as a right Kan extension)
then there is a distributive law τ of the codensity monad (CB̄ , η, μ) over B such
that (CB̄ , τ) is the companion of B.

Proof (Outline). The preservation assumption means that (BCB̄, Bε) is a right
Kan extension of BB̄ along B̄. The natural transformation τ is defined, using the
universal property of Bε, as the unique τ : CB̄B ⇒ BCB̄ such that Bεi ◦ τBi

=
εi+1 : CB̄BBi ⇒ BBi for all i. See the appendix for a full proof [33]. 	

The following result characterises the algebra induced on the final coalgebra
by the distributive law of the companion, in terms of the counit ε of the codensity
monad of B̄. This plays an important role for the case C = Set (Sect. 7).

Proposition 5.1. Suppose B is a functor satisfying the hypotheses of
Theorem 5.1. Let (CB̄ , ε) be the codensity monad of B̄, with distributive law
τ and monad structure (CB̄ , η, μ). If Bk+1,k is an isomorphism for some k, then

1. εk : CB̄Bk → Bk is the algebra induced by τ on the final coalgebra;
2. if C has an initial object 0 then εk is isomorphic to μ0.

114 D. Pous and J. Rot

5.1 Codensity and the Companion of a Monotone Function

Throughout this section, let b : L → L be a monotone function on a complete
lattice. By Theorem 5.1, the companion of a monotone function b (viewed as
a functor on a poset category) is given by the right Kan extension of the final
sequence b̄ : Ordop → L along itself. Using Lemma 4.1, we obtain the characteri-
sation of the companion given in the Introduction (5).

Theorem 5.2. The companion t of b is given by

t : x �→
∧

x≤bi

bi

Proof. By Lemma 4.1, the codensity monad Cb̄ can be computed by

Cb̄(x) = (Ranb̄b̄)(x) =
∧

x≤bi

bi ,

a limit that exists since L is a complete lattice. We apply Theorem 5.1 to show
that Cb̄ is the companion of b. The preservation condition of the theorem amounts
to the equality b ◦Ranb̄b̄ = Ranb̄(b ◦ b̄) which, by Lemma 4.1, in turn amounts to

b(
∧

x≤bi

bi) =
∧

x≤bi

b(bi)

for all x ∈ L. The sequence (bi)i∈Ord is decreasing and stagnates at some ordinal
ε; therefore, the two intersections collapse into their last terms, say bδ and b(bδ)
(with δ the greatest ordinal such that x �≤ bδ+1, or ε if such an ordinal does not
exist). The equality follows. 	

In fact, the category K(b) defined in Sect. 4 instantiates to the following: an
object is a monotone function f : L → L such that f(bi) ≤ bi for all i ∈ Ord, and
an arrow from f to g exists iff f ≤ g. The companion t is final in this category.
This yields the following characterisation of functions below the companion.

Proposition 5.2. Let t be the companion of b. For any monotone function f
we have f ≤ t iff ∀i ∈ Ord : f(bi) ≤ bi.

A key intuition about up-to techniques is that they should at least preserve
the greatest fixpoint (i.e., up-to context is valid only when bisimilarity is a
congruence). It is however well-known that this is not a sufficient condition
[38,39]. The above proposition gives a stronger and better intuition: a technique
should preserve all approximations of the greatest fixpoint (the elements of the
final sequence) to be below the companion, and thus sound.

This intuition on complete lattices leads us to the abstract notion of causality
we introduce in the following section.

Companions, Codensity and Causality 115

6 Causality by Codensity

We focus on the codensity monad of the final sequence of an ω-continuous Set
endofunctor B. For such a functor, Bω is the carrier of a final coalgebra and
Lemma 4.2 provides us with a description of the codensity monad in terms of
natural transformations of the form (B̄−)X ⇒ B̄. We show that such natural
transformations correspond to a new abstract notion which we call causal alge-
bras. Based on this correspondence and Theorem 5.1, we will get a concrete
understanding of the companion of B in Sect. 7.

Definition 6.1. Let B,F : Set → Set be functors. An algebra α : FBω → Bω is
called (ω)-causal if for every set X, functions f, g : X → Bω and i < ω:

Bω Bω,i

		������

X

f

������

g 		������ Bi

Bω
Bω,i

������

implies FBω
α �� Bω Bω,i

		������

FX

Ff ��������

Fg
�������� Bi

FBω α
�� Bω

Bω,i

������

Causal algebras form a category causal(B): an object is a pair (F, α : FBω → Bω)
where α is causal, and a morphism from (F, α) to (G, β) is a natural transfor-
mation κ : F ⇒ G such that β ◦ κBω

= α.
An (ω)-causal function on |V | arguments is a causal algebra for the functor

(−)V . Equivalently, α : (Bω)V → Bω is causal iff for every h, k ∈ (Bω)V and
every i < ω: if Bω,i ◦ h = Bω,i ◦ k then Bω,i ◦ α(h) = Bω,i ◦ α(k).

Example 6.1. Recall from Example 2.1 that, for the functor BX = A × X, Bi

is the set of lists of length i, and in particular Bω is the set of streams over A.
We focus first on causal functions. To this end, for σ, τ ∈ Bω, we write σ ≡i τ if
σ and τ are equal up to i, i.e., σ(k) = τ(k) for all k < i. It is easy to verify that
a function of the form α : (Bω)n → Bω is causal iff for all σ1, . . . , σn, τ1, . . . , τn

and all i < ω: if σj ≡i τj for all j ≤ n then α(σ1, . . . , σn) ≡i α(τ1, . . . , τn).
For instance, taking n = 2, alt(σ, τ) = (σ(0), τ(1), σ(2), τ(3), . . .) is causal,

whereas even(σ) = (σ(0), σ(2), . . .) (with n = 1) is not causal. For A = R,
standard operations from the stream calculus such as pointwise stream addition,
shuffle product and shuffle product are all causal.

The above notion of causal functions (with a finite set of arguments V) agrees
with the standard notion of causal stream functions (e.g., [12]). Our notion
of causal algebras generalises it from single functions to algebras for arbitrary
functors. This includes polynomial functors modelling a signature. For A = R,
the algebra α : Pω(Bω) → Bω for the finite powerset functor Pω, defined by
α(S)(n) = min{σ(n) | σ ∈ S} is a causal algebra which is not a causal function.
The algebra β : Pω(Bω) → Bω given by β(S)(n) =

∑
σ∈S σ(n) is not causal

according to Definition 6.1. Intuitively, β({σ, τ})(i) depends on equality of σ
and τ , since addition of real numbers is not idempotent.

Example 6.2. For the functor BX = 2×XA, Bω = P(A∗) is the set of languages
over A (Example 2.2). Given languages L and K, we write L ≡i K if L and K

116 D. Pous and J. Rot

contain the same words of length below i. A function α : (P(A∗))n → P(A∗)
is causal iff for all languages L1, . . . , Ln,K1, . . . ,Kn: if Lj ≡i Kj for all
j ≤ n then α(L1, . . . , Ln) ≡i α(K1, . . . ,Kn). For instance, union, concatena-
tion, Kleene star, and shuffle of languages are all causal. An example of a causal
algebra that is not a causal function is α : P(P(A∗)) → P(A∗) defined by union.

The following result connects causal algebras to natural transformations of
the form FB̄ ⇒ B̄ (which, from Sect. 4, form a category K(B̄)).

Theorem 6.1. Let B,F : Set → Set be functors, and suppose B is ω-
continuous. The category causal(B) of causal algebras is isomorphic to the cate-
gory K(B̄). Concretely, there is a one-to-one correspondence

α : FB̄ ⇒ B̄

αω : FBω → Bω causal

From top to bottom, this is given by evaluation at ω. Moreover, we have β◦κB̄ =
α iff βω ◦ κBω

= αω for any α : FB̄ ⇒ B̄, β : GB̄ ⇒ B̄ and κ : F ⇒ G.

By the above theorem, the universal property of the codensity monad
amounts to the following property of causal algebras.

Corollary 6.1. Suppose B : Set → Set is ω-continuous. Let ε be the counit of
CB̄. Then εω is final in causal(B), i.e., for every causal algebra α : FBω → Bω,
there is a unique natural transformation α̂ : F ⇒ CB̄ such that εω ◦ α̂Bω

= α.

FBω

α̂Bω ��

α
		

		
		

		
CB̄Bω

εω��

Bω

By Lemmas 4.2 and 6.1, we obtain the following concrete description of the
codensity monad CB̄ of the final sequence of a Set endofunctor B, as a functor
of causal functions.

Theorem 6.2. Let B : Set → Set be an ω-continuous functor. The codensity
monad CB̄ of the final sequence of B is given by

CB̄(X) = {α : BX
ω → Bω | α is a causal function},

CB̄(h : X → Y)(α) = λf. α(f ◦ h),

and, for the counit ε : CB̄B̄ ⇒ B̄, we have εω(α : BBω
ω → Bω) = α(idBω

).

Hence, the codensity monad of the final sequence of the functor X �→ A × X of
stream systems maps a set X to the set of all causal stream functions with |X|
arguments. Similarly for the functor X �→ 2×XA: we obtain a functor of causal
functions on languages.

Companions, Codensity and Causality 117

7 Companion of a Set Functor

The previous sections gives us a concrete understanding of the codensity
monad of the final sequence of a Set functor in terms of causal functions, and
Theorem 5.1 provides us with a sufficient condition for this codensity monad to
be the companion. We now focus on several applications of these results.

A rather general class of functors that satisfy the hypotheses of Theorem 5.1 is
given by the polynomial functors. Automata, stream systems, Mealy and Moore
machines, various kinds of trees, and many more are all examples of coalgebras
for polynomial functors (e.g., [15]). A functor B : Set → Set is called polynomial
(in a single variable) if it is isomorphic to a functor of the form

X �→
∐

a∈A

XBa

for some A-indexed collection (Ba)a∈A of sets. As explained in [11, 1.18], a Set
functor B is polynomial if and only if it preserves connected limits. This implies
existence and preservation by B of the codensity monad of B̄, as required by
Theorem 5.1 (see the appendix for details [32]).

Lemma 7.1. If B : Set → Set is polynomial, then it satisfies the hypotheses of
Theorem 5.1.

As a consequence, if B is polynomial, the functor of causal functions in
Theorem 6.2 is the companion of B.

7.1 Solving Equations via Causal Algebras

As explained in the introduction, a distributive law of F over B allows one to
solve systems of equations, formalised in terms of BF -coalgebras, leading to an
expressive coinductive definition technique. This approach is formally supported
by a solution theorem, stated for the companion in Corollary 3.1. Based on the
characterisation of the companion in terms of causal algebras, we obtain a new,
simplified solution theorem: it does not mention distributive laws at all, but is
stated purely in terms of causal algebras.

Theorem 7.1. Let B : Set → Set be a polynomial functor, with final coalgebra
(Bω, ζ). Let α : FBω → Bω be a causal algebra. For every f : X → BFX there
is a unique f† : X → Z such that the following diagram commutes.

X

f

��

f†
�� Bω

ζ

��
BFX

BFf†
�� BFBω

Bα
�� BBω

118 D. Pous and J. Rot

Example 7.1. For the functor BX = A × X, Bω is the set of streams. Take
SX = X2 for F , and consider the coalgebra f : 1 → BS1 with 1 = {∗}, defined
by ∗ �→ (1, (∗, ∗)). Pointwise addition is a causal function on streams, modelled
by an algebra on Bω for the functor S. By Theorem 7.1 we obtain a unique
solution σ ∈ Bω, satisfying σ0 = 1 and σ′ = σ ⊕σ. Similarly, the shuffle product
of streams is causal, so that by applying Theorem 7.1 with that algebra and the
same coalgebra f we obtain a unique stream σ satisfying σ0 = 1, σ′ = σ ⊗ σ.

As explained in the Introduction, this method also allows one to define func-
tions on streams. For instance, for the shuffle product, define a BS-coalgebra
f : (Bω)2 → BS(Bω)2, by f(σ, τ) = (σ0 × τ0, ((σ′, τ), (τ, σ′)). Since addition of
streams is causal, by Theorem 7.1 there is a unique f† : Bω ×Bω → Bω such that
f†(σ, τ)(0) = σ(0) × τ(0) and (f†(σ, τ))′ = (f†(σ′, τ) ⊕ f†(σ, τ ′)), matching the
definition given in the Introduction (2). Notice that not every function defined
in this way is causal; for instance, it is easy to define even (see Example 6.1),
even with the standard coinduction principle (i.e., where F = Id and α = id).

Example 7.2. Consider the functor BX = 2 × XA, whose final coalgebra con-
sists of the set P(A∗) of languages. A BP-coalgebra f : X → 2 × (P(X))A is a
non-deterministic automaton. Taking the causal algebra α : P(P(A∗)) → P(A∗)
defined by union, the unique map f† : X → P(A∗) from Theorem 7.1 is the usual
language semantics of non-deterministic automata.

In [45], a context-free grammar (in Greibach normal form) is modelled as a
BP∗-coalgebra f : X → 2×(P(X)∗)A, and its semantics is defined operationally
by turning f into a deterministic automaton over P(X∗). In [36] this operational
view is related to the semantics of CFGs in terms of language equations. Con-
sider the causal algebra α : P(P(A∗)∗) → P(A∗) defined by union and language
composition: α(S) =

⋃
L1...Lk∈S L1L2 . . . Lk. By Theorem 7.1, any context-free

grammar f has a unique solution in languages, which is the semantics of CFGs
in the usual sense. As such, we obtain an elementary coalgebraic semantics of
CFGs that does not require us to relate it to an operational semantics.

7.2 Causal Algebras and Distributive Laws

Another application of the fact that the codensity monad is the companion is
that the final causal algebra in Corollary 6.1 is, by Proposition 5.1, the alge-
bra induced by a distributive law. Hence, any causal algebra is “definable” by
a distributive law, in the sense that it factors as a (component of a) natural
transformation followed by the algebra induced by a distributive law.

More precisely, suppose B : Set → Set has a final coalgebra (Z, ζ). We say
an algebra α : FZ → Z is definable by a distributive law over B if there exists a
distributive law λ : GB ⇒ BG with induced algebra β : GZ → Z and a natural
transformation κ : F ⇒ G such that the following commutes:

FZ
κZ ��

α
����

��
��

��
GZ

β����
��

��
��

Z

Companions, Codensity and Causality 119

Theorem 7.2. Let B : Set → Set be polynomial. An algebra α : FBω → Bω is
causal if and only if it is definable by a distributive law over B.

Since the functors for stream systems and automata are polynomial, as a special
case of Theorem 7.2 we obtain that a stream function, or a function on languages,
is causal if and only if it is definable by a distributive law.

In [12], a similar result is shown concretely for causal stream functions, and
this is extended to languages in [35]. In both cases, very specific presentations
of distributive laws for the systems at hand are used to present the distributive
law based on a “syntax”, which however is not too clearly distinguished from the
semantics: it consists of a single operation symbol for every causal function. In
our case, in the proof of Theorem 7.2, we use the companion, which consists of
the actual functions rather than a syntactic representation. Indeed, the setting
of Theorem 7.2 applies more abstractly to all causal algebras, not just causal
functions. However, it remains an intriguing question how to obtain a concrete
syntactic characterisation of a distributive law for a given causal algebra.

7.3 Soundness of Up-to Techniques

The contextual closure of an algebra is one of the most powerful up-to tech-
niques, which allows one to exploit algebraic structure in bisimulation proofs.
In [7], it is shown that the contextual closure is sound (compatible) on any bial-
gebra for a distributive law. Here, we move away from distributive laws and
give an elementary condition for soundness of the contextual closure on the final
coalgebra: that the algebra under consideration is causal. In fact, we prove that
this implies that the contextual closure lies below the companion, which not only
gives soundness, but also allows to combine it with other up-to techniques.

Due to space limitations, we can not fully explain the relevant definitions,
and refer to [7] for details. Bisimulations on a B-coalgebra (X, f) are the post-
fixed points of a monotone function bf : RelX → RelX on the lattice RelX of
relations on X, defined by bf (R) = f∗ ◦ Rel(B)(R). Here Rel(B) is the relation
lifting of B, and f∗ is inverse image along f ×f , see, e.g., [15]. Contextual closure
ctxα : RelX → RelX with respect to an algebra α : FX → X is defined dually by
ctxα(R) =

∐
α ◦ Rel(F)(R), where

∐
α is direct image along α × α.

Theorem 7.3. Let B : Set → Set be polynomial, and (Bω, ζ) a final B-coalgebra.
Let tζ be the companion of bζ . For any causal algebra α : FBω → Bω: ctxα ≤ tζ .

This implies that one can safely use the contextual closure for any causal
algebra, such as union, concatenation and Kleene star of languages, or product
and sum of streams. Endrullis et al. [9] prove the soundness of causal contexts in
combination with other up-to techniques, for equality of streams. The soundness
of causal algebras for streams is a special case of Theorem 7.3, but the latter
provides more: being below the companion, it is possible to compose it to other
such functions to obtain combined up-to techniques in a modular fashion, cf. [31].

120 D. Pous and J. Rot

8 Abstract GSOS

To obtain expressive specification formats, Turi and Plotkin [43] use natural
transformations of the form λ : F (B × Id) ⇒ BF ∗, where F ∗ is the free monad
for F . These are the so-called abstract GSOS specifications. We conclude this
article by showing that they are actually equally expressive as plain distributive
laws of a functor F over B.

If B has a final coalgebra (Z, ζ), then any abstract GSOS specification
λ : F (B × Id) ⇒ BF ∗ defines an algebra α : FZ → Z on it, which is the unique
algebra making the following diagram commute.

FZ

α

��

F 〈ζ,id〉�� F (B × Id)Z
λZ �� BF ∗Z

Bα∗

��
Z

ζ
�� BZ

Here α∗ is the Eilenberg-Moore algebra for the free monad corresponding to α.
Intuitively, this algebra gives the interpretation of the operations defined by λ.

Like plain distributive laws (Lemma 5.1), abstract GSOS specifications
induce natural transformations of the form FB̄ ⇒ B̄.

Lemma 8.1. For every λ : F (B × Id) ⇒ BF ∗ there is a unique α : FB̄ ⇒ B̄
such that for all i ∈ Ord: αi+1 = Bα∗

i ◦ λBi
◦ F 〈id, Bi+1,i〉. Moreover, if Bk+1,k

is an isomorphism for some k, then αk is the algebra induced by λ on the final
coalgebra.

This places abstract GSOS specifications within the framework of the com-
panion, constructed via the codensity monad of the final sequence B̄. Whenever
that construction applies (e.g., for polynomial functors), any algebra defined by
an abstract GSOS is thus already definable by a plain distributive law over B.

Theorem 8.1. Suppose B : C → C satisfies the conditions of Theorem 5.1.
Every algebra induced on the final coalgebra by an abstract GSOS specification
λ : F (B × Id) ⇒ BF ∗ is definable by a distributive law over B (cf. Sect. 7.2).

In this sense, abstract GSOS is no more expressive than plain distributive laws.
Note, however, that this does involve moving to a different (larger) syntax.

Remark 8.1. Every abstract GSOS specification λ : F (B × Id) ⇒ BF ∗ corre-
sponds to a unique distributive law λ† : F ∗(B × Id) ⇒ (B × Id)F ∗ of the free
monad F ∗ over the (cofree) copointed functor B × Id, see [23]. The algebra
induced by λ decomposes as the algebra induced by λ† and the canonical natural
transformation F ⇒ F ∗. This implies that every algebra induced by an abstract
GSOS is definable by a distributive law over the copointed functor B × Id.
Theorem 8.1 strengthens this to definability by a distributive law over B.

Companions, Codensity and Causality 121

Acknowledgments. We are grateful to Henning Basold, Filippo Bonchi, Bart Jacobs,
Joshua Moerman, Daniela Petrişan, and Jan Rutten for valuable discussions and
comments.

References

1. Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols.
Nord. J. Comput. 5(4), 267 (1998)

2. Abramsky, S.: The lazy lambda calculus. In: Research Topics in Functional Pro-
gramming, pp. 65–116. Addison Wesley (1990)

3. Adámek, J.: Free algebras and automata realizations in the language of categories.
Commentationes Mathematicae Universitatis Carolinae 15(4), 589–602 (1974)

4. Barr, M.: Algebraically compact functors. J. Pure Appl. Algebra 82(3), 211–231
(1992)

5. Bartels, F.: On generalised coinduction and probabilistic specification formats.
PhD thesis, CWI, Amsterdam, April 2004

6. Bonchi, F., Petrisan, D., Pous, D., Rot, J.: Coinduction up-to in a fibrational
setting. In: Proceeding CSL-LICS, pp. 20:1–20:9. ACM (2014)

7. Bonchi, F., Petrişan, D., Pous, D., Rot, J.: A general account of coinduction up-to.
Acta Informatica, pp. 1–64 (2016)

8. Cordier, J.-M., Porter, T.: Shape Theory: Categorical Methods of Approximation.
Mathematics and its Applications. Ellis Horwood, New York (1989). Reprinted by
Dover, 2008

9. Endrullis, J., Hendriks, D., Bodin, M.: Circular coinduction in coq using
bisimulation-up-to techniques. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) ITP 2013. LNCS, vol. 7998, pp. 354–369. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-39634-2 26

10. Fournet, C., Lévy, J.-J., Schmitt, A.: An asynchronous, distributed implementation
of mobile ambients. In: Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito,
T. (eds.) TCS 2000. LNCS, vol. 1872, pp. 348–364. Springer, Heidelberg (2000).
doi:10.1007/3-540-44929-9 26

11. Gambino, N., Kock, J.: Polynomial functors and polynomial monads. In: Proceed-
ing of Mathematical proceedings of the cambridge philosophical society, vol. 154,
pp. 153–192. Cambridge University Press (2013)

12. Hansen, H.H., Kupke, C., Rutten, J.: Stream differential equations: specification
formats and solution methods. CoRR, abs/1609.08367 (2016)

13. Hur, C., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: Proceeding of POPL, pp. 193–206. ACM (2013)

14. Jacobs, B.: Distributive laws for the coinductive solution of recursive equations.
Inf. Comput. 204(4), 561–587 (2006)

15. Jacobs, B.: Introduction to coalgebra. Towards mathematics of states and obser-
vations. Draft (2014)

16. Jeffrey, A., Rathke, J.: A theory of bisimulation for a fragment of concurrent ML
with local names. Theor. Comput. Sci. 323(1–3), 1–48 (2004)

17. Klin, B.: Bialgebras for structural operational semantics: an introduction. Theor.
Comput. Sci. 412(38), 5043–5069 (2011)

18. Klin, B., Nachyla, B.: Presenting morphisms of distributive laws. In: Proceeding
CALCO, vol. 35. LIPIcs, pp. 190–204. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2015)

http://dx.doi.org/10.1007/978-3-642-39634-2_26
http://dx.doi.org/10.1007/978-3-642-39634-2_26
http://dx.doi.org/10.1007/3-540-44929-9_26

122 D. Pous and J. Rot

19. Knaster, B.: Un théorème sur les fonctions d’ensembles. Annales de la Socit Polon-
aise de Mathmatiques 6, 133–134 (1928)

20. Lane, S.M.: Categories for the Working Mathematician. Springer, New York (1998)
21. Leinster, T.: Codensity and the ultrafilter monad. Theory and Applications of

Categories 28(13), 332–370 (2013)
22. Lenisa, M., Power, J., Watanabe, H.: Distributivity for endofunctors, pointed and

co-pointed endofunctors, monads and comonads. Electron. Notes Theor. Comput.
Sci. 33, 230–260 (2000)

23. Lenisa, M., Power, J., Watanabe, H.: Category theory for operational semantics.
Theor. Comput. Sci. 327(1–2), 135–154 (2004)

24. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7),
107–115 (2009)

25. Milius, S., Moss, L.S., Schwencke, D.: Abstract GSOS rules and a modular treat-
ment of recursive definitions. Logical Methods Comput. Sci. 9(3) (2013)

26. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
27. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I/II. Inf. Comput.

100(1), 1–77 (1992)
28. nLab article. Kan extension 2016. (Revision 103), http://ncatlab.org/nlab/show/

Kan+extension
29. Parrow, J., Weber, T.: The largest respectful function. Logical Methods Comput.

Sci. 12(2) (2016)
30. Pous, D.: Complete lattices and up-to techniques. In: Shao, Z. (ed.) APLAS

2007. LNCS, vol. 4807, pp. 351–366. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76637-7 24

31. Pous,D.: Coinduction all the way up. In: Proceeding LICS, pp. 307-316. ACM
(2016)

32. Pous, D., Rot, J.: Companions, Codensity, and Causality. In: Esparza, J.,
Murawski, A.S. (eds.) FOSSACS 2017 LNCS, vol. 10203, pp. 106–123.
Springer, Heidelberg (2017). (version with proofs), https://hal.archives-ouvertes.
fr/hal-01442222

33. Pous, D., Sangiorgi, D.: Advanced Topics in Bisimulation and Coinduction, chapter
about “Enhancements of the coinductive proof method”. Cambridge University
Press (2011)

34. Power, J., Watanabe, H.: Combining a monad and a comonad. Theor. Comput.
Sci. 280(1–2), 137–162 (2002)

35. Rot, J., Bonsangue, M.M., Rutten, J.: Proving language inclusion and equivalence
by coinduction. Inf. Comput. 246, 62–76 (2016)

36. Rot, J., Winter, J.: On language equations and grammar coalgebras for context-free
languages. In: Proceeding CALCO Early Ideas (2013)

37. Rutten, J.J.M.M.: A coinductive calculus of streams. Math. Struct. Comput. Sci.
15(1), 93–147 (2005)

38. Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comput. Sci. 8,
447–479 (1998)

39. Sangiorgi, D., Walker, D.: The π-calculus: a theory of mobile processes. Cambridge
University Press (2001)

40. Sevćık, J., Vafeiadis, V., Nardelli, F.Z., Jagannathan, S., Sewell, P.: CompCertTSO:
a verified compiler for relaxed-memory concurrency. J. ACM 60(3), 22 (2013)

41. Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing the powerset con-
struction, coalgebraically. In: Proceeding FSTTCS, pp. 272–283 (2010)

42. Tarski, A.: A lattice-theoretical fixpoint theorem, its applications. Pacific J. Math.
5(2), 285–309 (1955)

http://ncatlab.org/nlab/show/Kan+extension
http://ncatlab.org/nlab/show/Kan+extension
http://dx.doi.org/10.1007/978-3-540-76637-7_24
http://dx.doi.org/10.1007/978-3-540-76637-7_24
https://hal.archives-ouvertes.fr/hal-01442222
https://hal.archives-ouvertes.fr/hal-01442222

Companions, Codensity and Causality 123

43. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Pro-
ceeding LICS, pp. 280-291. IEEE (1997)

44. Watanabe, H.: Well-behaved translations between structural operational seman-
tics. Electron. Notes Theor. Comput. Sci. 65(1), 337–357 (2002)

45. Winter, J., Bonsangue, M.M., Rutten, J.J.M.M.: Coalgebraic characterizations of
context-free languages. Logical Methods Comput. Sci. 9(3) (2013)

Nominal Automata with Name Binding

Lutz Schröder1(B), Dexter Kozen2, Stefan Milius1, and Thorsten Wißmann1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Lutz.Schroeder@fau.de

2 Cornell University, Ithaca, New York, USA

Abstract. Nominal sets are a convenient setting for languages over infi-
nite alphabets, i.e. data languages. We introduce an automaton model
over nominal sets, regular nondeterministic nominal automata (RNNA),
which have a natural coalgebraic definition using abstraction sets to cap-
ture transitions that read a fresh letter from the input word. We prove
a Kleene theorem for RNNAs w.r.t. a simple expression language that
extends nominal Kleene algebra (NKA) with unscoped name binding,
thus remedying the known failure of the expected Kleene theorem for
NKA itself. We analyse RNNAs under two notions of freshness: global
and local. Under global freshness, RNNAs turn out to be equivalent to
session automata, and as such have a decidable inclusion problem. Under
local freshness, RNNAs retain a decidable inclusion problem, and trans-
late into register automata. We thus obtain decidability of inclusion for a
reasonably expressive class of nondeterministic register automata, with
no bound on the number of registers.

1 Introduction

Data languages are languages over infinite alphabets, regarded as modeling the
communication of values from infinite data types such as nonces [23], channel
names [17], process identifiers [6], URL’s [2], or data values in XML documents
(see [27] for a summary). There is a plethora of automata models for data lan-
guages [3,16,30], which can be classified along several axes. One line of division
is between models that use explicit registers and have a finite-state description
(generating infinite configuration spaces) on the one hand, and more abstract
models phrased as automata over nominal sets [28] on the other hand. The latter
have infinitely many states but are typically required to be orbit-finite, i.e. to
have only finitely many states up to renaming implicitly stored letters. There
are correspondences between the two styles; e.g. Bojańczyk, Klin, and Lasota’s
nondeterministic orbit-finite automata (NOFA) [5] are equivalent to Kamin-
ski and Francez’ register automata (RAs) [18] (originally called finite memory
automata), more precisely to RAs with nondeterministic reassignment [20]. A
second distinction concerns notions of freshness: global freshness requires that
the next letter to be consumed has not been seen before, while local freshness
postulates only that the next letter is distinct from the (boundedly many) letters
currently stored in the registers.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 124–142, 2017.
DOI: 10.1007/978-3-662-54458-7 8

Nominal Automata with Name Binding 125

RNNAs NOFAs Register Based
Global Freshness

Def. 3.3 (2)

Local Freshness
Def. 3.3 (3)

RA

name-dropping RA

Session
Automata

name-dropping,
non-spontaneous

non-spontaneous

��

Section 6Corollary 6.6

[5]

Fig. 1. Expressivity of selected data language formalisms (restricted to empty initial
register assignment). FSUBAs are properly contained in name-dropping RA.

Although local freshness looks computationally more natural, nondeterminis-
tic automata models (typically more expressive than deterministic ones [21]) fea-
turing local freshness tend to have undecidable inclusion problems. This includes
RAs (unless restricted to two registers [18]) and NOFAs [5,27] as well as vari-
able automata [16]. Finite-state unification-based automata (FSUBAs) [19] have
a decidable inclusion problem but do not support freshness. Contrastingly, ses-
sion automata, which give up local freshness in favor of global freshness, have a
decidable inclusion problem [6].

Another formalism for global freshness is nominal Kleene algebra (NKA) [13].
It has been shown that a slight variant of the original NKA semantics satisfies
one half of a Kleene theorem [21], which states that NKA expressions can be con-
verted into a species of nondeterministic nominal automata with explicit name
binding transitions (the exact definition of these automata being left implicit in
op. cit.); the converse direction of the Kleene theorem fails even for deterministic
nominal automata.

Here, we introduce regular bar expressions (RBEs), which differ from NKA
in making name binding dynamically scoped. RBEs are just regular expressions
over an extended alphabet that includes bound letters, and hence are equiva-
lent to the corresponding nondeterministic finite automata, which we call bar
NFAs. We equip RBEs with two semantics capturing global and local freshness,
respectively, with the latter characterized as a quotient of the former: For global
freshness, we insist on bound names being instantiated with names not seen
before, while in local freshness semantics, we accept also names that have been
read previously but will not be used again; this is exactly the usual behaviour
of α-equivalence, and indeed is formally defined using this notion. Under global
freshness, bar NFAs are essentially equivalent to session automata.

We prove bar NFAs to be expressively equivalent to a nondeterministic nom-
inal automaton model with name binding, regular nondeterministic nominal
automata (RNNAs). The states of an RNNA form an orbit-finite nominal set;
RNNAs are distinguished from NOFAs by having both free and bound transi-
tions and being finitely branching up to α-equivalence of free transitions. This
is equivalent to a concise and natural definition of RNNAs as coalgebras for a
functor on nominal sets (however, this coalgebraic view is not needed to under-
stand our results). From the equivalence of bar NFAs and RNNAs we obtain

126 L. Schröder et al.

(i) a full Kleene theorem relating RNNAs and RBEs; (ii) a translation of NKA
into RBEs, hence, for closed expressions, into session automata; and (iii) decid-
ability in parametrized PSpace of inclusion for RBEs, implying the known
ExpSpace decidability result for NKA [21].

Under local freshness, RNNAs correspond to a natural subclass of RAs
(equivalently, NOFAs) defined by excluding nondeterministic reassignment and
by enforcing a policy of name dropping, which can be phrased as “at any time,
the automaton may nondeterministically lose letters from registers” – thus free-
ing the register but possibly getting stuck when lost names are expected to be
seen later. This policy is compatible with verification problems that relate to
scoping, such as ‘files that have been opened need to be closed before termi-
nation’ or ‘currently uncommitted transactions must be either committed or
explicitly aborted’. Unsurprisingly, RNNAs with local freshness semantics are
strictly more expressive than FSUBAs; the relationships of the various models
are summarised in Fig. 1. We show that RNNAs nevertheless retain a decidable
inclusion problem under local freshness, again in parametrized PSpace, using an
algorithm that we obtain by varying the one for global freshness. This is in spite
of the fact that RNNAs (a) do not impose any bound on the number of registers,
and (b) allow unrestricted nondeterminism and hence express languages whose
complement cannot be accepted by any RA, such as ‘some letter occurs twice’.

Further Related Work. A Kleene theorem for deterministic nominal
automata and expressions with recursion appears straightforward [21]. Kurz
et al. [24] introduce regular expressions for languages over words with scoped
binding, which differ technically from those used in the semantics of NKA and
regular bar expressions in that they are taken only modulo α-equivalence, not
the other equations of NKA concerning scope extension of binders. They satisfy
a Kleene theorem for automata that incorporate a bound on the nesting depth
of binding, rejecting words that exceed this depth.

Data languages are often represented as products of a classical finite alphabet
and an infinite alphabet; for simplicity, we use just the set of names as the
alphabet. Our unscoped name binders are, under local semantics, similar to the
binders in regular expressions with memory, which are equivalent to unrestricted
register automata [25].

Automata models for data languages, even models beyond register automata
such as fresh-register automata [33] and history-register automata [15], often
have decidable emptyness problems, and their (less expressive) deterministic
restrictions then have decidable inclusion problems. Decidability of inclusion
can be recovered for nondeterministic or even alternating register-based models
by drastically restricting the number of registers, to at most two in the nonde-
terministic case [18] and at most one in the alternating case [10]. The complexity
of the inclusion problem for alternating one-register automata is non-primitive
recursive. Unambiguous register automata have a decidable inclusion problem
and are closed under complement as recently shown by Colcombet et al. [8,9].
RNNAs and unambiguous RAs are incomparable: Closure under complement

Nominal Automata with Name Binding 127

implies that the language L = ‘some letter occurs twice’ cannot be accepted
by an unambiguous RA, as its complement cannot be accepted by any RA [4].
However, L can be accepted by an RNNA (even by an FSUBA). Failure of the
reverse inclusion is due to name dropping.

Data walking automata [26] have strong navigational capabilities but no reg-
isters, and are incomparable with unrestricted RAs; we do not know how they
relate to name-dropping RAs. Their inclusion problem is decidable even under
nondeterminism but at least as hard as Petri net reachability, in particular not
known to be elementary.

2 Preliminaries

We summarise the basics of nominal sets; [28] offers a comprehensive introduc-
tion.

Group Actions. Recall that an action of a group G on a set X is a map
G × X → X, denoted by juxtaposition or infix ·, such that π(ρx) = (πρ)x and
1x = x for π, ρ ∈ G, x ∈ X. A G-set is a set X equipped with an action of G.
The orbit of x ∈ X is the set {πx | π ∈ G}. A function f : X → Y between
G-sets X,Y is equivariant if f(πx) = π(fx) for all π ∈ G, x ∈ X. Given a G-set
X, G acts on subsets A ⊆ X by πA = {πx | x ∈ A}. For A ⊆ X and x ∈ X, we
put

fixx = {π ∈ G | πx = x} and FixA =
⋂

x∈A fixx.

Note that elements of fixA and FixA fix A setwise and pointwise, respectively.

Nominal Sets. Fix a countably infinite set A of names, and write G for the
group of finite permutations on A. Putting πa = π(a) makes A into a G-set.
Given a G-set X and x ∈ X, a set A ⊆ A supports x if FixA ⊆ fixx, and
x has finite support if some finite A supports x. In this case, there is a least
set supp(x) supporting x. We say that a ∈ A is fresh for x, and write a # x, if
a /∈ supp(x). A nominal set is a G-set all whose elements have finite support. For
every equivariant function f between nominal sets, we have supp(fx) ⊆ supp(x).
The function supp is equivariant, i.e. supp(πx) = π(supp(x)) for π ∈ G. Hence
�supp(x1) = �supp(x2) whenever x1, x2 are in the same orbit of a nominal set
(we use � for cardinality). A subset S ⊆ X is finitely supported (fs) if S has finite
support with respect to the above-mentioned action of G on subsets; equivariant
if πx ∈ S for all π ∈ G and x ∈ S (which implies supp(S) = ∅); and uniformly
finitely supported (ufs) if

⋃
x∈S supp(x) is finite [32]. We denote by Pfs(X) and

Pufs(X) the sets of fs and ufs subsets of a nominal set X, respectively. Any ufs
set is fs but not conversely; e.g. the set A is fs but not ufs. Moreover, any finite
subset of X is ufs but not conversely; e.g. the set of words an for fixed a ∈ A

is ufs but not finite. A nominal set X is orbit-finite if the action of G on it has
only finitely many orbits.

128 L. Schröder et al.

Lemma 2.1 ([12], Theorem 2.29). If S is ufs, then supp(S) =
⋃

x∈S supp(x).

Lemma 2.2. Every ufs subset of an orbit-finite set X is finite.

For a nominal set X we have the abstraction set [11]

[A]X = (A × X)/∼

where ∼ abstracts the notion of α-equivalence as known from calculi with name
binding, such as the λ-calculus: (a, x) ∼ (b, y) iff (c a) · x = (c b) · y for any fresh
c. This captures the situation where x and y differ only in the concrete name
given to a bound entity that is called a in x and b in y, respectively. We write
〈a〉x for the ∼-equivalence class of (a, x). E.g. 〈a〉{a, d} = 〈b〉{b, d} in [A]Pω(A)
provided that d /∈ {a, b}.

3 Strings and Languages with Name Binding

As indicated in the introduction, we will take a simplified view of data languages
as languages over an infinite alphabet; we will use the set A of names, introduced
in Sect. 2, as this alphabet, so that a data language is just a subset A ⊆ A

∗. Much
like nominal Kleene algebra (NKA) [13], our formalism will generate data words
from more abstract strings that still include a form of name binding. Unlike in
NKA, our binders will have unlimited scope to the right, a difference that is in
fact immaterial at the level of strings but will be crucial at the level of regular
expressions. We write a bound occurrence of a ∈ A as a, and define an extended
alphabet Ā by

Ā = A ∪ { a | a ∈ A}.

Definition 3.1. A bar string is a word over Ā, i.e. an element of Ā
∗. The set

Ā
∗ is made into a nominal set by the letter-wise action of G. The free names

occurring in a bar string w are those names a that occur in w to the left of any
occurrence of a. A bar string is clean if its bound letters a are mutually distinct
and distinct from all its free names. We write FN(w) for the set of free names
of w, and say that w is closed if FN(w) = ∅; otherwise, w is open. We define
α-equivalence ≡α on bar strings as the equivalence (not : congruence) generated
by w av ≡α w bu if 〈a〉v = 〈b〉u in [A]Ā∗ (Sect. 2). We write [w]α for the α-
equivalence class of w. For a bar string w, we denote by ub(w) ∈ A

∗ (for unbind)
the word arising from w by replacing all bound names a with the corresponding
free name a.

The set FN(w) is invariant under α-equivalence, so we have a well-defined notion
of free names of bar strings modulo ≡α. Every bar string is α-equivalent to a
clean one.

Example 3.2. We have [ab cab]α �= [ab aab]α = [ab ccb]α �= [ap ccp]α where
FN(ab cab) = FN(ab aab) = {a, b}. The bar string ab aab is not clean, and an
α-equivalent clean one is ab ccb.

Nominal Automata with Name Binding 129

Definition 3.3. A literal language is a set of bar strings, and a bar language is
an fs set of bar strings modulo α-equivalence, i.e. an fs subset of

M̄ := Ā
∗/≡α. (1)

A literal or bar language is closed if all bar strings it contains are closed.

Bar languages capture global freshness; in fact, the operator N defined by

N(L) = {ub(w) | w clean, [w]α ∈ L} ⊆ A
∗ (2)

is injective on closed bar languages. Additionally, we define the local freshness
semantics D(L) of a bar language L by

D(L) = {ub(w) | [w]α ∈ L} ⊆ A
∗. (3)

That is, D(L) is obtained by taking all representatives of α-equivalence classes in
L and then removing bars, while N takes only clean representatives. Intuitively,
D enforces local freshness by blocking α-renamings of bound names into names
that have free occurrences later in the bar string. The operator D fails to be
injective; e.g. (omitting notation for α-equivalence classes) D({ a b, aa}) = A

2 =
D({ a b}). This is what we mean by our slogan that local freshness is a quotient
of global freshness.

Remark 3.4. Again omitting α-equivalence classes, we have D({ a b}) = A
2

because a b ≡α a a. On the other hand, D({ a ba}) = {cdc ∈ A
3 | c �= d}

because a ba �≡α a aa. We see here that since our local freshness semantics is
based on α-equivalence, we can only insist on a letter d being distinct from a
previously seen letter c if c will be seen again later. This resembles the process
of register allocation in a compiler, where program variables are mapped to
CPU registers (see [1, Sect. 9.7] for details): Each time the register allocation
algorithm needs a register for a variable name (v), any register may be (re)used
whose current content is not going to be accessed later.

Remark 3.5. In dynamic sequences [14], there are two dynamically scoped con-
structs 〈a and a〉 for dynamic allocation and deallocation, respectively, of a name
a; in this notation, our a corresponds to 〈aa.

4 Regular Bar Expressions

Probably the most obvious formalism for bar languages are regular expressions,
equivalently finite automata, over the extended alphabet Ā. Explicitly:

Definition 4.1. A nondeterministic finite bar automaton, or bar NFA for short,
over A is an NFA A over Ā. We call transitions of type q

a−→ q in A free transitions
and transitions of type q

a−→ q bound transitions. The literal language L0(A) of A

130 L. Schröder et al.

is the language accepted by A as an NFA over Ā. The bar language Lα(A) ⊆ M̄
(see (1)) accepted by A is defined as

Lα(A) = L0(A)/≡α.

Generally, we denote by L0(q) the Ā-language accepted by the state q in A and
by Lα(q) the quotient of L0(q) by α-equivalence. The degree deg(A) of A is the
number of names a ∈ A that occur in transitions q

a−→ q′ or q
a−→ q′ in A.

Similarly, a regular bar expression is a regular expression r over Ā; the literal
language L0(r) ⊆ Ā

∗ defined by r is the language expressed by r as a regular
expression, and the bar language defined by r is Lα(r) = L0(r)/≡α. The degree
deg(r) of r is the number of names a occurring as either a or a in r.

Example 4.2. We have Lα(ac + cd) = {ac} ∪ [cd]α. Under local freshness
semantics, this bar language contains for example ad, bd, and cd but not dd.
D(Lα

(
(a+ a)∗)) is the same language as D(Lα(a∗)), even though (a+ a)∗ and

a∗ define different bar languages.

Remark 4.3. Up to the fact that we omit the finite component of the alphabet
often considered in data languages, a session automaton [6] is essentially a bar
NFA (where free names a are denoted as a↑, and bound names a as a�). It
defines an A-language and interprets bound transitions for a as binding a to
some globally fresh name. In the light of the equivalence of global freshness
semantics and bar language semantics in the closed case, session automata are
thus essentially the same as bar NFAs; the only difference concerns the treatment
of open bar strings: While session automata explicitly reject bar strings that fail
to be closed (well-formed [6]), a bar NFA will happily accept open bar strings.
Part of the motivation for this permissiveness is that we now do not need to insist
on regular bar expressions to be closed; in particular, regular bar expressions are
closed under subexpressions.

Example 4.4. In terms of A-languages, bar NFAs under global freshness
semantics, like session automata, can express the language “all letters are dis-
tinct” (as a∗) but not the universal language A

∗ [6].

Example 4.5. The bar language L = {ε, ba, ba ab, ba ab ba, ba ab ba ab . . . }
(omitting equivalence classes) is defined by the regular bar expression
(ba ab)∗(1+ ba) and accepted by the bar NFA A with four states s, t, u, v, where
s is initial and s and u are final, and transitions s

b−→ t
a−→ u

a−→ v
b−→ s. Under

global freshness, the closed bar language aL defines the language of odd-length
words over A with identical letters in positions 0 and 2 (if any), and with every
letter in an odd position being globally fresh and repeated three positions later.
Under local freshness, aL defines the A-language consisting of all odd-length
words over A that contain the same letters in positions 0 and 2 (if any) and
repeat every letter in an odd position three positions later (if any) but no ear-
lier ; that is, the bound names are indeed interpreted as being locally fresh. The
reason for this is that, e.g., in the bar string a ba ab, α-renaming of the bound

Nominal Automata with Name Binding 131

name b into a is blocked by the occurrence of a after b; similarly, the second
occurrence of a cannot be renamed into b.

Example 4.6. The choice of fresh letters may restrict the branching later: The
language D(Lα(a(c + dd))) = {ac, dc, add, cdd | a ∈ A\{c, d}} contains neither
bbb nor cc.

We will see in the sequel that bar NFAs and regular bar expressions are expres-
sively equivalent to several other models, specifically

– under both semantics, to a nominal automaton model with name binding that
we call regular nondeterministic nominal automata;

– under local freshness, to a class of nondeterministic orbit finite automata [5];
and consequently to a class of register automata.

Nominal Kleene Algebra. We recall that expressions r, s of nominal Kleene
algebra (NKA) [13], briefly NKA expressions, are defined by the grammar

r, s::=0 | 1 | a | r + s | rs | r∗ | νa. r (a ∈ A).

Kozen et al. [21,22] give a semantics of NKA in terms of ν-languages. These are
fs languages over words with binding, so called ν-strings, which are either 1 or
ν-regular expressions formed using only names a ∈ A, sequential composition,
and name binding ν, taken modulo the equational laws of NKA [13], including
α-equivalence and laws for scope extension of binding. In this semantics, a binder
νa is just interpreted as itself, and all other clauses are standard. It is easy to
see that the nominal set of ν-strings modulo the NKA laws is isomorphic to the
universal bar language M̄ ; one converts bar strings into ν-strings by replacing
any occurrence of a with νa.a, with the scope of the binder extending to the end
of the string. On closed expressions, ν-language semantics is equivalent to the
semantics originally defined by Gabbay and Ciancia [13,22], which is given by
the operator N defined in (2) (now applied also to languages containing open bar
strings). Summing up, we can see NKA as another formalism for bar languages.
We will see in the next section that regular bar expressions are strictly more
expressive than NKA; the crucial difference is that the name binding construct
νa of NKA has a static scope, while bound names a in regular bar expressions
have dynamic scope.

Remark 4.7. On open expressions, the semantics of [13] and [21,22] differ as
N may interpret bound names with free names appearing elsewhere in the
expression; e.g. the NKA expressions a + νa. a and νa. a have distinct bar lan-
guage semantics {a, a} and { a}, respectively, which are both mapped to A

under N . For purposes of expressivity comparisons, we will generally restrict to
closed expressions as well as “closed” automata and languages in the sequel. For
automata, this typically amounts to the initial register assignment being empty,
and for languages to being equivariant subsets of Ā

∗.

132 L. Schröder et al.

5 Regular Nondeterministic Nominal Automata

We proceed to develop a nominal automaton model that essentially introduces a
notion of configuration space into the picture, and will turn out to be equivalent
to bar NFAs. The deterministic restriction of our model has been considered in
the context of NKA [21].

Definition 5.1. A regular nondeterministic nominal automaton (RNNA) is a
tuple A = (Q,→, s, F) consisting of

– an orbit-finite set Q of states, with an initial state s ∈ Q;
– an equivariant subset → of Q× Ā ×Q, the transition relation, where we write

q
α−→ q′ for (q, α, q′) ∈ →; transitions of type q

a−→ q′ are called free, and those
of type q

a−→ q′ bound ;
– an equivariant subset F ⊆ Q of final states

such that the following conditions are satisfied:

– The relation → is α-invariant, i.e. closed under α-equivalence of transitions,
where transitions q

a−→ q′ and p
b−→ p′ are α-equivalent if q = p and 〈a〉q′ =

〈b〉p′.
– The relation → is finitely branching up to α-equivalence, i.e. for each state q

the sets {(a, q′) | q
a−→ q′} and {〈a〉q′ | q

a−→ q′} are finite (equivalently ufs, by
Lemma 2.2).

The degree deg(A) = max{�supp(q) | q ∈ Q} of A is the maximum size of
supports of states in A.

Remark 5.2. For readers familiar with universal coalgebra [29], we note that
RNNAs have a much more compact definition in coalgebraic terms, and in fact
we regard the coalgebraic definition as evidence that RNNAs are a natural class
of automata; however, no familiarity with coalgebras is required to understand
the results of this paper. Coalgebraically, an RNNA is simply an orbit-finite
coalgebra γ : Q → FQ for the functor F on Nom given by

FX = 2 × Pufs(A × X) × Pufs([A]X),

together with an initial state s ∈ Q. The functor F is a nondeterministic variant
of the functor KX = 2×XA × [A]X whose coalgebras are deterministic nominal
automata [21]. Indeed Kozen et al. [21] show that the ν-languages, equivalently
the bar languages, form the final K-coalgebra.

We proceed to define the language semantics of RNNAs.

Definition 5.3. An RNNA A, with data as above, (literally) accepts a bar string
w ∈ Ā

∗ if s
w−→ q for some q ∈ F , where we extend the transition notation w−→ to

bar strings in the usual way. The literal language accepted by A is the set L0(A)
of bar strings accepted by A, and the bar language accepted by A is the quotient
Lα(A) = L0(A)/≡α.

Nominal Automata with Name Binding 133

A key property of RNNAs is that supports of states evolve in the expected way
along transitions (cf. [21, Lemma 4.6] for the deterministic case):

Lemma 5.4. Let A be an RNNA. Then the following hold.

1. If q
a−→ q′ in A then supp(q′) ∪ {a} ⊆ supp(q).

2. If q
a−→ q′ in A then supp(q′) ⊆ supp(q) ∪ {a}.

In fact, the properties in the lemma are clearly also sufficient for ufs branching.
From Lemma 5.4, an easy induction shows that for any state q in an RNNA and
any w literally accepted by A from q, we have FN(w) = supp([w]α) ⊆ supp(q).
Hence:

Corollary 5.5. Let A be an RNNA. Then Lα(A) is ufs; specifically, if s is the
initial state of A and w ∈ Lα(A), then supp(w) ⊆ supp(s).

We have an evident notion of α-equivalence of paths in RNNAs, defined analo-
gously as for bar strings. Of course, α-equivalent paths always start in the same
state. The set of paths of an RNNA A is closed under α-equivalence. However,
this does not in general imply that L0(A) is closed under α-equivalence; e.g. for
A being

s() a−→ t(a) b−→ u(a, b) (4)

(with a, b ranging over distinct names in A), where s() is initial and the states
u(−,−) are final, we have a b ∈ L0(A) but the α-equivalent a a is not in L0(A).
Crucially, closure of L0(A) under α-equivalence is nevertheless without loss of
generality, as we show next.

Definition 5.6. An RNNA A is name-dropping if for every state q in A and
every subset N ⊆ supp(q) there exists a state q|N in A that restricts q to N ;
that is, supp(q|N) = N , q|N is final if q is final, and q|N has at least the same
incoming transitions as q (i.e. whenever p

α−→ q then p
α−→ q|N), and as many

of the outgoing transitions of q as possible; i.e. q|N a−→ q′ whenever q
a−→ q′ and

supp(q′) ∪ {a} ⊆ N , and q|N a−→ q′ whenever q
a−→ q′ and supp(q′) ⊆ N ∪ {a}.

The counterexample shown in (4) fails to be name-dropping, as no state restricts
q = u(a, b) to N = {b}. The following lemma shows that closure under α-
equivalence is restored under name-dropping:

Lemma 5.7. Let A be a name-dropping RNNA. Then L0(A) is closed under
α-equivalence, i.e. L0(A) = {w | [w]α ∈ Lα(A)}.

Finally, we can close a given RNNA under name dropping, preserving the bar
language:

Lemma 5.8. Given an RNNA of degree k with n orbits, there exists a bar
language-equivalent name-dropping RNNA of degree k with at most n2k orbits.

134 L. Schröder et al.

Proof (Sketch). From an RNNA A, construct an equivalent name-dropping
RNNA with states of the form

q|N := Fix(N)q

where q is a state in A, N ⊆ supp(q), and Fix(N)q denotes the orbit of q under
Fix(N). The final states are the q|N with q final in A, and the initial state is
s|supp(s), where s is the initial state of A. As transitions, we take

– q|N a−→ q′|N ′ whenever q
a−→ q′, N ′ ⊆ N , and a ∈ N , and

– q|N a−→ q′|N ′ whenever q
b−→ q′′, N ′′ ⊆ supp(q′′) ∩ (N ∪ {b}), and 〈a〉(q′|N ′) =

〈b〉(q′′|N ′′). �

Example 5.9. Closing the RNNA from (4) under name dropping as per
Lemma 5.8 yields additional states that we may denote u(⊥, b) (among oth-
ers), with transitions t(a) b−→ u(⊥, b); now, 〈b〉u(⊥, b) = 〈a〉u(⊥, a), so a a is
(literally) accepted.

Equivalence to Bar NFAs. We proceed to show that RNNAs are expressively
equivalent to bar NFAs by providing mutual translations. In consequence, we
obtain a Kleene theorem connecting RNNAs and regular bar expressions.

Construction 5.10. We construct an RNNA Ā from a given bar NFA A with
set Q of states, already incorporating closure under name dropping as per
Lemma 5.8. For q ∈ Q, put Nq = supp(Lα(q)). The set Q̄ of states of Ā consists
of pairs

(q, πFN) (q ∈ Q, N ⊆ Nq)

where FN abbreviates Fix(N) and πFN denotes a left coset. Left cosets for FN

can be identified with injective renamings N → A; intuitively, (q, πFN) restricts
q to N and renames N according to π. (That is, we construct a configuration
space, as in other translations into NOFAs [5,7]; here, we create virtual registers
according to supp(Lα(q)).) We let G act on states by π1·(q, π2FN) = (q, π1π2FN).
The initial state of Ā is (s, FNs

), where s is the initial state of A; a state (q, πFN)
is final in Ā iff q is final in A. Free transitions in Ā are given by

(q, πFN)
π(a)−−−→ (q′, πFN ′) whenever q

a−→ q′ and N ′ ∪ {a} ⊆ N

and bound transitions by

(q, πFN) a−→ (q′, π′FN ′) whenever q
b−→ q′, N ′ ⊆ N∪{b}, 〈a〉π′FN ′ = 〈π(b)〉πFN ′ .

Theorem 5.11. Ā is a name-dropping RNNA with at most |Q|2deg(A) orbits,
deg(Ā) = deg(A), and Lα(Ā) = Lα(A).

Nominal Automata with Name Binding 135

Example 5.12. The above construction converts the bar NFA A of
Example 4.5, i.e. the expression (ba ab)∗(1 + ba), into an RNNA that is sim-
ilar to the one appearing in the counterexample to one direction of the Kleene
theorem for NKA [21] (cf. Remark 5.15): By the above description of left cosets
for FN , we annotate every state q with a list of �supp(Lα(q)) entries that are
either (pairwise distinct) names or ⊥, indicating that the corresponding name
from supp(Lα(q)) has been dropped. We can draw those orbits of the resulting
RNNA that have the form (q, πNq), i.e. do not drop any names, as

t(c, b)
s(c) u(b)

v(b, c)

cb

cb

for b �= c, with s(c), u(b) final for all b, c ∈ A,
and s(c) initial.

Additional states then arise from name dropping; e.g. for t we have additional
states t(⊥, b), t(c,⊥), and t(⊥,⊥), all with a b-transition from s(c). The states
t(⊥,⊥) and t(⊥, b) have no outgoing transitions, while t(c,⊥) has a c-transition
to u(⊥).

We next present the reverse construction, i.e. given an RNNA A we extract
a bar NFA A0 (a subautomaton of A) such that Lα(A0) = Lα(A).

Put k = deg(A). We fix a set A0 ⊆ A of size �A0 = k such that supp(s) ⊆ A0

for the initial state s of A, and a name ∗ ∈ A − A0. The states of A0 are those
states q in A such that supp(q) ⊆ A0. As this implies that the set Q0 of states in
A0 is ufs, Q0 is finite by Lemma 2.2. For q, q′ ∈ Q0, the free transitions q

a−→ q′ in
A0 are the same as in A (hence a ∈ A0 by Lemma 5.4.1). The bound transitions
q

a−→ q′ in A0 are those bound transitions q
a−→ q′ in A such that a ∈ A0 ∪ {∗}.

A state is final in A0 iff it is final in A. The initial state of A0 is s ∈ Q0.

Theorem 5.13. The number of states in the bar NFA A0 is linear in the number
of orbits of A and exponential in deg(A). Moreover, deg(A0) ≤ deg(A) + 1, and
Lα(A0) = Lα(A).

Combining this with Theorem5.11, we obtain the announced equivalence result:

Corollary 5.14. RNNAs are expressively equivalent to bar NFAs, hence to reg-
ular bar expressions.

This amounts to a Kleene theorem for RNNAs. The decision procedure for inclu-
sion (Sect. 7) will use the equivalence of bar NFAs and RNNAs, essentially run-
ning a bar NFA in synchrony with an RNNA.

Remark 5.15. It has been shown in that an NKA expression r can be trans-
lated into a nondeterministic nominal automaton whose states are the so-called
spines of r, which amounts to one direction of a Kleene theorem [21]. One can
show that the spines in fact form an RNNA, so that NKA embeds into regular
bar expressions. The automata-to-NKA direction of the Kleene theorem fails

136 L. Schröder et al.

even for deterministic nominal automata, i.e. regular bar expressions are strictly
more expressive than NKA. Indeed, the regular bar expression (ba ab)∗(1 + ba)
of Example 4.5 defines a language that cannot be defined in NKA because it
requires unbounded nesting of name binding [21].

6 Name-Dropping Register Automata

We next relate RNNAs to two equivalent models of local freshness, nondeter-
ministic orbit-finite automata [5] and register automata (RAs) [18]. RNNAs
necessarily only capture subclasses of these models, since RAs have an undecid-
able inclusion problem [18]; the distinguishing condition is a version of name-
dropping.

Definition 6.1. [5] A nondeterministic orbit-finite automaton (NOFA) A con-
sists of an orbit finite set Q of states, two equivariant subsets I, E ⊆ Q
of initial and final states, respectively, and an equivariant transition relation
→ ⊆ Q × A × Q, where we write q

a−→ p for (q, a, p) ∈ →. The A-language
L(A) = {w | A accepts w} accepted by A is defined in the standard way: extend
the transition relation to words w ∈ A

∗ as usual, and then say that A accepts w
if there exist an initial state q and a final state p such that q

w−→ p. A DOFA is
a NOFA with a deterministic transition relation.

Remark 6.2. A more succinct equivalent presentation of NOFAs is as orbit-
finite coalgebras γ : Q → GQ for the functor

GX = 2 × Pfs(A × X) (2 = {�,⊥})

on the category Nom of nominal sets and equivariant maps, together with an
equivariant subset of initial states.

More precisely speaking, NOFAs are equivalent to RAs with nondeterministic
reassignment [5,20]. RAs are roughly described as having a finite set of registers
in which names from the current word can be stored if they are locally fresh, i.e.
not currently stored in any register; transitions are labeled with register indices
k, meaning that the transition accepts the next letter if it equals the content
of register k. In the equivalence with NOFAs, the names currently stored in the
registers correspond to the support of states.

To enable a comparison of RNNAs with NOFAs over A (Sect. 5), we restrict
our attention in the following discussion to RNNAs that are closed, i.e. whose
initial state has empty support, and therefore accept equivariant A-languages.
We can convert a closed RNNA A into a NOFA D(A) accepting D(Lα(A)) by
simply replacing every transition q

a−→ q′ with a transition q
a−→ q′. We show that

the image of this translation is a natural class of NOFAs:

Definition 6.3. A NOFA A is non-spontaneous if supp(s) = ∅ for initial states
s, and

supp(q′) ⊆ supp(q) ∪ {a} whenever q
a−→ q′.

Nominal Automata with Name Binding 137

(In words, A is non-spontaneous if transitions q
a−→ q′ in A create no new names

other than a in q′.) Moreover, A is α-invariant if q
a−→ q′′ whenever q

b−→ q′,
b#q, and 〈a〉q′′ = 〈b〉q′ (this condition is automatic if a#q). Finally, A is name-
dropping if for each state q and each set N ⊆ supp(q) of names, there exists a
state q|N that restricts q to N , i.e. supp(q|N) = N , q|N is final if q is final, and

– q|N has at least the same incoming transitions as q;
– whenever q

a−→ q′, a ∈ supp(q), and supp(q′) ∪ {a} ⊆ N , then q|N a−→ q′;
– whenever q

a−→ q′, a # q, and supp(q′) ⊆ N ∪ {a}, then q|N a−→ q′.

Proposition 6.4. A NOFA is of the form D(B) for some (name-dropping)
RNNA B iff it is (name-dropping and) non-spontaneous and α-invariant.

Proposition 6.5. For every non-spontaneous and name-dropping NOFA, there
is an equivalent non-spontaneous, name-dropping, and α-invariant NOFA.

In combination with Lemma 5.7, these facts imply

Corollary 6.6. Under local freshness semantics, RNNAs are expressively equiv-
alent to non-spontaneous name-dropping NOFAs.

Corollary 6.7. The class of languages accepted by RNNAs under local freshness
semantics is closed under finite intersections.

Proof (Sketch). Non-spontaneous name-dropping NOFAs are closed under the
standard product construction. �

Remark 6.8. Every DOFA is non-spontaneous. Moreover, RAs are morally
non-spontaneous according to their original definition, i.e. they can read names
from the current word into the registers but cannot guess names nondeterministi-
cally [18,27]; the variant of register automata that is equivalent to NOFAs [5] in
fact allows such nondeterministic reassignment [20]. This makes unrestricted
NOFAs strictly more expressive than non-spontaneous ones [18,34]. Name-
dropping restricts expressivity further, as witnessed by the language {ab | a �= b}
mentioned above. In return, it buys decidability of inclusion (Sect. 7), while
for non-spontaneous NOFAs even universality is undecidable [5,27]. DOFAs are
incomparable to RNNAs under local freshness semantics—the language “the last
letter has been seen before” is defined by the regular bar expression (b)∗ a(b)∗a
but not accepted by any DOFA.

Name-Dropping Register Automata and FSUBAs. In consequence of
Corollary 6.6 and the equivalence between RAs and nonspontaneous NOFAs, we
have that RNNAs are expressively equivalent to name-dropping RAs, which we
just define as those RAs that map to name-dropping NOFAs under the transla-
tion given in [5]. We spend a moment on identifying a more concretely defined
class of forgetful RAs that are easily seen to be name-dropping. We expect that
forgetful RAs are as expressive as name-dropping RAs but are currently more

138 L. Schröder et al.

interested in giving a compact description of a class of name-dropping RAs to
clarify expressiveness.

We use the very general definition of RAs given in [5]: An RA with n registers
consists of a set C of locations and for each pair (c, c′) of locations a transition
constraint φ. Register assignments w ∈ R := (A∪{⊥})n determine the, possibly
undefined, contents of the n registers, and configurations are elements of C ×R.
Transition constraints are equivariant subsets φ ⊆ R × A × R, and (w, a, v) ∈ φ
means that from configuration (c, w) the RA can nondeterministically go to
(c′, v) under input a. Transition constraints have a syntactic representation in
terms of Boolean combinations of certain equations. The NOFA generated by an
RA just consists of its configurations.

For w ∈ R and N ⊆ A we define w|N ∈ R by (w|N)i = wi if wi ∈ N ,
and (w|N)i = ⊥ otherwise. An RA is forgetful if it generates a non-spontaneous
NOFA and for every configuration (c, w) and every N , (c, w|N) restricts (c, w)
to N in the sense of Definition 6.3; this property is equivalent to evident condi-
tions on the individual transition constraints. In particular, it is satisfied if all
transition constraints of the RA are conjunctions of the evident non-spontaneity
restriction (letters in the poststate come from the input or the prestate) with a
positive Boolean combination of the following:

– cmpi = {(w, a, v) | wi = a} (block unless register i contains the input)
– storei = {(w, a, v) | vi ∈ {⊥, a}} (store the input in register i or forget)
– freshi = {(w, a, v) | a �= wi} (block if register i contains the input)
– keepji = {(w, a, v) | vi ∈ {⊥, wj}} (copy register j to register i, or forget)

FSUBAs [19] can be translated into name-dropping RAs. Unlike FSUBAs,
forgetful RAs do allow for freshness constraints. E.g. the language {aba | a �= b}
is accepted by the forgetful RA c0

store1−−−→ c1
fresh1∧keep11−−−−−−−−→ c2

cmp1−−−→ c3, with c3
final. Note how store and keep will possibly lose the content of register 1 but
runs where this happens will not get past cmp1.

7 Deciding Inclusion under Global and Local Freshness

We next show that under both global and local freshness, the inclusion problem
for bar NFAs (equivalently regular bar expressions) is in ExpSpace. For global
freshness, this essentially just reproves the known decidability of inclusion for
session automata [6] (Remark 4.3; the complexity bound is not stated in [6]
but can be extracted), while the result for local freshness appears to be new.
Our algorithm differs from [6] in that it exploits name dropping; we describe it
explicitly, as we will modify it for local freshness.

Theorem 7.1. The inclusion problem for bar NFAs is in ExpSpace; more pre-
cisely, the inclusion Lα(A1) ⊆ Lα(A2) can be checked using space polynomial in
the size of A1 and A2 and exponential in deg(A2) log(deg(A1) + deg(A2) + 1).

The theorem can be rephrased as saying that bar language inclusion of NFA is
in parametrized polynomial space (para-PSpace) [31], the parameter being the
degree.

Nominal Automata with Name Binding 139

Proof (Sketch). Let A1, A2 be bar NFAs with initial states s1, s2. We exhibit an
NExpSpace procedure to check that Lα(A1) is not a subset of Lα(A2), which
implies the claimed bound by Savitch’s theorem. It maintains a state q of A1 and
a set Ξ of states in the name-dropping RNNA Ā2 generated by A2 as described
in Construction 5.10, with q initialized to s1 and Ξ to {(s2, idFNs2

)}. It then
iterates the following:

1. Guess a transition q
α−→ q′ in A1 and update q to q′.

2. Compute the set Ξ′ of all states of Ā2 reachable from states in Ξ via α-
transitions (literally, i.e. not up to α-equivalence) and update Ξ to Ξ′.

The algorithm terminates successfully and reports that Lα(A1) �⊆ Lα(A2) if it
reaches a final state q of A1 while Ξ contains only non-final states.

Correctness of the algorithm follows from Theorem 5.11 and Lemma 5.7. For
space usage, first recall that cosets πFN can be represented as injective renamings
N → A. Note that Ξ will only ever contain states (q, πFN) such that the image
πN of the corresponding injective renaming is contained in the set P of names
occurring literally in either A1 or A2. In fact, at the beginning, idNs2 consists
only of names literally occurring in A2, and the only names that are added
are those occurring in transitions guessed in Step 7, i.e. occurring literally in
A1. So states (q, πFN) in Ξ can be coded using partial functions Nq ⇀ P . Since
�P ≤ deg(A1)+deg(A2), there are at most k ·(deg(A1)+deg(A2)+1)deg(A2) = k ·
2deg(A2) log(deg(A1)+deg(A2)+1) such states, where k is the number of states of A2. �

Remark 7.2. The translation from NKA expressions to bar NFAs
(Remark 5.15) increases expression size exponentially but the degree only lin-
early. Theorem 7.1 thus implies the known ExpSpace upper bound on inclusion
for NKA expressions [21].

We now adapt the inclusion algorithm to local freshness semantics. We denote
by � the preorder (in fact: order) on Ā

∗ generated by wav � w av.

Lemma 7.3. Let L1, L2 be bar languages accepted by RNNA. Then D(L1) ⊆
D(L2) iff for each [w]α ∈ L1 there exists w′ � w such that [w′]α ∈ L2.

Corollary 7.4. Inclusion D(Lα(A1)) ⊆ D(Lα(A2)) of bar NFAs (or regular bar
expressions) under local freshness semantics is in para-PSpace, with parameter
deg(A2) log(deg(A1) + deg(A2) + 1).

Proof. By Lemma 7.3, we can use a modification of the above algorithm where
Ξ′ additionally contains states of Ā2 reachable from states in Ξ via a-transitions
in case α is a free name a. �

8 Conclusions

We have studied the global and local freshness semantics of regular nondetermin-
istic nominal automata, which feature explicit name-binding transitions. We have

140 L. Schröder et al.

shown that RNNAs are equivalent to session automata [6] under global fresh-
ness and to non-spontaneous and name-dropping nondeterministic orbit-finite
automata (NOFAs) [5] under local freshness. Under both semantics, RNNAs are
comparatively well-behaved computationally, and in particular admit inclusion
checking in parameterized polynomial space. While this reproves known results
on session automata under global freshness, decidability of inclusion under local
freshness appears to be new. Via the equivalence between NOFAs and register
automata (RAs), we in fact obtain a decidable class of RAs that allows unre-
stricted non-determinism and any number of registers.

Acknowledgements. We thank Charles Paperman for useful discussions, and the
anonymous reviewers of an earlier version of the paper for insightful comments that
led us to discover the crucial notion of name dropping. Erwin R. Catesbeiana has
commented on the empty bar language.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing Co., Inc., Boston (1986)

2. Bielecki, M., Hidders, J., Paredaens, J., Tyszkiewicz, J., Bussche, J.: Navigating
with a browser. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo,
R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 764–775. Springer,
Heidelberg (2002). doi:10.1007/3-540-45465-9 65

3. Bojańczyk, M.: Automata for data words and data trees. In: Rewriting Techniques
and Applications, RTA 2010. LIPIcs, vol. 6, pp. 1–4. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2010)

4. Bojańczyk, M.: Computation in Sets with Atoms. http://atoms.mimuw.edu.pl/
wp-content/uploads/2014/03/main.pdf

5. Bojanczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Log. Meth-
ods Comput. Sci. 10, 1–44 (2014)

6. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A robust class of data lan-
guages and an application to learning. Log. Meth. Comput. Sci. 10, 1–23 (2014)

7. Ciancia, V., Tuosto, E.: A novel class of automata for languages on infinite alpha-
bets. Technical report, University of Leicester, cS-09-003 (2009)

8. Colcombet, T., Puppis, G., Skrypczak, M.: Unambiguous register automata,
preprint

9. Colcombet, T.: Unambiguity in automata theory. In: Shallit, J., Okhotin, A. (eds.)
DCFS 2015. LNCS, vol. 9118, pp. 3–18. Springer, Cham (2015). doi:10.1007/
978-3-319-19225-3 1

10. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10, 16:1–16:30 (2009)

11. Gabbay, M., Pitts, A.: A new approach to abstract syntax involving binders. In:
Logic in Computer Science, LICS 1999, pp. 214–224. IEEE Computer Society
(1999)

12. Gabbay, M.J.: Foundations of nominal techniques: logic and semantics of variables
in abstract syntax. Bull. Symbolic Logic 17(2), 161–229 (2011)

13. Gabbay, M.J., Ciancia, V.: Freshness and name-restriction in sets of traces with
names. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 365–380.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19805-2 25

http://dx.doi.org/10.1007/3-540-45465-9_65
http://atoms.mimuw.edu.pl/wp-content/uploads/2014/03/main.pdf
http://atoms.mimuw.edu.pl/wp-content/uploads/2014/03/main.pdf
http://dx.doi.org/10.1007/978-3-319-19225-3_1
http://dx.doi.org/10.1007/978-3-319-19225-3_1
http://dx.doi.org/10.1007/978-3-642-19805-2_25

Nominal Automata with Name Binding 141

14. Gabbay, M.J., Ghica, D.R., Petrisan, D.: Leaving the nest: nominal techniques for
variables with interleaving scopes. In: Computer Science Logic, CSL 2015. LIPIcs,
vol. 41, pp. 374–389. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

15. Grigore, R., Tzevelekos, N.: History-register automata. Log. Meth. Comput. Sci.
12(1), 1–32 (2016)

16. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infi-
nite alphabets. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA
2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13089-2 47

17. Hennessy, M.: A fully abstract denotational semantics for the pi-calculus. Theor.
Comput. Sci. 278, 53–89 (2002)

18. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134,
329–363 (1994)

19. Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets.
Fund. Inform. 69, 301–318 (2006)

20. Kaminski, M., Zeitlin, D.: Finite-memory automata with non-deterministic reas-
signment. Int. J. Found. Comput. Sci. 21, 741–760 (2010)

21. Kozen, D., Mamouras, K., Petrişan, D., Silva, A.: Nominal Kleene coalgebra.
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 286–298. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47666-6 23

22. Kozen, D., Mamouras, K., Silva, A.: Completeness and incompleteness in nom-
inal Kleene algebra. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAM-
ICS 2015. LNCS, vol. 9348, pp. 51–66. Springer, Cham (2015). doi:10.1007/
978-3-319-24704-5 4

23. Kürtz, K., Küsters, R., Wilke, T.: Selecting theories and nonce generation for
recursive protocols. In: Formal methods in Security Engineering, FMSE 2007, pp.
61–70. ACM (2007)

24. Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders.
In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 255–269. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28729-9 17

25. Libkin, L., Tan, T., Vrgoc, D.: Regular expressions for data words. J. Comput.
Syst. Sci. 81, 1278–1297 (2015)

26. Manuel, A., Muscholl, A., Puppis, G.: Walking on data words. Theor. Comput.
Sys. 59, 180–208 (2016)

27. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5, 403–435 (2004)

28. Pitts, A.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, Cambridge (2013)

29. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1),
3–80 (2000)

30. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).
doi:10.1007/11874683 3

31. Stockhusen, C., Tantau, T.: Completeness results for parameterized space classes.
In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 335–347. Springer,
Cham (2013). doi:10.1007/978-3-319-03898-8 28

http://dx.doi.org/10.1007/978-3-642-13089-2_47
http://dx.doi.org/10.1007/978-3-642-13089-2_47
http://dx.doi.org/10.1007/978-3-662-47666-6_23
http://dx.doi.org/10.1007/978-3-662-47666-6_23
http://dx.doi.org/10.1007/978-3-319-24704-5_4
http://dx.doi.org/10.1007/978-3-319-24704-5_4
http://dx.doi.org/10.1007/978-3-642-28729-9_17
http://dx.doi.org/10.1007/11874683_3
http://dx.doi.org/10.1007/978-3-319-03898-8_28

142 L. Schröder et al.

32. Turner, D., Winskel, G.: Nominal domain theory for concurrency. In: Grädel, E.,
Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 546–560. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04027-6 39

33. Tzevelekos, N.: Fresh-register automata. In: Principles of Programming Languages,
POPL 2011, pp. 295–306. ACM (2011)

34. Wysocki, T.: Alternating register automata on finite words. Master’s thesis,
University of Warsaw (2013). (In Polish)

http://dx.doi.org/10.1007/978-3-642-04027-6_39

Games and Automata

On the Existence of Weak Subgame
Perfect Equilibria

Véronique Bruyère1(B), Stéphane Le Roux2, Arno Pauly2,
and Jean-François Raskin2

1 Département d’informatique, Université de Mons (UMONS), Mons, Belgium
veronique.bruyere@umons.ac.be

2 Département d’informatique, Université Libre de Bruxelles (ULB),

Brussels, Belgium

Abstract. We study multi-player turn-based games played on a directed
graph, where the number of players and vertices can be infinite. An out-
come is assigned to every play of the game. Each player has a preference
relation on the set of outcomes which allows him to compare plays. We
focus on the recently introduced notion of weak subgame perfect equilib-
rium (weak SPE), a variant of the classical notion of SPE, where players
who deviate can only use strategies deviating from their initial strategy
in a finite number of histories. We give general conditions on the struc-
ture of the game graph and the preference relations of the players that
guarantee the existence of a weak SPE, which moreover is finite-memory.

1 Introduction

Games played on graphs have a large number of applications in theoretical com-
puter science. One particularly important application is reactive synthesis [21],
i.e. the design of a controller that guarantees a good behavior of a reactive sys-
tem evolving in a possibly hostile environment. One classical model proposed
for the synthesis problem is the notion of two-player zero-sum game played on a
graph. One player is the reactive system and the other one is the environment;
the vertices of the graph model their possible states and the edges model their
possible actions. Interactions between the players generate an infinite play in the
graph which model behaviors of the system within its environment. As one can-
not assume cooperation of the environment, the objectives of the two players are
considered to be opposite. Constructing a controller for the system then means
devising a winning strategy for the player modeling it. Reality is often more
subtle and the environment is usually not fully adversarial as it has its own
objective, meaning that the game should be non zero-sum. Moreover instead
of two players, we could consider the more general situation of several players
modeling different interacting systems/environments each of them with its own
objective.

S. Le Roux, A. Pauly, J.-F. Raskin—Supported by ERC Starting Grant (279499:
inVEST).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 145–161, 2017.
DOI: 10.1007/978-3-662-54458-7 9

146 V. Bruyère et al.

The concept of Nash equilibrium (NE) [20] is central to the study of multi-
player non zero-sum games. A strategy profile is an NE if no player has an
incentive to deviate unilaterally from his strategy, i.e., he cannot strictly improve
the outcome of the strategy profile by changing his strategy only. However in the
context of games played on graphs, which are sequential by nature, it is well-
known that NEs present a serious drawback: they allow for non-credible threats
that rational players should not carry out [23]. Thus the notion of NE has been
strengthened into the notion of subgame perfect equilibrium (SPE) [24]: a strategy
profile is an SPE if it is an NE in each subgame of the original game. This notion
behaves better for sequential games and excludes non-credible threats.

Variants of SPE, weak SPE and very weak SPE, have been recently intro-
duced in [5]. While an SPE must be resistant to any unilateral deviation of
one player, a weak (resp. very weak) SPE must be resistant to such deviations
where the deviating strategy differs from the original one on a finite number
of histories only (resp. on the initial vertex only). The latter class of deviating
strategies is a well-known notion that for instance appears in the proof of Kuhn’s
theorem [16] with the one-step deviation property. Weak SPEs and very weak
SPEs are equivalent, but there are games for which there exists a weak SPE but
no SPE [5,26]. The notion of weak SPE is important for several reasons (more
details are given in the related work discussed below). First, for the large class
of games with upper-semicontinuous payoff functions and for games played on
finite trees, the notions of SPE and weak SPE are equivalent. Second, it is a cen-
tral technical ingredient used to reason on SPEs as shown in [5,12]. Third, being
immune to strategies that finitely deviate from the initial strategy profile may
be sufficient from a practical point of view. Indeed ruling out infinite deviations
can be achieved by letting a meta-agent punish every one-shot deviation with a
(low) fixed probability. A player using an infinitely-deviating strategy will thus
be punished by the meta-agent with probability one. Protocols like BitTorrent
use similar ideas: every deviant user is temporarily denied suitable bandwidth
(see Chapter Bandwidth Trading as Incentive in [25] for details).

In this paper, we provide the following contributions. First, we identify gen-
eral conditions to guarantee the existence of a weak SPE (Theorem 1). The
result identifies a large class of multi-player non zero-sum games such that an
outcome is assigned to every play of the game and each player has a preference
relation on the set of play outcomes which allows him to compare plays. This
class covers game graphs that may have infinitely many vertices and infinitely
many players. Notice that such models are relevant for systems where the play-
ers can join or leave the game dynamically, and the number of players is finite
yet unbounded overtime: the users in the Internet are a typical example since
there is no (clear) bound on the number of possible users. The proof of our result
relies on transfinite induction and additionally provides a weak SPE using finite-
memory strategies for all players. Second, starting from this general existence
result, we prove the existence of a weak SPE:

On the Existence of Weak Subgame Perfect Equilibria 147

– for games with a finite number of outcomes (Theorem 2);
– for games with a finite underlying graph and a prefix-independent outcome

function (Theorem 4).

Additionally, in the second result, we identify conditions on the players’ outcome
preferences that guarantee the existence of a weak SPE composed of uniform
memoryless strategies only (Theorem 5).

Related work. The concept of SPE has been first introduced and studied by
the game theory community. Kuhn proves in [16] the existence of SPEs in games
played on finite trees. This result has been generalized in several ways. Games
with a continuous real-valued outcome function and a finitely branching tree
always have an SPE [19] (the case with finitely many players is first established
in [14]). In [12] (resp. [22]), the authors prove that there always exists an SPE for
games with a finite number of players and with a real-valued outcome function
that is upper-semicontinuous (resp. lower-semicontinuous) and of finite range.
The result of [22] is extended to an infinite number of players in [13]. In [19], it
is proved using Borel determinacy that all two-player games with antagonistic
preferences over finitely many outcomes and a Borel-measurable outcome func-
tion have an SPE. In [18], Le Roux shows that all games where the preferences
over finitely many outcomes are free of some “bad pattern” and the outcome
function is Δ0

2 measurable (a low level in the Borel hierarchy) have an SPE.
In part of the former work, the equivalence between SPEs and very weak

SPEs is implicitly used as a proof technique: in a finite setting in [16], continuous
setting in [14], and lower-semicontinuous setting in [12]. In the latter reference,
the authors implicitly prove that all games with a finite range real-valued out-
come function have a weak SPE (which is an SPE when the outcome function is
additionally lower-semicontinuous). Inspired by this result and its proof, we here
generalize it to an infinite number of players using a simpler proof technique:
our algorithm discards outcomes instead of discarding plays.

The concept of SPE and other solution concepts for multi-player non zero-
sum games have been recently studied by the theoretical computer community,
see [2] for a survey. In [27], the existence of SPEs (and thus weak SPEs) is proved
for games with a finite number of players and Borel Boolean objectives. We here
generalize the existence of weak SPEs to games with infinitely many players.
In [5], weak SPEs are introduced as a technical tool for showing the existence
of SPEs in quantitative reachability games played on finite weighted graphs. An
algorithm is also provided for the construction of a (finite-memory) weak SPE
that appears to be an SPE for this particular class of games. We here give several
existence results that are orthogonal to the results of [5] as they are concerned
with possibly infinite graphs or prefix-independent outcome functions.

Other refinements of NE are studied. Let us mention the secure equilibria for
two players first introduced in [7] and then used for reactive synthesis in [10].
These equilibria are generalized to multiple players in [11] or to quantitative
objectives in [6], see also a variant called Doomsday equilibrium in [8]. Like
NEs, they are subject to possible non-credible threats. Other refinements of NE

148 V. Bruyère et al.

are provided by the notion of admissible strategy introduced in [1], with com-
putational aspects studied in [4], and potential for synthesis studied in [3]. Note
that these notions are immune, as (weak) SPEs, of non-credible threats. Finally,
in [17], the authors introduce the notion of cooperative and non-cooperative
rational synthesis as a general framework where rationality can be specified by
either NE, or SPE, or the notion of dominating strategies. In all cases except [6]
and [11], the proposed solution concepts are not guaranteed to exist, hence results
concern mostly algorithmic techniques to decide their existence and not general
conditions for existence as in this paper.

2 Preliminaries

In this section, we consider multi-player turn-based games such that an outcome
is assigned to every play. Each player has a preference relation on the set of play
outcomes which allows him to compare plays.

Games. A game is a tuple G = (Π,V, (Vi)i∈Π , E,O, μ, (≺i)i∈Π) where (i) Π is
a set of players, (ii) V is a set of vertices and E ⊆ V × V is a set of edges,
such that w.l.o.g. each vertex has at least one outgoing edge, (iii) (Vi)i∈Π is a
partition of V such that Vi is the set of vertices controlled by player i ∈ Π, (iv) O
is a set of outcomes and μ : V ω → O is an outcome function, and (v) ≺i ⊆ O×O
is a preference relation for player i ∈ Π. In this definition the underlying graph
(V,E) can be infinite (that is, of arbitrarily cardinality), as well as the set Π of
players and the set O of outcomes.

A play of G is an infinite (countable) sequence ρ = ρ0ρ1 . . . ∈ V ω of vertices
such that (ρi, ρi+1) ∈ E for all i ∈ N. Histories of G are finite sequences h =
h0 . . . hn ∈ V + defined in the same way. We often use notation hv to mention
the last vertex v ∈ V of the history. Usually histories are non empty, but in
specific situations it will be useful to consider the empty history ε. The set of
plays is denoted by Plays and the set of histories (ending with a vertex in Vi)
by Hist (resp. by Histi).1 A prefix (resp. suffix) of a play ρ = ρ0ρ1 . . . is a
finite sequence ρ≤n = ρ0 . . . ρn (resp. infinite sequence ρ≥n = ρnρn+1 . . .). We
use notation h < ρ when a history h is prefix of a play ρ. When an initial
vertex v0 ∈ V is fixed, we call (G, v0) an initialized game. In this case, plays
and histories are supposed to start in v0, and we use notations Plays(v0) and
Hist(v0). In this article, we often unravel the graph of the game (G, v0) from
the initial vertex v0, which yields an infinite tree rooted at v0.

The outcome function μ assigns an outcome μ(ρ) ∈ O to each play ρ ∈ V ω. It
is prefix-independent if μ(hρ) = μ(ρ) for all histories h and play ρ. A preference
relation ≺i ⊆ O × O is an irreflexive and transitive binary relation. It allows
for player i to compare two plays ρ, ρ′ ∈ V ω with respect to their outcome:
μ(ρ) ≺i μ(ρ′) means that player i prefers ρ′ to ρ. In this paper we restrict to
linear preferences. (It is w.l.o.g. since the preference properties that we use are
preserved by linear extension). We write o �i o′ when o ≺i o′ or o = o′; notice

1 Indexing PlaysG or HistG with G allows to recall the related game G.

On the Existence of Weak Subgame Perfect Equilibria 149

that o ⊀i o′ if and only if o′ �i o. We sometimes use notation ≺v instead of ≺i

when vertex v ∈ Vi is controlled by player i.

Example 1. Let us mention some classical classes of games where the set of
outcomes O is a subset of (R ∪ {+∞,−∞})Π , and for all player i ∈ Π, ≺i

is the usual ordering < on R ∪ {+∞,−∞} on the outcome i-th components.
In other words, each player i has a real-valued payoff function μi : Plays →
R∪{+∞,−∞}. The outcome function of the game is then equal to μ = (μi)i∈Π ,
and for all i ∈ Π, μ(ρ) ≺i μ(ρ′) whenever μi(ρ) < μi(ρ′).

Games with Boolean objectives are such that μi : Plays → {0, 1} where 1
(resp. 0) means that the play is won (resp. lost) by player i. Classical objectives
are Borel objectives including ω-regular objectives, like reachability, Büchi, par-
ity, also [15]. Prefix-independence of μi holds in the case of Büchi and parity
objectives, but not for reachability objective.

We have quantitative objectives when μi : Plays → R ∪ {+∞,−∞} replaces
μi : Plays → {0, 1}. Usually, such a μi is defined from a weight function wi :
E → R that assigns a weight to each edge. Classical examples of μi are limsup
and mean-payoff functions [9]2: (i) limsup: μi(ρ) = lim supk→∞ wi(ρk, ρk+1),
(ii) mean-payoff : μi(ρ) = lim supn→∞

∑n
k=0

wi(ρk,ρk+1)
n .

Strategies. Let (G, v0) be an initialized game. A strategy σ for player i in
(G, v0) is a function σ : Histi(v0) → V assigning to each history hv ∈ Histi(v0)
a vertex v′ = σ(hv) such that (v, v′) ∈ E. A strategy σ of player i is positional
if it only depends on the last vertex of the history, i.e. σ(hv) = σ(v) for all
hv ∈ Histi(v0). It is a finite-memory strategy if σ(hv) only needs finite memory
of the history hv (recorded by a Moore machine3 with a finite number of memory
states). These definitions of (positional, finite-memory) strategy are given for an
initialized game (G, v0). We call uniform every positional strategy σ of player i
defined for all hv ∈ Histi (instead of Histi(v0)), that is, when σ is a positional
strategy in all initialized games (G, v), v ∈ V .

A play ρ is consistent with a strategy σ of player i if ρn+1 = σ(ρ≤n) for
all n such that ρn ∈ Vi. A strategy profile is a tuple σ̄ = (σi)i∈Π of strategies,
where each σi is a strategy of player i. It is called positional (resp. finite-memory
with memory size bounded by c, uniform) if all σi, i ∈ Π, are positional (resp.
finite-memory with memory size bounded by c, uniform). Given an initial vertex
v0, such a strategy profile induces a unique play of (G, v0) consistent with all
the strategies, denoted by 〈σ̄〉v0 . We say that σ̄ has outcome μ(〈σ̄〉v0).

Let σ̄ be a strategy profile. When all players stick to their own strategy
except player i that shifts from σi to σ′

i, we denote by (σ′
i, σ̄−i) the derived

strategy profile, and by 〈σ′
i, σ̄−i〉v0 the induced play in (G, v0). We say that σ′

i

is a deviating strategy from σi. When σi and σ′
i only differ on a finite number

of histories (resp. on v0), we say that σ′
i is a finitely-deviating (resp. one-shot

deviating) strategy from σi. One-shot deviating strategies is a well-known notion

2 The limit inferior can be used instead of the limit superior.
3 Moore machines are usually defined for finite sets V . We here allow infinite sets V .

150 V. Bruyère et al.

that for instance appears in the proof of Kuhn’s theorem [16] with the one-step
deviation property. Finitely-deviating strategies have been introduced in [5].

Variants of subgame perfect equilibria. Let us first recall the classical
notion of Nash equilibrium (NE). Informally, a strategy profile σ̄ in an initialized
game (G, v0) is an NE if no player has an incentive to deviate (with respect to
his preference relation), if the other players stick to their strategies.

Definition 1. Given an initialized game (G, v0), a strategy profile σ̄ = (σi)i∈Π

of (G, v0) is a Nash equilibrium if for all players i ∈ Π, for all strategies σ′
i of

player i, we have μ(〈σ̄〉v0) ⊀i μ(〈σ′
i, σ̄−i〉v0).

When μ(〈σ̄〉v0) ≺i μ(〈σ′
i, σ̄−i〉v0), we say that σ′

i is a profitable deviation for
player i w.r.t. σ̄.

The notion of subgame perfect equilibrium (SPE) is a refinement of NE. To
define it, we introduce the following concepts. Given a game G = (Π,V, (Vi)i∈Π ,
E, μ, (≺i)i∈Π) and a history h ∈ Hist, we denote by G|h the game (Π,V, (Vi)i∈Π ,
E, μ|h, (≺i)i∈Π) where μ|h(ρ) = μ(hρ) for all plays of G|h4, and we say that G|h is
a subgame of G. Given an initialized game (G, v0) and a history hv ∈ Hist(v0),
the initialized game (G|h, v) is called the subgame of (G, v0) with history hv.
In particular (G, v0) is a subgame of itself with history hv0 such that h = ε.
Given a strategy σ of player i in (G, v0), the strategy σ|h in (G|h, v) is defined
as σ|h(h′) = σ(hh′) for all h′ ∈ Histi(v). Given a strategy profile σ̄ in (G, v0),
we use notation σ̄|h for (σi|h)i∈Π , and 〈σ̄|h〉v is the induced play in the subgame
(G|h, v).

Now a strategy profile is an SPE in an initialized game if it induces an NE in
each of its subgames. Two variants of SPE, called weak SPE and very weak SPE,
are proposed in [5] such that no player has an incentive to deviate in any subgame
using finitely deviating strategies and one-shot deviating strategies respectively
(instead of any deviating strategy).

Definition 2. Given an initialized game (G, v0), a strategy profile σ̄ of (G, v0)
is a (weak, very weak resp.) subgame perfect equilibrium if for all histories
hv ∈ Hist(v0), for all players i ∈ Π, for all (finitely, one-shot resp.) deviating
strategies σ′

i from σi|h of player i in the subgame (G|h, v), we have μ(〈σ̄|h〉v) ⊀i

μ(〈σ′
i, σ̄−i|h〉v).

Every SPE is a weak SPE, and every weak SPE is a very weak SPE. The next
proposition states that weak SPE and very weak SPE are equivalent notions, but
this is not true for SPE and weak SPE (see also Example 2 below).

Proposition 1 ([5]). Let σ̄ be a strategy profile in (G, v0). Then σ̄ is a weak
SPE iff σ̄ is a very weak SPE. There exists an initialized game (G, v0) with a
weak SPE but no SPE.

4 In this article, we will always use notation μ(hρ) instead of μ|h(ρ).

On the Existence of Weak Subgame Perfect Equilibria 151

v0 v1v2 v3

Fig. 1. An initialized game (G, v0) with
a (very) weak SPE and no SPE.

v1 v2

v3v4

l1 l2

l3l4

Fig. 2. Game G4

Example 2 ([5]). Consider the two-player game (G, v0) in Fig. 1 such that
player 1 (resp. player 2) controls vertices v0, v2, v3 (resp. vertex v1). The set O of
outcomes is equal to {o1, o2, o3}, and the outcome function is prefix-independent
such that μ((v0v1)ω) = o1, μ(vω

2) = o2, and μ(vω
3) = o3. The preference relation

for player 1 (resp. player 2) is o1 ≺1 o2 ≺1 o3 (resp. o2 ≺2 o3 ≺2 o1).
It is known that this game has no SPE [26]. Nevertheless the strategy profile

σ̄ depicted with thick edges is a very weak SPE, and thus a weak SPE by
Proposition 1. Let us give some explanation. Due to the simple form of the
game, only two cases are to be treated. Consider first the subgame (G|h, v0)
with h ∈ (v0v1)∗, and the one-shot deviating strategy σ′

1 from σ1|h such that
σ′
1(v0) = v2. Then 〈σ̄|h〉v0 = v0v1v

ω
3 and 〈σ′

1, σ2|h〉v0 = v0v
ω
2 with respective

outcomes o3 and o2, showing that σ′
1 is not a profitable deviation for player 1

in (G|h, v0). Now in the subgame (G|h, v1) with h ∈ (v0v1)∗v0, the one-shot
deviating strategy from σ2|h such that σ′

2(v1) = v0 is not profitable for player 2
in (G|h, v1) because 〈σ̄|h〉v1 = v1v

ω
3 and 〈σ1|h, σ′

2〉v1 = v1v0v1v
ω
3 with the same

outcome o3.
Notice that σ̄ is not an SPE. Indeed the strategy σ′

2 such that σ′
2(hv1) = v0

for all h, is infinitely deviating from σ2, and is a profitable deviation for player 2
in (G, v0) since 〈σ1, σ

′
2〉v0 = (v0v1)ω with outcome o1.

3 General Conditions for the Existence of Weak SPEs

In this section, we propose general conditions to guarantee the existence of weak
SPEs. In the next section, from this result, we will derive two interesting large
families of games always having a weak SPE.

Theorem 1. Let (G, v0) be an initialized game with a subset L ⊆ V of vertices
called leaves with only one outgoing edge (l, l) for all l ∈ L. Suppose that:

1. for all v ∈ V , there exists a play ρ = hlω for some h ∈ Hist(v) and l ∈ L,
2. for all plays ρ = hlω with h ∈ Hist(v) and l ∈ L, μ(ρ) = μ(lω),
3. the set of outcomes OL = {μ(lω) | l ∈ L} is finite.

152 V. Bruyère et al.

Then there always exists a weak SPE σ̄ in (G, v0). Moreover, σ̄ is finite-memory
with memory size bounded by |OL|.

Let us comment the hypotheses. The first condition means that from each
vertex v of the game there is a leaf reachable from v; in particular L is not empty.
The second condition expresses a prefix-independence of the outcome function
restricted to plays eventually looping in a leaf l ∈ L. The last condition means
that even if there is an infinite number of leaves, the set of outcomes assigned by
μ to plays eventually looping in L is finite. The next example describes a family
of games satisfying the conditions of Theorem1.

Example 3. For each natural number n ≥ 3, we build a game Gn with n players,
2n vertices, 3n edges, and n+1 outcomes. The set of players is Π = {1, 2, . . . , n}
and the set of vertices is V = {v1, . . . , vn, l1, . . . ln} such that Vi = {vi, li} for
all i ∈ Π. The edges are (v1, v2), (v2, v3), . . . , (vn, v1), and (vi, li), (li, li) for all
i ∈ Π. The game G4 is depicted in Fig. 2. The set O of outcomes is equal
to {o1, . . . , on,⊥}, and the outcome function is prefix-independent such that
μ((v1v2 . . . vn)ω) = ⊥ and μ(lωi) = oi for all i ∈ Π. Each player i has a preference
relation ≺i satisfying ⊥ ≺i oi−1 ≺i oi ≺i oj for all j ∈ Π\{i − 1, i} (with the
convention that o0 = on).

Each game (Gn, v1) satisfies the hypotheses of Theorem 1 with L =
{l1, . . . , ln} and thus has a finite-memory weak SPE. Such a strategy profile
σ̄ is depicted in Fig. 3 for n = 4 (see the thick edges on the unravelling of
G4 from the initial vertex v1) and can be easily generalized to every n ≥ 3.
One verifies that this profile is a very weak SPE, and thus a weak SPE by
Proposition 1. For all i ∈ Π, the strategy σi of player i is finite-memory with a
memory size equal to n − 1. Intuitively, along (v1 . . . vn)ω, player i repeatedly
produces one move (vi, li) followed by n− 2 moves (vi, vi+1). Hence the memory
states of the Moore machine for σi are counters from 1 to n − 1.

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1

l1 l2 l3 l4 l1 l2 l3 l4 l1 l2 l3 l4 l1

Fig. 3. Weak SPE in (G4, v1)

Let us now proceed to the proof of Theorem 1. Recall that it is enough to
prove the existence of a very weak SPE by Proposition 1. The proof idea is
the following one. Initially, for each vertex v, we accept all plays ρ = hlω with
h ∈ Hist(v) and l ∈ L as potential plays induced by a very weak SPE in the
initialized game (G, v). We thus label each v by the set of outcomes μ(lω) for
such leaves l (recall that μ(ρ) = μ(lω) by the second condition of Theorem1).
Notice that this labeling is finite (resp. not empty) by the third (resp. first)
condition of the theorem. Step after step, we are going to remove some outcomes
from the vertex labelings by a Remove operation followed by an Adjustoperation.

On the Existence of Weak Subgame Perfect Equilibria 153

The Remove operation removes an outcome o from the labeling of a given vertex
v when there exists an edge (v, v′) for which o ≺v o′ for all outcomes o′ that
label v′. Indeed o cannot be the outcome of a play induced by a very weak SPE
since the player who controls v will choose the move (v, v′) to get a preferable
outcome o′. Now it may happen that for another vertex u having o in its labeling,
all potential plays induced by a very weak SPE from u with outcome o necessarily
cross vertex v. As o has been removed from the labeling of v, these potential
plays do no longer survive and o will also be removed from the labeling of u
by the Adjust operation. Repeatedly applying these two operations converge
to a fixpoint for which we will prove non-emptiness (this is the difficult part
of the proof, non-emptiness will be obtained by maintaining three invariants,
see Lemma 1). From this fixpoint, for each vertex v and each outcome o of the
resulting labeling of v, there exists a play ρv,o = hlω with outcome o for some
h ∈ Hist(v) and l ∈ L. We can thus build a very weak SPE σ̄ in (G, v0) as
follows. The construction of σ̄ is done step by step: (i) initially σ̄ is partially
defined such that 〈σ̄〉v0 = ρv0,o0 for some o0; (ii) then in the subgame (G|h, v)
such that 〈σ̄|h〉v = ρv,o, if the player who controls v chooses the move (v, v′) in a
one-shot deviation, then there exists ρv′,o′ such that o ⊀v o′ by definition of the
fixpoint, and we thus extend the construction of σ̄ such that 〈σ̄|hv〉v′ = ρv′,o′ .

Let us now go into the details of the proof. For each l ∈ L, we denote by ol

the outcome μ(lω). Recall that for all ρ = hlω we have μ(ρ) = ol by the second
hypothesis of the theorem. For each v ∈ V , we denote by Succ(v) the set of
successors of v distinct from v, that is, the vertices v′ = v such that (v, v′) ∈ E.
Notice that the leaves l are the vertices with only one outgoing edge (l, l). Thus,
by definition, Succ(v) = ∅ for all v ∈ L and Succ(v) = ∅ for all v ∈ V \L.

The labeling λα(v) of the vertices v of G by subsets of OL is an inductive
process on the ordinal α. Initially (step α = 0), each v ∈ V is labeled by:

λ0(v) = {ol ∈ OL | there exists a play hlω with h ∈ Hist(v) and l ∈ L}.

(In particular λ0(l) = {ol} for all l ∈ L). By the first hypothesis of the theorem,
λ0(v) = ∅. Let us introduce some additional terminology. At step α, when there
is a path π from v to v′ in G, we say that π is (o, α)-labeled if o ∈ λα(u) for all
the vertices u of π. Thus initially, we have a (ol, 0)-labeled path from v to l for
each ol ∈ λ0(v). For v ∈ V , let

mα(v) = max≺v
{min≺v

λα(v′) | v′ ∈ Succ(v)}

with the convention that mα(v) = � if Succ(v) = ∅ or if λα(v′) = ∅ for all
v′ ∈ Succ(v).5 When mα(v) = �, we says that v′ ∈ Succ(v) realizes mα(v) if
mα(v) = min≺v

λα(v′). Notice that even if Succ(v) could be infinite, there are
finitely many sets λα(v′) since OL is finite. This justifies our use of max≺v

and
min≺v

operators in the definition of mα(v).

5 We suppose that o ≺v � for all o ∈ OL.

154 V. Bruyère et al.

We alternate between Remove and Adjust that remove outcomes from label-
ing λα(v) in the following way:

– For an even6 successor ordinal α + 2,
Remove operation. Test if for some v ∈ V , there exist o ∈ λα(v) and

v′ ∈ Succ(v) such that

o ≺v o′, for allo′ ∈ λα(v′).

If such a v exists, then λα+1(v) = λα(v)\{o}, and λα+1(u) = λα(u) for
the other vertices u = v. Otherwise λα+1(u) = λα(u) for all u ∈ V .

Adjust operation. Suppose that λα+1(v) = λα(v)\{o} at the previous step.
For all u ∈ V such that o ∈ λα+1(u), test if there exists a (o, α + 1)-
labeled path from u to some l ∈ L. If yes, then λα+2(u) = λα+1(u),
otherwise λα+2(u) = λα+1(u)\{o}. For all u ∈ V such that o ∈ λα+1(u),
let λα+2(u) = λα+1(u).

Suppose that λα+1(v) = λα(v) for all v ∈ V at the previous step, then
λα+2(v) = λα+1(v) for all v ∈ V .

(Thus Remove is performed at odd step α + 1, whereas Adjust is performed
at even step α + 2.)

– For a limit ordinal α, let λα(v) = ∩β<αλβ(v) for all v ∈ V .

For each v, the sequence (λα(v))α is nonincreasing (for the set inclusion),
and thus the sequence (mα(v))α is nondecreasing (for the ≺v relation). Notice
that for all leaves l ∈ L and all steps α, we have λα(l) = {ol}. The next lemma
states that we get a non empty fixpoint in the following sense:

Lemma 1. There exists an ordinal α∗ such that λα∗(v) = λα∗+1(v) = λα∗+2(v)
for all v ∈ V . Moreover, λα∗(v) = ∅ for all v ∈ V .

Proof. Each set λα(v) has size bounded by |OL|. During the inductive process,
from step α (with α even) to step α+1, Remove removes one outcome from one
of these sets, and from step α + 1 to step α + 2, Adjust can remove outcomes
from several such sets (it can remove no outcome at all). Therefore there exists
an ordinal α∗ such that λα∗(v) = λα∗+1(v) = λα∗+2(v) for all v ∈ V , and a
fixpoint is then reached.7 To prove that λα∗(v) = ∅, we consider the next three
invariants for which we will briefly explain that they are initially true and remain
true after each step α. The non emptiness of λα∗(v) will follow from the second
invariant.

INV1. For v ∈ V , we have for all v′ ∈ Succ(v) that

{o ∈ λα(v′) | mα(v) �v o} ⊆ λα(v).

In particular, when mα(v) = �, for each v′ that realizes mα(v), we have

λα(v′) ⊆ λα(v). (1)
6 Ordinal 0 and each limit ordinal are even, and each successor ordinal α + 1 is even

(resp. odd) if α is odd (resp. even).
7 When V is finite, it is reached after at most 2|OL| · |V | steps.

On the Existence of Weak Subgame Perfect Equilibria 155

INV2. For v ∈ V , λα(v) = ∅.
INV3. For v ∈ V , there exists a path from v to some l ∈ L such that for all

vertices u in this path, λα(u) ⊆ λα(v).

The three invariants are initially true. Consider a limit-ordinal step α. Such
a step is not explicitly removing outcomes, it is only summarizing what has been
removed for lesser ordinals. Indeed for each vertex v, since the sets λβ(v) are
finite, there is a last outcome removal occurring at some step β < α. This helps
proving that the invariants are indeed preserved at ordinal steps. The successor-
ordinal steps are the difficult ones. The detailed proof invokes many times that
the λα(v) and mα(v) are monotone with respect to α.

Consider odd step α+1 and the Remove operation. (i) Remove may remove
from λα(v) only outcomes less than mα(v), so it preserves INV1. (ii) Remove
may remove only one outcome at only one vertex, so it preserves INV2 by (1).
(iii) Remove preserves INV3. Indeed first note that Remove might only hurt
INV3 at the vertex v subject to outcome removal. Let v′ ∈ Succ(v) that realizes
mα+1(v). By INV3 at step α there is a suitable path from v′ to a leaf. Prefixing
this path with v witnesses INV3 at step α + 1, using (1).

Consider even step α + 2 and the Adjust operation. (i) One checks that
Adjust preserves INV1 by case splitting on whether λα+2(v) = λα+1(v). (ii) By
contradiction assume that λα+1(v) = {o} from which Adjust removes o. By INV3
there would be at prior step one path to a leaf labelled all along with o only.
Such labels cannot be removed, leading to a contradiction. (iii) Adjust preserves
INV3. Indeed from a vertex u1 let u1 . . . un be a suitable path at step α + 1.
If it is no longer suitable at step α + 2, some o was removed from some proper
prefix u1 . . . ui−1, i.e. o ∈ λα+2(ui) but o /∈ λα+2(ui−1), so o /∈ λα+1(ui−1) by
definition of Adjust . INV3 provides a suitable path (void of o) from ui−1 at step
α + 1. Concatenating it with u1 . . . ui−1 witnesses INV3 at step α + 2. ��

By the previous lemma, we have a fixpoint such that that λα∗(v) = ∅ for all
v ∈ V . Moreover by Adjust , for all o ∈ λα∗(v), there is a (o, α∗)-labeled path π
from v to some l ∈ L with ol = o. We denote by ρv,o the play πlω ∈ Plays(v):

ρv,o = πlω. (2)

(*) Recall that μ(ρv,o) = ol, and that ol ∈ λα∗(u) for all vertices u in ρv,o.
To get Theorem 1, it remains to explain how to build a weak SPE σ̄ from

this fixpoint that is finite-memory.

Proof (of Theorem 1). The construction of σ̄ will be done step by step thanks to
a progressive labeling of the histories by outcomes in OL and by using the plays
ρv,o. This labeling κ : Hist(v0) → OL will allow to recover from history hv the
outcome o of the play 〈σ̄|h〉v induced by σ̄ in the subgame (G|h, v).

We start with history v0 and any o0 ∈ λα∗(v0). Consider ρv0,o0 as in (2).
The strategy profile σ̄ is partially built such that 〈σ̄〉v0 = ρv0,o0 . The non empty
prefixes g of ρv0,o0 are all labeled with κ(g) = o0.

At the following steps, we consider a history h′v′ that is not yet labeled, but
such that h′ = hv has already been labeled by κ(hv) = o. The labeling of hv by

156 V. Bruyère et al.

o means that σ̄ has already been built to produce the play 〈σ̄|h〉v with outcome o
in the subgame (G|h, v), such that 〈σ̄|h〉v is suffix of ρu,o from some u. By (*) we
have o ∈ λα∗(v). By the fixpoint and in particular by Remove (with o ∈ λα∗(v)
and v′ ∈ Succ(v)), there exists o′ ∈ λα∗(v′) such that

o ⊀v o′. (3)

With ρv′,o′ as in (2), we then extend the construction of σ̄ such that 〈σ̄|h′〉v′ =
ρv′,o′ , and for each non empty prefix g of ρv′,o′ , we label h′g by κ(h′g) = o′

(notice that the prefixes of h′ have already been labeled by choice of h′). This
process is iterated to complete the construction of σ̄.

Let us show that σ̄ is a very weak SPE in (G, v0). Consider a history h′ =
hv ∈ Hist(v0) with v ∈ Vi, and a one-shot deviating strategy σ′

i from σi|h in
the subgame (G|h, v). Let v′ be such that σ′

i(v) = v′. By definition of σ̄, we have
κ(hv) = o and κ(h′v′) = o′ such that (3) holds. Let ρ = 〈σ̄|h〉v and ρ′ = 〈σ̄|h′〉v′ .
Then o = μ(hρ) and o′ = μ(hvρ′) by (*). By (3), σ′

i is not a profitable deviation
for player i. Hence σ̄ is a very weak SPE and thus a weak SPE by Proposition 1.

It remains to prove that σ̄ is finite-memory by correctly choosing the plays
ρv,o of (2). Fix o ∈ OL and consider the set Uo of vertices v such that o ∈ λα∗(v).
We choose the plays ρv,o = πlω for all v ∈ Uo, such that the set of associated finite
paths πl forms a tree. Hence having o in memory, one can produce positionally
each ρv,o with v ∈ Uo. Thus the memory-size of σ̄ is equal to OL. ��

The next corollary is an easy consequence of Theorem 1.

Corollary 1. Let (G, v0) be an initialized game with a subset L ⊆ V of leaves8

such that the underlying graph is a tree rooted at v0. If (G, v0) satisfies the first
and third conditions of Theorem1, then there is a positional weak SPE in (G, v0).

In the next sections, we present two large families of games for which there
always exists a weak SPE, as a consequence of Theorem 1 and its Corollary 1.

4 First Application

We begin with the first application of the results of the previous section (more
particularly Corollary 1): when an initialized game has an outcome function with
finite range, then it always has a weak SPE.

Theorem 2. Let (G, v0) be an initialized game such the outcome function has
finite range. Then there exists a weak SPE in (G, v0).

Let us comment this theorem. (i) Kuhn’s theorem [16] states that there exists
an SPE in all initialized games played on finite trees (note that in this particular
case, the existence of a weak SPE is equivalent to the existence of an SPE).

8 The existence of leaves l with a unique outgoing edge (l, l) is abusive since the graph
is a tree: it should be understood as a unique infinite play from l.

On the Existence of Weak Subgame Perfect Equilibria 157

Theorem 2 can be seen as a generalization of Kuhn’s theorem: if we keep the
outcome set finite, all initialized games (regardless of the underlying graph and
the player set) have a weak SPE.(ii) Theorem 2 guarantees the existence of a
weak SPE for games with Boolean objectives as presented in Example 1, since
their outcome function μ has finite range. It is proved in [27] that each initialized
game with a finite number of players and Borel objectives has an SPE and thus a
weak SPE. We thus here extend the existence of a weak SPE to an infinite number
of players. (iii) The next theorem is proved in [12] for outcome functions μ =
(μi)i∈Π as presented in Example 1 and has strong relationship with Theorem2.
Recall that μi : Plays → R is lower-semicontinuous if whenever a sequence of
plays (ρn)n∈N converges to play ρ = limn→∞ ρn, then lim infn→∞ μi(ρn) ≥ μi(ρ).

Theorem 3 ([12]). Let (G, v0) be an initialized game with a finite set Π of
players and an outcome function μ = (μi)i∈Π such that each μi : Plays → R has
finite range and is lower-semicontinuous. Then there exists an SPE in (G, v0).

As every weak SPE is an SPE in the case of lower-semicontinuous payoff functions
μi [5], we recover the previous result with our Theorem2, however with a set
of players of any cardinality and general outcome functions μ : Plays → O.
Even if it is not explicitly mentioned in [12], a close look at the details of the
proof shows that the authors first show the existence of a weak SPE (without
the hypothesis of lower-semicontinuity) and then show that it is indeed an SPE
(thanks to this hypothesis). The first part of their proof could be replaced by
ours which is simpler (indeed we remove outcomes from the sets λα(v) (see the
proof of Theorem 1) whereas plays are removed in the inductive process of [12]).

Intermediate results. The proofs of Theorem2 in this section and Theorem 4
in the next section require intermediate results that we now describe. We begin
with the next lemma where the set μ−1(o), with o ∈ O, is called dense in (G, v0)
if for all h ∈ Hist(v0), there exists ρ such that hρ is a play with outcome o.

Lemma 2. Let (G, v0) be an initialized game. If for some o ∈ O, the set μ−1(o)
is dense in (G, v0), then there exists a weak SPE with outcome o in (G, v0).

Lemma 2 leads to the next corollary. This corollary will provide a first step
towards Theorem 4; it is already interesting on its own right.

Corollary 2. Let G be a game such that the underlying graph is strongly con-
nected and the outcome function μ is prefix-independent.

– For all outcomes o such that o = μ(ρ) with ρ ∈ Plays(v0), there exists a weak
SPE with outcome o in (G, v0).

– There exists a uniform strategy profile σ̄ and an outcome o such that for all
v ∈ V taken as initial vertex, σ̄ is a weak SPE in (G, v) with outcome o.

We end with a last lemma which indicates how to combine different weak
SPEs into one weak SPE. It will be used in the proofs of Theorems 2 and 4.

158 V. Bruyère et al.

Lemma 3. Consider an initialized game (G, v0) and a set of vertices L ⊆ V
such that for all hl ∈ Hist(v0) with l ∈ L, the subgame (G|h, l) has a weak SPE
with outcome ohl. Consider the initialized game (G′, v0) obtained from (G, v0):

– by replacing all edges (l, v) ∈ E by one edge (l, l), for all l ∈ L,
– and with outcome function μ′ such that for all ρ′ ∈ PlaysG′(v0), μ′(ρ′) = ohl

if ρ′ = hlω with l ∈ L and μ′(ρ′) = μ(ρ′) otherwise.

If (G′, v0) has a weak SPE, then (G, v0) has also a weak SPE.

Proof of Theorem 2. We now proceed to the proof of Theorem 2. W.l.o.g. we
can suppose that the underlying graph of G is a tree rooted at v0 (by unraveling
this graph from v0). The proof idea is to apply Lemma3 the conditions of which
will be satisfied thanks to Lemma 2 (to get weak SPEs on some subgames) and
Corollary 1 (to get a weak SPE on (G′, v0)).

Proof (of Theorem 2). Let us reason on the unraveling of G from v0. By hypoth-
esis, the outcome function μ has finite range. We denote by O the finite set of
its outcomes. We are going to show how to get (*) a weak SPE in each subgame
(G|h, v) of (G, v0) (and thus in (G, v0) itself) by induction on the size of O.

The basic case of (*) is trivial since for all subgames of (G, v0), each strategy
profile is a weak SPE when μ has range one. Suppose that O has size at least two,
and that (*) holds for smaller sizes. We are going to build a set L as required
by Lemma 3 to get a weak SPE in (G, v0) and thus also in each of its subgames.

Let o ∈ O and set L′ = ∅. Consider the subgame (G|h, v) with hv ∈
HistG(v0). Then either the set μ−1

|h (o) is dense in (G|h, v), or it is not. In the first
case, there exists a weak SPE in (G|h, v) by Lemma 2. We add v to L′. In the
second case, as μ−1

|h (o) is not dense, there exists a history h′v′ in Hist(v) such
that μ|h(h′ρ) = o for all ρ ∈ Plays(v′). Therefore, in the subgame (G|hh′ , v′), as
the range of the outcome function μ|hh′ is smaller, there exists a weak SPE in
(G|hh′ , v′) by induction hypothesis. As in the first case, we add v′ to L′.

We repeat this process for all hv ∈ Hist(v0). We then get the set L ⊆ L′ as
required by Lemma 3 by only keeping9 the vertices v ∈ L′ such the associated
history hv contains no vertex of L′ except v. For each subgame (G|h, v) with
v ∈ L, we thus have a weak SPE. The game (G′, v0) as defined in Lemma 3 has
also a weak SPE by Corollary 1. It thus follows by Lemma 3 that there exists a
weak SPE in (G, v0), and thus also in each of its subgames. ��

5 Second Application

In this section, we present a second large family of games with a weak SPE,
as another application of the general results of Sect. 3 (more particularly
Theorem 1). This family is constituted with all games with a finite underlying
graph and a prefix-independent outcome function.
9 L is the prefix-free subset of L′.

On the Existence of Weak Subgame Perfect Equilibria 159

Theorem 4. Let (G, v0) be an initialized game with a finite underlying graph
and a prefix-independent outcome function. Then there is a weak SPE in (G, v0).

Let us comment this theorem. (i) It guarantees the existence of a weak SPE
for classical games with quantitative objectives as presented in Example 1, such
that their outcome function is prefix-independent. This is the case of limsup
and mean-payoff functions (and their limit inferior counterparts). Recall that
Example 2 (see also Fig. 1) provides a game with no SPE, where the pay-
off functions μi can be seen as either limsup or mean-payoff (or their limit
inferior counterparts). (ii) Later in this section, we will show that under the
hypotheses of Theorem 4, there always exists a weak SPE that is finite-memory
(Corollary 3), and we will study in which cases it can be positional or even uni-
form (Theorem 5). (iii) The families of games of Theorems 2 and 4 are incom-
parable: Boolean reachability games are in the first family but not in the second
one, and mean-payoff games are in the second family but not in the first one.

The proof of Theorem 4 follows the same structure as for Theorem 2. The
idea is to apply Lemma 3 where L is the union of the bottom strongly connected
components of the graph of G. The weak SPEs required by Lemma 3 exist on the
subgames (G|h, l), l ∈ L, by Corollary 2, and on the game (G′, v0) by Theorem 1.

Discussion on the memory. First we make the statement of Theorem 4 more
precise by guaranteeing the existence of a weak SPE with finite-memory. The
necessity of memory is illustrated by the family of games Gn of Example 3.

Corollary 3. Let (G, v0) be an initialized game with a finite underlying graph
and a prefix-independent outcome function. Then there is a finite-memory weak
SPE in (G, v0) with O(m) memory size where m is the number of bottom strongly
connected components of the graph. A memory size linear in m is necessary.

Second we identify conditions on the preference relations of the players, as
expressed in the next lemma, that guarantee the existence of a uniform (instead
of finite-memory) weak SPE (see Theorem 5).

Lemma 4 (Lemma 4 of [18]). Let O be a set of outcomes. Let ≺i ⊆ O × O
be a preference relation for all i ∈ Π. The following assertions are equivalent.

– For all i, i′ ∈ Π and all o, p, q ∈ O, we have ¬(o ≺i p ≺i q ∧ q ≺i′ o ≺i′ p).
– There exist a partition {Ok}k∈K of O and a linear order < over K such that

• k < k′ implies o ≺i o′ for all i ∈ Π, o ∈ Ok and o′ ∈ Ok′ ,
• ≺i|Ok

= ≺i′ |Ok
or ≺i|Ok

= (≺i′ |Ok
)−1 for all i, i′ ∈ Π.

In this lemma, we call each set Ok a layer. The second assertion states that
(i) if k < k′ then all outcomes in Ok′ are preferred to all outcomes in Ok by
all players, and (ii) inside a layer, any two players have either the same prefer-
ence relations or the inverse ones. A set of outcomes satisfying the conditions of
Lemma 4 is called layered. In [18], the author characterizes the preference rela-
tions that always yield SPE in games with outcome functions in the Hausdorff
difference hierarchy of the open sets. One condition is that the set of outcomes
is layered.

160 V. Bruyère et al.

Theorem 5. Let G be a game with a finite underlying graph and such that the
outcome function is prefix-independent with a layered set O outcomes. Then there
exists a uniform weak SPE in (G, v), for all v ∈ V .

Example 4. Remember the class Gn of games, n ≥ 3, of Example 3, such that
O = {o1, . . . , on,⊥} and each player i has a preference relation ≺i satisfying
⊥ ≺i oi−1 ≺i oi ≺i oj for all j ∈ Π\{i − 1, i}. This set of outcomes is not
layered because the first assertion of Lemma 4 is not satisfied. Indeed we have
o2 ≺3 o3 ≺3 o1 and o1 ≺2 o2 ≺2 o3. Recall that all weak SPEs of the games
Gn require a memory size in O(n) (by Corollary 3). Hence the hypothesis of
Theorem 5 about the preference relations is not completely dispensable.

References

1. Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393. Springer, Heidelberg (2007)

2. Brenguier, R., Clemente, L., Hunter, P., Pérez, G.A., Randour, M., Raskin, J.-F.,
Sankur, O., Sassolas, M.: Non-zero sum games for reactive synthesis. In: Dediu,
A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol.
9618, pp. 3–23. Springer, Cham (2016). doi:10.1007/978-3-319-30000-9 1

3. Brenguier, R., Raskin, J.-F., Sankur, O.: Assume-admissible synthesis. In: CON-
CUR, LIPIcs, vol. 42, pp. 100–113. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2015)

4. Brenguier, R., Raskin, J.-F., Sassolas, M.: The complexity of admissibility in
omega-regular games. In: CSL-LICS, pp. 23:1–23:10. ACM (2014)

5. Brihaye, T., Bruyère, V., Meunier, N., Raskin, J.-F.: Weak subgame perfect equi-
libria and their application to quantitative reachability. In: CSL, LIPIcs, vol. 41,
pp. 504–518. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

6. Bruyère, V., Meunier, N., Raskin, J.-F.: Secure equilibria in weighted games. In:
CSL-LICS, pp. 26:1–26:26. ACM (2014)

7. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria.
Theor. Comput. Sci. 365, 67–82 (2006)

8. Chatterjee, K., Doyen, L., Filiot, E., Raskin, J.-F.: Doomsday equilibria for omega-
regular games. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318,
pp. 78–97. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54013-4 5

9. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11, 23:1–23:38 (2010)

10. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71209-1 21

11. Pril, J., Flesch, J., Kuipers, J., Schoenmakers, G., Vrieze, K.: Existence of secure
equilibrium in multi-player games with perfect information. In: Csuhaj-Varjú, E.,
Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 213–225.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44465-8 19

12. Flesch, J., Kuipers, J., Mashiah-Yaakovi, A., Schoenmakers, G., Solan, E., Vrieze,
K.: Perfect-information games with lower-semicontinuous payoffs. Math. Oper. Res.
35, 742–755 (2010)

13. Flesch, J., Predtetchinski, A.: A characterization of subgame perfect equilibrium
plays in borel games of perfect information. Math. Oper. Res. (2017, to appear)

http://dx.doi.org/10.1007/978-3-319-30000-9_1
http://dx.doi.org/10.1007/978-3-642-54013-4_5
http://dx.doi.org/10.1007/978-3-540-71209-1_21
http://dx.doi.org/10.1007/978-3-662-44465-8_19

On the Existence of Weak Subgame Perfect Equilibria 161

14. Fudenberg, D., Levine, D.: Subgame-perfect equilibria of finite- and infinite-horizon
games. J. Econ. Theor. 31, 251–268 (1983)

15. Grädel, E., Ummels, M.: Solution concepts and algorithms for infinite multiplayer
games. In: New Perspectives on Games and Interaction, vol. 4, pp. 151–178. Uni-
versity Press, Amsterdam (2008)

16. Kuhn, H.W.: Extensive games and the problem of information, pp. 46–68. Classics
in Game Theory (1953)

17. Kupferman, O., Perelli, G., Vardi, M.Y.: Synthesis with rational environments.
Ann. Math. Artif. Intell. 78(1), 3–20 (2016)

18. Le Roux, S.: Infinite subgame perfect equilibrium in the Hausdorff difference. In:
Hajiaghayi, M.T., Mousavi, M.R. (eds.) TTCS 2015. LNCS, vol. 9541, pp. 147–163.
Springer, Cham (2016)

19. Le Roux, S., Pauly, A.: Infinite sequential games with real-valued payoffs. In: CSL-
LICS, pp. 62:1–62:10. ACM (2014)

20. Nash, J.F.: Equilibrium points in n-person games. In: PNAS, vol. 36, pp. 48–49.
National Academy of Sciences (1950)

21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989)

22. Purves, R.A., Sudderth, W.D.: Perfect information games with upper semicontin-
uous payoffs. Math. Oper. Res. 36(3), 468–473 (2011)

23. Rubinstein, A.: Comments on the interpretation of game theory. Econometrica 59,
909–924 (1991)

24. Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nach-
frageträgheit. Zeitschrift für die gesamte Staatswissenschaft 121, 301–324, 667–689
(1965)

25. Shen, X.S., Yu, H., Buford, J., Akon, M.: Handbook of Peer-to-Peer Networking.
Springer, Heidelberg (2010)

26. Solan, E., Vieille, N.: Deterministic multi-player Dynkin games. J. Math. Econ.
39, 911–929 (2003)

27. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer
games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
212–223. Springer, Heidelberg (2006). doi:10.1007/11944836 21

http://dx.doi.org/10.1007/11944836_21

Optimal Reachability in Divergent Weighted
Timed Games

Damien Busatto-Gaston(B), Benjamin Monmege, and Pierre-Alain Reynier

Aix Marseille Univ, LIF, CNRS, Marseille, France
{damien.busatto,benjamin.monmege,pierre-alain.reynier}@lif.univ-mrs.fr

Abstract. Weighted timed games are played by two players on a timed
automaton equipped with weights: one player wants to minimise the
accumulated weight while reaching a target, while the other has an oppo-
site objective. Used in a reactive synthesis perspective, this quantitative
extension of timed games allows one to measure the quality of controllers.
Weighted timed games are notoriously difficult and quickly undecidable,
even when restricted to non-negative weights. Decidability results exist
for subclasses of one-clock games, and for a subclass with non-negative
weights defined by a semantical restriction on the weights of cycles. In
this work, we introduce the class of divergent weighted timed games as
a generalisation of this semantical restriction to arbitrary weights. We
show how to compute their optimal value, yielding the first decidable
class of weighted timed games with negative weights and an arbitrary
number of clocks. In addition, we prove that divergence can be decided
in polynomial space. Last, we prove that for untimed games, this restric-
tion yields a class of games for which the value can be computed in
polynomial time.

1 Introduction

Developing programs that verify real-time specifications is notoriously difficult,
because such programs must take care of delicate timing issues, and are difficult
to debug a posteriori. One research direction to ease the design of real-time soft-
ware is to automatise the process. We model the situation into a timed game,
played by a controller and an antagonistic environment : they act, in a turn-
based fashion, over a timed automaton [2], namely a finite automaton equipped
with real-valued variables, called clocks, evolving with a uniform rate. A usual
objective for the controller is to reach a target. We are thus looking for a strategy
of the controller, that is a recipe dictating how to play (timing delays and tran-
sitions to follow), so that the target is reached no matter how the environment
plays. Reachability timed games are decidable [4], and EXPTIME-complete [21].

If the controller has a winning strategy in a given reachability timed game,
several such winning strategies could exist. Weighted extensions of these games

The first author has been supported by ENS Cachan, Université Paris-Saclay. This
work has been funded by the DeLTA project (ANR-16-CE40-0007), and by the SoSI
project (PEPS SISC CNRS).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 162–178, 2017.
DOI: 10.1007/978-3-662-54458-7 10

Optimal Reachability in Divergent Weighted Timed Games 163

have been considered in order to measure the quality of the winning strategy for
the controller [1,9]. This means that the game now takes place over a weighted
(or priced) timed automaton [3,5], where transitions are equipped with weights,
and states with rates of weights (the cost is then proportional to the time spent
in this state, with the rate as proportional coefficient). While solving weighted
timed automata has been shown to be PSPACE-complete [6] (i.e. the same com-
plexity as the non-weighted version), weighted timed games are known to be
undecidable [12]. This has led to many restrictions in order to regain decidabil-
ity, the first and most interesting one being the class of strictly non-Zeno cost
with only non-negative weights (in transitions and states) [1,9]: this hypothesis
states that every execution of the timed automaton that follows a cycle of the
region automaton has a weight far from 0 (in interval [1,+∞), for instance).

Less is known for weighted timed games in the presence of negative weights
in transitions and/or states. In particular, no results exist so far for a class that
does not restrict the number of clocks of the timed automaton to 1. However,
negative weights are particularly interesting from a modelling perspective, for
instance in case weights represent the consumption level of a resource (money,
energy. . .) with the possibility to spend and gain some resource. In this work,
we introduce a generalisation of the strictly non-Zeno cost hypothesis in the
presence of negative weights, that we call divergence. We show the decidability
of the class of divergent weighted timed games, with a 2-EXPTIME complexity
(and an EXPTIME-hardness lower bound). These complexity results match the
ones that could be obtained in the non-negative case from the study of [1,9].

Other types of payoffs than the accumulated weight we study (i.e. total pay-
off) have been considered for weighted timed games. For instance, energy and
mean-payoff timed games have been introduced in [11]. They are also undecid-
able in general. Interestingly, a subclass called robust timed games, not far from
our divergence hypothesis, admits decidability results. A weighted timed game is
robust if, to say short, every simple cycle (cycle without repetition of a state) has
weight non-negative or less than a constant −ε. Solving robust timed game can
be done in EXPSPACE, and is EXPTIME-hard. Moreover, deciding if a weighted
timed game is robust has complexity 2-EXPSPACE (and coNEXPTIME-hard).
In contrast, we show that deciding the divergence of a weighted timed game is
a PSPACE-complete problem.1 In terms of modeling power, we do believe that
divergence is sufficient for most cases. It has to be noted that extending our tech-
niques and results in the case of robust timed games is intrinsically not possible:
indeed, the value problem for this class is undecidable [10].

The property of divergence is also interesting in the absence of time. Indeed,
weighted games with reachability objectives have been recently explored as a
refinement of mean-payoff games [14,15]. A pseudo-polynomial time (i.e. polyno-
mial if weights are encoded in unary) procedure has been proposed to solve them,
and they are at least as hard as mean-payoff games. In this article, we also study
divergent weighted games, and show that they are the first non-trivial class of

1 Whereas all divergent weighted game are robust, the converse may not be true, since
it is possible to mix positive and negative simple cycles in an SCC.

164 D. Busatto-Gaston et al.

Table 1. Deciding weighted (timed) games with arbitrary weights

Value of a game Value of a divergent game Deciding the divergence

Untimed Pseudo-poly. [15] PTIME-complete NL (unary), PTIME (binary)

Timed Undecidable [12] 2-EXPTIME, EXPTIME-hard PSPACE-complete

weighted games with negative weights solvable in polynomial time. Table 1 sum-
marises our results. We start in Sects. 2 and 3 by studying weighted (untimed)
games, before considering the timed setting in Sects. 4 and 5. Complete proofs
can be found in [17].

2 Weighted Games

We start our study with untimed games. We consider two-player turn-based
games played on weighted graphs and denote the two players by Max and Min.
A weighted game2 is a tuple G = 〈V = VMin � VMax, Vt, A,E,Weight〉 where V
are vertices, partitioned into vertices belonging to Min (VMin) and Max (VMax),
Vt ⊆ VMin is a subset of target vertices for player Min, A is an alphabet, E ⊆
V × A × V is a set of directed edges, and Weight : E → Z is the weight function,
associating an integer weight with each edge. These games need not be finite
in general, but in Sects. 2 and 3, we limit our study to the resolution of finite
weighted games (where all previous sets are finite). We suppose that: (i) the
game is deadlock-free, i.e. for each vertex v ∈ V , there is a letter a ∈ A and a
vertex v′ ∈ V , such that (v, a, v′) ∈ E; (ii) the game is deterministic, i.e. for each
pair (v, a) ∈ V × A, there is at most one vertex v′ ∈ V such that (v, a, v′) ∈ E.3

A finite play is a finite sequence of edges ρ = v0
a0−→ v1

a1−→ · · · ak−1−−−→ vk, i.e.
for all 0 � i < k, (vi, ai, vi+1) ∈ E. We denote by |ρ| the length k of ρ. We often
write v0

ρ−→ vk to denote that ρ is a finite play from v0 to vk. The play ρ is said
to be a cycle if vk = v0. We let PlaysG be the set of all finite plays in G, whereas
PlaysMin

G and PlaysMax
G denote the finite plays that end in a vertex of Min and

Max, respectively. A play is then an infinite sequence of consecutive edges.
A strategy for Min (respectively, Max) is a mapping σ : PlaysMin

G → A (respec-
tively, σ : PlaysMax

G → A) such that for all finite plays ρ ∈ PlaysMin
G (respec-

tively, ρ ∈ PlaysMax
G) ending in vertex vk, there exists a vertex v′ ∈ V such that

(vk, σ(ρ), v′) ∈ E. A play or finite play ρ = v0
a0−→ v1

a1−→ · · · conforms to a strat-
egy σ of Min (respectively, Max) if for all k such that vk ∈ VMin (respectively,
vk ∈ VMax), we have that ak = σ(v0

a0−→ v1 · · · vk). A strategy σ is memoryless
if for all finite plays ρ, ρ′ ending in the same vertex, we have that σ(ρ) = σ(ρ′).
For all strategies σMin and σMax of players Min and Max, respectively, and for all
vertices v, we let PlayG(v, σMax, σMin) be the outcome of σMax and σMin, defined
as the unique play conforming to σMax and σMin and starting in v.
2 Weighted games are called min-cost reachability games in [15].
3 Actions are not standardly considered, but they become useful in the timed setting.

Optimal Reachability in Divergent Weighted Timed Games 165

The objective of Min is to reach a target vertex, while minimising the accumu-
lated weight up to the target. Hence, we associate to every finite play ρ = v0

a0−→
v1 . . .

ak−1−−−→ vk its accumulated weight WeightG(ρ) =
∑k−1

i=0 Weight(vi, ai, vi+1).
Then, the weight of an infinite play ρ = v0

a0−→ v1
a1−→ · · · , also denoted

by WeightG(ρ), is defined by +∞ if vk /∈ Vt for all k � 0, or the weight of
v0

a0−→ v1 . . .
ak−1−−−→ vk if k is the first index such that vk ∈ Vt. Then, we let

ValG(v, σMin) and ValG(v, σMax) be the respective values of the strategies:

ValG(v, σMin) = sup
σMax

WeightG(Play(v, σMax, σMin))

ValG(v, σMax) = inf
σMin

WeightG(Play(v, σMax, σMin)).

Finally, for all vertices v, we let ValG(v) = supσMax
ValG(v, σMax) and ValG(v) =

infσMin
ValG(v, σMin) be the lower and upper values of v, respectively. We may

easily show that ValG(v) � ValG(v) for all v. We say that strategies σ�
Min of Min

and σ�
Max of Max are optimal if, for all vertices v, ValG(v, σ�

Max) = ValG(v) and
ValG(v, σ�

Min) = ValG(v), respectively. We say that a game G is determined if
for all vertices v, its lower and upper values are equal. In that case, we write
ValG(v) = ValG(v) = ValG(v), and refer to it as the value of v in G. Finite
weighted games are known to be determined [15]. If the game is clear from the
context, we may drop the index G from all previous notations.

Problems. We want to compute the value of a finite weighted game, as well
as optimal strategies for both players, if they exist. The corresponding decision
problem, called the value problem, asks whether ValG(v) � α, given a finite
weighted game G, one of its vertices v, and a threshold α ∈ Z ∪ {−∞,+∞}.

Related work. The value problem is a generalisation of the classical shortest
path problem in a weighted graph to the case of two-player games. If weights of
edges are all non-negative, a generalised Dijkstra algorithm enables to solve it in
polynomial time [22]. In the presence of negative weights, a pseudo-polynomial-
time (i.e. polynomial with respect to the game where weights are stored in unary)
solution has been given in [15], based on a fixed point computation with value
iteration techniques. Moreover, the value problem with threshold −∞ is shown
to be in NP ∩ coNP, and as hard as solving mean-payoff games.

3 Solving Divergent Weighted Games

Our first contribution is to solve in polynomial time the value problem, for a
subclass of finite weighted games that we call divergent. To the best of our
knowledge, this is the first attempt to solve a non-trivial class of weighted games
with arbitrary weights in polynomial time. Moreover, the same core technique is
used for the decidability result in the timed setting that we will present in the
next sections. Let us first define the class of divergent weighted games:

Definition 1. A weighted game G is divergent when every cycle ρ of G satisfies
Weight(ρ) �= 0.

166 D. Busatto-Gaston et al.

Divergence is a property of the underlying weighted graph, independent from
the repartition of vertices between players. The term divergent reflects that
cycling in the game ultimately makes the accumulated weight grow in absolute
value. We will first formalise this intuition by analysing the strongly connected
components (SCC) of the graph structure of a divergent game (the repartition
of vertices into players does not matter for the SCC decomposition). Based on
this analysis, we will obtain the following results:

Theorem 1. The value problem over finite divergent weighted games is PTIME-
complete. Moreover, deciding if a given finite weighted game is divergent is an
NL-complete problem when weights are encoded in unary, and PTIME when they
are encoded in binary.

SCC analysis. A play ρ in G is said to be positive (respectively, negative) if
Weight(ρ) > 0 (respectively, Weight(ρ) < 0). It follows that a cycle in a divergent
weighted game is either positive or negative. A cycle is said to be simple if no
vertices are visited twice (except for the common vertex at the beginning and
the end of the cycle). We will rely on the following characterisation of divergent
games in terms of SCCs.

Proposition 1. A weighted game G is divergent if and only if, in each SCC
of G, all simple cycles are either all positive, or all negative.

Proof. Let us first suppose that G is divergent. By contradiction, consider a
negative simple cycle ρ (of weight −p < 0) and a positive simple cycle ρ′ (of
weight p′ > 0) in the same SCC. Let v and v′ be respectively the first vertices of ρ
and ρ′. By strong connectivity, there exists a finite play η from v to v′ and a finite
play η′ from v′ to v. Let us consider the cycle ρ′′ obtained as the concatenation
of η and η′. If ρ′′ has weight q > 0, the cycle obtained by concatenating q times
ρ and p times ρ′′ has weight 0, which contradicts the divergence of G. The same
reasoning on ρ′′ and ρ′ proves that ρ′′ can not be negative. Thus, ρ′′ is a cycle
of weight 0, which again contradicts the hypothesis.

Reciprocally, consider a cycle of G. It can be decomposed into simple cycles,
all belonging to the same SCC. Therefore they are all positive or all negative.
As the accumulated weight of the cycle is the sum of the weights of these simple
cycles, G is divergent. �

Computing the values. Consider a divergent weighted game G. Let us start
by observing that vertices with value +∞ are those from which Min can not
reach the target vertices: thus, they can be computed with the classical attractor
algorithm, and we can safely remove them, without changing other values or
optimal strategies. In the rest, we therefore assume all values to be in Z∪{−∞}.

Our computation of the values relies on a value iteration algorithm to find
the greatest fixed point of operator F : (Z∪{−∞,+∞})V → (Z∪{−∞,+∞})V ,
defined for every vector x by F(x)v = 0 if v ∈ Vt, and otherwise

Optimal Reachability in Divergent Weighted Timed Games 167

F(x)v =

⎧
⎨

⎩

min
e=(v,a,v′)∈E

Weight(e) + xv′ if v ∈ VMin

max
e=(v,a,v′)∈E

Weight(e) + xv′ if v ∈ VMax.

Indeed, this greatest fixed point is known to be the vector of values of the
game (see, e.g., [15, Corollary 11]). In [15], it is shown that, by initialising the
iterative evaluation of F with the vector x0 mapping all vertices to +∞, the
computation terminates after a number of iterations pseudo-polynomial in G
(i.e. polynomial in the number of vertices and the greatest weight in G). For
i > 0, we let xi = F(xi−1). Notice that the sequence (xi)i∈N is non-increasing,
since F is a monotonic operator. Value iteration algorithms usually benefit from
decomposing a game into SCCs (in polynomial time), considering them in a
bottom-up fashion: starting with target vertices that have value 0, SCCs are
then considered in inverse topological order since the values of vertices in an
SCC only depend on values of vertices of greater SCCs (in topological order),
that have been previously computed.

Example 1. Consider the weighted game of Fig. 1, where Min vertices are drawn
with circles, and Max vertices with squares. Vertex vt is the only target. Near
each vertex is placed its value. For a given vector x, we have F(x)v8 =
min(0 + xvt

,−1 + xv9) and F(x)v2 = max(−2 + xv1 ,−1 + xv3 ,−10 + xv5).
By a computation of the attractor of {vt} for Min, we obtain directly that v4
and v7 have value +∞. The inverse topological order on SCCs prescribes then
to compute first the values for the SCC {v8, v9}, with target vertex vt associated
with value 0. Then, we continue with SCC {v6}, also keeping a new target vertex
v8 with (already computed) value 0. For the trivial SCC {v5}, a single applica-
tion of F suffices to compute the value. Finally, for the SCC {v1, v2, v3, v4}, we
keep a new target vertex v5 with value 1.4 Notice that this game is divergent,
since, in each SCC, all simple cycles have the same sign.

For a divergent game G, Proposition 1 allows us to know in polynomial time
if a given SCC is positive or negative, i.e. if all cycles it contains are positive
or negative, respectively: it suffices to consider an arbitrary cycle of it, and
compute its weight. A trivial SCC (i.e. with a single vertex and no edges) will be
arbitrarily considered positive. We now explain how to compute in polynomial
time the value of all vertices in a positive or negative SCC.

First, in case of a positive SCC, we show that:

Proposition 2. The value iteration algorithm applied on a positive SCC with
n vertices stabilises after at most n steps.

Proof (inspired by techniques used in [9]). Let W = maxe∈E |Weight(e)| be the
greatest weight in the game. There are no negative cycles in the SCC, thus there

4 This means that, in the definition of F , a vertex v of Vt is indeed mapped to its
previously computed value, not necessarily 0.

168 D. Busatto-Gaston et al.

Fig. 1. SCC decomposition of a divergent weighted game: {v1, v2, v3, v4} and {v7} are
negative SCCs, {v6} and {v8, v9} are positive SCCs, and {v5} is a trivial positive SCC.

are no vertices with value −∞ in the SCC, and all values are finite. Let K be
an upper bound on the values |xn

v | obtained after n steps of the algorithm.5 Fix
an integer p > (2K + W (n − 1))n. We will show that the values obtained after
n+p steps are identical to those obtained after n steps only. Therefore, since the
algorithm computes non-increasing sequences of values, we have indeed stabilised
after n steps only. Assume the existence of a vertex v such that xn+p

v < xn
v . By

induction on p, we can show the existence of a vertex v′ and a finite play ρ from v
to v′ with length p and weight xn+p

v −xn
v′ : the play is composed of the edges that

optimise successively the min/max operator in F . This finite play being of length
greater than (2K +W (n−1))n, there is at least one vertex appearing more than
2K + W (n − 1) times. Thus, it can be decomposed into at least 2K + W (n − 1)
cycles and a finite play ρ′ visiting each vertex at most once. All cycles of the
SCC being positive, the weight of ρ is at least 2K +W (n−1)− (n−1)W = 2K,
bounding from below the weight of ρ′ by −(n − 1)W . Then, xn+p

v − xn
v′ �

2K, so xn+p
v � 2K + xn

v′ � K. But K � xn
v , so xn+p

v � xn
v , and that is a

contradiction. �

Example 2. For the SCC {v8, v9} of the game in Fig. 1, starting from x mapping
v8 and v9 to +∞, and vt to 0, after one iteration, xv8 changes for value 0, and
after the second iteration, xv9 stabilises to value 2.

Consider then the case of a negative SCC. Contrary to the previous case, we
must deal with vertices of value −∞. However, in a negative SCC, those vertices
are easy to find6. These are all vertices where Max can not unilaterally guarantee
to reach a target vertex:

5 After n steps, the value iteration algorithm has set to a finite value all vertices, since
it extends the attractor computation.

