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Abstract. Much of the expressive power of array-oriented languages
such as Iverson’s APL and J comes from their implicit lifting of scalar
operations to act on higher-ranked data, for example to add a value
to each element of a vector, or to add two compatible matrices point-
wise. It is considered a shape error to attempt to combine arguments
of incompatible shape, such as a 3-vector with a 4-vector. APL and J
are dynamically typed, so such shape errors are caught only at run-time.
Recent work by Slepak et al. develops a custom type system for an array-
oriented language, statically ruling out such errors. We show here that
such a custom language design is unnecessary: the requisite compatibility
checks can already be captured in modern expressive type systems, as
found for example in Haskell; moreover, generative type-driven program-
ming can exploit that static type information constructively to automat-
ically induce the appropriate liftings. We show also that the structure
of multi-dimensional data is inherently a matter of Naperian applica-
tive functors—lax monoidal functors, with strength, commutative up to
isomorphism under composition—that also support traversal .

1 Introduction

Array-oriented programming languages such as APL [21] and J [23] pay spe-
cial attention, not surprisingly, to manipulating array structures. These encom-
pass not just rank-one vectors (sequences of values), but also rank-two matrices
(which can be seen as rectangular sequences of sequences), rank-three cuboids
(sequences of sequences of sequences), rank-zero scalars, and so on.

One appealing consequence of this unification is the prospect of rank polymor-
phism [34]—that a scalar function may be automatically lifted to act element-
by-element on a higher-ranked array, a scalar binary operator to act pointwise
on pairs of arrays, and so on. For example, numeric function square acts not
only on scalars:

square 3 = 9

but also pointwise on vectors:

square 1 2 3 = 1 4 9

and on matrices and cuboids:
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square
1 2 3
4 5 6
7 8 9

=
1 4 9
16 25 36
49 64 81

square 1 2

3 4

5 6

8 = 1 4

9 16

25 36

64

Similarly, binary operators act not only on scalars, but also on vectors:

1 2 3 + 4 5 6 = 5 7 9

and on matrices:

1 2
3 4

+
5 6
7 8

=
6 8
10 12

The same lifting can be applied to operations that do not simply act pointwise.
For example, the sum and prefix sums functions on vectors can also be applied
to matrices:

sum 1 2 3 = 6 sum
1 2 3
4 5 6

=
6
15

sums 1 2 3 = 1 3 6 sums
1 2 3
4 5 6

=
1 3 6
4 9 15

In the right-hand examples above, sum and sums have been lifted to act on the
rows of the matrix. J also provides a reranking operator "1, which will make
them act instead on the columns—essentially a matter of matrix transposition:

sum "1
1 2 3
4 5 6

= sum

(
transpose

1 2 3
4 5 6

)
= sum

1 4
2 5
3 6

= 5 7 9

sums "1
1 2 3
4 5 6

= transpose

(
sums

(
transpose

1 2 3
4 5 6

))

= transpose

(
sums

1 4
2 5
3 6

)
= transpose

1 5
2 7
3 9

=
1 2 3
5 7 9

Furthermore, the arguments of binary operators need not have the same rank;
the lower-ranked argument is implicitly lifted to align with the higher-ranked
one. For example, one can add a scalar and a vector:

3 + 4 5 6 = 3 3 3 + 4 5 6 = 7 8 9

or a vector and a matrix:

1 2 3 +
4 5 6
7 8 9

=
1 2 3
1 2 3

+
4 5 6
7 8 9

=
5 7 9
8 10 12

1.1 Static Types for Multi-dimensional Arrays

In recent work [34], Slepak et al. present static and dynamic semantics for a
typed core language Remora. Their semantics clarifies the axes of variability
illustrated above; in particular, it makes explicit the implicit control structures
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and data manipulations required for lifting operators to higher-ranked argu-
ments and aligning arguments of different ranks. Moreover, Remora’s type sys-
tem makes it a static error if the shapes in a given dimension do not match—for
example, when attempting to add a 2-vector to a 3-vector, or a 2×2-matrix to a
2×3-matrix. (Incidentally, we adopt Slepak et al.’s terminology: the shape of a
multi-dimensional array is a sequence of numbers, specifying the extent in each
dimension; the rank of the array is the length of that list, and hence the number
of dimensions; and the size of the array is the product of that list, and hence
the number of elements.)

Slepak et al. model the type and evaluation rules of Remora in PLT Redex
[11], and use this model to prove important properties such as type safety. PLT
Redex provides complete freedom to model whatever semantics the language
designer chooses; but the quid pro quo for this freedom is that it does not
directly lead to a full language implementation—with type inference, a com-
piler, libraries, efficient code generation, and so on. They write that “our hope
[for future work] is that we can exploit this type information to compile programs
written in the rank-polymorphic array computation model efficiently” and that
“Remora is not intended as a language comfortable for human programmers to
write array computations. It is, rather, an explicitly typed, ‘essential’ core lan-
guage on which such a language could be based” [34, p. 29]. Moreover, “the tran-
sition from a core semantics modeled in PLT Redex to a complete programming
system requires a more flexible surface language and a compiler [. . . ] the added
code is mostly type and index applications. Type inference would be necessary
in order to make a surface language based on Remora practical” [34, p. 45].

1.2 Embedding Static Typing

This is the usual trade-off between standalone and embedded domain-specific
languages. If the type rules of Remora had been embedded instead in a suffi-
ciently expressive typed host language, then the surrounding ecosystem of that
host language—type inference, the compiler, libraries, code generation—could
be leveraged immediately to provide a practical programming vehicle. The chal-
lenge then becomes to find the right host language, and to work out how best to
represent the rules of the DSL within the features available in that host language.
Sometimes the representation comes entirely naturally; sometimes it takes some
degree of encoding.

In this paper, we explore the embedded-DSL approach to capturing the
type constraints and implicit lifting and alignment manipulations of rank-
polymorphic array computation. We show how to capture these neatly in Haskell,
a pure and strongly-typed functional programming language with growing abil-
ities to express and exploit dependent types. To be more precise, we make use
of a number of recent extensions to standard Haskell, which are supported in
the primary implementation GHC [13]. We do not assume familiarity with fancy
Haskell features, but explain them as we go along.

The point is not particularly to promote such fancy features; although
the expressive power of modern type systems is quite impressive. Nor is the
point to explain to aficionados of dependent types in Haskell how to perform
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rank-polymorphic array computation; most of our constructions are already folk-
lore. Rather, the point is to demonstrate to a wider programming language audi-
ence that it is often not necessary to invent a new special-purpose language in
order to capture a sophisticated feature: we have sufficiently expressive general-
purpose languages already.

1.3 The Main Idea

The main idea is that a rank-n array is essentially a data structure of type
D1(D2(. . . (Dn a))), where each Di is a dimension: a container type, categorically
a functor; one might think in the first instance of lists. However, in order to be
able to transpose arrays without losing information, each dimension should be
represented by a functor of fixed shape; so perhaps vectors, of a fixed length in
each dimension, but allowing different lengths in different dimensions.

