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Abstract. Refinement types turn typechecking into lightweight verifi-
cation. The classic form of refinement type is the datasort refinement, in
which datasorts identify subclasses of inductive datatypes.

Existing type systems for datasort refinements require that all the
refinements of a type be specified when the type is declared; multiple
refinements of the same type can be obtained only by duplicating type
definitions, and consequently, duplicating code.

We enrich the traditional notion of a signature, which describes the
inhabitants of datasorts, to allow re-refinement via signature extension,
without duplicating definitions. Since arbitrary updates to a signature
can invalidate the inversion principles used to check case expressions,
we develop a definition of signature well-formedness that ensures that
extensions maintain existing inversion principles. This definition allows
different parts of a program to extend the same signature in different
ways, without conflicting with each other. Each part can be type-checked
independently, allowing separate compilation.

1 Introduction

Type systems provide guarantees about run-time behaviour; for example, that
a record will not be multiplied by a string. However, the guarantees provided by
traditional type systems like Hindley–Milner do not rule out a practically impor-
tant class of run-time failures: nonexhaustive match exceptions. For example,
the type system of Standard ML allows a case expression over lists that omits a
branch for the empty list:

case elems of head :: tail => head

If this expression is evaluated with elems bound to the empty list [], the
exception Match will be raised.

Datasort refinements eliminate this problem: a datasort can express, within
the static type system, that elems is not empty; therefore, the above case expres-
sion will never raise Match. Datasorts can also express less shallow properties.
For example, the definition in Fig. 1 encodes conjunctive normal form—a for-
mula that consists of (possibly nested) Ands of clauses, where a clause consists
of (possibly nested) Ors of literals, where a literal is either a positive literal (a
variable) or a negation of a positive literal. A case expression comparing two
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Fig. 1. Datasorts for conjunctive normal form

values of type clause would only need branches for Or, Not and Var; the And
branch could be omitted, since And does not produce a clause.

Datasorts correspond to regular tree grammars, which can encode various
data structure invariants (such as the colour invariant of red-black trees), as
well as properties such as CNF and A-normal form. Datasort refinements are
less expressive than the “refinement type” systems (such as liquid types) that
followed work on index refinements and indexed types; like regular expressions,
which “can’t count”, datasorts cannot count the length of a list or the height of
a tree. However, types with datasorts are simpler in some respects; most impor-
tantly, types with datasorts never require quantifiers. Avoiding quantifiers, espe-
cially existential quantifiers, also avoids many complications in type checking.
By analogy, regular expressions cannot solve every problem—but when they can
solve the problem, they may be the best solution.

The goal of this paper is to make datasort refinements more usable—not by
making datasorts express more invariants, but by liberating them from the neces-
sity of a fixed specification (a fixed signature). First, we review the trajectory of
research on datasorts.

The first approach to datasort refinements (Freeman and Pfenning 1991;
Freeman 1994) extended ML, using abstract interpretation (Cousot and Cousot
1977) to infer refined types. The usual argument in favour of type inference is
that it reduces a direct burden on the programmer. When type annotations are
boring or self-evident, as they often are in plain ML, this argument is plausible.
But datasorts can express more subtle specifications, calling that argument into
question. Moreover, inference discourages a form of fine-grained modularity. Just
as we expect a module system to support information hiding, so that clients of a
module cannot depend on its internal details, a type system should prevent the
callers of a function from depending on its internal details. Inferring refinements
exposes those details. For example, if a function over lists is written with only
nonempty input in mind, the programmer may not have thought about what
the function should do for empty input, so the type system shouldn’t let the
function be applied to an empty list. Finally, inferring all properties means that
the inferred refined types can be long, e.g. inferring a 16-part intersection type
for a simple function (Freeman and Pfenning 1991, p. 271).

Thus, the second generation of work on datasort refinements (Davies and
Pfenning 2000; Davies 2005) used bidirectional typing, rather than inference.
Programmers have to write more annotations, but refinement checking will
never fabricate unintended invariants. A third generation of work (Dunfield and
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Pfenning 2004; Dunfield 2007b) stuck with bidirectional type checking, though
this was overdetermined: other features of that type system made inference
untenable.

All three generations (and later work by Lovas (2010) on datasorts for LF)
shared the constraint that a given datatype could be refined only once. The
properties tracked by datasorts could not be subsequently extended; the same
set of properties must be used throughout the program. Modular refinement
checking could be achieved only by duplicating the type definition and all related
code. Separate type-checking of refinements enables simpler reasoning about
programs, separate compilation, and faster type-checking (simpler refinement
relations lead to simpler case analyses).

The history of pattern typing in case expressions is also worth noting, as
formulating pattern typing seems to be the most difficult step in the design of
datasort type systems. Freeman supported a form of pattern matching that was
oversimplified. Davies implemented the full SML pattern language and formal-
ized most of it, but omitted as-patterns—which become nontrivial when datasort
refinements enter the picture.

The system in this paper allows multiple, separately declared refinements of a
type by revising a fundamental mechanism of datasort refinements: the signature.
Refinements are traditionally described using a signature that specifies—for the
entire program—which values of a datatype belong to which refinements. For
example, the type system can track the parity of bitstrings using the following
signature, which says: (1) even and odd are subsorts (subtypes) of the type bits
of bitstrings, the (2) empty bitstring has even parity, (3) appending a 1 flips the
parity, and (4) appending a 0 preserves parity.

even � bits, odd � bits,
Empty : even,

One : (even → odd) ∧ (odd → even),
Zero : (even → even) ∧ (odd → odd)

The connective ∧, read “and” or “intersection”, denotes conjunction of prop-
erties: adding a One makes an even bitstring odd (even → odd), and makes an
odd bitstring even (odd → even). Thus, if b is a bitstring known to have odd
parity, then appending a 1 yields a bitstring with even parity:

b : odd � One(b) : even

In some datasort refinement systems (Dunfield 2007b; Lovas 2010), the pro-
grammer specifies the refinements by writing a signature like the one above. In
the older systems of Freeman and Davies, the programmer writes a regular tree
grammar1, from which the system infers a signature, including the constructor
types and the subsort relation:
1 A regular tree grammar is like a regular grammar (the class of grammars equivalent

to regular expressions), but over trees instead of strings (Comon et al. 2008); the
leftmost terminal symbol in a production of a regular grammar corresponds to the
symbol at the root of a tree.
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even = Empty ||Zero(even) ||One(odd)
odd = Zero(odd) ||One(even)

In either design, the typing phase uses the same form of signature. We use
the first design, where the programmer gives the signature directly. Giving the
signature directly is more expressive, because it enables refinements to carry
information not present at run time. For example, we can refine natural numbers
by Tainted and Untainted:

Z : nat, S : nat → nat,
tainted � nat, untainted � nat,

Z : tainted, S : tainted → tainted,
Z : untainted, S : untainted → untainted

The sorts tainted and untainted have the same closed inhabitants, but a program
cannot directly create an instance of untainted from an instance of tainted:

x : tainted �� S(x) : untainted

Thus, the two sorts have different open inhabitants. This is analogous to dimen-
sion typing, where an underlying value is just an integer or float, but the type
system tracks that the number is in (for example) metres (Kennedy 1996).

