
 123

26th European Symposium on Programming, ESOP 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017, Proceedings

Programming
Languages
and SystemsLN

CS
 1

02
01

AR
Co

SS
Hongseok Yang (Ed.)

Lecture Notes in Computer Science 10201

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Hongseok Yang (Ed.)

Programming
Languages
and Systems
26th European Symposium on Programming, ESOP 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017
Proceedings

123

Editor
Hongseok Yang
Department of Computer Science
University of Oxford
Oxford
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-54433-4 ISBN 978-3-662-54434-1 (eBook)
DOI 10.1007/978-3-662-54434-1

Library of Congress Control Number: 2017933868

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

ETAPS Foreword

Welcome to the proceedings of ETAPS 2017, which was held in Uppsala! It was the
first time ever that ETAPS took place in Scandinavia.

ETAPS 2017 was the 20th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program enables
participation in an exciting event, offering the possibility to meet many researchers
working in different directions in the field and to easily attend talks of different con-
ferences. Before and after the main conference, numerous satellite workshops take
place and attract many researchers from all over the globe.

ETAPS 2017 received 531 submissions in total, 159 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all authors for their interest in
ETAPS, all reviewers for their peer reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2017 was enriched by the unifying invited speakers Kim G. Larsen (Aal-
borg University, Denmark) and Michael Ernst (University of Washington, USA), as
well as the conference-specific invited speakers (FoSSaCS) Joel Ouaknine (MPI-SWS,
Germany, and University of Oxford, UK) and (TACAS) Dino Distefano (Facebook and
Queen Mary University of London, UK). In addition, ETAPS 2017 featured a public
lecture by Serge Abiteboul (Inria and ENS Cachan, France). Invited tutorials were
offered by Véronique Cortier (CNRS research director at Loria, Nancy, France) on
security and Ken McMillan (Microsoft Research Redmond, USA) on compositional
testing. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2017 took place in Uppsala, Sweden, and was organized by the Department
of Information Technology of Uppsala University. It was further supported by the
following associations and societies: ETAPS e.V., EATCS (European Association for
Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). Facebook, Microsoft, Amazon, and the city of Uppsala financially sup-
ported ETAPS 2017. The local organization team consisted of Parosh Aziz Abdulla
(general chair), Wang Yi, Björn Victor, Konstantinos Sagonas, Mohamed Faouzi Atig,
Andreina Francisco, Kaj Lampka, Tjark Weber, Yunyun Zhu, and Philipp Rümmer.

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its executive board. The ETAPS Steering Committee

consists of an executive board, and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The executive board
consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Parosh Abdulla (Uppsala), Amal Ahmed (Boston),
Christel Baier (Dresden), David Basin (Zurich), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Giuseppe Castagna (Paris), Tom Crick (Cardiff), Javier Esparza (Munich),
Jan Friso Groote (Eindhoven), Jurriaan Hage (Utrecht), Reiko Heckel (Leicester),
Marieke Huisman (Twente), Panagotios Katsaros (Thessaloniki), Ralf Küsters (Trier),
Ugo del Lago (Bologna), Kim G. Larsen (Aalborg), Axel Legay (Rennes), Matteo
Maffei (Saarbrücken), Tiziana Margaria (Limerick), Andrzej Murawski (Warwick),
Catuscia Palamidessi (Palaiseau), Julia Rubin (Vancouver), Alessandra Russo
(London), Mark Ryan (Birmingham), Don Sannella (Edinburgh), Andy Schürr
(Darmstadt), Gabriele Taentzer (Marburg), Igor Walukiewicz (Bordeaux), and Hon-
gseok Yang (Oxford).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. Finally, a big thanks to
Parosh and his local organization team for all their enormous efforts enabling a fantastic
ETAPS in Uppsala!

January 2017 Joost-Pieter Katoen

VI ETAPS Foreword

Preface

This volume contains the papers presented at the 26th European Symposium on Pro-
gramming (ESOP 2017) held at Uppsala, Sweden, April 22–29, 2017. ESOP is one
of the European Joint Conferences on Theory and Practice of Software (ETAPS). It is
devoted to fundamental issues in the specification, design, analysis, and implementa-
tion of programming languages and systems.

The 36 papers in this volume are selected out of 112 submissions based on origi-
nality and quality. Each submission was reviewed by three to six Program Committee
members and external reviewers, and its authors were given a chance to respond to
these reviews through the rebuttal mechanism. All submissions, reviews, and author
responses were considered during the extensive online discussions, which identified
64 submissions to be discussed further at the physical Program Committee meeting,
which was held at Oxford during December 15–16, 2016. At the meeting, the Program
Committee members compared the 64 submissions and made the final selection of
36 papers. For most of the other unselected 28 submissions, the Program Committee
members added summaries of discussions at the meeting to their reviews, so as to help
the authors understand decisions. The overall quality of the submissions was very high,
and many good papers had to be rejected because of the strict limit on the number of
papers to be presented at the conference.

The papers in the volume cover traditional as well as emerging topics in pro-
gramming languages. Their topics are: semantic foundation and type system for
probabilistic programming; techniques for verifying concurrent or higher-order pro-
grams; programming language for arrays or Web data; program analysis and verifi-
cation of non-standard program properties; foundation and application of interactive
theorem proving; graph rewriting; separation logic; session type; type theory; and
implicit computational complexity.

I want to thank the authors who submitted papers for consideration, and the
members of the Program Committee, who tried hard to come up with useful feedback
and to reach fair decisions on the submissions. Without the help of the external
reviewers, the Program Committee would not have been able to evaluate all the sub-
missions. I am grateful to the past ESOP PC chairs and particularly to Giuseppe
Castagna, who helped me to handle many organizational matters. I would like to thank
the ETAPS 2017 general chair, Parosh Aziz Abdulla, and his support staff for their
assistance, and the ETAPS Steering Committee and particularly its chair, Joost-Pieter
Katoen, for their amazing work in organizing this big joint conference. EasyChair was
used to handle the submissions, to carry out the online discussions, and to prepare these
proceedings. Finally, I want to thank Microsoft Research for sponsoring the physical
Program Committee meeting, and Junghun Yoo, Jayne Bullock, and Oxford CS staff
for helping me to organize this meeting.

January 2017 Hongseok Yang

Organization

Program Committee

Robert Atkey University of Strathclyde, UK
Gavin Bierman Oracle Labs
Xinyu Feng University of Science and Technology of China
Alexey Gotsman IMDEA Software Institute
Martin Hofmann LMU Munich, Germany
Neelakantan Krishnaswami The University of Birmingham, UK
Bruno C.D.S. Oliveira The University of Hong Kong, SAR China
Scott Owens University of Kent, UK
David Pichardie ENS Rennes/IRISA/Inria, France
Ruzica Piskac Yale University, USA
Ganesan Ramalingam Microsoft Research
Xavier Rival Inria/ENS Paris, France
Sukyoung Ryu KAIST, South Korea
Tom Schrijvers KU Leuven, Belgium
Chung-chieh Shan Indiana University, USA
Alexandra Silva University College London, UK
Sam Staton University of Oxford, UK
Alexander J. Summers ETH Zurich, Switzerland
Tachio Terauchi Japan Advanced Institute of Science

and Technology, Japan
Viktor Vafeiadis MPI-SWS
Dimitrios Vytiniotis Microsoft Research
Stephanie Weirich University of Pennsylvania, USA
Hongseok Yang University of Oxford, UK
Nobuko Yoshida Imperial College London, UK

Additional Reviewers

Abe, Tatsuya
Abel, Andreas
Arthan, Rob
Assaf, Mounir
Azevedo de Amorim, Arthur
Bae, Sora
Baelde, David
Balzer, Stephanie
Barth, Stephan
Ben-Amram, Amir

Bengtson, Jesper
Beringer, Lennart
Bernardi, Giovanni
Besson, Frédéric
Bi, Xuan
Biernacka, Malgorzata
Breitner, Joachim
Brutschy, Lucas
Caires, Luis
Cerone, Andrea

Chakraborty, Soham
Cheng, Tie
Cichon, Gordon
Cogumbreiro, Tiago
Crafa, Silvia
Cruz-Filipe, Luís
Danos, Vincent
Dardha, Ornela
Dhodapkar, Rahul
Dinsdale-Young, Thomas
Dohrau, Jérôme
Doko, Marko
Dragoi, Cezara
Drossopoulou, Sophia
Dunfield, Jana
Eilers, Marco
Ferrara, Pietro
Filliatre, Jean-Christophe
Foner, Kenny
Francalanza, Adrian
Franco, Juliana
Fu, Ming
Gabbay, Murdoch
Gaboardi, Marco
Garcia, Ron
Gehr, Timon
Geuvers, Herman
Giacobazzi, Roberto
Golan-Gueta, Guy
Gorogiannis, Nikos
Hallahan, William
Hammer, Matthew
Hayman, Jonathan
Hecking-Harbusch, Jesko
Hoffmann, Jan
Huisman, Marieke
Hüttel, Hans
Jacobs, Bart
Jagadeesan, Radha
Jost, Steffen
Kanade, Aditya
Karachalias, George
Keuchel, Steven
Khyzha, Artem
Kiefer, Stefan
Kiselyov, Oleg

Kobayashi, Naoki
Koutavas, Vasileios
Kozen, Dexter
Krishna, Siddharth
Lahav, Ori
Lange, Julien
Lange, Martin
Laporte, Vincent
Leino, Rustan
Li, Huang
Li, Huisong
Liang, Hongjin
Lindley, Sam
Mainland, Geoffrey
Mardare, Radu
Mardirosian, Klara
Mcbride, Conor
McClurg, Jedidiah
Meyer, Mark
Miné, Antoine
Morgan, Carroll
Morris, J. Garrett
Moser, Georg
Mulligan, Dominic
Munch-Maccagnoni, Guillaume
Muranushi, Takayuki
Nestmann, Uwe
Nigam, Vivek
Nordvall Forsberg, Fredrik
Oh, Hakjoo
Palsberg, Jens
Panda, Aurojit
Park, Jihyeok
Paykin, Jennifer
Pereira, Mário
Petri, Gustavo
Phillips, Iain
Piróg, Maciej
Plump, Detlef
Protzenko, Jonathan
Pérez, Jorge A.
Raad, Azalea
Raclet, Jean-Baptiste
Rot, Jurriaan
Sands, David
Santolucito, Mark

X Organization

Scalas, Alceste
Schmitt, Alan
Schmitz, Sylvain
Schwerhoff, Malte
Schwoon, Stefan
Schöpp, Ulrich
Sergey, Ilya
Sewell, Thomas
Shi, Zhiyuan
Spector-Zabusky, Antal
Spoto, Fausto
Strub, Pierre-Yves
T. Vasconcelos, Vasco
Tauber, Tomas
Thiemann, Peter
Tiu, Alwen

Tsankov, Petar
Unno, Hiroshi
Urban, Caterina
Uustalu, Tarmo
van Bakel, Steffen
Vandenbroucke, Alexander
Wang, Yanlin
Wood, Tim
Xi, Hongwei
Xie, Ningning
Yang, Yanpeng
Yi, Kwangkeun
Zdancewic, Steve
Zhai, Ennan
Zhang, Haoyuan
Zimmermann, Martin

Organization XI

Contents

Disjoint Polymorphism . 1
João Alpuim, Bruno C.d.S. Oliveira, and Zhiyuan Shi

Generalizing Inference Systems by Coaxioms . 29
Davide Ancona, Francesco Dagnino, and Elena Zucca

Observed Communication Semantics for Classical Processes 56
Robert Atkey

Is Your Software on Dope? Formal Analysis of Surreptitiously
“enhanced” Programs . 83

Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner,
and Holger Hermanns

Friends with Benefits: Implementing Corecursion in Foundational
Proof Assistants . 111

Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler,
Andrei Popescu, and Dmitriy Traytel

Confluence of Graph Rewriting with Interfaces . 141
Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński,
and Fabio Zanasi

Verifying Robustness of Event-Driven Asynchronous Programs
Against Concurrency . 170

Ahmed Bouajjani, Michael Emmi, Constantin Enea,
Burcu Kulahcioglu Ozkan, and Serdar Tasiran

Incremental Update for Graph Rewriting . 201
Pierre Boutillier, Thomas Ehrhard, and Jean Krivine

Linearity, Control Effects, and Behavioral Types. 229
Luís Caires and Jorge A. Pérez

Temporary Read-Only Permissions for Separation Logic 260
Arthur Charguéraud and François Pottier

Faster Algorithms for Weighted Recursive State Machines 287
Krishnendu Chatterjee, Bernhard Kragl, Samarth Mishra,
and Andreas Pavlogiannis

ML and Extended Branching VASS . 314
Conrad Cotton-Barratt, Andrzej S. Murawski, and C.-H. Luke Ong

http://dx.doi.org/10.1007/978-3-662-54434-1_1
http://dx.doi.org/10.1007/978-3-662-54434-1_2
http://dx.doi.org/10.1007/978-3-662-54434-1_3
http://dx.doi.org/10.1007/978-3-662-54434-1_4
http://dx.doi.org/10.1007/978-3-662-54434-1_4
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://dx.doi.org/10.1007/978-3-662-54434-1_6
http://dx.doi.org/10.1007/978-3-662-54434-1_7
http://dx.doi.org/10.1007/978-3-662-54434-1_7
http://dx.doi.org/10.1007/978-3-662-54434-1_8
http://dx.doi.org/10.1007/978-3-662-54434-1_9
http://dx.doi.org/10.1007/978-3-662-54434-1_10
http://dx.doi.org/10.1007/978-3-662-54434-1_11
http://dx.doi.org/10.1007/978-3-662-54434-1_12

Metric Reasoning About k-Terms: The General Case. 341
Raphaëlle Crubillé and Ugo Dal Lago

Contextual Equivalence for Probabilistic Programs with Continuous
Random Variables and Scoring . 368

Ryan Culpepper and Andrew Cobb

Probabilistic Termination by Monadic Affine Sized Typing 393
Ugo Dal Lago and Charles Grellois

CAPER: Automatic Verification for Fine-Grained Concurrency 420
Thomas Dinsdale-Young, Pedro da Rocha Pinto,
Kristoffer Just Andersen, and Lars Birkedal

Tackling Real-Life Relaxed Concurrency with FSL++ 448
Marko Doko and Viktor Vafeiadis

Extensible Datasort Refinements . 476
Jana Dunfield

Programs Using Syntax with First-Class Binders . 504
Francisco Ferreira and Brigitte Pientka

LINCX: A Linear Logical Framework with First-Class Contexts 530
Aina Linn Georges, Agata Murawska, Shawn Otis, and Brigitte Pientka

APLicative Programming with Naperian Functors . 556
Jeremy Gibbons

Verified Characteristic Formulae for CakeML. 584
Armaël Guéneau, Magnus O. Myreen, Ramana Kumar,
and Michael Norrish

Unified Reasoning About Robustness Properties of Symbolic-Heap
Separation Logic . 611

Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll,
and Florian Zuleger

Proving Linearizability Using Partial Orders . 639
Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew Parkinson

The Power of Non-determinism in Higher-Order Implicit Complexity:
Characterising Complexity Classes Using Non-deterministic
Cons-Free Programming . 668

Cynthia Kop and Jakob Grue Simonsen

The Essence of Higher-Order Concurrent Separation Logic 696
Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan,
Derek Dreyer, and Lars Birkedal

XIV Contents

http://dx.doi.org/10.1007/978-3-662-54434-1_13
http://dx.doi.org/10.1007/978-3-662-54434-1_13
http://dx.doi.org/10.1007/978-3-662-54434-1_14
http://dx.doi.org/10.1007/978-3-662-54434-1_14
http://dx.doi.org/10.1007/978-3-662-54434-1_15
http://dx.doi.org/10.1007/978-3-662-54434-1_16
http://dx.doi.org/10.1007/978-3-662-54434-1_17
http://dx.doi.org/10.1007/978-3-662-54434-1_18
http://dx.doi.org/10.1007/978-3-662-54434-1_19
http://dx.doi.org/10.1007/978-3-662-54434-1_20
http://dx.doi.org/10.1007/978-3-662-54434-1_21
http://dx.doi.org/10.1007/978-3-662-54434-1_22
http://dx.doi.org/10.1007/978-3-662-54434-1_23
http://dx.doi.org/10.1007/978-3-662-54434-1_23
http://dx.doi.org/10.1007/978-3-662-54434-1_24
http://dx.doi.org/10.1007/978-3-662-54434-1_25
http://dx.doi.org/10.1007/978-3-662-54434-1_25
http://dx.doi.org/10.1007/978-3-662-54434-1_25
http://dx.doi.org/10.1007/978-3-662-54434-1_26

Comprehending Isabelle/HOL’s Consistency . 724
Ondřej Kunčar and Andrei Popescu

The Essence of Functional Programming on Semantic Data 750
Martin Leinberger, Ralf Lämmel, and Steffen Staab

A Classical Sequent Calculus with Dependent Types 777
Étienne Miquey

Context-Free Session Type Inference . 804
Luca Padovani

Modular Verification of Higher-Order Functional Programs 831
Ryosuke Sato and Naoki Kobayashi

Commutative Semantics for Probabilistic Programming 855
Sam Staton

Conditional Dyck-CFL Reachability Analysis for Complete and Efficient
Library Summarization . 880

Hao Tang, Di Wang, Yingfei Xiong, Lingming Zhang, Xiaoyin Wang,
and Lu Zhang

A Higher-Order Logic for Concurrent Termination-Preserving Refinement . . . 909
Joseph Tassarotti, Ralf Jung, and Robert Harper

Modular Verification of Procedure Equivalence in the Presence
of Memory Allocation . 937

Tim Wood, Sophia Drossopolou, Shuvendu K. Lahiri,
and Susan Eisenbach

Abstract Specifications for Concurrent Maps . 964
Shale Xiong, Pedro da Rocha Pinto, Gian Ntzik, and Philippa Gardner

Author Index . 991

Contents XV

http://dx.doi.org/10.1007/978-3-662-54434-1_27
http://dx.doi.org/10.1007/978-3-662-54434-1_28
http://dx.doi.org/10.1007/978-3-662-54434-1_29
http://dx.doi.org/10.1007/978-3-662-54434-1_30
http://dx.doi.org/10.1007/978-3-662-54434-1_31
http://dx.doi.org/10.1007/978-3-662-54434-1_32
http://dx.doi.org/10.1007/978-3-662-54434-1_33
http://dx.doi.org/10.1007/978-3-662-54434-1_33
http://dx.doi.org/10.1007/978-3-662-54434-1_34
http://dx.doi.org/10.1007/978-3-662-54434-1_35
http://dx.doi.org/10.1007/978-3-662-54434-1_35
http://dx.doi.org/10.1007/978-3-662-54434-1_36

Disjoint Polymorphism

João Alpuim(B), Bruno C.d.S. Oliveira, and Zhiyuan Shi

The University of Hong Kong, Pokfulam, Hong Kong
{alpuim,bruno,zyshi}@cs.hku.hk

Abstract. The combination of intersection types, a merge operator and
parametric polymorphism enables important applications for program-
ming. However, such combination makes it hard to achieve the desirable
property of a coherent semantics: all valid reductions for the same expres-
sion should have the same value. Recent work proposed disjoint inter-
sections types as a means to ensure coherence in a simply typed setting.
However, the addition of parametric polymorphism was not studied. This
paper presents Fi: a calculus with disjoint intersection types, a variant
of parametric polymorphism and a merge operator. Fi is both type-safe
and coherent. The key difficult occurs in an intersection type, it is not
statically known whether the instantiated type will be disjoint to other
components of the intersection. To address this problem we propose dis-
joint polymorphism: a constrained form of parametric polymorphism,
which allows disjointness constraints for type variables. With disjoint
polymorphism the calculus remains very flexible in terms of programs
that can be written, while retaining coherence.

1 Introduction

Intersection types [20,43] are a popular language feature for modern languages,
such as Microsoft’s TypeScript [4], Redhat’s Ceylon [1], Facebook’s Flow [3]
and Scala [37]. In those languages a typical use of intersection types, which has
been known for a long time [19], is to model the subtyping aspects of OO-style
multiple inheritance. For example, the following Scala declaration:

class A extends B with C

says that the class A implements both B and C. The fact that A implements two
interfaces/traits is captured by an intersection type between B and C (denoted
in Scala by B with C). Unlike a language like Java, where implements (which
plays a similar role to with) would be a mere keyword, in Scala intersection
types are first class. For example, it is possible to define functions such as:

def narrow(x : B with C) : B = x

taking an argument with an intersection type B with C.
The existence of first-class intersections has led to the discovery of other

interesting applications of intersection types. For example, TypeScript’s docu-
mentation motivates intersection types1 as follows:
1 https://www.typescriptlang.org/docs/handbook/advanced-types.html.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 1–28, 2017.
DOI: 10.1007/978-3-662-54434-1 1

https://www.typescriptlang.org/docs/handbook/advanced-types.html

2 J. Alpuim et al.

You will mostly see intersection types used for mixins and other concepts
that don’t fit in the classic object-oriented mold. (There are a lot of these
in JavaScript!)

Two points are worth emphasizing. Firstly, intersection types are being used
to model concepts that are not like the classical (class-based) object-oriented
programming. Indeed, being a prototype-based language, JavaScript has a much
more dynamic notion of object composition compared to class-based languages:
objects are composed at run-time, and their types are not necessarily statically
known. Secondly, the use of intersection types in TypeScript is inspired by com-
mon programming patterns in the (dynamically typed) JavaScript. This hints
that intersection types are useful to capture certain programming patterns that
are out-of-reach for more conventional type systems without intersection types.

Central to TypeScript’s use of intersection types for modelling such a
dynamic form of mixins is the function:

function extend<T, U>(first: T, second: U) : T & U {...}

The name extend is given as an analogy to the extends keyword commonly used
in OO languages like Java. The function takes two objects (first and second)
and produces an object with the intersection of the types of the original objects.
The implementation of extend relies on low-level (and type-unsafe) features of
JavaScript. When a method is invoked on the new object resulting from the
application of extend, the new object tries to use the first object to answer
the method call and, if the method invocation fails, it then uses the second
object to answer the method call.

The extend function is essentially an encoding of the merge operator. The
merge operator is used on some calculi [17,24,38,47,48] as an introduction form
for intersection types. Similar encodings to those in TypeScript have been pro-
posed for Scala to enable applications where the merge operator also plays a
fundamental role [39,46]. Unfortunately, the merge operator is not directly sup-
ported by TypeScript, Scala, Ceylon or Flow. There are two possible reasons for
such lack of support. One reason is simply that the merge operator is not well-
known: many calculi with intersection types in the literature do not have explicit
introduction forms for intersection types. The other reason is that, while pow-
erful, the merge operator is known to introduce (in)coherence problems [24,47].
If care is not taken, certain programs using the merge operator do not have a
unique semantics, which significantly complicates reasoning about programs.

Solutions to the problem of coherence in the presence of a merge operator
exist for simply typed calculi [17,38,47,48], but no prior work addresses poly-
morphism. Most recently, we proposed using disjoint intersection types [38] to
guarantee coherence in λi: a simply typed calculus with intersection types and
a merge operator. The key idea is to allow only disjoint types in intersections.
If two types are disjoint then there is no ambiguity in selecting a value of the
appropriate type from an intersection, guaranteeing coherence.

Combining parametric polymorphism with disjoint intersection types, while
retaining enough flexibility for practical applications, is non-trivial. The key issue

Disjoint Polymorphism 3

is that when a type variable occurs in an intersection type it is not statically
known whether the instantiated types will be disjoint to other components of
the intersection. A naive way to add polymorphism is to forbid type variables in
intersections, since they may be instantiated with a type which is not disjoint
to other types in an intersection. Unfortunately this is too conservative and
prevents many useful programs, including the extend function, which uses an
intersection of two type variables T and U.

This paper presents Fi: a core calculus with disjoint intersection types, a
variant of parametric polymorphism and a merge operator. The key innovation
in the calculus is disjoint polymorphism: a constrained form of parametric poly-
morphism, which allows programmers to specify disjointness constraints for type
variables. With disjoint polymorphism the calculus remains very flexible in terms
of programs that can be written with intersection types, while retaining coher-
ence. In Fi the extend function is implemented as follows:

let extend T (U * T) (first : T, second : U) : T & U = first ,, second

From the typing point of view, the difference between extend in TypeScript and
Fi is that the type variable U now has a disjointness constraint. The notation
U * T means that the type variable U can be instantiated to any types that
is disjoint to the type T. Unlike TypeScript, the definition of extend is trivial,
type-safe and guarantees coherence by using the built-in merge operator (,,).

The applicability of Fi is illustrated with examples using extend ported from
TypeScript, and various operations on polymorphic extensible records [29,31,
34]. The operations on polymorphic extensible records show that Fi can encode
various operations of row types [52]. However, in contrast to various existing
proposals for row types and extensible records, Fi supports general intersections
and not just record operations.

Fi and the proofs of coherence and type-safety are formalized in the Coq the-
orem prover [2]. The proofs are complete except for a minor (and trivially true)
variable renaming lemma used to prove the soundness between two subtyping
relations used in the formalization. The problem arizes from the combination of
the locally nameless representation of binding [7] and existential quantification,
which prevents a Coq proof for that lemma.

In summary, the contributions of this paper are:

– Disjoint Polymorphism: A novel form of universal quantification where
type variables can have disjointness constraints. Disjoint polymorphism
enables a flexible combination of intersection types, the merge operator and
parametric polymorphism.

– Coq Formalization of Fi and Proof of Coherence: An elaboration
semantics of System Fi into System F is given. Type-soundness and coher-
ence are proved in Coq. The proofs for these properties and all other
lemmata found in this paper are available at: https://github.com/jalpuim/
disjoint-polymorphism.

– Applications: We show how Fi provides basic support for dynamic mixins
and various operations on polymorphic extensible records.

https://github.com/jalpuim/disjoint-polymorphism
https://github.com/jalpuim/disjoint-polymorphism

4 J. Alpuim et al.

2 Overview

This section introduces Fi and its support for intersection types, parametric poly-
morphism and the merge operator. It then discusses the issue of coherence and
shows how the notion of disjoint intersection types and disjoint quantification
achieves a coherent semantics. This section uses some syntactic sugar, as well
as standard programming language features, to illustrate the various concepts
in Fi. Although the minimal core language that we formalize in Sect. 4 does not
present all such features and syntactic sugar, these are trivial to add.

2.1 Intersection Types and the Merge Operator

Intersection Types. The intersection of type A and B (denoted by A & B in Fi)
contains exactly those values which can be used as both values of type A and of
type B. For instance, consider the following program in Fi:

let x : Int & Bool = . . . in -- definition omitted
let succ (y : Int) : Int = y+1 in
let not (y : Bool) : Bool = if y then False else True in (succ x, not x)

If a value x has type Int & Bool then x can be used anywhere where either a
value of type Int or a value of type Bool is expected. This means that, in the
program above the functions succ and not – simple functions on integers and
booleans, respectively – both accept x as an argument.

Merge Operator. The previous program deliberately omitted the introduction
of values of an intersection type. There are many variants of intersection types
in the literature. Our work follows a particular formulation, where intersection
types are introduced by a merge operator [17,24,38,47,48]. As Dunfield [24] has
argued a merge operator adds considerable expressiveness to a calculus. The
merge operator allows two values to be merged in a single intersection type. For
example, an implementation of x in Fi is 1,,True. Following Dunfield’s notation
the merge of v1 and v2 is denoted by v1, , v2.

2.2 Coherence and Disjointness

Coherence is a desirable property for a semantics. A semantics is coherent if any
valid program has exactly one meaning [47] (that is, the semantics is not ambigu-
ous). Unfortunately the implicit nature of elimination for intersection types built
with a merge operator can lead to incoherence. This is due to intersections with
overlapping types, as in Int&Int. The result of the program ((1,,2) : Int)
can be either 1 or 2, depending on the implementation of the language.

Disjoint Intersection Types. One option to restore coherence is to reject pro-
grams which may have multiple meanings. The λi calculus [38] – a simply-typed
calculus with intersection types and a merge operator – solves this problem
by using the concept of disjoint intersections. The incoherence problem with the

Disjoint Polymorphism 5

expression 1, , 2 happens because there are two overlapping integers in the merge.
Generally speaking, if both terms can be assigned some type C then both of them
can be chosen as the meaning of the merge, which in its turn leads to multiple
meanings of a term. Thus a natural option is to forbid such overlapping values
of the same type in a merge. In λi intersections such as Int&Int are forbidden,
since the types in the intersection overlap (i.e. they are not disjoint). However
an intersection such as Char&Int is ok because the set of characters and integers
are disjoint to each other.

2.3 Parametric Polymorphism

Unfortunately, combining parametric polymorphism with disjoint intersection
types is non-trivial. Consider the following program (uppercase Latin letters
denote type variables):

let merge3 A (x : A) : A & Int = x,,3 in

The merge3 function takes an argument x of some type (A) and merges x with
3. Thus the return type of the program is A & Int. merge3 is unproblematic for
many possible instantiations of A. However, if merge3 instantiates A with a type
that overlaps (i.e. is not disjoint) with Int, then incoherence may happen. For
example:

merge3 Int 2

can evaluate to both 2 or 3.

Forbidding Type Variables in Intersections. A naive way to ensure that only
programs with disjoint types are accepted is simply to forbid type variables in
intersections. That is, an intersection type such as Char&Int would be accepted,
but an intersection such as A & Int (where A is some type variable) would be
rejected. The reasoning behind this design is that type variables can be instan-
tiated to any types, including those already in the intersection. Thus forbidding
type variables in the intersection will prevent invalid intersections arising from
instantiations with overlapping types. Such design does guarantee coherence and
would prevent merge3 from type-checking. Unfortunately the big drawback is
that the design is too conservative and many other (useful) programs would be
rejected. In particular, the extend function from Sect. 1 would also be rejected.

Other Approaches. Another option to mitigate the issues of incoherence, without
the use of disjoint intersection types, is to allow for a biased choice: multiple val-
ues of the same type may exist in an intersection, but an implementation gives
preference to one of them. The encodings of merge operators in TypeScript and
Scala [39,46] use such an approach. A first problem with this approach, which has
already been pointed out by Dunfield [24], is that the choice of the correspond-
ing value is tied up to a particular choice in the implementation. In other words
incoherence still exists at the semantic level, but the implementation makes it

6 J. Alpuim et al.

predictable which overlapping value will be chosen. From the theoretical point-
of-view it would be much better to have a clear, coherent semantics, which is
independent from concrete implementations. Another problem is that the inter-
action between biased choice and polymorphism can lead to counter-intuitive
programs, since instantiation of type-variables affects the type-directed lookup
of a value in an intersection.

2.4 Disjoint Polymorphism

To avoid being overly conservative, while still retaining coherence in the pres-
ence of parametric polymorphism and intersection types, Fi uses disjoint poly-
morphism. Inspired by bounded quantification [14], where a type variable is
constrained by a type bound, disjoint polymorphism allows type variables to be
constrained so that they are disjoint to some given types.

With disjoint quantification a variant of the program merge3, which is
accepted by Fi, is written as:

let merge3 (A * Int) (x : A) : A & Int = x,,3 in

In this variant the type A can be instantiated to any types disjoint to Int. Such
restriction is expressed by the notation A * Int, where the left-side of * denotes
the type variable being declared (A), and the right-side denotes the disjointness
constraint (Int). For example,

merge3 Bool True

is accepted. However, instantiating A with Int fails to type-check.

Multiple Constraints. Disjoint quantification allows multiple constraints. For
example, the following variant of merge3 has an additional boolean in the merge:

let merge3b (A * Int & Bool) (x : A) : A & Int & Bool = x,,3,,True in

Here the type variable A needs to be disjoint to both Int and Bool. In Fi such
constraint is specified using an intersection type Int & Bool. In general, multiple
constraints are specified with an intersection of all required constraints.

Type Variable Constraints. Disjoint quantification also allows type variables to
be disjoint to previously defined type variables. For example, the following pro-
gram is accepted by Fi:

let fst A (B * A) (x: A & B) : A = x in . . .

The program has two type variables A and B. A is unconstrained and can be
instantiated with any type. However, the type variable B can only be instantiated
with types that are disjoint to A. The constraint on B ensures that the intersection
type A & B is disjoint for all valid instantiations of A and B. In other words, only
coherent uses of fst will be accepted. For example, the following use of fst:

fst Int Char (1,,’c’)

Disjoint Polymorphism 7

is accepted since Int and Char are disjoint, thus satisfying the constraint on the
second type parameter of fst. Furthermore, problematic uses of fst, such as:

fst Int Int (1,,2)

are rejected because Int is not disjoint with Int, thus failing to satisfy the
disjointness constraint on the second type parameter of fst.

Empty Constraint. The type variable A in the fst function has no constraint.
In Fi this actually means that A should be associated with the empty constraint,
which raises the question: which type should be used to represent such empty
constraint? Or, in other words, which type is disjoint to every other type? It
is obvious that this type should be one of the bounds of the subtyping lattice:
either ⊥ or �. The essential intuition here is that the more specific a type in the
subtyping relation is, the less types exist that are disjoint to it. For example,
Int is disjoint to all types except the n-ary intersections that contain Int, and
⊥; while Int&Char is disjoint to all types that do not contain Int or Char, and
⊥. This reasoning that � should be treated as the empty constraint. Indeed, in
Fi, a single type variable A is only syntactic sugar for A ∗ �.

3 Applications

Fi is illustrated with two applications. The first application shows how to mimic
some of TypeScript’s examples of dynamic mixins in Fi. The second application
shows how Fi enables a powerful form of polymorphic extensible records.

3.1 Dynamic Mixins

TypeScript is a language that adds static type checking to JavaScript. Amongst
numerous static typing constructs, TypeScript supports a form of intersection
types, without a merge operator. However, it is possible to define a function
extend that mimics the merge operator:

function extend<T, U>(first: T, second: U): T & U {
let result = <T & U>{};
for (let id in first) {

(<any>result)[id] = (<any>first)[id];
}
for (let id in second) {

if (!result.hasOwnProperty(id)) {
(<any>result)[id] = (<any>second)[id];

}
}
return result;

}
class Person { constructor(public name : string, public male : boolean) {

} }
interface Loggable { log() : void; }
class ConsoleLogger implements Loggable { log() {...} }
var jim = extend(new Person("Jim",true), new ConsoleLogger());

8 J. Alpuim et al.

var n = jim.name;
jim.log();

In this example, taken from TypeScript’s documentation2, an extend func-
tion is defined for mixin composition. Two classes Person and ConsoleLogger
are also defined. Two instances of those classes are then composed in a variable
jim with the type of the intersection of both using extend. It is type-safe to
access both the properties from Person and ConsoleLogger in the object jim.

TypeScript’s implementation of extend relies on a biased choice. The func-
tion starts by creating a variable result with the type of the intersection. It then
iterates through first’s properties and copies them to result. Next, it iterates
through second’s properties but it only copies the properties that result does
not possess yet (i.e. the ones present in first). This means that the implemen-
tation is left-biased, as the properties of left type of the intersection are chosen
in favor of the ones in the right. However, in TypeScript this may be a cause of
severe problems since that, at the time of writing, intersections at type-level are
right-biased! For example, the following code is well-typed:

class Dog { constructor(public name : string, public male : string) { } }
var fool : Dog & Person = extend(new Dog("Pluto","yes"),new

Person("Arnold",true));
boolean b = fool.male; /* Undetected type-error here! */

There are a few problems here. Firstly both Dog and Person contain a name field,
and the use of extend will favour the name field in the first object. This could
be surprising for someone unfamiliar with the semantics of extend and, more
importantly, it could easily allow unintended name clashes to go undetected.
Secondly, note how fool.male is statically bound to a variable of type boolean
but, at run-time, it will contain a value of type String! Thus the example shows
some run-time type errors can still occur when using extend.

Other problematic issues regarding the semantics of intersection types can
include the order of the types in an intersection, or even intersections includ-
ing repeated types. This motivates the need to define a clear meaning for the
practical application of intersection types.

Dynamic Mixins in Fi. In Fi, the merge operator is built-in. Thus extend is
simply defined as follows:

let extend T (U * T) (first : T, second : U) : T & U = first ,, second in

The disjointness constraint on U ensures that no conflicts (such as duplicated
fields of the same type) exists when merging the two objects. In practice this
approach is quite similar to trait-based OO approaches [50]. If conflicts exist
when two objects are composed, then they have to be resolved manually (by
dropping fields from some object, for example). Moreover if no existing imple-
mentation can be directly reused, a new one must be provided via record exten-
sion, analogously to standard method overriding in OO languages.

2 We have added the field male to the class Person.

Disjoint Polymorphism 9

For the previous TypeScript examples, assuming a straightforward transla-
tion from objects to (polymorphic) records, then the composition of person and
consoleLogger is well-typed in Fi:

type Person = {name : String} & {male : Bool};
type Loggable = {log : � → �};

let person (n : String) (s : Bool) : Person = {name = n} ,, {male = s} in
let consoleLogger : Loggable = {log = ...} in
let jim = extend Person Loggable (person "Jim" true) consoleLogger in
let n = jim.name in
jim.log �

However, the intersection Dog & Person is not accepted. This is due to both
types sharing a field with the same name (name) and the same type (String).
Note that the name clash between male fields (which have different types) does
not impose any problem in this example: Fi allows and keeps duplicated fields
whose types are disjoint. This feature of Fi is further illustrated next.

3.2 Extensible Records

Fi can encode polymorphic extensible records. Describing and implementing
records within programming languages is certainly not novel and has been exten-
sively studied in the past, including systems with row types [52,53]; predicates
[28–30]; flags [45]; conditional constraints [42]; cases [10]; amongst others. How-
ever, while most systems have non-trivial built-in constructs to model various
aspects of records, Fi specializes the more general notion of intersection types to
encode complex records.

Records and Record Operations in Fi. Systems with records usually rely on 3
basic operations: selection, restriction and extension/concatenation. Selection
and concatenation (via the merge operator) are built-in in the semantics of Fi.
Merges in Fi can be viewed as a generalization of record concatenation. In Fi,
following well-known encodings of multi-field records in systems with intersection
types and a merge operator [47,48], there are only three rather simple constructs
for records: (1) single field record types; (2) single field records; (3) field accessors.
Multi-field records in Fi are encoded with intersections and merges of single field
records. An example is already illustrated in Sect. 3.1. The record type Person is
the intersection of two single field record types. The record person "Jim" true
is built with a merge of two single field records. Finally, jim.name and jim.log
illustrates the use of field accessors. Note how, through the use of subtyping,
accessors will accept any intersection type that contains the single record with
the corresponding field. This resembles systems with record subtyping [15,41].

Restriction via Subtyping. In contrast to most record systems, restriction is not
directly embedded in Fi. Instead, Fi uses subtyping for restriction:

let remove (x : {age : Int} & {name : String}) : {name : String} = x in
. . .

The function remove drops the field age from the record x.

10 J. Alpuim et al.

Polymorphic Extensible Records. Records in Fi can have polymorphic fields,
and disjointness enables encoding various operations expressible in systems with
polymorphic records. For example, the following variant of remove

let remove A (B * {l : A}) (x : { l : A } & B) : B = x in . . .

takes a value x which contains a record of type l : A, as well as some extra
information of type B. The disjointness constraint on B ensures that values of
type B do not contain a record with type l : A. This example shows that one
can use disjoint quantification to express negative field information, which is very
close to the system described by Harper and Pierce [29]. Note, however, that Fi

requires explicitly stating the type of field in the constraint, whereas systems
with a lacks (field) predicate only require the name of the field. The generality
of disjoint intersection types, which allows one to encode record types, is exactly
what forces us to add this extra type in the constraint. However, there is a slight
gain with Fi’s approach: remove allows B to contain fields with label l, as long
as the field types are disjoint to A. Such fine-grained constraint is not possible
to express only with a lacks predicate.

Expressibility. As noted by Leijen [34], systems can typically be categorized into
two distinct groups in what concerns extension: strict and free. The former does
not allow field overriding when extending a record (i.e. one can only extend a
record with a field that is not present in it); while the latter does account for
field overriding. Our system can be seen as hybrid of these two kinds of systems.

With lightweight extensible records [31] – a system with strict extension – an
example of a function that uses record types is the following:

let avg1 (R\x, R\y) => (r : {R | x:Int, y:Int}) = (r.x+r.y)/2

The type signature says that any record r, containing fields x and y and some
more information R (which lacks both fields x and y), can be accepted returning
an integer. Note how the bounded polymorphism is essential to ensure that R

does not contain x nor y.
On the other hand, in Leijen’s [34] system with free extension the more

general program would be accepted:

let avg2 R (r : {x:Int, y:Int | R}) = (r.x+r.y)/2

In this case, if R contains either field x or field y, they would be shadowed by the
labels present in the type signature. In other words, in a record with multiple x

fields, the most recent (i.e. left-most) is used in any function which accesses x.
In Fi the following program can written instead:

let avg3 (R*{x:Int}&{y:Int}) (r : {x:Int}&{y:Int}&R) = (r.x+r.y)/2

Since Fi accepts duplicated fields as long as the types of the overlapping fields
are disjoint, more inputs are accepted by this function than in the first system.
However, since Leijen’s system accepts duplicated fields even when types are
overlapping, avg3 accepts less types than avg2. Another major difference between
Fi and the two other mentioned systems, is the ability to combine records with
arbitrary types. Our system does not account for well-formedness of record types

Disjoint Polymorphism 11

as the other two systems do (i.e. using a special row kind), since our encoding
of records piggybacks on the more general notion of disjoint intersection types.

4 The Fi Calculus

This section presents the syntax, subtyping, and typing of Fi: a calculus with
intersection types, parametric polymorphism, records and a merge operator. This
calculus is an extension of the λi calculus [38], which is itself inspired by Dun-
field’s calculus [24]. Fi extends λi with (disjoint) polymorphism.

4.1 Syntax

The syntax of Fi (with the differences to λi highlighted in gray) is:

Types A,B::=� | Int | A → B | A&B | α | ∀(α ∗ A). B | {l : A}

Terms e ::=� | i | x | λx. e | e1 e2 | e1, , e2 | Λ(α ∗ A). e | e A | {l = e} | e.l

Contexts Γ ::= · | Γ, α ∗ A | Γ, x :A

Types. Metavariables A, B range over types. Types include all constructs in λi:
a top type �; the type of integers Int; function types A → B; and intersection
types A&B. The main novelty are two standard constructs of System F used to
support polymorphism: type variables α and disjoint (universal) quantification
∀(α∗A). B. Unlike traditional universal quantification, the disjoint quantification
includes a disjointness constraint associated to a type variable α. Finally, Fi also
includes singleton record types, which consist of a label l and an associated type
A. We will use [α := A] B to denote the capture-avoiding substitution of A for
α inside B and ftv(·) for sets of free type variables.

Terms. Metavariables e range over terms. Terms include all constructs in λi: a
canonical top value �; integer literals i; variables x, lambda abstractions (λx. e);
applications (e1 e2); and the merge of terms e1 and e2 denoted as e1, , e2.
Terms are extended with two standard constructs in System F: abstraction of
type variables over terms Λ(α∗A). e; and application of terms to types e A. The
former also includes an extra disjointness constraint tied to the type variable
α, due to disjoint quantification. Singleton records consists of a label l and an
associated term e. Finally, the accessor for a label l in term e is denoted as e.l.

Contexts. Typing contexts Γ track bound type variables α with disjointness
constraints A; and variables x with their type A. We will use [α := A] Γ to
denote the capture-avoiding substitution of A for α in the co-domain of Γ where
the domain is a type variable (i.e. all disjointness constraints). Throughout this
paper, we will assume that all contexts are well-formed. Importantly, besides
usual well-formedness conditions, in well-formed contexts type variables must
not appear free within its own disjointness constraint.

12 J. Alpuim et al.

Fig. 1. Subtyping rules of Fi.

Syntactic Sugar. In Fi we may quantify a type variable and omit its constraint.
This means that its constraint is �. For example, the function type ∀α.α → α is
syntactic sugar for ∀(α ∗ �). α → α. This is discussed in more detail in Sect. 6.

4.2 Subtyping

The subtyping rules of the form A <: B are shown in Fig. 1. At the moment, the
reader is advised to ignore the gray-shaded parts, which will be explained later.
Some rules are ported from λi: S�, SZ, S→, S&R, S&L1 and S&L2.

Polymorphism and Records. The subtyping rules introduced by Fi refer to poly-
morphic constructs and records. Sα defines subtyping as a reflexive relation on
type variables. In S∀ a universal quantifier (∀) is covariant in its body, and
contravariant in its disjointness constraints. The SRec rule says that records
are covariant within their fields’ types. The subtyping relation uses an auxiliary
unary ordinary relation, which identifies types that are not intersections. The
ordinary conditions on two of the intersection rules are necessary to produce

Disjoint Polymorphism 13

unique coercions [38]. The ordinary relation needs to be extended with respect
to λi. As shown at the top of Fig. 1, the new types it contains are type variables,
universal quantifiers and record types.

Properties of Subtyping. The subtyping relation is reflexive and transitive.

Lemma 1 (Subtyping reflexivity). For any type A, A <: A.

Proof. By structural induction on A. �
Lemma 2 (Subtyping transitivity). If A <: B and B <: C, then A <: C.

Proof. By double induction on both derivations. �

4.3 Typing

Well-Formedness. The well-formedness rules are shown in the top part of Fig. 2.
The new rules over λi are WFα and WF∀. Their definition is quite straightfor-
ward, but note that the constraint in the latter must be well-formed.

Typing Rules. Our typing rules are formulated as a bi-directional type-system.
Just as in λi, this ensures the type-system is not only syntax-directed, but also
that there is no type ambiguity: that is, inferred types are unique. The typing
rules are shown in the bottom part of Fig. 2. Again, the reader is advised to ignore
the gray-shaded parts, as these will be explained later. The typing judgements
are of the form: Γ � e ⇐ A and Γ � e ⇒ A. They read: “in the typing context Γ ,
the term e can be checked or inferred to type A ′′, respectively. The rules ported
from λi are the check rules for � (T-Top), integers (T-Int), variables (T-Var),
application (T-App), merge operator (T-Merge), annotations (T-Ann); and
infer rules for lambda abstractions (T-Lam), and the subsumption rule (T-Sub).

Disjoint Quantification. The new rules, inspired by System F, are the infer rules
for type application T-TApp, and for type abstraction T-BLam. Type abstrac-
tion is introduced by the big lambda Λ(α ∗ A). e, eliminated by the usual type
application e A (T-TApp). The disjointness constraint is added to the con-
text in T-BLam. During a type application, the type system makes sure that
the type argument satisfies the disjointness constraint. Type application per-
forms an extra check ensuring that the type to be instantiated is compatible
(i.e. disjoint) with the constraint associated with the abstracted variable. This
is important, as it will retain the desired coherence of our type-system; and it
will be further explained in Sect. 5. For ease of discussion, also in T-BLam, we
require the type variable introduced by the quantifier to be fresh. For programs
with type variable shadowing, this requirement can be met straightforwardly by
variable renaming.

Records. Finally, T-Rec and T-ProjR deal with record types. The former infers
a type for a record with label l if it can infer a type for the inner expression; the
latter says if one can infer a record type {l : A} from an expression e, then it is
safe to access the field l, and inferring type A.

14 J. Alpuim et al.

Fig. 2. Well-formedness and type system of Fi.

Disjoint Polymorphism 15

5 Disjointness

Section 4 presented a type system with disjoint intersection types and disjoint
quantification. In order to prove both type-safety and coherence (in Sect. 6),
it is necessary to first introduce a notion of disjointness, considering polymor-
phism and disjointness quantification. This section presents an algorithmic set
of rules for determining whether two types are disjoint. After, it will show a few
important properties regarding substitution, which will turn out to be crucial
to ensure both type-safety and coherence. Finally, it will discuss the bounds of
disjoint quantification and what implications they have on Fi.

5.1 Algorithmic Rules for Disjointness

The rules for the disjointness judgement are shown in Fig. 3, which consists of
two judgements.

Fig. 3. Algorithmic disjointness.

16 J. Alpuim et al.

Main Judgement. The judgement Γ � A ∗ B says two types A and B are disjoint
in a context Γ . The rules are inspired in the disjointness algorithm described by
λi. D� and D�Sym say that any type is disjoint to �. This is a major difference
to λi, where the notion of disjointness explicitly forbids the presence of � types
in intersections. We will further discuss this difference in Sect. 6.

Type variables are dealt with two rules: Dα is the base rule; and DαSym is
its twin symmetrical rule. Both rules state that a type variable is disjoint to some
type B, if Γ contains any subtype of the corresponding disjointness constraint.
This rule is a specialization of the more general lemma:

Lemma 3 (Covariance of disjointness). If Γ � A ∗ B and B <: C, then
Γ � A ∗ C.

Proof. By double induction, first on the disjointness derivation and then on the
subtyping derivation. The first induction case for Dα does not need the second
induction as it is a straightforward application of subtyping transitivity. �

The lemma states that if a type A is disjoint to B under Γ , then it is also
disjoint to any supertype of B. Note how these two variable rules would allow one
to prove α ∗α, for any variable α. However, under the assumption that contexts
are well-formed, such derivation is not possible as α cannot occur free in A.

The rule for disjoint quantification D∀ is the most interesting. To illustrate
this rule, consider the following two types:

(∀(α ∗ Int). Int&α) (∀(α ∗ Char). Char&α)

When are these two types disjoint? In the first type α cannot be instantiated
with Int and in the second case α cannot be instantiated with Char. There-
fore for both bodies to be disjoint, α cannot be instantiated with either Int
or Char. The rule for disjoint quantification adds a constraint composed of the
intersection of both constraints into Γ and checks for disjointness in the bodies
under that environment. The reader might notice how this intersection does not
necessarily need to be well-formed, in the sense that the types that compose it
might not be disjoint. This is not problematic because the intersections present
as constraints in the environment do not contribute directly to the (coherent)
coercions generated by the type-system. In other words, intersections play two
different roles in Fi, as:

1. Types: restricted (i.e. disjoint) intersections are required to ensure coherence.
2. Constraints: arbitrary intersections are sufficient to serve as constraints

under polymorphic instantiation.

The rules DRec= and DRec�= define disjointness between two single label
records. If the labels coincide, then the records are disjoint whenever their fields’
types are also disjoint; otherwise they are always disjoint. Finally, the remaining
rules are identical to the original rules.

Disjoint Polymorphism 17

Axioms. Axiom rules take care of two types with different language constructs.
These rules capture the set of rules is that A ∗ax B holds for all two types of
different constructs unless any of them is an intersection type, a type variable,
or �. Note that disjointness with type variables is already captured by Dα and
DαSym, and disjointness with the � type is captured by D� and D�Sym.

5.2 Well-Formed Types

In Fi it is important to show that the type-system only produces well-formed
types. This is crucial to ensure coherence, as shown in Sect. 6. However, in the
presence of both polymorphism and disjoint intersection types, extra effort is
needed to show that all types in Fi are well-formed. To achieve this, not only
we need to show that a weaker version of the general substitution lemma holds,
but also that disjointness between two types is preserved after substitution. To
motivate the former (i.e. why general substitution does not hold in Fi), consider
the type ∀(α ∗ Int). (α&Int). The type variable α cannot be substituted by any
type: substituting with Int will lead to the ill-formed type Int&Int. To motivate
the latter, consider the judgement α∗Int � α∗Int. After the substitution of Int
for α on the two types, the sentence α ∗ Int � Int ∗ Int is no longer true, since
Int is clearly not disjoint with itself. Generally speaking, a careless substitution
can violate the constraints in the context. However, if appropriate disjointness
pre-conditions are met, then disjointness can be preserved. More formally, the
following lemma holds:

Lemma 4 (Disjointness is stable under substitution). If (α∗D) ∈ Γ and
Γ � C ∗ D and Γ � A ∗ B and well-formed context [α := C] Γ , then [α := C] Γ �
[α := C] A ∗ [α := C] B.

Proof. By induction on the disjointness derivation of C and D. Special atten-
tion is needed for the variable case, where it is necessary to prove stability of
substitution for the subtyping relation. It is also needed to show that, if C and
D do not contain any variable x, then it is safe to make a substitution in the
co-domain of the environment. �

We can now prove a weaker version of the general substitution lemma:

Lemma 5 (Types are stable under substitution). If Γ � A and Γ � B and
(α ∗ C) ∈ Γ and Γ � B ∗ C and well-formed context [α := B] Γ , then [α := B] Γ �
[α := B] A.

Proof. By induction on the well-formedness derivation of A. The intersection
case requires the use of Lemma 4. Also, the variable case required proving that
if α does not occur free in A, and it is safe to substitute it in the co-domain of
Γ , then it is safe to perform the substitution. �

Now we can finally show that all types produced by the type-system are well-
formed and, more specifically, justify that the disjointness premise on T-TApp
is sufficient for that purpose. More formally, we have that:

18 J. Alpuim et al.

Lemma 6 (Well-formed typing). We have that:

– If Γ � e ⇐ A, then Γ � A.
– If Γ � e ⇒ A, then Γ � A.

Proof. By induction on the derivation and applying Lemma 5 in the case of
T-TApp. �

Even though the meta-theory is consistent, we can still ask: what are the
bounds of disjoint quantification? In other words, which type(s) can be used to
allow unrestricted instantiation, and which one(s) will completely restrict instan-
tiation? As the reader might expect, the answer is tightly related to subtyping.

5.3 Bounds of Disjoint Quantification

Substitution raises the question of what range of types can be instantiated for a
given variable α, under a given context Γ . To answer this question, we ask the
reader to recall the rule Dα, copied below:

α ∗ A ∈ Γ A<:B

Γ � α ∗ B
Dα

Given that the cardinality of Fi’s types is infinite, for the sake of this example
we will restrict the type universe to a finite number of primitive types (i.e.
Int and String), disjoint intersections of these types, � and ⊥. Now we may
ask: how many suitable types are there to instantiate α with, depending on A?
The rule above tells us that the more super-types A has, the more types α has
to be disjoint with. In other words, the choices for instantiating α are inversely
proportional to the number of super-types of A. It is easy to see that the number
of super-types of A is directly proportional to the number of intersections in A.
For example, taking A as Int leads B to be either � or Int; whereas A as
Int&String leaves B as either �, Int or String. Thus, the choices of α are
inversely proportional to the number of intersections in A. Following the same
logic, choosing � (i.e. the 0-ary intersection) as constraint leaves α with the most
options for instantiation; whereas ⊥ (i.e. the infinite intersection) will deliver the
least options. Consequently, we may conclude that � is the empty constraint:
a variable associated to it can be instantiated to any well-formed type. It is a
subtle but very important property, since Fi is a generalization of System F.
Any type variable quantified in System F, can be quantified equivalently in Fi

by assigning it a � disjointness constraint (as seen in Sect. 2.4).

6 Semantics, Coherence and Type-Safety

This section discusses the elaboration semantics of Fi and proves type-safety and
coherence. It will first show how the semantics is described by an elaboration
to System F. Then, it will discuss the necessary extensions to retain coherence,
namely in the coercions of top-like types; coercive subtyping, and bidirectional
type-system’s elaboration.

Disjoint Polymorphism 19

6.1 Target Language

The dynamic semantics of the call-by-value Fi is defined by means of a type-
directed translation to an extension of System F with pairs. The syntax and
typing of our target language is unsurprising:

Types T ::= α | Int | T1 → T2 | ∀α. T | () | (T1, T2)

Terms E ::= x | i | λx. E | E1 E2 | Λα. E |E T | () | (E1, E2) | proj1E | proj2E

Contexts G ::= · | G,α | G, x :T

The highlighted part shows its difference with the standard System F. The inter-
ested reader can find the formalization of the full target language syntax and
typing rules in our Coq development.

Type and Context Translation. Figure 4 defines the type translation function |·|
from Fi types A to target language types T . The notation |·| is also overloaded
for context translation from Fi contexts Γ to target language contexts G.

Fig. 4. Type and context translation.

6.2 Coercive Subtyping and Coherence

Coercive Subtyping. The judgement A1 <: A2 ↪→ E present in Fig. 1, extends
the subtyping relation with a coercion on the right hand side of ↪→ . A coercion
E is just a term in the target language and is ensured to have type |A1| → |A2|

(by Lemma 7). For example, Int&α <: α ↪→ λx. proj2x , generates a target
coercion function with type: (Int, α) → α.

Rules S�, Sα, SZ,S→, S&L1, S&L2, and S&R are taken directly from λi. In
rule Sα, the coercion is simply the identity function. Rule S∀ elaborates disjoint
quantification, reusing only the coercion of subtyping between the bodies of both
types. Rule SRec elaborates records by simply reusing the coercion generated
between the inner types. Finally, all rules produce type-correct coercions:

Lemma 7 (Subtyping rules produce type-correct coercions). If
A1 <: A2 ↪→ E , then · � E : |A1| → |A2|.

Proof. By a straightforward induction on the derivation. �

20 J. Alpuim et al.

Unique Coercions. In order to prove the type-system coherent, the subtyping
relation also needs to be shown coherent. In Fi the following lemma holds:

Lemma 8 (Unique subtype contributor). If A1&A2 <: B, where A1&A2

and B are well-formed types, and B is not top-like, then it is not possible that
the following holds at the same time:

1. A1 <: B
2. A2 <: B

Proof. By double induction: the first on the disjointness derivation (which follows
from A1&A2 being well-formed); the second on type B. The variable cases Dα

and DαSym needed to show that, for any two well-formed and disjoint types A

and B, and B is not toplike, then A cannot be a subtype of B. �

Using this lemma, we can show that the coercion of a subtyping relation
A <: B is uniquely determined. This fact is captured by the following lemma:

Lemma 9 (Unique coercion). If A <: B ↪→ E1 and A <: B ↪→ E2 , where
A and B are well-formed types, then E1 ≡ E2.

Proof. By induction on the first derivation and case analysis on the second. �

6.3 Top-Like Types and Their Coercions

Lemma 8, which is fundamental in the proof of coherence of subtyping, holds
under the condition that B is not a top-like type. Top-like types in Fi include �
as well as other syntactically different types that behave as � (such as �&�).
It is easy to see that the unique subtyping contributor lemma is invalidated if
no restriction on top-like types exists. Since every type is a subtype of � then,
without the restriction, the lemma would never hold.

Rules. Fi’s definition of top-like types extends that from λi. The rules that
compose this unary relation, denoted as �., are presented at the top of Fig. 5.
The new rules are TLRec and TL∀. Both rules say that their constructs are
top-like whenever their enclosing expressions are also top-like.

Coercions for Top-Like Types. Coercions for top-like types require special treat-
ment for retaining coherence. Although Lemma 8 does not hold for top-like types,
we can still ensure that that any coercions for top-like types are unique, even
if multiple derivations exist. The meta-function �A�, shown at the bottom of
Fig. 5, defines coercions for top-like types. With respect to λi the record and
∀ cases are now defined, and there is also a change in the & case (covering
types such as �&�). With this definition, although two derivations exist for
type Char&Int <: �, they both generate the coercion λx.().

Disjoint Polymorphism 21

Fig. 5. Top-like types and their coercions.

Allowing Overlapping Top-Like Types in Intersections. In Fi �&� is a well-
formed disjoint intersection type. This may look odd at first, since all other
types cannot appear more than once in an intersection. Indeed, in λi, �&� is
not well-formed. However, �-types are special in that they have a unique canon-
ical top value, which is translated to the unit value () in the target language. In
other words a merge of two �-types will always return the same value regardless
of which component of the merge is chosen. This is different from merges of
non �-types, which do not have this property. Thus, one may say that �-types
are coherent with every other type. This property makes �-types perfect can-
didates for the empty constraint, but such can only be achieved by allowing �
in intersections. This explains the more liberal treatment of top types Fi when
compared to λi.

6.4 Elaboration of the Type-System and Coherence

In order to prove the coherence result, we refer to the bidirectional type-system
introduced in Sect. 4. The bidirectional type-system is elaborating, producing a
term in the target language while performing the typing derivation.

Key Idea of the Translation. This translation turns merges into usual pairs,
similar to Dunfield’s elaboration approach [24]. It also translates the form of
disjoint quantification and disjoint type application into regular (polymorphic)
quantification and type application. For example, Λ(α∗Int). λx. (x, , 1) in Fi will
be translated into System F’s Λα. λx. (x, 1).

The Translation Judgement. The translation judgement Γ � e : A ↪→ E extends
the typing judgement with an elaborated term on the right hand side of ↪→ .

22 J. Alpuim et al.

The translation ensures that E has type |A|. The two rules for type abstraction
(T-BLam) and type application (T-TApp) generate the expected correspond-
ing coercions in System F. The coercions generated for T-Rec and T-ProjR
simply erase the labels and translate the corresponding underlying term. All the
remaining rules are ported from λi.

Type-Safety. The type-directed translation is type-safe. This property is cap-
tured by the following two theorems.

Theorem 1 (Type preservation). We have that:

– If Γ � e ⇒ A ↪→ E , then |Γ | � E : |A|.
– If Γ � e ⇐ A ↪→ E , then |Γ | � E : |A|.

Proof. By structural induction on the term and the respective inference rule. �
Theorem 2 (Type safety). If e is a well-typed Fi term, then e evaluates to
some System F value v.

Proof. Since we define the dynamic semantics of Fi in terms of the composition
of the type-directed translation and the dynamic semantics of System F, type
safety follows immediately. �

Uniqueness of Type-Inference. An important property of the bidirectional type-
checking is that, given an expression e, if it is possible to infer a type for it, then
e has a unique type.

Theorem 3 (Uniqueness of type-inference). If Γ � e ⇒ A1 ↪→ E1 and

Γ � e ⇒ A2 ↪→ E2 , then A1 = A2.

Proof. By structural induction on the term and the respective inference rule. �

Coherency of Elaboration. Combining the previous results, we are finally able
to show the central theorem:

Theorem 4 (Unique elaboration). We have that:

– If Γ � e ⇒ A ↪→ E1 and Γ � e ⇒ A ↪→ E2 , then E1 ≡ E2.
– If Γ � e ⇐ A ↪→ E1 and Γ � e ⇐ A ↪→ E2 , then E1 ≡ E2.

(“≡” means syntactical equality, up to α-equality.)

Proof. By induction on the first derivation. The most important case is the
subsumption rule:

Γ � e ⇒ A ↪→ E A <: B ↪→ Esub Γ � B

Γ � e ⇐ B ↪→ Esub E
T-Sub

We need to show that Esub is unique (by Lemma 9), and thus to show that
A is well-formed (by Lemma 6). Note that this is the place where stability of
substitutions (used by Lemma 6) plays a crucial role in guaranteeing coherence.
We also need to show that A is unique (by Theorem3). Uniqueness of A is needed
to apply the induction hypothesis. �

Disjoint Polymorphism 23

7 Related Work

Intersection Types, Polymorphism and the Merge Operator. To our knowledge
no previous work presents a coherent calculus which includes parametric poly-
morphism, intersection types and a merge operator. Only Pierce’s F∧ [40] sup-
ports intersection types, polymorphism and, as an extension, the merge operator
(called glue in F∧). However, with such extension, F∧ is incoherent. Various
simply typed systems with intersections types and a merge operator have been
studied in the past. The merge operator was first introduced by Reynold’s in
the Forsythe [48] language. The merge operator in Forsythe is coherent [47],
but it has various restrictions to ensure coherence. For example Forsythe merges
cannot contain more than one function. Many of those restrictions are lifted in
Fi. Castagna et al. [17] studied a coherent calculus with a special merge opera-
tor that works on functions only. The goal was to model function overloading.
Unlike Reynold’s operator, multiple functions are allowed in merges, but non-
functional types are forbidden. More recently, Dunfield [24] formalised a system
with intersection types and a merge operator with a type-directed translation
to the simply-typed lambda calculus with pairs. Although Dunfield’s calculus is
incoherent, it was the inspiration for the λi calculus [38], which Fi extends.

λi solves the coherence problem for a calculus similar to Dunfield’s, by requir-
ing that intersection types can only be composed of disjoint types. λi uses a spec-
ification for disjointness, which says that two types are disjoint if they do not
share a common supertype. Fi does not use such specification as its adaptation
to polymorphic types would require using unification, making the specification
arguably more complex than the algorithmic rules (and defeating the purpose of
having a specification). Fi’s notion of disjointness is based on λi’s more general
notion of disjointness concerning � types, called �-disjointness. �-disjointness
states that two types A and B are disjoint if two conditions are satisfied:

1. (not �A) and (not �B)
2. ∀C. if A <: C and B <: C then �C
A significant difference between the Fi and λi, is that �-disjointness does not
allow � in intersections, while Fi allows this. In other words, condition (1) is
not imposed by Fi. As a consequence, the set of well-formed top-like types is a
superset of λi’s. This is covered in greater detail in Sect. 6.3.

Intersection Types and Polymorphism, Without the Merge Operator. Recently,
Castagna et al. [18] studied a coherent calculus that has polymorphism and
set-theoretic type connectives (such as intersections, unions, and negations).
Their calculus is based on a semantic subtyping relation due to their inter-
pretation of intersection types. The difference to Fi, is that their intersections
are used between function types, allowing overloading (i.e. branching) of types.
For example, they can express a function whose domain is defined on any type,
but executes different code depending on that type:

λ(Int→Bool)∧(α\Int→α\Int)x.(x ∈ Int)?(x mod 2) = 0 : x

24 J. Alpuim et al.

In our system we cannot express some of these intersections, namely the ones that
do not have disjoint co-domains. However, Fi accepts other kinds of intersections
which are not possible to express in their calculus. For example merges with
type (Int → Bool)&(Int → Int) are accepted in Fi. Similarly to Castagna
et al. previous work [17], their work is focused on combining intersections with
functions (but without a merge operator), whereas Fi is concerned with merges
between arbitrary types. Nevertheless, both systems need to express negative
information about type variables. That is, which types a given variable cannot be
instantiated to. In their calculus, difference takes this role (i.e. α\Int); whereas
in Fi, one can express it using disjoint quantification (i.e. ∀(α ∗ Int). . . .).

Going in the direction of higher kinds, Compagnoni and Pierce [19] added
intersection types to System Fω and used a new calculus, Fω

∧ , to model multiple
inheritance. In their system, types include the construct of intersection of types
of the same kind K. Davies and Pfenning [22] studied the interactions between
intersection types and effects in call-by-value languages. They proposed a “value
restriction” for intersection types, similar to value restriction on parametric poly-
morphism. None of these calculi has a merge operator.

Recently, some form of intersection types has been adopted in object-oriented
languages such as Scala [37], TypeScript [4], Flow [3], Ceylon [1], and Grace [9].
There is also a foundational calculus for Scala that incorporates intersection
types [49]. The most significant difference between Fi and those languages/calculi
is that they have no explicit introduction construct like our merge operator. The
lack of a native merge operator leads to several ad-hoc solutions for defining a
merge operator in those languages, as discussed in Sects. 1 and 3.1.

Extensible Records. The encoding of multi-field records using intersection types
and the merge operator first appeared in Forsythe [48]. Castagna et al. [17]
propose an alternative encoding for records. Similarly to Fi’s treatment of elab-
orating records is Cardelli’s work [13] on translating a calculus with extensible
records (F<:ρ) to a simpler calculus without records primitives (F<:). However,
he does not encode multi-field records as intersections/merges hence his trans-
lation is more heavyweight. Crary [21] used intersection types and existential
types to address the problem arising from interpreting method dispatch as self-
application, but he did not use intersection types to encode multi-field records.

Wand [52] started the work on extensible records and proposed row types [53]
for records, together with a concatenation operator, which is used in many calculi
with extensible records [29,35,42,44,51,53]. Cardelli and Mitchell [15] defined
three primitive operations on records that are also standard in type-systems with
record types: selection, restriction, and extension. Several calculi are based on
these three primitive operators (especially extension) [10,28,31,33,34,45]. The
merge operator in Fi generalizes the concatenation operator for records, as its
components may contain any types (and not just records). Systems with con-
catenation typically use a set of constraints/filters (such as lacks and contains)
which are useful to combine several, possibly polymorphic, records [34]. In Fi,
constraints on labels are encoded using disjoint quantification and intersections.
Although systems with records can model structurally typed OO languages, it

Disjoint Polymorphism 25

is harder to encode nominal objects. One advantage of the generality of intersec-
tions and merges is that it is easier to have nominal objects. Unlike systems with
records, which have been extensively studied, there is much less work on inter-
section type systems with a merge operator. An interesting avenue for future
work is to see whether some known compilation and type-inference techniques
for extensible records can be adapted to disjoint intersections and merges.

Traits and Mixins. Traits [23,26,36] and mixins [5,6,8,11,25,27] have become
very popular in object-oriented languages. They enable restricted forms of mul-
tiple inheritance. One of the main differences between traits and mixins are the
way in which ambiguity of names is dealt with. Traits reject programs which com-
pose classes with conflicting method implementations, whereas mixins assume a
resolution strategy, which is usually language dependent. Our example demon-
strated in Sect. 3 suggests that disjointness in Fi enables a model with a philoso-
phy similar to traits: merging multiple values of overlapping types is forbidden.
However while our simple encodings of objects work for very dynamic forms of
prototype inheritance, the work on type systems for mixins/traits usually builds
on more conventional class-based OO models.

Constrained Types. The notion of disjoint quantification is inspired on bounded
polymorphism [12,16]. Such form of polymorphism typically uses types as sub-
typing bounds, whereas disjoint quantification uses types as disjoint (i.e. coher-
ent) bounds. Another line of work are qualified types [32], which uses predicates
on types to express constraints. However, qualified types are only applicable to
the class of Hindley-Milner languages and such predicates are only defined over
monotypes. Fi falls outside this class of languages, plus its constraints can be
expressed using any arbitrary type (and not just monotypes).

8 Conclusion and Future Work

This paper described Fi: a System F-based language that combines intersection
types, parametric polymorphism and a merge operator. The language is proved
to be type-safe and coherent. To ensure coherence the type system accepts only
disjoint intersections. To provide flexibility in the presence of parametric poly-
morphism, universal quantification is extended with disjointness constraints. We
believe that disjoint intersection types and disjoint quantification are intuitive,
and at the same time flexible enough to enable practical applications.

For the future, we intend to create a prototype-based statically typed source
language based on Fi. We are also interested in extending our work to systems
with union types and a ⊥ type. Union types are also widely used in languages
such as Ceylon or Flow, but preserving coherence in the presence of union types
is challenging. The naive addition of ⊥ seems to be problematic. The proofs for Fi

rely on the invariant that a type variable α can never be disjoint to another type
that contains α. The addition of ⊥ breaks this invariant, allowing us to derive,
for example, Γ � α ∗ α. Finally, we could study a similar system with implicit

26 J. Alpuim et al.

polymorphism. Such system would require some changes in the subtyping and
disjointness relations. For instance, subtyping should allow ∀α.α → α <: Int →
Int. Consequently, the disjointness relation would have to be modified, since
valid statements in Fi such as Γ � ∀α.α → α ∗ Int → Int would no longer hold
under the more powerful subtyping relation.

Acknowledgments. We would like to thank the ESOP reviewers for their helpful
comments. This work has been sponsored by the Hong Kong Research Grant Council
Early Career Scheme project number 27200514.

References

1. Ceylon. https://ceylon-lang.org/
2. The Coq Proof Assistant. https://coq.inria.fr/
3. Flow. https://flowtype.org/
4. TypeScript. https://www.typescriptlang.org/
5. Ancona, D., Lagorio, G., Zucca, E.: Jam-designing a Java extension with mixins.

ACM Trans. Program. Lang. Syst. 25(5), 641–712 (2003)
6. Ancona, D., Zucca, E.: An algebraic approach to mixins and modularity. In:

Hanus, M., Rodŕıguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 179–193.
Springer, Heidelberg (1996). doi:10.1007/3-540-61735-3 12

7. Aydemir, B.E., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering
formal metatheory. In: POPL 2008 (2008)

8. Bettini, L., Bono, V., Likavec, S.: A core calculus of higher-order mixins and classes.
In: SAC 2004 (2004)

9. Black, A.P., Bruce, K.B., Homer, M., Noble, J.: Grace: the absence of (inessential)
difficulty. In: Onward! 2012 (2012)

10. Blume, M., Acar, U.A., Chae, W.: Extensible programming with first-class cases.
In: ICFP 2006 (2006)

11. Bracha, G., Cook, W.: Mixin-based inheritance. In: OOPSLA/ECOOP 1990 (1990)
12. Canning, P., Cook, W., Hill, W., Olthoff, W., Mitchell, J.C.: F-bounded polymor-

phism for object-oriented programming. In: FPCA 1989 (1989)
13. Cardelli, L.: Extensible records in a pure calculus of subtyping. In: Theoretical

Aspects of Object-oriented Programming. MIT Press, Cambridge (1994)
14. Cardelli, L., Martini, S., Mitchell, J.C., Scedrov, A.: An extension of system F with

subtyping. Inf. Comput. 109(1–2), 4–56 (1994)
15. Cardelli, L., Mitchell, J.C.: Operations on records. In: Main, M., Melton, A., Mis-

love, M., Schmidt, D. (eds.) MFPS 1989. LNCS, vol. 442, pp. 22–52. Springer,
Heidelberg (1990). doi:10.1007/BFb0040253

16. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-
phism. ACM Comput. Surv. 17(4), 471–522 (1985)

17. Castagna, G., Ghelli, G., Longo, G.: A calculus for overloaded functions with sub-
typing. Inf. Comput. 117(1), 115–135 (1995)

18. Castagna, G., Nguyen, K., Xu, Z., Im, H., Lenglet, S., Padovani, L.: Polymorphic
functions with set-theoretic types: part 1: syntax, semantics, and evaluation. In:
POPL 2014 (2014)

19. Compagnoni, A.B., Pierce, B.C.: Higher-order intersection types and multiple
inheritance. Math. Struct. Comput. Sci. 6(5), 469–501 (1996)

https://ceylon-lang.org/
https://coq.inria.fr/
https://flowtype.org/
https://www.typescriptlang.org/
http://dx.doi.org/10.1007/3-540-61735-3_12
http://dx.doi.org/10.1007/BFb0040253

Disjoint Polymorphism 27

20. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional characters of solvable
terms. Math. Logic Q. 27(2–6), 45–58 (1981)

21. Crary, K.: Simple, efficient object encoding using intersection types. Technical
report, CMU-CS-99-100, Cornell University (1998)

22. Davies, R., Pfenning, F.: Intersection types and computational effects. In: ICFP
2000 (2000)

23. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.P.: Traits: a mechanism
for fine-grained reuse. ACM Trans. Program. Lang. Syst. 28(2), 331–388 (2006)

24. Dunfield, J.: Elaborating intersection and union types. In: ICFP 2012 (2012)
25. Findler, R.B., Flatt, M.: Modular object-oriented programming with units and

mixins. In: ICFP 1998 (1998)
26. Fisher, K.: A typed calculus of traits. In: FOOL 2011 (2004)
27. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: POPL 1998

(1998)
28. Gaster, B.R., Jones, M.P.: A polymorphic type system for extensible records and

variants. Technical report, NOTTCS-TR-96-3, University of Nottingham (1996)
29. Harper, R., Pierce, B.: A record calculus based on symmetric concatenation. In:

POPL 1991 (1991)
30. Harper, R.W., Pierce, B.C.: Extensible records without subsumption. Technical

report, CMU-C5-90-102 (1990)
31. Jones, M., Jones, S.P.: Lightweight extensible records for Haskell. Technical report,

UU-CS-1999-28, Haskell Workshop (1999)
32. Jones, M.P.: Qualified Types: Theory and Practice. Cambridge University Press,

Cambridge (1994)
33. Leijen, D.: First-class labels for extensible rows. Technical report, UU-CS-2004-051,

Utrecht University (2004)
34. Leijen, D.: Extensible records with scoped labels. In: Trends in Functional Pro-

gramming (2005)
35. Makholm, H., Wells, J.B.: Type inference, principal typings, and let-polymorphism

for first-class mixin modules. In: ICFP 2005 (2005)
36. Odersky, M., Zenger, M.: Scalable component abstractions. In: OOPSLA 2005

(2005)
37. Odersky, M., et al.: An overview of the Scala programming language. Technical

report, IC/2004/64, EPFL Lausanne, Switzerland (2004)
38. Oliveira, B.C.S., Shi, Z., Alpuim, J.: Disjoint intersection types. In: ICFP 2016

(2016)
39. Oliveira, B.C.S., Storm, T., Loh, A., Cook, W.R.: Feature-oriented programming

with object algebras. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp.
27–51. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39038-8 2

40. Pierce, B.C.: Programming with intersection types and bounded polymorphism.
Ph.D. thesis, Carnegie Mellon University (1991)

41. Pierce, B.C., Turner, D.N.: Simple type-theoretic foundations for object-oriented
programming. J. Funct. Program. 4(2), 207–247 (1994)

42. Pottier, F.: A constraint-based presentation and generalization of rows. In: LICS
2003 (2003)

43. Pottinger, G.: A type assignment for the strongly normalizable λ-terms. In: To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (1980)

44. Rémy, D.: Typing record concatenation for free. In: POPL 1992 (1992)
45. Rémy, D.: Type inference for records in natural extension of ML. In: Theoretical

Aspects of Object-Oriented Programming. MIT Press, Cambridge (1994)

http://dx.doi.org/10.1007/978-3-642-39038-8_2

28 J. Alpuim et al.

46. Rendel, T., Brachthäuser, J.I., Ostermann, K.: From object algebras to attribute
grammars. In: OOPSLA 2014 (2014)

47. Reynolds, J.C.: The coherence of languages with intersection types. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 675–700. Springer, Heidelberg
(1991). doi:10.1007/3-540-54415-1 70

48. Reynolds, J.C.: Design of the programming language Forsythe. In: Algol-like lan-
guages, Birkhäuser Boston (1997)

49. Rompf, T., Amin, N.: Type soundness for dependent object types. In: OOPSLA
2016 (2016)

50. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: composable units of
behaviour. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45070-2 12

51. Sulzmann, M.: Designing record systems. Technical report, YALEU/DCS/RR-
1128, Yale University (1997)

52. Wand, M.: Complete type inference for simple objects. In: LICS 1987 (1987)
53. Wand, M.: Type inference for record concatenation and multiple inheritance. In:

LICS 1989 (1989)

http://dx.doi.org/10.1007/3-540-54415-1_70
http://dx.doi.org/10.1007/978-3-540-45070-2_12

Generalizing Inference Systems by Coaxioms

Davide Ancona(B), Francesco Dagnino, and Elena Zucca

DIBRIS, Universitá di Genova, Genoa, Italy
{davide.ancona,elena.zucca}@unige.it, fra.dagn@gmail.com

Abstract. We introduce a generalized notion of inference system to sup-
port structural recursion on non well-founded datatypes. Besides axioms
and inference rules with the usual meaning, a generalized inference sys-
tem allows coaxioms, which are, intuitively, axioms which can only be
applied “at infinite depth” in a proof tree. This notion nicely subsumes
standard inference systems and their inductive and coinductive interpre-
tation, while providing more flexibility. Indeed, the classical results on
the existence and constructive characterization of least and greatest fixed
points can be extended to our generalized framework, interpreting recur-
sive definitions as fixed points which are not necessarily the least, nor the
greatest one. This allows formal reasoning in cases where the inductive
and coinductive interpretation do not provide the intended meaning, or
are mixed together.

1 Introduction

Recently several approaches [5,10,11,18,19,25,32] have been proposed to pro-
gram with coinductive (coalgebraic) datatypes to support corecursion, that is,
the ability of defining predicates or functions by structural recursion on non-
well-founded datatypes. Such solutions are generally characterized by a strong
dichotomy between inductive and coinductive definitions, the former being based
on the notion of least fixed point, and the latter on that of greatest fixed point.
Moreover, some proposals provide language abstractions to allow the program-
mer to interpret corecursive definitions not in the standard coinductive way. As
a consequence, formal reasoning about programs that exploit such abstractions
cannot be based on usual proof principles.

In this paper, we introduce a framework for interpreting recursive definitions
as fixed points which are not necessarily the least, nor the greatest one. This
allows formal reasoning in cases where the inductive and coinductive interpreta-
tion do not provide the intended meaning, or are mixed together.

To introduce the idea, let us consider the following recursive definitions
of functions on lists of integers, with the meaning suggested by the name.

Special thanks go to all anonymous reviewers, who helped us improve this paper,
and to Bart Jacobs for an enlightening discussion with him on the use of coaxioms
for modeling divergence with big-step semantics.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 29–55, 2017.
DOI: 10.1007/978-3-662-54434-1 2

30 D. Ancona et al.

let rec allPos = function [] -> true | x::l -> x >0 &&

allPos l

let rec member y =

function [] -> false | x::l -> x==y|| member y l

let rec elems = function

[] -> [] |

x::l -> let xs = elems l in if member x xs then xs else

x::xs

let rec maxElem = function [x] -> x | x::l -> max x

(maxElem l)

These definitions are written above in a widely-known programming language
syntax (OCaml) for concreteness, but this is not relevant here: for such first-order
functions, in most programming languages we can write analogous recursive def-
initions, and they are usually interpreted inductively. This means that, turning,
more abstractly, such recursive definitions into meta-rules of an inference sys-
tem, they are interpreted as the set of judgments which have a finite proof tree.
For instance, the meta-rules for the judgment allPos(l, b) are as follows:

allPos(Λ, T) allPos(x:l, F)
x ≤ 0

allPos(l, b)

allPos(x:l, b)
x > 0

where Λ and : denote the empty list, and the list constructor, respectively, and
T and F denote the boolean values. This interpretation works perfectly well on
finite lists. However, with the inductive interpretation the above functions may
happen to be undefined on infinite lists. For instance, the judgment allPos(l, b)
obviously has no finite proof tree if l is an infinite list of positives.

Indeed, to support structural recursion on non-well-founded structures, such
as infinite lists or graphs, we typically have to use coinduction. The coinductive
interpretation of an inference system is the set of judgments which have a (finite
or infinite) proof tree.

In some cases, the coinductive interpretation actually yields the intended
meaning. For instance, taking a slightly different version of allPos as a unary
predicate allPos(l), as it would be expressed in a logic program:

allPos(Λ)

allPos(l)

allPos(x : l)
x > 0

it is easy to see that with the coinductive interpretation we obtain the intended
meaning on infinite lists as well, since we get an infinite proof tree if and only
if all the elements in the list are positive. Indeed, this interpretation has been
fruitfully used in coinductive logic programming (coLP) [3,31–33].

However, considering instead the previous relation allPos(l, b), the coinduc-
tive interpretation fails to be a function, since for infinite lists of positives both
the judgment allPos(l, T) and allPos(l, F) can be proved. Moreover, if we con-
sider the predicate corresponding to the boolean function member:

member(x, x : l)

member(x, l)

member(x, y : l)
x �= y

Generalizing Inference Systems by Coaxioms 31

then the correct interpretation is the inductive one. Indeed, the coinductive inter-
pretation contains all judgments member(x, l) where l is an infinite list. Finally,
for the predicates corresponding to the other example functions, which do not
return a boolean, neither the inductive nor the coinductive interpretation yields
the intended semantics. In particular, the coinductive interpretation contains
too many elements. For instance, taking l the infinite list of 1s, by coinductively
interpreting elems and maxElem we get, together with the correct judgments,
also wrong ones, as will be formally shown in the following section.

All these examples suggest the idea that we should be able to “filter out”
in some way the (infinite) proof trees corresponding to the coinductive inter-
pretation, keeping only some of them. We make this possible by introducing
coaxioms. A coaxiom is, intuitively, an axiom which can only be applied “at
infinite depth” in a proof tree. An inference system interpreted inductively cor-
responds to a generalized inference system with no coaxioms, while an inference
system interpreted coinductively corresponds to a generalized inference system
where there is a coaxiom for each judgment.

From the model-theoretic point of view, coaxioms allow the programmer to
choose the desired fixed point for a recursive definition, by selecting also fixed
points which are neither the least, nor the greatest one. For instance, in the
inference system for allPos(l, b), the intended meaning is the set of judgments
allPos(l, b) where b is true if and only if the (finite or infinite) list l contains only
positives. This set is a fixed point which lies between the least, which is undefined
on infinite lists of positives, and the greatest, which returns both boolean values,
hence is undetermined, on such lists.

Coaxioms are partly inspired by an extension of coLP and coinductive SLD
resolution (coSLD) [31–33] with finally clauses [5], to allow more flexible inter-
pretations of corecursive definitions of predicates, and by a related proposal in
the context of object-oriented programming [10,11]. In this paper we take a more
abstract and general approach and provide a framework for interpreting core-
cursive definitions in a flexible way and to formally reason on their correctness.

The rest of the paper is organized as follows: in Sect. 2 we introduce the notion
of generalized inference system with coaxioms, and show how to express the pre-
vious examples and others. In Sect. 3 we formally define the fixed point semantics
of inference systems with coaxioms in the more general setting of complete lat-
tices. In Sect. 4 we discuss the equivalent semantics based on the proof-theoretic
approach, and in Sect. 5 we illustrate the related proof techniques on some of
the examples. In Sect. 6 we show some more involved examples and discuss some
subtleties, Sect. 7 surveys related work, and finally in Sect. 8 we summarize our
contribution and discuss further work. A prototype meta-interpreter1 has been
developed to test the examples provided in Sects. 2 and 6.

1 Available at http://www.disi.unige.it/person/AnconaD/Software/esop17artifact.
zip.

http://www.disi.unige.it/person/AnconaD/Software/esop17artifact.zip
http://www.disi.unige.it/person/AnconaD/Software/esop17artifact.zip

32 D. Ancona et al.

2 Inference Systems with Coaxioms

We recall some standard notions about inference systems [1,23].
Assume in the following a set U called the universe, whose elements are called

judgments.
An inference system I consists of a set of inference rules, which are pairs

Pr
c

, with Pr ⊆ U the set of premises, c ∈ U the consequence.
The intuitive interpretation of a rule is that if the premises Pr hold then the

consequence c should hold as well. In particular, an axiom is (the consequence
of) a rule with empty set of premises, which necessarily holds.

The (one step) inference operator FI : ℘(U) → ℘(U) associated with an
inference system I is defined by:

FI(S) = {c | Pr ⊆ S,
Pr

c
∈ I}

That is, FI(S) is the set of judgments that can be inferred (in one step) from
the judgments in S using the inference rules. Note that this set always includes
axioms.

A set S is closed if FI(S) ⊆ S, and consistent if S ⊆ FI(S). That is, no new
judgments can be inferred from a closed set, and all judgments in a consistent
set can be inferred from the set itself.

The inductive interpretation of I, denoted Ind(I), is the smallest closed set,
that is, the intersection of all closed sets, and the coinductive interpretation of I,
denoted CoInd(I), is the largest consistent set, that is, the union of all consistent
sets. Both interpretations are well-defined and can be equivalently expressed as
the least (respectively, greatest) fixed point of the inference operator. Moreover,
under continuity hypotheses on FI , they can be computed as follows:

Ind(I) = ⋃{Fn
I(∅) | n ≥ 0}

CoInd(I) = ⋂{Fn
I(U) | n ≥ 0}

The inductive and coinductive interpretation can also be characterized in terms
of proof trees. That is, defining a proof tree as a tree whose nodes are (labeled
with) judgments in U , and there is a node c with set of children Pr only if there

exists a rule
Pr
c

, it can be shown [23] that Ind(I) and CoInd(I) are the sets

of judgments which are the root of a finite2 and an arbitrary (finite or infinite)
proof tree, respectively.

We introduce now our generalization.
An inference system with coaxioms is a pair (I, γ) consisting of an inference

system I and a set of coaxioms γ, with γ ⊆ U . A coaxiom c will be written•
c
, very much like an axiom, and analogously to an axiom it can be used as an

initial assumption to derive other judgments. However, coaxioms will be used in
a special way, explained in the following.
2 Under the common assumption that the set of premises of all the rules are finite,
otherwise we should say a finite depth tree.

Generalizing Inference Systems by Coaxioms 33

To illustrate the notion, we will consider an introductory example which
computes the judgment n �→N meaning that N is the set of nodes reachable
from a node n of a given graph. Let us represent a graph by its set of nodes V
and a function adj which returns all the adjacent nodes. As usual, sets of rules
can be expressed by a metarule with side conditions, and the same can be done
for sets of coaxioms.

n1
�→N1 . . . nk

�→Nk

n
�→{n} ∪ N1 ∪ . . . ∪ Nk

adj(n) = {n1, . . . , nk} •
n

�→∅
n ∈ V

For instance, in the case of a graph with nodes a, b, c, with an arc from a into b
and conversely, and c isolated, we would get the following metarules and coax-
ioms:

b
�→N

a
�→{a} ∪ N

a
�→N

b
�→{b} ∪ N c

�→{c}
•

a
�→∅

•
b

�→∅
•

c
�→∅

If we interpret the metarules inductively (excluding the coaxioms), then we
get only the judgment c

�→{c}. In other words, a visit computing n �→N , like
other judgments on graphs, should mark already encountered nodes to avoid non
termination, since the graph structure is not well-founded. On the other hand,
if we interpret the metarules coinductively (excluding again the coaxioms), then
we get the correct judgments a

�→{a, b} and b
�→{a, b}, but we also get the wrong

judgments a
�→{a, b, c} and b

�→{a, b, c}.
We define a different interpretation, called interpretation generated by the

coaxioms and denoted Gen(I, γ), which takes into account the coaxioms in the
following way.

1. First, we take the smallest closed superset of the set of coaxioms. In other
words, we consider the inference system I�γ obtained enriching I by judg-
ments in γ considered as axioms, and we take its inductive interpretation
Ind(I�γ).

2. Then, we take the largest consistent subset of Ind(I�γ). In other words, we
take the coinductive interpretation of the inference system obtained from I
by keeping only rules with consequence in Ind(I�γ), that is, we define

Gen(I, γ) = CoInd(I�Ind(I�γ))

where I�S , with I inference system and S ⊆ U , denotes the inference system
obtained from I by keeping only rules with consequence in S.

In the example, in the first phase we obtain the following judgments (each
line corresponds to an iteration of the inference operator):

a
�→∅, b

�→∅, c
�→∅, c

�→{c}
a

�→∅, b
�→∅, c

�→∅, c
�→{c}, a

�→{a}, b
�→{b}

a
�→∅, b

�→∅, c
�→∅, c

�→{c}, a
�→{a}, b

�→{b}, a
�→{a, b}, b

�→{a, b}

The last set is closed, hence it is Ind(I�γ).
In the second phase, each iteration of the inference operator removes judg-

ments which cannot be inferred from the previous step, that is, we get:

34 D. Ancona et al.

c
�→{c}, a

�→{a}, b
�→{b}, a

�→{a, b}, b
�→{a, b}

c
�→{c}, a

�→{a, b}, b
�→{a, b}

This last set is consistent, hence it is Gen(I, γ), and it is indeed the expected
result.

Note that the inductive and coinductive interpretation can be obtained as
special cases of the interpretation generated by coaxioms of an inference system,
notably:

– the inductive interpretation when the set of coaxioms is empty
– the coinductive interpretation when the set of coaxioms is the universe.

In terms of proof trees, judgments in Gen(I, γ) are those which have an
arbitrary (finite or infinite) proof tree t in the inference system I, whose nodes
all have a finite proof tree in I�γ . Note that for nodes in t which are roots of a
finite subtree this always holds (a finite proof tree in I is a finite proof tree in
I�γ as well), hence the condition is only significant for nodes which are roots of
an infinite path in the proof tree.

For instance, in the example, the judgment a
�→{a, b} has an infinite proof

tree in I where each node has a finite proof tree in I�γ , as shown below.
. . .

a
�→{a, b}

b
�→{a, b}

a
�→{a, b}

a
�→∅

b
�→{b}

a
�→{a, b}

b
�→∅

a
�→{a}

b
�→{a, b}

Moreover, there is another important property which will be proved in Sect. 4:
if a judgment belongs to Gen(I, γ), then, for all n ≥ 0, it has a proof tree in the
inference system I�γ where coaxioms can only be used at depth greater than n.

For instance, in the example, it is easy to see that, for any n, we can obtain
a finite proof tree for the judgment a

�→{a, b} in I�γ where coaxioms are used at
depth greater than n, as shown below.

a
�→∅

b
�→{b}

a
�→{a, b}

b
�→∅

a
�→{a}

b
�→{a, b}

a
�→{a, b}

a
�→∅

b
�→{b}

a
�→{a, b}

b
�→{a, b}

a
�→{a, b}

. . .

This last property motivates the name “coaxioms”. Indeed, dually to axioms,
which can be used in the proof tree at every depth, including 0, coaxioms can
only be used “at an infinite depth” in the proof tree. Therefore, coaxioms filter
out undesired infinite proof trees; in other words, they bound from above the
greatest fixed point corresponding to the semantics of the generalized inference
system.

As a second example, we consider the definition of the first sets in a grammar.
Let us represent a context-free grammar by its set of terminals T , its set of non-
terminals N , and all the productions A ::= β1 | . . . | βn with left-hand side A,

Generalizing Inference Systems by Coaxioms 35

for each non-terminal A. Recall that, for each α ∈ (T ∪ N)+, we can define the
set first(α) = {σ | σ ∈ T, α→�σβ}. Informally, first(α) is the set of the initial
terminal symbols of the strings which can be derived from a string α in 0 or
more steps.

The following inference system with coaxioms defines the judgment
first(α,F), with F ⊆ T .

first(σα, {σ})σ ∈ T
first(A, F)

first(Aα, F)

A ∈ N
A�→�ε

first(A, F) first(α, F ′)
first(Aα, F ∪ F ′)

A ∈ N
A→�ε

first(ε, ∅)
first(β1, F1) . . . first(βn, Fn)

first(A, F1 ∪ . . . ∪ Fn)
A ::= β1 | . . . | βn

•
first(A, ∅)A ∈ N

The rules of the inference system correspond to the natural recursive defini-
tion of first. Note, in particular, that in a string of shape Aα, if the non-terminal
A is nullable, that is, we can derive from it the empty string, then the first set
for Aα should also include the first set for α.

As in the previous example on graphs, the problem with this recursive defi-
nition is that, since the non-terminals in a grammar can mutually refer to each
other, the function defined by the inductive interpretation can be undefined.
That is, a naive top-down implementation might not terminate. For this rea-
son, first sets are typically computed by an imperative bottom-up algorithm, or
the top-down implementation is corrected by marking already encountered non-
terminals, analogously to what is done for visiting graphs. Again as in the previ-
ous example, the coinductive interpretation may fail to be a function, whereas,
with the coaxioms, we get the expected result.

We express now as inference systems with coaxioms the recursive definitions
of functions shown at the beginning of Sect. 1. Let Z denote the set of integers,
and L the set of (finite and infinite) lists of integers.

The first example is the function which checks whether all the elements of
a list are positive, expressed by judgments of shape allPos(l, b) with l ∈ L and
b ∈ {T, F}.

allPos(Λ, T) allPos(x:l, F)
x ≤ 0

allPos(l, b)

allPos(x:l, b)
x > 0

•
allPos(l, T)

With the coaxioms, we obtain the expected function also on infinite lists
of positives: indeed, we only consider the infinite trees where the nodes have a
finite proof tree in the inference system enriched by the coaxioms. In this way,
the infinite tree where b = F is filtered out.

The function which checks whether an element belongs to a list, expressed
by judgments of shape member(x, l, b) with x ∈ Z, l ∈ L and b ∈ {T, F}, is a
very similar example, with the difference that the coaxioms map every list into
false rather than true.

member(x, Λ, F) member(x, x:l, T)

member(x, l, b)

member(x, y : l, b)
x �= y

•
member(x, l, F)

36 D. Ancona et al.

Analogously to the previous example, with the coaxioms we obtain the
expected result also on infinite lists which do not contain the element.

The function which returns the set of the elements contained in a list is
expressed by judgments of shape elems(l, xs), with l ∈ L and xs ∈ ℘(Z).

elems(Λ, ∅)
elems(l, xs)

elems(x:l, {x} ∪ xs)

•
elems(l, ∅)

In this case, the inductive interpretation gives the expected result only on
finite lists, and the coinductive interpretation fails to be a function on infinite
lists. For instance, for l the infinite list of 1s, any judgment elems(l, xs) with
1 ∈ xs can be derived. Indeed, for any such judgment we can construct an
infinite proof tree which is a chain of applications of the last metarule. With the
coaxioms, we only consider the infinite trees where the node elems(l, xs) has a
finite proof tree in the inference system enriched by the coaxioms. This is only
true for xs = {1}.

Note that coaxioms are needed to get the expected result not only on regular
lists. Considering for example the infinite list 1 : 2 : 1 : 1 : 2 : 1 : 1 : 1 : 2 : ..., it
is easy to see that the same reasoning holds.

Finally, the function which returns the greatest element contained in a (non-
empty) list is expressed by judgments of shape max(l, x), with l ∈ L and x ∈ Z.

max(x:Λ, x)

max(l, y)

max(x:l, z)
z = max(x, y)

•
max(x:l, x)

Analogously to the previous example, the coinductive interpretation fails to
be a function (for instance, for l the infinite list of 1s, any judgment max(l, x)
with x ≥ 1 can be derived), and the coaxioms “filter out” the wrong results.

3 Bounded Fixed Points

In this section, after recalling basic definitions, we define the bounded fixed point
generated by an element, justifying its existence by the Knaster-Tarski theorem
[34]. Then, we show that the interpretation generated by coaxioms of an inference
system corresponds to a bounded fixed point in the powerset lattice. Finally, we
provide a constructive characterization of bounded fixed points, again justified
by a classical result (Kleene theorem). We refer to [22] for an history of these
theorems with a number of good references.

In the following we assume a complete lattice (L,≤) with top and bottom
elements � and ⊥, and meet and join operations
 and �. Moreover, we use

�

and
⊔

to denote meet (greatest lower bound) and join (least upper bound) of a
set, respectively.

Basic Definitions. Let F : L → L, and x ∈ L. Then, x is a pre-fixed point of
F iff F(x) ≤ x; x is a post-fixed point of F iff x ≤ F(x); and x is a fixed point of
F iff x = F(x). Pre-fixed points will be also called closed, and post-fixed points

Generalizing Inference Systems by Coaxioms 37

will be also called consistent points. A function F : L → L is monotone if, for
all x, y ∈ L, x ≤ y ⇒ F(x) ≤ F(y).

In this general setting, the role of the universe is played by the top � of L,
that of the inference system by a monotone function F, and that of the co-axioms
by a distinguished element γ ∈ L, called generator .

Definition of Bounded Fixed-Point. In the following we assume a monotone
function F : L → L. The bounded fixed point generated by an element γ is the
greatest fixed point of the monotone function obtained by restricting F to the
down-set of the least pre-fixed point above γ. The construction is detailed and
justified below. First of all we introduce two notations.

Definition 1. Let x ∈ L. Then:

– The closure of x w.r.t. F is the element ∇F(x) of L defined by
∇F(x) =

�{y ∈ L | x ≤ y, F(y) ≤ y}.
– The kernel of x w.r.t. F is the element ΔF(x) of L defined by

ΔF(x) =
⊔{y ∈ L | y ≤ x, y ≤ F(y)}.

We can also see ΔF and ∇F as endofunctions on L, which are instances of well-
known notions in lattice theory: closure and kernel operators.

From this definition immediately follows the bounded coinduction principle.
Indeed, given β ∈ L, we have:

(CoInd) If x ≤ F(x) (x post-fixed), and x ≤ β, then x ≤ ΔF(β).

The standard coinduction principle can be obtained as a specific instance of
the more general principle above, by taking β = �; for this particular case the
hypothesis x ≤ β can be omitted, since it trivially holds. We will show in detail
how to use this proof principle in Sect. 5.

The closure of an arbitrary element γ turns out to be the best closed approx-
imation of γ, that is, the least pre-fixed point of F above γ, as shown below.

Proposition 1. Let γ ∈ L. Then, z = ∇F(γ) is the least pre-fixed point of F
above γ.

Proof. Set S = {x ∈ L | γ ≤ x, F(x) ≤ x}. We have to prove that z ∈ S, which
then implies, by definition, that it is its least element. Since γ is a lower bound
for all x ∈ S, by definition of meet we get γ ≤ z. We can show that z is a
pre-fixed point of F by the following steps:

– for all x ∈ S, F(x) ≤ x (def. of S) and z ≤ x (def. of
�

);
– for all x ∈ S, F(x) ≤ x (def. of S) and F(z) ≤ F(x) (F is monotone);
– for all x ∈ S, F(z) ≤ x (transitivity);
– F(z) ≤ z (def. of

�
).

�

38 D. Ancona et al.

Note that if γ = ⊥ we have that ∇F(⊥) is the least pre-fixed point of F, that,
thanks to the Knaster-Tarski theorem, is the least fixed point of F.
The kernel of a pre-fixed point β turns out to be the greatest (post-)fixed-point
of F below β, as shown below.

Proposition 2. Let β ∈ L. If β is a pre-fixed point of F and z = ΔF(β), then
F(z) = z.

Proof. If β is an element of a complete lattice, then Lβ = {x ∈ L | x ≤ β} is
also a complete lattice, with top element β. If β is a pre-fixed point of F, then
F is a monotone endofunction on Lβ . Therefore, by the Knaster-Tarski theorem
F(z) = z.

We can now define bounded fixed points generated by an element.

Definition 2 (Bounded fixed point). Let γ ∈ L. The bounded fixed point
of F generated by γ, denoted Gen(F, γ), is the greatest fixed point of F below the
closure of γ, that is, Gen(F, γ) = ΔF(∇F(γ)).

The bounded fixed point is well-defined since, thanks to Proposition 2, there
exists the greatest fixed point below β, provided that the bound is a pre-fixed
point. Since in general γ might not be pre-fixed, we need to construct a pre-fixed
point from γ. Note that the first step of this construction cannot be expressed
as the least fixed point of F on the complete lattice {x ∈ L | x ≥ γ}, since in
general F may fail to be an endofunction (e.g., if F is the function which maps
any element to ⊥ < γ). Indeed, ∇F(γ) is not a fixed point in general, but only
a pre-fixed point: we need the two steps to obtain a fixed point.

Note also that the definition of bounded fixed point is asymmetric, that is,
we take the greatest fixed point bounded from above by a least (pre-)fixed point,
rather than the other way round. This is motivated by the intuition, explained
in the previous section, that we essentially need a greatest fixed point, since we
want to deal with non-well-founded structures, but we want to “constrain” in
some way such greatest fixed point. Investigating the symmetric construction is
a matter of further work (see the Conclusion).

An important fact is that bounded fixed points are a generalization of both
least and greatest fixed points, since they can be obtained by taking particular
generators, as stated in the following proposition.

Proposition 3.

1. Gen(F,�) is the greatest fixed point of F
2. Gen(F,⊥) is the least fixed point of F.

Proof. 1. Note that ∇F(�) = �, since the only pre-fixed point above � is �
itself, therefore we get Gen(F,�) = ΔF(�), that is, the greatest fixed point
of F, by Proposition 2.

2. As already noted ∇F(⊥) is the least fixed point of F, in particular ∇F(⊥) is
post-fixed, therefore we get Gen(F,⊥) = ΔF(∇F(⊥)) = ∇F(⊥), namely it is
the least fixed point of F.

�

Generalizing Inference Systems by Coaxioms 39

Coaxioms as Generators. In Sect. 2 we have described two steps to construct
Gen(I, γ), the interpretation generated by coaxioms γ of an inference system I.

1. First, we consider the inference system I�γ obtained enriching I by judgments
in γ considered as axioms, and we take its inductive interpretation Ind(I�γ).

2. Then, we take the coinductive interpretation of the inference system obtained
from I by keeping only rules with consequence in Ind(I�γ), that is, we define

Gen(I, γ) = CoInd(I�Ind(I�γ))

The definition of bounded fixed point is the formulation of these two steps in
the general setting of complete lattices. Indeed, the inference operator FI is a
monotone function on the complete lattice ℘(U) obtained by taking set inclu-
sion as order, and specifying the coaxioms γ corresponds to fixing an arbitrary
element of L as generator. To show the correspondence in a precise way, we give
an alternative and equivalent characterization of closure.

Proposition 4. Let γ ∈ L and consider the function F�γ : L → L defined by
F�γ(x) = F(x) � γ, that is clearly monotone. Then, ∇F�γ

(⊥) = ∇F(γ).

Proof. To prove the statement it is enough to show that y ∈ L is a pre-fixed
point of F�γ iff y is a pre-fixed point of F and y ≥ γ. This trivially follows
from the definition of F�γ and �, indeed F(y) � γ = F�γ(y) ≤ y is equivalent to
F(y) ≤ y and γ ≤ y.
�

By this alternative characterization we can formally state the correspondence
with the two steps for defining Gen(I, γ).

Theorem 1. Let I be an inference system and γ, β ∈ ℘(U), with β closed w.r.t.
FI , then the following facts hold:

1. (FI)�γ = F(I�γ) (so we can safely omit brackets)
2. ∇FI (γ) = Ind(I�γ)
3. ΔFI (β) = CoInd(I�β).

Proof. 1. We have to show that, for S ⊆ U , (FI)�γ(S) = F(I�γ)(S). If c ∈
(FI)�γ(S), then either c ∈ γ or c ∈ FI(S); in the former case there exists

c
∈ I�γ by definition, in the latter there exists

Pr
c

∈ I such that Pr ⊆ S,

and this implies
Pr
c

∈ I�γ . Therefore in both cases c ∈ F(I�γ)(S).

Conversely, if c ∈ F(I�γ)(S), then there exists
Pr
c

∈ I�γ such that Pr ⊆ S. By

definition of I�γ , either
Pr
c

∈ I or c ∈ γ and Pr = ∅, therefore in the former

case c ∈ FI(S) and in the latter c ∈ γ, thus in both cases c ∈ (FI)�γ(S).
2. By Proposition 4 we get that ∇FI (γ) = ∇FI�γ

(∅), that is, the least fixed
point of FI�γ

, thanks to statement (1) of this proposition and Proposition 2.
Therefore, it corresponds to the inductive interpretation of the inference sys-
tem I�γ , Ind(I�γ).

40 D. Ancona et al.

3. Let X = CoInd(I�β), we have to show the two inclusions. First note that
X is a post-fixed point w.r.t. FI , indeed X ⊆ FI�β

(X), by definition of the
coinductive interpretation, and FI�β

(X) ⊆ FI(X), since each c ∈ FI�β
(X) is

the consequence of a rule
Pr
c

∈ I�β and by construction of I�β , this rule is

also a rule of I, therefore c ∈ FI(X). In addition c ∈ β again by definition of
I�β , thus X ⊆ β, therefore by (CoInd) we get X ⊆ ΔFI (β).

On the other hand ΔFI (β) is a post-fixed point of FI�β
. To show this fact

first we note that for each S ⊆ β we have FI(S) ⊆ FI�β
(S), indeed if c ∈

FI(S) then there exists a rule
Pr
c

∈ I such that Pr ⊆ S, moreover we have

that FI(S) ⊆ FI(β) ⊆ β since β is closed, so
Pr
c

∈ I�β that implies that

c ∈ FI�β
. Then, since ΔFI (β) is a post-fixed point of FI below β, we get that

ΔFI (β) ⊆ FI(ΔFI (β)) ⊆ FI�β
(ΔFI (β)), so it is a post-fixed point. Therefore

by the coinduction principle we get the other inclusion.

Thanks to Theorem 1, we can conclude that, given an inference system with
coaxioms (I, γ):

Gen(I, γ) = CoInd(I�Ind(I�γ)) = ΔFI (∇FI (γ)) = Gen(FI , γ)

That is, the interpretation generated by coaxioms γ of the inference system I is
exactly the bounded fixed point of FI generated by γ.

Constructive Characterization of Bounded Fixed Point. The Kleene’s
theorem states that, under continuity hypotheses on F, we can characterize its
greatest fixed point as the greatest lower bound of the descending chain obtained
by repeatedly applying F to �. By considering this theorem for the sublattice
obtained as down-set of the bound, we can obtain a constructive characterization
of the bounded fixed point generated by an element.

We recall some basic definitions. A descending chain in L is a set C = {xi |
i ∈ N} ⊆ L such that, for each i ∈ N, xi ≥ xi+1. A function F : L → L preserves
meet of descending chains if and only if, for all descending chains C in L, we
have F(

�
C) =

�
F(C) where F(C) = {F(xi) | xi ∈ C}.

Given a function F : L → L and an element β ∈ L, set CF,β = {Fn(β) |
n ∈ N}.

Proposition 5. Let F : L → L be a function that preserves meet of descending
chains, and β ∈ L a pre-fixed point of F. Then:

1. CF,β is a descending chain in L
2. ΔF(β) =

�
CF,β, that is,

�
CF,β is the greatest fixed point of F below β.

Proof. 1. Since F preserves meet of descending chains, it is monotone, therefore,
since β is pre-fixed, we get the thesis.

Generalizing Inference Systems by Coaxioms 41

2. If β is an element of a complete lattice, then Lβ = {x ∈ L | x ≤ β} is also
a complete lattice, with top element β. If β is a closed point of F, then F
is a monotone endofunction on Lβ and it still preserves meet of descending
chains. Therefore applying Kleene’s theorem to Lβ we get the thesis.

�
Note that for this constructive characterization we need an additional

hypothesis on F. Under this assumption, the result of Proposition 5 immediately
applies to our construction, as stated in the following corollary.

Corollary 1. Let F : L → L be a function that preserves meet of descending
chains, and γ ∈ L. Set β = ∇F(γ). Then Gen(F, γ) =

�
CF,β.

Proof. By definition Gen(F, γ) = ΔF(β). Since β is pre-fixed by Proposition 1
and F preserves meet of descending chains, by Proposition 5 we get the thesis.
�

The characterization introduced above is important, but requires stronger
assumptions on the function F. We now state a weaker result that is often enough
for proving soundness, as will be illustrated in Sect. 5.

Proposition 6. Let F : L → L be monotone and β ∈ L a pre-fixed point, then

ΔF(β) = ΔF

(�
CF,β

)

hence, in particular, ΔF(β) ≤ �
CF,β.

Proof. Set z =
�

CF,β . First of all we note that z is pre-fixed, indeed F(z) ≤�
Fn+1(β) = β
 �

Fn+1(β) = z. We prove separately the two inequalities.

– ΔF(z) ≤ ΔF(β). By Proposition 2 ΔF(z) is a fixed point, so in particular it is
a post-fixed point, below z, by definition of

�
we get z ≤ β, so by transitivity

ΔF(z) ≤ β. By (CoInd) we get ΔF(z) ≤ ΔF(β).
– ΔF(β) ≤ ΔF(z). By Proposition 2 ΔF(β) is a fixed point, so in particular a

post-fixed point, below β. We prove by arithmetic induction that ΔF(β) ≤
Fn(β) for all n ∈ N.
Base ΔF(β) ≤ F0(β) = β already proved.
Induction Let us assume ΔF(β) ≤ Fn(β), so by monotonicity of F we get

F(ΔF(β)) ≤ Fn+1(β). Since ΔF(β) is a post-fixed point, we have that
ΔF(β) ≤ F(ΔF(β)), therefore by transitivity we get ΔF(β) ≤ Fn+1(β).

By definition of
�

we get ΔF(β) ≤ �
CF,β = z, so by (CoInd) we get

ΔF(β) ≤ ΔF(z).

Finally by anti-symmetry we get the equality.
�
Another way to read the lemma above is that, given a bound β, we obtain the

same greatest fixed point if we take as bound
�

CF,β . Indeed from Proposition 6
and point 1 of Proposition 5 we can say more: given a bound β which is pre-fixed,
we obtain the same greatest fixed point below β if we take as bound any element
Fn(β) of the descending chain.

42 D. Ancona et al.

4 Proof Trees

In this section we formally define several proof-theoretic characterizations of
inference systems with coaxioms, and prove their equivalence3 with the model-
theoretic characterization given in the previous section.

First of all we recall the standard definition of proof trees and proof-theoretic
characterization of inference systems.

Definition 3. Given an inference system I, a proof tree in I is a tree whose
nodes are (labeled with) judgments in U , and there is a node c with set of children

Pr only if there exists a rule
Pr
c

. If a proof tree t in I has root j , then we say
that t is a proof tree for j , or that j has proof tree t, in I.

Theorem 2. Given an inference system I, and a judgment j ∈ U ,

1. j ∈ CoInd(I) iff j has a proof tree in I
2. j ∈ Ind(I) iff j has a finite proof tree in I.

See [15,23].
The first proof-theoretic characterization is based on the following theorem,

which slightly generalizes the standard correspondence between proof trees in I
and the coinductive interpretation of I.

Theorem 3. Given an inference system I, and β ⊆ U a closed set of judgments,
we have that, for all j ∈ U , j ∈ ΔFI (β) iff there exists a proof tree t for j in I
such that each node of t is in β.

Proof. By Theorem 1, ΔFI (β) = ΔFI�β
(U) = CoInd(I�β). Thanks to Theorem

2 (1), we get that j ∈ CoInd(I�β) iff there exists a proof tree t for j in I�β . By
Definition 3, each node of t is (labeled by) a consequence c of a rule in I�β , that
is, c ∈ β by definition of I�β , and this implies the thesis.
�

As a particular case, we get our first proof-theoretic characterization

Corollary 2. Given an inference system with coaxioms (I, γ) and a judgment
j ∈ U , we have that j ∈ Gen(I, γ) iff there exists a proof tree t for j in I such
that each node of t has a finite proof tree in I�γ .

Proof. By Theorem 1, Gen(I, γ) = ΔFI (β), with β = ∇FI (γ). Thanks to The-
orem 3, we get that, for all j ∈ U , j ∈ Gen(I, γ) iff there exists a proof tree
t for j in I such that each node of t is in β. Again by Theorem 1 we get that
β = Ind(I�γ), so by Theorem 2 (2) we get that a node j ′ of t is in β iff there
exists a finite proof tree for j ′ in I�γ .
�

For the second proof-theoretic characterization, we need to define approxi-
mated proof trees.

In the definition below, let us denote by jt the root of tree t.
3 For the last, under the hypotheses of Proposition 5.

Generalizing Inference Systems by Coaxioms 43

Definition 4. Given an inference system with coaxioms (I, γ), the sets Tn of
approximated proof trees of level n in (I, γ), for n ∈ N, are inductively defined
as follows:

t ∈ T0 if t finite proof tree in I�γ

T
c

∈ Tn if
Pr
c

∈ I, Pr = {jt | t ∈ T }, and T ⊆Tn−1

In other words, an approximated proof tree of level n in (I, γ) is a finite proof
tree in (I, γ) where coaxioms can only be used at depth ≥n.

The following lemma states that approximated proof trees of level n corre-
spond to the n-th element of the descending chain CFI ,β = {Fn

I(β) | n ∈ N},
with β = ∇FI (γ) = Ind(I�γ).

Lemma 1. Given an inference system with coaxioms (I, γ), and a judgment
j ∈ U , we have that, for all n ∈ N, j ∈ Fn

I(∇FI (γ)) iff j has an approximated
proof tree of level n in (I, γ).

Proof. Let β be ∇FI (γ). We prove the thesis by induction on n.

Base If n = 0, then, by Theorem1, β = ∇FI (γ) corresponds to the inductive
interpretation of I�γ , therefore the equivalence holds by Theorem2 (2).

Induction We assume the equivalence for n and prove it for n + 1. We prove
separately the two implications.

⇒ If c ∈ Fn+1
I (β), then there exists

Pr
c

∈ I such that Pr ⊆ Fn
I(β). Hence, by

inductive hypothesis, each judgment in Pr has an approximated proof tree of

level n, that is, Pr = {jt | t ∈ T }, with T ⊆Tn. Hence, t =
T
c

is a proof tree
for c, and by definition, t ∈ Tn+1.

⇐ If t ∈ Tn+1 is an approximated proof tree for c ∈ U , then, by definition,

there exists
Pr
c

∈ I such that t =
T
c

, Pr = {jt | t ∈ T }, and T ⊆ Tn. By

inductive hypothesis we have Pr ⊆ FIn(β), and, by definition of FI , this
implies c ∈ Fn+1

I (β) as needed.

�
Corollary 3. Given an inference system with coaxioms (I, γ), and a judgment
j ∈ U , the following are equivalent:

1. j ∈ Gen(I, γ)
2. there exists a proof tree t for j in I such that each node has an approximated

proof tree of level n in (I, γ), for all n ∈ N.

Proof. By Theorem 1, Proposition 6, and Theorem 3, we get that, for all j ∈ U ,
j ∈ Gen(I, γ) iff there exists a proof tree t for j in I such that each node j ′ of t is
in

�
CFI ,β with β = ∇FI (γ). By Lemma 1, j ′ ∈ �

CFI ,β iff has an approximated
proof tree of level n, for all n ∈ N.
�

44 D. Ancona et al.

If the hypotheses of Proposition 5 are satisfied, then we get a simpler equiv-
alent proof-theoretic characterization.

Corollary 4. Given an inference system with coaxioms (I, γ), and a judgment
j ∈ U , if FI preserves meet of descending chains, then the following are equiva-
lent:

1. j ∈ Gen(I, γ)
2. j has an approximated proof tree of level n in (I, γ), for all n ∈ N.

Proof. Let β be ∇FI (γ). By Theorem 1 and Proposition 5, we get that
Gen(I, γ) =

�
CFI ,β , therefore the thesis follows immediately from Lemma 1.
�

5 Reasoning with Coaxioms

In this section we discuss proof techniques for inference systems with coaxioms.
Assume that G = Gen(I, γ) is the interpretation generated by coaxioms for

some (I, γ), and that S (for “specification”) is the intended set of judgments,
called valid in the following.

Typically, we are interested in proving S ⊆ G (completeness, that is, each
valid judgment can be derived) and/or G ⊆ S (soundness, that is, each derivable
judgment is valid). Proving both properties amounts to say that the inference
system with coaxioms actually defines the intended set of judgments.

In the following, set β = ∇FI (γ) = Ind(I�γ).

Completeness Proofs. To show completeness, we can use the bounded coinduction
principle. Indeed, since G = ΔFI (β), if S ≤ β and S is a post-fixed point of FI ,
by (CoInd) we get that S ≤ G. That is, using the notations of inference systems,
to prove completeness it is enough to show that:

– S ⊆ Ind(I�γ)
– S ⊆ FI(S)

We illustrate the technique on the inference system with coaxioms (I, γ)
which defines the judgment allPos(l, b) (page 7). Set SallPos the set of pairs (l, b)
where b is T if all the elements in l are positive, F otherwise. Completeness
means that the judgment allPos(l, b) can be proved, for all (l, b) ∈ SallPos. By
the bounded coinduction principle, it is enough to show that

– SallPos ⊆ Ind(I�γ)
– SallPos ⊆ FI(SallPos)

To prove the first condition, we have to show that, for each (l, b) ∈ SallPos,
allPos(l, b) has a finite proof tree in I�γ . This can be easily shown, indeed:

– If l contains a (first) non-positive element, hence l = x1 : . . . : xn : x : l′ with
xi > 0 for i ∈ [1..n], x ≤ 0, and b = F then we can reason by arithmetic
induction on n. Indeed, for n = 0, (l, b) is the consequence of the second rule
with no premises, and for n > 0 it is the consequence of the third rule where
we can apply the inductive hypothesis to the premise.

Generalizing Inference Systems by Coaxioms 45

– If l contains only positive elements, hence b = T , then (l, b) is a coaxiom,
hence it is the consequence of a rule with no premises in I�γ .

To prove the second condition, we have to show that, for each (l, b) ∈ SallPos,
allPos(l, b) is the consequence of a rule with premises in SallPos. This can be
easily shown, indeed:

– If l = Λ, hence b = T , then allPos(Λ, T) is the consequence of the first rule
with no premises.

– If l = x : l′ with x ≤ 0, hence b = F , then allPos(l, F) is the consequence of
the second rule with no premises.

– If l = x : l′ with x > 0, and b = T , hence (l′, T) ∈ SallPos, then allPos(l, T)
is the consequence of the third rule with premise (l′, T), and analogously if
b = F .

Soundness Proofs. To show soundness, it is convenient to use the alternative
characterization in terms of approximated proof trees given in Sect. 4, as detailed
below. First of all, from Proposition 6, G ⊆ ⋂{Fn

I(β) | n ≥ 0}. Hence, to prove
G ⊆ S, it is enough to show that

⋂{Fn
I(β) | n ≥ 0} ⊆ S. Moreover, by Lemma 1,

for all n ∈ N, judgments in Fn
I(β) are those which have an approximated proof

tree of level n. Hence, to prove set inclusion, we can show that all judgments
which have an approximated proof tree of level n for each n are in S or equiva-
lently, by contraposition, that judgments which are not in S, that is, non-valid
judgments, fail to have an approximated proof tree of level n for some n.

We illustrate the technique again on the example of allPos. We have to show
that, for each (l, b) �∈ SallPos, there exists n ≥ 0 such that (l, b) cannot be proved
by using coaxioms at level greater than n. By cases:

– If l contains a (first) non-positive element, hence l = x1 : . . . : xn : x : l′ with
xi > 0 for i ∈ [1..n], x ≤ 0, then, assuming that coaxioms can only be used at
a level greater than n + 1, (l, b) can only be derived by instantiating n times
the third rule, and once the second rule, hence b cannot be T .

– If l contains only positive elements, then it is immediate to see that there is
no finite proof tree for (l, F).

6 Taming Coaxioms: Advanced Examples

Mutual Recursion. Circular definitions involving inductive and coinductive
judgments have no semantics in standard inference systems, because all judg-
ments have to be interpreted either inductively, or coinductively. The same prob-
lem arises in the context of coinductive logic programming [32], where a logic
program has a well-defined semantics only if inductive and coinductive predicates
can be stratified: each stratum defines only inductive or coinductive predicates
(possibly defined in a mutually recursive way), and cannot depend on predi-
cates defined in upper strata. Hence, it is possible to define the semantics of a
logic program only if there are no mutually recursive definitions involving both
inductive and coinductive predicates.

46 D. Ancona et al.

We have already seen that an inductive inference system corresponds to a
generalized inference system with no coaxioms, while a coinductive one cor-
responds to a generalized one where coaxioms consist of all judgments in U ;
however, between these two extremes, coaxioms offer many other possibilities
thus allowing a finer control on the semantics of the defined judgments.

There exist cases where two or more related judgments need to be defined
recursively, but for some of them the correct interpretation is inductive, while
for others is coinductive [5,31,32]. In such cases, coaxioms may be employed
to provide the correct definition in terms of a single inference system with no
stratification, although special care is required to get from the inference system
the intended meaning of judgments. To see this, let us consider the judgment
path0 (t), where t is an infinite tree4 over {0, 1}, which holds iff there exists a
path starting from the root of t and containing just 0s; trees are represented as
infinite terms of shape tree(n, l), where n ∈ {0, 1} is the root of the tree, and l
is the infinite list of its direct subtrees. For instance, if t1 and t2 are the trees
defined by the syntactic equations

t1 = tree(0, l1) l1 = t2:t1:l1 t2 = tree(0, l2) l2 = tree(1, l1):l2

then we expect path0 (t1) to hold, but not path0 (t2).
To define path0 , we introduce an auxiliary judgment is in0 (l) testing whether

an infinite list l of trees contains a tree t such that path0 (t) holds. Intuitively, we
expect path0 and is in0 to be interpreted coinductively and inductively, respec-
tively; this reflects the fact that path0 checks a property universally quantified
over an infinite sequence (a safety property in the terminology of concurrent sys-
tems): all the elements of the path must equal 0; on the contrary, is in0 checks
a property existentially quantified over an infinite sequence (a liveness property
in the terminology of concurrent systems): the list must contain a tree t with
a specific property (that is, path0 (t) must hold). Driven by this intuition, one
could be tempted to define the following inference system with coaxioms for all
judgments of shape path0 (t), and no coaxioms for judgments of shape is in0 (l):

is in0 (l)
path0 (tree(0, l))

•
path0 (t)

path0 (t)
is in0 (t:l)

is in0 (l)
is in0 (t:l)

Unfortunately, because of the mutual recursion between is in0 and path0 , the
inference system above does not capture the intended behavior: is in0 (l) is deriv-
able for every infinite list of trees l, even when l does not contain a tree t with
an infinite path starting from its root and containing just 0s.

To overcome this problem, we replace the judgment is in0 with the more
general one is in, such that is in(t, l) holds iff the infinite list l contains the tree
t. Consequently, we can define the following generalized inference system:

is in(t, l) path0 (t)
path0 (tree(0, l))

•
path0 (t) is in(t, t:l)

is in(t, l)
is in(t, t′:l)

4 For the purpose of this example, we only consider trees with infinite depth and
branching.

Generalizing Inference Systems by Coaxioms 47

Now the semantics of the system corresponds to the intended one, and we
do not need to stratify the definitions into two separate inference systems.

Following the characterization in terms of proof trees and the proof tech-
niques provided in Sects. 4 and 5, we can sketch a proof of correctness. Let S be
the set where elements have either shape path0 (t), where t represents a tree with
an infinite path of just 0s starting from its root, or is in(t, l), where l represents
an infinite list containing the tree t; then a judgment belongs to S iff it can be
derived in the generalized inference system defined above.

Completeness: We first show that the set S is a post-fixed point, that is, it is
consistent w.r.t. the inference rules, coaxioms excluded. Indeed, if t has an infinite
path of 0s, then it has necessarily shape tree(0, l), where l must contain a tree
t′ with an infinite path of 0s. Hence, the inference rule for path0 can be applied
with premises is in(t′, l) ∈ S, and path0 (t′) ∈ S. If an infinite list contains a tree
t, then it has necessarily shape t′:l where, either t = t′, and hence the axiom for
is in can be applied, or t �= t′ and t is contained in l, and hence the inference
rule for is in can be applied with premise is in(t, l) ∈ S.

We then show that S is bounded by the closure of the coaxioms. For the
elements of shape path0 (t) it suffices to directly apply the corresponding coax-
iom; for the elements of shape is in(t, l) we can show that there exists a finite
proof tree built possibly also with the coaxioms by induction on the first position
(where the head of the list corresponds to 0) in the list where t occurs. If the
position is 0 (base case), then l = t:l′, and the axiom can be applied; if the posi-
tion is n > 0 (inductive step), then l = t′:l′ and t occurs in l′ at position n − 1,
therefore, by inductive hypothesis, there exists a finite proof tree for is in(t, l′),
therefore we can build a finite proof tree for is in(t, l) by applying the inference
rule for is in.

Soundness: We first observe that the only finite proof trees that can be derived
for is in(t, l) are obtained by application of the axiom for is in, hence is in(t, l)
holds iff there exists a finite proof tree for is in(t, l) built with the inference rules
for is in. Then, we can prove that, if is in(t, l) holds, then t is contained in l by
induction on the inference rules for is in. For the axiom (base case) the claim
trivially holds, while for the other inference rule we have that if t belongs to l,
then trivially t belongs to t′:l.

For the elements of shape path0 (t) we first observe that by the coaxioms
they all trivially belong to the closure of the coaxioms. Then, any proof tree for
path0 (t) must be infinite, because there are no axioms but only one inference
rule for path0 where path0 is referred in the premises; furthermore, such a rule
is applicable only if the root of the tree is 0. We have already proved that if
is in(t, l) is derivable, then t belongs to l, therefore we can conclude that if
path0 (t) is derivable, then t contains an infinite path starting from its root, and
containing just 0s.

A Numerical Example. It is well known that real numbers in the closed inter-
val [0,1] can be represented by infinite sequences (di)i∈N+ of decimal5 digits,
5 Of course the example can be generalized to any base B ≥ 2.

48 D. Ancona et al.

where N
+ denotes the set of all positive natural numbers. Indeed, (di)i∈N+ rep-

resents the real number which is the limit of the series
∑∞

i=1 10−idi in the stan-
dard complete metric space of real numbers (such a limit always exists by com-
pleteness, because the associated sequence of partial sums is always a Cauchy
sequence). Such a representation is not unique for all rational numbers in [0,1]
(except for the bounds 0 and 1) that can be represented by a finite sequence of
digits followed by an infinite sequence of 0s; for instance, 0.42 can be represented
either by the sequence 420̄, or by the sequence 419̄, where d̄ denotes the infinite
sequence containing just the digit d.

For brevity, for r = (di)i∈N+ , [[r]] denotes
∑∞

i=1 10−idi (that is, the real num-
ber represented by r). We want to define the judgment add(r1, r2, r, c) which
holds iff [[r1]] +[[r2]] = [[r]] + c with c an integer number; that is, add(r1, r2, r, c)
holds iff the addition of the two real numbers represented by the sequences r1
and r2 yields the real number represented by the sequence r with carry c. We
will soon discover that, to get a complete definition for add , c is required to
range over a proper superset of the set {0, 1}, differently from what one could
initially expect.

We can define the judgment add with the following generalized inference sys-
tem, where ÷ and mod denote the integer division, and the remainder operator,
respectively.

add(r1, r2, r, c)
add(d1:r1, d2:r2, (s mod 10):r, s ÷ 10)

s = d1 + d2 + c

•
add(r1, r2, r, c)

A real number in [0,1] is represented by an infinite list of decimal digits,
which, therefore, can always be decomposed as d:r, where d is the first digit
(corresponding to the exponent −1), and r is the rest of the list of digits. Here,
r1, r2, and r range over the set of infinite lists of decimal digits, while the carry
must range over {−1, 0, 1, 2} to support a complete definition. As clearly emerges
from the proof of completeness provided below, besides the obvious values 0
and 1, the values −1 and 2 have to be considered for the carry to ensure a
complete definition of add because both add(0̄, 0̄, 9̄,−1) and add(9̄, 9̄, 0̄, 2) hold,
and, hence, should be derivable; these two judgments allow the derivation of an
infinite number of other valid judgments, as, for instance, add(10̄, 10̄, 19̄, 0) and
add(19̄, 19̄, 40̄, 0), respectively.

Also in this case we can sketch a proof of correctness: for all infinite sequences
of decimal digits r1, r2 and r, and all c ∈ {−1, 0, 1, 2}, add(r1, r2, r, c) is derivable
iff [[r1]] +[[r2]] =[[r]] + c.

Completeness: By the coaxioms we trivially have that each element
add(r1, r2, r, c) such that [[r1]] + [[r2]] = [[r]] + c with c ∈ {−1, 0, 1, 2} belongs
to the closure of the coaxioms.

To show that the unique inference rule of the system is consistent with the
set of all correct judgments, let us assume that [[r′

1]] + [[r′
2]] = [[r′]] + c′ with

r′
1 = d1:r1, r′

2 = d2:r2, r′ = d:r and c′ ∈ {−1, 0, 1, 2}. Let us set s = 10c′ + d,

Generalizing Inference Systems by Coaxioms 49

and c = s − d1 − d2, then s mod 10 = d and s ÷ 10 = c′, and we get the desired
conclusion of the inference rule, and the side condition holds; it remains to show
that [[r1]] +[[r2]] =[[r]] + c with c ∈ {−1, 0, 1, 2}.

We first observe that by the properties of limits w.r.t. the usual arithmetic
operations, and by definition of[[−]], for all infinite sequence r of decimal digits, if
r = d:r′, then [[r]] = 10−1(d+[[r′]]); then, from the hypotheses we get the equality
d1 +[[r1]] + d2 +[[r2]] = d +[[r]] + 10c′, and, therefore, [[r1]] +[[r2]] =[[r]] + c; finally,
since c =[[r1]] +[[r2]] −[[r]], and 0 ≤ [[r1]] ,[[r2]] ,[[r]] ≤ 1, we get c ∈ {−1, 0, 1, 2}.

Soundness: Let r′
1 = d1:r1, r′

2 = d2:r2, and r′ = d:r be infinite sequences
of decimal digits, and c′ ∈ {−1, 0, 1, 2}; we observe that the judgment
add(r′

1, r
′
2, r

′, c′) can be derived from the unique inference rule only with the
premise add(r1, r2, r, c) where c must equal 10c′ + d − d1 − d2 and must range
over {−1, 0, 1, 2}.

To prove soundness we show that if[[r′
1]]+[[r′

2]] �=[[r′]]+c′, then add(r′
1, r

′
2, r

′, c′)
cannot be derived in the inference system. Let us set δ′ = |[[r′]] + c′ − [[r′

1]] −
[[r′

2]] |; obviously, under the hypothesis [[r′
1]] + [[r′

2]] �= [[r′]] + c′, we get δ′ > 0.
In particular, the following fact holds: if δ′ ≥ 4 · 10−1, then 10c′ + d − d1 −
d2 �∈ {−1, 0, 1, 2}. Indeed, by the identity [[r]] = 10−1(d +[[r′]]) already used for
the proof of completeness, we have that δ′ = 10−1|[[r]] + c − [[r1]] − [[r2]] |, with
c = 10c′ + d − d1 − d2; 10−1([[r]] + c − [[r1]] − [[r2]]) ≥ 4 · 10−1 implies c ≥ 3
([[r1]] ,[[r2]] ,[[r]] ∈ [0, 1]), and, hence, c = 10c′ + d − d1 − d2 �∈ {−1, 0, 1, 2}. By
duality, 10−1([[r]] + c − [[r1]] − [[r2]]) ≤ −4 · 10−1 implies c ≤ −2, hence c =
10c′ + d − d1 − d2 �∈ {−1, 0, 1, 2}.

By virtue of this fact, and thanks to the hypotheses, we can prove by arith-
metic induction over n that for all n ≥ 1, if δ′ ≥ 4·10−n, then there exists a finite
proof tree for add(r′

1, r
′
2, r

′, c′) where the coaxioms are applied at most at depth
n − 1. The base case is directly derived from the previously proven fact. For the
inductive step we observe that if the inference rule is applicable for deriving the
conclusion add(r′

1, r
′
2, r

′, c′), then we can apply the inductive hypothesis for the
premise add(r1, r2, r, c) since we have already shown that δ′ = 10−1δ, therefore
δ ≥ 4 · 10−(n−1).

We can now conclude by observing that if [[r′
1]] +[[r′

2]] �= [[r′]] + c′, then there
exists n such that δ′ ≥ 4 ·10−n, therefore, by the previous result, we deduce that
it is not possible to build a finite tree for add(r′

1, r
′
2, r

′, c′) where the coaxioms
are applied at arbitrary depth k (in particular, k is bounded by n−1); therefore
add(r′

1, r
′
2, r

′, c′) cannot be derived in the inference system.
From the proof of soundness we can also deduce that if we let c range over Z,

then the inference system becomes unsound; for instance, add(0̄, 0̄, 0̄, 1) would
be derivable, but [[0̄]] +[[0̄]] �=[[0̄]] + 1:

...
add(0̄, 0̄, 0̄, 101)
add(0̄, 0̄, 0̄, 100)

Big-Step Operational Semantics with Divergence. It is well-known that
divergence cannot be captured by the big-step operational semantics of a

50 D. Ancona et al.

programming language when semantic rules are interpreted inductively (that
is, in the standard way) [4,6,23]. When rules are interpreted coinductively some
partial result can be obtained under suitable hypotheses, but a practical way to
capture divergence with a big-step operational semantics is to introduce two dif-
ferent forms of judgment [14,23]: one corresponds to the standard big-step evalu-
ation relation, and is defined inductively, while the other one captures divergence,
and is defined coinductively in terms of the inductive judgment, thus requiring
stratification. Other approaches consist in considering coinductive trace-based
big-step semantics [27], and flag-based big-step semantics [29].

Syntax of terms and values

e ::= v | x | e e v ::= λx.e v∞ ::= v | ∞
Semantic rules

(coax)
•

e ⇒ ∞ (val)
v ⇒ v

(app)
e1 ⇒ λx.e e2 ⇒ v e[x ← v] ⇒ v∞

e1 e2 ⇒ v∞

(l-inf)
e1 ⇒ ∞

e1 e2 ⇒ ∞ (r-inf)
e1 ⇒ v e2 ⇒ ∞

e1 e2 ⇒ ∞

Fig. 1. Call-by-value big-step semantics of λ-calculus with divergence

With coaxioms a unique judgment can be defined in a more direct and com-
pact way. We show6 how this is possible for the standard call-by-value oper-
ational semantics of the λ-calculus in big-step style. Figure 1 defines syntax,
values, and semantic rules. The meta-variable v ranges over standard values,
that is, lambda abstractions, while v∞ includes also divergence, represented by
∞. The evaluation judgment has the general shape e ⇒ v∞, meaning that either
e evaluates to a value v (when v∞ �= ∞) or diverges (when v∞ = ∞).

For what concerns the semantic rules, only a coaxiom is needed, stating
that every expression may diverge. This ensures that ∞ can be the only allowed
outcome for the evaluation of an expression which diverges; this can only happen
when the corresponding derivation tree is infinite. Rule (val) is standard. Rule
(app) deals with the evaluation of application when both expressions e1 and e2 do
not diverge; the meta-variable v is required for the judgment e2 ⇒ v to guarantee
convergence of e2, while v∞ is used for the result of the whole application, since
the evaluation of the body of the lambda abstraction could diverge. As usual,
e[x ← v] denotes capture-avoiding substitution modulo α-renaming. Rules (l-inf)
and (r-inf) cover the cases when either e1 or e2 diverges when trying to evaluate
application, assuming that a left-to-right evaluation strategy has been imposed.

We show that the only judgment derivable for eΔ = (λx.x x)λx.x x is eΔ ⇒
∞. To this aim, we first disregard the coaxiom and exhibit an infinite derivation
tree for the judgment eΔ ⇒ v∞, derivable for all v∞:
6 This example was inspired by Bart Jacobs.

Generalizing Inference Systems by Coaxioms 51

(app)

(val)
λx.x x ⇒ λx.x x

(val)
λx.x x ⇒ λx.x x

(app)

.

.

.

(x x)[x ← λx.x x] ⇒ v∞
(x x)[x ← λx.x x] = eΔ ⇒ v∞

In this particular case the derivation tree is also regular, but of course there are
examples of divergent computations whose derivation tree is not regular. The ver-
tical dots indicate that the derivation continues with the same repeated pattern.
The derivation corresponds to the coinductive interpretation of the standard
big-step semantics rules [4,23], which may exhibit non-deterministic behavior as
happens for this example; however, here the coaxiom plays a crucial role by fil-
tering out all undesired values, and, thus, leaving only the value ∞ representing
divergence; indeed, by employing also the coaxiom, finite derivation trees can be
built for eΔ ⇒ v∞ only when v∞ = ∞. By Corollary 3 we can get an infinite
sequence of approximating derivation trees of arbitrarily increasing level:

(coax)
eΔ ⇒ ∞

(app)

(val)
λx.x x ⇒ λx.x x

(val)
λx.x x ⇒ λx.x x

(coax)
(x x)[x ← λx.x x] ⇒ ∞

(x x)[x ← λx.x x] = eΔ ⇒ ∞

.

.

.

As a consequence, in the inference system with the coaxiom a valid infinite
derivation tree can be built for eΔ ⇒ v∞ only when v∞ = ∞.

7 Related Work

Inference systems [1] are widely adopted to formally define operational seman-
tics, language translations, type systems, subtyping relations, and other rele-
vant judgments. Although inference systems have been introduced for dealing
with inductive recursive definitions, in the last two decades several authors have
focused on their coinductive interpretation.

Cousot and Cousot [14] define divergence by the coinductive interpretation
of an inference system which extends the big-step operational semantics. The
same approach is followed by other authors [16,23,30]. Leroy and Grall [23] ana-
lyze two kinds of coinductive big-step operational semantics for the call-by-value
λ-calculus, and study their relationships with the small-step and denotational
semantics, and their suitability for compiler correctness proofs. Coinductive big-
step semantics is used as well to reason on cyclic objects stored in memory
[24,26], and to prove type soundness in Java-like languages [4,6]. Coinductive
inference systems are also considered in the context of type analysis and sub-
typing for object-oriented languages [7,9].

More recently, several solutions have been proposed to extend existing pro-
gramming languages to support corecursion, and are, therefore, more focused
on operational aspects, and their corresponding implementation issues; contri-
butions can be found for all main computational paradigms: logic [5,21,25],
functional [18,19], and object-oriented programming [10,11].

52 D. Ancona et al.

For the logic paradigm, the starting point is coinductive logic programming
(coLP) [32], an extension of logic programming which provides both a declarative
and a sound but not complete operational semantics for coinductive predicates,
the former based on the notion of complete Herbrand base (finite and infinite
terms) and greatest fixed point. However, only the standard coinductive inter-
pretation is supported, and mixing between inductive and coinductive predicates
is only partially supported through stratification. Structural resolution [21] is an
extension of the operational semantics for coLP not limited to regular deriva-
tions. Other proposals [5,25] provide more flexible operational semantics. The
notion of finally clause [5] has inspired our notion of coaxiom: finally clauses
are user-defined facts that are resolved when an infinite, but regular, derivation
is detected, in replacement of the standard coinductive semantics. Despite the
existing strong correlation with this paper, the semantics of finally clauses does
not always coincide with a fixed point of the one step inference operator. Similar
considerations apply also to the work on coFJ [10,11], where with clauses play
a role similar to that of finally clauses for coLP. A first attempt to provide a
denotational model for this language, overtaken by the present work, has been
provided in [8].

CoCaml [18,19] is an extension of OCaml where the semantics of recur-
sive functions can be parametric in an equation solver which can be either pre-
defined, or explicitly provided by the programmer to support corecursion. The
intuition suggests that choosing a solver corresponds to choose a specific partial
order, in such a way that the desired function is a fixed point in the correspond-
ing CPO. Among the several proposed solvers, the pre-defined iterator solver has
an expressive power similar to that of the finally and with clauses mentioned
above.

As already mentioned, the spirit of our work is very different from that on
CoCaml, since we do not aim to extend a practical language with corecursion,
but, rather, to provide a very general framework which smoothly extends the
well-known notion of inference system, and that could be used in many useful
contexts, as shown in Sect. 6. On the other hand, definitions of higher order
functions cannot be directly supported by inference systems. The foundation of
CoCaml [20] is based on the theory of recursion in the framework of coalgebras.
Our approach, instead, relies on the standard complete lattice of powersets, with
set inclusion as partial order. In this way, a single and simple model based on
classical results works uniformly for any possible recursive definition expressed
in terms of a generalized inference system.

Recursive and well-founded coalgebras [12] are a framework for generalized
structural recursion.

Completely iterative algebras [2] and corecursive and anti-founded algebras
[12] are frameworks for generalized structural corecursion; iterative algebras cor-
respond to the rational case as opposed to the coinductive one.

In guarded recursion [13,28] a judgment can be proved by also using recur-
sively the judgment itself, provided that such recursive call is guarded by intro-
duction rules. The goal, similar to ours, is to obtain a unique fixed point, however,
there is no counterpart of the guard notion in the general framework of inference
systems.

Generalizing Inference Systems by Coaxioms 53

8 Conclusion

We have presented a generalized notion of inference system by introducing coax-
ioms, to support flexible definitions of judgments by structural recursion on
non-well-founded datatypes.

Consequently, we have generalized the meta-theory of inference systems by
providing two equivalent semantics, one based on fixed points in a complete
lattice, and the other on the notion of proof tree. In the former case, the semantics
of an inference system is the greatest fixed point of its corresponding one step
inference operator, below the least pre-fixed point containing the coaxioms; in
the latter case, the standard notion of proof tree for the coinductive case is
generalized by requiring coaxioms to be applicable “at an infinite depth”.

We have provided proof techniques for proving soundness and completeness
results and shown their application to a range of different examples.

A compelling direction for further developments is exploring mechanization
in proof assistants and other proof techniques [17] for coaxioms.

A necessarily not complete prototype meta-interpreter has been implemented
in SWI-Prolog7 to test the examples provided in Sects. 2 and 6. SWI-Prolog offers
a natural support to regular terms (a.k.a. cyclic terms) through unification, but
examples involving non-regular terms (or derivations) cannot terminate.

Extending the notion of coaxiom in the setting of object-oriented and func-
tional programming is more challenging, because of the gap between the under-
lying theories.

We plan to investigate the dual notion studied here: one could consider the
least fixed point above the greatest post-fixed point contained in the coaxioms,
instead of the greatest fixed point below the least pre-fixed point containing the
coaxioms. In particular, it would be interesting studying inference systems for
which the two different semantics coincide.

References

1. Aczel, P.: An introduction to inductive definitions. In: Handbook of Mathematical
Logic. North Holland (1977)

2. Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Struct. Com-
put. Sci. 16(6), 1085–1131 (2006)

3. Ancona, D.: Regular corecursion in Prolog. In: SAC 2012 - ACM Symposium on
Applied Computing, pp. 1897–1902 (2012)

4. Ancona, D.: Soundness of object-oriented languages with coinductive big-step
semantics. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 459–483.
Springer, Heidelberg (2012)

5. Ancona, D.: Regular corecursion in Prolog. Comput. Lang. Syst. Struct. 39(4),
142–162 (2013)

7 Available at http://www.disi.unige.it/person/AnconaD/Software/esop17artifact.
zip.

http://www.disi.unige.it/person/AnconaD/Software/esop17artifact.zip
http://www.disi.unige.it/person/AnconaD/Software/esop17artifact.zip

54 D. Ancona et al.

6. Ancona, D.: How to prove type soundness of Java-like languages without forgoing
big-step semantics. In: FTfJP 2014 - Formal Techniques for Java-like Programs,
pp. 1:1–1:6. ACM Press (2014)

7. Ancona, D., Corradi, A.: Sound and complete subtyping between coinductive types
for object-oriented languages. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586,
pp. 282–307. Springer, Heidelberg (2014)

8. Ancona, D., Dagnino, F., Zucca, E.: Towards a model of corecursion with default.
In: FTfJP 2016 - Formal Techniques for Java-like Programs (2016)

9. Ancona, D., Lagorio, G.: Coinductive type systems for object-oriented languages.
In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26. Springer,
Heidelberg (2009)

10. Ancona, D., Zucca, E.: Corecursive featherweight Java. In: FTfJP 2012 - Formal
Techniques for Java-like Programs (2012)

11. Ancona, D., Zucca, E.: Safe corecursion in coFJ. In: FTfJP 2013 - Formal Tech-
niques for Java-like Programs (2012)

12. Capretta, V., Uustalu, T., Vene, V.: Corecursive algebras: a study of gen-
eral structured corecursion. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF
2009. LNCS, vol. 5902, pp. 84–100. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10452-7 7

13. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

14. Cousot, P., Cousot, R.: Inductive definitions, semantics and abstract interpreta-
tions. In: ACM Symposium on Principles of Programming Languages, pp. 83–94.
ACM Press (1992)

15. Grall, H.: Proving fixed point. In: FICS 2010 - Fixed Points in Computer Science
(2010)

16. Hughes, J., Moran, A.: Making choices lazily. In: FPCA 1995 - Functional Program-
ming Languages and Computer Architecture, pp. 108–119. ACM Press (1995)

17. Hur, C., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: ACM Symposium on Principles of Programming Languages,
pp. 193–206 (2013)

18. Jeannin, J., Kozen, D., Silva, A.: CoCaml: programming with coinductive types.
Technical report, Computing and Information Science, Cornell University, Decem-
ber 2012

19. Jeannin, J.-B., Kozen, D., Silva, A.: Language constructs for non-well-founded
computation. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 61–80. Springer, Heidelberg (2013)

20. Jeannin, J., Kozen, D., Silva, A.: Well-founded coalgebras, revisited. Math. Struct.
Comput. Sci. FirstView, 1–21 (2016)

21. Johann, P., Komendantskaya, E., Komendantskiy, V.: Structural resolution for
logic programming. In: Technical Communications of (ICLP 2015) (2015)

22. Lassez, J., Nguyen, V.L., Sonenberg, L.: Fixed point theorems and semantics: a
folk tale. Inf. Process. Lett. 14(3), 112–116 (1982)

23. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Inf. Comput.
207(2), 284–304 (2009)

24. Leroy, X., Rouaix, F.: Security properties of typed applets. In: MacQueen, D.B.,
Cardelli, L. (eds.) ACM Symposium on Principles of Programming Languages, pp.
391–403. ACM Press (1998)

25. Mantadelis, T., Rocha, R., Moura, P.: Tabling, rational terms, and coinduction
finally together!. Theory Pract. Log. Program. 14(4–5), 429–443 (2014)

http://dx.doi.org/10.1007/978-3-642-10452-7_7
http://dx.doi.org/10.1007/978-3-642-10452-7_7

Generalizing Inference Systems by Coaxioms 55

26. Milner, R., Tofte, M.: Co-induction in relational semantics. Theor. Comput. Sci.
87(1), 209–220 (1991)

27. Nakata, K., Uustalu, T.: Trace-based coinductive operational semantics for while.
In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 375–390. Springer, Heidelberg (2009)

28. Pavlovic, D.: Guarded induction on final coalgebras. Electron. Notes Theor. Com-
put. Sci. 11, 140–157 (1998)

29. Poulsen, C.B., Mosses, P.D.: Flag-based big-step semantics. J. Log. Algebr.
Methods Program. (2016). http://www.sciencedirect.com/science/article/pii/
S2352220816300311

30. Schmidt, D.A.: Trace-based abstract interpretation of operational semantics. Lisp
Symb. Comput. 10(3), 237–271 (1998)

31. Simon, L.: Extending logic programming with coinduction. Ph.D. thesis, University
of Texas at Dallas (2006)

32. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: ICALP 2007 - International Colloquium
on Automata, Languages and Programming, pp. 472–483 (2007)

33. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive logic programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006)

34. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

http://www.sciencedirect.com/science/article/pii/S2352220816300311
http://www.sciencedirect.com/science/article/pii/S2352220816300311

Observed Communication Semantics
for Classical Processes

Robert Atkey(B)

MSP Group, University of Strathclyde, Glasgow, UK
robert.atkey@strath.ac.uk

Abstract. Classical Linear Logic (CLL) has long inspired readings of
its proofs as communicating processes. Wadler’s CP calculus is one of
these readings. Wadler gave CP an operational semantics by selecting
a subset of the cut-elimination rules of CLL to use as reduction rules.
This semantics has an appealing close connection to the logic, but does
not resolve the status of the other cut-elimination rules, and does not
admit an obvious notion of observational equivalence. We propose a new
operational semantics for CP based on the idea of observing communi-
cation. We use this semantics to define an intuitively reasonable notion
of observational equivalence. To reason about observational equivalence,
we use the standard relational denotational semantics of CLL. We show
that this denotational semantics is adequate for our operational seman-
tics. This allows us to deduce that, for instance, all the cut-elimination
rules of CLL are observational equivalences.

1 Introduction

Right from Girard’s introduction of Classical Linear Logic (CLL) [16], it has
appeared to offer the tantalising hope of a “Curry-Howard for Concurrency”:
a logical basis for concurrent computation, analogous to the standard Curry-
Howard correspondence between intuitionistic logic and sequential computation
in typed λ-calculi [10,18]. To realise this hope, Abramsky proposed a programme
of “Processes as Proofs” [2] in the early nineties. Abramsky [1] and Bellin and
Scott [7] interpreted CLL proofs as terms in process calculi, matching (Cut)-
reduction to process reduction. However, these correspondences interpret CLL
proofs in an extremely restricted set of processes – those which never deadlock and
never exhibit racy or nondeterministic behaviour – and so their correspondences
could reasonably be criticised as not really capturing concurrency. Ehrhard and
Laurent [14] attempted to remedy this problem by demonstrating a correspon-
dence between a finitary π-calculus and Differential Linear Logic. However, their
work was forcefully criticised by Mazza [23], who points out that there are crucial
differences in how both systems model nondeterminism, and further states:

[...] all further investigations have failed to bring any deep logical insight
into concurrency theory, in the sense that no concurrent primitive has
found a convincing counterpart in linear logic, or anything even remotely

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 56–82, 2017.
DOI: 10.1007/978-3-662-54434-1 3

Observed Communication Semantics for Classical Processes 57

resembling the perfect correspondence between functional languages and
intuitionistic logic. In our opinion, we must simply accept that linear
logic is not the right framework for carrying out Abramsky’s “proofs as
processes” program (which, in fact, more than 20 years after its inception
has yet to see a satisfactory completion).

Despite the apparent failure of Abramsky’s programme for concurrency, there
has recently been interest in using Linear Logic as a basis for calculi of struc-
tured communication, also known as session types. Session types were originally
proposed by Honda [17] in the context of the π-calculus as a way to ensure
that processes conform to a protocol. The linear logic-based study of session
types was initiated by Caires and Pfenning [9], who presented an assignment of
π-calculus terms to sequent calculus proofs of Intuitionistic Linear Logic (ILL)
that interprets the connectives of ILL as session types in the sense of Honda.
The fundamental ideas of Caires and Pfenning were later adapted by Wadler to
CLL [35,36], yielding a more symmetric system of “Classical Processes” (CP).

Wadler presents CP as a calculus with an associated reduction relation, and
shows that there is a type preserving translation into Gay and Vasconcelos’
functional language with session-typed communication [15]. This translation was
later shown to also preserve reduction semantics, and to be reversible, by Lindley
and Morris [20], establishing that CP can be seen as a foundational calculus for
session-typed communication.

In this paper, we take a more direct approach to CP. We treat CP as a pro-
gramming language in its own right by endowing it with an operational seman-
tics, a notion of observational equivalence, and a denotational semantics. We
do this for several reasons: (i) if CLL is intended as a logical foundation for
programming with structured communication, there ought to be a way of inter-
preting CP processes as executable artefacts with observable outputs, which, as
we argue below, Wadler’s reduction semantics does not; (ii) establishing a theory
of observational equivalence for CP resolves the status of the (Cut)-elimination
rules on non-principal cuts by reading them as observational equivalences; and
(iii) we can use the rich theory of denotational semantics for CLL (see, e.g.,
Melliès [25]) to reason about observational equivalence in CP. We further envis-
age that the introduction of denotational semantics into the theory of CP and
session types will lead to further development of CP as a foundational calculus
for session-typed communication.

1.1 Problems with Wadler’s Reduction Semantics for CP

Our starting point is in asking the following question:

What is the observable output of a CP process?

The semantics proposed by Wadler [36] defines a reduction relation between CP
processes, derived from the Cut-elimination rules for principal cuts. For example,
processes that transmit and receive a choice interact via the following rule:

νx.(x[i].P | x.case(Q0, Q1)) =⇒ νx.(P | Qi)

58 R. Atkey

Here, a shared communication channel is established by the νx.(− | −) construct,
which is the syntax for the (Cut) rule. The x[i].P emits a bit i along channel x
and continues as P , while x.case(Q0, Q1) receives a bit along x and proceeds as
Q0 or Q1 according to the value of that bit.

A problem arises with CP processes that have free channels that are not
connected to any other process. Since CP uses π-calculus notation, there is a
relatively rigid left-to-right sequentialisation of actions. This means that the
presence of attempts to communicate along unconnected channels can block
other communication. An example is the following process, where communication
along the unconnected x′ channel blocks the communication across x:

νx.(x′[0].x[1].P | x.case(Q0, Q1))

This arrangement corresponds to (Cut)-elimination for a “non-principal” cut,
i.e. the formula being cut in is not the last one introduced on both sides. In these
cases, (Cut)-elimination commutes the offending rule past the (Cut) rule:

x′[0].νx.(x[1].P | x.case(Q0, Q1))

The rules that perform these rearrangements that do not correspond to any
actual communication are referred to as “commuting conversions”. They serve
to bubble “stuck” communication to the outermost part of a process term.

With the reduction rules as proposed, we have two answers to our question.
If a CP process P has no free channels, then we can always apply reduction rules
corresponding to actual interaction, but we will never see the results of any of
these interactions. Since CP is strongly normalising (a property it inherits from
CLL [3]), all closed processes have the same termination behaviour, so this does
not distinguish them. (CP, as presented by Wadler, does not admit completely
closed processes unless we also include the (Mix0) rule, as we do here.)

Alternatively, if a CP process P has free channels, then we can use the
commuting conversion rules to move the stuck prefixes to the outermost layer.
We could then either proceed to eliminate all (Cut)s deeper in the process term,
or we could halt immediately, in the style of weak reduction in the λ-calculus.

This approach is appealing because it corresponds to the similar approach
to defining the result of λ-calculus/proof-term reduction in sequential program-
ming. We could also define a natural equivalence between CP processes in terms
of barbed bisimulations [26], using the topmost action as the barb. However, in
a multi-output calculus like CP, we run into ambiguity. The process:

νx.(y[0].x[1].P | z[0].x.case(Q0, Q1))

can be converted in two steps to:

y[0].z[0].νx.(x[1] | x.case(Q0, Q1)) or z[0].y[0].νx.(x[1] | x.case(Q0, Q1))

Intuitively, these processes are equivalent. Processes connected to distinct chan-
nels in CP are always independent so it is not possible for any observer to

Observed Communication Semantics for Classical Processes 59

correlate communication over the channels y and z and to determine the dif-
ference between these processes. We could treat all CP processes quotiented by
these permutations, but that would presuppose these equivalences, rather than
having them induced by the actual behaviour of CP processes. (Bellin and Scott
do such an identification in [7], pg. 14, rule (1).) If we were to define obser-
vational equivalence of CP processes via barbed bisimulation of CP processes
up to permutations, then we would be effectively building the consequences of
linearity into the definition of equivalence, rather than deducing them.

Another approach to resolving the non-determinism problem is to restrict
processes to having one free channel that is designated as “the” output channel.
With only one channel there can be no ambiguity over the results of the ordering
of commuting conversions. This is the path taken in Caires and Pfenning’s [9]
ILL-based formalism. Pérez et al. [27] define a notion of observational equiva-
lence for Caires and Pfenning’s system based on a Labelled Transition System
(LTS) over processes with one free channel. CLL, and hence CP, do not have
a notion of distinguished output channel. Indeed, it is not immediately obvious
why a process dealing with multiple communication partners ought to designate
a particular partner as “the one” as Caires and Pfenning’s system does.

1.2 A Solution: Observed Communication Semantics

We appear to have a tension between two problems. CP processes need partners
to communicate with, but if we connect two CP processes with the (Cut) rule we
cannot observe what they communicate! If we leave a CP process’s channels free,
then we need reduction rules that do not correspond to operationally justified
communication steps, and we admit spurious non-determinism unless we make
ad-hoc restrictions on the number of free channels.

Our solution is based on the idea that the observed behaviour of a collection of
processes is the data exchanged between them, not their stuck states. In sequential
calculi, stuck computations are interpreted as values, but this viewpoint does not
remain valid in the world of message-passing communicating processes.

We propose a new operational semantics for CP on the idea of “visible”
applications of the (Cut) rule that allow an external observer to see the data
transferred. We define a big-step evaluation semantics that assigns observations
to “configurations” of CP processes. For example, the configuration:

�c x[1].x[] |x x.case(x().0, x().0) :: · | x : 1 ⊕ 1

consists of a pair of CP processes x[1].x[] and x.case(x().0, x().0) that will com-
municate over the public channel x, indicated by the |x notation. The split typing
context on the right hand side indicates that there are no unconnected channels,
·, and one observable channel x : 1 ⊕ 1.

Our semantics assigns the observation to (1, ∗) to this configuration:

(x[1].x[] |x x.case(x().0, x().0)) ⇓ (1, ∗)

This observation indicates that “1” was transferred, followed by “end-of-session”.

60 R. Atkey

Observations in our operational semantics are only defined for configurations
with no free channels. Hence we do not have the problem of processes getting
stuck for lack of communication partners, and the rules of our operational seman-
tics (Fig. 3) are only concerned with interactions and duplication and discarding
of servers. There is no need for non-operational steps.

Our operational semantics enables us to define observational equivalence
between CP processes in the standard way: if two processes yield the same
observed communications in all contexts, then they are observationally equiva-
lent (Definition 1). We will see that the (Cut)-elimination rules of CLL, seen as
equations between CP terms are observational equivalences in our sense (Sect. 5).

Proving observational equivalences using our definition directly is difficult,
for the usual reason that the definition quantifies over all possible contexts.
Therefore, we define a denotational semantics for CP processes and configura-
tions, based on the standard relational semantics for CLL (Sect. 3). This denota-
tional semantics affords us a compositional method for assigning sets of potential
observable communication behaviours to CP processes and configurations. In
Sect. 4 we show that, on closed configurations, the operational and denotational
semantics agree, using a proof based on ⊥⊥-closed Kripke logical relations. Cou-
pled with the compositionality of the denotational semantics, adequacy yields a
sound technique for proving observational equivalences.

1.3 Contributions

This paper makes three contributions to logically-based session types:
1. In Sect. 2, we define a communication observing semantics for Wadler’s CP

calculus. This semantics assigns observations to “configurations” of processes
that are communicating over channels. The data communicated over these
channels constitutes the observations an external observer can make on a net-
work of processes. Our semantics enables a definition of observational equiv-
alence for CP processes that takes into account the restrictions imposed by
CP’s typing discipline.

2. In Sect. 4, we show that the standard “folklore” relational semantics of CLL
proofs (spelt out in Sect. 3) is adequate for the operational semantics via a
logical relations argument. Adequacy means that we can use the relational
semantics, which is relatively straightforward to calculate with, to reason
about observational equivalence. An additional conceptual contribution is the
reading of the relational semantics of CLL in terms of observed communica-
tion between concurrent processes.

3. We use the denotational semantics to show that all of the standard Cut-
elimination rules of CLL are observational equivalences in our operational
semantics, in Sect. 5. This means that the Cut-elimination rules can be seen as
a sound equational theory for reasoning about observational equivalence. We
also show that permutations of communications along independent channels
are observational equivalences.

In Sect. 7, we assess the progress made in this paper and point to areas for future
work.

Observed Communication Semantics for Classical Processes 61

2 Observed Communication Semantics for CP

2.1 Classical Processes

Wadler’s CP is a term language for sequent calculus proofs in Girard’s Classical
Linear Logic (CLL), with a syntax inspired by the π-calculus [31].

Formulas. The formulas of CLL are built by the following grammar:

A,B ::=1 | ⊥ | A ⊗ B | A

&

B | A ⊕ B | A & B | !A | ?A

The connectives of CLL are collected into several groupings, depending on their
proof-theoretic behaviour. As we shall see, these groupings will also have rele-
vance in terms of their observed communication behaviour.

The connectives 1,⊥,⊗ and &are referred as the multiplicatives, and ⊕ and &
are the additives. Multiplicatives correspond to matters of communication topol-
ogy, while the additives will correspond to actual data transfer. The ! and ?
connectives are referred to as the exponential connectives, because they allow
for unrestricted duplication of the multiplicative structure. Another grouping of
the connectives distinguishes between the positive connectives 1, ⊗, ⊕, and !
that describe output, and the negative connectives ⊥,

&, & and ? that describe
input. Positive and negative are linked via duality : each A has a dual A⊥:

1⊥ = ⊥ ⊥⊥ = 1
(A ⊗ B)⊥ = A⊥ &

B⊥ (A &
B)⊥ = A⊥ ⊗ B⊥

(A ⊕ B)⊥ = A⊥ & B⊥ (A & B)⊥ = A⊥ ⊕ B⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

The key to the structure of the CP calculus is that CLL formulas are types
assigned to communication channels. Duality is how we transform the type of
one end of a channel to the type of the other end. Hence the swapping of positive
and negative connectives: we are swapping descriptions of input and output.

Example. The additive connective ⊕ indicates the transmission of a choice
between two alternative sessions. Using the multiplicative unit 1 to represent
the empty session, we can build a session type/formula representing transmis-
sion of a single bit, and its dual representing the receiving of a single bit:

Bit = 1 ⊕ 1 Bit⊥ = ⊥ & ⊥

With these, we can build the type of a server that accept arbitrarily many
requests to receive two bits and return a single bit:

Server = !(Bit⊥ &Bit⊥ &Bit ⊗ 1)

We read this type as making the following requirements on a process: the outer !
indicates that it must allow for arbitrarily many uses; it then must receive two

62 R. Atkey

Fig. 1. Classical processes

bits, transmit a bit, and then signal the end of the session. We obtain the type
of a compatible client by taking the dual of this type:

Client = Server⊥ = ?(Bit ⊗ Bit ⊗ Bit⊥ &⊥)

We read this as requirements that are dual to those on the server: the ? indicates
that it can use the server as many times as necessary, whereupon it must transmit
two bits, receive a bit and receive an end of session signal.

Processes. Processes in CP communicate along multiple named and typed chan-
nels, which we gather into contexts Γ = x1 : A1, . . . , xn : An where the channel
names xi are all distinct, and we do not care about order.

The syntax of processes in CP is given by the grammar:

P,Q ::= x ↔ x′ | νx.(P |Q) | 0 | x[] | x().P | x[x′].(P |Q) |
x(x′).P | x[i].P | x.case(P,Q) | ?x[x′].P | !x(x′).P where i ∈ {0, 1}

The rules defining CP are given in Fig. 1. They define a judgement � P ::Γ ,
indicating that P is well-typed with respect to type assignment Γ . We differ
from Wadler by writing P to the right of the �; it is not an assumption.

Observed Communication Semantics for Classical Processes 63

The rules are divided into four groups. The first group are the structural
rules: (Ax) introduces a process linking two channels, note the use of duality
to type the two ends of the link; (Cut) establishes communication between two
processes via a hidden channel x, again note the use of duality; and (Mix0) is
the nil process which performs no communication over no channels.

The second group contains the multiplicative rules. Following Wadler’s nota-
tion, square brackets [· · ·] indicate output and round brackets (· · ·) indicate
input. Thus (1) introduces a process that outputs an end-of-session signal and
dually (⊥) introduces a process that inputs such. Likewise, (⊗) introduces a
process that outputs a fresh channel name for a forked-off process P to com-
municate on, and dually (&) inputs a channel name for it to communicate on in
the future. Neither of these pairs communicates any unexpected information. By
duality, if a ⊗ process is going to send a channel and fork a process, then it is
communicating with a &process that is ready to receive a channel and commu-
nicate with that process. In our semantics in Sect. 2.3, multiplicative connectives
affect the structure of observations, but not their information content.

Processes that communicate information are introduced by the additive rules
in the third group. The process introduced by (⊕i) transmits a bit i along the
channel x, and continues using x according to the type Ai. Dually, (&) introduces
processes that receive a bit, and proceed with either P or Q given its value.

The final group covers the exponential rules. The rule (!) introduces an infi-
nitely replicable server process that can communicate according to the type A on
demand. To ensure that this process is infinitely replicable, all of the channels it
uses must also be connected to infinitely replicable servers, i.e., channels of type
?Ai. We indicate the requirement that all the channels in Γ be of ?’d typed by
the notation ?Γ . Processes introduced by the (?) rule query a server process to
obtain a new channel for communication. The exponentials are given their power
by the structural rules (C) and (W). Contraction, by rule (C) allows a process
to use the same server twice. Weakening, by the rule (W) allows a process to
discard a channel connected to a server.

Example. As a programming language, CP is very low-level. We make use of
the following syntactic sugar (from [4]) for transmitting and receiving bits along
channels of type Bit and Bit⊥:

x[0].P def= x[y].(y[0].y[] | P)
x[1].P def= x[y].(y[1].y[] | P)
case x.{0 �→ P ;1 �→ Q} def= x.case(x().P, x().Q)

Using these abbreviations, we can write an implementation of our Server type
that computes the logical AND of a pair of bits:

� !x(y).y(p).y(q).case p.{
0 �→ case q.{0 �→ y[0].y[];1 �→ y[0].y[]};
1 �→ case q.{0 �→ y[0].y[];1 �→ y[1].y[]}} ::x : Server

64 R. Atkey

This process creates an infinitely replicable server via (!), receives two channels
via (&), receives two bits along them, and in each case transmits the appropriate
returned value and signals end of session. A dual client process is written so:

� ?x[y].y[1].y[1].case y.{0 �→ y().0;1 �→ y().0} ::x : Client

This process contacts a server, sends the bit 1 twice, and then, no matter the
outcome, receives the end of session signal and halts.

2.2 Configurations

The well-typed process judgement � P ::Γ relates processes P to unconnected
channels Γ . When processes communicate via the (Cut) rule, that commu-
nication is invisible to external observers: the common channel x is removed
from the context. In order to make communication visible, we introduce con-
figurations of processes. A configuration �c C ::Γ | Θ has unconnected chan-
nels Γ and connected but observable channels Θ. Observable channel contexts
Θ = x1 : A1, . . . , xn : An are similar to normal channel contexts Γ , except
that we identify contexts whose type assignments are the same up to duality.
Thus, as observable channel contexts, x : A ⊗ B, y : C ⊕ D is equivalent to
x : A

&

B, y : C & D. We make this identification because the CLL connectives
encode two things: (i) the form of the communication and (ii) its direction (i.e.,
whether it is positive or negative). When observing communication, we are not
interested in the direction, only the content. Hence identification up to duality.

Configurations are defined using the rules in Fig. 2. The rule (cfgProc) treats
processes as configurations with unconnected channels and no publicly observ-
able channels. The (cfgCut) rule is similar to the (Cut) rule in that it puts two
configurations together to communicate, but here the common channel is moved
to the observable channel context instead of being hidden. The remainder of
the rules, (cfg0), (cfgW), and (cfgC) are the analogues of the structural rules
of CP, lifted to configurations. The rule (cfgC) is required to contract chan-
nel names appearing in two separate processes in a configuration, and (cfgW)
is required for weakening even when there are no processes in a configuration.
There are no contraction or weakening rules for observable contexts Θ. Such
contexts record connected channels, which cannot be discarded or duplicated.

Fig. 2. Configurations of classical processes

Observed Communication Semantics for Classical Processes 65

We define a structural congruence C1 ≡ C2 on configurations, generated by
commutativity and associativity (where permitted by the typing) for |x, with 0
as the unit. Structural congruence preserves typing.

A configuration with no unconnected channels, �c C :: · | Θ, is called a closed
configuration of type Θ. Closed configurations will be our notion of complete
systems: the observed communication semantics we define below in Sect. 2.4 is
only defined for closed configurations.

Example. Continuing our example from above, we can connect the server process
ServerP to the client process ClientP in a configuration with a visible commu-
nication channel x, using the (cfgCut) rule:

�c ServerP |x ClientP :: · | x : Server

Note that this configuration also has typing �c ServerP |x ClientP :: · | x : Client
due to the conflation of dual types in observation contexts.

2.3 Observations

Our observed communication semantics assigns observations to closed configu-
rations. The range of possible observations is defined in terms of the types of the
channels named in Θ. As stated above, observations only track the data flowing
across a communication channel, not the direction. Therefore, the positive and
negative connective pairs each have the same sets of possible observations:

�1� = �⊥� = {∗}
�A ⊗ B� = �A

&

B� = �A� × �B�
�A0 ⊕ A1� = �A0 & A1� = Σi∈{0,1}. �Ai�
�!A� = �?A� = Mf (�A�)

where Mf (X) denotes finite multisets with elements from X. We will use the ∅
for empty multiset, � for multiset union, and �a1, . . . , an� for multiset literals.

The sets of possible observations for a given observation context Θ = x1 :
A1, . . . , xn : An are defined as the cartesian product of the possible observations
for each channel: �Θ� = �x1 : A1, . . . , xn : An� = �A1� × · · · × �An�.

2.4 Observed Communication Semantics

Observable evaluation is defined by the rules in Fig. 3. These rules relate closed
configurations �c C :: · | Θ with observations θ ∈ �Θ�. To derive C ⇓ θ is to say
that execution of C completes with observed communication θ. For convenience,
in Fig. 3, even though observations θ are tuples with “anonymous” fields, we
refer to the individual fields by the corresponding channel name. The rules in
Fig. 3 makes use of the shorthand notation C[−] to indicate that the matched
processes involved in each rule may appear anywhere in a configuration.

The first rule, (Stop), is the base case of evaluation, yielding the trivial obser-
vation () for the empty configuration. The next three rules, (Link), (Comm),

66 R. Atkey

Fig. 3. Observed communication semantics

and (0) describe the behaviour of the processes introduced by the (Ax), (Cut)
and (Mix0) rules respectively. (Link) evaluates links via substitution of chan-
nel names; and the observed communication across the link is shared between
the two channels. (Comm) evaluates two processes communicating over a pri-
vate channel by evaluating them over a public channel and then hiding it. (0)
evaluates the empty process 0 by turning it into the empty configuration 0.

The rules (1⊥), (⊗ &), (⊕&) and (!?) describe how processes introduced by
dual pairs of rules interact across public channels, and the observed communica-
tion that results. For (1⊥), the trivial message ∗ is sent. For (⊗ &), communica-
tion that occured across two independent channels is grouped into one channel.
For (⊕&), a single bit, i is transmitted, which is paired with the rest of the
communication. For (!?), an observation arising from a single use of a server is
turned into a multiset observation with a single element.

The rules (!W) and (!C) describe how server processes are discarded or dupli-
cated when they have no clients or multiple clients respectively. In terms of
observed communication, these correspond to multiset union (�) and the empty
multiset (∅), respectively. Finally, the (≡) rule states that configuration seman-
tics is unaffected by permutation of processes (we have elided the matching
reordering within θ, following our convention of using channel names to identify
parts of an observation).

Example. Our operational semantics assigns the following observation to the
configuration we built at the end of Sect. 2.2:

(ServerP |x ClientP) ⇓ (�((1, ∗), (1, ∗), (1, ∗), ∗)�)

Observed Communication Semantics for Classical Processes 67

We observe the two 1-bits sent by the client, the 1-bit returned by the server,
and the final ∗ indicating end of session. The additional ∗s accompanying each
bit are an artifact of our encoding of bits as the formula 1 ⊕ 1.

2.5 Observational Equivalence

Observational equivalence between a pair of processes is defined as having the
same set of observations in all typed contexts. By its definition in terms of typed
contexts CP [−], our definition of observational equivalence takes into account
the (in)abilities of typed processes to interact with each other. In particular,
the inability of CP processes to distinguish permutations of actions on distinct
channels yields a family of observational equivalences (Fig. 8).

Our definition of observational equivalence is defined in terms of typed con-
texts CP [−], which consist of configurations and processes with a single (typed)
hole. Compared to the configuration contexts C[−] in Fig. 3, configuration-
process contexts allow the hole to appear within a process.

Definition 1. Two processes � P1, P2 ::Γ are observationally equivalent, writ-
ten P1 � P2, if for all configuration-process contexts CP [−] where �c CP [P1] :: · |
Θ and �c CP [P2] :: · | Θ, and all θ ∈ �Θ�, CP [P1] ⇓ θ ⇔ CP [P2] ⇓ θ.

Reasoning about observational equivalence is difficult, due to the quantification
over all contexts. In the next two sections, we present a denotational semantics
of CP which is sound for reasoning about observational equivalence.

3 Denotational Semantics of CP

The observed communication semantics of the previous section assigns obser-
vations to closed configurations. To reason about open configurations and
processes, and hence observational equivalence, we require a semantics that
assigns observations to processes and open configurations. We do this via a deno-
tational semantics that interprets processes and open configurations as relations
between the possible observations on each of their channels. Since CP processes
are a syntax for CLL proofs, our denotations of processes will be identical to the
relational semantics of proofs in CLL (see, for example, Barr [6]). We extend this
semantics to configurations by interpreting them as relations between observa-
tions on their unconnected channels and observations on their connected chan-
nels. Compared to other denotational semantics for process calculi (e.g. [30,32]),
this semantics is notable in its non-use of traces, synchronisation trees, or other
temporally ordered formalism to record the I/O behaviour of processes. This
is due to the linearity constraints imposed by the typing rules inherited from
CLL, which enforce the invariant that distinct channels are completely indepen-
dent. A trace-based semantics would impose an ordering on actions performed by
processes which is not observable by a CP context. This “temporal-obliviousness”
speaks to the point that CP is about structured communication determined by
types, not about concurrency. We return to this in Sect. 5 when we discuss the
observational equivalences between processes that permute independent actions.

In Sect. 4, we will see that on closed configurations the operational semantics
and the denotational semantics agree.

68 R. Atkey

3.1 Semantics of Formulas

The semantics of formulas does not take into account whether data is being
transmitted or received; the relational semantics of CLL is sometimes referred
to as “degenerate” in this sense. We discuss this further in Sect. 3.4. For now,
we use the same interpretation of formulas as we did for observation contexts in
Sect. 2.3:

�1� = �⊥� = {∗}
�A ⊗ B� = �A

&

B� = �A� × �B�
�A0 ⊕ A1� = �A0 & A1� = Σi∈{0,1}. �Ai�
�!A� = �?A� = Mf (�A�)

The sets of possible observations for a given context Γ = x1 : A1, . . . , xn : An

are again defined as the cartesian product of the sets for each of the Ai:

�Γ � = �x1 : A1, . . . , xn : An� = �A1� × · · · × �An�

3.2 Semantics of Processes

The basic idea of the semantics of processes is that if (a1, . . . , an) ∈ �� P ::Γ �,
then (a1, . . . , an) is a possible observed behaviour of P along its unconnected
channels. So, to every � P ::Γ , we assign a subset of the interpretation of Γ :

�� P ::Γ � ⊆ �Γ �

by induction on the derivation of � P ::Γ . The (Ax) rule is interpreted by the
diagonal relation, indicating that whatever is observed at one end of the linked
channels is observed at the other:

�� x ↔ y ::x : A, y : A⊥� = {(a, a) | a ∈ �A�}

The (Cut) rule is interpreted by taking observations from both processes that
share a common observation along the shared channel:

�� νx.(P |Q) ::Γ,Δ� = {(γ, δ) | (γ, a) ∈ �� P ::Γ, x : A�,
(δ, a) ∈ �� Q ::Δ,x : A⊥�}

The (Mix0) rule is interpreted as the only possible observation in an empty
context:

�� 0 :: � = {∗}

The multiplicative units observe trivial data:

�� x[] ::x : 1� = {(∗)}
�� x().P ::Γ, x : ⊥� = {(γ, ∗) | γ ∈ �� P ::Γ �}

Observed Communication Semantics for Classical Processes 69

For the multiplicative binary connectives, the (⊗) rule is interpreted by combin-
ing the interpretations of its two subprocesses into a single observation; while
the (&) rule is interpreted by pairing the observations on two channels into one.

�� x[y].(P |Q) ::Γ,Δ, x : A ⊗ B� = {(γ, δ, (a, b)) | (γ, a) ∈ �� P ::Γ, y : A�,
(δ, b) ∈ �� Q ::Δ,x : B�}

�� x(y).P ::Γ, x : A

&

B� = {(γ, (a, b)) | (γ, a, b) ∈ �� P ::Γ, y : A, x : B�}

For the additive connectives, sending bits via the (⊕i) rules is interpreted by
prepending that bit on to the observation on that channel; and receiving a bit
via (&) is interpreted by taking the union of possible observations:

�� x[i].P ::Γ, x : A0 ⊕ A1� = {(γ, (i, a)) | (γ, a) ∈ �� P ::Γ, x : Ai�}
�� x.case(P0, P1) ::Γ, x : A0 & A1�

=
⋃

i∈{0,1}{(γ, (i, a)) | (γ, a) ∈ �� Pi ::Γ, x : Ai�}

For the exponential connectives, a “server” process introduced by the (!) rule
is interpreted as the multiset of k-many observations of its underlying process,
taking the union of their auxillary observations on the context ?Γ . A “client”
process introduced by (?) makes a singleton multiset’s worth of observations:

�� !x(y).P :: ?Γ, x : !A� = {(
⊎k

j=1 α1
j , . . . ,

⊎k
j=1 αn

j , �a1, . . . , ak�) |
∀i ∈ {1, . . . , k}.

(α1
i , . . . , α

n
i , ai) ∈ �� P :: ?Γ, y : A�}

�� ?x[y].P ::Γ, x : ?A� = {(γ, �a�}) | (γ, a) ∈ �� P ::Γ, y : A�}
The exponential structural rules dictate how singleton observations from client
processes are combined, or channels are discarded. Contraction (C) is interpreted
via multiset union, and weakening (W) is interpreted by the empty multiset:

�� P{x1/x2} ::Γ, x1 : ?A� = {(γ, α1 � α2) |
(γ, α1, α2) ∈ �� P ::Γ, x1 : ?A, x2 : ?A�}

�� P ::Γ, x : ?A� = {(γ, ∅) | γ ∈ �� P ::Γ �}

When these rules are put into communication with servers generated by (!) they
will dictate the multiplicity of uses of the server process.

Example. We compute the denotation of the process ServerP from our running
example to be the set of arbitrarily sized multisets of possible interactions with
the underlying process:

�ServerP� = {�a1, . . . , ak� | ∀i.ai ∈ S}

where the underlying process’s denotation includes all possible 22 possibilities
for inputs and relates them to the corresponding output (their logical AND):

S = {((b1, ∗), (b2, ∗), (b1 ∧ b2, ∗), ∗) | b1 ∈ {0, 1}, b2 ∈ {0, 1}}

70 R. Atkey

The client’s denotation is a singleton multiset (recording the fact that it uses
the server only once). Dually to the server’s denotation, the first two bits are
determined but the last one is completely undetermined because we cannot know
what the response from the server will be.

�ClientP� = {�((1, ∗), (1, ∗), (b, ∗), ∗)� | b ∈ {0, 1}}

3.3 Semantics of Configurations

The denotational semantics of configurations extends the semantics of processes
to include the connected channels. Configurations �c C ::Γ | Θ are assigned sub-
sets of �Γ �×�Θ�. The idea is that, if ((a1, . . . , an), (b1, . . . , bn)) ∈ ��c C ::Γ | Θ�,
then (a1, . . . , an) and (b1, . . . , bn) are a possible observed behaviour of C along
its unconnected and connected channels respectively. We assign denotations to
each configuration by structural recursion on their derivations:

��c 0 :: · | ·� = {(∗, ∗)}
��c P ::Γ | ·� = {(γ, ∗) | γ ∈ �� P ::Γ �}
��c C1 |x C2 ::Γ1, Γ2 | Θ1, Θ2, x : A� =

{((γ1, γ2), (θ1, θ2, a)) | ((γ1, a), θ1) ∈ ��c C1 ::Γ1, x : A | Θ1�,
((γ2, a), θ2) ∈ ��c C2 ::Γ2, x : A⊥ | Θ2�}

��c C ::Γ, x : ?A | Θ� = {((γ, ∅), θ) | (γ, θ) ∈ ��c C ::Γ | Θ�}
��c C{x1/x2} ::Γ, x1 : ?A | Θ� =

{((γ, a1 � a2), θ) | ((γ, a1, a2), θ) ∈ ��c C ::Γ, x1 : ?A, x2 : ?A | Θ�}

The interpretation of (cfg0), (cfgC), and (cfgW) are similar to the analogous
rules for processes. The interpretation of (cfgCut) is also similar, except that the
observation on the shared channel is retained. The interpretation of (cfgProc)
lifts interpretations of processes up to configurations with no connected channels.

Example. Using the above rules, we compute the denotation of our example
configuration linking our server to its client:

��c ServerP |x ClientP :: · | x ::Server� = {�((1, ∗), (1, ∗), (1, ∗), ∗)�}

The denotation is the set with the single observation we computed in Sect. 2.4
for this configuration. In Sect. 4, we will see that this is no accident.

3.4 More Precise Semantics?

As we noted in Sect. 3.1, the relational semantics of CLL assigns the same inter-
pretation to the positive and negative variants of each connective. Thus, the
semantics of formulas do not model the direction of data flow for inputs and
outputs. The logical relations we will define in Sect. 4 will refine the semantics
of formulas to identify subsets of the observations possible for each formula that
are actually feasible in terms of the input/output behaviour of connectives, but

Observed Communication Semantics for Classical Processes 71

it is also possible to perform such a refinement purely at the level of the deno-
tational semantics. Girard’s motivating semantics for CLL was coherence spaces
[16], which can be seen as a refined version of the relational semantics where
particular distinguished subsets, cliques, are identified as the possible denota-
tions of processes. The defining property of coherence spaces is that for every
clique α in a coherence space and every clique β in its dual, the intersection
α ∩ β has at most one element. The coherence space semantics can be extended
to configurations by stipulating that subsets X assigned to configurations must
satisfy the property that if (γ1, θ1) and (γ2, θ2) are both in X, then whenever γ1
and γ2 are coherent (i.e., {γ1, γ2} is a clique), then θ1 = θ2. The semantics for
configurations in Sect. 3.3 satisfies this property, and the adequacy proof in the
next section goes through unchanged.

Operationally, this means that CP processes can only interact in at most one
way. Therefore, using a coherence space semantics would consistute a semantic
proof of determinacy for CP with our semantics. It might be possible to go
further and use Loader’s totality spaces [22], which stipulate that cliques in dual
spaces have exactly one element in their intersection, to also prove termination.
However, the construction of exponentials in totality spaces is not clear.

4 Adequacy

We now present our main result: on closed configurations, the operational and
denotational semantics agree. Consequently, we can use the denotational seman-
tics to reason about observational equivalences between CP processes (Sect. 5).

Theorem 1. If �c C :: · | Θ, then C ⇓ θ iff θ ∈ ��c C :: · | Θ�.

The forwards direction of this theorem states that if an observation can be
generated by the evaluation rules, then it is also within the set of possible obser-
vations predicted by the denotational semantics. This is straightfoward to prove
by induction on the derivation of C ⇓ θ. The backwards direction, which states
that the denotational semantics predicts evaluation, is more complex and occu-
pies the rest of this section.

4.1 Agreeability via ⊥⊥-Closed Logical Relations

We adapt the standard technique for proving adequacy for sequential languages
[28] and use a logical relation to relate open configurations with denotations. For
each channel name x and CLL formula A, we use ternary relations that relate
observable contexts, denotations, and configurations, which we call agreeability
relations:

X ⊆ ΣΘ:ObsCtxt. P(�A� × �Θ�) × Cfg(x : A | Θ) (1)

where ObsCtxt is the set of observable contexts, P is the power set, and Cfg(x :
A | Θ) is the set of well-typed configurations �c C ::x : A | Θ. We are interested
in special agreeability relations: those that are closed under double negation.

72 R. Atkey

Negation. Given an agreeability relation X for a channel x : A, its negation
X⊥ is an agreeability relation for x : A⊥. Intuitively, if X identifies a set of
configurations and denotations with some property, then X⊥ is the set of con-
figurations and denotations that “interact well” with the ones in X. For our
purposes, “interact well” means that the communication we observe when the
two configurations interact is predicted by their associated denotations.

Definition 2 (Negation). Let X be a relation for x : A as in (1). Its negation
X⊥ is a relation for x : A⊥, defined as:

X⊥ = {(Θ′, α′, C ′) | ∀(Θ,α,C) ∈ X, θ, θ′, a.
(a, θ) ∈ α ∧ (a, θ′) ∈ α′ ⇒ (C |x C ′)⇓ (θ, θ′, a)}

We are interested in agreeability relations that are ⊥⊥-closed: X⊥⊥ = X. These
are related denotations and configurations that “interact well with anything
that interacts well with them”. This kind of double-negation closure was used
by Girard [16] to construct the Phase Space semantics of CLL and to show
weak normalisation. Ehrhard notes that double-negation closure is a common
feature of many models of CLL [13]. Double-negation, (·)⊥⊥, has the following
properties, which mean that it is a closure operator [12]:

Lemma 1. 1. X ⊆ X⊥⊥;
2. If X ⊆ Y , then Y ⊥ ⊆ X⊥;
3. X⊥⊥⊥ = X⊥.

By (3), X⊥⊥ is automatically ⊥⊥-closed for any agreeability relation X.

Duplicable and Discardable. We generalise the duplicable and discardable capa-
bility of !’d processes (the (!C) and (!W) rules) to arbitrary configurations with
one free channel of !’d type:

Definition 3 (Duplicable and Discardable). A configuration �c C ::x : !A |
z1 : !B1, . . . , zn : !Bn is

1. duplicable if, for all �c C ′ ::Γ, x : ?A⊥, x′ : ?A⊥ | Θ,

D[(C ′ |x C) |x′ C{x′/x, z′
1/z1, . . . , z

′
n/zn}] ⇓

θ

[
x �→ α, z1 �→ α1,. . . ,zn �→ αn,
x′ �→ α′,z′

1 �→ α′
1,. . . ,z

′
n �→ α′

n

]

implies

D[C ′{x/x′} |x C] ⇓ θ[x �→ α � α′, z1 �→ α1 � α′
1, . . . , zn �→ αn � α′

n]

2. discardable if, for all �c C ′ ::Γ | Θ, D[C ′] ⇓ θ implies that D[C ′ |x C] ⇓
θ[x �→ ∅, z1 �→ ∅, . . . , zn �→ ∅].

The definition of duplicability uses the (cfgC) rule to ensure that the second
configuration is well-typed. Likewise, discardability uses the (cfgW) rule. The
next lemma states that configurations built from duplicable and discardable

Observed Communication Semantics for Classical Processes 73

Fig. 4. ⊥⊥-closed agreeability relations relating denotations and configurations

parts are themselves duplicable and discardable. We will use this in the proof
of Lemma 4, below, when showing that processes of the form !x(y).P agree with
their denotations after they have been closed by connecting their free channels
to duplicable and discardable configurations.

Lemma 2. Let � P ::x1 : ?A1, . . . xn : ?An, x′ : A be a process, and let 〈�c

Ci ::xi : !Ai | ?Θi〉1≤i≤n be duplicable and discardable configurations. Then the
configuration

�c (· · · (!x(x′).P |x1 C1) · · · |xn
Cn) ::x : !A | ?Θ1, x1 : ?A1, · · · , ?Θn, xn : ?An

is duplicable and discardable.

Interpretation of Process Types. Figure 4 defines a ⊥⊥-closed agreeability rela-
tion on x : A for each CLL proposition A by structural recursion. We only need
definitions for the positive cases, relying on negation for the negative cases. We
ensure that all the positive cases are ⊥⊥-closed by explicitly doing so. The neg-
ative cases are the negations of the positive cases, and hence are automatically
⊥⊥-closed by Lemma 1.

The general method for each definition in Fig. 4 is to define what the “ideal”
configuration inhabitant and denotation of each type looks like, and then use
⊥⊥-closure to close that relation under all possible interactions. In the case of
x : 1, there is one possible process, x[], and denotation, ∗. For the x : A ⊗ B
case, ideal inhabitants are composed of two inhabitants of the types A and B
(processes P , P ′ plus their associated support processes Di and D′

i). In the
x : A0 ⊕ A1 case, ideal inhabitants are processes that are inhabitants of Ai

after outputing some i. For the exponentials, x : !A, the ideal inhabitant is one
whose auxillary resources are all duplicable and discardable (indicated by the

74 R. Atkey

?Θ). In each case, the associated denotations are determined by the denotational
semantics defined in Sect. 3.

Agreeable Processes. The definition of �x : A� defines what it means for configu-
rations with one free channel to agree with a denotation. We use this definition
to define what it means for a process to agree with its denotation by connect-
ing it to configurations and denotations that are related and stating that the
communications predicted by the denotations is matched by evaluation:

Definition 4. A process � P ::x1 : A1, . . . , xn : An is agreeable if for all

(Θ1, α1, C1) ∈ �x1 : A1�
⊥, . . . , (Θn, αn, Cn) ∈ �xn : An�⊥,

if (a1, . . . , an) ∈ �� P ::x1 : A1, . . . , xn : An� and (a1, θ1) ∈ α1, . . . , (an, θn) ∈
αn, then

(· · · (P |x1 C1) · · · |xn
Cn) ⇓ (θ1, a1, . . . , θn, an)

Closing an agreeable process so that it has one free channel yields an inhab-
itant of the semantic type of the free channel:

Lemma 3. If the process � P ::x1 : A1, . . . , xn : An, x : A is agreeable, then for
all (Θ1, β1, C1) ∈ �x1 : A1�

⊥, . . . , (Θn, βn, Cn) ∈ �xn : An�⊥, it is the case that

((Θ1, x1 : A1, . . . , Θn, xn : An), α, (· · · (P |x1 C1) · · · |xn
Cn)) ∈ �x : A�

where
α={(a, θ1, a1, . . . , θn, an)|(a1, . . . , an, a) ∈ �P �, (a1, θ1) ∈ β1, . . . , (an, θn) ∈ βn}

For all processes, when connected to well-typed configurations, their denotational
semantics predicts their behaviour:

Lemma 4. All processes � P ::Γ are agreeable.

Proof. (Sketch) By induction on the derivation of � P ::Γ . The structural rules
((Ax), (Cut), (Mix0)) all involve relatively straightforward unfoldings of the def-
initions. The rest of the rules follow one of two patterns, depending on whether
they are introducing a negative or positive connective. For the negative con-
nectives, ⊥,

&

,&, ?, and for the contraction and weakening rules, we are using
(cfgCut) to connect the configuration composed of P and configurations for the
other free channels with a triple (Θ,α,C) that is a semantic inhabitant of the
negation of a negative type. To proceed, we use the fact that the positive types
are all defined via double-negation closure to deduce the following:

∀(Θ′, α′, C ′).
(∀(Θ′′, α′′, C ′′) ∈ “ideal”. (Θ′, α′, C ′)⊥(Θ′′, α′′, C ′′)) ⇒

(Θ,α,C)⊥(Θ′, α′, C ′)

where “ideal” indicates the defining property of the negation of the formula
being introduce, as defined in Fig. 4, and −⊥− indicates the property that the

Observed Communication Semantics for Classical Processes 75

denotational semantics correctly predicts the operational semantics when Cut-
ing two configurations. Thus we can reason as if the triple (Θ,α,C) is an “ideal”
inhabitant of the negation of the introduced type.

For the positive connectives, 1,⊗,⊕, !, the situation is slightly simpler. By
point (3) of Lemma 1, we deduce that, if (Θ,α,C) is the interacting process of
the negation of the introduced type, then:

∀(Θ′, α′, C ′) ∈ “ideal”. (Θ′, α′, C ′)⊥(Θ,α,C)

Therefore, our job is to prove that the newly introduced process conforms to the
“ideal” specification introduced in Fig. 4. This is mostly straightforward, save
for the (!) case, where we need an auxillary induction over the context ?Γ to
deduce that all the configurations connected to these channels are themselves
duplicable and discardable.

Agreeable Configurations. We now extend the definition of agreeability from
processes to configurations. After we show that all configurations are agreeable,
the special case of this definition for closed processes will give us the backwards
direction of Theorem 1 (Corollary 1).

Definition 5. A configuration �c C ::x1 : A1, . . . , xn : An | Θ is agreeable if
for all (Θ1, α1, C1) ∈ �x1 : A1�

⊥, . . . , (Θn, αn, Cn) ∈ �xn : An�⊥, and
(a1, . . . , an, θ) ∈ ��c C ::x1 : A1, . . . , xn : An | Θ� and (a1, θ1) ∈ α1, . . . , and
(an, θn) ∈ αn, then (· · · (C |x1 C1) · · · |xn

Cn) ⇓ (θ, θ1, a1, . . . , θn, an).

Lemma 5. All configurations �c C ::Γ | Θ are agreeable.

Proof. By induction on the derivation of �c C ::Γ | Θ. Lemma 4 is used to handle
the (cfgProc) case, and all the other cases are similar to the corresponding case
in the proof of Lemma 4.

When Γ is empty, Lemma 5 yields the backwards direction of Theorem 1:

Corollary 1. If �c C :: · | Θ and θ ∈ ��c C :: · | Θ�, then C ⇓ θ.

5 Observational Equivalences

Theorem 1 enables us to predict the behaviour of processes without having to
first embed them in a closing configuration. In particular, we can use it as a
method for proving observational equivalences:

Corollary 2. If � P1, P2 ::Γ and �P1� = �P2�, then P1 � P2.

Proof. For any closing configuration context CP [−] and observation θ, we have:

CP [P1] ⇓ θ ⇔ θ ∈ �CP [P1]� by Theorem 1
⇔ θ ∈ �CP [P2]� since �P1� = �P2�
⇔ CP [P2] ⇓ θ by Theorem 1

76 R. Atkey

Fig. 5. Observational equivalences arising from permutation of cuts

Fig. 6. Observational equivalences arising from elimination of principal cuts

We now use this corollary to show that the cut elimination rules of CLL and
permutation rules yield observational equivalences for our operational semantics.
Since we have used the standard relational semantics of CLL, which is known
to be equationally sound for cut-elimination [25], all these statements are imme-
diate. The force of Corollary 2 is that these rules also translate to observational
equivalences for our independently defined operational semantics.

Cut-Elimination Rules. Figure 5 shows the rules arising from the interaction of
(Cut) with itself and the (Ax) rule: (Cut) is associative and commutative, and
has (Ax) as an identity element. These rules amount to the observation that one
can construct a category from CLL proofs (see Melliès [25], Sect. 2).

Figure 6 shows the rules arising from elimination of “principal cuts”: (Cut)
rule applications that are on a formula and its dual that are introduced by the two
immediate premises. Oriented left-to-right, and restricted to top-level (i.e., not

Observed Communication Semantics for Classical Processes 77

Fig. 7. Observational equivalences arising from elimination of non-principal cuts (com-
muting conversions)

under a prefix), these are the rules that are taken as the reduction rules of CP by
Wadler. They are also the inspiration for our evaluation rules in Fig. 3. However,
here these rules are observational equivalences, so we can use them anywhere in
process to replace two communicating processes with the result of their commu-
nication. Figure 7 presents the rules for eliminiating non-principal cuts: (Cut)
rule applications where the cut formula is not the most recently introduced one.
These rules are also called “commuting conversion” rules because they commute
input/output prefixes with applications of the (Cut) rule in order to expose
potential interactions. The fact that these are now observational equivalences
formalises the informal statement given by Wadler in Sect. 3.6 of [36] that these
rules are justified for CP. Note that the semantics we presented in Sect. 2.4 does
not make use of commuting conversions. It only requires immediate interactions
between process. Since there are no channels left unconnected, there is no way
for a process to get stuck.

Permutation of Independent Channels. Figure 8 presents a set of observational
equivalence rules arising from permutation of communication along independent
channels. We have omitted the type information to save space. The admissibility

78 R. Atkey

Fig. 8. Permutation of communication along independent channels

of these rules is an indication of the relative weakness of CP contexts to make
observations on a process. If a process has a access to a pair of channels, the
processes connected to the other ends of those channels must be independent,
and so cannot communicate between themselves to discover which one was com-
municated with first. This is why the denotational semantics of CP that we
defined in Sect. 3 does not explain processes’ behaviour in terms of traces as
is more common when giving denotation semantics to process calculi [30]. The
typing constraints of CP mean that there is no global notion of time: the only
way that a CP process can “know” the past from the future is by receiving a
bit of information via the (&) rule. Everything else that a CP process does is
pre-ordained by its type.

There are a large number of equations in Fig. 8 due to the need to account
for the permutation of each kind of prefix with itself and with every other prefix.
The (⊗) rule is particularly bad due to the presence of two sub-processes, either
of which may do perform the permuted action.

Observed Communication Semantics for Classical Processes 79

6 Related Work

Wadler’s papers introducing CP, [35,36], contain discussions of work related to
the formulation of CP as a session-typed language derived from CLL, and how
this relates to session types. Here, we discuss work related to logical relations and
observational equivalences for session-typed calculi, and the use of denotational
semantics for analysing the proofs of CLL.

Just as the Iron Curtain during the Cold War lead to the same work being
done twice, once in the East and once in the West, the existence of two logically-
based session-typed concurrency formalisms, one based on Intuitionistic Linear
Logic (ILL) [9], and one based on Classical Linear Logic, means that analogous
work is performed on both sides. (Indeed, ILL has both left and right rules for
each connective, meaning that working with ILL-based formalisms already dou-
bles the amount of work one needs to do.) Notions of observational equivalence
and logical relations for πDILL have already been studied by Pérez et al. [27].
Pérez et al. use logical relations to prove strong normalisation and confluence for
their session-typed calculus based on ILL, and define a notion of observational
equivalence between session-typed processes, based on bisimulation. They prove
observational equivalences based on the (Cut)-elimination rules of their calculus,
analogous to ones we proved in the previous section.

As we noted in the introduction Pérez et al. define an LTS over stuck
processes with one free output channel. They use this to coinductively define
their notion of observational equivalence. This means that to prove individual
equivalences requires the construction of the appropriate bisimulation relation.
In contrast, our denotational technique for proving equivalences is much more
elementary, involving only simple set theoretic reasoning. Moreover, their tech-
nique requires additional proofs that their definition of observational equivalence
is a congruence, a fact that is immediate in our definition.

Pérez et al. go further than we have done in also proving that their calculus is
strongly normalising and confluent, using a logical relations based proof. As we
discussed in Sect. 3.4, it is possible to use a coherence space semantics to prove
determinacy, and we conjecture that totality spaces can prove termination.

⊥⊥-closed relations are a standard feature of proofs in the meta-theory
of Linear Logic: for example weak normalisation proofs by Girard [16] and
Baelde [5] and strong normalisation proofs by Accattoli [3]. They have also been
used for parametricity results in polymorphically typed π-calculi [8]. An inno-
vation in this paper is the use of Kripke ⊥⊥-closed relations to account for the
contexts Θ describing the possible observations on configurations.

7 Conclusions and Future Work

We have introduced an operational semantics for Wadler’s CP calculus that
agrees with the standard relational semantics of CLL proofs. We have been
able to show that the (Cut)-elimination rules of CLL are precisely observational
equivalences with respect to our operational semantics. We view this work as a

80 R. Atkey

crucial step in treating CP as a foundational language of structured communi-
cation. We now highlight some areas of research that we have opened up.

Refined Denotational Semantics for CP. As we discussed in Sect. 3.4, there is
a close connection between semantics of CLL that assign cliques to proofs and
the operational properties of the corresponding processes. Further refinements
of the relational semantics, beyond coherence spaces, such as Loader’s total-
ity spaces [22] and Ehrhard’s Finiteness spaces [13], should yield insights into
the operational behaviour of CP and its extensions with features such as non-
determinism. Laird et al. [19]’s weighted relational semantics interprets processes
as semiring-valued matrices. This could be used to model a variant of CP with
complexity measures. Probabilistic Coherence Spaces, introduced by Danos and
Ehrhard [11], are another refinement that model probabilistic computation.

Recursive Types for CP. In this paper, we have only investigated the basic
features of CP. Extensions of CP with recursive types, based on the work in
CLL by Baelde [5], have been carried out by Lindley and Morris [21]. Extension
of our operational semantics and the denotational semantics with recursive types
is an essential step in turning CP into a more realistic language for structured
communication. Constructing concurrency features on CP may be possible by
allowing racy interleaving of clients and servers expressive via recursive types.

Dependent Types for CP. More ambitiously, we intend to extend CP with
dependent types. Dependent types for logically-based session-typed calculi have
already been investigated by Toninho et al. [33] and Toninho and Yoshida [34].
However, these calculi enforce a strict separation between data and commu-
nication: there are session types Πx:τ.A(x) and Σx:τ.A(x) which correspond
to receiving or transmitting a value of value type τ . Taking inspiration from
McBride’s investigation of the combination of linear and dependent types [24],
we envisage a more general notion of session-dependent session type (x : A)�B,
where the value of x in B is determined by the actual observed data transferred
in the session described by A. This type is a dependent generalisation of Retoré’s
“before” connective [29]. To make this idea work, we need a notion of observed
communication in CP, which the observed communication semantics proposed
in this paper provides.

Acknowledgements. Thanks to Sam Lindley, J. Garrett Morris, Conor McBride and
Phil Wadler for helpful discussions and comments on this paper. This work was partly
funded by a Science Faculty Starter Grant from the University of Strathclyde.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theor. Comput. Sci.
111, 3–57 (1993)

2. Abramsky, S.: Proofs as processes. Theor. Comput. Sci. 135(1), 5–9 (1992)

Observed Communication Semantics for Classical Processes 81

3. Accattoli, B.: Linear logic and strong normalization. In: 24th International Con-
ference on Rewriting Techniques and Applications, RTA 2013, 24–26 June 2013,
Eindhoven, The Netherlands, pp. 39–54 (2013)

4. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: Lindley, S.,
McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes That Can Change
the World. LNCS, vol. 9600, pp. 32–55. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-30936-1 2

5. Baelde, D.: Least, greatest fixed points in linear logic. ACM Trans. Comput. Logic
13(1), 2:1–2:44 (2012)

6. Barr, M.: *-Autonomous categories and linear logic. Math. Struct. Comput. Sci.
1(2), 159–178 (1991)

7. Bellin, G., Scott, P.J.: On the π-calculus and linear logic. Theoret. Comput. Sci.
135(1), 11–65 (1994)

8. Berger, M., Honda, K., Yoshida, N.: Genericity and the π-calculus. In: Gordon,
A.D. (ed.) FoSSaCS 2003. LNCS, vol. 2620, pp. 103–119. Springer, Heidelberg
(2003). doi:10.1007/3-540-36576-1 7

9. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4 16

10. Curry, H.B.: Functionality in combinatory logic. Proc. Natl. Acad. Sci. 20, 584–590
(1934)

11. Danos, V., Ehrhard, T.: Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Inf. Comput. 209(6), 966–991 (2011)

12. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn.
Cambridge University Press, Cambridge (2002)

13. Ehrhard, T.: Finiteness spaces. Math. Struct. Comput. Sci. 15(4), 615–646 (2005)
14. Ehrhard, T., Laurent, O.: Interpreting a finitary π-calculus in differential interac-

tion nets. Inf. Comput. 208(6), 606–633 (2010)
15. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.

Funct. Program. 20(01), 19–50 (2010)
16. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–101 (1987)
17. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). doi:10.1007/3-540-57208-2 35
18. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P.,

Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism. Academic Press, Boston (1980)

19. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed λ-calculi. In: 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2013, 25–28 June 2013, New Orleans, LA, USA, pp. 301–310 (2013)

20. Lindley, S., Morris, J.G.: A semantics for propositions as sessions. In: Vitek, J. (ed.)
ESOP 2015. LNCS, vol. 9032, pp. 560–584. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46669-8 23

21. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types.
In: ICFP (2016, to appear)

22. Loader, R.: Linear logic, totality and full completeness. In: Proceedings of the
Ninth Annual Symposium on Logic in Computer Science (LICS 1994), 4–7 July
1994, Paris, France, pp. 292–298 (1994)

23. Mazza, D.: The true concurrency of differential interaction nets. Math. Struct.
Comput. Sci. (2015, to appear)

http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1007/3-540-36576-1_7
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/978-3-662-46669-8_23
http://dx.doi.org/10.1007/978-3-662-46669-8_23

82 R. Atkey

24. McBride, C.: I got plenty o’ nuttin’. In: Lindley, S., McBride, C., Trinder, P.,
Sannella, D. (eds.) A List of Successes That Can Change the World. LNCS, vol.
9600, pp. 207–233. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30936-1 12

25. Melliès, P.-A.: Categorical semantics of linear logic. In: Curien, P.-L., Herbelin,
H., Krivine, J.-L., Melliès, P.-A. (eds.) Interactive Models of Computation and
Program Behavior, Number 27 in Panoramas et Synthèses. Société Mathématique
de France (2009)

26. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). doi:10.1007/
3-540-55719-9 114

27. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations and
observational equivalences for session-based concurrency. Inf. Comput. 239, 254–
302 (2014)

28. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977)

29. Retoré, C.: Pomset logic: a non-commutative extension of classical linear logic. In:
Groote, P., Roger Hindley, J. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 300–318.
Springer, Heidelberg (1997). doi:10.1007/3-540-62688-3 43

30. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River (1998)

31. Sangiorgi, D., Walker, D.: The π-Calculus - A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

32. Stark, I.: A fully abstract domain model for the π-calculus. In: Proceedings of the
11th Annual IEEE Symposium on Logic in Computer Science, 27–30 July 1996,
New Brunswick, New Jersey, USA, pp. 36–42 (1996)

33. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: Proceedings of the 13th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, 20–22 July 2011,
Odense, Denmark, pp. 161–172 (2011)

34. Toninho, B., Yoshida, N.: Certifying data in multiparty session types. In: A List
of Successes That Can Change the World - Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday, pp. 433–458 (2016)

35. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2012. ACM (2012)

36. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)

http://dx.doi.org/10.1007/978-3-319-30936-1_12
http://dx.doi.org/10.1007/3-540-55719-9_114
http://dx.doi.org/10.1007/3-540-55719-9_114
http://dx.doi.org/10.1007/3-540-62688-3_43

Is Your Software on Dope?

Formal Analysis of Surreptitiously “enhanced” Programs

Pedro R. D’Argenio1,2(B), Gilles Barthe3, Sebastian Biewer2,
Bernd Finkbeiner2, and Holger Hermanns2

1 FaMAF, Universidad Nacional de Córdoba – CONICET, Córdoba, Argentina
dargenio@famaf.unc.edu.ar

2 Computer Science, Saarland Informatics Campus, Saarland University,
Saarbrücken, Germany

3 IMDEA Software, Madrid, Spain

Abstract. Usually, it is the software manufacturer who employs verifi-
cation or testing to ensure that the software embedded in a device meets
its main objectives. However, these days we are confronted with the sit-
uation that economical or technological reasons might make a manufac-
turer become interested in the software slightly deviating from its main
objective for dubious reasons. Examples include lock-in strategies and
the NOx emission scandals in automotive industry. This phenomenon is
what we call software doping. It is turning more widespread as software
is embedded in ever more devices of daily use.

The primary contribution of this article is to provide a hierarchy of
simple but solid formal definitions that enable to distinguish whether
a program is clean or doped. Moreover, we show that these characteri-
sations provide an immediate framework for analysis by using already
existing verification techniques. We exemplify this by applying self-
composition on sequential programs and model checking of HyperLTL
formulas on reactive models.

1 Introduction

The Volkswagen exhaust emissions scandal [43] has put software doping in the
spotlight: Proprietary embedded control software does not always exploit func-
tionality offered by a device in the best interest of the device owner. Instead the
software may be tweaked in various manners, driven by interests different from
those of the owner or of society. This is indeed a common characteristics for the
manner how different manufacturers circumvented [12,25] the diesel emission
regulations around the world. The exhaust software was manufactured in such
a way that it heavily polluted the environment, unless the software detected the

This work is partly supported by the ERC Grants 683300 (OSARES) and 695614
(POWVER), by the Saarbrücken Graduate School of Computer Science, by the
Sino-German CDZ project 1023 (CAP), by ANPCyT PICT-2012-1823, by SeCyT-
UNC 05/BP12 and 05/B497, and by the Madrid Region project S2013/ICE-2731
N-GREENS Software-CM.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 83–110, 2017.
DOI: 10.1007/978-3-662-54434-1 4

84 P.R. D’Argenio et al.

car to be (likely) fixed on a particular test setup used to determine the NOx

footprint data officially published. Phenomena resembling the emission scandal
have also been reported in the context of smart phone designs [2], where software
was tailored to perform better when detecting it was running a certain bench-
mark, and otherwise running in lower clock speed. Another smart phone case,
disabling the phone [11] via a software update after “non-authorised” repair, has
later been undone [36].

Usually, it is the software manufacturer who employs verification or testing to
ensure that the software embedded in a device meets its main objectives. How-
ever, these days we are confronted with the situation that economical or tech-
nological reasons might make a manufacturer become interested in the software
slightly deviating from its main objective for dubious reasons. This phenomenon
is what we call software doping. It is turning more widespread as software is
embedded in ever more devices of daily use.

The simplest and likely most common example of software doping (effectu-
ating a customer lock-in strategy [3]) is that of ink printers [42] refusing to work
when supplied with a toner or ink cartridge of a third party manufacturer [41],
albeit being technically compatible. Similarly, cases are known where laptops
refuse to charge [40] the battery if connected to a third-party charger. More sub-
tle variations of this kind of doping just issue a warning message about the risk
of using a “foreign” cartridge [20]. In the same vein, it is known that printers
emit “low toner” warnings [33] earlier than needed, so as to drive or force the
customer into replacing cartridges prematurely. Moreover, there are allegations
that software doping has occurred in the context of electronic-voting so as to
manipulate the outcome [1]. Tampering with voting machines has been proved a
relatively easy task [21]. Common to all these examples is that the software user
has little or no control over its execution, and that the functionality in question
is against the interests of user or of society.

Despite the apparently pervasive presence of software doping, a systematic
investigation or formalisation from the software engineering perspective is not
existing. Fragmentary attention has been payed in the security domain with
respect to cryptographic protections being sabotaged by insiders [37]. Typical
examples are the many known backdoors, including the prominent dual EC
deterministic random bit generator standardised by NIST [14]. Software doping
however goes far beyond inclusion of backdoors.

Despite the many examples, it is not at all easy to provide a crisp character-
isation of what constitutes software doping. This paper explores this issue, and
proposes a hierarchy of formal characterisations of software doping. We aim at
formulating and enforcing rigid requirements on embedded software driven by
public interest, so as to effectively ban software doping. In order to sharpen our
intuition, we offer the following initial characterisation attempt [5].

A software system is doped if the manufacturer has included a
hidden functionality in such a way that the resulting behaviour
intentionally favors a designated party, against the interest of
society or of the software licensee.

(1)

Is Your Software on Dope? 85

So, a doped software induces behaviour that can not be justified by the
interest of the licensee or of society, but instead serves another usually hidden
interest. It thereby favors a certain brand, vendor, manufacturer, or other mar-
ket participant. This happens intentionally, and not by accident. However, the
question whether a certain behaviour is intentional or not is very difficult to
decide. To illustrate this, we recall that the above mentioned smart phone case,
to be specific the iPhone-6, where “non-authorised” repair rendered the phone
unusable [11] after an iOS update, seemed to be intentional when it surfaced,
but was actually tracked down to a software glitch of the update and fixed later.
Notably, if the iOS designers would have had the particular intention to mis-
treat licensees who went elsewhere for repair, the same behaviour could well
have qualified as software doping in the above sense (1). As a result, we will look
at software doping according to the above characterisation, keeping in mind the
possibility of intentionality but not aiming to capture it in a precise manner.

In our work, we use concise examples that are directly inspired by the real
cases reviewed above. They motivate our hierarchy of formal characterisations
of clean or doping-free software.

A core observation will be that software doping can be characterised by con-
sidering the program if started from two different but compatible initial states.
If the obtained outputs are not compatible, then this implies that the software
is doped. Thinking in terms of the printer, one would expect that printing with
different but compatible cartridges would yield the same printout without any
alteration in the observed alerts. As a consequence, the essence of the property
of being clean can be cast as a hyperproperty [16,17].

We first explore characterisations on sequential software (Sect. 2). We intro-
duce a characterisation that ensures the proper functioning of the system when-
ever it is confined to standard parameters and inputs. Afterwards, we give two
other characterisations that limit the behaviour of the system whenever it goes
beyond such standard framework. We then revise these characterisations so as
to apply to reactive non-deterministic systems (Sect. 3).

Traditionally hyperproperties require to be analysed in an ad-hoc manner
depending on the particular property. However, a general framework is provided
by techniques based on, e.g., self-composition techniques [6] or specific logic
such as HyperLTL [15]. Indeed, we show (Sect. 4) how these properties can be
analysed using self-composition on deterministic programs, particularly using
weakest precondition reasoning [18], and we do the same (Sect. 5) for reactive
systems using HyperLTL. In both settings we demonstrate principal feasibility
by presenting verification studies of simple but representative examples.

2 Software Doping on Sequential Programs

Think of a program as a function that accepts some initial parameters and, given
some inputs, produces some outputs, maybe in a non-deterministic manner.
Thus, a parameterised sequential non-deterministic program is a function S :
Param → In → 2Out, where Param is a set of parameters, each one of them fixing

86 P.R. D’Argenio et al.

a particular instance of the program S, and In and Out being respectively the
sets of inputs accepted by S and outputs produced by S. Notice that for a fixed
parameter p and input i ∈ In, the run of program S(p)(i) may give a set of
possible outputs.

procedure Printer(cartridge info)
if type(cartridge info) ∈ Compatible
then

read(document)
print(stdout,document)

else
turnOn(alert led)

end if
end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand
then

read(document)
print(stdout,document)

else
turnOn(alert led)

end if
end procedure

Fig. 2. A doped printer.

To understand a first possible definition, consider the program embedded
in a printer (a simple abstraction is given in Fig. 1). This program may check
compatibility of the ink or toner cartridge and print whenever the cartridge is
compatible. In this case, we can think of the program Printer as a function
parameterised with the information on the cartridge, that receives a document
as input and produces a sequence of pages as outputs whenever the cartridge is
compatible, otherwise it turns on an alert led. In this setting, we expect that the
printer shows the same input-output behaviour for any compatible cartridge.

A printer manufacturer may manipulate this program in order to favour its
own cartridge brand. An obvious way is displayed in Fig. 2. This is a sort of
discrimination based on parameter values. Therefore, a first approach to charac-
terising a program as clean (or doping-free) is that it should behave in a similar
way for all parameters of interest. By “similar behaviour” we mean that the
visible output should be the same for any given input in two different instances
of the same (parameterised) program. Also, by “all parameters of interest”, we
refer to all parameter values we are interested in. In the case of the printer,
we expect that it works with any compatible cartridge, but not with every car-
tridge. Such a compatibility domain defines a first scope within which a software
is evaluated to be clean or doped.

Formally, if PIntrs ⊆ Param, we could say that a parameterised program S is
clean (or doping-free) if for all pairs of parameters of interest p, p′ ∈ PIntrs
and input i ∈ In, S(p)(i) = S(p′)(i). Thus, the program of Fig. 1 satisfies
this constraint whenever Compatible is the set of parameters of interest (i.e.
Compatible = PIntrs). Instead, the program of Fig. 2 would be rejected as doped
by the previous definition.

We could imagine, nonetheless, that the printer manufacturer may like to
provide extra functionalities for its own product which is outside of the standard
for compatibility. For instance (and for the sake of this discussion) suppose the
printer manufacturer develops a new file format that is more efficient or versatile

Is Your Software on Dope? 87

at the time of printing, but this requires some new technology on the cartridge
(we could compare this to the introduction of the postscript language when
standard printing was based on dots or ASCII code). The manufacturer still
wants to provide the usual functionality for standard file formats that work with
standard compatible cartridges and comes up with the program of Fig. 3. Notice
that this program does not conform to the specification of a clean program
as given above since it behaves differently when a document of the new (non-
standard) type is given. This is clearly not in the spirit of the program in Fig. 3
which is actually conforming to the expected requirements.

procedure Printer(cartridge info)
if type(cartridge info) ∈ Compatible then

read(document)
if (¬newType(document)

∨ supportsNewType(cartridge info))
then

print(stdout,document)
else

turnOn(alert led)
end if

else
turnOn(alert signal)

end if
end procedure

Fig. 3. A clean printer.

Thus, our first definition
states that a program is clean
if, for any possible instance from
the set of parameters of inter-
est, it exhibits the same visi-
ble outputs when supplied with
the same input, provided this
input complies with a given stan-
dard. Formally, we assume a set
PIntrs ⊆ Param of parameters of
interest and a set StdIn ⊆ In of
standard inputs and propose the
following definition.

Definition 1. A parameterised
program S is clean (or doping-free) if for all pairs of parameters of interest
p, p′ ∈ PIntrs and input i ∈ In, if i ∈ StdIn then S(p)(i) = S(p′)(i). If the program
is not clean we will say that it is doped.

The characterisation given above is based on a comparison of the behaviour
of two instances of a program, each of them responding to different parameter
values within PIntrs. A second, different characterisation may instead require
to compare a reference specification capturing the essence of clean behaviour
against any possible instance of the program. The first approach seems more
general than the second one in the sense that the specification could be consid-
ered as one of the possible instances of the (parameterised) program. However,
we can consider a distinguished parameter p̂ so that the instance S(p̂) is actually
the specification of the program, in which case, both definitions turn out to be
equivalent. In any case, it is important to observe that the specification may not
be available since it is also made by the software manufacturer, and only the
expected requirements may be known.

We remark that Definition 1 entails the existence of a contract which defines
the set of parameters of interest and the set of standard inputs. In fact, Defin-
ition 1 only asserts doping-freedom if the program is well-behaved within such
a contract, namely, as long as the parameters are within PIntrs and inputs are
within StdIn. A behaviour outside this realm is deemed immediately correct since
it is of no interest. This view results too mild in some cases where the change of

88 P.R. D’Argenio et al.

behaviour of a program between a standard input and a non-standard but yet
not-so-different input is extreme.

procedure EmissionControl()
read(throttle)
def dose := SCRModel(throttle)
NOx := throttle3 / (k · def dose)

end procedure

Fig. 4. A simple emission control.

Consider the electronic control unit
(ECU) of a diesel vehicle, in particular
its exhaust emission control module. For
diesel engines, the controller injects a cer-
tain amount of a specific fluid (an aqueous
urea solution) into the exhaust pipeline
in order to lower mono-nitrogen oxides
(NOx) emissions. We simplify this control problem to a minimal toy example.
In Fig. 4 we display a function that reads the throttle position and calculates
which is the dose of diesel exhaust fluid (DEF) (stored in def dose) that should
be injected to reduce the NOx emission. The last line of the program precisely
models the NOx emission by storing it in the output variable NOx after a (made
up) calculation directly depending on the throttle value and inversely depending
on the def dose.

procedure EmissionControl()
read(throttle)
if throttle ∈ ThrottleTestValues then

def dose := SCRModel(throttle)
else

def dose := altSCRModel(throttle)
end if
NOx := throttle3 / (k · def dose)

end procedure

Fig. 5. A doped emission control.

The Volkswagen emission scandal
arose precisely because their software was
instrumented so that it works as expected
only if operating in or very close to the
lab testing conditions [19]. For our simpli-
fied example, this behaviour is exempli-
fied by the algorithm of Fig. 5. Of course,
the real case was less simplistic. Precisely,
in this setting, the lab conditions define
the set of standard inputs, i.e., the set
StdIn is actually ThrottleTestValues and, as a consequence, a software like this
one trivially meets the characterisation of clean given in Definition 1. However,
this unit is intentionally programmed to defy the regulations when being unob-
served and hence it falls directly within our intuition of what a doped software
is (see (1)).

The spirit of the emission tests is to verify that the amount of NOx in the car
exhaust gas does not exceed a given threshold in general. Thus, one would expect
that if the input values of the EmissionControl function deviates within “rea-
sonable distance” from the standard input values provided during the lab emis-
sion test, the amount of NOx found in the exhaust gas is still within the regulated
threshold, or at least it does not exceed it more than a “reasonable amount”. A
similar rationale could be applied for regulation of other systems such as speed
limit controllers in scooters and electric bikes.

Therefore, we need to introduce two notions of distance dIn : (In× In) → R≥0

and dOut : (Out × Out) → R≥0 on inputs and outputs respectively. In principle,
we do not require them to be metrics, but they need to be commutative and
satisfy that dIn(i, i) = dOut(o, o) = 0 for all i ∈ In and o ∈ Out. Since programs
are non-deterministic, we need to lift the output distance to sets of outputs and
for that we will use the Hausdorff lifting which, as we will see, is exactly what
we need. Given a distance d, the Hausdorff lifting H(d) is defined by

Is Your Software on Dope? 89

H(d)(A,B) = max
{

supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)
}

(2)

Based on this, we provide a new definition that considers two parameters: para-
meter κi refers to the acceptable distance an input may deviate from the norm
to be still considered, and parameter κo that tells how far apart outputs are
allowed to be in case their respective inputs are within κi distance.

Definition 2. A parameterised program S is robustly clean if for all pairs of
parameters of interest p, p′ ∈ PIntrs and inputs i, i′ ∈ In, if i ∈ StdIn is a standard
input and dIn(i, i′) ≤ κi then H(dOut)(S(p)(i), S(p′)(i′)) ≤ κo.

Requiring that H(dOut)(S(p)(i), S(p′)(i′)) ≤ κo is equivalent to demand that

1. for all o ∈ S(p)(i) there exists o′ ∈ S(p′)(i′) such that dOut(o, o′) ≤ κo, and
2. for all o′ ∈ S(p′)(i′) there exists o ∈ S(p)(i) such that dOut(o, o′) ≤ κo.

Notice that this is what we actually need for the non-deterministic case: each
output of one of the program instances should be matched within “reasonable
distance” by some output of the other program instance.

Notice that i′ does not need to satisfy StdIn, but it will be considered as long
as it is within κi distance of any input satisfying StdIn. In such a case, outputs
generated by S(p′)(i′) will be requested to be within κo distance of some output
generated by the respective execution induced by a standard input. In addition,
notice that if the program S is deterministic and terminating we could simply
write that dOut(S(p)(i), S(p′)(i′)) ≤ κo.

The concept of robustly clean programs generalises that of clean programs.
Indeed, by taking dIn(i, i) = 0 and dIn(i, i′) > κi for all i �= i′, and dOut(o, o) = 0
and dOut(o, o′) > κo for all o �= o′, we see that Definition 1 is subsumed by
Definition 2. Also, notice that the tolerance parameters κi and κo are values
that should be provided as well as the notions of distance dIn and dOut, and,
together with the set PIntrs of parameters of interest and the set StdIn of standard
inputs, are part of the contract that ensures that the software is robustly clean.
Moreover, the limitation to these tolerance values has to do with the fact that,
beyond it, particular requirements (e.g. safety) may arise. For instance, a smart
battery may stop accepting charge if the current emitted by a standardised
but foreign charger is higher than “reasonable” (i.e. than the tolerance values);
however, it may still proceed in case it is dealing with a charger of the same
brand for which it may know that it can resort to a customised protocol allowing
ultra-fast charging in a safe manner.

Example 3. We remark that Definition 2 will actually detect as doped the pro-
gram of Fig. 5 for appropriate distances dIn and dOut and tolerance parameters
κi and κo. Indeed, suppose that SCRModel(x) = x2, altSCRModel(x) = x,
and k = 2. To check if the programs are robustly clean, take In = (0, 2] (these
are the values that variable throttle takes), StdIn = (0, 1], let the distances dIn
and dOut be the absolute values of the differences of the values that take throttle
and NOx, respectively, and let κi = 2 and κo = 1. With this setting, the program
of Fig. 4 is robustly clean while the program of Fig. 5 is not.

90 P.R. D’Argenio et al.

Definition 2 can be further generalised by adjusting to a precise desired gran-
ularity given by a function f : R → R ∪ {∞} that relates the distances of the
input with the distances of the outputs as follows.

Definition 4. A parameterised program S is f -clean if for all pairs of parame-
ters of interest p, p′ ∈ PIntrs and inputs i, i′ ∈ In, if i ∈ StdIn is a standard input
then H(dOut)(S(p)(i), S(p′)(i′)) ≤ f(dIn(i, i′)).

Like for Definition 2, the definition of f -clean does not require i′ to satisfy
StdIn. Moreover, notice that it is important that f can map into ∞, in which
case it means that input i′ becomes irrelevant to the property. Also here the
Hausdorff distance is elegantly encoding the requirement that

1. for all o ∈ S(p)(i) there exists o′ ∈ S(p′)(i′) s.t. dOut(o, o′) ≤ f(dIn(i, i′)), and
2. for all o′ ∈ S(p′)(i′) there exists o ∈ S(p)(i) s.t. dOut(o, o′) ≤ f(dIn(i, i′)).

This definition is strictly more general than Definition 2, which can be seen
by taking f defined by f(x) = κo whenever x ≤ κi and f(x) = ∞ otherwise.
(Notice here the use of ∞.) Also, if the program S is deterministic, we could
simply require that dOut(S(p)(i), S(p′)(i′)) ≤ f(dIn(i, i′)).

In this new definition, the bounding function f , together with the distances
dIn and dOut, the set PIntrs of parameters of interest and the set StdIn of standard
inputs, are part of the contract that ensures that the software is f -clean.

Example 5. For the example of the emission control take the setting as in Exam-
ple 3 and let f(x) = x/2. Then the program of Fig. 4 is f -clean while the program
of Fig. 5 is not.

We remark that the notion of f -clean strictly relates the distance of the input
values with the distance of the output values. Thus, e.g., the accepted distance
on the outputs may grow according the distance of the input grows. Compare
it to the notion of robustly clean in which the accepted distance on the outputs
is only bounded by a constant (κo), regardless of the proximity of the inputs
(which is only observed w.r.t. to constant κi).

3 Software Doping on Reactive Programs

Though we use the Volkswagen ECU case study as motivation for introducing
Definitions 2 and 4, this program is inherently reactive: the DEF dosage depends
not only of the current inputs but also on the current state (which in turn is set
according to previous inputs). Therefore, in this section, we revise the definitions
given in the previous section within the framework of reactive programs.

We consider a parameterised reactive program as a function S : Param →
Inω → 2(Outω) so that any instance of the program reacts to the k-th input
in the input sequence producing the k-th output in each respective output
sequence. Thus each instance of the program can be seen, for instance, as a
(non-deterministic) Mealy or Moore machine. In this setting, we require that
StdIn ⊆ Inω. Thus, the definition of a clean reactive program strongly resembles
Definition 1.