The vector structure is sufficient to support all the necessary operations dis-
cussed above: mapping (for pointwise operations), zipping (for lifting binary
operations), replicating (for alignment), transposing (for reranking), folding (for
example, for sum), and traversing (for sums). Moreover, these can also be han-
dled crisply, with static types that both prevent incoherent combinations and
explain the implicit lifting required for compatible ones. However, although suf-
ficient, the vector structure is not necessary, and other functors (such as pairs,
triples, block vectors, and even perfect binary trees) suffice; we show that the
necessary structure is that of a traversable, Naperian, applicative functor (and
we explain what that means). The richer type structure that this makes avail-
able allows us to go beyond Remora, and in particular to explain the relationship
between nested and flat representations of multi-dimensional data, leading the
way towards higher-performance implementations of bulk operations, for exam-
ple on multicore chips [24] and on GPUs [5].

Specifically, our novel contributions are as follows:

– formalizing the lifting required for rank polymorphism;
– doing so within an existing type system, rather than creating a new one;
– identifying necessary and sufficient structure for dimensions;
– implementing it all (in Haskell), and providing executable code;
– showing how to connect to flat and sparse representations.

Although our definitions are asymptotically efficient, or can easily be made so
using standard techniques such as accumulating parameters, we do not make
performance claims in comparison with serious array libraries such as Repa and
Accelerate [5,24]. Rather, we see this work as providing a flexible but safe front-
end, delegating performance-critical computations to such libraries.

1.4 Structure of This Paper

The remainder of this paper is structured as follows. Section 2 uses type-level nat-
ural numbers for bounds checking of vectors; Sect. 3 explains the requirements on
vectors to support maps, zips, and transposition; and Sect. 4 similarly for reduc-
tions and scans; these are all fairly standard material, and together show how
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to generalize the dimensions of an array from concrete vectors to other suitable
types. Our contribution starts in Sect. 5, where we show how to accommodate
arrays of arbitrary rank. Section 6 shows how to automatically lift unary and
binary operators to higher ranks. Section 7 shows how to avoid manifesting repli-
cation and transposition operations by representing them symbolically instead,
and Sect. 8 shows a more efficient representation using flat built-in arrays, while
still preserving the shape information in the type. Section 9 concludes.

This paper is a literate Haskell script, and the code in it is all type-checked
and executable, albeit with tidier formatting in the PDF for publication pur-
poses. The extracted code is available for experimentation [14]. We exploit a
number of advanced type features, explained as we proceed; but we make no use
of laziness or undefinedness, treating Haskell as a total programming language.

2 Vectors with Bounds Checking

Our approach makes essential use of lightweight dependent typing, which is now
becoming standard practice in modern functional programming languages such
as Haskell. We introduce these ideas gradually, starting with traditional algebraic
datatypes, such as lists:

data List :: ∗ → ∗ where
Nil :: List a
Cons :: a → List a → List a

This declaration defines a new datatype constructor List of kind ∗ → ∗. Which
is to say, kind ∗ includes all those types with actual values, such as Int and
List Int and Int → Int ; and List is an operation on types, such that for any
type A of kind ∗, there is another type List A (also of kind ∗) of lists whose
elements are drawn from A. The declaration also introduces two constructors
Nil and Cons of the declared types for the new datatype, polymorphic in the
element type.

All lists with elements of a given type have the same type; for example, there
is one type List Int of lists of integers. This is convenient for operations that
combine lists of different lengths; but it does not allow us to guarantee bounds
safety by type checking. For example, the tail function

tail :: List a → List a
tail (Cons x xs) = xs

and the list indexing operator

lookup :: List a → Int → a
lookup (Cons x xs) 0 = x
lookup (Cons x xs) (n + 1) = lookup xs n

are partial functions, and there is no way statically to distinguish their safe from
their unsafe uses through the types. The way to achieve that end is to partition
the type List A into chunks, so that each chunk contains only the lists of a given
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length, and to index these chunks by their common lengths. The index should be
another type parameter, just like the element type is; so we need a type-level way
of representing natural numbers. One recent Haskell extension [39] has made this
very convenient, by implicitly promoting all suitable datatype constructors from
the value to the type level, and the datatypes themselves from the type level to
the kind level. For example, from the familiar datatype of Peano naturals

data Nat :: ∗ where
Z :: Nat
S :: Nat → Nat

we get not only a new type Nat with value inhabitants Z ,S Z , ..., but in addition
a new kind, also called Nat , with type inhabitants ′Z , ′S ′Z , .... In Haskell, the
inhabitants can be distinguished by the initial quote character (which is in fact
almost always optional, but for clarity we will make explicit use of it throughout
this paper). For convenience, we define synonyms for some small numbers at the
type level:

type One = ′S ′Z
type Two = ′S One
type Three = ′S Two
type Four = ′S Three

We can now define a datatype of length-indexed vectors:

data Vector :: Nat → ∗ → ∗ where
VNil :: Vector ′Z a
VCons :: a → Vector n a → Vector (′S n) a

The length is encoded in the type: VNil yields a vector of length zero, and VCons
prefixes an element onto an n-vector to yield an (n + 1)-vector. For example,
Vector Three Int is the type of 3-vectors of integers, one of whose inhabitants is
the vector 〈1, 2, 3〉:

v123 :: Vector Three Int
v123 = VCons 1 (VCons 2 (VCons 3 VNil))

The first type parameter of Vector is called a ‘phantom type’ [19] or ‘type
index’ [38], because it is not related to the type of any elements: a value of
type Vector Three Int has elements of type Int , but does not in any sense ‘have
elements of type Three’. The type index does not interfere with ordinary recur-
sive definitions, such as the mapping operation that applies a given function to
every element, witnessing to Vector n being a functor:

vmap :: (a → b) → Vector n a → Vector n b
vmap f VNil = VNil
vmap f (VCons x xs) = VCons (f x ) (vmap f xs)
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For example,

v456 :: Vector Three Int
v456 = vmap (λx → 3 + x ) v123

More interestingly, we can now capture the fact that the ‘tail’ function should
be applied only to non-empty vectors, and that it yields a result one element
shorter than its argument:

vtail :: Vector (S n) a → Vector n a
vtail (VCons x xs) = xs

Similarly, we can write a ‘zip’ function that combines two vectors element-by-
element using a binary operator, and use the additional type information to
restrict it to take vectors of a common length n and to produce a result of the
same length:

vzipWith :: (a → b → c) → Vector n a → Vector n b → Vector n c
vzipWith f VNil VNil = VNil
vzipWith f (VCons a x ) (VCons b y) = VCons (f a b) (vzipWith f x y)

Because of the type constraints, the patterns on the left-hand side in both exam-
ples are exhaustive: it would be ill-typed to take the tail of an empty vector, or
to zip two vectors of different lengths.