Giving the signature directly allows programmers to choose between a variety
of subsorting relationships. For example, to allow untainted data to be used
where tainted data is expected, write untainted � tainted. Subsorting can be
either structural (as the signatures generated from grammars) or nominal (as in
the example above). In this paper, giving signatures directly is helpful: it enables
extension of signatures without translating between signatures and grammars.

Contributions. This paper makes the following contributions:

– A language and type system with extensible signatures for datasort refine-
ments (Sect. 3). Refinements are extended by blocks that are checked to ensure
that they do not weaken a sort’s inversion principle, which would make typing
unsound.

– A new formulation of typing (Sect. 4) for case expressions. This formulation
is based on a notion of finding the intersection of a type with a pattern; it
concisely models the interesting aspects of realistic ML-style patterns.

– Type (datasort) preservation and progress for the type assignment system,
stated in Sect. 6 and proved in Appendix B, with respect to a standard call-
by-value operational semantics (Sect. 5).

– A bidirectional type system (Sect. 7), which directly yields an algorithm. We
prove that this system is sound (given a bidirectional typing derivation, eras-
ing annotations yields a type assignment derivation) and complete (given any
type assignment derivation, annotations can be added to make bidirectional
typing succeed).

The appendix, which includes definitions and proofs omitted for space rea-
sons, can be found at http://www.cs.queensu.ca/ jana/papers/extensible/∼ .

http://www.cs.queensu.ca/~jana/papers/extensible
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2 Datasort Refinements

What are Datasort Refinements? Datasort refinements are a syntactic discipline
for enforcing invariants. This is a play on Reynolds’s definition of types as a “syn-
tactic discipline for enforcing levels of abstraction” (Reynolds 1983). Datasorts
allow programmers to conveniently categorize inductive data, and operations on
such data, more precisely than in conventional type systems.

Indexed types and related systems (e.g. liquid types and other “refinement
types”) also serve that purpose, but datasorts are highly syntactic, whereas
indexed types depend on the semantics of a constraint domain. For exam-
ple, to check the safety of accessing the element at position 2k of a 0-based
array of length n, an indexed type system must check whether the proposition
2k < n is entailed in the theory of integers (under some set of assumptions,
e.g. 0 ≤ k ≤ n/3). The truth of 2k < n depends on the semantics of arith-
metic, whereas membership in a datasort only depends on a head constructor
and the datasorts of its arguments. Put roughly, datasorts express regular gram-
mars, and indexed types express grammars with more powerful side conditions.
(Unrestricted dependent types can express arbitrarily precise side conditions.)

Applications of Datasort Refinements. Datasorts are especially suited to applica-
tions of symbolic computing, such as compilers and theorem provers. Compilers
usually work with multiple internal languages, from abstract syntax through to
intermediate languages. These internal languages may be decomposed into fur-
ther variants: source ASTs with and without syntactic sugar, A-normal form,
and so on. Similarly, theorem provers, SMT solvers, and related tools transform
formulas into various normal forms or sublanguages: quantifier-free Boolean for-
mulas, conjunctive normal form, formulas with no free variables, etc. Many such
invariants can be expressed by regular tree grammars, and hence by datasorts.

Our extensible refinements offer the ability to use new refinements of a
datatype when the need arises, without the need to update a global refinement
declaration. For example, we could extend the types in Fig. 1, in which clause
contains disjunctions of literals and cnf contains conjunctions of clauses, with a
new sort for conjunctions of literals:

[everything from Fig. 1] literal � conj-literal, conj-literal � cnf,
And : (conj-literal ∗ conj-literal) → conj-literal

What are Datasort Refinements Not? First, datasorts are not really types, at
least not in the sense of Hindley–Milner type systems. A function on bitstrings
(Sect. 1) has a best, or principal, type: bits → bits. In contrast, such a function
may have many refined types (sometimes called sorts), depending not only on
the way the programmer chose to refine the bits type, but on which possible
properties they wish to check. The type, or sort, of a function is a tiny module
interface. In a conventional Hindley–Milner type system, there is a best interface
(the principal type); with datasorts, the “best” interface is—as with a module
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interface, which may reveal different aspects of the module—the one the program-
mer thinks best. Maybe the programmer only cares that the function preserves
odd parity, and annotates it with odd → odd; the compiler will reject calls with
even bitstrings, even though such a call would be conventionally well-typed.

To infer sorts, as in the original work of Freeman, is like assuming that
all declarations in a module should be exposed. (Tools that suggest possible
invariants could be useful, just as a tool that suggests possible module interfaces
could be useful. But such tools are not the focus of this paper.)

3 A Type System with Extensible Refinements

This section gives our language’s syntax, introduces signatures, discusses the
introduction and elimination forms for datasorts, and presents the typing rules.
The details of typing pattern matching are in Sect. 4.

Fig. 2. Expressions

3.1 Syntax

The syntax of expressions (Fig. 2) includes functions λx. e, function application
e1 e2, pairs (e1, e2), constructors c(e), and case expressions. Signatures are
extended by declare Σ in e.

Fig. 3. Types and contexts

Types (Fig. 3), written A and B, include unit (1), function, and product
types, along with datasorts s and t. The intersection type A ∧ B represents the
conjunction of the two properties denoted by A and B; for example, a function to
repeat a bitstring could be checked against type (odd → even) ∧ (even → even):
given any bitstring b, the repetition bb has even parity.
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3.2 Unrefined Types and Signatures

Our unrefined types τ, in Fig. 4, are very simple: unit 1, functions τ1 → τ2,
products τ1 ∗ τ2, and datatypes d. We assume that each datatype has a known
set of constructors: for example, the bitstring type of Sect. 1 has constructors
Empty, One and Zero. Refinements don’t add constructors; they only refine the
types of the given constructors. We assume that each program has some unrefined
signature U that gives datatype names (d) and (unrefined) constructor typings
(c : τ → d). Since this signature is the same throughout a program, we elide it
in most judgment forms.

The judgment Σ � A � τ says that A is a refinement of τ. Both the symbol �

and several of the rules are reminiscent of subtyping, but that is misleading: sorts
and types are not in an inclusion relation in the sense of subtyping, because the
rule for → is covariant, not contravariant. Covariance is needed for functions
whose domains are nontrivially refined, e.g. odd → · · · , which is not a subtype
of bits → · · · because bits �≤ odd.

Rule �∧ implements the usual refinement restriction: both parts of an inter-
section A1 ∧ A2 must refine the same unrefined type τ.

3.3 Signatures

Refinements are defined by signatures Σ (Fig. 4).

Fig. 4. Unrefined types and signatures, refined signatures, �
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Fig. 5. Type well-formedness

As in past datasort systems, we separate signatures Σ from typing contexts
Γ . Typing assumptions over term variables (x, y, etc.) in Γ can mention sorts
declared in Σ, but the signature Σ cannot mention the term variables declared
in Γ . Thus, our judgment for term typing will have the form Σ; Γ � e : A, where
the term e can include constructors declared in Σ and variables declared in Γ ,
and the type A can include sorts declared in Σ. Some judgments, like subsorting
Σ � s � t and subtyping Σ � A ≤ B, are independent of variable typing and
don’t include Γ at all.

Traditional formulations of refinements assume the signature is given once
at the beginning of the program. Since the same signature is used throughout a
given typing derivation, the signature can be omitted from the typing judgments.
In this paper, our goal is to support extensible refinements, where the signature
can evolve within a typing derivation; in this respect, the signature is analogous
to an ordinary typing context Γ , which is extended in subderivations that type
λ-expressions and other binding forms. So the signature must be explicit in our
judgment forms (Fig. 5).