Is Your Software on Dope? 91

Definition 6. A parameterised reactive program S is clean if for all pairs of
parameters of interest p, p′ ∈ PIntrs and input i ∈ Inω, if i ∈ StdIn then S(p)(i) =
S(p′)(i).

Naively, we may think that the definition of robustly clean may be also reused
as given in Definition 2 by considering metrics on ω-traces. Unfortunately this
definition does not work as expected: suppose two input sequences in Inω that
only differ by a single input in some late k-th position but originates a distance
larger than κi. Now the program under study may become clean even if the
respective outputs differ enormously at an early k′-th position (k′ < k). Notice
that there is no justification for such early difference on the output, since the
input sequences are the same up to position k′.

In fact, we notice that the property of being clean is of a safety nature: if
there is a point in a pair of executions in which the program is detected to be
doped, there is no extension of such executions that can correct it and make the
program clean. In the observation above, the k′-th prefix of the trace should be
considered the bad prefix and the program deemed as doped.

Therefore, we consider distances on finite traces: dIn : (In∗ × In∗) → R≥0 and
dOut : (Out∗ × Out∗) → R≥0. Now, we provide a definition of robustly clean
on reactive programs that ensures that, as long as all j-th prefix of a given
input sequence, with j ≤ k, are within κi distance, the k-th prefix of the output
sequence are within κo distance, for any k ≥ 0. In the following definition, we
denote with i[..k] the k-th prefix of the input sequence i (and similarly for output
sequences).

Definition 7. A parameterised reactive program S is robustly clean if for all
pairs of parameters of interest p, p′ ∈ PIntrs and input sequences i, i′ ∈ Inω, if
i ∈ StdIn then, for all k ≥ 0 the following must hold

(∀j ≤ k : dIn(i[..j], i′[..j]) ≤ κi) → H(dOut)(S(p)(i)[..k], S(p′)(i′)[..k]) ≤ κo,

where S(p)(i)[..k] = {o[..k] | o ∈ S(p)(i)} and similarly for S(p′)(i′)[..k].

By having as precondition that dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k, this def-
inition considers the fact that once one instance of the program deviates too
much from the normal behaviour (i.e. beyond κi distance at the input), this
instance is not obliged any longer to meet (within κo distance) the output, even
if later inputs get closer again. This enables robustly clean programs to stop if
an input outside the standard domain may result harmful for the system. Also,
notice that, by considering the conditions through all k-th prefixes the definition
encompasses the safety nature of the robustly cleanness property.

Example 8. A slightly more realistic version of the emission control system on
the ECU is given in Fig. 6. It is a closed loop where the calculation of the DEF
dosage also depends on the previous reading of NOx. Moreover, the DEF dosage
does not affect deterministically in the NOx emission. Instead, there is a margin
of error on the NOx emission which is represented by the factor λ and the
non-deterministic assignment of variable NOx in the penultimate line within the
loop.

92 P.R. D’Argenio et al.

procedure EmissionControl()
NOx := 0
loop

read(throttle)
def dose := SCRModel(throttle,NOx)

NOx :∈
[
(1 − λ) throttle3

k·def dose
, (1 + λ) throttle3

k·def dose

]

output(NOx)
end loop

end procedure

Fig. 6. An emission control (reactive).

This non-deterministic assign-
ment is an (admittedly unrealis-
tic) abstraction of the chemical
reaction between the exhaust gases
and the DEF dosage. Figure 7
gives the version of the emis-
sion control system instrument-
ing the cheating hack. We define
the selective catalytic reduction
(SCR) models as follows:

SCRModel(x, n) =

{
x2 if k · n ≤ x

(1 + λ) · x2 otherwise

where λ = 0.1 and k = 2, and altSCRModel(x, n) = x (i.e., it ignores the feed-
back of the NOx emission resulting in the same altSCRModel as in Exam-
ple 3). We also take In = (0, 2] (recall that these are the values that variable
throttle takes). The idea of the feedback in SCRModel is that if the previous
emission was higher than expected with the planned current dosage, then the
actual current dosage is an extra λ portion above the planned dosage.

procedure EmissionControl()
NOx := 0
loop

read(throttle)
if throttle ∈ ThrottleTestValues then

def dose := SCRModel(throttle,NOx)
else

def dose := altSCRModel(throttle,NOx)
end if

NOx :∈
[
(1 − λ) throttle3

k·def dose
, (1 + λ) throttle3

k·def dose

]

output(NOx)
end loop

end procedure

Fig. 7. A doped emission control (reactive).

For the contract required by
robustly cleanness, we let StdIn =
(0, 1]ω and define dIn(i, i′) =
|last(i) − last(i′)| and similarly
dOut(o, o′) = |last(o) − last(o′)|,
where last(t) is the last element
of the finite trace t. We take κi =
2 and κo = 1.1. (κo needs to
be a little larger than in Exam-
ple 3 due to the non-deterministic
assignment to NOx.)

In Sect. 6 we will use a model
checking tool to prove that the
algorithm in Fig. 6 is robustly
clean, while the algorithm of Fig. 7 is not.

As before, Definition 7 can be further generalised by adjusting to a precise
desired granularity given by a function f : R → R∪{∞} that relates the distances
of the input with the distances of the outputs as follows.

Definition 9. A parameterised reactive program S is f -clean if for all pairs of
parameters of interest p, p′ ∈ PIntrs and input sequences i, i′ ∈ Inω, if i ∈ StdIn
then for all k ≥ 0, H(dOut)(S(p)(i)[..k], S(p′)(i′)[..k]) ≤ f(dIn(i[..k], i′[..k])).

Like for Definition 7, the definition of f -cleanness also considers distance
on prefixes to ensure that major differences in late inputs do not impact on
differences of early outputs, capturing also the safety nature of the property.

Is Your Software on Dope? 93

We observe that Definition 9 is more general than Definition 7. As before,
define f by f(x) = κo whenever x ≤ 1 and f(x) = ∞ otherwise, but also
redefine the metric on the input domain as follows:

dnewIn (i[..k], i′[..k]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if i[..k] = i′[..k]
1 if either i ∈ StdIn or i′ ∈ StdIn, i[..k] �= i′[..k]

and dIn(i[..j], i′[..j]) ≤ κi for all 0 ≤ j ≤ k

2 otherwise

for all i, i′ ∈ In and k ≥ 0.

Example 10. For the example of the emission control take the setting as in Exam-
ple 8 and let f(x) = x/2 + 0.3. The variation of f w.r.t. Example 5 is necessary
to cope with the non-determinism introduced in these models. With this setting,
in Sect. 6 we will check that the program of Fig. 6 is f -clean while the program
of Fig. 7 is not.

4 Analysis Through Self-composition

In this section we will focus on sequential deterministic programs and we will
see them in the usual way: as state transformers. Thus, if μ, μ′ : Var → Val are
states mapping the variables of a program into values within their domain, we
denote with (S, μ) ⇓ μ′ that a program S, initially taking values according to
μ, executes and terminates in state μ′. We indicate with (S, μ) ⇓ ⊥ that the
program S starting at state μ does not terminate. As usual, we denote by μ |= φ
that a predicate φ holds on a state μ.

In this new setting, and restricting to deterministic programs, Definition 1
could be alternatively formulated as in Proposition 11. For this, we will assume
that S contains sets of variables �xp, �xi, and �xo which are respectively parameter
variables, input variables and output variables. Moreover, let PIntrs and StdIn be
predicates on states containing only program variables in �xp and �xi, respectively.
They characterise the set of parameters of interest and the set of standard inputs.
Now, we can state,

Proposition 11. A sequential and deterministic program S is clean if and only
if for all states μ1, μ2 and μ′

1 such that μ1 |= PIntrs∧StdIn, μ2 |= PIntrs∧StdIn,
μ1(�xi) = μ2(�xi) and (S, μ1) ⇓ μ′

1, it holds that (S, μ2) ⇓ μ′
2 and μ′

1(�xo) = μ′
2(�xo)

for some μ′
2.

The proof of the proposition is straightforward since it is basically a notation
change, hence we omit it. Also, notice that we omit any explicit reference to
non-terminating programs. This is not necessary due to the symmetric nature
of the predicates.

94 P.R. D’Argenio et al.

In the nomenclature of [7] relations

I = {(μ1, μ2) | μ1 |= PIntrs ∧ StdIn,

μ2 |= PIntrs ∧ StdIn, and μ1(�xi) = μ2(�xi)}
I ′ = {(μ1, μ2) | μ1(�xo) = μ2(�xo)}

are called indistinguishable criteria1, and if (μ1, μ2) ∈ I then we say that μ1

and μ2 are I-indistinguishable2. Similarly, for I ′. Thus, Proposition 11 char-
acterises what in [7] is called termination-sensitive (I, I ′)-security and, by [7,
Proposition 3], the property of cleanness can be analysed using the weakest (con-
servative) precondition (wp) [18] through self-composition.

Proposition 12. Let [�x/�x′] indicate the substitution of each variable x by vari-
able x′. Then a deterministic program S is clean if and only if

(
(PIntrs ∧ StdIn) ∧ (PIntrs ∧ StdIn)[�x/�x′]
∧ �xi = �x′

i ∧ wp(S, true)

)

⇒ wp(S;S[�x/�x′], �xo = �x′
o).

The term wp(S, true) in the antecedent of the implication is the weakest
precondition that ensures that program S terminates. It is necessary in the
predicate, otherwise it could become false only because program S does not
terminate.

With the same setting as before, and taking dIn, dOut, κi and κo as for Defini-
tion 2, we obtain an alternative definition of robustly cleanness for deterministic
programs.

Proposition 13. A sequential and deterministic program S is robustly clean if
and only if for all states μ1, μ2, and μ′ such that μ1 |= PIntrs∧StdIn, μ2 |= PIntrs,
and dIn(μ1(�xi), μ2(�xi)) ≤ κi, the following two conditions hold:

1. if (S, μ1) ⇓ μ′, then (S, μ2) ⇓ μ′
2 and dOut(μ′(�xo), μ′

2(�xo)) ≤ κo for some μ′
2;

and
2. if (S, μ2) ⇓ μ′, then (S, μ1) ⇓ μ′

1 and dOut(μ′
1(�xo), μ′(�xo)) ≤ κo for some μ′

1.

In this case, the indistinguishability criteria are

I = {(μ1, μ2) | μ1 |= PIntrs ∧ StdIn, μ2 |= PIntrs, and dIn(μ1(�xi), μ2(�xi)) ≤ κi}
I ′ = {(μ1, μ2) | dOut(μ1(�xo), μ2(�xo)) ≤ κo}

Notice that I is not symmetric. Then the first item of Proposition 13 charac-
terises termination-sensitive (I, I ′)-security while the second item characterises
termination-sensitive (I−1, I ′)-security. Using again [7, Proposition 3], the prop-
erty of robustly cleanness can be analysed using wp through self-composition.
1 In this definition, states should actually be considered as tuples of values rather than

state mappings in order to exactly match the definitions of [7, Sect. 3].
2 Also, to strictly follow notation in [7, Sect. 3] we should have written μ1 ∼I

id μ2

instead of (μ1, μ2) ∈ I.

Is Your Software on Dope? 95

Proposition 14. A deterministic program S is robustly clean if and only if

PIntrs ∧ StdIn ∧ PIntrs[�x/�x′] ∧ dIn(�xi, �x
′
i) ≤ κi

⇒
(

wp(S, true) ⇒ wp(S;S[�x/�x′], dOut(�xo, �x
′
o) ≤ κo)

∧ wp(S[�x/�x′], true) ⇒ wp(S[�x/�x′];S, dOut(�xo, �x
′
o) ≤ κo)

)

Proceeding in a similar manner, we can also obtain an alternative definition
of f -cleanness for deterministic programs.

Proposition 15. A sequential and deterministic program S is f-clean if and
only if for all states μ1, μ2, and μ′ such that μ1 |= PIntrs∧StdIn, and μ2 |= PIntrs,
the following two conditions hold:

1. if (S, μ1)⇓μ′, then (S, μ2)⇓μ′
2 and dOut(μ′(�xo), μ′

2(�xo)) ≤ f(dIn(μ1(�xi), μ2(�xi))
for some μ′

2; and
2. if (S, μ2)⇓μ′, then (S, μ1)⇓μ′

1 and dOut(μ′
1(�xo), μ′(�xo)) ≤ f(dIn(μ1(�xi), μ2(�xi))

for some μ′
1.

Notice that the term f(dIn(μ1(�xi), μ2(�xi)) appears in the conclusion of the
implications of both items. This may look unexpected since it seems to be related
to the input requirements rather than the output requirements, in particular
because it refers to the input states. This makes this case a little less obvious
than the previous one. To overcome this situation, we introduce a constant Y ∈
R≥0 which we assume universally quantified. Using this, we define the following
indistinguishability criteria

IY = {(μ1, μ2) | μ1 |= PIntrs ∧ StdIn,

μ2 |= PIntrs, and f(dIn(μ1(�xi), μ2(�xi))) = Y }
I ′

Y = {(μ1, μ2) | dOut(μ1(�xo), μ2(�xo)) ≤ Y }
By using this, by Proposition 15, we have that S is f -clean if and only if for

every Y ∈ R≥0, and for all states μ1, μ2, and μ′ such that (μ1, μ2) ∈ IY

1. if (S, μ1) ⇓ μ′, then (S, μ2) ⇓ μ′
2 and (μ′, μ′

2) ∈ I ′
Y for some μ′

2; and
2. if (S, μ2) ⇓ μ′, then (S, μ1) ⇓ μ′

1 and (μ′
1, μ

′) ∈ I ′
Y for some μ′

1.

With this new definition, and taking into account again the asymmetry of
IY , the first item characterises termination-sensitive (IY , I ′

Y)-security while the
second one characterises termination-sensitive (I−1

Y , I ′
Y)-security. From this and

[7, Prop. 3], the property of f -cleanness can be analysed using wp and self-
composition.

Proposition 16. A deterministic program S is f-clean if and only if for all
Y ∈ R≥0

PIntrs ∧ StdIn ∧ PIntrs[�x/�x′] ∧ f(di(�xi, �x
′
i)) = Y

⇒
(

wp(S, true) ⇒ wp(S;S[�x/�x′], dOut(�xo, �x
′
o) ≤ Y

∧ wp(S[�x/�x′], true) ⇒ wp(S[�x/�x′];S, dOut(�xo, �x
′
o) ≤ Y

)

96 P.R. D’Argenio et al.

wp(x := e, Q) = Q[e/x]

wp(if b then S1 else S2 end if, Q) = b ⇒ wp(S1, Q) ∧ ¬b ⇒ wp(S2, Q)

wp(S1; S2, Q) = wp(S1, wp(S2, Q))

wp(while b do S end do, Q) = ∃k : k ≥ 0 : Hk(Q)

where H0(Q) = ¬b ∧ Q and Hk+1(Q) = (b ∧ wp(S, Hk(Q))) ∨ H0(Q)

Fig. 8. Equations for the wp calculus

Example 17. In this example, we use Proposition 16 to prove correct our state-
ments in Example 3. First, we recall the definition of wp in Fig. 8, and rewrite
the programs in Figs. 4 and 5 with all functions and values properly instantiated
in the way we need it here (see Figs. 9 and 10).

def dose := thrtl2

NOx := thrtl3 / (2 · def dose)

Fig. 9. Program EC.

if thrtl ∈ ThrottleTestValues
then

def dose := thrtl 2

else
def dose := thrtl

end if
NOx := thrtl3 / (2 · def dose)

Fig. 10. Program AEC.

On the one hand, none of the programs
have parameters, then PIntrs = true. On the
other hand, StdIn = (thrtl ∈ (0, 1]). Since
wp(ec, true) = true we have to prove that

thrtl ∈ (0, 1] ∧
(

|thrtl−thrtl ′|
2 = Y

)

⇒
(

wp(ec;ec′, |NOx − NOx ′| ≤ Y)
∧ wp(ec′;ec, |NOx − NOx ′| ≤ Y)

)

(3)

where ec′ is another instance of ec with
every program variable x renamed by x′. More-
over, function f and distances dIn and dOut

are already instantiated. It is not difficult to
verify that wp(ec;ec′, |NOx−NOx ′| ≤ Y) ≡(

|thrtl−thrtl ′|
2 ≤ Y

)
and wp(ec′;ec, |NOx−NOx ′| ≤ Y) ≡

(
|thrtl ′−thrtl|

2 ≤ Y
)

from which the implication follows and hence ec is f -clean.
For aec we also have that wp(aec, true) = true and hence we have to prove

a formula similar to 3. In this case, wp(aec;aec′, |NOx − NOx ′| ≤ Y) is

(thrtl ∈ (0, 1] ∧ thrtl ′ ∈ (0, 1]) ⇒ |thrtl−thrtl ′|
2 ≤ Y

∧ (thrtl ∈ (0, 1] ∧ thrtl ′ /∈ (0, 1]) ⇒ |thrtl−thrtl ′2|
2 ≤ Y

∧ (thrtl /∈ (0, 1] ∧ thrtl ′ ∈ (0, 1]) ⇒ |thrtl2−thrtl ′|
2 ≤ Y

∧ (thrtl /∈ (0, 1] ∧ thrtl ′ /∈ (0, 1]) ⇒ |thrtl2−thrtl ′2|
2 ≤ Y

The predicate is the same for wp(aec′;aec, |NOx − NOx ′| ≤ Y), since |a − b| =
|b − a|. Then, the predicate
(
thrtl ∈ (0, 1] ∧ |thrtl−thrtl ′|

2 = Y
)

⇒
(

wp(aec;aec′, |NOx − NOx ′| ≤ Y)
∧ wp(aec′;aec, |NOx − NOx ′| ≤ Y)

)

Is Your Software on Dope? 97

is equivalent to

(
thrtl ∈ (0, 1] ∧ |thrtl−thrtl ′|

2 = Y
)

⇒
(

thrtl ′ ∈ (0, 1] ⇒ |thrtl−thrtl ′|
2 ≤ Y

∧ thrtl ′ /∈ (0, 1] ⇒ |thrtl−thrtl ′2|
2 ≤ Y

)

which can be proved false if, e.g., thrtl = 1 and thrtl ′ = 1.5.
Notwithstanding the simplicity of the previous example, the technique can

be applied to complex programs including loops. We decided to keep it simple
as it is not our intention to show the power of wp, but the applicability of our
definition.

We could profit from [7] for the use of other verification techniques, including
separation logic and model checking where the properties can be expressed in
terms of LTL and CTL. Particularly, CTL permits the encoding of the full non-
deterministic properties given in Sect. 2. We will not dwell on this since in the
next section we explore the encoding of the reactive properties through a more
general setting.

5 Analysis of Reactive Programs with HyperLTL

HyperLTL [15] is a temporal logic for the specification of hyperproperties of
reactive systems. HyperLTL extends linear-time temporal logic (LTL) with trace
quantifiers and trace variables, which allow the logic to refer to multiple traces
at the same time. The problem of model checking a HyperLTL formula over a
finite-state model is decidable [24]. In this section, we focus on reactive non-
deterministic programs and use HyperLTL to encode the different definitions of
clean reactive programs given in Sect. 3. In the following, we interpret a program
as a set S ⊆ (2AP)ω of infinite traces over a set AP of atomic propositions.

Let π be a trace variable from a set V of trace variables. A HyperLTL formula
is defined by the following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | φ
φ ::= aπ | ¬φ | φ ∨ φ | Xφ | φ U φ

(4)

The quantifiers ∃ and ∀ quantify existentially and universally, respectively, over
the set of traces. For example, the formula ∀π.∃π′. φ means that for every trace
π there exists another trace π′ such that φ holds over the pair of traces. If
no universal quantifier occurs in the scope of an existential quantifier, and no
existential quantifiers occurs in the scope of a universal quantifier, we call the
formula alternation-free. In order to refer to the values of the atomic propositions
in the different traces, the atomic propositions are indexed with trace variables:
for some atomic proposition a ∈ AP and some trace variable π ∈ V, aπ states that
a holds in the initial position of trace π. The temporal operators and Boolean
connectives are interpreted as usual. In particular, Xφ means that φ holds in
the next state of every trace under consideration. Likewise, φ U φ′ means that
φ′ eventually holds in every trace under consideration at the same point in
time, provided φ holds in every previous instant in all such traces. We also use

98 P.R. D’Argenio et al.

the standard derived operators: Fφ ≡ true U φ, Gφ ≡ ¬F¬φ, and φ W φ′ ≡
¬(¬φ′ U (¬φ ∧ ¬φ′)).

A trace assignment is a partial function Π : V → (2AP)ω that assigns traces
to variables. Let Π[π �→ t] denote the same function as Π except that π is
mapped to the trace t. For k ∈ N, let t[k], t[k..], and t[..k] denote respectively
the k-th element of t, the k-th suffix of t, and the k-th prefix of t. The trace
assignment suffix Π[k..] is defined by Π[k..](π) = Π(π)[k..]. By Π |=S ψ we
mean that formula φ is satisfied by the program S under the trace assignment
Π. Satisfaction is recursively defined as follows.

Π |=S ∃π. ψ iff Π[π 	→ t] |=S ψ for some t ∈ S
Π |=S ∀π. ψ iff Π[π 	→ t] |=S ψ for every t ∈ S
Π |=S aπ iff a ∈ Π(π)[0]
Π |=S ¬φ iff Π �|=S φ
Π |=S φ1 ∨ φ2 iff Π |=S φ1 or Π |=S φ2

Π |=S Xφ iff Π[1..] |=S φ
Π |=S φ1 U φ2 iff there exists k ≥ 0 s.t. Π[k..] |=S φ2 and

for all 0 ≤ j <k, Π[j..] |=S φ1

We say that a program S satisfies a HyperLTL formula ψ if it is satisfied
under the empty trace assignment, that is, if ∅ |=S ψ.

In the following, we give the different characterisations of cleanness for reac-
tive programs in terms of HyperLTL. For this, let AP = APp ∪ APi ∪ APo where
APp, APi, and APo are the atomic propositions that define the parameter values,
the input values, and the output values respectively. Thus, we take Param = 2APp ,
In = 2APi and Out = 2APo . Therefore, a program S ⊆ (2AP)ω can be seen as a
function Ŝ : Param → Inω → 2(Outω) where

t ∈ S if and only if (t ↓ APo) ∈ Ŝ(t[0] ∩ APp)(t ↓ APi), (5)

with t ↓ A defined by (t ↓ A)[k] = t[k] ∩ A for all k ∈ N.
For the propositions appearing in the rest of this sections, we will assume that

distances between traces are defined only according to its last element. That is,
for the distance dIn : (In∗×In∗) → R≥0 there exists a distance d̂In : (In×In) → R≥0

such that dIn(i, i′) = d̂In(last(i), last(i′)) for every i, i′ ∈ In∗, and similarly for
dOut : (Out∗ × Out∗) → R≥0. Let us call these type of distances past-forgetful.
Moreover, we will need the abbreviations given in Table 1 for a clear presentation
of the formulas.

The set of parameters of interest PIntrs ⊆ Param defines a Boolean formula
which we ambiguously call PIntrs. Also, we let StdIn be an LTL formula with
atomic propositions in APi, that is, a formula obtained with the grammar in the
second line of (4) where atomic propositions have the form a ∈ APi (instead
of aπ). Thus StdIn characterises the set of all input sequences through an LTL
formula. With StdInπ we represent the HyperLTL formula that is exactly like
StdIn but where each occurrence of a ∈ APi has been replaced by aπ. Likewise,
we let PIntrsπ represent the Boolean formula that is exactly like PIntrs with each
occurrence of a ∈ APp replaced by aπ. We are now in conditions to state the
characterisation of a clean program in terms of HyperLTL.

Is Your Software on Dope? 99

Table 1. Syntactic sugar for comparisons between traces

pπ = pπ′ iff
∧

a∈APp

aπ ↔ aπ′

iπ = iπ′ iff
∧

a∈APi

aπ ↔ aπ′

oπ = oπ′ iff
∧

a∈APo

aπ ↔ aπ′

d̂In(iπ, iπ′) ≤ κi iff
∨

i,i′∈In

d̂(i,i′)≤κi

∧

a∈i

aπ ∧
∧

a∈i′
aπ′

d̂Out(oπ, oπ′) ≤ κo iff
∨

o,o′∈Out

d̂(o,o′)≤κo

∧

a∈o

aπ ∧
∧

a∈o′
aπ′

d̂Out(oπ, oπ′) ≤ f(d̂In(iπ, iπ′)) iff
∨

o,o′∈Out,i,i′∈In

d̂(o,o′)≤f(d̂(i,i′))

∧

a∈i

aπ ∧
∧

a∈i′
aπ′ ∧

∧

a∈o

aπ ∧
∧

a∈o′
aπ′

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

∀π1.∀π2.∃π′
2.(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→ (
pπ2 = pπ′

2
∧ G(iπ1 = iπ′

2
∧ oπ1 = oπ′

2
)
)

(6)

As it is given, the formula actually states that

∀p1 : ∀p2 : ∀i : p1, p2 ∈ PIntrs ∧ i ∈ StdIn : Ŝ(p1)(i) ⊆ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2), this
is indeed equivalent to Definition 6. Notice that in (6), π2 quantifies universally
the parameter of the second instance, while π′

2 represents the existence of the
output sequence in such instance. The proofs of Propositions 18 to 20 follow the
same structures. So we only provide the proof of Proposition 19 which is the
most involved.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

∀π1.∀π2.∃π′
2.

(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→
(
pπ2 = pπ′

2
∧ G(iπ2 = iπ′

2
) ∧ (

(d̂Out(oπ1 , oπ′
2
) ≤ κo) W (d̂In(iπ1 , iπ′

2
) > κi)

))

∀π1.∀π2.∃π′
1.

(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→
(
pπ1 = pπ′

1
∧ G(iπ1 = iπ′

1
) ∧ (

(d̂Out(oπ′
1
, oπ2) ≤ κo) W (d̂In(iπ′

1
, iπ2) > κi)

))

(7)

100 P.R. D’Argenio et al.

The difference between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on
the program that may deviate, the second one works in the other way around.
Thus each of the formulas capture each of the sup-inf terms in the definition of
Hausdorff distance (see (2)). To notice this, follow the existentially quantified
variable (π′

2 for the first formula, and π′
1 for the second one). Also, the weak until

operator W has exactly the behaviour that we need to represent the interaction
between the distances of inputs and the distances of outputs. The semantics of
φ W ψ is defined by

t |= φ W ψ iff ∀k ≥ 0 : (∀j ≤ k : t[j..] |= ¬ψ) → t[k..] |= φ (8)

Next, we prove Proposition 19.

Proof. We only prove that the first formula captures the bound on the left sup-
inf term of the definition of Hausdorff distance (see eq. (2)) in Definition 7. The
other condition is proved in the same way and corresponds to the other sup-inf
term of the Hausdorff distance. Taking into account the semantics of the weak
until operator given in Eq. 8, the semantics of HyperLTL in general and using
abbreviations in Table 1, formula 7 is equivalent to the following statement

∀t1 ∈ S : ∀t2 ∈ S : ∃t′2 ∈ S :
(t1 |= PIntrs ∧ t2 |= PIntrs ∧ t1 |= StdIn)

→
(
(t2[0] ∩ APp) = (t′2[0] ∩ APp) ∧ (∀j ≥ 0 : t2[j] ∩ APi = t′2[j] ∩ APi)

∧ ∀k ≥ 0 : (∀j ≤ k : d̂In(t1[j] ∩ APi, t
′
2[j] ∩ APi) ≤ κi)

→ d̂Out(t1[k] ∩ APo, t
′
2[k] ∩ APo) ≤ κo

)

By applying some definitions and notation changes, this is equivalent to

∀t1 ∈ S : ∀t2 ∈ S : ∃t′2 ∈ S :
((t1[0] ∩ APp) ∈ PIntrs ∧ (t2[0] ∩ APp) ∈ PIntrs ∧ (t1 ↓ APi) ∈ StdIn)

→
(
(t2[0] ∩ APp) = (t′2[0] ∩ APp) ∧ (t2 ↓ APi) = (t′2 ↓ APi)

∧ ∀k ≥ 0 : (∀j ≤ k : d̂In(t1[j] ∩ APi, t
′
2[j] ∩ APi) ≤ κi)

→ d̂Out(t1[k] ∩ APo, t
′
2[k] ∩ APo) ≤ κo

)

which, by logic manipulation, is equivalent to

∀p1 : ∀p2 : ∀i1 : ∀i2 : ∀o1 :
(
∃t1 ∈ S : ∃t2 ∈ S :

(p1 = (t1[0] ∩ APp) ∈ PIntrs) ∧ (p2 = (t2[0] ∩ APp) ∈ PIntrs)

∧ i1 = (t1 ↓ APi) ∧ i2 = (t2 ↓ APi) ∧ o1 = (t1 ↓ APo) ∧ i1 ∈ StdIn
)

Is Your Software on Dope? 101

→ ∃o2 : ∃t′2 ∈ S :
(
p2 = (t′2[0] ∩ APp) ∧ i2 = (t′2 ↓ APi) ∧ o2 = (t′2 ↓ APo)

∧ ∀k ≥ 0 : (∀j ≤ k : d̂In(i1[j], i2[j]) ≤ κi) → d̂Out(o1[k], o2[k]) ≤ κo

)

By (5) and the fact that distances are past-forgetful, the previous equation is
equivalent to

∀p1 : ∀p2 : ∀i1 : ∀i2 : ∀o1 :
(
p1, p2 ∈ PIntrs ∧ i1 ∈ StdIn ∧ ∀k ≥ 0 : (∀j ≤ k : dIn(i1[..j], i2[..j]) ≤ κi)

∧ o1 ∈ Ŝ(p1)(i1)
)

→ (∃o2 ∈ Ŝ(p2)(i2) : dOut(o1[..k], o2[..k]) ≤ κo

)

which in turn corresponds to bounding the left sup-inf term of the Hausdorff
distance (see (2)) in Definition 7,

∀p1 : ∀p2 : ∀i1 : ∀i2 :
(
p1, p2 ∈ PIntrs ∧ i1 ∈ StdIn ∧ ∀k ≥ 0 : (∀j ≤ k : dIn(i1[..j], i2[..j]) ≤ κi)

)

→ (
supo1∈Ŝ(p1)(i1)

info2∈Ŝ(p2)(i2)
dOut(o1[..k], o2[..k])

) ≤ κo

thus proving this part of the proposition. ��
Finally, we also give the characterisation of an f -clean program in terms of

HyperLTL.

Proposition 20. A reactive program S is f-clean under past-forgetful distances
dIn and dOut if and only if S satisfies the following two HyperLTL formulas

∀π1.∀π2.∃π′
2.

(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→
(
pπ2 = pπ′

2
∧ G(iπ2 = iπ′

2
) ∧ G

(
d̂Out(oπ1 , oπ′

2
) ≤ f(d̂In(iπ1 , iπ′

2
))

))

∀π1.∀π2.∃π′
1.

(PIntrsπ1 ∧ PIntrsπ2 ∧ StdInπ1)

→
(
pπ1 = pπ′

1
∧ G(iπ1 = iπ′

1
) ∧ G

(
d̂Out(oπ′

1
, oπ2) ≤ f(d̂In(iπ′

1
, iπ2))

))
(9)

As before, the difference between the first and second formula is subtle and
can be noticed again by following the existentially quantified variables in each
of the formulas.

We remark that the HyperLTL characterisations presented in Propositions 19
and 20 can be extended to any distance of bounded memory, that is, distances
such that d(t, t′) = d(t[k..], t′[k..]) for every finite traces t and t′ and a fixed
bound k ∈ N. The solution proceeds by basically using the same formulas on an
expanded and annotated model (with the expected exponential blow up w.r.t.
to the original one).

102 P.R. D’Argenio et al.

Example 21. In our running example of the emission control system (see Exam-
ples 8 and 10), the property of robustly cleanness reduces to checking formula

∀π1.∀π2.∃π′
2.

StdInπ1 →
(
G(tπ2 = tπ′

2
) ∧ (

(d̂Out(nπ1 ,nπ′
2
) ≤ κo) W (d̂In(tπ1 , tπ′

2
) > κi)

))

(10)

and the obvious symmetric formula. For readability reasons, we shorthandedly
write t for thrtl and n for NOx. Notice that any reference to parameters disap-
pears since the emission control system does not have parameters, and the set
of standard inputs is characterised by the LTL formula StdIn ≡ G(t ∈ (0, 1]).
Likewise, we can verify that the model of the emission control system is f -clean
through the formula

∀π1.∀π2.∃π′
2.

StdInπ1 →
(
G(tπ2 = tπ′

2
) ∧ G

(
d̂Out(nπ1 ,nπ′

2
) ≤ f(d̂In(tπ1 , tπ′

2
))

))
(11)

and the symmetric formula.

6 Experimental Results

We verified the cleanness of the emission control system using the HyperLTL
model checker MCHyper [24]. The input to the model checker is a description of
the system as an Aiger circuit and a hyperproperty specified as an alternation-
free HyperLTL formula. Since the HyperLTL formulas from the previous section
are of the form ∀π1∀π2∃π′

2 . . ., and are, hence, not alternation-free, MCHyper
cannot check these formulas directly. However, it is possible to prove or disprove
such formulas by strengthening the formulas and their negations manually into
alternation-free formulas that are accepted by MCHyper.

In order to prove that program ec in Fig. 9 is robustly clean, we strengthen
formula (10) by substituting π2 for the existentially quantified variable π′

2. The
resulting formula is alternation-free:

∀π1.∀π2. StdInπ1 → (
(d̂Out(nπ1 ,nπ2) ≤ κo) W (d̂In(tπ1 , tπ2) > κi)

)
(12)

MCHyper confirms that program ec satisfies (12). The program thus also satis-
fies (10). Notice that we had obtained the same formula if we would have started
from the formula symmetric to (10).

To prove that program aec in Fig. 10 is doped with respect to (10), we
negate (10) and obtain

∃π1.∃π2.∀π′
2.

¬
(
StdInπ1 →

(
G(tπ2 = tπ′

2
) ∧ (

(d̂Out(nπ1 ,nπ′
2
) ≤ κo) W (d̂In(tπ1 , tπ′

2
) > κi)

)))

Is Your Software on Dope? 103

This formula is of the form ∃π1.∃π2.∀π′
2. . . . and, hence, again not alternation-

free. We replace the two existential quantifiers with universal quantifiers and
restrict the quantification to two specific throttle values, a for π1 and b for π2:

∀π1.∀π2.∀π′
2.

G(tπ1 = a ∧ tπ2 = b) →
¬

(
StdInπ1 →

(
G(tπ2 = tπ′

2
) ∧ (

(d̂Out(nπ1 ,nπ′
2
) ≤ κo) W (d̂In(tπ1 , tπ′

2
) > κi)

)))

(13a)

This transformation is sound as long as there actually exist traces with throttle
values a and b. We establish this by checking, separately, that the following
existential formula is satisfied:

∃π1.∃π2.G(tπ1 = a ∧ tπ2 = b) (14)

MCHyper confirms the satisfaction of both formulas, which proves that (10) is
violated by program aec. Precisely, the counterexample that shows the violation
of (10) is any pair of traces π1 and π2 that makes G(tπ1 = a∧tπ2 = b) true in (14).
We proceed similarly for the formula symmetric to (10) obtaining two formulas
just as before which are also satisfied by aec and hence the original formula is
not. Also, we follow a similar process to prove that ec is f -clean but aec is not.

Table 2. Experimental results from the verification of robust cleanness of ec and aec

Program NOx Model size Circuit size Property Time

Step #transitions #latches #gates (sec.)

ec 0.05 1436 17 9749 (12) 0.92

0.00625 60648 23 505123 (12) 22.19

aec 0.05 3756 19 27574 (13a) a = 0.1 1.62

(13b) a = 0.1 1.6

(13a) a = 1 1.68

(13b) a = 1 1.56

0.00625 175944 25 1623679 (13a) a = 0.1 102.07

(13b) a = 0.1 96.3

(13a) a = 1 97.67

(13b) a = 1 92.8

Table 2 shows experimental results obtained with MCHyper3 version 0.91 for
the verification of robustly cleanness. The Aiger models were constructed by
discretizing the values of the throttle and the NOx. We show results from two
different models, where the values of the throttle was discretised in steps of 0.1
3 https://www.react.uni-saarland.de/tools/mchyper/.

https://www.react.uni-saarland.de/tools/mchyper/

104 P.R. D’Argenio et al.

units in both models and the values of the NOx in steps of 0.05 and 0.00625.
All experiments were run under OS X “El Capitan” (10.11.6) on a MacBook
Air with a 1.7GHz Intel Core i5 and 4GB 1333MHz DDR3. In Table 2, the
model size is given in terms of the number of transitions, while the size of the
Aiger circuit encoding the model prepared for the property is given in terms
of the number of latches and gates. The specification checked by MCHyper is
the formula indicated in the property column. Formula (13b) is the formula
symmetric to (13a). For the throttle values a and b in formulas (13a) and (13b),
we chose b = 2 and let a vary as specified in the property column. Table 3
shows similar experimental results for the verification of f -cleanness. With (12′),
(13a′), and (13b′) we indicate the similar variations to (12), (13a), and (13b)
required to verify (11). Model checking takes less than two seconds for the coarse
discretisation and about two minutes for the fine discretisation.

Table 3. Experimental results from the verification of f -cleanness of ec and aec

Program NOx Model size Circuit size Property Time

step #transitions #latches #gates (sec.)

ec 0.05 1436 5 9869 (12′) 1.08

0.00625 60648 8 505285 (12′) 21.74

aec 0.05 3756 6 27708 (13a′) a = 0.1 1.71

(13b′) a = 0.1 1.72

(13a′) a = 1 1.72

(13b′) a = 1 1.77

0.00625 175944 9 1623855 (13a′) a = 0.1 95.29

(13b′) a = 0.1 97.48

(13a′) a = 1 95.57

(13b′) a = 1 95.5

7 A Comprehensive Characterisation

If we concretely focus on the contract between the society or the licensee, and
the software manufacturer, we can think in a more general but precise definition.
It emerges by noticing that there is a partition on the set of inputs in three sets,
each one of them fulfilling a different role within the contract:

1. The set StdIn of standard inputs. For these inputs, the program is expected
to work exactly as regulated. It is the case, e.g., of the inputs defining the
tests for the NOx emission. Thus, it is expected that the program complies
to Definition 1 when provided only with inputs in StdIn.

Is Your Software on Dope? 105

2. The set Comm of committed inputs such that Comm∩StdIn = ∅. These inputs
are expected to be close according to a distance to StdIn and are not strictly
regulated. However, it is expected that the manufacturer commits to respect
certain bounds on the outputs. This would correspond to the inputs that do
not behave exactly like the tests for the NOx emission, but yet define “reason-
able behaviour” of the car on the road. The behaviour of the program under
this set of inputs can be characterised either by Definition 2 or Definition 4.

3. All other inputs are supposed to be anomalous and expected to be signif-
icantly distant from the standard inputs. In our emission control example,
this can occur, e.g., if the car is climbing a steep mountain or speeding up
in a highway. In this realm the only expectation is that the behaviour of the
output is continuous with respect to the input.

Bearing this partition in mind, we propose the following general definition.

Definition 22. A parameterised program S is clean (or doping-free) if for all
pairs of parameters of interest p, p′ ∈ PIntrs and inputs i, i′ ∈ In,

1. if i ∈ StdIn then S(p)(i) = S(p′)(i);
2. if i ∈ StdIn and i′ ∈ Comm then H(dOut)(S(p)(i), S(p′)(i′)) ≤ f(dIn(i, i′)).
3. for every ε > 0 there exists δ > 0 such that for all i′ /∈ StdIn ∪ Comm and

i ∈ In, dIn(i, i′) < δ implies H(dOut)(S(p)(i), S(p′)(i′)) < ε.

Notice that, while PIntrs, StdIn, Comm, dIn, dOut, and f are part of the
contract entailed by the definition, ε and δ in item 3 are not since they are
quantified (universally and existentially, resp.) in the definition. In this case,
we choose for item 3 to require that the program S is uniformly continuous in
In \ (StdIn ∪ Comm). However, we could have opted for stronger requirements
such as Lipschitz continuity. The chosen type of continuity would also be part
of the contract. Notice that this is the only case in which we require continuity.
Instead, discontinuities are allowed in cases 1 and 2 as long as the conditions
are respected since they may be part of the specification. In particular, notice
that f could be any function. Obviously, a similar definition can be obtained for
reactive systems.

We remark that cases 1 and 2 can be verified, as we showed in the paper. We
have not yet explored the verification of case 3.

8 Related Work

The term “software doping” has being coined by the press about a year ago
and, after the Volkswagen exhaust emissions scandal, the elephant in the room
became unavoidable: software developers introduce code intended to deceive [28].
Recently, a special session at ISOLA 2016 was devoted to this topic [34]. In [9],
Baum attacks the problem from a philosophical point of view and elaborates on
the ethics of it. In [5], we provided a first discussion of the problem and some
informal characterisations hinting at the formal proposal of this paper. Though

106 P.R. D’Argenio et al.

all these works point out the need for a technical attack on the problem, none
of them provide a formal proposal.

Similar to software doping, backdoored software is a class of software that
does not act in the best interest of users; see for instance the recent analysis
in [37]. The primary emphasis of backdoored software is on leaking confidential
information while guaranteeing functionality.

Dope-freedom in sequential programs is strongly related to abstract non-
intereference [6,26] as already disussed in Sect. 4. More generally, our notions of
dope-freedom are hyperproperties [16], a general class that encompasses notions
across different domains, in particular non-interference in security [39], robust-
ness (a.k.a. stability) in cyber-physical systems [13], and truthfulness in algorith-
mic game theory [8]. There exist several methods for verifying hyperproperties,
including relational and Cartesian Hoare logics [10,38,44], self-composition and
product programs constructions [4,7], temporal logics [15,23,24], or games [35].
These techniques greatly vary in their completeness, efficiency, and scalability.

Another worthwhile direction to study is the use of program equivalence
analysis [22,27] for the analysis of cleanness.

9 Concluding Remarks

This article has focused on a serious and yet long overlooked problem, arising if
software developers intentionally and silently deviate from the intended objective
of the developed software. A notorious reason behind such deviations are simple
and blunt lock-in strategies, so as to bind the software licensee to a certain
product or product family. However, the motivations can be more diverse and
obscure. As the software manufacturer has full control over the development
process, the deviation can be subtle and surreptitiously introduced in a way that
the fact that the program does not quite conform to the expected requirements
may go well unnoticed.

We have pioneered the formalisation of this problem domain by offering sev-
eral formal characterisations of software doping. These can serve as a framework
for establishing a contract between the interested parties, namely the society or
the licensee, and the software manufacturer, so as to avoid and eventually ban
the development of doped programs.

We have also reported on the use of existing theories and tools at hand to
demonstrate that the formal characterisation can indeed be analysed in various
ways. In particular, the application of the self-composition technique opens many
research directions for further analysis of software doping as it has been widely
studied in the area of security [29,31], semantical differences [32] and cross or
relative verification [30].

As we have demonstrated, the use of HyperLTL enables the automatic analy-
sis of reactive models with respect to software doping. However, the complexity
of this technique imposes some serious limits on its applicability. Thus, further
studies in this direction are needed in order to enable analysis of reactive models
of relatively large size, or alternatively to analyse the program code directly.

Is Your Software on Dope? 107

We believe our characterisations provide a first solid step to understand soft-
ware doping and that our result opens a large umbrella of new possibilities, both
in the direction of more dedicated characterisations as well as specifically tailored
analysis techniques. For instance, the idea of dealing with distances and thresh-
olds already rises the question of whether such distances could be quantified by
probabilities. Also, the NOx emission example would immediately suggest that
the technique should also be addressed with testing. Moreover, the fact that
the characterisations are hyperproperties also invites us to investigate for static
analysis of source code based on type systems, abstraction techniques, etc.

Acknowledgement. We would like to thank the Dependable Systems and Software
Group (Saarland University) for a fruitful discussion during an early presentation of
this work, and Nicolás Wolovick for drawing our attention to electronic voting.

References

1. Agorist, M.: WATCH: computer programmer testifies he helped rig voting
machines. MintPress News (2016) http://www.mintpressnews.com/214505-2/
214505/. Accessed 13 Jan 2017

2. AppleInsider: Galaxy S4 on steroids: Samsung caught doping in benchmarks
(2013). http://forums.appleinsider.com/discussion/158782/galaxy-s-4-on-steroids-
samsung-caught-doping-in-benchmarks. Accessed 13 Jan 2017

3. Arthur, W.B.: Competing technologies, increasing returns, and lock-in by historical
events. Econ. J. 99(394), 116–131 (1989). http://www.jstor.org/stable/2234208

4. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21437-0 17

5. Barthe, G., D’Argenio, P.R., Finkbeiner, B., Hermanns, H.: Facets of software
doping. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 601–
608. Springer, Heidelberg (2016). doi:10.1007/978-3-319-47169-3 46

6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-
composition. In: CSFW-17, pp. 100–114. IEEE Computer Society (2004). http://
doi.ieeecomputersociety.org/10.1109/CSFW.2004.17

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by
self-composition. Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011).
http://dx.doi.org/10.1017/S0960129511000193

8. Barthe, G., Gaboardi, M., Arias, E.J.G., Hsu, J., Roth, A., Strub, P.: Higher-order
approximate relational refinement types for mechanism design and differential pri-
vacy. In: Rajamani, S.K., Walker, D. (eds.) POPL 2015, pp. 55–68. ACM (2015).
http://doi.acm.org/10.1145/2676726.2677000

9. Baum, K.: What the hack is wrong with software doping? In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 633–647. Springer, Heidel-
berg (2016). doi:10.1007/978-3-319-47169-3 49

10. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Jones, N.D., Leroy, X. (eds.) POPL 2004, pp. 14–25. ACM
Press (2004). http://doi.acm.org/10.1145/964001.964003

http://www.mintpressnews.com/214505-2/214505/
http://www.mintpressnews.com/214505-2/214505/
http://forums.appleinsider.com/discussion/158782/galaxy-s-4-on-steroids-samsung-caught-doping-in-benchmarks
http://forums.appleinsider.com/discussion/158782/galaxy-s-4-on-steroids-samsung-caught-doping-in-benchmarks
http://www.jstor.org/stable/2234208
http://dx.doi.org/10.1007/978-3-642-21437-0_17
http://dx.doi.org/10.1007/978-3-319-47169-3_46
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.17
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.17
http://dx.doi.org/10.1017/S0960129511000193
http://doi.acm.org/10.1145/2676726.2677000
http://dx.doi.org/10.1007/978-3-319-47169-3_49
http://doi.acm.org/10.1145/964001.964003

108 P.R. D’Argenio et al.

11. Brignall, M.: ‘Error 53’ fury mounts as Apple software update threatens to kill your
iPhone 6. The Guardian (2010). https://www.theguardian.com/money/2016/feb/
05/error-53-apple-iphone-software-update-handset-worthless-third-party-repair.
Accessed 13 Jan 2017

12. Carrel, P., Bryan, V., Croft, A.: Germany asks Opel for more informa-
tion in Zafira emissions probe. Reuters (2016). http://www.reuters.com/article/
us-volkswagen-emissions-germany-opel-idUSKCN0Y92GI. Accessed 13 Jan 2017

13. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity analysis of programs. In:
Hermenegildo, M.V., Palsberg, J. (eds.) POPL 2010, pp. 57–70 (2010). http://doi.
acm.org/10.1145/1706299.1706308

14. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T.,
Ristenpart, T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.:
On the practical exploitability of dual EC in TLS implementations. In: Fu, K.,
Jung, J. (eds.) 23rd USENIX Security Symposium. pp. 319–335. USENIX Asso-
ciation (2014). https://www.usenix.org/conference/usenixsecurity14/technical-ses
sions/presentation/checkoway

15. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54792-8 15

16. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: CSF 2008, pp. 51–65 (2008).
http://dx.doi.org/10.1109/CSF.2008.7

17. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). http://dx.doi.org/10.3233/JCS-2009-0393

18. Dijkstra, E.: A Discipline of Programming. Prentice Hall PTR, Upper Saddle River
(1997)

19. Domke, F., Lange, D.: The exhaust emissions scandal (“Dieselgate”). In: 30th
Chaos Communication Congress (2015). https://events.ccc.de/congress/2015/
Fahrplan/events/7331.html. Accessed 13 Jan 2017

20. Dvorak, J.C.: The secret printer companies are keeping from you. PC Mag UK
(2012). http://uk.pcmag.com/printers/60628/opinion/the-secret-printer-compani
es-are-keeping-from-you. Accessed 13 Jan 2017

21. Feldman, A.J., Halderman, J.A., Felten, E.W.: Security analysis of the
Diebold AccuVote-ts voting machine. In: Martinez, R., Wagner, D. (eds.)
2007 USENIX/ACCURATE Electronic Voting Technology Workshop, EVT
2007. USENIX Association (2007). https://www.usenix.org/conference/evt-07/
security-analysis-diebold-accuvote-ts-voting-machine

22. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Crnkovic, I., Chechik, M., Grünbacher, P. (eds.) ASE
2014, pp. 349–360. ACM (2014). http://doi.acm.org/10.1145/2642937.2642987

23. Finkbeiner, B., Hahn, C.: Deciding Hyperproperties. In: Desharnais, J.,
Jagadeesan, R. (eds.) CONCUR 2016. LIPIcs, vol. 59, pp. 13:1–13:14. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016). http://drops.dagstuhl.de/opus/
volltexte/2016/6170

24. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking HyperLTL
and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 30–48. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 3

25. Flak, A., Taylor, E., Wacket, M., Eckert, V., Stonestreet, J.: Test of fiat diesel
model shows irregular emissions: Bild am Sonntag. Reuters (2016). http://www.
reuters.com/article/us-fiat-emissions-germany-idUSKCN0XL0MT. Accessed 13
Jan 2017

https://www.theguardian.com/money/2016/feb/05/error-53-apple-iphone-software-update-handset-worthless-third-party-repair
https://www.theguardian.com/money/2016/feb/05/error-53-apple-iphone-software-update-handset-worthless-third-party-repair
http://www.reuters.com/article/us-volkswagen-emissions-germany-opel-idUSKCN0Y92GI
http://www.reuters.com/article/us-volkswagen-emissions-germany-opel-idUSKCN0Y92GI
http://doi.acm.org/10.1145/1706299.1706308
http://doi.acm.org/10.1145/1706299.1706308
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/checkoway
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1109/CSF.2008.7
http://dx.doi.org/10.3233/JCS-2009-0393
https://events.ccc.de/congress/2015/Fahrplan/events/7331.html
https://events.ccc.de/congress/2015/Fahrplan/events/7331.html
http://uk.pcmag.com/printers/60628/opinion/the-secret-printer-companies-are-keeping-from-you
http://uk.pcmag.com/printers/60628/opinion/the-secret-printer-companies-are-keeping-from-you
https://www.usenix.org/conference/evt-07/security-analysis-diebold-accuvote-ts-voting-machine
https://www.usenix.org/conference/evt-07/security-analysis-diebold-accuvote-ts-voting-machine
http://doi.acm.org/10.1145/2642937.2642987
http://drops.dagstuhl.de/opus/volltexte/2016/6170
http://drops.dagstuhl.de/opus/volltexte/2016/6170
http://dx.doi.org/10.1007/978-3-319-21690-4_3
http://www.reuters.com/article/us-fiat-emissions-germany-idUSKCN0XL0MT
http://www.reuters.com/article/us-fiat-emissions-germany-idUSKCN0XL0MT

Is Your Software on Dope? 109

26. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. In: Jones, N.D., Leroy, X. (eds.) POPL
2004, pp. 186–197. ACM (2004). http://doi.acm.org/10.1145/964001.964017

27. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of sim-
ilar programs. Softw. Test. Verif. Reliab. 23(3), 241–258 (2013)

28. Hatton, L., van Genuchten, M.: When software crosses a line. IEEE Softw. 33(1),
29–31 (2016). http://dx.doi.org/10.1109/MS.2016.6

29. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: IronFleet: proving practical distributed systems correct. In:
Miller, E.L., Hand, S. (eds.) SOSP 2015, pp. 1–17. ACM (2015). http://doi.acm.
org/10.1145/2815400.2815428

30. Hawblitzel, C., Lahiri, S.K., Pawar, K., Hashmi, H., Gokbulut, S., Fernando, L.,
Detlefs, D., Wadsworth, S.: Will you still compile me tomorrow? Static cross-
version compiler validation. In: Meyer, B., Baresi, L., Mezini, M. (eds.) ESEC/FSE
2013, pp. 191–201 (2013). http://doi.acm.org/10.1145/2491411.2491442

31. Kovács, M., Seidl, H., Finkbeiner, B.: Relational abstract interpretation for the
verification of 2-hypersafety properties. In: Sadeghi, A., Gligor, V.D., Yung, M.
(eds.) CCS 2013, pp. 211–222. ACM (2013). http://doi.acm.org/10.1145/2508859.
2516721

32. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 54

33. Manjoo, F.: Take that, stupid printer! Slate (2008). http://www.slate.com/
articles/technology/technology/2008/08/take that stupid printer.html. Accessed
13 Jan 2017

34. Margaria, T., Steffen, B. (eds.): ISoLA 2016. LNCS, vol. 9953. Springer, Heidelberg
(2016)

35. Milushev, D., Clarke, D.: Incremental hyperproperty model checking via games. In:
Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 247–262.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-41488-6 17

36. Panzarino, M.: Apple apologizes and updates iOS to restore iPhones dis-
abled by error 53. TechCrunch (2016). https://techcrunch.com/2016/02/18/apple-
apologizes-and-updates-ios-to-restore-iphones-disabled-by-error-53/. Accessed 13
Jan 2017

37. Schneier, B., Fredrikson, M., Kohno, T., Ristenpart, T.: Surreptitiously weakening
cryptographic systems. IACR Cryptology ePrint Archive 2015, 97 (2015). http://
eprint.iacr.org/2015/097

38. Sousa, M., Dillig, I.: Cartesian Hoare logic for verifying k-safety properties. In:
Krintz, C., Berger, E. (eds.) PLDI 2016, pp. 57–69. ACM (2016). http://doi.acm.
org/10.1145/2908080.2908092

39. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). doi:10.1007/11547662 24

40. Tritech Computer Solutions: Dell laptops reject third-party bat-
teries and AC adapters/chargers. Hardware vendor lock-in?
https://nctritech.wordpress.com/2010/01/26/dell-laptops-reject-third-party-batt
eries-and-ac-adapterschargers-hardware-vendor-lock-in/ (2010). Accessed 13 Jan
2017

http://doi.acm.org/10.1145/964001.964017
http://dx.doi.org/10.1109/MS.2016.6
http://doi.acm.org/10.1145/2815400.2815428
http://doi.acm.org/10.1145/2815400.2815428
http://doi.acm.org/10.1145/2491411.2491442
http://doi.acm.org/10.1145/2508859.2516721
http://doi.acm.org/10.1145/2508859.2516721
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://www.slate.com/articles/technology/technology/2008/08/take_that_stupid_printer.html
http://www.slate.com/articles/technology/technology/2008/08/take_that_stupid_printer.html
http://dx.doi.org/10.1007/978-3-642-41488-6_17
https://techcrunch.com/2016/02/18/apple-apologizes-and-updates-ios-to-restore-iphones-disabled-by-error-53/
https://techcrunch.com/2016/02/18/apple-apologizes-and-updates-ios-to-restore-iphones-disabled-by-error-53/
http://eprint.iacr.org/2015/097
http://eprint.iacr.org/2015/097
http://doi.acm.org/10.1145/2908080.2908092
http://doi.acm.org/10.1145/2908080.2908092
http://dx.doi.org/10.1007/11547662_24
https://nctritech.wordpress.com/2010/01/26/dell-laptops-reject-third-party-batteries-and-ac-adapterschargers-hardware-vendor-lock-in/
https://nctritech.wordpress.com/2010/01/26/dell-laptops-reject-third-party-batteries-and-ac-adapterschargers-hardware-vendor-lock-in/

110 P.R. D’Argenio et al.

41. Waller, K.: Has a printer update rendered your cartridges redundant? Which?
(2016). https://conversation.which.co.uk/technology/printer-software-update-thi
rd-party-printer-ink/. Accessed 13 Jan 2017

42. Waste Ink: Epson firmware update = no to compatibles. http://www.wasteink.co.
uk/epson-firmware-update-compatible-problem/ (2012). Accessed 13 Jan 2017

43. Wikipedia: Volkswagen emissions scandal. Wikipedia, The Free Encyclopedia
(2016). https://en.wikipedia.org/wiki/Volkswagen emissions scandal. Accessed 13
Jan 2017

44. Yang, H.: Relational separation logic. Theor. Comput. Sci. 375(1–3), 308–334
(2007). http://dx.doi.org/10.1016/j.tcs.2006.12.036

https://conversation.which.co.uk/technology/printer-software-update-third-party-printer-ink/
https://conversation.which.co.uk/technology/printer-software-update-third-party-printer-ink/
http://www.wasteink.co.uk/epson-firmware-update-compatible-problem/
http://www.wasteink.co.uk/epson-firmware-update-compatible-problem/
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal
http://dx.doi.org/10.1016/j.tcs.2006.12.036

Friends with Benefits

Implementing Corecursion in
Foundational Proof Assistants

Jasmin Christian Blanchette1,2(B), Aymeric Bouzy3, Andreas Lochbihler4,
Andrei Popescu5,6, and Dmitriy Traytel4(B)

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
j.c.blanchette@vu.nl

2 Inria Nancy – Grand Est, Nancy, France
3 Laboratoire d’informatique, École Polytechnique, Palaiseau, France
4 Department of Computer Science, Institute of Information Security,

ETH Zürich, Switzerland
traytel@inf.ethz.ch

5 Department of Computer Science, Middlesex University, London, UK
6 Institute of Mathematics Simion Stoilow of the Romanian Academy,

Bucharest, Romania

Abstract. We introduce AmiCo, a tool that extends a proof assistant,
Isabelle/HOL, with flexible function definitions well beyond primitive
corecursion. All definitions are certified by the assistant’s inference ker-
nel to guard against inconsistencies. A central notion is that of friends:
functions that preserve the productivity of their arguments and that are
allowed in corecursive call contexts. As new friends are registered, core-
cursion benefits by becoming more expressive. We describe this process
and its implementation, from the user’s specification to the synthesis of
a higher-order definition to the registration of a friend. We show some
substantial case studies where our approach makes a difference.

1 Introduction

Codatatypes and corecursion are emerging as a major methodology for program-
ming with infinite objects. Unlike in traditional lazy functional programming,
codatatypes support total (co)programming [1,8,30,68], where the defined func-
tions have a simple set-theoretic semantics and productivity is guaranteed. The
proof assistants Agda [19], Coq [12], and Matita [7] have been supporting this
methodology for years.

By contrast, proof assistants based on higher-order logic (HOL), such as
HOL4 [64], HOL Light [32], and Isabelle/HOL [56], have traditionally pro-
vided only datatypes. Isabelle/HOL is the first of these systems to also offer
codatatypes. It took two years, and about 24 000 lines of Standard ML, to move
from an understanding of the mathematics [18,67] to an implementation that
automates the process of checking high-level user specifications and producing
the necessary corecursion and coinduction theorems [16].
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 111–140, 2017.
DOI: 10.1007/978-3-662-54434-1 5

112 J.C. Blanchette et al.

There are important differences between Isabelle/HOL and type theory sys-
tems such as Coq in the way they handle corecursion. Consider the codatatype
of streams given by

codatatype α stream = (shd: α) � (stl: α stream)

where � (written infix) is the constructor, and shd and stl are the head and tail
selectors, respectively. In Coq, a definition such as

corec natsFrom : nat → nat stream where
natsFrom n = n � natsFrom (n + 1)

which introduces the function n �→ n � n + 1 � n + 2 � · · ·, is accepted after a
syntactic check that detects the �-guardedness of the corecursive call. In Isabelle,
this check is replaced by a deeper analysis. The primcorec command [16] trans-
forms a user specification into a blueprint object: the coalgebra b = λn. (n, n+1).
Then natsFrom is defined as corecstream b, where corecstream is the fixed primitive
corecursive combinator for α stream. Finally, the user specification is derived as
a theorem from the definition and the characteristic equation of the corecursor.

Unlike in type theories, where (co)datatypes and (co)recursion are built-in,
the HOL philosophy is to reduce every new construction to the core logic. This
usually requires a lot of implementation work but guarantees that definitions
introduce no inconsistencies. Since codatatypes and corecursion are derived con-
cepts, there is no a priori restriction on the expressiveness of user specifications
other than expressiveness of HOL itself.

Consider a variant of natsFrom, where the function add1 : nat → nat stream →
nat stream adds 1 to each element of a stream:

corec natsFrom : nat → nat stream where
natsFrom n = n � add1 (natsFrom n)

Coq’s syntactic check fails on add1. After all, add1 could explore the tail of
its argument before it produces a constructor, hence blocking productivity and
leading to underspecification or inconsistency.

Isabelle’s bookkeeping allows for more nuances. Suppose add1 has been
defined as

corec add1 : nat stream → nat stream where
add1 ns = (shd ns + 1) � add1 (stl ns)

When analyzing add1’s specification, the corec command synthesizes its defin-
ition as a blueprint b. This definition can then be proved to be friendly, hence
acceptable in corecursive call contexts when defining other functions. Functions
with friendly definitions are called friendly, or friends. These functions preserve
productivity by consuming at most one constructor when producing one.

Our previous work [17] presented the category theory underlying friends,
based on more expressive blueprints than the one shown above for primitive
corecursion. We now introduce a tool, AmiCo, that automates the process of
applying and incrementally improving corecursion.

Friends with Benefits 113

To demonstrate AmiCo’s expressiveness and convenience, we used it to for-
malize eight case studies in Isabelle, featuring a variety of codatatypes and core-
cursion styles (Sect. 2). A few of these examples required ingenuity and suggest
directions for future work. Most of the examples fall in the executable frame-
work of Isabelle, which allows for code extraction to Haskell via Isabelle’s code
generator. One of them pushes the boundary of executability, integrating friends
in the quantitative world of probabilities.

At the low level, the corecursion state summarizes what the system knows
at a given point, including the set of available friends and a corecursor up to
friends (Sect. 3). Polymorphism complicates the picture, because some friends
may be available only for specific instances of a polymorphic codatatype. To
each corecursor corresponds a coinduction principle up to friends and a unique-
ness theorem that can be used to reason about corecursive functions. All of the
constructions and theorems are derived from first principles, without requiring
new axioms or extensions of the logic. This foundational approach prevents the
introduction of inconsistencies, such as those that have affected the termination
and productivity checkers of Agda and Coq in recent years.

The user interacts with our tool via the following commands to the proof assis-
tant (Sect. 4). The corec command defines a function f by extracting a blueprint b
from a user’s specification, defining f using b and a corecursor, and deriving the
original specification from the characteristic property of the corecursor. More-
over, corec supports mixed recursion–corecursion specifications, exploiting proof
assistant infrastructure for terminating (well-founded) recursion. Semantic proof
obligations, notably termination, are either discharged automatically or presented
to the user. Specifying the friend option to corec additionally registers f as a
friend, enriching the corecursor state. Another command, friend of corec, reg-
isters existing functions as friendly. Friendliness amounts to the relational para-
metricity [60,69] of a selected part of the definition [17], which in this paper we call
a surface. The tool synthesizes the surface, and the parametricity proof is again
either discharged automatically or presented to the user.

AmiCo is a significant piece of engineering, at about 7 000 lines of Standard
ML code (Sect. 5). It subsumes a crude prototype [17] based on a shell script and
template files that automated the corecursor derivation but left the blueprint and
surface synthesis problems to the user. Our tool is available as part of the official
Isabelle2016-1 release. The formalized examples and case studies are provided in
an archive [14].

The contributions of this paper are the following:

– We describe our tool’s design, algorithms, and implementation as a
foundational extension of Isabelle/HOL, taking the form of the corec,
friend of corec, corecursive and coinduction upto commands and the
corec unique proof method.

– We apply our tool to a wide range of case studies, most of which are either
beyond the reach of competing systems or would require type annotations
and additional proofs.

114 J.C. Blanchette et al.

More details, including thorough descriptions and proofs of correctness for the
surface synthesis algorithm and the mixed recursion–corecursion pipeline, are
included in a technical report [15]. Although our tool works for Isabelle, the
same methodology is immediately applicable to any prover in the HOL fam-
ily (including HOL4, HOL Light, HOL Zero [6], and HOL-Omega [34]), whose
users represent about half of the proof assistant community. Moreover, a similar
methodology is in principle applicable to provers based on type theory, such as
Agda, Coq, and Matita (Sect. 6).

Conventions. We recall the syntax relevant for this paper, relying on the stan-
dard set-theoretic interpretation of HOL [27].

We fix infinite sets of type variables α, β, . . . and term variables x, y, . . .
and a higher-order signature, consisting of a set of type constructors including
bool and the binary constructors for functions (→), products (×), and sums
(+). Types σ, τ are defined using type variables and applying type constructors,
normally written postfix. Isabelle /HOL supports Haskell-style type classes, with
:: expressing class membership (e.g., int :: ring).

Moreover, we assume a set of polymorphic constants c, f, g, . . . with declared
types, including equality = : α → α → bool, left and right product projections
fst and snd, and left and right sum embeddings Inl and Inr. Terms t are built from
constants c and variables x by means of typed λ-abstraction and application.
Polymorphic constants and terms will be freely used in contexts that require a
less general type.

2 Motivating Examples

We apply AmiCo to eight case studies to demonstrate its benefits—in particu-
lar, the flexibility that friends provide and reasoning by uniqueness (of solutions
to corecursive equations). The first four examples demonstrate the flexibility
that friends provide. The third one also features reasoning by uniqueness. The
fourth example crucially relies on a form of nested corecursion where the oper-
ator under definition must be recognized as a friend. The fifth through seventh
examples mix recursion with corecursion and discuss the associated proof tech-
niques. The last example, about a probabilistic process calculus, takes our tool
to its limits: We discuss how to support corecursion through monadic sequenc-
ing and mix unbounded recursion with corecursion. All eight formalizations are
available online [14], together with our earlier stream examples [17].

Since all examples are taken from the literature, we focus on the formalization
with AmiCo. No detailed understanding is needed to see that they fit within the
friends framework. Background information can be found in the referenced works.

Remarkably, none of the eight examples work with Coq’s or Matita’s standard
mechanisms. Sized types in Agda [4] can cope with the first six but fail on the last
two: In one case a function must inspect an infinite list unboundedly deeply, and
in the other case the codatatype cannot even be defined in Agda. The Dafny
verifier, which also provides codatatypes [46], supports only the seventh case
study.

Friends with Benefits 115

2.1 Coinductive Languages

Rutten [62] views formal languages as infinite tries, i.e., prefix trees branch-
ing over the alphabet with boolean labels at the nodes indicating whether the
path from the root denotes a word in the language. The type α lang features
corecursion through the right-hand side of the function arrow (→).

codatatype α lang = Lang (o : bool) (δ : α → α lang)

Traytel [66] has formalized tries in Isabelle using a codatatype, defined regular
operations on them as corecursive functions, and proved by coinduction that the
defined operations form a Kleene algebra. Because Isabelle offered only primitive
corecursion when this formalization was developed, the definition of concatena-
tion, iteration, and shuffle product was tedious, spanning more than a hundred
lines.

Corecursion up to friends eliminates this tedium. The following extract from
an Isabelle formalization is all that is needed to define the main operations on
languages:

corec (friend) + : α lang → α lang → α lang where
L + K = Lang (o L ∨ o K) (λa. δ L a + δ K a)

corec (friend) · : α lang → α lang → α lang where
L · K = Lang (o L ∧ o K) (λa. if o L then (δ L a · K) + δ K a else δ L a · K)

corec (friend) ∗ : α lang → α lang where
L∗ = Lang True (λa. δ L a · L∗)

corec (friend) ‖ : α lang → α lang → α lang where
L ‖ K = Lang (o L ∧ o K) (λa. (δ L a · K) + (L · δ K a))

Concatenation (·) and shuffle product (‖) are corecursive up to alternation (+),
and iteration (∗) is corecursive up to concatenation (·). All four definitions use
an alternative λ-based syntax for performing corecursion under the right-hand
side of →, instead of applying the functorial action map→ = ◦ (composition)
associated with →.

The corec command is provided by AmiCo, whereas codatatype and
primcorec (Sect. 3.2) has been part of Isabelle since 2013. The friend option
registers the defined functions as friends and automatically discharges the emerg-
ing proof obligations, which ensure that friends consume at most one constructor
to produce one constructor.

Proving equalities on tries conveniently works by coinduction up to con-
gruence (Sect. 3.7). Already before corec′s existence, Traytel was able to write
automatic one-line proofs such as

lemma K · (L + M) = K · L + K · M
by (coinduction arbitrary : K L M rule: +.coinduct) auto

The coinduction proof method [16] instantiates the bisimulation witness of
the given coinduction rule before applying it backwards. Without corec, the

116 J.C. Blanchette et al.

rule +.coinduct of coinduction up to congruence had to be stated and proved man-
ually, including the manual inductive definition of the congruence closure under +.

Overall, the usage of corec compressed Traytel’s development from 750 to
600 lines of Isabelle text. In Agda, Abel [3] has formalized Traytel’s work up to
proving the recursion equation L∗ = ε + L · L∗ for iteration (∗) in 219 lines of
Agda text, which correspond to 125 lines in our version. His definitions are as
concise as ours, but his proofs require more manual steps.

2.2 Knuth–Morris–Pratt String Matching

Building on the trie view of formal languages, van Laarhoven [44] discovered a
concise formulation of the Knuth–Morris–Pratt algorithm [41] for finding one
string in another:

is-substring-of xs ys = match (mk-table xs) ys
match t xs = (o t ∨ (xs �= [] ∧ match (δ t (hd x) (tl xs)))
mk-table xs = let table = tab xs (λ . table) in table
tab [] f = Lang True f
tab (x � xs) f = Lang False (λc. if c = x then tab xs (δ (f x)) else f c)

Here, we overload the stream constructor � for finite lists; hd and tl are the
selectors. In our context, table : α lang is the most interesting definition because
it corecurses through tab. Since there is no constructor guard, table would appear
not to be productive. However, the constructor is merely hidden in tab and can
be pulled out by unrolling the definition of tab as follows.

As the first step, we register Δ defined by Δ xs f = δ (tab xs f) as a friend,
using the friend of corec command provided by our tool. The registration
of an existing function as a friend requires us to supply an equation with a
constructor-guarded right-hand side and to prove the equation and the para-
metricity of the destructor-free part of the right-hand side, called the surface
(Sect. 3.4). Then the definition of table corecurses through Δ. Finally, we derive
the original specification by unrolling the definition. We can use the derived
specification in the proofs, because proofs in HOL do not depend on the actual
definition (unlike in type theory).

corec tab : α list → (α → α lang) → α lang where

tab xs f = Lang (xs = []) (λc. if xs = [] ∨ hd xs �= c then f c else tab (tl xs) (δ (f c)))

definition Δ : α list → (α → α lang) → α → α lang where

Δ xs f = δ (tab xs f)

friend of corec Δ where

Δ xs f c = Lang
(if xs = [] ∨ hd xs �= c then o (f x) else tl xs = [])
(if xs = [] ∨ hd xs �= c then δ (f x) else Δ (tl xs) (δ (f c)))

〈two-line proof of the equation and of parametricity〉
context fixes xs : α list begin

corec table : α lang where

table = Lang (xs = []) (Δ xs (λ . table))

Friends with Benefits 117

lemma table = tab xs (λ . table)
〈one-line proof〉

end

2.3 The Stern–Brocot Tree

The next application involves infinite trees of rational numbers. It is based on
Hinze’s work on the Stern–Brocot and Bird trees [33] and the Isabelle formal-
ization by Gammie and Lochbihler [25]. It illustrates reasoning by uniqueness
(Sect. 3.7).

The Stern–Brocot tree contains all the rational numbers in their lowest terms.
It is an infinite binary tree frac tree of formal fractions frac = nat × nat. Each
node is labeled with the mediant of its rightmost and leftmost ancestors, where
mediant (a, c) (b, d) = (a + b, c + d). Gammie and Lochbihler define the tree via
an iterative helper function.

codatatype α tree = Node (root: α) (left: α tree) (right: α tree)

primcorec stern-brocot-gen : frac → frac → frac tree where
stern-brocot-gen l u =

let m=mediant l u in Node m (stern-brocot-gen l m) (stern-brocot-gen m u)

definition stern-brocot : frac tree where
stern-brocot = stern-brocot-gen (0, 1) (1, 0)

Using AmiCo, we can directly formalize Hinze’s corecursive specification of the
tree, where nxt (m, n) = (m + n, n) and swap (m, n) = (n, m). The tree is core-
cursive up to the two friends suc and 1 / t.

corec (friend) suc : frac tree → frac tree where
suc t = Node (nxt (root t)) (suc (left t)) (suc (right t))

corec (friend) 1 / : frac tree → frac tree where
1 / t = Node (swap (root t)) (1 / left t) (1 / right t)

corec stern-brocot : frac tree where
stern-brocot = Node (1, 1) (1 / (suc (1 / stern-brocot))) (suc stern-brocot)

Without the iterative detour, the proofs, too, become more direct as the
statements need not be generalized for the iterative helper function. For example,
Hinze relies on the uniqueness principle to show that a loopless linearization
stream stern-brocot of the tree yields Dijkstra’s fusc function [23] given by

fusc = 1 � fusc′ fusc′ = 1 � (fusc + fusc′ − 2 · (fusc mod fusc′))

where all arithmetic operations are lifted to streams elementwise—e.g.,
xs + ys = mapstream (+) (xs E ys), where E zips two streams. We define fusc and
stream as follows. To avoid the mutual corecursion, we inline fusc in fusc′ for
the definition with corec, after having registered the arithmetic operations as
friends:

118 J.C. Blanchette et al.

corec fusc′ : nat stream where
fusc′ = 1 � ((1 � fusc′) + fusc′ − 2 · ((1 � fusc′) mod fusc′))

definition fusc : nat stream where
fusc = 1 � fusc′

corec chop : α tree → α tree where
chop (Node x l r) = Node (root l) r (chop l)

corec stream : α tree → α stream where
stream t = root t � stream (chop t)

Hinze proves that stream stern-brocot equals fusc E fusc′ by showing that
both satisfy the corecursion equation x = (1, 1) � mapstream step x, where
step (m, n) = (n, m + n − 2 · (m mod n)). This equation yields the loopless algo-
rithm, because siterate step (1, 1) satisfies it as well, where siterate is defined by

primcorec siterate : (α → α) → α → α stream where
siterate f x = x � siterate f (f x)

Our tool generates a proof rule for uniqueness of solutions to the recursion
equation (Sect. 3.7). We conduct the equivalence proofs using this rule.

For another example, all rational numbers also occur in the Bird tree given
by

corec bird : frac tree where
bird = Node (1, 1) (1 / suc bird) (suc (1 / bird))

It satisfies 1 / bird = mirror bird, where mirror corecursively swaps all subtrees.
Again, we prove this identity by showing that both sides satisfy the corecursion
equation x = Node (1, 1) (suc (1 / x)) (1 / suc x). This equation does not corre-
spond to any function defined with corec, but we can derive its uniqueness
principle using our proof method corec unique without defining the function.
The Isabelle proof is quite concise:

let ?H = λx. Node (1, 1) (suc (1 / x)) (1 / suc x)
have mb: mirror bird = ?H (mirror bird) by (rule tree.expand) . . .
have unique: ∀t. t = ?H t −→ t = mirror bird by corec unique (fact mb)
have 1 / bird = ?H (1 / bird) by (rule tree.expand) . . .
then show 1 / bird = mirror bird by (rule unique)

No coinduction is needed: The identities are proved by expanding the definitions
a finite number of times (once each here). We also show that odd-mirror bird =
stern-brocot by uniqueness, where odd-mirror swaps the subtrees only at levels of
odd depth.

Gammie and Lochbihler manually derive each uniqueness rule using a sep-
arate coinduction proof. For odd-mirror alone, the proof requires 25 lines. With
AmiCo’s corec unique proof method, such proofs are automatic.

Friends with Benefits 119

2.4 Breadth-First Tree Labeling

Abel and Pientka [4] demonstrate the expressive power of sized types in Agda
with the example of labeling the nodes of an infinite binary tree in breadth-first
order, which they adapted from Jones and Gibbons [39]. The function bfs takes
a stream of streams of labels as input and labels the nodes at depth i according
to a prefix of the ith input stream. It also outputs the streams of unused labels.
Then bf ties the knot by feeding the unused labels back into bfs :

bfs ((x � xs) � ys) =
let (l, ys ′) = bfs ys; (r, ys ′′) = bfs ys ′ in (Node x l r, xs � ys ′′)

bf xs = let (t, lbls) = bfs (xs � lbls) in t

Because bfs returns a pair, we define the two projections separately and
derive the original specification for bfs trivially from the definitions. One of the
corecursive calls to bfs2 occurs in the context of bfs2 itself—it is “self-friendly”
(Sect. 4.2).

corec (friend) bfs2 : α stream stream → α stream stream
where bfs2 ((x � xs) � ys) = xs � bfs2 (bfs2 ys)

corec bfs1 : α stream stream → α tree where
bfs1 ((x � xs) � ys) = Node x (bfs1 ys) (bfs1 (bfs2 ys))

definition bfs : α stream → α tree where
bfs xss = (bfs1 xss, bfs2 xss)

corec labels : α stream → α stream stream where
labels xs = bfs2 (xs � labels xs)

definition bf : α stream → α tree where
bf xs = bfs1 (xs � labels xs)

For comparison, Abel’s and Pientka’s formalization in Agda is of similar size,
but the user must provide some size hints for the corecursive calls.

2.5 Stream Processors

Stream processors are a standard example of mixed fixpoints:

datatype (α, β, δ) spμ = Get (α → (α, β, δ) spμ) | Put β δ
codatatype (α, β) spν = In (out: (α, β, (α, β) spν) spμ)

When defining functions on these objects, we previously had to break them into
a recursive and a corecursive part, using Isabelle’s primcorec command for the
latter [16]. Since our tool supports mixed recursion–corecursion, we can now
express functions on stream processors more directly.

We present two functions. The first one runs a stream processor:

corecursive run : (α, β) spν → α stream → β stream where
run sp s = case out sp of

Get f ⇒ run (In (f (shd s))) (stl s)
| Put b sp ⇒ b � run sp s

〈two-line termination proof〉

120 J.C. Blanchette et al.

The second function, ◦◦, composes two stream processors:

corec (friend) get where
get f = In (Get (λa. out (f a)))

corecursive ◦◦ : (β, γ) spν → (α, β) spν → (α, γ) spν where
sp ◦◦ sp′ = case (out sp, out sp′) of

(Put b sp,) ⇒ In (Put b (sp ◦◦ sp′))
| (Get f, Put b sp′) ⇒ In (f b) ◦◦ sp′

| (, Get f ′) ⇒ get (λa. sp ◦◦ In (f ′ a))
〈two-line termination proof〉

The selector out in the noncorecursive friend get is legal, because get also adds a
constructor. In both cases, the corecursive command emits a termination proof
obligation, which we discharged in two lines, using the same techniques as when
defining recursive functions. This command is equivalent to corec, except that
it lets the user discharge proof obligations instead of applying some standard
proof automation.

2.6 A Calculator

Next, we formalize a calculator example by Hur et al. [37]. The calculator inputs
a number, computes the double of the sum of all inputs, and outputs the current
value of the sum. When the input is 0, the calculator counts down to 0 and
starts again. Hur et al. implement two versions, f and g, in a programming lan-
guage embedded deeply in Coq and prove that f simulates g using parameterized
coinduction.

We model the calculator in a shallow fashion as a function from the current
sum to a stream processor for nats. Let calc abbreviate nat → (nat, nat) spν . We
can write the program directly as a function and very closely to its specification
[37, Fig. 2]. In f and g, the corecursion goes through the friends get and restart,
and the constructor guard is hidden in the abbreviation put x sp = In (Put x sp).

corec (friend) restart : calc → calc where
restart h n = if n > 0 then put n (restart h (n − 1)) else h 0

corec f : calc where
f n = put n (get (λv. if v �= 0 then f (2 · v + n) else restart f (v + n)))

corec g : calc where
g m = put (2 · m) (get (λv. if v = 0 then restart g (2 · m) else g (v + m)))

Our task is to prove that g m simulates f (2 · m). In fact, the two can even be
proved to be bisimilar. In our shallow embedding, bisimilarity coincides with
equality. We can prove g m = f (2 · m) by coinduction with the rule generated
for the friends get and restart.

Friends with Benefits 121

2.7 Lazy List Filtering

A classic example requiring a mix of recursion and corecursion is filtering on
lazy lists. Given the polymorphic type of lazy lists

codatatype α llist = [] | (lhd: α) � (ltl: α llist)

the task is to define the function lfilter : (α → bool) → α llist → α llist that
retains only the elements that satisfy the given predicate. Paulson [58] defined
lfilter using an inductive search predicate. His development culminates in a
proof of

lfilter P ◦ lfilter Q = lfilter (λx. P x ∧ Q x) (1)

In Dafny, Leino [45] suggests a definition that mixes recursion and corecursion.
We can easily replicate Leino’s definition in Isabelle, where set converts lazy lists
to sets:

corecursive lfilter : (α → bool) → α llist → α llist where
lfilter P xs = if ∀x ∈ set xs. ¬ P x then []

else if P (lhd xs) then lhd xs � lfilter P (ltl xs)
else lfilter P (ltl xs)

〈13-line termination proof〉
The nonexecutability of the infinite ∀ quantifier in the ‘if’ condition is unprob-
lematic in HOL, which has no built-in notion of computation. Lochbihler and
Hölzl [48] define lfilter as a least fixpoint in the prefix order on llist. Using five
properties, they substantiate that fixpoint induction leads to shorter proofs than
Paulson’s approach.

We show how to prove three of their properties using our definition, namely
(1) and

lfilter P xs = [] ←→ (∀x ∈ set xs. ¬ P xs) (2)

set (lfilter P xs) = set xs ∩ {x | P x} (3)

We start with (2). We prove the interesting direction, −→, by induction on
x ∈ set xs, where the inductive cases are solved automatically. For (3), the ⊇
direction is also a simple induction on set. The other direction requires two
nested inductions: first on x ∈ set (lfilter P xs) and then a well-founded induction
on the termination argument for the recursion in lfilter. Finally, we prove (1)
using the uniqueness principle. We first derive the uniqueness rule for lfilter by a
coinduction with a nested induction; this approach reflects the mixed recursive-
corecursive definition of lfilter, which nests recursion inside corecursion.

lemma lfilter unique:
(∀xs. f xs = if ∀x ∈ set xs. ¬ P x then []

else if P (lhd xs) then lhd xs � f (ltl xs)
else f (ltl xs)) −→

f = lfilter P

122 J.C. Blanchette et al.

(Our tool does not yet generate uniqueness rules for mixed recursive–corecursive
definitions.) Then the proof of (1) is automatic:

lemma lfilter P ◦ lfilter Q = lfilter (λx. P x ∧ Q x)
by (rule lfilter unique) (auto elim: llist.set cases)

Alternatively, we could have proved (1) by coinduction with a nested induc-
tion on the termination argument. The uniqueness principle works well because
it incorporates both the coinduction and the induction. This underlines that
uniqueness can be an elegant proof principle for mixed recursive–corecursive
definitions, despite being much weaker than coinduction in the purely corecur-
sive case. Compared with Lochbihler and Hölzl’s proofs by fixpoint induction,
our proofs are roughly of the same length, but corecursive eliminates the need
for the lengthy setup for the domain theory.

2.8 Generative Probabilistic Values

Our final example relies on a codatatype that fully exploits Isabelle’s modular
datatype architecture built on bounded natural functors (Sect. 3.1) and that
cannot be defined easily, if at all, in other systems. This example is covered in
more detail in the report [15].

Lochbihler [47] proposes generative probabilistic values (GPVs) as a seman-
tic domain for probabilistic input–output systems. Conceptually, each GPV
chooses probabilistically between failing, terminating with a result of type
α, and continuing by producing an output γ and transitioning into a reac-
tive probabilistic value (RPV), which waits for a response ρ of the envi-
ronment before moving to the generative successor state. Lochbihler mod-
els GPVs as a codatatype (α, γ, ρ) gpv. He also defines a monadic language
on GPVs similar to a coroutine monad and an operation inline for com-
posing GPVs with environment converters. The definition of inline poses
two challenges. First, it corecurses through the monadic sequencing opera-
tion (>>=)gpv : (β, γ, ρ) gpv → (β → (α, γ, ρ) gpv) → (α, γ, ρ) gpv. Due to HOL
restrictions, all type variables in a friend’s signature must show up in the result-
ing codatatype, which is not the case for (>>=)gpv. To work around this, we
define a copy gpv′ of gpv with a phantom type parameter β, register (>>=)gpv′ as
a friend, and define inline in terms of its copy on gpv′. Second, inline recurses in
a non-well-founded manner through the environment converter. Since our tool
supports only mixing with well-founded recursion, we mimic the tool’s internal
behavior using a least fixpoint operator.

Initially, Lochbihler had manually derived the coinduction rule up to >>=gpv,
which our tool now generates. However, because of the copied type, our reformu-
lation ended up roughly as complicated as the original. Moreover, we noted that
coinduction up to congruence works only for equality; for user-defined predicates
(e.g., typing judgments), the coinduction rule must still be derived manually. But
even though this case study is not conclusive, it demonstrates the flexibility of
the framework.

Friends with Benefits 123

3 The Low Level: Corecursor States

Starting from the primitive corecursor provided by Isabelle [16], our tool derives
corecursors up to larger and larger sets of friends. The corecursion state includes
the set of friends F and the corecursor corecF. Four operations manipulate states:

– Base gives the first nonprimitive corecursor by registering the first friends—
the constructors (Sect. 3.3);

– Step incorporates a new friend into the corecursor (Sect. 3.4);
– Merge combines two existing sets of friends (Sect. 3.5);
– Instantiate specializes the corecursor type (Sect. 3.6).

The operations Base and Step have already been described in detail and
with many examples in our previous paper [17]. Here, we give a brief, self-
contained account of them. Merge and Instantiate are new operations whose
need became apparent in the course of implementation.

3.1 Bounded Natural Functors

The mathematics behind our tool assumes that the considered type construc-
tors are both functors and relators, that they include basic functors such as
identity, constant, sum, and product, and that they are closed under least and
greatest fixpoints (initial algebras and final coalgebras). The tool satisfies this
requirement by employing Isabelle’s infrastructure for bounded natural functors
(BNFs) [16,67]. For example, the codatatype α stream is defined as the greatest
solution to the fixpoint equation β ∼= α×β, where both the right-hand side α×β
and the resulting type α stream are BNFs.

BNFs have both a functor and a relator structure. If K is a unary type
constructor, we assume the existence of polymorphic constants for the functorial
action, or map function, mapK : (α → β) → α K → β K and the relational
action, or relator, relK : (α → β → bool) → α K → β K → bool, and similarly for
n-ary type constructors. For finite lists, maplist is the familiar map function, and
given a relation r, rellist r relates two lists of the same length and with r-related
elements positionwise. While the BNFs are functors on their covariant positions,
the relator structure covers contravariant positions as well.

We assume that some of the polymorphic constants are known to be (relation-
ally) parametric in some type variables, in the standard sense [60]. For exam-
ple, if K is a ternary relator and c : (α, β, γ) K, then c is parametric in β if
relK (=) r (=) c c holds for all r : β → β′ → bool. In a slight departure from
standard practice, if a term does not depend on a type variable α, we consider
it parametric in α. The map function of a BNF is parametric in all its type
variables. By contrast, = : α → α → bool is not parametric in α.

3.2 Codatatypes and Primitive Corecursion

We fix a codatatype J. In general, J may depend on some type variables, but
we leave this dependency implicit for now. While J also may have multiple,

124 J.C. Blanchette et al.

curried constructors, it is viewed at the low level as a codatatype with a single
constructor ctorJ : J Kctor → J and a destructor dtorJ : J → J Kctor:

codatatype J = ctorJ (dtorJ: J Kctor)

The mutually inverse constructor and destructor establish the isomorphism
between J and J Kctor. For streams, we have β Kctor = α × β, ctor (h, t) = h � t,
and dtor xs = (shd xs, stl xs). Low-level constructors and destructors combine
several high-level constructors and destructors in one constant each. Internally,
the codatatype command works on the low level, providing the high-level con-
structors as syntactic sugar [16].

In addition, the codatatype command derives a primitive corecursor corecJ :
(α → α Kctor) → α → J characterized by the equation corecJ b = ctor ◦
mapKctor

(corecJ b) ◦ b. The primcorec command, provided by Isabelle, reduces a
primitively corecursive specification to a plain, acyclic definition expressed using
this corecursor.

3.3 Corecursion up to Constructors

We call blueprints the arguments passed to corecursors. When defining a core-
cursive function f, a blueprint for f is produced, and f is defined as the corecursor
applied to the blueprint. The expressiveness of a corecursor is indicated by the
codomain of its blueprint argument. The blueprint passed to the primitive core-
cursor must return an α Kctor value—e.g., a pair (m, x) : nat × α for streams
of natural numbers. The remaining corecursion structure is fixed: After pro-
ducing m, we proceed corecursively with x. We cannot produce two numbers
before proceeding corecursively—to do so, the blueprint would have to return
(m, (n, x)) : nat × (nat × α).

Our first strengthening of the corecursor allows an arbitrary number of con-
structors before proceeding corecursively. This process takes a codatatype J and
produces an initial corecursion state 〈F, ΣF, corecF〉, where F is a set of known
friends, ΣF is a BNF that incorporates the type signatures of known friends,
and corecF is a corecursor. We omit the set-of-friends index whenever it is clear
from the context. The initial state knows only one friend, ctor.

Base : J � 〈F, ΣF, corecF〉 where
F = {ctor} α ΣF = α Kctor corecF : (α → α Σ+

F) → α → J

Let us define the type α Σ+
F used for the corecursor. First, we let α Σ∗

F be
the free monad of Σ extended with J-constant leaves:

datatype α Σ∗
F = Oper ((α Σ∗

F) ΣF) | Var α | Cst J
Inhabitants of α Σ∗

F are (formal) expressions built from variable or constant
leaf nodes (Var or Cst) and a syntactic representation of the constants in F.
Writing ctor for Oper : (α Σ∗

F) Kctor → α Σ∗
F, we can build expressions such

as ctor (1, Var (x : α)) and ctor (2, ctor (3, Cst (xs : J))). The type α Σ+
F , of

Friends with Benefits 125

guarded expressions, is similar to α Σ∗
F, except that it requires at least one ctor

guard on every path to a Var. Formally, α Σ+
F is defined as ((α Σ∗

F) Kctor) Σ∗
F, so

that Kctor marks the guards. To simplify notation, we will pretend that α Σ+
F ⊆

α Σ∗
F.
Guarded variable leaves represent corecursive calls. Constant leaves allow us

to stop the corecursion with an immediate result of type J. The polymorphism
of Σ∗ is crucial. If we instantiate α to J, we can evaluate formal expressions with
the function eval : J Σ∗ → J given by eval (ctor x) = ctor (mapKctor

eval x),
eval (Var t) = t, and eval (Cst t) = t. We also write eval for other versions of the
operator (e.g., for J Σ+).

The corecursor’s argument, the blueprint, returns guarded expressions con-
sisting of one or more applications of ctor before proceeding corecursively. Pro-
ceeding corecursively means applying the corecursor to all variable leaves and
evaluating the resulting expression. Formally:

corecF b = eval ◦ mapΣ+
F

(corecF b) ◦ b

3.4 Adding New Friends

Corecursors can be strengthened to allow friendly functions to surround the
context of the corecursive call. At the low level, we consider only uncurried
functions.

A function f : J Kf → J is friendly if it consumes at most one constructor
before producing at least one constructor. Friendliness is captured by a mixture
of two syntactic constraints and the semantic requirement of parametricity of a
certain term, called the surface. The syntactic constraints amount to requiring
that f is expressible using corecF, irrespective of its actual definition.

Specifically, f must be equal to corecF b for some blueprint b : J Kf →
(J Kf) Σ+ that has the guarding constructor at the outermost position, and
this object must be decomposable as b = s ◦ mapKf

〈id, dtor〉 for some s : (α ×
α Kctor) Kf → α Σ+. The convolution operator 〈f, g〉 : α → β × γ combines two
functions f : α → β and g : α → γ.

We call s the surface of b because it captures b’s superficial layer while
abstracting the application of the destructor. The surface s is more polymorphic
than needed by the equation it has to satisfy. Moreover, s must be parametric in
α. The decomposition, together with parametricity, ensures that friendly func-
tions apply dtor at most once to their arguments and do not look any deeper—the
“consumes at most one constructor” property.

Step : 〈F, ΣF, corecF〉 and f : J Kf → J friendly � 〈F′, ΣF′ , corecF′〉 where
F′ = F ∪ {f} α ΣF′ = α ΣF + α Kf corecF′ : (α → α Σ+

F′) → α → J

The return type of blueprints corresponding to corecF′ is Σ+
F′ , where ΣF′

extends ΣF with Kf . The type Σ+
F′ allows all guarded expressions of the previous

corecursor but may also refer to f. The syntactic representations g : α Σ∗
F Kg →

α Σ∗
F of old friends g ∈ F must be lifted to the type (α Σ∗

F′) Kg → α Σ∗
F′ , which is

126 J.C. Blanchette et al.

straightforward. In the sequel, we will reuse the notation g for the lifted syntactic
representations. In addition to g , new expressions are allowed to freely use the
syntactic representation f : (α Σ∗

F′) Kf → α Σ∗
F′ of the new friend f, defined as

f = Oper ◦ Inr. Like for ctor , we have eval (f x) = f (mapKf
eval x). As before,

we have corecF′ b = eval ◦ mapΣ+
F′ (corecF′ b) ◦ b.

Consider the corecursive specification of pointwise addition on streams of
numbers, where α Kctor is nat × α and dtor xs = (shd xs, stl xs):

xs ⊕ ys = (shd xs + shd ys) � (stl xs ⊕ stl ys)

To make sense of this specification, we take α K⊕ to be α × α and define ⊕ as
corecF b, where the blueprint b is

λp. (shd (fst p) + shd (snd p)) � Var (stl (fst p), stl (snd p))

To register ⊕ as friendly, we must decompose b as s ◦ mapK⊕〈id, dtor〉. Expanding
the definition of mapK⊕ , we get

mapK⊕〈id, dtor〉
= λp. ((fst p, dtor (fst p)), (snd p, dtor (snd p)))
= λp. ((fst p, (shd (fst p), stl (fst p))), (snd p, (shd (snd p), stl (snd p))))

It is easy to see that the following term is a suitable surface s:

λp′. (fst (snd (fst p′)) + fst (snd (snd p′))) � Var (snd (snd (fst p′)), snd (snd (snd p′)))

In Sect. 4, we give more details on how the system synthesizes blueprints and
surfaces.

3.5 Merging Corecursion States

Most formalizations are not linear. A module may import several other modules,
giving rise to a directed acyclic graph of dependencies. We can reach a situation
where the codatatype has been defined in module A; its corecursor has been
extended with two different sets of friends FB and FC in modules B and C,
each importing A; and finally module D, which imports B and C, requires a
corecursor that mixes friends from FB and FC . To support this scenario, we
need an operation that merges two corecursion states.

Merge : 〈F1, ΣF1 , corecF1〉 and 〈F2, ΣF2 , corecF2〉 � 〈F, ΣF, corecF〉 where
F = F1 ∪ F2 α ΣF = α ΣF1 + α ΣF2 corecF : (α → α Σ+

F) → α → J

The return type of blueprints for corecF is Σ+
F , where ΣF is the sum of the

two input signatures ΣF1 and ΣF2 . By lifting the syntactic representations of
old friends using overloading, we establish the invariant that for each f ∈ F

of a corecursor state, there is a syntactic representation f : Σ+
F Kf → Σ+

F . The
function eval is then defined in the usual way and constitutes the main ingredient
in the definition of corecF with the usual characteristic equation. For operations
f ∈ ΣF1 ∩ ΣF2 , two syntactic representations are available; we arbitrarily choose
the one inherited from ΣF1.

Friends with Benefits 127

3.6 Type Instantiation

We have so far ignored the potential polymorphism of J. Consider J = α stream.
The operations on corecursor states allow friends of type (α stream) K →
α stream but not (nat stream) K → nat stream. To allow friends for nat stream,
we must keep track of specialized corecursors. First, we need an operation for
instantiating corecursor states.

Instantiate : 〈F, ΣF, corecF〉 � 〈F [σ/α], ΣF[σ/α], corecF[σ/α]〉
Once we have derived a specific corecursor for nat stream, we can extend

it with friends of type (nat stream) K → nat stream. Such friends cannot
be added to the polymorphic corecursor, but the other direction works: Any
friend of a polymorphic corecursor is also a friend of a specialized corecursor.
Accordingly, we maintain a Pareto optimal subset of corecursor state instances
{〈FS, ΣFS

, corecFS
〉 | S ≤ J}, where σ′ ≤ σ denotes that the type σ′ can be

obtained from the type σ by applying a type substitution.
More specific corecursors are stored only if they have more friends: For each

pair of corecursor instances for S1 and S2 contained in the Pareto set, we have
FS1 ⊃ FS2 whenever S1 < S2. All the corecursors in the Pareto set are kept
up to date. If we add a friend to a corecursor instance for S from the set via
Step, it is also propagated to all instances S′ of S by applying Instantiate to
the output of Step and combining the result with the existing corecursor state
for S′ via Merge. When analyzing a user specification, corec selects the most
specific applicable corecursor.

Eagerly computing the entire Pareto set is exponentially expensive. Consider
a codatatype (α, β, γ) J and the friends f for (nat, β, γ) J, g for (α, β :: ring, γ) J,
and h for (α, β, bool) J. The set would contain eight corecursors, each with a
different subset of {f, g, h} as friends. To avoid such an explosion, we settle for
a lazy derivation strategy. In the above example, the corecursor for (nat, β ::
constring, bool) J, with f, g, h as friends, is derived only if a definition needs it.

3.7 Reasoning Principles

The primary activity of a working formalizer is to develop proofs. To conveniently
reason about nonprimitively corecursive functions, corec provides two reasoning
principles: coinduction up to congruence and a uniqueness theorem.

Coinduction up to Congruence. Codatatypes are equipped with a coinduc-
tion principle. Coinduction reduces the task of proving equality between two
inhabitants l and r of a codatatype to the task of exhibiting a relation R which
relates l and r and is closed under application of destructors. A relation closed
under destructors is called a bisimulation. The codatatype command derives a
plain coinduction rule. The rule for stream follows:

R l r ∀xs xs′.R xs xs′ → shd xs = shd xs′ ∧ R(stl xs)(stl xs′)
l = r

128 J.C. Blanchette et al.

To reason about functions that are corecursive up to a set of friends, a prin-
ciple of coinduction up to congruence of friends is crucial. For a corecursor with
friends F, our tool derives a rule that is identical to the standard rule except
with RF(stl xs) (stl xs ′) instead of R (stl xs) (stl xs ′), where RF denotes the
congruence closure of the relation R with respect to the friendly operations F.

After registering a binary ⊕ on nat stream as friendly, the introduction rules
for the inductively defined congruence closure include

x = x′ RFxs xs ′

RF(x � xs) (x′ � xs ′)
RFxs xs ′ RFys ys ′

RF(xs ⊕ ys) (xs ′ ⊕ ys ′)

Since the tool maintains a set of incomparable corecursors, there is also a
set of coinduction principles and a set of sets of introduction rules. The corec
command orders the set of coinduction principles by increasing generality, which
works well with Isabelle’s philosophy of applying the first rule that matches.

In some circumstances, it may be necessary to reason about the union of
friends associated with several incomparable corecursors. To continue with the
example from Sect. 3.6, suppose we want to prove a formula about (nat, β :: ring,
bool) J by coinduction up to f, g, h before the corresponding corecursor has been
derived. Users can derive it and the associated coinduction principle by invoking
a dedicated command:

coinduction upto (nat, β :: ring, bool) J

Uniqueness Principles. It is sometimes possible to achieve better automation
by employing a more specialized proof method than coinduction. Uniqueness
principles exploit the property that the corecursor is the unique solution to a
fixpoint equation:

h = eval ◦ mapΣ+ h ◦ b −→ h = corecF b

This rule can be seen as a less powerful version of coinduction, where the bisim-
ulation relation has been preinstantiated. In category-theoretic terms, the exis-
tence and uniqueness of a solution means that we maintain on J a completely
iterative algebra [51] (whose signature is gradually incremented with each addi-
tional friend).

For concrete functions defined with corec, uniqueness rules can be made
even more precise by instantiating the blueprint b. For example, the pointwise
addition on streams from Sect. 3.4

corec ⊕ : nat stream → nat stream → nat stream where
xs ⊕ ys = (shd xs + shd ys) � (stl xs ⊕ stl ys)

yields the following uniqueness principle:

(∀xs ys. h xs ys = (shd xs + shd ys) � h (stl xs) (stl ys)) −→ h = ⊕
Reasoning by uniqueness is not restricted to functions defined with corec.

Suppose t x is an arbitrary term depending on a list of free variables x. The

Friends with Benefits 129

corec unique proof method, also provided by our tool, transforms proof obliga-
tions of the form

(∀x. h x = H x h) −→ h x = t x

into ∀x. t x = H x t. The higher-order functional H must be such that the
equation h x = H x h would be a valid corec specification (but without nested
calls to h or unguarded calls). Internally, corec unique extracts the blueprint b
from H x h as if it would define h with corecF and uses the uniqueness principle
for corecF instantiated with b to achieve the described transformation.

4 The High Level: From Commands to Definitions

AmiCo’s two main commands corec (Sect. 4.1) and friend of corec (Sect. 4.2)
introduce corecursive functions and register friends. We describe synthesis algo-
rithms for any codatatype as implemented in the tool. We also show how to
capture the “consumes at most one constructor, produces at least one construc-
tor” contract of friends.

4.1 Defining Corecursive Functions

The corec command reduces the user’s corecursive equation to non(co)recursive
primitives, so as to guard against inconsistencies. To this end, the command
engages in a chain of definitions and proofs. Recall the general context:

– The codatatype J is defined as a fixpoint of a type constructor α Kctor equipped
with constructor ctor and destructor dtor.

– The current set of friends F contains ctor and has a signature ΣF (or Σ).
Each friend f ∈ F of type J Kf → J has a companion syntactic expression
f : (α Σ∗) Kf → α Σ∗.

– The corecursor up to F is corecF : (α → α Σ+) → α → J.

In general, J may be polymorphic and f may take more than one argument,
but these are minor orthogonal concerns here. As before, we write α Σ∗ for the
type of formal expressions built from α-leaves and friend symbols f , and α Σ+

for ctor -guarded formal expressions. For α = J, we can evaluate the formal
expressions into elements of J, by replacing each f with f and omitting the
Var and Cst constructors. Finally, we write eval for the evaluation functions of
various types of symbolic expressions to J.

Consider the command

corec g : A → J where g x = ug,x

where ug,x : J is a term that may refer to g and x. The first task of corec is to
synthesize a blueprint object b : A → A Σ+ such that

eval (mapΣ+h (b x)) = uh,x (4)

130 J.C. Blanchette et al.

holds for all h : A → J. This equation states that the synthesized blueprint must
produce, by evaluation, the concrete right-hand side of the user equation. The
unknown function h represents corecursive calls, which will be instantiated to g
once g is defined. To the occurrences of h in uh,x correspond occurrences of Var
in b.

Equipped with a blueprint, we define g = corecF b and derive the user
equation:

g x = corecF b x {by definition of g}
= eval (mapΣ+(corec b) (b x)) {by corecF’s equation}
= eval (mapΣ+g (b x)) {by definition of g}
= ug,x {by equation (4) with g for h}

Blueprint Synthesis. The blueprint synthesis proceeds by a straightforward
syntactic analysis, similar to the one used for primitive corecursion [16]. We
illustrate it with an example. Consider the definition of ⊕ from Sect. 3.4. Ignoring
currying, the function has type (nat stream) K⊕ → nat stream, with α K⊕ = α ×
α. The term b is synthesized by processing the right-hand side of the corecursive
equation for ⊕. After removing the syntactic sugar, we obtain the following term,
highlighting the corecursive call:

λp. (shd (fst p) + shd (snd p)) � (stl (fst p) ⊕ stl (snd p))

The blueprint is derived from this term by replacing the constructor guard � =
ctorstream and the friends with their syntactic counterparts and the corecursive
call with a variable leaf:

b = λp. (shd (fst p) + shd (snd p)) � Var (stl (fst p), stl (snd p))

Synthesis will fail if after the indicated replacements the result does not have
the desired type (here, nat → nat Σ+). If we omit ‘(shd (fst p) + shd (snd p)) �’
in the definition, the type of b becomes nat → nat Σ∗, reflecting the lack of a
guard. Another cause of failure is the presence of unfriendly operators in the
call context. Once b has been produced, corec proves that ⊕ satisfies the user
equation we started with.

Mixed Recursion–Corecursion. If a self-call is not guarded, corec still gives
it a chance, since it could be a terminating recursive call. As an example, the
following definition computes all the odd numbers greater than 1 arising in the
Collatz sequence:

corec collatz : nat → nat llist where

collatz n = if n ≤ 1 then [] else if even n then collatz n
2

else n � collatz (3 · n + 1)

The highlighted call is not guarded. Yet, it will eventually lead to a guarded
call, since repeatedly halving a positive even number must at some point yield
an odd number. The unguarded call yields a recursive specification of the blue-
print b, which is resolved automatically by the termination prover.

Friends with Benefits 131

By writing corecursive instead of corec, the user takes responsibility for
proving termination. A manual proof was necessary for lfilter in Sect. 2.7, whose
blueprint satisfies the recursion

b (P, xs) = if ∀x ∈ set xs. ¬ P x then []
else if P (lhd xs) then lhd xs � Var (P , ltl xs)
else b (P , ltl xs)

Termination is shown by providing a suitable well-founded relation, which exists
because ltl xs is closer than xs to the next element that satisfies the predicate P .

Like the corecursive calls, the recursive calls may be surrounded only by
friendly operations (or by parametric operators such as ‘case’, ‘if’, and ‘let’).
Thus, the following specification is rejected—and rightly so, since the unfriendly
stl cancels the corecursive guard that is reached when recursion terminates.

corec collapz : nat → nat llist where collapz n =
if n = 0 then [] else if even n then stl (collapz n

2) else n � collapz (3 · n + 1)

4.2 Registering New Friendly Operations

The command

corec (friend) g : J K → J where g x = ug,x

defines g and registers it as a friend. The domain is viewed abstractly as a type
constructor K applied to the codatatype J.

The command first synthesizes the blueprint b : J K → J Σ+, similarly to the
case of plain corecursive definitions. However, this time the type Σ is not ΣF, but
ΣF + K. Thus, Σ+ mixes freely the type K with the components Kf of ΣF, which
caters for self-friendship (as in the bfs2 example from Sect. 2.4): g can be defined
making use of itself as a friend (in addition to the already registered friends).

The next step is to synthesize a surface s from the blueprint b. Recall from
Sect. 3.4 that a corecursively defined operator is friendly if its blueprint b can
be decomposed as s ◦ mapK〈id, dtor〉, where s : (α × α Kctor) K → α Σ+ is
parametric in α.

Once the surface s has been synthesized, proved parametric, and proved to be
in the desired relationship with b, the tool invokes the Step operation (Sect. 3.4),
enriching the corecursion state with the function defined by b as a new friend,
called g.

Alternatively, users can register arbitrary functions as friends:

friend of corec g : J K → J where g x = ug,x

The user must then prove the equation g x = ug,x. The command extracts a
blueprint from it and proceeds with the surface synthesis in the same way as
corec (friend).

Surface Synthesis Algorithm. The synthesis of the surface from the blueprint
proceeds by the context-dependent replacement of some constants with terms.

132 J.C. Blanchette et al.

AmiCo performs the replacements in a logical-relation fashion, guided by type
inference.

We start with b : J K → J Σ+ and need to synthesize s : (α × α Kctor) K →
α Σ+ such that s is parametric in α and b = s ◦ mapK 〈id, dtor〉. We traverse b
recursively and collect context information about the appropriate replacements.
The technical report describes the algorithm in detail. Here, we illustrate it on
an example.

Consider the definition of a function that interleaves a nonempty list of
streams:

corec (friend) inter : (nat stream) nelist → nat stream where
inter xss = shd (hd xss) � inter (tl xss � stl (hd xss))

Here, β nelist is the type of nonempty lists with head and tail selectors hd :
β nelist → β and tl : β nelist → β list and � : β list → β → β nelist is defined
such that xs � y appends y to xs. We have J = nat stream and K = nelist. The
blueprint is

b = λxss. shd (hd xss) � Var (tl xss � stl (hd xss))

From this, the tool synthesizes the surface

s = λxss ′. (fst ◦ snd) (hd xss ′) � Var ((maplist fst ◦ tl) xss ′ � (snd ◦ snd) (hd xss ′))

When transforming the blueprint b : (nat stream) nelist → (nat stream) Σ+

into the surface s : (α × (nat × α)) nelist → α Σ+, the selectors shd and stl are
replaced by suitable compositions. One of the other constants, tl, is composed
with a mapping of fst. The treatment of constants is determined by their position
relative to the input variables (here, xss) and by whether the input is eventually
consumed by a destructor-like operator on J (here, shd and stl). Bindings can also
carry consumption information—from the outer context to within their scope—
as in the following variant of inter:

corec (friend) inter′ : (nat stream) nelist → nat stream where
inter′ xss = case hd xss of x � xs ⇒ x � inter′ (tl xss � xs)

The case expression is syntactic sugar for a .casestream combinator. The desugared
blueprint and surface constants are

b = λxss. casestream (hd xss) (λx xs. x � Var (tl xss � xs))
s = λxss ′. (caseprod ◦ snd)(hd xss ′)(λx′xs ′. x′ � Var((maplist fst ◦ tl)xss ′ � xs ′))

The case operator for streams is processed specially, because just like shd and
stl it consumes the input. The expression in the scope of the inner λ of the
blueprint contains two variables—xss and xs—that have nat stream in their
type. Due to the outer context, they must be treated differently: xss as an
unconsumed input (which tells us to process the surrounding constant tl) and
xs as a consumed input (which tells us to leave the surrounding constant �
unchanged). The selectors and case operators for J can also be applied indirectly,
via mapping (e.g., mapnelist stl xss).

Friends with Benefits 133

5 Implementation in Isabelle/HOL

The implementation of AmiCo followed the same general strategy as that of
most other definitional mechanisms for Isabelle:

1. We started from an abstract formalized example consisting of a manual con-
struction of the Base and Step corecursors and the corresponding reasoning
principles.

2. We streamlined the formal developments, eliminating about 1000 lines of
Isabelle definitions and proofs—to simplify the implementation and improve
performance.

3. We formalized the new Merge operation in the same style as Base and
Step.

4. We developed Standard ML functions to perform the corecursor state opera-
tions for arbitrary codatatypes and friendly functions.

5. We implemented, also in Standard ML, the commands that process user spec-
ifications and interact with the corecursor state.

HOL’s type system cannot express quantification over arbitrary BNFs,
thus the need for ML code to repeat the corecursor derivations for each new
codatatype or friend. With the foundational approach, not only the corecur-
sors and their characteristic theorems are produced but also all the intermediate
objects and lemmas, to reach the highest level of trustworthiness. Assuming the
proof assistant’s inference kernel is correct, bugs in our tool can lead at most to
run-time failures, never to logical inconsistencies.

The code for step 4 essentially constructs the low-level types, terms, and
lemma statements presented in Sect. 3 and proves the lemmas using dedicated
tactics—ML programs that generalize the proofs from the formalization. In prin-
ciple, the tactics always succeed. The code for step 5 analyses the user’s specifi-
cation and synthesizes blueprints and surfaces, as exemplified in Sect. 4. It reuses
primcorec′s parsing combinators [16] for recognizing map functions and other
syntactic conveniences, such as the use of λs as an alternative to ◦ for corecursing
under →, as seen in Sect. 2.1.

The archive accompanying this paper [14] contains instructions that explain
where to find the code and the users’ manual and how to run the code.

6 Related Work and Discussion

This work combines the safety of foundational approaches to function defini-
tions with an expressive flavor of corecursion and mixed recursion–corecursion.
It continues a program of integrating category theory insight into proof assis-
tant technology [16–18,67]. There is a lot of related work on corecursion and
productivity, both theoretical and applied to proof assistants and functional
programming languages.

Theory of (Co)recursion. AmiCo incorporates category theory from many
sources, notably Milius et al. [52] for corecursion up-to and Rot et al. [61] for
coinduction up-to. Our earlier papers [17,67] discuss further theoretical sources.

134 J.C. Blanchette et al.

AmiCo implements the first general, provably sound, and fully automatic method
for mixing recursive and corecursive calls in function definitions. The idea of
mixing recursion and corecursion appears in Bertot [11] for the stream filter, and
a generalization is sketched in Bertot and Komendantskaya [13] for corecursion
up to constructors. Leino’s Dafny tool [46] was the first to offer such a mixture
for general codatatypes, which turned out to be unsound and was subsequently
restricted to the sound but limited fragment of tail recursion.

Corecursion in Other Proof Assistants. Coq supports productivity by a
syntactic guardedness check, based on the pioneering work of Giménez [26]. Mini-
Agda [2] and Agda implement a more flexible approach to productivity due to
Abel et al. [3,5], based on sized types and copatterns. Coq’s guardedness check
allows, in our terminology, only the constructors as friends [21]. By contrast,
Agda’s productivity checker is more expressive than AmiCo’s, because sized
types can capture more precise contracts than the “consumes at most one con-
structor, produces at least one constructor” criterion. For example, a Fibonacci
stream definition such as fib = 0 � 1 � (fib + stl fib) can be made to work in
Agda, but is rejected by AmiCo because stl is not a friend. As mentioned in
Sect. 2.4, this flexibility comes at a price: The user must encode the productivity
argument in the function’s type, leading to additional proof obligations.

CIRC [50] is a theorem prover designed for automating coinduction via sound
circular reasoning. It bears similarity with both Coq’s Paco and our AmiCo.
Its freezing operators are an antidote to what we would call the absence of
friendship: Equality is no longer a congruence, hence equational reasoning is
frozen at unfriendly locations.

Foundational Function Definitions. AmiCo’s commands and proof methods
fill a gap in Isabelle/HOL’s coinductive offering. They complement codatatype,
primcorec, and coinduction [16], allowing users to define nonprimitive corecur-
sive and mixed recursive–corecursive functions. Being foundational, our work
offers a strong protection against inconsistency by reducing circular fixpoint def-
initions issued by the user to low-level acyclic definitions in the core logic. This
approach has a long tradition.

Most systems belonging to the HOL family include a counterpart to the
primrec command of Isabelle, which synthesizes the argument to a primitive
recursor. Isabelle/HOL is the only HOL system that also supports codatatypes
and primcorec [16]. Isabelle/ZF, for Zermelo–Fraenkel set theory, provides
(co)datatype and primrec [57] commands, but no high-level mechanisms for
defining corecursive functions.

For nonprimitively recursive functions over datatypes, Slind’s TFL package
for HOL4 and Isabelle/HOL [63] and Krauss’s function command for Isabelle/
HOL [42] are the state of the art. Krauss developed the partial function com-
mand for defining monadic functions [43]. Definitional mechanisms based on the
Knaster–Tarski fixpoint theorems were also developed for (co)inductive predi-
cates [31,57]. HOLCF, a library for domain theory, offers a fixrec command
for defining continuous functions [35].

Our handling of friends can be seen as a round trip between a shallow and
a deep embedding that resembles normalization by evaluation [9] (but starting

Friends with Benefits 135

from the shallow side). Initially, the user specification contains shallow (seman-
tic) friends. For identifying the involved corecursion as sound, the tool reifies
the friends into deep (syntactic) friends, which make up the blueprint. Then the
deep friends are “reflected” back into their shallow versions by the evaluation
function eval : J Σ∗ → J. A similar technique is used by Myreen in HOL4 for
verification and synthesis of functional programs [55].

In Agda, Coq, and Matita, the definitional mechanisms for (co)recursion are
built into the system. In contrast, Lean axiomatizes only the recursor [54]. The
distinguishing features of AmiCo are its dynamicity and high level of automation.
The derived corecursors and coinduction principles are updated with new ones
each time a friend is registered. This permits reuse both internally (resulting in
lighter constructions) and at the user level (resulting in fewer proof obligations).

Code Extraction. Isabelle’s code generator [29] extracts Haskell code from
an executable fragment of HOL, mapping HOL (co)datatypes to lazy Haskell
datatypes and HOL functions to Haskell functions. Seven out of our eight case
studies fall into this fragment; the extracted code is part of the archive [14]. Only
the filter function on lazy lists is clearly not computable (Sect. 2.7). In particular,
extraction works for Lochbihler’s probabilistic calculus (Sect. 2.8) which involves
the type spmf of discrete subprobability distributions. Verified data refinement
in the code generator makes it possible to implement such BNFs in terms of
datatypes, e.g., spmf as associative lists similar to Erwig’s and Kollmansberger’s
PFP library [24]. Thus, we can extract code for GPVs and their operations
like inlining. Lochbihler and Züst [49] used an earlier version of the calculus to
implement a core of the Transport Layer Security (TLS) protocol in HOL.

Certified Lazy Programming. Our tool and the examples are a first step
towards a framework for friendship-based certified programming: Programs are
written in the executable fragment, verified in Isabelle, and extracted to Haskell.
AmiCo ensures that corecursive definitions are productive and facilitates coin-
ductive proofs by providing strong coinduction rules. Productivity and termi-
nation of the extracted code are guaranteed if the whole program is specified
in HOL exclusively with datatypes, codatatypes, recursive functions with the
function command, and corecursive functions with corec, and no custom con-
gruence rules for higher-order operators have been used. The technical report
[15, Sect. 6] explains why these restrictions are necessary.

If the restrictions are met, the program clearly lies within the executable
fragment and the code extracted from the definitions yields the higher-order
rewrite system which the termination prover and AmiCo have checked. In par-
ticular, these restrictions exclude the noncomputable filter function on lazy lists
(Sect. 2.7), with the test ∀n ∈ set xs. ¬ P n.

A challenge will be to extend these guarantees to Isabelle’s modular archi-
tecture. Having been designed with only partial correctness in mind, the
code extractor can be customized to execute arbitrary (proved) equations—
which can easily break productivity and termination. A similar issue occurs
with friend of corec, which cares only about semantic properties of the
friend to be. For example, we can specify the identity function id on

136 J.C. Blanchette et al.

streams by id (x � y � xs) = x � y � xs and register it as a friend with the
derived equation id x = shd x � stl x. Consequently, AmiCo accepts the defi-
nition natsFrom n = n � id (natsFrom (n + 1)), but the extracted Haskell code
diverges. To avoid these problems, we would have to (re)check productivity and
termination on the equations used for extraction. In this scenario, AmiCo can
be used to distinguish recursive from corecursive calls in a set of (co)recursive
equations, and synthesize sufficient conditions for the function being productive
and the recursion terminating, and automatically prove them (using Isabelle’s
parametricity [36] and termination provers [20]).

AmiCo Beyond Higher-Order Logic. The techniques implemented in our
tool are applicable beyond Isabelle/HOL. In principle, nothing stands in the
way of AgdamiCo, AmiCoq, or MatitamiCo. Danielsson [22] and Thibodeau et
al. [65] showed that similar approaches work in type theory; what is missing is
a tool design and implementation. AmiCo relies on parametricity, which is now
understood for dependent types [10].

In Agda, parametricity could be encoded with sized types, and AgdamiCo
could be a foundational tool that automatically adds suitable sized types for
justifying the definition and erases them from the end product. Coq includes a
parametricity-tracking tool [40] that could form the basis of AmiCoq. The Paco
library by Hur et al. [37] facilitates coinductive proofs based on parameterized
coinduction [53,70]. Recent work by Pous [59] includes a framework to combine
proofs by induction and coinduction. An AmiCoq would catch up on the corecur-
sion definition front, going beyond what is possible with the cofix tactic [21]. On
the proof front, AmiCoq would provide a substantial entry into Paco’s knowledge
base: For any codatatype J with destructor dtor : J → J K, all registered friends
are, in Paco’s terminology, respectful up-to functions for the monotonic operator
λr x y. relK r (dtor x) (dtor y), whose greatest fixpoint is the equality on J.

A more lightweight application of our methodology would be an AmiCo for
Haskell or for more specialized languages such as CoCaml [38]. In these lan-
guages, parametricity is ensured by the computational model. An automatic
tool that embodies AmiCo’s principles could analyze a Haskell program and
prove it total. For CoCaml, which is total, a tool could offer more flexibility
when writing corecursive programs.

Surface Synthesis Beyond Corecursion. The notion of extracting a para-
metric component with suitable properties can be useful in other contexts than
corecursion. In the programming-by-examples paradigm [28], one needs to choose
between several synthesized programs whose behavior matches a set of input–
output instances. These criteria tend to prefer programs that are highly paramet-
ric. A notion of degree of parametricity does not exist in the literature but could be
expressed as the size of a parametric surface, for a suitable notion of surface, where
〈id, dtor〉 is replaced by domain specific functions and fst by their left inverses.

Acknowledgment. Martin Desharnais spent months extending Isabelle’s codatatype
command to generate a wealth of theorems, many of which were useful when imple-
menting AmiCo. Lorenz Panny developed primcorec, whose code provided valuable

Friends with Benefits 137

building blocks. Mathias Fleury, Mark Summerfield, Daniel Wand, and the anonymous
reviewers suggested many textual improvements. We thank them all. Blanchette is sup-
ported by the European Research Council (ERC) starting grant Matryoshka (713999).
Lochbihler is supported by the Swiss National Science Foundation (SNSF) grant “For-
malising Computational Soundness for Protocol Implementations” (153217). Popescu
is supported by the UK Engineering and Physical Sciences Research Council (EPSRC)
starting grant “VOWS: Verification of Web-based Systems” (EP/N019547/1). The
authors are listed in alphabetical order.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive
types. Theor. Comput. Sci. 342(1), 3–27 (2005)

2. Abel, A.: MiniAgda: integrating sized and dependent types. In: Bove, A., Komen-
dantskaya, E., Niqui, M. (eds.) PAR 2010. EPTCS, vol. 43, pp. 14–28 (2010)

3. Abel, A.: Compositional coinduction with sized types. In: Hasuo, I. (ed.) CMCS
2016. LNCS, vol. 9608, pp. 5–10. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-40370-0 2

4. Abel, A., Pientka, B.: Well-founded recursion with copatterns and sized types. J.
Funct. Program. 26, e2 (2016)

5. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp.
27–38. ACM (2013)

6. Adams, M.: Introducing HOL Zero. In: Fukuda, K., Hoeven, J., Joswig, M.,
Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 142–143. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-15582-6 25

7. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: The Matita interactive
theorem prover. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 64–69. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 7

8. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
Morrisett, G., Uustalu, T. (eds.) ICFP 2013, pp. 197–208. ACM (2013)

9. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
lambda-calculus. In: LICS 1991, pp. 203–211. IEEE Computer Society (1991)

10. Bernardy, J.P., Jansson, P., Paterson, R.: Proofs for free: parametricity for depen-
dent types. J. Funct. Program. 22(2), 107–152 (2012)

11. Bertot, Y.: Filters on coinductive streams, an application to Eratosthenes’ sieve. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 102–115. Springer, Heidelberg
(2005). doi:10.1007/11417170 9

12. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development–
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer, Heidelberg (2004)

13. Bertot, Y., Komendantskaya, E.: Inductive and coinductive components of core-
cursive functions in Coq. Electr. Notes Theor. Comput. Sci. 203(5), 25–47 (2008)

14. Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.: Archive asso-
ciated with this paper. http://matryoshka.gforge.inria.fr/pubs/amico material.tar.
gz

15. Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.: Friends
with benefits: implementing corecursion in foundational proof assistants. Technical
report (2017). http://matryoshka.gforge.inria.fr/pubs/amico report.pdf

http://dx.doi.org/10.1007/978-3-319-40370-0_2
http://dx.doi.org/10.1007/978-3-319-40370-0_2
http://dx.doi.org/10.1007/978-3-642-15582-6_25
http://dx.doi.org/10.1007/978-3-642-22438-6_7
http://dx.doi.org/10.1007/978-3-642-22438-6_7
http://dx.doi.org/10.1007/11417170_9
http://matryoshka.gforge.inria.fr/pubs/amico_material.tar.gz
http://matryoshka.gforge.inria.fr/pubs/amico_material.tar.gz
http://matryoshka.gforge.inria.fr/pubs/amico_report.pdf

138 J.C. Blanchette et al.

16. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08970-6 7

17. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion:
a proof assistant perspective. In: Fisher, K., Reppy, J.H. (eds.) ICFP 2015, pp.
192–204. ACM (2015)

18. Blanchette, J.C., Popescu, A., Traytel, D.: Witnessing (co)datatypes. In: Vitek,
J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 359–382. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46669-8 15

19. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03359-9 6

20. Bulwahn, L., Krauss, A., Nipkow, T.: Finding lexicographic orders for termination
proofs in Isabelle/HOL. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS,
vol. 4732, pp. 38–53. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74591-4 5

21. Chlipala, A.: Certified Programming with Dependent Types—A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2013)

22. Danielsson, N.A.: Beating the productivity checker using embedded languages. In:
Bove, A., Komendantskaya, E., Niqui, M. (eds.) PAR 2010. EPTCS, vol. 43, pp.
29–48 (2010)

23. Dijkstra, E.W.: An exercise for Dr. R. M. Burstall. In: Dijkstra, E.W. (ed.) Selected
Writings on Computing: A Personal Perspective, pp. 215–216. Texts and Mono-
graphs in Computer Science. Springer, Heidelberg (1982)

24. Erwig, M., Kollmansberger, S.: Probabilistic functional programming in Haskell.
J. Funct. Programm. 16(1), 21–34 (2006)

25. Gammie, P., Lochbihler, A.: The Stern-Brocot tree. Archive of Formal Proofs
(2015). https://www.isa-afp.org/entries/Stern Brocot.shtml

26. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P.,
Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995). doi:10.1007/3-540-60579-7 3

27. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

28. Gulwani, S.: Programming by examples—and its applications in data wrangling. In:
Dependable Software Systems Engineering. NATO Science for Peace and Security
Series D: Information and Communication Security, vol. 45, pp. 137–158. IOS Press
(2016)

29. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12251-4 9

30. Hagino, T.: A categorical programming language. Ph.D. thesis, University of Edin-
burgh (1987)

31. Harrison, J.: Inductive definitions: automation and application. In: Thomas Schu-
bert, E., Windley, P.J., Alves-Foss, J. (eds.) TPHOLs 1995. LNCS, vol. 971, pp.
200–213. Springer, Heidelberg (1995). doi:10.1007/3-540-60275-5 66

32. Harrison, J.: HOL Light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03359-9 4

33. Hinze, R.: The Bird tree. J. Func. Programm. 19(5), 491–508 (2009)

http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-662-46669-8_15
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/978-3-540-74591-4_5
https://www.isa-afp.org/entries/Stern_Brocot.shtml
http://dx.doi.org/10.1007/3-540-60579-7_3
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1007/3-540-60275-5_66
http://dx.doi.org/10.1007/978-3-642-03359-9_4

Friends with Benefits 139

34. Homeier, P.V.: The HOL-Omega logic. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer, Heidel-
berg (2009). doi:10.1007/978-3-642-03359-9 18

35. Huffman, B.: HOLCF ’11: a definitional domain theory for verifying functional
programs. Ph.D. thesis, Portland State University (2012)

36. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03545-1 9

37. Hur, C.K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 193–206.
ACM (2013)

38. Jeannin, J.-B., Kozen, D., Silva, A.: Language constructs for non-well-founded
computation. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 61–80. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37036-6 4

39. Jones, G., Gibbons, J.: Linear-time breadth-first tree algorithms: an exercise in the
arithmetic of folds and zips. Technical report 71, Computer Science Department,
University of Auckland (1993)

40. Keller, C., Lasson, M.: Parametricity in an impredicative sort. In: Cégielski, P.,
Durand, A. (eds.) CSL 2012. LIPIcs, vol. 16, pp. 381–395. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik (2012)

41. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

42. Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 589–603. Springer,
Heidelberg (2006). doi:10.1007/11814771 48

43. Krauss, A.: Recursive definitions of monadic functions. In: Bove, A., Komen-
dantskaya, E., Niqui, M. (eds.) PAR 2010. EPTCS, vol. 43, pp. 1–13 (2010)

44. van Laarhoven, T.: Knuth-Morris-Pratt in Haskell (2007). http://www.twanvl.nl/
blog/haskell/Knuth-Morris-Pratt-in-Haskell

45. Leino, K.R.M.: Automating theorem proving with SMT. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 2–16. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39634-2 2

46. Leino, K.R.M., Moskal, M.: Co-induction simply: automatic co-inductive proofs
in a program verifier. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM
2014. LNCS, vol. 8442, pp. 382–398. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06410-9 27

47. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49498-1 20

48. Lochbihler, A., Hölzl, J.: Recursive functions on lazy lists via domains and topolo-
gies. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 341–357.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-08970-6 22

49. Lochbihler, A., Züst, M.: Programming TLS in Isabelle/HOL. Isabelle Work-
shop 2014 (2014). https://www.ethz.ch/content/dam/ethz/special-interest/
infk/inst-infsec/information-security-group-dam/research/publications/pub2014/
lochbihler14iw.pdf

50. Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: a behavioral verification
tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03741-2 30

http://dx.doi.org/10.1007/978-3-642-03359-9_18
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://dx.doi.org/10.1007/978-3-642-37036-6_4
http://dx.doi.org/10.1007/11814771_48
http://www.twanvl.nl/blog/haskell/Knuth-Morris-Pratt-in-Haskell
http://www.twanvl.nl/blog/haskell/Knuth-Morris-Pratt-in-Haskell
http://dx.doi.org/10.1007/978-3-642-39634-2_2
http://dx.doi.org/10.1007/978-3-319-06410-9_27
http://dx.doi.org/10.1007/978-3-319-06410-9_27
http://dx.doi.org/10.1007/978-3-662-49498-1_20
http://dx.doi.org/10.1007/978-3-319-08970-6_22
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/publications/pub2014/lochbihler14iw.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/publications/pub2014/lochbihler14iw.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/research/publications/pub2014/lochbihler14iw.pdf
http://dx.doi.org/10.1007/978-3-642-03741-2_30
http://dx.doi.org/10.1007/978-3-642-03741-2_30

140 J.C. Blanchette et al.

51. Milius, S.: Completely iterative algebras and completely iterative monads. Inf.
Comput. 196(1), 1–41 (2005)

52. Milius, S., Moss, L.S., Schwencke, D.: Abstract GSOS rules and a modular treat-
ment of recursive definitions. Log. Meth. Comput. Sci. 9(3:28), 1–52 (2013)

53. Moss, L.S.: Parametric corecursion. Theor. Comput. Sci. 260(1–2), 139–163 (2001)
54. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean

theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21401-6 26

55. Myreen, M.O.: Functional programs: conversions between deep and shallow embed-
dings. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 412–417.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32347-8 29

56. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002)

57. Paulson, L.C.: A fixedpoint approach to implementing (co)inductive definitions. In:
Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 148–161. Springer, Heidelberg
(1994). doi:10.1007/3-540-58156-1 11

58. Paulson, L.C.: Mechanizing coinduction and corecursion in higher-order logic. J.
Log. Comput. 7(2), 175–204 (1997)

59. Pous, D.: Coinduction all the way up. In: Grohe, M., Koskinen, E., Shankar, N.
(eds.) LICS 2016, pp. 307–316. ACM (2016)

60. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Mason,
R.E.A. (ed.) IFIP 1983, pp. 513–523. North-Holland/IFIP (1983)

61. Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: Emde
Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM
2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35843-2 32

62. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: San-
giorgi, D., Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218.
Springer, Heidelberg (1998). doi:10.1007/BFb0055624

63. Slind, K.: Function definition in higher-order logic. In: Goos, G., Hartmanis, J.,
Leeuwen, J., Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol.
1125, pp. 381–397. Springer, Heidelberg (1996). doi:10.1007/BFb0105417

64. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-71067-7 6

65. Thibodeau, D., Cave, A., Pientka, B.: Indexed codata types. In: Sumii, E. (ed.)
ICFP 2016. ACM (2016)

66. Traytel, D.: Formal languages, formally and coinductively. In: Kesner, D., Pientka,
B. (eds.) FSCD. LIPIcs, vol. 52, pp. 31:1–31:17. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik (2016)

67. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic: category theory applied to theorem proving.
In: LICS 2012, pp. 596–605. IEEE Computer Society (2012)

68. Turner, D.A.: Elementary strong functional programming. In: Hartel, P.H., Plas-
meijer, R. (eds.) FPLE 1995. LNCS, vol. 1022, pp. 1–13. Springer, Heidelberg
(1995). doi:10.1007/3-540-60675-0 35

69. Wadler, P.: Theorems for free! In: Stoy, J.E. (ed.) FPCA 1989, pp. 347–359. ACM
(1989)

70. Winskel, G.: A note on model checking the modal ν-calculus. Theor. Comput. Sci.
83(1), 157–167 (1991)

http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-642-32347-8_29
http://dx.doi.org/10.1007/3-540-58156-1_11
http://dx.doi.org/10.1007/978-3-642-35843-2_32
http://dx.doi.org/10.1007/978-3-642-35843-2_32
http://dx.doi.org/10.1007/BFb0055624
http://dx.doi.org/10.1007/BFb0105417
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1007/3-540-60675-0_35

Confluence of Graph Rewriting with Interfaces

Filippo Bonchi1, Fabio Gadducci2, Aleks Kissinger3, Pawe�l Sobociński4,
and Fabio Zanasi5(B)

1 CNRS, ENS de Lyon, Lyon, France
2 University of Pisa, Pisa, Italy

3 Radboud University Nijmegen, Nijmegen, The Netherlands
4 University of Southampton, Southampton, UK

5 University College London, London, UK
f.zanasi@ucl.ac.uk

Abstract. For terminating double-pushout (DPO) graph rewriting sys-
tems confluence is, in general, undecidable. We show that confluence is
decidable for an extension of DPO rewriting to graphs with interfaces.
This variant is important due to it being closely related to rewriting of
string diagrams. We show that our result extends, under mild conditions,
to decidability of confluence for terminating rewriting systems of string
diagrams in symmetric monoidal categories.

Keywords: Confluence · DPO rewriting systems · Adhesive categories ·
PROPs · String diagrams

1 Introduction

Confluence and termination are some of the most important properties of rewrit-
ing systems. For term rewriting, both confluence [3] and termination [27] are, in
general, undecidable. However, for systems known to be terminating, confluence
is decidable. The key, celebrated property observed by Knuth and Bendix [33]
is that the system is confluent exactly when all its critical pairs are joinable.

In recent years, an increasing amount of attention has been given to rewriting
structures that are richer than mere terms, many of which can be seen as var-
ious flavours (including higher-dimensional) of graphs. Here, unfortunately, the
status of confluence is murky because old certainties of critical pair analysis fail:
Plump [42], working in the well-established framework of the double-pushout
(DPO) graph rewriting mechanism [20], showed that joinability of critical pairs
does not entail confluence, and that confluence of terminating DPO rewriting
systems is, in general, undecidable.

In this paper we focus on an extension of DPO, called DPO with inter-
faces. This variant has emerged in several research threads, including rewrit-
ing with borrowed contexts [19], encodings of process calculi [5,24], connecting
DPO rewriting systems with computads in cospans categories [25,44] and, more
recently, for checking the equivalence of terms of symmetric monoidal theories

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 141–169, 2017.
DOI: 10.1007/978-3-662-54434-1 6

142 F. Bonchi et al.

[4]. Our key observation is that for DPO rewriting with interfaces, the Knuth-
Bendix property holds and therefore confluence of a terminating system can be
decided by checking whether its critical pairs are joinable. More precisely, if some
mild assumptions related to the computability of performing rewriting steps on
the underlying notion of term are satisfied, our result holds for the most general
venue available for DPO rewriting, namely, adhesive categories [34].

Our results do not falsify Plump’s: in DPO with interfaces, rather than rewrit-
ing graphs, one rewrites graph morphisms J → G, thought of as a graph G with
interface J . The latter allows one to “glue” G to other graphs, analogously to
how variables allow a single term to apply to a variety of contexts via substi-
tution. Plump’s result, in the light of our analysis, states that it is undecidable
to check whether rewriting is confluent for all morphisms 0 → G. Intuitively,
the failure of Knuth-Bendix for such morphisms is due to the loss of expressive
power of critical pairs, when deprived of an interface.

This reveals an attractive analogy with term rewriting: morphisms 0 → G –
representing graphs that cannot be non-trivially attached to other graphs, since
they have an empty interface – correspond to ground terms, that cannot be
extended since they have no variables. Now, the property that Plump showed to
be undecidable should be compared to ground confluence for term rewriting [40],
i.e., confluence with respect to all ground terms. And in fact, this property is
undecidable for terminating term rewriting systems [30]. Summarising, for both
term and DPO rewriting with interfaces, confluence of terminating rewriting
systems is decidable, while ground confluence is not.

Terminating term rewriting system Terminating DPO system

Ground confluence Undecidable (Kapur et al. [30]) Undecidable (Plump [42])

Confluence Decidable (Knuth and Bendix [33]) Decidable (this paper)

Our interest in DPO rewriting with interfaces is motivated by symmetric
monoidal theories (SMTs) that appear in different fields of computer science,
like concurrency theory [11,37,47], quantum information [15,16], and systems
theory [1,6,7,23], just to mention a few. The terms of an SMT enjoy an efficient
graphical representation by means of string diagrams [29,45], in the sense that
structural equations are “baked into” the representation. Rewriting at the dia-
grammatic level can be used to determine equality of terms, i.e. the word problem
for an SMT. While rewriting of string diagrams has been broadly studied from
a foundational point of view (e.g. using computads [48] or polygraphs [12]), its
implementation has thus far received less attention.

In [4] we showed that rewriting of string diagrams, representing terms of
an SMT, can be soundly and effectively encoded into DPO rewriting with inter-
faces. This enables us to reuse the main result of this paper to study confluence of
rewriting of string diagrams. This problem is known to be particularly challeng-
ing: for example a directed form of the Yang-Baxter equation generates infinitely
many critical pairs [35,39].

Confluence of Graph Rewriting with Interfaces 143

We show that this issue can be avoided by using DPO with interfaces, and
that confluence is decidable. We identify two classes of terminating rewriting sys-
tems for which confluence can be decided by means of critical pair analysis. The
first one concerns SMTs containing a special Frobenius structure [14] (yielding
categories alternatively called well-supported compact closed [13], p- and dgs-
monoidal [9,25], or recently hypergraph categories [22,31]). For arbitrary SMTs,
not necessarily equipped with a special Frobenius structure, we identify a sec-
ond class of rewriting systems for which confluence can be decided. The rules of
these systems need to satisfy a simple condition that we call left-connectedness.
Many rewriting systems arising from SMTs (e.g., [21,26,35]), including afore-
mentioned Yang-Baxter rule, enjoy this property. Amongst these, we consider
a rewriting system for non-commutative bimonoids that has been shown to be
terminating in [4]. We exploit our approach to prove that it is also confluent and
thus conclude that equivalence of non-commutative bimonoids is decidable.

Related Work. For ordinary DPO rewriting, a variant of the Knuth-Bendix prop-
erty holds with respect to a stronger notion of joinability for critical pairs [42].
Moreover, confluence is decidable whenever all critical pairs satisfy a certain
syntactic condition called coverability [43]. Both these results however refer to
confluence for graphs without interfaces, namely ground confluence. Instead,
our same notion of confluence has been studied in [8] in the setting of Mil-
ner’s reactive systems. By instantiating Proposition 22 in [8] to the category of
input-linear cospans (of hypergraphs) and by using the results relating borrowed
context DPO rewriting with reactive systems over cospans in [46], one obtains a
variant of our Theorem 19. One restriction of that approach is that the matches
are required to be mono, which rules out our applications to SMTs.

2 Background

Notation. The composition of arrows f : a → b, g : b → c in a category C is
written as f ; g. For C symmetric monoidal, ⊕ is its monoidal product and
σa,b : a ⊕ b → b ⊕ a is the symmetry for objects a, b ∈ C.

2.1 DPO Rewriting

Adhesive Categories and (Typed) Hypergraphs. In order not to restrict ourselves
to any one concrete model of graphs, we work with adhesive categories [34].
Adhesive categories are relevant because they have well-behaved pushouts along
monomorphisms, and for this reason they are convenient as ambient categories
for DPO rewriting.

An important example is the category of finite directed hypergraphs Hyp.
An object G of Hyp is a hypergraph with finite set of nodes G� and for each
k, l ∈ N finite set of hyperedges Gk,l with k (ordered) sources and l (ordered)
targets, i.e. for each 0 ≤ i < k there is the ith source map si : Gk,l → G�,
and for each 0 ≤ j < l, the jth target map tj : Gk,l → G�. The arrows of

144 F. Bonchi et al.

Hyp are homomorphisms: functions G� → H� such that for each k, l, Gk,l →
Hk,l they respect the source and target maps in the obvious way. The seasoned
reader will recognise Hyp as a presheaf topos, and as such, it is adhesive [34].
We shall visualise hypergraphs as follows: • is a node and is
an hyperedge, with ordered tentacles attached to the left bound-
ary linking to sources and those on the right linking to targets.
An example is on the right.

o2

o1o2
A signature Σ consists of a set of generators o : n → m

with arity n and coarity m where m,n ∈ N. Any signature
Σ can be considered as a hypergraph with a single node, in
the obvious way. We can then express Σ-typed hypergraphs as the objects of
the slice category Hyp/Σ, denoted by HypΣ , which is adhesive, since adhesive
categories are closed under slice [34]. Σ-typed hypergraphs are drawn by labeling
hyperedges with generators in Σ, as on the right.

DPO Rewriting. We recall the DPO approach [20] to rewriting in an adhesive
category C. A DPO rule is a span L ←− K −→ R in C. A DPO system R is a
finite set of DPO rules. Given objects G and H in C, we say that G rewrites
into H —notation G ⇒R H— if there esist L ←− K −→ R in R, object C and
morphisms such that the squares below are pushouts. A derivation from G into
H is a sequence of such rewriting steps.

L
m ��

K

��� �

�� �� R
��

G C�� �� H

The arrow m : L → G is called a match of L in G. A rule L ←− K −→ R is
said to be left-linear if the morphism K → L is mono. In this case, the matching
m fully determines the graphs C and H, i.e., for fixed a rule and a matching
there is a unique H such that G ⇒R H. Here, by unique, we mean unique up-to
isomorphism. More generally, the rewriting steps will always be up-to iso: in a
step G ⇒R H, G and H should not be thought of as single graphs but rather
as equivalence classes of isomorphic graphs.

Undecidability of Confluence. In DPO rewriting, the confluence of terminating
systems is not decidable, even if we restrict to left-linear rules.

Theorem 1 [42]. Confluence of terminating DPO systems over HypΣ is unde-
cidable.

Indeed, critical pair analysis for traditional DPO systems fails: for terminat-
ing DPO systems, joinability of critical pairs does not necessarily imply conflu-
ence.

Definition 2 (Pre-critical pair and joinability). Let R be a DPO system
with rules L1 ←− K1 −→ R1 and L2 ←− K2 −→ R2. Consider two derivations with
common source S

Confluence of Graph Rewriting with Interfaces 145

R1

��

K1
��

� ��

�� L1

�
f1

��

L2f2

�� �

K2
��

�� �

�� R2

��
H1 C1

�� �� S C2
�� �� H2

We say that H1 ⇐ S ⇒ H2 is a pre-critical pair if [f1, f2] : L1 + L2 → S is epi;
it is joinable if there exists W such that H1 ⇒∗ W ∗⇐H2.

Intuitively, in a pre-critical pair S should not be bigger than L1 + L2. In a
critical pair, L1 and L2 must additionally overlap in S, so that the two rewrit-
ing steps are not parallel independent (see e.g. [17]). For the purposes of this
paper, this restriction is immaterial. We stick to pre-critical pairs in our results,
as proofs are less tedious. However, for the sake of succinctness, most of the
examples only display the critical pairs. For a pre-critical pair which is not a
critical pair, see for instance the first picture of Sect. 5.

Example 3 [42]. Consider a DPO system R consisting of the following two
rules, where we labeled nodes with numbers in order to make the graph
morphisms explicit.

0

b
1

0
a

1 0 1
0

b

1

0
a

1 0 1

Amongst the several pre-critical pairs, only the following two have non-trivial
overlap.

Both are obviously joinable. However, R is not confluent, as witnessed by
the following

DPO Rewriting with Interfaces. Morphisms G ←− J will play a special role in
our exposition. When C is HypΣ , we will call them (hyper)graphs with interface.
The intuition is that G is a hypergraph and J is an interface that allows G to
be “glued” to a context.

Given G ← J and H ← J in C, G rewrites into H with interface J —
notation (G ←− J) ⇒R (H ←− J) — if there exist rule L ←− K −→ R in R, object
C and morphisms such that the diagram below commutes and the squares are
pushouts.

L
m ��

K

��� �

�� �� R
��

G C�� �� H

J

�� ��������

		������

146 F. Bonchi et al.

Hence, the interface J is preserved by individual rewriting steps.
When C has an initial object 0 (for instance, in HypΣ 0 is the empty hyper-

graph), ordinary DPO rewriting can be considered as a special case, by taking
J to be 0.

Like for traditional DPO, rewriting steps are modulo isomorphism: G1 ← J :
f1 and G2 ← J : f2 are isomorphic if there is an isomorphism ϕ : G1 → G2 with
f1 ; ϕ = f2.

Example 4. Consider the system R from Example 3 and , a graph
with interface (henceforth depicted in grey). It is the source of two rewriting
steps

that are not joinable. Intuitively, the main difference with Example 3 is that
here the interface {0, 1} allows one to “look inside” the graph and distinguish
between the two nodes. Notice that if (1) were considered as a critical pair, the
counterexample of Plump [42] (Example 3) would not work. This is the start-
ing observation for our work: in Sect. 3 we will introduce pre-critical pairs for
rewriting with interfaces and we will show that, as in term rewriting, joinability
of pre-critical pairs entails confluence.

2.2 PROP Rewriting

SMTs and PROPs. A uniform way to express an algebraic structure within a
symmetric monoidal category is with a symmetric monoidal theory (SMT). A
(one-sorted) SMT is a pair (Σ,E) where Σ is a signature defined as in Sect. 2.1.
The set of Σ-terms is obtained by combining generators in Σ, the unit id : 1 →
1 and the symmetry σ1,1 : 2 → 2 with ; and ⊕. That means, given Σ-terms
t : k → l, u : l → m, v : m → n, one constructs new Σ-terms t ; u : k → m and
t ⊕ v : k + m → l + n. The set E of equations contains pairs (t, t′) of Σ-terms,
with the requirement that t and t′ have the same arity and coarity.

=

=

=

=

=

=

=

=

Fig. 1. The equations EF of special Frobenius monoids.

Just as ordinary (cartesian) algebraic theories have a categorical rendition
as Lawvere categories [28], the corresponding (linear1) notion for SMTs is a
1 In the sense that variables can neither be copied, nor discarded.

Confluence of Graph Rewriting with Interfaces 147

PROP [36] (product and permutation category). A PROP is a symmetric strict
monoidal category with objects the natural numbers, where ⊕ on objects is
addition. Morphisms between PROPs are identity-on-objects strict symmetric
monoidal functors. PROPs and their morphisms form a category PROP. Any
SMT (Σ,E) freely generates a PROP by letting the arrows n → m be the
Σ-terms n → m modulo the laws of symmetric monoidal categories and the
(smallest congruence containing the) equations t = t′ for any (t, t′) ∈ E.

We write SΣ to denote the PROP freely generated by (Σ, ∅). There is a
graphical representation of the arrows of SΣ as string diagrams, which we now
sketch, referring to [45] for the details. A Σ-term n → m is pictured as a box
with n ports on the left and m ports on the right, which are ordered and referred
to with top-down enumerations 1, . . . , n and 1, . . . , m. Compositions via ; and
⊕ are drawn respectively as horizontal and vertical juxtaposition, that means,

t ; s is drawn and t ⊕ s is drawn . There are specific diagrams for
the Σ-terms responsible for the symmetries: these are id1 : 1 → 1, represented
as , the symmetry σ1,1 : 1 + 1 → 1 + 1, represented as , and the unit
object for ⊕, that is, id0 : 0 → 0, whose representation is an empty diagram .
Graphical representation for arbitrary identities idn and symmetries σn,m are
generated using the pasting rules for ; and ⊕. It will be sometimes convenient
to represent idn with the shorthand diagram and, similarly, t : n → m with

.

Example 5.

(a) A basic example is the theory (ΣM , EM) of commutative monoids. The
signature ΣM contains two generators: multiplication — which we depict

and unit, represented as . Equations in EM are
given in the leftmost column of Fig. 1: they assert commutativity, associa-
tivity and unitality.

(b) An SMT that plays a key role in our exposition is the theory (ΣF , EF) of
special Frobenius monoids. The signature ΣF is as follows and EF is depicted
in Fig. 1.

EF includes the theory of commutative monoids in the leftmost column.
Dually, the equations in the middle column assert that and form
a cocommutative comonoid. Finally, the two rightmost equations describe
an interaction between these two structures. We call Frob the PROP freely
generated by (ΣF , EF).

(c) The theory of non-commutative bimonoids has signature ΣNB

148 F. Bonchi et al.

and the following equations ENB .

We call NB the PROP freely generated from (ΣNB , ENB). In [4], we showed
that the rewriting system that is obtained by orienting the equalities from
left to right terminates. In this paper, we will show that is also confluent.
For this, it will be convenient to use μ, η, ν, ε, respectively, to refer to the
generators in ΣNB .

Rewriting in a PROP. Fix an arbitrary PROP X. A rewriting rule is a pair
〈l, r〉 where l, r : i → j in X have the same domain and codomain. We say
that i → j is the rule’s type and sometimes write 〈l, r〉 : (i, j). A rewrit-
ing system R is a finite set of rules. Given two arrows d, e : n → m in
X, d �R e iff ∃〈l, r〉 : (i, j) ∈ R, c1 : n → k + i, c2 : k + j → n such
that d = c1 ; (idk ⊕ l) ; c2 and e = c1 ; (idk ⊕ r) ; c2, i.e., diagrammatically

The following well-known example illustrates the subtlety of critical pair
analysis when rewriting in monoidal categories.

Example 6 (From [35], see also [39]). Fix Σ = {γ : 2 → 2} and consider the
rewriting system on SΣ consisting of the following rule:

A critical pair analysis yields an infinite number of critical pairs. Indeed, as
shown in [35,39], any diagram φ : 1 + m → 1 + n that does not decompose
non-trivially into φ = μ + ν for some μ, ν yields a critical pair

in which clearly there are two embeddings of the left-hand side of (2) (depicted
in blue and yellow, respectively, in a colour version of the paper) with an overlap
(in green).

In [38] this problem was solved by freely adding duals to monoidal cate-
gories. In Sect. 4, we will show another solution based on our earlier work [4]: a
translation from PROPs to DPO rewriting with interfaces. The example below
anticipates this encoding. It will be useful as a running example for the next
section, which is devoted to critical pair analysis and confluence in DPO rewrit-
ing with interfaces.

Confluence of Graph Rewriting with Interfaces 149

Example 7. Treating the rewriting system of Example 6 as DPO system over
HypΣ with γ : 2 → 2 ∈ Σ yields the following DPO rules.

Below, we give a DPO derivation with interface (in grey), corresponding to
a critical pair from the family identified in Example 6.

3 Confluence for DPO Rewriting with Interfaces

Differently from Definition 2, when considering pre-critical pairs in the setting
of DPO with interfaces, the interface of the pre-critical pair plays a crucial role.

Definition 8 (Pre-critical pair with interface). Let R be a DPO system
with rules L1 ←− K1 −→ R1 and L2 ←− K2 −→ R2. Consider two derivations with
source S ← J

R1

��

K1
��

� ��

�� L1

�
f1

�
����� L2

f2

��������

�

K2
��

�� �

�� R2

��
H1 C1

�� �� S C2
�� �� H2

J

��
(†)

 (3)

We say that (H1 ←− J) ⇐ (S ←− J) ⇒ (H2 ←− J) is a pre-critical pair if
[f1, f2] : L1 + L2 → S is epi and (†) is a pullback; it is joinable if there exists
W ←− J such that (H1 ←− J) ⇒∗ (W ←− J) ∗⇐ (H2 ←− J).

Definition 8 augments Definition 2 with the interface J , given by “intersect-
ing” C1 and C2. Intuitively, J is the largest interface that allows both the rewrit-
ing steps.

150 F. Bonchi et al.

Example 9. Consider the pair of rewriting steps (1) in Example 4. This is a
pre-critical pair: the reader can check that the interface is indeed a pullback,
constructed as in (†). Observe moreover that this pair is not joinable.

Plump’s Example 3 shows that in ordinary DPO, joinability of pre-critical
pairs does not imply confluence. Our Example 9 shows that the argument does
not work for DPO with interfaces. Indeed, as we shall see in Theorem 19, in the
presence of interfaces joinability suffices for confluence. To prove it, we assume
the following.

Assumption 10. Our ambient category C is assumed (1) to possess an epi-
mono factorisation system, (2) to have binary coproducts, pushouts and pull-
backs, (3) to be adhesive (4) with all the pushouts stable under pullbacks.

All of the above hold in any presheaf category. Additionally, all four are closed
under slice. It follows that HypΣ is an example of such a category. The final
property allows us to treat non left-linear rules: to this aim we need the following
simple pushout decomposition lemma (aka “mixed decomposition” from [2]).

Lemma 11. Suppose in the following diagram m is mono, (†)+(‡) is a pushout
and (‡) is a pullback. Then both (†) and (‡) are pushouts.

K
(†)��

�� C ′
(‡)��

�� C

��
L �� G′

m
�� G

(4)

The following construction mimics [18]. It allows us to restrict –or “clip”– a
DPO rewriting step with match f : L → G to any subobject of G′ through which
f factors.

Construction 12 (One-step clipping). Suppose we have a DPO rewriting
step as below left, together with factorisation L −→ G′ m−→ G where m is mono.
As shown below right, we get C ′ by pulling back G′ −→ G ←− C and K → C ′ by
the universal property.

L

��

�����
K ����

��

R

��
G′

m ����
�

G C ���� H

L

��

�����
K ����

��

��

R

��
G′

m ����
� C ′��

��
�

G C ���� H

By Lemma 11 the two leftmost squares are both pushouts. Next, H ′ is the
pushout of C ′ ←− K −→ R and H ′ −→ H follows from its universal property.

L

��

�����
K ����

��

��

R

��

�����

G′
m ����
� C ′�� ��

��
� H ′

G C ���� H

Confluence of Graph Rewriting with Interfaces 151

By pushout pasting also the bottom-rightmost square is a pushout. Finally,
observe that C ′ → C is mono since it is the pullback of m along C → G.
This means that each of the two squares in diagram below is, as well as being a
pushout, also a pullback, since each is a pushout along a mono in an adhesive
category.

G′

m
��

C ′

��

�� �� H ′

��
G C�� �� H

Example 13. We use the clipping construction to restrict pairs of derivations
with common source into pre-critical pairs. For example, consider the two DPO
rewriting rules illustrated in Example 7. We can factorise the two matches
through their common image, and clip, as illustrated below.

Note that the clipped derivations result with the two matches being jointly
epi, which is one of the properties of a pre-critical pair. This generalises: given
two rewriting steps with common source (G1,1 ←− I) ⇐ (G0 ←− I) ⇒ (G1,2 ←− I),
next construction produces a pre-critical pair (G′

1,1 ←− J ′) ⇐ (G0
′ ←− J ′) ⇒

(G′
1,2 ←− J ′) using clipping.

Construction 14 (Pre-critical pair extraction). Start with two rewrites
from G0 ←− I

R1,1

��

K1,1��

� ��

�� L1,1

�
f1

��������
L1,2

f2

��						

�

K1,2��

�� �

�� R1,2

��
G1,1 C1,1�� �� G0 C1,2�� �� G1,2

I

�� �� ��

152 F. Bonchi et al.

and factorise [f1, f2] : L1,1 + L1,2 → G0 to obtain

L1,1

��

f1

��

L1,2

����
��

f2

��

G′
0��

��
G0.

Next apply Construction 12 twice, obtaining

R1,1

��

�����
�

K1,1��

��

��

�� L1,1

��������

��

L1,2

��

��������
K1,2��

����
��

��

��

R1,2

����
��

��

H ′
1,1

����
��

C ′
1,1

����
��

�� �� G′
0

��

C ′
1,2

��

�� �� H ′
1,2

�����
�

H1,1 C1,1�� �� G0 C1,2�� �� H1,2.

I

�� �� ��

Finally pull back C ′
1,1 −→ G′

0 ←− C ′
1,2 to obtain pre-critical pair

R1,1

�����
K1,1��

�����
�� L1,1

�������� L1,2

��������
K1,2��

�
��

�� R1,2

���

G′
1,1 C ′

1,1
�� �� G′

0 C ′
1,2

�� �� G′
1,2.

J ′

 !!

Example 15. We can now complete the pre-critical pair extraction process, com-
menced in Example 13, following the steps of Construction 14.

Construction 14 means that we are able to extract a pre-critical pair from
two rewriting steps with common source. If the pre-critical pair is joinable, we
would then like to embed the joining derivations to the original context.

Confluence of Graph Rewriting with Interfaces 153

The following is a useful step in this direction. Assuming a mono G′
0 → G0,

it allows us to extend a derivation from G′
0 ←− J ′ to a corresponding one from

G0 ←− J , if we can obtain G0 by glueing G′
0 and some context C0 along J ′. Stated

more formally, we want the following diagram commute and (†) be a pushout.

J ′ ��

�� (†)
G′

0

��
J �� ""C0

�� G0

(5)

Construction 16 (Embedding). The extended derivation is constructed as in
the commuting diagram below, where each square is a pushout diagram.

L1

##��
��

�
K1

��

�� �� R1

$$�
��

��
L2

##��
��

�
K2

��

�� �� R2

$$�
��

��
. . . Ln

����
��

�
Kn

��

�� �� Rn

���
��

��
�

J ′

(†)

��

��

G′
0

��

C ′
1

(γ1) (δ1)
��

�� �� G′
1

��

C ′
2

(γ2) (δ2)
��

�� �� G′
2

��

. . . G′
n

��

C ′
n

(γn) (δn)
��

�� �� G′
n

��
C0

�� G0 C1
�� �� G1 C2

�� �� G2
. . . Gn Cn

�� �� Gn

J ′

��

������

%%����������������

&&

������

''����������������(ε2) (εn)

C0

������

%%����������������

&&

������

''����������������
(ε1)

J��

We shall now explain each of the components. The upper row of pushouts
together with morphisms J ′ −→ C ′

i witnesses the original derivation (G′
0 ←−

J ′) ⇒∗ (G′
n ←− J ′).

For i = 1 . . . n, (εi) is formed as the pushout of C0 ←− J ′ −→ C ′
i and (δi) as

the pushout of Ci ←− C ′
i −→ G′

i, as shown in the diagram below.

J ′ ��

��

C ′
i

��

�� G′
i

��
C0

��
(εi)

Ci
��

(δi)

Gi

(6)

It remains to construct pushouts (γi), which is done in the following diagram.

J ′ ��

�������

��

G′
i−1

��

C ′
i
��

�������

Ci
((

C0

������� ��

(εi)

Gi−1

(γi) (7)

The exterior square in (7) is a pushout: for i = 1 it is (†) from (5), while
for i ≥ 2 it is obtained by composing (εi−1) and (δi−1) from (6). The universal
property of (εi) yields the morphism Ci → Gi−1. By pushout decomposition, the
diagram (γi) is a pushout.

154 F. Bonchi et al.

Example 17. In Example 15 we saw two derivations from

These can be extended to

following the steps in Construction 16 because the square in the following is a
pushout.

Constructions 14 and 16 are the main ingredients for showing the Knuth-
Bendix property for DPO with interfaces. Before we prove it, we need one tech-
nical lemma from the theory of adhesive categories.

Lemma 18. Consider the cube on the right, where the
top and bottom faces are pullbacks, the rear faces are
both pullbacks and pushouts, and m is mono. Then, the
front faces are also pushouts.

G′
0
m

��

C ′
1,2

��

��
C ′

1,1

))

n

��

J ′

��

**��
��

G0 C1,2��

C1,1

++��
J

))�����

Theorem 19 (Local confluence). For a DPO system with interfaces, if all
pre-critical pairs are joinable then rewriting is locally confluent: given (G1,1 ←−
I) ⇐ (G0 ←− I) ⇒ (G1,2 ←− I), there exists W ←− I such that

(G0 ←− I)
,� ������ �,��� ���

(G1,1 ←− I) ∗ �,��� ���
(G1,2 ←− I)∗,� ������

(W ←− I).

Confluence of Graph Rewriting with Interfaces 155

Proof. Following the steps of Construction 14, we obtain a pre-critical pair

(G′
1,1 ← J ′) ⇐ (G′

0 ← J ′) ⇒ (G′
1,2 ← J ′)

Because pre-critical pairs are by assumption joinable we have derivations

(G′
1,1 ←− J ′) ⇒∗ (W ′ β′

←− J ′) ∗⇐ (G′
1,2 ←− J ′).

Suppose w.l.o.g. that the leftmost derivation requires n steps and the rightmost
m. To keep the notation consistent with Construction 16, we fix notation G′

n,1 :=
W ′=: G′

m,2.
Now let J be the pullback object of C1,1 −→ G0 ←− C1,2. By the universal

property, we obtain maps ι : I → J and ξ : J ′ −→ J .

G′
0

��

C ′
1,2

��

��
C ′

1,1

++���

��

J ′
ξ

��

))���
��

G0 C1,2��

C1,1

++���
J

++����� I
ι��

,-

(8)

Recall by Construction 12 that the rear faces of (8) are both
pullbacks and pushouts. Then, by Lemma 18, the square on
the right is a pushout.

J ′

��

��

(†)
G′

0

��
J �� G0

We are now in position to apply Construction 16 by taking C0 = J , which
yields

(G0 ←− J) ⇒ (G1,1 ←− J) ⇒∗ (Gn,1
β1←− J)

extending (G′
0 ←− J ′) ⇒ (G′

1,1 ←− J ′) ⇒∗ (G′
n,1

β′
←− J ′) and

(G0 ←− J) ⇒ (G1,2 ←− J) ⇒∗ (Gm,2
β2←− J)

extending (G′
0 ←− J ′) ⇒ (G′

1,1 ←− J ′) ⇒∗ (G′
m,2

β′
←− J ′).

The next step is to prove that (Gn,1
β1←− J) ∼= (Gm,2

β2←− J). To see this, it is

enough to observe that both the following squares are pushouts of J
ξ←− J ′ β′

−→
W ′ = G′

n,1 = G′
m,2.

J ′
ξ ��

β′
�� G′

n,1

��
J

β1

�� Gn,1

J ′
ξ ��

β′
�� G′

m,2

��
J

β2

�� Gm,2

Indeed, the leftmost is a pushout by composition of squares (εn) and (δn) in the
embedding construction and the rightmost by composition of (εm) and (δm).

156 F. Bonchi et al.

To complete the proof, it remains to show that, in the above derivations,
interface J extends to interface I as in the statement of the theorem. But this
trivially holds by precomposing with ι : I → J . �

We are now ready to give our decidability result. To formulate it at the level
of generality of adhesive categories we need some additional definitions.

A quotient of an object X is an equivalence class of epis with domain X. Two
epis e1 : X → X1, e2 : X → X2 are equivalent when there exists isomorphism
ϕ : X1 → X2 such that e1 ; ϕ = e2. Note that quotient is the dual of subobject.

A DPO rewriting system with interfaces is computable when

– pullbacks are computable,
– for every pairs of rules Li ←− Ki → Ri, Lj ←− Kj → Rj , the set of quotients of

Li + Lj is finite and computable,
– for all G ←− J , it is possible to compute every H ←− J such that (G ←− J) ⇒

(H ←− J).

Computability refers to the possibility of effectively computing each rewriting
step as well as to have a finite number of pre-critical pairs. More precisely, the
first two conditions ensure that the set of all pre-critical pairs is finite (since
every objects has finitely many quotients) and each of them can be computed,
while the last one ensures that any possible rewriting step can also be computed.
Thus, these assumptions rule out the rewriting of infinite structures, singleing out
instead those structures where it is reasonable to apply the DPO mechanism, like
finite hypergraphs in HypΣ , which are exactly what is needed for implementing
rewriting of SMTs.

Corollary 20. For a computable terminating DPO system with interfaces, con-
fluence is decidable.

Proof. By Theorem 19, if all pre-critical pairs are joinable then the system is
confluent. If not all pre-critical pairs are joinable, then at least one pair witnesses
the fact that the system is not confluent. Therefore, to decide confluence, it is
enough to check that all pre-critical pairs are joinable.

Since the system is computable, there are only finitely many pre-critical pairs
and these can be computed. For each pair, one can decide joinability: indeed each
rewriting step can be computed (since the system is computable) and there are
only finitely many (H ←− J) such that (G ←− J) ⇒∗ (H ←− J) (since the system
is terminating). �

It is worth to remark that this result is not in conflict with Theorem1:
Corollary 20 refers to confluence of all hypergraphs with interfaces G ←− J . The
property that Theorem1 states as undecidable is whether the rewriting is conflu-
ent for all hypergraphs with empty interface G ←− 0. Observe that the restriction
to hypergraphs with empty interface would make the above proof fail: a non-
joinable pre-critical pair (S ←− J), with J non empty, does not witness that
rewriting is not confluent for all G ←− 0.

Confluence of Graph Rewriting with Interfaces 157

A similar problem arises with term rewriting, when restricting to confluence
of ground terms [30]. As an example consider the following term rewriting system
defined on the signature with two unary symbols, f and g, and one constant c.

f(g(f(x))) → x f(c) → c g(c) → c

The critical pair f(g(x)) ← f(g(f(g(f(x))))) → g(f(x)) is not joinable, but
the system is obviously ground confluent, as every ground term will eventually
rewrite into c.

Our work therefore allows one to view Theorem 1 in a new light: as hyper-
graphs with empty interface are morally the graphical analogous of ground terms,
we can say that ground confluence is not decidable for DPO rewriting with inter-
faces.

4 Confluence for PROP Rewriting

As emphasised in the introduction, a major reason for interest in DPO rewriting
with interfaces is that PROP rewriting (Sect. 2.2) may be interpreted therein.
In this section we investigate how our confluence result behaves with respect to
this interpretation. The outcome is that confluence is decidable for terminat-
ing PROP rewriting systems, where terms are taken modulo a chosen special
Frobenius structure (Corollary 28). For arbitrary symmetric monoidal theories,
confluence is also decidable, provided that certain additional conditions hold
(Corollary 41).

4.1 From PROPs to Frobenius Termgraphs

In this subsection we report a result from [4] that is crucial for the encoding of
PROP rewriting into DPO rewriting with interfaces in HypΣ (cf. Sect. 2.1).

First, we obtain our domain of interpretation by restricting the category
Csp(HypΣ) with arrows the cospans G1 ←− G2 −→ G3 of Σ-hypergraphs to those
with G1, G3 discrete.

Definition 21 (Frobenius termgraphs). Any k ∈ N can be seen as a discrete
hypergraph with k vertices. The objects of the PROP FTermΣ of Σ-Frobenius
termgraphs are natural numbers and arrows n → m are cospans n

f−→ G
g←− m

in HypΣ (where n, m are considered as hypergraphs). FTermΣ, therefore, is a
full subcategory of Csp(HypΣ).

Explicitly, composition in FTermΣ is defined by pushout as in Csp(HypΣ)
and the monoidal product ⊕ by coproduct in HypΣ . The idea behind the dis-
creteness restriction is that f and g tell what are the “left and right dangling
wires” in the string diagram encoded by G. In pictures, we shall represent n
and m as actual discrete graphs— with n and m nodes respectively— and use
number labels (and sometimes colours, whenever available to the reader) to help
visualise how they get mapped to nodes of G.

158 F. Bonchi et al.

Given a signature Σ, we define a PROP morphism ��·�� : SΣ → FTermΣ .
Since SΣ is the PROP freely generated by an SMT with no equations, it suffices
to define ��·�� on the generators: for each o : n → m in Σ, we let ��o�� be the
following cospan of type n → m.

Example 22. The two sides of the PROP rewriting rule (2) (Example 6) get
interpreted as the following cospans in FTermΣ .

Proposition 23 [4]. ��·�� : SΣ → FTermΣ is faithful.

The encoding ��·�� is an important part of Theorem 24 below. This is a pivotal
result in our exposition, as it serves as a bridge between algebraic and combina-
torial structures. Indeed, it provides a presentation, by means of generators and
equations, for the PROP FTermΣ : the disjoint union of the SMTs of SΣ and
Frob.

Theorem 24 [4]. There is an isomorphism of PROPs Φ : SΣ + Frob
∼=−→

FTermΣ.

The isomorphism Φ is given as [��·��, ψ] : SΣ + Frob → FTermΣ , where
ψ : Frob → FTermΣ is the unique PROP morphism mapping the generators of
Frob as follows

The special role played by Frob is what justifies the terminology Frobenius
termgraph: it is used to model those features of the graph domain that are not
part of the syntactic domain, e.g. the ability of building a “feedback loop” around
some α : 1 → 1 in Σ.

Confluence of Graph Rewriting with Interfaces 159

4.2 Confluence for Rewriting in SΣ + Frob

We can use Theorem 24 to apply results for graphs with interfaces to SΣ +Frob.
First, one can turn the cospan n

i−→ G
o←− m = Φ(d) interpreting a string diagram

d into a graph with interface, which is defined as

�n
i−→ G

o←− m� := G
[i,o]←−− n + m.

For a system R we define the rewriting system �Φ(R)� in FTermΣ as

{〈�Φ(l)�, �Φ(r)�〉 | 〈l, r〉 ∈ R}.

Example 25. The PROP rewriting system R of Example 6 consists of just a sin-
gle rule, let us call it 〈d, e〉. The resulting DPO rewriting system with interfaces
�Φ(R)� is then presented in Example 7. Also, Example 22 is an intermediate step
of this transformation, as it shows the cospans ��c�� = Φ(c) and ��d�� = Φ(d).
One can obtain both graphs with interfaces �Φ(c)� and �Φ(d)� by “folding” the
domain/codomain of the cospans into the interface of Example 7.

Observe that a rule in �Φ(R)� just consists of a pair of hypergraphs with a
common interface, i.e., it is a DPO rule of the form L ← n+m → R. Thus, PROP
rewriting in FTermΣ coincides with DPO rewriting with interfaces: together
with Theorem 24, this correspondence yields the following result.

Theorem 26 [4]. Let R be a rewriting system on SΣ + Frob.

1. If d �R e, then �Φ(d)� ⇒�Φ(R)� �Φ(e)�.
2. If �Φ(d)� ⇒�Φ(R)� (H ←− J), then ∃e such that �Φ(e)� ∼= (H ←− J) and

d �R e.

One can read Theorem 26 as: DPO rewriting with interfaces is sound and
complete for any symmetric monoidal theory with a chosen special Frobenius
structure, i.e. one of shape (Σ + ΣF , E + EF), with (ΣF , EF) the SMT of
Frob. There are various relevant such theories in the literature, such as the
ZX-calculus [15], the calculus of signal flow graphs [6], the calculus of stateless
connectors [10] and monoidal computer [41].

The combination of the result above with Theorem19 is however not sufficient
for ensuring the decidability of the confluence for a terminating rewriting system
R on SΣ + Frob. Indeed, Theorem 19 and Theorem 26 ensure that if all the
pre-critical pairs in �Φ(R)� are joinable, then the rewriting in R is confluent.
However, for the decidability of confluence in R the reverse is also needed: if
one pre-critical pair in �Φ(R)� is not joinable, then R should not be confluent.
To conclude this fact, it is enough to check that all pre-critical pairs of �Φ(R)�
lay in the image of �Φ(·)�, i.e., that they all have discrete interfaces. The key
observation is given by the lemma below.

Lemma 27 (Pre-critical pair with discrete interface). Consider a pre-
critical pair in HypΣ as in (3), Definition 8. If both K1 and K2 are discrete, so
is the interface J .

160 F. Bonchi et al.

Proof. For i = 1, 2, since Ki is discrete, the hyperedges of Ci are exactly those
of Gi that are not in fi(Li). Since [f1, f2] : L1+L2 → S is epi, all the hyperedges
of G are either in f1(L1) or f2(L2). Therefore, J cannot contain any hyperedge.

�

Since in every rule L ←− K −→ R in �Φ(R)�, K is discrete, from Lemma 27
and Theorem 19 we derive the following result.

Corollary 28. Confluence is decidable for terminating rewriting systems on
SΣ + Frob.

Proof. To decide confluence of a rewriting system R on SΣ + Frob, it is enough
to check whether all pre-critical pairs in �Φ(R)� are joinable. Indeed, if all pre-
critical pairs are joinable, then �R is confluent by Theorems 19 and 26. For
the other direction, suppose that there exists a pre-critical pair �Φ(R)�⇐ (S ←−
J) ⇒�Φ(R)� that is not joinable. By construction, in every rule L ←− K −→ R in
�Φ(R)�, K is discrete. Therefore, by Lemma 27, also J is discrete. This is the
key fact to entail that there exists d in SΣ +Frob, such that �Φ(d)� = (S ←− J).
By Theorem 26, d witnesses that �R is not confluent.

Now, if R is terminating, then by Theorem26, also �Φ(R)� is terminating.
The latter is also computable and therefore joinability of pre-critical pairs of
�Φ(R)� can easily be decided by following the steps in the second part of the
proof of Corollary 20. �

4.3 Confluence for Left-Connected Rewriting in SΣ

So far, we have shown a procedure to decide confluence for rewriting on
SΣ +Frob. In order to study PROP rewriting in absence of a chosen Frobenius
structure, we focus on component ��·�� : SΣ → FTermΣ of the isomorphism Φ.

We first recall from [4] a combinatorial characterisation of the image of ��·��.
It is based on a few preliminary definitions. We call a sequence of hyperedges
e1, e2, . . . , en a directed path if at least one target of ek is a source for ek+1 and
a directed cycle if additionally at least one target of en is a source for e1. The
in-degree of a node v in an hypergraph G is the number of pairs (h, i) where
h is an hyperedge with v as its i-th target. Similarly, the out-degree of v is the
number of pairs (h, j) where h is an hyperedge with v as its j-th source. We call
input nodes those with in-degree 0, output nodes those with out-degree 0, and
internal nodes the others. We write in(G) for the set of inputs and out(G) for
the set of outputs.

Definition 29. An hypergraph G is monogamous directed acyclic (mda) if

1. it contains no directed cycle (directed acyclicity) and
2. every node has at most in- and out-degree 1 (monogamy).

A cospan n
f−→ G

g←− m in FTermΣ is monogamous directed acyclic when G is
an mda-hypergraph, f is mono and its image is in(G), g is mono and its image
is out(G).

Confluence of Graph Rewriting with Interfaces 161

Example 30. The following four cospans are not monogamous.

Theorem 31 [4]. n −→ G ←− m in FTermΣ is in the image of ��·�� iff it is mda.

As for a graph with interface G
f←− J , we call it monogamous directed acyclic

if so is G and the image of f coincides with in(G) + out(G). This means that

there exists a cospan n
i−→ G

o←− m such that �n
i−→ G

o←− m� = G
f←− J , i.e.,

J = n + m and f = [i, o].
We are now in position to interpret PROP rewriting for SΣ in DPO-rewriting

for mda-hypergraphs with interfaces, via the mapping [[·]] def= ���·��� that takes
string diagrams to mda hypergraphs with interfaces.

As shown in [4], this interpretation is generally unsound. There are two main
reasons, which we illustrate in the next two examples. They motivate our restric-
tion to PROP rewriting systems that make the interpretation sound, in Defini-
tion 34 below.

Example 32. Consider Σ = {α1 : 0 → 1, α2 : 1 → 0, α3 : 1 → 1}
and the PROP rewriting system on SΣ . In
FTermΣ , [[R]] is given by the DPO rule of mda-hypergraphs with interface

. The rule is not left-linear and therefore pushout
complements are not necessarily unique for the application of this rule, as wit-
nessed by the following two DPO rewriting steps.

The different outcome is due to the fact that f maps 0 to the leftmost and
1 to the rightmost node, whereas g swaps the assignments. Even though both
rewriting steps could be mimicked at the syntactic level in SΣ +Frob (as guar-
anteed by Theorem 26, cf. [4, Ex. 4.8]), the rightmost one is illegal for R in
SΣ .

Example 33. Take Σ = {α1 : 1 → 2, α2 : 2 → 1, α3 : 1 → 1, α4 : 1 → 1} and a
PROP rewriting system R on SΣ given by the rewriting rule below left, inter-
preted in [[R]] as below right. The next line introduces a diagram c of SΣ and its
interpretation.

162 F. Bonchi et al.

Now, the left-hand side of the rule in R cannot be matched in c. However,
their interpretation in FTermΣ yields a legal DPO rewriting step as below.

The two examples motivate the following definition.

Definition 34. An mda-hypergraph G is strongly connected if for every input
x ∈ in(G) and output y ∈ out(G), there exists a directed path from x to y. A DPO
system with interface is called left-connected if it is left-linear and, for every rule
L ← K → R, L ← K and R ← K are mda-hypergraphs with interface and L is
strongly connected. We call a PROP rewriting system R on SΣ left-connected if
[[R]] is left-connected.

Non-commutative bimonoids (Example 5(c), see also Sect. 5 below) and the
Yang-Baxter rule of Example 6 are examples of left-connected rewriting systems.

Intuitively, in Definition 34, strong connectedness prevents matches leaving
“holes”, as in Example 33, whereas left-linearity guarantees uniqueness of the
pushout complements, and prevents the problem in Example 32. We are then
able to prove the following.

Theorem 35. Let R be a left-connected rewriting system on SΣ.

1. If d �R e, then [[d]] ⇒[[R]] [[e]].
2. If [[d]] ⇒[[R]] (H ←− J), then ∃e such that [[e]] ∼= (H ←− J) and d �R e.

Remark 36. For confluence, restricting to left-linearity is not particularly harm-
ful. Indeed, an mda-hypergraph with interface G ← J is not mono iff G has one
node that is both input and output, i.e., an isolated node. A rule with a strongly
connected L ← K is not left-linear precisely when L is discrete, with a single
node. Such a rule cannot be part of a terminating system, i.e. one where local
confluence implies confluence.

Confluence of Graph Rewriting with Interfaces 163

The above theorem allows us to use DPO rewriting with interfaces as a
mechanism for rewriting SΣ . The last ingredient that we need for confluence
is a suitable notion of pre-critical pair. One cannot simply reuse Definition 8.
Indeed, we want to enforce that the common source S ←− J (cf. (3)) of the two
derivations is an mda-hypergraph with interfaces, so that it is in the image of
[[·]] and we can reason about pre-critical pairs ‘syntactically’ in SΣ . However,
while Lemma 27 guarantees that this is always the case for rewriting systems on
SΣ + Frob, with Definition 8 this is not guaranteed for SΣ even in presence of
left-connected rules, as shown by the two examples below.

Example 37. We concoct a pre-critical pair by instantiating (3) as shown below.

Although L1 ←− K1 and L2 ←− K2 are left-hand sides of left-connected rules,
S is not monogamous, thus this pre-critical pair does not correspond to anything
in the syntax.

Example 38. Even if we restrict to left-connected rules with an mda-hypergraph,
defining the interface J by pullback as in Definition 34 may not yield an mda-
hypergraph with interface. Here is an example, where two rules match in an
mda-hypergraph G, but the interface contains one extra node 4 which is neither
an input nor an output of G.

The previous two examples motivate the following definition.

Definition 39 (Mda pre-critical pair). Let R be a left-connected DPO sys-
tem containing the rules L1 ←− K1 −→ R1 and L2 ←− K2 −→ R2. Consider the
following derivations with common source S ←− J .

R1

��

K1
��

� ��

�� L1

�
f1

���
����� L2

f2

��������

�

K2
��

�� �

�� R2

��
H1 C1

�� �� S C2
�� �� H2

J

-. �� ��

164 F. Bonchi et al.

We say that (H1 ←− J) ⇐ (S ←− J) ⇒ (H2 ←− J) is an mda pre-critical pair if
[f1, f2] : L1 + L2 → S is epi and S ←− J is an mda-hypergraph with interface;
it is joinable if there exists an mda-hypergraph with interface W ←− J such that
(H1 ←− J) ⇒∗ (W ←− J) ∗⇐ (H2 ←− J).

Wewill drop the prefixmda,when there is no risk of confusionwithDefinition 8.
We are now in position to state the confluence theorem for left-connected systems.

Theorem 40 (Local confluence for left-connected systems). For a left-
connected DPO system with interfaces, if all mda pre-critical pairs are joinable
then rewriting is locally confluent: given an mda-hypergraph with interface G0 ←−
I and (G1,1 ←− I) ⇐ (G0 ←− I) ⇒ (G1,2 ←− I), there exists an mda-hypergraph
with interface W ←− I such that

(G0 ←− I)
,� ������ �,��� ���

(G1,1 ←− I) ∗ �,��� ���
(G1,2 ←− I)∗,� ������

(W ←− I).

The proof of Theorem 40 follows steps analogous to the one of Theorem 19.
The essential difference is that mda pre-critical pairs now have interfaces that are
not necessarily pullbacks. The assumption of left-connectedness is, nevertheless,
enough to ensure that the fundamental pieces, Constructions 14 and 16, can be
reproduced.

Corollary 41. Let R be a terminating left-connected rewriting system on SΣ.
Then confluence of �R is decidable.

Proof. By Theorem 35 and 40, it is enough to check whether pre-critical pairs in
[[R]] are joinable. This is decidable since R is terminating and[[R]] is computable. �
Example 42. The PROP rewriting system R of Example 6 is left-connected.
Once interpreted as the DPO system with interfaces of Example 7, we can do
critical pair analysis. The mda pre-critical pair below (where the middle grey
graph acts as the interface for the rewriting steps) is not joinable, meaning that
R is not confluent.

We emphasise that the decision procedure relies on the fact that there are
only finitely many pre-critical pairs to consider — the above one being the only
to feature a nontrivial overlap of rule applications. This is in contrast with a
naive, ‘syntactic’ analysis, which as we observe in Example 6 yields infinitely
many pre-critical pairs for R.

Confluence of Graph Rewriting with Interfaces 165

We will devote the next section to a positive example of our confluence result.

5 Case Study: Non-commutative Bimonoids

We conclude with an application of the left-connected case, showing confluence
of the theory NB of non-commutative bimonoids (Example 5(c)). Below is the
interpretation of the theory as a DPO system [[RNB]], which was shown to be
terminating in [4].

Given that the system is terminating, it suffices to show local confluence.
Observe that [[RNB]] is left-connected: monogamicity is ensured by the fact that
it is in the image of [[·]]; strong connectedness and left-linearity hold by inspection
of the set of rules. We can thus use Theorem 40 and local confluence follows from
joinability of the pre-critical pairs. Among them, the pairs without overlap of
rule applications pose no problem: they are trivially joinable in one step, by
applying the other rule. One example is given below, with the middle grey graph
acting as the interface for all depicted derivation steps.

Thus we confine ourselves to analysing actual critical pairs, with overlapping
rule applications. One such pair is given below, also involving rules NB1 and
NB9. Again, we show how it is joined, with the interface of each step drawn in
the centre.

166 F. Bonchi et al.

Overall there are 22 critical pairs to consider. For space reasons, for each
of them we only show the graph exhibiting the overlap. It is straightforward to
check that the corresponding pairs are all joinable.

We can thereby conclude that NB is a confluent rewriting system. Since it is
also terminating, equivalence of terms in NB is decidable by means of rewriting.
Note that, by virtue of Corollary 41, the above pre-critical pair analysis can be
automated.

6 Conclusion

The starting observation of this paper (Theorem19) is that the Knuth-Bendix
property holds for DPO with interfaces; as an easy corollary (Corollary 20), for a
terminating system, confluence is decidable. The relevance of this is two-fold. On
the conceptual side, it puts graph rewriting in tight correspondence with term
rewriting: when considering rewriting with interfaces, confluence is decidable
both for graphs and terms [33], while the appropriate notion of ground confluence
is undecidable in both cases [30,42].

On the side of applications, our result allows one to study confluence for
SMTs. One simple consequence of Theorem 19 and of our previous work in [4]
is that, for all those SMTs including a special Frobenius structure – which are
already commonplace in computer science [1,6,7,10,11,15,16,23,47] – local con-
fluence can be checked by means of critical pair analysis. Moreover, when ter-
mination is guaranteed, confluence can be decided automatically (Corollary 28).

Confluence of Graph Rewriting with Interfaces 167

An analogous result (Corollary 41) holds for those SMTs that do not include a
special Frobenius structure, but whose set of rules satisfies the left-connected
conditions. Hence it applies to a variety of other non-Frobenius theories, such
as those in [21,26,35]. In both cases, these decision procedures are amenable to
implementation in string diagram rewriting tools like Quantomatic [32] (via an
encoding of hypergraphs) or directly in hypergraph-based rewriting tools.

Acknowledgment. Aleks Kissinger and Fabio Zanasi acknowledge support from
the ERC under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC grant no. 320571. The work of Filippo Bonchi has been partly supported
by the project ANR-16-CE25-0011 REPAS and Labex MILYON/ANR-10-LABX-0070.
The work of Fabio Gadducci has been partly supported by the project PRA 2016 64
“Through the fog” funded by the University of Pisa.

References

1. Baez, J., Erbele, J.: Categories in control. Theory Appl. Categ. 30, 836–881 (2015)
2. Baldan, P., Gadducci, F., Sobociński, P.: Adhesivity is not enough: local church-

rosser revisited. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907,
pp. 48–59. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22993-0 8

3. Bauer, G., Otto, F.: Finite complete rewriting systems and the complexity of the
word problem. Acta Inform. 21(5), 521–540 (1984)

4. Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P., Zanasi, F.: Rewriting mod-
ulo symmetric monoidal structure. In: LiCS 2016, pp. 710–719. ACM (2016)

5. Bonchi, F., Gadducci, F., König, B.: Synthesising CCS bisimulation using graph
rewriting. Inf. Comput. 207(1), 14–40 (2009)

6. Bonchi, F., Sobociński, P., Zanasi, F.: A categorical semantics of signal flow graphs.
In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 435–450.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44584-6 30

7. Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. In:
POPL 2015, pp. 515–526. ACM (2015)

8. Bruggink, H.J.S., Cauderlier, R., Hülsbusch, M., König, B.: Conditional reac-
tive systems. In: FSTTCS 2011, LIPIcs, vol. 13, pp. 191–203. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2011)

9. Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connection.
Theor. Comput. Sci. 286(2), 247–292 (2002)

10. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1–2), 98–120 (2006)

11. Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets inter-
actions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
312–326. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6 21

12. Burroni, A.: Higher dimensional word problems with applications to equational
logic. Theor. Comput. Sci. 115(1), 43–62 (1993)

13. Carboni, A.: Matrices, relations, and group representations. J. Algebra 136(1),
497–529 (1991)

14. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. J. Pure Appl. Algebra 49(1–
2), 11–32 (1987)

15. Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-70583-3 25

http://dx.doi.org/10.1007/978-3-642-22993-0_8
http://dx.doi.org/10.1007/978-3-662-44584-6_30
http://dx.doi.org/10.1007/978-3-642-23217-6_21
http://dx.doi.org/10.1007/978-3-540-70583-3_25
http://dx.doi.org/10.1007/978-3-540-70583-3_25

168 F. Bonchi et al.

16. Coecke, B., Duncan, R., Kissinger, A., Wang, Q.: Strong complementarity and
non-locality in categorical quantum mechanics. In: LiCS 2012, pp. 245–254. ACM
(2012)

17. Corradini, A.: On the definition of parallel independence in the algebraic
approaches to graph transformation. In: Milazzo, P., Varró, D., Wimmer, M. (eds.)
STAF 2016. LNCS, vol. 9946, pp. 101–111. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-50230-4 8

18. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30203-2 12

19. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp.
151–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24727-2 12

20. Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp.
284–293. Springer, Heidelberg (1976). doi:10.1007/3-540-07854-1 188

21. Fiore, M., Devesas Campos, M.: The algebra of directed acyclic graphs. In: Coecke,
B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games, and Quantum
Foundations. The Many Facets of Samson Abramsky. LNCS, vol. 7860, pp. 37–51.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38164-5 4

22. Fong, B.: Decorated cospans. Theory Appl. Categ. 30(33), 1096–1120 (2015)
23. Fong, B., Rapisarda, P., Sobociński, P.: A categorical approach to open intercon-

nected dynamical systems. In: LiCS 2016, pp. 495–504. ACM (2016)
24. Gadducci, F.: Graph rewriting for the π-calculus. Math. Struct. Comput. Sci.

17(3), 407–437 (2007)
25. Gadducci, F., Heckel, R.: An inductive view of graph transformation. In: Presicce,

F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 223–237. Springer, Heidelberg (1998).
doi:10.1007/3-540-64299-4 36

26. Ghica, D.R.: Diagrammatic reasoning for delay-insensitive asynchronous circuits.
In: Coecke, B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games, and
Quantum Foundations. The Many Facets of Samson Abramsky. LNCS, vol. 7860,
pp. 52–68. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38164-5 5

27. Huet, G., Lankford, D.: On the uniform halting problem for term rewriting systems.
Technical report 283, IRIA (1978)

28. Hyland, M., Power, J.: Lawvere theories and monads. In: Plotkin Festschrift,
ENTCS, vol. 172, pp. 437–458. Elsevier, Amsterdam (2007)

29. Joyal, A., Street, R.: The geometry of tensor calculus, I. Adv. Math. 88(1), 55–112
(1991)

30. Kapur, D., Narendran, P., Otto, F.: On ground-confluence of term rewriting sys-
tems. Inf. Comput. 86(1), 14–31 (1990)

31. Kissinger, A.: Finite matrices are complete for (dagger)-hypergraph categories.
arXiv:1406.5942 [math.CT]

32. Kissinger, A., Zamdzhiev, V.: Quantomatic: a proof assistant for diagrammatic
reasoning. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 326–336. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21401-6 22

33. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Com-
putational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)

34. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theor. Inf. Appl.
39(3), 511–546 (2005)

http://dx.doi.org/10.1007/978-3-319-50230-4_8
http://dx.doi.org/10.1007/978-3-319-50230-4_8
http://dx.doi.org/10.1007/978-3-540-30203-2_12
http://dx.doi.org/10.1007/978-3-540-24727-2_12
http://dx.doi.org/10.1007/3-540-07854-1_188
http://dx.doi.org/10.1007/978-3-642-38164-5_4
http://dx.doi.org/10.1007/3-540-64299-4_36
http://dx.doi.org/10.1007/978-3-642-38164-5_5
http://arxiv.org/abs/1406.5942
http://dx.doi.org/10.1007/978-3-319-21401-6_22

Confluence of Graph Rewriting with Interfaces 169

35. Lafont, Y.: Towards an algebraic theory of Boolean circuits. J. Pure Appl. Algebra
184(2–3), 257–310 (2003)

36. MacLane, S.: Categorical algebra. Bull. Am. Math. Soc. 71(1), 40–106 (1965)
37. Meseguer, J., Montanari, U.: Petri nets are monoids. Inf. Comput. 88(2), 105–155

(1990)
38. Mimram, S.: Computing critical pairs in 2-dimensional rewriting systems. In: RTA,

LIPIcs, vol. 6, pp. 227–242. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2010)

39. Mimram, S.: Towards 3-dimensional rewriting theory. Logical Methods Comput.
Sci. 10(2:1), 1–47 (2014)

40. Padawitz, P.: New results on completeness and consistency of abstract data types.
In: Dembiński, P. (ed.) MFCS 1980. LNCS, vol. 88, pp. 460–473. Springer, Heidel-
berg (1980). doi:10.1007/BFb0022525

41. Pavlovic, D.: Monoidal computer I: basic computability by string diagrams. Inf.
Comput. 226, 94–116 (2013)

42. Plump, D.: Hypergraph rewriting: critical pairs and undecidability of confluence.
In: Term Graph Rewriting: Theory and Practice, pp. 201–213. Wiley (1993)

43. Plump, D.: Checking graph-transformation systems for confluence. In: Manipula-
tion of Graphs, Algebras and Pictures, ECEASST, vol. 26. EASST (2010)

44. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: LiCS 2005, pp.
311–320. ACM (2005)

45. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B.
(ed.) New Structures for Physics. LNP, vol. 813, pp. 289–355. Springer, Heidelberg
(2011)

46. Sobociński, P.: Deriving process congruences from reaction rules. Ph.D. thesis,
BRICS, University of Aarhus (2004)

47. Sobociński, P., Stephens, O.: A programming language for spatial distribution of
net systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol.
8489, pp. 150–169. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07734-5 9

48. Street, R.: Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra
8(2), 149–181 (1976)

http://dx.doi.org/10.1007/BFb0022525
http://dx.doi.org/10.1007/978-3-319-07734-5_9

Verifying Robustness of Event-Driven
Asynchronous Programs Against Concurrency

Ahmed Bouajjani1, Michael Emmi2, Constantin Enea1,
Burcu Kulahcioglu Ozkan3(B), and Serdar Tasiran3

1 Université Paris Diderot, Paris, France
2 Nokia Bell Labs, Murray Hill, NJ, USA

3 Koç University, Istanbul, Turkey
bkulahcioglu@ku.edu.tr

Abstract. We define a correctness criterion, called robustness against
concurrency, for a class of event-driven asynchronous programs that are
at the basis of modern UI frameworks in Android, iOS, and Javascript.
A program is robust when all possible behaviors admitted by the pro-
gram under arbitrary procedure and event interleavings are admitted
even if asynchronous procedures (respectively, events) are assumed to
execute serially, one after the other, accessing shared memory in isola-
tion. We characterize robustness as a conjunction of two correctness cri-
teria: event-serializability (i.e., events can be seen as atomic) and event-
determinism (executions within each event are insensitive to the inter-
leavings between concurrent tasks dynamically spawned by the event).
Then, we provide efficient algorithms for checking these two criteria
based on polynomial reductions to reachability problems in sequential
programs. This result is surprising because it allows to avoid explicit
handling of all concurrent executions in the analysis, which leads to
an important gain in complexity. We demonstrate via case studies on
Android apps that the typical mistakes programmers make are captured
as robustness violations, and that violations can be detected efficiently
using our approach.

1 Introduction

Asynchronous event-driven programming is a widely adopted style for building
responsive and efficient software. It allows programmers to use asynchronous
procedure calls that are stored for later executions, in contrast with synchro-
nous procedure calls that must be executed immediately. Asynchronous calls are
essential for event-driven programming where they correspond to callbacks han-
dling the occurrences of external events. In particular, modern user interface (UI)
frameworks in Android, iOS, and Javascript, are instances of asynchronous event-
driven programming. These frameworks dedicate a distinguished main thread,

This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No. 678177).

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 170–200, 2017.
DOI: 10.1007/978-3-662-54434-1 7

Verifying Robustness of Event-Driven Asynchronous Programs 171

called UI thread, to handling user interface events. Since responsiveness to user
events is a key concern, common practice is to let the UI thread perform only
short-running work in response to each event, delegating to asynchronous tasks
the more computationally demanding part of the work. These asynchronous tasks
are in general executed in parallel on different background threads, depending
on the computational resources available on the execution platform.

The apparent simplicity of UI programming models is somewhat deceptive.
The difficulty of writing safe programs given the concurrency of the underlying
execution platform is still all there. A formal programming abstraction that is
simple, yet exposes both the potential benefits and the dangers of the UI frame-
works would go a long way in simplifying the job of programmers. Programs
written against this abstraction would then be insensitive to implementation and
platform changes (e.g., automatic load balancing). Indeed, the choice of parame-
ters such as the number of possible threads running in parallel, the dispatching
policy of pending tasks over these threads, the scheduling policy for execut-
ing shared-memory concurrent tasks, etc., should be transparent to program-
mers, and the semantics of a program should be independent from this choice.
Therefore the conformance to this abstraction (i.e., a program can be soundly
abstracted according it) would be a highly desirable correctness criterion.

The objectives of our work are (1) to provide such a programming abstraction
that leads to a suitable correctness criterion for event-driven shared memory
asynchronous programs, and (2) to provide efficient algorithms for verifying that
a program is correct w.r.t. this criterion.

The programming abstraction we consider compares two semantics, the
multi-thread and the single-thread semantics:

– The multi-thread semantics reflects the concurrency of the actual program:
The main (UI) thread and asynchronous tasks posted to background threads
interact over the shared memory in a concurrent way. No limit on the num-
ber of tasks, no limit on the number of threads, and no restriction on the
dispatching and scheduling policies are assumed.

– The single-thread semantics is a reference model where a program is supposed
to run on a single thread handling user events in a serial manner, one after the
other. Each event is handled by executing its corresponding code including the
created asynchronous tasks until completion. The asynchronous tasks created
by an event handler (and recursively, by its callee) are executed asynchronously
(once the execution of the creator finishes) serially and in the order of their
invocation.

While the multi-thread semantics provides greater performance and responsive-
ness, the single-thread semantics is simpler to apprehend. The inherent non-
determinism due to concurrency and asynchronous task dispatching from the
multi-thread semantics is not present in the context of the single-thread one.

We consider that a desirable property of a program is that its multi-thread
semantics is a refinement of its single-thread semantics in the sense that the sets

172 A. Bouajjani et al.

of observable reachable states of the program w.r.t. both semantics are exactly
the same. A program that satisfies this refinement condition is said to be robust
against concurrency (or simply robust). In fact, robustness violations correspond
to “concurrency bugs”, i.e., violations that are due to parallelization of tasks,
and that do not show up when tasks are executed in a serial manner.

Then, let us focus now on the problem of verifying the robustness of a given
program. We show in this paper that, surprisingly, for the class of UI event-driven
asynchronous programs, this problem can be reduced in linear time to the state
reachability problem in sequential programs. This means that the robustness of
such a concurrent program can be checked in polynomial time on an (instru-
mented) sequential version of the program, without exploring all its concurrent
executions. Let us describe the way we achieve that.

First, we show that robustness against concurrency can be characterized as
the conjunction of event-serializability and event determinism, which are variants
of the classical notions of serializability and determinism, adapted to our context.
Intuitively, since the single-thread semantics defines a unique execution, given a
set of external events (partially ordered w.r.t. some causality relation imposed
by the environment), then (1) the executions of the event handlers must be seri-
alizable (to an order compatible with their causality relation), i.e., the execution
of each event handler and its subtasks can be seen as an atomic transaction, and
(2) the execution of each event handler is deterministic, i.e., it always leads to
the same state, for any possible scheduling of its parallel subtasks.

To search efficiently for event-serializability and event-determinism vio-
lations, we make use of conflict-based approximations in the style of [27],
called conflict-serializability and conflict-determinism, respectively. Indeed, these
conflict-based criteria do not take into account actual data values, but rather
syntactical dependencies between operations (e.g., writing to the same vari-
able), which makes them stronger, but also “easier” to check, while still accu-
rate enough for catching real bugs, introducing rarely false positives, as our
experiments show. We reduce verifying conflict event-serializability and conflict
event-determinism to detecting cycles in appropriately defined dependency (or
happen-before) relations between concurrent events and asynchronous procedure
invocations, respectively. Our key contribution is that these cycle detections can
be done by reasoning about the computations of sequential programs instead
of concurrent programs, avoiding explicit encodings of (potentially unbounded)
sets of pending tasks and exploring all their possible interleavings. Let us explain
this in more details.

An event handler is conflict-deterministic when all its executions have
conflict-preserving permutations where tasks are executed serially in the same
order as in the single-thread semantics. Scheduling tasks in this order corre-
sponds to the DFS (Depth First Search) traversal of the call-tree of tasks (repre-
senting the relation caller-callee). We show that detecting a conflict-determinism
violation, i.e., an asynchronous execution with no serial DFS counterpart, can
be done by reasoning about an instrumented version of the procedural program

Verifying Robustness of Event-Driven Asynchronous Programs 173

obtained from the code of the event handler by roughly, turning pasynchronous
calls to synchronous ones. This instrumented program simulates borderline
violations, if any, i.e., violations where removing the last action leads to a correct
execution. We show that the amount of auxiliary memory needed to witness such
violations is finite (and small). Moreover, such violations are “almost” asynchro-
nous executions where tasks are scheduled serially according to the DFS traversal
of the call-tree. Such executions can be simulated using synchronous procedure
calls because roughly, the latter are also initiated according to the DFS traversal
of the call-tree. However, they are interleaved in a different way compared to the
asynchronous calls and the event handler must undergo a syntactic transforma-
tion described in Sect. 6.3.

As for conflict-serializability, a first issue in checking it is that event handlers
may consist of different concurrently-executing tasks. This issue is solved by
assuming that the conflict-determinism check is done a-priori. If this check fails
then the program is not robust and otherwise, checking conflict-serializability can
assume sequential event handlers which are in fact the instrumented procedural
programs used in the conflict-determinism check.

Even assuming sequential event handlers, general results about conflict-
serializability state that this problem is PSPACE-complete for a fixed number of
threads [6,15], and EXPSPACE-complete for an unbounded number of threads
[10] (assuming a fixed data domain and absence of recursive procedure calls).
However, we prove that, in the programming model we consider in this paper,
the problem of checking conflict-serializability is polynomial! This result relies
on two facts: (1) there is only one distinguished thread, the UI thread, for which
the order in which procedure invocations are executed is relevant, and (2) we
assume that each asynchronous task executed in the background (not on the UI
thread) is running on a fresh thread. This assumption is valid since background
threads are not manipulated explicitly by the programmer but by the runtime,
and therefore, we need to consider the situation where concurrency is maximal.

In fact, we show that when events are conflict-deterministic, the problem of
checking conflict-serializability can also be reduced to a reachability problem in
a sequential program. Again, we prove that it is sufficient to focus on a particu-
lar class of (borderline) violations of conflict-serializability. Then, we show that
detecting these violations can be done by reasoning about the executions of a
program where events are executed in a sequential manner, in any order (cho-
sen nondeterministically), and where the tasks generated by each event are exe-
cuted as in the single-thread semantics. For that, we define an instrumentation of
that program that consists in simulating the delaying effects of the multi-thread
semantics, guessing the actions involved in the violation and tracking the depen-
dencies between them in order to check the correctness of the guess (that they
indeed form a cycle). The cycle detection in the case of conflict-serializability is
technically more complex than in the case of conflict-determinism. But still, a
crucial point in the reduction is that we do not need to store the whole cycle
during the search, but it is enough to maintain a fixed number of variables to

174 A. Bouajjani et al.

traverse the elements of this cycle. This leads to a polynomial reduction of the
conflict-robustness problem to a reachability problem in a sequential program.

Our reductions hold regardless of the used data domain, for programs with
recursive procedure calls, and unbounded numbers of events and tasks. These
reductions allow to leverage existing analysis tools for sequential programs
to check conflict-robustness. When the data domain is bounded, we obtain a
polynomial-time algorithm for checking conflict-robustness for UI event-driven
asynchronous programs (with recursive procedure calls, and unboundedly many
events and tasks).

We validate our approach on a set of real-life applications, showing that with
few exceptions all detected robustness violations are undesirable behaviours.
Interestingly, the use of conflict versions of the correctness criteria characterizing
robustness is efficient and quite accurate, producing only few false positives (that
can be eliminated easily).

Finally, let us mention that our work also leads to an efficient approach
for verifying functional correctness of UI event-driven asynchronous programs
that consists in reducing this problem to two separate problems: (1) showing
that the program is functionally correct w.r.t the single-thread semantics, and
(2) showing that it is robust against concurrency. Both of these problems can
indeed be solved efficiently by considering only particular types of computations
that are captured by sequential programs.

To summarize, our contributions are:

– Introduction of the notion of robustness against concurrency that pro-
vides a programming abstraction for event-driven asynchronous programs,
and its characterization as the conjunction of event-serializability and
event-determinism.

– Efficient algorithms for checking robustness based on reductions from conflict
event-serializability and conflict event-determinism to state reachability prob-
lems in sequential programs. Decidability and complexity results for verifying
robustness in the case of finite data domains.

– Experimentations showing the relevance of our correctness criteria and the
efficiency of our approach.

2 Motivating Examples

We demonstrate the relevance of robustness using several excerpts from Android
applications. To argue that robustness is not too strong as a requirement, we
discuss two concurrency bugs reported in open-source repositories that are also
robustness violations, more precisely, event-serializability and event-determinism
violations. We also provide a typical example of a robust program.

Verifying Robustness of Event-Driven Asynchronous Programs 175

2.1 A Violation to Event Serializability

Fig. 1. A program with an event-
serializability violation.

Figure 1 lists a real code excerpt from
the Android IrcCloud app [2] for chatting
on the IRC. Under the concrete multi-
thread semantics, the user event of press-
ing the “send” key is handled by the pro-
cedure onKey. Actions associated with this
event handler include actions performed
by onKey on the main (UI) thread, actions
performed by SendTask.onPreExecute()

on the UI thread before the actions per-
formed asynchronously on a background
thread by SendTasks’s doInBackground

procedure. Another event handler in
this example is onDoubleClicked, which
appends to the message text the name
name of the user whose name is clicked on.
The multi-thread semantics allows inter-
ference between the two event handlers,

onDoubleClicked can interleave with doInBackground. In contrast, the single-
thread semantics allows no such interference. The event handlers and the asyn-
chronous tasks they create are executed entirely on the UI thread, and all the
tasks created by onKey are executed before any other event handler invocation.

This program is not robust and a violation can be generated under
the following scenario. Suppose that the user types “Hello”, presses “send”,
and then double-clicks on another IRC user’s name. Under the multi-
thread semantics, onDoubleClicked may start running on the UI thread while
SendTask.doInBackground is in progress. These two procedures’ accesses can inter-
fere with each other. In particular, the ordering of msgTxt.getText() with respect
to the appending of name to msgTxt determines whether “Hello” or “Hello foo”
gets sent on the network. Moreover, since onKey first records msg.getText() to a
field e.command, an execution of these two events can end in a program state in
which e.command contains “Hello” while msgTxt contains “Hello foo”. This end
state is not possible with any execution of these two event handlers under the
single-thread semantics, where the event handlers are executed serially one after
the other. This is a violation to event serializability. Actually, this behavior was
reported as a bug, and the code was updated [1] so that e.command (instead of
msgTxt, which may have changed) is written into a JSON object and sent on
the network. It was the designers’ intent for the entire event handling code for
the “send” key to appear atomic. With this modification the program becomes
robust.

176 A. Bouajjani et al.

2.2 A Violation to Event Determinism

Fig. 2. A program with an event-
determinism violation.

Figure 2 lists an event handler called
iconPackUpdated which creates an asyn-
chronous task (the first runnable to be exe-
cuted by the created thread) to initial-
ize the mAdapter object. Then it creates
another task, to be run by the UI thread,
that uses mAdapter to update the list view
of displayed icons. In an effort to ensure
that the second task runs after the first task
completes, the programmer posts the sec-
ond task after a second’s delay.

Under the concrete multi-thread seman-
tics, it is possible for the first task not to
complete even after a second. In this case,
the second runnable code will produce a

null pointer exception, while in other schedules, the code works as intended.
Although the programmer had intended a deterministic outcome there are exe-
cutions with different outcomes, including errors. Therefore, this event handler
is not event-deterministic, and not robust.

2.3 A Robust Program

The program in Fig. 3 has two event handlers searchForNews and showDetail

which can be invoked by the user to search for news containing a keyword and
to display the details of a selected news respectively.

The procedure searchForNews creates two AsyncTask objects SearchTask and
SaveTask whose execute method will invoke asynchronously doInBackground fol-
lowed by onPostExecute, in the case of the former. Under the multi-thread seman-
tics, doInBackground is invoked on a new thread and onPostExecute is invoked

Fig. 3. A robust program.

Verifying Robustness of Event-Driven Asynchronous Programs 177

on the main thread. When the user input to search for news is triggered, the
invocation doInBackground of searchTask connects to the network, searches for
the keyword and fetches the list of resulting news titles. Then, the invocation
onPostExecute displays the list of titles to the user. SaveTask saves the keyword
to a database representing the search history in the background. The back-
ground tasks SearchTask.doInBackground and SaveTask.doInBackground might
interfere but any interleaving produces the same result, i.e., searchForNews is
deterministic.

The second event, to show the details of a title, can be triggered once the list
of titles are displayed on the screen. It invokes an asynchronous task to download
the contents of the news in the background and then displays it. In this case,
the tasks are executed in a fixed order and the event is trivially deterministic.

Concerning serializability, the invocation of SaveTask in the first event and the
second event might interleave (under the concrete semantics). However, assum-
ing that the second event is triggered once the results are displayed, any such
interleaving results in the same state as a serial execution of these events.

3 Programs

In order to give a generic definition of robustness, which doesn’t depend on any
particular asynchronous-programming platform or syntax, we frame our discus-
sion around the abstract notion of programs defined in Sect. 3.1. Two alternative
multi-thread and single-thread semantics to programs are given in Sects. 3.2 and
3.3. We consider programs that are data-deterministic, in the sense that the
evaluation of every (Boolean) expression is uniquely determined by the variable
valuation.

3.1 Asynchronous Event-Driven Programs

We define an event handler as a procedure which is invoked in response to a user
or a system input. For simplicity, we assume that inputs can arrive in any order.
Event handlers may have some asynchronous invocations of other procedures, to
be executed later on the same thread or on a background thread.

We fix sets G and L of global and local program states. Local states � ∈ L
represent the code and data of an asynchronous procedure or event-handler
invocation, including the code and data of all nested synchronous procedure
calls. A program is defined as a mapping between pairs of global and local states
which gives the semantics of each statement in the code of a procedure (the
association between threads, local states, and procedure invocations is defined in
Sects. 3.2 and 3.3). To formalize the conflict-based approximation of robustness,
this mapping associates with each statement a label called program action that
records the set of variables read or written and the asynchronous invocations in
that statement. An event set E ⊂ L is a set of local states; each e ∈ E represents
the code and data for a single event handler invocation (called event for short).

178 A. Bouajjani et al.

Fig. 4. A canonical program syntax. The metavariables x and y range over global
and local variable names, respectively, p ranges over procedure names, and w over the
symbols “main” and “any”.

Formally, let X = {rd(x),wr(x) : x ∈ . . .} be the set of memory accesses,
W = {main, any} the set of invocation places, and B = {invoke(�, w) : � ∈ L,
w ∈ W}∪{return}∪X ∪{ε} the set of program actions, where ε represents irrel-
evant program actions. The rd(x) and wr(x) represent read and write accesses
to variable x; invoke(�, w) represents an asynchronous invocation whose initial
local state is �; the invocation is to be run on a distinguished main thread when
w = main, and on an arbitrary thread when w = any. Finally, the return pro-
gram action represents the return from an asynchronous procedure invocation.

A program P : G × L → G × L × B maps global states g ∈ G and local
states � ∈ L to new states and program actions; each P (g, �) represents a single
program transition. We assume that when b is an asynchronous invocation or
return program action and P (g, �) = 〈g′, , b〉 then g = g′.

Canonical Program Syntax. Supposing that the global states g ∈ G are maps
from program variables x to values g(x), and that local states � ∈ L map program
variables y to values �(y) and a program counter variable pc to program state-
ments �(pc), we give an interpretation to the canonical program syntax listed in
Fig. 4. We assume atomicity of the statements at the bytecode level. For simplic-
ity, we omit the interpretation of synchronous procedure calls call p(y) which
is defined as usual. For instance, writing �+ to denote �[pc �→ �(pc)+1], then
P (g, �) is

– 〈g[x�→�(y)], �+,wr(x)〉 when �(pc) is a global-variable write x := y,
– 〈g, �+[y �→g(x)], rd(x)〉 when �(pc) is a global-variable read y := x,
– 〈g, �+, rd(y)〉 when �(pc) is assume(y) and �(y) 	= 0,
– 〈g, �, ε〉 when �(pc) is assume(y) and �(y) = 0,
– 〈g, �+, invoke(�′, w)〉 when �(pc) is an asynchronous invocation async[w] p(y),

where �′ maps the parameters of procedure p to the invocation arguments y
and pc to the initial statement of p, and

– 〈g, �, return〉 when �(pc) is the return statement.

The semantics of other statements, including if-then-else conditionals, while
loops, or goto statements, etc. (we assume that Boolean conditions use only local
variables), is standard, and yield the empty program action ε.

An event is called sequential when its code doesn’t contain asynchronous
invocations async[w] p(y). Also, a program P with event set E is called sequential
when every event e ∈ E is sequential. Otherwise, P is called concurrent.

3.2 Multi-thread Asynchronous Semantics

Our multi-thread semantics maximizes the set of possible program behaviors
by allowing events to interleave and interfere with each other. It dispatches the

Verifying Robustness of Event-Driven Asynchronous Programs 179

event handlers serially on the main thread but allows the asynchronous proce-
dure invocations to execute on separate threads, not necessarily in invocation
order. Configurations of the multi-thread semantics thus maintain sets of run-
ning procedure invocations as well as an unordered queue of pending invocations,
and invocations are associated with events and threads.

To characterize executions by the event-serializability and event-determinism
criteria, we expose the following set A of actions in execution traces:

A = {start(j), end(j) : j ∈ N} ∪ X ∪ {invoke(i),begin(i), return(i) : i ∈ N}

By convention, we denote asynchronous procedure invocation, event, and thread
identifiers, respectively, with the symbols i, j, k. The start(j) and end(j) actions
represent the start and end of event j; the invoke(i), begin(i), and return(i)
actions represent an asynchronous procedure invocation (when it is added to
the queue of pending invocations), the start of i’s execution (when it is removed
from the queue), and return of i, respectively. The set X of memory accesses is
defined as in the program actions of Sect. 3.1.

A task u = 〈�, i, j, k〉 is a local state � ∈ L along with invocation, event and
thread identifiers i, j, k ∈ N, and U denotes the set of tasks. We write invoc(u),
event(u), and thread(u) to refer to i, j, and k, respectively. A configuration
c = 〈g, t, q〉 is a global state g ∈ G along with sets t, q ⊆ U of running and waiting
tasks such that: (1) invocation identifiers are unique, i.e., invoc(u1) 	= invoc(u2)
for all u1 	= u2 ∈ t∪ q, and (2) threads run one task at a time, i.e., thread(u1) 	=
thread(u2) for all u1 	= u2 ∈ t. The set of configurations is denoted by Cm. We say
that a thread k is idle in c when k 	∈ {thread(u) : u ∈ t}, and that an identifier
i, j, k is fresh when i, j, k 	∈ {α(u) : u ∈ (t ∪ q)} for α ∈ {invoc, event, thread},
respectively. A configuration is idle when all threads are idle.

The transition function → in Fig. 5 is determined by a program P and event
set E, and maps a configuration c1 ∈ Cm and thread identifier k ∈ N to another
configuration c2 ∈ Cm and label λ = 〈i, j, a〉 where i and j are invocation
and event identifiers, and a ∈ A is an action—we write invoc(λ), event(λ),
and act(λ) to refer to i, j, and a, respectively. event transitions mark the
beginnings of events. We assume that all events are initiated on thread 0, which
is also referred to as the main thread. Also, for simplicity, we assume that events

Fig. 5. The multi-thread transition function → for a program P with event set E.

180 A. Bouajjani et al.

can be initiated arbitrarily at any time. Adding causality constraints between
events, e.g., one event can be initiated only when a certain action has been
executed, is possible but tedious. async transitions create pending asynchronous
invocations, dispatch transitions begin the execution of pending invocations,
and return transitions signal their end (the condition in the right ensures that
this is not a return from an event). end event transitions mark the end of an
event and by an abuse of notation, they map c1 and k to a configuration c2 and
two labels, return(i) denoting the end of the asynchronous invocation and end(j)
denoting the end of the event. All other transitions are local.

An execution of a program P under the multi-thread semantics with event
set E to configuration cn is a configuration sequence c0c1 . . . cn such that

cm
km,λm+1−−−−−−→ cm+1 for 0 ≤ m < n. We say that cn is reachable in P with E

under the multi-thread semantics, and we call the sequence λ1 . . . λn the trace
of c0c1 . . . cn. The reachable states of P with E, denoted Rm(P,E), is the set
of global states in reachable idle configurations. The set of traces of P with E
under the multi-thread semantics is denoted by [[P,E]]m. We may omit P when
it is understood from the context, and write [[E]]m instead of [[P,E]]m.

The call tree of a trace τ is a ranked tree CallTreeτ = 〈V,E,O〉 where V are
the invocation identifiers in τ, and the set of edges E contains an edge from i1
to i2 whenever i2 is invoked by i1, i.e., τ contains a label 〈i1, , invoke(i2)〉. The
function O : E → N labels each edge (i1, i2) with an integer n whenever i2 is
the nth invocation made by i1, i.e., 〈i1, , invoke(i2)〉 is the nth label of the form
〈i1, , invoke()〉 occurring in τ (reading τ from left to right).

3.3 Single-Thread Asynchronous Semantics

Conversely to the multi-thread semantics of Sect. 3.2, our single-thread seman-
tics minimizes the set of possible program behaviors by executing all events
and asynchronous invocations on the main thread, the asynchronous procedure
invocations being executed in a fixed order.

We explain the order in which asynchronous invocations are executed using
the event handler searchForNews in Fig. 3. This event handler is supposed to
add the keyword to the search history only after the fetching of the news con-
taining that keyword succeeds. This expectation corresponds to executing the
asynchronous procedures according to the DFS traversal of the call tree. In gen-
eral, this traversal is relevant because it preserves causality constraints which are
imprinted in the structure of the code, like in the case of standard synchronous
procedure calls. The DFS traversal of the call tree also has a technical advantage
as it corresponds with the call stack semantics of synchronous procedure calls.
Note however that this semantics is not equivalent to interpreting asynchronous
invocations as synchronous, since the caller finishes before the callee starts. In
the formalization of this semantics, the DFS traversal is modeled using a stack
of FIFO queues for storing the pending invocations.

The formalization of the single-thread semantics reuses the notions of task
and label in Sect. 3.2. Let U0 be the set of tasks u = 〈�, i, j, 0〉 executing on
thread 0. We overload the term configuration which in this context is a tuple

Verifying Robustness of Event-Driven Asynchronous Programs 181

Fig. 6. The single-thread transition function ⇒ for a program P with events E (ε and
〈〉 are the empty sequence and tuple, resp.,). Also, f and f ′ are tuples, and q is obtained
by popping a queue from q if this queue is empty, or q = q, otherwise.

c = 〈g, u, q〉 where g ∈ G, u ∈ (U0∪{⊥}) is a possibly-empty task placeholder (at
most one task is running at any moment), and q ∈ (Tuples(U0))∗ is a sequence of
tuples of tasks (a tuple, resp., a sequence, denotes a FIFO queue, resp., a stack).
Cs is the set of configurations of the single-thread semantics. We call c ∈ Cs idle
if u = ⊥.

The transition function ⇒ in Fig. 6 is essentially a restriction of → where
all the procedures run on the main thread, an event begins when there are no
pending invocations, and the rules async and dispatch use a stack of FIFO
queues for storing pending invocations. The effect of pushing/popping a queue
to the stack or enqueuing/dequeueing a task to a queue is represented using
the concatenation operation ·, resp.,◦, for sequences, resp., tuples. Every task
created by async is posted to the main thread and it is enqueued in the queue
on the top of the stack q. dispatch dequeues a pending task from the queue f
on the top of q, and pushes a new empty queue to q (for storing the tasks created
during the newly started invocation) if f doesn’t become empty. Moreover, the
rules return and end event pop the queue on the top of q if it is empty.

An execution of a program P under the single-thread semantics with event set

E to configuration cn is a sequence c0c1 . . . cn s.t. cm
0,λm+1====⇒ cm+1 for 0 ≤ m < n.

We say that cn is reachable in P with E under the single-thread semantics,
and we call the sequence λ1 . . . λn the trace of c0c1 . . . cn. The reachable states
of P with E, denoted Rs(P,E), is the set of global states reachable in idle
configurations.

The set of traces of P with E under the single-thread semantics is denoted
by [[P,E]]s (P may be omitted when it is understood from the context).

4 Robustness of Asynchronous Programs

Our robustness criterion is defined as the equality of the single-thread and
multi-thread semantics of a program, and decomposed into two independently-
checkable criteria, event serializability and event determinism.

182 A. Bouajjani et al.

Given a program P with event set E, each execution under the single-thread
semantics can be simulated by an execution under the multi-thread semantics:
the latter corresponds to a special scheduling policy that consists in executing
all tasks created by an event before starting executing tasks corresponding to
another event, and moreover, tasks are executed atomically, in the order given by
the DFS traversal of the call tree. This implies that the multi-thread semantics is
a relaxation of the single-thread semantics, and therefore, Rs(P,E) ⊆ Rm(P,E).
The reverse direction is the most interesting one:

Definition 1 (Robustness). A program P with events E is robust against con-
currency (or simply robust) when all reachable states in the multi-thread seman-
tics are also reachable in the single-thread semantics: Rm(P,E) ⊆ Rs(P,E).

Robustness means that for the considered program, the concurrency intro-
duced by the multi-thread semantics does not modify the set of observable states,
i.e., Rm(P,E) = Rs(P,E). We introduce in the following two correctness criteria
that capture precisely the notion of robustness.

We say an execution with trace λ1 · · · λn is event-serial when for all n1 < n3,
if act(λn1) = start(j) and act(λn3) = start(j′), then there is n2 such that n1 <
n2 < n3 and act(λn2) = end(j).

Definition 2 (Event-serializability). A program P with events E is event-
serializable if every global state in Rm(P,E) can be reached by an event-serial
execution1.

Given an event e, an e-execution starting from global state g0 is a g0-initialized
execution (according to the multi-thread semantics) with trace λ1 · · · λn such
that (1) act(λ1) = start(j), (2) act(λn) = end(j), for some j, and (3) for every
m ∈ N such that 1 < m < n, act(λm) is neither a start nor an end action.
Intuitively, we consider executions of individual events, from their starting point
until the completion of all the tasks they have created. Then, let Rm(P, g0, e)
be the set of global states in final configurations of e-executions starting from
g0. Notice that e-executions from g0 differ by the scheduling order of the tasks
created by e that are running in parallel on different threads.

Definition 3 (Event-determinism). An event e of a program P is determin-
istic if for every global state g0, the set Rm(P, g0, e) is a singleton or empty.
A program P with events E is event-deterministic, if every e ∈ E is
deterministic.

Notice that our notion of determinism is defined for events that are running
alone, without interference of other events.

Theorem 1. A program is robust against asynchrony if and only if it is event-
serializable and event-deterministic.
1 For simplicity, we have ignored the set of events which are executed when comparing

global state reached by aribitrary and event-serial executions, resp. Reaching a global
state using the same set of events is easy to formalize but tedious.

Verifying Robustness of Event-Driven Asynchronous Programs 183

5 Conflict Robustness

Following an idea introduced in the context of database transactions [27],
we define a syntactic, conservative notion of conflict robustness that is the
conjunction of two properties: conflict-event serializability and conflict-event
determinism.

5.1 Conflict-Event Serializability

Let ≺⊆ A × A be a conflict relation that relates any two actions a, a′ accessing
the same variable, i.e., a, a′ ∈ {rd(x),wr(x)} for some x, one of them being a
write. A trace is conflict-event serializable iff the “conflict-event graph” which
tracks the conflict relation between concurrent events is acyclic.

Formally, the conflict-event graph of a trace τ is the directed graph EvGτ =
〈V,E〉 whose nodes V are the event identifiers of τ, and which contains an edge
from j1 to j2 when τ contains a pair of labels λ1 and λ2 such that λ1 occurs
before λ2, act(λ1) ≺ act(λ2), event(λ1) = j1, and event(λ2) = j2.

Definition 4. A trace τ is called conflict-event serializable when EvGτ is
acyclic. A program P with event set E is conflict-event serializable iff every
trace in [[P,E]]m is conflict serializable.

A permutation τ′ of a trace τ is conflict-preserving when every pair λ1, λ2 of
labels in τ appear in the same order in τ′ whenever act(λ1) ≺ act(λ2). Note that
a conflict-preserving permutation τ′ leads to the same global state as the original
trace τ. From now on, whenever we use permutation we mean conflict-preserving
permutation. A trace τ is conflict-event serializable iff it is a conflict-preserving
permutation of an event-serial trace.

Theorem 2. A program P with event set E is event-serializable when it is
conflict-event serializable.

5.2 Conflict Determinism

We define conflict determinism, which is also based on the acyclicity of a certain
class of “conflict graphs”, called conflict-invocation graphs. These graphs repre-
sent the conflicts between the asynchronous invocations, but also the order in
which these invocations would be executed under the single-thread semantics,
i.e., the DFS traversal of the call tree. If the conflict-invocation graph of every
trace τ of an event e is acyclic, then e is deterministic because every trace τ is a
conflict-preserving permutation of the trace t0 corresponding to the single-thread
semantics, and thus leads to the same global state as t0.

Given a trace τ, let <dfs be the total order between the invocation identifiers
in τ defined by the DFS traversal of CallTreeτ. The conflict-invocation graph
of a trace τ is the directed graph InvG(τ) = 〈V,E〉 whose nodes V are the
asynchronous invocation identifiers in τ, and which contains an edge from i1 to
i2 when i1 <dfs i2, or τ contains a pair of labels λ1 and λ2 of i1 and i2, resp.,
such that act(λ1) ≺ act(λ2) and λ1 occurs before λ2.

184 A. Bouajjani et al.

Definition 5. A trace τ is DFS-serial iff InvG(τ) is acyclic. An event e is
conflict-deterministic iff every trace in [[e]]m is DFS-serial.

A trace τ is called invocation-serial iff for every three labels λ1, λ2, λ3 occur-
ring in τ in this order, if invoc(λ1) = invoc(λ3), then invoc(λ1) = invoc(λ2). For
an event e, a DFS-serial trace τ in [[e]]m is a permutation of an invocation-serial
trace τ0 ∈ [[e]]m where invoc(λ1) <dfs invoc(λ2) for every two labels λ1 and λ2

occurring in this order in τ0.

Theorem 3. An event is deterministic when it is conflict-deterministic.

6 Checking Conflict Determinism

We reduce the problem of checking conflict determinism of an event to a reach-
ability problem in a sequential program. We present the reduction in two steps.
First, conflict determinism of an event interpreted under the multi-thread seman-
tics, whose asynchronous invocations run concurrently, is reduced to a reacha-
bility problem in a program running on the single-thread semantics, where asyn-
chronous invocations are executed serially (Sects. 6.1 and 6.2). The latter is then
reduced to a reachability problem in a sequential program (Sect. 6.3).

This reduction uses the fact that a certain class of conflict determinism viola-
tions can be simulated by a sequential program up to conflict-preserving permu-
tations of actions (note that any conflict-preserving permutation of a violation is
also a violation). This class of violations called borderline violations are minimal
in the sense that removing the last action leads to a correct trace. Besides the
simulation, we show that fixed-size additional memory is required to witness the
conflicts inducing a cycle in the conflict invocation graph.

Definition 6 (Borderline Conflict Determinism Violation). A trace τ is
a borderline violation to conflict determinism if it is not DFS-serial but every
strict prefix of τ is DFS-serial.