6 This is in contrast with the general case of (non divergent) finite weighted games
where the problem of deciding if a vertex has value −∞ is as hard as solving mean-
payoff games [15].

Optimal Reachability in Divergent Weighted Timed Games 169

Proposition 3. In a negative SCC with no vertices of value +∞, vertices of
value −∞ are all the ones not in the attractor for Max to the targets.

Proof. Consider a vertex v in the attractor for Max to the targets. Then, if Max
applies a winning memoryless strategy for the reachability objective to the target
vertices, all strategies of Min will generate a play from v reaching a target after
at most |V | steps. This implies that v has a finite (lower) value in the game.

Reciprocally, if v is not in the attractor, by determinacy of games with reacha-
bility objectives, Min has a (memoryless) strategy σMin to ensure that no strategy
of Max permits to reach a target vertex from v. Applying σMin long enough to
generate many negative cycles, before switching to a strategy allowing Min to
reach the target (such a strategy exists since no vertex has value +∞ in the
game), allows Min to obtain from v a negative weight as small as possible. Thus,
v has value −∞. �

Thus, we can compute vertices of value −∞ in polynomial time for a negative
SCC. Then, finite values of other vertices can be computed in polynomial time
with the following procedure. From a negative SCC G that has no more vertices of
value +∞ or −∞, consider the dual (positive) SCC G̃ obtained by: (i) switching
vertices of Min and Max; (ii) taking the opposite of every weight in edges. Sets
of strategies of both players are exchanged in those two games, so that the upper
value in G is equal to the opposite of the lower value in G̃, and vice versa. Since
weighted games are determined, the value of G is the opposite of the value of G̃.
Then, the value of G can be deduced from the value of G̃, for which Proposition 2
applies. We may also interpret this result as follows:

Proposition 4. The value iteration algorithm, initialised with x0
v = −∞ (for

all v), applied on a negative SCC with n vertices, and no vertices of value +∞
or −∞, stabilises after at most n steps.

Proof. It is immediate that the vectors computed with this modified value iter-
ation (that computes the smallest fixed point of F) are exactly the opposite
vectors of the ones computed in the dual positive SCC. The previous explana-
tion is then a justification of the result. �

Example 3. Consider the SCC {v1, v2, v3, v4} of the game in Fig. 1, where the
value of vertex v5 has been previously computed. We already know that v4 has
value +∞ so we do not consider it further. The attractor of {v5} for Max is
{v2, v3}, so that the value of v1 is −∞. Then, starting from x0 mapping v2
and v3 to −∞, the value iteration algorithm computes this sequence of vectors:
x1 = (−9,−∞) (Max tries to maximise the payoff, so he prefers to jump to the
target to obtain −10 + 1 than going to v3 where he gets −1 − ∞, while Min
chooses v2 to still guarantee 0 − ∞), x2 = (−9,−9) (now, Min has a choice
between the target giving 0 + 1 or v3 giving 0 − 9).

The proof for PTIME-hardness comes from a reduction (in logarithmic space)
of the problem of solving finite games with reachability objectives [19]. To a
reachability game, we simply add weights 1 on every transition, making it a

170 D. Busatto-Gaston et al.

divergent weighted game. Then, Min wins the reachability game if and only if
the value in the weighted game is lower than |V |.

In a divergent weighted game where all values are finite, optimal strate-
gies exist. As observed in [15], Max always has a memoryless optimal strategy,
whereas Min may require (finite) memory. Optimal strategies for both players
can be obtained by combining optimal strategies in each SCC, the latter being
obtained as explained in [15].

Class decision when weights are encoded in unary. We explain why decid-
ing the divergence of a weighted game is an NL-complete problem. First, to prove
the membership in NL, notice that a weighted game is not divergent if and only
if there is a positive cycle and a negative cycle, both of length at most |V |,
and belonging to the same SCC. To test this property in NL, we first guess a
starting vertex for both cycles. Verifying that those are in the same SCC can
be done in NL. Then, we guess the two cycles on-the-fly, keeping in memory
their accumulated weights (smaller than W × |V |, with W the biggest weight
in the game, and thus of size at most logarithmic in the size of G), and stop
the on-the-fly exploration when the length of the cycles exceeds |V |. Therefore
testing divergence is in coNL = NL [20,25].

The NL-hardness (indeed coNL-hardness, which is equivalent [20,25]) is
shown by a reduction of the reachability problem in a finite automaton. More
precisely, we consider a finite automaton with a starting state and a different
target state without outgoing transitions. We construct from it a weighted game
by distributing all states to Min, and equipping all transitions with weight 1. We
also add a loop with weight −1 on the target state and a transition from the
target state to the initial state with weight 0. Then, the game is not divergent
if and only if the target can be reached from the initial state in the automaton.

4 Weighted Timed Games

We now turn our attention to a timed extension of the weighted games. We
will first define weighted timed games, giving their semantics in terms of infinite
weighted games. We let X be a finite set of variables called clocks. A valuation
of clocks is a mapping ν : X → R�0. For a valuation ν, d ∈ R�0 and Y ⊆ X,
we define the valuation ν + d as (ν + d)(x) = ν(x) + d, for all x ∈ X, and the
valuation ν[Y ← 0] as (ν[Y ← 0])(x) = 0 if x ∈ Y , and (ν[Y ← 0])(x) = ν(x)
otherwise. The valuation 0 assigns 0 to every clock. A guard on clocks of X is a
conjunction of atomic constraints of the form x �	 c, where �	 ∈ {�, <,=, >,�}
and c ∈ N. A valuation ν : X → R�0 satisfies an atomic constraint x �	 c if
ν(x) �	 c. The satisfaction relation is extended to all guards g naturally, and
denoted by ν |= g. We let G(X) the set of guards over X.

A weighted timed game is then a tuple G = 〈S = SMin � SMax, St,Δ,Weight〉
where SMin and SMax are finite disjoint subsets of states belonging to Min
and Max, respectively, St ⊆ SMin is a subset of target states for player Min,
Δ ⊆ S × G(X) × 2X × S is a finite set of transitions, and Weight : Δ � S → Z is
the weight function, associating an integer weight with each transition and state.

Optimal Reachability in Divergent Weighted Timed Games 171

Without loss of generality, we may suppose that for each state s ∈ S and valua-
tion ν, there exists a transition (s, g, Y, s′) ∈ Δ such that ν |= g.

The semantics of a weighted timed game G is defined in terms of the infinite
weighted game H whose vertices are configurations of the weighted timed game.
A configuration is a pair (s, ν) with a state and a valuation of the clocks. Con-
figurations are split into players according to the state. A configuration is final
if its state is final. The alphabet of H is given by R�0 × Δ and will encode the
delay that a player wants to spend in the current state, before firing a certain
transition. For every delay d ∈ R�0, transition δ = (s, g, Y, s′) ∈ Δ and valua-

tion ν, there is an edge (s, ν)
d,δ−−→ (s′, ν′) if ν + d |= g and ν′ = (ν + d)[Y ← 0].

The weight of such an edge e is given by d × Weight(s) + Weight(δ).
Plays, strategies, and values in the weighted timed game G are then defined

as the ones in H. It is known that weighted timed games are determined
(ValG(s, ν) = ValG(s, ν) for all state s and valuation ν).7

As usual in related work [1,9,10], we assume that all clocks are bounded, i.e.
there is a constant M ∈ N such that every transition of the weighted timed
games is equipped with a guard g such that ν |= g implies ν(x) � M for all
clocks x ∈ X. We will rely on the crucial notion of regions, as introduced in
the seminal work on timed automata [2]: a region is a set of valuations, that
are all time-abstract bisimilar. There is only a finite number of regions and we
denote by Reg(X,M) the set of regions associated with set of clocks X and
maximal constant M in guards. For a valuation ν, we denote by [ν] the region
that contains it. A region r′ is said to be a time successor of region r if there
exist ν ∈ r, ν′ ∈ r′, and d > 0 such that ν′ = ν + d. Moreover, for Y ⊆ X, we
let r[Y ← 0] be the region where clocks of Y are reset.

The region automaton R(G) of a game G = 〈S = SMin � SMax, St,Δ,Weight〉
is the finite automaton with states S × Reg(X,M), alphabet Δ, and a transi-
tion (s, r) δ−→ (s′, r′) labelled by δ = (s, g, Y, s′) if there exists a region r′′ time
successor of r such that r′′ satisfies the guard g, and r′ = r′′[Y ← 0]. We call
path an execution (not necessarily accepting) of this finite automaton, and we
denote by π the paths. A play ρ in G is projected on a execution π in R(G), by
replacing actual valuations by the regions containing them: we say that ρ follows
path π. It is important to notice that, even if π is a cycle (i.e. starts and ends in
the same state of the region automaton), there may exist plays following it in G
that are not cycles, due to the fact that regions are sets of valuations.

Problems. As in weighted (untimed) games, we consider the value problem,
mimicked from the one in H. Precisely, given a weighted timed game G, a con-
figuration (s, ν) and a threshold α ∈ Z ∪ {−∞,+∞}, we want to know whether
ValG(s, ν) � α. In the context of timed games, optimal strategies may not exist.
We generally focus on ε-optimal strategies, that guarantee the optimal value,
up to a small error ε.

7 The result is stated in [13] for weighted timed games (called priced timed games)
with one clock, but the proof does not use the assumption on the number of clocks.

172 D. Busatto-Gaston et al.

Related work. In the one-player case, computing the optimal value and an ε-
optimal strategy for weighted timed automata is known to be PSPACE-complete
[6]. In the two-player case, much work for weighted timed games (also called
priced timed games in the literature) has been achieved in the case of non-
negative weights. In this setting, the value problem is undecidable [10,12]. To
obtain decidability, one possibility is to limit the number of clocks to 1: then,
there is an exponential-time algorithm to compute the value as well as ε-optimal
strategies [7,18,24], whereas the problem is only known to be PTIME-hard. The
other possibility to obtain a decidability result [1,9] is to enforce a semantical
property of divergence, originally called strictly non-Zeno cost: it asks that every
play following a cycle in the region automaton has weight at least 1.

In the presence of negative weights, undecidability even holds for weighted
timed games with only 2 clocks [16] (for the existence problem asking if a strategy
of player Min can guarantee a given threshold). Only the 1-clock restriction has
been studied so far allowing one to obtain an exponential-time algorithm, under
restrictions on the resets of the clock in cycles [13]. For weighted timed games,
the strictly non-Zeno cost property has only been defined and studied in the
absence of negative weights [9]. As already mentioned in the introduction, the
notion is close, but not equivalent, to the one of robust weighted timed games,
studied for mean-payoff and energy objectives [11]. In the next section, we extend
the strictly non-Zeno cost property to negative weights calling it the divergence
property, in order to obtain decidability of a large class of multi-clocks weighted
timed games in the presence of arbitrary weights.

5 Solving Divergent Weighted Timed Games

We introduce divergent weighted timed games, as an extension of divergent
weighted games to the timed setting.

Definition 2. A weighted timed game G is divergent when every finite play ρ in
G following a cycle in the region automaton R(G) satisfies Weight(ρ) /∈ (−1, 1).8

The weight is not only supposed to be different from 0, but also far from 0:
otherwise, the original intuition on the ultimate growing of the values of plays
would not be fulfilled. If G has only non-negative weights on states and tran-
sitions, this definition matches with the strictly non-Zeno cost property of [9,
Theorem 6]. Our contributions summarise as follows:

Theorem 2. The value problem over divergent weighted timed games is decid-
able in 2-EXPTIME, and is EXPTIME-hard. Moreover, deciding if a given
weighted timed game is divergent is a PSPACE-complete problem.

8 As in [9], we could replace (−1, 1) by (−κ, κ) to define a notion of κ-divergence.
However, since weights and guard constraints in weighted timed games are integers,
for κ ∈ (0, 1), a weighted timed game G is κ-divergent if and only if it is divergent.

Optimal Reachability in Divergent Weighted Timed Games 173

Remember that these complexity results match the ones that can be obtained
from the study of [9] for non-negative weights.

SCC analysis. Keeping the terminology of the untimed setting, a cycle π
of R(G) is said to be positive (respectively, negative) if every play ρ follow-
ing π satisfies Weight(ρ) � 1 (respectively, Weight(ρ) � −1). By definition, every
cycle of the region automaton of a divergent weighted timed game is positive
or negative. Moreover, notice that checking if a cycle π is positive or negative
can be done in polynomial time with respect to the length of π. Indeed, the set
{Weight(ρ) | ρ is a play following π} is an interval, as the image of a convex set
by an affine function (see [6, Sect. 3.2] for explanation), and the extremal points
of this interval can be computed in polynomial time by solving a linear problem
[6, Corollary 1]. We first transfer in the timed setting the characterisation of
divergent games in terms of SCCs that we relied on in the untimed setting:

Proposition 5. A weighted timed game G is divergent if and only if, in each
SCC of R(G), simple cycles are either all positive, or all negative.

The proof of the reciprocal follows the exact same reasoning as for weighted
games (see Proposition 1). For the direct implication, the situation is more com-
plex: we need to be more careful while composing cycles with each others, and
weights in the timed game are no longer integers, forbidding the arithmetical rea-
soning we applied. To help us, we rely on the corner-point abstraction introduced
in [8] to study multi-weighted timed automata. It consists in adding a weighted
information to the edges (s, r) δ−→ (s′, r′) of the region automaton. Since the
weights depend on the exact valuations ν and ν′, taken in regions r and r′,
respectively, the weight of such an edge in the region automaton is computed for
each pair of corners of the regions. Formally, corners of region r are valuations
in r ∩ N

X (where r denotes the topological closure of r). Since corners do not
necessarily belong to their regions, we must consider a modified version G of
the game G where all strict inequalities of guards have been replaced with non-
strict ones. Then, for a path π in R(G), we denote by π the equivalent of path
π in R(G). In the following, our focus is on cycles of the region automaton, so
we only need to consider the aggregation of all the behaviours following a cycle.
Inspired by the folded orbit graphs (FOG) introduced in [23], we define the folded
orbit graph FOG(π) of a cycle π = (s1, r = r1)

δ1−→ (s2, r2)
δ2−→ · · · δn−→ (s1, r)

in R(G) as a graph whose vertices are corners of region r, and that contains an
edge from corner v to corner v′ if there exists a finite play ρ in G from (s1, v) to
(s1, v′) following π jumping from corners to corners9. We fix such a finite play
ρ arbitrarily and label the edge between v and v′ in the FOG by this play: it is
then denoted by v

ρ−→ v′. Moreover, since ρ jumps from corners to corners, its
weight Weight(ρ) is an integer, conforming to the definitions of the corner-point
abstraction of [8]. Following [8, Proposition 5], it is possible to find a play ρ in

9 Notice that if there is a play from (s1, v) to (s1, v
′) in G, there is another one that

only jumps at corners of regions.

174 D. Busatto-Gaston et al.

G close to ρ, in the sense that we control the difference between their respective
weights:

Lemma 1. For all ε > 0 and edge v
ρ−→ v′ of FOG(π), there exists a play ρ in G

following π such that |Weight(ρ) − Weight(ρ)| � ε.

In order to prove the direct implication of Proposition 5, suppose now that G
is divergent, and consider two simple cycles π and π′ in the same SCC of R(G).
We need to show that they have the same sign. Lemma 2 will first take care of
the case where π and π′ share a state (s, r).

Lemma 2. If G is divergent and two cycles π and π′ of R(G) share a state (s, r),
they are either both positive or both negative.

Proof. Suppose by contradiction that π is negative and π′ is positive. We assume
that (s, r) is the first state of both π and π′, possibly performing cyclic permu-
tations of states if necessary. We construct a graph FOG(π, π′) as the union of
FOG(π) and FOG(π′) (that share the same set of vertices), colouring in blue the
edges of FOG(π) and in red the edges of FOG(π′). A path in FOG(π, π′) is said
blue (respectively, red) when all of its edges are blue (respectively, red).

We assume first that there exists in FOG(π, π′) a blue cycle C and a red
cycle C ′ with the same first vertex v. Let k and k′ be the respective lengths of C

and C ′, so that C can be decomposed as v
ρ1−→ · · · ρk−→ v and C ′ as v

ρ′
1−→ · · ·

ρ′
k′−−→ v,

where ρi are plays following π and ρ′
i are plays following π′, all jumping only

on corners of regions. Let ρ be the concatenation of ρ1, . . . , ρk, and ρ′ be the
concatenation of ρ′

1, . . . , ρ
′
k′ . Recall that w = |Weight(ρ)| and w′ = |Weight(ρ′)|

are integers. Since π is negative, so is πk, the concatenation of k copies of π
(the weight of a play following it is a sum of weights all below −1). Therefore,
ρ, that follows πk, has a weight Weight(ρ) � −1. Similarly, Weight(ρ′) � 1. We
consider the cycle C ′′ obtained by concatenating w′ copies of C and w copies of
C ′. Similarly, we let ρ′′ be the play obtained by concatenating w′ copies of ρ and
w copies of ρ′. By Lemma 1, there exists a play ρ′′ in G, following C ′′ such that
|Weight(ρ′′)−Weight(ρ′′)| � 1/3. But Weight(ρ′′) = Weight(ρ)w′+Weight(ρ′)w =
0, so Weight(ρ′′) ∈ (−1, 1): this contradicts the divergence of G, since ρ′′ follows
the cycle of R(G) composed of w′ copies πk and w copies of π′k′

of R(G).
We now return to the general case, where C and C ′ may not exist. Since

FOG(π) and FOG(π′) are finite graphs with no deadlocks (every corner has an
outgoing edge), from every corner of FOG(π, π′), we can reach a blue simple cycle,
as well as a red simple cycle. Since there are only a finite number of simple cycles
in FOG(π, π′), there exists a blue cycle C and a red cycle C ′ that can reach each
other in FOG(π, π′). In FOG(π, π′), we let P be a path from the first vertex of
C to the first vertex of C ′, and P ′ be a path from the first vertex of C ′ to the
first vertex of C. Consider the cycle C ′′ obtained by concatenating P and P ′.
As a cycle of FOG(π, π′), we can map it to a cycle π′′ of R(G) (alternating π
and π′ depending on the colours of the traversed edges), so that C ′′ is a cycle
(of length 1) of FOG(π′′). By the divergence of G, π′′ is positive or negative.

Optimal Reachability in Divergent Weighted Timed Games 175

Suppose for instance that it is positive. Since (s, r) is the first state of both π
and π′′, we can construct the FOG(π, π′′), in which C is a blue cycle and C ′′

is a red cycle, both sharing the same first vertex. We then conclude with the
previous case. A similar reasoning with π′ applies to the case that π′′ is negative.
Therefore, in all cases, we reached a contradiction. �

To finish the proof of the direct implication of Proposition 5, we suppose that
the two simple cycles π and π′ in the same SCC of R(G) do not share any states.
By strong connectivity, in R(G), there exists a path π1 from the first state of π to
the first state of π′, and a path π2 from the first state of π′ to the first state of π.
Consider the cycle of R(G) obtained by concatenating π1 and π2. By divergence
of G, it must be positive or negative. Since it shares a state with both π and π′,
Lemma 2 allows us to prove a contradiction in both cases. This concludes the
proof of Proposition 5.

Value computation. We will now explain how to compute the values of a
divergent weighted timed game G. Remember that the function Val maps con-
figurations of S ×R

X
�0 to a value in R∞ = R ∪ {−∞,+∞}. The semi-algorithm

of [9] relies on the same principle as the value iteration algorithm used in the
untimed setting, only this time we compute the greatest fixed point of operator

F : R
S×R

X
�0∞ → R

S×R
X
�0∞ , defined by F(x)(s,ν) = 0 if s ∈ St, and otherwise

F(x)(s,ν) =

⎧
⎪⎪⎨

⎪⎪⎩

sup
(s,ν)

d,δ−−→(s′,ν′)

d × Weight(s) + Weight(δ) + x(s′,ν′) if s ∈ SMax

inf
(s,ν)

d,δ−−→(s′,ν′)

d × Weight(s) + Weight(δ) + x(s′,ν′) if s ∈ SMin

where (s, ν)
d,δ−−→ (s′, ν′) ranges over the edges of the infinite weighted game asso-

ciated with G (the one defining its semantics). Then, starting from x0 mapping
every configuration to +∞, we let xi = F(xi−1) for all i > 0. Since x0 is piece-
wise affine (even constant), and F preserves piecewise affinity, all iterates xi are
piecewise affine with a finite amount of pieces. In [1], it is proved that xi has at
most a number of pieces linear in the size of R(G) and exponential in i.10

First, we can compute the set of configurations having value +∞. Indeed,
the region automaton R(G) can be seen as a reachability two-player game S(G)
by saying that (s, r) belongs to Min (Max, respectively) if s ∈ SMin (s ∈ SMax,
respectively). Notice that if Val(s, ν) = +∞, then for all ν′ ∈ [ν],Val(s, ν′) =
+∞. Therefore, a configuration (s, ν) cannot reach the target states if and only if
(s, [ν]) is not in the attractor of Min to the targets in S(G). As a consequence, we
can compute all such states of S(G) with complexity linear in the size of R(G).

We then decompose R(G) in SCCs. By Proposition 5, each SCC is either
positive or negative (i.e. it contains only positive cycles, or only negative ones).
Then, in order to find the sign of a component, it suffices to find one of its simple
10 For divergent games with only non-negative weights, the fixed point is reached after

a number of steps linear in the size of the region automaton [9]: overall, this leads
to a doubly exponential complexity.

176 D. Busatto-Gaston et al.

cycles, for example with a depth-first search, then compute the weight of one
play following it.

As we did for weighted (untimed) games, we then compute values in inverse
topological order over the SCCs. Once the values of all configurations in (s, r)
appearing in previously considered SCCs have been computed, they are no longer
modified in further computation. This is the case, in particular, for all pairs (s, r)
that have value +∞, that we precompute from the beginning. In order to resolve
a positive SCC of R(G), we apply F on the current piecewise affine function, only
modifying the pieces appearing in the SCC, until reaching a fixed point over these
pieces. In order to resolve a negative SCC of R(G), we compute the attractor for
Max to the previously computed SCCs: outside of this attractor, we set the value
to −∞. Then, we apply F for pieces appearing in the SCC, initialising them
to −∞ (equivalently, we compute in the dual game, that is a positive SCC),
until reaching a fixed point over these pieces. The next proposition contains the
correction and termination arguments that where presented in Propositions 2, 3,
and 4 for the untimed setting:

Proposition 6. Let G be a divergent game with no configurations of value +∞.

1. The value iteration algorithm applied on a positive SCC of R(G) with n states
stabilises after at most n steps.

2. In a negative SCC, states (s, r) of R(G) of value −∞ are all the ones not in
the attractor for Max to the targets.

3. The value iteration algorithm, initialised with −∞, applied on a negative SCC
of R(G) with n states, and no vertices of value −∞, stabilises after at most
n steps.

By the complexity results of [1, Theorem 3], we obtain a doubly exponential
time algorithm computing the value of a divergent weighted timed game. This
shows that the value problem is in 2-EXPTIME for divergent weighted timed
game. The proof for EXPTIME-hardness comes from a reduction of the problem
of solving timed games with reachability objectives [21]. To a reachability timed
game, we simply add weights 1 on every transition and 0 on every state, making it
a divergent weighted timed game. Then, Min wins the reachability timed game
if and only if the value in the weighted timed game is lower than threshold
α = |S| × |Reg(X,M)|.

In an SCC of R(G), the value iteration algorithm of [1] allows us to compute
an ε-optimal strategy for both players (for configurations having a finite value),
that is constant (delay or fire a transition) over each piece of the piecewise affine
value function. As in the untimed setting, we may then compose such ε-optimal
strategies to obtain an ε′-optimal strategy in G (ε′ is greater than ε, but can be
controlled with respect to the number of SCCs in R(G)).

Class decision. Deciding if a weighted timed game is divergent is PSPACE-
complete. The proof is an extension of the untimed setting NL-complete result,
but this time we reason on regions, hence the exponential blowup in complexity:
it heavily relies on Proposition 5, as well as the corner-point abstraction to keep
a compact representation of plays.

Optimal Reachability in Divergent Weighted Timed Games 177

6 Conclusion

In this article, we introduced the first decidable class of weighted timed games
with arbitrary weights, with no restrictions on the number of clocks. Future work
include the approximation problem for a larger class of weighted timed games
(divergent ones where we also allow cycles of weight exactly 0), already studied
with only non-negative weights by [10].

References

1. Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted
timed games. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27836-8 13

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Alur, R., Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
Theoret. Comput. Sci. 318(3), 297–322 (2004)

4. Asarin, E., Maler, O.: As soon as possible: time optimal control for timed automata.
In: Vaandrager, F.W., Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–
30. Springer, Heidelberg (1999). doi:10.1007/3-540-48983-5 6

5. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J.,
Vaandrager, F.: Minimum-cost reachability for priced time automata. In:
Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001). doi:10.1007/3-540-45351-2 15

6. Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability
problem of weighted timed automata. Formal Meth. Syst. Des. 31(2), 135–175
(2007)

7. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Inf. Process. Lett. 98(5), 188–194 (2006)

8. Bouyer, P., Brinksma, E.D., Larsen, K.G.: Optimal infinite scheduling for multi-
priced timed automata. Formal Methods in System Design 32(1), 3–23 (2008)

9. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed
game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol.
3328, pp. 148–160. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 13

10. Bouyer, P., Jaziri, S., Markey, N.: On the value problem in weighted timed games.
In: Proceedings of the 26th International Conference on Concurrency Theory
(CONCUR 2015), vol. 42 of Leibniz International Proceedings in Informatics, pp.
311–324. Leibniz-Zentrum für Informatik (2015)

11. Brenguier, R., Cassez, F., Raskin, J.-F.: Energy, mean-payoff timed games. In:
Proceedings of the 17th International Conference on Hybrid Systems: Computation
and Control (HSCC 2014), pp. 283–292. ACM (2014)

12. Brihaye, T., Bruyère, V., Raskin, J.-F.: On optimal timed strategies. In: Pettersson,
P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 49–64. Springer, Heidelberg
(2005). doi:10.1007/11603009 5

13. Brihaye, T., Geeraerts, G., Haddad, A., Lefaucheux, E., Monmege, B.: Simple
priced timed games are not that simple. In: Proceedings of the 35th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2015), vol. 45 of LIPIcs, pp. 278–292. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2015)

http://dx.doi.org/10.1007/978-3-540-27836-8_13
http://dx.doi.org/10.1007/978-3-540-27836-8_13
http://dx.doi.org/10.1007/3-540-48983-5_6
http://dx.doi.org/10.1007/3-540-45351-2_15
http://dx.doi.org/10.1007/978-3-540-30538-5_13
http://dx.doi.org/10.1007/11603009_5

178 D. Busatto-Gaston et al.

14. Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B.: To reach or not to reach?
Efficient algorithms for total-payoff games. In: Proceedings of the 26th Interna-
tional Conference on Concurrency Theory (CONCUR’15), vol. 42 of LIPIcs, pp.
297–310. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)

15. Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B.: Pseudopolynomial itera-
tive algorithm to solve total-payoff games and min-cost reachability games. Acta
Informatica (2016)

16. Brihaye, T., Geeraerts, G., Narayanan Krishna, S., Manasa, L., Monmege, B.,
Trivedi, A.: Adding negative prices to priced timed games. In: Baldan, P., Gorla,
D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 560–575. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44584-6 38

17. Busatto-Gaston, D., Monmege, B., Reynier, P.-A.: Optimal reachability in diver-
gent weighted timed games. Research Report 1701.03716, arXiv, January 2017

18. Hansen, T.D., Ibsen-Jensen, R., Miltersen, P.B.: A faster algorithm for solving
one-clock priced timed games. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR
2013. LNCS, vol. 8052, pp. 531–545. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40184-8 37

19. Immerman, N.: Number of quantifiers is better than number of tape cells. J. Com-
put. Syst. Sci. 22(3), 384–406 (1981)

20. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17, 935–938 (1988)

21. Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 838–849. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73420-8 72

22. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., Zhao,
J.: On short paths interdiction problems: total and node-wise limited interdiction.
Theor. Comput. Syst. 43(2), 204–233 (2008)

23. Puri, A.: Dynamical properties of timed automata. Discrete Event Dyn. Syst. 10(1–
2), 87–113 (2000)

24. Rutkowski, M.: Two-player reachability-price games on single-clock timed
automata. In Proceedings of the Ninth Workshop on Quantitative Aspects of Pro-
gramming Languages (QAPL2011), vol. 57 of EPTCS, pp. 31–46 (2011)

25. Szelepcsényi, R.: The method of forced enumeration for nondeterministic
automata. Acta Informatica 26(3), 279–284 (1988)

http://dx.doi.org/10.1007/978-3-662-44584-6_38
http://dx.doi.org/10.1007/978-3-642-40184-8_37
http://dx.doi.org/10.1007/978-3-642-40184-8_37
http://dx.doi.org/10.1007/978-3-540-73420-8_72

Bounding Average-Energy Games

Patricia Bouyer1, Piotr Hofman1,2, Nicolas Markey1,3,
Mickael Randour4(B), and Martin Zimmermann5

1 LSV, CNRS & ENS Cachan, Université Paris Saclay, Cachan, France
2 University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland

3 IRISA, CNRS & INRIA & U. Rennes 1, Rennes, France
4 Computer Science Department, ULB - Université Libre de Bruxelles,

Brussels, Belgium
mickael.randour@gmail.com

5 Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany

Abstract. We consider average-energy games, where the goal is to
minimize the long-run average of the accumulated energy. While sev-
eral results have been obtained on these games recently, decidability of
average-energy games with a lower-bound constraint on the energy level
(but no upper bound) remained open; in particular, so far there was no
known upper bound on the memory that is required for winning strate-
gies.

By reducing average-energy games with lower-bounded energy to
infinite-state mean-payoff games and analyzing the density of low-
energy configurations, we show an almost tight doubly-exponential upper
bound on the necessary memory, and prove that the winner of average-
energy games with lower-bounded energy can be determined in doubly-
exponential time. We also prove EXPSPACE-hardness of this problem.

Finally, we consider multi-dimensional extensions of all types of
average-energy games: without bounds, with only a lower bound, and
with both a lower and an upper bound on the energy. We show that the
fully-bounded version is the only case to remain decidable in multiple
dimensions.

1 Introduction

Quantitative two-player games of infinite duration provide a natural framework
for synthesizing controllers for reactive systems with resource restrictions in an
antagonistic environment (see e.g., [1,23]). In such games, player P0 (who rep-
resents the system to be synthesized) and player P1 (representing the antago-
nistic environment) construct an infinite path by moving a pebble through a
graph, which describes the interaction between the system and its environment.

A full version of this paper [4] is available online: https://arxiv.org/abs/1610.07858.
P. Bouyer and N. Markey—Supported by ERC project EQualIS (308087).
M. Randour—F.R.S.-FNRS postdoctoral researcher.
M. Zimmermann—Supported by the DFG project TriCS (ZI 1516/1-1).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 179–195, 2017.
DOI: 10.1007/978-3-662-54458-7 11

https://arxiv.org/abs/1610.07858

180 P. Bouyer et al.

The objective, a subset of the infinite paths that encodes the controller’s specifi-
cation, determines the winner of such a play. Quantitative games extend this clas-
sical model by weights on edges for modeling costs, consumption, or rewards, and
by a quantitative objective to encode the specification in terms of the weights.

s2

s1s0

−42

0

−2

−14

Fig. 1. Simple weighted game.

As an example, consider the game in Fig. 1:
we interpret negative weights as energy con-
sumption and correspondingly positive weights
as recharges. Then, P0 (who moves the pebble
at the circular states) can always maintain an
energy level (the sum of the weights seen along
a play prefix starting with energy zero) between
zero and six using the following strategy: when
at state s0 with energy level at least two, go to
state s1, otherwise go to state s2 in order to sat-
isfy the lower bound. At state s1, always move to s0. It is straightforward to
verify that the strategy has the desired property when starting at the initial
state s0 with initial energy zero. Note that this strategy requires memory to be
implemented, as its choices depend on the current energy level and not only on
the state the pebble is currently at.

Formally, the energy objective requires P0 to maintain an energy level within
some (lower and/or upper) bounds, which are either given as input or exis-
tentially quantified. In the example above, P0 has a strategy to win for the
energy objective with lower bound zero and upper bound six. Energy objec-
tives [3,11,18,19] and their combinations with parity objectives [9,11] have
received significant attention in the literature.

However, a plain energy (parity) objective is sometimes not sufficient to ade-
quately model real-life systems. For example, consider the following specification
for the controller of an oil pump, based on a case study [7]: it has to keep the
amount of oil in an accumulator within given bounds (an energy objective with
given lower and upper bounds) while keeping the average amount of oil in the
accumulator below a given threshold in the long run. The latter requirement
reduces the wear and tear of the system, but cannot be expressed as an energy
objective nor as a parity objective. Constraints on the long-run average energy
level (which exactly represents the amount of oil in our example) can be specified
using the average-energy objective [5]. As seen in this example, they are typically
studied in conjunction with bounds on the energy level.

Recall the example in Fig. 1. The aforementioned strategy for P0 guarantees
a long-run average energy level, i.e., average-energy, of at most 11/4 (recall we
want to minimize it): the outcome with worst average-energy is

(
s0s2(s0s1)3

)ω,
with energy levels (4, 6, 4, 4, 2, 2, 0, 0)ω .

The average-energy objective was first introduced by Thuijsman and Vrieze
under the name total-reward [24] (there is an unrelated, more standard, objec-
tive called total-reward, see [5] for a discussion). Recently, the average-energy
objective was independently revisited by Boros et al. [2] and by Bouyer et al. [5].
The former work studies Markov decision processes and stochastic games with

Bounding Average-Energy Games 181

average-energy objectives. The latter studies non-stochastic games with average-
energy objectives, with or without lower and upper bounds on the energy level;
it determines the complexity of computing the winner and the memory require-
ments for winning strategies in such games. In particular, it solves games with
average-energy objectives with both an upper and a lower bound on the energy
level by a reduction to mean-payoff games: to this end, the graph is extended
to track the energy level between these bounds (a losing sink for P0 is reached
if these bounds are exceeded). Thus, the bounds on the energy level are already
taken care of and the average-energy objective can now be expressed as a mean-
payoff objective [13], as the new graph encodes the current energy level in its
weights. This reduction yields an exponential-time decision algorithm. Moreover,
it is shown in [5] that these games are indeed EXPTIME-complete. Note that the
algorithm crucially depends on the upper bound being given as part of the input,
which implies that the graph of the extended game is still finite.

One problem left open in [5] concerns average-energy games with only a lower
bound on the energy level: computing the winner is shown to be EXPTIME-hard,
but it is not known whether this problem is decidable at all. Similarly, pseudo-
polynomial lower bounds (i.e., lower bounds that are polynomial in the values of
the weights, but possibly exponential in the size of their binary representations)
on the necessary memory to implement a winning strategy for P0 are given, but
no upper bound is known. The major obstacle toward solving these problems is
that without an upper bound on the energy, a strategy might allow arbitrarily
large energy levels while still maintaining a bounded average, by enforcing long
stretches with a small energy level to offset the large levels.

A step toward resolving these problems was taken by considering two vari-
ants of energy and average-energy objectives where (i) the upper bound on the
energy level, or (ii) the threshold on the average energy level, is existentially
quantified [21]. It turns out that these two variants are equivalent. One direction
is trivial: if the energy is bounded, then the average-energy is bounded. On the
other hand, if P0 can guarantee some upper bound on the average, then he can
also guarantee an upper bound on the energy level, i.e., an (existential) average-
energy objective can always be satisfied with bounded energy levels. This is
shown by transforming a strategy satisfying a bound on the average (but possi-
bly allowing arbitrarily high energy levels) into one that bounds the energy by
skipping parts of plays where the energy level is much higher than the threshold
on the average. However, the proof is not effective: it does not yield an upper
bound on the necessary energy level, just a guarantee that some bound exists.
Even more so, it is still possible that the average has to increase when keep-
ing the energy bounded. Hence, it does not answer our problem: does achieving
a given threshold on the average-energy require unbounded energy levels and
infinite memory?

Another potential approach toward solving the problem is to extend the
reduction presented in [5] (which goes from average-energy games with both
lower and upper bound on the energy level to mean-payoff games) to games
without such an upper bound, which results in an infinite graph. This graph

182 P. Bouyer et al.

can be seen as the configuration graph of a one-counter pushdown system, i.e.,
the stack height corresponds to the current energy level, and the average-energy
objective is again transformed into a mean-payoff objective, where the weight of
an edge is given by the stack height at the target of the edge. Hence, the weight
function is unbounded. To the best of our knowledge, such mean-payoff games
have not been studied before. However, mean-payoff games on pushdown systems
with bounded weight functions are known to be undecidable [12].

Our Contribution. We develop the first algorithm for solving games with average-
energy objectives and a lower bound on the energy level, and give an upper bound
on the necessary memory to implement a winning strategy for P0 in such games.

First, we present an algorithm for solving such games in doubly-exponential
time (for the case of a binary encoding of the weights). The algorithm is based
on the characterization of an average-energy game as a mean-payoff game on
an infinite graph described above. If the average-energy of a play is bounded
by the threshold t, then configurations with energy level at most t have to
be visited frequently. As there are only finitely many such configurations, we
obtain cycles on this play. By a more fine-grained analysis, we obtain such a
cycle with an average of at most t and whose length is bounded exponentially.
Finally, by analyzing strategies for reachability objectives in pushdown games,
we show that P0 can ensure that the distance between such cycles is bounded
doubly-exponentially. From these properties, we obtain a doubly-exponential
upper bound on the necessary energy level to ensure an average-energy of at
most t. The resulting equivalent average-energy game with a lower and an upper
bound can be solved in doubly-exponential time. Furthermore, if the weights and
the threshold are encoded in unary (or are bounded polynomially in the number
of states), then we obtain an exponential-time algorithm.

Second, from the reduction sketched above, we also obtain a doubly-
exponential upper bound on the necessary memory for P0, the first such bound.
In contrast, a certain succinct one-counter game due to Hunter [16], which
can easily be expressed as an average-energy game with threshold zero, shows
that our bound is almost tight: in the resulting game of size n, energy level
2(2

√
n/

√
n)−1 is necessary to win. Again, in the case of unary encodings, we obtain

an (almost) tight exponential bound on the memory requirements.
Third, we improve the lower bound on the complexity of solving average-

energy games with only a lower bound on the energy level from EXPTIME to
EXPSPACE by a reduction from succinct one-counter games [17].

Fourth, we show that multi-dimensional average-energy games are undecid-
able, both for the case without any bounds and for the case of only lower bounds.
Only the case of games with both lower and upper bounds turns out to be decid-
able: it is shown to be both in NEXPTIME and in coNEXPTIME. This problem
trivially inherits EXPTIME-hardness from the one-dimensional case.

Bounding Average-Energy Games 183

2 Preliminaries

Graph games. We consider finite turn-based weighted games played on graphs
between two players, denoted by P0 and P1. Such a game is a tuple G =
(S0, S1,E) where (i) S0 and S1 are disjoint sets of states belonging to P0 and P1,
with S = S0 �S1, (ii) E ⊆ S × [−W ;W]×S, for some W ∈ N, is a set of integer-
weighted edges. Given an edge e = (s, w, t) ∈ E , we write src(e) for the source
state s of e, tgt(e) for its target state t, and w(e) for its weight w. We assume
that for every s ∈ S, there is at least one outgoing edge (s, w, s′) ∈ E.

Let s ∈ S. A play from s is an infinite sequence of edges π = (ei)1≤i such that
src(e1) = s and tgt(ei) = src(ei+1) for all i ≥ 1. A play induces a corresponding
sequence of states, denoted π̂ = (sj)0≤j , such that for any ei, i ≥ 1, in π,
si−1 = src(ei) and si = tgt(ei). We write first(π) = s0 for its initial state
(here, s). A play prefix from s is a finite sequence of edges ρ = (ei)1≤i≤k following
the same rules and notations. We additionally write last(ρ) = sk = tgt(ek) for
its last state. We let εs (or ε when s is clear from the context) denote the empty
play prefix from s, with last(εs) = first(εs) = s. A non-empty prefix ρ such that
last(ρ) = first(ρ) is called a cycle. The length of a prefix ρ = (ei)1≤i≤k is its
number of edges, i.e., �(ρ) = k. For a play π, �(π) = ∞. Given a prefix ρ and a
play (or prefix) π with last(ρ) = first(π), the concatenation between ρ and π is
denoted by ρ · π.

For a play π = (ei)1≤i and 1 ≤ j ≤ k, we write π[j,k] to denote the finite
sequence (ei)j≤i≤k, which is a prefix from src(ej); we write π≤k for π[1,k]. For any
i ≥ 1 and j ≥ 0, we write πi for edge ei and π̂j for state sj . Similar notations
are used for prefixes ρ, with all indices bounded by �(ρ).

The set of all plays in G from a state s is denoted by Plays(G , s), and the set
of all such prefixes is denoted by Prefs(G , s). We write Plays(G) and Prefs(G)
for the unions of those sets over all states. We say that a prefix ρ ∈ Prefs(G)
belongs to Pi, for i ∈ {0, 1}, if last(ρ) ∈ Si. The set of prefixes that belong to Pi

is denoted by Prefsi(G), and we define Prefsi(G , s) = Prefsi(G) ∩ Prefs(G , s).

Payoffs. Given a non-empty prefix ρ = (ei)1≤i≤n, we define the following payoffs:

– its energy level as EL(ρ) =
∑n

i=1 w(ei);
– its mean-payoff as MP(ρ) = 1

n

∑n
i=1 w(ei) = 1

nEL(ρ);
– its average-energy as AE(ρ) = 1

n

∑n
i=1 EL(ρ≤i).

These definitions are extended to plays by taking the upper limit of the respective
functions applied to the sequence of prefixes of the plays, e.g.,

AE(π) = lim supn→∞
1
n

∑n

i=1
EL(π≤i).

Example 1. We illustrate those definitions on a small example depicted in Fig. 2:
it displays two small (1-player, deterministic) weighted games, together with
the evolution of the energy level and average-energy along their unique play.
As noted in [5], the average-energy can help in discriminating plays that have

184 P. Bouyer et al.

s0 s1

s4

s3

s2
1

−2 0

4−2

s0 s1

s4

s3

s2
1

−2 4

0−2

Fig. 2. Two plays with identical mean-payoffs and total-payoffs. The left one has
average-energy 1/2, in contrast to 3/2 for the right one. Green (dotted) and blue
curves respectively represent the energy level and the average-energy over prefixes.
(Color figure online)

identical total-payoffs (i.e., the limits of high and low points in the sequence of
energy levels), in the same way that total-payoff can discriminate between plays
having the same mean-payoff. Indeed, in our example, both plays have mean-
payoff equal to zero and supremum (resp. infimum) total-payoff equal to three
(resp. −1), but they end up having different averages: the average-energy is 1/2
for the left play, while it is 3/2 for the right one.

Strategies. A strategy for Pi, with i ∈ {0, 1}, from a state s is a function
σi : Prefsi(G , s) → E satisfying src(σi(ρ)) = last(ρ) for all ρ ∈ Prefsi(G , s).
We denote by Stratsi(G , s), the set of strategies for Pi from state s. We drop G
and s when they are clear from the context.

A play π = (ej)1≤j from s is called an outcome of strategy σi of Pi if, for all
k ≥ 0 where π≤k ∈ Prefsi(G , s), we have σi(π≤k) = ek+1. Given a state s ∈ S
and strategies σ0 and σ1 from s for both players, we denote by Out(s, σ0, σ1) the
unique play that starts in s and is an outcome of both σ0 and σ1. When fixing
the strategy of only Pi, we denote the set of outcomes by

Out(s, σi) = {Out(s, σ0, σ1) | σ1−i ∈ Strats1−i(G , s)}.

Objectives. An objective in G is a set W ⊆ Plays(G). Given a game G , an initial
state sinit, and an objective W, a strategy σ0 ∈ Strats0 is winning for P0 if
Out(sinit, σ0) ⊆ W. We consider the following objectives for P0:

– The lower-bounded energy objective EnergyL = {π ∈ Plays(G) | ∀n ≥
1,EL(π≤n) ≥ 0} requires a non-negative energy level at all times.1

– Given an upper bound U ∈ N, the lower- and upper-bounded energy
objective EnergyLU (U) = {π ∈ Plays(G) | ∀n ≥ 1, EL(π≤n) ∈ [0, U]} requires
that the energy always remains non-negative and below the upper bound U
along a play.

1 For the sake of readability, we assume the initial credit to be zero for energy objec-
tives throughout this paper. Still, our techniques can easily be generalized to an
arbitrary initial credit cinit ∈ N.

Bounding Average-Energy Games 185

Table 1. Complexity of deciding the winner and memory requirements for quantitative
games: MP stands for mean-payoff, EGL (resp. EGLU) for lower-bounded (resp. lower-
and upper-bounded) energy, AE for average-energy, AEL (resp. AELU) for average-
energy under a lower bound (resp. and upper bound) on the energy, c. for complete,
e. for easy, and h. for hard. All memory bounds are tight (except for AEL).

Objective 1-player 2-player Memory

MP PTIME[20] NP ∩ coNP [27] Memoryless [13]

EGL PTIME [3] NP ∩ coNP [3,8] Memoryless [8]

EGLU PSPACE-c. [14] EXPTIME-c. [3] Exponential [5]

AE PTIME [5] NP ∩ coNP[5] Memoryless [5]

AELU PSPACE-c. [5] EXPTIME-c. [5] Exponential [5]

AEL PSPACE-e./NP-h. [5] EXPSPACE-h. At least super-exp.

2-EXPTIME-e. At most doubly-exp.

– Given a threshold t ∈ Q, the mean-payoff objective MeanPayoff(t) = {π ∈
Plays(G) | MP(π) ≤ t} requires that the mean-payoff is at most t.

– Given a threshold t ∈ Q, the average-energy objective AvgEnergy(t) = {π ∈
Plays(G) | AE(π) ≤ t} requires that the average-energy is at most t.

For the MeanPayoff and AvgEnergy objectives, P0 aims to minimize the payoff.

Decision problem. In this paper, we focus on weighted games with a combination
of energy and average-energy objectives, by a detour via mean-payoff objectives.
The exact problem we tackle is named the AEL threshold problem and is defined
as follows: given a finite game G , an initial state sinit ∈ S, and a threshold t ∈ Q

given as a fraction t1
t2

with t1 and t2 two natural numbers given in binary, decide
whether P0 has a winning strategy from sinit for the objective AvgEnergyL(t) =
EnergyL ∩ AvgEnergy(t). As for the threshold, we consider a binary encoding
of the weights in G : we thus study the complexity of the problem with regard
to the length of the input’s binary encoding (i.e., the number of bits used to
represent the graph and the numbers involved).

Variants of this problem involving the above-mentioned payoff functions, and
combinations thereof, had been previously investigated, see Table 1 for a sum-
mary of the results. In this paper, we focus on the remaining case, namely 2-
player games with AEL objectives, for which decidability was not known, and
proving the computational- and memory complexities given in the corresponding
cells of the table.

3 Equivalence with an Infinite-State Mean-Payoff Game

Let G = (S0, S1, E) be a finite weighted game, sinit ∈ S be an initial state, and
t ∈ Q be a threshold. We define its expanded infinite-state weighted game as
G′ = (Γ0, Γ1,Δ) defined by

186 P. Bouyer et al.

– Γ0 = S0 × N, and Γ1 = S1 × N � {⊥} (where ⊥ is a fresh sink state that does
not belong to G); then Γ = Γ0 � Γ1 is the global set of states;

– Δ is composed of the following edges:
• a transition ((s, c), c′, (s′, c′)) ∈ Δ whenever there is (s, w, s′) ∈ E with

c′ = c + w ≥ 0;
• a transition ((s, c), �t + 1,⊥) ∈ Δ whenever there is (s, w, s′) ∈ E such

that c + w < 0;
• finally, a transition (⊥, �t + 1,⊥) ∈ Δ.

In this expanded game, elements of Γ are called configurations, and the initial
configuration is set to (sinit, 0).

Lemma 1. Player P0 has a winning strategy in G from state sinit for the objec-
tive AvgEnergyL(t) if, and only if, he has a winning strategy in G′ from config-
uration (sinit, 0) for the objective MeanPayoff(t).

For the rest of this paper, we fix a weighted game G = (S0, S1, E) and
a threshold t ∈ Q, and work on the corresponding expanded weighted game
G′ = (Γ0, Γ1,Δ). We write t = t1

t2
= �t� + t′

t2
, where t1, t2, t

′ ∈ N (recall they
are given in binary), and 0 ≤ t′ < t2, and �t� stands for the integral part of t.
We also let t̃ = �t� + 1 − t = 1 − t′

t2
. Hence t̃ = 1 indicates that t is an integer.

For a given threshold t ∈ Q, we consider Γ≤t = {(s, c) ∈ Γ | c ≤ t}, i.e., the set
of configurations below the threshold.

Note that G′ can be interpreted as a one-counter pushdown mean-payoff
game with an unbounded weight function. While it is well-known how to solve
mean-payoff games over finite arenas, not much is known for infinite arenas (see
Sect. 1). However, our game has a special structure that we will exploit to obtain
an algorithm. Roughly, our approach consists in transforming the AvgEnergyL(t)
objective into an equivalent AvgEnergyLU (t, U) = EnergyLU (U) ∩ AvgEnergy(t)
objective, where (the value of) U is doubly-exponential in the input by analyzing
plays and strategies in G′. In other terms, we show that any winning strategy for
AvgEnergyL(t) can be transformed into another winning strategy along which
the energy level remains upper-bounded by U .

The proof is two-fold: we first show (in Sect. 4) that we can bound the energy
level for the special case where the objective consists in reaching a finite set of
configurations of the game (with only a lower bound on the energy level). This
is achieved by a detour to pushdown games: while there are known algorithms
for solving reachability pushdown games, to the best of our knowledge, there are
no (explicit) results bounding the maximal stack height.

As a second step (in Sect. 5), we identify good cycles in winning outcomes,
and prove that they can be shown to have bounded length. The initial configu-
rations of those cycles will then be the targets of the reachability games above.
Combining these two results yields the desired upper bound on the energy levels.

Bounding Average-Energy Games 187

4 Bounding One-Counter Reachability Games

We focus here on a reachability objective in G′, where the target set is a sub-
set Γ ′ ⊆ Γ≤t: we aim at bounding the maximal energy level that needs to be
visited with a winning strategy.

The game G′ is a particular case of a pushdown game [26]. Hence we use
results on pushdown games, and build a new winning strategy, in which we
will be able to bound the energy level at every visited configuration. Note that
the bound M ′ in the following lemma is doubly-exponential, as we encode W ,
the largest absolute weight in G, and the threshold t, in binary. The proof of
the next lemma is based on the reformulation of the algorithm from [26] made
in [15].

Lemma 2. Fix M ∈ N. There exists M ′ = 2O(M+|S|+|E|·W+|S|·(�t	+1)) such that
for every γ = (s, c) with c ≤ M and for every Γ ′ ⊆ Γ≤t, if there is a strategy
for P0 to reach Γ ′ from γ in G′, then there is also a strategy which ensures
reaching Γ ′ from γ without exceeding energy level M ′.

5 A Doubly-Exponential Time Algorithm

Let Γ̃ ⊆ Γ be a set of configurations of G′, and ρ be a play prefix. We define

d(Γ̃ , ρ) =
|{1 ≤ i ≤ �(ρ) | ρ̂i ∈ Γ̃}|

�(ρ)
,

which denotes the proportion (or density) of configurations belonging to Γ̃
along ρ. Observe that the initial configuration ρ̂0 is not taken into account:
this is because d(Γ̃ , ρ) will be strongly linked to the mean-payoff, as we now
explain.

5.1 Analyzing Winning Plays

In this section, we analyze winning plays in G′, and prove that they must contain
a cycle that is “short enough” and has mean-payoff less than or equal to t.

To achieve this, we observe that if the mean-payoff of a play π is less than t,
then there must exist a configuration γ ∈ Γ≤t that appears frequently enough
along π. Applying a sequence of elementary arguments, we can even give a
uniform lower bound on the density of γ along arbitrarily far and arbitrarily
long segments of π. More precisely, we show:

Lemma 3. Let π be a play in G′ from (sinit, 0) with MP(π) ≤ t. There exists
γ ∈ Γ≤t such that for any n ∈ N, there are infinitely many positions n′ ≥ n for
which

d({γ}, π[n,n′]) ≥ t̃

4(t + 1)2|S| .

188 P. Bouyer et al.

Next we say that a cycle of G′ is good whenever it starts in Γ≤t and its
mean-payoff is bounded by t. Since γ appears frequently along π, we shall argue
that it is not possible that all cycles along π delimited by γ are bad (i.e., not
good), otherwise the global mean-payoff of π could not be bounded by t.

Hence we obtain that π contains a good cycle delimited by γ. It remains to
argue that such a minimal-length good cycle (i.e., with no good nested sub-cycle)
cannot be too long. We write C for a minimal-length good cycle delimited by γ.
This part of the proof appeals to a second density argument for γ along C: since
C does not contain good sub-cycles, it cannot contain too many sub-cycles at all.
Letting N = 8t1t2(t + 1)3|S|2, we prove:

Proposition 4. Let π be a play in G′ from (sinit, 0) with MP(π) ≤ t. Then there
exist 1 ≤ i ≤ j such that π[i,j] is a good cycle of length at most N .

5.2 Strategies Described by Finite Trees

So far, we have proven that P0 should “target” short good cycles. However in
a two-player context, P1 might prevent P0 from doing so. We therefore need to
consider the branching behaviour of the game, and not only the linear point-
of-view given by a play. Toward that aim, we represent strategies (of P0) as
strategy trees, and use them to bound the amount of memory and the counter
values needed to win in G′.

We consider labelled trees with backward edges T = (N , E , λ, ���), where N
is a finite set of nodes, λ : N → S ×N (each node is labelled with a configuration
of the game G′), and ��� ⊆ N × N . We assume T has at least two nodes. The
relation E is the successor relation between nodes. A node with no E-successor
is called a leaf ; other nodes are called internal nodes. The root of T , denoted
by nroot, is the only node having no predecessor. The relation ��� is an extra
relation between nodes that will become clear later.

For such a tree to represent a strategy, we require that each internal node n
that is labelled by a P0-configuration (s, c) has only one successor n′, with
λ(n′) = (s′, c′) such that there is a transition ((s, c), c′, (s′, c′)) in the game G′;
we require that each internal node n that is labelled with a P1-state (s, c) has
exactly one successor per transition ((s, c), c′, (s′, c′)) in G′, each successor being
labelled with its associated (s′, c′). Finally, we require that each leaf n of T has
a (strict) ancestor node n′ such that λ(n′) = λ(n). The relation ��� will serve
witnessing that property. So we assume that for every leaf n, there is a unique
ancestor node n′ such that n ��� n′; furthermore it should be the case that
λ(n′) = λ(n). Under all these constraints, T is called a strategy tree. It basically
represents a (finite) memory structure for a strategy, as we now explain.

Let T = (N , E , λ, ���) be strategy tree for G′. We define GT = (N , E ′), a
directed graph obtained from T by adding extra edges (n,n′′) for each leaf n
and node n′′ for which there exists another node n′ satisfying n ��� n′ and
(n′,n′′) ∈ E . We refer to these extra edges as back-edges. One may notice that
for any (n,n′) ∈ E ′ there is an edge from λ(n) to λ(n′) in G′. Given two nodes

Bounding Average-Energy Games 189

n and n′ such that n′ is an ancestor of n in T , we write [n′ � n] for the play
prefix from n′ to n (inclusive) using only transitions from E .

Now, we associate with any prefix ρ in GT from nroot a prefix ρ in G′

from λ(nroot) = (sroot, croot) such that last(ρ) = λ(last(ρ)). The construction
is inductive:

– with the empty prefix in GT we associate the one in G′: εnroot = ε(sroot,croot),
– if ρ = ρ′ · (n′,n) with (n′,n) ∈ E ′, writing (s′, c′) = λ(n′) and (s, c) = λ(n),

then ρ = ρ′ · ((s′, c′), c, (s, c)) (which by construction is indeed a prefix in G′).

We now explain how GT corresponds to a strategy in G′: for any prefix ρ
in GT , if λ(last(ρ)) = (s, c) ∈ Γ0, then last(ρ) has a unique successor n′ in GT ,
and, writing (s′, c′) = λ(n′), we define σT (ρ) = ((s, c), c′, (s′, c′)): σT is a (par-
tially defined) strategy in G′. The following lemma states that GT actually rep-
resents the outcomes of the well-defined strategy σT from λ(nroot) in G′:

Lemma 5. Let μ be a prefix in G′ from (sroot, croot). Assume that for every
i ≤ �(μ) such that last(μ≤i) ∈ Γ0, the function σT is defined on μ≤i and
μ≤i+1 = μ≤i · σT (μ≤i). Then there exists a unique prefix ρ in GT such that
μ = ρ, Moreover, if last(μ) ∈ Γ0, then σT (μ) is defined.

We now give conditions for σT to be a winning strategy from (sroot, croot)
in G′. With a finite outcome μ = ρ of σT from (sroot, croot), we associate a
sequence decompT (μ) of cycles in G′, defined inductively as follows:

– decompT (ε(sroot,croot)) is empty;
– if ρ = ρ′ · (n′,n) and n is not a leaf of T , then decompT (ρ) = decompT (ρ′);
– if ρ = ρ′ ·(n′,n) and n is a leaf of T , we let n′′ be such that n ��� n′′; the prefix

[n′′ � n] in T corresponds to a cycle C in G′, and we let decompT (ρ) =
decompT (ρ′) · C.

The sequence decompT (ρ) hence contains all full cycles (closed at leaves) encoun-
tered while reading ρ in T : hence it comprises all edges of ρ except a prefix
starting at nroot and a suffix since the last back-edge has been taken. It is not
hard to see that those can actually be concatenated. By induction, we can easily
show:

Proposition 6. Let μ be a non-empty finite outcome of σT from (sroot, croot)
in G′. Write decompT (μ) = C0 · C1 · . . . · Ch (where each Ci is a cycle). Let ρ
be the prefix in GT such that μ = ρ, n = last(ρ), and ν = [nroot � n]. Write
(sj , cj) = λ(ν̂j). Then:

MP(μ) =

∑h
i=0 MP(Ci) · �(Ci) +

∑�(ν)
j=1 cj

�(μ)

We say that a tree is good if, for every n ��� n′ in T , writing ρ = [n′ � n]

and letting λ(ρ̂j) = (sj , cj), it holds
∑�(ρ)

j=1 cj

�(ρ) ≤ t.

190 P. Bouyer et al.

Proposition 7. If T is a finite good strategy tree, then σT is a winning strategy
from (sroot, croot) in G′.

Note that T can be interpreted as a finite memory structure for strategy σT :
to know which move is given by σT , it is sufficient to move a token in tree T ,
going down in the tree, and following back-edges when stuck at leaves.

5.3 Analyzing Winning Strategies

We proved in the previous section that the finite-memory strategy associated
with a finite good strategy tree is winning. In this section, we first show the con-
verse direction, proving that from a winning strategy, we can obtain a finite good
tree. In that tree, backward edges correspond to (short) good cycles. We then use
the result of Sect. 4 for showing that those parts of the tree that do not belong
to a segment [n � n′] with n′ ��� n can be replaced with other substrategies in
which the counter value is uniformly bounded. That way, we show that if there
is a winning strategy for our games, then there is one where the counter value is
uniformly bounded along all outcomes. This will allow to apply algorithms for
solving games with average-energy payoff under lower- and upper-bound con-
straints [5].

Fix a winning strategy σ for P0 from (s0, c0) in G′. We let

goodpref(σ) = {π≤n |π ∈ Out((s0, c0), σ), there is m < n s.t.
π[m+1,n] is a good cycle with no good strict sub-cycle
and π≤n−1does not contain any good cycle}

and for every π≤n ∈ goodpref(σ), we define back(π≤n) as π≤m such that π[m+1,n]

is a good cycle with no good strict sub-cycle.
We build a strategy tree Tσ as follows:

– the nodes of Tσ are all the prefixes of the finite plays in goodpref(σ); the edges
relate each prefix of length k to its extensions of length k + 1. For a node n
corresponding to prefix ρ≤k (with ρ ∈ goodpref(σ)), we let λ(n) = last(ρ≤k);
we let λ(nroot) = (s0, c0). The leaves of Tσ then correspond to the play prefixes
that are in goodpref(σ).

– backward edges in Tσ are defined by noticing that each leaf n of Tσ corresponds
to a finite path π≤n in goodpref(σ), so that the prefix π≤m = back(π≤n) is
associated with some node m of Tσ such that π[m+1,n] is a good cycle. This
implies λ(π≤n) = λ(π≤m), and we define n ��� m. This way, Tσ is a strategy
tree as defined in Sect. 5.2.

Lemma 8. Tree Tσ is a finite good strategy tree.

Applying Proposition 7, we immediately get:

Corollary 9. Strategy σTσ
is a winning strategy from (s0, c0).

Bounding Average-Energy Games 191

nroot leaf
start of good cycle

critical node
backward edge
good cycle

Fig. 3. Example of a finite strategy tree, with backward edges and critical nodes.

Let n ��� n′ be two related nodes in Tσ. We say that a node n′′ is just below
[n′ � n] in Tσ whenever its predecessor appears along [n′ � n], but node n′′

itself does not appear along any path [n1 � n2] for which n2 ��� n1. Such nodes,
together with the root of the tree, are called the critical nodes (see Fig. 3).

Lemma 10. If n is a critical node in Tσ, then writing λ(n) = (s, c), we have
that c ≤ t + W · (N + 1).

Given a critical node n, we define

target(n) = {n′ in subtree of n | there exists n′′ such that n′′ ��� n′

and [n � n′] contains no other such node}.

Looking again at Fig. 3, the targets of a critical node are the start nodes of the
good cycles that are closest to that critical node. In particular, for the rightmost
critical node on Fig. 3, there are two candidate target nodes (because there are
two overlapping good cycles), but only the topmost one is a target.

For every critical node n, we apply Lemma 2 with γ = λ(n) and Γ ′
γ =

{γ′ = λ(n′) | n′ ∈ target(n)}, setting M = t + W · (N + 1). We write σn for
the corresponding strategy: applying σn from λ(n), player P0 will reach some
configuration (s′, c′) such that there is a node n′ ∈ target(n) with λ(n′) = (s′, c′).

Now, for any node n′ that is the target of a backward edge n ��� n′, but
whose immediate predecessor does not belong to any segment [n1 � n2] with
n2 ��� n1, we define strategy σ[n′] which follows good cycles as much as possible;
when a leaf m is reached, the strategy replays similarly as from the equivalent
node m′ for which m ��� m′. If, while playing that strategy, the play ever leaves
a good cycle (due to a move of player P1), then it reaches a critical node n′′.
From that node, we will apply strategy σn′′ as defined above, and iterate like
this.

This defines a strategy σ′. Applying Lemma 2 to strategies σn when n is
critical, and the previous analysis of good cycles, we get the following doubly-
exponential bound on the counter value (which is only exponential in case con-
stants W , t1, and t2 are encoded in unary):

192 P. Bouyer et al.

Proposition 11. Strategy σ′ is a winning strategy from (s0, c0), and all visited
configurations (s, c) when applying σ′ are such that c ≤ M ′ with

M ′ = 2O(t+W ·(8t1t2(t+1)3|S|2+1)+|S|+|E|·W+|S|·(�t	+1)).

5.4 Conclusion

Gathering everything we have done above, we get the following equivalence.

Proposition 12. Player P0 has a winning strategy in game G from sinit for
the objective AvgEnergyL(t) if, and only if, he has a wining strategy in G from
sinit for the objective AvgEnergyLU (t, U) = EnergyLU (U) ∩ AvgEnergy(t), where
U = M ′ is the bound from Proposition 11.

Hence we can use the algorithm for games with objectives AvgEnergyLU (t, U)
in [5], which is polynomial in |S|, |E|, t, and U (hence pseudo-polynomial only).
Having in mind that the upper bound U is doubly-exponential, we can deduce
our main decidability result. The memory required is also a consequence of [5].

Theorem 13. The AEL threshold problem is in 2-EXPTIME. Furthermore
doubly-exponential memory is sufficient to win (for player P0).

We could not prove a matching lower-bound, but relying on [17], we can
prove EXPSPACE-hardness:

Theorem 14. The AEL threshold problem is EXPSPACE-hard, even for the
fixed threshold zero.

In [16], a super-exponential lower bound is given for the required memory to
win a succinct one-counter game. While the model of games is not exactly the
same, the actual family of games witnessing that lower bound on the memory
happens to be usable as well for the AEL threshold problem (with threshold
zero). The reduction is similar to the one in the proof of Theorem14. This
yields a lower bound on the required memory to win games with AvgEnergyL(t)
objectives which is 2(2

√
n/

√
n)−1.

For unary encodings or small weights we get better results from our technique:

Corollary 15. The AEL threshold problem is in EXPTIME and exponential
memory is sufficient to win (for player P0), if the weights and the threshold
are encoded in unary or polynomial in the size of the graph.

6 Multi-dimensional Average-Energy Games

We now turn to a more general class of games where integer weights on the
edges are replaced by vectors of integer weights, representing changes in different
quantitative aspects. That is, for a game G = (S0, S1,E) of dimension k ≥ 1,
we now have E ⊆ S × [−W,W]k × S for W ∈ N. Multi-dimensional games

Bounding Average-Energy Games 193

have recently gained interest as a powerful model to reason about interplays
and trade-offs between different resources; and multi-dimensional versions of
many classical objectives have been considered in the literature: e.g., mean-
payoff [11,25], energy [11,19,25], or total-payoff [10]. We consider the natural
extensions of threshold problems in the multi-dimensional setting: we take the
zero vector in N

k as lower bound for the energy, a vector U ∈ N
k as upper bound,

a vector t ∈ Q
k as threshold for the average-energy, and the payoff functions are

defined using component-wise limits. That is, we essentially take the conjunction
of our objectives for all dimensions. We quickly review the situation for the three
types of average-energy objectives.

Average-energy games (without energy bounds). In the one-dimensional version
of such games, memoryless strategies suffice for both players and the threshold
problem is in NP ∩ coNP [5]. We prove here that already for games with three
dimensions, the threshold problem is undecidable, based on a reduction from
two-dimensional robot games [22]. Decidability for average-energy games with
two dimensions remains open.

Theorem 16. The threshold problem for average-energy games with three or
more dimensions is undecidable. That is, given a finite k-dimensional game G =
(S0, S1, E), for k ≥ 3, an initial state sinit ∈ S, and a threshold t ∈ Q

k, deter-
mining whether P0 has a winning strategy from sinit for objective AvgEnergy(t)
is undecidable.

Average-energy games with lower and upper bounds. One-dimensional versions
of those games were proved to be EXPTIME-complete in [5]. The algorithm con-
sists in reducing (in two steps) the original game to a mean-payoff game on an
expanded graph of pseudo-polynomial size (polynomial in the original game but
also in the upper bound U ∈ N) and applying a pseudo-polynomial time algo-
rithm for mean-payoff games (e.g., [6]). Intuitively, the trick is that the bounds
give strong constraints on the energy levels that can be visited along a play
without losing and thus one can restrict the game to a particular graph where
acceptable energy levels are encoded in the states and exceeding the bounds is
explicitely represented by moving to “losing” states, just as we did in Sect. 3 for
the lower bound. Carefully inspecting the construction of [5], we observe that the
same construction can be generalized straightforwardly to the multi-dimensional
setting. However, the overall complexity is higher: first, the expanded graph
will be of exponential size in k, the number of dimensions, while still polyno-
mial in S and U . Second, multi-dimensional limsup mean-payoff games are in
NP ∩ coNP [25].

Theorem 17. The threshold problem for multi-dimensional average-energy
games with lower and upper bounds is in NEXPTIME ∩ coNEXPTIME. That is,
given a finite k-dimensional game G = (S0, S1, E), an initial state sinit ∈ S,
an upper bound U ∈ N

k, and a threshold t ∈ Q
k, determining if P0 has

a winning strategy from sinit for objective EnergyLU (U) ∩ AvgEnergy(t) is in
NEXPTIME ∩ coNEXPTIME.

194 P. Bouyer et al.

Whether the EXPTIME-hardness that trivially follows from the one-
dimensional case [5] can be enhanced to meet this upper bound (or conversely)
is an open problem.

Average-energy games with lower bound but no upper bound. Finally, we consider
the core setting of this paper, which we just proved decidable in one-dimension,
solving the open problem of [5]. Unfortunately, we show that those games are
undecidable as soon as two-dimensional weights are allowed. To prove it, we
reuse some ideas of the proof of undecidability for multi-dimensional total-payoff
games presented in [10], but specific gadgets need to be adapted.

Theorem 18. The threshold problem for lower-bounded average-energy games
with two or more dimensions is undecidable. That is, given a finite k-dimensional
game G = (S0, S1, E), for k ≥ 2, an initial state sinit ∈ S, and a threshold
t ∈ Q

k, determining whether P0 has a winning strategy from sinit for objec-
tive AvgEnergyL(t) is undecidable.

References

1. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02658-4 14

2. Boros, E., Elbassioni, K., Gurvich, V., Makino, K.: Markov decision processes and
stochastic games with total effective payoff. In: Mayr , E.W., Ollinger, N. (eds.)
STACS 2015, LIPics, vol. 30, pp. 103–115. Leibniz-Zentrum für Informatik (2015)

3. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85778-5 4

4. Bouyer, P., Hofman, P., Markey, N., Randour, M., Zimmermann, M.: Bounding
average-energy games. arXiv:1610.07858 (2016)

5. Bouyer, P., Markey, N., Randour, M., Larsen, K.G., Laursen, S.: Average-energy
games. Acta Informatica (2016, in press)

6. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms
for mean-payoff games. Formal Methods Syst. Des. 38(2), 97–118 (2011)

7. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic
synthesis of robust and optimal controllers – an industrial case study. In: Majum-
dar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00602-9 7

8. Chakrabarti, A., Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45212-6 9

9. Chatterjee, K., Doyen, L.: Energy parity games. Theor. Comput. Sci. 458, 49–60
(2012)

10. Chatterjee, K., Doyen, L., Randour, M., Raskin, J.-F.: Looking at mean-payoff and
total-payoff through windows. Inf. Comput. 242, 25–52 (2015)

http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-540-85778-5_4
http://dx.doi.org/10.1007/978-3-540-85778-5_4
https://arxiv.org/abs/1610.07858
http://dx.doi.org/10.1007/978-3-642-00602-9_7
http://dx.doi.org/10.1007/978-3-540-45212-6_9

Bounding Average-Energy Games 195

11. Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy synthesis for multi-
dimensional quantitative objectives. Acta Informatica 51(3–4), 129–163 (2014)

12. Chatterjee, K., Velner, Y.: Mean-payoff pushdown games. In: LICS 2012, pp. 195–
204. IEEE Computer Society (2012)

13. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J.
Game Theor. 8(2), 109–113 (1979)

14. Fearnley, J., Jurdzinski, M.: Reachability in two-clock timed automata is PSPACE-
complete. Inf. Comput. 243, 26–36 (2015)

15. Fridman, W., Zimmermann, M.: Playing pushdown parity games in a hurry. In:
Faella, M., Murano, A. (eds.) GandALF 2012, EPTCS, vol. 96, pp. 183–196 (2012)

16. Hunter, P.: Reachability in succinct one-counter games. arXiv:1407.1996 (2014)
17. Hunter, P.: Reachability in succinct one-counter games. In: Bojańczyk, M., Lasota,

S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 37–49. Springer, Cham (2015).
doi:10.1007/978-3-319-24537-9 5

18. Juhl, L., Larsen, K.G., Raskin, J.-F.: Optimal bounds for multiweighted and para-
metrised energy games. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Pro-
gramming and Formal Methods. LNCS, vol. 8051, pp. 244–255. Springer, Heidel-
berg (2013)

19. Jurdziński, M., Lazić, R., Schmitz, S.: Fixed-dimensional energy games are in
pseudo-polynomial time. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speck-
mann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 260–272. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-47666-6 21

20. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete
Math. 23(3), 309–3011 (1978)

21. Larsen, K.G., Laursen, S., Zimmermann, M.: Limit your consumption! Finding
bounds in average-energy games. In: Tribastone, M., Wiklicky, B. (eds.), Pro-
ceedings 14th International Workshop Quantitative Aspects of Programming Lan-
guages and Systems, QAPL 2016, EPTCS, Eindhoven, The Netherlands, vol. 227,
pp. 1–14, 2–3 April 2016

22. Niskanen, R., Potapov, I., Reichert, J.: Undecidability of two-dimensional robot
games. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) MFCS 2016, LIPIcs,
vol. 58, pp. 73:1–73:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

23. Randour, M.: Automated synthesis of reliable and efficient systems through game
theory: a case study. In: Gilbert, T., Kirkilionis, M., Nicolis, G. (eds.) ECCS 2012,
Springer Proceedings in Complexity, pp. 731–738. Springer, Heidelberg (2013)

24. Thuijsman, F., Vrieze, O.J.: The bad match; a total reward stochastic game. OR
Spektrum 9(2), 93–99 (1987)

25. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A., Raskin,
J.-F.: The complexity of multi-mean-payoff and multi-energy games. Inf. Comput.
241, 177–196 (2015)

26. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput.
164(2), 234–263 (2001)

27. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor.
Comput. Sci. 158(1–2), 343–359 (1996)

https://arxiv.org/abs/1407.1996
http://dx.doi.org/10.1007/978-3-319-24537-9_5
http://dx.doi.org/10.1007/978-3-662-47666-6_21

Logics of Repeating Values on Data Trees
and Branching Counter Systems

Sergio Abriola1,2(B), Diego Figueira3, and Santiago Figueira1,2

1 University of Buenos Aires, Buenos Aires, Argentina
sabriola@dc.uba.ar

2 ICC-CONICET, Buenos Aires, Argentina
3 CNRS, LaBRI, Talence, France

Abstract. We study connections between the satisfiability problem for
logics on data trees and Branching Vector Addition Systems (BVAS).
We consider a natural temporal logic of “repeating values” (LRV) fea-
turing an operator which tests whether a data value in the current node
is repeated in some descendant node.

On the one hand, we show that the satisfiability of a restricted version
of LRV on ranked data trees can be reduced to the coverability problem
for Branching Vector Addition Systems. This immediately gives elemen-
tary upper bounds for its satisfiability problem, showing that restricted
LRV behaves much better than downward-XPath, which has a non-
primitive-recursive satisfiability problem.

On the other hand, satisfiability for LRV is shown to be reducible to
the coverability for a novel branching model we introduce here, called
Merging VASS (MVASS). MVASS is an extension of Branching Vector
Addition Systems with States (BVASS) allowing richer merging oper-
ations of the vectors. We show that the control-state reachability for
MVASS, as well as its bottom-up coverability, are in 3ExpTime.

This work can be seen as a natural continuation of the work ini-
tiated by Demri, D’Souza and Gascon for the case of data words, this
time considering branching structures and counter systems, although, as
we show, in the case of data trees more powerful models are needed to
encode satisfiability.

1 Introduction

Logics for data trees. Finite data trees are ubiquitous structures that have
attracted much attention lately. A data tree is a finite tree whose every posi-
tion carries a label from a finite alphabet and a collection of data values from
some infinite domain.1 This structure has been considered in the realms of semi-
structured data as a simple abstraction of XML documents, timed automata,

We thank STIC AmSud, ANPCyT-PICT-2013-2011, UBACyT 20020150100002BA,
and the Laboratoire International Associé “INFINIS”.

1 Other works have considered different simplifications of these structures, either hav-
ing only one data value per node (e.g., [2]) or ignoring the label (e.g., [7]).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 196–212, 2017.
DOI: 10.1007/978-3-662-54458-7 12

Logics of Repeating Values on Data Trees and Branching Counter Systems 197

program verification, and generally in systems manipulating data values. Find-
ing decidable logics or automata models over data trees is a fundamental quest
when reasoning on data-driven systems.

A wealth of specification formalisms on these structures (either for data trees
or its ‘word’ version, data words) have been introduced, stemming from automata
[25,28], first-order logic [2,4,16,19], XPath [13–15,18,20], or temporal logics [7,
9,11,21,22,24]. In full generality, most formalisms lead to undecidable reasoning
problems and a well-known research trend consists of finding a good trade-off
between expressiveness and decidability.

Interesting and surprising results have been exhibited about relationships
between logics for data trees and counter automata [18–20]. This is why logics
for data trees are not only interesting for their own sake but also for their deep
relationships with counter systems.

This work. The aim of this work is to study the basic mechanism of “data
repetition”, common to many logics studied on data trees. For this, we study
a basic logic that can navigate the structure of the tree through the use of
CTL-like modalities, and on the other hand can make “data tests”, by asking
whether a data value is repeated in the subtree. More concretely, the data tests
are formulas of the form u ≈ EFv, stating that the data value stored in attribute
(also called variable here) u of the current node is equal to the data value stored
in attribute v of some descendant. This logic of repeating values, or LRV, has
been the center of a line of investigation studied in [6,7] on data words, evidenc-
ing tight correspondences between reachability problems for Vector Addition
Systems and the satisfiability problem. The current work pursues this question
further, exhibiting connections between the satisfiability problem of LRV over
data trees and the bottom-up coverability problem for branching counter sys-
tems. In order to obtain connections with branching Vector Addition Systems
with States, or branching VASS [29], we also introduce a restriction where tests
of the form u ≈ EFv are only allowed when u = v. We denote this restriction
by LRVD. This symbiotic relation between counter systems and logics leads us
to consider some natural extensions of both the logic and the branching counter
systems. In particular, we introduce a new model of branching counter system of
independent interest, with decidable coverability and control-state reachability
problems, that captures LRV.

The extension of the logic LRV from words to trees is a very natural one.
However, the techniques needed to encode the satisfiability of the logic into a
counter system are not simple extensions from the ones provided on data words.
The reason for this difficulty is manyfold: (a) the fact that now the future is non-
linear in addition to the possibility of having a data value repeating at several
descendants in different variables, makes the techniques of [7] for propagating
values of configurations impractical; (b) further, this seems to be impossible for
the case of data trees, and we could only show a reduction for the fragment
LRVD; (c) in order to reduce the satisfiability problem for the full logic we will
need to augment the power of branching VASS with the possibility to ‘merge’

198 S. Abriola et al.

counters in a more powerful way, somewhat akin to what has been done for
encoding the satisfiability for FO2 [19].

Contributions. The main contributions are the following:

– We show that the satisfiability for LRVD on k-ranked data trees is reducible, in
exponential space, to the control-state reachability problem for VASSk (i.e.,
Branching VASS of rank k) in Sect. 5. Since the control-state reachability
problem is decidable [29] in 2ExpTime [8], this reduction yields a decision
procedure.

– We consider the addition of an operator AG≈v(ϕ) expressing “every descen-
dant with the same v-attribute verifies ϕ”, and we show that the logic resulting
from adding positive instances of this operator is equivalent to the control-
state reachability for Branching VASS, that is, there are reductions in both
directions (Sect. 6).

– We introduce an extension of Branching VASS, called Merging VASS or
MVASS in Sect. 4.2. This model allows for merging counters in branching rules
in a form which is not necessarily component-wise, allowing for some weak form
of counter transfers. We show that the bottom-up coverability (and control-
state reachability) problem for MVASS is in 3ExpTime (Sect. 4.4). This is
arguably a model of independent interest.

– We show that the satisfiability for LRV on k-ranked data trees can be reduced
to the control-state reachability for MVASSk in Sect. 7. As in the case of LRVD,
this yields a decision procedure.

Related work. The most closely related work is the one originated by Demri
et al. in [5,6] and pursued in [7]. These works study the satisfiability problem for
temporal logics on data words, extended with the ability to test whether a data
value is repeated in the past/future. Indeed, our current work is motivated by the
deep correlations evidenced by these works, between counter systems and simple
temporal logics on data words. The present manuscript expands this analysis to
branching logics and counter systems.

There are several works showing links between reachability-like problems for
counter systems and the satisfiability problem of logics on data trees. The first
prominent example is that satisfiability for Existential MSO with two variables
on data words (EMSO2(+1, <,∼)) corresponds precisely to reachability of VASS
[3], in the sense that there are reductions in both directions. On the other hand,
EMSO2 over (unranked) data trees was shown to have tight connections with
the reachability problem for an extension of BVASS [19], called ‘EBVASS’. This
extension has features which are very close to the model we introduce here,
MVASS, but it does not capture, nor is captured by, MVASS. One can draw a
parallel between the situation of the satisfiablity for EMSO2 and for LRV: while
on data words both are inter-reducible to VASS, the extension to data-trees is
non-trivial, and they no longer correspond to BVASS, but to extensions thereof.

In the course of the last decade, several logics for data trees have been
proposed. Among those that feature navigation in terms of modalities such as

Logics of Repeating Values on Data Trees and Branching Counter Systems 199

temporal operators, one noticeable logic is that of XPath. Although the satis-
fiability problem for XPath is undecidable, several fragments have been shown
to be decidable through reduction to the reachability or coverability problems
for counter systems [9,12,18]. In particular, the satisfiability problem for XPath
with strict descendant (usually written ↓+) on ranked data trees has already a
non-primitive-recursive lower bound in complexity, as can be seen by adapting
techniques shown for data words [17].

Modulo a simple coding, our logic LRV is captured by a fragment of regular-
XPath, here called reg-XPathLRV, on data trees where path expressions are
allowed to use Kleene star on any expression (this what we denote by ‘regular’
XPath), and data tests are of the form 〈ε� ↓∗ [ϕ]〉 or 〈↓n [ϕ]� ↓m [ψ]〉 for
some n,m ∈ N and � ∈ {=, �=}. There are, however, three provisos for this
statement. First, in the aforementioned works on XPath the data model consists
of data trees whose every position carries exactly one data value. In the present
paper, we study ‘multi-attributed’ data trees where, essentially, each node carries
a set of pairs ‘attribute:value’. However, by means of a simple coding, such as
putting every ‘attribute:value’ as a leaf of the corresponding node, one can easily
translate LRV formulas to XPath formulas. Second, our LRV formulas are of the
form u ≈ EFv stating that the current data value under attribute u is repeated
in a node x of the subtree under attribute v, but one cannot test that some
property ψ further holds at the repeating node x. However, it was shown in [7]
that one can extend the logic with this power, obtaining formulas of the form
x ≈ EFy[ψ], since this extended logic is PTime-reducible to the logic without
these tests. Third, the LRV formulas cannot test for regular properties on the
labeling of paths, and thus there is no precise characterization in terms of a
natural fragment of regular-XPath, but one could add regular path tests to LRV
to match the expressive power of reg-XPathLRV without changing any of our
results.

In fact, the fragment reg-XPathLRV extends also the fragment DataGL con-
sidered in [1,13] containing only data tests of the form 〈ε� ↓∗ [ϕ]〉, which is
known to be PSpace-complete on unranked data trees [13].

It is not hard to see that the satisfiability problem of LRV on unranked
data trees is PSpace-complete following the techniques from [13]. On the other
hand, on ranked data trees we know, by the discussion above, that if we would
allow intermediate tests in a way to be able to encode the expressive power of
XPath(↓+) we would have a non-primitive recursive lower bound. It is there-
fore natural to limit the navigation disallowing intermediary tests. This natural
fragment was already studied on data words [7], and we now study it on data
trees.

2 Preliminaries

Let N+ = {1, 2, . . . }, N = N+ ∪ {0}, and n = {1, . . . , n} for every n ∈ N. We
use the bar notation x̄ to denote a tuple of elements, where x̄[i], for i > 0, refers
to the i-th element of the tuple. For any pair of vectors x̄, ȳ ∈ Zk we write x̄ ≤ ȳ

200 S. Abriola et al.

if x̄[i] ≤ ȳ[i] for all 1 ≤ i ≤ k. The constant ∅̄ refers to the (unique) vector
of dimension 0, and the constant ēi refers to the vector (whose dimension will
always be clear from the context) so that ēi[i] = 1 and ēi[j] = 0 for all j �= i. We
write 0̄ for the tuple of all 0’s (the dimension being implicit from the context).

A linear set of dimension k is a subset of Nk which is either empty or
described as {v̄0 + α1v̄1 + · · · + αnv̄n | α1, . . . , αn ∈ N} for some n ∈ N and
v̄0, . . . , v̄n ∈ Nk. Henceforward we assume that linear sets are represented by
the offset v̄0 and the generators v̄1, . . . , v̄n, where numbers are represented
in binary. For ease of writing we will denote a linear set like the one above by
“v̄0 + {v̄1, . . . , v̄n}∗”.

We fix once and for all an infinite domain of data values D. A data tree
of rank k over a finite set of labels A and a finite set of attributes V, is a finite
tree whose every node x contains a pair (a, μ) ∈ A × D

V and has no more than
k children. In general, a will be called the label of x and μ(v) will be called the
data value of attribute v ∈ V at x. The i-ancestor of a node x of a data tree
T is the ancestor at distance i from x (i.e., the 1-ancestor is the parent); while
the i-descendant of x are all the descendants of x at distance i.

3 Logic of Repeating Values on Data Trees

We will work with a temporal logic using CTL∗ modalities [10,26] to navigate
the tree—although this is not really essential to our results, in the sense that
any other MSO definable data-blind operators could also be added to the logic
obtaining similar results. The Logic of Repeating Values LRV contains the
typical modalities from CTL∗, such as EF, AF, EU, etc. as well as the possibility
to test for the label of the current node, and data tests. Data tests are restricted
to being very basic, as in [6], of the form “u ≈ EFv” stating “the data value of
attribute u appears again at the attribute v of some descendant”, or “u �≈ EFv”
stating “there is a descendant node whose attribute v contains a different data
value from the data value of the attribute u of the current node”. Since LRV is
closed under Boolean connectives, this means we can also express, for instance,
that attribute u of all descendants have the same data value as the current
node’s: ¬(u �≈ EFu).

Formally, formulas of LRV are defined by

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | EU(ϕ,ψ) | u ≈ EFv | u �≈ EFv | u ≈ EXiv | u �≈ EXiv,

where a ranges over a finite set of labels A, u, v range over a finite set
of attribute variables V (also called just ‘variables’), and i ∈ N+. Given
a data tree T and a node x of T , the satisfaction relation |= is defined
in the usual way: T, x |= a if a is the label of x; T, x |= u ≈ EFv
[resp. T, x |= u �≈ EFv] if there is a strict descendant y of x so that the
u-attribute of x has the same [resp. different] data value as the v-attribute of
y; T, x |= u ≈ EXiv [resp. T, x |= u �≈ EXiv] if there exists an i-descendant
of x whose v-attribute is equal [resp. distinct] to the u-attribute of x; and
T, x |= EU(ϕ,ψ) if there is some strict descendant y of x so that T, y |= ϕ

Logics of Repeating Values on Data Trees and Branching Counter Systems 201

and every other node z strictly between x and y verifies T, z |= ψ. Note that the
remaining CTL∗ modalities (EX, EG, EF, AX, AG, AF, AU) can be expressed
using EU2.

We call LRVD
n the logic using at most n attribute variables, whose only

admissible data tests are of the form u ≈ EFu, u �≈ EFu, u ≈ EXiu or u �≈ EXiu
(same variable in the left and right sides). Intuitively, this corresponds to the
restriction where each attribute variable ranges over a disjoint set of data values
(hence the letter ‘D’).

4 Models of Branching Counter Systems

We present the models of counter systems we are going to work with. The first
one is a well-known model, usually known as Branching Vector Addition System
with States, or “BVASS”, while the second one is a useful extension of the first
one where the split/merge operation of the counters is controlled by the use of
linear sets.

4.1 Branching VASS

A VASS of rank k and dimension n, or nVASSk, is a tuple A = 〈Q,U,B〉, where
Q is a finite set of states, U ⊆ Q×Zn×Q is a set of unary rules, and B ⊆ Q×Q≤k

is a finite set of branching rules. We notate q
v̄−→ q′ for a unary rule (q, v̄, q′) ∈ U ,

and q −→ (q1, . . . , qi) for a branching rule (q, q1, . . . , qi) ∈ B. A configuration is
an element from Confs := Q × Nn. For a configuration (q, n̄) we often use the
term “counter i” instead of “n[i]” (in the case n = 1 we speak of the counter).

A derivation tree [resp. incrementing derivation tree] is a finite tree D
whose every node x is either

– labeled with a pair (p v̄−→ p′, (q, n̄)) ∈ U ×Confs so that p
v̄−→ p′ is a unary rule

of U , p = q and it has exactly one child, which is labeled (r1, (p1, n̄1)) so that
p′ = p1 and

n̄ + v̄ = n̄1 [resp. n̄ + v̄ ≤ n̄1]; (1)

– or labeled with a pair ((p, q̄), (q, n̄)) ∈ B × Confs so that p −→ q̄, with q̄ ∈ Qk′

for some k′ ≤ k, is a branching rule of B, p = q and it has exactly k′ children,
labeled (r1, (p1, n̄1)), . . . , (rk′ , (pk′ , n̄k′)) so that q̄ = (p1, . . . , pk′) and

n̄ =
∑

i≤k′
n̄i [resp. n̄ ≤

∑

i≤k′
n̄i]. (2)

Note that leaf nodes are necessarily labeled with rules of the form q −→ ∅̄ ∈ B.
Without loss of generality we will assume that the system contains rules q −→ ∅̄
for every state q.
2 EXϕ = EU(ϕ, ⊥), EFϕ = EU(ϕ, �), EGϕ = EU(ϕ ∧ ¬EX�, ϕ), AU(ϕ, ψ) =

¬EU(¬ψ ∧ ¬ϕ, ¬ψ) ∧ ¬EG(¬ϕ), etc.

202 S. Abriola et al.

4.2 Merging VASS

We present an extension of the model above where the branching rules, now
called merging rules, are more powerful: they allow us to reorganize the counters.
Whereas in an (incrementing) derivation tree for VASSk the component i of the
configuration of a node depends only on the component i of its children and the
rule applied, MVASSk allows to have transfers between components. However,
these transfers have some restrictions—otherwise the model would have non-
elementary or undecidable coverability/reachability problems [23]. First, trans-
fers between components are ‘weak’, in the sense that we cannot force a transfer
of the whole value of a coordinate i to a distinct coordinate j of a child, we can
only make sure that part of it will be transferred to component j and part of it
will remain in component i. Second, these weak transfers can only be performed
for any pair of coordinates i, j adhering to a partial order, where transfers occur
from a bigger component to a smaller one.

A Merging-VASS of rank k and dimension n, or nMVASSk, is a tuple
A = 〈Q,U,M,�〉, where � is partial order on n, Q and U are as before, and M
is a set of merging rules of the form (q, S, q̄) where q ∈ Q, q̄ ∈ Qk′

with k′ ≤ k,
and S ⊆ Nn·(k′+1) is a linear set of dimension n·(k′+1) of the form 0̄+(B∪S0)∗,
where

1. all the elements of B are of the form (ēi, x̄1, . . . , x̄k′), where for each 1 ≤ � ≤
k′, x̄� ∈ Nn is either 0̄ or ēj for some j ≺ i; and

2. S0 consists of the following k′ · n vectors

S0 =
⋃

1≤i≤n

{(ēi, ēi, 0̄, 0̄, . . . , 0̄), (ēi, 0̄, ēi, 0̄, . . . , 0̄), . . . , (ēi, 0̄, . . . , 0̄, ēi)}. (3)

The idea is that in point 1 we allow to transfer contents from component
i to components of smaller order. For example, on dimension 3 and rank 2, a
vector v̄ = (1, 0, 0)(0, 1, 0)(0, 0, 1) in B would imply that during the merge one
can transfer a quantity m > 0 from component 1 of the father into component 2
of the first child and component 3 of the second child, assuming 2, 3 ≺ 1). On the
other hand, point 2 tells us that for every i we can always have some quantity
of component i that is not transferred to other components, i.e., that stays in
component i. Continuing our example, the children configurations (m,m′ + s, t)
and (m, s,m′ + t) can be merged into (m + m′, s, t) for every m,m′, s, t ≥ 0,
using the vector v̄ and S0.

A derivation tree [resp. incrementing derivation tree] is defined just as before,
with the sole difference being that condition (2) is replaced with

(n̄, n̄1, . . . , n̄k′) ∈ S

[resp. (n̄, n̄′
1, . . . , n̄

′
k′) ∈ S for (n̄′

1, . . . , n̄
′
k′) ≤ (n̄1, . . . , n̄k′)]. (4)

Notice that this is a generalization of VASSk. Indeed, VASSk corresponds to the
restriction where all the k′-ary merging rules have S = 0̄+S∗

0 for S0 as defined in
(3). Note that an (incrementing) derivation tree for nVASSk is, in particular, an

Logics of Repeating Values on Data Trees and Branching Counter Systems 203

(incrementing) derivation tree for nMVASSk. As before, we assume that there
are always rules (q, ∅, ∅̄) for every state q.

Jacquemard et al. [19] study an extension of BVASS, ‘EBVASS’, in relation to
the satisfiability of FO2(<,+1,∼) over unranked data trees. EBVASS has some
features for merging counters. While MVASS and EBVASS are incomparable
in computational power, it can be seen that without the restriction j ≺ i in
condition 1, MVASS would capture EBVASS. In fact, this condition is necessary
for the (elementary) decidability of the coverability problem for MVASS, while
the status of the coverability problem for EBVASS is unknown.

4.3 Decision Problems

Given a counter system A, a set of states Q̂, and a configuration (q, n̄) of A,
we write (q, n̄) �A Q̂[resp. (q, n̄) �+

A Q̂] if there exists a derivation tree [resp.
incrementing derivation tree] for A with root configuration (q, n̄), so that all
the leaves have configurations from Q̂ × {0̄}. The reachability and incrementing
reachability problems are defined as follows.

Problem: VASSk reachability problem
[resp. VASSk incrementing reachability problem]

Input: an nVASSk A with states Q, a set of states Q̂ ⊆ Q, and
a configuration (q, n̄) of A

Output: ‘Yes’ iff (q, n̄) �A Q̂ [resp. (q, n̄) �+
A Q̂]

Observe that when k = 1 this problem is equivalent to the reachability and
coverability problems for Vector Addition Systems with States.

The MVASSk reachability problem and MVASSk incrementing
reachability problem are defined just as before but considering A to be
an nMVASSk instead of a nVASSk. We will often refer to these problems as
Reach() and Reach+(). We also remark that the incrementing reachabil-
ity problem is simply a restatement of the coverability problem. In particular,
it is monotone: if (q, n̄) �+

A Q̂ and n̄′ ≤ n̄ then (q, n̄′) �+
A Q̂. We define

the control-state reachability problem CSReach as the problem of, given
A, q, Q̂, whether (q, n̄) �A Q̂ for some n̄. It is easy to see that this problem is
equivalent to the problem of whether (q, 0̄) �+

A Q̂.
In [8] the coverability problem (or equivalently, the incrementing reachability

problem) for a single-state formulation, called BVAS, is studied. A BVAS consists
of a tuple 〈n,R1, R2〉, where R1 is a set of unary rules, R2 is a set of binary rules
(both rules included in Zn which add up a vector). The size of a given BVAS
is defined as n�, where � represents the maximum binary size of an entry in
R1 ∪ R2.

Proposition 1. [8] Coverability for BVAS is 2ExpTime-complete. If the dimen-
sion n is fixed, the problem is in ExpTime.

204 S. Abriola et al.

4.4 Decidability of Reach+(MVASS)

The arguments used in [8] to prove the previous proposition can be adapted to
show a similar result for MVASS: the Reach+ and CSReach problems are in
3ExpTime.

Theorem 2. Reach+(MVASSk) and CSReach(MVASSk) are in 3ExpTime
for every k ≥ 1. If the dimension n is fixed, the problem is in 2ExpTime.

Proof (idea). In a somewhat similar way as it was shown in [8, Lemma 6] for
the case of VASSk, one can show that if there is an incrementing derivation D
witnessing (q, n̄) �+

A Q̂, where A = (Q,U,M,�) is an nMVASSk counter sys-
tem, then there is a ‘contraction’ (i.e., the result of the repeated replacing of
the subtree at a node x with the subtree at some descendant y while maintain-
ing the property of being a derivation) D′ of D with height bounded doubly-
exponentially in the dimension. One significant difficulty in adapting the proof
for VASSk to MVASSk, is that in a derivation for a VASSk, if the component i
of a configuration at a node x is “very big”, and the same component i at the
root is “small” (say, 0), this means that the distance between x and the root
in the derivation tree must be big. This is a crucial ingredient for bounding the
height of a minimal derivation and obtaining the 2ExpTime upper bound proof
for Reach+(VASSk) in [8]. However, this is no longer the case for MVASSk,
since the size of component i at x may come from a transfer of the parent from
another component with higher �-index. Nevertheless, by using the fact that
(i) transfers between components induced by merging rules are �-ordered (point
1 of the definition), and (ii) linear sets of merging rules are monotone in the sense
that they contain S∗

0 as defined in (3), we can recover bounds for the minimal
height of derivations. This can be done by induction on the preorder—note that
relative to maximal � coordinates MVASSk behaves like VASSk.

These results imply that, in order to decide the incrementing reachability
problem, it suffices to search for a derivation of doubly-exponential height, whose
vectors may contain triply-exponential entries in principle. As a consequence of
this, the verification of the existence of such a derivation can be performed in
alternating double exponential space, as it is shown in [8, Theorem 8], and thus
the incrementing reachability for MVASS is in 3ExpTime.

If n is fixed, the height of the witnessing derivation becomes singly exponen-
tial and thus the problem is in 2ExpTime (as explained in [8, Theorem 8]). ��

5 Satisfiability of LRVD on data trees

We call SATk the satisfiability problem on finite k-ranked data-trees. The main
result of this section is the following.

Theorem 3. SATk-LRVD
n is ExpSpace-reducible to CSReach(nVASSk).

In the proof of the theorem, the number of attribute variables of the formula
will become the dimension of the VASSk. Since the CSReach problem for VASSk

Logics of Repeating Values on Data Trees and Branching Counter Systems 205

is decidable in 2ExpTime, this yields a decidable procedure for SATk-LRVD

for every k. For the case k = 1, i.e., on data words, it has been shown [7]
that there is a reduction from SAT1-LRVn to CSReach(2n-VASS1), where the
dimension of the VASS1 is exponential in the number of variables. However, it
is easy to see that the proof of [7] also yields a reduction from SAT1-LRVD

n to
CSReach(nVASS1). Thus, this theorem has been shown for k = 1, and here we
generalize it to k > 1. However, there are a number of problems that appear if
one tries to “extend” the proof of [7] to the branching setup. In particular, the
non-linearity of the future in addition to the possibility of having a data value
repeating at several descendants in different variables, calls for a non-standard
way of propagating the values of configurations, which is not contemplated in
VASSk. This is why we are only able to show the reduction for the ‘disjoint’
fragment LRVD, and which leads us to consider the extended model MVASSk in
Sect. 7. This propagation problem does not appear when one only considers that
the classes of different values are disjoint, that is, that all formulas of the type
v � EFw with � ∈ {≈, �≈} have v = w, motivating the study of SATk-LRVD

n .

Proof idea. We start by analyzing a restricted case, which serves as building
block: the logic LRVD−

1 whose only formulas are conjuncts of terms of the form
v � EXiv, v � EFv, or their negation, where � ∈ {≈, �≈}. We show that for any
formula ϕ of LRVD−

1 , there is a 1VASSk Ak
ϕ = 〈Q,U,B〉, a set of initial states

Q0 ⊆ Q, and a set of final states Q̂ ⊆ Q such that SATk(ϕ) iff there is a derivation
tree with a starting node in q0 ∈ Q0 that is a solution to CSReach(Ak

ϕ, q0, Q̂)—
it is easy to see that this problem is equivalent to CSReach as stated in Sect. 4.3.
We then extend this construction to the automaton Bk

ϕ, enabling a reduction
from the full logic LRVD

1 , but still restricted to only one variable. Finally, because
of the disjointness of the variables, it is easy to extend these constructions to
the full logic LRVD

n .
Here we only give a brief explanation of the construction of Ak

ϕ = 〈Q,U,B〉
for the logic LRVD−

1 . For the sake of simplicity, we assume our logic has no
labels; their addition to the construction is straightforward. Since LRV can only
deal with data (in)equality and since in this case we consider n = 1, we will
interchangeably speak of an equivalence relation between the nodes of the tree
or of the particular data values.

We define the EX-length of a formula ψ as the maximum i such that ψ con-
tains a subformula of the form v �EXiv. Let d be the EX-length of ϕ. The set Q
consists of all valid (d, k)-frames, where a (d, k)-frame is a tree of depth d and
rank k, equipped with an equivalence relation, and with some extra attributes
(node-labeling functions) to include some special marks and semantic informa-
tion of future requirements of the form (¬)v ≈ EFv and (¬)v �≈ EFv. The initial
states Q0 are those frames F satisfying the local part of ϕ (that is, subformulas
of ϕ the form v � EXiv). Future requirements (that is, subformulas of ϕ of the
form v � EFv) may not be satisfied locally in F . The set Q̂ is the singleton with
a frame consisting in a single node. The basic idea is that the counter of Ak

ϕ

keeps track of how many future requirements are not yet satisfied. Some nodes

206 S. Abriola et al.

of the frames may have extra information in the form of labels ⊕ or �. States
F whose root is labeled with ⊕ are points of increment: Ak will have unary rule
in U that increments the (sole) counter in 1. A point of increment denotes that
some subformula v ≈ EFv of ϕ should hold, but it is not satisfied locally, that
is, inside F . Leaves with � are those not related to ancestors in the frame with
the same data value, they can thus be “joined” into the same equivalence class
to a future requirement originated at some distant ancestor. States with leaves
�-labeled are points of decrement: Ak will have a unary rule in U to decrement
the counter depending on the number of equivalence classes of leaves labeled
with �. The branching rules B of Ak are of the form F → (F1, . . . , Fi), where
Fj overlaps with an adequate part of F .

Example 4. The following figure illustrates a scheme of an incrementing deriva-
tion S of the 1VASS2 A2

ϕ (a) and some steps (b, c and d) in the bottom up
construction of the data tree TS satisfying ϕ, for ϕ = ¬v ≈ EXv ∧ ¬v ≈
EX2v ∧ v ≈ EFv. Triangles represent (2, 2)-frames. Shades of gray represent
the equivalence classes, which only make sense inside any frame. The counter is
notated with c, and arrows represent the (unary/branching) transitions of the
derivation. Notice that the top branching is ‘incremental’, and that the local
requirements of ϕ (namely, ¬v ≈ EXv and ¬v ≈ EX2v) are satisfied in the root
of the top frame.

S1 S2

S3

S⊕

��

TS1 TS2

� �

� �

c = 1

c = 0

c = 0

c = 0

c = 0

c = 0

c = 1

c = 0

c = 0

+1

−1 −1

c = 1
branch

branch

branch

branch

branch

�

TS3

TS

(a)

(b)

(c)

(d)

The construction of TS is bottom-up, and we show three steps: (a), (b) and
(c). Notice that in (b) each of TS1 and TS2 has its own partition (no intersection).
In (c) we process the root of S3 by tying together TS1 and TS2 with a common
parent, who lives in a single class of the partition. Notice that the partitions of

Logics of Repeating Values on Data Trees and Branching Counter Systems 207

TS1 and TS2 are properly joined (grey area), according to the information in the
root of S3. Finally in (d) we construct TS . The root of S is a point of increment,
so we match ⊕ with some � in TS3 . In this case, we match it with the right-hand
�, and so we join them by putting them in the same partition (grey area). We
have satisfied the future requirement v ≈ EFv of ϕ.

On the one hand, any incrementing derivation S that is a solution to
CSReach(Ak

ϕ, q0, Q̂) for some q0 ∈ Q0, can be translated into a data tree
TS whose root satisfies ϕ. In fact, any semantic information contained in the
labels of nodes in frames of S will be satisfied in the corresponding nodes of TS .
The difficult part is to show that �-leaves will have the necessary conditions to
be joined with the equivalence class of an ⊕-ancestor, making true the formula
v ≈ EFv. This will be a consequence of the fact that the incrementing derivation
satisfies CSReach.

On the other hand, if ϕ is satisfiable in some k-ranked data tree T
then we can build an incrementing derivation tree ST that is a solution to
CSReach(Ak

ϕ, q0, Q̂) for some q0 ∈ Q0. Following the ideas of the previous
part, we proceed from the root toward the leaves using the structure and equiv-
alence classes of T to determine in each step the corresponding states (including
the semantic labels and the labels �, ⊕) and rules of ST . From the construction,
and using the incrementing nature of the derivation, it will follow that ST is a
solution to the control-state reachability problem.

For the construction of Bk
ϕ, the information given by the (d, k)-frames will be

supplemented by the addition of sets of formulas containing information about
the EU operator and the Boolean connectives. The way to do this is standard
(see e.g., [6]).

Complexity. Let LRVD
n,d be the fragment of LRVD

n where each formula has EX-
length at most d. By inspecting the above reduction, we can bound the number
of states of the constructed nVASSk by O(p(n)kd+1 · (kd+1)kd+1 ·2p(|ϕ|)) for some
polynomial p, and we can bound the maximum value among the entries in unary
rules by kd. Furthermore, we can reduce our branching VASS to an equivalent
(single-state) BVAS with an addition of a constant number of new dimensions.
This transformation increases the binary size of the maximum entry of the unary
rules at most logarithmically over the number of states of our original nVASSk.
Now, using Proposition 1, Theorem 3, and the above complexity analysis, we
obtain:

Proposition 5. SATk-LRVD
n,d is in ExpTime for fixed k, n, d; it is in 2ExpTime

for fixed k, n or fixed d, k; and it is in 3ExpTime for fixed k.

6 Obtaining Equivalence with VASSk

In the previous section we have seen a reduction into the control-state reachabil-
ity problem for VASSk. A natural question is whether there exists a reduction in
the other direction: can CSReach(VASSk) be reduced into the k-satisfiability

208 S. Abriola et al.

for LRVD? For the case k = 1, this has been shown to be the case [7]: there
exists a polynomial-space reduction from CSReach(VASS1) to SAT1(LRV).

The existence of a reduction would show, intuitively, that one can express in
the logic that there is a tree that verifies all the conditions for being a derivation.
Without the use of data tests, one can easily encode trees that verify all the
conditions except perhaps (1) and (2) regarding the vectors. For this, let us
assume without loss of generality that all unary rules contain a vector ēi or −ēi.
The data values are used to ensure the next two conditions:

– Along any branch, every node containing a rule of the form q
ēi−→ q′ has

a unique data value. In other words, we cannot find two nodes encoding an
increment of component i with the same data value so that one is the ancestor
of the other.

– For every node with a unary rule q
ēi−→ q′ there exists a descendant with a rule

p
−ēi−−→ p′ and the same data value.

These two conditions imply that after incrementing component i there must be
at least one corresponding decrement of component i. Note that there could be
more decrements than increments, which is not a problem since we work under
the ‘incrementing’ semantics.

Interestingly, these two conditions can be expressed in LRV, but we do not
know how to encode it in LRVD (we conjecture that they are not expressible).

Adding the operator AG≈v (ϕ). We add a new operator AG≈v(ϕ) to LRVD,
where T, x |= AG≈v(ϕ) if every descendant of x with the same v-attribute ver-
ifies ϕ. The fragment of LRVD

n extended with positive occurrences of AG≈v(ϕ)
(that is, where AG≈ occurs always under an even number of negations) is called
LRVD

n (AG+
≈).

Now, in LRVD
n (AG+

≈) one can express: for every node x containing a rule
q

ēi−→ q′, we have that all descendants of x with the same vi attribute contain
a rule of the form p

−ēi−−→ p′. This, added to the property that every increment
for component i must verify vi ≈ EFvi, ensures that the tree indeed encodes a
derivation tree.

Theorem 6. CSReach(nVASSk) is PTime-reducible to SATk-LRVD
1 (AG+

≈).

Proof (idea). We show the idea for n = 1, as this case generalizes to any n
straightforwardly, and without changing the number of variables in the logic. For
every 1VASSk Ck = 〈Q,U,B〉, q0 ∈ Q and Q̂ ⊆ Q we define ϕ ∈ LRVD

1 (AG+
≈),

such that SATk(ϕ) iff CSReach(Ck
ϕ, q0, Q̂). We want this ϕ to force various

properties in all its models, so that every model corresponds to a derivation tree
of CSReach(Ck

ϕ, q0, Q̂). In particular, we want:

– Each node is labeled with either a rule of U ∪B or an extra label ∗ for dummy
nodes that will be ignored (this is to force exact k-branching for all non-leaves).
We can assume without loss of generality that all unary rules in U of the form
q

c−→ q′ have either c = 1 or c = −1. In particular, formulas ϕinc and ϕdec
express that the label is an increment or a decrement rule, respectively.

Logics of Repeating Values on Data Trees and Branching Counter Systems 209

– If a node is labeled with an empty rule q → ∅̄, then it is a leaf.
– The root is labeled with a rule of the form (q0, . . .) ∈ U ∪ B.
– Each node labeled with an increment rule has a descendant in the same equiv-

alence class (i.e. with same value for the only attribute v), and all its descen-
dants in the same equivalence class are labeled with a decrement rule: this can
be expressed by ϕinc →

(
v ≈ EFv ∧ AG≈v(ϕdec)

)
.

All the above properties, except the last one, can be expressed in LRVD
1 ; for

the last one we use (positively) AG≈. The final formula ϕ consists of a con-
junction of all these properties, among others (so that the occurrence of AG≈
remains positive). Then one verifies that a solution to the control-state reacha-
bility problem of Ck, q0, Q̂ can be used to construct a model for ϕ; and that a
data tree satisfying ϕ can be used to construct an incrementing derivation tree
for CSReach(Ck, q0, Q̂). ��

The satisfiability for this extension still has a reduction to the control-state
reachability for VASSk:

Theorem 7. SATk-LRVD(AG+
≈) is ExpSpace-reducible to CSReach

(VASSRk).

7 From LRV to MVASSk

The reduction from LRVD to VASSk from Sect. 5 cannot be extended to treat
LRV. The main problem is that the branching nature of the counters in a
CSReach(VASSk) will be insufficient to represent some classes of data trees
(which can be needed to model some formulas). When we have tests of the form
u1 ≈ EFu2 with u1 �= u2 distinct variables, we can no longer reason in terms of
“one coordinate i for each variable ui”, where the i-th component in the con-
figuration of the VASSk codes, intuitively, how many distinct data values must
be seen on variable ui in the subtree as shown in Sect. 5. In fact, when working
with LRV, a data value may appear in several variables, as a result of allowing
formulas like u1 ≈ EFu2 ∧ u1 ≈ EFu3. This means that we need to reason in
terms of sets of variables, where each component i is associated with a non-
empty subset Ui of the variables appearing in the input formula ϕ; this time,
component i counts how many data values must appear in the subtree under all
the variables of Ui. This, in principle, poses no problem for the non-branching
case: in fact, this kind of coding (indexing one coordinate of the configuration for
each subset of variables) was used in [6] to show a reduction from LRV to VASS
on data words. However, on data trees, this coding breaks with the semantics of
the branching rules of VASSk.

As an example, suppose we work with two variables u, v and we thus have
dimension 3—the first component is associated with {u}, the second with {v}
and the third with {u, v}. Suppose that there are n ancestor nodes that have to
satisfy both u ≈ EFu and u ≈ EFv, which at the current configuration of the
VASSk is witnessed by the vector (0, 0, n). Intuitively, this means that there are

210 S. Abriola et al.

n data values that must appear in the subtree under a variable u and also under
v (though not necessarily at the same node) in the data tree the automaton is
trying to find. Hence, as part of the “branching” instruction of this configurations
into the configuration of the left and right children, one must contemplate the
possibility of obtaining, for instance, (n, 0, 0) (0, n, 0), saying that the left subtree
contains n distinct data values for u, and the right child contains n data values
for v. But it could be (n − t, 0, t) (0, n − t, 0), or (0, 0, n − t) (0, 0, t), etc. In
other words, components need to be mixed in a more complex way that is not
allowed in VASSk branching rules. In particular, some sort of transfers between
coordinates must be necessary. This is precisely the behavior that we can encode
into MVASS.

Theorem 8. SATk-LRVn is reducible to CSReach(2n-MVASSRk).

Proof (idea). The crux of the reduction is in the use of the merging rules. We
have one component associated to every non-empty subset. For every non-empty
subset U of variables appearing in the input formula ϕ there is a component i
associated to U , let us then define ēU as ēi. Also, let ē∅ = 0̄. The idea is that, on
rank k, every merging instruction will contain the linear set consisting of every
vector (ēU ēV1 · · · ēVk′) ∈ Nn·(k′+1) with k′ ≤ k, so that U �= ∅ and U =

⋃
i Vi.

The partial order � will then be the subset ordering on the components: i � j
if the set associated to i is contained in that associated to j.

Using the merging rules as described above, the reduction from LRVD to
VASSk of Sect. 5 can be modified to obtain a reduction from LRV to MVASSk.
Frames and its notion of validity are extended to treat set of variables. In par-
ticular, now the points of increment and decrement are always relative to a set
of variables. This follows, very roughly, the idea of coding from [7] in the setup
built in Sect. 5, but now some special care must be considered because of the
non-linearity of a tree. One must decide in advance to which leaf of the frame
the satisfaction of data demands will be delegated. The resulting MVASSk now
has dimension exponential in the number of variables of the input formula. ��

As a corollary, due to Theorem 2, we have that SATk-LRV is decidable.
We remark that, similarly as done in [7], one can add formulas of the form
u � EF[ϕ]v stating that there is a descendant witnessing u � EFv and verifying
ϕ, while preserving this reduction.

8 Discussion

We have shown connections between counter systems and data logics on ranked
data trees. In particular, this has yielded decision procedures for data logics and
a new model of branching computation of VASS.

While in the present work the focus has been put on ranked data trees, we
envisage working also on unranked trees in the future. In particular, we remark
that these logics can be naturally extended to the unranked case, but that there

Logics of Repeating Values on Data Trees and Branching Counter Systems 211

are no well-known models of branching counter systems with unbounded branch-
ing. This may lead to new natural models featuring some sort of unbounded
parallel computations with good computational properties.

We are also interested in considering other modalities in our logics, with
branching tests such as EXiv � EFu and EFu ≈ EFv, or tests including past
such as u ≈ EF−1v and EF−1u ≈ EFv.

We were unable to show the precise complexity of CSReach(MVASSk),
which lies between 2ExpTime and 3ExpTime. We leave this for future work.
We believe that SATk-LRV(AG+

≈) is equivalent to the control-state reachability
problem for MVASSk, in the sense of existence of computable reductions from
and to.

References

1. Baelde, D., Lunel, S., Schmitz, S.: A sequent calculus for a modal logic on finite
data trees. In: 25th EACSL Annual Conference on Computer Science Logic, CSL
29, 1 September 2016, Marseille, France, pp. 32:1–32:16, August 2016

2. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. JACM 56(3), 13 (2009)

3. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4) 2010

4. Bollig, B., Cyriac, A., Gastin, P., Narayan Kumar, K.: Model checking languages
of data words. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 391–405.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28729-9 26

5. Demri, S., D’Souza, D., Gascon, R.: A decidable temporal logic of repeating values.
In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 180–194.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72734-7 13

6. Demri, S., D’Souza, D., Gascon, R.: Temporal logics of repeating values. J. Log.
Comput. 22(5), 1059–1096 (2012)

7. Demri, S., Figueira, D., Praveen, M.: Reasoning about data repetitions with
counter systems. In: LICS, pp. 33–42. IEEE Press (2013)

8. Demri, S., Jurdziński, M., Lachish, O., Lazić, R.: The covering and boundedness
problems for branching vector addition systems. J. Comput. Syst. Sci. 79(1), 23–38
(2013)

9. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3) (2009)

10. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branch-
ing versus linear time temporal logic. JACM 33(1), 151–178 (1986)

11. Figueira, D.: Forward-XPath and extended register automata on data-trees. In:
ICDT. ACM (2010)

12. Figueira, D.: Alternating register automata on finite data words and trees. Log.
Methods Comput. Sci. 8(1) (2012)

13. Figueira, D.: Decidability of downward XPath. ACM Trans. Comput. Log. 13(4)
(2012)

14. Figueira, D.: On XPath with transitive axes and data tests. In: PODS, pp. 249–260.
ACM (2013)

15. Figueira, D., Figueira, S., Areces, C.: Basic model theory of XPath on data trees.
In: ICDT, pp. 50–60. ACM (2014)

http://dx.doi.org/10.1007/978-3-642-28729-9_26
http://dx.doi.org/10.1007/978-3-540-72734-7_13

212 S. Abriola et al.

16. Figueira, D., Libkin, L.: Pattern logics and auxiliary relations. In: CSL-LICS, pp.
40:1–40:10 (2014)

17. Figueira, D., Segoufin, L.: Future-looking logics on data words and trees. In:
Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 331–343.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03816-7 29

18. Figueira, D., Segoufin, L.: Bottom-up automata on data trees and vertical XPath.
In: STACS, vol. 9 of LIPIcs, pp. 93–104. LZI (2011)

19. Jacquemard, F., Segoufin, L., Dimino, J.: FO2(< + 1, ∼) on data trees, data tree
automata and branching vector addition systems. Log. Methods Comput. Sci. 12(2)
(2016)

20. Jurdziński, M., Lazić, R.: Alternating automata on data trees and XPath satisfia-
bility. ACM Trans. Comput. Log. 12(3), 19 (2011)

21. Kara, A., Schwentick, T., Zeume, T.: Temporal logics on words with multiple data
values. In: FST & TCS (2010)

22. Kupferman, O., Vardi, M.: Memoryful branching-time logic. In: LICS, pp. 265–274.
IEEE Press (2006)

23. Lazić, R., Sylvain, S.: Nonelementary complexities for branching VASS, MELL,
and extensions. ACM Trans. Comput. Log. 16(3), 20 (2015)

24. Lisitsa, A., Potapov, I.: Temporal logic with predicate λ-abstraction. In: TIME,
pp. 147–155. IEEE Press (2005)

25. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004)

26. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Press
(1977)

27. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoret. Comput. Sci. 6(2), 223–231 (1978)

28. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).
doi:10.1007/11874683 3

29. Verma, K.N., Goubault-Larrecq, J.: Karp-Miller trees for a branching extension of
VASS. Discrete Math. Theor. Comput. Sci. 7(1), 217–230 (2005)

http://dx.doi.org/10.1007/978-3-642-03816-7_29
http://dx.doi.org/10.1007/11874683_3

Automata, Logic and Formal Languages

Degree of Sequentiality of Weighted Automata

Laure Daviaud1, Ismaël Jecker2, Pierre-Alain Reynier3,
and Didier Villevalois3(B)

1 Warsaw University, Warsaw, Poland
ldaviaud@mimuw.edu.pl

2 Université Libre de Bruxelles, Brussels, Belgium
ijecker@ulb.ac.be

3 Aix-Marseille Univ, LIF, CNRS, Marseille, France
{pierre-alain.reynier,didier.villevalois}@lif.univ-mrs.fr

Abstract. Weighted automata (WA) are an important formalism to
describe quantitative properties. Obtaining equivalent deterministic
machines is a longstanding research problem. In this paper we consider
WA with a set semantics, meaning that the semantics is given by the
set of weights of accepting runs. We focus on multi-sequential WA that
are defined as finite unions of sequential WA. The problem we address
is to minimize the size of this union. We call this minimum the degree
of sequentiality of (the relation realized by) the WA.

For a given positive integer k, we provide multiple characterizations of
relations realized by a union of k sequential WA over an infinitary finitely
generated group: a Lipschitz-like machine independent property, a pat-
tern on the automaton (a new twinning property) and a subclass of cost
register automata. When possible, we effectively translate a WA into an
equivalent union of k sequential WA. We also provide a decision proce-
dure for our twinning property for commutative computable groups thus
allowing to compute the degree of sequentiality. Last, we show that these
results also hold for word transducers and that the associated decision
problem is Pspace-complete.

1 Introduction

Weighted automata. Finite state automata can be viewed as functions from
words to Booleans and, thus, describe languages. Such automata have been
extended to define functions from words to various structures yielding a very
rich literature, with recent applications in quantitative verification [6]. Weighted

This work has been funded by FNRS, the DeLTA project (ANR-16-CE40-0007), the
ARC project Transform (Federation Wallonie Brussels), the FNRS CDR project
Flare, and the PHC project VAST (35961QJ) funded by Campus France and WBI.
L. Daviaud was partially supported by ANR Project ELICA ANR-14-CE25-0005,
ANR Project RECRE ANR-11-BS02-0010 and by project lipa that has received
funding from the European Research Council (erc) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement Nb 683080).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 215–230, 2017.
DOI: 10.1007/978-3-662-54458-7 13

216 L. Daviaud et al.

automata [18] (WA) is the oldest of such formalisms. They are defined over semi-
rings (S,⊕,⊗) by adding weights from S on transitions; the weight of a run is
the product of the weights of the transitions, and the weight of a word w is the
sum of the weights of the accepting runs on w.

The decidability status of natural decision problems such as universality and
equivalence highly depends on the considered semiring [17]. The first operation of
the semiring, used to aggregate the values computed by the different runs, plays
an important role in the (un)decidability results. Inspired by the setting of word
transducers, recent works have considered a set semantics that consists in keeping
all these values as a set, instead of aggregating them [11], and proved several
decidability results for the resulting class of finite-valued weighted automata [12].

For automata based models, a very important problem is to simplify the
models. For instance, deterministic (a.k.a. sequential) machines allow to derive
efficient evaluation algorithms. In general, not every WA can be transformed into
an equivalent sequential one. The sequentiality problem then asks, given a WA
on some semiring (S,⊕,⊗), whether there exists an equivalent sequential WA
over (S,⊕,⊗). This problem ranges from trivial to undecidable, depending on
the considered semiring, see [16] for a survey and [14,15] for more recent works.

Sequential transducers. Transducers define rational relations over words. They
can be viewed as weighted automata over the semiring of finite sets of words
(thus, built over the free monoid); sum is the set union and product is the con-
catenation extended to sets. When the underlying automaton is deterministic,
then the transducer is said to be sequential. The class of sequential functions,
i.e. those realized by sequential transducers, has been characterized among the
class of rational functions by Choffrut, see for instance [4] for a presentation:

Theorem 1 ([7]). Let T be a functional finite state transducer and [[T]] be the
function realized by T . The following assertions are equivalent:

(i) [[T]] satisfies the bounded variation property
(ii) T satisfies the twinning property
(iii) [[T]] is computed by a sequential transducer

In this result, two key tools are introduced: a property of the function, known as
the bounded variation property, and a pattern property of the transducer, known
as the twinning property.

Multi-sequential weighted automata. Multi-sequential functions of finite words
have been introduced in [8] as those functions that can be realized by a finite
union of sequential transducers. A characterization of these functions among the
class of rational functions is given in [8]. Recently, this definition has been lifted
to relations in [13] where it is proved that the class of so-called multi-sequential
relations can be decided in Ptime among the class of rational relations.

We consider in this paper multi-sequential weighted automata, defined as
finite unions of sequential WA. As described above, and following [11], we con-
sider weighted automata with a set semantics. We argue that multi-sequential

Degree of Sequentiality of Weighted Automata 217

WA are an interesting compromise between sequential and non-deterministic
ones. Indeed, sequential WA have a very low expressiveness, while it is in general
difficult to have efficient evaluation procedures for non-deterministic WA. Multi-
sequential WA allow to encode standard examples requiring non-determinism,
yet provide a natural evaluation procedure. Multi-sequential WA can indeed be
efficiently evaluated in parallel by using a thread per member of the union, thus
avoiding inter-thread communication.

A natural problem consists in minimizing the size of the union of multi-
sequential WA that is, given a WA and a natural number k, decide whether
it can be realized as a union of k sequential WA. We are also interested in
identifying the minimal such k, that we call degree of sequentiality of the WA.

Contributions. In this paper, we propose a solution to the problem of the com-
putation of the degree of sequentiality of WA. Following previous works [10,11],
we consider WA over infinitary finitely generated groups. We introduce new gen-
eralizations of the tools of Choffrut that allow us to characterize the relations
that can be defined as unions of k sequential WA: first, a property of relations
that extends a Lipschitz property for transducers, and is called Lipschitz prop-
erty of order k (Lipk for short); second, a pattern property of transducers, called
branching twinning property of order k (BTPk for short). We prove:

Theorem 2. Let W be a weighted automaton with set semantics over an infini-
tary finitely generated group and k be a positive integer. The following assertions
are equivalent:

(i) [[W]] satisfies the Lipschitz property of order k,
(ii) W satisfies the branching twinning property of order k,
(iii) [[W]] is computed by a k-sequential weighted automaton.

In addition, the equivalent model of property (iii) can be effectively computed.

As demonstrated by this result, the first important contribution of our work
is thus to identify the correct adaptation of the properties of Choffrut suitable
to characterize k-sequential relations. Sequential functions are characterized by
both a bounded variation and a Lipschitz property [5]. In [10], we introduced a
generalization of the bounded variation property to characterize relations that
can be expressed using a particular class of cost register automata with exactly
k registers, that encompasses the class of k-sequential relations. Though, to
characterize k-sequential relations, we here introduce a generalization of the
Lipschitz property. We actually believe that this class cannot be characterized
by means of a generalization of the bounded variation property. Similarly, the
difference between the twinning property of order k introduced in [10] and the
branching twinning property of order k introduced in this paper is subtle: we
allow here to consider runs on different input words, and the property requires
the existence of two runs whose outputs are close on their common input words.

We now discuss the proof of Theorem 2 whose structure is depicted in the
picture on the right. In [7], as well as in [10], the difficult part is the construction,

218 L. Daviaud et al.

given a machine satisfying the pattern property, of an equivalent deterministic
machine. Here again, the most intricate proof of our work is that of Proposition 3:
the construction, given a WA satisfying the BTPk, of an equivalent k-sequential
weighted automaton. It is worth noting that it is not a simple extension of [7,10].

BTPkLipk

k-sequential WA

Prop 2

P
ro

p
3P

rop
1

Our proof proceeds by induction on k, and the
result of [7] constitutes the base case while the
tricky part resides in the induction step. Com-
pared with [10], the construction of [10] stores
pairwise delays between runs, and picks a minimal
subset of “witness” runs that allows to express
every other run. In [10], the choice of these wit-
nesses may evolve along an execution while in
order to define a k-sequential WA, the way we
choose the representative runs should be consistent during the execution. The
technical part of our construction is thus the identification of a partition of size
at most k of the different runs of the non-deterministic WA such that each ele-
ment of this partition defines a sequential function. This relies on the branching
structure of the twinning property we introduce in this paper.

Our result can also be rephrased in terms of cost register automata [2]. These
are deterministic automata equipped with registers that aim to store along the
run values from a given semiring S. The restriction of this model to updates of
the form X := Xα (we say that registers are independent) exactly coincides (if
we allow k registers) with the class of k-sequential relations. Hence, our result
also allows to solve the register minimization problem for this class of CRA.

Beyond weighted automata over infinitary groups, we also prove that our
results apply to transducers from A∗ to B∗.

Regarding decidability, we show that if the group G is commutative and has
a computable internal operation, then checking whether the BTPk is satisfied
is decidable. As a particular instance of our decision procedure, we obtain that
this can be decided in Pspace for G = (Z,+, 0), and show that the problem is
Pspace-hard. Last, we prove that checking the BTPk for finite-state transducers
is also Pspace-complete.

Organization of the paper. We start with definitions in Sect. 2. In Sect. 3, we
introduce our original Lipschitz and branching twinning properties. We present
our main construction in Sect. 4. Section 5 is devoted to the presentation of our
results about cost register automata, while transducers are dealt with in Sect. 6.
Last we present our decidability results and their application to the computation
of the degree of sequentiality in Sect. 7. Omitted proofs can be found in [9].

2 Definitions and Examples

Prerequisites and notation. We denote by A a finite alphabet, by A∗ the set of
finite words on A, by ε the empty word and by |w| the length of a word w. For
a set S, we denote by |S| the cardinality of S.

Degree of Sequentiality of Weighted Automata 219

A monoid M = (M,⊗,1) is a set M equipped with an associative binary
operation ⊗ with 1 as neutral element; the product α ⊗ β in M may be simply
denoted by αβ. If every element of a monoid possesses an inverse - for all α ∈ M ,
there exists β such that αβ = βα = 1 (such a β is unique and is denoted by α−1) -
then M is called a group. The monoid (resp. group) is said to be commutative
when ⊗ is commutative. Given a finite alphabet B, we denote by F(B) the free
group generated by B.

A semiring S is a set S equipped with two binary operations ⊕ (sum) and ⊗
(product) such that (S,⊕,0) is a commutative monoid with neutral element 0,
(S,⊗,1) is a monoid with neutral element 1, 0 is absorbing for ⊗ (i.e. α ⊗ 0 =
0 ⊗ α = 0) and ⊗ distributes over ⊕ (i.e. α ⊗ (β ⊕ γ) = (α ⊗ β) ⊕ (α ⊗ γ) and
(α ⊕ β) ⊗ γ = (α ⊗ γ) ⊕ (β ⊗ γ)).

Given a set S, the set of the finite subsets of S is denoted by Pfin(S). For a
monoid M, the set Pfin(M) equipped with the two operations ∪ (union of two
sets) and the set extension of ⊗ is a semiring denoted Pfin(M).

From now on, we may identify algebraic structures (monoid, group, semiring)
with the set they are defined on when the operations are clear from the context.

Delay and infinitary group. There exists a classical notion of distance on words
(i.e. on the free monoid) measuring their difference: dist is defined for any two
words u, v as dist(u, v) = |u| + |v| − 2 ∗ |lcp(u, v)| where lcp(u, v) is the longest
common prefix of u and v.

When considering a group G and α, β ∈ G, we define the delay between α
and β as α−1β, denoted by delay(α, β).

Lemma 1. Given a group G, for all α, α′, β, β′, γ, γ′ ∈ G,

1. delay(α, β) = 1 if and only if α = β,
2. if delay(α, α′) = delay(β, β′) then delay(αγ, α′γ′) = delay(βγ, β′γ′).

For a finitely generated group G, with a fixed finite set of generators Γ , one
can define a distance between two elements derived from the Cayley graph of
(G, Γ). We consider here an undirected right Cayley graph: given α ∈ G, β ∈ Γ ,
there is a (non-oriented) edge between α and αβ. Given α, β ∈ G, the Cayley
distance between α and β is the length of the shortest path linking α and β in
the undirected right Cayley graph of (G, Γ). It is denoted by d(α, β).

For any α ∈ G, we define the size of α (with respect to the set of generators
Γ) as the natural number d(1, α). It is denoted by |α|. Note that for a word u,
considered as an element of F(A), the size of u is exactly the length of u (that
is why we use the same notation).

Lemma 2. Given a finitely generated group G and a finite set of generators Γ ,
for all α, β ∈ G, d(α, β) = |delay(α, β)|.

A group G is said to be infinitary if for all α, β, γ ∈ G such that αβγ �= β,
the set {αnβγn | n ∈ N} is infinite. Classical examples of infinite groups such
as (Z,+, 0), (Q,×, 1) and the free group generated by a finite alphabet are all
infinitary. See [11] for other examples.

220 L. Daviaud et al.

Weighted automata. Given a semiring S, weighted automata (WA) are non-
deterministic finite automata in which transitions have for weights elements of
S. Weighted automata compute functions from the set of words to S: the weight
of a run is the product of the weights of the transitions along the run and the
weight of a word w is the sum of the weights of the accepting runs labeled by w.

We will consider, for some monoid M, weighted automata over the semiring
Pfin(M). In our settings, instead of considering the semantics of these automata
in terms of functions from A∗ to Pfin(M), we will consider it in terms of relations
over A∗ and M. More precisely, a weighted automaton (with initial and final
relations), is formally defined as follows:

Definition 1. Let A be a finite alphabet, a weighted automaton W over some
monoid M is a tuple (Q, tinit, tfinal, T) where Q is a finite set of states, tinit ⊆
Q × M (resp. tfinal ⊆ Q × M) is the finite initial (resp. final) relation, T ⊆
Q × A × M × Q is the finite set of transitions.

A state q is said to be initial (resp. final) if there is α ∈ M such that
(q, α) ∈ tinit (resp. (q, α) ∈ tfinal), depicted as α−→ q (resp. q

α−→). A run ρ from
a state q1 to a state qk on a word w = w1 · · · wk ∈ A∗ where for all i, wi ∈ A,
is a sequence of transitions: (q1, w1, α1, q2), (q2, w2, α2, q3), . . . , (qk, wk, αk, qk+1).
The output of such a run is the element of M, α = α1α2 · · · αk. We depict this

situation as q1
w|α−−→ qk+1. The run ρ is said to be accepting if q1 is initial and

qk+1 final. This automaton W computes a relation [[W]] ⊆ A∗ × M defined by

the set of pairs (w,αβγ) such that there are p, q ∈ Q with α−→ p
w|β−−→ q

γ−→.
An automaton is trimmed if each of its states appears in some accepting run.

W.l.o.g., we assume that the automata we consider are trimmed.
Given a weighted automaton W = (Q, tinit, tfinal, T) over some finitely gener-

ated group G with finite set of generators Γ , we define the constant MW with
respect to Γ as MW = max{|α| | (p, a, α, q) ∈ T or (q, α) ∈ tinit ∪ tfinal}.

For any positive integer �, a relation R ⊆ X × Y is said to be �-valued if,
for all x ∈ X, the set {y | (x, y) ∈ R} contains at most � elements. It is said to
be finitely valued if it is �-valued for some �. A weighted automaton W is said
to be �-valued (resp. finite-valued) if it computes a �-valued (resp. finite-valued)
relation.

The union of two weighted automata Wi = (Qi, t
i
init, t

i
final, Ti), for i ∈ {1, 2},

with disjoint states Q1 ∩ Q2 = ∅ is the automaton W1 ∪ W2 = (Q1 ∪ Q2, t
1
init ∪

t2init, t
1
final ∪t2final, T1∪T2). States can always be renamed to ensure disjointness.

It is trivial to verify that [[W1 ∪ W2]] = [[W1]] ∪ [[W2]]. This operation can be
generalized to the union of k weighted automata.

Definition 2. A weighted automaton (Q, tinit, tfinal, T) over M is said to be
sequential if |tinit| = 1 and if for all p ∈ Q, a ∈ A there is at most one transi-
tion in T of the form (p, a, α, q). It is said to be k-sequential if it is a union of
k sequential automata. It is said to be multi-sequential if it is k-sequential for
some k. A relation is said to be k-sequential (resp. multi-sequential) if it can

Degree of Sequentiality of Weighted Automata 221

be computed by a k-sequential (resp. multi-sequential) automaton. The degree of
sequentiality of the relation is the minimal k such that it is k-sequential.

Observe that, unlike the standard definition of sequential weighted automata
over M (see for instance [11]), we allow finite sets of weights to be associated
with final states, and not only singletons. This seems more appropriate to us
regarding the parallel evaluation model for multi-sequential weighted automata:
we prefer to merge threads that only differ by their final outputs. If we define
OutMax = maxq∈Q |{(q, α) ∈ tfinal}|, then the standard definition of sequential
machines requires OutMax = 1. Being k-sequential implies being (k ·OutMax)-
valued. Hence, multi-sequential weighted automata are included in finite-valued
ones. However, multi-sequential weighted automata are strictly less expressive
than finite-valued ones.

Allowing a final output relation obviously has an impact on the sequentiality
degree. We believe that it is possible to fit the usual setting by appropriately
reformulating our characterizations. However, this cannot be directly deduced
from our current results.

Example 1. Let us consider A = {a, b} and (M,⊗,1) = (Z,+, 0). The weighted
automaton W0 given in Fig. 1(a) computes the function flast that associates
with a word wa (resp. wb) its number of occurrences of the letter a (resp. b),
and associates 0 with the empty word. It is easy to verify that the degree of
sequentiality of flast is 2. It is also standard that the function f∗

last mapping the
word u1# . . . #un (for any n) to flast(u1)+ · · ·+flast(un) is not multi-sequential
(see for instance [13]) whereas it is single-valued.

Fig. 1. (a) Example of a weighted automaton W0 computing the function flast.
(b) Example of a cost register automaton C0 computing the function flast. The updates
are abbreviated: Xa++ means both Xa := Xa + 1 and Xb := Xb (and conversely).

3 Lipschitz and Branching Twinning Properties

Sequential transducers have been characterized in [7] by Choffrut by means of
a so-called bounded-variation property and a twinning property. The bounded-
variation property is actually equivalent to a Lipschitz-like property (see for
instance [5]). We provide adaptations of the Lipschitz and twinning properties
so as to characterize k-sequential WA.

We consider a finitely generated infinitary group G and we fix a finite set of
generators Γ .

222 L. Daviaud et al.

3.1 Lipschitz Property of Order k

Given a partial mapping f : A∗ ⇀ B∗, the Lipschitz property states that there
exists L ∈ N such that for all w,w′ ∈ A∗ such that f(w), f(w′) are defined, we
have dist(f(w), f(w′)) � Ldist(w,w′) (see [5]). Intuitively, this property states
that, for two words, their images by f differ proportionally to those words. This
corresponds to the intuition that the function can be expressed by means of a
sequential automaton.

When lifting this property to functions that can be expressed using a
k-sequential automaton, we consider k + 1 input words and require that two
of those must have proportionally close images by f . The extension to relations
R ⊆ A∗ × B∗ requires that for all k + 1 pairs chosen in R, two of those have
their range components proportionally close to their domain components. In
addition, for relations, an input word may have more than one output word, we
thus need to add a constant 1 in the right-hand side. Finally, our framework is
that of infinitary finitely generated groups. Instead of dist(,), we use the Cayley
distance d(,) to compare elements in the range of the relation.

Definition 3. A relation R ⊆ A∗ ×G satisfies the Lipschitz property of order k
if there is a natural L such that for all pairs (w0, α0), . . . , (wk, αk) ∈ R, there
are two indices i, j such that 0 � i < j � k and d(αi, αj) � L (dist(wi, wj) + 1).

Example 2. The group (Z,+, 0) is finitely generated with {1} as a set of gener-
ators. The function flast does not satisfy the Lipschitz property of order 1 (take
w1 = aNa and w2 = aNb), but it satisfies the Lipschitz property of order 2.

Using the pigeon hole principle, it is easy to prove the implication from (iii)
to (i) of Theorem 2:

Proposition 1. A k-sequential relation satisfies the Lipschitz property of
order k.

3.2 Branching Twinning Property of Order k

The idea behind the branching twinning property of order k is to consider k + 1
runs labeled by arbitrary words with k cycles. If the branching twinning property
is satisfied then there are two runs among these k+1 such that the values remain
close (i.e. the Cayley distance between these values is bounded) along the prefix
part of these two runs that read the same input. This property is named after
the intuition that the k + 1 runs can be organized in a tree structure where the
prefixes of any two runs are on the same branch up to the point where those two
runs do not read the same input anymore.

Definition 4. A weighted automaton over G satisfies the branching twinning
property of order k (denoted by BTPk) if: (see Fig. 2)

– for all states {qi,j | i, j ∈ {0, . . . , k}} with q0,j initial for all j,
– for all γj such that (q0,j , γj) ∈ tinit with j ∈ {0, . . . , k},

Degree of Sequentiality of Weighted Automata 223

– for all words ui,j and vi,j with 1 � i � k and 0 � j � k such that there are

k + 1 runs satisfying for all 0 � j � k, for all 1 � i � k, qi−1,j
ui,j |αi,j−−−−−→ qi,j

and qi,j
vi,j |βi,j−−−−−→ qi,j,

there are j �= j′ such that for all i ∈ {1, . . . , k}, if for every 1 � i′ � i, we have
ui′,j = ui′,j′ and vi′,j = vi′,j′ , then we have

delay(γjα1,j · · ·αi,j , γj′α1,j′ · · ·αi,j′) = delay(γjα1,j · · ·αi,jβi,j , γj′α1,j′ · · ·αi,j′βi,j′).

Example 3. The weighted automaton W0, given in Fig. 1(a), does not satisfy
the BTP1 (considering loops around qa and qb). One can prove however that it
satisfies the BTP2.

Let us denote by W1 the weighted automaton obtained by concatenating W0

with itself, with a fresh # separator letter. W1 realizes the function f2
last defined

as f2
last(u#v) = flast(u) + flast(v). We can see that the minimal k such that W1

satisfies the BTPk is k = 4. As we will see, this is the sequentiality degree of
f2

last.

Fig. 2. Branching twinning property of order k

3.3 Equivalence of Lipschitz and Branching Twinning Properties

We can prove that a weighted automaton satisfies the BTPk if and only if
its semantics satisfies the Lipschitz property of order k. This implies that the
branching twinning property of order k is a machine independent property, i.e.
given two WA W1,W2 such that [[W1]] = [[W2]], W1 satisfies the BTPk iff W2

satisfies the BTPk.

Proposition 2. A weighted automaton W over an infinitary finitely generated
group G satisfies BTPk if and only if [[W]] satisfies the Lipschitz property of
order k.

224 L. Daviaud et al.

Proof (Sketch). Let us sketch the proof of the Proposition. First, suppose that
W does not satisfy the BTPk. Then consider a witness of this non satisfaction.
Fix an integer L. By pumping the loops in this witness (enough time and going
backward), one can construct k +1 words that remain pairwise sufficiently close
while their outputs are pairwise at least at distance L. This leads to prove that
[[W]] does not satisfy the Lipschitz property of order k.

Conversely, consider that the BTPk is satisfied. For all k + 1 pairs of words
and weights in [[W]], we have k + 1 corresponding runs in W labeled by those
words. By exhibiting cycles on these runs, we can get an instance of BTPk as
in Fig. 2 such that the non-cycling part is bounded (in length). By BTPk, there
are two runs that have the same delays before and after the loops appearing in
their common prefix. Thus, we can bound the distance between the two weights
produced by those runs proportionally to the distance between the two input
words, proving that the Lipschitz property is satisfied. ��

4 Constructing a k-sequential Weighted Automaton

As explained in the introduction, the most intricate part in the proof of
Theorem 2 is to prove that (ii) implies (iii). We give a constructive proof of
this fact as stated in the following proposition.

Proposition 3. Given a weighted automaton W satisfying the BTPk, one can
effectively build k sequential weighted automata whose union is equivalent to W .

Let W = (Q, tinit, tfinal, T) be a weighted automaton that satisfies the BTPk.
The construction is done in two steps. First, we build an infinite sequen-
tial weighted automaton DW equivalent to W , using the subset construc-
tion with delays presented in [4]. Then, by replacing infinite parts of DW

with finite automata, we build k sequential weighted automata whose union is
equivalent to W .

Let us sketch the main ideas behind the construction of DW . The states
of DW are the subsets S of Q × G. On input u ∈ A∗, DW selects an initial

run ρ : α0−→ p0
u|α−−→ p of W , outputs the corresponding α ∈ G, and, in order to

keep track of all the runs ρ′ :
β0−→ q0

u|β−−→ q of W over the input u, stores in its
state the corresponding pairs (q′, delay(α0α, β0β)). The detailed construction,
together with the proofs of its properties, adapted from [4] to fit our settings,
can be found in [9].

If W is a transducer, i.e., a weighted automaton with weights in a free monoid,
and W satisfies the BTP1, which is equivalent to the twinning property, Lemma
17 of [4] proves that the trim part of DW is finite. This lemma can be generalized
to any kind of weighted automata, proving our proposition in the particular case
k = 1. Let us now prove the general result by induction. Suppose that k > 1,
and that the proposition is true for every integer strictly smaller than k. We
begin by exposing two properties satisfied by DW .

Since W satisfies the BTPk, it also satisfies the notion of TPk introduced
in [10], and, by Proposition 1 of that paper, it is �-valued for some integer �

Degree of Sequentiality of Weighted Automata 225

effectively computable. Let NW = 2MW |Q|�|Q|, let S ∈ Q × G be a state of
the trim part of DW , and let WS = (Q,S, tfinal, T) be the weighted automaton
obtained by replacing the initial output relation of W with S. The following
properties are satisfied.

P1: The size of S is bounded by �|Q|;
P2: If there exists a pair (q, α) ∈ S such that |α| > NW , [[WS]] is k-sequential.