Constructor types C are types of the form A → s. In past formulations of
datasorts, constructor types in the signature use intersection to represent multi-
ple behaviours. For example, a “one” constructor for bitstrings, which represents
appending a 1 bit, takes odd-parity bitstrings to even-parity and vice versa; its
type in the signature is the intersection type (odd → even) ∧ (even → odd).
Such a formulation ensures that the signature has a standard property of (typ-
ing) contexts: each data constructor is declared only once; additional behaviours
are conjoined (intersected) within a single declaration c : C1 ∧ C2 ∧ · · · . In our
setting, we must be careful about not only which types a constructor has, but
when those types were declared. The reasons are explained below; for now, just
note that we will write something like c : C1, . . . , c : C2 rather than c : C1 ∧ C2.
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Structure of Signatures. A signature Σ is a sequence of blocks S〈K〉 of declara-
tions, where refinements declared in outer scopes in the program appear to the
left of those declared in inner scopes.

Writing (s�d)〈K〉 declares s to be a sort refining some (unrefined) datatype
d; however, we usually elide the datatype and write just s〈K〉. The declarations
K, called the block of s, define the values (constructors) of s, and the subsortings
for s. Declarations outside this block may declare new subsorts and supersorts
of s only if doing so would not affect s—for example, adding inhabitants to
s via a constructor declaration, or declaring a new subsorting between s and
previously declared sorts, would affect s and will be forbidden (via signature
well-formedness). The grammar generalizes this construct to multiple sorts, e.g.
(s1�d1, s2�d2)〈K〉, abbreviated as (s1, s2)〈K〉.

Writing s1 �s2 says that s1 is a subsort of s2, and c : C says that constructor
c has type C, where C has the form A → s. A constructor c can be given more
than one type: Σ = (s, s1, s2)〈s1 � s, s2 � s, c : s1→s2, c : s2→s1〉.

Adding inhabitants to a sort is only allowed within its block. Thus, the
following signature is ill-formed, because c ′ : 1→s adds the value c ′() to s,
but c ′ : 1→s is not within s’s block: s〈c : s→s〉, t〈c ′ : 1→s〉. New sorts can be
declared as subsorts and supersorts of each other, and of previously declared
sorts: s〈c1 : 1→s, c2 : 1→s〉, t〈t � s, c2 : 1→t〉.

However, a block cannot modify the subsorting relation between earlier sorts;
“backpatching” s1 �s2 into the first block, through a new intermediate sort t, is
not permitted: The signature Σ∗ = (s1, s2)〈c : 1→s1, c : 1→s2〉, t〈s1 � t, t � s2〉
is not permitted even though it looks safe: sorts s1 and s2 have the same set of
inhabitants—the singleton set {c()}—so the values of s1 are a subset of the values
of s2. But this fact was not declared in the first block, which is the definition
of s1 and s2. We assume the declaration of the first block completely reflects
the programmer’s intent: if they had wanted structural subsorting, rather than
nominal subsorting, they should have declared s1�s2 in the first block. Allowing
backpatching would not violate soundness, but would reduce the power of the
type system: nominal subsorting would no longer be supported, since it could
be made structural after the fact.

Ordering. A block S〈K〉 can refer to the sorts S being defined and to sorts
declared to the left. In contrast to block ordering, the order of declarations
inside a block doesn’t matter.

3.4 Introduction Form

From a type-theoretic perspective, the first questions about a type are: (1) How
are the type’s inhabitants created? That is, what are the type’s introduction
rules? (2) How are its inhabitants used? That is, what are its elimination rules?
(Gentzen (1934) would ask the questions in this order; the reverse order has
been considered by Dummett, among others (Zeilberger 2009).) In our setting,
we must also ask: What happens with the introduction and elimination forms
when new refinements are introduced?
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In the introduction rule—DataI in Fig. 6—the signature Σ is separated from
the ordinary context Γ (which contains typing assumptions of the form x : A).
The typing of c is delegated to its first premise, Σ � c : A → s, so we need a
way to derive this judgment. At the top of Fig. 6, we define a single rule ConArr,
which looks up the constructor in the signature and weakens the result type
(codomain), expressing a subsumption principle. (Since we’ll have subsumption
as a typing rule, including it here is an unforced choice; its presence is meant to
make the metatheory of constructor typing go more smoothly.)

In a system of extensible refinements, adding refinements to a signature
should preserve typing. That is, if Σ; Γ � e : B, then Σ,Σ ′; Γ � e : B. This is a
weakening property: we can derive, from the judgment that e has type B under Σ,
the logically weaker judgment that e has type B under more assumptions Σ,Σ ′.
(The signature becomes longer, therefore stronger; but a turnstile is a kind of
implication with the signature as antecedent, so the judgment becomes weaker,
hence “weakening”.) So for the introduction form, we need that if Σ � c : A → s,
then Σ,Σ ′ � c : A → s. Under our formulation of the signature, this holds: If
c : A → s, then there exists (c : A → s ′) ∈ Σ such that s ′ � s. Therefore,
there exists (c : A → s ′) ∈ (Σ,Σ ′). Likewise, since Σ � s ′ � s, we also have
Σ,Σ ′ � s ′ � s. One cannot use Σ ′ to withdraw a commitment made in Σ.2

3.5 Elimination Form: Case Expressions

Exhaustiveness checking for case expressions assumes complete knowledge about
the inhabitants of types. Thus, we must avoid extending a signature in a
way that adds inhabitants to previously declared sorts. Consider the case
expression case x : empty of Nil() ⇒ () which is exhaustive for the signature
Σ = (list, empty)〈empty � list, Nil : 1→empty, Cons : list→list〉 but not for

(Σ,Σ ′) = (list, empty)〈empty � list, Nil : 1→empty, Cons : list→list〉,
〈Cons : list→empty〉

Suppose we type-check the case expression under Σ, but then extend Σ to (Σ,Σ ′).
Evaluating the above case expression with x = Cons(Nil()) will “fall off the end”.
The inversion principle that “every empty has the form Nil()” is valid under Σ,
but with the additional type for Cons in Σ ′, that inversion principle becomes
invalid under (Σ,Σ ′). Our system will reject the latter signature as ill-formed.

In the following, “up” and “down” are used in the usual sense: a subsort is
below its supersort. In Σ ′, the second constructor type for Cons had a smaller
codomain than the first: the second type had empty, instead of list. Varying the
codomain downward can be sound when the lower codomain is newly defined:
2 Under the traditional formulation where each constructor has just one type in a

signature, the relationship between the old signature Σ and the new signature would
be slightly more complicated: the old signature might contain c : C1 , and the new
signature c : C1 ∧ C2 , and we would need to explicitly eliminate the intersection to
expose the old type C1 . In our formulation, the new signature appends additional
typings for c while keeping the typing c : C1 intact.
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Σ,Σ ′′ = Σ, subempty〈subempty � empty, Nil : 1→subempty〉. Here, the inversion
principle that every empty is Nil is still valid (along with the new inversion
principle that every subempty is Nil). We only added information about a new
sort subempty, without changing the definition of list and empty.