For instance, the trace τ1 given in Fig. 7(a) contains a borderline violation.
This trace is generated by an event e that invokes two procedures p and q
in this order, each procedure on a different thread. The only conflict between
memory accesses is that between the wr(x) actions in q and resp., p. The conflict-
invocation graph of τ1 contains a cycle between the invocations of p and q: the
edge from the invocation of p to that of q is implied by the fact that p is invoked
before q within the same procedure (we have “p <dfs q”), and the edge in the
other direction exists because q writes to the variable x before p does. The trace
τ1 until after the second wr(x) is a borderline violation since its maximal strict
prefix (without the second wr(x)) is DFS-serial. The last label of a borderline
violation τ, in this example wr(x), is called the pivot of τ. The label of τ which
precedes and conflicts with its pivot and which induces the cycle in its conflict-
invocation graph is called the root of τ. Formally, if i1 is the invocation containing
the pivot of τ, the root of τ is an action conflicting with the pivot and which is
included in an invocation i2 such that i1 <dfs i2. For the trace in Fig. 7(a), the
root is the action wr(x) in the invocation of q.

Verifying Robustness of Event-Driven Asynchronous Programs 185

Fig. 7. Simulating borderline conflict determinism violations on the single-thread
semantics. The event e makes two fresh thread asynchronous invocations to p and
q in this order. Boxes represent sequences of trace labels ordered from top to bottom.
Actions of the same thread are aligned vertically. The arrows represents transition label
conflicts. For readability, we omit the event and task identifiers in the trace labels and
keep only the memory accesses. The grey blocks labeled by delay, resp., skip, denote
sequences of actions that are delayed, resp., skipped.

6.1 Simulating Borderline Violations

We define a code-to-code translation from an event e to an event detStr−(e) which
simulates2 permutations of every DFS-serial or borderline violation trace in[[e]]m.
The event detStr−(e) uses additional non-deterministically enabled statements to
simulate the particular interleavings present in those traces. The instrumentation
required to witness violations is introduced in Sect. 6.2.

Overview. We give an informal description of the translation using as examples
the traces pictured in Fig. 7.

Delaying the Pivot. We first explain the simulation of the invocation that con-
tains the pivot, which may interfere with invocations that are supposed to be

2 We refer to the standard notion of (stuttering) simulation where (sequences of)
transitions in detStr−(e) are mapped to transitions of e.

186 A. Bouajjani et al.

executed later under the single-thread semantics. For the borderline violation in
Fig. 7(a), the invocation of p that contains the pivot wr(x) destroys the value
written to x by q, an invocation which is executed after p under the single-thread
semantics.

The maximal strict prefix (ending before the second wr(x)) is DFS-serial
and can be reordered to a trace where the order between transition labels is
consistent with the invocation order (i.e., e before p and before q). Figure 7(b)
pictures such a reordering, denoted by τ′

1. Our goal is to show that the trace τ′
1

can be simulated by an execution under the single-thread semantics of a slightly
modified version of e. First note that τ′

1 is not admitted by the single-thread
semantics of e because the invocation of p is only partially included in this prefix.
And the single-thread semantics executes every task until completion. However,
it is possible to “delay” the execution of the pivot wr(x) in p until q finishes,
even under the single-thread semantics, by adding a suitable set of auxiliary
variables to e. This mechanism is pictured in Fig. 7(c). Every statement in the
procedure p is guarded by (the negation of) an auxiliary Boolean flag skip which
can be non-deterministically flipped to true in order to skip over statements.
Moreover, an auxiliary global variable pivotLabel will record the next control
flow label � when this flag is set to true. Then, extending the invocation of q with
goto pivotLabel allows to resume the invocation of p and execute the pivot. To
simulate every borderline violation, the goto statement is non-deterministically
enabled in every invocation.

Incomplete Invocations. While the violation in Fig. 7(a) includes only one incom-
plete invocation (the one containing the pivot) this is not always the case.
A borderline violation may contain unboundedly-many other incomplete invo-
cations. For instance, the violation in Fig. 7(d) includes incomplete invocations
of e and q (they finish after the pivot). Should the simulation of this borderline
violation execute e and q entirely, the pivot may never be enabled. The correct
simulation, pictured in Fig. 7(e), will make use of the same mechanism based on
the Boolean flag skip in order to skip over statements in e and q. In general,
an invocation can be skipped in its entirety. This simulation also shows that the
goto statement can be executed after an incomplete invocation.

Main Thread Invocations. The last issue concerns the main thread which has the
particularity of being able to execute more than one invocation (all the other
threads execute a single invocation). It executes invocations serially and only
the last one may be incomplete. For instance, consider the DFS-serial trace τ3
pictured in Fig. 7(f). This is the trace of an event e that invokes p1, q, p2, and
p3, in this order, and except q all the tasks are assigned to the main thread.
Since p1 is invoked before p3, a DFS-serial permutation τ′

3 of τ3 contains the
incomplete invocation of p1 before the complete invocation of p3, as shown in
Fig. 7(g). None of the semantics we defined allows such traces. The problem is
that both invocations are executed by the main thread which has to complete a
task before executing another one. Our simulation will however admit such traces
but it will verify that they are conflict-preserving permutations of valid traces.
This verification procedure (included in the definition of detStr−(e)) checks that

Verifying Robustness of Event-Driven Asynchronous Programs 187

the conflict invocation graph doesn’t contain a path of memory conflicts, i.e.,
conflicts induced by read and write accesses, from the incomplete invocation
on the main thread to any future complete invocation on the same thread. Let
us consider again the trace τ3 in Fig. 7(f). Since τ3 is DFS-serial, its conflict
invocation graph doesn’t contain paths of memory conflicts from p3 to any other
invocation ordered before p3 in the DFS traversal of the call tree. This includes
the incomplete invocation p1 and q. For the permutation τ′

3, this implies that its
conflict invocation graph contains no paths of memory conflicts from p1 to p3.
When a trace satisfies this condition, i.e., an incomplete invocation on the main
thread doesn’t conflict with a future complete invocation on the same thread,
all the complete invocations on the main thread can be reordered before the
incomplete one (preserving the order between conflicting trace labels) and this
results in a valid trace (under the multi-thread semantics). The simulation of
τ′
3 on the single-thread semantics, pictured in Fig. 7(g), enables this verification

procedure during the invocation of p1 because it is executed on the main thread
and it skips over statements. It is also possible that other invocations on the
main thread, e.g., p2, are skipped entirely.

Notations. We introduce several notations used in the definition of detStr−(e).
This event is obtained by rewriting every statement s of a procedure transitively
invoked by e to a code fragment s1; if(c) then s; s2 where s1 and s2 are state-
ments and c is a Boolean expression. We use before(s), guard(s), and after(s)
to refer to s1, c, and s2, respectively. For every statement s, �(s) denotes the
control flow label of s, that can be used for instance in goto statements. Also,
rdSet(s), resp., wrSet(s), is the set of global variables read, resp., written, by s.
We have wrSet(s) = {x} and rdSet(s) = ∅ when s is x := y, and wrSet(s) = ∅
and rdSet(s) = {x} when s is y := x. Otherwise, rdSet(s) = wrSet(s) = ∅.

We assume that every procedure p is augmented with two local variables
rdSetProc and wrSetProc tracking the global variables read and written by p,
respectively (rdSet(s) and wrSet(s) are added to rdSetProc and wrSetProc,
respectively, after every statement s that gets executed).

The instrumentation uses the non-deterministic choice denoted by ∗ (for-
mally, ∗ is a distinguished Boolean variable that evaluates non-deterministically
to true or false). To refer to the different non-deterministic choices in the
instrumentation, we may index them with natural numbers.

To reduce clutter in the instrumentation, we use [s]ev(b) to denote a state-
ment s that is executed at most once during the execution of the event and the
Boolean variable b is set to true when s gets executed.

For an event e, let P(e) be the set of the procedures possibly invoked by
e, which is defined inductively by: (1) e ∈ P(e) and (2) for every p ∈ P(e),
if async[w] q(y) occurs syntactically in the code of e, then q ∈ P(e). Also, let
P0(e) be the subset of P(e) consisting of procedures posted to the main thread,
i.e., in the previous inductive definition, we take w = main. W.l.o.g. we assume
that the procedures in P0(e) are distinct from the procedures q contained in
asynchronous invocations “async[any] q(. . .)” executed on other threads.

All the Boolean variables added by the instrumentation are initially false.

188 A. Bouajjani et al.

Defining the Instrumentation

Dealing with Fresh Thread Invocations. To simulate incomplete invocations exe-
cuted by threads other than the main thread, every procedure in P(e) \ P0(e) is
augmented with a Boolean flag skip that is non-deterministically set to true.
Once skip is set to true, the rest of statements are skipped and the first skipped
statement may be chosen as the pivot and its label stored in pivotLabel. The
pivot may get executed non-deterministically at a later time.

The program instrumentation to simulate borderline violations is given in
Fig. 8a. For every statement s of procedure p ∈ P(e) \ P0(e), guard(s) and
before(s) are defined respectively at lines 1 and 4 where skip is a local variable
and pivotLabel is a global variable.

Dealing with Main Thread Invocations. For procedures in P0(e), the instrumen-
tation ensures that at most one invocation of such a procedure is incomplete,
and also, that the invocation graph contains no path of memory conflicts from
such an incomplete invocation to any future complete invocation of a procedure
in P0(e). Such paths of memory conflicts may cross invocations of procedures
which are not in P0(e), therefore the instrumentation of the latter must also be
modified.

To simulate an incomplete invocation on the main thread, for every statement
s of a procedure p ∈ P0(e), before(s) is defined as in line 15 in Fig. 8a where
skip is a Boolean local variable. As for invocations executed on other threads,
the first skipped statement may be chosen as the pivot. To be able to track

Fig. 8. Instrumentation for checking conflict-determinism.

Verifying Robustness of Event-Driven Asynchronous Programs 189

paths of memory conflicts, the variables read and written during the incomplete
invocation are stored in the global variables rdSetGlobal and wrSetGlobal,
respectively. For invocations of procedures p ∈ P0(e), skip can be set to true
at most once during the execution of the event.

Other tasks posted to the main thread can be skipped entirely or executed
completely, by setting a local flag skipProc. When they are executed completely,
a global Boolean flag validMain is used to witness that they are not the des-
tination of a path of memory conflicts as explained above. At the beginning of
each procedure, validMain is reset to false as shown at line 22. Then, guard(s)
of every statement s of a procedure p ∈ P0(e) checks for skipProc as in line 13.

Once an incomplete invocation on the main thread is present, i.e.,
skipMainSet is true, the procedure for checking the absence of paths of memory
conflicts is enabled. For every statement s of every procedure p ∈ P(e), after(s)
is set as in line 26 where conflictDetected is a Boolean local variable. This
conditional checks whether the current procedure conflicts with the incomplete
invocation or transitively, with all the other invocations that conflict with the
latter. If this is the case, then its set of memory accesses is continuously added
to the global sets rdSetGlobal and wrSetGlobal of memory accesses.

When a main thread invocation finishes, if it has been executed completely
and if it follows an incomplete main thread invocation, the instrumentation
checks for absence of paths of memory conflicts and may non-deterministically
execute the pivot. The code at line 35 is added at the end of every p ∈ P0(e).

Relationship Between e and detStr−(e). The following result expresses the rela-
tionship between the original event e and detStr−(e). It shows that the single-
thread semantics of detStr−(e) simulates permutations of all the DFS-serial
traces and borderline violations of e under the multi-thread semantics (modulo
a thread id renaming). Moreover, every trace of detStr−(e) under the single-
thread semantics where the last value of validMain is true, this set of traces
being denoted by [[detStr−(e)]]validMains , corresponds to a trace of e under the
multi-thread semantics (modulo the instrumentation added in detStr−(e) and a
thread id renaming). For a trace τ of detStr−(e), τ is the trace obtained from τ

by erasing all transition labels corresponding to statements added by the instru-
mentation. For readability, we ignore the issue of renaming thread ids.

Theorem 4. For every trace τ1 in [[e]]m, if τ1 is DFS-serial or a borderline
conflict determinism violation, then there exists a trace τ2 in [[detStr−(e)]]s such
that τ′

1 = τ2 is a conflict-preserving permutation of τ1. Moreover, for every trace
τ1 in [[detStr−(e)]]validMains there exists a trace τ2 in [[e]]m such that τ2 = τ1.

6.2 Witnessing Borderline Violations

The instrumentation used to verify that a trace is indeed a borderline violation
consists in guessing a candidate for the root and then, when the pivot gets
executed, checking whether it conflicts with the chosen candidate. For instance,
if we consider the single-thread semantics simulation in Fig. 7(c), the action

190 A. Bouajjani et al.

wr(x) in q is guessed as the root and its label is stored in an auxiliary variable
rootLabel. This label is used to check that the root candidate conflicts with
the pivot when the latter is executed. The root must be chosen after the pivot
in order to guarantee that this leads to a cycle in the conflict invocation graph
(i.e., the DFS traversal of the call tree orders the invocation containing the pivot
before the one containing the root).

We define a new event detStr(e) that sets an error flag to true whenever
the current trace is not DFS serial and the root and pivot candidates are valid.
This event is obtained from detStr−(e) by adding two global variables error and
rootLabel, and:

– Concatenating the code at line 41 in Fig. 8b to before(s). This allows to non-
deterministically choose s to be the root of the violation. In order to avoid
choosing the pivot after the root, we must also replace ∗2 and ∗5 in detStr−(e)
with ! rootSet & ∗2 and ! rootSet & ∗5, respectively.

– Concatenating the code at line 44 in Fig. 8b to after(s) where

conflict(pivotLabel, rootLabel) ::= rdSet(�
−1

(pivotLabel)) ∩ wrSet(�
−1

(rootLabel)) �= ∅
‖rdSet(�−1

(rootLabel)) ∩ wrSet(�
−1

(pivotLabel)) �= ∅
‖wrSet(�

−1
(rootLabel)) ∩ wrSet(�

−1
(pivotLabel)) �= ∅

This allows to validate that the root does indeed conflict with the pivot, once
the latter gets executed. If the conflict is validated, then error is set to true.

Since the added instrumentation only reads variables of detStr−(e), the new
event detStr(e) still satisfies the claim in Theorem 4.

Theorem 5. An event e (under the multi-thread semantics) satisfies conflict
determinism iff the program detStr(e) under the single-thread semantics does
not reach a state where error = true.

For complexity, detStr(e) can be constructed in linear time and its number
of variables increases linearly in the number of variables and procedures of e.

6.3 Reduction to the Procedural Semantics

As a continuation to Theorem 5, we define a code-to-code translation from an
event e to a sequential event seq(e) such that seq(e) admits exactly the set of
traces of e under the single-thread semantics3.

Single-Thread Semantics vs Procedural Semantics. Essentially, seq(e) is obtained
from e by rewriting asynchronous procedure invocations to regular procedure

3 Modulo the omission of the labels invoke(i), begin(i), return(i) related to asynchro-
nous invocations.

Verifying Robustness of Event-Driven Asynchronous Programs 191

calls. However, this rewriting can’t be applied directly because of the following
issue. Consider a procedure p invoking another procedure q. If the invocation
of q is asynchronous, the single-thread semantics executes p completely before
starting q. Under the procedural semantics, when q is invoked using a regular
procedure call, the execution of p is blocked when q is invoked and resumed when
q is completed. For instance, consider the event:

procedure e1(){y:=1; async[main] p();y:=2;} procedure p(){y:=3;}

Executing e1 on the single-thread semantics, we get the sequence of assignments
y := 1, y := 2, y := 3. Rewriting async[main] p() to a regular procedure call
call p(), we get an event that executes y := 1, y := 3, y := 2 in this order.

This issue doesn’t exist if all the asynchronous invocations occur at the end
of the procedures. For instance consider the following event e2:

procedure e2(){x:=1; async[main] p();} procedure q() {x:=3;}

procedure p(){x:=2; async[main] q();}

Rewriting every async[main] to a procedure call call , we get an event
that executes the assignments on x in exactly the same order as e2 under the
single-thread semantics. This holds because the single-thread semantics executes
the asynchronous invocations according to the DFS traversal of the call tree,
which corresponds to the “stack” semantics of procedure calls.

Therefore, the event seq(e) is obtained in two steps. A first translation is used
to move all asynchronous invocations at the end of the procedures. This results
in an event having exactly the same single-thread semantics as the original one.
Then, we replace every asynchronous invocation with a procedure call.

Defining seq(e). The event e is extended with auxiliary data structures that
store the names and the inputs of the asynchronous invocations. Using these
data structures, all the invocations are delayed till the end of the encompassing
procedure. Thus,

– each procedure p is extended with an auxiliary local variable invocList which
stores a list of procedure names and inputs,

– when an asynchronous procedure q is invoked in p with inputs y, the proce-
dure name q together with its parameters y is appended to the local variable
invocList of p without invoking q,

– before returning from a procedure p, all the procedures stored in invocList
are invoked in the order they are recorded.

For the event e1, this boils down to simply moving the invocation in e1 at the
end (i.e., after y := 1). It is easy to see that the obtained event has the same
single-thread semantics as the original event.

192 A. Bouajjani et al.

Let seq(e) be the event obtained from e by applying the transformation above
and then, replacing every asynchronous invocation async[w] p(y) with call
p(y).

For an event e, we overload the equality relation between traces τ1 ∈ [[e]]s
and τ2 ∈ [[seq(e)]]s as follows: τ1 = τ2 iff removing the labels invoke(i), begin(i),
return(i) with i ∈ N from τ1, and the transition labels corresponding to state-
ments added by the instrumentation from τ2, we get the same trace.

A sequential program Seq has the same set of traces under the multi-thread
and the single-thread semantics, so its set of traces is denoted [[Seq]].

Theorem 6. For any event e, [[e]]s =[[seq(e)]].

For an event e, let detSeq(e) = seq(detStr(e)). By Theorem 6, detSeq(e)
still satisfies the claim in Theorem 4. The following is a direct consequence of
Theorems 5 and 6.

Corollary 1. An event e (under the multi-thread semantics) satisfies conflict
determinism iff the sequential event detSeq(e) does not reach a state where
error = true.

Concerning complexity, let e be an event where each procedure invokes at
most k other procedures, for some fixed k. Then, the time complexity of con-
structing detSeq(e) and its number of variables are quadratic in the number of
variables and procedures of e and k.

7 Checking Conflict Robustness

Building on the reduction of conflict determinism to reachability in sequential
programs, we show that a similar reduction can be obtained for conflict robust-
ness. This reduction is based on two facts: (1) incomplete executions of conflict-
deterministic events can be simulated by a sequential program, which has been
proved in Sect. 6, and (2) conflict serializability for a set of conflict deterministic
events can be again reduced to reachability in sequential programs. To prove
the latter we use the concept of borderline violation, this time for conflict seri-
alizability. We show that interleavings corresponding to such violations can be
simulated by a sequential program. This program behaves like a “most-general
client” of the event-based program in the sense that it executes an arbitrary set
of events, in an arbitrary order, but serially without interference from others.
We show that the memory required to track the conflicts which induce a cycle
in the conflict graph is of bounded size, although the conflict graph cycles are of
unbounded size in general.

Definition 7 (Borderline Conflict Serializability Violation). A trace t is
a borderline violation to conflict serializability if it is not conflict serializable
but every strict prefix of τ is conflict serializable.

Verifying Robustness of Event-Driven Asynchronous Programs 193

Fig. 9. Simulating borderline conflict serializability violations with a sequential pro-
gram. Boxes represent sequences of trace labels ordered from top to bottom. Actions
of the same event are aligned vertically. The arrows represent all the conflicts in the
trace. The grey blocks labeled by delay, resp., skip, denote sequences of actions that
are delayed, resp., skipped.

The trace τ1 in Fig. 9(a) contains a borderline violation. Its conflict-event
graph contains a cycle between the three events e1, e2, and e3. The prefix of
τ1 ending just before rd(z) satisfies conflict serializability. The last label of a
borderline violation τ is called the pivot of τ (in this example rd(z)) and the
event that contains the pivot is called the delayed event of τ (in this example e1).

Simulating Borderline Violations. For a set of conflict-deterministic events
E, we define a code-to-code translation to a set of sequential events that simu-
lates every conflict-serializable trace and every borderline serializability violation
of E under the multi-thread semantics.

As for conflict determinism, the maximal strict prefix of a borderline violation
can be reordered to a trace where events are executed serially, but possibly not
until completion (because it satisfies conflict serializability). Such a reordering for
the trace τ1 is given in Fig. 9(b). This reordering can be simulated by a sequential
program that executes the conflict determinism instrumentations detSeq(ei) with
i ∈ [1, 3] instead of the original events, as shown in Fig. 9(c). The sequential
program chooses non-deterministically the delayed event, in this case e1, and
the pivot, and stores the latter in an auxiliary variable pivotSerLabel when
leaving the delayed event. While executing other possibly incomplete events
using the skipping mechanism introduced for conflict determinism, it may non-
deterministically choose to execute goto pivotSerLabel, in this case after e3.

Witnessing Borderline Violations. To establish that a trace is indeed a bor-
derline violation, the instrumentation guesses for each event a statement called
exit point which conflicts with an action of a future event and a statement called
entry point which conflicts with the currently recorded exit point of a previ-
ous event. The conflict is validated each time an entry point is chosen. This

194 A. Bouajjani et al.

instrumentation is demonstrated in Fig. 9(c). For instance, while simulating e1,
wr(x) is guessed as the exit point and its label is recorded in the auxiliary
exit variable. During the simulation of e2, wr(x) is guessed as the entry point
and the conflict is validated. As the simulation of e2 shows, the exit point may
occur before the entry point. In this case, the instrumentation uses an addi-
tional variable tempExit to store the exit point of the current event until the
conflict with a previous event is validated. Once the conflict is confirmed the
value of tempExit is copied to exit. Since the conflicts must form a path in the
conflict event graph, there is no need to recall more than one exit point at a
time.

The instrumentation added for checking conflict robustness is similar to the
one used for conflict determinism. Let robSeq(e) denote the sequential event
obtained from detSeq(e) by adding this instrumentation. For an event set E, let
robSeq(E) = {robSeq(e) : e ∈ E}.

Then, let robSeq(E) be the set of events robSeq(e) with e ∈ E.

Theorem 7. A program P with events E satisfies conflict robustness iff
robSeq(E) doesn’t reach a state where error = true.

For complexity, robSeq(E) can be constructed in linear time and the number
of additional variables is linear in the number of procedures in detSeq(E). The
complexity of checking conflict robustness is given by the following theorem.

Theorem 8. Checking conflict robustness of a program P with events E, a fixed
number of variables which are all Boolean, and a fixed number of procedures, each
procedure containing a fixed number of asynchronous invocations, is polynomial
time decidable.

8 Experimental Evaluation

The goal of our experimental work [5] is to show that (i) event-serializability
and event-determinism violations correspond to actual bugs, and (ii) detecting
these violations using the reduction to reachability in sequential programs is
feasible.

We use the Soot framework [7] to implement the instrumentation required
for robustness checking. The reachability of the error state in the instrumented
sequential program is verified using Java Path Finder (JPF) [4].

We applied the conflict-robustness checking algorithm to a set of Android
apps from the FDroid [3] repository. The application code for reflection, depen-
dency to external libraries (e.g., for http connection, analytics tracker, maps),
and the code which only effects the display (e.g., displaying web pages, anima-
tion, custom graphics) is eliminated. The remaining code factors out the vari-
ables that does not effect the concurrent behavior of the program and keeps the
program logic.

Verifying Robustness of Event-Driven Asynchronous Programs 195

We define an event as a procedure which is invoked by the Android app in
order to initialize an activity, in response to an user input (e.g., clicking on a
button, writing text, navigating back) or a system input (e.g., location change,
network disconnect). Our tool receives as input a driver class which initiates the
application and invokes a set of events. The tool checks conflict-robustness for
the set of executions defined by the driver class. In our experiments, we take
into consideration causality constraints between events, e.g., the event handler
of a UI component can not be invoked if it is not visible on the screen.

8.1 Event-Determinism Experiments

Table 1. Experimental data for conflict determinism.
The last column lists whether the event is found conflict
deterministic.

Application Event handler #inst #c #m #r/w #(*) t(m:s) Det?

aarddict Create activity 1307780 177 3016 90 1428 0:01 Y
Lookup word 77203 222 3604 60 103 <1 s Y
Scan sd 21334 167 2941 15 21 <1 s Y

apphangar Select item 58908 222 3560 48 70 <1 s Y
Update icon pack 13308927 264 4004 95 28833 00:33 N

bookworm Generate cover 34528 194 2928 30 41 <1 s Y
Retrieve cover 36789 213 3440 31 41 <1 s Y
Save edits 63017 189 3015 108 158 <1 s Y
Search book 53250 185 3012 50 69 <1 s Y

grtgtfs Fav stops 53995 162 2885 142 113 <1 s Y
Process bustimes 65945 159 2749 105 168 <1 s Y
Search route 55077 167 2968 34 67 <1 s Y
Search stop 56742 168 2968 52 75 0:01 Y

irccloud Save prefs 103344 293 3478 18 15 <1 s Y
Save settings 102868 293 3478 17 13 <1 s Y
Select buffer 136224103 379 4330 761 260605 8:04 Y
Send message 162682 356 4140 171 77 <1 s Y

vlille Load stations 971665 404 5808 236 131 0:01 Y
Load favorites 9583 141 2400 37 0 <1 s Y
Update stations 975974 416 5905 265 131 0:01 Y

Table 1 lists the exper-
imental data related to
conflict-deterministic che-
cking. Related to the
size of the event han-
dlers, we list the number
of analyzed instructions
(#inst), loaded classes
(#c) and methods (#m).
The analysis time is affec-
ted by the number of
resolved non-deterministic
data choices (#(*)), the
number of asynchronous
invocations, whether the
instrumented read/write
accesses are made in these

invocations, and the execution time of the analyzed program.
We have applied our algorithm to various event handlers and all but one are

found to be deterministic. A determinism violation is found in iconPackUpdated

benchmark as explained in Sect. 2. The pivot of the violation is a write access to
the mAdapter variable by a procedure running in the background, and the root is
a read on the same variable made by a procedure running on the main thread.

8.2 Event-Serializability Experiments

Table 2 shows experimental data for conflict-serializability checking.

True Bugs. Four of the benchmarks had traces with conflict serializability
violations which we concluded were true bugs (and true event-serializability vio-
lations) after examining the code and the consequences of these violations.

196 A. Bouajjani et al.

Table 2. Experimental data for conflict serializabil-
ity. The last two columns say whether the example is
serializable and whether a violation is not spurious.

Application Seq. #inst #c #m #r/w # (*) t(m:s) Ser? Bug?

aarddict 1 1084371993 224 3620 154 1764359 23:12 N Y
2 101776570 169 2957 100 195370 1:42 N Y

bookworm 1 22701600 183 2801 202 77614 0:42 Y -
2 19179949 183 2801 201 61896 0:33 Y -
3 1094300968 189 3016 286 3494089 33:51 Y -
4 3547795 188 3029 131 15961 0:08 N Y

grtgtfs 1 74082801 168 2969 123 279857 2:04 Y -
2 - - - 149 - >1 h - -
3 1130239 139 2692 77 4712 0:02 Y -
4 60736622 170 2984 161 163236 1:21 N N

irccloud 1 33713083 293 3479 141 147000 2:55 Y -
2 1761539 293 3479 140 7851 0:10 Y -
3 171715464 294 3485 147 534338 08:51 Y -
4 - - - - 2110 >1 h - -
5 - - - - 902 >1 h - -
6 54556857 358 4165 849 208076 5:28 N Y
7 11104756 357 4154 833 39599 0:59 N Y

vlille 1 48935337 406 5824 286 143461 3:05 N Y
2 394535226 406 5824 292 1319041 28:52 N N

The violation in aarddict

app occurs between the ini-
tialization of the activity
(initializes the UI compo-
nents and starts the dic-
tionary service to load the
dictionaries) and an event
handler to lookup a word.
The lookup cannot retrieve
the requested word if the
service gets initialized after
the lookup. The pivot of
the serializability violation is
a write access to a vari-
able dictionaryService in
an asynchronous procedure
invoked on the main thread

that conflicts with the asynchronous procedure invoked on a background thread
by the second event handler. We detected an event serializability violation in the
bookworm app between the events dealing with user inputs to search for a book
and navigating back to the previous screen. In this violation, while the first
event handler performs the search in the background and not yet updated the
currSearchTerm variable, the second event handler saves the stale currSearchTerm

value in the cache. The pivot of the violation is a write access to the current
search term in an asynchronous procedure invoked on the background thread.
A violation detected in the irccloud app is presented in Sect. 2, which causes the
app to send wrong messages. The pivot is a read access to the message text in
an asynchronous procedure invoked on a background thread that conflicts with
a write access in the double click event. A similar violation occurs in another
user input sequence where the user types some text after pressing the “send”
key. In the vlille benchmark, the serializability violation in the first line occurs
when the user removes an item from the favorites list while the items are being
loaded. The app throws an exception when the removal in the second event
handler interleaves with the asynchronous procedure in the background.

Avoidable False Alarms. In the grtftfs benchmark, the conflict-
serializability violation is not a bug or a serializability violation. (Conflict-
serializability is stronger than serializability.) This violation is triggered by
making two queries one after another. In an execution where the second event
handler overwrites the query before the first event handler reads it in the back-
ground, both asynchronous procedures end up performing the same, later search.
While technically this is not a serializability violation, we believe it is worthwhile
to report conflict-serializability violations to the programmer, because fixing
them would lead to improved code.

Verifying Robustness of Event-Driven Asynchronous Programs 197

Inter-related Events. Some event handlers intervene the execution of another
event by design. For such inter-related events, the event-serializability violation
might not be a bug. The vlille benchmark has such an example (the second row
on the table). In this scenario, the user navigates back while the app is loading
a list of items asynchronously in a background thread. The event handler for
back navigation sets the mCancelled flag of the AsyncTask. If this flag is set, the
first event handler does not invoke the AsyncTask’s asynchronous onPostExecute

procedure. Our techniques can be modified to consider inter-related events and
task cancellation, but we leave this for future work.

9 Related Work

The UI framework in Android has been the focus of much work. Most existing
tools for detecting concurrency errors investigate race detection [8,21,25]. Race
conditions are low-level symptoms for a much broader class of concurrent pro-
grams which are often not indicative of actual programming errors. In this paper,
we attempt to characterize and detect higher-level concurrency errors in Android
programs. Robustness violations are incomparable with data-race freedom viola-
tions. Data races do not generally imply cyclic data dependencies among events,
and cyclic data dependencies do not imply data races: e.g., surrounding each indi-
vidual memory access within a cycle by a common lock eliminates possible races,
but preserves cycles. Furthermore, checking conflict robustness is fundamentally
more efficient than checking for data race freedom. Conflict event serializability
requires tracking events, while data race freedom requires tracking individual
program actions like reads and writes, which greatly outnumber events. More-
over, conflict robustness reduces to reachability in sequential programs, yielding
significantly lower asymptotic complexity.

Recent work [29] proposes a static analysis to detect “anomalies” in event
driven programs, i.e. accesses to the same memory location by more than one
event handlers. Since many events access shared memory locations, this app-
roach produces many false alarms, but programs without anomalies are conflict-
event serializable. The works in [23,24] refactor applications by moving long
running jobs to asynchronous tasks and transform improperly-used asynchrony
constructs into correct constructs. Ensuring transformed asynchronous tasks do
not race with their callers lends support to our work as it guarantees event-
determinism.

The works in [12–14,26] target exploring interesting subsets of executions
and schedules for asynchronous programs, that offer a large coverage of the exe-
cution space. This is orthogonal to the focus of our paper which is to investigate
correctness criteria.

Conflict serializability [27] has been introduced in the context of databases
and since then used as a tractable approximation of atomicity. We use serializ-
ability to formalize the fact that event handlers behave as if they were executed in
isolation, without interference from others. While in other uses of serializability

198 A. Bouajjani et al.

the transactions are sequential, in our case a single invocation of an event handler
consists of several asynchronous procedures that can interleave arbitrarily in
between them. Farzan and Madhusudan [15,16] and Bouajjani et al. [10] inves-
tigate decision procedures for conflict serializability of finite-state concurrent
models while checking serializability in general has been approached using both
static, e.g., [18,20,32,34], and dynamic tools, e.g., [17,19,30,33].

Determinism has been largely advocated in the context of concurrent pro-
grams, e.g., [9,31], since it simplifies the debugging and verification process. Prior
work has introduced static verification techniques, e.g., [22] but also dynamic
analyses based on testing, e.g., [11,28]. Differently from prior work, we provide
a methodology for checking determinism of event-driven asynchronous programs
that ultimately reduces to a reachability problem in a sequential program.

References

1. https://github.com/irccloud/android/commit/c81f3374
2. http://github.com/irccloud/android/tree/9e2f5cf04e
3. F-Droid - Free and Open Source App Repository. http://f-droid.org/
4. Java pathfinder. http://babelfish.arc.nasa.gov/trac/jpf/
5. https://github.com/burcuku/async-robustness-checker
6. Alur, R., McMillan, K.L., Peled, D.: Model-checking of correctness conditions for

concurrent objects. Inf. Comput. 160(1–2), 167–188 (2000)
7. Arzt, S., Rasthofer, S., Bodden, E.: Instrumenting android and Java applications

as easy as abc. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp.
364–381. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40787-1 26

8. Bielik, P., Raychev, V., Vechev. M.: Scalable race detection for android appli-
cations. In: Proceedings of ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
NY, USA, pp. 332–348. ACM (2015)

9. Bocchino, Jr. R.L., Adve, V.S., Adve, S.V., Snir, M.: Parallel programming must
be deterministic by default. In: Proceedings of 1st USENIX Conference on Hot
Topics in Parallelism, HotPar 2009, CA, USA (2009)

10. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 290–309. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 17

11. Burnim, J., Sen, K.: Asserting and checking determinism for multithreaded pro-
grams. Commun. ACM 53(6), 97–105 (2010)

12. Emmi, M., Qadeer, S., Rakamarić, Z.: Delay-bounded scheduling. SIGPLAN Not.
46(1), 411–422 (2011). ISSN 0362-1340

13. Emmi, M., Lal, A., Qadeer, S.: Asynchronous programs with prioritized task-
buffers. In: Proceedings of International Symposium on Foundations of Software
Engineering, FSE 2012, pp. 48:1–48:11. ACM (2012)

14. Emmi, M., Ozkan, B.K., Tasiran, S.: Exploiting synchronization in the analysis
of shared-memory asynchronous programs. In: Proceedings of International SPIN
Symposium on Model Checking of Software, pp. 20–29. ACM (2014)

15. Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer, Hei-
delberg (2008). doi:10.1007/978-3-540-70545-1 8

https://github.com/irccloud/android/commit/c81f3374
http://github.com/irccloud/android/tree/9e2f5cf04e
http://f-droid.org/
http://babelfish.arc.nasa.gov/trac/jpf/
https://github.com/burcuku/async-robustness-checker
http://dx.doi.org/10.1007/978-3-642-40787-1_26
http://dx.doi.org/10.1007/978-3-642-37036-6_17
http://dx.doi.org/10.1007/978-3-642-37036-6_17
http://dx.doi.org/10.1007/978-3-540-70545-1_8

Verifying Robustness of Event-Driven Asynchronous Programs 199

16. Farzan, A., Madhusudan, P.: The complexity of predicting atomicity violations. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 155–169.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00768-2 14

17. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. Sci. Comput. Program. 71(2), 89–109 (2008)

18. Flanagan, C., Freund, S.N., Lifshin, M., Qadeer, S.: Types for atomicity: static
checking and inference for Java. ACM Trans. Program. Lang. Syst. 30(4), 20 (2008)

19. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic
atomicity checker for multithreaded programs. In: Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 293–303
(2008)

20. Hatcliff, J., Robby, Dwyer, M.B.: Verifying atomicity specifications for concur-
rent object-oriented software using model-checking. In: Steffen, B., Levi, G. (eds.)
VMCAI 2004. LNCS, vol. 2937, pp. 175–190. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24622-0 16

21. Hsiao, C.-H., Yu, J., Narayanasamy, S., Kong, Z., Pereira, C.L., Pokam, G.A.,
Chen, P.M., Flinn, J.: Race detection for event-driven mobile applications. In: Pro-
ceedings of 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2014, pp. 326–336. ACM (2014)

22. Bocchino Jr. R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli, R.,
Overbey, J., Simmons, P., Sung, H. and Vakilian, M.: A type and effect system for
deterministic parallel Java. In: Proceedings of OOPSLA, pp. 97–116 (2009)

23. Lin, Y., Ra, C., Dig, D.: Retrofitting concurrency for android applications through
refactoring. In: Proceedings of International Symposium on Foundations of Soft-
ware Engineering, FSE 2014, NY, USA, pp. 341–352. ACM (2014)

24. Lin, Y., Okur, S., Dig, D.: Study and refactoring of android asynchronous pro-
gramming. In: Proceedings of ASE (2015)

25. Maiya, P., Kanade, A., Majumdar, R.: Race detection for android applications.
In: Proceedings of 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014, pp. 316–325. ACM (2014)

26. Ozkan, B.K., Emmi, M., Tasiran, S.: Systematic asynchrony bug exploration for
android apps. In: Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, pp. 455–461 (2015)

27. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26(4), 631–653 (1979)

28. Sadowski, C., Freund, S.N., Flanagan, C.: SingleTrack: a dynamic determinism
checker for multithreaded programs. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol.
5502, pp. 394–409. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00590-9 28

29. Safi, G., Shahbazian, A., Halfond, W.G.J., Medvidovic, N.: Detecting event anom-
alies in event-based systems. In: Proceedings of International Symposium on Foun-
dations of Software Engineering FSE, pp. 25–37. ACM (2015)

30. Sinha, A., Malik, S., Wang, C., Gupta, A.: Predicting serializability violations:
SMT-based search vs. DPOR-based search. In: Hardware and Software: Verification
and Testing - 7th International Haifa Verification Conference, HVC 2011, Haifa,
Israel, Revised Selected Papers, pp. 95–114 (2011)

31. Steele, Jr. G.L.: Making asynchronous parallelism safe for the world. In: Proceed-
ings of 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1990, NY, USA, pp. 218–231. ACM (1990)

32. von Praun, C., Gross, T.R.: Static detection of atomicity violations in object-
oriented programs. J. Object Technol. 3(6), 103–122 (2004)

http://dx.doi.org/10.1007/978-3-642-00768-2_14
http://dx.doi.org/10.1007/978-3-540-24622-0_16
http://dx.doi.org/10.1007/978-3-540-24622-0_16
http://dx.doi.org/10.1007/978-3-642-00590-9_28

200 A. Bouajjani et al.

33. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs.
IEEE Trans. Softw. Eng. 32(2), 93–110 (2006)

34. Yi, J., Disney, T., Freund, S.N., Flanagan, C.: Cooperative types for controlling
thread interference in Java. In: International Symposium on Software Testing and
Analysis, ISSTA, pp. 232–242 (2012)

Incremental Update for Graph Rewriting

Pierre Boutillier1, Thomas Ehrhard2, and Jean Krivine2(B)

1 Harvard Medical School, 200 Longwood Avenue,
Warren Alpert Building 513, Boston, MA 02115, USA

2 IRIF and CNRS, IRIF - Université Paris Diderot - Case 7014,
8, place Aurélie Nemours, 75205 Paris Cedex 13, France

Jean.Krivine@irif.fr

Abstract. Graph rewriting formalisms are well-established models for
the representation of biological systems such as protein-protein inter-
action networks. The combinatorial complexity of these models usually
prevents any explicit representation of the variables of the system, and
one has to rely on stochastic simulations in order to sample the possi-
ble trajectories of the underlying Markov chain. The bottleneck of sto-
chastic simulation algorithms is the update of the propensity function
that describes the probability that a given rule is to be applied next.
In this paper we present an algorithm based on a data structure, called
extension basis, that can be used to update the counts of predefined
graph observables after a rule of the model has been applied. Extension
basis are obtained by static analysis of the graph rewriting rule set. It is
derived from the construction of a qualitative domain for graphs and the
correctness of the procedure is proven using a purely domain theoretic
argument.

1 Introduction

1.1 Combinatorial Models in Systems Biology

As the quest for a cure for cancer is progressing through the era of high through-
put experiments, the attention of biologists has turned to the study of a collection
of signaling pathways, which are suspected to be involved in the development of
tumors.

These pathways can be viewed as channels that propagate, via protein-
protein interactions, the information received by the cell at its surface down
to the nucleus in order to trigger the appropriate genetic response. This sim-
plified view is challenged by the observation that most of these signaling cas-
cades share components, such as kinases (which tend to propagate the signal)
and phosphatases (which have the opposite effect). This implies that signaling
cascades not only propagate information, but have also evolved to implement
robust probabilistic “protocols” to trigger appropriate responses in the presence
of various (possibly conflicting) inputs [1].

As cancer is now believed to be caused by a deregulation of such protocols,
usually after some genes coding for the production of signaling components have
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 201–228, 2017.
DOI: 10.1007/978-3-662-54434-1 8

202 P. Boutillier et al.

mutated, systems biologists are accumulating immense collections of biological
facts about proteins involved in cell signaling1. The hope of such data accumu-
lation is to be able to identify possible targets for chemotherapy that would be
specialized to a specific oncogenic mutation.

Although biological data are being massively produced thanks to high
throughput experiments, the production of comprehensive models of cell sig-
naling is lagging. One of the reasons for the unequal race between data produc-
tion and data integration is the difficulty to make large combinatorial models
executable.

1.2 Rule-Based Modeling

Site (or port) graph rewriting techniques, also called rule-based modeling [2,3],
provide an efficient representation formalism to model protein-protein interac-
tions in the context of cell-signaling. In these approaches, a cell state is abstracted
as a graph, the nodes of which correspond to elementary molecular agents (typ-
ically proteins). Edges of site graphs connect nodes through named sites (some-
times called ports) that denote a physical contacts between agents. Biological
mechanisms of action are interpreted as rewriting rules given as pairs of (site)
graphs patterns.

Importantly, rules are applied following a stochastic strategy, also known
as SSA or Gillespie’s algorithm for rule-based formalisms [4]. KaSim [5] and
NFSim [6] are two efficient rule-based simulators that implement this algorithm.

A critical part of the stochastic rewriting procedure is the maintenance, after
each rewriting event, of all possible matches that rules may have in the current
state of the system, which is a (large) site graph called mixture2. This number
determines the probability that a rule is to be applied next. In general we call
observables the graph patterns the matches of which need to be updated after
each rewriting event. If all rules’s left hand sides are mandatory observables, any
biologically relevant observation the modeler wishes to track over time has to be
declared as an observable as well.

1.3 Rewrite and Update

Beside the initialization phase where all observable matches are identified in the
initial graph, observable matches need to be updated after a state change. The
update phase can be split into two steps: the negative update in which observable
matches that no longer hold in the new state are removed, and the positive update
in which observable matches that have been created by a rule application should
be added.
1 More than 18,000 papers mentioning the protein EGFR, a major signaling protein,

either in their title or abstract have been published since 2012. For the year 2015
only there are nearly 5,000 papers for EGFR (source pubmed).

2 To fix the intuition, let us say that a realistic model of cell signaling would have a
few million agents of about a hundred protein types, and several hundreds of rewrite
rules, possibly thousands when refinements are automatically generated.

Incremental Update for Graph Rewriting 203

Contrarily to multiset rewriting, in graph rewriting the effect of a rule on
a mixture cannot be statically determined. Once a rule has been applied it is
necessary to explore the vicinity of the modification to detect potential new or
obsolete matches. During this exploration, one may restrict to searching for graph
patterns that have a chance to be added (resp. removed) by the modification. In
the algorithm presented in Ref. [4], a relation called activation (resp. inhibition)
is computed statically during the initialization phase of a simulation. After a
rule r has been applied, the algorithm will look for new instances of observable o
only if r activates o. Similarly, a given instance of an observable o′ may disappear
after the application of r only if r inhibits o′.

There are two essential problems left aside by this simple update method:
first, knowing that a new instance of an observable might be created (or deleted)
as a consequence of a rewrite does entail one knows in how many ways this
observable can be found. In particular when dealing with a large amount of pos-
sible symmetries, there might be several equivalent ways to find a new match.
So the first problem to deal with is of combinatorial nature: we wish to statically
identify all the different manners an observable can be discovered, starting the
exploration from a particular sub-graph of this observable (which corresponds
to part that may be created or erased by a rewrite). The second issue is to avoid
having redundant explorations of the graph after a rewrite: with the classical
method sketched above, each observable activated (or inhibited) by the occur-
rence of a rule need to be searched for. Yet several observables might share
sub-graphs. This is particularly true in models that present a lot of refinements
of the same rule [7]. In other terms, we wish to design an update method that
factors explorations of the graph that can be shared by several observables.

1.4 Outline

This paper presents a novel method for incremental graph rewriting that
addresses both issues listed above. We first introduce a domain of concrete graphs
(Sect. 2), which can be tuned to various types of graphs and, importantly for the
application case of this work, to site-graphs.

This domain will serve as mathematical foundation in order to specify the
incremental update function (Sect. 3).

We will then describe extension bases (Sect. 4), which can be viewed as a rep-
resentation of the activation and inhibition relations taking into account sharing
and conflict between observables.

These extension bases enable us to implement our incremental update pro-
cedure (Sect. 5), and we eventually check that the method is correct using the
domain theoretic argument developed in Sect. 3.

204 P. Boutillier et al.

2 Concrete Domain

O1 O2

x

y

z

t

u

v

x

yv

t

uz

y

zu

v

Observables
(abstract graphs)

(concrete)
Graph state K

Two instances
of O1 in K

One instance
of O2 in K

Graph terms can be viewed in two dif-
ferent manners: observables of the system
(for instance the left hand sides of the
rules) are understood as abstract graphs,
while the graph representing the state that
is to be rewritten is concrete. In abstract
graphs, nodes identifiers are used up-to con-
sistent renaming, and two isomorphic observ-
ables denote in fact the same observable, for
instance any graph in the shape of a triangle
or a rectangle (see right figures).

The state of the rewriting system, however, can be viewed as a concrete
graph in the sense that its nodes are used as a reference to track (potentially
isomorphic) observables.

Thus, observable instances in the state are concrete: a new instance may
appear in the state although isomorphic instances existed before.

Since the present work deals with the problem of updating observable
instances in a graph state, following a rewriting event, we begin by establishing a
simple mathematical framework, which enables us to describe in an extensional
fashion, the universe in which concrete graphs live.

2.1 Graphs as Sets

Let N be a countable set of nodes with meta-variables {u, v, . . . }. Edges E ⊆
P2(N) are unordered pairs of nodes with meta-variables {e, e′ . . . }. We say that
e and e′ are connected, whenever e ∩ e′ �= ∅. We use meta-variables G,H, . . . to
denotes elements of P(E).

We consider a coherence predicate Coh : P(E) → 2, which is downward
closed by inclusion, i.e. Coh G and H ⊆ G implies Coh H. A concrete graph
is a coherent element of P(E). We use G ⊆ P(E) to denote the set of concrete
graphs, i.e. G =def {G ∈ P(E) | Coh G} and for all G ∈ G, we use the notation
|G| =def

⋃ {e ∈ G}.
Concrete graphs and set inclusion form the concrete domain of coherent

graphs. Note that G is an instance of Girard’s qualitative domain [8]. For all
H ⊆ G, we use ↑H and ↓H to denote the upper and lower sets of H in G. Note
that in particular ↓{G} = P(G).

For all graphs G,H we say that G is more abstract than H (resp. more
concrete) whenever G ⊆ H (resp. H ⊆ G).

Kappa Graphs. Since efficient Kappa graph rewriting is the main motivation of
the present work, we spend some time now to describe Kappa and show how the
formalism fits into our general framework.

Kappa graphs are particular kinds of coherent graphs where a node denotes a
protein patch, which can either be free (i.e. not connected to any other protein)

Incremental Update for Graph Rewriting 205

or in contact with another protein patch. We encode this by adding a bit of
structure to nodes, taking N ⊆ A × N where A =def {a, b, . . . } is a countable
set of agents (protein individuals) that are sorted by the map κ : A → K, where
K = {A,B,C, . . . , free} is a finite set of node kinds (the biological name of the
protein) with a distinguished element free. Therefore in Kappa, a node is of
the form u = (a, i) where i ∈ N is called the site of agent a (a patch of a).
A signature Σ : K → N maps a kind to a (finite) sequence of sites identified by
natural numbers, with Σ(free) =def 1.

The coherence relation for Kappa is Coh =def Sorted ∧ ConfFree, where:

Sorted(G) =def ∀e ∈ G. ((a, i) ∈ e =⇒ i ≤ (Σ ◦ κ)a)
ConfFree(G) =def ∀e, e′ ∈ G. (e = e′ ∨ e ∩ e′ = ∅)

A

B B

A

Free Free

(a, 1)

(b, 0)

(b, 1)

(c, 0) (c′, 0)

(b′, 1)

(b′, 0)

(a′, 1)

We picture on the right an example of a Kappa graph.
Nodes (small circles) sharing an agent are depicted
attached to the same large circle, named after the kind
of the agent. The node (b, 1) that is connected to a free
node encodes the fact that this protein patch is avail-
able for a future interaction. The corresponding graph
is obtained as the union of {{(a, 1), (b, 0)}, {(b, 1), (c, 0)}}
and {{(a′, 1), (b′, 0)}, {(b′, 1), (c′, 0)}}.

2.2 Effects

In the graph rewriting literature, techniques to decide whether a rule can be
applied to a graph come in various flavors [9–11]. In the present work, we do not
need to discuss this problem and focus on what happens after a rule has been
applied to a graph: we call this the effect of a rewrite. The only important point
here is that we only consider deterministic effects. For the reader knowledgeable
in graph rewriting techniques, they correspond to effects induced by double
pushout rewriting [9], where the only way to delete a node is to explicitly delete
all edges in which the node appears.

The effect, η, η′, . . . , of a rewrite can be decomposed as a triple of the form
(G,H−,H+) ∈ G3 where G is the sub-graph that is tested by η, and where H−

and H+ are respectively the abstraction and concretization steps of η. Intuitively,
G are the edges that are required for the rewrite to take place (the match of
the left hand side of a rule), H− and H+ are the edges that are respectively
removed and added during the rewrite step. We do not consider side-effects, i.e.
those that do not satisfy H− ⊆ G. An effect η = (G,H−,H+) occurs on a graph
K if:

– It is valid, i.e.: G ⊆ K
– It is visible, i.e.: K ∩ H+ = ∅
– It is defined, i.e.: (K\H−) ∪ H+ ∈ G
For all such effect η and graph K, we define η ·K =def (K\H−) ∪ H+. For
all effect η = (G,H−,H+) and for all graph K in which η occurs, we define

206 P. Boutillier et al.

pre(η) =def G, the set of edges that are necessarily present in K. Similarly we
define post(η) =def (G\H−) ∪ H+ which is the set of edges that are necessarily
present in η ·K. For the remaining of the paper we only discuss defined effects
which are both valid and visible3.

Kappa Effects. To conclude this section and in order to illustrate effects in the
context of Kappa, we show below an effect η and its occurrence in the graph K
(Fig. 1).

Fig. 1. Illustrating effect in Kappa: η = (G, H−, H+) occurs in K, with K′ = η · K.

2.3 The Update Problem

Let Φ denote the set of possible effects over graphs in G and consider a fixed
set O ⊆ G of observable graphs. Let Obs : G → P(O) be the observation map
defined as Obs G =def {O ∈ O | O ⊆ G}.

A macroscopic effect ℵ ∈ P(O) × P(O) is a pair of observable sets ℵ =
〈Ω−, Ω+〉 satisfying Ω− ∩ Ω+ = ∅. For all O′ ⊆ O, we define ℵ � O′ =def

(O′\Ω−) ∪ Ω+. Intuitively a macroscopic effect describes the set of observables
that should be removed (in Ω−) and added (in Ω+) after a rewrite has occurred.

We are now in position to state the incremental update problem: let K be a
graph and η an effect such that η ·K is defined. We wish to define a function

Δ : Φ → G → P(O) × P(O)

that satisfies the following equation:

(Δ η K) � (Obs K) = Obs (η ·K) (1)
3 All rewriting techniques satisfy these properties, although only double pushout guar-

antees the absence of side effect.

Incremental Update for Graph Rewriting 207

Application. Whenever all possible effects η ∈ Φ satisfy pre(η) ∈ O, and given the
set OK of observables that have an occurrence in a graph K, the a priori costly
function Obs (η ·K) can be evaluated by computing (Δ η K) � (Obs K). This
is a property that is desirable for any efficient implementation of the stochastic
simulation algorithm (SSA) [4], in which OK needs to be updated after each
rewrite step in order to evaluate the propensity function.

The function Δ will be characterized as a fixpoint of an incremental (one-
step) update function on a particular directed sub-domain of G. We turn now to
its specification.

3 Exploration Domains

O1

O2

O3

O4

O5

Exploration
domain
(pos.)

Exploration
domain
(neg.)

Invariant
observables

False
positive

(neg. upd.)

False
positive

(pos. upd.)

H−
i H+

i

Ki Ki+1During a sequence of rewrites K0,K1, . . . ,Kn,
the effect ηi = (Gi,H

−
i ,H+

i) that occurs
during the transition from Ki to Ki+1 pro-
vides the starting point of the update pro-
cedure: the observables that should disap-
pear are those that are above H−

i and below
Ki, while the observables that should appear
are at those above H+

i and below Ki+1 (see
the diagram on the right). Notice that both
observables O4 and O5 are above H+

i but only
O4 is also in ↓{Ki+1}. In this case O5 is not
created by the effect and we call it a false pos-
itive. In the same example, the instance O3 is preserved by the effect, as a con-
sequence it cannot be above either H−

i or H+
i .

In the following of this section we assume a fixed graph K and an effect
η =def (G,H−

η ,H+
η) such that η ·K is defined. In order to emphasize the symme-

try between positive and negative update, we introduce the notation K− =def K,
K+ =def η ·K, π−

η =def pre(η) and π+
η =def post(η) (see Sect. 2.2). In the follow-

ing, the informal superscript ε can be replaced globally by either − or +

in order to specialize the mathematical description to the negative or positive
update.

3.1 Observable Witnesses

Define first the set of witness graphs (W,W ′, . . .), the presence of which will
serve as a proof of negative or positive update of an observable, induced by the
occurrence of η:

Wε
η =def {W ∈ G | ∃O ∈ O, O ∩ Hε

η �= ∅ ∧ W = O ∪ πε
η}

For all W ∈ Wε
η , we say that W is an η-witness of O ∈ O if O ∩ Hε

η �= ∅ and
W = O ∪ πε

η and we write W �ε
η O. Notice that W may be the η-witness of

several observables.

208 P. Boutillier et al.

Proposition 1. For all W ∈ W−
η and O ∈ O such that W �−

η O:

W ⊆ K− ⇐⇒ O ∈ (Obs K−) ∧ O �∈ (Obs K+) (2)

Similarly, for all W ∈ W+
η and O ∈ O such that W �+

η O:

W ⊆ K+ ⇐⇒ O �∈ (Obs K−) ∧ O ∈ (Obs K+) (3)

Proposition 1 guarantees that after η has occurred on K, it is sufficient to
extend the graph πε

η with edges taken from Kε in order to reach a witness in
Wε

η . For each W ⊆ Kε that are more concrete than πε
η, the observable O ∈ O

that satisfies W �ε
η O is (positively or negatively) updated.

3.2 Exploration Boundaries

The updatable witnesses after the occurrence of η are the witnesses that are
more abstract than Kε. Since ↓{Kε} forms a complete lattice (it is simply the
sub-parts of Kε), the graph:

Ŵ ε
η,K =def

⋃
{W ∈ Wε

η | W ⊆ Kε}
is always defined and corresponds to the union of all witnesses that are present
in Kε.

Definition 1 (Optimal update domain). We call:

X ε
η,K =def ↓{Ŵ ε

η,K} ∩ ↑{πε
η}

the optimal (negative or positive) update domain for η and K.

Proposition 2. For all witness W ∈ Wε
η , W ⊆ Kε if and only if W ∈ X ε

η,K .

Proposition 2 indicates that after an effect η has occurred, X ε
η,K is the small-

est domain one needs to explore in order to discover all updatable witnesses.
Yet, one cannot hope that a realistic update procedure stays within the bound-
aries of X ε

η,K because some witnesses may seem to be updatable given πε
η, but

are in fact not reachable within Kε (they are the false positives, discussed in
the introduction of this section). The remaining of this section is dedicated to
the specification of the directed set that is being explored during the update
procedure, and that is defined as an over-approximation of X ε

η,K .
We first define the η-domain which is coarsening of the optimal update

domain:

Definition 2 (η-Domain). For all H ⊆ G, we define the ∪-closure of H, writ-
ten ↑∪ H, as:

↑∪ H =def max{G ∈ G | G =
⋃

i

Hi ∈ H}

where for all H ⊆ G, max H is the set of maximal graphs in H. We use this
construction to define the η-domain:

Dε(η) =def ↓(↑∪ Wε
η) ∩ ↑{πε

η}

Incremental Update for Graph Rewriting 209

Notice that ↑∪ H =
⋃ H when H has a supremum.

Contrary to the optimal update domain X ε
η,K (Definition 1), the η-domain

Dε(η) is independent of Kε. By itself it is not a correct over-approximation of
the optimal update domain, since it is not in general a directed set. However
we get a fine grained approximation of the optimal update domain when one
restricts (on the fly) explorations of Dε(η) to graphs that are also below Kε (see
Fig. 2 for illustration):

Proposition 3 (Over-approximation). For all effect η and graph K such
that η occurs on K, the following directed sets are ordered by inclusion:

X ε
η,K ⊆ (Dε(η) ∩ ↓{Kε}) ⊆ ↓{Kε} (4)

∅

X ε
η,K

↓{Kε}

πε
η

Dε
η

Ŵ ε
η,K

Kε

⋃
(Dε

η ∩ ↓ {Kε})

Fig. 2. An exploration of X ε
η,K (leftmost dotted line) and an exploration of Dε(η) ∩

↓{Kε} (rightmost dotted line). Circles denote witnesses. In the first exploration all
edges that are added along the exploration belong to a witness that is also within Kε.
The exploration stops exactly at the supremum of all reachable witnesses, i.e. the sup
of the optimal update domain (Definition 1). The rightmost exploration correspond to
a path where edges are added only if the resulting graph belong to the η-domain Dε(η)
(Definition 2) and is present in ↓{Kε}. The difference between the endpoints of the
rightmost and leftmost explorations corresponds to the edges that have been inspected
with no corresponding updatable witness.

3.3 Specifying the Incremental Update Function

We have now everything in place to specify the incremental update function Δ
of Sect. 3. In order to do so, we require that a call to (Δ η K) be the fixpoint of
a one-step exploration function that we specify now. Consider a function incε

η,K :

incε
η,K : Dε(η) × P(Wε

η) → Dε(η) × P(Wε
η)

210 P. Boutillier et al.

such that whenever
incε

η,K〈X,R〉 = 〈X ′,R′〉
the following properties hold:

X ′ = X ∪ G if there exists G ⊆ Kε satisfying G ∩ X = ∅ and G ∈ Dε(η)
X ′ = X otherwise (5)

R′ = {W ∈ Wε
η | W ⊆ X} (6)

Intuitively, the first argument of the function is a graph X (for explored)
corresponding the current endpoint of the exploration of Dε(η) ∩ ↓{Kε}. The
second argument R (for reached) correspond to the set of observable witnesses
that have been discovered so far. Condition (5) ensures that the explored sub-
graph X of Kε grows uniformly, and inside the boundaries of Dε(η) until it
reaches its supremum. In the meantime, Condition 6 is making sure that all
witnesses that are below X have been collected.

Lemma 1. Any implementation of incε
η,K satisfying the above specification

admits a least fixpoint of the form:

〈�ε
η,K , ↓{Kε} ∩ Wε

η〉
where �ε

η,K =def

⋃
(Dε(η) ∩ ↓{Kε}).

Lemma 1 ensures that the iteration of the one-step incremental update func-
tion terminates and returns a pair, the second argument of which is precisely
the set of updatable witnesses, i.e. those that are the same time above πε

η and a
sub-graph of Kε.

Definition 3 (Incremental update function). For all effect η and all graph
K such that η ·K, and all correct implementation of incε

η,K , let:

(inc−
η,K)ω〈pre(η), ∅〉 = 〈 ,R−〉

(inc+η,K)ω〈post(η), ∅〉 = 〈 ,R+〉
let also Ωε : P(Wε

η) → P(O) be:

Ωε R =def {O ∈ O | ∃W ∈ R.W �ε
η O}

we define the incremental update function as:

Δ η K =def 〈(Ω− R−), (Ω+ R+)〉
Theorem 1. For all effect η and all graph K such that η ·K,

(Δ η K) � (Obs K) = (Obs η ·K)

Theorem 1 concludes this section by stating that, provided our one-step incre-
mental update function satisfies its specification, its fixpoint correspond to the
macroscopic effect 〈Ω−, Ω+〉 that we are looking for.

Incremental Update for Graph Rewriting 211

4 Abstraction

Although Dε(η) is an invariant domain, it cannot be used as a data structure per
se (it is an infinite object). For the update algorithm we use a data structure that
can be viewed as a quotient of Dε(η) in which isomorphic graphs are identified.
This quotienting of the concrete domain is naturally described using a categorical
terminology.

4.1 Graph: a category of graphs

A graph homomorphism, f : G → H, is an injective function on nodes f : |G| →
|H| that preserves edges, i.e.:

{u, v} ∈ G =⇒ {f(u), f(v)} ∈ H

We call Graph the category that has graphs as objects and we use Hom(G) to
denote the set of its arrows. We use φ, ψ, . . . for graph isomorphisms.

A Category for Kappa Graphs. In order to tune Graph to Kappa we require that
morphisms should be injective on agents and preserve sorting, i.e. κ ◦ f = κ (see
Fig. 5 for an example).

Property 1 (Pullbacks). For all co-span:

f : 〈f1 : G1 → H, f2 : G2 → H〉

there is a unique span:

pb(f) : 〈g1 : H0 → G1, g2 : H0 → G2〉

satisfying f1g1 = f2g2 and such that for any alternative
span g ′ there is a unique morphism h that makes the right
diagram commute.

H

G1

f1
�������

G2

f2
�������

H0

g1
�������

g2
�������

H1

!h

��
g′
1

��

g′
2

��

We follow now the relative pushout terminology introduced in the context of
bigraphical reactive systems [12]. A span:

f : 〈f1 : H → G1, f2 : H → G2〉

admits a bound :
g : 〈g1 : G1 → H ′, g2 : G2 → H ′〉

whenever g1f1 = g2f2. Given a span f and a bound g , we say that f has a
bound:

h : 〈h1 : G1 → H ′′, h2 : G2 → H ′′〉
relative to g , if there exists a morphism h : H ′′ → H ′ such that hh1 = g1 and
hh2 = g2. We call the triple (h,h) a g -relative bound of f .

212 P. Boutillier et al.

Property 2 (Relative pushout). A span f that
admits bound g also admits a best g -relative
bound (h,h) such that for all alternative g -
relative bound (k, k), there exists a unique mor-
phism j such that jh1 = k1 and jh2 = k2.
This best g -relative bound (h,h) is called a g -
relative pushout for f (see right diagram).

H ′

K

k

�����������

G1

g1

��

h1

��

k1

�������������
H ′′

!j

		

h

��

G2
h2

k2
�������

g2

��

H
f1

						 f2

��

Note in particular that if (h,h) is a g -relative pushout for f , then h is a
bound for f . So in the above diagram we have that (idH′′ ,h) is an h-relative
pushout for f and we simply say that h is an idem pushout for f , written
IPOf (g).

Define the multi-pushout of a span f as the set of its idem pushouts, i.e.:

Mpo(f) =def {g | IPOf (g)}

The following proposition states that any bound for a span f factors uniquely
(up-to iso) through one member of Mpo(f). In other words, elements of the
multi-pushout of f are either isomorphic, or conflicting.

Proposition 4. Let g be a bound for f. For all h,h′ ∈ Mpo(f) if there exists k, k′

such that khf = k′h′f = gf then there exists a unique iso φ such that φhf = h′f.

Proof. (sketch). The proof is a straightforward application of the relative
pushout properties. Since both h and h ′ are g -relative pushouts, there is a unique
morphism j and a unique morphism j′ such that jhf = h ′f and hf = j′h ′f .
Since j and j′ are injective they are also isos. ��
We will need one final construction which defines the gluings of two graphs. It
is obtained by first using the pullback construction, and then building a multi-
pushout:

Definition 4 (gluing). Let:

Inter(G,H) =def {f : 〈f1 : I → G, f2 : I → H〉 | I �= ∅ ∧ ∃g s.t f = pb(g)}

We define:
Gluings(G,H) =def

⋃

f∈Inter(G,H)

Mpo(f)

We conclude this section by illustrating Fig. 3, the concept of multi-pushout in
the context of Kappa, previously described in Ref. [13].

Incremental Update for Graph Rewriting 213

Fig. 3. The multi-pushout of the lower span contains 2 possible bounds (up-to iso).
All closed diagrams are commuting.

4.2 Extension and Matching

We wish now to define a way to capture a notion of “abstract exploration”.
Such exploration is defined by means of extension steps (see Definition 7 of this
section) along a statically computed “chart”, called an extension basis. We illus-
trate Fig. 4 the main ideas of this extension basis. In order to build an extension
basis, we need a first notion of morphism equivalence called extension equiv-
alence that equates morphisms that denote the same “way” of discovering a
graph starting from a smaller one. In order to use the extension basis during
the update procedure we need a second notion of equivalence called matching
equivalence that equates morphisms that denote the same instance (or match)
of a graph into the concrete state. With extension and matching morphisms, we
define a procedure, called extension step, that produces an exploration of the
concrete domain, which is at the core of the update procedure (see Fig. 4 for an
example).

Definition 5 (Extension equivalence). Two morphisms f :
G → H and g : G → H ′ are equivalent with respect to extension,
written f ∼ext g, if there exists an iso φ : H → H ′ that makes the
right diagram commutes. Whenever f ∼ext g we say that f and g
denote the same extension.

G
f ��

g ���
��

��
� H

φ
��

H ′

Extension classes come with the dual notion of matching classes that enables
one to count different instances of a graph into another one.

Definition 6 (Matching equivalence). Two morphisms f :
G → H and g : G′ → H are equivalent with respect to match-
ing, written f ∼mat g, if there exists an iso φ : G → G′ that makes
the right diagram commutes. Whenever f ∼mat g we say that f
and g denote the same match.

G
f ��

φ
��

H

G′
g

��������

Another way to describe matching equivalence between f and g is that their
codomain coincide:

Property 3. Two morphisms f : G → H and g : G′ → H are matching equivalent
if and only if f(G) = g(G′).

214 P. Boutillier et al.

Fig. 4. An extension basis (thick arrows) describing how to “discover” G1 and G2

starting from G0. The colored A node helps tracking the identity of A through the
basis: note here that the basis has two distinct ways of discovering G1 from G0, each
of which has its own extension into G2. Given an initial match g0 into K, one may
extend g0 into g1 through f , and then g1 into g2 through the extension h. Note that
f ′ fails to extend g0 in K.

For all f ∈ Hom(G), for all g, h ∈ Hom(G), we say that g is extended by f into
h, whenever g = hf . We say that the extension is trivial when f is an iso.

Importantly, two maps g : G → K and g′ : G → K denoting the same match
can be respectively extended by a map f : G → H into distinct matches of H
into K (Fig. 6, left diagram). Similarly, two distinct matches g : G → K and
g′ : G → K might be extended by f : G → H into maps that denote the same
match (Fig. 6, right diagram).

Definition 7 (Extension step). Let Γ ⊆ Hom(G,K) and Γ ′ ⊆ Hom(H,K)
for some G,H,K ∈ G. For all F ⊆ Hom(G), the pair (Γ, Γ ′) defines an F-
extension step if Γ ′ = ExtF,K(Γ) with:

ExtF,K(Γ) =def {h : H → K | ∃(f : G → H) ∈ F ,∃g ∈ Γ : g = hf}

Incremental Update for Graph Rewriting 215

Fig. 5. Two morphisms f and g that belong to the same extension class (since f = φg)
but define two distinct matchings of G in H (there is no iso ψ such that f = gψ).

For all set S and ≈ ⊆ S × S an equivalence relation over elements of S, we
define:

[S]≈ =def {S ′ ⊆ S | ∀s ∈ S,∃!s′ ∈ S ′ : s ≈ s′}

Definition 8 (Extension basis). Consider a set of morphisms F ⊆ Hom(G).
We say that F is an extension basis if it satisfies [F]ext = {F}.
In Definition 7, ExtF,K(Γ) extends an arbitrary set of maps Γ into all possible
extensions of g ∈ Γ by a map in F . This raises two issues: first, we wish to build
extension steps between sets of matches into K and not all equivalent ways of
denoting the same match. So one may wonder what one obtains if, instead of
computing ExtF,K(Γ), one were to compute ExtF,K(Γ ′) for some Γ ′ ∈ [Γ]mat.
Second, the set F might be arbitrarily large, and we wish to compute the same
extension step with a smaller set of maps.

The Extension theorem below provides an answer to these two issues: com-
puting ExtF,K(Γ) is essentially equivalent to computing ExtF ′,K(Γ ′) if one picks
F ′ ∈ [F]ext and Γ ′ ∈ [Γ]mat.

Theorem 2 (Extension). Let F ⊆ Hom(G,H), and Γ ⊆ Hom(G,K). For all
Γ ′ ∈ [Γ]mat, for all extension basis F ′ ∈ [F]ext, we have:

ExtF ′,K(Γ ′) = ∅ ⇐⇒ ExtF,K(Γ) = ∅ (7)

[ExtF ′,K(Γ ′)]mat ⊆ [ExtF,K(Γ)]mat (8)

Importantly, replacing F by an arbitrary extension basis and Γ by an arbitrary
member of [Γ]mat is not a neutral operation with respect to extension step.
However the resulting set of maps is indistinguishable from ExtF,K(Γ) if one
equates matching equivalent maps.

216 P. Boutillier et al.

Fig. 6. Left diagram (loosing symmetry): two equivalent matches g and g′ can be
extended by f into two distinct matches. Right diagram (gaining symmetry): two dis-
tinct matches g and g′ can be extended by f into the same match.

Notice also that although [Γ ′]mat = {Γ ′} (Γ ′ is already stripped of any redun-
dant map), in general [ExtF ′,K(Γ ′)]mat �= {ExtF ′,K(Γ ′)} because one exten-
sion step, even using purely non equivalent extensions, may produce matching-
equivalent maps (see Fig. 6, right example). However we can prove that it is not
possible to extend the same map g into two matching-equivalent h and h′ unless
one has used extension-equivalent maps to do so:

Proposition 5. Consider the commuting diagram on the right, if
there exists an iso φ : H → H ′ such that h = h′φ, then φf = f ′.
As a consequence h ∼mat h′ =⇒ f ∼ext f ′.

H
h

����
��

φ

��

G

f ������

f ′ ���
��

� = K

H ′ h′

������

Proof. By hypothesis we have hf = h′f ′. Suppose we have h = h′φ for some
iso φ. So we have h′φf = h′f ′ by substituting h in the hypothesis. Since h′ is
injective, we deduce φf = f ′ and f ∼ext f ′ follows by Definition 5. ��
In combination with the example of Fig. 6 (right diagram), this proposition essen-
tially guarantees that, when using an extension basis, the only way to produce
matching-equivalent extensions is to start from two maps that were not match-
ing equivalent. This remark will become handy when we describe our update
algorithm in Sect. 5.

4.3 Proof of the Extension Theorem

We begin by a lemma that shows one cannot lose any match into K after the
extension step if one disregards extension-equivalent maps in F :

Lemma 2. Consider the commuting diagram on the right, if there
exists an iso φ : H → H ′ such that f ′ = φf , then there exists
h′′ ∼mat h′ such that g = h′′f .

H
h

����
��

φ

��

G

f ������

f ′ ���
��

�= K

H ′ h′

������

Incremental Update for Graph Rewriting 217

Eventually we need a Lemma that shows it is also not possible to lose a match
into K after the extension step, if one disregards matching-equivalent maps in
Γ .

Lemma 3. Let g : G → K, f : G → H and h : H → K an f-extension of g.
The following proposition holds:

∀g′ ∼mat g,∃h′ ∼mat h s.t either

{
g′ = h′f or
∃f ′ �∼ext f s.t g′ = h′f ′

We are now in position to prove the Extension Theorem.

Proof (Theorem 2). We first prove Eq. (7).

– Suppose ExtF ′,K(Γ ′) = ∅, by definition this implies:

{h | ∃f ∈ F ′ : hf ∈ Γ ′} = ∅

This can be either true because Γ ′ = ∅ (point 1) or because no f in F ′ satisfies
hf ∈ Γ ′ for some h (point 2).
1. Since Γ ′ = ∅ and Γ ′ ∈ [Γ]mat, we have that Γ = ∅. In turn, this entails

that ExtF,K(Γ) = ∅.
2. Looking for a contradiction, suppose that some f ∈ F is such that hf ∈ Γ

for some h. Since we supposed that no f ∈ F ′ satisfies hf ∈ Γ ′ necessarily
f �∈ F ′. But since F ′ ∈ [F]ext there exists f ′ ∈ F ′ such that f ′ ∼ext f .
According to Lemma 2, there exists h′ ∼mat h such that h′f ′ ∈ Γ ′ which
entails a contradiction. Therefore no f in F satisfies hf ∈ Γ for any h
and Γ = ∅.

– Suppose that ExtF,K(Γ) = ∅. Since Γ ′ ⊆ Γ it follows immediately that
ExtF ′,K(Γ ′) ⊆ ExtF ′,K(Γ ′) and hence ExtF ′,K(Γ ′) = ∅. ��

We now prove Eq. (8). Note that it is equivalent to proving:

∀h ∈ ExtF,K(Γ), h �∈ ExtF ′,K(Γ ′) =⇒ ∃h′ ∼mat h : h′ ∈ ExtF ′,K(Γ ′) (9)

So let us suppose there is some h such that h ∈ ExtF,K(Γ) and h �∈ ExtF ′,K(Γ ′).
Recall that h ∈ ExtF,K(Γ) implies that hf ∈ Γ for some f ∈ F . In addition,
h �∈ ExtF ′,K(Γ ′) implies that for all f ′ ∈ F ′, hf ′ �∈ Γ ′. Now there are several
cases to consider:

– f ∈ F ′ and hf ∈ Γ ′. This would imply that h ∈ ExtF ′,K(Γ ′) which would
contradict our hypothesis.

– f ∈ F ′ and hf �∈ Γ ′. Since Γ ′ ∈ [Γ]mat we know there exists g ∈ Γ ′ such that
g ∼mat hf . We apply Lemma 3 to deduce that there exists h′ ∼mat h and f ′

such that h′f ′ = g. Still according to Lemma 3, either f ′ = f (point 1) or
f ′ �∼ext f (point 2).
1. Since f ∈ F ′ we have that h′ ∈ ExtF ′,K(Γ ′).

218 P. Boutillier et al.

2. Since F ′ ∈ [F]ext, f ′ �∼ext f implies there is f ′′ ∼ext f ′ such that f ′′ ∈ F ′.
We apply Lemma 2 to deduce that there exists h′′ ∼mat h′ such that
f ′′h′′ ∈ Γ ′. By transitivity of ∼mat we have h′′ ∼mat h and we do have
h′′ ∈ ExtF ′,K(Γ ′).

– f �∈ F ′ and hf ∈ Γ ′. Since F ′ ∈ [F]ext we know there exists f ′ ∈ F ′ that
satisfies f ′ ∼ext f . We apply Lemma 2 to deduce that there is h′ ∼mat h such
that h′f ′ ∈ Γ ′. It entails that h′ ∈ ExtF ′,K(Γ ′).

– f �∈ F ′ and hf �∈ Γ ′ and we proceed by combining the arguments of the two
previous points. ��

5 The Update Algorithm

In this section we show how to utilize extension bases and extension steps to
implement the incremental update function specified in Sect. 3. We describe
Fig. 7 the interplay of extension steps and exploration of the concrete domain.

Fig. 7. Extension steps and domain exploration. The occurrence of η on K provides
a map g : G0 → K and the concrete identity of G0 in K. The algorithm looks for
all possible extension steps above G0 in the statically computed basis. The extensions
that succeed are represented with plain line arrows. Those that fail are represented
with dotted line arrows. For instance no extension step is able to provide a match for
G4 in K.

5.1 Abstract Effects

Graph rewriting systems are given as a set of rewriting rules of the form

r : L ⇀ R

where r is a partial map between L ∈ G and R ∈ G. Formally such a partial map
is given as a span r = 〈lhs : D → L, rhs : D → R〉 where D ∈ G is the domain of

Incremental Update for Graph Rewriting 219

definition of r and lhs (resp. rhs) stands for the left hand side map of r (resp.
right hand side). For all such span r , we define:

H+
r =def R\rhs(D) H−

r =def L\lhs(D)

Definition 9 (abstract effect). Let r be a rule. The abstract effect of r, writ-
ten η�

r, is the pair of maps:

η�
r =def 〈f−

r : H−
r → L, f+

r : H+
r → R〉

where fε
r is the identity on its domain.

We give Fig. 8 an example of the derivation of an abstract effect from a Kappa
rule.

Fig. 8. Deriving an abstract effect from a Kappa rule. The Kappa rule is given as a
partial map r : L ⇀ R (upper part). The corresponding abstract effect is a pair of
maps (f−

r , f+
r) describing respectively the edges that are removed and added by the

rule.

Definition 10 (K-occurrence). Consider an abstract effect

η�
r = 〈f−

r : H−
r → L, f+

r : H+
r → R〉

For all concrete state K, a K-occurrence mK,r of η�
r is a pair of maps:

mK,r =def (g− : L → K, g+ : R → K)

and we write mK,r(η�
r) = η whenever:

η = (g−(L), g−f−
r (H−

r), g+f+
r (H+

r))

220 P. Boutillier et al.

5.2 Extension Basis Synthesis

Recall from Sect. 2.3 that we consider a set O ⊆ G of observable graphs. Since the
observables (including any match of the left hand sides of a rule) are intentionally
given as a finite set of abstract graphs (see Sect. 2), we may assume that every
elements of [O]iso is finite, where ∼iso is the graph isomorphism equivalence
relation. Let us thus consider an arbitrary Ô ⊆ G such that Ô ∈ [O]iso.

For all rule r , we define now the procedure to build a negative and positive
r -extension basis, respectively B+

r ⊆ Hom(G) and B−
r ⊆ Hom(G).

Similarly to Sect. 3 we adopt the following naming convention: for all r : L ⇀
R we write π+

r =def R and π−
r =def L and the superscript ε should be globally

replaced by either + or − to specialize a definition to the positive or negative
update.

Procedure 1: “Backbone” extension basis synthesis (see Sect. 4.1 for the cate-
gorical constructions used in the procedure).

Input: a rule r and the set of (abstract) observables Ô.

1. Compute the abstract effect η�
r = 〈f−

r : H−
r → π−

r , f+
r : H+

r → π+
r 〉

2. For all O ∈ Ô, build Λε
O ∈ [Gluings(Hε

r , O)]ext
3. For all 〈f : O → G,h : Hε

r → G〉 ∈ Λε
O, build Λε

O,h ∈ [Mpo(h, fε
r)]ext

4. Bε
r =def {f | ∃O,∃h,∃g s.t 〈g, f〉 ∈ Λε

O,h}
5. return Bε

r

An important point with respect to combinatorial explosion is the following:

Proposition 6. At step 3 and for all h, Λε
O,h contains at most one element.

In a nutshell, at step 2 one computes all possible gluings of Hε
r with some

observable O. At step 3 we build abstract witnesses by means of multi-pushout
construction. Finally step 4 assembles into Bε

r all extensions f : πε
r → W that

are the left component of an idem-pushout built in the previous step. We provide
and example, Fig. 9, of the construction of the “backbone” extension basis in the
context of Kappa.

We call this extension basis a “backbone” because it only contains direct
extensions from πε

r to some witness. We will see shortly how to enrich this back-
bone basis into a new basis that takes into account sharing between witnesses.

In the meantime, we may readily state a lemma that guarantees that exten-
sions steps along Bε

r produce concrete witnesses. Consider a basis Bε
r build from

a rule r and a set of abstract observables following Procedure 1. Recall that any
K-occurrence of η�

r is a pair of maps (g−
0 , g+0) that identify the edges that are

respectively removed and added in K. Whenever the Bε
r -extension of {gε

0} (see
Definition 7) builds a non empty set Γ of witness matches into K, then those
matches indeed provide η-witnesses (see Sect. 3.1) that are also below Kε.

Lemma 4 (Soundness). Let r be a rule with an abstract effect η�
r. Let also

mK,r =def (g−
0 , g+0) be a K-occurrence of r with η = mK,r(η�

r) a concrete effect.
For all (h : W → K) ∈ ExtBε

r ,Kε({gε
0}), there exists fK : O → K such that:

h(W) �ε
η fK(O)

Incremental Update for Graph Rewriting 221

Fig. 9. Construction of the “backbone” extension basis Bε
r = {f1}. Grey coloring of

nodes helps tracking nodes of Hε
r through the morphisms (all closed diagrams are

commuting). In dotted line, the maps that are used for the construction of the basis
but that are not morphisms of Bε

r . Consistently with Proposition 6, the multi-pushouts
in the upper part of the diagram have at most one element (Λε

O,h1 = {W1}, the other
gluings are incompatible with πε

r).

A simple saturation procedure enables one to add sharing between graphs of the
“backbone” extension basis we have constructed so far:

Procedure 2: Add sharing to an extension basis.

Input: an extension basis B.

1. if there exists f, f ′ ∈ B and g, h, h′ �∈ B such that f = hg and f ′ = h′g then
B = B ∪ {g, h, h′} and go to 1.

2. else return B.

We write G <1
B H if there exists f ∈ B such that f : G → H. The relation

≤B is the transitive and reflexive closure of <1
B and denotes a partial order.

5.3 Implementing the Incremental Update Function

This section is dedicated to the implementation of the incremental update func-
tion, according to the specification that was given Sect. 3.3. The algorithm relies

222 P. Boutillier et al.

on a pre-computation of the r -extension bases (with sharing) of all rule r con-
tained in the rule set:

Procedure 3: Compute the extension bases.

Input: a finite rule set R.

1. For all r ∈ R, build Bε
r following Procedure 1.

2. For all Bε
r , add sharing following Procedure 2.

3. return
⋃

r{Bε
r}.

Each time a rule r is applied to a graph K, one obtains the corresponding K-
occurrence mK,r = (g+0 : π+

r → K, g+0 : π+
r → K). We use gε

0 as an input to the
update procedure, which is a breadth-first traversal of the extension basis Bε

r :

Procedure 4: Incremental update.

Input: a basis Bε
r , a K-occurrence gε

0 : πε
r → K of η�

r , and a predicate w : G → 2
such that w(G) holds if G is an abstract witness of Bε

r . For all set of morphisms
F ⊆ Bε

r we define:

min(F) =def {f ∈ F | f : G → H ∧ ∀(g : G′ → H ′) ∈ F : H ′ �≤B H}

1. Initialize γ : G → P(Hom(G)) as γ(G) := ∅ for all G �= πε
r and γ(πε

r) := {g0}
2. F := ∅ (for the extensions yet to explore), x := πε

r (for the current point in
the basis) and W := ∅ (for the reached witnesses).

3. if w(x) then W := W ∪ {x}
4. for all (f : x → G) ∈ Bε

r do F := F ∪ {f}
5. if F �= ∅ then
6. choose (f : G → H) ∈ min(F)
7. γ(H) := [γ(H) ∪ Ext{f},Kε(γ(G))]mat

8. F := F\{f} and x := H
9. go to step 3.

10. else return Wε
η,K where:

Wε
η,K :=

⋃
{W | ∃G ∈ W,∃g ∈ γ(G) : g(G) = W}.

The procedure builds the function γ that maps the graphs of the basis to
the matches they have in K. Initially only πε

r has a match given by gε
0 and γ is

updated at step 7 each time an extension step is performed. We give Fig. 10 an
example of the construction of the map γ for a specific extension basis.

We conclude this section by proving that the above procedure complies with
the specification of the incremental update function given Sect. 3.3.

Incremental Update for Graph Rewriting 223

Fig. 10. An extension basis (left) for the observables O1 (line), O2 (square), O3 (tri-
angle) and O4 (house) and πε

r = Hε = G0 (creation or deletion of a single edge). A
concrete graph state Kε (middle) and a representation of the final γ map (right). The
concretization is performed using the initial match G0 �→ {u, z} (the edge {u, z} of
Kε has been created or deleted by the effect occurrence). Colored nodes help tracking
the identity of the nodes of G0 (all closed diagrams are commuting). Overall 5 new
instances of O1 were found, 1 instance of O2, 2 instances of O3 and 3 instances of O4.

5.4 Correctness Proof

We essentially need to follow the guidelines of Sect. 3.3. Let:

X(γ) =def

⋃
{H | ∃(g : G → K) ∈ γ(G) : g(G) = H}

and
R(γ,W) =def

⋃
{H | ∃W ∈ W,∃g ∈ γ(W) : g(W) = H}

We write incε
η,K(X0,R0) = (X1,R1) if at step 3 we have X(γ) = X0 and

R(γ,W) = R0 and the next values of X(γ) and R(γ,W) are respectively X1

and R1.
We begin by proving that incε

η,K(X0,R0) = (X1,R1) satisfies the require-
ments for Xi. After one loop of the procedure we have two cases:

– if Step 5 was satisfied, then at step 7, X1 = X0 ∪ X where:

X =
⋃

{G′ ⊆ Kε | ∃g ∈ γ(H) : G′ = g(H)}

by construction X ⊆ Kε and X ∩X0 �= ∅ since a new extension step has been
performed. Furthermore X ∈ Dε(η) by construction of the basis: it is either
itself an abstract witness or it is below some other witnesses. Therefore we
satisfy Eq. (5) (Sect. 3.3).

– if Step 10 was satisfied then X0 = X1 since γ is not modified.

224 P. Boutillier et al.

We need to prove now that incε
η,K(X0,R0) = (X1,R1) satisfies the require-

ments for Ri. The only step where W is modified is at step 3. Using Lemma 4
we know that for all G ∈ W, we have:

g : W → K ∈ γ(G) =⇒ g(W) �ε
η O

for some concrete observable O ⊆ Kε. Thus we have either R0 = R1 or:

R1 = R0 ∪ {g(W) | g(W) �ε
η O}

and therefore the Eq. (6) is also satisfied. ��

6 Conclusion

We have investigated in this paper the problem of efficiently updating observable
counts in a graph after a rewrite step has occurred. We believe our approach has
several merits.

Fig. 11. A comparison between the average time of KaSim 3 runs (in red) vs. KaSim
4 runs (in blue) on successive variants of the “ring assembly” model. KaSim 4. Scales
linearly with the maximal size of the largest observable (the left hand side of the largest
rule), while KaSim 3. Scales with the total number of rules in each model. (Color figure
online)

The first one is of methodological nature: to our knowledge it is the first
attempt to describe a problem that is usually treated in a purely algorithmic
fashion [14], using domain theoretic arguments for proofs and categorical con-
structions for the implementation. In particular algorithmic approaches tend to

Incremental Update for Graph Rewriting 225

consider quite concrete graphs, represented by their adjacency matrices, while
graph rewriting literature uses morphisms to track node identity. We have seen
here that it is possible to conciliate both worlds through the interplay between
extension maps and matchings.

The second merit is of qualitative nature. The incremental update proce-
dure that is described in this paper has been implemented in the version 4.x
of KaSim, a stochastic simulator for the rewriting of Kappa models. We show
Fig. 11 a comparison between runs of KaSim 3 vs. 4. On variations of the “ring
assembly model” that is designed to highlight the benefits of sub-graph sharing:
the number of rules each variants of the model has, grows exponentially with the
size of their largest left hand side: each variant of the model is characterized by
the length of a ring-like graph it is trying to form. The first variant is forming
all rings up-to length 10, while the last variant is forming all rings up-to length
36. Forming all possible rings up-to length n requires !n rules, and the largest
left hand side of these rules has length n.

As usual there are multiple continuations of this work one may envision.
Just to mention a promising one, it would be interesting to see what happens if
instead of incrementally maintaining OK (the observable that are present in state
K) one were to maintain ↓OK . In theory one could benefit from having partial
observables already explored in order to minimize what remains to be discovered
after an effect has occurred. From an implementation point of view this may lead
to potentially memory intensive data structures but to very minimalist update
phases.

Acknowledgments. This work was supported by the ANR grant ICEBERG (ANR-
10-BINF-0006) and is partially sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Army Research Office under grant number W911NF-
14-1-0367. The views, opinions, and/or findings contained in this paper are those of
the authors and should not be interpreted as representing the official views or policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the
Department of Defense.

Appendix

Proofs Omitted in Section 3

Proof (Proposition 1). We first prove Eq. (2), ⇒. By unfolding the def. of W�−
η O

and by W ⊆ K we have O ∪ pre(η) ⊆ K. As a consequence, O ⊆ K and by def.
of Obs (Sect. 3) we have O ∈ (Obs K). Still by definition of W �−

η O we have
O ∩ H−

η �= ∅ (i). By def. of η ·K (Sect. 2.2) we have O\H−
η ∪ H+

η ⊆ η ·K (ii).
In addition H−

η ∩ H+
η = ∅. By (i) and (ii) we have O �⊆ η ·K and consequently

O �∈ (Obs η ·K).
We now prove Eq. (2), ⇐. By def. W = O ∪ pre(η) (i), and by hyp. we

have O ∈ (Obs K) implies O ⊆ K (ii). Moreover since η ·K is defined we have
pre(η) ⊆ K (iii). From (i)–(iii) we get O ∪ pre(η) ⊆ K. In order to conclude
that W = O ∪ pre(η) ∈ W−

η we need to additionally show that O ∩ H−
η �= ∅.

226 P. Boutillier et al.

Since O �∈ (Obs η ·K) and O ∈ (Obs K) we have O �⊆ (O\H−
η ∪ H+

η) (iv). Since
H−

η ∩ H+
η = ∅ by def. of η, the only possibility to satisfy (iv) is O ∩ H−

η �= ∅. ��
Proofs Omitted in Section 4

Proof (Lemma 2). It suffices to take h′′ = h′φ which, by Definition 6 implies that
h′′ ∼mat h′. By hypothesis we have g = h′f ′ and f ′ = φf . From these equalities
we get g = h′φf . By substituting h′φ by h′′ we obtain g = h′′f . ��
Proofs Omitted in Section 5

Proof (Lemma 3). By hypothesis we start from the following commuting dia-
gram:

Since g′ ∼mat g, by Definition 6, we have g = g′φ for some iso φ. We have
two cases:

H h
��

= K

G

f

��

g

������

– either f is φ-preserving and there exists an iso ψ such that fφ = ψf . Then
by construction hψ−1f = g′ and we can conclude by noticing that h′ =def

hψ−1 ∼mat h (by Definition 6).
– or f is not φ-preserving and there is no iso ψ such that fφ = ψf . It entails

that fφ �∼ext f (by Definition 5) and (by symmetry) f ′ =def fφ−1 �∼ext f .
Now we can conclude, since by construction hf ′ = g′. ��

Proof (Proposition 6). We have the following diagram:

G πε
r

O =

h′

��������
Hε

r

h

�������� fε
r

��

I

��������

��������

where h = 〈h′, h〉 is a gluing of O and Hε
r . Now the procedure attempts to build

the multi-pushout of the span f = 〈h, fε
r 〉. Suppose it has at least two elements,

we have the following diagram:

U U ′

G

i

��

=

j k

��

πε
r

��

l

��

O =

h′

��������
Hε

r

h

�������� fε
r

��

I

��������

��������

Incremental Update for Graph Rewriting 227

where 〈ih′, kfε
r 〉 and 〈jh′, lfε

r 〉 are bounds for h = 〈h, h′〉. By construction h is a
relative pushout, therefore, by Proposition 4, there exists an iso φ : U → U ′ that
equates the bounds 〈i, k〉 and 〈j, l〉. This would entail i ∼ext j which contradicts
the hypothesis. ��
Proof (Lemma 4). Recall from Sect. 3.1 that a (concrete) η-witness W for a
(concrete) observable O must satisfy:

O ∩ Hε
η �= ∅ ∧ W = O ∪ πε

η (10)

By construction of the basis, and using the hypothesis of the lemma we have the
following diagram:

Hε
r

πε
rO

fε
r

I �= ∅

G

K

W

gε
0

hf

=

= =f1

f2

h1

h2

We take fK =def hf2f1, gε = gε
0f

ε
r , and we have:

fK(O) ∩ gε(Hε
r) = gεh2(I) = fKh1(I) �= ∅

and
h(W) = fK(O) ∪ gε

0(π
ε
r) = fK(O) ∪ πη

which verifies Eq. (10). ��

References

1. Rowland, M.A., Deeds, E.J.: Crosstalk and the evolution of specificity in two-
component signaling. PNAS 111(25), 9325 (2014)

2. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 3

3. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical
systems with bionetgen. Methods Mol. Biol. 500, 113–167 (2009)

4. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular sig-
naling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-76637-7 10

5. Boutillier, P., Feret, J., Krivine, J. (2008). https://github.com/kappa-dev/kasim

http://dx.doi.org/10.1007/978-3-540-74407-8_3
http://dx.doi.org/10.1007/978-3-540-76637-7_10
https://github.com/kappa-dev/kasim

228 P. Boutillier et al.

6. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and
coarse-graining of biological complexity with NFsim. Nat. Methods 8, 177–183
(2011)

7. Danos, V., Heckel, R., Sobocinski, P.: Transformation and refinement of rigid struc-
tures. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 146–160.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-09108-2 10

8. Girard, J.-Y.: The system F of variable types fifteen years after. Theor. Comput.
Sci. 45, 159–192 (1986)

9. Ehrig, H., Pfender, M., Schneider, H.J.: Graph grammars: an algebraic approach.
In: Proceedings of IEEE Conference on Automata and Switching Theory, pp. 167–
180 (1973)

10. Raoult, J.C.: On graph rewriting. TCS 32, 1–24 (1984)
11. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:

Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) Proceed-
ings of ICGT 2006, pp. 30–45 (2006)

12. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

13. Feret, J., Danos, V., Fontana, W., Harmer, R., Krivine, J.: Internal coarse-graining
of molecular systems. PNAS 106, 6453–6458 (2009)

14. Varró, G., Varró, D.: Graph transformation with incremental updates. ENTCS
109, 71–83 (2004). Proceedings of the Workshop on Graph Transformation and
Visual Modelling Techniques (GT-VMT 2004)

http://dx.doi.org/10.1007/978-3-319-09108-2_10

Linearity, Control Effects, and Behavioral Types

Lúıs Caires1 and Jorge A. Pérez2(B)

1 NOVA LINCS and Departamento de Informática, FCT,
Universidade Nova de Lisboa, Lisbon, Portugal

2 University of Groningen & CWI, Amsterdam, The Netherlands
j.a.perez@rug.nl

Abstract. Mainstream programming idioms intensively rely on state
mutation, sharing, and concurrency. Designing type systems for handling
and disciplining such idioms is challenging, due to long known conflicts
between internal non-determinism, linearity, and control effects such as
exceptions. In this paper, we present the first type system that accommo-
dates non-deterministic and abortable behaviors in the setting of session-
based concurrent programs. Remarkably, our type system builds on a
Curry-Howard correspondence with (classical) linear logic conservatively
extended with two dual modalities capturing an additive (co)monad, and
provides a first example of a Curry-Howard interpretation of a realistic
programming language with built-in internal non-determinism. Thanks
to its deep logical foundations, our system elegantly addresses several
well-known tensions between control, linearity, and non-determinism:
globally, it enforces progress and fidelity; locally, it allows the specifica-
tion of non-deterministic and abortable computations. The expressivity
of our system is illustrated by several examples, including a typed encod-
ing of a higher-order functional language with threads, session channels,
non-determinism, and exceptions.

1 Introduction

In this paper, we study a principled, typeful foundation to represent a relevant
class of control effects within a behavioral type system for stateful concurrent
programs. Sophisticated structural type systems have shaped mainstream static
type checking for a long time now, and are fairly complete tools to discipline and
effectively check programs that manipulate pure values. Unfortunately, the same
cannot be said for most mainstream programming idioms, which intensively rely
on state mutation, sharing, and often concurrency, about which “standard” type
systems are quite silent.

Interactive concurrent systems need to manipulate stateful resources, rang-
ing from basic memory references and passive objects (such as files, locks, and
communication channels) to dynamic entities (such as threads or web references)
typically subject to linearity constraints. To extend type-based verification tech-
niques to this challenging setting, substructural type systems, based on various
forms of linearity and affinity, have been increasingly investigated [31,35,45–47],
and start to make their way towards practical adoption. Recent examples include
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 229–259, 2017.
DOI: 10.1007/978-3-662-54434-1 9

230 L. Caires and J.A. Pérez

Fig. 1. Two code snippets.

Mozilla’s Rust, but also embeddings of session types in target languages with-
out linear types [32,41]. Some approaches use types to model states (cf. asser-
tions); examples include typestate and several affine, linear, and stateful type
systems, see, e.g., [20,31,33]. In other works, types are used to model behaviors
(cf. processes); examples in this line include session types and usage types such
as, e.g., [27,28,34], often referred to as behavioral types [29].

Linear types are in general very expressive, and the fine-grained specifica-
tions of usage types that they typically support may simultaneously bring a
benefit and a curse. In particular, a still open issue is how to seamlessly com-
bine linearity with many other useful programming mechanisms—a prominent
example being the interaction of linearity with non-determinism and control
effects, such as exceptions and (linear) continuations. The general issue is that
by their very essence control effects (and associated programming language con-
structs) conflict with the linear, stateful usage discipline of values manipulated
by programs, which makes it difficult to statically check programs. For example,
when a communication channel is aborted, any linear values held by a channel
client continuation must be aborted as well (which may not be always possible),
or passed away to some candidate consumer code in scope. Likewise, after an
exception is raised, it is not always clear how to safely discard a continuation
holding linear values, nor how to proceed after the exception is caught. This
situation is already present in non-deterministic programs where subexpressions
may return more than one result, or even no result at all (e.g., “fail”), as in the
non-deterministic monad.

These challenges and conflicts are illustrated by the examples in Fig. 1,
adapted from [46], which we express in an idealized linear functional language.
The Ref function is assumed to return a stateful fresh value r that may either
be initially discarded, or subject to a strictly linear protocol consisting of a
write r x operation followed by a free r operation. We use a common idiom
when programming with usage types, in which an operation f acting on a linear
value a that needs to be used according to a stateful protocol would be called as
a′ = (fa), where a′ refers to the new state of a (which gets “consumed” in the
call (f a)). So, in our examples, failure to call free r′ after r′ = write r x may
result in, say, a memory leak. Now, in Fig. 1(left), if for some reason the call f()
raises an exception, the continuation will be safely aborted, but if f() succeeds
and the call g() raises an exception instead, the resulting behavior would be
ill-defined, as the required execution of free a′ will be discarded. On the other

Linearity, Control Effects, and Behavioral Types 231

Fig. 2. Code snippet for the server example.

hand, consider the slightly different code snippet in Fig. 1(right): even assuming
that f() or g() may raise an exception, there will be no value usage violations,
since both a and b will still be in their initially discardable state at such stage.
A suitable typing discipline should deem the left snippet unsafe but the right
snippet safe, taking into account the interference between control effects and the
linear usage behavior of values in scope.

For a further example, consider the slightly more involved scenario given in
Fig. 2, which involves concurrent communication and explicit exception handling.
Our idealized linear functional language is now assumed to include the ability
to fork threads, and manipulate session typed communication channels. In the
first line of Fig. 2, a thread representing a logging server is forked: the fork
primitive FORK l.e spawns a thread with body e accessing one endpoint of session
channel l, and returns the other endpoint (bound to log) to the caller. The
logging server receives precisely two messages, whose payload is a string, and
closes the connection. Then another concurrent thread is spawned, mocking a
resource allocation service: it receives a resource code, returns the quality of
service constraints, and receives some reservation information bk .

The server at channel res is used by client code that first sends a resource
code QU2112, receives a quality of service qss spec, and then calls a conformance
checking operation Check which, crucially, may raise an exception:

LETCheck = λl.λx.SEND(l, “checkin”); if Valid(x) then l else THROW (l) IN ...

All interactions between client and server are meant to be logged, so channel
log is also passed to the Check function together with the quality of service
specification.

The overall expected behavior would be as follows. If Valid() returns true,
then Check succeeds and the client will proceed booking the resource; however, if
Check raises an exception, the continuation will be discarded and the exception
handler invoked. In this case, the continuation of the resource allocation thread
at the other endpoint will also need to be aborted. If the overall ongoing (linear)
session between client and server could be safely discarded at that particular
stage of the protocol, then the overall behavior may be deemed safe, even if the
log could not be safely aborted, since the linear outstanding interaction on the
log endpoint will be performed anyway by the exception handler. Indeed, notice

232 L. Caires and J.A. Pérez

that the log is linearly passed to the exception handler as logc. Again, a suit-
able typing discipline combining effects and linearity should be able to express
the assumptions underlying the reasoning above, and deem the code snippet
safe, under the stated assumptions, but unsafe if the client server session is not
safely abortable exactly before the RECV(f, bk) interaction (cf. Line 2 in Fig. 2).
Moreover, any such typing discipline should also be compatible with internal
non-determinism, in the sense that if the result of Valid() is non-deterministic,
then the resulting computation must be soundly typed for any alternative result,
including the degenerate situation in which no value at all is returned, and the
rest of the computation needs to safely abort, including, in that extreme case,
the exception handler code itself!

The main goal of the paper is to investigate a principled foundation to
express, reason and type-check a wide class of control effects in the context
of a linear behavioral type system. Crucially, our approach builds on prior work
on Curry-Howard correspondences between session types and various fragments
of linear logic; our type system is a conservative extension of a standard sys-
tem of classical linear logic. By approaching a Curry-Howard correspondence
from the programming language perspective (in the spirit of, e.g., [5,6,18]),
we introduce two new dual logical modalities—monadic �A and co-monadic
⊕A—with associated programming constructs and proof reductions. As is often
the case for type systems motivated by Curry-Howard correspondences, our sys-
tem ensures global progress and usage/session protocol fidelity. Moreover, it is
intrinsically compatible with all other logically motivated constructs and meth-
ods introduced in prior/related work, such as behavioral polymorphism [10,48],
logical relations [37], dependent types [42], higher-order code mobility [44], and
multiparty protocols [9,16].

It turns out that our new modalities �A and ⊕A suffice to express general
forms of internal non-determinism, and, importantly, include failure—an explic-
itly typed form of affinity—as a special case. These two modalities can be seen
as an additional pair of linear logic exponentials, and as such obey the basic
monadic/co-monadic laws. However, while the standard linear logic modalities
!A and ?A encapsulate contraction and weakening, �A and ⊕A encapsulate non-
determinism and failure, in a sense to be made precise below. Although related
to the non-deterministic monad and to well-known powerdomain models of non-
determinism [39], a key novelty of our work is the perfect Curry-Howard match
between proof reductions associated to the �A and ⊕A modalities and sensi-
ble operational rules. This correspondence allows us to state cut-elimination,
and to naturally derive key properties with practical impact (e.g., lock freedom,
fidelity, and strong normalization), while supporting natural effectful program-
ming idioms and powerful reasoning techniques (such as logical relations).

We will illustrate through examples how expressive linear usage protocols
involving effects may be compiled down to the basic linear logic system extended
with these two primitives and associated programming constructs. We will
present our basic results and examples for a canonical session-based π-calculus
model realizing a Curry-Howard interpretation of session types as linear logic

Linearity, Control Effects, and Behavioral Types 233

propositions. As is well-known, the π-calculus is a complete foundational model,
able to represent, e.g., general concurrent computation, higher-order data, and
object-oriented features [40]. Hence, our development is carried out in the set-
ting of most higher-level programming languages. In particular, we will use
this process model as target language in a typed encoding of an effectful lin-
ear higher-order functional language with threads, session-typed channels, non-
determinism, and exceptions, allowing us to show typings for the above examples.

Structure of the Paper. Next, Sect. 2 presents our Curry-Howard interpreta-
tion of session types for concurrent processes via examples. Sect. 3 establishes
meta-theoretical results for typed processes: cut elimination (Theorem 3.1),
type preservation (Theorem 3.2), progress (Theorem 3.3). Also, a postponing
result (Theorem 3.5) connects our process model with the (non confluent) non-
determinism typical of process calculi. Sect. 4 encodes λexc (a linear, higher-
order functional language with concurrency and exceptions) into session-typed
processes. λexc is the reference language for the motivating examples above. Theo-
rem 4.1 ensures that our encoding preserves typing; therefore, all results in Sect. 3
will carry over to λexc. In Sect. 5 we discuss related works, and Sect. 6 concludes.

2 The Core Language and Its Type System

We base our development on a standard session-typed π-calculus, a core lan-
guage in which general higher-order concurrent programs may be modeled and
analyzed [40]. The (binary) session discipline [27,28] applies to pairs of name
passing processes that communicate through point-to-point channels. In this
setting, interaction between processes always occur in matching pairs: when one
partner sends, the other receives; when one partner offers a selection, the other
chooses; when a partner closes the session, the other must acknowledge—no fur-
ther interactions may occur on the same channel. Sessions are initiated when a
participant invokes a server, which acts as a shared provider, with the capabil-
ity of unboundedly spawning fresh sessions between the invoking client and the
newly created service instance process. A service name may be publicly shared
by any clients in the environment. A session-based system exhibits concurrency
and parallelism because many sessions may be executing simultaneously and
independently. No races in communications within a session (or even between
different sessions) can occur. Both session and server names may be passed
around in communications. Session channels are subject to a linear usage disci-
pline, conforming to a specific state dependent protocol, while server channels
can be freely shared, and used by an arbitrary number of concurrent clients that
can call on them for spawning new session instances.

Next we gradually introduce the ingredients of our typed process model (syn-
tax, semantics, session types and their linear logic interpretation), which are sum-
marized in Fig. 3. This presentation allows us to better motivate and describe
the key novelty in this paper—the(dual) types for non-deterministic behaviors
in sessions.

234 L. Caires and J.A. Pérez

Caires and Pfenning [11] introduced a type system for π-calculus processes
that corresponds to a linear logic proof system, revealing the first Curry-Howard
interpretation of session types as linear logic propositions. Unlike traditional
session type systems, Curry-Howard interpretations of behavioral types ensure
global progress (i.e., well-typed processes never get stuck), livelock-freedom, and
confluence (up to ≡), and may be developed within intuitionistic [11,13] or
classical linear logic [13,48], with certain subtle differences in expressiveness.
Our system extends the presentation Σ2 of classical linear logic [1] with mix
principles and, crucially, with new exponential modalities ⊕A and �A, which
will be interpreted as (dual) types for non-deterministic sessions.

Definition 2.1 (Types). Types (A,B,C) are given by

A,B :: = ⊥ | 1 | !A | ?A | A ⊗ B | A � B | A ⊕ B | A � B | ⊕A | �A

In examples we will also assume given some basic (data) types (e.g., naturals,
strings, etc.), but will not elaborate the nature of such basic types (see, e.g., [42]).
Despite notational similarity, there is no ambiguity between our new (unary)
modalities ⊕A and �A and standard linear logic (binary) operators for additive
disjunction and conjunction.

For any type A, we define its dual A, where (·) corresponds to linear logic
negation (·)⊥, following standard de Morgan-like laws. Intuitively, the type of a
session endpoint is the dual of the type of the opposite endpoint.

Definition 2.2 (Duality). The duality relation on types is given by:

1 = ⊥ !A =?A A ⊗ B = A � B A ⊕ B = A � B ⊕A = �A

⊥ = 1 ?A = !A A � B = A ⊗ B A � B = A ⊕ B �A = ⊕A

Typing judgments have the form P � Δ;Θ, where P is a program term, Δ is the
linear context and Θ is the unrestricted context, along the lines of DILL [4] and
Σ2 [1]. Both contexts are assignments of types to (channel) names x, y, z,
We write ‘·’ to denote empty typing environments. After erasing the term P ,
our judgment corresponds exactly to a logical sequent in the classical linear
logic Σ2 of [1]. Remarkably, this formulation naturally supports a Curry-Howard
interpretation for the exponentials !A and ?A in terms of standard (π-calculus)
semantics for lazy replication [11,13].

2.1 Reduction Semantics

The operational semantics of our session calculus is defined by a relation of
reduction (denoted P → Q) that expresses dynamic evolution, and a relation of
structural congruence (denoted P ≡ Q), which equates processes with the same
spatial (or static) structure. This semantics exhibits a precise correspondence
with cut elimination at the logic level. While most cut-reduction steps directly
correspond to process reductions, other cut-reduction steps are better expressed

Linearity, Control Effects, and Behavioral Types 235

in the process world as structural congruence principles or as behavioral equiv-
alences; this applies similarly to the so-called commuting conversions, which are
known to capture typed behavioral equivalences [37].

To describe reductions and conversions on proof trees (which correspond to
typing derivations), we introduce a simple algebraic notation. For each typing
rule (T*) with k premises d1, . . . , dk we denote by T*(p1, p2, . . .) the deriva-
tion obtained by applying rule (T*) to the derivations p1, . . . , pk. If the proof
rule binds names x̃ in the conclusion (as in, e.g., cut), we would then write
T*(x̃)(p1, p2, . . .) to make this binding explicit.

2.2 Basic Typing Rules, Congruence Rules, and Reduction Rules

The parallel composition of processes is typed in our system by rules correspond-
ing to the cut and mix principles (dependent and independent composition,
respectively).

P � Δ;Θ Q � Δ′;Θ
P | Q � Δ,Δ′;Θ

(T |)
P � Δ,x:A;Θ Q � Δ′, x:A;Θ

(νx)(P | Q) � Δ,Δ′;Θ
(Tcut)

0 �;Θ
(T·)

The mix rule (T |) types the composition of two processes that do not share
linear names; P and Q run in parallel but do not interact. The cut rule (Tcut)
types the composition of P and Q while establishing a binary session between
them using a single linear channel x; each process holds one of the two (dual)
endpoints x of a session of type A and A. This channel is kept private to the
composition by the restriction operator (νx)(...) so that the newly established
session will not be affected by interferences. Rule (T·) allows the inactive process
0 to be introduced. Neutrality of 0 is expressed by the conversion T|(T·,D) ∼= D
at the level of proofs, which corresponds exactly to the usual structural con-
gruence principle 0 | P ≡ P (we consider here a conversion, not a computa-
tional reduction, since it does not involve any process interaction). We take
process terms up to basic structural congruence principles, namely we assume
that − | − is commutative and associative with unit 0, etc. This way, e.g., P | Q
and Q | P denote the same process, i.e., the (unique) parallel composition of P
and Q. Thus, Rule (Tcut) is symmetric w.r.t. its premises: if Tcut(D1,D2) is a
derivation then Tcut(D2,D1) is the same derivation; we then also consider the
conversion Tcut(D1,D2) ∼= Tcut(D2,D1).

Session Send and Receive. Session-typed processes communicate by sending
and receiving messages according to some session discipline. The message pay-
load can be a value of some primitive data type or a session channel; we focus
here on the general case of session passing (delegation). Type A ⊗ B is the type
of a session that first sends a session of type A and then continues as a session of
type B. As such, it corresponds to the session type !A.B of [27]. Dually, A � B
is the type of a session that first receives a session of type A and then continues
as a session of type B; it thus corresponds to the session type ?A.B. Hence, the

236 L. Caires and J.A. Pérez

session type ?A.B corresponds to the linear type A � B. We have the following
typing rules for send A ⊗ B and receive A � B.

P � Δ, y:A;Θ Q � Δ′, x:B;Θ
x(y).(P | Q) � Δ,Δ′, x:A ⊗ B;Θ

(T⊗)
R � Γ, y:C, x:D;Θ

x(y).R � Γ, x:C � D;Θ
(T�)

An output process is then of the form x(y).M , where y is a freshly created
name. The behavior of such an output process is to send session y on x and then
proceed as defined by M . In our typed language, the output continuation M has
the form P | Q, where P defines the behavior of the session y being sent and Q
the behavior of the continuation session on x. An input process is of the form
x(y).R, a process that receives on session x a session n, passed in parameter y,
and then proceeds as specified by R. The continuation R will use the received
session but also any other open sessions (including x). Notice that y is bound
both in x(y).M and in x(y).R, and so only fresh names can be sent in output
processes; this corresponds to the internal mobility discipline [7], without loss
of expressiveness. The associated principal cut reduction corresponds to process
communication, where C = A, D = B, expressed by

Tcut(x)(T⊗(y)(D1,D2),T�(y)(D3)) → Tcut(x)(Tcut(y)(D1,D3),D2)

This reduction exactly captures (bound output) communication in the
π-calculus

(νx)(x(y).M | x(y).R) → (νx)(νy)(M | R)

where we write M ≡ P | Q. Although − | − is commutative there is no ambiguity
in Rule (T⊗): P and Q are the split of M typed by P � Δ, y:A;Θ and Q �
Δ′, x:B;Θ, respectively, and Δ and Δ′ are the split of the linear context in the
conclusion. The multiplicative units ⊥ and 1 type session termination actions as
seen from each endpoint; no partner can further use a closed session.

x.close � x:1;Θ
(T1)

P � Δ;Θ
x.close;P � x:⊥,Δ;Θ

(T⊥)

The associated principal cut reduction corresponds to session termination, which
we define at the level of processes and proof trees respectively by the rules

(νx)(x.close | x.close;P) → P Tcut(x)(T1,T⊥(D)) → D

Types 1 and ⊥ correspond to the single type end in usual session types, and
usually have a silent interpretation. In the presence of mix principles, as we
consider here, propositions ⊥ � 1 and 1 � ⊥ are valid. Considering ⊥ = 1, we
could define a single type ‘•’ as standing for “both” 1 or ⊥, where • = •. (Recall
that A � B � A � B.)

Linearity, Control Effects, and Behavioral Types 237

Session Offer and Choice. The linear type A ⊕ B types a session that first
chooses (from the dual partner menu) either “left” or “right”, and then continues
as a session of type A or B, depending on the choice. This type is the binary
version of the session type ⊕i∈I{li:Ai} (labeled internal choice). The linear type
A�B types a session that first offers both “left” or “right” menu options and
then continues as a session of type A or B, depending on the choice made by
the partner. Thus, A�B is the binary version of the session type �i∈I{li:Ai}
(labeled external choice). Offers and choices are typed by the additive linear
conjunction and disjunction � and ⊕, as defined by the rules:

R � Δ,x:A;Θ
x.inl;R � Δ,x:A ⊕ B;Θ

(T⊕1)
R � Δ,x:B;Θ

x.inr;R � Δ,x:A ⊕ B;Θ
(T⊕2)

P � Δ,x:A;Θ Q � Δ,x:B;Θ
x.case(P,Q) � Δ,x:A � B;Θ

(T�)

The associated principal cut reductions correspond to the process and proof
reductions

(νx)(x.case(P,Q) | x.inl;R) → (νx)(P | R)
(νx)(x.case(P,Q) | x.inr;R) → (νx)(Q | R)
Tcut(x)(T�(D1,D2),T⊕1(D3)) → Tcut(x)(D1,D3)
Tcut(x)(T�(D1,D2),T⊕2(D3)) → Tcut(x)(D2,D3)

In examples we may consider n-ary labeled sums, close to usual session types
constructs:

R � Δ,x:A;Θ
x.li;R � Δ,x: ⊕i∈I {li : Ai};Θ

Pi � Δ,x:Ai;Θ (all i ∈ I)
x.casei∈I(li.Pi) � Δ,x: �i∈I {li : Ai};Θ

with associated principal cut reduction expressed by

(νx)(x.casei∈I(li.Pi) | x.li;R) → (νx)(Pi | R)

Example 2.3 (Movie Server (1)). Consider a toy scenario involving a movie
server and some clients. We first model a single session (on channel s) estab-
lished between client Alice(s) and server instance SBody(s). The server session
offers two options: “buy movie” (inl), and “preview trailer” (inr). Alice selects
the “preview” option from the server menu, and plays the corresponding proto-
col. Consider now the following terms:

SBody(s) � s.case(s(title).s(card).s〈movie〉.s.close, s(title).s〈trailer〉.s.close)
Alice(s) � s.inr; s〈“mullholanddrive”〉.s(preview).s.close;0

System1 � (νs)(SBody(s) | Alice(s))

Assume some given basic types for movie titles (T), credit card data (C) and
movie files M , which are self-dual (since they do not type communication

238 L. Caires and J.A. Pérez

capabilities but values of basic types). We can then provide the following types
and derivable type assignments for the various system components as follows:

SBT � (T � C � M ⊗ 1) � (T � M ⊗ 1)
SBody(s) � s : SBT ; · Alice(s) � s : SBT ; ·

We would then have System1 � · ; ·. While the type of the server endpoint is
SBT , the type of a client endpoint would be SBT = (T ⊗ C ⊗ M � ⊥) ⊕
(T ⊗ M � ⊥). �

Shared Service Definition and Invocation. Shared service definition and
invocation are typed by the linear logic exponentials ! and ?. Type !A types
a shared channel that persistently offers a replicated service which whenever
invoked spawns a fresh session of type A (from the server’s perspective). Dually,
type ?A types a shared channel on which requests to a persistently replicated
service of type A can be unboundedly issued (from the client’s perspective). We
consider the following typing rules:

P � Δ;x:A,Θ

P � Δ,x:?A;Θ
(T?)

Q � y:A;Θ
!x(y).Q � x:!A;Θ

(T!)
P � Δ, y:A;x:A,Θ

x?(y).P � Δ;x:A,Θ
(Tcopy)

The associated principal cut reduction corresponds to shared service invocation

(νx)(!x(y).Q | x?(y).P) → (νx)(!x(y).Q | (νy)(P | Q))

This operational interpretation of the rules for !A and ?A (cf. [1,4,38], imple-
menting “lazy” contraction) exactly coincides with the usual interpretation of
lazy replication. Notice that Rule (T?) is silent on the term assignment: it imple-
ments a bookkeeping device to move the typed channel x :?A to the unrestricted
context, and does not induce a computational effect (e.g., as exchange is also
implicitly handled).

As our typing judgments have two different regions, linear and exponential,
two cut rules are required [4], one for cutting a linear (session) channel in the lin-
ear context (Rule (Tcut), already presented in Sect. 2.2), and the following rule,
for cutting an unrestricted (shared) channel in the exponential context [4,38]:

P � y:A;Θ Q � Δ;x:A,Θ

(νx)(!x(y).P | Q) � Δ;Θ
(Tcut?)

For typing “source programs” only the linear Rule (Tcut) is required, but
Rule (Tcut?) is required for cut-elimination; hence, Rule (Tcut?) is a “runtime”
typing rule. The principal reduction above is expressed at the level of proofs by

Tcut(x)(T!(y)(D1),Tcopy(y)(D2)) → Tcut?(xy)(D1,Tcut(y)(D1,D2))

Example 2.4 (Movie Server (2)). We illustrate the usage of !A and ?A types
using a shared movie server, which may answer requests from an unbounded
number of clients; here we use just two concurrent clients, SAlice and SBob.
Alice still selects the “preview trailer” option as in Example 2.3, but Bob selects
the “buy movie” option. Recall the definitions of processes SBody(s) and Alice(s)
and type SBT from Example 2.3.

Linearity, Control Effects, and Behavioral Types 239

MOVIES (srv) � !srv(s).SBody(s)

Bob(s) � s.inl; s(“inception”).s(bobscard).s(mpeg).s.close;0

SAlice(srv) � srv(s).Alice(s) SBob(srv) � srv(s).Bob(s)

System2 � (νsrv)(MOVIES (srv) | SAlice(srv) | SBob(srv))

The following typing judgments are derivable:

MOVIES (srv) � srv : !SBT ; · SAlice(srv) � · ; srv : SBT
SBob(srv) � · ; srv : SBT Alice(srv) | Bob(srv) � srv : ?SBT ; ·

We can obtain System2 � ·; · as follows: we first use the (mix) Rule (T |) to
compose the two clients; then, Rule (T?) is used to merge the shared endpoints
under the explicit type ?SBT ; finally, the clients are composed with the server
using Rule (Tcut). �

Identity. We interpret the identity axiom by the forwarder process [x ↔ y]
[12,48], which denotes a bidirectional (linear) link between sessions x and y, giv-
ing a logical justification to a known concept in π-calculi (cf. [24]). The forwarder
at type A is typed

[x↔y] � x:A, y:A;Θ (Tid)

The associated cut reduction (νx)(P | [x↔y]) → P{y/x} (where y is not free in
P) is akin to the application of an explicit substitution. It is known since [30] that
linear forwarders can simulate substitution in the sense of the above reduction
rule. We also introduce [x ↔ y] ≡ [y ↔ x] as a structural congruence axiom,
as a direct consequence of (implicit) exchange in the typing context. While a
well-typed copycat process FA without forwarder links can be easily constructed
for any concrete type A by η-expansion (see [13]) the primitive forwarder is
important when considering polymorphism [10]. It also allows us to represent
the “free” output construct x〈y〉.P (where y is a free channel name in scope) by
x(z).([y↔z] | P) (cf. [7]).

2.3 Non-determinism and Failure

The developments of this paper focus on the challenge of expressing fundamental
primitives for non-deterministic behavior—including the special important case
of abortable behavior—in the setting of our Curry-Howard correspondence for
session types.

It is often believed that a Curry-Howard interpretation of a programming
language is hard to reconcile with true (so-called internal) non-determinism in
computation, since reduction steps should express at most behavioral equiva-
lences on processes, via proof identities, which are inherently confluent from an
operational viewpoint. However, it is clear, at least from work on denotational
semantics and functional programming, that non-determinism can be handled
equationally by working on the powerdomain of computation results. In the

240 L. Caires and J.A. Pérez

logical setting, developments on differential linear logic [22] also require the inter-
pretation domain for proofs to be closed under a (formal) notion of “sum”, which
could be interpreted as non-deterministic choice. Although partially inspired by
such approaches, our proposal picks a fairly different road, which turns out to
lead to the first example of a Curry-Howard interpretation of a realistic pro-
gramming language with built-in internal non-determinism.

It is well-known after Girard that the linear logic exponential modalities
!A and ?A, which have been used above to model the type of shared channel
names, are not uniquely defined by their standard proof rules: not surprisingly,
if one adds additional operators defined by the same rules, we obtain indepen-
dent monad/comonad pairs. We exploit this fact to our advantage, noting that it
allows us to modularly add new “exponential” modalities to the base logical sys-
tem, defined by identical proof rules (in Girard’s original formulation), without
semantically interfering with the existing ones. Any such pair of connectives (say,
�A and ⊕A) will yield a dual monad/comonad pair defined by the fundamental
principles (in a simplified form):

� Δ,A

� Δ,�A

� �Δ,A

� �Δ,⊕A

For the usual modalities !A and ?A, additional specific rules for ?A define the
intended semantics of the linear logic exponentials, which encapsulate the struc-
tural principles of weakening and contraction:

� Δ

� Δ, ?A
� Δ, ?A, ?A

� Δ, ?A

These observations suggest a logically justified methodology for adding new
monadic operators to the basic linear logic framework, by means of indepen-
dent monad/comonad pairs in which the monad semantics is defined by specific
additional logical principles. We develop our type system on top of (classical)
linear logic, conservatively extended with two operators capturing a (co)monad
defined by (a refined version of the) following principles, which can be verified
to be sound for an (additive) monad �− and comonad ⊕−.

� Δ,A

� Δ,�A

� �Δ,A

� �Δ,⊕A

�
� �A

� �Δ � �Δ

� �Δ

The resulting proof (and type) system provides a Curry-Howard interpretation
of a realistic programming language with built-in internal non-determinism and
failure.

Getting back to the presentation of our type system, we capture non-
deterministic behavior in the type structure by operators �A and ⊕A related
by duality (�A = ⊕A) and defined by the following rules:

P � Δ,x:A;Θ
x.some;P � Δ,x:�A;Θ

(T�x
d)

x.none � x:�A;Θ
(T�x)

P �w:�Δ,x:A;Θ
x.somew;P � w:�Δ,x:⊕A;Θ

(T⊕x
w)

P � �Δ;Θ Q ��Δ;Θ
P ⊕ Q � �Δ;Θ

(T�)

Linearity, Control Effects, and Behavioral Types 241

Intuitively, �A is the type of a session that may produce a behavior of type A:
this potential is made concrete in Rule (T�x

d) where the behavior x :A is indeed
available (some), whereas Rule (T�x) describes the case in which x : A is not
available (none). Dually, the type ⊕A is the type of a session that may consume
a behavior of type A. Rule (T⊕x

w) accounts for the possibility of not being able
to consume an A by considering sessions different from x as potentially not
available (i.e., abortable - cf. w:�Δ in the rule, where w denotes a sequence
w1, . . . , wn of names). Rule (T�) expresses non-deterministic choice. While it
may be seem to correspond to a formal sum of proofs (cf. [22]), in our case it
corresponds exactly to non-deterministic choice P ⊕ Q of processes1, and can
only be used inside the monad �A. The principal cut reductions are:

Tcut(x)(T�x
d(D1),T⊕x

w(D2)) → Tcut(x)(D1,D2)
Tcut(x)(T�x,T⊕x

w(D2)) → T | (T�w1 , · · · ,T�wi)

At the level of the process interpretation, these reduction rules are expressed by

(νx)(x.some;P | x.somew;Q) → (νx)(P | Q)
(νx)(x.none | x.somew;Q) → w1.none | · · · | wn.none

Notice how the reduction for none safely discards the continuation Q. We also
consider the following proof conversion (and corresponding process congruence)
that expresses the distribution of parallel composition over internal choice:

Tcut(x)(T�(D1,D2),D3) ≡ T�(Tcut(x)(D1,D3),Tcut(x)(D2,D3))
(νx)(P | (Q ⊕ R)) ≡ (νx)(P | Q) ⊕ (νx)(P | R)

Notice that, in principle, the two computational reduction rules above could
be formally used to express the reduction rules for the “sharing” exponentials
(cf. [48]) in presentations of linear logic with explicit weakening and dereliction
rules, instead of the DILL-style presentation we have adopted here. Indeed, we
prefer the DILL-style presentation as it more tightly express the behavior of
sharing present in traditional session types. On the other hand, together with the
conversion principle just shown, the primitives and reduction rules just presented
turn out to be quite adequate to express the behavior of non-determinism and
failure.

Before closing the section, we discuss examples that use ⊕A and �A types.

Example 2.5 (Movie Server (3)). Getting back to our movie server scenario
we illustrate how to model a system with a client Randy(s) that non-
deterministically decides between either buying a movie or just seeing its trailer.
Recalling process definitions for SBody(s), Alice(s), and Bob(s) from Exam-
ples 2.3 and 2.4, we would have:

Randy(s) � s.some;Alice(s) ⊕ s.some;Bob(s)

USystem � (νs)(s.some∅;SBody(s) | Randy(s))

1 We use ⊕ for denoting internal non-determinism in processes since this is rather
standard; indeed, this notation goes back at least to De Nicola and Hennessy [19].

242 L. Caires and J.A. Pérez

where the suitable types and type assignments are now given by

Randy(s) � s : �SBT ; · s.some∅;SBody(s) � s : ⊕SBT ; ·

Process Randy(s) is typed by using Rule (T�s
d) on each individual client; then,

using Rule (T�) one would obtain a typed non-deterministic choice between
them. The server is typed using Rule (T⊕s

w) with w = ∅, for there are no
sessions (besides s) in the linear context (recall that SBody(s) � s : SBT ; ·).
This way, we derive USystem � · ; ·. �

Interestingly, the non-deterministic choices enabled at the level of types by
�A and ⊕A (and at the process level by ⊕) are completely orthogonal to the
usual deterministic choices enabled by labeled internal and external choices. The
following example illustrates the pleasant interaction between deterministic and
non-deterministic choices:

Example 2.6 (Movie Server (4)). Consider now a variant of the movie server
that logs the request made by the client on a log service l of (boolean) type
B = 1 ⊕ 1. We extend the process SBody(s) from Example 2.3 as follows:

SBodyL(s) � s.case(s(title).s(card).s〈movie〉.s.close | l.inl; l.close,
s(title).s〈trailer〉.s.close | l.inr; l.close)

We may provide a typing SBodyL(s) � s:SBT , l:B ; · which cannot be composed
with the non-deterministic client Randy(s) from Example 2.5. However, process

s.somel; l.some;SBodyL(s)

may now be composed with client process Randy(s) as

ULSystem � (νs)(s.some; l.some;SBodyL(s) | Randy(s))

Now we may derive: l.some;SBodyL(s) � s:SBT , l:�B ; · and

s.somel; l.some;SBodyL(s) � s: ⊕ SBT , l:�B ; · ULSystem � l:�B ; ·

Writing P ⇒ Q to denote the reflexive-transitive closure of P → Q, we obtain
the reduction sequence ULSystem ⇒ (l.inr; l.close ⊕ l.inl; l.close).

Notice that the visible behavior of log channel l in ULSystem must be given
the non-deterministic type �B: there is no typing ULSystem � l:B, since the
resulting interaction is essentially non-deterministic. �

In our system, the ability of representing (internal) non-determinism is intrin-
sically tied to that of describing, in a completely logically motivated manner,
abortable behaviors as typical of programming constructs such as exceptions
and compensations [23]. Our following example illustrates this distinctive aspect
of our model.

Linearity, Control Effects, and Behavioral Types 243

Example 2.7 (Movie Server (5)). To consider the possibility of modeling failure,
we introduce the code for a “faulty” client, that non-deterministically behaves
like Bob(s) (cf. Example 2.4) or does not produce any behavior at all. Consider
the non-deterministic server SBodyNDL(s) from Example 2.6; we may now have:

Buzz (s) � s.some;Bob(s) ⊕ s.none Buzz (s) � s : �SBT ; ·
(νs)(SBodyNDL(s) | Buzz (s)) � l:�B ; ·

Notice how failure of sub-computations propagates inside the monad �− , encap-
sulated in a hereditarily safe way. Here, we have the reduction sequence

(νs)(SBodyNDL(s) | Buzz (s)) ⇒ (l.none ⊕ l.inl; l.close)

reflecting that the composed system either aborts or chooses l.inl on the log. �
We now illustrate how systems encapsulating non-deterministic behavior can

nevertheless be given a globally deterministic type, thus showing that internal
non-determinism and failure are not visible as long as they are typed by “plain”
deterministic types.

Example 2.8. Consider the following processes and typings:

Some(y) � y.some; y.inl; y.close ⊕ y.some; y.inr; y.close
Prod � x(y).(Some(y) | x.close; b〈“done”〉.b.close)
Cons � x(u).(u.some;u.case(u.close;0, u.close;0) | x.close)
Blob � (νx)(Prod | Cons)
Some(y) � y : �B Prod � x : (�B) ⊗ ⊥, b : Str ⊗ 1 Cons � x:(⊕B) � 1

Notice that the although the producer process Prod sends a non-deterministic
boolean to the consumer process Cons, the type of the composed system Blob
is b : Str ⊗ 1, a deterministic type. In fact, we may easily verify that Blob ⇒
b〈“done”〉.b.close. �

Figure 3 summarizes our process language, and associated reduction and
structural congruence relations. The main properties of our system will be estab-
lished next.

3 Main Results

We collect in this section main sanity results for our non-deterministic linear
logic-based type system for session process behavior. First, our system enjoys
the cut-elimination property. Cut elimination may be derived given a suitable
congruence ∼=s on processes consisting of reduction (computational conversions),
structural congruence (structural conversions), and some key commuting conver-
sions (cf. [11,13,37]).

Theorem 3.1 (Cut Elimination). If P � Δ;Θ then there is a process Q such
that P ∼=s Q and Q � Δ;Θ is derivable without using rules (Tcut) and (Tcut?).

244 L. Caires and J.A. Pérez

Fig. 3. The process language.

The proof is an extension of the proof for classical linear logic with mix, but
considering the new reductions and conversions introduced above for revealing
and reducing principal cuts involving the �A and ⊕A modalities.

Then, we may state type safety, witnessed by theorems of type preserva-
tion and global progress for closed systems. Type preservation states that the
observable interface of a system is invariant under reduction.

Theorem 3.2 (Type Preservation). If P � Δ;Θ and P → Q then Q � Δ;Θ.

Proof. (Sketch) By induction on typing derivations, and case analysis on reduc-
tion steps. In each case, the result easily follows, given that reductions come
from well-defined proof conversions, which by construction preserve typing. �

Unlike standard type systems for session types, our logical interpretation
satisfies global progress, meaning that well-typed processes never get stuck on
pending linear communications. More precisely, we say that a process P is live,
noted live(P), if and only if P ≡ C[π.Q] where C[−] is a static context (e.g.
a process term context in which the hole is not behind an action prefix, but
only under parallel composition − | −, name restriction (νx)−, or sum − ⊕ −
operators) and π.Q is not a replicated process (i.e., π is a session input, output,
offer, choice, or non-deterministic action). We then have:

Theorem 3.3 (Progress). If P � ;Θ and live(P) then there is Q such that
P → Q.

Linearity, Control Effects, and Behavioral Types 245

Proof. (Sketch) By induction on the typing derivation. Our proof relies on a
contextual progress lemma, which uses a labeled transition system for processes,
compatible with reduction (cf. [13]). This lemma yields a more general progress
property for processes with free linear channels that transition by means of
immediate external interactions. It extends Lemma 4.3 in [13] (which holds for
a language without non-determinism) as follows: If P � Δ;Θ and live(P) then
either (1) there is Q such that P → Q or (2) there are Pi (i = 1..n) such that
P ≡ ⊕Pi and for all Pi there exist Qi and α such that Pi

α→ Qi. The proof of
this extended lemma is by induction on derivations. �

We now discuss additional results that clarify some key features of the our type
system. We say that a process P is prime if it is not structurally congruent to a
process of the form Q ⊕ R with non-trivial (i.e., equivalent to 0) Q and R. We
can then prove:

Proposition 3.4. Let P � Δ;Θ where types in Δ;Θ are deterministic (do not
contain �A or ⊕A types at the top level), and let P ⇒ Q �→. Then Q is prime.

Proof. (Sketch) By induction on the typing derivation. �

Based on a logical system in which reduction matches cut-elimination, it turns
out that typing in our system enforces confluence and also strong normalization.
These results can be established using (linear) logical relations, as developed
in [37]. Intuitively, confluence holds because non-determinism is captured equa-
tionally without losing information, by means of delaying choice in processes
P ⊕Q, which express sets of alternative states. Still, it is interesting to relate our
system with standard process calculi which explicitly commit non-deterministic
states into alternative components. For that purpose, we investigate the exten-
sion of the reduction relation in Fig. 3 with non-confluent rules for internal choice,
standard in process calculi but clearly incompatible with any Curry-Howard
interpretation, namely P ⊕Q → P and P ⊕Q → Q. We denote by P →c Q (and
P ⇒c Q) the extended reduction relation, which can be proven to still satisfy
preservation and progress in the sense of Theorems 3.2 and 3.3. We may then
show the following property, expressing postponing of internal non-deterministic
collapse of non-deterministic states into prime states.

Theorem 3.5 (Postponing). Let P � Δ;Θ. We have

1. If P ⇒ P1⊕. . .⊕Pn �→ with Pi prime for all i, then P ⇒c Pi for all 0 < i ≤ n.
2. Let C = {Pi | P ⇒c Pi �→c and Pi is prime }. Then C is finite up to ≡, with

#C = n, and for all 0 < i ≤ n, P ⇒ P1 ⊕ . . . ⊕ Pn →c Pi.

Proof. 1. Trivial by definition. 2. By induction on the reduction sequence, using
the fact that we may commute ⇒ reduction steps backwards with ⇒c reduction
steps. �

Theorem 3.5(2) shows that no information is lost by ⇒ with respect to the
(standard) non-deterministic (and non-confluent) semantics of internal choice

246 L. Caires and J.A. Pérez

P ⊕ Q expressed by ⇒c. We may therefore tightly relate our system, based on
a logically motivated reduction relation, with a standard non-confluent reduc-
tion relation including rules for internal choice, in the sense that the former
precisely captures the multiset of observable alternatives defined by the latter,
while preserving compositional and equational reasoning about system behavior
as expected from a Curry-Howard interpretation.

4 Higher-Order Concurrency, Non Determinism, and
Exceptions

We illustrate the expressive power of our typed process model by embedding λexc,
a linear higher-order functional, concurrent programming language with concur-
rency, non-determinism—including failure—, and exceptions. Defined by a typed
compositional encoding, this embedding allows us to showcase the generality of
our developments and the relevance of our Curry-Howard correspondence in a
broader setting; it will also enable us to give a rigorous footing to our motivating
examples (cf. Figs. 1 and 2).

The Target Calculus. λexc is a typed call-by-value functional calculus, defined
by the grammar below. We use e, e′, . . . to range over expressions; v, v′, . . . to
range over values; x, y, z, . . . to range over variables; c, c′, . . . to range over chan-
nels, and T,U,A,B to range over types. The syntax of values, expressions, and
types (T) is as follows:

v :: = x | ∗ | λz.e | 〈〈v〉〉
e :: = v | (f x) | LET a = e1 IN e2

| TRY e1 CATCH z. e2 | THROW z
| LIFT e | SOME ! z; e | SOME ? z; e | NONE ! z; e | e1 ⊕ e2
| FORK c.e | SEND(c, e1); e2 | RECV(c, z); e | CLOSE ! c ; e | CLOSE ? c

T :: = unit | A
T−→ B | A

0−→ B | !T.T ′ | ?T.T ′ | end! | end? | ⊕T | �T

We say expressions are effectful if they can raise an exception, and pure other-
wise. Besides the unit type, types for λexc include (linear) arrow types of two
forms: A

0−→ B is the type of functions that do not raise exceptions, whereas
A

T−→ B is the type of functions that may raise an exception of type T . We also
have session types !T.T ′ and ?T.T ′ for output and input channel-based com-
munication. Types for labeled selection and choice are not included but can be
easily accommodated. Types end! and end? denote the dual views of terminated
endpoints. Furthermore, we have types ⊕T and �T for expressions that may
produce and consume values of a type T , respectively. We write S, S′ to denote
the session fragment of the type structure (i.e., no unit nor arrow types). On
this fragment, we assume a duality relation, denoted S, defined as expected. The
type syntax does not include general (non-linear) functional values nor shared
sessions; the integration of these constructs is orthogonal and unsurprising.

As values, we consider variables, abstractions, and the unit value ∗; we also
have the abortable value 〈〈v〉〉, which represents discardable (affine) values: given

Linearity, Control Effects, and Behavioral Types 247

a value v of type T , value 〈〈v〉〉 will be of type ⊕T . For convenience, the language
is let-expanded; as a result, application is of the form (f x), for variables f and
x. Expressions also include a try-catch construct for scoped exceptions, with
the expected meaning, and a construct for raising/throwing exceptions with
an explicit value. The key features of the process model in Sect. 2 appear as
expressions that may produce a value of a certain type and one construct that
may consume a value of a certain type. Non-deterministic choices between two
expressions are also supported. Concurrency is enabled by spawning threads,
using a forking construct. Moreover, λexc includes expressions for channel-based
communication, enabling the exchange of values of any type (including channels).

As mentioned above, the intended operational model for λexc is call-by-value;
rather than directly giving the operational semantics for the language, we first
delineate its behavior via a type system and then give its semantics indirectly,
via a type respecting encoding into the basic type system introduced in Sect. 2.

The type system we consider here is actually a type-and-effect system in
which the effect represents the type of the exception that can be raised by the
typed expression. Judgments are then the form D �U e : T : under an environment
D (a set of typing assignments), the expression e has return type T , while the
effect type U is either 0 (the expression is pure) or T (the expected type of
exceptions).

The typing rules for λexc are shown in Fig. 4. Rule (ABS) types abstractions; it
decrees that the type of the exception possibly raised by the abstraction body will
be used as the effect associated to the arrow type. Rule (PRO) types abortable
values 〈〈v〉〉, as motivated earlier: it closely follows the principles of Rule (T⊕x

w)
for session-based processes; in particular, it requires all free variables in v to be
abortable (cf. the premise ⊕D). Rule (LIFT) allows to cast an (trivially) effecful
expression from a pure one.

There are three typing rules for let expressions LET a = e1 IN e2; the actual
rule used depends on the exceptions possibly raised by its constituent sub-
expressions e1 and e2. Rule (LET1) is used when both e1 and e2 are effectful.
Observe that e2 must be typable in an abortable environment, in order to safely
account for an exception raised in e1. Rule (LET2) handles the case in which
both e1 and e2 are pure, while Rule (LET3) covers the case in which only e1
is pure. These three typing rules are crucial to isolate effects and to exploit the
combination of pure with effectful computations.

Rule (TRY) types the construct TRY e1 CATCHx. e2; the type of the exception
possibly raised by e1 must match with the type of x in e2. Notice that e1 and
e2 must be of the same type (T in the rule). Rule (THROW) ensures that the
type of the thrown value is propagated as an effect. Rule (FORK) captures the
essence of thread spawning for communication types, creating a new (linear)
session channel where one endpoint is handed to the thread body and the other
endpoint returned by the fork operation. Rules (CLOSE1) and (CLOSE2) type
session channel closing operations; Rules (SEND) and (RECV) type operations
for sending and receiving values along session channels.

248 L. Caires and J.A. Pérez

Fig. 4. Typing rules for λexc.

Rule (SOME1) and Rule (SOME2) type the production and consumption
of a non-deterministic value as z, respectively. In particular, Rule (SOME2)
applies to expressions that do not return values, but that may interact with
expressions that do return values via channel-based communication. Notice
the similarities between Rules (SOME1) and (SOME2) (for functional expres-
sions) and Rules (T�x

d) and (T⊕x
w) (for process terms), respectively. In the

same vein, Rule (NONE) can be seen as the analogue of Rule (T�x) but for
abortable expressions in our functional language. Rule (NONDET) enables the
non-deterministic choice between two pure expressions that do not return values;
this allows us to define, e.g., non-deterministic sessions.

In general, the (two-sided) typing rules in Fig. 4 encompass a notion of dual-
ity, in the sense that a connective appearing in the left-hand side of the turnstile
in the Fig. 4 corresponds to its dual in the right-hand side of the turnstile.
This intuition will be captured in our embedding of functional expressions as
processes, detailed next.

Example 4.1. We can now return to the code snippet in Fig. 2 and give some typ-
ings using the type structure just introduced. As mentioned in the introduction,

Linearity, Control Effects, and Behavioral Types 249

Fig. 5. Encoding of λexc types into logical propositions.

there is a precise stage of the protocol along (dual) names res and f after which
failure is safe. In our type structure we can precisely delineate such a place. We
would have:

l : ?string.?string.end? log : !string.!string.end!
f : ?string.!int.⊕(?string.end?) res : !string.?int.�(!string.end!)

These typings require minor modifications in the code of Fig. 2: we add prefix
‘SOME ? f ’ before ‘RECV(f, bk)’, and prefix ‘SOME ! res’ before ‘SEND(res, book)’.

Embedding λexc Into Session Typed Processes. We now present a typeful
encoding of λexc into the logically motivated typed process model of Sect. 2, and
establish its correctness (Theorem 4.1). The encoding has two main components:
the encoding of (functional) types into linear logic based session types, and the
encoding of λexc expressions into (non-deterministic) concurrent processes.

Figure 5 gives the encoding of types. We use the following shorthand nota-
tions:

↑ [[T]] � [[T]] ⊗ 1 (1)

[[U]] � [[T]] � ([[U]] ⊗ 1) ⊕ ([[T]] ⊗ 1) (2)

�
(
[[T]] ÷ [[U]]

)
� �([[T]] ⊗ (([[U]] � [[T]]) ⊗ 1)) (3)

Also, we assume the expected extension of the encoding of types to typing envi-
ronments: given D = x1:T1, · · · , xn:Tn then [[D]] = x1:[[T1]], · · · , xn:[[Tn]].

The encoding of expressions is typeful: for each typing rule in Fig. 4 we give
a corresponding type derivation for session-typed processes. Figures 6 and 7
give a complete account; for readability, in those figures we show only the conclu-
sion (final judgment) in the derivation. Also, we use the following abbreviations
for processes:

– we write y〈z〉.P (where z is free in P) for the free output process, represented
as y(w).([w↔z] | P) (cf. Sect. 2);

– we write y.0;P and y.0 to stand for y.close;P and y.close, respectively;
– we define Sq as the process q(u).q.0;u.0;0. Notice that Sq � q : ↑ [[unit]].

250 L. Caires and J.A. Pérez

Fig. 6. Typeful encoding of λexc terms into basic processes (Part 1).

As usual in encodings of (call-by-value) functional languages into the π-calculus,
our encoding of expressions is indexed by names, which are used to interact with
the environment; they can be seen as continuations or as locations where the
value returned by an expression will be made available. In our case, these names
are related to the effects of the source expression e:

Linearity, Control Effects, and Behavioral Types 251

Fig. 7. Typeful encoding of λexc terms into basic processes (Part 2).

– If e is pure then its encoding will be indexed by a single continuation name y.
This will be denoted [[e]]y.

– If e is effectful then its encoding will be indexed by names y and x. This will
be denoted [[e]]y,x: name y represents an non-deterministic continuation, along
which the value to which e reduces may be produced ; name x represents the
continuation to the enclosing try-catch block exception handler.

252 L. Caires and J.A. Pérez

These intuitive distinctions are made precise in our main technical result, which
exploits the shorthand notations (1), (2), and (3) above:

Theorem 4.1 (Typability). Suppose D �U e : T . Then, for some names y, x,
we have:

– [[e]]y � [[D]], y: ↑ [[T]], if U = 0.
– [[e]]y,x � [[D]], y:�

(
[[T]] ÷ [[U]]

)
, x:[[U]] � [[T]], if U �= 0.

Consequently, our source language λexc (which combines functions, concurrency,
non-determinism, and exceptions) will inherit key guarantees from the target
process language, namely preservation and global progress (deadlock absence
and lock-freedom).

Due to space limitations, in the following we only discuss selected cases of
Figs. 6 and 7. As already mentioned, the type of a let expression LET a = e1 IN e2
considers different possibilities for the interplay of pure and effectful compu-
tations in e1 and e2. If both expressions are pure (cf. Rule (LET2)) then the
encoding is simple:

[[LET a = e1 IN e2]]y = (νq)([[e1]]q | q(a).q.0; [[e2]]y)

Since e1 is pure, we know [[e1]]q will surely produce a value, which will be made
available to [[e2]]y along the private (linear) name q. The case in which both e1
and e2 may raise exceptions (cf. Rule (LET1)) is more interesting:

[[LET a = e1 IN e2]]y,x = (νq)([[e1]]q,x | q.someD; q(a).q(s).q.0; [[e2]]y,s)

In this case, since e1 may raise an exception, we account for this possibility via the
prefix q.someD, which requires all values (including sessions) in [[e2]]y,s (excepting
a) to be in abortable state. The production of a value within [[e1]]q,x will be
signaled by a prefix q.some, while throwing of an exception will be signaled by a
prefix q.none (see next). Therefore, if [[e1]]q,x produces a value (q.some is executed)
then this value will be passed to [[e2]]q,s using the private name q; subsequently, the
reference to the enclosing try-block x will also be passed to [[e2]]q,s as parameter s,
exploiting linearity of name-passing (delegation). Otherwise, if [[e1]]q,x ever raises
an exception (q.none is executed) then all the values in D will be safely and
hereditarily discarded.

The encoding of values takes into account that a value may occur in an
abortable context. The encoding of a variable z of type T is as follows:

[[z]]y = y〈z〉.y.0 [[z]]y,x = y.some; y〈z〉.y〈x〉.y.0

If z occurs in a pure context/expression, then its encoding, given on the left, is
standard; name y will have type ↑ [[T]] (cf. (1)). Otherwise, if z occurs in an effect-
ful (abortable) context, then its encoding, given on the right, first announces the
production of a value using prefix y.some; after z is sent along y, name x (rep-
resenting the continuation of the enclosing try-catch block exception handler)
will be sent along y. The type of x will be [[U]] � [[T]], where U is the type of

Linearity, Control Effects, and Behavioral Types 253

the enclosing exception (cf. (2)). Thus, intuitively, x encompasses the potential
for a normal execution ([[T]]) but also contains information on the (exceptional)
behavior to be triggered upon failure ([[U]]). A more concrete justification for the
typing x:[[U]]� [[T]] will become apparent next, when discussing the deterministic
choice that underlies the encoding of try-catch and throw expressions.

To encode an abstraction λz.e, we distinguish several cases, depending on
whether e and λz.e are effectful or not. The simplest case is when both e and
λz.e are pure:

[[λz.e]]y = y(f).(y.0 | f(z).f(k).f.0; [[e]]k)

We follow closely known encodings of λ-calculus in the π-calculus, here adapted
to a linear setting in which the continuation y and the reference to the function
body f are session-typed [43]. When both λz.e and e are effectful we follow a
similar principle:

[[λz.e]]y,x = y.some; y(f).(y〈x〉.y.0 | f(z).f(k).f(j).f.0; [[e]]k,j)

The prefix y.some declares the production of a value, namely the reference to the
function body f . An invocation to f must supply the parameter of the function
(z) but also the continuations k and j, to be linearly used by the encoding [[e]]k,j .

The encoding of applications goes hand in hand with the encoding of let
expressions. Given the let-expanded semantics (which forces an expression’s con-
text to deal with potentially abortable expressions), the encoding of applications
(f a) is simple:

[[(f a)]]y,x = f〈a〉.f〈y〉.f〈x〉.f.0

We may now discuss the encodings of try-catch and throw expressions:

[[TRY e1 CATCH z. e2]]y = (νj)((νk)([[e1]]k,j | k.some∅; k(u).k(z).k.0; z.inl; z〈u〉.z.0)
︸ ︷︷ ︸

(I)

|

j.case(j(u).j.0; y〈u〉.y.0 , j(z).j.0; [[e2]]y)
︸ ︷︷ ︸

(II)

)

[[THROW z]]y,x = y.none | x.inr;x〈z〉.x.0

The encoding of TRY e1 CATCH z. e2 is in two parts, denoted (I) and (II) above.
Part (I) concerns normal behaviors only; Part (II) concerns normal and excep-
tional behaviors:

– If e1 does not raise an exception then [[e1]]k,j will trigger a prefix k.some, which
will synchronize with Part (I). Subsequently, the obtained value and the ref-
erence to the enclosing exception block will be passed around; in this case, z
will be substituted by j, and the prefix j.inl will synchronize with the choice
on j (Part (II)) to send the resulting value along y. This choice discards the
right branch containing [[e2]]y.

254 L. Caires and J.A. Pérez

– If e1 raises an exception then, because of the encoding of throw, process [[e1]]k,j

will trigger a prefix k.none which will synchronize with Part (I). As a result,
the remaining behavior on k and z will be discarded. However, the choice
on j (Part (II)) will continue to be available: this is used by the encoding of
throw, which by executing j.inr will select the right branch of Part (II). The
value raised by the exception will be then passed to [[e2]]y, which can now be
executed.

Our encoding of try-catch therefore elegantly amalgamates the key features of
our process model: most notably, the presence of abortable behaviors in a pleas-
ant coexistence with non-abortable behaviors, and the interplay between non-
deterministic and deterministic choices—indeed, it is the deterministic choice
that underlies the exception mechanism what ultimately justifies the type
[[U]] � [[T]] for x, given in (2).

In the typed model presented here (and its encoding into processes), we
consider try-catch constructs TRY e1 CATCH z. e2 in which e2 is pure (cf. Fig. 4).
However, there is no fundamental obstacle to address the general case in which
both e1 and e2 may raise exceptions; the encoding given in Fig. 7 can be extended
following expected lines.

Constructs for non-deterministic behaviors have fairly straightforward encod-
ings:

[[SOME ! z; e]]y,x = z.some; [[e]]y,x [[NONE ! z; e]]y,x = z.none | [[e]]y,x

[[SOME ? z; e]]y,x = z.someD; (νq)([[e]]q | Sq) | y(v).(v.0 | y.0)

In [[SOME ? z; e]]y,x, notice that typing ensures that e does not return a value; also,
set D enables to safely discard behaviors in e in the event of an exception. Given
the conditions ensured by typing, the encoding of non-deterministic choices is
unsurprising:

[[e1 ⊕ e2]]y = ((νz)([[e1]]z | Sz) ⊕ (νz)([[e2]]z | Sz)) | [[∗]]y

In essence, processes Sz consume the (unit) value produced by [[e1]]y and [[e2]]y
through z. The resulting processes can then be composed first in a non-
deterministic choice, and then in an independent parallel composition with [[∗]]y.
It would not be hard to extend this encoding to handle the general case in which
e1 and e2 may raise exceptions and return values different from unit. To that
end, typing should ensure that e1 and e2 are each typable in an abortable con-
text (cf. Rule (T�)), but also that the name representing the continuation to
the enclosing exception handlers (i.e., x) is given an abortable type.

5 Further Related Work

In the purely functional (and sequential) programming setting, control operators
have been given Curry-Howard interpretations in the context of classical logic
[2,26,36]. To our best knowledge, this paper presents the first attempt at tack-
ling state-aware concurrent programming features, involving linearity (our main

Linearity, Control Effects, and Behavioral Types 255

focus herein), while building on a Curry-Howard interpretation of classical linear
logic as session types. A very tentative sketch of some ideas behind this work
was presented at Cardelli’s Fest [8]; here we provide a complete account of non-
determinism and failure, introduce new computational primitives, present associ-
ated results, and provide non-trivial examples, including the typeful embedding
of a realistic functional, concurrent language with exceptions.

The tensions between affinity, linearity and control effects have been widely
investigated in different settings, and already referred in the introduction. The
work [45] considers a form of affinity in stateful settings (including session types)
and explores how to safely interface an affine language with a conventional one.
We share several high level aims with [45], although following a fundamentally
different approach, and obtaining results of different relevance; in particular,
we consider a unified (concurrent) language that admits a fundamental Curry-
Howard correspondence with linear logic, and offers strong guarantees by sta-
tic typing such as deadlock-freedom. Within the session types literature, the
interplay of session types and functional languages (including encodings of func-
tional calculi) has received much attention (see, e.g., [25,32,35,48]) but non-
determinism/failure do not seem to have been addressed. The paper [35] relates
effect and session type systems, but effects such as exceptions are not addressed.
A work exploring affinity in session calculi is [34]. Existing works on excep-
tion mechanisms for session types impose severe syntactic restrictions to typable
programs and/or do not ensure progress: this observation applies to models of
interactional exceptions and interruptible sessions based on both binary ses-
sions (cf. [15]) and multiparty sessions (cf. [14,21]). Further work is required
to connect our process model (based on binary session types) with multiparty
structured interactions with exceptions/interruptions, following logic-based rela-
tionships between binary and multiparty session types [9].

Also related are [3,17]. The work in [3] explores forms of non-determinism
and failure via the conflation of additive connectives. This is quite different
from our approach, which is based on a new pair of monadic/comonadic con-
nectives, fully justified by a Curry-Howard interpretation and expressive enough
to represent forms of affinity and exceptions. The work in [17] does have non-
determinism at the level of processes, but its expressiveness is not analyzed, and
non-determinism at the level of types is not addressed. In contrast, we provide
types for non-determinism via specific connectives in the context of a Curry-
Howard correspondence, and exploit the expressiveness of the non-deterministic
process model by modeling a realistic functional language.

As explained in the introduction, a main aim of this work is not just to
propose yet another point in the design space solution for exceptions, affinity, or
linearity. Instead, we show how a small set of logically motivated primitives is
expressive enough to model fairly general notions of (controlled) affinity and non-
determinism in higher-order concurrent programs (including exception handling)
while preserving all the fundamental properties of a Curry-Howard interpretation
for linear logic. We leave for future work a deeper study of the expressiveness of

256 L. Caires and J.A. Pérez

our model, as exceptions and compensations are key programming abstractions
in models of service-oriented computing (see, e.g., [23]).

6 Concluding Remarks

We have presented the first type system that accommodates non-deterministic
and abortable behaviors within session-based concurrent programs while build-
ing on a Curry-Howard correspondence with linear logic. Conceptually sim-
ple, our approach conservatively extends classical linear logic with two dual
modal connectives, related to linear logic exponentials, but that express non-
determinism and failure rather than sharing.

We have shown that our type system enforces progress and session fidelity;
its underlying operational semantics, based on Curry-Howard principles, is
actually compatible with standard non-confluent formulations of internal non-
determinism for process algebra, in the sense of our postponing result (The-
orem 3.5). Our system is very expressive, as illustrated by several examples,
including a typed embedding of a higher-order linear functional language with
threads, sessions, non-determinism, and exceptions.

We have not discussed the presence of intuitionistic (unrestricted) types in
the functional language of Sect. 4, as the main focus in the paper is on linearity
and its challenging combination with non-determinism and failure. The combi-
nation of these ingredients with general (non-linear) functional values and shared
sessions would be as expected, resulting from the type discipline of the interpre-
tation of the exponentials in the basic model. Also, key properties of our type
system such as strong normalization and confluence can be established along
predictable lines [37]. A further advantage of our approach is its natural com-
patibility with other extensions to the basic framework, for example behavioral
polymorphism [10]. Another interesting direction for future work is to better
understand the behavioral equivalences induced by our interpretation.

Acknowledgments. Thanks to the anonymous reviewers for useful remarks
and suggestions. This work has been partially sponsored by FCT PEst/UID/
CEC/04516/2013; by FCT CLAY PTDC/EEI-CTP/4293/2014; by EU COST Actions
IC1201 (BETTY), IC1402 (ARVI), and IC1405 (Reversible Computation); and by
CNRS PICS project 07313 (SuCCeSS).

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 297–347 (1992)

2. Ariola, Z.M., Herbelin, H.: Minimal classical logic and control operators. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 871–885. Springer, Heidelberg (2003). doi:10.1007/
3-540-45061-0 68

http://dx.doi.org/10.1007/3-540-45061-0_68
http://dx.doi.org/10.1007/3-540-45061-0_68

Linearity, Control Effects, and Behavioral Types 257

3. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: Lindley, S.,
McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes That Can Change
the World. LNCS, vol. 9600, pp. 32–55. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-30936-1 2

4. Barber, A.: Dual intuitionistic linear logic. Technical report LFCS-96-347
University of Edinburgh (1996)

5. Benton, P.N., Bierman, G.M., de Paiva, V.: Computational types from a logical
perspective. J. Funct. Program. 8(2), 177–193 (1998)

6. Benton, N., Bierman, G., Paiva, V., Hyland, M.: A term calculus for intuitionis-
tic linear logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664,
pp. 75–90. Springer, Heidelberg (1993). doi:10.1007/BFb0037099

7. Boreale, M.: On the expressiveness of internal mobility in name-passing calculi.
Theor. Comput. Sci. 195(2), 205–226 (1998)

8. Caires, L.: Types and logic, concurrency and non-determinism. In: Abadi, M.,
Gardner, P., Gordon, A.D., Mardare, R. (eds.) Essays for the Luca Cardelli Fest,
pp. 69–83. Microsoft Research TR MSR-TR–104 (2014)

9. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary the-
ory, and beyond. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 74–95. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39570-8 6

10. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 330–349. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37036-6 19

11. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4 16

12. Caires, L., Pfenning, F., Toninho, B.: Towards concurrent type theory. In: Types
in Language Design and Implementation, pp. 1–12 (2012)

13. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Math. Struct. Comput. Sci. 26(03), 367–423 (2016)

14. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. Math.
Struct. Comput. Sci. 26(2), 156–205 (2016)

15. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in ses-
sion types. In: Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 402–417. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85361-9 32

16. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: a logical explanation of multiparty session types. In: CONCUR
2016, pp. 3:1–33:15 (2016)

17. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types as
coherence proofs. In: Proceedings of CONCUR 2015. LIPIcs, vol. 42, pp. 412–426.
Schloss Dagstuhl (2015)

18. Cardelli, L.: Typeful Programming. IFIP State-of-the-Art Reports: Formal
Description of Programming Concepts, pp. 431–507 (1991)

19. Nicola, R., Hennessy, M.: CCS without τ ’s. In: Ehrig, H., Kowalski, R., Levi,
G., Montanari, U. (eds.) CAAP 1987. LNCS, vol. 249, pp. 138–152. Springer,
Heidelberg (1987). doi:10.1007/3-540-17660-8 53

20. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24851-4 21

http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1007/BFb0037099
http://dx.doi.org/10.1007/978-3-319-39570-8_6
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-540-85361-9_32
http://dx.doi.org/10.1007/3-540-17660-8_53
http://dx.doi.org/10.1007/978-3-540-24851-4_21
http://dx.doi.org/10.1007/978-3-540-24851-4_21

258 L. Caires and J.A. Pérez

21. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and python. Formal Methods Syst. Des. 46(3), 197–225 (2015)

22. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2),
166–195 (2006)

23. Ferreira, C., Lanese, I., Ravara, A., Vieira, H.T., Zavattaro, G.: Advanced mecha-
nisms for service combination and transactions. In: Wirsing, M., Hölzl, M. (eds.)
Rigorous Software Engineering for Service-Oriented Systems. LNCS, vol. 6582,
pp. 302–325. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20401-2 14

24. Gardner, P., Laneve, C., Wischik, L.: Linear forwarders. Inf. Comput. 205(10),
1526–1550 (2007)

25. Gay, S., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010)

26. Griffin, T.: A formulae-as-types notion of control. In: POPL 1990, pp. 47–58 (1990)
27. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). doi:10.1007/3-540-57208-2 35
28. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline

for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/
BFb0053567

29. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., et al.: Foundations of session
types and behavioural contracts. ACM Comput. Surv. 49(1), 3 (2016)

30. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. In: 23rd
Symposium on Principles of Programming Languages, POPL 1996, pp. 358–371.
ACM (1996)

31. Krishnaswami, N.R., Turon, A., Dreyer, D., Garg, D.: Superficially substructural
types. In: ICFP 2012, pp. 41–54 (2012)

32. Lindley, S., Morris, J.G.: Embedding session types in Haskell. In: 9th International
Symposium on Haskell, Haskell 2016, pp. 133–145 (2016)

33. Militão, F., Aldrich, J., Caires, L.: Rely-guarantee protocols. In: Jones, R. (ed.)
ECOOP 2014. LNCS, vol. 8586, pp. 334–359. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44202-9 14

34. Mostrous, D., Vasconcelos, V.T.: Affine sessions. In: Kühn, E., Pugliese, R. (eds.)
COORDINATION 2014. LNCS, vol. 8459, pp. 115–130. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-43376-8 8

35. Orchard, D.A., Yoshida, N.: Effects as sessions, sessions as effects. In: Proceedings
of the POPL 2016, pp. 568–581. ACM (2016)

36. Parigot, M.: λµ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer,
Heidelberg (1992). doi:10.1007/BFb0013061

37. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations for
session-based concurrency. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211,
pp. 539–558. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28869-2 27

38. Pfenning, F.: Structural cut elimination. In: 10th Annual IEEE Symposium on
Logic in Computer Science, LICS 1995, pp. 156–166. IEEE Computer Society
(1995)

39. Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. 5(3), 452–487
(1976)

40. Sangiorgi, D., Walker, D.: The π-Calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

http://dx.doi.org/10.1007/978-3-642-20401-2_14
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-662-44202-9_14
http://dx.doi.org/10.1007/978-3-662-44202-9_14
http://dx.doi.org/10.1007/978-3-662-43376-8_8
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/978-3-642-28869-2_27

Linearity, Control Effects, and Behavioral Types 259

41. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: 30th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2016, pp. 21:1–21:28
(2016)

42. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: PPDP 2011, pp. 161–172 (2011)

43. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes.
In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 346–360. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28729-9 23

44. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and
sessions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 20

45. Tov, J.A., Pucella, R.: Stateful contracts for affine types. In: Gordon, A.D. (ed.)
ESOP 2010. LNCS, vol. 6012, pp. 550–569. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-11957-6 29

46. Tov, J.A., Pucella, R.: A theory of substructural types and control. In: OOPSLA
2011, pp. 625–642 (2011)

47. Tov, J.A., Pucella, R.: Practical affine types. In: POPL 2011, pp. 447–458 (2011)
48. Wadler, P.: Propositions as sessions. In: ICFP 2012, pp. 273–286. ACM (2012)

http://dx.doi.org/10.1007/978-3-642-28729-9_23
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-642-11957-6_29
http://dx.doi.org/10.1007/978-3-642-11957-6_29

Temporary Read-Only Permissions
for Separation Logic

Arthur Charguéraud1,2 and François Pottier1(B)

1 Inria, Paris, France
francois.pottier@inria.fr

2 ICube – CNRS, Université de Strasbourg, Strasbourg, France

Abstract. We present an extension of Separation Logic with a general
mechanism for temporarily converting any assertion (or “permission”) to
a read-only form. No accounting is required: our read-only permissions
can be freely duplicated and discarded. We argue that, in circumstances
where mutable data structures are temporarily accessed only for reading,
our read-only permissions enable more concise specifications and proofs.
The metatheory of our proposal is verified in Coq.

1 Introduction

Separation Logic [30] offers a natural and effective framework for proving the
correctness of imperative programs that manipulate the heap. It is exploited in
many implemented program verification systems, ranging from fully automated
systems, such as Infer [9], through semi-interactive systems, such as Smallfoot [4],
jStar [15], and VeriFast [22], to fully interactive systems (embedded within a
proof assistant), such as the Verified Software Toolchain [1] and Charge! [3], to
cite just a few. The CFML system, developed by the first author [10,11], can
be viewed as a member of the latter category. We have used it to verify many
sequential data structures and algorithms, representing several thousand lines of
OCaml code.

1.1 Redundancy in Specifications

Our experience with Separation Logic at scale in CFML leads us to observe
that many specifications suffer from a somewhat unpleasant degree of verbosity,
which results from a frequent need to repeat part of the precondition in the
postcondition. This repetition is evident already in the Separation Logic axiom
for dereferencing a pointer:

traditional read axiom
{l ↪→ v} (get l) {λy. [y = v] � l ↪→ v}

This axiom states that “if initially the memory location l stores the value v,
then dereferencing l yields the value v and, after this operation, l still stores v.”

This research was partly supported by the French National Research Agency (ANR)
under the grant ANR-15-CE25-0008.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 260–286, 2017.
DOI: 10.1007/978-3-662-54434-1 10

Temporary Read-Only Permissions for Separation Logic 261

Arguably, to a human reader, the last part of this statement may seem obvious,
even though it is not formally redundant.

Beginning with this axiom, this redundancy contaminates the entire system.
It arises not only when a single memory cell is read, but, more generally, every
time a data structure is accessed for reading. To illustrate this, consider a func-
tion array concat that expects (pointers to) two arrays a1 and a2 and returns
(a pointer to) a new array a3 whose content is the concatenation of the contents
of a1 and a2. Its specification in Separation Logic would be as follows:

{a1 � ArrayL1 � a2 � ArrayL2}
(array concat a1 a2)
{λa3. a3 � Array (L1 ++ L2) � a1 � ArrayL1 � a2 � ArrayL2}

(1)

We assume that a � ArrayL asserts the existence (and unique ownership) of an
array at address a whose content is given by the list L. A separating conjunction �
is used in the precondition to require that a1 and a2 be disjoint arrays. Its use in
the postcondition guarantees that a3 is disjoint with a1 and a2. In this specifica-
tion, again, the fact that the arrays a1 and a2 are unaffected must be explicitly
stated as part of the postcondition, making the specification seem verbose.

Ideally, we would like to write a more succinct specification, which directly
expresses the idea that the arrays a1 and a2 are only read by array concat , even
though they are mutable arrays. Such a specification could be as follows, where
“RO” is a read-only modality, whose exact meaning remains to be explained:

{RO(a1 � ArrayL1) � RO(a2 � ArrayL2)}
(array concat a1 a2)
{λa3. a3 � Array (L1 ++ L2)}

(2)

The idea is, because only read access to a1 and a2 is granted, these arrays cannot
be modified or deallocated by the call array concat a1 a2. Therefore, the post-
condition need not say anything about these arrays: that would be redundant.

1.2 Can “RO” Be Interpreted by Macro-Expansion?

At this point, the reader may wonder whether the meaning of “RO” could be
explained by a simple macro-expansion process. That is, assuming that “RO”
is allowed to appear only at the top level of the precondition, the Hoare triple
{RO(H1)�H2} t {Q} could be viewed as syntactic sugar for {H1�H2} t {H1�Q}.
Such sugar is easy to implement; in fact, CFML offers it, under the notation
“INV”, for “invariant”. However, this näıve interpretation suffers from several
shortcomings, which can be summarized as follows:

1. It reduces apparent redundancy in specifications, but does not eliminate the
corresponding redundancy in proofs.

2. It does not allow read-only state to be aliased.
3. It leads to deceptively weak specifications.
4. It can lead to unusably weak specifications.

262 A. Charguéraud and F. Pottier

In the following, we expand on each of these points.

Shortcoming 1: Does Not Reduce Proof Effort. Under the näıve interpretation
of “RO” as macro-expansion, the Hoare triple {RO(H1) � H2} t {Q} is just
syntactic sugar. The presence or absence of this sugar has no effect on the proof
obligations that the user must fulfill. Even though the sugar hides the presence
of the conjunct H1 in the postcondition, it really is still there. So, the user must
prove that H1 holds upon termination of the command t. This might take several
proof steps: for example, several predicate definitions might need to be folded.
In other words, the issue that we would like to address is not just undesired
verbosity; it is also undesired work.

In this paper, we intend to give direct semantic meaning to “RO”. In this
approach, {RO(H1)�H2} t {Q} is an ordinary Hoare triple, whose postcondition
does not mention H1. Thus, there is no need for the user to argue that H1 holds
upon termination. The proof effort is therefore reduced.

Shortcoming 2: Does Not Allow Aliasing Read-Only State. Under the näıve inter-
pretation of “RO”, our proposed specification of array concat (2) is just sugar
for the obvious specification (1), therefore means that array concat must be
applied to two disjoint arrays. Yet, in reality, a call of the form “array concat a a”
is safe and makes sense. To allow it, one could prove another specification for
array concat , dealing specifically with the case where an array is concatenated
with itself:

{a � ArrayL}
(array concat a a)
{λa3. a3 � Array (L ++ L) � a � ArrayL}

(3)

However, that would imply extra work: firstly, when array concat is defined, as
its code must be verified twice; secondly, when it is invoked, as the user may
need to indicate which of the two specifications (1) and (3) should be used.

In this paper, we define the meaning of “RO” in such a way that every read-
only assertion is duplicable: that is, RO(H) entails RO(H) � RO(H). Thanks to
this property, our proposed specification of array concat (2) allows justifying
the call “array concat a a”. In fact, under our reasoning rules, specification (2)
subsumes both of the specifications (1) and (3) that one would need in the
absence of read-only assertions.

Shortcoming 3: Deceptively Weak. Under the näıve interpretation of “RO” as
macro-expansion, the Hoare triple {RO(H1)�H2} t {Q} does not guarantee that
the memory covered by H1 is unaffected by the execution of the command t.
Instead, it means only that H1 still holds upon termination of t. To see this,
imagine that the assertion h � HashTableM means “the hash table at address
h currently represents the dictionary M”. A function population, which returns
the number of entries in a hash table, could have the following specification:

{RO(h � HashTableM)} (population h) {λy. [y = cardM]} (4)

Under the macro-expansion interpretation, this specification guarantees that
h � HashTableM is preserved, so, after a call to population, the table h still

Temporary Read-Only Permissions for Separation Logic 263

represents the dictionary M . Somewhat subtly, this does not guarantee that the
concrete data structure is unchanged. In fact, a function resize, which doubles
the physical size of the table and profoundly affects its organization in memory,
would admit a similar specification:

{RO(h � HashTableM)} (resize h) {λ(). []} (5)

In this paper, we define the meaning of “RO” in such a way that it really
means “read-only”. Therefore, the above specification of population (4) acquires
stronger meaning, and guarantees that population does not modify the hash
table. The specification of resize (5) similarly acquires stronger meaning, and
can no longer be established, since resize does modify the hash table. A valid
specification of resize is {h � HashTableM} (resize h) {λ(). h � HashTableM}.

Shortcoming 4: Unusably Weak. The weakness of the above specifications is not
only somewhat unexpected and deceptive: there are in fact situations where it
is problematic.

Imagine that a hash table is internally represented as a record of several
fields, among which is a data field, holding a pointer to an array. The abstract
predicate h � HashTableM might then be defined as follows:

h � HashTableM :=
∃∃a.∃∃L. (h � {data = a; . . .} � a � ArrayL � . . .)

(6)

Suppose we wish to verify an operation foo, inside the “hash table” module,
whose code begins as follows:

let foo h =
let d = h.data in – read the address of the array
let p = population h in – call population
. . .

A proof outline for this function must begin as follows:

1 let foo h =
2 {h � HashTableM} – foo’s precondition
3 {h � {data = a; . . .} � a � ArrayL � . . .} – by unfolding
4 let d = h.data in
5 {h � {data = a; . . .} � a � ArrayL � . . . � [d = a]} – by reading
6 {h � HashTableM � [d = a]} – by folding
7 let p = population h in
8 {h � HashTableM � [d = a] � [p = #M]}
9 . . .

At line 3, we unfold h � HashTableM . Two auxiliary variables, a and L,
are introduced at this point; their scope extends to the end of the proof outline.
This unfolding step is mandatory: indeed, the read instruction at line 4 requires
h � {data = a; . . .}. This instruction produces the pure assertion [d = a], which
together with the assertion h � {data = a; . . .} means that d is the current
value of the field h.data.

264 A. Charguéraud and F. Pottier

At line 6, we fold h � HashTableM . This is mandatory: indeed, under the
näıve interpretation of “RO”, the precondition of the call “population h” is h �
HashTableM . Unfortunately, this folding step is harmful: it causes us to lose
h � {data = a; . . .} and thereby to forget that d is the current value of the field
h.data. (The equation d = a remains true, but becomes useless.) Yet, in reality,
this fact is preserved through the call, which does not modify the hash table.

In summary, because the specification of population (4) is too weak, calling
population at line 7 causes us to lose the benefit of the read instruction at line 4.
In this particular example, one could work around the problem by exchanging
the two instructions. In general, though, it might not be possible or desirable
to modify the code so as to facilitate the proof. Another work-around is to
equip population with a lower-level specification, where the predicate HashTable
is manually unfolded.

We have demonstrated that, under the näıve interpretation, the specification
of population (4) can be unsuitable for use inside the “hash table” abstraction.

In this paper, we define the meaning of “RO” in such a way that all of the
information that is available at line 5 is preserved through the call to population.
This is explained later on (Sect. 2.5).

1.3 Towards True Read-Only Permissions

The question that we wish to address is: what is a simple extension of sequential
Separation Logic with duplicable temporary read-only permissions1 for mutable
data?

We should stress that we are primarily interested in a logic of sequential
programs. We do discuss structured parallelism and shared-memory concurrency
near the end of the paper (Sect. 6.2).

We should also emphasize that we are not interested in read permissions for
permanently immutable data, which are a different concept. Such permissions
can be found, for instance, in Mezzo [2], and could be introduced in Separation
Logic, if desired. They, too, grant read access only, and are duplicable. Mezzo
allows converting a unique read-write permission to a duplicable read permission,
but not the other way around: the transition from mutable to immutable state is
irrevocable. Mezzo has no mechanism for obtaining a temporary read-only view
of a mutable data structure.

Finally, we should say a word of fractional permissions (which are discussed
in greater depth in Sect. 5.4). Fractional permissions [6] can be used to obtain
temporary read-only views of mutable data. A fraction that is strictly less than 1
grants read-only access, and, by joining all shares so as to recover the fraction 1,
a unique read-write access permission can be recovered. Nevertheless, fractional
permissions are not what we seek. They do not address our shortcoming 1: their
use requires work that we wish to avoid, namely “accounting” (arithmetic reason-
ing) as well as (universal and existential) quantification over fraction variables.

1 Following Boyland [6], Balabonski et al. [2], and others, we use the words “assertion”
and “permission” interchangeably.

Temporary Read-Only Permissions for Separation Logic 265

Furthermore, whereas RO(h � HashTableM) is a well-formed permission in our
logic, in most systems of fractional permissions, 1

2 (h � HashTableM) is not well-
formed. The systems that do allow this kind of “scaling”, such as Boyland’s [7],
do so at the cost of restricting disjunction and existential quantification so that
they are “precise”.

In this paper, we answer the above question. We introduce a generic assertion
transformer, “RO”. For any assertion H, it is permitted to form the assertion
RO(H), which offers read-only access to the memory covered by H. For instance,
RO(x ↪→ v) offers read-only access to the memory cell at address x. The tem-
porary conversion from a permission H to its read-only counterpart RO(H) is
performed within a lexically-delimited scope, via a “read-only frame rule”. Upon
entry into the scope, H is replaced with RO(H). Within the scope, RO(H) can
be duplicated if desired, and some copies can be discarded; there is no need to
keep track of all shares and recombine them so as to regain a full permission.
Upon exit of the scope, the permission H re-appears.

The rest of the paper is organized as follows. First, we review our additions
to Separation Logic (Sect. 2). Then, we give a formal, self-contained presentation
of our logic (Sect. 3) and of its model, which we use to establish the soundness
of the logic (Sect. 4). The soundness proof is formalized in Coq and can be
found online [12]. Then, we review some of the related work (Sect. 5), discuss
some potential applications and extensions of our logic (Sect. 6), and conclude
(Sect. 7).

2 Overview

In this section, we describe our additions to Separation Logic, with which we
assume a basic level of familiarity. The following sections describe our logic
(Sect. 3) and its model (Sect. 4) in full, and may serve as a reference.

2.1 A “Read-Only” Modality

To begin with, we introduce read-only permissions in the syntax of permissions.
Informally, the permission RO(H) controls the same heap fragment as the per-
mission H, but can be used only for reading. A more precise understanding of
the meaning of “RO” is given by the semantic model (Sect. 4.1).

The “RO” modality enjoys several important properties, shown in Fig. 1,
where the symbol � denotes entailment. When applied to a pure assertion [P],
“RO” vanishes. It can be pushed into a separating conjunction: RO(H1 � H2)
entails RO(H1) � RO(H2). The reverse entailment is false2. Because of this, one
might worry that exploiting the entailment RO(H1 � H2) � RO(H1) � RO(H2)
causes a loss of information. This is true, but if that is a problem, then one
can exploit the equality RO(H1 � H2) = RO(H1 � H2) � RO(H1) � RO(H2)

2 If it were true, then we would have the following chain of equalities: RO(l ↪→ v) =
RO(l ↪→ v) � RO(l ↪→ v) = RO(l ↪→ v � l ↪→ v) = RO([False]) = [False].

266 A. Charguéraud and F. Pottier

Fig. 1. Properties of RO

instead. “RO” commutes with disjunction and existential quantification. “RO”
is idempotent3. A read-only permission for a single cell of memory, RO(l ↪→ v),
cannot be rewritten into a simpler form, which is why there is no equation for
it in Fig. 1. It can be exploited via the new read axiom (Sect. 2.4). The last
two lines of Fig. 1 respectively state that “RO” is covariant and that read-only
permissions are duplicable.

Together, these rules allow pushing “RO” into composite permissions. For
instance, if h � HashTableM is defined as before (Sect. 1, (6)), then the read-
only permission RO(h � HashTableM) entails:

∃∃a.∃∃L. (RO(h � {data = a; . . .}) � RO(a � ArrayL) � RO(. . .))

In other words, “read-only access to a hash table” implies read-only access to
the component objects of the table, as expected.

2.2 A Read-Only Frame Rule

To guarantee the soundness of our extension of Separation Logic with read-only
permissions, we must enforce one key metatheoretical invariant, namely: a mem-
ory location is never governed at the same time by a read-write permission and
by a read permission. Indeed, if two such permissions were allowed to coexist,
the read-write permission by itself would allow writing a new value to this mem-
ory location. The read permission would not be updated (it could be framed
out, hence invisible, during the write) and would therefore become stale (that
is, carry out-of-date information about the value stored at this location). That
would be unsound.

In order to forbid the co-existence of read-write and read-only permissions
for a single location, we propose enforcing the following informal rules:

1. Read-only permissions obey a lexical scope (or “block”) discipline.
2. Upon entry into a block, a permission H can be replaced with its read-only

counterpart RO(H).
3. Upon exit of this block, the permission H reappears.
4. No read-only permissions are allowed to exit the block.
3 In practice, this property should not be useful, because permissions of the form
RO(RO(H)) never appear: the read-only frame rule (Sect. 2.2) is formulated in such
a way that it cannot give rise to such a permission.

Temporary Read-Only Permissions for Separation Logic 267

Fig. 2. Properties of normal

Roughly speaking, there is no danger of co-existence between read-write and
read permissions when a block is entered, because H is removed at the same
time RO(H) is introduced. There is no danger either when this block is exited,
even though H reappears, because no read-only permissions are allowed to exit.

Technically, all four informal rules above take the form of a single reasoning
rule, the “read-only frame rule”, which subsumes the frame rule of Separation
Logic. The frame rule allows an assertion H ′ to become hidden inside a block:
H ′ disappears upon entry, and reappears upon exit of the block. The read-only
frame rule does this as well, and in addition, makes the read-only permission
RO(H ′) available within the block. In our system, the two rules are as follows:

frame rule
{H} t {Q} normalH ′

{H � H ′} t {Q � H ′}

read-only frame rule
{H � RO(H ′)} t {Q} normalH ′

{H � H ′} t {Q � H ′}

The frame rule (above, left) is in fact just a special case of the read-only frame
rule (above, right). Indeed, a read-only permission can be discarded at any time
(using rule discard-pre from Fig. 4). Thus, the frame rule can be derived by
applying the read-only frame rule and immediately discarding RO(H ′).

Both rules above have the side condition normalH ′, which requires H ′ to be
“normal”. Its role is to ensure that “no read-only permissions are allowed to exit
the block”. “Normality” can be understood in several ways:

1. A syntactic understanding is that a permission is “normal” if “RO” does not
occur in it. This view is supported by the rules in Fig. 2. The one thing
to remark about these rules is that there is no rule whose conclusion is
normal(RO(H)).

2. A semantic understanding is given when we set up a model of our logic
(Sect. 4.1). There, we define what it means for a heap, where each memory
location is marked either as read-write or as read-only, to satisfy a permission.
Then, a permission is “normal” if a heap that satisfies it cannot contain any
read-only memory locations.

268 A. Charguéraud and F. Pottier

Because of the normality condition in the read-only frame rule, a Hoare triple
{H} t {Q} typically4 has a normal postcondition Q. This means that read-only
permissions can only be “passed down”, from caller to callee. They cannot be
“passed back up”, from callee to caller.

2.3 A Framed Sequencing Rule

The sequencing rule of Separation Logic (below, left) remains sound in our logic.
However, in a setting where postconditions must be normal (or are typically
normal), this rule is weaker than desired: it does not allow read-only permissions
to be distributed into its second premise. Indeed, suppose Q′ is normal, as it is
the postcondition of the first premise. Unfortunately, Q′ is also the precondition
of the second premise. This means that no read-only permissions are available in
the proof of t2. Yet, in practice, it is useful and desirable to be able to thread
one or more read-only permissions through a sequence of instructions. We remedy
the problem by giving a slightly generalized sequencing rule (below, right), which
allows an arbitrary permission H ′ to be framed out of t1 and therefore passed
directly to t2.

traditional sequencing rule
{H} t1 {Q′} {Q′} t2 {Q}

{H} (t1 ; t2) {Q}

framed sequencing rule
{H} t1 {Q′} {Q′ � H ′} t2 {Q}

{H � H ′} (t1 ; t2) {Q}

In Separation Logic, the “framed sequencing rule” can be derived from the
sequencing rule and the frame rule. Here, conversely, it is viewed as a primitive
reasoning rule; the traditional sequencing rule can be derived from it, if desired.

When a read-only permission is available at the beginning of a sequence of
instructions, it is in fact available to every instruction in the sequence. This is
expressed by the following rule, which can be derived from the framed sequencing
rule, the rule of consequence, and from the fact that read-only permissions are
duplicable.

read-only sequencing rule
{H � RO(H ′)} t1 {Q′} {Q′ � RO(H ′)} t2 {Q}

{H � RO(H ′)} (t1 ; t2) {Q}

2.4 A New Read Axiom

The axiom for reading a memory cell must be generalized so as to accept a read-
only permission (instead of a read-write permission) as proof that reading is
permitted. The traditional axiom (below, left) requires a read-write permission
l ↪→ v, which it returns. The new axiom (below, right) requires a read-only
permission RO(l ↪→ v), which it discards.
4 If we restricted the rule of consequence in Fig. 4 by adding the side condition
normalQ, then we would be able to prove that every triple {H} t {Q} that can
be established using the reasoning rules has a normal postcondition Q. We did not
restrict the rule of consequence in this way because this is technically not necessary.

Temporary Read-Only Permissions for Separation Logic 269

traditional read axiom
{l ↪→ v} (get l) {λy. [y = v] � l ↪→ v}

new read axiom
{RO(l ↪→ v)} (get l) {λy. [y = v]}

The traditional read axiom remains sound, and can in fact be derived from the
new read axiom and the read-only frame rule.

2.5 Illustration

Recall the hypothetical operation foo that was used earlier (Sect. 1.2) to illustrate
our claim that faking read-only permissions by macro-expansion is unsatisfac-
tory. Let us carry out this proof again, this time with our read-only permissions.
As before, we assume that population requires read access to the hash table.
This is expressed by specification (4), which we repeat here:

{RO(h � HashTableM)} (population h) {λy. [y = #M]}
We will use the following derived rule, which follows from the read-only frame

rule, the rule of consequence, and the fact that “RO” is covariant:

read-only frame rule (with consequence)

H ′ � H ′′ {H � RO(H ′′)} t {Q} normalH ′

{H � H ′} t {Q � H ′}
This rule differs from the read-only frame rule in that, instead of introducing

RO(H ′), this rule introduces RO(H ′′), where H ′′ is logically weaker than H ′.
Nevertheless, upon exit, the permission H ′ is recovered.

We can now give a new proof outline for foo:

1 let foo h =
2 {h � HashTableM}
3 {h � {data = a; . . .} � a � ArrayL � . . .}
4 let d = h.data in
5 {h � {data = a; . . .} � a � ArrayL � . . . � [d = a]}
6 {RO(h � HashTableM) � [d = a]}

– by the read-only frame rule (with consequence)
7 let p = population h in
8 {h � {data = a; . . .} � a � ArrayL � . . . � [d = a] � [p = #M]}
9 . . .

Up to and including line 5, the outline is the same as in our previous attempt.
At this point, in order to justify the call to population, we wish to obtain
the read-only permission RO(h � HashTableM). This is done by applying the
read-only frame rule (with consequence) around the call. We exploit the entail-
ment (h � {data = a; . . .}�a � ArrayL�. . .) � (h � HashTableM), which corre-
sponds to folding the HashTable predicate. Thus, for the duration of the call, we
obtain the read-only permission RO(h � HashTableM). After the call, the more
precise, unfolded, read-write permission h � {data = a; . . .} � a � ArrayL � . . .
reappears. The loss of information in our first proof outline (Sect. 1.2) no longer
occurs here.

270 A. Charguéraud and F. Pottier

3 Logic

In this section, we give a formal presentation of Separation Logic with read-only
permissions. We present the syntax of programs, the syntax of assertions, and
the reasoning rules. This is all a user of the logic needs to know. The semantic
model and the proof of soundness come in the next section (Sect. 4).

Fig. 3. Big-step evaluation

3.1 Calculus

Our programming language is a λ-calculus with references. Its syntax is as
follows:

v := x | () | n | l | μf.λx.t

t := v | if v then t1 else t2 | letx = t1 in t2 | (v v) | ref v | get v | set v v

A value v is either a variable x, the unit value (), an integer constant n, a
memory location l, or a recursive function μf.λx.t. A term t is either a value,
a conditional construct, a sequencing construct, a function call, or a primitive
instruction for allocating, reading, or writing a reference.

The big-step evaluation judgement (Fig. 3) takes the form t/m ⇓ v/m′, and
asserts that the evaluation of the term t in the memory m terminates and pro-
duces the value v in the memory m′. A memory is a finite map of locations to
values.

3.2 Permissions

The syntax of permissions, also known as assertions, is as follows:

H := [P] | l ↪→ v | H1 � H2 | H1 ∨∨ H2 | ∃∃x.H | RO(H)

Temporary Read-Only Permissions for Separation Logic 271

All of these constructs are standard, except for RO(H), which represents a read-
only form of the permission H. The pure assertion [P] is true of an empty heap,
provided the proposition P holds. P is expressed in the metalanguage; in our
Coq formalisation, it is an arbitrary proposition of type Prop. In particular, a
Hoare triple {H} t {Q} (defined later on) is a proposition: this is important, as
it allows reasoning about first-class functions. The empty permission [] can be
viewed as syntactic sugar for [True]. The permission l ↪→ v grants unique read-
write access to the reference cell at address l, and asserts that this cell currently
contains the value v. Separating conjunction �, disjunction ∨∨, and existential
quantification are standard. We omit ordinary conjunction ∧∧, partly because we
do not use it in practice when carrying out proofs in CFML, partly because we
did not have time to study whether the rule of conjunction holds in our logic.

From a syntactic standpoint, a “normal” permission is one that does not
contain any occurrences of “RO”. (Recall Fig. 2.)

As usual in Separation Logic, permissions are equipped with an entailment
relation, written H1�H2 (“H1 entails H2”). It is a partial order. (In particular, it
is antisymmetric: we view two propositions that entail each other as equal.) The
standard connectives of Separation Logic enjoy their usual properties, which, for
the sake of brevity, we do not repeat. (For instance, separating conjunction is
associative, commutative, and admits [] as a unit.) In addition, read-only per-
missions satisfy the laws of Fig. 1, which have been explained earlier (Sect. 2.1).

3.3 Reasoning Rules

As usual in Separation Logic, a Hoare triple takes the form {H} t {λy.H ′} where
H and H ′ are permissions and t is a term. The precondition H expresses require-
ments on the initial state; the postcondition λy.H ′ offers guarantees about the
result y of the computation and about the final state. We write Q for a postcon-
dition λy.H ′. For greater readability, we write Q�H ′ for λy. (Qy�H ′). We write
Q ∨∨ Q′ as a shorthand for λy. (Qy) ∨∨ (Q′ y). We write Q � Q′ as a shorthand
for ∀y. (Qy) � (Q′ y).

We adopt a total correctness interpretation, whereby a triple {H} t {λy.H ′}
guarantees that (under the precondition H) the evaluation of t terminates. This
is arbitrary: our read-only permissions would work equally well in a partial cor-
rectness setting.

The reasoning rules, by which Hoare triples can be established, are divided in
two groups: structural (or non-syntax-directed) rules (Fig. 4) and syntax-directed
rules (Fig. 5).

Among the structural rules, the only nonstandard rule is the
read-only frame rule, which has been explained earlier (Sect. 2.2). The rule
of consequence allows exploiting entailment to strengthen the precondition and
weaken the postcondition. The rules discard-pre and discard-post allow dis-
carding part of the pre- or postcondition. (The rule of consequence cannot be
used for this purpose: for instance, x ↪→ v does not entail [].) The permission GC
controls what permissions can be discarded. Here, we let GC stand for ∃∃H.H:

272 A. Charguéraud and F. Pottier

Fig. 4. Reasoning rules (structural)

Fig. 5. Reasoning rules (syntax-directed)

this means that any permission can be discarded5. The last three rules in Fig. 4
are elimination rules for pure assertions, disjunction, and existential quantifica-
tion. Note that the standard symmetric rule of disjunction, shown below, follows
directly from the rules extract-or and consequence.

disjunction
{H1} t {Q1} {H2} t {Q2}

{H1 ∨∨ H2} t {Q1 ∨∨ Q2}

The syntax-directed reasoning rules appear in Fig. 5. They are standard,
except for the framed sequencing rule and the new read axiom, which have
been explained earlier (Sects. 2.3 and 2.4).
5 ∃∃H. H is equivalent to true. If the programming language had explicit deallocation

instead of garbage collection, one might wish to define GC as ∃∃H.RO(H), which
means that read-only permissions can be implicitly discarded, but read-write per-
missions cannot. This restriction would be necessary in order to enforce “complete
collection”, that is, to ensure that every reference cell is eventually deallocated.

Temporary Read-Only Permissions for Separation Logic 273

The implications in the premises of extract-prop and if and the universal
quantifiers in the premises of extract-exists and framed sequencing rule are
part of the metalanguage (which, in our formalization, is Coq). Thus, in reality,
we work with assertions of the form ∀Γ. {H} t {Q}, where Γ represents a
metalevel hypothesis.

3.4 Treatment of Variables and Functions

Our treatment of variables, as well as the manner in which we reason about
functions, may seem somewhat mysterious or unusual. We briefly explain them
here. This material is entirely independent of the issue of read-only permissions,
so this section may safely be skipped by a reader who wishes to focus on read-
only permissions.

In the paper presentation, we identify program variables with the variables
of the metalanguage. For example, in the framed sequencing rule, the name x
that occurs in the conclusion letx = t1 in t2 denotes a program variable, while the
name x that is universally quantified in the second premise denotes a variable
of the metalanguage.

In our Coq formalization, we clearly distinguish between program variables
and metavariables. On the one hand, program variables are explicitly represented
as identifiers (which may be implemented as integers or as strings). They are
explicitly embedded in the syntax of values. The type of values, Val, is induc-
tively defined (this is a “deep embedding”). On the other hand, metavariables
are not “represented as” anything. They are just Coq variables of type Val, that
is, they stand for an unknown value. To bridge the gap between program vari-
ables and metavariables, a substitution is necessary. For example, in Coq, the
framed sequencing rule is formalized as follows:

∀xt1t2HH ′QQ′. {H} t1 {Q′}
∧ (∀X. {Q′ X � H ′} ([X/x] t2) {Q})
⇒ {H � H ′} (letx = t1 in t2) {Q}

Note how, in the second premise, a metavariable X (of type Val) is substituted
for the program variable x in the term t2. The metavariable X denotes the
runtime value of the program variable x.

As one descends into the syntax of a term, metavariables are substituted for
program variables, as explained above. Thus, one can never reach a leaf that is
an occurrence of a program variable x! If a leaf labeled x originally existed in
the term, it must be replaced with a value X when the binder for x is entered.

This explains a surprising feature of our reasoning rules, which is that they do
not allow reasoning about terms that have free program variables. The rule if, for
instance, allows reasoning about a term of the form (if n then t1 else t2), where
n is a literal integer value. It does not allow reasoning about (if x then t1 else t2),
where x is a program variable. As argued above, this is not a problem. Similarly,
app expects the value v1 to be a λ-abstraction; it does not allow v1 to be a
program variable. new read axiom and set expect the first argument of get and
set to be a literal memory location; it cannot be a program variable.

274 A. Charguéraud and F. Pottier

Another possibly mysterious aspect of our presentation is the treatment of
functions. In apparence, our only means of reasoning about functions is the
rule app, which states that, in order to reason about a call to a literal function
(a λ-abstraction), one should substitute the actual arguments for the formal
parameters in the function’s body, and reason about the term thus obtained. At
first, this may not seem modular: in Hoare logic, one expects to first assign a
specification to each function, then check that each function body satisfies its
specification, under the assumption that each function call satisfies its specifica-
tion. In a total correctness setting, one must also establish termination.

It turns out that, by virtue of the power of the metalanguage, this style of
reasoning is in fact possible, based on the rules that we have given. We cannot
explain everything here, but present one rule for reasoning about the definition
and uses of a (possibly recursive) function. This rule can be derived from the
rules that we have given. It is as follows:

⎛

⎜
⎝∀S.∀F.

((∀XH ′Q′. {H ′} ([F/f] [X/x] t1) {Q′}
⇒ {H ′} (F X) {Q′}

)

⇒ S F

)

∧ (S F ⇒ {H} ([F/f] t2) {Q})

⎞

⎟
⎠

⇒ {H} (let f = μf.λx.t1 in t2) {Q}
This rule provides a way of establishing a Hoare triple about a term of the

form let f = μf.λx.t1 in t2. In order to establish such a triple, it suffices to:

1. Pick a specification S, whose type is Val → Prop. This is typically a Hoare
triple, which represents a specification of the function μf.λx.t1.

2. Establish the desired triple about the term t2, under the assumption that the
function satisfies the specification S. (This is the third line above.) In doing
so, one does not have access to the code of the function: it is represented by
a metavariable F about which nothing is known but the hypothesis S F .

3. Prove that the function satisfies the specification S. (These are the first two
lines above.) The function is still represented by a metavariable F . This time,
one has access to the hypothesis that invoking F is equivalent to executing
the function body t1, under a substitution of actual arguments for formal
parameters. If the function μf.λx.t1 is recursive, then this proof must involve
induction (which is carried out in the metalanguage).

4 Model

In this section, we establish the soundness of our extension of Separation Logic.
We first provide a concrete model of permissions, then give an interpretation of
triples with respect to which each of the reasoning rules is proved sound.

4.1 A Model of Permissions

In traditional Separation Logic, a permission is interpreted as a predicate over
heaps, also known as heap fragments. There, a “heap” coincides with what we

Temporary Read-Only Permissions for Separation Logic 275

Fig. 6. Compatibility and composition of heaps

Fig. 7. Interpretation of permissions

have called a “memory”, that is, a finite map of memory locations to values.
Then, famously, a separating conjunction H1 � H2 is satisfied by a heap h if
and only if h is the disjoint union of two subheaps that respectively satisfy H1

and H2.
In the following, we need a slightly more complex model, where a “heap” is a

richer object than a “memory”. Whereas a memory maps locations to values, a
heap must additionally map memory locations to access rights: that is, it must
keep track of which memory locations are considered accessible for reading and
writing and which memory locations are accessible only for reading. A permission
remains interpreted as a predicate over heaps.

We let a “heap” be a pair (f, r) of two memories f and r whose domains are
disjoint6. (We let f and r range over memories.) The memory f represents the
memory cells that are fully accessible, that is, accessible for reading and writing.
The memory r represents the memory cells that are accessible only for reading.
We note that there exist other (isomorphic) concrete representations of heaps:
for instance, we could have defined a heap as a map of memory locations to pairs
of a value and an access right (either “read-write” or “read-only”).

We let h range over heaps. We write h.f for the first component of the pair h
(that is, the read-write memory) and h.r for its second component (the read-only
memory).

6 Technically, in Coq, a heap is defined as a pair (f, r) accompanied with a proof that
f and r have disjoint domains. Thus, whenever in the paper we assemble a heap
(f, r), we have an implicit obligation to prove dom f ∩ dom r = ∅.

276 A. Charguéraud and F. Pottier

In traditional Separation Logic, two heaps are compatible (that is, can be
composed) if and only if they have disjoint domains, and their composition is
just their union. Here, because heaps contain information about access rights, we
need slightly more complex notions of compatibility and composition of heaps.
These notions are defined in Fig. 6. We first introduce a few notations. We write
m1 ⊥ m2 when the memories m1 and m2 have disjoint domains. By extension,
we write m1 ⊥ m2 ⊥ m3 when the memories m1, m2 and m3 have pairwise
disjoint domains. We write agree r1 r2 when the memories r1 and r2 agree where
their domains overlap.

These notations allow us to succinctly state when two heaps h1 and h2 are
compatible. First, the read-only components of h1 and h2 must agree where
their domains overlap. Second, the read-write component of h1, the read-write
component of h2, and the combined read-only components of h1 and h2 must
have pairwise disjoint domains. When two heaps h1 and h2 are compatible, they
can be composed. Composition is performed component-wise, that is, by taking
the (disjoint) union of the read-write components and the (compatible) union of
the read-only components. (The hypothesis that h1 and h2 are compatible is used
to meet the proof obligation that h1 +h2 is a well-formed heap whose read-write
and read-only components have disjoint domains.) Composition, where defined,
is associative and commutative.

The interpretation of permissions appears in Fig. 7. The interpretation of
the standard permission forms is essentially standard: superficial adaptations
are required to deal with the fact that a heap is a pair of a read-write memory
and a read-only memory. The permission [P] is satisfied by a heap whose read-
write and read-only components are both empty, provided the proposition P
holds. The permission l ↪→ v is satisfied by a heap whose read-write component
is a singleton memory (l
→ v) and whose read-only component is empty. The
permission H1 � H2 is satisfied by a heap h if and only if h is the composition
of two (compatible) subheaps h1 and h2 which respectively satisfy H1 and H2.
The interpretation of disjunction and existential quantification is standard.

A key aspect is the interpretation of RO(H). A human-readable, yet relatively
accurate rendering of the formal meaning of RO(H) is as follows: “we do not have
write access to any memory locations, but if we did have read-write (instead of
read-only) access to certain locations, then H would hold”. Technically, this is
expressed as follows. The permission RO(H) is satisfied by a heap h if (1) the
read-write component of h is empty and (2) the read-only component of h is of
the form h′.f � h′.r, where h′ satisfies H. Thus, “RO” is a modality: it changes
the “world” (the heap) with respect to which H is interpreted. In the outside
world h, everything must be marked as read-only, whereas in the inside world h′,
some locations may be marked as read-write.

As explained earlier (Sect. 2.2), the meaning of normalH is defined as follows:
a permission H is normal if and only if every heap h that satisfies it has an empty
read-only component.

Entailment is defined in a standard way: H1 � H2 holds if every heap that
satisfies H1 also satisfies H2.

Temporary Read-Only Permissions for Separation Logic 277

Lemma 1. The above definitions validate the laws listed in Figs. 1 and 2.

4.2 A Model of Triples

We now wish to assign an interpretation to a Hoare triple of the form {H} t {Q}.
Then, each of the reasoning rules of the logic can be proved sound, independently,
by checking that it is a valid lemma. Before giving this interpretation, a couple
of auxiliary definitions are needed.

First, if h is a heap, let �h be the memory h.f� h.r. That is, �h is the memory
obtained by forgetting the distinction between read-write and read-only locations
in the heap h. This definition serves as a link between memories, which exist at
runtime (they appear in the operational semantics: see Fig. 3), and heaps, which
additionally contain access right information. This information does not exist at
runtime: it is “ghost” data.

Second, if H is a permission, let on-some-rw-frag(H) stand for the permission
(that is, the predicate over heaps) that holds of a heap h if and only if h is the
composition of two heaps h1 and h2, where h1 has an empty read-only component
and satisfies H. In mathematical notation:

on-some-rw-frag(H) ≡
λh.∃h1h2. compatible h1 h2 ∧ h = h1 + h2 ∧ h1.r = ∅ ∧ H h1

Intuitively, on-some-rw-frag(H)h asserts that H holds of a fragment of h whose
read-only component is empty. This definition is used in the following to precisely
express the meaning of postconditions, which in reality do not apply to the whole
final heap, but to some fragment of the final heap whose read-only component
is empty, or equivalently, to “some read-write fragment” of the final heap.

The interpretation of triples is now defined as follows:

Definition 1 (Interpretation of triples). A semantic Hoare triple
{H} t {Q} is a short-hand for the following statement:

∀h1h2.

{
compatible h1 h2

H h1
⇒ ∃vh′

1.

⎧
⎪⎪⎨

⎪⎪⎩

compatible h′
1 h2

t/ �h1 + h2 ⇓ v/ �h′
1 + h2

h′
1.r = h1.r

on-some-rw-frag(Qv) h′
1

In order to understand this definition, it is useful to first read the special
case where the heap h2 is empty:

∀h1. H h1 ⇒ ∃vh′
1.

⎧
⎨

⎩

t/�h1 ⇓ v/�h′
1

h′
1.r = h1.r

on-some-rw-frag(Qv) h′
1

This may be read as follows. Let h1 be an arbitrary initial heap that satisfies
the permission H. Then, the term t, placed in the memory �h1, runs safely
and terminates, returning a value v in a final memory that can be described
as �h′

1, for some heap h′
1. The heap h′

1 obeys the constraint h′
1.r = h1.r, which

278 A. Charguéraud and F. Pottier

means that the set of all read-only locations is unchanged7 and that the content
of these locations is unchanged as well. Last, the permission Q v is satisfied by
some read-write fragment of the heap h′

1
8.

In the general case, where h2 is an arbitrary heap, the definition of {H} t {Q}
states that the execution of the term t cannot affect a subheap h2 which t “does
not know about”. Thus, running t in an initial heap �h1 + h2 must yield a final
heap of the form �h′

1 + h2. This requirement has the effect of “building the
frame rule into the interpretation of triples”. It is standard [14, Definition 11].
We note that the memories �h1 and �h2 are not necessarily disjoint: indeed,
the read-only components of the heaps h1 and h2 may have overlapping domains.

Theorem 1 (Soundness). The above definition of triples validates all of the
reasoning rules of Figs. 4 and 5.

Proof. We refer the reader to our Coq formalization [12]. ��

5 Related Work

5.1 The C/C++ “const” Modifier

The C and C++ languages provide a type qualifier, const, which, when applied
to the type of a pointer, makes this pointer usable only for reading. For example,
a pointer of type const int* offers read access to an integer memory cell, but
does not allow mutating this cell. A pointer of type int* can be implicitly
converted to a pointer of type const int*.

The const qualifier arguably suffers from at least two important defects.
First, as aliasing is not restricted, the above conversion rule immediately implies
that a single pointer can perfectly well be stored at the same time in two distinct
variables of types const int* and int*. Thus, although const prevents writing
(through this pointer), it does not guarantee that the memory cell cannot be
written (through an alias). Second, const does not take effect “in depth”. If t
has type const tree*, for instance, then t->left has type tree*, as opposed
to const tree*. Thus, the const qualifier, applied to the type tree*, does not
forbid modifications to the tree.

For these reasons, when a function expects a const pointer to a mutable
data structure, one cannot be certain that this data structure is unaffected by
a call to this function. In contrast, our read-only permissions do offer such a
guarantee.
7 That is, no read-write locations become read-only, or vice-versa. This reflects the fact

that “RO” permissions appear and disappear following a lexical scope discipline. As
a consequence, any newly-allocated memory cells must be marked read-write in h′

1.
8 The operator on-some-rw-frag is used here for two reasons. First, in the presence

of the rules discard-pre and discard-post, which discard arbitrary permissions,
one cannot expect the postcondition Q v to be satisfied by the whole final heap h′

1.
Instead, one should expect Q v to be satisfied by a fragment of h′

1. Second, Q v is
typically a normal permission, which can be satisfied only by a heap whose read-
only component is empty. So, one may expect that Q v is satisfied by a “read-write”
fragment of h′

1.

Temporary Read-Only Permissions for Separation Logic 279

5.2 The “Read-Only Frame” Connective

Jensen et al. [23] present a Separation Logic for “low-level” code. It is “high-level”
in the sense that, even though machine code does not have a built-in notion of
function, the logic offers structured reasoning rules, including first- and higher-
order frame rules. The logic is stratified: assertions and specifications form two
distinct levels. At the specification level, one finds a “frame” connective ⊗ and
a “read-only frame” connective �.

When applied to the specification of a first-order function, the “frame” con-
nective has analogous effect to the “macro-expansion” scheme that was discussed
earlier (Sect. 1.2): framing such a specification S with an assertion R amounts to
applying �R to the pre- and postcondition. Thus, if R is (say) h � HashTableM ,
then the specification S ⊗ R states that h must remain a valid hash table that
represents the dictionary M , but does not require that the table be unchanged:
it could, for instance, be resized.

The “read-only frame” connective � is stronger: the specification S � R
requires not just that the assertion R be preserved, but that the concrete heap
fragment that satisfies R be left in its initial state. It is defined on top of the
“frame” connective by bounded quantification. A typical use is to indicate that
the code of a function (which, in this machine model, is stored in memory)
must be accessible for reading, and is not modified when the function is called.
Jensen et al.’s “read-only frame” connective allows “read-only” memory to be
temporarily modified, as long as its initial state is restored upon exit. Therefore,
it is quite different from our read-only permissions, which at the same time
impose a restriction and offer a guarantee: they prevent the current function
from modifying the “read-only” memory, and they guarantee that a callee cannot
modify it either. Furthermore, our read-only permissions can be duplicated and
discarded, whereas Jensen et al.’s “read-only frame” connective exists at the
specification level: they have no read-only assertions.

5.3 Thoughts About Lexical Scope

The read-only frame rule takes advantage of lexical scope: it applies to a code
block with well-defined entry and exit points, and governs how permissions are
transformed when control enters and exits this block. Upon entry, a read-write
permission is transformed to a read-only permission; upon exit, no read-only
permissions are allowed to go through, and the original read-write permission
reappears. The soundness of this rule relies on the fact that read-only permissions
cannot escape through side channels9.

There are several type systems and program logics in the literature which
rely on lexical scope in a similar manner, sometimes for the same purpose (that

9 For instance, we do not have concurrency, so a read-only permission cannot be
transmitted to another thread via a synchronization operation. Furthermore, unlike
Mezzo [2], we do not allow a closure to capture a duplicable permission, so a read-
only permission cannot escape by becoming hidden in a closure.

280 A. Charguéraud and F. Pottier

is, to temporarily allow shared read-only access to a mutable data structure),
sometimes for other purposes.

Wadler’s “let!” construct [32, Sect. 4], for instance, is explicitly designed to
allow temporary shared read-only access to a “linear value”, that is, in our
terminology, a uniquely-owned, mutable data structure. The “let!’ rule changes
the type of a variable x from T outside the block to !T inside the block, which
means that x temporarily becomes shareable and accessible only for reading.
In order to ensure that no component of x is accessed for reading after the
block is exited, Wadler requires a stronger property, namely that no component
of x is accessible through the result value. Furthermore, in order to enforce this
property, he imposes an even more conservative condition, namely that the result
type U be “safe for T”. In comparison, things are simpler for us. Separation Logic
distinguishes values and permissions: thus, we do not care if a value (the address
of x, or of a component of x) escapes, as long as no read permission escapes.
Furthermore, in our setting, it is easy to enforce the latter condition. Technically,
the side condition “normalH ′” in the read-only frame rule plays this role. At
a high level, this side condition implies that read-only permissions appear only in
preconditions, never in postconditions. In Wadler’s system, in contrast, the “!”
modality describes both inputs and outputs, and describes both permanently-
immutable and temporarily-read-only data, so things are less clear-cut.

In Vault [17], the “focus” mechanism temporarily yields a unique read-write
permission for an object that inhabits a region (therefore, can be aliased, so
normally would be accessible only for reading). Meanwhile, the permission to
access this region is removed. This is essentially the dual of the problem that we
are addressing! In the case of “focus”, it is comparatively easy to ensure that the
temporary read-write permission does not escape: as this is a unique permission,
it suffices to require it upon exit. For the same reason, it is possible to relax
the lexical scope restriction by using an explicit linear implication [17, Sect. 6].
Boyland and Retert’s explanation of “borrowing” [8] is also in terms of “focus”.

Gordon et al. [18] describe a variant of C# where four kinds of references are
distinguished, namely: ordinary writable references; readable references, which
come with no write permission and no guarantee; immutable references, which
come with a guarantee that nobody has (or will ever have) write permission; and
isolated references, which form a unique entry point into a cluster of objects.
Quite strikingly, the system does not require any accounting. Lexical scope is
exploited in several interesting ways. In particular, the “isolation recovery” rule
states that, if, upon entry into a block, only isolated and immutable references are
available, and if, upon exit of that block, a single writable reference is available,
then this reference can safely be viewed as isolated. (The soundness of this rule
relies on the fact that there are no mutable global variables.) This rule may seem
superficially analogous to the read-only frame rule, in that a unique permission
is lost and recovered. It is unclear to us whether there is a deeper connection.
The system has a typing rule for structured parallelism and allows a mutable
data structure to be temporarily shared (for reading) by several threads.

Temporary Read-Only Permissions for Separation Logic 281

Gordon et al.’s work is part of a line of research on “reference immutability”,
where type qualifiers are used to control object mutation. We refer to the reader
to Gordon et al.’s paper [18] and to Potanin et al.’s survey [27]. Coblenz et al.’s
recent study of language support for immutability [13] is also of interest.

Rust [31] has lexically-scoped “borrows”, including “immutable borrows”,
during which multiple temporary read-only pointers into a uniquely-owned muta-
ble data structure can be created. The borrowing discipline does not require any
counting, but involves “lifetimes”, a form of region variables. Lifetimes can often
be hidden in the surface syntax, but must sometimes be exposed to the program-
mer. In contrast, our read-only permissions require neither counting nor region
variables. Reed [29] offers a tentative formal description of Rust’s borrowing
discipline.

5.4 Fractional Permissions

Fractional permissions were introduced by Boyland [6] with the specific purpose
of enabling temporary shared read-only access to a data structure. They have
been integrated into several variants of Concurrent Separation Logic [5,19,21]
and generalized in several ways, e.g., by replacing fractions with more abstract
“shares” [16]. They are available in several program verification tools, including
VeriFast [22], Chalice [20,24], and the Verified Software Toolchain [1].

In its simplest incarnation, a fractional permission takes the form l
α
↪→ v,

where α is a rational number in the range (0, 1]. If α is 1, then this permission
grants unique read-write access to the memory location l; if α is less than 1,
then it grants shared read access. The following conversion rule allows splitting
and joining fractional permissions:

(l
α+β
↪→ v) = (l

α
↪→ v) � (l

β
↪→ v) when α, β, (α + β) ∈ (0, 1]

Thanks to this rule, one can transition from a regime where a single thread
has read-write access to a regime where several threads have read-only access,
and back. Fractional permissions are not duplicable, and must not be carelessly
discarded: indeed, in order to move back from read-only regime to read-write
regime, one must prove that “no share has been lost” and that the fraction 1 has
been recovered. This requires “accounting”, that is, arithmetic reasoning, as well
as returning fractional permissions in postconditions. In contrast, our proposal
is less expressive in some ways (for instance, it does not support unstructured
concurrency; see Sect. 6.2) but does not require accounting: our read-only per-
missions can be freely duplicated and discarded.

Fractional permissions also allow expressing a form of irrevocable (as opposed
to temporary) read-only permissions. Define (l

ro
↪→ v) as follows:

(l
ro
↪→ v) = ∃∃α ∈ (0, 1). (l

α
↪→ v)

From this definition, it follows that (l
ro
↪→ v) is duplicable. It also follows that

(l
1

↪→ v) can be converted to (l
ro
↪→ v), but not the other way around: the transition

from read-write to read-only mode, in this case, is permanent.

282 A. Charguéraud and F. Pottier

In the systems of fractional permissions mentioned above, the fraction α
is built into the points-to assertion l

α
↪→ v. Boyland [7] studies a more general

idea, “scaling”, where any permission H can be scaled by a fraction: that is,
H ::=α.H is part of the syntax of permissions. Scaling seems a desirable feature,
as it allows expressing read-only access to an abstract data structure, as in, say,
1
2 (h � HashTableM), which is impossible when scaling is built into points-to
assertions. However, scaling exhibits a problematic interaction with disjunction
and existential quantification. Boyland shows that “reasoning with a fractional
unrestricted existential is unsound” [7, Sect. 5.4]. In short, it seems difficult to
find a model that validates both of the laws (α.H) � (β.H) = (α + β).H and
α.(∃∃x.H) = ∃∃x. (α.H). Indeed, under these laws, 1

2 .(l1 ↪→ v) � 1
2 .(l2 ↪→ v)

entails ∃∃l. (1.(l ↪→ v)), which does not make intuitive sense. Boyland escapes
this problem by restricting the existential quantifier so that it is precise: the
construct ∃∃x.H is replaced with ∃∃y. (x ↪→ y � H). In contrast, our read-only
permissions do not require any such restriction, yet do support “scaling”, in the
sense that “RO” can be applied to an arbitrary permission: RO(H) is well-formed
and has well-defined meaning for every H.

Chalice offers “abstract read permissions” [20], an elaborate layer of syntactic
sugar above fractional permissions. An abstract read permission, which could be
written l

rd
↪→ v, is translated to a fractional permission l

ε
↪→ v, where the variable ε

stands for an unknown fraction. The variable ε is suitably quantified: for instance,
if this abstract read permission appears in a method specification, then ε is
universally quantified in front of this specification [20, Sect. 4.1]. The system
is powerful enough to automatically introduce and instantiate quantifiers and
automatically split and join fractional permissions where needed. Unfortunately,
because abstract read permissions are just fractional permissions, they are not
duplicable, and they must not be carelessly discarded: they must be returned
(or transferred to some other thread) so that the fraction 1 can eventually be
recovered. Also, it is not known to us whether abstract read permissions can be
explained to the programmer in a direct manner, without reference to fractional
permissions.

In a somewhat related vein, Aldrich et al. [25] propose a type system where
(among other features) out of a “unique” reference, any number of “local
immutable” references can be temporarily “borrowed”. The type system inter-
nally relies on integer accounting, but this is hidden from the user.

6 Potential Applications and Extensions

6.1 Where Read-Only Permissions Could (or Could Not) Help

The second author has specified and proved an OCaml implementation of hash
tables [28], in Separation Logic, using the first author’s tool, CFML. Iterating
on a hash table is possible either via a higher-order function, HashTable.iter,
or via “cascades”, a form of iterators, built by the function HashTable.cascade.

In either case, the specification should ideally be stated in such a way that the
consumer has read-only access to the table while iteration is in progress. For this

Temporary Read-Only Permissions for Separation Logic 283

purpose, the abstract predicate h � HashTableM , which gives unique read-write
access, is not appropriate. A finer-grained predicate, h � HashTableInStateM s,
is introduced, where s is an abstract name for the current concrete state of the
table. Then, a function that does not modify the table, like population, requires
the permission h � HashTableInStateM s and returns it. (It is polymorphic
in s.) In contrast, a function that does modify the table, like resize, also requires
h � HashTableInStateM s, but returns ∃∃s′. h � HashTableInStateM s′. In fact,
because h � HashTableM is an abbreviation for ∃∃s. h � HashTableInStateM s,
one can simply say that resize requires and returns h � HashTableM .

The specification of HashTable.iter (not shown here) involves universal
quantification over s and the predicate h � HashTableInStateM s. This allows
expressing the fact that iter does not modify the table and requires the function
that it receives as an argument to not modify it either. Read-only permissions,
if implemented in CFML, would help simplify this specification. It would be
sufficient to state that iter requires the permission RO(h � HashTableM) and
passes it on to the function that it receives as an argument.

The specification of HashTable.cascade (not shown either) also exploits s
in order to express the fact that the iterator returned by cascade remains valid
as long as the hash table is not modified. Unfortunately, because our read-only
permissions have lexical scope, they cannot help state a simpler specification.
Indeed, the iterator outlives the call to cascade: it still needs read access after
this call is finished.

6.2 Parallelism and Concurrency

We believe that our read-only permissions remain sound when the calculus is
extended with “structured parallelism”, that is, with a term construct t ::=
(t ‖ t) for evaluating two terms in parallel. The parallel composition rule of
Concurrent Separation Logic [26] can be used:

parallel composition
{H1} t1 {Q1} {H2} t2 {Q2}
{H1 � H2} (t1 ‖ t2) {Q1 � Q2}

Because read-only permissions are duplicable, this rule, combined with the rule
of consequence, allows read access to be shared between the threads t1 and t2.
That is, the following rule is derivable:

parallel composition with shared read
{H1 � RO(H ′)} t1 {Q1} {H2 � RO(H ′)} t2 {Q2}

{H1 � H2 � RO(H ′)} (t1 ‖ t2) {Q1 � Q2}

This rule can be used to share read access between any number of threads.
By combining it with the read-only frame rule, one obtains the following rule,
which allows a mutable data structure (represented by the permission H ′) to
temporarily be made accessible for reading to several threads and to become
again accessible for reading and writing once these threads are finished:

284 A. Charguéraud and F. Pottier

parallel composition with temporary shared read
{H1 � RO(H ′)} t1 {Q1} {H2 � RO(H ′)} t2 {Q2} normalH ′

{H1 � H2 � H ′} (t1 ‖ t2) {Q1 � Q2 � H ′}

At present, we do not have a proof that the parallel composition rule is
sound. Our current proof technique apparently cannot easily accommodate it,
primarily because it is based on a big-step operational semantics (Fig. 3), which
(to the best of our knowledge) cannot be easily extended to support parallel
composition (t1 ‖ t2).

These remarks lead to several questions. Could Separation Logic with read-
only permissions be proved sound, based on a small-step operational semantics?
Could the logic and its proof then be extended with support for structured
parallelism? There seems to be no reason why they could not, but this requires
further research.

Another question arises: could Separation Logic with read-only permissions
be extended so as to support unstructured parallelism, that is, shared-memory
concurrency with explicit threads and synchronization facilities, such as locks
and channels? We do not have an answer. We know that näıvely transmitting a
read-only permission from one thread to another would be unsound. So, proba-
bly, the logic would have to be made more complex, perhaps by explicitly anno-
tating read-only permissions with “lifetime” information. Whether this can be
done while preserving the simplicity of the approach is an open question. After
all, the whole approach is worthwhile only as long as it remains significantly
simpler than fractional permissions (Sect. 5.4), which offer a well-understood
solution to this problem.

7 Conclusion

We have extended sequential Separation Logic with a simple form of temporary
read-only permissions. We have argued that they can (at least in some situations)
express more concise, more accurate, more useful specifications and give rise to
simpler proofs. Our proposal involves very few additions to Separation Logic,
namely the “RO” modality; the read-only frame rule, which subsumes the frame
rule; and a generalized sequencing rule. We have given semantic meaning to
read-only permissions and to Hoare triples in terms of heaps that include “ghost”
access rights information. We have formalized the logic and its proof of soundness
in Coq. We hope to implement read-only permissions in CFML [11] in the future.

References

1. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19718-5 1

2. Balabonski, T., Pottier, F., Protzenko, J.: The design and formalization of Mezzo, a
permission-based programming language. ACM Trans. Program. Lang. Syst. 38(4),
14:1–14:94 (2016)

http://dx.doi.org/10.1007/978-3-642-19718-5_1

Temporary Read-Only Permissions for Separation Logic 285

3. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! A framework for higher-order
separation logic in Coq. In: Interactive Theorem Proving (ITP), pp. 315–331 (2012)

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: Boer, F.S., Bonsangue, M.M., Graf,
S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). doi:10.1007/11804192 6

5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Principles of Programming Languages (POPL), pp. 259–270
(2005)

6. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). doi:10.1007/
3-540-44898-5 4

7. Boyland, J.T.: Semantics of fractional permissions with nesting. ACM Trans. Pro-
gram. Lang. Syst. 32(6), 22:1–22:33 (2010)

8. Boyland, J.T., Retert, W.: Connecting effects and uniqueness with adoption. In:
Principles of Programming Languages (POPL), pp. 283–295 (2005)

9. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-20398-5 33

10. Charguéraud, A.: Characteristic formulae for mechanized program verification.
Ph.D. thesis, Université Paris 7 (2010)

11. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams (2013, unpublished). http://www.chargueraud.org/research/2013/cf/cf.pdf

12. Charguéraud, A., Pottier, F.: Self-contained archive (2017). http://gallium.inria.
fr/∼fpottier/dev/seplogics/

13. Coblenz, M.J., Sunshine, J., Aldrich, J., Myers, B.A., Weber, S., Shull, F.: Explor-
ing language support for immutability. In: International Conference on Software
Engineering (ICSE), pp. 736–747 (2016)

14. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: Principles of Programming
Languages (POPL), pp. 287–300 (2013)

15. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In:
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pp. 213–226 (2008)

16. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10672-9 13

17. Fähndrich, M., DeLine, R.: Adoption and focus: practical linear types for imper-
ative programming. In: Programming Language Design and Implementation
(PLDI), pp. 13–24 (2002)

18. Gordon, C.S., Parkinson, M.J., Parsons, J., Bromfield, A., Duffy, J.: Uniqueness
and reference immutability for safe parallelism. In: Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pp. 21–40 (2012)

19. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for
storable locks and threads. Technical report MSR-TR-2007-39, Microsoft Research
(2007)

20. Heule, S., Leino, K.R.M., Müller, P., Summers, A.J.: Abstract read permis-
sions: fractional permissions without the fractions. In: Giacobazzi, R., Berdine, J.,
Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 315–334. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-35873-9 20

http://dx.doi.org/10.1007/11804192_6
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/978-3-642-20398-5_33
http://dx.doi.org/10.1007/978-3-642-20398-5_33
http://www.chargueraud.org/research/2013/cf/cf.pdf
http://gallium.inria.fr/~fpottier/dev/seplogics/
http://gallium.inria.fr/~fpottier/dev/seplogics/
http://dx.doi.org/10.1007/978-3-642-10672-9_13
http://dx.doi.org/10.1007/978-3-642-35873-9_20

286 A. Charguéraud and F. Pottier

21. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separa-
tion logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78739-6 27

22. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical report CW-520,
Department of Computer Science, Katholieke Universiteit Leuven (2008)

23. Jensen, J.B., Benton, N., Kennedy, A.: High-level separation logic for low-level
code. In: Principles of Programming Languages (POPL), pp. 301–314 (2013)

24. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00590-9 27

25. Naden, K., Bocchino, R., Aldrich, J., Bierhoff, K.: A type system for borrowing
permissions. In: Principles of Programming Languages (POPL), pp. 557–570 (2012)

26. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

27. Potanin, A., Östlund, J., Zibin, Y., Ernst, M.D.: Immutability. In: Clarke, D.,
Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. Types,
Analysis and Verification. LNCS, vol. 7850, pp. 233–269. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36946-9 9

28. Pottier, F.: Verifying a hash table and its iterators in higher-order separation logic.
In: Certified Programs and Proofs (CPP), pp. 3–16 (2017)

29. Reed, E.: Patina: a formalization of the rust programming language. Technical
report UW-CSE-15-03-02, University of Washington (2015)

30. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Logic in Computer Science (LICS), pp. 55–74 (2002)

31. The Mozilla Foundation: The Rust programming language (2014)
32. Wadler, P.: Linear types can change the world! In: Broy, M., Jones, C. (eds.)

Programming Concepts and Methods, North Holland (1990)

http://dx.doi.org/10.1007/978-3-540-78739-6_27
http://dx.doi.org/10.1007/978-3-642-00590-9_27
http://dx.doi.org/10.1007/978-3-642-36946-9_9

Faster Algorithms for
Weighted Recursive State Machines

Krishnendu Chatterjee1, Bernhard Kragl1(B),
Samarth Mishra2, and Andreas Pavlogiannis1

1 IST Austria, Klosterneuburg, Austria
bkragl@ist.ac.at

2 IIT Bombay, Mumbai, India

Abstract. Pushdown systems (PDSs) and recursive state machines
(RSMs), which are linearly equivalent, are standard models for interpro-
cedural analysis. Yet RSMs are more convenient as they (a) explicitly
model function calls and returns, and (b) specify many natural parame-
ters for algorithmic analysis, e.g., the number of entries and exits. We
consider a general framework where RSM transitions are labeled from
a semiring and path properties are algebraic with semiring operations,
which can model, e.g., interprocedural reachability and dataflow analysis
problems.

Our main contributions are new algorithms for several fundamental
problems. As compared to a direct translation of RSMs to PDSs and the
best-known existing bounds of PDSs, our analysis algorithm improves
the complexity for finite-height semirings (that subsumes reachability
and standard dataflow properties). We further consider the problem of
extracting distance values from the representation structures computed
by our algorithm, and give efficient algorithms that distinguish the com-
plexity of a one-time preprocessing from the complexity of each indi-
vidual query. Another advantage of our algorithm is that our improve-
ments carry over to the concurrent setting, where we improve the best-
known complexity for the context-bounded analysis of concurrent RSMs.
Finally, we provide a prototype implementation that gives a significant
speed-up on several benchmarks from the SLAM/SDV project.