The proof of P1 follows from the �-valuedness of W . The main difficulty of the
demonstration of Proposition 3 lies in the proof of P2, which can be sketched as
follows. Using the fact that there exists (q, α) ∈ S such that |α| > NW , we expose
a partition of S into two subsets S′ and S′′ satisfying the BTPk′ , respectively the
BTPk′′ , for some 1 � k′, k′′ < k such that k′ + k′′ � k. This is proved by using
the fact that W satisfies the BTPk, and that the branching nature of the BTP
allows us to combine unsatisfied instances of the BTP over WS′ and WS′′ to build
unsatisfied instances of the BTP over W . Then, since k′ < k and k′′ < k, [[S′]]
is k′-sequential and [[S′′]] is k′′-sequential by the induction hypothesis. Finally,
as S is the union of S′ and S′′, WS is equivalent to the union of WS′ and WS′′ ,
and P2 follows, since k′ + k′′ � k.

The properties P1 and P2 allow us to expose k sequential weighted automata
V 1, . . . , V k whose union is equivalent to W . Let U denote the set containing the
accessible states S of DW that contain only pairs (q, α) satisfying |α| � NW . As
there are only finitely many α ∈ G such that |α| � NW , P1 implies that U is
finite. Moreover, as a consequence of P2, for every state S /∈ U in the trim part
of DW , WS can be expressed as the union of k sequential weighted automata
Vi(S), with 1 � i � k. For every 1 � i � k, let V i be the sequential weighted
automaton that copies the behaviour of DW as long as the latter stays in U ,
and swaps to Vi(S) as soon as DW enters a state S /∈ U . Then DW is equivalent
to the union of the V i, 1 � i � k, which proves the desired result, since DW is
equivalent to W . The detailed proofs can be found in [9].

5 Cost Register Automata with Independent Registers

Recently, a new model of machine, named cost register automata (CRA), has
been introduced in [2]. We present in this section how the class of k-sequential
relations is also characterized by a specific subclass of cost register automata.

A cost register automaton (CRA) [2] is a deterministic automaton with regis-
ters containing values from a set S and that are updated through the transitions:
for each register, its new value is computed from the old ones and from elements
of S combined using some operations over S. The output value is computed from
the values taken by the registers at the end of the processing of the input. Hence,
a CRA defines a relation in A∗ × S.

In this paper, we focus on a particular structure (M,⊗c) defined over a
monoid (M,⊗,1). In such a structure, the only updates are unary and are of the
form X := Y ⊗ c, where c ∈ M and X,Y are registers. When M is (Z,+, 0), this
class of automata is called additive cost register automata [3]. When M is the

226 L. Daviaud et al.

free monoid (A∗, ., ε), this class is a subclass of streaming string transducers [1]
and turns out to be equivalent to the class of rational functions on words, i.e.
those realized by finite-state transducers.

While cost register automata introduced in [2] define functions from A∗ to
M, we are interested in defining finite-valued relations. To this aim, we slightly
modify the definition of CRA, allowing to produce a set of values computed from
register contents.

Definition 5. A cost register automaton on the alphabet A over the monoid
(M,⊗,1) is a tuple (Q, qinit,X , δ, μ) where Q is a finite set of states, qinit ∈ Q
is the initial state and X is a finite set of registers. The transitions are given
by the function δ : Q × A → (Q × UP(X)) where UP(X) is the set of functions
X → X × M that represents the updates on the registers. Finally, μ is a finite
set of Q × X × M (the output relation).

The semantics of such an automaton is as follows: if an update function f
labels a transition and f(Y) = (X,α), then the register Y after the transition
will take the value βα where β is the value contained in the register X before the
transition. More precisely, a valuation ν is a mapping from X to M and let V be
the set of such valuations. The initial valuation νinit is the function associating
with each register the value 1. A configuration is an element of Q × V. The
initial configuration is (qinit, νinit). A run on a word w = w1 · · · wk ∈ A∗ where
for all i, wi ∈ A, is a sequence of configurations (q1, ν1)(q2, ν2) . . . (qk+1, νk+1)
satisfying that for all 1 � i � k, and all registers Y , if δ(qi, wi) = (qi+1, gi)
with gi(Y) = (X,α), then νi+1(Y) = νi(X)α. Moreover, the run is said to be
accepting if (q1, ν1) is the initial configuration and there are X,α such that
(qk+1,X, α) ∈ μ.

A cost register automaton C computes a relation [[C]] ⊆ A∗ × M defined
by the set of pairs (w, νk+1(X)α) such that (q1, ν1)(q2, ν2) . . . (qk+1, νk+1) is an
accepting run of C on w and (qk+1,X, α) ∈ μ.

Definition 6. A cost register automaton is said to be with independent registers
if for any update function f labelling a transition, f(Y) = (X,α) implies X = Y .

Example 4. Consider A = {a, b} and (M,⊗,1) = (Z,+, 0). The cost regis-
ter automaton C0 given in Fig. 1(b) computes the function flast introduced in
Example 1. The register Xa (resp. Xb) stores the number of occurrences of the
letter a (resp. b). Observe that these two registers are independent.

Independence of registers is tightly related to sequentiality of WA. We prove:

Proposition 4. For all positive integers k, a relation is k-sequential if and only
if it is computed by a cost register automaton with k independent registers.

CRA are deterministic by definition, and a challenging minimisation problem
is captured by the notion of register complexity. It is defined for a relation as
the minimal integer k such that it can be defined by a CRA with k registers. By
Proposition 4, results on the computation of the degree of sequentiality presented

Degree of Sequentiality of Weighted Automata 227

in Sect. 7 thus also allow to compute the register complexity for CRA with
independent registers.

One can also show that the class of CRA with k independent registers is
equivalent to the class of CRA with k registers, updates of the form X := Y α,
and that are copyless (every register appears at most once in the right-hand side
of an update function).

The class of CRA with k non-independent registers was characterized in [10]
using the twinning property of order k. This property is weaker than our branch-
ing twinning property of order k as it requires the same conclusion but only for
runs labeled by the same input words.

6 The Case of Transducers

A transducer is defined as a weighted automaton with weights in the monoid
B∗. It can thus be seen as a weighted automaton with weights in the free group
F(B). We say that a transducer T satisfies the branching twinning property of
order k if, viewed as a weighted automaton over F(B), it satisfies the BTPk.
Similarly, a relation R ⊆ A∗ × B∗ is said to satisfy the Lipschitz property of
order k iff it is the case when viewing R as a relation in A∗ × F(B).

A relation R of A∗×B∗ is said to be positive k-sequential if it is computed by a
k-sequential weighted automaton with weights in B∗ (weights on the transitions
in B∗ and initial and final relations in Q × B∗ where Q is its set of states). As
for the general case, it is easy to see that a relation is positive k-sequential if and
only if it is computed by a cost register automaton with k independent registers,
with updates of the form X := Xc where c ∈ B∗ and with an output relation
μ ⊆ Q × X × B∗.

Theorem 3. Let T be a transducer from A∗ to B∗, and k be a positive integer.
The following assertions are equivalent:

(i) [[T]] satisfies the Lipschitz property of order k,
(ii) T satisfies the branching twinning property of order k,
(iii) [[T]] is positive k-sequential.

The assertions (i) and (ii) are equivalent by Theorem2. The fact that the
assertion (iii) implies the assertion (ii) is also a consequence of Theorem 2
and of the fact that the branching twinning property of order k is a machine-
independent characterization. Finally, it remains to prove that the assertion (ii)
implies the assertion (iii).

By hypothesis, [[T]] ⊆ A∗ ×B∗ is computed by a transducer that satisfies the
branching twinning property of order k. Thus, by Theorem 2, it is computed by
a CRA over F(B) with k independent registers. We conclude using the:

Proposition 5. A relation in A∗ ×B∗ is computed by a cost register automaton
over F(B) with k independent registers if and only if it is computed by a cost
register automaton over B∗ with k independent registers.

228 L. Daviaud et al.

7 Decidability of BTPk and Computation
of the Sequentiality Degree

In this section, we prove the decidability of the following problem under some
hypotheses on the group G:

The BTPk Problem: given a weighted automaton W over some group G and
a number k, does W satisfy the BTPk?

As a corollary of Theorem 2, this allows to compute the degree of sequentiality
for weighted automata. We will consider two settings: first weighted automata
over some computable commutative group and second, word transducers.

Our decision procedures non-deterministically guess a counter-example to the
BTPk. First, we show that if there exists such a counter-example with more than
k loops, then there exists one with k loops. For simplicity, we can assume that the
counter-example contains k(k + 1)/2 loops i.e. exactly one loop per pair (j, j′),
with 0 � j < j′ � k. This allows the procedure to first guess the “skeleton”
of the counter example, and then check that this skeleton can be turned into
a real counter-example. The skeleton consists of the vectors of states, and, for
each pair (j, j′) of run indices, indicates the index χ(j, j′) of the last loop such
that input words of runs j and j′ are equal up to this loop, and the index η(j, j′)
of the loop that induces a different delay (with η(j, j′) � χ(j, j′)).

Case of computable commutative groups. We write W = (Q, tinit, tfinal, T) and let
n = |Q|. In order to decide the branching twinning property, we will consider the
k+1-th power of W , denoted W k+1, which accepts the set of k+1 synchronized
runs in W . We write its runs as ρ = (ρi)0�i�k and denote by αi the weight of
run ρi.

Theorem 4. Let G = (G,⊗) be a commutative group such that the operation ⊗
and the equality check are computable. Then the BTPk problem is decidable.

Proof (Sketch). It is easy to observe that for commutative groups, the constraint
expressed on the delay in the BTPk boils down to checking that loops have
different weights.

The procedure first guesses the skeleton of a counter-example as explained
above. The procedure then non-deterministically verifies that the skeleton can be
completed into a concrete counter-example. To this end, it uses the information
stored in this skeleton about how input words are shared between runs (indices
χ(j, j′)) to identify the power p � k + 1 of W in which the run should be
identified. The procedure is based on the two following subroutines:

– first, given two vectors of states v, v′ ∈ Qp, checking that there exists a path
from v to v′ in W p is decidable,

– second, the following problem is decidable: given a vector of states v ∈ Qp

and a pair 1 � j �= j′ � p, check that there exists a cycle ρ around v in W p

such that delay(αj , αj′) �= 1. The procedure non-deterministically guesses the
cycle in W p (its length can be bounded by 2np) and computes incrementally
the value of delay(αj , αj′). ��

Degree of Sequentiality of Weighted Automata 229

If we consider the group (Z,+), we can verify that the above procedure runs
in Pspace if k is given in unary. In addition, using ideas similar to a lower
bound proved in [3], we can reduce the emptiness of k deterministic finite state
automata to the BTPk problem, yielding:

Theorem 5. Over (Z,+), the BTPk problem is Pspace-complete (k in unary).

Case of transducers. For word transducers, the authors of [19] prove that a
counter-example to the (classical) twinning property is either such that loops
have output words of different length, or such that output words produced on
the runs leading to the loops have a mismatch.

Inspired by this result, we show that the skeleton described above can be
enriched with the information, for each pair of run indices (j, j′), whether one
should look for a loop whose output words have distinct lengths, or for a mis-
match on the paths leading to the loop. These different properties can all be
checked in Pspace, yielding:

Theorem 6. Over (B∗, ·), the BTPk problem is Pspace-complete (k in
unary)1.

8 Conclusion

Multi-sequential machines are an interesting compromise between sequential and
finite-valued ones. This yields the natural problem of the minimization of the size
of the union. In this paper, we have solved this problem for weighted automata
over an infinitary finitely generated group, a setting that encompasses stan-
dard groups. To this end, we have introduced a new twinning property, as well
as a new Lipschitz property, and have provided an original construction from
weighted automata to k-sequential weighted automata, extending the standard
determinization of transducers in an intricate way. In addition, the characteri-
zation by means of a twinning property allows to derive efficient decision proce-
dures, and all our results are also valid for word transducers.

As a complement, these results can be generalized to non finitely generated
groups, using ideas similar to those developed in [10]. As future work, we plan
to lift these results to other settings, like infinite or nested words. Another chal-
lenging research direction consists in considering other operations to aggregate
weights of runs.

References

1. Alur, R., Cerný, P.: Expressiveness of streaming string transducers. In: IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2010, 15–18 December 2010, Chennai, India. LIPIcs, vol.
8, pp. 1–12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

1 The transducer is viewed as a weighted automaton over F(B).

230 L. Daviaud et al.

2. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular
functions and cost register automata. In: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013,
pp. 13–22. IEEE Computer Society (2013)

3. Alur, R., Raghothaman, M.: Decision problems for additive regular functions. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS,
vol. 7966, pp. 37–48. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39212-2 7

4. Béal, M., Carton, O.: Determinization of transducers over finite
and infinite words. Theor. Comput. Sci. 289(1), 225–251 (2002).
http://dx.doi.org/10.1016/S0304-3975(01)00271-7

5. Berstel, J.: Transductions and Context-free Languages. Springer, Heidelberg (2013)
6. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.

Comput. Log. 11(4) (2010). http://doi.acm.org/10.1145/1805950.1805953
7. Choffrut, C.: Une caracterisation des fonctions sequentielles et des fonctions sous-

sequentielles en tant que relations rationnelles. Theor. Comput. Sci. 5(3), 325–337
(1977). http://dx.doi.org/10.1016/0304-3975(77)90049-4

8. Choffrut, C., Schutzenberger, M.P.: Decomposition de fonctions rationnelles. In:
Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp. 213–226.
Springer, Heidelberg (1986). doi:10.1007/3-540-16078-7 78

9. Daviaud, L., Jecker, I., Reynier, P.A., Villevalois, D.: Degree of sequentiality of
weighted automata. Research Report 1701.04632, arXiv, Jan 2017. http://arxiv.
org/abs/1701.04632

10. Daviaud, L., Reynier, P.A., Talbot, J.M.: A generalised twinning property for min-
imisation of cost register automata. In: 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2016. IEEE Computer Society (2016, to appear)

11. Filiot, E., Gentilini, R., Raskin, J.F.: Quantitative languages defined by functional
automata. Logical Methods Comput. Sci. 11(3:14), 1–32 (2015). http://arxiv.org/
abs/0902.3958

12. Filiot, E., Gentilini, R., Raskin, J.: Finite-valued weighted automata. In: 34th
International Conference on Foundation of Software Technology and Theoretical
Computer Science, FSTTCS 2014, 15–17 December 2014, New Delhi, India. LIPIcs,
vol. 29, pp. 133–145. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

13. Jecker, I., Filiot, E.: Multi-sequential word relations. In: Potapov, I. (ed.)
DLT 2015. LNCS, vol. 9168, pp. 288–299. Springer, Cham (2015). doi:10.1007/
978-3-319-21500-6 23

14. Kirsten, D.: Decidability, undecidability, and pspace-completeness of the twins
property in the tropical semiring. Theor. Comput. Sci. 420, 56–63 (2012).
http://dx.doi.org/10.1016/j.tcs.2011.11.006

15. Kirsten, D., Lombardy, S.: Deciding unambiguity and sequentiality of polynomi-
ally ambiguous min-plus automata. In: 26th International Symposium on Theoret-
ical Aspects of Computer Science, STACS 2009, 26–28 February 2009, Freiburg,
Germany, Proceedings. LIPIcs, vol. 3, pp. 589–600. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany (2009)

16. Lombardy, S., Sakarovitch, J.: Sequential? Theor. Comput. Sci. 356(1–2), 224–244
(2006). http://dx.doi.org/10.1016/j.tcs.2006.01.028

17. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009).
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253

18. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4,
245–270 (1961)

19. Weber, A., Klemm, R.: Economy of description for single-valued transducers. Inf.
Comput. 118(2), 327–340 (1995). http://dx.doi.org/10.1006/inco.1995.1071

http://dx.doi.org/10.1007/978-3-642-39212-2_7
http://dx.doi.org/10.1016/S0304-3975(01)00271-7
http://doi.acm.org/10.1145/1805950.1805953
http://dx.doi.org/10.1016/0304-3975(77)90049-4
http://dx.doi.org/10.1007/3-540-16078-7_78
http://arxiv.org/abs/1701.04632
http://arxiv.org/abs/1701.04632
http://arxiv.org/abs/0902.3958
http://arxiv.org/abs/0902.3958
http://dx.doi.org/10.1007/978-3-319-21500-6_23
http://dx.doi.org/10.1007/978-3-319-21500-6_23
http://dx.doi.org/10.1016/j.tcs.2011.11.006
http://dx.doi.org/10.1016/j.tcs.2006.01.028
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521844253
http://dx.doi.org/10.1006/inco.1995.1071

Emptiness Under Isolation and the Value
Problem for Hierarchical Probabilistic Automata

Rohit Chadha1(B), A. Prasad Sistla2, and Mahesh Viswanathan3

1 University of Missouri, Columbia, USA
chadhar@missouri.edu

2 University of Illinois, Chicago, USA
sistla@uic.edu

3 University of Illinois at Urbana-Champaign, Urbana, USA
vmahesh@illinois.edu

Abstract. k-Hierarchical probabilistic automata (k-HPA) are proba-
bilistic automata whose states are stratified into k + 1 levels such that
from any state, on any input symbol, at most one successor belongs to
the same level, while the remaining belong to higher levels. Our main
result shows that the emptiness and universality problems are decidable
for k-HPAs with isolated cut-points; recall that a cut-point x is isolated
if the acceptance probability of every word is bounded away from x. Our
algorithm for establishing this result relies on computing an approxima-
tion of the value of an HPA; the value of a probabilistic automaton is the
supremum of the acceptance probabilities of all words. Computing the
exact value of a probabilistic automaton is an equally important problem
and we show that the problem is co-R.E.-complete for k-HPAs, for k ≥ 2
(as opposed to Π0

2-complete for general probabilistic automata). On the
other hand, we also show that for 1-HPAs the value can be computed in
exponential time.

1 Introduction

k-Hierarchical probabilistic automata (HPAs) [12] are a syntactic sub-class of
probabilistic automata, whose states are stratified into k + 1 levels. Like proba-
bilistic automata, the next state on an input symbol is determined stochastically.
However, transitions are required to “respect levels” — from any state q, on any
input symbol a, at most one possible next state belongs to the same level as
q, with the others being constrained to belong to levels higher than q’s. Such
automata can recognize languages over finite (hierarchical probabilistic finite
automata) or infinite words (hierarchical probabilistic Muller automata) depend-
ing on the notion of accepting runs. Given a threshold x, the language recognized
by an HPA A is the collection of all input strings such that the measure of all
accepting runs on the input is > x.

HPAs arise naturally as models of client-server systems with stochastic server
failures, concurrent systems under probabilistic context-bounded schedulers, and
business enterprise systems [2] and these have been analyzed using automated
c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 231–247, 2017.
DOI: 10.1007/978-3-662-54458-7 14

232 R. Chadha et al.

tools for HPAs [4]. HPAs were introduced in [12] as a computationally tractable
subclass of probabilistic automata. When the acceptance threshold is extremal,
i.e., 0 or 1, many verification problems for HPAs become decidable. While (gen-
eral) probabilistic Büchi automata can recognize non-regular languages with
acceptance threshold 0 and 1, HPAs were shown to recognize only regular
languages [12]. Classical (qualitative) verification questions like emptiness and
universality are decidable in low complexity classes (NL and PSPACE). In con-
trast, the emptiness problem for probabilistic Büchi automata with threshold 0
is undecidable [1] and Π0

2-complete [9,12].
Surprisingly, however, the landscape changes completely when the threshold

is taken to be x ∈ (0, 1). Even 1-HPAs1 can recognize non-regular languages
when the acceptance threshold is 1

2 [11]. Though emptiness and universality
problems are decidable for 1-HPAs [11], these problems are undecidable for 2-
HPAs (and higher) [4]. In this paper, we present results that support the thesis
that, despite the many negative results about HPAs in [4,8], HPAs are indeed
a computationally tractable model of open probabilistic systems. Specifically,
we present results that show that the value of HPAs can be approximated to a
given degree of precision ε unlike general probabilistic automata. Hence HPAs
can be “approximately verified”; we can declare the language of a PFA to be non-
empty/empty if the value of the HPA is at least ε more/less than the threshold.

The main results in this paper pertain to HPAs with isolated cut-points and
the value problem for HPAs. A threshold x is said to be isolated for a probabilistic
automaton (not necessarily hierarchical) A, if there is an ε > 0 such that the
acceptance probability of any word is either at most x − ε or at least x + ε, i.e.,
the probability of acceptance of any word is bounded away from x. Automata
with isolated cut-points describe algorithms to which algorithmic techniques
like amplification can be applied, and are constant space analogs of complexity
classes BPP and RP. An important classical result due to Rabin [19] is that
though probabilistic automata over finite words (PFA) can recognize non-regular
languages when the threshold x ∈ (0, 1), they only recognize regular languages
when x is isolated. The extension of this result to automata on infinite words
is not known. In this paper, we show that HPAs on infinite words with isolated
cut-points recognize ω-regular languages.

Even though probabilistic finite automata (PFAs) with isolated cut-points
recognize regular languages, it is not known if the following problem is decidable:
Given a PFA with an isolated cut-point x, determine if some input string is
accepted with probability > x. Our main result is that for HPAs with isolated
cut-points, this emptiness problem is decidable. Our result applies to both HPAs
over finite words and HPAs over infinite words. In fact, we show that checking
if an HPA’s (with isolated cut-point) language is equal to any given regular
language is decidable; thus, even checking universality is decidable.

Our proof for the decidability of emptiness under isolation is based on solving
another classical problem for probabilistic automata, namely, computing the

1 0-HPAs are just deterministic machines. Thus, 1-HPAs are automata with fewest
number of levels that have some stochastic behavior.

Emptiness Under Isolation and the Value Problem 233

value of an automaton. The value of an automaton is the least upper bound
of the acceptance probabilities of all words. The decision version of the value
problem is known to undecidable [5,13,16]. We show that for HPAs (over finite
or infinite words) the value can be approximated to precision γ (γ < 1) in
time that is doubly exponential in the size of the automaton and exponential in
poly(log(1

γ)). The approximation algorithm is obtained by observing that in an
HPA, for any finite word v, there is a “short” word u such that the distribution
on states after u is very “close” to the distribution after input v; the length
of u only depends on the size of the automaton and the approximation factor.
Thus to approximate the value of an HPA up-to γ, we compute the maximum
of the acceptance probabilities of all “short” words. Having an algorithm to
approximate the value of an automaton immediately gives us an algorithm for
checking language emptiness of an HPA A with isolated cut-point x as follows.
We progressively compute the value of A with increasing precision. Suppose at
some point the value is approximated by v with precision γ. If v−γ > x then we
know that A has a non-empty language. On the other hand, if v + γ < x then
A’s language is empty. Since x is isolated, we are guaranteed that eventually the
precision γ is low enough to ensure that one of these two conditions hold.

In addition to the algorithm to approximate the value of an HPA, we charac-
terize the precise complexity of the value problem for HPAs (on both finite and
infinite words). We show that the value problem is in EXPTIME for 1-HPAs,
as follows. First, we prove that the value of a 1-HPA is a fraction whose size (i.e.,
the length of the binary representation of its denominator) is at most exponen-
tial in the number of states of the automaton. Then, we present an algorithm
that computes the value exactly, by employing binary search on rationals [20],
together with an algorithm for emptiness checking for 1-HPA [11]. We show that
the value problem is co-R.E.-complete for 2-HPAs (and higher). In contrast,
for general PFAs, the value problem is known to be Π0

2-complete [13]. Finally,
we also show that the problem of checking if a cut-point x is not isolated for a
probabilistic automaton A can be reduced in polynomial time to the value prob-
lem. This, along with the results for the value problem for HPAs, shows that the
problem of checking isolation is R.E.-complete for 2-HPAs (and higher), and is
in co-R.E. for 1-level HPA.

The paper is organized as follows. We describe closely related work next.
Section 2 contains notations and definitions. Section 3 has definitions of HPAs
and results on the regularity of the language under isolated cut points. Section 4
has results on the approximation of HPAs and decidability of emptiness under
isolation. Section 5 has the results for the value problem and isolated cut point
problem. Section 6 has conclusions. For brevity, we have omitted some proofs
which can be found in [10].

Related Work. We summarize results on the emptiness problem, the value prob-
lem, and the isolation problem. The undecidability of the emptiness problem
for probabilistic automata with non-extremal thresholds was shown for finite
words in [14] and for infinite words in [8]. The emptiness problem for 2-HPAs
(and higher) with non-extremal thresholds is also undecidable [4,8]. When the

234 R. Chadha et al.

cut-point is isolated, the decidability of the emptiness problem for general prob-
abilistic automata is not known. However, for unary PFAs [6] and eventually
weakly ergodic PFAs [13] the emptiness problem is decidable when the cut-
point is isolated. Eventually weakly ergodic PFAs are incomparable to HPAs
considered here; Fig. 1(c) in [13] is an example of a HPA that is not eventually
weakly ergodic. The value problem is undecidable for PFAs [5], even for extremal
thresholds [16]; it is known to be Π0

2-complete [13]. The problem of checking if
the value is 1 was shown to be PSPACE-complete for leak-tight automata [15]
which is sub-class of probabilistic automata that includes HPAs considered here.
For value other than 1, no decidability results are known (other than those
presented here). The isolation problem was shown to be Π0

2-complete [13] for
general probabilistic automata.

2 Preliminaries

We assume that the reader is familiar with probability distributions, stochas-
tic matrices finite-state automata, regular languages, Muller automata and ω-
regular languages. The set of natural numbers will be denoted by N, the closed
unit interval by [0, 1] and the open unit interval by (0, 1). The power-set of a set
X will be denoted by 2X . The absolute value of a real number r shall be denoted
by |r|. A non-negative rational number x is uniquely represented as a fraction
y
z where y, z ∈ N are relatively prime to each other, and y ≤ z. In this case, we
define the size of x to be the number of bits in the binary representation of z.

Sequences. Given a finite set S, |S| denotes the cardinality of S. Given a
sequence (finite or infinite) κ = s0s1 . . . over S, |κ| will denote the length of
the sequence (for infinite sequence |κ| will be ω), and κ[i] will denote the ith
element si of the sequence with κ[0] being the first. We will use ε to denote the
(unique) empty string/sequence. For natural numbers i, j, i ≤ j < |κ|, κ[i : j] is
the sequence si . . . sj . For i < |κ|, κ[i : ∞] is the sequence sisi+1 . . . if |κ| = ω,
and is the sequence si . . . s|κ|−1 if |κ| is finite. As usual S∗ will denote the set of
all finite sequences/strings/words over S, S+ will denote the set of all finite non-
empty sequences/strings/words over S and Sω will denote the set of all infinite
sequences/strings/words over S. We will use u, v, w to range over elements of
S∗, α, β, γ to range over infinite words over Sω.

Given u ∈ S∗ and κ ∈ S∗ ∪Sω, uκ is the sequence obtained by concatenating
the two sequences in order. Given L1 ⊆ S∗ and L2 ⊆ S∗ ∪ Sω, the set L1L2 is
defined to be {uκ | u ∈ L1 and κ ∈ L2}. Given u ∈ S+, the word uω is the unique
infinite sequence formed by repeating u infinitely often. For an infinite word
α ∈ Sω, we write inf(α) = {s ∈ S | s = α[i] for infinitely many i}.

Probabilistic Automaton (PA). Informally, a PA is like a finite-state deter-
ministic automaton except that the transition function from a state on a given
input is described as a probability distribution which determines the probability
of the next state.

Emptiness Under Isolation and the Value Problem 235

Definition 1. A finite-state probabilistic automaton (PA) over a finite alphabet
Σ is a tuple A = (Q, qs, δ,Acc) where Q is a finite set of states, qs ∈ Q is the
initial state, δ : Q × Σ × Q → [0, 1] is the transition relation such that for all
q ∈ Q and a ∈ Σ, δ(q, a, q′) is a rational number and

∑
q′∈Q δ(q, a, q′) = 1, and

Acc is an acceptance condition (to be defined later).

Notation: The transition function δ of PA A on input a can be seen as a
square matrix δa of order |Q| with the rows labeled by “current” state, columns
labeled by “next state” and the entry δa(q, q′) equal to δ(q, a, q′). Given a word
u = a0a1 . . . an ∈ Σ+, δu is the matrix product δa0δa1 . . . δan

. For the empty
word ε ∈ Σ∗ we take δε to be the identity matrix. Finally for any Q0 ⊆ Q, we
say that δu(q,Q0) =

∑
q′∈Q0

δu(q, q′). Given a state q ∈ Q and a word u ∈ Σ+,
post(q, u) = {q′ | δu(q, q′) > 0}. For a set C ⊆ Q, post(C, u) = ∪q∈C post(q, u).

Intuitively, the PA starts in the initial state qs and if after reading
a0, a1 . . . , ai it is in state q, then the PA moves to state q′ with probability
δai+1(q, q

′) on symbol ai+1. A run of the PA A starting in a state q ∈ Q on an
input κ ∈ Σ∗ ∪ Σω is a sequence ρ ∈ Q∗ ∪ Qω such that |ρ| = 1 + |κ|, ρ[0] = q
and for each i ≥ 0, δκ[i](ρ[i], ρ[i + 1]) > 0. Unless otherwise stated, a run for us
will mean a run starting in the initial state qs.

Given a word κ ∈ Σ∗∪Σω, the PA A can be thought of as a (possibly infinite-
state) (sub)-Markov chain. The set of states of this (sub)-Markov Chain is the
set {(q, v) | q ∈ Q, v is a prefix of κ} and the probability of transitioning from
(q, v) to (q′, u) is δa(q, q′) if u = va for some a ∈ Σ and 0 otherwise. This gives
rise to the standard σ-algebra on Qω defined using cylinders and the standard
probability measure on (sub)-Markov chains [17,21]. We shall henceforth denote
the σ-algebra as FA,κ and the probability measure as μA,κ.

Acceptance Conditions and PA Languages. The language of a PA A =
(Q, qs, δ,Acc) over an alphabet Σ is defined with respect to the acceptance con-
dition Acc and a threshold x ∈ [0, 1]. We consider two kinds of acceptance
conditions.

Finite acceptance: When defining languages over finite words, the acceptance
condition Acc is given in terms of a finite set Qf ⊆ Q. In this case we call
the PA A, a probabilistic finite automaton (PFA). Given a finite acceptance
condition Qf ⊆ Q and a finite word u ∈ Σ∗, a run ρ of A on u is said to be
accepting if the last state of ρ is in Qf . The set of accepting runs on u ∈ Σ∗

is measurable [21] and we denote its measure by PA(u). Note that PA(u) =
δu(qs, Qf). Given a PFA, a rational threshold x ∈ [0, 1] and the language of
finite words L>x(A) = {u ∈ Σ∗ | PA(u) > x} is the set of finite words accepted
by A with probability > x.

Muller acceptance: For Muller acceptance, the acceptance condition Acc is given
in terms of a finite set F ⊆ 2Q. In this case, we call the PA A, a probabilistic
Muller automaton (PMA). Given a Muller acceptance condition F ⊆ 2Q, a run
ρ of A on an infinite word α ∈ A is said to be accepting if inf(ρ) ∈ F. Once again,

236 R. Chadha et al.

the set of accepting runs is measurable [21]. Given a word α, the measure of the
set of accepting runs is denoted by PA(α). Given a PMA A, a rational threshold
x ∈ [0, 1], the language of infinite words L>x(A) = {α ∈ Σω | PA(α) > x} is the
set of infinite words accepted by PMA A with probability > x.

Changing the cutpoint. The following proposition allows us to change non-
extremal cutpoints. It is proved for PFAs in [18]. The same construction also
works for PMAs.

Proposition 1. For any PA A, rationals x, y ∈ (0, 1), there is a PA B con-
structible in linear time such that L>x(A) = L>y(B).

The Value Problem(s). For a PA A, let value(A) denote the least upper bound
of the set {PA(u) | u ∈ Σ∗} when A is a PFA and of the set {PA(α) | α ∈ Σω}
when A is a PMA. The value computation problem for a PA is the problem of
computing value(A) for a given A. The value decision problem is the problem of
deciding for a given PA A and a rational x ∈ [0, 1] whether value(A) = x.

The Isolation Decision Problem. For a PA A, a rational threshold x ∈ [0, 1]
is said to be an isolated cut-point of A if there is an ε > 0 such that for each
word κ (where κ ∈ Σ∗ when A is a PFA and κ ∈ Σω otherwise), we have that
|PA(κ) − x| > ε. If such an ε exists then ε is said to be a degree of isolation. The
isolation decision problem is the problem of deciding for a given PA A and a
rational x ∈ [0, 1] whether x is an isolated cutpoint of A.

We have the following relation between the isolated cutpoint decision problem
and the value decision problem.

Proposition 2. For each PA A = (Q, qs, δ,Acc) and x ∈ (0, 1), there is a con-
structible PA B such that value(B) = 1

4 iff x is not a isolated cutpoint of A.

3 Hierarchical Probabilistic Automata

Intuitively, a hierarchical probabilistic automaton is a PA such that the set of its
states can be stratified into totally-ordered levels. From a state q on each letter
a, the machine can transit with non-zero probability to at most one state in the
same level as q, and all other probabilistic successors belong to higher levels.

Definition 2. For k ∈ N, a k-hierarchical probabilistic automaton (HPA) is a
probabilistic automaton A = (Q, qs, δ,Acc) over alphabet Σ such that Q can be
partitioned into k + 1 sets Q0, Q1, . . . , Qk satisfying the following properties:

– qs∈Q0;
– for every i, 0 ≤ i ≤ k and every q∈Qi and a∈Σ, |post(q, a) ∩ Qi| ≤ 1; and,
– for every i, 0 < i ≤ k, q∈Qi and a∈Σ, post(q, a) ∩ Qj = ∅ for every j < i.

Emptiness Under Isolation and the Value Problem 237

For any k-HPA A, as given above, for 0 ≤ i ≤ k, we call the elements of Qi, level
i states of A. We call a HPA a HPFA/HPMA if Acc is a finite acceptance/Muller
acceptance condition respectively.

Let us fix a k-HPA A = (Q, qs, δ,Acc) over alphabet Σ. Observe that given
any state q ∈ Q0 and any word κ ∈ Σ∗ ∪ Σω, A has at most one run ρ on α
where all states in ρ belong to Q0. We now present a couple of useful definitions.
A set W ⊆ Q is said to be a witness set if W has at most one level 0 state, i.e.,
|W ∩Q0| ≤ 1. Observe that for any word u ∈ Σ∗, post(qs, u) is a witness set, i.e.,
|post(qs, u) ∩ Q0| ≤ 1. We will say a word κ ∈ Σ∗ ∪ Σω (depending on whether
A is an automaton on finite or infinite words) is definitely accepted from witness
set W iff for every q ∈ W with q ∈ Qi (for 0 ≤ i ≤ k) there is an accepting run ρ
on κ starting from q such that for every j, ρ[j] ∈ Qi and δκ[j](ρ[j], ρ[j + 1]) = 1.
In other words, κ is definitely accepted from witness set W if and only if κ is
accepted from every state q in W by a run where you stay in the same level as q,
and all transitions in the run are taken with probability 1. Observe that the set
of all words definitely accepted from a witness set W is regular. Furthermore,
its emptiness can be checked in PSPACE.

Proposition 3. For any HPA A and witness set W , the language LW = {κ|κ is
definitely accepted by A from W} is regular. The emptiness of LW can be checked
in PSPACE.

That the emptiness of LW can be checked in PSPACE follows from the obser-
vation that LW = ∩q∈WL{q} and L∅ (as defined above) is the set of all strings.

Definition 3. A witness set W is said to be good if the language LW (defined
in Proposition 3) is non-empty.

Witness sets play an important role in the acceptance of strings. This is
characterized by the following Proposition.

Proposition 4. For a HPA A, threshold x ∈ [0, 1], and word κ, κ ∈ L>x(A) if
and only if there is a non-empty witness set W , u ∈ Σ∗ and κ′ ∈ Σ∗ ∪ Σω such
that κ = uκ′, κ′ is definitely accepted by A from W , and δu(q0,W) > x.

Proposition 4 immediately implies the following.

Proposition 5. For a HPMA A = (Q, qs, δ,Acc) let GW be the set of good non-
empty witness sets of A. For W ∈ GW, let AW = (Q, qs, δ,W) be the PFA that
has W as the set of its final states. Then value(A) = maxW∈GW value(AW).

3.1 Regularity of HPAs with Isolated Cut-points

Probabilistic automata, though finite state, are known to recognize non-regular
languages, whether we consider automata on finite or infinite words [1,7,19].
One important result due to Rabin [19] is that L>x(A) is regular for any PFA
A if x is isolated for A. We extend this observation to any HPMA.

238 R. Chadha et al.

qs

qrej

qacc

0,1| 1
3

0,1|1

0,1|1

0| 1
2
,1| 1

6

0| 1
6
,1| 1

2

Fig. 1. Aisolated

Theorem 1. Let A be a HPMA and let x ∈ [0, 1] be such that x is isolated for
A. Then L>x(A) is ω-regular.

Example 1. Consider the HPMA Aisolated shown in Fig. 1. It has 3 states —
qs, qrej, qacc — with qs as initial state. The acceptance condition is given by
{{qacc}}. For any n, let xn = 3

4 (1 − (13)n). We will show a couple of properties
about Aisolated and xn. First we show that xn is an isolated cut-point with degree
of isolation 1

6 (13)n, and second, that the set of infinite strings accepted with
probability > xn is exactly Ln = 1n{0,1}ω.

For any u ∈ {0,1}∗, let the acceptance and rejection probabilities of u be the
probabilities of reaching the states qacc, qrej, respectively, on input u staring from
qs. Observe that every string in Ln, is accepted by A, with probability greater
than the acceptance probability of u = 1n0, which is

∑
0≤i<n(13)i 1

2 +(13)n 1
6 and

is equal to 3
4 (1 − (13)n) + (13)n 1

6 . Now, consider any input sequence not in Ln,
i.e., sequence in {0,1}ω \ Ln. The probability of rejecting any such string is >
the rejection probability the string 1n−101. The rejection probability of 1n−101
is

∑
0≤i<n−1(

1
3)i 1

6 + (13)n−1 1
2 + (13)n 1

6 , which after some simplification, is y =
1
4 (1 − (13)n−1) + 5

3 (13)n. From these observations, it follows that, for any κ �∈ Ln,
the probability of accepting κ is < 1−y = 3

4 (1− (13)n)− 1
6 (13)n = xn − 1

6 (13)n. In
addition, for any κ ∈ Ln, the probability of accepting κ is > xn + 1

6 (13)n. Hence
xn is an isolated cut point with degree of isolation 1

6 (13)n.

4 Emptiness Under Isolation

We now show that the emptiness and universality problems are decidable for k-
HPAs with isolated cut-points, even when the degree of isolation is not known.
In order to establish the above result, we recall the definition of max-norms in
matrices.

Emptiness Under Isolation and the Value Problem 239

Definition 4. For a n × n matrix δ, let δij be the entry in i-th row and j-th
column. We say that ‖δ‖ = maxi,j |δij |.

For the rest of this section, we fix the input alphabet Σ. The decision proce-
dure for checking emptiness and universality of k-HPAs depends on Lemma 1,
which states that the “effect” of input word u on a k-HPFA A can be approx-
imated by a short word v upto a given degree of approximation. The Lemma
shows that for each ε, the matrix δu − δv has max-norm ≤ ε.

Lemma 1. Given a k-HPA A = (Q, qs, δ,Acc) and a rational 0 < ε < 1,
there is a computable �A,ε ∈ N such that for each word u ∈ Σ∗, there is a
word v ∈ Σ∗ such that |v| ≤ �A,ε and ‖δu − δv‖ < ε. Furthermore �A,ε ≤
(log 2(b+1)kn2k

ε �)k2(b+2)knn+k where n = |Q| and b is the maximum size of the
transition probabilities.

We sketch the key ideas of the proof of Lemma 1. The proof proceeds by
induction on k.

– We first observe that if A is a 0-HPA, then all transition probabilities are
either 0 or 1. Hence the stochastic matrix δu is such that each entry is either 0
or 1 and each row consists of exactly one non-zero entry. Since there are only
nn matrices, if |u| > nn then there will be i < j such that matrices δu[0:i] and
δu[0:j] are the same. So, we can remove the word u[i + 1 : j] from u without
affecting the probability of transitioning from one state to another.

– Suppose that we have established the Lemma for k = k0. In the induction
step, we have to prove it for k = k0 + 1. Fix a level 0 state q of the PA A.
For each prefix w of u, it is the case that there is at most one level 0 state
in post(q, w). Assume that there is exactly one level 0 state in post(q, w). For
each i < |u|, we will say that there is a leak at position i if on the input
u[i], some probability moves to higher levels. Now, between two consecutive
leaks, the automaton A is essentially a k0-HPA obtained by moving all states
down one level. Thus, we can use the Induction Hypothesis to shorten the
words between leaks. After we reach a point when there are too “many” leaks,
the probability of being in level 0 is small and can be ignored. This informal
argument only shows that the qth row of δu can be approximated by a short
word. Some bookkeeping is needed to ensure that the same short word works
for every row.

Using Lemma 1, we can show that for a k-HPA, value(A) can be computed
within a given degree of accuracy.

Theorem 2. There is an algorithm, which given a k-HPA A = (Q, qs, δ,Acc),
and a rational ε ∈ (0, 1) computes x such that |value(A) − x| ≤ ε. The algorithm
is exponential in poly(log(1ε)) and doubly exponential in the size of A.

Proof. The algorithm for the case when A is a HPFA works as follows. Given
A and ε as given in the lemma, the algorithm computes �A, ε

n
where n = |Q|,

enumerates all input sequence of length at most �A, ε
n
, computes and outputs

240 R. Chadha et al.

the maximum of the acceptance probabilities of these strings. If x is the value
output by the algorithm, using Lemma 1, it is easy to see that |value(A) − x| ≤ ε.
The time bounds follow from the bound on �A, ε

n
in Lemma 1. For the case of

HPMA, we appeal to Proposition 5 which allows us to approximate the value
using HPFAs. ��

The above algorithm to approximate the value of a HPA immediately gives
us an algorithm that given a HPA A and a rational x such that x is an isolated
cutpoint of A checks if the regular language L>x(A) is empty or not, even if
a degree of isolation is not known. The algorithm is obtained as follows. We
progressively compute the value of A with increasing precision. Suppose at some
point the value is approximated by v with precision ε. If v − ε > x then we know
that A has a non-empty language. On the other hand, if v + ε < x then A’s
language is empty. Since x is isolated, we are guaranteed that eventually the
precision ε is low enough to ensure that one of these two conditions hold. This
is carried out in the following Theorem.

Input: Integer k, a k-HPA A = (Q, qs, δ,Acc) and rational x ∈ [0, 1]
Output: YES if L>x(A) = ∅ and NO if L>x(A) �= ∅

n ← |Q|
approx value ← 0
ε ← 1

2

if A is a HPFA then
GW ← {Acc}

else
GW ← {W | W ⊆ Q, W �= ∅, W is a good witness}

end
while true do

Compute �A, ε
n

as given in Lemma 1

approx value ← maxW∈GW,v∈Σ∗,|v|≤�A, ε
n

δv(qs, W)

if approx value > x then
return NO

else
if approx value < x − ε then

return YES
else

ε ← ε
2

end

end

end

Fig. 2. Procedure for checking emptiness of HPAs

Emptiness Under Isolation and the Value Problem 241

Theorem 3. The algorithm in Fig. 2 solves the following problem: Given a k-
HPA A = (Q, qs, δ,Acc) and a rational x ∈ (0, 1) such that x is an isolated
cut-point for A, decide if L>x(A) is empty.

Proof. Let the number of states of A be n. Let εm be the value of variable ε at
the beginning of the mth iteration of the while loop. Clearly εm = 1

2m . Consider
first the case when A is a HPFA. The case when A is a HPMA follows a similar
argument.

Clearly if the procedure outputs NO then L>x(A) �= ∅. Now suppose that the
the algorithm outputs YES. Let εm0 be the value of ε when the algorithm outputs
YES. As the program outputs YES, for each word w such that |w| ≤ �A,

εm0
n

, we
have that δw(qs, Qf) + εm0 < x. Fix a finite word u. Thanks to Lemma 1, there
is finite word v such that |v| ≤ �A,

εm0
n

and δu(qs, Qf) < δv(qs, Qf) + εm0 < x.

Thus, if the algorithm outputs YES then L>x(A) = ∅. Notice that if the algorithm
terminates then it gives the correct answer even if x is not isolated.

We claim that the algorithm in Fig. 2 terminates if L>x(A) �= ∅ or if
value(A) < x. If L>x(A) �= ∅ then fix a word u such that δu(qs, Qf) > x.
Let ε′ = δu(qs, Qf) − x. Let m0 be the smallest integer such that nεm0 < ε′.
Thanks to Lemma 1, there is a finite word v such that |v| ≤ �A,

εm0
n

and
δv(qs, Qf) > δu(qs, Qf) − nεm0 = x + ε′ − nεm0 > x. Thus approx value > x
in the m0th unrolling of the while loop and the algorithm terminates.

If value(A) < x then let ε′ = x − value(A). Let m0 be the smallest integer
such that εm0 < ε′. It is easy to see that the algorithm will terminate in the m0th
unrolling of the loop as for every word w, it is the case that δw(qs, Qf) + εm0 ≤
(x − ε′) + εm0 < x.

The Theorem follows from the fact that if x is an isolated cutpoint of A and
L>x(A) = ∅ then value(A) < x. ��

Next, we show that if x is isolated for a PA A then we can decide if L>x(A) is
contained in/contains a given regular language R (where R is a regular language
over finite or infinite words depending on whether A is a HPFA or a HPMA).
Observe that this also implies that the problem of checking whether L>x(A) is
universal or not is also decidable if x is an isolated cutpoint of A.

Theorem 4. Let � ∈ {⊆,⊇,=}. There is an algorithm that given a regular
language R, a k-HPA A = (Q, qs, δ,Acc), a rational x ∈ (0, 1) such that x is an
isolated cut-point for A, decides if L>x(A) � R.

5 On the Value Decision Problem

For a PFA A, the problem of checking if x ∈ [0, 1] is an isolated cut-point is Σ0
2-

complete [13]. Observe that 1 is an isolated cutpoint of a PFA A iff value(A) < 1.
An immediate consequence is that the value decision problem for PFAs is Π0

2-
complete. For HPFAs, the problem of checking if 1 is isolated is known to be
PSPACE-complete [15]. The same result holds for checking if 0 is an isolated

242 R. Chadha et al.

cutpoint for a HPA. We now show that the problem checking whether x ∈ (0, 1)
is an isolated cutpoint for a HPA is R.E.-complete and the value problem is
co-R.E.-complete. Hence, the isolated cut point decision problem and the value
decision problem are simpler for HPAs. We start by proving that the value
problem is co-R.E.-complete. The proof of containment in co-R.E. relies on
Lemma 1, which allows us to approximate the effect of each finite word on an
automaton by a short word. The hardness result is obtained by a modification
of the proof of undecidability of emptiness problem for the 2-HPAs [2–4].

Theorem 5. For each k ≥ 2, the value decision problems for k-HPFAs and for
k-HPMAs are co-R.E.-complete.

Proof. We first establish that the value problem is in co-R.E. Consider first the
case for HPFAs. Let A = (Q, qs, δ,Acc) be a HPFA. Let isValue(A, x) be the
predicate

isValue(A, x) = (∀v ∈Σ∗. PA(v) ≤ x) ∧ ∀m ∈ N. (∃u ∈ Σ∗. PA(u) > x − 1
m

).

It is easy to see that value(A) = x iff isValue(A, x) is true.
Let |Q| = n and let isValueSm(A, x) be the predicate

isValueSm(A, x) = (∀v ∈ Σ∗. PA(v) ≤ x)∧
∀m ∈ N. (∃v ∈ Σ∗. |v| ≤ �A, 1

mn
∧ PA(v) > x − 1

2m).

It is easy to see that if isValueSm(A, x) is true then so is isValue(A, x).
Assume now that isValue(A, x) is true. Then for each m ∈ N, there is a

u ∈ Σ∗ such that PA(u) > x − 1
m . Fix m,u. Thanks to Lemma 1 there is a v

such that |v| ≤ �A, 1
mn

and

δu(qs, q) − 1
mn

< δv(qs, q) < δu(qs, q) +
1

mn
for each q ∈ Q. (1)

Fix v. Therefore we get from Eq. 1 above that

δv(qs, Qf) >
∑

q∈Qf

(δu(qs, q) − 1
mn

) = δu(qs, Qf) − |Qf |
mn

> x − 1
m

− 1
m

.

It follows that isValueSm(A, x) is also true if isValue(A, x) is true. Hence,
value(A) = x iff isValueSm(A, x) is true. Note that the problem of checking
that for given v, if PA(v) ≤ x is decidable. Also the problem of checking that
given m ∈ N, (∃v ∈ Σ∗. |v| ≤ �A, 1

mn
∧PA(v) > x − 1

2m) is decidable since �A, 1
mn

is computable. Thus, the value problem is in co-R.E.
Now consider the theorem for HPMAs. Let A = (Q, qs, δ,Acc) be a HPMA.

Let GW be the set of good non-empty witness sets of A. For W ∈ GW, let
AW = (Q, qs, δ,W) be the PFA that has W as the set of its final states. Thanks
to Proposition 5, we have that value(A) = maxW∈GW value(AW). This implies
that value(A) = x iff one of the predicates {isValue(AW , x) | W ∈ GW} is true.
The upper bound follows in this case.

The lower bound is proved by a modification of the proof of undecidability
of emptiness problem for the 2-HPAs [2–4]. ��

Emptiness Under Isolation and the Value Problem 243

Using Proposition 2, we can convert the non-isolation decision problem to
the value decision problem. Thus the problem of checking whether a cut-point x
is isolated for a HPA A is in R.E.. We can show that the non-isolation decision
problem is co-R.E.-hard also using the same reduction that is used to prove
co-R.E.-hardness of the value problem. This yields the following Theorem.

Theorem 6. For each k ≥ 2, the isolation decision problems for k-HPFAs and
k-HPMAs are R.E.-complete.

5.1 Computing the Value of 1-HPAs

In this section, we give an EXPTIME algorithm for computing the value of a
1-HPA. The key technical observation to make this possible is a necessary and
sufficient condition for when x is the value of a 1-HPFA. The observation is that
there is always an exponentially bounded “ultimately periodic” witness for the
value being x; this is the content of the next Lemma.

Lemma 2. Let A = (Q, qs, δ,Qf) be an 1-HPFA over an alphabet Σ, and n =
|Q|. Then, for any x, x = value(A) iff there is no string that is accepted by A
with probability > x and at least one of the following conditions is satisfied.

1. ∃u ∈ Σ∗ such that |u| ≤ 2n and PA(u) = x.
2. ∃u, v ∈ Σ∗ such that |u|, |v| ≤ 2n, there exists a good witness set W ⊆ Q1 such

that W ⊆ post(qs, u), post(W, v) ⊆ W , post(qs, u) ∩ Q0 = post(qs, uv) ∩ Q0,
∀i ≥ 0, δuvi+1(qs,W) > δuvi(qs,W) and limi→∞ δuvi(qs,W) = x.

Condition 1 of the lemma corresponds to the case when there is an input
string that is accepted with the maximum possible probability value(A). If there
is no input string that is accepted with probability value(A), then Condition 2 of
the lemma asserts that there are finite sequences u, v and a good witness set W ,
such that δuvi(qs,W) increases monotonically with increasing values of i, and
the limit of this monotonic sequence equals value(A).

The next observation bounds the size of the probability of reaching a set of
states C on an input u, as a function of |u|.

Lemma 3. Let A = (Q, qs, δ,Acc) be a 1-HPA over an alphabet Σ and n = |Q|.
Then, for any u ∈ Σ+, q ∈ Q0 and C ⊆ Q, the size of δu(q, C) is ≤ |u|nr where
r is the maximum of the sizes of the transition probabilities of A.

Proof. The lemma is proved by a simple induction on |u|. In the base case,
|u| = 1, the observation follows from the fact that δu(q, C) is the sum of atmost n
transition probabilities of A. For the inductive step, assume that the observation
is true for all strings of length ≤ k. Let u = av be a string of length k+1 where a ∈
Σ and v ∈ Σk. Clearly, δu(q, C) =

∑
q′∈Q1

δa(q, q′)δv(q′, C) + δa(q, q1)δv(q1, C)
where q1 ∈ Q0 be such that δa(q, q1) > 0. Observe that, for q′ ∈ Q1, δv(q′, C) is
either 0 or 1. Now, it is easy to see that size of δu(q, C) is ≤ the sum of the sizes
of δa(q, q′) for less than n distinct q′ ∈ Q1, the sizes of δa(q, q1) and δv(q1, C).
Using the induction hypothesis for v and observing that the sizes of δa(q, q′),
δa(q, q1) are both ≤ r, we get the desired result. ��

244 R. Chadha et al.

The last technical lemma we need, bounds the size of the value of a 1-HPFA
using Lemmas 2 and 3.

Lemma 4. Let A = (Q, qs, δ,Qf) be a 1-HPFA over an alphabet Σ and n = |Q|.
Then, the size of value(A) is ≤ 4rn2n where r is the maximum of the sizes of
the transition probabilities of A.

Proof. Let x = value(A). Clearly no string is accepted by A with probability > x.
Further, from Lemma 2, we see that one of the conditions (1) or (2), stated there,
is satisfied. Suppose condition (1) is satisfied. Then, there is a string u ∈ Σ∗,
such that |u| ≤ 2n and x = PA(u). Now, our result follows from Lemma 3.

Now, suppose condition (2) of Lemma 2 is satisfied; let u, v,W be as specified
in that condition. Let post(qs, u) ∩ Q0 = post(qs, uv) ∩ Q0 = {q1}. It is easy to
see that

limi→∞ δuvi(qs,W) = δu(qs,W) + δu(qs, q1)δv(q1,W)
∑∞

i=0(δv(q1, q1))i

= δu(qs,W) + δu(qs, q1)
δv(q1,W)

1−δv(q1,q1)

Since, |u|, |v| ≤ 2n, we see from Lemma 3 that the sizes of
δu(qs,W), δv(q1,W), δu(qs, q1) and δv(q1, q1) are all ≤ rn2n. From this and the
above equation, it is easy to see that the size of limi→∞ δuvi(qs,W) is atmost
the sum of the sizes of δu(qs,W), δv(q1,W), δu(qs, q1), and δv(q1, q1). From
this we observe that the size of limi→∞ δuvi(qs,W), and hence the size of x,
is ≤ 4rn2n. ��

We are now ready to present the main result of this section — an exponential
time algorithm to compute the value of a 1-HPA.

Theorem 7. The value of a 1-HPA A can be computed in exponential time.
The value decision problems for 1-HPAs and 1-HPMAs are in EXPTIME and
are PSPACE-hard.

Proof. First we consider the case for HPFAs. Let A = (Q, qs, δ,Acc) be the given
HPFA over an alphabet Σ, and n = |Q|. There is a näive double exponential time
algorithm that computes value(A) using Lemma 2. Such an algorithm enumerates
all triples (u, v,W) such that |u|, |v| ≤ 2n, W ⊆ Q1 and all the properties
stated in condition (2) of Lemma 2 are satisfied. It computes value(A) to be the
maximum of limi→∞ δuvi(qs,W) over all such triples (u, v,W). It is easy to see
that such an algorithm is of time complexity doubly exponential in n.

Now, we give an algorithm, that computes value(A), of time complexity only
singly exponential in n. Let N = 4rn2n and M = 2N where r is the maximum
of the sizes of the transition probabilities of A. From Lemma 4, we see that the
size of value(A) is ≤ N . Let value(A) = y

z . The above observation implies that
y, z ≤ M . Now, we employ an approach based on binary search on rationals
[20] to compute the exact value of value(A). Essentially, this approach divides
the unit interval [0, 1] into 2M2 sub-intervals of equal length, i.e., each of length

1
2M2 . Then, using binary search that employs queries of the form “L>x(A) = ∅?”,
where x = k

2M2 for some k ≤ 2M2, this approach determines the unique integer

Emptiness Under Isolation and the Value Problem 245

� ≤ 2M2 such that value(A) is in the interval [�
2M2 , �+1

2M2). (Every such interval
has atmost one rational number of the form y1

z1
where y1, z1 ≤ M).

Once such an interval is identified, the exact value of value(A) is computed
using a simple algorithm, given in [20], of complexity O(log M), i.e., of com-
plexity O(N). Each query of the form “L>x(A) = ∅?” can be answered using
the algorithm for the emptiness problem for 1-HPA as given in [3,11]; the algo-
rithm given in [11] is of complexity linear in the size of x and exponential in
n. Since the size of x used in the above algorithm is ≤ N , the time complex-
ity of a single invocation of this algorithm during the binary search is seen to
be O(r8n). Further more, there are at most N such invocations and hence the
over all complexity of performing the binary search is O(r216n). Furthermore,
the complexity of the second step of the algorithm, i.e., the step in which the
actual values of value(A) is computed, is also of time complexity O(N). Hence
the overall time complexity of the above algorithm for computing value(A) is
O(r216n).

For HPMAs, we use Proposition 5. Let A be a HPMA. GW be the set of
good non-empty witness sets of A. Using this proposition, we compute value(A)
to be maxW∈GW value(AW), where AW = (Q, qs, δ,W). Since value(AW) can be
computed in time O(r216n) and |GW| ≤ 2n, we see that the time complexity of
computing value(A) is O(r232n).

Thus, it is easy to see that the value decision problem is in EXPTIME. It
can be shown to be PSPACE-hard using the same techniques used to prove
that the emptiness problem for 1-HPAs is PSPACE-hard in [3,11]. ��

6 Conclusions

In this paper, we presented a number of results on HPAs. First, we showed that
for a k-HPA, the effect of any string (i.e., the transition probability matrix of
the string) can be approximated by that of a short string of bounded length, for
a given precision. This can be used to approximate the value of a k-HPA with
arbitrary precision, and decide the emptiness of the language of a k-HPA with
an isolated cut-point. These observations allowed us to prove that the problem of
computing the value of a k-HPA (for k ≥ 2) is co-R.E.-complete. For a 1-HPA,
we showed that it’s value can be computed exactly in exponential time. A couple
of problems for 1-HPAs remain open — the decidability of the isolation problem
and the exact complexity of the value problem which has been shown to be in
EXPTIME.

Acknowledgements. We thanks the anonymous reviewers for their useful comments
and suggestions. Rohit Chadha was partially supported by NSF CNS 1314338 and NSF
CNS 1553548. A. Prasad Sistla was partially supported by NSF CCF 1319754 and NSF
CNS 1314485. Mahesh Viswanathan was partially supported by NSF CNS 1314485.

246 R. Chadha et al.

References

1. Baier, C., Größer, M.: Recognizing ω-regular languages with probabilistic
automata. In: 20th IEEE Symposium on Logic in Computer Science, pp. 137–146
(2005)

2. Ben, Y.: Model Checking Open Probabilistic Systems using Hierarchical proba-
bilistic automata. Ph.D. thesis, University of Illinois, Chicago (2016)

3. Ben, Y., Chadha, R., Sistla, A.P., Viswanathan, M.: Decidable and expres-
sive classes of probabilistic automata. https://www.cs.uic.edu/pub/Sistla/
Publications/HPAjournal2016.pdf (2016). Manuscript under review

4. Ben, Y., Sistla, A.P.: Model checking failure-prone open systems using probabilistic
automata. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol.
9364, pp. 148–165. Springer, Cham (2015). doi:10.1007/978-3-319-24953-7 11

5. Bertoni, A.: The solution of problems relative to probabilistic automata in the
frame of the formal languages theory. In: Siefkes, D. (ed.) GI 1974. LNCS, vol. 26,
pp. 107–112. Springer, Heidelberg (1975). doi:10.1007/3-540-07141-5 213

6. Chadha, R., Kini, D., Viswanathan, M.: Decidable problems for unary PFAs.
In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 329–344.
Springer, Cham (2014). doi:10.1007/978-3-319-10696-0 26

7. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity
of randomization in finite state monitors. J. ACM 56(5) (2009)

8. Chadha, R., Sistla, A.P., Viswanathan, M.: Probabilistic Büchi automata with
non-extremal acceptance thresholds. In: International Conference on Verification,
Model Checking and Abstract Interpretation, pp. 103–117 (2010)

9. Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata
on infinite strings. Log. Methods Comput. Sci. 7(3), 1–22 (2011)

10. Chadha, R., Sistla, A.P., Viswanathan, M.: Emptiness under isolation and the
value problem for hierarchical probabilistic automata (2017). https://www.cs.uic.
edu/pub/Sistla/Publications/ValueProblem.pdf

11. Chadha, R., Sistla, A.P., Viswanathan, M., Ben, Y.: Decidable and expressive
classes of probabilistic automata. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol.
9034, pp. 200–214. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46678-0 13

12. Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata on
infinite strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol.
5710, pp. 229–243. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04081-8 16

13. Chadha, R., Sistla, A.P., Viswanathan, M.: Probabilistic automata with isolated
cut-points. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp.
254–265. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40313-2 24

14. Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs
(extended abstract). In: Symposium on Foundations of Computer Science, pp. 462–
467 (1989)

15. Fijalkow, N., Gimbert, H., Oualhadj, Y.: Deciding the value 1 problem for prob-
abilistic leaktight automata. In: IEEE Symposium on Logic in Computer Science,
pp. 295–304 (2012)

16. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: Decidable and
undecidable problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 527–538.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14162-1 44

https://www.cs.uic.edu/pub/Sistla/Publications/HPAjournal2016.pdf
https://www.cs.uic.edu/pub/Sistla/Publications/HPAjournal2016.pdf
http://dx.doi.org/10.1007/978-3-319-24953-7_11
http://dx.doi.org/10.1007/3-540-07141-5_213
http://dx.doi.org/10.1007/978-3-319-10696-0_26
https://www.cs.uic.edu/pub/Sistla/Publications/ValueProblem.pdf
https://www.cs.uic.edu/pub/Sistla/Publications/ValueProblem.pdf
http://dx.doi.org/10.1007/978-3-662-46678-0_13
http://dx.doi.org/10.1007/978-3-642-04081-8_16
http://dx.doi.org/10.1007/978-3-642-40313-2_24
http://dx.doi.org/10.1007/978-3-642-14162-1_44

Emptiness Under Isolation and the Value Problem 247

17. Kemeny, J.G., Snell, J.L.: Denumerable Markov Chains. Springer, New York (1976)
18. Paz, A.: Introduction to Probabilistic Automata. Academic Press, Orlando (1971)
19. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963)
20. Kwek, S., Mehlhorn, K.: Optimal search for rationals. Inf. Process. Lett. 86(1),

23–26 (2003)
21. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs.

In: Symposium on Foundations of Computer Science, pp. 327–338 (1985)

Partial Derivatives for Context-Free Languages

From µ-Regular Expressions to Pushdown Automata

Peter Thiemann(B)

University of Freiburg, Freiburg, Germany
thiemann@informatik.uni-freiburg.de

Abstract. We extend Antimirov’s partial derivatives from regular
expressions to μ-regular expressions that describe context-free languages.
We prove the correctness of partial derivatives as well as the finiteness of
the set of iterated partial derivatives. The latter are used as pushdown
symbols in our construction of a nondeterministic pushdown automaton,
which generalizes Antimirov’s NFA construction.

Keywords: Automata and logic · Regular languages · Context-free lan-
guages · Pushdown automata · Derivatives

1 Introduction

Brzozowski derivatives [5] and Antimirov’s partial derivatives [4] are well-known
tools to transform regular expressions to finite automata and to define algorithms
for equivalence and containment of regular languages [3,10]. Both automata
constructions rely on the finiteness of the set of iterated derivatives. Brzozowski
derivatives need to be considered up to similarity (commutativity, associativity,
and idempotence for union) to obtain finiteness. Derivatives had quite some
impact on the study of algorithms for regular languages on finite words and
trees [6,15].

There are many studies of derivative structures for enhancements of regular
expressions. While Brzozowski’s original work covered extended regular expres-
sions, partial derivatives were originally limited to simple expressions without
intersection and complement. It is a significant effort to define partial derivatives
for extended regular expressions [6]. Many further operators have been consid-
ered, among them shuffle operators [16], multi-tilde-bar expressions [7], expres-
sions with multiplicities [12], approximate regular expressions [9], and many
more. There have been a number of approaches to develop general frameworks
for derivation: Caron and coworkers [8] abstract over the support for creating
derivations, Thiemann [17] develops criteria for derivable language operators.

Recently, there has been practical interest in the study of derivatives and
partial derivatives. Owens and coworkers [14] report a functional implementa-
tion with some extensions (e.g., character classes) to handle large character sets,
which is partially rediscovering work on the FIRE library [18]. Might and cowork-
ers [1,13] push beyond regular languages by implementing parsing for context-
free languages using derivatives and demonstrate its feasibility in practice.
c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 248–264, 2017.
DOI: 10.1007/978-3-662-54458-7 15

Partial Derivatives for Context-Free Languages 249

Winter and coworkers [19] study context-free languages in a coalgebraic set-
ting. They use a notion of derivative to give three equivalent characterizations of
context-free languages by grammars in weak Greibach normal form, behavioral
differential equations, and guarded μ-regular expressions.

In this work, we focus on using derivatives for parsing of context-free lan-
guages. While Might and coworkers explore algorithmic issues, we investigate
the correctness of context-free parsing with derivatives. To this end, we develop
the theory of derivatives for μ-regular expressions, which extend regular expres-
sions with a least fixed point operator. Our results are relevant for context-free
parsing because μ-regular expressions are equivalent to context-free grammars
in generating power. Compared to the work of Winter and coworkers [19], we
do not require recursion to be guarded (i.e., we admit left recursion) and we
focus on establishing the connection to pushdown automata. Unguarded recur-
sion forces us to consider derivation by ε, which corresponds to an unfolding of a
left-recursive μ-expression. Guarded expressions always admit a proper deriva-
tion by a symbol.

Our theory is the proper generalization of Antimirov’s theory of partial deriv-
atives to μ-regular expressions: our derivative function corresponds exactly to the
transition function of the nondeterministic pushdown automaton that recognizes
the same language. The pendant of Antimirov’s finiteness result yields the finite-
ness of the set of pushdown symbols of this automaton.

2 Preliminaries

We write N for the set of natural numbers, B = {ff , tt} for the set of booleans,
and X � Y for the disjoint union of sets X and Y . We consider total maps
m : X → Y as sets of pairs in the usual way, so that m ⊆ X × Y and ∅ denotes
the empty mapping. For x0 ∈ X and y0 ∈ Y , the map update of m is defined as
m[y0/x0](x) = y0 if x = x0 and m[y0/x0](x) = m(x) if x �= x0.

For conciseness, we fix a finite set of symbols, Σ, as the underlying alphabet.
We write Σ∗ for the set of finite words over Σ, ε ∈ Σ∗ stands for the empty
word, and Σ+ = Σ∗ \ {ε}. For u, v ∈ Σ∗, we write |u| ∈ N for the length of u
and u · v (or just uv) for the concatenation of words.

Given languages U, V,W ⊆ Σ∗, concatenation extends to languages as usual:
U · V = {u · v | u ∈ U, v ∈ V }. The Kleene closure is defined as the smallest set
U∗ ⊆ Σ∗ such that U∗ = {ε}∪U ·U∗. We write the left quotient as U\W = {v |
v ∈ Σ∗,∃u ∈ U : uv ∈ W}. For a singleton language U = {u}, we write u\W for
the left quotient.

Definition 1. A (nondeterministic) finite automaton (NFA) is a tuple A =
(Q,Σ, δ, q0, F) where Q is a finite set of states, Σ an alphabet, δ ⊆ Q × Σ × Q
the transition relation, q0 ∈ Q the initial state, and F ⊆ Q the set of final states.

Let n ∈ N. A run of A on w = a0 . . . an−1 ∈ Σ∗ is a sequence q0 . . . qn ∈ Q∗

such that, for all 0 ≤ i < n, (qi, ai, qi+1) ∈ δ. The run is accepting if qn ∈ F .
The language recognized by A is L(A) = {w ∈ Σ∗ | ∃ accepting run of A on w}.

250 P. Thiemann

Definition 2. A (nondeterministic) pushdown automaton (PDA) is a tuple P =
(Q,Σ, Γ, δ, q0, Z0) where Q is a finite set of states, Σ the input alphabet, Γ the
pushdown alphabet (a finite set), δ ⊆ Q×(Σ∪{ε})×Γ ×Q×Γ ∗ is the transition
relation, q0 ∈ Q is the initial state, Z0 ∈ Γ is the bottom symbol.

A configuration of P is a tuple c ∈ Q×Σ∗ ×Γ ∗ of the current state, the rest
of the input, and the current contents of the pushdown.

The transition relation δ gives rise to a binary stepping relation � on config-
urations defined by (for all q, q′ ∈ Q, α ∈ Σ ∪ {ε}, Z ∈ Γ , γ, γ′ ∈ Γ ∗, v ∈ Σ∗):

(q, α, Z, q′, γ′) ∈ δ

(q, αv, Zγ) � (q′, v, γ′γ)

The language of the PDA is L(P) = {v ∈ Σ∗ | ∃q ∈ Q : (q0, v, Z0) �∗ (q, ε, ε)}
where �∗ is the reflexive transitive closure of �.

3 µ-Regular Expressions

Regular expressions can be extended with a least fixed point operator μ to extend
their scope to context-free languages [11].

Definition 3. The set R(Σ,X) of μ-regular pre-expressions over alphabet Σ
and set of variables X is defined as the smallest set such that

– 0 ∈ R(Σ,X),
– 1 ∈ R(Σ,X),
– a ∈ Σ implies a ∈ R(Σ,X),
– r, s ∈ R(Σ,X) implies r · s ∈ R(Σ,X),
– r, s ∈ R(Σ,X) implies r + s ∈ R(Σ,X),
– r ∈ R(Σ,X) implies r∗ ∈ R(Σ,X),
– x ∈ X implies x ∈ R(Σ,X),
– r ∈ R(Σ,X ∪ {x}) implies μx.r ∈ R(Σ,X).

The set R(Σ) of μ-regular expressions over Σ is defined as R(Σ) := R(Σ, ∅).

As customary, we consider the elements of R(Σ,X) as abstract syntax trees and
freely use parentheses to disambiguate. We further assume that ∗ has higher
precedence than ·, which has higher precedence than +. The μx-operator binds
the recursion variable x with lowest precedence: its scope extends as far to the
right as possible. A variable x occurs free if there is no enclosing μx-operator. A
closed expression has no free variables.

Definition 4. The language denoted by a μ-regular pre-expression is defined
inductively by L : R(Σ,X) × (X → ℘(Σ∗)) → ℘(Σ∗). Let η ∈ X → ℘(Σ∗) be a
mapping from variables to languages.

Partial Derivatives for Context-Free Languages 251

– L(0, η) = {}.
– L(1, η) = {ε}.
– L(a, η) = {a} (singleton letter word) for each a ∈ Σ.
– L(r · s, η) = L(r, η) · L(s, η).
– L(r + s, η) = L(r, η) ∪ L(s, η).
– L(r∗, η) = (L(r, η))∗.
– L(x, η) = η(x).
– L(μx.r, η) = lfp L.L(r, η[x → L]).

For an expression r ∈ R(Σ), we write L(r) := L(r, ∅).

Here, lfp is the least fixed point operator on the complete lattice ℘(Σ∗) (ordered
by set inclusion). Its application in the definition yields the smallest set L ⊆ Σ∗

such that L = L(r, η[x → L]). This fixed point exists by Tarski’s theorem because
L is a monotone function, which is captured precisely in the following lemma.

Lemma 5. For each finite set X, η ∈ X → ℘(Σ), r ∈ R(Σ,X ∪ {x}), the
function L → L(r, η[x → L]) is monotone on ℘(Σ∗). That is, if L ⊆ L′, then
L(r, η[x → L]) ⊆ L(r, η[x → L′]).

According to Leiss [11], it is a folkore theorem that the languages generated
by μ-regular expressions are exactly the context-free languages.

Theorem 6. L ⊆ Σ∗ is context-free if and only if there exists a μ-regular expres-
sion r ∈ R(Σ) such that L = L(r).

Subsequently we will deal syntactically with fixed points. To this end, we
define properties of expressions and substitutions to make substitution applica-
tion well-defined.

Definition 7. Let X be the universe of variables occurring in expressions
equipped with a strict partial order ≺.

An expression is order-respecting if each subexpression of the form μx.r has
only free variables which are strictly before x: ∀y ∈ fv(μx.r), y ≺ x.

A mapping σ : X → R(Σ,X) is order-closed if ∀x ∈ X, σ(x) is order-
respecting and ∀y ∈ fv(σ(x)), y ≺ x and y ∈ dom(σ).

A variable ordering for an expression always exists: assume that all binders bind
different variables and take the topological sort of the subexpression contain-
ment.

We define the application σ • r of an order-closed mapping σ to an order-
respecting expression r by starting to substitute a maximal free variable by its
image and repeat this process until all variables are eliminated.

Definition 8. Let X ⊆ X a finite set of variables, r ∈ R(Σ,X) order-
respecting, and σ : X → R(Σ,X) be order-closed.

The application σ • r ∈ R(Σ,X) yields an expression that is defined by sub-
stituting for the free variables in r in descending order.

σ • r =

{
r fv(r) = ∅
σ • r[σ(x)/x] x ∈ max(fv(r)) is a maximal element

252 P. Thiemann

Application is well-defined because the variables x are drawn from the finite
set X and the substitution step for x only introduces new variables that are
strictly smaller than x due to order-closedness. The outcome does not depend
on the choice of the maximal variable because the unfolding of a maximal variable
cannot contain one of the other maximal variables. Furthermore, all intermediate
expressions (and thus the result) are order-respecting.

4 Partial Derivatives

Antimirov [4] introduced partial derivatives to study the syntactic transfor-
mation from regular expressions to nondeterministic and deterministic finite
automata. A partial derivative ∂a(r) with respect to an input symbol a maps
an expression r to a set of expressions such that their union denotes the
left quotient of L(r). Antimirov’s definition corresponds to the left part of
Fig. 1. We write Ro(Σ) for the set of ordinary regular expressions that nei-
ther contain the μ-operator nor any variables. We extend · to a function
(·) : ℘(R(Σ,X)) × R(Σ,X) → ℘(R(Σ,X)) on sets of expressions R defined
pointwise by

R · s = {r · s | r ∈ R}.

The definition of partial derivatives relies on nullability, which is tested by a
function N : Ro(Σ) → B. The right side of the figure corresponds to Antimirov’s
definition.

Lemma 9. For all r ∈ Ro(Σ), N (r) iff ε ∈ L(r).

Theorem 10 (Correctness [4]). For all r ∈ Ro(Σ), a ∈ Σ, L(∂a(r)) =
a\L(r).

Here we adopt the convention that if R is a set of expressions, then L(R) denotes
the union of the languages of all expressions: L(R) =

⋃
{L(r) | r ∈ R}.

Theorem 11 (Expansion). For r ∈ Ro(Σ), L(r) = {ε | N (r)} ∪
⋃

a∈Σ a ·
L(∂a(r)).

∂a(0) = {}
∂a(1) = {}
∂a(b) = {1 | a = b}

∂a(r + s) = ∂a(r) ∪ ∂a(s)

∂a(r · s) = ∂a(r) · s ∪ {s′ | N (r), s′ ∈ ∂a(s)}
∂a(r∗) = ∂a(r) · r∗

N (0) = ff

N (1) = tt

N (a) = ff

N (r + s) = N (r) ∨ N (s)

N (r · s) = N (r) ∧ N (s)

N (r∗) = tt

Fig. 1. Antimirov’s definition of partial derivatives and nullability

Partial Derivatives for Context-Free Languages 253

Partial derivatives give rise to a nondeterministic finite automaton.

Theorem 12 (Finiteness [4]). Let r ∈ Ro(Σ) be a regular expression. Define
partial derivatives by words by ∂ε(r) = {r} and ∂aw(r) =

⋃
{∂w(s) | s ∈ ∂a(r)}

and by a language L by ∂L(r) =
⋃

{∂w(r) | w ∈ L}.
The set ∂Σ∗(r) is finite.

Theorem 13 (Nondeterministic finite automaton construction [4]). Let
r ∈ Ro(Σ) be a regular expression and define Q = ∂Σ∗(r), δ : Q × Σ → ℘(Q) by
(q, a, q′) ∈ δ iff q′ ∈ ∂a(q). Let further q0 = r and F = {q ∈ Q | N (q)}.

Then A = (Q,Σ, δ, q0, F) is a NFA such that L(r) = L(A).

The plan is to extend these results to μ-regular expressions. We start with
the extension of the nullability function.

5 Nullability

Figure 2 extends nullability to μ-regular expressions. To cater for recursion, the
N function obtains as a further argument a nullability environment ν of type
X → B. With this extension, an expression μx.r is deemed nullable if its body r
is nullable. Furthermore, the least fixed point operator feeds back the nullability
of the body to the free occurrences of the recursion variables. This fixed point
is computed on the two-element Boolean lattice B ordered by ff � tt with
disjunction (∨) : B × B → B as the least upper bound operation. Thus, the
case for a free variable x obtains its nullability information from the nullability
environment.

Lemma 14. For each r ∈ R(Σ,X), N (r) is a monotone function from X → B
(ordered pointwise) to B.

To prepare for the correctness proof of N , we first simplify the case for the
fixed point. It turns out that one iteration is sufficient to obtain the fixed point.
This fact is also a consequence of a standard result, namely that the number

N (0)ν = ff

N (1)ν = tt

N (a)ν = ff

N (r + s)ν = N (r)ν ∨ N (s)ν

N (r · s)ν = N (r)ν ∧ N (s)ν

N (r∗)ν = tt

N (μx.r)ν = lfp b.N (r)ν[x �→ b]

N (x)ν = ν(x)

Fig. 2. Nullability of μ-regular expressions

254 P. Thiemann

of iterations needed to compute the fixed point of a monotone function on a
lattice is bounded by the height of the lattice. In this case, the Boolean lattice
has height one.

Lemma 15. Let X be a set of variables, r ∈ R(Σ,X ∪ {x}), η : X → ℘(Σ∗),
and L ⊆ Σ∗ such that ε /∈ L. If ε /∈ L(r, η[x → ∅]), then ε /∈ L(r, η[x → L]).

Lemma 16. For all r ∈ R(Σ,X), for all ν : X → B,

lfp b.N (r)ν[x → b] = N (r)ν[x → ff].

For the statement of the correctness, we need to define what it means for a
nullability environment to agree with a language environment.

Definition 17. Nullability environment ν : X → B agrees with language envi-
ronment η : X → ℘(Σ∗), written η |= ν, if for all x ∈ X, ε ∈ η(x) iff ν(x).

Lemma 18 (Correctness of N). For all X, r ∈ R(Σ,X), η ∈ X → ℘(Σ∗),
ν ∈ X → B, such that η |= ν, it holds that ε ∈ L(r, η) iff N (r)ν.

6 Derivation

The derivative for μ-regular expressions has a different type than for ordinary
regular expressions: A partial derivative is a set of non-empty sequences (i.e.,
stack fragments) of regular expressions. The idea is that deriving a recursion
operator μx.r pushes the current context on the stack and starts afresh with the
derivation of r. In other words, the derivative function for μ-regular expressions
has the same signature as the transition function for a nondeterministic PDA.

To distinguish operations on stacks from operations on words over Σ, we
write “:” (read “push”) for the concatenation operator on stacks. We also use this
operator for pattern matching parts of a stack. We write [] for the empty stack,
[r1, . . . , rn] for a stack with n elements, and r for any stack of expressions. We
extend the concatenation operator for regular expressions to non-empty stacks
by having it operate on the last (bottom) element of a stack.

∂σ,ν
α (0) = {}

∂σ,ν
α (1) = {}

∂σ,ν
α (b) = {[1] | α = b ∈ Σ}

∂σ,ν
α (r + s) = ∂σ,ν

α (r) ∪ ∂σ,ν
α (s)

∂σ,ν
α (r · s) = ∂σ,ν

α (r) · (σ • s) ∪ {s | N (r)ν, s ∈ ∂σ,ν
α (s)}

∂σ,ν
α (r∗) = ∂σ,ν

α (r) · (σ • r∗)

∂σ,ν
α (μx.r) = ∂σ[μx.r/x],ν[N (r)ν[ff/x]/x]

α (r) : [1]

∂σ,ν
α (x) = {[σ • x] | α = ε}

Fig. 3. Partial derivatives of μ-regular expressions for α ∈ Σ ∪ {ε}

Partial Derivatives for Context-Free Languages 255

Definition 19. Let (M, (·),1) be a monoid. We lift the monoid operation to
non-empty stacks (·) ∈ M+ × M → M+ for a ∈ M∗ and a, b ∈ M by

(a : [a]) · b = (a : [a · b]).

We further lift it pointwise to sets A ⊆ M+ to obtain (·) ∈ ℘(M+) × M →
℘(M+):

A · b = {a · b | a ∈ A}.

We use this definition for M = R(Σ,X) and also extend the push operation (:)
pointwise to sets of stacks.

(:) ∈ ℘(R(Σ,X)+) × R(Σ,X)+ → ℘(R(Σ,X)+)
R : s = {r : s | r ∈ R}

Most of the time, the second argument will be a singleton stack [s].
Before we discuss the intricacies of the full definition in Fig. 3, let’s first con-

sider a naive extension of the derivative function in Fig. 1 to μ-regular expressions
and analyze its problems:

∂a(μx.r) = ∂a(r[μx.r/x]) : [1] (naive unrolling: to be revised)

Taking the derivative of a recursive definition means to apply the derivative to
the unrolled definition. At the same time, we push an empty context on the
stack so that the context of the recursion does not become a direct part of the
derivative. This proposed definition makes sure that the partial derivative ∂a(r)
is only ever applied to closed expressions r ∈ R(Σ). Hence, the case of a free
recursion variable x would not occur during the computation of ∂a(r).

Example 20. The “naive unrolling” definition of the partial derivative has a
problem. While it can be shown to be (partially) correct, it is not well-defined
for all arguments. Consider the left-recursive expression r = μx.1+x ·a, which is
equivalent to a∗. Computing its partial derivative according to “naive unrolling”
reveals that it depends on itself, so that ∂a(r) would be undefined.

∂a(r) = ∂a(1 + r · a) : [1]

= ({} ∪ ∂a(r · a)) : [1]
= (∂a(r) · a ∪ ∂a(a)) : [1]
= (∂a(r) · a ∪ {[1]}) : [1]

We remark that the expression r corresponds to a left-recursive grammar, where
the naive construction of a top-down parser using the method of recursive descent
also runs into problems [2]. There would be no problem with the right-recursive
equivalent r′ = μx.1 + a · x where the naive unrolling yields ∂a(r′) = {[r′,1]}.
Indeed, the work by Winter and others [19] only allows guarded uses of the
recursion operator, which rules out expressions like r from the start and which
enables them to use the “naive unrolling” definition of the derivative.

256 P. Thiemann

For that reason, the derivative must not simply unroll recursions as they are
encountered. Our definition distinguishes between left-recursive occurrences of a
recursion variable, which must not be unrolled, and guarded occurrences, which
can be unrolled safely. The derivative function remembers deferred unrollings in
a substitution σ and applies them only when it is safe.

These observations lead to the signature of the definition of partial derivative
in Fig. 3. Its type is

∂ : (Σ ∪ {ε}) × (X → R(Σ,X)) × (X → B) × R(Σ,X) → ℘(R(Σ)+)

and we write it as ∂σ,ν
α (r). It takes a symbol or an empty string α ∈ Σ ∪ {ε}

to derive, a substitution σ : X → R(Σ,X) that maps free recursion variables
to expressions (i.e., their unrollings), a nullability function ν : X → B that
maps free recursion variables to their nullability, and the regular expression
r ∈ R(Σ,X) to derive as arguments and returns the partial derivatives as a set
of non-empty stacks of expressions.

Let’s examine how the revised definition guarantees well-definedness. Exam-
ple 20 demonstrates that left recursion is the cause for non-termination of the
naive definition. The problem is that the naive definition indiscriminately sub-
stitutes all occurrences of x by its unfolding and propagates the derivative into
the unfolding. However, this substitution is only safe in guarded positions (i.e.,
behind at least one terminal symbol in the unfolding). To avoid substitution
in unguarded positions, the definition in Fig. 3 reifies this substitution as an
additional argument σ and takes care to only apply it in guarded positions.

To introduce this recursion, the derived symbol α ranges over Σ ∪ {ε} in
Fig. 3. For α = ε, the derivative function unfolds one step of left recursion.

Example 21. Recall r = μx.1 + x · a from Example 20. Observe that N (r)∅ =
N (1 + x · a)[ff/x] = tt.

∂∅,∅
a (r) = (∂[r/x],[tt/x]

a (1 + x · a)) : [1]

= ({} ∪ ∂[r/x],[tt/x]
a (x · a)) : [1]

= ({[1]}) : [1]
= {[1,1]}

The spontaneous derivative unfolds one level of left recursion.

∂∅,∅
ε (r) = (∂[r/x],[tt/x]

ε (1 + x · a)) : [1]

= ({} ∪ ∂[r/x],[tt/x]
ε (x · a)) : [1]

= ({[r · a]}) : [1]
= {[r · a,1]}

Thus, the spontaneous derivative corresponds to ε-transitions of the PDA that
is to be constructed.

Partial Derivatives for Context-Free Languages 257

7 Correctness

To argue about the correctness of our derivative operation, we define the mem-
bership of a word w ∈ Σ∗ in the language of an order-respecting expression
r ∈ R(Σ,X) under an order-closed mapping σ : X → R(Σ,X) inductively by
the judgment σ � w ∈ r in Fig. 4 along with σ � w ∈ r for an expression stack r
and σ � w ∈ R for a set of such stacks R ⊆ R(Σ,X)∗. This inductive definition
mirrors the previous fixed point definition of the language of an expression.

Lemma 22. For all r ∈ R(Σ) and w ∈ Σ∗. ∅ � w ∈ r iff w ∈ L(r).

It is straightforward to prove the following derived rule.

σ � w ∈ r σ � ε ∈ 1 σ � a ∈ a
σ � w ∈ r

σ � w ∈ r + s

σ � w ∈ s

σ � w ∈ r + s

σ � v ∈ r σ � w ∈ s

σ � vw ∈ r · s
σ � ε ∈ r∗ σ � v ∈ r σ � w ∈ r∗

σ � vw ∈ r∗

σ[μx.r/x] � w ∈ r

σ � w ∈ μx.r

σ � w ∈ μx.r

σ[μx.r/x] � w ∈ x

σ � w ∈ r σ � ε ∈ []
σ � v ∈ r σ � w ∈ r

σ � vw ∈ [r] : r

σ � w ∈ R
σ � w ∈ r r ∈ R

σ � w ∈ R

Fig. 4. Membership in a μ-regular expression, a stack of expressions, and a set of stacks

Lemma 23. If R ⊆ S ⊆ R(Σ,X)∗, then σ � w ∈ R implies σ � w ∈ S.

Lemma 24. Let r ∈ R(Σ,X) and σ : X → R(Σ,X) be order-respecting. If
σ � w ∈ r, then ∅ � w ∈ σ • r.

The derivation closure ∂̃a(r) of a non-empty closed stack of expressions is defined
by the union of the partial derivatives after taking an arbitrary number of ε-
steps. It is our main tool in proving the correctness of the derivative.

Definition 25. For a ∈ Σ, the derivation closure ∂̃σ,ν
a (r : r) is inductively

defined as the smallest set of stacks such that

1. ∂̃σ,ν
a (r : r) ⊇ ∂σ,ν

a (r) : r and
2. ∂̃σ,ν

a (r : r) ⊇
⋃

{∂̃σ,ν
a (s : r) | s ∈ ∂σ,ν

ε (r)}.

258 P. Thiemann

Lemma 26 (Unfolding). Let r ∈ R(Σ,X) an order-respecting expression, σ :
X → R(Σ,X) order-closed with σ(x) = μx.sx, ν : X → B such that ν(x) =
N (σ • x)∅.

σ � w ∈ r ⇐ ∅ � w ∈ ∂σ,ν
ε (r)

Theorem 27 (Correctness). Let r ∈ R(Σ,X) an order-respecting expression,
σ : X → R(Σ,X) order-closed with σ(x) = μx.sx, ν : X → B such that ν(x) =
N (σ • x)∅.

σ � aw ∈ r ⇔ ∅ � w ∈ ∂̃σ,ν
a ([r])

Proof. The direction from left to right is proved by induction on σ � aw ∈ r.
We demonstrate the right-to-left direction.
Suppose that Δ = ∅ � w ∈ ∂̃σ,ν

a ([r]) and show that σ � aw ∈ r.
The proof is by induction on the size of the derivation of Δ. Inversion yields

that there is some r ∈ ∂̃σ,ν
a ([r]) such that ∅ � w ∈ r. Now there are two cases.

Case w = ε and r = [] so that the empty-sequence-rule ∅ � ε ∈ [] applies. But
this case cannot happen because r �= [].

Case ∅ � vw ∈ [s] : r because ∅ � v ∈ s and ∅ � w ∈ r.
These two cases boil down to w = w1 . . . wn, r = [r1, . . . , rn], for some n ≥ 1,

and ∅ � w1 . . . wn ∈ [r1, . . . , rn] because ∅ � wi ∈ ri.
We perform an inner induction on r.

Case 0, 1, b �= a: contradictory because ∂̃σ,ν
a ([r]) = ∅.

Case a: ∂̃σ,ν
a ([a]) = {[1]} so that w = ε. Clearly, σ � a ∈ a.

Case r + s: We can show that ∂̃σ,ν
a (r + s) = ∂̃σ,ν

a (r) ∪ ∂̃σ,ν
a (s). Assuming that

r ∈ ∂̃σ,ν
a (r), induction on r yields σ � aw ∈ r and the +-rule yields σ � aw ∈ r+s.

Analogously for s.

Case r ·s: We can show that ∂̃σ,ν
a (r ·s) = ∂̃σ,ν

a (r)·(σ•s)∪{s | N (r)ν, s ∈ ∂̃σ,ν
a (s)}.

There are two cases.

Subcase r ∈ ∂̃σ,ν
a (r) · (σ • s). Hence, r = [r1, . . . , rn · (σ • s)] so that w =

w1 . . . wnwn+1 and ∅ � w1 ∈ r1, . . . , ∅ � wn ∈ rn, and ∅ � wn+1 ∈ (σ • s).
Now, r′ = [r1, . . . , rn] ∈ ∂̃σ,ν

a (r) and thus ∅ � w1 . . . wn ∈ ∂̃σ,ν
a (r). By induction,

σ � aw1 . . . wn ∈ r. Because σ • s is closed, we also have ∅ � wn+1 ∈ (σ • s) and
thus by Lemma 24 σ � wn+1 ∈ s. Taken together σ � aw1 . . . wnwn+1 ∈ r · s.

Subcase N (r)ν and r ∈ ∂σ,ν
a (s). Hence, σ � ε ∈ r, by induction σ � aw ∈ s,

and the concatenation rule yields σ � aw ∈ r · s.

Case r∗. Because r ∈ ∂̃σ,ν
a (r)·(σ•r∗), it must be that r = [r1, . . . , rn ·(σ•r∗)] and

w = w1 . . . wnwn+1 so that ∅ � w1 ∈ r1, . . . , ∅ � wn ∈ rn, and ∅ � wn+1 ∈ (σ•r∗).
Proceed as in the first subcase for concatenation.

Partial Derivatives for Context-Free Languages 259

Case μx.r. As usual, let σ̂ = σ[μx.r/x] and ν̂ = ν[N (r)ν[ff/x]/x]. Again,
∂̃σ,ν

a (μx.r) = ∂̃σ̂,μ̂
a (r) : [1]. Hence, r = r′ : [1] for some r′ ∈ ∂̃σ̂,μ̂

a (r) such that
∅ � w ∈ r′. Induction yields that σ̂ � aw ∈ r and application of the μ-rule yields
σ � aw ∈ μx.r.

Case x. Then ∂̃σ̂,ν̂
a (x) = ∂̃σ,ν

a (μx.r) if σ̂ = σ[μx.r/x] and ν̂ = ν[N (r)ν[ff/x]/x].
Now ∅ � w ∈ ∂̃σ̂,ν̂

a (x) iff exists r ∈ ∂̃σ̂,ν̂
a (x) = ∂̃σ,ν

a (μx.r) such that ∅ � w ∈ r.
But ∂̃σ,ν

a (μx.r) = ∂̃σ̂,ν̂
a (r) : [1] so that r = r′ : [1] and ∅ � w ∈ r′ with a smaller

derivation tree. Thus, induction yields that σ̂ � aw ∈ r, application of the μ-rule
yields σ � aw ∈ μx.r, and application of the variable rule yields σ̂ � aw ∈ x, as
desired. ��

8 Finiteness

In analogy to Antimirov’s finite automaton construction, we aim to use the set
of iterated derivatives as a building block for a pushdown automaton. In our
construction, derivatives end up as pushdown symbols rather than states: the
top of the pushdown plays the role of the state. It remains to prove that this set
is finite to obtain a proper PDA.

Our finiteness argument is based on an analysis of the syntactical form of
the derivatives. It turns out that a derivative is, roughly, a concatenation of a
strictly descending sequence of certain subexpressions of the initial expression.
As this ordering is finite, we obtain a finite bound on the syntactically possible
derivatives.

We start with an analysis of the output of ∂σ,ν
α (r). The elements in the stack

of a partial derivative are vectors of the form ((h·s1)·s2) · · · sk that we abbreviate
h ·�s, where the si are arbitrary expressions and h is either 1 or μx.r where μx.r
is closed.

It turns out that the vectors produced by derivation are always strictly
ascending chains in the subterm ordering of the original expression, say t. We
first define this ordering, then we define the structure of these vectors in Defin-
ition 31.

Definition 28. Let r ∈ R(Σ) be a closed expression. We define the addressing
function Ar : N∗ ↪→ R(Σ,X) by induction on r.

A0 = {(ε,0)} Ar+s = {(ε, r + s)} ∪ 1.Ar ∪ 2.As

A1 = {(ε,1)} Ar·s = {(ε, r · s)} ∪ 1.Ar ∪ 2.As

Aa = {(ε, a)} Ar∗ = {(ε, r∗)} ∪ 1.Ar

Ax = {(ε, x)} Aμx.r = {(ε, μx.r)} ∪ 1.Ar

Here i.A modifies the function A by prepending i to each element of A’s domain:

(i.A)(w) =

{
A(w′) w = iw′ and A(w′) defined

undefined otherwise.

260 P. Thiemann

It is well known that dom(Ar) is prefix-closed and assigns a unique w ∈ N∗ to
each occurrence of a subexpression in r. Let r1 = Ar(w1) and r2 = Ar(w2) be
subexpression occurrences of r. We say that r1 occurs before r2 in r if w1 � w2

in the lexicographic order on N∗:

ε � w
i < j

iv � jw

v � w

iv � iw

We write w1 ≺ w2 if w1 � w2 and w1 �= w2, in which case we say that r1 occurs
strictly before r2.

Lemma 29. For each closed expression r ∈ R(Σ), the strict lexicographic order-
ing ≺ on dom(Ar) has no infinite chains.

Definition 30. Let t ∈ R(Σ) be a closed expression such that each variable
occurring in t is bound exactly once. The unfolding substitution σt is defined by
induction on t.

σ0 = [] σr+s = σr ∪ σs

σ1 = [] σr·s = σr ∪ σs

σa = [] σr∗ = σr

σx = [] σμx.r = [μx.r/x] ∪ σr

Definition 31. A vector �s = (s1 ·s2) · · · sk is t-sorted if for all 1 ≤ i < j ≤ k: si

and sj are subexpressions of t and si occurs strictly before sj, which means that
there are w1, . . . , wk ∈ N∗ such that si = At(wi) and wi ≺ wi+1, for 1 ≤ i < k.

For a t-sorted vector �s = (s1 · s2) · · · sk define two forms of expressions:

top: σt • (1 · �s).
rec: σt • ((μx.s) · �s) where μx.s is a subexpression of t and either μx.s or an

occurrence of x is strictly before si, for all 1 ≤ i ≤ k.

A stack r = [r1, . . . , rn] (for n ≥ 1) has form top+ if r1, . . . , rn have form top.
A stack r = [r1, . . . , rn] (for n ≥ 1) has form rec.top∗ if r1 has form rec

and r2, . . . , rn have form top.

Next, we show that all derivatives and partial derivatives of subexpressions
of a closed expression t have indeed one of the forms top+ or rec.top∗.

Lemma 32 (Classification of derivatives). Suppose that t ∈ R(Σ) is a
closed expression, r ∈ R(Σ,X) is a subexpression of t, σ : X → R(Σ,X)
is order-closed with σ(x) = μx.s (for x ∈ X and μx.s a subterm of t), and
ν : X → B such that ν(x) = N (σ • x)∅. If r = [r1, . . . , rn] ∈ ∂σ,ν

a (r), then n ≥ 1
and r has form top+ and each ri = hi · �si for some t-sorted �si which is before r.

Partial Derivatives for Context-Free Languages 261

Lemma 33 (Classification of spontaneous derivatives). Suppose that t ∈
R(Σ) is a closed expression, r ∈ R(Σ,X) is a subexpression of t, σ : X →
R(Σ,X) is order-closed with σ(x) = μx.s (for x ∈ X and μx.s a subterm of t),
and ν : X → B such that ν(x) = N (σ • x)∅. If r = [r1, . . . , rn] ∈ ∂σ,ν

ε (r), then
n ≥ 1 and r has form rec.top∗ and each ri = hi · �si for some t-sorted �si which
is before r.

Lemma 34 (Classification of derivatives of vectors). Let t ∈ R(Σ) be a
closed expression and t0 be closed of form top or form rec with respect to t.
Then the elements of ∂∅,∅

a (t0) are stacks of the form top+ as in Lemma 32 and
the elements of ∂∅,∅

ε (t0) are stacks of the form rec.top∗.

We define the set of iterated partial derivatives as the expressions that may
show up in the stack of a partial derivative. This set will serve as the basis for
defining the set of pushdown symbols of a PDA.

Definition 35 (Iterated Partial Derivatives). Let t ∈ R(Σ) be a closed
expression. Define Δ(t), the set of iterated partial derivatives of t, as the smallest
set such that

– 1 · t ∈ Δ(t);
– if r ∈ Δ(t) and [t1, . . . , tn] ∈ ∂∅,∅

a (r), then tj ∈ Δ(t), for all 1 ≤ j ≤ n; and
– if r ∈ Δ(t) and [t1, . . . , tn] ∈ ∂∅,∅

ε (r), then tj ∈ Δ(t), for all 1 ≤ j ≤ n.

Lemma 36 (Closure). Let t ∈ R(Σ) be a closed expression. Then all elements
of Δ(t) either have form top or rec with respect to t.

Proof. Follows from Lemmas 32, 33, and 34.

Lemma 37 (Finiteness). Let t ∈ R(Σ) be closed. Then Δ(t) is finite.

Proof. By construction, the elements of Δ(t) are all closed and have either form
top or form rec, which is a vector of the form σt • (h ·�s) where �s is t-sorted. As
t is a finite expression and a t-sorted vector is strictly decreasing, there are only
finitely many candidates for �s (by Lemma 29).

The head h of the vector is either 1 or it is a subexpression of t of the form
μx.sx. Hence, there are only finitely many choices for h.

Thus Δ(t) is a subset of a finite set and hence finite. ��

9 Automaton Construction

Given that the derivative for a closed μ-regular expression gives rise to a finite
set of iterated partial derivatives, we use that set as the pushdown alphabet to
construct a nondeterministic pushdown automaton that recognizes the same lan-
guage. This construction is straightforward as its transition function corresponds
exactly to the derivative and the spontaneous derivative function.

262 P. Thiemann

Definition 38. Suppose that t ∈ R(Σ) is closed. Define the PDA UA(t) =
(Q,Σ, Γ, δ, q0, Z0) by a singleton set Q = {q}, Γ = Δ(t), q0 = q, Z0 = 1 · r, and
δ ⊆ Q × (Σ ∪ {ε}) × Γ × Q × Γ ∗ as the smallest relation such that

– (q, a, s, q, s) ∈ δ if s ∈ ∂∅,∅
a (s), for all s ∈ Γ , s ∈ Γ ∗, a ∈ Σ;

– (q, ε, s, q, s) ∈ δ if s ∈ ∂∅,∅
ε (s), for all s ∈ Γ , s ∈ Γ ∗;

– (q, ε, s, q, ε), for all s ∈ Γ with N (s)∅.

Theorem 39 (Automaton correctness). For all closed expressions t ∈
R(Σ), L(t) = L(UA(t)).

Proof. Let UA(t) = (Q,Σ, Γ, δ, q0, Z0). We prove a generalized statement from
which the original statement follows trivially: for all r ∈ Δ(t)∗, ∅ � w ∈ r iff
(q, r, w) �∗ (q, ε, ε). The proof in the left-to-right direction is by induction on
the derivation of ∅ � w ∈ r.

Case ∅ � ε ∈ []. Immediate.

Case ∅ � w ∈ r because w = w1w2, r = [r] : r′, ∅ � w1 ∈ r, and ∅ � w2 ∈ r′.
By induction, we find that (q, [r], w1) �∗ (q, [], ε). By a standard argument that
means (q, [r] : r′, w1w2) �∗ (q, r′, w2). By the second inductive hypothesis, we
find that (q, r′, w2) �∗ (q, [], ε). Taken together, we obtain the desired result.

Now we consider the derivation of ∅ � w ∈ r by performing a case analysis
on w and using Lemma 27.

Case ε. In this case, ∅ � ε ∈ r iff N (ri)∅ iff (q, ε, r, q, ε) ∈ δ so that (q, [r], ε) �+

(q, ε, ε).

Case aw. In this case ∅ � aw ∈ r. By Lemma 27, ∅ � aw ∈ r is equivalent
to ∅ � w ∈ ∂̃∅,∅

a ([r]) and we perform a subsidiary induction on its definition.
That is, either ∃s ∈ ∂∅,∅

a (r) such that ∅ � w ∈ s. In that case, UA(t) has a
transition (q, r, aw) � (q, s, w) by definition of δ. By induction we know that
(q, s, w) �+ (q, ε, ε).

Alternatively, ∃s ∈ ∂∅,∅
ε (r) such that ∅ � aw ∈ s. In this case, (q, r, aw) �

(q, s, aw) is a transition and by induction we have (q, s, aw) �+ (q, ε, ε).

Right-to-left direction. By induction on the length of (q, r, w) �∗ (q, [], ε).

Case length 0: it must be r = [] and w = ε. Obviously, ∅ � ε ∈ [].

Case length > 0: Thus the first configuration must have the form (q, [s] : r, w).
There are three possibilities.

Subcase (q, [s] : r, w) � (q, s : r, w′) if w = aw′ and s ∈ ∂a(s). We split the
run of the automaton at the point where s is first consumed: let w′ = w1w2

such that (q, s : r, w1w2) �∗ (q, r, w2) �∗ (q, [], ε). Hence, there is also a shorter
run on w1: (q, s, w1) �∗ (q, [], ε). Induction yields ∅ � w1 ∈ s. By Lemma 27,
we also have a derivation ∅ � aw1 ∈ s. By induction on the r run, we obtain
∅ � w2 ∈ r and applying the stack rule yields ∅ � aw1w2 ∈ [s] : r or in other
words ∅ � w ∈ [s] : r.

Partial Derivatives for Context-Free Languages 263

Subcase (q, [s] : r, w) � (q, s : r, w) if s ∈ ∂ε(s). We split the run of the
automaton at the point where s is first consumed: let w′ = w1w2 such that
(q, s : r, w1w2) �∗ (q, r, w2) �∗ (q, [], ε). Hence there is also a shorter run on w1:
(q, s, w1) �∗ (q, [], ε). By induction, we have a derivation ∅ � w1 ∈ s, which yields
∅ � w1 ∈ s by Lemma 26, and a derivation ∅ � w2 ∈ r, which we can combine to
∅ � w1w2 ∈ [s] : r as desired.

Subcase (q, [s] : r, w) � (q, r, w) if N (s)∅. By induction, ∅ � w ∈ r. As N (s)∅,
it must be that ∅ � ε ∈ s. Hence, ∅ � w ∈ [s] : r. ��

If all recursion operators in an expression t are guarded, in the sense that
they consume some input before entering a recursive call, then all ε-transitions
in the constructed automaton pop the stack. In fact, when restricting to guarded
expressions, the spontaneous derivative function is not needed at all, which
explains the simplicity of the derivative in the work of Winter and coworkers [19].

Acknowledgments. The thoughtful comments of the anonymous reviewers helped
improve the presentation of this paper.

References

1. Adams, M.D., Hollenbeck, C., Might, M.: On the complexity and performance of
parsing with derivatives. In: PLDI, pp. 224–236. ACM (2016)

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers. Principles, Techniques,
and Tools. Addison-Wesley, Boston (2007)

3. Antimirov, V.: Rewriting regular inequalities. In: Reichel, H. (ed.) FCT
1995. LNCS, vol. 965, pp. 116–125. Springer, Heidelberg (1995). doi:10.1007/
3-540-60249-6 44

4. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

5. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
6. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended

regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21254-3 13

7. Caron, P., Champarnaud, J.-M., Mignot, L.: Multi-tilde-bar derivatives. In: Mor-
eira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 321–328. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-31606-7 28

8. Caron, P., Champarnaud, J., Mignot, L.: A general framework for the derivation
of regular expressions. RAIRO - Theor. Inf. Appl. 48(3), 281–305 (2014)

9. Champarnaud, J.-M., Jeanne, H., Mignot, L.: Approximate regular expressions and
their derivatives. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol.
7183, pp. 179–191. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28332-1 16

10. Grabmayer, C.: Using proofs by coinduction to find “Traditional” Proofs.
In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds.) CALCO
2005. LNCS, vol. 3629, pp. 175–193. Springer, Heidelberg (2005). doi:10.1007/
11548133 12

http://dx.doi.org/10.1007/3-540-60249-6_44
http://dx.doi.org/10.1007/3-540-60249-6_44
http://dx.doi.org/10.1007/978-3-642-21254-3_13
http://dx.doi.org/10.1007/978-3-642-21254-3_13
http://dx.doi.org/10.1007/978-3-642-31606-7_28
http://dx.doi.org/10.1007/978-3-642-28332-1_16
http://dx.doi.org/10.1007/11548133_12
http://dx.doi.org/10.1007/11548133_12

264 P. Thiemann

11. Leiß, H.: Towards Kleene algebra with recursion. In: Börger, E., Jäger, G., Kleine
Büning, H., Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp. 242–256. Springer,
Heidelberg (1992). doi:10.1007/BFb0023771

12. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
Theor. Comput. Sci. 332(1–3), 141–177 (2005)

13. Might, M., Darais, D., Spiewak, D.: Parsing with derivatives: a functional pearl.
In: Proceedings of ICFP 2011, pp. 189–195. ACM (2011)

14. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives reexamined. J.
Funct. Program. 19(2), 173–190 (2009)

15. Roşu, G., Viswanathan, M.: Testing extended regular language membership incre-
mentally by rewriting. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp.
499–514. Springer, Heidelberg (2003). doi:10.1007/3-540-44881-0 35

16. Sulzmann, M., Thiemann, P.: Derivatives for regular shuffle expressions. In: Dediu,
A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol.
8977, pp. 275–286. Springer, Cham (2015). doi:10.1007/978-3-319-15579-1 21

17. Thiemann, P.: Derivatives for enhanced regular expressions. In: Han, Y.-S., Salo-
maa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 285–297. Springer, Cham (2016).
doi:10.1007/978-3-319-40946-7 24

18. Watson, B.W.: FIRE lite: FAs and REs in C++. In: Raymond, D., Wood, D., Yu,
S. (eds.) WIA 1996. LNCS, vol. 1260, pp. 167–188. Springer, Heidelberg (1997).
doi:10.1007/3-540-63174-7 14

19. Winter, J., Bonsangue, M.M., Rutten, J.: Context-free languages, coalgebraically.
In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp.
359–376. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22944-2 25

http://dx.doi.org/10.1007/BFb0023771
http://dx.doi.org/10.1007/3-540-44881-0_35
http://dx.doi.org/10.1007/978-3-319-15579-1_21
http://dx.doi.org/10.1007/978-3-319-40946-7_24
http://dx.doi.org/10.1007/3-540-63174-7_14
http://dx.doi.org/10.1007/978-3-642-22944-2_25

Dynamic Complexity of the Dyck Reachability

Patricia Bouyer(B) and Vincent Jugé(B)

LSV, CNRS & ENS Cachan, Univ. Paris-Saclay, Cachan, France
{bouyer,juge}@lsv.fr

Abstract. Dynamic complexity is concerned with updating the out-
put of a problem when the input is slightly changed. We study the
dynamic complexity of Dyck reachability problems in directed and undi-
rected graphs, where updates may add or delete edges. We show a strong
dichotomy between such problems, based on the size of the Dyck alpha-
bet. Some of them are P-complete (under a strong notion of reduction)
while the others lie either in DynFO or in NL.

1 Introduction

Dynamic problems and dynamic complexity. In this paper, we focus on the
dynamic complexity of some reachability problems. Standard complexity theory
aims at developing algorithms that, given an input of some problem, compute
an output as efficiently as possible. Its dynamic variant is focused on algorithms
that are capable of efficiently updating the output after a small change of the
input [11,16,17]. Such algorithms may rely on auxiliary data about the current
instance of the problem, and update it when the instance is modified.

A well-studied dynamic complexity class is DynFO. An algorithm is in
DynFO if the output and the auxiliary data can be updated by FO formulas
after a small change of the input. Variants of DynFO include the class DynFO+,
which allows polynomial-time precomputations, and DynTC0, in which updates
of the auxiliary data are performed by TC0 circuits.

Consider the problem of reachability in directed graphs, and update opera-
tions that consist in inserting or deleting edges (one at a time). It was recently
proven that this problem belongs to the class DynFO [3], which had been con-
jectured for decades.

Furthermore, like static complexity classes, dynamic complexity classes come
with natural notions of reduction. The class DynFO is closed under bounded
expansion first-order reductions (hereafter called bfo reductions), which are spe-
cific L reductions (L is for logarithmic space). A bfo reduction from a problem
to another one is a first-order mapping from instances of the first problem to
instances of the latter one, such that performing an update operation on the
instance of the first problem amounts to performing a bounded number of update
operations on the instance of the latter problem. Similarly, the class DynFO+ is
closed under bounded expansion first-order reductions with polynomial-time pre-
computation (hereafter called bfo+ reductions).

This work is supported by EU under ERC EQualIS (FP7-308087).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 265–280, 2017.
DOI: 10.1007/978-3-662-54458-7 16

266 P. Bouyer and V. Jugé

Reachability problems and language theory. Dyck reachability problems lie at the
interface between two areas. On the one hand, language theory is concerned with
handling descriptions of languages, that is sets of words, with respect to various
questions: Is a language empty, finite or infinite? What about the intersection or
the union of two languages? Does a language contain a given word? Among the
best known and most simple classes of languages are regular and context-free
languages. On the other hand, reachability problems deal with the existence of
paths in graphs, and include questions such as: Does there exist a path between
two given vertices? How long must be such paths?

Dyck reachability problems are focused on the existence of paths in labeled
graphs, whose labels belong to a given Dyck language. Dyck languages are lan-
guages of well-parenthesized words and, roughly speaking, are the most simple
context-free languages that are not regular. The Dyck reachability problem in
labeled directed acyclic graphs was proven to be in DynFO [17], when consider-
ing two types of update operations on labeled graphs, which are insertion and
deletion of edges. Whether this result extends to all labeled directed graphs was
then an open question.

Our contributions. We study this open question, and we distinguish the Dyck
reachability problem in two different ways. Is the labeled graph directed or undi-
rected? How many symbols does the Dyck alphabet contain?

We prove that there exists a strong dichotomy between the dynamic com-
plexity of such problems, based on the size of the Dyck alphabet. In the case
of a unary Dyck alphabet, the Dyck reachability problem lies in NL (non-
deterministic logarithmic space), and even lies in DynFO in the case of undi-
rected graphs; this contrasts with the case of binary Dyck alphabets, where
we prove that the Dyck reachability problem is P-complete under bfo+ reduc-
tions. Furthermore, it is widely believed [16] that no P-complete problems under
bfo+ reductions lie in classes such as DynFO or the slightly broader class DynFO+.

Related works. From its very inception 20 years ago, dynamic complexity has
been a framework of study for several variants of reachability problems and
language theory problems. The class DynFO was shown to contain reachability
problems in directed acyclic graphs [5], undirected graphs [16] and, most recently,
in all directed graphs [3]; regular and Dyck languages [16], then all context-free
languages [6]; Dyck reachability in directed acyclic graphs [17].

At the same time, finding natural problems that are NL- or P-complete (under
L reductions) and belong to low dynamic complexity classes such as DynFO,
DynFO+ or DynTC0 is an ongoing challenge. All known P-complete problems
lying in DynFO rely on highly redundant inputs, hence may be seen as arti-
ficial [16]. Hence, a notion of non-redundant projection [14] was introduced.
Non-redundant projections are a special kind of P reductions, which contains,
in particular, bfo and bfo+ reductions.

Hence, for every static complexity class C, we define non-redundant
C-complete problems as those problems that are C-complete both under L reduc-
tions and under non-redundant projections. Most canonical P-complete problems

Dynamic Complexity of the Dyck Reachability 267

are non-redundant, hence non-redundancy may be seen as a prerequisite for being
a “natural” problem.

A breakthrough was the proof that the Dyck reachability problem in acyclic
directed graphs, which is a non-redundant LogCFL-complete problem, belongs to
DynFO [17]. It was then proved in [15] that the reachability problem in labeled
acyclic graphs, where path labels are constrained to belong to a given context-
free grammar (and not only to a Dyck language), is in DynFO. We prove here
that the results of [15] are unlikely to extend to all labeled graphs, or even to
undirected graphs, even in the simple case of two-letter Dyck languages. This
also allows us to answer negatively a question of Weber and Schwentick, who
asked in [17] whether “the Dyck reachability problem might be a non-redundant
P-complete problem that allows efficient updates.”

Complete proofs can be found in research report [2].

2 Definitions

2.1 Dyck Reachability Problems

A labeled directed graph is a triple G = (V,L,E) where V is a finite set of
vertices, L is a finite set of labels and E ⊆ V × L × V is a finite set of edges.
The graph G is said to be unlabeled if L is a singleton set; in that case, we may
directly represent G as a pair (V,E) where E ⊆ V ×V . The graph G is also said
to be undirected if the relation E is symmetric, i.e. if, for every edge (v, θ, w) in
E, the triple (w, θ, v) also belongs to E.

A path in the graph G is a finite sequence of edges π = (v1, θ1, w1)·(v2, θ2, w2)·
. . . · (vk, θk, wk) such that vi+1 = wi for all i ∈ {1, . . . , k − 1}. The vertex v1 is
called the source of π, and wk is called the sink of π. We also denote by λ(π)
the word θ1 · . . . · θk, which is called the label of π.

Assume that the label set L is of the form L = {�1, . . . , �n} � {�1, . . . , �n}
for some integer n ≥ 1. The Dyck language (also called semi-Dyck language
in [7]) associated with L is the context-free language Dn built over the grammar:
S → ε | �1 · S · �1 · S | . . . | �n · S · �n · S, where ε is the empty word. The set
{�1, . . . , �n} is said to be the Dyck alphabet of that language.

The n-letter Dyck reachability problem asks whether, given two vertices s
and t of G, there exists a path in G, with source s and sink t, and whose label
belongs to the Dyck language Dn (the actual value of the label set L does not
matter, as long as its elements can be partitioned in n ordered pairs). The n-
letter undirected Dyck reachability problem is the restriction of that problem to
the case where the underlying graph G is constrained to be undirected.

2.2 Dynamic Complexity

In this paper, we study the dynamic complexity of Dyck reachability problems.
To that end, we first introduce briefly the formalisms of descriptive and dynamic
complexity here, and refer to [10,13,16] for more details.

268 P. Bouyer and V. Jugé

Descriptive complexity aims at characterizing positive instances of a prob-
lem using logical formulas. The input is then described as a logical structure
described by a set of k-ary predicates (the vocabulary) over its universe. For
example, a graph can be described by a binary predicate representing its edges,
with the set of vertices (usually identified with {1, . . . , n} for some n) as the uni-
verse. The problem of deciding whether some state has at most one outgoing edge
can be described by the first-order formula ∃x.∀y.∀z.(E(x, y) ∧ E(x, z)) ⇒ (y =
z). The class FO contains all problems that can be characterized by such first-
order formulas. This class corresponds to the circuit-complexity class AC0 (under
adequate uniformity assumptions) [1].

Dynamic complexity aims at developing algorithms that can efficiently
update the output of a problem when the input is slightly changed, for exam-
ple reachability of one vertex from another one in a graph. We would like our
algorithm to take advantage of previous computations in order to very quickly
decide the existence of a path in the modified graph.

Formally, a decision problem S is a subset of the set of τ -structures Struct(τ)
built on a vocabulary τ . In order to turn S into a dynamic problem DynS,
we need to define a finite set of allowed updates. For instance, we might use
a 2-ary operator ins(x, y) that would insert an edge between nodes x and y.
For a universe of size n, the set of update operations forms a finite alphabet,
denoted by Σn. A finite word in Σ∗

n then corresponds to a structure obtained
by applying a sequence of update operations of Σn to the empty structure In

over the vocabulary τ . The language DynSn is defined as the set of those words
in Σ∗

n that correspond to structures of S, and DynS is the union (over all n) of
all such languages.

A dynamic machine is a uniform family (Mn)n∈N of deterministic finite
automata Mn = 〈Qn, Σn, δn, sn, Fn〉 over an update alphabet Σn, with an
update transition function δn. Every state is a polynomial-size auxiliary data
structure over some vocabulary τaux, which contains the vocabulary τ . Such a
machine solves a dynamic problem if DynSn = L(Mn) for all n. It is in the
dynamic complexity class C′-DynC (or simply DynC if C = C′) if the update
transition function and membership in the accepting set can be computed in C,
while the initial state can be computed in C′. In other words, solving the initial
instance of the problem and computing initial auxiliary data structure can be
done in C′, and after any update of the input (specified by some letter of Σn),
further calculations to solve the problem and update the auxiliary data on that
new instance are restricted to the class C. Of course, for a dynamic complexity
class C′-DynC to have some interest, the class C should be easier than the static
complexity class of the original problem.

In this paper, we only consider the case where C = FO, and where C′ = FO or
C′ = P, meaning that first-order formulas will be used to describe how predicates
are updated along transitions, and that we may make use of polynomial-time
precomputations. As a convention, we will denote the class P-DynFO by DynFO+,
and we recall that the simple notation DynFO is for FO-DynFO.

Dynamic Complexity of the Dyck Reachability 269

2.3 Dynamic Reductions

Dynamic complexity comes with the notion of dynamic reductions [16]. Let C be
a complexity class. A (static) C reduction from a decision problem P to another
decision problem Q is a mapping in C from the instances of P to the instances
of Q that associates every positive instance of P with a positive instance of
Q, and every negative instance of P with a negative instance of Q. Standard
P-completeness results use L reductions [7].

A dynamic reduction from a dynamic problem P (with vocabulary τ1) to
another dynamic problem Q (with vocabulary τ2) is a mapping from Struct(τ1)
to Struct(τ2) such that:

– every positive (respectively, negative) instance of P is mapped to a positive
(respectively, negative) instance of Q;

– every update on an instance i1 of P results in a well-behaved sequence of
updates on the instance i2 of Q to which i1 is mapped.

Dynamic reductions have therefore several parameters: the complexity class to
which the mapping belongs, and the sequences of updates that are allowed.

The dynamic classes DynFO and DynFO+ are respectively closed under
bounded expansion first-order (bfo for short) and bounded expansion first-
order with polynomial-time precomputation (bfo+ for short) reductions [16].
A dynamic reduction μ from P to Q is bfo+ if it is a FO reduction and if every
update on an instance i1 of P results in a bounded sequence of FO updates on
its image μ(i1). If, furthermore, the empty structure I1 is mapped to a structure
μ(I1) that can be obtained by applying a bounded sequence of FO updates on
the empty structure I2, then we say that μ is bfo.

Note that dynamic reductions can be applied to the class P (which coin-
cides with the class DynP, under the assumption that updates are one-bit input
changes). So, being P-hard for bfo+ reductions is arguably stronger than being
P-hard for L reductions. Furthermore, it is known that the classes of bfo and of
bfo+ reductions are closed under composition and that the circuit value problem
is a P-complete problem for bfo+ reductions [16]. Hence, every P problem to
which the circuit value problem is bfo+-reducible is also P-complete problem for
bfo+ reductions.

2.4 Main Result

We are now in a position to formally present our main result.

Theorem 1. The 1-letter Dyck reachability problem is in NL, and the 1-letter
undirected Dyck reachability problem is in NL∩DynFO. Furthermore, for all inte-
gers n ≥ 2, both the n-letter Dyck reachability problem and the n-letter undirected
Dyck reachability problem are P-complete for bfo+ reductions.

Remark 1. Note that NL ∩ DynFO is not known to be strictly included in NL.
Nevertheless, the case of undirected graph appears to be “easier” than the case
of directed graphs in the 1-letter case. Hence, the P-hardness of both cases for
alphabets with at least two letters appears rather unexpected.

270 P. Bouyer and V. Jugé

3 One-Letter (Undirected) Dyck Reachability Problems

We prove here the first part of Theorem 1, that is we assume n = 1. We first
observe that the 1-letter Dyck reachability problem is equivalent to a stan-
dard reachability problem in one-counter automata (without zero-tests), which
is known to belong to NL [4,8]. The 1-letter undirected Dyck reachability prob-
lem is a restriction of the 1-letter directed Dyck reachability problem, hence it
is in NL as well. Furthermore, we make the following claim.

Proposition 1. Let s and t be two distinct vertices of an undirected labeled
graph G = (V,E,L), with L = {�1, �1}. There exists a Dyck path from s to t in
G if and only if:

– the set {x ∈ V | (s, �1, x) ∈ E} is non-empty;
– the set {y ∈ V | (t, �1, y) ∈ E} is non-empty;
– there exists a path of even length from s to t in G.

Proof. First, if there exists a Dyck path π = (vi, λi, vi+1)0≤i<k with s = v0 and
t = vk, then λ0 = �1, λk−1 = �1, and the sets {0 ≤ i < k | λi = �1} and
{0 ≤ i < k | λi = �1} have the same cardinality, which proves that k is an even
number.

Conversely, assume that s �= t and that the three conditions of Proposition 1
hold. Let π = (vi, λi, vi+1)0≤i<2k be a path of length 2k from s to t in G, for
some integer k ≥ 1. Let κ be the cardinality of the set {0 ≤ i < 2k | λi = �1}
and let κ be the cardinality of the set {0 ≤ i < 2k | λi = �1}. Since κ + κ = 2k,
we have κ − κ = 2(k − κ).

Furthermore, consider vertices x, y ∈ V such that (s, �1, x) and (t, �1, y)
belong to E. Since the graph is undirected, there exist also edges (x, �1, s) and
(y, �1, t). Let ρ1 be the length-2 circuit (s, �1, x) · (x, �1, s), and let ρ2 be the
length-2 circuit (t, �1, y) · (y, �1, t). One checks easily that the path ρk

1 · π · ρκ
2 is

a Dyck path in G, where ρk
1 is the concatenation of k occurrences of ρ1, and ρκ

2

is the concatenation of κ occurrences of ρ2. ��

Hence, checking whether there exists a Dyck path from s to t in G amounts
to checking whether s = t or, if s �= t, whether the sets {x ∈ V | (s, �1, x) ∈ E}
and {y ∈ V | (t, �1, y) ∈ E} are non-empty, and whether there exists a path of
even length from s to t in G. The first statements can be checked directly in FO,
and the latter one can be checked in DynFO, as proved below. This completes
the proof of the first part of Theorem 1 in the case n = 1.

Lemma 1. Checking whether there exists a path of even length from s to t in
G is feasible in DynFO.

Proof. Let Γ be the graph (G × {0, 1}, E′), where E′ = {((x, 0), �, (y, 1)) |
(x, �, y) ∈ G} ∪ {((x, 1), �, (y, 0)) | (x, �, y) ∈ G}. The graph Γ consists in two
copies of G, and edges of G translate into edges between these two copies. Since
Γ is undirected, the reachability problem in Γ is in DynFO [3,16]. Furthermore,
there exists a path of even length from s to t in G if and only if there exists

Dynamic Complexity of the Dyck Reachability 271

a path from (s, 0) to (t, 0) in Γ . Since Γ is FO-definable in terms of G, and
since adding/deleting one edge in G amounts to adding/deleting two edges in
Γ , Lemma 1 follows. ��

Remark 2. Note that this proof heavily relies on the property that the graph
is undirected. In fact, the problem of computing distances in directed graphs,
whose membership in DynFO or DynFO+ is a long-standing open question [3,9], is
bfo+-reducible to the 1-letter Dyck reachability problem (over directed graphs).
The reduction is as follows.

Given an unlabeled directed graph G = (V,E), equip each edge with a label
�1, and add self-loops (with the label �1) around each vertex in V . Then, for all
vertices v ∈ V , add n vertices (v, 1), . . . , (v, n), where n = |V |, and add edges
with the label �1 from v to (v, 1) and from (v, i) to (v, i + 1), for all i. It comes
at once that the distance (in the original graph G) from a vertex s to a vertex
t is k if and only if there exists a Dyck path (in the extended, labeled graph)
from s to (t, k) but not to (t, k − 1).

Furthermore, the proof of [9] showing that distances in graphs can be com-
puted in DynTC0 does not extend to the 1-letter Dyck reachability, whose precise
dynamic complexity remains therefore unknown.

4 n-letter Dyck Reachability Problem

We prove now that, for all integers n ≥ 2, the n-letter Dyck reachability problem
is P-complete for bfo+ reductions.

We first introduce two auxiliary problems.

1. Let G = (V,E) be an unlabeled directed graph, let (V∧, V∨) be a partition of
V , and let s and t be two marked vertices of G. The alternating reachability
problem asks whether s belongs to the alternating coaccessible set of t, i.e. the
smallest subset X of V such that all of {t}, {x ∈ V∨ | ∃y ∈ X s.t. (x, y) ∈ E}
and {x ∈ V∧ | ∀y ∈ V, (x, y) ∈ E ⇒ y ∈ X} are subsets of X.
Note that this problem could be alternatively and equivalently defined using
the notion of winning state in a two-player turn-based zero-sum reachability
game. However, we choose the above definition using a fixed point to avoid
defining the notion of winning strategies.

2. Let G = (V,E,L) be a labeled directed graph with set of labels L = V ∪ {v |
v ∈ V }, and let s and t be two marked vertices of G. A near-Dyck word is
an element of the set D′ built over the grammar: S → ε | v · S · v · S (for all
v ∈ V). The near-Dyck reachability problem asks whether there exists a path
π in G, with source s, sink t, and whose label belongs to D′.
Note that the near-Dyck reachability problem may be viewed as a generali-
sation of the n-letter Dyck reachability problem: it involves a grammar with
|V | rules and not only n, i.e. the size of the grammar is not constant anymore.

While it is well-known that the alternating reachability problem is P-hard
for standard logarithmic-space reductions, it is also the case that it is P-hard

272 P. Bouyer and V. Jugé

for bfo+ reductions [16]. Hence, we show in the two next subsections that there
exists a bfo+ reduction from the alternating reachability problem to the near-
Dyck reachability problem, and that there exists a bfo+ reduction from that
latter problem to the 2-letter Dyck reachability problem. It will follow that the
2-letter (and, therefore, the n-letter) Dyck reachability problem is P-hard for
bfo+ reductions.

On the other hand, it is known that the n-letter Dyck reachability problem
belongs to P (see [7, Sect. A.7.9]).

4.1 From the Near-Dyck Reachability Problem to the Dyck
Reachability Problem

Let G = (V,E,L) be a labeled directed graph with set of labels L = V ∪ V
(where V = {v | v ∈ V }), and let s and t be two marked vertices of G.

We fix the new alphabet L = {0, 1, 0, 1}. Then, we consider an integer n and
an injective coding function cod : (V ∪ V) �→ Ln such that cod(V) ⊆ {0, 1}n,
cod(V) ⊆ {0, 1}n. We further assume the following consistency requirement
about cod: for all v ∈ V and all i ∈ {1, . . . , n}, we have cod(v)i = cod(v)n+1−i,
where we denote by wi the ith letter of the word w ∈ Ln.

Formally, let G = (V, E ,L) be the labeled directed graph defined by:

– V = V ∪
(
V × (V ∪ V) × {0, 1, . . . , n}

)
;

– L = {0, 1, 0, 1};
– E = E1 ∪ E2, where

E1 = {x
0−→ (x, v, 0) | x, v ∈ V } ∪ {x 0−→ (x, v, 0) | x ∈ V, v ∈ V } ∪

{(x, v, i)
cod(v)i+1−−−−−−→ (x, v, i + 1) | x ∈ V, v ∈ V ∪ V , 0 ≤ i ≤ n − 1} and

E2 = {(x, v, n) 0−→ y | x
v−→ y ∈ E} ∪ {(x, v, n) 0−→ y | x

v−→ y ∈ E},

and in which we mark the vertices s and t.
Each sequence of transitions x

0−→ (x, v, 0) v1−→ . . .
vn−→ (x, v, n) prepares the

encoding of some edge leaving x with label v. If there is some edge x
v−→ y in the

original graph, then only one edge (x, v, n) 0−→ y needs to be added: this is the
role of the edges in E2. We use a similar encoding for edges labeled by v.

Proposition 2. There exists a near-Dyck path from s to t in G if and only if
there exists a Dyck path from s to t in G.

Proof. First, for every pair (u, v) ∈ V2, there exists at most one edge in E with
source u and sink v. Henceforth, we omit representing labels of edges and of
paths in G.

We further define two mappings ϕ and ψ. The mapping ϕ identifies every
label λ ∈ L with a word ϕ(λ) ∈ L∗, as follows:

ϕ(v) = 0 · cod(v) · 0 for all v ∈ V, and ϕ(v) = 0 · cod(v) · 0 for all v ∈ V .

Dynamic Complexity of the Dyck Reachability 273

This mapping extends immediately to a morphism from L∗ to L∗ that maps
every near-Dyck word w ∈ D′ to a Dyck word ϕ(w) ∈ D. The mapping ψ
identifies every edge e ∈ E with a path ψ(e) in G, as follows:

ψ(x v−→ y) = (x → (x, v, 0) → . . . → (x, v, n) → y) for all v ∈ V ∪ V .

This mapping extends immediately to a morphism that maps every path in G
to a path in G. The relation λ(ψ(e)) = ϕ(λ(e)) holds for all edges e ∈ E, and
therefore extends to all paths π in G. Hence, a path π in G is near-Dyck if and
only if the path ψ(π) in G is Dyck.

In addition, let us call nominal paths in G the paths that belong to the set
{ψ(e) | e ∈ E}, and generic paths in G the concatenations of nominal paths.
Nominal paths are the minimal paths whose source and sink both belong to the
subset V of V. Hence, every path π from s to t in G is generic, thus π is the
image by ψ of some path ψ−1(π) from s to t in G. ��

The graph G is FO-definable as a function of G and of the coding func-
tion cod, and adding/deleting an edge in E amounts to adding/deleting exactly
one edge in E2. Since the function cod can be precomputed in P, and due to
Proposition 2, the near-Dyck reachability problem is therefore bfo+-reducible to
the Dyck reachability problem.

4.2 From the Alternating Reachability Problem to the Near-Dyck
Reachability Problem

Let G = (V,E) be an unlabeled directed graph, let (V∧, V∨) be a partition of V ,
let s and t be two marked vertices of G.

Let us number the vertices of G from 0 to n − 1, i.e. set V = {v0, . . . , vn−1}.
Then, let G be the context-free grammar with set of non-terminal symbols V
and initial symbol s, without terminal symbol, and that consists in three kinds
of rules:

– a termination rule t → ε;
– rules v → w for all vertices v ∈ V∨ and w ∈ V such that (v, w) ∈ E;
– rules v → w0 · w1 · · · wn−1 for all vertices v ∈ V∧, where wi = vi if (v, vi) ∈ E

and wi = t otherwise.

The following result is straightforward.

Proposition 3. Let X be the alternating coaccessible set of t. The vertex s
belongs to X if and only if the language generated by G is non-empty.

Inspired by the translation of context-free grammars into pushdown
automata (by simulating leftmost derivations, see for instance [12, Theorem
6.13]), we build below a labeled graph whose labels correspond to push and pop
moves of such a pushdown automaton, so that near-Dyck paths in the new graph
will correspond to the empty-stack accepting runs of the pushdown automaton.

274 P. Bouyer and V. Jugé

Formally, let G = (V, E ,L) be the labeled directed graph defined by:

– V = {◦, •} ∪ V ∪
(
V∧ × {1, . . . , n − 1}

)
, where ◦ and • are two fresh vertex

symbols;
– L = V ∪ {v | v ∈ V };
– E = E1 ∪ E2, where

E1 = {◦ s−→ •} ∪ {• x−→ x | x ∈ V } ∪ {• t−→ •} and

E2 = {x
y−→ • | x ∈ V∨ and (x, y) ∈ E} ∪

{(x, n − 1 − i) vi−→ (x, n − i) | x ∈ V∧, 0 ≤ i ≤ n − 1 and (x, vi) ∈ E} ∪

{(x, n − 1 − i) t−→ (x, n − i) | x ∈ V∧, 0 ≤ i ≤ n − 1 and (x, vi) /∈ E},

where we use (v, 0) as a placeholder for v and (v, n) as a placeholder for • (for
all vertices v ∈ V∧). Then, let us mark vertices ◦ and •.

The construction is illustrated in Fig. 1, in which the graph G is associated
with the grammar G whose initial symbol is v0 and whose rules are v3 → ε |
v1 → v2 | v1 → v4 | v2 → v3 | v3 → v1 | v0 → v3v1v3v3v4 | v4 → v3v1v3v3v3.

∧

∨ ∧

∨ ∨

s = v0

v1 v4

v2 t = v3

Graph G

v0 v1 v2 v3 v4

•
◦

v0

v0
v2,
v4,

v1
v3 v2

v1
v3

v4

v3

v4

v3

v3

v1
v3

v3

v3

v3

v1
v3

Graph G

Fig. 1. Graphs G and G

Proposition 4. There exists a near-Dyck path from ◦ to • in G if and only if
the language of the context-free grammar G is non-empty.

Proof. Consider the pushdown automaton A = (Q,Σ, δ, ι, F), with set of states
Q = V, input alphabet Σ = ∅, initial state ι = ◦, set of final states F = {•},
whose transition function δ contains only the following ε-transitions:

δ : q
push(v)−−−−−→ q′ for all q, q′ ∈ V and v ∈ V s.t. (q, v, q′) ∈ E

q
pop(v)−−−−→ q′ for all q, q′ ∈ V and v ∈ V s.t. (q, v, q′) ∈ E ,

Dynamic Complexity of the Dyck Reachability 275

and whose accepting runs are those that start in ι with an empty tape and end
in a final state (i.e. in •) with an empty tape.

It is straightforward that A accepts the language of G, for instance by observ-
ing that it follows the construction of [12, Theorem 6.13]. Furthermore, near-
Dyck paths from ◦ to • in G can be identified with stack operations of accepting
executions of A. Proposition 4 follows. ��

The graph G is FO-definable as a function of G, s, t and of the mapping i �→ vi.
Moreover, adding/deleting an edge e in E amounts to adding/deleting exactly
either one or two edges in E2. Since the mapping i �→ vi can be precomputed
in P, and due to Propositions 3 and 4, the alternating reachability problem is
therefore bfo+-reducible to the near-Dyck reachability problem.

5 n-letter Undirected Dyck Reachability Problem

We proceed by proving that there exists a bfo+ reduction from the 2-letter Dyck
reachability problem (in directed graphs) to the 2-letter undirected reachability
problem.

Let G = (V,E,L) be a directed labeled graph, with L = {�1, �2, �1, �2}, and
let s and t be two marked nodes of G. In addition, let L = {0, 1, 0, 1} be another
set of labels.

The main difficulty, when working in an undirected graph, is that lots of
cycles are created, generating lots of stuttering in the words labeling the paths.
It is therefore hard to really control where a path goes just by looking at its label.
In particular, the recipe used in Sect. 4.1 to reduce the near-Dyck reachability
problem to the 2-letter Dyck reachability problem cannot be used now, and it is
not clear whether simple alternative reductions from the near-Dyck undirected
reachability problem to the 2-letter undirected Dyck reachability problem exist.
Below, we prove directly the P-hardness of the 2-letter undirected Dyck reacha-
bility. In order to do so, we rely on a rather intricate encoding, where each part
plays an important role.

We denote by ϕ : L∗ �→ L∗ the homomorphism of monoids defined by:

ϕ(�1) = 0 · 0 · 1 · 1 · 0 · 0 · 1 · 1 · 1 · 1 · 1 · 0 ϕ(�1) = 0 · 1 · 1 · 1 · 1 · 1 · 0 · 0 · 1 · 1 · 0 · 0
ϕ(�2) = 0 · 0 · 1 · 0 · 0 · 1 · 1 · 0 · 0 · 1 · 1 · 0 ϕ(�2) = 0 · 1 · 1 · 0 · 0 · 1 · 1 · 0 · 0 · 1 · 0 · 0

Observe that the words ϕ(�1) and ϕ(�2) are formal inverses of the words ϕ(�1)
and ϕ(�2): in particular, both the words ϕ(�1) · ϕ(�1) and ϕ(�2) · ϕ(�2) are Dyck
words.

In gray boxes are locks: along a Dyck path, once a lock has been traveled
through, we cannot go back earlier in the encoding, since this would create a
factor 1 ·0 or 0 ·1, which is not a factor of any Dyck word. We therefore say that
a path is doomed if it crosses a lock backwards, thereby having a factor 1 · 0 or
0 · 1. By preventing Dyck paths from having doomed subpaths, locks will allow
us to recover partially the directed character of G.

276 P. Bouyer and V. Jugé

Finally, for every word w ∈ L∗, we denote by wi the ith letter of w. Let
G = (V, E ,L) be the undirected labeled graph defined by:

– V = V ∪ (V × L × V × {1, . . . , 11});
– E = Einit ∪ Emid ∪ Eend, where

Einit = {x
ϕ(λ)1←−−→ (x, λ, y, 1) | (x, λ, y) ∈ E}

Emid = {(x, λ, y, i − 1)
ϕ(λ)i←−−→ (x, λ, y, i) | (x, λ, y) ∈ E, 1 ≤ i ≤ 11}

Eend = {(x, λ, y, 11)
ϕ(λ)12←−−→ y | (x, λ, y) ∈ E},

and in which we mark the vertices s and t.
Like in Sects. 4.1 and 4.2, we observe an equivalence between the two kinds

of Dyck reachability problems in the graphs G and G, which we prove formally
in the rest of the section.

Proposition 5. There exists a Dyck path from s to t in G if and only if there
exists a Dyck path from s to t in G.

A first completeness result towards proving Proposition 5 comes quickly.

Lemma 2. Let ρ be a Dyck path from s to t in G. There exists a Dyck path
from s to t in G.

Proof. First, for every pair (u, v) ∈ V2 there exists at most one undirected edge
between u and v in E . Henceforth, we may omit representing labels of edges and
of paths in G.

Now, let us denote by ψ the mapping that identifies every edge e ∈ E with the
path ψ(e) = (x → (x, θ, y, 1) → . . . → (x, θ, y, 11) → y) in G, where e = (x, θ, y).
Observe that ψ extends immediately to a morphism that maps every path in G
to a path in G. The relation λ(ψ(e)) = ϕ(λ(e)) holds for all edges e ∈ E, and
therefore extends to all paths in G. Hence, a path ρ in G is Dyck if and only if
the path ψ(ρ) in G is Dyck. ��

However, unlike in Sect. 4.1, there may exist Dyck paths in G that are not
of the form ψ(ρ), as shown by the examples of the two Dyck cycles γ1 and γ2
displayed in Fig. 2. Consequently, we cannot use directly the morphism ψ to
associate every Dyck path in G with a Dyck path in G.

We overcome this problem as follows. Let Q be the set of all factors of all
Dyck words with letters in L (called approximate Dyck words), and let P the
set of all paths π in G such that λ(π) ∈ Q (called approximate Dyck paths).
Moreover, for every set S of paths, we denote by λ(S) the set of labels of paths
in S, i.e. λ(S) = {λ(π) | π ∈ S}. It comes at once that λ(P) ⊆ Q, that Q is
factor closed, and that none of the words 1 · 0 nor 0 · 1 belongs to Q.

We further say that a path in G is nominal if its source and sink belong to
V , while its intermediate vertices belong to V \ V . For all edges (x, λ, y) ∈ E,
we denote by Px,λ,y the set of nominal paths π ∈ P such that π has source x,

Dynamic Complexity of the Dyck Reachability 277

s1 s2

Graph G

�1

�1

s1 s2

Graph G

0
0 010 010 000 000 010 010 010 010 1

0

0 0 1 1 0 0 1 1 1 1 1 0

Dyc k cycle γ1

Dyck cycle γ2

Fig. 2. Graphs G and G, and Dyck cycle in G

sink y, and such that its internal vertices are exactly the elements of the set
{(x, λ, y, i) | 1 ≤ i ≤ 11}. For all vertices x ∈ V , we also denote by Px the set
of nominal paths π ∈ P such that π has source and sink x, and whose edges are
all labeled with 0 or 0. These two classes of paths capture the entire family of
nominal paths that belong to P, as shown by the following result.

Lemma 3. Let π ∈ P be a nominal path in G. Either there exists an edge
(x, λ, y) ∈ E such that π ∈ Px,λ,y or there exists a vertex x ∈ V such that
π ∈ Px. Moreover, the sets Px,λ,y and Px are pairwise disjoint.

Proof. We first assume that some edge e in π is labeled by 1 or 1. By construction,
there exists a unique edge (x, λ, y) ∈ E and a unique pair of integers i, j ∈
{1, . . . , 11} such that e = (x, λ, y, i) → (x, λ, y, j), with j = i ± 1. Since π is
nominal, its internal vertices belong to the set {(x, λ, y, i) | 1 ≤ i ≤ 11}, and its
source and sink belong to {x, y}. Then, since π belongs to P, it does not contain
doomed paths, hence its source must be x and its sink must be y.

Then, assume that no edge in π is labeled by 1 or 1. Since π is nominal, there
exists a unique edge (x, λ, y) ∈ E such that the internal vertices of π belong to
the set {(x, λ, y, i) | 1 ≤ i ≤ 11}, and its source and sink belong to {x, y}. If x
is the source of π, then π can never reach the vertex (x, λ, y, 3), hence x is the
sink of π; if y is the source of π, then π can never reach the vertex (x, λ, y, 9),
hence y is the sink of π.

Observing that every path in every set Px,λ,y contains an edge labeled by 1
or 1 completes the proof. ��

Going further, we associate with every path ρ = (v1, λ1, w1) · . . . · (vk, λk, wk)
in G the set Pρ of paths in G defined by:

Pρ = P∗
v1

· Pv1,λ1,w1 · P∗
v2

· Pv2,λ2,w2 · . . . · P∗
vk

· Pvk,λk,wk
· P∗

wk
.

Observe that, unlike the sets Px and Px,λ,y, the sets Pρ may contain paths that
are not nominal and/or not approximate Dyck paths.

Conversely, however, it comes immediately that every Dyck path π in G
belongs to one unique set Pρ, where ρ is the nominal ancestor of π defined
below.

278 P. Bouyer and V. Jugé

Definition 1. Let π be a Dyck path in G from s to t. There exists a unique
sequence of vertices v0, . . . , vk, a unique partial function fπ : {1, . . . , k} �→ L,
whose domain is denoted by dom(fπ), and a unique sequence of nominal paths
π1, . . . , πk such that:

– v0 = s and vk = t;
– for all i ∈ dom(fπ), the edge (vi−1, fπ(i), vi) belongs to E, and πi ∈

Pvi−1,fπ(i),vi
;

– for all i ∈ {1, . . . , k} \ dom(fπ), we have vi−1 = vi, and πi ∈ Pvi
;

– π = π1 · . . . · πk.