Moving the Domain Down. Giving a new type whose domain is smaller, but
that has the same codomain, is sound but pointless. For example, extending Σ

with Cons : empty→list, which is the same as the type Σ has for Cons except that
the domain is empty instead of list, is sound. The inversion principle for values
v of type list in Σ alone is “either (1) v has the form Nil(), or (2) v has the form
Cons(y) where y has type list”. Reading off the new inversion principle for list
from Σ,Cons : empty→list, we get “either (1) v has the form Nil(), or (2) v has
the form Cons(y) where y has type list, or (3) v has the form Cons(y) where
y has type empty”. Since empty is a subsort of list, part (3) implies part (2),
and any case arm that checks under the assumption that y : list must also check
under the assumption that y : empty. Here, the new signature is equivalent to Σ

alone; the “new” type for Cons is spurious.

Moving the Codomain Up. Symmetrically, giving a new type whose codomain
gets larger is sound but pointless. For example, adding Nil : 1→list to Σ has
no effect, because (in the introduction form) we could use the old type Nil :
1→ empty with subsumption (empty � list).

Moving the Domain Up. Making the domain of a constructor larger is unsound
in general. To show this, we need a different starting signature Σ2.

Σ2 = (list, empty, nonempty)〈empty � list, nonempty � list,
Nil : 1→empty,Cons : empty→nonempty〉

This isn’t a very useful signature—it doesn’t allow construction of any list
with more than one element—but it is illustrative. We can read off from Σ2

the following inversion principle for values v of sort nonempty: “v has the form
Cons(y) where y has type empty”. If x : nonempty then Case x of Cons (Nil()) ⇒

() is exhaustive under Σ2. Now, extend Σ2: Σ2, Σ ′
2 = Σ2, 〈Cons : list→nonempty〉.

For the signature Σ2, Σ ′
2, the inversion principle for nonempty should be “(1) v

has the form Cons(y) where y has type empty, or (2) v has the form Cons(y)
where y has type list”. But there are more values of type list than of type empty.
The new inversion principle gives less precise information about the argument
y, meaning that the old inversion principle gives more precise information than
(Σ2, Σ ′

2) allows. Concretely, the case expression above was exhaustive under Σ2,
but is not exhaustive under (Σ2, Σ ′

2) because Cons(Cons(Nil())) has type list.
The above examples show that signature extension can be sound but useless,

unsound, or sound and useful (when the domain and codomain, or just the
codomain, are moved down). Ruling out unsoundness will be the main purpose
of our type system, where unsoundness includes raising a “match” exception due
to a nonexhaustive case. The critical requirement is that each block must not
affect previously declared sorts by adding constructors to them, or by adding
subsortings between them.
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3.6 Typing

Figure 6 gives rules deriving the main typing judgment Σ; Γ � e : A. The variable
rule Var, the introduction (→ I) and elimination (→ E) rules for →, and the
introduction rules for the unit type (1I) and products (∗I) are standard. Products
can be eliminated via case e of (x1, x2) ⇒ · · ·, so they need no elimination rule.

Subsumption. A subsumption rule Sub incorporates subtyping, based on the
subsort relation �; see Sect. 3.7. Several of the subtyping rules express the same
properties as elimination rules would; for example, anything of type A1 ∧ A2

has type A1 and also type A2. Consequently, we can omit these elimination rules
without losing expressive power.

Fig. 6. Typing rules for constructors and expressions

Intersection. The introduction rule ∧ I corresponds to a binary version of the
introduction rule for parametric polymorphism in System F. The restriction
to a value v avoids unsoundness in the presence of mutable references (Davies
and Pfenning 2000), similar to SML’s value restriction for parametric polymor-
phism (Wright 1995). We omit the elimination rules, which are admissible using
Sub and subtyping (Sect. 3.7).
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Σ; Γ � e : A1 ∧ A2

Σ; Γ � e : A1

Σ; Γ � e : A1 ∧ A2

Σ; Γ � e : A2

Datasorts. Rule DataI introduces a datasort, according to a constructor type
found in Σ (via the Σ � c : C judgment). Rule DataE examines an expression
e of type A and checks matches ms under the assumption that the expression
matches the wildcard pattern ; see Sect. 4.

Re-refinement. Rule Declare allows sorts to be declared. Its premises check that
(1) the signature Σ ′ is a valid extension of Σ (see Sect. 3.8); (2) the type B of the
expression is well-formed without the extension Σ ′, which prevents sorts declared
in Σ ′ from escaping their scope; (3) that the expression e is well-typed under
the extended signature (Σ,Σ ′).

Fig. 7. Subtyping

3.7 Subtyping

Our subtyping judgment Σ � A ≤ B says that all values of type A also have type
B. The rules follow the style of Dunfield and Pfenning (2003); in particular, the
rules are orthogonal (each rule mentions only one kind of connective) and tran-
sitivity is admissible. Instead of an explicit transitivity rule, we bake transitivity
into each rule; for example, rule ≤∧ L1 has a premise A1 ≤ B and conclusion
(A1 ∧ A2) ≤ B, rather than just (A1 ∧ A2) ≤ A1 (with no premises). This
makes the rules easier to implement: to decide whether A ≤ C, we never have
to guess a middle type B such that A ≤ B and B ≤ C (Fig. 7).

3.8 Signature Well-Formedness

A signature is well-formed if standard conditions (e.g. no duplicate declarations
of sorts) and conservation conditions hold. Reading Fig. 8 from bottom to top,
we start with well-formedness of signatures Σ sig. For each block S〈K〉, rule
SigBlock checks that the sorts S are not duplicates (S ∩ dom(Σ) = ∅), and then
checks that (1) subsorting is conserved by K and (2) each element in K is safe.
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Fig. 8. Signature well-formedness and subsorting

(1) Subsorting Preservation. The subsortings declared in K must not affect the
subsort relation between sorts previously declared in Σ. The left-to-right direc-
tion of this “iff” always holds by weakening: adding to a signature cannot delete
edges in the subsort relation. The right-to-left direction is contingent on the
contents of K; see signature Σ∗ in Sect. 3.3. This premise could also be written as
(Σ � �|dom(Σ)) = (Σ, S〈K〉 � �|dom(Σ)), where �|dom(Σ) is the � relation restricted
to sorts in dom(Σ).

(2a) Subsort Elements. Rule BlockSubsort checks that the subsorts are in scope.

(2b) Constructor Element Safety. Rule BlockCon’s first premise checks that s ∈
S. (Certain declarations with s /∈ S would be safe, but useless.) Its second premise
checks that the constructor type A → s is well-formed. Finally, for all sorts t that
were (1) previously declared (in dom(Σ)) and (2) supersorts of the constructor’s
codomain (s � t), the rule checks that the constructor is “safe at t”.

The judgment Σ;S〈K〉 � c : A → s safe at t says that adding the constructor
typing c : A → s does not invalidate Σ’s inversion principle for t. Rule SafeConAt
checks that signature Σ already has a constructor typing c : A ′

→ s ′, where s ′�t,
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such that A ≤ A ′. Thus, any value c(v) typed using c : A → s can already be
typed using c : A ′ � s ′, which is a subsort of t, so the new constructor typing
c : A → s does not add inhabitants to t.

This check is not analogous to function subtyping, because we need covari-
ance (A ≤ A ′), not contravariance. The relation � (Fig. 4) is a closer analogy.