1 Introduction

Interprocedural Analysis. One of the classical algorithmic analysis problems
in programming languages is the interprocedural analysis. The problem is at the
heart of several key applications, ranging from alias analysis, to data dependen-
cies (modification and reference side effect), to constant propagation, to live and
use analysis [10,14–16,18,19,24,32,35]. In seminal works [32,35] it was shown
that a large class of interprocedural dataflow analysis problems can be solved in
polynomial time.
Models for Interprocedural Analysis. Two standard models for interpro-
cedural analysis are pushdown systems (or finite automata with stacks) and
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 287–313, 2017.
DOI: 10.1007/978-3-662-54434-1 11

288 K. Chatterjee et al.

recursive state machines (RSMs) [4,5]. An RSM is a formal model for control
flow graphs of programs with recursion. We consider RSMs that consist of mod-
ules, one for each method or function that has a number of entry nodes and
a number of exit nodes, and each module contains boxes that represent calls
to other modules. A special case of RSMs with a single entry and a single exit
node for every module (SESE RSMs, aka supergraph in [32]) has also been con-
sidered. While pushdown systems and RSMs are linearly equivalent (i.e., there
is a linear translation from one model to the other and vice versa), there are
two distinct advantages of RSMs. First, the model of RSMs closely resembles
the problems of programming languages with explicit function calls and returns,
and hence even its special cases such as SESE RSMs has been considered to
model many applications. Second, the model of RSMs provides many parame-
ters, such as the number of entry and exit nodes, and the number of modules,
and better algorithms can be developed by considering that some parameters are
small. Typically the SESE RSMs can model data-independent interprocedural
analysis, whereas general RSMs can model data dependency as well. For most
applications, the number of entries and exits of a module, usually represents the
input parameters of the module.
Semiring Framework. We consider a general framework to express compu-
tation properties of RSMs where the transitions of an RSM are labeled from
a semiring. The labels are referred to as weights. A computation of an RSM
executes transitions between configurations consisting of a node (representing
the current control state) and a stack of boxes (representing the current call-
ing context). To express properties of interest we need to define how to assign
weights to computations, i.e., to accumulate weights along a computation, and
how to assign weights to sets of computations, i.e., to combine weights across a
set of computations. The weight of a given computation is the semiring prod-
uct of the weights on the individual transitions of the computation, and the
weight of a given set of computations is the semiring plus of the weights of
the individual computations in the set. For example, (i) with the Boolean semi-
ring (with semiring product as AND, and semiring plus as OR) we express the
reachability property; (ii) with a Dataflow semiring we can express problems
from dataflow analysis. One class of such problems is given by the IFDS/IDE
framework [32,35] that considers the propagation of dataflow facts along dis-
tributive dataflow functions (note that the IFDS/IDE framework only considers
SESE RSMs). Hence the large and important class of dataflow analysis problems
that can be expressed in the IFDS/IDE framework can also be expressed in our
framework. Pushdown systems with semiring weights have also been extensively
considered in the literature [20,22,33,34].
Problems Considered. We consider the following basic distance problems.

– Configuration distance. Given a set of source configurations and a target con-
figuration, the configuration distance is the weight of the set of computations
that start at some source configuration and end in the target configuration. In
the configuration distance problem the input is a set of source configurations
and the output is the configuration distance to all reachable configurations.

Faster Algorithms for Weighted Recursive State Machines 289

– Superconfiguration distance. We also consider a related problem of superconfig-
uration distance. A superconfiguration represents a sequence of modules, rather
than a sequence of invocations. Intuitively, it does not consider the sequence of
function calls, but only which functions were invoked. This is a coarser notion
than configurations and allows for fast overapproximation. The superconfigu-
ration distance problem is then similar to the configuration distance problem,
with configurations replaced by superconfigurations.

– Node distance. Given a set of source configurations and a target node, the
node distance is the weight of the set of computations that start at some
source configuration and end in a configuration with the target node (with
arbitrary stack). In the node distance problem the input is a set of source
configurations and the output is the node distance to all reachable nodes.

Symbolic Representation. A core ingredient for solving distance problems is
the symbolic representation of sets of RSM configurations and their manipulation.
Given a symbolic representation of the set of initial configurations, we provide a
two step approach to solve the distance problems. In step one we compute a sym-
bolic representation of the set of all configurations reachable from the initial con-
figurations. Furthermore, the transitions in the representation are annotated with
appropriate semiring weights to capture the various distances described above. In
step two we query the computed representation for the required distances. Thus we
make the important distinction between the complexity of a one-time preprocess-
ing and the complexity of every individual query.
Concurrent RSMs. While reachability is the most basic property, the study of
pushdown systems and RSMs with the semiring framework is the fundamental
quantitative extension of the basic problem. An orthogonal fundamental exten-
sion is to study the reachability property in a concurrent setting, rather than
the sequential setting. However, the reachability problem in concurrent RSMs
(equivalently concurrent pushdown systems) is undecidable [31]. A very rele-
vant problem to study in the concurrent setting is to consider context-bounded
reachability, where at most k context switches are allowed. The context-bounded
reachability problem is both decidable [29] and practically relevant [26,27].
Previous Results. Many previous results have been established for pushdown
systems, and the translation of RSMs to pushdown systems implies that similar
results carry over to RSMs as well. We describe the most relevant previous
results with respect to our results. For an RSM R, let |R| denote its size, θe and
θx the maximum number of entries and exits, respectively, and f the number
of modules. The existing results for weighted pushdown systems over semirings
of height H [34,36] along with the linear translation of RSMs to pushdown
systems [4] gives an O(H · |R| · θe · θx · f)-time algorithm for the configuration
and node distance problems for RSMs. The previous results for context-bounded
reachability of concurrent pushdown systems [29] applied to concurrent RSMs
gives the following complexity bound: O(|R‖|5 · θ

|| 5
x · nk · |G|k), where |R‖| is

the size of the concurrent RSM, θ
||
x is the number of exit nodes, n is the number

of component RSMs, G is the global part of the concurrent RSM, and k is the
bound on the number of context switches.

290 K. Chatterjee et al.

Table 1. Asymptotic time complexity of computing configuration automata.

Sequential Concurrent

Existing H · |R| · θe · θx · f [34,36] |R‖|5 · θ|| 5
x · nk · |G|k [29]

Our result H · (|R| · θe + |Call| · θe · θx) [Theorem1] |R‖| · θ||
e · θ||

x · nk · |G|k+2 [Theorem7]

Table 2. Asymptotic time complexity of answering a configuration/superconfiguration
distance query of size n. Preprocess time refers to additional preprocessing after the
configuration automaton is constructed.

Semiring RSM

General Boolean Constant size Size |D|a Sparseb

Query Query Query Preprocess Query Preprocess Query

n · θ2
e |R| · θe · n

log n n · θ2
e

log θe
|R| · θ1+ε·log |D|

e n · θ2
e

ε2·log2 θe
|R| · θω−1

e · x n ·
⌈

θ2
e

log x

⌉
a For any fixed ε > 0.
b In a sparse RSM every module only calls a constant number of other modules, and the result

applies only to superconfiguration distances. The parameter x has to satisfy x = O(poly(|R|)), and
ω is the smallest constant required for multiplying two square matrices of size m×m in time O(mω)

(currently ω � 2.372).

Our Contributions. Our main contributions are as follows:

1. Finite-height semirings. We present an algorithm for computing configuration
and node distance problems for RSMs over semirings with finite height H with
running time O(H · (|R| · θe + |Call | · θe · θx)), where |Call | is the number of
call nodes. The algorithm we present constructs the symbolic representations
from which the distances can be extracted. Thus our algorithm improves
the current best-known algorithms by a factor of Ω((|R| · f)/(θx + |Call |))
(Table 1) (also see Remark 3 for details).

2. Distance queries. Once a symbolic representation is constructed, it can be
used for extracting distances. We present algorithms which given a configu-
ration query of size n, return the distance in O(n · θ2e) time. Furthermore,
we present several improvements for the case when the semiring has a small
domain. Finally, we show that when the RSM has a sparse call graph, we can
obtain a range of tradeoffs between preprocessing and querying times. Our
results on distance queries are summarized in Table 2.

3. Concurrent RSMs. For the context-bounded reachability of concurrent RSMs
we present an algorithm with time bound O(|R‖|·θ||

e ·θ||
x ·nk ·|G|k+2). Thus our

algorithm significantly improves the current best-known algorithm (Table 1).
4. Experimental results. We experiment with a basic prototype implementation

for our algorithms. Our implementation is an explicit (rather than sym-
bolic) one. We compare our implementation with jMoped [1], which is a
leading and mature tool for weighted pushdown systems, on several real-
world benchmarks coming from the SLAM/SDV project [6,7]. We consider
the basic reachability property (representative for finite-height semirings) for
the sequential setting. Our experimental results show that our algorithm pro-
vides significant improvements on the benchmarks compared to jMoped.

Faster Algorithms for Weighted Recursive State Machines 291

Technical Contribution. The main technical contributions are as follows:

– We show how to combine (i) the notion of configuration automata as a sym-
bolic representation structure for sets of configurations, and (ii) entry-to-exit
summaries to avoid redundant computations, and obtain an efficient dynamic
programming algorithm for various distance problems in RSMs over finite-
height semirings.

– Configuration and superconfiguration distances are extracted using graph tra-
versal of configuration automata. When the semiring has small domain, we
obtain several speedups by exploiting advances in matrix-vector multiplica-
tion. Finally, the speedup of superconfiguration distance extraction on sparse
RSMs is achieved by devising a Four-Russians type of algorithm, which spends
some polynomial preprocessing time in order to allow compressing the query
input in blocks of logarithmic length.

All proofs are provided in our technical report [12].

2 Preliminaries

In this section we present the necessary definitions of recursive state machines
(RSMs) where every transition is labeled with a value (or weight) from an appro-
priate domain (semiring). Then we formally state the problems we study on
weighted RSMs.
Semirings. An idempotent semiring is a quintuple 〈D,⊕,⊗, 0, 1〉, where D is a
set called the domain, 0 and 1 are elements of D, and ⊕ (the combine operation)
and ⊗ (the extend operation) are binary operators on D such that

1. 〈D,⊕, 0〉 is an idempotent commutative monoid with neutral element 0,
2. 〈D,⊗, 1〉 is a monoid with neutral element 1,
3. ⊗ distributes over ⊕,
4. 0 is an annihilator for ⊗, i.e., a ⊗ 0 = 0 ⊗ a = 0 for all a ∈ D.

An idempotent semiring has a canonical partial order �, defined by

a � b ⇐⇒ a ⊕ b = a.

Furthermore, this partial order is monotonic, i.e., for all a, b, c ∈ D

a � b =⇒ a ⊕ c � b ⊕ c,

a � b =⇒ a ⊗ c � b ⊗ c,

a � b =⇒ c ⊗ a � c ⊗ b.

The height H of an idempotent semiring is the length of the longest descending
chain in �. In the rest of the paper we will only write semiring to mean an
idempotent finite-height semiring.

292 K. Chatterjee et al.

Remark 1. Instead of finite height, the more general descending chain condition
would be sufficient for our purposes. This only requires that there are no infinite
descending chains in �, but there is not necessarily a finite height H.

Recursive State Machines (informally). Intuitively, an RSM is a collection
of finite automata, called modules, such that computations consist of ordinary
local transitions within a module as well as calls to other modules, and returns
from other modules. For this, every module has a well-defined interface of entry
and exit nodes. Calls to other modules are represented by boxes, which have call
and return nodes corresponding to the respective entry and exit nodes of the
called module.

Unlike pushdown automata (PDAs), there is no explicit stack manipulation
in RSMs. Instead a call stack is maintained implicitly along computations as
follows. When a call node of a box is reached, the control is passed to the
respective entry node of the called module and the box is pushed onto the top of
the stack. When an exit node of a module is reached, a box is popped off from
the top of the stack and the control is passed to the corresponding return node of
the box. Hence, the stack is a sequence of boxes representing the current calling
context and a configuration in a computation of an RSM is a node together with
a sequence of boxes.
Recursive State Machines (formally). A recursive state machine (RSM)
over a semiring 〈D,⊕,⊗, 0, 1〉 is a tuple R = 〈M1, . . . ,Mk〉, where every module
Mi = 〈Bi, Yi, Ni, δi, wi〉 is given by

– a finite set Bi of boxes,
– a mapping Yi : Bi
→ {1, . . . , k},
– a finite set Ni = Ini ∪ Eni ∪ Ex i ∪ Call i ∪ Ret i of nodes, partitioned into

• internal nodes Ini,
• entry nodes Eni,
• exit nodes Ex i,
• call nodes Call i = {〈b, e〉 | b ∈ Bi and e ∈ EnYi(b)},
• return nodes Ret i = {〈b, x〉 | b ∈ Bi and x ∈ ExYi(b)},

– a transition relation δi ⊆ (Ini ∪ Eni ∪ Ret i) × (Ini ∪ Ex i ∪ Call i),
– a weight function wi : δi
→ D, with wi(u, x) = 1 for every exit node x ∈ Ex i.

We write B for
⋃k

i=1 Bi, and similarly for N , In, En, Ex , Call , Ret , δ, w. To
measure the size of an RSM we let |R| = max(|N |,∑i |δi|). A major source of
complexity in analysis problems for RSMs is the number of entry and exit nodes
of the modules. Throughout the paper we express complexity with respect to the
entry bound θe = max1≤i≤k |Eni| and the exit bound θx = max1≤i≤k |Ex i|, i.e.,
the maximum number of entries and exits, respectively, over all modules. Note
that the restriction on the weight function to assign weight 1 to every transition
to an exit node is wlog, as any weighted RSM that does not respect this can be
turned into an equivalent one that does, with only a constant factor increase in
its size.
Stacks. A stack is a sequence of boxes S = b1 . . . br, where the first box denotes
the top of the stack; and ε is the empty stack. The height of S is |S| = r, i.e.,

Faster Algorithms for Weighted Recursive State Machines 293

the number of boxes it contains. For a box b and a stack S, we denote with bS
the concatenation of b and S, i.e., a push of b onto the top of S.
Configurations and Transitions. A configuration of an RSM R is a tuple
〈u, S〉, where u ∈ In ∪ En ∪ Ret is an internal, entry, or return node, and S is
a stack. For S = b1 . . . br, where bi ∈ Bji

for 1 ≤ i ≤ r and some ji, we require
that Yji

(bi) = ji−1 for 1 < i ≤ r, as well as u ∈ NYj1 (b1)
. This corresponds to

the case where the control is inside the module of node u, which was entered via
box b1 from module Mj1 , which was entered via box b2 from module Mj2 , and
so on.

We define a transition relation =⇒ over configurations and a correspond-
ing weight function w : =⇒
→ D , such that 〈u, S〉 =⇒ 〈u′, S′〉 with
w(〈u, S〉, 〈u′, S′〉) = v if and only if there exists a transition t ∈ δi in R with
wi(t) = v and one of the following holds:

1. Internal transition: u′ ∈ Ini, t = 〈u, u′〉, and S′ = S.
2. Call transition: u′ = e ∈ EnYi(b) for some box b ∈ Bi, t = 〈u, 〈b, e〉〉, and

S′ = bS.
3. Return transition: u′ = 〈b, x〉 ∈ Ri for some box b ∈ Bi and exit node

x ∈ ExYi(b), t = 〈u, x〉, and S = bS′.

Note that we follow the convention that a call immediately enters the called
module and a return immediately returns to the calling module. Hence, the
node of a configuration can be an internal node, an entry node, or a return
node, but not a call node or an exit node.
Computations. A computation of an RSM R is a sequence of configurations
π = c1, . . . , cn, such that ci =⇒ ci+1 for every 1 ≤ i < n. We say that π is
a computation from c1 to cn, of length |π| = n − 1, and of weight ⊗(π) =
⊗n−1

i=1 w(ci, ci+1) (the empty extend is 1). We write π : c =⇒∗ c′ to denote that
π is a computation from c to c′ of any length. A computation π : c =⇒∗ c′ is
called non-decreasing if the stack height of every configuration of π is at least as
large as that of c (in other words, the top stack symbol of c is never popped in
π). The computation π is called same-context if it is non-decreasing, and c and
c′ have the same stack height. A computation that cannot be extended by any
transition is called a halting computation. For a set of computations Π we define
its weight as

⊕
(Π) =

⊕
π∈Π ⊗(π) (the empty combine is 0). For a configuration

c and a set of configurations R we denote by Π(R, c) the set of all computations
from any configuration in R to c. Here, and for similar purposes below, we will
use the convention to write Π(c, c′) instead of Π({c}, c′).

Example 1. Figure 1 shows an RSM R = 〈M1,M2〉 that consists of two mod-
ules M1 and M2. The modules are mutually recursive, since box b1 of module
M1 calls module M2, and box b2 of module M2 calls module M1. A possible
computation of R is

〈e11, ε〉 w1=⇒ 〈e2, b1〉 w5=⇒ 〈e11, b2b1〉 w1=⇒ 〈e2, b1b2b1〉 w6=⇒ 〈e21, b2b1b2b1〉 w2=⇒
〈u1, b2b1b2b1〉 w4=⇒ 〈〈b2, x1〉, b1b2b1〉 w7=⇒ 〈〈b1, x2〉, b2b1〉 w3=⇒ 〈u1, b2b1〉 w4=⇒
〈〈b2, x1〉, b1〉 w7=⇒ 〈〈b1, x2〉, ε〉 w3=⇒ 〈u1, ε〉.

(1)

294 K. Chatterjee et al.

Fig. 1. Example of a weighted RSM that consists of two modules with mutual recursion.

Distance Problems. Given a set of configurations R, the set of configurations
that are reachable from R is

post∗(R) = {c | ∃c0 ∈ R : c0 =⇒∗ c}.

Instead of mere reachability, we are interested in the following distance metrics
that aggregate over computations from R using the semiring combine and hence
are expressed as semiring values.

– Configuration distance. The configuration distance from R to c is defined as

d(R, c) =
⊕

(Π(R, c)).

That is, we take the combine over the weights of all computations from a
configuration in R to c. Naturally, for configurations c not reachable from R
we have d(R, c) = 0.

– Superconfiguration distance. A superstack is a sequence of modules S =
M1 . . . Mr. A stack S = b1 . . . br refines S if bi ∈ Bi for all 1 ≤ i ≤ r, i.e.,
the i-th box of S belongs to the i-th module of S. A superconfiguration of R
is a tuple 〈u, S〉. Let �〈u, S〉� = {〈u, S〉 | S refines S}. The superconfiguration
distance from R to a superconfiguration c is defined as

d(R, c) =
⊕

c∈�c�

d(R, c)

The superconfiguration distance is only concerned with the sequence of mod-
ules that have been used to reach the node u, rather than the concrete sequence
of boxes as in the configuration distance. This is a coarser notion than config-
uration and allows for fast overapproximation.

– Node and same-context distance. The node distance of a node u from R is
defined as

d(R, u) =
⊕

c=〈u,S〉
d(R, c)

where S ranges over stacks of R. Finally, the same-context node distance of a
node u in module Mi is defined as

d(Mi, u) =
⊕

e∈Eni

d(〈e, ε〉, 〈u, ε〉).

Faster Algorithms for Weighted Recursive State Machines 295

Intuitively, the node distance minimizes over all possible ways (i.e., stack
sequences) to reach a node, and the same-context problem considers nodes
in the same module that can be reached with empty stack.

Relevance. We discuss the relevance of the model and the problems we consider
in program analysis. A prime application area of our framework is the analysis
of procedural programs. Computations in an RSM correspond to the interpro-
cedurally valid paths of a program. The distance values defined above allow to
obtain information at different levels of granularity, depending on the require-
ment for a particular analysis. MEME (multi-entry, multi-exit) RSMs naturally
arise in the model checking of procedural programs, where every node represents
a combination of control location and data. Checking for reachability, usually of
an error state, requires only the simple Boolean semiring. On the other hand,
interprocedural data flow analysis problems, like in IFDS/IDE, are usually cast
on SESE (single-entry, single-exit) RSMs (the control flow graph of the pro-
gram) using richer semirings. Our framework captures both of these important
applications, and furthermore allows a hybrid approach of modeling program
information both in the state space of the RSM as well as in the semiring.

3 Configuration Distance Algorithm

In this section we present an algorithm which takes as input an RSM R and
a representation of a regular set of configurations R, and computes a represen-
tation of the set of reachable configurations post∗(R) that allows the extrac-
tion of the distance metrics defined above. In Sect. 3.1 we introduce configu-
ration automata as representation structures for regular sets of configurations.
In Sect. 3.2 we present an algorithm for RSMs over finite-height semirings. The
algorithm saturates the input configuration automaton with additional tran-
sitions and assigns the correct weights via a dynamic programming approach
that gradually relaxes transition weights from an initial overapproximation. We
exploit the monotonicity property in idempotent semirings which allows to fac-
tor the computation into subproblems, and hence corresponds to the optimal
substructure property of dynamic programming. Although a transition might
have to be processed multiple times, the finite height of the semiring prevents a
transition from being relaxed indefinitely. Here we show that the final configu-
ration automata constructed by our algorithms correctly capture configuration
distances. The extraction of distance values is considered in Sect. 4.

3.1 Configuration Automata

In general, like R, the set post∗(R) is infinite. Hence we make use of a represen-
tation of regular sets of configurations as the language accepted by configuration
automata, defined below. The main feature of a regular set of configurations R
is its closure under post∗. That is, post∗(R) is also a regular set of configurations
and can be represented by a configuration automaton.

296 K. Chatterjee et al.

Intuition. Every state in a configuration automaton corresponds to a node
in the RSM. In order to represent arbitrary regular sets of configurations we
must allow the replication of states with the same node. Therefore we annotate
every state with a mark (see Remark 2 for details). Transitions are of two types:
(i) ε-transitions pointing from a node u to an entry node e and labeled with ε,
denoting that a computation reaching u entered the module of u via entry e,
and (ii) b-transitions pointing from an entry node e to another entry node e′ and
labeled with a box b, corresponding to a call transition 〈u, 〈b, e〉〉 in the module
of e′ in the RSM. Reading the labels along a path in the automaton yields a
stack.

In addition to the labeling with boxes we label every transition of a config-
uration automaton with a semiring value. In the final configuration automata
constructed by our algorithms, every run generates a configuration c and thereby
captures a certain subset Π ⊆ Π(R, c) of computations from the initial set of
configurations R to c. The weight of the run equals the combine over the weight
of the computations in Π. The combine over the weights of all runs in the
automaton that generate c equals the combine over the weights of all computa-
tions from R to c, i.e., the configuration distance d(R, c). Since the transitions in
a configuration automaton are essentially reversed transitions of the RSM (and
the extend operation is not commutative), the weight of a run is given by the
extend of the transitions in reversed order.
Configuration Automata. Let M be a countably infinite set of marks. A con-
figuration automaton for an RSM R, also called an R-automaton, is a weighted
finite automaton C = 〈Q,B,−→, I, F, �〉, where

– Q ⊆ (In ∪ En ∪ Ret) × M is a finite set of states,
– B (the boxes of R) is the transition alphabet,
– −→ ⊆ Q× (B ∪ {ε})×Q is a transition relation, such that every transition has

one of the following forms:
• b-transition: 〈e,me〉 b−→ 〈e′,me′〉, where b ∈ Bi for some i, e ∈ EnYi(b),

and e′ ∈ Eni,
• ε-transition: 〈u,mu〉 ε−→ 〈e,me〉, where e ∈ Eni for some i, and either

u ∈ Ini ∪ Ret i, or u = e,
– I ⊆ Q is a set of initial states,
– F ⊆ Q and F ⊆ En × M is a set of final states,
– � : −→
→ D is a weight function that assigns a semiring weight to every

transition.

Remark 2 (Marks). The marks in the states of a configuration automaton are
introduced to support the general setting of representing an arbitrary set of
configurations, e.g., with stacks that are not even reachable in the RSM. Since
every state is tied to an RSM node, the marks allow to have multiple “copies” of
the same node in unrelated parts of the automaton. Furthermore, our algorithm
(Sect. 3.2) introduces a fresh mark to recognize when it can safely store entry-to-
exit summaries. For the common setting of starting the analysis from the entry
nodes of a main module with empty stack, marks are not necessary and can be
elided.

Faster Algorithms for Weighted Recursive State Machines 297

Runs and Regular sets of Configurations. A run of a configuration automa-
ton C is a sequence λ = t1, . . . , tn, such that there are states q1, . . . , qn+1 and
each ti = qi

σi−→ qi+1 is a transition of C labeled with σi. We say that λ is a
run from q1 to qn+1, of length |λ| = n, labeled by S = σ1 . . . σn, and of weight
⊗(λ) =

⊗1
i=n �(ti) (note that the weights of the transitions are extended in

reverse order). We write λ : q
S/v−−→∗ q′ to denote that λ is a run from q to

q′ of any length labeled by S and of weight v. We will also use the notation
without v if we are not interested in the weight. The run λ is accepting if q ∈ I
and q′ ∈ F . A configuration 〈u, S〉 is accepted by C if there is an accepting run
λ : 〈u,m〉 S−→∗ qf for some mark m ∈ M, and additionally ⊗(λ) �= 0. We say
that two runs are equivalent if they accept the same configuration with the same
weight. For technical convenience we consider that for every state 〈e,me〉 with
entry node e ∈ En there is an ε-self-loop 〈e,me〉 ε−→ 〈e,me〉 with weight 1.

The set of all configurations accepted by C is denoted by L(C). A set of
configurations R is called regular if there exists an R-automaton C such that
L(C) = R. For a configuration c let Λ(c) be the set of all accepting runs of c and
define C(c) =

⊕
λ∈Λ(c) ⊗(λ) the weight that C assigns to c.

We note that, despite the imposed syntactic restrictions, our definition of
configuration automata is most general in the following sense.

Proposition 1. Let R be a set of configurations such that their string repre-
sentations is a regular language. Then there exists a configuration automaton C
such that L(C) = R.

3.2 Algorithm for Finite-Height Semirings

In the following we present algorithm ConfDist for computing the set post∗(R)
of a regular set of configurations R. The algorithm operates on an R-automaton
C with L(C) = R. In the end, it has constructed an R-automaton Cpost∗ such
that L(Cpost∗) = post∗(R). Moreover, the configuration distance d(R, c) from R
to any configuration c can be obtained from the labels of Cpost∗ as Cpost∗(c).
A computation is called initialized, if its first configuration is accepted by the
initial configuration automation C.
Key Technical Contribution. In this work we consider the configuration dis-
tance computation. Using the notion of configuration automata as a symbolic
representation structure for regular sets of configurations, the solution of the
configuration distance problem has been previously studied in the setting of
(weighted) pushdown systems [9,34,36]. One of the main algorithmic ideas for
the efficient RSM reachability algorithm of [4] is to expand RSM transitions and
use entry-to-exit summaries to avoid traversing a module more than once. How-
ever, the algorithm in [4] is limited to the node reachability problem. We combine
the symbolic representation of configuration automata, along with the summa-
rization principle, to obtain an efficient algorithm for the general configuration
distance problem on RSMs.

298 K. Chatterjee et al.

Intuitive Description of ConfDist. The intuition behind our algorithm is
very simple: it performs a forward search in the RSM. In every iteration it picks
a frontier node u and extends the already discovered computations to u with
the outgoing transitions from u. Depending on the type of outgoing transitions,
a new node discovered and added to the frontier can be (a) an internal node
by following an internal transition, (b) the entry node of another module by
following a call transition, and (c) a return node corresponding to a previously
discovered call by following an exit transition.

In summary, the algorithm simply follows interprocedural paths. However,
the crux to achieve our complexity is to keep summaries of paths through a
module. Whenever we discovered a full (interprocedural) path from an entry
e to an exit x, we keep its weight as an upper bound. Now any subsequently
discovered call reaching e does not need to continue the search from e, but
short-circuits to x by using the stored summary.
Preprocessing. In order to ease the formal presentation of the algorithm, we
consider the following preprocessing on the initial configuration automaton C.
Let M ⊆ M be the set of marks in the initial automaton and m̂ ∈ M \M a fresh
mark.

1. For every node u ∈ In ∪ En ∪ Ret , we add a new state 〈u, m̂〉 marked with
the fresh mark. Additionally, all these new states are declared initial.

2. For every initial state 〈u,mu〉 ∈ I such that there is a call transition t =
〈u, 〈b, e〉〉 ∈ δi in R, for every state 〈e′,me′〉 where e′ is an entry node of the
same module as u, we add a b-transition 〈e, m̂〉 b−→ 〈e,me′〉 with weight 0.

3. For every state 〈e,me〉 with entry node e ∈ Eni and every internal or return
node u ∈ Ini ∪Ret i in the same module as e, we add an ε-transition 〈u, m̂〉 ε−→
〈e,me〉 with weight 0.

Essentially the preprocessing a priori adds to C all possible states and transi-
tions, so that the algorithm only has to relax those transitions (i.e., without
adding them first). Note that the preprocessing only provides for an easier pre-
sentation of our algorithm. Indeed, in practice it would be impractical to do the
full preprocessing and thus our implementation adds states and transitions to
the automaton on the fly.
Technical Description of ConfDist. We present a detailed explanation of the
algorithm supporting the formal description given in Algorithm1. We require
that every transition in the input configuration automaton C has weight 1, since
the configurations in L(C) should not contribute any initial weight to the config-
uration distance. The algorithm maintains a worklist WL of weighted transitions
either of the form 〈u,mu〉 ε−→ 〈e,me〉 or 〈e,me〉 b−→ 〈e′,me′〉, and a summary
function sum : (En × M) × Ex
→ D. Initially, the worklist contains all such
transitions where the source state 〈u,mu〉 is an initial state in I, and sum is all
0. In every iteration a transition tC is extracted from the worklist and processed
as follows. Since every accepting run starting with tC corresponds to a reach-
able configuration 〈u, S〉 (where S varies over different runs), every transition
tR = 〈u, u′〉 in R gives rise to another reachable configuration. More precisely,
the run corresponds to a set of computations reaching 〈u, S〉 from the initial

Faster Algorithms for Weighted Recursive State Machines 299

Fig. 2. Relaxation steps of ConfDist.

set of configurations, and tR allows to extend these computations by one step.
The algorithm incorporates the newly discovered computations by relaxing a
transition as follows, illustrated in Fig. 2.

1. If tC is of the form 〈u,mu〉 ε−→ 〈e,me〉, then:
(a) If u′ is an internal node then the algorithm captures the internal transition

〈u, S〉 =⇒ 〈u′, S〉 by relaxing the transition 〈u′, m̂〉 ε−→ 〈e,me〉 using the
weights �(tC) and w(tR).

(b) If u′ is a call node 〈b, e′〉 then the transition 〈e′, m̂〉 b−→ 〈e,me〉 is relaxed
with the new weight �(tC) ⊗ w(tR). Furthermore, an ε-self-loop is stored
in the worklist to continue exploration from the called entry node e′.

(c) If u′ is an exit node x then the algorithm relaxes sum(〈e,me〉, x) if a
smaller computation to x has been discovered. Note that for me = m̂ this
corresponds to valid entry-to-exit computations from e to x. If another
call to e is discovered later, the summary is used to avoid traversing the
module again. For me �= m̂ the summary does not necessarily correspond
to valid entry-to-exit computations (e.g., because node u was provided
as an initial configuration) and is only stored to avoid redundant work.
For a return transition from 〈u, S〉 the stack S has to be non-empty.
The algorithm looks for all possible boxes b at the top of S by going
along a b-transition from 〈e,me〉 to a state 〈e′,me′〉. Then for any S =
bS′, relaxing the transition 〈〈b, x〉, m̂〉 ε−→ 〈e′,me′〉 captures the return
transition 〈u, S〉 =⇒ 〈〈b, x〉, S′〉. Note that here we make use of the fact
that the return transition itself has weight 1.

2. If tC is of the form 〈e,me〉 b−→ 〈e′,me′〉, then:
(d) for every exit node x in the module of e the summary function is used

to relax the weight of the transition 〈〈b, x〉, m̂〉 ε−→ 〈e′,me′〉 to the value
�(tC) ⊗ sum(〈e, m̂〉, x).

300 K. Chatterjee et al.

Algorithm 1: ConfDist
Input: RSM R and R-automaton C with �(t) = 1 for all transitions t in C
Output: R-automaton Cpost∗ with Cpost∗(c) = d(L(C), c) for all configurations c

1 preprocess C as described in the main text
// Initialization of worklist and summary function

2 WL := {t = q
ε−→ q′ | q ∈ I and �(t) = 1}

3 sum(〈e, me〉, x) := 0 for all states 〈e, me〉 and x ∈ Ex
// Main loop

4 while WL �= ∅ do
5 extract tC from WL

6 if tC = 〈u, mu〉 ε−→ 〈e, me〉 then
7 let Mi be the module of node u

// Internal transitions from u
8 foreach tR = 〈u, u′〉 ∈ δi where u′ ∈ Ini do

9 Relax(〈u′, m̂〉 ε−→ 〈e, me〉, �(tC) ⊗ wi(tR))

// Call transitions from u
10 foreach tR = 〈u, 〈b, e′〉〉 ∈ δi do

11 Relax(〈e′, m̂〉 b−→ 〈e, me〉, �(tC) ⊗ wi(tR))

12 add 〈e′, m̂〉 ε−→ 〈e′, m̂〉 to WL, if it was never added before

// Exit transitions from u
13 foreach tR = 〈u, x〉 ∈ δi where x ∈ Ex i do
14 if sum(〈e, me〉, x) �	 �(tC) then
15 sum(〈e, me〉, x) := sum(〈e, me〉, x) ⊕ �(tC)

16 foreach 〈e, me〉 b/v−−→ 〈e′, me′〉 do

17 Relax(〈〈b, x〉, m̂〉 ε−→ 〈e′, me′〉, v ⊗ sum(〈e, me〉, x))

18 else if tC = 〈e, me〉 b−→ 〈e′, me′〉 then
19 let Mi be the module of node e

// Using entry-to-exit summaries

20 foreach x ∈ Ex i do

21 Relax(〈〈b, x〉, m̂〉 ε−→ 〈e′, me′〉, �(tC) ⊗ sum(〈e, m̂〉, x)

22 Procedure Relax(t, v)
23 if �(t) �= �(t) ⊕ v then
24 �(t) := �(t) ⊕ v
25 add t to WL

The initial states of Cpost∗ are the initial states of C together with all states
with the fresh mark added in the preprocessing. The final states of Cpost∗ are
the unmodified final states of C.

Example 2. In Fig. 3 we illustrate an execution of ConfDist for the reachability
problem in the RSM from Fig. 1. The reader can verify that every configuration in
the example computation (1) is accepted by a run of the constructed automaton.

Faster Algorithms for Weighted Recursive State Machines 301

Fig. 3. The configuration automaton Cpost∗ constructed by ConfDist for the RSM in
Fig. 1 over the Boolean semiring 〈〈0, 1〉, ∨, ∧, 0, 1〉, expressing the reachability problem.
The initial input automaton C is given by the black states, whereas the gray states
represent the newly added states with the fresh mark m̂. The black/gray color gives
a similar distinction for the transitions (i.e., the gray transitions have been added by
the algorithm). The set of initial states of C is I = {e11, e2}, and the set of final states
is the singleton set F = {e11}. Transitions added in the preprocessing phase with value
0 are not shown.

Correctness. In the following we outline the correctness of the algorithm. We
start with a simple observation about the shape of runs in the constructed con-
figuration automaton.

Proposition 2. For every accepting run λ there exists an equivalent accepting
run λ′ that starts with an ε-transition followed by only b-transitions. Further-
more, all but the first state contain an entry node.

The following three lemmas capture the correctness of ConfDist. We start
with completeness, namely that the distance computed for any configuration c
is at most the actual distance from the initial set of configurations L(C) to c.
The proof relies on showing that for any initialized computation π : 〈u, S〉 =⇒∗

〈u′, S′〉 there is a run λ accepting 〈u′, S′〉 such that ⊗(λ) � ⊗(π), and follows
an induction on the length |π|.
Lemma 1 (Completeness). For every configuration c we have Cpost∗(c) �
d(L(C), c).

We now turn our attention to soundness, namely that the distance computed
for any configuration c is at least the actual distance from the initial set of config-
urations L(C) to c. The proof is established via a set of interdependent invariants
that state that the algorithm maintains sound entry-to-exit summaries and any
run in the automaton has a weight that is witnessed by a set of computations.

302 K. Chatterjee et al.

Lemma 2 (Soundness). For every configuration c we have d(L(C), c) �
Cpost∗(c).

Complexity. Finally, we turn our attention to the complexity analysis of the
algorithm, which is done by bounding the number of times the algorithm can
perform a relaxation step. The complexity bound is based on the height of the
semiring H, which implies that every transition can be relaxed at most H times.
The contribution of the size of the initial automaton C in the complexity is
captured by the number of initial marks κ.

Lemma 3 (Complexity). Let κ be the number of distinct marks m ∈ M of the
initial automaton C. Algorithm ConfDist constructs Cpost∗ in time O(H · (|R| ·
θe · κ2 + |Call | · θe · θx · κ3)), and Cpost∗ has O(|R| · θe · κ2) transitions.

We summarize the results of this section in the following theorem.

Theorem 1. Let R be an RSM over a semiring of height H, and C an R-
automaton with κ marks. Algorithm ConfDist constructs in O(H · (|R| · θe ·κ2 +
|Call | · θe · θx · κ3)) time an R-automaton Cpost∗ with κ + 1 marks, such that
d(L(C), c) = Cpost∗(c) for every configuration c.

Remark 3 (Comparison with existing work). We now relate Theorem 1 with the
existing work for computing configuration distance (often called generalized
reachability in the literature) in weighted pushdown systems (WPDS) [34,36].
For simplicity we assume that the initial automaton is of constant size. A for-
mal description of WPDS is omitted; the reader can refer to [4,34]. Let P be a
WPDS where:

1. nP is the number of states
2. nΔ is the size of the transition relation
3. nsp is the number of different pairs 〈p′, γ′〉 such that there is a transition of

the form 〈p, γ〉 −→ 〈p′, γ′γ′′〉 (i.e., from some state p with γ on the top of
the stack, the WPDS P (i) transitions to state p′, (ii) swaps γ and γ′′, and
(iii) pushes γ′ on the top of the stack).

As shown in [34], given a WPDS P with weights from a semiring with height
H, together with a corresponding automaton CP that encodes configurations of
P, an automaton CP

post∗ can be constructed as a solution to the configuration
distance problem for P. For ease of presentation we focus on the common case
where CP has constant size (e.g., for encoding an initial configuration of P with
empty stack). Then the time required to construct CP

post∗ is O(H · nP · nΔ ·
nsp) [34,36].

A direct consequence of [4, Theorem 1] is that an RSM R and a configuration
automaton CR can be converted to an equivalent PDS P and configuration
automaton CP , and vice versa, such that the following equalities hold:

|R| = Θ(nΔ); θx = Θ(nP); f · θe = Θ(nsp),

Faster Algorithms for Weighted Recursive State Machines 303

where f represents the number of modules. Hence, the bound we obtain by
translating the input RSM to a WPDS and using the algorithm of [34,36] is
O(H · |R| · θe · θx · f). Our complexity bound on Theorem1 is better by a factor
Ω((|R| · f)/(θx + |Call |)). Moreover, to verify such improvements, we have also
constructed a family of dense RSMs, and apply our algorithm, and compare
against the jMoped implementation of the existing algorithms, and observe a
linear speed-up (see Sect. 6.1 for details).

The above analysis considers an explicit model, where R comprises two parts,
a program control-flow graph RCFG and the set of all data valuations V , where
|V | = θe = θx. Hence, |R| = |RCFG| · |V |2. In a symbolic model, where all the
data valuations are tracked on the semiring, the input RSM is a factor |V |2
smaller (i.e., the contribution of the data valuation to |R|), and θe = θx = 1.
However, now each semiring operation incurs a factor |V |2 increase in time cost,
and the height of the semiring increases by a factor |V |2 as well, in the worst
case. Hence, existing symbolic approaches for PDSs have the same worst-case
time complexity as the explicit one, and our comparison applies to these as well.
For further discussion on symbolic extensions of our algorithm we refer to our
technical report [12].

4 Distance Extraction

The algorithm presented in Sect. 3 takes as input a weighted RSM R over a
semiring and a configuration automaton C that represents a regular set R of
configurations of R, and outputs an automaton Cpost∗ that encodes the distance
d(R, c) to every configuration c. We now discuss the algorithmic problem of
extracting such distances from Cpost∗ , and present fast algorithms for this prob-
lem. First we will consider the general case for RSMs over an arbitrary semiring.
Then we present several improvements for special cases, like RSMs over a semi-
ring with small domain, or sparse RSMs. As the correctness of the constructions
is straightforward, our attention will be on the complexity.

4.1 Distances over General Semirings

Configuration Distances. Given a configuration c = 〈u, S〉, S = b1 . . . b|S|, the
task is to extract d(R, c) =

⊕
(Π(R, c)). This is done by a dynamic-programming

style algorithm, which computes iteratively for every prefix b1 . . . bi of S and state
〈e,me〉 with e ∈ Enj and bi ∈ Bj , the weight

w〈e,me〉 =
⊕

{⊗(λ) | λ : 〈u,mu〉 b1...bi−−−−→∗ 〈e,me〉}.

Since there are O(κ2 · θ2e) transitions labeled with bi, every iteration requires
O(κ2 · θ2e) time, and the total time for computing d(R, c) is O(|S| · κ2 · θ2e).
Superconfiguration Distances. Given a superconfiguration c = 〈u, S〉, S =
M1 . . . M|S|, the task is to extract d(R, c) =

⊕
c∈�〈u,S〉� d(R, c). To handle such

304 K. Chatterjee et al.

queries, we perform a one-time preprocessing of Cpost∗ , so that the transitions are
labeled with modules instead of boxes. That is, we create an automaton Cpost∗ ,

initially identical to Cpost∗ . Then we add a transition t = 〈e,me〉 M−−→ 〈e′,me′〉,
with M being the module of e′, if there exists a b-transition 〈e,me〉 b−→ 〈e′,me′〉 in
Cpost∗ . The weight function � of Cpost∗ is such that the weight of the transition t is

�(t) =
⊕

t′:〈e,me〉 b−→〈e′,me′ 〉

�(t′)

where t′ ranges over transitions of Cpost∗ . This construction requires linear time
in the number of b-transitions of Cpost∗ , i.e., O(|R| · θe). It is straightforward to
see that ⊕

λ:〈u,mu〉 S−→∗qf

�(λ) =
⊕

λ:〈u,mu〉 S−→∗qf

�(λ)

where λ and λ range over accepting runs of Cpost∗ and Cpost∗ respectively, and S
refines S. Then, given a superconfiguration c = 〈u, S〉, the extraction of d(R, c)
is done similarly to the configuration distance extraction, in O(|S| ·κ2 · θ2e) time.
Node Distances. For node distances, the task is to compute d(R, u) =⊕

c=〈u,S〉 d(R, c) for every node u of R. This reduces to treating the automa-
ton Cpost∗ as a graph G, and solving a traditional single-source distance problem,
where the source set contains all states with old marks (i.e., old states that appear
in the initial automaton C). This requires O(H · |Cpost∗ |) time for semirings of
height H. An informal argument for these bounds is to observe that G can be
itself encoded by a SESE RSM RG with a single module, where the entry rep-
resents the source set of nodes with old marks. Then, running ConfDist for the
corresponding semiring, we obtain a solution to the single-source distance prob-
lem in the aforementioned times, as established in Theorem1. Finally, computing
same-context node distances requires O(|R| · θ) time in total (i.e., for all nodes).
Hence, regardless of the semiring, all node distances can be computed with no
overhead, i.e., within the time bounds required for constructing the respective
configuration automaton Cpost∗ . The following theorem summarizes the complex-
ity bounds that we obtain for the various distance extraction problems.

Theorem 2 (Distance extraction). Let R be an RSM over a semiring of
height H and C an R-automaton with κ marks. After O(H · |R| · θe · θx · κ3)
preprocessing time

1. configuration and superconfiguration distance queries 〈u, S〉 are answered in
O(|S| · θ2e · κ2) time;

2. node distance queries are answered in O(1) time.

4.2 Distances over Semirings with Small Domain

We now turn our attention to configuration and superconfiguration distance
extraction for the case of semirings with small domains D. Such semirings express
a range of important problems, with reachability being the most well-known

Faster Algorithms for Weighted Recursive State Machines 305

(expressed on the Boolean semiring with |D| = 2). We harness algorithmic
advancements on the matrix-vector multiplication problem and Four-Russians-
style algorithms to obtain better bounds on the distance extraction problem.

Recall that given a box b, the configuration automaton Cpost∗ has at most
(θe · κ)2 transitions labeled with b. Such transitions can be represented by a
matrix Ab ∈ D(θe·κ)×(θe·κ). Additionally, for every internal node u we have one
matrix Au ∈ D(κ)×(θe·κ) that captures the weights of all transitions of the form
〈u,mu〉 ε−→ 〈e,me〉. Then, answering a configuration distance query 〈u, S〉 with
S = b1, . . . , b|S| amounts to evaluating the expression

1κ · Au · Ab1 · · · Ab|S| · 1�
κ·θe

(2)

where 1z is a row vector of 1s and size z, ·� denotes the transpose, and matrix
multiplication is taken over the semiring. The situation is similar in the case of
superconfiguration distances, where we have one matrix AM,M′ for each pair of
modules M, M′ such that M invokes M′.

Evaluating Eq. (2) from left to right (or right to left) yields a sequence
of matrix-vector multiplications. The following two theorems use the results
of [25,37] on matrix-vector multiplications to provide a speedup on the distance
extraction problem when the semiring has constant size |D| = O(1).

Theorem 3 (Mailman’s speedup [25]). Let R be an RSM over a semiring
of constant size, and C an R-automaton with κ marks. After O(|R| · θe · θx · κ3)
preprocessing time, configuration and superconfiguration distance queries 〈u, S〉
are answered in O

(
|S| · θ2

e ·κ2

log(θe·κ)
)
time.

Theorem 4 (Williams’s speedup [37]). Let R be an RSM over a semiring
of size |D|, and C an R-automaton with κ marks. For any fixed ε > 0, let
X = |R| · θe · θx · κ3 and Z = |R| · κ · (θe · κ)1+ε log2 |D|. After O(max(X,Z))
preprocessing time, configuration and superconfiguration distance queries 〈u, S〉
are answered in O

(
|S| · θ2

e ·κ2

ε2·log2(θe·κ)
)
time.

Finally, using the Four-Russians technique for parsing on non-deterministic
automata [28], we obtain the following speedup for the case of reachability. We
note that although the alphabet is not of constant size (i.e., the number of boxes
is generally non-constant) this poses no overhead, as long as comparing two boxes
for equality requires constant time (which is the case in the standard RAM model).

Theorem 5 (Four-Russians speedup [28]). Let R be an RSM over a binary
semiring, and C an R-automaton with κ marks. After O(|R| · θe · θx · κ3) pre-
processing time, configuration and superconfiguration distance queries 〈u, S〉 are
answered in O

(
|R| · θe · κ2 · |S|

log(|S|)
)
time.

4.3 A Speedup for Sparse RSMs

We call an RSM R sparse if there is a constant bound r such that for all modules
Mi we have |{Yi(b) | b ∈ Bi}| ≤ r i.e., every module invokes at most r other

306 K. Chatterjee et al.

modules (although Mi can have arbitrarily many boxes). Typical call-graphs of
most programs are very sparse, e.g., typical call graphs of thousands of nodes
have average degree at most eight [8,30]. Hence, an RSM modeling a typical
program is expected to comprise thousands of modules, while the average mod-
ule invokes a small number of other modules. Although this does not imply a
constant bound on the number of invoked modules, such an assumption provides
a good theoretical basis for the analysis of typical programs.

Our goal is to provide a speedup for extracting superconfiguration distances
w.r.t. a sparse RSM. This is achieved by an additional polynomial-time pre-
processing, which then allows to process a distance query in blocks of logarithmic
size, and thus offers a speedup of the same order.

Given an RSM R of k modules and an integer z, there exist at most k·rz valid
module sequences M1 . . . ,Mz+1 which can appear as a substring in a module
sequence S which is refined by some stack S. Recall the definition of the matrices
AM,M′ ∈ D(θe·κ)×(θe·κ) from Sect. 4.2. For every valid sequence of z +1 modules
s = M1 . . . ,Mz+1, we construct a matrix As = AM1,M2 ·AM2,M3 ·. . . AMz,Mz+1

in total time

k · (θe · κ)ω
z∑

i=1

ri = O
(|R| · θω−1

e κω · rz
)

(3)

where (θe ·κ)ω = Ω(θ2 ·κ2) is time require to multiply two D(θe·κ)×(θe·κ) matrices
(currently ω � 2.372, due to [38]).

Observe that as long as z = O(log |R|), there are polynomially many such
sequences s, and thus each one can be indexed in O(1) time on the standard
RAM model. Then a superconfiguration distance query 〈u, S〉 can be answered
by grouping S in � |S|

z � blocks of size z each, and for each such block s multiply
with matrix As.

Theorem 6 (Sparsity speedup). Let R be a sparse RSM over a semiring of
height H, and C an R-automaton with κ marks. Let X = H · |R| · θe · θx · κ3,
and given an integer parameter x = O(poly |R|), let Z = |R| · θω−1

e κω · x. After
O(max(X,Z)) preprocessing time, superconfiguration distance queries 〈u, S〉 are
answered in O

(
|S| ·

⌈
θ2

e ·κ2

log x

⌉)
time.

By varying the parameter z, Theorem 6 provides a tradeoff between pre-
processing and query times. Finally, the presented method can be combined
with the preprocessing on constant-size semirings of Sect. 4.2 which leads to a
Θ(log z) factor improvement on the query times of Theorems 3, 4 and 5.

5 Context-Bounded Reachability in Concurrent
Recursive State Machines

Context bounding, i.e., limiting the number of context switches considered dur-
ing state space exploration, is an effective technique for systematic analysis of

Faster Algorithms for Weighted Recursive State Machines 307

concurrent programs. The context-bounded reachability problem in concurrent
pushdown systems has been studied in [29]. In this section we phrase the context-
bounded reachability problem over concurrent RSMs and show that the pro-
cedure of [29] using our algorithm ConfDist together with the results of the
previous sections give a better time complexity for the problem. As the section
follows closely the well-known framework of concurrent pushdown systems [29],
we keep the description brief.
Concurrent RSMs. A concurrent RSM (CRSM) R‖ is a collection of RSMs
Ri equipped with a finite set of global states G used for communication between
the RSMs. To this end, the semantics of RSMs is lifted to Ri-configurations
of the form 〈g, ui, Si〉, carrying an additional global state g ∈ G. Then, a global
configuration of R‖ is a tuple 〈g, 〈u1, S1〉, . . . , 〈un, Sn〉〉, where 〈g, ui, Si〉 are con-
figurations of Ri, respectively. The semantics of R‖ over global configurations
is the standard interleaving semantics, i.e., in each step some RSM Ri modifies
the global state and its local configuration, while the local configuration of every
other RSM remains unchanged.
Context-Bounded Reachability. For a positive natural number k and a fixed
initial global configuration c, the k-bounded reachability problem asks for all
global configurations c′ such that there is a computation from c to c′ that switches
control between RSMs at most k − 1 times.
An Algorithm for Context-Bounded Reachability. The procedure of [29]
for solving the k-bounded reachability problem for concurrent pushdown sys-
tems (CPDSs) systematically performs post∗ operations on the reachable con-
figuration set of every constituent PDS, while capturing all possible interleavings
within k context switches. The k-bounded reachability problem for CRSMs can
be solved with an almost identical procedure, replacing the black-box invoca-
tions of the PDS reachability algorithm of [36] with our algorithm ConfDist.
However, using our algorithm for each post∗ operation, we obtain a complexity
improvement over the method of [29].
Key Complexity Improvement. The key advantage of our algorithm as com-
pared to [29] is as follows: in the algorithm of [29], in each iteration the configura-
tion automata, used to represent the reachable configurations of each component
RSM, grows by a cubic term; in contrast, replacing with our algorithm the con-
figuration automata grows only by a linear term in each iteration. This comes
from the fact that in our configuration automata every state corresponds to a
node of the RSM, whereas such strong correspondence does not hold for the
configuration automata of [29].

Theorem 7. For a concurrent RSM R‖, and a bound k, the procedure of [29,
Figure 2] using ConfDist for performing post∗ operations correctly solves the
k-bounded reachability problem and requires O(|R‖| · θ

||
e · θ

||
x · nk · |G|k+2) time.

Compared to Theorem 7, solving the CRSM problem by translation to a CPDS
and using the algorithm of [29] gives the bound O(|R‖|5 · θ

|| 5
x · nk · |G|k). Con-

versely, solving the CPDS problem by translation to a CRSM and using our

308 K. Chatterjee et al.

algorithm gives an improvement by a factor Ω(|P‖|3/|G|2). We refer to our
technical report [12] for a detailed discussion.

6 Experimental Results

In this section we empirically demonstrate the algorithmic improvements
achieved by our RSM-based algorithm over existing PDS-based algorithms on
interprocedural program analysis problems. The main goal is to demonstrate
the improvements in algorithmic ideas rather than implementation details and
engineering aspects. In particular, we implemented our algorithm ConfDist in
a prototype tool and compared its efficiency against jMoped [1], which imple-
ments the algorithms of [34,36] and is a leading tool for the analysis of weighted
pushdown systems. In all cases we used an explicit representation of data valu-
ations on the nodes of RSMs, as opposed to a symbolic semiring representation.
All experiments were run on a machine with an Intel Xeon CPU and a memory
limit of 80 GB. We first present our result on a synthetic example to verify the
algorithmic improvements on a constructed family, and then present results on
real-world benchmarks.

6.1 A Family of Dense RSMs

Fig. 4. Speedup of our algorithm over the
algorithms of [34,36] implemented by jMoped
on the RSM family Rn.

For our first experiments we con-
structed a family of dense RSMs
that can be scaled in size. The pur-
pose of this experiments is to ver-
ify that (i) our algorithm indeed
achieves a speedup over the algo-
rithms of [34,36], and (ii) the
speedup scales with the size of the
input to ensure that improvements
on real-world benchmarks are not
due to implementation details, such
as the used data types. Let Rn

be a single-module RSM that con-
sists of n entries and n exits, and
a single box which makes a recur-
sive call. The transition relation is
δ = (En×(Call∪Ex))∪(Ret×Ex),
i.e., every entry node connects to every call and exit node, and every return node
connects to every exit node. Hence |Rn| = n2. The transition weights are irrel-
evant, as we will focus on reachability. The initial configuration automaton C
contains a single entry state. We considered Rn with n in the range from 10 to
200. For each RSM, we used the standard translation to a PDS [4], and then
applied our tool and jMoped to compute a configuration automaton that repre-
sents post∗(L(C)). Figure 4 depicts the obtained speedup, which scales linearly

Faster Algorithms for Weighted Recursive State Machines 309

with n. We have also experimented with other similar synthetic RSMs with dif-
ferent means of scaling; and in all cases the obtained speedups have the same
qualitative behavior. This confirms the theoretical algorithmic improvements of
our algorithm on the synthetic benchmarks.

6.2 Boolean Programs from SLAM/SDV

Benchmarks. For our second experiments we used the collection of Boolean pro-
grams distributed as part of the SLAM/SDV project [6,7]. These programs are
the final abstractions in the verification of Windows device drivers, and thus they
represent RSMs obtained from real-world programs. From the Boolean programs
we obtained RSMs where every node represents a control location together with
a valuation of Boolean variables, and call/entry and exit/return nodes model
the parameter passing between functions. Thus, the RSMs are naturally multi-
entry-multi-exit. Overall we obtained 73 RSMs, which correspond to the largest
Boolean programs possible to handle explicitly.
Evaluation. To ensure a fair performance comparison, we applied two pre-
processing steps to the benchmark RSMs.

– First, to ensure that both tools compute the same result without any potential
unnecessary work, we restricted the state space of the RSMs to the interpro-
cedurally reachable states.

– Second, to focus on the performance of interprocedural analysis, we eliminated
all internal nodes by computing the intraprocedural transitive closure within
every RSM module.

The above two transformations ensure preprocessing steps like removal of
unreachable states and intraprocedural analysis is already done, and we compare
the interprocedural algorithmic aspects of the algorithms. For each RSM, we used
the standard translation to a PDS [4], and then applied our tool and jMoped to
compute a configuration automaton that represents post∗(L(C)), where C is an
initial configuration automaton that contains the entry states of the main mod-
ule. Table 3 shows for every benchmark the number of RSM transitions (Trans.),
their ratio to nodes (D), the runtime for computing the intraprocedural transi-
tive closure (TC), the runtime of jMoped (jMop), the runtime of our tool (Ours),
and the speedup our tool achieved over jMoped (SpUp).

Out tool clearly outperforms jMoped on every benchmark, with speedups
from 3.94 up to 28.48. The runtimes of our tool range from 0.13 to 33.96 s,
while the runtimes of jMoped range from 1.03 to 950.82 s. Thus, our experiments
show that also for real-world examples our algorithm successfully exploits the
structure of procedural programs preserved in RSMs. This shows the potential
of our algorithm for building program analysis tools.

Note that the benchmark RSMs are quite large, with millions of nodes and
transitions, which even a basic implementation of our algorithm handled quite
efficiently. Moreover, in our experiments we observed that our tool uses consid-
erably less memory than jMoped. While we set 80 GB as the memory limit, the

310 K. Chatterjee et al.

Table 3. Comparison of our tool against jMoped. Runtimes are given in seconds. The
names of all benchmarks are given in our technical report [12].

Trans. D TC jMop Ours SpUp
1 246,101 1.9 1.18 1.10 0.28 3.94
2 216,021 0.8 0.70 1.03 0.26 3.96
3 593,041 1.5 1.05 2.05 0.49 4.19
4 1,043,217 1.2 3.01 4.67 1.11 4.20
5 329,088 1.4 1.41 1.43 0.34 4.24
6 10,281,149 3.0 11.36 52.00 10.61 4.90
7 908,092 1.7 2.04 3.31 0.65 5.08
8 969,388 2.2 2.00 33.71 6.60 5.11
9 298,126 1.5 0.68 1.31 0.25 5.23

10 1,780,776 1.3 5.82 6.44 1.20 5.35
11 163,853 1.4 0.33 1.03 0.19 5.35
12 205,608 1.0 0.50 4.62 0.86 5.36
13 28,568,561 1.7 23.21 102.54 18.82 5.45
14 21,911,277 1.8 15.79 80.41 14.64 5.49
15 2,453,881 1.5 4.54 9.57 1.72 5.55
16 5,833,574 1.8 6.97 21.14 3.80 5.56
17 332,768 0.8 0.77 2.28 0.41 5.59
18 1,782,697 1.3 5.79 6.70 1.20 5.60
19 246,127 1.9 1.31 1.36 0.24 5.63
20 21,648,560 1.8 15.50 79.45 14.01 5.67
21 7,033,834 2.1 8.23 23.97 4.21 5.70
22 28,944,391 1.7 24.26 105.00 18.15 5.78
23 464,004 1.7 0.75 2.17 0.37 5.83
24 424,916 1.6 1.20 2.94 0.49 5.96
25 22,186,326 1.6 17.77 63.27 10.56 5.99
26 11,719,007 5.2 20.36 52.29 8.55 6.11
27 2,989,001 1.4 3.55 11.04 1.80 6.12
28 1,952,647 1.3 3.83 7.98 1.30 6.13
29 7,970,359 3.2 4.04 30.16 4.70 6.42
30 682,435 2.1 2.14 4.88 0.76 6.42
31 9,480,799 4.9 17.23 44.34 6.77 6.55
32 845,867 2.4 1.59 3.22 0.48 6.67
33 953,420 3.1 1.22 4.51 0.67 6.77
34 1,205,731 2.0 3.31 4.68 0.68 6.84
35 754,270 1.7 4.25 22.28 3.23 6.90
36 1,463,749 2.0 2.38 6.10 0.88 6.95
37 434,884 5.8 6.85 1.90 0.27 7.10

Trans. D TC jMop Ours SpUp
38 14,473,411 1.5 9.68 53.38 7.49 7.13
39 11,616,241 3.3 19.59 42.73 5.54 7.71
40 300,401 2.6 0.74 1.05 0.14 7.79
41 1,916,064 2.3 3.38 10.83 1.39 7.80
42 216,070 1.7 0.56 1.37 0.17 7.83
43 1,293,130 2.3 2.06 5.44 0.69 7.92
44 8,364,920 2.1 6.31 32.95 4.09 8.05
45 18,733,065 4.9 10.84 62.14 7.63 8.15
46 5,373,059 6.4 8.66 18.20 2.17 8.38
47 1,342,348 1.6 4.75 5.02 0.58 8.73
48 779,369 7.2 1.94 6.73 0.77 8.75
49 18,812,123 4.9 8.87 63.86 6.99 9.14
50 40,025,428 6.3 36.49 310.16 33.07 9.38
51 2,503,668 15.3 21.53 10.17 1.08 9.44
52 40,084,249 6.2 36.37 320.70 33.96 9.44
53 4,852,736 6.5 4.14 17.68 1.83 9.64
54 18,520,461 5.4 8.96 60.24 6.21 9.69
55 6,796,783 7.0 9.78 21.33 2.16 9.87
56 40,026,391 6.3 35.69 327.66 33.05 9.91
57 805,305 4.7 1.66 8.14 0.80 10.17
58 4,532,440 26.4 7.49 33.46 3.15 10.61
59 18,374,693 5.8 8.99 60.54 5.52 10.96
60 1,284,096 5.9 1.53 48.54 4.39 11.05
61 3,862,954 6.3 3.44 12.94 1.14 11.38
62 52,269,131 3.4 44.45 177.98 15.53 11.46
63 130,721 2.2 0.43 1.55 0.13 11.52
64 545,063 16.4 6.88 2.27 0.16 13.85
65 545,046 16.4 6.78 2.17 0.15 14.04
66 829,090 12.3 9.60 3.40 0.24 14.17
67 63,918,783 267.0 115.87 244.01 16.00 15.25
68 20,382,912 3.3 15.78 76.69 4.80 15.98
69 29,689,784 6.2 11.18 120.82 7.16 16.88
70 2,619,392 5.2 3.48 660.92 31.62 20.90
71 2,575,360 5.7 3.03 589.87 25.69 22.96
72 2,639,872 5.0 3.17 816.08 29.93 27.27
73 2,691,072 4.5 3.43 950.82 33.39 28.48

peak memory consumption of jMoped was 72 GB, whereas our tool solved all
benchmarks with less than 32 GB memory.

6.3 Discussion

In our experiments we compared the implementation of our algorithm with
jMoped on sequential RSM analysis in an explicit setting. While our algorithm
can be made symbolic in a straightforward way, a symbolic implementation
and efficiency for large symbolic domains involve significant engineering efforts.
Moreover, the main goal of our work is to compare the algorithmic improvements
over the existing approaches, which is best demonstrated in an explicit setting,
since in the explicit setting the improvements are algorithmic rather than due
to implementation details of symbolic data-structures. Our experimental results
show the potential of the new algorithmic ideas, and investigating the applica-
bility of them with a symbolic implementation is a subject of future work.

Faster Algorithms for Weighted Recursive State Machines 311

7 Related Work

Sequential Setting. Pushdown systems are very well studied for interpro-
cedural analysis [10,32,35]. While the most basic problem is reachability, the
weighted pushdown systems (i.e., pushdown systems enriched with semiring)
can express several basic dataflow properties, and other relevant problems in
interprocedural program analysis [20,22,33,34]. Hence weighted pushdown sys-
tems have been studied in many different contexts, such as [13,17,32,35], and
tools have been developed, such as Moped [2], jMoped [1], and WALi [3]. The
more convenient model of RSMs was introduced and studied in [4], which on
the one hand explicitly models the function calls and returns, and on the other
hand specifies many natural parameters for algorithmic analysis. In this work,
we improve the fundamental algorithms for RSMs over finite-height semirings,
as compared to the bounds obtained by translating RSMs to pushdown systems
and applying the best-known bounds for the pushdown case. Along with general
RSMs, special cases of SESE RSMs have also been considered, such as RSMs
with constant treewidth, and only same context queries [11] (i.e., computation
of node distances between nodes of the same module). Our results apply to the
general case of all RSMs and are not restricted to any special types of queries.
Concurrent Setting. The problem of reachability in concurrent pushdown sys-
tems (or concurrent RSMs) is again a fundamental problem in program analy-
sis, which allows for the interprocedural analysis in a concurrent setting. How-
ever, the problem is undecidable [31]. Motivated by practical problems, where
bugs are discovered with few context switches, the context-bounded reachability
problem, where there can be at most k context switches have been considered
for concurrent pushdown systems [21,23,26,27,29] as well as related models of
asynchronous pushdown networks [9]. We present a new algorithm for concurrent
pushdown systems and concurrent RSMs which improves the existing complexity
when the size of the global component is small.

8 Conclusion

In this work we consider RSMs, a fundamental model for interprocedural analy-
sis, with path properties expressed over finite-height semirings, that can express
a large class of properties for program analysis. We present algorithms that
improve the previous algorithms, both in the sequential as well as in the con-
current setting. Moreover, along with our algorithm, we present new methods to
extract distances from the data-structure (configuration automata) that the algo-
rithm constructs. We present a prototype implementation for sequential RSMs
in an explicit setting that provides significant improvements for real-world pro-
grams obtained from SLAM/SDV benchmarks. Our results show the potential
of the new algorithmic ideas. There are several interesting directions of future
work. A symbolic implementation is a direction for future work. Another direc-
tion of future work is to explore the new algorithmic ideas in the concurrent
setting in practice.

312 K. Chatterjee et al.

Acknowledgments. This research was supported in part by the Austrian Science
Fund (FWF) under grants S11402-N23, S11407-N23, P23499-N23, and Z211-N23, and
by the European Research Council (ERC) under grant 279307.

References

1. jMoped 2.0. https://www7.in.tum.de/tools/jmoped/
2. Moped. http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
3. WALi. https://research.cs.wisc.edu/wpis/wpds/
4. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yannakakis, M.:

Analysis of recursive state machines. ACM Trans. Program. Lang. Syst. 27(4),
786–818 (2005)

5. Alur, R., Bouajjani, A., Esparza, J.: Model checking procedural programs. In:
Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking. Springer, Heidelberg (2016)

6. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static
driver verifier research platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 119–122. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14295-6 11

7. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000). doi:10.1007/10722468 7

8. Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis
and prediction for software evolution. In: ICSE (2012)

9. Bouajjani, A., Esparza, J., Schwoon, S., Strejček, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005).
doi:10.1007/11590156 28

10. Callahan, D., Cooper, K.D., Kennedy, K., Torczon, L.: Interprocedural constant
propagation. In: CC (1986)

11. Chatterjee, K., Ibsen-Jensen, R., Pavlogiannis, A., Goyal, P.: Faster algorithms for
algebraic path properties in recursive state machines with constant treewidth. In:
POPL (2015)

12. Chatterjee, K., Kragl, B., Mishra, S., Pavlogiannis, A.: Faster algorithms for
weighted recursive state machines. Technical report arXiv:1701.04914 [cs.PL]
(2017)

13. Chaudhuri, S.: Subcubic algorithms for recursive state machines. In: POPL (2008)
14. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive

procedures. In: IFIP Conference on Formal Description of Programming Concepts
(1977)

15. Giegerich, R., Möncke, U., Wilhelm, R.: Invariance of approximate semantics with
respect to program transformations. In: Brauer, W. (ed.) ECI 1981, vol. 50, pp.
1–10. Springer, Heidelberg (1981)

16. Grove, D., Torczon, L.: Interprocedural constant propagation: a study of jump
function implementation. In: PLDI (1993)

17. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. SIG-
SOFT Softw. Eng. Notes 20(4), 104–115 (1995)

18. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: Kastens, U.,
Pfahler, P. (eds.) CC 1992. LNCS, vol. 641, pp. 125–140. Springer, Heidelberg
(1992). doi:10.1007/3-540-55984-1 13

https://www7.in.tum.de/tools/jmoped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://research.cs.wisc.edu/wpis/wpds/
http://dx.doi.org/10.1007/978-3-642-14295-6_11
http://dx.doi.org/10.1007/978-3-642-14295-6_11
http://dx.doi.org/10.1007/10722468_7
http://dx.doi.org/10.1007/11590156_28
http://arxiv.org/abs/1701.04914
http://dx.doi.org/10.1007/3-540-55984-1_13

Faster Algorithms for Weighted Recursive State Machines 313

19. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: efficient and optimal bitvec-
tor analyses for parallel programs. ACM Trans. Program. Lang. Syst. 18(3), 268–
299 (1996)

20. Lal, A., Reps, T.: Solving multiple dataflow queries using WPDSs. In: Alpuente,
M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 93–109. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-69166-2 7

21. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods Syst. Des. 35(1), 73–97 (2009)

22. Lal, A., Reps, T., Balakrishnan, G.: Extended weighted pushdown systems. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 434–448.
Springer, Heidelberg (2005). doi:10.1007/11513988 44

23. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 20

24. Landi, W., Ryder, B.G.: Pointer-induced aliasing: a problem classification. In:
POPL (1991)

25. Liberty, E., Zucker, S.W.: The mailman algorithm: a note on matrix-vector multi-
plication. Inf. Process. Lett. 109(3), 179–182 (2009)

26. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI (2007)

27. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: OSDI (2008)

28. Myers, G.: A four russians algorithm for regular expression pattern matching. J.
ACM 39(2), 430–448 (1992)

29. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31980-1 7

30. Yu, Q., Guan, X., Zheng, Q., Liu, T., Zhou, J., Li, J.: Calling network: a new
method for modeling software runtime behaviors. ACM SIGSOFT Softw. Eng.
Notes 40(1), 1–8 (2015)

31. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)

32. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL (1995)

33. Reps, T., Lal, A., Kidd, N.: Program analysis using weighted pushdown systems. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 23–51. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-77050-3 4

34. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program.
58(1–2), 206–263 (2005)

35. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comput. Sci. 167(1), 131–170 (1996)

36. Schwoon, S.: Model-checking pushdown systems. Ph.D. thesis, Technische Univer-
sität München (2002)

37. Williams, R.: Matrix-vector multiplication in sub-quadratic time (some preprocess-
ing required). In: SODA (2007)

38. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In:
STOC (2012)

http://dx.doi.org/10.1007/978-3-540-69166-2_7
http://dx.doi.org/10.1007/11513988_44
http://dx.doi.org/10.1007/978-3-540-78800-3_20
http://dx.doi.org/10.1007/978-3-540-78800-3_20
http://dx.doi.org/10.1007/978-3-540-31980-1_7
http://dx.doi.org/10.1007/978-3-540-77050-3_4

ML and Extended Branching VASS

Conrad Cotton-Barratt1(B), Andrzej S. Murawski2, and C.-H. Luke Ong1

1 University of Oxford, Oxford, UK
conrad.cotton-barratt@cs.ox.ac.uk
2 University of Warwick, Coventry, UK

a.murawski@warwick.ac.uk

Abstract. We prove that the observational equivalence problem for
a finitary fragment of ML is recursively equivalent to the reachabil-
ity problem for extended branching vector addition systems with states
(EBVASS). Our proof uses the fully abstract game semantics of the lan-
guage. We introduce a new class of automata, VPCMA, as a represen-
tation of the game semantics. VPCMA are a version of class memory
automata equipped with a visibly pushdown stack; they serve as a bridge
enabling interreducibility of decision problems between the game seman-
tics and EBVASS. The results of this paper complete our programme
to give an automata classification of the ML types with respect to the
observational equivalence problem for closed terms.

1 Introduction

RML is a prototypical call-by-value functional language with state [3], which may
be viewed as the canonical restriction of Standard ML to ground-type references.
This paper is about the decidability of observational equivalence of finitary RML.
Recall that two terms-in-context are observationally (or contextually) equivalent,
written Γ � M ∼= N , if they are interchangeable in all program contexts without
causing any observable difference in the computational outcome. Observational
equivalence is a compelling notion of program equality, but it is hard to reason
about because of the universal quantification over program contexts. Our ulti-
mate goal is to completely classify the decidable fragments of finitary RML, and
characterise each fragment by an appropriate class of automata. In the case of
finitary Idealized Algol [27] – the call-by-name counterpart of RML, the decid-
ability of observational equivalence depends on the type-theoretic order [21] of
the terms. By contrast, the decidability of RML terms is not neatly characterised
by order: there are undecidable fragments of terms-in-context of order as low as
2 [20], amidst interesting decidable fragments at each of orders 1 to 4. Indeed,
as we shall see, there is a pair of second-order types1 with opposite decidability
status but which differs only in the ordering of their argument types.

Let L be a collection of finitary RML terms-in-context. The observational
equivalence problem asks: given two terms-in-context (i = 1, 2)

x1 : θ1, · · · , xk : θk � Mi : θ

1 Namely, unit → (unit → unit) → unit vs (unit → unit) → unit → unit.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 314–340, 2017.
DOI: 10.1007/978-3-662-54434-1 12

ML and Extended Branching VASS 315

from L, are they observationally equivalent? Unsurprisingly the general prob-
lem is undecidable [20]. However decidability has been established for certain
fragments, which we present in Fig. 1 by listing for each fragment the shapes of
types allowable on the LHS and RHS of the turnstile, where β is a base type.2

Fig. 1. Two decidable fragments of finitary RML

Note that (the RHS type) θ of shape I ranges over all first-order types; and θ
of shape II admits the simplest second-order types. Because [9] also establishes
undecidability for the second-order type θ = (unit → unit) → unit → unit and
the simplest third-order type θ = ((unit → unit) → unit) → unit, as far as closed
terms are concerned, the only unclassified cases are second-order types of the
shape

β → · · · → β
︸ ︷︷ ︸

m

→ (β → · · · → β
︸ ︷︷ ︸

n

) → β (1)

where m ≥ 1 and n ≥ 2. These types are the subject of this paper.
Our main contribution concerns the closed terms of types of the shape

β → (β → · · · → β) → β (2)

and relates their observational equivalence problem to the reachability problem
for extended branching vector addition systems with states (EBVASS) [17], whose
decidability status is, to our knowledge, unknown. Our result applies not only to
closed terms but also to the fragment RMLEBVASS (Definition 4) of open terms
of type (2) in which free variables are subject to certain type constraints. Our
main result is the following

Theorem 1. Observational equivalence for the terms-in-context in RMLEBVASS

is recursively equivalent to the reachability problem for extended branching vector
addition systems.

Our second result (Theorem 23) is that the reachability problem for reset vec-
tor addition systems with states [5] is reducible to the observational equivalence
of closed terms of type β → β → (β → β) → β. It follows that the observational
equivalence of closed terms of all of the remaining types of the shape (1), i.e.,
where m,n ≥ 2, is undecidable.

In the following, we discuss the key ideas behind the main results. Like
the earlier results [9,15], Theorems 1 and 23 are proved by appealing to the

2 For the sake of clarity, we do not list types with int ref and the corresponding con-
straints. They are analogous to treating int ref as β → β.

316 C. Cotton-Barratt et al.

game semantics for RML [3,13], which is fully abstract, i.e., the equational the-
ory induced by the semantics coincides with observational equivalence. In game
semantics [1,16], player P takes the viewpoint of the term-in-context, and player
O takes the viewpoint of the program context or environment. Thus a term-in-
context, Γ � M : θ with Γ = x1 : θ1, · · · , xn : θn, is interpreted as a P-strategy
�Γ � M : θ� in the prearena �θ1, · · · , θn � θ�. A play is a sequence of moves,
made alternately by O and P, such that each non-initial move has a justification
pointer to some earlier move. Thanks to the fully abstract game semantics of
RML [3,13], observational equivalence is characterised by complete plays, i.e.,
Γ � M ∼= N holds iff the respective P-strategies, �Γ � M : θ� and �Γ � N : θ�,
contain the same set of complete plays. Strategies may be viewed as highly
constrained processes, and are amenable to automata-theoretic representations.
The main technical challenge, however, lies in the encoding of the justification
pointers of the plays.

In recent work [8,9], we considered finitary RML terms-in-context with types
of shape I (see Fig. 1). To represent the plays in the game semantics of such terms,
we need to encode O-pointers (i.e. justification pointers from O-moves), which
is tricky because O-moves are controlled by the environment rather than the
term. It turns out that the game semantics of these terms are representable as
nested data class memory automata (NDCMA) [10], which are a variant of class
memory automata [6] whose data values exhibit a tree structure, reflecting the
tree structure of the threads in the plays.

Because of the type constraints, a play (in the strategy denotation) of a
term in RMLEBVASS may be viewed as an interleaving of “visibly pushdown”
threads, subject to the global well-bracketing condition. (See Sect. 3 for an expla-
nation.) In order to model such plays, we introduce visibly pushdown class mem-
ory automata (VPCMA), which naturally augment class memory automata with
a stack and follow a visibly pushdown discipline, but also add data values to the
stack so that matching push- and pop-moves must share the same data value.
To give a clear representation of the game semantics, we introduce a slight vari-
ant of VPCMA with a run-time constraint on the words accepted, called scoping
VPCMA (SVPCMA). This constraint prevents data values from being read once
the stack element that was at the top of the stack when the data value was first
read in the run has been popped off the stack. Although these two models are
expressively different, they have equivalent emptiness problems.

Unlike in class memory automata (CMA), weakness3 does not affect the
hardness of the emptiness problem for VPCMA, as the stack can be used to
check the local acceptance condition. However, like CMA, weakness does help
with the closure properties of the languages recognised. The closure properties
of these automata are the same as for normal CMA [9]: weak deterministic
VPCMA are closed under union, intersection and complementation; similarly
for SVPCMA. We show that the complete plays in the game semantics of each
RMLEBVASS term-in-context are representable as a weak deterministic SVPCMA

3 Weak class memory automata [8,9] are class memory automata in which the local
acceptance condition is dropped.

ML and Extended Branching VASS 317

(Lemma 14). Thanks to the closure property of SVPCMA, it then follows that
RMLEBVASS observational equivalence is reducible to the emptiness problem for
VPCMA (Theorem 13).

Finally and most importantly, we show (Theorems 20 and 22) that the empti-
ness problem for VPCMA (equivalently for SVPCMA) is equivalent to the reach-
ability problem for extended branching VASS (EBVASS) [17], the decidability
of which remains an open problem. In particular, reachability in EBVASS is a
harder problem than the long-standing open problem of reachability in BVASS
(equivalently, provability in multiplicative exponential linear logic) [11], which
is known to be non-elementary [19].

In summary, the results complete our programme to give an automata clas-
sification of the ML types with respect to the observational equivalence problem
for closed terms of finitary RML. We tabulate our findings as follows:

Order Type Automata/status

1 unit → · · · → unit NDCMA/decidable [9,14]

2 (unit → · · · → unit) → unit VPA/decidable [15]

2 unit → (unit → · · · → unit) → unit EBVASS (this paper)

2 unit → unit → (unit → unit) → unit Undecidable (this paper)

2 (unit → unit) → unit → unit Undecidable [9]

3 ((unit → unit) → unit) → unit Undecidable [9]

Related Work. Hopkins and Murawski [14] used deterministic class memory
automata to recognise the strategies of RML terms of a first-order type with
certain constraints on the types of their free variables. Building on this idea,
strategies of terms-in-context with shape-I types (Fig. 1) are shown to be repre-
sentable as NDCMA [9]. Automata over an infinite alphabet (specifically, push-
down register automata) have also been applied to game semantics [24,25] for
a different purpose, namely, to model generation of fresh names in fragments of
ML [25] and Java [22]. When extended with name storage, observational equiv-
alence of terms-in-context with types in RMLEBVASS becomes undecidable [25];
in particular, this is already the case for closed terms of type unit → unit → unit.

Outline. In Sect. 2 we define the syntax and operational semantics of RML
and the fragment RMLEBVASS. In Sect. 3 we present the game semantics for
RML. The automata models, VPMCA and SVPCMA, are then presented in
Sect. 4, where we show that their emptiness problems are interreducible, and
discuss their closure properties. In Sect. 5 we show that the complete plays in
the game semantics of RMLEBVASS-terms are representable as weak deterministic
SVPCMA. Consequently the observational equivalence of RMLEBVASS-terms is
reducible to the emptiness problem of SVPCMA (and equivalently to that of
VPCMA). Reducibility in the opposite direction is then shown in Sect. 6. In
Sect. 7 we introduce EBVASS and show that its reachability problem and the

318 C. Cotton-Barratt et al.

emptiness problem for VPCMA are interreducible. Finally, in Sect. 8, we show
that observational equivalence for closed terms of type unit → unit → (unit →
unit) → unit is undecidable.

2 A Stateful Call-by-Value Functional Language RML

RML is a call-by-value functional language with state [3]. Its types are gener-
ated from ground types of int and unit, which represent integers and commands
respectively, and the variable type int ref. As the int and unit types will be very
similar in their behaviour for our purposes, we will often use β to range over int
and unit. Types are then constructed from these in the normal way, using the
→ operator:

θ ::= int | unit | int ref | θ → θ.

The order of a type is given by: ord(int) = ord(unit) := 0, ord(int ref) := 1, and
ord(θ → θ′) := max(ord(θ) + 1,ord(θ′)). In order to eliminate obvious sources
of undecidability, we consider finitary RML, with finite ground types (int =
{0, · · · ,max}), and iteration instead of recursion. The syntax and typing rules of
RML terms are given by induction over the rules in Fig. 2. Note that although we
only include arithmetic operations succ() and pred(), other operations are easily
definable using case distinction, because we work with finite int. We will write
letx = M inN as syntactic sugar for (λx.N)M , and M ;N for letx = M inN
where x is chosen to be fresh in N .

Fig. 2. Syntax of finitary RML

The operational semantics of the language is presented as a “big-step” rela-
tion that uses stores [3] to capture the behaviour of variables. Let L range over a

ML and Extended Branching VASS 319

countable set of locations, then a store is just a partial function s : L → N≤max.
For l ∈ L and i ∈ {0, · · · ,max}, we write s[l �→ i] for the store obtained from s
by making l map to i, and for a store s we write dom(s) for the value in L on
which s is defined. The reduction rules are defined inductively on pairs (s,M)
where s is a store, by the rules presented in Fig. 3. We assume max +1 = max and
0−1 = 0. These reductions reduce terms to canonical forms, V , which can be the
empty command (), a constant integer i, a location l, a lambda-abstraction term
λx.M , or a bad-variable construct using canonical forms inside, mkvar(V1, V2).

Fig. 3. Operational semantics of RML

Observational equivalence (OE), also known as contextual equivalence, is the
problem of whether two program-fragments are interchangeable without caus-
ing any changes to the observable computational outcome. We give a formal
definition in Definition 2. OE is a natural notion of program equivalence, a key
problem in verification [12].

Definition 2. Given an RML term M , we write M⇓ if there exist s and V such
that ∅,M ⇓ s, V (where ∅ is the empty store).

We say two terms Γ � M : θ and Γ � N : θ are observationally equivalent if
for all contexts C[−] such that Γ � C[M], C[N] : unit, C[M] ⇓ iff C[N] ⇓.

320 C. Cotton-Barratt et al.

Remark 3. RML is similar to Reduced ML [26], the restriction of Standard ML
to ground-type references, but is augmented with a “bad-variable” constructor
in the sense of Reynolds [27] (in the absence of the constructor, the equality test
is definable). In the presence of int ref, RML is generally more discriminating
then Reduced ML. However observational equivalence of RML coincides with
that of Reduced ML on types in which all occurrences (if any) of int ref are
positive. The semantics of int ref-types in Reduced ML is much subtler, though,
and its analysis requires one to use carefully tailored store annotations in the
corresponding game semantics [23].

Definition 4. The fragment RMLEBVASS consists of finitary RML terms-in-
context of the form, x1 : θ3, . . . , xn : θ3 � M : θ0 → θ2, where

θ0 ::= unit | int θ1 ::= θ0 | θ0 → θ1 | int ref
θ2 ::= θ0 | θ1 → θ0 | int ref θ3 ::= θ0 | θ2 → θ3 | int ref

Example 5. The following term � M : int → (int → int) → int is in RMLEBVASS.

λxint. let m = ref (0)
in λf int→int. assert (even (!m)) ; i f even (x) then m := 1 ;

let y=f (x) in m := x ; y

We write assert(M) for if M then () elseΩ, where Ω is the divergent term
while 1do (). When applied to an integer x, the term yields a function of type
(int → int) → int, which will apply its argument (a function f : int → int)
to x. However, owing to the assertion and the side effects, the behaviour of
M x is quite different from λf int→int.f x. If x is even then only sequential (non-
overlapping) uses of the function will be allowed. Thus, let g = M 0 in (let a =
g(λxint.0) in g(λyint.0)) terminates, whereas let g = M 0 in g(λxint.g(λyint.0))
diverges. In contrast, when x is odd, M x can only be called in a nested way
and new calls become forbidden as soon as the first call returns. Thus, a typical
usage pattern consists of a series of nested calls (of arbitrary depth) followed
by the same number of returns. Consequently, let g = M 1 in g(λxint.g(λyint.0))
terminates, whereas let g = M 1 in (let a = g(λxint.0) in g(λyint.0)) diverges.

3 Game Semantics of RML

We use a presentation of call-by-value game semantics in the style of Honda and
Yoshida [13], as opposed to Abramsky and McCusker’s isomorphic model [3], as
Honda and Yoshida’s more concrete constructions lend themselves more easily
to recognition by automata. We recall the following presentation of the game
semantics for RML from [15].

An arena A is a triple (MA,�A, λA) where MA is a set of moves where IA ⊆
MA consists of initial moves, �A ⊆ MA×(MA\IA) is called the enabling relation,
and λA : MA → {O,P} × {Q,A} a labelling function such that for all iA ∈ IA

we have λA(iA) = (P,A), and if m �A m′ then (π1 ◦ λA)(m) �= (π1 ◦ λA)(m′)
and (π2 ◦ λA)(m′) = A ⇒ (π2 ◦ λA)(m) = Q. The function λA labels moves as

ML and Extended Branching VASS 321

belonging to either Opponent or Proponent and as being either a Question or an
Answer. Note that answers are always enabled by questions, but questions can
be enabled by either a question or an answer. We will use arenas to model types.
However, the actual games will be played over prearenas, which are defined in
the same way except that initial moves are O-questions.

Three basic arenas are 0 (the empty arena), 1 (the arena containing a single
initial move •), and Z (has integers as moves, all of which are initial P-answers).
In all cases, the enabling relation is empty. The constructions on arenas are
defined in Figs. 4 and 5, where the lines represent enabling. Here we use IA as
an abbreviation for MA\IA, and λA for the O/P-complement of λA. Intuitively
A ⊗ B is the union of the arenas A and B, but with the initial moves combined
pairwise. A ⇒ B is slightly more complex. First we add a new initial move, •.
We take the O/P-complement of A, change the initial moves into questions, and
set them to now be justified by •. Finally, we take B and set its initial moves
to be justified by A’s initial moves. The final construction, A → B, takes two
arenas A and B and produces a prearena, as shown below. This is essentially
the same as A ⇒ B without the initial move •.

Fig. 4. Arena and prearena constructions: definitions

We intend arenas to represent types, in particular �unit� = 1, �int� = Z

(or a finite subset of Z for RMLf), �int ref� = �unit → int� ⊗ �int → unit� and
�θ1 → θ2� = �θ1� ⇒ �θ2�. A term-in-context x1 : θ1, . . . , xn : θn � M : θ will be
represented by a strategy for the prearena �θ1� ⊗ . . . ⊗ �θn� → �θ�.

A justified sequence in a prearena A is a sequence of moves from A in which
the first move is initial and all other moves m are equipped with a pointer to
an earlier move m′, such that m′ �A m. A play s is a justified sequence which
additionally satisfies the standard conditions of Alternation, Well-Bracketing,

322 C. Cotton-Barratt et al.

and Visibility [3]. A strategy σ for prearena A is a non-empty, even-prefix-closed
set of plays from A, satisfying the determinism condition: if sm1, sm2 ∈ σ then
sm1 = sm2. We can think of a strategy as being a playbook telling P how
to respond by mapping odd-length plays to moves. A play is complete if all
questions have been answered. Note that (unlike in the call-by-name case) a
complete play is not necessarily maximal. We denote the set of complete plays
in strategy σ by comp(σ).

Fig. 5. Arena and prearena constructions, pictorially

In the game model of RML, a term-in-context x1 : θ1, . . . , xn : θn � M : θ is
interpreted by a strategy of the prearena �θ1�⊗ . . .⊗�θn� → �θ�. These strategies
are defined by recursion over the syntax of the term. Free identifiers x : θ � x : θ
are interpreted as copy-cat strategies where P always copies O’s move into the
other copy of �θ�, λx.M allows multiple copies of �M� to be run, application MN
requires a form of parallel composition plus hiding and the other constructions
can be interpreted using special strategies. The game-semantic model is fully
abstract in the following sense.

Theorem 6 (Abramsky and McCusker [2,3]). If Γ � M : θ and Γ � N : θ
are RML terms then Γ � M ∼= N iff comp(�M�) = comp(�N�).

To represent the game semantics for the fragment RMLEBVASS, we need an
automaton over an infinite alphabet which is equipped with a visibly pushdown
stack. The shape of the prearenas for terms-in-context in this fragment is shown
in Fig. 6.

Remark 7. We describe the intuitive meaning of various moves from the Figure.
q0 starts the evaluation of the term. a0 stands for successful evaluation. q1 invokes
the resultant function with a base-type argument, while a1 means that a value
of type (β → · · · → β) → β was generated. q2 then corresponds to calling the
value on a function argument, q1∗, a1

∗, .., qm−1
∗ , am−1

∗ represent interaction with
that argument, while a2 means that the call has returned.

ML and Extended Branching VASS 323

Fig. 6. Shape of prearena for θ1 → · · · → θn → β � β → (β1 → · · · → βm) → β

Next we analyse the shape of non-empty complete plays in such arenas. At the
beginning, each such play will contain a segment q0 s a0 where s contains moves
originating from the left-hand side of the arena. The unique occurrence of a0 can
be used to justify subsequent occurrences of q1, each of which will have to be
answered with a1. Note that, due to the visibility condition, the moves between
q1 and the corresponding a1 can only come from the left-hand side of the arena.
It will be useful to think of each q1 a1-pair as defining a thread of play (moves
made between q1 and a1 can then be said to occur in that thread).

Further, each a1 can be used to justify subsequent occurrences of q2, which we
may think of as starting a subthread of the corresponding thread q1 a1. Note
that in this case the justification pointer from q2 is crucial in linking the q2-
subthread to the corresponding thread determined by q1 a1. We give a sample
play below, which represents the interaction of the term λxunit.λfunit→unit.fx with
context let g = [] in let f1 = g() in let f2 = g() in f1(λxunit.let f3 = g() in ()).

q0 a0 q1 a1 q1 a1 q2 q1∗ q1 a1 a1
∗ a2

Observe that due to the well-bracketing condition and the availability of qi
∗

moves, each thread can have a pushdown character. Thus, a play becomes an
interleaving of pushdown threads subject to the global well-bracketing condition.
This interleaving may switch between threads after any a1, a2, or qi

∗-move. Where
a qi

∗-move is made, the corresponding q2-subthread can only be returned to
subject to the stack discipline. Furthermore, whenever O has the opportunity
to start a new thread – after an a1, a2, or qi

∗-move, it can also create a new q2-
subthread by pointing at a visible occurrence of a1. Later on we shall introduce
an automata-theoretic model over infinite alphabets, called VPCMA, to capture
such scenarios. The preceding play will correspond to the following data word

324 C. Cotton-Barratt et al.

(q0, n0)(a0, n0)(q1, n1)(a1, n1)(q1, n2)(a1, n2)(q2, n1)(q1∗, n1)(q1, n3)(a1, n3)(a1∗, n1)(a2, n1)

where n1, n2, n3 are elements of the infinite alphabet playing the rôle of thread
identifiers (technically, they represent pointers from q2).

There is one more complication due to the visibility condition. Note that
once a2 is played, it will remove the third q1a1 segment from the O-view and
will effectively prevent the thread from generating future q2-subthreads. Thus,
the visibility condition restricts the way in which threads can be revisited to be
compatible with the stack discipline. This constraint will motivate a variant of
VPCMA, called scoping VPCMA.

4 Visibly Pushdown Class Memory Automata

In this section we introduce visibly pushdown class memory automata (VPCMA),
which will be a convenient mechanism for capturing the game-semantic scenarios
discussed at the end of the previous section.

VPCMA are a formalism over data words, i.e., elements of (Σ ×D)∗ where Σ
is a finite alphabet of data tags and D is an infinite set of data values. VPCMA
combine ideas from class memory automata (CMA) [7] and visibly pushdown
automata (VPA) [4]. As with CMA, our VPCMA will have a class memory
function that, for each data value seen in the run, will remember the state in
which the data value was last seen. Following VPA, the input alphabet Σ will
be partitioned into Σpush, Σpop, and Σnoop, which determine the kind of stack
action that is performed once letters from Σ × D are being read. Stack actions
will use elements of Γ ×D, where Γ is a finite stack alphabet. The only subtlety
in how these two kinds of automata are combined is in the contents of the stack:
whenever an element of D will be involved in a push or pop, we shall require
that it be equal to the element of D that is currently read by the machine. Thus,
matching push- and pop-moves will always read the same data value. The data
values on the stack can only be used in enforcing that the same data value that
pushed an element to the stack is used to pop it off the stack.

Definition 8 (VPCMA). Let Σ = Σpush + Σpop + Σnoop be finite and Q⊥ =
Q+{⊥}. Fix an infinite dataset D. A visibly pushdown class memory automaton
is a tuple 〈 Q,Σ, Γ,Δ, q0, FG, FL 〉, where Q is a finite set of states, q0 ∈ Q is
the initial state, FG ⊆ FL ⊆ Q are sets of globally and locally accepting states
respectively, Γ a finite stack alphabet and Δ is the transition relation, where:

Δ ⊆ (
Q × Q⊥ × (Σpush ∪ Σpop) × Γ × Q

) ∪ (
Q × Q⊥ × Σnoop × Q

)
.

We explain the workings of a VPCMA below. A configuration is a triple (q, f, S)
where q ∈ Q is the current state, f : D → Q⊥ is a class memory function, and
S ∈ (D×Γ)∗ is the stack. The initial configuration is (q0, f0, ε) where f0 maps all
data values to ⊥. A configuration (q, f, S) is accepting if q ∈ FG, f(d) ∈ FL∪{⊥}
for all d ∈ D, and S = ε. On reading an input letter (a, d) ∈ Σ × D whilst in
configuration (q, f, S) the automaton can follow transitions as follows:

ML and Extended Branching VASS 325

– if a ∈ Σpush the automaton can follow a transition (q, f(d), a, γ, q′) to config-
uration (q′, f [d �→ q′], S · (d, γ)).

– if a ∈ Σpop and S = S′ · (d, γ) the automaton can follow a transition
(q, f(d), a, γ, q′) to configuration (q′, f [d �→ q′], S′).

– if a ∈ Σnoop the automaton can follow a transition (q, f(d), a, q′) to configura-
tion (q′, f [d �→ q′], S).

Acceptance of words is then defined in the normal way, with a word being
accepted just if there is a run of the word from the initial configuration to
an accepting configuration. Determinism is also defined in the normal way. That
is, a VPCMA is deterministic just if the following conditions all hold:

(i) (q, s, apush, γ, p), (q, s, apush, γ
′, p′) ∈ Δ ⇒ γ = γ′, p = p′;

(ii) (q, s, apop, γ, p), (q, s, apop, γ, p′) ∈ Δ ⇒ p = p′; and
(iii) (q, s, anoop, p), (q, s, anoop, p

′) ∈ Δ ⇒ p = p′.

In our translation from RML, we shall rely on weak VPCMA, in which all
states are locally accepting, i.e. FL = Q. Then a configuration is final if a global
accepting state has been reached and the stack is empty. Although for class
memory automata (CMA), there is a significant gap between the complexity
of normal CMA and weak CMA emptiness (corresponding essentially to the
difference between reachability and coverability in vector addition systems) [10],
there is no similar gap for VPCMA. The emptiness problem for VPCMA can be
easily reduced to that for weak VPCMA by constructing, for a given VPCMA,
a weak VPCMA which will at the very beginning guess all the data values to be
used in an accepting run, push them on the stack one by one and, at the very
end, verify the local acceptance conditions for each data value during pops.

Proposition 9. Emptiness of VPCMA can be reduced to emptiness of weak
VPCMA.

Using standard product constructions, in the same way as for weak CMA [10],
one can show that weak VPCMA are closed under union and intersection. Deter-
ministic weak VPCMA are also closed under complementation (by reversing
accepting states) but the complement needs to be taken with respect to the set
of “well-bracketed” words generated by the grammar

W ::= ε | (anoop, d) · W | (apush, d) · W · (apop, d) · W

where d ranges over D, and apush, apop, and anoop range over Σpush, Σpop, and
Σnoop respectively. The closure properties make it possible to reduce determin-
istic VPCMA inclusion and equivalence to VPCMA emptiness.

We wrap this section up with the introduction of a special kind of VPCMA,
called scoping VPCMA (SVPCMA). This variant is meant to reflect the shape
of plays analysed at the end of Sect. 3 particularly well. Its definition is identical
to that of VPCMA. The difference is in how the runs are defined, and as a
result in the languages recognised. For SVPCMA, a configuration keeps track
not just of the current state, class memory function, and stack, but also of a set

326 C. Cotton-Barratt et al.

of “visible” data values. The idea is that when a data value is first read after a
push-move but before that move’s corresponding pop-move, this data value will
only be usable until that pop-move – preventing the data value from “leaking”
into other parts of the run. Consequently, a tree hierarchy is imposed on the use
of data values. Although this may seem a substantial restriction at first, scoping
VPCMA turn out to have identical algorithmic properties to normal VPCMA.

Definition 10.A scoping VPCMA (SVPCMA) is a tuple 〈Q,Σ, Γ,Δ, q0, FG, FL〉
of the same construction as a VPCMA.

In contrast to VPCMA configuration, an SVPCMA configuration is a tuple
(q, f, V, S) where q and f are states and class memory functions as before,
V ⊂fin D is the set of visible data values, and S ∈ (D × Γ × Pfin(D))∗. The
initial configuration is (q0, f0, ∅, ε), and a configuration is accepting just in the
conditions set for normal VPCMA (i.e. no restrictions on V). On reading an
input letter (a, d) whilst in configuration (q, f, V, S), if f(d) = ⊥ or d ∈ V the
automaton can follow transitions as follows:

– if a ∈ Σpush the automaton can follow a transition (q, f(d), a, γ, q′) to config-
uration (q′, f [d �→ q′], V ∪ {d}, S · (d, γ, V ∪ {d})).

– if a ∈ Σpop and S = S′ · (d, γ, V ′) the automaton can follow a transition
(q, f(d), a, γ, q′) to configuration (q′, f [d �→ q′], V ′, S′).

– if a ∈ Σnoop the automaton can follow a transition (q, f(d), a, q′) to configura-
tion (q′, f [d �→ q′], V ∪ {d}, S).

Note that if f(d) �= ⊥ and d /∈ V , the automaton cannot transition!
Weakness and determinism for SVPCMA are defined in the usual way. And

we can obtain the same result collapsing weakness as for normal VPCMA:

Proposition 11. Emptiness of SVPCMA can be reduced to emptiness of weak
SVPCMA.

Proof (Sketch). The idea for this construction is similar to that for VPCMA, but
this time we cannot just read all of the data values at the start of the run, and
check them at the end. Instead, whenever a new data value would be introduced
we first introduce it with a push-move; and when that value is popped, we check
that it is in a locally accepting state, and prevent it from being used again.

Similarly, all of the closure constructions that work for VPCMA also work
for SVPCMA (though this time closure is with respect to well-bracketed words
that are consistent with the SVPCMA restriction). In any case, the equivalence
problem for deterministic SVPCMA can also be reduced to SVPCMA emptiness.

Next we discuss why the emptiness problems for VPCMA and SVPCMA
are interreducible. Owing to the defining restriction for SVPCMA, not all lan-
guages recognisable by VPCMA are recognisable by SVPCMA, and vice versa.
Hence, there cannot be effective translations between VPCMA and SVPCMA
that preserve recognisability. However, we have

Proposition 12. VPCMA and SVPCMA emptiness problems are interre-
ducible.

ML and Extended Branching VASS 327

Proof. To reduce emptiness of VPCMA to that of SVPCMA we employ a similar
trick to that used to reduce VPCMA to weak VPCMA: we begin by having the
automaton read all of the data values that are going to be used in the run, then
running the automaton as normal, with calls for fresh data values replaced with
calls for data values seen at the start of the run.

To reduce emptiness of SVPCMA to that of VPCMA we employ a similar
trick to that used to reduce SVPCMA to weak SVPCMA: whenever a data value
is first read we insert a dummy push-move, which must be popped before any
containing push-move is popped. When the dummy push-move is popped, we
prevent that data value from being read again.

In Sect. 7 we show that VPCMA (SVPCMA) emptiness is recursively equivalent
to reachability in extended branching VASS [17]. In the next section, we use
SVPCMA to represent the game semantics of RMLEBVASS.

5 RMLEBVASS to VPCMA

In this section we prove

Theorem 13. Observational equivalence of RMLEBVASS-terms is reducible to
the emptiness problem for VPCMA.

The result, in conjunction with results of Sect. 7 will imply the left-to-right
implication in Theorem 1. To establish Theorem 13, we rely on the following
crucial lemma.

Lemma 14. For any RMLEBVASS-term Γ � M , there exists a weak
deterministic SVPCMA AM whose language is a faithful representation of
comp(�Γ � M�).

As discussed in Sect. 4, SVPCMA equivalence can be reduced to VPCMA empti-
ness, so the Lemma implies Theorem 13. We shall prove the Lemma by induction
for terms in canonical form.

Definition 15. An RML term is in canonical form if it is generated by the
following grammar:

C::= () | i | xβ | succ(xβ) | pred(xβ) | if xβ thenC elseC |
xint ref := yint | !xint ref | letx=ref 0 inC | mkvar(λuunit.C, λvint.C) |
whileCdoC | λxθ.C | letxβ = C inC | letx = z yβ inC |
letx = z (λxθ.C) inC | letx = z mkvar(λuunit.C, λvint.C) inC

It can be shown [14] that, for any RML term Γ � M : θ there is a term Γ �
N : θ in canonical form, effectively constructible from M , such that �Γ � M� =
�Γ � N� (for the most part, the conversions involve let-commutations and β-
reduction).

Next we explain how justification pointers from games will be handled.
Pointers from answers need not be represented explicitly, because they can be

328 C. Cotton-Barratt et al.

reconstructed uniquely from the underlying sequences of moves via the Well-
Bracketing condition. Pointers from questions may need to be represented, but
sometimes they too are uniquely recoverable thanks to the Visibility condition,
when at most one justifier is guaranteed to occur in the relevant view. For O-
questions, this was always the case in the fragment considered in [15], called
the O-strict fragment. RMLEBVASS is an extension of that fragment and some
O-pointers will need to be represented explicitly, but fortunately these are only
pointers from moves marked q2 in Fig. 6. As already hinted at the end of Sect. 3,
we shall use data values to handle the issue as follows.

– The unique q0-move, and each q1-move will take a fresh data value.
– All ai-moves will take the same data value as their justifying qi-move.
– Each q2-move, and all hereditarily justified moves, will take the same data

value as their justifying a1-move.
– Each move corresponding to the types of free variables in the term will take

the same data value as the preceding move.

Because q2-moves are labelled with the same data value as their justifiers, the
problematic O-pointers are clearly represented by the above scheme. As concerns
P-pointers, there are also cases in which pointers from P-moves have to be rep-
resented explicitly, because there may be two potential justifiers in the relevant
P-view. Fortunately, the problems are of the same kind as those for the O-strict
fragment and can be handled using the marking technique used in [15,18].

Next we discuss the automata constructions, focussing on the new cases with
respect to [15], i.e. when the term is of type β → (β → · · · → β) → β. In
other cases, i.e. (), i, xβ , succ(xβ), pred(xβ), if xβ thenC elseC, xint ref := yint,
!xint ref , and mkvar(λxunit.C, λyint.C), whileCdoC we can rely on the construc-
tions from [15], as they produce visibly pushdown automata, which can be easily
be upgraded to SVPCMA by annotating each move with a dummy data value.
λx.M The most important case is that of λ-abstraction. In the case where λx.M
is not of type β → (β → · · · → β) → β, this has already been covered by the
VPA constructions. We therefore can assume this is the final lambda abstraction
in the term, and so x is of type β ∈ {int, unit} and M ’s type is of the shape
(β → · · · → β) → β.

Then the key idea of this construction is that the strategy for λx.M , after
the unique a0-move, is an interleaving of multiple strategies for M . Since we can
handle M with a VPA [15], each q1-move corresponds to starting a new VPA
running. SVPCMA allow us to simulate multiple VPAs, each identified by its
own data value. The well-bracketing constraint on plays is enforced by the single
stack discipline of the SVPCMA, while the visibility condition on O-pointers is
checked by the scoping restriction on SVPCMA.

Before we give the formal definition of the SVPCMA for λx.M , we analyse
the plays in �λx.M� in more detail. O starts by playing an initial move γ, to
which P plays the unique response a0. O then starts a q1-thread with a move ix
corresponding to the value of x. Play then in that thread continues as in �M�
with initial move (γ, ix). However, at any point after P has played an a1, qj

∗,

ML and Extended Branching VASS 329

or a2 move, O may switch to another thread (new or existing), subject to that
thread (i.e. the q1 a1 moves of that thread) being visible.

For the construction, we know that there is a family of VPA, (AM
i), where AM

i

recognises the complete plays from �M� that start with initial move i (the move i
is omitted). We note that these initial moves have an x-component, as x is a free
variable of ground type in M , hence we can think of the initial moves as having
the form (γ, ix), where ix is the part that corresponds to x. We make a further
assumption on the (AM

i), that the states reachable by following a transition with
a Σ-label corresponding to a a1, qj

∗, or a2 move can only be reached by following
transitions with those Σ-labels. We write Ni for these states. (Note that it is
straightforward to convert a VPA without this property to one with it.) Further
we note that these states, due to the plays possible, will only have no-op and
pop transitions from them.

Hence we construct the automata (Aλx.M
γ) as follows.

– The set of states of Aλx.M
γ is formed of two new states, (1) and (2) together

with the disjoint union of the states from each AM
(γ,ix)

(for each possible value
ix).

– The initial state is the new state (1).
– The set of globally accepting states is the union of the sets of accepting states

from each AM
(γ,ix)

together with the new state (2).
– The transitions are defined as follows:

• There is a (no-op) transition (1)
a0,⊥−−−→ (2)

• For each ix there is a (no-op) transition (2)
ix,⊥−−−→ qix where qix is the

initial state of AM
(γ,ix)

• For each AM
(γ,ix)

:
∗ For each no-op transition q1

m−→ q2 inside AM
(γ,ix)

, there is a (no-op)

transition q1
m,q1−−−→ q2

∗ For each push/pop transition q1
m,σ−−→ q2 inside AM

(γ,ix)
, there is a

(push/pop resp.) transition q1
m,q1,σ−−−−→ q2

• For each state q1, q2 in
⋃

ix
N(γ,ix) and each no-op transition q2

m−→ q3 in
the constituent automaton there is a transition q1

m,q2−−−→ q3. Similarly for
each pop transition q2

a,σ−−→ q3 we have the transition q1
a,q2,σ−−−−→ q3. This

allows for changing between threads at the appropriate points.

The remaining cases concern letx = . . . inM and adaptations of the cor-
responding cases in the O-strict constructions in the O-strict case [14,15]. Cru-
cially, whilst these constructions all allow the “interruption” of �M� to make
plays corresponding to x, the strategy for x can be recognised by a normal VPA
and so the interruptions do not disturb the data value being used. Hence the
adaptations from the O-strict case are straightforward. We discuss two of the
cases in more detail.

letx = ref 0 inM The states of Alet x=ref 0 inM
γ is equal to the states of AM

γ

crossed with the finitary fragment of N being used. We refer to the new finitary

330 C. Cotton-Barratt et al.

fragment as the x-component of the state. The new initial state is the old initial
state with x-component 0. Transitions are generally preserved, without altering
the x-component, except writex(i)-transitions now change the x-component to
i, and answers to readx-transitions must match the current x-component (other
answer transitions are removed). For every (maximal) sequence of x-transitions
out of a state, we now replace that sequence with a silent transition, which we
then eliminate (and alter the required signature of the data value accordingly).
Since the data value being read cannot change in sequences of x-transitions, this
is a straightforward operation.

letxβ = N inM �letxβ = N inM� first evaluates N , i.e. runs as �N� until a
value is returned for x, then begins running as �M� in which that value of x was
provided in the first move.

Since N is of type β, there are VPA (AN
γ) representing �Γ � N�. Further since

x is free in M the initial moves in M have an x-component, so we have a family
of SVPCMA (AM

(γ,ix)
). The automata construction for the term is then a fairly

straightforward concatenation of the the automata for N and M , with which
copy of AM used being determined by the outcome of AN . The only difficulty
is adding the data values to the automaton for N , but this is straightforward as
only one data value is used for the entire run of N .

6 VPCMA to RMLEBVASS

So far we have shown that observational equivalence of terms in RMLEBVASS is
reducible to emptiness of SVPCMA. In this section we show that the converse
is also true.

To reduce SVPCMA emptiness to observational equivalence of RMLEBVASS-
terms, we will first alter the given SVPCMA to make the reduction to RML-
terms easier. We already saw, in Sect. 4, that given an SVPCMA it is possible
to construct a weak SVPCMA with equivalent emptiness problem.

Now, given a weak SVPCMA A, by doubling the states and stack alphabet,
it is straightforward to construct another weak SVPCMA, A′, recognising the
same languages as A such that whether or not the stack is empty is stored in
the state of the automaton. Hence, the emptiness of A′ is determined just by
whether or not a globally accepting state is reachable.

How then, do we construct the RML terms from A′? We shall represent each
data value by a single q1 a1-thread. Hence, a transition reading a new data
value will be represented by O playing q1 and P responding with a1. The class
memory function’s value for this data value will then be stored in a local variable
with suitable scope. Noop-moves not taking a fresh data value can then be made
by playing q2 a2-moves justified by the q1 a1 corresponding to the data value.
When the q2-move is played, the term can update the class memory function as
required.

Push-moves will be represented by q2 q∗-moves, with the stack letter stored
locally. If the push-move introduces a fresh data value, the q1 a1-thread must
be created first, and then immediately followed by the q2 q∗-moves. Pop-moves

ML and Extended Branching VASS 331

will be represented by a∗a2 pairs. Note that the Well-Bracketing condition will
enforce the stack discipline during the simulation. Furthermore, as we saw in the
previous section, the visibility condition of the plays will correspond precisely
to the scoping condition of SVPCMA, that restricts use of data values first seen
inside pushes.

In the term, we will need O to choose which transition is fired next. We will
do this by alternating O’s plays between those that correspond to transitions of
the SVPCMA as described already, and a simple q1-move that provides as int-
input, which transition will be fired next. The term, using a global variable, can
keep track of whether the next O-move should be providing input, or simulating
a transition.

Using these ideas, we prove that the representation scheme can be imple-
mented using RMLEBVASS-terms.

Proposition 16. Given a weak SVPCMA such that the automaton can only
arrive at a final state with an empty stack, there are RMLEBVASS-terms

� M,N : int → (unit → unit) → unit

such that the language recognised by the automaton is non-empty iff M and N
are not observationally equivalent.

The only difference between M and N above is that one of them will diverge on
reaching the final state whereas the other will carry on simulating the last step. In
the above we have used an int-type, to make it easy for P to ask the environment
(O) which transition should be fired next. We note that we could have used
only unit-types, using a different scheme for O-choices. For example, at the very
beginning we could introduce as many q1 a1 segments as there are transitions
and O-choice could be represented by playing a q2 a2 justified by one of the a1

(so O-choice would be represented by the choice of a justifer, one of the special
a1’s). Thus, the result can also be shown to hold for unit → (unit → unit) → unit.

Thus we have shown that RMLEBVASS observational equivalence and
VPCMA emptiness are recursively equivalent.

7 VPCMA and EBVASS

In this section we show that VPCMA emptiness and EBVASS reachability are
interreducible. We first review extended branching VASS (EBVASS), which were
introduced in [17] to analyse a two-variable fragment of first-order logic over data
trees, and shown to be equivalent to a form of data tree automaton.

EBVASS are slightly more powerful than branching VASS (BVASS) [11],
whose reachability problem is not known to be decidable. Thus, we begin our
review with BVASS, which extend VASS where, in addition to the standard tran-
sitions affecting the counter values and the state, there are “split” transitions,
which split the current counter values into two copies of the current VASS, each
copy then transitioning to a pre-given state. These copies must then complete
their runs independently. Formally:

332 C. Cotton-Barratt et al.

Definition 17 (BVASS). A (top-down) branching vector addition system with
states (BVASS) is a tuple (Q, q0, L, k,Δu,Δs) where Q is a finite set of states,
q0 ∈ Q is the initial (root) state, L ⊆ Q is the set of target (leaf) states, k ∈ N

is the number of counters (dimension of the BVASS), and Δu and Δs are the
unary and split transition relations respectively. The unary and split relations
are of the forms:

Δu ⊆ (Q × N
k) × (Q × N

k) Δs ⊆ (Q × N
k) × (Q × N

k) × (Q × N
k)

We may write unary transitions, (q1, v̄1, q2, v̄2) ∈ Δu, and split transitions,
(q1, v̄1, q2, v̄2, q3, v̄3) ∈ Δs, in the following ways:

(unary)
q1, v̄ + v̄1

q2, v̄ + v̄2
(split)

q1, v̄ + v̄′ + v̄1

q2, v̄ + v̄2 q3, v̄
′ + v̄3

These representations reflect the runs of BVASS, which we now define. A config-
uration of a BVASS is a pair (q, v̄) where q ∈ Q and v̄ ∈ N

k. A run of a BVASS
is a (finite) tree labelled with configurations, such that each node has at most
two children, with the following conditions:

– if a node labelled with (q, v̄) has precisely one child node, then there is a
transition (q, ū1, q

′, ū2) ∈ Δu such that v̄ − ū1 ∈ N
k and the child node is

labelled with (q′, v̄ − ū1 + ū2).
– if a node labelled with (q, v̄) has two child nodes, then there is a transition

(q, ū1, q
′, ū2, q

′′, ū3) ∈ Δs such that there exist v̄1, v̄2 ∈ N
k such that v̄ =

v̄1 + v̄2 + ū1 and the left child node is labelled (q′, v̄1 + ū2) and the right child
node is labelled (q′′, v̄2 + ū3).

A run is accepting just if every leaf node’s label is (q, 0̄) for some q ∈ L. The
reachability problem asks whether there is an accepting run of the BVASS with
root configuration (q0, 0̄).

We note that this is a strong form of BVASS, where several operations may
be performed in one step: multiple increments and decrements. It is possible
for unary transitions to be able to only make a single increment or decrement,
and for split transitions to make no increments or decrements. It is clear that
this more powerful presentation does not change the power of the model, but it
allows us a slightly more concise reduction from VPCMA.

We now move to give a definition of EBVASS. These were introduced in [17],
and extend BVASS with the ability to split counters in more complex ways when
a split transition is made.

Definition 18 (EBVASS). An extended branching vector addition system
with states (EBVASS) is a tuple (Q, q0, L, k,Δu,Δs, C) where (Q, q0, L, k,
Δu,Δs) is a BVASS and C ⊆ {1, . . . , k}3 is the set of constraints.

Each constraint (i, j, k) can fire any number of times when a split transition is
made, and for each time it fires it will decrement the ith counter (pre-splitting),
and then increment the jth counter in the left-hand branch and the kth counter

ML and Extended Branching VASS 333

in the right-hand branch. Formally, this means that runs are again finite labelled
trees, with the rules for single-child nodes as for BVASS, but the following
extended rule for nodes with two children.

– Suppose C = {c1, . . . , cm}. If a node labelled (q, v̄) has two child nodes then
there is a transition (q, ū1, q

′, ū2, q
′′, ū3) ∈ Δs, n1, . . . , nm ∈ N, and v̄1, v̄2 ∈ N

k

such that v̄ = v̄1+v̄2+Σ(ni ·ēπ1(ci)), and the left child node is labelled (q′, v̄1+
Σ(ni · ēπ2(ci))), and the right child node is labelled (q′′, v̄2 + Σ(ni · ēπ3(ci))),
where the vector ēl ∈ Z

k is 1 in position l and 0 elsewhere.

Again, a run is accepting just if each leaf node is labelled with a configura-
tion (q, 0̄) where q ∈ L, and the reachability problem asks whether there is an
accepting run with root node labelled (q0, 0̄).

Remark 19. We work with a top-down version of EBVASS, as this formulation
is more convenient for capturing the correspondence with VPCMA. In the lan-
guage of [17, Sect. 5], our definition of runs corresponds to the non-commutative
treatment of constraints.

7.1 From VPCMA to EBVASS

Theorem 20. The emptiness problem for VPCMA is reducible to the reacha-
bility problem for EBVASS.

We first give the central ideas behind the reduction.

– The states of the EBVASS will correspond to pairs of states of the VPCMA. If
a position in the tree has a configuration with state (q, q′) this will mean that
the subtree under this position represents a stack-neutral run of the VPCMA
from state q to q′, i.e. all elements pushed on the stack will subsequently be
removed.

– The counters in the EBVASS will correspond to pairs of states of the VPCMA.
Each increment of a counter corresponding to the pair (q, q′) in a position in
a tree will (roughly) mean that there is a data value d with f(d) = q that
becomes a data value with f(d) = q′ within that subtree (and this needs to
be borne out within the subtree).

– No-op moves in the VPCMA will be modelled by unary transitions in the
EBVASS, adjusting the current state and counters appropriately.

– Push and pop moves will be modelled by split-transitions, with a single split-
transition representing both the push and the pop move. The left-hand branch
will correspond to the part of the run between the push and pop moves, whilst
the right-hand branch corresponds to the moves after. Constraints allow data
values to be split into what happens to them within the branch and what
happens to them after.

We now give a formal account of the reduction. W.l.o.g. (Proposition 9)
we work with weak VPCMA. Suppose A = 〈 Q,Σ, Γ,Δ, q0, {qf} 〉 is a weak

334 C. Cotton-Barratt et al.

VPCMA4. We shall construct an EBVASS EA such that its reachability problem
is a yes-instance iff L(A) �= ∅ as follows.

We let the set of states of EA be P = Q × Q, the initial state (q0, qf), the set
of leaf states L = {(q, q) : q ∈ Q}. We set the number of counters k = |Q⊥ × Q|,
with a counter corresponding to each pair (q, q′) ∈ Q⊥ × Q. For each such pair,
we use the notation cq,q′ for the counter corresponding to that pair, and ēq,q′ for
the vector in Z

k with a 1 in position cq,q′ and 0 elsewhere. The set of constraints
contains (cq,q′′ , cq,q′ , cq′,q′′) for each q, q′, q′′ ∈ Q⊥.

The transition relation for EA is given as follows:

– For each transition (q, s, a, q′) ∈ Δ, where a ∈ Σnoop, we have:

(no-op)
(q, p), v̄ + ēs,s′

(q′, p), v̄ + ēq′,s′

– For each pair of transitions (q1, s, a, γ, q2) and (q3, s′, b, γ, q4) where a ∈ Σpush

and b ∈ Σpop, we have:

(push-pop)
(q1, p), v̄1 + v̄2 + ēs,s′′

(q2, q3), v̄1 + ēq2,s′ (q4, p), v̄2 + ēq4,s′′

(Note that the above is a slight abuse of notation: split rules cannot also
include increments5. However, it is straightforward to implement the above
using unary transitions before and after the split, though to do this additional
states must be introduced to keep track - we leave this out for clarity.)

– For every x ∈ Q × Q and q ∈ Q we have the rule

(decrement)
x, v̄ + ēq,q

x, v̄

(This rule allows counters corresponding to data values which have “reached
their required destination” to be decremented.)

– For every x ∈ Q × Q and q ∈ Q:

(increment)
x, v̄

x, v̄ + ē⊥,q

(This rule makes it possible to add a new class along with its evolution profile,
from ⊥ to some state q.)

One can show that L(A) �= ∅ iff there is a run of EA reaching the target config-
urations.

4 We assume the set of globally accepting states to be a singleton merely for conve-
nience - it is trivial to adjust.

5 Actually there is another abuse of notation: the v̄1 and v̄2 may be altered by the
constraints yet that is not mentioned in the rule.

ML and Extended Branching VASS 335

7.2 From EBVASS to SVPCMA

Here we show that VPCMA emptiness is at least as hard as the reachability
problem for EBVASS. W.l.o.g. (Proposition 12) we do this by reducing EBVASS
reachability to SVPCMA emptiness. The key idea is that words over a pushdown
alphabet can be viewed as trees by viewing them as their construction trees when
generated by the grammar:

W ::= ε | anoop · W | apush · W · apop · W

Hence, a push-pop pair of moves correspond to a split-transition of the EBVASS,
with the word occurring between the push and pop-moves corresponding to the
left-hand branch, and the word after the pop-move corresponding to the right-
hand branch. Our reduction argument will represent counter values as the num-
ber of data values with an appropriate class memory function value, and the
EBVASS state can simply be stored as the SVPCMA state. The scoping visi-
bility condition on runs will prevent increments made in the left-hand branch
(from some split) being used in the right-hand branch. The only difficulty in the
reduction is the handling of constraints: but for this we can use the stack again.
After the push-move of a split-transition, we will be able to fire transitions corre-
sponding to the constraints. Given a constraint (i, j, k) the corresponding push
transition will take a data value where the class memory function remembers
it as belonging to counter i, change it to belong to counter j, and put on the
stack the fact that, when popped, it needs to be returned to counter k. Then,
when we come to do the pop-transition corresponding to the split, we must first
perform the pop-transitions corresponding to all the counters that were split by
the constraints.

Remark 21. 1. Class memory functions are normally of the form f : D → Q⊥.
In our encoding we shall use a special set Lab of labels to keep track of local
behaviour and will rely on functions f : D → Lab⊥ instead. Accordingly, our
VPCMA will have a transition relation of the form

Δ ⊆ Q×Lab⊥ × (Σpush∪Σpop)×Γ ×Q×Lab ∪ Q×Lab⊥ ×Σnoop×Q×Lab.

Note that the above can be easily accommodated by the standard definition
by extending the set of states.

2. When we introduced EBVASS, we gave them the power to perform multiple
increments and decrements in one transition. While this was useful in reduc-
ing VPCMA to EBVASS, we will now find it useful to simply permit a single
increment or decrement in unary transitions, and decouple increments/decre-
ments from split transitions.

In our reduction data values will be used to store the counter information.
That is, the value of a counter will be represented by the number of data values
that the class memory function assigns a label corresponding to that counter
(we use the labels 1, . . . , n for the n counters). When a counter is incremented,
a fresh data value is read, and given the appropriate label. When a counter is

336 C. Cotton-Barratt et al.

decremented, a data value with the label corresponding to that counter has its
label changed to done. The fact that all increments have been decremented by
the end of the run is then checked by the local acceptance condition.

To model constraints, after a push-transition corresponding to a split, we
shall allow several more push-transitions corresponding to firings of the con-
straints. Firing a transition corresponding to a constraint (i, j, k) will take a
data value with current label i, give it label j, and put a letter k on the stack.
Then, when the corresponding pop-move is made, the label will be changed
from done to k. The shape of the parts of the automaton corresponding to a
split transition δ = (q, q′, q′′) is shown below

q δ q′ ...

l1

lm

pre-pop q′′push

constraint-pushes

ε

ε

ε

constraint-pops

pop

There is a slight subtlety in the above, which is that in an EBVASS all
constraints are fired simultaneously at a split transition, not sequentially. Hence
we should be sure that the same data value cannot be used to fire two constraints
at the same split. Fortunately, this is already prevented, as if two such constraints
were fired, when it came to make the corresponding pop-transitions, the first
would fire correctly, but then the second could not because the data value would
not have the done-label.

Thus, given an EBVASS B = (Q, q0, L, n,Δu,Δs, C), we construct a
SVPCMA AB as follows:

– The set of states of AB is Q � Δs � {pre-pop}, where q0 is initial;
– Lab = {1, . . . , n} ∪ {done, split} and Γ = Q � {1, . . . , k};
– Σ = (Δs � C) + {split-pop, constraint-pop} + (Δu � {ε});
– The set of globally accepting states is L;
– The set of locally accepting labels is {done}; and
– The transition relation is constructed as follows:

• for each (unary) increment transition δ ∈ Δu of the form q
+ei−−→ q′ we

have the transition (q,⊥, δ, q′, i);
• for each (unary) decrement transition δ ∈ Δu of the form q

−ei−−→ q′ we
have the transition (q, i, δ, q′, done);

• for each split transition δ ∈ Δs of the form q → q′ + q′′ we have the
push-transition (q,⊥, δ, q′′, δ, split), and the silent transition δ

ε−→ q′;
• for each δ ∈ Δs and constraint (i, j, k) ∈ C we have the push-transition

(δ, i, (i, j, k), k, δ, j);
• for each i ∈ {1, . . . , n} we have the pop-transition (pre-pop, done,

constraint-pop, i, pre-pop, i);

ML and Extended Branching VASS 337

• for each l ∈ L we have the silent transition l
ε−→ pre-pop;

• finally, for each q ∈ Q we have the pop-transition (pre-pop, split,
split-pop, q, q, done).

Theorem 22. The reachability problem for EBVASS is reducible to the empti-
ness problem for SVPCMA.

8 Undecidability for unit → unit → (unit → unit) → unit

Here we show, by reduction from reachability in reset VASS [5], that obser-
vational equivalence in finitary RML is undecidable for closed terms of type
unit → unit → (unit → unit) → unit. Observe that the arena used for modelling
closed terms of this above has the following move structure: q0 � a0 � q1 � a1 �
q2 � a2 � q3 � a3 and q3 � q4 � a4. Next we discuss how plays over the arena
can be used to simulate reset VASS.

– The simulation will begin with q0 a0 q1 a1 q2 a2 q3 q4. This yields a play
with pending questions q3, q4, which will block the formation of complete plays
until the two questions are answered. We will take advantage of these questions
at the very end of the simulation to check whether the simulation has reached
an accepting state (if so, they will be answered).

– After the initialising segment discussed above, we shall have k segments q1 a1,
where k is the number of counters. Each segment q1 a1 is used to represent a
single counter and its identity as well as status (active or reset) will be stored
in a local variable.

– Counter increments for counter j will be modelled with q2 a2 q3 q4, where
q2 is justified by the occurrence of a1 corresponding to the jth counter. Each
such segment will be equipped with a local variable that records the fact
that the segment stores a singleton value of the relevant counter. The q3q4
moves are intended to contribute pending questions to the play (to create
stack structure) and guarantee that a complete play can be formed only after
the questions have been answered. In the final stage of the simulation, we
shall use the need to answer these questions to check whether all increments
have been matched by decrements (unless the counter has been reset in the
meantime).

– Decrements will be represented by q3 a3, where q3 is justified by a2 from a
segment corresponding to an (unreset) increment of the same counter. The
local variable recording the singleton value will then be modified to reflect the
fact that the value has been spent.

– Resets will be simulated by q2 a2, where q2 is justified by q1a1 corresponding
to the relevant counter. Its status will be updated to inactive and the q1a1

segment will not be used by the translation any more. However, in order
to allow for further operations on the same counter, we shall create a new
q1 a1 segment, which will be used as a target when simulating subsequent
decrements.

338 C. Cotton-Barratt et al.

– Zero testing, to be performed at the very end, will be triggered by O playing
a4 in response to the most recent q4 used for modelling increments. If the
corresponding q3q4 segment corresponds to a counter value that has been
reset or decremented then a3 will be played (otherwise the simulation will
break - P will not respond). Finally, if all q3q4 corresponding to increments
have been answered in this way, the first q3q4 segment will become pending.
If O then plays a4 then P will reply with a3 iff the simulation has reached a
final state.

Our main result is that, for any reset VASS, it is possible to build RML terms
whose game semantics represents the reset VASS in the sense sketched above.
This leads to:

Theorem 23. Given a reset VASS A = (Q, k,Δi ∪Δd ∪Δ0, q0) and target state
qf ∈ Q, there are RML-terms � M,M ′ : unit → unit → (unit → unit) → unit
such that M ∼= M ′ iff there is a run of A reaching configuration (qf , 0̄).

As before, the only difference between M and M ′ is the place where final-state
detection takes place: M will then terminate, wheereas M ′ will diverge.

Conclusion and Further Directions

For all types, we have a result giving the decidability status of a finitary RML
fragment containing closed terms of that type, with the exception of the types
in RMLEBVASS, for which we know observational equivalence is equivalent to
EBVASS reachability. Clearly the open question of the decidability of EBVASS
reachability, which seems interesting for its own sake, is especially important to
us. More broadly, we do not yet have a complete classification of which types
on the LHS of the turnstile give undecidability or decidability, nor a complete
picture of which combinations of LHS and RHS types remain decidable. Settling
these remaining questions would be a natural next step.

Acknowledgments. We are grateful to the anonymous reviewers for numerous con-
structive suggestions and to Ranko Lazić for discussions on VASS.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000)

2. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for idealized Algol with active expressions. Electr. Notes Theor. Comput.
Sci. 3, 2–14 (1996)

3. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M., Thomas, W.
(eds.) CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998). doi:10.
1007/BFb0028004

4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC, pp. 202–211.
ACM (2004)

5. Araki, T., Kasami, T.: Some decision problems related to the reachability problem
for petri nets. Theor. Comput. Sci. 3(1), 85–104 (1976)

http://dx.doi.org/10.1007/BFb0028004
http://dx.doi.org/10.1007/BFb0028004

ML and Extended Branching VASS 339

6. Björklund, H., Schwentick, T.: On notions of regularity for data languages. In:
Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 88–99. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74240-1 9

7. Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theor.
Comput. Sci. 411(4–5), 702–715 (2010)

8. Cotton-Barratt, C.: Using class memory automata in algorithmic game semantics.
Ph.D. thesis, University of Oxford (submitted, 2016)

9. Cotton-Barratt, C., Hopkins, D., Murawski, A.S., Ong, C.-H.L.: Fragments of ML
decidable by nested data class memory automata. In: Pitts, A. (ed.) FoSSaCS
2015. LNCS, vol. 9034, pp. 249–263. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46678-0 16

10. Cotton-Barratt, C., Murawski, A.S., Ong, C.-H.L.: Weak and nested class mem-
ory automata. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2015. LNCS, vol. 8977, pp. 188–199. Springer, Cham (2015). doi:10.1007/
978-3-319-15579-1 14

11. de Groote, P., Guillaume, B., Salvati, S.: Vector addition tree automata. In: LICS,
pp. 64–73. IEEE Computer Society (2004)

12. Godlin, B., Strichman, O.: Regression verification. In: DAC, pp. 466–471. ACM
(2009)

13. Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation.
Theor. Comput. Sci. 221(1–2), 393–456 (1999)

14. Hopkins, D.: Game semantics based equivalence checking of higher-order programs.
Ph.D. thesis, Department of Computer Science, University of Oxford (2012)

15. Hopkins, D., Murawski, A.S., Ong, C.-H.L.: A fragment of ML decidable by vis-
ibly pushdown automata. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 149–161. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22012-8 11

16. Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163(2), 285–408 (2000)

17. Jacquemard, F., Segoufin, L., Dimino, J.: FO2(< +1, ∼) on data trees, data tree
automata and branching vector addition systems. Logical Methods Comput. Sci.
12(2), 1–28 (2016)

18. Lazić, R., Murawski, A.S.: Contextual approximation and higher-order procedures.
In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 162–179.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49630-5 10

19. Lazic, R., Schmitz, S.: Nonelementary complexities for branching VASS, MELL,
and extensions. ACM Trans. Comput. Log. 16(3), 20:1–20:30 (2015)

20. Murawski, A.S.: Functions with local state: regularity and undecidability. Theor.
Comput. Sci. 338(1/3), 315–349 (2005)

21. Murawski, A.S., Ong, C.-H.L., Walukiewicz, I.: Idealized Algol with ground
recursion, and DPDA equivalence. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 917–929.
Springer, Heidelberg (2005). doi:10.1007/11523468 74

22. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Game semantic analysis of equiva-
lence in IMJ. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol.
9364, pp. 411–428. Springer, Cham (2015). doi:10.1007/978-3-319-24953-7 30

23. Murawski, A.S., Tzevelekos, N.: Full abstraction for reduced ML. In: Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 32–47. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00596-1 4

http://dx.doi.org/10.1007/978-3-540-74240-1_9
http://dx.doi.org/10.1007/978-3-662-46678-0_16
http://dx.doi.org/10.1007/978-3-662-46678-0_16
http://dx.doi.org/10.1007/978-3-319-15579-1_14
http://dx.doi.org/10.1007/978-3-319-15579-1_14
http://dx.doi.org/10.1007/978-3-642-22012-8_11
http://dx.doi.org/10.1007/978-3-642-22012-8_11
http://dx.doi.org/10.1007/978-3-662-49630-5_10
http://dx.doi.org/10.1007/11523468_74
http://dx.doi.org/10.1007/978-3-319-24953-7_30
http://dx.doi.org/10.1007/978-3-642-00596-1_4

340 C. Cotton-Barratt et al.

24. Murawski, A.S., Tzevelekos, N.: Algorithmic nominal game semantics. In: Barthe,
G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 419–438. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19718-5 22

25. Murawski, A.S., Tzevelekos, N.: Algorithmic games for full ground references.
In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012. LNCS, vol. 7392, pp. 312–324. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31585-5 30

26. Pitts, A.M., Stark, I.D.B.: Operational reasoning for functions with local state.
In: Higher Order Operational Techniques in Semantics, pp. 227–273. Cambridge
University Press (1998)

27. Reynolds, J.C.: The essence of ALGOL. In: Proceedings of the International Sym-
posium on Algorithmic Languages. Elsevier Science Inc. (1981)

http://dx.doi.org/10.1007/978-3-642-19718-5_22
http://dx.doi.org/10.1007/978-3-642-31585-5_30
http://dx.doi.org/10.1007/978-3-642-31585-5_30

Metric Reasoning About λ-Terms:
The General Case

Raphaëlle Crubillé1 and Ugo Dal Lago2,3(B)

1 IRIF, Université Denis Diderot - Paris 7, Paris, France
rcrubille@pps.univ-paris-diderot.fr
2 Università di Bologna, Bologna, Italy

ugo.dallago@unibo.it
3 Inria, Sophia Antipolis, France

Abstract. In any setting in which observable properties have a quanti-
tative flavor, it is natural to compare computational objects by way of
metrics rather than equivalences or partial orders. This holds, in partic-
ular, for probabilistic higher-order programs. A natural notion of com-
parison, then, becomes context distance, the metric analogue of Morris’
context equivalence. In this paper, we analyze the main properties of the
context distance in fully-fledged probabilistic λ-calculi, this way going
beyond the state of the art, in which only affine calculi were considered.
We first of all study to which extent the context distance trivializes,
giving a sufficient condition for trivialization. We then characterize con-
text distance by way of a coinductively-defined, tuple-based notion of
distance in one of those calculi, called Λ⊕

! . We finally derive pseudomet-
rics for call-by-name and call-by-value probabilistic λ-calculi, and prove
them fully-abstract.

1 Introduction

Probability theory offers computer science models which enable system abstrac-
tion (at the price of introducing uncertainty), but which can also be seen as a
a way to compute, like in randomized computation. Domains in which proba-
bilistic models play a key role include machine learning [27], robotics [34], and
linguistics [24]. In cryptography, on the other hand, having access to a source of
uniform randomness is essential to achieve security, e.g., in the public key set-
ting [20]. This has stimulated the development of concrete and abstract program-
ming languages, which most often are extensions of their deterministic siblings.
Among the many ways probabilistic choice can be captured in programming, the
simplest one consists in endowing the language of programs with an operator
modeling the flipping of a fair coin. This renders program evaluation a proba-
bilistic process, and under mild assumptions the language becomes universal for

This work is partially supported by the ANR projects 12IS02001 PACE, 14CE250005
ELICA, and 16CE250011 REPAS.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 341–367, 2017.
DOI: 10.1007/978-3-662-54434-1 13

342 R. Crubillé and U. Dal Lago

probabilistic computation. Particularly fruitful in this sense has been the line of
work on the functional paradigm, both at a theoretical [22,26,29] and at a more
practical level [21].

We are still far, however, from a satisfactory understanding of higher-order
probabilistic computation. As an example, little is known about how much of the
classic, beautiful, theory underlying the λ-calculus [1] can be lifted to probabilis-
tic λ-calculi, although the latter have been known from forty years now [30]. Until
the beginning of this decade, indeed, most investigations were directed towards
domain theory, which has been proved to be much more involved in presence of
probabilistic choice than in a deterministic scenario [23]. In the last ten years,
however, some promising results have appeared. As an example, both quanti-
tative semantics and applicative bisimilarity have been shown to coincide with
context equivalence for certain kinds of probabilistic λ-calculi [5,14]. This not
only provides us with new proof methodologies for program equivalence, but also
sheds new light on the very nature of probabilistic higher-order computation. As
an example, recent results tell us that program equivalence in presence of prob-
abilistic choice lies somehow in between determinism and non-determinism [5].

But are equivalences the most proper way to compare terms? Actually, this
really depends on what the underlying observable is. If observables are boolean,
then equivalences (and preorders) are indeed natural choices: two programs are
dubbed equivalent if they give rise to the same observable (of which there are
just two!) in any context. If, on the other hand, the observable is an element
of a metric space, which happens for example when we observe (the probability
of) convergence in a probabilistic setting, one may wonder whether replacing
equivalences with metrics makes sense. This is a question that has recently been
given a positive answer in the affine setting [6], i.e., in a λ-calculus in which
copying is simply not available. More specifically, a notion of context distance has
been shown to model differences between terms satisfactorily, and has also been
shown to be characterized by notions of trace metrics, and to be approximated
from below by behavioral metrics.

Affine λ-calculi are very poor in terms of the computations they are able to
model. Measuring the distance between terms in presence of copying, however,
is bound to be problematic. On the one hand, allowing contexts to copy their
argument has the potential risk of trivializing the underlying metric. On the
other hand, finding handier characterizations of the obtained notion of metric
in the style of behavioral or trace metrics is inherently hard. A more thorough
discussion on these issues can be found in Sect. 2 below.

In this paper, we attack the problem of analyzing the distance between λ-
terms in its full generality. More specifically, the contributions of this paper are
fourfold:

• First of all, we define a linear probabilistic λ-calculus, called Λ
!,‖
⊕ , in which

copying and a nonstandard construct, namely Plotkin’s parallel disjunction,
are both available. A very liberal type system prevents deadlocks, but never-
theless leaves the expressive power of the calculus very high. This choice has
been motivated by our will to put ourselves in the most general setting, so as

Metric Reasoning About λ-Terms: The General Case 343

to be able to talk about different fragments. The calculus is endowed with a
notion of context distance, in Morris’ style. This is covered in Sect. 3 below.

• We study trivialization of the obtained notion(s) of metric for different frag-
ments of Λ

!,‖
⊕ , showing that both parallel disjunction and strong normaliza-

tion give us precisely the kind of discriminating power we need to arbitrarily
amplify distances, while in the most natural fragment, namely Λ!

⊕, trivializa-
tion does not hold. This is the subject of Sect. 4.

• In Sect. 5, we prove that context distance can be characterized as a co-
inductively-defined distance on a labeled Markov chain of tuples. The way
(tuples of) terms interact with their environment makes proofs of soundness
laborious and different from their affine counterparts from [6]. An up-to-
context notion of bisimulation is proved to be sound, and to be quite useful
when evaluating the distance between concrete programs.

• Finally, we show that the results from Sect. 5 can be lifted back to ordi-
nary probabilistic λ-calculi from the literature [5,10]. Both when call-by-name
evaluation and call-by-value are considered, our framework can be naturally
adapted, and helps in facilitating concrete proofs. This is in Sect. 6.

More details can be found in a long version of this paper, available online [7].

2 Metrics and Trivialization, Informally

The easiest way to render the pure λ-calculus a universal probabilistic computa-
tion model [10] consists in endowing it with a binary construct ⊕ for probabilis-
tic choice. The term M ⊕ N evolves as either M or N , each with probability 1

2 .
The obtained calculus can be given meaning by an operational semantics which
puts terms in correspondence with distributions of values. The natural notion
of observation, at least in an untyped setting like the one we will consider in
this paper, is thus the probability of convergence of the observed term M , which
will be denoted as

∑
[[M]]. One could then define a notion of context equivalence

following Morris’ pattern, and stipulate that two terms M and N should be
equivalent whenever they terminate with exactly the same probability when put
in any context:

M ≡ N ⇔ ∀C.
∑

[[C[M]]]
=

∑

[[C[N]]]
.

The anatomy of the obtained notion of equivalence has been recently studied
extensively, the by-products of this study being powerful techniques for it in the
style of bisimilarity and logical relations [3,5,9].

As observed by various authors (see, e.g., [25] for a nice account), proba-
bilistic programs and processes are naturally compared by metrics rather than
equivalences: the latter do not give any quantitative information about how dif-
ferent two non-equivalent programs are. Given that the underlying notion of
observation is inherently quantitative, on the other hand, generalizing context
equivalence to a pseudometric turns out to be relatively simple:

δ(M,N) = sup
C

∣
∣
∣
∣

∑

[[C[M]]]
−

∑

[[C[N]]]

∣
∣
∣
∣ .

344 R. Crubillé and U. Dal Lago

Observe that the obtained notion of context distance between two terms is a real
number between 0 and 1, which is minimal precisely when the considered terms
are context equivalent. It is the least discriminating pseudometric which is non-
expansive and adequate, and as such it provides some quite precise information
about how far the two argument programs are, observationally. A similar notion
has recently been studied by the authors [6], but only in a purely affine setting.

Let us now consider two prototypical examples of non-equivalent terms,
namely I = λx.x (the identity) and Ω (the always-divergent term). The context
distance δc(I,Ω) between them is maximal: when applied, e.g., to the trivial
context [·], they converge with probability 1 and 0, respectively. A term which
is conceptually “in the middle” of them is M = I ⊕Ω. Indeed, in a purely affine
λ-calculus, δc(I,M) = δc(M,Ω) = 1

2 .
If we render the three terms duplicable (by putting them in the scope of a !-

operator), however, the situation becomes much more complicated. Consider the
terms !I and !(I ⊕ Ω). One can easily define a family of contexts {Cn}n∈N such
that the probability of convergence of Cn[!I] and Cn[!(I ⊕ Ω)] tend to 1 and 0
(respectively) when n tends to infinity. It suffices to take Cn as (λ!x. x . . . x︸ ︷︷ ︸

n times
)[·].

Allowing contexts to have the capability to duplicate their argument seems to
mean that they can arbitrarily amplify distances. Indeed, the argument above
also works when (I ⊕ Ω) is replaced by any term which behaves as Ω with
probability ε and as I with probability 1 − ε, provided of course ε > 0. But how
about !Ω and !(I ⊕ Ω)? Are they at maximal distance, i.e. is it that δc(!Ω, !(I ⊕
Ω)) = 1? Apparently, this is not the case. The previously defined contexts Cn

cannot amplify the “linear” distance between the two terms above, namely 1
2 ,

up to 1. But what is the distance between !Ω and !(I ⊕Ω), then? Evaluating it is
hard, since you need to consider all contexts, which do not have a nice structure.
In Sect. 5, we will introduce a different, better behaved, notion of distance, this
way being able to prove that, indeed, δc(!Ω, !(I ⊕ Ω)) = 1

2 .
All this hints at even more difficult examples, like the one in which Mε =

!(Ω ⊕ε I), where ⊕ε is the natural generalization of ⊕ to a possibly unfair coin
flip, and one is interested in evaluating δc(Mε,Mμ). In that case, we can easily
see that the “linear” distance between them is |ε−μ|. In some cases, it is possible
to amplify it: the most natural way is again to consider the contexts Cn defined
above. Indeed, we see that the probabilities of convergence of Cn[Mε] and Cn[Mμ]
are εn and μn, respectively. It follows that δc(Mε,Mμ) ≥ supn∈N |εn − μn|. For
some ε and μ (for example if ε+μ > 1), the context distance can be greater than
|ε−μ|. But there is no easy way to know how far amplification can lead us. The
terms Mε and Mμ will be running examples in the course of this paper. Despite
their simplicity, evaluating the distance between them is quite challenging.

We are also going to consider the case in which contexts can evaluate terms
in parallel, converging if and only if at least one of the copies converges. This
behavior is not expressible in the usual λ-calculus, but is captured by well-
known constructs and in particular by Plotkin’s parallel disjunction [28]. In
Sect. 4 below, we prove that all this is not accidental: the presence of parallel

Metric Reasoning About λ-Terms: The General Case 345

disjunction turns a non-trivializing metric into a trivializing one. The proof of it,
by the way, relies on building certain amplifying contexts which are then shown
to be universal using tools from functional analysis.

3 A Linear Probabilistic λ-Calculus

In this section, we present the syntax and operational semantics of our language
Λ
!,‖
⊕ , on which we will later define metrics. Λ

!,‖
⊕ is a probabilistic and linear λ-

calculus, designed not only to allow copying, but to have a better control on it.
It is based on a probabilistic variation of the calculus defined in [33], whose main
feature is to never reduce inside exponential boxes. As we will see in Sect. 6, the
calculus is capable of encoding both call-by-value and call-by-name fully-fledged
probabilistic λ-calculi. We add a parallel disjunction construct to the calcu-
lus, being inspired by Plotkin’s parallel disjunction [28]. Noticeably, it has been
recently shown [8] that adding parallel disjunction to a (non-linear) λ-calculus
increases the expressive power of contexts to the point of enabling coincidence
between the contextual preorder and applicative similarity. The choice of study-
ing a very general calculus is motivated by our desire to be as general as possible.
This being said, many of our results hold only in absence of parallel disjunction.

Definition 1. We assume a countable set of variables X . The set of terms of
Λ
!,‖
⊕ (denoted T) is defined by the following grammar:

M ∈ T ::=x | MM | λx.M | λ!x.M | !M | M ⊕ M

| ([M ‖ M] � M),

where x ∈ X . The fragment of Λ
!,‖
⊕ without the ([· ‖ ·] � ·) construct will be

indicated as Λ!
⊕. Values are those terms derived from the following grammar:

V ∈ V ::= λx.M | λ!x.M | !M.

As already mentioned, M ⊕ N can evolve to either M or N , each with probability
1
2 . The term !M is a duplicable version of M , often called an (exponential) box.
We have two distinct abstraction operators: λx.M is a linear abstraction, while
the non-linear abstraction λ!x.M requires exponential boxes as arguments. The
term ([M ‖ N] � L) behaves as L if either M or N converges. Please observe
that both abstractions and boxes are values—our notion of reduction is weak
and surface [33].

We are now going to define an operational semantics for the closed terms of
Λ
!,‖
⊕ in a way similar to the one developed for a (non-linear) λ-calculus in [10].

We need to first define a family of approximation semantics, and then to take
the semantics of a term as the least upper bound of all its approximations. The
approximation semantics relation is denoted M ⇒ D, where M is a closed term
of Λ

!,‖
⊕ , and D is a (sub)distribution on values with finite support, i.e., a function

346 R. Crubillé and U. Dal Lago

from V to R[0,1] which sums to a real number
∑

D ≤ 1. For any distribution D
on a set X, we call support of D, and we note S(D), the set {x ∈ X | D(x) > 0}.
We say that D is finite if S(D) is a finite set.

The rules deriving the approximation semantics relation are given in Fig. 1,
and are based on the notion of an evaluation context, which is an expression
generated from the following grammar:

E ::= [·] | EV | ME | ([M ‖ E] � N) | ([E ‖ M] � N).

As usual, E[M] stands for the term obtained by filling the sole occurrence of [·]
in E with M . In Fig. 1 and elsewhere in this paper, we indicate the distribution
assigning probability pi to Vi for every i ∈ {1, . . . , n} as {V p1

1 , . . . , V pn
n }. We pro-

ceed similarly for the expression {V pi

i }i∈I , where I is any countable index set.
Observe how we first define a one-step reduction relation · → · between closed
terms and sequences of terms, only later extending it to a small-step reduction
relation · ⇒ · between closed terms and distributions on values. A reduction step
can be a linear or non-linear β-reduction, or a probabilistic choice. Moreover,
there can be more than one active redex in any closed term M , due to the pres-
ence of parallel disjunction. For any term M , the set of sub-distributions D such
that M ⇒ D is a countable directed set. Since the set of sub-distributions (with
potentially infinite support) is an ω-complete partial order, we can define the
semantics of a term M as [[M]] = sup{D | M ⇒ D}. We could also define alter-
natively a big-step semantics, again in the same way as that of the probabilistic
λ-calculus considered in [10].

Fig. 1. Approximation semantics for Λ!
⊕

Not all irreducible terms are values in Λ
!,‖
⊕ , e.g. (λ!x.x)(λx.x). We thus need

a type-system which guarantees the absence of deadlocks. Since we want to be
as general as possible, we consider recursive types as formulated in [2], which are
expressive enough to type the image of the embeddings we will study in Sect. 6.
The grammar of types is the following:

σ ∈ A ::= α | μα.σ � σ | μα.!σ | σ � σ | !σ

Metric Reasoning About λ-Terms: The General Case 347

Fig. 2. Equality of types

Types are defined up to the equality =A , defined in Fig. 2. σ[α → τ] stands
for the type obtained by substituting all free occurrences of α by τ in σ. An
environment is a set of expressions in the form x : σ or !x :!σ in which any variable
occurs at most once. Environments are often indicated with metavariables like
!Γ , which stands for an environment in which all variables occur as !x, or Δ
in which, on the contrary, variables can only occur with the shape x, so that
Δ is of the form x1 : σ1, . . . , xn : σn. Typing judgments are thus of the form
!Γ,Δ � M : σ. The typing system is given in Fig. 3. The role of this type
system is not to guarantee termination, but rather to guarantee a form of type
soundness:

Lemma 1. If � M : σ and M ⇒ D, then � V : σ for every V in the support of
D. Moreover, if � M : σ and M is irreducible (i.e. M ↪→ N for every N), then
M is value.

Fig. 3. Typing rules

Example 1. The term I = λx.x can be typed as � I : σ � σ for every σ ∈ A .
We define Ω! to be the term (λ!x.x!x)(!(λ!x.x!x)), which is the counterpart in
our linear calculus of the prototypical diverging term of the λ-calculus, namely
Ω = (λx.xx)(λx.xx). We can type this divergent term with any possible type:
indeed, if we take τ ::= μα.!α � σ, then τ =A !τ � σ and � λ!x.x!x : σ. Using

348 R. Crubillé and U. Dal Lago

that, we can see that � Ω! : σ for every type σ. We will see in Sect. 6 that, more
generally, there are several ways to turn any pure λ-term M into a Λ!

⊕ term in
such a way as to obtain meaningful typing and semantics: Λ!

⊕ is actually at least
as powerful as the usual untyped probabilistic λ-calculus [10].

Termination could in principle be guaranteed if one considers strictly positive
types, as we will do in Sect. 4.1 below. Let D be the set of dyadic numbers (i.e.
those rational numbers in the form n

2m (with n,m ∈ N and n ≤ 2m). It is easy
to derive, for every ε ∈ D, a new binary operator on terms · ⊕ε · such that
[[M ⊕ε N]] = (1 − ε)[[M]] + ε[[N]] for every closed M,N .

Example 2. We define here a family of terms that we use as a running example.
We consider terms of the form Mε = !(Ω! ⊕ε I), for ε ∈ D. It holds that � Mε :
!(σ � σ) for every σ. Mε corresponds to a duplicable term, each copy of which
behaves as I with probability ε, and does not terminate with probability 1 − ε.

3.1 Some Useful Terminology and Notation

In this paper, we will make heavy use of sequences of terms and types. It is thus
convenient to introduce some terminology and notation about them.

A finite (ordered) sequence whose elements are e1, . . . , en will be indicated
as e = [e1, . . . , en], and called an n-sequence. Metavariables for sequences are
boldface variations of the metavariables for their elements. Whenever E =
{i1, . . . , im} ⊆ {1, . . . , n} and i1 < . . . < im, the sub-sequence [ei1 , . . . , eim

] of
an n-sequence e will be indicated as eE . If the above holds, E will be called an
n-set. If e is an n-sequence, and ϕ is a permutation on {1, . . . , n}, we note eϕ the
n-sequence [eϕ(1), . . . , eϕ(n)]. We can turn an n-sequence into an (n+1)-sequence
by adding an element at the end: this is the role of the semicolon operator. We
denote by [en] the n-sequence in which all components are equal to e.

Whenever this does not cause ambiguity, notations like the ones above will
be used in conjunction with syntactic constructions. For example, if σ is an
n-sequence of types, then !σ stands for the sequence [!σ1, . . . , !σn]. As another
example, if σ is an n-sequence of types and E is an n-set, then xE : σE stands
for the environment assigning type σi to xi for every i ∈ E. As a final example,
if M is an n-sequence of terms and σ is an n-sequence of types, � M : σ holds
iff � Mi : σi is provable for every i ∈ {1, . . . , n}.

3.2 Context Distance

A context of type σ for terms of type τ is a term C which can be typed as
hole : τ � C : σ, where hole is a distinguished variable. Cτ

σ collects all such terms.
If C ∈ Cτ

σ and M is a closed term of type τ , then the closed term C{hole/M}
has type σ and is often indicated as C[M].

The context distance [6] is the natural quantitative refinement of context
equivalence. Intuitively, it corresponds to the maximum separation that con-
texts can induce between two terms. Following [6], we take as observable the

Metric Reasoning About λ-Terms: The General Case 349

probability of convergence: for any term M , we define its observable Obs(M) as∑
[[M]]. Then, for any terms M , N such that � M : σ and � N : σ, we define:

δc
σ,!,‖(M,N) = sup

C∈Cτ
σ

|Obs(C[M]) − Obs(C[N])|.

Please observe that this distance is a pseudometric, and that moreover we can
recover context equivalence by considering its kernel, that is the set of pairs of
terms which are at distance 0. The binary operator δc

σ,! is defined similarly, but
referring to terms (and contexts) from Λ!

⊕.

Example 3. What can we say about δc
σ,!,‖(Mε,Mμ)? Not much apparently, since

all contexts should be considered. Even if we put ourselves in the fragment Λ!
⊕,

the best we can do is to conclude that δc
σ,!(M,N) ≥ supn∈N|εn−μn|, as explained

in Sect. 2.

4 On Trivialization

As we have already mentioned, there can well be classes of terms such that the
context distance collapses to context equivalence, due to the copying abilities
of the language. The question of trivialization can in fact be seen as a question
about the expressive power of contexts: given two duplicable terms, how much
can a context amplify the observable differences between their behaviors?

More precisely, we would like to identify trivializing fragments of Λ
!,‖
⊕ , that

is to say fragments such that for any pair of duplicable terms, their context
distance (with respect to the fragment) is either 0 or 1. This is not the case in
Λ!

⊕ (see Example 8 below).
In fact, a sufficient condition to trivialization is to require the existence of

amplification contexts: for every observable type σ, for every α, β ∈ [0, 1] distinct,
for every γ > 0, we want to have a context Cα,β,γ

σ such that:

� M,N : σ
Obs(M) = α
Obs(N) = β

⎫
⎬

⎭
⇒ ∣

∣Obs(Cα,β,γ
σ [!M]) − Obs(Cα,β,γ

σ [!N])
∣
∣ ≥ 1 − γ.

Fact 1. Any fragment of Λ
!,‖
⊕ admitting all amplifications contexts trivializes.

4.1 Strictly Positive Types

First, let us consider the case of the fragment Λ!,↓
⊕ of Λ!

⊕ obtained by considering
strictly positive types, only (in a similar way to [2]), and by dropping parallel
disjunction. Every term M of Λ!,↓

⊕ is terminating (i.e.
∑

[[M]] = 1), so we need to
adapt our notion of observation: we define the type B = !α �!α � α, which can
be seen as boolean type using a variant of the usual boolean encoding in λ-calculi.
Our new notion of observation, defined only at type B, is Obs(M) =

∑
[[M !I!Ω!]]

,

350 R. Crubillé and U. Dal Lago

which corresponds to the probability that M evaluates to true. While this notion
of observation uses the full power of Λ!

⊕, the context distance δc
!,↓ based on it

only consider contexts in Λ!,↓
⊕ .

Theorem 1. δc
!,↓ trivializes.

The proof of Theorem 1 is based on the construction of amplification contexts.
We are going to use Bernstein constructive proof of the Stone-Weierstrass theo-
rem. Indeed, Bernstein showed that for every continuous function f : [0, 1] → R,
the following sequence of polynomials converges uniformly towards f :

P f
n (x) =

∑

0≤k≤n
f

(
k

n

)

· Bn
k (x), where Bn

k (x) =

(
n

k

)

· xk · (1 − x)n−k.

Let us consider the following continuous function: we fix f(α) = 0, f(β) = 1,
and f defined elsewhere in such a way that it is continuous, that it has values in
[0, 1], and that moreover f(Q) ⊆ Q. We can easily implement P f

n by a context,
i.e. define C such that for every M , Obs(C[M]) = P f

n (Obs(M)). In Λ!,↓
⊕ , we

can indeed copy an argument n times, then evaluate it, and then for every k
between 0 and n, if the number of trues obtained is exactly k, return the term
false ⊕f(k

n) true (that corresponds to a term returning true with probability
f

(
k
n

)
). Please observe that this construction works only because in Λ!,↓

⊕ all terms
converge with probability 1.

4.2 Parallel Disjunction

As we have seen, trivialization can be enforced by restricting the class of terms,
but we can also take the opposite road, namely increasing the discriminating
power of contexts. Indeed, consider the full language Λ

!,‖
⊕ , with the usual notion

of observation.
We can first see how parallel disjunction increases the expressive power of the

calculus on a simple example. Consider the following two terms: M = !Ω! and
N = !(Ω! ⊕ I). We will see later that these two terms are the simplest example of
non-trivialization in Λ!

⊕: indeed δc
!(τ�τ),!(M,N) = 1

2 , while δc
!(τ�τ),!,‖(M,N) =

1. In Λ
!,‖
⊕ , we are able to define a family of contexts (Cn)n∈N as follows:

Cn = (λ!x. ([x ‖ ([x ‖ . . .] � I)] � I)) [·].

Essentially, Cn makes n copies of its argument, and then converges towards I
if at least one of these copies itself converges. When we apply the context Cn

to M and N , we can see that the convergence probability of Cn[M] is always 0
independently of n, whereas the convergence probability of Cn[N] tends towards
1 when n tends to infinity.

Metric Reasoning About λ-Terms: The General Case 351

Theorem 2. δc
!,‖ trivializes.

The proof is based on the construction of amplification contexts Cα,β,γ
σ . If

max(α, β) = 1, we can extend the informal argument from Sect. 2, by taking con-
texts that copy an arbitrary number of times their argument. If min(α, β) = 0,
we can use the same idea as in the example above, by taking contexts that do
an arbitrary number of disjunctions. What remains to be done to obtain the
trivialization result is treating the case in which 0 < α, β < 1. The overall idea
is to somehow mix the contexts we use in the previous cases. More precisely, we
define a family of contexts (Cm

n)n,m∈N as follows:

Cm
n = λ!y.

(∧n
(
∨m

(y, . . . , y), . . . ,
∨m

(y, . . . , y))
)

[·]

where
∨n

(M1, . . . Mn) = ([M1 ‖ ([M2 ‖ . . .] � I)] � I) ;
∧n

(M1 . . . Mn) = (λz1.λz2. . . . λy.(yz1 . . . zn))M1 . . . Mn.

The term
∨n(M1, . . . ,Mn) behaves as a n-ary disjunction: it terminates if at

least one of the Mi terminates. On the other hand,
∧n(M1, . . . ,Mn) can be

seen as a n-ary conjunction: it terminates if all the Mi terminates. The contexts
Cα

n compute m-ary conjunctions of n-ary disjunctions. Now, let ι be such that
α < ι < β. We need to show that for every n, we can choose m(n, ι) ∈ N such
that:

lim
n→∞ Obs(Cm(n,ι)

n [!M]) =

{
1 if Obs(M) > ι;
0 if Obs(M) < ι.

.

We can express this problem purely in terms of functional analysis, by observing
that Obs(Cm

n [!M]) = (1−(1−Obs(M))m)n. Then the result is proved by applying
the dominated convergence theorem to a well-chosen sequence of functions.

5 Tuples and Full Abstraction

This section is structured as follows: first, we define a labeled Markov chain
(LMC) which expresses the semantics of our calculus in an interactive way, and
then we use it to give a coinductively-defined notion of distance on a labeled
transition system (LTS) of distributions, which coincides with the context dis-
tance defined in Sect. 3.2. We are not considering parallel disjunction here: the
motivations for that should be clear from Theorem 2.

5.1 A Labeled Markov Chain over Tuples

Labeled Markov chains are the probabilistic analogues to labeled transition sys-
tems. Formally, a LMC is a triple M = (S,A,P), where S is a countable set of

352 R. Crubillé and U. Dal Lago

states, A is a countable set of labels, and P : S × A → Distr(S) is a transition
probability matrix (where Distr(X) is the set of all distributions over X).

Following [9], the interactive behavior of probabilistic λ-terms can be repre-
sented by a LMC whose states are the terms of the language, whose actions are
values, and where performing the action V starting from a state M corresponds
to applying the value V to M . This approach is bound not to work in presence
of pairs when metrics take the place of equivalences, due to the unsoundness
of projective actions. In [6], this observation led us to introduce a new LMC
whose states are tuples of terms, and whose actions include one splitting a pair:
P([〈M,N〉])(destruct) = {[M,N]1}. This turns out to work well in an affine
setting [6]. We are going to define a LMC M !

⊕ = (SM !
⊕
,AM !

⊕
,PM !

⊕
) which is

an extension of the one from [6], and which is adapted to a language with copy-
ing capabilities. The idea is to treat exponentials in the spirit of Milner’s Law:
!A � A⊗!A.

States. Tuples are pairs of the form K = (M ,V) where M and V are a
sequence of terms and values, respectively. The set of all such tuples is indicated
as U . The first component of a tuple is called its exponential part, while the
second one is called its linear part. We write � (M ,V) : (σ, τ) if � M : σ and
� V : τ . We note T the set of pairs A = (σ, τ), and we call tuple types the
elements of T. Moreover, we say that (σ, τ) is a (n,m) tuple type if σ and τ are,
respectively, an n-sequence and an m-sequence. To any term M , we associate
a tuple in a natural way: we note Ṁ the tuple ([] , [M]), and similarly if σ is a
type, we indicate the tuple type ([] , [σ]) as σ̇. Please observe that if � M : σ,
then it holds that � Ṁ : σ̇.

A sequence of the form (E,F,σ, τ ,M, γ) is said to be an applicative typing
judgment when σ and τ are, respectively, an n-sequence and an m-sequence of
types, E and F are respectively an n-set and an m-set, and moreover it holds
that !xE :!σE ,yF : τF � M : γ. Intuitively, this means that if we have a tuple
K = (N ,V) of type (σ, τ), we can replace free variables of M by some of the
terms from K. More precisely, we can replace variables in linear position by the
Vi with i ∈ F , and variables in non linear position by Nj , with j ∈ E. We note as
M [K] the closed term of type γ that we obtain this way. We note J the set of
all applicative typing judgments. We are specially interested in those judgments
(E,F,σ, τ ,M, γ) in J such that for every tuple K, the resulting term M [K]
is a value: that is when either M = yi for a i ∈ N, or M is of the form λz.N ,
λ!z.N , or !N . We note J V the set of those judgments.

We are now in a position to define M !
⊕ formally. The set of its states is indeed

defined as SM !
⊕

= {(K,A) | K ∈ U , A ∈ T, � K : A}.

Labels and Transitions. How do states in SM !
⊕

interact with the environment?
This is captured by the labels in AM !

⊕
, and the associated probability matrix.

We define AM !
⊕

as the disjoint union of A?, A! and A@, where:

A! = A? = {i | i ∈ N}; A@ = {(κ, i) | i ∈ N, κ ∈ J V }.

Metric Reasoning About λ-Terms: The General Case 353

In order to distinguish actions in A! and A?, we write the action i ∈ N as (?i)
if it comes from A?, and as (!i) if it comes from A!. The action (κ, i) ∈ A@ is
often indicated as @i

κ. The probability matrix PM !
⊕

is defined formally in Fig. 4.
We give below some intuitions about it. The general idea is that M !

⊕ is designed
to express every possible effect that a context can have on tuples. A? and A!

are designed to model copying capabilities, while A@ corresponds to applicative
interactions.

Actions in A? take any term of the form !M from the linear part of the under-
lying tuple, unbox it and transfer M to the exponential part of the tuple. Please
observe that this action is in fact deterministic: the resulting tuple is uniquely
determined. Labels in A!, on the other hand, model the act of copying terms
in the exponential part. We call its elements Milner’s actions. More specifically,
the action (!i) takes the i-th term in the exponential part of the tuple, makes a
copy of it, evaluates it and adds the result to the linear part. Please observe that,
contrary to (?i), this action can have a probabilistic outcome: the transferred
term is evaluated.

Labels in A@ are analogues of the applicative actions from applicative bisim-
ulation over terms (see, e.g. [9]). As such, they model environments passing
arguments to programs. Here, we have to adapt this idea to our tuple frame-
work: indeed, we can see the tuple as a collection of programs available to the
environment, who is free to choose with which of the programs to interact with
by passing it an argument. This argument, however, could depend on other
components of the tuple, which need to be removed from it if lying in its linear
part. Finally, please observe that all this should respect types. Labels in A@ are
indeed defined as a pair of an index i corresponding to the position in the tuple
of the term the environment chooses, and an applicative typing judgment, used
to specify the argument. Please observe that in the definition of the probability
matrix for applicative actions, in Fig. 4, the condition on i implies that the i-th
linear component of the tuple is not used to construct the argument term.

Fig. 4. Definition of PM !
⊕

Example 4. We give in Fig. 5 a fragment of M !
⊕ illustrating our definitions

on an example. Let τ be an element of A . We consider terms of the form

354 R. Crubillé and U. Dal Lago

Mε =!(Ω! ⊕ε I), for ε ∈ D and we look at some of the possible evolutions in
M !

⊕ from the associated state (Ṁε, ˙!(τ � τ)) = ([] , [Mε]), ([] , [!(τ � τ)]). In
Fig. 5, we denote by σ the type τ � τ .

Fig. 5. A fragment of PM !
⊕

5.2 Distributions as States

Now that we have a LMC PM !
⊕

modeling interaction between (tuple of) terms
and their environment, we could define notions of metrics following one of the
abstract definitions from the literature, e.g. by defining the trace distance or
the behavioral distance between terms. This is, by the way, the approach fol-
lowed in [6]. We prefer, however, to first turn PM !

⊕
into a transition system L !

⊕
whose states are distributions of tuples. This supports both a simple, coinduc-
tive presentation of the trace distance, but also up-to techniques, as we will see
in Sect. 5.5 below. Both will be very convenient when evaluating the distance
between concrete terms, and in particular for our running example.

It turns out that the usual notion of LTS is not sufficient for our purposes,
since it lacks a way to expose the observables of each state, i.e., its sum. We thus
adopt the following definition:

Definition 2. A weighted labeled transition system (WLTS for short) is a
quadruple in the form L = (S,A,

·→, w) where:

• S is a set of states and A is a countable set of actions,
• ·→ is a transition function such that, for every t ∈ S and a ∈ A, there exists

at most one s ∈ S such that t
a→s,

• w : S → [0, 1] is a function.

Please observe how WLTSs are deterministic transition systems. We define the
WLTS L !

⊕ by the equations of Fig. 6.
If t = (D, A) is in SL !

⊕
, we say that t is a A-state. It is easy to check that

L !
⊕ is nothing more than the natural way to turn PM !

⊕
into a deterministic

transition system. We illustrate this idea in Fig. 7, by giving a fragment of L !
⊕

corresponding to (part of) the fragment of M !
⊕ given in Example 4.

Metric Reasoning About λ-Terms: The General Case 355

Fig. 6. The WLTS L !
⊕ = (SL !

⊕
, AL !

⊕
,

·→, w)

Fig. 7. A fragment of L !
⊕

5.3 A Coinductively-Defined Metric

Following Desharnais et al. [13], we use a quantitative notion of bisimulation
on L !

⊕ to define a distance between terms. The idea is to stipulate that, for
any ε ∈ [0, 1], a relation R is an ε-bisimulation if it is, somehow, ε-close to a
bisimulation. The distance between two states t and s is just the smallest ε such
that t and s are ε-bisimilar. However, while in [13] the notion of ε-bisimulation
is local, we want it to be more restricted by the global deviation we may accept
considering arbitrary sequences of actions.

Definition 3. Let L = (S,A,
·→, w) be a WLTS. Let R be a symmetric and

reflexive relation on S, and ε ∈ [0, 1]. R is a ε-bisimulation whenever the follow-
ing two conditions hold:

• if tR s, and t
a→u, then there exists v such that s

a→v, and it holds that uR v.
• if tR s, then |w(t) − w(s)| ≤ ε.

For every ε ∈ [0, 1], there exists a largest ε-bisimulation, that we indicate as Rε.
Please observe that it is not an equivalence relation (since it is not transitive).
We can now define a metric on S: δb

L (t, s) = inf {ε | tRε s}. The greatest lower
bound is in fact reached as a δb

L (t, s)-bisimulation [7].

How can we turn δb
L into a metric on terms? The idea is to consider the distri-

butions on tuples one naturally gets when evaluating the term. To every term
M of type σ, we define ŝσ(M) ∈ SL !

⊕
as ({V̇ [[M]](V)}V ∈V , σ̇).

Definition 4. For every terms M and N such that � M : σ and � N : σ, we
set δb

σ,!(M,N) = δb
L !

⊕
(ŝσ(M), ŝσ(N)).

356 R. Crubillé and U. Dal Lago

Example 5. Consider again the terms Mε and Mμ from Example 2. We fix a
type τ , and define σ = τ � τ . As mentioned in Example 2, it holds that
� Mε :!σ. Let now ε, μ, α be in [0, 1], and let R be any α-bisimulation, such
that ŝ!σ(Mε)R ŝ!σ(Mμ). Let {ti}i∈N and {si}i∈N be families from SL !

⊕
such

that ŝ!σ(Mε)
(?1)→ t0

(!1)→ . . .
(!1)→ ti . . . and ŝ!σ(Mμ)

(?1)→ s0
(!1)→ . . .

(!1)→si Since R is an
α-bisimulation, for every i, it holds that ti R si. Looking at the definition of L !

⊕,
it is easy to realize that:

ti = {([Ω! ⊕ε I] , [I, . . . , I]), ([σ] , [σ, . . . , σ])εi}i∈N;

si = {([Ω! ⊕μ I] , [I, . . . , I]), ([σ] , [σ, . . . , σ])μi}i∈N.

By the definition of an α-bisimulation, we see that this implies that α ≥ |εi −μi|.
Since this reasoning can be done for every α such that Mε and Mμ are α-
bisimilar, it means that: δb

!σ,!(Mε,Mμ) ≥ supi∈N|εi−μi|. Moreover, if we consider
the special case where ε = 0, we can actually construct a μ-bisimulation by taking

R = (ŝ!σ(M0), ŝ!σ(Mμ)) ∪ {(t0, s0)} ∪ {((0, A), (D, A) |
∑

D ≤ μ}.

We can easily check that R is indeed a μ-bisimulation, which tells us that
δb
!σ,!(M0,Mμ) = μ.

5.4 Full Abstraction

In this section, we prove that δb
σ,! coincides with δc

σ,!. We first of all show that
the metric δb

σ,! is sound with respect to δc
σ,!, i.e. that δb

σ,! discriminates at least
as much as δc

σ,!:

Theorem 3 (Soundness). For any terms M and N of Λ!
⊕, such that � M : σ

and � N : σ, it holds that δc
σ,!(M,N) ≤ δb

σ,!(M,N).

Please remember that our definition of the tuple distance is based on the notion
of ε-bisimulation. Proving the soundness theorem, thus, requires us to show that
for any terms M and N of type σ such that ŝσ(M) and ŝσ(N) are ε-bisimilar,
and for any context C, it holds that | ∑

[[C[M]]] − ∑
[[C[N]]] | ≤ ε. Our proof

strategy is based on the fact that we can decompose every evaluation path of a
term in the form C[L] into external reduction steps (that is, steps that do not
affect L), and internal reduction steps (that is, reduction steps affecting L, but
which can be shown to correspond only to actions from L !

⊕). Intuitively, if we
reduce in parallel C[M] and C[N], we are going to have steps where only the
context is modified (and the modification does not depend on whether we are
considering the first program or the second), and steps where the internal part
is modified, but these steps cannot induce too much of a difference between the
two programs, since the two internal terms are ε-bisimilar.

We first of all need to generalize the notion of context to deal with tuples
rather than with terms. In particular, we need contexts with multiple holes
having types which match those of the tuple (or, more precisely, the A-state)
they are meant to be paired with. More formally:

Metric Reasoning About λ-Terms: The General Case 357

Definition 5 (Tuple Contexts). Tuple contexts are triples of the form
(C,A, γ), where C is an open term, A = (σ, τ) is a (n,m)-tuple type, and γ
is a type such that !x{1,...,n} :!σ,y{1,...,m} : τ � C : γ. We note CT the set of
tuple contexts. A tuple context (C,A, γ) is said to be an open value if C is of
one of the following four forms: λx.M , λ!x.M , !M , yi (where i ∈ N).

We now want to define when a tuple context and an A-state can be paired
together, and the operational semantics of such an object, which will be derived
from that of Λ!

⊕-terms. This is the purpose of the following definition:

Definition 6 (Tuple Context Pairs). We say that a pair u = (C, t) is a
tuple context pair iff t = (A,D) is an A-state, and ∃γ ∈ A , (C,A, γ) ∈ CT.
We indicate as C × Δ(U) the set of tuple context pairs. Moreover, given such
a pair u = (C, (A,D)), we define F(u) as the (potentially infinite) distribution
over T given by:

F(u) = {C{x/M}{y/N}D(M ,N)}(M ,N)∈S(D).

Giving a notion of context distance for A-states is now quite easy and natural,
since we know how contexts for such objects look like. For the sake of being
as general as possible, this notion of a distance is parametric on a set of tuple
contexts C ⊆ CT.

Definition 7. Let C ⊆ CT, A ∈ T, and t, s be two A-states. We define:

δcC (t, s) = sup
(C,A,σ)∈C

∣
∣
∣
∣

∑

[[F(C,t)]]
−

∑

[[F(C,s)]]

∣
∣
∣
∣

Unsurprisingly, the context distance between terms equals δcCT when applied to
A-states obtained through ŝσ(·):
Proposition 1. If � M,N : σ, then δc

σ,!(M,N) = δcCT(ŝσ(M), ŝσ(N)).

But why did we introduce C × Δ(U)? Actually, these pairs allow a fine
analysis of how tuples behave when put in a context, which in turn is precisely
what we need to prove Theorem 3. This analysis, however, is not possible without
endowing C × Δ(U) itself with an operational semantics, which is precisely
what we are going to do in the next paragraphs.

Two relations need to be defined. On the one hand, we need a one-step
labeled transition relation →C×Δ(U) which turns an element of C × Δ(U) into
a distribution over C × Δ(U) by performing an action. Intuitively, one step of
reduction in →C×Δ(U) corresponds to at most one step of reduction in L !

⊕.
If that step exists, (i.e. if the term is reduced) then the label is the same, and
otherwise (i.e., if only the context is reduced), the label is just τ . We also need a
multi-step approximation semantics ⇒C×Δ(U) between elements of C × Δ(U)
and subdistributions over the same set. The latter is based on the former, and
both are formally defined in Fig. 8, where

358 R. Crubillé and U. Dal Lago

Fig. 8. Rules for ⇒C×Δ(U)

• E is an evaluation context;
• t is an (n,m)-state from SL !

⊕
;

• h is a tuple-context pair from C × Δ(U);
• For every context C, Cremove(E) stands for the context

C{y1/y1−#{j|j∈E∧j<1}} . . . {yn/yn−#{j|j∈E∧j<n}}

We first show that this definition can indeed be related to the usual semantics
for terms. This takes the form of the following lemma:

Lemma 2. Let be u ∈ C × Δ(U). Then:

• {D | u⇒C×Δ(U)D} is a directed set. We define [[u]]C×Δ(U) as its least upper
bound;

• F(·) : Distr(C × Δ(U)) → Distr(T) is continuous;
• [[F(u)]] = F([[u]]C×Δ(U)).

Before proceeding, we need to understand how any reflexive and symmetric rela-
tion on C × Δ(U) can be turned into a relation on distributions on C × Δ(U).
If R is a reflexive and symmetric relation on C × Δ(U), we lift it to distri-
butions over C × Δ(U) by stipulating that D R E whenever there exists a
countable set I, a family (pi)i∈I of positive reals of sum smaller than 1, and
families (hi)i∈I , (ki)i∈I in C × Δ(U), such that D = {hi

pi}i∈I , E = {ki
pi}i∈I ,

and moreover hi R ki for every i ∈ I.
We now want to precisely capture when a relation on C × Δ(U) can be used

to evaluate the distance between tuple-context pairs.

Metric Reasoning About λ-Terms: The General Case 359

Definition 8. Let R be a reflexive and symmetric relation on C × Δ(U).

• We say that R is preserved by →C×Δ(U) if, for any h, k ∈ C × Δ(U) such
that h R k, if h

a→C×Δ(U)D, then there exists E such that k
a→C×Δ(U)E, and

that D R E.
• We say that R is ε-bounding if h R k implies |∑F(h) − ∑

F(k)| ≤ ε.
• Let C be a set of tuple contexts, and t, s ∈ SL !

⊕
be two A-states. We say

that R is C -closed with respect to t and s if, for every C and γ such that
(C,A, γ) ∈ C , it holds that (C, t) R (C, s).

Please observe how any relation preserving →C×Δ(U) and being ε-bounding
can be seen somehow as an ε-bisimulation, but on tuple-context pairs. The way
we defined the lifting, however, makes it even a stronger notion, i.e., the ideal
candidate for an intermediate step towards Soundness.

As a first step, the conditions from Definition 8 are enough to guarantee that
two terms are at context distance at most ε.

Proposition 2. Let M,N be two terms of type σ. Suppose there exists a reflex-
ive and symmetric relation R on C × Δ(U), which is preserved by →C×Δ(U), ε-
bounding, and CT-closed with respect to ŝσ(M) and ŝσ(N). Then δc

σ,!(M,N) ≤ ε.

What remains to be done, then, is to show that if two terms are related by Rε,
then they themselves satisfy Definition 8. Compulsory to that is showing that
any ε-bisimulation can at least be turned into a relation on C × Δ(U). We need
to do that, in particular, in a way guaranteeing the C -closure of the resulting
relation, and thus considering all possible tuple contexts from C :

Definition 9. Let R be a reflexive and symmetric relation on SL !
⊕
. Let be C a

set of tuple contexts. We define its contextual lifting to C × Δ(U) with respect
to C as the following binary relation on C × Δ(U):

R̂
C

A =
⋃

(C,A,σ)∈C

{((C, t), (C, s)) | t, sA-states, t R s}; R̂
C

=
⋃

A∈T

R̂
C

A .

The following result tells us that, indeed, any ε-bisimulation can be turned into
a relation satisfying Definition 8:

Proposition 3. Let R be an ε-bisimulation. Then R̂
CT

is preserved by →C×Δ(U)

and ε-bounding, and CT-closed with respect to every t, s such that t R s.

We are finally ready to give a proof of soundness:

Proof (of Theorem 3). Consider two terms M and N of type σ. Let ε be
δb
σ,!(M,N). We take Rε (defined in Definition 3 as the largest ε-bisimulation),

and we see that ŝσ(M)Rε ŝσ(N). Proposition 3 tells us that we can apply

Proposition 2 to M , N , and (̂Rε)
CT

. Doing so we obtain that δc
σ,!(M,N) ≤ ε,

which is the thesis. ��

360 R. Crubillé and U. Dal Lago

We can actually show (see [7]) that δb
σ,! is also complete with respect to the

contextual distance:

Theorem 4 (Full Abstraction). For every σ, δc
σ,! = δb

σ,!.

5.5 On an Up-to-Context Technique

As we have just shown, context distance can be characterized as a coinductively-
defined metric, which turns out to be useful when evaluating the distance
between terms. In this section, we will go even further, and show how an up-
to-context [31] notion of ε-bisimulation is precisely what we need to handle our
running example.

We first of all need to generalize our definition of a tuple: an open tuple is a
pair (M ,N), where M and N are sequences of (not necessarily closed) typable
terms.

Definition 10. If K = (M ,N) is an open tuple, and A = (γ,η) is a tuple
type, we say that (σ, τ ,K,A) is a substitution judgment iff:

• !x :!σ � M i : γi;
• if n and m are such that τ is a n-sequence, and N a m-sequence, then there

exists a partition {E1, . . . Em} of {1, . . . , n} such that yEj
: τEj

� Nj : ηj for
every j ∈ {1, . . . , m}.

J subst is the set of all substitution judgments.

If κ = (σ, τ ,K,A) ∈ J subst, and H ∈ U is of type (σ, τ), then there is a
natural way to form a tuple κ[H], namely by substituting the free variables of K
by the components of H. In the following, we restrict J subst to those judgments
κ such that for every H, terms in the linear part of κ[H] are values. Observe that
we always have � κ[H] : A. We extend the notation κ[H] to distributions over U :
if D is a distribution over tuples of type (σ, τ), we note κ[D] = {κ[H]D(H)}H∈U ,
which is a distribution over tuples of type A. Moreover, we want to be able to
apply our substitution judgments to the states of L !

⊕. If t = (D, (σ, τ)) ∈ SL !
⊕
,

and κ = (σ, τ ,K,A), the state of L !
⊕ defined by (κ[D], A) will be often indicated

as κ[t].

Example 6. We illustrate on a simple example the use of substitution judgments.
Let be τ any type. Consider σ = [τ � τ], and τ = []. Moreover, let K =
([x1] , [I]) and A = ([τ � τ] , [τ � τ]). Then κ = (σ, τ ,K,A) is a substitution
judgment. We consider now a tuple of type (σ, τ). In fact, we take here a tuple
that will be useful in order to analyze our running example: H = ([Ω! ⊕ε I] , []).
By substituting H in κ, we obtain κ[H] = ([Ω! ⊕ε I] , [I]), and we can see easily
that we obtain indeed a tuple of type A.

The main idea behind up-to-context bisimulation is to allow for the freedom
of discarding any context when proving a relation to be a bisimulation. This is
captured by the following definition:

Metric Reasoning About λ-Terms: The General Case 361

Definition 11. Let R be a relation on SL !
⊕
. R is an ε-bisimulation up-to-

context if for every t and s such that t R s, the following holds:

• there exists C ∈ T such that t = (D, C), s = (E , C), and |∑D − ∑
E | ≤ ε.

• for any a ∈ AM !
⊕
, if t

a→u = (D, A) and s
a→v = (E , A), then there exists a

finite set I ⊆ N such that:
• there is a family of rationals (pi)i∈I such that

∑
i∈I pi ≤ 1;

• there are families σi, τ i, and Ki, such that κi = (σi, τ i,Ki, A) is a
substitution judgment for every i ∈ I;

• there are distributions over tuples Di, Ei such that (Di, Bi) R (Ei, Bi);
and moreover D =

∑
i∈I pi · κi[Di], and E =

∑
i∈I pi · κi[Ei].

The proof method we just introduced is indeed quite useful when handling
our running example.

Example 7. We show that up-to bisimulations can handle our running example.
Please recall the definition of Mε given in Example 2. First, we can see that,
for every a, for every type τ , ŝ!(τ�τ)(Ma) = ({([] , [!Ω! ⊕a I])1}, ([] , [!τ � τ])).
We define a relation R on SL !

⊕
containing (ŝ!(τ�τ)(Mε), ŝ!(τ�τ)(Mμ)), and we

show that it is a γ-bisimulation up-to-context for an appropriate γ. In order to
simplify the notations, we define B = ([τ � τ], []), and tn, sn ∈ SL !

⊕
as:

tn = ({([(Ω! ⊕ε I)], [])(ε
n)}, B), sn = ({([(Ω! ⊕μ I)], [])(μ

n)}, B).

Then, we define the relation R as R= {(ŝσ(M), ŝσ(N))} ∪ {(tn, sn) | n ∈ N} .
One can check that R is indeed a γ-bisimulation up-to-context (where γ =
supn∈N|εn − μn|) by carefully analyzing [7] every possible action. The proof is
based on the following observations:

• The only action starting from ŝσ(M) or ŝσ(N) is a = (?1), passing a term to
the exponential part of the tuple, then we end up in t0 and s0 respectively.

• If we start from tn or sn, the only relevant action is Milner’s action a = (!1),
consisting in taking a copy of the term in the exponential part, evaluating
it, and putting the result in the linear part. We can see (using the substi-
tution judgment κ defined in Example 6), that tn

a→κ[tn+1], and similarly
sn

a→κ[sn+1], and the result follows.

Bisimulations up-to-context would be useless without a correctness result such
as the following one:

Theorem 5. If R is an ε-bisimulation up-to context, then R⊆Rε.

The proof is an extension of that of Theorem 3 (although technically more
involved), and can be found in [7].

Example 8. We can exploit the soundness of up-to-context bisimulation to obtain
the contextual distance for our running example. This allows us to conclude that
δc
!(τ�τ),!(Mε,Mμ) = supn∈N|εn −μn|. The context distance between Mε and Mμ

is thus strictly between 0 and 1 whenever 0 < |ε − μ| < 1.

362 R. Crubillé and U. Dal Lago

6 Probabilistic λ-Calculi, in Perspective

The calculus Λ
!,‖
⊕ we analyzed in this paper is, at least apparently, nonstandard,

given the presence of parallel disjunction, but also because of the linear refine-
ment it is based on. In this section, we will reconcile what we have done so
far with calculi in the literature, and in particular with untyped probabilistic
λ-calculi akin to those studied, e.g., in [5,9].

We consider a language Λ⊕ defined by the following grammar:

M ∈ Λ⊕ ::= x | MM | λx.M | M ⊕ M.

6.1 On Stable Fragments of M !
⊕

Our objective in this section is to characterize various notions of context distance
for Λ⊕ by way of appropriate embeddings into Λ!

⊕, and thus by the LMC M !
⊕. It

is quite convenient, then, to understand when any fragment of M !
⊕ is sufficiently

robust so as to be somehow self-contained:

Definition 12. We say that the pair (Ŝ, Â), where Ŝ ⊆ SM !
⊕
, and Â ⊆ T×AM !

⊕

is a stable fragment of M !
⊕ iff for every pair (A, a) ∈ Â, for every A-state t,

and for every s ∈ S such that PM !
⊕
(t, a, s) > 0, it holds that s ∈ Ŝ.

Using a stable fragment of M !
⊕, we can restrict the WLTS L !

⊕ in a meaningful
way. The idea is that we only consider some of the states of L !

⊕, and we are
able to choose the possible actions depending on the type of the state of L !

⊕ we
consider.

Definition 13. If F = (Ŝ, Â) is a stable fragment of M !
⊕, we define a WLTS

by LF = (SLF
,ALF

,
·→F , wF), as

SLF
=

⋃

A∈T
Distr({K | (K,A) ∈ Ŝ}) × {A}; ALF

=
⋃

(A,a)∈Â{a} ∪ T;

·→F = ·→ ∩ {((D, A), a, s) | S(D) ⊆ Ŝ, (A, a) ∈ Â};

and wF is defined as expected.

We want to be able to define a notion of distance on a fragment of the original
language Λ!

⊕, so that it verifies the soundness property for a restricted set of
contexts. To do that, we need the restricted set of contexts C to be preserved
by the stable fragment:

Definition 14. Let F = (Ŝ, Â) be a stable fragment of M !
⊕. Let C be a set of

tuple contexts. We say that C is preserved by F if the following holds: for any
(C,A, γ) ∈ C that is not an open value and for any A-state t in SLF

, there
exists a such that (A, a) ∈ Â ⋃

(T × {τ}), (C, t) a→C×Δ(U)E, and moreover:

S(E) ⊆
⋃

B∈T
{(D, s) | s a B-state ∧ ∃η s.t. (D,B, η) ∈ C }

Metric Reasoning About λ-Terms: The General Case 363

We are now able to provide guarantees that the contextual distance δcC with
respect to our restricted set of contexts C is smaller that the distance defined
on the WLTS LF induced by our stable fragment F . This is the spirit of the
following proposition.

Proposition 4. Let F = (Ŝ, Â) be a stable fragment of M !
⊕, C be a set of tuple

contexts preserved by F , and t, s ∈ SLF
. Then δcC (t, s) ≤ δb

LF
(t, s).

In the following, we make use of Proposition 4 on stable fragments corresponding
to embeddings of Λ⊕ into Λ!

⊕. We will consider two different encodings depending
on the underlying notion of evaluation.

6.2 Call-by-Name

Λ⊕ can first of all be endowed with call-by-name semantics, as in Fig. 9. We use
it to define an approximation semantics exactly in the same way as in Fig. 1,
and we take as usual the semantics of a term to be the least upper bound of its
approximated semantics. Moreover, we denote by δc

cbn the context distance on
Λ⊕, defined the natural way. We are going, in the remainder of this section, to
use our results about Λ!

⊕ to obtain a characterization of δc
cbn.

Fig. 9. One-step call-by-name semantics

The Call-By-Name Embedding. Girard’s translation [19] gives us an embed-
ding 〈·〉cbn : Λ⊕ → Λ!

⊕, defined as follows:

〈x〉cbn = x 〈λx.M〉cbn = λ!x.〈M〉cbn
〈MN〉cbn = 〈M〉cbn!〈N〉cbn 〈M ⊕ N〉cbn = 〈M〉cbn ⊕ 〈N〉cbn

Please observe that 〈·〉cbn respects typing in the sense that, when we define
σcbn = μα.!α � α, it holds that for every term M of Λ⊕ whose free variables
are in {x1, . . . , xn}, we can show that !x1 :!σcbn, . . . , !xn :!σcbn � 〈M〉cbn : σcbn.

Metrics for Λ⊕. It is very tempting to define a metric on Λ⊕ just as follows:
δb
cbn(M,N) = δb

!σcbn,!(!〈M〉cbn, !〈N〉cbn). We can easily see that it is sound with
respect to the context distance for Λ⊕, since any context of this language can be
seen, through 〈·〉cbn, as a context in Λ!

⊕. However, it is not complete, as shown
by the following example:

Example 9. We consider M = Ω ⊕ (λx.Ω) and N = (λx.Ω). We can see that
δb
!σcbn,!(!〈M〉cbn, !〈N〉cbn) = 1: indeed, when we define a sequence of Λ!

⊕-contexts
by Cn = λ!x. ((λy1. . . . λyn.(λz.zy1, . . . yn))x . . . x) [], we see that Obs(!〈M〉cbn) =
1/2n while Obs(!〈N〉cbn) = 1. But those contexts Cn have more expressive power
than any context in 〈Λ⊕〉cbn, since they do something that none of the contexts

364 R. Crubillé and U. Dal Lago

from Λ⊕ can do: they evaluate a copy of the term, and then shift their focus to
another copy of the term. It can be seen in the embedding: a term in 〈Λ⊕〉cbn
never has several redexes in linear position. It can actually be shown (see [7])
that δc

cbn(M,N) = 1
2 < δb

cbn(M,N).

The way out consists in using the notion of stable fragment to refine the Markov
Chain M !

⊕ by keeping only the states and actions we are interested in.

Definition 15. We define a stable fragment F cbn as specified in Fig. 10,
and a distance δcbn on Λ⊕ as δcbn(M,N) = δb

LFcbn
(ŝcbn(M), ŝcbn(N)), where

ŝcbn(M) = ({([〈M〉cbn], [])1}, A0).

Fig. 10. The stable fragment F cbn = (SMcbn
⊕

, AMcbn
⊕

).

We need now to define a set of tuple contexts preserved by F cbn, the aim of
applying Proposition 4.

Definition 16. Ccbn is the smallest set of tuple contexts such that:

• If M ∈ Λ⊕ with FV (M) ⊆ {x1}, then (〈M〉cbn, A0, σcbn) ∈ Ccbn;
• If (C,A0, σcbn) ∈ Ccbn, and C = E[x1], it holds that (E[y1], A1, σcbn) ∈ Ccbn.

Ccbn is designed to allow us to link δc
cbn and δcCcbn

: for any M,N ∈ Λ⊕ closed
terms, it holds that δc

cbn(M,N) = δcCcbn
(ŝcbn(M), ŝcbn(N)). Moreover, Ccbn is

preserved by the stable fragment F cbn (the proof can be found in [7]).

Theorem 6 (Call-by-Name Full Abstraction). δc
cbn and δcbn coincide.

Proof. We first show that δcbn is at least as discriminating δc
cbn. Let be M,N ∈

Λ⊕. By definition of LFcbn , we know that ŝcbn(M), ŝcbn(N) ∈ SLFcbn . Moreover,
we know that Ccbn is preserved by F cbn. So we can apply Proposition 4, and we
see that δcCcbn

(ŝcbn(M), ŝcbn(N)) ≤ δcbn(M,N), and soundness follows. When
proving completeness part, we rely on an “intrinsic” characterization of δcbn.
The details can be found in [7]. ��

6.3 Call-by-Value

In a similar way, we can endow Λ⊕ with a call-by-value semantics, and embed
it into Λ!

⊕. We are then able to define a suitable fragment of M !
⊕, a suitable set

of tuple contexts preserving it, and a characterization of a call-by-value context

Metric Reasoning About λ-Terms: The General Case 365

distance for Λ⊕ follows [7]. While the construction of the stable fragment (and
the set of tuple contexts to consider) are more involved than in the call-by-name
case, we noticed that the characterization we obtain seems to have some simi-
larities with the way environmental bisimulation for a call-by-value probabilistic
λ-calculus was defined in [32].

7 Related Work

This is definitely not the first work on metrics in the context of programming
languages semantics. A very nice introduction to the topic, together with a
comprehensive (although outdated) list of references can be found in [35]. One
of the many uses of metrics is as an alternative to order-theoretic semantics. This
has also been applied to higher-order languages, and to deterministic PCF [15].

If one focuses on probabilistic programming languages, the first attempts at
using metrics as a way to measure “how far” two programs are, algebraically
or behaviorally, are due to Giacalone et al. [18], and Desharnais et al. [11,12],
who both consider process algebras in the style of Milner’s CCS. Most of further
work in this direction has focused on concurrent specifications. Among the recent
advances in this direction (and without any hope of being comprehensive), we
can cite Gebler et al.’s work on uniform continuity as a way to enforce com-
positionality in metric reasoning [16,17]. Great inspiration for this work came
from the many contributions on metrics for labeled Markov chains and processes
appeared in the last twenty years (e.g. [13,36]).

8 Conclusions

We have shown how the context distance can be characterized so as to simplify
concrete proofs, and to which extent this metric trivializes. All this has been
done in a universal linear λ-calculus for probabilistic computation. This clarifies
to which extent refining equivalences into metrics is worth in such a scenario.
The tuple-based techniques in Sect. 5.5 are potentially very interesting in view
of possible applications to cryptography, as hinted in [4]. This is indeed what we
are working on currently.

References

1. Barendregt, H.P.: The Lambda Calculus - Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam
(1984)

2. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Per-
spectives in Logic. Cambridge University Press, Cambridge (2013)

3. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Pitts, A.
(ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 279–294. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46678-0 18

http://dx.doi.org/10.1007/978-3-662-46678-0_18

366 R. Crubillé and U. Dal Lago

4. Cappai, A., Dal Lago, U.: On equivalences, metrics, and polynomial time. In:
Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 311–323.
Springer, Cham (2015). doi:10.1007/978-3-319-22177-9 24

5. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54833-8 12

6. Crubillé, R., Dal Lago, U.: Metric reasoning about λ-terms: the affine case. In:
Proceedings of LICS, pp. 633–644 (2015)

7. Crubillé, R., Dal Lago, U.: Metric reasoning about λ-terms: the general case (long
version) (2016). http://arxiv.org/abs/1701.05521

8. Crubillé, R., Dal Lago, U., Sangiorgi, D., Vignudelli, V.: On applicative similarity,
sequentiality, and full abstraction. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.)
Correct System Design. LNCS, vol. 9360, pp. 65–82. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-23506-6 7

9. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: Proceedings of POPL, pp. 297–308
(2014)

10. Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda calcu-
lus. RAIRO Theor. Inform. Appl. 46(3), 413–450 (2012)

11. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled
Markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol.
1664, pp. 258–273. Springer, Heidelberg (1999). doi:10.1007/3-540-48320-9 19

12. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of
weak bisimulation for probabilistic processes. In: Proceedings of LICS, pp. 413–422
(2002)

13. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic
processes: logic, simulation and games. In: Proceedings of QEST, pp. 264–273
(2008)

14. Ehrhard, T., Tasson, C., Pagani, M.: Probabilistic coherence spaces are fully
abstract for probabilistic PCF. In: Proceedings of POPL, pp. 309–320 (2014)

15. Escardo, M.: A metric model of PCF. In: Proceedings of the Workshop on Real-
izability Semantics and Applications (1999). http://www.cs.bham.ac.uk/∼mhe/
papers/metricpcf.pdf

16. Gebler, D., Larsen, K.G., Tini, S.: Compositional metric reasoning with probabilis-
tic process calculi. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 230–245.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46678-0 15

17. Gebler, D., Tini, S.: SOS specifications of probabilistic systems by uniformly con-
tinuous operators. In: Proceedings of CONCUR, pp. 155–168 (2015)

18. Giacalone, A., Jou, C.C., Smolka, S.A.: Algebraic reasoning for probabilistic con-
current systems. In: Proceedings of IFIP TC2, pp. 443–458. North-Holland (1990)

19. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
20. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),

270–299 (1984)
21. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:

Church: a language for generative models. In: UAI 2008, pp. 220–229 (2008)
22. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: Proceed-

ings of LICS, pp. 186–195 (1989)
23. Jung, A., Tix, R.: The troublesome probabilistic powerdomain. Electron. Notes

Theor. Comput. Sci. 13, 70–91 (1998)
24. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-

ing, vol. 999. MIT Press, Cambridge (1999)

http://dx.doi.org/10.1007/978-3-319-22177-9_24
http://dx.doi.org/10.1007/978-3-642-54833-8_12
http://arxiv.org/abs/1701.05521
http://dx.doi.org/10.1007/978-3-319-23506-6_7
http://dx.doi.org/10.1007/3-540-48320-9_19
http://www.cs.bham.ac.uk/~mhe/papers/metricpcf.pdf
http://www.cs.bham.ac.uk/~mhe/papers/metricpcf.pdf
http://dx.doi.org/10.1007/978-3-662-46678-0_15

Metric Reasoning About λ-Terms: The General Case 367

25. Mardare, R.: Logical foundations of metric behavioural theory for Markov
processes. Doctoral thesis (2016, in preparation)

26. Park, S., Pfenning, F., Thrun, S.: A probabilistic language based on sampling
functions. ACM Trans. Program. Lang. Syst. 31(1), 4 (2008)

27. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

28. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977)

29. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Proceedings of POPL, pp. 154–165 (2002)

30. Saheb-Djahromi, N.: Probabilistic LCF. In: Winkowski, J. (ed.) MFCS
1978. LNCS, vol. 64, pp. 442–451. Springer, Heidelberg (1978). doi:10.1007/
3-540-08921-7 92

31. Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comput. Sci. 8,
447–479 (1998)

32. Sangiorgi, D., Vignudelli, V.: Environmental bisimulations for probabilistic higher-
order languages. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, 20–22 January 2016, pp. 595–607 (2016)

33. Simpson, A.: Reduction in a linear lambda-calculus with applications to operational
semantics. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 219–234. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-32033-3 17

34. Thrun, S.: Robotic mapping: a survey. Explor. Artif. Intell. New Millenn. 1, 1–35
(2002)

35. van Breugel, F.: An introduction to metric semantics: operational and denotational
models for programming and specification languages. Theor. Comput. Sci. 258(1–
2), 1–98 (2001)

36. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition
systems. Theor. Comput. Sci. 331(1), 115–142 (2005)

http://dx.doi.org/10.1007/3-540-08921-7_92
http://dx.doi.org/10.1007/3-540-08921-7_92
http://dx.doi.org/10.1007/978-3-540-32033-3_17

Contextual Equivalence for Probabilistic
Programs with Continuous Random Variables

and Scoring

Ryan Culpepper(B) and Andrew Cobb(B)

Northeastern University, Boston, USA
{ryanc,acobb}@ccs.neu.edu

Abstract. We present a logical relation for proving contextual equiv-
alence in a probabilistic programming language (PPL) with continuous
random variables and with a scoring operation for expressing observa-
tions and soft constraints.

Our PPL model is based on a big-step operational semantics that
represents an idealized sampler with likelihood weighting. The semantics
treats probabilistic non-determinism as a deterministic process guided by
a source of entropy. We derive a measure on result values by aggregating
(that is, integrating) the behavior of the operational semantics over the
entropy space. Contextual equivalence is defined in terms of these mea-
sures, taking real events as observable behavior.

We define a logical relation and prove it sound with respect to con-
textual equivalence. We demonstrate the utility of the logical relation
by using it to prove several useful examples of equivalences, including
the equivalence of a βv-redex and its contractum and a general form of
expression re-ordering. The latter equivalence is sound for the sampling
and scoring effects of probabilistic programming but not for effects like
mutation or control.

1 Introduction

A universal probabilistic programming language (PPL) consists of a general-
purpose language extended with two probabilistic features: the ability to make
non-deterministic (probabilistic) choices and the ability to adjust the likelihood
of the current execution, usually used to model conditioning. Programs that use
these features in a principled way express probabilistic models, and the execution
of such programs corresponds to Bayesian inference.

Universal PPLs include Church [8] and its descendants [13,22] as well as other
systems and models [2,3,10,16,18,20]. In contrast, other PPLs [4,12,14,17] limit

This material is based upon work sponsored by the Air Force Research Laboratory
(AFRL) and the Defense Advanced Research Projects Agency (DARPA) under Con-
tract No. FA8750-14-C-0002. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or the U.S.
Government.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 368–392, 2017.
DOI: 10.1007/978-3-662-54434-1 14

Contextual Equivalence for Probabilistic Programs 369

programs to more constrained structures that can be translated to intermediate
representations such as Bayes nets or factor graphs.

PPLs can also be divided into those that support continuous random choices
and those that support only discrete choices. Most probabilistic programming
systems designed for actual use support continuous random variables, and
some implement inference algorithms specialized for continuous random vari-
ables [4,21]. On the other hand, much of the literature on the semantics of PPLs
has focused on discrete choice—particularly the literature on techniques for prov-
ing program equivalence such as logical relations [1] and bisimulation [19]. The
semantics that do address continuous random variables and scoring [3,20] do not
focus on contextual equivalence.

This paper addresses the issue of contextual equivalence in a PPL with real
arithmetic, continuous random variables, and an explicit scoring operation for
expressing observations and soft constraints. We present a model of such a PPL
with a big-step operational semantics based on an idealized sampler with like-
lihood weighting; the program’s evaluation is guided by a supply of random
numbers from an “entropy space.” Based on the operational semantics we con-
struct a measure on the possible results of the program, and we define contextual
equivalence in terms of these measures. Finally, we construct a binary logical
relation, prove it sound with respect to contextual equivalence, and demonstrate
proofs that conversions such as βv and expression reordering respect contextual
equivalence.

Our language and semantics are similar to that of Borgström et al. [3],
except our language is simply typed and our treatment of entropy involves split-
ting rather than concatenating variable-length sequences. Our entropy structure
reflects the independence of subexpression evaluations and simplifies the decom-
position of value measures into nested integrals.

Compared with semantics for traditional languages, our model of probabilis-
tic programming is further from the world of computable programming languages
so that it can be closer to the world of measures and integration, the foundations
of probability theory. It is “syntactic” rather than “denotational” in the sense
that the notion of “value” includes λ-expressions rather than mathematical func-
tions, but on the other hand these syntactic values can contain arbitrary real
numbers in their bodies, and our semantics defines and manipulates measures
over spaces of such values. We do not address computability in this paper, but
we hope our efforts can be reconciled with previous work on incorporating the
real numbers into programming languages [6,7,9].

We have formalized the language and logical relation in Coq, based on a high-
level axiomatization of measures, integration, and entropy. We have formally
proven the soundness of the logical relation as well as some of its applications,
including βv and restricted forms of expression reordering. The formalization
can be found at

https://github.com/cobbal/ppl-ctx-equiv-coq/tree/esop-2017.

The rest of this paper is organized as follows: Sect. 2 introduces probabilistic
programming with some example models expressed in our core PPL. Section 3
reviews some relevant definitions and facts from measure theory. Section 4

https://github.com/cobbal/ppl-ctx-equiv-coq/tree/esop-2017

370 R. Culpepper and A. Cobb

presents our PPL model, including its syntax, operational semantics, measure
semantics, and notion of contextual equivalence. In Sect. 5 we develop a logi-
cal relation and show that it is sound with respect to contextual equivalence.
Section 6 proves several useful equivalences using using the machinery provided
by the logical relation.

2 Probabilistic Programming

In a probabilistic program, random variables are created implicitly as the result
of stochastic effects, and dependence between random variables is determined by
the flow of values from one random variable to another. Random variables need
not correspond to program variables. For example, the following two programs
both represent the sum of two random variables distributed uniformly on the
unit interval:

– let x = sample, y = sample in x + y
– sample + sample

We write sample for the effectful expression that creates a new independent
random variable distributed uniformly on the unit interval [0, 1].

Values distributed according to other real-valued distributions can be
obtained from a standard uniform by applying the inverse of the distribution’s
cumulative distribution function (CDF). For example, normalinvcdf(sample) pro-
duces a value from the standard normal distribution, with mean 0 and standard
deviation 1. The familiar parameterized normal can then be defined by scaling
and shifting as follows:

normal m s � m + s ∗ normalinvcdf(sample)

The parameters of a normal random variable can of course depend on other
random variables. For example,

m = normal 0 wide
f = normal m narrow

defines f as a function that returns random points—a fresh one each time it
is called. The points are concentrated narrowly around some common point,
randomly chosen once and shared. (We write f to emphasize that f ignores its
argument.)

The other feature offered by PPLs is some way of expressing conditioning on
observed evidence. We introduce conditioning via a hypothetical observe form.
Consider m from the program above. Our prior belief about m is that it is
somewhere in a wide vicinity of 0. Suppose we amend the program by adding
the following observations, however:

observe 9.3 from f
observe 8.9 from f
observe 9.1 from f

Contextual Equivalence for Probabilistic Programs 371

Given those observations, you might suspect that m is in a fairly narrow region
around 9. Bayes’ Law quantifies that belief as the posterior distribution on m,
defined in terms of the prior and the observed evidence.

p(m|data) ∝ p(m) · p(data|m)

That is the essence of Bayesian inference: calculating updated distributions on
“causes” given observed “effects” and a probabilistic model that relates them.

Some PPLs [5,13,15] provide an observe-like form to handle conditioning;
they vary in what kinds of expressions can occur in the right-hand side of the
observation. Other PPLs provide a more primitive facility, called factor or score,
which takes a real number and uses it to scale the likelihood of the current values
of all random variables. To represent an observation, one simply calls factor with
p(data|x); of course, if one is observing the result of a computation, one has to
compute the correct probability density. For example, the first observation above
would be translated as

factor (normalpdf((9.3 − m) ÷ narrow) ÷ narrow)

The normalpdf operation computes the probability density function density of a
standard normal, so to calculate the density for a scaled and shifted normal,
we must invert the translation by subtracting the mean and dividing by the
scale (narrow). Then, since probability densities are derivatives, to get the cor-
rect density of normal m narrow we must divide by the (absolute value of) the
derivative of the translation function from the standard normal—that accounts
for the second division by narrow.

3 Measures and Integration

This section reviews some basic definitions, theorems, and notations from mea-
sure theory. We assume that the reader is familiar with the basic notions of mea-
sure theory, including measurable spaces, σ-algebras, measures, and Lebesgue
integration—that is, the notion of integrating a function with respect to a mea-
sure, not necessarily the Lebesgue measure on R.

We write R
≥0 for the non-negative reals—that is, [0,∞)—and R

+ for the
non-negative reals extended with infinity—that is, [0,∞].

A measure μ : ΣX → R
+ on the measurable space (X,ΣX) is finite if μ(X)

is finite. It is σ-finite if X is the union of countably many Xi and μ(Xi) is finite
for each Xi.

We write
∫

A
f(x) μ(dx) for the integral of the measurable function f : X → R

on the region A ⊆ X with respect to the measure μ : ΣX → R
+ . We occasionally

abbreviate this to
∫

A
f dμ if omitting the variable of integration is convenient.

We omit the region of integration A when it is the whole space X.
We rely on the following lemmas concerning the equality of integrals. Tonelli’s

theorem allows changing the order of integration of non-negative functions. Since
all of our integrands are non-negative, it suits our needs better than Fubini’s
theorem. In particular, Tonelli’s theorem holds even when the functions can
attain infinite values as well as when the integrals are infinite.

372 R. Culpepper and A. Cobb

Lemma 1 (Tonelli). If (X,ΣX) and (Y,ΣY) are measurable spaces and μX

and μY are σ-finite measures on X and Y , respectively, and f : X × Y → R
+ is

measurable, then
∫

X

(∫

Y

f(x, y) μY (dy)
)

μX(dx) =
∫

Y

(∫

X

f(x, y) μX(dx)
)

μY (dy)

The other main lemma we rely on equates two integrals when the functions
and measures may not be the same but are nonetheless related. In particular,
there must be a relation such that the measures agree on related sets and the
functions have related pre-images—that is, the relation specifies a “coarser”
structure on which the measures and functions agree. This lemma is essential
for showing the observable equivalence of measures derived from syntactically
different expressions.

Lemma 2 (Coarsening). Let (X,ΣX) be a measurable space, M ⊆ (ΣX×ΣX)
be a binary relation on measurable sets, μ1, μ2 : ΣX → R

+ be measures on X,
and f1, f2 : X → R

+ be measurable functions on X. If the measures agree on
M -related sets and if the functions have M -related pre-images—that is,

– ∀(A1, A2) ∈ M, μ1(A1) = μ2(A2)
– ∀B ∈ ΣR, (f−1

1 (B), f−1
2 (B)) ∈ M

then their corresponding integrals are equal:
∫

f1 dμ1 =
∫

f2 dμ2

Proof. Together the two conditions imply that

∀B ∈ ΣR, μ1(f−1
1 (B)) = μ2(f−1

2 (B))

We apply this equality after rewriting the integrals using the “layer cake” per-
spective to make the pre-images explicit [11].

∫

f1 dμ1 =
∫ ∞

0

μ1(f−1
1 ([t,∞])) dt

=
∫ ∞

0

μ2(f−1
2 ([t,∞])) dt

=
∫

f2 dμ2

	

Even though in the proof we immediately dispense with the intermediate

relation M , we find it useful in the applications of the lemma to identify the
relationship that justifies the agreement of the functions and measures.

A useful special case of Lemma 2 is when the measures are the same and the
relation is equality of measure.

Lemma 3. Let f, g : X → R
+ and let μX be a measure on X. If ∀B ∈

ΣR, μX(f−1(B)) = μX(g−1(B)), then
∫

f dμ =
∫

g dμ.

Proof. Special case of Lemma 2. 	

Contextual Equivalence for Probabilistic Programs 373

Fig. 1. Syntax

Fig. 2. Type rules

4 Syntax and Semantics

This section presents the syntax and semantics of a language for probabilistic
programming, based on a functional core extended with real arithmetic and
stochastic effects.

We define the semantics of this language in two stages. We first define a big-
step evaluation relation based on an idealized sampler with likelihood weighting;
the evaluation rules consult an “entropy source” which determines the random
behavior of a program. From this sampling semantics we then construct an
aggregate view of the program as a measure on syntactic values. Contextual
equivalence is defined in terms of these value measures.

4.1 Syntax

Figure 1 presents the syntax of our core probabilistic programming language.
The language consists of a simply-typed lambda calculus extended with real
arithmetic and two effects: a sample form for random behavior and a factor
form for expressing observations and soft constraints. Figure 2 gives the type
rules for the language.

The sample form returns a real number uniformly distributed between 0 and
1. We assume inverse-CDF and PDF operations—used to produce samples and
score observations, respectively—for every primitive real-valued distribution of
interest. Recall from Sect. 2 that sampling a normal random variable is accom-
plished as follows:

374 R. Culpepper and A. Cobb

normal m s � m + s ∗ normalinvcdf(sample)

and observing a normal random variable is expressed thus:

factor (normalpdf((data − m) ÷ s) ÷ s)

A Note on Notation: We drop the type annotations on bound variables when
they are obvious from the context, and we use syntactic sugar for local bindings
and sequencing; for example, we write

let x = sample in factor 1 ÷ x ; x

instead of

(λ x : R. ((λ : R. x) (factor 1 ÷ X))) sample

4.2 Evaluation Relation

If we interpret evaluation as idealized importance sampling, the evaluation rela-
tion tells us how to produce a single sample given the initial state of the random
number generator. Evaluation is defined via the judgment

σ � e ⇓ v, w

where σ ∈ S is an entropy source, e is the expression to evaluate, v is the resulting
value, and w ∈ R

≥0 is the likelihood weight (Fig. 3).
The σ argument acts as the source of randomness—evaluation is a deter-

ministic function of e and σ. Rather than threading σ through evaluation like
a store, rules with multiple sub-derivations split the entropy. The indexed fam-
ily of functions πi : S → S splits the entropy source into independent pieces
and πU : S → [0, 1] extracts a real number on the unit interval. We discuss the
structure of the entropy space further in Sect. 4.3.

The result of evaluation is a closed value: either a real number or a closed
λ-expression. Let [[τ]] be the set of all closed values of type τ . We consider [[τ]] a
measurable space with a σ-algebra Σ[[τ]]. See the comments on measurability at
the end of this section. Note that the σ-algebras for function types are defined
on syntactic values, not for mathematical functions, so we avoid the issues con-
cerning measurable function spaces [20].

The evaluation rules for the language’s functional fragment are unsurprising.
For simple expressions, the entropy is ignored and the likelihood weight is 1.
For compound expressions, the entropy is split and sent to sub-expression eval-
uations, and the resulting weights are multiplied together. We assume a partial
function δ that interprets the primitive operations.1 For example, δ(+, 1, 2) = 3
and δ(÷, 4, 0) is undefined.

The rule for sample extracts a real number uniformly distributed on the unit
interval [0, 1]. The factor form evaluates its subexpression and interprets it as a

1 No relation to the Dirac measure, also often written δ.

Contextual Equivalence for Probabilistic Programs 375

Fig. 3. Evaluation rules

likelihood weight to be factored into the weight of the current execution—but
only if it is positive.

There are two ways evaluation can fail:

– the argument to factor is zero or negative
– the δ function is undefined for an operation with a particular set of arguments,

such as for 1 ÷ 0 or log(−5)

The semantics does not distinguish these situations; in both cases, no evaluation
derivation tree exists for that particular combination of σ and e.

4.3 Entropy Space

The evaluation relation of Sect. 4.2 represents evaluation of a probabilistic pro-
gram as a deterministic partial function of points in an entropy space S. To
capture the meaning of a program, we must consider the aggregate behavior
over the entire entropy space. That requires integration, which in turn requires
a measurable space (ΣS) and a base measure on entropy (μS : ΣS → R

+).
The entropy space must support our formulation of evaluation, which roughly

corresponds to the following transformation:

x1 ∼ D1

...
xn ∼ Dn

⇒
σ ∼ μS

x1 = invcdfD1(π1(σ))
...

xn = invcdfDn
(πn(σ))

The entropy space and its associated functions are ours to choose, provided
they satisfy the following criteria:

376 R. Culpepper and A. Cobb

– It must be a probability space. That is, μS(S) = 1.
– It must be able to represent common real-valued random variables. It is suf-

ficient to support a standard uniform—that is, a random variable uniformly
distributed on the interval [0, 1]. Other distributions can be represented via
the inverse-CDF transformation.

– It must support multiple independent random variables. That is, the entropy
space must be isomorphic—in a measure-preserving way—to products of itself:
S ∼= S

2 ∼= S
n (n ≥ 1).

The following specification formalizes these criteria.

Definition 4 (Entropy). (S, ΣS) is a measurable space with measure μS :
ΣS → R

+ and functions

πU : S → [0, 1]
πL, πR : S → S

such that the following integral equations hold:

– μS(S) = 1, and thus for all k ∈ R
+,

∫
k μS(dσ) = k,

– for all measurable functions f : [0, 1] → R
+,

∫

f(πU (σ)) μS(dσ) =
∫

[0,1]

f(x) λ(dx)

where λ is the Lebesgue measure, and
– for all measurable functions g : S × S → R

+,
∫

g(πL(σ), πR(σ)) μS(dσ) =
∫∫

g(σ1, σ2) μS(dσ1) μS(dσ2)

That is, πU interprets the entropy as a standard uniform random variable,
and πL and πR split the entropy into a pair of independent parts and return the
first or second part, respectively. We generalize from two-way splits to indexed
splits via the following family of functions:

Definition 5 (πi). Let πi : S → S be the family of functions defined thus:

π1(σ) = πL(σ)
πn+1(σ) = πn(πR(σ))

Definition 5 is “wasteful”—for any n ∈ N, using only π1(σ) through πn(σ)
discards part of the entropy—but that does not cause problems, because the
wasted entropy is independent and thus integrates away. Thus the a generalized
entropy-splitting identity holds for measurable f : Sn → R

+:
∫

f(π1(σ), · · · , πn(σ)) μS(dσ) =
∫

· · ·
∫

f(σ1, · · · , σn) μS(dσ1) · · · μS(dσn)

Contextual Equivalence for Probabilistic Programs 377

Our preferred concrete representation of S is the countable product of unit
intervals, [0, 1]ω, sometimes called the Hilbert cube. The πL, πR, and πU func-
tions are defined as follows:

πL(〈u0, u1, u2, u3, . . . 〉) = 〈u0, u2, . . . 〉
πR(〈u0, u1, u2, u3, . . . 〉) = 〈u1, u3, . . . 〉
πU (〈u0, u1, u2, u3, . . . 〉) = u0

The σ-algebra ΣS is the Borel algebra of the product topology (cf Tychonoff’s
Theorem). The basis of the product topology is the set of products of intervals,
only finitely many of which are not the whole unit interval U = [0, 1]:

{(
k∏

i=1

(ai, bi)

)

× Uω | 0 ≤ ai ≤ bi ≤ 1, k ∈ N

}

We define the measure μS on a basis element as follows:

μS

((
k∏

i=1

(ai, bi)

)

× Uω

)

=
k∏

i=1

(bi − ai)

That uniquely determines the measure μS : ΣS → R
+ by the Carathéodory

extension theorem.
Another representation of entropy is the Borel space on [0, 1] with (restricted)

Lebesgue measure and bit-splitting πL and πR. In fact, both of these represen-
tations are examples of standard atomless probability spaces, and all such spaces
are isomorphic (modulo null sets). In the rest of the paper, we rely only on the
guarantees of Definition 4, not on the precise representation of S.

4.4 Measure Semantics

We represent the aggregate behavior of a closed expression as a measure,
obtained by integrating the behavior of the evaluation relation over the entropy
space. If � e : τ then μe : Σ[[τ]] → R

+ is the value measure of e, defined as
follows:

Definition 6 (Value Measure)

μe(V) =
∫

evalin(e, V, σ) μS(dσ)

evalin(e, V, σ) = IV (ev(e, σ)) · ew(e, σ)

ev(e, σ) =

{
v if σ � e ⇓ v, w

⊥ otherwise

ew(e, σ) =

{
w if σ � e ⇓ v, w

0 otherwise

378 R. Culpepper and A. Cobb

The evaluation relation σ � e ⇓ v, w is a partial function of (σ, e)—non-
deterministic behavior is represented as deterministic dependence on the entropy
σ. From this partial function we define a total evaluation function ev(e, σ) and a
total weighting function ew(e, σ). The evalin(e, V, σ) function takes a measurable
outcome set of interest and checks whether the result of evaluation falls within
that set. If so, it produces the weight of the evaluation; otherwise, it produces
0. We write IX for the indicator function for X, which returns 1 if its argument
is in X and 0 otherwise.

Integrating evalin(e, V, σ) over the entire entropy space yields the value mea-
sure μe. Strictly speaking, the definition above defines μe as a measure on [[τ]]⊥,
but since ev(e, σ) = ⊥ only when ew(e, σ) = 0, μe never assigns any weight to
⊥ and thus we can consider it a measure on [[τ]].

The following theorem shows that the value measure is an adequate repre-
sentation of the behavior of a program.

Theorem 7. Let f : [[τ]] → R
+ be measurable, and let � e : τ . Then

∫

f(v) μe(dv) =
∫

f(ev(e, σ)) · ew(e, σ) μS(dσ)

Proof. First consider the case where f is an indicator function IX :
∫

f(v) μe(dv) =
∫

IX(v) μe(dv) (f = IX)

= μe(X) (integral of indicator function)

=
∫

IX(ev(e, σ)) · ew(e, σ) μS(dσ) (Definition 6)

=
∫

f(ev(e, σ)) · ew(e, σ) μS(dσ) (f = IX)

The equality extends to simple functions—linear combinations of characteristic
functions—by the linearity of integration and to measurable functions as the
suprema of sets of simple functions. 	

Measurability. For the integral defining μe(V) to be well-defined, evalin
(e, V, σ) must be measurable when considered as a function of σ. Furthermore, in
later proofs we will need the ev(·, ·) and ew(·, ·) functions to be measurable with
respect to the product space on their arguments. More precisely, if we consider
a type-indexed family of functions

evτ : Expr[[τ]] × S → [[τ]]

then we need each evτ to be measurable in Σ[[τ]] with respect to the product
measurable space ΣExpr[[τ]] × ΣS, and likewise for ewτ . Note that the space of

Contextual Equivalence for Probabilistic Programs 379

values [[τ]] is a subset of the expressions Expr[[τ]], so we can take Σ[[τ]] to be
ΣExpr[[τ]] restricted to the values. But we must still define ΣExpr[[τ]] and show the
functions are measurable.

We do not present a direct proof of measurability in this paper. Instead,
we rely again on Borgström et al. [3]: we treat their language, for which they
have proven measurability, as a meta-language. Interpreters for the ev and ew
functions of our language can be written as terms in this meta-language, and
thus their measurability result can be carried over to our language. We take
S = [0, 1] and extend the meta-language with the measurable functions πL, πR,
and πU . The definition of ΣExpr[[τ]] is induced by the encoding function that
represents our object terms as values in their meta-language and the structure
of their measurable space of expressions.

4.5 Digression: Interpretation of Probabilistic Programs

In general, the goal of a probabilistic programming language is to interpret
programs as probability distributions.

If a program’s value measure is finite and non-zero, then it can be normal-
ized to yield a probability distribution. The following examples explore different
classes of such programs:

– Continuous measures: sample, normalinvcdf(sample), etc.
– Discrete measures: if sample < 0.2 then 1 else 0
– Sub-probability measures:

let x = normalinvcdf(sample) in if x < 0 then factor 0 else x

– Mixtures of discrete and continuous: for example,

let x = sample in if x < 0.5 then 0 else x

has a point mass at 0 and is continuous on (0.5, 1).

Our language, however, includes programs that have no interpretation as
distributions:

– Zero measure: factor 0
– Infinite (but σ-finite) measures. For example,

let x = sample in factor (1 ÷ x) ; x

has infinite measure because
∫ 1

0
1
x dx is infinite. But the measure is σ-finite

because each interval [1n , 1] has finite measure and the union of all such inter-
vals covers (0, 1], the support of the measure.

– Non-σ-finite measures. For example,

let x = sample in factor (1 ÷ x) ; 0

has μ(0) = ∞. (We conjecture that all value measures definable in this lan-
guage are either σ-finite or have a point with infinite weight.)

380 R. Culpepper and A. Cobb

Fig. 4. Contexts

Zero measures indicate unsatisfiable constraints; more precisely, the set of
successful evaluations may not be empty, merely measure zero.

Infinite value measures arise only from the use of factor; the value measure
of a program that does not contain factor is always a sub-probability measure.
It may not be a probability measure—recall that 1 ÷ 0 and factor 0 both cause
execution to fail. We could eliminate infinite-measure programs by sacrificing
expressiveness. For example, if the valid arguments to factor were restricted to
the range (0, 1], as in Börgstrom et al. [3], only sub-probability measures would
be expressible. But there are good reasons to allow factor with numbers greater
than 1, such as representing the observation of a normal random variable with
a small variance—perhaps a variance computed from another random variable.
There is no simple syntactic rule that excludes the infinite-measure programs
above without also excluding some useful applications of factor.

Note that the theorems in this paper apply to all programs, regardless of
whether they can be interpreted as probability distributions. In particular, we
apply Lemma 1 (Tonelli) only to integrals over μS, which is finite.

4.6 Contextual Equivalence

Two expressions are contextually equivalent (=ctx) if for all closing program
contexts C their observable aggregate behavior is the same. We take programs
to be real-valued closed expressions; their observable behavior consists of their
value measures (ΣR → R

+).
Figure 4 defines contexts and their relationship with type environments. The

relation C : Γ means that C provides bindings satisfying Γ to the expression
placed in its hole.

Definition 8 (Contextual equivalence) If Γ � e1 : τ and Γ � e2 : τ , then
e1 and e2 are contextually equivalent (e1 =Γ

ctx e2) if and only if for all contexts
C such that C : Γ and � C[e1] : R and � C[e2] : R and for all measurable sets
A ∈ ΣR,

μC[e1](A) = μC[e2](A)

Instances of contextual equivalence are difficult to prove directly because of
the quantification over all syntactic contexts.

Contextual Equivalence for Probabilistic Programs 381

Fig. 5. Logical relation and auxiliary relations

5 A Logical Relation for Contextual Equivalence

In this section we develop a logical relation for proving expressions contextually
equivalent. Membership in the logical relation implies contextual equivalence
but is easier to prove directly. We prove soundness via compatibility lemmas,
one for each kind of compound expression. The fundamental property (a form of
reflexivity) enables simplifications to the logical relation that we take advantage
of in Sect. 6 when applying the relation to particular equivalences.

Figure 5 defines the relation

Γ � e1 ≈ e2 : τ

and its auxiliary relations (Definition 9). In a deterministic language, we would
construct the relation so that two expressions are related if they produce related
values when evaluated with related substitutions. In our probabilistic language,
two expressions are related if they have related value measures when evaluated
with related substitutions. (The notation e·γ indicates the substitution γ applied
to the expression e.)

The ≈ relation depends on the following auxiliary relations:

– V[[τ]] relates closed values of type τ . Real values are related if they are identical,
and functions are related if they take related inputs to related evaluation
configurations (E [[τ]]).

– G[[Γ]] relates substitutions. Variables are mapped to related values.
– E [[τ]] relates closed expressions. Expressions are related if their value measures

agree on measurable sets related by A[[τ]].
– A[[τ]] relates measurable sets of values.

382 R. Culpepper and A. Cobb

When comparing value measures, we must not demand complete equality of
the measures; instead, we only require that they agree on V[[τ]]-closed measurable
value sets. To see why, consider the expressions λx. x + 2 and λx. x + 1 + 1. As
values, they are related by V[[R → R]]. As expressions, we want them to be
related by E [[R → R]], but their value measures are not identical; they are Dirac
measures on different—but related—syntactic values. In particular:

– μλx. x+2({λx. x + 2}) = 1, but
– μλx. x+1+1({λx. x + 2}) = 0

The solution is to compare measures only on related measurable sets. For every
value in the set given to the first measure, we must include every related value
in the set given to the second measure (and vice versa). This relaxation on mea-
sure equivalence preserves the spirit of “related computations produce related
results.”

Lemma 10 (Symmetry and transitivity). V[[τ]], G[[Γ]], E [[τ]], A[[τ]], and ≈
are symmetric and transitive.

Proof. The symmetry and transitivity of ≈ and G follow from that of E and V.
We prove symmetry and transitivity of V[[τ]], E [[τ]], and A[[τ]] simultaneously

by induction on τ . For a given τ , the properties of E [[τ]] and A[[τ]] follow from
V[[τ]]. The R case is trivial. Transitivity for V[[τ ′ → τ]] is subtle; given (v1, v3) ∈
V[[τ ′]], we must find a v2 such that (v1, v2) ∈ V[[τ ′]] and (v2, v3) ∈ V[[τ ′]] in order
to use transitivity of E [[τ]] (induction hypothesis). But we can use symmetry and
transitivity of V[[τ ′]] (also induction hypotheses) to show (v1, v1) ∈ V[[τ ′]], so v1
is a suitable value for v2. 	