The functions vtail and vzipWith consume vectors; the length indices con-
strain the behaviour, but they are not needed at run-time because the value con-
structors provide sufficient information to drive the computation. The situation
is different when producing vectors from scratch. Consider a function vreplicate
to construct a vector of a certain length by replicating a given value. The type
a → Vector n a uniquely determines the implementation of such a function;
however, it is the type of the result that contains the length information, and
that isn’t available for use at run-time. Nevertheless, for each n, there is an
obvious implementation of vreplicate on Vector n; it would be nice to be able to
state that obvious fact formally. In Haskell, this sort of ‘type-driven code infer-
ence’ is modelled by type classes—it is the same mechanism that determines the
appropriate definition of equality or printing for a given type. Similarly, there is
an obvious implementation of vlength ::Vector n a → Int , which in fact does not
even need to inspect its vector argument—the length is statically determined.
We introduce the class Count of those types n (of kind Nat) that support these
two ‘obvious implementations’:

class Count (n :: Nat) where
vreplicate :: a → Vector n a
vlength :: Vector n a → Int

Indeed, every type n of kind Nat is in the class Count , as we demonstrate by
providing those two obvious implementations at each type n:
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instance Count ′Z where
vreplicate a = VNil
vlength xs = 0

instance Count n ⇒ Count (′S n) where
vreplicate a = VCons a (vreplicate a)
vlength xs = 1 + vlength (vtail xs)

(One might see class Count as representing ‘natural numbers specifically for
vector purposes’; it is possible with some pain to represent ‘natural numbers’ in
Haskell more generally [25].)

The operations vmap, vzipWith, and vreplicate are the essential ingredients
for lifting and aligning operations to higher-ranked arguments (albeit not yet
sufficient for the other operations). For example, to lift square to act on vectors,
we can use vmap square; to lift (+) to act on two vectors of the same length, we
can use vzipWith (+); and to align a scalar with a vector, we can use vreplicate:

v456 = vzipWith (+) (vreplicate 3) v123

(Note that the types of vzipWith and its second argument v123 together deter-
mine which instance of vreplicate is required; so no explicit type annotation is
needed.) But in order fully to achieve rank polymorphism, we want operators
such as squaring and addition to implicitly determine the appropriate lifting and
alignment, rather than having explicitly to specify the appropriate amount of
replication. We see next how that can be done, without sacrificing static typing
and type safety.

3 Applicative and Naperian Functors

We have seen that vectors show promise for representing the dimensions of an
array, because they support at least three of the essential operations, namely
mapping, zipping, and replicating. But vectors are not the only datatype to sup-
port such operations; if we can identify the actual requirements on dimensions,
then there are other types that would serve just as well. In particular, one of the
dimensions of an array might be ‘pairs’:

data Pair a = P a a

since these too support the three operations discussed above:

pmap :: (a → b) → Pair a → Pair b
pzipWith :: (a → b → c) → Pair a → Pair b → Pair c
preplicate :: a → Pair a

Generalizing in this way would allow us to handle vectors of pairs, pairs of triples,
and so on.

The first requirement for a type constructor f to be suitable as a dimension
is to be a container type, that is, an instance of the type class Functor and so
providing an fmap operator:
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class Functor f where
fmap :: (a → b) → f a → f b

The other two operators arise from f being a fortiori an applicative functor [26]:

class Functor f ⇒ Applicative f where
pure :: a → f a
(�) :: f (a → b) → f a → f b

Informally, pure should yield an f -structure of copies of its argument; this serves
as the ‘replicate’ operation:

areplicate :: Applicative f ⇒ a → f a
areplicate = pure

(Here, the context “Applicative f ⇒” denotes that areplicate has type a → f a
for any f in type class Applicative; in contrast, the type variable a is uncon-
strained.) The (�) method should combine an f -structure of functions with an
f -structure of arguments to yield an f -structure of results. The two methods
together give rise to the ‘zip’ operation:

azipWith :: Applicative f ⇒ (a → b → c) → f a → f b → f c
azipWith h xs ys = (pure h � xs) � ys

Vectors, of course, are applicative functors:

instance Functor (Vector n) where
fmap = vmap

instance Count n ⇒ Applicative (Vector n) where
pure = vreplicate
(�) = vzipWith (λf x → f x )

Note that we make the assumption that the length index type n is in type
class Count , so that we can infer the appropriate definition of vreplicate. This
assumption is benign, because the length indices are of kind Nat , and we have
provided a Count instance for every type of that kind.

Pairs too are applicative functors:

instance Functor Pair where
fmap f (P x y) = P (f x ) (f y)

instance Applicative Pair where
pure x = P x x
P f g � P x y = P (f x ) (g y)

However, being an applicative functor is not sufficient for serving as a dimen-
sion: that interface is not expressive enough to define transposition, which is
needed in order to implement reranking. For that, we need to be able to com-
mute the functors that represent dimensions: that is, to transform an f (g a)



APLicative Programming with Naperian Functors 565

into a g (f a). The necessary additional structure is given by what Hancock
[17] calls a Naperian functor, also known as a representable functor; that is, a
container of fixed shape. Functor f is Naperian if there is a type p of ‘positions’
such that f a � p → a; then p behaves a little like a logarithm of f —in par-
ticular, if f and g are both Naperian, then Log (f × g) � Log f + Log g and
Log (f · g) � Log f × Log g .

class Functor f ⇒ Naperian f where
type Log f
lookup :: f a → (Log f → a)
tabulate :: (Log f → a) → f a
positions :: f (Log f )
tabulate h = fmap h positions
positions = tabulate id

Informally, Log f is the type of positions for f ; lookup xs i looks up the element
of xs at position i ; tabulate h yields an f -structure where for each position i
the element at that position is h i ; and positions yields an f -structure where
the element at each position i is i itself. The first two operations should be
each other’s inverses; they are witnesses to the isomorphism between f a and
Log f → a. The latter two operations are interdefinable, so an instance need
only provide one of them; it is often convenient to implement positions, but to
use tabulate. For simplicity, we rule out empty data structures, insisting that
the type Log f should always be inhabited. Naperian functors are necessarily
applicative too:

pure a = tabulate (λi → a)
fs � xs = tabulate (λi → (lookup fs i) (lookup xs i))

Transposition in general consumes an f -structure of g-structures in which all
the g-structures have the same shape, and produces a g-structure of f -structures
in which all the f -structures have the same shape, namely the outer shape of
the input. For general functors f and g , this is a partial function, or at best
a lossy one. However, the essential point about Naperian functors is that all
inhabitants of a datatype have a common shape. In particular, in an f -structure
of g-structures where both f and g are Naperian, all the inner g-structures
necessarily have the same (namely, the only possible) shape. Then transposition
is total and invertible:

transpose :: (Naperian f ,Naperian g) ⇒ f (g a) → g (f a)
transpose = tabulate · fmap tabulate · flip · fmap lookup · lookup

Here, flip :: (a → b → c) → (b → a → c) is a standard function that swaps the
argument order of a binary function. We use the lookup function for the outer
and the inner structures of the input of type f (g a), yielding a binary function
of type Log f → Log g → a; we flip the arguments of this function, yielding one
of type Log g → Log f → a; then we tabulate both structures again, yielding
the result of type g (f a) as required. For example, we have
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VCons v123 (VCons v456 VNil) = 〈〈1, 2, 3〉, 〈4, 5, 6〉〉
transpose (VCons v123 (VCons v456 VNil)) = 〈〈1, 4〉, 〈2, 5〉, 〈3, 6〉〉

As a consequence, composition of Naperian functors is commutative, up to iso-
morphism; we will insist on our dimensions being at least Naperian functors.