More subtly, SafeConAt also checks that s�s ′. Suppose we have the signature
Σ = (t, s1, s2)〈s1 � t, s2 � t, c1 : s1, c2 : s2〉 and extend it with s〈s � t, c1 : s〉.
(To focus on the issue at hand, we assume c1 and c2 take no arguments.) For
the original signature Σ, the inversion principle for t is: If a value v has type t,
then either v = c1 and v has type s1, or v = c2 and v has type s2. However,
under the extended signature, there is a new possibility: v has type s. Merely
being inhabited by c1 is not sufficient to allow s to be a subsort of t.

If, instead, we start with Σ ′ = (t, s1, s2)〈c1 : t, s1 � t, s2 � t, c1 : s1, c2 : s2〉
then the inversion principle for t under Σ ′ is that v has type s1, type s2, or type
t. Therefore, any case arm whose pattern is x as c1 must be checked assuming
x : t. If an expression can be typed assuming x : t, then it can be typed assuming
x : t ′ for any t ′ � t, so the inversion principle (again, under Σ ′ before extension)
is equivalent to “v has type t”. Extending Σ ′ with s〈s � t, c1 : s〉 would extend
the inversion principle to say “if v : t then v has type t, or v has type s”, but
since s � t the extended inversion principle is equivalent to that for t under Σ ′.

The s � s ′ premise of SafeConAt is needed to prove the constructor lemma
(Lemma 12), which says that a constructor typing in an extended signature must
be below a constructor typing in the original signature.

4 Typing Pattern Matching

Pattern matching is how a program gives different answers on different inputs. A
key motivation for datasort refinements is to exclude impossible patterns, so that
programmers can avoid having to choose between writing impossible case arms
(that raise an “impossible” exception) and ignoring nonexhaustiveness warnings.
The pattern typing rules must model the relationship between datasorts and the
operational semantics of pattern matching. It’s no surprise, then, that in datasort
refinement systems, case expressions lead to the most interesting typing rules.

The relationship between types and patterns is more involved than with, say,
Damas–Milner plus inductive datatypes: with (unrefined) inductive datatypes,
all the information needed to check for exhaustiveness (also called coverage) is
immediately available as soon as the type of the scrutinee is known. Moreover,
types for pattern variables can be “read off” by traversing the pattern top-down,
tracking the definition of the scrutinee’s inductive datatype. But with datasorts,
a set of patterns that looks nonexhaustive at first glance—looking only at the
head constructors—may in fact be exhaustive, thanks to the inner patterns.

Giving types to pattern variables is also tricky, because sufficiently precise
types may be evident only after examining the whole pattern. For example, when
matching x : bits against the pattern y as One(Empty), we shouldn’t settle on
y : bits because the scrutinee x has type bits; we should descend into the pattern
and observe that Empty : even and One : (even → odd), so y must have type odd.
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Restricting the form of case expressions to a single layer of clearly disjoint
patterns c1(x1) || . . . || cn(xn) would simplify the rules, at the cost of a big gap
between theory and practice: Since real implementations need to support nested
patterns, the theory fails to model the real complexities of exhaustiveness check-
ing and pattern variable typing. Giving code examples becomes fraught; either
we flatten case expressions (resulting in code explosion), or we handwave a lot.

Another option is to support the full syntax of case expressions, except for
as-patterns, so that pattern variables occur only at the leaves. If subsorting were
always structural, as in Davies’s system, we could exploit a handy equivalence
between patterns and values: if the pattern is x as c(p0), let-bind x to c(p0)
inside the case arm, letting rule DataI figure out the type of x. But with nominal
subsorting, constructing a value is not equivalent; see Davies (2005, pp. 234–235)
and Dunfield (2007b, pp. 112–113).

Our approach is to support the full syntax, including as-patterns. This app-
roach was taken by Dunfield (2007b, Chap. 4), but our system seems simpler—
partly because (except for signature extension) our type system omits indexed
types and union types, but also because we avoid embedding typing derivations
inside derivations of pattern typing.

Instead, we confine most of the complexity to a single mechanism: a function
called intersect, which returns a set of types (and contexts that type as-variables)
that represent the intersection between a type and a pattern. The definition of
this function is not trivial, but does not refer to expression-level typing.

4.1 Unrefined Pattern Typing, Match Typing, and Pattern
Operations

Figure 9 defines a judgment U � p : τ that says that pattern p matches values of
unrefined type τ under the unrefined signature U .

Rule DataE for case expressions (Fig. 6) invokes a match typing judgment,
Σ; Γ ;p : A � ms : D. In this judgment, p is a residual pattern that represents the
space of possible values. For the first arm in a case expression, no patterns have
yet failed to match, so the residual pattern in the premise of DataE is .

Each arm, of the form p1 ⇒ e1, is checked by rule TypeMs (Fig. 10). The
leftmost premises check that the type A corresponds to the pattern type τ. The
middle “for all” checks e1 under various assumptions produced by the intersect

Fig. 9. Pattern type rules
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Fig. 10. Match typing

function (Sect. 4.2) with respect to the pattern p ∩ p1, ensuring that if p1

matches the value at run time, the arm is well-typed. The last premise moves
on to the remaining matches; there, we know that the value did not match p1,
so we subtract p1 from the previous residual pattern p—expressed as p ∩ ¬p1.
These operations are defined in the appendix (Fig. 13).

When typing reaches the end of the matches, ms = ∅ in rule TypeMsEmpty,
we check that the case expression is exhaustive by checking that intersect returns
∅. For case expressions that are syntactically exhaustive, such as a case expression
over lists that has both Nil and Cons arms, the residual pattern p will be the
empty pattern ∅; the intersect function on an empty pattern returns ∅.

We define pattern complement ¬p and pattern intersection p1 ∩ p2 in the
appendix (Fig. 13). For example, ¬ = ∅. No types appear in these definitions,
but the complement of a constructor pattern c(p0) uses the (implicit) unrefined
signature U . Our definition of pattern complement never generates as-patterns,
so we need not define intersection for as-patterns.

Fig. 11. Intersection of a type with a pattern
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4.2 The intersect function

We define a function intersect that builds the “intersection” of a type and a
pattern. Given a signature Σ, type A and pattern p, the intersect function returns
a (possibly empty) set of tracks {(Γ ′

1 � B1), . . . , (Γ
′
n � Bn)}. Each track (Γ ′ � B) has

a list of typings Γ ′ (giving the types of as-variables) and a type B that represents
the subset of values inhabiting A that also match p. The union of B1 through Bn

constitutes the intersection of A and p. We call these “tracks” because each one
represents a possible shape of the values that match p, and the type-checking
“train” must check a given case arm under each track’s Γ ′.

Many of the clauses in the definition of intersect (see Fig. 10) are straight-
forward. The intersection of A with the wildcard is just {(· � A)}. Dually, the
intersection of A with the empty pattern ∅ is the empty set. In the same vein,
the intersection of A with the or-pattern p1 �p2 is the union of two intersections
(A with p1, and A with p2). The intersection of a product A1 ∗ A2 with a pair
pattern is the union of products of the pointwise intersections.

The most interesting case is when we intersect a sort s with a pattern of the
form c(p0). For this case, intersect iterates through all the constructor declara-
tions in Σ that could have been used to create the given value: those of the form
(c : Ac → sc) where sc � s. For each such declaration, it calls intersect on Ac

and p0. For each resulting track (Γ ′ � B), it returns a track (Γ ′ � sc).