The reflexivity of V, E , G, and ≈ is harder to prove. In fact, it is a corollary
of the fundamental property of the logical relation (Theorem15).

5.1 Compatibility Lemmas

The compatibility lemmas show that expression pairs built from related compo-
nents are themselves related. Equivalently, they allow the substitution of related
expressions in single-frame contexts. Given the compatibility lemmas, sound-
ness with respect to contextual equivalence with arbitrary contexts is a short
inductive hop away.

Lemma 11 (Lambda Compatibility).

Γ, x : τ ′ � e1 ≈ e2 : τ

Γ � (λx : τ ′. e1) ≈ (λx : τ ′. e2) : τ ′ → τ

Proof. Let (γ1, γ2) ∈ G[[Γ]]. We must prove that λx. ei ·γi are in E [[τ ′ → τ]]—that
is, the corresponding value measures μλx. ei·γi

agree on all (A1, A2) ∈ A[[τ ′ → τ]].
The value measure μλx. ei·γi

is concentrated at λx. ei · γi with weight 1, so
the measures are related if those closures are related in V[[τ ′ → τ]]. That in turn
requires that (ei ·γi) [x �→ vi] be related in E [[τ]] for (v1, v2) ∈ V[[τ ′]]. That follows
from Γ, x : τ ′ � e1 ≈ e2 : τ , instantiated at [γi, x �→ vi]. 	

Contextual Equivalence for Probabilistic Programs 383

Lemma 12 (App Compatibility).

Γ � e1 ≈ e2 : τ ′ → τ Γ � e′
1 ≈ e′

2 : τ ′

Γ � e1 e′
1 ≈ e2 e′

2 : τ

Proof. By the premises, the μei·γi
measures agree on A[[τ ′ → τ]], and the μe′

i·γi

measures agree on A[[τ ′]]. Our strategy is to use Lemma 2 (Coarsening) to rewrite
the integrals after unpacking the definition of the value measures and the App
rule. The applyin function defined as follows

applyin(λx. e, v′, A, σ) = evalin(e [x �→ v′] , A, σ)

is useful for expressing the unfolding of the App rule.
Let (γ1, γ2) ∈ G[[Γ]]. We must prove the expressions (ei e′

i) · γi are in E [[τ]].
After unfolding E and introducing (A1, A2) ∈ A[[τ]], we must show the cor-

responding value measures agree:

μ(e1 e′
1)·γ1(A1) = μ(e2 e′

2)·γ2(A2)

We rewrite each side as follows:

μ(ei e′
i)·γi

(Ai)

=
∫

evalin((ei e′
i) · γi, Ai, σ) μS(dσ) (by Definition 6)

=
∫

applyin(ev(ei · γi, π1(σ)), ev(e′
i · γi, π2(σ)), Ai, π3(σ))

· ew(ei · γi, π1(σ)) · ew(e′
i · γi, π2(σ)) μS(dσ)

(by App)

=
∫∫∫

applyin(ev(ei · γi, σ1), ev(e′
i · γi, σ2), Ai, σ3)

· ew(ei · γi, σ1) · ew(e′
i · γi, σ2) μS(dσ3) μS(dσ2) μS(dσ1)

(by Proposition 4)

=
∫∫∫

applyin(v, v′, Ai, σ3) μS(dσ3) μe′
i·γi

(dv′) μei·γi
(dv) (by Theorem 7)

After rewriting both sides, we have the goal
∫∫∫

applyin(v, v′, A1, σ) μS(dσ) μe′
1·γ1(dv′) μe1·γ1(dv)

=
∫∫∫

applyin(v, v′, A2, σ) μS(dσ) μe′
2·γ2(dv′) μe2·γ2(dv)

We show this equality via Lemma 2 (Coarsening) using the binary relation
A[[τ ′ → τ]]. By the induction hypothesis we have that μe1·γ1 , μe2·γ2 agree on
sets in A[[τ ′ → τ]]. That leaves one other premise to discharge: the functions

384 R. Culpepper and A. Cobb

must have related pre-images. Let B ∈ ΣR. We must show the pre-images are
related by A[[τ ′ → τ]], where each pre-image is

(

v �→
∫∫

applyin(v, v′, Ai, σ) μS(dσ) μe′
i·γi

(dv′)
)−1

(B)

To show that the function pre-images are in A[[τ ′ → τ]], we show something
stronger: for related values the function values are the same.

Let (v1, v2) ∈ V[[τ ′ → τ]]. We will show that
∫∫

applyin(v1, v′, A1, σ) μS(dσ) μe′
1·γi

(dv′)

=
∫∫

applyin(v2, v′, A2, σ) μS(dσ) μe′
2·γi

(dv′)

We show this by again applying Lemma2 (Coarsening), this time with the rela-
tion A[[τ ′]]. Again, the induction hypothesis tells us that the measures μe′

i·γi

agree on sets in A[[τ ′]]. We follow the same strategy for showing the function
pre-images related. Let (v′

1, v
′
2) ∈ V[[τ ′]]. We must show

∫

applyin(v1, v′
1, A1, σ) μS(dσ) =

∫

applyin(v2, v′
2, A2, σ) μS(dσ)

Since v1, v2 : τ ′ → τ , they must be abstractions. Let v1 = λx : τ ′. e′′
1 and likewise

for v2. Then the goal reduces to
∫

evalin(e′′
1 [x �→ v′

1] , A1, σ) μS(dσ) =
∫

evalin(e′′
2 [x �→ v′

2] , A2, σ) μS(dσ)

That is, by the definition of value measure, the following:

μe′′
1 [x�→v′

1](A1) = μe′′
2 [x�→v′

2](A2)

That follows from (v1, v2) ∈ V[[τ ′ → τ]] and the definitions of V and E . 	

Lemma 13 (Op Compatibility).

Γ � ei ≈ e′
i : τi opn : (τ1, · · · , τn) → τ

Γ � opn(e1, · · · , en) ≈ opn(e′
1, · · · , e′

n) : τ

Proof. Similar to but simpler than Lemma12. Since all operations take real-
valued arguments, this proof does not rely on Lemma2. We rely on the fact that
δ, the function that interprets primitive operations, takes related arguments to
related results, which holds trivially because reals are related only when they
are identical. 	

Lemma 14 (Factor Compatibility).

Γ � e ≈ e′ : R
Γ � factor e ≈ factor e′ : R

Proof. Similar to Lemma 13. 	

Contextual Equivalence for Probabilistic Programs 385

5.2 Fundamental Property

Theorem 15 (Fundamental Property). If Γ � e : τ then Γ � e ≈ e : τ .

Proof. By induction on Γ � e : τ .

– Case x. Let (γ1, γ2) ∈ G[[Γ]]. We must prove the value measures μx·γi
agree on

related (A1, A2) ∈ A[[τ]]. The measures are concentrated on γi(x) with weight
1, so they agree if those values are related by V[[τ]], which they do because the
substitutions are related by G[[Γ]].

– Case r. The value measures are identical Dirac measures concentrated at r.
– Case sample. The value measures are identical.
– Case λx : τ1. e2. By Lemma 11.
– Case e e′. By Lemma 12.
– Case opn(e1, · · · , en). By Lemma 13.
– Case factor e. By Lemma 14.

	

Corollary 16 (Reflexivity). V[[τ]], G[[Γ]], and E [[τ]] are reflexive.

One consequence of the fundamental property is that the A[[τ]], a binary rela-
tion on measurable sets, is the least reflexive relation on measurable sets closed
under the V[[τ]] relation. We define A′[[τ]] as the collection of V[[τ]]-closed mea-
surable sets. To show two expressions related by E [[τ]] it is sufficient to compare
their corresponding measures applied to sets in A′[[τ]].

Definition 17.

A ∈ A′[[τ]] ⇐⇒ A ∈ Σ[[τ]] ∧ ∀(v1, v2) ∈ V[[τ]], (v1 ∈ A ⇐⇒ v2 ∈ A)

Lemma 18. If (A1, A2) ∈ A[[τ]] then A1 = A2, and if A ∈ A′[[τ]] then (A,A) ∈
A[[τ]].

Proof. By reflexivity of V. 	

Corollary 19.

(e1, e2) ∈ E [[τ]] ⇐⇒ ∀A ∈ A′[[τ]], μe1(A) = μe2(A)

Another consequence of the fundamental property is that to prove two expres-
sions related by ≈ it suffices to show that they are E [[τ]]-related when paired with
the same arbitrary substitution.

Lemma 20 (Same Substitution Suffices). If Γ � e1 : τ and Γ � e2 : τ ,
and if (e1 · γ, e2 · γ) ∈ E [[τ]] for all γ |= Γ , then Γ � e1 ≈ e2 : τ .

Proof. Let (γ1, γ2) ∈ G[[Γ]]; we must show (e1 · γ1, e2 · γ2) ∈ E [[τ]]. The premise
gives us (e1 · γ1, e2 · γ1) ∈ E [[τ]], and we have (e2 · γ1, e2 · γ2) ∈ E [[τ]] from
the fundamental property (Theorem15) for e2. Finally, transitivity (Lemma10)
yields (e1 · γ1, e2 · γ2) ∈ E [[τ]]. 	

Together, Lemmas 19 and 20 simplify the task of proving instances of ≈ via
arguments about the shape of big-step evaluations and entropy pre-images, as
we will see in Sect. 6.

386 R. Culpepper and A. Cobb

5.3 Soundness

The logical relation is sound with respect to contextual equivalence.

Theorem 21 (Soundness). If Γ � e1 ≈ e2 : τ , then e1 =Γ
ctx e2.

Proof. First show � C[e1] ≈ C[e2] : R by induction on C, using the compati-
bility Lemmas (11–14). Then unfold the definitions of ≈ and E [[R]] to get the
equivalence of the measures. 	

In the next section, we demonstrate the utility of the logical relation by
proving a few example equivalences.

6 Proving Equivalences

Having shown that ≈ is sound with respect to =ctx, we can now prove instances of
contextual equivalence by proving instances of the ≈ relation in lieu of thinking
about arbitrary real-typed syntactic contexts.

Specific equivalence proofs fall into two classes, which we characterize as
structural and deep based on the kind of reasoning involved. Structural equiv-
alences include βv and commutativity of expressions. In a structural equiva-
lence, the same evaluations happen, just in different regions of the entropy
space because the access patterns have been shuffled around. Deep equiva-
lences include conjugacy relationships and other facts about probability dis-
tributions; they involve interactions between intermediate measures and math-
ematical operations. Deep equivalences are a lightweight form of denotational
reasoning restricted to the ground type R.

6.1 Structural Equivalences

The first equivalence we prove is βv, the workhorse of call-by-value functional
programming. Unrestricted β conversions (call-by-name) do not preserve equiva-
lence in this language, of course, because they can duplicate (or eliminate) effects.
But there is another subset of β conversions, which we call βS , that moves arbi-
trary effectful expressions around while avoiding duplication. In particular, βS

permits the reordering of expressions in a way that is unsound for languages
with mutation and many other effects but sound for probabilistic programming.

Theorem 22 (βv). If Γ � (λx. e) v : τ , then Γ � (λx. e) v ≈ e[x �→ v] : τ .

We present two proofs of this theorem. The first proof shows a correspondence
between evaluation derivations for the redex and contractum.

Proof (by derivation correspondence). For simplicity we assume that the bound
variables of λx. e are unique and distinct from the domain of Γ ; thus the sub-
stitution e [x �→ v] does not need to rename variables to avoid capturing free
references in v.

Contextual Equivalence for Probabilistic Programs 387

Let γ |= Γ and let A ∈ A′[[τ]]. By Lemmas 19 and 20, it is sufficient to show
that

μ((λx. e) v)·γ(A) = μ(e[x�→v])·γ(A)

that is,
∫

evalin(((λx. e) v) · γ,A, σ) μS(dσ) =
∫

evalin((e [x �→ v]) · γ,A, σ) μS(dσ)

By Lemma 3, it suffices to show that for all W ∈ ΣR, the entropy pre-images
have the same measure. That is,

μS(evalin(((λx. e) v) · γ,A, ·)−1(W)) = μS(evalin((e [x �→ v]) · γ,A, ·)−1(W))

Every evaluation of ((λx. e) v) · γ has the following form:

π1(σ) � λx. e · γ ⇓ λx. e · γ, 1

π2(σ) � v · γ ⇓ v · γ, 1

σ′ � v · γ ⇓ v · γ, 1
···

π3(σ) � (e [x �→ v]) · γ ⇓ vr, w
Δ1

σ � ((λx. e) v) · γ ⇓ vr, w

The application of the λ-expression and the syntactic value argument are both
trivial. The evaluation of the body expression depends on e; it contains zero
or more leaf evaluations of x yielding v · γ. These leaf evaluations ignore their
entropy argument and have weight 1. We refer to the structure of the e evaluation
as Δ1.

Likewise, every evaluation derivation of (e [x �→ v])·γ has the following form:

σ′′ � v · γ ⇓ v · γ, 1
···

σ � (e [x �→ v]) · γ ⇓ vr, w
Δ2

Δ2 has exactly the same structure as Δ1. Consequently, the two expressions
evaluate the same if Δ1 and Δ2 receive the same entropy. In short:

σ � ((λx. e) v) · γ ⇓ vr, w ⇐⇒ π3(σ) � (e [x �→ v]) · γ ⇓ vr, w

Let S1, S2 ⊆ S be the entropy pre-images of the two expressions:

S1 = evalin(((λx. e) v) · γ,A, ·)−1(W)

S2 = evalin((e [x �→ v]) · γ,A, ·)−1(W)

We conclude that S1 = π−1
3 (S2) and thus the pre-images have the same measure.

	

388 R. Culpepper and A. Cobb

The second proof rewrites the measure of the redex into that of the contrac-
tum using integral identities.

Proof (by integral rewriting). As in the first proof, let γ |= Γ and A ∈ A′[[τ]]. It
will be sufficient to show that

μ((λx. e) v)·γ(A) = μ(e[x�→v])·γ(A)

Using the same steps as in Lemma 12, we can express the value measure of
an application as an integral by the value measures of its subexpressions.

μ((λx. e) v)·γ(A) =
∫∫∫

applyin(v′, v′′, A, σ) μS(dσ) μv·γ(dv′′) μλx. e·γ(dv′)

Both the subexpressions λx. e · γ and v · γ are values, so their value measures
are Dirac. We complete the proof using the fact that integration by a Dirac
measure is equivalent to substitution.

=
∫∫∫

applyin(v′, v′′, A, σ) μS(dσ) diracv·γ(dv′′) diracλx. e·γ(dv′)

=
∫

applyin(λx. e · γ, v · γ,A, σ) μS(dσ) (integration by Dirac)

=
∫

evalin((e [x �→ v]) · γ,A, σ) μS(dσ) (definition of applyin)

= μ(e[x�→v])·γ(A) (definition of μe)

	

The second equivalence concerns reordering expression evaluations. In proba-

bilistic programming, factor and factor effects can be reordered, as long as they
are not duplicated or eliminated. We define simple contexts, a generalization
of evaluation contexts, as a class of contexts that an expression may be moved
through without changing the number of times it is evaluated.

Definition 23 (Simple Contexts).

S ::= [] | S e | e S | (λx. S) e | op(e, · · · , S, e, · · ·) | factor S

Note that (λx. S) e can also be written let x = e in S.

Theorem 24 (Substitution into Simple Context). If Γ � (λx. S[x]) e : τ
and x does not occur free in S, then Γ � (λx. S[x]) e ≈ S[e] : τ .

Proof. We can prove the following equivalence for a context S1 consisting of a
single frame, such as ([] e). For all λ-values f where Γ � S1[f e] : τ ,

Γ � (λx. S1[f x]) e ≈ S1[f e] : τ

The proof is similar to that of Theorem22, but see also below.

Contextual Equivalence for Probabilistic Programs 389

The proof for arbitrary S contexts proceeds by induction on S. The base
case, Γ � (λx. x) e ≈ e : τ , is easily proven directly. For the inductive case:

Γ � (λx. S1[S[x]]) e ≈ (λx. S1[(λy. S[y]) x]) e (by Theorem 22)

≈ S1[(λy. S[y]) e] (by single-frame case)

≈ S1[S[e]] (by IH and compatibility of S1)

	

The βS and βv theorems together show that the following terms are

equivalent:

– let x = e1, y = e2 in body
– let y = e2, x = e1 in body

First e2 is lifted to the outside with βS to get let z = e2, x = e1, y = z in body.
Then y is replaced with z in body using βv. Finally, the outer z is renamed back
to y.

This reordering can also be shown directly, and the proof is similar to the
S1 = (λx. []) e case above but simpler to present. It involves a generalization of
Lemma 1 (Tonelli).

We first apply the technique from the the second proof of Theorem22 to
express substitution as integration by value measures.

μ(λx. (λy. e3) e2) e1(A) =
∫

μ((λy. e3) e2)[x�→v1](A) μe1(dv1)

=
∫∫

μe3[x�→v1,y �→v2](A) μe2(dv2) μe1(dv1)

Doing the same to the other side, we now need to show that the order of inte-
gration is interchangable:
∫∫

µe3[x �→v1,y �→v2](A) µe2 (dv2) µe1 (dv1) =
∫∫

µe3[y �→v2,x �→v1](A) µe1 (dv1) µe2 (dv2)

Since μe1 and μe2 may not be σ-finite we cannot immediately apply Lemma 1.
Lemma 25 shows exchangability for value measures and completes the proof.

Lemma 25 (μe interchangable). If � e1 : τ1 and � e2 : τ2 then for all
measurable f : [[τ1]] × [[τ2]] → R

+,
∫∫

f(v1, v2) μe2(dv2) μe1(dv1) =
∫∫

f(v1, v2) μe1(dv1) μe2(dv2)

390 R. Culpepper and A. Cobb

Proof. Since integrals about μe can be expressed in terms of the σ-finite μS, we
can apply Lemma 1 (Tonelli) once we have exposed the underlying measures.

∫∫

f(v1, v2) μe2(dv2) μe1(dv1)

=
∫∫

f(ev(v1, σ1), ev(v2, σ2)) · ew(v2, σ2) μS(dσ2) · ew(v1, σ1) μS(dσ1)

(Theorem 7)

=
∫∫

f(ev(v1, σ1), ev(v2, σ2)) · ew(v2, σ2) · ew(v1, σ1) μS(dσ2) μS(dσ1)

(linearity of integration)

=
∫∫

f(ev(v1, σ1), ev(v2, σ2)) · ew(v1, σ1) · ew(v2, σ2) μS(dσ1) μS(dσ2)

(Lemma 1)

=
∫∫

f(v1, v2) μe1(dv1) μe2dv2

	

6.2 Deep Equivalences

In contrast to structural equivalences such as βv, deep equivalences rely on the
specific computations being performed and mathematical relationships between
them. They generally concern only expressions of ground type (R). Proving them
requires “locally denotational” reasoning about expressions and the real-valued
measures (or measure kernels, when free variables are present) they represent.

For example, the following theorem encodes the fact that the sum of two
normally-distributed random variables is normally distributed.

Theorem 26 (Sum of normals with variable parameters). Let

e1 = normal xm1 xs1 + normal xm2 xs2

e2 = normal (xm1 + xm2)
√

x2
s1

+ x2
s2

and let Γ (xm1) = Γ (xm2) = Γ (xs1) = Γ (xs2) = R. Then Γ � e1 ≈ e2 : R.

Proof. Let (γ1, γ2) ∈ G[[Γ]]. Since xm1 , xm2 , xs have ground type, the substitu-
tions agree on their values: let m1 = γ1(xm1) = γ2(xm1) and likewise for m2, s1,
and s2.

We must show (e1 · γ1, e2 · γ2) ∈ E [[R]]; that is, μe1·γ1(A) = μe2·γ2(A) for all
A ∈ ΣR. The value measures of the normal expressions are actually the measures
of normally-distributed random variables. This reasoning relies on the meaning
assigned to the normalinvcdf operation as well as + and ∗; recall that

normal m s � m + s ∗ normalinvcdf(sample)

Then we apply the fact from probability that the sum of two normal random
variables is a normal random variable. 	

Contextual Equivalence for Probabilistic Programs 391

6.3 Combining Equivalences

The transitivity of the logical relation permits equivalence proofs to be decom-
posed into smaller, simpler steps, using the compatibility lemmas to focus in and
rewrite subexpressions of the main expression of interest.

Theorem 27 (Sum of normals). Let

e1 = normal em1 es1 + normal xm2 es1

e2 = normal (em1 + em2)
√

e2s1
+ e2s2

and let Γ � e1 : R and Γ � e2 : R. Then Γ � e1 ≈ e2 : R.

Proof. This theorem is just like Theorem 26 except with expressions instead of
variables for the parameters to the normal distributions. We use βS (Theorem 24)
“in reverse” to move the expressions out and replace them with variables, then
we apply the variable case (Theorem 26), then we use βS again to move the
parameter expressions back in. 	

7 Conclusion

We have defined a logical relation to help prove expressions contextually equiva-
lent in a probabilistic programming language with continuous random variables
and a scoring operation. We have proven it sound and demonstrated its useful-
ness with a number of applications to both structural equivalences like βv and
deep equivalences like the sum of normals.

Acknowledgments. We thank Amal Ahmed for her guidance on logical relations,
and we thank Theophilos Giannakopoulos, Mitch Wand, and Olin Shivers for many
helpful discussions and suggestions.

References

1. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Pitts, A.
(ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 279–294. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46678-0 18

2. Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., Gael, J.V.: Measure
transformer semantics for Bayesian machine learning. Log. Methods Comput. Sci.
9(3) (2013)

3. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: Conference Record of 21st ACM
International Conference on Functional Programming, September 2016

4. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M.A., Guo, J., Li, P., Riddell, A.: Stan: a probabilistic programming
language. J. Stat. Softw. 20, 1–30 (2016)

5. Culpepper, R.: Gamble (2015). https://github.com/rmculpepper/gamble

http://dx.doi.org/10.1007/978-3-662-46678-0_18
https://github.com/rmculpepper/gamble

392 R. Culpepper and A. Cobb

6. Edalat, A., Escardó, M.H.: Integration in real PCF. Inf. Comput. 160(1), 128–166
(2000)

7. Escardó, M.H.: PCF extended with real numbers. Theoret. Comput. Sci. 162(1),
79–115 (1996)

8. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: UAI, pp. 220–229 (2008)

9. Huang, D., Morrisett, G.: An application of computable distributions to the
semantics of probabilistic programming languages. In: Thiemann, P. (ed.) ESOP
2016. LNCS, vol. 9632, pp. 337–363. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49498-1 14

10. Kiselyov, O., Shan, C.: Embedded probabilistic programming. In: Taha, W.M. (ed.)
DSL 2009. LNCS, vol. 5658, pp. 360–384. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03034-5 17

11. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. American
Mathematical Society, Providence (1997)

12. Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: Winbugs - a Bayesian mod-
elling framework: concepts, structure, and extensibility. Stat. Comput. 10(4), 325–
337 (2000)

13. Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order probabilistic pro-
gramming platform with programmable inference, March 2014. http://arxiv.org/
abs/1404.0099

14. Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B.,
Spengler, A., Bronskill, J.: Infer.NET 2.6. Microsoft Research Cambridge (2014).
http://research.microsoft.com/infernet

15. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic infer-
ence by program transformation in hakaru (system description). In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 62–79. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-29604-3 5

16. Park, S., Pfenning, F., Thrun, S.: A probabilistic language based on sampling
functions. ACM Trans. Program. Lang. Syst. 31(1), 4:1–4:46 (2008)

17. Pfeffer, A.: Figaro: an object-oriented probabilistic programming language. Tech-
nical report, Charles River Analytics (2009)

18. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Conference Record of 29th ACM Symposium on Principles of
Programming Languages, pp. 154–165 (2002)

19. Sangiorgi, D., Vignudelli, V.: Environmental bisimulations for probabilistic higher-
order languages. In: Conference Record of 43rd ACM Symposium on Principles of
Programming Languages, POPL 2016, pp. 595–607 (2016)

20. Staton, S., Yang, H., Heunen, C., Kammar, O., Wood, F.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: Proceedings of 31st IEEE Symposium on Logic in Computer Sci-
ence (2016)

21. Wingate, D., Goodman, N.D., Stuhlmüller, A., Siskind, J.M.: Nonstandard inter-
pretations of probabilistic programs for efficient inference. In: Advances in Neural
Information Processing Systems, vol. 24 (2011)

22. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilis-
tic programming inference. In: Proceedings of 17th International Conference on
Artificial Intelligence and Statistics, pp. 1024–1032 (2014)

http://dx.doi.org/10.1007/978-3-662-49498-1_14
http://dx.doi.org/10.1007/978-3-662-49498-1_14
http://dx.doi.org/10.1007/978-3-642-03034-5_17
http://dx.doi.org/10.1007/978-3-642-03034-5_17
http://arxiv.org/abs/1404.0099
http://arxiv.org/abs/1404.0099
http://research.microsoft.com/infernet
http://dx.doi.org/10.1007/978-3-319-29604-3_5

Probabilistic Termination
by Monadic Affine Sized Typing

Ugo Dal Lago1,2(B) and Charles Grellois2

1 University of Bologna, Bologna, Italy
ugo.dallago@unibo.it

2 Inria, Sophia Antipolis, France
charles.grellois@inria.fr

Abstract. We introduce a system of monadic affine sized types, which
substantially generalise usual sized types, and allows this way to cap-
ture probabilistic higher-order programs which terminate almost surely.
Going beyond plain, strong normalisation without losing soundness turns
out to be a hard task, which cannot be accomplished without a richer,
quantitative notion of types, but also without imposing some affinity
constraints. The proposed type system is powerful enough to type clas-
sic examples of probabilistically terminating programs such as random
walks. The way typable programs are proved to be almost surely termi-
nating is based on reducibility, but requires a substantial adaptation of
the technique.

1 Introduction

Probabilistic models are more and more pervasive in computer science [1–3].
Moreover, the concept of algorithm, originally assuming determinism, has been
relaxed so as to allow probabilistic evolution since the very early days of theo-
retical computer science [4]. All this has given impetus to research on probabilis-
tic programming languages, which however have been studied at a large scale
only in the last twenty years, following advances in randomized computation [5],
cryptographic protocol verification [6,7], and machine learning [8]. Probabilistic
programs can be seen as ordinary programs in which specific instructions are
provided to make the program evolve probabilistically rather than deterministi-
cally. The typical example are instructions for sampling from a given distribution
toolset, or for performing probabilistic choice.

One of the most crucial properties a program should satisfy is termination:
the execution process should be guaranteed to end. In (non)deterministic com-
putation, this is easy to formalize, since any possible computation path is only
considered qualitatively, and termination is a Boolean predicate on programs:
any non-deterministic program either terminates – in must or may sense – or it

This work is partially supported by the ANR projects 12IS02001 PACE and
14CE250005 ELICA.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 393–419, 2017.
DOI: 10.1007/978-3-662-54434-1 15

394 U. Dal Lago and C. Grellois

does not. In probabilistic programs, on the other hand, any terminating compu-
tation path is attributed a probability, and thus termination becomes a quanti-
tative property. It is therefore natural to consider a program terminating when
its terminating paths form a set of measure one or, equivalently, when it ter-
minates with maximal probability. This is dubbed “almost sure termination”
(AST for short) in the literature [9], and many techniques for automatically
and semi-automatically checking programs for AST have been introduced in the
last years [10–13]. All of them, however, focus on imperative programs; while
probabilistic functional programming languages are nowadays among the most
successful ones in the realm of probabilistic programming [8]. It is not clear at all
whether the existing techniques for imperative languages could be easily applied
to functional ones, especially when higher-order functions are involved.

In this paper, we introduce a system of monadic affine sized types for a
simple probabilistic λ-calculus with recursion and show that it guarantees the
AST property for all typable programs. The type system, described in Sect. 4,
can be seen as a non-trivial variation on Hughes et al.’s sized types [14], whose
main novelties are the following:

• Types are generalised so as to be monadic, this way encapsulating the kind
of information we need to type non-trivial examples. This information, in
particular, is taken advantage of when typing recursive programs.

• Typing rules are affine: higher-order variables cannot be freely duplicated.
This is quite similar to what happens when characterising polynomial time
functions by restricting higher-order languages akin to the λ-calculus [15].
Without affinity, the type system is bound to be unsound for AST.

The necessity of both these variations is discussed in Sect. 2 below. The main
result of this paper is that typability in monadic affine sized types entails AST,
a property which is proved using an adaptation of the Girard-Tait reducibility
technique [16]. This adaptation is technically involved, as it needs substantial
modifications allowing to deal with possibly infinite and probabilistic compu-
tations. In particular, every reducibility set must be parameterized by a quan-
titative parameter p guaranteeing that terms belonging to this set terminate
with probability at least p. The idea of parameterizing such sets already appears
in work by the Dal Lago and Hofmann [17], in which a notion of realizability
parameterized by resource monoids is considered. These realizability models are
however studied in relation to linear logic and to the complexity of normalisa-
tion, and do not fit as such to our setting, even if they provided some crucial
inspiration. In our approach, the fact that recursively-defined terms are AST
comes from a continuity argument on this parameter: we can prove, by unfold-
ing such terms, that they terminate with probability p for every p < 1, and
continuity then allows to take the limit and deduce that they are AST. This
soundness result is technically speaking the main contribution of this paper, and
is described in Sect. 5.

An extended version with more details and proofs is available [18].

Probabilistic Termination by Monadic Affine Sized Typing 395

1.1 Related Works

Sized types have been originally introduced by Hughes et al. [14] in the context of
reactive programming. A series of papers by Barthe et al. [19–21] presents sized
types in a way similar to the one we will adopt here, although still for a deter-
ministic functional language. Contrary to the other works on sized types, their
type system is proved to admit a decidable type inference, see the unpublished
tutorial [20]. Abel developed independently of Barthe and colleagues a similar
type system featuring size informations [22]. These three lines of work allow poly-
morphism, arbitrary inductive data constructors, and ordinal sizes, so that data
such as infinite trees can be manipulated. These three features will be absent
of our system, in order to focus the challenge on the treatment of probabilistic
recursive programs. Another interesting approach is the one of Xi’s Dependent
ML [23], in which a system of lightweight dependent types allows a more liberal
treatment of the notion of size, over which arithmetic or conditional operations
may in particular be applied. Termination is ensured by checking during typing
that a given metrics decreases during recursive calls. This system is well-adapted
for practical termination checking and can be extended with mutual recursion,
inductive types and polymorphism, but does not feature ordinal sizes. See [22] for
a detailed comparison of the previously cited systems. Some works along these
lines are able to deal with coinductive data, as well as inductive ones [14,19,22].
They are related to Amadio and Coupet-Grimal’s work on guarded types ensur-
ing productivity of infinite structures such as streams [24]. None of these
works deal with probabilistic computation, and in particular with almost sure
termination.

There has been a lot of interest, recently, about probabilistic termination
as a verification problem in the context of imperative programming [10–13].
All of them deal, invariably, with some form of while-style language without
higher-order functions. A possible approach is to reduce AST for probabilistic
programs to termination of non-deterministic programs [10]. Another one is to
extend the concept of ranking function to the probabilistic case. Bournez and
Garnier obtained in this way the notion of Lyapunov ranking function [25],
but such functions capture a notion more restrictive than AST: positive almost
sure termination, meaning that the program is AST and terminates in expected
finite time. To capture AST, the notion of ranking supermartingale [26] has been
used. Note that the use of ranking supermartingales allows to deal with programs
which are both probabilistic and non-deterministic [11,13] and even to reason
about programs with real-valued variables [12].

Some recent work by Cappai et al. [27,28] introduce type systems ensuring
that all typable programs can be evaluated in probabilistic polynomial time.
This is too restrictive for our purposes. On the one hand, we aim at termina-
tion, and restricting to polynomial time algorithms would be an overkill. On the
other hand, the above-mentioned type systems guarantee that the length of all
probabilistic branches are uniformly bounded (by the same polynomial). In our
setting, this would restrict the focus to terms in which infinite computations are
forbidden, while we simply want the set of such computations to have probability

396 U. Dal Lago and C. Grellois

0. In fact, the results we present in this paper can be seen as a first step towards
a type system characterizing average polynomial time, in the style of implicit
computational complexity [29].

2 Why is Monadic Affine Typing Necessary?

In this section, we justify the design choices that guided us in the development
of our type system. As we will see, the nature of AST requires a significant and
non-trivial extension of the system of sized types originally introduced to ensure
termination in the deterministic case [14].

Sized Types for Deterministic Programs. The simply-typed λ-calculus endowed
with a typed recursion operator letrec and appropriate constructs for the natural
numbers, sometimes called PCF, is already Turing-complete, so that there is no
hope to prove it strongly normalizing. Sized types [14] refine the simple type
system by enriching base types with annotations, so as to ensure the termination
of any recursive definition. Let us explain the idea of sizes in the simple, yet
informative case in which the base type is Nat. Sizes are defined by the grammar

s ::= i
∣
∣ ∞ ∣

∣ ŝ

where i is a size variable and ŝ is the successor of the size s—with ∞̂ = ∞. These
sizes permit to consider decorations Nats of the base type Nat, whose elements
are natural numbers of size at most s. The type system ensures that the only

constant value of type Nat̂i is 0, that the only constant values of type Nat̂̂i are
0 or 1̄ = S 0, and so on. The type Nat∞ is the one of all natural numbers, and
is therefore often denoted as Nat.

The crucial rule of the sized type system, which we present here following
Barthe et al. [19], allows one to type recursive definitions as follows:

Γ, f : Nati → σ � M : Nat̂i → σ[̂i/i] i pos σ

Γ � letrec f = M : Nats → σ[s/i]
(1)

This typing rule ensures that, to recursively define the function f = M , the
term M taking an input of size î calls f on inputs of strictly lesser size i. This
is for instance the case when typing the program

MDBL = letrec f = λx.case x of
{
S → λy.S S (f y)

∣
∣ 0 → 0

}

computing recursively the double of an input integer, as the hypothesis of the
fixpoint rule in a typing derivation of MDBL is

f : Nati → Nat � λx.case x of
{
S → λy.S S (f y)

∣
∣ 0 → 0

}
: Nat̂i → Nat

The fact that f is called on an input y of strictly lesser size i is ensured by the
rule typing the case construction:

Γ � x : Nat̂i Γ � λy.S S (f y) : Nati → Nat Γ � 0 : Nat

Γ � case x of
{
S → λy.S S (f y)

∣
∣ 0 → 0

}
: Nat

Probabilistic Termination by Monadic Affine Sized Typing 397

where Γ = f : Nati → Nat, x : Nat̂i. The soundness of sized types for strong
normalization allows to conclude that MDBL is indeed SN.

A Näıve Generalization to Probabilistic Terms. The aim of this paper is to
obtain a probabilistic, quantitative counterpart to this soundness result for sized
types. Note that unlike the result for sized types, which was focusing on all
reduction strategies of terms, we only consider a call-by-value calculus1. Terms
can now contain a probabilistic choice operator ⊕p, such that M ⊕p N reduces
to the term M with probability p ∈ R[0,1], and to N with probability 1 − p.
The language and its operational semantics will be defined more extensively in
Sect. 3. Suppose for the moment that we type the choice operator in a näıve way:

Γ � M : σ Γ � N : σChoice
Γ � M ⊕p N : σ

On the one hand, the original system of sized types features subtyping, which
allows some flexibility to “unify” the types of M and N to σ. On the other hand,
it is easy to realise that all probabilistic branches would have to be terminating,
without any hope of capturing interesting AST programs: nothing has been done
to capture the quantitative nature of probabilistic termination. An instance of a
term which is not strongly normalizing but which is almost-surely terminating—
meaning that it normalizes with probability 1—is

MBIAS =
(
letrec f = λx.case x of

{
S → λy.f(y) ⊕ 2

3
(f(SS y)))

∣
∣ 0 → 0

})
n
¯

(2)

simulating a biased random walk which, on x = m+1, goes to m with probability
2
3 and to m + 2 with probability 1

3 . The näıve generalization of the sized type
system only allows us to type the body of the recursive definition as follows:

f : Nat̂̂i → Nat∞ � λy.f(y) ⊕ 2
3

(f(SS y))) : Nat̂i → Nat∞ (3)

and thus does not allow us to deduce any relevant information on the quantita-
tive termination of this term: nothing tells us that the recursive call f(SS y) is
performed with a relatively low probability.

A Monadic Type System. Along the evaluation of MBIAS , there is indeed a
quantity which decreases during each recursive call to the function f : the average
size of the input on which the call is performed. Indeed, on an input of size î,
f calls itself on an input of smaller size i with probability 2

3 , and on an input

of greater size ̂̂
i with probability only 1

3 . To capture such a relevant quantitative
information on the recursive calls of f , and with the aim to capture almost sure
termination, we introduce a monadic type system, in which distributions of types
can be used to type in a finer way the functions to be used recursively. Contexts
Γ |Θ will be generated by a context Γ attributing sized types to any number
1 Please notice that choosing a reduction strategy is crucial in a probabilistic setting,

otherwise one risks getting nasty forms of non-confluence [30].

398 U. Dal Lago and C. Grellois

of variables, while Θ will attribute a distribution of sized types to at most one
variable—typically the one we want to use to recursively define a function. In
such a context, terms will be typed by a distribution type, formed by combining
the Dirac distributions of types introduced in the Axiom rules using the following
rule for probabilistic choice:

Γ |Θ � M : μ Γ |Ψ � N : ν 〈μ〉 = 〈ν〉
Choice

Γ |Θ ⊕p Ψ � M ⊕p N : μ ⊕p ν

The guard condition 〈μ〉 = 〈ν〉 ensures that μ and ν are distributions of types
decorating of the same simple type. Without this condition, there is no hope to
aim for a decidable type inference algorithm.

The Fixpoint Rule. Using these monadic types, instead of the insufficiently infor-
mative typing (3), we can derive the sequent

f :

{
(
Nati → Nat∞

) 2
3

,

(

Nat̂̂i → Nat∞
) 1

3
}

� λy.f(y) ⊕ 2
3

(f(SS y))) : Nat̂i → Nat∞ (4)

in which the type of f contains finer information on the sizes of arguments
over which it is called recursively, and with which probability. This information
enables us to perform a first switch from a qualitative to a quantitative notion
of termination: we will adapt the hypothesis

Γ, f : Nati → σ � M : Nat̂i → σ[̂i/i] (5)

of the original fix rule (1) of sized types, expressing that f is called on an
argument of size one less than the one on which M is called, to a condition
meaning that there is probability 1 to call f on arguments of a lesser size after
enough iterations of recursive calls. We therefore define a random walk associated
to the distribution type μ of f , the sized walk associated to μ, and which is as
follows for the typing (4):

• the random walk starts on 1, corresponding to the size î,
• on an integer n + 1, the random walk jumps to n with probability 2

3 and to
n + 2 with probability 1

3 ,
• 0 is stationary: on it, the random walk loops.

This random walk – as all sized walks will be – is an instance of one-counter
Markov decision problem [31], so that it is decidable in polynomial time whether
the walk reaches 0 with probability 1. We will therefore replace the hypothesis
(5) of the letrec rule by the quantitative counterpart we just sketched, obtaining

{
(Natsj → ν[sj/i])

pj
∣
∣ j ∈ J }

Induces an AST sized walk

Γ | f :
{

(Natsj → ν[sj/i])
pj

∣
∣ j ∈ J } � V : Nat̂i → ν [̂i/i]

letrec
Γ, Δ |Θ � letrec f = V : Natr → ν[r/i]

where we omit two additional technical conditions to be found in Sect. 4 and
which justify the weakening on contexts incorporated to this rule. The resulting

Probabilistic Termination by Monadic Affine Sized Typing 399

type system allows to type a varieties of examples, among which the following
program computing the geometric distribution over the natural numbers:

MEXP =
(
letrec f = λx.x ⊕ 1

2
S (f x)

)
0 (6)

and for which the decreasing quantity is the size of the set of probabilistic
branches of the term making recursive calls to f . Another example is the unbi-
ased random walk

MUNB =
(
letrec f = λx.case x of

{
S → λy.f(y) ⊕ 1

2
(f(SS y)))

∣
∣ 0 → 0

})
n
¯

(7)

for which there is no clear notion of decreasing measure during recursive calls,
but which yet terminates almost surely, as witnessed by the sized walk associated
to an appropriate derivation in the sized type system. We therefore claim that
the use of this external guard condition on associated sized walks, allowing us
to give a general condition of termination, is satisfying as it both captures an
interesting class of examples, and is computable in polynomial time.

Fig. 1. A tree of recursive calls.

In Sect. 5, we prove that this shift
from a qualitative to a quantitative
hypothesis in the type system results
in a shift from the soundness for
strong normalization of the original
sized type system to a soundness for
its quantitative counterpart: almost-
sure termination.

Why Affinity? To ensure the sound-
ness of the letrec rule, we need one
more structural restriction on the
type system. For the sized walk
argument to be adequate, we must
ensure that the recursive calls of f
are indeed precisely modelled by the
sized walk, and this is not the case
when considering for instance the following term:

MNAFF =
(
letrec f = λx.case x of

{
S → λy.f(y) ⊕ 2

3
(f(SS y) ; f(SS y))

∣
∣ 0 → 0

})
n
¯

(8)

where the sequential composition ; is defined in this call-by-value calculus as
M ; N = (λx.λy.0) M N . Note that MNAFF calls recursively f twice in the
right branch of its probabilistic choice, and is not therefore modelled appropri-
ately by the sized walk associated to its type. In fact, we would need a generalized
notion of random walk to model the recursive calls of this process; it would be
a random walk on stacks of integers. In the case where n = 1, the recursive calls
to f can indeed be represented by a tree of stacks as depicted in Fig. 1, where
leftmost edges have probability 2

3 and rightmost ones 1
3 . The root indicates that

400 U. Dal Lago and C. Grellois

the first call on f was on the integer 1. From it, there is either a call of f on 0
which terminates, or two calls on 2 which are put into a stack of calls, and so
on. We could prove that, without the affine restriction we are about to formu-
late, the term MNAFF is typable with monadic sized types and the fixpoint rule
we just designed. However, this term is not almost-surely terminating. Notice,
indeed, that the sum of the integers appearing in a stack labelling a node of the
tree in Fig. 1 decreases by 1 when the left edge of probability 2

3 is taken, and
increases by at least 3 when the right edge of probability 1

3 is taken. It follows
that the expected increase of the sum of the elements of the stack during one
step is at least −1 × 2

3 + 3 × 1
3 = 1

3 > 0. This implies that the probability that
f is called on an input of size 0 after enough iterations is strictly less than 1, so
that the term MNAFF cannot be almost surely terminating.

Such general random processes have stacks as states and are rather complex
to analyse. To the best of the authors’ knowledge, they do not seem to have been
considered in the literature. We also believe that the complexity of determining
whether 0 can be reached almost surely in such a process, if decidable, would
be very high. This leads us to the design of an affine type system, in which the
management of contexts ensures that a given probabilistic branch of a term may
only use at most once a given higher-order symbol. We do not however formulate
restrictions on variables of simple type Nat, as affinity is only used on the letrec
rule and thus on higher-order symbols. Remark that this is in the spirit of certain
systems from implicit computational complexity [15,32].

Another restriction imposed by this reduction of almost-sure termination
checking for higher-order programs to almost-sure termination checking for one-
counter Markov decision processes is the fact that we do not allow a general
form of nested recursion. This restriction is encoded in the system by allowing
at most one variable to have a distribution of types in the context. It follows
that programs making use of mutual recursion can not be typed in this system.

3 A Simple Probabilistic Functional Programming
Language

We consider the language λ⊕, which is an extension of the λ-calculus with recur-
sion, constructors for the natural numbers, and a choice operator. In this section,
we introduce this language and its operational semantics, and use them to define
the crucial notion of almost-sure termination.

Terms and Values. Given a set of variables X , terms and values of the language
λ⊕ are defined by mutual induction as follows:

Terms: M, N, . . . ::= V
∣
∣ V W

∣
∣ let x = M in N

∣
∣ M ⊕p N∣

∣ case V of {S → W | 0 → Z }
Values: V, W, Z, . . . ::= x

∣
∣ 0

∣
∣ S V

∣
∣ λx.M

∣
∣ letrec f = V

where x, f ∈ X , p ∈]0, 1[. When p = 1
2 , we often write ⊕ as a shorthand

for ⊕ 1
2
. The set of terms is denoted Λ⊕ and the set of values is denoted ΛV

⊕.

Probabilistic Termination by Monadic Affine Sized Typing 401

Terms of the calculus are assumed to be in A-normal form [33]. This allows
to formulate crucial definitions in a simpler way, concentrating in the Let con-
struct the study of the probabilistic behaviour of terms. We claim that all tra-
ditional constructions can be encoded in this formalism. For instance, the usual
application M N of two terms can be harmlessly recovered via the encoding
let x = M in (let y = N in x y). In the sequel, we write c

−→
V when a value

may be either 0 or of the shape S V .

Term Distributions. The introduction of a probabilistic choice operator in the
syntax leads to a probabilistic reduction relation. It is therefore meaningful to
consider the (operational) semantics of a term as a distribution of values mod-
elling the outcome of all the finite probabilistic reduction paths of the term.
For instance, the term MEXP defined in (6) evaluates to the term distribution
assigning probability 1

2n+1 to the value n
¯
. Let us define this notion more formally:

Definition 1 (Distribution). A distribution on X is a function D : X →
[0, 1] satisfying the constraint

∑
D =

∑
x∈X D(x) ≤ 1, where

∑
D is called

the sum of the distribution D . We say that D is proper precisely when
∑

D = 1.
We denote by P the set of all distributions, would they be proper or not. We
define the support S(D) of a distribution D as: S(D) =

{
x ∈ X

∣
∣ D(x) > 0

}
.

When S(D) consists only of closed terms, we say that D is a closed distribution.
When it is finite, we say that D is a finite distribution. We call Dirac a proper
distribution D such that S(D) is a singleton. We denote by 0 the null distribution,
mapping every term to the probability 0.

When X = Λ⊕, we say that D is a term distribution. In the sequel, we will
use a more practical notion of representation of distributions, which enumer-
ates the terms with their probabilities as a family of assignments. For technical
reasons, notably related to the subject reduction property, we will also need
pseudo-representations, which are essentially multiset-like decompositions of the
representation of a distribution.

Definition 2 (Representations and Pseudo-Representations). Let D ∈
P be of support

{
xi

∣
∣ i ∈ I}

, where xi = xj implies i = j for every i, j ∈ I.

The representation of D is the set D =
{

x
D(xi)
i

∣
∣ i ∈ I

}
where x

D(xi)
i is just

an intuitive way to write the pair (xi,D(xi)). A pseudo-representation of D is
any multiset

[
y

Pj

j

∣
∣ j ∈ J

]
such that

∀j ∈ J , yj ∈ S(D) ∀i ∈ I, D(xi) =
∑

yj=xi

pj .

By abuse of notation, we will simply write D =
[
y

Pj

j

∣
∣ j ∈ J

]
to mean that D

admits
[
y

Pj

j

∣
∣ j ∈ J

]
as pseudo-representation. Any distribution has a canon-

ical pseudo-representation obtained by simply replacing the set-theoretic notation
with the multiset-theoretic one.

402 U. Dal Lago and C. Grellois

Distributions support operations like affine combinations and sums – the
latter being only a partial operation. We extend these operations to (pseudo)-
representations, in a natural way. Distributions, endowed with the pointwise
partial-order �, form an ω-CPO, but not a lattice, since the join of two distrib-
utions is not guaranteed to exist.

Definition 3 (Value Decomposition of a Term Distribution). Let D be
a term distribution. We write its value decomposition as D

VD= D|V + D|T ,
where D|V is the maximal subdistribution of D whose support consists of values,
and D|T = D − D|V is the subdistribution of “non-values” contained in D .

Operational Semantics. The semantics of a term will be the value distribution
to which it reduces via the probabilistic reduction relation, iterated up to the
limit. As a first step, we define the call-by-value reduction relation →v⊆ P × P
on Fig. 2. Note that we write Dirac distributions simply as terms on the left side
of →v, to improve readability. As usual, we denote by →n

v the n-th iterate of the
relation →v, with →0

v being the identity relation. We then define the relation
�n

v as follows. Let D →n
v E

VD= E|V + E|T . Then D �n
v E|V . Note that, for

every n ∈ N and D ∈ P, there is a unique distribution E such that D →n
v E .

Moreover, E|V is the only distribution such that D �n
v E|V .

Lemma 1. Let n,m ∈ N with n < m. Let Dn (resp Dm) be the distribution
such that M �n

v Dn (resp M �m
v Dm). Then Dn � Dm.

Definition 4 (Semantics of a Term, of a Distribution). The semantics
of a distribution D is the distribution [[D]] = supn∈N

({
Dn

∣
∣ D �n

v Dn

})
.

This supremum exists thanks to Lemma 1, combined with the fact that (P, �) is
an ω-CPO. We define the semantics of a term M as [[M]] = [[

{
M1

}
]].

We now have all the ingredients required to define the central concept of this
paper, the one of almost-surely terminating term:

Definition 5 (Almost-Sure Termination). We say that a term M is almost-
surely terminating precisely when

∑
[[M]] = 1.

4 Monadic Affine Sized Typing

Following the discussion from Sect. 2, we introduce in this section a non-trivial
lifting of sized types to our probabilistic setting. As a first step, we design an
affine simple type system for λ⊕. This means that no higher-order variable may
be used more than once in the same probabilistic branch. However, variables of
base type Nat may be used freely. In spite of this restriction, the resulting sys-
tem allows to type terms corresponding to any probabilistic Turing machine. In
Sect. 4.2, we introduce a more sophisticated type system, which will be monadic
and affine, and which will be sound for almost-sure termination as we prove in
Sect. 5.

Probabilistic Termination by Monadic Affine Sized Typing 403

Fig. 2. Call-by-value reduction relation →v on distributions.

4.1 Affine Simple Types for λ⊕

The terms of the language λ⊕ can be typed using a variant of the simple
types of the λ-calculus, extended to type letrec and ⊕p, but also restricted
to an affine management of contexts. Recall that the constraint of affinity
ensures that a given higher-order symbol is used at most once in a probabilis-
tic branch. We define simple types over the base type Nat in the usual way:
κ, κ′, . . . ::= Nat

∣
∣ κ → κ′ where, by convention, the arrow associates to the

right. Contexts Γ, Δ, . . . are sequences of simply-typed variables x ::κ. We write
sequents as Γ � M ::κ to distinguish these sequents from the ones using distri-
bution types appearing later in this section. Before giving the rules of the type
system, we need to define two policies for contracting contexts: an affine and a
general one.

Context Contraction. Contexts can be combined in two different ways. On the
one hand, one can form the non-affine contraction Γ ∪ Δ of two contexts, for
which Γ and Δ are allowed to share some variables, but these variables must be
attributed the same type in both contexts. On the other hand, one can form the
affine contraction Γ Δ, in which variables in common between Γ and Δ must
be attributed the type Nat.

404 U. Dal Lago and C. Grellois

Fig. 3. Affine simple types for λ⊕.

The Affine Type System. The affine simple type system is then defined in Fig. 3.
All the rules are quite standard. Higher-order variables can occur at most once
in any probabilistic branch because all binary typing rules – except probabilistic
choice – treat contexts affinely. We set ΛV

⊕ (Γ, κ) =
{
V ∈ ΛV

⊕
∣
∣ Γ � V ::κ}

and Λ⊕ (Γ, κ) =
{
M ∈ Λ⊕

∣
∣ Γ � M ::κ

}
. We simply write ΛV

⊕ (κ) = ΛV
⊕ (∅, κ)

and Λ⊕ (κ) = Λ⊕ (∅, κ) when the terms or values are closed. These closed,
typable terms enjoy subject reduction and the progress property.

4.2 Monadic Affine Sized Types

This section is devoted to giving the basic definitions and results about monadic
affine sized types (MASTs, for short), which can be seen as decorations of the
affine simple types with some size information.

Sized Types. We consider a set S of size variables, denoted i, j, . . . and define
sizes (called stages in [19]) as:

s, r ::= i
∣
∣ ∞ ∣

∣ ŝ

where ·̂ denotes the successor operation. We denote the iterations of ·̂ as follows:
̂̂s is denoted ŝ

2
,
̂̂
ŝ is denoted ŝ

3
, and so on. By definition, at most one variable

i ∈ S appears in a given size s. We call it its spine variable, denoted as spine (s).
We write spine (s) = ∅ when there is no variable in s. An order � on sizes can
be defined as follows:

Probabilistic Termination by Monadic Affine Sized Typing 405

s � s
s � r r � t

s � t s � ŝ s � ∞

Notice that these rules imply notably that ∞̂ is equivalent to ∞, i.e., ∞̂ � ∞
and ∞ � ∞̂. We consider sizes modulo this equivalence. We can now define sized
types and distribution types by mutual induction, calling distributions of (sized)
types the distributions over the set of sized types:

Definition 6 (Sized Types, Distribution Types). Sized types and distrib-
ution types are defined by mutual induction, contextually with the function 〈·〉
which maps any sized or distribution type to its underlying affine type.

Sized types: σ, τ ::= σ → μ
∣
∣ Nats

Distribution types: μ, ν ::=
{

σPi
i

∣
∣ i ∈ I

}
,

Underlying map: 〈σ → μ〉 = 〈σ〉 → 〈μ〉
〈Nats〉 = Nat

〈
{

σPi
i

∣
∣ i ∈ I

}
〉 = 〈σj〉

For distribution types we require additionally that
∑

i∈I pi ≤ 1, that I is a
finite non-empty set, and that 〈σi〉 = 〈σj〉 for every i, j ∈ I. In the last equation,
j is any element of I.

The definition of sized types is monadic in that a higher-order sized type is
of the shape σ → μ where σ is again a sized type, and μ is a distribution of sized
types.

Contexts and Operations on Them. Contexts are sequences of variables together
with a sized type, and at most one distinguished variable with a distribution
type:

Definition 7 (Contexts). Contexts are of the shape Γ |Θ, with

Sized contexts: Γ, Δ, . . . ::= ∅ ∣
∣ x : σ, Γ (x /∈ dom(Γ))

Distribution contexts: Θ, Ψ, . . . ::= ∅ ∣
∣ x : μ

As usual, we define the domain dom(Γ) of a sized context Γ by induction:
dom(∅) = ∅ and dom(x : σ, Γ) = {x} dom(Γ). We proceed similarly for
the domain dom(Θ) of a distribution context Θ. When a sized context Γ =
x1 : σ1, . . . , xn : σn (n ≥ 1) is such that there is a simple type κ with ∀i ∈
{1, . . . , n} , 〈σi〉 = κ, we say that Γ is uniform of simple type κ. We write
this as 〈Γ 〉 = κ.

We write Γ, Δ for the disjoint union of these sized contexts: it is defined
whenever dom(Γ) ∩ dom(Δ) = ∅. We proceed similarly for Θ, Ψ , but note that
due to the restriction on the cardinality of such contexts, there is the additional
requirement that Θ = ∅ or Ψ = ∅.

We finally define contexts as pairs Γ |Θ of a sized context and of a distrib-
ution context, with the constraint that dom(Γ) ∩ dom(Θ) = ∅.

406 U. Dal Lago and C. Grellois

Definition 8 (Probabilistic Sum). Let μ and ν be two distribution types. We
define their probabilistic sum μ ⊕p ν as the distribution type p · μ + (1 − p) · ν.
We extend this operation to a partial operation on distribution contexts:

• For two distribution types μ and ν such that 〈μ〉 = 〈ν〉, we define (x : μ) ⊕p

(x : ν) = x : μ ⊕p ν,
• (x : μ) ⊕p ∅ = x : p · μ,
• ∅ ⊕p (x : μ) = x : (1 − p) · μ,
• In any other case, the operation is undefined.

Definition 9 (Weighted Sum of Distribution Contexts). Let (Θi)i∈I be
a non-empty family of distribution contexts and (pi)i∈I be a family of reals of
[0, 1]. We define the weighted sum

∑
i∈I pi · Θi as the distribution context x :∑

i∈I pi · μi when the following conditions are met:

1. ∃x, ∀i ∈ I, Θi = x : μi,
2. ∀(i, j) ∈ I2, 〈Θi〉 = 〈Θj〉,
3. and

∑
i∈I pi ≤ 1,

In any other case, the operation is undefined.

We define the substitution [r/i] of a size variable in a size or in a sized or
distribution type in the expected way; see the long version [18] for details. A
subtyping relation allows to lift the order � on sizes to monadic sized types:

Definition 10 (Subtyping). We define the subtyping relation � on sized types
and distribution types as follows:

σ � σ
s � r

Nats � Natr
τ � σ μ � ν

σ → μ � τ → ν

∃f : I → J ,
(∀i ∈ I, σi � τf(i)

)
and

(
∀j ∈ J ,

∑
i∈f−1(j) pi ≤ p′

j

)

{
σPi

i

∣
∣ i ∈ I

}
�

{
τ

P ′
j

j

∣
∣ j ∈ J

}

Sized Walks and Distribution Types. As we explained in Sect. 2, the rule typing
letrec in the monadic, affine type system relies on an external decision procedure,
computable in polynomial time. This procedure ensures that the sized walk—a
particular instance of one-counter Markov decision process (OC-MDP, see [31]),
but which does not make use of non-determinism—associated to the type of
the recursive function of interest indeed ensures almost sure termination. Let us
now define the sized walk associated to a distribution type μ. For the precise
connection with OC-MDPs, see the long version [18].

Definition 11 (Sized Walk). Let I ⊆fin N be a finite set of integers. Let
{pi}i∈I be such that

∑
i∈I pi ≤ 1. These parameters define a Markov chain

whose set of states is N and whose transition relation is defined as follows:

• the state 0 ∈ N is stationary (i.e. one goes from 0 to 0 with probability 1),
• from the state s + 1 ∈ N one moves:

• to the state s + i with probability pi, for every i ∈ I;
• to 0 with probability 1 − (∑

i∈I pi

)
.

Probabilistic Termination by Monadic Affine Sized Typing 407

We call this Markov chain the sized walk on N associated to
(I, (pi)i∈I

)
. A sized

walk is almost surely terminating when it reaches 0 with probability 1 from any
initial state.

Notably, checking whether a sized walk is terminating is relatively easy:

Proposition 1 (Decidability of AST for Sized Walks). It is decidable in
polynomial time whether a sized walk is AST.

Proof. By encoding sized walks into OC-MDPs, which enjoy this property [31].
See the long version [18].

Definition 12 (From Types to Sized Walks). Consider a distribution type
μ =

{
(Natsj → νj)

Pj
∣
∣ j ∈ J

}
such that ∀j ∈ J , spine (sj) = i. Then μ

induces a sized walk, defined as follows. First, by definition, sj must be of the
shape î

kj with kj ≥ 0 for every j ∈ J . We set I =
{
Kj

∣
∣ j ∈ J }

and
qKj

= pj for every j ∈ J . The sized walk induced by the distribution type μ is
then the sized walk associated to (I, (qi)i∈I)).

Example 1. Let μ =

{
(
Nati → Nat∞

) 1
2

,

(

Nat̂i
2

→ Nat∞
) 1

3
}

. Then the

induced sized walk is the one associated to
({0, 2} ,

(
p0 = 1

2 , p2 = 1
3

))
. In other

words, it is the random walk on N which is stationary on 0, and which on non-
null integers i+1 moves to i with probability 1

2 , to i+2 with probability 1
3 , and

jumps to 0 with probability 1
6 . Note that the type μ, and therefore the associated

sized walk, models a recursive function which calls itself on a size lesser by one
unit with probability 1

2 , on a size greater by one unit with probability 1
3 , and

which does not call itself with probability 1
6 .

Typing Rules. Judgements are of the shape Γ |Θ � M : μ. When a distrib-
ution μ =

{
σ1

}
is Dirac, we simply write it σ. The type system is defined

in Fig. 4. As earlier, we define sets of typable terms, and set Λs,V
⊕ (Γ |Θ, σ) ={

V
∣
∣ Γ |Θ � V : σ

}
, and Λs

⊕ (Γ |Θ,μ) =
{
M

∣
∣ Γ |Θ � M : μ

}
. We abbre-

viate Λs,V
⊕ (∅ | ∅, σ) as Λs,V

⊕ (σ) and Λs
⊕ (∅ | ∅, σ) as Λs

⊕ (σ).
This sized type system is a refinement of the affine simple type system for

λ⊕: if x1 : σ1, . . . , xn : σn | f : μ � M : ν, then it is easily checked that
x1 :: 〈σ1〉, . . . , xn :: 〈σn〉, f :: 〈μ〉 � M :: 〈ν〉.
Lemma 2 (Properties of Distribution Types).

• Γ |Θ � V : μ =⇒ μ is Dirac.
• Γ |Θ � M : μ =⇒ μ is proper.

Subject Reduction for Monadic Affine Sized Types. The type system enjoys a
form of subject reduction adapted to the probabilistic case and more specifically

408 U. Dal Lago and C. Grellois

Fig. 4. Affine distribution types for λ⊕.

to the fact that terms reduce to distributions of terms. Let us sketch the idea of
this adapted subject reduction property on an example. Remark that the type
system allows us to derive the sequent

∅ | ∅ � 0 ⊕ 0 :
{ (

Natŝ
) 1

2
,
(
Nat̂̂r

) 1
2

}

(9)

where this distribution type is formed by typing a copy of 0 with Natŝ and the
other with Nat̂̂r. Then, the term 0 ⊕ 0 reduces to

{
0

1
2

}
+

{
0

1
2

}
=

{
01

}
=

[[0 ⊕ 0]]: the operational semantics collapses the two copies of 0 appearing dur-
ing the reduction. However, in the spirit of the usual subject reduction for
deterministic languages, we would like to type the two copies of 0 appearing

Probabilistic Termination by Monadic Affine Sized Typing 409

during the reduction with different types. We therefore use the notion of pseudo-
representation:

[
0

1
2 , 0

1
2

]
is a pseudo-representation of [[0⊕0]], and we attribute

the type Natŝ to the first element of this pseudo-representation and the type
Nat̂̂r to the other, obtaining the following closed distribution of typed terms:

{ (
0 : Natŝ

) 1
2

,
(
0 : Nat̂̂r

) 1
2

}

(10)

We can then compute the average type of (10), which we call the expectation
type of this closed distribution of typed terms:

1
2

·
{ (

Natŝ
)1

}

+
1
2

·
{ (

Nat̂̂r
)1

}

=
{(

Natŝ
) 1

2
,
(
Nat̂̂r

) 1
2

}

Remark that it coincides with the type of the initial term (9). This will be
our result of subject reduction: when a closed term M of distribution type μ
reduces to a distribution D of terms, we can type all the terms appearing in a
pseudo-representation of D to obtain a closed distribution of typed terms whose
expectation type is μ. Let us now introduce the definitions necessary to the
formal statement of the subject reduction property.

Definition 13 (Distributions of Distribution Types, of Typed Terms).

• A distribution of distribution types is a distribution D over the set of distri-
bution types, and such that μ, ν ∈ S(D) ⇒ 〈μ〉 = 〈ν〉.

• A distribution of typed terms, or typed distribution, is a distribution of
typing sequents which are derivable in the monadic, affine sized type sys-
tem. The representation of such a distribution has thus the following form:{

(Γi |Θi � Mi : μi)
Pi

∣
∣ i ∈ I

}
. In the sequel, we restrict to the uniform

case in which all the terms appearing in the sequents are typed with distribu-
tion types of the same fixed underlying type.

• A distribution of closed typed terms, or closed typed distribution, is a typed
distribution in which all contexts are ∅ | ∅. In this case, we simply write
the representation of the distribution as

{
(Mi : μi)

Pi
∣
∣ i ∈ I

}
, or even

as (Mi : μi)
Pi when the indexing is clear from context. We write pseudo-

representations in a similar way.

Definition 14 (Expectation Types). Let (Mi : μi)
Pi be a closed typed

distribution. We define its expectation type as the distribution type
E

(
(Mi : μi)

Pi

)
=

∑
i∈I piμi.

We can now state the main lemma of subject reduction:

Lemma 3 (Subject Reduction, Fundamental Lemma). Let M ∈ Λs
⊕ (μ)

and D be the unique closed term distribution such that M →v D . Then there
exists a closed typed distribution

{
(Lj : νj)

Pj
∣
∣ j ∈ J

}
such that

410 U. Dal Lago and C. Grellois

• E

(
(Lj : νj)

Pj

)
= μ,

•
[
(Lj)

Pj
∣
∣ j ∈ J

]
is a pseudo-representation of D .

Note that the condition on expectations implies that
⋃

j∈J S(νj) = S(μ).

The proof of this result, and its generalization to the iterated reduction of
closed typed distributions, appear in the long version. They allow us to deduce
the following property on the operational semantics of λ⊕-terms:

Theorem 1 (Subject Reduction). Let M ∈ Λs
⊕ (μ). Then there exists a

closed typed distribution
{

(Wj : σj)
Pj

∣
∣ j ∈ J

}
such that

• E

(
(Wj : σj)

Pj

)
� μ,

• and that
[
(Wj)

Pj
∣
∣ j ∈ J

]
is a pseudo-representation of [[M]].

Note that E

(
(Wj : σj)

Pj

)
� μ since the semantics of a term may not be

a proper distribution at this stage. In fact, it will follow from the soundness
theorem of Sect. 5 that the typability of M implies that

∑
[[M]] = 1 and thus

that the previous statement is an equality.

5 Typability Implies Termination: Reducibility Strikes
Again

This section is technically the most advanced one of the paper, and proves that
the typing discipline we have introduced indeed enforces almost sure termina-
tion. As already mentioned, the technique we will employ is a substantial gener-
alisation of Girard-Tait’s reducibility. In particular, reducibility must be made
quantitative, in that terms can be said to be reducible with a certain probability.
This means that reducibility sets will be defined as sets parameterised by a real
number p, called the degree of reducibility of the set. As Lemma 4 will empha-
size, this degree of reducibility ensures that terms contained in a reducibility set
parameterised by p terminate with probability at least p. These “intermediate”
degrees of reducibility are required to handle the fixpoint construction, and show
that recursively-defined terms that are typable are indeed AST—that is, that
they belong to the appropriate reducibility set, parameterised by 1.

The first preliminary notion we need is that of a size environment:

Definition 15 (Size Environment). A size environment is any function ρ
from S to N ∪ {∞}. Given a size environment ρ and a size expression s, there
is a naturally defined element of N ∪ {∞}, which we indicate as �s�ρ:

• �̂i
n

�ρ = ρ(i) + n,
• �∞�ρ = ∞.

In other words, the purpose of size environments is to give a semantic meaning
to size expressions. Our reducibility sets will be parameterised not only on a
probability, but also on a size environment.

Probabilistic Termination by Monadic Affine Sized Typing 411

Definition 16 (Reducibility Sets).

• For values of simple type Nat, we define the reducibility sets

VRedp
Nats,ρ =

{
Sn 0

∣
∣ p > 0 =⇒ n < �s�ρ

}
.

• Values of higher-order type are in a reducibility set when their applications to
appropriate values are reducible terms, with an adequate degree of reducibility:

VRedp
σ→μ,ρ =

{
V ∈ ΛV

⊕ (〈σ → μ〉) ∣
∣ ∀q ∈ (0, 1], ∀W ∈ VRedq

σ,ρ,
V W ∈ TRedpq

μ,ρ

}

• Distributions of values are reducible with degree p when they consist of values
which are themselves globally reducible “enough”. Formally, DRedp

μ,ρ is the set
of finite distributions of values – in the sense that they have a finite support –
admitting a pseudo-representation D =

[
(Vi)

Pi
∣
∣ i ∈ I

]
such that, setting

μ =
{

(σj)
P ′

j
∣
∣ j ∈ J

}
, there exists a family (pij)i∈I,j∈J ∈ [0, 1]|I|×|J | of

probabilities and a family (qij)i∈I,j∈J ∈ [0, 1]|I|×|J | of degrees of reducibility,
satisfying:
1. ∀i ∈ I, ∀j ∈ J , Vi ∈ VRedqij

σj ,ρ,
2. ∀i ∈ I,

∑
j∈J pij = pi,

3. ∀j ∈ J ,
∑

i∈I pij = μ(σj),
4. p ≤ ∑

i∈I
∑

j∈J qijpij.

Note that (2) and (3) imply that
∑

D =
∑

μ. We say that
[
(Vi)

Pi
∣
∣ i ∈ I

]

witnesses that D ∈ DRedp
μ,ρ.

• A term is reducible with degree p when its finite approximations compute dis-
tributions of values of degree of reducibility arbitrarily close to p:

TRedp
μ,ρ =

{
M ∈ Λ⊕ (〈μ〉) ∣

∣ ∀0 ≤ r < p, ∃νr � μ, ∃nr ∈ N,
M �nr

v Dr and Dr ∈ DRedr
νr,ρ

}

Note that here, unlike to the case of DRed, the fact that M ∈ Λ⊕ (〈μ〉) implies
that μ is proper.

The first thing to observe about reducibility sets as given in Definition 16 is that
they only deal with closed terms, and not with arbitrary terms. As such, we
cannot rely directly on them when proving AST for typable terms, at least if
we want to prove it by induction on the structure of type derivations. We will
therefore define in the sequel an extension of these sets to open terms, which will
be based on these sets of closed terms, and therefore enjoy similar properties.
The following lemma, relatively easy to prove, is crucial for the understanding
of the reducibility sets, for that it shows that the degree of reducibility of a term
gives information on the sum of its operational semantics:

412 U. Dal Lago and C. Grellois

Lemma 4 (Reducibility and Termination).

• Let D ∈ DRedp
μ,ρ. Then

∑
D ≥ p.

• Let M ∈ TRedp
μ,ρ. Then

∑
[[M]] ≥ p.

It follows from this lemma that terms with degree of reducibility 1 are AST:

Corollary 1 (Reducibility and AST). Let M ∈ TRed1μ,ρ. Then M is AST.

Fundamental Properties. Before embarking in the proof that typability implies
reducibility, it is convenient to prove some fundamental properties of reducibility
sets, which inform us about how these sets are structured, and which will be
crucial in the sequel. First of all, if the degree of reducibility p is 0, then no
assumption is made on the probability of termination of terms, distributions or
values. It follows that the three kinds of reducibility sets collapse to the set of
all affinely simply typable terms, distributions or values:

Lemma 5 (Candidates of Null Reducibility).

• If V ∈ ΛV
⊕ (κ), then V ∈ VRed0σ,ρ for every σ such that 〈σ〉 = κ and every

size environment ρ.
• Let D =

{
(Vi)

Pi
∣
∣ i ∈ I

}
be a finite distribution of values. If ∀i ∈ I, Vi ∈

ΛV
⊕ (κ), then D ∈ DRed0μ,ρ for every μ such that 〈μ〉 = κ and

∑
μ =

∑
D

and every ρ.
• If M ∈ Λ⊕ (κ), then M ∈ TRed0μ,ρ for μ such that 〈μ〉 = κ and every ρ.

As p gives us a lower bound on the sum of the semantics of terms, it is easily
guessed that a term having degree of reducibility p must also have degree of
reducibility q < p. The following lemma makes this statement precise:

Lemma 6 (Downward Closure). Let σ be a sized type, μ be a distribution
type and ρ be a size environment. Let 0 ≤ q < p ≤ 1. Then:

• For any value V , V ∈ VRedp
σ,ρ =⇒ V ∈ VRedq

σ,ρ,
• For any finite distribution of values D , D ∈ DRedp

μ,ρ =⇒ D ∈ DRedq
μ,ρ,

• For any term M , M ∈ TRedp
μ,ρ =⇒ M ∈ TRedq

μ,ρ.

To analyse the letrec construction, we will prove that, for every ε ∈ (0, 1],
performing enough unfoldings of the fixpoint allows to prove that the recursively-
defined term is in a reducibility set parameterised by 1 − ε. We will be able
to conclude on the AST nature of recursive constructions using the following
continuity lemma, proved using the theory of linear programming [18]:

Lemma 7 (Continuity). Let σ be a sized type, μ be a distribution type and ρ
be a size environment. Let p ∈ (0, 1]. Then:

• VRedp
σ,ρ =

⋂
0<q<p VRedq

σ,ρ,
• DRedp

μ,ρ =
⋂

0<q<p DRedq
μ,ρ,

• TRedp
μ,ρ =

⋂
0<q<p TRedq

μ,ρ.

Probabilistic Termination by Monadic Affine Sized Typing 413

The last fundamental property about reducibility sets which will be crucial
to treat the recursive case is the following, stating that the sizes appearing in
a sized type may be recovered in the reducibility set by using an appropriate
semantics of the size variables, and conversely:

Lemma 8 (Size Commutation). Let i be a size variable, s be a size such that
s = ∞ or that spine (s) �= i and ρ be a size environment. Then:

• VRedp
σ[s/i],ρ = VRedp

σ,ρ[i �→�s�ρ]
,

• DRedp
μ[s/i],ρ = DRedp

μ,ρ[i �→�s�ρ]
,

• TRedp
μ[s/i],ρ = TRedp

μ,ρ[i �→�s�ρ]
.

Unfoldings. The most difficult step in proving all typable terms to be reducible
is, unexpectedly, proving that terms involving recursion are reducible whenever
their respective unfoldings are. This very natural concept expresses simply that
any term in the form letrec f = W is assumed to compute the fixpoint of the
function defined by W .

Definition 17 (n-Unfolding). Suppose that V = (letrec f = W) is closed,
then the n-unfolding of V is:

• V if n = 0;
• W [Z/f] if n = m + 1 and Z is the m-unfolding of V .

We write the set of unfoldings of V as Unfold (V). Note that if V admits a simple
type, then all its unfoldings have this same simple type as well. In the sequel, we
implicitly consider that V is simply typed.

Any unfolding of V = (letrec f = W) should behave like V itself: all unfold-
ings of V should be equivalent. This, however, cannot be proved using simply
the operational semantics. It requires some work, and techniques akin to logical
relations, to prove (see [18]) this behavioural equivalence between a recursive
definition and its unfoldings.

Proposition 2 (Reducibility is Stable by Unfolding). Let n ∈ N and V =
(letrec f = W) be a closed value. Suppose that Z is the n-unfolding of V . Then
V ∈ VRedp

Nats→μ,ρ if and only if Z ∈ VRedp
Nats→μ,ρ.

Extension to Open Terms. We are now ready to extend the notion of reducibility
set from the realm of closed terms to the one of open terms. This turns out to
be subtle. The guiding intuition is that one would like to define a term M with
free variables in −→x to be reducible iff any closure M [

−→
V /−→x] is itself reducible in

the sense of Definition 16. What happens, however, to the underlying degree of
reducibility p? How do we relate the degrees of reducibility of

−→
V with the one

of M [
−→
V /−→x]? The answer is contained in the following definition:

Definition 18 (Reducibility Sets for Open Terms). Suppose that Γ is a
sized context in the form x1 : σ1, . . . , xn : σn, and that y is a variable distinct
from x1, . . . , xn. Then we define the following sets of terms and values:

414 U. Dal Lago and C. Grellois

OTRedΓ | ∅
μ,ρ =

{
M

∣
∣ ∀(qi)i ∈ [0, 1]n, ∀ (V1, . . . , Vn) ∈ ∏n

i=1 VRedqi
σi,ρ,

M [
−→
V /−→x] ∈ TRed

∏N
i=1 qi

μ,ρ

}

OVRedΓ | ∅
μ,ρ =

{
W

∣
∣ ∀(qi)i ∈ [0, 1]n, ∀ (V1, . . . , Vn) ∈ ∏n

i=1 VRedqi
σi,ρ,

W [
−→
V /−→x] ∈ VRed

∏N
i=1 qi

μ,ρ

}

OTRed
Γ | y : {τ

Pj
j }j∈J

μ,ρ =
{
M

∣
∣ ∀(qi)i ∈ [0, 1]n, ∀−→

V ∈ ∏n
i=1 VRedqi

σi,ρ,

∀ (
q′
j

)

j
∈ [0, 1]J , ∀W ∈ ⋂

j∈J VRed
q′

j
τj ,ρ,

M [
−→
V ,W/−→x , y] ∈ TRedα

μ,ρ

}

OVRed
Γ | y : {τ

Pj
j }j∈J

μ,ρ =
{
Z

∣
∣ ∀(qi)i ∈ [0, 1]n, ∀−→

V ∈ ∏n
i=1 VRedqi

σi,ρ,

∀ (
q′
j

)

j
∈ [0, 1]J , ∀W ∈ ⋂

j∈J VRed
q′

j
τj ,ρ,

Z[
−→
V ,W/−→x , y] ∈ VRedα

μ,ρ

}

where α = (
∏n

i=1 qi)
((∑

j∈J pjq
′
j

)
+ 1 −

(∑
j∈J pj

))
is called the degree of

reducibility. Note that these sets extend the ones for closed terms: in particular,
OTRed∅ | ∅

μ,ρ = TRed1μ,ρ.

Lemma 9 (Reducible Values are Reducible Terms). For every Γ, Θ, σ

and ρ, V ∈ OVRedΓ | Θ
σ,ρ if and only if V ∈ OTRed

Γ | Θ
{ σ1 },ρ. An immediate conse-

quence is that OVRedΓ | Θ
σ,ρ ⊆ OTRed

Γ | Θ
{ σ1 },ρ.

Reducibility and Sized Walks. To handle the fixpoint rule, we need to relate the
notion of sized walk which guards it with the reducibility sets, and in particular
with the degrees of reducibility we can attribute to recursively-defined terms.

Definition 19 (Probabilities of Convergence in Finite Time). Let us con-
sider a sized walk. We define the associated probabilities of convergence in finite
time (Prn,m)n∈N,m∈N

as follows: ∀n ∈ N, ∀m ∈ N, the real number Prn,m is
defined as the probability that, starting from m, the sized walk reaches 0 in at
most n steps.

The point is that, for an AST sized walk, the more we iterate, the closer we
get to reaching 0 in finite time n with probability 1.

Lemma 10 (Finite Approximations of AST). Let m ∈ N and ε ∈ (0, 1].
Consider a sized walk, and its associated probabilities of convergence in finite
time (Prn,m)n∈N,m∈N

. If the sized walk is AST, there exists n ∈ N such that
Prn,m ≥ 1 − ε.

The following lemma is the crucial result relating sized walks with the
reducibility sets. It proves that, when the sized walk is AST, and after substitu-
tion of the variables of the context by reducible values in the recursively-defined
term, we can prove the degree of reducibility to be any probability Prn,m of
convergence in finite time.

Probabilistic Termination by Monadic Affine Sized Typing 415

Lemma 11 (Convergence in Finite Time and letrec). Consider the dis-
tribution type μ =

{
(Natsj → ν[sj/i])

pj
∣
∣ j ∈ J }

. Let Γ be the sized context

x1 : Natr1 , . . . , xl : Natrl . Suppose that Γ | f : μ � V : Nat̂i → ν [̂i/i] and that μ
induces an AST sized walk. Denote (Prn,m)n∈N,m∈N

its associated probabilities

of convergence in finite time. Suppose that V ∈ OVRed
Γ | f :μ

Natî→ν [̂i/i],ρ
for every ρ.

Let
−→
W ∈ ∏l

i=1 VRed1Natri ,ρ, then for every (n,m) ∈ N
2, we have that

letrec f = V [
−→
W/−→x] ∈ VRed

Prn,m

Nati→ν,ρ[i �→m]

Proof. We give a sketch of the proof, to be found in the long version [18].
The proof is by recurrence on n. The main case relies on the decomposition
Prn+1,m′+1 =

∑
j∈J pjPrN,m′+kj

+ 1 −
(∑

j∈J pj

)
. The induction

hypothesis allows then to state that for every j ∈ J we have letrec f =

V [
−→
W/−→x] ∈ VRed

Prn,m′+kj

Nati→ν,ρ[i �→m′+kj]
. We use the Size Commutation lemma

(Lemma 8) to obtain that letrec f = V [
−→
W/−→x] is in an appropriate intersec-

tion of reducibility sets, and the hypothesis that V ∈ OVRed
Γ | f :μ

Natî→ν [̂i/i],ρ[i �→m′]

then implies that V [
−→
W, letrec f = V [

−→
W/−→x]/−→x , f] ∈ VRed

Prn+1,m′+1

Nati→ν,ρ[i �→m′+1]
,

using the Size Commutation lemma once again. As this term is an unfolding of
letrec f = V [

−→
W/−→x], we conclude using Proposition 2. ��

When m = ∞, the previous lemma does not allow to conclude, and an
additional argument is required. Indeed, it does not make sense to consider a
sized walk beginning from ∞: the meaning of this size is in fact any integer, not
the ordinal ω. The following lemma justifies this vision by proving that, if a term
is in a reducibility set for any finite interpretation of a size, then it is also in the
set where the size is interpreted as ∞.

Lemma 12 (Reducibility for Infinite Sizes). Suppose that i pos ν and that
W is the value letrec f = V . If W ∈ VRedp

Nati→ν,ρ[i �→n]
for every n ∈ N, then

W ∈ VRedp

Nati→ν,ρ[i �→∞]
.

All these fundamental lemmas allow us to prove the following proposition,
which expresses that all typable terms are reducible and is the key step towards
the fact that typability implies AST:

Proposition 3 (Typing Soundness). If Γ |Θ � M : μ, then M ∈ OTRedΓ | Θ
μ,ρ

for every ρ. Similarly, if Γ |Θ � V : σ, then V ∈ OVRedΓ | Θ
σ,ρ for every ρ.

Proof. We proceed by induction on the derivation of the sequent Γ |Θ � M : μ.
When M = V is a value, we know by Lemma 2 that μ =

{
σ1

}
; and we prove

that V ∈ OVRedΓ | Θ
σ,ρ for every ρ. By Lemma 9 we obtain that V ∈ OTRedΓ | Θ

μ,ρ

for every ρ. We proceed by case analysis on the last rule of the derivation:

• letrec: Suppose that Γ, Δ |Θ � letrec f = V : Natr → ν[r/i]. We treat
the case where Δ = Θ = ∅. The general case is easily deduced using

416 U. Dal Lago and C. Grellois

the downward-closure of the reducibility sets (Lemma 6). Let Γ = x1 :
Natr1 , . . . , xn : Natrn . We need to prove that, for every family (qi)i ∈ [0, 1]n

and every (W1, . . . ,Wn) ∈ ∏n
i=1 VRed

Qi

Natri ,ρ, we have

(letrec f = V) [
−→
W/−→x] =

(
letrec f = V [

−→
W/−→x]

)
∈ VRed

∏n
i=1 qi

Natr→ν[r/i],ρ

If there exists i ∈ I such that qi = 0, the result is immediate as the term is
simply-typed and Lemma 5 applies. Else, for every i ∈ I, we have by definition
that VRedqi

Natri ,ρ = VRed1Natri ,ρ. Since the sets VRed are downward-closed
(Lemma 6), it is in fact enough to prove that for every (W1, . . . ,Wn) ∈∏n

i=1 VRed
1
Natri ,ρ, we have

letrec f = V [
−→
W/−→x] ∈ VRed1Natr→ν[r/i],ρ

Moreover, by size commutation (Lemma 8),

VRed1Natr→ν[r/i],ρ = VRed1Nati→ν,ρ[i �→�r�ρ]

Let us therefore prove the stronger fact that, for every integer m ∈ N∪ {∞},

letrec f = V [
−→
W/−→x] ∈ VRed1Nati→ν,ρ[i �→m]

Now, the typing derivation gives us that Γ | f : μ � V : Nat̂i → ν [̂i/i] and
that μ induces an AST sized walk. Denote (Prn,m)n∈N,m∈N

its associated
probabilities of convergence in finite time. By induction hypothesis, V ∈
OVRed

Γ | f :μ

Natî→ν [̂i/i],ρ
for every ρ and we can apply Lemma 11. It follows that,

for every (n,m) ∈ N,

letrec f = V [
−→
W/−→x] ∈ VRed

Prn,m

Nati→ν,ρ[i �→m]

Let ε ∈ (0, 1). By Lemma 10, there exists n ∈ N such that Prn,m ≥ 1 − ε.
Using downward closure (Lemma 6) and quantifying over all the ε, we obtain

letrec f = V [
−→
W/−→x] ∈

⋂

0<ε<1

VRed1−ε
Nati→ν,ρ[i �→m]

so that, by continuity of VRed (Lemma 7), we obtain

letrec f = V [
−→
W/−→x] ∈ VRed1Nati→ν,ρ[i �→m] (11)

for every m ∈ N, allowing us to conclude. It remains however to treat the case
where m = ∞. Since i pos ν and that (11) holds for every m ∈ N, Lemma 12
applies and we obtain the result.

• Other cases: the other cases are treated in the long version [18]. ��

This proposition, together with the definition of OTRed, implies the main result
of the paper, namely that typability implies almost-sure termination:

Probabilistic Termination by Monadic Affine Sized Typing 417

Theorem 2. Suppose that M ∈ Λs
⊕ (μ). Then M is AST.

Proof. Suppose that M ∈ Λs
⊕ (μ), then by Proposition 3 we have M ∈ OTRed∅ | ∅

μ,ρ

for every ρ. By definition, OTRed∅ | ∅
μ,ρ = TRed1μ,ρ. Corollary 1 then implies that

M is AST.

6 Conclusions and Perspectives

We presented a type system for an affine, simply-typed λ-calculus enriched with
a probabilistic choice operator, constructors for the natural numbers, and recur-
sion. This affinity constraint implies that a given higher-order variable may occur
(freely) at most once in any probabilistic branch of a program. The type system
we designed decorates the affine simple types with size information, allowing to
incorporate in the types relevant information about the recursive behaviour of
the functions contained in the program. A guard condition on the typing rule for
letrec, formulated with reference to an appropriate Markov chain, ensures that
typable terms are AST. The proof of soundness of this type system for AST
relies on a quantitative extension of the reducibility method, to accommodate
sets of candidates to the infinitary and probabilistic nature of the computations
we consider.

A first natural question is the one of the decidability of type inference for our
system. In the deterministic case, this question was only addressed by Barthe
and colleagues in an unpublished tutorial [20], and their solution is technically
involved, especially when it comes to dealing with the fixpoint rule. We believe
that their approach could be extended to our system of monadic sized types, and
hope that it could provide a decidable type inference procedure for it. However,
this extension will certainly be challenging, as we need to appropriately infer
distribution types associated with AST sized walks in the letrec rule.

Another perspective would be to study the general, non-affine case. This is
challenging, for two reasons. First, the system of size annotations needs to be
more expressive in order to distinguish between various occurrences of a same
function symbol in a same probabilistic branch. A solution would be to use the
combined power of dependent types – which already allowed Xi to formulate
an interesting type system for termination in the deterministic case [23] – and
of linearity: we could use linear dependent types [34] to formulate an extension
of the monadic sized type system keeping track of how many recursive calls
are performed, and of the size of each recursive argument. The second chal-
lenge would then be to associate, in the typing rule for letrec, this information
contained in linear dependent types with an appropriate random process. This
random process should be kept decidable to guarantee that at least derivation
checking can be automated, and there will probably be a trade-off between the
duplication power we allow in programs and the complexity of deciding AST for
the guard in the letrec rule.

The extension of our type system to deal with general inductive datatypes
is essentially straightforward. Other perspectives would be to enrich the type

418 U. Dal Lago and C. Grellois

system so as to be able to treat coinductive data, polymorphic types, or ordinal
sizes, three features present in most system of sized types dealing with the tradi-
tional deterministic case, but which we chose not to address in this paper to focus
on the already complex task of accommodating sized types to a probabilistic and
higher-order framework.

References

1. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (2001)

2. Pearl, J.: Probabilistic Reasoning in Intelligent Systems - Networks of Plausible
Inference. Morgan Kaufmann Series in Representation and Reasoning. Morgan
Kaufmann, Burlington (1989)

3. Thrun, S.: Robotic mapping: a survey. In: Exploring Artificial Intelligence in the
New Millenium, Morgan Kaufmann (2002)

4. de Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by proba-
bilistic machines. Automata Studies 34, 183–212 (1956)

5. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

6. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: Shao, Z., Pierce, B.C. (eds.) POPL 2009, pp. 90–101. ACM
(2009)

7. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 5

8. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: McAllester, D.A., Myllymäki, P.
(eds.) UAI 2008, pp. 220–229. AUAI Press (2008)

9. Bournez, O., Kirchner, C.: Probabilistic rewrite strategies. applications to ELAN.
In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 252–266. Springer, Heidelberg
(2002). doi:10.1007/3-540-45610-4 18

10. Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs
using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 123–138. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 14

11. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: soundness, completeness,
and compositionality. In: Rajamani, S.K., Walker, D. (eds.) POPL 2015, pp. 489–
501. ACM (2015)

12. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
In: Bod́ık, R., Majumdar, R. (eds.) POPL 2016, pp. 327–342. ACM (2016)

13. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilis-
tic programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 3–22. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-41528-4 1

14. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: Boehm, H. Jr., Shackle, G.L.S. (eds.) POPL 1996, pp. 410–423.
ACM Press (1996)

http://dx.doi.org/10.1007/978-3-642-22792-9_5
http://dx.doi.org/10.1007/3-540-45610-4_18
http://dx.doi.org/10.1007/978-3-642-31424-7_14
http://dx.doi.org/10.1007/978-3-319-41528-4_1
http://dx.doi.org/10.1007/978-3-319-41528-4_1

Probabilistic Termination by Monadic Affine Sized Typing 419

15. Hofmann, M.: A mixed modal/linear lambda calculus with applications to
Bellantoni-Cook safe recursion. In: Nielsen, M., Thomas, W. (eds.) CSL
1997. LNCS, vol. 1414, pp. 275–294. Springer, Heidelberg (1998). doi:10.1007/
BFb0028020

16. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,
New York (1989)

17. Dal Lago, U., Hofmann, M.: Realizability models and implicit complexity. Theoret.
Comput. Sci. 412(20), 2029–2047 (2011)

18. Dal Lago, U., Grellois, C.: Probabilistic termination by monadic affine sized typing
(long version) (2016). https://arxiv.org/abs/1701.04089

19. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termina-
tion of recursive definitions. MSCS 14(1), 97–141 (2004)

20. Barthe, G., Grégoire, B., Riba, C.: A tutorial on type-based termination. In: Bove,
A., Barbosa, L.S., Pardo, A., Pinto, J.S. (eds.) LerNet 2008. LNCS, vol. 5520, pp.
100–152. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03153-3 3

21. Barthe, G., Grégoire, B., Riba, C.: Type-based termination with sized products.
In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 493–507.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-87531-4 35

22. Abel, A.: Termination checking with types. ITA 38(4), 277–319 (2004)
23. Xi, H.: Dependent types for program termination verification. High.-Order Symb.

Comput. 15(1), 91–131 (2002)
24. Amadio, R.M., Coupet-Grimal, S.: Analysis of a guard condition in type theory. In:

Nivat, M. (ed.) FoSSaCS 1998. LNCS, vol. 1378, pp. 48–62. Springer, Heidelberg
(1998). doi:10.1007/BFb0053541

25. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl, J.
(ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-32033-3 24

26. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 34

27. Cappai, A., Dal Lago, U.: On equivalences, metrics, and polynomial time. In:
Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 311–323.
Springer, Cham (2015). doi:10.1007/978-3-319-22177-9 24

28. Dal Lago, U., Parisen Toldin, P.: A higher-order characterization of probabilistic
polynomial time. Inf. Comput. 241, 114–141 (2015)

29. Dal Lago, U.: A short introduction to implicit computational complexity. In:
Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010-2011. LNCS, vol. 7388, pp.
89–109. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31485-8 3

30. Dal Lago, U., Zorzi, M.: Probabilistic operational semantics for the lambda calcu-
lus. RAIRO - Theoret. Inf. Appl. 46(3), 413–450 (2012)

31. Brázdil, T., Brožek, V., Etessami, K., Kučera, A., Wojtczak, D.: One-counter
Markov decision processes. In: 21st ACM-SIAM Symposium on Discrete Algo-
rithms (2010)

32. Dal Lago, U.: The geometry of linear higher-order recursion. In: LICS 2005, pp.
366–375. IEEE Computer Society (2005)

33. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.
LISP Symb. Comput. 6(3–4), 289–360 (1993)

34. Dal Lago, U., Gaboardi, M.: Linear dependent types and relative completeness. In:
LICS 2011, pp. 133–142. IEEE Computer Society (2011)

http://dx.doi.org/10.1007/BFb0028020
http://dx.doi.org/10.1007/BFb0028020
https://arxiv.org/abs/1701.04089
http://dx.doi.org/10.1007/978-3-642-03153-3_3
http://dx.doi.org/10.1007/978-3-540-87531-4_35
http://dx.doi.org/10.1007/BFb0053541
http://dx.doi.org/10.1007/978-3-540-32033-3_24
http://dx.doi.org/10.1007/978-3-540-32033-3_24
http://dx.doi.org/10.1007/978-3-642-39799-8_34
http://dx.doi.org/10.1007/978-3-319-22177-9_24
http://dx.doi.org/10.1007/978-3-642-31485-8_3

CAPER

Automatic Verification for Fine-Grained Concurrency

Thomas Dinsdale-Young1(B), Pedro da Rocha Pinto2,
Kristoffer Just Andersen1, and Lars Birkedal1

1 Aarhus University, Aarhus, Denmark
{tyoung,kja,birkedal}@cs.au.dk

2 Imperial College London, London, UK
pmd09@doc.ic.ac.uk

Abstract. Recent program logics based on separation logic emphasise a
modular approach to proving functional correctness for fine-grained con-
current programs. However, these logics have no automation support. In
this paper, we present Caper, a prototype tool for automated reasoning
in such a logic. Caper is based on symbolic execution, integrating rea-
soning about interference on shared data and about ghost resources that
are used to mediate this interference. This enables Caper to verify the
functional correctness of fine-grained concurrent algorithms.

1 Introduction

In recent years, much progress has been made in developing program logics
for verifying the functional correctness of concurrent programs [7,10,19,29,32],
with emphasis on fine-grained concurrent data structures. Reasoning about such
programs is challenging since data is concurrently accessed by multiple threads:
the reasoning must correctly account for interference between threads, which can
often be subtle. Recent program logics address this challenge by using resources
that are associated with some form of protocol for accessing shared data.

The concept of heap-as-resource was a fundamental innovation of separation
logic [26]. It is possible to specify and verify a piece of code in terms of the
resources that it uses. Further resources, which are preserved by the code, can
be added by framing, provided that they are disjoint. Concurrent separation logic
(CSL) [23] uses the observation that threads operating on disjoint resources do
not interfere. This is embodied in the disjoint concurrency proof rule:

{
p1
}
c1
{
q1
} {

p2
}
c2
{
q2
}

{
p1 ∗ p2

}
c1‖c2

{
q1 ∗ q2

} .

The separating conjunction connective ‘∗’ in the assertion p1 ∗ p2 asserts that
both p1 and p2 hold but for disjoint portions of the heap. In separation logic,
the primitive resources are heap cells, represented x �→ y, meaning the heap at
address x holds value y. A thread that owns a heap cell has an exclusive right to
read, modify or dispose of it. The separating conjunction x �→ y ∗y �→ z enforces
disjointness: it requires x and y to be different addresses in the heap.
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 420–447, 2017.
DOI: 10.1007/978-3-662-54434-1 16

Caper 421

In fine-grained concurrent algorithms, however, threads use shared data, so
a more flexible concept of resources is required. Shared regions [10] are one app-
roach to this. A shared region encapsulates some underlying (concrete) resources,
which may be accessed by multiple threads when they perform atomic opera-
tions. The region enforces a protocol that determines how threads can mutate the
encapsulated resources. The region is associated with abstract resources called
guards that determine the role that a thread can play in the protocol. Impor-
tantly, these resources determine what knowledge a thread can have about the
region that is stable — i.e., continues to hold under the actions of other threads.

For example, consider a region that encapsulates a heap cell at address x.
Associated with this region are two guards Inc and Dec. The protocol states
that a thread with the Inc guard can increase the value stored at x, and a thread
with the Dec guard can decrease the value stored at x. A thread holding the Inc
guard can know that the value at x is at most the last value it observed; without
the Dec guard, a thread cannot know that the value will not be decreased by
another thread. Conversely, a thread holding the Dec guard can know a lower
bound on the value at x. A thread that holds both guards can change the value
arbitrarily and know it precisely, much as if it had the resource x �→ y itself.

In this paper we present Caper, a novel tool for automatic verification of
fine-grained concurrent programs using separation logic. To verify a program, the
user specifies the types of shared regions, defining their guards and protocols, and
provides specifications for functions (and loop invariants) that use these regions.
Caper uses a region-aware symbolic execution (Sect. 3.3) to verify the code, in
the tradition of SmallFoot [1]. The key novelties of Caper’s approach are:

– the use of guard algebras (Sect. 3.1) as a mechanism for representing and rea-
soning automatically about abstract resources, while supporting a range of
concurrency verification patterns;

– techniques for automatically reasoning about interference on shared regions
(Sect. 3.2), in particular, accounting for transitivity; and

– heuristics for non-deterministic proof search (Sect. 4), including the novel use
of abduction to infer abstract updates to shared regions and guards.

We introduce our approach by considering a number of examples in Sect. 2.
We emphasise that these examples are complete and self-contained — Caper
can verify them without additional input. In Sect. 5 we evaluate Caper, report-
ing results for a range of examples. We discuss related work in Sect. 6 before
concluding with remarks on future directions in Sect. 7.

The Caper tool is implemented in Haskell, and uses Z3 [8] and (optionally)
E [27] to discharge proof obligations. The source code and examples are avail-
able [11], as is a soundness proof of the separation logic underlying Caper [12].

2 Motivating Examples

We begin by considering a series of examples that illustrate the programs and
specifications that Caper is designed to prove. In each case, we discuss how

422 T. Dinsdale-Young et al.

Caper handles the example and why. In later sections, we will describe the
rules and algorithms that underlie Caper in more detail. For each example, we
give the complete source file, which Caper verifies with no further annotation.

2.1 Spin Lock

Figure 1 shows a typical annotated source file for Caper, which implements
a simple fine-grained concurrent data structure: a spin lock. Note that &*& is
Caper syntax for ∗ — separating conjunction.

Lines 1–11 define a region type, SLock, for spin locks. There are two kinds
of assertions associated with regions, and their shape is dictated by region type
definitions. SLock(r,x,s) is the assertion representing knowledge of a region
r of type SLock with parameter x in abstract state s. The second are guard
assertions of the form r@(G), meaning we hold the guard G for region r.

Fig. 1. Caper listing for a spin lock implementation.

Line 2 is a guard algebra declaration, indicating the guards associated with
a given region type, and how they compose. There are two kinds of guard asso-
ciated with SLock regions: LOCK guards, which are used to acquire the lock, and

Caper 423

may be subdivided to allow multiple threads to compete for the lock (indicated
by % in the guards declaration); and UNLOCK guards, which are used to release
the lock, and are exclusive — only a thread holding the lock owns the UNLOCK
guard.

Lines 3–6 declare a region interpretation: the resources held by the region
when in each abstract state. SLock regions have two states: 0 represents that
the lock is available, which is indicated concretely by the heap cell x �→ 0; 1
represents that the lock has been acquired, which is indicated concretely by the
heap cell x �→ 1. In the available state the UNLOCK guard belongs to the region —
a thread that transitions to the acquired state obtains this guard.

Finally, lines 7–10 declare the actions — the protocol governing the shared
region. This embodies both the updates allowed for a given thread and the inter-
ference a thread must anticipate from the environment. A thread can transition
an SLock region from abstract state 0 (available) to 1 (acquired) if it holds the
LOCK[p] guard for any p. Similarly, a thread can transition an SLock region from
acquired to available if it holds the UNLOCK guard.

The makeLock function allocates a new spin lock. It has the precondition
true since it does not require any resources. In the postcondition, the function
returns an SLock region with full permission to its LOCK guard (expressed by
r@(LOCK[1p])). The logical variable r holds the identifier for the region, which is
used to relate assertions that refer to the same region; it is implicitly existentially
quantified as it occurs in the postcondition but neither in the precondition nor
as a parameter to the function. The logical variable ret binds the return value,
which is the address of the lock. When Caper symbolically executes the function
body, at the return it has the resource v �→ 0 but requires SLock(r, v, 0). This
missing resource is abduced: Caper backtracks searching for a place where it
could have obtained the missing resource. Caper thus tries to construct the
region before executing the return statement. Constructing the region consists
of creating a fresh region identifier and adding the full guards for the region to
the symbolic state (in this case LOCK[1p] * UNLOCK); the resources belonging
to the region according to the interpretation are consumed (removed from the
symbolic state). This is successful for the interpretation 0, leaving the guard
LOCK[1p] for the new region. Caper can then successfully symbolically execute
the return statement, since it has the resources required by the postcondition.

The acquire function attempts to acquire the lock. The precondition asserts
that the spin lock is in an unknown state and that we have permission to acquire
the lock in the form of the LOCK[p] guard. The postcondition asserts that the
lock is in the acquired state (indicated by the 1 in the SLock predicate) and that
we retain the LOCK[p] guard but have also acquired the UNLOCK guard.

The lock is acquired by performing an atomic compare-and-set (CAS) oper-
ation, which attempts to set the value stored at address x from 0 to 1. In sym-
bolically executing the CAS, Caper determines that it needs to open the region
because it does not have x �→ −. In opening the region, Caper branches on the
interpretation of the region; it must show that both cases are correct. The CAS
itself also introduces branches depending on whether it failed; these are quickly

424 T. Dinsdale-Young et al.

pruned as the CAS cannot fail if the region is in state 0, nor succeed if it is
in state 1. Immediately after the atomic CAS, Caper must close the region. It
does so by non-deterministically choosing among the interpretations.

If the initial state was 1, the CAS fails and Caper closes with state 1. Since
the state is unchanged, this ‘update’ is permitted. After the atomic operation,
Caper must stabilise the region; since the thread does not own the UNLOCK
guard, another thread could transition the region to state 0. Consequently, after
the CAS, Caper does not know which state the region is in. Since the CAS fails,
the if condition succeeds. Caper then makes the recursive call to acquire using
the specification, which allows it to obtain the postcondition in the end.

If the initial state was 0, the CAS succeeds and Caper closes with state 1.
In doing so, the UNLOCK guard is acquired, since it is part of the interpretation of
state 0, but not of state 1. Caper must then check that the update from state 0
to 1 is permitted by the available guards, LOCK[p] * UNLOCK, which it is. After
the CAS, the thread owns the UNLOCK guard so no other thread can change the
state of the region, and so it is stable in state 1. The result of a successful CAS
is 1, so Caper does not symbolically execute the body of the if in this case,
and proceeds to check the postcondition, which is successful.

The verification of the release function proceeds along similar lines.

2.2 Ticket Lock

Figure 2 shows a Caper listing for a ticket lock. A ticket lock comprises two
counters: the first records the next available ticket and the second records the
ticket which currently holds the lock. (Note that the lock is “available” when
the two counters are equal — i.e. the ticket holding the lock is the next available
ticket.) To acquire the lock, a thread obtains a ticket by incrementing the first
counter and waiting until the second counter reaches the value of the ticket it
obtained. To release the lock, a thread simply increments the second counter.

In Caper, a ticket lock is captured by a TLock region, defined in lines 1–9
of Fig. 2. In contrast to the SLock region, a TLock region has an infinite num-
ber of states: there is an abstract state for each integer n. The abstract state
n of a TLock region represents the ticket that currently holds the lock. The
guards associated with a TLock region represent the tickets: there is a unique
guard TICKET(n) for each integer n. (This is indicated by the # in the guards
declaration.) The region interpretation of state n ensures that:

– the first counter (x) is the next available ticket number, m, which is at least n;
– the second counter (x+1) is n, the lock-holding ticket number;
– all TICKET resources from m up belong to the region. (A set of indexed resources

is expressed with a set-builder-style notation, as in TICKET{k|k≥m}.)

Note that m is implicitly existentially quantified in the interpretation.
A thread may acquire a ticket by incrementing the next-available-ticket

counter and removing the corresponding TICKET guard from the region. Doing so
does not affect the abstract state of the region, and can, therefore, happen at any

Caper 425

time (no guards are required to do so). In order to increment the lock-holding-
ticket counter, a thread must hold the TICKET(n) resource for the current value
of the counter, n. We might, therefore, expect the actions declaration to be:

8 actions {
9 TICKET(n) : n � n + 1;

10 }

This action declaration is, however, problematic for automation. Between
symbolically executing atomic actions, Caper widens the set of possible abstract
states for each region according to the rely relation for that region type. Suppose
a TLock region is initially in state 0. If the thread does not hold the TICKET(0)
guard, Caper must add the state 1 to the possible state set. If the thread
does not hold TICKET(1), Caper must add the state 2, and so on. In general,
we cannot expect this widening process to terminate, so we must consider a
transitively-closed rely relation. Caper cannot, in general, compute the tran-
sitive closure, but it is possible to check that a given actions declaration is
transitively closed. We address this in Sect. 3.2. The proposed action declaration
is, however, not transitive, since transitions from 0 to 1 and from 1 to 2 are
possible, but the transitive transition from 0 to 2 is not possible in one step.

Fig. 2. Caper listing for a ticket lock implementation.

426 T. Dinsdale-Young et al.

Instead, we use the actions declaration in Fig. 2, which is transitively closed.
It remedies the problem with the simple version by generalising from a single
increment to allow multiple increments. This is achieved by placing a condition
on the transition that n�m is only permitted when n<m, enforcing that the counter
can only increase, as indicated before the vertical bar in the actions declaration.
The guard TICKET{k|n≤k,k<m} denotes the set of all guards TICKET(k) for k
between n and m-1 inclusive. This ensures that a thread can increment the
counter past k only when it holds the TICKET(k) guard. For example, a thread
holding TICKET(n) can transition the TLock region from abstract state n to n+1.

The precondition of acquire asserts that the ticket lock exists in some arbi-
trary abstract state. The postcondition ensures that the lock is in some state
n and that the guard TICKET(n) has been acquired. The function contains two
loops and Caper requires that we provide an invariant for each. The first loop,
lines 13–18, increments the next available ticket. The invariant states that the
region is in some state ni and that once the CAS succeeds (b = 1) we have
the TICKET(t) guard and t is at least ni; the conditional is expressed using
the C-like ? : notation. Similarly to the acquire operation for the spin lock,
Caper opens the region when symbolically executing the CAS operation. Since
there is only one clause in the TLock region interpretation, Caper considers one
generic case, rather than branching as in the spin lock. Immediately after sym-
bolically executing the CAS operation, Caper needs to close the region. If the
CAS succeeds Caper knows that the next available ticket m is t+1. Hence the
guard TICKET(t) is not included in the set of guards TICKET{k|k≥m} needed for
closing the region, so Caper can transfer the guard TICKET(t) out of the TLock
region. The next loop, lines 19–23, spins until the acquired ticket becomes the
lock-holding ticket. Caper proceeds similarly to the first loop. After the loop,
the invariant and failed loop test are sufficient to establish the postcondition.

The precondition of the release function expresses that the lock-holding
ticket of the region is n and that we hold that ticket. Because we hold the guard
TICKET(n), we can make a transition from abstract state n to abstract state n+1.
No other thread can make a transition, since to transition from n to m one needs
to hold all the guards from n to m-1. Therefore, there is no interference from
other threads on the second counter and we can update it without using a CAS
loop. After the read on line 28, Caper knows that v holds value n by opening
the region. To execute the write on line 29, Caper again opens the region in
state n. Caper closes the region in a new state n1, which must be the value of
the x+1 counter, i.e. n1 = n + 1. The value of m is unchanged, but Caper must
establish that m ≥ n1 = n + 1, which follows from the fact that m ≥ n and that
TICKET(n) (from the thread) is disjoint from TICKET{k|k≥m} (from the region).
Caper must also establish that the transition n�n+1 is permitted by the actions
for the available guards, which it is.

Client. Figure 3 shows an implementation of a simple client using the ticket
lock. Here, the Client(r,x,s,z) region uses a ticket lock region TLock(s,z)
to maintain the lock invariant that two cells, x and x+1, have the same value.

Caper 427

Fig. 3. A Caper listing of a client of the ticket lock.

The disjunction with the guard s@TICKET(k) makes it possible to temporarily
break the invariant. The function set(x,z,w) sets the value of the two shared
memory cells to w. Lines 12–13 are a critical section protected by the ticket lock.
Note that the invariant is temporarily broken between the two writes.

In symbolically executing the call to acquire in line 11, Caper uses the
postcondition of acquire to obtain s@TICKET(k) and TLock(s,z,k) for some
k. When Caper symbolically executes line 12, it opens the Client region and
must consider each of the disjuncts of the interpretation. It finds that the right-
hand disjunct is not possible as we already hold the TICKET guard for the current
abstract state k of the lock. Hence it obtains the points-to assertions for x and
x+1, and can perform the write to x. Since the values stored at x and x+1 are now
different, Caper can only close the region by transferring s@TICKET(k) to the
region. When Caper symbolically executes line 13, it again opens the Client
region. This time it finds that the region holds s@TICKET(k) since we have the
points-to predicates. After the assignment, the values stored at x and x+1 are the
same, and Caper can close the region while leaving us with the s@TICKET(k)
resource which Caper then uses to satisfy the precondition of release.

2.3 Stack-Based Bag

Figure 4 shows a Caper implementation of a concurrent bag based on Treiber’s
stack [31]. The stack is lock-free, and uses CAS operations to manipulate the head
of a linked-list structure. To push a new item, a thread constructs a new head
node and atomically updates the head pointer of the bag. When popping an item,
a thread anticipates what the head node is before atomically updating the head
pointer. In both cases, the function of the atomic compare-and-swap operation
is to ensure that no other thread has manipulated the bag between operations.
Unlike the preceding examples, the heap is fundamental to the implementation.

The specification is parametrised by an abstract predicate [2,24]
bagInvariant (line 1). The idea is that adding an item v to the bag requires

428 T. Dinsdale-Young et al.

Fig. 4. Caper listing for a concurrent bag implementation.

Caper 429

transferring ownership of the predicate bagInvariant(v) to the bag, which
is returned when the item is removed. Clients can decide how to instantiate
bagInvariant.

In Caper, the head pointer and the linked-list nodes are encapsulated by
separate regions: Bag and BagList, respectively. Note that there is an apparent
hierarchy between Bag and BagList regions: a Bag refers to a BagList, which
may, in turn, refer to another BagList and so on. In this way, we can use regions
to model inductive data structures such as linked lists. While regions can fulfil
a similar role to inductive predicates, they are semantically distinct. Regions
are shared globally, and so may refer to each other in arbitrary, even cyclical
ways. Although it appears as though the regions are nested, semantically all
regions exist at the same level. In this example, we achieve a hierarchy through
ownership of guards: the top-level Bag holds the OWN guard for the first BagList,
which holds the OWN guard for the second, and so on.

A Bag region is simple, in that it has no guards and is always in one abstract
state. It simply permits sharing of the resources it holds. The interpretation of
abstract state 0 of a region Bag(r,x) holds a pointer to the first, possibly null,
linked-list node at x in addition to its OWN guard.

The BagList(s,y,v,z) region type represents a list node (or a null termi-
nator) with payload value v at address y and a pointer to the successor z at y+1.
A BagList region is in one of two states, depending on whether it belongs to the
bag or not. Abstract state 0 means that the region belongs to the bag, in which
case it can represent either a null-pointer terminating the list or a list node with
a value and successor, represented by another BagList region. The region also
holds the OWN guard to the successor and the bagInvariant predicate for its
value. The abstract state 1 represents a list node that has been popped. The
interpretation therefore includes the region’s own OWN guard and knowledge of
the successor, but not the successor’s OWN guard or the bagInvariant predicate.

Since the bag can be used concurrently, we do not specify exactly which
elements it contains at a given time. Instead, our specification of push and pop
focuses on ownership transfer of elements pushed to and popped from the bag.

The precondition of push asserts only knowledge of the bag and ownership
of the bagInvariant for the value v to be put in the bag. In the postcondi-
tion, the bagInvariant resource is absent, as it is transferred to the bag. The
push function allocates a new list node and then delegates to a CAS loop in
innerPush.

The specification of innerPush is similar to that of push, but the precondi-
tion requires the list node that is to be pushed. Note that the successor of the
node, y+1, is initially undetermined. In lines 29–30, innerPush loads the current
head of the list into the tail pointer of the new node via the variable t. To do
so, Caper opens the Bag region, getting access to x, and closes it again. The
observed value is then written as the successor of the new node, at address y+1,
without opening any regions. To account for the head of the stack having changed
since it was read, a CAS is used to update the head pointer. To symbolically
execute the CAS in line 31, Caper again opens the Bag region. If successful,
it must close and restore the Bag region. This means a new BagList region in

430 T. Dinsdale-Young et al.

state 0 must be created for the new head. Upon creation, Caper creates the OWN
guard for the new region, which is given to the Bag region, closing it in state 0. If
the CAS does not succeed, it means another thread updated the stack between
lines 29 and 31, and innerPush recursively tries again.

The specification of the pop function states that, from a Bag, pop produces
either null (0), in case the bag is empty, or a value satisfying the bagInvariant
predicate. The idea is that the concrete value comes from the underlying linked
list, and the corresponding bagInvariant(v) predicate is removed from a
BagList region. The pop function attempts to CAS the head pointer of the
bag to the successor of the first link, effectively removing the first element from
the bag. It first reads the head pointer into t, which requires opening the Bag
region. At this point, we obtain the BagList region, which can be freely dupli-
cated, although the OWN guard remains in the Bag region. After the Bag region is
closed again, we must stabilise the BagList region to account for the fact that
another thread could remove the head node from the stack. That is, its abstract
state could now be 0 or 1. If the head pointer was 0, then the bag was empty and
so 0 is returned. Otherwise, t points to a node, and line 41 reads its successor
pointer into t2. This involves opening the BagList region previously obtained.
It is not necessary to open the Bag region again at this stage. The call to popCAS
at line 42 attempts to update the head node to the successor of the head node.
We give this CAS operation a specification (lines 48–50) to assist Caper. To
symbolically execute that CAS, Caper opens the Bag region containing x and
the OWN guard for the BagList region for the head of the stack. The BagList
region for the previously seen head (with region identifier rt) and the BagList
region for the current head (if it is different) are also opened. Caper determines
that the CAS can only succeed if these two regions are the same. In this case,
the bagInvariant is transferred to the thread, the OWN guard for the successor
is transferred to the Bag region, and the OWN guard for the head is transferred to
its own BagList region. In this process, the state of the BagList region for the
old head is updated from 0 to 1. This is allowed since we have access to its OWN
guard. If the CAS fails, nothing is changed and the pop is retried. On success,
the return value is read from the BagList region that is now in state 1. This
value corresponds to the previously-obtained bagInvariant predicate.

3 Proof System

Caper’s proof system is based on the logic of CAP [10], using improvements from
iCAP [29] and TaDA [7]. The logic is a separation logic with shared regions.

Each shared region has a unique region identifier. A region has an associated
region type, which determines the resources and protocol associated with the
region. Region types T(r, x̄) are parametrised, with the first parameter (r) always
being the region identifier. A region also has an abstract state. In Caper’s logic,
region assertions describe the type and state of a region. The region assertion
T(r, x̄, y) asserts the existence of a region with identifier r and type T(r, x̄) in
abstract state y. Region assertions are freely duplicable; i.e., they satisfy the

Caper 431

equivalence: T(r, x̄, y) ⇐⇒ T(r, x̄, y) ∗ T(r, x̄, y). Moreover, region assertions
with the same region identifier must agree on the region type and abstract state:
T(r, x̄, y) ∗ T′(r, x̄′, y′) =⇒ (T, x̄, y) = (T′, x̄′, y′).

Shared regions are also associated with (ghost) resources called guards. Which
guards can be associated with a region, as well as their significance and behaviour
is determined by the type of the region. Guards are interpreted as elements of
a partial commutative monoid (PCM), referred to as a guard algebra. That is,
they have a partial composition operator that is associative, commutative and
has a unit. This is sufficient for them to behave as separation logic resources (see
e.g. [9]). In Caper’s logic, guard assertions assert ownership of guard resources.
The guard assertion r@(G1∗ . . .∗Gn) asserts ownership of the guards G1, . . . , Gn

associated with region identifier r. Guard assertions are not in general duplicable,
but they distribute with respect to ∗: r@(G1 ∗ G2) ⇐⇒ r@G1 ∗ r@G2.

The region type determines how a shared region is used. A region type def-
inition determines the following properties of regions of that type: the guard
algebra associated with the region; the abstract states of the region and their
concrete interpretation; and the actions that can be used to update the state of
the region, and which guards are required in order to perform each action. Region
type definitions determine two derived relations, Rely and Guar (for guarantee),
which are defined in Fig. 5, based on the actions for the region types. The rela-
tion Rely(T(r, x̄), G) consists of all state transitions that a thread’s environment
may make to a region of type T(r, x̄), if the thread owns guard G. The relation
Guar(T(r, x̄), G) consists of all state transitions that a thread itself may make
to a region of type T(r, x̄), if it owns guard G.

Fig. 5. Rules defining the Guar and Rely relations.

3.1 Guards

The underlying logic of Caper permits the guard algebra for a region to be an
arbitrary PCM. However, in order to reason automatically about guards, Caper

432 T. Dinsdale-Young et al.

must be able to effectively compute solutions to certain problems within the
PCM. To this end, Caper provides a number of constructors for guard algebras
for which these problems are soluble. These constructors are inspired by common
patterns in concurrency verification, and are useful for many examples. The three
automation problems are as follows.

Frame Inference. Given guard assertions A and B, find a C (if it exists) such that
A 	 B ∗ C. This problem has two applications: 1. Computing the Guar relation
requires determining if the guard currently available to the thread (A) entails
the guard required to perform some action (B); 2. At call sites, returns and
when closing regions, symbolic execution consumes assertions (i.e. checks that
the assertion holds and removes the corresponding resources from the symbolic
state). Frame inference (for guards) does this for guard assertions.

Composition and Compatibility. Given guard assertions A and B, determine their
composition A∗B and the condition for it being defined. Whether it is defined will
be a pure assertion on the free variables of A and B. This also has two applications:
1. Computing the Rely relation requires determining when the guard currently
owned by the thread (A) is compatible with the guard required to perform some
action (B); 2. At entry points, after calls and when opening regions, symbolic exe-
cution produces assertions (i.e. adds resources and assumptions corresponding
to the assertion to the symbolic state). Composition does this for guards.

Least Upper-Bounds. Given guard assertions A and B, compute C such that C 	 A,
C 	 B and for any D with D 	 A and D 	 B, D 	 C. This is used to compose two
actions, which will be guarded by the least upper-bound of the two guards.

Supported Guard Algebras. We present the guard algebras that are sup-
ported by Caper. Each guard algebra has a maximal element, the full guard,
which is generated for a region when it is initially created.

Trivial Guard Algebra. The trivial guard algebra, 0 in Caper syntax, consists
of one element which is the unit. This algebra is used when a region has no roles
associated with it: it can be used in the same way by all threads at all times.

All-or-Nothing Guard Algebra. An all-or-nothing guard algebra consists of a
single element distinct from the unit, which is the full guard. In Caper syntax,
this algebra is represented by the name chosen for the point; for instance, GUARD
would be the all-or-nothing algebra with point GUARD.

Permissions Guard Algebra. A permissions guard algebra %GUARD has the full
resource GUARD[1p] which can be subdivided into smaller permissions GUARD[π].
The typical model for permissions is as fractions in the interval [0, 1]. This allows
for (non-zero) permissions to be split arbitrarily often. Caper implements a
different theory of permissions. This theory also allows arbitrary splitting, but
also requires that GUARD[π] ∗ GUARD[π] is undefined for any non-zero π.

Caper 433

The theory can be encoded into the theory of atomless Boolean algebras —
a Boolean algebra is said to be atomless if for all a > ⊥ there exists a′ with
a > a′ > ⊥. The encoding defines the PCM operator as p1 ∗ p2 = p1 ∨ p2 if
p1 ∧ p2 = ⊥ (and undefined otherwise). Conveniently, the first-order theory of
atomless Boolean algebras is complete and therefore decidable (initially reported
by Tarski [30], proved by Ershov [15], and see e.g. [6] for details).

Caper implements three different proof procedures for the theory of permis-
sions. One uses the encoding with Boolean algebras and passes the problem to
the first-order theorem prover E [27]. A second checks for the satisfiability of a
first-order permissions formula directly. The third encodes the satisfiability prob-
lem with bit-vectors and passes it to the SMT solver Z3 [8]. Dockins et al. [13]
previously proposed a tree-share model of permissions, which is also a model
of this theory. Le et al. [20] have developed decision procedures for entailment
checking based on this model, which could also be used by Caper.

Counting Guard Algebra. A counting guard algebra |GUARD| consists of counting
guards similar to the counting permissions of Bornat et al. [3]. For n ≥ 0,
GUARD|n| expresses n counting guards. An authority guard tracks the number of
counting guards that have been issued. For n ≥ 0, GUARD|-1 − n| expresses the
authority guard with n counting guards issued. The PCM operator is defined as:

GUARD|n| ∗ GUARD|m| = GUARD|n + m| if (n ≥ 0 ∧ m ≥ 0) ∨
(n < 0 ∧ m ≥ 0 ∧ n + m < 0) ∨ (n ≥ 0 ∧ m < 0 ∧ n + m < 0).

This ensures that the authority is unique (e.g. GUARD|-1| ∗ GUARD|-2| is unde-
fined) and that owning GUARD|-1|, which is the full guard, guarantees that no
other thread may have a counting guard.

Indexed Guard Algebra. An indexed guard algebra #GUARD consists of sets of
individual guards GUARD(n) where n ranges over integers. A set of such individual
guards is expressed using a set-builder notation: GUARD{x | P} describes the set
of all guards GUARD(x) for which P holds of x. The full guard is GUARD{x | true}.
The notation GUARD(n) is syntax for GUARD{x | x = n}. The PCM operator is
defined as GUARDS1 ∗ GUARDS2 = GUARD(S1 ∪ S2) if S1 ∩ S2 = ∅.

The automation problems reduce to testing conditions concerning sets,
specifically set inclusion. Sets in Caper are not first-class entities: they are
always described by a logical predicate that is a (quantifier-free) arithmetic for-
mula. For sets characterised in this way, set inclusion can be characterised as:{
x

∣
∣ P

} ⊆ {
x

∣
∣ Q

} ⇐⇒ ∀x. P ⇒ Q. Advanced SMT solvers, such as Z3 [8], have
support for first-order quantification, and Caper exploits this facility to handle
the verification conditions concerning set inclusion.

Product Guard Algebra Construction. Given guard algebras M and N , the prod-
uct construction M *N consists of pairs (m,n) ∈ M ×N , where the PCM oper-
ation is defined pointwise: (m1, n1) ∗ (m2, n2) = (m1 ∗ m2, n1 ∗ n2). The unit is
the pair of units and the full resource is the pair of full resources.

434 T. Dinsdale-Young et al.

Sum Guard Algebra Construction. Given guard algebras M and N , the sum
construction M + N is the discriminated (or disjoint) union of M and N , up to
identifying the units and identifying the full resources of the two PCMs. The
PCM operation embeds the operations of each of the constituent PCMs, with
composition between elements of different PCMs undefined.

Within the Caper implementation, guards are represented as maps from
guard names to parameters that depend on the guard type. For this to work,
Caper disallows multiple guards with the same name in a guard algebra def-
inition. For instance, INSERT * %INSERT is not legal. The sum construction is
implemented by rewriting where necessary by the identities the construction
introduces.

3.2 Interference Reasoning

There are two sides to interference: on one side, a thread should only perform
actions that are anticipated by the environment, expressed by the Guar relation;
on the other, a thread must anticipate all actions that the environment could
perform, expressed by the Rely relation. Each time a thread updates a region,
it must ensure that the update is permitted by the Guar with respect to the
guards it owns (initially) for that region. Moreover, the symbolic state between
operations and frames for non-atomic operations must be stabilised by closing
the set of states they might be in under the Rely relation. Caper must therefore
be able to compute with these relations effectively.

The biggest obstacle to effective computation is that the relations are tran-
sitively closed. Transitivity is necessary, at least for Rely, since the environment
may take arbitrarily many steps in between the commands of a thread. However,
computing the transitive closure in general is a difficult problem. For instance,
consider a region that has the (unguarded) action : n � n + 1. From this action,
we should infer the relation

{
(n,m)

∣
∣ n ≤ m

}
, as the reflexive-transitive closure of{

(n, n + 1)
∣
∣ n ∈ Z

}
. It is generally beyond the ability of SMT solvers to compute

transitive closures, although some (limited) approaches have been proposed [14].
Caper employs two techniques to deal with the transitive closure problem.

This first is that, if the state space of the region is finite, then it is possible
to compute the transitive closure directly. Caper uses a variant of the Floyd-
Warshall algorithm [16] for computing shortest paths in a weighted graph. The
‘weights’ are constraints (first-order formulae) with conjunction as the ‘addition’
operation and disjunction as the ‘minimum’ operation.

The second technique is to add composed actions until the set of actions
is transitively closed. When the actions are transitively closed, the Rely and
Guar relations can be computed without further accounting for transitivity (i.e.
the (†) rules in Fig. 5 can be ignored). For two actions P | G : e1 � e2 and
P ′ | G′ : e′

1 � e′
2 (assuming the only common variables are region parameters)

their composition is P, P ′, e2 = e′
1 | G � G′ : e1 � e′

2 where � is the least-upper-
bound operation on guards. Using frame inference for guards, we can check if
one action subsumes another — that is, whether any transition permitted by
the second is also permitted by the first.

Caper 435

Caper uses the following process to reach a transitive set of actions. First,
consider the composition of each pair of actions currently in the set and deter-
mine if it is subsumed by any action in the set. If all compositions are already
subsumed then the set is transitive. Otherwise, add all compositions that are
not subsumed and repeat. Since this process is not guaranteed to terminate (for
example, for n � n + 1), Caper will give up after a fixed number of iterations
fail to reach a transitive set. Note that adding composite actions does not change
the Rely and Guar relations, since these are defined to be transitively closed.

If Caper is unable to reach a transitive set of actions, the Rely rela-
tion is over-approximated by the universal relation, while the Guar is under-
approximated. This is sound, since Caper can prove strictly less in such cir-
cumstances, although the over-approximation is generally too much to prove
many examples.

It is often practical to represent the transition system for a region type in
a way that Caper can determine its transitive closure. For example, instead of
the action : n � n + 1 we can give the action n < m | : n � m, which Caper
can prove subsumes composition with itself. Since Caper tries to find a tran-
sitive closure, it is often unnecessary to provide a set of actions that is tran-
sitively closed. For instance, given the actions 0 ≤ n, n < m | A : n � -m and
0 < n | B : -n � n, Caper adds the following actions to reach a transitive
closure:

0 ≤ n, n < m | A * B : n � m;
0 < n, n < m | A * B : -n � -m;
0 < n, n < m | A * B : -n � m;

3.3 Symbolic Execution

Caper’s proof system is based on symbolic execution, where programs are inter-
preted over a domain of symbolic states. Symbolic states represent separation
logic assertions, but are distinct from the syntactic assertions of the Caper
input language. To verify that code satisfies a specification, the code is sym-
bolically executed from a symbolic state corresponding to the precondition. The
symbolic execution may be non-deterministic — for instance, to account for con-
ditional statements — and so produces a set of resulting symbolic states. If each
of these symbolic states entails the postcondition, then the code satisfies the
specification.

A symbolic state S = (Δ,Π,Σ,Ξ, Υ) ∈ SState consists of:

– Δ ∈ VarCtx = SVar ⇀fin Sort, a variable context associating logical sorts with
symbolic variables;

– Π ∈ Pure = Cond∗, a context of pure conditions (over the symbolic variables)
representing logical assumptions;

– Σ ∈ Preds = Pred∗, a context of predicates (over the symbolic variables)
representing owned resources;

– Ξ ∈ Regions = RId ⇀fin RType⊥ × Exp⊥ × Guard, a finite map of region
identifiers to an (optional) region type, an (optional) expression representing

436 T. Dinsdale-Young et al.

the state of the region, and an guard expression representing the owned guards
for the region;

– Υ ∈ ProgVars = ProgVar ⇀fin Exp, a map from program variables to expres-
sions representing their current values.

We take the set of symbolic variables SVar to be countably infinite. Symbolic
variables are considered distinct from program variables (ProgVar), which occur
in the syntax of the program code (Stmt), and assertion variables (AssnVar),
which occur in syntactic assertions (Assn). Currently, the set of sorts supported
by Caper is Sort = {Val,Perm,RId}. That is, a variable can represent a
program value (i.e. an integer), a permission, or a region identifier.

We do not formally define the syntax of (symbolic) expressions (Exp) and
conditions (Cond). Expressions include symbolic variables, as well as arithmetic
operators and operators on permissions. Conditions include a number of rela-
tional propositions over expressions, such as equality and inequality (<). They
can also express rely and guarantee relations and inclusions between sets. A
context of pure conditions is a sequence of conditions, interpreted as a conjunc-
tion. Symbolic execution generates entailments between contexts of conditions
as verification conditions. The practical limitation on conditions is that these
entailments should be checkable automatically by means of provers such as SMT
solvers.

A (spatial) predicate P (ē) ∈ Pred consists of a predicate name P and a list
of expressions ē. Two types of predicates are given special treatment and have
their own syntax: individual heap cells a �→ b (where a is the address and b the
value stored), and blocks of heap cells a �→ #cells(n) (where a is the starting
address and n is the number of consecutive heap cells). All other predicates are
abstract.

A region map associates region identifiers with knowledge and resources for
the given region. The knowledge consists of the type of the region, which is a pair
of a region type name and list of expressions representing the parameters, and
an expression describing the current state of the region. The resources consist of
a guard. It is possible to have a guard for a region without knowing the type or
state of the region, so these two components can be unspecified (⊥).

Figure 6 gives the correctness judgement for functions that forms the basis
of Caper’s proof system. The judgement is parametrised by a context of region
declarations Ψ , and a context of function specifications Φ. (Both contexts are
left implicit in the sub-judgements.) The conditions break down into four key
steps:

1. A symbolic state is generated corresponding to the function’s precondition
Apre. This is captured by the judgement produce(Apre, γ) : (Δ, ε, ε, ∅) � S0

which adds resources and assumptions to an initially empty symbolic state.
2. The body of the function is symbolically executed. This is captured by the

judgement 	 C : (Δ0,Π0, Σ0, Ξ0, [x̄ �→ γ(x̄)]) � S1.
3. The regions of the resulting symbolic states are stabilised to account for

possible interference from other threads. This is captured by the judgement

Caper 437

Fig. 6. Function correctness judgement.

stabilise(Δ1, Ξ1,Δ
′
1,Π

′
1, Ξ

′
1). (Note that stabilisation also occurs at each

interleaving step in the symbolic execution.)
4. Each final symbolic state is checked against the postcondition. This is cap-

tured by the judgement consume(Apost, γ ∪ γ′) : (Δ1,Π1, Γ, ε,Σ1, Ξ1) � S2

which removes resources and generates verification conditions that are suf-
ficient for the symbolic state to entail the postcondition. These verification
conditions are checked by the judgement Δ2,Π2 	 Γ2,P2.

Step 1 uses the judgement produce ⊆ (Assn × (AssnVar ⇀ Exp)) × SState ×
P(SState), where SState = VarCtx × Pure × Preds × Regions. The produce
judgement (we adopt the produce/consume nomenclature of Verifast [18]) adds
resources and assumptions to the symbolic state corresponding to a given syn-
tactic assertion. It is parametrised by a substitution from assertion variables to
expressions. In producing the precondition, this substitution maps the assertion
variables occurring in the precondition and the function parameters (treated as
assertion variables) to fresh symbolic variables. This is captured by the freshSub
judgement. These fresh symbolic variables are bound in the initial variable con-
text (Δ), while the initial context of conditions (ε), context of predicates (ε) and
region map (∅) are all empty. The judgement produces a set of symbolic states
(sans program variable context). This set should be interpreted disjunctively:
each of the symbolic states is possible after producing the assertion.

Step 2 uses the symbolic execution judgement: (− : − � −) ⊆ Stmt ×
SState×P(SState). This judgement updates the symbolic state according to the
symbolic execution rules for program statements. The initial program variable
context is given by mapping the function parameters x̄ (treated as program
variables) to the corresponding logical expressions γ(x̄).

Step 3 uses the judgement stabilise ⊆ VarCtx × Regions × VarCtx × Pure ×
Regions. This judgement relates an initial region map (in a given context) with

438 T. Dinsdale-Young et al.

a new region map that accounts for interference, with an extended context and
additional pure conditions. The judgement is defined by the rule given in Fig. 6.
This rule creates a fresh variable (s′

i) to represent the new state of each region and
asserts that it is related to the old state (si) in accordance with the rely relation
for the given region. To account for the region type or state being unknown, we
extend the definition of Rely with the following two rules:

(x, y) ∈ Rely(⊥, G) (⊥, y) ∈ Rely(T(r, x̄), G)

Step 4 uses the judgement consume ⊆ (Assn × (AssnVar ⇀ Exp)) × ŜState ×
P(ŜState), where ŜState = VarCtx × Pure × VarCtx × Pure × Preds × Regions.
The consume judgement removes resources and adds assertions to the symbolic
state. The symbolic state is extended with a second variable context represent-
ing existentially quantified variables and a second context of pure conditions
representing logical assertions. As an example, consuming the assertion x �→ 2

where the predicates include a �→ b can remove that predicate, adding the asser-
tions [[x]]γ = a and 2 = b (where γ is the assertion variable substitution). Any
assertion variables occurring in the postcondition that are neither parameters of
the function nor occur in the precondition are treated as existentially quantified.
The freshSub judgement is used again to generate a context and substitution for
these variables.

It remains to check that the assertions arising from consuming the post-
condition follow from the assumptions. This is achieved with the entailment
judgement: (−,− 	 −,−) ⊆ VarCtx × Pure × VarCtx × Pure. The judgement is
defined by:

Δ,Π 	 Γ,P def⇐⇒ ∀δ ∈ �Δ� . �Π�δ =⇒ ∃δ′ ∈ �Γ � . �P�δ∪δ′

Here, [[Δ]] is the set of variable assignments agreeing with context Δ and [[Π]]δ is
the valuation of the conjunction of the conditions Π in the variable assignment δ.

The Produce Judgement. The rules for the produce judgement are given in Fig. 7.
The rules follow the syntax of the assertion to be produced. For a separating
conjunction (&*&), first the left assertion is produced and then the right. Produc-
ing a conditional expression (?:) introduces non-determinism: we generate cases
for whether the condition is true or false. For the true case, the first assertion is
produced together with the condition; for the false case, the second assertion is
produced together with the negated condition. Note that this non-determinism
is demonic, in that the proof must deal with all cases. Producing a pure asser-
tion simply adds it to the logical assumptions (interpreting the assertion vari-
ables through the substitution γ). Producing a predicate assertion adds it to
the predicate context. As a special case, the points-to predicate also adds logical
assumptions, expressed by Ccell, which express that addresses must be positive
and no two cells can have the same address (we elide the formal definition here).

The remaining two rules concern regions: producing a region and a guard
assertion respectively. In each case, a region descriptor r0 is created — in the first

Caper 439

Fig. 7. Selected rules for the produce judgement.

case, including the region type and state but the empty guard, and in the second
case, including a guard but no region type or state. We non-deterministically
consider two cases: when the region identified by z already exists in the symbolic
state, and when it represents a completely fresh region. The first case is handled
by rmerge, which non-deterministically merges the region with one of the existing
regions. The second case is handled by rnew, which associates the region with
a fresh identifier (i) and adds assumptions that this is distinct from all other
identifiers. Merging regions is governed by the mergeRegion judgement, which
combines two region descriptors into one, producing a series of assumptions that
are necessary for the merger to be well-defined. We elide the details here.

The Consume Judgement. A selection of rules for the consume judgement are
given in Fig. 8. Unlike with produce, the syntax of the assertion may not uniquely
determine which rule to apply. For instance, there are two rules for consuming
a conditional assertion. The first rule consumes the conditional by consuming
either the condition and the first assertion or the negated condition and the
second assertion. (This are somewhat analogous to the ∨-introduction rules of
natural deduction.) The second rule non-deterministically assumes the truth or

440 T. Dinsdale-Young et al.

Fig. 8. Selected rules for the consume judgement.

falsity of the condition, consuming the first or second assertion in the respective
case. This requires that only assumption variables can occur in the condition
(fv(�p�γ) ⊆ Δ), since otherwise the context of assumptions would be ill-formed.
Here, we are exploiting the law of the excluded middle for pure assertion p: that
is p∨¬p holds. Consuming a region assertion asserts that there is a corresponding
region with the specified type and state. Consuming a guard assertion makes use
of the judgement takeGuard(Δ, t,H,G, Γ,P , F), which expresses that guard G
can be removed from guard H leaving the frame F , under conditions P , given
the region type t. Frame inference is used to discharge takeGuard obligations.

The Symbolic Execution Judgement. The symbolic execution judgement
expresses how executing a program statement affects the symbolic state. Most
of the symbolic execution rules are standard, except that when statements are
sequenced together, the intermediate symbolic state is stabilised (using the
stabilise judgement). The other novelty is the symbolic execution of atomic
statements (read, write and CAS operations), which require access to the shared
regions. The symbolic execution rule is given in Fig. 9. It consists of six steps:

1. Regions are opened with the openRegions judgement. This is based on the
open judgement, which opens a single region by producing its interpretation
(by case analysis on the possible interpretations).

2. The atomic statement is symbolically executed with the atomic judgement.
This cannot affect the shared regions.

3. The regions are updated with the updateRegions judgement. This applies the
update judgement to each of the regions, updating the state arbitrarily in a
manner that is consistent with the guarantee for the available guard.

4. New regions may be created with the createRegions judgement. These regions
must be distinct from the existing ones, and will be created along with the
full guard for the region type. At this point, these new regions are open.

Caper 441

Fig. 9. Symbolic execution rule for atomic statements.

5. All of the open regions are closed with the closeRegions judgement. This
applies close for each region, which consumes the interpretation.

6. The generated assertions are checked to follow from the assumptions, and the
assertions are treated as assumptions in the new symbolic state.

4 Proof Search

The success of separation logic as a basis for symbolic execution is in part due
to its determinacy: given a precondition and a program statement, it is feasible
to compute the strongest postcondition or determine that the program might
fault. Concurrent separation logics, however, depend on auxiliary state, such as
Caper’s regions and guards, which can introduce non-determinism since the
program itself does not specify how the auxiliary state should be updated. For
instance, when closing a region, Caper may have more than one valid choice
for the region state. Consequently, non-determinism is fundamental to Caper’s
design and backtracking is used to resolve the non-deterministic choices in the
proof search. This non-determinism is used in: consuming conditional or dis-
junctive assertions; determining which heap cell, region or predicate to consume;
choosing which regions to open; determining which state interpretation to close
a region with; and determining how to rewrite guards.

Since non-determinism introduces branching, which can be detrimental to
performance, Caper uses some heuristics in an effort to prune or avoid bad
branches. For instance, when consuming a heap cell, if there is a cell whose

442 T. Dinsdale-Young et al.

address matches syntactically (e.g. consuming x �→ z in a symbolic state with
x �→ 2) Caper will not consider other cases, which would be eliminated by
a later SMT call. Another example is that Caper prioritises opening differ-
ent regions over opening more regions. Opening a region typically involves case
analysis, and so opening multiple regions can lead to bad performance when it
is not required.

It is important to note that choices by the user can significantly affect
Caper’s level of non-determinism. For instance, if the abstract state of a region
is determined exactly by the concrete state, Caper will consider fewer possibil-
ities than if a region can be in multiple states for the same concrete state.

There are a some non-deterministic choices that should not generally be con-
sidered as options everywhere they could be allowed. One of these is region
creation: at any point it is legal to create a new region, provided the appropriate
resources are available. It would quickly make proof search intractable if Caper
considered all possible ways of creating regions at all times. On the other hand,
there is a good indicator for when creating a region will be helpful: when Caper
fails to consume a region assertion. Caper’s backtracking mechanism includes
handlers that introduce additional non-determinism in response to specific fail-
ures. In particular, a failure to consume a region assertion will be handled by
attempting to create an appropriate region.

This behaviour is a form of abductive reasoning: the general reasoning prin-
ciple of inferring explanatory hypotheses from a goal. Abduction has previously
been applied to automatically derive separation logic specifications [4]. Our app-
roach differs in that we infer missing updates to auxiliary state rather than
missing resources in the precondition.

A further application of abduction in Caper is in handling existential logi-
cal variables. Consuming an assertion may introduce a new (existential) logical
variable with some constraints. Caper calls the prover to check that these con-
straints are satisfiable; thereafter, Caper only knows that the variable satisfies
these constraints. If, later in the symbolic execution, Caper requires the vari-
able to satisfy additional constraints, then the proof may fail even if there was
a witness satisfying these constraints. The constraints are therefore abductively
propagated back to where the variable was introduced, and the proof is retried.
Since Caper then knows that the additional constraints are satisfied, it can
successfully discharge them when they arise.

5 Evaluation

We have successfully applied Caper to verify a number of concurrent algorithms.
In Sect. 2, we discussed the spin lock and ticket lock, whose specifications guaran-
tee mutual exclusion. We have verified a reader-writer lock, whose specification
permits multiple readers or a single writer to enter their critical sections con-
currently. This example uses counting permissions, but we have also verified a
bounded version that does not. We have also verified a number of counter imple-
mentations with specifications that enforce monotonicity (CASCounter, Bound-
edCounter and IncDec), and an atomic reference counter (ReferenceCount). We

Caper 443

have verified a library for joining on forked threads and a client that waits for
the child thread to terminate before presenting the work done by the child. We
have also verified a synchronisation barrier and a client that uses it to synchro-
nise threads incrementing and decrementing a counter. Finally, we have verified
two implementations of a bag: the stack of Sect. 2.3, and a concurrent queue. We
summarise these examples in Table 1, which shows the number of lines of code
and annotation and verification times for recursive and iterative versions of each
example. By default, Caper can create up to two regions at a time (-c 2) and
open up to two regions (-o 2). The BagStack and Queue examples require open-
ing up to three regions. The BarrierClient requires creating no regions, because
of an issue with Caper’s failure handling implementation.

Table 1. Examples (recursive/iterative).

Name Code (lines) Annotations (lines) Time (s)

SpinLock 17/17 17/18 0.21/0.35

TicketLock(Client) 33 (41)/24 (32) 19 (29)/17 (27) 0.77 (0.82)/2.22 (2.23)

ReadWriteLock 36/37 25/28 3.32/15.98

BoundedReadWriteLock 55/57 36/41 31.01/127.34

CASCounter 20/20 15/16 0.08/0.14

BoundedCounter 25/25 20/21 4.01/20.14

IncDec 29/29 19/21 0.10/0.36

ReferenceCount 31/30 22/24 0.22/0.73

ForkJoin(Client) 17 (32)/17 (32) 16 (30)/17 (31) 0.05 (0.07)/0.07 (0.09)

Barrier(Clienta) 71 (127)/77 (130) 31 (60)/35 (67) 28.22 (30.50)/26.96 (31.44)

BagStackb 35/30 26/26 3.22/11.98

Queuec 60/58 37/38 177.33/179.82
a flags: -c 0 b flags: -c 1 -o 3 c flags: -c 2 -o 3

From the verification times, we can observe that the versions that use loops
tend to take longer than the recursive versions. This is due to case analysis
which propagates through loops, but is abstracted in function calls. The high
verification times for the bounded examples are largely due to Caper comput-
ing transitive closures for finite-state regions. The barrier example also takes
significant time to compute the transitive closure of an infinite-state region. The
BagStack and Queue use nested regions, and Queue has a complicated transition
system, which combine to give a long verification time.

There are three key areas where Caper could use significant improvement.
Firstly, proof search could be improved, for instance by directing the choice of
regions to open and abstracting multiple branches into one. Currently, successful
proofs may take some time and failing proofs take even longer. Secondly, Caper
heuristics used in abduction require improvement, including loop invariants, this
should allow more algorithms to be proved. Thirdly, Caper’s annotations limit
the expressivity of specifications to some extent. For instance, there is no support

444 T. Dinsdale-Young et al.

for regions with abstract states other than integers. Despite these limitations,
we believe that Caper demonstrates the viability of our approach, and provides
a good basis for further investigation.

6 Related Work

Caper is a tool for automating proofs in a concurrent separation logic with
shared regions, aimed at proving functional correctness for fine-grained con-
current algorithms. The logic is in the spirit of concurrent abstract predicates
(CAP) [10] taking inspiration from recent developments in concurrent separa-
tion logic such as iCAP [29], TaDA [7], Views [9], CaReSL [32], FCSL [22] and
Iris [19].

Smallfoot [1] pioneered symbolic execution for separation logic. While it can
prove functional correctness, it has limited support for concurrency and so cannot
prove fine-grained concurrent algorithms.

SmallfootRG [5] extended Smallfoot to the more expressive logic RGSep [33].
The tool uses shared resources that are annotated with invariants and actions
that can be performed over these resources. The actions that can be performed
are not guarded, which leads to very weak specifications: it can prove memory
safety, but not functional correctness. The abstraction of stabilisation employed
by SmallfootRG is different than the transitivity-based technique of Caper.
SmallfootRG uses abstract interpretation to weaken assertions such that they are
stable, where the abstract domain is based on symbolic assertions. Requiring (or
ensuring) that a set of actions is transitively closed can be seen as an abstraction
that terminates in a single step.

CAVE [34] built on SmallfootRG’s action inference to prove linearisabil-
ity [17] of concurrent data structures. That is, CAVE can prove that the oper-
ations of a concurrent data structure are atomic with respect to each other,
and satisfy an abstract functional specification. Caper cannot yet prove lin-
earisability, although it could in future support abstract atomicity in the style
of TaDA [7]. On the other hand, CAVE cannot prove functional correctness of
non-linearisable examples such as a spin lock.

Other mechanised — but not automatic — approaches based on separation
logic include Verifast [18] and the Coq mechanisation of fine-grained concur-
rent separation logic [22,28]. Both approaches support an expressive assertion
language, including higher-order predicates. They are able to prove functional
correctness properties for fine-grained concurrent programs. Direct comparisons
are, however, difficult. Programs and specifications need adaptation, often more
than simple translation, resulting in different and sometimes weaker specifica-
tions. This is due in part to a smaller core set of operations and in part to a lack
of features and expressivity of logic. However, when examples are comparable,
the annotation overhead of the Caper examples is lower, often significantly. For
example, the spin lock requires 87 lines of annotation in Verifast, compared to
18 in Caper, while the ticket lock requires 123 lines compared to 17. Verifast
takes 0.11 s to check each of these examples.

Caper 445

Viper [21] is a verification infrastructure for program verification based on
permissions. It supports an expressive permission model that includes fractional
permissions and symbolic permissions. It would be interesting to develop a front
end for Viper that implements Caper’s verification approach. A challenging
issue is whether (and how) the non-deterministic proof search can be encoded
in Viper’s intermediate language.

7 Conclusions

We have presented Caper, the first automatic proof tool for a separation logic
with CAP-style shared regions, and discussed the significant innovations that it
involves. As a prototype, Caper provides a foundation for exploring the pos-
sibilities for automation with such a logic. Support for a number of different
features will significantly increase the scope of examples that Caper can han-
dle. We anticipate adding support for the following: additional guard algebra
constructions; richer logical data types, such as sets and inductive data types;
support for abstract and inductive predicates; and support for separation at the
level of abstract states in the spirit of FCSL [22] and CoLoSL [25]. We would like
to investigate inferring loop invariants and other annotations. We would like to
make Caper more usable by providing proofs and failed proofs in a format that
can easily be navigated and interpreted by a user. To this end, Caper already
provides an interactive proof mode that allows a user to drive the proof search.
This enables exploration of, in particular, failing proofs, which has proven valu-
able in development of the tool and the accompanying examples. A further goal
is to put Caper on a rigorous footing by formalising its logic in a proof assistant
(such as Coq) and using Caper to generate program proofs that can be checked
in the proof assistant or by a verified checker.

Acknowledgements. We thank the anonymous referees for useful feedback. This
research was supported by the “ModuRes” Sapere Aude Advanced Grant from The
Danish Council for Independent Research for the Natural Sciences (FNU), the “Auto-
mated Verification for Concurrent Programs” Individual Postdoc Grant from The Dan-
ish Council for Independent Research for Technology and Production Sciences (FTP),
and the EPSRC Programme Grants EP/H008373/1 and EP/K008528/1.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: Boer, F.S., Bonsangue, M.M., Graf, S.,
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). doi:10.1007/11804192 6

2. Biering, B., Birkedal, L., Torp-Smith, N.: BI hyperdoctrines and higher-order sep-
aration logic. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 233–247.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31987-0 17

3. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270 (2005)

http://dx.doi.org/10.1007/11804192_6
http://dx.doi.org/10.1007/978-3-540-31987-0_17

446 T. Dinsdale-Young et al.

4. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2009,
New York, pp. 289–300 (2009). http://doi.acm.org/10.1145/1480881.1480917

5. Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained
concurrency. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–
248. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74061-2 15

6. Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic and the Foundations
of Mathematics. Elsevier Science, Amsterdam (1990)

7. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44202-9 9

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

9. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL, pp. 287–300 (2013)

10. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 24

11. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J.: Caper (source code).
https://github.com/caper-tool/caper

12. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper, auto-
matic verification with concurrent abstract predicates. Technical Appendix: Pro-
gram logic (2016). http://cs.au.dk/∼kja/papers/caper-esop.17/techreport.pdf

13. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10672-9 13

14. El Ghazi, A.A., Taghdiri, M., Herda, M.: First-order transitive closure axiomati-
zation via iterative invariant injections. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 143–157. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-17524-9 11

15. Ershov, Y.L.: Decidability of the elementary theory of distributive lattices with
relative complements and the theory of filters. Algebra i Logika 3, 17–38 (1964)

16. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962).
http://doi.acm.org/10.1145/367766.368168

17. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

18. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 4

19. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L.,
Dreyer, D.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL, pp. 637–650 (2015)

20. Le, X.B., Gherghina, C., Hobor, A.: Decision procedures over sophisticated frac-
tional permissions. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705,
pp. 368–385. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 26

http://doi.acm.org/10.1145/1480881.1480917
http://dx.doi.org/10.1007/978-3-540-74061-2_15
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-14107-2_24
https://github.com/caper-tool/caper
http://cs.au.dk/~kja/papers/caper-esop.17/techreport.pdf
http://dx.doi.org/10.1007/978-3-642-10672-9_13
http://dx.doi.org/10.1007/978-3-319-17524-9_11
http://doi.acm.org/10.1145/367766.368168
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1007/978-3-642-35182-2_26

Caper 447

21. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K. (eds.) Verification, Model
Checking, and Abstract Interpretation. LNCS, vol. 9583, pp. 41–62. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49122-5 2

22. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state
transition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP
2014. LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54833-8 16

23. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

24. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: POPL
(2005)

25. Raad, A., Villard, J., Gardner, P.: CoLoSL: concurrent local subjective logic. In:
Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 710–735. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46669-8 29

26. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
2002 Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science,
pp. 55–74. IEEE (2002)

27. Schulz, S.: System description: E 1.8. logic for programming. In: McMillan, K.,
Middeldorp, A., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning, LPAR 2013, LNCS, vol. 8312, pp. 735–743. Springer, Berlin (2013).
doi:10.1007/978-3-642-45221-5 49

28. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: 36th ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (PLDI 2015) (2015)

29. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In:
Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54833-8 9

30. Tarski, A.: Arithmetical classes and types of Boolean algebras. Bull. Am. Math.
Soc. 55, 63 (1949)

31. Treiber, R.K.: Systems programming: coping with parallelism. Technical report RJ
5118, IBM Almaden Research Center, April 1986

32. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP, pp. 377–390 (2013)

33. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge, Computer Laboratory (2008)

34. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14295-6 40

http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-662-46669-8_29
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-642-14295-6_40

Tackling Real-Life Relaxed Concurrency
with FSL++

Marko Doko(B) and Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern, Germany

mdoko@mpi-sws.org

Abstract. We extend fenced separation logic (FSL), a program logic for
reasoning about C11 relaxed access and memory fences. Our extensions
to FSL allow us to handle concurrent algorithms appearing in practice.
New features added to FSL allow for reasoning about concurrent non-
atomic reads, atomic updates, ownership transfer via release sequences,
and ghost state. As a demonstration of power of the extended FSL, we
verify correctness of the atomic reference counter (ARC), a standard
library of the Rust programing language, whose implementation relies
heavily on advanced features of the C11 memory model. Soundness of
FSL and its extensions, as well as the correctness proof of ARC have
been established in Coq.

1 Introduction

Most formal verification work on multithreaded programs with concurrent
accesses to shared memory assumes that programs follow the sequentially con-
sistent model of execution [22]. In this model, the executions of a concurrent
program consist of all possible interleavings of the actions of its threads.

Even though sequential consistency is a simple and intuitive concurrency
model, it does not match the real world. In practice, no hardware provides us
with a sequentially consistent execution environment. In order to improve per-
formance or conserve energy, modern hardware implementations give us what
is known as weak memory models; that is, models of concurrency providing
weaker guarantees than sequential consistency. As a result, most of the verifi-
cation techniques developed for sequential consistency are inapplicable to weak
memory models.

In this paper, we will focus on the C11 weak memory model. This software-
level model was introduced by the 2011 C and C++ standards [15,16] as an
abstraction over the various different hardware memory models, and provides
various low-level primitives for developing efficient concurrent programs. These
low-level primitives are slowly gaining adoption not only in C and C++, but are
also being incorporated in other programming languages such as Java and Rust.

As the adoption of C11-style weak memory primitives grows, so does the
importance of being able to verify correctness of algorithms that use them. Cur-
rently, the most successful logic for reasoning about the C11 memory model
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 448–475, 2017.
DOI: 10.1007/978-3-662-54434-1 17

Tackling Real-Life Relaxed Concurrency with FSL++ 449

is GPS [34], which has, for instance, been used to verify an implementation
of the read-copy-update (RCU) algorithm [33], a synchronization mechanism
used in the Linux kernel. GPS, however, has an important limitation: namely, it
can reason only about the release-acquire fragment of the C11 memory model,
which leaves programs that use relaxed operations (i.e., operations weaker than
release-acquire ones) completely out of the reach of GPS. One such algorithm is
the atomic reference counter (ARC) [1], which we will verify in this paper.

ARC is a part of the standard library of the Rust programming language
[2] and provides an interface for concurrent access to a shared data structure.
The shared structure can be read by multiple threads, but cannot be modified.
ARC ensures that the shared data structure will be deallocated once no reader
needs to access the data structure any more. Features present in ARC, which
are unsupported by GPS, include relaxed memory accesses and memory fences.

There is a logic that can deal with both relaxed accesses and memory fences:
fenced separation logic (FSL) [13]. Unfortunately, even though FSL supports
relaxed accesses and memory fences, it lacks some key features which makes it
inapplicable beyond simple “toy” examples.

In this work, we extend FSL to make it applicable to real world examples,
using ARC as a demonstration of its abilities. Specifically, we extend FSL with
three new features:

– partial read permissions for non-atomic accesses [8,10],
– support for compare-and-swap (CAS) operations, and
– ghost state [12,18,23],

all of which are actually needed for proving ARC correct.
Among these three features, the most interesting is ghost state because it

interacts with the other FSL features in novel and interesting ways. Ghost state
represents supplementary logical resources not used by the program, but only
by the user of the logic in order to establish program’s correctness.

Ghost state interacts with FSL’s ability to transfer ownership of resources
between threads. For soundness purposes, transferring a resource from one thread
to another cannot happen by simply writing or reading a shared variable; it
requires some form of additional synchronization: either a memory fence or a
special type of memory access, which essentially incorporates a fence.

A key observation that we made, however, is that ghost state may be soundly
transferred between threads under weaker conditions than the other types of
resources owned by threads. In particular, it may be transferred by simple non-
synchronizing memory accesses! In essence, this is sound because unlike other
resources such as x �→ 5, owning some ghost state does not provide additional
power to a thread to perform an action; it only allows us to deduce that certain
interference patterns between threads are not possible. As such, the soundness
proof can impose slightly weaker conditions that allow two threads to occasion-
ally own the same ghost state resource simultaneously.

At this point, it is worth noting that the soundness proof of FSL assumes
a standard strengthening of the C11 model which disables some compiler
optimizations (namely, read-write reordering). This strengthening of the C11

450 M. Doko and V. Vafeiadis

model—though standard and partly necessary for performing any kind of for-
mal reasoning about the model—has interesting implications for the soundness
of ghost state, which we will discuss in Sect. 5.2.

With FSL strengthened in this way, we are able to formally verify an imple-
mentation of ARC that uses the same pattern of atomic accesses and memory
fences as the one that can be found in the standard library of Rust. Both the
soundness proof of the new features of FSL and the formal correctness proof
of ARC have been fully mechanized in Coq. The complete Coq development,
together with our online appendix, is available at http://plv.mpi-sws.org/fsl/.

As a rough measure of the effort required to extend the FSL with the features
mentioned above, we can look at the size of the Coq development. The size of the
soundness proof for FSL is approximately 17.6 KLOC (thousand lines of code),
while the soundness proof for FSL++ consists of around 22.7 KLOC representing
an increase in size of about 30%. Another 2000 lines were required to complete
the verification of ARC, out of which 800 belong to generic auxiliary lemmas,
while the remaining 1200 closely follow the correctness proof outlined in Sect. 4.

rlx

rel

acq

rlx

Fig. 1. Atomic reference counter implementation.

2 Atomic Reference Counter

Before going into FSL and its extensions, let us first have a look at the ARC
algorithm, as we will use its features to motivate our extensions of FSL.

2.1 The Algorithm

Our ARC implementation is given in Fig. 1 and consists of four functions: new,
read, drop, and clone. To gain a basic understanding of the algorithm, we can
ignore the rel,acq, and rlx annotations, as well as any fence instructions.

Function new(v) creates a new ARC object a, sets its data field to v, and
the count field to 1. The data field holds the value that can be accessed through
the ARC object, and count counts the number of references to the ARC object.

Function read(v) simply returns the value stored in the ARC object.

http://plv.mpi-sws.org/fsl/

Tackling Real-Life Relaxed Concurrency with FSL++ 451

Function clone(a) operationally just increments the reference counter by one
using an atomic fetch-and-add instruction. Semantically, clone gives us another
reference to the ARC object (hence the increment of the counter), which can now
also be used to access the value stored in the ARC object. After calling clone
we can, for example, create a new thread, let it read from one ARC reference,
and keep the other reference available for ourselves.

Function drop(a) disposes of a reference to the ARC object a. If there are
still multiple references to the ARC object, drop only decreases the reference
counter. On the other hand, if the counter gets decremented from one to zero
(i.e., there are no more references to the ARC object), drop also deallocates the
ARC object.

emp v a. ARC(a, v)
ARC(a, v) a y. y = v ∧ ARC(a, v)
ARC(a, v) a ARC(a, v) ∗ ARC(a, v)
ARC(a, v) a emp

Fig. 2. ARC specification in separation logic.

The intended use of the ARC library can be succinctly expressed in terms of
separation logic in Fig. 2. In this specification, ARC(a, v) represents the permis-
sion to run functions that access the ARC object a. This permission is created
by the function new, duplicated by clone, and destroyed by drop.

2.2 Why Is ARC Correct?

Let us now consider why ARC is correct. Before attempting to answer this
question, we should first ask ourselves, what is the correctness criterion for this
algorithm? In other words, what should its specification in Fig. 2 achieve?

For the algorithm to operate correctly, we are primarily interested in mem-
ory safety. We have to ensure that the deallocation does not happen until all
the threads are done with reading the value stored in the ARC object. More
precisely, the read of the data field in the read function should not race with
the deallocation that happens in the drop function.

Additionally, the deallocation should not be attempted twice. For this partic-
ular algorithm, it is quite easy to see that is not the case: deallocation happens
only once, when the reference counter drops to zero.

In remainder of this section, we therefore focus on the first property.

Sequential Consistency. From the perspective of the interleaving semantics
(a.k.a. sequential consistency), the situation is quite clear. Recall that the deallo-
cation happens when drop decrements the reference counter to zero. This means
that all the ARC objects that have been produced (by either new or clone) have
also been disposed of by drop. Obviously, no call to read can be made any more,
since we no longer have any ARC objects available.

452 M. Doko and V. Vafeiadis

Weak Memory. When moving to weak memory models, such as C11, the
reasoning becomes significantly more complex. In what follows, we are going to
give a simplified presentation of the C11 model, focusing on the features used in
the ARC algorithm. Complete presentations of the C11 model can be found in
[6,35].

The C11 model presents executions as graphs where nodes (also called events)
represent memory accesses. Events (i.e., memory accesses and fences) can be
either reads (R), writes (W), updates (U), or fences (F). Reads and writes can
be of atomic or non-atomic kind, while updates represent atomic read-modify-
write instructions, such as compare-and-swap or fetch-and-add, and can thus be
only of atomic kind.

Having a data race on non-atomic accesses is considered to be a programming
error, while racing on atomic access is allowed. Atomic accesses provide us with
mechanisms to implement synchronization among different threads. How effec-
tive an atomic access is in enforcing synchronization depends on its type. Types
of atomic accesses are: relaxed (rlx), which can be applied to any atomic access;
release (rel), for writes and updates; acquire (acq), for reads and updates; and
acquire-release (acq rel) for updates only.

For us, the most important question about the C11 model is, how do we know
when one event precedes another in a given execution?

Put simply, the C11 model specifies that the events in different threads are
happening concurrently, and the only way to be sure that two events from dif-
ferent threads are happening in some definite order is to have one of them “see”
the other through the process of synchronization. In other words, in order to
show that an event a happens before another event b, we have to be able to
start at a, and eventually reach b by following thread execution “downstream”,
and the only time we are allowed to move from one thread to another is at the
synchronization points.

Some simple ways to achieve synchronization are depicted in Fig. 3. Syn-
chronization always connects a release event (event of a rel or acq rel type)
with an acquire event (event of an acq or acq rel type), and always happens
as consequence of a read. In Fig. 3a we see the simplest case of synchronization,
which happens immediately when an acquire read reads from a release write. In
the other three situations in Fig. 3, relaxed accesses are helped along by fences
(which can be of a rel,acq, or acq rel kind) in order to achieve synchronization.
Note that in these three cases, synchronization does not occur immediately as
the read happens, but is delayed until all the required fences come into play.

Looking back at the ARC algorithm in Fig. 1 we can see that it uses relaxed
accesses in the new and clone functions, while the function drop features a
release access and an acquire fence. Instead of being regular reads or writes,
fetch and add instructions are atomic update events, which act as both reads
and writes. A release update (such as the one inside drop) acts as a release write
and a relaxed read, while relaxed updates are relaxed as both reads and writes.

In order to get an intuitive understanding of the synchronization strategy
employed by the ARC algorithm, we will have a look at the example execution

Tackling Real-Life Relaxed Concurrency with FSL++ 453

rel acq

→

rel

acq

rlx

→

rel

acqrlx

→

rel

acqrlx

rlx

→

Fig. 3. Basic release-acquire synchronization.

presented in Fig. 4. The underlined drop function is the one that does the deallo-
cation. To ensure absence of data races, all other drop functions should synchro-
nize with drop. This suffices to ensure the absence of races, because we know by
the intended use of the ARC library that every read will be followed by some
drop.

One of these synchronizations happens according to Fig. 3b, as the drop at
node b reads from the drop at node c. For the other synchronization between
nodes a and b, however, the mechanisms presented in Fig. 3 are just not enough.

The problem we are facing with achieving the other synchronization is that
so far presented synchronization mechanisms allow an acquire construct to

a

b c

Fig. 4. An example execution of the ARC algorithm.

454 M. Doko and V. Vafeiadis

synchronize only with one other thread. What we need is some mechanism that
will allow the single acquire fence in the whole ARC algorithm to synchronize
with multiple release writes.

In order to synchronize all threads before deallocation, ARC exploits a more
advanced synchronization technique provided by C11 called release sequences.
Simply stated, to trigger synchronization between two threads it is not necessary
for one to read directly from the other (as in Fig. 3), but there can be a reading
chain (through atomic updates) from one thread to the other.

rel acq

→

rel

acq

rlx

→

rel

acqrlx

→

rel

acqrlx

rlx

→

Fig. 5. Synchronization through release sequences.

Figure 5 depicts the four generalized versions of the cases in Fig. 3. We can
now see that the synchronization mechanism shown in Fig. 5b explains the prob-
lematic synchronization from a to b in Fig. 4.

3 Extending FSL

In this section, we will first take an overview look at the existing features of FSL,
after which we are going to turn our attention to the three extensions necessary
for applying FSL to realistic examples such as ARC.

3.1 FSL Basics

Like its precursor, RSL [35], FSL divides memory locations into two categories:
atomic and non-atomic.

Non-atomic locations are the ones that are used for “regular” accesses (i.e.,
we use non-atomic accesses whenever we are not implementing a synchronization

Tackling Real-Life Relaxed Concurrency with FSL++ 455

mechanism). FSL ensures that there will be no data races on non-atomic accesses.
For reasoning about non-atomic accesses, FSL provides the standard separation
logic rules [26,29].

Atomic accesses are the more interesting ones. As we have already seen in
Sect. 2.2, atomic accesses come in four modes (acq rel, rel,acq, and rlx), and
are used to create synchronization between threads. In the rest of this subsection,
we will focus our attention on FSL rules regarding atomic accesses.

From the perspective of FSL, atomic accesses are used to transfer ownership
between threads. Threads can give up ownership of certain resources by writing
to an atomic location, after which another thread can pick up that resource by
reading from the same location. Resources are transferred through write-read
pairs, and the rules of the logic make sure that the transferred resources are not
used until the threads in question synchronize.

In what follows, for the sake of clarity, we are going to present slightly sim-
plified FSL rules. A complete presentation of FSL can be found in [13].

FSL Triples. FSL triples are of the form
{
P

}
E

{
v.Q

}
, where P and Q are

assertions denoting the precondition and the postcondition of the expression E.
In the postcondition, the variable v binds the return value of E. In cases where
the postcondition does not depend on the return value, the v binder may be
omitted.

Release Writes. The easiest way to transfer away a resource is to do a release
write. Since the release write is both the point of origin of ownership transfer,
as well as the point of origin of synchronization (see Fig. 3a and b), we can
simply transfer the resource we want without any further complications. This is
summarized in the following rule.

{
Rel(�,Q) ∗ Q(v)

}
[�]rel := v

{
Rel(�,Q)

}
(w-rel)

In the precondition, the assertion Rel(�,Q) grants us permission to write to
the atomic location �. Q is a mapping from values to assertions, specifying which
resource we have to give up when writing which value. In particular, if we want
to store the value v into �, we have to give up the ownership of the resource
Q(v). As we can see from the postcondition, once the write is done, we no longer
have the access to the resource Q(v), which can now be obtained by readers.

Relaxed Writes. Resources can also be sent away by doing a relaxed write,
but only if the write is helped along by a release fence, as in Fig. 3c and d. Our
ownership transfer strategy is somewhat more involved in this case. By doing a
relaxed write, we can only transfer resources that have been “prepared” before
the release fence took effect. In other words, the resources sent away by the
relaxed write should not be accessed in between the fence and the write. The
following two rules describe this situation.

{
P

}
fencerel

{�P
}

(f-rel)

456 M. Doko and V. Vafeiadis

{
Rel(�,Q)∗ � Q(v)

}
[�]rlx := v

{
Rel(�,Q)

}
(w-rlx)

When executing a release fence, we can put any resource under the � modality.
The assertion �P says, “P has been made ready for transfer and it may not
be accessed any more.” The (w-rlx) rule differs from the (w-rel) rule only in
the appearance of � in the precondition. Essentially, we execute a relaxed write
the same way we do a release write, with one important difference: a resource
transferred away by the relaxed write has to be under the � modality, ensuring
that a release fence has been placed before the write.

Acquire Reads. Acquire reads function as end points of both resource transfer
and synchronization (see Fig. 3a and c). For this reason, resource acquisition by
acquire reads is quite simple.

{
Acq(�,Q)

}
[�]acq

{
v.Q(v)

}
(r-acq)

The assertion Acq(�,Q) allows a thread to perform the acquire read. Again, Q
is a mapping from values to assertions. From the perspective of a read, this
mapping tells us which resource will be acquired when reading which value. In
particular, if the value read is v, then the resource acquired is Q(v).

Relaxed Reads. When acquiring ownership via relaxed read, we have to wait
for a subsequent acquire fence to synchronize with the thread we are reading
from (see Fig. 3b and d). Only after synchronization are we allowed to use the
acquired resource. The following two rules represent this case.

{
Acq(�,Q)

}
[�]rlx

{
v.�Q(v)

}
(r-rlx)

{�P
}
fenceacq

{
P

}
(f-acq)

The resource acquired in the (r-acq) rule is placed under the � modality. The
assertion �P simply means “P cannot be used before an acquire fence has been
reached.” The (f-acq) rule tells us that the acquire fence makes resources hidden
behind the � modality usable.

Allocation of Atomics. The Rel and Acq permissions are generated when
a new atomic variable is allocated. At the point of allocation, we can freely
choose the mapping Q which governs the ownership transfer through the newly
allocated variable.

Q : Values → Assertions
{
emp

}
alloc()

{
�.Rel(�,Q) ∗ Acq(�,Q)

} (a-at)

These are all the rules regarding ownership transfer through atomic accesses in
FSL. Let us now turn our attention to the three extensions which will allow us
to verify ARC.

Tackling Real-Life Relaxed Concurrency with FSL++ 457

3.2 Partial Permissions for Non-atomics

Basic FSL does not support reasoning about programs with concurrent read
accesses to non-atomic locations. On the other hand, ARC is a library specifically
used to allow concurrent reads of a shared resource. Therefore, this is the first
gap that needs to be bridged in order to successfully verify programs like ARC.

To enable reasoning about concurrent non-atomic reads, we outfitted FSL
with partial permissions [8,10] for non-atomic locations. In order to execute
a write, the full permission is needed, while reading is possible with a partial
permission. The rules of the logic make sure that the full permission cannot
concurrently coexists with a partial one, nor can there exists more than one full
permission at a time. As a result, there cannot be any read-write or write-write
races on non-atomic locations.

Formally, permission structures are tuples (M,⊕, ε,1), where (M,⊕) forms
a partial commutative monoid with ε as the neutral element, and 1 ∈ M \{ε} is
a ‘maximal’ element of the monoid composable only with the neutral element,
i.e., 1 ⊕ q is undefined for every q ∈ M \ {ε}.

To write to a location �, one must have the full permission � �→ −; while to read
from �, having a permission �

q�→ v for any q ∈ M \ {ε} suffices. Assertion �
ε�→ −

is taken to be equivalent with the empty resource emp. Separating conjunction
respects the composition operation on the monoid:

�
p�→ v ∗ �

q�→ v ⇐⇒
{

�
p⊕q�→ v if p ⊕ q is defined

false otherwise.

The most well known permission model, which is incidentally also the one
used in the correctness proof of ARC, is the model of fractional permissions [10].
In this model, permissions are fractions in the interval [0, 1], ε = 0, 1 = 1, and
composition is defined by

p ⊕ q =

{
p + q if p + q ∈ [0, 1]
undefined otherwise.

Our proof of soundness is not dependent on fractional permissions, but is
parametric in the permission structure for non-atomic accesses, which allows for
greater flexibility when designing proofs that require partial permissions.

3.3 Compare-and-Swap Rules

Another problem we are facing when verifying ARC is the presence of atomic
update operations (fetch and add instructions), for which no support is pro-
vided in FSL. We provide the rules for compare-and-swap (CAS), a basic atomic
update instruction, which can be used to implement other, more advanced ones,
such as fetch and add.

Details of the implementation of fetch and add using CAS, and the corre-
sponding FSL specification for fetch and add can be found in Sect. 4.3.

458 M. Doko and V. Vafeiadis

The CAS instruction CASτ (�, v, v′) reads the location �, and if the value read
is v it updates it atomically to v′. If CAS reads some value other than v, then
the update is not executed. In any case, CAS returns the value read. Parameter
τ tells us the type of update event generated by the successful CAS operation.
The possible values of τ are rlx, rel,acq, and acq rel.

Recall that update actions act as both reads and writes. When reading, the
update is treated as an acquire read action if it is of acq or acq rel kind, and as
a relaxed read otherwise. Acting as a writer, the update is treated as a release
write if it is of rel or acq rel kind, and as a relaxed write otherwise.

FSL [13] provides no CAS rules, but its predecessor RSL [35] does. The
CAS rule provided by RSL only supports ownership transfer by acq rel CASes,
and does not allow any ownership transfer over release sequences. Ownership
transfer using release sequences and multiple types of CASes is necessary to
verify complex algorithms such as ARC. Therefore, it is necessary to augment
FSL with stronger CAS rules than the one present in RSL.

In what follows, we will present the new rules regarding CAS instructions.
Here, as in Sect. 3.1, we are presenting a simplified version of the rules. For full
rules, we refer the reader to the appendix.

We will start the presentation of the CAS rules with a simplified version of
the rule for the strongest type of CAS instruction, the acq rel CAS.

Q(v) ⇒ A ∗ T
P ∗ T ⇒ Q(v′)

{
U(�,Q) ∗ P

}
CASacq rel(�, v, v′)

{
a. (a = v ∧ A)
∨ (a �= v ∧ U(�,Q) ∗ P)

} (cas-ar*)

In the precondition we have assertion U(�,Q), which gives us the permission
to execute CAS on the location �. As in Rel and Acq assertions, Q is a mapping
from values to assertions, telling us what resource we can get by reading a value,
and which resource we have to send away when writing a value. The remaining
component in the precondition is P , the resource we want to transfer away upon
a successful CAS operation.

If the CAS fails (i.e., the value read, a, is different from v), then no resource
transfer happens, and in the postcondition we are left with the same resources
we had in the precondition.

In the case of a successful CAS (i.e., the value read was v), we have at our
disposal the resource Q(v). According to the first premise of the rule, we have
to split Q(v) into two parts, A, and T . Resource A is the part that we are going
to acquire and keep it for ourselves in the postcondition. Resource T will remain
in the invariant Q. The second premise requires that the resource P (which we
have in our precondition) together with the resource T (which we left behind
when acquiring ownership) are enough to satisfy Q(v′), thus reestablishing the
invariant for the newly written value.

The (cas-ar*) is a useful rule as it stands, but can still be strengthened. The
opportunity for strengthening lies in the second premise of the (cas-ar*) rule.
If, in addition to merely reestablishing the invariant, we manage to prove some

Tackling Real-Life Relaxed Concurrency with FSL++ 459

additional facts, we can carry those facts into the postcondition. The strength-
ened rule is

Q(v) ⇒ ∃z. A(z) ∗ T (z)
∀z. (P ∗ T (z) ⇒ Q(v′) ∧ ϕ(z))

∀z. pure(ϕ(z))
{
U(�,Q) ∗ P

}
CASacq rel(�, v, v′)

{
a. (a = v ∧ ∃z.A(z) ∧ ϕ(z))
∨ (a �= v ∧ U(�,Q) ∗ P)

} . (cas-ar)

Instead of assertions A and T , the rule now features mappings A and T
from values to assertions. The first premise asks us to split Q(v) into A(z) and
T (z), for some value z. The second premise requires that from P ∗ T (z) we
prove not only Q(v′), but also some fact about z, which then gets carried over
to the postcondition. Lastly, it is required for ϕ(z) to be pure, meaning that the
assertion ϕ(z) is a logical fact about z, and is not saying anything about the
ownership of resources or the state of the heap.

Rules for the other types of CAS accesses are all a slight modification of the
(cas-ar) rule. Modifications are in the same vein as the ones that get us from
(r-acq) and (w-rel) to (r-rlx) and (w-rlx). Namely, where the access type
gets relaxed, � and � modalities take over in order to ensure that proper fences
have been placed.

Since the premises in (cas-rel), (cas-acq), and (cas-rlx) are the same as
in (cas-ar), we will avoid repeating them.

{
U(�,Q) ∗ P

}
CASrel(�, v, v′)

{
a.

(
a = v ∧ ∃z.�A(z) ∧ ϕ(z)

)

∨ (a �= v ∧ U(�,Q) ∗ P)

}

(cas-rel)

{
U(�,Q) ∗ �P

}
CASacq(�, v, v′)

{
a. (a = v ∧ ∃z.A(z) ∧ ϕ(z))
∨ (a �= v ∧ U(�,Q) ∗ �P)

}

(cas-acq)

{
U(�,Q) ∗ �P

}
CASrlx(�, v, v′)

{
a.

(
a = v ∧ ∃z.�A(z) ∧ ϕ(z)

)

∨ (a �= v ∧ U(�,Q) ∗ �P)

}

(cas-rlx)

Release CAS is treated as a release write and a relaxed read. Therefore, in
(cas-rel) we can send away P without any problems, but the acquired resource
has to be placed under the � modality, requiring us to use an acquire fence
before accessing the resource.

Acquire CAS is a relaxed write and an acquire read. Because of this, in
(cas-acq) the resource we are trying to transfer away is under the � modality,
requiring a release fence before the CAS. On the other hand, the resource we
acquire is immediately usable.

Relaxed CAS is relaxed as both read and write. This is reflected in the (cas-
rlx) rule by having both modalities in play.

Note that simple CAS rules in the style of (cas-ar*) can be derived from
the more general ones for any type of CAS. We simply need to choose A and T
such that they do not depend on z, and set ϕ(z) to always be true.

460 M. Doko and V. Vafeiadis

Remark 1 (About the CAS rule strengthening). The strengthening was motivated
by the ARC proof. The ARC algorithm can be proven correct using just the
simple CAS rules that do not contain the “z parametrization”. The proof using
the simple CAS rules requires the use of additional ghost state (see Sect. 3.4),
and is in general more complicated compared to the proof presented in Sect. 4.

Remark 2 (About the soundness of the CAS rules). The soundness of FSL++’s
CAS rules (even the simple ones) depends heavily on release sequences (Fig. 5).
Specifically, the rules allow us to split the invariant of the value read Q(v)
into two parts and take out only the A(z) part, while using the T (z) part to
reestablish the invariant for the new value written. In essence, the T (z) part of
Q(v) is being sent down the chain of updates reading from each other, and can
be picked up at any later point.

It is interesting to note that as long as we are working within the release-
acquire fragment of the C11 model (i.e., all writes are of rel type, all reads
are of acq type, and all updates are of acq rel type), the soundness of the
split does not depend on release sequences, because every act of reading causes
synchronization to happen.

On the other hand, in the presence of the relaxed accesses, release sequences
are required to establish the soundness of the split even for the (cas-ar) rule.

Remark 3 (Soundness of the RSL-style CAS rule). A variant of the RSL’s CAS
rule is admissible in FSL++. The difference is that we would now require the
release permission to be present in the precondition, unlike in RSL, where it could
be a part of the acquired resource. This is not an important restriction, because
(due to the duplicability of release permissions) any RSL proof that uses the
CAS rule can be modified to include the release permission in the precondition.

The last CAS rule (cas-⊥) allows us to quickly conclude that a successful
CAS cannot happen in the situation where we own a resource which is incompat-
ible with the resources which would be acquired by a successful CAS operation.

Q(v) ∗ P ⇒ false
τ ∈ {rlx, rel,acq,acq rel}

{
U(�,Q) ∗ P

}
CASτ (�, v, v′)

{
a. a �= v ∧ U(�,Q) ∗ P

} (cas-⊥)

The U permission is obtained upon allocation in a similar fashion as the Rel and
Acq permissions.

Q : Values → Assertions
{
emp

}
alloc()

{
�. U(�,Q)

} (a-at-u)

Finally, we would like to bring your attention to several useful properties of the
update permission U. It is duplicable, and it interacts with the Rel and Acq
permissions, allowing us to perform not only updates, but also reads and writes,
when holding an update permission.

U(�,Q) ⇐⇒ U(�,Q) ∗ U(�,Q) (u-split)
U(�,Q) ⇐⇒ U(�,Q) ∗ Rel(�,Q) (u-rel-split)
U(�,Q) ⇐⇒ U(�,Q) ∗ Acq(�, λv.emp) (u-acq-split)

Tackling Real-Life Relaxed Concurrency with FSL++ 461

According to (u-rel-split), when holding the U(�,Q), we also have Rel(�,Q),
allowing us to write to � using the appropriate atomic write rule. On the other
hand, (u-acq-split) tells us that we are allowed to read when holding the
U(�,Q) permission, but we cannot gain any ownership (more precisely, no matter
the value read, the acquired resource will always be the empty resource emp).

3.4 Ghost State

Even though we are now able to reason about both concurrent non-atomic reads,
and atomic update operations, we still do not have sufficient reasoning power to
verify the correctness of ARC.

To see what are we lacking, we will turn our attention to the clone func-
tion (see Fig. 1). Our desired specification from Fig. 2 tells us that starting with
one ARC(a, v) resource, after executing clone(a), we will have that permission
duplicated.

The only thing clone does is to increment the reference counter by one.
The obvious way to get the additional ARC permission would be to acquire
it from the invariant governing the reference counter, via the (cas-rlx) rule.
Unfortunately, any resource acquired that way would be protected by the �
modality, and there is no acquire fence to make the resource usable. In short,
clone function cannot acquire any ownership, since it does not synchronize with
any other thread.

So, if we cannot acquire any ownership when executing clone, what can
we do? One possibility is to somehow duplicate the ARC(a, v) permission we
already have. This would not require us to acquire any ownership, but it also
makes the act of incrementing the counter superfluous. If we can simply duplicate
the ARC(a, v) permission, what is the point in having the clone function at all?

If we want to verify ARC, we have to be able to remember the fact that
clone produced another instance of the ARC(a, v) resource (i.e., the reference
counter was incremented), without the clone function acquiring any additional
resources. To achieve this reasoning, we employ ghost state [12,18,23,34], a very
useful feature of program logics that is often used for logical “accounting” with-
out changing the program state.

The way to think of the ghost state is as if we have at our disposal locations
that are never accessed by our program. Those locations carry ghost resources,
which cannot influence the behavior of the program, since they are never accessed
by the program, but can help us in reasoning.

In a proof, ghosts can be simply introduced whenever the need for them
arises using the (ghost-intro) rule.

{
P

}
C

{
Q

}

{
P

}
C

{
Q ∗ ∃γ. γ : g

} (ghost-intro)

The assertion γ : g means that the ghost location γ carries the ghost resource
g. Ghost resources (on a single location) have to form a partial commutative

462 M. Doko and V. Vafeiadis

monoid (PCM). The composition operation (⊕) of the PCM connects the ghost
resources to the separating conjunction of FSL.

γ : g ∗ γ : g′ ⇐⇒
{

γ : g ⊕ g′ if g ⊕ g′ is defined,

false otherwise.
(ghost-∗)

The most important feature of ghost state from the perspective of the verifi-
cation of ARC is ability to transfer ownership of ghosts without the need for
synchronization. This is achieved by having the ghost state be agnostic with
respect to the � and � modalities.

γ : ε ⇐⇒ � γ : ε ⇐⇒ � γ : ε (ghost-mod)

Intuitively, it is not a problem to define the ghost state in such a way to have
the (ghost-mod) equivalences hold, because the ghost state is not accessed by
the program. The principal duty of the � and � modalities is to ensure proper
placement of fences in order to avoid any data races on non-atomic accesses.
Since the ghost state is never accessed, it cannot be involved in any data races,
and is therefore free to ignore modalities.

4 Verification of ARC

In this section, we will use FSL to verify the ARC algorithm from Fig. 1. Since
FSL does not have support for deallocation, we treat the call to the free func-
tion as a no-operation. For further discussion about handling deallocation see
Sect. 5.3.

The following theorem contains the formal correctness statement for ARC.

Theorem 1 (Correctness of ARC). There exists a predicate ARCγ,δ, param-
etrized by two ghost locations γ and δ, such that the following holds

{
emp

}
new(v)

{
a.∃γ, δ.ARCγ,δ(a, v)

}
{
ARCγ,δ(a, v)

}
read(a)

{
y. y = v ∧ ARCγ,δ(a, v)

}
{
ARCγ,δ(a, v)

}
clone(a)

{
y. y �= 0 ∧ ARCγ,δ(a, v) ∗ ARCγ,δ(a, v)

}

{
ARCγ,δ(a, v)

}
drop(a)

{
y. (y > 1 ∧ emp) ∨ (y = 1 ∧ a.data

1�→ v)
}

,

where the fractional permission structure is used for the non-atomic locations.

The return value of the clone and drop functions is considered to be the value
returned by the fetch and add instruction within those functions. (Function
fetch and add returns the value before the increment.) In other words, return
value y for clone means that it incremented the reference counter from y to
y + 1, and for drop it means that the counter was decremented from y to y − 1.

Note that the specification of drop tells us that in the case where the reference
counter was decremented from 1 to 0, we have the full permission on a.data.

Tackling Real-Life Relaxed Concurrency with FSL++ 463

When modeling deallocation, having the full permission for a location would be
enough to deallocate it.

An additional thing of note is that we prove that the return value of the clone
and drop functions can never be 0. This means that clone and drop never try
to access the ARC object after all the references to it have been dropped.

The rest of this section is devoted to the proof of Theorem1.
The theorem already states the permission model used for non-atomic loca-

tions. We are left with choosing a PCM for the ghost state. Our chosen structure
is described in the following lemma.

Lemma 1 (Ghost Monoid). The structure (Q�0 × {+,−},⊕), with the par-
tial binary operation ⊕ defined as

f+ ⊕ q+ := (f + q)+

f− ⊕ q− := undefined

f+ ⊕ q− := q− ⊕ f+ :=

{
(q − f)− if q − f � 0
undefined otherwise

is a partial commutative monoid, with the neutral element 0+.

Think of a “positive” ghost assertion γ : q+ as having a q amount of some

resource, while the “negative” ghost assertion γ : q− counts how much of that
resource exists at any given time.

It is important to note that there can exist only one negative ghost assertion
at a single point in time, since (according to (ghost-∗)) having more than one
would lead to a contradiction.

We can now define the invariant that will govern updates to ARC’s reference
counting field.

Definition 1 (ARC invariant). For location x, value v, and ghost locations
γ and δ, we define the mapping from values to assertions

Qγ,δ,v,x
def= λc. if c = 0 then γ : 0− ∗ δ : 0−

else ∃f ∈ [0, 1]. x
f�→ v ∗ γ : (c − 1 + f)− ∗ δ : (1 − f)− .

The way to think about the invariant is “if the value of the resource counter
is c, then Qγ,δ,v,x(c) holds.” There are two main parts to the Qγ,δ,v,x invariant.

1. Permissions to access the location x that have been dropped by various
threads are collected into the assertion x

f�→ v.
2. The assertion γ : (c − 1 + f)− counts the number of still active ARC objects

created by the clone function (this number is c−1), while at the same taking
note of the amount of read permissions to x that have been dropped so far
(this is represented by f).

464 M. Doko and V. Vafeiadis

The interplay between these two parts is what will enable us to reconsti-
tute the full permission after all the ARC objects have been dropped. How this
happens will become clear in Sect. 4.5.

Lastly, the least complicated part of the invariant, the ghost state attached
to the ghost location δ, counts how much of the access permission to x is shared
by the still active ARC objects. This will be used in Sect. 4.4 and Sect. 4.5 in
order to establish that clone and drop never read 0 as the value of the reference
counter.

We are now finally at the point where we can define the ARC predicate.

Definition 2 (ARC Predicate). For ghost locations γ and δ, we define

ARCγ,δ(a, v) def= U(a.count,Qγ,δ,v,a.data) ∗
∃q ∈ 〈0, 1]. a.data

q�→ v ∗ γ : (1 − q)+ ∗ δ : q+ .

The ARC predicate consists of four parts.

1. A permission to execute atomic updates on a.count, as long as we respect
the Qγ,δ,v,a.data invariant.

2. Some fraction of the access permission to a.data, allowing us to read from it.
3. A ghost γ : (1 − q)+ , designed to help the ARC invariant in keeping track of

the number of outstanding ARC objects, and the amount of read permissions
to a.data shared among them.

4. A ghost δ : q+ , designed to make the ARCγ,δ(a, v) assertion incompatible

with the Qγ,δ,v,a.data(0) assertion (q > 0∧ δ : q+ ∗ δ : 0− ⇒ false), therefore
making sure we cannot read 0 from a.count.

In what follows, we are going to discuss main points of the proof for each of
the functions from the ARC algorithm. Full formal proofs are available in the
Coq formalization.

4.1 Function new

In Fig. 6 you can see a simplified version of the proof for the function new.
At the beginning, we have to introduce two ghosts (γ and δ) using the

(ghost-intro) rule, as well as allocate a non-atomic location a.data, and an
atomic location a.count. We are allocating a.count using the (a-at-u) rule.
Naturally, we will choose the mapping defined in Definition 1 as the invariant
governing the a.count location.

The most interesting part of the proof happens when we are executing the
relaxed write instruction a.countrlx = 1. The resources we own as we are about
to execute the relaxed write are

U(a.count,Qγ,δ,v,a.data) ∗ a.data
1�→ v ∗ γ : 0− ∗ δ : 0− ,

Tackling Real-Life Relaxed Concurrency with FSL++ 465

Fig. 6. Function new: proof sketch.

and according to (u-rel-split) and (w-rlx), in order to execute our relaxed
write, we have to send away a resource given by

�Qγ,δ,v,a.data(1) = �
(
∃f ∈ [0, 1]. a.data

f�→ v ∗ γ : f− ∗ δ : (1 − f)−
)

.

Since we have not executed a release fence, we can only send away resources
that are invariant under the � modality. The only non-ghost resource invariant
under � is the empty resource. Therefore, we have to choose f to be 0, in order
to exploit the equivalence a.data

0�→ v ⇐⇒ emp ⇐⇒ �emp.
Setting f to 0 dealt with the a.data

f�→ v part of the invariant. We now
have to produce the rest of the invariant: the ghosts γ : 0− and δ : 1− . The

γ ghost we already have, and the δ one can be produced using the δ : 0− ⇐⇒
δ : 1− ∗ δ : 1+ equivalence.

Before releasing a.data
0�→ v ∗ γ : 0− ∗ δ : 1− , we will exploit the

γ : 0− ⇐⇒ γ : 0− ∗ γ : 0+ equivalence in order to keep the γ : 0+ ghost
for ourselves.

We can now finally release the required resource, and what we are left with
is a.data

1�→ v ∗ γ : 0+ ∗ δ : 1+ , which is exactly the ARC predicate from
Definition 2, with the existentially quantified q set to be 1.

466 M. Doko and V. Vafeiadis

4.2 Function read

Verifying read is trivial. The ARC predicate from Definition 2 tells us that we
have some positive fraction q of the access permission for a.data, which allows
us to execute the non-atomic read and return the value stored in a.data.

4.3 Implementing fetch and add

Before continuing with the proofs of clone and drop, let us take a step back and
look at the fetch and add instruction used in those two functions. As mentioned
in Sect. 3.3, fetch and add can be implemented using CAS instructions. The
implementation of fetch and add using CAS is given in Fig. 7, together with
the specification that will be used in the next two subsections.

τ

rlx

τ

∀t. (P ⇐⇒ P (t) ∗ P (t))

∀t.

⎛

⎜⎜⎝

U(Q) ∗ P (t)
CASτ (x, t, t +)

y. (y = t ∧ R(t))
∨ (y = t ∧ U(Q) ∗ P (t))

⎞

⎟⎟⎠

U(Q) ∗ P

τ (x, v)
y. R(y) ∗ P (y)

τ ∈ {rlx, rel,acq,acq rel}

Fig. 7. Fetch and add implemented using CAS.

Proving the specification of fetch and add correct is simple, and we will not
be going into details of it here. On the other hand, the specification looks quite
daunting and deserves a closer look.

In the precondition, we are given the update permission U(�,Q) and some
resource P .

The first premise of the specification allows us to decide how to split the
resource P depending on the value that we will end up updating. If the value
modified is v, we want to keep the resource Pkeep(v), while sending Psend(v)
away.

The second premise deals with the atomic update of the location � from t to
t + v. We need to prove that upon successful update we can send away Psend(t),
and acquire R(t).

After executing the fetch and add instruction, in the postcondition we get
R(y) ∗ Pkeep(y), with y being the value stored at the location � prior to the
update taking place. R(y) is what we acquired by updating �, while Pkeep(y) is
the part we kept from the original resource P we had in the precondition.

Using the fetch and add specification boils down to deciding how we want
to split the resource we have for each particular value, and then applying appro-
priate CAS rules to satisfy the second precondition of the rule.

Tackling Real-Life Relaxed Concurrency with FSL++ 467

4.4 Function clone

For the clone function, we are required to prove two things: (1) executing clone
produces an additional ARC resource, and (2) clone never increments the value
of the reference counter from 0 to 1.

First, let us assume that the value read by the fetch and add is 0. In that
case (in accordance with the rule from Fig. 7) we decide to put δ : q+ into

Pkeep. Since q > 0, assertions δ : q+ and Qγ,δ,v,a.data(0) = γ : 0− ∗ δ : 0− are

incompatible (q > 0 ∧ δ : q+ ∗ δ : 0− ⇒ false), and we can use the (cas-⊥)
rule to conclude that the value 0 could not have been read.

Now that we know that the value read is not 0, we need, in cases where
we read some positive value of the reference counter, to somehow produce an
additional ARC resource.

When executing fetch and add, we are going to keep all the resources we
have to ourselves, which means that we have to satisfy the invariant for the incre-
mented value using only what is already there in the invariant for the original
value. Fortunately, our invariant is designed in such a way that for any c > 0,
the equivalence Qγ,δ,v,a.data(c) ⇐⇒ Qγ,δ,v,a.data(c + 1) ∗ γ : 1+ holds. Using
this equivalence, when incrementing the reference counter from c to c + 1, we
obtain the ownership of the ghost assertion γ : 1+ .

Adding the newly acquired ghost resource to the ARC resource we already
have allows us to “produce” an additional ARC resource. In order to do that, we

have to use the following three equivalences: a.data
q�→ v ⇐⇒ a.data

q
2�→ v ∗

a.data
q
2�→ v, γ : (1 − q)+ ∗ γ : 1+ ⇐⇒ γ :

(
1 − q

2

)+ ∗ γ :
(
1 − q

2

)+ ,

and δ : q+ ⇐⇒ δ : q
2
+ ∗ δ : q

2
+ . Using those equivalences, it is easy to

see that the implication ARCγ,δ(a.data, v) ∗ γ : 1+ ⇒ ARCγ,δ(a.data, v) ∗
ARCγ,δ(a.data, v) holds.

Please note the importance of the fact that the only ownership we obtained
when updating the counter was of a ghost state. Since we are executing an update
of the relaxed kind, any non-ghost resources acquired would be burdened by the
� modality, and thus unusable.

4.5 Function drop

When verifying the drop function, we can establish that the value of the reference
counter is not 0 in exactly the same way we have done it for the clone function
in Sect. 4.4. We are now left with two distinct cases.

First case is when the decrementing the counter does not bring the counter
down to zero, i.e., the value of the counter is being decremented from some
value c > 1. In this case, we are going to release all the resources held by
the ARC predicate, and push them into the invariant. It is easy to see that
Qγ,δ,v,a.data(c) ∗ a.data q�→ v ∗ γ : (1 − q)+ ∗ δ : q+ ⇒ Qγ,δ,v,a.data(c− 1) holds

468 M. Doko and V. Vafeiadis

for any q ∈ 〈0, 1] and c > 1, which reestablishes the invariant for the decremented
value, and leaves us with the empty resource.

Note the importance of the fetch and add being of the release kind, which
(trough the (cas-rel) rule) enables us to release all the resources we have.

In the second case, the decrement brings the reference count down to 0. Since
the value read from the counter is 1, we know that the resource being held by
the invariant is Qγ,δ,v,a.data(1) = a.data

f�→ v ∗ γ : f− ∗ δ : (1 − f)− , for some
fraction f ∈ [0, 1]. We are going to take the read permission to the data field
out of the invariant, and we are going to release the ghost resources held by the
ARC predicate back into the invariant.

The ghost resource held by the ARC predicate is γ : (1 − q)+ ∗ δ : q+ ,

for some q ∈ 〈0, 1]. In order for this assertion to be compatible with γ : f− ∗
δ : (1 − f)− , the resource that is already inside the invariant, it is necessary

to have q + f = 1, and in that case we have γ : (1 − q)+ ∗ δ : q+ ∗ γ : f− ∗
δ : (1 − f)− ⇒ γ : 0− ∗ δ : 0− , establishing the Qγ,δ,v,a.data(0) invariant.

While establishing the Qγ,δ,v,a.data(0) invariant, we were also able to prove
q + f = 1, which is a pure assertion. According to the (cas-rel) rule, we can
use this fact in the postcondition.

After executing the decrement, we have a.data
q�→ v ∗ �a.data

f�→ v in the
postcondition. The f fraction of the access permission, which we obtained from
the invariant, is under �, because the fetch and add was of the release kind,
and we still have to wait for the acquire fence in order to use any resources
taken from the invariant. Since we are in the case where the original value of the
reference counter was 1, the very next instruction is exactly the acquire fence.

After the fence clears the � modality (f-acq), the resource we own is trans-

formed into a.data
q�→ v ∗ a.data

f�→ v ⇐⇒ a.data
q+f�→ v ⇐⇒ a.data

1�→ v.
These equivalences hold because we know q + f = 1, as proven earlier.

With this, the proof of Theorem1 is concluded.

5 Discussion

In this section, we are going to discuss the strengthening of the C11 memory
model which is assumed by the FSL soundness proof and how it affects the
ARC verification (Sect. 5.1). Further, in Sect. 5.2, we will discuss the necessity
of this assumption showing that the logic is unsound in its absence. Finally, in
Sect. 5.3 we will talk about a possible way to extend FSL with the support for
deallocation.

5.1 The Additional Acyclity Assumption

As mentioned in the introduction, FSL is proven sound with respect to a
strengthening of the C11 model. The strengthening is put in place in order

Tackling Real-Life Relaxed Concurrency with FSL++ 469

to prevent the so called out-of-thin-air reads that are allowed by the original
C11 model.

rlx

rlx

rlx

rlx

rlx

rlx

rlx

rlxrlx

rlx

rf
po po

Fig. 8. Out-of-thin-air behavior due to a cycle in the po ∪ rf relation.

The problem arises because C11 is very lenient in what kind of cycles are
allowed to be formed by the program order and reads from relations.

– The program order (po) tells us about the ordering of the events within each
execution thread. More precisely, po(a, b) means that the events a and b belong
to the same thread, and a precedes b.

– The reads from relation (rf) relates writes and reads that read from those
writes: rf(w, r) says that the read event r reads the value written by the write
event w.

Figure 8a shows a program with an undesirable behavior resulting from a cycle
in po ∪ rf. The C11 model allows the program to set both x and y to 1, due to
the allowed “cyclic” execution shown in Fig. 8b.

As noted in [5,35], this kind of behavior inhibits even the simplest forms of
thread-local reasoning for relaxed accesses.

The simplest way to rectify the problem of out-of-thin-air behaviors is to
forbid cycles in the po∪rf relation altogether. Forbidding these cycles requires the
smallest possible intervention in the C11 model, namely adding just one axiom
requiring acyclicity of po ∪ rf. This is the solution employed by the soundness
proofs of both RSL [35], and FSL [13] in order to restore sane reasoning principles
for relaxed accesses under the C11 memory model. Apart from being used in RSL
and FSL, this “patch” is also advocated by Boehm and Demsky [7].

Requiring po∪rf to be acyclic, however, does come with some implementation
cost. First, it invalidates some compiler optimizations (namely, the reordering
of a relaxed store above a relaxed load), and requires a slightly more expensive
compilation scheme to the Power and ARM architectures. The problem is that
these hardware architectures allow some executions with po∪rf cycles. Consider,
for example, load buffering, shown in Fig. 9a. The weak behavior, returning r = 1
is forbidden by the strengthened C11 model, but allowed by Power and ARM
if the relaxed accesses are compiled to plain loads and stores. Intuitively, the
behavior may arise if the hardware reorders the read from x and the write to y
in the left thread, which do not depend on each other.

Note that the execution in Fig. 9b, which explains the load buffering behav-
ior, is exactly the same as the execution we deemed undesirable in Fig. 8b. The

470 M. Doko and V. Vafeiadis

difference between these two examples is the possibility of reordering two inde-
pendent instructions in Fig. 9a, while in Fig. 8a the writes depend on the reads,
and these dependencies should render any reorderings invalid. The C11 model
does not model the dependencies between memory accesses, which makes it
unable to differentiate between executions in Figs. 8 and 9.

rlx

rlx

rlx

rlx

rlx

rlx

= 1

rlx

rlxrlx

rlx

rf
po po

= 1

Fig. 9. Load buffering (allowed on Power and ARM).

As noted by Boehm and Demsky in [7], in order to obtain acyclic po ∪ rf,
it is enough to forbid load-to-store reordering. On x86-TSO acyclicity of po ∪ rf
comes at no additional cost, since the architecture does not allow reordering of
loads and the subsequent stores. On Power and ARM, load-to-store reordering
can be avoided by placing a false dependency (i.e., a conditional branch to the
next instruction) between every relaxed load and subsequent relaxed stores.

Acyclic po ∪ rf and ARC. It is interesting to note that with algorithms like
ARC, which predominantly use atomic updates, and do not have many atomic
reads, ensuring the acyclicity of po ∪ rf on Power and ARM comes for free.

The reason for this comes from the way atomic update instructions are imple-
mented on Power and ARM [31]. When compiling atomic updates, a conditional
branch is placed after the load instruction, which induces a dependency between
the load and any subsequent stores. This means that the false dependencies are
not necessary when compiling atomic updates.

In the case of ARC, a false dependency needs to be placed after the relaxed
read in the implementation of fetch and add in Fig. 7. If fetch and add is
implemented as a primitive, as it actually is in practice, then it comes without the
burden of false dependencies. Therefore, there is no additional implementation
cost for ensuring that ARC runs under the strengthened C11 model.

5.2 Without the Acyclicity Assumption Ghosts Are Too Strong

Ruling out po∪rf cycles is the simplest but not the only way of ruling out “out-of-
thin-air” behaviors. In fact, during the last year, we saw the emergence of several
new memory models [17,19,28] aimed at eliminating out-of-thin-air behaviors
without completely forbidding cycles within the po∪rf relation. All these models
allow the weak behavior of the load buffering program, while forbidding the weak
behavior of the version with dependencies in both threads.

Tackling Real-Life Relaxed Concurrency with FSL++ 471

Q := λv. v = 0 ∨ γ : T T ⊕ T

Acq(x, Q) ∗ Rel(y, Q) ∗ γ : T

rlx

Rel(y, Q) ∗ γ : T ∗ (r = 0 ∨ γ : T

Rel(y, Q) ∗ γ : T ∧ r = 0

rlx
{r = 0}

{Acq(y, Q) ∗ Rel(x, Q)}
rlx

Rel(x, Q) ∗ γ : T

rlx

{emp}

Fig. 10. Using ghosts we can establish absence of load buffering.

We will now show that our extension of FSL with ghost state is unsound with
respect to these models. As can be seen in Fig. 10, FSL outfitted with ghost state
is strong enough to prove that the weak behavior of the load buffering program
does not happen, which in turn means that FSL is not sound for any of the new
models which allow that behavior.

The proof uses a single ghost location γ holding a non-duplicable token T .
We then use the Q(v) resource invariant to say that either v = 0 or the location
owns the token. Since the token is non-duplicable, we thus encode the invariant
saying that at most one of x and y can have a non-zero value. Initially, both
locations store the value 0, so the ghost token is given to the left thread. Using
the token, the first thread can thus assert that r = 0, and then use it to write 1
to y. The right thread can conversely gain the token by reading y = 1 and then
use it to write 1 to x.

An interesting thing of note is that all the examples (that we are aware
of) showing unsoundness of FSL under these new models rely on the use of
ghosts, and in the ability to transfer them without any synchronization. In a
sense, being able to fully transfer the ownership of the ghost state without any
synchronization exposes the acyclicity of the po ∪ rf relation.

There are thus two main open questions regarding the connection of FSL,
and the memory models that do not rely on the acyclic po ∪ rf assumption.

1. Is FSL without ghosts sound under any of the models that do not require
po ∪ rf to be acyclic? We strongly suspect that FSL without ghosts is sound
under the recent promising model of Kang et al. [19], but proving that this
is indeed the case is a highly non-trivial task.

2. In the case of the affirmative answer to the first question, can we come up
with the rules for the ghost state which would allow us to verify algorithms
like ARC? A possibility would be to somehow restrict the (ghost-mod)
rule so that it may be used only in conjuction with a release write. Such a
restriction would preserve the proof of ARC, while ruling out the proof of load
buffering. Its soundness with respect to models such as [17,19,28], however, is
unclear.

472 M. Doko and V. Vafeiadis

5.3 Deallocation

The proof of soundness of FSL already ensures that if a thread owns the full
permission to access a non-atomic location, then there are no other threads that
concurrently hold an access permission to the same location. Using this fact,
proving that it is safe to deallocate a non-atomic location when holding the full
access permission to it is a purely technical matter.

In order to enable deallocation of the atomic locations, we would have to
outfit atomic locations with permissions, and show that (for a single location)
the full permission cannot coexist concurrently with any other permission. This
result should follow from the same line of reasoning as the corresponding result
for the non-atomic locations.

In the context of our correctness proof of ARC, the necessary permission for
deallocating the atomic variable a.count could be obtained in exactly the same
way as we obtained the full permission of a.data (see Sect. 4.5).

6 Related Work

In this section we would like to call attention to some related work that was not
already discussed in Sect. 5. We divide our discussion in two parts: in Sect. 6.1 we
discuss other program logics for reasoning about weak memory, and in Sect. 6.2
we turn our attention to some other approaches for establishing program cor-
rectness under weak memory.

6.1 Program Logics

Apart from FSL’s predecessor, RSL [35], the only other separation logic for
the C11 memory model is GPS [34]. Even though GPS handles the ownership
transfer in a more flexible way than FSL (using protocols and escrows), GPS
is unable to reason about programs that use relaxed memory accesses, such as
ARC. The reason for this limitation of GPS is the fact that GPS works under
the release-acquire fragment of the C11 memory model.

He et al. [14] have proposed an extension of GPS with FSL-style modalities,
to give it support for relaxed accesses and memory fences. As the original FSL,
this extension of GPS does not have support for atomic updates, which makes
it inapplicable to programs like ARC. Additionally, unlike FSL, this extension
of GPS lacks a soundness proof.

It would be interesting to explore adapting GPS-style protocols to FSL, in
order to make FSL applicable to an even wider range of programs that require
more sophisticated forms of reasoning.

Apart from the separation logics, there is an Owicki-Gries-based logic called
OGRA [21] for reasoning about the C11 memory model, but it also handles only
the release-acquire fragment of the C11 model. Other program logics for weak
memory [30,32] have been focused on the x86-TSO memory model, which is
stronger than the one assumed by FSL.

Tackling Real-Life Relaxed Concurrency with FSL++ 473

6.2 Other Approaches

Aside from program logics, there are model checking tools for programs with
C11-style atomics. Worth noting is CDSChecker [25] which includes support
for relaxed accesses and memory fences. CDSChecker is designed to conduct
unit tests on concurrent programs, and cannot be used to verify correctness.

An alternative approach to reasoning about weak memory behaviors is to
restore sequential consistency. This can be done by placing fences or stronger
atomic accesses in order to eliminate weak behaviors [4,24], or by proving robust-
ness theorems [9,11,20] stating conditions under which programs have no observ-
able weak behaviors. These approaches are not applicable to performance-critical
algorithms such as ARC, which are exploiting weak memory consistency. Plac-
ing additional fences or using stronger memory accesses to restore sequential
consistency would go against the basic design principles of these algorithms.

Recently, Alglave proposed an invariance method for proving program cor-
rectness under weak memory [3]. This approach is parametric with the respect
to the memory model, and so could be applied to the C11 memory model. It is,
however, non-compositional, which makes using it to obtain a correctness proof
for the ARC algorithm difficult.

Acknowledgments. We would like to thank Soham Chakraborty, Rayna Dimitrova,
Jeehoon Kang, Ori Lahav, Alex Summers, and the ESOP’17 reviewers for their feed-
back.

References

1. Atomic reference counter (ARC) documentation. https://doc.rust-lang.org/std/
sync/struct.Arc.html

2. The Rust programming language. https://www.rust-lang.org/
3. Alglave, J.: Simulation and invariance for weak consistency. In: Rival, X. (ed.)

SAS 2016. LNCS, vol. 9837, pp. 3–22. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53413-7 1

4. Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence - a static
analysis approach to automatic fence insertion. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 508–524. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-08867-9 33

5. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency.
In: POPL 2013, pp. 235–248. ACM (2013)

6. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: POPL 2011, pp. 55–66. ACM (2011)

7. Boehm, H., Demsky, B.: Outlawing ghosts: avoiding out-of-thin-air results. In:
Singer, J., Kulkarni, M., Harris, T. (eds.) MSPC 2014, pp. 7:1–7:6. ACM (2014)

8. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL 2005, pp. 259–270. ACM (2005)

9. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol.
6756, pp. 428–440. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8 34

https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://www.rust-lang.org/
http://dx.doi.org/10.1007/978-3-662-53413-7_1
http://dx.doi.org/10.1007/978-3-662-53413-7_1
http://dx.doi.org/10.1007/978-3-319-08867-9_33
http://dx.doi.org/10.1007/978-3-319-08867-9_33
http://dx.doi.org/10.1007/978-3-642-22012-8_34

474 M. Doko and V. Vafeiadis

10. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). doi:10.1007/
3-540-44898-5 4

11. Derevenetc, E., Meyer, R.: Robustness against power is PSpace-complete.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8573, pp. 158–170. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43951-7 14

12. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: Giacobazzi, R., Cousot, R.
(eds.) POPL 2013, pp. 287–300. ACM (2013)

13. Doko, M., Vafeiadis, V.: A program logic for C11 memory fences. In:
Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 413–430.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49122-5 20

14. He, M., Vafeiadis, V., Qin, S., Ferreira, J.F.: Reasoning about fences and relaxed
atomics. In: PDP 2016, pp. 520–527. IEEE Computer Society (2016)

15. ISO/IEC 14882:2011: Programming language C++ (2011)
16. ISO/IEC 9899: 2011: Programming language C (2011)
17. Jeffrey, A., Riely, J.: On thin air reads towards an event structures model of relaxed

memory. In: LICS 2016, pp. 759–767. ACM (2016)
18. Jensen, J.B., Birkedal, L.: Fictional separation logic. In: Seidl, H. (ed.) ESOP

2012. LNCS, vol. 7211, pp. 377–396. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28869-2 19

19. Kang, J., Hur, C.K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: POPL 2017, pp. 175–189. ACM (2017)

20. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
Bod́ık, R., Majumdar, R. (eds.) POPL 2016, pp. 649–662. ACM (2016)

21. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47666-6 25

22. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

23. Ley-Wild, R., Nanevski, A.: Subjective auxiliary state for coarse-grained concur-
rency. In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 561–574. ACM (2013)

24. Meshman, Y., Rinetzky, N., Yahav, E.: Pattern-based synthesis of synchronization
for the C++ memory model. In: Kaivola, R., Wahl, T. (eds.) FMCAD 2015, pp.
120–127. IEEE (2015)

25. Norris, B., Demsky, B.: CDSChecker: Checking concurrent data structures writ-
ten with C/C++ atomics. In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.)
OOPSLA 2013, pp. 131–150. ACM (2013)

26. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28644-8 4

27. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. ACM
Trans. Program. Lang. Syst. 31(3), 11 (2009)

28. Pichon-Pharabod, J., Sewell, P.: A concurrency semantics for relaxed atomics that
permits optimisation and avoids thin-air executions. In: Bod́ık, R., Majumdar, R.
(eds.) POPL 2016, pp. 622–633. ACM (2016)

29. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS 2002, pp. 55–74. IEEE Computer Society (2002)

http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/978-3-662-43951-7_14
http://dx.doi.org/10.1007/978-3-662-43951-7_14
http://dx.doi.org/10.1007/978-3-662-49122-5_20
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-662-47666-6_25
http://dx.doi.org/10.1007/978-3-662-47666-6_25
http://dx.doi.org/10.1007/978-3-540-28644-8_4

Tackling Real-Life Relaxed Concurrency with FSL++ 475

30. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Leavens, G.T.,
O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 55–70.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15057-9 4

31. Sarkar, S., Memarian, K., Owens, S., Batty, M., Sewell, P., Maranget, L.,
Alglave, J., Williams, D.: Synchronising C/C++ and power. In: PLDI 2012, pp.
311–322. ACM (2012)

32. Sieczkowski, F., Svendsen, K., Birkedal, L., Pichon-Pharabod, J.: A separation
logic for fictional sequential consistency. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 736–761. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46669-8 30

33. Tassarotti, J., Dreyer, D., Vafeiadis, V.: Verifying read-copy-update in a logic for
weak memory. In: Grove, D., Blackburn, S. (eds.) PLDI 2015, pp. 110–120. ACM
(2015)

34. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: navigating weak-memory with ghosts,
protocols, and separation. In: Black, A.P., Millstein, T.D. (eds.) OOPSLA 2014,
pp. 691–707. ACM (2014)

35. Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program logic for C11 con-
currency. In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) OOPSLA 2013, pp.
867–884. ACM (2013)

http://dx.doi.org/10.1007/978-3-642-15057-9_4
http://dx.doi.org/10.1007/978-3-662-46669-8_30

Extensible Datasort Refinements

Jana Dunfield(B)

University of British Columbia, Vancouver, Canada

Abstract. Refinement types turn typechecking into lightweight verifi-
cation. The classic form of refinement type is the datasort refinement, in
which datasorts identify subclasses of inductive datatypes.

Existing type systems for datasort refinements require that all the
refinements of a type be specified when the type is declared; multiple
refinements of the same type can be obtained only by duplicating type
definitions, and consequently, duplicating code.

We enrich the traditional notion of a signature, which describes the
inhabitants of datasorts, to allow re-refinement via signature extension,
without duplicating definitions. Since arbitrary updates to a signature
can invalidate the inversion principles used to check case expressions,
we develop a definition of signature well-formedness that ensures that
extensions maintain existing inversion principles. This definition allows
different parts of a program to extend the same signature in different
ways, without conflicting with each other. Each part can be type-checked
independently, allowing separate compilation.

1 Introduction

Type systems provide guarantees about run-time behaviour; for example, that
a record will not be multiplied by a string. However, the guarantees provided by
traditional type systems like Hindley–Milner do not rule out a practically impor-
tant class of run-time failures: nonexhaustive match exceptions. For example,
the type system of Standard ML allows a case expression over lists that omits a
branch for the empty list:

case elems of head :: tail => head

If this expression is evaluated with elems bound to the empty list [], the
exception Match will be raised.

Datasort refinements eliminate this problem: a datasort can express, within
the static type system, that elems is not empty; therefore, the above case expres-
sion will never raise Match. Datasorts can also express less shallow properties.
For example, the definition in Fig. 1 encodes conjunctive normal form—a for-
mula that consists of (possibly nested) Ands of clauses, where a clause consists
of (possibly nested) Ors of literals, where a literal is either a positive literal (a
variable) or a negation of a positive literal. A case expression comparing two

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 476–503, 2017.
DOI: 10.1007/978-3-662-54434-1 18

jd169@queensu.ca

Extensible Datasort Refinements 477

Fig. 1. Datasorts for conjunctive normal form

values of type clause would only need branches for Or, Not and Var; the And
branch could be omitted, since And does not produce a clause.

Datasorts correspond to regular tree grammars, which can encode various
data structure invariants (such as the colour invariant of red-black trees), as
well as properties such as CNF and A-normal form. Datasort refinements are
less expressive than the “refinement type” systems (such as liquid types) that
followed work on index refinements and indexed types; like regular expressions,
which “can’t count”, datasorts cannot count the length of a list or the height of
a tree. However, types with datasorts are simpler in some respects; most impor-
tantly, types with datasorts never require quantifiers. Avoiding quantifiers, espe-
cially existential quantifiers, also avoids many complications in type checking.
By analogy, regular expressions cannot solve every problem—but when they can
solve the problem, they may be the best solution.

The goal of this paper is to make datasort refinements more usable—not by
making datasorts express more invariants, but by liberating them from the neces-
sity of a fixed specification (a fixed signature). First, we review the trajectory of
research on datasorts.

The first approach to datasort refinements (Freeman and Pfenning 1991;
Freeman 1994) extended ML, using abstract interpretation (Cousot and Cousot
1977) to infer refined types. The usual argument in favour of type inference is
that it reduces a direct burden on the programmer. When type annotations are
boring or self-evident, as they often are in plain ML, this argument is plausible.
But datasorts can express more subtle specifications, calling that argument into
question. Moreover, inference discourages a form of fine-grained modularity. Just
as we expect a module system to support information hiding, so that clients of a
module cannot depend on its internal details, a type system should prevent the
callers of a function from depending on its internal details. Inferring refinements
exposes those details. For example, if a function over lists is written with only
nonempty input in mind, the programmer may not have thought about what
the function should do for empty input, so the type system shouldn’t let the
function be applied to an empty list. Finally, inferring all properties means that
the inferred refined types can be long, e.g. inferring a 16-part intersection type
for a simple function (Freeman and Pfenning 1991, p. 271).

Thus, the second generation of work on datasort refinements (Davies and
Pfenning 2000; Davies 2005) used bidirectional typing, rather than inference.
Programmers have to write more annotations, but refinement checking will
never fabricate unintended invariants. A third generation of work (Dunfield and

478 J. Dunfield

Pfenning 2004; Dunfield 2007b) stuck with bidirectional type checking, though
this was overdetermined: other features of that type system made inference
untenable.

All three generations (and later work by Lovas (2010) on datasorts for LF)
shared the constraint that a given datatype could be refined only once. The
properties tracked by datasorts could not be subsequently extended; the same
set of properties must be used throughout the program. Modular refinement
checking could be achieved only by duplicating the type definition and all related
code. Separate type-checking of refinements enables simpler reasoning about
programs, separate compilation, and faster type-checking (simpler refinement
relations lead to simpler case analyses).

The history of pattern typing in case expressions is also worth noting, as
formulating pattern typing seems to be the most difficult step in the design of
datasort type systems. Freeman supported a form of pattern matching that was
oversimplified. Davies implemented the full SML pattern language and formal-
ized most of it, but omitted as-patterns—which become nontrivial when datasort
refinements enter the picture.

The system in this paper allows multiple, separately declared refinements of a
type by revising a fundamental mechanism of datasort refinements: the signature.
Refinements are traditionally described using a signature that specifies—for the
entire program—which values of a datatype belong to which refinements. For
example, the type system can track the parity of bitstrings using the following
signature, which says: (1) even and odd are subsorts (subtypes) of the type bits
of bitstrings, the (2) empty bitstring has even parity, (3) appending a 1 flips the
parity, and (4) appending a 0 preserves parity.

even � bits, odd � bits,
Empty : even,

One : (even → odd) ∧ (odd → even),
Zero : (even → even) ∧ (odd → odd)

The connective ∧, read “and” or “intersection”, denotes conjunction of prop-
erties: adding a One makes an even bitstring odd (even → odd), and makes an
odd bitstring even (odd → even). Thus, if b is a bitstring known to have odd
parity, then appending a 1 yields a bitstring with even parity:

b : odd � One(b) : even

In some datasort refinement systems (Dunfield 2007b; Lovas 2010), the pro-
grammer specifies the refinements by writing a signature like the one above. In
the older systems of Freeman and Davies, the programmer writes a regular tree
grammar1, from which the system infers a signature, including the constructor
types and the subsort relation:
1 A regular tree grammar is like a regular grammar (the class of grammars equivalent

to regular expressions), but over trees instead of strings (Comon et al. 2008); the
leftmost terminal symbol in a production of a regular grammar corresponds to the
symbol at the root of a tree.

Extensible Datasort Refinements 479

even = Empty ||Zero(even) ||One(odd)
odd = Zero(odd) ||One(even)

In either design, the typing phase uses the same form of signature. We use
the first design, where the programmer gives the signature directly. Giving the
signature directly is more expressive, because it enables refinements to carry
information not present at run time. For example, we can refine natural numbers
by Tainted and Untainted:

Z : nat, S : nat → nat,
tainted � nat, untainted � nat,

Z : tainted, S : tainted → tainted,
Z : untainted, S : untainted → untainted

The sorts tainted and untainted have the same closed inhabitants, but a program
cannot directly create an instance of untainted from an instance of tainted:

x : tainted �� S(x) : untainted

Thus, the two sorts have different open inhabitants. This is analogous to dimen-
sion typing, where an underlying value is just an integer or float, but the type
system tracks that the number is in (for example) metres (Kennedy 1996).

Giving the signature directly allows programmers to choose between a variety
of subsorting relationships. For example, to allow untainted data to be used
where tainted data is expected, write untainted � tainted. Subsorting can be
either structural (as the signatures generated from grammars) or nominal (as in
the example above). In this paper, giving signatures directly is helpful: it enables
extension of signatures without translating between signatures and grammars.

Contributions. This paper makes the following contributions:

– A language and type system with extensible signatures for datasort refine-
ments (Sect. 3). Refinements are extended by blocks that are checked to ensure
that they do not weaken a sort’s inversion principle, which would make typing
unsound.

– A new formulation of typing (Sect. 4) for case expressions. This formulation
is based on a notion of finding the intersection of a type with a pattern; it
concisely models the interesting aspects of realistic ML-style patterns.

– Type (datasort) preservation and progress for the type assignment system,
stated in Sect. 6 and proved in Appendix B, with respect to a standard call-
by-value operational semantics (Sect. 5).

– A bidirectional type system (Sect. 7), which directly yields an algorithm. We
prove that this system is sound (given a bidirectional typing derivation, eras-
ing annotations yields a type assignment derivation) and complete (given any
type assignment derivation, annotations can be added to make bidirectional
typing succeed).

The appendix, which includes definitions and proofs omitted for space rea-
sons, can be found at http://www.cs.queensu.ca/ jana/papers/extensible/∼ .

http://www.cs.cmu.edu/~joshuad/papers/extensible/

480 J. Dunfield

2 Datasort Refinements

What are Datasort Refinements? Datasort refinements are a syntactic discipline
for enforcing invariants. This is a play on Reynolds’s definition of types as a “syn-
tactic discipline for enforcing levels of abstraction” (Reynolds 1983). Datasorts
allow programmers to conveniently categorize inductive data, and operations on
such data, more precisely than in conventional type systems.

Indexed types and related systems (e.g. liquid types and other “refinement
types”) also serve that purpose, but datasorts are highly syntactic, whereas
indexed types depend on the semantics of a constraint domain. For exam-
ple, to check the safety of accessing the element at position 2k of a 0-based
array of length n, an indexed type system must check whether the proposition
2k < n is entailed in the theory of integers (under some set of assumptions,
e.g. 0 ≤ k ≤ n/3). The truth of 2k < n depends on the semantics of arith-
metic, whereas membership in a datasort only depends on a head constructor
and the datasorts of its arguments. Put roughly, datasorts express regular gram-
mars, and indexed types express grammars with more powerful side conditions.
(Unrestricted dependent types can express arbitrarily precise side conditions.)

Applications of Datasort Refinements. Datasorts are especially suited to applica-
tions of symbolic computing, such as compilers and theorem provers. Compilers
usually work with multiple internal languages, from abstract syntax through to
intermediate languages. These internal languages may be decomposed into fur-
ther variants: source ASTs with and without syntactic sugar, A-normal form,
and so on. Similarly, theorem provers, SMT solvers, and related tools transform
formulas into various normal forms or sublanguages: quantifier-free Boolean for-
mulas, conjunctive normal form, formulas with no free variables, etc. Many such
invariants can be expressed by regular tree grammars, and hence by datasorts.

Our extensible refinements offer the ability to use new refinements of a
datatype when the need arises, without the need to update a global refinement
declaration. For example, we could extend the types in Fig. 1, in which clause
contains disjunctions of literals and cnf contains conjunctions of clauses, with a
new sort for conjunctions of literals:

[everything from Fig. 1] literal � conj-literal, conj-literal � cnf,
And : (conj-literal ∗ conj-literal) → conj-literal

What are Datasort Refinements Not? First, datasorts are not really types, at
least not in the sense of Hindley–Milner type systems. A function on bitstrings
(Sect. 1) has a best, or principal, type: bits → bits. In contrast, such a function
may have many refined types (sometimes called sorts), depending not only on
the way the programmer chose to refine the bits type, but on which possible
properties they wish to check. The type, or sort, of a function is a tiny module
interface. In a conventional Hindley–Milner type system, there is a best interface
(the principal type); with datasorts, the “best” interface is—as with a module

Extensible Datasort Refinements 481

interface, which may reveal different aspects of the module—the one the program-
mer thinks best. Maybe the programmer only cares that the function preserves
odd parity, and annotates it with odd → odd; the compiler will reject calls with
even bitstrings, even though such a call would be conventionally well-typed.

To infer sorts, as in the original work of Freeman, is like assuming that
all declarations in a module should be exposed. (Tools that suggest possible
invariants could be useful, just as a tool that suggests possible module interfaces
could be useful. But such tools are not the focus of this paper.)

3 A Type System with Extensible Refinements

This section gives our language’s syntax, introduces signatures, discusses the
introduction and elimination forms for datasorts, and presents the typing rules.
The details of typing pattern matching are in Sect. 4.

Fig. 2. Expressions

3.1 Syntax

The syntax of expressions (Fig. 2) includes functions λx. e, function application
e1 e2, pairs (e1, e2), constructors c(e), and case expressions. Signatures are
extended by declare Σ in e.

Fig. 3. Types and contexts

Types (Fig. 3), written A and B, include unit (1), function, and product
types, along with datasorts s and t. The intersection type A ∧ B represents the
conjunction of the two properties denoted by A and B; for example, a function to
repeat a bitstring could be checked against type (odd → even) ∧ (even → even):
given any bitstring b, the repetition bb has even parity.

482 J. Dunfield

3.2 Unrefined Types and Signatures

Our unrefined types τ, in Fig. 4, are very simple: unit 1, functions τ1 → τ2,
products τ1 ∗ τ2, and datatypes d. We assume that each datatype has a known
set of constructors: for example, the bitstring type of Sect. 1 has constructors
Empty, One and Zero. Refinements don’t add constructors; they only refine the
types of the given constructors. We assume that each program has some unrefined
signature U that gives datatype names (d) and (unrefined) constructor typings
(c : τ → d). Since this signature is the same throughout a program, we elide it
in most judgment forms.

The judgment Σ � A � τ says that A is a refinement of τ. Both the symbol �

and several of the rules are reminiscent of subtyping, but that is misleading: sorts
and types are not in an inclusion relation in the sense of subtyping, because the
rule for → is covariant, not contravariant. Covariance is needed for functions
whose domains are nontrivially refined, e.g. odd → · · · , which is not a subtype
of bits → · · · because bits �≤ odd.

Rule �∧ implements the usual refinement restriction: both parts of an inter-
section A1 ∧ A2 must refine the same unrefined type τ.

3.3 Signatures

Refinements are defined by signatures Σ (Fig. 4).

Fig. 4. Unrefined types and signatures, refined signatures, �

Extensible Datasort Refinements 483

Fig. 5. Type well-formedness

As in past datasort systems, we separate signatures Σ from typing contexts
Γ . Typing assumptions over term variables (x, y, etc.) in Γ can mention sorts
declared in Σ, but the signature Σ cannot mention the term variables declared
in Γ . Thus, our judgment for term typing will have the form Σ; Γ � e : A, where
the term e can include constructors declared in Σ and variables declared in Γ ,
and the type A can include sorts declared in Σ. Some judgments, like subsorting
Σ � s � t and subtyping Σ � A ≤ B, are independent of variable typing and
don’t include Γ at all.

Traditional formulations of refinements assume the signature is given once
at the beginning of the program. Since the same signature is used throughout a
given typing derivation, the signature can be omitted from the typing judgments.
In this paper, our goal is to support extensible refinements, where the signature
can evolve within a typing derivation; in this respect, the signature is analogous
to an ordinary typing context Γ , which is extended in subderivations that type
λ-expressions and other binding forms. So the signature must be explicit in our
judgment forms (Fig. 5).