Of course, pairs are Naperian, with two positions—the usual ordering on
booleans in Haskell has False ≤ True, so we use this ordering on the positions
too:

instance Naperian Pair where
type Log Pair = Bool
lookup (P x y) b = if b then y else x
positions = P False True

And vectors are Naperian. An n-vector has n positions, so to represent the
logarithm we need a type with precisely n inhabitants—the bounded naturals:

data Fin :: Nat → ∗ where
FZ :: Fin (′S n)
FS :: Fin n → Fin (′S n)

Thus, Fin n has n inhabitants FZ ,FS FZ , ...,FSn−1 FZ . Extracting an element
from a vector is defined by structural induction simultaneously over the vector
and the position—like with zipping, the type constraints make bounds violations
a type error:

vlookup :: Vector n a → Fin n → a
vlookup (VCons a x ) FZ = a
vlookup (VCons a x ) (FS n) = vlookup x n

A vector of positions is obtained by what in APL is called the ‘iota’ function. As
with replication, we need to provide the length as a run-time argument; but we
can represent this argument as a vector of units, and then infer the appropriate
value from the type:

viota :: Count n ⇒ Vector n (Fin n)
viota = viota ′ (vreplicate ()) where

viota ′ :: Vector m () → Vector m (Fin m)
viota ′ VNil = VNil
viota ′ (VCons () xs) = VCons FZ (fmap FS (viota ′ xs))

With these three components, we are justified in calling vectors Naperian:

instance Count n ⇒ Naperian (Vector n) where
type Log (Vector n) = Fin n
lookup = vlookup
positions = viota



APLicative Programming with Naperian Functors 567

4 Folding and Traversing

Another requirement on the dimensions of an array is to be able to reduce along
one of them; for example, to sum. In recent versions of Haskell, that requirement
is captured in the Foldable type class, the essence of which is as follows:

class Foldable t where
foldr :: (a → b → b) → b → t a → b

Informally, foldr aggregates the elements of a collection one by one, from right
to left, using the binary operator and initial value provided. Vectors are foldable
in the same way that lists are:

instance Foldable (Vector n) where
foldr f e VNil = e
foldr f e (VCons x xs) = f x (foldr f e xs)

and pairs are foldable by combining their two elements:

instance Foldable Pair where
foldr f e (P x y) = f x (f y e)

A foldable functor imposes a left-to-right ordering on its positions; so we can
extract the elements as a list, in that order:

toList :: Foldable t ⇒ t a → [a ]
toList = foldr (:) [ ]

Similarly, we can sum those elements, provided that they are of a numeric type:

sum :: (Num a,Foldable t) ⇒ t a → a
sum = foldr (+) 0

An additional requirement for array dimensions is to be able to transform
values along a dimension, for example to compute prefix sums. This is captured
by the Traversable type class:

class (Functor t ,Foldable t) ⇒ Traversable t where
traverse :: Applicative f ⇒ (a → f b) → t a → f (t b)

One way of thinking of traverse is as an effectful ‘map’ function [3], visiting each
element in order, precisely once each, and collecting effects in some applica-
tive functor f . For example, stateful computations can be modelled by state-
transforming functions:

data State s a = State {runState :: s → (a, s)}
(This construction declares State s a to be a record type, with a data constructor
also called State, and a single field called runState; in this way, the function
runState extracts the state-transformer from the record.) This datatype forms
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an applicative functor, in a standard way. Here is a little function to increase
and return a numeric state—whatever the current state n, when applied to m,
this yields the final state m + n, and returns as result the same value m + n:

increase :: Num a ⇒ a → State a a
increase m = State (λn → (m + n,m + n))

Using this, one can compute prefix sums by traversing a data structure, starting
with an initial state of 0, increasing the state by each element in turn, preserving
the running totals and discarding the final state:

sums :: (Num a,Traversable t) ⇒ t a → t a
sums xs = fst (runState (traverse increase xs) 0)

so in particular

sums v123 = VCons 1 (VCons 3 (VCons 6 VNil))

Vectors and pairs are both traversable, with instances following a common pat-
tern:

instance Traversable Pair where
traverse f (P x y) = (pure P � f x ) � f y

instance Traversable (Vector n) where
traverse f VNil = pure VNil
traverse f (VCons x xs) = (pure VCons � f x ) � traverse f xs

We take these various constraints as our definition of ‘dimension’:

class (Applicative f ,Naperian f ,Traversable f ) ⇒ Dimension f where
size :: f a → Int
size = length · toList

We have added a size method for convenience and with no loss of generality—it
is in fact statically determined, so may admit better type-specific definitions:

instance Dimension Pair where size = const 2
instance Count n ⇒ Dimension (Vector n) where size = vlength

But other less obvious datatypes, such as perfect binary trees of a given height,
are suitable dimensions too:

data Perfect :: Nat → ∗ → ∗ where
Leaf :: a → Perfect ′Z a
Bin :: Pair (Perfect n a) → Perfect (′S n) a

For example, a Perfect Three a is essentially a Pair (Pair (Pair a)). Perhaps
more usefully, rather than indexing vectors by a unary representation of the
natural numbers, we can use a more compact binary representation:
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data Binary :: ∗ where
Unit :: Binary
Twice :: Binary → Binary
Twice+1 :: Binary → Binary

under the obvious interpretation

bin2int :: Binary → Int
bin2int Unit = 1
bin2int (Twice n) = 2 × bin2int n
bin2int (Twice+1 n) = 2 × bin2int n + 1

Then we can define a datatype of (non-empty) vectors built up via balanced join
rather than imbalanced cons:

data BVector :: Binary → ∗ → ∗ where
VSingle :: a → BVector ′Unit a
VJoin :: BVector n a → BVector n a → BVector (′Twice n) a
VJoin+1 :: a → BVector n a → BVector n a → BVector (′Twice+1 n) a

When used as the dimensions of a matrix, this will allow a quad tree decomposi-
tion [12] for recursive functions. We leave the instance definitions as an exercise
for the energetic reader.

In fact, one may start from any numeric representation and manufacture a
corresponding datatype [18,29]. Sandberg Eriksson and Jansson [31] use a redun-
dant binary representation of the positive natural numbers (with constructors
1 and +) as the type index in a formalization of block matrices. Each of these
dimension types—pairs, triples, perfect binary trees of a given height, block vec-
tors of a given structure—is equivalent to some vector type, so no additional
expressivity is gained; but the alternatives may be more natural in given con-
texts.

As an example of a generic function, inner product involves summing pairwise
products, and so works for any dimension type:

innerp :: (Num a,Dimension f ) ⇒ f a → f a → a
innerp xs ys = sum (azipWith (∗) xs ys)

Multiplying an f ×g-matrix by a g×h-matrix entails lifting both to f ×h×g-
matrices then performing pairwise inner product on the g-vectors:

matrixp :: (Num a,Dimension f ,Dimension g ,Dimension h) ⇒
f (g a) → g (h a) → f (h a)

matrixp xss yss = azipWith (azipWith innerp) (fmap areplicate xss)
(areplicate (transpose yss))

Again, this works for any dimension types f , g , h; the same definition works for
vectors, pairs, block vectors, and any mixture of these.
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5 Multidimensionality

Now that we can represent vectors with elements of an arbitrary type, we can
of course represent matrices too, as vectors of vectors:

vv123456 :: Vector Two (Vector Three Int)
vv123456 = VCons v123 (VCons v456 VNil)

However, with this representation, integer vectors and integer matrices are of
quite different types, and there is no immediate prospect of supporting rank
polymorphism over them—for example, a single operation that can both add
two matrices and add a vector to a matrix. In order to do that, we need one
datatype that encompasses both vectors and matrices (and scalars, and arrays
of higher rank).