We call nominal vertex sequence of π sequence v0, . . . , vk, nominal label map-
ping of π the mapping fπ, nominal decomposition of π the sequence π1, . . . , πk,
and nominal ancestor of π the path (vi−1, fπ(i), vi)i∈dom(fπ).

Associating every Dyck path in G with a unique path in G is a first step
towards proving the soundness of the construction. Further steps depend on the
following, additional properties of the encoding.

Every Dyck path traveling through the word ϕ(�1), may go back and forth
arbitrarily, except at locks, which it may cross only once. Consider such a possible
journey through the word ϕ(�1), and observe the word w obtained during that
journey. This word is made of blocks that consist, alternatively, of letters 0 and
0, and of letters 1 and 1. Such a word, even if we first reduce it (by deleting
recursively the words 0 · 0 and 1 · 1), will always satisfy the following properties:

1. there exists at least four such (non-empty) blocks;
2. the last block consists of letters 0 only;
3. the last two blocks are of odd length, and every other block is of even length.

To illustrate the above analysis, consider the direct journey through ϕ(�1),
where we have identified the blocks: (0 ·0) · (1 ·1) · (0 ·0) · (1 ·1 ·1 ·1 ·1) · (0). If that
word is reduced, there remain four non-empty blocks: (1 ·1) · (0 ·0) · (1 ·1 ·1) · (0).

Another example is the journey first followed by the path γ2 (see Fig. 2) from
the vertex s1 to the vertex s2, and which gives us more blocks: (0 · 0) · (1 · 1) ·
(0 · 0) · (1 · 1) · (0 · 0) · (1 · 1 · 1 · 1 · 1) · (0). If that word is reduced, there remain
six non-empty blocks: (1 · 1) · (0 · 0) · (1 · 1) · (0 · 0) · (1 · 1 · 1) · (0). One checks
easily on these examples that all the words obtained satisfy the properties 1–3.

Properties 1–2 hold for the word ϕ(�2), while property 3 should be
replaced by:

3’. the first block of letters 1 and 1 and the last block of letters 0 are of odd
length, and every other block is of even length.

This distinction between encodings of the two letters will allow identifying a
path that encodes �1 or �2, even when there is backtracking between the two
locks.

Now, we denote by Qinit the set of all prefixes of all Dyck words with letters
in L. Observe that, for all words ρ1, ρ2 ∈ L∗, the three words ρ1 · ρ2, ρ1 · 0 · 0 · ρ2
and ρ1 · 1 · 1 · ρ2 are either all Dyck or all non-Dyck.

Dynamic Complexity of the Dyck Reachability 279

Then, for every word w ∈ L∗, we call reduced word of w the word red(w)
obtained from w by deleting recursively the 2-letter words 0 · 0 or 1 · 1. Alter-
natively, if we consider w as an element of the free group generated by �1 and
�2 (with inverses �1 and �2), then red(w) is the reduced word representing w.
We just proved that w is Dyck if and only if red(w) is Dyck. Moreover, it comes
immediately that Qinit is in fact the set of all words w such that red(w) has only
letters 0 and 1.

The above remarks and notions lead to the following results, whose proofs
are then technical yet simple, and therefore omitted here.

Lemma 4. Let ρ be a path in G. If ρ is not an approximate Dyck path, then
λ(Pρ)∩Q = ∅, and if λ(ρ) is not a prefix of a Dyck word, then λ(Pρ)∩Qinit = ∅.
Lemma 5. Let π be a Dyck path from s to t in G, let ρ be the nominal ancestor
of π, and let λ(ρ) ∈ L∗ be the label of ρ. In addition, let μ : L∗ �→ Z be the
morphism of monoids defined by μ(�1) = μ(�2) = 1 and μ(�1) = μ(�2) = −1.
Then, we have μ(λ(ρ)) = 0.

A consequence of Lemmas 4 and 5 is the correctness of the construction,
which is therefore valid.

Proof (Proposition 5). First, if there exists a Dyck path from s to t in G, then
Lemma 2 already states that there also exists a Dyck path from s to t in G.
Hence, we look at the converse implication.

Let π be a Dyck path from s to t in G, and let ρ be the nominal ancestor
of π. Let λ(ρ) be the label of ρ and let Λ be the reduction of λ(ρ). Lemma 4
proves that λ(ρ) is a prefix of a Dyck word, hence that Λ has only letters �1 and
�2. Since Lemma 5 also proves that μ(λ(ρ)) = μ(Λ) = 0, it follows that Λ is the
empty word, i.e. that λ(ρ) is a Dyck word. ��

We complete the proof of Theorem 1 as follows. Observe that the graph G
is FO-definable as a function of G. Furthermore, adding/deleting an edge in E
amounts to adding/deleting exactly twelve edges in E . Due to Proposition 5,
the 2-letter Dyck reachability problem is therefore bfo-reducible to the 2-letter
undirected Dyck reachability problem.

On the other hand, as a restriction of the n-letter Dyck reachability problem,
the n-letter undirected Dyck reachability problem is clearly in P, which completes
the proof of Theorem 1.

References

1. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1.
J. Comput. Syst. Sci. 41(3), 274–306 (1990)

2. Bouyer, P., Jugé, V.: Dynamic complexity of the Dyck reachability. Research
Report arXiv/1610.07499, Computing Research Repository, October 2016

3. Datta, S., Kulkarni, R., Mukherjee, A., Schwentick, T., Zeume, T.: Reachability
is in DynFO. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B.
(eds.) ICALP 2015. LNCS, vol. 9135, pp. 159–170. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47666-6 13

https://arxiv.org/abs/1610.07499
http://dx.doi.org/10.1007/978-3-662-47666-6_13

280 P. Bouyer and V. Jugé

4. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger
LTL. J. Logic Comput. 19(6), 1541–1575 (2009)

5. Dong, G., Jianwen, S.: Incremental and decremental evaluation of transitive closure
by first-order queries. Inf. Comput. 120(1), 101–106 (1995)

6. Gelade, W., Marquardt, M., Schwentick, T.: The dynamic complexity of formal
languages. ACM Trans. Comput. Logic (TOCL) 13(3), 19 (2012)

7. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, New York (1995)

8. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and
parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04081-8 25

9. Hesse, W.: The dynamic complexity of transitive closure is in DynTC0. Theoret.
Comput. Sci. 296(3), 473–485 (2003)

10. Hesse, W.: Dynamic computational complexity. Ph.D. thesis, Department of Com-
puter Science, University of Massachusetts at Amherst, USA, September 2003

11. Hesse, W., Immerman, N.: Complete problems for dynamic complexity classes. In:
Proceedings of the 17th Annual Symposium on Logic in Computer Science (LICS
2002), pp. 313–322. IEEE Comp. Soc. Press, July 2002

12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, Boston (2006)

13. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science.
Springer, New York (1999)

14. Miltersen, P.B., Subramanian, S., Vitter, J.S., Tamassia, R.: Complexity models
for incremental computation. Theoret. Comput. Sci. 130(1), 203–236 (1994)

15. Muñoz, P., Vortmeier, N., Zeume, T.: Dynamic graph queries. In: Proceedings
of the 19th International Conference on Database Theory, ICDT 2016. Leibniz
International Proceedings in Informatics, vol. 48, pp. 14:1–14:18. Leibniz-Zentrum
für Informatik (2016)

16. Patnaik, S., Immerman, N.: Dyn-FO: a parallel, dynamic complexity class. J. Com-
put. Syst. Sci. 55(2), 199–209 (1997)

17. Weber, V., Schwentick, T.: Dynamic complexity theory revisited. Theory Comput.
Syst. 40(4), 355–377 (2007)

http://dx.doi.org/10.1007/978-3-642-04081-8_25
http://dx.doi.org/10.1007/978-3-642-04081-8_25

Proof Theory

Cyclic Arithmetic Is Equivalent
to Peano Arithmetic

Alex Simpson(B)

Faculty of Mathematics and Physics,
University of Ljubljana, Ljubljana, Slovenia

Alex.Simpson@fmf.uni-lj.si

Abstract. Cyclic proof provides a style of proof for logics with induc-
tive (and coinductive) definitions, in which proofs are cyclic graphs rep-
resenting a form of argument by infinite descent. It is easily shown that
cyclic proof subsumes proof by (co)induction. So cyclic proof systems
are at least as powerful as the corresponding proof systems with explicit
(co)induction rules. Whether or not the converse inclusion holds is a non-
trivial question. In this paper, we resolve this question in one interesting
case. We show that a cyclic formulation of first-order arithmetic is equiv-
alent in power to Peano Arithmetic. The proof involves formalising the
meta-theory of cyclic proof in a subsystem of second-order arithmetic.

1 Introduction

Cyclic (or circular1) proof has been studied by a number of authors, see,
e.g., [1,2,4–13,17–19,21,22,24]. It is a style of proof suitable for logics with
inductive and coinductive definitions. The main idea is to allow proofs to be
given as cyclic graphs, where the cycles capture the looping nature of arguments
by induction and coinduction. For this to provide a sound method of reasoning,
a global condition needs to be satisfied by the proof structure in order to rule
out fallacious circular arguments. The global condition can be seen as defining
cyclic proof as a formalisation of the concept of proof by infinite descent.

In [4,5,10,11], Brotherston and the author studied a natural style of cyclic
proof for first-order logic extended with ordinary inductive definitions in the style
of Martin-Löf [16]. It was shown that cyclic proof subsumes proof by induction.
The question of whether the two styles of proof are equivalent in power was left
open, but conjectured to have a positive answer. In a paper appearing alongside
this one, Berardi and Tatsuta refute this conjecture [3].2 In general, cyclic proof is

This material is based upon work supported by the Air Force Office of Scientific
Research, Air Force Materiel Command, USAF under Award No. FA9550-14-1-0096.

1 We prefer cyclic for two reasons: proofs are given as cyclic graphs; and the phrase
“circular proof” is uncomfortably close to “circular argument”, which means an
argument that goes round in a circle without establishing anything.

2 Independently of [3], Stratulat announced a number of potential counterexamples to
the conjecture in [23].

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 283–300, 2017.
DOI: 10.1007/978-3-662-54458-7 17

284 A. Simpson

more powerful than proof by induction (as long as the latter uses only induction
principles for the inductive definitions under consideration).

In this paper, we provide a complementary result to the theorem of Berardi
and Tatsuta. We study cyclic proof for first-order arithmetic. Our main result is
that the resulting Cyclic Arithmetic coincides with Peano Arithmetic. Thus, in
the context of first-order arithmetic, there is, after all, an equivalence in power
between cyclic proof and proof by induction.

From one point of view, the study of cyclic proof is particularly apposite
in the context of arithmetic. In Sect. 2, we argue that Cyclic Arithmetic is of
intrinsic interest as a natural formalisation of the notion of proof by infinite
descent. Our theorem thus has potential philosophical value in establishing a non-
trivial equivalence between infinite descent and induction. More generally, our
result contributes to the broad programme of obtaining a better understanding
of potential methods of proof. Cyclic methods, in particular, appear to offer
a promising extension to machine-assisted formalised proof [9], particularly for
applications in computer-science-oriented logics [1,2,6–8,12,13,17–19,24].

In Sect. 3, we introduce an infinitary proof system, whose ∞-proofs are non-
well-founded trees. This is sound and complete for the first-order theory of true
arithmetic. Then in Sect. 4, we define cyclic proofs as the restriction of ∞-proofs
to regular trees — those that can be presented as finite (cyclic) graphs. Impor-
tantly, the question of whether a finite graph presents a cyclic proof is decidable.
We end Sect. 4 with the proof that cyclic proof subsumes proof by induction;
i.e., that Cyclic Arithmetic contains Peano Arithmetic.

The results thus far are all direct analogues, in the setting of arithmetic,
of results in [11] for general inductive definitions. Nevertheless, we give detailed
proofs. In the case of the completeness theorem and of the proof that cyclic proof
subsumes induction, we do so because the proofs, in the context of arithmetic,
are simpler than the corresponding proofs for inductive definitions. In the case
of the soundness and decidability results, the proofs for arithmetic are similar
to those in [11]. Nevertheless, we supply the details because they are needed in
the proof of our main result, Theorem 6, which states that Cyclic Arithmetic is
conservative over Peano Arithmetic.

Theorem 6 is proved in Sect. 5. The proof method is to formalise the sound-
ness argument for ∞-proofs in ACA0, a subsystem of second-order arithmetic,
which has been widely studied in the context of reverse mathematics [20]. The
use of second-order logic is essential for formalising soundness because of the
infinitary nature of ∞-proofs. The reason for the particular choice of the subsys-
tem ACA0 is that it is conservative over Peano Arithmetic. Once the soundness
of Cyclic Arithmetic has been established in ACA0, the conservativity of Cyclic
Arithmetic then follows from a lemma (Lemma 9) that says that ACA0 can
recognise a cyclic proof when presented with one.

Section 6 is devoted to the proof of Lemma 9. For this, we make use of
constructions and results from the theory of Büchi automata, once again for-
malised in ACA0. Our presentation builds on the recent work of [15], in which

Cyclic Arithmetic Is Equivalent to Peano Arithmetic 285

the fundamental complementation result for Büchi automata is studied from the
perspective of reverse mathematics.

Finally, in Sect. 7, we discuss directions for further research.

2 Proof by Infinite Descent

The aim of this section is to motivate Cyclic Arithmetic informally as providing
a natural style of number-theoretic proof by infinite descent. We begin with a
standard example of a proof by infinite descent, establishing that

√
2 is irrational.

Since we work in the language of arithmetic, we express this as: there are no
natural numbers x0, x1 such that x0 > 0 and x2

0 = 2x2
1.

Suppose, for contradiction, that we have x0, x1 such that x0 > 0 and x2
0 =

2x2
1. It then follows that x0 > x1 > 0. Since 2 is a prime factor of x2

0 it must
be a prime factor of x0 itself. So x0 = 2x2 for some x2. So 4x2

2 = 2x2
1, hence

x2
1 = 2x2

2.
We have now gone round in a circle back to the start of the proof, but

with x1, x2 in place of x0, x1. By repeating the argument for x1, x2 we discover
that x1 > x2 > 0 and x2

2 = 2x2
3 for some x3. Continuing, x2 > x3 > 0 and

x2
3 = 2x2

4; whence x3 > x4 > 0, etc. So, starting from our initial assumptions
that x0 > 0 and x2

0 = 2x2
1, we produce an infinite strictly descending sequence

x0 > x1 > x2 > x3 > . . . of positive integers. Since no such sequence exists, we
have obtained the desired contradiction.

Figure 1 presents this proof as an infinite proof tree of sequents. The steps
labelled (�) and (†) are not intended to be atomic proof steps. Rather (�) is
the main number-theoretic lemma used in the proof, and (†) chains together
a few simple steps of arithmetical and logical reasoning (including a cut). The
ellipsis at the top right represents the continuation of the argument via an infi-
nite sequence of repetitions of the visible proof pattern, but with the variables
changed appropriately at each repetition.

(�)
0<x0, x2

0 = 2x2
1 ⇒ 0<x1<x0 ∧ ∃x2. x0 =2x2

···
0<x1, x2

1 = 2x2
2 ⇒ ⊥

x1 <x0, 0<x1, 4x2
2 = 2x2

1 ⇒ ⊥
(†)

0<x0, x2
0 = 2x2

1 ⇒ ⊥

Fig. 1. Infinite descent proof of the irrationality of
√

2

The proof tree in its entirety is an infinite tree, with one growing up to the
right. Going up this branch, the variables x0, x1, x2, . . . , once introduced, never
change their value. Moreover, we pass through an infinite sequence of underlined
statements x1 <x0, x2 <x1, x3 <x2 each appearing as an antecedent (i.e., left-
hand formula) in a sequent. It is this fact that makes the argument a valid proof
by infinite descent.

286 A. Simpson

x=0 ⇒ A(x,y,y+1)

···
(A)⇒ ∃z.A(x−1,1,z)

x>0, y=0 ⇒ ∃z.A(x,y,z)

···
(B)⇒ ∃z.A(x,y−1,z)

···
(C)⇒ ∃z.A(x−1,y′,z)

⇒ ∃z, y′. A(x,y−1,y′)∧A(x−1,y′,z)

x, y>0 ⇒ ∃z. A(x,y,z)

x>0 ⇒ ∃z.A(x,y,z)

⇒ ∃z.A(x,y,z)

Fig. 2. Infinite descent proof of the totality of the Ackermann-Péter function.

We present one more example of a proof in a similar style. Let A(x, y, z) be
a ternary relation on natural numbers satisfying:

A(x, y, z) ⇔ (x = 0 ∧ z = y + 1)
∨ (x > 0 ∧ y = 0 ∧ A(x − 1, 1, z))
∨ (x, y > 0 ∧ ∃w.A(x, y − 1, w) ∧ A(x − 1, w, z))

This formula defines A to be the graph of the well-known 2-argument
Ackermann-Péter function. Using standard techniques of definition, one can
encode A(x, y, z) by a Σ0

1-formula in the language of arithmetic satisfying the
equivalence above.

Figure 2 presents a proof by infinite descent of the totality of the Ackermann-
Péter function. As before, the individual rules are not atomic steps, but contain
arithmetical and logical reasoning, including manipulation of the defining prop-
erty of A(x, y, z) above. This time, the full infinite proof is built by repeating
the basic pattern three times, once each at (A), (B) and (C), ad infinitum. In
doing this, variables are substituted by the terms specified in each case. Note
that infinitely many variables y, y′, y′′, . . . appear in the infinite proof.

The proof in Fig. 2 presents a correct argument by infinite descent for the
following reason. By the local soundness of all rules in the proof, any x, y provid-
ing a counterexample to the concluding sequent will generate an infinite branch
together with assignments to all variables such that all sequents along the branch
are false. There are now two cases to consider.

– If the infinite branch passes through sequents in positions (A) or (C) infinitely
often then the value of the number supplied in the x position of A(x, y, z) is
decremented infinitely often even though it remains positive along the path.

– Otherwise, the branch must eventually reach a point after which it avoids (A)
and (C). Thus all subsequent repetitions are attained via (B). In this case, the
number appearing in the y position, at the point in question, is decremented
infinitely often, although it again remains positive.

Cyclic Arithmetic Is Equivalent to Peano Arithmetic 287

In either case, we have the desired contradiction.
Thus far, we have been describing proofs by infinite descent as infinite proofs.

This is in keeping with the idea that a proof by infinite descent should construct
infinite sequences, but it is not compatible with the idea of a proof as a finite
representation of an argument. Nonetheless, a very natural restriction on infinite
proofs can be imposed to achieve such a finite representation. One simply asks
for the infinite proof tree to be regular, namely for it to have only finitely many
distinct subtrees. Any such regular infinite proof tree can be presented as a finite
cyclic graph. For example, consider the version below of the proof from Fig. 1, in
which a substitution rule is used to make all subtrees rooted at sequents labelled
(∗) identical. The full proof tree is thus presented by the finite cyclic graph
obtained by identifying the nodes labelled (∗).

0<x0, x2
0 = 2x2

1 ⇒ 0<x1<x0 ∧ ∃x2. x0 =2x2

···
0<x0, x2

0 = 2x2
1

(∗)⇒ ⊥
(Sub)

0<x1, x2
1 = 2x2

2 ⇒ ⊥
x1 <x0, 0<x1, 4x2

2 = 2x2
1 ⇒ ⊥

0<x0, x2
0 = 2x2

1
(∗)⇒ ⊥

It is similarly possible to convert Fig. 2 to a regular infinite proof.
In Sect. 3, we give a precise definition of ∞-proof that formalises the notion

of infinite proof by infinite descent described informally above, and we show
that ∞-proofs are sound and complete for the first-order theory of true arith-
metic. Since the notion of proof is infinitary, the completeness result is unsur-
prising. For example, a similar completeness property is well known to hold
for ω-proofs, obtained by adding the infinitary ω-rule to (for example) sequent
calculus. Nonetheless, there is an important mathematical distinction between ω-
proofs and ∞-proofs. The former are given as infinitely-branching well-founded
trees. In contrast, ∞-proofs are finitely branching (potentially) non-well-founded
trees.

It is an advantage of ∞-proofs that they possess a naturally identifiable sub-
class of finitely presentable proofs, the regular ones, which we introduce as cyclic
proofs in Sect. 4. Our main result, the coincidence of cyclic proof for arithmetic
with Peano Arithmetic, thus establishes that finitary proof by infinite descent is
equivalent to proof by induction.

3 ∞-proofs

We formulate arithmetic using first-order logic with equality, with signature
(0, s,+, ·, <), where s is the successor function. The strict order relation < is
included as primitive because it is used in the definition of ∞-proof below.

We give a sequent calculus presentation of our proof calculus. For our pur-
poses, a sequent Γ ⇒ Δ is a pair of finite sets Γ,Δ of formulas. We use standard

288 A. Simpson

notational conventions for sequents, such as omitting set delimiters when writ-
ing sets, and using comma ‘,’ for union. We write Γ [θ] for the result of applying
the same substitution θ (mapping finitely many variables to associated terms)
to every formula in Γ . We also write Γ [t1, . . . , tk], for terms t1, . . . , tk, to mean
Γ [t1/x1, . . . , tk/xk], where x1, . . . , xk are distinct variables left implicit. In such
cases, a parallel mention of Γ [u1, . . . , uk] always means Γ [u1/x1, . . . , uk/xk] for
the same variables x1, . . . , xk.

Our proof system is built from three sets of rules manipulating sequents.
Rules for the logical constants (including equality) are presented in Fig. 3. Struc-
tural rules, including (Cut), are given in Fig. 4. Finally, basic arithmetic proper-
ties are axiomatised, in Fig. 5, by a list of 11 axiom sequents, together with one
further inference rule. The axioms and rule of Fig. 5 implement a finitely axioma-
tised theory of arithmetic corresponding to a natural expansion of Robinson’s
system Q with < as a primitive relation. As motivated in Sect. 2, our ∞-proofs
are infinite trees, where locally each node of the tree is given by an application of
one of the rules or axioms in Figs. 3, 4 and 5. We call such a tree a pre-∞-proof.
In order to qualify as an actual proof, such a tree will need to satisfy a further
condition, whose formulation requires the following definition.

Γ ∩ Δ �= ∅
Γ ⇒ Δ

Γ ⇒ A, Δ

Γ, ¬A ⇒ Δ

Γ, A ⇒ Δ

Γ ⇒ ¬A, Δ

Γ, A, B ⇒ Δ

Γ, A ∧ B ⇒ Δ

Γ ⇒ A, Δ Γ ⇒ B, Δ

Γ ⇒ A ∧ B, Δ

Γ, A ⇒ Δ Γ, B ⇒ Δ

Γ, A ∨ B ⇒ Δ

Γ ⇒ A, B, Δ

Γ ⇒ A ∨ B, Δ

Γ, A[t/x] ⇒ Δ

Γ, ∀x A ⇒ Δ

Γ ⇒ A[y/x], Δ
y fresh

Γ ⇒ ∀x A, Δ

Γ, A[y/x] ⇒ Δ
y fresh

Γ, ∃x A ⇒ Δ

Γ ⇒ A[t/x], Δ

Γ ⇒ ∃x A, Δ

Γ [u1, u2] ⇒ Δ[u1, u2]

Γ [u2, u1], u1 = u2 ⇒ Δ[u2, u1] Γ ⇒ t = t, Δ

Fig. 3. Cut-free sequent calculus with equality

Γ ⇒ Δ
(Wk)

Γ, Γ ′ ⇒ Δ′, Δ

Γ, A ⇒ Δ Γ ⇒ A, Δ
(Cut)

Γ ⇒ Δ

Γ ⇒ Δ
(Sub)

Γ [θ] ⇒ Δ[θ]

Fig. 4. Weakening, cut and substitution rules

Definition 1 (Precursor, trace, progress). Let (Γi ⇒ Δi)i≥0 be an infinite
branch through a pre-proof. For terms t, t′, we say that t′ is a precursor of t at
i if one of the following holds.

Cyclic Arithmetic Is Equivalent to Peano Arithmetic 289

t < u, u < v ⇒ t < v

t < u, u < t ⇒
⇒ t < u, t = u, u < t

t < 0 ⇒
t < u ⇒ s(t) < s(u)

⇒ t < s(t)
t < u, u < s(t) ⇒

⇒ t + 0 = t

⇒ t + s(u) = s(t + u)

⇒ t · 0 = 0

⇒ t · s(u) = (t · u) + t

Γ, t = s(x) ⇒ Δ
x fresh

Γ, 0 < t ⇒ Δ

Fig. 5. Axioms and rules for basic arithmetic

– Γi ⇒ Δi is the conclusion of an application of (Sub), and t = θ(t′) where θ is
the substitution used in the rule application.

– Γi ⇒ Δi is the conclusion of an (u1 =u2)-left rule, and it is possible to write
t′ and t as u[u1, u2] and u[u2, u1] respectively, for some term u.

– Γi ⇒ Δi is the conclusion of one of the other rules, and t′ = t.

We say that a term t occurs in a sequent Γ ⇒ Δ if it appears within some formula
in Γ,Δ (possibly as a subterm of another term). A trace along (Γi ⇒ Δi)i≥0 is a
sequence (ti)i≥N , for some N ≥ 0, such that, for every i ≥ N , the term ti occurs
in Γi ⇒ Δi, and also one of the following holds.

– Either ti+1 is a precursor of ti at i,
– or there exists (ti+1 < t) ∈ Γi+1 such that t is a precursor of ti at i.

When the latter case holds, we say that the trace progresses at i + 1.

Definition 2 (∞-proof). An ∞-proof is a pre-∞-proof that satisfies the fol-
lowing trace condition.

Along every infinite branch (Γi ⇒ Δi)i there exist N ≥ 0 and a trace
(ti)i≥N that progresses at infinitely many i.

Modulo the expansion of the depicted rules into combinations of primitive
rules from Figs. 3, 4 and 5, the proofs in Figs. 1 and 2 are both ∞-proofs,
for the reasons explained in Sect. 2. (E.g., the required trace in Fig. 1 is
x0, x1, x1, x2, x2,)

Semantically, we will be interested only in the standard interpretation in the
natural numbers N. We write N |=ρ A to say that formula A is true in N under

290 A. Simpson

an environment ρ that interprets the free variables of A as natural numbers. We
write N |=ρ Γ ⇒ Δ to mean: if N |=ρ A for all A ∈ Γ then there exists B ∈ Δ
such that N |=ρ B. We define N |= Γ ⇒ Δ to mean: N |=ρ Γ ⇒ Δ for all
N-environments ρ.

Theorem 3 (Soundness for ∞-proofs). If Γ ⇒ Δ has an ∞-proof then
N |= Γ ⇒ Δ.

Proof. We suppose, for contradiction, that we have an ∞-proof of Γ0 ⇒ Δ0, but
that N �|= ρ0 Γ0 ⇒ Δ0.

We first construct an infinite branch (Γi ⇒ Δi)i, together with an associated
sequence (ρi)i of environments, such that N �|= ρi Γi ⇒ Δi for all i. To do this,
Γi+1 ⇒ Δi+1 and ρi+1 are constructed from Γi ⇒ Δi and ρi as follows. Since
N �|= ρi Γi ⇒ Δi, the sequent Γi ⇒ Δi must be the conclusion of an inference
rule. If this rule is an instance of (Sub) then define ρi+1 = ρi ◦ θ, where θ is
the substitution in the rule. Otherwise define ρi+1 = ρi. By the soundness of
inference rules, at least one premise of the rule is a sequent Γ ′ ⇒ Δ′ for which
N �|= ρi+1 Γ ′ ⇒ Δ′. We define Γi+1 ⇒ Δi+1 to be a chosen such premise.

By the trace condition, the infinite branch has a trace (ti)i≥N that progresses
infinitely often. Consider the associated sequence of numbers (tρi

i)i≥N . Since
N �|= ρi Γi ⇒ Δi, we have that N |= ρi A for every A ∈ Γi. So, using the definitions
of precursor and of ρi+1, if ti+1 is a precursor of t then ti+1

ρi+1 = t ρi . Therefore,

– t
ρi+1
i+1 = tρi

i , if ti+1 is a precursor of ti; and
– t

ρi+1
i+1 < tρi

i , if (ti+1 < t) ∈ Γi+1 and t is a precursor of ti.

By the trace condition, the second case applies infinitely often. Thus (tρi

i)i≥N is
an infinite non-increasing sequence of natural numbers that decreases infinitely
often, which gives the desired contradiction. ��

Due to their infinitary nature, ∞-proofs are complete. Indeed, completeness
holds even for proofs that contain no instances of (Wk) and (Sub), and in which
(Cut) occurs only in cases in which the cut formula A is atomic. We call such
proofs atomic cut ∞-proofs.

Theorem 4 (Atomic-cut completeness for ∞-proofs). If N |= Γ ⇒ Δ
then there exists an atomic-cut ∞-proof of Γ ⇒ Δ.

Proof. The main observation required is that the sequent calculus ω-rule:

Γ [0] ⇒ Δ[0] Γ [s(0)] ⇒ Δ[s(0)] Γ [s(s(0))] ⇒ Δ[s(s(0))]

Γ [t] ⇒ Δ[t]

is simulated by the ∞-proof below (we combine multiple rules into single steps).

Cyclic Arithmetic Is Equivalent to Peano Arithmetic 291

Γ [0] ⇒ Δ[0]

t=0, Γ [t] ⇒ Δ[t]

Γ [s(0)] ⇒ Δ[s(0)]

x1=0, Γ [s(x1)] ⇒ Δ[s(x1)]

Γ [s(s(0))] ⇒ Δ[s(s(0))]

···
x2 >0, Γ [s(s(x2))] ⇒ Δ[s(s(x2))]

x2 <x1 , Γ [s(s(x2))] ⇒ Δ[s(s(x2))]

x1=s(x2), Γ [s(x1)] ⇒ Δ[s(x1)]

x1 >0, Γ [s(x1)] ⇒ Δ[s(x1)]

x1 <t , Γ [s(x1)] ⇒ Δ[s(x1)]

t=s(x1), Γ [t] ⇒ Δ[t]

t>0, Γ [t] ⇒ Δ[t]

Γ [t] ⇒ Δ[t]

To apply the above, we plug in an ∞-proof for each premise Γ [n] ⇒ Δ[n].
The resulting pre-∞-proof has just one additional infinite branch, the rightmost
branch. Along this branch, the sequence t, t, t, x1, x1, x1, x2, x2, x2, . . . is an infi-
nitely progressing trace. (The progress points are underlined.) ��

4 Cyclic Arithmetic

A (possibly infinite) tree is said to be regular if it has only finitely many distinct
subtrees. Equivalently, a tree is regular if it can be defined as an unfolding of a
finite directed (possibly cyclic) graph.

We shall be interested in regular ∞-proofs; that is, in ∞-proofs whose under-
lying pre-∞-proofs are regular trees. For this, we consider a regular pre-∞-proof
to be presented by a finite graph of the following form. Each vertex v of the
graph is labelled with an instance rule(v) of one of the rules in Figs. 3, 4 and
5. We write conc(v) for the sequent that is the conclusion of the rule instance,
and premi(v) for the sequent that is the i-th premise. (Axioms are considered as
rules with 0 premises.) When a vertex v has label rule(v) with n premises, the
graph must contain exactly n edges e1v, . . . , en

v with source v. Moreover, for each
i = 1, . . . , n, it must hold that premi(v) = conc(vi), where vi is the target vertex
of ei

v. Finally, there is a distinguished vertex ε, which represents the conclusion
of the pre-∞-proof; i.e., conc(ε) is the conclusion sequent.

It is straightforward to see how each such finite graph presentation unfolds
to a regular pre-∞-proof, and conversely how each regular pre-∞-proof can be
given such a presentation; see [11] for a detailed treatment.

We next establish the decidability of the global trace condition for regular
pre-∞-proofs, for which we follow analogous arguments in [11,21]. Although the
relatively simple construction does not provide a practical decision procedure, it
has the advantage of facilitating the proofs in Sect. 6 below.

Recall that a (nondeterministic) Büchi automaton over an alphabet Σ is
just a nondeterministic finite automaton over Σ with an acceptance condition
defined for infinite words as follows. An accepting run of a Büchi automaton B
is an infinite sequence of consecutive transitions, starting from an initial state,

292 A. Simpson

that passes through an accepting state infinitely often. An infinite word X ∈ Σω

is accepted by B if there exists an accepting run labelled by X.

Theorem 5. It is decidable whether a regular pre-∞-proof, presented as a finite
directed graph, is an ∞-proof.

Proof. Let Σ be the alphabet whose symbols are the edges in the finite graph
G that presents the proof. We construct a Büchi automaton Bt over Σ that
recognises those infinite paths through G that possess an infinitely progressing
trace. The states of Bt are of the form:

– (v) where v is a vertex in G.
– (v, t) where v is a vertex in G and t is a term in conc(v).
– (v, t,�) where v is a vertex in G and t is a term in conc(v).

The transitions are of the form:

– (v)
ei
v−→(v′) and (v)

ei
v−→(v′, t′) whenever v′ is the target of ei

v.

– (v, t)
ei
v−→(v′, t′) and (v, t,�)

ei
v−→(v′, t′) whenever v′ is the target of ei

v and t′ is
a precursor of t for rule(v).

– (v, t)
ei
v−→(v′, t′,�) and (v, t,�)

ei
v−→(v′, t′,�) whenever v′ is the target of ei

v and
(t′ < t′′) is an antecedent of conc(v′) for some precursor t′′ of t for rule(v).

The accepting states are those with a � component. The start state is ε. It is
clear that an ω-word is accepted if and only if it defines an infinite path through
the pre-∞-proof that possess an infinitely progressing trace.

We also need a Büchi automaton Bp that recognises the language of all
infinite paths through the pre-∞-proof. The construction of this is trivial, hence
omitted.

The pre-∞-proof is an ∞-proof if and only if there is an inclusion of ω-
languages L(Bp) ⊆ L(Bt). Such inclusions are decidable. ��

Since regular ∞-proofs are presented as finite cyclic graphs, we call such
proofs cyclic proofs, following the terminology of [11]. Similarly, we call the first-
order theory consisting of all sentences A such that the sequent ⇒ A has a cyclic
proof Cyclic Arithmetic (CA).

The main result of this paper is that Cyclic Arithmetic coincides with Peano
Arithmetic (PA). To ease the comparison, we assume that PA is also formulated
in the language (0, s,+, ·, <).

Theorem 6 (Coincidence theorem). CA = PA.

The proposition below establishes the easier inclusion of Theorem 6. The
converse inclusion is left to Sect. 5.

Cyclic Arithmetic Is Equivalent to Peano Arithmetic 293

Proposition 7. PA ⊆ CA.

Proof. The axioms and rule of Figs. 3, 4 and 5 capture all of PA except for
the induction schema. Moreover, since we have the cut rule, the cyclic-provable
sentences are closed under logical consequence. We thus need only show that
every instance of induction has a cyclic proof. Such a proof is given by (we
identify the (∗) nodes):

x0=0, A[0] ⇒ A[x0]

A[0],∀y.(A[y] → A[s(y)])
(∗)⇒ A[x0]

(Sub)
A[0],∀y.(A[y] → A[s(y)]) ⇒ A[x1]

x1<x0, A[0],∀y.(A[y] → A[s(y)]) ⇒ A[s(x1)]

x0=s(x1), A[0],∀y.(A[y] → A[s(y)]) ⇒ A[x0]

x0>0, A[0],∀y.(A[y] → A[s(y)]) ⇒ A[x0]

A[0],∀y.(A[y] → A[s(y)])
(∗)⇒ A[x0]

The infinite trace is (x0 x0 x0 x1 x1 x1)ω. This indeed progresses infinitely often,
at the point underlined in the proof. ��

5 Conservativity of CA over PA

The goal of this section is to prove that CA ⊆ PA. The first step is to prove
the soundness of ∞-proofs in ACA0, a well-known subsystem of second-order
arithmetic, which enjoys the property of being conservative over PA. The use
of a second-order language allows the formalisation of concepts associated with
infinite trees and infinite paths through them, which is necessary for reasoning
about ∞-proofs.

Recall (see [20] for a detailed exposition) that the language of second-order
arithmetic extends our first-order language with: set variables X,Y,Z, . . . ; with
quantification over set variables; and with a new atomic formula t ∈ X, where t
is a first-order term and X a set variable. A formula is said to be arithmetical
if it does not contain any set quantifiers (it may contain free set variables). The
theory ACA0 contains the usual first-order axioms of arithmetic, the expected
quantifier rules for set variables, and the two principles below.

– The induction axiom:

∀X. 0 ∈ X ∧ (∀x. x ∈ X → s(x) ∈ X) → ∀x. x ∈ X.

– The arithmetical comprehension schema:

∃X.∀x. (x ∈ X ↔ φ),

where φ ranges over arithmetical formulas in which the set variable X does
not occur free.

294 A. Simpson

We assume reasonable encodings of ordered pairs, and sequences as numbers,
in which each ordered pair and sequence has a unique encoding. A set X of
natural numbers encodes a tree if:

– every x ∈ X encodes a sequence x1 . . . xk for some k ≥ 0;
– if (an encoding of) x1 . . . xkxk+1 ∈ X then also x1 . . . xk ∈ X; and
– ε ∈ X (where ε encodes the empty sequence).

A (partial) function is encoded as a set X of (codes of) ordered pairs
satisfying: if (x, y) ∈ X and (x, z) ∈ X then y = z. The domain of X is
{x | ∃y. (x, y) ∈ X}. We say that a set X encodes a labelled tree if it encodes a
function whose domain is a tree. In this case we call the elements of the domain
of X the nodes of X, and we call the result of applying the function to a node
x the label of x.

We shall encode ∞-proofs as trees labelled with Gödel numbers of instances
of rules from Figs. 3, 4 and 5. For this, we assume a reasonable Gödel numbering
of terms, formulas, sequents and rule instances.

Let X encode a labelled tree. We say that X encodes a pre-∞-proof if:

– for every (x, y) ∈ X, we have that y encodes a valid rule instance rule(x);
– if rule(x1 . . . xk) has n premises then the n sequences x1. . .xk1, . . . , x1. . .xkn

are all nodes in X, and no other sequence x1 . . . xki is a node in X; and
– if x1 . . . xki is a node in X then premi(x1 . . . xk) = conc(x1 . . . xki), where we

write premi(x) for the i-th premise of rule(x) and conc(x) for the conclusion.

An infinite branch through a tree X is given by a function Y with domain
N, such that Y (0) = ε and, for every x, it holds that Y (s(x)) is a child in X
of Y (x). A set Z encodes a sequence (ti)i≥N of terms if it is a partial function
with domain {x | x ≥ N} and, for every x ≥ N , it holds that Z(x) is the Gödel
number of a term. If X encodes a pre-∞-proof, Y is an infinite branch through
X, and Z is a sequence of terms then Definition 1 can be directly translated into
the language of second-order arithmetic to define (arithmetical) formulas that
express each of the properties:

– Z is a trace along Y in X;
– the trace Z progresses at i in the branch Y of X;
– the trace Z progresses infinitely often in the branch Y of X.

(Note that X needs to appear explicitly in the above formulas because the
labelling containing the information about which inference rules are applied is
present only in X.) One can thus directly formalize Definiton 2 to obtain a
(non-arithmetical) formula expressing:

– X is an ∞-proof.

We wish to prove the soundness of ∞-proofs in ACA0. Thus, we would like to
show that, when we have an ∞-proof of a sequent, that sequent is true (under
any interpretation of its free variables). However, the above statement cannot be

Cyclic Arithmetic Is Equivalent to Peano Arithmetic 295

formulated in ACA0, because truth is a non-arithmetical property of first-order-
arithmetic formulas. We circumvent this by bounding the logical complexity of
formulas. For every n ≥ 0, there is a first-order-arithmetic formula Trn(x, y)
which holds if and only if: x is the Gödel number �A� of a Σ0

n-formula A, and
y is the encoding �ρ� an environment ρ, assigning numbers to all free variables
in A, such that N |=ρ A. (See [14, Chap. 9] for a careful construction of such a
formula.) If A is a Σ0

n-sentence then PA proves the truth-reflection schema:

Trn(�A�, �∅�) ↔ A. (1)

Lemma 8 (Formalised soundness). For every n ≥ 0 , ACA0 proves: “for
all X, if X is an ∞-proof, containing formulas of complexity at most Σ0

n, then,
for every assignment ρ of numbers to all free variables in the conclusion sequent
Γ ⇒ Δ of X, the formula

∧
Γ →

∨
Δ is Σ0

n+1-true under ρ”.

In the statement of the lemma, we use quoted sans-serif to emphasise the scope
of the formal statement proved in ACA0. Notice that this formal statement is
really a statement about encodings of ∞-proofs and Gödel numbers of sequents
and formulas. We have stated it informally for readability. Note also that the
use of the Σ0

n+1-truth predicate is appropriate because
∧

Γ →
∨

Δ is a Δ0
n+1-

formula. For convenience, we henceforth write the sequent Γ ⇒ Δ in place of the
formula

∧
Γ →

∨
Δ in order to talk directly about truth and falsity of sequents.

Proof. We formalise the proof of Theorem 3 in ACA0. So again suppose we have
an ∞-proof X of Γ0 ⇒ Δ0, but that Γ0 ⇒ Δ0 is Σ0

n+1-false under ρ0.
The main point that requires elaboration is the construction, in ACA0, of the

infinite path (Γi ⇒ Δi)i in combination with the associated sequence (ρi)i of
environments. For this, we assign, to every node x in X, an environment ρx:

– ρε = ρ0.

– ρx1...xkxk+1 =

{
ρx1...xk

if rule(x1 . . . xk) is not an instance of (Sub)
ρx1...xk

◦ θ if rule(x1 . . . xk) is a (Sub) with substitution θ

Let Y be the set (whose definition, for unbounded n, requires full arithmetical
comprehension):

{x ∈ X | for all prefixes x′ of x, the sequent conc(x′) is Σ0
n+1-false under ρx′}.

Then Y is a finitely branching tree. Moreover, by the soundness of inference
rules, every x ∈ Y has a child node x′ ∈ Y . Thus Y is infinite. Hence, by König’s
lemma (which is a theorem of ACA0 [20]), there exists an infinite branch Z
in Y . Then i �→ conc(Z(i)) defines (Γi ⇒ Δi)i and i �→ ρZ(i) defines (ρi)i.

The remainder of the proof, which argues that an infinitely progressing trace
along Z contradicts the falsity of the sequents in Z, goes through exactly as in
the proof of Theorem 3. ��

We next consider cyclic proofs. Any such is presented by a finite graph of the
kind introduced at the start of Sect. 4. We assume a sensible encoding of such

296 A. Simpson

graphs as natural numbers, and we write �G� for the number representingG. Given
�G�, we define in ACA0 the pre-∞-proof generated by G as the set unfold(�G�)
defined as:

{(x1 . . . xk, y) | there is a path ε ex1 v1 ex2 v2 . . . exk vk in G, and y = rule(vk)}.

This indeed defines a set since the defining formula is arithmetical.

Lemma 9. If G is a finite graph presentation of a regular ∞-proof then ACA0

proves “unfold(G) is an ∞-proof”.

Here, and henceforth, we write unfold(G) rather than unfold(�G�), since the
latter is the default interpretation of the former. Whenever we refer to a finite
combinatorial object within ACA0, we always do so via its numerical encoding.

We postpone the proof of Lemma 9 to Sect. 6 below. Modulo this one pending
proof, we now have all the ingredients to complete the proof of Theorem 6.

Proposition 10. CA ⊆ PA.

Proof. Suppose G is a finite graph presentation of a regular ∞-proof with con-
clusion sequent ⇒ A, where A is a sentence. Let n be such that every formula in
G is at most Σ0

n. By Lemma 9, ACA0 proves “unfold(G) is an ∞-proof”. Whence,
by Lemma 8, ACA0 proves “A is Σ0

n+1-true”. Therefore, by an application of the
reflection property (1) of the Σ0

n+1-truth predicate, ACA0 proves A. Since ACA0

is conservative over PA, it follows that PA proves A. ��

Propositions 7 and 10 together establish Theorem 6.

6 Büchi Automata in ACA0

It remains to prove Lemma 9. Our method of proof is to apply the theory of
Büchi automata as formalised in ACA0. Since a Büchi automaton B over a finite
alphabet Σ is a finite combinatorial object, it can be encoded as a natural number
�B�. We thus formalise properties of Büchi automata as properties of their codes,
but we continue with our policy of omitting explicit reference to codes. In ACA0,
an infinite word is coded as a set X defining an infinite sequence of elements
of Σ. The property:

B accepts the infinite word X

is directly expressible by a (non-arithmetical) formula in second-order arithmetic.
Using this, we formalise the following properties of Büchi automata in ACA0.

Proposition 11 (Formalised Büchi intersection). There is a computable
binary function � such that ACA0 proves: “for all Büchi automata B1, B2, it holds
that B1�B2 is a Büchi automaton satisfying:

for every infinite Σ-word X, B1�B2 accepts X ↔ B1 and B2 both accept X ′′.

Cyclic Arithmetic Is Equivalent to Peano Arithmetic 297

Proposition 12 (Formalised Büchi complementation). There is a com-
putable unary function (·)c such that ACA0 proves: “for every Büchi automaton
B it holds that Bc is a Büchi automaton satisfying:

for every infinite Σ-word X, Bc accepts X ↔ B does not accept X ′′.

The above propositions hold because the standard proofs are directly formalis-
able in ACA0. Complementation is the more interesting of the two cases since
its proof involves nontrivial infinite combinatorics. For example, the crucial step
in Büchi’s original proof invokes the infinite Ramsey Theorem for pairs (see,
e.g., [25]). This does not present a problem for the formalisation because the
(general) infinite Ramsey Theorem holds in ACA0 (see, e.g., [20]). A full analysis
can be found in the recent paper [15], where it is shown that Proposition 12 is
equivalent to the schema Σ0

2-IND of Σ0
2-induction, relative to the weak subsystem

of second-order arithmetic RCA0. In particular, this means that Proposition 12
is provable in RCA0+Σ0

2-IND, which is a subsystem of ACA0.
If B is a Büchi automaton, we write →∗

B for the reachability relation on states
of B (the transitive-reflexive closure of the label-erased transition relation →B).
The ternary relation “B is a Büchi automaton and y →∗

B z” is definable by a
formula in second-order arithmetic with free first-order variables x, y, z where
the parameter x supplies B via its code.

Proposition 13 (Formalised non-emptiness criterion). ACA0 proves: “for
every Büchi automaton B, there exists X ∈ Σω accepted by B if and only if there
exist states q0, q1 of B such that q0 is initial, q1 is accepting and q0 →∗

B q1 →∗
B q1”.

We omit the proof, which is once again a straightforward formalisation of the
(this time easy) standard argument.

Lemma 14. If B is a Büchi automaton recognising the empty language then
ACA0 proves: “for every infinite Σ-word X, the automaton B does not accept X”.

Proof. Suppose B recognises the empty language. By the standard non-
formalised version of Proposition 13, there do not exist states q0, q1 of B such
that q0 is initial, q1 is accepting and q0 →∗

B q1 →∗
B q1. Since B is finite, the

relation →∗
B can be encoded as a natural number �→∗

B�. Easily, ACA0 proves:
“�→∗

B� encodes a transitive, reflexive relation R that contains →B , and there do
not exist states q0, q1 of B such that q0 is initial, q1 is accepting and q0 R q1 R q1”.
Since →∗

B is the smallest transitive-reflexive relation containing →B , it follows
that ACA0 proves: “there do not exist states q0, q1 of B such that q0 is initial, q1
is accepting and q0 →∗

B q1 →∗
B q1”. Hence, by Proposition 13, ACA0 proves: “for

every infinite Σ-word X, the automaton B does not accept X”. ��

Proof (of Lemma 9). Let G be a finite graph presentation of a regular pre-∞-
proof. Consider the Büchi automata Bt and Bp defined in the proof of Theorem 5.
By the definitions of Bt and Bp, the following statements are provable in ACA0.

– “For all X, Bt accepts X if and only if X is a path through G that possesses an
infinitely progressing trace.”

298 A. Simpson

– “For all X, Bp accepts X if and only if X is an infinite path through G.”

Hence, by Propositions 11 and 12, ACA0 proves:

“unfold(G) is an ∞-proof iff there is no X such that Bt
c �Bp accepts X”. (2)

Now, assume G presents an ∞-proof. We have, as in the proof of Theorem 5,
L(Bt) ⊆ L(Bp), hence the language of the Büchi automaton Bt

c �Bp is empty.
Hence, by Lemma 14, ACA0 proves: “there is no X such that Bt

c �Bp accepts
X”. It thus follows from (2) that ACA0 proves: “unfold(G) is an ∞-proof”, as
required. ��

7 Further Work

The following are natural possible continuations of the work in this paper.

(i) Give a syntactic rewrite-based proof eliminating non-atomic cuts from ∞-
proofs. (This is done in [2,13] for different notions of cyclic proof.)

(ii) Give an explicit syntactic translation from cyclic proofs to proofs in PA.
Is there an essential blow-up in size? (Because of Solovay’s speed-up theo-
rem for ACA0 over PA, the indirect translation implicit in our proof has a
potential non-elementary blow-up.)

(iii) Understand the power of cyclic proof in the context of weaker fragments
of arithmetic. For example, what is the power of cyclic proof if restricted
to Σ0

1-sequents? The example in Fig. 2 shows that the resulting theory is
stronger than IΣ1.

(iv) If the rules and axioms in Figs. 3, 4 and 5 are changed to their intuitionistic
versions is the resulting notion of cyclic proof conservative over Heyting
Arithmetic?

(v) Understand in general terms when cyclic proof is conservative over proof by
induction (as in this paper), and when it is not (as in [3]).

References

1. Baelde, D.: On the proof theory of regular fixed points. In: Giese, M., Waaler,
A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 93–107. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02716-1 8

2. Baelde, D., Doumane, A., Saurin, A.: Infinitary proof theory: the multiplicative
additive case. In: Talbot, J.-M., Regnier, L. (eds.) 25th EACSL Annual Con-
ference on Computer Science Logic (CSL 2016). Leibniz International Proceed-
ings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 62, pp. 42:1–42:17. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

3. Berardi, S., Tatsuta, M.: Classical system of Martin-Löf’s inductive definitions
is not equivalent to cyclic proof system. In: Esparza, J., Murawski, A.S. (Eds.)
FOSSACS 2017. LNCS, vol. 10203, pp. 301–317. Springer, Heidelberg (2017)

4. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005). doi:10.1007/11554554 8

http://dx.doi.org/10.1007/978-3-642-02716-1_8
http://dx.doi.org/10.1007/11554554_8

Cyclic Arithmetic Is Equivalent to Peano Arithmetic 299

5. Brotherston, J.: Sequent calculus proof systems for inductive definitions. Ph.D.
thesis, University of Edinburgh, November 2006

6. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: Proceedings of POPL-35, pp. 101–112. ACM (2008)

7. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 12

8. Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety and
termination preconditions. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS,
vol. 8723, pp. 68–84. Springer, Cham (2014). doi:10.1007/978-3-319-10936-7 5

9. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 25

10. Brotherston, J., Simpson, A.: Complete sequent calculi for induction and infinite
descent. In: Proceedings of LICS-22, pp. 51–60. IEEE Computer Society, July 2007

11. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Logic Comput. 21(6), 1177–1216 (2011)

12. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time µ-calculus.
In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284.
Springer, Heidelberg (2006). doi:10.1007/11944836 26

13. Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut-elimination.
In: Computer Science Logic 2013 (CSL 2013), CSL 2013, 2–5 September 2013,
Torino, Italy, pp. 248–262 (2013)

14. Kaye, R.: Models of Peano Arithmetic. Number 15 in Oxford Logic Guides. Oxford
University Press, Oxford (1991)

15. Kolodziejczyk, L.A., Michalewski, H., Pradic, P., Skrzypczak, M.: The logical
strength of Büchi’s decidability theorem. In: Talbot, J.-M., Regnier, L. (eds.)
25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leib-
niz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 62,
pp. 36:1–36:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

16. Martin-Löf, P.: Haupstatz for the intuitionistic theory of iterated inductive def
initions. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic
Symposium, pp. 179–216. North Holland (1971)

17. Mio, M., Simpson, A.: A proof system for compositional verification of probabilistic
concurrent processes. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp.
161–176. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37075-5 11

18. Niwiński, D., Walukiewicz, I.: Games for the μ-calculus. Theoret. Comput. Sci.
163, 99–116 (1997)

19. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In:
Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 357–371.
Springer, Heidelberg (2002). doi:10.1007/3-540-45931-6 25

20. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic.
Association for Symbolic Logic, New York (2009)

21. Sprenger, C., Dam, M.: A note on global induction mechanisms in a μ-calculus
with explicit approximations. Theor. Inform. Appl. 37, 365–399 (2003)

22. Sprenger, C., Dam, M.: On the structure of inductive reasoning: circular and tree-
shaped proofs in the µcalculus. In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS, vol.
2620, pp. 425–440. Springer, Heidelberg (2003). doi:10.1007/3-540-36576-1 27

http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-319-10936-7_5
http://dx.doi.org/10.1007/978-3-642-35182-2_25
http://dx.doi.org/10.1007/11944836_26
http://dx.doi.org/10.1007/978-3-642-37075-5_11
http://dx.doi.org/10.1007/3-540-45931-6_25
http://dx.doi.org/10.1007/3-540-36576-1_27

300 A. Simpson

23. Stratulat, S.: Structural vs. cyclic induction: a report on some experiments with
Coq. In: SYNASC 2016: Proceedings of the 18th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing, pp. 27–34. IEEE Com-
puter Society (2016)

24. Studer, T.: On the proof theory of the modal mu-calculus. Stud. Logica. 89(3),
343–363 (2008)

25. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 133–192.
Elsevier Science Publishers, Amsterdam (1990)

Classical System of Martin-Löf’s Inductive
Definitions Is Not Equivalent

to Cyclic Proof System

Stefano Berardi1(B) and Makoto Tatsuta2

1 Università di Torino, Turin, Italy
stefano@di.unito.it

2 National Institute of Informatics/Sokendai, Tokyo, Japan

Abstract. A cyclic proof system, called CLKIDω, gives us another way
of representing inductive definitions and efficient proof search. The 2011
paper by Brotherston and Simpson showed that the provability of CLKIDω

includes the provability of Martin-Löf’s system of inductive definitions,
called LKID, and conjectured the equivalence. Since then, the equiva-
lence has been left an open question. This paper shows that CLKIDω and
LKID are indeed not equivalent. This paper considers a statement called
2-Hydra in these two systems with the first-order language formed by
0, the successor, the natural number predicate, and a binary predicate
symbol used to express 2-Hydra. This paper shows that the 2-Hydra
statement is provable in CLKIDω, but the statement is not provable in
LKID, by constructing some Henkin model where the statement is false.

1 Introduction

An inductive definition is a way to define a predicate by an expression which
may contain the predicate itself. The predicate is interpreted by the least fixed
point of the defining equation. Inductive definitions are important in computer
science, since they can define useful recursive data structures such as lists and
trees. Inductive definitions are important also in mathematical logic, since they
increase the proof theoretic strength. Martin-Löf’s system of inductive definitions
given in [10] is one of the most popular system of inductive definitions. This
system has production rules for an inductive predicate, and the production rule
determines the introduction rule and the elimination rule for the predicate.

Brotherston [3] and Simpson [6] proposed an alternative formalization of
inductive definitions, called a cyclic proof system. A proof, called a cyclic proof,
is defined by proof search, going upwardly in a proof figure. If we encounter
the same sequent (called a bud) as some sequent we already passed (called a
companion) we can stop. The induction rule is replaced by a case rule, for this
purpose. The soundness is guaranteed by some additional condition, called the
global trace condition, which guarantees the case rule decreases some measure
of a bud from that of the companion. In general, for proof search, a cyclic proof
system can find an induction formula in a more efficient way than Martin-Löf’s
c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 301–317, 2017.
DOI: 10.1007/978-3-662-54458-7 18

302 S. Berardi and M. Tatsuta

system, since a cyclic proof system does not have to choose fixed induction
formula in advance. A cyclic proof system enables us efficient implementation of
theorem provers with inductive definitions [2,4,5,7]. In particular, it works well
for theorem provers of separation logic.

Brotherston and Simpson [6] investigated Martin-Löf’s system LKID of induc-
tive definitions in classical logic for the first-order language, and the cyclic proof
system CLKIDω for the same language, showed the provability of CLKIDω includes
that of LKID, and conjectured the equivalence. Since then, the equivalence has
been left an open question. Simpson [11] submitted a proof of a particular case
of the conjecture, for the theory of Peano Arithmetic.

This paper shows CLKIDω and LKID are indeed not equivalent. To this aim,
we will consider the first-order language formed by 0, the successor s, the natural
number predicate N , and a binary predicate symbol p. We introduce a statement
we call 2-Hydra, which is a miniature version of the Hydra problem considered
by Laurence Kirby and Jeff Paris [9]: the proviso “2” means that we only have
two “heads”. We define some statement, called the 2-Hydra statement, and we
show that the 2-Hydra statement is provable in CLKIDω with the language, but
the statement is not provable in LKID with the language. 2-Hydra is similar to a
candidate for a counter-example proposed by S. Stratulat [12]. The unprovability
is shown by constructing some model of CLKIDω where 2-Hydra is false.

For constructing the counter model M for the second result, we take both
the universe of M and the interpretation of the predicate N to be Nat+Z, where
Nat is the set of natural numbers and Z is the set of integers, and some predicate
p which is a counter-example of 2-Hydra. We prove that M is a model of LKID
by using a set of partial bijections on M and a quantifier elimination result.

The quantifier elimination theorem for a theory of partial equivalence rela-
tions is new, as far as we know, and it may have some independent interest.

This model also shows that LKID is not conservative when we add inductive
predicates, namely, it is not the case that for any language L, the system of LKID
with language L and any additional inductive predicate is conservative over the
system of LKID with L.

Section 2 describes Brotherston-Simpson conjecture. Section 3 defines the
2-Hydra statement and proves the 2-Hydra statement in CLKIDω. Section 4
defines the counter model M and the proof outline of it. Section 5 introduces
a family of partial bijections. Section 6 proves a quantifier elimination theorem
for a theory of partial bijections. Section 7 proves that the 2-Hydra statement is
not provable in LKID. Section 8 shows non-conservativity of LKID with additional
inductive predicates. We conclude in Sect. 9. Detailed proofs are in [1].

2 Brotherston-Simpson Conjecture

In this section we introduce Brotherston-Simpson Conjecture.

Classical System of Martin-Löf’s Inductive Definitions 303

2.1 Martin-Löf ’s Inductive Definition System LKID

We briefly remind you of Martin-Löf’s inductive definition system LKID, defined
in detail in [6].

The language of LKID is determined by a first-order language with inductive
predicate symbols. The logical system LKID is determined by production rules
for inductive predicate symbols. These production rules mean that the inductive
predicate denotes the least fixed point defined by these production rules.

We often abbreviate p(t), q(t, u) with pt, qtu. For example, for an inductive
predicate symbol N , the production rules may be written as

N0
Nx
Nsx

These production rules mean that N denotes the smallest set closed under 0
and s, namely the set of natural numbers. We call this set of production rules ΦN .

The inference rules of LKID are standard inference rules in classical first-
order logic LK with the introduction rules and the elimination rules for inductive
predicates, determined by the production rules. These rules describe that the
predicate actually denotes the least fixed point. In particular, the elimination
rule describes the induction principle.

For example, the above production rules give the introduction rules

Γ � N0,Δ

Γ � Nx,Δ

Γ � Nsx,Δ

and the elimination rule

Γ � F0,Δ Γ, Fx � Fsx,Δ Γ, F t � Δ

Γ,Nt � Δ

This elimination rule describes mathematical induction principle restricted to
N . LKID is sound with respect to a class of models called Henkin models (Defi-
nition 2.10 of [6]). We omit the definition of Henkin models and we only use the
following property: if a first order structure M satisfies the induction schema
for N , then M is an Henkin model of LKID with the predicate N .

2.2 Cyclic Proof System CLKIDω

A cyclic proof system CLKIDω [6] is defined as a system obtained from LKID
by (1) replacing elimination rules by case rules, (2) allowing a bud as an open
assumption and requiring a companion for each bud, (3) requiring the global
trace condition.

The case rule is defined by unfolding the production rule in the antecedent.
For example, the case rule for N is

Γ, t = 0 � Δ Γ, t = sx,Nx � Δ

Γ,Nt � Δ

304 S. Berardi and M. Tatsuta

In a cyclic proof, we can have open assumptions, called buds, but it is required
that each bud has some corresponding sequent of the same form, called a com-
panion, inside the proof figure.

An example of a cyclic proof is

� N0
� Ns0
� Nss0

(a)Nx � Nssx

Nx′ � Nssx′ (subst)

Nx′ � Nsssx′

(a)Nx � Nssx
(case)

where the mark (a) denotes the bud-companion pair. Remark that the companion
(a) uses Nx, but the bud (a) uses Nx where x is x′, so their actual meanings
are different even though they are of the same form.

A pre-proof of CLKIDω is obtained by recursively replacing every bud by the
proof of its companion. A trace is a sequence of occurrences of an atom in a path
of the proof tree, possibly moving to a case-descendant when passing through
a case rule. Moving to a case-descendant is called a progress point of the trace
(Definition 5.4 [6]). The global trace condition says that for every infinite path
there is a trace with infinitely many progress points following some tail of the
path (Definition 5.5 [6]). The global trace condition guarantees the soundness of
a cyclic proof system for fixed-point models. CLKIDω is not known to be sound
for Henkin models, and this leaves the possibility of having an Henkin counter-
model for a theorem of CLKIDω.

2.3 Brotherston-Simpson Conjecture

LKID has been often used for formalizing inductive definitions, while CLKIDω is
another way for formalizing inductive definitions, and moreover CLKIDω is more
suitable for proof search. This raises the question of the relationship between
LKID and cyclic proofs: Brotherston and Simpson conjectured the equality for
each inductive definition. The left-to-right inclusion is proved in [3], Lemma 7.3.1
and in [6], Theorem 7.6. Brotherston-Simpson conjecture (the Conjecture 7.7 in
[6]) is that the provability LKID includes that of CLKIDω. Simpson [11] submitted
a proof of the conjecture in the case of Peano Arithmetic. The goal of this paper
is to prove that it is false in general.

3 2-Hydra Problem

3.1 Hydra Problem

The Hydra of Lerna was a mythological monster, popping two smaller heads
whenever you cut one. It was a swamp creature (its name means “water”) and
possibly was the swamp itself, whose heads are the swamp plants, with two
smaller plants growing whenever you cut one. The original Hydra was defeated

Classical System of Martin-Löf’s Inductive Definitions 305

by fire, preventing heads to grow again. In the mathematical problem of Hydra,
we ask whether we may destroy an Hydra just by cutting heads.

Laurence Kirby and Jeff Paris [9] formulated the Hydra problem as a state-
ment for mathematical trees. We are interested about making Hydra a problem
for natural numbers, representing the length of a head, and restricting to the
case when the number of heads is always 2. We call our statement 2-Hydra.

3.2 2-Hydra Statement

In this subsection we give the 2-Hydra statement, which is a formula saying that
any 2-hydra eventually looses its two heads. This statement actually will give a
counterexample to Brotherston-Simpson conjecture.

Let ΣN be the signature {0, s,N, p} of a first order language, where 0, the
successor s, an inductive predicate N for natural numbers, and an ordinary
binary predicate symbol p. The logical system LKID(ΣN , ΦN) is defined as the
system LKID with the signature ΣN and the production rules ΦN .

We consider a formal statement of 2-Hydra. The number of head is always 2.
Either both heads have positive length, you reduce the length of the first head
by 1 unit, and of the second head by 2 units (if possible), or there is a unique
head with positive length, you duplicate it and you reduce it by 1 and by 2
units (if possible). We may express H by the convergence of the following set of
transformations on n,m ∈ Nat: if n ≥ 1 and m ≥ 2 then (n,m) �→ (n−1,m−2);
if n ≥ 2 then (n, 0) �→ (n − 1, n − 2); if m ≥ 2 then (0,m) �→ (m − 1,m − 2).
When no transformation applies we stop. We may define H by a formula in the
language ΣN : the intended meaning of p is the complement of the union of all
infinite sequences of transformations. From now on, we write A1, . . . , An → B
for A1 ∧ . . . ∧ An → C and ∀x1, . . . , xn ∈ N. A for ∀x1. ∀xn. N(x1) ∧ . . . ∧
N(xn) → A.

Definition 1 (2-Hydra Statement H). We define H = (Ha,Hb,Hc,Hd →
∀x, y ∈ N. p(x, y)), where Ha,Hb,Hc,Hd are:

(Ha) ∀x ∈ N. p(0, 0) ∧ p(s0, 0) ∧ p(x, s0),
(Hb) ∀x, y ∈ N. p(x, y) → p(sx, ssy),
(Hc) ∀y ∈ N. p(sy, y) → p(0, ssy),
(Hd) ∀x ∈ N. p(sx, x) → p(ssx, 0).

For all n,m ∈ Nat there is a unique formula among Ha,Hb,Hc,Hd having
some instance inferring p(n,m). The assumption p(n′,m′) of such a formula, if
any assumption exists, satisfies max(n′,m′) < max(n,m). Thus, we may prove
H in PA by induction on max(n,m). We could define p as an inductive predicate:
however, we preferred having p just a predicate symbol, because in this way the
definition of a counter-model does not require to check the inductive rule for p.

We will prove that LKID(ΣN , ΦN)+(0, s)-axioms does not prove 2-Hydra. We
define the (0, s)-axioms as the axioms “0 is not successor” or ∀x ∈ N. sx 	= 0,
and “successor is injective”, or ∀x, y ∈ N. sx = sy → x = y. These axioms

306 S. Berardi and M. Tatsuta

cannot be proved in LKID(ΣN , ΦN), because they fail, respectively, in the model
of LKID(ΣN , ΦN) uniquely determined by M = NM = {0}, s0 = 0, in the model
uniquely determined by M = NM = {0, s0}, 0 	= s0 and ss0 = s0. Compared
with PA, in LKID(ΣN , ΦN) + (0, s)-axioms we do not have a sum nor a product
on N , nor we have inductive predicate symbols for addition or multiplication.

3.3 2-Hydra Statement in Cyclic-Proof System

In this section, we give a cyclic proof of the 2-Hydra statement.
We define the logical system CLKIDω(ΣN , ΦN) as the system CLKIDω with

the signature ΣN and the production rules ΦN .

Theorem 1. The 2-Hydra statement H is provable in CLKIDω(ΣN , ΦN).

Proof. Let the 2-Hydra axioms Ĥ be Ha,Hb,Hc,Hd defined in Definition 1.
For simplicity, we will write the use of 2-Hydra axioms by omitting (Cut),

(→ R), (∀ R), (Axiom), as in the following example.

Ĥ,Nsy′′, Ny′′ � psy′′y′′

Ĥ,Nsy′′, Ny′′ � p0ssy′′

We will also write a combination of (Case) and (=L) as one rule in the following
example.

Ĥ � p00 Ĥ,Nx′ � psx′0

Ĥ,Nx � px0
Nx

For saving space, we omit writing Ĥ in every sequent int the next proof
figure. For example, Nx,Ny � pxy actually denotes Ĥ,Nx,Ny � pxy.

The following is a cyclic proof of Nx,Ny � pxy.

� p00

N0 � p10

(a)Nx,Ny � pxy

Nsx′′, Nx′′ � psx′′x′′

Nsx′′, Nx′′ � pssx′′0
Nx′ � psx′0

Nx � px0
Nx

N0, Nx � px1

(a)Nx,Ny � pxy

Nsy′′, Ny′′ � psy′′y′′

Nsy′′, Ny′′ � p0ssy′′

(a)Nx,Ny � pxy

Nx′, Ny′′ � px′y′′

Nsy′′, Nx′, Ny′′ � psx′ssy′′

Nsy′′, Nx,Ny′′ � pxssy′′ Nx

Nx,Ny′ � pxsy′

(a)Nx,Ny � pxy
Ny

The global trace condition holds for the following reason (the detailed proof is in
[1]). We have three possible choices for constructing an infinite path in the proof:
taking a bud of the left, middle, or right. For a given bud and z1, z2 ∈ {x, y},
we write z1 � z2 for a progressing trace from Nz1 in the companion to Nz2 in
the bud. We write z1 � z2, z3 for z1 � z2 and z1 � z3. For the left bud, there
are x � x, y. For the middle bud, there are y � x, y. For the left bud, there
are x � x and y � y. Hence, given an infinite path, there is some tail of the
path with an infinitely progressing trace, by cleverly choosing x and y possibly
alternatively. Hence the global trace condition holds. �

Classical System of Martin-Löf’s Inductive Definitions 307

4 A Structure M for the Language ΣN Falsifying
2-Hydra

In this section we define a structure M for the language ΣN , we prove that M
falsifies the 2-Hydra statement H, and we characterize the subsets of M which
satisfy the induction schema.

4.1 Outline of Proof of Non-Provability

In Sect. 4, we define a counter model M. The most difficult point is to prove
that M satisfies Definition 2.10 of [6] for having an Henkin model of LKID+ΣN .
We will prove a sufficient condition for it, the induction schema for N .

On one hand, we prove that in our structure M all unary definable predi-
cates of M are sets whose measure is some dyadic rational number. This involves
proving a quantifier-elimination result (Sect. 6) for a theory of partial equivalence
relations (Sect. 5). This result is new, as far as we know: for an introduction to
quantifier-elimination we refer to [8], Sects. 3.1 and 3.2). On the other hand,
Sect. 4.3 shows that a definable set of M with dyadic measure satisfies the
induction schema. Combining them, finally we will show that M satisfies the
induction schema for N and according to Definition 2.10 of [6] is an Henkin
model of LKID + ΣN .

4.2 Definition of the Structure M
Let Z be the set of relative integers. M is Nat + Z: we represent Nat + Z
by {(1, x) | x ∈ Nat} ∪ {(2, x) | x ∈ Z}. We first define the interpretations
0M, sM, NM. 0M is 0 in the component Nat and sM is the successor on Nat and
on Z. We choose NM = M: by construction, M satisfies the (0, s)-axioms. We
abbreviate x + n = sn

M(x), ∞ for the 0 in the component Z, and ∞ − n for the
relative integer −n in the component Z, for all n ∈ Nat. We define the following
subsets of M: Nat = {0M + n|n ∈ Nat} and Z− = {∞ − (n + 1)|n ∈ Nat} and
Z+0 = {∞ + n|n ∈ Nat}. The sets Nat, Z−, Z+0 are a partition of M.

In order to complete the definition of M we have to choose the interpretation
pM of the binary predicate p. We first define π = {(n, 2n)|n ∈ Nat} ⊆ Nat×Nat.
π is the set of points of the straight line y = 2x whose coordinates are some pair
of natural numbers. We imagine π starting from the infinite, moving at each step
from some (sa, ssb) to (a, b), and ending in (0, 0). Given any (m1,m2) ∈ M×M
we define (m1,m2)+π = {(m1+a,m2+b)|(a, b) ∈ π} and (m1,m2)−π = {(m1−
a,m2 − b)|(a, b) ∈ π}. We define three paths in M × M by π1 = (0M,∞) + π
and π2 = (∞, 0M) + π and π3 = (∞ − 1,∞ − 2) − π. Eventually, we set pM =
M2 \ (π1 ∪π2 ∪π3). As explained in the figure below, we may move forever along
π1 ∪ π2 ∪ π3 (in red) while “cutting heads” as follows: . . . �→ (0M + 2,∞ + 4) �→
(0M + 1,∞ + 2) �→ (0M,∞) �→ (∞ − 1,∞ − 2) �→ (∞ − 2,∞ − 4) �→

308 S. Berardi and M. Tatsuta

(∞,∞)(0,∞)

(∞, 0)

Nat

Z−

Z+0

Nat Z− Z+0

�
�

�
���

�
�

�
���

�
�

���

� head dupl.

�
he

ad
du

pl
.

Lemma 1 (The 2-Hydra Lemma). H is false in M

M satisfies by construction the closure of N under 0 and s, and the
(0, s)-axioms. In order to prove that M is a model for LKID(ΣN , ΦN) + (0, s)-
axioms, we have to prove that M satisfies Definition 2.10 of [6], Definition
2.10). Let H be the set of definable predicates of M. A predicate P ⊆ Mn

is definable in M if for some formula A in the language ΣN plus constants
denoting the elements of M, and with free variables in x1, . . . , xn, we have
P = {(m1, . . . ,mn) ∈ Mn|M |= A[m1/x1, . . . ,mn/xn]}. We write Hn for the
subset of definable predicates of arity n: we call H1 the set of definable sets of
M. According to Definition 2.10 of [6], we have to prove that M is the smallest
pre-fixed point in H1 for the inductive definition of N : a sufficient condition is
to prove the induction schema, that all X ∈ H1 which are closed under 0 and s
are equal to M.

4.3 The Measure of the Subsets of M Closed Under 0 and s

In this subsection we define a sufficient condition for a predicate on M to satisfy
the induction schema, by using a finitely additive measure μ(X), defined on
some subsets X ⊆ M. We will prove that all definable subsets of M satisfy this
condition.

Definition 2 (Measure of a Subset of M). For any X ⊆ M we set: μ(X) =
limx→∞

card({0M+n,∞−n,∞+n∈M|n∈[0,x]}∩X)
3(x+1) whenever this limit exists.

For instance, μ(Nat) = 1/3 and if E = {0M, 0M+2, . . . ,∞−2,∞,∞+2, . . .},
then μ(E) = 1/2. We may now provide a sufficient condition for a predicate to
satisfy the induction rule.

Lemma 2 (Measure Lemma). If μ(P) is a dyadic rational, then P satisfies
the induction schema.

An example: if P = Nat∪ Z+0 , then P is closed under 0, s and ∞ − 1 	∈ P . P
does not satisfy the induction schema and μ(P) = 2/3 is not dyadic.

Classical System of Martin-Löf’s Inductive Definitions 309

5 A Set R of Partial Bijections on M
In this section we introduce some set R of partial bijections on M, whose domain
have measure some dyadic rational. In Sects. 6 and 7 we will prove that all
definable predicates in M are a boolean combination of atomic formulas of the
language R, and that all definable sets in M are domains of bijections in R,
therefore all have measure some dyadic rational, and by Lemma2 satisfy the
induction schema. We will conclude that M is an Henkin model of LKID + ΣN .

We say that a relation R is finite if there are finitely many pairs (x, y) ∈ R.
For any set X and any binary relations R,S we write: idX = {(x, x)|x ∈
X}, dom(R) = {x|∃y.(x, y) ∈ R}, codom(R) = {y|∃x.(x, y) ∈ R}, R−1 =
{(y, x)|(x, y) ∈ R}, R◦S = {(x, z)|∃y.((x, y) ∈ S) ∧ ((y, z) ∈ R)} and R�X =
{(x, y) ∈ R|x ∈ X}. Remark that we defined relation composition in the same
order as function composition: the reason is that we will only consider relations
which are partial bijections.

5.1 The Set D of Subsets of M
In this subsection we propose a candidate D for the definable subsets of M.

For any sets I, J we define I⊂
∼J as “(I \ J) is finite”: this means “I ⊆ J

up to finitely many elements. We define I ∼ J as I⊂
∼J ∧ J⊂

∼I: this means “I, J
are equal up to finitely many elements”. I ∼ J is equivalent to: (I \ J) ∪ (J \ I)
is finite.

For any r, s ∈ Q we introduce the formal notations 0M+r, ∞+s: they denote
elements of M if and only if r ∈ Nat, s ∈ Z. For any z ∈ Z, r ∈ Q, we define the
set of formal notations M(2z, r) = {0M + (2z ∗ n + r),∞ + (2z ∗ w + r)|(n ∈
Nat) ∧ (w ∈ Z)}. We denote with B the set of all sets M(2z, r), for some z ∈ Z,
r ∈ Q.

We define D as the family of subsets of M which are equivalent, up to finitely
many elements, to some finite union of sets in B.

Definition 3 (The Family D). D ∈ D if and only if D ∼ (B1 ∪ . . . ∪ Bn) for
some B1, . . . , Bn ∈ B. We call D the dyadic family.

Since 2z > 0, all sets M(2z, r) are infinite. We have M(2z, r)⊂
∼M if and only

if (2z ∗ n + r) ∈ Nat for all but finitely many n ∈ Nat and (2z ∗ w + r) ∈ Z for all
but finitely many w ∈ Z. We may check that this is equivalent to: z ∈ Nat and
r ∈ Z.

We prove that every set in D has measure some dyadic rational.

Lemma 3 (D-Lemma). Let a0, a ∈ Z and D ∈ D.

1. All finite subsets of M are in D.
2. For all a ≥ a0 there are 0 ≤ b1 < . . . < bi < 2a such that M(2a0 , b) =

(M(2a, b1) ∪ . . . ∪ M(2a, bi)).
3. For some a0 and for all a ≥ a0 there are 0 ≤ b1, . . . , bi < 2a such that

D ∼ (M(2a, b1) ∪ . . . ∪ M(2a, bi)).

310 S. Berardi and M. Tatsuta

4. μ(D) is some dyadic rational.
5. D is closed under ∼ and all boolean operations.

5.2 The Family R of Partial Bijections on M
In this subsection we define a family R of partial bijections on M with domain
in D. The elements of R up to finitely many elements are empty or are some
power of the complement of pM, restricted to some D ∈ D.

We define first some set F of straight lines. F is the set of maps φ : Q → Q,
defined by φ(x) = 2zx+r for some z ∈ Z and some r ∈ Q. F is closed under inverse:
if φ(x) = 2zx + r, then φ−1(x) = 2−zx − r/2z. F is closed under composition: if
φi(x) = 2zix + ri for i = 1, 2, then φ2(φ1(x)) = 2z1+z2x + (2z2r1 + r2).

Let Q+Q = {(i, r)|i = 1, 2∧r ∈ Q}. We extend φ : Q → Q to a map : M → Q+Q
by φ((i, r)) = (i, φ(r)) (recall that each element of M is coded by some pair (i, r)).
For any D ⊆ M we define φ(D) = {φ(d)|d ∈ D} ⊆ Q+ Q. We provide a sufficient
condition for having φ(D) ⊆ M and φ(D) ∈ D.

Lemma 4 (φ-Lemma). Let φ(x) = 2z1x+ r1 for some z1 ∈ Z and some r1 ∈ Q
and all x ∈ Q. Assume M(2z, r) ∈ B.

1. φ(M(2z, r)) ∈ B.
2. If D ∈ D and φ(D)⊂

∼M then φ(D) ∈ D.

Proof.

1. We have φ(M(2z, r)) = M(2z+z1 , 2z1r + r1) ∈ B.
2. If D ∈ D then D ∼ M(2a1 , b1) ∪ . . . ∪ M(2ai , bi) for some a1, . . . , ai ∈ Z and

some b1, . . . , bi ∈ Q. Then φ(D) ∼ φ(M(2a1 , b1)) ∪ . . . ∪ φ(M(2ai , bi)), and by
point 1 above φ(M(2a1 , b1)) ∪ . . . ∪ φ(M(2ai , bi)) ∈ B. Thus, φ(D) ∈ D.

A partial bijection on M is a bijection between two subsets of M. We now
define a family R of partial bijections on M. For instance, one bijection in
R is defined by φ(x) = 4x, with domain M and codomain M(4, 0), mapping
0M + n �→ 0M + 4n and ∞ + z �→ ∞ + 4z.

Let φ ∈ F , φ(x) = 2zx + r with z ∈ Z and r ∈ Q. We say that φ is even if z
even, and that φ is odd if z is odd. We divide infinite bijections in R between
“even” and “odd”. They will be restrictions of an even or odd power of the
relation Q = M2 \ pM, up to finitely many point. We will prove that the first
order definable predicates of M are the propositional formulas of R.

Definition 4 (Even Bijections). Let D,E ∈ D and φ ∈ F be even. R is an
even (D,E, φ)-bijection if D,E are infinite, R is a bijection between D,E, and
R is equal up to finitely many elements to the graph of φ restricted to D,E:
R ∼ {(x, y) ∈ D × E|y = φ(x)}. We denote the set of even bijections with R+.

Q is a partial bijection on M, and by definition Q maps 0M + n �→ ∞ + 2n
and ∞ + n �→ 0M + 2n, and Q is associated to the odd map φ(x) = 2x.

Classical System of Martin-Löf’s Inductive Definitions 311

Definition 5 (Odd Bijections). Let φ ∈ F be odd. An odd (D,E, φ)-bijection
is any bijection R between some infinite D,E ∈ D, such that, up to finitely many
points, R maps: (1) ∞ − n − 1 �→ ∞ + φ(−n − 1), (2) 0M + n �→ ∞ + φ(n) and
∞ + n �→ 0M + φ(n). We denote the set of odd bijections with R−.

Q is an example of odd bijection. Let φ ∈ F be even and D,E ∈ D. A
(D,E, φ)-even bijection may alternatively be defined as any bijection between
D,E such that, up to finitely many points: (1) ∞−n− 1 �→ ∞+φ(−n− 1), (2)
0M + n �→ 0M + φ(n) and ∞ + n �→ ∞ + φ(n).

We define R0 as the set of all bijections between finite sets D,E ∈ D. Even-
tually, we define a family R of partial bijections by R = R+ ∪ R0 ∪ R−.

If R ∈ R+ ∪R−, associated to the map φ ∈ F with domain D and codomain
E, then we may prove that E ∼ φ(D). R and D satisfy the following closure
properties.

Lemma 5 (Partial bijections). Assume that R,S ∈ R and D ∈ D.

1. idD ∈ R
2. If D ∈ D then R(D) ∈ D
3. R◦S ∈ R.
4. R−1 ∈ R
5. D is closed under complement.

R is closed under intersection.

Lemma 6 (Closure Under Intersection). Assume that R,S ∈ R are asso-
ciated to φ, ψ ∈ F .

1. If φ = ψ then R ∩ S ∈ R
2. If φ 	= ψ then R ∩ S ∈ R
3. R is closed under intersections.
4. For all R ∈ R there is some D ∈ D such that R ∩ idM = idD.

Our goal is to prove that every first-order definable subset of M is in D.
Since the sets definable in the language of R include those definable in M, it is
enough to prove that any first-order definable set in language of R is in D. To
this aim, we need a quantifier-elimination result for the language of R.

6 A Quantifier Elimination Result for Partial Bijections

In this section we prove a quantifier elimination result for a theory of partial
equivalence relation, which is the abstract counterpart of the families R and
D introduced in the previous section. This is a simple, self-contained result
introducing a model-theoretical tool of some interest.

312 S. Berardi and M. Tatsuta

Theorem 2 (Quantifier Elimination for Partial Bijections). Let U be a
set and R a set of partial bijections on U . Assume that all finite partial bijections
on U are in R, that D = {dom(R)|R ∈ R} is closed under complement, and that
for all R,S ∈ R, D ∈ D we have idU , R−1, R◦S ∈ R and R ∩ S,R�D ∈ R. Let
U be the structure with universe U , one constant denoting each element of U ,
and one predicate symbol denoting each R ∈ R. Then:

1. The theory of U has quantifier-elimination.
2. Any set definable in U is in D and is R(x, x) for some R ∈ R.

In order to give a flavor of our quantifier elimination procedure, we give an
example: detailed proofs are in [1].

∃x4(R1x1x4 ∧ R2x2x4 ∧ ¬Rx3x4)

is equivalent to
∃x4(R1,4x1x4 ∧ R2,4x2x4 ∧ ¬Rx3x4)

where D4 = codom(R1) ∩ codom(R2), D1 = R−1
1 (D4), D2 = R−1

2 (D4), and
R1,4 = R1 ∩ (D1 × D4), R2,4 = R2 ∩ (D2 × D4). Note domain restriction here. It
is equivalent to

∃x4(R1,4x1x4 ∧ R2,4x2x4 ∧ R1,2x1x2 ∧ ¬Rx3x4)

where R1,2 = R−1
2,4◦R1,4. Note composition of relations here. It is equivalent to

∃x4(R1,4x1x4 ∧ R2,4x2x4 ∧ R1,2x1x2 ∧ ¬R′x3x2)

where R′ = R−1
2,4◦R. Note partial bijections here. It is equivalent to

∃x4(R1,4x1x4 ∧ R2,4x2x4) ∧ R1,2x1x2 ∧ ¬R′x3x2

Using the properties of partial bijections, finally this is equivalent to

R1,2x1x2 ∧ ¬R′x3x2.

In the proof we identify each constant symbol with the element c ∈ U it
denotes, and each predicate symbol with the relation R ∈ R it denotes. We prove
quantifier elimination for U as defined in [8], Sects. 3.1 and 3.2, namely that each
formula A with possibly free variables in the language U ∪ R is equivalent in U
to some formula B in the same language but without quantifiers. We will in fact
prove a little more, namely that B may be chosen without constants.

We derive some closure properties for R. For any D ∈ D we have idD =
(idM�D) ∈ R. We will abbreviate idD(x, x) with (x ∈ D). D is closed under
intersection, because if D,E ∈ D then idD, idE ∈ R, hence idD∩E = (idD ∩
idE) ∈ R and D∩E ∈ D. D includes M = dom(idM) and it is closed under com-
plement, therefore D is closed under all boolean operations. For all x ∈ M the
partial bijection id{x} is finite and by assumption it is in R: thus, all singletons

Classical System of Martin-Löf’s Inductive Definitions 313

of M are in D. Assume R ∈ R and D ∈ D: then codom(R) = dom(R−1) ∈ D
and R(D) = (R�D)(D) = codom(R�D) ∈ D. If R ∈ R and D,E ∈ D, then
R ∩ (D × E) ∈ R follows from R ∩ (D × E) = (((R�D)−1)�E)−1.

In the next statement, recall that we defined the relation composition in the
same order as function composition.

Lemma 7 (Composition and Product). Let R,S be any relation and
D,E, F be any sets. Assume R(D)∩S−1(F) ⊆ E. Then composition and Carte-
sian product commute: (S ∩ (E × F))◦(R ∩ (D × E)) = (S◦R) ∩ (D × F).

6.1 A Notion of Normal Form for the Language R
Let n > 0 be any positive integer. Assume R ∈ R and i, j ∈ {1, . . . , n}. We call
any formula R(xi, xj) a positive (R, n)-atom and any formula ¬R(xi, xj) a nega-
tive (R, n)-atom. A (R, n)-atom is either a positive or a negative (R, n)-atom. A
(R, n)-propositional formula is any formula obtained from positive (R, n)-atoms
by repeatedly applying disjunction and negation. Any (R, n)-propositional for-
mula has free variables in x0, . . . , xn−1. We denote by An the set of (R, n)-
propositional formula, and by Hn the set of n-ary predicates definable in U .

Our goal is to prove that for all n ∈ Nat, any first-order predicate P of R
is definable by some A ∈ An, and if n = 1 then P ∈ D. We have to prove that
formulas of An are closed under existential.

This is the plan of the proof. We will define a notion of (R, n)-normal form
for formulas of An, and prove that every A ∈ An has some (R, n)-normal form.
Then we will prove that if A ∈ An is in (R, n)-normal form, then ∃xn.A (with
possibly free variables) may be expressed in An−1 in one of the following ways:
either as some finite disjunction A[c1/x1] ∨ . . . ∨ A[ck/xn] for some constants
c1, . . . , ck ∈ U , or by the formula B ∈ An−1, obtained from A by erasing all
(R, n)-atoms including xn.

Assume n > 0 is any positive integer. Let G be any binary relation on
{1, . . . , n}. A (G, n)-family is any family F = {Ri,j(xi, xj)|(i, j) ∈ G} of pos-
itive (R, n)-atoms such that dom(Ri,j) = dom(Ri,k) for all i, j, k = 1, . . . , n. F
is a symmetric family if G is a symmetric relation, and for all (i, j) ∈ G we
have Ri,j = R−1

i,j . F is a equivalence family if G is an equivalence relation, and
for all i = 1, . . . , n we have Ri,i = idDi

for some Di, for all (i, j) ∈ G we
have Ri,j = R−1

i,j , for all (i, j), (j, k) ∈ G we have Rj,k◦Ri,j = Ri,k. In this case
Di = dom(Ri,j) for all i, j = 1, . . . , n and we call D1, . . . , Dn the domains of the
family.

A (G, n)-symmetric conjunction is any conjunction of a (G, n)-symmetric fam-
ily. A (G, n)-equivalence conjunction is any conjunction of a (G, n)-equivalence
family.

We recall some basic graph theory. We call an indirect, simple graph
on {1, . . . , n} just a graph, and we represent it by any irreflexive and sym-
metric relation G on {1, . . . , n}. A simple cycle in G is any sequence σ =
{(i0, i1), (i1, i2), . . . (im−1, im), (im, i0)} ⊆ G of pairwise distinct i0, . . . , im with
m ≥ 2. G is acyclic if G has no simple cycle. A path is any sequence

314 S. Berardi and M. Tatsuta

π = {(i0, i1), (i1, i2), . . . (im−1, im)} with pairwise distinct i1, . . . , im, with pos-
sibly m = 0. The connection relation on G is: “there is some path from i to j”
In any acyclic graph G the path from i to j if it exists then it is unique. Given
any equivalence relation P, there is some minimal graph G ⊆ P among those
such that P is the smallest equivalence relation including G. All these minimal
graphs are acyclic.

Definition 6 ((R, n)-Normal Forms). C = C1 ∧ C2 is a (R, n)-normal con-
junction if C1 is some conjunction of positive (R, n)-atoms, C2 is some conjunc-
tion of negative (R, n)-atoms, and for some equivalence relation P

1. C1 is some (P, n)-equivalence conjunction
2. for any ¬S(xi, xj) in C2 we have i < j

3. if [n]P 	= {n} then xn does not occur in C2

Any A ∈ An is an (R, n)-normal form if A is some disjunction of (R, n)-normal
conjunctions.

We first prove that any (G, n)-symmetric conjunction, with G some acyclic
graph, is equivalent to some (P, n)-equivalence conjunction, where P is the reflex-
ive and transitive closure of G.

Lemma 8 (Transitive Closure Lemma). Let n > 0 be any positive integer.
Assume G is any acyclic graph on {1, . . . , n} and A = ∧i,j∈GRi,j(xi, xj) is any
(G, n)-symmetric conjunction. Let P be the reflexive, symmetric and transitive
closure of G. Then A is equivalent to some unique (P, n)-equivalence conjunction
B whose family of atoms extends the family of atoms of A.

Now we prove that the (P, n)-equivalence conjunctions are closed under con-
junction with a positive (R, n)-atom R(xi, xj). For all i = 1, . . . , n, we denote
with [i]P the equivalence class of i in P.

Lemma 9 (Partition Lemma). Assume A = ∧i,j∈PRi,j(xi, xj) is any (P, n)-
equivalence conjunction, and i, j ∈ {1, . . . , n}. Assume D ∈ D and R ∈ R.

1. A ∧ (xi ∈ D) is equivalent to some (P, n)-equivalence conjunction
2. Assume [i]P = [j]P . Then A ∧ R(xi, xj) is equivalent to some (P, n)-

equivalence conjunction
3. Assume [i]P 	= [j]P and dom(R) = dom(Ri,i) and and codom(R) = dom(Rj,j).

Then A ∧ R(xi, xj) is equivalent to some (P, n)-equivalence conjunction
4. Any A ∧ R(xi, xj) is equivalent to some (P, n)-equivalence conjunction

6.2 A Quantifier Elimination Result for R
Now we prove a quantifier-elimination result for the language with symbols the
binary predicates in R, using Lemmas 6 and 9.

Classical System of Martin-Löf’s Inductive Definitions 315

Lemma 10 (Quantifier Elimination for R). Let n > 0 be any positive
integer.

1. Any finite conjunction of positive (R, n)-atoms has some (P, n)-equivalence
form.

2. Any finite conjunction of positive and negative (R, n)-atoms has some (P, n)-
equivalence form.

3. If A is some finite conjunction of positive and negative (R, n)-atoms, then
∃xn.A is equivalent to some B ∈ An−1.

4. If A ∈ An, then ∃xn.A is equivalent to some B ∈ An−1.

We may now finish the proof of Theorem2.

7 Main Theorem

Let R, D as in Sect. 5. From the properties of the partial bijections in R and
from the quantifier elimination result (Sect. 6) we derive our main result.

Theorem 3 (Counterexample to Brotherston-Simpson Conjecture).
Let H be the formula defined in Definition 1. Then H has a proof in
CLKIDω(ΣN , ΦN), and no proof in LKID(ΣN , ΦN) + (0, s)-axioms.

Proof. The proof in CLKIDω is shown in Theorem 1. The non-provability in LKID
is shown as follows. Any atomic formulas in M is in R. By definition, R contains
all finite bijections and is closed under restriction to any set D ∈ D. Thus, by
Lemma 6, R satisfies all hypothesis of Theorem 2. We deduce that all definable
sets of M are in D. By Lemma 3 point 4, all sets in D have a dyadic measure,
and by Lemma 2 satisfy the induction schema. According to Definition 2.10 of
[6], this is a sufficient condition for M being an Henkin model of LKID(ΣN , ΦN).
M satisfies the (0, S)-axioms by construction. M falsifies H by Lemma 1. �

8 Non-conservativity of Martin-Löf’s Inductive Definition
System

This section shows non-conservativity of LKID with respect to additional induc-
tive predicates, by giving a counterexample.

We assume the inductive predicate ≤ and the production rules for it:

x ≤ x

x ≤ y

x ≤ sy

We call the set of these production rules Φ≤. Let 0-axiom be ∀x ∈ N. sx 	= 0.
In LKID(ΣN + {≤}, ΦN + Φ≤), we can show any number ≤ 0 is only 0.

316 S. Berardi and M. Tatsuta

Lemma 11. 0-axiom, Nx,Ny, x ≤ y � y = 0 → x = 0

The proof is in [1].
The next theorem shows 2-Hydra is provable in LKID with ≤.

Theorem 4. 0-axiom � H is provable in LKID(ΣN + {≤}, ΦN + Φ≤).

We may show ∀n. (n ≥ x ∧ n ≥ y → p(x, y)) by induction on n. The proof is
given in [1] in case.

In the standard model, the truth of formula does not change when we extend
the model with inductive predicates that do not appear in the formula. On the
other hand, this is not the case for provability in Martin-Löf’s inductive definition
system LKID. Namely, a system may change the provability of a formula even
when we add inductive predicates that do not appear in the formula. Namely,
for a given system, the system with additional inductive predicates may not be
conservative over the original system. Theorems 3 and 4 give such an example:
the sequent 0-axiom � H is in the language of LKID but it is not provable in
LKID, while it is provable in LKID extended with ≤.

9 Conclusion

We proved in Theorem 3 that CLKIDω, the formal system of cyclic proofs ([6])
proves strictly more that LKID, Martin-Löf formal system of inductive definitions
with classical logic. This settles an open question given in [6]. Our proof also
shows that if we add more inductive predicates to LKID we may obtain a non-
conservative extension (Theorem 4).

References

1. Berardi, S., Tatsuta, M.: The classic Martin-Löf’s system of inductive definitions
is not equivalent to cyclic proofs (Full Paper), unpublished draft (2017)

2. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005). doi:10.1007/11554554 8

3. Brotherston, J.: Sequent calculus proof systems for inductive definitions, Ph.D.
thesis, Laboratory for Foundations of Computer Science School of Informatics Uni-
versity of Edinburgh (2006)

4. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: Proceedings of POPL 2008 (2008)

5. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 12

6. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Logic Comput. 21(6), 1177–1216 (2011)

http://dx.doi.org/10.1007/11554554_8
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-642-22438-6_12

Classical System of Martin-Löf’s Inductive Definitions 317

7. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 25

8. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,
New York (2000)

9. Kirby, L., Paris, J.: Accessible independence results for Peano Arithmetic. Bull.
Lond. Math. Soc. 14, 285–293 (1982)

10. Martin-Löf, P.: Haupstatz for the intuitionistic theory of iterated inductive defini-
tions. In: Proceedings of the Second Scandinavian Logic Symposium, pp. 179–216,
North-Holland (1971)

11. Simpson, A.: Cyclic arithmetic is equivalent to Peano Arithmetic. In: Proceedings
of Fossacs (2017)

12. Stratulat, S.: Structural vs. cyclic induction: a report on some experiments with
Coq. In: SYNASC 2016: Proceedings of the 18th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing, pp. 27–34. IEEE Com-
puter Society (2016)

http://dx.doi.org/10.1007/978-3-642-35182-2_25

Probability

On the Relationship Between Bisimulation
and Trace Equivalence in an Approximate

Probabilistic Context

Gaoang Bian1,2(B) and Alessandro Abate2(B)

1 Google Inc., Mountain View, USA
gaoang@google.com

2 Department of Computer Science, University of Oxford, Oxford, UK
aabate@cs.ox.ac.uk

Abstract. This work introduces a notion of approximate probabilistic
trace equivalence for labelled Markov chains, and relates this new con-
cept to the known notion of approximate probabilistic bisimulation. In
particular this work shows that the latter notion induces a tight upper
bound on the approximation between finite-horizon traces, as expressed
by a total variation distance. As such, this work extends correspond-
ing results for exact notions and analogous results for non-probabilistic
models. This bound can be employed to relate the closeness in satis-
faction probabilities over bounded linear-time properties, and allows for
probabilistic model checking of concrete models via abstractions. The
contribution focuses on both finite-state and uncountable-state labelled
Markov chains, and claims two main applications: firstly, it allows an
upper bound on the trace distance to be decided for finite state sys-
tems; secondly, it can be used to synthesise discrete approximations to
continuous-state models with arbitrary precision.

1 Introduction

Often in formal verification one is interested in approximations of concrete mod-
els. Models are often built from experimental data that are themselves approx-
imate, and taking approximations can reduce the size and complexity of the
state space. Markov models in particular can be defined either syntactically as
a transition structure (with states and matrices), or semantically as a random
process whose trajectory satisfy the Markov property. Each representation gives
rise to its own notions of approximation [1]: “the transition matrices have similar
numbers and/or structure” vs “the trajectories have similar probability distribu-
tions”, respectively. While the syntactic representation is used for computations
and model checking with concrete numbers, often one is interested in results in
terms of the semantics, e.g. “what is the probability of reaching a failure state
within 100 steps”. This gives practical value to studying how approximations in
terms of transition matrices translate into approximations in terms of traces of
the random process.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 321–337, 2017.
DOI: 10.1007/978-3-662-54458-7 19

322 G. Bian and A. Abate

In this paper we build on the notion of ε-approximate probabilistic bisimu-
lation, introduced in [13] as a natural extension to exact probabilistic bisimula-
tion [12]. There, the notion of ε-approximate probabilistic bisimulation (or just
ε-bisimulation) is defined in terms of the transition structure, and given ε the
maximal ε-bisimulation relation can be computed for finite state systems with
n states in O(n7) time [13].

It is on the other hand of interest to explore what ε-bisimulation means
in terms of trajectories. While ε-bisimulation does have characterizations (on
countable state spaces) in terms of logics and games [12], this logic is branching
in nature, and does not directly relate to the trajectory of the model as it leaks
information about the state space (similarly to the difference between CTL and
LTL), as illustrated in Fig. 1.

Fig. 1. Branching vs Linear Time Behaviour. In the Labelled Markov Chain
below (cf. Sect. 2 for the LMC model), the states s1, s2 both emit traces 〈{a}, {a}, {b}〉
and 〈{a}, {a}, {c}〉 with probability 0.5 each, and hence s1, s2 have the same lin-
ear time behaviour. However, s1, s2 have different branching behaviour, since exclu-
sively s1 satisfies the PCTL formula P=1 [X P=0.5 [X b]]. Conversely, only s2 satisfies
P=0.5 [X P=1 [X b]].

In this paper, we investigate what ε-approximate probabilistic bisimulation
means in terms of trajectories. We will prove that for Labelled Markov Chains
(over potentially uncountable state spaces), ε-bisimulation between two states
places the tight upper bound of 1−(1−ε)k (which is ≤ kε) on the total variation
[18] between the distributions of length k+1 traces starting from those states, for
all k ∈ N. We will formulate these bounds by introducing the notion of f(k)-trace
equivalence. As such, we extend the well known result that bisimulation implies
trace equivalence in non-probabilistic systems to the context of approximate and
probabilistic models (the exact probabilistic case having been considered in [7]).

One direct repercussion of our result is that it provides a method to efficiently
bound the total variation of length k traces from two finite-state LMCs (or two
states in an LMC), since the aforementioned result in [13] can be used to decide
or to compute ε-bisimulation between two states in polynomial time. We will
also apply our results to the quantitative verification of continuous-state Markov
models [2,3,16], improving on the current class of properties approximated and
the corresponding approximation errors.

Bisimulation vs. Trace Equivalence in an Approximate Probabilistic Context 323

Related Work. Literature on approximations of (finite-state) Markov models
can be distinguished into two main branches: one focusing on one-step similar-
ity, the other dealing with trace distances. One-step similarity can be studied
via the notion of probabilistic bisimulation, introduced in the context of finite-
state models by [20], and related to lumpability in [23]. [13] discusses a notion of
approximate bisimulation, related to quasi-lumpability conditions in [6,22]. From
the perspective of process algebra, [17] studies operators on probabilistic tran-
sition systems that preserve the approximate bisimulation distance. The work
in [13,21] is seminal in introducing notions of (exact) probabilistic simulation,
much extended in subsequent literature.

On the other hand, there are a few papers studying the total variation dis-
tance over traces. [9] presents an algorithm for approximating the total variation
of infinite traces of labelled Markov systems and prove the problem of deciding
whether it exceeds a given threshold to be NP-hard. [8] shows that the undis-
counted bisimilarity pseudometric is a (non-tight) upper bound on the total
variation of infinite traces (like ε-bisimulation, the bisimilarity pseudometric is
defined on the syntax of the model and there are efficient algorithms for comput-
ing it [8,10,24]). The contribution in this paper, focusing on finite traces rather
than infinite traces, is that the total variation of finite traces is much less con-
servative, and moreover allows manipulating models under specific error bounds
on length k traces, as we will show in Sect. 5.

[14] studies notions based on the total variation of finite and infinite traces:
employing a different notion of ε-bisimulation than ours, it proves error bounds
on trace distances, which however depend on additional properties of the struc-
ture of the transition kernel (as shown in Sect. 7 the error bound on reacha-
bility probabilities could go to 1 in two steps, for any ε > 0). Finite abstrac-
tions of continuous-state Markov models can be synthesised by notions that are
variations of the ε-bisimulation in this work [1,3,16]. Tangential to our work,
[11] shows that the total variation of finite traces can be statically estimated
via repeated observations. [26] investigates ways of compressing Hidden Markov
Models by searching for a smaller model that minimises the total variation of
length-k traces of the two models.

Structure of this article. In Sect. 2, we introduce the reference model (labelled
Markov chains – LMC – over general state spaces) and provide a definition of
ε-bisimulation for LMCs. In Sect. 3, we introduce the notion of approximate
probabilistic trace equivalence (and the derived notion of probabilistic trace
distance), and discuss how it relates to bounded linear time properties, and to the
notion of distinguishability. In Sect. 4, we present the main result: we will derive a
tight upper bound on the probabilistic trace distance between ε-bisimilar states.
In Sect. 5, we show how these results can be used to approximately model check
continuous state systems, and Sect. 6 discusses a case study. In Sect. 7, we discuss
an alternative notion of approximate probabilistic bisimulation that appears in
literature and show that it cannot be used to effectively bound probabilistic
trace distance.

324 G. Bian and A. Abate

In this work we offer sketches of the proof of some theorems, and omit the
proof of other results: the complete proofs, as well as the details on the imple-
mentation of the Case Study, can be found in the Appendix of [4].

2 Preliminaries

2.1 Labelled Markov Chains

We will work with discrete-time Labelled Markov Chains (LMCs) over general
state spaces. Known definitions of countable- or finite-state LMCs represent
special instances of the general models we introduce next.

Definition 1 (LMC syntax). A Labelled Markov Chain (LMC) is a structure
M = (S,Σ, τ, L) where:

– S is a (potentially uncountable) set of states.
– Σ ⊆ P(S) is a Σ-algebra over S representing the set of measurable subsets

of S.
– τ : S × Σ → [0, 1] is a transition kernel. That is, for all s ∈ S, τ(s, ·) is a

probability measure on the measure space (S,Σ), and for all A ∈ Σ we require
τ(·, A) to be Σ-measurable.

– L : S → O labels each state s ∈ S with a subset of atomic propositions from
AP, where O = 2AP. L is required to be Σ-measurable, and we will assume
AP to be finite.

L(s) captures all the observable information at state s ∈ S: this drives our notion
relating pairs of states, and we characterise properties over the codomain of this
function.

Definition 2 (LMC semantics). Let M = (S,Σ, τ, L) be a LMC. Given an
initial distribution p0 over S, the state of M at time t ∈ N is a random variable
M p0

t over S, such that

P [M p0
0 ∈ A0] = p0(A0),

P [M p0
0 ∈ A0, · · · ,M p0

k ∈ Ak] =
∫

y0∈A0

p0(dy0)

·
∫

y1∈A1

τ(y0,dy1) · · ·
∫

yk−1∈Ak−1

τ(yk−2,dyk−1) · τ(yk−1, Ak),

for all k ∈ N\{0}, Ak ∈ Σ, where of course τ(yk−1, Ak) =
∫

yk∈Ak
τ(yk−1,dyk).

Models in related work. A body of related literature works with labelled
MDPs, which are more general models allowing a non-deterministic choice u ∈
U (for some finite U) of the transition kernel τu at each step. This choice is
made by a “policy” that probabilistically selects u based on past observations
of the process. Whilst we will ignore non-determinism and work with LMCs for
simplicity, our results can be adapted to labelled MDPs by quantifying over all

Bisimulation vs. Trace Equivalence in an Approximate Probabilistic Context 325

policies, or over all choices u for properties like ε-bisimulation, in order to remove
the non-determinism. The seminal work on bisimulation and ε-bisimulation dealt
with models known as LMPs [12]. LMPs allow for non-determinism (like labelled
MDPs) but their states are unlabelled and at each step they have a probability
of halting. For the study of bisimulation in this work, LMPs can be considered
as a simplification of labelled MDPs to the case O = {∅, {halted}}.

2.2 Exact and Approximate Probabilistic Bisimulations

The notion of approximate probabilistic bisimulation (in this work just
ε-bisimulation) is a structural notion of closeness, based on the stronger notion of
exact probabilistic bisimulation [12]. We discuss both next. Considering a binary
relation R over set X, we say that a subset S̃ ⊆ X is R-closed if S̃ contains its
own image under R. That is, if R(S̃) := {y ∈ X | x ∈ S̃, xR y} ⊆ S̃.

Definition 3 (Exact probabilistic bisimulation). Let M = (S,Σ, τ, L) be
a LMC. For ε ∈ [0, 1], an equivalence relation R ⊆ S × S over the state space is
an exact probabilistic bisimulation relation if

∀(s1, s2) ∈ R, we have that L(s1) = L(s2),

∀(s1, s2) ∈ R, ∀T̃ ∈ Σ s.t. T̃ is R-closed, we have that τ(s1, T̃) = τ(s2, T̃).

A pair of states s1, s2 ∈ S are said to be (exactly probabilistically) bisimilar if
there exists an exact probabilistic bisimulation relation R such that s1R s2.

Note that since R is an equivalence relation, R-closed sets are exactly the unions
of whole equivalence classes.

Next, we adapt the notion of ε-bisimulation (as discussed in [13] for LMPs
over countable state spaces) to LMCs over general spaces.

Definition 4 (ε-bisimulation). Let M = (S,Σ, τ, L) be a LMC. For ε ∈
[0, 1], a symmetric binary relation Rε ⊆ S × S over the state space is an ε-
approximate probabilistic bisimulation relation (or just ε-bisimulation relation) if

∀T ∈ Σ, we have Rε(T) ∈ Σ, (1)
∀(s1, s2) ∈ Rε, we have L(s1) = L(s2), (2)
∀(s1, s2) ∈ Rε, ∀T ∈ Σ, we have τ(s2, Rε(T)) ≥ τ(s1, T) − ε. (3)

Two states s1, s2 ∈ S are said to be ε-bisimilar if there exists an ε-bisimulation
relation Rε such that s1Rεs2.

The condition raised in (3) could be understood intuitively as “for any move
that s1 can take (say, into set T), s2 can match it with higher likelihood over the
corresponding set Rε(T), up to ε tolerance.” Notice that (1) is not a necessary
requirement for countable state models, but for uncountable state models it is
needed to ensure that Rε(T) is measurable and τ(s2, Rε(T)) is defined in (3).

326 G. Bian and A. Abate

[13] showed that in countable state spaces, 0-approximate probabilistic bisim-
ulation corresponds to exact probabilistic bisimulation. On uncountable state
spaces, not every exact probabilistic bisimulation relation is a 0-bisimulation
relation because of the additional measurably requirement, but we still have
that 0-bisimulation implies exact probabilistic bisimulation.

Theorem 1. Let M = (S,Σ, τ, L) be a LMC, and let s1, s2 ∈ S. If s1, s2 are
0-bisimilar, then they are (exactly, probabilistically) bisimilar.

Although above s1, s2 are required to belong to the state space of a given
LMC, the notions of exact- and ε-bisimulation can be extended to hold over
pairs of LMCs by combining their state spaces, as follows.

Definition 5 (ε-bisimulation of pairs of LMCs). Consider two LMCs
M1 = (S1, Σ1, τ1, L1) and M2 = (S2, Σ2, τ2, L2). Without loss of generality,
assume that their state spaces S1, S2 are disjoint. The direct sum M1 ⊕ M2 of
M1 and M2 is the LMC formed by combining the state spaces of M1 and M2.
Formally, M1 ⊕ M2 = (S1
 S2, σ (Σ1 × Σ2) , τ1 ⊕ τ2, L1
 L2), where:

– S1
 S2 is the union of S1 and S2 where we have assumed wlog (by relabelling
if necessary) that S1, S2 are disjoint;

– σ (Σ1 × Σ2) is the smallest σ-algebra containing Σ1 × Σ2;

– τ1 ⊕ τ2 (s, T) :=

{
τ1(s, T ∩ S1) if s ∈ S1

τ2(s, T ∩ S2) if s ∈ S2

fors ∈ S1
 S2, T ∈ σ (Σ1 × Σ2) ;

– L1
 L2(s) :=

{
L1(s) if s ∈ S1

L2(s) if s ∈ S2

fors ∈ S1
 S2.

Let s1 ∈ S1, s2 ∈ S2. We say that s1, s2 are ε-bisimilar iff s1, s2 are ε-bisimilar
as states in the direct sum LMC M1 ⊕ M2.

Other Notions of ε-Bisimulation in Literature. There is an alternative,
more direct, extension of exact probabilistic bisimulation in literature [1,3,14],
which simply requires |τ(s1, T̃) − τ(s2, T̃)| ≤ ε instead of the conditions in Def-
inition 4. However, this requirement alone is too weak to guarantee properties
that we later discuss (cf. Sect. 7).

3 Approximate Probabilistic Trace Equivalence for LMCs

In this section we introduce the concept of approximate probabilistic trace equiv-
alence (or just f(k)-trace equivalence) to represent closeness of observable linear
time behaviour. Based on the likelihood over traces of a given LMC, this notion
depends on its operational semantics (cf. Definition 2), rather than on the struc-
ture of its transition kernel (as in the case of approximate bisimulation). The
notion can alternatively be thought of inducing a distance among traces, as
elaborated below.

Bisimulation vs. Trace Equivalence in an Approximate Probabilistic Context 327

Definition 6 (Trace likelihood). Let M = (S,Σ, τ, L) be an LMC, s0 ∈ S,
and k ∈ N. Let TRACE denote a set of traces (each of length k + 1), taking
values in time over 2AP, so that TRACE ⊆ Ok+1. Denote with Pk(s0,TRACE)
the probability that the LMC M , given an initial state s0, generates any of the
runs 〈α0, · · · , αk〉 ∈ TRACE, namely

Pk(s0,TRACEk) =
∑

〈α0,··· ,αk〉
∈TRACEk

P
[
M s0

0 ∈ L−1({α0}), · · · ,M s0
k ∈ L−1({αk})

]
,

where M s0
t is the state of M at step t, with a degenerate initial distribution p0

that is concentrated on point s0 (cf. Definition 2).

As intuitive, we consider traces of length k +1 (rather than of length k) because
a length k + 1 trace is produced by one initial state and precisely k transitions.
Notice that the set of sequences of states generating TRACE is measurable,
being defined via a measurable map L over a finite set of traces.

Definition 7 (Total variation [15]). Let (Z,G) be a measure space where G is
a σ-algebra over Z, and let μ1, μ2 be probability measures over (Z,G). The total
variation between μ1, μ2 is dTV(μ1, μ2) := supA∈G |μ1(A) − μ2(A)|.

Definition 8 (f(k)-trace equivalence). Let M = (S,Σ, τ, L) be a LMC. For
a non-decreasing function f : N → [0, 1], we say that states s1, s2 ∈ S are f(k)-
approximate probabilistic trace equivalent if for all k ∈ N,

dTV

(
Pk(s1, ·) , Pk(s2, ·)

)
≤ f(k),

or alternatively if over TRACE ⊆ Ok+1,

|Pk(s1,TRACE) − Pk(s2,TRACE)| ≤ f(k).

The condition on monotonicity follows from the requirement on the total vari-
ation distance, which is defined over a product output space and necessarily
accumulates over time. The notion of f(k)-trace equivalence can be used to
relate states from two different LMCs, much in the same way as ε-bisimulation.

One can introduce the notion of probabilistic trace distance between pairs of
states s1, s2 as

min{f(k) ≥ 0 | s1 is f(k)-trace equivalent to s2} = dTV

(
Pk(s1, ·) , Pk(s2, ·)

)
.

Notice that the RHS is clearly a pseudometric. We discuss the development of
tight bounds on the probabilistic trace distance in Sect. 4.

3.1 Interpretation and Application of ε-Trace Equivalence

The notion of ε-trace equivalence subsumes closeness of finite-time traces, and
can be interpreted in two different ways. Firstly, ε-trace equivalence leads to
closeness of satisfaction probabilities over bounded-horizon linear time proper-
ties, e.g. bounded LTL formulae, as follows.

328 G. Bian and A. Abate

Theorem 2. Let M = (S,Σ, τ, L) be an LMC, and let s1, s2 ∈ S be ε-trace
equivalent. Let ψ be any bounded LTL property over a k-step time horizon,
defined within the LTL fragment φ = φ1U≤tφ2 | a | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ1

for t ≤ k. Then,
∣
∣
∣ P [s1 |= ψ] − P [s2 |= ψ]

∣
∣
∣ ≤ f(k),

where P [s |= ψ] is the probability that starting from state s, the LMC satisfies
property ψ.

Proof. Formula ψ is satisfied by a specific set of length k + 1 traces. ��

Alternatively, via its connection to the notion of total variation, ε-trace distance
leads to the notion of distinguishability of the underlying LMC, namely the
ability (of an agent external to the model) to distinguish a model by observing
its traces.

Theorem 3. Let s1, s2 be two states of an LMC. Suppose one of them is selected
by a secret fair coin toss. An external agent guesses which one has been selected
by observing a trace of length k + 1 emitted from the unknown state. Then, an
optimal agent guesses correctly with probability

1
2

+
1
2
f(k),

with f(k) = dTV

(
Pk(s1, ·) , Pk(s2, ·)

)
being the probabilistic trace distance.

4 ε-Probabilistic Bisimulation Induces Approximate
Probabilistic Trace Equivalence

In this section we present the main result: we show that ε-bisimulation induces
a tight upper bound on the probabilistic trace distance, quantifiable as (1 −
(1 − ε)k). This translates to a guarantee on all the properties implied by ε-trace
equivalence, such as closeness of satisfaction probabilities for bounded linear time
properties. In addition, since for finite state LMPs the maximal ε-bisimulation
relation can be computed in O(|S|7) time [13], this result allows to establish an
upper bound on the probabilistic trace distance with the same time complexity.

Theorem 4 (ε-bisimulation implies (1 − (1 − ε)k)-trace equivalence).
Let M = (S,Σ, τ, L) be a LMC. If s1, s2 ∈ S are ε-bisimilar, then s1, s2 are
(1 − (1 − ε)k)-trace equivalent.

Proof (Sketch). The full proof, developed for LMCs over uncountable state
spaces, can be found in Appendix C of [4]. Here we offer a sketch of proof,
employing the finite-state LMP in Fig. 2 as an illustrating example (where for
simplicity we have omitted the labels for internal states, which can as well be
labelled with ∅ ∈ O).

Bisimulation vs. Trace Equivalence in an Approximate Probabilistic Context 329

Fig. 2. LMC for the proof of Theorem 4.

The maximal (i.e. coarsest) ε-bisimulation relation Rε is obtained by pairs
of states within the sets

{t1, t2, u1}, {t2, t3, u2}, {s1, s2}, {v}, {w}, {z}.

We would like to prove that these ε-bisimilar states are also ε-trace equivalent.
In the full proof, we will show this by induction on the length of the trace, for
all ε-bisimilar states at the same time. In this sketch proof, we aim to illustrate
the induction step by showing how to bound

∣
∣P3

(
s1,♦≤3a

)
− P3

(
s2,♦≤3a

)∣
∣ ,

where ♦≤ka is the set of traces of length k + 1, which reach a state labelled with
a (which in this case is just state v). The idea is to match each of the outgoing
transitions from s1 to an outgoing transition from s2 and to an ε-bisimilar state.
Specifically, we explicitly write

P3

(
s1,♦≤3a

)
=

1
3
P2

(
t1,♦≤2a

)
+

1
6
P2

(
t2,♦≤2a

)

+
1
6
P2

(
t2,♦≤2a

)
+

1
3
P2

(
t3,♦≤2a

)
,

(4)

and respectively

P3

(
s2,♦≤3a

)
= (

1
3

− 3ε

10
)·P2

(
u1,♦≤2a

)
+

1
6
P2

(
u1,♦≤2a

)

+
1
6
P2

(
u2,♦≤2a

)
+ (

1
3

− 7ε

10
)·P2

(
u2,♦≤2a

)
.

(5)

We then match-off the terms in the expansions for P3

(
s1,♦≤3a

)
and

P3

(
s2,♦≤3a

)
, one term at a time. We use the induction hypothesis to argue

330 G. Bian and A. Abate

that the probabilities in the matched terms are (1 − (1 − ε)k)-close to each other
(here k = 1), since they concern ε-bisimilar states. That is,

∣
∣P2

(
t1,♦≤2a

)
− P2

(
u1,♦≤2a

)∣
∣ ≤ 1 − (1 − ε)k

∣
∣P2

(
t2,♦≤2a

)
− P2

(
u1,♦≤2a

)∣
∣ ≤ 1 − (1 − ε)k

· · ·
The total amount of difference between the matching coefficients is no more
than ε. It can be shown (Lemma 1 in Appendix C of [4]) that these conditions
guarantee the required bound on

∣
∣P3

(
s1,♦≤3a

)
− P3

(
s2,♦≤3a

)∣
∣.

The main difficulty is choosing a suitable decomposition of P3

(
s1,♦≤3a

)
and

P3

(
s2,♦≤3a

)
. This is non-trivial since in (4), the 1/3 probability of transitioning

into t2 had to be broken up into two terms with 1/6 probability each. However,
we can tackle this issue using an extension of Hall’s Matching Theorem [5] (cf.
Appendix C of [4]). It is then relatively straight forward to adapt this proof to
LMCs on uncountable state spaces by converging on integrals with simple func-
tions. ��

We now show that the expression for the induced bound on probabilistic
trace distance proved in Theorem 4, namely (1 − (1 − ε)k), is tight, in the sense
that for any k and ε, the bound can be attained by some pair of ε-bisimilar
states in some LMC. In other words, it is not possible to provide bounds on
the induced approximation level for traces, that are smaller than the expression
discussed above and that are valid in general.

Theorem 5. For any ε ≥ 0, there exists a LMC M = (S,Σ, τ, L) and states
s1, s2 ∈ S such that s1, s2 are ε-bisimilar, and for all k ∈ N there exists a
set TRACE of length k + 1 traces s.t. |Pk(s1,TRACE) − Pk(s2,TRACE)| =
1 − (1 − ε)k.

Proof. Select ε ≥ 0 and consider the following LMC:

Here s1, s2 are ε-bisimilar, and for all k ∈ N, Pk

(
s1,♦≤ka

)
= 0, whereas

Pk

(
s2,♦≤ka

)
=

∑k
i=1 (1 − ε)i−1

ε = 1 − (1 − ε)k. ��
The result in Theorem 4 can be viewed as an extension of the known fact that

bisimulation implies trace equivalence in non-probabilistic transition systems.
Similar to the deterministic case, the converse of Theorem 4 does not hold.

Theorem 6. (1 − (1 − ε)k)-trace equivalence does not imply ε-bisimulation.

Proof. In Fig. 1, states s1, s2 are not ε-bisimilar for any ε < 1/2, yet their prob-
abilistic trace distance is equal to 0. ��

This example shows that ε-bisimulation cannot be used to effectively estimate
the probabilistic trace distance between individual states. In particular, while the
(1 − (1 − ε)k)-bound on probabilistic trace distance discussed above is tight as
a uniform bound, it is not tight for individual pairs of states.

Bisimulation vs. Trace Equivalence in an Approximate Probabilistic Context 331

5 Application to Model Checking of Continuous-State
LMCs

Suppose we are given an LMC M C =
(
SC , ΣC , τC , LC)

, which we shall refer to as
the “concrete” model, possibly over a continuous state space. We are interested
in calculating its probability of satisfying a given LTL formula, starting from
certain initial states. One approach is to construct a finite-state LMC MA =(
SA, ΣA, τA, LA)

(the “abstract model”) that can be related to M C (in a way
to be made precise shortly). Probabilistic model checking can then be run over
MA using standard tools for finite-state models such as PRISM [19], and since
MA is related to M C , this leads to approximate outcomes that are valid for
M C . The above approach has been studied in several papers [2,3,16], and the
method for constructing MA from M C is to raise smoothness assumptions on
the kernel τC of M C , and to partition the state space SC , thus obtaining SA and
τA (the sigma algebra and labels being directly inherited).

In this section we will demonstrate the application of our results. We will
employ ε-bisimulation to relate MA and M C , and use our results to bound
their trace distance. This method produces tighter error bounds, for a broader
class of properties, than are currently established in literature. The first step is
to establish simpler conditions that guarantee ε-bisimulation between M C and
MA.

Theorem 7. Let ε ∈ [0, 1], and suppose there exists a finite measurable partition
Qε = {P1, · · · , PN} of SC such that for all P ∈ Qε, s1, s2 ∈ P , we have that
LC(s1) = LC(s2) and1

max
J⊆{1,··· ,N}

∣
∣
∣
∣
∣
∣
τC

⎛

⎝s1,
⋃

j∈J

Pj

⎞

⎠ − τC

⎛

⎝s2,
⋃

j∈J

Pj

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ ε.

Assume wlog Pi �= ∅, and for each i ∈ {1, · · · , N} choose a representative point
sC

i ∈ Pi. Consider the abstract model to be MA =
(
SA, ΣA, τA, LA)

formed by
merging each Pi into sC

i . Formally,

– SA = {sA
1 , · · · , sA

N}.
– ΣA = P

(
SA)

.
– τA is such that τA(sA

i , {sA
j }) = τC(sC

i , Pj).
– LA(sA

i) = LC(sC
i).

Then, for all i ∈ {1, · · · , N}, sC ∈ Pi, we have that sC is ε-bisimilar to sA
i , and

hence 1 − (1 − ε)k-trace equivalent.

In practical terms the partition Qε can be straightforwardly constructed
in many cases. As shown in Theorem 8, the approach in [2,3,25] generates a
partition of SC satisfying the conditions of Theorem7. Thus, ε-bisimulation can
be seen as the underlying reason for the closeness of probabilities of events.
1 The left hand side is just dTV(μ1, μ2) where for i = 1, 2, for A ⊆ Qε, μi(A) :=

τC (si,
⋃

A).

332 G. Bian and A. Abate

Theorem 8. Consider an LMC M C =
(
SC , ΣC , τC , LC)

where SC is a Borel
subset of Rd. Suppose that τC(s, T) is of the form

∫
t∈T

f(s, t)dt, so that for each
state s ∈ SC, f(s, ·) : SC → R

+
0 is the probability density of the next state.

Suppose further that f(·, t) is uniformly K-Lipschitz continuous for all t ∈ SC.
That is, for some K ∈ R, for all s1, s2, t ∈ SC,

|f(s1, t) − f(s2, t)| ≤ K · ‖s1 − s2‖.

For A ∈ ΣC (so A ⊆ R
d), let λ(A) be the volume of A and δ(A) :=

supx1,x2∈A{‖x1 − x2‖} be the diameter of A. For any ε ∈ [0, 1], finite λ(SC),
suppose partition Q = {P1, · · · , PN} of SC is such that

max
j∈{1,··· ,N}

δ(Pj) ≤ 2ε

Kλ(SC)
.

Then, we have that Q satisfies the conditions of Theorem7 and can be used to
construct the abstract model MA.

There are a number of adaptations that could be made to this result. [16]
improves a related approach by varying the size of each partition in response
to the local Lipschitz constant, rather than enforcing a globally uniform K.
Similarly to this paper, [3] also discusses the relation of approximate proba-
bilistic bisimulation to the problem of generating the abstract model, but a
strictly weaker definition of approximate probabilistic bisimulation is employed
(cf. Sect. 7). Finally, note that using algorithms in [13], we can compute
ε-bisimulation relations on MA: this allows MA to be further compressed (at
the cost of an additional ε2 approximation), by merging the states that are
ε2-bisimilar to each other.

6 Case Study

Concrete Model. Consider the concrete model M C =
(
SC , ΣC , τC , LC)

,
describing the weather forecast for a resort. Here SC = {0, 1} × [0, 1), ΣC =
B(SC), and the state at time t is (Rt,Ht), where

– Rt ∈ {0, 1} is a random variable representing whether it rains on day t,
– Ht ∈ [0, 1) is a random variable representing the humidity after day t.

Raining on day t causes it to become more likely to rain on day t + 1, but
it also tends to reduce the humidity, which causes it to become gradually less
likely to rain in the future. The meteorological variations are encompassed by
τC , which is such that the model evolves according to

P(Rt+1 | R0, · · · , Rt,H0, · · · ,Ht) = P(Rt+1 | Rt,Ht)

∼
{

B(14 + 3
4Ht) if Rt = 1

B(34Ht) if Rt = 0
,

P(Ht+1 | R0, · · · , Rt,H0, · · · ,Ht, Rt+1) = P(Ht+1 | Ht, Rt+1)

∼
{

U
[
0, 1+Ht

2

)
if Rt+1 = 1

U
[

Ht

2 , 1
)

if Rt+1 = 0
,

Bisimulation vs. Trace Equivalence in an Approximate Probabilistic Context 333

where B(p) is the Bernoulli distribution with probability p of producing 1, and
U [a, b) is the uniform distribution over the real interval [a, b). Finally, the states
of the model are labelled according to whether it rains on that day, namely

LC((r, h)) =

{
{RAIN} if r = 1
∅ if r = 0.

Given M C we are interested in computing the likelihood of events expressing
meteorological predictions, given knowledge of present weather conditions.

Synthesis of the Abstract Model. Notice that M C does not directly satisfy
the smoothness assumptions of Theorem 8, in view of the discrete/continuous
structure of its state space and the discontinuous probability density result-
ing from the uniform distribution. Nonetheless, we can still construct MA by
taking a sensible partition of SC and proving that it satisfies the conditions
of Theorem 7. Let Qε :=

{
Pr,h

∣
∣ r ∈ {0, 1}, h ∈ {0, · · · , N − 1}

}
, where

Pr,h = {r} × [h/N, h+1/N).

Theorem 9. For any ε ∈ [0, 1], by taking N ≥ 2/ε, we have that Qε satisfies
the conditions of Theorem7.

Therefore, we may construct the abstract model using Theorem7. We choose
the abstract state (rA, hA) ∈ SA := {0, 1}×{0, · · · , N −1} to correspond to the
partition PrA,hA ∈ Qε, and within each partition we select the concrete state
with the lowest Ht-coordinate to be the representative state. This produces the
abstract model MA =

(
SA, ΣA, τA, LA)

, where ΣA = P(SA), LA((r, h)) =
LC((r, h)), and

τA ((h0, r0), {(h1, r1)})=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pR1|R0(h0)· pH1|R1(h0, h1) if r0 = 1, r1 = 1
(
1 − pR1|R0(h0)

)
· pH1|¬R1(h0, h1) if r0 = 1, r1 = 0

pR1|¬R0(h0)· pH1|R1(h0, h1) if r0 = 0, r1 = 1
(
1 − pR1|¬R0(h0)

)
· pH1|¬R1(h0, h1) if r0 = 0, r1 = 0,

where

– pR1|R0(h0) = 1
4 + 3

4
h0
N , and pR1|¬R0(h0) = 3

4
h0
N ,

– pH|¬R(h0, h1) = 2
2N−h0

·max (min (h1 + 1 − h0/2, 1) , 0),
– pH|R(h0, h1) = 2

N+h0
·max

(
min

(
N+h0

2 − h1, 1
)
, 0

)
.

Computation of Approximate Satisfaction Probabilities. Suppose that
at the end of day 0, we have R0 = 0,H0 = 0.5, and a travel agent wants to know
the risk of there being 2 consecutive days of rain over the next three days.

This probability can be computed algorithmically according to MA, and for
N = 1000, this is 0.365437 (see Appendix G of [4]). Since point (0, 500) ∈ SA

is 0.001-bisimilar with (0, 0.5) ∈ SC , this means that according M C with initial
state (0, 0.5) ∈ SC , the probability of there being two consecutive days of rain
over the next three days is 0.365437 ± 0.003.

334 G. Bian and A. Abate

Analytical Validation of the Result. In this setup it is possible to evaluate
the exact result for M C analytically:

P [R1 = 1, R2 =1] = P [R1 = 1]

∫ 1

0

fH1|R1=1(h1)·P [R2 = 1 | H1 = h1, R1 = 1] dh1,

which amounts to 0.199219, and similarly P [R1 = 0, R2 = 1, R3 = 1] =
0.166626. This yields

P [Two consecutive rainy days over next 3 days]
= P [R1 = 1, R2 = 1z] + P [R1 = 0, R2 = 1, R3 = 1] = 0.365845,

which is within the error bounds guaranteed by ε-trace equivalence, as expected.

7 Other Notions of ε-Bisimulation

The following condition appears in literature [1,3,14] as the definition of approx-
imate probabilistic bisimulation. For simplicity, let us restrict our attention to
finite state spaces.

Definition 9 (Alternative notion of approximate probabilistic bisimu-
lation, adapted from [3]). Let M = (S,Σ, τ, L) be a LMC, where S is finite
and Σ = P(S). For ε ∈ [0, 1], a binary relation Rε on S satisfies Definition 9 if:

∀(s1, s2) ∈ Rε, we have L(s1) = L(s2),

∀(s1, s2) ∈ Rε, ∀T̃ ⊆ S s.t. T̃ is Rε-closed, we have
∣
∣
∣τ(s1, T̃) − τ(s2, T̃)

∣
∣
∣ ≤ ε.

This is different from our notion of approximate probabilistic bisimulation
because T̃ ranges over Rε-closed sets rather than all (measurable) sets. This
definition is closer to exact probabilistic bisimulation (cf. Definition 3), but it is
too weak to effectively bound probabilistic trace distance.

Theorem 10. For any ε > 0, there exists an LMC M = (S,Σ, τ, L), a binary
relation Rε on S, and a pair of states (s1, s2) ∈ Rε, such that Rε satisfies the
conditions in Definition 9, but the 2-step reachability probabilities from s1, s2
differ by 1 for some destination states.

Proof. For ε > 0, let N ∈ Z
+, 1/N ≤ ε. Consider the following LMC. Let

Rε := {(s1, s2)} ∪ {(tk, tk+1) | k ∈ {0, · · · , N − 1}}.
The only Rε-closed sets are {s1, s2}, {t0, . . . , tN}, {u1}, {u2} and unions of

these sets, and so Rε satisfies Definition 9.
We have s1Rε s2, and yet P2

(
s1,♦≤2a

)
= 1 but P2

(
s2,♦≤2a

)
= 0, where

♦≤2a is the set of length 3 traces that reach a state labelled with a.

Bisimulation vs. Trace Equivalence in an Approximate Probabilistic Context 335

As shown in [14] however, there is still some relationship between the prob-
abilities of specific traces, which hinges on additional details of the structure of
the transition kernel.

8 Conclusions and Extensions

In this paper we have developed a theory of f(k)-trace equivalence. We derived
the minimum f(k) such that ε-bisimulation implies f(k)-trace equivalence, thus
extending the well known result for the exact non-probabilistic case. By linking
error bounds on the total variation of length k traces to a notion of approximation
based on the underlying transition kernel, we provided a means of computing
upper bounds for the total variation and of synthesising abstract models with
arbitrarily small total variation to a given concrete model.

It is of interest to extend our results to allow the states of the LMC to be
labelled with bounded real-valued rewards, and then to limit the difference in
expected reward between approximately bisimilar states.

Acknowledgments. The authors would like to thank Marta Kwiatkowska for discus-
sions on an earlier version of this draft.

References

1. Abate, A.: Approximation metrics based on probabilistic bisimulations for general
state-space Markov processes: a survey. Electron. Notes Theor. Comput. Sci. 297,
3–25 (2013)

2. Abate, A., Katoen, J.P., Lygeros, J., Prandini, M.: Approximate model checking
of stochastic hybrid systems. Eur. J. Control 16(6), 624–641 (2010)

3. Abate, A., Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking
of labelled Markov processes via finite approximate bisimulations. In: Breugel, F.,
Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to
Prakash Panangaden. LNCS, vol. 8464, pp. 40–58. Springer, Cham (2014). doi:10.
1007/978-3-319-06880-0 2

http://dx.doi.org/10.1007/978-3-319-06880-0_2
http://dx.doi.org/10.1007/978-3-319-06880-0_2

336 G. Bian and A. Abate

4. Bian, G., Abate, A.: On the relationship between bisimulation and trace equiva-
lence in an approximate probabilistic context (extended version) (2017). http://
arxiv.org/abs/1701.04547

5. Bollobás, B., Varopoulos, N.: Representation of systems of measurable sets. Math.
Proc. Cambridge Philos. Soc. 78(02), 323–325 (1975)

6. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31, 59–75 (1994)

7. Castro, P.S., Panangaden, P., Precup, D.: Notions of state equivalence under partial
observability. In: IJCAI (2009)

8. Chen, D., Breugel, F., Worrell, J.: On the complexity of computing probabilistic
bisimilarity. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 437–451.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28729-9 29

9. Chen, T., Kiefer, S.: On the total variation distance of labelled Markov chains.
In: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Confer-
ence on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), p. 33. ACM (2014)

10. Comanici, G., Panangaden, P., Precup, D.: On-the-fly algorithms for bisimulation
metrics. In: 2012 Ninth International Conference on Quantitative Evaluation of
Systems (QEST), pp. 94–103. IEEE (2012)

11. Daca, P., Henzinger, T.A., Kret́ınský, J., Petrov, T.: Linear distances between
markov chains. In: 27th International Conference on Concurrency Theory, CON-
CUR 2016, Québec City, Canada, 23–26 August 2016, pp. 20:1–20:15 (2016)

12. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov
processes. Inf. Comput. 179(2), 163–193 (2002)

13. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic
processes: logic, simulation and games. In: Fifth International Conference on Quan-
titative Evaluation of Systems, QEST 2008, pp. 264–273. IEEE (2008)

14. D’Innocenzo, A., Abate, A., Katoen, J.P.: Robust PCTL model checking. In: Pro-
ceedings of the 15th ACM International Conference on Hybrid Systems: Compu-
tation and Control, pp. 275–286. ACM (2012)

15. Durrett, R.: Probability: Theory and Examples, 3rd edn. Duxbury Press, Pacific
Grove (2004)

16. Esmaeil Zadeh Soudjani, S., Abate, A.: Adaptive and sequential gridding proce-
dures for the abstraction and verification of stochastic processes. SIAM J. Appl.
Dyn. Syst. 12(2), 921–956 (2013)

17. Gebler, D., Tini, S.: Compositionality of approximate bisimulation for probabilistic
systems. In: EXPRESS/SOS 2013, pp. 32–46 (2013)

18. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat.
Rev. 70(3), 419–435 (2002)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

20. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: Conference
Record of the 16th ACM Symposium on Principles of Programming Languages,
POPL 1989, pp. 344–352 (1989)

21. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2(2), 250–273 (1995)

22. Spears, W.M.: A compression algorithm for probability transition matrices. SIAM
J. Matrix Anal. Appl. 20(1), 60–77 (1998)

23. Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking.
IEEE Trans. Softw. Eng. 32(8), 531–546 (2006)

http://arxiv.org/abs/1701.04547
http://arxiv.org/abs/1701.04547
http://dx.doi.org/10.1007/978-3-642-28729-9_29
http://dx.doi.org/10.1007/978-3-642-22110-1_47

Bisimulation vs. Trace Equivalence in an Approximate Probabilistic Context 337

24. Tang, Q., van Breugel, F.: Computing probabilistic bisimilarity distances viapolicy
iteration. In: 27th International Conference on Concurrency Theory, CONCUR
2016, 23-26 August 2016, Québec City, Canada, pp. 22:1–22:15 (2016)

25. Tkachev, I., Abate, A.: Formula-free finite abstractions for linear temporal ver-
ification of stochastic hybrid systems. In: Proceedings of the 16th International
Conference on Hybrid Systems: Computation and Control, pp. 283–292. ACM
(2013)

26. Wu, H., Noé, F.: Probability distance based compression of hidden Markov models.
Multiscale Model. Simul. 8(5), 1838–1861 (2010)

Computing Continuous-Time Markov Chains
as Transformers of Unbounded Observables

Vincent Danos1,3, Tobias Heindel2, Ilias Garnier1,3,
and Jakob Grue Simonsen2(B)

1 Département d’Informatique, École Normale Supérieure, Paris, France
{danos,garnier}@di.ens.fr

2 Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

{tohe,simonsen}@di.ku.dk
3 School of Informatics, University of Edinburgh, Edinburgh, UK

Abstract. The paper studies continuous-time Markov chains (CTMCs)
as transformers of real-valued functions on their state space, consid-
ered as generalised predicates and called observables. Markov chains
are assumed to take values in a countable state space S; observables
f : S → R may be unbounded. The interpretation of CTMCs as trans-
formers of observables is via their transition function Pt: each observable
f is mapped to the observable Ptf that, in turn, maps each state x to
the mean value of f at time t conditioned on being in state x at time 0.

The first result is computability of the time evolution of observables,
i.e., maps of the form (t, f) �→ Ptf , under conditions that imply existence
of a Banach sequence space of observables on which the transition func-
tion Pt of a fixed CTMC induces a family of bounded linear operators
that vary continuously in time (w.r.t. the usual topology on bounded
operators). The second result is PTIME-computability of the projec-
tions t �→ (Ptf)(x), for each state x, provided that the rate matrix of the
CTMC Xt is locally algebraic on a subspace containing the observable f .

The results are flexible enough to accommodate unbounded observ-
ables; explicit examples feature the token counts in stochastic Petri nets
and sub-string occurrences of stochastic string rewriting systems. The
results provide a functional analytic alternative to Monte Carlo simu-
lation as test bed for mean-field approximations, moment closure, and
similar techniques that are fast, but lack absolute error guarantees.

1 Introduction

Stochastic processes are currently a very active research topic in computer
science and they have been studied avidly in mathematics, even prior to

T. Heindel gratefully acknowledges support from RUBYX (project ID 628877 funded
by FP7-PEOPLE).
I. Garnier is supported by the ERC project RULE (grant number 320823).
J.G. Simonsen is partially supported by the Danish Council for Independent
Research Sapere Aude grant Complexity via Logic and Algebra (COLA).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 338–354, 2017.
DOI: 10.1007/978-3-662-54458-7 20

Computing Continuous-Time Markov Chains as Transformers 339

Kolmogorov’s axiomatic approach to probability. For the special case of
continuous-time Markov chains (CTMCs), we shall study how they act on func-
tions from their state space to the reals, which we call observables, alluding to
measurement of observable quantities of states. In analogy to predicate trans-
former semantics [Koz83], observables are considered as generalised predicates
that Markov chains transform over time, thus leading to observations that evolve
continuously in time. The principal question is how to compute the time evolu-
tion of observables.

On computability of time-dependent observations. The following scenario intro-
duces the basic concepts and leads to the core questions of computability. Sup-
pose, we want to compute the mean E[f(Xt)] of an observable f on a CTMC Xt

with denumerable state space. However, initially, we are given only a specifi-
cation of its dynamics, say, by a finite model that determines the transition
function Pt, i.e., the matrix of probabilities pt,xy to jump from state x to state
y during a time interval of length t; the initial distribution, i.e., the distribution
π of X0, will be available only much later.

As we do not know the initial distribution in advance, we want to split
the computation of the mean E[f(Xt)] =

∑
x,y π(x)pt,xyf(y) into a first phase

in which we compute conditional means Ex(f(Xt)) = E[f(Xt) | X0 = x] =∑
y pt,xyf(y) for a sufficiently large, but finite set of possible initial states x

and a second phase for integration w.r.t. the initial distribution π. The two core
questions for an approximation of the mean E[f(Xt)] to desired precision ε > 0
using the described two phase approach are: Is it actually possible to restrict to
a finite set of initial states x that we need to consider? If so, can we compute
the conditional means Ex(f(Xt)) =

∑
y pt,xyf(y) w.r.t. these states to sufficient

precision?
We want to condense these two questions into a single computability ques-

tion. For this, we first congregate the conditional means Ex(f(Xt)) into a single
observable Ptf with Ptf(x) = Ex(f(Xt)); then, fixing a suitable Banach space
of observables, it makes sense to ask for an approximation of Ptf to precision
ε. Finally, employing the framework of type 2 theory of effectivity, we can sim-
ply ask if the observable Ptf is computable. We go one step further and study
computability of the time evolution of these observables.

Examples. For motivation, we give two paradigmatic examples of transient
means of the form E[f(Xt)]. The first example of a stochastic process of the
form f(Xt), i.e., a pair of a CTMC Xt and an observable f , is the classic CTMC
model of a set of chemical reactions where states are multisets over a finite set
of species with the count of a certain chemical species as observable; thus, we
are interested in the time evolution of the mean count of a certain species.

An example native to computer science is the stochastic interpretation of
any string rewriting system as a CTMC Xt. An obvious class of observables for
string rewriting are functions that count the occurrence of a certain word as sub-
string in each state of the CTMC Xt; note that this is different from counting
“molecules” as there is always only a single word! For example, consider the

340 V. Danos et al.

string rewriting system with the single rule a � aba and initial state a: the
mean occurrence count of the letter a grows as the exponential function et while
the mean occurrence count of the word aa is zero at all times; adding the rule
ba � ab does not change the mean a-count but renders the mean count of the
word aa non-trivial.

Note that these two classes of models are only the most basic types of rule-
based models, besides more powerful examples such as Kappa models [DFF+10]
and stochastic graph transformation [HLM06].1 The results of this paper are
independent of any particular modelling language for CTMCs.

Finite state case. For the sake of clarity, let us describe explicitly the objects
that we would manipulate and compute in the basic case where the CTMC has
a finite state space. The dynamics of a continuous-time Markov chain on a finite
state space S is entirely captured by its q-matrix, which is an S × S-indexed
real matrix in which every row sums to zero and all negative entries lie on the
diagonal. Every q-matrix Q induces a matrix semigroup t �→ Pt = etQ which is
exactly the transition function of the CTMC where etQ is the matrix exponential
of tQ. Viewing a distribution π on S as a row vector, the map t �→ πPt describes
the time evolution of the distribution over states at time t starting from the
initial distribution π at time 0. In particular, if X0 is distributed according to
π, the associated CTMC Xt is distributed according to πPt. Dually, for any
function f : S → R (seen as a column vector), Ptf is the vector of conditional
means Ex(f(Xt)) of f at time t as a function of the initial state x. As said
before, the time evolution of observables in the CTMC with q-matrix Q, i.e., the
map t �→ Ptf , is the main object of interest for the present paper; the principal
question is whether it is computable.