Constructor types C are types of the form A → s. In past formulations of
datasorts, constructor types in the signature use intersection to represent multi-
ple behaviours. For example, a “one” constructor for bitstrings, which represents
appending a 1 bit, takes odd-parity bitstrings to even-parity and vice versa; its
type in the signature is the intersection type (odd → even) ∧ (even → odd).
Such a formulation ensures that the signature has a standard property of (typ-
ing) contexts: each data constructor is declared only once; additional behaviours
are conjoined (intersected) within a single declaration c : C1 ∧ C2 ∧ · · · . In our
setting, we must be careful about not only which types a constructor has, but
when those types were declared. The reasons are explained below; for now, just
note that we will write something like c : C1, . . . , c : C2 rather than c : C1 ∧ C2.

484 J. Dunfield

Structure of Signatures. A signature Σ is a sequence of blocks S〈K〉 of declara-
tions, where refinements declared in outer scopes in the program appear to the
left of those declared in inner scopes.

Writing (s�d)〈K〉 declares s to be a sort refining some (unrefined) datatype
d; however, we usually elide the datatype and write just s〈K〉. The declarations
K, called the block of s, define the values (constructors) of s, and the subsortings
for s. Declarations outside this block may declare new subsorts and supersorts
of s only if doing so would not affect s—for example, adding inhabitants to
s via a constructor declaration, or declaring a new subsorting between s and
previously declared sorts, would affect s and will be forbidden (via signature
well-formedness). The grammar generalizes this construct to multiple sorts, e.g.
(s1�d1, s2�d2)〈K〉, abbreviated as (s1, s2)〈K〉.

Writing s1 �s2 says that s1 is a subsort of s2, and c : C says that constructor
c has type C, where C has the form A → s. A constructor c can be given more
than one type: Σ = (s, s1, s2)〈s1 � s, s2 � s, c : s1→s2, c : s2→s1〉.

Adding inhabitants to a sort is only allowed within its block. Thus, the
following signature is ill-formed, because c ′ : 1→s adds the value c ′() to s,
but c ′ : 1→s is not within s’s block: s〈c : s→s〉, t〈c ′ : 1→s〉. New sorts can be
declared as subsorts and supersorts of each other, and of previously declared
sorts: s〈c1 : 1→s, c2 : 1→s〉, t〈t � s, c2 : 1→t〉.

However, a block cannot modify the subsorting relation between earlier sorts;
“backpatching” s1 �s2 into the first block, through a new intermediate sort t, is
not permitted: The signature Σ∗ = (s1, s2)〈c : 1→s1, c : 1→s2〉, t〈s1 � t, t � s2〉
is not permitted even though it looks safe: sorts s1 and s2 have the same set of
inhabitants—the singleton set {c()}—so the values of s1 are a subset of the values
of s2. But this fact was not declared in the first block, which is the definition
of s1 and s2. We assume the declaration of the first block completely reflects
the programmer’s intent: if they had wanted structural subsorting, rather than
nominal subsorting, they should have declared s1�s2 in the first block. Allowing
backpatching would not violate soundness, but would reduce the power of the
type system: nominal subsorting would no longer be supported, since it could
be made structural after the fact.

Ordering. A block S〈K〉 can refer to the sorts S being defined and to sorts
declared to the left. In contrast to block ordering, the order of declarations
inside a block doesn’t matter.

3.4 Introduction Form

From a type-theoretic perspective, the first questions about a type are: (1) How
are the type’s inhabitants created? That is, what are the type’s introduction
rules? (2) How are its inhabitants used? That is, what are its elimination rules?
(Gentzen (1934) would ask the questions in this order; the reverse order has
been considered by Dummett, among others (Zeilberger 2009).) In our setting,
we must also ask: What happens with the introduction and elimination forms
when new refinements are introduced?

Extensible Datasort Refinements 485

In the introduction rule—DataI in Fig. 6—the signature Σ is separated from
the ordinary context Γ (which contains typing assumptions of the form x : A).
The typing of c is delegated to its first premise, Σ � c : A → s, so we need a
way to derive this judgment. At the top of Fig. 6, we define a single rule ConArr,
which looks up the constructor in the signature and weakens the result type
(codomain), expressing a subsumption principle. (Since we’ll have subsumption
as a typing rule, including it here is an unforced choice; its presence is meant to
make the metatheory of constructor typing go more smoothly.)

In a system of extensible refinements, adding refinements to a signature
should preserve typing. That is, if Σ; Γ � e : B, then Σ, Σ ′; Γ � e : B. This is a
weakening property: we can derive, from the judgment that e has type B under Σ,
the logically weaker judgment that e has type B under more assumptions Σ, Σ ′.
(The signature becomes longer, therefore stronger; but a turnstile is a kind of
implication with the signature as antecedent, so the judgment becomes weaker,
hence “weakening”.) So for the introduction form, we need that if Σ � c : A → s,
then Σ, Σ ′ � c : A → s. Under our formulation of the signature, this holds: If
c : A → s, then there exists (c : A → s ′) ∈ Σ such that s ′ � s. Therefore,
there exists (c : A → s ′) ∈ (Σ, Σ ′). Likewise, since Σ � s ′ � s, we also have
Σ, Σ ′ � s ′ � s. One cannot use Σ ′ to withdraw a commitment made in Σ.2

3.5 Elimination Form: Case Expressions

Exhaustiveness checking for case expressions assumes complete knowledge about
the inhabitants of types. Thus, we must avoid extending a signature in a
way that adds inhabitants to previously declared sorts. Consider the case
expression case x : empty of Nil() ⇒ () which is exhaustive for the signature
Σ = (list, empty)〈empty � list, Nil : 1→empty, Cons : list→list〉 but not for

(Σ, Σ ′) = (list, empty)〈empty � list, Nil : 1→empty, Cons : list→list〉,
〈Cons : list→empty〉

Suppose we type-check the case expression under Σ, but then extend Σ to (Σ, Σ ′).
Evaluating the above case expression with x = Cons(Nil()) will “fall off the end”.
The inversion principle that “every empty has the form Nil()” is valid under Σ,
but with the additional type for Cons in Σ ′, that inversion principle becomes
invalid under (Σ, Σ ′). Our system will reject the latter signature as ill-formed.

In the following, “up” and “down” are used in the usual sense: a subsort is
below its supersort. In Σ ′, the second constructor type for Cons had a smaller
codomain than the first: the second type had empty, instead of list. Varying the
codomain downward can be sound when the lower codomain is newly defined:
2 Under the traditional formulation where each constructor has just one type in a

signature, the relationship between the old signature Σ and the new signature would
be slightly more complicated: the old signature might contain c : C1 , and the new
signature c : C1 ∧ C2 , and we would need to explicitly eliminate the intersection to
expose the old type C1 . In our formulation, the new signature appends additional
typings for c while keeping the typing c : C1 intact.

486 J. Dunfield

Σ, Σ ′′ = Σ, subempty〈subempty � empty, Nil : 1→subempty〉. Here, the inversion
principle that every empty is Nil is still valid (along with the new inversion
principle that every subempty is Nil). We only added information about a new
sort subempty, without changing the definition of list and empty.

Moving the Domain Down. Giving a new type whose domain is smaller, but
that has the same codomain, is sound but pointless. For example, extending Σ

with Cons : empty→list, which is the same as the type Σ has for Cons except that
the domain is empty instead of list, is sound. The inversion principle for values
v of type list in Σ alone is “either (1) v has the form Nil(), or (2) v has the form
Cons(y) where y has type list”. Reading off the new inversion principle for list
from Σ,Cons : empty→list, we get “either (1) v has the form Nil(), or (2) v has
the form Cons(y) where y has type list, or (3) v has the form Cons(y) where
y has type empty”. Since empty is a subsort of list, part (3) implies part (2),
and any case arm that checks under the assumption that y : list must also check
under the assumption that y : empty. Here, the new signature is equivalent to Σ

alone; the “new” type for Cons is spurious.

Moving the Codomain Up. Symmetrically, giving a new type whose codomain
gets larger is sound but pointless. For example, adding Nil : 1→list to Σ has
no effect, because (in the introduction form) we could use the old type Nil :
1→ empty with subsumption (empty � list).

Moving the Domain Up. Making the domain of a constructor larger is unsound
in general. To show this, we need a different starting signature Σ2.

Σ2 = (list, empty, nonempty)〈empty � list, nonempty � list,
Nil : 1→empty,Cons : empty→nonempty〉

This isn’t a very useful signature—it doesn’t allow construction of any list
with more than one element—but it is illustrative. We can read off from Σ2

the following inversion principle for values v of sort nonempty: “v has the form
Cons(y) where y has type empty”. If x : nonempty then Case x of Cons (Nil()) ⇒

() is exhaustive under Σ2. Now, extend Σ2: Σ2, Σ ′
2 = Σ2, 〈Cons : list→nonempty〉.

For the signature Σ2, Σ ′
2, the inversion principle for nonempty should be “(1) v

has the form Cons(y) where y has type empty, or (2) v has the form Cons(y)
where y has type list”. But there are more values of type list than of type empty.
The new inversion principle gives less precise information about the argument
y, meaning that the old inversion principle gives more precise information than
(Σ2, Σ ′

2) allows. Concretely, the case expression above was exhaustive under Σ2,
but is not exhaustive under (Σ2, Σ ′

2) because Cons(Cons(Nil())) has type list.
The above examples show that signature extension can be sound but useless,

unsound, or sound and useful (when the domain and codomain, or just the
codomain, are moved down). Ruling out unsoundness will be the main purpose
of our type system, where unsoundness includes raising a “match” exception due
to a nonexhaustive case. The critical requirement is that each block must not
affect previously declared sorts by adding constructors to them, or by adding
subsortings between them.

Extensible Datasort Refinements 487

3.6 Typing

Figure 6 gives rules deriving the main typing judgment Σ; Γ � e : A. The variable
rule Var, the introduction (→ I) and elimination (→ E) rules for →, and the
introduction rules for the unit type (1I) and products (∗I) are standard. Products
can be eliminated via case e of (x1, x2) ⇒ · · ·, so they need no elimination rule.

Subsumption. A subsumption rule Sub incorporates subtyping, based on the
subsort relation �; see Sect. 3.7. Several of the subtyping rules express the same
properties as elimination rules would; for example, anything of type A1 ∧ A2

has type A1 and also type A2. Consequently, we can omit these elimination rules
without losing expressive power.

Fig. 6. Typing rules for constructors and expressions

Intersection. The introduction rule ∧ I corresponds to a binary version of the
introduction rule for parametric polymorphism in System F. The restriction
to a value v avoids unsoundness in the presence of mutable references (Davies
and Pfenning 2000), similar to SML’s value restriction for parametric polymor-
phism (Wright 1995). We omit the elimination rules, which are admissible using
Sub and subtyping (Sect. 3.7).

488 J. Dunfield

Σ; Γ � e : A1 ∧ A2

Σ; Γ � e : A1

Σ; Γ � e : A1 ∧ A2

Σ; Γ � e : A2

Datasorts. Rule DataI introduces a datasort, according to a constructor type
found in Σ (via the Σ � c : C judgment). Rule DataE examines an expression
e of type A and checks matches ms under the assumption that the expression
matches the wildcard pattern ; see Sect. 4.

Re-refinement. Rule Declare allows sorts to be declared. Its premises check that
(1) the signature Σ ′ is a valid extension of Σ (see Sect. 3.8); (2) the type B of the
expression is well-formed without the extension Σ ′, which prevents sorts declared
in Σ ′ from escaping their scope; (3) that the expression e is well-typed under
the extended signature (Σ, Σ ′).

Fig. 7. Subtyping

3.7 Subtyping

Our subtyping judgment Σ � A ≤ B says that all values of type A also have type
B. The rules follow the style of Dunfield and Pfenning (2003); in particular, the
rules are orthogonal (each rule mentions only one kind of connective) and tran-
sitivity is admissible. Instead of an explicit transitivity rule, we bake transitivity
into each rule; for example, rule ≤∧ L1 has a premise A1 ≤ B and conclusion
(A1 ∧ A2) ≤ B, rather than just (A1 ∧ A2) ≤ A1 (with no premises). This
makes the rules easier to implement: to decide whether A ≤ C, we never have
to guess a middle type B such that A ≤ B and B ≤ C (Fig. 7).

3.8 Signature Well-Formedness

A signature is well-formed if standard conditions (e.g. no duplicate declarations
of sorts) and conservation conditions hold. Reading Fig. 8 from bottom to top,
we start with well-formedness of signatures Σ sig. For each block S〈K〉, rule
SigBlock checks that the sorts S are not duplicates (S ∩ dom(Σ) = ∅), and then
checks that (1) subsorting is conserved by K and (2) each element in K is safe.

Extensible Datasort Refinements 489

Fig. 8. Signature well-formedness and subsorting

(1) Subsorting Preservation. The subsortings declared in K must not affect the
subsort relation between sorts previously declared in Σ. The left-to-right direc-
tion of this “iff” always holds by weakening: adding to a signature cannot delete
edges in the subsort relation. The right-to-left direction is contingent on the
contents of K; see signature Σ∗ in Sect. 3.3. This premise could also be written as
(Σ � �|dom(Σ)) = (Σ, S〈K〉 � �|dom(Σ)), where �|dom(Σ) is the � relation restricted
to sorts in dom(Σ).

(2a) Subsort Elements. Rule BlockSubsort checks that the subsorts are in scope.

(2b) Constructor Element Safety. Rule BlockCon’s first premise checks that s ∈
S. (Certain declarations with s /∈ S would be safe, but useless.) Its second premise
checks that the constructor type A → s is well-formed. Finally, for all sorts t that
were (1) previously declared (in dom(Σ)) and (2) supersorts of the constructor’s
codomain (s � t), the rule checks that the constructor is “safe at t”.

The judgment Σ;S〈K〉 � c : A → s safe at t says that adding the constructor
typing c : A → s does not invalidate Σ’s inversion principle for t. Rule SafeConAt
checks that signature Σ already has a constructor typing c : A ′

→ s ′, where s ′�t,

490 J. Dunfield

such that A ≤ A ′. Thus, any value c(v) typed using c : A → s can already be
typed using c : A ′ � s ′, which is a subsort of t, so the new constructor typing
c : A → s does not add inhabitants to t.

This check is not analogous to function subtyping, because we need covari-
ance (A ≤ A ′), not contravariance. The relation � (Fig. 4) is a closer analogy.

More subtly, SafeConAt also checks that s�s ′. Suppose we have the signature
Σ = (t, s1, s2)〈s1 � t, s2 � t, c1 : s1, c2 : s2〉 and extend it with s〈s � t, c1 : s〉.
(To focus on the issue at hand, we assume c1 and c2 take no arguments.) For
the original signature Σ, the inversion principle for t is: If a value v has type t,
then either v = c1 and v has type s1, or v = c2 and v has type s2. However,
under the extended signature, there is a new possibility: v has type s. Merely
being inhabited by c1 is not sufficient to allow s to be a subsort of t.

If, instead, we start with Σ ′ = (t, s1, s2)〈c1 : t, s1 � t, s2 � t, c1 : s1, c2 : s2〉
then the inversion principle for t under Σ ′ is that v has type s1, type s2, or type
t. Therefore, any case arm whose pattern is x as c1 must be checked assuming
x : t. If an expression can be typed assuming x : t, then it can be typed assuming
x : t ′ for any t ′ � t, so the inversion principle (again, under Σ ′ before extension)
is equivalent to “v has type t”. Extending Σ ′ with s〈s � t, c1 : s〉 would extend
the inversion principle to say “if v : t then v has type t, or v has type s”, but
since s � t the extended inversion principle is equivalent to that for t under Σ ′.

The s � s ′ premise of SafeConAt is needed to prove the constructor lemma
(Lemma 12), which says that a constructor typing in an extended signature must
be below a constructor typing in the original signature.

4 Typing Pattern Matching

Pattern matching is how a program gives different answers on different inputs. A
key motivation for datasort refinements is to exclude impossible patterns, so that
programmers can avoid having to choose between writing impossible case arms
(that raise an “impossible” exception) and ignoring nonexhaustiveness warnings.
The pattern typing rules must model the relationship between datasorts and the
operational semantics of pattern matching. It’s no surprise, then, that in datasort
refinement systems, case expressions lead to the most interesting typing rules.

The relationship between types and patterns is more involved than with, say,
Damas–Milner plus inductive datatypes: with (unrefined) inductive datatypes,
all the information needed to check for exhaustiveness (also called coverage) is
immediately available as soon as the type of the scrutinee is known. Moreover,
types for pattern variables can be “read off” by traversing the pattern top-down,
tracking the definition of the scrutinee’s inductive datatype. But with datasorts,
a set of patterns that looks nonexhaustive at first glance—looking only at the
head constructors—may in fact be exhaustive, thanks to the inner patterns.

Giving types to pattern variables is also tricky, because sufficiently precise
types may be evident only after examining the whole pattern. For example, when
matching x : bits against the pattern y as One(Empty), we shouldn’t settle on
y : bits because the scrutinee x has type bits; we should descend into the pattern
and observe that Empty : even and One : (even → odd), so y must have type odd.

Extensible Datasort Refinements 491

Restricting the form of case expressions to a single layer of clearly disjoint
patterns c1(x1) || . . . || cn(xn) would simplify the rules, at the cost of a big gap
between theory and practice: Since real implementations need to support nested
patterns, the theory fails to model the real complexities of exhaustiveness check-
ing and pattern variable typing. Giving code examples becomes fraught; either
we flatten case expressions (resulting in code explosion), or we handwave a lot.

Another option is to support the full syntax of case expressions, except for
as-patterns, so that pattern variables occur only at the leaves. If subsorting were
always structural, as in Davies’s system, we could exploit a handy equivalence
between patterns and values: if the pattern is x as c(p0), let-bind x to c(p0)
inside the case arm, letting rule DataI figure out the type of x. But with nominal
subsorting, constructing a value is not equivalent; see Davies (2005, pp. 234–235)
and Dunfield (2007b, pp. 112–113).

Our approach is to support the full syntax, including as-patterns. This app-
roach was taken by Dunfield (2007b, Chap. 4), but our system seems simpler—
partly because (except for signature extension) our type system omits indexed
types and union types, but also because we avoid embedding typing derivations
inside derivations of pattern typing.

Instead, we confine most of the complexity to a single mechanism: a function
called intersect, which returns a set of types (and contexts that type as-variables)
that represent the intersection between a type and a pattern. The definition of
this function is not trivial, but does not refer to expression-level typing.

4.1 Unrefined Pattern Typing, Match Typing, and Pattern
Operations

Figure 9 defines a judgment U � p : τ that says that pattern p matches values of
unrefined type τ under the unrefined signature U .

Rule DataE for case expressions (Fig. 6) invokes a match typing judgment,
Σ; Γ ;p : A � ms : D. In this judgment, p is a residual pattern that represents the
space of possible values. For the first arm in a case expression, no patterns have
yet failed to match, so the residual pattern in the premise of DataE is .

Each arm, of the form p1 ⇒ e1, is checked by rule TypeMs (Fig. 10). The
leftmost premises check that the type A corresponds to the pattern type τ. The
middle “for all” checks e1 under various assumptions produced by the intersect

Fig. 9. Pattern type rules

492 J. Dunfield

Fig. 10. Match typing

function (Sect. 4.2) with respect to the pattern p ∩ p1, ensuring that if p1

matches the value at run time, the arm is well-typed. The last premise moves
on to the remaining matches; there, we know that the value did not match p1,
so we subtract p1 from the previous residual pattern p—expressed as p ∩ ¬p1.
These operations are defined in the appendix (Fig. 13).

When typing reaches the end of the matches, ms = ∅ in rule TypeMsEmpty,
we check that the case expression is exhaustive by checking that intersect returns
∅. For case expressions that are syntactically exhaustive, such as a case expression
over lists that has both Nil and Cons arms, the residual pattern p will be the
empty pattern ∅; the intersect function on an empty pattern returns ∅.

We define pattern complement ¬p and pattern intersection p1 ∩ p2 in the
appendix (Fig. 13). For example, ¬ = ∅. No types appear in these definitions,
but the complement of a constructor pattern c(p0) uses the (implicit) unrefined
signature U . Our definition of pattern complement never generates as-patterns,
so we need not define intersection for as-patterns.

Fig. 11. Intersection of a type with a pattern

Extensible Datasort Refinements 493

4.2 The intersect function

We define a function intersect that builds the “intersection” of a type and a
pattern. Given a signature Σ, type A and pattern p, the intersect function returns
a (possibly empty) set of tracks {(Γ ′

1 � B1), . . . , (Γ
′
n � Bn)}. Each track (Γ ′ � B) has

a list of typings Γ ′ (giving the types of as-variables) and a type B that represents
the subset of values inhabiting A that also match p. The union of B1 through Bn

constitutes the intersection of A and p. We call these “tracks” because each one
represents a possible shape of the values that match p, and the type-checking
“train” must check a given case arm under each track’s Γ ′.

Many of the clauses in the definition of intersect (see Fig. 10) are straight-
forward. The intersection of A with the wildcard is just {(· � A)}. Dually, the
intersection of A with the empty pattern ∅ is the empty set. In the same vein,
the intersection of A with the or-pattern p1 �p2 is the union of two intersections
(A with p1, and A with p2). The intersection of a product A1 ∗ A2 with a pair
pattern is the union of products of the pointwise intersections.

The most interesting case is when we intersect a sort s with a pattern of the
form c(p0). For this case, intersect iterates through all the constructor declara-
tions in Σ that could have been used to create the given value: those of the form
(c : Ac → sc) where sc � s. For each such declaration, it calls intersect on Ac

and p0. For each resulting track (Γ ′ � B), it returns a track (Γ ′ � sc).

Optimization. In practice, it may be necessary to optimize the result of intersect.
If Σ = (list, empty)〈empty� list,Nil : 1→empty,Cons : empty→list,Cons : list→list〉
then intersect(Σ � Cons(xas); list) returns

{

(x : empty� list), (x : list� list)
}

.
Since any case arm that checks under x : list will check under x : empty, there is
no point in trying to check under x : empty. Instead, we should check only under
x : list. A similar optimization in the Stardust type checker could reduce the size
of the set of tracks by “about an order of magnitude” Dunfield (2007b, p.112).

Missing Clauses? As is standard in typed languages, pattern matching doesn’t
look inside λ, so intersect needs no clause for →/λ. If we can’t match on an arrow
type, we don’t need to match on intersections of arrows. The other useful case of
intersection is on sorts, s1 ∧ s2. However, an intersection of sorts can be obtained
by declaring a new sort below s1 and s2 with the appropriate constructor typings,
so we omit such a clause from the definition.

Comparison to an Earlier System. A declarative system of rules in Dunfield
(2007b, Chap. 4) appears to be a conservative extension of intersect: the earlier
system supports a richer type system, but for the features in common, the infor-
mation produced is similar to that of intersect. The earlier system was based on
a judgment Σ � p ⇐ A � (e ⇐ D). To clarify the connection to the present
system, we adjust notation; for example, we make Σ explicit.

The meta-variables Σ, p, and A directly correspond to the arguments to
intersect, while e and D correspond to e1 and D in our rule TypeMs. No meta-
variables correspond directly to the tracks in the result of intersect, but within

494 J. Dunfield

Σ � p ⇐ A � (e ⇐ B), we find subderivations of B + Γ � forgettype � e ⇐

D, where the set of pairs 〈Γ, B〉 indeed correspond to the result of intersect.
Cutting through the differences in the formalism, and omitting rules for

unions and other features not present in this paper, the earlier system behaves
like intersect. For example, (p1, p2) was also handled by considering each com-
ponent, and assembling all resulting combinations. Perhaps most importantly,
c(p0) was also handled by considering each constructor type in the signature,
filtering out inappropriate codomains, and recursing on p0. A rule for ∧ appears
in the declarative system in Dunfield (2007b, Chap. 4), but the rule was never
implemented, and seems not to be needed in practice.

Since the information given by the older system is precise enough to check
interesting invariants of actual programs, our definition of intersect should also
be precise enough.

5 Operational Semantics

We prove our results with respect to a call-by-value, small-step operational
semantics. The main judgment form is e → e ′, which uses evaluation contexts ε.
Stepping case expressions is modelled using a judgment ms →v e ′, which com-
pares each pattern in ms against the value v being cased upon. This comparison
is handled by the judgment p match v−→ θ, which says that θ is evidence that
p matches v (that is, [θ]p = v). The rules are in Fig. 14 in the appendix.

6 Metatheory

This section gives definitions, states some lemmas and theorems, and discusses
their significance in proving our main results. For space reasons, we summarize
a number of lemmas; their full statements appear in the appendix. All proofs
are also relegated to the appendix.

Subtyping and Subsorting. Subtyping is reflexive and transitive (Lemmas (Lem-
mas 6–7). We define what it means for signature extension to preserve subsorting:

Definition 1 (Preserving subsorting). Given Σ1 and Σ2, we say that Σ2 pre-
serves subsorting of Σ1 iff for all sorts s, t ∈ dom(Σ1), if Σ1, Σ2 � s � t then
Σ1 � s � t.

This definition allows new sorts in dom(Σ2) to be subsorts or supersorts of
the old sorts in dom(Σ1), provided that the subsort relation between the old
sorts doesn’t change.

If two signatures do not have subsortings that cross into each other’s domain,
they are non-adjacent ; non-adjacent signatures preserve subsorting.

Definition 2 (Non-adjacency). Two signatures Σ1 and Σ2 are non-adjacent
iff each signature contains no subsortings of the form s1 � s2 or s2 � s1, where
s1 ∈ dom(Σ1) and s2 ∈ dom(Σ2).

Extensible Datasort Refinements 495

Theorem 1 (Non-adjacent preservation).
If Σ2 preserves subsorting of Σ1 and Σ3 preserves subsorting of Σ1

and Σ2 and Σ3 are non-adjacent then Σ3 preserves subsorting of (Σ1, Σ2).

Strengthening, Weakening, and Substitution. Theorem 4 (Weakening) will allow
the assumptions in a judgment to be changed in two ways: (1) the signature may
be strengthened by replacing a signature (Σ, Σ ′) with a signature (Σ, Ω, Σ ′); and
(2) the context may be strengthened by replacing Γ with a context Γ+ in which
any typing assumption (x : A) ∈ Γ can be replaced with (x : A+) ∈ Γ , if A ≤ A+.

Repeatedly applying (1) with different Ω leads to a more general notion of
strengthening a signature:

Definition 3. A signature Σ ′ is stronger than Σ, written Σ ′ ≤sig Σ, if Σ ′ can
be obtained from Σ by inserting entire signatures at any position in Σ.

We often use the less general notion (inserting a single Ω), which simplifies
proofs. For any result stated less generally, however, the more general strength-
ening of Definition 3 can be shown by induction on the number of blocks inserted.

Definition 4. Under Σ, a context Γ ′ is stronger than Γ , written Σ � Γ ′ ≤ctx Γ ,
if for each (x : A ′) ∈ Γ ′, there exists (x : A) ∈ Γ such that Σ � A ′ ≤ A.

Several lemmas show weakening. Lemma 8 says that Σ in Σ � J can be
replaced by a stronger Σ ′, where J has the form A type or s1 � s2 or A ≤ B or
c : A → s or A � τ or c : C. Lemma 9 says that (Σ, Ω, Σ ′) can replace (Σ, Σ ′)
in Σ, Σ ′;S〈K〉 � c : A → s safe at t.Lemma 10 allows the sort t ′ in the judgment
Σ;S〈K〉 � c : A → s safe at t ′ to be replaced by a supersort t.

Using the above lemmas and Theorem 1, we can show that the key judgment
“· · · c : A→s safe” can be weakened by inserting Ω inside the signature:

Theorem 2 (Weakening ‘safe’).
If (Σ, Σ ′) sig and (Σ, Ω) sig and dom(Σ ′)∩dom(Ω) = ∅ and dom(Σ,Ω,Σ ′)∩S = ∅
and K does not mention anything in dom(Ω) and S〈K〉 preserves subsorting for
(Σ, Σ ′) and (c : A → s) ∈ K and Σ, Σ ′;S〈K〉 � c : A → s safe then Σ, Ω, Σ ′;S〈K〉 �
c : A → s safe.

With this additional lemma, we have weakening for the judgments involved
in checking that a signature is well-formed, so we can show that if Σ is safely
extended by Σ ′ and separately by Ω, then Ω and Σ ′, together, safely extend Σ.

Theorem 3 (Signature Interleaving).
If (Σ, Σ ′) sig and (Σ, Ω) sig and dom(Σ ′) ∩ dom(Ω) = ∅ then (Σ, Ω, Σ ′) sig.

Ultimately, we will show type preservation; in the preservation case for the
Declare rule, we extend the signature in a premise. We therefore need to show
that the typing judgment can be weakened. Since the typing rules for matches
involve the intersect function, we need to show that a stronger input to intersect
yields a stronger output; that is, a longer (stronger) signature yields a stronger
type B+ (a subtype of B) and a stronger context Γ+ typing as-variables.

496 J. Dunfield

Definition 5. Under a signature Σ, a track (Γ+ � B+) is stronger than (Γ � B),
written Σ � (Γ+ � B+) ≤trk (Γ � B), if and only if Σ � Γ+ ≤ctx Γ and Σ � B+ ≤ B.

A set of tracks
→

B∗
+

is stronger than
→

B∗, written
→

B∗
+

≤trk

→

B∗, if and only

if, for each track (Γ+ � B+) ∈
→

B∗
+

, there exists a track (Γ � B) ∈
→

B∗ such that

(Γ+ � B+) ≤trk (Γ � B) ∈
→

B∗.

Lemma 13 says that the result of intersect on a stronger signature is
stronger. We can then show that weakening holds for the typing judgment itself,
along with substitution typing (defined in the appendix) and match typing.

Theorem 4 (Weakening).
If (Σ, Σ ′) sig, (Σ, Ω) sig, dom(Σ ′) ∩ dom(Ω) = ∅ and Σ, Ω, Σ ′ � Γ+ ≤ctx Γ then

(1) If Σ, Σ ′; Γ � e : A then Σ, Ω, Σ ′; Γ+ � e : A.
(2) If Σ, Σ ′; Γ � θ : Γ ′ then Σ, Ω, Σ ′; Γ+ � θ : Γ ′.
(3) If Σ, Σ ′; Γ ;p : A � ms : D then Σ, Ω, Σ ′; Γ+;p : A � ms : D.

Properties of Values. Substitution properties (Lemmas 14 and 15) and inversion
(or canonical forms) properties (Lemma 16) hold.

Type Preservation and Progress. The last important piece needed for type preser-
vation is that intersect does what it says: if a value v matches p, then v has type
B where B is one of the outputs of intersect.

Theorem 5 (Intersect). If Σ sig and Σ; · � v : A and Σ � A type and

p match v−→ θ and intersect(Σ � A; p) =
→

B∗ then there exists (Γ ′ � B) ∈
→

B∗

s.t. Σ; · � v : B and Σ; · � θ : Γ ′ where Σ � B type and Σ � B ≤ A.

The preservation result allows for a longer signature, to model entering the
scope of a declare expression or the arms of a match. We implicitly assume that,
in the given typing derivation, all types are well-formed under the local signature:
for any subderivation of Σ; Γ � e ′ : B, it is the case that Σ � B type.

Theorem 6 (Preservation).
If Σ sig and Σ; · � e : A and e → e ′ then there exists Σ ′ such that Σ, Σ ′ � e ′ : A
where (Σ, Σ ′) sig.

Theorem 7 (Progress). If Σ sig and Σ; · � e : A then e is a value or there
exists e ′ such that e → e ′.

7 Bidirectional Typing

The type assignment system in Fig. 6 is not syntax-directed, because the rules
Sub and ∧I apply to any shape of expression. Nor is the system directed by the
syntax of types: rule Sub can conclude e : B for any type B that is a supertype

Extensible Datasort Refinements 497

of some other type A. Finally, while the choice to apply rule DataI is guided
by the shape of the expression—it must be a constructor application c(e)—the
resulting sort is not uniquely determined, since the signature can have multiple
constructor typings for c.

Fortunately, obtaining an algorithmic system is straightforward, following
previous work with datasort refinements and intersection types. We follow
the bidirectional typing recipe of Davies and Pfenning (2000); Davies (2005);
Dunfield and Pfenning (2004):

1. Split the typing judgment into checking Σ; Γ � e ⇐ A and synthesis Σ; Γ �
e ⇒ A judgments. In the checking judgment, the type A is input (it might be
given via type annotation); in the synthesis judgment, the type A is output.

2. Allow change of direction: Change the subsumption rule to synthesize a type,
then check if it is a subtype of a type being checked against; add an annotation
rule that checks e against A in the annotated expression (e : A).

3. In each introduction rule, e.g. →I, make the conclusion a checking judgment;
in each elimination rule, e.g. DataE, make the premise that contains the elim-
inated connective a synthesis judgment.

4. Make the other judgments in the rules either checking or synthesizing, accord-
ing to what information is available. For example, the premise of →I becomes
a checking judgment, because we know B from the conclusion.

5. Since the subsumption rule cannot synthesize, add rules such as Syn∧E1,
which were admissible in the type assignment system.

This yields the rules in Fig. 12. (Rules for the match typing judgment Σ; Γ ;p :
A � ms ⇐ B can be obtained from Fig. 10 by replacing “:” in “e1 : D” and

Fig. 12. Bidirectional typing rules

498 J. Dunfield

“ms : D” with “⇐”.) While this system is much more algorithmic than Fig. 6,
the presence of intersection types requires backtracking: if we apply a function
of type (even → odd) ∧ (odd → even), we need to synthesize even → odd first; if
we subsequently fail (e.g. if the argument has type odd), we backtrack and try
odd → even. Similarly, if the signature contains several typings for a constructor
c, we may need to try rule ChkDataI with each typing.

Type-checking for this system is almost certainly PSPACE-complete
(Reynolds 1996); however, the experience of Davies (2005) shows that a sim-
ilar system, differing primarily in whether the signature can be extended, is
practical if certain techniques, chiefly memoization, are used.

Using these rules, annotations are required exactly on (1) the entire program
e (if e is a checked form, such as a λ) and (2) expressions not in normal form,
such as a λ immediately applied to an argument, a recursive function declaration,
or a let-binding (assuming the rule for let synthesizes a type for the bound
expression). Rules with “more synthesis”—such as a synthesizing version of ∗I—
could be added along the lines of previous bidirectional type systems (Xi 1998;
Dunfield and Krishnaswami 2013).

Following Davies (2005), an annotation can list several types A. Rule SynAnno
chooses one of these, backtracking if necessary. Multiple types may be needed
if a λ-term is checked against intersection type: when checking (λx. x) against
(even → even) ∧ (odd → odd), the type of x will be even inside the left sub-
derivation of Chk∧I, but odd inside the right subderivation. Thus, if we annotate
x with even, the check against odd → odd fails; if we annotate x with odd, the
check against even → even fails. For a less contrived example, and for a variant
annotation form that reduces backtracking, see Dunfield and Pfenning (2004).

In the appendix, we prove that our bidirectional system is sound and complete
with respect to our type assignment system:

Theorem 8 (Bidirectional soundness).
If Γ � e ⇐ A or Γ � e ⇒ A then Γ � |e| : A where |e| is e with all annotations
erased.

Theorem 9 (Annotatability).
If Γ � e : A then:

(1) There exists e⇐ such that |e⇐ | = e and Γ � e⇐ ⇐ A.
(2) There exists e⇒ such that |e⇒ | = e and Γ � e⇒ ⇒ A.

We also prove that the ⇒ and ⇐ judgments are decidable (Appendix, The-
orem 10).

8 Related Work

Datasort Refinements. Freeman and Pfenning (1991) introduced datasort refine-
ments with intersection types, defined the refinement restriction (where A ∧ B

is well-formed only if A and B are refinements of the same type), and developed

Extensible Datasort Refinements 499

an inference algorithm in the spirit of abstract interpretation. As discussed ear-
lier, the lack of annotations not only makes the types difficult to see, but makes
inference prone to finding long, complex types that include accidental invariants.

Davies (2005), building on the type system developed by Davies and Pfenning
(2000), used a bidirectional typing algorithm, guided by annotations on redexes.
This system supports parametric polymorphism through a front end based on
Damas–Milner inference, but—like Freeman’s system—does not support exten-
sible refinements. Davies’s CIDRE implementation (Davies 2013) goes beyond
his formalism by allowing a single type to be refined via multiple declarations,
but this has no formal basis; CIDRE appears to simply gather the multiple dec-
larations together, and check the entire program using the combined declaration,
even when this violates the expected scoping rules of SML declarations.

Datasort refinements were combined with union types and indexed types by
Dunfield and Pfenning (2003, 2004), who noticed the expressive power of nominal
subsorting, called “invaluable refinement” (Dunfield 2007b, pp. 113, 220–230).

Giving multiple refinement declarations for a single datatype was mentioned
early on, as future work: “embedded refinement type declarations” (Freeman and
Pfenning 1991, p. 275); “or even . . . declarations that have their scope limited”
(Freeman 1994, p. 167); “it does seem desirable to be able to make local datasort
declarations” (Davies 2005, p. 245). But the idea seems not to have been pursued.

Logical Frameworks. In the logical framework LF (Harper et al. 1993), data is
characterized by declaring constructors with their types. In this respect, our sys-
tem is closer to LF than to ML: LF doesn’t require all of a type’s constructors to
be declared together. By itself, LF has no need for inversion principles. However,
systems such as Twelf (Pfenning and Schürmann 1999), Delphin (Poswolsky and
Schürmann 2009) and Beluga (Pientka and Dunfield 2010) use LF as an object-
level language but also provide meta-level features. One such feature is coverage
(exhaustiveness) checking, which needs inversion principles for LF types. Thus,
these systems mark a type as frozen when its inversion principle is applied (to
process %covers in Twelf, or a case expression in Beluga); they also allow the
user to mark types as frozen. These systems lack subtyping and subsorting; once
a type is frozen, it is an error to declare a new constructor for it.

Lovas (2010) extended LF with refinements and subsorting, and developed
a constraint-based algorithm for signature checking. This work did not consider
meta-level features such as coverage checking, so it yields no immediate insights
about inversion principles or freezing. Since Lovas’s system takes the subsorting
relation directly from declarations, rather than by inferring it from a grammar, it
supports what Dunfield (2007b) called invaluable refinements; see Lovas’s exam-
ple (Lovas 2010, pp. 145–147).

Indexed Types and Refinement Types. As the second generation of datasort
refinements (exemplified by the work of Davies and Pfenning) began, so did
a related approach to lightweight type-based verification: indexed types or lim-
ited dependent types (Xi and Pfenning 1999; Xi 1998), in which datatypes are
refined by indices drawn from a (possibly infinite) constraint domain. Integers
with linear inequalities are the standard example of an index domain; another

500 J. Dunfield

good example is physical units or dimensions (Dunfield 2007a). More recent work
in this vein, such as liquid types (Rondon et al. 2008), uses “refinement types”
for a mechanism close to indexed types.

Datasort refinements have always smelled like a special case of indexed types.
At the dawn of indexed types (and the second generation of datasort refine-
ments), the relationship was obscured by datasorts’ “fellow traveller”, intersec-
tion types, which were absent from the first indexed type systems, and remain
absent from the approaches now called “refinement types”. That is, while data-
sorts themselves strongly resemble a specific form of indices—albeit related by
a partial order (subtyping), rather than by equality—and would thus suggest
that indexed type systems subsume datasort refinement type systems, the inclu-
sion of intersection types confounds such a comparison. Intersection types are
present, along with both datasorts and indices, in Dunfield and Pfenning (2003)
and Dunfield (2007b); the relationship is less obscured. But no one has given an
encoding of types with datasorts into types with indices, intersections or no.

The focus of this paper is a particular kind of extensibility of datasort refine-
ments, so it is natural to ask whether indexed types and (latter-day) refine-
ment types have anything similar. Indexed types are not immediately extensible:
both Xi’s DML and Dunfield’s Stardust require that a given datatype be refined
exactly once. Thus, a particular list type may carry its length, or the value of its
largest element, or the parity of its boolean elements. By refining the type with
a tuple of indices, it may also carry combinations of these, such as its length
and its largest element. Subsequent uses of the type can leave out some of the
indices, but the combination must be stated up front.

However, some of the approaches descended from DML, such as liquid types,
allow refinement with a predicate that can mention various attributes. These
attributes are declared separately from the datatype; adding a new attribute
does not invalidate existing code. Abstract refinement types (Vazou et al. 2013)
even allow types to quantify over predicates.

Setting aside extensibility, datasort refinements can express certain invariants
more clearly and succinctly than indexed types (and their descendants).

Program Analysis. Koot and Hage (2015) formulate a type system that analyzes
where exceptions can be raised, including match exceptions raised by nonexhaus-
tive case expressions. This system appears to be less precise than datasorts, but
has advantages typical to program analysis: no type annotations are required.

9 Future Work

Modular Refinements. This paper establishes a critical mechanism for extensible
refinements, safe signature extension, in the setting of a core language without
modules: refinements are lexically scoped. To scale up to a language with mod-
ules, we need to ask: what notions of scope are appropriate? For example, a
strict λ-calculus interpreter could be refined with a sort val of values, while a
lazy interpreter could be refined with a sort whnf of terms in weak head normal

Extensible Datasort Refinements 501

form. If every val is a whnf, we might want to have val � whnf. In the present
system, these two refinements could be in separate declare blocks; in that case,
val and whnf could not both be in scope, and the subsorting is not well-formed.
Alternatively, one declare block could be nested inside the other. In that case,
val � whnf could be given in the nested block, since it would not add new sub-
sortings within the outer refinement. In a system with modules, we would likely
want to have val � whnf, at least for clients of both modules; such backpatching
is currently not allowed, but should be safe since the new subsorting crosses two
independent signature blocks (the block declaring val and the block declaring
whnf) without changing the subsortings within each block.

Type Polymorphism. Standard parametric polymorphism is absent in this paper,
but it should be feasible to follow the approach of Davies (2005), as long as
the unrefined datatype declarations are not themselves extensible (which would
break signature well-formedness, even without polymorphism).

Datasort Polymorphism. Extensible signatures open the door to sort-bounded
polymorphism. In our current system, a function that iterates over an abstract
syntax tree and α-renames free variables—which would conventionally have the
type exp → exp—must be duplicated, even though the resulting tree has the same
shape and the same constructors, and therefore should always produce a tree of
the same sort as the input tree (at least, if the free variables are not specified
with datasorts). We would like the function to check against a polymorphic type
∀α�exp. α → α, which works for any sort α below exp.

We would like to reason “backwards” from a pattern match over a poly-
morphic sort variable α. For example, if a value of type α matches the pattern
Plus(x1, x2), then we know that Plus : (α1 ∗ α2) → α for some sorts α1 and α2.
The recursive calls on x1 and x2 must preserve the property of being in α1 and
α2, so Plus(f x1, f x2) has type α, as needed. The mechanisms we have developed
may be a good foundation for adding sort-bounded polymorphism: the intersect
function would need to return a signature, as well as a context and type, so that
the constructor typing Plus : (α1 ∗ α2) → α can be made available.

Implementation. Currently, we have a prototype of a few pieces of the system,
including a parser and implementations of the Σ sig judgment and the intersect
function. Experimenting with these pieces was helpful during the design of the
system (and reassured us that the most novel parts of our system can be imple-
mented), but they fall short of a usable implementation.

References

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications (2008). https://gforge.inria.
fr/frs/download.php/file/10994/tata.pdf. Accessed 18 Nov 2008

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analy-
sis of programs by construction or approximation of fixpoints. In: Principles of Pro-
gramming Languages, pp. 238–252 (1977)

https://gforge.inria.fr/frs/download.php/file/10994/tata.pdf
https://gforge.inria.fr/frs/download.php/file/10994/tata.pdf

502 J. Dunfield

Davies, R.: Practical refinement-type checking. Ph.D. thesis, Carnegie Mellon Univer-
sity, CMU-CS-05-110 (2005)

Davies, R.: SML checker for intersection and datasort refinements (pronounced “cider”)
(2013). https://github.com/rowandavies/sml-cidre

Davies, R., Pfenning, F.: Intersection types and computational effects. In: ICFP, pp.
198–208 (2000)

Dunfield, J.: Refined typechecking with stardust. In: Programming Languages Meets
Program Verification (PLPV 2007) (2007a)

Dunfield, J.: A unified system of type refinements. Ph.D. thesis, Carnegie Mellon Uni-
versity, CMU-CS-07-129 (2007b)

Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional typechecking for
higher-rank polymorphism. In: ICFP (2013). arXiv:1306.6032

Dunfield, J., Pfenning, F.: Type assignment for intersections and unions in call-by-value
languages. In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS, vol. 2620, pp. 250–266.
Springer, Heidelberg (2003). doi:10.1007/3-540-36576-1 16

Dunfield, J., Pfenning, F.: Tridirectional typechecking. In: Principles of Programming
Languages, pp. 281–292 (2004)

Freeman, T.: Refinement types for ML. Ph.D. thesis, Carnegie Mellon University, CMU-
CS-94-110 (1994)

Freeman, T., Pfenning, F.: Refinement types for ML. In: Programming Language
Design and Implementation, pp. 268–277 (1991)

Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift
39, 176–210, 405–431 (1934). English translation, Investigations into logical deduc-
tion. In: Szabo, M. (ed.) Collected Papers of Gerhard Gentzen, pp. 68–131.
North-Holland (1969)

Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM 40(1),
143–184 (1993)

Kennedy, A.: Programming languages and dimensions. Ph.D. thesis, University of
Cambridge (1996)

Koot, R., Hage, J.: Type-based exception analysis for non-strict higher-order functional
languages with imprecise exception semantics. In: Proceedings of the Workshop on
Partial Evaluation and Program Manipulation, pp. 127–138 (2015)

Lovas, W.: Refinement types for logical frameworks. Ph.D. thesis, Carnegie Mellon
University, CMU-CS-10-138 (2010)

Pfenning, F., Schürmann, C.: System description: Twelf—a meta-logical framework for
deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632,
pp. 202–206. Springer, Heidelberg (1999). doi:10.1007/3-540-48660-7 14

Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning with
deductive systems (system description). In: Giesl, J., Hähnle, R. (eds.) IJCAR
2010. LNCS (LNAI), vol. 6173, pp. 15–21. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14203-1 2

Poswolsky, A., Schürmann, C.: System description: Delphin–a functional programming
language for deductive systems. In: International Workshop on Logical Frameworks
and Meta-Languages: Theory and Practice (LFMTP 2008). Electronic Notes in The-
oretical Computer Science, vol. 228, pp. 135–141 (2009)

Reynolds, J.C.: Types, abstraction, and parametric polymorphism. In: Information
Processing 83, pp. 513–523. Elsevier (1983). http://www.cs.cmu.edu/afs/cs/user/
jcr/ftp/typesabpara.pdf

Reynolds, J.C.: Design of the programming language Forsythe. Technical report CMU-
CS-96-146, Carnegie Mellon University (1996)

https://github.com/rowandavies/sml-cidre
http://arxiv.org/abs/1306.6032
http://dx.doi.org/10.1007/3-540-36576-1_16
http://dx.doi.org/10.1007/3-540-48660-7_14
http://dx.doi.org/10.1007/978-3-642-14203-1_2
http://dx.doi.org/10.1007/978-3-642-14203-1_2
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/typesabpara.pdf

Extensible Datasort Refinements 503

Rondon, P., Kawaguchi, M., Jhala, R.: Liquid types. In: Programming Language Design
and Implementation, pp. 159–169 (2008)

Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M., Gard-
ner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 209–228. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-37036-6 13

Wright, A.K.: Simple imperative polymorphism. Lisp Symbolic Comput. 8(4), 343–355
(1995)

Xi, H.: Dependent types in practical programming. Ph.D. thesis, Carnegie Mellon Uni-
versity (1998)

Xi, H., Pfenning, F.: Dependent types in practical programming. In: Principles of
Programming Languages, pp. 214–227 (1999)

Zeilberger, N.: The logical basis of evaluation order and pattern-matching. Ph.D. thesis,
Carnegie Mellon University, CMU-CS-09-122 (2009)

http://dx.doi.org/10.1007/978-3-642-37036-6_13

Programs Using Syntax with First-Class Binders

Francisco Ferreira(B) and Brigitte Pientka

McGill University, Montreal, Canada
{fferre8,bpientka}@cs.mcgill.ca

Abstract. We present a general methodology for adding support for
higher-order abstract syntax definitions and first-class contexts to an
existing ML-like language. As a consequence, low-level infrastructure
that deals with representing variables and contexts can be factored out.
This avoids errors in manipulating low-level operations, eases the task of
prototyping program transformations and can have a major impact on
the effort and cost of implementing such systems.

We allow programmers to define syntax in a variant of the logical
framework LF and to write programs that analyze these syntax trees via
pattern matching as part of their favorite ML-like language. The syntax
definitions and patterns on syntax trees are then eliminated via a trans-
lation using a deep embedding of LF that is defined in ML. We take
advantage of GADTs which are frequently supported in ML-like lan-
guages to ensure our translation preserves types. The resulting programs
can be type checked reusing the ML type checker, and compiled reusing
its first-order pattern matching compilation. We have implemented this
idea in a prototype written for and in OCaml and demonstrated its effec-
tiveness by implementing a wide range of examples such as type checkers,
evaluators, and compilation phases such as CPS translation and closure
conversion.

Keywords: Higher-order abstract syntax · Programming with binders ·
Functional programming · ML

1 Introduction

Writing programs that manipulate other programs is a common activity for a
computer scientist, either when implementing interpreters, writing compilers, or
analyzing phases for static analysis. This is so common that we have program-
ming languages that specialize in writing these kinds of programs. In particular,
ML-like languages are well-suited for this task thanks to recursive data types
and pattern matching. However, when we define syntax trees for realistic input
languages, there are more things on our wish list: we would like support for repre-
senting and manipulating variables and tracking their scope; we want to compare
terms up-to α-equivalence (i.e. the renaming of bound variables); we would like to
avoid implementing capture avoiding substitutions, which is tedious and error-
prone. ML languages typically offer no high-level abstractions or support for
manipulating variables and the associated operations on abstract syntax trees.
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 504–529, 2017.
DOI: 10.1007/978-3-662-54434-1 19

Programs Using Syntax 505

Over the past decade, there have been several proposals to add support for
defining and manipulating syntax trees into existing programming environments.
For example: FreshML [22], the related system Romeo [23], and Cαml [20] use
Nominal Logic [18] as a basis and the Hobbits library for Haskell [25] uses
a name based formalism. In this paper, we show how to extend an existing
(functional) programming language to define abstract syntax trees with variable
binders based on higher-order abstract syntax (HOAS) (sometimes also called λ-
trees [11]). Specifically, we allow programmers to define object languages in the
simply-typed λ-calculus where programmers use the intentional function space of
the simply typed λ-calculus to define binders (as opposed to the extensional func-
tion space of ML). Hence, HOAS representations inherit α-renaming from the
simply-typed λ-calculus and we can model object-level substitution for HOAS
trees using β-reduction in the underlying simply-typed λ-calculus. We further
allow programmers to express whether a given sub-tree in the HOAS tree is
closed by using the necessity modality of S4 [6]. This additional expressiveness
is convenient to describe that sub-trees in our abstract syntax tree are closed.

Our work follows the pioneering work of HOAS representations in the logical
framework LF [9]. On the one hand we restrict it to the simply-typed setting
to integrate it smoothly into existing simply-typed functional programming lan-
guages such as OCaml, and on the other hand we extend its expressiveness by
allowing programmers to distinguish between closed and open parts of their
syntax trees. As we analyze HOAS trees, we go under binders and our sub-
trees may not remain closed. To model the scope of binders in sub-trees we pair
a HOAS tree together with its surrounding context of variables following ideas
from Beluga [12,15]. In addition, we allow programmers to pattern match on such
contextual objects, i.e. an HOAS tree together with its surrounding context.

Our contribution is two-fold: First, we present a general methodology for
adding support for HOAS tree definitions and first-class contexts to an existing
(simply-typed) programming language. In particular, programmers can define
simply-typed HOAS definitions in the syntactic framework (SF) based on modal
S4 following [6,12]. In addition, programmers can manipulate and pattern match
on well-scoped HOAS trees by embedding HOAS objects together with their
surrounding context into the programming language using contextual types [15].
The result is a programming language that can express computations over open
HOAS objects. We describe our technique abstractly and generically using a
language that we call Core-ML. In particular, we show how Core-ML with first-
class support for HOAS definitions and contexts can be translated in into a
language Core-MLgadt that supports Generalized Abstract Data Types (GADTs)
using a deep (first-order) embedding of SF and first-class contexts (see Fig. 1 for
an overview). We further show that our translation preserves types.

Second, we show how this methodology can be realized in OCaml by describ-
ing our prototype Babybel 1. In our implementation of Babybel we take advan-
tage of the sophisticated type system, in particular GADTs, that OCaml pro-
vides to ensure our translation is type-preserving. By translating HOAS objects

1 available at www.github.com/fferreira/babybel/.

www.github.com/fferreira/babybel/

506 F. Ferreira and B. Pientka

Core-ML

+ Contextual
Types

Syntactic
Framework

Core-MLgadt

Fig. 1. Adding contextual types to ML

together with their context to a first-order representation in OCaml with GADTs
we can also reuse OCaml’s first-order pattern matching compilation allowing for
a straightforward compilation. Programmers can also exploit OCaml’s impure
features such as exceptions or references when implementing programs that
manipulate HOAS syntax trees. We have used Babybel to implement a type-
checker, an evaluator, closure conversion (shown in Sect. 2.3 together with a
variable counting example and a syntax desugaring examples), and a continu-
ation passing style translation. These examples demonstrate that our approach
allows programmers to write programs that operate over abstract syntax trees
in a manner that is safe and effective.

Finally, we would like to stress that our translation which eliminates the lan-
guage extensions and permits programmers to define, analyze and manipulate
HOAS trees is not specific to OCaml or even to simple types in our implementa-
tion. The same approach could be implemented in Haskell, and with some care
(to be really useful it would need an equational theory for substitutions) this
technique can be extended to a dependently typed language.

2 Main Ideas

In this section, we show some examples that illustrate the use of Babybel, our
proof of concept implementation where we embed the syntactic framework SF
inside OCaml. To smoothly integrate SF into OCaml, Babybel defines a PPX
filter (a mechanism for small syntax extensions for OCaml). In particular, we
use attributes and quoted strings to implement our syntax extension.

2.1 Example: Removing Syntactic Sugar

In this example, we describe the compact and elegant implementation of a com-
piler phase that de-sugars programs functional programs with let-expressions by
translating them into function applications. We first specify the syntax of a sim-
ple functional language that we will transform. To do this we embed the syntax
specification using this tag:

[@@@signature {def| ... |def}]

Inside the @@@signature block we will embed our SF specifications.

Programs Using Syntax 507

Our source language is defined using the type tm. It consists of constants
(written as cst), pairs (written as pair), functions (built using lam), applications
(built using app), and let-expressions.

[@@@signature {def|
tm : type.
cst : tm.
pair : tm → tm → tm.
lam : (tm → tm) → tm.
fst : tm → tm.
snd : tm → tm.
letpair : tm → (tm → tm → tm) → tm.
letv : tm → (tm → tm) → tm.
app : tm → tm → tm.
|def}]

Our definition of the source language exploits HOAS using the function space
of our syntactic framework SF to represent binders in our object language. For
example, the constructor lam takes as an argument a term of type tm → tm.
Similarly, the definition of let-expressions models variable binding by falling back
to the function space of our meta-language, in our case the syntactic framework
SF. As a consequence, there is no constructor for variables in our syntactic defi-
nition and moreover we can reuse the substitution operation from the syntactic
framework SF to model substitution in our object language. This avoids building
up our own infrastructure for variables bindings.

We now show how to simplify programs written in our source language by
replacing uses of letpair in terms with projections, and uses of letv by β reduc-
tion. Note how we use higher-order abstract syntax to represent let-expressions
and abstractions.

letv M (λx.N) ≡ N[M/x]
letpair M (λx.λy. N) ≡ N[(fst M)/x,(snd M)/y]

To implement this simplification phase we implement an OCaml program
rewrite: it analyzes the structure of our terms, calls itself on the sub-terms, and
eliminates the use of the let-expressions into simpler constructs. As we traverse
terms, our sub-terms may not remain closed. For simplicity, we use the same
language as source and target for our transformation. We therefore specify the
type of the function rewrite using contextual types pairing the type tm together
with a context γ in which the term is meaningful inside the tag [@type].

rewrite[@type γ.[γ � tm]→[γ � tm]]

The type can be read: for all contexts γ, given a tm object in the context γ,
we return a tm object in the same context. In general, contextual types associate
a context and a type in the syntactic framework SF. For example if we want
to specify a term in the empty context we would write [� tm] or for a term
that depends on some context with at least one variable and potentially more
we would write [γ,x:tm � tm].

508 F. Ferreira and B. Pientka

We now implement the function rewrite by pattern matching on the struc-
ture of a contextual term. In Babybel, contextual terms are written inside boxes
(�. . .�) and contextual patterns inside (�. . .�p).

let rec rewrite[@type γ.[γ � tm]→[γ � tm]]
= function
| � cst �p → �cst�
| � pair ’m ’n �p → let mm, nn = rewrite m, rewrite n

in �pair ’mm ’nn�
| � fst ’m �p → let mm = rewrite m in �fst ’mm�
| � snd ’m�p → let mm = rewrite m in �snd ’mm�
| � app ’m ’n �p → let mm,nn = rewrite m, rewrite n in

�app ’mm ’nn�
| � lam (λx. ’m) �p → let mm = rewrite m in �lam (λx. ’mm)�
| � #x �p → �#x�
| � letpair ’m (λf.λs. ’n) �p → let mm = rewrite m in

rewrite �’n [snd ’mm;fst ’mm]�
| � letv ’m (λx. ’n) �p → rewrite �’n[’m]�

Note that we are pattern matching on potentially open terms. Although we do
not write the context γ explicitly, in general patterns may mention their context
(i.e.: � � cst�p

2. As a guiding principle, we may omit writing contexts, if they
do not mention variables explicitly and are irrelevant at run-time. Inside patterns
or terms, we specify incomplete terms using quoted variables (e.g.: ’m). Quoted
variables are an ’unboxing’ of a computational expression inside the syntactic
framework SF. The quote signals that we are mentioning the computational
variable inside SF.

The interesting cases are the let-expressions. For them, we perform the rewrit-
ing according to the two rules given earlier. The syntax of the substitutions
puts in square brackets the terms that will be substituted for the variables. We
consider contexts and substitutions ordered, this allows for efficient implemen-
tations and more lightweight syntax (e.g.: substitutions omit the name of the
variables because contexts are ordered). Importantly, the substitution is an oper-
ation that is eagerly applied during run-time and not part of the representation.
Consequently, the representation of the terms remains normal and substitutions
cannot be written in patterns. We come back to this design decision later.

To translate contextual SF objects and contexts, Babybel takes advantage
of OCaml’s advanced type system. In particular, we use Generalized Abstract
Data Types [4,26] to index types with the contexts in which they are valid. Type
indices, in particular contexts, are then erased at run-time.

2.2 Finding the Path to a Variable

In this example, we compute the path to a specific variable in an abstract syntax
tree describing a lambda-term. This will show how to specify particular context
2 The underscore means that there might be a context but we do not bind any variable

for it because contexts are not available at run-time.

Programs Using Syntax 509

shapes, how to pattern match on variables, how to manage our contexts, and
how the Babybel extensions interact seamlessly with OCaml’s impure features.
For this example, we concentrate on the fragment of terms that consists only of
abstractions and application which we repeat here.

[@@@signature {def|
tm : type.
app : tm → tm → tm.
lam : (tm → tm) → tm.
|def}]

To find the first occurrence of a particular variable in the HOAS tree, we
use backtracking that we implement using the user-defined OCaml exception
Not found. To model the path to a particular variable occurrence in the HOAS
tree, we define an OCaml data type step that describes the individual steps we
take and finally model a path as a list of individual steps.

exception Not_found
type step
= Here (*the path ends here*)
| AppL (*take left on app*)
| AppR (*take right on app*)
| InLam (*go inside the body of the term*)
type path = step list

The main function path aux takes as input a term that lives in a context
with at least one variable and returns a path to the occurrence of the top-most
variable or an empty list, if the variable is not used. Its type is:

[@type γ. [γ, x:tm � tm] → path].

We again quantify over all contexts γ and require that the input term is mean-
ingful in a context with at least one variable. This specification simply excludes
closed terms since there would be no top-most variable. Note also how we mix
in the type annotation to this function both contextual types and OCaml data
types.

let rec path_aux [@type γ.[γ, x:tm � tm] → path]
= function
| �_, x � x�p→ [Here]
| �_, x � #y�p→ raise Not_found
| �_, x � lam (λy. ’m)�p→ InLam::(path_aux�_,x,y � ’m[_;y;x]�)
| �_, x � app ’m ’n�p→ try AppL::(path_aux m)

with _ → AppR::(path_aux n)

All patterns in this example make the context explicit, as we pattern match
on the context to identify whether the variable we encounter refers to the top-
most variable declaration in the context. The underscore simply indicates that
there might be more variables in the context. The first case, matches against the
bound variable x. The second case has a special pattern with the sharp symbol,
the pattern #y matches against any variable in the context , x. Because of the

510 F. Ferreira and B. Pientka

first pattern if it had been x it would have matched the first case. Therefore, it
simply raises the exception to backtrack to the last choice we had.

The case for lambda expressions is interesting because the recursive call hap-
pens in an extended context. Furthermore, in order to keep the variable we are
searching for on top, we need to swap the two top-most variables. For that pur-
pose, we apply the [; y; x] substitution. In this substitution the underscore
stands for the identity on the rest of the context, or more precisely, the appropri-
ate shift in our internal representation that relies on de Bruijn encoding. Once
elaborated, this substitution becomes [↑2 ; y; x] where the shift by two arises,
because we are swapping variables as opposed to instantiating them.

The final case is for applications. We first look on the left side and if that
raises an exception we catch it and search again on the right. We again use quoted
variables (e.g.: ’m) to bind and refer to ML variables in patterns and terms of the
syntactic framework and more generally be able to describe incomplete terms.

let get_path [@type γ.[γ, x:tm � tm] → path]
= fun t → try path_aux t with _ → []

The get path function has the same type as the path aux function. It simply
handles the exception and returns an empty path in case that variable x is not
found in the term.

2.3 Closure Conversion

In the final example, we describe the implementation of a naive algorithm for
closure conversion for untyped λ-terms following [3]. We take advantage of the
syntactic framework SF to represent source terms (using the type family tm)
and closure-converted terms (using the type family ctm). In particular, we use
SF’s closed modality box to ensure that all functions in the target language are
closed. This is impossible when we simply use LF as the specification framework
for syntax as in [3]. We omit here the definition of lambda-terms, our source
language, that was given in the previous section and concentrate on the target
language ctm.

[@@@signature {def|
ctm: type. % closed term

btm: type. % binder term

sub: type. % environment

capp : ctm → ctm → ctm.
clam : {btm} → ctm.
clo : ctm → sub → ctm.
embed : ctm → btm.
bind : (ctm → btm) → btm.

empty : sub.
dot : sub → ctm → sub.
|def}]

Programs Using Syntax 511

Applications in the target language are defined using the constructor capp
and simply take two target terms to form an application. Functions (constructor
clam), however, take a btm object wrapped in {} braces. This means that the
object inside the braces is closed. The curly braces denote the internal closed
modality of the syntactic framework. As the original functions may depend on
variables in the environment, we need closures where we pair a function with
a substitution that points to the appropriate environment. We define our own
substitutions explicitly, because they are part of the target language and the
built-in substitution is an operation on terms that is eagerly computed away.
Inside the body of the function, we need to bind all the variables from the envi-
ronment that the body uses such that later we can instantiate them applying the
substitution. This is achieved by defining multiple bindings using constructors
bind and embed inside the term.

When writing a function that translates between representations, their open
terms depend on contexts that store assumptions of different representations
and it is often the case that one needs to relate these contexts. In our example
here we define a context relation that keeps the input and output contexts in
sync using a GADT data type rel in OCaml where we model contexts as types.
The relation statically checks correspondence between contexts, but it is also
available at run-time (i.e. after type-erasure).

type (_ , _) rel =
Empty : ([.], [.]) rel

| Both : ([γ], [δ]) rel → ([γ, x:tm], [δ, y:ctm]) rel

exception Error of string

let rec lookup [@type γ δ.[γ � tm]→(γ, δ) rel→[δ � ctm]] =
fun t → function
| Both r’ → begin match t with

| � _,x � x �p → �_,x � x�
| � _,x � ##v �p → let v1 = lookup �#v� r’

in �_, x � ’v1 [_]�
| _ → raise Error (‘‘Term that is not a variable’’)

| Empty → raise Error (‘‘Term is not a variable’’)
end

The function lookup searches for related variables in the context relation. If
we have a source context γ,x:tm and a target context δ,y:ctm, then we consider
two variable cases: In the first case, we use matching to check that we are indeed
looking for the top-most variable x and we simply return the corresponding
target variable. If we encounter a variable from the context, written as ##v, then
we recurse in the smaller context stripping off the variable declaration x. Note
that ##v denotes a variable from the context , that is not x, while #v describes a
variable from the context , x, i.e. it could be also x. The recursive call returns
the corresponding variable v1 in the target context that does not include the
variable declaration x. We hence need to weaken v1 to ensure it is meaningful in

512 F. Ferreira and B. Pientka

the original context. We therefore associate ’v1 with the identity substitution
for the appropriate context, namely: []. In this case, it will be elaborated into
a one variable shift in the internal de Bruijn representation that is used in our
implementation. The last case returns an exception whenever we are trying to
look up in the context something that is not a variable.

As we cannot express at the moment in the type annotation that the input
to the lookup function is indeed only a variable from the context γ and not
an arbitrary term, we added another fall-through case for when the context is
empty. In this case the input term cannot be a variable, as it would be out of
scope.

Finally, we implement the function conv which takes an untyped source
term in a context γ and a relation of source and target variables, described by
(γ, δ) rel and returns the corresponding target term in the target context δ.

let rec close [@type γ δ. (γ, δ) rel→[δ � btm]→[btm]]
= fun r m → match r with
| Empty → m
| Both r → close r �bind (λx. ’m)�

let rec envr [@type γ δ. (γ, δ)rel→[δ � sub]]
= fun r → match r with
| Empty → �empty�
| Both r →

let s = envr r in �_, x � dot (’s[_]) x�

let rec conv [@type γ δ.(γ, δ)rel→[γ � tm]→[δ � ctm]]
= fun r m → match m with
| � lam (λx. ’n) �p →

let mc = conv (Both r) n in
let mb = close r �bind(λx. embed ’mc)�
in let s = envr r in �clo (clam {’mb}) ’s�

| �#x�p → lookup �#x� r
| �app ’m ’n�p → let mm, nn = conv r m, conv r n in

�capp ’mm ’nn�

The core of the translation is defined in functions conv, envr, and close. The
main function is conv. It is implemented by recursion on the source term. There
are three cases: (i) source variables simply get translated by looking them up in
the context relation, (ii) applications just get recursively translated each term in
the application, and (iii) lambda expressions are translated recursively by con-
verting the body of the expression in the extended context (notice the recursive
call with Both r) and then turning the lambda expression into a closure.

In the first step we generate the closed body by the function close that adds
the multiple binders (constructors bind and embed) and generates the closed
term. Note that the return type [btm] of close guarantees that the final result
is indeed a closed term, because we omit the context. For clarity, we could have
written [� btm].

Programs Using Syntax 513

Finally, the function envr computes the substitution (represented by the type
sub) for the closure.

The implementation of closure conversion shows how to enforce closed terms
in the specification, and how to make contexts and their relationships explicit at
run-time using OCaml’s GADTs. We believe it also illustrates well how HOAS
trees can be smoothly manipulated and integrated into OCaml programs that
may use effects.

3 Core-ML: A Functional Language with Pattern
Matching and Data Types

We now introduce Core-ML, a functional language based on ML with pattern
matching and data types. In Sect. 5 we will extend this language to also support
contextual types and terms in our syntactic framework SF.

We keep the language design of Core-ML minimal in the interest of clar-
ity. However, our prototype implementation which we describe in Sect. 9 sup-
ports interaction with all of OCaml’s features such as exceptions, references and
GADTs.

Types τ ::= D | τ1 → τ2

Expressions e ::= i | fun f(x) = e | letx = i in e | match i with
−→
b

Neutral Exp. i ::= i .e. | C −→e | x | e : τ

Patterns pat ::= C
−→
pat | x

Branches b ::= | pat �→ e

Contexts Γ ::= · | Γ, x : τ
Signature Ξ ::= · | Ξ,D | Ξ,C : −→τ → D

In Core-ML, we declare data-types by adding type formers (D) and type
constructors (C) to the signature (Ξ). Constructors must be fully-applied. In
addition all functions are named and recursive. The language supports pattern
matching with nested patterns where patterns consist of just variables and fully
applied constructors. We assume that all patterns are linear (i.e. each variable
occurs at most once) and that they are covering.

The bi-directional typing rules for Core-ML have access to a signature Ξ and
are standard (see Fig. 2). For lack of space, we omit the operational semantics
which is standard. We also will not address the details of pattern matching
compilation but merely state that it is possible to implement it in an efficient
manner using decision trees [1].

4 A Syntactic Framework

In this section we describe the Syntactic Framework (SF) based on S4 [6]. Our
framework characterizes only normal forms. All computation is delegated to the
ML layer, that will perform pattern matching and substitutions on terms.

514 F. Ferreira and B. Pientka

Γ � e ⇐ τ : Expression e checks against type τ in context Γ

Γ, f : τ → τ ′, x : τ � e ⇐ τ ′

Γ � fun f(x) = e ⇐ τ → τ ′ t-rec
Γ � i ⇒ τ ′ Γ, x : τ ′ � e ⇐ τ

Γ � letx = i in e ⇐ τ
t-let

Γ � i ⇒ τ ′ ∀bk ∈ −→
b . Γ � bk ⇐ τ ′ → τ

Γ � match i with
−→
b ⇐ τ

t-match Γ � i ⇒ τ ′ τ = τ ′

Γ � i ⇐ τ
t-emb

Γ � i ⇒ τ : Neutral expr. i synthesizes type τ in context Γ

Γ � e ⇐ τ
Γ � e : τ ⇒ τ

t-ann
Ξ(C) = −→τ → D ∀τi ∈ −→τ . ∀ei ∈ −→e . Γ � ei ⇐ τi

Γ � C −→e ⇒ D
t-constr

Γ � i ⇒ τ ′ → τ Γ � e ⇐ τ ′

Γ � i e ⇒ τ
t-app

Γ (x) = τ

Γ � x ⇒ τ
t-var

Γ �| pat �→ e ⇐ τ1 → τ2 : Branch | pat �→ e checks against types τ1 and τ2 in Γ

� pat : τ ′ ↓ Γ ′ Γ, Γ ′ � e ⇐ τ

Γ �| pat �→ e ⇐ τ ′ → τ
t-branch

� pat : τ ↓ Γ : Pattern pat is of type τ and binds variables in context Γ

� x : τ ↓ x : τ
t-pat-var

Ξ(C) = −→τ → D ∀τi ∈ −→τ . ∀pati ∈ −→
pat . � pati : τi ↓ Γi

� C
−→
pat : D ↓ Γ1, ..., Γi

t-pat-con

Fig. 2. Core-ML typing rules

4.1 The Definition of SF

The Syntactic Framework (SF) is a simply typed λ-calculus based on S4 where
the type system forces all variables to be of base type, and all constants declared
in a signature Σ to be fully applied. This simplifies substitution, as variables of
base type cannot be applied to other terms, and in consequence, there is no need
for hereditary substitution in the specification language. Finally, the syntactic
framework supports the box type to describe closed terms [13]. It can also be
viewed as a restricted version of the contextual modality in [12] which could be
an interesting extension to our work.

Having closed objects enforced at the specification level is not strictly neces-
sary. However, being able to state that some objects are closed in the specification
has two distinct advantages: first, the user can specify some objects as closed so
their contexts are always empty. This removes the need for some unnecessary
substitutions. Second, it allows us to encode more fine-grained invariants and is
hence an important specification tool (i.e. when implementing closure conversion
inSect. 2.3).

Programs Using Syntax 515

Types A,B ::= a | A → B | �A

Terms M,N ::= c
−→
M | λx.M | {M} | x

Contexts Ψ,Φ ::= · | Ψ, x : a
Signature Σ ::= · | Σ,a : K | Σ, c : A

Figure 3 shows the typing rules for the syntactic framework. Note that con-
structors always are fully applied (as per rule t-con), and that all variables are
of base type as enforced by rules t-var and t-lam.

Ψ � M : A : M has type A in context Ψ

Ψ, x : a � M : A

Ψ � λx.M : a → A
t-lam

· � M : A
Ψ � {M} : � A

t-box
Ψ(x) = a

Ψ � x : a
t-var

Σ(c) = A Ψ � −→
M : A/a

Ψ � c
−→
M : a

t-con

Ψ � −→
M : A/a : spine

−→
M checks against type A and has target type a

Ψ � · : a/a
t-sp-em

Ψ � N : A Ψ � −→
M : B/a

Ψ � N,
−→
M : A → B/a

t-sp

Fig. 3. Syntactic framework typing

4.2 Contextual Types

We use contextual types to embed possibly open SF objects in Core-ML and
ensure that they are well-scoped. Contextual types pair the type A of an SF
object together with its surrounding context Ψ in which it makes sense. This
follows the design of Beluga [3,15].

Contextual Types U ::= [Ψ � A]
Type Erased Contexts Ψ̂ ::= · | Ψ̂ , x

Contextual Objects C ::= [Ψ̂ � M]

Contextual objects, written as [Ψ̂ � M] pair the term M with the vari-
able name context Ψ̂ to allow for α-renaming of variables occurring in M . Note
how the Ψ̂ context just corresponds to the context with the typing assumptions
erased.

When we embed contextual objects in a programming language we want to
refer to variables and expressions from the ambient language, in order to sup-
port incomplete terms. Following [12,15], we extend our syntactic framework SF
with two ideas: first, we have incomplete terms with meta-variables to describe
holes in terms. As in Beluga, there are two different kinds: quoted variables ’u

516 F. Ferreira and B. Pientka

represent a hole in the term that may be filled by an arbitrary term. In contrast,
parameter variables v represent a hole in a term that may be filled only with
some bound variable from the context. Concretely, a parameter variable may be
#x and describe any concrete variable from a context Ψ . We may also want to
restrict what bound variables a parameter variable describes. For example, if we
have two sharp signs (i.e. ##x) the top-most variable declaration is excluded.
Intuitively, the number of sharp signs, after the first, in front of x correspond to
a weakening (or in de Bruijn lingo the number of shifts). Second, substitution
operations allow us to move terms from one context to another.

We hence extend the syntactic framework SF with quoted variables, parame-
ter variables and closures, written as M [σ]ΦΨ . We annotate the substitution with
its domain and range to simplify the typing rule, however our prototype omits
these typing annotations and lets type inference infer them.

Parameter Variables v ::= #x | #v
Terms M ::= . . . | ’u | v | M [σ]ΦΨ
Substitutions σ ::= · | σ,M/x
Ambient Ctx. Γ ::= . . . | Γ, u : [Ψ � a]

In addition, we extend the context Γ of the ambient language Core-ML to
keep track of assumptions that have a contextual type.

Finally, we extend the typing rules of the syntactic framework SF to include
quoted variables, parameter variables, closures, and substitutions. We keep all
the previous typing rules for SF from Sect. 4 where we thread through the ambi-
ent Γ , but the rules remain unchanged otherwise.

Γ ;Ψ �v v : a : Parameter Variable v has type a in contexts Ψ and Γ

Γ (x) = [Ψ � a]
Γ ;Ψ �v #x : a

t-pvar-v
Γ ;Ψ �v v : a

Γ ;Ψ, y : �v #v : a
t-pvar-#

Γ ;Ψ � M : A : Term M has type A in contexts Ψ and Γ

Γ (u) = [Ψ � a]
Γ ;Ψ � ’u : a

t-qvar
Γ ;Ψ �v v : a
Γ ;Ψ � v : a

t-pvar

Γ ;Ψ � σ : Φ Γ ;Φ � M : A

Γ ;Ψ � M [σ]ΦΨ : A
t-sub

Γ ;Ψ � σ : Ψ ′ : Substitution σ has domain Ψ ′ and range Ψ in the amb. ctx. Γ

Γ ;Ψ � · : · t-empty-sub
Γ ;Ψ � σ : Ψ ′ Γ ;Ψ � M : a
Γ ;Ψ � σ,M/x : (Ψ ′, x : a)

t-dot-sub

The rules for quoted variables (t-qvar) and parameter variables (t-pvar)
might seem very restrictive as we can only use a meta-variable of type Ψ � a in
the same context Ψ . As a consequence meta-variables often occur as a closure
paired with a substitution (i.e.: ’u [σ]ΦΨ). This leads to the following admissible
rule:

Γ (u) = [Φ � a] Δ;Ψ � σ : Φ

Γ ;Ψ � ’u [σ]ΦΨ : a
t-qvar-adm

Programs Using Syntax 517

The substitution operation is straightforward to define and we omit it here.
The next step is to define the embedding of this framework in a programming
language that will provide the computational power to analyze and manipulate
contextual objects.

5 Core-ML with Contextual Types

To embed contextual SF objects into Core-ML, we extend the syntax of Core-ML
as follows:

Types τ ::= . . . | [Ψ � a]
Expressions e ::= . . . | [Ψ̂ � M] | cmatch e with −→c
Patterns pat ::= . . . | [Ψ̂ � R]
Contextual Branches c ::= . . . || [Ψ � R] �→ e

In particular, we allow programmers to directly pattern match on the syn-
tactic structures they define in SF using the case-expression cmatch e with −→c .

5.1 SF Objects as SF Patterns

The grammar of SF patterns follows the grammar of SF objects.

SF Parameter Pattern w ::= #p | #w
SF Patterns R ::= λx.R | {R} | x | c−→

R | ’u | w

However, there is an important restriction: closures are not allowed in SF
patterns. Intuitively this means that all quoted variables are associated with
the identity substitution and hence depend on the entire context in which they
occur. Parameter variables may be associated with weakening substitutions. This
allows us to easily infer the type of quoted variables and parameter variables as
we type check a pattern. This is described by the judgment

Ψ � R : A ↓ Γ : Pattern R has type A in Ψ and binds Γ

We omit these rules as they follow closely the typing rules for SF terms that
are given in the previous section. We only show here the interesting rules for
parameter patterns. They illustrate the built-in weakening.

Ψ �v w : a ↓ Γ : Parameter Pattern w has type a in Ψ and binds Γ

Ψ �v #p : a ↓ p : [Ψ � a]
tp-pvar

Ψ �v w : a ↓ Γ

Ψ, y : b �v #w : a ↓ Γ
tp-pvar-#

518 F. Ferreira and B. Pientka

Further, the matching algorithm for SF patterns degenerates to simple first-
order matching [17] and can be defined straightforwardly. Because of space con-
straints, we only describe the successful matching operation. However, it is worth
considering the matching rules for parameter patterns. As matching will only
consider well-typed terms, we know that in the rules m-pv and m-pv-# the vari-
able x is well-typed in the context Ψ̂ .

Γ ; Ψ̂ �v w
.= x/ρ : Param. Pattern w matches var. x from Ψ̂ producing ρ.

p : [Ψ � A]; Ψ̂ �v #p
.= x/·, [Ψ̂ � x]/p

m-pv
x �= y Γ ; Ψ̂ �v w

.= x/ρ

Γ ; Ψ̂, y �v #w
.= x/ρ

m-pv-#

Γ ; Ψ̂ � R
.= M/ρ : M matches pattern R with bound vars. in Ψ̂ producing ρ.

Γ ; Ψ̂ , x � R
.= M/ρ

Γ ; Ψ̂ � λx.R
.= λx.M/ρ

m-λ ·; Ψ̂ � x
.= x/·

m-bv

Γ ; · � R
.= M/ρ

Γ ; Ψ̂ � {R} .= {M}/ρ
m-box

for all Ri ∈ −→
R such as Γ ; Ψ̂ � Ri

.= Mi/ρi

Γ ; Ψ̂ � c
−→
R

.= c
−→
M/ρ0, . . . , ρn

m-cc

u : [Ψ � A]; Ψ̂ � ’u
.= M/·, [Ψ̂ � M]/u

m-cv
Γ ; Ψ̂ �v w

.= x/ρ

Γ ; Ψ̂ � w
.= x/ρ

m-pv

Finally, it has another important consequence: closures only appear in the
branches of case-expressions. As Core-ML has a call-by-value semantics, we know
the instantiations of quoted variables and parameter variables when they appear
in the body of a case-expression and all closures can be eliminated by applying
the substitution eagerly.

5.2 Typing Rules for Core-ML with Contextual Types

We now add the following typing rules for contextual objects and pattern match-
ing to the typing rules of Core-ML:

Γ ;Ψ � M : a

Γ � [Ψ̂ � M] ⇐ [Ψ � a]
t-ctx-obj

Γ � i ⇒ [Ψ � a] ∀b ∈ −→
b . Γ � b ⇐ [Ψ � a] → τ

Γ � cmatch i with
−→
b ⇐ τ

t-cm

Ψ � R : a ↓ Γ ′ Γ, Γ ′ � e ⇐ τ

Γ � [Ψ � R] �→ e ⇐ [Ψ � a] → τ
t-cbranch

The typing rule for contextual objects (rule t-ctx-obj) simply invokes the
typing judgment for contextual objects. Notice, that we need the context Γ when
checking contextual objects, as they may contain quoted variables from Γ .

Extending the operational semantics to handle contextual SF objects is also
straightforward.

Programs Using Syntax 519

6 Core-ML with GADTs

So far we reviewed how to support contextual types and contextual objects in
a standard functional programming language. This allows us to define syntactic
structures with binders and manipulate them with the guarantee that variables
will not escape their scopes. This brings some of the benefits of the Beluga sys-
tem to mainstream languages focusing on writing programs instead of proofs. A
naive implementation of this language extension requires augmenting the type
checker and operational semantics of the host language. This is a rather signif-
icant task – especially if it includes implementing a compiler for the extended
language. In this section, we describe how to embed Core-ML with contextual
types in a functional language with GADTs, called Core-MLgadt, based on λ2,Gμ

by Xi et al. [26]. The choice of this target language is motivated by the fact that it
is close to what realistic typed languages already offer (e.g.: OCaml and Haskell)
and it directly lends itself to an implementation.

Signatures Σ ::= · | Σ,D : (∗, . . . , ∗) → ∗ | C : ∀−→α . τ → D[−→τ]
Types τ ::= D[−→τ] | ∀α . τ | τ1 → τ2 | α | τ1 × τ2
Expressions e ::= x | C[−→τ] e | fix f : τ = e | e1 e2 | (e1, e2) | λx . e

| letx = e1 in e2 | match e with
−→
b | Λα . e | e[τ] | (e1, e2)

Branch b ::= pat �→ e
Pattern pat ::= x | C[−→α] pat | (pat1, pat2)
Exp. Ctx. Γ ::= · | Γ, x : τ
Type Ctx. Δ ::= · | Δ,α | Δ, τ1 ≡ τ2

Core-MLgadt contains polymorphism and GADTs, which makes it a good
ersatz OCaml that is still small and easy to reason about. GADTs are particu-
larly convenient, since they allow us to track invariants about our objects in a
similar fashion to dependent types. Compared to Core-ML, Core-MLgadt’s signa-
tures now store type constants and constructors that are parametrized by other
types. We show the typing judgments for the language in Fig. 4.

The operational semantics is fundamentally the same as the semantics for
Core-ML, after all, type information is irrelevant at run-time (i.e. Core-MLgadt

has strong type separation). The interested reader can find the operational
semantics in [26].

7 Deep Embedding of SF into Core-MLgadt

We now show how to translate objects and types defined in the syntactic frame-
work SF into Core-MLgadt using a deep embedding. We take advantage of the
advanced features of Core-MLgadt’s type system to fully type-check the result.
Our representation of SF objects and types is inspired by [2] but uses GADTs
instead of full dependent types. We add the idea of typed context shifts, that
represent weakening, to be able to completely erase types at run-time.

520 F. Ferreira and B. Pientka

Δ; Γ � e : τ : e is of type τ in contexts Δ and Γ .

Σ(C) = ∀−→α . τ1 → D[−→τ] Δ; Γ � e : τ1[
−→τ] Δ � −→τ wf

Δ; Γ � C−→τ e : D[−→τ]
g-con

Δ; Γ � e1 : τ1 → τ2 Δ; Γ � e2 : τ1

Δ; Γ � e1 e2 : τ2
g-app

Δ; Γ � e1 : τ1 Δ; Γ � e1 : τ2

Δ; Γ � (e1, e2) : τ1 × τ2
g-pair

Γ (x) = τ

Δ; Γ � x : τ
g-var

Δ; Γ, f : τ � e : τ

Δ; Γ � fix f : τ = e : τ
g-fix

Δ; Γ, x : τ1 � e : τ2

Δ; Γ � λx . e : τ1 → τ2
g-lam

Δ; Γ � e : ∀α . τ Δ; Γ � τ wf

Δ; Γ � e[τ] : τ1
g-tapp

Δ; Γ � e1 : τ1 Δ; Γ, x : τ1 � e2 : τ

Δ; Γ � letx = e1 in e2 : τ
g-let

Δ, α; Γ � e : τ

Δ; Γ � Λα . e : τ
g-Lam

Δ; Γ � e : τ1 for all i.Δ; Γ � bi : τ1 → τ

Δ; Γ � match e with
−→
b : τ

g-match

Δ; Γ � pat : τ ↓ Δ′; Γ ′ Δ, Δ′; Γ, Γ ′ � e : τ2

Δ; Γ � pat �→ e : τ1 → τ2
g-branch

Δo � pat : τ ↓ Δ; Γ : pat is of type τ and binds variables in Δ and Γ

Δ0 � τ wf

Δ0 � x : τ ↓ ·; x : τ
gp-var

Δ0 � pat1 : τ1 ↓ Δ1; Γ1 Δ0 � pat2 : τ2 ↓ Δ2; Γ2

Δ0 � (pat1, pat2) : τ1 × τ2 ↓ Δ1, Δ2; Γ1, Γ2

gp-pair

Σ(C) = ∀−→α . τ → D[−→τ1] Δ0,
−→α , −→τ1 ≡ −→τ2 � pat : τ ↓ Δ; Γ

Δo � C[−→α] pat : D[−→τ2] ↓ −→α , −→τ1 ≡ −→τ2 , Δ; Γ
gp-con

Fig. 4. The typing of Core-MLgadt

To ensure SF terms are well-scoped and well-typed, we define SF types in
Core-MLgadt and index their representations by their type and context. The
following types are only used as indices for GADTs. Because of that, they do
not have any term constructors.

Σ = base : ∗ → ∗, arr : (∗, ∗) → ∗, boxed : ∗ → ∗, prod : (∗, ∗) → ∗, unit : ∗

We define three type families, one for each of SF’s type constructors. It is
important to note the number of type parameters they require. Base types take
one parameter: a type from the signature. Function types simply have a source
and target type. Finally, boxes contain just one type.

Terms are also indexed by the contexts in which they are valid. To this
effect, we define two types to statically represent contexts. Analogously to the
representation of types, these two types are only used statically and there will
be no instances at run-time. The type nil represents an empty context and thus
has no parameters. The constructor cons has two parameters, the first one is
the rest of the context and the second one is the type of the top-most variable.

Programs Using Syntax 521

Σ = . . . , nil : ∗, cons : (∗, ∗) → ∗

We show the encoding of well-typed SF objects and types in Fig. 5. Every
declaration is parametrized with the type of constructors that the user defined
inside of the @@@signature blocks.

Fig. 5. Syntactic framework definition

The specification takes the form of the type con : (∗, ∗) → ∗, where con is
the name of a constructor indexed by the type of its parameters and the base
type they produce.

Variables and terms are indexed by two types, the first parameter is always
their context and the second is their type. The type var represents variables
with two constructors: Top represents the variable that was introduced last in
the context and if Top corresponds to the de Bruijn index 0 then the construc-
tor Pop represents the successor of the variable that it takes as parameter. It
is interesting to consider the parameters of these constructors. Top is simply
indexed by its context and type (variables γ and α respectively). On the other
hand, Pop requires three type parameter: the first γ represents a context, α the
resulting type of the variable, and β the type of the extension of the context.
These parameter make it so that if we apply the constructor Pop to a variable
of type α in context γ, we obtain a variable of type α in the context γ extended
with type β.

As mentioned, terms described by the type family tm are indexed by their
context and their type. It is interesting to check in some detail how the indices
of the term constructors follow the typing rules from Fig. 3. The constructor

522 F. Ferreira and B. Pientka

for lambda terms (Lam), extends the context γ with base type α and then it
produces a term in γ of function type from the base type α to the type of the
body τ . The constructor for boxes simply forces its body to be closed by using
the context type nil. The constructor Var simply embeds variables as terms.
Finally the C constructor has two parameters, one is the name of the constructor
from the user’s definitions that constrains the type of the second parameter, the
other is the term of the appropriated type.

The definition of substitution is a modified presentation of the substitution
for well-scoped de Bruijn indices, as for example presented in [2]. We define
two types, sub and shift indexed by two contexts, the domain and the range
of the substitutions. Substitutions are either a shift (constructor Shift) or the
combination of a term for the top-most variable and the rest of the substitution
(constructor Dot).

Our implementation differs from Benton et al. [2] in the representation of
renamings. Benton et.al define substitutions and renamings, the latter as a way of
representing shifts. However to compute a shift, they need the context that they
use to index the data-types. Hence, contexts are not erasable during run-time.
As we do want contexts to be erasable at run-time, we cannot use renamings.
Instead, we replace renamings with typed shifts (defined in type shift), that
encode how many variables we are shifting over. This is encoded in the indices
of shifts.

Finally, we omit the function implementing the substitution as it is standard
We will simply mention that we implement a function apply sub of type:
∀γ, δ, τ . tm[γ, τ] → sub[γ, δ] → tm[δ, τ] that applies a substitution moving a term
from context γ to context δ.

8 From Core-ML with Contextual Types to Core-MLgadt

In this section, we translate Core-ML with contextual types into Core-MLgadt.
Because our embedding of the syntactic framework SF in Core-MLgadt is intrinsi-
cally typed, there is no need to extend the type-checker to accommodate contex-
tual objects. Further, recall that we restricted quoted variables and parameter
variables such that the matching operation remains first order. In addition, as our
deep embedding uses a representation with canonical names (namely de Bruijn
indices), we are able to translate pattern matching into Core-MLgadt’s pattern
matching; thus there is no need to extend the operational semantics of the lan-
guage.

The translation we describe in this section provides the footprint of an imple-
mentation to directly generate OCaml code, as Core-MLgadt is essentially a sub-
set of OCaml. It therefore shows how to extend a functional programming lan-
guage such as OCaml with the syntactic framework with minimal impact on
OCaml’s compiler.

Programs Using Syntax 523

We begin by translating SF types and contexts into Core-MLgadt types. These
types are used to index terms in the implementation of SF:

SF Types: �a → A� = arr[a, �A�]
��A� = boxed[�A�]

�a� = a

SF Contexts: �·� = nil[]
�Ψ, x : a� = cons[�Ψ�,a]

The translation of SF terms is directed by their contextual type Ψ � A,
because it needs the context to perform the translation of names to de Bruijn
indices and the types to appropriately index the terms.

SF Terms: �λx.M�Ψ�a→A = Lam[cons[�Ψ�,a], �A�]�M�Ψ,a�A

�{M}�Ψ�� A = Box[�Ψ�, �A�]�M�·�A

�x�Ψ�a = Var[�Ψ�,a]�x�v
Ψ

�c−→
M�Ψ�a = C[�Ψ�, �A�,a](c, �−→M�Ψ�A↓a)

with Σ(c) = A

�M [σ]ΦΨ�Ψ�A = apply sub�M�Φ�A�σ�Ψ�Φ

�’u�Ψ�A = u

�#v�Ψ�a = Var[�Ψ�,a]�v�Ψ�a

�N,
−→
M�Ψ�A→B↓a = Cons[�Ψ�, arr[�A�, �B�],a]

(�N�Ψ�A, �−→
M�Ψ�B↓a)

�·�Ψ�a↓a = Empty[�ψ�,a,a]
Param. Vars: �x�Ψ�a = x

�#v�Ψ,y:a′�a = Pop[�Ψ�,a,a′]�v�Ψ�a

There are three kinds of variables in the syntactic framework SF: bound vari-
ables, quoted variables and parameter variables. Each kind requires a different
translation strategy. Bound variables are translated into de Bruijn indices where
the numbers are encoded using the constructors Top and Pop. Quoted variables
are simply translated into the Core-MLgadt variables they quote. And finally the
parameter variables are translated into a Var constructor to indicate that the
resulting expression is an SF variable, and the shifts (indicated by extra ’#’) are
translated to applications of the constructor Pop.

Notice how substitutions are not part of the representation. They are trans-
lated to the eager application of apply sub, an OCaml function that performs
the substitution. Before we call appy sub we translate the substitution. This
amounts to generating the right shift for empty substitutions and otherwise
recursively translating the terms and the substitution.

524 F. Ferreira and B. Pientka

Translating variables requires computing the de Bruijn index with the appro-
priate type annotations.

We also need to translate SF patterns into Core-MLgadt expressions with the
right structure. The special cases are:

– Variables are translated to de Bruijn indexes.
– Quoted variables simply translate to Core-MLgadt variables.
– Parameter variables translate to a pattern that matches only variables by

specifying the Var constructor.

The translation of patterns follows the same line as the translation of terms,
however, we do not use the indices of type variables in Core-MLgadt patterns.
This is indicated by writing an underscore.

SF Patterns: �λx.R�Γ
Ψ�a→A = Lam[, ,]�R�Γ

Ψ,a�A

�{R}�Γ
Ψ�� A = Box[,]�R�Γ

·�A

�x�·
Ψ�a = Var[,]�x�p

Ψ

�c−→
R�Γ

Ψ�a = C[, ,]�−→R�Γ
Ψ�A↓a with Σ(c) = A

�’u�u:�Ψ�A�
Ψ�A = u

�#x�x:�Ψ�A�
Ψ�a = Var[,]x

�##x�x:�Ψ,y: �A�
Ψ,y: �a = Var[,](Pop[, ,]x)

�R,
−→
R′�Γ,Γ ′

Ψ�A→B↓a = Cons[, , ,](�R�Γ
Ψ�A, �

−→
R′�Γ ′

Ψ�B↓a)
�·�·

Ψ�a↓a = Empty[,]

SF Variables: �x�p
Ψ,x:a = Top[,]

�y�p
Ψ,x:b = Pop[, ,]�y�p

Ψ

Our main translation of Core-ML to Core-MLgadt uses the following main
operations:

�τ�, �Ξ�, �Γ� : Translate types, signatures and contexts.
�e�Γ�τ : Type directed translation of expressions.

�pat�Γ ′
Γ�τ : Translates patterns and outputs Γ ′ the

context of the bound variables.

The translation of Core-ML expressions into Core-MLgadt directly follows
the structure of programs in Core-ML and is type directed to fill in the required
types for the Core-MLgadt representation. The translation is as follows:

Programs Using Syntax 525

�x�Γ�τ = x

�C −→e �Γ�D = C[] �−→e �Γ�−→τ with Ξ(C) = −→τ → D

�fun f(x) = e�Γ�τ1→τ2 = fix f : �τ1 → τ2� = λx . �e�Γ,x:τ1�τ2

�i .e.�Γ�τ = �i�Γ�τ1→τ �e�Γ�τ1

with Γ � i ⇒ τ1 → τ

�letx = i in .e.�Γ�τ = letx = �i�Γ�τ1 in �e�Γ,x:τ1�τ

with Γ � i ⇒ τ1

�match i with
−→
b �Γ�τ = match �i�Γ�τ1 with �−→b �Γ�τ1→τ

with Γ � i ⇒ τ1

�e1, . . . , en�Γ�−→τ = �e1�Γ�τ1 , . . . , �en�Γ�τn

�[Ψ̂ � M]�Γ�[Ψ�A] = �M�Ψ�A

�cmatch i with −→c �Γ�τ = match �i�Γ�[Ψ�A] with �−→c �Γ�[Ψ�A]→τ

with Γ � i ⇒ [Ψ � A]

Translating branches and patterns:

Branch: �pat �→ e�Γ�τ1→τ2 = �pat�Γ ′
Γ�τ1

�→ �e�Γ,Γ ′�τ2

Patterns: �x�x:τ
Γ�τ = x

�C
−→
pat�Γ ′

Γ�D = C[] �−→pat�Γ ′
Γ�−→τ with Ξ(C) = −→τ → D

Finally, we define the translation of branches for cmatch i with −→c . Note how
we use the context generated from the pattern to translate the body of the
branch.

�[Ψ � R] �→ e�Γ�[Ψ�A]→τ = �R�Γ ′
Ψ�A �→ �e�Γ,Γ ′�τ

Finally we show that the translation from Core-ML with contextual types
into Core-MLgadt preserves types.

Theorem 1 (Main).

1. If Γ � e ⇐ τ then ·; �Γ� � �e�Γ�τ : �τ�.
2. If Γ � i ⇒ τ then ·; �Γ� � �i�Γ�τ : �τ�.

Our result relies on several lemmas that deal with the other judgments and
context lookups:

Lemma 1 (Ambient Context). If Γ (u) = [Ψ � a] then �Γ�(u) = tm[�Ψ�,a].

Lemma 2 (Terms).

1. If Γ ;Ψ � M : A then ·; �Γ� � �M�Ψ�A : �Ψ � A�.
2. If Γ ;Ψ � σ : Φ then ·; �Γ� � �σ�Ψ�Φ : �Ψ � Φ�
Lemma 3 (Pat.). If � pat : τ ↓ Γ then · � �pat�Γ

Ψ�A : �τ� ↓ Γ .

Lemma 4 (Ctx. Pat.). If Ψ � R : A ↓ Γ then · � �R�Γ
Ψ�A : �Ψ � A� ↓ Γ .

Given our set-up, the proofs are straightforward by induction on the typing
derivation.

526 F. Ferreira and B. Pientka

9 A Proof of Concept Implementation

In this section, we describe the implementation3 of Babybel which uses the
ideas from previous sections. One major difference is that Babybel translates
OCaml programs that use syntax extensions for contextual SF types and terms
and translates them into pure OCaml with GADTs. In fact, even our input
OCaml programs may use GADTs to for example describe context relations on
SF contexts (see also our examples from Sect. 2).

The presence of GADTs in our source language also means that we can
specify precise types for functions where we can quantify over contexts. Let’s
revisit some of the types of the programs that we wrote earlier in Sect. 2:

– rewrite:γ. [γ � tm]→[γ � tm]: In this type we implicitly quantify over
all contexts g and then we take a potentially open term and return another
term in the same context. These constraints imposed in the types are due to
being able to index types with types thanks to GADTs.

– get_path:γ. [γ,x:tm � tm]→path: In this case we quantify over all con-
texts, but the input of the function is some term in a non-empty context.

– conv:γδ.(γ,δ) rel→[γ � tm]→[δ � ctm]:
This final example shows that we can also use the contexts to index regular
OCaml GADTs. In this function we are translating between terms in different
representations.
To be able to translate between these different context representations, it is
necessary to establish a relation between these contexts. So we need to define a
special OCaml type (i.e.:rel) that relates variable to variable in each contexts.

By embedding the SF in OCaml using contextual types, we can combine and
use the impure features of OCaml. Our example, in Sect. 2.2 takes advantage
of them in our implementation of backtracking with exceptions. Additionally,
performing I/O or using references works seamlessly in the prototype.

The presence of GADTs in our target language also makes the actual imple-
mentation of Babybel simpler than the theoretical description, as we take
advantage of OCaml’s built-in type reconstruction. In addition to GADTs, our
implementation depends on several OCaml extensions. We use Attributes from
Sect. 7.18 of the reference manual [10] and strings to embed the specification
of our signature. We use quoted strings from Sect. 7.20 to implement the boxes
for terms (�. . .�) and patterns (�. . .�p). All these appear as annotations in the
internal Abstract Syntax Tree in the compiler implementation. To perform the
translation (based on Sect. 8) we define a PPX rewriter as discussed in Sect. 23.1
of the OCaml manual. In our rewriter, we implement a parser for the framework
SF and translate all the annotations using our embedding.

10 Related Work

Babybel and the syntactic framework SF are derived from ideas that originated in
proof checkers based on the logical framework LF such as the Twelf system [14].
3 Available at www.github.com/fferreira/babybel/.

www.github.com/fferreira/babybel/

Programs Using Syntax 527

In the same category are the proof and programming languages Delphin [19] and
Beluga [16] that offer a computational language on top of the LF. In many ways,
the work that we present in this paper and forms the foundation of Babybel are
a distillation of Beluga’s ideas applied to a mainstream programming language.
As a consequence, we have shown that we can get some of the benefits from
Beluga at a much lower cost, since we do not have to build a stand-alone system
or extend the compiler of an existing language to support contexts, contextual
types and objects.

Our approach of embedding an LF specification language into a host language
is in spirit related to the systems Abella [8] and Hybrid [7] that use a two-
level approach. In these systems we embed the specification language (typically
hereditary harrop formulas) in first-order logic (or a variant of it). While our
approach is similar in spirit, we focus on embedding SF specifications into a
programming language instead of embedding it into a proof theory. Moreover,
our embedding is type preserving by construction.

There are also many approaches and tools that specifically add support for
writing programs that manipulate syntax with binders – even if they do not
necessarily use HOAS. FreshML [22] and Cαml [20] extend OCaml’s data types
with the ideas of names and binders from nominal logic [18]. In these system,
name generation is an effect, and if the user is not careful variables may extrude
their scopes. Purity can be enforced by adding a proof system with a decision
procedure that statically guarantees that no variable escapes its scope [21]. This
adds some complexity to the system. We feel that Babybel’s contextual types
offer a simpler formalism to deal with bound variables. On the other hand,
Babybel’s approach does not try to model variables that do not have lexical
scope, like top-level definitions. Another related language is Romeo [23] that
uses ideas from Pure FreshML to represent binders. Where our system statically
catches variables escaping their scope, the Romeo system either throws a run
time exception or uses an SMT solver to prove the absence of scoping issues.
The Hobbits system for Haskell [25] is implemented in a similar way to ours,
using quasi-quoting but they use a different formalism based on the concepts of
names and freshness. Last but not least, approaches based on parametric HOAS
(PHOAS) [5] also model binding in the object language by re-using the function
space of the meta-language. In particular, Washburn and Weirich [24] propose a
library that uses catamorphisms to compute over a parametric HOAS represen-
tation. This is a powerful approach but requires a different way of implementing
recursive functions. A fundamental difference between this line of work and ours,
is that in PHOAS functions are extensional, i.e. they are black box functions,
while our approach introduces a distinction between an intensional and exten-
sional function space. The intensional function space from SF allows us to model
binding and supports pattern matching. The extentional function space allows
us to write recursive functions.

528 F. Ferreira and B. Pientka

11 Conclusion and Future Work

In this work, we describe the syntactic framework SF (a simply typed variant
of the logical framework LF with the necessity modality from S4) and explain
the embedding of SF into a functional programming language using contextual
types. This gives programmers the ability to write programs that manipulate
abstract syntax trees with binders while knowing at type checking time that
no variables extrude their scope. We also show how to translate the extended
language back into a first order representation. For this, we use de Bruijn indices
and GADTs to implement the SF in Core-MLgadt. Important characteristics of
the embedding are that it preserves the phase separation, making types (and
thus contexts) erasable at run-time. This allows pattern matching to remain
first-order and thus it is possible to compile with the traditional algorithms.

Finally, we describe Babybel an implementation of these ideas that embeds
SF in OCaml using contextual types. The embedding is flexible enough that
we can take advantage of the more powerful type system in OCaml to make
the extension more powerful. We use GADTs in our examples to express more
powerful invariants (e.g. that the translation preserves the context).

In the future, we plan to implement our approach also in other languages. In
particular, it would be natural to implement our approach in Haskell. We do not
expect that the the type system extensions to GHC pose any challenging issues.
Finally, it would be interesting to extend our approach to type systems with
dependent types (e.g. Coq or Agda) where we can reason about the programs
we write. This extension would require extending SF with theorems about sub-
stitutions (e.g. proving that applying an identity substitution does not change
a term).

References

1. Augustsson, L.: Compiling pattern matching. In: Jouannaud, J.-P. (ed.) FPCA
1985. LNCS, vol. 201, pp. 368–381. Springer, Heidelberg (1985). doi:10.1007/
3-540-15975-4 48

2. Benton, N., Hur, C.K., Kennedy, A.J., McBride, C.: Strongly typed term repre-
sentations in Coq. J. Autom. Reasoning 49(2), 141–159 (2012)

3. Cave, A., Pientka, B.: Programming with binders and indexed data-types. In: 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2012), pp. 413–424. ACM Press (2012)

4. Cheney, J., Hinze, R.: First-class phantom types. Technical Report CUCIS
TR2003-1901, Cornell University (2003)

5. Chlipala, A.J.: Parametric higher-order abstract syntax for mechanized semantics.
In: Hook, J., Thiemann, P. (eds.) 13th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2008), pp. 143–156. ACM (2008)

6. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001)

7. Felty, A., Momigliano, A.: Hybrid: a definitional two-level approach to reasoning
with higher-order abstract syntax. J. Autom. Reasoning 48(1), 43–105 (2012)

8. Gacek, A., Miller, D., Nadathur, G.: A two-level logic approach to reasoning about
computations. J. Autom. Reasoning 49(2), 241–273 (2012)

http://dx.doi.org/10.1007/3-540-15975-4_48
http://dx.doi.org/10.1007/3-540-15975-4_48

Programs Using Syntax 529

9. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM
40(1), 143–184 (1993)

10. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
System Release 4.03 - Documentation and user’s manual. Institut National de
Recherche en Informatique et en Automatique (2016)

11. Miller, D., Palmidessi, C.: Foundational aspects of syntax. ACM Comput. Surv.
31(3es), 11 (1999)

12. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Trans. Comput. Logic 9(3), 1–49 (2008)

13. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct.
Comput. Sci. 11(4), 511–540 (2001)

14. Pfenning, F., Schürmann, C.: System description: twelf – a meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol.
1632, pp. 202–206. Springer, Heidelberg (1999). doi:10.1007/3-540-48660-7 14

15. Pientka, B.: A type-theoretic foundation for programming with higher-order
abstract syntax and first-class substitutions. In: 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2008), pp.
371–382. ACM Press (2008)

16. Pientka, B., Cave, A.: Inductive Beluga: programming proofs (system description).
In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp.
272–281. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 18

17. Pientka, B., Pfenning, F.: Optimizing higher-order pattern unification. In: Baader,
F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 473–487. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45085-6 40

18. Pitts, A.: Nominal logic, a first order theory of names and binding. Inf. Comput.
186(2), 165–193 (2003)

19. Poswolsky, A., Schürmann, C.: System description: Delphin–a functional pro-
gramming language for deductive systems. In: International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP 2008). Electronic
Notes in Theoretical Computer Science (ENTCS), vol. 228, pp. 135–141. Elsevier
(2009)

20. Pottier, F.: An overview of Cαml. In: proceedings of the ACM-SIGPLAN Workshop
on ML (ML 2005). Electronic Notes in Theoretical Computer Science, vol. 148(2),
pp. 27–52 (2006)

21. Pottier, F.: Static name control for FreshML. In: 22nd IEEE Symposium on Logic
in Computer Science (LICS 2007), pp. 356–365. IEEE Computer Society, July 2007

22. Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: programming with binders
made simple. In: 8th International Conference on Functional Programming (ICFP
2003), pp. 263–274. ACM Press (2003)

23. Stansifer, P., Wand, M.: Romeo: a system for more flexible binding-safe program-
ming. In: Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2014, pp. 53–65 (2014)

24. Washburn, G., Weirich, S.: Boxes go bananas: encoding higher-order abstract syn-
tax with parametric polymorphism. J. Funct. Program. 18(01), 87–140 (2008)

25. Westbrook, E., Frisby, N., Brauner, P.: Hobbits for Haskell: a library for higher-
order encodings in functional programming languages. In: 4th ACM Symposium
on Haskell (Haskell 2011), pp. 35–46. ACM (2011)

26. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2003), pp. 224–235. ACM Press (2003)

http://dx.doi.org/10.1007/3-540-48660-7_14
http://dx.doi.org/10.1007/978-3-319-21401-6_18
http://dx.doi.org/10.1007/978-3-540-45085-6_40

LINCX: A Linear Logical Framework
with First-Class Contexts

Aina Linn Georges1(B), Agata Murawska2(B), Shawn Otis1(B),
and Brigitte Pientka1(B)

1 McGill University, Montreal, QC, Canada
{aina.georges,shawn.otis}@mail.mcgill.ca, bpientka@cs.mcgill.ca

2 IT University of Copenhagen, Copenhagen, Denmark
agmu@itu.dk

Abstract. Linear logic provides an elegant framework for modelling
stateful, imperative and concurrent systems by viewing a context of
assumptions as a set of resources. However, mechanizing the meta-theory
of such systems remains a challenge, as we need to manage and reason
about mixed contexts of linear and intuitionistic assumptions.

We present Lincx, a contextual linear logical framework with first-
class mixed contexts. Lincx allows us to model (linear) abstract syntax
trees as syntactic structures that may depend on intuitionistic and lin-
ear assumptions. It can also serve as a foundation for reasoning about
such structures. Lincx extends the linear logical framework LLF with
first-class (linear) contexts and an equational theory of context joins that
can otherwise be very tedious and intricate to develop. This work may
be also viewed as a generalization of contextual LF that supports both
intuitionistic and linear variables, functions, and assumptions.

We describe a decidable type-theoretic foundation for Lincx that only
characterizes canonical forms and show that our equational theory of con-
text joins is associative and commutative. Finally, we outline how Lincx
may serve as a practical foundation for mechanizing the meta-theory of
stateful systems.

1 Introduction

Logical frameworks make it easier to mechanize formal systems and proofs about
them by providing a single meta-language with abstractions and primitives for
common and recurring concepts, like variables and assumptions in proofs. This
can have a major impact on the effort and cost of mechanization. By factor-
ing out and abstracting over low-level details, it reduces the time it takes to
mechanize formal systems, avoids errors in manipulating low-level operations,
and makes the mechanizations themselves easier to maintain. It can also make
an enormous difference when it comes to proof checking and constructing meta-
theoretic proofs, as we focus on the essential aspect of a proof without getting
bogged down in the quagmire of bureaucratic details.

A. Murawska—Supported by grant 10-092309 from the Danish Council for Strategic
Research to the Demtech project.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 530–555, 2017.
DOI: 10.1007/978-3-662-54434-1 20

Lincx: A Linear Logical Framework with First-Class Contexts 531

The contextual logical framework [20,21], an extension of the logical frame-
work LF [14], is designed to support a broad range of common features that are
needed for mechanizations of formal systems. To model variables, assumptions
and derivations, programmers can take advantage of higher-order abstract syntax
(HOAS) trees; a context of assumptions together with properties about unique-
ness of assumptions can be represented abstractly using first-class contexts and
context variables [21]; single and simultaneous substitutions together with their
equational theory are supported via first-class substitutions [7,8]; finally, deriva-
tion trees that depend on a context of assumption can be precisely described via
contextual objects [20]. This last aspect is particularly important. By encapsu-
lating and representing derivation trees together with their surrounding context
of assumptions, we can analyze and manipulate these rich syntactic structures
via pattern matching, and can construct (co)inductive proofs by writing recur-
sive programs about them [6,24]. This leads to a modular and robust design
where we cleanly separate the representation of formal systems and derivations
from the (co)inductive reasoning about them.

Substructural frameworks such as the linear logical framework LLF [9] pro-
vide additional abstractions to elegantly model the behaviour of imperative oper-
ations such as updating and deallocating memory [12,30] and concurrent compu-
tation (see for example session types [5]). However, it has been very challenging
to mechanize proofs about LLF specifications as we must manage mixed contexts
of unrestricted and linear assumptions. When constructing a derivation tree, we
must often split the linear resources and distribute them to the premises relying
on a context join operation, written as Ψ = Ψ1 �� Ψ2. This operation should be
commutative and associative. Unrestricted assumptions present in Ψ should be
preserved in both contexts Ψ1 and Ψ2. The mix of unrestricted and restricted
assumptions leads to an intricate equational theory of contexts that often stands
in the way of mechanizing linear or separation logics in proof assistants and has
spurred the development of specialized tactics [2,16].

Our main contribution is the design of Lincx (read: “lynx”), a contextual
linear logical framework with first-class contexts that may contain both intu-
itionistic and linear assumptions. On the one hand our work extends the linear
logical framework LLF with support for first-class linear contexts together with
an equational theory of context joins, contextual objects and contextual types;
on the other we can view Lincx as a generalization of contextual LF to model
not only unrestricted but also linear assumptions. Lincx hence allows us to
abstractly represent syntax trees that depend on a mixed context of linear and
unrestricted assumptions, and can serve as a foundation for mechanizing the
meta-theory of stateful systems where we implement (co)inductive proofs about
linear contextual objects by pattern matching following the methodology out-
lined by Cave and Pientka [6] and Thibodeau et al. [29]. Our main technical
contributions are:

(1) A bi-directional decidable type system that only characterizes canonical forms
of our linear LF objects. Consequently, exotic terms that do not represent legal
objects from our object language are prevented. It is an inherent property of our

532 A.L. Georges et al.

design that bound variables cannot escape their scope, and no separate reasoning
about scope is required. To achieve this we rely on hereditary substitution to
guarantee normal forms are preserved. Equality of two contextual linear LF
objects reduces then to syntactic equality (modulo α-renaming).

(2) Definition of first-class (linear) contexts together with an equational theory
of context joins. A context in Lincx may contain both unrestricted and lin-
ear assumptions. This not only allows for a uniform representation of contexts,
but also leads to a uniform representation of simultaneous substitutions. Con-
text variables are indexed and their indices are freely built from elements of an
infinite, countable set through a context join operation (��) that is associative,
commutative and has a neutral element. This allows a canonical representation
of contexts and context joins. In particular, we can consider contexts equivalent
modulo associativity and commutativity. This substantially simplifies the meta-
theory of Lincx and also directly gives rise to a clean implementation of context
joins which we exploit in our mechanization of the meta-theoretic properties of
Lincx.

(3) Mechanization of Lincx together with its meta-theory in the proof assistant
Beluga [23]. Our development takes advantage of higher-order abstract syntax
to model binding structures compactly. We only model linearity constraints sepa-
rately. We have mechanized our bi-directional type-theoretic foundation together
with our equational theory of contexts. In particular, we mechanized all the key
properties of our equational theory of context joins and the substitution prop-
erties our theory satisfies.

We believe that Lincx is a significant step towards modelling (linear) deriva-
tion trees as well-scoped syntactic structures that we can analyze and manip-
ulate via case-analysis and implementing (co)inductive proofs as (co)recursive
programs. As it treats contexts, where both unrestricted and linear assumptions
live, abstractly and factors out the equational theory of context joins, it elim-
inates the need for users to explicitly state basic mathematical definitions and
lemmas and build up the basic necessary infrastructure. This makes the task
easier and lowers the costs and effort required to mechanize properties about
imperative and concurrent computations.

2 Motivating Examples

To illustrate how we envision using (linear) contextual objects and (linear) con-
texts, we implement two program transformations on object languages that
exploit linearity. We first represent our object languages in Lincx and then
write recursive programs that analyze the syntactic structure of these objects by
pattern matching. This highlights the role that contexts and context joins play.

2.1 Example: Code Simplification

To illustrate the challenges that contexts pose in the linear setting, we implement
a program that translates linear Mini-ML expressions that feature let-expression

Lincx: A Linear Logical Framework with First-Class Contexts 533

into a linear core lambda calculus. We define the linear Mini-ML using the linear
type ml and our linear core lambda calculus using the linear type lin as our target
language. We introduce a linear LF type together with its constructors using the
keyword Linear LF.

Linear LF ml : type =
| lam : (ml -o ml) -o ml
| app : ml -o ml -o ml
| letv : ml -o (ml -o ml) -o ml;

Linear LF lin: type =
| llam : (lin -o lin) -o lin
| lapp : lin -o lin -o lin
;

We use the linear implication -o to describe the linear function space and
we model variable bindings that arise in abstractions and let-expressions using
higher-order abstract syntax, as is common in logical frameworks. This encoding
technique exploits the function space provided by LF to model variables. In linear
LF it also ensures that bound variables are used only once.

Our goal is to implement a simple translation of Mini-ML expressions to the
core linear lambda calculus by eliminating all let-expressions and transforming
them into function applications. We thus need to traverse Mini-ML expressions
recursively. As we go under an abstraction or a let-expression, our sub-expression
will not, however, remain closed. We therefore model a Mini-ML expression
together with its surrounding context in which it is meaningful. Our function
trans takes a Mini-ML expression in a context γ, written as [γ � ml], and returns a
corresponding expression in the linear lambda calculus in a context δ, an object
of type [δ � lin]. More precisely, there exists such a corresponding context δ.
Due to linearity, the context of the result of translating a Mini-ML term has
the same length as the original context. This invariant is however not explicitly
tracked.

We first define the structure of such contexts using context schema declara-
tions. The tag l ensures that any declaration of type ml in a context of schema
ml_ctx must be linear. Similarly, any declaration of type lin in a context of schema
core_ctx must be linear.
schema ml_ctx = l (ml);
schema core_ctx = l (lin);

To characterize the result of this translation, we define a recursive type:
inductive Result: type = Return : (δ:core_ctx) [δ � lin] → Result;

By writing round parenthesis in (δ:core_ctx) we indicate that we do not pass
δ explicitly to the constructor Return, but it can always be reconstructed. It is
merely an annotation declaring the schema of δ.

We now define a recursive function trans using the keyword rec (see Fig. 1).
First, let us highlight some high level principles and concepts that we use. We
write [Ψ � N] to describe an expression N that is meaningful in the context Ψ. For
example, denotes a term of type ml in the context γ where γ is a
context variable that describes contexts abstractly. We call M a meta-variable. It
stands for a ml term that may depend on the context γ,x:ml. In general, all meta-
variables are associated with a stuck substitution, written N[σ] or M[σ]. We usually
omit the substitution σ, if it is the identitiy substitution. One substitution that

534 A.L. Georges et al.

Fig. 1. Translation of linear ML-expressions to a linear core language

frequently arises in practice is the empty substitution that is written as [] and
maps from the empty context to an unrestricted context Ψ. It hence acts as a
weakening substitution.

Our simplification is implemented by pattern matching on [γ � ml] objects
and specifying constraints on contexts. In the variable case, since we have a linear
context, we require that x be the only variable in the context1. In the lambda
case we write ^ for linear application and linear abstraction. We
expect the type of M to be inferred as [γ,x̂:ml � ml], since we interpret every pattern
variable to depend on all its surrounding context unless otherwise specified. We
now recursively translate M in the extended context γ, x̂:ml, unpack the result and
rebuild the equivalent linear term. Note that we pattern match on the result
translating M by writing Result [δ, x̂:lin � M’]. However, we do not necessarily know
that the output core_ctx context is of the same length as the input ml_ctx context
and hence necessarily has the shape [δ, x̂:lin], as we do not track this invariant
explicitly. To write a covering program we would need to return an error, if we
would encounter Return [� M’], i.e. a closed term where δ is empty. We omit this
case here.

The third and fourth cases are the most interesting ones, as we must split
the context. When we analyze for example [γ(1��2) � app ^ M ^N], then M has some
type [γ1 � ml] and N has some type [γ2 � ml] where γ(1��2) = γ1 �� γ2. We specify
these type annotations and context constraints explicitly. Note that we overload
the �� symbol in this example: when it occurs as a subscript it is part of the
name, while when we write γ1 �� γ2 it refers to the operation on contexts. Then
we can simply recursively translate M and N and rebuild the final result where
we explicitly state δ1��2 = δ1 �� δ2. We proceed similarly to translate recursively
every let-expression into a function application.

1 In case we have a mixed context, we could specify instead that the rest of the context
is unrestricted, using the keywords where and unr.

Lincx: A Linear Logical Framework with First-Class Contexts 535

Type checking verifies that a given object is well-typed modulo context joins.
This is non-trivial. Consider for example where
δ(1��2) = δ1 �� δ2. Clearly, we should be able to type check such an example also if
the user wrote δ = δ2 �� δ1. Hence we want our underlying type theory to reason
about context constraints modulo associativity and commutativity.

As the astute reader will have noticed, we only allow one context variable
in every context, i.e. writing is illegal. Further-
more, we have deliberately chosen the subscripts for our context variables to
emphasize their encoding in our underlying theory. Note that all context variables
that belong to the same tree of context splits have the same name, but differ in
their subscripts. The context variables γ1 and γ2 are called leaf-level context vari-
ables. The context variable γ(1��2) is their direct parent and sits at the root of this
tree. One can think of the tree of context joins as an abstraction of the typing
derivation. To emphasize this idea, let us consider the following deeply nested pat-
tern: where M : [γ11, x̂: ml � ml],
N : [γ12 � ml], and K : [γ2 � ml], and where we again encode the splitting of γ in its
subscript. Our underlying equational theory of context joins treats γ(11��(12��2)) as
equivalent to γ((11��12)��2) or γ((12��11)��2) as it takes into account commutativity and
associativity. However, it may require us to generate a new intermediate node
γ(1��21) and eliminate intermediate nodes (such as γ21��22).

Fig. 2. Context joins

Our encoding of context variables is hence crucial to allow the rearrange-
ment of context constraints, but also to define what it means to instantiate a
given context variable such as γ21 with a concrete context Ψ. If Ψ contains also
unrestricted assumptions then instantiating γ21 will have a global effect, as unre-
stricted assumptions are shared among all nodes in this tree of context joins.
This latter complication could possibly be avoided if we separate the context of
intuitionistic assumptions and the context of linear assumptions. However, this
kind of separation between intuitionistic and linear assumptions is not trivial
in the dependently typed setting because linear assumptions may depend on
intuitionistic assumptions.

This design of context variables and capturing their dependency is essential
to Lincx and to the smooth extension of contextual types to the linear setting.
As the leaf-level context variables uniquely describe a context characterized by a
tree of context joins, we only track the leaf-level context variables as assumptions
while type checking an object, but justify the validity of context variables that
occur as interior nodes through the leaf-level variables. We want to emphasize
that this kind of encoding of context variables does not need to be exposed to
programmers.

536 A.L. Georges et al.

2.2 Example: CPS Translation

As a second example, we implement the translation of programs into continuation
passing style following Danvy and Filinski [11]. Concretely, we follow closely
the existing implementation of type-preserving CPS translation in Beluga by
Belanger et al. [1], but enforce that the continuations are used linearly, an idea
from Berdine et al. [3]. Although context splits do not arise in this example, as we
only have one linear variable (standing for the continuation) in our context, we
include it, to showcase the mix and interplay of intuitionistic and linear function
spaces in encoding program transformations.

Our source language is a simple language consisting of natural numbers, func-
tions, applications and let-expressions. We only model well-typed expressions by
defining a type source that is indexed by types tp.

Linear LF tp : type =
| nat : tp
| arr : tp → tp → tp
;

Linear LF source : tp → type =
| app : source (arr S T) → source S → source T
| lam : (source S → source T) → source (arr S T)
| z : source nat
| s : source nat → source nat;

In our target language we distinguish between expressions, characterized by
the type exp and values, defined by the type value. Continuations take values as
their argument and return an exp. We ensure that each continuation itself is used
exactly once by abstracting exp over the linear function space.

Linear LF exp : type =
| kapp : value (arr S T) → value S → (value T → exp) -o exp
| halt : value S → exp
and value : tp → type =
| klam : (value S → (value T → exp) -o exp) → value (arr S T)
| kz : value nat
| ksuc : value nat → value nat ;

We can now define our source and value contexts as unrestricted contexts by
marking the schema element with the tag u.

schema sctx = u (source T);
schema vctx = u (value T);

To guarantee that the resulting expression is well-typed, we define a context
relation Ctx_Rel to relate the source context to the value context (see Fig. 3). Notice
that we explicitly state that the type S of a source and target expression is
closed; it does not depend on γ or δ. To distinguish between objects that depend
on their surrounding context and objects that do not, we associate every index
and pattern variable with a substitution (the identity substitution by default);
if we want to state that a given variable is closed, we associate it with the empty
substitution [].

We can now define the translation itself (see Fig. 3). The function cpse takes in
a context relation Ctx_Rel [γ] [δ] and a source term of type source S[] that depends
on context γ. It then returns the corresponding expression of type exp, depending
on context δ extended by a continuation from value S to exp. The fact that the
continuation is used only once in exp is enforced by declaring it linear in the

Lincx: A Linear Logical Framework with First-Class Contexts 537

context. The translation proceeds by pattern matching on the source term. We
concentrate here on the interesting cases.

Fig. 3. CPS translation

Parameter Variable. If we encounter a variable from the context γ, written as
#p, we look up the corresponding variable #q in the target context δ by using the
context relation and we pass it to the continuation k. We omit here the definition
of the lookup function which is straightforward. We use _ where we believe that
the omitted object can reasonably be inferred. Finally, we note that k #q is well-
typed in the context δ, k̂:value _ → exp, as k is well-typed in the context that only
contains the declaration k̂:value _ → exp and #q is well-typed in the context δ.

Constant z. We first retrieve the target context δ to build the final expression by
pattern matching on the context relation r. Then we pass kz to the continuation
k in the context δ,k̂:value nat → exp. Note that an application k kz is well-typed in
δ,k̂:value nat → exp, as kz is well-typed in δ, i.e. its unrestricted part.

Lambda Abstraction. To convert functions, we extend the context γ and the
context relation r and convert the term M recursively in the extended context
to obtain the target expression P. We then pass to the continuation k the value

Application. Finally, let us consider the the source term app M N. We translate
both M and N recursively to produce the target terms P and Q respectively. We
then substitute for the continuation variable k2 in Q a continuation consuming

538 A.L. Georges et al.

the local argument of an application. A continuation is then built from this,
expecting the function to which the local argument is applied and substituted
for k1 in P producing a well-typed expression, if a continuation for the resulting
type S is provided.

We take advantage of our built-in substitution here to reduce any administra-
tive redexes. The term that we substitute for references to k2 in Q

will be β-reduced wherever that k2 appears in a function call position, such as the
function calls introduced in the variable case. We hence reduce administrative
redexes using the built-in (linear) LF application.

3 LINCX: A Linear Logical Framework with First-Class
Contexts

Throughout this section we gradually introduce Lincx, a contextual linear log-
ical framework with first-class contexts (i.e. context variables) that generalizes
the linear logical framework LLF [9] and contextual LF [6]. Figure 4 presents
both contextual linear LF (see Sect. 3.1) and its meta-language (see Sect. 3.6).

Fig. 4. Contextual linear LF with first-class contexts

Lincx: A Linear Logical Framework with First-Class Contexts 539

3.1 Syntax of Contextual Linear LF

Lincx allows for linear types, written A � B, and dependent types Πx:A.B
where x may be unrestricted in B. We follow recent presentations where we only
describe canonical LF objects using hereditary substitution.

As usual, our framework supports constants, (linear) functions, and (linear)
applications. We only consider objects in η-long β-normal form, as these are
the only meaningful terms in a logical framework. While the grammar charac-
terizes objects in β-normal form, the bi-directional typing rules will also ensure
that objects are η-long. Normal canonical terms are either intuitionistic lambda
abstractions, linear lambda abstractions, or neutral atomic terms. We define (lin-
ear) applications as neutral atomic terms using a spine representation [10], as it
makes the termination of hereditary substitution easier to establish. For exam-
ple, instead of x M1 . . . Mn, we write x · M1; . . . ; Mn; ε. The three possible
variants of a spine head are: a variable x, a constant c or a parameter variable
closure p[σ].

Our framework contains ordinary bound variables x which may refer to a
variable declaration in a context Ψ or may be bound by either the unrestricted
or linear lambda-abstraction, or by the dependent type Πx:A.B. Similarly to
contextual LF, Lincx also allows two kinds of contextual variables as terms.
First, the meta-variable u of type (Ψ � P) stands for a general LF object of
atomic type P and uses the variables declared in Ψ . Second, the parameter vari-
able p of type (Ψ � #A) stands for a variable object of type A from the context
Ψ . These contextual variables are associated with a postponed substitution σ
representing a closure. The intention is to apply σ as soon as we know what u
(or p resp.) stands for.

The system has one mixed context Ψ containing both intuitionistic and lin-
ear assumptions: x:A is an intuitionistic assumption in the context (also called
unrestricted assumption), x̂:A represents a linear assumption and x̌:A stands for
its dual, an unavailable assumption. It is worth noting that we use ̂ throughout
the system description to indicate a linear object – be it term, variable, name
etc. Similarly,

̂

always denotes an unavailable resource.
In the simultaneous substitution σ, we do not make the domain explicit.

Rather, we think of a substitution together with its domain Ψ ; the i-th element
in σ corresponds to the i-th declaration in Ψ . The expression idψ denotes the
identity substitution with domain ψm for some index m; we write · for the empty
substitution. We build substitutions using normal terms M . We must however
be careful: note that a variable x is only a normal term if it is of base type. As
we push a substitution σ through a λ-abstraction λx.M , we need to extend σ
with x. The resulting substitution σ, x might not be well-formed, since x might
not be of base type and, in fact, we do not know its type. This is taken care of
in our definition of substitution, based on contextual LF [7]. As we substitute
and replace a context variable with a concrete context, we unfold and generate
an (η-expanded) identity substitution for a given context Ψ .

540 A.L. Georges et al.

3.2 Contexts and Context Joins

Since linearity introduces context splitting, context maintenance is crucial in
any linear system. When we allow for first-class contexts, as we do in Lincx,
it becomes much harder: we now need to ensure that, upon instantiation of
the context variables, we do not accidentally join two contexts sharing a linear
variable. To enforce this in Lincx, we allow for at most one (indexed) context
variable per context and use indices to abstractly describe splitting. This lets us
generalize the standard equational theory for contexts based on context joins to
include context variables.

As mentioned above, contexts in Lincx are mixed. Besides linear and intu-
itionistic assumptions, we allow for unavailable assumptions following the app-
roach of Schack-Nielsen and Schürmann [27], in order to maintain symmetry
when splitting a context: if Ψ = Ψ1 �� Ψ2, then Ψ1 and Ψ2 both contain all the
variables declared in Ψ ; however, if Ψ1 contains a linear assumption x̂:A, Ψ2 will
contain its unavailable counterpart x̌:A (and vice-versa).

To account for context splitting in the presence of context variables, we index
the latter. The indices are freely built from elements of an infinite, countable set
I, through a join operation (��). It is associative and commutative, with ε as its
neutral element. In other words, (I∗, ��, ε) is a (partial) free commutative monoid
over I. For our presentation it is important that no element of the monoid is
invertible, that is if m �� n = ε then m = n = ε. In the process of joining
contexts, it is crucial to ensure that each linear variable is used only once: we do
not allow a join of Ψ, x̂:A with Φ, x̂:A. To express the fact that indices m and n
share no elements of I and hence the join of ψm with ψn is meaningful, we use the
notation m⊥n. In fact we will overload ��, changing it into a partial operation
m �� n that fails when m �⊥n. This is because we want the result of joining
two context variables to continue being a correct context upon instantiation. We
will come back to this point in Sect. 3.6, when discussing meta-substitution for
context variables.

To give more intuition, the implementation of the indices in our formalization
of the system is using binary numbers, where I contains powers of 2, �� is defined
as a binary OR and ε = 0. m⊥n holds when m and n use different powers of 2
in their binary representation. We can also simply think of indices m as sets of
elements from I with �� being ∪ for sets not sharing any elements.

The only context variables tracked in the meta-context Δ are the leaf-level
context variables ψi. We require that these use elements of the carrier set i ∈ I
as indices. To construct context variables for use in contexts, we combine leaf-
level context variables using �� on indices. Consider again the tree describing
the context joins (see Fig. 2). In this example, we have the leaf-level context
variables γ1, γ21, and γ22. These are the only context variables we track in the
meta-context Δ. Using a binary encoding we would use the subscripts 100, 010
and 001 instead of 1, 21, and 22.

Rules of constructing a well-formed context (Fig. 5) describe four possible
initial cases of context construction. First, the empty context, written simply
as ·, is well-formed. Next, there are two possibilities why a context denoted

Lincx: A Linear Logical Framework with First-Class Contexts 541

Fig. 5. Well-formed contexts

by a context variable ψi is well-formed. If the context variable ψi is declared
in the meta-context Δ, then it is well-formed and describes a leaf-variable. To
guarantee that also context variables that describe intermediate nodes in our
context tree are well-formed, we have a composition rule that allows joining two
well-formed context variables using �� operation on indices; the restriction we
make on �� ensures that they do not share any leaf-level variables. ψε forms a
well-formed context as long as there is some context variable ψi declared in Δ.
This is an abstraction that allows us to describe the intuitionistic variables of a
context. Finally, the last case for context extensions is straightforward.

In general we write Γ for contexts that do not start with a context variable
and Ψ, Γ for the extension of context Ψ by the variable declarations of Γ .

When defining our inference rules, we will often need to access the intuition-
istic part of a context. Much like in linear LF [9], we introduce the function Ψ
which is defined as follows:

Ψ Intuitionistic part of Ψ

· = ·
ψm = ψε

Ψ, x:A = Ψ, x:A
Ψ, x̂:A = Ψ, x̌:A
Ψ, x̌:A = Ψ, x̌:A

Note that this function does not remove any variable declarations from Ψ , it
simply makes them unavailable. Further, when applying this function to a con-
text variable, it drops all the indices, indicating access to only the shared part
of the context variable. After we instantiate ψm with a concrete context, we
will apply the operation. Extracting the intuitionistic part of a context is hence
simply postponed.

Further, we define notation unr(Ψ) to denote an unrestricted context, i.e. a
context that only contains unrestricted assumptions; while Ψ drops all linear
assumptions, unr(Ψ) simply verifies that Ψ is a purely intuitionistic context. In
other words, unr(Ψ) holds if and only if Ψ = Ψ . We omit here its (straightforward)
judgmental definition.

The rules for joining contexts (see Fig. 6) follow the approach presented by
Schack-Nielsen in his PhD dissertation [26], but are generalized to take into

542 A.L. Georges et al.

Fig. 6. Joining contexts

account context variables. Because of the monoid structure of context variable
indices, the description can be quite concise while still preserving the desired
properties of this operation. For instance the expected property Ψ = Ψ �� Ψ
follows, on the context variable level, from ε being the neutral element of ��.
Indeed, for any ψm, we have that ψm = ψm �� ψε.

It is also important to note that, thanks to the determinism of ��, context
joins are unique. In other words, if Ψ = Ψ1 �� Ψ2 and Φ = Ψ1 �� Ψ2, Ψ = Φ.
On the other hand, context splitting is non-deterministic: given a context Ψ we
have numerous options of splitting it into Ψ1 and Ψ2, since each linear variable
can go to either of the components.

We finish this section by describing the equational theory of context joins. We
expect joining contexts to be a commutative and associative operation, and the
unrestricted parts of contexts in the join should be equal. Further, it is always
possible to extend a valid join with a ground unrestricted context, and Ψ can
always be joined with Ψ without changing the result.

Lemma 1 (Theory of context joins).

1. (Commutativity) If Ψ = Ψ1 �� Ψ2 then Ψ = Ψ2 �� Ψ1.
2. (Associativity 1) If Ψ = Ψ1 �� Ψ2 and Ψ1 = Ψ11 �� Ψ12 then there exists a

context Ψ0 s.t. Ψ = Ψ11 �� Ψ0 and Ψ0 = Ψ12 �� Ψ2.
3. (Associativity 2) If Ψ = Ψ1 �� Ψ2 and Ψ2 = Ψ21 �� Ψ22 then there exists a

context Ψ0 s.t. Ψ0 = Ψ1 �� Ψ21 and Ψ = Ψ0 �� Ψ22.
4. If Ψ = Ψ1 �� Ψ2 then Ψ = Ψ1 = Ψ2.
5. If unr(Γ) and Ψ = Ψ1 �� Ψ2 then Ψ, Γ = Ψ1, Γ �� Ψ2, Γ .
6. For any Ψ , Ψ = Ψ �� Ψ .

We will need these properties to prove lemmas about typing and substitution,
specifically for the cases that call for specific context joins.

3.3 Typing for Terms and Substitutions

We now describe the bi-directional typing rules of Lincx terms (see Fig. 7). All
typing judgments have access to the meta-context Δ, context Ψ , and to a fixed
well-typed signature Σ where we store constants c together with their types

Lincx: A Linear Logical Framework with First-Class Contexts 543

and kinds. Lincx objects may depend on variables declared in the context Ψ
and a fixed meta-context Δ which contains contextual variables such as meta-
variables u, parameter variables p, and context variables. Although the rules
are bi-directional, they do not give a direct algorithm, as we need to split a
context Ψ into contexts Ψ1 and Ψ2 such that Ψ = Ψ1 �� Ψ2 (see for example
the rule for checking H · S against a base type P). This operation is in itself
non-deterministic, however since our system is linear there is only one split that
makes the components (for example H and S in H · S) typecheck.

Fig. 7. Typing rules for terms

Typing rules presented in Fig. 7 are, perhaps unsurprisingly, a fusion between
contextual LF and linear LF. As in contextual LF, the typing for meta-variable
closures and parameter variable closures is straightforward. A meta-variable u :
(Ψ � P) represents an open LF object (a “hole” in a term). As mentioned earlier
it has, associated with it, a postponed substitution σ, applied as soon as u is
made concrete. Similarly, a parameter variable p : (Ψ � #A) represents an LF
variable – either an unrestricted or linear one.

As in linear LF, we have two lambda abstraction rules (one introducing intu-
itionistic, the other linear assumptions) and two corresponding variable cases.

544 A.L. Georges et al.

Moreover, we ensure that types only depend on the unrestricted part of a context
when checking that two types are equal. As we rely on hereditary substitutions,
this equality check ends up being syntactic equality. Similarly, when we consider
a spine M ;S and check it against the dependent type Πx:A.B, we make sure
that M has type A in the unrestricted context before continuing to check the
spine S against [M/x]AB. When we encounter a spine M ;̂ S and check it against
the linear type A � B in the context Ψ , we must show that there exists a split
s.t. Ψ = Ψ1 �� Ψ2 and then check that the term M has type A in the context Ψ1

and the remaining spine S is checked against B to synthesize a type P .

Fig. 8. Typing rules for substitutions

Finally, we consider the typing rules for substitutions, presented in Fig. 8. We
exercise care in making sure the range context in the base cases, i.e. where the
substitution is empty or the identity, is unrestricted. This guarantees weakening
and contraction for unrestricted contexts.

The substitution σ,M is well-typed with domain Φ, x:A and range Ψ , if σ is
a substitution from Φ to the context Ψ and in addition M has type [σ]ΦA in the
unrestricted context Ψ . The substitution σ,M is well-typed with domain Φ, x̂:A
and range Ψ , if there exists a context split Ψ = Ψ1 �� Ψ2 s.t. σ is a substitution
with domain Φ and range Ψ1 and M is a well-typed term in the context Ψ2.
The substitution σ,M is well-typed with domain Φ, x̌:A and range Ψ , if σ is a
substitution from Φ to Ψ and for some context Ψ ′, Ψ = Ψ ′, M is a well-typed
term in the context Ψ ′. This last rule, extending the substitution domain by an
unavailable variable, is perhaps a little surprising. Intuitively we may want to
skip the unavailable variable of a substitution. This would however mean that we
have to perform not only context splitting, but also substitution splitting when
defining the operation of simultaneous substitution. An alternative is to use an
arbitrary term M to be substituted for this unavailable variable, as the typing
rules ensure it will never actually occur in the term in which we substitute.
When establishing termination of type-checking, it is then important that M

Lincx: A Linear Logical Framework with First-Class Contexts 545

type checks in a context that can be generated from the one we already have.
We ensure this with a side condition Ψ = Ψ ′. By enforcing that the unrestricted
parts of Ψ and Ψ ′ are equal we limit the choices that we have for Ψ ′ deciding
which linear variables to take (linear) and which to drop (unavailable), and
deciding on the index of context variable.

When considering an identity substitution idψ, we allow for some ambigu-
ity: we can use any ψm for both the domain and range of idψ. Upon meta-
substitution, all instantiations of ψm will have the same names and types of
variables; the only thing differentiating them will be their status (intuitionis-
tic, linear or unavailable). Since substitutions do not store information about
the status of variables they substitute for (this information is available only in
the domain and range), the constructed identity substitution will be the same
regardless of the initial choice of ψm – it will however have a different type.

The observation above has a more general consequence, allowing us to avoid
substitution splits when defining the operation of hereditary substitution: if a
substitution in Lincx transforms context Φ to context Ψ , it does so also for their
unrestricted fragments.

Lemma 2. If Δ;Ψ � σ ⇐ Φ then Δ;Ψ � σ ⇐ Φ.

3.4 Hereditary Substitution

Next we will characterise the operation of hereditary substitution, which allows
us to consider only normal forms in our grammar and typing rules, making the
decidability of type-checking easy to establish.

As usual, we annotate hereditary substitutions with an approximation of the
type of the term we substitute for to guarantee termination.

Type approximations α, β :: = a | α → β | α � β

We then define the dependency erasure operator (−)− as follows:

A− = α α is a type approximation of A

(a · S)− = a

(Πx:A.B)− =A− → B−

(A � B)− =A− � B−

We will sometimes tacitly apply the dependency erasure operator (−)− in the
following definitions. Hereditary single substitution for Lincx is standard and
closely follows [7], since linearity does not induce any complications. When exe-
cuting the current substitution would create redexes, we proceed by hereditarily
performing another substitution. This reduction operation is defined as:

546 A.L. Georges et al.

reduce(M : α, S) = N N is the result of reducing M applied to the spine S

reduce(λx.M : α → β, (N ;S)) = reduce([N/x]αM : β, S)

reduce(λ̂x.M : α � β, (N ;̂ S))= reduce([N/x]αM : β, S)
reduce(R : a, ε) = R

reduce(M : α, S) = ⊥

Termination can be readily established:

Theorem 1 (Termination of hereditary single substitution).
The hereditary substitutions [M/x]α(N) and reduce(M : α, S) terminate,

either by failing or successfully producing a result.

The following theorem provides typing for the hereditary substitution. We
use J to stand for any of the forms of judgments defined above.

Theorem 2 (Hereditary single substitution property).

1. If Δ;Ψ � M ⇐ A and Δ;Ψ, x:A � J then Δ;Ψ � [M/x]AJ .
2. If Δ;Ψ1 � M ⇐ A, Δ;Ψ2, x̂:A � J and Ψ = Ψ1 �� Ψ2 then Δ;Ψ � [M/x]AJ
3. If Δ;Ψ1 � M ⇐ A, Δ;Ψ2 � S > A ⇒ B, Ψ = Ψ1 �� Ψ2 and reduce(M :

A−, S) = M ′ then Δ;Ψ � M ′ ⇐ B

We can easily generalize hereditary substitution to simultaneous substitution.
We focus here on the simultaneous substitution in a canonical terms (see Fig. 9).
Hereditary simultaneous substitution relies on a lookup function that is defined
below. Note that (σ,M)Ψ,x̌:A(x) = ⊥, since we assume x to be unavailable in
the domain of σ.

σΨ (x) Variable lookup

(σ,M)Ψ,x:A(x)= M : A−

(σ,M)Ψ,x̂:A(x)= M : A−

(σ,M)Ψ,y:A(x) = σΨ (x) where y �= x

(σ,M)Ψ,y̌:A(x) = σΨ (x) where y �= x

σΨ (x) = ⊥

Unlike many previous formulations of contextual LF, we do not allow substi-
tutions to be directly extended with variables. Instead, following Cave and Pien-
tka’s more recent approach [7], we require that substitutions must be extended
with η-long terms, thus guaranteeing unique normal forms for substitutions. For
this reason, we maintain a list of variable names and statuses which are not to
be changed, Φ̃ in [σ]�ΦΨ . This list gets extended every time we pass through a
lambda expression. We use it when substituting in y · S – if y ∈ Φ̃ or ŷ ∈ Φ̃ we
simply leave the head unchanged. It is important to preserve not only the name

Lincx: A Linear Logical Framework with First-Class Contexts 547

Fig. 9. Simultaneous substitution

of the variable, but also its status (linear, intuitionistic or unavailable), since we
sometimes have to perform a split on Φ̃. Such split works precisely like one on
complete contexts, since types play no role in context splitting.

As simultaneous substitution is a transformation of contexts, it is perhaps
not surprising that it becomes more complex in the presence of context splitting.
Consider for instance the case where we push the substitution σ through an
expression p[τ] · S. While σ has domain Ψ (and is ignoring variables from Φ̃)
and p[τ] · S is well-typed in (Ψ,Φ), the closure p[τ] is well-typed in a context
(Ψ1, Φ1) and the spine S is well-typed in a context (Ψ2, Φ2) where Ψ = Ψ1 �� Ψ2

and Φ = Φ1 �� Φ2. As a consequence, [σ]�ΦΨτ and [σ]�ΦΨS would be ill-typed,
however [σ]

�Φ1
Ψ1

τ and [σ]
�Φ2
Ψ2

S will work well. Notice that it is only the domain of
the substitution that we need to split, not the substitution itself.

Similarly to the case for hereditary single substitution, the theorem below
provides typing for simultaneous substitution.

Theorem 3 (Simultaneous substitution property).
If Δ;Ψ � J and Δ;Φ � σ ⇐ Ψ then Δ;Φ � [σ]ΨJ .

3.5 Decidability of Type Checking in Contextual Linear LF

In order to establish a decidability result for type checking, we observe that the
typing judgments are syntax directed. Further, when a context split is necessary
(e.g. when checking Δ,Ψ � σ,M ⇐ Φ, x̂:A), it is possible to enumerate all the
possible correct splits (all Ψ1, Ψ2 such that Ψ = Ψ1 �� Ψ2). For exactly one of
them it will hold that Δ;Ψ1 � σ ⇐ Φ and Δ;Ψ2 � M ⇐ [σ]ΦA. Finally, in
the Δ,Ψ � σ,M ⇐ Φ, x̌:A case, thanks to explicit mention of all the variables
(including unavailable ones), we can enlist all possible contexts Ψ ′ well-formed
under Δ and such that Ψ = Ψ ′.

548 A.L. Georges et al.

Theorem 4 (Decidability of type checking). Type checking is decidable.

3.6 LINCX’s Meta-Language

To use contextual linear LF as an index language in Beluga, we have to be
able to lift Lincx objects to meta-types and meta-objects and the definition
of the meta-substitution operation. We are basing our presentation on one for
contextual LF [6].

Figure 4 presents the meta-language of Lincx. Meta-objects are either con-
textual objects or contexts. The former may be instantiations to parameter vari-
ables p : (Ψ � #A) or meta-variables u : (Ψ � P). These objects are written Ψ̃ .R

where Ψ̃ denotes a list of variables obtained by dropping all the type informa-
tion from the declaration, but retaining the information about variable status
(intuitionistic, linear or unavailable).

Ψ̃ Name and status of variables from Ψ

·̃ = ·
ψ̃m = ψm

Ψ̃, x:A = Ψ̃ , x

Ψ̃, x̂:A = Ψ̃ , x̂

Ψ̃, x̌:A = Ψ̃ , x

̂

Contexts as meta-objects are used to instantiate context variables ψi : G.
When constructing those we must exercise caution, as we need to ensure that no
linear variable is used in two contexts that are, at any point, joined. At the same
time, instantiations for context variables differing only in the index (ψi and ψj)
have to use precisely the same variable names and their unrestricted fragments
have to be equal. It is also important to ensure that the constructed context is
of a correct schema G. Schemas describe possible shapes of contexts, and each
schema element can be either linear (λ(

−−−→
xi:Ai).Â) or intuitionistic (λ(

−−−→
xi:Ai).A).

This can be extended to also allow combinations of linear and intuitionistic
schema elements.

We now give rules for a well-formed meta-context Δ (see Fig. 10). It is defined
on the structure of Δ and is mostly straightforward. As usual, we assume the

Fig. 10. Well-formed meta-contexts

Lincx: A Linear Logical Framework with First-Class Contexts 549

names we choose are fresh. The noteworthy case arises when we extend Δ with
a context variable ψi. Because all context variables ψj will describe parts of the
same context, we require their schemas to be the same. This side condition (�)
can be formally stated as: ∀j.ψj ∈ dom(Δ) → ψj : G ∈ Δ. Moreover, to avoid
manually ensuring that indices of context variables do not cross, we require that
leaf context variables use elements of the carrier set i ∈ I (i.e. they are formed
without using the �� operation).

Typing of meta-terms is straightforward and follows precisely the schema
presented in previous work.

Because of the interdependencies when substituting for context variables, we
diverge slightly from standard presentations of typing of meta-substitutions.

First, we do not at all consider single meta-substitutions, as they would be
limited only to parameter and meta-variables. In the general case it is impossible
to meaningfully substitute only one context variable, as this would break the
invariant that all instantiations of context variables share variable names and
the intuitionistic part of the context.

Second, the typing rules for the simultaneous meta-substitution (see Fig. 11)
are specialized in the case of substituting for a context variable. When extending
Θ with an instantiation Ψi for a context variable ψi : G, we first verify that
context Ψi has the required schema G. We also have to check that Ψi can be
joined with any other instantiation Ψj for context variable ψj already present
in Θ (that is, Ψi ⊥ψ Θ). This is enough to ensure the desired properties of
meta-substitution for context variables.

We can now define the simultaneous meta-substitution. The operation itself
is straightforward, as linearity does not complicate things on the meta-level.
What is slightly more involved is the variable lookup function.

Fig. 11. Typing rules for meta-substitutions

550 A.L. Georges et al.

ΘΔ(X) Contextual variable lookup

(Θ,Ψ/ψi)Δ,ψi:G(ψε) = Ψ

(Θ,Ψ/ψi)Δ,ψi:G(ψi) = Ψ

(Θ,Ψ/ψi)Δ,ψi:G(ψm)= Φ where Φ = Ψ �� Ψ ′ and m = i �� n
and ΘΔ(ψn) = Ψ ′

(Θ,Ψ/ψi)Δ,ψi:G(ψm)= ΘΔ(ψm) where i ⊥ψ m

(Θ,C/X)Δ,X:U (X) = C : U

(Θ,C/Y)Δ,Y : (X) = ΘΔ(X) where Y �= X

ΘΔ(X) = ⊥

On parameter and meta-variables it simply returns the correct meta-object,
to which the simultaneous substitution from the corresponding closure is then
applied. The lookup is a bit more complicated for context variables, since Θ only
contains substitutions for leaf context variables ψi. For arbitrary ψm we must
therefore deconstruct the index m = i1 �� · · · �� ik and return ΘΔ(ψi1) �� · · · ��
ΘΔ(ψik

). Finally, for ψε we simply have to find any Ψ/ψi in Θ and return Ψ – the
typing rules for Θ ensure that the choice of ψi is irrelevant, as the unrestricted
part of the substituted context is shared.

Theorem 5 (Simultaneous meta-substitution property).
If Δ � Θ ⇐ Δ′ and Δ′;Ψ � J , then Δ; �Θ�Δ′Ψ � �Θ�Δ′J .

3.7 Writing Programs About LINCX Objects

We sketch here why Lincx is a suitable index language for writing programs
and proofs. In [29], Thibodeau et al. describe several requirements for plugging
in an index language into the (co)inductive foundation for writing programs and
proofs about them. They fall into three different classes. We will briefly touch
on each one.

First, it requires that the index domain satisfies meta-substitution properties
that we also prove for Lincx. Second, comparing two objects should be decidable.
We satisfy this criteria, since we only characterize βη-long canonical forms and
equality reduces to syntactic equality. The third criterion is unification of index
objects. While we do not describe a unification algorithm for Lincx objects,
we believe it is a straightforward extension of Schack-Nielsen and Schürmann’s
work [27]. Finally, we require a notion of coverage of Lincx objects which is a
straightforward extension of Pientka and Abel’s approach [22].

4 Mechanization of LINCX

We have mechanized key properties of our underlying theory in the proof assis-
tant Beluga. In particular, we encoded the syntax, typing rules of Lincx
together with single and simultaneous hereditary substitution operations in the

Lincx: A Linear Logical Framework with First-Class Contexts 551

logical framework LF relying on HOAS encodings to model binding. Our encod-
ing is similar to Martens and Crary’s [15] of LF in LF, but we also handle
meta-variables and simultaneous substitutions. Since Beluga only intrinsi-
cally supports intuitionistic binding structures and contexts, linearity must be
enforced separately. We do this through an explicit context of variable decla-
rations, connecting each variable to a flag and a type. To model contexts with
context variable indices we use a binary encoding. The implementation of Lincx
in Beluga was crucial to arrive at our understanding of modelling context vari-
ables using commutative monoids.

As mentioned in Sect. 3.2, the context variable indices take context splitting
into account by describing elements from a countably infinite set I, along with
a neutral element and a join operation that is commutative and associative. We
implement these indices using binary strings, where ε is the empty string, and a
string with a single positive bit represents a leaf-level variable. In other words,
through this abstraction, every context variable in Δ is a binary string with a
single positive bit. Schack-Nielsen [26] uses a similar encoding for managing flags
for linear, unrestricted, and unavailable assumptions in concrete contexts. Our
encoding lifts these ideas to modelling context variables. We then implement
the �� operation as a binary OR operation which fails when the two strings have
a common positive (for instance a join between 001 and 011 would fail). The
following describes the join of M and N, forming K.

LF bin_or : bin → bin → bin → type =
| bin_or_nil_l : bin_or nil M M
| bin_or_nil_r : bin_or M nil M
| bin_or_l : bin_or M N K → bin_or (cons one M) (cons zero N) (cons one K)
| bin_or_r : bin_or M N K → bin_or (cons zero M) (cons one N) (cons one K)
| bin_or_zero : bin_or M N K → bin_or (cons zero M) (cons zero N) (cons zero K)

;

We then proceed to prove commutativity, associativity and uniqueness of
bin_or. Finally, we mechanized the proofs of the properties about our equational
theory of context joins as total functions in Beluga. In particular, we mecha-
nized proofs of Lemmas 1 and 2. Here we take advantage of Beluga’s first-class
contexts and in the base cases rely on the commutativity and associativity prop-
erties of the binary encoding of context variable indices. We note that context
equality is entirely syntactic and can thus be defined simply in terms of reflection.

Although we had to model our mixed contexts of unrestricted and linear
assumptions explicitly, Beluga’s support for encoding formal systems using
higher-order abstract syntax still significantly simplified our definitions of typ-
ing rules and hereditary substitution operation. In particular, it allowed us to
elegantly model variable bindings in abstractions and Π-types.

Inductive properties about typing and substitution are implemented as recur-
sive functions in Beluga. Many of the proofs in this paper become fairly tedious
and complex on paper and mechanizing Lincx therefore helps us build trust in
our foundation. Given the substantial amount of time and lines of code we devote
to model contexts and context joins, our mechanization also demonstrate the

552 A.L. Georges et al.

value Lincx can bring to mechanizing linear systems or more generally systems
that work with resources.2

5 Related Work

The idea of using logical framework methodology to build a specification lan-
guage for linear logic dates back three decades, beginning with Cervesato’s and
Pfenning’s linear logical framework LLF [9] providing �, & and � operators
from intuitionistic linear logic, the maximal set of connectives for which unique
canonical forms exist. The idea was later expanded to the concurrent logical
framework CLF [31], which uses a monad to encapsulate less well-behaved oper-
ators. The quest to design meta-logics that allow us to reason about linear logical
frameworks has been marred with difficulties in the past.

In proof theory, McDowell and Miller [18,19] and later Gacek et al. [13]
propose a two-level approach to reason about formal systems where we rely on
a first-order sequent calculus together with inductive definitions and induction
on natural numbers as a meta-reasoning language. We encode our fomal system
in a specification logic that is then embedded in the first-order sequent calculus,
the reasoning language. The design of the two-level approach is in principle
modular and in fact McDowell’s PhD thesis [18] describes a linear specification
logic. However the context of assumptions is encoded as a list explicitly in this
approach. As a consequence, we need to reason modulo the equational properties
of context joins and we may need to prove properties about the uniqueness of
assumptions. Such bureaucratic reasoning then still pollutes our main proof.

In type theory, McCreight and Schürmann [17] give a tailored meta-logic L+
ω

for linear LF, which is an extension of the meta-logic for LF [28]. While L+
ω

also characterize partial linear derivations using contextual objects that depend
on a linear context, the approach does not define an equational theory on con-
texts and context variables. It also does not support reasoning about contextual
objects modulo such an equational theory. In addition L+

ω does not cleanly sep-
arate the meta-theoretic (co)inductive reasoning about linear derivations from
specifying and modelling the linear derivations themselves. We believe the mod-
ular design of Beluga, i.e. the clean separation of representing and modelling
specifications and derivations on one hand and reasoning about such derivations
on the other, offers many advantages. In particular, it is more robust and also
supports extensions to (co)inductive definitions [6,29].

The hybrid logical framework HLF by Reed [25] is in principle capable to
support reasoning about linear specifications. In HLF, we reason about objects
that are valid at a specific world, instead of objects that are valid within a con-
text. However, contexts and worlds seem closely connected. Most recently Bock
and Schürmann [4] propose a contextual logical framework XLF. Similarly to
Lincx, it is also based on contextual modal type theory with first-class con-
texts. However, context variables have a strong nominal flavor in their system.
2 Lincx Mechanization: https://github.com/Beluga-lang/Beluga/tree/master/

examples/lincx mechanization.

https://github.com/Beluga-lang/Beluga/tree/master/examples/lincx_mechanization
https://github.com/Beluga-lang/Beluga/tree/master/examples/lincx_mechanization

Lincx: A Linear Logical Framework with First-Class Contexts 553

In particular, Bock and Schürmann allow multiple context variables in the con-
text and each context variable is associated with a list of variable names (and
other context variable domains) from which it must be disjoint – otherwise the
system is prone to repetition of linear variables upon instantiation.

On a more fundamental level the difference between HLF and XLF on the
one hand and our approach on the other is how we think about encoding meta-
theoretic proofs. HLF and XLF follow the philosophy of Twelf system and encod-
ing proofs as relations. This makes it sometimes challenging to establish that
a given relation constitutes an inductive proof and hence both systems have
been rarely used to establish such meta-theoretic proofs. More importantly, the
proof-theoretic strength of this approach is limited. For example, it is challeng-
ing to encode formal systems and proofs that rely on (co)inductive definitions
such as proofs by logical relations and bisimulation proofs within the logical
framework itself. We believe the modular design of separating cleanly between
Lincx as a specification framework and embedding Lincx into the proof and
programming language Beluga provides a simpler foundation for representing
the meta-theory of linear systems. Intuitively, meta-proofs about linear systems
only rely on linearity to model the linear derivations – however the reasoning
about these linear derivation trees is not linear, but remains intuitionistic.

6 Conclusion and Future Work

We have presented Lincx, a linear contextual modal logical framework with
first-class contexts as a foundation to model linear systems and derivations. In
particular, Lincx satisfies the necessary requirements to serve as a specification
and index language for Beluga and hence provides a suitable foundation for
implementing proofs about (linear) derivation trees as recursive functions. We
have also mechanized the key equational properties of context joins in Beluga.
This further increases our confidence in our development.

There is a number of research questions that naturally arise and we plan
to pursue in the future. First, we plan to extend Lincx with additional linear
connectives such as � and A&B. These additional connectives are for example
present in [9]. We omitted them here to concentrate on modelling context joins
and their equational theory, but we believe it is straightforward to add them.

Dealing with first-class contexts in the presence of additive operators is more
challenging, as they may break canonicity. We plan to follow the approach in CLF
[31] enclosing them into a monad to control their behaviour. Having also additive
operators would allow us to for example model the meta-theory of session type
systems [5] and reason about concurrent computation. Further we plan to add
first-class substitution variables [7] to Lincx. This woud allow us to abstractly
describe relations between context. This seems particularly important as we
allow richer schemas definitions that model structured sequences.

Last but not least, we would like to implement Lincx as a specification
language for Beluga to enable reasoning about linear specifications in practice.

554 A.L. Georges et al.

References

1. Savary-Belanger, O., Monnier, S., Pientka, B.: Programming type-safe transfor-
mations using higher-order abstract syntax. In: Gonthier, G., Norrish, M. (eds.)
CPP 2013. LNCS, vol. 8307, pp. 243–258. Springer, Cham (2013). doi:10.1007/
978-3-319-03545-1 16

2. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! - A framework for higher-order
separation logic in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 315–331. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32347-8 21

3. Berdine, J., O’Hearn, P.W., Reddy, U.S., Thielecke, H.: Linear continuation-
passing. High.-Order Symbolic Comput. 15(2–3), 181–208 (2002)

4. Bock, P.B., Schürmann, C.: A contextual logical framework. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp.
402–417. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 28

5. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4 16

6. Cave, A., Pientka, B.: Programming with binders and indexed data-types. In: 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2012), pp. 413–424. ACM (2012)

7. Cave, A., Pientka, B.: First-class substitutions in contextual type theory. In:
8th ACM SIGPLAN International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP 2013), pp. 15–24. ACM (2013)

8. Cave, A., Pientka, B.: A case study on logical relations using contextual types.
In: Cervesato, I., Chaudhuri, K. (eds.) 10th International Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP 2015), pp. 18–
33. Electronic Proceedings in Theoretical Computer Science (EPTCS) (2015)

9. Cervesato, I., Pfenning, F.: A linear logical framework. In: Clarke, E. (ed.) 11th
Annual Symposium on Logic in Computer Science, pp. 264–275. IEEE Press,
New Brunswick (1996)

10. Cervesato, I., Pfenning, F.: A linear spine calculus. J. Logic Comput. 13(5), 639–
688 (2003)

11. Danvy, O., Filinski, A.: Representing control: a study of the CPS transformation.
Math. Struct. Comput. Sci. 2(4), 361–391 (1992)

12. Fluet, M., Morrisett, G., Ahmed, A.: Linear regions are all you need. In: Sestoft, P.
(ed.) ESOP 2006. LNCS, vol. 3924, pp. 7–21. Springer, Heidelberg (2006). doi:10.
1007/11693024 2

13. Gacek, A., Miller, D., Nadathur, G.: A two-level logic approach to reasoning about
computations. J. Autom. Reason. 49(2), 241–273 (2012)

14. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM
40(1), 143–184 (1993)

15. Martens, C., Crary, K.: LF in LF: mechanizing the metatheories of LF in Twelf. In:
7th International Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP 2012), pp. 23–32. ACM (2012)

16. McCreight, A.: Practical tactics for separation logic. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 343–358.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 24

17. McCreight, A., Schürmann, C.: A meta-linear logical framework. In: 4th Interna-
tional Workshop on Logical Frameworks and Meta-Languages (LFM 2004) (2004)

http://dx.doi.org/10.1007/978-3-319-03545-1_16
http://dx.doi.org/10.1007/978-3-319-03545-1_16
http://dx.doi.org/10.1007/978-3-642-32347-8_21
http://dx.doi.org/10.1007/978-3-662-48899-7_28
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/11693024_2
http://dx.doi.org/10.1007/11693024_2
http://dx.doi.org/10.1007/978-3-642-03359-9_24

Lincx: A Linear Logical Framework with First-Class Contexts 555

18. McDowell, R.: Reasoning in a logic with definitions and induction. Ph.D. thesis,
University of Pennsylvania (1997)

19. McDowell, R.C., Miller, D.A.: Reasoning with higher-order abstract syntax in a
logical framework. ACM Trans. Comput. Logic 3(1), 80–136 (2002)

20. Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Trans. Comput. Logic 9(3), 1–49 (2008)

21. Pientka, B.: A type-theoretic foundation for programming with higher-order
abstract syntax and first-class substitutions. In: 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2008), pp. 371–382.
ACM (2008)

22. Pientka, B., Abel, A.: Structural recursion over contextual objects. In:
Altenkirch, T. (ed.) 13th International Conference on Typed Lambda Calculi
and Applications (TLCA 2015), pp. 273–287. Leibniz International Proceedings
in Informatics (LIPIcs) of Schloss Dagstuhl (2015)

23. Pientka, B., Cave, A.: Inductive beluga: programming proofs (system description).
In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp.
272–281. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 18

24. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reasoning with
deductive systems (system description). In: Giesl, J., Hähnle, R. (eds.) IJCAR
2010. LNCS (LNAI), vol. 6173, pp. 15–21. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14203-1 2

25. Reed, J.: A hybrid logical framework. Ph.D. thesis, Carnegie Mellon (2009)
26. Schack-Nielsen, A.: Implementing substructural logical frameworks. Ph.D. thesis,

IT University of Copenhagen (2011)
27. Schack-Nielsen, A., Schürmann, C.: Pattern unification for the lambda calculus

with linear and affine types. In: Crary, K., Miculan, M. (eds.) International Work-
shop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP
2010). Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 34,
pp. 101–116, July 2010

28. Schürmann, C.: Automating the meta theory of deductive systems. Ph.D. thesis,
Department of Computer Science, Carnegie Mellon University, CMU-CS-00-146
(2000)

29. Thibodeau, D., Cave, A., Pientka, B.: Indexed codata. In: Garrigue, J., Keller, G.,
Sumii, E. (eds.) 21st ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2016), pp. 351–363. ACM (2016)

30. Walker, D., Watkins, K.: On regions and linear types. In: Pierce, B.C. (ed.)
6th ACM SIGPLAN International Conference on Functional Programming (ICFP
2001), pp. 181–192. ACM (2001)

31. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work I: judgments and properties. Technical report CMU-CS-02-101, Department
of Computer Science, Carnegie Mellon University (2002)

http://dx.doi.org/10.1007/978-3-319-21401-6_18
http://dx.doi.org/10.1007/978-3-642-14203-1_2
http://dx.doi.org/10.1007/978-3-642-14203-1_2

APLicative Programming with
Naperian Functors

Jeremy Gibbons(B)

University of Oxford, Oxford, UK
Jeremy.Gibbons@cs.ox.ac.uk

Abstract. Much of the expressive power of array-oriented languages
such as Iverson’s APL and J comes from their implicit lifting of scalar
operations to act on higher-ranked data, for example to add a value
to each element of a vector, or to add two compatible matrices point-
wise. It is considered a shape error to attempt to combine arguments
of incompatible shape, such as a 3-vector with a 4-vector. APL and J
are dynamically typed, so such shape errors are caught only at run-time.
Recent work by Slepak et al. develops a custom type system for an array-
oriented language, statically ruling out such errors. We show here that
such a custom language design is unnecessary: the requisite compatibility
checks can already be captured in modern expressive type systems, as
found for example in Haskell; moreover, generative type-driven program-
ming can exploit that static type information constructively to automat-
ically induce the appropriate liftings. We show also that the structure
of multi-dimensional data is inherently a matter of Naperian applica-
tive functors—lax monoidal functors, with strength, commutative up to
isomorphism under composition—that also support traversal .

1 Introduction

Array-oriented programming languages such as APL [21] and J [23] pay spe-
cial attention, not surprisingly, to manipulating array structures. These encom-
pass not just rank-one vectors (sequences of values), but also rank-two matrices
(which can be seen as rectangular sequences of sequences), rank-three cuboids
(sequences of sequences of sequences), rank-zero scalars, and so on.

One appealing consequence of this unification is the prospect of rank polymor-
phism [34]—that a scalar function may be automatically lifted to act element-
by-element on a higher-ranked array, a scalar binary operator to act pointwise
on pairs of arrays, and so on. For example, numeric function square acts not
only on scalars:

square 3 = 9

but also pointwise on vectors:

square 1 2 3 = 1 4 9

and on matrices and cuboids:
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 556–583, 2017.
DOI: 10.1007/978-3-662-54434-1 21

APLicative Programming with Naperian Functors 557

square
1 2 3
4 5 6
7 8 9

=
1 4 9
16 25 36
49 64 81

square 1 2

3 4

5 6

8 = 1 4

9 16

25 36

64

Similarly, binary operators act not only on scalars, but also on vectors:

1 2 3 + 4 5 6 = 5 7 9

and on matrices:

1 2
3 4

+
5 6
7 8

=
6 8
10 12

The same lifting can be applied to operations that do not simply act pointwise.
For example, the sum and prefix sums functions on vectors can also be applied
to matrices:

sum 1 2 3 = 6 sum 1 2 3
4 5 6

=
6
15

sums 1 2 3 = 1 3 6 sums 1 2 3
4 5 6

=
1 3 6
4 9 15

In the right-hand examples above, sum and sums have been lifted to act on the
rows of the matrix. J also provides a reranking operator "1, which will make
them act instead on the columns—essentially a matter of matrix transposition:

sum "1
1 2 3
4 5 6

= sum
(
transpose 1 2 3

4 5 6

)
= sum

1 4
2 5
3 6

= 5 7 9

sums "1
1 2 3
4 5 6

= transpose
(
sums

(
transpose 1 2 3

4 5 6

))

= transpose
(
sums

1 4
2 5
3 6

)
= transpose

1 5
2 7
3 9

=
1 2 3
5 7 9

Furthermore, the arguments of binary operators need not have the same rank;
the lower-ranked argument is implicitly lifted to align with the higher-ranked
one. For example, one can add a scalar and a vector:

3 + 4 5 6 = 3 3 3 + 4 5 6 = 7 8 9

or a vector and a matrix:

1 2 3 +
4 5 6
7 8 9

=
1 2 3
1 2 3

+
4 5 6
7 8 9

=
5 7 9
8 10 12

1.1 Static Types for Multi-dimensional Arrays

In recent work [34], Slepak et al. present static and dynamic semantics for a
typed core language Remora. Their semantics clarifies the axes of variability
illustrated above; in particular, it makes explicit the implicit control structures

558 J. Gibbons

and data manipulations required for lifting operators to higher-ranked argu-
ments and aligning arguments of different ranks. Moreover, Remora’s type sys-
tem makes it a static error if the shapes in a given dimension do not match—for
example, when attempting to add a 2-vector to a 3-vector, or a 2×2-matrix to a
2×3-matrix. (Incidentally, we adopt Slepak et al.’s terminology: the shape of a
multi-dimensional array is a sequence of numbers, specifying the extent in each
dimension; the rank of the array is the length of that list, and hence the number
of dimensions; and the size of the array is the product of that list, and hence
the number of elements.)

Slepak et al. model the type and evaluation rules of Remora in PLT Redex
[11], and use this model to prove important properties such as type safety. PLT
Redex provides complete freedom to model whatever semantics the language
designer chooses; but the quid pro quo for this freedom is that it does not
directly lead to a full language implementation—with type inference, a com-
piler, libraries, efficient code generation, and so on. They write that “our hope
[for future work] is that we can exploit this type information to compile programs
written in the rank-polymorphic array computation model efficiently” and that
“Remora is not intended as a language comfortable for human programmers to
write array computations. It is, rather, an explicitly typed, ‘essential’ core lan-
guage on which such a language could be based” [34, p. 29]. Moreover, “the tran-
sition from a core semantics modeled in PLT Redex to a complete programming
system requires a more flexible surface language and a compiler [. . .] the added
code is mostly type and index applications. Type inference would be necessary
in order to make a surface language based on Remora practical” [34, p. 45].

1.2 Embedding Static Typing

This is the usual trade-off between standalone and embedded domain-specific
languages. If the type rules of Remora had been embedded instead in a suffi-
ciently expressive typed host language, then the surrounding ecosystem of that
host language—type inference, the compiler, libraries, code generation—could
be leveraged immediately to provide a practical programming vehicle. The chal-
lenge then becomes to find the right host language, and to work out how best to
represent the rules of the DSL within the features available in that host language.
Sometimes the representation comes entirely naturally; sometimes it takes some
degree of encoding.

In this paper, we explore the embedded-DSL approach to capturing the
type constraints and implicit lifting and alignment manipulations of rank-
polymorphic array computation. We show how to capture these neatly in Haskell,
a pure and strongly-typed functional programming language with growing abil-
ities to express and exploit dependent types. To be more precise, we make use
of a number of recent extensions to standard Haskell, which are supported in
the primary implementation GHC [13]. We do not assume familiarity with fancy
Haskell features, but explain them as we go along.

The point is not particularly to promote such fancy features; although
the expressive power of modern type systems is quite impressive. Nor is the
point to explain to aficionados of dependent types in Haskell how to perform

APLicative Programming with Naperian Functors 559

rank-polymorphic array computation; most of our constructions are already folk-
lore. Rather, the point is to demonstrate to a wider programming language audi-
ence that it is often not necessary to invent a new special-purpose language in
order to capture a sophisticated feature: we have sufficiently expressive general-
purpose languages already.

1.3 The Main Idea

The main idea is that a rank-n array is essentially a data structure of type
D1(D2(. . . (Dn a))), where each Di is a dimension: a container type, categorically
a functor; one might think in the first instance of lists. However, in order to be
able to transpose arrays without losing information, each dimension should be
represented by a functor of fixed shape; so perhaps vectors, of a fixed length in
each dimension, but allowing different lengths in different dimensions.

The vector structure is sufficient to support all the necessary operations dis-
cussed above: mapping (for pointwise operations), zipping (for lifting binary
operations), replicating (for alignment), transposing (for reranking), folding (for
example, for sum), and traversing (for sums). Moreover, these can also be han-
dled crisply, with static types that both prevent incoherent combinations and
explain the implicit lifting required for compatible ones. However, although suf-
ficient, the vector structure is not necessary, and other functors (such as pairs,
triples, block vectors, and even perfect binary trees) suffice; we show that the
necessary structure is that of a traversable, Naperian, applicative functor (and
we explain what that means). The richer type structure that this makes avail-
able allows us to go beyond Remora, and in particular to explain the relationship
between nested and flat representations of multi-dimensional data, leading the
way towards higher-performance implementations of bulk operations, for exam-
ple on multicore chips [24] and on GPUs [5].

Specifically, our novel contributions are as follows:

– formalizing the lifting required for rank polymorphism;
– doing so within an existing type system, rather than creating a new one;
– identifying necessary and sufficient structure for dimensions;
– implementing it all (in Haskell), and providing executable code;
– showing how to connect to flat and sparse representations.

Although our definitions are asymptotically efficient, or can easily be made so
using standard techniques such as accumulating parameters, we do not make
performance claims in comparison with serious array libraries such as Repa and
Accelerate [5,24]. Rather, we see this work as providing a flexible but safe front-
end, delegating performance-critical computations to such libraries.

1.4 Structure of This Paper

The remainder of this paper is structured as follows. Section 2 uses type-level nat-
ural numbers for bounds checking of vectors; Sect. 3 explains the requirements on
vectors to support maps, zips, and transposition; and Sect. 4 similarly for reduc-
tions and scans; these are all fairly standard material, and together show how

560 J. Gibbons

to generalize the dimensions of an array from concrete vectors to other suitable
types. Our contribution starts in Sect. 5, where we show how to accommodate
arrays of arbitrary rank. Section 6 shows how to automatically lift unary and
binary operators to higher ranks. Section 7 shows how to avoid manifesting repli-
cation and transposition operations by representing them symbolically instead,
and Sect. 8 shows a more efficient representation using flat built-in arrays, while
still preserving the shape information in the type. Section 9 concludes.

This paper is a literate Haskell script, and the code in it is all type-checked
and executable, albeit with tidier formatting in the PDF for publication pur-
poses. The extracted code is available for experimentation [14]. We exploit a
number of advanced type features, explained as we proceed; but we make no use
of laziness or undefinedness, treating Haskell as a total programming language.

2 Vectors with Bounds Checking

Our approach makes essential use of lightweight dependent typing, which is now
becoming standard practice in modern functional programming languages such
as Haskell. We introduce these ideas gradually, starting with traditional algebraic
datatypes, such as lists:

data List :: ∗ → ∗ where
Nil :: List a
Cons :: a → List a → List a

This declaration defines a new datatype constructor List of kind ∗ → ∗. Which
is to say, kind ∗ includes all those types with actual values, such as Int and
List Int and Int → Int ; and List is an operation on types, such that for any
type A of kind ∗, there is another type List A (also of kind ∗) of lists whose
elements are drawn from A. The declaration also introduces two constructors
Nil and Cons of the declared types for the new datatype, polymorphic in the
element type.

All lists with elements of a given type have the same type; for example, there
is one type List Int of lists of integers. This is convenient for operations that
combine lists of different lengths; but it does not allow us to guarantee bounds
safety by type checking. For example, the tail function

tail :: List a → List a
tail (Cons x xs) = xs

and the list indexing operator

lookup :: List a → Int → a
lookup (Cons x xs) 0 = x
lookup (Cons x xs) (n + 1) = lookup xs n

are partial functions, and there is no way statically to distinguish their safe from
their unsafe uses through the types. The way to achieve that end is to partition
the type List A into chunks, so that each chunk contains only the lists of a given

APLicative Programming with Naperian Functors 561

length, and to index these chunks by their common lengths. The index should be
another type parameter, just like the element type is; so we need a type-level way
of representing natural numbers. One recent Haskell extension [39] has made this
very convenient, by implicitly promoting all suitable datatype constructors from
the value to the type level, and the datatypes themselves from the type level to
the kind level. For example, from the familiar datatype of Peano naturals

data Nat :: ∗ where
Z :: Nat
S :: Nat → Nat

we get not only a new type Nat with value inhabitants Z ,S Z , ..., but in addition
a new kind, also called Nat , with type inhabitants ′Z , ′S ′Z , In Haskell, the
inhabitants can be distinguished by the initial quote character (which is in fact
almost always optional, but for clarity we will make explicit use of it throughout
this paper). For convenience, we define synonyms for some small numbers at the
type level:

type One = ′S ′Z
type Two = ′S One
type Three = ′S Two
type Four = ′S Three

We can now define a datatype of length-indexed vectors:

data Vector :: Nat → ∗ → ∗ where
VNil :: Vector ′Z a
VCons :: a → Vector n a → Vector (′S n) a

The length is encoded in the type: VNil yields a vector of length zero, and VCons
prefixes an element onto an n-vector to yield an (n + 1)-vector. For example,
Vector Three Int is the type of 3-vectors of integers, one of whose inhabitants is
the vector 〈1, 2, 3〉:

v123 :: Vector Three Int
v123 = VCons 1 (VCons 2 (VCons 3 VNil))

The first type parameter of Vector is called a ‘phantom type’ [19] or ‘type
index’ [38], because it is not related to the type of any elements: a value of
type Vector Three Int has elements of type Int , but does not in any sense ‘have
elements of type Three’. The type index does not interfere with ordinary recur-
sive definitions, such as the mapping operation that applies a given function to
every element, witnessing to Vector n being a functor:

vmap :: (a → b) → Vector n a → Vector n b
vmap f VNil = VNil
vmap f (VCons x xs) = VCons (f x) (vmap f xs)

562 J. Gibbons

For example,

v456 :: Vector Three Int
v456 = vmap (λx → 3 + x) v123

More interestingly, we can now capture the fact that the ‘tail’ function should
be applied only to non-empty vectors, and that it yields a result one element
shorter than its argument:

vtail :: Vector (S n) a → Vector n a
vtail (VCons x xs) = xs

Similarly, we can write a ‘zip’ function that combines two vectors element-by-
element using a binary operator, and use the additional type information to
restrict it to take vectors of a common length n and to produce a result of the
same length:

vzipWith :: (a → b → c) → Vector n a → Vector n b → Vector n c
vzipWith f VNil VNil = VNil
vzipWith f (VCons a x) (VCons b y) = VCons (f a b) (vzipWith f x y)

Because of the type constraints, the patterns on the left-hand side in both exam-
ples are exhaustive: it would be ill-typed to take the tail of an empty vector, or
to zip two vectors of different lengths.

The functions vtail and vzipWith consume vectors; the length indices con-
strain the behaviour, but they are not needed at run-time because the value con-
structors provide sufficient information to drive the computation. The situation
is different when producing vectors from scratch. Consider a function vreplicate
to construct a vector of a certain length by replicating a given value. The type
a → Vector n a uniquely determines the implementation of such a function;
however, it is the type of the result that contains the length information, and
that isn’t available for use at run-time. Nevertheless, for each n, there is an
obvious implementation of vreplicate on Vector n; it would be nice to be able to
state that obvious fact formally. In Haskell, this sort of ‘type-driven code infer-
ence’ is modelled by type classes—it is the same mechanism that determines the
appropriate definition of equality or printing for a given type. Similarly, there is
an obvious implementation of vlength ::Vector n a → Int , which in fact does not
even need to inspect its vector argument—the length is statically determined.
We introduce the class Count of those types n (of kind Nat) that support these
two ‘obvious implementations’:

class Count (n :: Nat) where
vreplicate :: a → Vector n a
vlength :: Vector n a → Int

Indeed, every type n of kind Nat is in the class Count , as we demonstrate by
providing those two obvious implementations at each type n:

APLicative Programming with Naperian Functors 563

instance Count ′Z where
vreplicate a = VNil
vlength xs = 0

instance Count n ⇒ Count (′S n) where
vreplicate a = VCons a (vreplicate a)
vlength xs = 1 + vlength (vtail xs)

(One might see class Count as representing ‘natural numbers specifically for
vector purposes’; it is possible with some pain to represent ‘natural numbers’ in
Haskell more generally [25].)

The operations vmap, vzipWith, and vreplicate are the essential ingredients
for lifting and aligning operations to higher-ranked arguments (albeit not yet
sufficient for the other operations). For example, to lift square to act on vectors,
we can use vmap square; to lift (+) to act on two vectors of the same length, we
can use vzipWith (+); and to align a scalar with a vector, we can use vreplicate:

v456 = vzipWith (+) (vreplicate 3) v123

(Note that the types of vzipWith and its second argument v123 together deter-
mine which instance of vreplicate is required; so no explicit type annotation is
needed.) But in order fully to achieve rank polymorphism, we want operators
such as squaring and addition to implicitly determine the appropriate lifting and
alignment, rather than having explicitly to specify the appropriate amount of
replication. We see next how that can be done, without sacrificing static typing
and type safety.

3 Applicative and Naperian Functors

We have seen that vectors show promise for representing the dimensions of an
array, because they support at least three of the essential operations, namely
mapping, zipping, and replicating. But vectors are not the only datatype to sup-
port such operations; if we can identify the actual requirements on dimensions,
then there are other types that would serve just as well. In particular, one of the
dimensions of an array might be ‘pairs’:

data Pair a = P a a

since these too support the three operations discussed above:

pmap :: (a → b) → Pair a → Pair b
pzipWith :: (a → b → c) → Pair a → Pair b → Pair c
preplicate :: a → Pair a

Generalizing in this way would allow us to handle vectors of pairs, pairs of triples,
and so on.

The first requirement for a type constructor f to be suitable as a dimension
is to be a container type, that is, an instance of the type class Functor and so
providing an fmap operator:

564 J. Gibbons

class Functor f where
fmap :: (a → b) → f a → f b

The other two operators arise from f being a fortiori an applicative functor [26]:

class Functor f ⇒ Applicative f where
pure :: a → f a
(�) :: f (a → b) → f a → f b

Informally, pure should yield an f -structure of copies of its argument; this serves
as the ‘replicate’ operation:

areplicate :: Applicative f ⇒ a → f a
areplicate = pure

(Here, the context “Applicative f ⇒” denotes that areplicate has type a → f a
for any f in type class Applicative; in contrast, the type variable a is uncon-
strained.) The (�) method should combine an f -structure of functions with an
f -structure of arguments to yield an f -structure of results. The two methods
together give rise to the ‘zip’ operation:

azipWith :: Applicative f ⇒ (a → b → c) → f a → f b → f c
azipWith h xs ys = (pure h � xs) � ys

Vectors, of course, are applicative functors:

instance Functor (Vector n) where
fmap = vmap

instance Count n ⇒ Applicative (Vector n) where
pure = vreplicate
(�) = vzipWith (λf x → f x)

Note that we make the assumption that the length index type n is in type
class Count , so that we can infer the appropriate definition of vreplicate. This
assumption is benign, because the length indices are of kind Nat , and we have
provided a Count instance for every type of that kind.

Pairs too are applicative functors:

instance Functor Pair where
fmap f (P x y) = P (f x) (f y)

instance Applicative Pair where
pure x = P x x
P f g � P x y = P (f x) (g y)

However, being an applicative functor is not sufficient for serving as a dimen-
sion: that interface is not expressive enough to define transposition, which is
needed in order to implement reranking. For that, we need to be able to com-
mute the functors that represent dimensions: that is, to transform an f (g a)

APLicative Programming with Naperian Functors 565

into a g (f a). The necessary additional structure is given by what Hancock
[17] calls a Naperian functor, also known as a representable functor; that is, a
container of fixed shape. Functor f is Naperian if there is a type p of ‘positions’
such that f a � p → a; then p behaves a little like a logarithm of f —in par-
ticular, if f and g are both Naperian, then Log (f × g) � Log f + Log g and
Log (f · g) � Log f × Log g .

class Functor f ⇒ Naperian f where
type Log f
lookup :: f a → (Log f → a)
tabulate :: (Log f → a) → f a
positions :: f (Log f)
tabulate h = fmap h positions
positions = tabulate id

Informally, Log f is the type of positions for f ; lookup xs i looks up the element
of xs at position i ; tabulate h yields an f -structure where for each position i
the element at that position is h i ; and positions yields an f -structure where
the element at each position i is i itself. The first two operations should be
each other’s inverses; they are witnesses to the isomorphism between f a and
Log f → a. The latter two operations are interdefinable, so an instance need
only provide one of them; it is often convenient to implement positions, but to
use tabulate. For simplicity, we rule out empty data structures, insisting that
the type Log f should always be inhabited. Naperian functors are necessarily
applicative too:

pure a = tabulate (λi → a)
fs � xs = tabulate (λi → (lookup fs i) (lookup xs i))

Transposition in general consumes an f -structure of g-structures in which all
the g-structures have the same shape, and produces a g-structure of f -structures
in which all the f -structures have the same shape, namely the outer shape of
the input. For general functors f and g , this is a partial function, or at best
a lossy one. However, the essential point about Naperian functors is that all
inhabitants of a datatype have a common shape. In particular, in an f -structure
of g-structures where both f and g are Naperian, all the inner g-structures
necessarily have the same (namely, the only possible) shape. Then transposition
is total and invertible:

transpose :: (Naperian f ,Naperian g) ⇒ f (g a) → g (f a)
transpose = tabulate · fmap tabulate · flip · fmap lookup · lookup

Here, flip :: (a → b → c) → (b → a → c) is a standard function that swaps the
argument order of a binary function. We use the lookup function for the outer
and the inner structures of the input of type f (g a), yielding a binary function
of type Log f → Log g → a; we flip the arguments of this function, yielding one
of type Log g → Log f → a; then we tabulate both structures again, yielding
the result of type g (f a) as required. For example, we have

566 J. Gibbons

VCons v123 (VCons v456 VNil) = 〈〈1, 2, 3〉, 〈4, 5, 6〉〉
transpose (VCons v123 (VCons v456 VNil)) = 〈〈1, 4〉, 〈2, 5〉, 〈3, 6〉〉

As a consequence, composition of Naperian functors is commutative, up to iso-
morphism; we will insist on our dimensions being at least Naperian functors.

Of course, pairs are Naperian, with two positions—the usual ordering on
booleans in Haskell has False ≤ True, so we use this ordering on the positions
too:

instance Naperian Pair where
type Log Pair = Bool
lookup (P x y) b = if b then y else x
positions = P False True

And vectors are Naperian. An n-vector has n positions, so to represent the
logarithm we need a type with precisely n inhabitants—the bounded naturals:

data Fin :: Nat → ∗ where
FZ :: Fin (′S n)
FS :: Fin n → Fin (′S n)

Thus, Fin n has n inhabitants FZ ,FS FZ , ...,FSn−1 FZ . Extracting an element
from a vector is defined by structural induction simultaneously over the vector
and the position—like with zipping, the type constraints make bounds violations
a type error:

vlookup :: Vector n a → Fin n → a
vlookup (VCons a x) FZ = a
vlookup (VCons a x) (FS n) = vlookup x n

A vector of positions is obtained by what in APL is called the ‘iota’ function. As
with replication, we need to provide the length as a run-time argument; but we
can represent this argument as a vector of units, and then infer the appropriate
value from the type:

viota :: Count n ⇒ Vector n (Fin n)
viota = viota ′ (vreplicate ()) where

viota ′ :: Vector m () → Vector m (Fin m)
viota ′ VNil = VNil
viota ′ (VCons () xs) = VCons FZ (fmap FS (viota ′ xs))

With these three components, we are justified in calling vectors Naperian:

instance Count n ⇒ Naperian (Vector n) where
type Log (Vector n) = Fin n
lookup = vlookup
positions = viota

APLicative Programming with Naperian Functors 567

4 Folding and Traversing

Another requirement on the dimensions of an array is to be able to reduce along
one of them; for example, to sum. In recent versions of Haskell, that requirement
is captured in the Foldable type class, the essence of which is as follows:

class Foldable t where
foldr :: (a → b → b) → b → t a → b

Informally, foldr aggregates the elements of a collection one by one, from right
to left, using the binary operator and initial value provided. Vectors are foldable
in the same way that lists are:

instance Foldable (Vector n) where
foldr f e VNil = e
foldr f e (VCons x xs) = f x (foldr f e xs)

and pairs are foldable by combining their two elements:

instance Foldable Pair where
foldr f e (P x y) = f x (f y e)

A foldable functor imposes a left-to-right ordering on its positions; so we can
extract the elements as a list, in that order:

toList :: Foldable t ⇒ t a → [a]
toList = foldr (:) []

Similarly, we can sum those elements, provided that they are of a numeric type:

sum :: (Num a,Foldable t) ⇒ t a → a
sum = foldr (+) 0

An additional requirement for array dimensions is to be able to transform
values along a dimension, for example to compute prefix sums. This is captured
by the Traversable type class:

class (Functor t ,Foldable t) ⇒ Traversable t where
traverse :: Applicative f ⇒ (a → f b) → t a → f (t b)

One way of thinking of traverse is as an effectful ‘map’ function [3], visiting each
element in order, precisely once each, and collecting effects in some applica-
tive functor f . For example, stateful computations can be modelled by state-
transforming functions:

data State s a = State {runState :: s → (a, s)}
(This construction declares State s a to be a record type, with a data constructor
also called State, and a single field called runState; in this way, the function
runState extracts the state-transformer from the record.) This datatype forms

568 J. Gibbons

an applicative functor, in a standard way. Here is a little function to increase
and return a numeric state—whatever the current state n, when applied to m,
this yields the final state m + n, and returns as result the same value m + n:

increase :: Num a ⇒ a → State a a
increase m = State (λn → (m + n,m + n))

Using this, one can compute prefix sums by traversing a data structure, starting
with an initial state of 0, increasing the state by each element in turn, preserving
the running totals and discarding the final state:

sums :: (Num a,Traversable t) ⇒ t a → t a
sums xs = fst (runState (traverse increase xs) 0)

so in particular

sums v123 = VCons 1 (VCons 3 (VCons 6 VNil))

Vectors and pairs are both traversable, with instances following a common pat-
tern:

instance Traversable Pair where
traverse f (P x y) = (pure P � f x) � f y

instance Traversable (Vector n) where
traverse f VNil = pure VNil
traverse f (VCons x xs) = (pure VCons � f x) � traverse f xs

We take these various constraints as our definition of ‘dimension’:

class (Applicative f ,Naperian f ,Traversable f) ⇒ Dimension f where
size :: f a → Int
size = length · toList

We have added a size method for convenience and with no loss of generality—it
is in fact statically determined, so may admit better type-specific definitions:

instance Dimension Pair where size = const 2
instance Count n ⇒ Dimension (Vector n) where size = vlength

But other less obvious datatypes, such as perfect binary trees of a given height,
are suitable dimensions too:

data Perfect :: Nat → ∗ → ∗ where
Leaf :: a → Perfect ′Z a
Bin :: Pair (Perfect n a) → Perfect (′S n) a

For example, a Perfect Three a is essentially a Pair (Pair (Pair a)). Perhaps
more usefully, rather than indexing vectors by a unary representation of the
natural numbers, we can use a more compact binary representation:

APLicative Programming with Naperian Functors 569

data Binary :: ∗ where
Unit :: Binary
Twice :: Binary → Binary
Twice+1 :: Binary → Binary

under the obvious interpretation

bin2int :: Binary → Int
bin2int Unit = 1
bin2int (Twice n) = 2 × bin2int n
bin2int (Twice+1 n) = 2 × bin2int n + 1

Then we can define a datatype of (non-empty) vectors built up via balanced join
rather than imbalanced cons:

data BVector :: Binary → ∗ → ∗ where
VSingle :: a → BVector ′Unit a
VJoin :: BVector n a → BVector n a → BVector (′Twice n) a
VJoin+1 :: a → BVector n a → BVector n a → BVector (′Twice+1 n) a

When used as the dimensions of a matrix, this will allow a quad tree decomposi-
tion [12] for recursive functions. We leave the instance definitions as an exercise
for the energetic reader.

In fact, one may start from any numeric representation and manufacture a
corresponding datatype [18,29]. Sandberg Eriksson and Jansson [31] use a redun-
dant binary representation of the positive natural numbers (with constructors
1 and +) as the type index in a formalization of block matrices. Each of these
dimension types—pairs, triples, perfect binary trees of a given height, block vec-
tors of a given structure—is equivalent to some vector type, so no additional
expressivity is gained; but the alternatives may be more natural in given con-
texts.

As an example of a generic function, inner product involves summing pairwise
products, and so works for any dimension type:

innerp :: (Num a,Dimension f) ⇒ f a → f a → a
innerp xs ys = sum (azipWith (∗) xs ys)

Multiplying an f ×g-matrix by a g×h-matrix entails lifting both to f ×h×g-
matrices then performing pairwise inner product on the g-vectors:

matrixp :: (Num a,Dimension f ,Dimension g ,Dimension h) ⇒
f (g a) → g (h a) → f (h a)

matrixp xss yss = azipWith (azipWith innerp) (fmap areplicate xss)
(areplicate (transpose yss))

Again, this works for any dimension types f , g , h; the same definition works for
vectors, pairs, block vectors, and any mixture of these.

570 J. Gibbons

5 Multidimensionality

Now that we can represent vectors with elements of an arbitrary type, we can
of course represent matrices too, as vectors of vectors:

vv123456 :: Vector Two (Vector Three Int)
vv123456 = VCons v123 (VCons v456 VNil)

However, with this representation, integer vectors and integer matrices are of
quite different types, and there is no immediate prospect of supporting rank
polymorphism over them—for example, a single operation that can both add
two matrices and add a vector to a matrix. In order to do that, we need one
datatype that encompasses both vectors and matrices (and scalars, and arrays
of higher rank).

One way to achieve this goal is with a nested [4] or polymorphically recursive
[28] datatype:

data Hyper0 :: ∗ → ∗ where -- to be refined later
Scalar0 :: a → Hyper0 a
Prism0 :: Count n ⇒ Hyper0 (Vector n a) → Hyper0 a

(we make a convention of subscripting definitions that will be refined later).
This datatype corresponds to APL’s multi-dimensional arrays. We use the name
Hyper0, for ‘hypercuboid’, so as not to clash with Haskell’s Array type that
we will use later. Thus, Scalar0 constructs a scalar hypercuboid from its sole
element; and Prism0 yields a hypercuboid of rank r + 1 from a hypercuboid of
rank r whose elements are all n-vectors (for some n, but crucially, the same n
for all elements at this rank). This definition makes essential use of polymorphic
recursion, because a composite hypercuboid of as is constructed inductively not
from smaller hypercuboids of as, but from a (single) hypercuboid of vectors
of as.

This datatype satisfies the requirement of encompassing hypercuboids of arbi-
trary rank. However, it is somewhat unsatisfactory, precisely because it lumps
together all hypercuboids of a given element type into a single type; for example,
a vector and a matrix of integers both have the same type, namely Hyper0 Int .
We have sacrificed any ability to catch rank errors through type checking. Per-
haps worse, we have also sacrificed any chance to use the rank statically in order
to automatically lift operators. We can solve this problem in much the same way
as we did for bounds checking of vectors, by specifying the rank as a type index:

data Hyper1 :: Nat → ∗ → ∗ where -- to be refined later
Scalar1 :: a → Hyper1 ′Z a
Prism1 :: Count n ⇒ Hyper1 r (Vector n a) → Hyper1 (′S r) a

Now a vector of integers has type Hyper1 One Int , and a matrix of integers has
type Hyper1 Two Int ; it is a type error simply to try to add them pointwise,
and the rank index can be used (we will see how in due course) to lift addition
to act appropriately.

APLicative Programming with Naperian Functors 571

That is all well and good for rank, but we have a similar problem with
size too: a 3-vector and a 4-vector of integers both have the same type when
viewed as hypercuboids, namely Hyper1 One Int ; so we can no longer catch
size mismatches by type checking. Apparently indexing by the rank alone is
not enough; we should index by the size in each dimension—a list of natural
numbers. Then the rank is the length of this list. Just as in Sect. 2 we promoted
the datatype Nat to a kind and its inhabitants Z ,S Z , ... to types ′Z , ′S ′Z , ..., we
can also promote the datatype [] of lists to the kind level, and its constructors
[] and (:) to operators ′[] and (′:) at the type level:

data Hyper2 :: [Nat] → ∗ → ∗ where -- to be refined later
Scalar2 :: a → Hyper2 ′[] a
Prism2 :: Count n ⇒ Hyper2 ns (Vector n a) → Hyper2 (n ′: ns) a

Now a 3-vector of integers has type Hyper2 ′[Three] Int , a 4-vector has type
Hyper2 ′[Four] Int , a 2×3-matrix has type Hyper2 ′[Three,Two] Int , and so
on. (Note that the latter is essentially a 2-vector of 3-vectors, rather than the
other way round; it turns out to be most convenient for the first element of
the list to represent the extent of the innermost dimension.) There is enough
information at the type level to catch mismatches both of rank and of size; but
still, the indexed types are all members of a common datatype, so can be made
to support common operations.

That deals with multi-dimensional vectors. But as we discussed in Sect. 3,
there is no a priori reason to restrict each dimension to be a vector; other
datatypes work too, provided that they are instances of the type class
Dimension. Then it is not enough for the datatype of hypercuboids to be indexed
by a type-level list of lengths, because the lengths are no longer sufficient to char-
acterize the dimensions—instead, we should use a type-level list of the dimension
types themselves.

We call these type-level lists of dimension types shapely [22]. Following the
example of vectors in Sect. 2, we introduce a type class of shapely types, which
support replication and size:

class Shapely fs where
hreplicate :: a → Hyper fs a
hsize :: Hyper fs a → Int

We ensure that every possible type-level list of dimensions is an instance:

instance Shapely ′[] where
hreplicate a = Scalar a
hsize = const 1

instance (Dimension f ,Shapely fs) ⇒ Shapely (f ′: fs) where
hreplicate a = Prism (hreplicate (areplicate a))
hsize (Prism x) = size (first x) × hsize x

Here, first returns the first element of a hypercuboid, so first x is the first ‘row’
of Prism x :

572 J. Gibbons

first :: Shapely fs ⇒ Hyper fs a → a
first (Scalar a) = a
first (Prism x) = head (toList (first x))

and the size of a hypercuboid is of course the product of the lengths of its
dimensions.

Now, a hypercuboid of type Hyper fs a has shape fs (a list of dimensions) and
elements of type a. The rank zero hypercuboids are scalars; at higher ranks, one
can think of them as geometrical ‘right prisms’—congruent stacks of lower-rank
hypercuboids.

data Hyper :: [∗ → ∗] → ∗ → ∗ where -- final version
Scalar :: a → Hyper ′[] a
Prism :: (Dimension f ,Shapely fs) ⇒ Hyper fs (f a) → Hyper (f ′: fs) a

For example, we can wrap up a vector of vectors as a rank-2 hypercuboid:

h123456 :: Hyper ′[Vector Three,Vector Two] Int
h123456 = Prism (Prism (Scalar vv123456))

Hypercuboids are of course functorial:

instance Functor (Hyper fs) where
fmap f (Scalar a) = Scalar (f a)
fmap f (Prism x) = Prism (fmap (fmap f) x)

Furthermore, they are applicative; the type class Shapely handles replication,
and zipping is simply a matter of matching structures:

hzipWith :: (a → b → c) → Hyper fs a → Hyper fs b → Hyper fs c
hzipWith f (Scalar a) (Scalar b) = Scalar (f a b)
hzipWith f (Prism x) (Prism y) = Prism (hzipWith (azipWith f) x y)

With these two, we can install shapely hypercuboids as an applicative functor:

instance Shapely fs ⇒ Applicative (Hyper fs) where
pure = hreplicate
(�) = hzipWith (λf x → f x)

(In fact, hypercuboids are also Naperian, foldable, and traversable too, so they
can themselves serve as dimensions; but we do not need that power in the rest
of this paper.)

Now we can fold along the ‘major’ (that is, the innermost) axis of a hyper-
cuboid, given a suitable binary operator and initial value:

reduceBy :: (a → a → a, a) → Hyper (f ′: fs) a → Hyper fs a
reduceBy (f , e) (Prism x) = fmap (foldr f e) x

APLicative Programming with Naperian Functors 573

Moreover, we can transpose the hypercuboid in order to be able to fold along
the ‘minor’ (that is, the next-to-innermost) axis:

transposeHyper :: Hyper (f ′: (g ′: fs)) a → Hyper (g ′: (f ′: fs)) a
transposeHyper (Prism (Prism x)) = Prism (Prism (fmap transpose x))

Thus, given a hypercuboid of type Hyper (f ′: (g ′: fs)) a, which by construction
must be of the form Prism (Prism x) with x of type Hyper fs (g (f a)), we
transpose each of the inner hypercuboids from g (f a) to f (g a), then put the
two Prism constructors back on to yield the result of type Hyper (g ′: (f ′: fs)) a
as required. And with multiple transpositions, we can rearrange a hypercuboid
to bring any axis into the ‘major’ position.

6 Alignment

We can easily lift a unary operator to act on a hypercuboid of elements:

unary :: Shapely fs ⇒ (a → b) → (Hyper fs a → Hyper fs b)
unary = fmap

We can similarly lift a binary operator to act on hypercuboids of matching
shapes, using azipWith. But what about when the shapes do not match? A shape
fs is alignable with another shape gs if the type-level list of dimensions fs is a
prefix of gs, so that they have innermost dimensions in common; in that case,
we can replicate the fs-hypercuboid to yield a gs-hypercuboid.

class (Shapely fs,Shapely gs) ⇒ Alignable fs gs where
align :: Hyper fs a → Hyper gs a

Scalar shapes are alignable with each other; alignment is the identity function:

instance Alignable ′[] ′[] where
align = id

Alignments can be extended along a common inner dimension:

instance (Dimension f ,Alignable fs gs) ⇒ Alignable (f ′: fs) (f ′: gs) where
align (Prism x) = Prism (align x)

Finally, and most importantly, a scalar can be aligned with an arbitrary hyper-
cuboid, via replication:

instance (Dimension f ,Shapely fs) ⇒ Alignable ′[] (f ′: fs) where
align (Scalar a) = hreplicate a

(Note that, ignoring the accompanying definitions of the align function, the
heads of the three Alignable instance declarations can be read together as a
logic program for when one sequence is a prefix of another.)

574 J. Gibbons

The Alignable relation on shapes is an ordering, and in particular asym-
metric. In order to be able to lift a binary operator to act on two compatible
hypercuboids, we should treat the two arguments symmetrically: we will align
the two shapes with their least common extension, provided that this exists. We
express that in terms of the Max of two shapes, a type-level function:

type family Max (fs :: [∗ → ∗]) (gs :: [∗ → ∗]) :: [∗ → ∗] where
Max ′[] ′[] = ′[]
Max ′[] (f ′: gs) = (f ′: gs)
Max (f ′: fs) ′[] = (f ′: fs)
Max (f ′: fs) (f ′: gs) = (f ′: Max fs gs)

For example, a 2×3-matrix can be aligned with a 3-vector:

Max ′[Three,Two] ′[Three] ∼ ′[Three,Two]

Here, ∼ denotes type compatibility in Haskell. Provided that shapes fs and gs
are compatible, we can align two hypercuboids of those shapes with their least
common extension hs, and then apply a binary operator to them pointwise:

binary0 :: -- to be refined later
(Max fs gs ∼ hs,Alignable fs hs,Alignable gs hs) ⇒
(a → b → c) → (Hyper fs a → Hyper gs b → Hyper hs c)

binary0 f x y = hzipWith f (align x) (align y)

For example,

binary0 (+) (Scalar 3) h123456 = 〈〈4, 5, 6〉, 〈7, 8, 9〉〉
Note that as a function on types, Max is partial: two shapes f ′: fs and g ′: gs are
incompatible when f
≡ g , and then have no common extension. In that case, it is
a type error to attempt to align two hypercuboids of those shapes. However, the
type error can be a bit inscrutable. For example, when trying to align a 3-vector
with a 4-vector, the compiler cannot simplify Max ′[Vector Three] ′[Vector Four],
and GHC (version 7.10.3) gives the following error:

No instance for
(Alignable ’[Vector Three] (Max ’[Vector Three] ’[Vector Four]))
(maybe you haven’t applied enough arguments to a function?)

We can use type-level functions to provide more helpful error messages too [33].
We define an additional type function as a predicate on types, to test whether
the shapes are compatible:

type family IsCompatible (fs :: [∗ → ∗]) (gs :: [∗ → ∗]) :: IsDefined Symbol where
IsCompatible ′[] ′[] = Defined
IsCompatible ′[] (f ′: gs) = Defined
IsCompatible (f ′: fs) ′[] = Defined
IsCompatible (f ′: fs) (f ′: gs) = IsCompatible fs gs
IsCompatible (f ′: fs) (g ′: gs) = Undefined "Mismatching dimensions"

Here, Symbol is the kind of type-level strings, and IsDefined is a type-level
version of the booleans, but extended to incorporate also an explanation in the
case that the predicate fails to hold:

APLicative Programming with Naperian Functors 575

data IsDefined e = Defined | Undefined e

If we now add this test as a constraint to the type of a lifted binary operator:

binary :: -- final version

(IsCompatible fs gs ∼ Defined ,Max fs gs ∼ hs,Alignable fs hs,Alignable gs hs) ⇒
(a → b → c) → (Hyper fs a → Hyper gs b → Hyper hs c)

binary f x y = binary0 f x y

(note that the code is precisely the same, only the type has become more infor-
mative) then we get a slightly more helpful error message when things go wrong:

Couldn’t match type ’Undefined "Mismatching dimensions"
with ’Defined

Expected type: ’Defined
Actual type: IsCompatible ’[Vector Three] ’[Vector Four]

7 Symbolic Transformations

Although alignment of arrays of compatible but different shapes morally entails
replication, this is an inefficient way actually to implement it; instead, it is
better simply to use each element of the smaller structure multiple times. One
way to achieve this is perform the replication symbolically—that is, to indicate
via the type index that an array is replicated along a given dimension, without
manifestly performing the replication. This can be achieved by extending the
datatype of hypercuboids to incorporate an additional constructor:

data HyperR :: [∗ → ∗] → ∗ → ∗ where
ScalarR :: a → HyperR ′[] a
PrismR :: (Dimension f ,Shapely fs) ⇒ HyperR fs (f a) → HyperR (f ′: fs) a
ReplR :: (Dimension f ,Shapely fs) ⇒ HyperR fs a → HyperR (f ′: fs) a

The idea is that ReplR x denotes the same array as Prism (fmap areplicate x),
but takes constant time and space to record the replication. It allows us to
implement replication to multiple ranks in time and space proportional to the
rank, rather than to the size. This would be of no benefit were it just to post-
pone the actual replication work until later. Fortunately, the work can often
be avoided altogether. Mapping is straightforward, since it simply distributes
through ReplR:

instance Functor (HyperR fs) where
fmap f (ScalarR a) = ScalarR (f a)
fmap f (PrismR x) = PrismR (fmap (fmap f) x)
fmap f (ReplR x) = ReplR (fmap f x)

Similarly for zipping two replicated dimensions. When zipping a replicated
dimension (ReplR) with a manifest one (PrismR), we end up essentially with a
map—that, after all, was the whole point of the exercise. The other cases are as
before.

576 J. Gibbons

rzipWith :: Shapely fs ⇒ (a → b → c) → HyperR fs a → HyperR fs b → HyperR fs c
rzipWith f (ScalarR a) (ScalarR b) = ScalarR (f a b)
rzipWith f (PrismR x) (PrismR y) = PrismR (rzipWith (azipWith f) x y)
rzipWith f (PrismR x) (ReplR y) = PrismR (rzipWith (azipWithL f) x y)
rzipWith f (ReplR x) (PrismR y) = PrismR (rzipWith (azipWithR f) x y)
rzipWith f (ReplR x) (ReplR y) = ReplR (rzipWith f x y)

Here, azipWithL and azipWithR are variants of azipWith with one argument
constant:

azipWithL :: Functor f ⇒ (a → b → c) → f a → b → f c
azipWithL f xs y = fmap (λx → f x y) xs
azipWithR :: Functor f ⇒ (a → b → c) → a → f b → f c
azipWithR f x ys = fmap (λy → f x y) ys

(note that they only need a Functor constraint rather than Applicative, since
they only use fmap and not pure and �).

Similarly for transposition; if either of the innermost two dimensions is sym-
bolically replicated, it is just a matter of rearranging constructors, and only
when they are both manifest do we have to resort to actual data movement:

rtranspose :: (Shapely fs,Dimension f ,Dimension g) ⇒
HyperR (f ′: g ′: fs) a → HyperR (g ′: f ′: fs) a

rtranspose (PrismR (PrismR x)) = PrismR (PrismR (fmap transpose x))
rtranspose (PrismR (ReplR x)) = ReplR (PrismR x)
rtranspose (ReplR (PrismR x)) = PrismR (ReplR x)
rtranspose (ReplR (ReplR x)) = ReplR (ReplR x)

It is only when it comes to folding or traversing a hypercuboid that a symbolic
replication really has to be forced. This can be achieved by means of a function
that expands a top-level ReplR constructor, if one is present, while leaving the
hypercuboid abstractly the same:

forceReplR :: Shapely fs ⇒ HyperR fs a → HyperR fs a
forceReplR (ReplR x) = PrismR (fmap areplicate x)
forceReplR x = x

A similar technique can be used to represent transposition itself symbolically,
via its own constructor:

data HyperT :: [∗ → ∗] → ∗ → ∗ where
ScalarT :: a → HyperT ′[] a
PrismT :: (Dimension f ,Shapely fs) ⇒

HyperT fs (f a) → HyperT (f ′: fs) a
TransT :: (Dimension f ,Dimension g ,Shapely fs) ⇒

HyperT (f ′: g ′: fs) a → HyperT (g ′: f ′: fs) a

The idea is that TransT x represents the transposition of x , without actually
doing any work. We can maintain the invariant that there are never two adjacent

APLicative Programming with Naperian Functors 577

TransT constructors, by using the following ‘smart constructor’ in place of the
real one, to remove a transposition if one is present and to add one otherwise:

transT :: (Dimension f ,Dimension g ,Shapely fs) ⇒
HyperT (f ′: g ′: fs) a → HyperT (g ′: f ′: fs) a

transT (TransT x) = x
transT x = TransT x

Of course, with the help of this additional constructor, transposition is trivial,
and replication is no more difficult than it was with plain Hyper ; zipping is
the only operation that requires any thought. Where the two structures match,
zipping simply commutes with them—and in particular, symbolic transpositions
may be preserved, as in the third equation for tzipWith below. Only when zipping
a TransT with a PrismT does the symbolic transposition need to be forced, for
which we provide a function that expands a top-most TransT constructor if one
is present, while leaving the hypercuboid abstractly the same:

forceTransT :: (Dimension f ,Dimension g ,Shapely fs) ⇒
HyperT (f ′: g ′: fs) a → HyperT (f ′: g ′: fs) a

forceTransT (TransT (PrismT (PrismT x)))
= PrismT (PrismT (fmap transpose x))

forceTransT (TransT (PrismT x@(TransT)))
= case forceTransT x of

PrismT x ′ → PrismT (PrismT (fmap transpose x ′))
forceTransT x = x

(Here, the ‘as-pattern’ x@p binds x to the whole of an argument whilst simul-
taneously matching against the pattern p, and is a wild card. On account of
the type constraints, together with the invariant that there are no two adjacent
TransT constructors, these three clauses are sufficient to guarantee that the
outermost constructor is not a TransT .) Then we have:

tzipWith :: Shapely fs ⇒
(a → b → c) → HyperT fs a → HyperT fs b → HyperT fs c

tzipWith f (ScalarT a) (ScalarT b) = ScalarT (f a b)
tzipWith f (PrismT x) (PrismT y) = PrismT (tzipWith (azipWith f) x y)
tzipWith f (TransT x) (TransT y) = TransT (tzipWith f x y)
tzipWith f x@(TransT) (PrismT y) = tzipWith f (forceTransT x) (PrismT y)
tzipWith f (PrismT x) y@(TransT) = tzipWith f (PrismT x) (forceTransT y)

Again, folding and traversing seem to require manifesting any symbolic trans-
positions.

We can even combine symbolic replication and transposition in the same
datatype, providing trivial implementations of both operations. The only tricky
part then is in zipping, while preserving as much of the symbolic representa-
tion as possible. We have all the cases of rzipWith for prisms interacting with
replication, plus those of tzipWith for prisms interacting with transposition, plus
some new cases for replication interacting with transposition. The details are not
particularly surprising, so are left again to the energetic reader.

578 J. Gibbons

8 Flat Representation

The various nested representations above precisely capture the shape of a hyper-
cuboid. This prevents dimension and size mismatches, by making them type
errors; more constructively, it drives the mechanism for automatically aligning
the arguments of heterogeneous binary operators. However, the nested represen-
tation is inefficient in time and space; high performance array libraries targetting
GPUs arrange the data as a simple, flat, contiguous sequence of values, mediated
via coordinate transformations between the nested index space and the flat one.
In this section, we explore such flat representations.

Since each dimension of a hypercuboid is Naperian, with a fixed collection
of positions, the total size of a hypercuboid is statically determined; so one can
rather straightforwardly flatten the whole structure to an immutable linear array.
To get the full benefits of the flat representation, that really should be an array
of unboxed values [30]; for simplicity, we elide the unboxing here, but it should
not be difficult to provide that too.

In order to flatten a hypercuboid into a linear array, we need the total size
and a list of the elements. The former is provided as the hsize method of the
type class Shapely ; for the latter, we define

elements :: Shapely fs ⇒ Hyper fs a → [a]
elements (Scalar a) = [a]
elements (Prism x) = concat (map toList (elements x))

As a representation of flattened hypercuboids, we introduce an indexed version
of arrays, preserving the shape fs as a type index:

data Flat fs a where
Flat :: Shapely fs ⇒ Array Int a → Flat fs a

to which we can transform a hypercuboid:

flatten :: Shapely fs ⇒ Hyper fs a → Flat fs a
flatten x = Flat (listArray (0, hsize x − 1) (elements x))

Here, listArray is a standard Haskell function that constructs an array from a
pair of bounds and an ordered list of elements. This representation is essentially
the same as is used for high-performance array libraries such as Repa [24] for
multicore architectures and Accelerate [5] for GPUs; so it should be straight-
forward to use the abstractions defined here as a front end to guarantee safety,
with such a library as a back end for high performance.

The flat contiguous Array is one possible representation of the sequence of
elements in a hypercuboid, but it is not the only possibility. In particular, we
can accommodate sparse array representations too, recording the shape as a
type index, and explicitly storing only the non-null elements together with their
positions. When the elements are numeric, we could make the convention that
the absent ones are zero; more generally, we could provide a single copy of the
‘default’ element:

APLicative Programming with Naperian Functors 579

data Sparse fs a where
Sparse :: Shapely fs ⇒ a → Array Int (Int , a) → Sparse fs a

so that Sparse e xs denotes a sparse array with default element e and list xs
of proper elements paired with their positions. This can be expanded back to a
traditional flat array as follows:

unsparse :: ∀fs a . Shapely fs ⇒ Sparse fs a → Flat fs a
unsparse x@(Sparse e xs) = Flat (accumArray second e (0, l − 1) (elems xs))

where l = hsize (hreplicate () :: Hyper fs ())
second b a = a

Here, elems yields the list of elements of an Array , which for us will be a list of
pairs; and accumArray f e (i , j) xs constructs a B -array with bounds (i , j) from
a list xs of A-elements paired with positions, accumulating the subsequence of
elements labelled with the same position using the initial value e :: B and the
binary operator f :: B → A → B . For us, the types A,B coincide, and second
keeps the second of its two arguments. For simplicity, we compute the size l from
a regular Hyper of the same shape; more sophisticated approaches are of course
possible.

One could similarly provide a run-length-encoded representation, for arrays
expected to have long constant sections of different values, and space-efficient
representations of diagonal and triangular matrices.

Note that neither the Flat nor the Sparse representation as shown enforce
the bounds constraints. The underlying array in both cases is merely assumed
to have the appropriate length for the shape index fs. Moreover, for the sparse
representation, the positions are additionally assumed to be within range; a
more sophisticated representation using bounded naturals Fin could be used to
enforce the constraints, should that be deemed important. One might also want
to maintain the invariant that the elements in the sparse representation are listed
in order of position, so that two arrays can easily be zipped via merging without
first expanding out to a dense representation; it is straightforward to impose
that ordering invariant on the position using dependent typing [27].

In order to provide efficient element access and manipulation, one could com-
bine the array representation with an explicit index transformation [16]. Repli-
cation and transposition can then be represented by modifying the index trans-
formation, without touching the array elements. We leave the pursuit of this
possibility for future work.

9 Conclusions

We have shown how to express the rank and size constraints on multidimensional
APL array operations statically, by embedding into a modern strongly typed
functional programming language. This means that we benefit for free from all
the infrastructure of the host language, such as the type checking, compilation,
code optimizations, libraries, and development tools—all of which would have to
be built from scratch for a standalone type system such as that of Remora [34].

580 J. Gibbons

The embedding makes use of lightweight dependently typed programming
features, as exhibited in Haskell. What is quite remarkable is that there is no
need for any sophisticated solver for size constraints; the existing traditional
unification algorithm suffices (with admittedly many extensions since the days of
Hindley and Milner, for example to encompass generalized algebraic datatypes,
polymorphic recursion, type families, and so on). This is perhaps not surprising
when all one does with sizes is to compare them, but it still applies for certain
amounts of size arithmetic. For example, there is no difficulty at all in defining
addition and multiplication of type-level numbers,

type family Add (m :: Nat) (n :: Nat) :: Nat where ...
type family Mult (m :: Nat) (n :: Nat) :: Nat where ...

and then writing functions to append and split vectors, and to concatenate and
group vectors of vectors:

vappend :: (Vector m a,Vector n a) → Vector (Add m n) a
vsplit :: Count m ⇒

Vector (Add m n) a → (Vector m a,Vector n a)
vconcat :: Vector m (Vector n a) → Vector (Mult m n) a
vgroup :: (Count m,Count n) ⇒

Vector (Mult m n) a → Vector m (Vector n a)

We have shown how the approach supports various important optimizations,
such as avoiding unnecessary replication of data, and flat storage of multidimen-
sional data. In future work, we plan to integrate this approach with existing
libraries for high-performance GPU execution, notably Repa [24] and Acceler-
ate [5].

9.1 Related Work

We are, of course, not the first to use a type system to guarantee size con-
straints on dimensions of array operations. The length-indexed vector example
is the ‘hello, world’ of lightweight approaches to dependently typed program-
ming, dating back at least to Xi’s Dependent ML [38]. The particular case in
which the shape is data-independent, as we address here, can also be traced back
to Jay’s work [22] on shapely types, in which data structures may be factored
into ‘shape’ and ‘contents’, the latter a simple sequence of elements; then shapely
operations are those for which the shape of the output depends only on the shape
of the input, and not on its contents.

Jay already considered the example of two-dimensional matrices; many others
have also used size information at the type level to statically constrain multi-
dimensional array operations. Eaton [7] presented a demonstration of statically
typed linear algebra, by which he meant “any tool which makes [static guarantees
about matching dimensions] possible”. Scholz’s Single-Assignment C [32] repre-
sents the extents of multi-dimensional arrays in their types, and Trojahner and
Grelck [36] discuss shape-generic functional array programming in SaC/Qube.

APLicative Programming with Naperian Functors 581

Abe and Sumii [1] present an array interface that enforces shape consistency
through what they call generative phantom types, and conclude that “practi-
cal size checking for a linear algebra library can be constructed on the simple
idea of verifying mostly the equality of sizes without significantly restructuring
application programs”.

Elsman and Dybdal’s subset of APL [10] and Veldhuizen’s Blitz++ [37] have
array types indexed by rank but not size. Chakravarty et al.’s Haskell libraries
Repa [24] and Accelerate [5] similarly express the rank of a multi-dimensional
array in its type, but represent its shape only as part of the value, so that can
only be checked at run-time (note that they use both “rank” and “shape” in their
papers to refer to what we call rank). Thiemann and Chakravarty [35] explore
the trade-offs in developing a front-end to Accelerate in the true dependently
typed language Agda in order (among other things) to statically capture shape
information; we have shown that it is not necessary to leave the more familiar
world of Haskell to achieve that particular end.

None of these works cover full rank polymorphism as in APL and Remora
and as in our work: although operations such as map may be applied at arbitrary
shape, binary operations such as zip require both arguments to have the same
shape—there is no lifting and alignment.

The representation of an array in terms of its lookup function, as in our
Naperian class and our basis for transposition, also has quite a long history. The
representation is known as pull arrays in the Chalmers work on the digital signal
processing language Feldspar [2] and the GPU language Obsidian [6], and delayed
arrays in Repa [24]. But it is also the essence of functional reactive animation,
for example in Elliott’s Pan [8] and his and Hudak’s Fran [9], and in Hudak and
Jones’s earlier experiment on geometric region servers [20].

Acknowledgements. This paper has benefitted from helpful suggestions from Tim
Zakian, Matthew Pickering, Sam Lindley, Andres Löh, Wouter Swierstra, Conor
McBride, Simon Peyton Jones, the participants at IFIP WG2.1 Meeting #74 and
WG2.11 Meeting #16, and the anonymous reviewers, to all of whom I am very grate-
ful. The work was partially supported by EPSRC grant EP/K020919/1 on A Theory
of Least Change for Bidirectional Transformations.

O, my offence is rank, it smells to heaven;
It hath the primal eldest curse upon ’t.

Shakespeare, “Hamlet”, Act III Scene 3

References

1. Abe, A., Sumii, E.: A simple and practical linear algebra library interface with
static size checking. In: Kiselyov, O., Garrigue, J. (eds.) ML Family Workshop.
EPTCS, vol. 198, pp. 1–21 (2014)

2. Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson, A.:
The design and implementation of feldspar. In: Hage, J., Morazán, M.T. (eds.)
IFL 2010. LNCS, vol. 6647, pp. 121–136. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24276-2 8

http://dx.doi.org/10.1007/978-3-642-24276-2_8
http://dx.doi.org/10.1007/978-3-642-24276-2_8

582 J. Gibbons

3. Bird, R., Gibbons, J., Mehner, S., Voigtländer, J., Schrijvers, T.: Understanding
idiomatic traversals backwards and forwards. In: Haskell Symposium. ACM (2013)

4. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS,
vol. 1422, pp. 52–67. Springer, Heidelberg (1998). doi:10.1007/BFb0054285

5. Chakravarty, M.M.T., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
Haskell array codes with multicore GPUs. In: Declarative Aspects of Multicore
Programming, pp. 3–14. ACM (2011)

6. Claessen, K., Sheeran, M., Svensson, B.J.: Expressive array constructs in an embed-
ded GPU kernel programming language. In: Declarative Aspects of Multicore Pro-
gramming, pp. 21–30. ACM (2012)

7. Eaton, F.: Statically typed linear algebra in Haskell (demo). In: Haskell Workshop,
pp. 120–121. ACM (2006)

8. Elliott, C.: Functional images. In: Gibbons, J., de Moor, O. (eds.) The Fun of
Programming. Cornerstones in Computing, pp. 131–150. Palgrave, Basingstoke
(2003)

9. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming. ACM (1997)

10. Elsman, M., Dybdal, M.: Compiling a subset of APL into a typed intermediate
language. In: Workshop on Libraries, Languages, and Compilers for Array Pro-
gramming, pp. 101–106. ACM (2014)

11. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press, Cambridge (2009)

12. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval on composite
keys. Acta Informatica 4(1), 1–9 (1974)

13. GHC Team: Glasgow Haskell Compiler. https://www.haskell.org/ghc/
14. Gibbons, J.: APLicative programming with Naperian functors: Haskell code, Jan-

uary 2017. http://www.cs.ox.ac.uk/jeremy.gibbons/publications/aplicative.hs
15. Gibbons, J., de Moor, O.: The Fun of Programming. Cornerstones in Computing.

Palgrave, Basingstoke (2003)
16. Guibas, L.J., Wyatt, D.K.: Compilation and delayed evaluation in APL. In: Prin-

ciples of Programming Languages, pp. 1–8. ACM (1978)
17. Peter Hancock. What is a Naperian container? June 2005. http://sneezy.cs.nott.

ac.uk/containers/blog/?p=14
18. Hinze, R.: Manufacturing datatypes. J. Funct. Program. 11(5), 493–524 (2001)
19. Hinze, R.: Fun with phantom types. In: Gibbons, J., de Moor, O. (eds.) The Fun

of Programming. Cornerstones in Computing, pp. 245–262. Palgrave, Basingstoke
(2003)

20. Hudak, P., Jones, M.P.: Haskell vs Ada vs C++ vs Awk vs ...: an experiment in
software prototyping productivity. Department of Computer Science, Yale, July
1994

21. Iverson, K.E.: A Programming Language. Wiley, Hoboken (1962)
22. Jay, C.B., Cockett, J.R.B.: Shapely types and shape polymorphism. In: Sannella,

D. (ed.) ESOP 1994. LNCS, vol. 788, pp. 302–316. Springer, Heidelberg (1994).
doi:10.1007/3-540-57880-3 20

23. Jsoftware, Inc. Jsoftware: High performance development platform (2016). http://
www.jsoftware.com

24. Keller, G., Chakravarty, M., Leschchinskiy, R., Jones, S.P., Lippmeier, B.: Regu-
lar, shape-polymorphic parallel arrays in Haskell. In: International Conference on
Functional Programming, pp. 261–272. ACM (2010)

25. Lindley, S., McBride, C.: Hasochism: the pleasure and pain of dependently typed
Haskell programming. In: Haskell Symposium, pp. 81–92. ACM (2013)

http://dx.doi.org/10.1007/BFb0054285
https://www.haskell.org/ghc/
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/aplicative.hs
http://sneezy.cs.nott.ac.uk/containers/blog/?p=14
http://sneezy.cs.nott.ac.uk/containers/blog/?p=14
http://dx.doi.org/10.1007/3-540-57880-3_20
http://www.jsoftware.com
http://www.jsoftware.com

APLicative Programming with Naperian Functors 583

26. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

27. McKinna, J.: Why dependent types matter. In: Principles of Programming Lan-
guages, p. 1. ACM (2006). http://www.cs.nott.ac.uk/psztxa/publ/ydtm.pdf

28. Mycroft, A.: Polymorphic type schemes and recursive definitions. In: Paul, M.,
Robinet, B. (eds.) Programming 1984. LNCS, vol. 167, pp. 217–228. Springer,
Heidelberg (1984). doi:10.1007/3-540-12925-1 41

29. Okasaki, C.: Purely Functional Data Structures. CUP, Cambridge (1998)
30. Jones, S.P., Launchbury, J.: Unboxed values as first class citizens in a non-strict

functional language. In: Functional Programming Languages and Computer Archi-
tecture, pp. 636–666. ACM (1991)

31. Eriksson, A.S., Jansson, P.: An Agda formalisation of the transitive closure of block
matrices (extended abstract). In: Type-Driven Development, pp. 60–61. ACM
(2016)

32. Scholz, S.-B.: Functional array programming in SaC. In: Horváth, Z. (ed.) CEFP
2005. LNCS, vol. 4164, pp. 62–99. Springer, Heidelberg (2006). doi:10.1007/
11894100 3

33. Serrano, A., Hage, J., Bahr, P.: Type families with class, type classes with family.
In: Haskell Symposium, pp. 129–140. ACM (2015)

34. Slepak, J., Shivers, O., Manolios, P.: An array-oriented language with static rank
polymorphism. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 27–46. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54833-8 3

35. Thiemann, P., Chakravarty, M.M.T.: Agda meets accelerate. In: Hinze, R. (ed.)
IFL 2012. LNCS, vol. 8241, pp. 174–189. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41582-1 11

36. Trojahner, K., Grelck, C.: Dependently typed array programs don’t go wrong. J.
Logic Algebraic Program. 78(7), 643–664 (2009)

37. Veldhuizen, T.L.: Arrays in Blitz++. In: Caromel, D., Oldehoeft, R.R., Thol-
burn, M. (eds.) ISCOPE 1998. LNCS, vol. 1505, pp. 223–230. Springer, Heidelberg
(1998). doi:10.1007/3-540-49372-7 24

38. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: Programming Language Design and Implementation. ACM (1998)

39. Yorgey, B.A., Weirich, S., Cretin, J., Jones, S.P., Vytiniotis, D., Magalhães, J.P.:
Giving Haskell a promotion. In: Types in Language Design and Implementation,
pp. 53–66. ACM (2012)

http://www.cs.nott.ac.uk/ psztxa/publ/ydtm.pdf
http://dx.doi.org/10.1007/3-540-12925-1_41
http://dx.doi.org/10.1007/11894100_3
http://dx.doi.org/10.1007/11894100_3
http://dx.doi.org/10.1007/978-3-642-54833-8_3
http://dx.doi.org/10.1007/978-3-642-41582-1_11
http://dx.doi.org/10.1007/978-3-642-41582-1_11
http://dx.doi.org/10.1007/3-540-49372-7_24

Verified Characteristic Formulae for CakeML

Armaël Guéneau1(B), Magnus O. Myreen2, Ramana Kumar3,
and Michael Norrish4

1 ENS de Lyon and Inria, Paris, France
armael.gueneau@inria.fr

2 CSE Department, Chalmers University of Technology, Gothenburg, Sweden
3 Data61, CSIRO/UNSW, Sydney, Australia
4 Data61, CSIRO/ANU, Canberra, Australia

Abstract. Characteristic Formulae (CF) offer a productive, principled
approach to generating verification conditions for higher-order impera-
tive programs, but so far the soundness of CF has only been considered
with respect to an informal specification of a programming language
(OCaml). This leaves a gap between what is established by the verifica-
tion framework and the program that actually runs. We present a fully-
fledged CF framework for the formally specified CakeML programming
language. Our framework extends the existing CF approach to support
exceptions and I/O, thereby covering the full feature set of CakeML, and
comes with a formally verified soundness theorem. Furthermore, it inte-
grates with existing proof techniques for verifying CakeML programs.
This validates the CF approach, and allows users to prove end-to-end
theorems for higher-order imperative programs, from specification to lan-
guage semantics, within a single theorem prover.