One way to achieve this goal is with a nested [4] or polymorphically recursive
[28] datatype:

data Hyper0 :: ∗ → ∗ where -- to be refined later
Scalar0 :: a → Hyper0 a
Prism0 :: Count n ⇒ Hyper0 (Vector n a) → Hyper0 a

(we make a convention of subscripting definitions that will be refined later).
This datatype corresponds to APL’s multi-dimensional arrays. We use the name
Hyper0, for ‘hypercuboid’, so as not to clash with Haskell’s Array type that
we will use later. Thus, Scalar0 constructs a scalar hypercuboid from its sole
element; and Prism0 yields a hypercuboid of rank r + 1 from a hypercuboid of
rank r whose elements are all n-vectors (for some n, but crucially, the same n
for all elements at this rank). This definition makes essential use of polymorphic
recursion, because a composite hypercuboid of as is constructed inductively not
from smaller hypercuboids of as, but from a (single) hypercuboid of vectors
of as.

This datatype satisfies the requirement of encompassing hypercuboids of arbi-
trary rank. However, it is somewhat unsatisfactory, precisely because it lumps
together all hypercuboids of a given element type into a single type; for example,
a vector and a matrix of integers both have the same type, namely Hyper0 Int .
We have sacrificed any ability to catch rank errors through type checking. Per-
haps worse, we have also sacrificed any chance to use the rank statically in order
to automatically lift operators. We can solve this problem in much the same way
as we did for bounds checking of vectors, by specifying the rank as a type index:

data Hyper1 :: Nat → ∗ → ∗ where -- to be refined later
Scalar1 :: a → Hyper1 ′Z a
Prism1 :: Count n ⇒ Hyper1 r (Vector n a) → Hyper1 (′S r) a

Now a vector of integers has type Hyper1 One Int , and a matrix of integers has
type Hyper1 Two Int ; it is a type error simply to try to add them pointwise,
and the rank index can be used (we will see how in due course) to lift addition
to act appropriately.
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That is all well and good for rank, but we have a similar problem with
size too: a 3-vector and a 4-vector of integers both have the same type when
viewed as hypercuboids, namely Hyper1 One Int ; so we can no longer catch
size mismatches by type checking. Apparently indexing by the rank alone is
not enough; we should index by the size in each dimension—a list of natural
numbers. Then the rank is the length of this list. Just as in Sect. 2 we promoted
the datatype Nat to a kind and its inhabitants Z ,S Z , ... to types ′Z , ′S ′Z , ..., we
can also promote the datatype [ ] of lists to the kind level, and its constructors
[ ] and (:) to operators ′[ ] and (′:) at the type level:

data Hyper2 :: [Nat ] → ∗ → ∗ where -- to be refined later
Scalar2 :: a → Hyper2 ′[ ] a
Prism2 :: Count n ⇒ Hyper2 ns (Vector n a) → Hyper2 (n ′: ns) a

Now a 3-vector of integers has type Hyper2 ′[Three] Int , a 4-vector has type
Hyper2 ′[Four ] Int , a 2×3-matrix has type Hyper2 ′[Three,Two] Int , and so
on. (Note that the latter is essentially a 2-vector of 3-vectors, rather than the
other way round; it turns out to be most convenient for the first element of
the list to represent the extent of the innermost dimension.) There is enough
information at the type level to catch mismatches both of rank and of size; but
still, the indexed types are all members of a common datatype, so can be made
to support common operations.

That deals with multi-dimensional vectors. But as we discussed in Sect. 3,
there is no a priori reason to restrict each dimension to be a vector; other
datatypes work too, provided that they are instances of the type class
Dimension. Then it is not enough for the datatype of hypercuboids to be indexed
by a type-level list of lengths, because the lengths are no longer sufficient to char-
acterize the dimensions—instead, we should use a type-level list of the dimension
types themselves.

We call these type-level lists of dimension types shapely [22]. Following the
example of vectors in Sect. 2, we introduce a type class of shapely types, which
support replication and size:

class Shapely fs where
hreplicate :: a → Hyper fs a
hsize :: Hyper fs a → Int

We ensure that every possible type-level list of dimensions is an instance:

instance Shapely ′[ ] where
hreplicate a = Scalar a
hsize = const 1

instance (Dimension f ,Shapely fs) ⇒ Shapely (f ′: fs) where
hreplicate a = Prism (hreplicate (areplicate a))
hsize (Prism x ) = size (first x ) × hsize x

Here, first returns the first element of a hypercuboid, so first x is the first ‘row’
of Prism x :
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first :: Shapely fs ⇒ Hyper fs a → a
first (Scalar a) = a
first (Prism x ) = head (toList (first x ))

and the size of a hypercuboid is of course the product of the lengths of its
dimensions.

Now, a hypercuboid of type Hyper fs a has shape fs (a list of dimensions) and
elements of type a. The rank zero hypercuboids are scalars; at higher ranks, one
can think of them as geometrical ‘right prisms’—congruent stacks of lower-rank
hypercuboids.

data Hyper :: [∗ → ∗ ] → ∗ → ∗ where -- final version
Scalar :: a → Hyper ′[ ] a
Prism :: (Dimension f ,Shapely fs) ⇒ Hyper fs (f a) → Hyper (f ′: fs) a

For example, we can wrap up a vector of vectors as a rank-2 hypercuboid:

h123456 :: Hyper ′[Vector Three,Vector Two] Int
h123456 = Prism (Prism (Scalar vv123456 ))

Hypercuboids are of course functorial:

instance Functor (Hyper fs) where
fmap f (Scalar a) = Scalar (f a)
fmap f (Prism x ) = Prism (fmap (fmap f ) x )

Furthermore, they are applicative; the type class Shapely handles replication,
and zipping is simply a matter of matching structures:

hzipWith :: (a → b → c) → Hyper fs a → Hyper fs b → Hyper fs c
hzipWith f (Scalar a) (Scalar b) = Scalar (f a b)
hzipWith f (Prism x ) (Prism y) = Prism (hzipWith (azipWith f ) x y)

With these two, we can install shapely hypercuboids as an applicative functor:

instance Shapely fs ⇒ Applicative (Hyper fs) where
pure = hreplicate
(�) = hzipWith (λf x → f x )

(In fact, hypercuboids are also Naperian, foldable, and traversable too, so they
can themselves serve as dimensions; but we do not need that power in the rest
of this paper.)