Optimization. In practice, it may be necessary to optimize the result of intersect.
If Σ = (list, empty)〈empty� list,Nil : 1→empty,Cons : empty→list,Cons : list→list〉
then intersect(Σ � Cons(xas ); list) returns

{

(x : empty� list), (x : list� list)
}

.
Since any case arm that checks under x : list will check under x : empty, there is
no point in trying to check under x : empty. Instead, we should check only under
x : list. A similar optimization in the Stardust type checker could reduce the size
of the set of tracks by “about an order of magnitude” Dunfield (2007b, p.112).

Missing Clauses? As is standard in typed languages, pattern matching doesn’t
look inside λ, so intersect needs no clause for →/λ. If we can’t match on an arrow
type, we don’t need to match on intersections of arrows. The other useful case of
intersection is on sorts, s1 ∧ s2. However, an intersection of sorts can be obtained
by declaring a new sort below s1 and s2 with the appropriate constructor typings,
so we omit such a clause from the definition.

Comparison to an Earlier System. A declarative system of rules in Dunfield
(2007b, Chap. 4) appears to be a conservative extension of intersect: the earlier
system supports a richer type system, but for the features in common, the infor-
mation produced is similar to that of intersect. The earlier system was based on
a judgment Σ � p ⇐ A � (e ⇐ D). To clarify the connection to the present
system, we adjust notation; for example, we make Σ explicit.

The meta-variables Σ, p, and A directly correspond to the arguments to
intersect, while e and D correspond to e1 and D in our rule TypeMs. No meta-
variables correspond directly to the tracks in the result of intersect, but within
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Σ � p ⇐ A � (e ⇐ B), we find subderivations of B + Γ � forgettype � e ⇐

D, where the set of pairs 〈Γ, B〉 indeed correspond to the result of intersect.
Cutting through the differences in the formalism, and omitting rules for

unions and other features not present in this paper, the earlier system behaves
like intersect. For example, (p1, p2) was also handled by considering each com-
ponent, and assembling all resulting combinations. Perhaps most importantly,
c(p0) was also handled by considering each constructor type in the signature,
filtering out inappropriate codomains, and recursing on p0. A rule for ∧ appears
in the declarative system in Dunfield (2007b, Chap. 4), but the rule was never
implemented, and seems not to be needed in practice.

Since the information given by the older system is precise enough to check
interesting invariants of actual programs, our definition of intersect should also
be precise enough.

5 Operational Semantics

We prove our results with respect to a call-by-value, small-step operational
semantics. The main judgment form is e 
→ e ′, which uses evaluation contexts ε.
Stepping case expressions is modelled using a judgment ms 
→v e ′, which com-
pares each pattern in ms against the value v being cased upon. This comparison
is handled by the judgment p match v−→ θ, which says that θ is evidence that
p matches v (that is, [θ]p = v). The rules are in Fig. 14 in the appendix.

6 Metatheory

This section gives definitions, states some lemmas and theorems, and discusses
their significance in proving our main results. For space reasons, we summarize
a number of lemmas; their full statements appear in the appendix. All proofs
are also relegated to the appendix.

Subtyping and Subsorting. Subtyping is reflexive and transitive (Lemmas (Lem-
mas 6–7). We define what it means for signature extension to preserve subsorting:

Definition 1 (Preserving subsorting). Given Σ1 and Σ2, we say that Σ2 pre-
serves subsorting of Σ1 iff for all sorts s, t ∈ dom(Σ1), if Σ1, Σ2 � s � t then
Σ1 � s � t.

This definition allows new sorts in dom(Σ2) to be subsorts or supersorts of
the old sorts in dom(Σ1), provided that the subsort relation between the old
sorts doesn’t change.

If two signatures do not have subsortings that cross into each other’s domain,
they are non-adjacent ; non-adjacent signatures preserve subsorting.

Definition 2 (Non-adjacency). Two signatures Σ1 and Σ2 are non-adjacent
iff each signature contains no subsortings of the form s1 � s2 or s2 � s1, where
s1 ∈ dom(Σ1) and s2 ∈ dom(Σ2).
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Theorem 1 (Non-adjacent preservation).
If Σ2 preserves subsorting of Σ1 and Σ3 preserves subsorting of Σ1

and Σ2 and Σ3 are non-adjacent then Σ3 preserves subsorting of (Σ1, Σ2).

Strengthening, Weakening, and Substitution. Theorem 4 (Weakening) will allow
the assumptions in a judgment to be changed in two ways: (1) the signature may
be strengthened by replacing a signature (Σ,Σ ′) with a signature (Σ,Ω,Σ ′); and
(2) the context may be strengthened by replacing Γ with a context Γ+ in which
any typing assumption (x : A) ∈ Γ can be replaced with (x : A+) ∈ Γ , if A ≤ A+.

Repeatedly applying (1) with different Ω leads to a more general notion of
strengthening a signature:

Definition 3. A signature Σ ′ is stronger than Σ, written Σ ′ ≤sig Σ, if Σ ′ can
be obtained from Σ by inserting entire signatures at any position in Σ.

We often use the less general notion (inserting a single Ω), which simplifies
proofs. For any result stated less generally, however, the more general strength-
ening of Definition 3 can be shown by induction on the number of blocks inserted.

Definition 4. Under Σ, a context Γ ′ is stronger than Γ , written Σ � Γ ′ ≤ctx Γ ,
if for each (x : A ′) ∈ Γ ′, there exists (x : A) ∈ Γ such that Σ � A ′ ≤ A.

Several lemmas show weakening. Lemma 8 says that Σ in Σ � J can be
replaced by a stronger Σ ′, where J has the form A type or s1 � s2 or A ≤ B or
c : A → s or A � τ or c : C. Lemma 9 says that (Σ,Ω,Σ ′) can replace (Σ,Σ ′)
in Σ,Σ ′;S〈K〉 � c : A → s safe at t.Lemma 10 allows the sort t ′ in the judgment
Σ;S〈K〉 � c : A → s safe at t ′ to be replaced by a supersort t.

Using the above lemmas and Theorem 1, we can show that the key judgment
“· · · c : A→s safe” can be weakened by inserting Ω inside the signature:

Theorem 2 (Weakening ‘safe’).
If (Σ,Σ ′) sig and (Σ,Ω) sig and dom(Σ ′)∩dom(Ω) = ∅ and dom(Σ,Ω,Σ ′)∩S = ∅
and K does not mention anything in dom(Ω) and S〈K〉 preserves subsorting for
(Σ,Σ ′) and (c : A → s) ∈ K and Σ,Σ ′;S〈K〉 � c : A → s safe then Σ,Ω,Σ ′;S〈K〉 �
c : A → s safe.

With this additional lemma, we have weakening for the judgments involved
in checking that a signature is well-formed, so we can show that if Σ is safely
extended by Σ ′ and separately by Ω, then Ω and Σ ′, together, safely extend Σ.

Theorem 3 (Signature Interleaving).
If (Σ,Σ ′) sig and (Σ,Ω) sig and dom(Σ ′) ∩ dom(Ω) = ∅ then (Σ,Ω,Σ ′) sig.

Ultimately, we will show type preservation; in the preservation case for the
Declare rule, we extend the signature in a premise. We therefore need to show
that the typing judgment can be weakened. Since the typing rules for matches
involve the intersect function, we need to show that a stronger input to intersect
yields a stronger output; that is, a longer (stronger) signature yields a stronger
type B+ (a subtype of B) and a stronger context Γ+ typing as-variables.
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Definition 5. Under a signature Σ, a track (Γ+ � B+) is stronger than (Γ � B),
written Σ � (Γ+ � B+) ≤trk (Γ � B), if and only if Σ � Γ+ ≤ctx Γ and Σ � B+ ≤ B.