1 Introduction

In previous work, Charguéraud introduced a framework for the verification of
imperative higher-order programs, based on characteristic formulae (CF). Given
a source-level program, the approach allows the user to state a specification
for it, in the style of Separation Logic [22], and prove the specification using
the full power of a proof assistant. It has proved successful in verifying robust
and modular specifications for non-trivial programs [6], and even establishing
complexity results [7].

The key component of such a framework is a function that produces, from
a source-level program e, its characteristic formula cf e. Applying the logical
predicate cf e to an environment env , a pre-condition H and a post-condition
Q yields the proposition cf e env H Q , which implies program e admits H as
a pre-condition and Q as a post-condition, in environment env . The user is left
with the task of proving the goal cf e env H Q using specialised CF tactics
alongside general-purpose tactics in an interactive theorem prover.

Charguéraud’s work is realised in a tool named CFML, where (a subset of)
OCaml is the language of the certified programs, and Coq is the proof assistant
that hosts the characteristic formulae. Only part of the soundness theorem for
CFML has been proved in Charguéraud’s Coq formalisation.
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 584–610, 2017.
DOI: 10.1007/978-3-662-54434-1 22

Verified Characteristic Formulae for CakeML 585

In this paper, we describe how a CF framework has been constructed and
proved sound for the entire CakeML language [26], including its exception mech-
anism and I/O features. CakeML is a substantial subset of Standard ML, with
the notable feature that its compiler has been verified (in the HOL4 proof assis-
tant). In addition to capturing language features not modeled in CFML, we
give this framework a fully verified soundness theorem. The entire development
is formalised in HOL4, which also plays the role of the proof assistant hosting
the characteristic formulae. Though tactic details are not the main topic of this
paper, we also provide HOL4 tactic support for our CF framework, just as CFML
provides Coq tactics to support the proof of cf e H Q theorems.

This paper’s material goes beyond previous work on characteristic formulae
and CFML in the following ways:

– We give a mechanised proof of soundness of characteristic formulae with
respect to CakeML’s formal semantics (Sect. 2). By way of contrast, CFML’s
soundness proof is mostly performed outside of Coq.

– We support additional language features, such as I/O (Sect. 3) and exceptions
(Sect. 3.2). This makes our framework go beyond CFML, and thus able to
handle all features of the CakeML programming language.

– We implement technology to make proofs using characteristic formulae inter-
operate with the existing synthesis tool for CakeML, namely the proof-
producing translator from HOL functions to CakeML (Sect. 4).

As an appetiser, in Fig. 1 we show the code for a simple implementation of
the Unix cat program, that we are able to verify using our framework. The

fun cat1 fname =
l e t

va l fd = CharIO . openIn fname

fun recurse () =
case CharIO . read1 fd of

NONE ⇒ ()
| SOME c ⇒ (CharIO . write c ; recurse ())

i n
recurse () ;
CharIO . close fd

end

fun cat fnames =
case fnames of

[] ⇒ ()
| f : : fs ⇒ (cat1 f ; cat fs)

Fig. 1. Code implementing concatenation of files to standard out. The CharIO module
is our verified implementation of an FFI interface to a rudimentary file-system model
(see Sect. 5 for more details).

586 A. Guéneau et al.

specification for cat, proven correct in our framework, and thus a HOL4 theorem,
is given in Fig. 2. The main steps of the cat proof are described in Sect. 5.

FILENAME s sv ⇐⇒ STRING s sv ∧ noNullBytes s ∧ strlen s < 256

� LIST FILENAME fns fnsv ∧ every (λ fnm. inFS fname fnm fs) fns ∧
numOpenFDs fs < 255 ⇒
{|CATFS fs ∗ STDOUT out |}
cat v · [fnsv]

{|POSTv u.
〈UNIT () u〉 ∗ CATFS fs ∗
STDOUT (out @ catfiles string fs fns)|}

Fig. 2. A CF specification of the cat function from Fig. 1. The app predicate underlies
the {|H |} fv · args {|Q |} notation, giving a CF Hoare triple for a function, indicating that
if fv is applied to args in a state satisfying H , the result satisfies Q . The (∗) operator
(defined on page 14) corresponds to the separating conjunction of separation logic.
Parts of specifications occurring within angle brackets (here, only in the post-condition)
are conditions that do not depend on the state of the heap. Above, the implication’s
assumptions require that no file name contains a null byte or has 256 characters or more
(enforced by the FILENAME predicate), that every file name corresponds to a real file
in the system, and that fewer than 255 files are open. These various requirements
naturally fall out of the way the interactions with the file-system are mediated by the
FFI interface. The post-condition states that cat returns a unit value, that the CATFS

component (the “cat file-system”) of the state is unchanged, and that the standard
output stream has been extended with the contents of all the files.

1.1 Background on CF

This subsection and the next one provide background on CF and CakeML. Read-
ers familiar with these topics can skip ahead to Sect. 1.3.

Characteristic formulae, as introduced in Charguéraud’s PhD thesis [4], are
essentially total correctness Hoare triples for ML-style functional programs. The
key component of any CF framework is a function cf that produces, from a
source-level expression e, the expression’s characteristic formula cf e. Applying
cf e to an environment env , pre-condition H and post-condition Q yields a
proposition cf e env H Q , which implies program expression e can have H as a
pre-condition and Q as a post-condition, in environment env .

While the cf function is the main workhorse behind any CF framework, most
user-proved specifications are stated in terms of a Hoare-triple-like judgement for
functional applications, app, written with Hoare-triple notation. The intuition is
that {|H |} f · args {|Q |} is true if the application of function-value f to curried
arguments args admits H as a pre-condition and Q as a post-condition. An
example of a specification stated in terms of app is shown in Fig. 2.

Verified Characteristic Formulae for CakeML 587

Charguéraud’s initial version of CF [5] only applied to pure ML programs.
Charguéraud has since extended his approach to support reasoning about imper-
ative stateful ML programs in a style inspired by separation logic and its frame
rule [6]. More recently, Charguéraud and Pottier have verified amortized com-
plexity results using CFML [7]. The version we have ported to CakeML is based
on Charguéraud’s framework for imperative stateful ML programs, but without
support for proofs about complexity results.

In Charguéraud’s implementation of CF, called CFML, the mechanism for
generating characteristic formulae from OCaml programs, i.e., the cf function,
is external to the proof assistant (Coq), and the translation from OCaml to Coq
is not completely transparent, e.g., it translates the OCaml’s fixed-size int type
to the mathematical integers in Coq. The soundness theorem for CFML has
been proved on paper using an idealised semantics for a subset of OCaml. In
contrast, our CakeML formalisation of CF models all formal entities in the logic
of the proof assistant (HOL4 in our case) and the key theorem, i.e., soundness,
is proved as a theorem inside the proof assistant.

1.2 Background on CakeML

The original goal of the CakeML project, as outlined in the first CakeML
paper [18], was to provide a fully proof-producing code generation tool (code
extraction tool) that given ML-like functions in higher-order logic (HOL) auto-
matically produces equivalent executable machine code. The CakeML transla-
tor [18] is a proof-producing tool which generates CakeML code from functions
in HOL. The output of the translator can then be input into a verified com-
piler [15,26] that transforms CakeML programs to observationally compatible
machine code. The verified CakeML compiler function was bootstrapped in logic
using the fully proof-producing work-flow mentioned above [15].

As the compiler is maturing, the focus of CakeML project is shifting to the
task of developing a general ecosystem of tools around the CakeML language.
This is where CF technology comes into the picture. Our CF formalisation pro-
vides a verification framework that enables users to prove correctness theorems
for imperative CakeML programs that use any of CakeML’s language features,
e.g., references, arrays, exceptions and I/O. One can, of course, prove correct-
ness theorems directly over the CakeML semantics. However, such direct proofs
would be incredibly tedious for anything but very simple programs.

The formal semantics of the CakeML language is central to its CF frame-
work and the CF framework’s soundness proof. Figures 3 and 5 provide some
detail of CakeML’s operational semantics, which we write in the functional big-
step style [20]. Figure 5 shows the definitions of the datatype for the deeply
embedded CakeML values that the semantics operates over. Figure 3 shows a
few cases of the expression evaluation function evaluate. The figure includes the
case of function application App Opapp [f ; v], i.e., application of expression f
to expression v , and shows the semantics, using the helper function do opapp,
of applying a non-recursive Closure value to an argument. For this application,
the environment env from the Closure value is extended to map the variable

588 A. Guéneau et al.

evaluate st env [Lit l] = (st ,Rval [Litv l])
evaluate st env [Var n] =

case lookup var id n env of

None ⇒ (st ,Rerr (Rabort Rtype error))
| Some v ⇒ (st ,Rval [v])

evaluate st env [Fun x e] = (st ,Rval [Closure env x e])
evaluate st env [App Opapp [f ; v]] =

case evaluate st env [v ; f] of

(st ′,Rval [v ; f]) ⇒
case do opapp [f ; v] of

None ⇒ (st ′,Rerr (Rabort Rtype error))
| Some (env ′,e) ⇒

if st ′.clock = 0 then

(st ′,Rerr (Rabort Rtimeout error))
else evaluate (dec clock st ′) env ′ [e]

| res ⇒ res
do opapp vs =

case vs of

[Closure env n e; v] ⇒ Some ((n,v)::env ,e)
| [Recclosure env funs n; v] ⇒ . . .
| ⇒ None

Fig. 3. An extract of the CakeML semantics.

n to value v . Before evaluation enters the expression from the Closure a clock
is checked and decremented, following the style of functional big-step seman-
tics [20]. In the semantics, each function is only applied to one argument at a
time.

1.3 A Tour of the Material

The remainder of this section provides a brief tour of the contributions of this
paper: the soundness theorem, our extensions for I/O and exceptions, and our
integration of the CakeML CF technology with our existing CakeML proof tools.

We formalise the theorem of soundness of CF with respect to the CakeML
semantics. In CFML, the soundness proof is only captured on paper, using ide-
alised semantics for a subset of ML, and the Coq library uses axioms in the
places where it would relate to the language semantics. In contrast, we were able
to implement an axiom-free CF library for the whole CakeML language, and per-
form a mechanical proof of soundness, using CakeML’s pre-existing semantics.

This not only validates the CF approach introduced by Charguéraud, but also
shows that it is flexible as well as extensible. Although CakeML’s semantics were
not designed with CF in mind, we could directly reuse the CakeML language
without any modification, and we were able to carry out the proofs without any
particular issue (although some technical details differ from the paper proof).

Verified Characteristic Formulae for CakeML 589

Moreover, as detailed in Sect. 3, we could extend the approach to handle new
language features that are not supported by CFML.

The soundness theorem, which justifies proving properties about a charac-
teristic formula to give equivalent properties about the program itself, is stated
as follows. If the characteristic formula for the deeply embedded expression e
(and environment env) holds for some shallowly embedded pre-condition H
and shallowly embedded post-condition Q , i.e., cf e env H Q , then, starting
from a state satisfying H , e is guaranteed to successfully evaluate in CakeML’s
functional big-step semantics [20], and reach a new state st ′ and value v sat-
isfying Q . Here state to set converts a CakeML state into a representation to
which one can apply separation logic connectives, and split asserts disjoint union:
split s (s1,s2) ⇐⇒ s1 ∪ s2 = s ∧ s1 ∩ s2 = ∅.

� cf e env H Q ⇒
∀ st .
H (state to set st) ⇒
∃ st ′ hf hg v ck .
evaluate (st with clock := ck) env [e] = (st ′,Rval [v]) ∧
split (state to set st ′) (hf ,hg) ∧ Q v hf

This mechanised proof eliminates the last bits of paper proof that need to
be trusted in CFML. Section 2 details the main steps leading to the proof.

We extend the CF framework introduced in CFML to handle two new language
features: exceptions, and I/O through CakeML’s foreign-function interface (FFI).
These extensions are proved sound with respect to the CakeML semantics, and
neatly make our framework able to handle all features of the CakeML program-
ming language.1

The extension which adds support for I/O is implemented by carefully modi-
fying the state to set function, shown in the soundness theorem above. We mod-
ified the state to set function so that it makes visible the state of the FFI in
the pre- and post-conditions. There were numerous tricky details to get right in
the definition of state to set because the design goal was to make I/O reasoning
local in the style of separation logic. Our support for I/O is local in that the
proof for a piece of code which only uses, say, the print-to-stdout FFI ports does
not impose any assumptions on the behaviour, state, or even existence of other
FFI ports, e.g., ports for reading-from-stdin. In the spirit of separation logic,
our framework allows combining different assertions about the FFI using CF’s
equivalent to the separation logic frame rule. Section 3 provides details on how
we modified state to set to make the FFI available in CF proofs.

Support for exceptions is implemented by making the post-conditions differ-
entiate whether the result is a normal return with a value or a value raised as an
exception. The new framework is able to reason about exception handling code.

1 CakeML’s module system is also supported in our CF framework, but supporting
modules did not require extending the original ideas of CFML.

590 A. Guéneau et al.

Section 3.2 explains how exceptions are supported and the effect their introduc-
tion had on the proofs.

With these extensions our framework covers all of CakeML’s language fea-
tures and makes it possible to develop a verified standard library for CakeML
with complete specifications for library functions that perform I/O or must
raise exceptions in certain circumstances. For example, our cat implementation
has a routine for opening files, called openIn (whose specification is shown in
Fig. 4). A call to the CakeML function for openIn raises an exception if the file
could not be opened, e.g., if there is no file at the given path. More precisely,
inFS fname fname fs describes whether a file exists in fs with name fname, and
the BadFileName exception is raised when no file could be found.

� FILENAME s sv ∧ numOpenFDs fs < 255 ⇒
{|CATFS fs|}
openIn v · [sv]

{|POST

(λwv .
〈WORD (n2w (nextFD fs)) wv ∧ validFD (nextFD fs) (openFileFS s fs) ∧
inFS fname s fs〉 ∗ CATFS (openFileFS s fs))

(λ e. 〈BadFileName exn e ∧ ¬inFS fname s fs〉 ∗ CATFS fs)|}

Fig. 4. A specification of the openIn function.

In compiled CakeML code, the actual system call for opening a file is handled
by a short stub of C code that is attached to the external side of CakeML’s FFI.
If an error occurs, the C code signals failure via the return value for the FFI
call and, on the CakeML side, the library routine raises the relevant exception
on receiving the error code from the C stub. At present, the external C code
is unverified and we just make assumptions about its effect on the rest of the
world. In the future, we aim to provide verified external assembly stubs that can
replace the current unverified C code.

We integrate the CF framework into the CakeML ecosystem by making it inter-
operate with an existing synthesis tool, namely the automatic translation from
HOL functions into CakeML. This tool [18] essentially implements a proof-
producing extraction mechanism: given a function in higher-order logic (HOL),
the tool generates CakeML code along with a proof that the produced code cor-
rectly implements the HOL function with respect to CakeML’s semantics. As
HOL functions are pure, the translator is essentially limited to producing purely
functional CakeML code.2

2 To be precise: Myreen and Owens [18] show that the tool can also be used for
production of stateful CakeML code that maintains a hard-coded invariant over a
hard-coded number of references. CF allows for much more flexibility.

Verified Characteristic Formulae for CakeML 591

At present, the most important use of this translation tool is in bootstrapping
the verified CakeML compiler, where we now benefit from CF. The translation
tool is used to generate CakeML code for the CakeML compiler’s implementa-
tion. The compiler is defined as functions in HOL, so before we can run the
compiler on itself, we need to transform the compiler definition into the source
language of the compiler, i.e., CakeML abstract syntax. CF comes into the pic-
ture because the translation tool can only produce pure functions. Previously
we had to manually verify low-level I/O code that reads the input and passes
it to the compiler function, and separate code that prints the result of running
the CakeML’s compile function. By making the CF and translation tools able
to build on each other’s results, we have replaced the difficult manual I/O code
proofs by understandable CF proofs about I/O.

The bootstrap has thus far benefited from automatic conversion of translator
produced results to CF theorems. The bridge between them also works in the
other direction: proved results from CF can be used in the translator. Since the
translator essentially only deals in pure functions, the CF-verified programs have
to implement a pure interface in order to fit the translator. Such programs are
not necessarily pure themselves: they can allocate memory, and use imperative
structures and algorithms. We plan to make use of the CF-to-translator direction
in the future to provide more efficient drop-in replacements for parts of the
bootstrapped compiler. These replacement parts would be verified using CF,
and replace the code produced by the translator. The register allocator is a
particular example that we believe would benefit from using an imperative-style
implementation instead of the current automatically generated pure functional
implementation.

Section 4 provides details on how we have connected the translation tool and
the CakeML CF framework.

All our developments were carried out in the HOL4 theorem prover, and have
been integrated into the main CakeML repository. They are available online
at https://cakeml.org and https://code.cakeml.org under the characteristic
sub-directory.

2 A Formal Proof of Soundness for Characteristic
Formulae

In this section, we explain how CakeML CF differs from CFML, how we avoided
axioms in our formalisation, and how we proved soundness of CF for CakeML.

2.1 Adapting CFML to CakeML

A first necessary step towards a proof of soundness was reimplementing the
CFML definitions, lemmas and tactics in the CakeML setting. Most of them
worked similarly to CFML – in particular the CF definitions and the various
tactics (although they are implemented differently). There are however some
technical differences worth noting.

https://cakeml.org
https://code.cakeml.org

592 A. Guéneau et al.

CakeML’s semantics uses environments, whereas CMFL assumes substitution
semantics. As a consequence, CakeML environments (which map names to
semantic values) are threaded through CakeML’s characteristic formulae as a
new parameter. Environments are accessed in the generated formulae, e.g., the
CF for Var x , shown below, returns the value for x in the given environment.
Here � is the entailment relation on heap predicates, i.e., H1 � H2 is true if any
heap satisfying H1 also satisfies H2, and defined by p � q ⇐⇒ ∀ s. p s ⇒ q s.
The local predicate adds the frame rule of separation logic to the formula.

cf (Var name) env =
local (λH Q . ∃ v . lookup var id name env = Some v ∧ H � Q v)

In practice, environments are never manipulated explicitly by the user. The
user states top-level specifications of the form “∀ xi . {|H |} f · [x1 ; . . . ; xn] {|Q |}”,
specifying the behavior of the application of the function value f to some argu-
ments x1 , . . . , xn . The value f can be fetched given its name as a CakeML func-
tion, thanks to a small library that keeps track of top-level definitions.

As f is in fact a closure, the following lemma applies. This lemma, which
is a consequence of the CF soundness theorem, turns the goal into proving the
CF of the body of f , for the environment that was packed in the closure. Here
naryClosure creates a Closure value that takes several curried arguments.

� ns �= [] ⇒
length xvs = length ns ⇒
cf body (extend env ns xvs env) H Q ⇒
{|H |} naryClosure env ns body · xvs {|Q |}

A custom pretty printer hides the contents of environments from the user.
Sub-goals of the form “lookup var env x env = v” are always automatically
proved by unfolding env.

CF for CakeML uses a deep embedding of CakeML values, while CFML trans-
lates ML values to corresponding Coq values. CakeML values are described by
the HOL type v (shown in Fig. 5), which is defined as part of the semantics.

v =
Litv lit

| Conv ((string × tid_or_exn) option) (v list)
| Closure (v environment) string exp

| Recclosure (v environment) ((string × string × exp) list) string
| Loc num

| Vectorv (v list)

Fig. 5. The CakeML semantic value datatype.

Verified Characteristic Formulae for CakeML 593

To relate CakeML values of type v to logical values (such as int, bool, ...),
we re-use the refinement invariants presented by Myreen and Owens [18] in the
context of a proof-producing translation from HOL functions to CakeML pro-
grams. These refinement invariants are a collection of composable predicates that
relate HOL types and data structures to the same concepts as deeply embed-
ded CakeML values. The INT and BOOL refinement invariants are defined as
follows:

INT i = (λ v . v = Litv (IntLit i))
BOOL T = (λ v . v = Conv (Some (“true”,TypeId (Short “bool”))) [])
BOOL F = (λ v . v = Conv (Some (“false”,TypeId (Short “bool”))) [])

A specification for the CakeML addition function can then be written as
follows. Here the angle brackets turn a pure proposition into a heap predicate
for heaps represented as sets: 〈c〉 = (λ s. s = ∅ ∧ c); and emp is 〈T〉.

� INT x0 v0 ∧ INT x1 v1 ⇒
{|emp|} plus v · [v0; v1] {|(λ v . 〈INT (x0 + x1) v〉)|}

This is somewhat heavier than CFML specifications, where Coq integers
would simply be used in place of semantic values. We believe it is hardly an
issue for more involved data structures, for which it is common to define such
predicates anyway in CFML in order to keep track of additional invariants.

Normalisation of input programs and CF generation are performed in the logic,
whereas in CFML they are performed by an external tool. Before being fed to
the cf function, programs are normalised in a process similar to A-normalisation.
The motivation is that it significantly simplifies formally reasoning about pro-
grams, while preserving their semantics. Figure 6 displays an example of the
normalisation process. Due to the fact that cf is implemented as a total function
in the logic, assumptions about the program being in normal form are made
explicit in characteristic formulae. In CFML, the external CF generator simply
fails on unhandled input programs.

i f x < 0 then
print_int (∼ x)

e l s e
print_int x

(a) Original program

l e t va l _x1 = x < 0 i n
i f _x1 then

(l e t va l _x2 = ∼ x i n
print_int _x2

end)
e l s e

print_int x

end

(b) Normalised program

Fig. 6. An example of the normalisation pass.

594 A. Guéneau et al.

The cf function assumes that the input program is in normal form. This
assumption is reflected by the use of the exp is val predicate in characteristic
formulae. This predicate, of type v environment → exp → v option, checks
whether an expression is in fact a value or a name bound to a value. It is used in
characteristic formulae to assert that some expression must be trivial, because of
the normalisation pass. For example, the CF for If, below, uses exp is val to assert
that evaluation of the condition must be dealt with beforehand, by introducing
a let-binding, which the normalisation step does. If for some reason the program
appears not to be in normal form, the corresponding CF reduces to F.

cf p (If cond e1 e2) env =
local
(λH Q .

∃ condv b.
exp is val env cond = Some condv ∧ BOOL b condv ∧
((b ⇐⇒ T) ⇒ cf p e1 env H Q) ∧
((b ⇐⇒ F) ⇒ cf p e2 env H Q))

The sub-goals related to exp is val in characteristic formulae are always auto-
matically proved by our CF tactics, and are thus kept hidden from the user.

2.2 Realising CFML Axioms

Using CakeML’s semantics, we are able to give an implementation of the app
predicate, which was axiomatised in CFML.

Let us first consider the semantics of a Hoare triple for an expression e in envi-
ronment env , denoted env � {|H |} e {|Q |}. We define validity for such a Hoare
triple, which we then use to define app. The Hoare triple env � {|H |} e {|Q |}
holds if and only if evaluation of the expression e, in a heap that satisfies the
heap predicate H , terminates and produces a value v and a heap satisfying Q v.

env � {|H |} e {|Q |} ⇐⇒
∀ st hi hk .
split (state to set st) (hi ,hk) ⇒
H hi ⇒
∃ v st ′ hf hg ck .
split3 (state to set st ′) (hf ,hk ,hg) ∧
evaluate (st with clock := ck) env [e] = (st ′,Rval [v]) ∧ Q v hf

In this definition, split and split3 are used to split a state represented as a
set of state elements into disjoint subsets: split s (s1,s2) ⇐⇒ s1 ∪ s2 =
s ∧ s1 ∩ s2 = ∅; similarly split3 s (s1,s2,s3) splits a sets into three disjoint
subsets s1, s2, s3. This state splitting is here in order to make the frame rule
available, as explained further down.

We now define a simple version of app, called app basic, which characterises
the application of a closure to a single argument. When provided a valid function

Verified Characteristic Formulae for CakeML 595

application, where do opapp can extract the body of the closure and the extended
environment, app basic simply asserts the general Hoare triple defined above.
When do opapp fails, app basic asserts that the pre-condition H cannot hold of
any state (because otherwise the function application would need to succeed).

{|H |} f · x {|Q |} ⇐⇒
case do opapp [f ; x] of
None ⇒ ∀ st h1 h2. split (state to set p st) (h1,h2) ⇒ ¬H h1

| Some (env ,exp) ⇒ env � {|H |} exp {|Q |}

Finally we define the app predicate, which characterises the application of a
closure to multiple arguments, by iterating app basic.

{|H |} f · [] {|Q |} ⇐⇒ F
{|H |} f · [x] {|Q |} ⇐⇒ {|H |} f · x {|Q |}
{|H |} f · x ::x ′::xs {|Q |} ⇐⇒
{|H |} f · x {|(λ g . ∃∃ H ′. H ′ ∗ 〈{|H ′|} g · x ′::xs {|Q |}〉)|}

It is worth noting that our Hoare triple validity integrates the frame rule
in its definition. The split predicate (respectively split3) expresses that some
heap can be split into two (resp. three) disjoint parts. Therefore, the function
application may involve only some subpart of the heap hi , while the rest hk is
preserved. The function is also allowed to produce some garbage hg , which is
left unconstrained. This is necessary for top-level specifications to be modular,
as they are formulated in terms of app.

The built-in frame rule also means that when carrying proofs using the
framework, the definition of app is kept abstract and never unfolded. When
faced with a “{|. . . |} f · . . . {|. . . |}” goal, a specification for f , also of the form
“{|. . . |} f · . . . {|. . . |}” will be fetched and used to prove the goal, either directly
or using the frame rule.

2.3 Proving CF Soundness

Soundness of characteristic formulae means that, for every expression e, if
cf e env H Q holds, then the Hoare triple env � {|H |} e {|Q |} is valid. We
define soundness for arbitrary formulae as follows.

sound e R ⇐⇒ ∀ env H Q . R env H Q ⇒ env � {|H |} e {|Q |}

The main result of this section can now be stated. We prove soundness of cf as
the following HOL theorem:

Theorem 1 (CF are sound wrt. CakeML semantics).

� sound e (cf e)

596 A. Guéneau et al.

Proof. By induction on the size of e.

This proof is most tricky for CakeML language constructs for which charac-
teristic formulae differ significantly from the semantics. The reason is typically
to abstract away from specifics of the semantics, and have proof-friendly char-
acteristic formulae. Two instances of this are closures and pattern matching.

CakeML semantics has closure values. Functions evaluate to closures, and
function application is defined in terms of applying a closure to values. The
CF for function declaration introduces an abstract value fv , and a specification
H for it. Our formulation differs from that in CFML [6] due to CakeML’s use
environment semantics instead of CFML’s substitution semantics.

cf (Let (Some f) (Fun x e1) e2) env =
local (λH Q . ∀ fv . H ⇒ cf e2 ((f ,fv)::env) H Q)

where H ⇐⇒ ∀ xv H ′ Q ′. cf e1 ((x ,xv)::env) H ′ Q ′ ⇒ {|H ′|} fv · [xv] {|Q ′|}

In the soundness proof, fv is instantiated by a function closure, and one has to
prove that H characterises it.

Proving the soundness of CF for pattern-matching also requires some amount
of proof engineering. CakeML semantics provides a logical function that imple-
ments a pattern-matching algorithm, and returns whether the match succeeded
or not. Characteristic formulae for pattern-matching are instead formulated as
nested ifs, which test the equality between the matched value and values pro-
duced from the successive patterns.

3 Sound Extensions of CF for I/O and Exceptions

This section explains how our CF framework has extended the original CFML
framework to enable reasoning about I/O and exceptions.

3.1 Support for I/O

As mentioned earlier, the goal of our extension for I/O was to enable convenient
local reasoning about I/O operations without unreasonable restrictions on the
kind of I/O one can verify.

We start with a quick explanation of how I/O is supported in the CakeML
language, then show how we made CF pre- and post-conditions able to make
assertions about parts of the I/O state, what I/O looks like in the cf function’s
output, and finally how we have used these techniques in the bootstrapping of
the latest CakeML compiler.

The CakeML language supports I/O through a byte-array-based foreign-function
interface (FFI). The abstract syntax for CakeML includes an FFI expression.
The semantics of executing an FFI expression is to update the state of the FFI
which is threaded through the operational semantics together with the state of

Verified Characteristic Formulae for CakeML 597

the CakeML references. The intuition is that CakeML’s FFI state component
models the state of the outside world and how the outside world will react to
any calls made from the CakeML program to the external world.

The formal definition of the FFI state is shown in Fig. 7. When designing
the CakeML semantics we wanted to make the FFI state as flexible as possible,
so we left the type of the rest of the world as a type variable θ, and we only
require that the user provide some oracle function s.oracle that describes how the
outside world will react to any FFI call. The FFI state has a s.final event field
that indicates whether the outside world has stopped the process (e.g., due to a
call to exit). The FFI state also keeps a list of all calls to the FFI (s.io events):
each event records the name of the FFI port3 that was called, and a list of byte
pairs, where map fst of that list is the input to the FFI call and map snd of the
list is the state of the array on return from the FFI call.

θ ffi_state =
<| oracle : (string → θ → byte list → θ oracle_result);

ffi state : θ;
final event : (final_event option);
io events : (io_event list) |>

final_event = Final event string (byte list) ffi_outcome

ffi_outcome = FFI diverged | FFI failed

io_event = IO event string ((byte × byte) list)

θ oracle_result = Oracle return θ (byte list) | Oracle diverge | Oracle fail

Fig. 7. The type for an FFI state in the CakeML operational semantics.

We enable reasoning about I/O in CF by modifying the state to set function
to expose an image of the FFI state as part of the set representation that the
separation logic connectives operate over.

The role of the state to set function is to split the state into parts that can be
separated using separating conjunction (∗). For example, a CakeML state s1 with
references at locations 0, 1 and 2 becomes the following. Note that state to set
can only produce one Mem l _ for each location l in the store.

state to set s1 = { Mem 0 val0; Mem 1 val1; Mem 2 val2; . . . }
We can use p ∗ q = (λ s. ∃ u v . split s (u,v) ∧ p u ∧ q v) to separate between
assertions such as the following. Here Loc l is the value of a reference in the
CakeML semantics (Fig. 5), and Refv,Varray, and W8array are constructors of
the value type for store values.

r � v = (λ s. ∃ loc. r = Loc loc ∧ s = { Mem loc (Refv v) })
array r vs = (λ s. ∃ loc. r = Loc loc ∧ s = { Mem loc (Varray vs) })
byte array r bs = (λ s. ∃ loc. r = Loc loc ∧ s = { Mem loc (W8array bs) })

3 We have recently switched to using strings for port names, while numbers were used
previously [26] for FFI port names. Johannes Åman Pohjola made this improvement.

598 A. Guéneau et al.

With these definitions it follows from (r1 � v1 ∗ r2 � v2 ∗ . . .)
(state to set s) that r1 �= r2 and that updates to reference r1 do not affect
r2 � v2 ∗

The simplest way to make it possible to reason about FFI using CF would
be to just make state to set produce sets that contain an element that contains
the entire current state of the CakeML FFI, i.e., s.ffi state. However, such a
simplistic approach would mean that there can only be one assertion about the
state of the FFI in any pre- or post-condition since the assertion could not be
split by separating conjunction (∗). We need to make state to set split the FFI
state into multiple elements of the state component sets so that we can use the
separating conjunction in reasoning about FFI states.

The splitting of the FFI state is non-trivial since we want to keep the FFI
state as abstract as possible in the CakeML semantics. The FFI state is modelled
by a type variable θ, and thus we know nothing about its structure. Our solution
is to parametrise the state to set function with information on how to partition
an FFI state. The information is a pair consisting of:

– proj : a projection function of type θ → (string �→ ffi), which given an
FFI state of type θ returns a finite map from strings to a new type called ffi.
Here ffi is a datatype that is meant to be convenient for modelling projected
FFI states in general.4

ffi =
Str string

| Num num
| Cons ffi ffi
| List (ffi list)
| Stream (num stream)

– parts: a list of partitions which are pairs: each pair contains a list of FFI port
names (of type string list) and a behaviour modelling next-state function,
i.e., a representation of part of the oracle function in CakeML’s FFI state. The
type of the behaviour modelling function is:

string → ffi → byte list → (byte list × ffi) option

The partitioning information (proj ,parts) is considered well-formed and
applicable to an FFI state st if:

– the FFI state st has not hit a stopping state, i.e., st .final event = None
– no partition has names that overlap with other partitions
– every I/O event has an index that belongs to one of the partitions
4 We would have liked to use a type variable instead of ffi, but a type variable would

have been shared between all partitions. Such sharing would need to be done across
FFI partitions which goes against the design goal of local specifications and local
reasoning. This is a restriction imposed by the HOL type system, which we could
have avoided by using a variant of HOL with quantifiers for type variables [13].

Verified Characteristic Formulae for CakeML 599

– for each partition, proj maps all states to the same ffi value
– the update function u in each partition respects the FFI’s oracle function5

The FFI-enabled definition of state to set maps CakeML states to the union
of the parts of the state that describe the references and the partitioned parts
of the FFI state. If the partition for the FFI state is well-defined, then the FFI
state is split into a set of FFI part elements, where each such element carries:

– s, the projected view of the state of this partition
– u, the update function for the partition
– ns, the FFI port names associated with the partition
– ts, a list of all previous I/O events for these names.

We can now make assertions about I/O in CF using state to set and separation
logic connectives. We define a generic IO assertion as follows.

IO st u ns = (λ s. ∃ ts. s = { FFI part st u ns ts })

With these we can make assertions about I/O. For example, the following
asserts that the projected FFI state must have a part that is described by
FFI part s1 u1 [n], and a disjoint part that is described by FFI part s2 u2 ns.

(IO s1 u1 [n] ∗ IO s2 u2 ns ∗ . . .) (state to set pp st)

Using such statements in their pre- and post-conditions, the user may express
strong specifications concisely.

The following proof obligation is generated every time the cf function is
applied to the abstract syntax for an FFI expression. This proof obligation can
be read as follows: pre-condition H must imply that there is a byte array and
I/O partition in the state. The I/O partition must include the name of the called
FFI entry point. Furthermore, the result of running the next-state function from
the FFI partition, i.e., u, must successfully return a new state s ′ and this state
and the updated byte array must imply the desired post-condition Q . FFI calls
return unit value.

cf pp (App (FFI name) [array]) env =
local
(λH Q .

∃ rv .
exp is val env array = Some rv ∧
∃ bs F bs ′ s s ′ u ns.
u name bs s = Some (bs ′,s ′) ∧ mem name ns ∧
H � F ∗ byte array rv bs ∗ IO s u ns ∧
F ∗ byte array rv bs ′ ∗ IO s ′ u ns � Q unit value)

5 Our use of projection functions and updates at both a concrete and abstract view
of the state bears some resemblance to lenses [21]. Note however that lenses must
have get and putback functions. Our set up lacks the putback functions, i.e., we only
project in one direction. Our initial formalisation had a putback function, but we
decided to simplify the definitions and arrived at the current solution with only a
get function, which we call proj .

600 A. Guéneau et al.

The proof goal produced by cf mentions IO, which from the user’s perspective
is the primitive I/O assertion in CakeML CF. Users define their own specialisa-
tions of IO for each application, see Sect. 5.

This support for I/O has, together with the connection between CF and the
CakeML translator (Sect. 4), been used to verify the I/O code required for giving
input and producing output from the bootstrapped CakeML compiler. The I/O
code is a little snippet of code that wraps around the translator-generated pure
CakeML code which implements the logical CakeML compile function.

3.2 Support for Exceptions

We implement complete support for specifying CakeML programs that use
exceptions. Up to this point, we required expressions to evaluate and reduce
to a value: post-conditions were of type v → heap → bool, taking the
returned value as an argument. We now allow expressions to raise an excep-
tion instead: we define a res datatype res = Val v | Exn v, and change the
type of post-conditions to be res → heap → bool. We define some wrap-
pers for writing post-conditions, in particular for the cases where the expression
never (resp. always) raises an exception. POST handles both cases by taking one
post-condition for each case.

(POSTv) Qv = (λ r . case r of Val v ⇒ Qv v | Exn e ⇒ 〈F〉)
(POSTe) Qe = (λ r . case r of Val v ⇒ 〈F〉 | Exn e ⇒ Qe e)
POST Qv Qe = (λ r . case r of Val v ⇒ Qv v | Exn e ⇒ Qe e)

We update the definitions that relate CF to CakeML semantics. For example,
the definition of Hoare triple validity we presented earlier contains:

. . . ∧ evaluate (st with clock := ck) env [exp] = (st ′,Rval [v])

The second component returned by evaluate, of which Rval is a constructor,
is of type (v list, v) result, where:

(α, β) result = Rval α | Rerr (β error_result)
α error_result = Rraise α | Rabort abort

This gives us two other cases: Rerr (Rraise exn) for expressions that raise an
exception, and Rerr (Rabort cause) for expressions that fail to evaluate. We still
rule out the latter, but add support for the former: the definition of Hoare triple
validity becomes:

Verified Characteristic Formulae for CakeML 601

env � {|H |} e {|Q |} ⇐⇒
∀ st hi hk .
split (state to set p st) (hi ,hk) ⇒
H hi ⇒
∃ r st ′ hf hg ck .
split3 (state to set p st ′) (hf ,hk ,hg) ∧ Q r hf ∧
case r of
Val v ⇒ evaluate (st with clock := ck) env [e] = (st ′,Rval [v])

| Exn v ⇒ evaluate (st with clock := ck) env [e] = (st ′,Rerr (Rraise v))

We update the existing CF definitions as well. We add side-conditions to deal
with exceptions; for example the CF for Let handles the case where an exception
is raised by the first expression.

cf p (Let (Some x) e1 e2) env =
local
(λH Q .

∃Q ′.
cf p e1 env H Q ′ ∧ Q ′ �e Q ∧
∀ xv . cf p e2 ((x ,xv)::env) (Q ′ (Val xv)) Q)

This uses the entailment relation on post-conditions for the exception case,
written Q1 �e Q2, and defined as ∀e. Q1 (Exn e) � Q2 (Exn e). On exceptions,
the post-condition for e1 (Q′) has to directly entail validity of the post-condition
for the whole formula (Q), since e2 does not get executed in case e1 raises an
exception.

Some other side-conditions are not needed for establishing the soundness
theorem, but are added to enforce a “no garbage” property on post-conditions.
For example, the CF for Var becomes as follows, where F is a post-condition
false for any value and any heap:

cf p (Var name) env =
local
(λH Q .

(∃ v . lookup var id name env = Some v ∧ H � Q (Val v)) ∧
Q �e F)

This requires Q to be false on exceptions, as evaluating a Var x always pro-
duces a value on well scoped code. We believe having such side-conditions make
the following proposition true (and plan to prove it as future work): if the CF
for e is true for pre-condition H and post-condition Q, then Q �e F if and only
if e does not raise exceptions.

We update the existing tactics, so that easy side-conditions are automatically
proved. We rely on the following lemma:

� (POSTv) Qv �e Q

602 A. Guéneau et al.

This is trivially true, as (POSTv) Qv (Exn e) unfolds to 〈F〉. Thanks to
this lemma, carrying out proofs about programs that do not involve exceptions
requires no additional effort. The only modification necessary is changing the
“λ v ” to “POSTv v ” in post-conditions.

Finally, we handle CakeML’s primitives for exception handling, Raise and
Handle, whose semantics match SML’s. Here (f ## g) (x ,y) = (f x ,g y).

cf p (Raise e) env =
local (λH Q . ∃ v . exp is val env e = Some v ∧ H � Q (Exn v) ∧ Q �v F)

cf p (Handle e rows) env =
local
(λH Q .

∃Q ′.
cf p e env H Q ′ ∧ Q ′ �v Q ∧
∀ ev .
cf cases ev ev (map (I ## cf p) rows) env (Q ′ (Exn ev)) Q)

The entailment relation on post-conditions for the value case, written
Q �v Q2, is without surprise defined as ∀v. Q1 (Val v) � Q2 (Val v). The CFs
for Raise and Handle resemble the CFs for Var and Let respectively, but with
the respectives roles of exceptions and values swapped. The cf cases auxiliary
definition corresponds to the CF for pattern-matching.

Let us present an illustrative example. The cat program presented earlier in
Fig. 1 doesn’t do any exception handling, and for simplicity its specification
(Fig. 2) requires that all input filenames represent existing files. In this way, our
specification above only specifies the non-exceptional behaviour. Nonetheless,
the various I/O primitives can be modeled so as to allow the possibility that
they might raise various exceptions, and when they are, we can prove more
detailed post-conditions capturing those behaviours.

We define a simple cat1exn program that handles invalid filenames. It is imple-
mented as shown in Fig. 8, by calling cat1 and handling the CharIO.BadFileName
exception that may be raised.

fun cat1exn fname =
cat1 fname handle CharIO . BadFileName ⇒ ()

Fig. 8. Code displaying the contents of a single file.

Figure 9 shows the specification of cat1, and Fig. 10 shows the specification
we prove for cat1exn. It relies on the catfile string function, which corresponds
to the text displayed by cat1exn, and is defined as:

Verified Characteristic Formulae for CakeML 603

catfile string fs fnm = if inFS fname fnm fs then file contents fnm fs else []

� FILENAME fnm fnv ∧ numOpenFDs fs < 255 ⇒
{|CATFS fs ∗ STDOUT out |}
cat1 v · [fnv]

{|POST

(λ u.
∃∃ content .
〈UNIT () u〉 ∗ 〈alist lookup fs.files fnm = Some content〉 ∗
CATFS fs ∗ STDOUT (out @ content))

(λ e.
〈BadFileName exn e〉 ∗ 〈¬inFS fname fnm fs〉 ∗ CATFS fs ∗
STDOUT out)|}

Fig. 9. A specification for cat1, which outputs the contents of a file on standard out,
or raises an exception if the file could not be found.

� FILENAME fnm fnmv ∧ numOpenFDs fs < 255 ⇒
{|CATFS fs ∗ STDOUT out |}
cat1 v · [fnmv]

{|POSTv u.
〈UNIT () u〉 ∗ CATFS fs ∗
STDOUT (out @ catfile string fs fnm)|}

Fig. 10. A specification for cat1exn, which will not raise the BadFileName exception.

Proving the specification for cat1exn boils down to proving three subgoals,
corresponding to the three conjunctions appearing in the Handle case of cf. The
first one is trivially solved using the appropriate tactic. The second one requires
proving that the post-condition of cat1 entails the post-condition of cat1exn,
for the value case. This is true, using a lemma proving that inFS fname fnm fs
holds if the file could be found with some content in the file system. The last
goal finally requires proving that the file system fs is unchanged in the exception
case. Knowing ¬inFS fname fnm fs, this is proved by unfolding catfile string.

4 Interoperating with the CakeML Translator

We prove an equivalence result between the theorems produced by the translator,
and a particular shape of CF specifications.

Called on a function succ of type int → int, the translator will produce
a CakeML program succ ml, and the following theorems. The theorems state
that: running the succ ml program results in an environment, succ env, in which

604 A. Guéneau et al.

looking up the variable “succ” yields a value succ v, and finally that this value
implements the function succ.

� run prog succ ml succ env
� lookup var “succ” succ env = Some succ v
� (INT −→ INT) succ succ v

We are here mostly interested in the last theorem, expressed using the “arrow”
predicate, “(a −→ b) f fv”, which relates the HOL function f to the closure fv .
It states that for any argument xv satisfying a x , evaluating the closure produces
a value u satisfying b (f x). Formally:

(a −→ b) f fv ⇐⇒
∀ x xv refs.
a x xv ⇒
∃ env exp refs ′ u c.
do opapp [fv ; xv] = Some (env ,exp) ∧
evaluate (empty state with <|clock := c; refs := refs|>) env [exp] =
(empty state with <|clock := 0; refs := refs @ refs ′|>,Rval [u]) ∧

b (f x) u

This is reminiscent of the app basic predicate used in CF, and indeed we prove
that “arrow” is a special case of app basic.

The CF specifications we prove equivalent to “arrow” are of the form
{|emp|} f · x {|POSTv v . 〈P v〉|}, where P is some logical predicate of type
v → bool. A pure function does not raise exceptions, hence the post-condition
is false for exceptions. Both the pre- and post-condition assert emptiness of the
heap.

A function f satisfying such a spec can still be called on any heap, thanks
to the frame rule built into the CF framework. The specification simply means
that the function cannot assume anything about the heap, or access it. Less
obviously, this kind of specification allows the function to allocate heap objects
(references, arrays, ...) for internal use. This becomes apparent after unfolding
the definition of Hoare triple validity that underlies app basic (which we recall
below).

env � {|H |} exp {|Q |} ⇐⇒
∀ st hi hk .
split (state to set p st) (hi ,hk) ⇒
H hi ⇒
∃ r st ′ hf hg ck .
split3 (state to set p st ′) (hf ,hk ,hg) ∧ Q r hf ∧ . . .

The final heap “state to set p st ′” is split in three sub-heaps: hf , hk and hg. The
post-condition must be true on hf , and hk was present in the initial heap and is
unchanged. There remains hg, which represents heap objects that may have been
allocated by the function and now need to be garbage collected. Consequently,

Verified Characteristic Formulae for CakeML 605

even though such specifications require the function f to offer a pure interface, it
is not necessarily pure itself: it can be implemented using imperative structures
and algorithms.

The exact equivalence theorem we prove is as follows:

� (a −→ b) f fv ⇐⇒ ∀ x xv . a x xv ⇒ {|emp|} fv · xv {|POSTv v . 〈b (f x) v〉|}

The arrow-to-app basic direction is the easiest to prove. With the right
automation, it allows programs certified using CF to use programs produced
by the translator, and automatically retrieve their specification. The app basic-
to-arrow direction is significantly trickier. It required changing the definition of
“arrow” to allow heap allocation (represented by refs ′ earlier), and subsequent
updating of the translator. Moreover, the proof itself involved careful reasoning
about the state of the FFI. This direction makes it possible to provide programs
certified using CF as drop-in replacements for translated functions.

5 Case Study: A Verified cat Implementation

Our case study builds a simple model coupling a read-only file-system with one
standard output stream. The type of the read-only file-system is

RO_fs =
<| files : ((mlstring × byte list) list);

infds : ((num × mlstring × num) list) |>

The files and infds fields are association lists. The files field maps file names to
file contents. The infds field maps file descriptors (numbers) to pairs of file names
and offsets within that file. File names are of type mlstring; in CakeML, these
map to vectors of characters occupying contiguous blocks of memory. This model
supports multiple descriptors reading from a common file at different positions,
and is also subject to realistic problems such as the possibility of file descriptors
becoming stale.

The four file-system operations needed for our example are openFile,
eof, read1, and closeFD. At this initial stage, we can define the type and its oper-
ations in a natural style, concerning ourselves only with the logical model, and
not needing to worry about its realisation in the CF framework. (One exception
is the use of association lists; it would be more natural to use finite maps, but
we must ultimately encode our values into the ffi type presented on page 15.)

Making a model of this sort visible within the CF framework then requires
us to cast the operations as messages being sent using single, fixed-size buffers
(a mutable array of bytes, to be precise). For example, when accessed from
CakeML, the read1 operation must begin by writing the file descriptor value
into such a buffer. The same buffer is then used to store the return value. If the
file descriptor passed to read1 is not valid, or if the file descriptor has come to
the end of file, the error-condition must be returned using the same buffer.

606 A. Guéneau et al.

We choose to use a one-byte buffer in the case of read1, partly because it is
simple, but also because it naturally leads to realistic “misfeatures”: bad inputs
cause a −1 return code, which must be returned “in-band”. To know whether
or not this is genuine, the client has to call the eof test first.

The final part of the process requires us to write CakeML wrappers that
make calls through the FFI. The wrapper code for read1, using the one-byte
buffer onechar, is presented in Fig. 11.

fun read1 fd =
l e t va l eofp = eof fd i n

i f eofp then NONE

e l s e
l e t va l _ = Word8Array . update onechar 0 fd

va l _ = FFI "read1" onechar

va l c = Word8Array . sub onechar 0
i n

SOME c

end
end

Fig. 11. CakeML code implementing read1. For the purposes of simplicity this does
not catch the error possible when the argument fd is not valid; rather the specification
we use imposes “fd-validity” as a pre-condition. By using the eof function, the code
does allow for the successful return of any character, including character 255 (−1).

We now have a piece of CakeML abstract syntax given the name read1, as well
as a logical function of the same name operating over values of type RO_fs. We
make the logical RO_fs values visible to the CF framework by lifting them into
the language of assertions over I/O-extended heaps, using the IO function defined
on page 16. The CATFS predicate is of type RO_fs → hprop. A proposition
CATFS fs asserts that the state of the external file-system is as given by the
logical value fs.

Our specification for read1 is given in Fig. 12. When this, and the specifica-
tions for the other entry-points have been proved, the verification of cat1 and
then cat (see Figs. 1 and 2) proceeds quite straightforwardly. In particular, the
low-level specifications ensure that the proofs are oblivious to the fact that I/O
through the FFI is involved; instead, they proceed just as if the state of the file-
system was a part of memory. The proof of cat1 is by induction on the length
of the file still to be read; that of cat by induction on the list of arguments.

6 Discussion of Related Work

The CakeML projects aims to build an extensive ecosystem of verification tools
around the CakeML programming language. By adapting CF techniques to the
setting of CakeML, this paper has extended the toolset and, at the same time,

Verified Characteristic Formulae for CakeML 607

� WORD fdw fdv ∧ validFD (w2n fdw) fs ⇒
{|CATFS fs|}
read1 v · [fdv]

{|POSTv coptv .
〈OPTION WORD (FDchar (w2n fdw) fs) coptv〉 ∗
CATFS (bumpFD (w2n fdw) fs)|}

Fig. 12. The specification of read1. The read1 v value is the closure defined by the
abstract-syntax for read1. The function FDchar returns the current character designated
by the given file descriptor, if any; the function bumpFD increments the position of the
file descriptor within its file. At the ML level, file descriptors are encoded as bytes,
but the underlying model for file-system uses natural numbers. This is why the logic
of the specification coerces from one to the other with w2n. This is also what causes
the pre-condition in openFile’s specification (Fig. 4) requiring that not too many files
be open already.

validated some of the pen-and-paper proofs of prior word on CF. Prior work on
CF and CakeML is discussed in Sects. 1.1 and 1.2.

In this section we discuss other verification projects that build ecosys-
tems of verification tools around and within theorem provers such as HOL4,
Isabelle/HOL, Coq, Nqthm and ACL2.

In the Isabelle/HOL theorem prover, a substantial ecosystem of verification
technology has been developed around the Simpl framework by Schirmer [23],
which is an extensible framework for Hoare logic over imperative programs.
Simpl played a central role in the seL4 micro-kernel verification [14], where the
C code was verified using Simpl. Later, a tool called AutoCorres by Green-
away [12] was developed for automatically lifting C programs written in Simpl
into more-convenient-to-verify monadic functions in the logic. The AutoCorres
tool and Simpl were subsequently used in the recent proof-producing Cogent
compiler [19] for its translation validation step. The Cogent compiler compiles a
by-design restrictive functional language to C and produces a correctness theo-
rem in Isabelle/HOL for each compiler run.

The Isabelle Refinement Framework by Lammich [16,17] is a recent set of
tools for producing verified code using the Isabelle/HOL prover. In this work,
the Sepref tool can synthesise concrete code from high-level descriptions of
imperative algorithms and data structures. Lammich’s work takes a top-down
path, in contrast to CF and AutoCorres, and the final translation from code in
Isabelle/HOL to code running outside the prover is not proved correct w.r.t. any
formal semantics of the target programming language.

In the context of Coq, the Bedrock project [9] lead by Chlipala has devel-
oped an impressive ecosystem around a separation-logic-inspired Hoare logic
for low-level code. Bedrock connects to FIAT [11], which is a set of tools
for performing refinement from high-level declarative specifications to concrete
implementations. This technology has been applied to complicated examples
such as a web server, database applications and even file systems [8].

608 A. Guéneau et al.

The Verified Software Toolchain (VST) [2] from Princeton is another sub-
stantial verification framework in Coq. VST defines a C-like language, provides
a separation logic on top of this C-like language and maps it into the Com-
pCert C compiler, with proof in Coq relating properties proved at the top to the
assembly that CompCert produces.

The CertiCoq project [1] also from Princeton aims to build a proof-producing
code extraction mechanism for Coq, which will essentially do for Coq what
CakeML’s translator and CakeML compiler already does for HOL.

The Nqthm theorem prover hosted a project in this area that was two or three
decades ahead of the field: the “CLI stack” project [3] developed a substantial
verification toolchain with a verification-friendly programming language sup-
ported by a verified compiler, which targetted a machine language for which the
project developed a verified hardware implementation. The logic of the Nqthm
prover is a pure first-order functional language but the input language of the
verified compiler is not functional.

The recent F* project [25] develops a new dependently-typed monadic lan-
guage with refinement types. One can use F*’s expressive types to verify pro-
grams written in F*. Users can have extra confidence in the results since the
typechecker for F* has been verified using Coq [24]. Programs developed in F*
can be extracted to OCaml for compilation and execution.

There are many other functional languages with type-systems that allow
verification using types. Ynot is one that has been re-implemented in Coq [10].

There are numerous verification ecosystem without connections to the above
mentioned theorem provers. Most of these other ecosystems only consider imper-
ative programs. HALO is one such system that applies to functional pro-
grams [28]. HALO enables verification of contracts for Haskell programs and
uses first-order provers in its implementation.

7 Summary

In this paper, we have explained how to build a fully verified CF framework for
the entirety of the CakeML language. We have shown how to add support for
I/O and exceptions, as well as interoperability with the CakeML tool used for
bootstrapping the verified CakeML compiler.

At a higher level, one can read this paper as a validation that Charguéraud’s
original work on CF is flexible as well as extensible.

Acknowledgements. We thank Arthur Charguéraud for advice on characteristic for-
mulae. We thank Mike Gordon and Thomas Sewell for commenting on drafts of this
paper. The second author was partially supported by the Swedish Research Council.

References

1. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R.,
Belanger, O.S., Sozeau, M., Weaver, M.: CertiCoq: a verified compiler for Coq. In:

Verified Characteristic Formulae for CakeML 609

The Third International Workshop on Coq for Programming Languages (CoqPL)
(2017). http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-
compiler-for-coq

2. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19718-5 1

3. Bevier, W.R., Hunt Jr., W.A., Moore, J.S., Young, W.D.: An approach to systems
verification. J. Autom. Reason. 5(4), 411–428 (1989). doi:10.1007/BF00243131

4. Charguéraud, A.: Characteristic formulae for mechanized program verification.
Ph.D. thesis, Université Paris-Diderot (2010). http://arthur.chargueraud.org/
research/2010/thesis/

5. Charguéraud, A.: Program verification through characteristic formulae. In:
Hudak, P., Weirich, S. (eds.) International Conference on Functional programming
(ICFP). ACM (2010)

6. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) International Conference
on Functional Programming (ICFP). ACM (2011). doi:10.1145/2034773.2034828

7. Charguéraud, A., Pottier, F.: Machine-checked verification of the correctness and
amortized complexity of an efficient union-find implementation. In: Urban, C.,
Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 137–153. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-22102-1 9

8. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.:
Using crash hoare logic for certifying the FSCQ file system. In: Gulati, A., Weath-
erspoon, H. (eds.) USENIX Annual Technical Conference. USENIX Association
(2016)

9. Chlipala, A.: The bedrock structured programming system: combining generative
metaprogramming and hoare logic in an extensible program verifier. In: Mor-
risett, G., Uustalu, T. (eds.) International Conference on Functional Programming
(ICFP). ACM (2013). http://doi.acm.org/10.1145/2500365.2500592, doi:10.1145/
2500365.2500592

10. Chlipala, A., Malecha, J.G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effec-
tive interactive proofs for higher-order imperative programs. In: Hutton, G., Tol-
mach, A.P. (eds.) International conference on Functional programming (ICFP).
ACM (2009). http://doi.acm.org/10.1145/1596550.1596565, doi:10.1145/1596550.
1596565

11. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis of
abstract data types in a proof assistant. In: Rajamani, S.K., Walker, D., (eds.)
Principles of Programming Languages (POPL). ACM (2015). http://doi.acm.org/
10.1145/2676726.2677006, doi:10.1145/2676726.2677006

12. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff:
formal verification of C code without the pain. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, Edinburgh, UK, pp. 429–439.
ACM, June 2014. doi:10.1145/2594291.2594296

13. Homeier, P.V.: The HOL-omega logic. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03359-9 18

14. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: ACM Symposium on
Operating Systems Principles, Big Sky, MT, USA, pp. 207–220. ACM, October
2009

http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq
http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq
http://dx.doi.org/10.1007/978-3-642-19718-5_1
http://dx.doi.org/10.1007/BF00243131
http://arthur.chargueraud.org/research/2010/thesis/
http://arthur.chargueraud.org/research/2010/thesis/
http://dx.doi.org/10.1145/2034773.2034828
http://dx.doi.org/10.1007/978-3-319-22102-1_9
http://doi.acm.org/10.1145/2500365.2500592
http://dx.doi.org/10.1145/2500365.2500592
http://dx.doi.org/10.1145/2500365.2500592
http://doi.acm.org/10.1145/1596550.1596565
http://dx.doi.org/10.1145/1596550.1596565
http://dx.doi.org/10.1145/1596550.1596565
http://doi.acm.org/10.1145/2676726.2677006
http://doi.acm.org/10.1145/2676726.2677006
http://dx.doi.org/10.1145/2676726.2677006
http://dx.doi.org/10.1145/2594291.2594296
http://dx.doi.org/10.1007/978-3-642-03359-9_18

610 A. Guéneau et al.

15. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Jagannathan, S., Sewell, P. (eds.) Principles of Programming
Languages (POPL) (2014). doi:10.1145/2535838.2535841

16. Lammich, P.: Refinement to imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 253–269. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-22102-1 17

17. Lammich, P.: Refinement based verification of imperative data structures. In: Avi-
gad, J., Chlipala, A. (eds.) Conference on Certified Programs (CPP). ACM (2016).
http://dl.acm.org/citation.cfm?id=2854065, doi:10.1145/2854065.2854067

18. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic
into pure and stateful ML. J. Funct. Program. 24(2-3) (2014). doi:10.1017/
S0956796813000282

19. O’Connor, L., Chen, Z., Rizkallah, C., Amani, S., Lim, J., Murray, T.C.,
Nagashima, Y., Sewell, T., Klein, G.: Refinement through restraint: bringing down
the cost of verification. In: Garrigue, J., Keller, G., Sumii, E. (eds.) International
Conference on Functional Programming (ICFP). ACM (2016). http://doi.acm.org/
10.1145/2951913.2951940, doi:10.1145/2951913.2951940

20. Owens, S., Myreen, M.O., Kumar, R., Tan, Y.K.: Functional big-step semantics. In:
Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 589–615. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49498-1 23

21. Pierce, B.C.: The weird world of bi-directional programming. ETAPS Invited Talk,
March 2006

22. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Logic in Computer Science (LICS). IEEE Computer Society (2002)

23. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL.
Ph.D. thesis, Technische Universitat Munchen (2006). http://arthur.chargueraud.
org/research/2010/thesis/

24. Strub, P., Swamy, N., Fournet, C., Chen, J.: Self-certification: bootstrapping certi-
fied typecheckers in F* with Coq. In: Field, J., Hicks, M. (eds.) Principles of Pro-
gramming Languages (POPL). ACM (2012). http://doi.acm.org/10.1145/2103656.
2103723, doi:10.1145/2103656.2103723

25. Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J.K.,
Béguelin, S.Z.: Dependent types and multi-monadic effects in F. In: Bod́ık, R.,
Majumdar, R. (eds.) Principles of Programming Languages (POPL). ACM (2016).
http://doi.acm.org/10.1145/2837614.2837655, doi:10.1145/2837614.2837655

26. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: International Conference on Functional
Programming (ICFP). ACM Press (2016)

27. Urban, C., Zhang, X. (eds.): ITP 2015. LNCS, vol. 9236. Springer, Heidelberg
(2015)

28. Vytiniotis, D., Jones, S.L.P., Claessen, K., Rosén, D.: HALO: haskell to logic
through denotational semantics. In: Giacobazzi, R., Cousot, R. (eds.) Principles
of Programming Languages (POPL). ACM (2013). http://doi.acm.org/10.1145/
2429069.2429121, doi:10.1145/2429069.2429121

http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dl.acm.org/citation.cfm?id=2854065
http://dx.doi.org/10.1145/2854065.2854067
http://dx.doi.org/10.1017/S0956796813000282
http://dx.doi.org/10.1017/S0956796813000282
http://doi.acm.org/10.1145/2951913.2951940
http://doi.acm.org/10.1145/2951913.2951940
http://dx.doi.org/10.1145/2951913.2951940
http://dx.doi.org/10.1007/978-3-662-49498-1_23
http://arthur.chargueraud.org/research/2010/thesis/
http://arthur.chargueraud.org/research/2010/thesis/
http://doi.acm.org/10.1145/2103656.2103723
http://doi.acm.org/10.1145/2103656.2103723
http://dx.doi.org/10.1145/2103656.2103723
http://doi.acm.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://doi.acm.org/10.1145/2429069.2429121
http://doi.acm.org/10.1145/2429069.2429121
http://dx.doi.org/10.1145/2429069.2429121

Unified Reasoning About Robustness Properties
of Symbolic-Heap Separation Logic

Christina Jansen1, Jens Katelaan2(B), Christoph Matheja1(B),
Thomas Noll1, and Florian Zuleger2

1 Software Modeling and Verification Group,
RWTH Aachen University, Aachen, Germany

matheja@cs.rwth-aachen.de
2 TU Wien, Vienna, Austria

jkatelaan@forsyte.at

Abstract. We introduce heap automata, a formalism for automatic rea-
soning about robustness properties of the symbolic heap fragment of sep-
aration logic with user-defined inductive predicates. Robustness prop-
erties, such as satisfiability, reachability, and acyclicity, are important
for a wide range of reasoning tasks in automated program analysis and
verification based on separation logic. Previously, such properties have
appeared in many places in the separation logic literature, but have not
been studied in a systematic manner. In this paper, we develop an algo-
rithmic framework based on heap automata that allows us to derive
asymptotically optimal decision procedures for a wide range of robust-
ness properties in a uniform way.

We implemented a prototype of our framework and obtained promis-
ing results for all of the aforementioned robustness properties.

Further, we demonstrate the applicability of heap automata beyond
robustness properties. We apply our algorithmic framework to the model
checking and the entailment problem for symbolic-heap separation logic.

1 Introduction

Separation logic (SL) [38] is a popular formalism for Hoare-style verification
of imperative, heap-manipulating programs. While its symbolic heap fragment
originally emerged as an idiomatic form of assertions that occur naturally in
hand-written proofs [4,5,34], a variety of program analyses based on symbolic-
heap separation logic have been developed [2,5,9,16,22,30,35]. Consequently, it
now serves as formal basis for a multitude of automated verification tools, such
as [6,8,15,17,20,28,31,37], capable of proving complex properties of a program’s
heap, such as memory safety, for large code bases [15,16]. These tools typically

J. Katelaan—Supported by the Austrian Science Fund (FWF) under project
W1255-N23.
J. Katelaan and F. Zuleger—Supported by the Austrian National Research Network
S11403-N23 (RiSE).
C. Matheja—Supported by Deutsche Forschungsgemeinschaft (DFG) Grant NO.
401/2-1.

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 611–638, 2017.
DOI: 10.1007/978-3-662-54434-1 23

612 C. Jansen et al.

rely on systems of inductive predicate definitions (SID) to specify the shape of
data structures employed by a program, such as trees and linked lists. Originally,
separation logic tools implemented highly-specialized procedures for such fixed
SIDs. As this limits their applicability, there is an ongoing trend to support
custom SIDs that are either defined manually [17,28] or even automatically
generated. The latter may, for example, be obtained from the tool Caber [12].

Robustness Properties. Allowing for arbitrary SIDs, however, raises various ques-
tions about their robustness. A user-defined or auto-generated SID might, for
example, be inconsistent, introduce unallocated logical variables, specify data
structures that contain undesired cycles, or produce garbage, i.e., parts of the
heap that are unreachable from any program variable. Accidentally introducing
such properties into specifications can have a negative impact on performance,
completeness, and even soundness of the employed verification algorithms:

– Brotherston et al. [11] point out that tools might waste time on inconsistent
scenarios due to unsatisfiability of specifications.

– The absence of unallocated logical variables, also known as establishment, is
required by the approach of Iosif et al. [26,27] to obtain a decidable fragment
of symbolic heaps.

– Other verification approaches, such as the one by Habermehl et al. [23,24],
assume that no garbage is introduced by data structure specifications.

– During program analysis and verification, questions such as reachability,
acyclicity and garbage-freedom arise depending on the properties of interest.
For example, as argued by Zanardini and Genaim [39], acyclicity of the heap
is crucial in automated termination proofs.

Being able to check such robustness properties of custom SIDs is thus cru-
cial (1) in debugging of separation-logic specifications prior to program analysis
and (2) in the program analyses themselves. So far, however, all of the above
properties have either been addressed individually or not systematically at all.
For example, satisfiability is studied in detail by Brotherston et al. [11], whereas
establishment is often addressed with ad-hoc solutions [23,26].

Several reasoning tasks arise in the context of robustness properties. As a
motivation, consider the problem of acyclicity. If our program analysis requires
acyclicity, we would like to decide whether all interpretations of a symbolic
heap are acyclic; if not, to find out how cycles can be introduced into the heap
(counterexample generation); and, finally, to be able to generate a new SID that
does guarantee acyclicity (called refinement below). A systematic treatment of
robustness properties should cover these reasoning tasks in general, not just for
the problem of acyclicity.

Problem Statement. We would like to develop a framework that enables:

1. Decision procedures for robustness properties. In program analysis, we gener-
ally deal with symbolic heaps that reference SIDs specifying unbounded data
structures and thus usually have infinitely many interpretations. We need to
be able to decide whether all, or some, of these infinitely many interpretations
are guaranteed to satisfy a given robustness property.

Unified Reasoning About Robustness Properties of Symbolic-Heaps 613

2. Generation of counterexamples that violate a desired property.
3. Refinement of SIDs to automatically generate a new SID that respects a given

robustness property.
4. Automatic combination of decision procedures to derive decision procedures

for complex robustness properties from simpler ingredients.

Motivating Example: Inductive Reasoning About Robustness Properties. The key
insight underlying our solution to the above problems is that many properties
of symbolic heaps can be decided iteratively by inductive reasoning. To moti-
vate our approach, we illustrate this reasoning process with a concrete example.
Consider an SID for acyclic singly-linked list segments with head x and tail y:

sll(x, y) ⇐ emp : {x = y} sll(x, y) ⇐ ∃u . x �→ u ∗ sll(u, y) : {x �= y}.

The two rules of the SID define a case distinction: A list is either empty
or the first element has a successor u (specified by the points-to assertion
x �→ u), which in turn is at the head of a (shorter) singly-linked list segment,
sll(u, y). The inequality in the second rule guarantees that there is no cyclic
model. Now, consider the following symbolic heap with predicate calls to sll:
ϕ = ∃x, y, z . sll(x, z) ∗ z �→ y ∗ sll(y, x), which might appear as an assertion
during program analysis. Say our program analysis depends on the acyclicity
of ϕ, so we need to determine whether ϕ is acyclic. We can do so by inductive
reasoning as follows.

– We analyze the call sll(x, z), the first list segment in the symbolic heap ϕ.
If it is interpreted by the right-hand side of the first rule of the SID from
above, then there is no cycle in sll(x, z) and z is reachable from x.

– If we already know for a call sll(u, z) that all of its models are acyclic struc-
tures and that z is reachable from u, then z is also reachable from x in the
symbolic heap ∃u . x �→ u ∗ sll(u, z) : {x �= z} obtained by the second rule of
the SID. Since our SID does not introduce dangling pointers, we also know
that there is still no cycle.

– By induction, sll(x, z) is thus acyclic and z is reachable from x.
– Likewise, sll(y, x) is acyclic and x is reachable from y.
– Now, based on the information we discovered for sll(x, z) and sll(y, x),

we examine ϕ and conclude that it is cyclic, as z is reachable from x, y is
reachable from z, and x is reachable from y. Crucially, we reason inductively
and thus do not re-examine the list segments to arrive at our conclusion.

In summary, we examine a symbolic heap and corresponding SID bottom-up,
starting from the non-recursive base case. Moreover, at each stage of this analy-
sis, we remember a fixed amount of information—namely what we discover about
reachability between parameters and acyclicity of every symbolic heap we exam-
ine. Similar inductive constructions are defined explicitly for various robustness
properties throughout the separation logic literature [11,13,26]. Our aim is to
generalize such manual constructions following an automata-theoretic approach:
We introduce automata that operate on symbolic heaps and store the relevant

614 C. Jansen et al.

information of each symbolic heap they examine in their state space. Whenever
such an automaton comes across a predicate that it has already analyzed, it can
simply replace the predicate with the information that is encoded in the corre-
sponding state. In other words, our automata recognize robustness properties in
a compositional way by exploiting the inductive structure inherent in the SIDs.

Systematic Reasoning About Robustness Properties. Our novel automaton
model, heap automata, works directly on the structure of symbolic heaps as out-
lined in the example, and can be applied to all the problems introduced before.
In particular, heap automata enable automatic refinement of SIDs and enjoy a
variety of closure properties through which we can derive counterexample gener-
ation as well as decision procedures for various robustness properties—including
satisfiability, establishment, reachability, garbage-freedom, and acyclicity.

Our approach can thus be seen as an algorithmic framework for deciding a
wide range of robustness properties of symbolic heaps. Furthermore, we show
asymptotically optimal complexity of our automata-based decision procedures
in a uniform way. By enabling this systematic approach to reasoning about
robustness, our framework generalizes prior work that studied single robustness
properties in isolation, such as the work by Brotherston et al. [11,13].

As a natural byproduct of our automata-based approach, we also derive deci-
sion procedures for the model-checking problem, which was recently studied, and
proven to be ExpTime–complete in general, by Brotherston et al. [13]. This
makes it possible to apply our framework to run-time verification—a setting in
which robustness properties are of particular importance [13,28,33].

Entailment Checking with Heap Automata. Finally, we also address the entail-
ment problem. In Hoare-style program analysis, decision procedures for the
entailment problem become essential to discharge implications between asser-
tions, as required, for example, by the rule of consequence [25]. Because of this
central role in verification, there is an extensive body of research on decision pro-
cedures for entailment; see, for example [3,10,14,21,26,27,32,36]. Antonopoulos
et al. [1] study the complexity of the entailment problem and show that it is
undecidable in general, and already ExpTime–hard for SIDs specifying sets
of trees.

We use heap automata to check entailment between determined symbolic
heaps. Intuitively, determinedness is a strong form of the establishment prop-
erty guaranteeing that two variables are either equal or unequal in every model.
Unlike other decision procedures [3,26,27], our approach does not impose syn-
tactic restrictions on the symbolic heap under consideration but merely requires
that suitable heap automata for the predicates on the right-hand side of the
entailment are provided. In particular, we show how to obtain ExpTime deci-
sion procedures from such heap automata—which exist for highly non-trivial
SIDs. If desired, additional syntactic restrictions can be integrated seamlessly
into our approach to boost our algorithms’ performance.

Unified Reasoning About Robustness Properties of Symbolic-Heaps 615

Contributions. Our main contributions can be summarized as follows.

– We introduce heap automata, a novel automaton model operating directly on
symbolic heaps. We prove that heap automata enjoy various useful closure
properties. Besides union, intersection and complement, they are closed under
the conjunction with pure formulas, allowing the construction of complex heap
automata from simple ones.

– We develop a powerful algorithmic framework for automated reasoning about
and debugging of symbolic heaps with inductive predicate definitions based
on heap automata.

– We show that key robustness properties, such as satisfiability, establishment,
reachability, garbage freedom and acyclicity, can naturally be expressed as
heap automata. Moreover, the upper bounds of decision procedures obtained
from our framework are shown to be optimal—i.e., ExpTime–complete—in
each of these cases. Further, they enable automated refinement of SIDs to
filter out (or expose) symbolic heaps with undesired properties.

– Additionally, we apply heap automata to tackle the entailment and the model
checking problem for symbolic heaps. We show that if each predicate of an
SID can be represented by a heap automaton, then the entailment problem for
the corresponding fragment of symbolic heaps is decidable in 2-ExpTime in
general and ExpTime-complete if the maximal arity of predicates and points-
to assertions is bounded. For example, our framework yields an ExpTime
decision procedure for a symbolic heap fragment capable of representing trees
with linked leaves—a fragment that is out of scope of most ExpTime decision
procedures known so far (cf. [3,21,27]).

– We implemented a prototype of our framework that yields promising results
for all robustness properties considered in the paper.

Organization of the Paper. The fragment of symbolic heaps with inductive pred-
icate definitions is briefly introduced in Sect. 2. Heap automata and derived deci-
sion procedures are studied in Sect. 3. Section 4 demonstrates that a variety of
robustness properties can be checked by heap automata. We report on a pro-
totypical implementation of our framework in Sect. 5. Special attention to the
entailment problem is paid in Sect. 6. Finally, Sect. 7 concludes. Due to lack of
space, most proofs as well as detailed constructions are provided in a full version
of this paper that is available online [29].

2 Symbolic Heaps

This section briefly introduces the symbolic heap fragment of separation logic
equipped with inductive predicate definitions.

Basic Notation. N is the set of natural numbers and 2S is the powerset of a set
S. (co)dom(f) is the (co)domain of a (partial) function f . We abbreviate tuples
(u1, . . . , un), n ≥ 0, by u and write u[i], 1 ≤ i ≤ ‖u‖ = n, to denote ui, the
i-th element of u. By slight abuse of notation, the same symbol u is used for
the set of all elements occurring in tuple u. The empty tuple is ε and the set of
all (non-empty) tuples [of length n ≥ 0] over a finite set S is S∗ (S+ [Sn]). The
concatenation of tuples u and v is uv.

616 C. Jansen et al.

Syntax. We usually denote variables taken from Var (including a dedicated vari-
able null) by a, b, c, x, y, z, etc. Moreover, let Pred be a set of predicate symbols
and ar : Pred → N be a function assigning each symbol its arity. Spatial formulas
Σ and pure formulas π are given by the following grammar:

Σ ::= emp | x �→ y | Σ ∗ Σ π ::= x = y | x �= y,

where y is a non-empty tuple of variables. Here, emp stands for the empty heap,
x �→ y is a points-to assertion and ∗ is the separating conjunction. Furthermore,
for P ∈ Pred and a tuple of variables y of length ar(P), Py is a predicate call.
A symbolic heap ϕ(x0) with variables Var(ϕ) and free variables x0 ⊆ Var(ϕ) is
a formula of the form ϕ(x0) = ∃z . Σ ∗Γ : Π, Γ = P1x1 ∗ . . . ∗Pmxm, where
Σ is a spatial formula, Γ is a sequence of predicate calls and Π is a finite set of
pure formulas, each with variables from x0 and z. This normal form, in which
predicate calls and points-to assertions are never mixed, is chosen to simplify
formal constructions. If an element of a symbolic heap is empty, we usually
omit it to improve readability. For the same reason, we fix the notation from
above and write zϕ, xϕ

i , Σϕ etc. to denote the respective component of symbolic
heap ϕ in formal constructions. Hence, ‖xϕ

0 ‖ and ‖Γϕ‖ refer to the number
of free variables and the number of predicate calls of ϕ, respectively. We omit
the superscript whenever the symbolic heap under consideration is clear from
the context. If a symbolic heap τ contains no predicate calls, i.e., ‖Γ τ‖ = 0,
then τ is called reduced. Moreover, to simplify the technical development, we
tacitly assume that null is a free variable that is passed to every predicate call.
Thus, for each i ∈ N, we write xi[0] as a shortcut for null and treat xi[0] as if
xi[0] ∈ xi.

1

Systems of Inductive Definitions. Every predicate symbol is associated with one
or more symbolic heaps by a system of inductive definitions (SID). Formally,
an SID is a finite set of rules of the form Px0 ⇐ ϕ, where ϕ is a symbolic heap
with ar(P) = ‖xϕ

0 ‖. The set of all predicate symbols occurring in SID Φ and
their maximal arity are denoted by Pred(Φ) and ar(Φ), respectively.

Example 1. An SID specifying doubly-linked list segments is defined by:

dll(x1, x2, x3, x4) ⇐ emp : {x1 = x3, x2 = x4}
dll(x1, x2, x3, x4) ⇐ ∃u . x1 �→ (u, x2) ∗ dll(u, x1, x3, x4),

where x1 corresponds to the head of the list, x2 and x3 represent the previous
and the next list element and x4 represents the tail of the list. Further, the
following rules specify binary trees with root x1, leftmost leaf x2 and successor
of the rightmost leaf x3 in which all leaves are connected by a singly-linked list
from left to right.

tll(x1, x2, x3) ⇐ x1 �→ (null,null, x3) : {x1 = x2}
tll(x1, x2, x3) ⇐ ∃
 r z . x1 �→ (
, r,null) ∗ tll(
, x2, z) ∗ tll(r, z, x3).

1 Since xi[0] is just a shortcut and not a proper variable, ‖xi‖ refers to the number of
variables in xi apart from xi[0].

Unified Reasoning About Robustness Properties of Symbolic-Heaps 617

s, h |=Φ x ∼ y ⇔ s(x) ∼ s(y), where ∼ ∈ { =, �= }
s, h |=Φ emp ⇔ dom(h) = ∅
s, h |=Φ x �→ y ⇔ dom(h) = {s(x)} and h(s(x)) = s(y)

s, h |=Φ Py ⇔ ∃τ ∈ UΦ(Py) . s, h |=∅ τ

s, h |=Φ ϕ ∗ ψ ⇔ ∃h1, h2 . h = h1 � h2

and s, h1 |=Φ ϕ and s, h2 |=Φ ψ

s, h |=Φ ∃z.Σ ∗ Γ :Π ⇔ ∃v ∈ Val‖z‖ . s [z �→ v] , h |=Φ Σ ∗ Γ

and ∀π ∈ Π . s [z �→ v] , h |=Φ π

Fig. 1. Semantics of the symbolic heap fragment of separation logic with respect to an
SID Φ and a state (s, h).

Definition 1. We write SH for the set of all symbolic heaps and SHΦ for the set
of symbolic heaps restricted to predicate symbols taken from SID Φ. Moreover,
given a computable function C : SH → {0, 1}, the set of symbolic heaps SHC is
given by SHC � {ϕ ∈ SH | C(ϕ) = 1}. We collect all SIDs in which every right-
hand side belongs to SHC in SIDC. To refer to the set of all reduced symbolic
heaps (belonging to a set defined by C), we write RSH (RSHC).

Example 2. Let α ∈ N and FV≤α(ϕ) �
{

1, ‖xϕ
0 ‖ ≤ α

0, otherwise
.

Clearly, FV≤α is computable. Moreover, SHFV≤α is the set of all symbolic
heaps having at most α free variables.

Semantics. As in a typical RAM model, we assume heaps to consist of records
with a finite number of fields. Let Val denote an infinite set of values and Loc ⊆
Val an infinite set of addressable locations. Moreover, we assume the existence
of a special non-addressable value null ∈ Val \ Loc.

A heap is a finite partial function h : Loc ⇀ Val+ mapping locations to
non-empty tuples of values. We write h1 h2 to denote the union of heaps h1

and h2 provided that dom(h1) ∩ dom(h2) = ∅. Otherwise, h1 h2 is undefined.
Variables are interpreted by a stack, i.e., a partial function s : Var ⇀ Val
with s(null) = null. Furthermore, stacks are canonically extended to tuples of
variables by componentwise application. We call a stack–heap pair (s, h) a state.
The set of all states is States. The semantics of a symbolic heap with respect to
an SID and a state is shown in Fig. 1. Note that the semantics of predicate calls
is explained in detail next.

Unfoldings of Predicate Calls. The semantics of predicate calls is defined in
terms of unfolding trees. Intuitively, an unfolding tree specifies how predicate
calls are replaced by symbolic heaps according to a given SID. The resulting
reduced symbolic heap obtained from an unfolding tree is consequently called
an unfolding. Formally, let ϕ = ∃z.Σ ∗ P1x1 ∗ . . . ∗ Pmxm : Π . Then a predicate

618 C. Jansen et al.

call Pixi may be replaced by a reduced symbolic heap τ if ‖xi‖ = ‖xτ
0‖ and

Var(ϕ) ∩ Var(τ) ⊆ xτ
0 . The result of such a replacement is

ϕ [Pi/τ] � ∃z zτ . Σ ∗ Στ [xτ
0/xi] ∗

P1x1 ∗ . . . ∗ Pi−1xi−1 ∗ Pi+1xi+1 ∗ . . . ∗ Pmxm :
(
Π ∪ Πτ [xτ

0/xi]
)
,

where τ [xτ
0/xi] denotes the substitution of each free variable of τ by the corre-

sponding parameter of Pi.
A tree over symbolic heaps SHΦ is a finite partial function t : N∗ ⇀ SHΦ such

that ∅ �= dom(t) ⊆ N
∗ is prefix-closed and for all u ∈ dom(t) with t(u) = ϕ,

we have {1, . . . , ‖Γϕ‖} = {i ∈ N | u i ∈ dom(t)}. The element ε ∈ dom(t)
is called the root of tree t. Furthermore, the subtree t|u of t with root u is
t|u : {v |uv ∈ dom(t)} → SHΦ with t|u(v) � t(u · v).

Definition 2. Let Φ ∈ SID and ϕ ∈ SHΦ. Then the set of unfolding trees of ϕ
w.r.t. Φ, written TΦ(ϕ), is the least set that contains all trees t that satisfy (1)
t(ε) = ϕ and (2) t|i ∈ TΦ(ψi) for each 1 ≤ i ≤ ‖Γϕ‖, where Pϕ

i ⇐ ψi ∈ Φ.

Note that for every reduced symbolic heap τ , we have ‖Γ τ‖ = 0. Thus, TΦ(τ) =
{t}, where t : {ε} → {τ} : ε �→ τ , forms the base case in Definition 2. Every
unfolding tree t specifies a reduced symbolic heap �t�, which is obtained by
recursively replacing predicate calls by reduced symbolic heaps:

Definition 3. The unfolding of an unfolding tree t ∈ TΦ(ϕ) is

�t� �
{

t(ε) , ‖Γ t(ε)‖ = 0
t(ε) [P1/�t|1�, . . . , Pm/�t|m�] , ‖Γ t(ε)‖ = m > 0 ,

where we tacitly assume that the variables zt(ε), i.e., the existentially quantified
variables in t(ε), are substituted by fresh variables.

Example 3. Recall from Example 1 the two symbolic heaps τ (upper) and ϕ
(lower) occurring on the right-hand side of the dll predicate. Then t : {ε, 1} →
{ϕ, τ} : ε �→ ϕ, 1 �→ τ is an unfolding tree of ϕ. The corresponding unfolding is

�t� = ϕ [Pϕ
1 /τ] = ∃z . x1 �→ (z, x2) ∗ emp : {z = x3, x1 = x4}.

Definition 4. The set of all unfoldings of a predicate call Pixi w.r.t. an SID
Φ is denoted by UΦ(Pixi). Analogously, the unfoldings of a symbolic heap ϕ are
UΦ(ϕ) � {�t� | t ∈ TΦ(ϕ)}.

Then, as already depicted in Fig. 1, the semantics of predicate calls requires
the existence of an unfolding satisfying a given state. This semantics corresponds
to a particular iteration of the frequently used semantics of predicate calls based
on least fixed points (cf. [11]). Further note that applying the SL semantics to a
given symbolic heap coincides with applying them to a suitable unfolding.

Lemma 1. Let ϕ ∈ SHΦ. Then, for every (s, h) ∈ States, we have

s, h |=Φ ϕ iff ∃τ ∈ UΦ(ϕ) . s, h |=∅ τ.

Unified Reasoning About Robustness Properties of Symbolic-Heaps 619

3 Heap Automata

In this section we develop a procedure to reason about robustness properties of
symbolic heaps. This procedure relies on the notion of heap automata; a device
that assigns one of finitely many states to any given symbolic heap.

Definition 5. A heap automaton over SHC is a tuple A = (Q,SHC ,Δ, F),
where Q is a finite set of states and F ⊆ Q is a set of final states, respec-
tively. Moreover, Δ ⊆ Q∗ × SHC × Q is a decidable transition relation such
that (q, ϕ, p) ∈ Δ implies that ‖q‖ = ‖Γϕ‖. We often write q

ϕ−→A p instead of
(q, ϕ, p) ∈ Δ.

A transition q
ϕ−→A p takes a symbolic heap ϕ and an input state qi for every

predicate call Pi of ϕ—collected in the tuple q—and assigns an output state p
to ϕ. Thus, the intuition behind a transition is that ϕ has a property encoded
by state p if every predicate call Pi of ϕ is replaced by a reduced symbolic heap
τi that has a property encoded by state q[i].

Note that every heap automaton A assigns a state p to a reduced symbolic
heap τ within a single transition of the form ε

τ−→A p. Alternatively, A may
process a corresponding unfolding tree t with �t� = τ . In this case, A proceeds
similarly to the compositional construction of unfoldings (see Definition 3). How-
ever, instead of replacing every predicate call Pi of the symbolic heap t(ε) at the
root of t by an unfolding �t|i� of a subtree of t, A uses states to keep track of
the properties of these unfolded subtrees. Consequently, A assigns a state p to

the symbolic heap t(ε) if (q1, . . . , qm)
t(ε)−−→A p holds, where for each 1 ≤ i ≤ m,

qi is the state assigned to the unfolding of subtree t|i, i.e., there is a transition

ε
�t|i�−−−→A qi. It is then natural to require that p should coincide with the state

assigned directly to the unfolding �t�, i.e., ε
�t�−−→A p. Hence, we require all heap

automata considered in this paper to satisfy a compositionality property.

Definition 6. A heap automaton A = (Q,SHC ,Δ, F) is compositional if for
every p ∈ Q, every ϕ ∈ SHC with m ≥ 0 predicate calls Γϕ = P1x1 ∗ . . . ∗ Pmxm,
and all reduced symbolic heaps τ1, . . . , τm ∈ RSHC, we have:

∃q ∈ Qm . (q, ϕ, p) ∈ Δ and
∧

1≤i≤m(ε, τi,q[i]) ∈ Δ

if and only if
(ε, ϕ [P1/τ1, . . . , Pm/τm] , p) ∈ Δ.

Due to the compositionality property, we can safely define the language L(A)
accepted by a heap automaton A as the set of all reduced symbolic heaps that
are assigned a final state, i.e., L(A) � {τ ∈ RSHC | ∃q ∈ F . ε

τ−→A q}.

Example 4. Given a symbolic heap ϕ, let |Σϕ| denote the number of points-
to assertions in ϕ. As a running example, we consider a heap automaton A =
({0, 1},SH,Δ, {1}), where Δ is given by

q
ϕ−→A p iff p =

{
1, if |Σϕ| +

∑‖q‖
i=1 q[i] > 0

0, otherwise.

620 C. Jansen et al.

While A is a toy example, it illustrates the compositionality property: Consider
the reduced symbolic heap τ(x, y) = ∃z.emp∗ emp : {x = z, z = y}. Since τ con-
tains no points-to assertions, A rejects τ in a single step, i.e., ε

τ−→A 0 /∈ {1}. The
compositionality property of A ensures that A yields the same result for every
unfolding tree t whose unfolding �t� is equal to τ . For instance, τ is a possible
unfolding of the symbolic heap ϕ(x, y) = ∃z.sll(x, z) ∗ sll(z, y), where sll is
a predicate specifying singly-linked list segments as in Sect. 1. More precisely, if
both predicate calls are replaced according to the rule sll(x, y) ⇐ emp : {x =
y}, we obtain τ again (up to renaming of parameters as per Definition 3). In

this case, A rejects as before: We have ε
emp:{x=y}−−−−−−−→A 0 for both base cases and

(0, 0)
ϕ−→A 0 for the symbolic heap ϕ. By the compositionality property, this is

equivalent to ε
τ−→A 0. Analogously, if a predicate call, say the first, is replaced

according to the rule sll(x, y) ⇐ ψ, where ψ = ∃z.x �→ z ∗ sll(z, y), then

0
ψ−→A 1, 1

ψ−→A 1 and (1, 0)
ϕ−→A 1 holds, i.e., A accepts. In general, L(A) is the

set of all reduced symbolic heaps that contain at least one points-to assertion.

While heap automata can be applied to check whether a single reduced sym-
bolic heap has a property of interest, i.e., belongs to the language of a heap
automaton, our main application is directed towards reasoning about infinite
sets of symbolic heaps, such as all unfoldings of a symbolic heap ϕ. Thus, given
a heap automaton A, we would like to answer the following questions:

1. Does there exist an unfolding of ϕ that is accepted by A?
2. Are all unfoldings of ϕ accepted by A?

We start with a special case of the first question in which ϕ is a single predicate
call. The key idea behind our corresponding decision procedure is to transform
the SID Φ to filter out all unfoldings that are not accepted by A. One of our
main results is that such a refinement is always possible.

Theorem 1 (Refinement Theorem). Let A be a heap automaton over SHC
and Φ ∈ SIDC. Then one can effectively construct a refined Ψ ∈ SIDC such that
for each P ∈ Pred(Φ), we have UΨ (Px0) = UΦ(Px0) ∩ L(A).

Proof. We construct Ψ ∈ SIDC over the predicate symbols Pred(Ψ) = (Pred(Φ)×
QA)∪Pred(Φ) as follows: If Px0 ⇐ ϕ ∈ Φ with Γϕ = P1x1 ∗ . . . ∗Pmxm, m ≥ 0,
and (q1, . . . , qm)

ϕ−→A q0, we add a rule to Ψ in which P is substituted by 〈P, q0〉
and each predicate call Pixi is substituted by a call 〈Pi, qi〉xi. Furthermore, for
each q ∈ FA, we add a rule Px0 ⇐ 〈P, q〉x0 to Ψ . See [29] for details. ��
Example 5. Applying the refinement theorem to the heap automaton from
Example 4 and the SID from Example 1 yields a refined SID given by the rules:

dllx0 ⇐ 〈dll, 1〉x0 〈dll, 0〉x0 ⇐ emp : {x1 = x3, x2 = x4}
〈dll, 1〉x0 ⇐ ∃z . x1 �→ (z, x2) ∗ 〈dll, 0〉(z, x1, x3, x4)
〈dll, 1〉x0 ⇐ ∃z . x1 �→ (z, x2) ∗ 〈dll, 1〉(z, x1, x3, x4)

Hence, the refined predicate dllx0 specifies all non-empty doubly-linked lists.

Unified Reasoning About Robustness Properties of Symbolic-Heaps 621

Input : SID Φ, I ∈ Pred(Φ), A = (Q, SHC , Δ, F)
Output: yes iff UΦ(Ix) ∩ L(A) = ∅
R ← ∅;
repeat

if R ∩ ({I} × F) �= ∅ then return no;
pick a state q in Q; pick a rule P ⇐ ϕ in Φ;
s ← ε; // list of states of A
for i in 1 to ‖Γ ϕ‖ do

pick (P ϕ
i , p) ∈ R; append(s,p) // base case if ‖Γ ϕ‖ = 0

end
if (s, ϕ, q) ∈ Δ then R ← R ∪ {(P, q)} ;

until R reaches a fixed point (w.r.t. all choices of rules);
return yes

Algorithm 1. On-the-fly construction of a refined SID with emptiness check.

To answer question (1) we then check whether the set of unfoldings of a
refined SID is non-empty. This boils down to a simple reachability analysis.

Lemma 2. Given an SID Φ and a predicate symbol P ∈ Pred(Φ), it is decidable
in linear time whether the set of unfoldings of P is empty, i.e., UΦ(Px) = ∅.
Proof (sketch). It suffices to check whether the predicate P lies in the least set
R such that (1) I ∈ R if Ix0 ⇐ τ ∈ Φ for some τ ∈ RSH, and (2) I ∈ R
if Ix0 ⇐ ϕ ∈ Φ and for each Pϕ

i xϕ
i , 1 ≤ i ≤ ‖Γϕ‖, Pϕ

i ∈ R. The set R is
computable in linear time by a simple backward reachability analysis. ��
As outlined before, putting the Refinement Theorem and Lemma2 together
immediately yields a decision procedure for checking whether some unfolding
of a predicate symbol P is accepted by a heap automaton: Construct the refined
SID and subsequently check whether the set of unfoldings of P is non-empty.

To extend this result from unfoldings of single predicates to unfoldings of
arbitrary symbolic heaps ϕ, we just add a rule P ⇐ ϕ, where P is a fresh
predicate symbol, and proceed as before.

Corollary 1. Let A be a heap automaton over SHC and Φ ∈ SIDC. Then, for
each ϕ ∈ SHΦ

C , it is decidable whether there exists τ ∈ UΦ(ϕ) such that τ ∈ L(A).

The refinement and emptiness check can also be integrated: Algorithm 1 dis-
plays a simple procedure that constructs the refined SID Ψ from Theorem 1
on-the-fly while checking whether its set of unfoldings is empty for a given pred-
icate symbol. Regarding complexity, the size of a refined SID2 obtained from
an SID Φ and a heap automaton A is bounded by ‖Φ‖ · ‖QA‖M+1, where M

2 We assume a reasonable function ‖.‖ assigning a size to SIDs, symbolic heaps, unfold-
ing trees, etc. For instance, the size ‖Φ‖ of an SID Φ is given by the product of its
number of rules and the size of the largest symbolic heap contained in any rule.

622 C. Jansen et al.

is the maximal number of predicate calls occurring in any rule of Φ. Thus, the
aforementioned algorithm runs in time O (‖Φ‖ · ‖QA‖M+1 · ‖ΔA‖)

, where ‖ΔA‖
denotes the complexity of deciding whether the transition relation ΔA holds for
a given tuple of states and a symbolic heap occurring in a rule of Φ.

Example 6. Resuming our toy example, we check whether some unfolding of
the doubly-linked list predicate dllx0 (see Example 1) contains points-to asser-
tions. Formally, we decide whether UΦ(dllx0) ∩ L(A) �= ∅, where A is the heap
automaton introduced in Example 4. Algorithm 1 first picks the rule that maps
dll to the empty list segment and consequently adds 〈dll, 0〉 to the set R of
reachable predicate–state pairs. In the next iteration, it picks the rule that maps
to the non-empty list. Since 〈dll, 0〉 ∈ R, s is set to 0 in the do-loop. Abbre-
viating the body of the rule to ϕ, we have (0, ϕ, 1) ∈ Δ, so the algorithm adds
〈dll, 1〉 to R. After that, no is returned, because 1 is a final state of A. Hence,
some unfolding of dll is accepted by A and thus contains points-to assertions.

We now revisit question (2) from above–are all unfoldings accepted by a heap
automaton?–and observe that heap automata enjoy several closure properties.

Theorem 2 [29]. Let A and B be heap automata over SHC. Then there exist
heap automata C1,C2,C3 over SHC with L(C1) = L(A) ∪ L(B), L(C2) = L(A) ∩
L(B), and L(C3) = RSHC \ L(A), respectively.

Then, by the equivalence X ⊆ Y ⇔ X ∩ Y = ∅ and Theorem 2, it is also
decidable whether every unfolding of a symbolic heap is accepted by a heap
automaton.

Corollary 2. Let A be a heap automaton over SHC and Φ ∈ SIDC. Then, for
each ϕ ∈ SHC, it is decidable whether UΦ(ϕ) ⊆ L(A) holds.

Note that complementation of heap automata in general leads to an exponen-
tially larger state space and exponentially higher complexity of evaluating Δ.
Thus, UΦ(ϕ) ⊆ L(A) is decidable in O (

(‖ϕ‖ + ‖Φ‖) · ‖2QA‖2(M+1) · ‖ΔA‖)
. In

many cases it is, however, possibly to construct smaller automata for the com-
plement directly to obtain more efficient decision procedures. For example, this
is the case for most heap automata considered in Sect. 4.

Apart from decision procedures, Theorem1 enables systematic refinement of
SIDs according to heap automata in order to establish desired properties. For
instance, as shown in Sect. 4, an SID in which every unfolding is satisfiable can be
constructed from any given SID. Another application of Theorem1 is counterex-
ample generation for systematic debugging of SIDs that are manually written as
data structure specifications or even automatically generated. Such counterex-
amples are obtained by constructing the refined SID w.r.t. the complement of
a given heap automaton. Then an unfolding of the SID that is rejected by the
original heap automaton, i.e., a counterexample, can be reconstructed from a
(failed) emptiness check. Further applications are examined in the following.

Remark 1. While we focus on the well-established symbolic heap fragment of
separation logic, we remark that the general reasoning principle underlying heap
automata is also applicable to check robustness properties of richer fragments.
For example, permissions [7] are easily integrated within our framework.

Unified Reasoning About Robustness Properties of Symbolic-Heaps 623

4 A Zoo of Robustness Properties

This section demonstrates the wide applicability of heap automata to decide and
establish robustness properties of SIDs. In particular, the sets of symbolic heaps
informally presented in the introduction can be accepted by heap automata over
the set SHFV≤α of symbolic heaps with at most α ≥ 0 free variables (cf. Exam-
ple 2). Furthermore, we analyze the complexity of related decision problems.
Towards a formal presentation, some terminology is needed.

Definition 7. The set of tight models of a symbolic heap ϕ ∈ SHΦ is defined
as Models(ϕ) � {(s, h) ∈ States |dom(s) = xϕ

0 , s, h |=Φ ϕ}.
We often consider relationships between variables that hold in every tight model
of a reduced symbolic heap. Formally, let τ � ∃z.Σ : Π ∈ RSH. Moreover, let
strip(τ) be defined as τ except that each of its variables is free, i.e., strip(τ) � Σ :
Π . Then two variables x, y ∈ Var(τ) are definitely (un)equal in τ , written x =τ y
(x �=τ y), if s(x) = s(y) (s(x) �= s(y)) holds for every (s, h) ∈ Models(strip(τ)).
Analogously, a variable is definitely allocated if it is definitely equal to a variable
occurring on the left-hand side of a points-to assertion. Thus the set of definitely
allocated variables in τ is given by

alloc(τ) = {x ∈ Var(τ) | ∀(s, h) ∈ Models(strip(τ)) . s(x) ∈ dom(h)}.

Finally, a variable x definitely points-to variable y in τ , written x �→τ y, if for
every (s, h) ∈ Models(strip(τ)), we have s(y) ∈ h(s(x)).

Example 7. Recall from Example 1 the symbolic heap τ in the first rule of tllx0.
Then alloc(τ) = {x1, x2} and neither x1 =τ x3 nor x1 �=τ x3 holds. Further,

x1 =τ x2 is true, x1 =τ x3 is false, x1 �=τ null is true,
x1 �=τ x3 is false, x1 �→τ x3 is true, x3 �→τ x1 is false.

Remark 2. All definite relationships are decidable in polynomial time. In fact,
each of these relationships boils down to first adding inequalities x �= null and
x �= y for every pair x, y of distinct variables occurring on the left-hand side of
points-to assertions to the set of pure formulas and then computing its (reflexive),
symmetric (and transitive) closure with respect to �= (and =). Furthermore,
if the closure contains a contradiction, e.g., null �= null, it is set to all pure
formulas over the variables of a given reduced symbolic heap. After that, it is
straightforward to decide in polynomial time whether variables are definitely
allocated, (un)equal or pointing to each other.

4.1 Tracking Equalities and Allocation

Consider the symbolic heap ϕ � ∃x, y, z.P1(x, y) ∗ P2(y, z) : {x = z}. Clearly,
ϕ is unsatisfiable if x = y holds for every unfolding of P1(x, y) and y �= z holds
for every unfolding of P2(y, z). Analogously, ϕ is unsatisfiable if x is allocated
in every unfolding of P1(x, y) and z is allocated in every unfolding of P2(y, z),

624 C. Jansen et al.

because x �→ ∗ z �→ implies x �= z. This illustrates that robustness properties,
such as satisfiability, require detailed knowledge about the relationships between
parameters of predicate calls. Consequently, we construct a heap automaton
ATRACK that keeps track of this knowledge. More precisely, ATRACK should accept
those unfoldings in which it is guaranteed that

– given a set A ⊆ x0, exactly the variables in A are definitely allocated, and
– exactly the (in)equalities in a given set of pure formulas Π hold.

Towards a formal construction, we formalize the desired set of symbolic heaps.

Definition 8. Let α ∈ N>0 and x0 be a tuple of variables with ‖x0‖ = α.
Moreover, let A ⊆ x0 and Π be a finite set of pure formulas over x0. The
tracking property TRACK(α,A,Π) is the set

{τ(x0) ∈ RSHFV≤α | ∀i, j . x0[i] ∈ A iff x0[i] ∈ alloc(τ)
and x0[i] ∼ x0[j] ∈ Π iff xτ

0 [i] ∼τ xτ
0 [j]}.

Intuitively, our heap automaton ATRACK stores in its state space which free vari-
ables are definitely equal, unequal and allocated. Its transition relation then
enforces that these stored information are correct, i.e., a transition q

ϕ−→ATRACK
p

is only possible if the information stored in p is consistent with ϕ and with the
information stored in the states q for the predicate calls of ϕ.

Formally, let x0 be a tuple of variables with ‖x0‖ = α and Pure(x0) �
2{x0[i]∼x0[j] | 0≤i,j≤α,∼∈{=, 	= }} be the powerset of all pure formulas over x0. The
information stored by our automaton consists of a set of free variables B ⊆ x0

and a set of pure formulas Λ ∈ Pure(x0). Now, for some unfolding τ of a symbolic
heap ϕ, assume that B is chosen as the set of all definitely allocated free variables
of τ . Moreover, assume Λ is the set of all definite (in)equalities between free
variables in τ . We can then construct a reduced symbolic heap kernel(ϕ, (B,Λ))
from B and Λ that precisely captures these relationships between free variables.

Definition 9. Let ϕx0 be a symbolic heap, B ⊆ x0 and Λ ∈ Pure(x0). Further-
more, let min(B,Λ) = {xi

0 ∈ B | ¬∃xj
0 ∈ B.j < i and xi

0 =Λ xj
0} be the set of

minimal (w.r.t. to occurrence in x0) allocated free variables. Then

kernel(ϕ, (B,Λ)) � �x0[i]∈min(B,Λ) xϕ
0 [i] �→ null : Λ,

where we write �s∈S s �→ null for s1 �→ null∗ . . .∗ sk �→ null, S = {s1, . . . , sk}.
Consequently, the relationships between free variables remain unaffected if a

predicate call of ϕ is replaced by kernel(ϕ, (B,Λ)) instead of τ . Thus, ATRACK has
one state per pair (B,Λ). In the transition relation of ATRACK it suffices to replace
each predicate call Px0 by the corresponding symbolic heap kernel(Px0, (B,Λ)).
and check whether the current state is consistent with the resulting symbolic
heap. Intuitively, a potentially large unfolding of a symbolic heap ϕ with m
predicate calls is “compressed” into a small one that contains all necessary infor-
mation about parameters of predicate calls. Here, q is a sequence of pairs (B,Λ)
as explained above. Formally,

Unified Reasoning About Robustness Properties of Symbolic-Heaps 625

Definition 10. ATRACK = (Q,SHFV≤α ,Δ, F) is given by:

Q � 2x0 × Pure(x0), F � {(A,Π)},

Δ : q
ϕ−→ATRACK

(A0,Π0) iff ∀x, y ∈ x0 .

y ∈ A0 ↔ yϕ ∈ alloc(compress(ϕ,q))
and x ∼ y ∈ Π0 ↔ xϕ ∼compress(ϕ,q) yϕ,

compress(ϕ,q) � ϕ [P1/kernel(P1x1,q[1]), . . . , Pm/kernel(Pmxm,q[m])] ,

where m = ‖Γϕ‖ = ‖q‖ is the number of predicate calls in ϕ and yϕ denotes the
free variable of ϕ corresponding to y ∈ x0, i.e., if y = x0[i] then yϕ = xϕ

0 [i].

Since compress(τ, ε) = τ holds for every reduced symbolic heap τ , it is straight-
forward to show that L(ATRACK) = TRACK(α,A,Π). Furthermore, ATRACK satisfies
the compositionality property [29]. Hence,

Lemma 3. For all α ∈ N>0 and all sets A ⊆ x0, Π ∈ Pure(x0), there is a heap
automaton over SHFV≤α accepting TRACK(α,A,Π).

4.2 Satisfiability

Tracking relationships between free variables of symbolic heaps is a useful aux-
iliary construction that serves as a building block in automata for more natural
properties. For instance, the heap automaton ATRACK constructed in Definition 10
can be reused to deal with the

Satisfiability Problem (SL-SAT): Given Φ ∈ SID, ϕ ∈ SHΦ, decide whether
ϕ is satisfiable, i.e., there exists (s, h) ∈ States such that s, h |=Φ ϕ.

Theorem 3. For each α ∈ N>0, there is a heap automaton over SHFV≤α accept-
ing the set SAT(α) � {τ ∈ RSHFV≤α | τ is satisfiable} of all satisfiable reduced
symbolic heaps with at most α free variables.

Proof. A heap automaton accepting SAT(α) is constructed as in Definition 10
except for the set of final states F � {(A,Π) | null �= null /∈ Π} (cf. [29]). ��
A heap automaton accepting the complement of SAT(α) is constructed analo-
gously by choosing F � {(A,Π) | null �= null ∈ Π}. Thus, together with
Corollary 1, we obtain a decision procedure for the satisfiability problem sim-
ilar to the one proposed in [11]. Regarding complexity, the heap automaton
ASAT from Definition 10 has 22α2+α states. By Remark 2, membership in ΔASAT

is decidable in polynomial time. Thus, by Corollary 1, our construction yields
an exponential-time decision procedure for SL-SAT. If the number of free vari-
ables α is bounded, an algorithm in NP is easily obtained by guessing a suitable
unfolding tree of height at most ‖QASAT

‖ and running ASAT on it to check whether
its unfolding is decidable (cf. [29]). This is in line with the results of Brotherston
et al. [11], where the satisfiability problem is shown to be ExpTime–complete
in general and NP–complete if the number of free variables is bounded. These
complexity bounds even hold for the following special case [13]:

626 C. Jansen et al.

Restricted Satisfiability Problem (SL-RSAT): Given an SID Φ that con-
tains no points-to assertions, and a predicate symbol P , decide whether Px is
satisfiable w.r.t. Φ. The complement of this problem is denoted by SL-RSAT.

4.3 Establishment

A symbolic heap ϕ is established if every existentially quantified variable of every
unfolding of ϕ is definitely equal to a free variable or definitely allocated.3 This
property is natural for symbolic heaps that specify the shape of data structures;
for example, the SIDs in Example 1 define sets of established symbolic heaps.
Further, establishment is often required to ensure decidability of the entailment
problem [26,27]. Establishment can also be checked by heap automata.

Theorem 4. For all α ∈ N>0, there is a heap automaton over SHFV≤α accepting
the set of all established reduced symbolic heaps with at most α free variables:

EST(α) � {τ ∈ RSHFV≤α | ∀y ∈ Var(τ) . y ∈ alloc(τ) or ∃x ∈ xτ
0 . x =τ y}

Proof. The main idea in the construction of a heap automaton AEST for EST(α) is
to verify that every variable is definitely allocated or equal to a free variable while
running ATRACK (see Definition 10) in parallel to keep track of the relationships
between free variables. An additional flag q ∈ {0, 1} is attached to each state of
ATRACK to store whether the establishment condition is already violated (q = 0)
or holds so far (q = 1). Formally, AEST = (Q,SHFV≤α ,Δ, F), where

Q � QATRACK
× {0, 1}, F � QATRACK

× {1},

Δ : (p1, q1) . . . (pm, qm)
ϕ−→AEST

(p0, q0)

iff p1 . . . pm
ϕ−→ATRACK

p0 and q0 = min{q1, . . . , qm, check(ϕ, p1 . . . pm)}.

Here, check : SHFV≤α × Q∗
ATRACK

→ {0, 1} is a predicate given by

check(ϕ,p) �

⎧
⎪⎨

⎪⎩

1, if ∀y ∈ Var(ϕ) . y ∈ alloc(compress(ϕ,p))
or ∃x ∈ xϕ

0 . x =compress(ϕ,p) y

0, otherwise,

where compress(ϕ,p) is the reduced symbolic heap obtained from the tracking
property as in Definition 10. Moreover, unlike in the construction of ATRACK, we
are not interested in a specific set of relationships between the pure formulas, so
any state of ATRACK is chosen as a final state provided that predicate check could
be evaluated to 1. See [29] for a correctness proof. ��
Again, it suffices to swap the final- and non-final states of AEST to obtain a heap
automaton AEST accepting the complement of EST(α). Thus, by Corollary 1 and
Remark 2, we obtain an ExpTime decision procedure for the

Establishment Problem (SL-EST): Given an SID Φ and ϕ ∈ SHΦ, decide
whether every τ ∈ UΦ(ϕ) is established.
3 Sometimes this property is also defined by requiring that each existentially quantified

variable is “eventually allocated” [26].

Unified Reasoning About Robustness Properties of Symbolic-Heaps 627

Lemma 4. SL-RSAT is polynomial-time reducible to SL-EST. Hence, the
establishment problem SL-EST is ExpTime–hard in general and coNP–hard
if the maximal number of free variables is bounded.

Proof. Let (Φ,P) be an instance of SL-RSAT. Moreover, let ϕx0 � ∃zy . Pz :
{x0[1] = null, y �= null}. As y is neither allocated nor occurs in Pz, ϕ is estab-
lished iff x0[1] = y iff null �= null iff Px is unsatisfiable. Hence, (Φ,ϕ) ∈ SL-EST
iff (Φ,P) ∈ SL-RSAT. A full proof is found in [29]. ��
Lemma 5. SL-EST is in coNP for a bounded number of free variables α.

Proof. Let (Φ,ϕ) be an instance of SL-EST, N = ‖Φ‖+‖ϕ‖, and M ≤ N be the
maximal number of predicate calls occurring in ϕ and any rule of Φ. Moreover,
let AEST be a heap automaton accepting EST(α)—the complement of EST(α) (cf.
Theorem 4). Since α is bounded by a constant, so is the number of states of
AEST, namely ‖QAEST

‖ ≤ k = 22α2+α+1. Now, let TΦ(ϕ)≤k denote the set of all
unfolding trees t ∈ TΦ(ϕ) of height at most k. Clearly, each of these trees is of
size ‖t‖ ≤ Mk ≤ Nk, i.e., polynomial in N . Moreover, let ω : dom(t) → QAEST

be a function mapping each node of t to a state of AEST. Again, ω is of size
polynomial in N ; as such ‖ω‖ ≤ k · Nk. Let Ωt denote the set of all of these
functions ω for a given unfolding tree t with ω(ε) ∈ FAEST

. Given an unfolding

tree t ∈ TΦ(ϕ)≤k and ω ∈ Ωt, we can easily decide whether ε
�t�−−→AEST

ω(ε) holds:
For each u, u1, . . . , un ∈ dom(t), u(n + 1) /∈ dom(t), n ≥ 0, it suffices to check

whether ω(u1) . . . ω(un)
t(u)−−→AEST

ω(u). Since, by Remark 2, each of these checks
can be performed in time polynomial in N the whole procedure is feasible in
polynomial time. We now show that (Φ,ϕ) ∈ SL-EST if and only if

∀t ∈ TΦ(ϕ)≤k . ∀ω ∈ Ωt . not ε
�t�−−→AEST

ω(ε).

Since each t ∈ TΦ(ϕ) and each ω ∈ Ωt is of size polynomial in N , this
is equivalent to SL-EST being in coNP. To complete the proof, note that
UΦ(ϕ) ⊆ EST(α) holds iff �t� /∈ EST(α) for each t ∈ TΦ(ϕ). Furthermore, by a
standard pumping argument, it suffices to consider trees in TΦ(ϕ)≤k: If there
exists a taller tree t with �t� ∈ EST(α) then there is some path of length greater
k in t on which two nodes are assigned the same state by a function ω ∈ Ωt

proving membership of t in EST(α). This path can be shortened to obtain a tree
of smaller height. ��

Putting upper and lower bounds together, we conclude:

Theorem 5. SL-EST is ExpTime–complete in general and coNP–complete if
the number of free variables α is bounded.

4.4 Reachability

Another family of robustness properties is based on reachability questions, e.g.,
“is every location of every model of a symbolic heap reachable from the location

628 C. Jansen et al.

of a program variable?” or “is every model of a symbolic heap acyclic?”. For
established SIDs, heap automata accepting these properties are an extension of
the tracking automaton introduced in Definition 10.

More precisely, a variable y is definitely reachable from x in τ ∈ RSH, written
x �τ y, if and only if x �→τ y or there exists a z ∈ Var(τ) such that x �→τ z
and z �τ y.4 Note that we define reachability to be transitive, but not reflexive.
As for the other definite relationships between variables, definite reachability is
computable in polynomial time for reduced symbolic heaps, e.g., by performing
a depth-first search on the definite points-to relation �→τ . Note that our notion
of reachability does not take variables into account that are only reachable from
one another in some models of a reduced symbolic heap. For example, consider
the symbolic heap τ = x �→ y ∗ z �→ null. Then x �τ z does not hold, but there
exists a model (s, h) with s(z) = s(y) ∈ h(s(x)). Thus, reachability introduced
by unallocated variables is not detected. However, the existence (or absence) of
such variables can be checked first due to Theorem 4.

Theorem 6. Let α ∈ N>0 and R ⊆ x0 × x0 be a binary relation over the
variables x0 with ‖x0‖ = α. Then the reachability property REACH(α,R), given
by the set {τ ∈ RSHFV≤α | ∀i, j . (x0[i] ,x0[j]) ∈ R iff xτ

0 [i] �τ xτ
0 [j]}, can be

accepted by a heap automaton over SHFV≤α .

Proof (sketch). A heap automaton AREACH accepting REACH(α,R) is constructed
similarly to the heap automaton ATRACK introduced in Definition 10. The main
difference is that AREACH additionally stores a binary relation S ⊆ x0 × x0 in its
state space to remember which free variables are reachable from one another.
Correspondingly, we adapt Definition 9 as follows:

kernel(ϕ, (B,Λ, S)) � ∃z . �min(B,Λ) x
ϕ
0 [i] �→ (vi) : Λ,

where z is a fresh variable and vi[j] � xϕ
0 [j] if (i, j) ∈ S and vi[j] � z, otherwise.

The other parameters ϕ,B,Λ are the same as in Definition 10. Note that the
additional variable z is needed to deal with allocated free variables that cannot
reach any other free variable, including null. Moreover, the set of final states is
FAREACH

= QATRACK
× {R}. Correctness of this encoding is verified in the transition

relation. Hence, the transition relation of AREACH extends the transition relation of
ATRACK by the requirement (x, y) ∈ S iff xϕ �compress(ϕ,p) yϕ for every pair of free
variables x, y ∈ x0. Here, compress(ϕ,p) is defined as in Definition 10 except that
the new encoding kernel(Pixi,q[i]) from above is used. Since compress(τ, ε) = τ
holds for every reduced symbolic heap τ , it is straightforward to verify that
L(AREACH) = REACH(α). Further details are found in [29]. ��
Furthermore, we consider the related

Reachability Problem (SL-REACH): Given an SID Φ, ϕ ∈ SHΦ with α =
‖xϕ

0 ‖ and variables x, y ∈ xϕ
0 , decide whether x �τ y holds for all τ ∈ UΦ(ϕ).

Theorem 7. The decision problem SL-REACH is ExpTime–complete in gen-
eral and coNP–complete if the number of free variables is bounded.
4 The definite points-to relation �→τ was defined at the beginning of Sect. 4.

Unified Reasoning About Robustness Properties of Symbolic-Heaps 629

Proof. Membership in ExpTime follows from our upper bound derived for
Algorithm 1, the size of the state space of AREACH, which is exponential in
α, and Remark 2. If α is bounded, membership in coNP is shown analo-
gously to Lemma 5. Lower bounds are shown by reducing SL-RSAT to SL-
REACH. Formally, let (Φ,P) be an instance of SL-RSAT. Moreover, let
ϕx0 � ∃z .x0[1] �→ null ∗ Pz : {x0[2] �= null}. As x0[2] is neither allocated
nor null, x0[2] is not definitely reachable from x0[1] in any model of ϕ. Hence
(Φ,ϕ,x0[1] ,x0[2]) ∈ SL-REACH iff P is unsatisfiable. A detailed proof is found
in [29]. ��

4.5 Garbage-Freedom

Like the tracking automaton ATRACK, the automaton AREACH is a useful ingredient
in the construction of more complex heap automata.

For instance, such an automaton can easily be modified to check whether a
symbolic heap is garbage-free, i.e., whether every existentially quantified variable
in every unfolding is reachable from some program variable.5

Garbage-freedom is a natural requirement if SIDs represent data structure
specifications. For example, the SIDs in Example 1 are garbage-free. Further-
more, this property is needed by the approach of Habermehl et al. [24].

Lemma 6. For each α ∈ N>0, the set GFREE(α), given by

{τ ∈ RSHFV≤α | ∀y ∈ Var(τ) . ∃x ∈ xτ
0 . x =τ y or x �τ y},

of garbage-free symbolic heaps can be accepted by a heap automaton over SHFV≤α .

Proof (sketch). A heap automaton AGFREE accepting GFREE(α) is constructed sim-
ilarly to the heap automaton AEST introduced in the proof of Theorem4. The
main difference is that heap automaton AREACH is used instead of ATRACK. Fur-
thermore, the predicate check : SHFV≤α × Q∗

AREACH
→ {0, 1} is redefined to verify

that every variable of a symbolic heap ϕ is established in compress(ϕ,p), where
compress(ϕ,p) is the same as in the construction of AREACH (see Theorem 6):

check(ϕ,p) �

⎧
⎪⎨

⎪⎩

1, if ∀y ∈ Var(ϕ) .∃x ∈ xϕ
0 .

x =compress(ϕ,p) y or x �compress(ϕ,p) y

0, otherwise,

Since compress(τ, ε) = τ holds for every reduced symbolic heap τ , it is straight-
forward that L(AGFREE) = GFREE(α). A proof is found in [29]. ��
To guarantee that symbolic heaps are garbage-free, we solve the

Garbage-Freedom Problem (SL-GF): Given an SID Φ and ϕ ∈ SHΦ, decide
whether every τ ∈ UΦ(ϕ) is garbage-free, i.e., τ ∈ GFREE(α) for some α ∈ N.

Theorem 8. SL-GF is ExpTime–complete in general and coNP–complete if
the number of free variables α is bounded.
5 Note that a variable may be reachable from different program variables in different

unfoldings as garbage-freedom is formally defined as a set of reduced symbolic heaps
in which no form of disjunction exists (cf. Lemma 6).

630 C. Jansen et al.

4.6 Acyclicity

Automatic termination proofs of programs frequently rely on the acyclicity of
employed data structures, i.e., they assume that no variable is reachable from
itself (cf. [39]). Hence, we are interested in verifying that an SID is acyclic.

Lemma 7. For each α ∈ N>0, the set of all weakly acyclic symbolic heaps

ACYCLIC(α) � {τ ∈ RSHFV≤α | null �=τ null or ∀x ∈ Var(τ) . not x �τ x}
can be accepted by a heap automaton over SHFV≤α .

Here, the condition null �=τ null ensures that an unsatisfiable reduced symbolic
heap is considered weakly acyclic. Further, note that our notion of acyclicity
is weak in the sense that dangling pointers may introduce cyclic models that
are not considered. For example, ∃z.x �→ z is weakly acyclic, but contains cyclic
models if x and z are aliases. However, weak acyclicity coincides with the absence
of cyclic models for established SIDs—a property considered in Sect. 4.3.

Proof (sketch). A heap automatonAACYCLIC for the set of all weakly acyclic reduced
symbolic heaps is constructed analogously to the heap automaton AGFREE in the
proof of Lemma 6. The main difference is the predicate check : SHFV≤α ×
Q∗

AREACH
→ {0, 1}, which now checks whether a symbolic heap is weakly acyclic:

check(ϕ,p) �
{

1, if ∀y ∈ Var(ϕ) . not x �compress(ϕ,p) x

0, otherwise.

Moreover, the set of final states FAACYCLIC
is chosen such that accepted symbolic

heaps are unsatisfiable or check(ϕ,p) = 1. See [29] for details. ��
For example, the symbolic heap sllx0 is weakly acyclic, but dllx0 (cf. Exam-
ple 1) is not. In general, we are interested in the

Acyclicity Problem (SL-AC): Given an SID Φ and ϕ ∈ SHΦ, decide whether
every τ ∈ UΦ(ϕ) is weakly acyclic, i.e., τ ∈ ACYCLIC(α) for some α ∈ N.

Theorem 9. SL-AC is ExpTime–complete in general and coNP–complete if
the number of free variables α is bounded.

Proof. Similar to the proof of Theorem5. For lower bounds, we show that
SL-RSAT is reducible to SL-AC. Let (Φ,P) be an instance of SL-RSAT. More-
over, let ϕx0 = ∃z.x0[1] �→ x0[1] ∗ Pz. Since x0[1] is definitely reachable from
itself, ϕx0 is weakly acyclic iff Px0 is unsatisfiable. Thus, (Φ,ϕ) ∈ SL-AC iff
(Φ,P) ∈ SL-RSAT. See [29] for details. ��

5 Implementation

We developed a prototype of our framework—called Harrsh6—that implements
Algorithm 1 as well as all heap automata constructed in the previous sections.
6 Heap Automata for Reasoning about Robustness of Symbolic Heaps.

Unified Reasoning About Robustness Properties of Symbolic-Heaps 631

In addition, our tool supports automatic refinement of SIDs. Algorithms for
counterexample generation and automatic combination of decision procedures
can be extracted from the (constructive) proof of Theorem2, but have not yet
been implemented. The code, the tool and our experiments are available online.7

For our experimental results, we first considered common SIDs from the lit-
erature, such as singly- and doubly-linked lists, trees, trees with linked-leaves
etc. For each of these SIDs, we checked all robustness properties presented
throughout this paper, i.e., the existence of points-to assertions (Example 4), the
tracking property TRACK(B,Λ) (Sect. 4.1), satisfiability (Sect. 4.2), establishment
(Sect. 4.3), the reachability property REACH(α,R) (Sect. 4.4), garbage-freedom
(Sect. 4.5), and weak acyclicity (Sect. 4.6). All in all, our implementation of
Algorithm 1 takes 300ms to successfully check these properties on all 45 problem
instances. Since the SIDs under consideration are typically carefully handcrafted
to be robust, the low runtime is to be expected. Moreover, we ran heap automata
on benchmarks of the tool Cyclist [11]. In particular, our results for the sat-
isfiability problem—the only robustness property checked by both tools—were
within the same order of magnitude.

Further details are found in [29].

6 Entailment Checking with Heap Automata

So far, we have constructed heap automata for reasoning about robustness prop-
erties, such as satisfiability, establishment and acyclicity. This section demon-
strates that our approach can also be applied to discharge entailments for certain
fragments of separation logic. Formally, we are concerned with the

Entailment Problem (SL-ENTAILΦ
C): Given symbolic heaps ϕ,ψ ∈ SHΦ

C ,
decide whether ϕ |=Φ ψ holds, i.e., ∀(s, h) ∈ States. s, h |=Φ ϕ implies s, h |=Φ ψ.

Note that the symbolic heap fragment of separation logic is not closed under
conjunction and negation. Thus, a decision procedure for satisfiability (cf. The-
orem 3) does not yield a decision procedure for the entailment problem. It is,
however, essential to have a decision procedure for entailment, because this prob-
lem underlies the important rule of consequence in Hoare logic [25]. In the words
of Brotherston et al. [10], “effective procedures for establishing entailments are
at the foundation of automatic verification based on separation logic”.

We show how our approach to decide robustness properties, is applicable to
discharge entailments for certain fragments of symbolic heaps. This results in an
algorithm deciding entailments between so-called determined symbolic heaps for
SIDs whose predicates can be characterized by heap automata.

Definition 11. A reduced symbolic heap τ is determined if all tight models
of τ are isomorphic.8 If τ is also satisfiable then we call τ well-determined.
7 https://bitbucket.org/jkatelaan/harrsh/.
8 Two states (s1, h1), (s2, h2) are isomorphic iff dom(s1) = dom(s2) and there exists

a bijective function g : dom(h1) → dom(h2) such that for all x ∈ dom(s1) and all
� ∈ dom(h1), we have g(s1(x)) = s2(x) and g(h1(�)) = h2(g(�)), where g is lifted to
tuples by componentwise application.

https://bitbucket.org/jkatelaan/harrsh/

632 C. Jansen et al.

Moreover, for some SID Φ, a symbolic heap ϕ ∈ SHΦ is (well-)determined if all
of its unfoldings τ ∈ UΦ(ϕ) are (well-)determined. Consequently, an SID Φ is
(well-)determined if Px is (well-)determined for each predicate symbol P in Φ.

We present two sufficient conditions for determinedness of symbolic heaps.
First, a reduced symbolic heap τ is determined if all equalities and inequalities
between variables are explicit, i.e., ∀x, y ∈ Var(τ) . x = y ∈ Πτ or x �= y ∈ Πτ

[29]. Furthermore, a reduced symbolic heap τ is determined if every variable is
definitely allocated or definitely equal to null, i.e., ∀x ∈ Var(τ) . x ∈ alloc(τ)
or x =τ null. These two notions can also be combined: A symbolic heap is
determined if every variable x is definitely allocated or definitely equal to null
or there is an explicit pure formula x ∼ y between x and each other variable y.

Example 8. By the previous remark, the SID generating acyclic singly-linked
lists from Sect. 1 is well-determined. Furthermore, although the predicate
dllx0 from Example 1 is not determined, the following symbolic heap is well-
determined: x0[4] �→ null ∗ dllx0 : {x0[1] �= x0[3]}.

6.1 Entailment Between Predicate Calls

We start by considering entailments between predicate calls of well-determined
SIDs. By definition, an entailment ϕ |=Φ ψ holds if for every stack–heap pair
(s, h) that satisfies an unfolding of ϕ, there exists an unfolding of ψ that is satis-
fied by (s, h) as well. Our first observation is that, for well-determined unfoldings,
two quantifiers can be switched: It suffices for each unfolding σ of ϕ to find one
unfolding τ of ψ such that every model of σ is also a model of τ .

Lemma 8. Let Φ ∈ SID and P1, P2 be predicate symbols with ar(P1) = ar(P2).
Moreover, let UΦ(P1x) be well-determined. Then

P1x |=Φ P2x iff ∀σ ∈ UΦ(P1x) .∃τ ∈ UΦ(P2x) . σ |=∅ τ.

Note that, even if only well-determined predicate calls are taken into account,
it is undecidable in general whether an entailment P1x0 |=Φ P2x0 holds [1, Theo-
rem 3]. To obtain decidability, we additionally require the set of reduced symbolic
heaps entailing a given predicate call to be accepted by a heap automaton.

Definition 12. Let Φ ∈ SIDC and ϕ ∈ SHΦ
C . Then

HC
ϕ,Φ � {σ ∈ RSHC | ‖xσ

0‖ = ‖xϕ
0 ‖ and ∃τ ∈ UΦ(ϕ) . σ |=∅ τ}

is the set of all reduced symbolic heaps in SHC over the same free variables as ϕ
that entail an unfolding of ϕ.

Example 9. Let ϕ(x0) = tllx0 : {x0[1] �= x0[2]}, where tll is a predicate of
SID Φ introduced in Example 1. Then HFV≤3

ϕ,Φ consists of all reduced symbolic
heaps with three free variables representing non-empty trees with linked leaves.
In particular, note that these symbolic heaps do not have to be derived using
the SID Φ. For instance, they might contain additional pure formulas.

Unified Reasoning About Robustness Properties of Symbolic-Heaps 633

In particular, HC
Px,Φ can be accepted by a heap automaton for common predi-

cates specifying data structures such as lists, trees, and trees with linked leaves.
We are now in a position to decide entailments between predicate calls.

Lemma 9. Let Φ ∈ SIDC and P1, P2 ∈ Pred(Φ) be predicate symbols having the
same arity. Moreover, let UΦ(P1x) be well-determined and HC

P2x,Φ be accepted
by a heap automaton over SHC. Then the entailment P1x |=Φ P2x is decidable.

Proof. Let AP2x be a heap automaton over SHC accepting HC
P2x,Φ. Then

P1x |=Φ P2x

⇔ ∀σ ∈ UΦ(P1x) .∃τ ∈ UΦ(P2x).σ |=∅ τ (Lemma 8)

⇔ ∀σ ∈ UΦ(P1x).σ ∈ HC
P2x,Φ (Definition 12)

⇔ UΦ(P1x) ⊆ L(AP2x). (L(AP2x) = HC
P2x,Φ)

where the last inclusion is decidable by Corollary 2. ��

6.2 Entailment Between Symbolic Heaps

Our next step is to generalize Lemma 9 to arbitrary determined symbolic heaps ϕ
instead of single predicate calls. This requires the construction of heap automata
Aϕ accepting HC

ϕ,Φ. W.l.o.g. we assume SIDs and symbolic heaps to be well -
determined instead of determined only. Otherwise, we apply Theorem1 with the
heap automaton ASAT (cf. Theorem 3) to obtain a well-determined SID. Thus,
we restrict our attention to the following set.

Definition 13. The set SH〈α〉 is given by 〈α〉 : SH → {0, 1}, where 〈α〉(ϕ) = 1
iff ϕ is well-determined and every predicate call of ϕ has ≤ α ∈ N parameters.

Clearly, 〈α〉 is decidable, because satisfiability is decidable (cf. Theorem3) and
verifying that a symbolic heap has at most α parameters amounts to a simple
syntactic check. Note that, although the number of parameters in predicate calls
is bounded by α, the number of free variables of a symbolic heap ϕ ∈ SH〈α〉 is
not. We then construct heap automata for well-determined symbolic heaps.

Theorem 10 [29]. Let α ∈ N and Φ ∈ SIDFV≤α be established. Moreover, for
each predicate symbol P ∈ Pred(Φ), let there be a heap automaton over SH〈α〉
accepting H

〈α〉
Px,Φ. Then, for every well-determined symbolic heap ϕ ∈ SHΦ, there

is a heap automaton over SH〈α〉 accepting H
〈α〉
ϕ,Φ.

Remark 3. Brotherston et al. [13] studied the model-checking problem for sym-
bolic heaps, i.e., the question whether s, h |=Φ ϕ holds for a given stack–heap pair
(s, h), an SID Φ, and a symbolic heap ϕ ∈ SHΦ. They showed that this problem is
ExpTime–complete in general and NP–complete if the number of free variables
is bounded. We obtain these results for determined symbolic heaps in a natural
way: Observe that every stack–heap pair (s, h) is characterized by an estab-
lished, well-determined, reduced symbolic heap, say τ , that has exactly (s, h) as

634 C. Jansen et al.

Input : established SID Φ, ϕ, ψ ∈ SHΦ determined,
heap automaton APi for each Pi ∈ Pred(Φ)

Output: yes iff ϕ |=Φ ψ holds

Ω ← {Pxϕ
0 ⇐ ϕ} ∪ Φ ; // P fresh predicate symbol

Ψ ← removeUnsat(Ω) ; // Theorem 3

Aψ ← automaton(ψ,AP1 ,AP2 , . . .) ; // Theorem 10

Aψ ← complement(Aψ) ; // Lemma 2

return yes iff UΨ (Px) ∩ L(Aψ) = ∅ ; // Algorithm 1

Algorithm 2. Decision procedure for ϕ |=Φ ψ.

a tight model up to isomorphism. Then Theorem10 yields a heap automaton
Aτ accepting H

〈α〉
τ,Φ , where α is the maximal arity of any predicate in Φ. Thus,

s, h |=Φ ϕ iff L(Aτ)∩UΦ(ϕ) �= ∅, which is decidable by Corollary 1. Further, note
that the general model-checking problem is within the scope of heap automata.
A suitable state space is the set of all subformulas of the symbolic heap τ .

Coming back to the entailment problem, it remains to put our results together.
Algorithm 2 depicts a decision procedure for the entailment problem that, given an
entailment ϕ |=Φ ψ, first removes all unsatisfiable unfoldings of ϕ, i.e. ϕ becomes
well-determined. After that, our previous reasoning techniques for heap automata
and SIDs from Sect. 3 are applied to decide whether ϕ |=Φ ψ holds.

Theorem 11. Let α ∈ N and Φ ∈ SIDFV≤α be established. Moreover, for every
P ∈ Pred(Φ), let H

〈α〉
Px,Φ be accepted by a heap automaton over SH〈α〉. Then

ϕ |=Φ ψ is decidable for determined ϕ,ψ ∈ SHΦ with xϕ
0 = xψ

0 .

Proof. We define a new SID Ω � Φ ∪ {Px ⇐ ϕ}, where P is a fresh pred-
icate symbol of arity ‖xϕ

0 ‖. Clearly, ϕ |=Φ ψ iff Px |=Ω ψ. Since ϕ and Φ
are established, so is Ω. Then applying Theorem1 to Ω and ASAT (cf. The-
orem 3), we obtain a well-determined SID Ψ ∈ SID〈α〉 where none of the
remaining unfoldings of Ω is changed, i.e., for each P ∈ Pred(Ω), we have
UΨ (Px) ⊆ UΩ(Px). By Theorem 10, the set H

〈α〉
ψ,Φ = H

〈α〉
ψ,Ψ can be accepted

by a heap automaton over SH〈α〉. Then, analogously to the proof of Lemma9,

ϕ |=Φ ψ iff Px |=Ψ ψ iff UΨ (Px) ⊆ H
〈α〉
ψ,Ψ , where the last inclusion is decidable

by Corollary 2. ��

6.3 Complexity

Algorithm 2 may be fed with arbitrarily large heap automata. For a meaningful
complexity analysis, we thus consider heap automata of bounded size only.

Definition 14. An SID Φ is α–bounded if for each P ∈ Pred(Φ) there exists a
heap automaton AP over SH〈α〉 accepting H

〈α〉
Px,Φ such that ΔAP

is decidable in
O (

2poly(‖Φ‖)) and ‖QAP
‖ ≤ 2poly(α).

Unified Reasoning About Robustness Properties of Symbolic-Heaps 635

The bounds from above are natural for a large class of heap automata. In partic-
ular, all heap automata constructed in Sect. 4 stay within these bounds. Then a
close analysis of Algorithm 2 for α–bounded SIDs yields the following complexity
results. A detailed analysis is provided in [29].

Theorem 12. SL-ENTAILΦ
〈α〉 is decidable in 2-ExpTime for every α–bounded

SID Φ. If α ≥ 1 is a constant then SL-ENTAILΦ
〈α〉 is ExpTime-complete.

Note that lower complexity bounds depend on the SIDs under consideration.
Antonopoulos et al. [1, Theorem 6] showed that the entailment problem is already
ΠP

2 –complete (the second level of the polynomial hierarchy) for the base frag-
ment, i.e., Φ = ∅. Thus, under common complexity assumptions, the exponential
time upper bound derived in Theorem12 is asymptotically optimal for a deter-
ministic algorithm. Since the entailment problem is already ExpTime–hard for
points-to assertions of arity 3 and SIDs specifying regular sets of trees (cf. [1,
Theorem 5] and [29]), exponential time is actually needed for certain SIDs.

6.4 Expressiveness

Most common data structures specified by SIDs, such as lists, trees, trees with
linked leaves and combinations thereof can be encoded by heap automata [29].
However, SIDs are more expressive than heap automata. For example, consider
two concatenated lists of the same length that use different fields. While such
lists are outside the scope of heap automata, a suitable SID is given by:

P (x, y) ⇐ ∃z.x �→ (z,null) ∗ z �→ (null, y)
P (x, y) ⇐ ∃u, v.x �→ (u,null) ∗ P (u, v) ∗ v �→ (null, y)

In general, the close relationship between established SIDs and context-free
graph languages studied by Dodds [19, Theorem 1] and Courcelle’s work on
recognizable graph languages [18, Theorems 4.34 and 5.68], suggest that heap
automata exist for every set of reduced symbolic heaps that can be specified in
monadic second-order logic over graphs [18].

7 Conclusion

We developed an algorithmic framework for automatic reasoning about and
debugging of the symbolic heap fragment of separation logic. Our approach is
centered around a new automaton model, heap automata, that is specifically tai-
lored to symbolic heaps. We show that many common robustness properties as
well as certain types of entailments are naturally covered by our framework—
often with optimal asymptotic complexity. There are several directions for future
work including automated learning of heap automata accepting common data
structures and applying heap automata to the abduction problem [16].

Acknowledgements. We thank Tomer Kotek, Georg Weissenbacher and the anony-
mous reviewers for their helpful comments.

636 C. Jansen et al.

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 411–425. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54830-7 27

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies,
T., Yang, H.: Shape analysis for composite data structures. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73368-3 22

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 9

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M.,
Graf, S., de Roever, W.P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137.
Springer, Heidelberg (2006). doi:10.1007/11804192 6

5. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005). doi:10.1007/11575467 5

6. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 15

7. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.: Permission accounting
in separation logic. In: ACM SIGPLAN Notices, vol. 40, pp. 259–270. ACM (2005)

8. Botincan, M., Distefano, D., Dodds, M., Grigore, R., Naudziuniene, D.,
Parkinson, M.J.: coreStar: the core of jStar. BOOGIE 2011, 65–77 (2011)

9. Brookes, S.: A semantics for concurrent separation logic. Theoret. Comput. Sci.
375(1), 227–270 (2007)

10. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 12

11. Brotherston, J., Fuhs, C., Pérez, J.A.N., Gorogiannis, N.: A decision procedure for
satisfiability in separation logic with inductive predicates. In: CSL-LICS 2014, pp.
25:1–25:10. ACM (2014)

12. Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety and
termination preconditions. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS,
vol. 8723, pp. 68–84. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10936-7 5

13. Brotherston, J., Gorogiannis, N., Kanovich, M.I., Rowe, R.: Model checking for
symbolic-heap separation logic with inductive predicates. In: POPL 2016, pp. 84–
96. ACM (2016)

14. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 25

15. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-20398-5 33

http://dx.doi.org/10.1007/978-3-642-54830-7_27
http://dx.doi.org/10.1007/978-3-540-73368-3_22
http://dx.doi.org/10.1007/978-3-540-30538-5_9
http://dx.doi.org/10.1007/11804192_6
http://dx.doi.org/10.1007/11575467_5
http://dx.doi.org/10.1007/978-3-642-22110-1_15
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-319-10936-7_5
http://dx.doi.org/10.1007/978-3-642-35182-2_25
http://dx.doi.org/10.1007/978-3-642-20398-5_33
http://dx.doi.org/10.1007/978-3-642-20398-5_33

Unified Reasoning About Robustness Properties of Symbolic-Heaps 637

16. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL 2009, pp. 289–300. ACM (2009)

17. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

18. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach, vol. 138. Cambridge University Press, Cambridge
(2012)

19. Dodds, M.: From separation logic to hyperedge replacement and back. In:
Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol.
5214, pp. 484–486. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87405-8 40

20. Dudka, K., Peringer, P., Vojnar, T.: Predator: a practical tool for checking manip-
ulation of dynamic data structures using separation logic. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 372–378. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-22110-1 29

21. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment
checking for a fragment of separation logic. In: Garrigue, J. (ed.) APLAS
2014. LNCS, vol. 8858, pp. 314–333. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12736-1 17

22. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis.
In: PLDI 2007, pp. 266–277. ACM (2007)

23. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 424–440. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22110-1 34

24. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. Formal Methods Syst. Des. 41(1), 83–106
(2012)

25. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

26. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21–38. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 2

27. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive sep-
aration logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 201–218. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11936-6 15

28. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens,
F.: VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In:
Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol.
6617, pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 4

29. Jansen, C., Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Unified reasoning about
robustness properties of symbolic-heap separation logic. CoRR abs/1610.07041
(2016). http://arxiv.org/abs/1610.07041

30. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9 4

31. Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: THOR: a tool for reasoning about
shape and arithmetic. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 428–432. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 41

http://dx.doi.org/10.1007/978-3-540-87405-8_40
http://dx.doi.org/10.1007/978-3-642-22110-1_29
http://dx.doi.org/10.1007/978-3-319-12736-1_17
http://dx.doi.org/10.1007/978-3-319-12736-1_17
http://dx.doi.org/10.1007/978-3-642-22110-1_34
http://dx.doi.org/10.1007/978-3-642-22110-1_34
http://dx.doi.org/10.1007/978-3-642-38574-2_2
http://dx.doi.org/10.1007/978-3-319-11936-6_15
http://dx.doi.org/10.1007/978-3-319-11936-6_15
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://arxiv.org/abs/1610.07041
http://dx.doi.org/10.1007/978-3-319-08867-9_4
http://dx.doi.org/10.1007/978-3-540-70545-1_41

638 C. Jansen et al.

32. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In:
Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Heidelberg
(2013). doi:10.1007/978-3-319-03542-0 7

33. Nguyen, H.H., Kuncak, V., Chin, W.-N.: Runtime checking for separation logic.
In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp.
203–217. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78163-9 19

34. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 1

35. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

36. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-08867-9 47

37. Qiu, X., Garg, P., Ştefănescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: PLDI 2013, pp. 231–242. ACM (2013)

38. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS 2002, pp. 55–74. IEEE (2002)

39. Zanardini, D., Genaim, S.: Inference of field-sensitive reachability and cyclicity.
ACM Trans. Comput. Log. 15(4), 33:1–33:41 (2014)

http://dx.doi.org/10.1007/978-3-319-03542-0_7
http://dx.doi.org/10.1007/978-3-540-78163-9_19
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/978-3-319-08867-9_47

Proving Linearizability Using Partial Orders

Artem Khyzha1(B), Mike Dodds2, Alexey Gotsman1, and Matthew Parkinson3

1 IMDEA Software Institute, Madrid, Spain
{artem.khyzha,alexey.gotsman}@imdea.org

2 University of York, York, UK
mike.dodds@york.ac.uk

3 Microsoft Research, Cambridge, UK
mattpark@microsoft.com

Abstract. Linearizability is the commonly accepted notion of correct-
ness for concurrent data structures. It requires that any execution of
the data structure is justified by a linearization—a linear order on oper-
ations satisfying the data structure’s sequential specification. Proving
linearizability is often challenging because an operation’s position in the
linearization order may depend on future operations. This makes it very
difficult to incrementally construct the linearization in a proof.

We propose a new proof method that can handle data structures with
such future-dependent linearizations. Our key idea is to incrementally
construct not a single linear order of operations, but a partial order that
describes multiple linearizations satisfying the sequential specification.
This allows decisions about the ordering of operations to be delayed,
mirroring the behaviour of data structure implementations. We formalise
our method as a program logic based on rely-guarantee reasoning, and
demonstrate its effectiveness by verifying several challenging data struc-
tures: the Herlihy-Wing queue, the TS queue and the Optimistic set.

1 Introduction

Linearizability is a commonly accepted notion of correctness of concur-
rent data structures. It matters for programmers using such data struc-
tures because it implies contextual refinement: any behaviour of a program
using a concurrent data structure can be reproduced if the program uses its
sequential implementation where all operations are executed atomically [4].
This allows the programmer to soundly reason about the behaviour of the
program assuming a simple sequential specification of the data structure.

Enq(1)

Enq(2)

Enq(3)

Deq(): x

Time

t1

t2

t3

A B

Fig. 1. Example execution.

Linearizability requires that for any
execution of operations on the data
structure there exists a linear order of
these operations, called a linearization,
such that: (i) the linearization respects
the order of non-overlapping opera-
tions (the real-time order); and (ii)
the behaviour of operations in the lin-
earization matches the sequential spec-
ification of the data structure. To illustrate this, consider an execution in Fig. 1,
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 639–667, 2017.
DOI: 10.1007/978-3-662-54434-1 24

640 A. Khyzha et al.

where three threads are accessing a queue. Linearizability determines which val-
ues x the dequeue operation is allowed to return by considering the possible
linearizations of this execution. Given (i), we know that in any linearization the
enqueues must be ordered before the dequeue, and Enq(1) must be ordered before
Enq(3). Given (ii), a linearization must satisfy the sequential specification of a
queue, so the dequeue must return the oldest enqueued value. Hence, the execu-
tion in Fig. 1 has three possible linearizations: [Enq(1); Enq(2); Enq(3); Deq():1],
[Enq(1); Enq(3); Enq(2); Deq():1] and [Enq(2); Enq(1); Enq(3); Deq():2]. This
means that the dequeue is allowed to return 1 or 2, but not 3.

For a large class of algorithms, linearizability can be proved by incrementally
constructing a linearization as the program executes. Effectively, one shows that
the program execution and its linearization stay in correspondence under each
program step (this is formally known as a forward simulation). The point in the
execution of an operation at which it is appended to the linearization is called
its linearization point. This must occur somewhere between the start and end
of the operation, to ensure that the linearization preserves the real-time order.
For example, when applying the linearization point method to the execution in
Fig. 1, by point (A) we must have decided if Enq(1) occurs before or after Enq(2)
in the linearization. Thus, by this point, we know which of the three possible
linearizations matches the execution. This method of establishing linearizability
is very popular, to the extent that most papers proposing new concurrent data
structures include a placement of linearization points. However, there are algo-
rithms that cannot be proved linerizable using the linearization point method.

In this paper we consider several examples of such algorithms, including the
time-stamped (TS) queue [2,7]—a recent high-performance data structure with
an extremely subtle correctness argument. Its key idea is for enqueues to attach
timestamps to values, and for these to determine the order in which values are
dequeued. As illustrated by the above analysis of Fig. 1, linearizability allows
concurrent operations, such as Enq(1) and Enq(2), to take effect in any order.
The TS queue exploits this by allowing values from concurrent enqueues to
receive incomparable timestamps; only pairs of timestamps for non-overlapping
enqueue operations must be ordered. Hence, a dequeue can potentially have
a choice of the “earliest” enqueue to take values from. This allows concurrent
dequeues to go after different values, thus reducing contention and improving
performance.

The linearization point method simply does not apply to the TS queue. In the
execution in Fig. 1, values 1 and 2 could receive incomparable timestamps. Thus,
at point (A) we do not know which of them will be dequeued first and, hence, in
which order their enqueues should go in the linearization: this is only determined
by the behaviour of dequeues later in the execution. Similar challenges exist for
other queue algorithms such as the baskets queue [12], LCR queue [16] and
Herlihy-Wing queue [11]. In all of these algorithms, when an enqueue operation
returns, the precise linearization of earlier enqueue operations is not necessarily
known. Similar challenges arise in the time-stamped stack [2] algorithm. We
conjecture that our proof technique can be applied to prove the time-stamped
stack linearizable, and we are currently working on a proof.

Proving Linearizability Using Partial Orders 641

In this paper, we propose a new proof method that can handle algorithms
where incremental construction of linearizations is not possible. We formalise
it as a program logic, based on Rely-Guarantee [13], and apply it to give sim-
ple proofs to the TS queue [2], the Herlihy-Wing queue [11] and the Optimistic
Set [17]. The key idea of our method is to incrementally construct not a sin-
gle linearization of an algorithm execution, but an abstract history—a partially
ordered history of operations such that it contains the real-time order of the orig-
inal execution and all its linearizations satisfy the sequential specification. By
embracing partiality, we enable decisions about order to be delayed, mirroring
the behaviour of the algorithms. At the same time, we maintain the simple induc-
tive style of the standard linearization-point method: the proof of linearizability
of an algorithm establishes a simulation between its execution and a growing
abstract history. By analogy with linearization points, we call the points in the
execution where the abstract history is extended commitment points. The exten-
sion can be done in several ways: (1) committing to perform an operation; (2)
committing to an order between previously unordered operatons; (3) completing
an operation.

(a)

(b)

(c)

Deq(): 2

Enq(3)

Enq(2)

Enq(1)

Deq():?

Enq(3)

Enq(2)

Enq(1)

Enq(3)

Enq(2)

Enq(1)

Fig. 2. Abstract histories con-
structed for prefixes of the exe-
cution in Fig. 1: (a) is at point
(A); (b) is at the start of the
dequeue operation; and (c) is at
point (B). We omit the transitive
consequences of the edges shown.

Consider again the TS queue execution in
Fig. 1. By point (A) we construct the abstract
history in Fig. 2(a). The edge in the figure is
mandated by the real-time order in the orig-
inal execution; Enq(1) and Enq(2) are left
unordered, and so are Enq(2) and Enq(3). At
the start of the execution of the dequeue, we
update the history to the one in Fig. 2(b).
A dashed ellipse represents an operation that
is not yet completed, but we have commit-
ted to performing it (case 1 above). When the
dequeue successfully removes a value, e.g., 2, we
update the history to the one in Fig. 2(c). To
this end, we complete the dequeue by record-
ing its result (case 3). We also commit to an
order between the Enq(1) and Enq(2) opera-
tions (case 2). This is needed to ensure that
all linearizations of the resulting history sat-
isfy the sequential queue specification, which
requires a dequeue to remove the oldest value
in the queue.

We demonstrate the simplicity of our method by giving proofs to challenging
algorithms that match the intuition for why they work. Our method is also
similar in spirit to the standard linearization point method. Thus, even though in
this paper we formulate the method as a program logic, we believe that algorithm
designers can also benefit from it in informal reasoning, using abstract histories
and commitment points instead of single linearizations and linearization points.

642 A. Khyzha et al.

2 Linearizability, Abstract Histories and Commitment
Points

Preliminaries. We consider a data structure that can be accessed concurrently
via operations op ∈ Op in several threads, identified by t ∈ ThreadID. Each
operation takes one argument and returns one value, both from a set Val; we use
a special value ⊥ ∈ Val to model operations that take no argument or return no
value. Linearizability relates the observable behaviour of an implementation of
such a concurrent data structure to its sequential specification [11]. We formalise
both of these by sets of histories, which are partially ordered sets of events,
recording operations invoked on the data structure. Formally, an event is of the
form e = [i : (t, op, a, r)]. It includes a unique identifier i ∈ EventID and records
an operation op ∈ Op called by a thread t ∈ ThreadID with an argument a ∈ Val,
which returns a value r ∈ Val� {todo}. We use the special return value todo for
events describing operations that have not yet terminated, and call such events
uncompleted. We denote the set of all events by Event. Given a set E ⊆ Event, we
write E(i) = (t, op, a, r) if [i : (t, op, a, r)] ∈ E and let �E� consist of all completed
events from E. We let id(E) denote the set of all identifiers of events from E.
Given an event identifier i, we also use E(i).tid, E(i).op, E(i).arg and E(i).rval
to refer to the corresponding components of the tuple E(i).

Definition 1. A history1 is a pair H = (E,R), where E ⊆ Event is a finite set
of events with distinct identifiers and R ⊆ id(E) × id(E) is a strict partial order
(i.e., transitive and irreflexive), called the real-time order. We require that for
each t ∈ ThreadID:

– events in t are totally ordered by R:
∀i, j ∈ id(E). i 	= j ∧ E(i).tid = E(j).tid = t =⇒ (i R−→ j ∨ j

R−→ i);
– only maximal events in R can be uncompleted:

∀i∈ id(E).∀t ∈ThreadID. E(i).rval = todo =⇒ ¬∃j ∈ id(E). i R−→ j;
– R is an interval order:

∀i1, i2, i3, i4. i1
R−→ i2 ∧ i3

R−→ i4 =⇒ i1
R−→ i4 ∨ i2

R−→ i3.

We let History be the set of all histories. A history (E,R) is sequential, written
seq(E,R), if id(E) = �E� and R is total on E.

Informally, i
R−→ j means that the operation recorded by E(i) completed

before the one recorded by E(j) started. The real-time order in histories pro-
duced by concurrent data structure implementations may be partial, since in this

1 For technical convenience, our notion of a history is different from the one in the
classical linearizability definition [11], which uses separate events to denote the start
and the end of an operation. We require that R be an interval order, we ensure that
our notion is consistent with an interpretation of events as segments of time during
which the corresponding operations are executed, with R ordering i1 before i2 if i1
finishes before i2 starts [5].

Proving Linearizability Using Partial Orders 643

case the execution of operations may overlap in time; in contrast, specifications
are defined using sequential histories, where the real-time order is total.

Linearizability. Assume we are given a set of histories that can be produced by
a given data structure implementation (we introduce a programming language
for implementations and formally define the set of histories an implementation
produces in Sect. 5). Linearizability requires all of these histories to be matched
by a similar history of the data structure specification (its linearization) that, in
particular, preserves the real-time order between events in the following sense:
the real-time order of a history H = (E,R) is preserved in a history H ′ =
(E′, R′), written H � H ′, if E = E′ and R ⊆ R′.

The full definition of linearizability is slightly more complicated due to the
need to handle uncompleted events: since operations they denote have not ter-
minated, we do not know whether they have made a change to the data struc-
ture or not. To account for this, the definition makes all events in the imple-
mentation history complete by discarding some uncompleted events and com-
pleting the remaining ones with an arbitrary return value. Formally, an event
e = [i : (t, op, a, r)] can be completed to an event e′ = [i′ : (t′, op′, a′, r′)], writ-
ten e � e′, if i = i′, t = t′, op = op′, a = a′ and either r = r′ 	= todo or
r′ = todo. A history H = (E,R) can be completed to a history H ′ = (E′, R′),
written H � H ′, if id(E′) ⊆ id(E), �E� ⊆ �E′�, R ∩ (id(E′) × id(E′)) = R′ and
∀i ∈ id(E′). [i : E(i)] � [i : E′(i)].

Definition 2. A set of histories H1 (defining the data structure implementa-
tion) is linearized by a set of sequential histories H2 (defining its specification),
written H1 � H2, if ∀H1 ∈ H1.∃H2 ∈ H2.∃H ′

1.H1 � H ′
1 ∧ H ′

1 � H2.

Let Hqueue be the set of sequential histories defining the behaviour of a queue
with Op = {Enq,Deq}. Due to space constraints, we provide its formal definition
in the extended version of this paper [14], but for example, [Enq(2); Enq(1);
Enq(3); Deq():2] ∈ Hqueue and [Enq(1); Enq(2); Enq(3); Deq():2] 	∈ Hqueue.

Proof Method. In general, a history of a data structure (H1 in Definition 2)
may have multiple linearizations (H2) satisfying a given specification H. In our
proof method, we use this observation and construct a partially ordered history,
an abstract history, all linearizations of which belong to H.

Definition 3. A history H is an abstract history of a specification given by
the set of sequential histories H if {H ′ | �H� � H ′ ∧ seq(H ′)} ⊆ H, where
�(E,R)� = (�E� , R ∩ (id(�E�) × id(�E�))). We denote this by abs(H,H).

We define the construction of an abstract history H = (E,R) by instrument-
ing the data structure operations with auxiliary code that updates the history
at certain commitment points during operation execution. There are three kinds
of commitment points:

644 A. Khyzha et al.

PoolID insert(ThreadID t, Val v) {

p := new PoolID();

pools(t) := pools(t) · (p, v,);
return p;

}

Val remove(ThreadID t, PoolID p) {

if (∃Σ, Σ , v, τ.
pools(t) = Σ · (p, v, τ) · Σ) {

pools(t) := Σ · Σ ;

return v;

} else return NULL;

}

(PoolID×TS) getOldest(ThreadID t) {

if (∃p, τ. pools(t) = (p, , τ) ·)

return (p, τ);
else

return (NULL, NULL);
}

setTimestamp(ThreadID t,

PoolID p, TS τ) {

if (∃Σ, Σ , v.
pools(t) = Σ · (p, v,) · Σ)

pools(t) := Σ · (p, v, τ) · Σ ;

}

Fig. 3. Operations on abstract SP pools pools : ThreadID → Pool. All operations are
atomic.

1. When an operation op with an argument a starts executing in a thread t, we
extend E by a fresh event [i : (t, op, a, todo)], which we order in R after all
events in �E�.

2. At any time, we can add more edges to R.
3. By the time an operation finishes, we have to assign its return value to its

event in E.

Note that, unlike Definitions 2 and 3 uses a particular way of completing
an abstract history H, which just discards all uncompleted events using �−�.
This does not limit generality because, when constructing an abstract history,
we can complete an event (item 3) right after the corresponding operation makes
a change to the data structure, without waiting for the operation to finish.

In Sect. 6 we formalise our proof method as a program logic and show that
it indeed establishes linearizability. Before this, we demonstrate informally how
the obligations of our proof method are discharged on an example.

3 Running Example: The Time-Stamped Queue

We use the TS queue [7] as our running example. Values in the queue are stored in
per-thread single-producer (SP) multi-consumer pools, and we begin by describ-
ing this auxiliary data structure.

SP Pools. SP pools have well-known linearizable implementations [7], so we
simplify our presentation by using abstract pools with the atomic operations
given in Fig. 3. This does not limit generality: since linerarizability implies con-
textual refinement (Sect. 1), properties proved using the abstract pools will stay
valid for their linearizable implementations. In the figure and in the following
we denote irrelevant expressions by .

Proving Linearizability Using Partial Orders 645

1 enqueue(Val v) {

2 atomic {

3 PoolID node := insert(myTid(), v);

4 Gts[myEid()] := �;
5 }

6 TS timestamp := newTimestamp();

7 atomic {

8 setTimestamp(myTid(), node,

timestamp);

9 Gts[myEid()] := timestamp;
10 E(myEid()).rval := ⊥;
11 }

12 return ⊥;

13 }

Fig. 4. The TS queue: enqueue. Shaded portions
are auxiliary code used in the proof.

The SP pool of a thread
contains a sequence of triples
(p, v, τ), each consisting of a
unique identifier p ∈ PoolID,
a value v ∈ Val enqueued into
the TS queue by the thread
and the associated timestamp
τ ∈ TS. The set of timestamps
TS is partially ordered by
<TS , with a distinguished
timestamp � that is greater
than all others. We let pool be
the set of states of an abstract
SP pool. Initially all pools are
empty. The operations on SP
pools are as follows:

– insert(t,v) appends a value v to the back of the pool of thread t and
associates it with the special timestamp �; it returns an identifier for the
added element.

– setTimestamp(t,p,τ) sets to τ the timestamp of the element identified by
p in the pool of thread t.

– getOldest(t) returns the identifier and timestamp of the value from the
front of the pool of thread t, or (NULL,NULL) if the pool is empty.

– remove(t,p) tries to remove a value identified by p from the pool of thread
t. Note this can fail if some other thread removes the value first.

Separating insert from setTimestamp and getOldest from remove in the
SP pool interface reduces the atomicity granularity, and permits more efficient
implementations.

Core TSQueue Algorithm. Figures 4 and 5 give the code for our version of the
TS queue. Shaded portions are auxiliary code needed in the linearizability proof
to update the abstract history at commitment points; it can be ignored for now. In
the overall TS queue, enqueuing means adding a value with a certain timestamp
to the pool of the current thread, while dequeuing means searching for the value
with the minimal timestamp across per-thread pools and removing it.

In more detail, the enqueue(v) operation first inserts the value v into the pool
of the current thread, defined by myTid (line 3). At this point the value v has
the default, maximal timestamp �. The code then generates a new timestamp
using newTimestamp and sets the timestamp of the new value to it (lines 6–8).
We describe an implementation of newTimestamp later in this section. The key
property that it ensures is that out of two non-overlapping calls to this function,
the latter returns a higher timestamp than the former; only concurrent calls may
generate incomparable timestamps. Hence, timestamps in each pool appear in
the ascending order.

The dequeue operation first generates a timestamp start ts at line 18, which
it further uses to determine a consistent snapshot of the data structure. After

646 A. Khyzha et al.

14 Val dequeue() {

15 Val ret := NULL;

16 EventID CAND;

17 do {

18 TS start ts := newTimestamp();

19 PoolID pid, cand pid := NULL;

20 TS ts, cand ts := ;

21 ThreadID cand tid;

22 for each k in 1..NThreads do {

23 atomic {

24 (pid, ts) := getOldest(k);

25 R := (R ∪ {(e, myEid()) | e ∈ id(E) ∩ inQ(pools, E, Gts)
26 ∧ ¬(start ts <TS Gts(e))})+;
26 }

27 if (pid = NULL && ts <TS cand ts && ¬(start ts <TS ts)) {

28 (cand pid, cand ts, cand tid) := (pid, ts, k);

31 CAND := enqOf(E, Gts, cand tid, cand ts);

32 }

33 }

34 if (cand pid = NULL)

35 atomic {

36 ret := remove(cand tid, cand pid);

37 if (ret = NULL) {

38 E(myEid()).rval := ret;

39 R := (R ∪ {(CAND, e) | e ∈ inQ(pools, E, Gts)}
40 ∪ {(myEid(), d) | E(d).op = Deq ∧ d ∈ id(E E)})+;
41 }

43 }

44 } while (ret = NULL);

45 return ret;

46 }

Fig. 5. The TS queue: dequeue. Shaded portions are auxiliary code used in the proof.

generating start ts, the operation iterates through per-thread pools, searching
for a value with a minimal timestamp (lines 22–33). The search starts from a
random pool, to make different threads more likely to pick different elements for
removal and thus reduce contention. The pool identifier of the current candidate
for removal is stored in cand pid, its timestamp in cand ts and the thread
that inserted it in cand tid. On each iteration of the loop, the code fetches the
earliest value enqueued by thread k (line 24) and checks whether its timestamp
is smaller than the current candidate’s cand ts (line 27). If the timestamps
are incomparable, the algorithm keeps the first one (either would be legitimate).
Additionally, the algorithm never chooses a value as a candidate if its timestamp
is greater than start ts, because such values are not guaranteed to be read in
a consistent manner.

If a candidate has been chosen once the iteration has completed, the code
tries to remove it (line 35). This may fail if some other thread got there first, in
which case the operation restarts. Likewise, the algorithm restarts if no candidate
was identified (the full algorithm in [7] includes an emptiness check, which we
omit for simplicity).

Proving Linearizability Using Partial Orders 647

Timestamp Generation. The TS queue requires that sequential calls to
newTimestamp generate ordered timestamps. This ensures that the two sequen-
tially enqueued values cannot be dequeued out of order. However, concurrent
calls to newTimestamp may generate incomparable timestamps. This is desir-
able because it increases flexibility in choosing which value to dequeue, reducing
contention.

37 int counter = 1;

38

39 TS newTimestamp() {

40 int ts = counter;

41 TS result;

42 if (CAS(counter, ts, ts+1))

43 result = (ts, ts);

44 else

45 result = (ts, counter-1);

46 return result;

47 }

Fig. 6. Timestamp generation algorithm.

There are a number of implemen-
tations of newTimestamp satisfying the
above requirements [2]. For concrete-
ness, we consider the implementation
given in Fig. 6. Here a timestamp
is either � or a pair of integers
(s, e), representing a time interval.
In every timestamp (s, e), s ≤ e.
Two timestamps are considered ordered
(s1, e1) <TS (s2, e2) if e1 < s2, i.e., if
the time intervals do not overlap. Inter-
vals are generated with the help of a
shared counter. The algorithm reads
the counter as the start of the interval and attempts to atomically increment
it with a CAS (lines 40–42), which is a well-known atomic compare-and-swap
operation. It atomically reads the counter and, if it still contains the previously
read value ts, updates it with the new timestamp ts + 1 and returns true; oth-
erwise, it does nothing and returns false. If CAS succeeds, then the algorithm
takes the interval start and end values as equal (line 43). If not, some other
thread(s) increased the counter. The algorithm reads the counter again and sub-
tracts 1 to give the end of the interval (line 45). Thus, either the current call
to newTimestamp increases the counter, or some other thread does so. In either
case, subsequent calls will generate timestamps greater than the current one.

This timestamping algorithm allows concurrent enqueue operations in Fig. 1
to get incomparable timestamps. Then the dequeue may remove either 1 or 2
depending on where it starts traversing the pools2 (line 22). As we explained in
Sect. 1, this makes the standard method of linearization point inapplicable for
verifying the TS queue.

4 The TS Queue: Informal Development

In this section we explain how the abstract history is updated at the commitment
points of the TS Queue and justify informally why these updates preserve the key
property of this history—that all its linearizations satisfy the sequential queue
specification. We present the details of the proof of the TS queue in Sect. 7.

Ghost State and Auxiliary Definitions. To aid in constructing the abstract
history (E,R), we instrument the code of the algorithm to maintain a piece

2 Recall that the randomness is required to reduce contention.

648 A. Khyzha et al.

of ghost state—a partial function Gts : EventID ⇀ TS. Given the identifier i
of an event E(i) denoting an enqueue that has inserted its value into a pool,
Gts(i) gives the timestamp currently associated with the value. The statements
in lines 4 and 9 in Fig. 4 update Gts accordingly. These statements use a special
command myEid() that returns the identifier of the event associated with the
current operation.

As explained in Sect. 3, the timestamps of values in each pool appear in
strictly ascending order. As a consequence, all timestamps assigned by Gts to
events of a given thread t are distinct, which is formalised by the following
property:

∀i, j. i 	= j ∧ E(i).tid = E(j).tid ∧ i, j ∈ dom(Gts) =⇒ Gts(i) 	= Gts(j)

Hence, for a given thread t and a timestamp τ , there is at most one enqueue
event in E that inserted a value with the timestamp τ in the pool of a thread t.
In the following, we denote the identifier of this event by enqOf(E,Gts, t, τ) and
let the set of the identifiers of such events for all values currently in the pools
be inQ(pools, E,Gts):

inQ(pools, E,Gts) � {enqOf(E,Gts, t, τ) | ∃p. pools(t) = · (p, , τ) · }

Commitment Points and History Updates. We further instrument
the code with statements that update the abstract history at commitment
points, which we now explain. As a running example, we use the exe-
cution in Fig. 7, extending that in Fig. 1. As we noted in Sect. 2, when
an operations starts, we automatically add a new uncompleted event to

Enq(1)

Enq(2)

Enq(3)

Time

t1

t2

t3
A

Deq(): 2

Deq(): 1

B

Fig. 7. Example execution extending Fig. 1.
Dotted lines indicate commitment points at
lines 35–43 of the dequeues.

E to represent this operation and
order it after all completed events in
R. For example, before the start of
Enq(3) in the execution of Fig. 7, the
abstract history contains two events
Enq(1) and Enq(2) and no edges in
the real-time order. At the start of
Enq(3) the history gets transformed
to that in Fig. 8(a). The commitment
point at line 8 in Fig. 4 completes the
enqueue by giving it a return value
⊥, which results in the abstract history in Fig. 8(b).

Upon a dequeue’s start, we similarly add an event representing it. Thus, by
point (A) in Fig. 7, the abstract history is as shown in Fig. 8(c). At every iteration
k of the loop, the dequeue performs a commitment point at lines 25–26, where
we order enqueue events of values currently present in the pool of a thread k
before the current dequeue event. Specifically, we add an edge (e, myEid()) for
each identifier e of an enqueue event whose value is in the k’s pool and whose
timestamp is not greater than the dequeue’s own timestamp start ts. Such
ordering ensures that in all linearizations of the abstract history, the values that

Proving Linearizability Using Partial Orders 649

(c)

(d)

Deq(): 2

Deq(): ?

Enq(3)

Enq(2)

Enq(1)

Deq(): ?

Enq(3)

Enq(2)

Enq(1)

Deq(): ?

(a)

(b)

Enq(3)

Enq(2)

Enq(1)

Enq(3)

Enq(2)

Enq(1)

Fig. 8. Changes to the abstract history of the execution in Fig. 7.

the current dequeue observes in the pool according to the algorithm are also
enqueued in the sequential queue prior to the dequeue. In particular, this also
ensures that in all linearizations, the dequeue returns a value that has already
been inserted.

The key commitment point in dequeue occurs in lines 35–43, where the
abstract history is updated if the dequeue successfully removes a value from
a pool. The ghost code at line 31 stores the event identifier for the enqueue
that inserted this value in CAND. At the commitment point we first complete the
current dequeue event by assigning the value removed from a pool as its return
value. This ensures that the dequeue returns the same value in the concrete exe-
cution and the abstract history. Finally, we order events in the abstract history to
ensure that all linearizations of the abstract history satisfy the sequential queue
specification. To this end, we add the following edges to R and then transitively
close it:

1. (CAND, e) for each identifier e of an enqueue event whose value is still in the
pools. This ensures that the dequeue removes the oldest value in the queue.

2. (myEid(), d) for each identifier d of an uncompleted dequeue event. This
ensures that dequeues occur in the same order as they remove values from
the queue.

At the commitment point (A) in Fig. 7 the abstract history gets transformed
from the one in Fig. 8(c) to the one in Fig. 8(d).

5 Programming Language

To formalise our proof method, we first introduce a programming language for
data structure implementations. This defines such implementations by functions
D : Op → Com mapping operations to commands from a set Com. The com-
mands, ranged over by C, are written in a simple while-language, which includes
atomic commands α from a set PCom (assignment, CAS, etc.) and standard
control-flow constructs. To conserve space, we describe the precise syntax in the
extended version of this paper [14].

Let Loc ⊆ Val be the set of all memory locations. We let State = Loc → Val
be the set of all states of the data structure implementation, ranged over by s.

650 A. Khyzha et al.

Recall from Sect. 2 that operations of a data structure can be called concurrently
in multiple threads from ThreadID. For every thread t, we use distinguished
locations arg[t], res[t] ∈ Loc to store an argument, respectively, the return value
of an operation called in this thread.

We assume the semantics of each atomic command α ∈ PCom given by
a non-deterministic state transformers [[α]]t : State → P(State), t ∈ ThreadID.
For a state s, [[α]]t(s) is the set of states resulting from thread t executing α
atomically in s. We then lift this semantics to a sequential small-step operational
semantics of arbitrary commands from Com: 〈C, s〉 −→t 〈C ′, s′〉. Again, we omit
the standard rules of the semantics; see [14].

We now define the set of histories produced by a data structure imple-
mentation D, which is required by the definition of linearizability (Definition 2,
Sect. 2). Informally, these are the histories produced by threads repeatedly invok-
ing data structure operations in any order and with any possible arguments
(this can be thought of as running the data structure implementation under its
most general client [6]). We define this formally using a concurrent small-step
semantics of the data structure D that also constructs corresponding histories:
�D ⊆ (Cont×State×History)2, where Cont = ThreadID → (Com�{idle}). Here
a function c ∈ Cont characterises the progress of an operation execution in each
thread t: c(t) gives the continuation of the code of the operation executing in
thread t, or idle if no operation is executing. The relation �D defines how a
step of an operation in some thread transforms the data structure state and the
history:

i /∈ id(E) a ∈ Val E′ = E[i : (t, op, a, todo)] R′ = R ∪ {(j, i) | j ∈ �E�}
〈c[t : idle], s, (E,R)〉 �D 〈c[t : D(op)], s[arg[t] : a], (E′, R′)〉

〈C, s〉 −→t 〈C ′, s′〉
〈c[t : C], s, (E,R)〉 �D 〈c[t : C ′], s′, (E,R)〉

i = last(t, (E,R)) E(i) = (t, op, a, todo) E′ = E[i : (t, op, a, s(res[t]))]
〈c[t : skip], s, (E,R)〉 �D 〈c[t : idle], s, (E′, R)〉

First, an idle thread t may call any operation op ∈ Op with any argument a.
This sets the continuation of thread t to D(op), stores a into arg[t], adds a new
event i to the history, ordered after all completed events. Second, a thread t
executing an operation may do a transition allowed by the sequential semantics
of the operation’s implementation. Finally, when a thread t finishes executing
an operation, as denoted by a continuation skip, the corresponding event is com-
pleted with the return value in res[t]. The identifier last(t, (E,R)) of this event
is determined as the last one in E by thread t according to R: as per Definition 1,
events by each thread are totally ordered in a history, ensuring that last(t,H) is
well-defined.

Now given an initial state s0 ∈ State, we define the set of histories of a data
structure D as H(D, s0) = {H | 〈(λt. idle), s0, (∅, ∅)〉 �∗

D 〈 , ,H〉}. We say that
a data structure (D, s0) is linearizable with respect to a set of sequential histories
H if H(D, s0) � H (Definition 2).

Proving Linearizability Using Partial Orders 651

6 Logic

We now formalise our proof method as a Hoare logic based on rely-guarantee [13].
We make this choice to keep presentation simple; our method is general and can be
combined with more advanced methods for reasoning about concurrency [1,20,22].

Assertions P,Q ∈ Assn in our logic denote sets of configurations κ ∈ Config =
State×History×Ghost, relating the data structure state, the abstract history and
the ghost state from a set Ghost. The latter can be chosen separately for each
proof; e.g., in the proof of the TS queue in Sect. 4 we used Ghost = EventID → TS.
We do not prescribe a particular syntax for assertions, but assume that it includes
at least the first-order logic, with a set LVars of special logical variables used in
specifications and not in programs. We assume a function [[−]]− : Assn×(LVars →
Val) → P(Config) such that [[P]]� gives the denotation of an assertion P with
respect to an interpretation � : LVars → Val of logical variables.

Rely-guarantee is a compositional verification method: it allows reasoning
about the code executing in each thread separately under some assumption on
its environment, specified by a rely. In exchange, the thread has to ensure that its
behaviour conforms to a guarantee. Accordingly, judgements of our logic take the
form R,G �t {P} C {Q}, where C is a command executing in thread t, P and Q
are Hoare pre- and post-conditions from Assn, and R,G ⊆ Config2 are relations
defining the rely and the guarantee. Informally, the judgement states that C
satisfies the Hoare specification {P} {Q} and changes program configurations
according to G, assuming that concurrent threads change program configurations
according to R.

Our logic includes the standard Hoare proof rules for reasoning about sequen-
tial control-flow constructs, which we defer to [14] due to space constraints. We

∀ G t { P } α { Q } ∧ stable(P , R) ∧ stable(Q ,R)
R, t {P} α {Q}

where for p, q ∈ P(Config):

stable(p,R) ∀κ, κ . κ ∈ p ∧ (κ, κ) ∈ R =⇒ κ ∈ p

G t {p} α {q} ∀s, s , H, G. (s, H, G) ∈ p ∧ s ∈ α t(s) =⇒
∃H , G . (s , H , G) ∈ q ∧ H ∗ H ∧ ((s, H, G), (s , H , G)) ∈ G

and for (E,R), (E , R) ∈ History:

(E,R) (E , R) (E = E ∧ R ⊆ R) ∨
(∃i, t, op, a, r. (∀j. j = i =⇒ E(j) =E (j)) ∧

E(i) = (t, op, a, todo) ∧ E (i) = (t, op, a, r))

Fig. 9. Proof rule for primitive commands.

652 A. Khyzha et al.

now explain the rule for atomic commands in Fig. 9, which plays a crucial role
in formalising our proof method. The proof rule derives judgements of the form
R,G �t {P} α {Q}. The rule takes into account possible interference from con-
current threads by requiring the denotations of P and Q to be stable under the
rely R, meaning that they are preserved under transitions the latter allows. The
rest of the requirements are expressed by the judgement G �t {p} α {q}. This
requires that for any configuration (s,H,G) from the precondition denotation p
and any data structure state s′ resulting from thread t executing α in s, we can
find a history H ′ and a ghost state G′ such that the new configuration (s′,H ′, G′)
belongs to the postcondition denotation q. This allows updating the history and
the ghost state (almost) arbitrarily, since these are only part of the proof and not
of the actual data structure implementation; the shaded code in Figs. 4 and 5
indicates how we perform these updates in the proof of the TS queue. Updates
to the history, performed when α is a commitment point, are constrained by
a relation � ⊆ History2, which only allows adding new edges to the real-time
order or completing events with a return value. This corresponds to commitment
points of kinds 2 and 3 from Sect. 2. Finally, as is usual in rely-guarantee, the
judgement G �t {p} α {q} requires that the change to the program configuration
be allowed by the guarantee G.

Note that � does not allow adding new events into histories (commitment
point of kind 1): this happens automatically when an operation is invoked. In
the following, we use a relation ���t ⊆ Config2 to constrain the change to the
program configuration upon an operation invocation in thread t:

〈s, (E,R), G〉 ���t 〈s′, (E′, R′), G′〉 ⇐⇒ (∀l ∈ Loc. l 	= arg[t] =⇒ s(l) = s′(l))
∧∃i /∈ id(E). E′ = E � {[i : t, , , todo]}
∧R′ = (R ∪ {(j, i) | j ∈ �E�}) ∧ G = G′

Thus, when an operation is invoked in thread t, arg[t] is overwritten by the
operation argument and an uncompleted event associated with thread t and a
new identifier i is added to the history; this event is ordered after all completed
events, as required by our proof method (Sect. 2).

The rule for primitive commands and the standard Hoare logic proof rules
allow deriving judgements about the implementations D(op) of every operation
op in a data structure D. The following theorem formalises the requirements on
these judgements sufficient to conclude the linearizability of D with respect to
a given set of sequential histories H. The theorem uses the following auxiliary
assertions, describing the event corresponding to the current operation op in a
thread t at the start and end of its execution (last is defined in Sect. 5):

[[startedI(t, op)]]� = {(s, (E,R), G) | E(last(t, (E,R))) = (t, op, s(arg[t]), todo)
∧ ∃κ ∈ [[I]]�. 〈κ〉 ���t 〈s, (E,R), G〉};

[[ended(t, op)]]� = {(s, (E,R), G) | E(last(t, (E,R))) = (t, op, , s(res[t]))}.

The assertion startedI(t, op) is parametrised by a global invariant I used in
the proof. With the help of it, startedI(t, op) requires that configurations in its
denotation be results of adding a new event into histories satisfying I.

Proving Linearizability Using Partial Orders 653

Theorem 1. Given a data structure D, its initial state s0 ∈ State and a set
of sequential histories H, we have (D, s0) linearizable with respect to H if there
exists an assertion I and relations Rt,Gt ⊆ Config2 for each t ∈ ThreadID such
that:

1. ∃G0.∀�. (s0, (∅, ∅), G0) ∈ [[I]]�;
2. ∀t, �. stable([[I]]�,Rt);
3. ∀H, �. (,H,) ∈ [[I]]� =⇒ abs(H,H);
4. ∀t, op. (Rt,Gt �t

{I ∧ startedI(t, op)
}

D(op)
{I ∧ ended(t, op)

}
);

5. ∀t, t′. t 	= t′ =⇒ Gt ∪ ���t ⊆ Rt′ .

Here I is the invariant used in the proof, which item 1 requires to hold
of the initial data structure state s0, the empty history and some some initial
ghost state G0. Item 2 then ensures that the invariant holds at all times. Item 3
requires any history satisfying the invariant to be an abstract history of the given
specification H (Definition 3, Sect. 2). Item 4 constraints the judgement about
an operation op executed in a thread t: the operation is executed from a con-
figuration satisfying the invariant and with a corresponding event added to the
history; by the end of the operation’s execution, we need to complete the event
with the return value matching the one produced by the code. Finally, item 5
formalises a usual requirement in rely-guarantee reasoning: actions allowed by
the guarantee of a thread t have to be included into the rely of any other thread
t′. We also include the relation ���t, describing the automatic creation of a new
event upon an operation invocation in thread t.

7 The TS Queue: Proof Details

In this section, we present some of the details of the proof of the TS Queue. Due
to space constraints, we provide the rest of them in the extended version of the
paper [14].

Invariant. We satisfy the obligation 1 from Theorem1 by proving the invariant
INV defined in Fig. 10. The invariant is an assertion consisting of four parts:
INVLIN, INVORD, INVALG and INVWF. Each of them denotes a set of configurations
satisfying the listed constraints for a given interpretation of logical variables �.
The first part of the invariant, INVLIN, ensures that every history satisfying the
invariant is an abstract history of the queue, which discharges the obligation 1
from Theorem 1. In addition to that, INVLIN requires that a relation same data
hold of a configuration (s,H,Gts) and every linearization H ′. In this way, we
ensure that the pools and the final state of the sequential queue after H ′ contain
values inserted by the same enqueue events (we formalise same data in [14]). The
second part, INVORD, asserts ordering properties of events in the partial order
that hold by construction. The third part, INVALG, is a collection of properties
relating the order on timestamps to the partial order in abstract history. Finally,
INVWF is a collection of well-formedness properties of the ghost state.

Loop Invariant. We now present the key verification condition that arises in
the dequeue operation: demonstrating that the ordering enforced at the com-
mitment points at lines 25–26 and 35–43 does not invalidate acyclicity of the

654 A. Khyzha et al.

Fig. 10. The invariant INV = INVLIN ∧ INVORD ∧ INVALG ∧ INVWF

abstract history. To this end, for the foreach loop (lines 22–33) we build a
loop invariant based on distinguishing certain values in the pools as seen by
the dequeue operation. With the help of the loop invariant we establish that
acyclicity is preserved at the commitment points.

Recall from Sect. 3, that the foreach loop starts iterating from a random
pool. In the proof, we assume that the loop uses a thread-local variable A for
storing a set of identifiers of threads that have been iterated over in the loop.
We also assume that at the end of each iteration the set A is extended with the
current loop index k.

Proving Linearizability Using Partial Orders 655

(noCand): seen((s, H, Gts), myEid()) = s(cand pid) = NULL
(minTS(e)): ∀e ∈ seen((s, H, Gts), myEid()). ¬(Gts(e) <TS Gts(e))

(isCand): ∃CAND. CAND = enqOf(E,Gts, s(cand tid), s(cand ts))
∧ minTS(CAND) ∧ (CAND ∈ inQ(s(pools), E, Gts) =⇒

CAND ∈ seen((s, H, Gts), myEid())) ∧ s(cand pid) = NULL

∅ ∧

Fig. 11. Auxiliary assertions for the loop invariant

Note also that for each thread k, the commitment point of a dequeue d at
lines 25–26 ensures that enqueue events of values the operation sees in k’s pool
precede d in the abstract history. Based on that, during the foreach loop we
can we distinguish enqueue events with values in the pools that a dequeue d
has seen after looking into pools of threads from A. We define the set of all such
enqueue events as follows:

seen((s, (E,R), Gts), d) � {e | e ∈ id(�E�) ∩ inQ(s(pools), E,Gts)

∧ e
R−→ d ∧ ¬(s(start ts) <TS Gts(e)) ∧ E(e).tid ∈ A}

A loop invariant LI is simply a disjunction of two auxiliary assertions,
isCand and noCand, which are defined in Fig. 11 (given an interpretation of
logical variables �, each of assertions denotes a set of configurations satisfying
the listed constraints). The assertion noCand denotes a set of configurations
κ = (s, (E,R), Gts), in which the dequeue operation has not chosen a candidate
for removal after having iterated over the pools of threads from A. In this case,
s(cand pid) = NULL, and the current dequeue has not seen any enqueue event
in the pools of threads from A.

The assertion isCand denotes a set of configurations κ = (s, (E,R), Gts),
in which an enqueue event CAND = enqOf(E,Gts, cand tid, cand ts) has been
chosen as a candidate for removal out of the enqueues seen in the pools of threads
from A. As CAND may be removed by a concurrent dequeue, isCand requires
that CAND remain in the set seen(κ, myEid()) as long as CAND’s value remains
in the pools. Additionally, by requiring minTS(CAND), isCand asserts that the
timestamp of CAND is minimal among other enqueues seen by myEid().

In the following lemma, we prove that the assertion isCand implies minimality
of CAND in the abstract history among enqueue events with values in the pools
of threads from A. The proof is based on the observation that enqueues of values
seen in the pools by a dequeue are never preceded by unseen enqueues.

Lemma 1. For every � : LVars → Val and configuration (s, (E,R), Gts) ∈
[[isCand]]�, if CAND = enqOf(E,Gts, cand tid, cand ts) and CAND ∈
inQ(s(pools), E,Gts) both hold, then the following is true:

∀e ∈ inQ(s(pools), E, Gts). E(e).tid ∈ A =⇒ ¬(e R−→ CAND)

Acyclicity. At the commitment points extending the order of the abstract
history, we need to show that the extended order is acyclic as required by

656 A. Khyzha et al.

Definition 1 of the abstract history. To this end, we argue that the commit-
ment points at lines 25–26 and lines 35–43 preserve acyclicity of the abstract
history.

The commitment point at lines 25–26 orders certain completed enqueue
events before the current uncompleted dequeue event myEid(). By Definition 1
of the abstract history, the partial order on its events is transitive, and uncom-
pleted events do not precede other events. Since myEid() does not precede any
other event, ordering any completed enqueue event before myEid() cannot create
a cycle in the abstract history.

We now consider the commitment point at lines 35–43 in the current dequeue
myEid(). Prior to the commitment point, the loop invariant LI has been estab-
lished in all threads, and the check cand pid 	= NULL at line 34 has ruled out the
case when noCand holds. Thus, the candidate for removal CAND has the proper-
ties described by isCand. If CAND’s value has already been dequeued concurrently,
the removal fails, and the abstract history remains intact (and acyclic). When
the removal succeeds, we consider separately the two kind of edges added into
the abstract history (E,R):

1. The case of (CAND, e) for each e ∈ inQ(pools, E,Gts). By Lemma 1, an edge
(e, CAND) is not in the partial order R of the abstract history. There is also
no sequence of edges e

R−→ ...
R−→ CAND, since R is transitive by Definition 1.

Hence, cycles do not arise from ordering CAND before e.
2. The case of (myEid(), d) for each identifier d of an uncompleted

dequeue event. By Definition 1 of the abstract history, uncompleted events
do not precede other events. Since d is uncompleted event, it does not precede
myEid(). Hence, ordering myEid() in front of all such dequeue events does not
create cycles.

Rely and Guarantee Relations. We now explain how we generate rely and
guarantee relations for the proof. Instead of constructing the relations with the
help of abstracted intermediate assertions of a proof outline for the enqueue and
dequeue operations, we use the non-deterministic state transformers of primi-
tive commands together with the ghost code in Figs. 4 and 5. To this end, the
semantics of state transformers is extended to account for changes to abstract
histories and ghost state. We found that generating rely and guarantee relations
in such non-standard way results in cleaner stability proofs for the TS Queue,
and makes them similar in style to checking non-interference in the Owicki-Gries
method [18].

Let us refer to atomic blocks with corresponding ghost code at line 3, line 8,
line 25 and line 35 as atomic steps insert, setTS, scan(k) (k ∈ ThreadID) and
remove respectively, and let us also refer to the CAS operation at line 42 as
genTS. For each thread t and atomic step α̂, we assume a non-deterministic con-
figuration transformer [[α̂]]t : Config → P(Config) that updates state according
to the semantics of a corresponding primitive command, and history with ghost
state as specified by ghost code.

Proving Linearizability Using Partial Orders 657

Given an assertion P , an atomic step α̂ and a thread t, we associate them
with the following relation Gt,α̂,P ⊆ Config2:

Gt,α̂,P � {(κ, κ′) | ∃�. κ ∈ [[P]]� ∧ κ′ ∈ [[α̂]]t(κ)}

Additionally, we assume a relation Gt,local, which describes arbitrary changes to
certain program variables and no changes to the abstract history and the ghost
state. That is, we say that pools and counter are shared program variables in
the algorithm, and all others are thread-local, in the sense that every thread has
its own copy of them. We let Gt,local denote every possible change to thread-local
variables of a thread t only.

For each thread t, relations Gt and Rt are defined as follows:

Pop � INV ∧ started(t, op)
Gt � (

⋃
t′∈ThreadID Gt,scan(t′),PDeq) ∪ Gt,remove,PDeq

∪ Gt,insert,PEnq ∪ Gt,setTS,PEnq ∪ Gt,genTS,INV ∪ Gt,local,

Rt � ∪t′∈ThreadID\{t}(Gt′ ∪ ���t′)

As required by Theorem1, the rely relation of a thread t accounts for addition
of new events in every other thread t′ by including ���′

t. Also, Rt takes into con-
sideration every atomic step by the other threads. Thus, the rely and guarantee
relations satisfy all the requirement 1 of the proof method from Theorem1. It
is easy to see that the requirement 1 is also fulfilled: the global invariant INV is
simply preserved by each atomic step, so it is indeed stable under rely relations
of each thread.

The key observation implying stability of the loop invariant in every thread
t is presented in the following lemma, which states that environment transitions
in the rely relation never extend the set of enqueues seen by a given dequeue.

Lemma 2. If a dequeue event DEQ generated its timestamp start ts, then:

∀κ, κ′. (κ, κ′) ∈ Rt =⇒ seen(κ′, DEQ) ⊆ seen(κ, DEQ)

8 The Optimistic Set: Informal Development

The Algorithm. We now present another example, the Optimistic Set [17],
which is a variant of a classic algorithm by Heller et al. [8], rewritten to use
atomic sections instead of locks. However, this is a highly-concurrent algorithm:
every atomic section accesses a small bounded number of memory locations. In
this section we only give an informal explanation of the proof and commitment
points; the details are provided in [14].

The code in Fig. 12 implements the Optimistic Set as a sorted singly-linked
list. Each node in the list has three fields: an integer val storing the key of
the node, a pointer next to the subsequent node in the list, and a boolean flag
marked that is set true when the node gets removed. The list also has sentinel
nodes head and tail that store −∞ and +∞ as keys accordingly. The set defines

658 A. Khyzha et al.

1 struct Node {

2 Node *next;

3 Int val;

4 Bool marked;

5 }

6

7 Bool contains(v) {

8 p, c := locate(v);

9 return (c.val = v);

10 }

11

12 Bool insert(v) {

13 Node×Node p, c;

14 do {

15 p, c := locate(v);

16 atomic {

17 if (p.next = c

18 && !p.marked) {

18 commitinsert();

20 if (c.val = v) {

21 Node *n := new Node;

22 n->next := c;

23 n->val := v;

24 n->marked := false;
25 p.next := n;

26 return true;
27 } else

28 return false;
29 }

30 }

31 } while (true);
32 }

33 Node×Node locate(v) {

34 Node prev := head;

35 Node curr := prev.next;

36 while (curr.val < v) {

37 prev := curr;

38 atomic {

39 curr := curr.next;

40 if (E(myEid()).op = contains
41 && (curr.val ≥ v))

42 commitcontains();

45 }

46 }

47 return prev, curr;

48 }

49

50 Bool remove(v) {

51 Node×Node p, c;

52 do {

53 p, c := locate(v);

54 atomic {

55 if (p.next = c

56 && !p.marked) {

55 commitremove();

57 if (c.val = v) {

58 c.marked := true;
59 p.next := c.next;

60 return true;
61 } else

62 return false;
63 }

64 }

65 } while (true);
66 }

Fig. 12. The optimistic set. Shaded portions are auxiliary code used in the proof

three operations: insert, remove and contains. Each of them uses an internal
operation locate to traverse the list. Given a value v, locate traverses the list
nodes and returns a pair of nodes (p, c), out of which c has a key greater or
equal to v, and p is the node preceding c.

The insert (remove) operation spins in a loop locating a place after which
a new node should be inserted (after which a candidate for removal should be)
and attempting to atomically modify the data structure. The attempt may fail
if either p.next = c or !p.marked do not hold: the former condition ensures
that concurrent operations have not removed or inserted new nodes immediately
after p.next, and the latter checks that p has not been removed from the set.
When either check fails, the operation restarts. Both conditions are necessary
for preserving integrity of the data structure.

Proving Linearizability Using Partial Orders 659

3
2

1

n1

n2

n3

4

Fig. 13. Example state of the opti-
mistic set. Shaded nodes have their
“marked” field set.

EA CB

t1

t2

t3

Rem(1) Rem(2)

Con(2): true Ins(3)

Con(3): false

D

Fig. 14. Example execution of the set.
“Ins” and “Rem” denote successful insert
and remove operations accordingly, and
“Con” denotes contains operations. A–
E correspond to commitment points of
operations.

When the elements are removed from the set, their corresponding nodes have
the marked flag set and get unlinked from the list. However, the next field of the
removed node is not altered, so marked and unmarked nodes of the list form a
tree such that each node points towards the root, and only nodes reachable from
the head of the list are unmarked. In Fig. 13, we have an example state of the
data structure. The insert and remove operations determine the position of a
node p in the tree by checking the flag p.marked. In remove, this check prevents
removing the same node from the data structure twice. In insert, checking
!p.marked ensures that the new node n is not inserted into a branch of removed
nodes and is reachable from the head of the list.

In contrast to insert and remove, contains never modifies the shared state
and never restarts. This leads to a subtle interaction that may happen due to
interference by concurrent events: it may be correct for contains to return true
even though the node may have been removed by the time contains finds it in
the list.

In Fig. 13, we illustrate the subtleties with the help of a state of the set,
which is a result of executing the trace from Fig. 14, assuming that values 1, 2
and 4 have been initially inserted in sequence by performing “Ins(1)”, “Ins(2)”
and “Ins(4)”. We consider the following scenario. First, “Con(2)” and “Con(3)”
start traversing through the list and get preempted when they reach the node
containing 1, which we denote by n1. Then the operations are finished in the
order depicted in Fig. 14. Note that “Con(2)” returns true even though the node
containing 2 is removed from the data structure by the time the contains oper-
ation locates it. This surprising behaviour occurs due to the values 1 and 2
being on the same branch of marked nodes in the list, which makes it possi-
ble for “Con(2)” to resume traversing from n1 and find 2. On the other hand,
“Con(3)” cannot find 3 by traversing the nodes from n1: the contains operation
will reach the node n2 and return false, even though 3 has been concurrently
inserted into the set by this time. Such behaviour is correct, since it can be

660 A. Khyzha et al.

(c) (f)

(a) (d)

Ins(1, 2, 4) Con(2) Rem(2)

Con(3)

Rem(1)

(b) (e)

Con(2) Rem(2)

Con(3)

Rem(1)

Ins(1, 2, 4)

Con(2): true Rem(2)

Con(3)

Rem(1)

Ins(1, 2, 4) Con(2): true Rem(2)

Con(3): false Ins(3)

Rem(1)

Ins(1, 2, 4)

Rem(2)

Con(3) Ins(3)

Rem(1)

Con(2): trueIns(1, 2, 4)

Rem(2)

Con(3) Ins(3)

Rem(1)

Con(2): trueIns(1, 2, 4)

Fig. 15. Changes to the abstract history of the execution in Fig. 14. Edges implied by
transitivity are omitted.

justified by a linearization [“Ins(1)”, “Ins(2)”, “Ins(4)”, “Rem(1)”, “Con(2):
true”, “Rem(2)”, “Con(3): false”, “Ins(3)”]. Intuitively, such linearization order
is possible, because pairs of events (“Con(2): true”, “Rem(2)”) and (“Con(3):
false”, “Ins(3)”) overlap in the execution.

Building a correct linearization order by identifying a linearization point of
contains is complex, since it depends on presence of concurrent insert and
remove operation as well as on current position in the traversal of the data struc-
ture. We demonstrate a different approach to the proof of the Optimistic Set
based on the following insights. Firstly, we observe that only decisions about a
relative order of operations with the same argument need to be committed into
the abstract history, since linearizability w.r.t. the sequential specification of a set
does not require enforcing any additional order on concurrent operations with dif-
ferent arguments. Secondly, we postpone decisions about ordering contains oper-
ations w.r.t. concurrent events till their return values are determined. Thus, in the
abstract history for Fig. 14, “Con(2): true” and “Rem(2)” remain unordered until
the former encounters the node removed by the latter, and the order between oper-
ations becomes clear. Intuitively, we construct a linear order on completed events
with the same argument, and let contains operations be inserted in a certain
place in that order rather than appended to it.

Preliminaries. We assume that a set NodeID is a set of pointers to nodes,
and that the state of the linked list is represented by a partial map NodeID ⇀
NodeID× Int×Bool. To aid in constructing the abstract history (E,R), the code
maintains a piece of ghost state—a partial function Gnode : EventID ⇀ NodeID.
Given the identifier i of an event E(i) denoting an insert that has inserted its
value into the set, Gnode(i) returns a node identifier (a pointer) of that value in
the data structure. Similarly, for a successful remove event identifier i, Gnode(i)
returns a node identifier that the corresponding operation removed from the
data structure.

Proving Linearizability Using Partial Orders 661

OrderInsRem() {

R := (R ∪ {(e, myEid()) | e ∈ id(E) ∧ E(e).arg = E(myEid()).arg})+;
R := (R ∪ {(myEid(), e) | e ∈ id(E E) ∧ E(e).arg = myEid().arg

∧ E(e).op = contains})+;

}

commitinsert() {

E(myEid()).rval := (c.val = v);
if (c.val = v)

Gnode[myEid()] := c;
OrderInsRem();

}

commitremove() {

E(myEid()).rval := (c.val = v);
if (c.val = v)

Gnode[myEid()] := c;
OrderInsRem();

}

Fig. 16. The auxiliary code executed at the commitment points of insert and remove

Commitment Points. The commitment points in the insert and remove oper-
ations are denoted by ghost code in Fig. 16. They are similar in structure and
update the order of events in the abstract history in the same way described
by OrderInsRem. That is, these commitment points maintain a linear order
on completed events of operations with the same argument: on the first line
of OrderInsRem, the current insert/remove event identified by myEid() gets
ordered after each operation e with the same argument as myEid(). On the sec-
ond line of OrderInsRem, uncompleted insert and remove events with the same
argument are ordered after myEid(). Note that uncompleted contains events
remain unordered w.r.t. myEid(), so that later on at the commitment point of
contains they could be ordered before the current insert or remove operation
(depending on whether they return false or true accordingly), if it is necessary.

At the commitment point, the remove operation assigns a return value to
the corresponding event. When the removal is successful, the commitment point
associates the removed node with the event by updating Gnode. Let us illustrate
how commitremove changes abstract histories on the example. For the execution
in Fig. 14, after starting the operation “Rem(2)” we have the abstract history
Fig. 15(a), and then at point (B) “Rem(2)” changes the history to Fig. 15(b).
The uncompleted event “Con(2)” remains unordered w.r.t. “Rem(2)” until it
determines its return value (true) later on in the execution, at which point it
gets ordered before “Rem(2)”.

At the commitment point, the insert operation assigns a return value to
the event based on the check c.val 	= v determining whether v is already in the
set. In the execution Fig. 14, prior to the start of “Ins(3)” we have the abstract
history Fig. 15(c). When the event starts, a new event is added into the history
(commitment point of kind 1), which changes it to Fig. 15(d). At point (D) in
the execution, commitinsert takes place, and the history is updated to Fig. 15(e).
Note that “Ins(3)” and “Con(3)” remain unordered until the latter determines
its return value (false) and orders itself before “Ins(3)” in the abstract history.

662 A. Khyzha et al.

commitcontains() {

E(myEid()).rval := (curr.val = v);

EventID obs:= if (curr.val = v)then insOf(E, curr)
else lastRemOf(E, R, v);

if (obs = ⊥)

R := (R ∪ {(obs, myEid())})+;

R := (R ∪ {(myEid(), i) | ¬(i
R−→ myEid()) ∧ E(i).arg = E(myEid()).arg})+;

}

where for an abstract history (E,R), a node identifier n and a value v:

insOf(E,n) =
i, if Gnode(i) = n, E(i).op = insert and E(i).rval = true

undefined otherwise

lastRemOf(E,R, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i, if E(i) = (, remove, v, true)
∧ (∀i . E(i).op = remove ∧ E(i).arg = v =⇒

i
R−→ i)

⊥, if ¬∃i. E(i) = (, remove, v, true)

Fig. 17. The auxiliary code executed at the commitment point of contains

The commitment point at lines 40–42 of the contains operation occurs at
the last iteration of the sorted list traversal in the locate method. The last iter-
ation takes place when curr.val ≥ v holds. In Fig. 17, we present the auxiliary
code commitcontains executed at line 42 in this case. Depending on whether a
requested value is found or not, the abstract history is updated differently, so
we further explain the two cases separately. In both cases, the contains oper-
ation determines which event in the history it should immediately follow in all
linearizations.

Case (i). If curr.val = v, the requested value v is found, so the current event
myEid() receives true as its return value. In this case, commitcontains adds two
kinds of edges in the abstract history.

– Firstly, (insOf(E, curr), myEid()) is added to ensure that myEid() occurs in
all linearizations of the abstract history after the insert event of the node
curr.

– Secondly, (myEid(), i) is added for every other identifier i of an event that does
not precede myEid() and has an argument v. The requirement not to precede
myEid() is explained by the following. Even though at commitment points of
insert and remove operations we never order events w.r.t. contains events,
there still may be events preceding myEid() in real-time order. Consequently,
it may be impossible to order myEid() immediately after insOf(E, curr).

Proving Linearizability Using Partial Orders 663

At point (C) in the example from Fig. 14, commitcontains in “Con(2)” changes the
history from Fig. 15(b) to (c). To this end, “Con(2)” is completed with a return
value true and gets ordered after “Ins(2)” (this edge happened to be already in
the abstract history due to the real-time order), and also in front of events follow-
ing “Ins(2)”, but not preceding “Con(2)”. This does not include “Ins(4)” due to
the real-time ordering, but includes “Rem(2)”, so the latter is ordered after the
contains event, and all linearizations of the abstract history Fig. 15(c) meet the
sequential specification in this example. In general case, we also need to show
that successful remove events do not occur between insOf(E, curr), myEid())
and myEid() in the resulting abstract history, which we establish formally in [14].
Intuitively, when myEid() returns true, all successful removes after insOf(E, curr)
are concurrent with myEid(): if they preceded myEid() in the real-time order, it
would be impossible for the contains operation to reach the removed node by
starting from the head of the list in order return true.

Case (ii). Prior to executing commitcontains, at line 40 we check that curr.val ≥
v. Thus, if curr.val = v does not hold in commitcontains, the requested value v
is not found in the sorted list, and false becomes the return value of the current
event myEid(). In this case, commitcontains adds two kinds of edges in the abstract
history.

– Firstly, (lastRemOf(E,R, v), myEid()) is added, when there are successful
remove events of value v (note that they are linearly ordered by construc-
tion of the abstract history, so we can choose the last of them). This ensures
that myEid() occurs after a successful remove event in all linearizations of the
abstract history.

– Secondly, (myEid(), i) is added for every other identifier i of an event that
does not precede myEid() and has an argument v, which is analogous to the
case (i).

Intuitively, if v has never been removed from the set, myEid() needs to happen
in the beginning of the abstract history and does not need to be ordered after
any event.

For example, at point (D) in the execution from Fig. 14, commitcontains
changes the abstract history from Fig. 15(e) to (f). To this end, “Con(3)” is
ordered in front of all events with argument 3 (specifically, “Ins(3)”), since there
are no successful removes of 3 in the abstract history. Analogously to the case (i),
in general to ensure that all linearizations of the resulting abstract history meet
the sequential specification, we need to show that there cannot be any successful
insert events of v between lastRemOf(E,R, v) (or the beginning of the abstract
history, if it is undefined) and myEid(). We prove this formally in [14]. Intuitively,
when myEid() returns false, all successful insert events after lastRemOf(E,R, v)
(or the beginning of the history) are concurrent with myEid(): if they preceded
myEid() in the real-time order, the inserted nodes would be possible to reach by
starting from the head of the list, in which case the contains operation could
not possibly return false.

664 A. Khyzha et al.

9 Related Work

There has been a great deal of work on proving algorithms linearizable; see [3] for
a broad survey. However, despite a large number of techniques, often supported
by novel mathematical theory, it remains the case that all but the simplest
algorithms are difficult to verify. Our aim is to verify the most complex kind
of linearizable algorithms, those where the linearization of a set of operations
cannot be determined solely by examining the prefix of the program execution
consisting of these operations. Furthermore, we aim to do this while maintaining
a relatively simple proof argument.

Much work on proving linearizability is based on different kinds of simula-
tion proofs. Loosely speaking, in this approach the linearization of an execution
is built incrementally by considering either its prefixes or suffixes (respectively
known as forward and backward simulations). This supports inductive proofs of
linearizability: the proof involves showing that the execution and its linearization
stay in correspondence under forward or backward program steps. The lineariza-
tion point method is an instance of forward simulation: a syntactic point in the
code of an operation is used to determine when to add it to the linearization.

As we explained in Sect. 1, forward simulation alone is not sufficient in general
to verify linearizability. However, Schellhorn et al. [19] prove that backward
simulation alone is always sufficient. They also present a proof technique and use
it to verify the Herlihy-Wing queue [11]. However, backwards simulation proofs
are difficult to understand intuitively: programs execute forwards in time, and
therefore it is much more natural to reason this way.

The queue originally proposed by Herlihy and Wing in their paper on lin-
earizability [11] has proved very difficult to verify. Their proof sketch is based
on reasoning about the possible linearizations arising from a given queue config-
uration. Our method could be seen as being midway between this approach and
linearization points. We use partiality in the abstract history to represent sets of
possible linearizations, which helps us simplify the proof by omitting irrelevant
ordering (Sect. 2).

Another class of approach to proving linearizability is based on special-
purpose program logics. These can be seen as a kind of forward simulation:
assertions in the proof represent the connection between program execution and
its linearization. To get around the incompleteness of forward simulation, sev-
eral authors have introduced auxiliary notions that support limited reasoning
about future behaviour in the execution, and thus allow the proof to decide the
order of operations in the linearization [15,21,22]. However, these new constructs
have subtle semantics, which results in proofs that are difficult to understand
intuitively.

Our approach is based on program logic, and therefore is a kind of for-
ward simulation. The difference between us and previous program logics is that
we do not explicitly construct a linear order on operations, but only a partial
order. This removes the need for special constructs for reasoning about future
behaviour, but creates the obligation to show that the partially ordered abstract
history can always be linearized.

Proving Linearizability Using Partial Orders 665

One related approach to ours is that of Hemed et al. [9], who generalise lin-
earizability to data structures with concurrent specifications (such as barriers)
and propose a proof method for establishing it. To this end, they also consider
histories where some events are partially ordered—such events are meant to
happen concurrently. However, the goal of Hemed et al.’s work is different from
ours: their abstract histories are never linearized, to allow concurrent specifica-
tions; in contrast, we guarantee the existence of a linearization consistent with
a sequential specification. It is likely that the two approaches can be naturally
combined.

Aspect proofs [10] are a non-simulation approach that is related to our work.
An aspect proof imposes a set of forbidden shapes on the real-time order on
methods; if an algorithm avoids these shapes, then it is necessarily linearizable.
These shapes are specific to a particular data structure, and indeed the method
as proposed in [10] is limited to queues (extended to stacks in [2]). In contrast,
our proof method is generic, not tied to a particular kind of data structure.
Furthermore, checking the absence of forbidden shapes in the aspect method
requires global reasoning about the whole program execution, whereas our app-
roach supports inductive proofs. The original proof of the TS stack used an
extended version of the aspect approach [2]. However, without a way of rea-
soning inductively about programs, the proof of correctness reduced to a large
case-split on possible executions. This made the proof involved and difficult. Our
proof is based on an inductive argument, which makes it easier.

Another class of algorithms that are challenging to verify are those that use
helping, where operations complete each others’ work. In such algorithms, an
operation’s position in the linearization order may be fixed by a helper method.
Our approach can also naturally reason about this pattern: the helper operation
may modify the abstract history to mark the event of the operation being helped
as completed.

The Optimistic set was also proven linearizable by O’Hearn et al. in [17]. The
essence of the work is a collection of lemmas (including the Hindsight Lemma)
proven outside of the logic to justify conclusions about properties of the past of
executions based on the current state. Based on our case study of the Optimistic
set algorithm, we conjecture that at commitment points we make a construc-
tive decision about extending abstract history where the hindsight proof would
use the Hindsight Lemma to non-constructively extend a linearization with the
contains operation.

10 Conclusion and Future Work

The popular approach to proving linearizability is to construct a total lineariza-
tion order by appending new operations as the program executes. This approach
is straightforward, but is limited in the range of algorithms it can handle. In this
paper, we present a new approach which lifts these limitations, while preserv-
ing the appealing incremental proof structure of traditional linearization points.
As with linearization points, our fundamental idea can be explained simply:

666 A. Khyzha et al.

at commitment points, operations impose order between themselves and other
operations, and all linearizations of the order must satisfy the sequential spec-
ification. Nonetheless, our technique generalises to far more subtle algorithms
than traditional linearization points.

We have applied our approach to two algorithms known to present particular
problems for linearization points. Although, we have not presented it here, our
approach scales naturally to helping, where an operation is completed by another
thread. We can support this, by letting any thread complete the operation in
an abstract history. In future work, we plan to apply our approach to the Time-
Stamped stack [2], which poses verification challenges similar to the TS queue; a
flat-combining style algorithm, which depends fundamentally on helping, as well
as a range of other challenging algorithms. In this paper we have concentrated
on simplifying manual proofs. However, our approach also seems like a promising
candidate for automation, as it requires no special meta-theory, just reasoning
about partial orders. We are hopeful that we can automate such arguments using
off-the-shelf solvers such as Z3, and we plan to experiment with this in future.

References

1. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 24

2. Dodds, M., Haas, A., Kirsch, C.M.: A scalable, correct time-stamped stack. In:
POPL (2015)

3. Dongol, B., Derrick, J.: Verifying linearizability: a comparative survey. arXiv
CoRR, 1410.6268 (2014)

4. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52), 4379–4398 (2010)

5. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J.
Math. Psychol. 7, 144–149 (1970)

6. Gotsman, A., Yang, H.: Linearizability with ownership transfer. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 256–271. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32940-1 19

7. Haas, A.: Fast concurrent data structures through timestamping. Ph.D. thesis,
University of Salzburg (2015)

8. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.:
A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer, Heidel-
berg (2006). doi:10.1007/11795490 3

9. Hemed, N., Rinetzky, N., Vafeiadis, V.: Modular verification of concurrency-aware
linearizability. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 371–387.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5 25

10. Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented linearizability proofs.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp.
242–256. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40184-8 18

11. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. In: ACM TOPLAS (1990)

http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/978-3-642-32940-1_19
http://dx.doi.org/10.1007/11795490_3
http://dx.doi.org/10.1007/978-3-662-48653-5_25
http://dx.doi.org/10.1007/978-3-642-40184-8_18

Proving Linearizability Using Partial Orders 667

12. Hoffman, M., Shalev, O., Shavit, N.: The baskets queue. In: Tovar, E.,
Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 401–414.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-77096-1 29

13. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress
(1983)

14. Khyzha, A., Dodds, M., Gotsman, A., Parkinson, M.: Proving linearizability using
partial orders (extended version). arXiv CoRR, 1701.05463 (2017)

15. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. In: PLDI (2013)

16. Morrison, A., Afek, Y.: Fast concurrent queues for x86 processors. In: PPoPP
(2013)

17. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: PODC (2010)

18. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Informatica 6, 319–340 (1976)

19. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM TOCL 15(4), 31 (2014)

20. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP (2013)

21. Turon, A.J., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations
for fine-grained concurrency. In: POPL (2013)

22. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge, UK (2008). Technical report UCAM-CL-TR-726

http://dx.doi.org/10.1007/978-3-540-77096-1_29

The Power of Non-determinism in Higher-Order
Implicit Complexity

Characterising Complexity Classes Using
Non-deterministic Cons-Free Programming

Cynthia Kop(B) and Jakob Grue Simonsen

Department of Computer Science,
University of Copenhagen (DIKU), Copenhagen, Denmark

{kop,simonsen}@di.ku.dk

Abstract. We investigate the power of non-determinism in purely
functional programming languages with higher-order types. Specifically,
we consider cons-free programs of varying data orders, equipped with
explicit non-deterministic choice. Cons-freeness roughly means that data
constructors cannot occur in function bodies and all manipulation of
storage space thus has to happen indirectly using the call stack.

While cons-free programs have previously been used by several
authors to characterise complexity classes, the work on non-deterministic
programs has almost exclusively considered programs of data order 0.
Previous work has shown that adding explicit non-determinism to cons-
free programs taking data of order 0 does not increase expressivity; we
prove that this—dramatically—is not the case for higher data orders:
adding non-determinism to programs with data order at least 1 allows for
a characterisation of the entire class of elementary-time decidable sets.

Finally we show how, even with non-deterministic choice, the orig-
inal hierarchy of characterisations is restored by imposing different
restrictions.

Keywords: Implicit computational complexity · Cons-free program-
ming · EXPTIME hierarchy · Non-deterministic programming · Unitary
variables

1 Introduction

Implicit complexity is, roughly, the study of how to create bespoke programming
languages that allow the programmer to write programs which are guaranteed
to (a) only solve problems within a certain complexity class (e.g., the class of
polynomial-time decidable sets of binary strings), and (b) to be able to solve all
problems in this class. When equipped with an efficient execution engine, the

The authors are supported by the Marie Sk�lodowska-Curie action “HORIP”, pro-
gram H2020-MSCA-IF-2014, 658162 and by the Danish Council for Independent
Research Sapere Aude grant “Complexity via Logic and Algebra” (COLA).

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 668–695, 2017.
DOI: 10.1007/978-3-662-54434-1 25

The Power of Non-determinism in Higher-Order Implicit Complexity 669

programs of such a language may themselves be guaranteed to run within the
complexity bounds of the class (e.g., run in polynomial time), and the plethora
of means available for analysing programs devised by the programming language
community means that methods from outside traditional complexity theory can
conceivably be brought to bear on open problems in computational complexity.

One successful approach to implicit complexity is to syntactically con-
strain the programmer’s ability to create new data structures. In the seminal
paper [12], Jones introduces cons-free programming. Working with a small func-
tional programming language, cons-free programs are read-only : recursive data
cannot be created or altered (beyond taking sub-expressions), only read from
input. By imposing further restrictions on data order (i.e., order 0 = integers,
strings; order 1 = functions on data of order 0; etc.) and recursion scheme (e.g.,
full/tail/primitive recursion), classes of cons-free programs turn out to charac-
terise various deterministic classes in the time and space hierarchies of compu-
tational complexity.

However, Jones’ language is deterministic and, perhaps as a result, his charac-
terisations concern only deterministic complexity classes. It is tantalising to con-
sider the method in a non-deterministic setting: could adding non-deterministic
choice to Jones’ language increase its expressivity; for example, from P to NP?

The immediate answer is no: following Bonfante [4], adding a non-
deterministic choice operator to cons-free programs with data order 0 makes
no difference in expressivity—deterministic or not, they characterise P. However,
the details are subtle and depend heavily on other features of the language; when
only primitive recursion is allowed, non-determinism does increase expressivity
from L to NL [4].

While many authors consider the expressivity of higher types, the interplay of
higher types and non-determinism is not fully understood. Jones obtains several
hierarchies of deterministic complexity classes by increasing data orders [12], but
these hierarchies have at most an exponential increase between levels. Given the
expressivity added by non-determinism, it is a priori not evident that similarly
“tame” hierarchies would arise in the non-deterministic setting.

The purpose of the present paper is to investigate the power of higher-order
(cons-free) programming to characterise complexity classes. The main surprise is
that while non-determinism does not add expressivity for first-order programs,
the combination of second-order (or higher) programs and non-determinism
characterises the full class of elementary-time decidable sets—and increasing
the order beyond second-order programs does not further increase expressivity.
However, we will also show that there are simple changes to the restrictions that
allow us to obtain a hierarchy of characterisations as in the deterministic setting.

An extended version of this paper with full proofs is available online [15].

1.1 Overview and Contributions

We define a purely functional programming language with non-deterministic
choice and, following Jones [12], consider the restriction to cons-free programs.

670 C. Kop and J.G. Simonsen

data order 0 data order 1 data order 2 data order 3

cons-free P = EXP =
EXP2TIME EXP3TIME

deterministic EXP0TIME EXP1TIME

cons-free L PSPACE
tail-recursive = = EXP1SPACE EXP2SPACE
deterministic EXP−1SPACE EXP0SPACE

cons-free L P PSPACE EXP
primitive recursive = = = =

deterministic EXP−1SPACE EXP0TIME EXP0SPACE EXP1TIME

The characterisations obtained in [], transposed to the more permissive language used
here. The table should be imagined as extending infinitely to the right.

data order 0 data order 1 data order 2 data order 3

cons-free P ELEMENTARY ELEMENTARY ELEMENTARY
cons-free P = EXP =

EXP2TIME EXP3TIME
unitary variables EXP0TIME EXP1TIME

The characterisations obtained by allowing non-deterministic choice.

arrow depth 0 arrow depth 1 arrow depth 2 arrow depth 3

cons-free P ELEMENTARY ELEMENTARY ELEMENTARY

The characterisations obtained by allowing non-deterministic choice and considering
arrow depth as the variable factor rather than data order

12

Fig. 1. Overview of the results discussed or obtained in this paper.

Our results are summarised in Fig. 1. For completeness, we have also included
the results from [12]; although the language used there is slightly more syntacti-
cally restrictive than ours, the results easily generalise provided we limit interest
to deterministic programs, where the choose operator is not used. As the techni-
cal machinations involved to procure the results for a language with full recursion
are already intricate and lengthy, we have not yet considered the restriction to
tail- or primitive recursion in the non-deterministic setting.

Essentially, our paper has two major contributions: (a) we show that previous
observations about the increase in expressiveness when adding non-determinism
change dramatically at higher types, and (b) we provide two characterisations of
the EXPTIME hierarchy using a non-deterministic language—which may provide
a basis for future characterisation of common non-deterministic classes as well.

Note that (a) is highly surprising: As evidenced by early work of Cook [6]
merely adding full non-determinism to a restricted (i.e., non-Turing complete)
computation model may result in it still characterising a deterministic class of
problems. This also holds true for cons-free programs with non-determinism,
as shown in different settings by Bonfante [4], by de Carvalho and Simonsen
[7], and by Kop and Simonsen [14], all resulting only in characterisations of
deterministic classes such as P. With the exception of [14], all of the above
attempts at adding non-determinism consider data order at most 0, and one

The Power of Non-determinism in Higher-Order Implicit Complexity 671

would expect few changes when passing to higher data orders. This turns out
to be patently false as simply increasing to data order 1 already results in an
explosion of expressive power.

1.2 Overview of the Ideas in the Paper

Cons-free programs (Definition 5) are, roughly, functional programs where func-
tion bodies are allowed to contain constant data and substructures of the func-
tion arguments, but no data constructors—e.g., clauses tl (x::xs) = xs and
tl [] = [] are both allowed, but append (x::xs) ys = x::(append xs ys) is not.1

This restriction severely limits expressivity, as it means no new data can be
created.

A key idea in Jones’ original work on cons-free programming is counting :
expressions which represent numbers and functions to calculate with them. It is
not in general possible to represent numbers in the usual unary way as 0, s 0,
s (s 0), etc., or as lists of bits—since in a cons-free program these expressions can-
not be built unless they already occur in the input—but counting up to limited
bounds can be achieved by other tricks. By repeatedly simulating a single step
of a Turing Machine up to such bounds, Jones shows that any decision problem
in EXPKTIME can be decided using a cons-free program ([12] and Lemma 6).

The core insight in the present paper is that in the presence of non-
determinism, an expression of type σ ⇒ τ represents a relation between expres-
sions of type σ and expressions of type τ rather than a function. While the
number of functions for a given type is exponential in the order of that type,
the number of relations is exponential in the depth of arrows occurring in it. We
exploit this (in Lemma 11) by counting up to arbitrarily high numbers using
only first-order data. This observation also suggest that by limiting the arrow
depth rather than the order of types, the increase in expressive power disappears
(Theorem 3).

Conversely, we also provide an algorithm to compute the output of cons-
free programs potentially much faster than the program’s own running time, by
using a tableaux to store results. Although similar to Jones’ ideas, our proof style
deviates to easily support both non-deterministic and deterministic programs.

1.3 Related Work

The creation of programming languages that characterise complexity classes has
been a research area since Cobham’s work in the 1960ies, but saw rapid devel-
opment only after similar advances in the related area of descriptive complexity
(see, e.g., [10]) in the 1980ies and Bellantoni and Cook’s work on characteri-
sations of P [2] using constraints on recursion in a purely functional language
with programs reminiscent of classic recursion theoretic functions. Following
Bellantoni and Cook, a number of authors obtained programming languages

1 The formal definition is slightly more liberal to support easier implementations using
pattern-matching, but the ideas remain the same.

672 C. Kop and J.G. Simonsen

by constraints on recursion, and under a plethora of names (e.g., safe, tiered or
ramified recursion, see [5,19] for overviews), and this area continues to be active.
The main difference with our work is that we consider full recursion in all vari-
ables, but place syntactic constraints on the function bodies (both cons-freeness
and unitary variables). Also, as in traditional complexity theory we consider
decision problems (i.e., what sets can be decided by programs), whereas much
research in implicit complexity considers functional complexity (i.e., what func-
tions can be computed).

Cons-free programs, combined with various limitations on recursion, were
introduced by Jones [12], building on ground-breaking work by Goerdt [8,9], and
have been studied by a number of authors (see, e.g., [3,4,17,18]). The main differ-
ence with our work is that we consider full recursion with full non-determinism,
but impose constraints not present in the previous literature.

Characterisation of non-deterministic complexity classes via programming
languages remains a largely unexplored area. Bellantoni obtained a characteri-
sation of NP in his dissertation [1] using similar approaches as [2], but at the
cost of having a minimisation operator (as in recursion theory), a restriction later
removed by Oitavem [20]. A general framework for implicitly characterising a
larger hierarchy of non-deterministic classes remains an open problem.

2 A Purely Functional, Non-deterministic, Call-by-Value
Programming Language

We define a simple call-by-value programming language with explicit non-
deterministic choice. This generalises Jones’ toy language in [12] by supporting
different types and pattern-matching as well as non-determinism. The more per-
missive language actually simplifies proofs and examples, since we do not need
to encode all data as boolean lists, and have fewer special cases.

2.1 Syntax

We consider programs defined by the syntax in Fig. 2

p ∈ Program ::= ρ1 ρ2 . . . ρN

ρ ∈ Clause ::= f 1 · · · k = s
∈ Pattern ::= x | c 1 · · · m

s, t ∈ Expr ::= x | c | f | if s1 then s2 else s3 | choose s1 · · · sn | (s, t) | s t
x, y ∈ V ::= identifier

c ∈ C ::= identifier disjoint from V (we assume {true, false} ⊆ C)
f, g ∈ D ::= identifier disjoint from V and C

Fig. 2. Syntax

We call elements of V variables, elements of C data constructors and elements
of D defined symbols. The root of a clause f �1 · · · �k = s is the defined symbol

The Power of Non-determinism in Higher-Order Implicit Complexity 673

f. The main function f1 of the program is the root of ρ1. We denote Var(s) for
the set of variables occurring in an expression s. An expression s is ground if
Var(s) = ∅. Application is left-associative, i.e., s t u should be read (s t) u.

Definition 1. For expressions s, t, we say that t is a sub-expression of s, nota-
tion s � t, if this can be derived using the clauses:

s � t if s = t or s � t
(s1, s2) � t if s1 � t or s2 � t if s1 then s2 else s3 � t if si � t for some i

s1 s2 � t if s1 � t or s2 � t choose s1 · · · sn � t if si � t for some i

Note: the head s of an application s t is not considered a sub-expression of s t.

Note that the programs we consider have no pre-defined data structures like
integers: these may be encoded using inductive data structures in the usual way.

Example 1. Integers can be encoded as bitstrings of unbounded length: C ⊇
{false, true, ::, []}. Here, :: is considered infix and right-associative, and []
denotes the end of the string. Using little endian, 6 is encoded by
false::true::true::[] as well as false::true::true::false::false::[]. We for
instance have true::(succ xs) � xs (for xs ∈ V). The program below imposes
D = {succ}:

succ [] = true::[] succ (false::xs) = true::xs
succ (true::xs) = false::(succ xs)

2.2 Typing

Programs have explicit simple types without polymorphism, with the usual def-
inition of type order ord(σ); this is formally given in Fig. 3.

ι ∈ S ::= sort identifier
σ, τ ∈ Type ::= ι | σ × τ | σ ⇒ τ

ord(ι) = 0 for ι ∈ S
ord(σ × τ) = max(ord(σ) , ord(τ))
ord(σ ⇒ τ) = max(ord(σ) + 1, ord(τ))

Fig. 3. Types and type orders

The (finite) set S of sorts is used to type atomic data such as bits; we assume
bool ∈ S. The function arrow ⇒ is considered right-associative. Writing κ for
a sort or a pair type σ × τ , any type can be uniquely presented in the form
σ1 ⇒ . . . ⇒ σm ⇒ κ. We will limit interest to well-typed, well-formed programs:

Definition 2. A program p is well-typed if there is an assignment F from C∪D
to the set of simple types such that:

– the main function f1 is assigned a type κ1 ⇒ . . . ⇒ κM ⇒ κ, with ord(κi) = 0
for 1 ≤ i ≤ M and also ord(κ) = 0

674 C. Kop and J.G. Simonsen

– data constructors c ∈ C are assigned a type κ1 ⇒ . . . ⇒ κm ⇒ ι with ι ∈ S
and ord(κi) = 0 for 1 ≤ i ≤ m

– for all clauses f �1 · · · �k = s ∈ p, the following hold:
• Var(s) ⊆ Var(f �1 · · · �k) and each variable occurs only once in f �1 · · · �k;
• there exist a type environment Γ mapping Var(f �1 · · · �k) to simple types,
and a simple type σ, such that both f �1 · · · �k : σ and s : σ using the rules
in Fig. 4; we call σ the type of the clause.

if a : σ ∈ Γ ∪ Fa : σ
s : σ t : τ
(s, t) : σ × τ

s : σ ⇒ τ t : σ
s t : τ

s1 : bool s2 : σ s3 : σ
if s1 then s2 else s3 : σ

s1 : σ . . . sn : σ
choose s1 · · · sn : σ

Fig. 4. Typing (for fixed F and Γ , see Definition 2)

Note that this definition does not allow for polymorphism: there is a single
type assignment F for the full program. The assignment F also forces a unique
choice for the type environment Γ of variables in each clause. Thus, we may
speak of the type of an expression in a clause without risk of confusion.