For the finite state case, computability of t �→Ptf is trivial, assuming f is
computable and the q-matrix consists of rational entries. Here, computability
is in the sense of type 2 theory of effectivity (TTE), which for the function
t �→ Ptf means that there are approximation schemes for all coordinates Ptf(x)
to arbitrary desired precision. Even the whole matrix Pt is computable, as it is
finite dimensional in the finite state case; finally, observe that all observables on
a finite state space are necessarily bounded functions.

The general case. The characterisation of the function t �→ Ptf as the unique
solution to the initial value problem (IVP)

d
dtut = Qut

u0 = f
(1)

will turn out to be very useful as it generalises rather naturally to arbitrary
Banach spaces [Ein52]. However, there are two points to note. While the q-matrix
Q is a bounded linear operator on the finite-dimensional vector space of all
1 In fact, stochastic string rewriting is the restriction of stochastic graph transforma-

tion [HLM06] to directed, connected, acyclic, edge labelled graphs with in and out
degree of nodes bounded by one, i.e., to graphs consisting of a unique maximal path.

Computing Continuous-Time Markov Chains as Transformers 341

observables when we have a finite state space, this does not hold true for the
general case. Moreover, the observable f itself might be unbounded, which poses
an additional difficulty for solving an IVP like (1) as described in Sect. 3.3.

The first contribution of the paper consists in setting up a suitable generalisa-
tion of the initial value problem (1) in a Banach space space of observables such
that the time-dependent observable Ptf , mapping a state x to the conditional
mean Ex(f(Xt)), is its unique solution; for this, we heavily use the functional
analytic techniques recently developed in Refs. [Spi12,Spi15]. The main contri-
bution is Theorem 2 on computability of the function (t, f) �→ Ptf under mild
additional assumptions on the q-matrix of the Markov chain, putting to use
recent results by Weihrauch and Zhong [WZ07] on computability of solutions
of initial value problems in Banach spaces. The sufficient conditions are general
enough to encompass many interesting unbounded observables. Finally, we show
that, for a fixed state x and observable f , the time evolution of the conditional
mean Ex(f(Xt)) is PTIME computable (Theorem 3) under conditions that are
strict enough to re-use results on linear ODEs [PG16], yet general enough to cap-
ture mean word counts in context-free stochastic string rewriting (Corollary 2).

Related work. Computability of continuous-time Markov chains as transformers
of unbounded observables is related to computation of transient means E[f(Xt)]
of an observable f on a CTMC Xt with countable state space. Computability of
transient means, in turn, is related to first passage probabilities of a decidable
set of states U (cf. [GM84, Sect. 6.2]): the latter problem can be reduced to
computing transient means by use of an indicator function that checks for states
in U and a modified dynamics of the Markov chain, disabling jumps out of U .

Adaptive uniformisation (AU) [VMS93,VMS94] allows one to compute tran-
sient means of bounded observables without further complications. However, AU
requires the initial distribution to be finite and known from the start. Our results
are not subject to these two restrictions, though we need that for each desired
precision ε, there is a finite number of states to which we can restrict possible
initial distributions, which is a restriction on the dynamics of the CTMC.2 The
main novelties are the focus on the observable and its time evolution, answer-
ing the question of how the dynamics a Markov chain acts on an observable,
in general and independent of the initial distribution, and its computability to
arbitrary desired precision. We even treat the case of unbounded observables,
relying on recent mathematical results [Spi12,Spi15].

Model-checking of continuous-time Markov chains typically concern prop-
erties of sample paths of CTMCs relative to a labeling function on states
[BHHK03]. In the present paper we neither have a labeling function nor do
we rely on sample paths, explicitly. However, it may be that the methods of the
present paper can be adapted to the labeled case.

Structure of the paper. The paper starts out with the detailed description of the
motivating examples, namely string rewriting and stochastic Petri nets. Then

2 Specifically, all CTMCs that fail to be Feller processes [RR72] are problematic.

342 V. Danos et al.

we review the mathematical preliminaries, in particular continuous-time Markov
chains on a countable state space and the basic concepts of transition functions
and q-matrices. The generalisation of the initial value problem (1) and the char-
acterisation of the continuous-time observation transformation t �→ Ptf of an
observable f by the transition function Pt of a CTMC (Theorem 1) are given
in Sect. 4. The main result (Theorem 2) on computability of the continuous-
time transformation of observables by CTMCs is presented in Sect. 5. In Sect. 6,
we show PTIME-computability of the time evolution of the conditional mean
Ex(f(Xt)), for all states x, under assumptions that allow to restrict to a finite-
dimensional space (Theorem 3) and its direct consequence for string rewriting
(Corollary 2). Finally, we conclude with a summary of results and directions for
future work.

2 Two Motivating Examples of CTMCs with Observables

We illustrate our constructions with: (i) chemical reaction networks (CRN), aka
stochastic Petri nets, and (ii) stochastic string rewriting as a simple example of
(rule-based) modelling. In both cases, the construction of the q-matrix implied
by a model is readily done, and so is the definition of a natural set of unbounded
observables with clear relevance to the dynamics of a model: word occurrence
counts for stochastic string rewriting (Definition 2) and multiset inclusions for
Petri nets (Definition 3).

2.1 Stochastic String Rewriting and Word Occurrences

Stochastic string rewriting can be thought of as never ending, fair competition
between all redexes of rules, “racing” for reduction; the formal definition is as
follows, in perfect analogy to Ref. [HLM06] which covers the case of graphs.

Definition 1 (Stochastic string rewriting). Let ρ = l � r ∈ Σ+ × Σ+ be
a rule. The q-matrix of ρ, denoted by Qρ, is the q-matrix Qρ = (qρ

uv)u,v∈Σ+ on
the state space of words Σ+ with off-diagonal entries

qρ
uv =

∣
∣
{
(w,w′) ∈ Σ∗ × Σ∗ ∣

∣ u = wlw′, v = wrw′}∣
∣

for each pair of words u, v ∈ Σ+ such that u �= v, and diagonal entries qρ
uu =

−
∑

v �=u qρ
uv for all u ∈ Σ+. For a finite set of rules R ⊆ Σ+ × Σ+, we define

QR =
∑

ρ∈R Qρ, and with additional choices of rate constants k : R � Q
+, we

define QR,k =
∑

ρ∈R kρQρ.

For a given rule set R, each entry qR
uv of the q-matrix corresponds to the propen-

sity to rewrite: it is just the number of ways in which u can be rewritten to v.
We shall usually work without rate constants for the sake of readability. Note
that the use of Σ+ for the left and right hand side of rules is convenient to get
string rewriting as a special case of graph transformation in a straightforward
manner.

The occurrence counting function of a word as sub-string in the state of the
CTMC of R is as follows.

Computing Continuous-Time Markov Chains as Transformers 343

Definition 2 (Word counting functions). Let w ∈ Σ+ be a word. The
w-counting function, denoted by �w : Σ+ → R≥0, maps each word x ∈ Σ+ to
�w(x) = |{(u, v) ∈ Σ∗ × Σ∗ | x = uwv}|.

2.2 Stochastic Petri Nets and Sub-multiset Occurrences

We recall the definition of stochastic Petri nets and occurrence counting of a
multisets. Note that for the purposes of the present paper, places and species
are synonymous.

Definition 3 (Multisets and multiset occurrences). A multiset over a
finite set P of places is a function x : P → N that maps each place to the
number of tokens in that place. Given a multiset, x ∈ N

P , the x-occurrence
counting function �x : NP → N is defined by

�x(y) =

{
y!

(y−x)! x ≤ y

0 otherwise

where z! =
∏

p∈P z(p)! is the multiset factorial for all z ∈ N
P .

Definition 4 (Stochastic Petri net). Let P be a finite set of places. A
stochastic Petri net over P is a set

T ⊆ N
P × R>0 × N

P

where N
P is the set of multisets over P, which are called markings of the net;

elements of the set T are called transitions. The q-matrix Ql,k,r on the set of
markings for a transition (l, k, r) ≡ l →k r ∈ T has off-diagonal entries

ql,k,r
xy =

{
k · �l(x) �l(x) > 0, y = x − l + r

0 otherwise

where addition and subtraction is extended pointwise to N
P . The q-matrix of T

is QT =
∑

(l,k,r)∈T Ql,k,r.

3 Preliminaries

For the remainder of the paper, we fix an at most countable set S as state space.

3.1 Transition Functions and q-Matrices

We first recall the basic definitions of transition functions and q-matrices. We
make the usual assumptions [And91] one needs to work comfortably: namely
that q-matrices are stable and conservative and that transition functions are
standard and also minimal as described at the end of Sect. 3.1.

With these assumptions in place, transition functions and q-matrices deter-
mine each other, and one can freely work with one or the other as is most
convenient.

344 V. Danos et al.

Definition 5 (Standard transition function [And91, p. 5f]). A transition
function on S is a family {Pt}t∈R≥0 of S × S-matrices Pt = (pt,xy)x,y∈S with
non-negative, real entries pt,xy such that

1. limt↘0 pt,xx = 1 for all x ∈ S;
2. limt↘0 pt,xy = 0 for all x, y ∈ S such that y �= x;
3. Pt+s = PtPs = (

∑
z∈S ps,xzpt,zy)x,y∈S for all s, t ∈ R≥0; and

4.
∑

z∈S pt,xz ≤ 1 for all x ∈ S and t ∈ R≥0.

Thus, each row of a transition function corresponds to a sub-probability measure,
and transition functions converge entry-wise to the identity matrix at time zero.

Taking entry-wise derivatives of a transition function at time 0 is possible
[Kol51,Aus55] and gives a q-matrix.

Definition 6 (q-matrix). A q-matrix on S is an S×S-matrix Q = (qxy)x,y∈S

with real entries qxy such that qxy ≥ 0 (if x �= y), qxx ≤ 0, and
∑

z∈S qxz = 0
for all x, y ∈ S.

Conversely, for each q-matrix, there exists a unique entry-wise minimal transition
function that solves Eq. (2) [And91, Theorem 2.2],

d
dt

Pt = QPt, P0 = I (2)

which is called the transition function of Q. From now on, we assume that all
transition functions are minimal solutions to Eq. (2) for some q-matrix Q (see
[Nor98, p. 69]).

3.2 The Abstract Cauchy Problem for Ptf

Abstract Cauchy problems (ACPs) in Banach spaces [Ein52] are the classic gen-
eralisation of finite-dimensional initial value problems (see also Refs. [ABHN11,
EN00]). Specifically, we want to obtain Ptf as unique solution ut of the following
generalisation of our earlier IVP (1):

d
dtut = Qut (t ≥ 0)

u0 = f
(ACP)

where f is an observable and Q is a linear operator which plays the role of
the q-matrix. ACPs that allow for unique differentiable solutions are intimately
related to strongly continuous semigroups (SCSGs) and their generators (see,
e.g., [EN00, Proposition II.6.2]).

Definition 7. Let B be a real Banach space with norm ‖ ‖. A strongly contin-
uous semigroup on B is a family {Pt}t∈R≥0 of bounded linear operators Pt on B
satisfying (i) P0 = IB (the identity on B); (ii) Pt+s = PtPs, for all s, t ∈ R≥0;
and (iii) limh↘0 ‖Phf − f‖ = 0, for all f ∈ B. The infinitesimal generator Q
of a strongly continuous semigroup Pt on B is the linear operator defined by
Qf = limh↘0

1/h(Phf − f) for all f ∈ B that belong to the domain of definition
dom(Q) =

{
f ∈ B

∣
∣ The limit limh↘0

1/h(Phf − f) exists.
}

.

Computing Continuous-Time Markov Chains as Transformers 345

There are a few points worth noting on how to pass from the IVP (1) to
a corresponding ACP. First, the topological vector space of all observables R

S

cannot be equipped with a suitable complete norm to turn it into a Banach
space. Therefore, one has to look for a subspace B ⊂ R

S wherein to interpret
the above equation. Second, as Ptf = ut is the desired solution, and P0 = I, it
follows that d

dtPtf |t=0 = Qf . If this derivative does not exist, Qf is simply not
defined. In fact, as is clear from the examples in Sect. 2, we can only expect Q
to be partially defined as it is not a bounded operator, in general.3

On the positive side, if we know that Pt is an SCSG on B, meaning
limh↘0 Phf = f for all f ∈ B, we can take Q to be its generator, i.e., the
linear operator defined on g ∈ B by Qg := d

dtPtg|t=0 whenever this limit exists,
and obtain Ptf as unique solution of (ACP) [EN00, Proposition II.6.2]. Even
better, in this case, not only does (ACP) have Ptf as unique solution, but we
get an explicit approximation scheme:

Ptf = lim
n→∞ etAnf (3)

where θ is a constant of the SCSG such that nI − Q is invertible for n > θ and
the operators An = nQ(nI−Q)−1, known as Yosida approximants, are bounded.

Yosida approximants are the cornerstone of the generation theorems for
SCSGs [EN00, Corollary 3.6] that allow one to pass from the generator Q to
the corresponding SCSG. The constant θ also bounds the growth of the SCSG
in norm, namely ‖Pt‖ ≤ Meθt for some M . This should already make clear
that Eq. (3) is crucial to obtain error bounds for results on the computability of
SCSGs. In fact, it is the starting point of the proof of the main result on the
computability of SCSGs [WZ07, Theorem 5.4.2, p. 521].

It remains to see whether we can exhibit Banach spaces to build ACPs that
accomodate interesting (specifically unbounded) observables.

3.3 Banach Space Wanted!

Table 1 gives an overview of initial value problems for transient distributions
(first row) and transient conditional means (second row). Transient distribu-
tions are summable sequences, and transition functions form SCSGs [Reu57] and
therefore allow for a well-posed corresponding ACP. But the classic example of
a Banach space to reason about conditional means [RR72] is the space C0(S) of
functions vanishing at infinity, i.e., functions f : S → R such that for all ε > 0,
the set {x ∈ S | f(x) ≥ ε} is finite, equipped with the supremum norm. The cor-
responding processes are called Feller transition functions [And91, Sect. 1.5] and
verify a principle of finite velocity of information flow (for all t, y, the function
x �→ pt,xy vanishes as x goes to infinity).

3 Even when Qf is defined, one has to check Qf = Qf , that is to say:
1/h(Phf − f) converges to Qf in the Banach space norm. But this will turn out
to be easy compared to finding sufficient conditions for Qf to be defined.

346 V. Danos et al.

Table 1. Transition functions acting on Banach spaces: state of the art

4 Spieksma’s Theorem

A solution is provided by a result of Spieksma [Spi12, Theorem 6.3], giving a
class of candidate Banach spaces B for a given q-matrix Q and an observable f
of interest such that Pt forms an SCSG on B (Theorem 1.1). As a consequence,
we are led to ACPs generalising the IVP (1) in which the operator Q is the
generator of the transition function Pt (seen as an SCSG on B) and is a restriction
of the q-matrix Q, i.e., Qf = Qf for all f ∈ dom(Q). Moreover, we obtain a
characterization of part of the the domain dom(Q) (Proposition 1). The results
of this section set the mathematical stage for the main results.

4.1 Weighted C0-Spaces and Drift Functions

The Banach spaces that we shall work with are weighted variants of C0(S) such
that functions vanish at infinity relative to a chosen weight function on states.

Definition 8 (Weighted C0(S)-spaces). Let S be a set and let W : S → R>0

be a positive real-valued function, referred to as a weight. The Banach space
C0(S,W) consists of functions f : S → R such that f/W vanishes at infinity,
where (f/W)(x) = f(x)/W (x). The norm ‖ ‖W on such functions f is ‖f‖W =
supx∈S |f(x)/W (x)|.

As C0(S,W) is isometric to C0(S) it is indeed a Banach space. It is also a
closed subspace of L∞(S,W), the set of functions such that f/W is bounded. We
shall use later the fact that:

Lemma 1. Finite linear combinations of indicator functions,4 form a dense
subset of C0(S).

Spieksma’s theorem [Spi12, Theorem 6.3] will be in terms of so-called drift
functions, which intuitively are functions whose mean w.r.t. a given CTMC grows
with at most constant rate.
4 The indicator function 1x is defined as usual as 1x(y) = δxy.

Computing Continuous-Time Markov Chains as Transformers 347

Definition 9 (Drift function). Let Q be a q-matrix on S, and let c ∈ R.
A function W : S → R>0 is called a c-drift function for Q if for all x ∈ S
(QW)(x) :=

∑
y∈S qxyW (y) ≤ cW (x).

We shall say that W is a drift function for Q if there exists c ∈ R such that it
is a c-drift function for Q. One can show that PtW ≤ ectW in this case. Thus,
drift functions control their own growth under the transition function.

4.2 Transition Functions as Stronlgy Continuous Semigroups

The crux of Spieksma’s theorem [Spi12, Theorem 6.3] is a pair of positive drift
functions V,W for Q such that V ∈ C0(S,W), i.e., such that the quotient V/W

vanishes at infinity. Intuitively, qua drift function, their growth is at most expo-
nential in mean; moreover V is negligible compared to W at infinity, and thus
functions on the order of V are as good as functions vanishing at infinity, in anal-
ogy to the case of Feller processes [RR72], which is exactly the class of CTMCs
whose transition functions induce SCSGs on C0(S). Hence, the following result
is a first step towards a theory of weighted Feller processes.

Theorem 1. Let Pt be a transition function on the state space S with q-matrix
Q and let V,W : S → R>0 be drift functions for Q. Then the following hold.

1. The transition function Pt induces an SCSG on C0(S,W) iff V ∈ C0(S,W).
2. If V ∈ C0(S,W), for all f ∈ C0(S,W) and t ∈ R≥0, Ptf is given by Eq. (3)

in the Banach space C0(S,W) where Q is the generator of Pt.

The first part of the theorem is proved in [Spi12, Theorem 6.3]; the second part
follows from the general theory of ACPs. Note that f does not need to be in the
domain of Q, in which case we only obtain a mild solution to the ACP [EN00,
Definition II.6.3], i.e., a solution to its integral form which is not everywhere
differentiable. In fact, the solution is differentiable if and only if f belongs to the
domain of the generator [EN00, Proposition II.6.2].

4.3 On the Domain of the Generator

One difficulty in working with SCSGs is to find a useful description of the domain
of their generator. However, the graph of the infinitesimal generator of an SCSG
is completely determined by the restriction to any dense subset. The follow-
ing characterisation of subsets of the domains of generators of SCSGs that are
obtained via Theorem1 is a corrected weakening [Spi16] of the second part of
Theorem 6.3 of Ref. [Spi12], naturally generalising the classic result for Feller
processes [RR72, Theorem 5].

Proposition 1. Let Pt be a transition function on S with q-matrix Q and let
V,W : S → R>0 be positive drift functions for Q such that V ∈ C0(S,W). Let Q
be the generator of the SCSG Pt on C0(S,W) (cf. Theorem1).

348 V. Danos et al.

For all f ∈ C0(S,W) that satisfy ‖f‖V < ∞ and Qf ∈ dom(Q), we have

Qf = Qf = lim
h↘0

1/h(Ptf − f), (4)

i.e., the latter limit exists in C0(S,W) and in particular f ∈ dom(Q).

We have now covered the mathematical ground needed to characterise the
transformation of observations by transition functions of CTMCs as solutions of
an ACP, generalising the finite state case of IVP (1). This, however, does not
immediately yield an algorithm for computing transient means. Even transient
conditional distributions can fail to be computable [AFR11]! Before we proceed
to the question of computability, let us return to our two classes of examples.

4.4 Applications: String Rewriting and Petri Nets

We now give examples of drift functions for stochastic string rewriting and Petri
nets. The former case is well-behaved since the mean letter count grows at most
exponentially. The case of Petri nets will be more subtle and we shall give an
example of an explosive Petri net such that we can nevertheless reason about
conditional means of unbounded observables.

For string rewriting, we have canonical drift functions.

Lemma 2 (Powers of length are drift functions). Let R ⊆ Σ+ ×Σ+ be a
finite string rewriting system and let n ∈ N

+ be a positive natural number. There
exists a constant cn ∈ R>0 such that | |n : Σ+ → R≥0 is a cn-drift function.

Now, we can apply Spieksma’s method to get a Banach space for reasoning about
conditional means and moments of word counting functions.

Corollary 1 (Stochastic string rewriting). Let R be a finite string rewrit-
ing system, let n ∈ N\{0}, and let | | : Σ+ � N be the word length function. The
transition function Pt of q-matrix QR is an SCSG on C0(Σ+, | |n).

Thus, all higher conditional moments of word counting functions can be accom-
modated in a suitable Banach space. The case of Petri nets is more subtle, since,
in general, the (weighted) token count is not a drift function.

Example 1. Consider the Petri net with single transition 2A →1 3A and with
one place A. The token count �A is not a drift function. In fact, the corresponding
CTMC is explosive (by Theorem 2.1 of Ref. [Spi15]).

Our final example is an extension of the previous explosive CTMC with a new
species whose count can nevertheless be treated using Theorem 1.

Example 2 (Unobserved explosion). Consider the Petri net with transitions

{2A →1 3A,B →1 2B}.

Computing Continuous-Time Markov Chains as Transformers 349

The underlying CTMC is explosive, and we cannot apply Theorem1 to compute
the transient conditional mean of the A-count for the exact same reason as in
Example 1. However, we can do so for the B-count, using the weight function
W = �B

2 and observable f = �B . Putting V = f allows one to apply Spieksma’s
recipe (ruling out states with B-count 0 for convenience). The conditional mean
E2A+B(�B(Xt)) can be best understood by adding a coffin state, on which both
the A- and B-count are zero and in which the Markov chain resides after (the
first and only) explosion.

5 Computability

We follow the school of type-2 theory of effectivity. A real number x is com-
putable iff there is a Turing machine that on input d ∈ N (the desired precision),
outputs a rational number r with |r − x| < 2−d. Next, a function g : R → R is
computable if there is a Turing machine that, for each x ∈ R, takes an arbitrary
Cauchy sequence with limit x as input and generates a Cauchy sequence that
converges to g(x)—where convergence has to be sufficiently rapid, e.g., by using
the dyadic representation of the reals.

Computability extends naturally to any Banach space B other than R. We
only need a recursively enumerable dense subset on which the norm, addition and
scalar multiplication are computable, thus making B a computable Banach space;
usually, the dense subset is induced by a basis of a dense subspace. For weighted
C0-spaces (with computable weight functions) and their duals (C0(S,W))∗, we
fix an arbitrary enumeration of all rational linear combinations of indicator
functions 1x; for the Banach space of bounded linear operators on weighted
C0-spaces we use the standard construction for continuous function spaces
[WZ07, Lemma 3.1]. A SCSG Pt is computable if the function t �→ Pt from
the reals to the Banach space of bounded linear operators is computable.
The computable SCSGs correspond to those obtained from CTMCs through
Theorem 1.

We restrict to row- and column-finite q-matrices with rational entries in our
main result, motivated by the observation that we do not lose any of the intended
applications to rule-based modelling.

Theorem 2 (Computability of CTMCs as observation transformers).
Let Q be a q-matrix on S, let W : S → R≥0 be a positive drift function for Q
such that there exists V ∈ C0(S,W) that is a drift function for Q. If

– the q-matrix Q is row- and column-finite, consists of rational entries, and is
computable as a function Q : S2 → Q and the function y �→ {x ∈ S | qxy �= 0}
is computable, and

– W : S → Q is computable,

the following hold.

350 V. Danos et al.

1. The SCSG Pt is computable.
2. The evolution of conditional means (t, f) �→ Ptf is computable as partial func-

tion from R × C0(S,W) to C0(S,W) defined on R≥0 × C0(S,W).
3. The evolution of means (π, t, f) �→ πPtf is computable as partial function from

C0(S,W)∗ × R × C0(S,W) to R defined on C0(S,W)∗ × R≥0 × C0(S,W).

Proof. We shall apply a result by Weihrauch and Zhong on the computability
of SCSGs [WZ07, Theorem 5.4]. Applying this result requires some extra infor-
mation:

1. the SCSG Pt must be bounded in norm by eθt for some positive constant θ;
2. we must have a recursive enumeration of a dense subset of the graph of the

infinitesimal generator of the SCSG Pt.

We first show that the constant θ, featuring in Theorem1, i.e., the witness
that W is a θ-drift function for Q, satisfies ‖Pt‖ ≤ eθt (using the first part of the
proof of Theorem 6.3 of Ref. [Spi12]). Next, we obtain a recursive enumeration
of a dense subset A ⊆ domQ of the domain of the generator Q by applying Q
to all rational linear combinations of indicator functions 1x. Note that for the
latter, we use that indicator functions belong to the domain of the generator and
Q1x = Q1x by Proposition 1.

Now, by Theorem 5.4.2 of Ref. [WZ07], we obtain the first two computability
results, as (θ,A, 1) is a so-called piece of type IG-information [WZ07, p. 513].
Finally, the third point amounts to showing computability of the duality pairing

〈 , 〉 : (C0(S,W))∗ × C0(S,W) → R.

This theorem immediately gives computability of the CTMCs and (conditional)
means for stochastic string rewriting and Petri nets discussed in Sect. 4. Note
that the theorem does not assume that V itself is computable; its role is to
establish that the transition functions is an SCSG, but V plays no role in the
actual computation of the solution. Note also that the algorithms that compute
the functions t �→ Pt, (t, f) �→ Ptf , and (π, t, f) �→ πPtf push the responsibility to
give arbitrarily good approximations of the respective input parameters π, t and
f to the user. This however is no problem for any of our examples or rule-based
models in general: t is typically rational, f is computable and even to the natural
numbers, and π is often finitely supported or a Gaussian.

Computability ensures existence of algorithms computing transient means,
but yields no guarantees of the efficiency of such algorithms. We now proceed to
a special case that (i) encompasses a number of well-known examples, including
context-free string rewriting, and (ii) leads to PTIME computability, by reducing
the problem of transient conditional means to solving finite linear ODEs.

6 The Finite Dimensional Case and PTIME via ODEs

We now turn to the special case where we can restrict to finite dimensional
subspaces B ⊆ R

S. The prime example will be word counting functions and

Computing Continuous-Time Markov Chains as Transformers 351

context-free string rewriting systems. Hyperedge replacement systems [DKH97],
the context-free systems of graph transformation, can be handled mutatis mutan-
dis. The main result is PTIME computability of conditional means. For conve-
nience, we extend the usage of the term locally algebraic as follows.

Definition 10 (Locally algebraic). We call a q-matrix Q on S locally alge-
braic for an observable f ∈ R

S if the set {Qnf | n ∈ N}, containing all multiple
applications of the q-matrix Q to the observable f , is linearly dependent, i.e., if
there exists a number N ∈ N such that the application QNf of the N -th power
is a linear combination

∑N−1
i=0 αiQ

if of lower powers of Q applied to f .

Using local algebraicity of a q-matrix Q for an observable f , one can generate
a finite ODE with one variable for each conditional mean E[Qnf(Xt) | X0 = x]
(as detailed in the proof of Theorem3); then, recent results from computable
analysis [PG16] entail PTIME complexity.

Theorem 3 (PTIME complexity of conditional means). Let Q be a
q-matrix on S, let x ∈ S, let f : S → R be a function such that f(x) is a
PTIME computable real and QNf =

∑N−1
i=0 αiQ

if for some N ∈ N and PTIME
computable coefficients αi.

The time evolution of the conditional mean Ptf(x), i.e., the function
t �→Ptf(x), is computable in polynomial time.

Proof. Consider the N -dimensional ODE with one variable En for each n ∈
{0, . . . , N − 1} with time derivative

d
dt

En(t) =

{
En+1(t) if n < N − 1
∑N−1

i=0 αiEi(t) if n = N − 1

and initial condition En(0) = Qnf(x). Solving this ODE is in PTIME [PG16]
(even over all of R≥0, using the “length” of the solution curve as implicit input).
Finally, Ei(t) = PtQ

if(x) is the unique solution.

Note that the linear ODE that we construct has a companion matrix as evolu-
tion operator, which allows one to use special techniques for matrix exponenti-
ation [TR03,BCO+07].

Proposition 2 (Local algebraicity of context-free string rewriting). Let
R be a string rewriting system, let w ∈ Σ+, let m ∈ N. The q-matrix QR of the
string rewriting system R is locally algebraic for the m-th power of w-occurrence
counting �w

m if R ⊆ Σ × Σ+.

Proof. For every product of word counting functions
∏m

i=1 �wi, applying the
q-matrix QR to this product yields the observable QR

∏m
i=1 �wi. Using previ-

ous work on graph transformation [DHHZS14,DHHZS15], restricted to acyclic,
finite, edge labelled graphs that have a unique maximal path (with at least one
edge), the observable QR

∏m
i=1 �wi is a linear combination

∑k
j=1 αj

∏kj

l=1 �wj,l of

352 V. Danos et al.

word counting functions �wj,l (with all kj ≤ m). Moreover, if R is context-free
(R ⊆ Σ × Σ+), we have

∑kj

l=1 |wj,l| ≤
∑m

i=1 |wi| for all j ∈ {1, . . . , k}. Thus,
we stay in a subspace that is spanned by a finite number of products of word
counting functions.

Corollary 2. For context-free string rewriting, conditional means and moments
of word occurrence counts are computable in polynomial time.

We conclude with a remark on lower bounds for the complexity.

Remark 1. The complexity of computing transient means, even for context-free
string rewriting, is at least as hard as computing the exponential function. This
becomes clear if we consider the rule a → aa, and the observable of a-counts �a.
Now, the time evolution of the �a-mean conditioned on the initial state to be a,
i.e., the function t �→ Ea(�a(Xt)), is exactly the exponential function et. Tight
lower complexity bounds for the exponential function are a longstanding open
problem [Ahr99].

7 Conclusion

The main result is computability of transient (conditional) means of Markov
chains Xt “observed” by a function f , i.e., stochastic processes of the form f(Xt).
For this, we have described conditions under which a CTMC, specified by its
q-matrix, induces a continuous-time transformer Pt that acts on observation
functions. In analogy to predicate transformer semantics for programs, this
could be called observation transformer semantics for CTMCs; formally, Pt is a
strongly continuous semigroup on a suitable function space. Finally, motivated
by important examples of context-free systems – be it the well-known class from
Chomsky’s hierarchy or the popular preferential attachment process (covered in
previous work [DHHZS15]) – we have considered the special case of locally finite
q-matrices. For this special case, we obtain a first complexity result, namely
PTIME computability of transient conditional means.

The obvious next step is to implement our theoretical results since one cannot
expect that the general algorithms of Weihrauch and Zhong [WZ07] perform well
for every SCSG on a computable Banach space. For example, the Gauss-Jordan
algorithm for infinite Matrices [Par12] should already be more practicable for
inverting the operator nI −Q from Eq. (3) compared to the brute force approach
used by Weihrauch and Zhong [WZ07]. Computability ensures existence of algo-
rithms for computing transient means, but yields no guarantees of the efficiency
of such algorithms.

Even if it should turn out that efficient algorithms are a pipe dream – after
all, transient probabilities pt,xy are a special case of transient conditional means
– we expect that already implementations that are slow but to arbitrary desired
precision will be useful for gauging the quality of approximations of the “mean-
field” of a Markov process, especially in the area of social networks [Gle13],
but possibly also for chemical systems [SSG15]. Theoretically, they are a valid
alternative to Monte Carlo simulation, or even preferable.

Computing Continuous-Time Markov Chains as Transformers 353

References

[ABHN11] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued
Laplace Transforms and Cauchy Problems, vol. 96. Springer, Basel (2011)

[AFR11] Ackerman, N.L., Freer, C.E., Roy, D.M.: Noncomputable conditional dis-
tributions. In: Proceedings of the 26th Annual IEEE Symposium on Logic
in Computer Science, LICS 2011, Ontario, Canada, pp. 107–116, 21–24
June 2011

[Ahr99] Ahrendt, T.: Fast computations of the exponential function. In: Meinel,
C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 302–312. Springer,
Heidelberg (1999). doi:10.1007/3-540-49116-3 28

[And91] Anderson, W.J.: Continuous-Time Markov Chains. Springer, New York
(1991)

[Aus55] Austin, D.G.: On the existence of the derivative of Markoff transition
probability functions. Proc. Natl. Acad. Sci. USA 41(4), 224–226 (1955)

[BCO+07] Bostan, A., Chyzak, F., Ollivier, F., Salvy, B., Schost, É, Sedoglavic, A.:
Fast computation of power series solutions of systems of differential equa-
tions. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2007, Philadelphia, PA, USA, pp. 1012–
1021. Society for Industrial and Applied Mathematics (2007)

[BHHK03] Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking
algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng.
29(6), 524–541 (2003)

[DFF+10] Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the
differential semantics of rule-based models: exact and automated model
reduction. In: Proceedings of the 25th Annual IEEE Symposium on Logic
in Computer Science, LICS 2010, Edinburgh, United Kingdom, pp. 362–
381, 11–14 July 2010

[DHHZS14] Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Approxima-
tions for stochastic graph rewriting. In: Merz, S., Pang, J. (eds.) ICFEM
2014. LNCS, vol. 8829, pp. 1–10. Springer, Cham (2014). doi:10.1007/
978-3-319-11737-9 1

[DHHZS15] Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Moment seman-
tics for reversible rule-based systems. In: Krivine, J., Stefani, J.-B. (eds.)
RC 2015. LNCS, vol. 9138, pp. 3–26. Springer, Cham (2015). doi:10.1007/
978-3-319-20860-2 1

[DKH97] Drewes, F., Kreowski, H.-J., Habel, A.: Hyperedge: replacement, graph
grammars. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and
Computing by Graph Transformation, pp. 95–162. World Scientific,
Singapore (1997)

[Ein52] Einar, H.: A note on Cauchy’s problem. Annales de la Société Polonaise
de Mathématique 25, 56–68 (1952)

[EN00] Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution
Equations. Springer, New York (2000)

[Gle13] Gleeson, J.P.: Binary-state dynamics on complex networks: pair approxi-
mation and beyond. Phys. Rev. X 3, 021004 (2013)

[GM84] Gross, D., Miller, D.R.: The randomization technique as a modeling tool
and solution procedure for transient Markov processes. Oper. Res. 32(2),
343–361 (1984)

http://dx.doi.org/10.1007/3-540-49116-3_28
http://dx.doi.org/10.1007/978-3-319-11737-9_1
http://dx.doi.org/10.1007/978-3-319-11737-9_1
http://dx.doi.org/10.1007/978-3-319-20860-2_1
http://dx.doi.org/10.1007/978-3-319-20860-2_1

354 V. Danos et al.

[HLM06] Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation sys-
tems. Fundamenta Informaticae 74(1), 63–84 (2006)

[Kol51] Andrey Nikolaevich Kolmogorov: On the differentiability of the transition
probabilities in stationary Markov processes with a denumberable num-
ber of states. Moskovskogo Gosudarstvennogo Universiteta Učenye Zapiski
Matematika 148, 53–59 (1951)

[Koz83] Kozen, D.: A probabilistic PDL. In: Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, STOC 1983, pp. 291–297.
ACM, New York (1983)

[Nor98] Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Proba-
bilistic Mathematics. Cambridge University Press, Cambridge (1998)

[Par12] Paraskevopoulos, A.G.: The infinite Gauss-Jordan elimination on row-
finite ω × ω matrices. arXiv preprint math (2012)

[PG16] Pouly, A., Graça, D.S.: Computational complexity of solving polynomial
differential equations over unbounded domains. Theor. Comput. Sci. 626,
67–82 (2016)

[Reu57] Reuter, G.E.H.: Denumerable Markov processes and the associated con-
traction semigroups on l. Acta Mathematica 97(1), 1–46 (1957)

[RR72] Reuter, G.E.H., Riley, P.W.: The Feller property for Markov semigroups
on a countable state space. J. Lond. Math. Soc. s2–5(2), 267–275 (1972)

[Spi12] Spieksma, F.M.: Kolmogorov forward equation and explosiveness in count-
able state Markov processes. Ann. Oper. Res. 241, 3–22 (2012)

[Spi15] Spieksma, F.M.: Countable state Markov processes: non-explosiveness and
moment function. Probab. Eng. Inf. Sci. 29, 623–637 (2015)

[Spi16] Spieksma, F.M.: Personal communication, October 2016
[SSG15] David Schnoerr, Guido Sanguinetti, Ramon Grima: Comparison of dif-

ferent moment-closure approximations for stochastic chemical kinetics. J.
Chem. Phys. 143(18) (2015)

[TR03] Rajae Ben Taher and Mustapha Rachidi: On the matrix powers and expo-
nential by the r-generalized fibonacci sequences methods: the companion
matrix case. Linear Algebra Appl. 370, 341–353 (2003)

[VMS93] Van Moorsel, A.P., Sanders, W.H.: Adaptive uniformization: technical
details. Technical report, Department of Computer Science and Depart-
ment of Electrical Engineering, University of Twente (1993)

[VMS94] Van Moorsel, A.P., Sanders, W.H.: Adaptive uniformization. Commun.
Stat. Stoch. Models 10, 619–647 (1994)

[WZ07] Weihrauch, K., Zhong, N.: Computable analysis of the abstract Cauchy
problem in a Banach space and its applications I. Math. Logic Q. 53(4–5),
511–531 (2007)

Pointless Learning

Florence Clerc1, Vincent Danos2,4, Fredrik Dahlqvist3, and Ilias Garnier4(B)

1 McGill University, Montreal, Canada
2 ENS Paris/CNRS, Paris, France

3 UCL, London, UK
4 University of Edinburgh, Edinburgh, Scotland

ilias.gar@gmail.com

Abstract. Bayesian inversion is at the heart of probabilistic program-
ming and more generally machine learning. Understanding inversion is
made difficult by the pointful (kernel-centric) point of view usually taken
in the literature. We develop a pointless (kernel-free) approach to inver-
sion. While doing so, we revisit some foundational objects of probability
theory, unravel their category-theoretical underpinnings and show how
pointless Bayesian inversion sits naturally at the centre of this construc-
tion.

1 Introduction

The soaring success of Bayesian machine learning has yet to be matched with
a proper foundational understanding of the techniques at play. These statistical
models are fundamentally programs that manipulate probability distributions.
Therefore, the semantics of programming languages can and should inform the
semantics of machine learning. This point of view, upheld by the proponents
of probabilistic programming, has given rise to a growing body of work on mat-
ters ranging from the computability of disintegrations [1] to operational and
denotational semantics of probabilistic programming languages [12]. These past
approaches have all relied on a pointful, kernel-centric view of the key operation
in Bayesian learning, namely Bayesian inversion. In this paper, we show that a
pointless, operator-based approach to Bayesian inversion is both more general,
simpler and offers a more structured view of Bayesian machine learning.

Let us recall the underpinnings of Bayesian inversion in the finite case.
Bayesian statistical inference is a method for updating subjective probabilities
on an unknown random process as observations are collected. In a finite setting,
this update mechanism is captured by Bayes’ law:

P (d) · P (h | d) = P (d | h) · P (h) (1)

F. Clerc—Research supported by NSERC, Canada.
F. Dahlqvist—Research partially supported by the ERC project ProFoundNet -
Probabilistic Foundations for Networks (grant number 679127).
I. Garnier—Research supported by the ERC project RULE (grant number 320823).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 355–369, 2017.
DOI: 10.1007/978-3-662-54458-7 21

356 F. Clerc et al.

On the right-hand side, the likelihood P (d | h) encodes a parameter-dependent
probability over data, weighted by the prior P (h) which corresponds to our cur-
rent belief on which parameters best fit the law underlying the unknown random
process. The left-hand side of Eq. 1 involves the marginal likelihood P (d), which
is the probability of observing the data d under the current subjective proba-
bility, and the posterior P (h | d) which tells us how well the occurrence of d
is explained by the parameter h. More operationally, the posterior tells us how
we should revise our prior as a function of the observed data d. In a typical
Bayesian setup, the prior and likelihood are given and the marginal likelihood
can be computed from the two first ingredients. The only unknown is the poste-
rior P (h | d). Equation 1 allows one to compute the posterior from the two first
ingredients–whenever P (d) > 0! This formulation emphasises the fundamental
symmetry between likelihood and posterior, and hopefully makes clear why the
process of computing the posterior is called Bayesian inversion. The key obser-
vation is that both the likelihood and posterior can be seen as matrices, and
Eq. 1 encodes nothing more than a relation of adjunction between these matri-
ces seen as (finite-dimensional) operators. This simple change of point of view,
where one thinks no longer directly in terms of kernels (which transform prob-
ability measures forward), but in terms of their semantics as operators (which
transform real-valued obervables backward) generalises well and gives us a much
more comprehensive account of Bayesian learning as adjunction. If one thinks of
observables as extended predicates, this change of point of view is nothing but a
predicate transformer semantics of kernels: a well-established idea planted in the
domain of probabilistic semantics by Kozen in the 80s [10]. The object of this
paper is to develop in this setting a pointless approach to Bayesian inversion.

Our contributions are as follows. In Sect. 3, we recall how Bayesian inversion
is formulated using the language of kernels, following the seminal work of [5]
and our own preliminary elaboration of the ideas developed in the current paper
[6]. The adequate setting is a category of typed kernels, i.e. measure-preserving
kernels between probability spaces. We observe that Bayesian inversion fits some-
what awkwardly in this pointful setting. Drawing from domain-theoretic ideas
[11], we develop in Sect. 4 a categorical theory of ordered Banach cones, including
an adjunction theorem for L+

p /L+
q cones taken from Reference [3]. In Sect. 5, we

define a functorial operator interpretation of kernels in the category of Banach
cones and prove that pointful Bayesian inversion corresponds through this func-
torial bridge to adjunction, expanding our recent result [6] to arbitrary L+

p /L+
q

cones. Unlike the pointful case, the pointless, adjunction-based approach works
with arbitrary measurable spaces. Finally, in Sect. 6 we extract from the point-
ful and pointless approaches what we consider to be the essence of Bayesian
inversion: a correspondence between couplings and linear operators. In this new
light, adjunction (and therefore Bayesian inversion) is nothing more than a per-
mutation of coordinates. We conclude with a sketch of some directions for future
research where one could most profit of the superior agility and extension of the
pointless approach.

Note that a long version of this article, containing all proofs, is available [4].

Pointless Learning 357

2 Preliminaries

We refer the reader to e.g. [2] for the concepts of measure theory and functional
analysis used in this paper. For convenience, some basic definitions are recalled
here.

A measurable space (X,Σ) is given by a set X together with a σ-algebra of
subsets of X denoted by Σ. Where unambiguous, we will omit the σ-algebra
and denote a measurable space by its underlying set. We will also consider the
measurable spaces generated from Polish (completely metrisable and separable)
topological spaces, called standard Borel spaces [9]. A measurable function f :
(X,Σ) → (Y,Λ) is a function f : X → Y such that for all B ∈ Λ, f−1(B) ∈ Σ.
The category of measurable spaces and measurable functions will be denoted by
Mes. For B a measurable set, we denote by 1B the indicator function of that
set. A finite measure μ over a measurable space (X,Σ) is a σ-additive function
μ : Σ → [0,∞) that verifies μ(X) < ∞. Whenever μ(X) = 1, μ is a probability
measure. A pair (X,μ) with X a measurable space and μ a probability measure
on X is called a probability space. A measurable set B will be qualified of μ-null
if μ(B) = 0.

The Giry endofunctor, denoted by G : Mes → Mes, maps each measurable
space X to the space G(X) of probability measures over X. The measurable
structure of G(X) is given by the initial σ-algebra for the family {evB}B of
evaluation maps evB(μ) = μ(B), where B ranges over measurable sets in X.
The action of G on arrows is given by the pushforward (or image measure): for
f : X → Y measurable, we have G(f) : G(X) → G(Y) given by G(f)(μ) = μ◦f−1.
This functor admits the familiar monad structure (G,m, δ) where m : G2 ⇒ G
and δ : Id ⇒ G are natural transformations with components at X defined by
mX(P)(B) =

∫
G(X)

evB dP and δX(x)(B) = δx(B). It is well-known that when
restricted to standard Borel spaces, the Giry functor admits the same monad
structure. See [7] for more details on this construction. The Kleisli category of
the Giry monad, corresponding to Lawvere’s category of probabilistic maps, will
be denoted by K�. The objects of K� correspond to those of Mes and arrows
from X to Y correspond to so-called kernels f : X → G(Y). Kleisli arrows will
be denoted by f : X � Y . For f : X � Y, g : Y � Z, the Kleisli composition is
defined as usual by g ◦′ f = mZ ◦ G(g) ◦ f . We distinguish deterministic Kleisli
maps as those that can be factored as a measurable function followed by δ and
denote these arrows f : X �δ Y . We write 1 for the one element measurable
space (which is the terminal object in Mes). Clearly the Homset K�(1, Y) is in
bijection with the set of probabilities over Y . This justifies the following slight
abuse of notation: if μ ∈ G(X) is a probability and f : X � Y is a kernel, the
pushforward of μ through f will be denoted f ◦′ μ. Observe that for f : X → Y
an usual measurable map, G(f)(μ) = (δY ◦ f) ◦′ μ, so the pushforward through
a kernel extends the earlier definition.

Consider the full subcategory of K� restricted to finite spaces. In that setting,
any kernel f : X � Y can be presented as a positive, real-valued matrix that
we denote T (f) = {f(x)(y)}x,y with X rows, Y columns and where all rows
sum to 1 (aka a stochastic matrix). Matrix multiplication corresponds to Kleisli

358 F. Clerc et al.

composition: taking f, g as above, one has T (g ◦′ f) = T (f)T (g) (hence, this
representation of kernels as matrices is contravariant). Such matrices act on
vectors of dimension Y (observables on Y) and map them to observables on X:
for v ∈ R

Y , T (f)v corresponds to the expectation of v according to f . This is
the basis for the “operator interpretation” of kernels which we will extend to
Mes below.

3 Bayesian Inversion in a Category of Typed Kernels

We introduce the category Krn of typed kernels and recall the statement of
Bayesian inversion in this setting.

3.1 Definition of Krn

Our starting point is the under category 1 ↓ K�, where 1 is the one-element
measurable space. Objects of 1 ↓ K� are Kleisli arrows μ : 1 � X, i.e. probability
spaces (X,μ) with μ ∈ G(X); while typed kernels from (X,μ) to (Y, ν) are Kleisli
arrows f : X � Y such that f ◦′ μ = ν. We will call these arrows “kernels”
for short. For a deterministic map fδ : X �δ Y (factoring as fδ = δY ◦ f),
the constraint boils down to ν = G(f)(μ). In other words, the subcategory of
1 ↓ K� consisting of deterministic maps is isomorphic to the usual category
of probability spaces and measure-preserving maps. We define Krn to be the
subcategory of 1 ↓ K� restricted to standard Borel spaces.

3.2 Bayesian Inversion in the Finite Subcategory of Krn

We translate the presentation of Bayesian inversion of Sect. 1 in the language of
Krn. We are given finite spaces of data D and parameters H and it is assumed
that there exists an unknown probability on D, called the “truth” and denoted τ
in the following, that we wish to learn. The likelihood corresponds to a K� arrow
f : H � D, The prior is a probability μ ∈ G(H) while the marginal likelihood
ν ∈ G(D) is obtained as ν = f ◦′ μ. Thus the entire situation is captured by a
Krn arrow f : (H,μ) � (D, ν). If our prior was perfect, we would have ν = τ
but of course (by assumption) this is not the case! The only access we have to the
truth is through an infinite, independent family {dn}n∈N

of random elements in
D each distributed according to τ . The Bayesian update is the process of using
this sequence of data (sometimes called evidence) to iteratively revise our prior.
In this language, Bayes’s law reads as follows:

ν(d) · f†(d)(h) = f(h)(d) · μ(h) (2)

where f† : (D, ν) � (H,μ) denotes the sought posterior map, to be computed in
function of μ and f . Observe that both the left and right hand side of Eq. 2 define
the same joint probability γ ∈ G(H × D) given by γ(h, d) = f(h)(d) · μ(h) =
ν(d) · f†(d)(h). Denoting πH , πD the left and right projections from H × D, one
easily verifies that G(πH) = μ and G(πD) = ν. In other terms, γ is a coupling of
μ and ν. We draw the attention of the reader to the following points.

Pointless Learning 359

– As hinted before, f†(d) is uniquely defined only when ν(d) > 0. Conversely,
f† does not depend on f on μ-null sets. These hurdles will be circumvented
by considering equivalence classes of kernels up to null sets. This is the object
of Sect. 3.3.

– Section 2 introduces a correspondence between (finite) kernels and Markov
or stochastic matrices. This raises the following question: what is Bayesian
inversion seen through that lens? The answer is adjunction. As we show in
Sect. 5, this pointless point of view generalises to arbitrary measurable spaces
and is better behaved than the pointful one.

We now proceed to the generalisation of this situation to the case of standard
Borel spaces, i.e. to that of Krn.

3.3 Bayesian Inversion in Krn

Bayesian inversion in Krn relies crucially on the construction of an (almost
sure) bijection between the Krn Homset Krn(X,μ;Y, ν) and the set of couplings
Γ(X,μ;Y, ν) of μ and ν (to be defined next).

Couplings and kernels. To any pair of objects (X,μ)(Y, ν), one can associate
the space of couplings of μ and ν, i.e. the set of all probabilities γ ∈ G(X × Y)
such that G(πX)(γ) = μ and G(πY)(γ) = ν. We denote this set of couplings
Γ(X,μ;Y, ν). It is a standard Borel space, as the set of couplings of two measures
is a closed convex subset in G(X×Y) for any choice of a Polish topology for X,Y .
In order to construct a mapping from couplings to Krn arrows, we will need the
disintegration theorem, which requires us to introduce some terminology. In the
following, we denote N(f, f ′) = {x | f(x) �= f ′(x)}.

Lemma 1. For all f, f ′ : (X,μ) � (Y, ν), N(f, f ′) is measurable.

Note that in more general measurable spaces, N(f, f ′) is not necessarily a
measurable set, as those spaces are not always countably generated. We can now
introduce the disintegration theorem.

Theorem 1 (Disintegration ([8], Theorem 5.4)). For all deterministic
Krn arrow f : (X,μ) �δ (Y, ν), there exists f† : (Y, ν) � (X,μ) such that
f ◦′f† = id(Y,ν) and such that for all h : (Y, ν) � (X,μ) verifying f ◦′h = id(Y,ν),
ν(N(f†, h)) = 0. In short, we say that f† is the ν-almost surely unique kernel
verifying f ◦′ f† = id(Y,ν).

Disintegrations correspond to regular conditional probabilities (see e.g. [8]).
The deterministic map f : X → Y along which the disintegration of μ is com-
puted acts through its fibers as a parameterised family of subsets on each of
which μ is conditioned, resulting in a measurable family of conditional probabil-
ities parameterised by Y . Note that the characteristic property of disintegrations
can be equivalently stated as the fact that f†(y) is ν-almost surely supported
by f−1(y).

360 F. Clerc et al.

Example 1. In the finite case, disintegration is simply the formula for conditional
probabilities. Given X,Y finite and f : (X,μ) �δ (Y, ν), for y ∈ Y s.t. ν(y) =
μ(f−1(y)) > 0, it holds that f†(y)(x) = μ(x)

ν(y) . However, when ν(y) = 0, the
disintegration theorem does not constrain the value of f†(y).

Disintegration establishes a bijective (up to null sets) correspondence between
couplings and kernels. Let us make this formal.

Definition 1. For fixed (X,μ)(Y, ν), we define on Krn(X,μ;Y, ν) ∼ as the
smallest equivalence relation such that f ∼ f ′ if μ(N(f, f ′)) = 0. We denote
Krn(X,μ;Y, ν)/μ the set of ∼-equivalence classes of Krn(X,μ;Y, ν).

Any Krn arrow f : (X,μ) � (Y, ν) induces a measure on X × Y , defined on
measurable rectangles BX × BY as:

IY,ν
X,μ(f)(BX × BY) =

∫

x∈BX

f(x)(BY) dμ. (3)

Lemma 2. IY,ν
X,μ is a Set injection from Krn(X,μ;Y, ν)/μ to Γ(X,μ;Y, ν).

The second part of the bijection between couplings and quotiented Krn
arrows relies crucially on disintegration.

Lemma 3. There is a Set injection DY,ν
X,μ : Γ(X,μ;Y, ν) → Krn(X,μ;Y, ν)/μ.

Moreover, DY,ν
X,μ and IY,ν

X,μ are inverse of one another.

Bayesian inversion in Krn. Bayesian inversion corresponds to the composition
of the bijections we just defined with the pushforward along the permutation
map σ : X × Y → Y × X.

Theorem 2 (Bayesian inversion). Let −† be defined as f† = DX,μ
Y,μ ◦ G(σ) ◦

IY,ν
X,μ. The map −† : Krn(X,μ;Y, ν)/μ → Krn(Y, ν;X,μ)/ν is a bijection.

This section would be incomplete if we didn’t address learning in its relation
to Bayesian inversion. It is known that in good cases,1 Bayesian inversion will
make the sequence of marginal likelihoods converge to the truth in some appro-
priate topology. However, issues of convergence are not the subject of this paper
and will not be discussed further.

3.4 Pointfulness Is Harmful

Let us take a critical look at the approach to Bayesian inversion developed so
far. The fact that −† is by construction ∼-invariant and yields ∼-equivalence
classes of Krn arrows suggests that −† would be better typed on a hypothetical
quotient of Krn by ∼. This mismatch between the behaviour of −† and its
actual type already arises in the finite case where Bayes’ rule yields kernels
1 E.g. H, D finite and μ putting strictly positive measure on f−1(τ).

Pointless Learning 361

only defined up to a null set (see discussion after Eq. 2), and is an inevitable
consequence of the pointful point of view: kernels should respect the measures
endogenous to their domain. Constructing the quotient of Krn w.r.t. ∼ would
require proving that this equivalence relation is compatible with the composition
of Krn. However, carrying out this approach successfully seems non-trivial:2

our past attempts are riddled with obstructions stemming from accumulation of
negligible sets–the very technical hurdles that make the theory of disintegration
of measures so unintuitive in the first place, while moreover relying on standard
Borel assumptions.

This improper typing obscures the categorical structure of Bayesian inversion.
In the next sections, we leave the inhospitable world of kernels and relocate the
theory of Bayesian inversion in a category of Banach cones and linear maps
where these problems vanish, and the structure we seek for becomes manifest.

4 Banach Cones

Following [3,11], we introduce a category of Banach cones and ω-continuous
linear maps, with the intent of interpreting Markov kernels as linear operators
between well-chosen function spaces. In the subcategory corresponding to these
function spaces, we develop a powerful adjunction theorem that will be used in
Sect. 5 to implement pointless Bayesian inversion.

4.1 The Category Ban

A Banach cone, informally, corresponds to a normed convex cone of a Banach
space which is ω-complete with respect to a particular order. Let us introduce
these cones progressively.

Definition 2. A normed, convex cone (C,+, ·, 0, ‖·‖C) of a normed vector space
(V,+, ·, 0, ‖·‖V) is a subset C ⊆ V that is closed under addition, convex combi-
nations and multiplications by non-negative scalars, endowed with the restric-
tion of the ambient norm, which must be monotone w.r.t. the partial order
u ≤C v ⇔ ∃w ∈ C.u + w = v.

We require our Banach cones to be ω-complete with respect to this order,
and to be subsets of Banach spaces.

Definition 3 (Banach cones). A normed convex cone C is ω-complete if for
all chain (i.e. ≤C-increasing countable family) {un}n∈N

of bounded norm, the
least upper bound

∨
n un exists and ‖

∨
n un‖C =

∨
n ‖un‖C . A Banach cone is

an ω-complete normed cone of a Banach space.

Norm convergence and order convergence are related by the following result.

2 Without additional assumptions the quotient is not compatible with pre-
composition, differently to what we mistakenly stated in ([6], Lemma 3).

362 F. Clerc et al.

Lemma 4 ([3], Lemma 2.12). Let {un}n∈N
be a chain of bounded norm in a

Banach cone. Then limi→∞ ‖
∨

n un − ui‖ = 0.

A prime example of Banach cones is given by the positive cones associated to
classical Lp spaces of real-valued functions (see e.g. [2] for a definition of those
spaces). In details: for (X,μ) a measure space with μ finite and p ∈ [1,∞], the set
of elements f ∈ Lp(X,μ) which are non-negative μ-a.e. is closed under addition,
multiplication by non-negative scalars and under linear combinations with non-
negative coefficients. Equipped with the restriction of the norm of Lp(X,μ), this
subset forms a normed convex cone that we denote L+

p (X,μ). The partial order
associated to these L+

p cones can be defined explicitly: for f, g ∈ L+
p (X,μ), we

write that f ≤ g if f(x) ≤ g(x) μ-a.e. One easily checks that this coincides with
the definitional partial order.

Proposition 1 (ω-completeness of L+
p cones, [3]). For all X measurable,

μ ∈ G(X) and p ∈ [1,∞], L+
p (X,μ) is a Banach cone.

This result is a direct consequence of the definition of suprema in L+
p (X,μ).

We are going to construct a category of all Banach cones and we thus have to
specify what a morphism between such cones is. We consider only linear maps
which are Scott-continuous, which in this case3 boils down to commuting with
supremas of increasing chains.

Definition 4. Let C,C ′ be Banach cones and A : C → C ′ be a linear map. A
is ω-continuous if for every chain {fn}n∈N

such that
∨

n fn exists, A(
∨

n fn) =∨
n A(fn).

The following example should help make ω-continuity less mysterious.
Observe that for Y = 1 (the singleton set), all Banach cones L+

p (Y, μ) (for μ
nonzero, otherwise L+

p (Y, μ) ∼= {0}) are isomorphic to R≥0 – therefore, R≥0 is a
bona fide Banach cone.

Example 2. There exists a familiar linear map from L+
p (X,μ) to R≥0, namely

the Lebesgue integral
∫

: L+
p (X,μ) → R≥0, taking u ∈ L+

p (X,μ) to
∫

X
u dμ.

In this case, ω-continuity of the integral is simply the monotone convergence
theorem!

Unless stated otherwise, all maps in the remainder of this section are
ω-continuous. The property of ω-continuity is closed under composition and
the identity function is trivially ω-continuous. This takes us to the following
definition.

Definition 5 (Categories of Banach cones and of L+
p cones). The cate-

gory Ban has Banach cones as objects and ω-continuous linear maps as mor-
phisms. We distinguish the full subcategory L having as objects all L+

p -spaces
(ranging over all p ∈ [1,∞]). Further, L admits a family of full subcategories
{Lp}p∈[1,∞], each having as objects L+

p spaces (for fixed p).

3 These cones have the “countable sup property”[2]. Therefore, all directed sets admit
a countable subset having the same least upper bound, and we can restrict our
attention to chains.

Pointless Learning 363

Ban is itself a full subcategory of the category ωCC of ω-complete normed
cones and ω-continuous maps, as defined in [3]. Let us denote by Ban(C,C ′)
the set of ω-continuous linear maps from C to C ′. Denoting ‖·‖C the norm
of C, we recall that the operator norm of a linear map A : C → C ′ is
given by ‖A‖op = inf {K ≥ 0 | ∀ u ∈ C, ‖Au‖C′ ≤ K ‖u‖C}. A partial order on
Ban(C,C ′) is given by A ≤ B iff for all u ∈ C, A(u) ≤C′ B(u). Selinger proved
in [11] that ω-continuous linear maps between ω-complete cones have automat-
ically bounded norm (i.e. they are continuous in the usual sense), therefore we
can and will abstain from asking continuity explicitly. The following result is
a cone-theoretic counterpart to the well-known fact that the vector space of
bounded linear operators between two Banach spaces forms a Banach space for
the operator norm.

Proposition 2. For all Banach cones C,C ′, the cone of ω-continuous linear
maps Ban(C,C ′) is a Banach cone for the operator norm and the pointwise
order.

4.2 Duality in Banach Cones

We use a powerful Banach cone duality result initially proved in the supple-
mentary material to [3]. We say that a pair (p, q) with p, q ∈ [1,∞] is Hölder
conjugate if 1

p + 1
q = 1. For any Banach cone C, its dual C∗ is by definition the

Banach cone of ω-continuous linear functionals, i.e. the cone C∗ = Ban(C,R≥0).
This operation defines a contravariant endofunctor −∗ : Ban → Banop mapping
each cone C to C∗ and each map of cone A : C → C ′ to the map A∗ : C ′∗ → C∗

defined by A∗(ϕ) = ϕ ◦ A, for ϕ ∈ C ′∗. For Hölder conjugate (p, q), we have the
following extension to the classical isomorphism of L+

p spaces.

Theorem 3 (L+
p cone duality [3]). There is a Banach cone isomorphism

εp : L+
p (X,μ) ∼= L+,∗

q (X,μ).

We won’t reproduce the proof of this theorem here, which can be found in the
supplementary material to [3]. Suffice it to say it is a Riesz duality type argument
which relies entirely on the Radon-Nikodym theorem. Note that Theorem 3
implies in particular that L+,∗

∞ (X,μ) ∼= L+
1 (X,μ), which classically fails in the

usual setting of Lp Banach spaces. It is instructive to study how ω-continuity
wards off a classical counter-example to duality in the general Banach case.

Example 3 (Taken from [11]). Let μ be a probability measure on N with full
support. We consider the cone �+∞ = L+

∞(N, μ) of bounded sequences of real
numbers. Let U be a non-principal ultrafilter on N (i.e. an ultrafilter on the
partial order of subsets of N without a least element). We define the function
limU : �+∞ → R as limU ({xn}n∈N

) = sup {y | {n | xn ≥ y} ∈ U}. This function
is linear and bounded. However, consider the chain

{
uk ∈ �+∞

}
k∈N

with uk
n = 1

for all n ≤ k and uk
n = 0 for all n > k. The supremum of this chain is the

constant 1 sequence. On the other hand, we have limU (uk) = 0 for all k, whereas
limU (

∨
k uk) = 1. Therefore, limU (uk) is not ω-continuous–i.e., limU �∈ �+,∗

∞ .

364 F. Clerc et al.

It is useful to have a concrete representation of the isomorphism stated in
Theorem 3. This theorem implies that for all u ∈ L+

p (X,μ), there exists a unique
ω-continuous linear functional ε(u) ∈ L+,∗

q (X,μ)–which must therefore corre-
spond to ε(u)(v) =

∫
X

uv dμ. The pairing between L+
p and L+

q cones that we
introduce below corresponds to the evaluation of such a functional against some
argument.

Definition 6 (Pairing). For Hölder conjugate (p, q), the pairing is the map
〈·, ·〉X : L+

p (X,μ) × L+
q (X,μ) → R≥0 defined by 〈u, u′〉 =

∫
uu′ dμ.

The pairing is bilinear, continuous and ω-continuous in each argument (con-
sequences of the corresponding properties of the Lebesgue integral). We can now
state the adjunction theorem.

4.3 Adjunctions Between Conjugate L+
p Cones

It is instructive to look at Theorem 3 under a slightly more general light.
Observe that L+

p (X,μ) is isomorphic to Ban(R≥0, L
+
p (X,μ)): indeed, any map

A in this function space is entirely constrained by linearity by its value at
1. Therefore, Theorem 3 really states a Banach cone isomorphism between
Ban(R≥0, L

+
p (X,μ)) and Ban(L+

q (X,μ),R≥0). This isomorphism generalises
to the case where R≥0 is replaced by an arbitrary conjugate pair of cones
L+

p (Y, μ), L+
q (Y, ν) (i.e. s.t. (p, q) are Hölder conjugate).

Theorem 4 (L+
p /L+

q adjunction). For (p, q) Hölder conjugate and for all
A : L+

p (X,μ) → L+
p (Y, ν), A∗ : L+

q (Y, ν) → L+
q (X,μ) is unique such that

∀ u ∈ L+
p (X,μ), v ∈ L+

q (Y, ν), 〈v,A(u)〉Y = 〈A∗(v), u〉X . (4)

The essence of the previous theorem is neatly captured as follows.

Corollary 1. For all Hölder conjugate (p, q), the duality functor −∗ : Ban →
Banop restricts to an equivalence of categories −∗ : Lp → Lqop.

Figure 1 recapitulates the categories of Banach cones mentioned in this
section along their relationships.

5 Pointless Bayesian Inversion

Krn arrows can be represented as linear maps between function spaces. This
bridge allows one to manipulate Markov kernels both from the measure-theoretic
side and from the functional-analytic side. Concretely, this linear interpretation
of kernels is presented as a family of functors from Krn to L, the subcategory
of Ban restricted to L+

p cones and ω-continuous linear maps. We show that
pointful Bayesian inversion, whenever it is defined, coincides with adjunction.

Pointless Learning 365

Fig. 1. Categories of cones Fig. 2. Kernels, AMKs and MOs

5.1 Representing Krn Arrows as AMKs

More precisely, kernels are associated to abstract Markov kernels (AMKs for
short), which are a generalisation of stochastic matrices. Below, we denote by
1X the constant function equal to 1 on the space X. Since all measures we
consider are finite, 1X ∈ L+

p (X,μ) for all p ∈ [1,∞].

Definition 7 (Abstract Markov kernels). An Lp morphism A : L+
p (Y, ν) →

L+
p (X,μ) is an AMK if A(1Y) = 1X and ‖A‖ = 1. Clearly, AMKs are closed

under composition and the identity operator is trivially an AMK. AMKp is the
subcategory of Lp having the same objects and where morphisms are restricted
to AMKs.

Example 4. Let us look at the particular case where X and Y are finite discrete
spaces and μ, ν finite measures with full support. Then L+

p (X,μ) ∼= R
X and sim-

ilarly for L+
p (Y, ν). Therefore, A corresponds to an Y ×X matrix. The constraint

that A(1Y) = 1X amounts to asking that the rows of A sum to 1, i.e. that A is
a stochastic matrix.

The adjoint of an AMK is in general not an AMK. In the finite case, this
reflects the fact that the transpose of a stochastic matrix is not necessarily sto-
chastic. Adjoints of AMKs are called Markov operators (MOs for short). Whereas
AMKs pull back observables, an MO pushes densities forward. In the following,
we make use of the fact that for p ≤ q, any u ∈ L+

q (X,μ) belongs to L+
p (X,μ).

Definition 8 (Markov operators). An arrow A : L+
p (X,μ) → L+

p (Y, ν) is
an MO if for all u ∈ L+

p (X,μ), ‖A(u)‖1 = ‖u‖1 and ‖A‖ = 1. MOp is the
subcategory of Lp having the same objects and where morphisms are restricted
to MOs.

Notice that we require an MO to be norm preserving for the L+
1 norm. This

is a mass preservation constraint in disguise. Adjunction maps AMKs to MOs
and conversely.

Proposition 3. The equivalence of categories −∗ : Lp → Lqop restricts to an
equivalence of categories −∗ : AMKp → MOq

op.

366 F. Clerc et al.

We now introduce a family of contravariant functors Tp : Krnop → AMKp.
On objects, we set Tp(X,μ) = L+

p (X,μ). For f : (X,μ) � (Y, ν) a Krn arrow,
and for v ∈ Tp(Y, ν) = L+

p (Y, ν), we define Tp(f)(v)(x) =
∫

Y
v df(x). The

following theorem generalises the interpretation of kernels as stochastic matrices
given in Sect. 2.

Theorem 5. Tp is a functor from Krnop to AMKp.

The relationship between AMKs and MOs is summed up in Fig. 2. Notice
that AMKp and MOp are subcategories of Lp which are not full.

5.2 Bayesian Inversion in Krn

Recall that Theorem 2 gives Bayesian inversion as a bijection

−† : Krn(X,μ;Y, ν)/μ ∼= Krn(Y, ν;X,μ)/ν.

Tp is ∼-invariant, which allows us to apply it to ∼-equivalence classes of arrows.

Lemma 5. Let f, f ′ : (X,μ) � (Y, ν) be such that f ∼ f ′. Then for all p ∈
[1,∞], Tp(f) = Tp(f ′).

Proof. Since μ({x | f(x) �= f ′(x)}) = 0, we have for all function g : G(Y) →
[0,∞] that μ({x | g ◦ f(x) �= g ◦ f ′(x)}) = 0. Taking g = evv(λ) =

∫
Y

v dλ, the
sought property follows. ��

The following theorem states that pointful Bayesian inversion implements
adjunction.

Theorem 6. For all Krn arrow f : (X,μ) � (Y, ν) and all Hölder conjugate
(p, q), Tp(f†) = Tq(f)∗.

Proof. It is enough to prove that for all u ∈ L+
p (X,μ), v ∈ L+

q (Y, ν), we have
〈Tp(f†)(u), v〉Y = 〈u,Tq(f)(v)〉X . We compute:

〈Tp(f†)(u), v〉Y =
∫

y∈Y

v(y)
∫

x∈X

u(x) df†(y) dν

=
∫

y∈Y

∫

(x,−)∈X×Y

u(x)v(y) dπ†
Y (y) dν (∗)

=
∫

(x,y)∈X×Y

u(x)v(y) dIY,ν
X,μ(f)

=
∫

x∈X

∫

(−,y)∈X×Y

u(x)v(y) dπ†
X(x) dμ

=
∫

x∈X

u(x)
∫

y∈Y

v(y) df(x) dμ (∗)

= 〈u,Tq(f)(v)〉X

This string of equations follows from the definition of −† (Theorem 2). At the
equations marked (∗) we used the characteristic property of disintegrations to
move u (resp. v) in (resp. out of) the integral (see Theorem 1). ��

Pointless Learning 367

This proves that Bayesian inversion is really just adjunction. However, per-
forming Bayesian inversion in Krn relies on standard Borel assumptions, while
adjunction does not! Most importantly, Bayesian inversion in ωCC is better
structured, as it corresponds to a categorical duality.

6 Pointless Bayesian Inversion Through Couplings

Under standard Borel assumptions, Bayesian models can be given equivalently
either in terms of Krn arrows or more classically in terms of joint probabilities
(i.e. couplings). The latter appears crucially in the definition of the pointful
inverse, as demonstrated in Theorem 2. However, pointless Bayesian inversion
seems prima facie to do away with these objects entirely. We conclude this
work by shedding some light on the status of couplings w.r.t. pointless inversion:
we show that the bijection IY,ν

X,μ : Krn(X,μ;Y, ν)/μ → Γ(X,μ;Y, ν) defined in
Sect. 3.3 generalises, for X,Y arbitrary measurable spaces, to a bijection from the
Homset MO∞(L+

∞(X,μ);L+
∞(Y, ν)) to the set of couplings Γ(X,μ;Y, ν). In this

setting, we prove that Bayesian inversion amounts to permuting the coordinates
of the coupling. Our first ingredient is a map from couplings to ω-continuous
linear operators. The key observation is the following.

Proposition 4. For all p ∈ [1,∞], any coupling γ ∈ Γ(X,μ;Y, ν) induces an ω-
continuous linear operator Kp(γ) ∈ AMKp(X,μ;Y, ν) defined for u ∈ L+

p (X,μ)
and v ∈ L+

q (Y, ν) (using εp : L+
p (Y, ν) ∼= L+,∗

q (Y, ν) for (p, q) Hölder conjugate)
as Kp(γ)(u)(v) =

∫
(x,y)∈X×Y

u(x)v(y) dγ.

Dually to Proposition 4, any MO gives rise to a probability measure (but not
necessarily a coupling!). For A : L+

p (X,μ) → L+
p (Y, ν) and BX × BY a basic

measurable rectangle in X × Y , we define:

Cp(A)(BX × BY) =
∫

Y

1BY
A(1BX

) dν. (5)

Lemma 6. For all MO A : L+
p (X,μ) → L+

p (Y, ν), Cp(A) ∈ G(X × Y).

It is not obvious what a necessary and sufficient condition should be for Cp(A)
to give rise to a coupling. However, we have the following reasonable sufficient
condition.

Proposition 5. For all MO A : L+
∞(X,μ) → L+

∞(Y, ν), C∞(A) ∈ Γ(X,μ;Y, ν).

C and K are the counterparts of respectively I and D in Sect. 3.3, with kernels
replaced by respectively MOs and AMKs. However, no quotient is needed to
obtain the following result, which states that pointless Bayesian inversion (i.e.
adjunction) coincides in the world of couplings to the operation which permutes
the coordinates (namely the isomorphism G(σ) : G(X × Y) → G(Y × X)).

Proposition 6. For all MO A : L+
∞(X,μ) → L+

∞(Y, ν), A∗ = K1◦G(σ)◦C∞(A).

368 F. Clerc et al.

In order to close the circle, we prove that couplings are indeed in bijections
with MO∞ arrows (and hence, by duality, AMK1 arrows).

Theorem 7. For all X,Y measurable and μ ∈ G(X), ν ∈ G(Y), C∞ defines a
bijection MO∞(L+

∞(X,μ);L+
∞(Y, ν)) ∼= Γ(X,μ;Y, ν).

The correspondence between adjunction and the permutation of coupling
coordinates together with this last result show that couplings are really at the
heart of the semantics of Bayesian inversion.

7 Conclusion

Pointless Bayesian inversion has several qualities which its pointful counterpart
lacks: it does not rely on Polish assumptions on the underlying space, it is better
typed (as it boils down to an equivalence of categories between abstract Markov
kernels and Markov operators) and it admits a trivial and elegant computational
interpretation in terms of couplings (as well as the structure of a self-duality on
the category of couplings sketched above).

This pointless categorical approach to Bayesian inversion opens the way for
exciting new research. First, one yearns to reinterpret previous constructions
performed in a kernel-centric way in this new light, such as [12]. Also, the con-
nection between our categories of operators and couplings hints at connections
with the Kantorovich distance [13]. For instance, one could study issues of con-
vergence of learning using the weak topology on the space of couplings, which
suggests possibly fruitful connections with information geometry.

But chiefly, our more structured framework allows one to reason on the inter-
actions between the approximation of Markov processes by averaging [3] and
Bayesian inversion. For instance, we can now ask whether some properties of the
Bayesian learning procedure are profinite, i.e. entirely characterised by consider-
ing the finite approximants (one thinks of issues of convergence of learning, for
instance). More generally, we posit that pointless inversion is the right tool to
investigate approximate learning.

References

1. Ackerman, N.L., Freer, C.E., Roy, D.M.: Noncomputable conditional distributions.
In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Sci-
ence, LICS, Toronto, Ontario, Canada, pp. 107–116, 21–24 June 2011

2. Aliprantis, C., Border, K.: Infinite Dimensional Analysis, vol. 32006. Springer,
Heidelberg (1999)

3. Chaput, P., Danos, V., Panangaden, P., Plotkin, G.: Approximating markov
processes by averaging. J. ACM 61(1), 45 pages (2014)

4. Clerc, F., Dahlqvist, F., Danos, V., Garnier, I.: Pointless learning (long version)
(2017)

5. Culbertson, J., Sturtz, K.: A categorical foundation for Bayesian probability. Appl.
Categorical Struct. 22(4), 647–662 (2012)

Pointless Learning 369

6. Dahlqvist, F., Danos, V., Garnier, I., Kammar, O.: Bayesian inversion by omega-
complete cone duality (invited paper). In: Desharnais, J., Jagadeesan, R. (eds.)
27th International Conference on Concurrency Theory (CONCUR 2016), vol. 59
of Leibniz International Proceedings in Informatics (LIPIcs), pp. 1:1–1:15. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016)

7. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1982). doi:10.1007/BFb0092872

8. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997)
9. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Text in Mathematics,

vol. 156. Springer, New York (1995)
10. Kozen, D.: A probabilistic PDL. In: Proceedings of the Fifteenth Annual ACM

Symposium on Theory of Computing, STOC 1983, pp. 291–297. ACM, New York
(1983)

11. Selinger, P.: Towards a semantics for higher-order quantum computation. In: Pro-
ceedings of the 2nd International Workshop on Quantum Programming Languages,
TUCS General Publication, vol. 33, pp. 127–143 (2004)

12. Staton, S., Yang, H., Heunen, C., Kammar, O., Wood, F.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. CoRR, abs/1601.04943 (2016)

13. Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen
Wissenschaften. Springer, Heidelberg (2006)

http://dx.doi.org/10.1007/BFb0092872

On Higher-Order Probabilistic Subrecursion

Flavien Breuvart1, Ugo Dal Lago1,2(B), and Agathe Herrou3

1 INRIA, Sophia Antipolis, France
flavien.breuvart@inria.fr

2 University of Bologna, Bologna, Italy
ugo.dallago@unibo.it

3 ENS de Lyon, Lyon, France
agathe.herrou@ens-lyon.fr

Abstract. We study the expressive power of subrecursive probabilistic
higher-order calculi. More specifically, we show that endowing a very
expressive deterministic calculus like Gödel’s T with various forms of
probabilistic choice operators may result in calculi which are not equiv-
alent as for the class of distributions they give rise to, although they all
guarantee almost-sure termination. Along the way, we introduce a prob-
abilistic variation of the classic reducibility technique, and we prove that
the simplest form of probabilistic choice leaves the expressive power of
T essentially unaltered. The paper ends with some observations about
functional expressivity: expectedly, all the considered calculi represent
precisely the functions which T itself represents.

1 Introduction

Probabilistic models are more and more pervasive in computer science and are
among the most powerful modeling tools in many areas like computer vision [20],
machine learning [19] and natural language processing [17]. Since the early times
of computation theory [8], the very concept of an algorithm has been itself gen-
eralised from a purely deterministic process to one in which certain elementary
computation steps can have a probabilistic outcome. This has further stimulated
research in computation and complexity theory [11], but also in programming
languages [21].

Endowing programs with probabilistic primitives (e.g. an operator which
models sampling from a distribution) poses a challenge to programming lan-
guage semantics. Already for a minimal, imperative probabilistic programming
language, giving a denotational semantics is nontrivial [16]. When languages also
have higher-order constructs, everything becomes even harder [14] to the point
of disrupting much of the beautiful theory known in the deterministic case [1].
This has stimulated research on denotational semantics of higher-order prob-
abilistic programming languages, with some surprising positive results coming
out recently [4,9].

The authors are partially supported by ANR project 14CE250005 ELICA and ANR
project 12IS02001 PACE.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 370–386, 2017.
DOI: 10.1007/978-3-662-54458-7 22

On Higher-Order Probabilistic Subrecursion 371

Not much is known about the expressive power of probabilistic higher-order
calculi, as opposed to the extensive literature on the same subject about deter-
ministic calculi (see, e.g. [23,24]). What happens to the class of representable
functions if one enriches, say, a deterministic λ-calculus X with certain proba-
bilistic choice primitives? Are the expressive power or the good properties of X
somehow preserved? These questions have been given answers in the case in
which X is the pure, untyped, λ-calculus [6]: in that case, universality continues
to hold, mimicking what happens in Turing machines [22]. But what if X is one
of the many typed λ-calculi ensuring strong normalisation for typed terms [12]?

Let us do a step back, first: when should a higher-order probabilistic pro-
gram be considered terminating? The question can be given a satisfactory answer
being inspired by, e.g., recent works on probabilistic termination in imperative
languages and term rewrite systems [2,18]: one could ask the probability of diver-
gence to be 0, i.e., almost sure termination, or the stronger positive almost sure
termination, in which one requires the average number of evaluation steps to be
finite. That almost sure termination is a desirable property, even in a probabilis-
tic setting can be seen in the field of languages like Church and Anglican, in
which programs are often assumed to be almost surely terminating, e.g. when
doing inference by MH algorithms [13].

In this paper, we initiate a study on the expressive power of terminating
higher-order calculi, in particular those obtained by endowing Gödel’s T with
various forms of probabilistic choice operators. In particular, three operators
will be analysed in this paper:

• A binary probabilistic operator ⊕ such that for every pair of terms M,N ,
the term M ⊕ N evaluates to either M or N , each with probability 1

2 . This
is a rather minimal option which, however, guarantees universality if applied
to the untyped λ-calculus [6] (and, more generally, to universal models of
computation [22]).

• A combinator R, which evaluates to any natural number n ≥ 0 with probability
1

2n+1 . This is the natural generalisation of ⊕ to sampling from a distribution
having countable rather than finite support. This apparently harmless gen-
eralisation (which is absolutely non-problematic in a universal setting) has
dramatic consequences in a subrecursive scenario, as we will discover soon.

• A combinator X such that for every pair of values V,W , the term X〈V,W 〉
evaluates to either W or V (X〈V,W 〉), each with probability 1

2 . The operator X
can be seen as a probabilistic variation on PCF’s fixpoint combinator. As such,
X is potentially problematic to termination, giving rise to infinite trees.

This way, various calculi can be obtained, like T⊕, namely a minimal extension
of T, or the full calculus T⊕,R,X, in which the three operators are all available.
In principle, the only obvious fact about the expressive power of the above
mentioned operators is that both R and X are at least as expressive as ⊕: binary
choice can be easily expressed by either R or X. Less obvious but still easy to
prove is the equivalence between R and X in presence of a recursive operator (see
Sect. 3.3). But how about, say, T⊕ vs. TR?

372 F. Breuvart et al.

Traditionally, the expressiveness of such languages is evaluated by looking at
the set of functions f : N → N defined by typable programs M : NAT → NAT.
However, in a probabilistic setting, any program M : NAT → NAT computes a
function from natural numbers to distributions of natural numbers. In order to
fit usual criteria, we need to fix a notion of observation of which there are at
least two, corresponding to two randomised programming paradigms, namely
Las Vegas and Monte Carlo observations. The main question, then, consists in
understanding how the obtained classes relate to each other, and to the class
of T-representable functions. Along the way, however, we manage to understand
how to capture the expressive power of probabilistic calculi per se. This paper’s
contributions can be summarised as follows:

• We first take a look at the full calculus T⊕,R,X, and prove that it enforces
almost-sure termination, namely that the probability of termination of any
typable term is 1. This is done by appropriately adapting the well-known
reducibility technique [12] to a probabilistic operational semantics. We then
observe that while T⊕,R,X cannot be positively almost surely terminating, T⊕

indeed is. This already shows that there must be a gap in expressivity. This
is done in Sect. 3.

• In Sect. 4, we look more precisely at the expressive power of T⊕, proving that
the mere presence of probabilistic choice does not add much to the expressive
power of T: in a sense, probabilistic choice can be “lifted up” to the ambient
deterministic calculus.

• We look at other fragments of T⊕,R,X and at their expressivity. More specifically,
we prove that (the equiexpressive) TR and TX represent precisely what T⊕ can
do at the limit, in a sense which will be made precise in Sect. 3. This result,
which is the most challenging, is given in Sect. 5.

• Section 6 is devoted to proving that both for Monte Carlo and for Las Vegas
observations, the class of representable functions of TR coincides with the
T-representable ones.

Due to lack of space, most proofs are elided. An extended version of this paper
with more details is available [3].

2 Probabilistic Choice Operators, Informally

Any term of Gödel’s T can be seen as a purely deterministic computational object
whose dynamics is finitary, due to the well-known strong normalisation theorem
(see, e.g., [12]). In particular, the apparent non-determinism due to multiple
redex occurrences is completely harmless because of confluence. In this paper,
indeed, we even neglect this problem, and work with a reduction strategy, namely
weak call-by-value reduction (keeping in mind that all what we will say also holds
in call-by-name). Evaluation of a T-term M of type NAT can be seen as a finite
sequence of terms ending in the normal form n of M (see Fig. 1). More generally,
the unique normal form of any T term M will be denoted as [[M]]. Noticeably,
T is computationally very powerful. In particular, the T-representable functions

On Higher-Order Probabilistic Subrecursion 373

from N to N coincide with the functions which are provably total in Peano’s
arithmetic [12].

As we already mentioned, the most natural way to enrich deterministic calculi
and turn them into probabilistic ones consists in endowing their syntax with one
or more probabilistic choice operators. Operationally, each of them models the
essentially stochastic process of sampling from a distribution and proceeding
depending on the outcome. Of course, one has many options here as for which
of the various operators to grab. The aim of this work is precisely to study to
which extent this choice have consequences on the overall expressive power of
the underlying calculus.

Suppose, for example, that T is endowed with the binary probabilistic choice
operator ⊕ described in the Introduction, whose evaluation corresponds to toss-
ing a fair coin and choosing one of the two arguments accordingly. The presence
of ⊕ has indeed an impact on the dynamics of the underlying calculus: the eval-
uation of any term M is not deterministic anymore, but can be modelled as a
finitely branching tree (see, e.g., Fig. 3 for such a tree). The fact that all branches
of this tree have finite height (and the tree is thus finite) is intuitive, and a proof
of it can be given by adapting the well-known reducibility proof of termination
for T. In this paper, we in fact prove much more, and establish that T⊕ can be
embedded into T.

If ⊕ is replaced by R, the underlying tree is not finitely branching anymore,
but, again, there is not (at least apparently) any infinitely long branch, since each
of them can somehow be seen as a T computation (see Fig. 2 for an example).
What happens to the expressive power of the obtained calculus? Intuition tells
us that the calculus should not be too expressive viz. T⊕. If ⊕ is replaced by X,
on the other hand, the underlying tree is finitely branching, but its height can
be infinite. Actually, X and R are easily shown to be equiexpressive in presence of
higher-order recursion, as we show in Sect. 3.3. On the other hand, for R and ⊕,
no such encoding is available. Nonetheless, TR can still be somehow encoded into
T (the embedding being correct only “at the limit”) as we will detail in Sect. 5.
From this embedding, we can show that applying Monte Carlo or Las Vegas
algorithms to T⊕,X,R do not add any expressive power to that T. This is done in
Sect. 6.

3 The Full Calculus T⊕,R,X

All along this paper, we work with a calculus T⊕,R,X whose terms are the ones
generated by the following grammar:

M,N,L ::= x | λx.M | M N | 〈M,N〉 | π1 | π2

| rec | 0 | S | M ⊕ N | R | X.

Please observe the presence of the usual constructs from the untyped λ-calculus,
but also of primitive recursion, constants for natural numbers, pairs, and the
three choice operators we have described in the previous sections.

374 F. Breuvart et al.

As usual, terms are taken modulo α-equivalence. Terms in which no variable
occurs free are said closed, and are collected in the set T⊕,R,X

C . A value is simply
a closed term from the following grammar:

U, V ::= λx.M | 〈U, V 〉 | π1 | π2 | rec | 0 | S | S V | X.

and the set of values is T⊕,R,X
V . Extended values are (not necessarily closed) terms

generated by the same grammar as values with the addition of variables. Closed
terms that are not values are called reducible and their set is denoted T⊕,R,X

R . The
expression 〈M1, . . . ,Mn〉 stands for 〈M1, 〈M2, 〈. . .〉〉〉. A context is a term with
a unique hole:

C := �·� | λx.C | C M | M C | 〈C,M〉 | 〈M,C〉 | C ⊕ M | M ⊕ C.

We write T⊕,R,X
�·� for the set of all such contexts.

Termination of Gödel’s T is guaranteed by the presence of types, which we
also need here. Types are expressions generated by the following grammar

A,B ::= NAT | A → B | A × B.

Environmental contexts are expressions of the form Γ = x1 :A1, . . . , xn : An,
while typing judgments are of the form Γ � M : A. Typing rules are given
in Fig. 5. From now on, only typable terms will be considered. We denote by
T⊕,R,X(A) the set of terms of type A, and similarly for T⊕,R,X

C (A) and T⊕,R,X
V (A).

We use the shortcut n for values of type NAT: 0 is already part of the language
of terms, while n + 1 is simply S n.

3.1 Operational Semantics

While evaluating terms in a deterministic calculus ends up in a value, the same
process leads to a distribution of values when performed on terms in a probabilis-
tic calculus. Formalising all this requires some care, but can be done following
one of the many definitions from the literature (e.g., [6]).

Given a countable set X, a distribution L on X is a probabilistic subdistri-
bution over elements of X:

L,M,N ∈ D(X) =
{

f : X → [0, 1]
∣
∣
∣

∑

x∈X

f(x) ≤ 1
}

.

We are especially concerned with distributions over terms here. In particular, a
distribution of type A is simply an element of D(T⊕,R,X(A)). The set D(T⊕,R,X

V) is
ranged over by metavariables like U ,V,W. We will use the pointwise order ≤ on
distributions, which turns them into an ωCPO. Moreover, we use the following

notation for Dirac’s distributions over terms: {M} :=
{

M
→ 1
N
→ 0 if M �= N

}

. The

support of a distribution is indicated as |M|; we also define the reducible and

On Higher-Order Probabilistic Subrecursion 375

value supports fragments as |M|R := |M| ∩ T⊕,R,X
R and |M|V := |M| ∩ T⊕,R,X

V .
Notions like MR and MV have an obvious and natural meaning: for any M ∈
D(X) and Y ⊆ X, then MY (x) = M(x) if x ∈ T⊕,R,X

Y and MY (x) = 0 otherwise.
As syntactic sugar, we use integral notations to manipulate distributions,

i.e., for any family of distributions (NM)M∈T⊕,R,X : D(T⊕,R,X)T
⊕,R,X

, the expres-
sion

∫
M NM .dM stands for

∑
M∈T⊕,R,X M(M) · NM (by abuse of notation, we

may define NM only for M ∈ |M|, since the others are not used anyway). The
notation can be easily adapted, e.g., to families of real numbers (pM)M∈T⊕,R,X and
to other kinds of distributions. We indicate as C�M� the push-forward distrib-
ution

∫
M{C�M�}dM induced by a context C, and as

∑
M the norm

∫
M 1dM

of M. Remark, finally, that we have the useful equality M =
∫

M{M}dM .
Reduction rules of T⊕,R,X are given by Fig. 6. For reasons of simplicity, the

relation → indicates both a subset of T⊕,R,X
C × D(T⊕,R,X

C) and a relation on
D(T⊕,R,X

C)×D(T⊕,R,X
C). Notice that the reduction → is deterministic. We can easily

define →n as the nth exponentiation of → and →∗ as the reflexive and transitive
closure of → taking the latter as a relation on distributions. In probabilistic sys-
tems, we might want to consider infinite reductions such as the ones induced by
X〈(λx.x),0〉, which reduces to {0}, but in an infinite number of steps. Remark
that for any value V , and whenever M → N , it holds that M(V) ≤ N (V). As
a consequence, we can proceed as follows:

Definition 1. Let M be a term and let (Mn)n∈N be the unique distribution
family such that M →n Mn. The evaluation of M is the value distribution

[[M]] := {V
→ lim
n→∞ Mn(V)} ∈ D(T⊕,R,X

V).

The success of M is its probability of normalisation, which is formally defined
as the norm of its evaluation, i.e., Succ(M) :=

∑
[[M]]. MΔV

n stands for {V
→
Mn(V) − Mn−1(V)}, the distributions of values reachable in exactly n steps.
The average reduction length from M is then

[M] :=
∑

n

(
n ·

∑
MΔV

n

)
∈ N ∪ {+∞}

Notice that, by Rule (r-∈), the evaluation is continuous: [[M]] =
∫

M [[M]]dM .
Any closed term M of type NAT → NAT represents a function g : N → D(N) iff
for every n,m it holds that g(n)(m) = [[M n]](m).

3.2 Almost-Sure Termination

We now have all the necessary ingredients to specify a quite powerful notion of
probabilistic computation. When, precisely, should such a process be considered
terminating? Do all probabilistic branches (see Figs. 1, 2, 3 and 4) need to be
finite? Or should we stay more liberal? The literature on the subject is pointing
to the notion of almost-sure termination: a probabilistic computation should
be considered terminating if the set of infinite computation branches, although
not necessarily empty, has null probability [10,15,18]. This has the following
incarnation in our setting:

376 F. Breuvart et al.

M → · · · → n

Fig. 1. A reduction in T

R

0 1 2 3 4

1
2

1
4

1
8

1
16

Fig. 2. A reduction in TR

(3 ⊕ 4) ⊕ 2

3 ⊕ 4 2

3 4

1
2

1
2

1
2

1
2

Fig. 3. A reduction
in T⊕

X 〈S,3〉

3 S(X 〈S,3〉)

4 SS(X 〈S,3〉)

5
. . .

1
2

1
2

1
2

1
2

1
2

1
2

Fig. 4. A reduction
in TX

Γ, x :A � x :A

Γ, x :A � M : B

Γ � λx.M : A → B

Γ � M : A → B Γ � N : A
Γ � M N : B

Γ � 0 : NAT Γ � S : NAT → NAT Γ � rec : A × (NAT → A → A) × NAT → A

Γ � M : A Γ � N : B
Γ � 〈M, N〉 : A × B Γ � π1 : (A × B) → A Γ � π2 : (A × B) → B

Γ � M : A Γ � N : A
Γ � M ⊕ N : A Γ � R : NAT Γ � X : (A → A) × A → A

Fig. 5. Typing rules.

(r-β)

(λx.M) V →
{

M [V/x]
} M → M

(r-@L)

M V → M V

N → N
(r-@R)

M N → M N
M → M

(r-〈·〉L)

〈M, N〉 → 〈M, N〉
M → M

(r-〈·〉R)

〈V, M〉 → 〈V, M〉
(r-rec0)

rec〈U, V,0〉 →
{

U
} (r-recS)

rec〈U, V, S n〉 →
{

V n (rec〈U, V,n〉)
}

(r-π1)

π1 〈V, U〉 →
{

V
} (r-π2)

π2 〈V, U〉 →
{

U
} (r-R)

R →
{
n �→ 1

2n+1

}
n∈N

(r-⊕)

M ⊕ N →
{

M �→ 1
2

N �→ 1
2

} (r-X)

X〈V, W 〉 →
{

V (X 〈V, W 〉) �→ 1
2

W �→ 1
2

}

∀M ∈ |M|R, M → NM ∀V ∈ |M|V , NV = {V }
(r-∈)M → ∫

M NM .dM

Fig. 6. Operational semantics.

On Higher-Order Probabilistic Subrecursion 377

Definition 2. A term M is said to be almost-surely terminating (AST)
iff Succ(M) = 1.

This section is concerned with proving that T⊕,R,X indeed guarantees almost-sure
termination. This will be done by adapting Girard-Tait’s reducibility technique.

The following is a crucial intermediate step towards Theorem 1, the main
result of this section.

Lemma 1. For any M,N , it holds that [[M N]] = [[[[M]] [[N]]]]. In particular, if
the application M N is almost-surely terminating, so are M and N .

Theorem 1. The full system T⊕,R,X is almost-surely terminating (AST), i.e.,

∀M ∈ T⊕,R,X, Succ(M) = 1.

Proof. The proof1 is based on the notion of a reducible term which is given as
follows by induction on the structure of types:

RedNAT :=
{
M ∈ T⊕,R,X(NAT) | M is AST

}
;

RedA→B := {M | ∀V ∈ RedA ∩ T⊕,R,X
V , (M V) ∈ RedB};

RedA×B := {M | (π1 M) ∈ RedA, (π2 M) ∈ RedB}.

Then we can observe that:

• The reducibility candidates over RedA are →-saturated: by induction on A we
can indeed show that if M → M then |M| ⊆ RedA iff M ∈ RedA.

• The reducibility candidates over RedA are precisely the AST terms M such
that [[M]] ⊆ RedA: this goes by induction on A. Trivial for A = NAT. Let
M ∈ RedB→C : remark that there is a value V ∈ RedB , thus (M V) ∈ RedC

and (M V) is AST by IH; using Lemma 1 we get M AST and it is easy to
see that if U ∈ |[[M]]| then U ∈ |M| for some M →∗ M so that U ∈ RedB→C

by saturation. Conversely, let M be AST with |[[M]]| ⊆ RedB→C and let
V ∈ RedB be a value: by IH, for any U ∈ |[[M]]| ⊆ RedB→C we have (U V)
AST with an evaluation supported by elements of RedC ; by Lemma 1 [[M V]] =
[[[[M]] V]] meaning that (M V) is AST and has an evaluation supported by
elements of RedC , so that we can conclude by IH. Similar for products.

• Every term M such that x1 : A1, . . . , xn : An � M : B is a candidate in the
sense that if Vi ∈ RedAi

for every 1 ≤ i ≤ n, then M [V1/x1, . . . , Vn/xn] ∈
RedB: by induction on the type derivation. The only difficult cases are those
for the application and for X (the one for rec is just an induction on its third
argument).

• We need to show that if M ∈ RedA→B and N ∈ RedA then (M N)∈ RedB.
But since N ∈ RedA, this means that it is AST and for every V ∈ |[[N]]|,
(M V) ∈ RedB . In particular, by Lemma 1, we have [[M N]] = [[M [[N]]]]
so that (M N) is AST and |[[M N]]| ⊆

⋃
V ∈|[[N]]| |[[M V]]| ⊆ RedB .

1 Another proof of almost sure termination using reducibility candidate can be found
in [25].

378 F. Breuvart et al.

• We need to show that for any value U ∈RedA→A and V ∈Red A if
holds that (X 〈U, V 〉) ∈ RedA. By an easy induction on n, (Un V) ∈
RedA. Moreover, by an easy induction on n we have [[X 〈U, V 〉]] =

1
2n+1 [[Un (X 〈U, V 〉)]] +

∑
i≤n

1
2i+1 [[U i V]] so that at the limit [[X 〈U, V 〉]] =

∑
i∈N

1
2i+1 [[U i V]]. We can then conclude that (X 〈U, V 〉) is AST (since

each of the (U i V) ∈ RedB are AST and
∑

i
1

2i+1 = 1) and that
|[[M N]]| =

⋃
i |[[U i V]]| ⊆ RedA.

This concludes the proof. ��

Almost-sure termination could however be seen as too weak a property: there
is no guarantee about the average computation length. For this reason, another
stronger notion is often considered, namely positive almost-sure termination:

Definition 3. A term M is said to be positively almost-surely terminating (or
PAST) iff the average reduction length [M] is finite.

Gödel’s T, when paired with R, is combinatorially too powerful to guarantee
positive almost sure termination:

Theorem 2. T⊕,R,X is not positively almost-surely terminating.

Proof. The naive exponential function applied to R is computing, with proba-
bility 1

2n+1 the number 2n+1 in time 2n+1. This is already a counterexample,
because it clearly has infinite average termination time. ��

3.3 On Fragments of T⊕,R,X: A Roadmap

The calculus T⊕,R,X contains at least four fragments, namely Gödel’s T and the
three fragments T⊕, TR and TX corresponding to the three probabilistic choice
operators we consider. It is then natural to ask how these fragments relate to
each other as for their respective expressive power. At the end of this paper, we
will have a very clear picture in front of us.

The first result we can give is the equivalence between the apparently dual
fragments TR and TX. The embeddings are in fact quite simple:

Proposition 1. TR and TX are both equiexpressive with T⊕,R,X.

Proof. The calculus TR embeds the full system T⊕,R,X via the encoding:2

M ⊕ N := rec〈λz.N, λxyz.M, R〉0; X := λxy.rec〈y, λz.x, R〉.

The fragment TX embeds the full system T⊕,R,X via the encoding:

M ⊕ N := X〈λxy.M, λy.N〉 0; R := X〈S,0〉.

In both cases, the embedding is compositional and preserves types. That the two
embeddings are correct can be proved easily, see [3]. ��
2 Notice that the dummy abstractions on z and the 0 at the end ensure the correct
reduction order by making λz.N a value.

On Higher-Order Probabilistic Subrecursion 379

Notice how simulating X by R requires the presence of recursion, while the con-
verse is not true. The implications of this fact are intriguing, but lie outside the
scope of this work.

In the following, we will no longer consider TX nor T⊕,R,X but only TR, keeping
in mind that all these are equiexpressive due to Proposition 1. The rest of this
paper, thus, will be concerned with understanding the relative expressive power
of the three fragments T, T⊕, and TR. Can any of the (obvious) strict syntactical
inclusions between them be turned into a strict semantic inclusion? Are the
three systems equiexpressive?

In order to compare probabilistic calculi to deterministic ones, several options
are available. The most common one is to consider notions of observations over
the probabilistic outputs; this will be the purpose of Sect. 6. In this section, we
will look at whether it is possible to deterministically represent the distributions
computed by the probabilistic calculus at hand. We say that the distribution
M ∈ D(N) is finitely represented by3 f : N → B, if there exists a q such that for
every k ≥ q it holds that f(k) = 0 and

M = {k
→ f(k)}.

Moreover, the definition can be extended to families of distributions (Mn)n by
requiring the existence of f : N × N → B, q : N → N such that for all k ≥ q(n),
f(n, k) = 0 and

∀n, Mn = {k
→ f(n, k)}.

In this case, we say that the representation is parameterized.
We will see in Sect. 4 that the distributions computed by T⊕ are exactly the

(parametrically) finitely representable by T terms. In TR, however, distributions
are more complex (infinite, non-rational). That is why only a characterisation in
terms of approximations is possible. More specifically, a distribution M ∈ D(N)
is said to be functionally represented by two functions f : N × N → B and
g : N → N iff for every n ∈ N and for every k ≥ g(n) it holds that f(n, k) = 0 and

∑

k∈N

∣
∣
∣ M(k) − f(n, k)

∣
∣
∣ ≤ 1

n
.

In other words, the distribution M can be approximated arbitrarily well, and
uniformly, by finitely representable ones. Similarly, we can define a parameterised
version of this definition at first order.

In Sect. 5, we show that distributions generated by TR terms are indeed uni-
form limits over those of T⊕; using our result on T⊕ this give their (parametric)
functional representability in the deterministic T.

3 Here B stands for the set of dyadic numbers, i.e. rationals in the form n
2m (where

m, n ∈ N) and BIN for their representation in system T, encoded as pairs of natural
numbers.

380 F. Breuvart et al.

4 Binary Probabilistic Choice

This section is concerned with two theoretical results on the expressive power
of T⊕. The main feature of T⊕ is that its terms are positively almost surely ter-
minating. This is a corollary of the following theorem (whose proof [3] proceeds
again by reducibility).

Theorem 3. For any term M ∈ T⊕, M →∗ [[M]].

Now, if M →n [[M]], then [M] can be at most n since the distribution MΔV
m of

values reachable in exactly m steps (see Definition 1) will be 0 for every m > n.
But this means that typable terms normalise in finite time:

Corollary 1. Any term M ∈ T⊕ is positively almost-surely terminating.

But this is not the only consequence. In fact, the finiteness of [[M]] and the
fact that T⊕ is sufficiently expressive allow for a finite representation of T⊕-
distributions by T-definable functions. To prove it, let us consider an extension
of T with a single memory-cell c of type NAT. This memory-cell is used to store
some “random coins” simulating probabilistic choices. The operator ⊕ can be
encoded as follows:

(M ⊕ N)∗ := if (mod2 c) then (c:=div2 c ;M∗) else (c:=div2 c ;N∗)

Notice that conditionals and modulo arithmetic are easily implementable in T.
From Theorem 3, we know that for any M ∈ T⊕(NAT), there is n ∈ N such that
M →n [[M]], and since the evaluation of M can thus involve at most n successive
probabilistic choices, we have that

[[M]](k) =
#{m < 2n | k = [[c:=m ;M∗]]}

2n
.

By way of a state-passing transformation, we can enforce (c:=m ;M∗) into a
term of T. But then, the whole #{m<2n | k=[[c:=m ;M∗]]} can be represented
as a T-term k : N � N : N which finitely represents the distribution [[M]].

In the long version of this paper [3], a stronger result is proved, namely that
for any functional M ∈ T⊕(NAT→NAT), there are terms M↓ ∈ T(NAT→NAT→NAT)
and M# ∈ T(NAT→NAT) such that for all n ∈ N:

[[M n]](k) =
#{m < 2[[M# n]] | k = [[M↓ n m]]}

2[[M# n]]
.

The supplementary difficulty, here, comes from the bound M# that have to be
computed dynamically as it depends on its argument n.

As a consequence:

Theorem 4. Distributions generated by T⊕-terms are precisely those which
can be finitely generated by parameterized T-functionals; i.e., for any term
M : NAT → NAT, there are two T-functionals f : (N × N) → B and q : N → N
such that for all n:

[[Mn]] = {k
→ f(n, k) | k ≤ q(n)}.

On Higher-Order Probabilistic Subrecursion 381

5 Countable Probabilistic Choice

In this section, we show that T⊕ approximates TR: for any term M ∈ TR(NAT),
there is a term N ∈ T⊕(NAT → NAT) that represents a sequence approximating M
uniformly. We will here make strong use of the fact that M has type NAT. This
is a natural drawback when we understand that the encoding (·)† on which the
result above is based is not direct, but goes through yet another state passing
style transformation. Nonetheless, everything can be lifted easily to the first
order, achieving the parameterisation of our theorem.

The basic idea behind the embedding (·)† is to mimic any instance of the
operator R in the source term by some term 0⊕ (1 ⊕ (· · · (n⊕ ⊥) · · ·)), where n
is sufficiently large, and ⊥ is an arbitrary value of type NAT. Of course, the
semantics of this term is not the same as that of R, due to the presence of
⊥; however, n will be chosen sufficiently large for the difference to be negligible.
Notice, moreover, that this term can be generalized into the following parametric
form R‡ := λx.rec 〈⊥, (λx.S ⊕ (λy.0)), x〉.

Once R‡ is available, a natural candidate for the encoding (·)† would be to
consider something like M‡ := λz.M [(R‡ z)/R]. In the underlying execution tree,
(M‡ n) correctly simulates the first n branches of R (which has infinite arity),
but truncates the rest with garbage terms ⊥:

R‡ n

0 1 2 3 · · · · · · n ⊥ ⊥ ⊥ · · · · · ·

1
2 1

4
1
8

The question is whether the remaining untruncated tree has a “sufficient weight”,
i.e., whether there is a minimal bound to the probability to stay in this untrun-
cated tree. However, in general (·)‡ fails on this point, not achieving to approx-
imate M uniformly. In fact, this probability is basically (1 − 1

2n)d where d is its
depth. Since in general the depth of the untruncated tree can grow very rapidly
on n in a powerful system like T, there is no hope for this transformation to
perform a uniform approximation.

The solution we are using is to have the precision m of 0 ⊕ (1 ⊕ (· · · (m ⊕
⊥) · · ·)) to dynamically grow along the computation. More specifically, in the
approximants M† n, the growing speed of m will increase with n: in the n-th
approximant M† n, the operator R will be simulated as 0⊕(1⊕(· · · (m⊕⊥) · · ·))
and, somehow, m will be updated to m + n. Why does it work? Simply because
even for an (hypothetical) infinite and complete execution tree of M , we would
stay inside the nth untruncated tree with probability

∏
k≥0(1 − 1

2k∗n) which is
asymptotically above (1 − 1

n).
Implementing this scheme in T⊕ requires a feature which is not available

(but which can be encoded), namely ground-type references. We then prefer to
show that the just described scheme can be realised in an intermediate language
called TR̄, whose operational semantics is formulated not on terms, but rather
on triples in the form (M,m,n), where M is the term currently being evaluated,

382 F. Breuvart et al.

m is the current approximation threshold value, and n is the value of which m
is incremented whenever R is simulated. The operational semantics is standard,
except for the following rule:

(r-R̄)

(R̄,m, n) →
{

(k,m+n, n)
→ 1
2k+1 | k < m

}

Notice how this operator behaves similarly to R with the exception that it fails
when drawing too big of a number (i.e., bigger that the fist state m). Notice
that the failure is represented by the fact that the resulting distribution does
not necessarily sum to 1. The intermediate language TR̄ is able to approximate TR

at every order (Theorem 5 below). Moreover, the two memory cells can be shown
to be expressible in T⊕, again by way of a continuation-passing transformation.
Crucially, the initial value of n can be passed as an argument to the encoded
term.

For any M ∈ TR we denote M∗ := M [R̄/R]. We say that (M,m,n) ∈ TR̄

if m,n ∈ N and M = N∗ for some N ∈ TR. Similarly, D(TR̄) is the set of
probabilistic distributions over TR̄ × N2, i.e., over the terms plus states.

For any m and n, the behaviour of M and (M∗,m, n) are similar, except that
(M∗,m, n) will “fail” more often. In other words, all (M∗,m, n)m,n∈N somehow
approximate M from below:

Lemma 2. For any M ∈ TR and any m,n ∈ N, [[M]] � [[M∗,m, n]], i.e., for
every V ∈ TR

V , we have

[[M]](V) ≥
∑

p,q

[[M∗,m, n]](V ∗, p, q).

Proof. By an easy induction, one can show that for any M∈D(TR) and
N ∈D(TR̄) if M � N , M → L and N → P, then L � P. This ordering is
then preserved at the limit so that we get our result. ��

In fact, the probability of “failure” of any (M,m,n)m,n∈N can be upper-
bounded explicitly. More precisely, we can find an infinite product underapprox-
imating the success rate of (M,m,n) by reasoning inductively over the execution
(M,m,n) →∗ [[(M,m,n)]], which is possible because of the PAST.

Lemma 3. For any M ∈ TR̄ and any m,n ≥ 1

Succ(M,m,n) ≥
∏

k≥0

(
1 − 1

2m+kn

)
.

Proof. We denote #(m,n) :=
∏

k≥0

(
1 − 1

2m+kn

)
and #M :=

∫

M
#(m,n)dM

dmdn. Remark that for any M and any m,n, if (M,m,n) → M then M is either
of the form {(N,m, n)} or {(Ni,m+n, n)
→ 1

2i+1 | i < m} for some N of (Ni)i≤m.

On Higher-Order Probabilistic Subrecursion 383

Thus we have that if (M,m,n)→N then #N = #(m,n) and that if M → N then
#N = #M. In particular, since (M,m,n) →∗ [[M,m,n]] we can conclude

Succ(M,m,n) =
∫

[[M,m,n]]

1 dMdmdn ≥ #[[M]] = #(m,n) =
∏

k≥0

(
1 − 1

2m+kn

)
.

��

This gives us an analytic lower bound to the success rate of (M,m,n). How-
ever, it is not obvious that this infinite product is an interesting bound, it is not
even clear that it can be different from 0. This is why we will further under-
approximate this infinite product to get a simpler expression whenever m = n:

Lemma 4. For any M ∈ TR̄ and any n ≥ 4

Succ(M,n, n) ≥ 1 − 1
n

.

Proof. By Lemma 3 we have that Succ(M,n, n) ≥
∏

k≥1

(
1− 1

2kn

)
which is above

the product
∏

k≥1

(
1 − 1

n2k2

)
whenever n ≥ 4. This infinite product has been

shown by Euler to be equal to sin(π
n)

π
n

. By an easy numerical analysis we then

obtain that sin(π
n)

π
n

≥ 1 − 1
n . ��

This lemma can be restated by saying that the probability of “failure” of
(M∗, n, n), i.e. the difference between [[M∗, n, n]] and [[M]], is bounded by 1

n .
With this we then get our first theorem, which is the uniform approximability
of elements of TR by those of TR̄:

Theorem 5. For any M ∈ TR and any n ∈ N,

∑

V

∣
∣
∣ [[M]](V) − Σm′,n′ [[M∗, n, n]](V ∗,m′, n′)

∣
∣
∣ ≤ 1

n
.

Proof. By Lemma 2, for each V the difference is positive, thus we can remove
the absolute value and distribute the sum. We conclude by using the fact that
Succ(M) = 1 and Succ(M∗, n, n) ≥ 1 − 1

n . ��

The second theorem, i.e., the uniform approximability of ground elements of TR

by those of T⊕, follows immediately:

Theorem 6. Distributions in TR(NAT) can be approximated by T⊕-distributions
(which are finitely T-representable), i.e., for any M ∈ TR(NAT), there is
M† ∈ T⊕(NAT → NAT) such that:

∀n,
∑

k

∣
∣
∣ [[M]](k) − [[M† n]](k)

∣
∣
∣ ≤ 1

n
.

384 F. Breuvart et al.

Moreover:

• the encoding is parameterisable, in the sense that for all M ∈ TR(NAT → NAT),
there is M � ∈ T⊕(NAT → NAT → NAT) such that [[(M m)†]] = [[M � m]] for all
m ∈ N;

• the encoding is such that [[M]](k) ≤ [[M† n]](k) only if k = 0.

Proof. It is clear that in an extension of T⊕ with two global memory cells m,n
and with an exception monad, the R̄ operator can be encoded by the term
R̄ := rec 〈⊥, (λx.S ⊕ (λy.0)), (m :=!m+!n)〉, where ⊥ is raising an
error/exception and where m :=!m+!n is returning the value of m before chang-
ing the memory cell to m + n. We can conclude by referring to the usual state
passing style encoding of exceptions and state-monads into T (and thus into
T⊕). ��

6 Subrecursion

If one wishes to define T⊕-definable or TR-definable functions as a set of ordinary
set-theoretic functions (say from N to N), it is necessary to collapse the random
output into a deterministic one. As already acknowledged by the complexity
community, there are at least two reasonable ways to do so: by using either
Monte Carlo or Las Vegas observations.

As the careful reader may have foreseen, the finite (parametric) representa-
tion of T⊕-distributions into T is collapsing both observations into T-definable
functions. One only need to explore the finite representation, the resulting
process suffers from an exponential blow-up, which is easily absorbed by T,
in which all elementary functions (and much more than that!) can be expressed.

Theorem 7 (Monte Carlo). Let f : N → N and M : NAT → NAT a TR-
term such that (M m) evaluates into f(m) with probability p ≥ 1

2 + 1
g(m) for a

T-definable function g. Then f is T-definable.

Theorem 8 (Las Vegas). Let f : N → N and M : NAT → NAT a TR-term such
that (M m) evaluate either to 0 (representing a failure) or to f(m) + 1, the
later happening with probability p ≥ 1

g(m) for some T-definable function g. Then
f is T-definable.

7 Conclusions

This paper is concerned with the impact of adding various forms of probabilistic
choice operators to a higher-order subrecursive calculus in the style of Gödel’s T.
The presented results help in understanding the relative expressive power of
various calculi which can be obtained this way, by showing some separation and
equivalence results.

On Higher-Order Probabilistic Subrecursion 385

The probabilistic choice operators we consider here are just examples of how
one can turn a deterministic calculus like T into a probabilistic model of com-
putation. The expressiveness of T⊕,R,X is sufficient to encode most reasonable
probabilistic operators, but what can we say about their own expressive power?
For example, what about a ternary operator in which either of the first two
operators is chosen with a probability which depends on the value of the third
operator? A general theory of probabilistic choice operators and of their expres-
sive power is still lacking.

Another research direction to which this paper hints at consists in studying
the logical and proof-theoretical implications of endowing a calculus like T with
probabilistic choice operators. What is even more exciting, however, is the appli-
cation of the ideas presented here to polynomial time computation. This would
allow to go towards a characterization of expected polynomial time computa-
tion, thus greatly improving on the existing works on the implicit complexity
of probabilistic systems [5,7], which only deals with worst-case execution time.
The authors are currently engaged in that.

References

1. Barendregt, H.P.: The Lambda Calculus, Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1981)

2. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl, J.
(ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-32033-3 24

3. Breuvart, F., Dal Lago, U., Herrou, A.: On probabilistic subrecursion (long version)
(2016). http://arxiv.org/abs/1701.04786

4. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54833-8 12

5. Dal Lago, U., Toldin, P.P.: A higher-order characterization of probabilistic poly-
nomial time. Inf. Comput. 241, 114–141 (2015)

6. Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda calcu-
lus. RAIRO - Theor. Inf. Appl. 46(3), 413–450 (2012)

7. Dal Lago, U., Zuppiroli, S., Gabbrielli, M.: Probabilistic recursion theory and
implicit computational complexity. Sci. Ann. Comp. Sci. 24(2), 177–216 (2014)

8. De Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by proba-
bilistic machines. Automata Stud. 34, 183–198 (1956)

9. Ehrhard, T., Pagani, M., Tasson, C.: Probabilistic coherence spaces are fully
abstract for probabilistic PCF. In: Sewell, P. (ed.) Proceedings of POPL. ACM
(2014)

10. Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: soundness, complete-
ness, and compositionality. In: Proceedings of POPL, pp. 489–501 (2015)

11. Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Com-
put. 6(4), 675–695 (1977)

12. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University
Press, Cambridge (1989)

13. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: UAI, pp. 220–229 (2008)

http://dx.doi.org/10.1007/978-3-540-32033-3_24
http://dx.doi.org/10.1007/978-3-540-32033-3_24
http://arxiv.org/abs/1701.04786
http://dx.doi.org/10.1007/978-3-642-54833-8_12

386 F. Breuvart et al.

14. Jung, A., Tix, R.: The troublesome probabilistic powerdomain. Electr. Notes
Theor. Comput. Sci. 13, 70–91 (1998)

15. Kaminski, B.L., Katoen, J.-P.: On the hardness of almost–sure termination. In:
Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234,
pp. 307–318. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48057-1 24

16. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

17. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing, vol. 999. MIT Press, Cambridge (1999)

18. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, Heidelberg (2005)

19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (1988)

20. Prince, S.J.D.: Computer Vision: Models, Learning, and Inference. Cambridge Uni-
versity Press, New York (2012)

21. Saheb-Djahromi, N.: Probabilistic LCF. In: Winkowski, J. (ed.) MFCS
1978. LNCS, vol. 64, pp. 442–451. Springer, Heidelberg (1978). doi:10.1007/
3-540-08921-7 92

22. Santos, E.S.: Probabilistic turing machines and computability. Proc. Am. Math.
Soc. 22(3), 704–710 (1969)

23. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism.
Elsevier Science Inc., New York (2006)

24. Statman, R.: The typed lambda-calculus is not elementary recursive. Theor. Com-
put. Sci. 9, 73–81 (1979)

25. Staton, S., Yang, H., Heunen, C., Kammar, O., Wood, F.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: Proceedings of LICS, pp. 525–534 (2016)

http://dx.doi.org/10.1007/978-3-662-48057-1_24
http://dx.doi.org/10.1007/3-540-08921-7_92
http://dx.doi.org/10.1007/3-540-08921-7_92

Concurrency

A Truly Concurrent Game Model
of the Asynchronous π-Calculus

Ken Sakayori(B) and Takeshi Tsukada

The University of Tokyo, Tokyo, Japan
{sakayori,tsukada}@kb.is.s.u-tokyo.ac.jp

Abstract. In game semantics, a computation is represented by a play,
which is traditionally a sequence of messages exchanged by a program
and an environment. Because of the sequentiality of plays, most game
models for concurrent programs are a kind of interleaving semantics. Sev-
eral frameworks for truly concurrent game models have been proposed,
but no model has yet been applied to give a semantics of a complex con-
current calculus such as the π-calculus (with replication).

This paper proposes a truly concurrent version of the HO/N game
model in which a play is not a sequence but a directed acyclic graph
(DAG) with two kinds edges, justification pointers and causal edges. By
using this model, we give the first truly concurrent game semantics for
the asynchronous π-calculus. In order to illustrate a possible application,
we propose an intersection type system for the asynchronous π-calculus
by means of our game model, and discuss when a process can be com-
pletely characterised by the intersection type system.

Keywords: HO/N game model · True concurrency · Asynchronous
π-calculus

1 Introduction

Game semantics succeeded to give semantics for variety of programming lan-
guages such as PCF [1,21] and Idealized Algol [2].

The idea of game semantics has been applied to give models for concurrent
calculi such as CSP [23], Idealized Parallel Algol [18] and the asynchronous π-
calculus [24]. However, the sequential nature of plays forces these models to be
a kind of interleaving semantics; the causalities between events are obfuscated.

Hence it is natural to investigate a concurrent extension of the traditional
game models. Several frameworks for concurrent game models have been pro-
posed by several researchers [3,27,29,34], but no model has yet been applied to
give a semantics of a complex concurrent calculus such as the π-calculus (with
replication), as pointed out in [10]. The goal of this paper is to develop a truly
concurrent game model by which the asynchronous π-calculus can be interpreted.

The starting point of our development is an observation by Melliès [27]: in the
HO/N innocent game model [21,32], only a part of the sequential information

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 389–406, 2017.
DOI: 10.1007/978-3-662-54458-7 23

390 K. Sakayori and T. Tsukada

• ◦ • ◦ • ◦ • ◦
•

◦
•

◦
⇒ ⇒

Fig. 1. Idea of the desequentialization.

is really relevant. For example, the order of consecutive occurrences of O- and
P-moves are indispensable, whereas that of consecutive occurrences of P- and
O-moves can be safely forgotten (unless the O-move is justified by the P-move).

Now it is natural to think of a play in which the relevant order information
is made explicit. Consider a traditional sequential play on the left side in Fig. 1,
where • (resp. ◦) represents an O-move (resp. a P-move) and a pointer is a
justification pointer. By making the relevant sequential information explicit, we
obtain a representation in the middle in Fig. 1. Then because all the relevant
sequential information has been explicitly indicated by edges, we can simply
forget the sequential information, resulting in the right representation in Fig. 1.
This is our representation of a play that we call a DAG-based play.

A DAG-based play generated by this way from a sequential play satisfies
a certain property, which reflects the sequential nature of the target language
of the innocent game model [21]. In order to model a concurrent calculus, the
condition required for DAG-based plays should be weakened. This is the idea
that leads us to the definition of plays in this paper.

Following this idea, we develop a DAG-based game model for the asyn-
chronous π-calculus, guided by the sequential game model of Laird [24]. Our
model is truly concurrent in the sense that it distinguishes between a.b̄ | c.d̄ and
a.(b̄ | c.d̄)+ c.(a.b̄ | d̄). Laird’s model can be reconstructed by lining up the nodes
of DAG-based plays of our model. We prove the soundness of our model by
reducing it to that of Laird’s model, using this relationship.

As a possible application of our model, we give an intersection type system
based on the relationship between intersection types and game semantics which
has been studied in the case of λ-calculus [7,14,37]. Based on a game-semantic
consideration, we characterise a class of processes that are completely described
by the intersection type system.

Organisation of the paper. Section 2 defines our target language, a variant of the
asynchronous π-calculus. In Sect. 3, we define our truly concurrent game model
and relate it with sequential game models. A semantics of the π-calculus is given
in Sect. 4. Section 5 illustrates a possible application of our game model, giving
an intersection type system for a fragment of the π-calculus. Section 6 discusses
related work and Sect. 7 concludes the paper.

A Truly Concurrent Game Model of the Asynchronous π-Calculus 391

Γ � 0; Σ
Γ, x̄ : T � P ; Σ, y : T

Γ � ν(x̄, y).P ; Σ Γ, x̄ : ch[S,T], ȳ : S � x̄〈ȳ, z〉; Σ,z : T

Γ � P ;Σ Γ ′� Q;Σ′

Γ, Γ ′ � P |Q; Σ,Σ′
Γ, ȳ : S � P ; Σ,z : T

Γ � x(ȳ,z).P ; Σ, x:ch[S,T]
Γ, ȳ : S � P ; Σ,z : T

Γ � !x(ȳ,z).P ; Σ, x:ch[S,T]

Fig. 2. Typing rules. (Contraction and exchange rules are omitted.)

2 Simply-Typed Asynchronous π-Calculus

We define the target language of the paper: the simply-typed asynchronous
polyadic π-calculus with distinction between input and output channels. This
is the calculus studied in the previous work of Laird [24], in which he gave an
interleaving (or sequential) game model.

We assume countably infinite sets of input names and of output names. Unlike
the standard π-calculus in which an input name a is a priori connected to the
output name ā, we do not assume any relationship between input and output
names but a connection is established by ν constructor. This design choice sig-
nificantly simplifies the denotational semantics.

The processes are defined by the following grammar: P,Q:: = 0 | x̄〈ȳ,z〉 |
x(ȳ,z).P | P |Q | !x(ȳ,z).P | ν(x̄, y).P. Here x (resp. x̄) ranges over input
(resp. output) names and x (resp. x̄) represents a (possibly empty) sequence of
input (resp. output) names. Name creation ν creates a pair of input and output
names. We abbreviate ν(x̄1, y1).ν(x̄n, yn).P as ν(x̄1 . . . x̄n, y1 . . . yn).P .

The structural congruence ≡ is defined as usual. The one-step reduction rela-
tion −→ on processes is defined by the following rule:

ν(z̄,w).ν(x̄, y).(y(ā, b).P | x̄〈c̄,d〉 | Q) −→ ν(z̄,w).ν(x̄, y).(P{c̄/ā,d/b} | Q)

It is worth emphasising here that the communication only occurs over names that
are bound by ν. The reduction relation −→∗ is the reflexive transitive closure of
(−→ ∪ ≡). We write P⇓x̄ if P −→∗ ν(ȳ,z).(x̄〈ȳ′,z′〉 | Q) for some Q, where x̄
is free. Note that we can observe only an output action.

We require that processes are well-typed. The syntax of types is given by
S, T :: = ch[S1 . . . Sm, T1 . . . Tn]. We write x : ch[S1 . . . Sm, T1 . . . Tn] to mean
that x is an input name by which one receives m output names and n input
names at once. Similarly for ȳ : ch[S1 . . . Sm, T1 . . . Tn]. A sequence S1 . . . Sm of
types is often written as S and the empty sequence is written as . The type
ch[,] is abbreviated as ch[]. An input type environment is a finite sequence of
type bindings of the form x : T and an output type environment is that of the
form ȳ : S. A type judgement is of the form Γ � P ;Σ, where Γ and Σ are input
and output type environments, respectively. Typing rules are listed in Fig. 2.

Remark 1. (1) A calculus with a priori connection between an input name x and
an output name x̄ can be simulated by passing/receiving a pair (x, x̄) of input and

392 K. Sakayori and T. Tsukada

output names. Via this translation our game semantics is applicable to a calculus
with a priori connection because the translation reflects may-testing equivalence.
(2) The standard parallel composition, which invokes communications of the two
processes, can be expressed as ν(āb̄,ab).(P |Q|(a′→ ā)|(b→ b̄′)) where a and b̄
are free names in P and Q, and a′ → ā is a “forwarder”, a process forwarding
names received from a′

i to āi.

3 Concurrent HO/N Game Model

This section introduces a truly concurrent game model in which a play is not a
sequence but a directed acyclic graph (DAG). A node of a play is labelled by a
move representing an event; an edge represents either a justification pointer or
causality. The key is the notion of plays (Sect. 3.2) and of interactions (Sect. 3.3).
The other parts are relatively straightforward adaptation of the techniques in
the standard HO/N game model (e.g. [21]) or Laird’s model [24].

3.1 Arenas

The definition of arenas is (essentially) the same as the definition of arenas in
the case of the sequential game model of π-calculus [24]. The differences from
the standard definition (e.g. [21]) are (1) all moves are questions, and (2) the
owner of moves does not have to alternate.

Definition 1 (Arena). An arena is a triple A = (MA, λA,�A), where MA

is a set of moves, λA : MA → {P,O} is an ownership function and �A ⊆
({�} + MA) ×MA is an enabling relation that satisfies: for every m ∈ MA,
there uniquely exists x ∈ {�}+MA such that x �A m.

We say that m is a P-move if λA(m) = P ; it is an O-move if λA(m) = O.
Every move represents an output action: a P-move is an output action of
the process and an O-move is that of the environment (see a discussion after
Definition 4). Let λ⊥

A denote the negation of λA i.e. λ⊥
A(m) = O (resp. λ⊥

A(m) =
P) if λA(m) = P (resp. λA(m) = O). A move m is initial if � �A m. An arena
is negative (resp. positive) if all initial moves are O-moves (resp. P-moves). In
what follows, we shall consider only negative arenas (hence we often use arenas
to mean negative arenas). The empty arena is defined by I := (∅, ∅, ∅).

Negative and positive arenas correspond to input and output type environ-
ments, respectively. Hence a judgement, which consists of a pair of input and
output type environments, should be expressed as a pair of arenas.

Definition 2 (Arena pair). An arena pair is a pair (A,B) of (negative) are-
nas. We write MA,B for MA + MB. The ownership function is defined by
λA,B = [λ⊥

A, λB]. The enabling relation �A,B is given by: m �A,B m′ if and only
if m �A m′ or m �B m′. (In particular, � �A,B m iff � �A m or � �B m′.)

Note that an arena pair is not a negative arena since it has an initial P-move.

A Truly Concurrent Game Model of the Asynchronous π-Calculus 393

A

a1

a11

a2

B

b1

b̄11 b12

b̄121

C

c1

c̄11

(A, B)

ā1

ā11

ā2 b1

b̄11 b12

b̄121

Fig. 3. Examples of arenas and an arena pair.

Example 1. Three (negative) arenas A, B and C are illustrated in Fig. 3, as
well as the arena pair (A,B). Those arenas are used in examples in this paper.
Nodes are labelled by moves and edges represent the enabling relation. If a
name is overlined, the move is a P-move; otherwise it is an O-move. The arena
pair (A,B) corresponds to the pair of the output type environment Γ = ā1 :
ch[, ch[]], ā2 : ch[] and the input type environment Σ = b1 : ch[ch[], ch[ch[],]].
(Channel names do not have to coincide with move names.)

3.2 DAG-based Plays

In the standard HO/N game model [21], a play is a sequence of moves equipped
with pointers, called justification pointers. The justification pointers express the
binder-bindee relation and the sequential structure expresses the temporal rela-
tion between the events in the sequence (e.g. in the sequence s1 a s2 b s3, the
event b occurs after a). The causal relation is left implicit (cf. Sect. 3.5).

In the proposed game model, we explicitly describe the causal relation as
well as the justification pointers.

Definition 3 (Justified graph). A justified graph over an arena pair (A,B)
is a tuple s = (Vs, ls, �s ,�s) where:

– Vs is a finite set called the vertex set
– ls is the vertex labelling, that is ls : Vs →MA,B

– �s ⊆ Vs × Vs is the justification relation
– �s ⊆ Vs × Vs is the causality relation

such that

– (Vs, �s ∪�s) is a DAG i.e. there is no cycle v (�s ∪�s)+ v.
– If ls(v) is initial, then there is no node v′ such that v �s v′.
– If ls(v) is not initial, then there exists a unique node v′ such that v �s v′.

Furthermore this v′ satisfies ls(v′) �A,B ls(v).

Note that �s and �s do not have to be disjoint. We define �s := (�s ∪�s). The
set of justified graphs over an arena pair (A,B) is denoted by JA,B.

In what follows, we shall identify isomorphic justified graphs.
Given a justified graph s over (A,B), a P-node (resp. an O-node) is a node

v ∈ Vs whose label is a P-move (resp. an O-move). We write V P
s for the set of

P-nodes and V O
s for the set of O-nodes (e.g. V P

s := {v ∈ Vs | λA,B(ls(v)) = P}).

394 K. Sakayori and T. Tsukada

ā1 b1

b12 b12

b̄121 b̄11

s1 ∈ PA,B

ā1

ā11

b1

b12

b̄121

s2 ∈ PA,B

ā1

ā11

b1

b12

s3 ∈ PA,B

Fig. 4. Examples of plays over the arena pair (A, B) in Fig. 3.

Definition 4 (Play). Let s = (Vs, ls, �s ,�s) be a justified graph over (A,B). It
is a play if it satisfies the following conditions:

(P1) for every v, v′ ∈ Vs, v �s v′ implies v ∈ V P
s and v′ ∈ V O

s ,
(P2) for every vp ∈ V P

s and vo ∈ V O
s , if vp �s

+ vo, then vp �s vo, and
(P3) for every vo ∈ V o

s , there exists vp ∈ V P
s such that vp �s vo.

We write PA,B for the set of plays over (A,B).

Condition (P1) reflects the asynchronous nature of the target language.
Recall that a P-move corresponds to an output action of a process and an O-
move to an output action of the environment. No P-node should be causally
related to P-nodes since an output action of the process cannot cause any other
output of the process. Similarly no O-node should be causally related to O-nodes
since an output action of the environment cannot cause any other output of the
environment (provided that the environment is also described by the asynchro-
nous π-calculus). An output action of a process may cause an output action of
the environment; however it is a matter of the environment and a play describes
the behaviour of a process, not the environment. Hence �s ⊆ V P

s × V O
s .

Condition (P2) comes from a purely technical requirement. (We need this
condition to establish Lemma 2, as well as a proposition stating the copycat
strategy is the identity.)

Condition (P3) is the counterpart of the even-length condition. Here we
regard the even-length condition for sequential plays as the requirement that
every O-move in the sequence should be responded by a P-move.

Example 2. Figure 4 shows three different plays over the arena pair (A,B) in
Fig. 3. The solid arrows represent justification pointers, and squiggly arrows
represent causalities. Nodes are labelled by moves and different nodes may be
labelled by a same move. Note that plays may have a join point, i.e. a node that
is linked to two “incomparable” nodes, like the node labelled by ā11 in s2.

Remark 2. A play can be seen as a process, e.g. the play s2 in Fig. 4 cor-
responds to the process ν(ā11, a11).(b1(, b12).b12(b̄121,).(ā11 | b̄121) | ā1〈 , a11〉)
(whose type differs from that described by the arena pair). The formal descrip-
tion of the connection to the linear internal π-calculus is left for the future work.

A Truly Concurrent Game Model of the Asynchronous π-Calculus 395

3.3 Strategies and Composition

Strategy. In most variants of sequential game models, a strategy σ is a collection
of plays that is (even-length) prefix closed : if smOmP ∈ σ, then s ∈ σ. The set
of strategies in our game model is defined by the same way, though the notion
of prefix should be adapted to our setting.

Definition 5 (Prefix). Let s = (Vs, ls, �s ,�s) be a play. Let U ⊆ Vs be a subset
that satisfies (1) v ∈ U and v �s v′ implies v′ ∈ U and (2) for all vo ∈ UO there
exists vp ∈ UP such that vp �s vo. The prefix s[U] := (U, l, �,�) of s induced
by U is the restriction of s to U , i.e.,

l(v) := ls(v) � := (�s) ∩ (U × U) � := (�s) ∩ (U × U).

We write s′ � s if s′ is a prefix of s. A prefix of a play is a play.

Example 3. In Fig. 4, the play s3 is a prefix of s2 induced by the set of nodes
labelled by m ∈ {ā1, ā11, b1, b12}.
Definition 6 (Strategy). Let (A,B) be an arena pair. A set σ ⊆ PA,B of
plays over (A,B) is a strategy of (A,B), written as σ : A → B, if it satisfies
prefix-closedness (S1):

(S1) If s ∈ σ and s′ � s, then s′ ∈ σ.

Composition. The composition of strategies is defined by using the notion of
interactions. Since plays are not sequences but graphs, an interaction should also
be represented by a graph that we call an interaction graph.

Definition 7. Let (A,B,C) be a triple of arenas. The set MA,B,C of moves of
(A,B,C) is the disjoint union MA +MB +MC . The enabling relation �A,B,C

is defined by: x �A,B,C m if x �X m for some X ∈ {A,B,C}. The ownership
function is defined by: λA,B,C := [λA, λB , λC]. The set JA,B,C of justified graphs
of (A,B,C) is defined by the same way as in Definition 3.

For X ∈ {A,B,C, (A,B), (B,C), (A,C)}, we write VX for the set of nodes
restricted to the component X and V P

X and V O
X for the sets of nodes labelled by

P-moves and by O-moves in the component X. For example, v ∈ V P
A,B means

either (1) lu(v) ∈MB and λB(lu(v)) = P , or (2) lu(v) ∈MA and λA(lu(v)) = O.

Definition 8 (Restriction). Let u = (V, l, �,�) be a justified graph over
(A,B,C) and X ∈ {(A,B), (B,C), (A,C)}. The restriction u�X of u to X is
defined by u�X := (V �X , l�X , ��X , ��X), where

V �X := VX , l�X(v) := l(v), ��X := (�) ∩ (VX × VX).

The definition of ��X needs some care. If X ∈ {(A,B), (B,C)}, then ��X

is just the restriction of the original causal relation, i.e. ��X := {(v, v′) ∈
V P

X × V O
X | v � v′} (cf. Condition (P1)). If X = (A,C), then ��A,C relates

moves linked through the intermediate component B, i.e. ��A,C := {(v, v′) ∈
V P

A,C × V O
A,C | ∃n ≥ 0. ∃v1, . . . , vn ∈ VB . v � v1 � · · · � vn � v′}.

396 K. Sakayori and T. Tsukada

a1

a11

b1

b12

c1

c̄11

u ∈ JA,B,C

ā1

ā11

b1

b12

u�A,B ∈ PA,B

b̄1

b̄12

c1

c̄11

u�B,C ∈ PB,C

ā1

ā11

c1

c̄11

u�A,C ∈ PA,C

Fig. 5. Example of a justified graph and restrictions.

b1

b̄11 b12

(a)

b̄1

b11 b̄12 b1

b̄11 b12

(b)

b̄1

b11 b̄12 b1

b̄11 b12

(c)

Fig. 6. Construction of a copycat play.

Example 4. Figure 5 shows a justified graph u over the triple (A,B,C) (in Fig. 3)
and its restrictions to components (A,B), (B,C) and (A,C).

Note that although ā11 ��u c1, we have ā11�u �A,C c1 because ā11 �u b1 �u c1.

Definition 9 (Interaction graph). Let u ∈ JA,B,C be a justified graph over
(A,B,C) and V be the set of nodes of u. We say that u is an interaction graph
if it satisfies the following conditions.

(I1) If v �u v′, then (v, v′) ∈ V P
X × V O

X for some X ∈ {(A,B), (B,C)}.
(I2) Both u�A,B and u�B,C are plays.

Condition (I1) is a variant of the switching condition. The set of interaction
graphs over (A,B,C) is denoted as Int(A,B,C).

In fact u in Example 4 is an interaction graph.

Definition 10 (Composition). Let σ : A → B and τ : B → C be strategies.
The composition of σ and τ is defined by

τ ◦ σ := {u�A,C | u ∈ Int(A,B,C), u�A,B ∈ σ, u�B,C ∈ τ}.

Note that the definition of composition is applicable to sets of plays that are not
necessarily strategies. By abuse of notation, we shall write τ ◦ σ even if σ and τ
are not strategies but just sets of plays.

Theorem 1. The composite of strategies is a strategy. The composition is asso-
ciative.

A Truly Concurrent Game Model of the Asynchronous π-Calculus 397

Category. We define the category P of negative arenas and strategies: an object
of P is a (negative) arena and a morphism from A to B is a strategy σ : A → B.
The composite of σ : A → B and τ : B → C is given by the composition τ ◦ σ
of strategies defined above. Given an arena A, the identity morphism idA : A →
A is the “copycat strategy”: when the environment makes a move m in one
component, then it responds by making a copy of m in the other component. It
is the set of copycat plays, whose construction is illustrated in Fig. 6: (a) take a
“justified graph without causality” of the arena (in this example, the arena is B
in Fig. 3); (b) make positive and negative copies and connect the corresponding
nodes by a causal edge � in the appropriate direction; and (c) add causal edges
so as to satisfy Condition (P2), resulting in a play over (B,B).

3.4 Distributive-Closed Freyd Category

In this section, we define the categorical structures of P, which is used in Sect. 4
to give an interpretation of the π-calculus. A category with the structures below
is called a distributive-closed Freyd category [24]. The definitions in this section
are adapted from the interleaving game model for the π-calculus [24].

Monoidal product. Let A = (MA, λA,�A) and B = (MB , λB ,�B) be arenas.
The arena A � B is defined as (MA +MB , [λA, λB],�A,B), where �A,B is the
enabling relation defined in Definition 2. Given strategies σ : A → B and τ : C →
D, the strategy σ � τ : A� C → B �D is defined by the juxtaposition of plays
in σ and τ , namely σ� τ := {s� t | s ∈ σ, t ∈ τ} where s� t is the juxtaposition
of plays. Then the triple (P,�, I) is a symmetrical monoidal category.

Closed Freyd structure. An input prefixing a(x̄,y).P should be interpreted by
using a kind of closed structure (intuitively because the input prefix bounds
variables in P like λ-abstraction). Laird [24] used closed Freyd categories [33].

A Freyd category consists of a symmetric (pre)monoidal category P, a carte-
sian categoryA and an identity-on-object strict (pre)monoidal functor ! : A → P.
Intuitively P is that of types and “terms” whereas A is the category of types
and “values”; the functor ! gives us a way to regard a “value” as a “term”.
In our context, “terms” are processes and “values” are processes of the form∑

i ai(x̄i,yi).Pi, where Pi has no free input channel except for those in yi.
We define the game-semantic counterpart of the processes of the this form.

Definition 11 (Well-opened play, strategy). A play s is well-opened if it
contains precisely one initial O-node v0 to which all other nodes are connected
(i.e. for every v ∈ Vs). We write WA,B for the set of well-opened
plays over (A,B). A well-opened strategy from arena A to arena B, written as
σ : A

•→ B, is a set σ of well-opened plays that is prefix-closed (S1).

Then we define an operator !, a mapping from well-opened strategies to
strategies and the composition of well-opened strategies by using !.

398 K. Sakayori and T. Tsukada

∗

A⊥ B

(a) A ⇀ B.

∗ ∗
A B A C⇀ ⇀

A ⇀ σ

idA

σ

(b) A ⇀ σ.

∗

Λ�→

!A � B → C A → B ⇀ C

σA,B

σA,C

σB,C

σA,B

σA,C

σB,C

(c) Λ(σ).

Fig. 7. The action of A ⇀ (−) and Λ.

Definition 12. Let σ : A
•→ B be a well-opened strategy. The strategy !σ : A →

B is defined by !σ := {s1 � · · · � sn | n ≥ 0, ∀i ≤ n. si ∈ σ} where s1 � · · · � sn

is the juxtaposition of plays s1, . . . , sn.

Definition 13 (Composition of well-opened strategies). Let σ : A
•→ B

and τ : B
•→ C be well-opened strategies. We define τ ◦A σ := τ ◦ !σ.

Lemma 1. The composite of well-opened strategies with respect to ◦A is a well-
opened strategy. The composition ◦A of well-opened strategies is associative.

The category A of negative arenas and well-opened strategies is defined by
the following data: an object is a negative arena, a morphism from A to B is a
well-opened strategy σ : A

•→ B, the composition is given by ◦A. The identity
morphism is idA ∩WA,A, where idA is the copycat strategy. The category A is
cartesian: the cartesian product of A and B is A�B.

By defining !A := A for objects, the operation ! becomes a functor ! : A →
P. This is identity on objects and strict symmetric monoidal functor and thus
(A,P, !) is a Freyd category.

Lemma 2. The Freyd category (A,P, !) is closed, i.e. for every arena A, the
functor !(−)�A : A → P has the right-adjoint A ⇀ (−) : P → A.

The action of A ⇀ (−) on objects and on morphisms is illustrated in
Fig. 7. We write Λ for the bijective map P(!A � B,C) → A(A,B ⇀ C) and
appA,B : !(A ⇀ B) � A → B for the counit. The bijection P(!A � B,C) ∼=
A(A,B ⇀ C) induced by the adjunction intuitively corresponds to the following
bijection of the π-calculus processes: x̄ : S, ȳ : T � P ;z : U ←→ x̄ : S �
a(ȳ,z).P ; a : ch[T ,U].

Distributive law. The process obtained by (the π-term representation of) the
above adjunction has the input prefix a(ȳ,z) as expected but it has only one
free input channel. We use the distributive law of the distributive-closed Freyd
category to model a process with multiple free input channel. By using the syntax
of the π-calculus, the distribution law can be seen as the following map:

x̄ : S � a(ȳ,zz′).P ; a : ch[T ,UU ′] −→ x̄ : S � a(ȳ,z).P ; a : ch[T ,U],z′ : U ′.

A Truly Concurrent Game Model of the Asynchronous π-Calculus 399

Definition 14 (Distributive-closed Freyd category [24]). A closed Freyd
category ! : A → P is distributive-closed if there is a family of morphisms
�A : !(A ⇀ (B � C)) −→ B � !(A ⇀ C) in P, natural in B and C which
makes certain diagrams commute.

Theorem 2. The game model ! : A → P is distributive-closed.

Trace. The operator ν(x̄, y).P is interpreted as a trace operator. We define
TrB

A,C(f) := appB,C ◦ symmB,B⇀C ◦ �B,B,C ◦ !Λ(symmB,C ◦ f), given a mor-
phism f : A�B → C�B in P. Then Tr is the trace operator for the symmetrical
monoidal category P [24].

Additional structures. Some additional structures are required to interpret the
π-calculus: the minimum strategy ⊥A,B (with respect to the set-inclusion), the
diagonal ΔA : A

•→ A � A, the codiagonal ∇A : A � A
•→ A (defined by ∇A :=

π1∪π2 where πi : A�A
•→ A is the projection), and the dereliction derA : A → A

(defined as idA ∩WA,A).