A set of tracks
→

B∗
+

is stronger than
→

B∗, written
→

B∗
+

≤trk

→

B∗, if and only

if, for each track (Γ+ � B+) ∈
→

B∗
+

, there exists a track (Γ � B) ∈
→

B∗ such that

(Γ+ � B+) ≤trk (Γ � B) ∈
→

B∗.

Lemma 13 says that the result of intersect on a stronger signature is
stronger. We can then show that weakening holds for the typing judgment itself,
along with substitution typing (defined in the appendix) and match typing.

Theorem 4 (Weakening).
If (Σ,Σ ′) sig, (Σ,Ω) sig, dom(Σ ′) ∩ dom(Ω) = ∅ and Σ,Ω,Σ ′ � Γ+ ≤ctx Γ then

(1) If Σ,Σ ′; Γ � e : A then Σ,Ω,Σ ′; Γ+ � e : A.
(2) If Σ,Σ ′; Γ � θ : Γ ′ then Σ,Ω,Σ ′; Γ+ � θ : Γ ′.
(3) If Σ,Σ ′; Γ ;p : A � ms : D then Σ,Ω,Σ ′; Γ+;p : A � ms : D.

Properties of Values. Substitution properties (Lemmas 14 and 15) and inversion
(or canonical forms) properties (Lemma 16) hold.

Type Preservation and Progress. The last important piece needed for type preser-
vation is that intersect does what it says: if a value v matches p, then v has type
B where B is one of the outputs of intersect.

Theorem 5 (Intersect). If Σ sig and Σ; · � v : A and Σ � A type and

p match v−→ θ and intersect(Σ � A; p) =
→

B∗ then there exists (Γ ′ � B) ∈
→

B∗

s.t. Σ; · � v : B and Σ; · � θ : Γ ′ where Σ � B type and Σ � B ≤ A.

The preservation result allows for a longer signature, to model entering the
scope of a declare expression or the arms of a match. We implicitly assume that,
in the given typing derivation, all types are well-formed under the local signature:
for any subderivation of Σ; Γ � e ′ : B, it is the case that Σ � B type.

Theorem 6 (Preservation).
If Σ sig and Σ; · � e : A and e 
→ e ′ then there exists Σ ′ such that Σ,Σ ′ � e ′ : A
where (Σ,Σ ′) sig.

Theorem 7 (Progress). If Σ sig and Σ; · � e : A then e is a value or there
exists e ′ such that e 
→ e ′.

7 Bidirectional Typing

The type assignment system in Fig. 6 is not syntax-directed, because the rules
Sub and ∧I apply to any shape of expression. Nor is the system directed by the
syntax of types: rule Sub can conclude e : B for any type B that is a supertype
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of some other type A. Finally, while the choice to apply rule DataI is guided
by the shape of the expression—it must be a constructor application c(e)—the
resulting sort is not uniquely determined, since the signature can have multiple
constructor typings for c.

Fortunately, obtaining an algorithmic system is straightforward, following
previous work with datasort refinements and intersection types. We follow
the bidirectional typing recipe of Davies and Pfenning (2000); Davies (2005);
Dunfield and Pfenning (2004):

1. Split the typing judgment into checking Σ; Γ � e ⇐ A and synthesis Σ; Γ �
e ⇒ A judgments. In the checking judgment, the type A is input (it might be
given via type annotation); in the synthesis judgment, the type A is output.

2. Allow change of direction: Change the subsumption rule to synthesize a type,
then check if it is a subtype of a type being checked against; add an annotation
rule that checks e against A in the annotated expression (e : A).

3. In each introduction rule, e.g. →I, make the conclusion a checking judgment;
in each elimination rule, e.g. DataE, make the premise that contains the elim-
inated connective a synthesis judgment.

4. Make the other judgments in the rules either checking or synthesizing, accord-
ing to what information is available. For example, the premise of →I becomes
a checking judgment, because we know B from the conclusion.

5. Since the subsumption rule cannot synthesize, add rules such as Syn∧E1,
which were admissible in the type assignment system.

This yields the rules in Fig. 12. (Rules for the match typing judgment Σ; Γ ;p :
A � ms ⇐ B can be obtained from Fig. 10 by replacing “:” in “e1 : D” and

Fig. 12. Bidirectional typing rules



498 J. Dunfield

“ms : D” with “⇐”.) While this system is much more algorithmic than Fig. 6,
the presence of intersection types requires backtracking: if we apply a function
of type (even → odd) ∧ (odd → even), we need to synthesize even → odd first; if
we subsequently fail (e.g. if the argument has type odd), we backtrack and try
odd → even. Similarly, if the signature contains several typings for a constructor
c, we may need to try rule ChkDataI with each typing.

Type-checking for this system is almost certainly PSPACE-complete
(Reynolds 1996); however, the experience of Davies (2005) shows that a sim-
ilar system, differing primarily in whether the signature can be extended, is
practical if certain techniques, chiefly memoization, are used.

Using these rules, annotations are required exactly on (1) the entire program
e (if e is a checked form, such as a λ) and (2) expressions not in normal form,
such as a λ immediately applied to an argument, a recursive function declaration,
or a let-binding (assuming the rule for let synthesizes a type for the bound
expression). Rules with “more synthesis”—such as a synthesizing version of ∗I—
could be added along the lines of previous bidirectional type systems (Xi 1998;
Dunfield and Krishnaswami 2013).

Following Davies (2005), an annotation can list several types A. Rule SynAnno
chooses one of these, backtracking if necessary. Multiple types may be needed
if a λ-term is checked against intersection type: when checking (λx. x) against
(even → even) ∧ (odd → odd), the type of x will be even inside the left sub-
derivation of Chk∧I, but odd inside the right subderivation. Thus, if we annotate
x with even, the check against odd → odd fails; if we annotate x with odd, the
check against even → even fails. For a less contrived example, and for a variant
annotation form that reduces backtracking, see Dunfield and Pfenning (2004).

In the appendix, we prove that our bidirectional system is sound and complete
with respect to our type assignment system:

Theorem 8 (Bidirectional soundness).
If Γ � e ⇐ A or Γ � e ⇒ A then Γ � |e| : A where |e| is e with all annotations
erased.

Theorem 9 (Annotatability).
If Γ � e : A then:

(1) There exists e⇐ such that |e⇐ | = e and Γ � e⇐ ⇐ A.
(2) There exists e⇒ such that |e⇒ | = e and Γ � e⇒ ⇒ A.

We also prove that the ⇒ and ⇐ judgments are decidable (Appendix, The-
orem 10).

8 Related Work

Datasort Refinements. Freeman and Pfenning (1991) introduced datasort refine-
ments with intersection types, defined the refinement restriction (where A ∧ B

is well-formed only if A and B are refinements of the same type), and developed
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an inference algorithm in the spirit of abstract interpretation. As discussed ear-
lier, the lack of annotations not only makes the types difficult to see, but makes
inference prone to finding long, complex types that include accidental invariants.