Now we can fold along the ‘major’ (that is, the innermost) axis of a hyper-
cuboid, given a suitable binary operator and initial value:

reduceBy :: (a → a → a, a) → Hyper (f ′: fs) a → Hyper fs a
reduceBy (f , e) (Prism x ) = fmap (foldr f e) x
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Moreover, we can transpose the hypercuboid in order to be able to fold along
the ‘minor’ (that is, the next-to-innermost) axis:

transposeHyper :: Hyper (f ′: (g ′: fs)) a → Hyper (g ′: (f ′: fs)) a
transposeHyper (Prism (Prism x )) = Prism (Prism (fmap transpose x ))

Thus, given a hypercuboid of type Hyper (f ′: (g ′: fs)) a, which by construction
must be of the form Prism (Prism x ) with x of type Hyper fs (g (f a)), we
transpose each of the inner hypercuboids from g (f a) to f (g a), then put the
two Prism constructors back on to yield the result of type Hyper (g ′: (f ′: fs)) a
as required. And with multiple transpositions, we can rearrange a hypercuboid
to bring any axis into the ‘major’ position.

6 Alignment

We can easily lift a unary operator to act on a hypercuboid of elements:

unary :: Shapely fs ⇒ (a → b) → (Hyper fs a → Hyper fs b)
unary = fmap

We can similarly lift a binary operator to act on hypercuboids of matching
shapes, using azipWith. But what about when the shapes do not match? A shape
fs is alignable with another shape gs if the type-level list of dimensions fs is a
prefix of gs, so that they have innermost dimensions in common; in that case,
we can replicate the fs-hypercuboid to yield a gs-hypercuboid.

class (Shapely fs,Shapely gs) ⇒ Alignable fs gs where
align :: Hyper fs a → Hyper gs a

Scalar shapes are alignable with each other; alignment is the identity function:

instance Alignable ′[ ] ′[ ] where
align = id

Alignments can be extended along a common inner dimension:

instance (Dimension f ,Alignable fs gs) ⇒ Alignable (f ′: fs) (f ′: gs) where
align (Prism x ) = Prism (align x )

Finally, and most importantly, a scalar can be aligned with an arbitrary hyper-
cuboid, via replication:

instance (Dimension f ,Shapely fs) ⇒ Alignable ′[ ] (f ′: fs) where
align (Scalar a) = hreplicate a

(Note that, ignoring the accompanying definitions of the align function, the
heads of the three Alignable instance declarations can be read together as a
logic program for when one sequence is a prefix of another.)
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The Alignable relation on shapes is an ordering, and in particular asym-
metric. In order to be able to lift a binary operator to act on two compatible
hypercuboids, we should treat the two arguments symmetrically: we will align
the two shapes with their least common extension, provided that this exists. We
express that in terms of the Max of two shapes, a type-level function:

type family Max (fs :: [∗ → ∗ ]) (gs :: [∗ → ∗]) :: [∗ → ∗ ] where
Max ′[ ] ′[ ] = ′[ ]
Max ′[ ] (f ′: gs) = (f ′: gs)
Max (f ′: fs) ′[ ] = (f ′: fs)
Max (f ′: fs) (f ′: gs) = (f ′: Max fs gs)

For example, a 2×3-matrix can be aligned with a 3-vector:

Max ′[Three,Two] ′[Three] ∼ ′[Three,Two]

Here, ∼ denotes type compatibility in Haskell. Provided that shapes fs and gs
are compatible, we can align two hypercuboids of those shapes with their least
common extension hs, and then apply a binary operator to them pointwise:

binary0 :: -- to be refined later
(Max fs gs ∼ hs,Alignable fs hs,Alignable gs hs) ⇒
(a → b → c) → (Hyper fs a → Hyper gs b → Hyper hs c)

binary0 f x y = hzipWith f (align x ) (align y)

For example,

binary0 (+) (Scalar 3) h123456 = 〈〈4, 5, 6〉, 〈7, 8, 9〉〉
Note that as a function on types, Max is partial: two shapes f ′: fs and g ′: gs are
incompatible when f 
≡ g , and then have no common extension. In that case, it is
a type error to attempt to align two hypercuboids of those shapes. However, the
type error can be a bit inscrutable. For example, when trying to align a 3-vector
with a 4-vector, the compiler cannot simplify Max ′[Vector Three] ′[Vector Four ],
and GHC (version 7.10.3) gives the following error:

No instance for
(Alignable ’[Vector Three] (Max ’[Vector Three] ’[Vector Four]))
(maybe you haven’t applied enough arguments to a function?)

We can use type-level functions to provide more helpful error messages too [33].
We define an additional type function as a predicate on types, to test whether
the shapes are compatible:

type family IsCompatible (fs :: [∗ → ∗]) (gs :: [∗ → ∗ ]) :: IsDefined Symbol where
IsCompatible ′[ ] ′[ ] = Defined
IsCompatible ′[ ] (f ′: gs) = Defined
IsCompatible (f ′: fs) ′[ ] = Defined
IsCompatible (f ′: fs) (f ′: gs) = IsCompatible fs gs
IsCompatible (f ′: fs) (g ′: gs) = Undefined "Mismatching dimensions"

Here, Symbol is the kind of type-level strings, and IsDefined is a type-level
version of the booleans, but extended to incorporate also an explanation in the
case that the predicate fails to hold:
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data IsDefined e = Defined | Undefined e

If we now add this test as a constraint to the type of a lifted binary operator:

binary :: -- final version

(IsCompatible fs gs ∼ Defined ,Max fs gs ∼ hs,Alignable fs hs,Alignable gs hs) ⇒
(a → b → c) → (Hyper fs a → Hyper gs b → Hyper hs c)

binary f x y = binary0 f x y

(note that the code is precisely the same, only the type has become more infor-
mative) then we get a slightly more helpful error message when things go wrong:

Couldn’t match type ’Undefined "Mismatching dimensions"
with ’Defined

Expected type: ’Defined
Actual type: IsCompatible ’[Vector Three] ’[Vector Four]

7 Symbolic Transformations

Although alignment of arrays of compatible but different shapes morally entails
replication, this is an inefficient way actually to implement it; instead, it is
better simply to use each element of the smaller structure multiple times. One
way to achieve this is perform the replication symbolically—that is, to indicate
via the type index that an array is replicated along a given dimension, without
manifestly performing the replication. This can be achieved by extending the
datatype of hypercuboids to incorporate an additional constructor:

data HyperR :: [∗ → ∗] → ∗ → ∗ where
ScalarR :: a → HyperR ′[ ] a
PrismR :: (Dimension f ,Shapely fs) ⇒ HyperR fs (f a) → HyperR (f ′: fs) a
ReplR :: (Dimension f ,Shapely fs) ⇒ HyperR fs a → HyperR (f ′: fs) a

The idea is that ReplR x denotes the same array as Prism (fmap areplicate x ),
but takes constant time and space to record the replication. It allows us to
implement replication to multiple ranks in time and space proportional to the
rank, rather than to the size. This would be of no benefit were it just to post-
pone the actual replication work until later. Fortunately, the work can often
be avoided altogether. Mapping is straightforward, since it simply distributes
through ReplR:

instance Functor (HyperR fs) where
fmap f (ScalarR a) = ScalarR (f a)
fmap f (PrismR x ) = PrismR (fmap (fmap f ) x )
fmap f (ReplR x ) = ReplR (fmap f x )