3.5 Relation to Sequential Game Models

Laird’s interleaving game model. Our model can be seen as a truly concurrent
version of the interleaving game model PL of Laird [24]. The idea is to relate
a (concurrent) play s = (Vs, ls, �s ,�s) to an interleaving play by lining up the
nodes in Vs in such a way that if , then v2 appears before v1. We write
|s| for the set of sequential plays obtained by this way.

Example 5. Let s2 be the play in Fig. 4. Then |s2| is given as:
⎧
⎨

⎩

ā1b1b12ā12b̄121, ā1b1b12b̄121ā12, b1ā1b12ā12b̄121, b1ā1b12b̄121ā12,

b1b12ā1ā12b̄121, b1b12ā1b̄121ā12, b1b12b̄121ā1ā12

⎫
⎬

⎭

Theorem 3. |−| induces an identity-on-object functor from P to PL, which
preserves the structure of distributed-closed Freyd categories (and the additional
structures). Furthermore |σ| is the minimum strategy if and only if so is σ.

Sequential HO/N game model. The standard sequential HO/N game model [21]
is a subcategory of our concurrent model. Since our game model only have ques-
tion moves, we compare our model with the HO/N game model without answer
(and thus without well-bracketing).

An arena A is alternating if m �A m′ implies λA(m) = λ⊥
A(m′). Let G be

the category of negative alternating arenas and innocent strategies (we omit the
definition, which is standard). We write �ŝ� for the P-view [21] of the sequential
play ŝ. Given a sequential play ŝ = m1 . . . mn, a DAG-based play is given by

‖ŝ‖ := (Vŝ, lŝ, {(i, j) | ρŝ(i) = j}, {(i, j) ∈ V P
ŝ × V O

ŝ | mj ∈ �m1 . . . mi�})

400 K. Sakayori and T. Tsukada

where Vŝ := {1, . . . , n}, lŝ(i) := mi and ρŝ is the partial function describing the
justification pointer. Note that the occurrence mi of a P-move is causally related
to an occurrence mj of an O-move if and only if mj appears in the P-view of
mi. This map is naturally extended to strategies, namely ‖σ̂‖ := {‖ŝ‖ | ŝ ∈ σ̂}.

Theorem 4. ‖−‖ induces a faithful functor from G to P.

Remark 3. It is natural to ask if one can give a similar map from Laird’s inter-
leaving model. The answer seems negative: all maps that we have checked are
not functorial. See [8] for a related result.

4 Game Semantics of the π-calculus

We give an interpretation of the π-calculus, following the result of Laird [24]
applicable to every distributive-closed Freyd category with additional structures.

A type and a type environment are interpreted as objects of P. The inter-
pretation of a type ch[S,T] and a sequence S of types are defined by:

�ch[S, T]� := �S� ⇀ �T � �S1 . . . Sn� := �S1�� · · · � �Sn� � � := I.

The interpretation of an input type environment is given by the tensor product
of elements, e.g. �x1 : S1, . . . , xn : Sn� := �S1�� · · · � �Sn�.

A process Γ � P ;Σ is interpreted as a morphism �P � : �Γ � → �Σ� in P.
The interpretation is defined by induction on the type derivations. The rules are
listed in Fig. 8.

Fig. 8. Interpretation of processes. (Contraction and exchange rules are omitted.)

The distributive-closed Freyd structure together with additional structures
(of Δ, ∇, ⊥, der) gives a (weak) soundness result with respect to the reduction.

Theorem 5. Let Γ � P ;Σ and Γ � Q;Σ be processes of the same type.

1. If P ≡ Q, then �Γ � P ;Σ� = �Γ � Q;Σ�.
2. If P −→ Q, then �Γ � P ;Σ� ⊇ �Γ � Q;Σ�.

The relationship to Laird’s model (Theorem 3) gives a finer result, which does
not follow from the general theory of the distributive-closed Freyd categories.

A Truly Concurrent Game Model of the Asynchronous π-Calculus 401

Lemma 3. (Adequacy). P ⇓x̄ iff �P � �= ⊥ for every process x̄ : ch[] � P ; .

Proof. Because of Theorem 3, we have |�P �| = �P �L, where �P �L is the inter-
pretation of the process in Laird’s game model [24]. Laird [24] shows that P ⇓x̄

if and only if �P �L �= ⊥. Since |−| preserves ⊥, we obtain the claim. �

Lemma 3 and monotonicity of the interpretation lead to the next theorem.

Theorem 6. Let x̄ be a testing name that does not occur in Γ . If �Γ � P ;Σ� ⊆
�Γ � Q;Σ�, then C[P] ⇓x̄ implies C[Q] ⇓x̄ for all context C[].

Unlike Laird’s model [24], our model is not complete since our model is truly con-
current. For example, �a().b̄〈〉 | c().d̄〈〉� �= �ν(x̄, x).(x̄〈〉 | x().a().(b̄〈〉 | c().d̄〈〉) |
x().c().(a().b̄〈〉 | d̄〈〉))� in our model, whereas they are testing equivalent.

5 Discussion: Relationally-Describable Process

Using our game model, we study the relational interpretations of process in the
form of intersection type system that describes the behaviour of processes. The
intersection type system is a fully abstract model for a class of process which
we characterise with the help of “interaction graph”.

The syntax of types and intersections are defined by the following grammar:

ϕ,ψ:: = ch[ξ1 . . . ξn, ζ1 . . . ζk] ξ, ζ:: = 〈ϕ1, . . . , ϕn〉

where 〈· · · 〉 is a finite multiset defined by an enumeration of the elements. A
type environment is a sequence of type bindings of the form x:ξ (or ȳ:ζ). Given
intersections ξ = 〈ϕ1, . . . , ϕn〉 and ζ = 〈ψ1, . . . , ψk〉, we write ξ ∧ ζ for
〈ϕ1, . . . , ϕn, ψ1, . . . , ψk〉. This operation is extended to type environments by
pointwise application. The typing rules are listed below (some rules are omitted):

∅ � 0; ∅
Ξ � P ; Θ Ξ ′ � P ′; Θ′

Ξ,Ξ ′ � P |P ′; Θ,Θ′ x̄ : ch[ξ, ζ], ȳ : ξ � x̄〈ȳ,z〉; Θ,z : ζ

Ξ, ȳ:ξ � x(ȳ,z).P ; Θ,z:ζ
Ξ � x(ȳ,z).P ; Θ, x:ch[ξ, ζ]

∀i ∈ I. Ξi � x(ȳ,z).P ; Θi
∧

i∈IΞi � !x(ȳ,z).P ;
∧

i∈IΘi

Ξ, x̄:ξ � P ; Θ, y:ξ
Ξ � ν(x̄, y).P ; Θ

This type system is inspired by the correspondence between intersection type
systems and the operation called time forgetting map [4], which is an operation
that forgets the temporal structure of plays, in sequential game models (see, e.g.,
[37]). Time forgetting map is the operation that forgets the causal relation in
the case of our concurrent game model.

Completeness of the type system holds for every process, but soundness does
not; the reason is explained by a game-semantic consideration. We would thus
like to find a class for which the relational interpretation is sound.

Let s ∈ PA,B and t ∈ PB,C be plays. We say that s and t are composable if
s�B coincides with t�B except for the causal relations. Then it would be natural

402 K. Sakayori and T. Tsukada

b1ā1

b̄11 b12

⇒
b1a1

b̄11 b12

c1 b̄1 c1

b11 b̄12

⇐

Fig. 9. Composable plays with a cycle.

to think of an “interaction graph” by composing them (see Fig. 9). Unfortu-
nately the resulting “interaction graph” may not be acyclic and hence not be an
interaction graph; in this case we say that the pair (s, t) contains a cycle.

This notion of cycle can be extended to strategies and processes. The compo-
sition of strategies τ ◦ σ is cycle-free if every pair of composable plays s ∈ σ and
t ∈ τ is cycle-free. A process P is relationally-describable if every composition in
the definition of �P � is cycle-free.

Theorem 7. Let Γ � P ; Σ be a relationally-describable process and let x̄ ∈
dom(Γ). Then P ⇓x̄ if and only if x̄ : ch[ξ, ζ] � P ; ∅ for some ξ and ζ.

This is because the operation of forgetting the causal relation commutes with
cycle-free composition. Note that the notion of cycle is stronger than deadlock:
ν(āb̄, ab).(a1.b̄2|b3.ā4|ā5) (subscripts are used to distinguish occurrences) is not
relationally-describable because connecting a1 to ā4 and b3 to b̄2 creates a cycle.

Restricting the form of processes by focusing on cycles is a reminiscent of
the correctness criterion for MLL proof nets. The formal relationship between
our notion of cycle in an interaction graph and the correctness criterion, and
the connection between cycle (in our sense) and the type system, which gives a
typed π-calculus corresponding to polarised proof-nets satisfying the correctness
criterion, proposed by Honda and Laurent [19] are worth investigating.

6 Related Work

Melliès [27] studied HO/N innocent strategies from a truly concurrent point of
view. Among others, he introduced the notions of alternating homotopy and
diagrammatic innocence, which influence to this work. These ideas were subse-
quently developed by Melliès and Mimram [29,30], who introduced asynchronous
games. They focused on the fact that some moves of a play in an innocent strat-
egy can be exchanged, and studied games whose rules explicitly describe which
moves should be commutable. Our game model is also inspired by [27] (and [28])
but we focused on a different aspect of the alternating homotopy, that is, the
fact that the connection between a successive pair of O- and P-moves (in HO/N
innocent strategies) are quite tight (see also [25,36]); in our game model, a strat-
egy explicitly describes indispensable connections � between events. Because of
these differences, their game model differs from ours; indeed our strategy is not
necessarily positional. Nevertheless those models seems closely related; for exam-
ple, it seems worth investigating the connection between scheduled strategies [30]
and cycle-free composition.

A Truly Concurrent Game Model of the Asynchronous π-Calculus 403

A related approach using a map of event structures has been proposed by
Rideau and Winskel [34] and extensively studied recently [9,10]. In this game
model, a strategy is a map from an event structure describing the internal causal
relation to another event structure expressing the observable events. We think
that their model should be closely related to the (pre)sheaf version [36] of our
game model, although we have not established any formal relationship yet.

From a technical point of view, an important difference between above models
and our model is the way to deal with duplication of moves. Our model uses
HO/N-style justification pointers, whereas the above models use the idea of
thread indexing [10,26] in the style of AJM game model [1]. Both approaches
have advantages and disadvantages (for example, an advantage of the HO/N-
style is that a morphism is a strategy, not an equivalence class of strategies
modulo reindexing). Hence we think that it is good to have a truly concurrent
model using justification pointers.

Laird [24] briefly discussed an idea of a truly concurrent version of his inter-
leaving game model, introducing the notion of justified pomset. His idea is very
closed to ours; indeed a play s in our game model can be seen as a pomset
(Vs,�s

∗) ordered by (reflexive transitive closure of) the adjacent relation �s
∗.

A DAG-based reformulation of the HO/N game model is a reminiscent of L-
nets [13,17]. The conditions required for L-nets are essentially the same as those
we require for plays, though L-nets corresponds to strategies, not to plays. An
interpretation of the π-calculus using differential nets [15] seems to be relevant
to our development.

The game-semantics study of this paper has many parallels to the syntactic
study of the π-calculus. The relationship between the HO/N game model for
PCF [21] and the π-calculus has originally been studied by Hyland and Ong
themselves [20], who gave a translation from PCF terms to processes of the
π-calculus based on the idea of their game model. The π-terms representing
sequential functional computation can be characterised by a simple type system
proposed by Berger, Honda and Yoshida [5], which lead to the type system of
[19]. We conjecture that processes typed by the simple type system of [5,19] is
related to relationally-describable processes. Boreale [6] gave an encoding from
the asynchronous π-calculus to the internal π -calculus [35]. Our game model
can be seen as a variant of the encoding by regarding the plays as the processes
of the linear internal π-calculus, in which each name must be used exactly once.

There are some pieces of work based on the techniques other than games but
related to this work, such as event structure semantics of several variants of the
π-calculus by Crafa, Varacca and Yoshida [11,12] and Varacca and Yoshida [38],
and a data-flow semantics by Jagadeesan and Jagadeesan [22].

7 Conclusion and Future Work

We have developed a truly concurrent version of the HO/N game model [21,32],
in which a computation is represented by a DAG of messages instead of a
sequence. The resulting game model has the categorical structure needed to

404 K. Sakayori and T. Tsukada

interpret the asynchronous π-calculus proposed by Laird [24]. By using the con-
nection between our model and Laird’s model [24], we have proved soundness
of the interpretation of the processes in our concurrent game model. This is the
first truly concurrent game semantics for the π-calculus.

We have several topics left for future work:

– Formal description of the connection between plays and processes mentioned
in Remark 2. By this connection, our game semantics can be seen as an approx-
imation of the processes of the π-calculus by a linear π-calculus, which is a
reminiscent of the Taylor expansion of the λ-calculus [16] (see also [37]).

– Development of the (pre)sheaf version of the game model [36], which would
be related to the game model based on [34].

– Development of a model of the synchronous π-calculus. This requires us to
deal with causal edges from O-moves and/or to P-moves. To simply relax the
requirements for � does not seem to work: for example, the copycat strategy
of this paper is no longer the identity in the relaxed version.

– Development of a model of the π-calculus with the matching primitive. We
expect that a nominal game model [31] would be useful for this purpose.

Acknowledgements. We would like to thank Naoki Kobayashi and anonymous ref-
erees for useful comments. This work is partially supported by JSPS Kakenhi Grant
Number 15H05706 and JSPS Kakenhi Grant Number 16K16004.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000)

2. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for idealized algol with active expressions. Electr. Notes Theor. Comput.
Sci. 3, 2–14 (1996)

3. Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: 14th
Annual IEEE Symposium on Logic in Computer Science, pp. 431–442 (1999)

4. Baillot, P., Danos, V., Ehrhard, T., Regnier, L.: Timeless games. In: 11th Interna-
tional Workshop on Computer Science Logic, pp. 56–77 (1997)

5. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the pi-calculus. In: TLCA,
pp. 29–45 (2001)

6. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi.
Theor. Comput. Sci. 195(2), 205–226 (1998)

7. Boudes, P.: Thick subtrees, games and experiments. In: Curien, P.-L. (ed.) TLCA
2009. LNCS, vol. 5608, pp. 65–79. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02273-9 7

8. Castellan, S., Clairambault, P.: Causality vs. interleavings in concurrent game
semantics. In: 27th International Conference on Concurrency Theory, CONCUR
2016, pp. 32:1–32:14 (2016)

9. Castellan, S., Clairambault, P., Winskel, G.: Symmetry in concurrent games. In:
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Sci-
ence Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), CSL-LICS 2014, pp. 28:1–28:10 (2014)

http://dx.doi.org/10.1007/978-3-642-02273-9_7
http://dx.doi.org/10.1007/978-3-642-02273-9_7

A Truly Concurrent Game Model of the Asynchronous π-Calculus 405

10. Castellan, S., Clairambault, P., Winskel, G.: The parallel intensionally fully
abstract games model of PCF. In: 30th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2015, pp. 232–243 (2015)

11. Crafa, S., Varacca, D., Yoshida, N.: Compositional event structure semantics for the
internal pi-calculus. In: CONCUR 2007 - Concurrency Theory, 18th International
Conference, CONCUR 2007, pp. 317–332 (2007)

12. Crafa, S., Varacca, D., Yoshida, N.: Event structure semantics of parallel extru-
sion in the pi-calculus. In: Foundations of Software Science and Computational
Structures - 15th International Conference, FOSSACS 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2012,
pp. 225–239 (2012)

13. Curien, P.-L., Faggian, C.: An approach to innocent strategies as graphs. Inf. Com-
put. 214, 119–155 (2012)

14. Di Gianantonio, P., Lenisa, M.: Innocent game semantics via intersection type
assignment systems. In: Computer Science Logic 2013, CSL 2013, pp. 231–247
(2013)

15. Ehrhard, T., Laurent, O.: Interpreting a finitary pi-calculus in differential interac-
tion nets. Inf. Comput. 208(6), 606–633 (2010)

16. Ehrhard, T., Regnier, L.: Uniformity and the taylor expansion of ordinary lambda-
terms. Theor. Comput. Sci. 403(2–3), 347–372 (2008)

17. Faggian, C., Maurel, F.: Ludics nets, a game model of concurrent interaction. In:
20th IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 376–385
(2005)

18. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. Ann.
Pure Appl. Logic 151(2–3), 89–114 (2008)

19. Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus and
polarised proof-nets. Theor. Comput. Sci. 411(22–24), 2223–2238 (2010)

20. Hyland, J.M.E., Ong, C.-H.L.: Pi-calculus, dialogue games and PCF. In: Proceed-
ings of the Seventh International Conference on Functional Programming Lan-
guages and Computer Architecture, FPCA 1995, pp. 96–107 (1995)

21. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163(2), 285–408 (2000)

22. Jategaonkar Jagadeesan, L., Jagadeesan, R.: Causality and true concurrency: a
data-flow analysis of the pi-calculus. In: Alagar, V.S., Nivat, M. (eds.) AMAST
1995. LNCS, vol. 936, pp. 277–291. Springer, Heidelberg (1995). doi:10.1007/
3-540-60043-4 59

23. Laird, J.: A game semantics of idealized CSP. Electr. Notes Theor. Comput. Sci.
45, 232–257 (2001)

24. Laird, J.: A game semantics of the asynchronous π-calculus. In: 16th International
Conference on CONCUR 2005 - Concurrency Theory, pp. 51–65 (2005)

25. Levy, P.B.: Morphisms between plays. In: Lecture Slides, GaLoP (2013)
26. Melliès, P.-A.: Asynchronous games 1: a group-theoretic formulation of uniformity

(2003). (Unpublished manuscript)
27. Melliès, P.-A.: Asynchronous games 2: the true concurrency of innocence. Theor.

Comput. Sci. 358(2–3), 200–228 (2006)
28. Melliès, P.-A.: Game semantics in string diagrams. In: Proceedings of the 27th

Annual IEEE Symposium on Logic in Computer Science, LICS 2012, pp. 481–490
(2012)

29. Melliès, P.-A., Mimram, S.: Asynchronous games: innocence without alternation.
In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 395–
411. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 27

http://dx.doi.org/10.1007/3-540-60043-4_59
http://dx.doi.org/10.1007/3-540-60043-4_59
http://dx.doi.org/10.1007/978-3-540-74407-8_27

406 K. Sakayori and T. Tsukada

30. Melliès, P.-A., Mimram, S.: From asynchronous games to concurrent games (2008).
(Unpublished manuscript)

31. Murawski, A.S., Tzevelekos, N.: Nominal game semantics. Found. Trends Program.
Lang. 2(4), 191–269 (2016)

32. Nickau, H.: Hereditarily sequential functionals. In: Nerode, A., Matiyasevich, Y.V.
(eds.) LFCS 1994. LNCS, vol. 813, pp. 253–264. Springer, Heidelberg (1994). doi:10.
1007/3-540-58140-5 25

33. Power, J., Thielecke, H.: Closed Freyd-and kappa-categories. In: Automata, Lan-
guages and Programming. In: 26th International Colloquium, ICALP 1999, pp.
625–634 (1999)

34. Rideau, S., Winskel, G.: Concurrent strategies. In: Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, pp. 409–418 (2011)

35. Sangiorgi, D.: pi-calculus, internal mobility, and agent-passing calculi. Theor. Com-
put. Sci. 167(1&2), 235–274 (1996)

36. Tsukada, T., Ong, C.-H.L.: Nondeterminism in game semantics via sheaves. In:
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
pp. 220–231 (2015)

37. Tsukada, T., Ong, C.-H.L.: Plays as resource terms via non-idempotent intersection
types. In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, New
York, USA, July 5–8, 2016, pp. 237–246. ACM (2016)

38. Varacca, D., Yoshida, N.: Typed event structures and the linear pi-calculus. Theor.
Comput. Sci. 411(19), 1949–1973 (2010)

http://dx.doi.org/10.1007/3-540-58140-5_25
http://dx.doi.org/10.1007/3-540-58140-5_25

Local Model Checking in a Logic
for True Concurrency

Paolo Baldan and Tommaso Padoan(B)

Dipartimento di Matematica, Università di Padova, Padova, Italy
{baldan,padoan}@math.unipd.it

Abstract. We provide a model-checking technique for a logic for true
concurrency, whose formulae predicate about events in computations and
their causal dependencies. The logic, that represents the logical counter-
part of history-preserving bisimilarity, is naturally interpreted over event
structures. It includes minimal and maximal fixpoint operators and thus
it can express properties of infinite computations. Global algorithms are
not convenient in this setting, since the event structure associated with
a system is typically infinite (even if the system is finite state), a fact
that makes also the decidability of model-checking non-trivial. Focusing
on the alternation free fragment of the logic, along the lines of some clas-
sical work for the modal mu-calculus, we propose a local model-checking
algorithm. The algorithm is given in the form of a tableau system, for
which, over a class of event structures satisfying a suitable regularity
condition, we prove termination, soundness and completeness.

1 Introduction

When dealing with concurrent and distributed systems, a partial order app-
roach to the semantics can be appropriate for providing a precise account of
the behavioural steps and of their dependencies, like causality and concurrency.
This is normally referred to as a true concurrent approach to the semantics and
opposed to the so-called interleaving approach where concurrency of actions is
reduced to the non-deterministic choice among their possible sequentializations.
True concurrent models can be convenient also because, thanks to an explicit
representation of concurrency, they provide some relief to the so-called state-
space explosion problem in the analysis of concurrent systems, which instead
occurs more severely in interleaving approaches (see, e.g., [1]).

A number of true concurrent behavioural equivalences have been defined
which take into account different concurrency features of computations (see,
e.g., [2]). On the logical side, various behavioural logics have been proposed
capable of expressing causal properties of computations (see, e.g., [3–8] just to
mention a few and [9,10] for more references) and corresponding model-checking
problems have been considered (see, e.g., [11–15]).

Recently, the logical characterisation of true concurrent behavioural equiv-
alences has received a renewed interest and corresponding event-based logics

Partially supported by the University of Padova project ANCORE.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 407–423, 2017.
DOI: 10.1007/978-3-662-54458-7 24

408 P. Baldan and T. Padoan

have been introduced [9,10], interpreted over event structures [16]. Logic formu-
lae include variables which can be bound to events in computations and describe
their dependencies, namely causality and concurrency. The expressiveness of such
logics is sufficient to provide a logical characterisation of the main behavioural
equivalences in the true concurrent spectrum [2]. Hereditary history preserving
(hhp-)bisimilarity [4], the finest equivalence in the spectrum in [2], corresponds
to the full logics, i.e., two systems are hhp-bisimilar if and only if they satisfy the
same logical formulae, and fragments can be identified corresponding to coarser
behavioural equivalences. The corresponding model-checking problem, instead,
has not been investigated. Decidability itself is an issue, since event structure
models are infinite even for finite state systems and problems in this framework
have often revealed to sit on the border between decidability and undecidability.

In this paper we focus on a fragment of the event-based logic in [10], referred
to as Lhp, corresponding to a classical equivalence in the spectrum, namely his-
tory preserving (hp-)bisimilarity [17–19]. The logic is extended with minimal and
maximal fixpoint operators, in mu-calculus style, in order to express interesting
properties of infinite computations. Hp-bisimilarity is known to be decidable for
finite safe Petri nets [20,21]. However, the question remains open on whether the
corresponding model checking problem for Lhp is decidable over some interesting
class of systems.

We answer positively to the question, defining a model checking procedure
for Lhp over a class of event structures satisfying a suitable regularity condition.

Since the model checking procedure acts on event structures which are nor-
mally infinite even when generated from finite state systems, global algorithms
fully exploring the structure are not a convenient choice. We are naturally led
to focus on local algorithms, in the style of [22], exploring only the part of a
model needed to asses the property. Along the lines of [22], the model checking
procedure is given in the form of a tableau system. In order to check whether
a system model satisfies a given formula a set of proof trees is constructed by
applying a suitable set of rules that reduce the satisfaction of a formula in a
given state to the satisfaction of suitably generated subformulae. In this way,
the state space is explored “on demand” only in the part relevant for deciding
the satisfaction of the formula. The presence of fixpoint operators makes the
issue of sound termination quite delicate and non-trivial already in the original
approach that works on finite transition systems. In the setting of this paper,
this is further complicated by the infiniteness of the event structure model of
any non-trivial system.

In order to single out a setting that ensures termination, soundness and
completeness of the model checking procedure we take two key choices. The first
is the restriction to a class of event structures having a finitary flavour, which we
call strongly regular event structures. Recall that regular event structures [23] are
characterised by the fact that the number of sub-structures arising as residuals
of the original event structure after some steps of computations is finite up to
isomorphism. The intuition is that, after going sufficiently in depth, the event
structure starts repeating cyclically. For strongly regular event structures the

Local Model Checking in a Logic for True Concurrency 409

requirement is strengthened by asking the finiteness of the residuals extended
with an event from the past. This is important in our setting since Lhp formulae
can express history-based properties that depend not only on the future but
also on past events. The second choice is the use of fixpoints in an alternation
free fashion: minimal and maximal fixpoints can be nested, but without creating
mutual dependencies (technically, the propositional variable bound by a minimal
fixpoint operator cannot be in the scope of a maximal fixpoint operator and
vice versa). When dealing with finite structures, alternation freeness allows for
efficient verification procedures [24]. Here the essential fact is that it ensures
that, over finitely branching transition systems, the formulae are continuous
in the sense of [25,26], hence fixpoints are reached in at most ω steps (higher
ordinals are never needed).

The paper is organised as follows. In Sect. 2 we recall some basics on (prime)
event structures and we define the regularity property of interest. In Sect. 3 we
introduce the true concurrent logic Lhp, its fixpoint extension and the alternation
free fragment. In Sect. 4 we define our model checking procedure as a tableau
system, and we prove its soundness, completeness and termination. Finally, in
Sect. 5 we discuss some related work and outline directions of future research.

2 Event Structures and Regularity

Prime event structures [16] are a widely known model of concurrency. They
describe the behaviour of a system in terms of events and dependency relations
between such events. Throughout the paper E is a fixed countable set of events, Λ
a finite set of labels ranged over by a, b, c . . . and λ : E → Λ a labelling function.

Definition 1 (Prime event structure). A (Λ-labelled) Prime event structure
(pes) is a tuple E = 〈E,≤,#〉, where E ⊆ E is the set of events and ≤, # are
binary relations on E, called causality and conflict respectively, such that:

1. ≤ is a partial order and �e� = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and hereditary with respect to ≤, i.e., for all

e, e′, e′′ ∈ E, if e#e′ ≤ e′′ then e#e′′.

The pess E1 = 〈E1,≤1,#1〉, E2 = 〈E2,≤2,#2〉 are isomorphic, written E1 ∼ E2,
when there is a bijection ι : E1 → E2 such that for all e1, e

′
1 ∈ E1 it holds

e1 ≤1 e′
1 iff ι(e1) ≤2 ι(e′

1) and e1 #1 e′
1 iff ι(e1) #2 ι(e′

1) and λ(e1) = λ(ι(e1)).

In the following, we will assume that the components of an event structure
E are named as in the definition above, possibly with subscripts.

Definition 2 (Consistency, concurrency). Let E be a pes. We say that
e, e′ ∈ E are consistent, written e� e′, if ¬(e#e′). A subset X ⊆ E is called
consistent if e� e′ for all e, e′ ∈ X. We say that e and e′ are concurrent, writ-
ten e || e′, if e� e′ and ¬(e ≤ e′), ¬(e′ ≤ e).

410 P. Baldan and T. Padoan

Causality and concurrency will be sometimes used on set of events. Given
X ⊆ E and e ∈ E, by X < e we mean that for all e′ ∈ X, e′ < e. Similarly
X || e, resp. X � e, means that for all e′ ∈ X, e′ || e, resp. e′ � e.

The concept of (concurrent) computation for event structures is captured by
the notion of configuration.

Definition 3 (Configuration). Let E be a pes. A configuration in E is a finite
consistent subset of events C ⊆ E closed w.r.t. causality (i.e., �e� ⊆ C for all
e ∈ C). The set of finite configurations of E is denoted by C(E).

The empty set of events ∅ is always a configuration, which can be inter-
preted as the initial state of the computation. The evolution of a system can be
represented by a transition system where configurations are states.

Definition 4 (Transition system). Let E be a pes and let C ∈ C(E). Given
e ∈ E\C such that C ∪ {e} ∈ C(E), and X,Y ⊆ C with X < e, Y ‖ e we

write C
X,Y < e−−−−−→λ(e) C ∪ {e}, possibly omitting X, Y or the label λ(e). The set

of enabled events at a configuration C is defined as en(C) = {e ∈ E | C
e−→ C ′}.

Transitions are labelled by the executed event e. In addition, they can report its
label λ(e), a subset of causes X and a set of events Y ⊆ C concurrent with e.

We already mentioned that the pes associated with a non-trivial system
exhibiting a cyclic behaviour is infinite. We next introduce a class of pess enjoy-
ing a finitary property referred to as strong regularity.

Definition 5 (Residual). Let E be a pes. For a configuration C ∈ C(E), the
residual of E after C, is defined as E [C] = {e ∈ E\C | C � e}.

The residual of E can be seen as a pes, endowed with the restriction of the
causality and conflict relations of E . Intuitively, it represents the pes that remains
to be executed after the computation expressed by C.

Recall that a pes E is regular [23] when the set of residuals {E [C] | C ∈ C(E)}
is finite up to isomorphism and there exists an integer k such that |en(C)| ≤ k
for all C ∈ C(E). The first condition roughly means that there is a finite number
of residuals over which the computation cycles. The second condition requires
that the transition system of configurations is boundedly branching, with a finite
bound. Here we strengthen the first condition by requiring the finiteness of the
residuals extended with an event from the past. Given C ∈ C(E) and e ∈ C, we
denote by E [C] ∪ {e} the pes obtained from E [C] by adding event e with the
causal dependencies it had in the original pes E .

Definition 6 (Strong regularity). A pes E is called strongly regular when
the set {E [C] ∪ {e} | C ∈ C(E) ∧ e ∈ C} is finite up to isomorphism of pess
and there exists an integer k such that |en(C)| ≤ k for all C ∈ C(E).

Clearly, each strongly regular pes is regular. Strongly regular pess can be
shown, e.g., to include regular trace pess, the class of event structures associated
with finite safe Petri nets [23].

Local Model Checking in a Logic for True Concurrency 411

a0 b0

b1

(a) E1

a0 a1 b0

b1

(b) E2

a0 b0

a1 b1

a2 b2

(c) E3

Fig. 1. Some examples of pess.

Some simple pess are depicted in Fig. 1. Graphically, dotted lines represent
immediate conflicts and the causal partial order proceeds upwards along the
straight lines. Events are denoted by their labels, possibly with superscripts. For
instance, in the pes E1, there are two b-labelled events, b0 and b1 in conflict.
The first is caused by the only a-labelled event a0 and the other is concurrent
with it. The infinite pes E3 corresponds to the CCS process a ‖ b. C where
C = a + b. C. It is strongly regular since it has seven (equivalence classes of)
residuals extended with an event from the past E3[{a0}]∪{a0} = E3[{b0}]∪{b0} =
E3, E3[{a0, b0}]∪{a0}, E3[{a0, b0}]∪{b0}, E3[{b0, a1}]∪{b0}, E3[{b0, a1}]∪{a1},
E3[{a0, b0, a1}] ∪ {a0} � E3[{a0, b0, a1}] ∪ {a1}, and E3[{a0, b0, a1}] ∪ {b0}.

3 A Logic for True Concurrency

In this section we introduce the syntax and the semantics of the logic for concur-
rency of interest in the paper. Originally defined in [10], the logic has formulae
that predicate over executability of events in computations and on their depen-
dency relations (causality and concurrency).

3.1 Syntax

As already mentioned, logic formulae include event variables from a fixed denu-
merable set Var , denoted by x, y, In order to keep the notation simple, tuples
of variables like x1, . . . , xn will be denoted by a corresponding boldface letter x
and, abusing the notation, tuples will be often used as sets. The logic, in positive
form, besides the standard propositional connectives ∧ and ∨, includes diamond
and box modalities. The formula 〈|x,y < a z|〉ϕ holds when in the current con-
figuration an a-labelled event e is enabled which causally depends on the events
bound to the variables in x and is concurrent with those in y. Event e is executed
and bound to variable z, and then the formula ϕ must hold in the resulting con-
figuration. Dually, [[x,y < a z]]ϕ is satisfied when all a-labelled events causally
dependent on x and concurrent with y bring to a configuration where ϕ holds.

412 P. Baldan and T. Padoan

Fixpoint operators resort to propositional variables. In order to let them
interact correctly with event variables, whose values can be passed from an
iteration to the next one in the recursion, we use abstract propositions.

We fix a denumerable set X a of abstract propositions, ranged over by X, Y ,
. . . , that are intended to represent formulae possibly containing (unnamed) free
event variables. Each abstract proposition has an arity ar(X), which indicates
the number of free event variables in X. An abstract proposition X can be
turn into a formula by specifying a name for its free variables. For x such that
|x| = ar(X), we write X(x) to indicate the abstract proposition X whose free
event variables are named x. When ar(X) = 0 we will write X instead of X(ε)
omitting the trailing empty tuple of variables. We call X(x) a proposition and
denote by X the set of all propositions.

Definition 7 (Syntax). The syntax of Lhp over the sets of event variables
Var, abstract propositions X a and labels Λ is defined as follows:

ϕ ::= X(x) | T | ϕ ∧ ϕ | 〈|x,y < a z|〉ϕ | νX(x).ϕ
| F | ϕ ∨ ϕ | [[x,y < a z]]ϕ | μX(x).ϕ

The free event variables of a formula ϕ are denoted by fv(ϕ) and defined in
the obvious way. Just note that the modalities act as binders for the variable
representing the event executed, hence fv(〈|x,y < a z|〉ϕ) = fv([[x,y < a z]]ϕ) =
(fv(ϕ)\{z})∪x∪y. For formulae νX(x).ϕ and μX(x).ϕ we require that fv(ϕ) =
x. The free propositions in ϕ, i.e., the propositions not bound by μ or ν, are
denoted by fp(ϕ). When both fv(ϕ) and fp(ϕ) are empty we say that ϕ is closed.

The model checking procedure presented in the paper is shown to work in
the so-called alternation free fragment of the logic. The idea is that propositions
introduced in least (greatest) fixpoints should not occur free in nested greatest
(least) fixpoints. More precisely, call an occurrence of an abstract proposition
X a μ-proposition or ν-proposition when it is bound by a μ or ν operator,
respectively. Then the definition is as follows.

Definition 8 (Alternation free formula). A formula of Lhp is called alter-
nation free when no subformula includes both a free μ-proposition and a free
ν-proposition.

An example of formula with alternation is the following

[[ax]]μY (x).(νZ(x).[[x < a y]]Y (y) ∧ [[x < b y]]Z(y))

In fact, Z is a ν-proposition, Y is a μ-proposition and they both occur free in
the subformula [[x < a y]]Y (y) ∧ [[x < b y]]Z(y). It expresses that along every run
starting with an a and consisting of an infinite causal chain of events, labelled a
or b, only a finite number of a-labelled events can occur. Already for the proposi-
tional mu-calculus, it can be proved that alternation increases the expressiveness
of the logic and also its complexity (see, e.g., [27]). Still, as argued in the same
paper, the alternation free fragment is quite useful, in practice, as many behav-
ioural properties of interest can be expressed in such fragment.

Local Model Checking in a Logic for True Concurrency 413

3.2 Semantics

Since the logic Lhp is interpreted over pess, the satisfaction of a formula is defined
with respect to a configuration C, representing the state of the computation, and
a (total) function η : Var → E, called an environment, that binds free variables in
ϕ to events in C. Namely, if EnvE denotes the set of environments, the semantics
of a formula will be a set of pairs in C(E) × EnvE . The semantics of Lhp also
depends on a proposition environment providing a semantic interpretation for
propositions.

Definition 9 (Proposition environments). Let E be a pes. A proposition
environment is a function π : X → 2C(E)×EnvE such that if (C, η) ∈ π(X(x))
and η′(y) = η(x) pointwise, then (C, η′) ∈ π(X(y)). We denote by PEnvE the
set of proposition environments, ranged over by π.

The condition imposed on proposition environments ensures that the semantics
of a formula only depends on the events that the environment associates to its
free variables and that it does not depend on the naming of the variables.

We can now give the semantics of the logic Lhp. Given an event environment
η and an event e we write η[x �→ e] to indicate the updated environment which
maps x to e. Similarly, for a proposition environment π and S ⊆ C(E) × EnvE ,
we write π[Z(x) �→ S] for the corresponding update.

Definition 10 (Semantics). Let E be a pes. The denotation of a formula
ϕ in Lhp is given by the function {|·|}E : Lhp → PEnvE → 2C(E)×EnvE defined
inductively as follows, where we write {|ϕ|}E

π instead of {|ϕ|}E(π):

{|T|}E
π = C(E) × EnvE {|F|}E

π = ∅ {|Z(y)|}E
π = π(Z(y))

{|ϕ1 ∧ ϕ2|}E
π = {|ϕ1|}E

π ∩ {|ϕ2|}E
π {|ϕ1 ∨ ϕ2|}E

π = {|ϕ1|}E
π ∪ {|ϕ2|}E

π

{|〈|x,y < a z|〉 ϕ|}E
π = {(C, η) | ∃e. C

η(x),η(y) < e−−−−−−−−→a C′ ∧ (C′, η[z �→ e]) ∈ {|ϕ|}E
π}

{|[[x,y < a z]] ϕ|}E
π = {(C, η) | ∀e. C

η(x),η(y) < e−−−−−−−−→a C′ ⇒ (C′, η[z �→ e]) ∈ {|ϕ|}E
π}

{|νZ(x).ϕ|}E
π = gfp(fϕ,Z(x),π) {|μZ(x).ϕ|}E

π = lfp(fϕ,Z(x),π)

where fϕ,Z(x),π : 2C(E)×EnvE → 2C(E)×EnvE is the semantic function of ϕ, Z(x), π
defined by fϕ,Z(x),π(S) = {|ϕ|}E

π[Z(x) �→S] and gfp(fϕ,Z(x),π) (resp. lfp(fϕ,Z(x),π))
denotes the corresponding greatest (resp. least) fixpoint. When (C, η) ∈ {|ϕ|}E

π we
say that the pes E satisfies the formula ϕ in the configuration C and environ-
ments η, π, and we write C, η |=E

π ϕ.

The semantics of boolean operators is as usual. The formula 〈|x,y < a z|〉ϕ
holds in (C, η) when from configuration C there is an enabled a-labelled event
e that is causally dependent on (at least) the events bound to the variables in
x and concurrent with (at least) those bound to the variables in y and can be
executed producing a new configuration C ′ = C ∪ {e} which, paired with the
environment η′ = η[z �→ e], satisfies the formula ϕ. Dually, [[x,y < a z]]ϕ holds

414 P. Baldan and T. Padoan

when all a-labelled events executable from C, caused by x and concurrent with
y bring to a configuration where ϕ is satisfied.

The fixpoints corresponding to the formulae νZ(x).ϕ and μZ(x).ϕ are guar-
anteed to exist by Knaster-Tarski theorem, since the set 2C(E)×EnvE ordered by
subset inclusion is a complete lattice and the functions, of which the fixpoints
are calculated, are monotonic.

For example, the formula 〈|ax|〉〈|x < b y|〉T says that we can execute an
a-labelled event and a b-labelled event, concurrently. It is satisfied by all the
pes in Fig. 1. The formula 〈|ax|〉(〈|x < b y|〉T ∧ 〈|x < b z|〉T) expresses a sim-
ple “history dependent” property: it requires that, after the execution of an
a-labelled event, one can choose between a concurrent and a causally dependent
b-labelled event. This holds for E1 in Fig. 1a, while it is false on E2 in Fig. 1b
where the choice is already determined by the execution of the a-labelled event.

As an example of property of infinite computations consider the formula
[[bx]]νZ(x).〈|a z|〉〈|z < a y|〉T∧[[x < b y]]Z(y), expressing that all non-empty causal
chain of b-labelled events reach a state where is possible to execute two concur-
rent a-labelled events. This holds for the pes E3 in Fig. 1c. Now consider the for-
mula μX.〈| z|〉X∨〈|bx|〉〈|x < a y|〉νY.〈| z|〉Y , where we use 〈| z|〉ϕ as a shortcut for∨

c∈Λ〈|c z|〉ϕ. The formula, requiring the existence of an infinite run containing a
b-labelled event immediately followed by a causally dependent a-labelled event,
turns out to be false in the same pes. Intuitively this is because any a-labelled
event causally dependent on a b-labelled event is in conflict with the rest of the
infinite chain of events, and then, after its execution, the computation is guaran-
teed to terminate. A variant of the formula μX.〈| z|〉X∨〈|bx|〉〈|x < a y|〉νY.〈| z|〉Y
requiring the existence of an infinite run containing a b-labelled event imme-
diately followed by a concurrent a-labelled event, would be again true in E3.
Observe that all formulae in the examples above are alternation free.

4 A Local Model Checker for the Logic

The model checker is given as a tableau system for testing whether an alternation
free formula of the logic Lhp is satisfied by a semantic model of a system given
in the form of a pes.

4.1 Constants and Definition Lists

As a first step, along the lines of [22], we extend the logic with propositional
constants which are useful in defining the tableau rules.

Let K be a set of propositional constant symbols, ranged over by upper case
letters like U, V,W Similarly to abstract propositions, constants are meant
to represent formulae of the logic, possibly containing (unnamed) free variables.
Each constant U has an arity ar(U), which indicates the number of free event
variables in the associated formula. It can be used as a formula by specifying
the names for its free variables, writing U(x) where |x| = ar(U).

Local Model Checking in a Logic for True Concurrency 415

Definition 11 (Extended logic). We denote by Le
hp the logic defined as in

Definition 7, with the addition of constants U(x) as atomic formulae.

Constants are interpreted at syntactical level, by means of a list of declara-
tions that associates constants with formulae of the logic.

Definition 12 (Definition list). A definition list is a sequence Δ of declara-
tions U1(x1) = ϕ1, . . . , Un(xn) = ϕn, where Ui �= Uj whenever i �= j and each ϕk

is a formula of the extended logic Le
hp such that |xk| = ar(Uk) and fv(ϕk) = xk,

for k ∈ {1, . . . , n}. We write dom(Δ) = {U1, . . . , Un} for the set of constants
declared in Δ, and K (ϕ) for the set of constants appearing in ϕ. The definition
list is well-formed if for all k ∈ {1, . . . , n} it holds that K (ϕk) ⊆ {U1, . . . , Uk−1}.

Clearly, a prefix of a well-formed definition list is itself a well-formed defini-
tion list. Hereafter all definition lists will be implicitly assumed to be well-formed.

Definition 13 (Admissibility). Let ϕ be a formula of the extended logic Le
hp.

We say that a definition list Δ is admissible for ϕ if K (ϕ) ⊆ dom(Δ).

A definition list is a sort of syntactical environment for constants, but, dif-
ferently from environments, it is not total. The admissibility of Δ for ϕ simply
means that each constant occurring in ϕ is declared in Δ, possibly with differ-
ent names for its free variables. Given a constant U /∈ dom(Δ) such that Δ is
admissible for ϕ, |fv(ϕ)| = ar(U) and fv(ϕ) = x, we denote by Δ · (U(x) = ϕ)
the definition list resulting by appending the declaration U(x) = ϕ to Δ.

Given a formula ϕ in the extended logic Le
hp and an admissible definition list

Δ, we can transform ϕ into a formula of the original logic Lhp by repeatedly
replacing each constant with the corresponding definition. The substitution of
a constant U according to its definition U(x) = ψ in a formula ϕ, denoted
ϕ[U := ψ], is the formula obtained from ϕ by replacing any occurrence of U(y)
with ψ[y�x].

Definition 14 (Expansion). Let ϕ be a formula in the extended logic Le
hp and

let Δ be U1(x1) = ψ1, . . . , Un(xn) = ψn, an admissible definition list for ϕ. The
formula ϕΔ in Lhp is obtained by applying recursively n substitutions, starting
from ϕ(n) = ϕ[Un := ψn] and then ϕ(i−1) = ϕ(i)[Ui−1 := ψi−1], until ϕ(1) is
calculated. Then ϕΔ = ϕ(1).

We will often write Δ(U(y)) to indicate the formula of the extended logic
associated with U(y) in Δ. Free variables and free propositions of a formula ϕ
in the extended logic, in an admissible definition list Δ, are defined as before,
with the addition of the clauses fv(U(y)) = y and fp(U(y)) = fp(Δ(U(y))).

Concerning the semantics, we say that a pes E satisfies the formula ϕ with
the admissible definition list Δ in the configuration C and environments η, π,
written C, η,Δ |=E

π ϕ, when (C, η) ∈ {|ϕΔ|}E
π.

416 P. Baldan and T. Padoan

4.2 Tableau Rules

The tableau system works on judgements Γ |=E ϕ, where Γ = 〈C, η,Δ〉, referred
to as a context, is a tuple consisting of a configuration C ∈ C(E), an environment
η and a definition list Δ, admissible for ϕ, such that ϕΔ is closed. It consists in
a set of rules of the form

C, η,Δ |=E ϕ

C1, η1,Δ1 |=E ϕ1 . . . Ck, ηk,Δk |=E ϕk
δ

where k > 0 and δ is a possible side condition required to hold. The intuition is
that the validity of the premise sequent reduces to the validity of its consequents.
The index E , when the model E is clear from the context, will be dropped.

In [22,28], the finiteness of the model is an essential ingredient that concurs to
the finiteness of the tableaux. In our case, as already mentioned, the pes model
is commonly infinite, even for finite-state systems. However, working on strongly
regular pess we have that (1) only a finite part of the model is used in every
step of the tableau construction, thanks to the fact that strongly regular pess
are boundedly branching and (2) after going sufficiently in depth, the pes starts
“repeating” cyclically the same structure. These facts will allow to conclude that
the satisfaction of a formula can be determined by checking only a finite part of
the pes (as formally proved later in Sect. 4.4).

The tableau rules for the logic Le
hp, are reported in Table 1. The rules for

the propositional connectives are straightforward. They reduce the satisfaction
of the formula in the premise to the satisfaction of subformulae in an obvious
way. For instance ϕ ∨ ψ is satisfied when either ϕ is satisfied or ψ is satisfied.
The context is not altered.

Similarly, the rules for the modal operators generate sequents involving the
subformulae after the modal operators with a context that changes according to
the semantics. The formula 〈|x,y < a z|〉ϕ holds when there is at least a transition
leading to a context where ϕ is satisfied, while [[x,y < a z]]ϕ is satisfied when
all transitions lead to a context where ϕ is satisfied.

For each kind of fixpoint formula αZ(x).ϕ, with α ∈ {μ, ν}, there are two
rules. The first rule introduces a constant, which is added to the definition list
and used as a formula in the consequent. The second rule unfolds the fixpoint
by unrolling the associated constant and also reassigns its variables by updating
the environment. The side condition involves an unspecified part γ, the so-called
stop condition, that prevents the reduction to continue unboundedly and will be
described in the next section.

The tableau rules are backwards sound, namely the premise is true if all the
consequents are true, a property that will play a basic role in Sect. 4.4.

Lemma 1 (Backwards soundness). Every rule of the tableau system is back-
wards sound.

4.3 The Stop Condition

In order to ensure the finiteness of the tableaux generated by a formula, the
unfolding of the fixpoints has to be stopped when a context is reached that is

Local Model Checking in a Logic for True Concurrency 417

Table 1. The tableau rules for logic Le
hp.

C, η, Δ |= ϕ ∧ ψ

C, η, Δ |= ϕ C, η, Δ |= ψ

C, η, Δ |= ϕ ∨ ψ

C, η, Δ |= ϕ

C, η, Δ |= ϕ ∨ ψ

C, η, Δ |= ψ

C, η, Δ |= 〈|x,y < a z|〉 ϕ

C′, η[z �→ e], Δ |= ϕ
∃ e. C

η(x),η(y) < e−−−−−−−−→a C′

C, η, Δ |= [[x,y < a z]] ϕ

C1, η1, Δ |= ϕ . . . Cn, ηn, Δ |= ϕ

where {(C1, η1), . . . , (Cn, ηn)} = {(C′, η[z �→ e]) | ∃ e. C
η(x),η(y) < e−−−−−−−−→a C′}

C, η, Δ |= αZ(x).ϕ

C, η, Δ′ |= U(x)
Δ′ is Δ · (U(x) = αZ(x).ϕ) for α ∈ {ν, μ}

C, η, Δ |= U(y)

C, η′, Δ |= ϕ[Z := U(y)]
¬γ and Δ(U(x)) = αZ(x).ϕ for α ∈ {ν, μ} and

η′ = η[x �→ η(y)],

equivalent, in a suitable sense to be defined, to a context occurring in an ancestor
of the current node of the tableau, for the same fixpoint formula. The notion of
equivalence should prevent the tableau generation to continue infinitely but it
should be chosen carefully not to break the soundness of the technique.

Surely two contexts Γ = 〈C, η,Δ〉 and Γ ′ = 〈C ′, η′,Δ′〉 for a formula ϕ,
in order to be considered equivalent, must have isomorphic futures, i.e., the
residuals E [C] and E [C ′] are isomorphic as pess. This is not sufficient, though,
since ϕ can express history dependent properties that relates the future with the
past events. Therefore we additionally ask that event variables of ϕ are mapped
to events in C and C ′, respectively, which have the same relations (causality and
concurrency) with the corresponding futures.

In order to formalise this intuition we need to set up some notions.

Definition 15 (Contextualized residual). Let E be a pes. Given a config-
uration C ∈ C(E), an environment η, a finite set of variables x ⊆ Var, we refer
to E [C, η,x] = 〈E [C], η,x〉 as the (η, x)-contextualised residual of E after C.

The contextualised residuals E [C, η,x] and E [C ′, η′,x′] are isomorphic when
x = x′ and there is an isomorphism between E [C] and E [C ′] “compatible” with
the way environments map the variables in x into events.

418 P. Baldan and T. Padoan

Definition 16 (Isomorphism of contextualized residuals). Let E be a
pes. Two contextualised residuals E [C1, η1,x1] and E [C2, η2,x2] are isomorphic,
written E [C1, η1, ϕ] ∼ E [C2, η2, ϕ], when x1 = x2 and there is an isomorphism
ι : E [C1] → E [C2] such that for any x ∈ x1, e1 ∈ E [C1] it holds η1(x) ≤1 e1 ⇐⇒
η2(x) ≤2 ι(e1).

A key observation is that isomorphic contextualised residuals satisfy exactly
the same formulae, in the sense of the following theorem.

Lemma 2 (Equivalent contexts, logically). Let E be a pes, let ϕ be a for-
mula and let Γ1 = 〈C1, η1,Δ1〉 and Γ2 = 〈C2, η2,Δ2〉 be contexts, where C1, C2 ∈
C(E), Δ1 ⊆ Δ2 and Δ1 (hence Δ2) admissible for ϕ. For all proposition envi-
ronments π1, π2 such that ∀ Z ∈ fp(ϕΔ1), (C1, η1) ∈ π1(Z(y)) ⇐⇒ (C2, η2) ∈
π2(Z(y)), if E [C1, η1, fv(ϕ)] ∼ E [C2, η2, fv(ϕ)] then Γ1 |=E

π1
ϕ ⇐⇒ Γ2 |=E

π2
ϕ.

Note that the condition on the proposition environments π1, π2 is vacuously
satisfied for formulae in the sequents of a tableau. In fact, the sequent labelling
the root contains a closed formula and thus, by construction, formulae do not
contain free propositions and neither do those associated to constants.

The results above motivate the definition of the stop condition.

Definition 17 (Stop condition). The stop condition γ for a rule where the
premise is C, η,Δ |= U(y), is as follows:

There is an ancestor of the node labelledwithC ′, η′,Δ′ |= U(z), such that

E [C ′, η′[y �→ η′(z)],y] ∼ E [C, η,y].

Informally, the stop condition holds when in a previous step of the construc-
tion of the tableau the same constant has been unfolded in a context equivalent
to the current one, possibly after some renaming of variables. Hence we can
safely avoid to continue along this path. Instead, when the stop condition fails,
it makes sense to further unroll the fixpoint since the current context is still
“different enough” from those previously encountered.

4.4 Model Checking a Formula Through Tableaux

For checking whether a closed formula ϕ in Lhp is satisfied by a pes E , we proceed
by building a tableau for the sequent ∅, η, ∅ |=E ϕ, where η is any environment
(irrelevant since the formula does not have free variables). A maximal tableau is
a proof tree where all leaves are labelled by sequents to which no rule applies.

We next clarify when a maximal tableau is considered successful.

Definition 18 (Successful tableau). A successful tableau is a finite maximal
tableau where every leaf is labelled by a sequent C, η,Δ |=E ϕ such that:

1. ϕ = T; or
2. ϕ = [[x,y < a z]]ψ; or
3. ϕ = U(y) and Δ(U(x)) = νZ(x).ψ.

Local Model Checking in a Logic for True Concurrency 419

We will prove that in a successful tableau all leaves are labelled by true
sequents, a fact that, together with backwards soundness of the rules (Lemma1),
will guarantee the truth of the sequent labelling the root.

Note that the choice of the rule to be applied at a step of the construction of
a tableau is non-deterministic in the case of 〈|x,y < a z|〉ϕ and ϕ∨ψ. This means
that there can be various maximal tableaux for the same sequent. However, when
we work on strongly regular pess, the fact that they are boundedly branching
ensures that at each step the number of possible non-deterministic choices is
finite and bounded. In turn this is used to deduce that there can be only a finite
number of maximal tableaux for a sequent, up to renaming of constants.

We next focus the finiteness issue and then move on to the soundness and
completeness of the technique.

Finiteness. We first aim at proving that all tableaux for a sequent ∅, η, ∅ |=E ϕ
are finite. A first basic observation is that an infinite tableau for a sequent
C, η,Δ |=E ϕ necessarily includes a path where the same constant is unfolded
infinitely many times.

Lemma 3 (Infinite repetitions of constants in infinite tableaux). Given
an infinite tableau for a sequent C, η,Δ |=E ϕ there exists a constant U and an
infinite path in the tableau such that U occurs in an unfolding rule infinitely
many often, possibly each time with different event variables xi.

Along the lines of [22], the proof relies on the introduction of a notion of
degree for a sequent, that intuitively estimates the length of the longest path
in the tableau that starts from the sequent itself and ends at the first sequent
whose formula is a constant previously introduced (not new) or at a leaf. We
already observed that the fact that strongly regular pess are boundedly branch-
ing implies that also the constructed tableaux are finitely branching. Then, by
König lemma, an infinite tableau necessarily include an infinite path. The obser-
vation that the degree is finite, non-negative and it decreases along a path until
a previously introduced constant is met again, allows one to conclude.

A crucial observation is now that, for strongly regular pess, the number of
contextualised residuals is finite up to isomorphism. Using this fact, if there
were an infinite path in a tableau and thus, by Lemma3, a constant occurring
infinitely often in such a path, then the constant would occur infinitely often
within isomorphic contextualised residuals, leading to a contradiction. In fact,
at the first repetition the stop condition (see Definition 17) would have prescribed
of terminating the branch.

Theorem 1 (Finite number of contextualised residuals). Let E be a
strongly regular pes and let x ⊆ Var be a finite set of variables. Then the class
of (η, x)-contextualised residuals of E after C, i.e., {E [C, η,x] | η ∈ EnvE ∧ C ∈
C(E)} is finite up to isomorphism.

We can finally deduce the finiteness of the tableaux for a sequent that in turn
implies that the number of tableaux is finite (up to constant renaming). This
fact is essential for termination of the model checking procedure.

420 P. Baldan and T. Padoan

Theorem 2 (Tableaux finiteness). Given a strongly regular pes E and a
formula ϕ, every tableau for a sequent Γ |=E ϕ is finite. Hence the number of
tableaux for Γ |=E ϕ is finite up to constant renaming.

Soundness and Completeness. We finally prove the soundness and com-
pleteness of the tableau system. For this we use the possibility of reducing the
satisfaction of a formula to the satisfaction of a finite approximant. While on
finite models this is immediate, here we need the (co)continuity of the semantic
functions associated to formulae (see Definition 10) ensuring that the fixpoints
will be reached in at most ω steps.

Let X be a set. A subset A ⊆ 2X is called directed if for any S1, S2 ∈ A there
exists S ∈ A such that S1, S2 ⊆ S. A function f : 2X → 2X is continuous when
for any directed set A ⊆ 2X it holds that f(

⋃
A) =

⋃
{f(S) | S ∈ A}. We call it

co-continuous when it is continuous in the reverse (superset) order.
The semantic functions associated with formulae of the logic Lhp (see Def-

inition 10) are neither continuous nor co-continuous in general. However, when
requiring alternation freeness, μ-formulae, i.e., formulae where all ν-operators
are in the scope of a μ-operator, are continuous and ν-formulae, defined dually,
are co-continuous.

Lemma 4 ((Co-)continuous semantic operators). Let E be a pes. Given
an alternation free μ-formula ψ, a proposition Z(z) ∈ X and a proposition envi-
ronment π ∈ PEnvE , the semantic function fψ,Z(z),π is continuous. Dually, if ψ
is an alternation free ν-formula the function fψ,Z(z),π is co-continuous.

Note that the continuous fragment here is wider than that in [25] as, in
particular, it includes the box modality. The difference is motivated by the fact
that strongly regular pess are finitely branching.

By Kleene Theorem the least fixpoint of a continuous function on a lattice
requires up to ω iterations to be reached, namely if f : 2X → 2X is continuous
then lfp(f) =

⋃

i∈N

f i(∅). Similarly, if f is co-continuous gfp(f) =
⋂

i∈N

f i(X). This

fact plays a role in the proof of the main result below.

Theorem 3 (Soundness and completeness of the tableaux system).
Given a strongly regular pes E and a closed alternation free formula ϕ of Lhp,
a sequent C, η, ∅ |=E ϕ has a successful tableau if and only if (C, η) ∈ {|ϕ|}E .

5 Conclusions

We provided a tableau system for model checking the alternation free fragment
of a logic for true concurrency Lhp over strongly regular pess, proving finite-
ness of the tableaux and soundness and completeness of the rule system. Such
results, together with Theorem 2, that ensures that a sequent has a(n essentially)
finite number of tableaux, leads to a decision procedure for the alternation free
fragment of Lhp over strongly regular event structures. A concrete procedure

Local Model Checking in a Logic for True Concurrency 421

requires the effectiveness of the transition relation over configurations and of the
equivalence of contextualised residuals, that we have if we focus on regular trace
pess. Indeed, a natural instantiation of the model checking procedure can be
given on finite safe Petri nets. For space reasons its presentation is delayed to
the full version of the paper.

While regular trace event structures can be shown to be strongly regular, we
still do not know whether also the converse holds. Some preliminary investiga-
tions lead us to conjecture that this is the case.

Soundness and completeness of the tableau system rely on the (co)continuity
of the semantic functions associated with the formulae that we obtained by
considering the alternation free fragment of the logic. While continuity fails
outside this fragment, we conjecture that, exploiting the regularity property of
the pes models, a sort of continuity up to isomorphism can be proved, allowing
to extend the procedure to the full logic Lhp.

Another open issue concerns the possibility of generalising the tableau-based
technique to the full logic L in [10]. This is quite challenging: the full logic L
induces a behavioural equivalence – hhp-bisimilarity – which is known to be
undecidable already for finite state Petri nets [29]. Note that this does not imply
undecidability of the corresponding model checking problem. On the semantic
side one could try to relax the restriction to strongly regular pess. However,
we tend to believe that few results can be obtained when the realm of regular
structures is abandoned.

Model checking on event structures has been considered by several other
authors. In [30] a finite representation of the pes corresponding to the behav-
iour of a suitable class of programs is proposed, showing how discrete event logics
can be model-checked on such structures. The paper [15] shows that first order
logic and a restricted form of monadic second order (MSO) logic are decidable
on regular trace event structures. The fact that the mu-calculus, in the proposi-
tional case, corresponds to the bisimulation invariant fragment of MSO logic [31]
suggests the possibility of exploiting the mentioned result in our setting. This
would require an encoding of Lhp into the MSO logic of [15]. More generally,
understanding which are the bisimulation invariant fragments of MSO over event
structures, with respect to the various concurrent bisimulations, represents an
interesting program in itself. The work in [14] develops higher-order games as
a mean for local model-checking a concurrent logic over partial order seman-
tics. Despite the fact that such logic is different (and of incomparable expressive
power with ours as explained in [10]), exploring the possibility of adopting a
game-theoretical approach in our setting appears an interesting venue of further
research.

Finally, a lot of work exists in the literature for the propositional mu-
calculus, proposing efficient automata-based model checking techniques [32,33],
that reduce the model checking problem to the non-emptiness problem of parity
tree automata. Trying to develop a similar approach for the logic Lhp, with the
idea that the automata would somehow inherit the regularities in the structure
of the pess, represents a stimulating direction of future research.

422 P. Baldan and T. Padoan

References

1. Esparza, J., Heljanko, K.: Unfoldings - A Partial order Approach to Model Check-
ing. EACTS Monographs. Springer, Heidelberg (2008)

2. van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Inform. 37(4/5), 229–327 (2001)

3. Nicola, R., Ferrari, G.L.: Observational logics and concurrency models. In: Nori,
K.V., Veni Madhavan, C.E. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 301–315.
Springer, Heidelberg (1990). doi:10.1007/3-540-53487-3 53

4. Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical report, Polish Academy of
Sciences (1991)

5. Pinchinat, S., Laroussinie, F., Schnoebelen, P.: Logical characterization of truly
concurrent bisimulation. Technical report 114, LIFIA-IMAG, Grenoble (1994)

6. Penczek, W.: Branching Time and Partial Order in Temporal Logics. Time and
Logic: A Computational Approach, pp. 179–228. UCL Press, London (1995)

7. Nielsen, M., Clausen, C.: Games and logics for a noninterleaving bisimulation.
Nordic J. Comput. 2(2), 221–249 (1995)

8. Bradfield, J., Fröschle, S.: Independence-friendly modal logic and true concurrency.
Nordic J. Comput. 9(1), 102–117 (2002)

9. Phillips, I., Ulidowski, I.: Event identifier logic. Math. Struct. Comput. Sci. 24(2),
1–51 (2014)

10. Baldan, P., Crafa, S.: A logic for true concurrency. J. ACM 61(4), 24:1–24:36
(2014)

11. Alur, R., Peled, D., Penczek, W.: Model-checking of causality properties. In: Pro-
ceedings of LICS 1995, pp. 90–100. IEEE Computer Society (1995)

12. Gutierrez, J., Bradfield, J.: Model-checking games for fixpoint logics with partial
order models. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol.
5710, pp. 354–368. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04081-8 24

13. Gutierrez, J.: Logics and bisimulation games for concurrency, causality and conflict.
In: Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 48–62. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00596-1 5

14. Gutierrez, J.: On bisimulation and model-checking for concurrent systems with
partial order semantics. Ph.D. thesis, University of Edinburgh (2011)

15. Madhusudan, P.: Model-checking trace event structures. In: Proceedings of LICS
2003, pp. 371–380. IEEE Computer Society (2003)

16. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2 31

17. Best, E., Devillers, R., Kiehn, A., Pomello, L.: Fully concurrent bisimulation. Acta
Inform. 28, 231–261 (1991)

18. Rabinovich, A.M., Trakhtenbrot, B.A.: Behaviour structures and nets. Fundam.
Inform. 11, 357–404 (1988)

19. Degano, P., Nicola, R., Montanari, U.: Partial orderings descriptions and observa-
tions of nondeterministic concurrent processes. In: Bakker, J.W., Roever, W.-P.,
Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 438–466. Springer, Heidelberg
(1989). doi:10.1007/BFb0013030

20. Vogler, W.: Deciding history preserving bisimilarity. In: Albert, J.L., Monien, B.,
Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 495–505. Springer, Heidel-
berg (1991). doi:10.1007/3-540-54233-7 158

http://dx.doi.org/10.1007/3-540-53487-3_53
http://dx.doi.org/10.1007/978-3-642-04081-8_24
http://dx.doi.org/10.1007/978-3-642-00596-1_5
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/BFb0013030
http://dx.doi.org/10.1007/3-540-54233-7_158

Local Model Checking in a Logic for True Concurrency 423

21. Montanari, U., Pistore, M.: History-dependent automata: an introduction. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28.
Springer, Heidelberg (2005). doi:10.1007/11419822 1

22. Stirling, C., Walker, D.: Local model checking in the modal mu-calculus. Theor.
Comput. Sci. 89(1), 161–177 (1991)

23. Thiagarajan, P.S.: Regular event structures and finite Petri Nets: a conjecture.
In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural
Computing - Essays Dedicated to Grzegorz Rozenberg. LNCS, vol. 2300, pp. 244–
253. Springer, Heidelberg (2002). doi:10.1007/3-540-45711-9 14

24. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. Form. Methods Syst. Des. 2(2), 121–147 (1993)

25. Fontaine, G.: Continuous fragment of the mu-calculus. In: Kaminski, M., Martini,
S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 139–153. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-87531-4 12

26. Carreiro, F., Facchini, A., Venema, Y., Zanasi, F.: Weak MSO: automata and
expressiveness modulo bisimilarity. In: Henzinger, T.A., Miller, D. (eds.) Proceed-
ings of CSL-LICS 2014, pp. 27:1–27:27. ACM Press (2014)

27. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, pp. 721–756. Elsevier, New York (2006)

28. Clarke, E.M., Schlingloff, B.H.: Model checking. In: Robinson, A., Voronkov, A.
(eds.) Handbook of Automated Reasoning. Elsevier, Amsterdam (2001)

29. Jurdzinski, M., Nielsen, M., Srba, J.: Undecidability of domino games and hhp-
bisimilarity. Inf. Comput. 184(2), 343–368 (2003)

30. Penczek, W.: Model-checking for a subclass of event structures. In: Brinksma, E.
(ed.) TACAS 1997. LNCS, vol. 1217, pp. 145–164. Springer, Heidelberg (1997).
doi:10.1007/BFb0035386

31. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996).
doi:10.1007/3-540-61604-7 60

32. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the μ-calculus and
its fragments. Theor. Comput. Sci. 258(1–2), 491–522 (2001)

33. Streett, R., Emerson, E.A.: An automata theoretic decision procedure for the
propositional mu-calculus. Inf. Comput. 81(3), 249–264 (1989)

http://dx.doi.org/10.1007/11419822_1
http://dx.doi.org/10.1007/3-540-45711-9_14
http://dx.doi.org/10.1007/978-3-540-87531-4_12
http://dx.doi.org/10.1007/BFb0035386
http://dx.doi.org/10.1007/3-540-61604-7_60

The Paths to Choreography Extraction

Lúıs Cruz-Filipe(B), Kim S. Larsen, and Fabrizio Montesi

University of Southern Denmark, Odense, Denmark
{lcf,kslarsen,fmontesi}@imada.sdu.dk

Abstract. Choreographies are global descriptions of interactions among
concurrent components, most notably used in the settings of verifica-
tion and synthesis of correct-by-construction software. They require a
top-down approach: programmers first write choreographies, and then
use them to verify or synthesize their programs. However, most software
does not come with choreographies yet, which prevents their application.
To attack this problem, previous work investigated choreography extrac-
tion, which automatically constructs a choreography that describes the
behavior of a given set of programs or protocol specifications.

We propose a new extraction methodology that improves on the state
of the art: we can deal with programs that are equipped with state and
internal computation; time complexity is dramatically better; and we
capture programs that work by exploiting asynchronous communication.

1 Introduction

Choreographies are global descriptions of interactions among components. They
have been used as a basis for different models and tools that aim at tackling
the complexity of modern software, where separate units – such as processes,
objects, and threads – interact to reach a common goal [3,25].

Two lines of research are of particular interest. In choreography specifications,
choreographies specify interaction protocols, e.g., multiparty session types [17].
In choreographic programming [20], choreographies are programs that define the
behavior of concurrent algorithms [13] and/or distributed systems [5,6,14]. The
key feature of these works is EndPoint Projection (EPP), a procedure that trans-
lates choreographies to correct endpoint behaviors in lower-level models. For
choreography specifications, EPP generates the local specifications of each par-
ticipant; these specifications can then be used for verification, to check whether
some programs implement their role in the protocol correctly and will thus inter-
act without problems at runtime [17]. In choreographic programming, instead,
EPP generates correct-by-construction implementations in a model of executable
code (program synthesis), typically given in terms of a process calculus [6].

Montesi was supported by CRC (Choreographies for Reliable and efficient Commu-
nication software), grant DFF–4005-00304 from the Danish Council for Independent
Research. Cruz-Filipe and Larsen were supported in part by the Danish Council for
Independent Research, Natural Sciences, grant DFF-1323-00247.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 424–440, 2017.
DOI: 10.1007/978-3-662-54458-7 25

The Paths to Choreography Extraction 425

EPP implements a top-down development methodology: developers first
write choreographies and then use the output mechanically generated by EPP.
However, there are scenarios where this methodology is not applicable; for
example:

– Analysis or integration of legacy software: either code developed previously,
or new code written in a technology without support for choreographies.

– Updates: endpoint programs generated by EPP can later be updated locally
(e.g., for configuration or optimizations). Since the original choreography is
not automatically updated, rerunning EPP loses these changes.

To attack these issues, previous work investigated a procedure to infer chore-
ographies from arbitrary endpoint descriptions. We call this procedure choreogra-
phy extraction. To the best of our knowledge, the current reference for extracting
choreography specifications is [19], where graphical choreographies that represent
protocol specifications are extracted from communicating automata [4]. Instead,
the state of the art for extraction in choreographic programming is [7], where
extraction takes terminating processes typed using a fragment of linear logic as
input. We advance both lines of work in several aspects, described below.

1.1 Contributions

Extraction for synchronous systems. We define an extraction procedure that
applies directly to both choreography specifications and choreographic program-
ming, by working with representative models. We focus on the more difficult case
of choreographic programming, and then show how our approach can be applied
to other settings in Sect. 6. First we define an extraction algorithm for processes
with synchronous communications (Sect. 4), which showcases the key elements of
our construction: building a choreography corresponds to finding paths in a graph
that represents the abstract execution of the input processes. Our extraction also
helps in debugging: if extraction detects a potential deadlock, we pinpoint it with
a special term (1). This is the first extraction procedure for choreographic pro-
gramming that can deal with procedures and infinite behavior [7].

Asynchrony. We extend our development to asynchronous communication
(Sect. 5). The key novelty is that we can extract a new class of behaviors where
processes progress because of asynchronous communication. The simplest exam-
ple of this class is a two-way exchange: a network of two processes where each
process starts by sending a value to the other, and then consumes the received
value. This network is deadlocked under a synchronous semantics, violating the
state-of-the-art requirements for extraction [19]. Capturing these behaviors is
challenging for two reasons: there is no choreography language capable of repre-
senting them; and the extraction algorithms presented so far require the behav-
iors of processes to be representable also under a synchronous interpretation.
We overcome both limitations with a new choreography primitive for multiparty
asynchronous exchange and a look-ahead mechanism for asynchronous actions
in extraction.

426 L. Cruz-Filipe et al.

Efficiency. We show that our extraction has exponential worst-case time com-
plexity in both the synchronous and the asynchronous cases (Sects. 4 and 5,
respectively), unlike the factorial case of [19], even though we can capture a new
class of behaviors. In particular, we need only one phase of exponential com-
plexity, while [19] uses multiple phases applied in sequence. The authors of [19]
detail only the complexities of their first two phases: the first has exponential
complexity (but in a quantity larger than ours), while the second has factorial
complexity in a function exponential in the size of the input. Our better time
complexity stems from the design of our process language, which does not allow
non-deterministic receives from different channels, and careful algorithm craft-
ing. Despite the restriction, we can still model interesting examples thanks to
asynchronous exchange. In Sect. 5, we present a novel formulation of the alter-
nating 2-bit protocol, which is given in [15] and used in [19] as a motivating
example. Our formulation is simpler and does not require threads as in [19].

2 Related Work

Choreographic Programming. The state of the art for extraction in choreographic
programming is [7], where synchronous processes with finite behavior are typed
using the multiplicative-additive fragment of linear logic. Our approach is signif-
icantly more expressive, bringing support for recursion and asynchronous com-
munication. Also, the proof theory in [7] requires that there are no cycles in the
structure of connections among processes. We do not have this limitation.

Choreography Specifications. To the best of our knowledge, the state of the art
for extracting choreography specifications is [19], which captures more behaviors
than previous works with similar objectives [18,22].

Extraction in [19] is more restrictive wrt. to asynchrony, requiring all process
traces and choices to be represented in the synchronous transition system of
the network. Thus, networks that are safe because of asynchronous communica-
tion are not extracted in [19]. Instead, our extraction can deal with programs
that use multiparty asynchronous exchange, where multiple processes exchange
values by exploiting asynchronous communication. As a consequence, we can
extract the alternating 2-bit protocol implemented via asynchronous exchange
in Sect. 5, which is deadlocked under a synchronous semantics and thus cannot
be extracted in [19]. Our extraction is the first capturing systems that are not
correctly approximated by synchronous semantics (cf. [2]). A precise characteri-
zation of the class of extractable systems is thus an interesting future direction.

To circumvent the limitation that asynchronous exchange is not supported,
choreographies in [19] support local concurrency: processes can have internal
threads. This opens up for an alternative formulation of the alternating 2-bit
protocol, where the two participants use two threads each. However, these chore-
ographies are harder to read. As an example, compare our choreography for the
alternating 2-bit protocol in Sect. 5 to that obtained with the automata in [19]
(given in [15], Protocol 7 in Example 2.1). Our formulation is a simple recursive

The Paths to Choreography Extraction 427

procedure with two exchanges, whereas the control flow in [15] is rather intri-
cate and uses three different operators (fork, join, and merge) at different places
to compose two separate loops. In our opinion, our choreographies follow the
principles of structured programming to a greater extent, and are simpler; also
because coordination happens only through communication.

More interestingly than readability, local concurrency makes the complex-
ity of extraction blow up factorially [19]: process threads are represented using
non-determinism between different actions in communicating automata. Deter-
mining whether the non-deterministic behavior of these automata is extractable
takes (super-)factorial time (factorial time in the size of a graph similar to our
AES, cf. Definition 2)! Thus, asynchronous exchange supports a more efficient
way of capturing an interesting class of behaviors. Nevertheless, we believe that
developing efficient extractions of local concurrency may be useful future work.

3 Core Choreographies and Stateful Processes

We review the languages of Core Choreographies (CC) and Stateful Processes
(SP), from [11], which respectively model choreographies and endpoint programs.
We introduce labels in the reduction semantics for these calculi to formalize the
link between choreographies and their process implementations as a bisimilarity.

C ::= 0 | η; C | if p <-
=q thenC1 elseC2 | def X = C2 inC1 | X

η ::= p.e -> q | p -> q[l] e ::= v | ∗ | . . .

Fig. 1. Core Choreographies, Syntax.

Core Choreographies (CC). The syntax of CC is given in Fig. 1. A choreography
C describes the behavior of a set of processes (p, q, . . .) running concurrently.
Each process has an internal memory cell storing a local value (the value of
the process). Term 0 is the terminated choreography (omitted in examples).
Term η;C reads “the system executes η and proceeds as C”. An interaction
η is either: a value communication p.e -> q, where process p evaluates e and
sends the result to process q, which stores it in its memory cell, replacing its
previous value; or a selection p -> q[l], where p selects l among the branches
offered by q. We abstract from the concrete language of expressions e, which
models internal computation and is orthogonal to our development, assuming
only that: expressions can contain values v and the placeholder ∗, which refers
to the value of the process evaluating them; and evaluating expressions always
terminates and returns a value. In a conditional if p

<-
= q thenC1 elseC2, p checks

if its value is equal to q’s to decide whether the system proceeds as C1 or C2.
Term def X = C2 inC1 defines a procedure X with body C2, which can be called
in C1 and C2 by using term X.

428 L. Cruz-Filipe et al.

e[σ(p)/∗] ↓ v

p.e -> q; C, σ
p.v -> q−−−−−→ C, σ[q �→ v]

�C|Com�
p -> q[l]; C, σ

p -> q[l]−−−−−→ C, σ
�C|Sel�

σ(p) = σ(q)

if p
<-
=q thenC1 elseC2, σ

p
<-
=q:then−−−−−→ C1, σ

�C|Then� pn(η) ∩ pn(η′) = ∅
η; η′
 η′; η

�C|Eta-Eta�

Fig. 2. Core choreographies, semantics and structural precongruence (selected rules).

The semantics of CC is given in terms of labeled reductions C, σ
λ−→ C ′, σ′;

the main reduction rules are given in Fig. 2. Reductions are also closed under
context (procedure definitions) and under a structural precongruence �, allow-
ing procedure calls to be unfolded and non-interfering actions to be executed
in any order. The most interesting rule for � is rule �C|Eta-Eta�, which swaps
communications between disjoint sets of processes (modeling concurrency). The
total function σ maps each process name to the value it stores. Labels λ tell
us which action has been performed, which helps stating our later results. In
rule �C|Com�, v is the value obtained by evaluating (↓) the expression e, with ∗
replaced by the value of the sender p, σ(p). In the reductum, σ is updated such
that the receiver q stores v. Rule �C|Sel� does not alter σ: selections model invok-
ing a method/operation available at the receiver. Rules �C|Then� and �C|Else�
(omitted) model conditionals in the standard way. Function pn(C) returns all
the process names that appear in C, and C ≡ C ′ means C � C ′ and C ′ � C.

Example 1. We define a simple choreography for client authentication. We write
p -> c, s[l] as a shortcut for p -> c[l]; p -> s[l].

def X =
(
c.pwd -> a; if a

<-
= s then (a -> c, s[ok]; s.t -> c) else (a -> c, s[ko];X)

)
inX

In this choreography, a client process c sends a password to an authentication
process a, which checks if the password matches that contained in the server-
side process s. If the password is correct, a notifies c and s, and s sends an
authentication token t to c. Otherwise, a notifies c and s that authentication
failed, and a new attempt is made (by recursively invoking X). 	

Stateful Processes. The calculus SP models concurrent/distributed implementa-
tions. Thus, unlike in CC, actions are now distributed among processes.

The syntax of SP is given in Fig. 3. Networks N are parallel compositions of
processes p� B, read “process p has behavior B”. An output term q!〈e〉;B sends
the result of evaluating e to q, and then proceeds as B. Outputs are meant to

B ::= q!〈e〉; B | p?; B | q ⊕ l; B | p&{li : Bi}i∈I | N ::= p � B | 0 | N |N
| 0 | if ∗ <-

=q thenB1 elseB2 | def X = B2 inB1 | X

Fig. 3. Stateful processes, syntax.

The Paths to Choreography Extraction 429

e[σ(p)/∗] ↓ v

p � q!〈e〉; B1 | q � p?; B2, σ
p.v -> q−−−−−→ p � B1 | q � B2, σ[q �→ v]

�S|Com�

j ∈ I

p � q ⊕ lj ; B | q � p&{li : Bi}i∈I , σ
p -> q[l]−−−−−→ p � B | q � Bj , σ

�S|Sel�

e[σ(q)/∗] ↓ σ(p)

p � if ∗ <-
=q thenB1 elseB2 | q � p!〈e〉; B′, σ

p
<-
=q:then−−−−−→ p � B1 | q � B′, σ

�S|Then�

Fig. 4. Stateful processes, semantics (selected rules).

synchronize with input terms at the target process, i.e., p?;B, which receives
a value from p to be stored locally and then proceeds as B. Term q ⊕ l;B
sends the selection of the branch labeled l to q. Branches are offered by the
receiver with term p&{li : Bi}i∈I , which offers a choice among the labels li to
p. When one of these labels is selected, the respective behavior Bi is run. Term
if ∗ <-

= q thenB1 elseB2 communicates with process q to check whether it stores
the same value as the process running this behavior, in order to choose between
the continuations B1 and B2. Terms def X = B2 inB1 and X are procedure
definition and call, respectively.

The semantics of SP is given by labeled reductions N,σ
λ−→ N ′, σ′, with labels

λ as in CC.1 Figure 4 shows the key rules (see the appendix for the complete set).
Two processes can synchronize when they refer to each other. In rule �S|Com�,
an output at p directed at q synchronizes with the dual input action at q –
intention to receive from p; in the reductum, q’s value is updated. The reduction
receives the same label as the equivalent communication term in CC. The other
rules shown are similar. The omitted rules are standard, and close the semantics
under parallel composition, structural precongruence, and procedure definitions.

Example 2. The following network implements the choreography in Example 1.

c � def X = a!〈pwd〉; a&{ok : s?, ko : X} inX

| a � def X = c?; if ∗<-
= s then (c ⊕ ok; s ⊕ ok) else (c ⊕ ko; s ⊕ ko;X) inX

| s � def X = a!〈∗〉; a&{ok : c!〈t〉, ko : X} inX

EndPoint Projection (EPP). As shown in [11], there exists a partial function
[[·]] : CC → SP, called EndPoint Projection (EPP), that produces correct imple-
mentations of choreographies. EPP produces a parallel composition of processes,
one for each process name in the original choreography: [[C]] =

∏
p∈pn(C) p� [[C]]p.

The rules for computing [[C]] project the local action performed by the process
of interest. For example, [[p.e -> q]]p = q!〈e〉 and [[p.e -> q]]q = p?.

1 Deviating from [11], we model process values using σ as for CC, for simplicity.

430 L. Cruz-Filipe et al.

The network presented in Example 2 is exactly the EPP of the choreography
in Example 1. Observe that the projection of the conditional in the original
choreography for the processes c and s is a branching that supports all the
possible choices made by process a in its projected conditional. Producing these
branching terms is possible only if, whenever there is a conditional at a process
(a in our example), all other processes receive a label that tells them which
branch such a process has chosen. (In case the behaviors of the other processes
are the same in both cases, producing branching terms is not necessary.) When
this cannot be done for a choreography C, the EPP for C is undefined, and we
say that C is unprojectable. Conversely, C is projectable if [[C]] is defined.

In the remainder, we relate choreographies to network implementations via a
strong labeled reduction bisimilarity ∼. Bisimilarity is defined as usual [24]: it is
the union of all bisimulation relations R, which in our case relate choreographies
to networks. A relation R is one such bisimulation if whenever CRN we have
that, for all σ: (i) C, σ

λ−→ C ′, σ′ implies N,σ
λ−→ N ′, σ′ for some N ′ with C ′RN ′;

(ii) N,σ
λ−→ N ′, σ′ implies C, σ

λ−→ C ′, σ′ for some C ′ with C ′RN ′.

Theorem 1 (adapted from [11]). If C is projectable, then C ∼ [[C]].

4 Extraction from SP

The finite case. We first investigate finite SP, the fragment of SP without recur-
sive definitions, which we use to discuss the intuition behind our extraction.

Definition 1. We define a rewriting relation � on the language of CC extended
with terms ([N]), where N is a network in finite SP, as the transitive closure of:

N ≡ 0
([N]) � 0

N ≡ p � q!〈e〉;Np | q � p?;Nq |N ′

([N]) � p.e -> q; ([Np |Nq |N ′])
N ≡ p � q ⊕ lk;Np | q � p&{l1 : Nq1 , . . . , ln : Nqn} |N ′

([N]) � p -> q[lk]; ([Np |Nqk |N ′])

N ≡ p � if ∗<-
= q thenNp1 elseNp2 | q � p!〈e〉;Nq |N ′

([N]) � if p
<-
= q then ([Np1 |Nq |N ′]) else ([Np2 |Nq |N ′])

no other rule applies
([N]) � 1

A network N in finite SP extracts to a choreography C if ([N]) � C.

The last rule guarantees that every network is extractable. Extraction uses
structural precongruence (namely, commutativity and associativity of parallel
composition) to find matching actions. For finite SP, this is not a problem (the
set of networks equivalent to a given one is finite), but it makes extraction
nondeterministic, e.g., the network p � q!〈e〉 | q � p? | r � s!〈e′〉 | s � r? extracts both
to p.e -> q; r.e′ -> s and r.e′ -> s; p.e -> q. These choreographies are equivalent
by Rule �C|Eta-Eta� (Fig. 2). This holds in general, as stated below.

Lemma 1. If ([N]) � C1 and ([N]) � C2, then C1 ≡ C2.

The Paths to Choreography Extraction 431

p � q!〈e〉; B1 | q � p?; B2
p.e -> q−−−−−→ p � B1 | q � B2

�S|Com�

p � if ∗ <-
=q thenB1 elseB2 | q � p!〈e〉; B′ p

<-
=q:then−−−−−→ p � B1 | q � B′

�S|Then�

Fig. 5. Stateful Processes, Abstract Semantics (selected rules).

There is one important design option to consider: what to do with actions that
cannot be matched, i.e., processes that will deadlock. There are two alternatives:
restrict extraction to lock-free networks (networks where all processes eventually
progress, in the sense of [8]); or extract stuck processes to a new choreography
term 1, with the same semantics as 0. We choose the latter option for debugging
reasons. Specifically, practical applications of extraction may annotate 1 with
the code of the deadlocked processes, giving the programmer a chance to see
exactly where the system is unsafe, and attempt at fixing it manually. Better
yet: since the code to unlock deadlocked processes in process calculi can be
efficiently synthesized [8], our method may be integrated with the technique
in [8] to suggest an automatic system repair.

Remark 1. If ([N]) � C and C does not contain 1, then N is lock-free. However,
even if C contains 1, N may still be lock-free: the code causing the deadlock
may be dead code in a conditional branch that is never chosen during execution.

Extraction is sound: it yields a choreography that is bisimilar to the original
network. Also, for finite SP, it behaves as an inverse of EPP.

Theorem 2. Let N be in finite SP. If ([N]) � C, then C ∼ N . Furthermore, if
N = [[C ′]] for some C ′, then ([N]) � C ′.

As we show later, the second part of this theorem does not hold in the presence
of recursive definitions.

We now restate extraction in terms of a particular graph, which is the hall-
mark of our development: when we add recursion to SP, we can no longer define
extraction as a set of rewriting rules. We first introduce a new abstract seman-
tics for networks, N

α−→ N ′, defined as in Fig. 4 except for the rules for value
communication and conditionals, which are replaced by those in Fig. 5 (we omit
the obvious rule �S|Else�). In particular, conditionals are now nondeterministic.
Labels α are like λ but may now contain expressions (see the new rule �S|Com�);
in all other rules, λ is replaced by α. We write N

α̃−→∗ N ′ for N
α1−−→ · · · αn−−→ N ′.

Definition 2. Given a network N , the Abstract Execution Space (AES) of N
is the directed graph obtained by considering all possible abstract reduction paths
from N . Its vertices are all the networks N ′ such that N

α̃−→∗ N ′, and there is an
edge between two vertices N1 and N2 labeled α if N1

α−→ N2.
A Symbolic Execution Graph (SEG) for N is a subgraph of its AES that

contains N and such that each vertex N ′ �� 0 has either one outgoing edge
labeled by an η or two outgoing edges labeled p

<-
= q : then and p

<-
= q : else.

432 L. Cruz-Filipe et al.

Intuitively, the AES of N represents all possible evolutions of N (each evolu-
tion is a path in this graph). A SEG fixes the order of execution of actions, but
still abstracts from the state (and thus considers both branches of conditionals).
For networks in finite SP, these graphs are finite.

Given a network N , there is a one-to-one correspondence between SEGs for
N and choreographies C such that ([N]) � C. Indeed, given a SEG we can
extract a choreography as follows. We start from the initial vertex, labeled N . If
there is an outgoing edge with label η to N ′, we add η to the choreography and
continue from N ′. If there are two outgoing edges with labels p

<-
= q : then and

p
<-
= q : else to N1 and N2, respectively, we extract a conditional whose branches

are the choreographies extracted by continuing exploration from N1 and N2,
respectively. When we reach a leaf, we extract 0 or 1, according to whether its
label is equivalent to 0 or not. Conversely, we can build a SEG from a particular
rewriting of ([N]) by following the choreography actions one at a time.

Treating recursive definitions. We now extend extraction to networks with recur-
sive definitions, using SEGs. We need to be careful with the definition of the AES,
since including all possible (abstract) executions now may make it infinite (due
to recursion unfolding), and thus extraction may not terminate. To avoid this,
we only allow recursive definitions to be unfolded (once) if they occur at the
head of a process involved in a reduction. With this restriction, we can define
the AES and SEGs for a network as in the finite case. These graphs may now
contain cycles: a network may evolve into the same term after a few reductions.

Example 3. Consider the following network.

p � def X = q!〈∗〉; q&{l : q!〈∗〉;X,r : 0} in q!〈∗〉;X

| q � def Y = p?; p?; if ∗ <-
= r then p ⊕ l;Y else p ⊕ r;0 inY | r � def Z = q!〈∗〉;Z inZ

This network generates the AES in Fig. 6, which is also its SEG. 	

Fig. 6. The AES and SEG for the network in Example 3.

The Paths to Choreography Extraction 433

The key insight is that the definitions of recursive procedures are extracted
from the loops in the SEG, rather than from the recursive definitions in the
source network. This construction typically yields mutually recursive definitions,
motivating a small change to CC that does not add expressivity: we replace the
constructor def X = C2 inC1 by top-level procedure definitions, in the style
of [12]. A choreography now becomes a pair 〈D, C〉, where D = {Xi = Ci} and
all procedure calls in either C or the Ci are to some Xi defined in D.

Definition 3. The choreography extracted from a SEG is defined as follows.
We annotate each node that has more than one incoming edge with a unique
procedure identifier. Then, for every node annotated with an identifier, say X, we
replace each of its incoming edges with an edge to a new leaf node that contains a
special term X (so now the node annotated with X has no incoming edges). This
eliminates all loops in the SEG, allowing us to reuse the extraction procedure for
the non-recursive case to extract the desired pair 〈D, C〉. We get C by extraction
starting from the initial network. Then, for each node that we annotated with an
X, we extract a choreographic procedure X in D that has as body the choreography
extracted from the graph that starts from that annotated node. Any new leaf node
containing a special term X is extracted as a procedure call X.

Example 4. Consider the SEG in Fig. 3. To extract a choreography, we annotate
the topmost node with a procedure identifier X and replace the incoming edge
to that node with an edge to a new leaf X. We thus extract X to be

p.∗q; p.∗ -> q; if q
<-
= r then q -> p[l];X else q -> p[r];1

and the extracted choreography itself is simply X. The body of X is not pro-
jectable (the branches for r are not mergeable, cf. [11]), but it faithfully describes
the behavior of the original network. 	

The procedure in Definition 3 always terminates, but sometimes it yields
choreographies that starve some processes. As an example, the network

p � def X = q!〈∗〉;X inX | q � def Y = p?;Y inY (1)
| r � def Z = s!〈∗〉;Z inZ | s � def W = r?;W inW

has two SEGs, which extract to the choreographies def X = p.∗ -> q;X inX and
def X = r.∗ -> s;X inX, none of which captures all the behaviors of N .

To avoid this problem, we change the definitions of AES and SEGs slightly.
We annotate all procedure calls in networks with either ◦ or •. The node in the
AES corresponding to the initial network has all procedure calls annotated with
◦. There is an edge from N to N ′ with label α if N

α−→ N ′ and the procedure
calls in N ′ are annotated as follows.

– If executing α does not require unfolding procedure calls, then all calls in N ′

are annotated as in N .
– If executing α requires unfolding procedure calls, then we annotate all the

calls in N ′ introduced by these unfoldings with •. If N ′ now has all procedure
calls annotated with •, we change all annotations to ◦.

434 L. Cruz-Filipe et al.

We then require loops in a SEG to contain a node where every procedure
call is annotated with ◦. This ensures that every procedure call is unfolded at
least once before returning to the same node. This holds even if p� X unfolds to
a behavior that calls different procedures, but not X: in order to return to the
same node, the newly invoked procedures themselves need to be unfolded.

Example 5. The annotated AES for the network (1) is:

p � X◦ | q � Y ◦ | r � Z◦ | s � W ◦
p.∗ -> q

�� r.∗ -> s��
p � X• | q � Y • | r � Z◦ | s � W ◦

r.∗ -> s
��

p.∗ -> q

��
p � X◦ | q � Y ◦ | r � Z• | s � W •

p.∗ -> q
��

r.∗ -> s

��

This AES now has the following two SEGs:

p � X◦ | q � Y ◦ | r � Z◦ | s � W ◦

p.∗ -> q��

p � X◦ | q � Y ◦ | r � Z◦ | s � W ◦

r.∗ -> s��
p � X• | q � Y • | r � Z◦ | s � W ◦

r.∗ -> s
		

p � X◦ | q � Y ◦ | r � Z• | s � W •
p.∗ -> q

		

Observe that the self-loops are discarded because they do not go through a node
with all ◦ annotations. From these SEGs, we can extract two definitions for X:

def X = p.∗ -> q; r.∗ -> s;X inX and def X = r.∗ -> s; p.∗ -> q;X inX

Both of these definitions correctly capture all behaviors of the network. 	

A similar situation may occur if there are processes with finite behavior (no

procedure calls): the network

p � def X = q!〈∗〉;X inX | q � def Y = p?;Y inY | r � s!〈∗〉 | s � r?

can be extracted to the choreography X, with X = p.∗ -> q;X, where r and s
never communicate. Hence, we require that if a node in a SEG has more than one
incoming edge (it is a “loop” node) and contains processes with finite behavior,
then these processes must be deadlocked (being finite, this is trivially verifiable).
This ensures that if finite processes are able to reduce, they cannot be in a loop.

Definition 4. A SEG for a network N is valid if all its loops:

– pass through a node where all recursive calls are marked with ◦;
– start in a node where all processes with finite behavior are deadlocked.

A network N extracts to a choreography C if C can be constructed (as in
Definition 3) from a valid SEG for N .

Validity implies, however, that there are some non-deadlocked networks that
are not extractable, such as

p � def X = q!〈∗〉;X inX | q � def Y = p?;Y inY | r � def Z = p?;Z inZ

for which there is no valid SEG. This is to be expected, since deadlock-freedom
is undecidable in SP. We can generalize this observation as a necessary condition
for extraction to be defined, in the following theorem.

The Paths to Choreography Extraction 435

Theorem 3. If the AES for a network N does not contain nodes from which a
process is always deadlocked, then N is extractable.

Lemma 1 and the first part of Theorem 2 still hold for extraction in SP with
recursion, but the second part of Theorem 2 does not: in general, the projection
of a choreography is extracted to a choreography with different procedures, since
extraction ignores the actual definitions in the source network.

Theorem 4. If C is a choreography extracted from a network N , then N ∼ C.

We conclude this section with some complexity theoretical considerations.

Lemma 2. The annotated AES for a network of size n has at most e
2n
e vertices.

Theorem 5. Extraction from a network of size n terminates in time O(ne
2n
e).

As discussed earlier, this time complexity is a dramatic improvement over
earlier, comparable work. However, in practice, we may be able to perform even
better. Algorithmically, all the required work stems from traversals of the AES,
so any reduction in its (explored) size will lead to proportional runtime improve-
ments. Thus, instead of first computing the entire AES and then a valid SEG, we
can compute the relevant parts of the AES lazily as we need them, so parts of the
AES that are never explored while computing a valid SEG are never generated.

5 Asynchrony

We now discuss an asynchronous semantics for SP, with which we can express
new safe behaviors. Most notably, SP can now express asynchronous exchange
(Example 6). We also show a novel choreography primitive that successfully cap-
tures this pattern, which cannot be described in previous works on choreographic
programming, and extend our algorithm to extract it from networks.

Asynchronous SP. Asynchronous communication can be added to SP using stan-
dard techniques for process calculi. In the semantics of networks, we add a FIFO
queue for each pair of processes. Communications now synchronize with these
queues: send actions append a message in the queue of the receiver, and receive
actions remove the first message from the queue of the receiver (see [12] for a
formalization in an extension of SP).

Example 6. The network p � q!〈∗〉; q? | q � p!〈∗〉; p? exemplifies the pattern of
asynchronous exchange. This network is deadlocked in synchronous SP, but runs
without errors in asynchronous SP: both p and q can send their respective val-
ues, becoming ready to receive each other’s messages. This behavior is not rep-
resentable in any previous work on choreographies (including CC from Sect. 3),
since all choreographies presented so far can only describe processes that are not
deadlocked under a synchronous semantics (see [12] for a formal argument). 	

436 L. Cruz-Filipe et al.

The multicom. The situation in Example 6 is prototypical of programs that are
safe only in an asynchronous setting: a group of processes wants to send messages
to a group of receivers, with circular dependencies among communications.

We deal with this situation by means of a new choreography action, which
we call a multicom. Syntactically, a multicom is a list of communication actions
with distinct receivers, which we write (η̃). In the unary case, we obtain the usual
communications and selections; by removing these from the syntax of CC and
adding the multicom, we obtain a more expressive calculus with fewer primitives.
The semantics of multicom is given by the following rule, which generalizes (and
replaces) both �C|Com� and �C|Sel�.

I = {i | pi.ei -> qi ∈ η̃} vi = ei[σ(pi)/∗]

(η̃);C, σ
(η̃)[ei/vi]i∈I−−−−−−−−→ C, σ[qi �→ vi]i∈I

�C|MCom�

Structural precongruence rules for the multicom are motivated by its intuitive
semantics: actions inside a multicom can be permuted as long as the senders
differ, and sequential multicoms can be merged as long as they do not share
receivers and there are no sequential constraints between them (i.e., none of the
receivers in the first multicom is a sender in the second one).

pn(η1) ∩ pn(η2) = ∅
(
. . . , η1, η2, . . .

)
≡

(
. . . , η2, η1, . . .

) �C|MCom-Perm�

rcv(η) ∩ rcv(ν) = ∅ rcv(η̃) ∩ snd(ν̃) = ∅
(
η̃

)
;
(
ν̃

)
≡

(
η̃, ν̃

) �C|MCom-MCom�

From these rules we can derive all instances of �C|Eta-Eta�, e.g.:

p.∗ -> q; r.∗ -> s ≡
(
p.∗ -> q
r.∗ -> s

)

≡
(

r.∗ -> s
p.∗ -> q

)

≡ r.∗ -> s; p.∗ -> q

The problematic program in Example 6 can now be written as
(
p.∗ -> q
q.∗ -> p

)

.

Structural precongruence rules for multicom also allow us to define a normal
form for choreographies, where no multicom can be split in smaller multicoms.

Extraction. In order to extract choreographies containing multicoms, we alter
the definition of the AES for a process network by allowing multicoms as labels
for the edges. These can be computed using the following iterative algorithm.

1. For a process p with behavior q!〈e〉;B (or q ⊕ l;B), set actions = ∅ and
waiting = {p.e -> q} (resp. waiting = {p -> q[l]}).

2. While waiting �= ∅:
(a) Move an action η from waiting to actions. Assume η is of the form r.e -> s

(the case for label selection is similar).

The Paths to Choreography Extraction 437

(b) If the behavior of s is of the form a1; . . . ; ak; r?;B where each ai is either
the sending of a value or a label selection, then: for each ai, if the corre-
sponding choreography action is not in actions, add it to waiting.

3. Return actions.

This algorithm may fail (the behavior of s in step 2(b) is not of the required form),
in which case the action initially chosen cannot be unblocked by a multicom.

Example 7. Consider the network from Example 6. Starting with action q!〈∗〉 at
process p, we initialize actions = ∅ and waiting = {p.∗ -> q}. We pick the action
p.∗ -> q from waiting and move it to actions. The behavior of q is p!〈∗〉; p?, which
is of the form described in step 2(b); the choreography action corresponding to
p!〈∗〉 is q.∗ -> p, so we add this action to waiting, obtaining actions = {p.∗ -> q}
and waiting = {q.∗ -> p}. Now we consider the action q.∗ -> p, which we
move from waiting to action, and look at p’s behavior, which is q!〈∗〉; q?. The
choreography action corresponding to q!〈∗〉 is p.∗ -> q, which is already in actions,
so we do not change waiting. The set waiting is now empty, and the algorithm

terminates, returning
(
p.∗ -> q
q.∗ -> p

)

. We would obtain the equivalent
(
q.∗ -> p
p.∗ -> q

)

by starting with the send action at q. 	

Example 8. As a more sophisticated example, we show how our new choreogra-
phies with multicom can model the alternating 2-bit protocol. Here, Alice alter-
nates between sending a 0 and a 1 to Bob; in turn, Bob sends an acknowledgment
for every bit he receives, and Alice waits for the acknowledgment before sending
another copy of the same bit. Since we are in an asynchronous semantics, we
only consider the time when the messages arrive. With this in mind, we can
write this protocol as the following network.

a � def X = (b?; b!〈0〉; b?; b!〈1〉;X) in (b!〈0〉; b!〈1〉;X)
| b � def Y = (a?; a!〈ack0〉; a?; a!〈ack1〉;Y) inY

This implementation imposes exactly the dependencies dictated by the pro-
tocol. For example, Alice can receive Bob’s acknowledgment to the first 0 before
or after Bob receives the first 1. This network extracts to the choreography

a.0 -> b;X where X =
(

a.1 -> b
b.ack0 -> a

)

;
(

a.0 -> b
b.ack1 -> a

)

;X

which is a simple and elegant representation of the alternating 2-bit protocol.	

Extraction for asynchronous SP is still sound, but behavioral equivalence is
now an expansion [1,24], as each communication now takes two steps in asyn-
chronous SP. Its complexity is also no larger than for the synchronous case. The
algorithm computing the multicom takes linear time in the size of the multicom
produced. Via a one-time preprocessing of the network, we can assume direct
references from communication terms in one process to the process it directs its
communication at, and from there to the current state of that process. Other

438 L. Cruz-Filipe et al.

than the above, all constant steps in the algorithm can be seen as an extension of
the multicom. Since adding a communication to a multicom removes a potential
node in the AES (as we are combining communications), the worst-case time
complexity is no worse than in the synchronous case. In practice, this complex-
ity actually gets better when larger multicoms are created, since building these
is a much cheaper local operation than exploring graphs that would be larger in
terms of nodes as well as edges without the multicoms.

6 Extensions and Applications

We discuss some straightforward modifications of our extraction to cover other
scenarios occurring in the literature.

More expressive communications and processes. In real-world contexts, the val-
ues stored and communicated by processes are typed, and the receiver process
can also specify how to treat incoming messages [12]. This means that communi-
cation actions now have the form p.e -> q.f , where f is the function consuming
the received message, and systems may deadlock because of typing errors. Our
construction applies without changes to this scenario.

Some works allow processes to store several values, used via variables [5,6].
Again, dealing with this situation does not require any changes to our algorithm.

Local conditionals. Many choreography models allow for a local conditional con-
struct, i.e., if p.e thenC1 elseC2 [6,14,21]. Dealing with this construct is simple:
the if and then transitions now can occur whenever a process has a conditional
as top action, since they no longer require synchronization with other processes.

Choreography Specifications. So far, we have considered choreographies that
describe concrete implementations, i.e., processes are equipped with storage and
local computational capabilities. However, choreographies have also been advo-
cated for the specification of communication protocols. Most notably, multiparty
session types use choreographies to define types used in the verification of process
calculi [17]. While there are multiple variants of multiparty session types, the
one so far most used in practice is almost identical to a simplification of SP. In
this variant, each pair of participants has a dedicated channel, and communica-
tion actions refer directly to the intended sender/recipient as in SP (see, e.g.,
the theory of [6,9,10,21] and the practical implementations in [16,20,23]). To
obtain multiparty session types from SP (and CC), we just need to: remove the
capability of storing values at processes; replace message values with constants
(representing types, which could also be extended to subtyping in the straightfor-
ward way); and make conditionals nondeterministic (since in types we abstract
from the precise values and expression used by the evaluator). These modifi-
cations do not require any significant change to our approach, since our AES
already abstracts from data and thus our treatment of the conditional is already
nondeterministic. For reference, we can simply treat the standard construct for
an internal choice at a process p – C1 ⊕p C2 – as syntactic sugar for a local
conditional like if p.coinflip thenC1 elseC2.

The Paths to Choreography Extraction 439

References

1. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Inf.
29(8), 737–760 (1992)

2. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: WWW,
pp. 795–804 (2011)

3. Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/
4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),

323–342 (1983)
5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-

gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)
6. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous

global programming. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 263–274.
ACM (2013)

7. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 47–62. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44584-6 5

8. Carbone, M., Dardha, O., Montesi, F.: Progress as compositional lock-freedom. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 49–64.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43376-8 4

9. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: A logical explanation of multiparty session types. In: Desharnais,
J., Jagadeesan, R. (eds.) 27th International Conference on Concurrency Theory,
CONCUR 2016, August 23–26, 2016, Québec City, Canada, vol. 59 of LIPIcs, pp.
33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

10. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

11. Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming. In:
FACS 2016. LNCS. Springer (accepted for publication)

12. Cruz-Filipe, L., Montesi, F.: Choreographies, divided and conquered. CoRR,
abs/1602.03729 (2016). Submitted for publication

13. Cruz-Filipe, L., Montesi, F.: Choreographies in practice. In: Albert, E., Lanese, I.
(eds.) FORTE 2016. LNCS, vol. 9688, pp. 114–123. Springer, Cham (2016). doi:10.
1007/978-3-319-39570-8 8

14. Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic chore-
ographies. In: Holvoet, T., Viroli, M. (eds.) COORDINATION 2015. LNCS, vol.
9037, pp. 67–82. Springer, Cham (2015). doi:10.1007/978-3-319-19282-6 5

15. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28869-2 10

16. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICD-
CIT 2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19056-8 4

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9 (2016)

18. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:
Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225–239.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32940-1 17

http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1007/978-3-662-44584-6_5
http://dx.doi.org/10.1007/978-3-662-43376-8_4
http://dx.doi.org/10.1007/978-3-319-39570-8_8
http://dx.doi.org/10.1007/978-3-319-39570-8_8
http://dx.doi.org/10.1007/978-3-319-19282-6_5
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-32940-1_17

440 L. Cruz-Filipe et al.

19. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, pp. 221–232. ACM, 15–17 January 2015

20. Montesi, F.: Choreographic Programming. Ph.D. thesis, IT University of Copen-
hagen (2013). http://fabriziomontesi.com/files/choreographic programming.pdf

21. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R., Mel-
gratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 425–439. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-40184-8 30

22. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00590-9 23

23. Ng, N., Yoshida, N.: Pabble: Parameterised scribble for parallel programming. In:
22nd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, PDP 2014, Torino, Italy, pp. 707–714. IEEE Computer Society,
12–14 February 2014

24. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

25. W3C WS-CDL Working Group. Web services choreography description language
version 1.0 (2004). http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

http://fabriziomontesi.com/files/choreographic_programming.pdf
http://dx.doi.org/10.1007/978-3-642-40184-8_30
http://dx.doi.org/10.1007/978-3-642-00590-9_23
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

On the Undecidability of Asynchronous
Session Subtyping

Julien Lange(B) and Nobuko Yoshida

Imperial College London, London, UK
j.lange@imperial.ac.uk

Abstract. Asynchronous session subtyping has been studied exten-
sively in [9,10,28–31] and applied in [23,32,33,35]. An open question
was whether this subtyping relation is decidable. This paper settles the
question in the negative. To prove this result, we first introduce a new
sub-class of two-party communicating finite-state machines (CFSMs),
called asynchronous duplex (ADs), which we show to be Turing com-
plete. Secondly, we give a compatibility relation over CFSMs, which is
sound and complete wrt. safety for ADs, and is equivalent to the asyn-
chronous subtyping. Then we show that the halting problem reduces to
checking whether two CFSMs are in the relation. In addition, we show
the compatibility relation to be decidable for three sub-classes of ADs.

1 Introduction

Session types [22,24,34] specify the expected interaction patterns of concurrent
systems and can be used to automatically determine whether communicating
processes interact correctly with other processes. A crucial theory in session types
is subtyping which makes the typing discipline more flexible and therefore easier
to integrate in real programming languages and systems [1]. The first subtyping
relations for session types targeted synchronous communications [6,7,18,19], by
allowing subtypes to make fewer selections and offer more branches. More recent
relations treat asynchronous (buffered) communications [9,10,12,13,16,28–31].
They include synchronous subtyping and additionally allow an optimisation
by message permutations where outputs can be performed in advance without
affecting correctness with respect to the delayed inputs (there are two buffers per
session). Only the relative order of outputs (resp. inputs) needs to be preserved
to avoid communication mismatches. The asynchronous subtyping is important
in parallel and distributed session-based implementations [23,32,33,35], as it
reduces message synchronisations without safety violation.

Theoretically, the asynchronous subtyping has been shown to be precise, in
the sense that: (i) if T is a subtype of U , then a process of type T may be used
whenever a process of type U is required and (ii) if T is not a subtype of U ,
then there is a system, requiring a process of type U , for which using a process
of type T leads to an error (e.g., deadlock). The subtyping is also denotationally

See [27] for a full version of this paper (with proofs and additional examples).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 441–457, 2017.
DOI: 10.1007/978-3-662-54458-7 26

442 J. Lange and N. Yoshida

Fig. 1. Asynchronous subtyping and compatibility: examples.

precise taking the standard interpretation of type T as the set of processes typed
by T [9,16].

An open question in [9,10,28–31] was whether the asynchronous subtyping
relation is decidable, i.e., is there an algorithm to decide whether two types
are in the relation. The answer to that question was thought to be positive,
see [10, Sect. 7] and Sect. 6.

Asynchronous Subtyping, Informally. In this work, we consider session
types in the form of CFSMs [4], along the lines of [3,14,15,25]. This enables
us to characterise the asynchronous subtyping in CFSMs and reduce the unde-
cidability problem to the Turing completeness of CFSMs. Consider a system
of CFSMs consisting of machines Ms (server) and Mc (client) in Fig. 1, which
communicate via two unbounded queues, one in each direction. A transition !a
represents the (asynchronous) emission of a message a, while ?a represents the
receptions of a message a from a buffer. For instance, the transition labelled by
!req in Mc says that the client sends a request to the server Ms, later the server
can consume this message from its buffer by firing the transition labelled by
?req . We say that the system (Ms,Mc), i.e., the parallel composition of Ms and
Mc, is safe if (i) the pair never reaches a deadlock and (ii) whenever a message
is sent by one party, it will eventually be received by the other.

The key property of session subtyping is that, e.g., if the system (Ms,M
′
c) is

safe and Mc is a subtype of M ′
c, the system (Ms,Mc) is also safe. We write �a

for the asynchronous subtyping relation, which intuitively requires that, if, e.g.,
Mc �a M ′

c, then Mc is ready to receive no fewer messages than M ′
c and it may

not send more messages than M ′
c. For instance, Mc can receive all the messages

that M ′
c can handle, plus the message err . Observe that Mc is an optimised

version of M ′
c wrt. asynchrony: the output action !data is performed in advance

of the branching. Thus in the system (Ms,Mc), when both machines are in state
2 (respectively), both queues contain messages. Instead, in the system (Ms,M

′
c),

it is never the case that both queues are non-empty. Note that anticipating the
sending of data in Mc does not affect safety as it is sent in both branches of M ′

c.

Our Approach. Using CFSMs, we give the first automata characterisation of
asynchronous subtyping and the first proof of its undecidability. To do this, we
introduce a new sub-class of CFSMs, called asynchronous duplex (AD) which let

On the Undecidability of Asynchronous Session Subtyping 443

us study directly the relationship between safety and asynchronous subtyping in
CFSMs. Our development consists of the following steps:

Step 1. In Sect. 2, we define a new sub-class of (two-party) CFSMs, called asyn-
chronous duplex (AD), which strictly includes half-duplex (HD) systems [8].

Step 2. In Sect. 3, we introduce a compatibility relation (�) for CFSMs which
is sound and complete wrt. safety in AD CFSMs, i.e., an AD system has no
deadlocks nor orphan messages if and only if its machines are �-related.

Step 3. Adapting the result of [17], we show in Sect. 4 that AD systems are
Turing complete, hence membership of � is generally undecidable.

Step 4. In Sect. 5, we show that the �-relation for CFSMs is equivalent to the
asynchronous subtyping for session types, thus establishing that the latter is
also undecidable.

Throughout the paper, we also show that our approach naturally encompasses
the correspondence between synchronous subtyping and safety in HD systems.

In Sect. 4.1, we show that the �-relation is decidable for three sub-classes of
CFSMs (HD, alternating [21], and non-branching) which are useful to specify
real-world protocols. In Sect. 6, we discuss related works and conclude.

2 A New Class of CFSMs: Asynchronous Duplex Systems

This section develops Step 1 by defining a new sub-class of CFSMs, called
asynchronous duplex, which characterises machines that can only simultaneously
write on their respective channels if they can only do so for finitely many con-
secutive send actions before executing a receive action. In Sect. 2.1, we recall
definitions about CFSMs, then we give the definition of safety. In Sect. 2.2, we
introduce the sub-class of AD systems and give a few examples of such systems.

2.1 CFSMs and Their Properties

Let A be a (finite) alphabet, ranged over by a, b, etc. We let ω, π, and ϕ range
over words in A

∗ and write · for the concatenation operator. The set of actions
is Act = {!, ?} × A, ranged over by �, !a represents the emission of a message
a, while ?a represents the reception of a. We let ψ range over Act∗ and define
dir(!a) def= ! and dir(?a) def= ?.

Since our ultimate goal is to relate CFSMs and session types, we only consider
deterministic communicating finite-state machines, without mixed states (i.e.,
states that can fire both send and receive actions) as in [14,15].

Definition 2.1 (Communicating machine). A (communicating) machine M
is a tuple (Q, q0, δ) where Q is the (finite) set of states, q0 ∈ Q is the initial
state, and δ ∈ Q × Act × Q is the transition relation such that ∀q, q′, q′′ ∈
Q : ∀�, �′ ∈ Act : (1) (q, �, q′), (q, �′, q′′) ∈ δ =⇒ dir(�) = dir(�′), and (2)
(q, �, q′), (q, �, q′′) ∈ δ =⇒ q′ = q′′.

We write q
�−→ q′ for (q, �, q′) ∈ δ, omit the label � when unnecessary, and

write −→∗ for the reflexive transitive closure of −→.

444 J. Lange and N. Yoshida

Given M = (Q, q0, δ), we say that q ∈ Q is final, written q �, iff ∀q′ ∈ Q :
∀� ∈ Act : (q, �, q′) /∈ δ. A state q ∈ Q is sending (resp. receiving) iff q is not
final and ∀q′ ∈ Q : ∀� ∈ Act : (q, �, q′) ∈ δ : dir(�) = ! (resp. dir(�) = ?).
The dual of M , written M , is M where each sending transition (q, !a, q′) ∈ δ is
replaced by (q, ?a, q′), and vice-versa for receive transitions, e.g., Ms = M ′

c in
Fig. 1.

We write q0
�1···�k−−−−→ qk iff there are q1, . . . , qk−1 ∈ Q such that qi−1

�i−→ qi for
1 ≤ i ≤ k. Given a list of messages ω = a1 · · · ak (k ≥ 0), we write ?ω for the
list ?a1 · · ·?ak and !ω for !a1 · · ·!ak. We write q

!−→∗ q′ iff ∃ω ∈ A
∗ : q

!ω−→ q′ and
q

?−→∗ q′ iff ∃ω ∈ A
∗ : q

?ω−→ q′ (note that ω may be empty, in which case q = q′).

Definition 2.2 (System). A system S = (M1,M2) is a pair of machines Mi =
(Qi, q0i , δi) with i ∈ {1, 2}.

Hereafter, we fix S = (M1,M2) and assume Mi = (Qi, q0i , δi) for i ∈ {1, 2}
such that Q1 ∩ Q2 = ∅. Hence, for q, q′ ∈ Qi, we can write q

�−→ q′ to refer
unambiguously to δi.

We let λ range over the set {ij!a | i �= j ∈ {1, 2}} ∪ {ij?a | i �= j ∈ {1, 2}}
and φ range over (possibly empty) sequences of λ1 · · · λk.

Definition 2.3 (Reachable configuration). A configuration of S is a tuple
s = (q1, ω1, q2, ω2) such that qi ∈ Qi, and ωi ∈ A

∗. A configuration s′ =
(q′

1, ω
′
1, q

′
2, ω

′
2) is reachable from s = (q1, ω1, q2, ω2), written s

λ=⇒ s′, iff

1. qi
!a−→ q′

i, ω′
i = ωi · a, qj = q′

j, and ωj = ω′
j, λ = ij!a, for i �= j ∈ {1, 2}, or

2. qi
?a−→ q′

i, ωj = a · ω′
j, qj = q′

j, and ωi = ω′
i, λ = ji?a, for i �= j ∈ {1, 2}.

We write s =⇒ s′ when the label is irrelevant and =⇒∗ for the reflexive and tran-
sitive closure of =⇒.

In Definition 2.3, (1) says that machine Mi puts a message on queue i, to be
received by machine Mj , while (2) says that machine Mi consumes a message
from queue j, which was sent by Mj .

Given a system S, we write s0 for its initial configuration (q01 , ε, q02 , ε) and
let RS (S) def= {s | s0 =⇒∗ s}.

Definition 2.4 (Safety). A configuration s = (q1, ω1, q2, ω2) is a deadlock iff
ω1 = ω2 = ε, qi is a receiving state, and qj is either receiving or final for
i �= j ∈ {1, 2}. System S satisfies eventual reception iff ∀s = (q1, ω1, q2, ω2) ∈
RS (S) : ∀i �= j ∈ {1, 2} : ωi ∈ a · A

∗ =⇒ ∀q′
j ∈ Qj : qj

!−→∗ q′
j =⇒ q′

j
!−→∗ ?a−→.

S is safe iff (i) for all s ∈ RS (S), s is not a deadlock, and (ii) S satisfies
eventual reception (i.e., every sent message is eventually received).

Lemma 2.1 below shows that safety implies progress and that a configuration
with at least one empty buffer is always reachable.

Lemma 2.1. If S is safe, then for all s = (q1, ω1, q2, ω2) ∈ RS (S)

1. Either (i) q1 and q2 are final and ω1 = ω2 = ε, or (ii) ∃s′ ∈ RS (S) : s =⇒ s′.
2. ∃s′, s′′ ∈ RS (S) : s =⇒∗ s′ = (q1, ε, q′

2, ω2 · ω′
2) ∧ s =⇒∗ s′′ = (q′′

1 , ω1 · ω′′
1 , q2, ε).

On the Undecidability of Asynchronous Session Subtyping 445

0

12

!a

!a

?b
0

1

!b?a

0

12

!b

?d

!a

?c

0

12

!d

?b

!c

?a

M1 M2 M̂1 M̂2

Fig. 2. Examples of AD (left) and non-AD (right) systems.

2.2 Asynchronous Duplex Systems

We define asynchronous duplex systems, a sub-class of two-party CFSMs. Below
we introduce a predicate which guarantees that when a machine is in a given
state, it cannot send infinitely many messages without executing receive actions
periodically. This predicate mirrors one of the premises of the defining rules
of the asynchronous subtyping (�a), cf. Lemma 5.1. Given M = (Q, q0, δ) and
q ∈ Q, we define fin(q) ⇐⇒ fin(q, ∅), where

fin(q,R) def=

⎧
⎪⎨

⎪⎩

true if q
?a−→

∀q′ ∈ {q′ | q
!a−→ q′} : fin(q′, R ∪ {q}) if q

!a−→ ∧ q /∈ R

false otherwise

Definition 2.5 (Asynchronous duplex). A system S = (M1,M2) is Asyn-
chronous Duplex (AD) if for each s = (q1, ω1, q2, ω2) ∈ RS (S) : ω1 �= ε ∧ ω2 �=
ε =⇒ fin(q1) ∧ fin(q2).

AD systems are a strict extension of half-duplex systems [8]: S is half-duplex
(HD) if for all (q1, ω1, q2, ω2) ∈ RS (S) : ω1 = ε ∨ ω2 = ε. AD requires that for
any reachable configuration either (i) at most one channel is non-empty (i.e., it is
a half-duplex configuration) or (ii) each machine is in a state where the predicate
fin() holds, i.e., each machine will reach a receiving state after firing finitely
many send actions. The AD restriction is reasonable for real-word systems. It
intuitively amounts to say that if two parties are simultaneously sending data to
each other, they should both ensure that they will periodically check what the
other party has been sending.

Example 2.1. Consider the machines in Fig. 2. The system (M1,M2) is AD:
fin() holds for each state in M1 and M2. The system (M̂1, M̂2) is not AD.
For instance, the configuration (0, a, 0, c) is reachable but we have ¬fin(0)
for both initial states of M̂1 and M̂2. Observe that both systems are safe,
cf. Definition 2.4.

3 A Compatibility Relation for CFSMs

This section develops Step 2: we introduce a binary relation � on CFSMs which
is sound and complete wrt. safety (cf. Definition 2.4) for AD systems. That is
M1 �M2 holds if and only if (M1,M2) is a safe asynchronous duplex system.

446 J. Lange and N. Yoshida

Definition 3.1 (Compatibility). Let Mi = (Qi, q0i , δi) for i ∈ {1, 2} such
that Q1 ∩ Q2 = ∅, and let p ∈ Q1, q ∈ Q2, and π ∈ A

∗.
The compatibility relation is defined as follows: π � p�0 q always holds, and

if k ≥ 0, then π � p�k+1 q holds iff

1. if p � then π = ε and q �

2. if p
?a−→ then

(a) if π = ε then, q
!b−→ and ∀b ∈ A : q

!b−→ q′ =⇒ (p ?b−→ p′ ∧ ε� p′ �k q′),
(b) if π = b · π′ then, ∃p′ ∈ Q1 : p

?b−→ p′ ∧ π′ � p′ �k q

3. if p
!a−→ p′ then either

(a) π = ε and ∃q′ ∈ Q2 : q
?a−→ q′ ∧ ε� p′ �k q′, or

(b) fin(p), fin(q), and ∀q′ ∈ Q2 : ∀π′ ∈ A
∗ : q

!π′
−−→ q′, there exist π′′ ∈ A

∗

and q′′ ∈ Q2 such that q′ !π′′
−−→ ?a−→ q′′ and π · π′ · π′′ � p′ �k q′′

Define π � p� q
def
= ∀k ∈ N : π � p�k q and M1 �M2

def
= ε� q01 � q02 .

The relation M1 �M2 checks that the two machines are compatible by exe-
cuting M1 while recording what M2 asynchronously sends to M1 in the π message
list. The definition first differentiates the type of state p:

Final. Case (1) says that if M1 is in a final state, then M2 must also be in a
final state and π must be empty (i.e., M1 has emptied its input buffer).

Receiving. Case (2) says that if M1 is in a receiving state, then either π is
empty and M1 must be ready to receive any message sent by M2, cf. case (2a);
otherwise, case (2b) must apply: M1 must consume the head of the message
list π, this models the FIFO consumption of messages sent by M2.

Sending. Case (3) says that if M1 is ready to send a, then either M2 must be
able to receive a directly, cf. case (3a). Otherwise, fin(p) and fin(q) must
hold so that case (3b) applies. M2 may delay the reception of a by sending
messages (which are recorded in π′ ·π′′). Whichever sending path M2 chooses,
it must always eventually receive a.

We write �s for the synchronous compatibility relation, i.e., Definition 3.1 with-
out cases (2b) and (3b).

Example 3.1. (1) Recall the machines from Fig. 1, we have Ms �Mc, in partic-
ular: ε� 0� 0 and data � 2� 0. The latter relation represents the fact that Mc

and Ms have exchanged the messages req and ko, but Ms has yet to process the
reception of data. Observe that we also have M ′

s �M ′
c and M ′

s �s M ′
c.

(2) Consider the systems in Fig. 2. We have M1 �M2 and M̂1 �� M̂2. The latter
does not hold since both initial states are sending states, but the predicate fin()
does not hold for either state, e.g., we have ¬fin(0, {0}) in M̂1.

On the Undecidability of Asynchronous Session Subtyping 447

Soundness of �. We show the soundness of the �-relation wrt. safety. More
precisely we show that if M1 � M2 holds, then the system (M1,M2) is a safe
AD system. We first give two auxiliary definitions which are convenient to relate
safety with the definition of �. Fixing M = (Q, q0, δ), the predicate A(q, ω)
asserts when a list of messages ω is “accepted” from a state q ∈ Q, which
implies eventual reception of the messages in ω. The function W (q, ω) is used
to connect a configuration to a triple in the �-relation.

Definition 3.2. Let q ∈ Q and ω ∈ A
∗, we define

A(q, ω) ⇐⇒
{

∀q′ : q
!−→∗ q′ : ∃q̂ : q′ !−→∗ ?a−→ q̂ ∧ A(q̂, ω′) if ω = a · ω′

true if ω = ε

Given q ∈ Q and ω ∈ A
∗, the predicate A(q, ω) is true iff the list of messages ω

can always be consumed entirely from state q, for all paths reachable from q by
send actions. Note the similarity with case (3b) of Definition 3.1.

Definition 3.3. Let q ∈ Q and ω ∈ A
∗, W (q, ω) ⊆ A

∗ × Q is the set such that

(π, q̂) ∈ W (q, ω) ⇐⇒
{

(ϕ, q̂) ∈ W (q′, ω′) if ω = a · ω′, q !π′·?a−−−−→ q′, π = π′ · ϕ
π = ε ∧ q̂ = q if ω = ε

Each pair (π, q̂) in W (q, ω) represents a state q̂ ∈ Q reachable directly after
having consumed the list of messages ω, while π is the list of messages that are
sent along a path between q and q̂. For example, consider Mc from Fig. 1. We
have A(0, ko ·ko ·err) and W (0, ko ·ko ·err) = {(req ·data ·req ·data, 3)}; instead,
¬A(0, ok · ko) and ¬A(4, ko).

Lemma 3.1. Let M = (Q, q0, δ), q ∈ Q and ω ∈ A
∗. If A(q, ω) and ∀(ϕ, q′) ∈

W (q, ω) : A(q′, a) then A(q, ω · a).

Lemma 3.1, shown by induction on the size of ω, is useful in the proof of the
main soundness lemma below.

Lemma 3.2. Let S = (M1,M2). If M1 �M2, then for all s = (p, ω1, q, ω2) ∈
RS (S) the following holds: (1) s is not a deadlock, (2)A(q, ω1), (3) ∀(ϕ, q′) ∈
W (q, ω1) : ω2 · ϕ� p� q′, and (4)A(p, ω2).

Lemma 3.2 states that for any configuration s: (1) s is not a deadlock; (2) M2 can
consume the list ω1 from state q; (3) for each state q′, reached after consuming
ω1, the relation ω2 · ϕ� p� q′ holds, where ϕ contains the messages that M2

sent while consuming ω1; and (4) M1 can consume the list ω2 from state p. The
proof of Lemma 3.2 is by induction on the length of an execution from s0 to s,
then by case analysis on the last action fired to reach s. Lemma 3.1 is used for
the case s0 =⇒∗ 12!a==⇒ s, i.e., to show that A(q, ω1 · a) holds.

Lemma 3.3. Let S = (M1,M2). If for all s = (q1, ω1, q2, ω2) ∈ RS (S) :
A(q1, ω1) and A(q2, ω2), then S satisfies eventual reception.

448 J. Lange and N. Yoshida

Lemma 3.3 simply shows a correspondence between eventual reception and Defi-
nition 3.2. The proof essentially shows that if A(qi, ωj) holds, then we can always
reach a configuration where the list ωj has been entirely consumed.

Finally, we state our final soundness results. Theorem3.1 is a consequence of
Lemmas 2.1, 3.2, 3.3, and 3.4. Theorem 3.2 essentially follows from Theorem 3.1
and the fact that �s ⊆ �.

Theorem 3.1. If M1 �M2, then (M1,M2) is a safe AD system.

Theorem 3.2. If M1 �s M2, then (M1,M2) is a safe HD system.

Completeness of �. Our completeness result shows that for any safe asyn-
chronous duplex system S = (M1,M2), M1 �M2 holds. Below we show that
any reachable configuration of S whose first queue is empty can be mapped to
a triple that is in the relation of Definition 3.1.

Lemma 3.4. Let S be safe and AD, then ∀(p, ε, q, ω) ∈ RS (S) : ω � p� q.

The proof of Lemma 3.4 is by induction on the kth approximation of �, i.e.,
assuming that ω � p�k q holds, we show that ω � p�k+1 q holds. The proof is a
rather straightforward case analysis on the type of p and whether or not ω = ε.

Theorem 3.3. If (M1,M2) is a safe AD system, then M1 � M2.

Proof. Take (q01 , ε, q02 , ε) ∈ RS (S), ε� q01 � q02 holds by Lemma 3.4. ��

Following a similar (but simpler) argument, we have Theorem3.4 below.

Theorem 3.4. If (M1,M2) is a safe HD system, then M1 �s M2.

Theorem 3.5. If M1 �M2 (resp. M1 �s M2), then M2 � M1 (resp. M2 �s M1).

Proof. We show the � part. By Theorem3.1, (M1,M2) is safe, hence by
definition of safety, (M2,M1) is also safe. Thus by Theorem 3.3, we have
M2 �M1. ��

4 Undecidability of the �-relation

This section addresses Step 3: we show that the problem of checking M1 � M2

is undecidable. We show that AD systems are Turing complete, then show that
the halting problem reduces to deciding whether or not a system is safe.

Preliminaries. We adapt the relevant part of the proof of Finkel and McKen-
zie [17] to demonstrate that the problem of deciding whether two machines are
�-related is undecidable. For this we need to show that there is indeed a Turing
machine encoding that is an AD system.

Definition 4.1 (Turing machine [17]). A Turing machine (T.M.) is a tuple
TM = (V, A, Γ, t0, B, γ) where V is the set of states, A is the input alphabet,
Γ is the tape alphabet, t0 ∈ V is the initial state, B is the blank symbol, and
γ : V × Γ → V × Γ × {left , right} is the (partial) transition function.

On the Undecidability of Asynchronous Session Subtyping 449

Assume TM accepts an input ω ∈ A
∗ iff TM halts on ω, and if TM does not

halt on ω, then TM eventually moves its tape head arbitrarily far to the right.

Definition 4.2 (Configuration of a T.M. [17]). A configuration of the Tur-
ing machine TM is a word ω1tω2# with ω1ω2 ∈ A

∗, t ∈ V , and # /∈ Γ .

The word ω1tω2# represents TM in state t ∈ V with the tape content set
to ω1ω2 and the rest blank, and TM ’s head positioned under the first symbol to
the right of ω1. Symbol # is a symbol used to mark the end of the tape.

T.M. Encoding. We present an AD system which encodes a Turing machine
TM = (V, A, Γ, t0, B, γ) with initial tape ω into a system of two CFSMs as in [17].

We explain the T.M. encoding. The two channels represent the tape of the
Turing machine, with a marker # separating the two ends of the tape. Each
machine represents the control of the Turing machine as well as a transmitter
from a channel to another. The head is represented by writing the current control
state t ∈ V on the channel. Whenever a machine receives a message that is t ∈ V ,
then it proceeds with one execution step of the Turing machine. Any other
symbol is simply consumed from one channel and sent on the other. The only
difference wrt. [17] is that we construct machines which are deterministic and
which do not contain mixed states, cf. Definition 2.1. We also do not require the
machines to be identical hence we encode the initial tape content as a sequence
of transitions in the first machine. These slight modifications do not affect the
rest of Finkel and McKenzie’s proof in [17]. The system consists of two CFSMs
Ai = (Qi, q0i , δi), i ∈ {1, 2} over the alphabet A ∪ {#}. The definitions of δi are
given below, the sets Qi are induced by δi. The transition relation δ1 consists
in a sequence of transitions from the initial state q01 to a central state q and a
number of elementary cycles around state q, cf. Fig. 3; while δ2 is like δ1 without
the initial sequence of transitions and q = q02 . The initial sequence of transitions
in δ1 is of the form:

q01
!t0−−→ q1

!a1−−→ · · · qk
!ak−−→ q such that a1 · · · ak = ω · #

Both δ1 and δ2 contain six types of elementary cycles given in Fig. 3. For
each type of cycle, we illustrate the behaviour of the system from the point view
of machine A2 by giving the type of configuration this cycle applies to as well
the configuration obtained after A2 has finished executing the cycle.

When computing each δi and Qi from the description above, we assume that
each “anonymous” state maintain its own identity, while “named” states, i.e., q,
rt, rx and rt

x from Fig. 3, are to be identified and redundant transitions to be
removed. This ensures that each machine so obtained is deterministic. Besides
this determinisation, the only changes from [17] concerns the copying cycles. (1)
Each copying cycle is expanded to receive (then send) two symbols so to ensure
the absence of mixed states once merged with left head motion cycles. (2) We
add a cycle which only re-emits # symbols (to make up for absence of it in the
first reception of the copying cycles). (3) We add another blank insertion cycle
to deal with the special case where the head is followed by the # symbol.

450 J. Lange and N. Yoshida

Fig. 3. Definition of δi (elementary cycles).

Definition 4.3 (Turing machine encoding [17]). Given a Turing machine
TM and an initial tape content ω, we write S(TM , ω) for the system (A1, A2)
with each Ai constructed as described above.

The rest follows the proof of [17]. Here we recall informally the final result:
any execution of a Turing machine TM with initial word ω can be simulated by
S(TM , ω), and vice-versa.

Lemma 4.1. For any TM and word ω, S(TM , ω) = (A1, A2) is AD.

Proof. Take Ai = (Qi, q0i , δi), we show ∀q ∈ Qi : fin(q), which implies that
the system is AD. If there was q ∈ Qi such that ¬fin(q), there would a cycle of
send actions only, the construction of Ai clearly prevents this (see Fig. 3). ��

Theorem 4.1 (Undecidability of �). Given two machines M1 and M2, it is
generally undecidable whether M1 � M2 holds.

On the Undecidability of Asynchronous Session Subtyping 451

The proof of Theorem 4.1 shows that the following statements are equivalent:
(1) TM accepts ω, (2) S(TM , ω) = (A1, A2) is not safe, and (3) ¬(A1 �A2).
We show (1) ⇒ (2) by Lemma 2.1, (2) ⇒ (1) from the definition of safety, and
(2) ⇔ (3) by Theorems 3.1 and 3.3 and the fact that (A1, A2) is AD.

4.1 Decidable Sub-classes of CFSMs

We now identify three sub-classes of CFSMs for which the �-relation is decidable.
We say that M1 �M2 is decidable iff it is decidable whether or not M1 �M2

holds. The first sub-class is HD systems: HD is a decidable property and safety
is decidable within that class [8], hence � is decidable in HD and it is equivalent
to �s within HD. The second sub-class is taken from the CFSMs literature and
the third is limited to systems that contain at least one machine that has no
branching. We define the last two sub-classes below.

The following definition is convenient to formalise our decidability results.
Given Mi = (Qi, q0i , δi) for i ∈ {1, 2}, the derivation tree of a triple π � p� q is
a tree whose nodes are labelled by elements of A

∗×Q1×Q2 such that the children
of a node are exactly the triple generated by applying one step of Definition 3.1.

For example, consider the machines M1 and M2 from Fig. 2, we have a tree
which consists of a unique (infinite) branch:

ε � 0 � 0 −→ b � 1 � 0 −→ bb � 2 � 0 −→ b � 0 � 0 −→ bb � 1 � 0 −→ bbb � 2 � 0 · · ·

Lemma 4.2. The derivation tree of π � p� q is finitely branching.

Lemma 4.2 follows from the fact that each machine is finitely branching and
the predicate fin() guarantees finiteness for case (3b) of Definition 3.1.

Alternating Machines. Alternating machines were introduced in [21] where
it is shown that the progress problem (corresponding to our notion of safety)
is decidable for such systems. A machine is alternating if each of its sending
transition is followed by a receiving transition, e.g., Ms and M ′

s in Fig. 1 are
alternating, as well as the specification of the alternating-bit protocol in [21].
Observe that alternating machines form AD systems.

Theorem 4.2. If M1 and M2 are alternating, then M1 � M2 is decidable.

The proof simply shows that the π part of the relation (cf. Definition 3.1) is
bounded by 1, by induction on the depth of the derivation tree.

Non-branching Machines. Given M = (Q, q0, δ) we say that M is non-
branching if each of its state has at most one successor, i.e., if ∀q ∈ Q : |δ(q)| ≤ 1.
For example, M ′

s in Fig. 1 is non-branching. Non-branching machines are used
notably in [33,35] to specify parallel programs which can be optimised through
asynchronous message permutations.

452 J. Lange and N. Yoshida

Theorem 4.3. Let M1 and M2 be two machines such that at least one of them
is non-branching, then M1 � M2 is decidable.

The proof relies on the fact that (i) the derivation tree is finitely branching
(Lemma 4.2), hence there is a semi-algorithm to checker whether ¬(M1 �M2)
and (ii) over any infinite branches we can find two nodes of the form c =
πn � p� q and c′ = πm � p� q, with n ≤ m. If n is large enough, this implies
that the relation holds (i.e., the branch is indeed infinite).

5 Correspondence Between Compatibility and Subtyping

We show a precise correspondence between the asynchronous subtyping for ses-
sion types and the �-relation for CFSMs, i.e., Step 4. We first recall the syntax
of session types and as well as the definition of asynchronous subtyping.

Session Types and Subtyping. The syntax of session types is given by

T, U := end | ⊕i∈I !ai. Ti | &i∈I?ai. Ti | recx.T | x

where I �= ∅ is finite and ai �= aj for i �= j. Type end indicates the end of a
session. Type ⊕i∈I !ai. Ti specifies an internal choice, indicating that the program
chooses to send one of the ai messages, then behaves as Ti. Type &i∈I?ai. Ti

specifies an external choice, saying that the program waits to receive one of
the ai messages, then behaves as Ti. Types recx.T and x are used to specify
recursive behaviours. We only consider closed types, i.e., without free variables.

Since our goal is to relate a binary relation defined on CFSMs to a binary
relation on session types, we first introduce transformations from one to another.

Definition 5.1. Given a type T , we write M(T) for the CFSM induced by T .
Given a CFSM M , we write T (M) for the type constructed from M .

We assume the existence of two algorithms such that T = T (M(T)) and M =
M(T (M)) for any type T and machine M . These algorithms are rather trivial
since each session type induces a finite automaton, see [15] for instance.

We write T for the dual of type T , i.e., end = end, x = x, recx.T = recx.T ,
⊕i∈I !ai. Ti = &i∈I?ai. T i, and &i∈I?ai. Ti = ⊕i∈I !ai. T i.

Hereafter, we write �a for the relation in [9] (abstracting away from carried
types) which we recall below. An asynchronous context [9] is defined by

A := []n | &i∈I?ai.Ai

We write A[]n∈N to denote a context with holes indexed by elements of N and
A[Tn]n∈N to denote the same context when the hole []n has been filled with Tn.

The predicate & ∈ T holds if it can be derived from the following rules:

& ∈ &i∈I?ai. Ti

∀i ∈ I : & ∈ Ti

& ∈ ⊕i∈I !ai. Ti

& ∈ T
& ∈ recx.T

On the Undecidability of Asynchronous Session Subtyping 453

& ∈ T holds whenever T always eventually performs a receive action, i.e., it
cannot loop on send actions only. It is the counterpart of the predicate fin()
for CFSMs, cf. Lemma 5.1.

Definition 5.2 (�a [9]). The asynchronous subtyping, �a, is the largest rela-
tion that contains the rules:1

∀i ∈ I : Ti �a Ui

⊕i∈I !ai. Ti �a ⊕i∈I∪J !ai. Ui
[sel]

∀i ∈ I : Ti �a Ui

&i∈I∪J?ai. Ti �a &i∈I?ai. Ui
[bra]

∀i ∈ I : Ti �a A[Un
i]n∈N & ∈ Ti

⊕i∈I !ai. Ti �a A[⊕i∈I∪Jn
!ai. U

n
i]n∈N

[async]
end�a end

[end]

The double line in the rules indicates that the rules should be interpreted coin-
ductively. We are assuming an equi-recursive view of types.

Rule [sel] lets the subtype make fewer selections than its supertype, while rule [bra]

allows the subtype to offer more branches. Rule [async] allows safe permutations
of actions, by which a protocol can be refined to maximise asynchrony without
violating safety. Note that the synchronous subtyping �s [11,19,20] is defined
as Definition 5.2 without rule [async], hence �s ⊆ �a. In Fig. 1, T (M ′

s)�s T (Ms),
T (M ′

s)�a T (Ms), and T (Mc)�a T (M ′
c).

The correspondence between � (Definition 3.1) and �a (Definition 5.2) can
be understood as follows. Case (1) of Definition 3.1 corresponds to rule [end].
Case (2a) corresponds to rule [bra]. Case (3a) corresponds to rule [sel]. Cases (2b)
and (3b) together correspond to rule [async].

Correspondences. We show that � on CFSMs and �a on session types are
equivalent, and, as a consequence, deciding whether two types are �a-related is
undecidable. We first introduce a few auxiliary lemmas and definitions.

Lemma 5.1. Let M = (Q, q0, δ) and T be a session type.

1. For each q ∈ Q, if fin(q), then & ∈ T (Q, q, δ).
2. If & ∈ T and M(T) = (Q̂, q, δ̂), then fin(q).
3. If T = A[⊕i∈I !ai. Un

i]n∈N then & ∈ T .

Lemma 5.1 states the relationship between & ∈ T and fin() (cf. Sect. 2.2).
We write π ∈ A if π is a branch in the context A. Formally, given A and

π ∈ A
∗, we define the predicate π ∈ A as follows:

π ∈ A ⇐⇒
{

π = ε if A = []
π = aj · πj if A = &i∈I?ai.Ai, πj ∈ Aj , with j ∈ I

The next lemma shows that the �a-relation implies the �-relation.
1 Note that in [9] rule [async] has a redundant additional premise, & ∈ A, which is

only used to make the application of the rules deterministic.

454 J. Lange and N. Yoshida

Lemma 5.2. Let T and U be two session types, such that M(T) = (QT , qT
0 , δT)

and M(U) = (QU , qU
0 , δU), then T �a A[U] =⇒ ∀π ∈ A : π � qT

0 � qU
0 .

The proof of Lemma 5.2 is by coinduction on the derivation of π � p� q. We use
Lemma 5.1 to show that premise of rule [async] implies that fin(qT

0) and fin(qU
0)

hold when necessary.
The next lemma shows that the �-relation implies the �a-relation.

Lemma 5.3. Let Mi = (Qi, q0i , δi), i ∈ {1, 2} and π = a1 · · · ak ∈ A
∗, for all

p ∈ Q1 and q ∈ Q2, π � p� q =⇒ T (Q1, p, δ1) �a ?a1 · · ·?ak .[T (Q2, q, δ2)].

The proof of Lemma 5.3 is by coinduction on the rules of Definition 5.2, using
Lemma 5.1 to match the requirements of the respective relations.

We are now ready to state the final equivalence result.

Theorem 5.1. The relations � and �a are equivalent in the following sense:

1. Let T1 and T2 be two session types, then T1 �a T2 =⇒ M(T1)� M(T2).
2. Let M1 and M2 be two machines, then M1 �M2 =⇒ T (M1)�a T (M2).

Proof. (1) follows from Lemma 5.2, with T1 = T , T2 = U , and A = []. (2) follows
from Lemma 5.3, with π = ε, p = q01 , and q = q02 . ��

A consequence of the correspondence between the two relations is that the
�-relation is transitive in the following sense:

Theorem 5.2. If M1 �M and M �M2, then M1 � M2.

Proof. By Theorem 5.1 we have (1) M1 �M ⇐⇒ M1 �a M (2) M � M2 ⇐⇒
M �a M2. Since �a is transitive [10], we have M1 �a M2. Thus, using Theorem 5.1
again, we have M1 �a M2 ⇐⇒ M1 � M2. ��

As a consequence of Theorems 4.1 and 5.1, we have the undecidability of the
asynchronous subtyping:

Theorem 5.3. (Undecidability of �a). Given two session types T1 and T2,
it is generally undecidable whether T1 �a T2 holds.

We state the equivalence between �s and �s, and the transitivity of �s.

Theorem 5.4. The relations �s and �s are equivalent in the following sense:

1. Let T1 and T2 be two session types, then T1 �s T2 =⇒ M(T1)�s M(T2).
2. Let M1 and M2 be two machines, then M1 �s M2 =⇒ T (M1)�s T (M2).