Davies (2005), building on the type system developed by Davies and Pfenning
(2000), used a bidirectional typing algorithm, guided by annotations on redexes.
This system supports parametric polymorphism through a front end based on
Damas–Milner inference, but—like Freeman’s system—does not support exten-
sible refinements. Davies’s CIDRE implementation (Davies 2013) goes beyond
his formalism by allowing a single type to be refined via multiple declarations,
but this has no formal basis; CIDRE appears to simply gather the multiple dec-
larations together, and check the entire program using the combined declaration,
even when this violates the expected scoping rules of SML declarations.

Datasort refinements were combined with union types and indexed types by
Dunfield and Pfenning (2003, 2004), who noticed the expressive power of nominal
subsorting, called “invaluable refinement” (Dunfield 2007b, pp. 113, 220–230).

Giving multiple refinement declarations for a single datatype was mentioned
early on, as future work: “embedded refinement type declarations” (Freeman and
Pfenning 1991, p. 275); “or even . . . declarations that have their scope limited”
(Freeman 1994, p. 167); “it does seem desirable to be able to make local datasort
declarations” (Davies 2005, p. 245). But the idea seems not to have been pursued.

Logical Frameworks. In the logical framework LF (Harper et al. 1993), data is
characterized by declaring constructors with their types. In this respect, our sys-
tem is closer to LF than to ML: LF doesn’t require all of a type’s constructors to
be declared together. By itself, LF has no need for inversion principles. However,
systems such as Twelf (Pfenning and Schürmann 1999), Delphin (Poswolsky and
Schürmann 2009) and Beluga (Pientka and Dunfield 2010) use LF as an object-
level language but also provide meta-level features. One such feature is coverage
(exhaustiveness) checking, which needs inversion principles for LF types. Thus,
these systems mark a type as frozen when its inversion principle is applied (to
process %covers in Twelf, or a case expression in Beluga); they also allow the
user to mark types as frozen. These systems lack subtyping and subsorting; once
a type is frozen, it is an error to declare a new constructor for it.

Lovas (2010) extended LF with refinements and subsorting, and developed
a constraint-based algorithm for signature checking. This work did not consider
meta-level features such as coverage checking, so it yields no immediate insights
about inversion principles or freezing. Since Lovas’s system takes the subsorting
relation directly from declarations, rather than by inferring it from a grammar, it
supports what Dunfield (2007b) called invaluable refinements; see Lovas’s exam-
ple (Lovas 2010, pp. 145–147).

Indexed Types and Refinement Types. As the second generation of datasort
refinements (exemplified by the work of Davies and Pfenning) began, so did
a related approach to lightweight type-based verification: indexed types or lim-
ited dependent types (Xi and Pfenning 1999; Xi 1998), in which datatypes are
refined by indices drawn from a (possibly infinite) constraint domain. Integers
with linear inequalities are the standard example of an index domain; another
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good example is physical units or dimensions (Dunfield 2007a). More recent work
in this vein, such as liquid types (Rondon et al. 2008), uses “refinement types”
for a mechanism close to indexed types.

Datasort refinements have always smelled like a special case of indexed types.
At the dawn of indexed types (and the second generation of datasort refine-
ments), the relationship was obscured by datasorts’ “fellow traveller”, intersec-
tion types, which were absent from the first indexed type systems, and remain
absent from the approaches now called “refinement types”. That is, while data-
sorts themselves strongly resemble a specific form of indices—albeit related by
a partial order (subtyping), rather than by equality—and would thus suggest
that indexed type systems subsume datasort refinement type systems, the inclu-
sion of intersection types confounds such a comparison. Intersection types are
present, along with both datasorts and indices, in Dunfield and Pfenning (2003)
and Dunfield (2007b); the relationship is less obscured. But no one has given an
encoding of types with datasorts into types with indices, intersections or no.

The focus of this paper is a particular kind of extensibility of datasort refine-
ments, so it is natural to ask whether indexed types and (latter-day) refine-
ment types have anything similar. Indexed types are not immediately extensible:
both Xi’s DML and Dunfield’s Stardust require that a given datatype be refined
exactly once. Thus, a particular list type may carry its length, or the value of its
largest element, or the parity of its boolean elements. By refining the type with
a tuple of indices, it may also carry combinations of these, such as its length
and its largest element. Subsequent uses of the type can leave out some of the
indices, but the combination must be stated up front.

However, some of the approaches descended from DML, such as liquid types,
allow refinement with a predicate that can mention various attributes. These
attributes are declared separately from the datatype; adding a new attribute
does not invalidate existing code. Abstract refinement types (Vazou et al. 2013)
even allow types to quantify over predicates.

Setting aside extensibility, datasort refinements can express certain invariants
more clearly and succinctly than indexed types (and their descendants).

Program Analysis. Koot and Hage (2015) formulate a type system that analyzes
where exceptions can be raised, including match exceptions raised by nonexhaus-
tive case expressions. This system appears to be less precise than datasorts, but
has advantages typical to program analysis: no type annotations are required.

9 Future Work

Modular Refinements. This paper establishes a critical mechanism for extensible
refinements, safe signature extension, in the setting of a core language without
modules: refinements are lexically scoped. To scale up to a language with mod-
ules, we need to ask: what notions of scope are appropriate? For example, a
strict λ-calculus interpreter could be refined with a sort val of values, while a
lazy interpreter could be refined with a sort whnf of terms in weak head normal
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form. If every val is a whnf, we might want to have val � whnf. In the present
system, these two refinements could be in separate declare blocks; in that case,
val and whnf could not both be in scope, and the subsorting is not well-formed.
Alternatively, one declare block could be nested inside the other. In that case,
val � whnf could be given in the nested block, since it would not add new sub-
sortings within the outer refinement. In a system with modules, we would likely
want to have val � whnf, at least for clients of both modules; such backpatching
is currently not allowed, but should be safe since the new subsorting crosses two
independent signature blocks (the block declaring val and the block declaring
whnf) without changing the subsortings within each block.

Type Polymorphism. Standard parametric polymorphism is absent in this paper,
but it should be feasible to follow the approach of Davies (2005), as long as
the unrefined datatype declarations are not themselves extensible (which would
break signature well-formedness, even without polymorphism).

Datasort Polymorphism. Extensible signatures open the door to sort-bounded
polymorphism. In our current system, a function that iterates over an abstract
syntax tree and α-renames free variables—which would conventionally have the
type exp → exp—must be duplicated, even though the resulting tree has the same
shape and the same constructors, and therefore should always produce a tree of
the same sort as the input tree (at least, if the free variables are not specified
with datasorts). We would like the function to check against a polymorphic type
∀α�exp. α → α, which works for any sort α below exp.

We would like to reason “backwards” from a pattern match over a poly-
morphic sort variable α. For example, if a value of type α matches the pattern
Plus(x1, x2), then we know that Plus : (α1 ∗ α2) → α for some sorts α1 and α2.
The recursive calls on x1 and x2 must preserve the property of being in α1 and
α2, so Plus(f x1, f x2) has type α, as needed. The mechanisms we have developed
may be a good foundation for adding sort-bounded polymorphism: the intersect
function would need to return a signature, as well as a context and type, so that
the constructor typing Plus : (α1 ∗ α2) → α can be made available.

Implementation. Currently, we have a prototype of a few pieces of the system,
including a parser and implementations of the Σ sig judgment and the intersect
function. Experimenting with these pieces was helpful during the design of the
system (and reassured us that the most novel parts of our system can be imple-
mented), but they fall short of a usable implementation.
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