Similarly for zipping two replicated dimensions. When zipping a replicated
dimension (ReplR) with a manifest one (PrismR), we end up essentially with a
map—that, after all, was the whole point of the exercise. The other cases are as
before.
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rzipWith :: Shapely fs ⇒ (a → b → c) → HyperR fs a → HyperR fs b → HyperR fs c

rzipWith f (ScalarR a) (ScalarR b) = ScalarR (f a b)

rzipWith f (PrismR x) (PrismR y) = PrismR (rzipWith (azipWith f ) x y)

rzipWith f (PrismR x) (ReplR y) = PrismR (rzipWith (azipWithL f ) x y)

rzipWith f (ReplR x) (PrismR y) = PrismR (rzipWith (azipWithR f ) x y)

rzipWith f (ReplR x) (ReplR y) = ReplR (rzipWith f x y)

Here, azipWithL and azipWithR are variants of azipWith with one argument
constant:

azipWithL :: Functor f ⇒ (a → b → c) → f a → b → f c
azipWithL f xs y = fmap (λx → f x y) xs
azipWithR :: Functor f ⇒ (a → b → c) → a → f b → f c
azipWithR f x ys = fmap (λy → f x y) ys

(note that they only need a Functor constraint rather than Applicative, since
they only use fmap and not pure and �).

Similarly for transposition; if either of the innermost two dimensions is sym-
bolically replicated, it is just a matter of rearranging constructors, and only
when they are both manifest do we have to resort to actual data movement:

rtranspose :: (Shapely fs,Dimension f ,Dimension g) ⇒
HyperR (f ′: g ′: fs) a → HyperR (g ′: f ′: fs) a

rtranspose (PrismR (PrismR x )) = PrismR (PrismR (fmap transpose x ))
rtranspose (PrismR (ReplR x )) = ReplR (PrismR x )
rtranspose (ReplR (PrismR x )) = PrismR (ReplR x )
rtranspose (ReplR (ReplR x )) = ReplR (ReplR x )

It is only when it comes to folding or traversing a hypercuboid that a symbolic
replication really has to be forced. This can be achieved by means of a function
that expands a top-level ReplR constructor, if one is present, while leaving the
hypercuboid abstractly the same:

forceReplR :: Shapely fs ⇒ HyperR fs a → HyperR fs a
forceReplR (ReplR x ) = PrismR (fmap areplicate x )
forceReplR x = x

A similar technique can be used to represent transposition itself symbolically,
via its own constructor:

data HyperT :: [∗ → ∗ ] → ∗ → ∗ where
ScalarT :: a → HyperT ′[ ] a
PrismT :: (Dimension f ,Shapely fs) ⇒

HyperT fs (f a) → HyperT (f ′: fs) a
TransT :: (Dimension f ,Dimension g ,Shapely fs) ⇒

HyperT (f ′: g ′: fs) a → HyperT (g ′: f ′: fs) a

The idea is that TransT x represents the transposition of x , without actually
doing any work. We can maintain the invariant that there are never two adjacent



APLicative Programming with Naperian Functors 577

TransT constructors, by using the following ‘smart constructor’ in place of the
real one, to remove a transposition if one is present and to add one otherwise:

transT :: (Dimension f ,Dimension g ,Shapely fs) ⇒
HyperT (f ′: g ′: fs) a → HyperT (g ′: f ′: fs) a

transT (TransT x ) = x
transT x = TransT x

Of course, with the help of this additional constructor, transposition is trivial,
and replication is no more difficult than it was with plain Hyper ; zipping is
the only operation that requires any thought. Where the two structures match,
zipping simply commutes with them—and in particular, symbolic transpositions
may be preserved, as in the third equation for tzipWith below. Only when zipping
a TransT with a PrismT does the symbolic transposition need to be forced, for
which we provide a function that expands a top-most TransT constructor if one
is present, while leaving the hypercuboid abstractly the same:

forceTransT :: (Dimension f ,Dimension g ,Shapely fs) ⇒
HyperT (f ′: g ′: fs) a → HyperT (f ′: g ′: fs) a

forceTransT (TransT (PrismT (PrismT x )))
= PrismT (PrismT (fmap transpose x ))

forceTransT (TransT (PrismT x@(TransT )))
= case forceTransT x of

PrismT x ′ → PrismT (PrismT (fmap transpose x ′))
forceTransT x = x

(Here, the ‘as-pattern’ x@p binds x to the whole of an argument whilst simul-
taneously matching against the pattern p, and is a wild card. On account of
the type constraints, together with the invariant that there are no two adjacent
TransT constructors, these three clauses are sufficient to guarantee that the
outermost constructor is not a TransT .) Then we have:

tzipWith :: Shapely fs ⇒
(a → b → c) → HyperT fs a → HyperT fs b → HyperT fs c

tzipWith f (ScalarT a) (ScalarT b) = ScalarT (f a b)
tzipWith f (PrismT x) (PrismT y) = PrismT (tzipWith (azipWith f ) x y)
tzipWith f (TransT x) (TransT y) = TransT (tzipWith f x y)
tzipWith f x@(TransT ) (PrismT y) = tzipWith f (forceTransT x) (PrismT y)
tzipWith f (PrismT x) y@(TransT ) = tzipWith f (PrismT x) (forceTransT y)

Again, folding and traversing seem to require manifesting any symbolic trans-
positions.

We can even combine symbolic replication and transposition in the same
datatype, providing trivial implementations of both operations. The only tricky
part then is in zipping, while preserving as much of the symbolic representa-
tion as possible. We have all the cases of rzipWith for prisms interacting with
replication, plus those of tzipWith for prisms interacting with transposition, plus
some new cases for replication interacting with transposition. The details are not
particularly surprising, so are left again to the energetic reader.
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8 Flat Representation

The various nested representations above precisely capture the shape of a hyper-
cuboid. This prevents dimension and size mismatches, by making them type
errors; more constructively, it drives the mechanism for automatically aligning
the arguments of heterogeneous binary operators. However, the nested represen-
tation is inefficient in time and space; high performance array libraries targetting
GPUs arrange the data as a simple, flat, contiguous sequence of values, mediated
via coordinate transformations between the nested index space and the flat one.
In this section, we explore such flat representations.

Since each dimension of a hypercuboid is Naperian, with a fixed collection
of positions, the total size of a hypercuboid is statically determined; so one can
rather straightforwardly flatten the whole structure to an immutable linear array.
To get the full benefits of the flat representation, that really should be an array
of unboxed values [30]; for simplicity, we elide the unboxing here, but it should
not be difficult to provide that too.

In order to flatten a hypercuboid into a linear array, we need the total size
and a list of the elements. The former is provided as the hsize method of the
type class Shapely ; for the latter, we define

elements :: Shapely fs ⇒ Hyper fs a → [a ]
elements (Scalar a) = [a ]
elements (Prism x ) = concat (map toList (elements x ))

As a representation of flattened hypercuboids, we introduce an indexed version
of arrays, preserving the shape fs as a type index:

data Flat fs a where
Flat :: Shapely fs ⇒ Array Int a → Flat fs a

to which we can transform a hypercuboid:

flatten :: Shapely fs ⇒ Hyper fs a → Flat fs a
flatten x = Flat (listArray (0, hsize x − 1) (elements x ))

Here, listArray is a standard Haskell function that constructs an array from a
pair of bounds and an ordered list of elements. This representation is essentially
the same as is used for high-performance array libraries such as Repa [24] for
multicore architectures and Accelerate [5] for GPUs; so it should be straight-
forward to use the abstractions defined here as a front end to guarantee safety,
with such a library as a back end for high performance.