Theorem 5.5. If M1 �s M and M �s M2, then M1 �s M2.

Theorem 5.1 together with the soundness and completeness of � wrt. safety
in AD systems (Theorems 3.1 and 3.3) imply a tight relationship between �a and
session types corresponding to AD systems. A similar correspondence between
�s and HD systems exists, by Theorems 3.2, 3.4, and 5.4.

On the Undecidability of Asynchronous Session Subtyping 455

6 Conclusions and Related Work

We have introduced a new sub-class of CFSMs (AD), which includes HD, and a
compatibility relation � (resp. �s) that is sound and complete wrt. safety within
AD (resp. HD) and equivalent to asynchronous (resp. synchronous) subtyping.
Our results in Sect. 4.1 suggest that � is a convenient basis for designing safety
checking algorithms for some sub-classes of CFSMs. Given the results in the
present paper, we plan to study bounded approximations of � that can be used
for session typed applications. Such approximations would make asynchronous
subtyping available for real-world programs and thus facilitate the integration
of flexible session typing.

Related Work. The first (synchronous) subtyping for session types in the π-
calculus was introduced in [19] and shown to be decidable in [20]. Its complexity
was further studied in [26] which encodes synchronous subtyping as a model
checking problem. The first version of asynchronous subtyping was introduced
in [31] for multiparty session types and further studied in [28–30] for binary
session types in the higher-order π-calculus. These works and [10] stated or con-
jectured the decidability of the relations. The technical report [5] (announced
after the submission of the present paper) independently studied the undecid-
ability of these relations. Note that the subtyping relation in [28,30] only differs
from the one in [9,10] by the omission of the premise & ∈ Ti in rule [async].
This subtyping is not sound wrt. our definition of safety as it does not guaran-
tee eventual reception [9,10]. We conjecture that it is sound and complete wrt.
progress (either both machines are in a final state or one can eventually make a
move) in (the full class of) CFSMs, hence it is also undecidable since progress
corresponds to rejection of a word by a Turing machine, cf. Sect. 4.

The operational and denotational preciseness of (synchronous and asynchro-
nous) subtyping for session types was studied in [9,10] where the authors give
soundness and completeness of each subtyping through the set of π-calculus
processes a type T can type. In this paper, we study the soundness and com-
pleteness of � (resp. �s) in CFSMs through AD (resp. HD) systems.

CFSMs have long been known to be Turing complete [4,17] even when
restricted to deterministic machines without mixed states [21]. The first paper
to relate formally CFSMs and session types was [14], which was followed by a
series of work using CFSMs as session types [3,15,25]. The article [2] shows, in a
similar fashion to [17], that the compliance of contracts based on asynchronous
session types is undecidable. Here, we show that the encoding of [17] is indeed
AD and that safety is equivalent to word acceptance by a Turing machine.

Acknowledgements. We thank A. Scalas, B. Toninho and G. Zavattaro for their
comments on earlier versions of this paper, in particular G. Zavattaro for identifying
the need for additional blank insertion cycles (in Fig. 3). This work is partially sup-
ported by EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1
and EP/N028201/1; and by EU FP7 612985 (UPSCALE).

456 J. Lange and N. Yoshida

References

1. Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P., Gay,
S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins, F., Mascardi, V.,
Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos, V.T., Yoshida, N.:
Behavioral types in programming languages. Found. Trends Program. Lang. 3(2–
3), 95–230 (2016)

2. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. Log. Meth.
Comput. Sci. 12(4) (2016)

3. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR 2015,
pp. 283–296 (2015)

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

5. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of asynchronous session
subtyping. CoRR, abs/1611.05026 (2016)

6. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6 2

7. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

8. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (2005)

9. Chen, T.-C., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the preciseness
of subtyping in session types. LMCS (2016)

10. Chen, T.-C., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness of subtyping
in session types. In: PPDP 2014, pp. 146–135. ACM Press (2014)

11. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear
types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
280–296. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6 19

12. Demangeon, R., Yoshida, N.: On the expressiveness of multiparty sessions. In:
Harsha, P., Ramalingam, G. (eds.) FSTTCS 2015. LIPIcs, vol. 45, pp. 560–574.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

13. Deniélou, P., Yoshida, N.: Buffered communication analysis in distributed multi-
party sessions. In: CONCUR 2010, pp. 343–357 (2010)

14. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28869-2 10

15. Deniélou, P., Yoshida, N.: Multiparty compatibility in communicating automata:
characterisation and synthesis of global session types. In: ICALP 2013, pp. 174–186
(2013)

16. Dezani-Ciancaglini, M., Ghilezan, S., Jaksic, S., Pantovic, J., Yoshida, N.: Denota-
tional and operational preciseness of subtyping: a roadmap. In: Theory and Prac-
tice of Formal Methods - Essays Dedicated to Frank de Boer on the Occasion of
His 60th Birthday, pp. 155–172 (2016)

17. Finkel, A., McKenzie, P.: Verifying identical communicating processes is undecid-
able. Theor. Comput. Sci. 174(1–2), 217–230 (1997)

18. Gay, S.J.: Subtyping supports safe session substitution. In: A List of Successes
That Can Change the World - Essays Dedicated to Philip Wadler on the Occasion
of His 60th Birthday, pp. 95–108 (2016)

http://dx.doi.org/10.1007/978-3-540-71316-6_2
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/978-3-642-28869-2_10

On the Undecidability of Asynchronous Session Subtyping 457

19. Gay, S., Hole, M.: Types and subtypes for client-server interactions. In: Swierstra,
S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 74–90. Springer, Heidelberg (1999).
doi:10.1007/3-540-49099-X 6

20. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005)

21. Gouda, M.G., Manning, E.G., Yu, Y.: On the progress of communications between
two finite state machines. Inf. Control 63(3), 200–216 (1984)

22. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/
BFb0053567

23. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: FASE 2016, pp. 401–418 (2016)

24. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3 (2016)

25. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL 2015, pp. 221–232 (2015)

26. Lange, J., Yoshida, N.: Characteristic formulae for session types. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 833–850. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49674-9 52

27. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyp-
ing (with appendices). Technical report 2016/9, Imperial College London (2016).
https://www.doc.ic.ac.uk/research/technicalreports/2016/DTRS16-9.pdf

28. Mostrous, D.: Session types in concurrent calculi: higher-order processes and
objects. PhD thesis, Imperial College London, November 2009

29. Mostrous, D., Yoshida, N.: Session-based communication optimisation for higher-
order mobile processes. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp.
203–218. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02273-9 16

30. Mostrous, D., Yoshida, N.: Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput. 241, 227–263 (2015)

31. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00590-9 23

32. Ng, N., Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default. In: Franke, B.
(ed.) CC 2015. LNCS, vol. 9031, pp. 212–232. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46663-6 11

33. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel program-
ming with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS
2012. LNCS, vol. 7304, pp. 202–218. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30561-0 15

34. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). doi:10.
1007/3-540-58184-7 118

35. Yoshida, N., Vasconcelos, V., Paulino, H., Honda, K.: Session-based compilation
framework for multicore programming. In: Boer, F.S., Bonsangue, M.M., Made-
laine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp. 226–246. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04167-9 12

http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-662-49674-9_52
https://www.doc.ic.ac.uk/research/technicalreports/2016/DTRS16-9.pdf
http://dx.doi.org/10.1007/978-3-642-02273-9_16
http://dx.doi.org/10.1007/978-3-642-00590-9_23
http://dx.doi.org/10.1007/978-3-662-46663-6_11
http://dx.doi.org/10.1007/978-3-662-46663-6_11
http://dx.doi.org/10.1007/978-3-642-30561-0_15
http://dx.doi.org/10.1007/978-3-642-30561-0_15
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/978-3-642-04167-9_12

Lambda Calculus and Constructive
Proof

A Lambda-Free Higher-Order
Recursive Path Order

Jasmin Christian Blanchette1,2,3, Uwe Waldmann3, and Daniel Wand3,4

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2 Inria Nancy – Grand Est, Villers-lès-Nancy, France

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany
4 Institut für Informatik, Technische Universität München, Munich, Germany

Abstract. We generalize the recursive path order (RPO) to higher-
order terms without λ-abstraction. This new order fully coincides with
the standard RPO on first-order terms also in the presence of curry-
ing, distinguishing it from previous work. It has many useful properties,
including well-foundedness, transitivity, stability under substitution, and
the subterm property. It appears promising as the basis of a higher-order
superposition calculus.

1 Introduction

Most automatic reasoning tools are restricted to first-order formalisms, even
though many proof assistants and specification languages are higher-order.
Translations bridge the gap, but they usually have a cost. Thus, a recurrent
question in our field is, Which first-order methods can be gracefully extended to
a higher-order setting? By “gracefully,” we mean that the higher-order exten-
sion of the method is as powerful as its first-order counterpart on the first-order
portions of the input.

The distinguishing features of higher-order terms are that (1) they support
currying, meaning that an n-ary function may be applied to fewer than n argu-
ments, (2) variables can be applied, and (3) λ-abstractions, written λx .tx , can
be used to specify anonymous functions x �→ tx . Iterated applications are writ-
ten without parentheses or commas, as in f a b. Many first-order proof calculi
have been extended to higher-order logic, including resolution and tableaux, but
so far there exists no sound and complete higher-order version of superposition
[29], where completeness is considered with respect to Henkin semantics [4,18].
Together with CDCL(T) [17], superposition is one of the leading proof calculi
for classical first-order logic with equality.

To prune the search space, superposition depends on a term order, which
is fixed in advance of the proof attempt. For example, from p(a) and ¬ p(x) ∨
p(f(x)), resolution helplessly derives infinitely many clauses of the form p(f i(a)),
whereas for superposition the literal p(f(x)) is maximal in its clause and blocks
all inferences. To work with superposition, the order must fulfill many require-
ments, including compatibility with contexts, stability under substitution, and

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 461–479, 2017.
DOI: 10.1007/978-3-662-54458-7 27

462 J.C. Blanchette et al.

totality on ground (variable-free) terms. The lexicographic path order (LPO)
and the Knuth–Bendix order (KBO) [3] both fulfill the requirements. LPO is a
special case of the recursive path order (RPO), which also subsumes the multiset
path order [38]. Suitable generalizations of LPO and KBO appear to be crucial
ingredients of a future higher-order superposition prover.

A simple technique to support currying and applied variables is to make all
symbols nullary and to represent application by a distinguished binary symbol
@. Thus, the higher-order term f (x f) is translated to @(f,@(x , f)), which can
be processed by first-order methods. We call this the applicative encoding. As
for λ-abstractions, in many settings they can be avoided using λ-lifting [21] or
SK combinators [36]. A drawback of the applicative encoding is that argument
tuples cannot be compared using different methods for different function sym-
bols. The use of an application symbol also weakens the order in other ways
[25, Sect. 2.3.1]. Hybrid schemes have been proposed to strengthen the encod-
ing: If a function f always occurs with at least k arguments, these can be passed
directly in an uncurried style—e.g., @(f(a, b), x). However, this relies on a closed-
world assumption—namely, that all terms that will ever be compared arise in
the input problem. This is at odds with the need for complete higher-order proof
calculi to synthesize arbitrary terms during proof search [4], in which a symbol f
may be applied to fewer arguments than anywhere in the problem. A scheme by
Hirokawa et al. [19] circumvents this issue but requires additional symbols and
rewrite rules.

Versions of RPO tailored for higher-order terms are described in the liter-
ature, including Lifantsev and Bachmair’s LPO on λ-free higher-order terms
[27], Jouannaud and Rubio’s higher-order RPO (HORPO) [23], Kop and van
Raamsdonk’s iterative HORPO [26], the HORPO extension with polynomial
interpretation orders by Bofill et al. [12], and the computability path order by
Blanqui et al. [10], also a variant of HORPO. All of these combine uncurrying
and currying: They distinguish between functional arguments, which are passed
directly as a tuple to a function, and applicative arguments, which are optional.
Coincidence with the standard RPO on first-order terms is achieved only for
uncurried functions. Techniques to automatically curry or uncurry functions have
been developed, but they rely on the closed-world assumption. Moreover, the
orders all lack totality on ground terms; the HORPO variants also lack the sub-
term property, and only their (noncomputable) transitive closure is transitive.

We introduce a new “graceful” order >ho for untyped λ-free higher-order
terms (Sect. 3). It generalizes the first-order RPO along two main axes: (1) It
relies on a higher-order notion of subterm; (2) it supports terms with applied
variables—e.g., x b >ho x a if b � a according to the underlying precedence � on
symbols. The order is parameterized by a family of abstractly specified extension
operators indexed by function symbols, allowing lexicographic, multiset, and
other extension operators. An optimized variant, >oh, coincides with >ho under
a reasonable assumption on the extension operator. For comparison, we also
present the first-order RPO >fo and its composition >ap with the applicative
encoding, both recast to our abstract framework.

A Lambda-Free Higher-Order Recursive Path Order 463

The λ-free fragment is useful in its own right and constitutes a stepping
stone towards full higher order. Our new order operates exclusively on curried
functions while coinciding with the standard RPO on first-order terms. This was
considered impossible by Lifantsev and Bachmair [27]:

Pairs, or more generally tuples, allow one to compare the arguments of
different functions with greater flexibility. For instance, the arguments of
one function may be compared lexicographically, whereas in other cases
comparison may be based on the multisets of arguments. . . . But since
function symbols are much more decoupled from their arguments in a
higher-order setting than in a first-order setting, the information needed
for different argument-comparison methods would be lost if one, say, just
curried all functions.

The order >ho enjoys many useful properties (Sect. 4). One property that is
missing is compatibility with a specific type of higher-order context: If s′ >ho
s, it is still possible that s′ t �>ho s t. For example, if g � f � b � a, then
f (g a) >ho g by the subterm property, but f (g a) b <ho g b by coincidence with
the first-order RPO [35]. Nonetheless, we expect the order to be usable for λ-free
higher-order superposition, at the cost of some complications [13]. The proofs
of the properties were carried out in a proof assistant, Isabelle/HOL [31], and
are publicly available [7]. Informal proofs are included in this paper and in a
technical report [8].

Beyond superposition, the order can also be employed to prove termination
of higher-order term rewriting systems. Because it treats all functions as curried,
it differs from the other higher-order RPOs on many examples (Sect. 5), thereby
enriching the portfolio of methods available to termination provers.

Conventions. We fix a set V of variables with typical elements x , y . A higher-
order signature consists of a nonempty set Σ of (function) symbols a, b, f, g, h,
Untyped λ-free higher-order (Σ-)terms s, t, u ∈ TΣ (= T) are defined inductively
by the grammar s ::= x | f | t u. These are isomorphic to applicative terms [24].

A term of the form tu is called an application. Non-application terms ζ, ξ ∈
Σ � V are called heads. Terms can be decomposed in a unique way as a head
applied to zero or more arguments: ζ s1 . . . sm. This view corresponds to the first-
order, uncurried syntax ζ(s1, . . . , sm), except that ζ may always be a variable.

The size |s| of a term is the number of grammar rule applications needed
to construct it. The set of variables occurring in s is written vars(s). The set of
subterms of a term s always contains s; for applications t u, it also includes all
the subterms of t and u.

A first-order signature Σ extends a higher-order signature by associating an
arity with each symbol belonging to Σ. A first-order term is a term in which
variables are unapplied and symbols are applied to the number of arguments
specified by their arity. For consistency, we will use a curried syntax for first-
order terms.

464 J.C. Blanchette et al.

2 Extension Orders

Orders such as RPO depend on extension operators to recurse through tuples of
arguments. The literature is mostly concerned with the lexicographic and mul-
tiset orders [3,38]. We favor an abstract treatment that formulates requirements
on the extension operators. Beyond its generality, this approach emphasizes the
complications arising from the higher-order setting.

Let A∗ =
⋃∞

i=0 A
i be the set of tuples (or finite lists) of arbitrary length whose

components are drawn from a set A.We write its elements as (a1, . . . , am), where
m ≥ 0, or simply ā. The empty tuple is written (). Singleton tuples are identified
with elements of A. The number of components of a tuple ā is written |ā|. Given
an m-tuple ā and an n-tuple b̄, we denote by ā · b̄ the (m+ n)-tuple consisting of
the concatenation of ā and b̄.

Given a function h : A → A, we let h(ā) stand for the componentwise appli-
cation of h to ā. Abusing notation, we sometimes use a tuple where a set or
multiset is expected, ignoring the extraneous structure. Moreover, since all our
functions are curried, we write ζ s̄ for a curried application ζ s1 . . . sm, without
risk of ambiguity.

Given a relation >, we write < for its inverse (i.e., a < b ⇐⇒ b > a) and ≥ for
its reflexive closure (i.e., b ≥ a ⇐⇒ b > a ∨ b = a). A (strict) partial order is a
relation that is irreflexive (i.e., a �> a) and transitive (i.e., c > b ∧ b > a =�⇒ c > a).
A (strict) total order is a partial order that satisfies totality (i.e., b ≥ a ∨ a > b).
A relation > is well founded if and only if there exists no infinite chain of the
form a0 > a1 > · · · .

Let >> ⊆ (A∗)2 be a family of relations indexed by a relation > ⊆ A2. For
example, >> could be the lexicographic or multiset extension of >. The following
properties are essential for all the orders defined later, whether first- or higher-
order:

X1. Monotonicity : b̄ >>1 ā implies b̄ >>2 ā if b >1 a implies b >2 a for all a, b;
X2. Preservation of stability :

b̄ >> ā implies h(b̄) >> h(ā) if b > a implies h(b) > h(a) for all a, b;
X3. Preservation of transitivity : >> is transitive if > is transitive;
X4. Preservation of irreflexivity : >> is irreflexive if > is irreflexive and transitive;
X5. Preservation of well-foundedness: >> is well founded if > is well founded;
X6. Compatibility with tuple contexts: b > a implies c̄ · b · d̄ >> c̄ · a · d̄.

Because the relation > will depend on >> for its definition, we cannot assume
outright that it is a partial order, a fine point that is sometimes overlooked [38,
Sect. 6.4.2].

The remaining properties of >> will be required only by some of the orders
or for some optional properties of >:

X7. Preservation of totality : >> is total if > is total;
X8. Compatibility with prepending : b̄ >> ā implies a · b̄ >> a · ā;
X9. Compatibility with appending : b̄ >> ā implies b̄ · a >> ā · a;

X10. Minimality of empty tuple: a >> ().

A Lambda-Free Higher-Order Recursive Path Order 465

We now define the extension operators and study their properties. All of
them are also defined for tuples of different lengths.

Definition 1. The lexicographic extension >>lex of the relation > is defined
recursively by () �>>lex ā, b · b̄ >>lex (), and b · b̄ >>lex a · ā ⇐⇒ b > a ∨ b =
a ∧ b̄ >>lex ā.

The reverse, or right-to-left, lexicographic extension is defined analogously.
Both operators lack the essential property X5. In addition, the left-to-right ver-
sion lacks X9, and the right-to-left version lacks X8. The other properties are
straightforward to prove.

Definition 2. The length-lexicographic extension >>llex of the relation > is
defined by b̄ >>llex ā ⇐⇒ |b̄| > |ā| ∨ |b̄| = |ā| ∧ b̄ >>lex ā.

The length-lexicographic extension and its right-to-left counterpart satisfy
all of the properties listed above. We can also apply arbitrary permutations
on same-length tuples before comparing them lexicographically; however, the
resulting operators generally fail to satisfy properties X8 and X9.

Definition 3. The multiset extension >>ms of the relation > is defined by b̄ >>ms

ā ⇐⇒ ∃Y, X. ∅ �= Y ⊆ b̄ ∧ ā = (b̄ − Y) � X ∧ ∀x ∈ X. ∃y ∈ Y. y > x, where X,Y
range over multisets, the tuples ā, b̄ are implicitly converted to multisets, and �
denotes multiset sum (the sum of the multiplicity functions).

The multiset extension, due to Dershowitz and Manna [16], satisfies all prop-
erties except X7. Huet and Oppen [20] give an alternative formulation that is
equivalent for partial orders > but exhibits subtle differences if > is an arbitrary
relation. In particular, the Huet–Oppen order does not satisfy property X3.

Finally, we consider the componentwise extension of relations to pairs of
tuples of the same length. For partial orders >, this order underapproximates
any extension that satisfies properties X3 and X6. It also satisfies all properties
except X7.

Definition 4. The componentwise extension >>cw of the relation > is defined so
that (b1, . . . , bn) >>cw (a1, . . . , am) if and only if m = n, b1 ≥ a1, . . . , bm ≥ am, and
bi > ai for some i ∈ {1, . . . ,m}.

3 Term Orders

This section presents four orders: the standard first-order RPO (Sect. 3.1), the
applicative RPO (Sect. 3.2), our new λ-free higher-order RPO (Sect. 3.3), and an
optimized variant of our new RPO (Sect. 3.4).

466 J.C. Blanchette et al.

3.1 The Standard First-Order RPO

The following definition is close to Zantema’s formulation [38, Definition 6.4.4]
but adapted to our setting. With three rules instead of four, it is more concise
than Baader and Nipkow’s formulation of LPO [3, Definition 5.4.12] and lends
itself better to a higher-order generalization.

Definition 5. Let � be a well-founded total order on Σ, and let >>f ⊆ (T ∗)2 be
a family of relations indexed by > ⊆ T 2 and by f ∈ Σ and satisfying properties
X1–X6. The induced recursive path order >fo on first-order Σ-terms is defined
inductively so that t >fo s if any of the following conditions is met, where t = g t̄:

F1. t′ ≥fo s for some term t′ ∈ t̄;
F2. s = f s̄, g � f, and chkargs(t, s̄);
F3. s = f s̄, f = g, t̄ >>ffo s̄, and chkargs(t, s̄).

The auxiliary predicate chkargs(t, s̄) is true if and only if t >fo s′ for all terms s′ ∈ s̄.
The inductive definition is legitimate by the monotonicity of >>f (property X1).

RPO is a compromise between two design goals. On the one hand, rules F2
and F3, which form the core of the order, attempt to perform a comparison of
two terms by first looking at their heads, proceeding recursively to break ties.
On the other hand, rule F1 ensures that terms are larger than their proper
subterms and, transitively, larger than terms smaller than these. The chkargs
predicate prevents the application of F2 and F3 when F1 is applicable in the
other direction, ensuring irreflexivity.

The more recent literature defines RPO somewhat differently: Precision is
improved by replacing recursive calls to ≥fo with a nonstrict quasiorder �fo and
by exploiting a generalized multiset extension [14,33]. These extensions are useful
but require substantial duplication in the definitions and the proofs, without
yielding much new insight into orders for higher-order terms.

3.2 The Applicative RPO

Applicative orders are built by encoding applications using a binary symbol @
and by employing a first-order term order. For RPO, the precedence � must be
extended to consider @. A natural choice is to make @ the least element of �.
Because @ is the only symbol that may be applied, >>@ is the only member
of the >> family that is relevant. This means that it is impossible to use the
lexicographic extension for some functions and the multiset extension for others.

Definition 6. Let Σ be a higher-order signature, and let Σ′ = Σ � {@} be a
first-order signature in which all symbols belonging to Σ are assigned arity 0
and @ is assigned arity 2. The applicative encoding � � : TΣ → TΣ′ is defined
recursively by the equations �ζ� = ζ and �s t� = @ �s� �t�.

Assuming that @ has the lowest precedence, the composition of the first-order
RPO with the encoding � � can be formulated directly as follows.

A Lambda-Free Higher-Order Recursive Path Order 467

Definition 7. Let � be a well-founded total order on Σ, and let >> ⊆ (T ∗)2 be
a family of relations indexed by > ⊆ T 2 and satisfying properties X1–X6. The
induced applicative recursive path order >ap on higher-order Σ-terms is defined
inductively so that t >ap s if any of the following conditions is met:

A1. t = t1 t2 and either t1 ≥ap s or t2 ≥ap s (or both);
A2. t = g � f = s;
A3. t = g, s = s1 s2, and chkargs(t, s1, s2);
A4. t = t1 t2, s = s1 s2, (t1, t2) >>ap (s1, s2), and chkargs(t, s1, s2).

The predicate chkargs(t, s1, s2) is true if and only if t >ap s1 and t >ap s2.

3.3 A Graceful Higher-Order RPO

Our new “graceful” higher-order RPO is much closer to the first-order RPO than
the applicative RPO. It reintroduces the symbol-indexed family of extension
operators and consists of three rules H1–H3 corresponding to F1–F3.

The order relies on a mapping ghd from variables to nonempty sets of possible
ground heads that may arise when instantiating the variables. This mapping is
extended to symbols f by taking ghd(f) = {f}. A substitution σ : V → T is
said to respect the ghd mapping if for all variables x , we have ghd(ζ) ⊆ ghd(x)
whenever xσ = ζ s̄. This mapping allows us to restrict instantiations, typically
based on a typing discipline, and thereby increase the applicability of rules H2
and especially H3. Precedences � are extended to variables by taking y � x ⇐⇒
∀g ∈ ghd(y), f ∈ ghd(x). g � f.

Definition 8. Let � be a well-founded total order on Σ, let >>f ⊆ (T ∗)2 be a
family of relations indexed by > ⊆ T 2 and by f ∈ Σ and satisfying properties
X1–X6 and X8, and let ghd : V → P (Σ) − {∅}. The induced graceful recursive
path order >ho on higher-order Σ-terms is defined inductively so that t >ho s if
any of the following conditions is met, where s = ζ s̄ and t = ξ t̄:

H1. t = t1 t2 and either t1 ≥ho s or t2 ≥ho s (or both);
H2. ξ � ζ, vars(t) ⊇ vars(ζ), and chksubs(t, s);
H3. ξ = ζ, t̄ >>fho s̄ for all symbols f ∈ ghd(ζ), and chksubs(t, s).

The predicate chksubs(t, s) is true if and only if term s is a head or an application
of the form s1 s2 with t >ho s1 and t >ho s2.

There are two main novelties compared with >fo. First, rule H1 and the
chksubs predicate traverse subterms in a genuinely higher-order fashion. Second,
rules H2 and H3 can compare terms with variable heads.

Property X8, compatibility with prepending, is necessary to ensure stability
under substitution: If x b >ho x a, we want f s̄ b >ho f s̄ a to hold as well.

Example 9. It is instructive to contrast our new order with the applicative
order by studying a few small examples. Let h � g � f � b � a, let >> be
the length-lexicographic extension (which degenerates to the plain lexicographic

468 J.C. Blanchette et al.

extension for >ap), and let ghd(x) = Σ for all variables x . Sect. 1 already presented
a case where >ho and >ap disagree: g b >ho f (g a) b but g b <ap f (g a) b. Other
disagreements include

g f >ho f g f g f >ho f g (f g) g g >ho f g g g (f h) >ho f h (f h)

and g g g (f (g (g g g))) >ho g (g g g) (g g g). For all of these, the core rules H2 and
H3 are given room for maneuver, whereas >ap must consider subterms using A1.
In the presence of variables, some terms are comparable only with >ho or only
with >ap:

g x >ho f x x g x >ho f x g f x y >ap x y x f (x f) >ap f x

To apply rule A4 on the first example, we would need (g, x) >>lexap (f x , x), but
the term g cannot be larger than f x since it does not contain x . The last two
examples reveal that the applicative order tends to be stronger when either side
is a variable applied to some arguments—at least when ghd is not restricting the
variable instantiations.

3.4 An Optimized Variant of the Graceful Higher-Order RPO

The higher-order term f a b has four proper subterms: a, b, f, and f a. In contrast,
the corresponding first-order term, traditionally written f(a, b), has only the
arguments a and b as proper subterms. In general, a term of size k has up to
k−1 distinct proper subterms in a higher-order sense but only half as many in a
first-order sense. By adding a reasonable requirement on the extension operator,
we can avoid this factor-of-2 penalty when computing the order.

Definition 10. Let � be a well-founded total order on Σ, let >>f ⊆ (T ∗)2 be a
family of relations indexed by > ⊆ T 2 and by f ∈ Σ and satisfying properties
X1–X6, X8, and X10, and let ghd : V → P (Σ) − {∅}. The induced optimized
graceful recursive path order >oh on higher-order Σ-terms is defined inductively
so that t >oh s if any of the following conditions is met, where s = ζ s̄ and t = ξ t̄:

O1. t′ ≥oh s for some term t′ ∈ t̄;
O2. ξ � ζ, vars(t) ⊇ vars(ζ), and chkargs(t, s̄);
O3. ξ = ζ, t̄ >>foh s̄ for all symbols f ∈ ghd(ζ), and chkargs(t, s̄).

The predicate chkargs(t, s̄) is true if and only if t >oh s′ for all terms s′ ∈ s̄.

The optimized >oh depends on the same parameters as >ho except that it
additionally requires minimality of the empty tuple (property X10). In con-
junction with compatibility with prepending (X8), this property ensures that
ā · a >>f ā. As a result, f s̄ s is greater than its subterm f s̄, relieving rule O1 from
having to consider such subterms.

Syntactically, the definition of >oh generalizes that of the first-order >fo.
Semantically, the restriction of >oh to first-order terms coincides with >fo.

A Lambda-Free Higher-Order Recursive Path Order 469

The requirements X8 and X10 on >>f can be made without loss of generality
in a first-order setting.

The quantification over f ∈ ghd(ζ) in rule O3 can be inefficient in an imple-
mentation, when different symbols in ghd(ζ) disagree on which >> to use. We could
generalize the definition of >oh further to allow underapproximation, but some
care would be needed to ensure transitivity. A simple alternative is to enrich all
sets ghd(ζ) that disagree on >> with a distinguished symbol for which the com-
ponentwise extension is used. Since this extension operator is more restrictive
than any other ones, whenever it is present in a set ghd(ζ) there is no need to
compute the other ones.

4 Properties

We now state and prove the main properties of our RPO. We focus on the general
variant >ho and show that it is equivalent to the optimized variant >oh (assuming
property X10). Many of the proofs are adapted from Baader and Nipkow [3] and
Zantema [38].

Lemma 11. If t >ho s, then vars(t) ⊇ vars(s).

As a consequence of Lemma 11, the condition vars(t) ⊇ vars(ζ) of rule H2
could be written equivalently (but less efficiently) as vars(t) ⊇ vars(s).

Theorem 12 (Transitivity). If u >ho t and t >ho s, then u >ho s.

Proof. By well-founded induction on the multiset {|s| , |t| , |u|} with respect to
the multiset extension of > on N.

If u >ho t was derived by rule H1, we have u = u1 u2 and uk ≥ho t for some k.
Since t >ho s by hypothesis, uk >ho s follows either immediately (if uk = t) or by
the induction hypothesis (if uk >ho t). We get u >ho s by rule H1.

Otherwise, u >ho t was derived by rule H2 or H3. The chksubs condition ensures
that u is greater than any immediate subterms of t.We proceed by case analysis
on the rule that derived t >ho s.

If t >ho s was derived by H1, we have t = t1 t2 and tj ≥ho s for some j. We
already noted that u >ho tj thanks to chksubs(u, t). In conjunction with tj ≥ho s,
we derive u >ho s either immediately or by the induction hypothesis.

Otherwise, t >ho s was derived by rule H2 or H3. The chksubs condition ensures
that t is greater than any immediate subterms of s.We derive u >ho s by applying
H2 or H3. We first prove chksubs(u, s). The only nontrivial case is s = s1 s2. Using
u >ho t, we get u >ho s1 and u >ho s2 by the induction hypothesis.

If both u >ho t and t >ho s were derived by rule H3, we apply H3 to derive
u >ho s. This relies on the preservation by >>fho of transitivity (property X3) on
the set consisting of the argument tuples of s, t, u. Transitivity of >ho on these
tuples follows from the induction hypothesis. Finally, if either u >ho t or t >ho s
was derived by rule H2, we apply H2, relying on the transitivity of � and on
Lemma 11. ��

470 J.C. Blanchette et al.

Theorem 13 (Irreflexivity). s �>ho s.

Proof. By strong induction on |s|. We assume s >ho s and show that this leads
to a contradiction. If s >ho s was derived by rule H1, we have s = s1 s2 with
si ≥ho s for some i. Since a term cannot be equal to one of its proper subterms,
the comparison is strict. Moreover, we have s >ho si by rule H1. Transitivity
yields si >ho si, contradicting the induction hypothesis. If s >ho s was derived
by rule H2, the contradiction follows immediately from the irreflexivity of �.
Otherwise, s >ho s was derived by rule H3. Let s = ζ s̄. We have s̄ >>fho s̄ for all
f ∈ ghd(ζ) �= ∅. Since >>f preserves irreflexivity for transitive relations (property
X4) and >ho is transitive (Theorem 12), there must exist a term s′ ∈ s̄ such that
s′ >ho s′. However, this contradicts the induction hypothesis. ��

By Theorems 12 and 13, >ho is a partial order. In the remaining proofs, we
will often leave applications of these theorems (and of antisymmetry) implicit.

Theorem 14 (Subterm Property). If s is a proper subterm of t, then t >ho s.

Proof. By structural induction on t, exploiting rule H1 and transitivity of >ho. ��

The first-order RPO satisfies compatibility with Σ-operations. A slightly
more general property holds for >ho:

Theorem 15 (Compatibility with Functions). If t′ >ho t, then s t′ ū >ho
s t ū.

Proof. By induction on the length of ū. The base case, ū = (), follows from rule
H3, compatibility of >>f with tuple contexts (property X6), and the subterm
property (Theorem 14). The step case, ū = ū′ · u, also follows from rule H3 and
compatibility of >>f with contexts. The chksubs(s t′ ū′ u, s t ū′ u) condition follows
from the induction hypothesis and the subterm property. ��

A related property, compatibility with arguments, is useful to rewrite sub-
terms such as f a in f a b using a rewrite rule f x → tx . Unfortunately, >ho does
not enjoy this property: s′ >ho s does not imply s′ t >ho s t. Two counterexamples
follow:

1. Given g � f, we have f g >ho g by rule H1, but f g f <ho g f by rule H2.
2. Let f � b � a, and let >>f be the lexicographic extension. Then f a >ho f by

rule H3, but f a b <ho f b also by rule H3.

The second counterexample and similar ones involving rule H3 can be excluded
by requiring that >>f is compatible with appending (property X9), which holds
for the length-lexicographic and multiset extensions. But there is no way to
rule out the first counterexample without losing coincidence with the first-order
RPO.

Theorem 16 (Compatibility with Arguments). Assume that >>f is com-
patible with appending (property X9) for every symbol f ∈ Σ. If s′ >ho s is
derivable by rule H2 or H3, then s′ t >ho s t.

A Lambda-Free Higher-Order Recursive Path Order 471

Proof. If s′ >ho s is derivable by rule H2, we apply H2 to derive s′ t >ho s t.
To show chksubs(s′ t, s t), we must show that s′ t >ho s and s′ t >ho t. Both are
consequences of the subterm property (Theorem 14), together with s′ >ho s.

If s′ >ho s is derivable by rule H3, we apply H3 to derive s′ t >ho s t. The
condition on the variables of the head of s′ t can be shown by exploiting the
condition on the variables of the head of s′. The chksubs condition is shown as
above. The condition on the argument tuples follows by property X9. ��

Theorem 17 (Stability under Substitution). If t >ho s, then tσ >ho sσ for
any substitution σ that respects the mapping ghd.

Proof. By well-founded induction on the multiset {|s| , |t|} with respect to the
multiset extension of > on N.

If t >ho s was derived by rule H1, we have t = t1 t2 and tj ≥ho s for some j.
By the induction hypothesis, tjσ ≥ho sσ. Hence, tσ >ho sσ by rule H1.

If t >ho s was derived by rule H2, we have s = ζ s̄, t = ξ t̄, ξ � ζ, and
chksubs(t, s). We derive tσ >ho sσ by applying H2. Since σ respects ghd, we have
ξσ � ζσ. From t >ho s, we have vars(t) ⊇ vars(s) by Lemma 11 and hence
vars(tσ) ⊇ vars(sσ) ⊇ vars(ξσ). To show chksubs(tσ, sσ), the nontrivial cases are
s = x and is s = s1 s2. If s = x , then s must be a subterm of t by Lemma 11,
and therefore sσ is a subterm of tσ. Thus, we have tσ >ho sσ by the subterm
property (Theorem 14), from which it is easy to derive chksubs(tσ, sσ), as desired.
If s = s1 s2, we get t >ho s1 and t >ho s2 from chksubs(t, s). By the induction
hypothesis, tσ >ho s1σ and t >ho s2σ, as desired.

If t >ho s was derived by rule H3, we have s = ζ s̄, t = ζ t̄, t̄ >>fho s̄ for all
f ∈ ghd(ζ), and chksubs(t, s). We derive tσ >ho sσ by applying H3. Clearly, sσ and
tσ have the same head. The chksubs(tσ, sσ) condition is proved as for rule H2
above. Finally, we must show that t̄σ >>fho s̄σ for all f ∈ ghd(ζ′), where ζσ = ζ′ ū
for some ū. Since σ respects ghd, we have ghd(ζ′) ⊆ ghd(ζ); hence, t̄ >>fho s̄ for
all f ∈ ghd(ζ′). By the induction hypothesis, t′ >ho s′ implies t′σ >ho s′σ for all
s′, t′ ∈ s̄ ∪ t̄. By preservation of stability (property X2), we have t̄σ >>fho s̄σ. By
compatibility with prepending (property X8), we get ū · t̄σ >>fho ū · s̄σ, as required
to apply H3. ��

Theorem 18 (Well-foundedness). There exists no infinite descending chain
s0 >ho s1 >ho · · · .

Proof. We assume that there exists a chain s0 >ho s1 >ho · · · and show that this
leads to a contradiction. If the chain contains nonground terms, we can instan-
tiate all variables by arbitrary terms respecting ghd and exploit stability under
substitution (Theorem 17). Thus, we may assume without loss of generality that
the terms s0, s1, . . . are ground.

We call a ground term bad if it belongs to an infinite descending >ho-chain.
Without loss of generality, we assume that s0 has minimal size among all bad
terms and that si+1 has minimal size among all bad terms t such that si >ho t.

For each index i, the term si must be of the form f u1 . . . un for some
symbol f and ground terms u1, . . . , un. Let Ui = ∅ if n = 0; otherwise, let

472 J.C. Blanchette et al.

Ui = {u1, . . . , un, f u1 · · · un−1}. Now let U =
⋃∞

i=0 Ui. All terms belonging to
U are good: A term from U0’s badness would contradict the minimality of s0;
and if a term u ∈ Ui+1 were bad, we would have si+1 >ho u by rule H1 and
si >ho u by transitivity, contradicting the minimality of si+1.

Next, we show that the only rules that can be used to derive si >ho si+1 are
H2 and H3. Suppose H1 were used. Then there would exist a good term u ∈ Ui

such that u ≥ho si+1 >ho si+2. This would imply the existence of an infinite chain
u >ho si+2 >ho si+3 >ho · · · , contradicting the goodness of u.

Because � is well founded and H3 preserves the head symbol, rule H2 can
be applied only a finite number of times in the chain. Hence, there must exist
an index k such that si >ho si+1 is derived using H3 for all i ≥ k. Consequently,
all terms si for i ≥ k share the same head symbol f.

Let si = f ūi for all i ≥ k. Since H3 is used consistently from index k, we have
an infinite >>fho-chain: ūk >>fho ūk+1 >>

f
ho ūk+2 >>

f
ho · · · . But since U contains only

good terms and comprises all terms occurring in some argument tuple ūi, >ho is
well founded on U. By preservation of well-foundedness (property X5), >>fho is
well founded. This contradicts the existence of the above >>fho-chain. ��

Theorem 19 (Ground Totality). Assume >>f preserves totality (property X7)
for every symbol f ∈ Σ, and let s, t be ground terms. Then either t ≥ho s or t <ho s.

Proof. By strong induction on |s| + |t|. If not chksubs(t, s), then t �>ho s1 and
t �>ho s2 for s = s1 s2. By the induction hypothesis, s1 ≥ho t and s2 ≥ho t. Thus,
s >ho t by rule H1. Analogously, if not chksubs(s, t), then t >ho s. Hence, we may
assume chksubs(t, s) and chksubs(s, t). Let s = f s̄ and t = g t̄. If g � f or g ≺ f, we
have t >ho s or s >ho t by rule H2. Otherwise, f = g. By preservation of totality
(property X7), we have either t̄ >>fho s̄, t̄ <<fho s̄, or s̄ = t̄. In the first two cases,
we have t >ho s or t <ho s by rule H3. In the third case, we have s = t. ��

Having now established the main properties of >ho, we turn to the correspon-
dence between >ho, its optimized variant >oh, and the first-order RPO >fo.

Lemma 20. (1) If u >oh t and t >oh s, then u >oh s. (2) s t >oh s.

Theorem 21 (Coincidence with Optimized Variant). Let >ho and >oh
be orders induced by the same precedence � and extension operator family >>f

(which must satisfy property X10 by the definition of >oh). Then t >ho s if and
only if t >oh s.

Proof. By strong induction on |s| + |t|. The interesting implication is t >ho s =�⇒
t >oh s.

If t >ho s was derived by rule H1, we have t = t1 t2 and tj ≥ho s for some j.
Hence tj ≥oh s by the induction hypothesis, and t >oh tj by Lemma 20(2) or rule
O1. We get t >oh s either immediately or by Lemma 20(1).

If t >ho s was derived by rule H2, we derive t >oh s by applying O2. We must
show that chksubs implies chkargs. We have s = s1 s2 with t >ho s1 and t >ho s2.
Let s = ζ s̄ s2. We must show that t >oh s′ for all s′ ∈ s̄ ∪ {s2}. If s′ = s2,

A Lambda-Free Higher-Order Recursive Path Order 473

we have t >ho s2 immediately. Otherwise, from t >ho s1, we have t >ho s′ by
the subterm property (Theorem 14). In both cases, we get chkargs(t, s̄) by the
induction hypothesis.

If t >ho s was derived by rule H3, we derive t >oh s by applying O3. The
chkargs(t, s̄) condition is proved as in the H2 case. From t̄ >>fho s̄, we derive t̄ >>foh s̄
by the induction hypothesis and monotonicity of >>f (property X1). ��

Corollary 22 (Coincidence with First-Order RPO). Let >ho and >fo be
orders induced by the same precedence � and extension operator family >>f sat-
isfying minimality of the empty tuple (property X10). Then >ho and >fo coincide
on first-order terms.

5 Examples

Although our motivation was to design a term order suitable for higher-order
superposition, we can use >ho (and >oh) to show the termination of λ-free higher-
order term rewriting systems or, equivalently, applicative term rewriting systems
[24]. We present a selection of examples of how this can be done, illustrating the
strengths and weaknesses of the order in this context. Many of the examples
are taken from the literature. Since >ho coincides with the standard RPO on
first-order terms, we consider only examples featuring higher-order constructs.

To establish termination of a term rewriting system, a standard approach is
to show that all of its rewrite rules t → s can be oriented as t > s by a single
reduction order : a well-founded partial order that is compatible with contexts
and stable under substitutions. Regrettably, >ho is not a reduction order since
it lacks compatibility with arguments. But the conditional Theorem 16 is often
sufficient in practice. Assuming that the extension operator is compatible with
appending (property X9), we may apply H2 and H3 to orient rewrite rules.
Moreover, we may even use H1 for rewrite rules that operate on non-function
terms; supplying an argument to a non-function would violate typing. To identify
non-functions and to restrict instantiations, we assume that terms respect the
typing discipline of the simply typed λ-calculus. Together, property X9 and the
restriction on the application of H1 achieve the same effect as η-saturation [19].

For simplicity, the examples are all monolithic, but a modern termination
prover would use the dependency pair framework [2] to break down a large
term rewriting system into smaller components that can be analyzed separately.
Unless mentioned otherwise, the RPO instances considered employ the length-
lexicographic extension operator. We consistently use italics for variables and
sans serif for symbols

Example 23. Consider the following term rewriting system:

insert (f n) (image f A) 1→ image f (insert n A) square n 2→ times n n

Rule 1 captures a set-theoretic property: {f (n)} ∪ f [A] = f [{n} ∪ A]. We
can prove termination using >ho: By letting insert � image and square � times,

474 J.C. Blanchette et al.

both rules can be oriented by H2. In contrast, rule 2 is beyond the reach of the
applicative order >ap for the same reason that g x �>ap f x x in Example 9. The
system is also beyond the scope of the uncurrying approach of Hirokawa et al.
[19] because of the variable application f n.

Example 24. The following system specifies a map function on an ML-style
option type equipped with two constructors, None and Some:

omap f None 1→ None omap f (Some n) 2→ Some (f n)

To establish termination, it would appear that it suffices to apply H2 to orient
both rules, using a precedence such that omap � None,Some. However, a closer
inspection reveals that the chksubs condition blocks the application of H2 to orient
rule 2: We would need omap f (Some n) >ho f n, which cannot be established
without further assumptions. With a typing discipline that distinguishes between
options and other data, f cannot be instantiated by a term having omap as its
head. Thus, we can safely restrict ghd(f) to Σ − {omap} and assign the highest
precedence to omap. We then have omap f (Some n) >ho f n by H2, as required
to orient rule 2.

The above example suggests a general strategy for coping with variables that
occur unapplied on the left-hand side of a rewrite rule and applied on the right-
hand side.

Example 25. The next system is taken from Lysne and Piris [28, Example 5],
with an additional rule adapted from Lifantsev and Bachmair [27, Example 6]:

iter f n Nil
1→ n summs 3→ iter plus 0ms

iter f n (Consm ms) 2→ iter f (f n m) ms iter times 1ms 4→ prodms

The iter function is a general iterator on lists of numbers. Reasoning about the
types, we can safely take ghd(f) = Σ − {iter, sum}. By letting sum � iter and
ensuring that iter is greater than any other symbol, rule 1 can be oriented by
H1, rule 2 can be oriented by H3, and rules 3 and 4 can be oriented by H2. The
application of H1 is legitimate if numbers are distinguished from functions.

Example 26. The following rules are taken from Jouannaud and Rubio [22,
Sect. 4.2]:

fmap x Nil → Nil fmap x (Cons f fs) → Cons (f x) (fmap x fs)

The fmap function applies each function from a list to a value x and returns the
list of results. The typing discipline allows us to take ghd(f) = Σ − {fmap}. By
making fmap greater than any other symbol, both rules can be oriented by H2.

Example 27. The next system is from Toyama [35, Example 4]:

ite true xs ys 1→ xs filter q Nil 3→ Nil

ite false xs ys 2→ ys filter q (Cons x xs)
4→ ite (q x) (Cons x (filter q xs)) (filter q xs)

A Lambda-Free Higher-Order Recursive Path Order 475

The typing discipline allows us to take ghd(q) = Σ−{filter}. Given filter � f for all
f ∈ Σ, rules 1 and 2 can be oriented by H1, and rules 3 and 4 can be oriented by
H2. The application of H1 is legitimate if lists are distinguished from functions.

Example 28. Sternagel and Thiemann [32, Example 1] compare different
approaches to uncurrying on the following system:

minus 0 1→ K 0 Km n
5→ m

minusm 0 2→ m map f Nil 6→ Nil
minusm m

3→ 0 map f (Consm ms)
7→ Cons (f m) (map f ms)

minus (Sm) (S n)
4→ minusm n

The minus function implements subtraction on Peano numbers, whereas map
applies a function elementwise to a finite list. We establish termination by
employing >ho with a precedence such that minus � K, 0 and map � Cons.
Rules 2, 5, and 6 are oriented by H1; rules 1, 3, and 7 are oriented by H2; and
rule 4 is oriented by H3. The application of H1 is legitimate if numbers and lists
are distinguished from functions.

Example 29. Lifantsev and Bachmair [27, Example 8] define a higher-order
function that applies its first argument twice to its second argument: twice f x →
f (f x). This rewrite rule is problematic in our framework, because we cannot
rely on the typing discipline to prevent the instantiation of f by a term with
twice as its head. Indeed, twice (twice S) is a natural way to specify the function
x �→ S (S (S (S x))).

Example 30. Toyama’s recursor specification [35, Example 6] exhibits the same
limitation in a more general context:

rec n f 0 → n rec n f (Sm) → f (Sm) (rec n f m)

Example 31. Let ghd(f) = ghd(g) = {prod}, and consider the system

plus 0m 1→ m plus (Sm) n 2→ plusm (S n) f prod 3→ f f (g m) 4→ f m g

These rules can be used to simplify nested prod terms; for example:
prod (prod a b) 4→ prod b (prod a) 4→ prod b a prod

3→ prod b a. The >ho order can
be employed by taking >>prod to be the multiset extension and by relying on
typing to orient rule 1 with H1. The applicative order >ap fails because a combi-
nation of lexicographic and multiset extensions is needed to orient rules 2 and 4.
The uncurrying approach of Hirokawa et al. [19] also fails because of the applied
variables on the left-hand side of rule 4.

Carsten Fuhs, a developer of the AProVE termination prover, generously
offered to apply his tool to our examples, expressed as untyped applicative term
rewriting systems. Using AProVE’s web interface with a 60 s time limit, he could
establish the termination of Examples 23, 24, 28, 29, and 31. The tool timed out
for Examples 25–27 and 30. For Example 31, the tool found a complex proof

476 J.C. Blanchette et al.

involving several applications of linear polynomial interpretations, dependency
pairs, and 2×2 matrix interpretations (to cope with rule 4). Although our focus
is on superposition, it would be interesting to implement the new RPO in a
tool such as AProVE and to conduct a more systematic evaluation on standard
higher-order termination benchmarks against higher-order termination provers
such as THOR [12] and WANDA [25].

6 Discussion

Rewriting of λ-free higher-order terms has been amply studied in the literature,
under various names such as applicative term rewriting [24] and simply typed
term rewriting [37]. Translations from higher-order to first-order term rewriting
systems were designed by Aoto and Yamada [1], Toyama [35], Hirokawa et al.
[19], and others. Toyama also studied S-expressions, a formalism that regards
((f a) b) and (f a b) as distinct. For higher-order terms with λ-abstraction, var-
ious frameworks have been proposed, including Nipkow’s higher-order rewrite
systems [30], Blanqui’s inductive data type systems [9], and Kop’s algebraic
functional systems with metavariables [25]. Kop’s thesis [25, Chapter 3] includes
a comprehensive overview.

When designing our RPO >ho, we aimed at full coincidence with the first-
order case. Our goal is to gradually transform first-order automatic provers into
higher-order provers. By carefully generalizing the proof calculi and data struc-
tures, we aim at designing provers that behave like first-order provers on first-
order problems, perform mostly like first-order provers on higher-order problems
that are mostly first-order, and scale up to arbitrary higher-order problems.

The simplicity of >ho fails to do justice to the labor of exploring the design
space. Methodologically, the use of a proof assistant [31] equipped with a model
finder [6] and automatic theorem provers [5] was invaluable for designing the
orders, proving their properties, and carrying out various experiments. As one
example among many, at a late stage in the design process, we generalized the
rules H2 and O2 to allow variable heads. Thanks to the tool support, which keeps
track of what must be changed, it took us less than one hour to adapt the main
proofs and convince ourselves that the new approach worked, and a few more
hours to complete the proofs. Performing such changes on paper is a less reliable,
and less satisfying, enterprise. Another role of the formal proofs is to serve as
companions to the informal proofs, clarifying finer points. Term rewriting lends
itself well to formalization in proof assistants, perhaps because it requires little
sophisticated mathematics beyond well-founded induction and recursion. The
CoLoR library by Blanqui and Koprowski [11], in Coq, the CiME3 toolkit by
Contejean et al. [15], also in Coq, and the IsaFoR library by Thiemann and
Sternagel [34], in Isabelle/HOL, have already explored this territory, providing
formalized metatheory but also certified termination and confluence checkers.

The >ho order is in some ways less flexible than the hybrid curried–uncurried
approaches, where the currying is one more parameter that can be adjusted.
In exchange, it raises the level of abstraction, by providing a uniform view of

A Lambda-Free Higher-Order Recursive Path Order 477

higher-order terms, and it works in the open-world setting of higher-order proof
search. For example, consider the proof obligation ∃g . ∀x , y . g x y = f y x and
the SK combinator definitions ∀x ,y . K x y = x and ∀x ,y ,z . S x y z = x z (y z). A
prover will need to synthesize the witness S (K (S f))K, representing λx y . f y x ,
for the existential variable g . A hybrid approach such as HORPO might infer
arity 2 for f based on the problem, but then the witness, in which f appears
unapplied, cannot be expressed.

An open question is whether it is possible to design an order that largely
coincides with the first-order RPO while enjoying compatibility with arbitrary
contexts. This could presumably be achieved by weakening rule H1 and strength-
ening the chksubs condition of H2 and H3 accordingly; so far, our attempts have
resulted only in a rediscovery of the applicative RPO.

For superposition, richer type systems would be desirable. These could be
incorporated either by simply ignoring the types, by encoding them in the terms,
or by generalizing the order. Support for λ-abstraction would be useful but chal-
lenging. Any well-founded order enjoying the subterm property would need to
distinguish β-equivalent terms, to exclude the cycle a =β (λx . a) (f a) > f a > a.
We could aim at compatibility with β-reduction, but even this property might be
irrelevant for higher-order superposition. It might even be preferable to avoid λ-
abstractions altogether, by relying on SK combinators or by adding new symbols
and their definitions during proof search.

Acknowledgment. We are grateful to Stephan Merz, Tobias Nipkow, and Christoph
Weidenbach for making this research possible; to Heiko Becker and Dmitriy Traytel for
proving some theorems on the lexicographic and multiset extensions in Isabelle/HOL;
to Carsten Fuhs for his invaluable feedback and his experiments; to Alexander Steen
for pointing us to related work; and to Simon Cruanes, Mark Summerfield, Dmitriy
Traytel, and the anonymous reviewers for suggesting textual improvements.

Blanchette has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agreement
No. 713999, Matryoshka). Wand is supported by the Deutsche Forschungsgemeinschaft
(DFG) grant Hardening the Hammer (NI 491/14-1).

References

1. Aoto, T., Yamada, T.: Termination of simply typed term rewriting by translation
and labelling. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 380–394.
Springer, Heidelberg (2003). doi:10.1007/3-540-44881-0 27

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.
Comput. Sci. 236(1–2), 133–178 (2000)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H.
(ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 215–254.
Elsevier (2014)

5. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016)

http://dx.doi.org/10.1007/3-540-44881-0_27

478 J.C. Blanchette et al.

6. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14052-5 11

7. Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of recursive path orders
for lambda-free higher-order terms. Archive of Formal Proofs, formal proof devel-
opment (2016). https://isa-afp.org/entries/Lambda Free RPOs.shtml

8. Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recur-
sive path order. Technical report (2016). http://people.mpi-inf.mpg.de/jblanche/
lambda free rpo rep.pdf

9. Blanqui, F.: Termination and confluence of higher-order rewrite systems. In:
Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 47–61. Springer, Heidelberg
(2000). doi:10.1007/10721975 4

10. Blanqui, F., Jouannaud, J., Rubio, A.: The computability path ordering. Log.
Meth. Comput. Sci. 11(4) (2015)

11. Blanqui, F., Koprowski, A.: CoLoR: A Coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Math.
Struct. Comput. Sci. 21(4), 827–859 (2011)

12. Bofill, M., Borralleras, C., Rodŕıguez-Carbonell, E., Rubio, A.: The recursive path
and polynomial ordering for first-order and higher-order terms. J. Log. Comput.
23(1), 263–305 (2013)

13. Bofill, M., Rubio, A.: Paramodulation with non-monotonic orderings and simplifi-
cation. J. Autom. Reasoning 50(1), 51–98 (2013)

14. Codish, M., Giesl, J., Schneider-Kamp, P., Thiemann, R.: SAT solving for termina-
tion proofs with recursive path orders and dependency pairs. J. Autom. Reasoning
49(1), 53–93 (2012)

15. Contejean, É., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certified
proofs with CiME3. In: Schmidt-Schauß, M. (ed.) Rewriting Techniques and Appli-
cations (RTA 2011). Leibniz International Proceedings in Informatics (LIPIcs), vol.
10, pp. 21–30. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2011)

16. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979)

17. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175–188. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27813-9 14

18. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)
19. Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination and complex-

ity. J. Autom. Reasoning 50(3), 279–315 (2013)
20. Huet, G., Oppen, D.C.: Equations and rewrite rules: A survey. In: Book, R.V.

(ed.) Formal Language Theory: Perspectives and Open Problems, pp. 349–405.
Academic Press (1980)

21. Hughes, R.J.M.: Super-combinators: A new implementation method for applica-
tive languages. In: ACM Symposium on LISP and Functional Programming (LFP
1982), pp. 1–10. ACM Press (1982)

22. Jouannaud, J.-P., Rubio, A.: A recursive path ordering for higher-order terms in
η-long β-normal form. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp.
108–122. Springer, Heidelberg (1996). doi:10.1007/3-540-61464-8 46

23. Jouannaud, J., Rubio, A.: Polymorphic higher-order recursive path orderings. J.
ACM 54(1), 2:1–2:48 (2007)

24. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.: Comparing curried and uncur-
ried rewriting. J. Symb. Comput. 21(1), 15–39 (1996)

http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-14052-5_11
https://isa-afp.org/entries/Lambda_Free_RPOs.shtml
http://people.mpi-inf.mpg.de/jblanche/lambda_free_rpo_rep.pdf
http://people.mpi-inf.mpg.de/jblanche/lambda_free_rpo_rep.pdf
http://dx.doi.org/10.1007/10721975_4
http://dx.doi.org/10.1007/978-3-540-27813-9_14
http://dx.doi.org/10.1007/3-540-61464-8_46

A Lambda-Free Higher-Order Recursive Path Order 479

25. Kop, C.: Higher Order Termination. Ph.D. thesis, Vrije Universiteit Amsterdam
(2012)

26. Kop, C., Raamsdonk, F.: A higher-order iterative path ordering. In: Cervesato, I.,
Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 697–711.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-89439-1 48

27. Lifantsev, M., Bachmair, L.: An LPO-based termination ordering for higher-
order terms without λ-abstraction. In: Grundy, J., Newey, M. (eds.) TPHOLs
1998. LNCS, vol. 1479, pp. 277–293. Springer, Heidelberg (1998). doi:10.1007/
BFb0055142

28. Lysne, O., Piris, J.: A termination ordering for higher order rewrite systems. In:
Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 26–40. Springer, Heidelberg (1995).
doi:10.1007/3-540-59200-8 45

29. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443.
Elsevier and MIT Press (2001)

30. Nipkow, T.: Higher-order critical pairs. In: Logic in Computer Science (LICS 1991),
pp. 342–349. IEEE Computer Society (1991)

31. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

32. Sternagel, C., Thiemann, R.: Generalized and formalized uncurrying. In: Tinelli,
C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp.
243–258. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24364-6 17

33. Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination tech-
niques based on multiset orderings. In: Tiwari, A. (ed.) Rewriting Techniques and
Applications (RTA 2012). LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik (2012)

34. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 452–468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 31

35. Toyama, Y.: Termination of S-expression rewriting systems: lexicographic path
ordering for higher-order terms. In: Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091,
pp. 40–54. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25979-4 3

36. Turner, D.A.: A new implementation technique for applicative languages. Softw.:
Pract. Experience 9(1), 31–49 (1979)

37. Yamada, T.: Confluence and termination of simply typed term rewriting sys-
tems. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 338–352. Springer,
Heidelberg (2001). doi:10.1007/3-540-45127-7 25

38. Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term
Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55,
pp. 181–259. Cambridge University Press (2003)

http://dx.doi.org/10.1007/978-3-540-89439-1_48
http://dx.doi.org/10.1007/BFb0055142
http://dx.doi.org/10.1007/BFb0055142
http://dx.doi.org/10.1007/3-540-59200-8_45
http://dx.doi.org/10.1007/978-3-642-24364-6_17
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-540-25979-4_3
http://dx.doi.org/10.1007/3-540-45127-7_25

Automated Constructivization of Proofs

Frédéric Gilbert(B)

École des Ponts ParisTech, Inria, CEA LIST, Marne-la-Vallée, France
frederic.a.gilbert@inria.fr

Abstract. No computable function can output a constructive proof
from a classical one whenever its associated theorem also holds con-
structively. We show in this paper that it is however possible, in prac-
tice, to turn a large amount of classical proofs into constructive ones.
We describe for this purpose a linear-time constructivization algorithm
which is provably complete on large fragments of predicate logic.

1 Introduction

Classical and constructive provability match on several specific sets of propo-
sitions. In propositional logic, as a consequence of Glivenko’s theorem [1], a
formula ¬A is a classical theorem iff it is a constructive one. In arithmetic, a
Π0

2 proposition is a theorem in Peano arithmetic iff it is a theorem in Heyting
arithmetic [2].

We present in this paper an efficient constructivization algorithm Con-
struct for predicate logic in general, from cut-free classical sequent calculus
LK to constructive sequent calculus LJ. Unlike the two previous examples, con-
structivization in predicate logic is as hard as constructive theorem proving.
Therefore, as we expect Construct to terminate, Construct is incomplete in
the sense that it may terminate with a failure output.

Construct consists of three linear-time steps:

1. An algorithm Normalize, designed to push occurrences of the right weak-
ening rule towards the root in LK proofs. Its purpose is to limit the number
of propositions appearing at the right-hand side of sequents in LK proofs.

2. A partial translation from cut-free LK to a new constructive system LI.
This algorithm is referred to as Annotate as the LI system is designed as
LK equipped with specific annotations – making it a constructive system.
Annotate is the only step which may fail.

3. A complete translation Interpret from LI to LJ.

The Normalize step taken alone leads to a simple yet efficient construc-
tivization algorithm Weak construct, which is defined to succeed whenever
the result of Normalize happens to be directly interpretable in LJ, i.e. to have
at most one proposition on the right-hand side of sequents in its proof.

The main property of Construct is to be provably complete on large
fragments of predicate logic, in the sense that for any proposition A in one
c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 480–495, 2017.
DOI: 10.1007/978-3-662-54458-7 28

Automated Constructivization of Proofs 481

of these fragments, Construct is ensured to terminate successfully on any
cut-free LK proof of A. Such fragments for which classical and constructive
provability match will be referred to as constructive fragments. For instance,
as a consequence of Glivenko’s theorem [1], the set of negated propositions is a
constructive fragment of propositional logic. The completeness properties of
Construct lead to the following results:

– The identification of a new constructive fragment F , the fragment of asser-
tions containing no negative occurrence of the connective ∨ and no positive
occurrence of the connective ⇒. Both Weak construct and Construct
are provably complete on F .

– The completeness of Construct on two already known constructive frag-
ments. The first one, referred to as FKu, appears as the set of fix points of
a polarized version of Kuroda’s double-negation translation [3,4]. The second
one, referred to as FMa, appears as a set of assertions for which any cut-free
LK proof can be directly interpreted as a proof in Maehara’s multi-succedent
calculus [5]. Hence, the completeness of Construct on these two fragments
yields a uniform proof of two results coming from very different works.

After the introduction of basic notations and definitions, the two already
known constructive fragments FKu and FMa are presented. Then, the Nor-
malize step is presented along with the simple constructivization algorithm
Weak construct. In the following section, the new constructive fragment F
is defined, and Weak construct is proved complete on F . Then, the full con-
structivization algorithm Construct is introduced together with the proof of
its completeness on F , FKu and FMa. In the last part, experimental results
of constructivization using Weak construct and Construct are presented.
These experiments are based the classical theorem prover Zenon [10] and the
constructive proof checker Dedukti [9].

2 Notations and Definitions

In the following, we only consider as primitive the connectives and quantifiers
∀, ∃, ∧, ∨, ⇒ and ⊥. ¬A is defined as A ⇒ ⊥. �, which doesn’t appear in this
paper, could be defined as ⊥ ⇒ ⊥.

We use a definition of sequents based on multisets. The size of a multiset
Γ will be referred to as |Γ |. We will use the notation (A) to refer to a multiset
containing either zero or one element. Given a multiset Γ = A1, · · · , An, we
will use the notations ¬Γ and Γ ⇒ B as shorthands for ¬A1, · · · ,¬An, and
A1 ⇒ B, · · · , An ⇒ B respectively. Finally, we use the notation

∨
to refer to an

arbitrary encoding of the n-ary disjunction from the binary one – using ⊥ for
the nullary case.

Definition 1. We define the cut-free classical sequent calculus LK with the fol-
lowing rules:

482 F. Gilbert

⊥L⊥ 	 axiom
A 	 A

Γ 	 Δ weakL
Γ, Γ ′ 	 Δ

Γ 	 Δ weakR
Γ 	 Δ,Δ′

Γ,A,A 	 Δ
contrL

Γ,A 	 Δ

Γ 	 A,A,Δ
contrR

Γ 	 A,Δ

Γ,A,B 	 Δ ∧L
Γ,A ∧ B 	 Δ

Γ 	 A,Δ Γ 	 B,Δ ∧R
Γ 	 A ∧ B,Δ

Γ,A 	 Δ Γ,B 	 Δ ∨L
Γ,A ∨ B 	 Δ

Γ 	 A,B,Δ ∨R
Γ 	 A ∨ B,Δ

Γ 	 A,Δ Γ,B 	 Δ ⇒L
Γ,A ⇒ B 	 Δ

Γ,A 	 B,Δ ⇒R
Γ 	 A ⇒ B,Δ

Γ,A[t/x] 	 Δ
∀LΓ,∀xA 	 Δ

Γ 	 A,Δ ∀RΓ 	 ∀xA,Δ

Γ,A 	 Δ ∃LΓ,∃xA 	 Δ

Γ 	 A[t/x],Δ
∃RΓ 	 ∃xA,Δ

with the standard freshness constraints for the variables introduced in the rules
∀R and ∃L.

Definition 2. We define the constructive sequent calculus LJ from LK, apply-
ing the following changes:

– All rules except contrR, ∨R, ⇒L are restricted to sequents with at most one
proposition on the right-hand side of sequents.

For instance, ∧R becomes Γ 	 A Γ 	 B ∧R
Γ 	 A ∧ B

– There is no contrR rule

– The ∨R rule is split into two rules Γ 	 Ai ∨R
Γ 	 A0 ∨ A1

– The ⇒L rule becomes
Γ 	 A Γ,B 	 (C) ⇒L

Γ,A ⇒ B 	 (C)

Automated Constructivization of Proofs 483

– We add a cut rule
Γ 	 A Γ,A 	 (B)

cut
Γ 	 (B)

Remark 1. In these presentations of LK and LJ,

– weakenings are applied to multisets instead of propositions

– ⊥L and axiom are not relaxed to ⊥LΓ,⊥ 	 Δ and axiom
Γ,A 	 A,Δ

These specific conventions are chosen to ease the definition of the algorithm
Normalize in Sect. 5, which requires pushing weakenings towards the root of
the proof.

Definition 3. We introduce the following notations in LK, along with their
constructive analogs in LJ:

– axiom∗
Γ,A 	 A,Δ for

axiom
A 	 A weakLΓ,A 	 A

weakRΓ,A 	 A,Δ

– ⊥∗
LΓ,⊥ 	 Δ for

⊥L⊥ 	 weakLΓ,⊥ 	
weakRΓ,⊥ 	 Δ

–
Γ 	 A,Δ ¬L
Γ,¬A 	 Δ

for Γ 	 A,Δ
⊥∗

LΓ,⊥ 	 Δ ⇒L
Γ,¬A 	 Δ

–
Γ,A 	 Δ ¬R

Γ 	 ¬A,Δ
for

Γ,A 	 Δ
weakRΓ,A 	 ⊥,Δ ⇒R

Γ 	 ¬A,Δ

3 State of the Art: Two Constructive Fragments
of Predicate Logic

Constructive sequent calculus – as well as constructive natural deduction –
extends the notion of constructive provability from propositions to sequents of
the shape Γ 	 (G), which will be referred to as mono-succedent sequents. As
a consequence, we will define constructive fragments of predicate logic as sets of
mono-succedent sequents instead of sets of simple propositions.

The definitions of these fragments will be based on the usual notion of polarity
of occurrences of connectives, quantifiers and atoms in a sequent: given a sequent
Γ 	 Δ,

– the root of a proposition in Γ is negative, the root of a proposition in Δ is
positive

484 F. Gilbert

– polarity only changes between an occurrence of A ⇒ B and the occurrence of
its direct subformula A (in particular, as ¬A is defined as A ⇒ ⊥, it changes
between ¬A and its direct subformula A).

Definition 4. We define the following fragments of predicate logic:

– FKu, the fragment of sequents of the shape Γ 	 containing no positive occur-
rence of ∀.

– FMa, the fragment of mono-succedent sequents containing no positive occur-
rence of ∀ and no positive occurrence of ⇒.

Theorem 1. FKu is a constructive fragment of predicate logic: for any sequent
Γ 	 in FKu, Γ 	 is classically provable iff it is constructively provable.

The key arguments to prove this theorem as an adaptation of Kuroda’s double
negation translation [3] are the following:

1. Kuroda’s double negation translation [3] is based on a double negation trans-
lation | · |Ku inserting double-negations after any occurrence of ∀. The original
theorem is that a proposition A is classically provable iff ¬¬|A|Ku is construc-
tively provable.

2. It can adapted in two ways. First, | · |Ku can be lightened to insert double
negations only after positive occurrences of ∀ as shown in [4], and extended
from propositions to contexts. Second, the main statement can be turned
to the following one: a classical sequent Γ 	 Δ is classically provable iff
|Γ,¬Δ|Ku 	 is constructively provable.

3. By definition of FKu, a sequent Γ 	 in FKu admits the property Γ = |Γ |Ku,
hence Γ 	 is classically provable iff it is constructively provable.

We don’t give more details on this proof as the completeness of Construct
on FKu shown in Sect. 6 will yield a new proof of this result.

Remark 2. One could expect similar constructive fragments to be found
using other double negation translations, such as Gödel-Gentzen’s [6,7] or
Kolmogorov’s [8]. Unfortunately, these two translations always insert double-
negations in front of atoms, hence they cannot be easily modified to leave a
large fragment of propositions unchanged.

Theorem 2. FMa is a constructive fragment of predicate logic: for any sequent
Γ 	 (G) in FMa, Γ 	 (G) is classically provable iff it is constructively provable.

It lays on a key idea: polarity restrictions have a direct influence on the shape
of cut-free proofs. It can be presented in the following way:

Lemma 1. For any connective or quantifier X and any cut-free LK proof Π of
a sequent Γ 	 Δ:

– If Γ 	 Δ contains no positive occurrence of X, then Π doesn’t contain the
rule XR.

Automated Constructivization of Proofs 485

– If Γ 	 Δ contains no negative occurrence of X, then Π doesn’t contain the
rule XL.

This lemma can be proved directly by induction on cut-free LK proofs. Using
this lemma, the key arguments to prove Theorem 2 are the following:

1. All LK rules except ⇒R and ∀R rules belong in Maehara’s multi-succedent
calculus [5], a constructive multi-succedent sequent calculus.

2. By Lemma 1, FMa sequents are proved by cut-free LK proofs without the
⇒R and ∀R rules.

3. Hence, a sequent Γ 	 (G) in FMa is classically provable iff it is constructively
provable.

Again, we don’t give more details on this proof as the completeness of Con-
struct on FMa shown in Sect. 6 will yield a new proof of this result.

Remark 3. The same fragment FMa can be found using similar multi-succedent
constructive systems, such as Dragalin’s calculus GHPC [11].

4 The Weakening Normalization

A naive constructivization algorithm can be defined by selecting LK proofs
which can be directly interpreted in LJ.

In this direct interpretation, premises of the classical rules ∨R and ⇒L may
be multi-succedent only when they are introduced by a weakR whose premise is
a mono-succedent sequent. For instance, the classical derivation

Γ 	 A weakRΓ 	 A,B ∨R
Γ 	 A ∨ B

can be interpreted as Γ 	 A ∨R
Γ 	 A ∨ B

.

However, in practice, the weakR rule doesn’t appear as low as possible – in
presentations using multi-succedents axiom rules, they may not appear at all.
Such situations are problematic for constructive interpretations: for instance, a
classical proof such as

axiom
A 	 A weakRA 	 A,B ⇒R	 A ⇒ A,B ∨R	 (A ⇒ A) ∨ B

cannot be interpreted in LJ directly because the weakR rule doesn’t occur imme-
diately above the ∨R rule.

The Normalize algorithm is designed to address this issue, pushing the
application of weakR as low as possible in proofs. In its definition, we need to
consider all possible configuration of weakR appearing above a LK rule. In order
to factor this definition, we partition all such configurations into three classes
A, B, and C.

These definitions will be based on the following notation of LK proofs:

486 F. Gilbert

Definition 5. We write any cut-free LK rule X as

Γ,L1 	 R1,Δ · · · Γ,Ln 	 Rn,Δ
X

Γ,L 	 R,Δ

where L1, · · · , Ln, R1, · · · , Rn, L and R are the (possibly empty) multisets of
propositions containing the active propositions of the rule X.

For instance, in the rule
Γ,A 	 B,Δ ⇒R

Γ 	 A ⇒ B,Δ
,

L1 = {A}, R1 = {B}, L = ∅, and R = {A ⇒ B}.

The classes A, B, and C are defined as follows:

Definition 6. We consider all configurations where weakR appears above a LK
rule X, in its i-th premise:

· · ·
Γ,Li 	 Δi

weakRΓ,Li 	 Ri,Δ · · ·
X

Γ,L 	 R,Δ

This weakening can be done on propositions in Ri, in Δ or both: in the general
case, we only know Δi ⊆ (Ri,Δ). We define the following partition of all cases:

– A: Ri ⊆ Δi

– B: Ri �⊆ Δi and Δi ⊆ Δ

– C: Ri �⊆ Δi and Δi �⊆ Δ. This only happens when |Ri| = 2, when exactly one
proposition of Ri is in Δi.

Definition 7. Normalize is a linear-time algorithm associating any cut-free
LK proof of a sequent Γ 	 Δ to a proof of a sequent Γ 	 Δ′, where Δ′ ⊆ Δ.
It is defined recursively. Using the conventions of Definition 5, we describe the
original proof Π as

Π1

Γ,L1 	 R1,Δ · · ·
Πn

Γ,Ln 	 Rn,Δ
X

Γ,L 	 R,Δ

The definition of Normalize(Π) is based on the analysis of the proof

Normalize(Π1)
Γ,L1 	 Δ1

weakRΓ,L1 	 R1,Δ · · ·

Normalize(Πn)
Γ,Ln 	 Δn

weakRΓ,Ln 	 Rn,Δ
X

Γ,L 	 R,Δ

The different cases are the following:

Automated Constructivization of Proofs 487

– Case 1: for all index i, A holds, i.e. Ri ⊆ Δi.

If X is weakR, we define Normalize(Π) as Normalize(Π1).

Else, writing Δi = Ri,Δ
′
i, we define Normalize(Π) as

Normalize(Π1)
Γ,L1 	 R1,Δ

′
1 weakR

Γ,L1 	 R1,Δ
′ · · ·

Normalize(Πn)
Γ,Ln 	 Rn,Δ′

n weakR
Γ,Ln 	 Rn,Δ′

X
Γ,L 	 R,Δ′

where Δ′ is the smallest multiset containing all multisets Δ′
i

– Case 2: there exists a smallest premise i for which B holds, i.e. Ri �⊆ Δi and
Δi ⊆ Δ. As Ri �= ∅, ether X is ⇒R or Li = ∅.

If X is ⇒R, we define Normalize(Π) as

Normalize(Π1)
Γ,A 	 Δ1

weakRΓ,A 	 B,Δ1 ⇒R
Γ 	 A ⇒ B,Δ1

Else, Li = ∅ and we define Normalize(Π) as
Normalize(Πi)

Γ 	 Δi weakLΓ,L 	 Δi

– Case 3: there exists a smallest premise i for which the case C applies, i.e.
Ri �⊆ Δi and Δi �⊆ Δ. This only happens when |Ri| = 2, when exactly one
proposition of Ri is in Δi. In this case, X is either contrR or ∨R.

If X is contrR, we can write R1 = A,A, and Δ1 = (A,Δ′
1) with Δ′

1 ⊆ Δ. We
define Normalize(Π) as Normalize(Π1).

If X is ∨R, we can write R1 = A0, A1, and Δ1 = (Ak,Δ
′
1) with Δ′

1 ⊆ Δ.

We define Normalize(Π) as

Normalize(Π1)
Γ 	 Ak,Δ

′
1 weakR

Γ 	 A0, A1,Δ
′
1 ∨R

Γ 	 A0 ∨ A1,Δ
′
1

Remark 4. The nullary rules axiom and ⊥L having no premise, they match the
first case.

Definition 8. We define a first constructivization algorithm Weak con-
struct, which

– takes as input a cut-free LK proof Π
Γ 	 (G)

,

– computes the proof
Normalize(Π)

weakR
Γ 	 (G)

,

– outputs its LJ interpretation if it exists and fails otherwise.

488 F. Gilbert

5 A New Constructive Fragment

Definition 9. We define F as the fragment of mono-succedent sequents con-
taining no negative occurrence of ∨ and no positive occurrence of ⇒.

Theorem 3. Weak construct is complete on F : if Π is a cut-free LK proof
of a sequent Γ 	 (G) ∈ F , then Weak construct(Π) succeeds.

Proof. By Lemma 1, F sequents are proved by cut-free LK proofs containing
no ∨L or ⇒R rule. We prove that for any such proof Π, Normalize(Π) proves
a mono-succedent sequent interpretable in LJ. This proof is done by induction
on cut-free LK proofs containing no ∨L or ⇒R rule, following the partition of
cases and the notations introduced in the definition of Normalize:

– Case 1: we split this case according to the rule X.

• nullary rules: axiom and ⊥L are interpretable in LJ.
• weakR: The result follows directly by induction hypothesis.
• other unary rules: In these cases Δ′ = Δ′

1, hence Normalize(Π) is

Normalize(Π1)
Γ,L1 	 R1,Δ

′
1 weakR

Γ,L1 	 R1,Δ
′
1

X
Γ,L 	 R,Δ′

1

By induction hypothesis, Normalize(Π1) is interpretable in LJ. Hence,
|R1| ≤ 1, which ensures that X is neither contrR nor ∨R. All other unary
rules lead to a proof interpretable in LJ, therefore the result is inter-
pretable in LJ.

• ∨L: This case doesn’t occur by hypothesis

• ⇒L: By induction hypothesis, Normalize(Π1) and Normalize(Π2) are
interpretable in LJ, hence |R1,Δ

′
1| ≤ 1. As |R1| = 1, Δ′

1 = ∅, and
Δ′ = Δ′

2.

As
Γ 	 A weakR

Γ 	 A,Δ′
2

Γ,B 	 Δ′
2 weakR

Γ,B 	 Δ′
2 ⇒L

Γ,A ⇒ B 	 Δ′
2

is interpretable as
Γ 	 A Γ,B 	 Δ′

2 ⇒L
Γ,A ⇒ B 	 Δ′

2

in LJ, the result follows.

• ∧R: By induction hypothesis, Normalize(Π1) and Normalize(Π2) are
interpretable in LJ, hence |R1,Δ

′
1| ≤ 1 and |R2,Δ

′
2| ≤ 1. As |R1| =

|R2| = 1, Δ′
1 = Δ′

2 = ∅. Therefore Δ′ = ∅, from which the result follows.

– Case 2: By hypothesis, X is not ⇒R, hence Normalize(Π) is defined as

Automated Constructivization of Proofs 489

Normalize(Πi)
Γ 	 Δi weakLΓ,L 	 Δi

The result follows by induction hypothesis.

– Case 3: If X is contrR, the result follows directly by induction hypothesis.
Else, X is ∨R. By induction hypothesis, Normalize(Π1) is interpretable in
LJ, thus |Ak,Δ

′
1| ≤ 1, and Δ′

1 = ∅.

As
Γ 	 Ak weakRΓ 	 A0, A1 ∨R

Γ 	 A0 ∨ A1

is interpretable as Γ 	 Ak ∨R
Γ 	 A0 ∨ A1

in LJ,

the result follows.

Corollary 1. The fragment F is a constructive fragment of predicate logic: a
sequent Γ 	 (G) is classically provable iff it is constructively provable.

6 The Full Constructivization Algorithm

The previous algorithm Weak construct was based on the reject of multi-
succedent sequents. The idea leading to our main algorithm Construct is to try
to interpret multi-succedent sequents constructively as well. This interpretation
is based on a new multi-succedent constructive system, which will be referred to
as LI in the following. As mentioned in the introduction, the constructivization
algorithm Construct comprises three steps: first the algorithm Normalize,
then a partial translation Annotate from LK proofs to LI proofs, and finally
a complete translation Interpret from LI proof to LJ proofs.

There are several ways to interpret multi-succedent sequents constructively.
For instance, Γ 	

∨
Δ and Γ,¬Δ 	 are two possible interpretations of a multi-

succedent sequent Γ 	 Δ. These interpretation are equivalent classically but not
constructively: for instance, the classical sequent 	 A,¬A is not provable con-
structively under the first interpretation, but it is provable constructively under
the second one. As a consequence, some classical rules may be constructively
valid or not according to the chosen interpretation of classical sequents.

The new system LI is built to benefit from the freedom left in the construc-
tive interpretation of classical sequents. LI is designed as a sequent calculus
based on annotated sequents, where the annotation will refer to the choice
of constructive interpretation of the underlying classical sequent. We formalize
first the notion of annotated sequents.

Definition 10. We define the set of annotated sequents as sequents of the
shape Γ 	 Δ1;Δ2.

We define the following interpretation Interpret on annotated sequents:
Interpret(Γ 	 Δ1;Δ2) = Γ,¬Δ2 	

∨
Δ1.

490 F. Gilbert

In the following, this function will be extended from LI proofs to LJ proofs.
We define the following erasure function Erase on annotated sequents:

Erase(Γ 	 Δ1;Δ2) = Γ 	 Δ1,Δ2.
In the following, this function will be extended from LI proofs to LK proofs.

Then, we define the system LI in the following way:

Definition 11. LI is based on the following rules:

⊥L⊥ �; axiom1
A � A; axiom2

A �;A

Γ � Δ1;Δ2
weakL

Γ, Γ ′ � Δ1;Δ2

Γ � Δ1;Δ2
weakR

Γ � Δ1, Δ′
1;Δ2, Δ′

2

Γ, A, A � Δ1;Δ2
contrL

Γ, A � Δ1;Δ2

Γ � A, A, Δ1;Δ2
contr1RΓ � A, Δ1;Δ2

Γ � Δ1;A, A, Δ2
contr2RΓ � Δ1;A, Δ2

Γ, A, B � Δ1;Δ2 ∧L
Γ, A ∧ B � Δ1;Δ2

Γ � A, Δ1;Δ2 Γ � B, Δ1;Δ2 ∧1
RΓ � A ∧ B, Δ1;Δ2

Γ �;A, Δ2 Γ �;B, Δ2 ∧2
RΓ �;A ∧ B, Δ2

Γ � A, Δ1;Δ2 Γ � B, Δ1;Δ2 ∧3
R, |Δ1| ≥ 1

Γ � Δ1;A ∧ B, Δ2

Γ, A � Δ1;Δ2 Γ, B � Δ1;Δ2 ∨L
Γ, A ∨ B � Δ1;Δ2

Γ � A, B, Δ1;Δ2 ∨1
RΓ � A ∨ B, Δ1;Δ2

Γ � Δ1;A, B, Δ2 ∨2
RΓ � Δ1;A ∨ B, Δ2

Γ �;A, Δ2 Γ, B �;Δ2 ⇒1
LΓ, A ⇒ B �;Δ2

Γ � A, Δ1;Δ2 Γ, B � Δ1;Δ2 ⇒2
L, |Δ1| ≥ 1

Γ, A ⇒ B � Δ1;Δ2

Γ, A � B;Δ2 ⇒1
RΓ � A ⇒ B;Δ2

Γ, A �;B, Δ2 ⇒2
RΓ �;A ⇒ B, Δ2

Γ, A[t/x] � Δ1;Δ2 ∀L
Γ, ∀xA � Δ1;Δ2

Γ � A;Δ2 ∀1
RΓ � ∀xA;Δ2

Γ � A;Δ2 ∀2
RΓ �;∀xA, Δ2

Γ, A � Δ1;Δ2 ∃L
Γ, ∃xA � Δ1;Δ2

Γ � A[t/x], Δ1;Δ2 ∃1
RΓ � ∃xA, Δ1;Δ2

Γ � Δ1;A[t/x], Δ2 ∃2
RΓ � Δ1; ∃xA, Δ2

with the standard freshness constraints for the variables introduced in the rules

∀i
R and ∃L.

All LI rules correspond to a LK rule through the erasure of the premises
and the conclusions. Hence, we can extend the Erase function from LI rules to
LK rules, and consequently from LI proofs to LK proofs.

In the same way, we would like to extend the Interpret function from LI
proofs to LJ proofs. This can done associating each LI rule to a partial LJ
proof deriving the interpretation of its conclusion from the interpretation of its
premises. However, such an approach would be heavy: as the disjunction in LJ
is binary,

∨
is a based on a nesting of binary disjunctions, and a proposition in

Γ 	 Δ1;Δ2 can occur deep in Γ,¬Δ2 	
∨

Δ1. As Interpret will be part of

Automated Constructivization of Proofs 491

the constructivization algorithm Construct, we need to find another method
to define it as a linear-time algorithm.

For this reason, we will define the interpretation of rules using the property
that Γ 	

∨
Δ is constructively provable iff Γ,Δ ⇒ G 	 G is provable for any

proposition G.

Definition 12. We define the function Interpret′(·|G) on annotated sequents
as Interpret′(Γ 	 Δ1;Δ2|G) = (Γ,Δ1 ⇒ G,¬Δ2 	 G).

We extend Interpret′ from LI rules to partial LJ derivations in the fol-
lowing way:

From a LI rule Γ 1 	 Δ1
1;Δ

1
2 · · · Γn 	 Δn

1 ;Δn
2

R
Γ 	 Δ1;Δ2

and a proposition G, we define a partial LJ derivation Interpret′(R|G) as
a partial derivation of the form

Interpret′(Γ 1 	 Δ1
1;Δ

1
2|G1) · · · Interpret′(Γn 	 Δn

1 ;Δn
2 |Gn)

...
Interpret′(Γ 	 Δ1;Δ2|G)

The LI system is designed to ensure that such definitions rely on simple
constructive tautologies. As an illustration, we present here the case of the rule

Γ 	 A,Δ1;Δ2 Γ,B 	 Δ1;Δ2 ⇒3
LΓ,A ⇒ B 	 Δ1;Δ2

From a proposition G, defining Σ = Γ,Δ1 ⇒ G,¬Δ2, we derive

axiom∗
Σ,A 	 A

Σ,B 	 G
weakLΣ,B,A 	 G ⇒L

Σ,A ⇒ B,A 	 G ⇒R
Σ,A ⇒ B 	 A ⇒ G

Σ,A ⇒ G 	 G
weakLΣ,A ⇒ B,A ⇒ G 	 G
cut

Σ,A ⇒ B 	 G

where the two open premises correspond to Interpret′(Γ,B 	 Δ1;Δ2|G) and
Interpret′(Γ 	 A,Δ1;Δ2|G) respectively.

Remark 5. In this case, we chose G1 = G2 = G. Other choices for Gi appear in
the cases ∧2

R, ⇒1
L, ⇒2

R, and ∀2
R.

In a second step, we extend Interpret′(·|G) from LI proofs to LJ proofs
recursively. Finally, we extend Interpret(·) from LI proofs of sequents of the
shape Γ 	 (G); to LJ proofs:

– for Π a LI proof of a sequent Γ 	;, we define Interpret(Π) as

⊥∗
LΓ,⊥ 	

Interpret′(Π|⊥)
Γ 	 ⊥

cut
Γ 	

492 F. Gilbert

– for Π a LI proof of a sequent Γ 	 G;, we define Interpret(Π) as

Interpret′(Π|G)
Γ,G ⇒ G 	 G

axiom∗
Γ,G 	 G ⇒R

Γ 	 G ⇒ G
cut

Γ 	 G

Definition 13. We define the linear-time partial algorithm Annotate(·|·)
with, as inputs, a LI sequent S and a cut-free LK proof Π of Erase(S) and, as
output, either a LI proof of S or a failure. This annotation is done from the root
to the leaves: at each step, the first argument S prescribe how the current con-
clusion must be annotated. The definition is recursive on the second argument.

Describing S as Γ 	 Δ1;Δ2 and Π as
Π1

Γ 1 	 Δ1 · · ·
Πn

Γn 	 Δn

R
Γ 	 Δ1,Δ2

,

– If there exists a LI rule

Γ 1 	 Δ1
1;Δ

1
2 · · · Γn 	 Δn

1 ;Δn
2

R′
Γ 	 Δ1;Δ2

such that for all i, Δi
1,Δ

i
2 = Δi, then the output is

Annotate(Γ 1 	 Δ1
1;Δ

1
2|Π1)

Γ 1 	 Δ1
1;Δ

1
2 · · ·

Annotate(Γn 	 Δn
1 ;Δn

2 |Πn)
Γn 	 Δn

1 ;Δn
2

R′
Γ 	 Δ1;Δ2

– Else, Annotate(·, ·) fails.

Remark 6. The only failing cases appear when the rule R is either ⇒R or ∀R,
and exclusively for sequents Γ 	 Δ1;Δ2 such that |Δ1,Δ2| > 1.

Definition 14. We define the linear-time constructivization algorithm Con-
struct, which

– takes as input a cut-free LK proof Π of a sequent Γ 	 (G),

– computes the proof Π ′ =
Normalize(Π)

weakR
Γ 	 (G)

,

– outputs Interpret(Annotate(Γ 	 (G); |Π ′)) if it exists and fails otherwise.

Example 1. We consider the law of excluded middle A ∨ ¬A given with the

following LK proof:

axiom
A 	 A ⇒R	 A,¬A ∨R	 A ∨ ¬A

. This proof is unchanged by Normalize.

The Annotate step fails as follows:
Failure
	 A,¬A; ∨1

R	 A ∨ ¬A;

Automated Constructivization of Proofs 493

Example 2. We consider a variant of the non contradiction of law of excluded

middle, (¬(A∨¬A)) ⇒ B, given with the proof:

axiom∗
A � A,B ⇒R� A,¬A,B ∨R� A ∨ ¬A,B

⊥∗
L⊥ � B ⇒L¬(A ∨ ¬A) � B ⇒R� (¬(A ∨ ¬A)) ⇒ B

The result of Normalize is

axiom
A 	 A ⇒R	 A,¬A ∨R	 A ∨ ¬A

⊥L⊥ 	 ⇒L¬(A ∨ ¬A) 	
weakR¬(A ∨ ¬A) 	 B ⇒R	 (¬(A ∨ ¬A)) ⇒ B

Then, the result of Annotate is

axiom2
A 	;A ⇒2

R	;A,¬A ∨2
R	;A ∨ ¬A

⊥L⊥ 	; ⇒1
L¬(A ∨ ¬A) 	;

weakR¬(A ∨ ¬A) 	 B;
⇒1

R	 (¬(A ∨ ¬A)) ⇒ B;

As Annotate is the only step which may fail, Construct succeeds on this
example. We see on the example that the application of Normalize was crucial
for Annotate to succeed.

Theorem 4. Construct is complete on F , FKu, and FMa: for any proof Π
of a sequent S in one of these fragments, Construct(Π) succeeds.

Proof. We consider F , FKu, and FMa separately:

– For F : we consider a cut-free LK proof Π of a sequent Γ 	 (G) ∈ F .

By Theorem 3, Π ′ =
Normalize(Π)

weakR
Γ 	 (G)

is interpretable in LJ.

As a consequence, the only multi-succedent sequents in Π ′ are conclusions of
weakenings. As all failing cases (c.f. Remark 6) involve sequents Γ 	 Δ1;Δ2

such that |Δ1,Δ2| > 1 which are conclusions of ⇒R or ∀R rules, Annotate
succeeds. Hence, Construct succeeds.

– For FKu: the result follows directly from a stronger assertion: for any cut-free
LK proof Π of a sequent Γ 	 Δ containing no ∀R rule, Annotate(Γ 	;Δ|Π)
succeeds. This assertion is proved by induction on such sequents and proofs,
noticing that all induction hypotheses refer to sequents of the shape Γ ′ 	;Δ′.

– For FMa: we consider a cut-free LK proof Π of a sequent in FMa. As mentioned
in Remark 6 the only failing cases involve the ⇒R or ∀R rules, which don’t
occur in a proof of a sequent in FMa. Hence, Construct succeeds.

494 F. Gilbert

7 Experimental Results

In order to measure the success of Construct in practice, experiments were
made on the basis of TPTP [13] first-order problems. The classical theorem
prover Zenon [10] was used to prove such problems. Zenon builds cut-free
LK proofs internally. It was instrumented to use these internal proofs as inputs
for an implementation of Weak construct and Construct. The LJ proofs
obtained as outputs were expressed and checked in the constructive logical frame-
work Dedukti [9].

A set of 724 TPTP problems was selected for the experimentations, corre-
sponding to all TPTP problems in the category FOF which could be proved
in less than 1 s using the uninstrumented version of Zenon. The results are the
following:

– Weak construct led to constructive proofs in 51% of tested cases.
– Construct led to constructive proofs in 85% of tested cases (including all
Weak construct successes).

All constructive proofs generated were successfully checked using Dedukti.
Among all cases where Construct failed, 35% are proved to be unvalid con-
structively using the constructive theorem prover ileanCoP [12].

References

1. Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Bulletins de la
classe des sciences 15(5), 183–188 (1929)

2. Friedman, H.: Classically and intuitionistically provably recursive functions. In:
Müller, G.H., Scott, D.S. (eds.) Higher Set Theory. LNM, vol. 669, pp. 21–27.
Springer, Heidelberg (1978). doi:10.1007/BFb0103100

3. Kuroda, S., et al.: Intuitionistische untersuchungen der formalistischen logik.
Nagoya Math. J. 2, 35–47 (1951)

4. Boudard, M., Hermant, O.: Polarizing double-negation translations. In: McMillan,
K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 182–197.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5 14

5. Maehara, S., et al.: Eine darstellung der intuitionistischen logik in der klassischen.
Nagoya Math. J. 7, 45–64 (1954)

6. Gentzen, G.: Über das verhältnis zwischen intuitionistischer und klassischer arith-
metik. Arch. Math. Logic 16(3), 119–132 (1974)

7. Gödel, K.: Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse eines
mathematischen Kolloquiums 4(1933), 34–38 (1933)

8. Kolmogorov, A.N.: On the principle of excluded middle. Mat. Sb 32(646–667), 24
(1925)

9. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as a uni-
versal proof language. In: Pichardie, D., Weber, T. (eds.) PxTP (2012)

10. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR
2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-75560-9 13

http://dx.doi.org/10.1007/BFb0103100
http://dx.doi.org/10.1007/978-3-642-45221-5_14
http://dx.doi.org/10.1007/978-3-540-75560-9_13
http://dx.doi.org/10.1007/978-3-540-75560-9_13

Automated Constructivization of Proofs 495

11. Dragalin, A.G., Mendelson, E.: Mathematical intuitionism. Introduction to proof
theory (1990)

12. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7 23

13. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

http://dx.doi.org/10.1007/978-3-540-71070-7_23

Semantics and Category Theory

A Light Modality for Recursion

Paula Severi

Department of Informatics, University of Leicester, Leicester, UK

Abstract. We investigate a modality for controlling the behaviour of
recursive functional programs on infinite structures which is completely
silent in the syntax. The latter means that programs do not contain
“marks” showing the application of the introduction and elimination
rules for the modality. This shifts the burden of controlling recursion
from the programmer to the compiler.

To do this, we introduce a typed lambda calculus à la Curry with a
silent modality and guarded recursive types. The typing discipline guar-
antees normalisation and can be transformed into an algorithm which
infers the type of a program.

1 Introduction

The quest of finding a typing discipline that guarantees that functions on coin-
ductive data types are productive has prompted a variety of works that rely on
a modal operator [1,3,6,7,15,17,23]. All these works except for Nakano’s [17]
have explicit constructors and destructors in the syntax of programs [6,7,15,23].
This has the advantage that type inference is easy but it has the disadvantage
that they do not really liberate the programmer from the task of controlling
recursion since one has to know when to apply the introduction and elimination
rules for the modal operator. As far as we know, decidability of type inference
for Nakano’s type system remains an open problem.

In this paper we consider the pure functional part of a type system stud-
ied previously [24]. This is a typed lambda calculus which has the advantage of
having a modal operator silent in the syntax of programs without resorting to a
subtyping relation as Nakano while keeping the nice properties of subject reduc-
tion and normalisation. We show that the type inference problem is decidable for
the system under consideration. Even without a subtyping relation, this variant
of the modal operator is still challenging to deal with because it is intrinsically
non-structural, not corresponding to any expression form in the calculus.

Apart from the modal operator, we also include guarded recursive types
which generalize the recursive equation Strt = t × •Strt for streams [15,23].
This allows us to type productive functions on streams such as

skip xs = 〈fst xs,skip (snd (snd xs))〉

which deletes the elements at even positions of a stream using the type StrNat →
Str2Nat where Str2t = t × • • Str2t.
c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 499–516, 2017.
DOI: 10.1007/978-3-662-54458-7 29

500 P. Severi

Lazy functional programming is acknowledged as a paradigm that fosters
software modularity [12] and enables programmers to specify computations over
possibly infinite data structures in elegant and concise ways. We give some exam-
ples that show how modularization and compositionality can be achieved using
the modal operator. An important recursive pattern used in functional program-
ming for modularisation is foldr defined by

foldr f xs = f (fst xs) (foldr f (snd xs))

The type of foldr which is (t → •s → s) → Strt → s, is telling us what is the
safe way to build functions. While it is possible to type

iterate f = foldr (λxy.〈f x,y〉)

by assigning the type t → t to f , and assuming s = Strt, it is not possible to
type the unproductive function foldr (λxy.y). This is because λxy.y does not
have type (t → •s → s).

In spite of the fact that StrNat → Str2Nat is the type of skip with the minimal
number of bullets, it does not give enough information to the programmer to
know that the composition of skip with itself is still typeable. In order to assist
the user in the task of modularization, we need to infer a more general type for
skip, which would look like

Stream(N,X) → Stream(N + 1,X)

where Stream(N,X) = X ×•NStream(N,X) and N and X are integer and type
variable, respectively. It is clear now that from the above type, a programmer
can deduce that it is possible to do the composition of skip with itself.

Contributions and Outline. Section 2 defines the typed lambda calculus λ•
→

with a silent modal operator and proves subject reduction and normalisation.
Section 3 gives an adequate denotational semantics for λ•

→ in the topos of trees
as a way of linking our system to the work by Birkedal et al. [2]. Section 4
shows the most important contribution of this paper which is decidability of the
type inference problem for λ•

→. This problem is solved by an algorithm which
has the interesting feature of combining unification of types with integer linear
programming. Sections 5 and 6 discuss related and future work, respectively.

2 A Light Modality for Typed Lambda Calculus

The syntax for expressions and types is given by the following grammars.

e :: =ind Expression
| x (variable)
| λx.e (abstraction)
| ee (application)
| 〈e,e〉 (pair)
| (fst e) (first)
| (snd e) (second)

t :: =coind Pseudo-type
X (type variable)

| t × t (product)
| t → t (arrow)
| •t (delay)

A Light Modality for Recursion 501

In addition to the usual constructs of the λ-calculus, expressions include
pairs. We do not need a primitive constant for the fixed point operator because
it can be expressed and typed inside the language. Expressions are subject to the
usual conventions of the λ-calculus. In particular, we assume that the bodies of
abstractions extend as much as possible to the right, that applications associate
to the left, and we use parentheses to disambiguate the notation when necessary.

The syntax of pseudo-types is defined co-inductively. A type is a possibly
infinite tree, where each internal node is labelled by a type constructor →, ×
or • and has as many children as the arity of the constructor. The leaves of the
tree (if any) are labelled by either type variables or end. We use a co-inductive
syntax to describe infinite data structures (such as streams). The syntax for
pseudo-types include the types of the simply typed lambda calculus, arrows and
products and the delay type constructor • [17]. An expression of type •t denotes
a value of type t that is available “at the next moment in time”. This constructor
is key to control recursion and attain normalisation.

Definition 1 (Types). We say that a pseudo-type t is

1. regular if its tree representation has finitely many distinct sub-trees.
2. guarded if every infinite path in its tree representation has infinitely many •’s.
3. a type if it is regular and guarded.

The regularity condition implies that we only consider types admitting a
finite representation. It is equivalent to representing types with μ-notation and
a strong equality which allows for an infinite number of unfoldings. This is also
called the equirecursive approach since it views types as the unique solutions of
recursive equations [10,19]. The existence and uniqueness of a solution satisfying
condition 1 follow from known results (see [9] and also Theorem 7.5.34 of [5]). For
example, there are unique types Str′

Nat, StrNat, and •∞ that respectively satisfy
the equations Str′

Nat = Nat × Str′
Nat, StrNat = Nat × •StrNat, and •∞ = ••∞.

The guardedness condition intuitively means that not all parts of an infinite
data structure can be available at once: those whose type is prefixed by a • are
necessarily “delayed” in the sense that recursive calls on them must be deeper.
For example, StrNat is a type that denotes streams of natural numbers, where
each subsequent element of the stream is delayed by one • compared to its
predecessor. Instead Str′

Nat is not a type: it would denote an infinite stream of
natural numbers, whose elements are all available right away. If the types are
written in μ-notation, the guardedness condition means that all occurrences of
X in the body t of μX.t are in the scope of a •.

The type •∞ is somehow degenerated in that it contains no actual data
constructors. Unsurprisingly, we will see that non-normalising terms such as
Ω = (λx.x x)(λx.x x) can only be typed with •∞ (see Theorem 1). Without
Condition 2, Ω could be given any type since the recursive pseudo-type D = D → t
would become a type.

Sometimes we will write •nt in place of • · · · •︸ ︷︷ ︸
n-times

t.

502 P. Severi

We adopt the usual conventions regarding arrow types (which associate to
the right) and assume the following precedence among type constructors: →,
×, • with • having the highest precedence.

Expressions reduce according to a standard call-by-name semantics:

[r-beta]

(λx.e1) e2 −→ e1[e2/x]

[r-first]

fst 〈e1,e2〉 −→ e1

[r-second]

snd 〈e1,e2〉 −→ e2

[r-ctxt]

e −→ f

E [e] −→ E [f]

where the evaluation contexts are E :: = [] | E e | (fst E) | (snd E). Normal
forms are defined as usual as expressions that do not reduce.

The type assignment system λ•
→ is defined by the following rules.

[axiom]

Γ , x : t � x : t

[•I]
Γ � e : t

Γ � e : •t

[→I]

Γ , x : •nt � e : •ns

Γ � λx.e : •n(t → s)

[→E]

Γ � e1 : •n(t → s) Γ � e2 : •nt

Γ � e1e2 : •ns

[×I]

Γ � e1 : •nt Γ � e2 : •ns

Γ � 〈e1,e2〉 : •n(t × s)

[×E1]

Γ � fst : t1 × t2 → t1

[×E2]

Γ � snd : t1 × t2 → t2

They are essentially the same as those for the simply typed lambda calculus
except for two important differences. First, we now have an additional rule [•I]
for introducing the modality. This rule is unusual in the sense that the expres-
sion remains the same, i.e. we do not have a constructor for • at the level of
expressions. Second, each rule allows for an arbitrary delay in front of the types
of the entities involved. Intuitively, the number of •’s represents the delay at
which a value becomes available. So for example, rule [→I] says that a function
which accepts an argument x of type t delayed by n and produces a result of
type s delayed by the same n has type •n(t → s), that is a function delayed
by n that maps elements of t into elements of s. Crucially, it is not possible to
anticipate a delayed value: if it is known that a value will only be available with
delay n, then it will also be available with any delay m ≥ n, but not earlier.

Using rule [•I] and the recursive type D = •D → t, we can derive that the
fixed point combinator fix = λy.(λx.y (x x))(λx.y (x x)) has type (•t → t) → t
by assigning the type D → t to the first occurrence of λx.y (x x) and •D → t to
the second one [17].

Let skip = fix λfx.〈(fst x),f (snd (snd x))〉 be the function that deletes
the elements at even positions of a stream. In order to assign the type StrNat →
Str2Nat to skip, the variable f has to be delayed once and the first occurrence
of snd has to be delayed twice. Note also that when typing the application
f (snd (snd x)) the rule [→E] is used with n = 2.

The following lemma expresses the fact that the type of an expression should
be delayed as much as the types in the environment. The proof is by induction
on the derivation.

Lemma 1 (Delay). If Γ � e : t, then Γ1, •Γ2 � e : •t for Γ1, Γ2 = Γ .

A Light Modality for Recursion 503

For example, from x : t � λy.x : s → t we can deduce that x : •t � λy.x :
•(s → t), but we cannot deduce x : •t � λy.x : s → t. The Delay Lemma is
crucial for proving Inversion Lemma:

Lemma 2 (Inversion).

1. If Γ � x : t, then t = •nt′ and x ∈ dom(Γ).
2. If Γ � λx.e : t, then t = •n(t1 → t2) and Γ , x : •nt1 � e : •nt2.
3. If Γ � e1e2 : t, then t = •nt2 and Γ � e2 : •nt1 and Γ � e1 : •n(t1 → t2).
4. If Γ � fst : t, then t = •n(t1 × t2 → t1).
5. If Γ � snd : t, then t = •n(t1 × t2 → t2).

Proof. By case analysis and induction on the derivation. We only show Item
2 which is interesting because we need to shift the environment in time and
apply Lemma 1. A derivation of Γ � λx.e : t ends with an application of either
[→I] or [•I]. For the former case, the proof is immediate. If the last applied
rule is [•I], then t = •t′ and Γ � λx.e : t′. By induction t′ = •n(t1 → t2) and
Γ , x : •nt1 � e : •nt2. Hence t = •t′ = •n+1(t1 → t2) and

by Lemma 1 Γ , x : •n+1t1 � e : •n+1t2.

An important consequence of Inversion Lemma is Subject Reduction:

Lemma 3 (Subject Reduction). If Γ � e : t and e −→ e′ then Γ � e′ : t.

Proof. By induction on the definition of −→. We only do the case (λx.e1) e2 −→
e1[e2/x]. Suppose Γ � (λx.e1) e2 : t. By Item 3 of Lemma 2

t = •nt2 Γ � e2 : •nt1 Γ � (λx.e1) : •n(t1 → t2)

It follows from Item 2 of Lemma 2 that Γ , x : •nt1 � e1 : •nt2. By applying
Substitution Lemma (which follows by an easy induction on expressions), we
deduce that Γ � e1[e2/x] : •nt2.

Neither Nakano’s type system nor ours is closed under η-reduction. For exam-
ple, y : •(t → s) � λx.(y x) : (t → •s) but y : •(t → s) �� y : (t → •s). The lack of
subject reduction for η-reduction does not seem important in the context of lazy
evaluation where programs are closed terms and only weak head normalised.

Theorem 1 (Normalisation) [24,25]. If Γ � e : t and t �= •∞, then e reduces
(in zero or more steps) to a normal form.

The proof of the above theorem follows from the fact that λ•
→ is included

in the type system of [24] and the latter is normalising [25]. Notice that there
are normalising expressions that cannot be typed, for example λx.ΩI, where
Ω = (λy.y y)(λy.y y) and I = λz.z. In fact Ω has type •∞ and by previous
theorem it cannot have other types, and this implies that the application ΩI
has no type.

504 P. Severi

3 Denotational Semantics

This section gives a denotational semantics for λ•
→ where types and expressions

are interpreted as objects and morphisms in the topos of trees Setω
op

[2]. We
give a self-contained description of this topos as a cartesian closed category for a
reader familiar with λ-calculus. The topos of trees S has as objects A families of
sets A1, A2, . . . indexed by positive integers, equipped with family of restrictions
rA
i : Ai+1 → Ai. Types will be interpreted as family of sets (not just sets).

Intuitively the family represents better and better sets of approximants for the
elements of that type. Arrows f : A → B are families of functions fi : Ai → Bi

obeying the naturality condition fi ◦ rA
i = rB

i ◦ fi+1.

A1

f1
��

A2

rA
1��

f2
��

A3

rA
2��

f3
��

. . .

B1 B2
rB
1

�� B3
rB
2

�� . . .

We define rA
ii = idA and rA

ij = rj ◦ . . . ◦ ri−1 for 1 ≤ j < i. Products are defined
pointwise. Exponentials BA have as components the sets:

(BA)i = {(f1, . . . , fi) | fj : Aj → Bj and fj ◦ rA
j = rB

j ◦ fj+1}

and as restrictions rA⇒B
i (f1, . . . fi+1) = (f1, . . . , fi). We define eval : BA×A → B

as evali((f1, . . . , fi), a) = fi(a) and curry(f) : C → BA for f : C × A → B as

curry(f)i(c) = (g1, . . . , gi)

where gj(a) = fj(rA
ij(c), a) for all a ∈ Aj and 1 ≤ j ≤ i. The functor �: S → S

is defined on objects as (� A)1 = {∗} and (� A)i+1 = Ai where r�A
1 =! and

r�A
i+1 = rA

i and on arrows (� f)1 = id{∗} and (� f)i+1 = fi. We write �n for
the n-times composition of �.

The natural transformation nextA : A →� A is given by (nextA)1 =! and
(nextA)i+1 = rA

i which can easily be extended to a natural transformation nextnA :
A →�n A. It is not difficult to see that there are isomorphisms θ :� A× �
B →� (A × B) and ξ : (� B)(�A) →� (BA) which are also natural. These can
also be easily extended to isomorphisms θn :�n A× �n B →�n (A × B) and
ξn : (�n B)(�

nA) →�n (BA).
A type t is interpreted as a functor [[t]] ∈ (S op × S)k → S by fixing a

superset X1 . . . Xk of its free variables. The mixed variance is a way of solving
the problem of the contra-variance and the functoriality of [[t]] since variables
can appear positively and negatively [7].

[[X]]
−−−−→
(V,W) = Wj if X = Xj for 1 ≤ j ≤ k

[[t × s]]
−−−−→
(V,W) = [[t]]

−−−−→
(V,W) × [[s]]

−−−−→
(V,W)

[[t → s]]
−−−−→
(V,W) = [[s]]

−−−−→
(V,W)[[t]]

−−−−→
(W,V)

[[•t]] = � ◦[[t]]

A Light Modality for Recursion 505

In order to justify that the interpretation is well-defined, it is necessary to view
the above definition as indexed sets and we do induction on the pair (i, rank(t))
taking the lexicographic order where rank(t) is defined by rank(•t) = 0 and
rank(t × s) = rank(t → s) = max(rank(t), rank(s)) + 1. By writing the indices
explicitly for [[•t]], we obtain

([[•t]]
−−−−→
(V,W))1 = {∗} ([[•t]]

−−−−→
(V,W))i+1 = ([[t]]

−−−−→
(V,W))i

where the index decreases. For t × s and t → s, the interpretation at i is defined
in terms of the interpretations of t and s at i, so the rank decreases.

Alternatively, if we represent types in μ-notation, the interpretation can be
defined by induction on the type by adding the case:

[[μX.t]]
−−−−→
(V,W) = Fix(F) where F (V1,W1) = [[t]](

−−−−→
(V,W), (V1,W1))

and Fix(F) is the unique A such that F (A,A) ∼= A

The existence of the fixed point Fix(F) follows from [2, Section 4.5] since F is
locally contractive.

As it is common in categorical semantics, the interpretation is not defined on
lambda terms in isolation but on typing judgements. In order to define terms as
morphisms, we need the context and the type to specify their domain and co-
domain. Typing contexts Γ = x1 : t1, . . . xk : tk are interpreted as [[t1]]×. . .×[[tk]].
The interpretation of typed expressions [[Γ � e : t]] : [[Γ]] → [[t]] is defined by
induction on e (using Inversion Lemma):

[[Γ � x : •nt]] = nextn ◦ πj if x = xj and tj = t and 1 ≤ j ≤ k
[[Γ � e1e2 : •ns]] = eval ◦ 〈(ξn)−1 ◦ [[Γ � e1 : •n(t → s)]], [[Γ � e2 : •nt]]〉
[[Γ � λx.e : •n(t → s)]] = ξn ◦ curry([[Γ , x : •nt � e : •ns]])
[[Γ � 〈e1,e2〉 : •n(t × s)]] = (θn) ◦ 〈[[Γ � e1 : •nt]], [[Γ � e2 : •ns]]〉
[[Γ � (fst e) : •nt]] = π1 ◦ (θn)−1 ◦ [[Γ � e : •n(t × s)]]
[[Γ � (snd e) : •nt]] = π2 ◦ (θn)−1 ◦ [[Γ � e : •n(t × s)]]

Lemma 4 (Semantic Substitution).

[[Γ , x : •nt � e1 : •ns]] ◦ 〈id, [[Γ � e2 : •nt]]〉 = [[Γ � e1[e2/x] : •ns]]

Proof. This follows by induction on e1. We only show the case e1 = x. By
Inversion Lemma s = •mt. Then,

[[Γ , x : •nt � e1 : •m+nt]] ◦ 〈id, [[Γ � e2 : •nt]]〉 = nextm ◦ [[Γ � e2 : •nt]] = [[Γ � e2 : •n+mt]]

The last equality follows from a semantic delay lemma.

Theorem 2 (Soundness). If Γ � e : t and e −→ e′ then [[Γ � e : t]] = [[Γ � e′ : t]].

Proof. We show the case of [r-beta]. Let v1 = [[Γ , x : •nt � e1 : •ns]] and v2 = [[Γ �
e2 : •nt]].

506 P. Severi

[[Γ � (λx.e1)e2 : •ns]] = eval ◦ 〈(ξn)−1 ◦ ξn ◦ curry(v1), v2〉 = v1 ◦ 〈id, v2〉
= [[Γ � e1[e2/x] : •ns]] by Lemma 4

The denotational semantics of λ•
→ in the topos of trees can be generalised to

SetA
op

for a set A equipped with a well-founded relation.

4 A Type Inference Algorithm

In this section, we define a type inference algorithm for λ•
→. Apart from the

usual complications that come from having no type declarations, the difficulty
of finding an appropriate type inference algorithm for λ•

→ is due to the fact that
the expressions do not have a constructor and destructor for •. We do not know
which sub-expressions need to be delayed as illustrated by the type derivation
of fix where the first occurrence of (λx.y (x x)) has a different derivation from
the second one since [•I] is applied in different places [17]. Even worse, in case a
sub-expression has to be delayed, we do not know how many times needs to be
delayed to be able to type the whole expression.

The type inference algorithm infers meta-types which are a generaliza-
tion of types where the • can be exponentiated with integer expressions, e.g.
•N1X → •N2−N1X. The algorithm proceeds in several stages. The first stage
generates a meta-type T0 and a set C0 of meta-type constraints from a given
closed expression e. Secondly, the unification algorithm transforms C0 into a set
C of recursive equations and it simultaneously generates a set E of integer con-
straints to guarantee that the meta-types have non-negative exponents. Thirdly,
a set gC(C) of integers constraints is computed to ensure that the solution is
guarded. If E ∪ gC(C) is solvable then e is typable and its type is obtained by
substituting T0 by the solutions of C and E ∪ gC(C).

4.1 Meta-Types

The syntax for pseudo meta-types is defined below. A pseudo meta-type can
contain type variables and (non-negative) integer expressions with variables. In
this syntax, •t is written as •1t. We identify •0t with t and •E • E′

t with •E+E′
t.

We define a meta-type as a pseudo meta-type that is regular and guarded.

E :: =ind Integer Expression
N (integer variable)

| n (integer number)
| E + E (addition)
| E − E (substraction)

T :: =coind Pseudo Meta-type
X (type variable)

| T × T (product)
| T → T (arrow)
| •ET (delay)

Let τ be a finite mapping from type variables to meta-types, denoted as
{X1 �→ T1, . . . , Xn �→ Tn}, and let ρ be a finite mapping from integer variables

A Light Modality for Recursion 507

to integer expressions, denoted as {N1 �→ E1, . . . , Nm �→ Em}. Let also σ = τ ∪ρ.
We define the substitution on a meta-types and an integer expression as follows.

Nρ = E if N �→ E ∈ ρ
nρ = n
(E1 + E2)ρ = E1ρ + E2ρ
(E1 − E2)ρ = E1ρ − E2ρ

Xσ = T if X �→ T ∈ τ
(T1 → T2)σ = T1σ → T2σ
(T1 × T2)σ = T1σ × T2σ
(•ET)σ = •EρTσ

We say that σ = τ ∪ ρ is a ground substitution if ρ maps all integer variables
into natural numbers. We say that T is ground if it contains no integer variables
and all the exponents of • are natural numbers. We identify a ground type
with the type obtained from replacing the type constructor •n in the syntax of
meta-types with n consecutive •’s in the syntax of types.

Definition 2 (Constraints). A meta-type constraint is an equation T
?
= T ′

between finite meta-types. An integer constraint is either E
?
= E′ or E

?

≥ E′

or E
?
< E′.

Moreover, σ |= T
?= T ′ means that Tσ = T ′σ. Similarly, we define ρ |=

E
?= E′, ρ |= E

?

≥ E′ and ρ |= E
?
< E′. This notation extends to a set C

(or E) of constraints in the obvious way.

We say that C is substitutional if C = {X1
?= T1, . . . , Xn

?= Tn} and all
variables X1, . . . , Xn are pairwise different. Since a substitutional C is a set of
recursive equations where T1, . . . , Tn are finite meta-types, there exists a unique
solution τC such that τC (Xi) is regular for all 1 ≤ i ≤ n [9], [5, Theorem 7.5.34].
Note that the unicity of the solution of a set of recursive equations would not
be guaranteed if we were following the iso-recursive approach which allows only
for a finite number of unfoldings μX.t = t{X �→ μX.t} [4,5].

We say that E grounds T if Tρ is ground for all ground substitutions ρ such
that ρ |= E . For example, N1 ≥ N2 grounds (•N1−N2X) but N1 ≤ N2 does not.

4.2 Constraint Typing Rules

Table 1 defines the constraint typing rules. We assume that Δ only contains dec-
larations of the form x : X. This is needed for the proof of Item 2 of Theorem 3.
If instead of generating the fresh variable x in [→I] we directly put •NX1 in
the context, then we would not know what value to assign N in the case of
e = x unless we look at the rest of the type derivation. For example, consider
x : •5Nat � x : •7Nat. Then N should be assigned the value 3 and not 5 if later
we derive that λx.x : •2(•3X → •5X).

Note that given an expression e, it is always possible to derive Δ and C such
that Δ � e : T | C and the set C contains only constraints between finite
meta-types.

Theorem 3 (Correctness of Constraint Typing). Let Δ � e : T | C and
Γ = x1 : t1, . . . , xm : tm and Δ = x1 : X1, . . . , xm : Xm.

508 P. Severi

Table 1. Constraint typing rules

1. Let Δσ and Tσ be ground. If σ |= C then Δσ � e : Tσ.
2. If Γ � e : t then there exists a ground substitution σ ⊇ {X1 �→ t1, . . . , Xm �→

tm} such that σ |= C and Tσ = t and dom(σ) \ {X1, . . . , Xm} is the set of
fresh variables in the derivation of Γ � e : t.

Proof. Items 1 and 2 follow by induction on e. For Item 1, we prove the case of
the abstraction. It follows from induction hypothesis that Δσ, x : T1σ � e : T2σ.
Since σ |= {T1

?= •NX1, T2
?= •NX2}, it is obvious that we also have that

Δσ, x : •NσX1σ � e : •NσX2σ. We can, then, apply [→I] to conclude that the
abstraction has type •Nσ(X1σ → X2σ) from the context Δσ.

For Item 2 we prove a few cases. Suppose e = x. By Inversion Lemma, we
have that x = xi and t = •nti for some i. We define σ = {X1 �→ t1, . . . , Xm �→
tm} ∪ {N �→ n}. It is easy to see that Δσ = Γ and t = (•NXi)σ.

Suppose e = e1e2. By Inversion Lemma, t = •nt2 and Γ � e2 : •nt1 and
Γ � e1 : •n(t1 → t2). By induction hypotheses there are σ1, σ2 ⊇ {X1 �→
t1, . . . , Xm �→ tm} such that σ1 |= C1 and σ2 |= C2 and T1σ1 = •n(t1 → t2) and
T1σ2 = •nt2. Since, by induction hypotheses, dom(σ1)\{X1, . . . , Xm} is the set of
fresh variables in the derivation of Γ � e1 : t and dom(σ2)\{X1, . . . , Xm} is the set
of fresh variables in the derivation of Γ � e2 : t, we have that σ1∪σ2 is a function.
We can now define the substitution σ as (σ1∪σ2){N �→ n}{X1 �→ t1}{X2 �→ t2}.

4.3 Unification Algorithm

The unification algorithm is defined in Table 2. Given a set C of constraints,
it returns a set of pairs (C ′,E) such that C ′ is substitutional and E grounds
the meta-types in C ′. The extra argument D keeps tracks of the “visited type

A Light Modality for Recursion 509

constraints” and guarantees termination. The function unify does not return
only one solution but a set of solutions. If •NX

?= •N ′
X ′ then there are two

ways of solving this equation: either N ≥ N ′ and X ′ = •N−N ′
X or N ′ > N

and X = •N ′−NX ′. We use ⊕ for the disjoint union to guarantee that the
type constraint that is being processed is removed from the set C . The case
C ′ ⊕ {•EX

?= •E′
T} assumes T is of the form T1 op T2. It is clear that if

E′ < E, then the unification does not have a solution, e.g. •−2X
?= T1 op T2.

The case for C ′ ⊕ {T1
?= T2,X

?= T2} is crucial for getting a substitutional

set. By adding T1
?= T2 and removing X

?= T2 from the set C , we obtain
an equivalent set of constraints that “reduces” the set of constraints for X.
Since D already contains T1

?= T2, this constraint will not be added again
avoiding non-termination. The unification algorithm for the simply typed lambda
calculus solves the problem of termination in this case by reducing the number of
variables, i.e. checks if X �∈ T1 and then, substitutes the variable x by T1 in the
remaining set of constraints. With recursive types, however, we do not perform
the occur check and the number of variables may not decrease since the variable
X may not disappear after substituting X by T (because X occurs in T). In
order to decrease the number of variables, we could perhaps substitute X by
FIX (λX.T1) where FIX gives the solution of the recursive equation X = T1

as a possible infinite tree. But the problem of guaranteeing termination would
still be present if the meta-type constraints are allowed to be infinite since the
size of the constraints may not decrease in some cases. We would also have a
similar problem with termination if we use multi-equations and a rewrite relation
instead of giving a function such as unify [20].

We start the algorithm by invoking unify(C0,C0) where the first and second
argument are the same. In the remaining recursive calls, the second argument
either remains the same or it is extended with the type constraint that has been
just processed.

The size | C | of a set of constraints is the sum of the number of type variables
and type constructors in the left hand side of the type constraints. Since the type
constraints are finite, the size is always finite. We define

SubT(C0) = {T | S1
?= S2 ∈ C0 and either S1 or S2 contains T}

SubC(C0) = {T1
?= T2 | T1, T2 ∈ SubT(C0)}

In the evaluation of unify(C0,C0), the argument D of the recursive calls satisfies
C0 ⊆ D ⊆ SubC(C0).

Theorem 4 (Termination and Correctness of Unification). Let D ⊆
SubC(C0).

1. unify(C ,D) terminates
2. If (C0,E0) ∈ unify(C ,D) then C0 is substitutive.
3. If σ |= C then there exists (C0,E0) ∈ unify(C ,D) such that σ |= C0 and

σ |= E0.

510 P. Severi

Table 2. Unification algorithm

4. If (C0,E0) ∈ unify(C ,D) and ρ is a ground substitution such that ρ |= E0
then ρ ∪ τC0 |= C and ρ(τC0(X)) is ground for all X.

Proof. In order to prove Item 1, observe that the second argument increases or
remains the same in each recursive call. In the cases it remains the same, it is
easy to see that | C | decreases. Since D ⊆ SubC(C0), we have that

(| SubC(C0) | − | D |, | C |)

decreases with each recursive call and hence, the unification algorithm
terminates.

Items 2, 3 and 4 follow by induction on the number of recursive calls. For
Item 3 we prove the case C = C ′ ⊕ {•E(T1 op T2)

?= •E′
(T ′

1 op T ′
2)}. It follows

from σ |= C that σ |= C ′ ∪ {T1
?= T ′

1, T2
?= T ′

2} and σ |= E
?= E′. By

induction hypothesis there exists (C0,E0) ∈ unify(C ′ ∪{T1
?= T ′

1, T2
?= T ′

2},D)

such that σ |= C0 and σ |= E0. Then (C0,E0 ∪ {E ?= E′}) ∈ unify(C ,D) and

σ |= E0 ∪ {E ?= E′}.

A Light Modality for Recursion 511

For Item 4 we prove the case C = C ′ ⊕ {•E(T1 op T2)
?= •E′

(T ′
1 op T ′

2)}.

Suppose (C0,E0) ∈ unify(C ,D) and ρ |= E0. Then E0 = E ′
0 ∪ {E ?= E′}. By

induction hypothesis τC0∪ρ |= C ′∪{T1
?= T ′

1, T2
?= T ′

2}. Since ρ |= {E
?= E′},

we have that τC0 ∪ ρ |= C .

The unification algorithm is exponential on the size of the input. If we are
only interested in knowing if the program is typeable or not, then the complexity
could be reduced to PSpace since it would be sufficient to store just one solution
at a time.

4.4 Generation of Guard Constraints

Table 3 defines an algorithm for computing the set of integer constraints needed
to enforce that the types are guarded. Intuitively, the function gE(X,T) adds
up the exponents of the bullets from the root of T to wherever X occurs in T
and gC forces the resulting integer expression to be greater than 0. However,
just forcing gE(X,T) to be greater than 0 does not work because C is a set of
mutually recursive equations. The simplest way to track the exponents along
several recursive equations seems to perform substitutions in the spirit of Bekič
law [14]. Suppose C = {X1 = T1,X2 = T2}. The constraint gE(X1, T1) > 0
is sufficient only if X1 does not occur in T2. If X1 occurs in T2, however, we
should also be able to “see the recursive occurrences of X1” coming from the
second recursive equation. For this, we define Si and Ri similarly to the way
one calculates the solution in μ-notation from a set of recursive equations (see
Theorem 8.1.1 in [5]). We can omit the μ’s because they are not needed.

Since the solutions of the recursive equations X = •(X → Y) and X =
•X → Y are different and both guarded, the integer constraint to guarantee

Table 3. Generation of guard constraints

512 P. Severi

guardedness for X = •N (•MX → Y) should be N + M ≥ 1 which is more
general than just M ≥ 1. It gets more complicated if we have several mutual
recursive equations because the recursive variable has to be tracked through
several equations. For example, consider the set

X1
?
= •N1 (•N2X1 → •N3X2) X2

?
= •M1 (•M2X2 → •M3X3) X3

?
= •K1 (•K2X1 → •K3X3)

then, the set E of integer constraints to enforce that the types are guarded is:

{N1 + N2 ≥ 1, N1 + N3 + M1 + M3 + K1 + K2 ≥ 1,M1 + M2 ≥ 1,K1 + K3 ≥ 1}

Theorem 5 (Correctness of the Guard Constraint Generation). Let

C = {X1
?
= T1, . . . , Xn

?
= Tn} be substitutive and τC = {X1 �→ S1, . . . , Xn �→

Sn} and Siρ be grounded. Then, Siρ is guarded for all 1 ≤ i ≤ n iff ρ |= gC(C).

Proof. Suppose ρ �|= gC(C). Then, there is E ∈ gE(Xi, Ri) such that ρ(E) = 0
then the path from the root of Riρ to Xi has no bullets. Since Siρ = Ti(ρ◦τC) =
Ri(ρ ◦ τC ′) where τC ′ = {X1 �→ R1, . . . , Xn �→ Rn}, we have that there exists
an infinite path in Siρ that has no bullets at all. For the converse, suppose
ρ |= gC(C). Then, an infinite path in Siρ is an infinite path in Ri(ρ ◦ τC ′) and
this path has an infinite number of bullets because the path from the root of
Riρ to Xi has a number n = Eρ > 0 of bullets.

4.5 Type Inference Algorithm

The type inference algorithm defined in Table 4 returns a finite set of meta-types
that cover all the possible types of a closed expression e, i.e. any type of e is an
instantiation of one of those meta-types. Item 2a checks that the type is different
from •∞. Here, we are using the fact that t �= •∞ if and only if t is either •nX
or •n(t1 → t2) or •n(t1 × t2). In order to check that E ∪ gC(τC) has a solution
of non-negative integers in Item 2b, we can use any algorithm for linear integer
programming [18]. It is easy to modify this algorithm to give a set of minimal
solutions by minimizing the sum of all integer variables. For instance, if the
solution is a meta-type T satisfying the recursive equation T = •N1(•N2T → S)
with N1 + N2 ≥ 1 then we have two minimal solutions N1 = 1, N2 = 0 and
N1 = 0, N2 = 1.

As an example, consider λx.x. Then infer(λx.x) yields only one solution
•N (X → •MX) which it is actually its most general type.

Consider now λx.xx. Then infer(λx.xx) gives a set of two meta-types. The
first meta-type is •N1(X1 → •N2−N1X4) where X1 should satisfy the recursive
equation

X1
?= •N2−(N1+N3)(•N1+N4−N2X1 → X4)

and N1, N2, N3, N4 should all be non-negative and satisfy N1 +N4 ≥ N2 ≥ N1 +
N3 and N4−N3 ≥ 1. The second meta-type is •N1(•N2−(N1+N4)X3 → •N2−N1X4)
where X3 should satisfy the recursive equation

X3
?= •N4−N3(X3 → X4)

A Light Modality for Recursion 513

Table 4. Type inference algorithm

and N1, N2, N3, N4 should all be non-negative and satisfy N2 > N1 + N4 and
N4 ≥ N3 and N4 − N3 ≥ 1. These two meta-types “cover all solutions” in the
sense that any type of λx.xx is an instantiation of one of these two meta-types.

Theorem 6 (Correctness of Type Inference).

1. infer(e) gives a finite set of pairs (T,E) such that there exists at least one
ground substitution ρ such that ρ |= E .

2. If (T,E) ∈ infer(e) then � e : t and Tρ = t �= •∞ for all ground substitutions
ρ |= E .

3. If � e : t and t �= •∞ then there exists (T,E) ∈ infer(e) such that Tσ = t and
σ |= E .

Proof. This follows from Theorems 3, 4 and 5.

Type checking for λ•
→ (given an an expression e and a type t check if � e : t)

can easily be solved by inferring the (finite) set of meta-types for e and checking
whether one of these meta-types unifies with t.

We could try to define an alternative type inference algorithm for λ•
→ by

re-using the one for λμ [4,5]. However, this option does not make the problem
simpler. Consider

skipRep xs = 〈fst xs,〈fst xs,skipRep (snd (snd xs))〉〉

This function has type StrNat → SStr2Nat where SStr2Nat = Nat × Nat × • •
SStr2Nat. The type of this function without bullets is Str′

Nat → Str′
Nat. How

can we decorate Str′
Nat → Str′

Nat in order to obtain StrNat → SStr2Nat? Since
a recursive type can be seen as an infinite tree with a finite number k of sub-
trees, we could decorate each sub-tree with a certain number nk of bullets.
However, since StrNat has only one sub-tree, it would mean that all sub-trees
are decorated with the same number of bullets. In order to obtain SStr2Nat, the
domain Str′

Nat of the function can be decorated by putting 1 bullet in all its
subtrees. However, in order to obtain SStr2Nat, the range Str′

Nat of the function
needs to be decorated by putting 0 bullets in some subtrees and 1 in others.

514 P. Severi

5 Related Work

This paper is an improvement over past typed lambda calculi with a temporal
modal operator in two respects. Firstly, we do not need any subtyping relation
as in [17] and secondly programs are not cluttered with constructs for the intro-
duction and elimination of individuals of type • as in [1,3,6,7,15,16,23]. The
type system of [3] is designed having that denotational semantics in mind and it
is syntactically more involved. Section 3 shows that our type system being syn-
tactically simpler (and not designed having the semantics in mind) still admits
the same semantics.

If we restrict to the recursive types Strt = t×•Strt for infinite lists then, λ•
→

is essentially the same as the type system of [15]. If only recursive types for lists
are available, one cannot create other recursive types such as trees but having
only one bullet also limits the amount of functions on streams we can type, e.g.
skip is not typable in the type systems of [15,23].

Another type-based approach for ensuring productivity are sized types [13].
Type systems using size types do not always have neat properties: strong nor-
malisation is gained by contracting the fixed point operator inside a case and
they lack the property of subject reduction [22]. Another disadvantage of size
types is that they do not include negative occurrences of the recursion variable
[13] which are useful for some applications [26].

The proof assistant Coq does not ensure productivity through typing but
by means of a syntactic guardedness condition (the recursive calls should be
guarded by constructors) [8,11] which is somewhat restrictive since it rules out
some interesting functions [7,23].

A sound but not complete type inference algorithm for Nakano’s type system
is presented in [21]. This means that the expressions typable by the algorithm
are also typable in Nakano’s system but the converse is not true. Though this
algorithm is tractable, it is not clear to which type system it corresponds.

6 Conclusions and Future Work

The typeability problem (finding out if the program is typeable or not) is trivial
in λμ because all expressions are typeable using μX.X → X. In λ•

→, this problem
turns out to be interesting because it gives us a way of filtering non-normalising
programs when the type is not •∞. It is also challenging because it involves the
generation of integer constraints. The type inference algorithm presented in this
paper does not give a unique principal type but a finite set of “principal” types.
Since this (finite) set of types covers all possible types, it is possible to have
modularity. Moreover, this algorithm can be easily extended to infer types for
the processes of [24] since an initial process is the parallel composition of the
main thread x ⇐ e with an arbitrary number of (server a ei) where e and
ei are closed expressions typable in λ•

→ extended with IO and session types.
As we mentioned at the end of Sect. 4.3, the typeability problem in λ•

→ can be
solved in PSpace but it still remains to see if this problem is PSpace-hard. In any

A Light Modality for Recursion 515

case, it is important to refine this algorithm and find optimization techniques
(heuristics, use of concurrency, etc.) to make it practical.

It will be interesting to investigate the interaction of this variant of the modal
operator with dependent types. As observed in Sect. 2, our type system is not
closed under η-reduction. We leave the challenge of attaining a normalising and
decidable type system closed under βη-reduction for future research.

References

1. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
Morrisett, G., Uustalu, T. (eds.) Proceedings of ICFP 2013, pp. 197–208. ACM
(2013)

2. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in
synthetic guarded domain theory: step-indexing in the topos of trees. Log. Methods
Comput. Sci. 8(4), 1–45 (2012)

3. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
dependent type theory with coinductive types. In: Jacobs, B., Löding, C. (eds.)
FoSSaCS 2016. LNCS, vol. 9634, pp. 20–35. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49630-5 2

4. Cardone, F., Coppo, M.: Type inference with recursive types: Syntax and seman-
tics. Inf. Comput. 92(1), 48–80 (1991)

5. Cardone, F., Coppo, M.: Recursive types. In: Barendregt, H., Dekkers, W.,
Statman, R. (eds.) Lambda Calculus with Types, Perspectives in Logic, pp. 377–
576. Cambridge (2013)

6. Cave, A., Ferreira, F., Panangaden, P., Pientka, B.: Fair reactive programming. In:
Jagannathan, S., Sewell, P. (eds.) Proceedings of POPL 2014, pp. 361–372. ACM
Press (2014)

7. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: Programming and rea-
soning with guarded recursion for coinductive types. In: Pitts, A. (ed.) FoSSaCS
2015. LNCS, vol. 9034, pp. 407–421. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46678-0 26

8. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994). doi:10.1007/
3-540-58085-9 72

9. Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25,
95–169 (1983)

10. Gapeyev, V., Levin, M.Y., Pierce, B.C.: Recursive subtyping revealed. J. Funct.
Program. 12(6), 511–548 (2002)

11. Giménez, E., Casterán, P.: A tutorial on [co-]inductive types in coq. Technical
report, Inria (1998)

12. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107
(1989)

13. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: Proceedings of POPL 1996, pp. 410–423 (1996)

14. Jones, C. (ed.): Programming Languages and Their Definition - Hans Bekic (1936–
1982). LNCS, vol. 177. Springer, Heidelberg (1984)

15. Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In:
Grohe, M. (ed.) Proceedings of LICS 2011, pp. 257–266. IEEE (2011)

http://dx.doi.org/10.1007/978-3-662-49630-5_2
http://dx.doi.org/10.1007/978-3-662-49630-5_2
http://dx.doi.org/10.1007/978-3-662-46678-0_26
http://dx.doi.org/10.1007/978-3-662-46678-0_26
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1007/3-540-58085-9_72

516 P. Severi

16. Krishnaswami, N.R., Benton, N., Hoffmann, J.: Higher-order functional reactive
programming in bounded space. In: Proceedings of POPL 2012, pp. 45–58. ACM
Press (2012)

17. Nakano, H.: A modality for recursion. In: Abadi M. (ed.) Proceedings of LICS
2000, pp. 255–266. IEEE (2000)

18. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, Mineola (1998)

19. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
20. Pottier, F., Rémy, D.: The essence of ML type inference. In: Pierce, B.C. (ed.)

Advanced Topics in Types and Programming Languages, pp. 389–489. MIT Press
(2005)

21. Rowe, R.N.S.: Semantic Types for Class-based Objects. Ph.D. thesis, Imperial
College London (2012)

22. Sacchini, J.L.: Type-based productivity of stream definitions in the calculus of
constructions. In: Procedings of LICS 2013, pp. 233–242 (2013)

23. Severi, P., de Vries, F.-J.: Pure type systems with corecursion on streams: from
finite to infinitary normalisation. In: Thiemann, P., Findler, R.B. (eds.) Proceed-
ings of ICFP 2012, pp. 141–152. ACM Press (2012)

24. Severi, P., Padovani, L., Tuosto, E., Dezani-Ciancaglini, M.: On sessions and
infinite data. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION
2016. LNCS, vol. 9686, pp. 245–261. Springer, Cham (2016). doi:10.1007/
978-3-319-39519-7 15

25. Severi, P., Padovani, L., Tuosto, E., Dezani-Ciancaglini, M.: On sessions and infi-
nite data. CoRR, abs/1610.06362 (2016)

26. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54833-8 9

http://dx.doi.org/10.1007/978-3-319-39519-7_15
http://dx.doi.org/10.1007/978-3-319-39519-7_15
http://dx.doi.org/10.1007/978-3-642-54833-8_9

Unifying Guarded and Unguarded Iteration

Sergey Goncharov1(B), Lutz Schröder1, Christoph Rauch1, and Maciej Piróg2

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
sergey.goncharov@fau.de

2 Department of Computer Science, KU Leuven, Leuven, Belgium

Abstract. Models of iterated computation, such as (completely) itera-
tive monads, often depend on a notion of guardedness, which guarantees
unique solvability of recursive equations and requires roughly that recur-
sive calls happen only under certain guarding operations. On the other
hand, many models of iteration do admit unguarded iteration. Solutions
are then no longer unique, and in general not even determined as least
or greatest fixpoints, being instead governed by quasi-equational axioms.
Monads that support unguarded iteration in this sense are called (com-
plete) Elgot monads. Here, we propose to equip monads with an abstract
notion of guardedness and then require solvability of abstractly guarded
recursive equations; examples of such abstractly guarded pre-iterative
monads include both iterative monads and Elgot monads, the latter by
deeming any recursive definition to be abstractly guarded. Our main
result is then that Elgot monads are precisely the iteration-congruent
retracts of abstractly guarded iterative monads, the latter being defined
as admitting unique solutions of abstractly guarded recursive equations;
in other words, models of unguarded iteration come about by quotienting
models of guarded iteration.

1 Introduction

In recursion theory, notions of guardedness traditionally play a central role.
Guardedness typically means that recursive calls must be in the scope of cer-
tain guarding operations, a condition aimed, among other things, at ensuring
progress. The paradigmatic case are recursive definitions in process algebra,
which are usually called guarded if recursive calls occur only under action pre-
fixing [6]. A more abstract example are completely iterative theories [11] and
monads [19], where, in the latter setting, a recursive definition is guarded if it
factors through a given ideal of the monad. Guarded recursive definitions typ-
ically have unique solutions; e.g. the unique solution of the guarded recursive
definition

X = a.X

is the process that keeps performing the action a.
For unguarded recursive definitions, the picture is, of course, different.

E.g. to obtain the denotational semantics of an unproductive while loop
while true do skip characterized by circular operational behavior

while true do skip → skip;while true do skip → while true do skip

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 517–533, 2017.
DOI: 10.1007/978-3-662-54458-7 30

518 S. Goncharov et al.

one will select one of many solutions of this trivial equation, e.g. the least solution
in a domain-theoretic semantics.

Sometimes, however, one has a selection among non-unique solutions of
unguarded recursive equations that is not determined order-theoretically, i.e.
by picking least or greatest fixpoints. One example arises from coinductive
resumptions [16,25,26]. In the paradigm of monad-based encapsulation of side-
effects [21], coinductive resumptions over a base effect encapsulated by a
monad T form a coinductive resumption transform monad T ν given by

T νX = νγ. T (X + γ) (1)

– that is, a computation over X performs a step with effects from T , and then
returns either a value from X or a resumption that, when resumed, proceeds
similarly, possibly ad infinitum. We generally restrict to monads T for which (1)
exists for all X (although many of our results do not depend on this assump-
tion). Functors (or monads) T for which this holds are called iteratable [1]. Most
computationally relevant monads are iteratable (notable exceptions in the cate-
gory of sets are the powerset monad and the continuation monad). Notice that
one has a natural delay map T νX → T νX that converts a computation into
a resumption, i.e. prefixes it with a delay step. In fact, for T = id, T ν is pre-
cisely Capretta’s partiality monad [8], also called the delay monad. It is not in
general possible to equip T νX with a domain structure that would allow for
selecting least or greatest solutions of unguarded recursive definitions over T ν .
However, one can select solutions in a coherent way, that is, such that a range of
natural quasi-equational axioms is satisfied, making T ν into a (complete) Elgot
monad [2,15].

In the current work we aim to unify theories of guarded and unguarded iter-
ation. To this end, we introduce a notion of abstractly guarded monads, that is,
monads T equipped with a distinguished class of abstractly guarded equation
morphisms satisfying some natural closure properties (Sect. 3). The notion of
abstract guardedness can be instantiated in various ways, e.g. with the class
of immediately terminating ‘recursive’ definitions, with the class of guarded
morphisms in a completely iterative monad, or with the class of all equation
morphisms. We call an abstractly guarded monad pre-iterative if all abstractly
guarded equation morphisms have a solution, and iterative if these solutions are
unique. Then completely iterative monads are iterative abstractly guarded mon-
ads in this sense, and (complete) Elgot monads are pre-iterative, where we deem
every equation morphism to be abstractly guarded in the latter case.

The quasi-equational axioms of Elgot monads are easily seen to be satisfied
when fixpoints are unique, i.e. in iterative abstractly guarded monads, and more-
over stable under iteration-congruent retractions in a fairly obvious sense. Our
first main result (Sect. 5, Theorem 22) states that the converse holds as well, i.e.
a monad T is a complete Elgot monad iff T is an iteration-congruent retract of
an iterative abstractly guarded monad – specifically of T ν as in (1). As a slogan,

monad-based models of unguarded recursion arise by quotienting models
of guarded recursion.

Unifying Guarded and Unguarded Iteration 519

Our second main result (Theorem 26) is an algebraic characterization of complete
Elgot monads: We show that the construction (−)ν mapping a monad T to T ν

as in (1) is a monad on the category of monads (modulo existence of T ν), and
complete Elgot monads are precisely those (−)ν-algebras T that cancel the delay
map on T ν , i.e. interpret the delay operation as identity.

As an illustration of these results, we show (Sect. 6) that sandwiching a
complete Elgot monad between adjoint functors again yields a complete Elgot
monad, in analogy to a corresponding result for completely iterative monads [26].
Specifically, we prove a sandwich theorem for iterative abstractly guarded mon-
ads and transfer it to complete Elgot monads using our first main result. For
illustration, we then relate iteration in ultrametric spaces using Escardó’s metric
lifting monad [12] to iteration in pointed cpo’s, by noting that the correspond-
ing monads on sets obtained using our sandwich theorems are related by an
iteration-congruent retraction in the sense of our first main result.