The flat contiguous Array is one possible representation of the sequence of
elements in a hypercuboid, but it is not the only possibility. In particular, we
can accommodate sparse array representations too, recording the shape as a
type index, and explicitly storing only the non-null elements together with their
positions. When the elements are numeric, we could make the convention that
the absent ones are zero; more generally, we could provide a single copy of the
‘default’ element:
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data Sparse fs a where
Sparse :: Shapely fs ⇒ a → Array Int (Int , a) → Sparse fs a

so that Sparse e xs denotes a sparse array with default element e and list xs
of proper elements paired with their positions. This can be expanded back to a
traditional flat array as follows:

unsparse :: ∀fs a . Shapely fs ⇒ Sparse fs a → Flat fs a
unsparse x@(Sparse e xs) = Flat (accumArray second e (0, l − 1) (elems xs))

where l = hsize (hreplicate () :: Hyper fs ())
second b a = a

Here, elems yields the list of elements of an Array , which for us will be a list of
pairs; and accumArray f e (i , j ) xs constructs a B -array with bounds (i , j ) from
a list xs of A-elements paired with positions, accumulating the subsequence of
elements labelled with the same position using the initial value e :: B and the
binary operator f :: B → A → B . For us, the types A,B coincide, and second
keeps the second of its two arguments. For simplicity, we compute the size l from
a regular Hyper of the same shape; more sophisticated approaches are of course
possible.

One could similarly provide a run-length-encoded representation, for arrays
expected to have long constant sections of different values, and space-efficient
representations of diagonal and triangular matrices.

Note that neither the Flat nor the Sparse representation as shown enforce
the bounds constraints. The underlying array in both cases is merely assumed
to have the appropriate length for the shape index fs. Moreover, for the sparse
representation, the positions are additionally assumed to be within range; a
more sophisticated representation using bounded naturals Fin could be used to
enforce the constraints, should that be deemed important. One might also want
to maintain the invariant that the elements in the sparse representation are listed
in order of position, so that two arrays can easily be zipped via merging without
first expanding out to a dense representation; it is straightforward to impose
that ordering invariant on the position using dependent typing [27].

In order to provide efficient element access and manipulation, one could com-
bine the array representation with an explicit index transformation [16]. Repli-
cation and transposition can then be represented by modifying the index trans-
formation, without touching the array elements. We leave the pursuit of this
possibility for future work.

9 Conclusions

We have shown how to express the rank and size constraints on multidimensional
APL array operations statically, by embedding into a modern strongly typed
functional programming language. This means that we benefit for free from all
the infrastructure of the host language, such as the type checking, compilation,
code optimizations, libraries, and development tools—all of which would have to
be built from scratch for a standalone type system such as that of Remora [34].
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The embedding makes use of lightweight dependently typed programming
features, as exhibited in Haskell. What is quite remarkable is that there is no
need for any sophisticated solver for size constraints; the existing traditional
unification algorithm suffices (with admittedly many extensions since the days of
Hindley and Milner, for example to encompass generalized algebraic datatypes,
polymorphic recursion, type families, and so on). This is perhaps not surprising
when all one does with sizes is to compare them, but it still applies for certain
amounts of size arithmetic. For example, there is no difficulty at all in defining
addition and multiplication of type-level numbers,

type family Add (m :: Nat) (n :: Nat) :: Nat where ...
type family Mult (m :: Nat) (n :: Nat) :: Nat where ...

and then writing functions to append and split vectors, and to concatenate and
group vectors of vectors:

vappend :: (Vector m a,Vector n a) → Vector (Add m n) a
vsplit :: Count m ⇒

Vector (Add m n) a → (Vector m a,Vector n a)
vconcat :: Vector m (Vector n a) → Vector (Mult m n) a
vgroup :: (Count m,Count n) ⇒

Vector (Mult m n) a → Vector m (Vector n a)

We have shown how the approach supports various important optimizations,
such as avoiding unnecessary replication of data, and flat storage of multidimen-
sional data. In future work, we plan to integrate this approach with existing
libraries for high-performance GPU execution, notably Repa [24] and Acceler-
ate [5].

9.1 Related Work

We are, of course, not the first to use a type system to guarantee size con-
straints on dimensions of array operations. The length-indexed vector example
is the ‘hello, world’ of lightweight approaches to dependently typed program-
ming, dating back at least to Xi’s Dependent ML [38]. The particular case in
which the shape is data-independent, as we address here, can also be traced back
to Jay’s work [22] on shapely types, in which data structures may be factored
into ‘shape’ and ‘contents’, the latter a simple sequence of elements; then shapely
operations are those for which the shape of the output depends only on the shape
of the input, and not on its contents.

Jay already considered the example of two-dimensional matrices; many others
have also used size information at the type level to statically constrain multi-
dimensional array operations. Eaton [7] presented a demonstration of statically
typed linear algebra, by which he meant “any tool which makes [static guarantees
about matching dimensions] possible”. Scholz’s Single-Assignment C [32] repre-
sents the extents of multi-dimensional arrays in their types, and Trojahner and
Grelck [36] discuss shape-generic functional array programming in SaC/Qube.
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Abe and Sumii [1] present an array interface that enforces shape consistency
through what they call generative phantom types, and conclude that “practi-
cal size checking for a linear algebra library can be constructed on the simple
idea of verifying mostly the equality of sizes without significantly restructuring
application programs”.

Elsman and Dybdal’s subset of APL [10] and Veldhuizen’s Blitz++ [37] have
array types indexed by rank but not size. Chakravarty et al.’s Haskell libraries
Repa [24] and Accelerate [5] similarly express the rank of a multi-dimensional
array in its type, but represent its shape only as part of the value, so that can
only be checked at run-time (note that they use both “rank” and “shape” in their
papers to refer to what we call rank). Thiemann and Chakravarty [35] explore
the trade-offs in developing a front-end to Accelerate in the true dependently
typed language Agda in order (among other things) to statically capture shape
information; we have shown that it is not necessary to leave the more familiar
world of Haskell to achieve that particular end.

None of these works cover full rank polymorphism as in APL and Remora
and as in our work: although operations such as map may be applied at arbitrary
shape, binary operations such as zip require both arguments to have the same
shape—there is no lifting and alignment.

The representation of an array in terms of its lookup function, as in our
Naperian class and our basis for transposition, also has quite a long history. The
representation is known as pull arrays in the Chalmers work on the digital signal
processing language Feldspar [2] and the GPU language Obsidian [6], and delayed
arrays in Repa [24]. But it is also the essence of functional reactive animation,
for example in Elliott’s Pan [8] and his and Hudak’s Fran [9], and in Hudak and
Jones’s earlier experiment on geometric region servers [20].
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O, my offence is rank, it smells to heaven;
It hath the primal eldest curse upon ’t.

Shakespeare, “Hamlet”, Act III Scene 3
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