2 Preliminaries

We work in a category C with finite coproducts. We fix the notation ini : Xi →
X1 + . . . + Xn for the i-th injection. A morphism σ : Y → X is a summand of
X, which we denote σ : Y X, if there is σ′ : X ′ → X such that X is a
coproduct of Y and X ′ with σ and σ′ being coproduct injections. The morphism
σ′ is called a (coproduct) complement of σ and by definition is also a summand.
We are not assuming that C is extensive, and coproduct complements are not
in general uniquely determined.

A monad T over C can be given in a form of a Kleisli triple (T, η, --�) where
T is an endomap over the objects |C| of C, the unit η is a family of morphisms
(ηX : X → TX)X∈|C|, Kleisli lifting (--)� is a family of maps : Hom(X,TY) →
Hom(TX, TY), and the monad laws are satisfied:

η� = id, f�η = f, (f�g)� = f�g�.

The standard (equivalent) categorical definition [18] of T as an endofunctor
with natural transformation unit η : Id → T and multiplication μ : TT → T
can be recovered by taking Tf = (η f)�, μ = id�. (We adopt the convention that
monads and their functor parts are denoted by the same letter, with the former
in blackboard bold.) We call morphisms X → TY Kleisli morphisms and view
them as a high level abstraction of sequential programs with T encapsulating the
underlying computational effect as proposed by Moggi [22], with X representing
the input type and Y the output type. A more traditional use of monads in
semantics is due to Lawvere [17], who identified finitary monads on Set with
algebraic theories, hence objects TX can be viewed as sets of terms of the theory
over free variables from X, the unit as the operation of casting a variable to a
term, and Kleisli composition as substitution. We informally refer to this use of
monads as algebraic monads.

A(n F -)coalgebra is a pair (X, f : X → FX) where X ∈ |C| and F : C → C
is an endofunctor. Coalgebras form a category, with morphisms (X, f) → (Y, g)

520 S. Goncharov et al.

being C-morphisms h : X → Y such that (Fh) f = gh. A final object of this
category is called a final coalgebra, and we denote it by (νF, out : νF → FνF) if
it exists. For brevity, we will be cavalier about existence of final coalgebras and
silently assume they exist when we need them; that is, we hide sanity conditions
on the involved functors, such as accessibility. By definition, νF comes with
coiteration as a definition principle (dual to the iteration principle for algebras):
given a coalgebra (X, f : X → FX) there is a unique morphism (coit f) : X →
νF such that

out (coit f) = F (coit f) f.

This implies that out is an isomorphism (Lambek’s lemma) and that coit out = id
(see [29] for more details about coalgebras for coiteration).

We generally drop sub- and superscripts, e.g. on natural transformations,
whenever this improves readability.

3 Guarded Monads

The notion of guardedness is paramount in process algebra: typically one consid-
ers systems of mutually recursive process definitions of the form xi = ti, and a
variable xi is said to be guarded in tj if it occurs in tj only in subterms of the form
a.s where a.(--) is action prefixing. A standard categorical approach is to replace
the set of terms over variables X by an object TX where T is a monad. We then
can model separate variables by partitioning X into a sum X1 + . . . + Xn and
thus talk about guardedness of a morphism f : X → T (X1+ . . .+Xn) in any Xi,
meaning that every variable from Xi is guarded in f . Since Kleisli morphisms can
be thought of as abstract programs we can therefore speak about guardedness
of a program in a certain portion of the output type, e.g. Xi X1 + . . . + Xn.
One way to capture guardedness categorically is to identify the operations of T
that serve as guards by distinguishing a suitable subobject of T; e.g. the defini-
tion of completely iterative monad [19] follows this approach. For our purposes,
we require a yet more general notion where we just distinguish some Kleisli
morphisms as being guarded in certain output variables. This is formalized as
follows.

Definition 1 ((Abstractly) guarded monad). We call a monad T

(abstractly) guarded if it is equipped with a notion of (abstract) guardedness, i.e.
with a relation between morphisms f : X → TY and summands of Y (by putting
the word ‘abstract’ in brackets we mean that we will often omit it later). We call
f : X → TY (abstractly) σ-guarded if f and σ : Y ′ Y are in this relation,
and then write f : X →σ TY . Abstract guardedness is required to be closed
under the rules in Fig. 1. In rule (wkn), σ and θ are composable summands.

Given guarded monads T, S, a monad morphism α : T → S is (abstractly)
guarded if whenever f : X →σ TY then αf : X →σ SY .

Intuitively, (trv) says that if a program does not output anything via a sum-
mand of the output type then it is guarded in that summand. Rule (wkn) is a

Unifying Guarded and Unguarded Iteration 521

Fig. 1. Axioms of guardedness.

weakening principle: if a program is guarded in some summand then it is guarded
in any subsummand of that summand. Rule (cmp) asserts that guardedness is
preserved by composition: if the unguarded part of the output of a program is
postcomposed with a σ-guarded program then the result is σ-guarded, no matter
how the guarded part is transformed. Finally, rule (sum) says that putting two
guarded equation systems side by side again produces a guarded system. The
rules are designed so as to enable a reformulation of the classical laws of iteration
w.r.t. abstract guardedness, as we shall see in Sect. 5.

We write f : X →i1,...,ik T (X1 + . . . + Xn) as a shorthand for f : X →σ

T (X1 + . . . + Xn) with σ = [ini1 , . . . , inik] : Xi1 + . . . + Xik X1 + . . . + Xn.
More generally, we sometimes need to refer to components of some Xij . This
amounts to replacing the corresponding ij with a sequence of pairs ijnj,m, and
inij with inij [innj,1 , . . . , innj,kj

], so, e.g. we write f : X →12,2 T ((Y + Z) + Z)
to mean that f is [in1 in2, in2]-guarded. Where coproducts Y + Z etc. appear
in the rules, we mean any coproduct, not just some selected coproduct. We
defined the notion of guardedness as a certain relation over Kleisli morphisms
and summands. Clearly, the largest such relation is the one declaring all Kleisli
morphisms to be σ-guarded for all σ. We call monads equipped with this notion
of guardedness totally guarded. It turns out that for every monad we also have
a least guardedness relation.

Definition 2. Let T be a monad. A morphism f : X → TY is trivially σ-
guarded for σ : Z Y if f factors through Tσ′ for a coproduct complement σ′

of σ.

Proposition 3. Let T be a monad. Then taking the abstractly guarded mor-
phisms to be the trivially guarded morphisms is the least guardedness relation
making T into a guarded monad.

We call a guarded monad trivially guarded if all its abstractly guarded morphisms
are trivially guarded. As we see, the notion of abstract guardedness can vary on
a large spectrum from trivial guardedness to total guardedness, thus somewhat
detaching abstract guardedness from the original intuition. It is for this reason
that we introduced the qualifier abstract into the terminology; for brevity, we
will omit this qualifier in the sequel in contexts where no confusion is likely,
speaking only of guarded monads, guarded morphisms etc.

522 S. Goncharov et al.

Remark 4. Although by (wkn), f : X →1,2 T (Y + Z) implies both f : X →1

T (Y + Z) and f : X →2 T (Y + Z), the converse is not required to be true, and
in fact can fail even for trivial guardedness. This is witnessed by the following
simple counterexample. Let T be the algebraic monad given by taking TX to be
the free commutative semigroup over X satisfying the additional law x + y = x.
Now the term x + y ∈ T (X + Y) (seen as a morphism 1 → T (X + Y)) with
x ∈ X and y ∈ Y is both in1-guarded and in2-guarded, being equivalent both to
y and to x. But it is not id-guarded, because it does not factor through T∅ = ∅.
As usual, guardedness serves to identify systems of equations that admit solu-
tions according to some global principle:

Definition 5 (Guarded (pre-)iterative monad). Given f : X →2 T (Y +X),
we say that f† : X → TY is a solution of f if f† satisfies the fixpoint identity
f† = [η, f†]�f . A guarded monad T is guarded pre-iterative if it is equipped with
an iteration operator that assigns to every in2-guarded morphism f : X →2

T (Y + X) a solution f† of f . If every such f has a unique solution, we call T
guarded iterative.

We can readily check that the iteration operator preserves guardedness.

Proposition 6. Let T be a guarded pre-iterative monad, let σ : Y ′ Y , and
let f : X →σ+id T (Y + X). Then f† : X →σ TY .

In trivially guarded monads, there is effectively nothing to iterate, so we have

Proposition 7. Every trivially guarded monad is guarded iterative.

Guardedness in Completely Iterative Monads. One instance of our notion
of abstract guardedness is found in completely iterative monads [19], which are
based on idealised monads. To make this precise, we need to recall some defin-
itions. First, a module over a monad T on C is a pair (M, --◦), where M is an
endomap over the objects of C, while the lifting --◦ is a map Hom(X,TY) →
Hom(MX,MY) such that the following laws are satisfied:

η◦ = id, g◦f◦ = (g�f)◦.

Note that M extends to an endofunctor by taking Mf = (ηf)◦. Next, a module-
to-monad morphism is a natural transformation ξ : M → T that satisfies
ξf◦ = f�ξ. We call the triple (T,M, --◦, ξ) an idealised monad ; when no con-
fusion is likely, we refer to these data just as T. Following [19], we can then
define guardedness as follows:

Definition 8. Given an idealised monad T as above, a morphism f : X →
T (Y + X) is guarded if it factors via [η in1, ξ] : Y + M(Y + X) → T (Y + X).
Then, T is a completely iterative monad if every such guarded f has a unique
solution.

Unifying Guarded and Unguarded Iteration 523

It turns out that this notion of guardedness is not an instance of our notion of
abstract guardedness. Fortunately, we can fix this by noticing that completely
iterative monads actually support iteration for a wider class of morphisms:

Definition 9. Let (T,M, --◦, ξ) be an idealised monad. Given σ : Z Y , we
say that a morphism f : X → TY is weakly σ-guarded if it factors through
[ησ′, ξ]� : T (Y ′ + MY) → TY for a complement σ′ : Y ′ Y of σ.

Since a morphism that factors as [η in1, ξ]f can be rewritten as [η in1, ξ]�ηf , every
guarded morphism in an idealised monad is also weakly guarded.

Theorem 10. Let (T,M, --◦, ξ) be an idealised monad. Then the following hold.

1. T becomes abstractly guarded when equipped with weak guardedness as the
notion of abstract guardedness.

2. If T is completely iterative, then every weakly in2-guarded morphism f : X →
T (Y + X) has a unique solution.

That is, completely iterative monads are abstractly guarded iterative monads
w.r.t. weak guardedness.

4 Parametrizing Guardedness

Uustalu [28] defines a parametrized monad to be a functor from a category C
to the category of monads over C. We need a minor adaptation of this notion
where we allow parameters from a different category than C, and simultaneously
introduce a guarded version of parametrized monads:

Definition 11 (Parametrized guarded monad). A parametrized (guarded)
monad is a functor from a category D to the category of (guarded) monads
and (guarded) monad morphisms over C. Alternatively (by uncurrying), it is
a bifunctor # : C × D → C such that for any X ∈ |D|, --#X : C → C is a
(guarded) monad, and for every f : X → Y , id # f : Z # X → Z # Y is the
Z-component of a (guarded) monad morphism --#f : --#X → --#Y .

A parametrized (guarded) monad morphism between guarded monads qua
functors into the category of monads over C is a natural transformation that is
componentwise a monad morphism. In uncurried notation, given parametrized
monads #, #̂ : C×D → C a natural transformation α : # → #̂ is a parametrized
(guarded) monad morphism if for each X ∈ |D|, α--,X : --#X → -- #̂X is a
(guarded) monad morphism.

Guardedness of the monad morphisms --#f means explicitly that g : Z →σ

V # X implies (id# f) g : Z →σ V # Y .

Example 12. For the purposes of the present work, the most important exam-
ple (taken from [28]) is # = T (-- +Σ --) : C × C → C where T is a (non-
parametrized) monad on C and Σ is an endofunctor on C. Informally, T cap-
tures a computational effect, e.g. nondeterminism for T being powerset, and Σ

524 S. Goncharov et al.

captures a signature of actions, e.g. ΣX = A×X, as in process algebra. Specif-
ically, taking A = 1 we obtain X # Y = T (X + Y); in this case, we have only
one guard, which can be interpreted as a delay. The second argument of # can
thus be thought of as designated for guarded recursion.

Incidentally, our modification of parametrized monads also covers Atkey’s
parametrized monads [5], which are certain functors S× Sop ×C → C forming
a monad in the third argument. The first and the second arguments serve, e.g.,
to parametrize the computational effect of interest with initial and final states
of different types.

Theorem 13. Let # : C× (C×D) → C be a parametrized monad, with unit η
and Kleisli lifting (−)�. Then

X #ν Y = νγ.X # (γ, Y)

defines a parametrized monad #ν : C×D → C whose unit and Kleisli lifting we
denote ην and --�, respectively. Moreover,

1. If # is guarded then so is #ν with guardedness defined as follows: given σ :
Y ′ Y , f : X → Y #ν Z is σ-guarded if outf : X → Y # (Y #ν Z,Z) is
σ-guarded.

2. If # is pre-iterative under an iteration operator --† then so is #ν with the
iteration operator --‡ defined as follows:

(
f : X →2 (Y + X) #ν Z

)‡ = coit
(
[η, (outf)†]�out

)
ην in2

3. If # is iterative then so is #ν under the definition from the previous clause.

Example 14. We spell out one instance of Theorem 13 in case D = 1 and
= T (-- + --) where T = (T, η, --�) is a monad. Then #ν is isomorphically a
monad T

ν on C with T νX = νγ. T (X + γ), unit ην = η in1 and Kleisli star
(f : X → T νY)� being uniquely determined by the equation

outf� = [outf, η in2f
�]�out.

If T is pre-iterative then so is T
ν with iteration

(f : X → T ν(Y + X))‡ = coit
(
[η in2, (T [in1 + id, in1 in2]out f)†]�out

)
ην in2.

Example 15. Theorem 13 shows that our notion of guardedness extends along
the applications of the final coalgebra transformer # �→ #ν on parametrized
monads. This can be used to capture existing notions of guardedness as follows.
Consider X # Y = T (X + (1 + A) × Y) where T is some monad. In Set, 1 + A
can be thought of as consisting of a set A of visible actions and a silent action τ .
In process algebra we standardly consider a process definition to be guarded if
every recursive call is preceded by a visible action from A. In our framework this
can be reconstructed as follows. The obvious isomorphism

νγ. T (X + (1 + A) × γ) ∼= νγ′. νγ. T (X + γ + A × γ′)

Unifying Guarded and Unguarded Iteration 525

involves two more parametrized monads: T (-- + -- +A× --) : C×C×C → C and
νγ. T (-- +γ + A × --) : C×C → C. By taking the latter to be trivially guarded
and then defining guardedness for νγ′. νγ. T (X + γ +A× γ′) using Theorem 13,
we arrive precisely at the notion we expected for the isomorphic monad #ν .

5 Complete Elgot Monads and Iteration Congruences

Besides the fixpoint identity we are interested in the following classical properties
of the iteration operator, which we refer to as the iteration laws [7,10,27]:

– naturality: g�f† = ([(T in1) g, η in2]� f)† for f : X →2 T (Y + X), g : Y → TZ;
– dinaturality: ([η in1, h]� g)† = [η, ([η in1, g]� h)†]� g for g : X →2 T (Y + Z) and

h : Z → T (Y + X) or g : X → T (Y + Z) and h : Z →2 T (Y + X);
– codiagonal: (T [id, in2] f)† = f†† for f : X →12,2 T ((Y + X) + X);
– uniformity: f h = T (id + h) g implies f† h = g† for f : X →2 T (Y + X),

g : Z →2 T (Y + Z) and h : Z → X.

The axioms are summarized in graphical form in Fig. 2, and then become quite
intuitive. The two versions of the dinaturality axiom correspond to the alterna-
tive sets of guardedness assumptions mentioned above. We indicate the scope
of the iteration operator by a shaded box and guardedness by bullets at the
outputs of a morphism.

A guarded pre-iterative monad is called a complete Elgot monad if it is totally
guarded and satisfies all iteration laws. In the sequel we shorten ‘complete Elgot
monads’ to ‘Elgot monads’ (to be distinguished from Elgot monads in the sense
of [2], which have solutions only for morphisms with finitely presentable domain).

In general, the fact that the iteration laws are correctly formulated relies on
the axioms for guardedness. E.g., in the dinaturality axiom it suffices to assume
that g : X → T (Y + Z) is in2-guarded and this implies that both [η in1, h]� g
and [η in1, g]� h are in2-guarded by (cmp) and (trv), and additionally (sum)
in the latter case. Symmetrically, it suffices to make the analogous assumption
about h. In the codiagonal axiom, it follows from the assumption f : X →12,2

T ((Y +X)+X) by (cmp) that T [id, in2] f is in2-guarded and by Proposition 6
that f† is in2-guarded. Indeed, the axioms for guarded monads are designed
precisely to enable the formulation of the iteration laws.

We show that for guarded iterative monads all iteration laws are automatic.
Prior to that, we show that dinaturality follows from the others (thus generalizing
the corresponding observation made recently [13,15]).

Proposition 16. Any guarded pre-iterative monad satisfying naturality, codi-
agonal and uniformity also satisfies dinaturality, as well as the Bekić identity

[
T [id + in1, in2]� f, T [id + in1, in2]� g

]† = [h†, [η, h†]�g†]

where f : X →12,2 T ((Y + X) + Z), g : Z →12,2 T ((Y + X) + Z), and h =
[η, g†]�f : X →2 T (Y + X).

526 S. Goncharov et al.

Fixpoint:

f
X

X

Y

= f f
X

X

X

Y Y

Naturality:

f gX

X

Y Z

= f gX

X

Y Z

Dinaturality 1:

g h
X

X

Y

Z

Y

= g h g

X

Y

Z

Z

Y

X

Y

Dinaturality 2:

g h
X

X

Y

Z

Y

= g h g

X

Y

Z

Z

Y

X

Y

Codiagonal:

g
X

Y

X
X

= g
X

Y

XX

Uniformity:

h f
Z X

Y

X

g h
Z

Z

Y

X

h f
Z X

Y

X

g
Z

Z

Y

Fig. 2. Axioms of guarded iteration.

Unifying Guarded and Unguarded Iteration 527

The proof of the following result runs in accordance with the original ideas of
Elgot [10] for iterative theories, except that, by Proposition 16, dinaturality is
now replaced by uniformity.

Theorem 17. Every guarded iterative monad validates naturality, dinaturality,
codiagonal and uniformity.

We now proceed to introduce key properties of morphisms of guarded monads
that allow for transferring pre-iterativity and the iteration laws, respectively.

Definition 18 (Guarded retraction). Let T and S be guarded monads. We
call a monad morphism ρ : T → S a guarded retraction if there is a family of
morphisms (υX : SX → TX)X∈|C| (not necessarily natural in X!) such that

1. for every f : X →σ SY , we have υY f : X →σ TY ,
2. ρXυX = id for all X ∈ |C|.
Theorem 19. Let ρ : T → S be a guarded retraction, witnessed by υ : S → T,
and suppose that (T, --†) is guarded pre-iterative. Then S is guarded pre-iterative
with the iteration operator (--)‡ given by f‡ = ρ (υf)†.

Definition 20 (Iteration congruence). Let T be a guarded pre-iterative
monad and let S be a monad. We call a monad morphism ρ : T → S an iteration
congruence if for every pair of morphisms f, g : X →2 T (Y + X),

ρf = ρg =⇒ ρf† = ρg†. (2)

If ρ is moreover a guarded retraction, we call ρ an iteration-congruent retraction.

Theorem 21. Under the premises of Theorem 19, assume moreover that ρ is an
iteration-congruent retraction. Then any property out of naturality, dinaturality,
codiagonal, and uniformity that is satisfied by T is also satisfied by S.

Proof (Sketch). The crucial observation is that under our assumptions, (2) is
equivalent to the condition that for all f : X →2 T (Y + X),

ρ (υρ f)† = ρf†. (3)

Indeed, (2) =⇒ (3), for ρυρ f = ρ f and therefore ρ(υρ f)† = ρ f† and
conversely, assuming (3) both for f and for g, and ρf = ρg, we obtain that
ρf† = ρ(υρ f)† = ρ(υρ g)† = ρg†. Using (3), the claim is established routinely. �	
Recall from the introduction that a monad S is iteratable if its coinductive
resumption transform S

ν exists. We make S
ν into a guarded monad by applying

Theorem 13 to S as a trivially guarded monad; explicitly: f : X → Sν(Y + X)
is guarded iff out f = S(in1 + id) g for some g : X → S(Y + Sν(Y + X)). We are
now set to prove our first main result, which states that every iteratable Elgot
monad can be obtained by quotienting a guarded iterative monad; that is, every
choice of solutions that obeys the iteration laws arises by quotienting a more
fine-grained model in which solutions are uniquely determined:

528 S. Goncharov et al.

Theorem 22. A totally guarded iteratable monad S is an Elgot monad iff there
is a guarded iterative monad T and an iteration-congruent retraction ρ : T → S.
Specifically, every iteratable Elgot monad S is an iteration-congruent retract of
its coinductive resumption transform S

ν .

Proof (Sketch). Direction (⇐) immediately follows from Theorems 17 and 21.
In order to prove (⇒), we show that S = (S, η, --�, --†) is an iteration-congruent

retract of Sν = (νγ. S(-- +γ), ην , --�, --‡). Let υX = out-1η in2 out
-1(S in1) and

ρX =
(
SνX

out−−−→ S(X + TX)
)†

.

Clearly, υf is σ-guarded for every f : X → SY and it is easy to verify that υ is
left inverse to ρ by using the fixpoint identity for --† twice.

Naturality of ρ is proved straightforwardly from naturality of --†. The remain-
ing calculations showing that ρ is a monad morphism and moreover an iteration
congruence make heavy use of the Elgot monad laws. �	
The notions of guarded retraction and iteration congruence straightforwardly
extend to parametrized monads. We then can take the claims of Theorem 13
further.

Theorem 23. Let #, #̂ : C × (C × D) → C be guarded parametrized monads
and let ρ : # → #̂ be an iteration-congruent retraction. By Theorem 13, #ν =
--#(γ, --) and #̂ν = -- #̂(γ, --) are also parametrized guarded monads. Then ρν :
#ν → #̂ν , with components

ρν
X,Y = coit

(
νγ.X # (γ, Y)

ρout−−−−→ X #̂ (νγ.X # (γ, Y), Y)
)
,

is again an iteration-congruent retraction.

Theorems 22 and 23 jointly provide a simple and structured way of showing
that Elgotness extends along the parametrized monad transformer # �→ #̂:
If --#X is Elgot then by Theorem 22 there is an iteration-congruent retraction
ρ : νγ. -- +γ#X → --#X; by Theorem 23, it gives rise to an iteration-congruent
retraction

ρν : νγ′. νγ. -- +γ # (γ′,X) → νγ′. --#(γ′,X)

and by Theorem 22, the right-hand side is again Elgot. We have thus proved.

Corollary 24. Given a parametrized monad # and X ∈ |C|, if --#X is Elgot
then so is --#νX = νγ. --#(γ,X).

This yields a more general and simpler proof of one of the main results in [15].

Example 25. By instantiating # in Corollary 24 with Pω(-- +A × --) : Set ×
Set → Set where Pω is the countable powerset monad, we obtain νγ.Pω(X+A×
γ), which can be viewed as a semantic domain for countably branching processes
that possibly terminate with results in X and are taken modulo strong bisimi-
larity. The simple fact that Pω is Elgot [15] implies that so is νγ.Pω(X +A×γ).

Unifying Guarded and Unguarded Iteration 529

This justifies the use of systems of possibly unguarded recursive process algebra
equations (as done, e.g., in [6]). It is worth noting that the iteration operator
of the transformed monad is neither least nor unique. It arises by introducing
an additional delay action that guards all recursive calls and then eliminating
these delays from the unique solution of the new recursive definition; the delay
elimination is the effect of ρν in Theorem 23.

Theorem 22 characterizes iteratable Elgot monads as iteration-congruent
retracts of their (--)ν-transforms. We take this perspective further as follows. Let
us call T strongly iteratable if every T ν...ν exists. Consider the functor T �→ T

ν

on the category of strongly iteratable monads over C. This is itself a monad:
the unit η is the natural transformation with components ηX = out-1(T in1) :
TX → T νX and the multiplication μ : T νν → T ν has components

μX = coit
(
T [id, in2 out-1]out out : T ννX → T (X + T ννX)

)
.

For every T we define the delay transformation � = out-1η in2 : T ν → T ν . This
leads to our second main result:

Theorem 26. The category of strongly iteratable Elgot monads over C is iso-
morphic to the full subcategory of the category of (--)ν-algebras for strongly iter-
atable S consisting of the (--)ν-algebras (Sν , ρ : Sν → S) satisfying ρ� = ρ.

Proof (Sketch). To show that every strongly iteratable Elgot monad is a (--)ν-
algebra, one has to check the equations ρη = id and ρμ = ρρν where ρν =
coit (ρ out) : Sνν → Sν . The first equation follows relatively easily. The second
one is shown along the following lines:

ρμ
(i)== ρ[η, (� out)‡]�out (ii)== ρ

(
out-1S(in1 + ην in2)ρout

)‡ (iii)== ρρν .

Here, (i) and (iii) only amount to equivalent transformations of μ and ρν , respec-
tively, while (ii) makes crucial use of the fact that ρ is an iteration congruence,
as implied by Theorem 22.

For the converse implication, we start with a (--)ν-algebra and verify the
Elgot monad laws for the iteration operator f† = ρ(coit f). �	
Remark 27. The delay cancellation condition ρ� = ρ is essential, as can be
seen on a simple example. Let Mon(C)ν be the category of (--)ν-algebras and let
Mon(C)ν� be its subcategory figuring in Theorem 26. Since the identity functor
is the initial monad, the initial object of Mon(C)ν is Capretta’s delay monad [8]
D = νγ. (-- +γ). On the other hand, the initial object of Mon(C)ν� (if it exists)
is the initial Elgot monad L, which on C = Set is the maybe monad (--) + 1.

If C = Set, then DX = (X × N + 1) does turn out to be Elgot [14] (but
applying Theorem 26 to D qua Elgot monad yields a different (--)ν-algebra struc-
ture than the initial one), and L is, in this case, a retract of D in Mon(C)ν�.
The situation is more intricate in categories with a non-classical internal logic,
for which D is mainly intended. We believe that in such a setting, neither is D

Elgot in general, nor is L the maybe monad. However, there will still be a unique
(--)ν-algebra morphism D → L in Mon(C)ν .

530 S. Goncharov et al.

6 A Sandwich Theorem for Elgot Monads

As an application of Theorem 22, we show that sandwiching an Elgot monad
between adjoint functors again yields an Elgot monad. A similar result has been
shown for completely iterative monads [26]; this result generalizes straightfor-
wardly to guarded iterative monads:

Theorem 28. Let F : C → D and U : D → C be a pair of adjoint functors
with the associated natural isomorphism Φ : D(FX, Y) → C(X,UY), and let T
be a guarded iterative monad on D. Then the monad induced on the composite
functor UTF is guarded iterative, with the guardedness relation defined by taking
f : X →σ UTFY if and only if Φ−1f : FX →σ TFY , and the unique solutions
given by f �→ Φ((Φ−1f)†).

Now, to obtain a similar result for Elgot monads, we can easily combine
Theorems 22 and 28 without having to verify the equational properties by hand.

Theorem 29. With an adjunction as in Theorem 28, let S be an Elgot monad
on D. Then, the monad induced on the composition USF is an Elgot monad.

Proof (Sketch). By Theorem 22, there exists a guarded iterative monad T and an
iteration-congruent retraction ρ : T → S. By Theorem 28, the monad induced on
UTF is guarded iterative. Again by Theorem 22, it suffices to show that UρF :
UTF → USF is an iteration-congruent retraction, which is straightforward. �	
Example 30 (From Metric to CPO-based Iteration). As an example
exhibiting sandwiching as well as the setting of Theorem 22, we compare two iter-
ation operators on Set that arise from different fixed-point theorems: Banach’s,
for complete metric spaces, and Kleene’s, for complete partial orders, respec-
tively. We obtain the first operator by sandwiching Escardo’s metric lifting
monad S [12] in the adjunction between sets and bounded complete ultrametric
spaces (which forgets the metric in one direction and takes discrete spaces in the
other), obtaining a monad S̄ on Set. Given a bounded complete metric space
(X, d), S(X, d) is a metric on the set (X×N)∪{⊥}. As we show in the appendix,
S is guarded iterative if we define f : (X, d) → S(Y, d′) to be σ-guarded if k > 0
whenever f(x) = (σ(y), k). By Theorem 28, S̄ is also guarded iterative (of course,
this can also be shown directly). The second monad arises by sandwiching the
identity monad on cpos with bottom in the adjunction between sets and cpos
with bottom that forgets the ordering in one direction and adjoins bottom in
the other, obtaining an Elgot monad L on Set according to Theorem 29. The
latter is unsurprising, of course, as L is just the maybe monad LX = X + 1.

The monad S̄ keeps track of the number of steps needed to obtain the final
result. We have an evident extensional collapse map ρ : S̄ → L, which just
forgets the number of steps. One can show that ρ is in fact an iteration-congruent
retraction, so we obtain precisely the situation of Theorem 22.

Unifying Guarded and Unguarded Iteration 531

7 Related Work

Alternatively to our guardedness relation on Kleisli morphisms, guardedness
can be formalized using type constructors [23] or, categorically, functors, as in
guarded fixpoint categories [20]; the latter cover also total guardedness, like we
do. Our approach is slightly more fine-grained, and in particular natively sup-
ports the two variants of the dinaturality axiom (Fig. 2), which, e.g., in guarded
fixpoint categories require additional assumptions [20, Proposition 3.15] akin to
the one we discuss in Remark 4.

A result that resembles our Theorem 26, due to Adámek et al. [3], states
roughly that if C is locally finitely presentable and hyperextensive (e.g. C = Set)
then the finitary Elgot monads are the algebras for a monad on the category
of endofunctors given by H �→ LH = ργ. (-- +1 + Hγ) where ρ takes rational
fixpoints (i.e. final coalgebras among those where every point generates a finite
subcoalgebra). Besides Theorem 26 making fewer assumptions on C, the key
difference is that, precisely by dint of this result, LH is already an Elgot monad;
contrastingly, we characterize Elgot monads as quotients of guarded iterative
monads, i.e. of monads where guarded recursive definitions have unique fixpoints.

8 Conclusions and Further Work

We have given a unified account of monad-based guarded and unguarded iter-
ation by axiomatizing the notion of guardedness to cover standard definitions
of guardedness, and additionally, as a corner case, what we call total guard-
edness, i.e. the situation when all morphisms are declared to be guarded. We
thus obtain a common umbrella for guarded iterative monads, i.e. monads with
unique iterates of guarded morphisms, and Elgot monads, i.e. totally guarded
monads satisfying Elgot’s classical laws of iteration. We reinforce the view that
the latter constitute a canonical model for monad-based unguarded iteration by
establishing the following equivalent characterizations: provided requisite final
coalgebras exist, a monad T is Elgot iff

– it satisfies the quasi-equational theory of iteration [2,15] (definition);
– it is an iteration-congruent retract of a guarded iterative monad (Theorem 22);
– it is an algebra (T, ρ) of the monad T �→ νγ. T (X + γ) in the category of

monads satisfying a natural delay cancellation condition (Theorem 26).

In future work, we aim to investigate further applications of this machinery, in
particular to examples which did not fit previous formalizations. One prospec-
tive target is suggested by the work of Nakata and Uustalu [24], who give a
coinductive big-step trace semantics for a while-language. We conjecture that
this work has an implicit guarded iterative monad TR under the hood, for which
guardedness cannot be defined using the standard argument based on a final
coalgebra structure of the monad because TR is not a final coalgebra.

In type theory, there is growing interest in forming an extensional quotient
of the delay monad [4,9]. It is shown in [9] that under certain reasonable con-
ditions, a suitable collapse of the delay monad by removing delays is again a

532 S. Goncharov et al.

monad; however, the proof is already quite complex, and proving directly that
the collapse is in fact an Elgot monad, as one would be inclined to expect, seems
daunting. We expect that Theorem 26 may shed light on this issue. A natural
question that arises in this regard is whether the subcategory of (--)ν-algebras
figuring in the theorem is reflexive. A positive answer would provide a means
of constructing canonical quotients of (--)ν-algebras (such as the delay monad)
with the results automatically being Elgot monads.

References

1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: a coalgebraic view. Theoret. Comput. Sci. 300(1–3), 1–45 (2003)

2. Adámek, J., Milius, S., Velebil, J.: Equational properties of iterative monads. Inf.
Comput. 208, 1306–1348 (2010)

3. Adámek, J., Milius, S., Velebil, J.: Elgot theories: a new perspective of the equa-
tional properties of iteration. Math. Struct. Comput. Sci. 21, 417–480 (2011)

4. Altenkirch, T., Danielsson, N.: Partiality, revisited. In: Types for Proofs and Pro-
grams, TYPES 2016 (2016)

5. Atkey, R.: Parameterised notions of computation. J. Funct. Prog. 19, 335 (2009)
6. Bergstra, J., Ponse, A., Smolka, S. (eds.): Handbook of Process Algebra. Elsevier,

Amsterdam (2001)
7. Bloom, S., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes.

Springer, Heidelberg (1993)
8. Capretta, V.: General recursion via coinductive types. Log. Meth. Comput. Sci.

1(2), 1–28 (2005)
9. Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay monad by weak bisim-

ilarity. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol.
9399, pp. 110–125. Springer, Cham (2015). doi:10.1007/978-3-319-25150-9 8

10. Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H.E.,
Shepherdson, J.C. (eds.) Logic Colloquium 1973. Studies in Logic and the Foun-
dations of Mathematics, vol. 80, pp. 175–230. Elsevier, Amsterdam (1975)

11. Elgot, C., Bloom, S., Tindell, R.: On the algebraic atructure of rooted trees. J.
Comput. Syst. Sci. 16, 362–399 (1978)

12. Escardó, M.H.: A metric model of PCF. In: Realizability Semantics and Applica-
tions (1999)

13. Ésik, Z., Goncharov, S.: Some remarks on Conway and iteration theories. CoRR,
abs/1603.00838 (2016)

14. Goncharov, S., Milius, S., Rauch, C.: Complete Elgot monads and coalgebraic
resumptions. In: Mathematical Foundations of Programming Semantics, MFPS
2016. ENTCS (2016)

15. Goncharov, S., Rauch, C., Schröder, L.: Unguarded recursion on coinductive
resumptions. In: Mathematical Foundations of Programming Semantics, MFPS
2015. ENTCS (2015)

16. Goncharov, S., Schröder, L.: A coinductive calculus for asynchronous side-effecting
processes. Inf. Comput. 231, 204–232 (2013)

17. Lawvere, W.: Functorial semantics of algebraic theories. Proc. Natl. Acad. Sci.
USA 50, 869–872 (1963)

18. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

http://dx.doi.org/10.1007/978-3-319-25150-9_8

Unifying Guarded and Unguarded Iteration 533

19. Milius, S.: Completely iterative algebras and completely iterative monads. Inf.
Comput. 196, 1–41 (2005)

20. Milius, S., Litak, T.: Guard your daggers and traces: properties of guarded (co-
)recursion. Fund. Inform. 150, 407–449 (2017)

21. Moggi, E.: A modular approach to denotational semantics. In: Pitt, D.H., Curien,
P.-L., Abramsky, S., Pitts, A.M., Poigné, A., Rydeheard, D.E. (eds.) CTCS 1991.
LNCS, vol. 530, pp. 138–139. Springer, Heidelberg (1991). doi:10.1007/BFb0013462

22. Moggi, E.: Notions of computation and monads. Inf. Comput. 93, 55–92 (1991)
23. Nakano, H.: A modality for recursion. In: Logic in Computer Science, LICS 2000,

pp. 255–266. IEEE Computer Society (2000)
24. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step

semantics of while. Log. Meth. Comput. Sci. 11(1), 1–32 (2015)
25. Piróg, M., Gibbons, J.: The coinductive resumption monad. In: Mathematical

Foundations of Programming Semantics, MFPS 2014. ENTCS, vol. 308, pp. 273–
288 (2014)

26. Piróg, M., Gibbons, J.: Monads for behaviour. In: Mathematical Foundations of
Programming Semantics, MFPS 2013. ENTCS, vol. 298, pp. 309–324 (2015)

27. Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point operators.
In: Logic in Computer Science, LICS 2000, pp. 30–41 (2000)

28. Uustalu, T.: Generalizing substitution. ITA 37, 315–336 (2003)
29. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration,

categorically. Informatica 10(1), 5–26 (1999). Lithuanian Academy of Sciences

http://dx.doi.org/10.1007/BFb0013462

Partiality, Revisited

The Partiality Monad as a
Quotient Inductive-Inductive Type

Thorsten Altenkirch1(B), Nils Anders Danielsson2(B), and Nicolai Kraus1(B)

1 University of Nottingham, Nottingham, UK
{thorsten.altenkirch,nicolai.kraus}@nottingham.ac.uk

2 University of Gothenburg, Gothenburg, Sweden
nad@cse.gu.se

Abstract. Capretta’s delay monad can be used to model partial compu-
tations, but it has the “wrong” notion of built-in equality, strong bisim-
ilarity. An alternative is to quotient the delay monad by the “right”
notion of equality, weak bisimilarity. However, recent work by Chapman
et al. suggests that it is impossible to define a monad structure on the
resulting construction in common forms of type theory without assuming
(instances of) the axiom of countable choice.

Using an idea from homotopy type theory—a higher inductive-
inductive type—we construct a partiality monad without relying on
countable choice. We prove that, in the presence of countable choice,
our partiality monad is equivalent to the delay monad quotiented by
weak bisimilarity. Furthermore we outline several applications.

1 Introduction

Computational effects can be modelled using monads, and in some functional
programming languages (notably Haskell) they are commonly used as a program
structuring device. In the presence of dependent types one can both write and
reason about monadic programs. From a type theorist’s point of view, even a
“pure” functional language like Haskell is not really pure as it has built-in effects,
one of which is partiality: a function does not necessarily terminate. It is thus
natural to look for a partiality monad which makes it possible to model partial
computations and to reason about possibly non-terminating programs.

Capretta modeled partial computations using a coinductive construction that
we call the delay monad [6]. We use the notation D(A) for Capretta’s type of
delayed computations over a type A. D(A) is coinductively generated by now :
A → D(A) and later : D(A) → D(A). Examples of elements of D(A) include
now(a) and later(later(now(a))), as well as the infinitely delayed value ⊥, defined

T. Altenkirch—Supported by EPSRC grant EP/M016994/1 and by USAF, Airforce
office for scientific research, award FA9550-16-1-0029.
N.A. Danielsson—Supported by a grant from the Swedish Research Council (621-
2013-4879).
N. Kraus—Supported by EPSRC grant EP/M016994/1.

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 534–549, 2017.
DOI: 10.1007/978-3-662-54458-7 31

Partiality, Revisited 535

by the guarded equation ⊥ = later(⊥). We can model recursive programs as
Kleisli arrows A → D(B), and we can construct fixpoints of (ω-continuous)
functions of type (A → D(B)) → (A → D(B)), see Benton et al. [5].

Unfortunately, Capretta’s delay monad is sometimes too intensional. It is
often appropriate to treat two computations as equal if they terminate with the
same value, but the delay monad allows us to count the number of “steps” (later
constructors) used by a computation.

Capretta addressed this problem by defining a relation that we call weak
bisimilarity, ∼D, and that relates expressions that only differ by a finite number
of later constructors [6]. Capretta proved that the delay monad combined with
weak bisimilarity is a monad in the category of setoids.

A setoid is a pair consisting of a type and an equivalence relation on that
type. Setoids are sometimes used to approximate quotient types in type theories
that lack support for quotients. However, a major difference between setoids
and quotient types is that setoids do not provide a mechanism for information
hiding. Using the setoid approach basically boils down to introducing a new
relation together with the convention that all constructions have to respect this
relation. A problem with this approach is that it can lead to something which
has informally become known as setoid hell, in which one is forced to prove that
a number of constructions—even some that do not depend on implementation
details by, say, pattern matching on the now and later constructors—preserve
setoid relations. This kind of problem does not afflict quotient types.

In a type theory with quotient types [14], one can consider using the quotient
D(A)/∼D as the type of partial computations of type A. This idea was discussed
in a talk by Uustalu [7], reporting on joint work with Capretta and the first-
named author of the current paper. However, the idea does not seem to work as
intended. It is an open problem—and believed to be impossible—to show that
this construction actually constitutes a monad (in “usual” forms of type theory).

With an additional assumption, Chapman et al. have managed to show that
the partiality operator D(−)/∼D is a monad [8]. This additional assumption is
known as countable choice. To express what this is, first note that the proposi-
tional truncation, written ‖−‖ and sometimes called “squashing”, is an operation
that turns a type into a proposition (a type with at most one element). We can
see ‖A‖ as the quotient of A by the total relation. Countable choice says that Π
and ‖−‖ commute if the domain is the natural numbers, in the sense that there
is a function from Πn:N ‖P (n)‖ to ‖Πn:N P (n)‖. Even though this principle holds
in some models, its status in type theory is unclear: the principle is believed to
be independent of several variants of type theory. Recently Coquand et al. have
shown that it cannot be derived in a theory with propositional truncation and a
single univalent universe [10], speculating that the result might extend to a theory
with a hierarchy of universes. Furthermore Richman argues that countable choice
should be avoided in constructive reasoning [18]. The main purpose of the present
paper is to define a partiality monad without making use of this principle.

The situation with the quotiented delay monad is similar to that of one vari-
ant of the real numbers in constructive mathematics. If the Cauchy reals are

536 T. Altenkirch et al.

defined as a quotient, then it is impossible to prove a specific form of the state-
ment that every Cauchy sequence of Cauchy reals has a limit using IZFRef , a
constructive set theory without countable choice [17]. It is suspected that cor-
responding statements are also impossible to prove in several variants of type
theory. An alternative solution was put forward in the context of homotopy type
theory [20]. In that approach, the reals are constructed inductively simultane-
ously with a notion of closeness, and the quotienting is done directly in the
definition using a higher inductive-inductive type (HIIT).

In 2015, Andrej Bauer and the first-named author of the current paper sug-
gested to use a similar approach to define a partiality monad without using
countable choice, an idea which was mentioned by Chapman et al. [8]. Here, we
show that this is indeed possible.

We do not make use of the full power of HIITs, but restrict ourselves to set-
truncated HIITs. We call such types quotient inductive-inductive types, QIITs,
following Altenkirch and Kaposi [1]. Some of the theory of QIITs is developed
in the forthcoming PhD thesis of Dijkstra [12], see also Altenkirch et al. [2].
Although type theory extended with QIITs is still experimental and currently
lacks a solid foundation, QIITs are a significantly simpler concept than full-
blown HIITs. It is conjectured that QIITs exist in some computational models
of type theory.

The type theory that we work in can be described as a fragment of the theory
considered in the standard textbook on homotopy type theory [20] (henceforth
referred to as the HoTT book), and is quite close to the theory considered
by Chapman et al. [8]. Details are given in Sect. 2. The construction of our
partiality monad is given in Sect. 3, together with its elimination principle and
some properties. Furthermore we show that it gives us free ω-cpos in a sense
that we will make precise. In Sect. 4 we show that, assuming countable choice,
our partiality monad is equivalent to (in bijective correspondence to) the one
of Chapman et al. [8]. We outline some applications of the partiality monad in
Sect. 5, and conclude with a short discussion in Sect. 6.

Agda Formalisation. The paper is accompanied by a formal development [3]
in Agda.

At the time of writing, Agda does not directly support QIITs. We have chosen
to represent them by postulating their elimination principles together with the
equalities they are supposed to satisfy. In some cases (but not for the partiality
monad) we have also made use of Agda’s experimental rewriting feature [9] to
turn postulated equalities into judgmental computation rules.

Note that there are differences between the Agda code and the presentation
in the text. For one, the formalisation discusses various additional topics that
have been omitted in the paper for reasons of space, and is more rigorous. Fur-
thermore, the paper defines the partiality monad’s elimination principle as a
universal property. In the formalisation the elimination principle is given as an
induction principle, but we also prove that this principle is interderivable with
the universal property. Finally there are a number of small differences between

Partiality, Revisited 537

the formalisation and the text, and some results in the paper have not been
formalised at all, most notably the results about the reals in Sect. 5.2.

2 Background: Type Theory with Quotient
Inductive-Inductive Types

We work in intensional type theory of Martin-Löf style with all the usual com-
ponents (e.g. Π, Σ, inductive types), including the identity type (we use the
notation x = y). We assume that equality of functions is extensional, and that
(strong) bisimilarity implies equality for coinductive types.

Chapman et al. [8] assume the axiom of uniqueness of identity proofs, UIP,
for all small types (types in the lowest universe). UIP holds for a type A if, for
any elements x, y : A, if we have equalities p, q : x = y, then we have p = q.
Instead of postulating an axiom, we prefer to work in a more general setting
and restrict ourselves to types with the corresponding property. This approach
is compatible with homotopy type theory. In the language of homotopy type
theory, we work with sets or 0-truncated types ; a type is a set if and only if
it satisfies UIP. When we write A : Set, we mean that A is a type (in some
universe) with the property of being a set; and when we write B : A → Set, we
mean that B is a family of types such that each B(a) is a set.

Similarly to A : Set, we write P : Prop for a type P with the property that
it is a proposition, i.e. a (−1)-truncated type, i.e. a type with the property that
any two of its elements are equal. A proposition is also a set. The type of all
propositions in a certain universe is closed under all operations that are relevant
to us, and the same applies to sets.

In addition to UIP, Chapman et al. [8] assume propositional extensionality—
that logically equivalent propositions are equal—for all small propositions. This
property is equivalent to the univalence axiom [20], restricted to (small) propo-
sitions. Just like Chapman et al., we only require propositional extensionality
(not full univalence) for our development, with the exception that univalence is
used to show that certain precategories (in the sense of the HoTT book [20])
are categories. For an example of how propositional extensionality is used, see
Lemma 7.

Chapman et al. [8] also assume the existence of quotient types in the style
of Hofmann [14]. Given a set A and a propositional relation ∼ on it, the (set-)
quotient A/∼ can in homotopy type theory be constructed as a higher inductive
type with three constructors [20]:

[−] : A → A/∼
[−]= : Πa,b:A a ∼ b → [a] = [b]
irr : Πx,y:A/∼ Πp,q:x=y p = q

The last constructor irr ensures that any two parallel equalities are equal, that
is, that A/∼ is set-truncated. We call a higher inductive type with such a set-
truncation constructor a quotient inductive type (QIT).

538 T. Altenkirch et al.

As noted above, Chapman et al. [8] use countable choice, which we want to
avoid. Instead we make use of quotient inductive-inductive types (QIITs) [2,12].
From the point of view of homotopy type theory, these are set-truncated higher
inductive-inductive types (HIITs); some other examples of HIITs can be found
in the HoTT book [20, Chap. 11]. While it seems plausible that QIITs exist in
some computational models of type theory, this has yet to be determined.

3 The Partiality Monad

As indicated in the introduction we define the partiality monad (−)⊥ as a QIIT,
defining the type A⊥ simultaneously with an ordering relation � on A⊥. We will
first describe the constructors and the elimination principle of this definition, and
then show that A⊥ is the underlying type of the free ω-cpo (see Definition 4) on
A, thus proving that (−)⊥ is a monad. In the final part of this section we will
give a characterisation of the ordering relation; this is perhaps not as trivial as
one might expect, given the relation’s definition.

Note that our construction of A⊥ can be seen as a further example of a
free algebraic structure defined in type theory. It was discussed in the HoTT
book [20, Chap. 6.11] that free groups can be defined as (in our terminology)
quotient inductive types, while it is well-known that even simpler examples can
be defined as ordinary inductive types.

3.1 The Definition and Its Elimination Principles

Let A be a set. We define the set A⊥ simultaneously with a binary proposi-
tional relation on A⊥, written �. The set A⊥ is generated by the following four
constructors, plus a set-truncation constructor:

η : A → A⊥
⊔

: (Σs:N→A⊥ Πn:N sn � sn+1) → A⊥

⊥ : A⊥ α : Πx,y:A⊥ x � y → y � x → x = y

The constructor η tells us that any element of A can be viewed as an element
of A⊥, and ⊥ represents a non-terminating computation. The constructor

⊔
is

intended to form least upper bounds of increasing sequences, and α ensures that
the ordering relation � is antisymmetric.

The relation � is a type family that is indexed twice by A⊥. It is generated
by six constructors. One of these constructors says that, for any x, y : A⊥,
the type x � y is a proposition (Πp,q:x�y p = q). Because any two proofs of
x � y are equal, we do not name the constructors of the ordering relation. The
remaining constructors are given as inference rules, where each rule is implicitly
Π-quantified over its unbound variables (the same comment applies to other
definitions below):

x � x

x � y y � z

x � z ⊥ � x Πn:N sn �
⊔

(s, p)

Πn:N sn � x
⊔

(s, p) � x

Partiality, Revisited 539

The rules state that � is reflexive and transitive, that ⊥ is at least as small as
any other element of A⊥, and that

⊔
constructs least upper bounds.

Now we will give the elimination principle of (−)⊥ and �. This principle
can be stated in different ways. One way would be to state it as an induc-
tion principle, along the following lines: Given a family P : A⊥ → Set and
[. . . something for �. . .], and given elements of P (⊥), Πa:A P (η(a)), [. . . and
so on. . .], we can conclude that Πx:A⊥ P (x) and [. . .]. We take this approach
in our formalisation; for another example, see the presentation of the Cauchy
reals in the HoTT book [20, Chap. 11.3.2]. However, because the two types are
defined simultaneously and involve constructors targeting the equality type, the
induction principle may look somewhat involved and perhaps even ad-hoc, and
it may not be obvious that it is the “correct” one.

Instead, we present a universal property. Dijkstra [12] and Altenkirch
et al. [2] have worked out a general form and rules for a large class of quotient
inductive-inductive types. In their setting, any specification of a QIIT gives rise
to a category of algebras, following methods that have been used for W-types [4]
and certain higher inductive types [19], and if this category has a (homotopy-)
initial object, then this object is taken as the definition of the QIIT. We use the
following algebras:

Definition 1 (partiality algebras). A partiality algebra over the set A con-
sists of a set X; a propositional binary relation on X, �X ; an element ⊥X : X,
a family ηX : A → X, and a family

⊔
X : (Σs:N→X Πn:N sn �X sn+1) → X; and

the following laws:

x �X x x �X y → y �X z → x �X z

⊥X �X x x �X y → y �X x → x = y

Πn:N sn �X

⊔

X

(s, p) (Πn:N sn �X x) →
⊔

X

(s, p) �X x

The type X and the type family �X are allowed to target universes distinct from
the one that A lives in.

For two partiality algebras over the same set A, (X,�X ,⊥X , ηX ,
⊔

X) and
(Z,�Z ,⊥Z , ηZ ,

⊔
Z), a morphism of partiality algebras from the former to the

latter consists of a function f : X → Z satisfying the following laws: First, f
has to respect the ordering relation, f� : x �X y → f(x) �Z f(y). Second,
f has to preserve some of the constructors, f(⊥X) = ⊥Z , f ◦ ηX = ηZ , and
f(

⊔
X(s, p)) =

⊔
Z(f ◦ s, f� ◦ p).

Let us denote this structure of objects and morphisms by PartA.

The structure PartA is a category, in which the identity morphism is the
identity function, and composition of morphisms is composition of functions.

We can now make the elimination principle precise. Note that the tuple
(A⊥,�,⊥, η,

⊔
) is a partiality algebra. As the elimination principle of A⊥ and

� we take the statement that there is a unique (up to equality) morphism from
this partiality algebra to any other partiality algebra over A. In the terminology
of the HoTT book [20], the statement that there is a morphism is basically the

540 T. Altenkirch et al.

recursion principle of (−)⊥ and �, while uniqueness gives us the power of the
induction principle (with propositional computation rules). Note that allowing
the type X and the type family �X to target arbitrary universes enables us to
make use of large elimination.

We do not lose anything by using a universal property instead of an induction
principle, at least for the induction principle referred to in the following theorem.
The theorem is similar to results due to Dijkstra [12] and Altenkirch et al. [2].
It is stated without proof here, but a full proof of the fact can be found in our
Agda development.

Theorem 2. The elimination principle of A⊥ and � can be stated as an induc-
tion principle. This induction principle, which comes with propositional rather
than definitional computation rules, is interderivable with the universal property
given above.

Note that we could have defined A⊥ and � differently. For instance, we could
have omitted the set-truncation constructor from the definition of A⊥, and then
proved that the type is a set, following the approach taken for the Cauchy reals
in the HoTT book [20]. However, if we had done this, then our definitions would
have been less close to the general framework mentioned above [2,12].

As a simple demonstration of the universal property we construct an induc-
tion principle for A⊥ that can be used when eliminating into a proposition. Fol-
lowing the terminology of the HoTT book [20, Chap. 11.3.2], we call it partiality
induction:

Lemma 3. Let P be a family of propositions on A⊥ such that both P (⊥) and
Πa:A P (η(a)) hold. Assume further that, for any increasing sequence s : N → A⊥
(with corresponding proof p),Πn:N P (sn) impliesP (

⊔
(s, p)). Then we can conclude

Πx:A⊥ P (x).

Proof. The proof uses a standard method. We define a partiality algebra where
the set is Z :≡ Σx:A⊥ P (x); the binary relation is �, ignoring the second pro-
jections of the values in Z; and the rest of the algebra is constructed using the
assumptions. The universal property gives us a morphism m from the initial
partiality algebra to this one, and in particular a function of type A⊥ → Z. We
are done if we can show that this function, composed with the first projection, is
the identity on A⊥. Note that the first projection can be turned into a partiality
algebra morphism fst. Thus, by uniqueness, the composition of fst and m has
to be the unique morphism from the initial partiality algebra to itself, and the
function component of this morphism is the identity. 	

3.2 ω-Complete Partial Orders

Another way of characterising our quotient inductive-inductive partiality monad
is to say that A⊥ is the free (pointed) ω-cpo over A:

Definition 4. Let us denote the category Part0, where 0 is the empty type, by
ω-CPO. An ω-cpo is an object of this category.

Partiality, Revisited 541

Let us quickly check that this definition makes sense. A partiality algebra on 0
is a set X with a binary propositional relation �X that is a partial order. There
is a least element ⊥X and any increasing sequence has a least upper bound.
There is also a function of type 0 → X, which we omit below as it carries no
information.

We can now relate the category of sets [20, Example 9.1.7], written SET,
to the category ω-CPO. For any ω-cpo we can take the underlying set, and it
is easy to see that this yields a functor, in the sense of the HoTT book [20,
Definition 9.2.1], U : ω-CPO→ SET.

We also have a functor F : SET → ω-CPO, constructed as follows: The functor
maps a set A to the ω-cpo (A⊥,�,⊥,

⊔
). For the morphism part, assume that we

have a function f : A → B. Then (B⊥,�,⊥, η ◦ f,
⊔

) is an A-partiality algebra,
and hence there is a morphism to this algebra from the initial A-partiality algebra
(A⊥,�,⊥, η,

⊔
). By removing the components η ◦ f : A → B⊥ and η : A → A⊥

we get a morphism between ω-cpos.
The function η lifts to a natural transformation from the identity functor to

U ◦ F. In order to construct a natural transformation from F ◦ U to the identity
functor, assume that we are given some ω-cpo X. We can construct an ω-cpo
morphism from F(U(X)) to X by noticing that (U(X),�X ,⊥X , id ,

⊔
X) is a

partiality algebra on U(X), and thanks to initiality we get a morphism m from
F(U(X)) to X satisfying m ◦ η = id . After proving some equalities we end up
with the following result, where the definition of “adjoint” is taken from the
HoTT book [20, Definition 9.3.1]:

Theorem 5. For a given set A, the functor F is a left adjoint to the forgetful
functor U. This means that F(A) can be seen as the free ω-cpo over A. 	

Thus we get a justification for calling the concept that we are discussing the
partiality monad :

Corollary 6. The composition U ◦ F : SET → SET, which maps objects A to
A⊥, is a monad. 	

Note that one can also construct a monad structure on (−)⊥ directly. Let us
fix the set A. The unit is given by η. For the multiplication μ : (A⊥)⊥ → A⊥, note
that A⊥ can be given the structure of a partiality algebra over A⊥ in a trivial
way: the underlying set is A⊥, the function ηA⊥ : A⊥ → A⊥ is the identity, �A⊥
is �, and so on. This gives us the function μ as the unique morphism from the
initial partiality algebra to this one. Proving the monad laws is straightforward.

3.3 A Characterisation of the Relation �
To further analyse the QIIT construction, we show how the relation � on the set
A⊥ behaves.1 These results are useful when working with the partiality monad,
and will play an important role in the next section of the paper. The arguments

1 The work presented in Sect. 3.3 was done in collaboration with Paolo Capriotti.

542 T. Altenkirch et al.

are only sketched here, details are given in the formalisation. We use the propo-
sitional truncation ‖−‖ (also known as “squashing”), which turns a type into a
proposition. It can be implemented by quotienting with the trivial relation.

We know that ⊥ � y is (by definition) satisfied for any y : A⊥, and for the
least upper bound we have that

⊔
(s, q) � y is equivalent to Πn:N sn � y. The

following lemma provides a characterisation of η(a) � y, for any a : A:

Lemma 7. The binary relation � on A⊥ has the following properties:

η(a) � ⊥ ↔ 0

η(a) � η(b) ↔ a = b

η(a) �
⊔

(s, q) ↔ ‖Σn:N η(a) � sn‖

We will give the proof of this lemma later and make a remark first. Constructors
in “HIT-like” definitions, e.g. QIITs, may in general be neither injective nor
disjoint. For instance,

⊔
(λn.⊥, q) = ⊥. However, we have the following lemma:

Corollary 8. For any a : A and y : A⊥, we have that η(a) � y implies that
η(a) = y. In particular, η is injective: if η(a) = η(b), then a = b. Moreover, we
have η(a) �= ⊥.

Proof (of Corollary 8). The last two claims are simple consequences of the lemma
and reflexivity. For the first claim, let us fix a : A and apply Lemma 3 with
P (y) :≡ η(a) � y → η(a) = y. The only non-immediate step is the case for⊔

(s, q), where we can assume Πn:N P (sn). From η(a) �
⊔

(s, q) and Lemma 7
we get ‖Σn:N η(a) � sn‖. We are proving a proposition, so we can assume that we
have n : N such that η(a) � sn. This implies that, for all m ≥ n, η(a) � sm and
hence, by the “inductive hypothesis”, η(a) = sm. Thus η(a) is an upper bound
of s, so we get

⊔
(s, q) � η(a), which by antisymmetry implies

⊔
(s, q) = η(a). 	

The proof of the lemma is more technical. The approach is similar to that
used to prove some results about the real numbers defined as a HIIT in the
HoTT book [20, Theorems 11.3.16 and 11.3.32]. We only give a sketch here, the
complete proof can be found in our Agda formalisation.

Proof (of Lemma 7). For every a : A we construct a relation in A⊥ → Prop by
applying the elimination principle of A⊥ and �, treating Prop as a partiality
algebra over A in the following way:

P �Prop Q :≡ (P → Q) ηProp(b) :≡ (a = b)

⊥Prop :≡ 0
⊔

Prop

(S, P) :≡ ‖Σn:N Sn‖

Propositional extensionality is used to prove that Prop is a set (this is a variant
of an instance of Theorem 7.1.11 in the HoTT book [20]), and to prove the
antisymmetry law.

Using Lemma 3 one can then show that the defined relation is pointwise equal
to η(a) � −, and it is easy to see that the relation has the properties claimed in
the statement of Lemma 7. 	

Partiality, Revisited 543

Using the results above one can prove that the order is flat, in the sense that
if x and y are distinct from ⊥ and x �= y, then x �� y (see the formalisation).

4 Relation to the Coinductive Construction

In this section we compare our QIIT to Capretta’s coinductive delay monad [6],
quotiented by weak bisimilarity [8]. Let us start by giving Capretta’s construc-
tion, as already outlined in the introduction. U stands for a universe of types.

Definition 9 (delay monad and weak bisimilarity). For a set A the delay
monad D(A) is the coinductive type generated by now : A → D(A) and
later : D(A) → D(A). The “terminates with” relation ↓D : D(A) → A → U
is the indexed inductive type generated by two constructors of type η(a) ↓D a and
p ↓D a → later(p) ↓D a. Furthermore, x and y : D(A) are said to be weakly
bisimilar, written x ∼D y, if Πa:A x ↓D a ↔ y ↓D a holds.

It is easy to give D(A) the structure of a monad. Note that x ↓D a can alterna-
tively be defined to be Σn:N x = latern(now(a)). The types x ↓D a and x ∼D y
are propositional, and ∼D is an equivalence relation on D(A).

The goal of this section is to show that, in the presence of countable choice,
the partiality monad A⊥ is equivalent to D(A)/∼D. (We use the notion of equiv-
alence from the HoTT book [20], which for sets is equivalent to bijective cor-
respondence.) To understand the structure of the proof, let us observe that
D(A)/∼D is constructed as a “coinductive type that is quotiented afterwards”,
while A⊥ is an “inductive type that is quotiented at the time of construction”.
To build a connection between these, it seems rather intuitive to consider an
intermediate construction, either a “coinductive type that is quotiented at the
time of construction” or an “inductive type that is quotiented afterwards”. The
theory of “higher coinductive types” has, as far as we know, not been explored
much yet, so we go with the second option. We do not even need an inductive
construction: it is well-known that coinductive structures can be represented
using finite approximations, and here, it is enough to consider monotone func-
tions. Thus, first we will show that D(A) is equivalent to a type of monotone
sequences, carefully formulated, and that the equivalence lifts to the quotients.
Then we will prove that, assuming countable choice, the quotiented monotone
sequences are equivalent to A⊥.

4.1 The Delay Monad and Monotone Sequences

For a set A we say that a function g : N → A + 1 is a monotone sequence if it
satisfies the propositional property

ismon(g) :≡ Πn:N (gn = gn+1) + ((gn = inr(�)) × (gn+1 �= inr(�))) .

The set of monotone sequences, Σg:N→A+1 ismon(g), is denoted by SeqA. Below
the notation −n will be used not only for functions, but also for monotone
sequences; (g, p)n means gn.

544 T. Altenkirch et al.

As Chapman et al. [8] observe, one can construct a sequence of type N → A+1
from an element of D(A). If their construction is tweaked a little, then the
resulting sequences are monotone, and the map is an equivalence:

Lemma 10. The types SeqA and D(A) are equivalent.

Proof. We can simply give functions back and forth. Note that endofunctions
on D(A) that correspond to later and “remove later, if there is one” can be
mimicked for SeqA: let us use the names shift and unshift : SeqA → SeqA for
the functions that are determined by shift(g)0 :≡ inr(�), shift(g)n+1 :≡ gn, and
unshift(g)n :≡ gn+1.

Define j : D(A) → SeqA such that j(now(a)) equals λn.inl(a), and j(later(x))
equals shift(j(x)), One way to do this is to define j(z)n by recursion on n,
followed by case distinction on z. Furthermore, define h : SeqA → D(A) in the
following way: Given s : SeqA, do case distinction on s0. If s0 is inl(a), return
now(a). Otherwise, return later(h(unshift(s))). It is straightforward to show that
j and h are inverses of each other. 	

As an aside, our formalisation shows that Lemma 10 holds even if A is not a set.
Next, we mimic the relation ↓D by setting

↓Seq : SeqA → A → U
s ↓Seq a :≡ Σn:N sn = inl(a).

The relation ↓Seq is not in general propositional. To remedy this, we can truncate
and consider ‖s ↓Seq a‖. Using strategies explained by Kraus et al. [15], we have
‖s ↓Seq a‖ → s ↓Seq a, so we can always extract a concrete value of n: a variant
of the definition above in which the number n is required to be minimal is
propositional, and this definition can be shown to be logically equivalent to both
‖s ↓Seq a‖ and s ↓Seq a. See the formalisation for details.

We define the propositional relations �Seq and ∼Seq by

s �Seq t :≡ Πa:A ‖s ↓Seq a‖ → ‖t ↓Seq a‖ and
s ∼Seq t :≡ s �Seq t × t �Seq s.

By checking that the equivalence from Lemma 10 maps ∼Seq-related elements
to ∼D-related elements, we get:

Lemma 11. The sets SeqA/∼Seq and D(A)/∼D are equivalent. 	

4.2 Monotone Sequences and the QIIT Construction

As the final step of showing that D(A)/∼D and A⊥ are equivalent, we show that
SeqA/∼Seq and A⊥ are. The plan is as follows: There is a canonical function
w : SeqA → A⊥ which can be extended to a function w̃ : SeqA/∼Seq → A⊥.
The function w̃ is injective. Furthermore, if we assume countable choice, then
the function w, and thus also w̃, are surjective. Thus w̃ is an equivalence.

Partiality, Revisited 545

Let us start by constructing w and w̃. We use a copairing function [η | ⊥] :
A + 1 → A⊥ defined by [η | ⊥] (inl(a)) :≡ η(a) and [η | ⊥] (inr(�)) :≡ ⊥, and
define w : SeqA → A⊥ by w(s, q) :≡

⊔
([η | ⊥] ◦ s, . . .), with a canonical proof of

monotonicity.

Lemma 12. The function w is monotone: Πs,t:SeqA s �Seq t → w(s) � w(t).
Thus w extends to a map w̃ : SeqA/∼Seq → A⊥.

Proof. For the second claim we show that w maps elements related by ∼Seq to
equal elements. This follows from the first claim by antisymmetry. For the first
claim it suffices to find a function k : N → N such that, for all n, we have
[η | ⊥] (sn) � [η | ⊥] (tk(n)). Fix n. If sn is inr(�), then [η | ⊥] (sn) is ⊥, and
k(n) can thus be chosen arbitrarily. If sn is inl(a), then we have s ↓Seq a and
therefore t ↓Seq a, which gives us a number k(n) such that tk(n) = inl(a) and
[η | ⊥] (sn) = η(a) = [η | ⊥] (tk(n)). 	

Lemma 13. The function w̃ is injective: Πs,t:SeqA/∼Seq
w̃(s) = w̃(t) → s = t.

Proof. It suffices to show that, for s, t : SeqA, w(s) = w(t) implies s ∼Seq t. By
symmetry, it is enough to fix a : A and show ‖s ↓Seq a‖ → ‖t ↓Seq a‖, which follows
from s ↓Seq a → ‖t ↓Seq a‖. If s ↓Seq a then w(s) = η(a), and thus also w(t) =
η(a). Using Lemma 7 and Corollary 8 we then get ‖Σn:N η(a) = [η | ⊥] (tn)‖, which
implies ‖Σn:N tn = inl(a)‖. 	

Lemma 14. Under countable choice, w is surjective: Πx:A⊥ ‖Σs:SeqA w(s) = x‖.

Proof. We apply the simplified induction principle presented in Lemma 3. The
propositional predicate is P (x) :≡ ‖Σs:SeqA w(s) = x‖. Both P (⊥) and P (η(a))
are trivial: in the first case we use the sequence that is constantly inr(�), while
in the second case we take the one that is constantly inl(a).

The interesting part is to show P (
⊔

(f, p)) for a given f : N → A⊥ and
p : Πn:N fn � fn+1. By the mentioned induction principle, we can assume
Πn:N P (fn), which unfolds to Πn:N ‖Σt:SeqA w(t) = fn‖. By countable choice, we
can swap Πn:N and ‖−‖, which allows us to remove the truncation completely,
because the goal is propositional. Hence we can assume Πn:N Σt:SeqA w(t) = fn.

Using the usual distributivity law for Π and Σ (sometimes called the “type-
theoretic axiom of choice”), we can assume that we are given g : N → SeqA and a
proof γ : Πn:N w(gn) = fn. By dropping the monotonicity proof and uncurrying,
g gives us a function g′ : N×N → A+1 with the property that it assumes at most
one value in A: If g′

i,j = inl(a), then (using γ) η(a) � fi, thus η(a) �
⊔

(f, p),
and hence

⊔
(f, p) = η(a) by Corollary 8. If we also have g′

k,m = inl(b), then
η(a) = η(b), which by Corollary 8 implies that a = b.

We use g′ to construct an element of SeqA. Take an arbitrary isomorphism
σ : N → N×N (a split surjection would also be sufficient), and define a function
g̃ : N → A + 1 by

g̃(n) :≡
{

g′(σn), if n = 0 or g′(σn) �= inr(�),
g̃(n − 1), otherwise.

546 T. Altenkirch et al.

The intuition is that g̃(n) checks the first n + 1 results of g′ ◦ σ and chooses
the last which is of the form inl(−), if any, otherwise returning inr(�). Because
g′ assumes at most one value in A we get that g̃ is monotone, q : ismon(g̃).
Furthermore (g̃, q) ↓Seq a holds if and only if we have Σn:N g′(σn) = inl(a).

In order to complete the proof of P (
⊔

(f, p)) we show that w(g̃, q) =
⊔

(f, p)
by using antisymmetry:

– First part: w(g̃, q) �
⊔

(f, p). After unfolding the definition of w we see that
it suffices to prove [η | ⊥] (g̃n) �

⊔
(f, p) for an arbitrary n : N. If g̃n is inr(�),

then this is trivial. If g̃n is inl(a) for some a : A, then we can find a pair (i, j)
such that g′

i,j = inl(a). Thus we get the following chain:

[η | ⊥] (g̃n) = [η | ⊥] (g′
i,j) � w(gi) = fi �

⊔
(f, p)

– Second part:
⊔

(f, p) � w(g̃, q). Given n : N, we show that fn � w(g̃, q). By
γn we have fn = w(gn). Thus it suffices to prove w(gn) � w(g̃, q), which by
Lemma 12 follows if gn �Seq (g̃, q). If gn(i) = inl(a) for some i and a, then we
have inl(a) = g′

n,i = g′(σ(σ−1
n,i)), and thus (g̃, q) ↓Seq a. 	

This immediately shows that w̃ is surjective as well. Putting the pieces
together, we get the main result of this section:

Theorem 15. In the presence of countable choice the map w̃ is an equivalence.
Hence the three sets D(A)/∼D, SeqA/∼Seq and A⊥ are equivalent.

Proof. A function between sets is an equivalence exactly if it is surjective and
injective. This is a special case of Theorem 4.6.3 in the HoTT book [20], which
states that a function between arbitrary types is an equivalence if and only if it
is surjective and an embedding, which for sets is equivalent to being injective. 	

5 Applications

The following examples show that our construction can be used in formalisations.

5.1 Nonterminating Functions as Fixed Points

Partiality algebras can be used to implement not necessarily terminating func-
tions. Let (Y,�Y ,⊥Y , ηY ,

⊔
Y) be a partiality algebra, and let ϕ : Y → Y

be a monotone and ω-continuous function. We can write down the least fixed
point of ϕ directly as

⊔
Y (λn.ϕn(⊥Y), p), where p is constructed from the fact

that ⊥Y �Y ϕ(⊥Y) and from the monotonicity proof of ϕ. One does not need
ω-continuity to write down this expression, but we use it to prove that the
expression is a fixed point of ϕ.

If (Y,�Y ,⊥Y , ηY ,
⊔

Y) is a partiality algebra and X is any type, then the
function space X → Y can be given the structure of a partiality algebra in a
canonical way (this is done for dependent types Πx:X Y (x) in the formalisation).

Partiality, Revisited 547

As an example of how this kind of partiality algebra can be used we will construct
a function searchq : Aω → A⊥ that takes an element of the coinductive set of
streams Aω and searches for an element of the set A satisfying the decidable
predicate q : A → 2. The function is constructed as the least fixed point of the
following endofunction on Aω → A⊥:

Φ(f)(a :: as) :≡ if q(a) then η(a) else f(as)

It is straightforward to check that f � g implies Φ(f) � Φ(g) by applying Φ(f)
and Φ(g) to a point a :: as and doing case analysis on q(a). Thus Φ is monotone.
In a similar way one can verify that Φ is ω-continuous.

5.2 Functions from the Reals

Let us consider the Cauchy reals, defined as a quotient. We say that f : N → Q is a
Cauchy sequence if, for all m, n : N with m < n, we have −1 < m · (fm − fn) < 1.
Furthermore, f and g are equivalent (written f ∼ g) if, for all n : N, we have
−2 ≤ n · (fn − gn) ≤ 2. We use the notation R

q for the quotient of Cauchy
sequences by ∼.

A meta-theoretic result is that, without further assumptions, any defin-
able function (i.e. any closed term) of type R

q → 2 is constant for reasons
of continuity [16]. In particular, we cannot define a function isPositive which
checks whether a real number is positive. However, we can define a function
isPositive : R

q → 2⊥ such that isPositive(r) is equal—but not judgmen-
tally/definitionally equal—to η(12) if r is positive, η(02) if r is negative, and
⊥ if r is zero.

We define this function as follows: Given a Cauchy sequence f : N → Q,
we construct a new sequence f : N → {−, ?,+}. The idea is that fn is an
approximation which only takes fi with i ≤ n into account. We start with
f0 :≡ ?. If we have chosen fn−1 to be −, then we choose fn to be − as well, and
analogously for +. If we have chosen fn−1 to be ?, we check whether fn ·n < −2,
in which case we choose fn to be −; if fn ·n > 2, we choose fn to be +; otherwise,
we choose fn to be ?. We can compose with the map {−, ?,+} → A⊥ which
is defined by − �→ η(02), ? �→ ⊥, and + �→ η(12). This defines a monotone
sequence in 2⊥, and we can form

⊔
f : 2⊥ to answer whether f represents a

positive or negative number, or is zero. One can check that equivalent Cauchy
sequences get mapped to equal values, hence we get isPositive : Rq → 2⊥.

The strategy outlined above does not quite work for the reals defined as a
HIIT [20] because, roughly speaking, in that setting fn is a real number and a
comparison such as fn · n < −2 is undecidable. Recently Gilbert has refined our
approach and defined a function isPositive for such reals [13], using the definition
of the partiality monad presented in this text (with insignificant differences).
Gilbert’s key observation is that comparisons between real numbers and rational
numbers are semidecidable, and semidecidability is sufficient to define isPositive.

548 T. Altenkirch et al.

5.3 Operational Semantics

In previous work the second-named author has discussed how one can use the
delay monad to express operational semantics as definitional interpreters [11].
As a case study we have ported some parts of this work to the partiality monad
discussed in the present text: definitional interpreters for a simple functional
language and a simple virtual machine, a type soundness proof, a compiler, and
a compiler correctness result. Due to lack of space we do not include any details
here, but refer interested readers to the accompanying source code.

6 Discussion and Further Work

We have constructed a partiality monad without using countable choice. This is
only a first step in the development of a form of constructive domain theory in
type theory. It remains to be seen whether it is possible to, for instance, replicate
the work of Benton et al. [5], who develop domain theory using the delay monad.

Consider the partial function filter : ΠA:Set (A → 2) → Aω → Aω that fil-
ters out elements from a stream. How should partial streams over A be defined?
Defining them as νX.(A × X)⊥ seems inadequate, because the ordering of (−)⊥
is flat. One approach would perhaps be to define this type by solving a domain
equation. Instead of relying on the type-theoretic mechanism to define recur-
sive types, we can perhaps construct a suitable type of partial streams as the
colimit of an ω-cocontinuous functor on the category of ω-cpos. Preliminary
investigations indicate that QIITs are useful in the endeavour, for example in
the definition of a lifting comonad on ω-cpos (as suggested by Paolo Capriotti).

Going in another direction, it might be worth investigating how much topol-
ogy can be done using the Sierpinski space, represented as 1⊥ in our setting.
A very similar question was discussed at the Special Year on Univalent Foun-
dations of Mathematics at the IAS in Princeton (2012–2013). Moreover, some
observations have been presented by Gilbert [13], who used our definition of 1⊥
as presented in this paper (with minor differences).

Acknowledgements. We thank Gershom Bazerman, Paolo Capriotti, Bernhard
Reus, and Bas Spitters for interesting discussions and pointers to related work, and the
anonymous reviewers for useful feedback. The work presented in Sect. 3.3 was done in
collaboration with Paolo Capriotti.

References

1. Altenkirch, T., Kaposi, A.: Type theory in type theory using quotient inductive
types. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, pp. 18–29 (2016). doi:10.
1145/2837614.2837638

2. Altenkirch, T., Capriotti, P., Dijkstra, G., Nordvall Forsberg, F.: Quotient
inductive-inductive types. Preprint arXiv:1612.02346v1 [cs.LO] (2016)

http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.1145/2837614.2837638
http://arxiv.org/abs/1612.02346v1

Partiality, Revisited 549

3. Altenkirch, T., Danielsson, N.A., Kraus, N.: Code related to the paper “Partiality,
revisited: The partiality monad as a quotient inductive-inductive type” (2017).
Agda code, http://www.cse.chalmers.se/∼nad/

4. Awodey, S., Gambino, N., Sojakova, K.: Inductive types in homotopy type the-
ory. In: 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pp. 95–104 (2012). doi:10.1109/LICS.2012.21

5. Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational
semantics in coq. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 115–130. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03359-9 10

6. Capretta, V.: General recursion via coinductive types. Logical Methods Comput.
Sci. 1(2), 1–28 (2005). doi:10.2168/LMCS-1(2:1)2005

7. Capretta, V., Altenkirch, T., Uustalu, T.: Partiality is an effect. Slides for a talk
given by Uustalu at the 22nd Meeting of IFIP Working Group 2.8 (2005). http://
www.cs.ox.ac.uk/ralf.hinze/WG2.8/22/slides/tarmo.pdf

8. Chapman, J., Uustalu, T., Veltri, N.: Quotienting the delay monad by weak bisim-
ilarity. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol.
9399, pp. 110–125. Springer, Cham (2015). doi:10.1007/978-3-319-25150-9 8

9. Cockx, J., Abel, A.: Sprinkles of extensionality for your vanilla type theory. In:
TYPES 2016, Types for Proofs and Programs, 22nd Meeting, Book of Abstracts
(2016). http://www.types2016.uns.ac.rs/images/abstracts/cockx.pdf

10. Coquand, T., Mannaa, B., Ruch, F.: Stack semantics of type theory. Preprint
arXiv:1701.02571v1 [cs.LO] (2017)

11. Danielsson, N.A.: Operational semantics using the partiality monad. In: Proceed-
ings of the 17th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2012, pp. 127–138 (2012). doi:10.1145/2364527.2364546

12. Dijkstra, G.: Quotient inductive-inductive definitions. Ph.D. thesis, University of
Nottingham (2017). In preparation

13. Gilbert, G.: Formalising real numbers in homotopy type theory. In: Proceedings of
the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017,
pp. 112–124 (2017). doi:10.1145/3018610.3018614

14. Hofmann, M.: Extensional concepts in intensional type theory. Ph.D. thesis, Uni-
versity of Edinburgh (1995)

15. Kraus, N., Escardó, M., Coquand, T., Altenkirch, T.: Generalizations of Hed-
berg’s theorem. In: Hasegawa, M. (ed.) TLCA 2013. LNCS, vol. 7941, pp. 173–188.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38946-7 14

16. Li, N.: Quotient types in type theory. Ph.D. thesis, University of Nottingham (2015)
17. Lubarsky, R.S.: On the Cauchy completeness of the constructive Cauchy reals.

Math. Logic Quart. 53(4–5), 396–414 (2007). doi:10.1002/malq.200710007
18. Richman, F.: Constructive mathematics without choice. In: Schuster, P., Berger,

U., Osswald, H. (eds.) Reuniting the Antipodes – Constructive and Nonstandard
Views of the Continuum. Synthese Library, vol. 306, pp. 199–205. Springer Sci-
ence+Business Media, Dordrecht (2001). doi:10.1007/978-94-015-9757-9 17

19. Sojakova, K.: Higher inductive types as homotopy-initial algebras. In: Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2015, pp. 31–42 (2015). doi:10.1145/2676726.2676983

20. The Univalent Foundations Program: Homotopy Type Theory: Univalent Founda-
tions of Mathematics, 1st edn. (2013). https://homotopytypetheory.org/book/

http://www.cse.chalmers.se/~nad/
http://dx.doi.org/10.1109/LICS.2012.21
http://dx.doi.org/10.1007/978-3-642-03359-9_10
http://dx.doi.org/10.1007/978-3-642-03359-9_10
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/22/slides/tarmo.pdf
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/22/slides/tarmo.pdf
http://dx.doi.org/10.1007/978-3-319-25150-9_8
http://www.types2016.uns.ac.rs/images/abstracts/cockx.pdf
http://arxiv.org/abs/1701.02571v1
http://dx.doi.org/10.1145/2364527.2364546
http://dx.doi.org/10.1145/3018610.3018614
http://dx.doi.org/10.1007/978-3-642-38946-7_14
http://dx.doi.org/10.1002/malq.200710007
http://dx.doi.org/10.1007/978-94-015-9757-9_17
http://dx.doi.org/10.1145/2676726.2676983
https://homotopytypetheory.org/book/

On the Semantics of Intensionality

G.A. Kavvos(B)

Department of Computer Science, University of Oxford, Wolfson Building,
Parks Road, Oxford OX1 3QD, UK

alex.kavvos@cs.ox.ac.uk

Abstract. In this paper we propose a categorical theory of intensional-
ity. We first revisit the notion of intensionality, and discuss its relevance
to logic and computer science. It turns out that 1-category theory is not
the most appropriate vehicle for studying the interplay of extension and
intension. We are thus led to consider the P-categories of Čubrić, Dybjer
and Scott, which are categories only up to a partial equivalence rela-
tion (PER). In this setting, we introduce a new P-categorical construct,
that of exposures. Exposures are very nearly functors, except that they
do not preserve the PERs of the P-category. Inspired by the categorical
semantics of modal logic, we begin to develop their theory. Our leading
examples demonstrate that an exposure is an abstraction of well-behaved
intensional devices, such as Gödel numberings. The outcome is a unifying
framework in which classic results of Kleene, Gödel, Tarski and Rice find
concise, clear formulations, and where each logical device or assumption
involved in their proofs can be expressed in the same algebraic manner.

1 Introduction: Intensionality and Intensional Recursion

This paper proposes a new theory of intensionality. Intensionality is a notion that
dates as early as Frege’s philosophical distinction between sense and denotation,
see for example [11]. In the most mathematically general sense, to be ‘inten-
sional’ is to somehow operate at a level finer than some predetermined ‘exten-
sional’ equality. Whereas in mainstream mathematics intensionality is merely a
nuisance, it is omnipresent in computer science, where the objects of study are
distinct programs and processes describing (often identical) abstract mathemat-
ical values. At one end of the spectrum, programs are extensionally equal if they
are observationally equivalent, i.e. interchangeable in any context. At the other
extreme, computer viruses often make decisions simply on patterns of object
code they encounter, disregarding the actual function of what they are infecting;
one could say they operate up to syntactic identity.

1.1 Intensionality as a Logical Construct

We are interested in devising a categorical setting in which programs can be
viewed in two ways simultaneously, either as black boxes—i.e. extensionally,

This work was supported by the EPSRC (award reference 1354534).

c© Springer-Verlag GmbH Germany 2017
J. Esparza and A.S. Murawski (Eds.): FOSSACS 2017, LNCS 10203, pp. 550–566, 2017.
DOI: 10.1007/978-3-662-54458-7 32

On the Semantics of Intensionality 551

whatever we define that to mean, but also as white boxes—i.e. intensionally,
which should amount to being able to ‘look inside’ a construction and examine
its internal workings.

There are many reasons for pursuing this avenue. The main new construct
we will introduce will be an abstraction of the notion of Gödel numbering. The
immediate achievement of this paper is a categorical language in which we can
state many classic theorems from logic and computability that depend on the
interplay between extension and intension. This unifying language encompasses
all such ‘diagonal constructions’ in a way that makes the ingredients involved in
each argument clear. As such, we regard this as an improvement on the classic
paper of Lawvere [16].

A more medium-term goal is the quest to prove a logical foundation to com-
putational reflection, in the sense of Brian Cantwell Smith [23]. A reflective
program is always able to obtain a complete description of its source code and
current state; this allows it to make decisions depending on both its syntax and
runtime behaviour. This strand of research quickly ran into impossibility results
that demonstrate that reflective features are logically ill-behaved: see e.g. [2] for
reflection in untyped λ-calculus, or [25] for a more involved example involving
the LISP fexpr construct. Our viewpoint allows us to talk about the notion of
intensional recursion, which is more general than ordinary extensional recursion,
and seems to correspond to a well-behaved form of reflection. We connect this
to a classic result in computability theory, namely Kleene’s Second Recursion
Theorem (SRT).

Finally, a more long-term goal is to understand non-functional computation.
In this context, non-functional computation means something much more general
than just computing with side-effects: we are interested in general higher-order
computation acting ‘on syntax.’ Approaches to such forms of computation have
hitherto been ad-hoc, see e.g. [18, Sect. 6]. We would like to provide a very general
way to add ‘intensional’ features to a pure functional programming language.

1.2 Prospectus

To begin, we introduce in Sect. 2 a known connection between the notion of
intension and the necessity modality from modal logic, and the use of modal types
in isolating intension from extension. We argue that this connection cannot be
fully substantiated in 1-category theory. Hence, we introduce P-categories and
explain their use in modelling intensionality.

In Sect. 3 we introduce a new P-categorical construct, the exposure. Expo-
sures ‘turn intensions into extensions’ in a manner inspired by the modality-as-
intension interpretation. In Sect. 4 we use exposures to talk about the notion of
intensional recursion in terms of intensional fixed points (IFPs).

In Sect. 5 we use IFPs to prove abstract analogues to Tarski’s undefinability
theorem and Gödel’s First Incompleteness Theorem. In Sect. 6 we construct a
P-category and an endoexposure that substantiate the claim that the abstract
versions correspond to the usual theorems.

552 G.A. Kavvos

We then ask the obvious question: where do IFPs come from? In Sect. 7
we generalize Lawvere’s fixed-point theorem to yield IFPs. Then, in Sect. 8, we
draw a parallel between Kleene’s First Recursion Theorem (FRT) and Lawvere’s
fixed point result, whereas we connect our IFP-yielding result with Kleene’s Sec-
ond Recursion Theorem. We substantiate this claim in Sect. 9 by constructing a
P-category and exposure based on realizability theory.

Finally, in Sect. 10 we provide further evidence for the usefulness of our lan-
guage by reproducing an abstract version of Rice’s theorem, a classic result in
computability theory. We find that this is already substantiated in the P-category
constructed in Sect. 9.

2 Modality-as-Intension

All the negative results regarding intensionality and computational reflection
have something in common: they invariably apply to some construct that can
turn extension into intension. For example, in [2] a contradiction is derived from
the assumption that some term Q satisfies QM =β �M� for any M , where the
RHS is a Gödel number of M . The moral is that one should not mix intension
and extension.

To separate the two, we will use modal types, as first suggested by Davies and
Pfenning [10,22]. In op. cit. the authors use modal types to simulate two-level
λ-calculi. In passing, they interpret the modal type �A as the type of ‘intensions
of type A’ or ‘code of type A.’ The T axiom �A → A may then be read as
an interpreter that maps code to values, whereas the 4 axiom �A → ��A
corresponds to quoting, but quoting that can only happen when the initial value
is already code, and not a ‘runtime,’ live value.

Unfortunately, the available semantics do not corroborate this interpretation.
The categorical semantics of the S4 necessity modality—due to Bierman and
de Paiva [4]—specify that � is a monoidal comonad (�, ε, δ) on a CCC. The
problem is now rather obvious, in that equality in the category is extensional
equality: if f = g, then �f = �g. In modal type theory, this amounts to saying
that � M = N : A implies � box M = box N : �A, which is not what we mean
by intensionality at all. By definition, ‘intension’ should not be preserved under
equality, and in [10] it is clearly stated that there should be no reductions under
a box (−) construct.

To salvage this modality-as-intension interpretation, we have to leave 1-
category theory, and move to a framework where we can separate extensional
equality—denoted ∼—and intensional equality—denoted ≈. We will thus use
the P-categories of Čubrić, Dybjer and Scott [8]. P-categories are only categories
up to a family of partial equivalence relations (PERs). In our setting, the PER
will specify extensional equality. All that remains is to devise a construct that
(a) behaves like a modality, so that intension and extension stay separate, and
(b) unpacks the non-extensional features of an arrow. This will be the starting
point of our theory of exposures.

On the Semantics of Intensionality 553

2.1 P-categories and Intensionality

Suppose we have a model of computation or a programming language whose pro-
grams are seen as computing functions, and suppose that we are able to compose
programs in this language, so that given programs P (computing f) and Q (com-
puting g) there is a simple syntactic construction Q; P (computing g ◦f). In more
elegant cases, like the λ-calculus, composition will be substitution of a term for a
free variable. But in most other cases there will be unappealing overhead, involv-
ing e.g. some horrible disjoint unions of sets of states. This syntactic overhead
almost always ensures that composition of programs is not associative: (R; Q); P
is not syntactically identical to R; (Q; P), even though they compute the same
function.

To model this we will use P-categories, first introduced in [8]. Generally
denoted B,C, . . . , or even (B,∼), P-categories are categories whose hom-sets
are not sets, but P-sets: a P-set is a pair A = (|A| ,∼A) of a set |A| and a partial
equivalence relation (PER)1 on |A|. If a ∼A a′, then a can be thought of as
‘equal’ to a′. The lack of reflexivity means that there may be some a ∈ |A| such
that a �∼A a: these can be thought of as points which are not well-defined. A
P-function f : A → B between two P-sets A = (|A| ,∼A) and B = (|B| ,∼B) is a
function |f | : |A| → |B| that respects the PER: if a ∼A a′ then |f | (a) ∼B |f | (a′).
We simply write f(a) if a ∼A a.

Thus, we take each hom-set C(A,B) of a P-category C to be a P-set. We
will only write f : A → B if f ∼C(A,B) f , i.e. f is a well-defined arrow. Arrows
in a P-category are intensional constructions. Two arrows f, g : A → B will be
extensionally equal if f ∼C(A,B) g. The axioms of category theory will then only
hold up to the family of PERs, i.e. ∼ = {∼C(A,B)}A,B∈C. For example, it may
be that f ◦ (g ◦ h) �= (f ◦ g) ◦ h, yet f ◦ (g ◦ h) ∼ (f ◦ g) ◦ h.

Hence, we regain all the standard equations of 1-categories, up to PERs. Fur-
thermore, the standard notions of terminal objects, products and exponentials
all have a P-variant in which the defining equations hold up to ∼. We are unable
to expound on P-categories any further, but please refer to [8] for more details.

3 Exposures

We can now formulate the definition of exposures. An exposure is almost a
(P-)functor: it preserves identity and compositions, but it only reflects PERs.

Definition 1. An exposure Q : (B,∼) � (C,∼) consists of (a) an object QA ∈
C for each object A ∈ B, and (b) an arrow Qf : QA → QB in C for each arrow
f : A → B in B, such that (1) Q(idA) ∼ idQA, and (2) Q(g ◦ f) ∼ Qg ◦ Qf
for any arrows f : A → B and g : B → C, and (3) for any f, g : A → B, if
Qf ∼ Qg then f ∼ g.

1 That is, a symmetric and transitive relation.

554 G.A. Kavvos

The identity exposure IdB : B � B maps every object to itself, and every
arrow to itself. Finally, it is easy to see that the composite of two exposures is
an exposure.

As exposures give a handle on the internal structure of arrows, they can be
used to define intensional equality: if the images of two arrows under the same
exposure Q are extensionally equal, then the arrows have the same implementa-
tion, so they are intensionally equal. This is an exact interpretation of a slogan
of Abramsky [1]: intensions become extensions.

Definition 2 (Intensional Equality). Let there be P-categories B, C, and an
exposure Q : (B,∼) � (C,∼). Two arrows f, g : A → B are intensionally equal
(up to Q), written f ≈ g, just if Qf ∼ Qg.

It is obvious then that the last axiom on the definition of exposures means
that intensional equality implies extensional equality.

To re-interpret concepts from the modality-as-intension interpretation—such
as interpreters, quoting etc.—we shall need a notion of transformation between
exposures.

Definition 3. A natural transformation of exposures t : F
•
� G where F,G :

B � C are exposures, consists of an arrow tA : FA → GA of C for each object
A ∈ B, such that, for every arrow f : A → B of B, the following diagram
commutes up to ∼:

FA FB

GA GB

Ff

tA tB

Gf

3.1 Cartesian Exposures

Bare exposures offer no promises or guarantees regarding intensional equality.
For example, it is not a given that π1 ◦ 〈f, g〉 ≈ f . However, one may argue
that this equality should hold, insofar as there is no grand intensional content
in projecting a component. This leads to the following notion:

Definition 4. A exposure Q : B � C where B is a cartesian P-category is itself
cartesian just if, for arrows f : C → A and g : C → B, we have

π1 ◦ 〈f, g〉 ≈ f, π2 ◦ 〈f, g〉 ≈ g, and 〈π1 ◦ h, π2 ◦ h〉 ≈ h

However, this is not enough to formally regain standard equations like 〈f, g〉◦h ≈
〈f ◦ h, g ◦ h〉. We need to also require that exposures ‘extensionally preserve’
products.

Definition 5. A cartesian exposure Q : B � C of a cartesian P-category B in
a cartesian P-category C is product-preserving whenever the canonical arrows

〈Qπ1, Qπ2〉 : Q(A × B) → QA × QB

!Q1 : Q1 → 1

On the Semantics of Intensionality 555

are P-isomorphisms. We write mA,B : QA×QB
∼=−→ Q(A×B) and m0 : 1

∼=−→ Q1
for their inverses.

Amongst the exposures, then, the ones that are both cartesian and product-
preserving are the ones that behave reasonably well in interaction with the prod-
uct structure. For example, it is an easy calculation to show that

Proposition 1. In the above setting, mA,B ◦ 〈Qf,Qg〉 ∼ Q〈f, g〉.
We can now prove that 〈f, g〉 ◦ h ≈ 〈f ◦ h, g ◦ h〉:

Q(〈f, g〉 ◦ h) ∼ Q(〈π1 ◦ 〈f, g〉 ◦ h, π2 ◦ 〈f, g〉 ◦ h〉)
∼ m ◦ 〈Q(π ◦ 〈f, g〉 ◦ h), Q(π′ ◦ 〈f, g〉 ◦ h)〉
∼ m ◦ 〈Q(f ◦ h), Q(g ◦ h)〉 ∼ Q(〈f ◦ h, g ◦ h〉)

3.2 Evaluators, Quotation Devices, and Comonadic Exposures

Using transformations of exposures, we may begin to reinterpret concepts
from the modality-as-intension interpretation. Throughout this section, we fix
a cartesian P-category B, and a cartesian, product-preserving endoexposure
Q : B � B.

Definition 6. An evaluator is a transformation of exposures ε : Q
•
� IdB.

What about quoting? Given a point a : 1 → A, its quote is defined to be the
point Q(a) ◦ m0 : 1 → QA. We will require the following definition:

Definition 7. A arrow δ : QA → Q2A is a reasonable quoting device just if
for any a : 1 → QA the following diagram commutes up to ∼:

1 QA

Q1 Q2A

a

m0 δA

Qa

A special case of this condition is the equation that holds if a natural transfor-
mation of a similar type to δ is monoidal, namely δ1 ◦ m0 ∼ Q(m0) ◦ m0.

Definition 8. A quoter is a transformation of exposures δ : Q
•
� Q2 such that

every component δA : QA → Q2A is a reasonable quoting device.

These ingredients finally combine to form a comonadic exposure.

Definition 9. A comonadic exposure (Q, ε, δ) consists of an endoexposure Q :

(B,∼) � (B,∼), an evaluator ε : Q
•
� IdB, and a quoter δ : Q

•
� Q2, such that

the following diagrams commute up to ∼:

QA Q2A

Q2A Q3A

δA

δA δQ(A)

Q(δA)

QA Q2A

Q2A QA

δA

δA
idA

εQA

Q(εA)

556 G.A. Kavvos

4 Exposures and Intensional Recursion

Armed with the above, we can now speak of both extensional and intensional
recursion. Lawvere [16] famously proved a theorem which guarantees that, under
certain assumptions which we will discuss in Sect. 7, there exist fixed points of
the following sort.

Definition 10. An extensional fixed point (EFP) of an arrow t : Y → Y is
a point y : 1 → Y such that t ◦ y ∼ y. If, for a given object Y , every arrow
t : Y → Y has a EFP, then we say that Y has EFPs.

In Lawvere’s paper EFPs are a kind of fixed point that oughtn’t exist. In fact,
Lawvere shows that—were truth definable—the arrow ¬ : 2 → 2 representing
negation would have a fixed point, i.e. a formula φ with ¬φ ↔ φ that leads to
inconsistency.

EFPs do not encompass fixed points that ought to exist. For example, the
diagonal lemma for Peano Arithmetic (henceforth PA) stipulates that for any
predicate φ(x), there exists a closed formula fix(φ) such that

PA � fix(φ) ↔ φ(�fix(φ)�)

The formula fix(φ) occurs asymmetrically: on the left hand side of the bi-
implication it appears as a truth value, but on the right hand side it appears
under a Gödel numbering, i.e. an assignment �·� of a numeral to each term
and formula of PA. Since exposures map values to their encoding, the following
notion encompasses this kind of ‘asymmetric’ fixed point.

Definition 11. Let Q : B � B be a cartesian, product-preserving endoex-
posure. An intensional fixed point (IFP) of a arrow t : QY → Y is a point
y : 1 → Y such that

y ∼ t ◦ Q(y) ◦ m0

An object A has IFPs (w.r.t. Q) if every arrow t : QA → A has a IFP.

This makes intuitive sense: y : 1 → Y is extensionally equal to t ‘evaluated’
at the point Q(y) ◦ m0 : 1 → QY , which is the ‘quoted’ version of y.

5 Consistency, Truth and Provability: Gödel and Tarski

We are now in a position to argue that two well-known theorems from logic can
be reduced to very simple algebraic arguments involving exposures. In fact, the
gist of both arguments relies on the existence of IFPs for an ‘object of truth val-
ues’ in a P-category. The theorems in question are Gödel’s First Incompleteness
Theorem and Tarski’s Undefinability Theorem [5,24].

Suppose that we have some sort of object 2 of ‘truth values.’ This need not
be fancy: we require that it has two points � : 1 → 2 and ⊥ : 1 → 2, standing
for true and false respectively. We also require an arrow ¬ : 2 → 2 which satisfies
¬ ◦ � ∼ ⊥ and ¬ ◦ ⊥ ∼ �.

On the Semantics of Intensionality 557

A simplified version of Gödel’s First Incompleteness theorem for PA is this:

Theorem 1 (Gödel). If PA is consistent, then there are sentences φ of PA such
that neither PA � φ nor PA � ¬φ.

The proof relies on two constructions: the diagonal lemma, and the fact that
provability is definable in the system. The definability of provability amounts
to the fact that there is a formula Prov(x) with one free variable x such that
PA � φ if and only if PA � Prov(�φ�). That is: the system can internally talk
about its own provability, modulo some Gödel numbering.

It is not then hard to sketch the proof to Gödel’s theorem: take ψ such that
PA � ψ ↔ ¬Prov(�ψ�). Then ψ is provable if and only if it is not, so if either
PA � ψ or PA � ¬ψ we would observe inconsistency. Thus, if PA is consistent,
neither ψ nor its negation are provable. It follows that ψ is neither equivalent to
⊥ or to �. In a way, ψ has an eerie truth value, neither � nor ⊥.

Let us represent the provability predicate as an arrow p : Q2 → 2 such that
y ∼ � if and only if p ◦Q(y) ◦m0 ∼ �. Consistency is captured by the following
definition:

Definition 12. An object 2 as above is simply consistent just if � �∼ ⊥.

Armed with this machinery, we can transport the argument underlying
Gödel’s proof to our more abstract setting:

Theorem 2. If a p : Q2 → 2 is as above, and 2 has IFPs, then one of the
following things is true: either (a) there are points of 2 other than � : 1 → 2
and ⊥ : 1 → 2; or (b) 2 is not simply consistent, i.e. � ∼ ⊥.

Proof. As 2 has IFPs, take y : 1 → 2 such that y ∼ ¬◦p◦Q(y)◦m0. Now, if y ∼
�, then by the property of p above, p◦Q(y)◦m0 ∼ �, hence ¬◦p◦Q(y)◦m0 ∼ ⊥,
hence y ∼ ⊥. So either y �∼ � or 2 is not simply consistent. Similarly, either
y �∼ ⊥ or 2 is not simply consistent.

Tarski’s Undefinability Theorem, on the other hand is the result that truth
cannot be defined in arithmetic [24].

Theorem 3 (Tarski). If PA is consistent, then there is no predicate True(x)
such that PA � φ ↔ True(�φ�) for all sentences φ.

The proof is simple: use the diagonal lemma to obtain a closed ψ such that
PA � ψ ↔ ¬True(�ψ�), so that PA � ψ ↔ ¬ψ, which leads to inconsistency.

Now, a proof predicate would constitute an evaluator ε : Q
•
� IdB: we would

have that
ε2 ◦ Q(y) ◦ m0 ∼ y ◦ ε1 ◦ m0 ∼ y

where the last equality is because 1 is terminal. This is actually a more general.

Lemma 1. Let Q : B � B be an endoexposure, and let ε : Q
•
� IdB be an

evaluator. Then, if A has IFPs then it also has EFPs.

558 G.A. Kavvos

Proof. Given t : A → A, consider t ◦ εA : QA → A. A IFP for this arrow is a
point y : 1 → A such that y ∼ t ◦ εA ◦Q(y) ◦m0. But we may calculate as above
to show that εA ◦ Q(y) ◦ m0 ∼ y and thus y ∼ t ◦ y.

In proving Tarski’s theorem, we constructed a sentence ψ such that PA �
ψ ↔ ¬ψ. This can be captured abstractly by the following definition.

Definition 13. An object 2 as above is fix-consistent just if the arrow ¬ : 2 → 2
has no EFP; that is, there is no y : 1 → 2 such that ¬ ◦ y ∼ y.

Putting these together, we get

Theorem 4. If 2 has IFPs in the presence of an evaluator, then it is not fix-
consistent.

6 An Exposure on Arithmetic

We will substantiate the results of the previous section by sketching the con-
struction of a P-category and endoexposure based on a first-order theory. The
method is very similar to that of Lawvere [16], and we will also call it the Linden-
baum P-category of the theory. The construction is general, and so is the thesis
of this section: an exposure on a Lindenbaum P-category abstractly captures the
notion of a well-behaved Gödel ‘numbering’ on the underlying theory.

Let there be a single-sorted first-order theory T. The objects of the P-category
are the formal products of (a) 1, the terminal object, (b) A, the domain, and
(c) 2, the object of truth values. Arrows 1 → A and A → A are terms with no
or one free variable respectively. Arrows An → 2 and 1 → 2 are predicates, with
n and no free variables respectively. Finally, arrows 2n → 2 can be thought of
as logical connectives (e.g. ∧ : 2× 2 → 2).

Two arrows s, t : C → A with codomain A (i.e. two terms of the theory)
are related if and only if they are provably equal, i.e. s ∼ t iff T � s = t. Two
arrows φ, ψ : C → 2 with codomain 2 are related if and only if they are provably
equivalent, i.e. φ ∼ ψ iff T � φ ↔ ψ.

To define an exposure, it suffices to have a Gödel numbering, i.e. a represen-
tation of terms and formulas of the theory as elements of its domain A. More
precisely, we need a Gödel numbering for which substitution is internally defin-
able. We write �φ(x1, . . . , xn)� and �t(a1, . . . , am)� for the Gödel numbers of the
formula φ(x1, . . . , xn) and the term t(a1, . . . , am) respectively, and we assume
that �·� is injective. Let QA

def= A, Q(2) def= A, and Q(1) def= 1. Finally, define Q
to act component-wise on finite products: this will guarantee that it is cartesian
and product-preserving.

The action on arrows is what necessitated that substitution be definable:
this amounts to the existence of a term sub(y, x) with the property that if φ(x)
is a predicate and t is a term, then T � sub(�φ�, �t�) = �φ(t)�. Now, given a
predicate φ : A → 2 with one free variable, Q(φ) : A → A is defined to be the
term sub(�φ�, x). Given a sentence φ : 1 → 2, we define Q(φ) : 1 → A to be

On the Semantics of Intensionality 559

exactly the closed term �φ�. The action is similar on arrows with codomain A,
and component-wise on product arrows. The last axiom of exposures is satisfied:
if Qφ ∼ Qψ, then �φ� = �ψ�, so that φ = ψ, by the injectivity of the Gödel
numbering.

In this setting, IFPs really are fixpoints of formulas.

7 Where Do IFPs Come From?

In Sect. 4 we mentioned Lawvere’s fixed point theorem. This theorem guarantees
the existence of EFPs under the assumption that there is an arrow of this form:

Definition 14. An arrow r : X×A → Y is weakly-point surjective if, for every
f : A → Y , there exists a xf : 1 → X such that for all points a : 1 → A it is the
case that r ◦ 〈xf , a〉 ∼ f ◦ a.

So a weak-point surjection is a bit like ‘pointwise cartesian closure,’ in that
the effect of all arrows A → Y on points 1 → A is representable by some point
1 → X, w.r.t. r. Lawvere noticed that if the ‘exponential’ X and the domain A
coincide, then a simple diagonal argument yields fixpoints for all arrows Y → Y .

Theorem 5 (Lawvere). If r : A × A → Y is a weak-point surjection, then
every arrow t : Y → Y has an extensional fixed point (EFP).

Proof. Let f
def= t ◦ r ◦ 〈idA, idA〉. Then there exists a xf : 1 → A such that

r ◦ 〈xf , a〉 ∼ f ◦ a for all a : 1 → A. We compute that r ◦ 〈xf , xf 〉 ∼ t ◦ r ◦
〈idA, idA〉 ◦ xf ∼ t ◦ r ◦ 〈xf , xf 〉, so that r ◦ 〈xf , xf 〉 is a EFP of t.

Can we adapt Lawvere’s result to IFPs? The answer is positive, and rather
straightforward once we embellish the statement with appropriate occurrences
of Q. We also need a reasonable quoting device.

Theorem 6. Let Q be a monoidal exposure, and let δA : QA → Q2A be a
reasonable quoting device. If r : QA × QA → Y is a weak-point surjection then
every arrow t : QY → Y has an intensional fixed point.

Proof. Let f
def= t◦Qr ◦mQA,QA ◦〈δA, δA〉. Then there exists a xf : 1 → QA such

that r ◦ 〈xf , a〉 ∼ f ◦ a for all a : 1 → QA. We compute that

r ◦ 〈xf , xf 〉 ∼ t ◦ Qr ◦ m ◦ 〈δA, δA〉 ◦ xf ∼ t ◦ Qr ◦ m ◦ 〈δA ◦ xf , δA ◦ xf 〉
∼ t ◦ Qr ◦ m ◦ 〈Q(xf) ◦ m0, Q(xf) ◦ m0〉
∼ t ◦ Qr ◦ m ◦ 〈Q(xf), Q(xf)〉 ◦ m0

∼ t ◦ Qr ◦ Q(〈xf , xf 〉) ◦ m0 ∼ t ◦ Q(r ◦ 〈xf , xf 〉) ◦ m0

so that r ◦ 〈xf , xf 〉 is a IFP of t.

In the next section, we shall see that this is a true categorical analogue of
Kleene’s Second Recursion Theorem (SRT).

560 G.A. Kavvos

8 The Recursion Theorems

In fact, the theorem we just proved in Sect. 7 is strongly reminiscent of a known
theorem in (higher order) computability theory, namely a version of Kleene’s
First Recursion Theorem (FRT).

Let us fix some notation. We write � for Kleene equality : we write e � e′

to mean either that both expressions e and e′ are undefined, if either both
are undefined, or both are defined and of equal value. Let φ0, φ1, . . . be
an enumeration of the partial recursive functions. We will also require the
s-m-n theorem from computability theory. Full definitions and statements may
be found in the book by Cutland [9].

Theorem 7 (First Recursion Theorem). Let PR be the set of unary partial
recursive functions, and let F : PR → PR be an effective operation. Then
F : PR → PR has a fixed point.

Proof. That F : PR → PR is an effective operation means that there is a partial
recursive f : N × N ⇀ N such that f(e, x) � F (φe)(x). Let d ∈ N a code for
the partial recursive function φd(y, x) def= f(S(y, y), x), where S : N × N ⇀ N is
the s-1-1 function of the s-m-n theorem. Then, by the s-m-n theorem, and the
definitions of d ∈ N and f ,

φS(d,d)(x) � φd(d, x) � f(S(d, d), x) � F (φS(d,d))(x)

so that φS(d,d) is a fixed point of F : PR → PR.

Lawvere’s theorem is virtually identical to a point-free version of this proof.
Yet, one cannot avoid noticing that we have proved more than that for which
we bargained. The f : N × N ⇀ N in the proof above has the special property
that it is extensional, in the sense that

φe = φe′ =⇒ ∀x ∈ N. f(e, x) = φ(e′, x)

However, the step which yields the fixed point argument holds for any such f ,
not just the extensional ones. This fact predates the FRT, and was shown by
Kleene in 1938 [14].

Theorem 8 (Second Recursion Theorem). For any partial recursive f :
N× N ⇀ N, there exists e ∈ N such that φe(y) � f(e, y) for all y ∈ N.

This is significantly more powerful than the FRT, as f(e, y) can make arbi-
trary decisions depending on the source code e, irrespective of the function φe

of which it is the source code. Moreover, it is evident that the function φe has
access to its own code, allowing for a certain degree of reflection. Even if f is
extensional, hence defining an effective operation, the SRT grants us more power
than the FRT: for example, before recursively calling e on some points, f(e, y)
could ‘optimise’ e depending on what y is, hence ensuring that the recursive call

On the Semantics of Intensionality 561

will run faster than e itself would. This line of thought is common in the partial
evaluation community, see e.g. [12].

In the sequel we argue that our fixed point theorem involving exposures is
a generalisation of Lawvere’s theorem, in the exact same way that the SRT
is a non-extensional generalisation of the FRT. In order to do so, we define a
P-category and an exposure based on realizability theory, and claim that the
FRT and the SRT are instances of the general theorems in that particular P-
category.

9 An Exposure on Assemblies

Our second example of an exposure will come from realizability, where the basic
objects are assemblies. An assembly is a set to every element of which we have
associated a set of realizers. The elements of the set can be understood as ele-
ments of a datatype, and the set of realizers of each such element as the machine-
level representations of it. For example, if realizers range in the natural numbers,
then assemblies and functions between them which are partial recursive on the
level of realizers yield a category where ‘everything is computable.’

In practice, the generalisation from natural numbers to an arbitrary partial
combinatory algebra (PCA) is made. A PCA is an arbitrary, untyped ‘universe’
corresponding to some notion of computability or realizability. There are easy
tricks with which one may encode various common ‘first-order’ datatypes, such
as booleans, integers, etc. as well as all partial recursive functions (up to the
encoding of integers). These methods can be found [3,17,20,21].

Definition 15. A partial combinatory algebra (PCA) (A, ·) consists of a set A,
its carrier, and a partial binary operation · : A × A ⇀ A such that there exist
K,S ∈ A with the properties that

K · x ↓, K · x · y � y, S · x · y ↓, S · x · y · z � x · z · (y · z)

for all x, y, z ∈ A.

The simplest example of a PCA, corresponding to classical computability, is
K1, also known as Kleene’s first model. Its carrier is N, and r · a def= φr(a).

Definition 16. An assembly X on a PCA A consists of a set |X| and, for each
x ∈ |X|, a non-empty subset ‖x‖X of A. If a ∈ ‖x‖X , we say that a realizes x.

Definition 17. For two assemblies X and Y , a function f : |X| → |Y | is said
to be tracked by r ∈ A just if, for all x ∈ |X| and a ∈ ‖x‖X , we have r · a ↓ and
r · a ∈ ‖f(x)‖Y .

Now: for each PCA A, we can define a category Asm(A), with objects all
assemblies X on A, and morphisms f : X → Y all functions f : |X| → |Y | that
are tracked by some r ∈ A.

562 G.A. Kavvos

Theorem 9. Assemblies and ‘trackable’ morphisms between them form a cate-
gory Asm(A) that is cartesian closed, has finite coproducts, and a natural num-
bers object.

We only mention one other construction that we shall need. Given an assem-
bly X, the lifted assembly X⊥ is defined to be

|X⊥| def= |X| ∪ {⊥} and ‖x‖X⊥
def=

{{
r

∣
∣ r · 0 ↓ and r · 0 ∈ ‖x‖X

}
for x ∈ |X|

{
r

∣
∣ r · 0 ↑}

for x = ⊥

for some chosen element of the PCA 0. Elements of X⊥ are either elements of X,
or the undefined value ⊥. Realizers of x ∈ |X| are ‘computations’ r ∈ A which,
when run (i.e. given the dummy value 0 as argument) return a realizer of x. A
computation that does not halt when run represents the undefined value.2

9.1 Passing to a P-category

The lack of intensionality in the category Asm(A) is blatantly obvious. To ele-
vate a function f : |X| → |Y | to a morphism f : X → Y , we only require that
there exists a ‘witness’ r ∈ A that realizes it, and then we forget about this
witness entirely. To mend this, we define a P-category.

The P-category Asm(A) of assemblies on A is defined to have all assemblies
X on A as objects, and pairs (f : |X| → |Y | , r ∈ A) where r tracks f as arrows.
We define (f, r) ∼ (g, s) just if f = g, i.e. when the underlying function is the
same. The composition of (f, p) : X → Y and (g, q) : Y → Z is (g ◦ f,B · q · p)
where B is a combinator in the PCA such that B · f · g · x � f · (g · x) for any
f, g, x ∈ A. The identity idX : X → X is defined to be (id|X|, I) : X → X, where
I is a combinator in the PCA such that I · x � x for all x ∈ A.

Much in the same way as before—but now up to the PER ∼—we can show

Theorem 10. Asm(A) is a cartesian closed P-category with a natural numbers
object N.

We can now define an exposure � : Asm(A) � Asm(A). For an assembly
X ∈ Asm(A), let �X be the assembly defined by

|�X| def= { (x, a) | x ∈ |X| , a ∈ ‖x‖A } , ‖(x, a)‖�X
def= { a }

Given (f, r) : X → Y , we define �(f, r) = (fr, r) : �X → �Y where fr :
|�X| → |�Y | is defined by fr(x, a) def= (f(x), r · a). Thus, under the exposure
each element (x, a) ∈ |�X| carries with it its own unique realizer a. The image
of (f, r) under � shows not only what f does to an element of its domain, but
also how r acts on the realizer of that element.

It is long but straightforward to check that
2 Bear in mind that this definition of the lifted assembly does not work if the PCA is
total. We are mostly interested in the decidedly non-total PCA K1, so this is not an
issue. There are other, more involved ways of defining the lifted assembly; see [20]
in particular.

On the Semantics of Intensionality 563

Theorem 11. � : Asm(A) � Asm(A) is a cartesian, product-preserving, and
comonadic endoexposure.

9.2 Kleene’s Recursion Theorems, Categorically

Let us concentrate on the category Asm(K1). Arrows N → N⊥ are easily seen to
correspond to partial recursive functions. It is not hard to produce a weak-point
surjection rE : N × N → N

N

⊥, and hence to invoke Lawvere’s theorem to show
that every arrow N

N

⊥ → N
N

⊥ has an extensional fixed point. Now, by Longley’s
generalised Myhill-Shepherdson theorem [17,19], arrows N

N

⊥ → N
N

⊥ correspond
to effective operations. Hence, in this context Lawvere’s theorem corresponds to
the simple diagonal argument that we used to show the FRT.3

Let us look at arrows of type �(NN

⊥) → N
N

⊥. These correspond to
‘non-functional’ transformations, mapping functions to functions, but without
respecting extensionality. As every natural number indexes a partial recursive
function, these arrows really correspond to all partial recursive functions (up to
some tagging and encoding). It is not hard to see that �N is P-isomorphic to
N, and that one can build a weak-point surjection of type �N × �N → N

N

⊥, so
that by our theorem, every arrow of type �(NN

⊥) → N
N

⊥ has an intensional fixed
point. This is exactly Kleene’s SRT!

10 Rice’s Theorem

To further illustrate the applicability of the language of exposure, we state and
prove an abstract version of Rice’s theorem. Rice’s theorem is a result in com-
putability which states that no computer can decide any non-trivial property of
a program by looking at its code. A short proof relies on the SRT.

Theorem 12 (Rice). Let F be a non-trivial set of partial recursive functions,
and let AF

def= { e ∈ N | φe ∈ F } be the set of indices of functions in that set.
Then AF is undecidable.

Proof. Suppose AF is decidable. The fact F is non-trivial means that there is
some a ∈ N such that φa ∈ F and some b ∈ N such that φb �∈ F . Consequently,
a ∈ AF and b �∈ AF .

Define f(e, x) � if e ∈ AF thenφb(x) else φa(x). By Church’s thesis, f :
N×N → N is partial recursive. Use the SRT to obtain e ∈ N such that φe(x) �
f(e, x). Now, either e ∈ AF or not. If it is, φe(x) � f(e, x) � φb(x), so that
φe �∈ F , a contradiction. A similar phenomenon occurs if e �∈ AF .

Constructing the function f in the proof required three basic elements:
(a) the ability to evaluate either φa or φb given a and b; (b) the ability to

3 But note that this is not the complete story, as there is no guarantee that the fixed
point obtained in least, which is what Kleene’s original proof in [15] gives. See also
[13].

564 G.A. Kavvos

decide which one to use depending on the input; and (c) intensional recursion.
For (a), we shall need evaluators, for (b) we shall need that the truth object 2
is a weak coproduct of two copies of 1, and for (c) we shall require IFPs.

Theorem 13. Let 2 is a simply consistent ‘truth object’ which also happens to
be a weak coproduct of two copies of 1, with injections � : 1 → 2 and ⊥ : 1 → 2.
Furthermore, suppose that A has EFPs. If f : A → 2 is such that for all x :
1 → A, either f ◦ x ∼ � or f ◦ x ∼ ⊥, then f is trivial, in the sense that either
f ◦ x ∼ � for all x : 1 → A, or f ◦ x ∼ ⊥ for all x : 1 → A.

Proof. Suppose there are two such distinct a, b : 1 → A such that f ◦ a ∼ � and
f ◦ b ∼ ⊥. Let g

def= [b, a] ◦ f and let y : 1 → A be its EFP. Now, either f ◦ y ∼ �
or f ◦ y ∼ ⊥. In the first case, we can calculate that � ∼ f ◦ [b, a] ◦ f ◦ y ∼
f ◦ [b, a] ◦ � ∼ f ◦ b ∼ ⊥ so that 2 is not simply consistent. A similar situation
occurs if f ◦ y ∼ ⊥.

Needless to say that the premises of this theorem are easily satisfied in our
exposure on assemblies from Sect. 9 if we take A = N⊥N and 2 to be the lifted
coproduct (1 + 1)⊥.

11 Conclusion

We have modelled intensionality with P-categories, and introduced a new con-
struct that abstractly corresponds to Gödel numbers. This led us to an immediate
unification of many ‘diagonal arguments’ in logic and computability, as well as a
new perspective on the notion of intensional recursion. Our approach is clearer
and more systematic than the one in [16].

Many questions are left open. We are currently working on the medium-term
goal of a safe, reflective programming language based on modal type theory.
The basics are there, but there are many questions: what operations should be
available at modal types; with how much expressivity would the language be
endowed for each possible set; and what are the applications?

On the more technical side, it is interesting to note that we have refrained
from a categorical proof of the diagonal lemma for PA. All our attempts were inel-
egant, and we believe that this is because arithmetic is fundamentally untyped:
Q(2) has many more points than ‘all Gödel numbers of predicates.’ In contrast,
our approach using exposures is typed, which sets it apart from all previous
attempts at capturing such arguments categorically, including the very elegant
work of Cockett and Hofstra [6,7]. The approach in op. cit. is based on Turing
categories, in which every object is a retract of some very special objects—the
Turing objects. In the conclusion of [6] this is explicitly mentioned as an ‘inherent
limitation.’ Only time will tell which approach is more encompassing.

Finally, it would be interesting to study the meaning of exposure in examples
not originating in logic and computability, but in other parts of mathematics.
Can we find examples of exposures elsewhere? Are they of any use?

On the Semantics of Intensionality 565

Acknowledgements. I would like to thank my doctoral supervisor, Samson
Abramsky, for suggesting the topic of this paper, and for his help in understanding
the issues around intensionality and intensional recursion.

References

1. Abramsky, S.: Intensionality, definability and computation. In: Baltag, A., Smets,
S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5,
pp. 121–142. Springer, Cham (2014). doi:10.1007/978-3-319-06025-5 5

2. Barendregt, H.: Self-interpretation in lambda calculus. J. Funct. Program. 1(2),
229–233 (1991). https://dx.doi.org/10.1017/S0956796800020062

3. Beeson, M.J.: Foundations of Constructive Mathematics. Springer, Heidelberg
(1985). https://dx.doi.org/10.1007/978-3-642-68952-9

4. Bierman, G.M., de Paiva, V.: On an intuitionistic modal logic. Stud. Logica 65(3),
383–416 (2000). https://dx.doi.org/10.1023/A:1005291931660

5. Boolos, G.S.: The Logic of Provability. Cambridge University Press, Cambridge
(1994). https://dx.doi.org/10.1017/CBO9780511625183

6. Cockett, J.R.B., Hofstra, P.J.W.: Introduction to Turing categories. Ann. Pure
Appl. Logic 156(2–3), 183–209 (2008). http://dx.doi.org/10.1016/j.apal.2008.04.
005

7. Cockett, J.R.B., Hofstra, P.J.W.: Categorical simulations. J. Pure Appl. Algebra
214(10), 1835–1853 (2010). http://dx.doi.org/10.1016/j.jpaa.2009.12.028

8. Čubrić, D., Dybjer, P., Scott, P.J.: Normalization and the Yoneda embedding.
Math. Struct. Comput. Sci. 8(2), 153–192 (1998). https://dx.doi.org/10.1017/
s0960129597002508

9. Cutland, N.: Computability: An Introduction to Recursive Function Theory. Cam-
bridge University Press, Cambridge (1980)

10. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001). http://dl.acm.org/citation.cfm?id=382785

11. Fitting, M.: Intensional logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, Summer 2015 edn.
(2015). https://plato.stanford.edu/archives/sum2015/entries/logic-intensional/

12. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28(3),
480–503 (1996). http://doi.acm.org/10.1145/243439.243447

13. Kavvos, G.A.: Kleene’s two kinds of recursion. CoRR abs/1602.06220 (2016).
http://arxiv.org/abs/1602.06220

14. Kleene, S.C.: On notation for ordinal numbers. J. Symbolic Logic 3(04), 150–155
(1938). https://dx.doi.org/10.2307/2267778

15. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam
(1952)

16. Lawvere, F.W.: Diagonal arguments and cartesian closed categories. Reprints in
Theory and Applications of Categories 15, 1–13 (2006). http://www.tac.mta.ca/
tac/reprints/articles/15/tr15abs.html

17. Longley, J.R.: Realizability toposes and language semantics. Ph.D. thesis, Uni-
versity of Edinburgh. College of Science and Engineering. School of Informatics
(1995). http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-332/

18. Longley, J.R.: Notions of computability at higher types I. In: Logic Colloquium
2000: Proceedings of the Annual European Summer Meeting of the Association
for Symbolic Logic. Lecture Notes in Logic, 23–31 July Paris, France, vol. 19, pp.
32–142. A. K. Peters (2005)

http://dx.doi.org/10.1007/978-3-319-06025-5_5
https://dx.doi.org/10.1017/S0956796800020062
https://dx.doi.org/10.1007/978-3-642-68952-9
https://dx.doi.org/10.1023/A:1005291931660
https://dx.doi.org/10.1017/CBO9780511625183
http://dx.doi.org/10.1016/j.apal.2008.04.005
http://dx.doi.org/10.1016/j.apal.2008.04.005
http://dx.doi.org/10.1016/j.jpaa.2009.12.028
https://dx.doi.org/10.1017/s0960129597002508
https://dx.doi.org/10.1017/s0960129597002508
http://dl.acm.org/citation.cfm?id=382785
https://plato.stanford.edu/archives/sum2015/entries/logic-intensional/
http://doi.acm.org/10.1145/243439.243447
http://arxiv.org/abs/1602.06220
https://dx.doi.org/10.2307/2267778
http://www.tac.mta.ca/tac/reprints/articles/15/tr15abs.html
http://www.tac.mta.ca/tac/reprints/articles/15/tr15abs.html
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-332/

566 G.A. Kavvos

19. Longley, J.R., Normann, D.: Higher-Order Computability. Theory and Applica-
tions of Computability. Springer, Heidelberg (2015). https://dx.doi.org/10.1007/
978-3-662-47992-6

20. Longley, J.R., Simpson, A.K.: A uniform approach to domain theory in realizability
models. Math. Struct. Comput. Sci. 7, 469–505 (1997). https://dx.doi.org/10.1017/
S0960129597002387

21. van Oosten, J.: Realizability: An Introduction to its Categorical Side, vol. 152.
Elsevier (2008). http://www.sciencedirect.com/science/bookseries/0049237X/152

22. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic.
Math. Struct. Comput. Sci. 11(4), 511–540 (2001). https://dx.doi.org/10.1017/
S0960129501003322

23. Smith, B.C.: Reflection and semantics in LISP. In: Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL
1984), pp. 23–35. ACM Press, New York (1984). https://dx.doi.org/10.1145/
800017.800513

24. Smullyan, R.M.: Gödel’s Incompleteness Theorems. Oxford University Press,
New York (1992)

25. Wand, M.: The theory of fexprs is trivial. LISP Symbolic Comput. 10(3), 189–199
(1998). https://dx.doi.org/10.1023/A:1007720632734

https://dx.doi.org/10.1007/978-3-662-47992-6
https://dx.doi.org/10.1007/978-3-662-47992-6
https://dx.doi.org/10.1017/S0960129597002387
https://dx.doi.org/10.1017/S0960129597002387
http://www.sciencedirect.com/science/bookseries/0049237X/152
https://dx.doi.org/10.1017/S0960129501003322
https://dx.doi.org/10.1017/S0960129501003322
https://dx.doi.org/10.1145/800017.800513
https://dx.doi.org/10.1145/800017.800513
https://dx.doi.org/10.1023/A:1007720632734

Author Index

Abate, Alessandro 321
Abriola, Sergio 196
Altenkirch, Thorsten 534
Asada, Kazuyuki 53

Baldan, Paolo 407
Berardi, Stefano 301
Bian, Gaoang 321
Blanchette, Jasmin Christian 461
Boreale, Michele 71
Bouyer, Patricia 179, 265
Breuvart, Flavien 370
Bruyère, Véronique 145
Busatto-Gaston, Damien 162

Chadha, Rohit 231
Clerc, Florence 355
Crubillé, Raphaëlle 20
Cruz-Filipe, Luís 424

Dahlqvist, Fredrik 355
Dal Lago, Ugo 370
Danielsson, Nils Anders 534
Danos, Vincent 338, 355
Daviaud, Laure 215

Ehrhard, Thomas 20

Figueira, Diego 196
Figueira, Santiago 196

Garnier, Ilias 338, 355
Gilbert, Frédéric 480
Goncharov, Sergey 517

Heindel, Tobias 338
Herrou, Agathe 370
Hofman, Piotr 179

Jecker, Ismaël 215
Jugé, Vincent 265

Kavvos, G.A. 550
Kobayashi, Naoki 53
Kozen, Dexter 124
Kraus, Nicolai 534

Laird, James 36
Lange, Julien 441
Larsen, Kim S. 424
Le Roux, Stéphane 145

Mamouras, Konstantinos 88
Markey, Nicolas 179
Matsumoto, Kei 3
Milius, Stefan 124
Monmege, Benjamin 162
Montesi, Fabrizio 424

Padoan, Tommaso 407
Pagani, Michele 20
Pauly, Arno 145
Piróg, Maciej 517
Pous, Damien 106

Randour, Mickael 179
Raskin, Jean-François 145
Rauch, Christoph 517
Reynier, Pierre-Alain 162, 215
Rot, Jurriaan 106

Sakayori, Ken 389
Schröder, Lutz 124, 517
Severi, Paula 499
Simonsen, Jakob Grue 338
Simpson, Alex 283
Sin’ya, Ryoma 53
Sistla, A. Prasad 231

Tasson, Christine 20
Tatsuta, Makoto 301
Thiemann, Peter 248
Tsukada, Takeshi 53, 389

Villevalois, Didier 215
Viswanathan, Mahesh 231

Waldmann, Uwe 461
Wand, Daniel 461
Wißmann, Thorsten 124

Yoshida, Nobuko 441

Zimmermann, Martin 179

568 Author Index

	ETAPS Foreword
	Preface
	Organization
	Fundamental Algorithmic Problems and Challenges in Dynamical and Cyber-Physical Systems (Abstract of Invited Talk)
	Contents
	Coherence Spaces and Higher-Order Computation
	Coherence Spaces and Uniform Continuity
	1 Introduction
	2 Preliminaries
	2.1 Uniform Spaces
	2.2 Coherence Spaces

	3 Uniform Structures on Coherence Spaces with Totality
	3.1 Coherence Spaces with Totality
	3.2 Uniformities Induced by Co-Totality

	4 Coherent Representations
	4.1 Representations as a Realizability Model
	4.2 Linear Realizability for Separable Metrizable Spaces

	5 Related and Future Work
	References

	The Free Exponential Modality of Probabilistic Coherence Spaces
	1 Introduction
	2 The Model of Probabilistic Coherence Spaces
	3 The Free Exponential Modality
	3.1 Lafont's Model
	3.2 Melliès, Tasson and Tabareau's Formula

	4 The Case of Probabilistic Coherence Spaces
	4.1 The Approximants AN
	4.2 The Limit A
	4.3 The Free and Entire Exponential Modalities Are the Same

	References

	From Qualitative to Quantitative Semantics
	1 Introduction
	1.1 Enriched Categories and Change of Base

	2 Coherence Spaces and Weighted Relations
	2.1 From Cliques to Weighted Relations

	3 An Example: Games and History-Sensitive Strategies
	3.1 Coherence Space Enrichment of Games

	4 Additives and Exponentials
	4.1 The Cofree Commutative Comonoid
	4.2 Preservation of Cofree Commutative Comonoids

	5 R-Weighted Idealized Algol
	5.1 Denotational Semantics

	6 Conclusions and Further Directions
	References

	Almost Every Simply Typed -Term Has a Long -Reduction Sequence
	1 Introduction
	2 Main Result
	3 Analysis of n(,,)
	3.1 (,,) as a Regular Tree Language
	3.2 Irreducibility and Aperiodicity

	4 Proof of the Main Theorem
	4.1 Normalized Contexts
	4.2 Decomposition
	4.3 Explosive Context
	4.4 Proof Sketch of Theorem1

	5 Related Work
	6 Conclusion
	References

	Algebra and Coalgebra
	Algebra, Coalgebra, and Minimization in Polynomial Differential Equations
	1 Introduction
	2 Preliminaries
	3 Coalgebraic Semantics of Polynomial odes
	4 Algebraic Characterization of L-bisimilarity
	5 Computing Invariants
	6 Minimization
	7 Examples
	8 Future and Related Work
	References

	Equational Theories of Abnormal Termination Based on Kleene Algebra
	1 Introduction
	2 Relational Models of Failure
	3 The Basic Algebraic Theory of Failure
	4 A Stronger Theory of Failure
	5 Related Work
	6 Conclusion
	References

	Companions, Codensity and Causality
	1 Introduction
	2 Preliminaries
	3 Properties of the Companion
	4 The Codensity Monad
	5 Constructing the Companion by Codensity
	5.1 Codensity and the Companion of a Monotone Function

	6 Causality by Codensity
	7 Companion of a Set Functor
	7.1 Solving Equations via Causal Algebras
	7.2 Causal Algebras and Distributive Laws
	7.3 Soundness of Up-to Techniques

	8 Abstract GSOS
	References

	Nominal Automata with Name Binding
	1 Introduction
	2 Preliminaries
	3 Strings and Languages with Name Binding
	4 Regular Bar Expressions
	5 Regular Nondeterministic Nominal Automata
	6 Name-Dropping Register Automata
	7 Deciding Inclusion under Global and Local Freshness
	8 Conclusions
	References

	Games and Automata
	On the Existence of Weak Subgame Perfect Equilibria
	1 Introduction
	2 Preliminaries
	3 General Conditions for the Existence of Weak SPEs
	4 First Application
	5 Second Application
	References

	Optimal Reachability in Divergent Weighted Timed Games
	1 Introduction
	2 Weighted Games
	3 Solving Divergent Weighted Games
	4 Weighted Timed Games
	5 Solving Divergent Weighted Timed Games
	6 Conclusion
	References

	Bounding Average-Energy Games
	1 Introduction
	2 Preliminaries
	3 Equivalence with an Infinite-State Mean-Payoff Game
	4 Bounding One-Counter Reachability Games
	5 A Doubly-Exponential Time Algorithm
	5.1 Analyzing Winning Plays
	5.2 Strategies Described by Finite Trees
	5.3 Analyzing Winning Strategies
	5.4 Conclusion

	6 Multi-dimensional Average-Energy Games
	References

	Logics of Repeating Values on Data Trees and Branching Counter Systems
	1 Introduction
	2 Preliminaries
	3 Logic of Repeating Values on Data Trees
	4 Models of Branching Counter Systems
	4.1 Branching VASS
	4.2 Merging VASS
	4.3 Decision Problems
	4.4 Decidability of Reach+(MVASS)

	5 Satisfiability of LRVD on data trees
	6 Obtaining Equivalence with VASSk
	7 From LRV to MVASSk
	8 Discussion
	References

	Automata, Logic and Formal Languages
	Degree of Sequentiality of Weighted Automata
	1 Introduction
	2 Definitions and Examples
	3 Lipschitz and Branching Twinning Properties
	3.1 Lipschitz Property of Order k
	3.2 Branching Twinning Property of Order k
	3.3 Equivalence of Lipschitz and Branching Twinning Properties

	4 Constructing a k-sequential Weighted Automaton
	5 Cost Register Automata with Independent Registers
	6 The Case of Transducers
	7 Decidability of BTPk and Computation of the Sequentiality Degree
	8 Conclusion
	References

	Emptiness Under Isolation and the Value Problem for Hierarchical Probabilistic Automata
	1 Introduction
	2 Preliminaries
	3 Hierarchical Probabilistic Automata
	3.1 Regularity of HPAs with Isolated Cut-points

	4 Emptiness Under Isolation
	5 On the Value Decision Problem
	5.1 Computing the Value of 1-HPAs

	6 Conclusions
	References

	Partial Derivatives for Context-Free Languages
	1 Introduction
	2 Preliminaries
	3 -Regular Expressions
	4 Partial Derivatives
	5 Nullability
	6 Derivation
	7 Correctness
	8 Finiteness
	9 Automaton Construction
	References

	Dynamic Complexity of the Dyck Reachability
	1 Introduction
	2 Definitions
	2.1 Dyck Reachability Problems
	2.2 Dynamic Complexity
	2.3 Dynamic Reductions
	2.4 Main Result

	3 One-Letter (Undirected) Dyck Reachability Problems
	4 n-letter Dyck Reachability Problem
	4.1 From the Near-Dyck Reachability Problem to the Dyck Reachability Problem
	4.2 From the Alternating Reachability Problem to the Near-Dyck Reachability Problem

	5 n-letter Undirected Dyck Reachability Problem
	References

	Proof Theory
	Cyclic Arithmetic Is Equivalent to Peano Arithmetic
	1 Introduction
	2 Proof by Infinite Descent
	3 -proofs
	4 Cyclic Arithmetic
	5 Conservativity of CA over PA
	6 Büchi Automata in ACA0
	7 Further Work
	References

	Classical System of Martin-Löf's Inductive Definitions Is Not Equivalent to Cyclic Proof System
	1 Introduction
	2 Brotherston-Simpson Conjecture
	2.1 Martin-Löf's Inductive Definition System LKID
	2.2 Cyclic Proof System CLKID
	2.3 Brotherston-Simpson Conjecture

	3 2-Hydra Problem
	3.1 Hydra Problem
	3.2 2-Hydra Statement
	3.3 2-Hydra Statement in Cyclic-Proof System

	4 A Structure M for the Language N Falsifying 2-Hydra
	4.1 Outline of Proof of Non-Provability
	4.2 Definition of the Structure M
	4.3 The Measure of the Subsets of M Closed Under 0 and s

	5 A Set R of Partial Bijections on M
	5.1 The Set D of Subsets of M
	5.2 The Family R of Partial Bijections on M

	6 A Quantifier Elimination Result for Partial Bijections
	6.1 A Notion of Normal Form for the Language R
	6.2 A Quantifier Elimination Result for R

	7 Main Theorem
	8 Non-conservativity of Martin-Löf's Inductive Definition System
	9 Conclusion
	References

	Probability
	On the Relationship Between Bisimulation and Trace Equivalence in an Approximate Probabilistic Context
	1 Introduction
	2 Preliminaries
	2.1 Labelled Markov Chains
	2.2 Exact and Approximate Probabilistic Bisimulations

	3 Approximate Probabilistic Trace Equivalence for LMCs
	3.1 Interpretation and Application of -Trace Equivalence

	4 -Probabilistic Bisimulation Induces Approximate Probabilistic Trace Equivalence
	5 Application to Model Checking of Continuous-State LMCs
	6 Case Study
	7 Other Notions of -Bisimulation
	8 Conclusions and Extensions
	References

	Computing Continuous-Time Markov Chains as Transformers of Unbounded Observables
	1 Introduction
	2 Two Motivating Examples of CTMCs with Observables
	2.1 Stochastic String Rewriting and Word Occurrences
	2.2 Stochastic Petri Nets and Sub-multiset Occurrences

	3 Preliminaries
	3.1 Transition Functions and q-Matrices
	3.2 The Abstract Cauchy Problem for Ptf
	3.3 Banach Space Wanted!

	4 Spieksma's Theorem
	4.1 Weighted C0-Spaces and Drift Functions
	4.2 Transition Functions as Stronlgy Continuous Semigroups
	4.3 On the Domain of the Generator
	4.4 Applications: String Rewriting and Petri Nets

	5 Computability
	6 The Finite Dimensional Case and PTIME via ODEs
	7 Conclusion
	References

	Pointless Learning
	1 Introduction
	2 Preliminaries
	3 Bayesian Inversion in a Category of Typed Kernels
	3.1 Definition of Krn
	3.2 Bayesian Inversion in the Finite Subcategory of Krn
	3.3 Bayesian Inversion in Krn
	3.4 Pointfulness Is Harmful

	4 Banach Cones
	4.1 The Category Ban
	4.2 Duality in Banach Cones
	4.3 Adjunctions Between Conjugate Lp+ Cones

	5 Pointless Bayesian Inversion
	5.1 Representing Krn Arrows as AMKs
	5.2 Bayesian Inversion in Krn

	6 Pointless Bayesian Inversion Through Couplings
	7 Conclusion
	References

	On Higher-Order Probabilistic Subrecursion
	1 Introduction
	2 Probabilistic Choice Operators, Informally
	3 The Full Calculus T,R,X
	3.1 Operational Semantics
	3.2 Almost-Sure Termination
	3.3 On Fragments of T,R,X: A Roadmap

	4 Binary Probabilistic Choice
	5 Countable Probabilistic Choice
	6 Subrecursion
	7 Conclusions
	References

	Concurrency
	A Truly Concurrent Game Model of the Asynchronous -Calculus
	1 Introduction
	2 Simply-Typed Asynchronous -Calculus
	3 Concurrent HO/N Game Model
	3.1 Arenas
	3.2 DAG-based Plays
	3.3 Strategies and Composition
	3.4 Distributive-Closed Freyd Category
	3.5 Relation to Sequential Game Models

	4 Game Semantics of the -calculus
	5 Discussion: Relationally-Describable Process
	6 Related Work
	7 Conclusion and Future Work
	References

	Local Model Checking in a Logic for True Concurrency
	1 Introduction
	2 Event Structures and Regularity
	3 A Logic for True Concurrency
	3.1 Syntax
	3.2 Semantics

	4 A Local Model Checker for the Logic
	4.1 Constants and Definition Lists
	4.2 Tableau Rules
	4.3 The Stop Condition
	4.4 Model Checking a Formula Through Tableaux

	5 Conclusions
	References

	The Paths to Choreography Extraction
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Core Choreographies and Stateful Processes
	4 Extraction from SP
	5 Asynchrony
	6 Extensions and Applications
	References

	On the Undecidability of Asynchronous Session Subtyping
	1 Introduction
	2 A New Class of CFSMs: Asynchronous Duplex Systems
	2.1 CFSMs and Their Properties
	2.2 Asynchronous Duplex Systems

	3 A Compatibility Relation for CFSMs
	4 Undecidability of the `39`42`"613A``45`47`"603A-relation
	4.1 Decidable Sub-classes of CFSMs

	5 Correspondence Between Compatibility and Subtyping
	6 Conclusions and Related Work
	References

	Lambda Calculus and Constructive Proof
	A Lambda-Free Higher-Order Recursive Path Order
	1 Introduction
	2 Extension Orders
	3 Term Orders
	3.1 The Standard First-Order RPO
	3.2 The Applicative RPO
	3.3 A Graceful Higher-Order RPO
	3.4 An Optimized Variant of the Graceful Higher-Order RPO

	4 Properties
	5 Examples
	6 Discussion
	References

	Automated Constructivization of Proofs
	1 Introduction
	2 Notations and Definitions
	3 State of the Art: Two Constructive Fragments of Predicate Logic
	4 The Weakening Normalization
	5 A New Constructive Fragment
	6 The Full Constructivization Algorithm
	7 Experimental Results
	References

	Semantics and Category Theory
	A Light Modality for Recursion
	1 Introduction
	2 A Light Modality for Typed Lambda Calculus
	3 Denotational Semantics
	4 A Type Inference Algorithm
	4.1 Meta-Types
	4.2 Constraint Typing Rules
	4.3 Unification Algorithm
	4.4 Generation of Guard Constraints
	4.5 Type Inference Algorithm

	5 Related Work
	6 Conclusions and Future Work
	References

	Unifying Guarded and Unguarded Iteration
	1 Introduction
	2 Preliminaries
	3 Guarded Monads
	4 Parametrizing Guardedness
	5 Complete Elgot Monads and Iteration Congruences
	6 A Sandwich Theorem for Elgot Monads
	7 Related Work
	8 Conclusions and Further Work
	References

	Partiality, Revisited
	1 Introduction
	2 Background: Type Theory with Quotient Inductive-Inductive Types
	3 The Partiality Monad
	3.1 The Definition and Its Elimination Principles
	3.2 -Complete Partial Orders
	3.3 A Characterisation of the Relation

	4 Relation to the Coinductive Construction
	4.1 The Delay Monad and Monotone Sequences
	4.2 Monotone Sequences and the QIIT Construction

	5 Applications
	5.1 Nonterminating Functions as Fixed Points
	5.2 Functions from the Reals
	5.3 Operational Semantics

	6 Discussion and Further Work
	References

	On the Semantics of Intensionality
	1 Introduction: Intensionality and Intensional Recursion
	1.1 Intensionality as a Logical Construct
	1.2 Prospectus

	2 Modality-as-Intension
	2.1 P-categories and Intensionality

	3 Exposures
	3.1 Cartesian Exposures
	3.2 Evaluators, Quotation Devices, and Comonadic Exposures

	4 Exposures and Intensional Recursion
	5 Consistency, Truth and Provability: Gödel and Tarski
	6 An Exposure on Arithmetic
	7 Where Do IFPs Come From?
	8 The Recursion Theorems
	9 An Exposure on Assemblies
	9.1 Passing to a P-category
	9.2 Kleene's Recursion Theorems, Categorically

	10 Rice's Theorem
	11 Conclusion
	References

	Author Index