Example 2. The program of Example 1 is typed using F = {false : bool, true :
bool, [] : list, :: : bool ⇒ list ⇒ list, succ : list ⇒ list}. As all argument
and output types have order 0, the variable restrictions are satisfied and all
clauses can be typed using Γ = {xs : list}, the program is well-typed.

Definition 3. A program p is well-formed if it is well-typed, and moreover:

– data constructors are always fully applied: for all c ∈ C with c : κ1 ⇒ . . . ⇒
κm ⇒ ι ∈ F : if a sub-expression c t1 · · · tn occurs in any clause, then n = m;

– the number of arguments to a given defined symbol is fixed: if f �1 · · · �k = s
and f �′

1 · · · �′
n = t are both in p, then k = n; we let arityp(f) denote k.

Example 3. The program of Example 1 is well-formed, and arityp(succ) = 1.
However, the program would not be well-formed if the clauses below were

added, as here the defined symbol or does not have a consistent arity.

id x = x or true x = true or false = id

Remark 1. Data constructors must (a) have a sort as output type (not a pair),
and (b) occur only fully applied. This is consistent with typical functional pro-
gramming languages, where sorts and constructors are declared with a grammar
such as:

sdec ∈ SortDec ::= data ι = cdec1 | · · · | cdecn

cdec ∈ ConstructorDec ::= c σ1 · · · σm

In addition, we require that the arguments to data constructors have type order
0. This is not standard in functional programming, but is the case in [12]. We
limit interest to such constructors because, practically, these are the only ones
which can be used in a cons-free program (as we will discuss in Sect. 3).

The Power of Non-determinism in Higher-Order Implicit Complexity 675

Definition 4. A program has data order K if all clauses can be typed using type
environments Γ such that, for all x : σ ∈ Γ : ord(σ) ≤ K.

Example 4. We consider a higher-order program, operating on the same data
constructors as Example 1; however, now we encode numbers using functions:

fsucc F [] = if F [] then set F [] false else set F [] true
fsucc F xs = if F xs then fsucc (set F xs false) (tl xs)

else set F xs true
set F val xs ys = if eqlen xs ys then val else F ys
tl (x::xs) = xs eqlen (x::xs) (y::ys) = eqlen xs ys
eqlen [] [] = true eqlen xs ys = false

Only one typing is possible, with fsucc : (list ⇒ bool) ⇒ list ⇒ list ⇒
bool; therefore, F is always typed list ⇒ bool—which has type order 1—and
all other variables with a type of order 0. Thus, this program has data order 1.

To explain the program: we use boolean lists as unary numbers of a limited
size; assuming that (a) F represents a bitstring of length N + 1, and (b) lst has
length N , the successor of F (modulo wrapping) is obtained by fsucc F lst .

2.3 Semantics

Like Jones, our language has a closure-based call-by-value semantics. We let data
expressions, values and environments be defined by the grammar in Fig. 5.

d, b ∈ Data ::= c d1 · · · dm | (d, b)
v, w ∈ Value ::= d | (v, w) | f v1 · · · vn

(n < arityp(f))

γ, δ ∈ Env ::= V → Value

Instantiation:
xγ := γ(x)

(c 1 · · · n)γ := c (1γ) · · · (nγ)

Fig. 5. Data expressions, values and environments

Let dom(γ) denote the domain of an environment (partial function) γ. Note
that values are ground expressions, and we only use well-typed values with fully
applied data constructors. To every pattern � and environment γ with dom(γ) ⊇
Var(�), we associate a value �γ by instantiation in the obvious way, see Fig. 5.

Note that, for every value v and pattern �, there is at most one environment
γ with �γ = v. We say that an expression f s1 · · · sn instantiates the left-hand
side of a clause f �1 · · · �k if n = k and there is an environment γ with each
si = �iγ.

Both input and output to the program are data expressions. If f1 has type
κ1 ⇒ . . . ⇒ κM ⇒ κ, we can think of the program as calculating a function
[[p]](d1, . . . , dM) from M input data arguments to an output data expression.

Expression and program evaluation are given by the rules in Fig. 6. Since,
in [Call], there is at most one suitable γ, the only source of non-determinism is

676 C. Kop and J.G. Simonsen

Expression evaluation:

[Instance]:
p, γ x → γ(x)

p call f → w
[Function]: for f ∈ D

p, γ f → w

p, γ s1 → b1 · · · p, γ sm → bm
[Constructor]:

p, γ c s1 · · · sm → c b1 · · · bm

p, γ s → v p, γ t → w
[Pair]:

p, γ (s, t) → (v, w)

p, γ si → w
[Choice]: for 1 ≤ i ≤ n

p, γ choose s1 · · · sn → w

p, γ s1 → d p, γ if d, s2, s3 → w
[Conditional]:

p, γ if s1 then s2 else s3 → w

p, γ s2 → w
[If-True]:

p, γ if true, s2, s3 → w

p, γ s3 → w
[If-False]:

p, γ if false, s2, s3 → w

p, γ s → f v1 · · · vn p, γ t → vn+1 p call f v1 · · · vn+1 → w
[Appl]:

p, γ s t → w

[Closure]: if n < arityp(f)
p call f v1 · · · vn → f v1 · · · vn

p, γ s → w
[Call]:

if f 1 · · · k = s is the first clause in p such
that f v1 · · · vk instantiates f 1 · · · k, and
dom(γ) = Var(f 1 · · · k) and each vi = iγ

p call f v1 · · · vk → w

Program execution:

p, [x1 := d1, . . . , xM := dM] f1 x1 · · · xM → b

p (d1, . . . , dM) → b

Fig. 6. Call-by-value semantics

the choose operator. Programs without this operator are called deterministic.
By contrast, we may refer to a non-deterministic program as one which is not
explicitly required to be deterministic, so which may or may not contain choose.

Example 5. For the program from Example 1, [[p]](true::false::true::[]) 	→
false::true::true::[], giving 5 + 1 = 6. In the program f1 x y = choose x y, we
can both derive [[p]](true, false) 	→ true and [[p]](true, false) 	→ false.

The language is easily seen to be Turing-complete unless further restric-
tions are imposed. In order to assuage any fears on whether the complexity-
theoretic characterisations we obtain are due to brittle design choices, we add
some remarks.

The Power of Non-determinism in Higher-Order Implicit Complexity 677

Remark 2. We have omitted some constructs common to even some toy pure
functional languages, but these are in general simple syntactic sugar that can
be readily expressed by the existing constructs in the language, even in the
presence of non-determinism. For instance, a let-binding letx = s1 in s2 can
be straightforwardly encoded by a function call in a pure call-by-value setting
(replacing letx = s1 in s2 by helper s1 and adding a clause helper x = s2).

Remark 3. We do not require the clauses of a function definition to exhaust
all possible patterns. For instance, it is possible to have a clause f true = · · ·
without a clause for f false. Thus, a program has zero or more values.

Data Order Versus Program Order. We have followed Jones in considering data
order as the variable for increasing complexity. However, an alternative choice—
which turns out to streamline our proofs—is program order, which considers the
type order of the function symbols. Fortunately, these notions are closely related;
barring unused symbols, 〈program order〉 = 〈data order〉+ 1.

More specifically, we have the following result:

Lemma 1. For every well-formed program p with data order K, there is a well-
formed program p′ such that [[p]](d1, . . . , dM) 	→ b iff [[p′]](d1, . . . , dM) 	→ b for any
b1, . . . , bM , d and: (a) all defined symbols in p′ have a type σ1 ⇒ . . . ⇒ σm ⇒ κ
such that both ord(σi) ≤ K for all i and ord(κ) ≤ K, and (b) in all clauses, all
sub-expressions of the right-hand side have a type of order ≤ K as well.

Proof (Sketch). p′ is obtained from p through the following successive changes:

1. Replace any clause f �1 · · · �k = s where s : σ ⇒ τ with ord(σ ⇒ τ) = K + 1,
by f �1 · · · �k x = s x for a fresh x. Repeat until no such clauses remain.

2. In any clause f �1 · · · �k =s, replace all sub-expressions (choose s1 · · · sm) t1 · · ·
tn or (if s1 then s2 else s3) t1 · · · tn of s with n > 0 by choose (s1 t1 · · · tn) · · ·
(sm t1 · · · tn) or if s1 then (s2 t1 · · · tn) else (s3 t1 · · · tn) respectively.

3. In any clause f �1 · · · �k = s, if s has a sub-expression t = g s1 · · · sn with
g : σ1 ⇒ . . . ⇒ σn ⇒ τ such that ord(τ) ≤ K but ord(σi) > K for some
i, then replace t by a fresh symbol ⊥τ . Repeat until no such sub-expressions
remain, then add clauses ⊥τ = ⊥τ for the new symbols.

4. If there exists f : σ1 ⇒ . . . ⇒ σm ⇒ κ ∈ F with ord(κ) > K or ord(σi) > K
for some i, then remove the symbol f and all clauses with root f.

The key observation is that if the derivation for [[p]](d1, . . . , dM) 	→ b uses some
f s1 · · · sn : σ with ord(σ) ≤ K but si : τ with ord(τ) > K, then there is a
variable with type order > K. Thus, if a clause introduces such an expression,
either the clause is never used, or the expression occurs beneath an if or choose
and is never selected; it may be replaced with a symbol whose only rule is
unusable. This also justifies step 1; for step 4, only unusable clauses are removed.

��
Example 6. The following program has data order 0, but clauses of functional
type; fst and snd have output type nat ⇒ nat of order 1. The program is

678 C. Kop and J.G. Simonsen

changed by replacing the last two clauses by fst x y = const x y and snd x y =
id y.

start xs ys = choose (fst xs ys) (snd xs ys)
const x y = x fst x = const x
id x = x snd x = id

3 Cons-Free Programs

Jones defines a cons-free program as one where the list constructor :: does not
occur in any clause. In our setting (where more constructors are in principle
admitted), this translates to disallowing non-constant data constructors from
being introduced in the right-hand side of a clause. We define:

Definition 5. A program p is cons-free if all clauses in p are cons-free. A clause
f �1 · · · �k = s is cons-free if for all s � t: if t = c s1 · · · sm with c ∈ C, then t is
a data expression or �i � t for some i.

Example 7. Example 1 is not cons-free, due to the second and third clause (the
first clause is cons-free). Examples 4 and 6 are both cons-free.

The key property of cons-free programming is that no new data structures
can be created during program execution. Formally, in a derivation tree with
root [[p]](d1, . . . , dM) 	→ b, all data values (including b) are in the set Bp

d1,...,dM
:

Definition 6. Let Bp
d1,...,dM

:= {d ∈ Data | ∃i[di � d] ∨ ∃(f � = s) ∈ p[s � d]}.
Bp

d1,...,dM
is a set of data expressions closed under �, with a linear number of

elements in the size of d1, . . . , dM (for fixed p). The property that no new data
is created during execution is formally expressed by the following lemma.

Lemma 2. Let p be a cons-free program, and suppose that [[p]](d1, . . . , dM) 	→ b
is obtained by a derivation tree T . Then for all statements p, γ � s → w or
p, γ �if b′, s1, s2 → w or p �call f v1 · · · vn → w in T, and all expressions t such
that (a) w � t, (b) b′ � t, (c) γ(x) � t for some x or (d) vi � t for some i: if t
has the form c b1 · · · bm with c ∈ C, then t ∈ Bp

d1,...,dM
.

That is, any data expression in the derivation tree of [[p]](d1, . . . , dM) 	→ b (includ-
ing occurrences as a sub-expression of other values) is also in Bp

d1,...,dM
.

Proof (Sketch). Induction on the form of T , assuming that for a statement under
consideration, (1) the requirements on γ and the vi are satisfied, and (2) γ maps
expressions t � s, s1, s2 to elements of Bp

d1,...,dM
if t = c t1 · · · tm with c ∈ C. ��

Note that Lemma 2 implies that the program result b is in Bp
d1,...,dM

. Recall
also Remark 1: if we had admitted constructors with higher-order argument
types, then Lemma 2 shows that they are never used, since any constructor
appearing in a derivation for [[p]](d1, . . . , dM) 	→ b must already occur in the
(data!) input.

The Power of Non-determinism in Higher-Order Implicit Complexity 679

4 Turing Machines, Decision Problems and Complexity

We assume familiarity with the standard notions of Turing Machines and com-
plexity classes (see, e.g., [11,21,22]); in this section, we fix the notation we use.

4.1 (Deterministic) Turing Machines

Turing Machines (TMs) are triples (A,S, T) where A is a finite set of tape sym-
bols such that A ⊇ {0, 1, }, S ⊇ {start, accept, reject} is a finite set of states,
and T is a finite set of transitions (i, r, w, d, j) with i ∈ S\{accept, reject} (the
original state), r ∈ A (the read symbol), w ∈ A (the written symbol), d ∈ {L, R}
(the direction), and j ∈ S (the result state). We sometimes denote this transi-

tion as i
r/w d
===⇒ j. A deterministic TM is a TM such that every pair (i, r) with

i ∈ S \ {accept, reject} and r ∈ A is associated with exactly one transition
(i, r, w, d, j). Every TM in this paper has a single, right-infinite tape.

A valid tape is an element t of AN with t(p) �= for only finitely many p.
A configuration is a triple (t, p, s) with t a valid tape, p ∈ N and s ∈ S. The
transitions T induce a relation ⇒ between configurations in the obvious way.

4.2 Decision Problems

A decision problem is a set X ⊆ {0, 1}+. A deterministic TM decides X if for
any x ∈ {0, 1}+: x ∈ X iff x1 . . . xn . . . , 0, start) ⇒∗ (t, i, accept) for some
t, i, and (x1 . . . xn . . . , 0, start) ⇒∗ (t, i, reject) iff x /∈ X. Thus, the TM
halts on all inputs, ending in accept or reject depending on whether x ∈ X.

If h : N −→ N is a function, a deterministic TM runs in time λn.h(n) if for all
n ∈ N\{0} and x ∈ {0, 1}n: any evaluation starting in (x1 . . . xn . . . , 0, start)
ends in the accept or reject state in at most h(n) transitions.

4.3 Complexity and the EXPTIME Hierarchy

We define classes of decision problem based on the time needed to accept them.

Definition 7. Let h : N → N be a function. Then, TIME (h(n)) is the set of
all X ⊆ {0, 1}+ such that there exist a > 0 and a deterministic TM running in
time λn.a · h(n) that decides X.

By design, TIME (h(n)) is closed under O: TIME (h(n)) = TIME (O(h(n))).

Definition 8. For K,n ≥ 0, let exp0
2(n) = n and expK+1

2 (n) = expK
2 (2n) =

2exp
K
2 (n). For K ≥ 0, define EXPKTIME �

⋃
a,b∈N

TIME
(
expK

2 (anb)
)
.

Since for every polynomial h, there are a, b ∈ N such that h(n) ≤ a ·nb for all
n > 0, we have EXP0TIME = P and EXP1TIME = EXP (where EXP is the usual
complexity class of this name, see e.g., [21, Ch. 20]). In the literature, EXP is
sometimes called EXPTIME or DEXPTIME (e.g., in the celebrated proof that ML
typability is complete for DEXPTIME [13]). Using the Time Hierarchy Theorem
[22], it is easy to see that P = EXP0TIME � EXP1TIME � EXP2TIME � · · · .
Definition 9. The set ELEMENTARY of elementary-time computable languages
is

⋃
K∈N

EXPKTIME.

680 C. Kop and J.G. Simonsen

4.4 Decision Problems and Programs

To solve decision problems by (cons-free) programs, we will consider programs
with constructors true, false of type bool, [] of type list and :: of type bool ⇒
list ⇒ list, and whose main function f1 has type list ⇒ bool.

Definition 10. We define:

– A program p accepts a1a2 . . . an ∈ {0, 1}∗ if [[p]](a1:: . . . ::an) 	→ true, where
ai = true if ai = 1 and ai = false otherwise.

– The set accepted by program p is {a ∈ {0, 1}∗ | p accepts a}.
Although we focus on programs of this form, our proofs will allow for arbi-

trary input and output—with the limitation (as guaranteed by the rule for pro-
gram execution) that both are data. This makes it possible to for instance con-
sider decision problems on a larger input alphabet without needing encodings.

Example 8. The two-line program with clauses even [] = true and
even (x::xs) = if x then false else true accepts the problem {x ∈ {0, 1}∗ | x
is a bitstring representing an even number (following Example 1)}.

We will sometimes speak of the input size, defined by:

Definition 11. The size of a list of data expressions d1, . . . , dM is∑M
i=1 size(di), where size(c b1 · · · bm) is defined as 1 +

∑m
i=1 size(bi).

5 Deterministic Characterisations

As a basis, we transfer Jones’ basic result on time classes to our more general
language. That is, we obtain the first line of the first table in Fig. 1.

data order 0 data order 1 data order 2 data order 3 . . .

cons-free
deterministic

P = EXP0TIME EXP = EXP1TIME EXP2TIME EXP3TIME . . .

To show that deterministic cons-free programs of data order K characterise
EXPKTIME it is necessary to prove two things:

1. if h(n) ≤ expK
2 (a · nb) for all n, then for every deterministic Turing Machine

M running in TIME (h(n)), there is a deterministic, cons-free program with
data order at most K, which accepts x ∈ {0, 1}+ if and only if M does;

2. for every deterministic cons-free program p with data order K, there is a
deterministic algorithm operating in TIME

(
expK

2 (a · nb)
)

for some a, b which,
given input expressions d1, . . . , dM , determines b such that [[p]](d1, . . . , dM) 	→
b (if such b exists). Like Jones [12], we assume our algorithms are implemented
on a sufficiently expressive Turing-equivalent machine like the RAM.

We will show part (1) in Sect. 5.1, and part (2) in Sect. 5.2.

The Power of Non-determinism in Higher-Order Implicit Complexity 681

5.1 Simulating TMs Using Deterministic Cons-Free Programs

Let M := (A,S, T) be a deterministic Turing Machine running in time λn.h(n).
Like Jones, we start by assuming that we have a way to represent the num-
bers 0, . . . , h(n) as expressions, along with successor and predecessor opera-
tors and checks for equality. Our simulation uses the data constructors true :
bool, false : bool, [] : list and :: : bool ⇒ list ⇒ list as discussed in
Sect. 4.4; a : symbol for a ∈ A (writing B for the blank symbol), L, R : direc
and s : state for s ∈ S; action : symbol ⇒ direc ⇒ state ⇒ trans; and
end : state ⇒ trans. The rules to simulate the machine are given in Fig. 7.

run cs = test (state cs [h(|cs|)])
test accept = true transition i r = action w d j for all i

r/w d
===⇒ j ∈ T

test reject = false transition i x = end i for i ∈ {accept, reject}
state cs [n] = if [n = 0] then start else get3 (transat cs [n − 1])
transat cs [n] = transition (state cs [n]) (tapesymb cs [n])

get1 (action x y z) = x get1 (end x) = B

get2 (action x y z) = y get2 (end x) = R

get3 (action x y z) = z get3 (end x) = x

tapesymb cs [n] = tape cs [n] (pos cs [n])

tape cs [n] [p] = if [n = 0] then inputtape cs [p]
else tapehelp cs [n] [p] (pos cs [n − 1])

tapehelp cs [n] [p] [i] = if [p = i] then get1 (transat cs [n − 1])
else tape cs [n − 1] [p]

pos cs [n] = if [n = 0] then [0] else adjust cs (pos cs [n−1]) (get2 (transat cs [n−1]))
adjust cs [p] L = [p − 1] adjust cs [p] R = [p + 1]

inputtape cs [p] = if [p = 0] then B else nth cs [p − 1]
nth [] [p] = eurttibB = 1

nth (x::xs) [p] = if [p = 0] then bit x else nth xs [p − 1] bit false = 0

Fig. 7. Simulating a deterministic Turing Machine (A, S, T)

Types of defined symbols are easily derived. The intended meaning is that
state cs [n], for cs the input list and [n] a number in {0, . . . , h(|cs|)}, returns
the state of the machine at time [n]; pos cs [n] returns the position of the reader
at time [n], and tape cs[n] [p] the symbol at time [n] and position [p].

Clearly, the program is highly exponential, even when h(|cs|) is polynomial,
since the same expressions are repeatedly evaluated. This apparent contradiction
is not problematic: we do not claim that all cons-free programs with data order
0 (say) have a derivation tree of at most polynomial size. Rather, as we will see
in Sect. 5.2, we can find their result in polynomial time by essentially using a
caching mechanism to avoid reevaluating the same expression.

682 C. Kop and J.G. Simonsen

What remains is to simulate numbers and counting. For a machine running in
TIME (h(n)), it suffices to find a value [i] representing i for all i ∈ {0, . . . , h(n)}
and cons-free clauses to calculate predecessor and successor functions and to
perform zero and equality checks. This is given by a (λn.h(n) + 1)-counting
module. This defines, for a given input list cs of length n, a set of values An

π to
represent numbers and functions seedπ, predπ and zeroπ such that (a) seedπ cs
evaluates to a value which represents h(n), (b) if v represents a number k, then
predπ cs v evaluates to a value which represents k − 1, and (c) zeroπ cs v
evaluates to true or false depending on whether v represents 0. Formally:

Definition 12 (Adapted from [12]). For P : N → N \ {0}, a P -counting
module is a tuple Cπ = (απ,Dπ,Aπ, 〈·〉π, pπ) such that:

– απ is a type (this will be the type of numbers);
– Dπ is a set of defined symbols disjoint from C,D,V, containing symbols

seedπ, predπ and zeroπ, with types seedπ : list ⇒ απ, predπ : list ⇒
απ ⇒ απ and zeroπ : list ⇒ απ ⇒ bool;

– for n ∈ N, An
π is a set of values of type απ, all built over C ∪ Dπ (this is the

set of values used to represent numbers);
– for n ∈ N, 〈·〉n

π is a total function from An
π to N;

– pπ is a list of cons-free clauses on the symbols in Dπ, such that, for all lists
cs : list ∈ Data with length n:

• there is a unique value v such that pπ �call seedπ cs → v;
• if pπ �call seedπ cs → v, then v ∈ An

π and 〈v〉n
π = P (n) − 1;

• if v ∈ Aπ and 〈v〉n
π = i > 0, then there is a unique value w such that

pπ �call predπ cs v → w; we have w ∈ An
π and 〈w〉n

π = i − 1;
• for v ∈ An

π with 〈v〉n
π = i: pπ �call zeroπ cs v → true if and only if

i = 0, and pπ �call zeroπ cs v → false if and only if i > 0.

It is easy to see how a P -counting module can be plugged into the program
of Fig. 7. We only lack successor and equality functions, which are easily defined:
succπ cs i = scπ cs (seedπ cs) i
scπ cs j i = if equalπ cs (predπ cs j) i then j else sc cs (predπ cs j) i
equalπ cs i j = if zeroπ cs i then zeroπ cs j

else if zeroπ cs j then false
else equalπ cs (predπ cs i) (predπ cs j)

Since the clauses in Fig. 7 are cons-free and have data order 0, we obtain:

Lemma 3. Let x be a decision problem which can be decided by a deterministic
TM running in TIME (h(n)). If there is a cons-free (λn.h(n)+1)-counting mod-
ule Cπ with data order K, then x is accepted by a cons-free program with data
order K; the program is deterministic if the counting module is.

Proof. By the argument given above. ��
The obvious difficulty is the restriction to cons-free clauses: we cannot simply

construct a new number type, but will have to represent numbers using only sub-
expressions of the input list cs, and constant data expressions.

The Power of Non-determinism in Higher-Order Implicit Complexity 683

Example 9. We consider a P -counting module Cx where P (n) = 3 · (n+1)2. Let
αx := list × list × list and for given n, let An

π := {(d0, d1, d2) | d0 is a list
of length ≤ 2 and d1, d2 are lists of length ≤ n}. Writing | x1:: . . . ::xk::[] | = k,
let 〈(d0, d1, d2)〉n

x := |d0| · (n + 1)2 + |d1| · (n + 1) + |d2|. Essentially, we consider
3-digit numbers i0i1i2 in base n + 1, with each ij represented by a list. px is:

seedx cs = (false::false::[], cs, cs)
predx cs (x0, x1, y::ys) = (x0, x1, ys) zerox cs (x0, x1, y::ys) = false
predx cs (x0, y::ys, []) = (x0, ys, cs) zerox cs (x0, y::ys, []) = false
predx cs (y::ys, [], []) = (ys, cs, cs) zerox cs (y::ys, [], []) = false
predx cs ([], [], []) = ([], [], []) zerox cs ([], [], []) = true

If cs = true::false::true::[], one value in A3
x is v = (false::[], false::true::

[], []), which is mapped to the number 1 · 42 + 2 · 4 + 0 = 24. Then px �call

predx cs v → w := (false::[], true::[], cs), which is mapped to 1·42+1·4+3 = 23
as desired.

Example 9 suggests a systematic way to create polynomial counting modules.

Lemma 4. For any a, b ∈ N \ {0}, there is a (λn.a · (n + 1)b)-counting module
C〈a,b〉 with data order 0.

Proof (Sketch). A straightforward generalisation of Example 9. ��
By increasing type orders, we can obtain an exponential increase of

magnitude.

Lemma 5. If there is a P -counting module Cπ of data order K, then there is a
(λn.2P (n))-counting module Ce[π] of data order K + 1.

Proof (Sketch). Let αe[π] := απ ⇒ bool; then ord
(
αe[π]

) ≤ K + 1. A number
i with bit representation b0 . . . bP (n)−1 (with b0 the most significant digit) is
represented by a value v such that, for w with 〈w〉π = i: pe[π] �call v w → true
iff bi = 1, and pe[π] �call v w → false iff bi = 0. We use the clauses of Fig. 8.

seede[π] cs x = true

zeroe[π] cs F = zhelpe[π] cs F (seedπ cs)

zhelpe[π] cs F k = if F k then false

else if zeroπ cs k then true

else zhelpe[π] cs F (predπ cs k)

prede[π] cs F = phelpe[π] cs F (seedπ cs)

phelpe[π] cs F k = if F k then flipe[π] cs F k

else if zeroπ cs k then seede[π] cs

else phelpe[π] cs (flipe[π] cs F k) (predπ cs k)

flipe[π] cs F k i = if equalπ cs k i then not (F i) else F i

not b = if b then false else true

Fig. 8. The clauses used in pe[π], extending pπ with an exponential step.

684 C. Kop and J.G. Simonsen

We also include all clauses in pπ. Here, note that a bitstring b0 . . . bm repre-
sents 0 if each bi = 0, and that the predecessor of b0 . . . bi10 . . . 0 is b0 . . . bi01 . . . 1.

��
Combining these results, we obtain:

Lemma 6. Every decision problem in EXPKTIME is accepted by a deterministic
cons-free program with data order K.

Proof. A decision problem is in EXPKTIME if it is decided by a deterministic
TM operating in time expK

2 (a · nb)) for some a, b. By Lemma 3, it therefore
suffices if there is a Q-counting module for some Q ≥ λn. expK

2 (a · nb) + 1, with
data order K. Certainly Q(n) := expK

2 (a ·(n+1)b) is large enough. By Lemma 4,
there is a (λn.a · (n + 1)b)-counting module C〈a,b〉 with data order 0. Applying
Lemma 5 K times, we obtain the required Q-counting module Ce[...[e[〈a,b〉]]]. ��
Remark 4. Our definition of a counting module significantly differs from the one
in [12], for example by representing numbers as values rather than expressions,
introducing the sets An

π and imposing evaluation restrictions. The changes enable
an easy formulation of the non-deterministic counting module in Sect. 6.

5.2 Simulating Deterministic Cons-Free Programs Using an
Algorithm

We now turn to the second part of characterisation: that every decision problem
solved by a deterministic cons-free program of data order K is in EXPKTIME.
We give an algorithm which determines the result of a fixed program (if any) on
a given input in TIME

(
expK

2 (a · nb)
)

for some a, b. The algorithm is designed to
extend easily to the non-deterministic characterisations in subsequent settings.

Key Idea. The principle of our algorithm is easy to explain when variables have
data order 0. Using Lemma 2, all such variables must be instantiated by (tuples
of) elements of Bp

d1,...,dM
, of which there are only polynomially many in the input

size. Thus, we can make a comprehensive list of all expressions that might occur
as the left-hand side of a [Call] in the derivation tree. Now we can go over the
list repeatedly, filling in reductions to trace a top-down derivation of the tree.

In the higher-order setting, there are infinitely many possible values; for
example, if id : bool ⇒ bool has arity 1 and g : (bool ⇒ bool) ⇒ bool ⇒ bool
has arity 2, then id, g id, g (g id) and so on are all values. Therefore, instead
of looking directly at values we consider an extensional replacement.

Definition 13. Let B be a set of data expressions closed under �. For ι ∈ S,
let 〈|ι|〉B = {d ∈ B | � d : ι}. Inductively, let 〈|σ × τ |〉B = 〈|σ|〉B × 〈|τ |〉B and
〈|σ ⇒ τ |〉B = {Aσ⇒τ | A ⊆ 〈|σ|〉B × 〈|τ |〉B ∧ ∀e ∈ 〈|σ|〉B there is at most one u with
(e, u) ∈ Aσ⇒τ}σ⇒τ . We call the elements of any 〈|σ|〉B deterministic extensional
values.

The Power of Non-determinism in Higher-Order Implicit Complexity 685

Note that deterministic extensional values are data expressions in B if σ is
a sort, pairs if σ is a pair type, and sets of pairs labelled with a type otherwise;
these sets are exactly partial functions, and can be used as such:

Definition 14. For e ∈ 〈|σ1 ⇒ . . . ⇒ σn ⇒ τ |〉B and u1 ∈ 〈|σ1|〉B, . . . , un ∈
〈|σn|〉B, let e(u1, . . . , un) be {e} if n = 0 and

⋃
Aσn⇒τ ∈e(u1,...,un−1)

{o ∈ 〈|τ |〉B |
(un, o) ∈ A} if n > 0.

By induction on n, each e(u1, . . . , un) has at most one element as would be
expected of a partial function. We also consider a form of matching.

Definition 15. Fix a set B of data expressions. An extensional expression has
the form f e1 · · · en where f : σ1 ⇒ . . . ⇒ σn ⇒ τ ∈ D and each ei ∈ 〈|σi|〉B.
Given a clause ρ : f �1 · · · �k = r with f : σ1 ⇒ . . . ⇒ σk ⇒ τ ∈ F and variable
environment Γ , an ext-environment for ρ is a partial function η mapping each
x : τ ∈ Γ to an element of 〈|τ |〉B, such that �jη ∈ 〈|σj |〉B for 1 ≤ j ≤ n. Here,

– �η = η(�) if � is a variable and �η = (�(1)η, �(2)η) if � = (�(1), �(2));
– �η = �[x := η(x) | x ∈ Var(�)] otherwise (in this case, � is a pattern with data

order 0, so all its variables have data order 0, so each η(x) ∈ Data).

Then �η is a deterministic extensional value for � a pattern. We say ρ matches
an extensional expression f e1 · · · ek if there is an ext-environment η for ρ such
that �iη = ei for all 1 ≤ i ≤ k. We call η the matching ext-environment.

Finally, for technical reasons we will need an ordering on extensional values:

Definition 16. We define a relation � on extensional values of the same type:

– For d, b ∈ 〈|ι|〉B with ι ∈ S: d � b if d = b.
– For (e1, e2), (u1, u2) ∈ 〈|σ × τ |〉B: (e1, e2) � (u1, u2) if each ei � ui.
– For Aσ, Bσ ∈ 〈|σ|〉B with σ functional: Aσ � Bσ if for all (e, u) ∈ B there is

u′ � u such that (e, u′) ∈ A.

The Algorithm. Let us now define our algorithm. We will present it in a general
form—including a case 2d which does not apply to deterministic programs—so
we can reuse the algorithm in the non-deterministic settings to follow.

Algorithm 7. Let p be a fixed, deterministic cons-free program, and suppose
f1 has a type κ1 ⇒ . . . ⇒ κM ⇒ κ ∈ F .

Input: data expressions d1 : κ1, . . . , dM : κM .
Output: The set of values b with [[p]](d1, . . . , dM) 	→ b.

1. Preparation.
(a) Let p′ be obtained from p by the transformations of Lemma 1, and by

adding a clause start x1 · · · xM = f1 x1 · · · xM for a fresh symbol start
(so that [[p]](d1, . . . , dM) 	→ b iff p′ �call start d1 · · · dM → b).

686 C. Kop and J.G. Simonsen

(b) Denote B := Bp
d1,...,dM

and let X be the set of all “statements”:
i. � f e1 · · · en � o for (a) f ∈ D with f : σ1 ⇒ . . . ⇒ σm ⇒ κ′ ∈ F ,

(b) 0 ≤ n ≤ arityp(f) such that ord(σn+1 ⇒ . . . ⇒ σm ⇒ κ′) ≤ K,
(c) ei ∈ 〈|σi|〉B for 1 ≤ i ≤ n and (d) o ∈ 〈|σn+1 ⇒ . . . ⇒ σm ⇒ κ′|〉B;

ii. η � t � o for (a) ρ : f �1 · · · �k = s a clause in p′, (b) s � t : τ , (c)
o ∈ 〈|τ |〉B and (d) η an ext-environment for ρ.

(c) Mark statements of the form η � t � o in X as confirmed if either t ∈ V
and η(t) � o, or if t = c t1 · · · tm with c ∈ C and tη = o. All statements
not of either form are marked unconfirmed.

2. Iteration: repeat the following steps, until no further changes are made.
(a) For all unconfirmed statements � f e1 · · · en � o in X with n < arityp(f):

write o = Oσ and mark the statement as confirmed if for all (en+1, u) ∈ O
there exists u′ � u such that � f e1 · · · en+1 � u′ is marked confirmed.

(b) For all unconfirmed statements � f e1 · · · ek � o in X with k = arityp(f):
i. find the first clause ρ : f �1 · · · �k = s in p′ that matches f e1 · · · ek

and let η be the matching ext-environment (if any);
ii. determine whether η � s � o is confirmed and if so, mark the state-

ment f e1 · · · ek � o as confirmed.
(c) For all unconfirmed statements of the form η � if s1 then s2 else s3 � o

in X , mark the statement confirmed if both η � s1 � true and η � s2 � o
are confirmed, or both η � s1 � false and η � s3 � o are confirmed.

(d) For all unconfirmed statements η � choose s1 · · · sn � o in X , mark the
statement as confirmed if η � si � o for any i ∈ {1, . . . , n}.

(e) For all unconfirmed statements η � (s1, s2) � (o1, o2) in X , mark the
statement confirmed if both η � s1 � o1 and η � s2 � o2 are confirmed.

(f) For all unconfirmed statements η � x s1 · · · sn � o in X with x ∈ V,
mark the statement as confirmed if there are e1 ∈ 〈|σ1|〉B, . . . , en ∈ 〈|σn|〉B
such that each η � si � ei is marked confirmed, and there exists o′ ∈
η(x)(e1, . . . , en) such that o′ � o.

(g) For all unconfirmed statements η � f s1 · · · sn � o in X with f ∈ D, mark
the statement as confirmed if there are e1 ∈ 〈|σ1|〉B, . . . , en ∈ 〈|σn|〉B such
that each η � si � ei is marked confirmed, and:
i. n ≤ arityp(f) and � f e1 · · · en � o is marked confirmed, or
ii. n > k := arityp(f) and there are u, o′ such that � f e1 · · · ek � u is

marked confirmed and u(ek+1, . . . , en) � o′ � o.
3. Completion: return {b | b ∈ B∧ � start d1 · · · dM � b is marked confirmed}.

Note that, for programs of data order 0, this algorithm closely follows the
earlier sketch. Values of a higher type are abstracted to deterministic exten-
sional values. The use of � is needed because a value of higher type is asso-
ciated to many extensional values; e.g., to confirm a statement � plus 3 �

{(1, 4), (0, 3)}nat⇒nat in some program, it may be necessary to first confirm
� plus 3 � {(0, 3)}nat⇒nat.

The complexity of the algorithm relies on the following key observation:

The Power of Non-determinism in Higher-Order Implicit Complexity 687

Lemma 8. Let p be a cons-free program of data order K. Let Σ be the set of all
types σ with ord(σ) ≤ K which occur as part of an argument type, or as an output
type of some f ∈ D. Suppose that, given input of total size n, 〈|σ|〉B has cardinality
at most F (n) for all σ ∈ Σ, and testing whether e1 � e2 for e1, e2 ∈ [[σ]]B takes
at most F (n) steps. Then Algorithm 7 runs in TIME

(
a · F (n)b

)
for some a, b.

Here, the cardinality Card(A) of a set A is just the number of elements of A.

Proof (Sketch). Due to the use of p′, all intensional values occurring in Algo-
rithm 7 are in

⋃
σ∈Σ〈|σ|〉B. Writing a for the greatest number of arguments any

defined symbol f or variable x in p′ may take and r for the greatest number of
sub-expressions of any right-hand side in p′ (which is independent of the input!),
X contains at most a · |D| ·F (n)a+1 + |p′| · r ·F (n)a+1 statements. Since in all but
the last step of the iteration at least one statement is flipped from unconfirmed
to confirmed, there are at most |X | + 1 iterations, each considering |X | state-
ments. It is easy to see that the individual steps in both the preparation and
iteration are all polynomial in |X | and F (n), resulting in a polynomial overall
complexity. ��

The result follows as Card(〈|σ|〉B) is given by a tower of exponentials in ord(σ):

Lemma 9. If 1 ≤ Card(B) < N , then for each σ of length L (where the length of
a type is the number of sorts occurring in it, including repetitions), with ord(σ) ≤
K: Card(〈|σ|〉B) < expK

2 (NL). Testing e � u for e, u ∈ 〈|σ|〉B takes at most
expK

2 (N (L+1)3) comparisons between elements of B.
Proof (Sketch). An easy induction on the form of σ, using that expK

2 (X) ·
expK

2 (Y) ≤ expK
2 (X · Y) for X ≥ 2, and that for Aσ1⇒σ2 , each key e ∈ 〈|σ1|〉B

is assigned one of Card(〈|σ2|〉B) + 1 choices: an element u of 〈|σ2|〉B such that
(e, u) ∈ A, or non-membership. The second part (regarding �) uses the first. ��

We will postpone showing correctness of the algorithm until Sect. 6.3, where
we can show the result together with the one for non-deterministic programs.
Assuming correctness for now, we may conclude:

Lemma 10. Every decision problem accepted by a deterministic cons-free pro-
gram p with data order K is in EXPKTIME.

Proof. We will see in Lemma 20 in Sect. 6.3 that [[p]](d1, . . . , dM) 	→ b if and only
if Algorithm 7 returns the set {b}. For a program of data order K, Lemmas 8
and 9 together give that Algorithm 7 operates in TIME

(
expK

2 (n)
)
. ��

Theorem 1. The class of deterministic cons-free programs with data order K
characterises EXPKTIME for all K ∈ N.

Proof. A combination of Lemmas 6 and 10. ��

688 C. Kop and J.G. Simonsen

6 Non-deterministic Characterisations

A natural question is what happens if we do not limit interest to deterministic
programs. For data order 0, Bonfante [4] shows that adding the choice operator
to Jones’ language does not increase expressivity. We will recover this result for
our generalised language in Sect. 7. However, in the higher-order setting, non-
deterministic choice does increase expressivity—dramatically so. We have:

data order 0 data order 1 data order 2 data order 3 . . .

cons-free P ELEMENTARY ELEMENTARY ELEMENTARY . . .

As before, we will show the result—for data orders 1 and above—in two parts:
in Sect. 6.1 we see that cons-free programs of data order 1 suffice to accept all
problems in ELEMENTARY; in Sect. 6.2 we see that they cannot go beyond.

6.1 Simulating TMs Using (Non-deterministic) Cons-Free Programs

We start by showing how Turing Machines in ELEMENTARY can be simulated
by non-deterministic cons-free programs. For this, we reuse the core simulation
from Fig. 7. The reason for the jump in expressivity lies in Lemma 3: by taking
advantage of non-determinism, we can count up to arbitrarily high numbers.

Lemma 11. If there is a P -counting module Cπ with data order K ≤ 1, there
is a (non-deterministic) (λn.2P (n)−1)-counting module Cψ[π] with data order 1.

Proof. We let αψ[π] := bool ⇒ απ (which has type order max(1, ord(απ))), and:

– An
ψ[π] := the set of those values v : αψ[π] such that:
• there is w ∈ Aπ with 〈w〉n

π = 0 such that pψ[π] �call v true → w;
• there is w ∈ Aπ with 〈w〉n

π = 0 such that pψ[π] �call v false → w;
and for all 1 ≤ i < P (n) exactly one of the following holds:

• there is w ∈ An
π with 〈w〉n

π = i such that pψ[π] �call v true → w;
• there is w ∈ An

π with 〈w〉n
π = i such that pψ[π] �call v false → w;

We will say that v true 	→ i or v false 	→ i respectively.
– 〈v〉n

ψ[π] :=
∑P (n)−1

i=1 {2P (n)−1−i | v true 	→ i};
– pψ[π] be given by Fig. 9 appended to pπ, and Dψ[π] by the symbols in pψ[π].

So, we interpret a value v as the number given by the bitstring b1 . . . bP (n)−1

(most significant digit first), where bi is 1 if v true evaluates to a value repre-
senting i in Cπ, and bi is 0 otherwise—so exactly if v false evaluates to such a
value. ��

To understand the counting program, consider 4, with bit representation
100. If 0, 1, 2, 3 are represented in Cπ by values O,w1, w2, w3 respectively, then in
Cψ[π], the number 4 corresponds to Q := st1 w1 (st0 w2 (st0 w3 (baseψ[π] O))).

The Power of Non-determinism in Higher-Order Implicit Complexity 689

– core elements; sti n F sets bit n in F to the value i
baseψ[π] x b = x
st1ψ[π] n F true = choose n (F true)
st1ψ[π] n F false = F false

st0ψ[π] n F true = F true

st0ψ[π] n F false = choose n (F false)

– testing bit values (using non-determinism and non-termination)
bitsetψ[π] cs F i = if equalπ cs (F true) i then true

else if equalπ cs (F false) i then false

else bitsetψ[π] cs F i
– the seed function
nulπ cs = nul π cs (seedπ cs)
nul π cs n = if zeroπ cs n then n else nul π cs (predπ cs n)
seedψ[π] cs = seed ψ[π] cs (seedπ cs) (baseψ[π] (nulπ cs))
seed ψ[π] cs i F = if zeroπ cs i then F else seed ψ[π] cs (predπ cs i) (st1ψ[π] i F)
– the zero test
zeroψ[π] cs F = zero ψ[π] cs F (seedπ cs)
zero ψ[π] cs F i = if zeroπ i then true

else if bitsetψ[π] cs F i then false

else zero ψ[π] cs F (predπ cs i)
– the predecessor
predψ[π] cs F = prψ[π] cs F (seedπ cs) (baseψ[π] (nulπ cs))
prψ[π] cs F i G = if bitsetψ[π] cs F i then cpψ[π] cs F (predπ cs i) (st0ψ[π] i G)

else prψ[π] cs F (predπ cs i) (st1ψ[π] i G)
cp cs F i G = if zeroπ cs i then G

else if bitsetψ[π] cs F i then cpψ[π] cs F (predπ cs i) (st1ψ[π] i G)
else cpψ[π] cs F (predπ cs i) (st0ψ[π] i G)

Fig. 9. Clauses for the counting module Cψ[π].

The null-value O functions as a default, and is a possible value of both Q true
and Q false for any function Q representing a bitstring.

The non-determinism comes into play when determining whether Q true 	→ i
or not: we can evaluate F true to some value, but this may not be the
value we need. Therefore, we find some value of both F true and F false;
if either represents i in Cπ, then we have confirmed or rejected that bi = 1.
If both evaluations give a different value, we repeat the test. This gives a
non-terminating program, but there is always exactly one value b such that
pψ[π] �call bitsetψ[π] cs F i → b.

The seedψ[π] function generates the bit string 1 . . . 1, so the function F
with F true 	→ i for all i ∈ {0, . . . , P (n) − 1} and F false 	→ i for only
i = 0. The zeroψ[π] function iterates through bP (n)−1, bP (n)−2, . . . , b1 and tests
whether all bits are set to 0. The clauses for predψ[π] assume given a bitstring
b1 . . . bi−110 . . . 0, and recursively build b1 . . . bi−101 · · · 1 in the parameter G.

Example 10. Consider an input string of length 3, say false::false::true::[].
Recall from Lemma 4 that there is a (λn.n+1)-counting module C〈1,1〉 represent-
ing i ∈ {0, . . . , 3} as suffixes of length i from the input string. Therefore, there is
also a second-order (λn.2n)-counting module Cψ[〈1,1〉] representing i ∈ {0, . . . , 7}.
The number 6—with bitstring 110—is represented by the value w6:

690 C. Kop and J.G. Simonsen

w6 = st1ψ[〈1,1〉] (true::[]) (st1ψ[〈1,1〉] (false::true::[]) (
st0ψ[〈1,1〉] (false::false::true::[]) (consψ[〈1,1〉] []))) : bool ⇒ list

But then there is also a (λn.22
n−1)-counting module Cψ[ψ[〈1,1〉]], representing

i ∈ {0, . . . , 27 −1}. For example 97—with bit vector 1100001—is represented by:

S = st1ψ[ψ[〈1,1〉]] w1 (st1ψ[ψ[〈1,1〉]] w2 (st0ψ[ψ[〈1,1〉]] w3 (
st0ψ[ψ[〈1,1〉]] w4 (st0ψ[ψ[〈1,1〉]] w5 (st0ψ[ψ[〈1,1〉]] w6 (
st1ψ[ψ[〈1,1〉]] w7 (consψ[ψ[〈1,1〉]] w7)))))))

Here st1ψ[ψ[〈1,1〉]] and st0ψ[ψ[〈1,1〉]] have the type (bool ⇒ list) ⇒ (bool ⇒
bool ⇒ list) ⇒ bool ⇒ bool ⇒ list and each wi represents i in Cψ[〈1,1〉], as
shown for w6 above. Note: S true 	→ w1, w2, w7 and S false 	→ w3, w4, w5, w6.

Since 22
m−1 − 1 ≥ 2m for all m ≥ 2, we can count up to arbitrarily high

bounds using this module. Thus, already with data order 1, we can simulate
Turing Machines operating in TIME

(
expK

2 (n)
)

for any K.

Lemma 12. Every decision problem in ELEMENTARY is accepted by a non-
deterministic cons-free program with data order 1.

Proof. A decision problem is in ELEMENTARY if it is in some EXPKTIME
which, by Lemma 3, is certainly the case if for any a, b there is a Q-counting
module with Q ≥ λn. expK

2 (a · nb). Such a module exists for data order 1 by
Lemma 11. ��

6.2 Simulating Cons-Free Programs Using an Algorithm

Towards a characterisation, we must also see that every decision problem
accepted by a cons-free program is in ELEMENTARY—so that the result of every
such program can be found by an algorithm operating in TIME

(
expK

2 (a · nb)
)

for some a, b,K. We can reuse Algorithm 7 by altering the definition of 〈|σ|〉B.

Definition 17. Let B be a set of data expressions closed under �. For ι ∈ S,
let [[ι]]B = {d ∈ B | � d : ι}. Inductively, define [[σ × τ]]B = [[σ]]B × [[τ]]B and
[[σ ⇒ τ]]B = {Aσ⇒τ | A ⊆ [[σ]]B × [[τ]]B}. We call the elements of any [[σ]]B
non-deterministic extensional values.

Where the elements of 〈|σ ⇒ τ |〉B are partial functions, [[σ ⇒ τ]]B contains
arbitrary relations: a value v is associated to a set of pairs (e, u) such that v e
might evaluate to u. The notions of extensional expression, e(u1, . . . , un) and �
immediately extend to non-deterministic extensional values. Thus we can define:

Algorithm 13. Let p be a fixed, non-deterministic cons-free program, with f1 :
κ1 ⇒ . . . ⇒ κM ⇒ κ ∈ F .

Input: data expressions d1 : κ1, . . . , dM : κM .
Output: The set of values b with [[p]](d1, . . . , dM) 	→ b.
Execute Algorithm 7, but using [[σ]]B in place of 〈|σ|〉B.

The Power of Non-determinism in Higher-Order Implicit Complexity 691

In Sect. 6.3, we will see that indeed [[p]](d1, . . . , dM) 	→ b if and only if Algo-
rithm 13 returns a set containing b. But as before, we first consider complexity.
To properly analyse this, we introduce the new notion of arrow depth.

Definition 18. A type’s arrow depth is given by: depth(ι) = 0, depth(σ × τ) =
max(depth(σ), depth(τ)) and depth(σ ⇒ τ) = 1 + max(depth(σ), depth(τ)).

Now the cardinality of each [[σ]]B can be expressed using its arrow depth:

Lemma 14. If 1 ≤ Card(B) < N , then for each σ of length L, with depth(σ) ≤
K: Card([[σ]]B) < expK

2 (NL). Testing e � u for e, u ∈ [[σ]]B takes at most
expK

2 (N (L+1)3) comparisons.

Proof (Sketch). A straightforward induction on the form of σ, like Lemma 9. ��
Thus, once more assuming correctness for now, we may conclude:

Lemma 15. Every decision problem accepted by a non-deterministic cons-free
program p is in ELEMENTARY.

Proof. We will see in Lemma 18 in Sect. 6.3 that [[p]](d1, . . . , dM) 	→ b if and
only if Algorithm 13 returns a set containing b. Since all types have an arrow
depth and the set Σ in Lemma 8 is finite, Algorithm 13 operates in some
TIME

(
expK

2 (n)
)
. Thus, the problem is in EXPKTIME ⊆ ELEMENTARY. ��

Theorem 2. The class of non-deterministic cons-free programs with data order
K characterises ELEMENTARY for all K ∈ N \ {0}.
Proof. A combination of Lemmas 12 and 15. ��

6.3 Correctness proofs of Algorithms 7 and 13

Algorithms 7 and 13 are the same—merely parametrised with a different set of
extensional values to be used in step 1b. Due to this similarity, and because
〈|σ|〉B ⊆ [[σ]]B, we can largely combine their correctness proofs. The proofs are
somewhat intricate, however; details are provided in [15, Appendix E].

We begin with soundness:

Lemma 16. If Algorithm 7 or 13 returns a set A∪{b}, then [[p]](d1, . . . , dM) 	→ b.

Proof (Sketch). We define for every value v : σ and e ∈ [[σ]]B: v⇓e iff: (a) σ ∈ S
and v = e; or (b) σ = σ1 × σ2 and v = (v1, v2) and e = (e1, e2) with v1⇓e1 and
v2 ⇓ e2; or (c) σ = σ1 ⇒ σ2 and e = Aσ with A ⊆ {(u1, u2) | u1 ∈ [[σ1]]B ∧ u2 ∈
[[σ2]]B∧ for all values w1 : σ1 with w1⇓u1 there is some value w2 : σ2 with w2⇓u2

such that p′ �call v w1 → w2}.
We now prove two statements together by induction on the confirmation time

in Algorithm 7, which we consider equipped with unspecified subsets [σ] of [[σ]]B:

692 C. Kop and J.G. Simonsen

1. Let: (a) f : σ1 ⇒ . . . ⇒ σm ⇒ κ ∈ F be a defined symbol; (b) v1 : σ1, . . . , vn :
σn be values, for 1 ≤ n ≤ arityp(f); (c) e1 ∈ [[σ1]]B, . . . , en ∈ [[σn]]B be such
that each vi ⇓ ei; (d) o ∈ [[σn+1 ⇒ . . . ⇒ σm ⇒ κ]]B. If � f e1 · · · en � o is
eventually confirmed, then p′ �call f v1 · · · vn → w for some w with w⇓o.

2. Let: (a) ρ : f � = s be a clause in p′; (b) t : τ be a sub-expression of s; (c) η
be an ext-environment for ρ; (d) γ be an environment such that γ(x)⇓ η(x)
for all x ∈ Var(f �); (e) o ∈ [[τ]]B. If the statement η � t � o is eventually
confirmed, then p′, γ � t → w for some w with w⇓o.

Given the way p′ is defined from p, the lemma follows from the first statement.
The induction is easy, but requires minor sub-steps such as transitivity of �. ��

The harder part, where the algorithms diverge, is completeness:

Lemma 17. If [[p]](d1, . . . , dM) 	→ b, then Algorithm 13 returns a set A ∪ {b}.
Proof (Sketch). If [[p]](d1, . . . , dM) 	→ b, then p′ �call start d1 · · · dM → b. We
label the nodes in the derivation trees with strings of numbers (a node with
label l has immediate subtrees of the form l · i), and let > denote lexicographic
comparison of these strings, and � lexicographic comparison without prefixes
(e.g., 1 · 2 > 1 but not 1 · 2 � 1). We define the following function:

– ψ(v, l) = v if v ∈ B, and ψ((v1, v2), l) = (ψ(v1, l), ψ(v2, l));
– for f v1 · · · vn : τ = σn+1 ⇒ . . . ⇒ σm ⇒ κ with m > n, let ψ(f v1 · · · vn, l) =

{(en+1, u) | ∃q � p > l [the subtree with index p has a root p′ �call

f v1 · · · vn+1 → w with ψ(w, q) = u and en+1 �′ ψ(vn+1, p)]}τ .

Here, �′ is defined the same as �, except that Aσ �′ Bσ iff A ⊇ B. Note that
clearly A �′ B implies A � B, and that �′ is transitive by transitivity of ⊇.
Then, using induction on the labels of the tree in reverse lexicographical order
(so going through the tree right-to-left, top-to-bottom), we can prove:

1. If the subtree labelled l has root p′ �call f v1 · · · vn → w, then for all e1, . . . , en

such that each ei �′ ψ(vi, l), and for all p � l there exists o �′ ψ(w, p) such
that � f e1 · · · en � o is eventually confirmed.

2. If the subtree labelled l has root p′, γ � t → w and η(x) �′ ψ(γ(x), l) for all
x ∈ Var(t), then for all p � l there exists o �′ ψ(w, p) such that η � t � o is
eventually confirmed.

Assigning the main tree a label 0 (to secure that p � 0 exists), we obtain that �
start d1 · · · dM � b is eventually confirmed, so b is indeed returned. ��

By Lemmas 16 and 17 together we may immediately conclude:

Lemma 18. [[p]](d1, . . . , dM) 	→ b iff Algorithm 13 returns a set containing b.

The proof of the general case provides a basis for the deterministic case:

Lemma 19. If [[p]](d1, . . . , dM) 	→ b and p is deterministic, then Algorithm 13
returns a set A ∪ {b}.

The Power of Non-determinism in Higher-Order Implicit Complexity 693

Proof (Sketch). We define a consistency measure � on non-deterministic exten-
sional values: e � u iff e = u ∈ B, or e = (e1, e2), u = (u1, u2), e1 � u1 and e2 � u2,
or e = Aσ, u = Bσ and for all (e1, u1) ∈ A and (e2, u2) ∈ B: e1 � e2 implies
u1 � u2.

In the proof of Lemma 17, we trace a derivation in the algorithm. In a deter-
ministic program, we can see that if both � f e1 · · · en → o and � f e′

1 · · · e′
n → o′

are confirmed, and each ei � e′
n, then o �o′—and similar for statements η � s ⇒ o.

We use this to remove statements which are not necessary, ultimately leaving
only those which use deterministic extensional values as used in Algorithm 7. ��
Lemma 20. [[p]](d1, . . . , dM) 	→ b iff Algorithm 7 returns a set containing b.

Proof. This is a combination of Lemmas 16 and 19. ��
Note that it is a priori not clear that Algorithm 7 returns only one value;

however, this is obtained as a consequence of Lemma 20.

7 Recovering the EXPTIME hierarchy

While interesting, Lemma 12 exposes a problem: non-determinism is unexpect-
edly powerful in the higher-order setting. If we still want to use non-deterministic
programs towards characterising non-deterministic complexity classes, we must
surely start by considering restrictions which avoid this explosion of expressivity.

One direction is to consider arrow depth instead of data order. Using
Lemma 14, we easily recover the original hierarchy—and obtain the last line
of Fig. 1.

arrow depth 0 arrow depth 1 arrow depth 2 . . .

cons-free P = EXP0TIME EXP = EXP1TIME EXP2TIME . . .

Theorem 3. The class of non-deterministic cons-free programs where all vari-
ables are typed with a type of arrow depth K characterises EXPKTIME.

Proof (Sketch). Both in the base program in Fig. 7, and in the counting modules
of Lemmas 4 and 5, type order and arrow depth coincide. Thus every decision
problem in EXPKTIME is accepted by a cons-free program with “data arrow
depth” K. For the other direction, the proof of Lemma 1 is trivially adapted
to use arrow depth rather than type order. Thus, altering the preparation step
in Algorithm 13 gives an algorithm which determines the possible outputs of a
program with data arrow depth K, with the desired complexity by Lemma 14.

��
A downside is that, by moving away from data order, this result is hard to

compare with other characterisations using cons-free programs. An alternative
is to impose a restriction alongside cons-freeness: unitary variables. This gives
no restrictions in the setting with data order 0—thus providing the first column
in the table from Sect. 6—and brings us the second-last line in Fig. 1:

694 C. Kop and J.G. Simonsen

data order 0 data order 1 data order 2 data order 3

cons-free
unitary variables

P = EXP0TIME EXP = EXP1TIME EXP2TIME EXP3TIME

Definition 19. A program p has unitary variables if clauses are typed with an
assignment mapping each variable x to a type κ or σ ⇒ κ, with ord(κ) = 0.

Thus, in a program with unitary variables, a variable of a type (list ×
list × list) ⇒ list is admitted, but list ⇒ list ⇒ list ⇒ list is not.
The crucial difference is that the former must be applied to all its arguments at
the same time, while the latter may be partially applied. This avoids the problem
of Lemma 11.

Theorem 4. The class of (deterministic or non-deterministic) cons-free pro-
grams with unitary variables of data order K characterises EXPKTIME.

Proof (Sketch). Both the base program in Fig. 7 and the counting modules of
Lemmas 4 and 5 have unitary variables, and are deterministic—this gives one
direction. For the other, let a recursively unitary type be κ or σ ⇒ κ with
ord(κ) = 0 and σ recursively unitary. The transformations of Lemma 1 are
easily extended to transform a program with unitary variables of type order
≤K to one where all sub-expressions have a recursively unitary type. Since
here data order and arrow depth are the same in this case, we complete with
Theorem 3. ��

8 Conclusion and Future Work

We have studied the effect of combining higher types and non-determinism
for cons-free programs. This has resulted in the—highly surprising—conclusion
that naively adding non-deterministic choice to a language that characterises
the EXPKTIME hierarchy for increasing data orders immediately increases
the expressivity of the language to ELEMENTARY. Recovering a more fine-
grained complexity hierarchy can be done, but at the cost of further syntactical
restrictions.

The primary goal that we will pursue in future work is to use non-
deterministic cons-free programs to characterise hierarchies of non-deterministic
complexity classes such as NEXPKTIME for K ∈ N. In addition, it would be
worthwhile to make a full study of the ramifications of imposing restrictions
on recursion, such as tail-recursion or primitive recursion, in combination with
non-determinism and higher types (akin to the study of primitive recursion in a
successor-free language done in [16]). We also intend to study characterisations
of classes more restrictive than P, such as LOGTIME and LOGSPACE.

Finally, given the surprising nature of our results, we urge readers to investi-
gate the effect of adding non-determinism to other programming languages used
in implicit complexity that manipulate higher-order data. We conjecture that
the effect on expressivity there will essentially be the same as what we have
observed.

The Power of Non-determinism in Higher-Order Implicit Complexity 695

References

1. Bellantoni, S.: Ph.D. thesis, University of Toronto (1993)
2. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime

functions. Comput. Complex. 2, 97–110 (1992)
3. Ben-Amram, A.M., Petersen, H.: CONS-free programs with tree input. In:

Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
271–282. Springer, Heidelberg (1998). doi:10.1007/BFb0055060

4. Bonfante, G.: Some programming languages for Logspace and Ptime. In:
Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 66–80. Springer,
Heidelberg (2006). doi:10.1007/11784180 8

5. Clote, P.: Computation models and function algebras. In: Handbook of Com-
putability Theory, pp. 589–681. Elsevier (1999)

6. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded
computers. J. ACM 18(1), 4–18 (1971)

7. de Carvalho, D., Simonsen, J.G.: An implicit characterization of the polynomial-
time decidable sets by cons-free rewriting. In: Dowek, G. (ed.) RTA 2014. LNCS,
vol. 8560, pp. 179–193. Springer, Cham (2014). doi:10.1007/978-3-319-08918-8 13

8. Goerdt, A.: Characterizing complexity classes by general recursive definitions in
higher types. Inf. Comput. 101(2), 202–218 (1992)

9. Goerdt, A.: Characterizing complexity classes by higher type primitive recursive
definitions. Theor. Comput. Sci. 100(1), 45–66 (1992)

10. Immerman, N.: Descriptive Complexity. Springer, New York (1999)
11. Jones, N.: Computability and Complexity from a Programming Perspective. MIT

Press, Cambridge (1997)
12. Jones, N.: The expressive power of higher-order types or, life without CONS. J.

Funct. Program. 11(1), 55–94 (2001)
13. Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: An analysis of ML typability. J. ACM 41(2),

368–398 (1994)
14. Kop, C., Simonsen, J.: Complexity hierarchies and higher-order cons-free rewriting.

In: Kesner, D., Pientka, B. (eds.) FSCD. LIPIcs, vol. 52, pp. 23:1–23:18 (2016). 10.
4230/LIPIcs.FSCD.2016.23

15. Kop, C., Simonsen, J.: The power of non-determinism in higher-order implicit
complexity (extended version). Technical report, University of Copenhagen (2017).
https://arxiv.org/pdf/1701.05382.pdf

16. Kristiansen, L., Mender, B.M.W.: Non-determinism in Gödel’s system T. Theory
Comput. Syst. 51(1), 85–105 (2012)

17. Kristiansen, L., Niggl, K.-H.: Implicit computational complexity on the compu-
tational complexity of imperative programming languages. Theor. Comput. Sci.
318(1), 139–161 (2004)

18. Kristiansen, L., Voda, P.J.: Programming languages capturing complexity classes.
Nord. J. Comput. 12(2), 89–115 (2005)

19. Dal Lago, U.: A short introduction to implicit computational complexity. In:
Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010-2011. LNCS, vol. 7388, pp.
89–109. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31485-8 3

20. Oitavem, I.: A recursion-theoretic approach to NP. Ann. Pure Appl. Log. 162(8),
661–666 (2011)

21. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
22. Sipser, M.: Introduction to the Theory of Computation. Thomson Course Technol-

ogy, Boston (2006)

http://dx.doi.org/10.1007/BFb0055060
http://dx.doi.org/10.1007/11784180_8
http://dx.doi.org/10.1007/978-3-319-08918-8_13
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.23
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.23
https://arxiv.org/pdf/1701.05382.pdf
http://dx.doi.org/10.1007/978-3-642-31485-8_3

The Essence of Higher-Order Concurrent
Separation Logic

Robbert Krebbers1(B), Ralf Jung2, Aleš Bizjak3, Jacques-Henri Jourdan2,
Derek Dreyer2, and Lars Birkedal3

1 Delft University of Technology, Delft, The Netherlands
mail@robbertkrebbers.nl

2 MPI-SWS, Saarland Informatics Campus, Saarbrücken, Germany
{jung,jjourdan,dreyer}@mpi-sws.org
3 Aarhus University, Aarhus, Denmark

{abizjak,birkedal}@cs.au.dk

Abstract. Concurrent separation logics (CSLs) have come of age, and
with age they have accumulated a great deal of complexity. Previous
work on the Iris logic attempted to reduce the complex logical mecha-
nisms of modern CSLs to two orthogonal concepts: partial commutative
monoids (PCMs) and invariants. However, the realization of these con-
cepts in Iris still bakes in several complex mechanisms—such as weakest
preconditions and mask-changing view shifts—as primitive notions.

In this paper, we take the Iris story to its (so to speak) logical conclu-
sion, applying the reductionist methodology of Iris to Iris itself. Specifi-
cally, we define a small, resourceful base logic, which distills the essence
of Iris: it comprises only the assertion layer of vanilla separation logic,
plus a handful of simple modalities. We then show how the much fancier
logical mechanisms of Iris—in particular, its entire program specification
layer—can be understood as merely derived forms in our base logic. This
approach helps to explain the meaning of Iris’s program specifications
at a much higher level of abstraction than was previously possible. We
also show that the step-indexed “later” modality of Iris is an essential
source of complexity, in that removing it leads to a logical inconsistency.
All our results are fully formalized in the Coq proof assistant.

1 Introduction

In his paper The Next 700 Separation Logics, Parkinson [26] observed that “sep-
aration logic has brought great advances in the world of verification. However,
there is a disturbing trend for each new library or concurrency primitive to
require a new separation logic.” He argued that what is needed is a general
logic for concurrent reasoning, into which a variety of useful specifications can
be encoded via the abstraction facilities of the logic. “By finding the right core
logic,” he wrote, “we can concentrate on the difficult problems.”

The logic he suggested as a potential candidate for such a core concurrency
logic was deny-guarantee [12]. Deny-guarantee was indeed groundbreaking in its
support for “fictional separation”—the idea that even if threads are concurrently
manipulating the same shared piece of physical state, one can view them as oper-
ating on logically disjoint pieces of it and use separation logic to reason modularly
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 696–723, 2017.
DOI: 10.1007/978-3-662-54434-1 26

The Essence of Higher-Order Concurrent Separation Logic 697

about those pieces. It was, however, far from the last word on the subject. Rather,
it spawned a new breed of logics with ever more powerful fictional-separation
mechanisms for reasoning modularly about interference [9,11,16,27,29,30]. Sev-
eral of these also incorporated support for impredicative invariants [4,17,18,28],
which are needed if one aims to verify code in languages with semantically cyclic
features (such as ML or Rust, which support higher-order state).

Although exciting, the progress in this area has come at a cost: as these new
separation logics become ever more expressive, each one accumulates increasingly
baroque and bespoke proof rules, which are primitive in the sense that their
soundness is established by direct appeal to the also baroque and bespoke model
of the logic. As a result, it is difficult to understand what program specifications
in these logics really mean, how they relate to one another, or whether they can
be soundly combined in one reasoning framework. In short, we feel, it is high
time to renew Parkinson’s quest for “the right core logic” of concurrency.

Toward this end, Jung et al. [17,18] recently developed Iris, a higher-order
concurrent separation logic with the goal of simplification and consolidation. The
key idea of Iris is that even the fanciest of the interference-control mechanisms in
recent concurrency logics can be expressed by a combination of two orthogonal
ingredients: partial commutative monoids (PCMs) and invariants. PCMs enable
the user of the logic to roll their own type of fictional (or “logical” or “ghost”)
state, and invariants serve to tie that fictional state to the underlying physical
state of the program. Using just these two mechanisms, Jung et al. showed how
to take complex primitive proof rules from prior logics and derive them within
Iris, leading to the slogan: “Monoids and invariants are all you need.”

Unfortunately, that slogan does not tell the whole story. Although monoids
and invariants do indeed constitute the two main conceptual elements of Iris—
and they are arguably “canonical” in their simplicity and universality—the real-
ization of these concepts in Iris involves a number of interacting logical mecha-
nisms, some of which are simple and canonical, others not so much:

– Ownership assertions, a γ , for logical (ghost) state.
– Named invariant assertions, P ι, asserting that ι is the name of an invariant

that enforces that P holds of some piece of the shared state. Invariants in Iris
are impredicative, which means that P ι can be used anywhere where normal
assertions can be used, e.g., in invariants themselves.

– A necessity modality, �P , which asserts that P holds persistently, as opposed
to an assertion describing exclusive ownership of some resource.

– A “later” modality, � P . To support impredicative higher-order quantification
and recursively defined assertions, the model of Iris employs the technique
of step-indexing [2]. This is reflected in the logic in the form of � P , which
roughly asserts that P will be true after the next step of computation.

– Invariant masks, E , which are sets of invariant names, ι. Masks are used to
track which invariants are enabled (i.e., currently satisfied by some piece of
shared state) at a given point in a program proof.

698 R. Krebbers et al.

– Mask-changing view shifts, P �E1 E2 Q. These describe a kind of logical update
operation, asserting (roughly) that, if the invariants in E1 hold, P can be
transformed to Q, after which point the invariants in E2 hold. These view
shifts are useful for expressing the temporary disabling and re-enabling of
invariants within the verification of an atomic step of computation.

– Weakest preconditions, wpE e {Φ}, which establish that e is safe to execute
assuming the invariants in E hold, and that if e computes to a value v, then
Φ(v) holds. Hoare triples are encodable in terms of weakest preconditions.

Associated with each of these logical mechanisms are a significant number of
primitive proof rules. For certain features, such as the � P modality, the rules
are mostly standard, and the model is very simple. In contrast, the primitive
proof rules for weakest preconditions and view shifts are non-standard, and the
model of these features is extremely involved, making the justification of the
primitive rules—not to mention the very meaning of Iris’s Hoare-style program
specifications—painfully difficult to understand or explain. Indeed, the previous
Iris papers [17,18] have avoided even attempting to present the formal model of
program specifications in any detail at all.

In the present paper, we rectify this situation by taking the Iris story to
its (so to speak) logical conclusion—that is, by applying the reductionist Iris
methodology to Iris itself! Specifically, we present a small, resourceful base logic,
which distills the essence—the minimal, primitive core—of Iris: it comprises only
the assertion layer of vanilla separation logic (i.e., including P ∗Q but not Hoare
triples) extended with �P, � P , and a simple, novel, monadic update modality,
|�P . Using these basic mechanisms, the fancier mechanisms of mask-changing
view shifts and weakest preconditions—and their associated proof rules—can all
be derived within the logic. And by expressing the fancier mechanisms as derived
forms, we can now explain the meaning of Iris’s program specifications at a much
higher level of abstraction than was previously possible.

In Sect. 2, we begin by presenting from first principles the reduced base logic
that constitutes the primitive core of our new version of Iris (version 3.0). Then,
in Sect. 3, we explain step-by-step how to encode weakest preconditions in the
Iris 3.0 base logic. Next, in Sect. 4, we show how our base logic is sufficient to
derive the remaining mechanisms and proof rules of full Iris, including named
invariants and mask-changing view shifts.

On the negative side, there is one point of unfortunate complexity that Iris 3.0
inherits from earlier versions without simplification: the aforementioned “later”
modality, � P . The Iris rule for accessing an invariant P ι says that when we
gain control of the resource satisfying the invariant, we only learn � P , not P . It
has proven very difficult to explain to users of Iris the role of � here because it
boils down to “the model made me do it”: the � reflects a corresponding place
in the existing step-indexed model of Iris where the step-index is decreased to
ensure a well-founded construction. Moreover, � P is in general strictly weaker
than P , and experience working with Iris has shown that in certain cases this
weakness forces the user of the logic into painful workarounds. In Sect. 5, we

The Essence of Higher-Order Concurrent Separation Logic 699

show that in the proof rule for accessing an invariant, the use of � (or something
like it) is in fact essential, because if � is removed from the rule, Iris becomes
inconsistent. This provides evidence that � is a kind of necessary evil.

Finally, in Sect. 6, we discuss related work, and in Sect. 7, we conclude.
All results in this paper have been formalized in the Coq proof assistant [1].

2 The Iris 3.0 Base Logic

The goal of this section is to introduce the Iris 3.0 base logic, which is the core
logic that all of Iris rests on: all its program-logic mechanisms will be defined in
terms of just the primitive assertions of our base logic.

The Iris base logic is a higher-order logic with a couple of extensions, most
of which are standard. We will discuss each of these extensions in turn. The
primitive logical assertions are defined by the following grammar:

P,Q,R ∈ Prop ::= True | False | t = u | P ∧ Q | P ∨ Q | P ⇒ Q | ∀x. P | ∃x. P

| P ∗ Q | P −∗ Q | Own(a) | V(a) | �P | |�P | μx. P | � P

Since the logic is higher-order, the full grammar of (multi-sorted) terms also
involves the usual connectives of the simply-typed lambda calculus. This is com-
mon practice; the full details are spelled out in the technical appendix [1].

The rules for the logical entailment1 P 	 Q are displayed in Fig. 1. Note that
P
	 Q is shorthand for having both P 	 Q and Q 	 P .

We omit the ordinary rules for intuitionistic higher-order logic with equality,
which are standard and displayed in the appendix [1]. The remaining connectives
and proof principles fall into two broad categories: those dealing with ownership
of resources (Sects. 2.1–2.5) and those related to step-indexing (Sects. 2.6–2.7).

2.1 Separation Logic

The connectives ∗ and −∗ of bunched implications [25] make our base logic a
separation logic: they let us reason about ownership of resources. The key point
is that P ∗ Q describes ownership of a resource that can be separated into two
disjoint pieces, one satisfying P and one satisfying Q. This is in contrast to P ∧Q,
which describes ownership of a resource satisfying both P and Q.

For example, consider the resources owned by different threads in a concur-
rent program. Because these threads operate concurrently, it is crucial that their
ownership is disjoint. As a consequence, separating conjunction is the natural
operator to combine the ownership of concurrent threads.

Together with separating conjunction, we have a second form of implication:
the magic wand P −∗ Q. It describes ownership of “Q minus P”, i.e., it describes
resources such that, if you (disjointly) add resources satisfying P , you obtain
resources satisfying Q.
1 The full judgment is of the shape Γ | P � Q, where Γ assigns types to free variables.

However, since Γ only plays a role in the rules for quantifiers, we omit it.

700 R. Krebbers et al.

Laws of (affine) bunched implications.

True ∗ P �� P

P ∗ Q � Q ∗ P

(P ∗ Q) ∗ R � P ∗ (Q ∗ R)

∗-mono
P1 � Q1 P2 � Q2

P1 ∗ P2 � Q1 ∗ Q2

−∗-intro
P ∗ Q � R

P � Q −∗ R

−∗-elim
P � Q −∗ R

P ∗ Q � R

Laws for resources and validity.

own-op
Own(a) ∗ Own(b) �� Own(a · b)

own-unit
True � Own(ε)

own-core
Own(a) � �Own(|a|)

own-valid
Own(a) � V(a)

valid-op
V(a · b) � V(a)

valid-always
V(a) � � V(a)

Laws for the basic update modality.

upd-mono
P � Q

|�P � |�Q
upd-intro
P � |�P

upd-trans
|�|�P � |�P

upd-frame
Q ∗ |�P � |�(Q ∗ P)

upd-update
a � B

Own(a) � |�∃b ∈ B.Own(b)

Laws for the always modality.

�-mono
P � Q

� P � � Q
�-elim
� P � P

True � �True

� (P ∧ Q) � � (P ∗ Q)

� P ∧ Q � � P ∗ Q

� P � � � P

∀x. � P � � ∀x. P

� ∃x. P � ∃x. � P

Laws for the later modality.

�-mono
P � Q

� P � � Q

Löb
(� P ⇒ P) � P

∀x. � P � � ∀x. P

� ∃x. P � �False ∨ ∃x. � P

� (P ∗ Q) �� � P ∗ � Q

� � P �� � � P

Laws for timeless assertions.

�-timeless
� P � �False ∨ (�False ⇒ P)

�-own
�Own(a) � ∃b.Own(b) ∧ �(a = b)

Fig. 1. Proof rules of the Iris 3.0 base logic.

2.2 Resource Algebras

The purpose of the Own(a) connective is to assert ownership of the resource a.
Before we go on introducing this connective, we need to answer the following
question: what is a resource?

The Iris base logic does not answer this question by fixing a particular set of
resources. Instead, the set of resources is kept general, and it is up to the user

The Essence of Higher-Order Concurrent Separation Logic 701

of the logic to make a suitable choice. All the logic demands is that the set of
resources forms a unital resource algebra (uRA), as defined in Fig. 2.

A resource algebra (RA) is a tuple (M, V ⊆ M, |−| : M → M?, (·) : M × M → M)
satisfying:

∀a, b, c. (a · b) · c = a · (b · c) ∀a, b. a · b = b · a

∀a, b. (a · b) ∈ V ⇒ a ∈ V ∀a. |a| ∈ M ⇒ |a| · a = a

∀a. |a| ∈ M ⇒ ||a|| = |a| ∀a, b. |a| ∈ M ∧ a b ⇒ |b| ∈ M ∧ |a| |b|
where M? M with a? · ⊥ ⊥ · a? a?

a b ∃c ∈ M. b = a · c

a B ∀c? ∈ M?. a · c? ∈ V ⇒ ∃b ∈ B. b · c? ∈ V
a b a {b}

A unital resource algebra (uRA) is a resource algebra M with an element ε satisfying:

ε ∈ V ∀a ∈ M. ε · a = a |ε| = ε

Fig. 2. Resource algebras.

Resource algebras are similar to partial commutative monoids (PCMs), which
are often used to describe ownership in concurrent separation logics because:

– Ownership of different threads can be composed using the · operator.
– Composition of ownership is associative and commutative, reflecting the asso-

ciative and commutative semantics of parallel composition.
– Combinations of ownership that do not make sense are ruled out by partiality,

e.g., multiple threads claiming to have ownership of an exclusive resource.

However, there are some differences between RAs and PCMs:

1. Instead of partiality, RAs use validity to rule out invalid combinations of
ownership. Specifically, there is a subset V of valid elements. As shown pre-
viously [17], this take on partiality is necessary when defining higher-order
ghost state, which we will need for modeling invariants in Sect. 4.3.

2. Instead of having one “unit” that acts as the identity for every element, RAs
have a partial function |−| assigning the (duplicable) core |a| to each element
a. The core of an RA is a strict generalization of the unit of a PCM: the core
can be different for different elements, and since the core is partial, there can
actually be elements of the RA for which there is no identity element.

Although the Iris base logic is parameterized by a uRA (that is, an RA with
a single, global unit), we do not demand that every RA have a unit because we
typically compose RAs from smaller parts. Requiring all of these “intermediate”
RAs to be unital would render many of our compositions impossible [17].

Let us now give some examples of RAs; more appear in Sects. 3.3 and 4.2.

702 R. Krebbers et al.

Exclusive. Given a set X, the task of the exclusive RA Ex(X) is to make sure
that one party exclusively owns a value x ∈ X. (We are using a datatype-like
notation to declare the possible elements of Ex(X).)

Ex(X) � ex(x : X) | � V � {ex(x) | x ∈ X} |ex(x)| � ⊥

Composition is always undefined (using the invalid dummy element �) to ensure
that ownership is exclusive, i.e., exactly one party has full control over the
resource. This RA does not have a unit.

Finite Partial Function. Given a set of keys K and an RA M , the finite partial
function uRA K

fin−⇀ M is defined by lifting the core and the composition operator
pointwise, and by defining validity as the conjunction of pointwise validities. The
unit ε is defined to be the empty partial function ∅.

2.3 Resource Ownership

Having completed the discussion of RAs, we now come back to the base logic and
its connective Own(a), which describes ownership of the RA element a. It forms
the “primitive” form of ownership in our logic, which can then be composed
into more interesting assertions using the previously described connectives. The
most important fact about ownership is that separating conjunction “reflects”
the composition operator of RAs into the logic (own-op).

Besides the Own(a) connective, we have the primitive connective V(a), which
reflects validity of RA elements into the logic. Note that ownership is connected
to validity: the rule own-valid says that only valid elements can be owned.

2.4 Resource Updates

So far, resources have been static: the logic provides assertions to reason about
resources you own, the consequences of that ownership, and how ownership can
be disjointly separated. The (basic) update modality |�P , however, lets you talk
about what you could own after performing an update to what you do own.

Updates to resources are called frame-preserving updates and can be per-
formed using the rule upd-update. We can perform a frame-preserving update
a � B if for any resource (called a frame) af such that a · af ∈ V, there exists
a resource b ∈ B such that b · af ∈ V. If we think of those frames as being the
resources owned by other threads, then a frame-preserving update is guaranteed
not to invalidate the resources of concurrently-running threads. By doing only
frame-preserving updates, we know we will never “step on anybody else’s toes”.

Before discussing how frame-preserving updates are reflected into the logic,
we give some examples of frame-preserving updates. Since ownership in the exclu-
sive RA is exclusive, there is nobody whose assumptions could be invalidated by
changing the value of the resource. To that end, we have ex(x) � ex(y) for any
x and y. The updates for the finite partial functions K

fin−⇀ M are as follows:

The Essence of Higher-Order Concurrent Separation Logic 703

fpfn-update
a �M B

f [i := a] � {f [i := b] | b ∈ B}

fpfn-alloc
a ∈ V K infinite
∅ � {[i := a] | i ∈ K}

The first rule witnesses pointwise lifting of updates on M . The second rule is
more interesting: it allows us to allocate a fresh slot in the finite partial function.
This is always possible because only finitely many indices i ∈ K will be used at
any given point in time.

The update modality reflects frame-preserving updates into the logic, in the
sense that |�P asserts ownership of resources that can be updated to resources
satisfying P . The rule upd-update witnesses this relationship, while the remain-
ing proof rules essentially say that |� is a strong monad with respect to sepa-
rating conjunction [19,20].

This gives rise to an alternative interpretation of the basic update modal-
ity: we can think of |�P as a thunk that captures some resources in its envi-
ronment and that, when executed, will “return” resources satisfying P . The
various proof rules then let us perform additional reasoning on the result of the
thunk (upd-mono), create a thunk that does nothing (upd-intro), compose two
thunks into one (upd-trans), and add resources to those captured by the thunk
(upd-frame).

2.5 The Always Modality

The intuition for the always modality �P is that P holds without asserting
any exclusive ownership. This is useful because an assumption � P can be used
arbitrarily often, i.e., it cannot be “used up”. In particular, while P −∗ Q is a
“linear implication” and can only be applied once, �(P −∗ Q) can be applied
arbitrarily often. We use this in the encoding of Hoare triples in Sect. 3.2.

We call an assertion P persistent if proofs of P can never assert exclusive
ownership, which formally means it enjoys P 	 �P . As soon as either P or Q is
persistent, their separating conjunction (P ∗Q) and normal conjunction (P ∧Q)
coincide, thus enabling one to use “normal” intuitionistic reasoning.

Under which circumstances is Own(a) persistent? RAs provide a flexible
answer to this: the core |a| defines the duplicable part of a, and hence Own(|a|)
does not assert any exclusive ownership, which is reflected into the logic using
the rule own-core. In Sect. 4.2, we will consider an example of an RA with a
non-trivial core, and we will make use of the fact that Own(|a|) is persistent.

2.6 The Later Modality and Guarded Fixed-Points

Although RAs provide a powerful way to instantiate our logic with the user’s
custom type of resources, they have an inherent limitation: the user-chosen RA
must be defined a priori. But what if the user wants to define their resources in
terms of the assertions of the logic? In prior work [17], we called this phenomenon
higher-order ghost state, and showed how to incorporate it into the Iris 2.0 logic.
Iris 3.0 inherits higher-order ghost state from Iris 2.0 without change.

704 R. Krebbers et al.

The challenge of supporting higher-order ghost state is that the user-chosen
RA depends on the type of propositions of our logic, which in turn depends
on the user-chosen RA. In Iris 2.0, we showed how to cut this circularity using
a novel algebraic structure called a CMRA (“camera”), which synthesizes the
features of an RA together with a step-indexed structure [2]. Since a proper
understanding of CMRAs is not needed in order to appreciate the contribution
of the present paper, we refer the reader to the Iris 2.0 paper [17] for details, and
instead focus briefly here on how the presence of higher-order ghost state affects
our base logic. (We will see a concrete instance of higher-order ghost state in
Sect. 4.2, where we use it to encode impredicative invariants.)

The step-indexing aspect of CMRAs is internalized into the logic by adding
a new modality: the later modality, � P [3,23]. Intuitively, � P asserts that P
holds “at the next step-index” (or “one step later”). In the definition of weakest
preconditions in Sect. 3.3, we connect � to computation steps, allowing one to
think of � P as saying that P holds at the next step of computation.

Beyond higher-order ghost state, step-indexing allows us to include a fixed-
point operator μx. P into the logic, which can be used to define recursive predi-
cates without any restriction on the variance of the recursive occurrences of x in
P . Instead, all recursive occurrences must be guarded : they have to appear below
a later modality �. In Sect. 3, we will show how guarded recursion is used for
defining weakest preconditions. Moreover, as shown in [28], guarded recursion is
useful to define specifications for higher-order concurrent data structures.

A crucial proof rule for � is Löb, which facilitates proving properties about
fixed-points: we can essentially assume that the recursive occurrences are already
proven correct (as they are under a later). Note that many of the usual rules
for later, such as introduction P 	 � P) and commutativity with other operators
(�(P ∧ Q)
	 � P ∧ � Q) are derivable from the rules in Fig. 1.

2.7 Timeless Assertions

There are some occasions where we inevitably end up with hypotheses below a
later. An example is the Iris rule for accessing invariants (wp-inv in Sect. 4).
Although one can always introduce a later, one cannot just eliminate a later,
so the later may make certain reasoning steps impossible. However, as we will
prove in Sect. 5, it is crucial for logical consistency that the later is present in
wp-inv.

Still, for many assertions, their semantics is independent of step-indexing, so
adding a � in front of them does not really “change” anything. When accessing
an invariant containing such an assertion, we thus do not want the later to be
in the way. Ideally, for such assertions, we would like to have � P 	 P . However,
that does not work: indeed, at step-index 0, � P trivially holds and, consequently,
does not imply P . Instead, we say that an assertion P is timeless when � P 	 P ,
where the modality is defined by P � P ∨�False. We call this new modality
“except 0”: it states that the given assertion holds at all step-indices greater
than 0. Under this modality, we can strip away a later from a timeless assertion,
i.e., given a timeless P , to prove � P 	 Q, it is sufficient to prove P 	 Q.

The Essence of Higher-Order Concurrent Separation Logic 705

Using the rules for timeless assertions in Fig. 1, we can prove that some fre-
quently occurring assertions are timeless. In particular, if a CMRA is discrete—
i.e., if it degenerates to a plain RA that ignores the step-indexing structure, as
is the case for many types of resources—then equality, ownership and validity
of such resources are timeless. Furthermore, most of the connectives of our logic
(not including �) preserve timelessness.

2.8 Consistency

Logical consistency is usually stated as True �	 False, i.e., from a closed context
one cannot prove a contradiction. However, when building a program logic within
our base logic, we wish to prove that the postconditions of our Hoare triples
actually represent program behavior (Sect. 4.6), so we need a stronger statement:

Theorem 2.1 (Soundness of first-order interpretation). Given a first-
order proposition φ (not involving ownership, higher-order quantification, nor
any of the modalities) and True 	 (|��)n φ, then the “standard” (meta-logic)
interpretation of φ holds. Here, (|��)n is notation for nesting |�� n times.

The proposition φ should be a first-order predicate to ensure it can be used
both inside our logic and at the meta-level. Furthermore, the theorem makes
sure that even when reasoning below any combination of modalities, we cannot
prove a contradiction. Consistency, i.e., True �	 False, is a trivial consequence of
this theorem: just pick φ = False and n = 0.

Theorem 2.1 is proven by defining a suitable semantic domain of assertions,
interpreting all connectives into that domain, and proving soundness of all proof
rules. For further details, we refer the reader to [1,17].

3 Weakest Preconditions

This section shows how to encode a program logic in the Iris base logic. Usu-
ally, program logics are centered around Hoare triples, but instead of directly
defining Hoare triples in the base logic, we first define the notion of a weakest
precondition. There are two reasons for defining Hoare triples in terms of the
weakest precondition connective: First, weakest preconditions are more primi-
tive and, as such, more natural to encode. Second, weakest preconditions are
more convenient for performing interactive proofs with Iris [21].

We will first give some intuition about weakest preconditions and how to work
with them. After that, we present the encoding of weakest preconditions in three
stages, gradually adding support for reasoning about state and concurrency. For
simplicity, we use a concrete programming language in this section. The version
including all features of Iris for an arbitrary language is given in Sect. 4.

706 R. Krebbers et al.

3.1 Programming Language

For the purpose of this example, we use a call-by-value λ-calculus with references
and fork. The syntax and semantics are given in Fig. 3.

Head-reduction (e, σ) →h (e′, σ′,
ef) is defined on pairs (e, σ) consisting of
an expression e and a shared heap σ (a finite partial map from locations to
values). Moreover,
ef is a list of forked off expressions, which is used to define
the semantics of fork {e}. The head-reduction is lifted to a per-thread reduction
(e, σ) → (e′, σ′,
ef) using evaluation contexts. We define an expression e to be
reducible in a shared heap σ, and we note red(e, σ), if it can make a thread-local
step. The thread-pool reduction (T, σ) →tp (T ′, σ′) is an interleaving semantics
where the thread-pool T denotes the existing threads as a list of expressions.

Syntax: v ∈ Val ::= () | | λx.e

e ∈ Expr ::= v | x | e1(e2) | {e} | (e) | ! e | e1 ← e2

K ∈ Ctx ::= • | K(e) | v(K) | (K) | ! K | K ← e | v ← K

Head reduction:

((λx.e)v, σ) →h (e[v/x])

(!) →h () if σ() = v

(← w, σ) →h ((), σ[:= w]) if σ() = v

((v), σ) →h ([:= v]) if σ() = ⊥
({e} , σ) →h ((), σ, e)

Thread-local reduction:

(e, σ) →h (e , σ ef)

(K[e], σ) → (K[e], σ ef)

Thread-pool semantics:

(e, σ) → (e , σ ef)

(T1; e;T2, σ) →tp (T1; e ;T2; ef , σ)

fork ref

ref

ref

fork

Fig. 3. Lambda calculus with references and fork.

3.2 Proof Rules

Before coming to the actual contribution of this section—which is the encoding
of weakest preconditions using our base logic in Sect. 3.3—we give some idea of
how to reason using weakest preconditions by discussing its proof rules. These
proof rules are inspired by [15], but presented in weakest precondition style.

Given a predicate Φ : Val → Prop, called the postcondition, the connective
wp e {Φ} gives the weakest precondition under which all executions of e are safe,
and all return values v of e satisfy the postcondition Φ(v). For an execution to
be safe, we demand that it does not get stuck, which in the case of our language
means the program must never access invalid locations.

Figure 4 shows some rules of the wp e {Φ} connective. To reason about state,
we use the well-known points-to assertion � �→ v, which states that we exclusively
own the location �, and that it currently stores value v. As part of defining
weakest preconditions, we will also have to define the points-to assertion.

As usual in a weakest precondition style system [10], the postcondition of the
conclusion of each rule involves an arbitrary predicate Φ. For example, imagine

The Essence of Higher-Order Concurrent Separation Logic 707

we want to prove � �→ v ∗ P 	 wp (� ← w) {Φ}. The rule wp-store tells us what
we have to show about Φ for this to hold:

P ∗ � �−→ w 	 Φ()
Wand-intro

P 	 � �−→ w −∗ Φ()
Sep-mono, �-intro

� �→ v ∗ P 	 � �−→ v ∗ �(� �−→ w −∗ Φ())
wp-store

� �→ v ∗ P 	 wp (� ← w) {Φ}
Here, we use −∗ mono to show that we own the location � – this should not be
surprising; in a separation logic, we have to demonstrate ownership of a location
to access it. Furthermore, using our remaining resources P we have to prove
� �−→ w −∗ Φ(). It does not matter what Φ says for values other than (), which
corresponds to the fact that the store expression terminates with ().

Notice the end-to-end effect of applying this little derivation: we had to show
that we own � �→ v, and it got replaced in our context with � �→ w. However, this
was all expressed in the premise of wp-store (and similarly for the other rules),
with the conclusion applying to an arbitrary postcondition Φ. We could have
equivalently written the rule as � �−→ v −∗ wp (� ← w) {� �−→ w}, but applying rules
in such a style requires using the rules of framing (wp-frame) and monotonicity
(wp-mono) for every instruction. We thus prefer the style of rules in Fig. 4.

wp-mono
∀v. Φ(v) Ψ(v)

wp e {Φ wp e {Ψ}

wp-frame
P ∗ wp e {Φ}
wp e {P ∗ Φ}

wp-val
Φ(v)

wp v {Φ}

wp-bind
wp e {v.wp K[v] {Φ}}

wp K[e] {Φ}

wp-fork
() ∗ wp e {v.True}
wp {e} {Φ}

wp-λ
wp e[v/x] {Φ}

wp (λx.e)v {Φ}

wp-load
→ v ∗ (→ v −∗ Φ(v))

wp ! {Φ}
wp-store

→ v ∗ (→ w −∗ Φ())

wp (← w) {Φ}

wp-alloc
(∀ → v −∗ Φ())

wp (v) {Φ}

fork

ref

Fig. 4. Rules for weakest preconditions.

Hoare Triples. Traditional Hoare triples can be defined in terms of weakest
preconditions as {P } e {Φ} � �(P −∗ wp e {Φ}). The � modality ensures that the
triple asserts no exclusive ownership, and as such, can be used multiple times.

3.3 Definition of Weakest Preconditions

We now discuss how to define weakest preconditions using the Iris base logic,
proceeding in three stages of increasing complexity.

708 R. Krebbers et al.

First Stage. To get started, let us assume the program we want to verify makes
no use of fork or shared heap access. The idea of wp e {Φ} is to ensure that given
any reduction (e, σ) → · · · → (en, σn), either (en, σn) is reducible, or the program
terminated, i.e., en is a value v for which we have Φ(v). The natural candidate
for encoding this is using the fixed-point operator μx. P of our logic. Consider
the following:

wp e {Φ} � (e ∈ Val ∧ Φ(e)) (return value)

∨(
e /∈ Val ∧ ∀σ. red(e, σ) (safety)

∧ � (∀e2, σ2. (e, σ) → (e2, σ2, ε) −∗ wp e2 {Φ}) (preservation)
)

Weakest precondition is defined by case-distinction: either the program has
already terminated (e is a value), in which case the postcondition should hold.
Alternatively, the program is not a value, in which case there are two require-
ments. First, for any possible heap σ, the program should be reducible (called
program safety). Second, if the program makes a step, then the weakest precon-
dition of the reduced program e2 must hold (called preservation).

Note that the recursive occurrence wp e2 {Φ} appears under a �-modality, so
the above can indeed be defined using the fixed-point operator μ. In some sense,
this “ties” the steps of the program to the step-indices implicit in the logic, by
adding another � for every program step.

So, how useful is this definition? The rules wp-val and wp-λ are almost
trivial, and using Löb induction we can prove wp-mono, wp-frame and wp-
bind. We can thus reason about programs that do not fork or make use of the
heap.

But unfortunately, this definition cannot be used to verify programs involving
heap accesses: the states σ and σ2 are universally quantified and not related to
anything. The program must always be able to proceed under any heap, so we
cannot possibly prove the rules of the load, store and allocation constructs.

The usual way to proceed in constructing a separation logic is to define the
pre- and post-conditions as predicates over states, but that is not the direction
we take. After all, our base logic already has a notion of “resources that can be
updated”—i.e., a notion of state—built in to its model of assertions. Of course
we want to make use of this power in building our program logic.

Second Stage: Adding State. We now consider programs that access the
shared heap but still do not fork. To use the resources provided by the Iris base
logic, we have to start by thinking about the right RA. An obvious candidate
would be to use Loc fin−⇀ Ex(Val) (which is isomorphic to finite partial functions
with composition being disjoint union) and define � �−→ v as Own([� := ex(v)]).
However, that leaves us with a problem: how do we tie those resources to the
actual heap that the program executes on? We have to make sure that from
owning � �−→ v, we can actually deduce that � is allocated in σ.

The Essence of Higher-Order Concurrent Separation Logic 709

To this end, we will actually have two heaps in our resources, both elements of
Loc fin−⇀ Ex(Val). The authoritative heap • σ is managed by the weakest precon-
dition, and tied to the physical state occurring in the program reduction. There
will only ever be one authoritative heap resource, i.e., we want • σ · •σ′ to be
invalid. At the same time, the heap fragments ◦ σ will be owned by the program
itself and used to give meaning to � �−→ v. These fragments can be composed the
usual way (◦ σ ·◦σ′ = ◦ (σ�σ′)). Finally, we need to tie these two pieces together,
making sure that the fragments are always a “part” of the authoritative state:
if • σ · ◦σ′ is valid, then σ′ � σ should hold.

This is called the authoritative RA, Auth(Loc fin−⇀ Ex(Val)) [18]. Before
we explain how to define the authoritative RA, let us see why it is useful
in the definition of weakest preconditions. The new definition is (changes are
in red):

wp e {Φ} � (e ∈ Val ∧ |�Φ(e))

∨(
e /∈ Val ∧ ∀σ.Own(• σ) −∗ |� red(e, σ)

∧ � (∀e2, σ2. (e, σ) → (e2, σ2, ε) −∗ |�Own(• σ2) ∗ wp e2 {Φ})
)

� �−→ v � Own(◦ [� := v])

The difference from the first definition is that the second disjunct (the one
covering the case of a program that can still reduce) requires proving safety
and preservation under the assumption that the authoritative heap • σ matches
the physical one. Moreover, when the program makes a step to some new
state σ2, the proof must be able to produce a matching authoritative heap.
Finally, the basic update modality permits the proof to perform frame-preserving
updates.

To see why this is useful, consider proving wp-load, the weakest precondi-
tion of ! �. After picking the right disjunct and introducing all assumptions, we
can combine the assumptions made by the rule, � �→ v, with the assumptions pro-
vided by the definition of weakest preconditions to obtain Own(• σ · ◦ [� := v]).
By own-valid, we learn that this RA element is valid, which (as discussed
above) implies [� := v] � σ, so σ(�) = v. In other words, because the RA ties
the authoritative heap and the heap fragments together, and because weakest
precondition ties the authoritative heap and the physical heap used in program
reduction together, we can make a connection between � �→ v and the physical
heap.

Completing the proof of safety and progress now is straightforward. Since all
possible reductions of ! � do not change the heap, we can produce the authorita-
tive heap • σ2 by just “forwarding” the one we got earlier in the proof. In this
case, we did not even make use of the fact that we are allowed to perform frame-
preserving updates. This is, however, necessary to prove weakest preconditions
of operations that actually change the state (like allocation or storing), because
in these cases, the authoritative heap needs to be changed likewise.

710 R. Krebbers et al.

Authoritative RA. To complete the definition, we need to define the author-
itative RA [18]. We can do so in general (i.e., the definition is not specific to
heaps), so assume we are given some uRA M and let:

Auth(M) � Ex(M)? × M

V � {(⊥, b) | b ∈ V} ∪
{

(ex(a), b)
∣
∣
∣ a ∈ V ∧ b � a)

}

(x1, b1) · (x2, b2) � (x1 · x2, b2 · b2)

|(x, b)| � (⊥, |b|)

With a ∈ M , we write • a for (ex(a), ε) to denote authoritative ownership of a
and ◦ a for (⊥, a) to denote fragmentary ownership of a.

It can be easily verified that this RA has the three key properties discussed
above: ownership of • a is exclusive, ownership of ◦ a composes like that of a, and
the two are tied together in the sense that validity of • a·◦ b implies b � a. Beyond
this, it turns out that we can show the following frame-preserving updates that
are needed for wp-store and wp-alloc:

• σ · ◦ [� := v] � • σ[� :=w] · ◦ [� := w]
• σ � • σ[� :=w] · ◦ [� := w] if � /∈ dom(σ)

Third Stage: Adding Fork. Our previous definition of wp e {Φ} only talked
about reductions (e, σ) → (e2, σ2, ε) which do not fork off threads, and hence
one could not prove wp-fork. This new definition lifts this limitation:

wp e {Φ} � (e ∈ Val ∧ |�Φ(e))

∨(
e /∈ Val ∧ ∀σ.Own(• σ) −∗ |� red(e, σ)
∧ � (∀e2, σ2,
ef . (e, σ) → (e2, σ2,
ef) −∗ |�

Own(• σ2) ∗ wp e2 {Φ} ∗∗e′∈�ef
wp e′ {v.True})

)

� �−→ v � Own(◦ [� := v])

Instead of just demanding a proof of the weakest precondition of the thread e
under consideration, we also demand proofs that all the forked-off threads
ef are
safe. We do not care about their return values, so the postcondition is trivial.

This encoding shows how much mileage we get out of building on top of the
Iris base logic. Because said logic supports ownership and step-indexing, we can
get around explicitly managing resources and step-indices in the weakest pre-
condition definition. We do not have to explicitly account for the way resources
are subdivided between the current thread and the forked-off thread. Instead,
all we have to do is surgically place some update modalities, a single �, and
some standard separation logic connectives. This keeps the definition of, and the
reasoning about, weakest preconditions nice and compact.

The Essence of Higher-Order Concurrent Separation Logic 711

4 Recovering the Iris Program Logic

In this section, we show how to encode the reasoning principles of full Iris [17,18]
within our base logic. The main remaining challenge is to encode invariants,
which are the key feature for reasoning about sharing in concurrent programs [5].

An invariant is simply a property that holds at all times: each thread access-
ing the state may assume the invariant holds before each step of its computation,
but it must also ensure that it continues to hold after each step. Since we work in
a separation logic, the invariant does not just “hold”; it expresses ownership of
some resources, and threads accessing the invariant get access to those resources.
The rule that realizes this idea looks as follows:

wp-inv
� P 	 wpE\{ι} e {v. � P ∗ Φ(v)} atomic(e) ι ∈ E

P ι 	 wpE e {Φ}
This rule is quite a mouthful, so we will go over it carefully. First of all, there is
a new assertion P ι, which states that P (an arbitrary assertion) is maintained
as an invariant. The rule says that having this assertion in the context permits
us to access the invariant, which involves acquiring ownership of � P before the
verification of e and giving back ownership of � P after said verification. Cru-
cially, we require that e is atomic, meaning that computation is guaranteed to
complete in a single step. This is essential for soundness: the rule allows us to
temporarily use and even break the invariant, but after a single atomic step (i.e.,
before any other thread could take a turn), we have to establish it again.

The � modality arises because of the inherently cyclic nature (i.e., impred-
icativity) of our invariants: P can be any assertion, including assertions about
invariants. We will show in Sect. 5 that removing the � leads to an unsound logic.

Finally, we come to the mask E and invariant name ι: they avoid the issue of
reentrancy. We have to make sure that the same invariant is not accessed twice
at the same time, as that would incorrectly duplicate the underlying resource.
To this end, each invariant has a name ι identifying it. Furthermore, weakest
preconditions are annotated with a mask to keep track of which invariants are
still enabled. Accessing an invariant removes its name from the mask, ensuring
that it cannot be accessed again in a nested fashion.

In order to recover the full power of the Iris program logic (including wp-
inv), we start this section by lifting a limitation of the base logic, namely, that
it is restricted to a single uRA of resources (Sect. 4.1). Then we explain how
resources are used to keep track of invariants (Sect. 4.2), and define world satis-
faction, a protocol enforcing how invariants are maintained (Sect. 4.3). We follow
on by defining the fancy update modality, which supports accessing invariants
(Sect. 4.4), before finally giving an enriched version of weakest preconditions that
validates wp-inv (Sect. 4.5).

4.1 Dynamic Composable Resources

The base logic as described in Sect. 2 is limited to resources formed by a single
RA. However, for the construction in this section, we will need multiple RAs,

712 R. Krebbers et al.

so we need to find a way to lift this limitation. Furthermore, we frequently need
to use not just a single instance of an RA, but multiple, entirely independent
instances (e.g., one instance of the RA per instance of a data structure).

As prior work already observed [17,18], it turns out that RAs themselves
are already flexible enough to solve this, we just have to pick the right RA.
Concretely, assume we are given a family of RAs (Mi)i∈I indexed by some finite
index set I. Then, we instantiate our base logic with the following global resource
algebra:

M �
∏

i∈I
N

fin−⇀ Mi

First of all, we use a finite partial function to obtain an arbitrary number of
instances of any of the given RAs. Furthermore, we take the product over the
entire family to make all the chosen RAs available inside the logic.

Typically, we will only own some resource a in one particular instance named
γ ∈ N of a given RA Mi. To express that, we introduce the following notation:

a : Mi
γ � Own((. . . , ∅, i : [γ := a], ∅, . . .))

Often, we will even leave away the Mi because it is clear from context.
All the rules about Own(·) can now also be derived for · ·. In addition, we

obtain a rule to create new instances of RAs with an arbitrary valid initial state:

a ∈ VMi
	 |�∃γ. a : Mi

γ

Obtaining Modular Proofs. Even with multiple RAs at our disposal, it may
still seem like we have a modularity problem: every proof is done in an instanti-
ation of Iris with some particular family of RAs. As a result, if two proofs make
different choices about the RAs, they are carried out in entirely different logics
and hence cannot be composed.

To solve this problem, we generalize our proofs over the family of RAs that
Iris is instantiated with. So in the following, all proofs are carried out in Iris
instantiated with some unknown (Mi)i∈I . If the proof needs a particular RA, it
further assumes that there exists some j s.t. Mj is the desired RA. Composing
two proofs is thus easily possible; the resulting proof works in any family of RAs
that contains all the particular RAs needed by either proof. Finally, if we want
to obtain a “closed form” of some particular proof in a concrete instance of Iris,
we simply construct a family of RAs that contains everything the proof needs.

4.2 A Registry of Invariants

Since we wish to be able to share the P ι assertion among threads, we will need
a central “invariant registry” that keeps track of all invariants and witnesses the
fact that P has been registered as invariant.

The Essence of Higher-Order Concurrent Separation Logic 713

In Sect. 3.3, we already saw the authoritative resource algebra. This RA
allowed us to have an “authoritative” registry with fragments shared by various
parties. However, for the case of invariants, we are not interested in expressing
exclusive ownership of invariants, like we did for heap locations. Instead, the
entire point of invariants is sharing, so we need that everybody agrees on what
the invariant with a given name is. An RA for agreement on a set X is defined
by:

Ag(X) � ag(x : X) | � V � {ag(x) | x ∈ X}

ag(x) · ag(y) �

⎧
⎨

⎩

ag(x) if x = y

� otherwise
|ag(x)| � ag(x)

The key property of this RA is that from ag(x) ·ag(y) ∈ V, we can deduce x = y.
We can then compose our RAs as follows to obtain an “invariant registry”:

inv � Auth(N fin−⇀ Ag(�Prop))

This construction is an example of higher-order ghost state, which we already
mentioned in Sect. 2.6. The Prop here is actually a recursive occurrence of logical
assertions within resources, which has to be guarded by a “type-level later” �.
Furthermore, to make this really work, the agreement RA must be generalized
to a proper CMRA (Sect. 2.6), so the actual definition is more involved. See the
Iris 2.0 paper for details [17].

For present purposes, the only relevant outcome is the following assertions:

– ◦ [ι :=P] γ , stating that P is registered as an invariant with name ι; and

– • I γ , stating that I ∈ N
fin−⇀ Prop is the full map of all registered invariants.

These assertions enjoy the following three rules:

◦ [ι := P] γinv 	 � ◦ [ι :=P] γinv (invreg-persist)

• I γinv ∗ ◦ [ι := P] γinv 	 � I(ι) ⇔ � P (invreg-agree)

ι /∈ dom(I) ∧ • I γinv 	 |� • I[ι :=P] γinv ∗ ◦ [ι :=P] γinv (invreg-alloc)

Intuitively, invreg-persist states that the non-authoritative fragment is persis-
tent, i.e., that it can be freely moved below the � modality and shared. invreg-
agree witnesses that the registry and the fragments agree on the proposition
managed at a particular name. Note that we only get the equivalence with a �
because the definition of the RA (inv) contains a �. Finally, invreg-alloc lets
one create a new invariant, provided the new name is not already used.

4.3 World Satisfaction

To recover the invariant mechanism of Iris, we need to attach a meaning to
the invariant registry from Sect. 4.2, in the sense that we must make sure that

714 R. Krebbers et al.

the invariants actually hold ! We do this by defining a single global invariant
called world satisfaction, which enforces the meaning of the invariant registry.
World satisfaction itself will be enforced by threading it through the weakest
preconditions.

Naively, we may think that world satisfaction always requires all invariants
to hold. However, this does not work: after all, threads are allowed to temporarily
break invariants for an atomic “instant” during program execution. To support
this, world satisfaction keeps invariants in one of two states: either they are
enabled (currently enforced), or they are disabled (currently broken by some
thread). The definition of the weakest precondition connective will then ensure
that invariants are never disabled for more than an atomic period of time. That
is, no invariant is left disabled between physical computation steps.

The protocol for opening (i.e., disabling) and closing (i.e., re-enabling) an
invariant employs two exclusive tokens: an enabled token, which witnesses that
the invariant is currently enabled and giving the right to disable it; and dually,
a disabled token. These tokens are controlled by the following two simple RAs:

En � ℘(N) Dis � ℘fin(N)

The composition for both RAs is disjoint union.2

We can now give the actual definition of world satisfaction, W . To this end,
we need instances of Inv, En and Dis, which we assume to have names γInv,
γEn and γDis, respectively:

W � ∃I. • I γinv ∗∗ι∈dom(I)

(
(� I(ι) ∗ {ι} γDis) ∨ {ι} γEn

)

P ι � ◦ [ι :=P] γinv

World satisfaction controls the authoritative registry I of all existing invariants.
This allows it to maintain an additional assertion for every single one of them,
namely: either the invariant is enabled and maintained—in which case world
satisfaction actually owns � I(ι)—or the invariant is disabled. Unsurprisingly,
P ι just means that the registry maps ι to P—but ι may or may not be enabled.

With this encoding, we can prove the following key properties modeling the
allocation, opening, and closing of invariants:

wsat-alloc
E is infinite

W ∗ � P −∗ |�(
W ∗ ∃ι ∈ E . P ι

) wsat-openclose

P ι 	 W ∗ {ι} γEn ⇔ W ∗ � P ∗ {ι} γDis

Let us look at the proof of the direction P ι 	 W ∗ {ι} γEn ⇒ W ∗� P ∗ {ι} γDis of
wsat-openclose in slightly more detail. We start by using invreg-agree to
learn that the authoritative registry I maintained by world satisfaction contains
our invariant P at index ι. We thus obtain from the big separating conjunction
that � P ∗ {ι} γDis ∨ {ι} γEn . Since we moreover own the enabled token {ι} γEn ,
we can exclude the right disjunct and deduce that the invariant is currently
2 Implicitly, they also have an invalid element �, for composition of overlapping sets.

The Essence of Higher-Order Concurrent Separation Logic 715

enabled. So we take out the � P and the disabled token, and instead put the
enabled token into W , disabling the invariant. This concludes the proof.

The proof of wsat-alloc is slightly more subtle. In particular, we have to
be careful in picking the new invariant name such that: (a) it is in E , (b) it is
not used in I yet, and (c) we can create a disabled token for that name and put
it into W alongside � P . Since disabled tokens are modeled by finite sets, only
finitely many of them can ever be allocated, so it is always possible to pick an
appropriate fresh name.

4.4 Fancy Update Modality

Before we will prove the rules for invariants, there is actually one other piece of
the original Iris logic we should cover: view shifts. View shifts serve three roles:

1. They permit frame-preserving updates (like the basic update modality does).
2. They allow one to access invariants. The mask E defines which invariants are

available.
3. They allow one to strip away the � modality from timeless assertions (like

the modality does, see Sect. 2.7).

The view shifts of the original Iris were of the form P �E1 E2 Q where P is the
precondition, Q the postcondition, and E1 and E2 are invariant masks. For the
same reason that we prefer weakest preconditions over Hoare triples (Sect. 3),
we will present view shifts as a modality instead of a binary connective. The
modality, called the fancy update modality |�E1 E2 , is defined as follows:

|�E1 E2 P � W ∗ E1
γEn −∗ |�(W ∗ E2

γEn ∗ P) |�E P � |�E E
P

In the same way that Hoare triples are defined in terms of weakest precon-
ditions, the binary view shift can be defined in terms of the modality.

The intuition behind |�E1 E2 P is to express ownership of resources such that,
if we further assume that the invariants in E1 are enabled, we can perform a
frame-preserving update to the resources and the invariants, and we end up
owning P and the invariants in E2 are enabled. By looking at the definition, we
can see how it supports all the fancy features formerly handled by view shifts:

1. At the heart of the fancy update modality is a basic update modality, which
permits doing frame-preserving updates (see the rule fup-upd in Fig. 5).

2. The modality “threads through” world satisfaction, in the sense that a proof
of |�E1 E2 P can use W , but also has to prove it again. Furthermore, con-
trolled by the two masks E1 and E2, the modality provides and takes away
enabled tokens. The first mask controls which invariants are available to the
modality, while the second mask controls which invariants remain available
after (see inv-open). Furthermore, it is possible to allocate new invariants
(inv-alloc).

3. Finally, the modality is able to remove laters from timeless assertions by
incorporating the “except 0” modality (see Sect. 2.7 and fup-timeless).

716 R. Krebbers et al.

fup-mono
P Q

|E1 E2 P E1 E2 Q

fup-intro-mask
E2 ⊆ E1

P E1 E2 |E2 E1 P

fup-trans

|E1 E2 |E2 E3 P E1 E3 P

fup-frame

Q ∗ |E1 E2 P E1 f E2 f Q ∗ P
fup-upd
| P E P

fup-timeless
timeless(P)

E P

inv-persist
P

ι
P

ι

inv-alloc
E is infinite

E ∃ι ∈ E . P
ι

inv-open
ι ∈ E

P
ι E E\{ι} ∗ (−∗ |E\{ι} ETrue)

Fig. 5. Rules for the fancy update modality and invariants.

Ignoring the style of presentation as a modality, there are some differences
here from view shifts in previous versions of Iris. Firstly, in previous versions,
the rule fup-trans had a side condition restricting the masks it could be
instantiated with, whereas now it does not. Secondly, in previous versions,
instead of fup-intro-mask, only mask-invariant view shifts could be introduced
(P 	 |�E P). The reason we can now support fup-intro-mask is that masks
are actually just sugar for owning or providing particular resources (namely,
the enabled tokens). This is in contrast to previous versions of Iris, where masks
were entirely separate from resources and treated in a rather ad-hoc manner. Our
more principled treatment of masks significantly simplifies building abstractions
involving invariants; however, for lack of space, we cannot further discuss these
abstractions.

The rules fup-mono, fup-trans, and fup-frame correspond to the related
rules of the basic update modality in Fig. 1. The rule inv-open may look fairly
cryptic; we will see in the next section how it can be used to derive wp-inv.

4.5 Weakest Preconditions

We will now define weakest preconditions that support not only the rules in
Fig. 4, but also the ones in Fig. 6. We will also show how, from wp-atomic and
inv-open, we can derive the rule motivating this entire section, wp-inv.

wp-vup
| EwpE e v. | E Φ(v) wpE e {Φ}

wp-atomic
atomic(e)

|E1 E2 wpE2
e v. |E2 E1 Φ(v) wpE1

e {Φ}

Fig. 6. New rules for weakest precondition with invariants.

Compared to the definition developed in Sect. 3, there are two key differ-
ences: first of all, we use the fancy update modality instead of the basic update

The Essence of Higher-Order Concurrent Separation Logic 717

modality. Secondly, we do not want to tie the definition of weakest precondi-
tions to a particular language, and instead operate generically over any notion
of expressions and state, and any reduction relation.

As a consequence of this generality, we can no longer assume that our physical
state is a heap of values with disjoint union as composition. Therefore, instead
of using the authoritative heap defined in Sect. 3.3, we parameterize weakest
preconditions by a predicate I : State → iProp called the state interpretation. In
case State = Loc fin−⇀ Val, we can recover the definition and rules from Sect. 3.3
by taking:

I(σ) � • σ : Loc fin−⇀ Ex(Val) γ

More sophisticated forms of separation like fractional permissions [7,8] can be
encoded by using an appropriate RA and defining I accordingly.

Given an I : State → iProp, our definition of weakest precondition looks as
follows (changes from Sect. 3 are colored red):

wpE e {Φ} � (e ∈ Val ∧ |�E Φ(e))

∨(
e /∈ Val ∧ ∀σ. I(σ) −∗ |�E ∅ red(e, σ)

∧ � (∀e2 σ2
ef . (e, σ) → (e2, σ2,
ef) −∗ |�∅ E

I(σ2) ∗ wpE e2 {Φ} ∗∗e′∈�ef
wp� e′ {v.True})

)

The mask E of wpE e {Φ} is used for the “outside” of the fancy update modal-
ities, providing them with access to these invariants. The “inner” masks are ∅,
indicating that the reasoning about safety and progress can temporarily open
all invariants (and none have to be left enabled). The forked-off threads
ef have
access to the full mask � as they will only start running in the next instruction,
so they are not constrained by whatever invariants are available right now. Note
that the definition requires all invariants in E to be enabled again after every
physical step: this corresponds to the fact that an invariant can only be opened
atomically.

In addition to the rules already presented in Sect. 3, this version of the weak-
est precondition connective lets us prove (among others) the new rules in Fig. 6.
wp-vup witnesses that the entire connective as well as its postcondition are liv-
ing below the fancy update modality, so we can freely add/remove that modality.

Finally, we come to wp-atomic to open an invariant around an atomic
expression. The rule is similar to wp-vup, with the key difference being that
it can change the mask. On the left hand side of the turnstile, we are allowed to
first open some invariants, then reason about e, and then close invariants again.
This is sound because e is atomic. wp-atomic is the rule we need to derive
wp-inv:

718 R. Krebbers et al.

� P � wpE\{ι} e {v. � P ∗ Φ(v)}
wp-frame

� P ∗ (� P −∗ |�E\{ι} ETrue) �
wpE\{ι} e

{
v. � P ∗ Φ(v) ∗ (� P −∗ |�E\{ι} E1 True)

}

wp-mono
� P ∗ (� P −∗ |�E\{ι} ETrue) � wpE\{ι} e

{
v. |�E\{ι} E Φ(v)

}

inv-open
P ι � |�E E\{ι}wpE\{ι} e

{
x. |�E\{ι} E Φ(v)

}

wp-atomic
P ι � wpE e {Φ}

4.6 Adequacy

To demonstrate that wp e {φ} actually makes the expected statements about
program executions, we prove the following adequacy theorem.

Theorem 4.1 (Adequacy of weakest preconditions). Let φ be a first-order
predicate. If True 	 |�� I(σ) ∗ wp� e {φ} and (e, σ) →∗

tp (e′
1 . . . e′

n, σ′), then:

1. For any e′
i we have that either e′

i is a value, or red(e′
i, σ

′);
2. If e′

1 (the main thread) is a value v, then φ(v).

The proof of this theorem relies on Theorem 2.1 (in Sect. 2.8). We also impose
the same restrictions on φ as we have done there: φ has to be a first-order
predicate. This ensures we can use φ both inside our logic and at the meta level.

5 Paradoxes Involving the “later” Modality

A recurring element of concurrent separation logics with impredicative invari-
ants [17,18,28] is the later modality �, which is used to guard resources when
opening invariants. The use of � has heretofore been forced by the models which
were used to show soundness of these logics. It has been an open question, how-
ever, whether the need for the later modality is a mere artifact of the model, or
whether it is in some sense required. In this section, we show that at the very
least it plays an essential role: if we omit the later modality from the invariant
opening rule, then we can derive a contradiction in the logic.

Theorem 5.1. Assume we add the following proof rule to Iris:

ι ∈ E
P ι 	 |�E E\{ι}

P ∗ (P −∗ |�E\{ι} E True)

Then, if we pick an appropriate RA, True 	 |��False.

Notice that the above rule is the same as inv-open in Fig. 5, except that it does
not add a � in front of P .

The Essence of Higher-Order Concurrent Separation Logic 719

Of course, this does not prove that we absolutely must have a � modality,
but it does show that the stronger rule one would prefer to have for invariants
is unsound. Step-indexing is but one way to navigate around this unsoundness.
However, we are not aware of another technique that would yield a logic with
comparably powerful impredicative invariants.

The proof of this theorem does not use the fact that fancy updates are defined
in a particular way in terms of basic updates, but just uses the proof rules for this
modality. The proof also makes no use of higher-order ghost state. In fact, the
result holds for all versions of Iris [17,18], as is shown by the following theorem:

Theorem 5.2. Assume a higher-order separation logic with � and an update
modality with a binary mask |�{0,1} (think: empty mask and full mask) satisfying
strong monad rules with respect to separating conjunction and such that:

weaken-mask

|�0P 	 |�1P

Assume a type I and an assertion · · : I → Prop → Prop satisfying:

inv-alloc

P 	 |�1∃ι. P ι
inv-persist

P ι 	 � P ι

inv-open-nolater
P ∗ Q 	 |�0(P ∗ R)

P ι ∗ Q 	 |�1R

Finally, assume the existence of a type G and two tokens s · : G → Prop and
f · : G → Prop parameterized by G and satisfying the following properties:

start-alloc

	 |�0∃γ. s γ
start-finish

s γ 	 |�0 f γ
start-not-finished

s γ ∗ f γ 	 False
finished-dup

f γ 	 f γ ∗ f γ

Then True 	 |�1False.

In other words, the theorem requires three ingredients to be present in the
logic in order to derive a contradiction:

– An update modality that satisfies the laws of Iris’s basic update modality
(Fig. 1). The modality needs a mask for the same reason that Iris’s fancy
update modality has a mask: to prevent opening the same invariant twice.

– Invariants that can be opened around the update modality, and that can be
opened without a later.

– A two-state protocol whose only transition is from the first to the last state.
This is what s · and f · encode. The proof does not actually depend on how
that protocol is made available to the logic. For example, to apply this proof to
iCAP [28], one could use iCAP’s built-in support for state-transition systems

720 R. Krebbers et al.

to achieve the same result. However, for the purpose of the theorem, we had to
pick some way of expressing protocols. We picked the token-based approach
common in Iris.

All versions of Iris easily satisfy the first and third of these requirements, by
using fancy updates (Iris 3) or primitive view shifts (Iris 1 and 2) for the update
modality, and by constructing an appropriate RA (Iris 2 and 3) or PCM (Iris 1)
for the two-state protocol. Of course, inv-open-nolater is the one assumption
of the theorem that no version of Iris satisfies, which is the entire point.

Unsurprisingly, the proof works by constructing an assertion that is equiv-
alent (in some rather loose sense) to its own negation. The full details of this
construction are spelled out in the appendix [1].

6 Related Work

Since O’Hearn introduced the original concurrent separation logic (CSL) [24],
many more CSLs have been developed [9,11,12,14,16–18,27–30]. Though these
logics have explored different techniques for reasoning about concurrency, they
have one thing in common: their proof rules and models are complicated.

There have been attempts at mitigating the difficulty of the models of these
logics. Most notably, Svendsen and Birkedal [28] defined the model of the iCAP
logic in the internal logic of the topos of trees, which includes a later connective
to reason about step-indexing abstractly. However, their model of Hoare triples
still involves explicit resource management, which ours does not.

On the other end of the spectrum, there has been work on encoding binary
logical relations in a concurrent separation logic [13,21,22,30]. These encodings
are relying on a base logic that already includes a plethora of high-level concepts,
such as weakest preconditions and view shifts. Our goal, in contrast, is precisely
to define these concepts in simpler terms.

FCSL [27] takes an opposite approach to our work. To ease reasoning about
programs in a proof assistant, they avoid reasoning in separation logic as much
as possible, and reason mostly in the model of their logic. This requires the
model to stay as simple as possible; in particular, FCSL does not make use of
step-indexing. As a consequence, they do not support impredicative invariants,
which we believe are an important feature of Iris. For example, they are needed
to model impredicative type systems [21] or to model a reentrant event loop
library [28]. Furthermore, as we have shown in recent work [21], one can actually
reason conveniently in a separation logic in Coq, so the additional complexity of
our model is hardly visible to users of our logic.

Additionally, there is a difference in expressiveness w.r.t. “hiding” of invari-
ants. FCSL supports a certain kind of hiding, namely the ability to transfer some
local state into an invariant (actually a “concurroid”), which is enforced during
the execution of a single expression e, but after which the state governed by the
invariant is returned to local control. Iris can support such hiding as well, via
an encoding of what we call “cancelable invariants” [1]. Additionally, we allow
a different kind of hiding, namely the ability to hide invariants used by (nested)

The Essence of Higher-Order Concurrent Separation Logic 721

Hoare-triple specifications. For example, a higher-order function f may return
another function g, whose Hoare-triple specification is only correct under some
invariant I (which was established during execution of f). Since invariants in Iris
are persistent assertions, I can be hidden, i.e., it need not infect the specification
of f or g. To our knowledge, FCSL does not support hiding of this form.

The Verified Software Toolchain (VST) [4] is a framework that provides
machinery for constructing sophisticated higher-order separation logics with sup-
port for impredicative invariants in Coq. However, VST is not a logic and, as
such, does not abstract over step-indices and resources the way working in a logic
like Iris 3.0 does. Defining a program logic in VST thus still requires significant
manual management of such details, which are abstracted away when defining
a program logic in the Iris base logic. Furthermore, VST has so far only been
demonstrated in the context of sequential reasoning and coarse-grained (lock-
based) concurrency [6], whereas the focus of Iris is on fine-grained concurrency.

7 Conclusion

We have presented a minimal base logic in which we can define concurrent sepa-
ration logics in a concise and abstract way. This has the benefit of making higher-
level concepts (like weakest preconditions) easier to define, easier to understand,
and easier to reason about.

Definitions become simpler as they can be performed at a much higher level of
abstraction. In particular, the definitions of logical connectives such as the fancy
update modality and weakest preconditions do not have to deal with any details
about disjointness of resources or step-indexing—this is all abstractly handled
by the base logic. Proofs become simpler since only the rules of the primitive
connectives of the base logic have to be verified w.r.t. the model. The proofs
about fancier connectives are carried out inside the logic, again abstracting over
details that have to be managed manually when working in the model.

Thanks to these simplifications, we are able now, for the first time, to explain
what the program logic connectives in Iris actually mean. Furthermore, we have
ported the Coq formalization of Iris [1], including a rich body of examples, over
to the new connectives defined in the base logic. The interactive proof mode
(IPM) [21] provided crucial tactic support for reasoning with interesting combi-
nations of separation-logic assertions and our modalities (as they arise, e.g., in
weakest preconditions). In performing the port, the definitions and proofs related
to weakest preconditions, view shifts, and invariants shrank in size significantly,
indicating that proofs and definitions can now be carried out with considerably
greater ease.

Acknowledgments. This research was supported in part by a European Research
Council (ERC) Consolidator Grant for the project “RustBelt”, funded under the Euro-
pean Union’s Horizon 2020 Framework Programme (grant agreement no. 683289); and
by the ModuRes Sapere Aude Advanced Grant from The Danish Council for Indepen-
dent Research for the Natural Sciences (FNU).

722 R. Krebbers et al.

References

1. The Iris 3.0 documentation and Coq development. Available on the Iris project
website at: http://iris-project.org

2. Appel, A., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. TOPLAS 23(5), 657–683 (2001)

3. Appel, A., Melliès, P.-A., Richards, C., Vouillon, J.: A very modal model of a
modern, major, general type system. In: POPL (2007)

4. Appel, A.W. (ed.): Program Logics for Certified Compilers. Cambridge University
Press, Cambridge (2014)

5. Ashcroft, E.A.: Proving assertions about parallel programs. JCSS 10(1), 110–135
(1975)

6. Beringer, L., Stewart, G., Dockins, R., Appel, A.W.: Verified compilation for
shared-memory C. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 107–127.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54833-8 7

7. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL, pp. 259–270 (2005)

8. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). doi:10.1007/
3-540-44898-5 4

9. Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44202-9 9

10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. CACM 18(8), 453–457 (1975)

11. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 24

12. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00590-9 26

13. Dreyer, D., Neis, G., Rossberg, A., Birkedal, L.: A relational modal logic for higher-
order stateful ADTs. In: POPL (2010)

14. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separa-
tion logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78739-6 27

15. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: POPL, pp. 14–26 (2001)

16. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: POPL (2011)

17. Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:
ICFP, pp. 256–269 (2016)

18. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L.,
Dreyer, D.: Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. In: POPL, pp. 637–650 (2015)

19. Kock, A.: Monads on symmetric monoidal closed categories. Arch. Math. 21(1),
1–10 (1970)

20. Kock, A.: Strong functors and monoidal monads. Arch. Math. 23(1), 113–120
(1972)

http://iris-project.org
http://dx.doi.org/10.1007/978-3-642-54833-8_7
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/978-3-642-00590-9_26
http://dx.doi.org/10.1007/978-3-540-78739-6_27

The Essence of Higher-Order Concurrent Separation Logic 723

21. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: POPL, pp. 205–217 (2017)

22. Krogh-Jespersen, M., Svendsen, K., Birkedal, L.: A relational model of types-and-
effects in higher-order concurrent separation logic. In: POPL (2017)

23. Nakano, H.: A modality for recursion. In: LICS (2000)
24. O’Hearn, P.: Resources, concurrency, and local reasoning. TCS 375(1), 271–307

(2007)
25. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symb. Logic

5(2), 215–244 (1999)
26. Parkinson, M.: The next 700 separation logics. In: Leavens, G.T., O’Hearn, P.,

Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 169–182. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-15057-9 12

27. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: PLDI, pp. 77–87 (2015)

28. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In:
Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54833-8 9

29. Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separa-
tion of concurrent data structures. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 169–188. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 11

30. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP, pp. 377–390 (2013)

http://dx.doi.org/10.1007/978-3-642-15057-9_12
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-642-37036-6_11
http://dx.doi.org/10.1007/978-3-642-37036-6_11

Comprehending Isabelle/HOL’s Consistency

Ondřej Kunčar1(B) and Andrei Popescu2,3

1 Fakultät für Informatik, Technische Universität München, München, Germany
kuncar@in.tum.de

2 Department of Computer Science, Middlesex University London, London, UK
3 Institute of Mathematics Simion Stoilow of the Romanian Academy,

Bucharest, Romania

Abstract. The proof assistant Isabelle/HOL is based on an extension
of Higher-Order Logic (HOL) with ad hoc overloading of constants. It
turns out that the interaction between the standard HOL type definitions
and the Isabelle-specific ad hoc overloading is problematic for the log-
ical consistency. In previous work, we have argued that standard HOL
semantics is no longer appropriate for capturing this interaction, and
have proved consistency using a nonstandard semantics. The use of an
exotic semantics makes that proof hard to digest by the community.
In this paper, we prove consistency by proof-theoretic means—following
the healthy intuition of definitions as abbreviations, realized in HOLC, a
logic that augments HOL with comprehension types. We hope that our
new proof settles the Isabelle/HOL consistency problem once and for all.
In addition, HOLC offers a framework for justifying the consistency of
new deduction schemas that address practical user needs.

1 Introduction

Isabelle/HOL [35,36] is a popular proof assistant, with hundreds of users world-
wide in both academia and industry. It is being used in major verification
projects, such as the seL4 operating system kernel [24]. In addition, Isabelle/HOL
is a framework for certified programming: functional programming (including
lazy (co)programming [9]) is supported natively and imperative programming is
supported via a monadic extension [10]. Programs can be written and verified in
Isabelle/HOL, and efficient code for them (in Haskell, Standard ML, OCaml and
Scala) can be produced using a code generator [19]. This certified programming
methodology has yielded a wide range of verified software systems, from a Java
compiler [32] to an LTL model checker [14] to a conference management system
[23]. The formal guarantees of all such systems, as well as those considered by
some formal certification agencies [21], are based on one major assumption: the
correctness/consistency of Isabelle/HOL’s inference engine.

Keeping the underlying logic simple, hence manifestly consistent, along with
reducing all the user developments to the logic kernel, has been a major tenet
of the LCF/HOL approach to formal verification, originating from Robin Milner
and Mike Gordon [17]. Yet, Isabelle/HOL, one of the most successful incarnations
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 724–749, 2017.
DOI: 10.1007/978-3-662-54434-1_27

Comprehending Isabelle/HOL’s Consistency 725

of this approach, takes some liberties beyond the well-understood higher-order
logic kernel. Namely, its definitional mechanism allows delayed ad hoc overloading
of constant definitions—in turn, this enables Haskell-style type classes [46] on
top of HOL [37].

In standard HOL, a polymorphic constant should either be only declared (and
forever left uninterpreted), or fully defined at its most general type.1 By contrast,
Isabelle/HOL allows first declaring a constant, and at later times overloading it
by defining some of its instances, as in the following example:2

consts 0 : α
. . .
definition 0 : real ≡ real_zero
. . .
definition 0 : α list ≡ []

Recursive overloading is also supported, as in:

definition 0 : α list ≡ [0:α]

In between the declaration and the instance definitions, arbitrary commands
may occur, including type definitions (“typedef”) and (co)datatype definitions
(which are derived from typedef [7,45]). For example, the following definition
introduces a type of polynomials over an arbitrary domain α, where ∀∞ is the
“for all but finitely many” quantifier:

typedef α poly ≡ {f : nat → α | ∀∞ n. f n = 0}

When 0 is defined for concrete types, such as real and α list, the library
theorems about arbitrary-domain polynomials are enabled for polynomials over
these concrete types.3

To avoid inconsistency, this overloading mechanism is regulated by syntac-
tic checks for orthogonality and termination. Examples like the above should
be allowed, whereas examples like the following encoding of Russell’s paradox
[29, Sect. 1] should be forbidden:

1 There are other specification schemes supported by some HOL provers, allowing for
more abstract (under)specification of constants—but these schemes are known to be
captured or over-approximated by the standard (equational) definition scheme [5].

2 To improve readability, in the examples we use a simplified Isabelle syntax. To run
these examples in Isabelle, one must enclose in overloading blocks the overloaded
definitions of constants and add the overloaded attribute to type definitions that
depend on overloaded constants; in addition, one must provide nonemptiness proofs
for type definitions [47, Sect. 11(3,7)]. Note also that Isabelle uses ⇒ instead of →
for function types and :: instead of : for typing.

3 Isabelle/HOL implements a type-class infrastructure allowing fine control over such
instantiations. In this case, α is assumed to be of type class zero; then real, α list
etc. are registered as members of zero as soon as 0 is defined for them. Polymorphic
properties can also be associated to type classes, and need to be verified upon instan-
tiation. Type classes do not require any logical extension, but are representable as
predicates inside the logic—[48, Sect. 5] explains the mechanism in detail.

726 O. Kunčar and A. Popescu

consts c : α
typedef T ≡ {True, c}
definition c : bool ≡ ¬ (∀(x:T) y. x = y)

The above would lead to a proof of false taking advantage of the circularity
T � cbool � T in the dependency relation introduced by the definitions: one
first defines the type T to contain precisely one element just in case cbool is True,
and then defines cbool to be True just in case T contains more than one element.

Because Isabelle/HOL has a large user base and is heavily relied upon, it is
important that the consistency of its logic be established with a high degree of
clarity and a high degree of rigor. In 2014, we started an investigation into the
foundations of this logic, which has revealed a few consistency problems (includ-
ing the above “paradox”). These issues have generated quite a lot of discus-
sion in the Isabelle community, during which some philosophical disagreements
and misunderstandings among the users and the developers have surfaced [1].
The technical issues have been addressed [27,29] and are no longer exhibited in
Isabelle2016.4

In addition to taking care of these issues, one of course needs some guarantees
that similar issues are not still present in the logic. To address this, in previous
work [29] we have proved that the logic is now consistent, employing a semantic
argument in terms of a nonstandard semantics for HOL. Our original proof was
somewhat sketchy and lacking in rigor—full (pen-and-paper) proofs are now
included in an extended report [28]. Of course, a machine-checked proof, perhaps
building on a recent formalization of HOL [15,25], would make further valuable
progress on the rigor aspect.

In this paper, we hope to improve on the clarity aspect and provide deeper
insight into why Isabelle/HOL’s logic is consistent. As mentioned, Isabelle/HOL
is richer than HOL not in the rules of deduction, but in the definitional mecha-
nism. A natural reluctance that comes to mind concerning our semantic proof of
consistency is best expressed by Isabelle’s creator’s initial reaction to our proof
idea [40]:

It’s a bit puzzling, not to say worrying, to want a set-theoretic semantics
for plain definitions. The point of definitions (and the origin of the idea
that they preserve consistency) is that they are abbreviations.

This paper’s first contribution is a new proof of consistency for
Isabelle/HOL’s logic, easy to digest by the large community of “syntacticists”
who (quite legitimately) wish to regard definitions as a form of abbreviations.
The problem is that type definitions cannot simply be unfolded (and inlined)—
a type definition is an axiom that postulates a new type and an embedding-
projection pair between the new type and the original type (from where the

4 The philosophical dispute about foundations is far from having come to an end [4],
and unfortunately tends to obscure what should be a well-defined mathematical
problem: the consistency of the Isabelle/HOL logical system (which is of course not
the same as the overall reliability of the Isabelle/HOL implementation).

Comprehending Isabelle/HOL’s Consistency 727

new type is carved out by a nonempty predicate). But the syntactic intuition
persists: what if we were allowed to unfold type definitions? As it turns out,
this can be achieved in a gentle extension of HOL featuring comprehension
types. This extended logic, called HOL with Comprehension (HOLC), is a syn-
tacticist’s paradise, allowing for a consistency proof along their intuition. This
proof is systematically developed in Sect. 3. First, HOLC is introduced (Sect. 3.1)
and shown consistent by a standard argument (Sect. 3.2). Then, a translation
is defined from well-formed Isabelle/HOL definitions to HOLC, which is proved
sound, i.e., deduction-preserving (Sect. 3.3). The key to establishing soundness
is the use of a modified deduction system for HOL where type instantiation is
restricted—this tames the inherent lack of uniformity brought about by ad hoc
overloading. Finally, soundness of the translation together with consistency of
HOLC ensures consistency of Isabelle/HOL.

As a second contribution, we use HOLC to justify some recently proposed
extensions of Isabelle/HOL—namely, two new deduction schemas [30]. One
enables local type definitions inside proof contexts; the other allows replacing
undefined instances of overloaded constants with universally quantified variables.
As we argue in [30], both extensions are useful for simplifying proof development
by enabling the transition from light type-based theorems to heavier but more
flexible set-based theorems. However, proving that these extensions do not intro-
duce inconsistency is surprisingly difficult. In particular, our previously defined
(consistency-justifying) semantics [29] has a blind spot on the second extension—
it is only from the viewpoint of HOLC that the consistency of both extensions
is manifest (Sect. 4).

More details on our constructions and proofs can be found in a technical
report made available online [31].

2 The Isabelle/HOL Logic Recalled

The logic of Isabelle/HOL consists of:

– HOL, that is, classical higher-order logic with rank 1 polymorphism, Hilbert
choice and the Infinity axiom (recalled in Sect. 2.1)

– A definitional mechanism for introducing new types and constants in an over-
loaded fashion (recalled in Sect. 2.2)

2.1 HOL Syntax and Deduction

The syntax and deduction system we present here are minor variations of the
standard ones for HOL (as in, e.g., [3,18,20]). What we call HOL axioms corre-
spond to the theory INIT from [3].

Syntax. Throughout this section, we fix the following:

– an infinite set TVar, of type variables, ranged by α, β
– an infinite set VarN, of (term) variable names, ranged by x, y, z

728 O. Kunčar and A. Popescu

– a set K of symbols, ranged by k, called type constructors, containing three
special symbols: bool, ind and → (aimed at representing the type of booleans,
an infinite type and the function type constructor, respectively)

We fix a function arOf : K → N giving arities to type constructors, such that
arOf(bool) = arOf(ind) = 0 and arOf(→) = 2. Types, ranged by σ, τ , are defined
as follows:

σ = α | (σ1, . . . , σarOf(k)) k

Thus, a type is either a type variable or an n-ary type constructor k postfix-
applied to a number of types corresponding to its arity. If n = 1, instead of (σ) k
we write σ k. We write Type for the set of types.

Finally, we fix the following:

– a set Const, ranged over by c, of symbols called constants, containing five spe-
cial symbols: −→, =, ε, zero and suc (aimed at representing logical implica-
tion, equality, Hilbert choice of some element from a type, zero and successor,
respectively)

– a function tpOf : Const → Type associating a type to every constant, such
that:

tpOf(−→) = bool → bool → bool
tpOf(=) = α → α → bool
tpOf(ε) = (α → bool) → α

tpOf(zero) = ind
tpOf(suc) = ind → ind

TV(σ) is the set of variables of a type σ. Given a function ρ : TVar → Type,
its support is the set of type variables where ρ is not the identity: supp(ρ) = {α |
ρ(α) �= α}. A type substitution is a function ρ : TVar → Type with finite support.
We let TSubst denote the set of type substitutions. Each ρ ∈ TSubst extends
to a function ρ : Type → Type by defining ρ(α) = ρ(α) and ρ((σ1, . . . , σn) k) =
(ρ(σ1), . . . , ρ(σn)) k. We write σ[τ/α] for ρ(σ), where ρ is the type substitution
that sends α to τ and each β �= α to β. Thus, σ[τ/α] is obtained from σ by
substituting τ for all occurrences of α.

We say that σ is an instance of τ via a substitution of ρ ∈ TSubst, written
σ ≤ρ τ , if ρ(τ) = σ. We say that σ is an instance of τ , written σ ≤ τ , if there
exists ρ ∈ TSubst such that σ ≤ρ τ . Two types σ1 and σ2 are called orthogonal,
written σ1#σ2, if they have no common instance; i.e., for all τ it holds that
τ �≤ σ1 or τ �≤ σ2.

A (typed) variable is a pair of a variable name x and a type σ, written xσ.
Let Var denote the set of all variables. A constant instance is a pair of a constant
and a type, written cσ, such that σ ≤ tpOf(c). We let CInst denote the set of
constant instances. We extend the notions of being an instance (≤) and being
orthogonal (#) from types to constant instances:

cτ ≤ dσ iff c = d and τ ≤ σ cτ#dσ iff c �= d or τ#σ

The tuple (K, arOf,Const, tpOf), which will be fixed in what follows, is called
a signature. This signature’s terms, ranged over by s, t, are defined by the
grammar:

Comprehending Isabelle/HOL’s Consistency 729

t = xσ | cσ | t1 t2 | λxσ. t

Thus, a term is either a typed variable, or a constant instance, or an application,
or an abstraction. As usual, we identify terms modulo alpha-equivalence. Typing
is defined as a binary relation between terms and types, written t : σ, inductively
as follows:

x ∈ VarN

xσ : σ

c ∈ Const τ ≤ tpOf(c)
cτ : τ

t1 : σ → τ t2 : σ

t1 t2 : τ

t : τ

λxσ. t : σ → τ

A term is a well-typed term if there exists a (necessarily unique) type τ such
that t : τ . We write tpOf(t) for this unique τ . We let Termw be the set of well-
typed terms. We can apply a type substitution ρ to a term t, written ρ(t), by
applying ρ to the types of all variables and constant instances occurring in t.
FV(t) is the set of t’s free variables. The term t is called closed if it has no
free variables: FV(t) = ∅. We write t[s/xσ] for the term obtained from t by
capture-free substituting s for all free occurrences of xσ.

A formula is a term of type bool. The formula connectives and quantifiers are
defined in a standard way, starting from the implication and equality primitives.
When writing terms, we sometimes omit the types of variables if they can be
inferred.

Deduction. A theory is a set of closed formulas. The HOL axioms, forming a
set denoted by Ax, are the standard ones, containing axioms for equality, infin-
ity, choice, and excluded middle. (The technical report [31] gives more details.)
A context Γ is a finite set of formulas. The notation α /∈ Γ (or xσ /∈ Γ) means
that the variable α (or xσ) is not free in any of the formulas in Γ . We define
deduction as a ternary relation 	 between theories D, contexts Γ and formulas
ϕ, written D;Γ 	 ϕ.

[ϕ ∈ Ax ∪ D] (Fact)
D;Γ � ϕ

[ϕ ∈ Γ] (Assum)
D;Γ � ϕ

D;Γ � ϕ
[α /∈ Γ] (T-Inst)

D;Γ � ϕ[σ/α]

D;Γ � ϕ
[xσ /∈ Γ] (Inst)

D;Γ � ϕ[t/xσ]

(Beta)
D;Γ � (λxσ. t) s = t[s/xσ]

D;Γ � ϕ −→ χ D;Γ � ϕ
(MP)

D;Γ � χ

D;Γ ∪ {ϕ} � χ
(ImpI)

D;Γ � ϕ −→ χ

D;Γ � f xσ = g xσ
[xσ /∈ Γ] (Ext)

D;Γ � f = g

A theory D is called consistent if D; ∅ �	 False.

730 O. Kunčar and A. Popescu

Built-Ins and Non-built-Ins. A built-in type is any type of the form bool, ind,
or σ → τ for σ, τ ∈ Type. We let Type• denote the set of types that are not built-
in. Note that a non-built-in type can have a built-in type as a subexpression,
and vice versa; e.g., if list is a type constructor, then bool list and (α → β) list
are non-built-in types, whereas α → β list is a built-in type.

Given a type σ, we define types•(σ), the set of non-built-in types of σ, as
follows:

types•(α) = types•(bool) = types•(ind) = ∅
types•((σ1, . . . , σn) k) = {(σ1, . . . , σn) k}, if k is different from →
types•(σ1 → σ2) = types•(σ1) ∪ types•(σ2)

Thus, types•(σ) is the smallest set of non-built-in types that can produce σ
by repeated application of the built-in type constructors. E.g., if the type
constructors real (nullary) and list (unary) are in the signature and if σ is
(bool → α list) → real → (bool → ind) list, then types•(σ) has three elements:
α list, real and (bool → ind) list.

A built-in constant is a constant of the form −→, =, ε, zero or suc. We let
CInst• be the set of constant instances that are not instances of built-in constants.

As a general notation rule, the superscript • indicates non-built-in items,
where an item can be either a type or a constant instance.

Given a term t, we let consts•(t) ⊆ CInst• be the set of all non-built-in
constant instances occurring in t and types•(t) ⊆ Type• be the set of all non-
built-in types that compose the types of non-built-in constants and (free or
bound) variables occurring in t. Note that the types• operator is overloaded for
types and terms.

consts•(xσ) = ∅ types•(xσ) = types•(σ)

consts•(cσ) =

{ {cσ} if cσ ∈ CInst•

∅ otherwise types•(cσ) = types•(σ)

consts•(t1 t2) = consts•(t1) ∪ consts•(t2) types•(t1 t2) = types•(t1) ∪ types•(t2)
consts•(λxσ. t) = consts•(t) types•(λxσ. t) = types•(σ) ∪ types•(t)

2.2 The Isabelle/HOL Definitional Mechanisms

Constant(-Instance) Definitions. Given cσ ∈ CInst• and a closed term t : σ,
we let cσ ≡ t denote the formula cσ = t. We call cσ ≡ t a constant-instance
definition provided TV(t) ⊆ TV(cσ) (i.e., TV(t) ⊆ TV(σ)).

Type Definitions. Given the types τ ∈ Type• and σ ∈ Type and the closed
term t whose type is σ → bool, we let τ ≡ t denote the formula

(∃xσ. t x) −→ ∃repτ→σ.∃absσ→τ .(τ ≈ t)absrep (1)

where (τ ≈ t)absrep is the formula (∀xτ . t (rep x)) ∧ (∀xτ . abs (rep x) = x) ∧
(∀yσ. t y −→ rep (abs y) = y). We call τ ≡ t a type definition, provided τ has

Comprehending Isabelle/HOL’s Consistency 731

the form (α1, . . . , αn) k such that αi are all distinct type variables and TV(t) ⊆
{α1, . . . , αn}. (Hence, we have TV(t) ⊆ TV(τ), which also implies TV(σ) ⊆
TV(τ).)

Thus, τ ≡ t means: provided t represents a nonempty subset of σ, the new
type τ is isomorphic to this subset via abs and rep. Note that this is a conditional
type definition, which distinguishes Isabelle/HOL from other HOL-based provers
where an unconditional version is postulated (but only after the user proves
nonemptiness). We shall see that this conditional approach, known among the
Isabelle developers as the Makarius Wenzel trick, is useful in the overall scheme
of proving consistency.

However, as far as user interaction is concerned, Isabelle/HOL proceeds like
the other HOL provers, in particular, it requires nonemptiness proofs. When the
user issues a command to define τ via t : σ → bool, the system asks the user to
prove ∃xσ. t x, after which the new type τ and the morphisms abs and rep are
produced and (τ ≈ t)absrep is proved by applying Modus Ponens.

An Isabelle/HOL development proceeds by declaring types and constants,
issuing constant-instance and type definitions, and proving theorems about them
via HOL deduction.5 Therefore, at any point in the development, there is a finite
set D of registered constant-instance and type definitions (over a HOL signature
Σ)—we call such a set a definitional theory. We are interested in proving the con-
sistency of definitional theories, under the syntactic well-formedness restrictions
imposed by the system.

Well-Formed Definitional Theories. Given any binary relation R on Type•∪
CInst•, we write R↓ for its (type-)substitutive closure, defined as follows: pR↓ q
iff there exist p′, q′ and a type substitution ρ such that p = ρ(p′), q = ρ(q′)
and p′ R q′. We say that a relation R is terminating if there exists no sequence
(pi)i∈N such that pi R pi+1 for all i. We shall write R+ and R∗ for the transitive
and the reflexive-transitive closure of R.

Let us fix a definitional theory D. We say D is orthogonal if the following
hold for any two distinct definitions def1, def2 ∈ D:

– either one of them is a type definition and the other is a constant-instance
definition

– or both are type definitions with orthogonal left-hand sides, i.e., def1 has the
form τ1 ≡ . . ., def2 has the form τ2 ≡ . . ., and τ1#τ2.

– or both are constant-instance definitions with orthogonal left-hand sides, i.e.,
def1 has the form cτ1 ≡ . . ., def2 has the form dτ2 ≡ . . ., and cτ1#dτ2 .

We define the binary relation � on Type• ∪ CInst• by setting u � v iff one
of the following holds:

5 Isabelle/HOL is a complex software system, allowing interaction at multiple levels,
including by the insertion of ML code. What we care about here is of course an
abstract notion of an Isabelle/HOL development—employing the logical mechanisms
alone.

732 O. Kunčar and A. Popescu

1. there exists in D a definition of the form u ≡ t such that v ∈ consts•(t) ∪
types•(t).

2. u ∈ CInst• such that u has the form ctpOf(c), and v ∈ types•(tpOf(c)).

We call � the dependency relation associated to D: it shows how the types
and constant instances depend on each other through definitions in D. The fact
that built-in items do not participate at this relation (as shown by the bullets
which restrict to non-built-in items) is justified by the built-in items having a
pre-determined interpretation, which prevents them from both “depending” and
“being depended upon” [29].

We call the definitional theory D well-formed if it is orthogonal and the sub-
stitutive closure of its dependency relation, �↓, is terminating. Orthogonality
prevents inconsistency arising from overlapping left-hand sides of definitions:
defining cα×ind→bool to be λxα×ind.False and cind×α→bool to be λxind×α.True yields
λxind×ind.False = cind×ind→bool = λxind×ind.True and hence False = True. Termina-
tion prevents inconsistency arising from circularity, as in the encoding of Russel’s
paradox in the introduction.

In previous work [29], we proved that these prevention measures are sufficient:

Theorem 1. If D is well-formed, then D is consistent.

Let us briefly recall the difficulties arising in proving the consistency theorem.
A main problem problem rests in the fact that (recursive) overloading does
not interact well with set-theoretic semantics. This makes it difficult to give a
meaning to the overloaded definitions, in spite of the fact that their syntactic
dependency terminates.

Example 2. consts c : α → bool consts d : α
typedef (α, β) k ≡ {(x,y) : α × β | c x ∧ c y ∨ (x,y) = (d,d)}
consts l : (α, β) k → α consts r : (α, β) k → β
definition c : bool → bool ≡ λ x. True
definition c : nat → bool ≡ λ x. False
definition c : (α, β) k → bool ≡ λ x. c (l x) ∧ ¬ c (r x)

Here, c and k are mutually dependent. Hence, since c is overloaded,
both c and k behave differently depending on the types they are instan-
tiated with or applied to. Here are some examples. Because cbool→bool is
(vacuously) true, (bool, bool) k contains four elements (corresponding to all
elements of bool × bool). On the other hand, because cnat→bool is (vacu-
ously) false, (α, nat) k and (nat, α) k each contain one single element (cor-
responding to (d, d)). Moreover, (bool, (bool, nat) k) k contains two elements,
for the following reason: both cbool→bool and c(bool,nat) k→bool are true, the lat-
ter since cbool→bool is true and cnat→bool is false (as required in the defini-
tion of c(α,β) k→bool); so (bool, (bool, nat) k) k has as many elements as its host
type, bool × (bool, nat) k; and (bool, nat) k has only one element (correspond-
ing to (d, d)). Finally, (bool, (nat, bool) k) k contains only one element, because
c(nat,bool) k→bool is false (by the definitions of c(α,β) k→bool and cnat→bool).

Comprehending Isabelle/HOL’s Consistency 733

In the standard HOL semantics [41], a type constructor such as k is inter-
preted compositionally, as an operator [k] on sets (from a suitable universe)
obtained from k’s type definition—here, as a binary operator taking the sets A
and B to the set {(a, b) ∈ A×B | [c]A(a) ∧ [c]B (b) ∨ (a, b) = ([d]A, [d]B)}, where
([c]A)A and ([d]A)A would be the interpretations of c and d as families of sets,
with each [c]A a predicate on A and each [d]A an element of A. But defining [k]
in one go for any sets A and B is impossible here, since the needed instances of
[c] are not yet known, and in fact are mutually dependent with [k]. This means
that, when defining [k] and [c], the inputs A and B would need to be analyzed
in an ad hoc fashion, for the (syntactic!) occurrences of [k] itself. The orthogo-
nality and termination of such semantic definitions would be problematic (and,
as far as we see, could only be worked out by a heavy machinery that would
constrain semantics to behave like syntax—adding syntactic annotations to the
interpreting sets). Using John Reynolds’s famous wording [42], we conclude that
ad hoc polymorphism is not set-theoretic.6

In [29], we proposed a workaround based on acknowledging that ad hoc
overloading regards different instances of the same non-built-in polymorphic
type as completely unrelated types. Instead of interpreting type constructors
as operators on sets, we interpret each non-built-in ground type and con-
stant instance separately, in the order prescribed by the terminating depen-
dency relation. Here, for example, cbool→bool and cnat→bool are interpreted before
(bool, nat) k, which is interpreted before c(bool,nat) k→bool, which is interpreted
before ((bool, nat) k, bool) k, etc. (But note that termination does not necessar-
ily come from structural descent on types: definitions such as enat ≡ head(enat list)
are also acceptable.) Finally, polymorphic formulas are interpreted as the infi-
nite conjunction of the interpretation of all their ground instances: for example,
cα→bool dα is true iff cσ→bool dσ is true for all ground types σ. This way, we were
able to construct a ground model for the definitional theory. And after showing
that the deduction rules for (polymorphic) HOL are sound for ground models, we
inferred consistency. Thus, our solution was based on a mixture of syntax and
semantics: interpret type variables by universally quantifying over all ground
instances, and interpret non-built-in ground types disregarding their structure.

Such a hybrid approach, involving a nonstandard semantics, may seem exces-
sive. There is a more common-sense alternative for accommodating the observa-
tion that standard semantics cannot be married with ad hoc overloading: view
overloaded definitions as mere textual abbreviations. The “semantics” of an over-
loaded constant will then be the result of unfolding the definitions—but, as we
have seen, types must also be involved in this process. This is the alternative
taken by our new proof.

3 New Proof of Consistency

The HOL logical infrastructure allows unfolding constant definitions, but not
type definitions. To amend this limitation, we take an approach common in
mathematics. The reals were introduced by closing the rationals under Cauchy
6 Reynolds’s result of course refers to (higher-rank) parametric polymorphism.

734 O. Kunčar and A. Popescu

convergence, the complex numbers were introduced by closing the reals under
roots of polynomials. Similarly, we introduce a logic, HOL with Comprehension
(HOLC), by closing HOL under type comprehension—that is, adding to HOL
comprehension types to express subsets of the form {x : σ | t x} (Sect. 3.1). While
there is some tension between these subsets being possibly empty and the HOLC
types having to be nonempty due to the Hilbert choice operator, this is resolved
thanks to the HOLC comprehension axioms being conditioned by nonempti-
ness. With this proviso, HOLC admits standard set-theoretical models, making
it manifestly consistent (Sect. 3.2). In turn, Isabelle/HOL-style overloaded con-
stants and types can be normalized in HOLC by unfolding their definitions
(Sect. 3.3). The normalization process provides an intuition and a justification
for the syntactic checks involving non-built-in types and constants. Finally, con-
sistency of Isabelle/HOL is inferable from consistency of HOLC.

3.1 HOL with Comprehension (HOLC)

Syntax. Just like for HOL, we fix the sets TVar (of type variables) and VarN
(of term variable names), as well as the following:

– a set K of type constructors including the built-in ones bool, ind,→.
– a function arOf : K → N assigning an arity to each type constructor.
– a set Const of constants, including the built-in ones −→, =, ε, zero and suc.

The HOLC types and terms, which we call ctypes and cterms, are defined as
follows:

σ = α | (σ1, . . . , σarOf(k)) k | {|t|} t = xσ | cσ | t1 t2 | λxσ. t

Above, we highlight the only difference from the HOL types and terms: the
comprehension types, whose presence makes the ctypes and cterms mutually
recursive. Indeed, {|t|} contains the term t, whereas a typed variable xσ and
a constant instance cσ contain the type σ. We think of a comprehension type
{|t|} with t : σ → bool as representing a set of elements which in standard
mathematical notation would be written {x : σ | t x}, that is, the set of all
elements of σ satisfying t. Var denotes the set of (typed) variables, xσ. CType
and CTerm denotes the sets of ctypes and cterms.

We also fix a function tpOf : Const → CType, assigning ctypes to constants.
Similarly to the case of HOL, we call the tuple (K, arOf,Const, tpOf), which
shall be fixed in what follows, a HOLC signature. Since ctypes contain cterms,
we define typing mutually inductively together with the notion of a ctype being
well-formed (i.e., only containing well-typed terms):

α ∈ TVar
(W1)

wf(α)

wf(σ1) . . . wf(σ
arOf(k))

(W2)
wf((σ1, . . . , σarOf(k)) k)

t :: σ → bool
(W3)

wf({|t|})
t :: τ wf(σ)

(Abs)
λxσ. t :: σ → τ

x ∈ VarN wf(σ)
(Var)

xσ :: σ

c ∈ Const wf(τ) τ ≤ tpOf(c)
(Const)

cτ :: τ

t1 :: σ → τ t2 :: σ
(App)

t1 t2 :: τ

Comprehending Isabelle/HOL’s Consistency 735

We let CTypew and CTermw be the sets of well-formed ctypes and well-typed
cterms. Also, we let Varw be the set of variables xσ that are well-typed as cterms,
i.e., have their ctype σ well-formed.

The notions of type substitution, a type or a constant instance being an
instance of (≤) or being orthogonal with (#) another type or constant instance,
are defined similarly to those for HOL. Note that a type {|t|} is unrelated to
another type {|t′|} even when the extent of the predicate t′ includes that of t.
This is because HOLC, like HOL (and unlike, e.g., PVS [39]), has no subtyping—
instead, traveling between smaller and larger types is achieved via embedding-
projection pairs.

Since in HOLC types may contain terms, we naturally lift term concepts to
types. Thus, the free (cterm) variables of a ctype σ, written FV(σ), are all the
free variables occurring in the cterms contained in σ. A type is called closed if
it has no free variables.

A Note on Declaration Circularity. In HOLC we allow tpOf to produce
declaration cycles—for example, the type of a constant may contain instances of
that constant, as in tpOf(c) = {|cbool|}. However, the typing system will ensure
that no such cyclic entity will be well-typed. For example, to type an instance cσ,
we need to apply the rule (Const), requiring that {|cbool|} be well-formed. For
the latter, we need the rule (W3), requiring that cbool be well-typed. Finally, to
type cbool, we again need the rule (Const), requiring that {|cbool|} be well-formed.
So cσ can never be typed. It may seem strange to allow constant declarations
whose instances cannot be typed (hence cannot belong to well-typed terms and
well-formed types)—however, this is harmless, since HOLC deduction only deals
with well-typed and well-formed items. Moreover, all the constants translated
from HOL will be shown to be well-typed.

Deduction. The notion of formulas and all the related notions are defined
similarly to HOL, so that HOL formulas are particular cases of HOLC formulas.
In addition to the axioms of HOL (the set Ax), HOLC shall include the following
type comprehension axiom type_comp:

∀tα→bool. (∃xα. t x) −→ ∃rep{|t|}→α.∃absα→{|t|}.({|t|} ≈ t)absrep

This axiom is nothing but a generalization of the HOL type definition τ ≡ t,
taking advantage of the fact that in HOLC we have a way to write the expression
defining τ as the type {|t|}. Note that α is a type variable standing for an arbitrary
type, previously denoted by σ. Thus, HOLC allows us to express what in HOL
used to be a schema (i.e., an infinite set of formulas, one for each type σ) by a
single axiom.

HOLC’s deduction � is defined by the same rules as HOL’s deduction 	, but
applied to ctypes and cterms instead of types and terms and using the additional
axiom type_comp. Another difference from HOL is that HOLC deduction does
not factor in a theory D—this is because we do not include any definitional
principles in HOLC.

736 O. Kunčar and A. Popescu

[ϕ ∈ Ax ∪ {type_comp}] (Fact)
Γ � ϕ

[ϕ ∈ Γ] (Assum)
Γ � ϕ

Γ � ϕ
[α /∈ Γ] (T-Inst)

Γ � ϕ[σ/α]

Γ � ϕ
[xσ /∈ Γ] (Inst)

Γ � ϕ[t/xσ]

(Beta)
Γ � (λxσ. t) s = t[s/xσ]

Γ � ϕ −→ χ Γ � ϕ
(MP)

Γ � χ

Γ ∪ {ϕ} � χ
(ImpI)

Γ � ϕ −→ χ

Γ � f xσ = g xσ
[x /∈ Γ] (Ext)

Γ � f = g

3.2 Consistency of HOLC

In a nutshell, HOLC is consistent for a similar reason that HOL (without defini-
tions) is consistent: the types have a straightforward set-theoretic interpretation
and the deduction rules are manifestly sound w.r.t. this interpretation. Similar
logics, employing mutual dependency between types and terms, have been shown
to be consistent for the foundations of Coq [6] and PVS [39].

Compared to these logics, the only twist of HOLC is that all types have to
be nonempty. Indeed, HOLC inherits from HOL the polymorphic Hilbert choice
operator, ε : (α → bool) → α, which immediately forces all types to be inhabited,
e.g., by ε (λxσ. True).

From a technical point of view, this nonemptiness requirement is easy to
satisfy. The only types that are threatened by emptiness are the comprehension
types {|t|}. We will interpret them according to their expected semantics, namely,
as the subset of σ for which t holds, only if this subset turns out to be nonempty;
otherwise we will interpret them as a fixed singleton set {∗}. This is consistent
with the HOLC comprehension axiom, type_comp, which only requires that {|t|}
have the expected semantics if ∃xα. t x holds. Notice how the Makarius Wenzel
trick of introducing type definitions as conditional statements in Isabelle/HOL
(recalled on page 7), which has inspired a similar condition for type_comp, turns
out to be very useful in our journey. Of all the HOL-based provers, this “trick”
is only used by Isabelle/HOL, as if anticipating the need for a more involved
argument for consistency.

A Full-Frame Model for HOLC. We fix a Grothendieck universe V and let
U = V \ {∅} (since all types will have nonempty interpretations). We fix the
following items in U and operators on U :

– a two-element set B = {false, true} ∈ U
– a singleton set {∗} ∈ U
– for each k ∈ K, a function k : UarOf(k) → U
– a global choice function, choice, that assigns to each nonempty set A ∈ U an

element choice(A) ∈ A.

Comprehending Isabelle/HOL’s Consistency 737

We wish to interpret well-formed ctypes and well-typed cterms, u, as items
[u] in U . Since ctypes and cterms are mutually dependent, not only the interpre-
tations, but also their domains need to be defined recursively. Namely, we define
the following notions together, by structural recursion on u ∈ CTypew ∪ CTermw:

– the set Compat(u), of compatible valuation functions ξ : TV(u) ∪ FV(u) → U
– the interpretation [u] : Compat(u) → U

For each u, assuming [v] has been defined for all structurally smaller v ∈
CTypew ∪ CTermw, we take Compat(u) to consist of all functions ξ : TV(u) ∪
FV(u) → U such that ξ(xσ) ∈ [σ] (ξ �TV(σ)∪ FV(σ)) for all xσ ∈ FV(u). (Here,
ξ �TV(σ)∪ FV(σ) denotes the restriction of ξ to the indicated set, which is clearly
included in ξ’s domain, since TV(σ) ⊆ TV(u) and FV(σ) ⊆ FV(u).)

In turn, [u] is defined as shown below. First, the equations for type
interpretations:

[α](ξ) = ξ(α) (2)

[bool](ξ) = B (3)

[ind](ξ) = N (the set of natural numbers) (4)

[σ1 → σ2](ξ) = [σ1](ξ1) → [σ2](ξ2)
(the set of functions from [σ1](ξ1) to [σ2](ξ2))
where ξi is the restriction of ξ to Compat(σi)

(5)

[(σ1, . . . , σn) k](ξ) = k ([σ1](ξ1), . . . , [σn](ξn)) for σ k ∈ Type•

where ξi is the restriction of ξ to Compat(σi)
(6)

[{|t|}](ξ) =
{{x ∈ [σ](ξ) | [t](ξ) x = true} if set nonempty and t : σ → bool

{∗} otherwise (7)

The Eq. (7) shows how we interpret comprehension types with no inhabitants
(e.g., {|λxind.False|})—we chose the singleton set {∗} (in fact, any nonempty set
would do the job). As previously discussed, this conforms to the type_comp
axiom, which only prescribes the meaning of inhabited comprehension types.

Next, the equations for term interpretations:

[−→bool→bool→bool](ξ) as the logical implication on B (8)

[=τ→τ→bool](ξ) as the equality predicate in [τ](ξ) → [τ](ξ) → B (9)

[ε(τ→bool)→τ](ξ)(f) =

{
choice(Af) if Af is nonempty
choice([τ](ξ)) otherwise,

where Af = {a ∈ [τ](ξ) | f(a) = true} for each f : [τ](ξ) → B (10)

738 O. Kunčar and A. Popescu

[zeroind](ξ) = 0 and [sucind→ind](ξ) as the successor function for N (11)

[cσ](ξ) = choice ([σ](ξ)) (12)

[xσ](ξ) =
{

ξ(xσ) if ξ(xσ) ∈ [σ](ξ′)
choice ([σ](ξ′)) otherwise,

where ξ′ is the restriction of ξ to Compat(σ)
(13)

[t1 t2](ξ) = [t1](ξ1) [t2](ξ2) where ξi is the restriction of ξ to Compat(ti) (14)
[λxσ. t](ξ) = Λa∈[σ](ξ′)[t](ξ[xσ ← a])
where ξ′ is the restriction of ξ to Compat(σ) (15)

Since the logic has no definitions, we are free to choose any interpretation for
non-built-in constant instances—as seen in (12), we do this using the global
choice operator choice. In (15), we use Λ for meta-level lambda-abstraction.

We say that a formula ϕ is true under the valuation ξ ∈ Compat(ϕ) if [ϕ](ξ) =
true. We say that ϕ is (unconditionally) true if it is true under all ξ ∈ Compat(ϕ).
Given a context Γ and a formula ϕ, we write Γ |= ϕ to mean that

∧
Γ −→ ϕ is

true, where
∧

Γ is the conjunction of all formulas in Γ .

Theorem 3. HOLC is consistent, in that ∅ �� False.

Proof. It is routine to verify that HOLC’s deduction is sound w.r.t. to its seman-
tics: for every HOLC deduction rule of the form

Γ1 � ϕ1 . . . Γn � ϕn

Γ � ϕ

it holds that Γ |= ϕ if Γi |= ϕi for all i ≤ n. Then ∅ �� False follows from
∅ �|= False. ��

3.3 Translation of Isabelle/HOL to HOLC

We fix a HOL signature Σ = (K, arOf,Const, tpOf) and an Isabelle/HOL well-
formed definitional theory D over Σ. We will produce a translation of the types
and well-typed terms of Σ into well-formed ctypes and well-typed cterms of the
HOLC signature ΣD = (K, arOf,Const, tpOfD) (having the same type construc-
tors and constants as Σ). The typing function tpOfD : Const → CType will be
defined later. For ΣD, we use all the notations from Sect. 3.1—we write CType
and CTerm for the sets of cterms and ctypes, etc.

The translation will consist of two homonymous “normal form” functions
NF : Type → CTypew and NF : Termw → CTermw. However, since we have not
yet defined tpOfD, the sets CTypew and CTermw (of well-formed ctypes and well-
typed cterms) are not yet defined either. To bootstrap the definitions, we first
define NF : Type → CType and NF : Termw → CTerm, then define tpOfD, and
finally show that the images of the NF functions are included in CTypew and
CTermw.

The NF functions are defined mutually recursively by two kinds of equations.
First, there are equations for recursive descent in the structure of terms and
types:

Comprehending Isabelle/HOL’s Consistency 739

NF(t1 t2) = NF(t1)NF(t2) (16)
NF(λxσ. t) = λxNF(σ).NF(t) (17)
NF(xσ) = xNF(σ) (18)
NF(cσ) = cNF(σ) if cσ �∈ CInst• (19)

NF(σ → τ) = NF(σ) → NF(τ) (20)
NF(bool) = bool (21)
NF(ind) = ind (22)
NF(α) = α (23)

Second, there are equations for unfolding the definitions in D. But before
listing these, we need some notation. Given u, v ∈ Type∪Termw, we write u ≡↓ v
to mean that there exists a definition u′ ≡ v′ in D and a type substitution
ρ such that u = ρ(u′) and v = ρ(v′). This notation is intuitively consistent
(although slightly abusively so) with the notation for the substitutive closure
of a relation, where we would pretend that ≡ is a relation on Type ∪ Termw,
with u′ ≡ v′ meaning (u′ ≡ v′) ∈ D. By Orthogonality, we have that, for all
u ∈ Type• ∪CInst•, there exists at most one v ∈ Type∪Termw such that u ≡↓ v.
Here are the equations for unfolding:

NF(cσ) =

{
cNF(σ) if there is no matching definition for cσ in D

NF(t) if there exists t such that cσ ≡↓ t
(24)

NF(σ) =

{
σ if there is no matching definition for σ in D

{|NF(t)|} if there exists t : τ → bool such that σ ≡↓ t
(25)

Thus, the functions NF first traverse the terms and types “vertically,” delving
into the built-in structure (function types, λ-abstractions, applications, etc.).
When a non-built-in item is being reached that is matched by a definition in D,
NF proceed “horizontally” by unfolding this definition. Since the right-hand side
of the definition can be any term, NF switch again to vertical mode. Hence, NF
repeatedly unfold the definitions when a definitional match in a subexpression is
found, following a topmost-first strategy (with the exception that proper subex-
pressions of non-built-in types are not investigated). For example, if a constant
cσ is matched by a definition, as in cσ ≡↓ t, then cσ is eagerly unfolded to t, as
opposed to unfolding the items occurring in σ. This seems to be a reasonable
strategy, given that after unfolding cσ the possibility to process σ is not lost:
since t : σ, we have that σ occurs in t.

Example 4. consts c : α → bool consts d : α
typedef α k ≡ {x : α | c d}
definition c : α k → bool ≡ λ x : α k. (c : α → bool) d

Let us show the results of applying NF on some of the constant instances and
types in the above example.

NF(α k) = {|λxα. cα→bool dα|}
NF(cbool k→bool) = λx{|λxbool. cbool→bool dbool|}. cbool→bool dbool
NF(bool k2) = {|λx{|λxbool. cbool→bool dbool|}.

(λx{|λxbool. cbool→bool dbool|}. cbool→bool dbool) d{|λxbool. cbool→bool dbool|}|}

740 O. Kunčar and A. Popescu

The evaluation of NF on bool kn terminates in a number of steps depending on
n, and the result contains n levels of comprehension-type nesting.

The first fact that we need to show is that NF is well-defined, i.e., its recursive
calls terminate. For this, we take the relation � to be ≡↓ ∪ �, where ≡↓ was
defined above and � simply contains the structural recursive calls of NF:

t1t2 � t1 λxσ. t � σ xσ � σ σ1 → σ2 � σ1

t1t2 � t2 λxσ. t � t cσ � σ σ1 → σ2 � σ2

It is immediate to see that � captures the recursive calls of NF: the structural
calls via � and the unfolding calls via ≡↓. So the well-definedness of NF is
reduced to the termination of �.

Lemma 5. The relation � is terminating (hence the functions NF are well-
defined).

Proof. We shall use the following crucial fact, which follows by induction using
the definitions of � and �↓: If u, v ∈ Type• ∪ CInst• and u ≡↓ t �∗ v, then
u �↓ v. (*)

Let us assume, for a contradiction, that � does not terminate. Then there
exists an infinite sequence (wi)i∈N such that wi � wi+1 for all i. Since � is defined
as ≡↓ ∪ � and � clearly terminates, there must exist an infinite subsequence
(wij

)j∈N such that wij
≡↓ wij+1 �∗ wij+1 for all j. Since from the definition of

≡ we have wij
∈ Type• ∪ CInst•, we obtain from (*) that wij

�↓ wij+1 for all j.
This contradicts the termination of �↓. ��

With NF in place, we can define the missing piece of the target HOLC sig-
nature: we take tpOfD to be the normalized version of tpOf, i.e. tpOfD(c) =
NF(tpOf(c)).

Lemma 6. NF preserves typing, in the following sense:

– NF(σ) is well-formed in HOLC.
– If t : τ , then NF(t) :: NF(τ).

Our main theorem about the translation will be its soundness:

Theorem 7. If D; ∅ 	 ϕ in HOL, then ∅ � NF(ϕ) in HOLC.

Let us focus on proving this theorem. If we define NF(Γ) as {NF(ϕ) | ϕ ∈ Γ},
the proof that D;Γ 	 ϕ implies NF(Γ) � NF(ϕ) should proceed by induction on
the definition of D;Γ 	 ϕ. Due to the similarity of 	 and �, most of the cases
go smoothly.

For the HOL rule (Beta), we need to prove NF(Γ) � NF((λxσ. t) s =
t[s/xσ]), that is, NF(Γ) � (λxNF(σ).NF(t))NF(s) = NF(t[s/xσ]). Hence, in order
to conclude the proof for this case using the HOLC rule (Beta), we need that
NF commutes with term substitution—this is not hard to show, since substitut-
ing terms for variables does not influence the matching of definitions, i.e., the
behavior of NF:

Comprehending Isabelle/HOL’s Consistency 741

Lemma 8. NF(t[s/xσ]) = NF(t) [NF(s)/xNF(σ)].

However, our proof (of Theorem 7) gets stuck when handling the (T-Inst)
case. It is worth looking at this difficulty, since it is revealing about the nature of
our encoding. We assume that in HOL we inferred D;Γ 	 ϕ[σ/α] from D;Γ 	 ϕ,
where α /∈ Γ . By the induction hypothesis, we have NF(Γ) � NF(ϕ). Hence, by
applying (T-Inst) in HOLC, we obtain NF(Γ) � NF(ϕ)[NF(σ)/NF(α)]. There-
fore, to prove the desired fact, we would need that the NF functions commute
with type substitutions in formulas, and therefore also in arbitrary terms (which
may be contained in formulas):

NF(t[σ/α]) = NF(t)[NF(σ)/α]

But this is not true, as seen, e.g., when tpOf(c) = α and cbool ≡ True is in D:

NF(cα[bool/α]) = NF(cbool) = True �= cbool = cα[bool/α] = NF(cα) [NF(bool)/α]

The problem resides at the very essence of overloading: a constant c is declared
at a type σ (α in the above example) and defined at a less general type τ (bool
in the example). Our translation reflects this: it leaves cσ as it is, whereas it
compiles away cτ by unfolding its definition. So then how can such a translation
be sound? Essentially, it is sound because in HOL nothing interesting can be
deduced about the undefined cσ that may affect what is being deduced about
cτ—hence it is OK to decouple the two when moving to HOLC.

To capture this notion, of an undefined cσ not affecting a defined instance
cτ in HOL, we introduce a variant of HOL deduction that restricts type
instantiation—in particular, it will not allow arbitrary statements about cσ to
be instantiated to statements about cτ . Concretely, we define 	′ by modifying 	
as follows. We remove (T-Inst) and strengthen (Fact) to a rule that combines
the use of axioms with type instantiation:

[ϕ ∈ Ax ∪ D and ∀α ∈ supp(ρ). α /∈ Γ] (Fact-T-Inst)
D;Γ 	′ ρ(ϕ)

(where ρ is a type substitution). Note the difference between (Fact-T-Inst)
and the combination of (Fact) and (T-Inst): in the former, only axioms and
elements of D are allowed to be type-instantiated, whereas in the latter instan-
tiation can occur at any moment in the proof. It is immediate to see that 	 is at
least as powerful as 	′, since (Fact-T-Inst) can be simulated by (Fact) and
(T-Inst). Conversely, it is routine to show that 	′ is closed under type sub-
stitution, and a fortiori under (T-Inst); and (Fact-T-Inst) is stronger than
(Fact).

Using 	′ instead of 	, we can prove Theorem 7. All the cases that were easy
with 	 are also easy with 	′. In addition, for the case (Fact-T-Inst) where one
infers D;Γ 	 ρ(ϕ) with ϕ ∈ Ax, we need a less general lemma than commuta-
tion of NF in an arbitrary term. Namely, noticing that the HOL axioms do not
contain non-built-in constants or types, we need the following lemma, which can
be proved by routine induction over t:

742 O. Kunčar and A. Popescu

Lemma 9. NF(ρ(t)) = NF ◦ ρ(t) whenever types•(t) ∪ consts•(t) = ∅.

Now, assume (Fact-T-Inst) is being used to derive D;Γ 	′ ρ(ϕ) for ϕ ∈ Ax.
We need to prove Γ � NF(ρ(ϕ)), that is, Γ � NF ◦ ρ(ϕ). But this follows from
n applications of the (T-Inst) rule (in HOLC), where n is the size of NF ◦ ρ’s
support (as any finite-support simultaneous substitution can be reduced to a
sequence of unary substitutions).

It remains to handle the case when (Fact-T-Inst) is being used to derive
D;Γ 	′ ρ(ϕ) for ϕ ∈ D. Here, Lemma9 does not apply, since of course the
definitions in D contain non-built-in items. However, we can take advantage
of the particular shape of the definitions. The formula ϕ necessarily has the
form u ≡ t. By Orthogonality, it follows that ρ(t) is the unique term such that
ρ(u) ≡↓ ρ(t). We have two cases:

– If u is a constant instance cσ, then by the definition of NF we have NF(ρ(u)) =
NF(ρ(t)). But then Γ � NF(ρ(ϕ)), that is, Γ � NF(ρ(u)) = NF(ρ(t)), follows
from (Fact) applied with the reflexivity axiom.

– If u is a type σ and t : τ → bool, then ρ(ϕ) is ρ(σ) ≡↓ ρ(t). In other words,
ρ(ϕ) has the format of a HOL type definition, just like ϕ. Hence, NF(ρ(ϕ))
is seen to be an instance of type_comp, namely, type_comp[NF(ρ(σ))/α]
together with NF(ρ(t)) substituted for the first quantifier. Hence Γ �
NF(ρ(ϕ)) follows from (Fact) applied with type_comp, followed by ∀-
instantiation (the latter being the standardly derived rule for ∀).

In summary, our HOLC translation of overloading emulates overloading itself
in that it treats the defined constant instances cτ as being disconnected from
their “mother” instances ctpOf(c). The translation is sound thanks to the fact
that the considered theory has no axioms about these constants besides the
overloaded definitions. This sound translation immediately allows us to reach
our overall goal:

Proof of Theorem 1 (Consistency of Isabelle/HOL). By contradiction.
Let D; ∅ 	 False. Then by Theorem 7, we obtain ∅ � NF(False) and since
NF(False) = False, we derive contradiction with Theorem 3. ��

4 Application: Logical Extensions

We introduced HOLC as an auxiliary for proving the consistency of
Isabelle/HOL’s logic. However, a natural question that arises is whether HOLC
would be itself a practically useful extension. We cannot answer this question
yet, beyond noting that it would be a significant implementation effort due to
the need to reorganize types as mutually dependent with terms. Over the years,
some other proposals to go beyond HOL arose. For example, an interesting early
proposal by Melham to extend the terms with explicit type quantifiers [34] was
never implemented. Homeier’s HOLω [22], an implemented and currently main-
tained extension of HOL with first-class type constructors, is another example.

Comprehending Isabelle/HOL’s Consistency 743

A strong argument for using HOL in theorem proving is that it constitutes a
sweet spot between expressiveness and simplicity. The expressiveness part of the
claim is debatable—and has been challenged, as shown by the above examples,
as well as by Isabelle/HOL itself which extends HOL in a nontrivial way. In our
recent work we joined the debate club and advocated a new sweet spot for HOL
(and for Isabelle/HOL, respectively) [30] by introducing local type definitions
and an unoverloading rule expressing parametricity. HOLC plays a special role
in this proposal because we use it to prove the extensions’ consistency.

In the following, we first introduce and motivate the extensions (Sect. 4.1),
and then discuss how we applied HOLC to justify their consistency and why our
previous ground semantic [29] is not suitable for this job (Sect. 4.2).

4.1 Two Extensions for Traveling from Types to Sets

We start with a theorem stating that all compact sets are closed in T2 spaces (a
topological space), whose definition uses an overloaded constant open : α set →
bool:

∀αT2-space.∀Sα set. compact S −→ closed S (26)

Since we quantify over spaces defined on α here, the theorem is not applicable
to spaces defined on a proper subset A of α. Let us recall that types and sets are
different syntactic categories in HOL. Defining a new ad hoc type isomorphic to
A is undesirable or not even allowed since A can be an open term. Thus a more
flexible theorem quantifying over all nonempty carriers A and unary predicates
open forming a T2 space is needed:

∀α.∀Aα set. A �= ∅ −→ ∀openα set→bool.T2-space
on
with A open −→

∀Sα set ⊆ A. compactonwith A open S −→ closedonwith A open S
(27)

As the proof automation works better with types, ideally one should only
prove type-based theorems such as (26) and automatically obtain set-based the-
orems such as (27). Unfortunately, this is not possible in HOL, which is frus-
trating given that (26) and (27) are semantically equivalent (in the standard
interpretation of HOL types).

To address the discrepancy and achieve the automatic translation, we
extended the logic of Isabelle/HOL by two new rules: Local Typedef (LT) and
Unoverloading (UO).

Γ 	 A �= ∅ Γ 	 (∃abs rep. (β ≈ A)absrep) −→ ϕ
[β fresh] (LT)

Γ 	 ϕ

where (β ≈ A)absrep means that β is isomorphic to A via morphisms abs and rep;
basically the core of the formula (1) from Sect. 2.2, where for notation conve-
nience we identify the set A with its characteristic predicate λx. x ∈ A. The rule
allows us to assume the existence of a type isomorphic to a nonempty set A
(which syntactically is a possibly open term) inside of a proof.

744 O. Kunčar and A. Popescu

To formulate (UO), let us recall that �↓ is the substitutive closure of the
constant–type dependency relation � from Sect. 2.2 on page 8 and let us define
Δc to be the set of all types for which the constant c was overloaded. The
notation σ �≤ S means that σ is not an instance of any type in S. We write �↓+

for the transitive closure of �↓.

ϕ[cσ/xσ]
[σ 	≤ Δc; and u �↓+ cσ does not hold for any type or constant u in ϕ] (UO)

∀xσ. ϕ

Thus, (UO) tells us that if a constant c was not overloaded for σ (or a more
general type), the meaning of the constant instance cσ is unrestricted, i.e., it
behaves as a free term variable of the same type. That is to say, the truth of a
theorem ϕ containing cσ cannot depend on the definition of cτ for some τ < σ.
In summary, (UO) imposes a certain notion of parametricity, which is willing to
cohabitate with ad hoc overloading.

We use the two rules in the translation as follows: the (UO) rule allows us to
compile out the overloaded constants from (26) (by a dictionary construction)
and thus obtain

∀α.∀openα set→bool.T2-spacewith open −→ (28)

Then we fix a nonempty set A, locally “define” a type β isomorphic to A by (LT)
and obtain (27) from the β-instance of (28) along the isomorphism between β
and A.

The extensions have already been picked up by Isabelle/HOL power users
for translating between different representations of matrices [12,13], for imple-
menting a certified and efficient algorithm for factorization [11], and for
tightly integrating invariants in proof rules for a probabilistic programming
language [33].

4.2 Consistency of the Extensions

We will fist show that HOL + (LT) is consistent by showing (LT) to be admissible
in HOLC (as a straightforward consequence of type_comp).

Theorem 10. The inference system consisting of the deduction rules of
Isabelle/HOL and the (LT) rule is consistent (in that it cannot prove False).

Proof sketch. It is enough if we show that for every step

Γ 	 A �= ∅ Γ 	 (∃abs rep. (β ≈ A)absrep) −→ ϕ
[β is fresh]

Γ 	 ϕ

in a HOL proof, we can construct a step in a HOLC proof of NF(Γ) � NF(ϕ)
given

Comprehending Isabelle/HOL’s Consistency 745

NF(Γ) � NF(A) �= NF(∅) (29)

NF(Γ) � (∃abs rep. (β ≈ NF(A))absrep) −→ NF(ϕ). (30)

The side-condition of the (LT) (freshness of β) transfers into HOLC: if β is
fresh for some u ∈ Type∪Term, it must also be fresh for NF(u). This follows from
the fact that unfolding a (type or constant) definition u ≡ t cannot introduce
new type variables since we require TV(t) ⊆ TV(u). Thus we obtain

NF(Γ) � (∃abs rep. ({|NF(A)|} ≈ NF(A))absrep) −→ NF(ϕ), (31)

an instance of (30) where we substituted the witness {|NF(A)|} for β. As a last
step, we discharge the antecedent of (31) by using type_comp (with the help of
(29)) and obtain the desired NF(Γ) � NF(ϕ). ��

We were also able to prove Theorem 10 by using our previous ground seman-
tics, as discussed in Kunčar’s thesis [26, Sect. 7.2]. The proof is more technically
elaborate and the main idea is to prove that the following principle holds in the
semantic world of HOL:

∀α.∀Aα set. A �= ∅ −→ ∃β.∃absα→β repβ→α. (β ≈ A)absrep (�)

Working in HOLC gives us the advantage to get closer to (�) in the following
sense: for every nonempty set A : σ set, not only we can postulate that there
always exists a type isomorphic to A, but we can even directly express such
a type in HOLC as the comprehension {|A|}. That is basically what the axiom
type_comp tells us. Thus, informally speaking, the property (�) is more first-class
in HOLC than in HOL.

In contrast to (LT), we could not use the ground semantics for the consistency
of (UO) and this is where HOLC shows its power.

Theorem 11. The inference system consisting of the deduction rules of
Isabelle/HOL, the (LT) rule and the (UO) rule is consistent.

Proof sketch. We will first argue that HOLC + (UO) (without its side-conditions,
since they do not make sense in HOLC) is still a consistent logic. This means,
from ϕ[cσ/xσ] we can derive ∀xσ. ϕ in HOLC + (UO). W.l.o.g. let us assume that
the interpretation of type constructors in the semantics of HOLC from Sect. 3.2
is nonoverlapping. Since HOLC does not contain any definitions, we interpret cσ

arbitrarily (as long as the value belongs to the interpretation of σ) in the model
construction for HOLC. That is to say, the proof of consistency does not rely
on the actual value of cσ’s interpretation, hence we can replace cσ by a term
variable xσ. Therefore the formula ϕ must be fulfilled for every evaluation of xσ.

The second step is to show that NF is a sound embedding of Isabelle/HOL +
(LT) + (UO) into HOLC + (UO). Since we have shown that the transla-
tion of (LT) is admissible in HOLC, we only need to focus on (UO). The
first side condition of (UO) guarantees that unfolding by NF does not intro-
duce any new cσ and the second one guarantees that NF does not unfold

746 O. Kunčar and A. Popescu

any cσ. Therefore the substitution [cσ/xσ] commutes with NF, i.e., NF(ϕ[cσ/xσ])
= (NF(ϕ))[cNF(σ)/xNF(σ)]. ��

The reason we could not use the ground semantics to prove Theorem 11 is
because the semantics is too coarse to align with the meaning of (UO): that the
truth of a theorem ϕ stating a property of cσ cannot depend on the fact that
a proper instance of cσ, say, cτ for τ < σ, was already overloaded, say, by a
definition cτ ≡ t. In semantic terms, this means that the interpretation of cσ

cannot depend on the interpretation of cτ . Recall that in the ground semantics
we considered a polymorphic HOL formula ϕ to be true just in case all its ground
type instances are true. (See also the discussion on page 9.) This definition of
truth cannot validate (UO). To see this, let us assume that ϕ is polymorphic only
in α and τ is ground. We want to assume the truth of ϕ[σ/α][cσ/xσ] and infer
the truth of ∀xσ. ϕ[σ/α]. In particular, since ∀xτ . ϕ[τ/α] is a ground instance
of the latter, we would need to infer that ∀xτ . ϕ[τ/α] is true, and in particular
that ϕ[τ/α][cτ/xτ] is true. But this is impossible, since the interpretation of cτ

in ϕ[τ/α][cτ/xτ] is fixed and dictated by the definitional theorem cτ ≡ t.

5 Conclusions and Related Work

It took the Isabelle/HOL community almost twenty years to reach a definitional
mechanism that is consistent by construction, w.r.t. both types and constants.7
This paper, which presents a clean syntactic argument for consistency, is a cul-
mination of previous efforts by Wenzel [48], Obua [38], ourselves [27,29], and
many other Isabelle designers and developers.

The key ingredients of our proof are a type-instantiation restricted version
of HOL deduction and HOLC, an extension of HOL with comprehension types.
HOLC is similar to a restriction of Coq’s Calculus of Inductive Constructions
(CiC) [8], where: (a) proof irrelevance and excluded middle axioms are enabled;
(b) polymorphism is restricted to rank 1; (c) the formation of (truly) dependent
product types is suppressed. However, unlike CiC, HOLC stays faithful to the
HOL tradition of avoiding empty types. HOLC also bears some similarities to
HOL with predicate subtyping [43] as featured by PVS [44]. Yet, HOLC does
not have real subtyping: from t : σ → bool and s :: {|t|} we cannot infer s :: σ.
Instead, HOLC retains HOL’s separation between a type defined by comprehen-
sion and the original type: the former is not included, but merely embedded in
the latter. Comprehension types are also known in the programming language
literature as refinement types [16].

Wiedijk defines stateless HOL [49], a version of HOL where types and terms
carry definitions in their syntax. Kumar et al. [25] define a translation from stan-
dard (stateful) HOL with definitions to stateless HOL, on the way of proving
the consistency of both. Their translation is similar to our HOL to HOLC trans-
lation, in that it internalizes HOL definitions as part of “stateless” formulas in a
richer logic.
7 Isabelle is by no means the only prover with longstanding foundational issues [29,

Sect. 1].

Comprehending Isabelle/HOL’s Consistency 747

Although a crucial property, consistency is nevertheless rather weak. One
should legitimately expect definitions to enjoy a much stronger property: that
they can be compiled away without affecting provability not in a richer logic
(like HOLC), but in HOL itself. Wenzel calls this property “meta-safety” and
proves it for Isabelle/HOL constant definitions [48]. In particular, meta-safety
yields proof-theoretic conservativity, itself stronger than consistency: if a formula
that contains no defined item is deducible from a definitional theory, then it
is deducible in the core (definition-free) logic. Meta-safety and conservativity
for arbitrary definitional theories (factoring in not only constant, but also type
definitions) are important meta-theoretic problems, which seem to be open not
only for Isabelle/HOL, but also for standard HOL [2]. We leave them as future
work.

Acknowledgments. We thank Tobias Nipkow, Larry Paulson, Makarius Wenzel, and
the members of the Isabelle mailing list for inspiring and occasionally intriguing opin-
ions and suggestions concerning the foundations of Isabelle/HOL. We also thank the
reviewers for suggestions on how to improve the presentation and for indicating related
work. Kunčar is supported by the German Research Foundation (DFG) grant “Security
Type Systems and Deduction” (Ni 491/13-3) in the priority program “RS3 – Reliably
Secure Software Systems” (SPP 1496). Popescu is supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) starting grant “VOWS – Verification
of Web-based Systems” (EP/N019547/1).

References

1. Isabelle Foundation & Certification (2015). https://lists.cam.ac.uk/pipermail/
cl-isabelle-users/2015-September/thread.html

2. Conservativity of HOL constant and type definitions (2016). https://sourceforge.
net/p/hol/mailman/message/35448054/

3. The HOL system logic (2016). https://sourceforge.net/projects/hol/files/hol/
kananaskis-10/kananaskis-10-logic.pdf

4. Type definitions in Isabelle; article “A Consistent Foundation for Isabelle/HOL”
by Kunčar/Popescu (2016). https://lists.cam.ac.uk/pipermail/cl-isabelle-users/
2016-August/thread.html

5. Arthan, R.: On definitions of constants and types in HOL. J. Autom. Reason.
56(3), 205–219 (2016)

6. Barras, B.: Sets in Coq, Coq in sets. J. Formal. Reason. 3(1), 29–48 (2010)
7. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL – lessons learned in formal-

logic engineering. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin,
C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999).
doi:10.1007/3-540-48256-3_3

8. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

9. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion. In:
ICFP 2015. ACM (2015)

10. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-71067-7_14

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-September/thread.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-September/thread.html
https://sourceforge.net/p/hol/mailman/message/35448054/
https://sourceforge.net/p/hol/mailman/message/35448054/
https://sourceforge.net/projects/hol/files/hol/kananaskis-10/kananaskis-10-logic.pdf
https://sourceforge.net/projects/hol/files/hol/kananaskis-10/kananaskis-10-logic.pdf
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2016-August/thread.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2016-August/thread.html
http://dx.doi.org/10.1007/3-540-48256-3_3
http://dx.doi.org/10.1007/978-3-540-71067-7_14

748 O. Kunčar and A. Popescu

11. Divasón, J., Joosten, S., Thiemann, R., Yamada, A.: A formalization of the
Berlekamp-Zassenhaus factorization algorithm. In: CPP, pp. 17–29 (2017)

12. Divasón, J., Kunčar, O., Thiemann, R., Yamada, A.: Certifying exact complexity
bounds for matrix interpretations. In: LCC (2016)

13. Divasón, J., Kunčar, O., Thiemann, R., Yamada, A.: Perron-Frobenius theorem
for spectral radius analysis. Archive of Formal Proofs (2016). https://www.isa-afp.
org/entries/Perron_Frobenius.shtml

14. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8_31

15. Fallenstein, B., Kumar, R.: Proof-producing reflection for HOL - with an applica-
tion to model polymorphism. In: ITP, pp. 170–186 (2015)

16. Freeman, T., Pfenning, F.: Refinement types for ML. In: PLDI, pp. 268–277 (1991)
17. Geuvers, H.: Proof assistants: history, ideas and future. Sadhana 34(1), 3–25 (2009)
18. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Prov-

ing Environment for Higher Order Logic. Cambridge University Press, Cambridge
(1993)

19. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12251-4_9

20. Harrison, J.: HOL Light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03359-9_4

21. Holger Blasum, O.H., Tverdyshev, S.: Euro-mils: secure European
virtualisation for trustworthy applications in critical domains - for-
mal methods used. www.euromils.eu/downloads/Deliverables/Y2/
2015-EM-UsedFormalMethods-WhitePaper-October2015.pdf

22. Homeier, P.V.: The HOL-Omega logic. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer, Heidel-
berg (2009). doi:10.1007/978-3-642-03359-9_18

23. Kanav, S., Lammich, P., Popescu, A.: A conference management system with veri-
fied document confidentiality. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol.
8559, pp. 167–183. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9_11

24. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: formal verification of an operating-system kernel. Commun. ACM
53(6), 107–115 (2010)

25. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: HOL with definitions: semantics,
soundness, and a verified implementation. In: Klein, G., Gamboa, R. (eds.) ITP
2014. LNCS, vol. 8558, pp. 308–324. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-08970-6_20

26. Kunčar, O.: Types, abstraction and parametric polymorphism in higher-order logic.
Ph.D. thesis, Fakultät für Informatik, Technische Universität München (2016).
http://www21.in.tum.de/~kuncar/documents/kuncar-phdthesis.pdf

27. Kunčar, O.: Correctness of Isabelle’s cyclicity checker: implementability of over-
loading in proof assistants. In: CPP, pp. 85–94 (2015)

28. Kunčar, O., Popescu, A.: A Consistent Foundation for Isabelle/HOL - Extended
Version. http://www21.in.tum.de/~kuncar/kuncar-popescu-isacons2016.pdf

https://www.isa-afp.org/entries/Perron_Frobenius.shtml
https://www.isa-afp.org/entries/Perron_Frobenius.shtml
http://dx.doi.org/10.1007/978-3-642-39799-8_31
http://dx.doi.org/10.1007/978-3-642-39799-8_31
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1007/978-3-642-03359-9_4
www.euromils.eu/downloads/Deliverables/Y2/2015-EM-UsedFormalMethods-WhitePaper-October2015.pdf
www.euromils.eu/downloads/Deliverables/Y2/2015-EM-UsedFormalMethods-WhitePaper-October2015.pdf
http://dx.doi.org/10.1007/978-3-642-03359-9_18
http://dx.doi.org/10.1007/978-3-319-08867-9_11
http://dx.doi.org/10.1007/978-3-319-08970-6_20
http://dx.doi.org/10.1007/978-3-319-08970-6_20
http://www21.in.tum.de/~kuncar/documents/kuncar-phdthesis.pdf
http://www21.in.tum.de/~kuncar/kuncar-popescu-isacons2016.pdf

Comprehending Isabelle/HOL’s Consistency 749

29. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. In: Urban,
C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 234–252. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-22102-1_16

30. Kunčar, O., Popescu, A.: From types to sets by local type definitions in higher-
order logic. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp.
200–218. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43144-4_13

31. Kunčar, O., Popescu, A.: Comprehending Isabelle/HOL’s consistency. Technical
report (2017). http://andreipopescu.uk/pdf/compr_IsabelleHOL_cons_TR.pdf

32. Lochbihler, A.: Verifying a compiler for Java threads. In: Gordon, A.D. (ed.) ESOP
2010. LNCS, vol. 6012, pp. 427–447. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11957-6_23

33. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49498-1_20

34. Melham, T.F.: The HOL logic extended with quantification over type variables.
In: TPHOLs, pp. 3–17 (1992)

35. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

36. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer, Heidel-
berg (2014)

37. Nipkow, T., Snelting, G.: Type classes and overloading resolution via order-sorted
unification. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp. 1–14. Springer,
Heidelberg (1991). doi:10.1007/3540543961_1

38. Obua, S.: Checking conservativity of overloaded definitions in higher-order logic. In:
Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 212–226. Springer, Heidelberg
(2006). doi:10.1007/11805618_16

39. Owre, S., Shankar, N.: The formal semantics of PVS, SRI Technical report, March
1999. http://www.csl.sri.com/papers/csl-97-2/

40. Paulson, L.: Personal communication (2014)
41. Pitts, A.: The HOL logic. In: Introduction to HOL: A Theorem Proving Environ-

ment for Higher Order Logic, pp. 191–232 (1993). Gordon and Melham [18]
42. Reynolds, J.C.: Polymorphism is not set-theoretic. In: Kahn, G., MacQueen, D.B.,

Plotkin, G. (eds.) SDT 1984. LNCS, vol. 173, pp. 145–156. Springer, Heidelberg
(1984). doi:10.1007/3-540-13346-1_7

43. Rushby, J.M., Owre, S., Shankar, N.: Subtypes for specifications: predicate sub-
typing in PVS. IEEE Trans. Softw. Eng. 24(9), 709–720 (1998)

44. Shankar, N., Owre, S., Rushby, J.M.: PVS Tutorial. Computer Science Laboratory,
SRI International, Menlo Park (1993)

45. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic: category theory applied to theorem proving.
In: LICS, pp. 596–605 (2012)

46. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: POPL
(1989)

47. Wenzel, M.: The Isabelle/Isar reference manual (2016). http://isabelle.in.tum.de/
doc/isar-ref.pdf

48. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L.,
Felty, A. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg
(1997). doi:10.1007/BFb0028402

49. Wiedijk, F.: Stateless HOL. In: TYPES, pp. 47–61 (2009)

http://dx.doi.org/10.1007/978-3-319-22102-1_16
http://dx.doi.org/10.1007/978-3-319-43144-4_13
http://andreipopescu.uk/pdf/compr_IsabelleHOL_cons_TR.pdf
http://dx.doi.org/10.1007/978-3-642-11957-6_23
http://dx.doi.org/10.1007/978-3-642-11957-6_23
http://dx.doi.org/10.1007/978-3-662-49498-1_20
http://dx.doi.org/10.1007/3540543961_1
http://dx.doi.org/10.1007/11805618_16
http://www.csl.sri.com/papers/csl-97-2/
http://dx.doi.org/10.1007/3-540-13346-1_7
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://dx.doi.org/10.1007/BFb0028402

The Essence of Functional Programming
on Semantic Data

Martin Leinberger1(B), Ralf Lämmel2, and Steffen Staab1,3

1 Institute for Web Science and Technologies, University of Koblenz-Landau,
Koblenz, Germany

mleinberger@uni-koblenz.de
2 The Software Languages Team, University of Koblenz-Landau,

Koblenz, Germany
3 Web and Internet Science Research Group,

University of Southampton, Southampton, England

Abstract. Semantic data fuels many different applications, but is still
lacking proper integration into programming languages. Untyped access
is error-prone. Mapping approaches cannot fully capture the conceptu-
alization of semantic data. In this paper, we present λDL, a typed λ-
calculus with constructs for operating on semantic data. This is achieved
by the integration of description logics into the λ-calculus for both typing
and data access or querying. The language is centered around several key
design principles, in particular: (1) the usage of semantic conceptualiza-
tions as types, (2) subtype inference for these types, and (3) type-checked
query access to the data by both ensuring the satisfiability of queries as
well as typing query results precisely. The paper motivates the use of a
designated type system for semantic data and it provides the theoretic
foundation for the integration of description logics as well as the core
formal definition of λDL including a proof of type safety.

1 Introduction

Semantic data allows for capturing knowledge in a natural manner. Its charac-
teristics include the representation of conceptualizations inside the data and an
entity-relation or graph-like description of data. Both, on their own and together,
they allow for precisely specifying the knowledge represented within semantic
data. A knowledge system manages semantic data and may infer new facts by
logic inference. Different use cases are fueled by the semantic-data approach.
The knowledge graphs of Google and Microsoft enhance Internet search. Wiki-
data [38] is an open source knowledge graph that stores structured data for
Wikipedia. It consists of one billion statements and contains 1,148,230 differ-
ent concepts and 2515 relations. The ontology defined by Schema.org1 provides
structure for data. This data is then used in search as well as personal assistants
such as Google Now and Cortana. Google stores more than 3 trillion semantic

1 https://schema.org/.
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 750–776, 2017.
DOI: 10.1007/978-3-662-54434-1_28

https://schema.org/

The Essence of Functional Programming on Semantic Data 751

statements crawled from the web. In the field of Life Sciences, semantic data
was applied in the form of Bio2RDF2, providing 11 billion triples. Semantic
data has also interlinked large, varied data sources, such as provided by Fokus3
containing more than 200,000 different data sets. These examples demonstrate
that semantic data models (e.g., RDF or OWL) are important for representing
knowledge in complex use cases. In order to fully exploit the advantages of these
data models, it is also necessary to facilitate programmatic access and operating
over such data in programs.

As the running example, consider semantic data about music artists for-
malized in the description logic ALCOI(D). Listing 1 shows that everyone, or
rather every object, for which a recorded relation that connects the object to
another entity of type Song, exists is considered to be a MusicArtist (Line 2).
The object beatles is of type MusicArtist (Line 4) and machineGun is a Song
(Line 5). The object hendrix has recorded the song machineGun (Line 6) and
was influenced by the object beatles (Line 7).

1 // Conceptualization
2 ∃recorded.Song � MusicArtist
3 // Graph data
4 beatles : MusicArtist
5 machineGun : Song
6 (hendrix, machineGun) : recorded
7 (hendrix,beatles) : influencedBy

Listing 1. Initial example of semantic data.

The example shows several challenges we need to deal with when working
with semantic data in a programming language. (1) Conceptualizations rely on
a mixture of nominal (MusicArtist) and structural typing (∃recorded.Song).
(2) It is also not uncommon to have a very general or no conceptualization at all,
as exemplified by the influencedBy role that expresses that hendrix has been
influenced by the beatles. (3) Additional, implicit statements may be derived
by logical reasoning, e.g., in our running example hendrix : MusicArtist can
be inferred. Another challenge is not illustrated: (4) In real data sources, the
sheer size of potential types may become a problem. It is practically infeasible
to explicitly convert all 1,148,230 different concepts of Wikidata into types of a
programming language.

Integration of data models into programming languages can be achieved in
different ways. The three most important are (1) via generic types, (2) via a
mapping to the type system of a programming language, or (3) by using a
custom type system. A generic approach (1) can represent semantic data using
types such as GraphNode or Axiom (cf. [20]). While this approach can represent
anything the data can model, it does not leverage static typing: such generic
representations are not error-checked. Mapping approaches (2) such as [22] aim
at mapping the data model to the type system of the programming language so
2 http://bio2rdf.org/.
3 https://www.fokus.fraunhofer.de/en.

http://bio2rdf.org/
https://www.fokus.fraunhofer.de/en

752 M. Leinberger et al.

that static typing is leveraged. However, the mixing of structural and nominal
typing, inferred statements, and a high number of concepts worth mapping are
problematic. We therefore propose a third, a novel approach: A type system
designed for semantic data (3).

In this paper, we present λDL, a functional language for working with knowl-
edge systems. λDL uses concept expressions such as ∃recorded.Song as types.
This ensures that every conceptualization can be represented in the language
and allows for typing values precisely. It avoids pitfalls of other approaches by
forwarding typing and subtyping judgments to the knowledge system, thereby
allowing facts to be considered only if required. Lastly, the language contains
a simple querying mechanism based on description logics. The querying mech-
anism allows for checking of satisfiability of queries as well as for typing the
query results in the programming language. As a result, λDL provides a type-
safe method of working with semantic data.

To highlight a simple kind of error that type checking can catch, consider a
function f that takes ∃influencedBy.� as input. In other words, the functions
accepts all entities for which an influencedBy relation exists. Using a query-
operator that searches for entities in the data, a developer might simply query
for music artists because he has seen that hendrix has an influence. Applying
any value of the result set to the function f can cause runtime errors, as not all
music artists have a known influence. Typing in λDL is precise enough to detect
such errors (see Listing 2).

1 let f = λ(x:∃influencedBy.�) . x.influencedBy in
2 f (head (query MusicArtist))

Listing 2. Rejected code—music artist is not a subtype of ∃influencedBy.�.

In summary, the main contributions of the paper are as follows:

1. We motivate and describe λDL, a language containing constructs for working
with semantic data. In particular, we provide typing, querying constructs
and a typecase. Semantics of these constructs rely on description logics, the
theoretical foundations of semantic data.

2. We present a formal proof of type safety for λDL. We highlight how design
decisions in λDL solve many of the problems that occur when dealing with
semantic data and allow for a straightforward proof.

As we extend a standard λ-calculus, large parts of the semantics and proof of
type safety are routine. We therefore focus on cases particular to our language.
The full rules and complete proof can be found in the technical report4. Along
with the technical report, we also provide a prototypical implementation to show
the feasibility of the presented theories in practice.

Road-Map of the Paper. The remaining paper is organized as follows. In Sect. 2,
we introduce description logics as the theoretic foundation of semantic data.
In Sect. 3, we illustrate λDL with an extension of the running example and an

4 https://west.uni-koblenz.de/lambda-dl.

https://west.uni-koblenz.de/lambda-dl

The Essence of Functional Programming on Semantic Data 753

informal view on the calculus. In Sect. 4, we describe the core language and its
evaluation rules. In Sect. 5, we describe the type system. In Sect. 6, we provide
a proof of type soundness. In Sect. 7, we examine related work. In Sect. 8, we
conclude the paper including a discussion of future work.

2 Description Logics

Semantic data is often formalized in the RDF data model or in the more expres-
sive Web Ontology Language (OWL5). Formal theories about the latter are
grounded in research on description logics. Description logics is a family of logical
languages for describing conceptual knowledge and graph data. All description
logic languages are sub-languages of first-order predicate logic. They are defined
to allow for decidable or even PTIME decision procedures. Their usefulness for
modeling semantic data has been shown with such diverse use cases as reason-
ing on UML class diagrams [6], semantic query optimization on object-oriented
database systems [4], or improving database access through abstraction [10].

Syntax and Semantics. Semantic data, also called a knowledge base, comprises
of a set of description logics axioms that are composed using a signature Sig(K)
and a set of logical and concept operators and comparisons. A signature Sig of
a knowledge base K is a triple Sig(K) = (A,Q,O) where A is a set of concept
names, Q is a set of role names, and O is a set of object names. As common
in DL research, we use a intuitive interpretation-based semantics. An interpre-
tation I is a pair consisting of a non-empty universe ΔI and an interpretation
function ·I that maps each object a, b ∈ O to an element of the universe. Fur-
thermore, it assigns each concept name A ∈ A a set AI ⊆ ΔI and each role
name Q ∈ Q to a binary relation QI ⊆ ΔI × ΔI . In our running example,
the signature of Listing 1 contains the concepts6 MusicArtist and Song, the
roles recorded and influencedBy as well as the objects beatles, hendrix, and
machineGun. An interpretation I could map objects like hendrix to their real-
life counterparts, e.g., the artist Jimi Hendrix. Furthermore, the interpretation
of concept MusicArtist might be MusicArtistI = {hendrix, beatles}, and
the interpretation of Song might be SongI = {machineGun}. The interpreta-
tion of the recorded role might be recordedI = {(hendrix, machineGun)} and
influencedByI = {(hendrix, beatles)}.

Given these element names, complex expressions, e.g. as highlighted by List-
ing 1, can be built. For the course of the paper, the specific description logics
dialect needed to cover all necessary constructs is ALCOI, consisting of the
most commonly used Attributive Language with Complements plus the addition
of nominal concept expressions and inverse role expressions. Table 1 summarizes

5 https://www.w3.org/OWL/.
6 As common in description logics research, we use “concept C” to refer to both the

concept name C and the interpretation of this concept name CI , unless the distinc-
tion between the two is explicitly required. Likewise, we do for role names and object
names.

https://www.w3.org/OWL/

754 M. Leinberger et al.

Table 1. Role expressions and associated semantics.

Role expression Syntax Semantics

Atomic role Q QI ⊆ ΔI × ΔI

Inverse R− {(b, a) ∈ ΔI × ΔI |(a, b) ∈ RI}

Table 2. Concept expressions and associated semantics.

Concept expression Syntax Semantics

Nominal concept { a } {aI}
Atomic concept A AI ⊆ ΔI

Top � ΔI

Bottom ⊥ ∅
Negation ¬C ΔI \ C

Intersection C � D CI ∩ DI

Union C
 D CI ∪ DI

Existential quantification ∃R.C {aI ∈ ΔI |∃bI : (aI , bI) ∈ RI ∧ bI ∈ CI}
Universal quantification ∀R.C {aI ∈ ΔI |∀bI : (aI , bI) ∈ RI ∧ bI ∈ CI}

syntax and semantics of role expressions represented through the metavariable
R. A role expression is either an atomic role or the inverse of a role expression.

Concept expressions are composed from other concept expressions and may
also include role expressions. Concept expressions, represented through the
metavariables C and D, are either atomic concepts, �, ⊥ or the negation of a
concept. Concept expressions can also be composed from intersection or through
existential and universal quantification on a role expression. An example of such
a concept expression from Listing 1 is the concept ∃recorded.Song that describes
the set of objects, which have recorded at least one song. Lastly, it is also possible
to define a concept by enumerating its objects. This constitutes a nominal type in
description logics and allows the description of sets such as the one only contain-
ing hendrix and the beatles through the expression {hendrix} � {beatles}.
Table 2 summarizes the syntax and semantics of concept expressions.

Furthermore, in the context of programming with semantic data, it makes
sense to add additional data types such as string or integer. We then arrive at the
language ALCIO(D), the language ALCIO plus the addition of data types for
constructing knowledge bases. In the OWL standard, the use of XSD7 data types
is common. We therefore also include XSD data types wherever it is appropri-
ate. As an example, consider the concept expression ∃artistName.xsd : string
describing the set of all objects having an artist name that is a string. As the
integration of such smaller, closed set of data types can be achieved via map-
pings to appropriate types in the programming language, we do not go into
details about them in the remainder of the paper.

7 https://www.w3.org/TR/xmlschema-2/.

https://www.w3.org/TR/xmlschema-2/

The Essence of Functional Programming on Semantic Data 755

Table 3. Terminological and assertional axioms.

Name Syntax Semantics

Concept inclusion C � D CI ⊆ DI

Concept equality C ≡ D CI = DI

Concept assertion a : C aI ∈ CI

Role assertion (a, b) : R (aI , bI) ∈ RI

Object equivalence a ≡ b aI = bI

Fig. 1. Syntactical abbreviations for DL.

Given such concept (and datatype) expressions, we may now define semantic
statements, also called a knowledge base, as pointed out before. A knowledge
base K is a pair K = (T ,A) consisting of the set of terminological axioms T ,
the conceptualization of the data and the set of assertional axioms A, the actual
data. Schematically, a knowledge base can express that two concepts are either
equivalent or that two concepts are in a subsumptive relationship. In terms
of actual data, objects can either express that belong to a certain concept or
that they are related to another object via a role. Furthermore, it is possible
to axiomatize that two objects are equivalent. Table 3 summarizes syntax and
semantics of possible axioms in the knowledge base.

Even weak axiomatizations such as RDFS8 allow for the definition of domains
and ranges of roles used in the ontology. As shown in Fig. 1, Domain and Range
definition can be defined as abbreviations of axioms built according to Table 3.

Using our running example, we can now define a more sophisticated knowl-
edge base (Listing 3). We assume everyone who has recorded a song to be a
music artist, but not all music artists have recorded one (Line 2). Music artists
who have been played at a radio station however must have recorded a song
(Lines 3–4). Music groups are a special kind of music artists (Line 5). Every
music artist has an artist name, which is always of type xsd:string (Lines 6 and
7). As might happen when semantic data is crawled from the Web, a role like
influenceBy might not be defined in the schema. Thus, it remains a role that
is not restricted by any terminological axiom. The actual data includes descrip-
tions of the beatles which are a music group (Line 9), machineGun which is
a song (Line 10) coolFm which is a radio station (Line 11). machineGun has
been recorded by hendrix (Line 12), who has been influencedBy the beatles
(Line 13). Lastly, we know that both, hendrix and beatles have been played by
coolFm (Line 14–15). It is not explicitly stated that hendrix is a music artist.
Furthermore, even though we know that the music group beatles has been
played at coolFm, we do not know any song that they recorded.

8 RDF Schema, one of the weakest forms of terminological axioms.

756 M. Leinberger et al.

1 // Conceptualization
2 ∃recorded.Song � MusicArtist
3 MusicArtist 	 ∃playedAt.RadioStation �
4 ∃recorded.Song
5 MusicGroup � MusicArtist
6 MusicArtist � ∃artistName.�
7 Range(artistName, xsd:String)
8 // Graph data
9 beatles : MusicGroup

10 machineGun : Song
11 coolFm : RadioStation
12 (hendrix, machineGun) : recorded
13 (hendrix, beatles) : influencedBy
14 (hendrix, coolFm) : playedAt
15 (beatles, coolFm) : playedAt
16 (hendrix,"Jimmy Hendrix") : artistName
17 (beatles,"The Beatles") : artistName

Listing 3. Advanced example of semantic data.

As illustrated by the example, ALCIO(D) is a description logics language
which is already rather expressive to describe complex concept and object rela-
tionships. As we want to focus on the “essence of programming with semantic
data”, we refrain from using more powerful languages, such as OWL2DL, as this
would distract from the core contributions of this paper without significantly
changing its methods.

Inference. In terms of inference, interpretations have to be reconsidered. Axioms
built according to Table 3 may or may not be true in a given interpretation. An
interpretation I is said to satisfy an axiom F , if its considered to be true in the
interpretation. The notation I |= F is used to indicate this. An interpretation I
satisfies a set of axioms F , if ∀F ∈ F : I |= F . An interpretation that satisfies a
knowledge base K = (T ,A), written I |= K if I |= T and I |= A, is also called a
model. For an axiom to be inferred from the given facts, the axiom needs to be
true in all models of the knowledge base (see Definition 1).

Definition 1 (Inference). Let K = (T ,A) be a knowledge base, F an axiom
and I the set of all interpretations. F is inferred, written K |= F , if ∀I ∈ I :
I |= K then I |= F .

An example of this is the axiom hendrix : MusicArtist. hendrix has recorded
a song and must therefore be element of ∃recorded.Song. As ∃recorded.Song �
MusicArtist must be true in all models, hendrix must also be element of
MusicArtist. A knowledge system might introduce anonymous objects to fulfill
the explicitly given axioms. Take the object beatles as an example. The object
is a music artist and has been played in the radio. Therefore, according to lines
3–4 in the example, they must have recorded a song. However, the knowledge

The Essence of Functional Programming on Semantic Data 757

system does not know any song recorded by them. It will therefore introduce at
least one anonymous object representing this song in order to satisfy the axioms.

Queries. Interaction between the programming language and the knowledge sys-
tem can be realized via querying. Two basic forms of queries can be distinguished.
Queries that check whether an axiom is true have already been introduced in
the previous paragraph (K |= F). A more expressive form of querying introduces
variables, to which the knowledge system responds with unifications for which
the axiom is true. Querying introduces variables, to which the knowledge sys-
tem responds with unifications for which the axiom is known to be true (see
Definition 2).

Definition 2 (Querying with variables). Let K be a knowledge base and
C a concept expression. The set of all objects a such that a : C is true is then
{?X |K |= ?X : C}, where ?X represents a variable being unified with said objects.

As an example, consider the query K |= ?X : MusicArtist, the variable ?X
is unified with all objects that belong to the concept MusicArtist. However,
this form of query can be problematic as, depending on the knowledge system,
an infinite number of unifications might exist. Consider the knowledge base in
Listing 4. A person is someone who has a father who is again a person (Line 1).
An object someone is defined to be a person (Line 2).

1 Person � ∃hasFather.Person
2 someone : Person

Listing 4. Infinitely large knowledge system.

If someone is a person, then he or she must have an father which is a anony-
mous object and a person himself, again implying that this anonymous object
has a father. A query K |= ?X : Person therefore yields an infinite number of
unifications. We therefore use a simple form of so called DL-safe queries (cf. [28]),
which restrict unifications to objects defined in the signature (see Definition 3).
Definition 3 (DL-safe queries). Let K be a knowledge base, Sig(K) =
(A,Q,O) its signature and C a concept expression. The set of all objects for
which a : C is true and that are not anonymous can be queried by {?X |K |= ?X :
C ∧ ?X ∈ O}.
In case of the example shown in Listing 4, only the object someone would be
returned, even though anonymous objects are considered for inferencing.

Open World and No Unique Name Assumption. Semantic data employs an open
world semantics. Axioms are true if they are true in all models of the knowledge
base. Likewise, an axiom is false if they are false in all models of the knowledge.
Contrary to a closed world, axioms that are true in some models, but false in
others are not false but rather unknown. This allows the modeling of incomplete
data without inconsistencies. Furthermore, there is no unique name assumption.
Two syntactically different objects might be equivalent. As an example, consider
the two objects prince and theArtistFormerlyKnownAsPrince. While they are
syntactically different, they might be semantically equivalent.

758 M. Leinberger et al.

3 λDL in a Nutshell

Developing applications for knowledge systems, as introduced in the previous
section, is difficult and error-prone. λDL has been created to achieve a type-safe
way of programming with such data sources.

3.1 Key Design Principles

Concepts as Types. Type safety can only be achieved if terms are typed precisely.
This is only possible if the conceptualizations of semantic data are usable in the
programming language. Therefore, concept expressions must be seen as types in
the language.

Subtype Inferences. The facts about subsumptive relationships between concepts
must be added to the system during the type checking process by forwarding
these checks to the knowledge system. This allows for taking inferred statements
into account and avoids problems with large number of conceptualizations.

Typing of Queries. To avoid runtime errors, queries must be properly type-
checked. Queries can be checked in two ways: First, unsatisfiable queries must
be rejected. This means that queries for which no possible A-Box instance can
produce a result are detected and treated as an error. Second, usage of queries
must be type-safe, meaning that the query result must be properly typed. Queries
always return lists in λDL.

DL-Safe Queries. A knowledge system might introduce anonymous objects to
satisfy axioms. In the worst case, this can lead to infinitely large query results.
However, very little information can be gained of such objects aside from their
existence. As shown in Definition 3, λDL relies on a simplified form of DL-safe
queries. Queries are enforced to be finite by only allowing unifications with known
objects, even though this might lead to empty result sets in some cases.

Open-World Querying. When looking at inferencing, axioms may be true, false
or unkown. For simplicity, λDL considers axioms to be true only if the axiom is
true in all models. In other cases, the axiom is considered false. While this view
is close to a developers expectation, it also introduces the side effect that union
of two queries such as query C and query ¬C does not yield all objects. For
some objects, it is simply unknown whether they belong to either C or ¬C.

3.2 Example Use Case

Consider an application that works on the knowledge system defined in Listing 3.
Four necessary functions should be implemented: First, the application should
query for all music artists that have recorded a song. Second, the application
should provide a mapping from a music artist to the list of their songs. Third,
a mapping from a music artist to his artist name must be created. Fourth, the

The Essence of Functional Programming on Semantic Data 759

application should display all influences of an artist—therefore a mapping from
a music artist to his influences is needed. However, these influences should also
be human-readable, meaning that they should also be mapped to their name.

The first requirement is implemented by the querying mechanism in λDL.
The necessary list of music artists that have recorded at least one song can
be queried using MusicArtist 	 ∃recorded.Song (see Listing 5). Applied to a
knowledge system working on the facts in Listing 3, this yields a list containing
both hendrix and beatles. This expression is typed by the concept expression
used in the querying, assigning a type of (MusicArtist 	 ∃recorded.Song) list
to the evaluation result.

1 query MusicArtist 	 ∃recorded.Song
Listing 5. Querying for music artists that have recorded a song.

Mapping a member of this list to his or her recorded songs can be done using
role projections. The input type for such a mapping function is ∃recorded.Song
which is a super type of MusicArtist 	 ∃recorded.Song. Listing 6 shows the
code for the mapping function. As mentioned before, for the object beatles,
the semantic data does not contain any recorded songs, even though such a
song must exist. The anonymous object introduced by the knowledge system
is removed and an empty list is returned. Yet, the developer knows that an
anonymous object must exist and that the knowledge system might know this
song at some point in the future—otherwise typing would have rejected the
function application.

1 let getRecordings = λ(a:∃recorded.Song).
2 a.recorded

Listing 6. Mapping to the recordings.

A function mapping a music artist to his name is again built by role pro-
jections. As our knowledge systems claims that every music artist has an artist
name (Listing 3, line 5), the input type for this function can be the music artist
concept. Additionally, the knowledge system states that the returned list of val-
ues are all of type string. We can therefore simply take the head of the returned
list. Listing 7 shows the code of the mapping function. However, this code also
shows a problem λDL still faces—if the knowledge system would not know the
name of an artist, the resulting list would be empty and the code would still
produce a runtime error.

1 let getArtistName = λ(a:∃artistName.xsd:string).
2 head (a.artistName)

Listing 7. Mapping a artist to his name.

The last requirement, mapping a music artist to his influences introduces
casting, as music artists are not in a direct subtype relation to influencedBy.�.
This casting is important, as simply allowing the projection could cause runtime
errors if, e.g., used on the object beatles. λDL provides a typecase for this use

760 M. Leinberger et al.

case. Listing 8 shows the code for such a mapping from a MusicArtist to an
influence. In case that the argument of the function is of type influencedBy.�,
the actual mapping function is applied to the value—otherwise, an empty list is
returned.

1 let getArtistInfluences = λ(artist:MusicArtist).
2 case artist of
3 type ∃influencedBy.� as x -> getInfluences x
4 default nil[∃influencedBy−.MusicArtist]

Listing 8. Casting a music artist to influencedBy.�.

The function computing the actual influences can use a projection and then
apply a function that converts influences to their human-readable name However,
this getting the name of an influence is problematic due to the weak schematic
restrictions of the influencedBy role. The code must therefore proceed on a
case by case basis. If the influence is a music artist, the projection to the human-
readable string is known. Otherwise, the influence cannot be converted. Listing 9
shows the complete code for the function.

1 let getInfluences = λ(obj:∃influencedBy.�).
2 let toName = λ(x:∃influencedBy−.�).
3 case x of
4 type MusicArtist as y -> getName y
5 default"cannot convert to name"
6 in letrec getNames:(∃influencedBy−.� list -> string list) =
7 λ(source:∃influencedBy−.� list) .
8 if (null source)
9 then nil[string]

10 else cons (toName (head source)) (getNames (tail source))
11 in
12 getNames obj.influencedBy

Listing 9. Mapping influences to their human-readable representations.

4 Core Language

Syntax. Our core language λDL (Fig. 2) is a simply typed call-by-value λ-
calculus. Terms of the language include let-statements, a fixed point operator for
recursion, function application and if-then-else expressions. Constructs for lists
are included in the language: cons, nil including a type parameter, null, head
and tail. Specific to our language is the querying construct for selecting data in
the knowledge system based on a concept expression and projections from an
object to a set of objects using role expressions. We use a typecase constructs
that provides branch control based on types. It contains an arbitrary number of
cases plus a default case. If a branch matches, the object is considered to be of
the matched type inside the case itself. It therefore acts as a type-safe casting
construct.

The Essence of Functional Programming on Semantic Data 761

Fig. 2. Syntax (terms, values, types) of λDL.

Fig. 3. Syntactical abbreviations of λDL.

We use an overbar notation to represent sequences of syntactical elements.
That is, a stands for a1, a2, . . . , an. As DL has no unique name assumption,
objects can be syntactically different but semantically equivalent. Therefore, we
also included the equality operator in our representation. Values (v) include
objects defined in the knowledge base, nil and cons to represent lists, λ-
abstractions and primitive values. λ-abstractions indicate the type of their vari-
able. In terms of primitive values, we assume data types such as integers and
strings, but omit routine details. To illustrate them, we usually just include
booleans in our syntax. Types (T) consist of concept expressions built accord-
ing to Table 3, type constructors for function and list types and primitive types.
Additionally, we use a typing context to store type bindings for λ-abstractions.
To simplify recursion, we also define a letrec as an abbreviation of the fixpoint
operator (see Fig. 3).

Semantics. The operational semantics is defined using a reduction relation,
which extends the standard ones. Reduction of lists and terms not related to

762 M. Leinberger et al.

Fig. 4. Reduction rules related to KB.

the knowledge bears no significant difference from rules as, e.g., defined in [34].
We therefore omit these rules and focus on the constructs specific to λDL (see
Figs. 4 and 5). The full semantics can be found in the technical report.

A term representing a query can be directly evaluated to a list of objects (E-
QUERY). Even though lists create an implicit ordering, we chose them over sets
as they are the more basic programming language constructs and subsequent
processing of query result introduces a ordering anyways. The query reduction
rule queries the knowledge system for all ?X for which the axiom K |= ?X : C
is true. As λDL relies on DL-safe queries, only objects actually defined in the
signature are allowed. For simplicity’s sake, we consider the result to be a list and
introduce a σ-operator that takes care of communication between the knowledge
system and λDL. As queries yield sets of objects, this operator essentially works
by concatenating every object of the query result into a list. Projections (E-
PROJ and E-PROJV) behave similarly. Once the term has been reduced to a
object a, the knowledge system is queried for all ?X for which K |= (a, ?X) : R.
Again, anonymous objects are not considered and the result is converted into a
list by the σ-operator.

The Essence of Functional Programming on Semantic Data 763

Fig. 5. Reduction rules for typecase terms.

In case of equivalence, both terms must first be reduced to values (E-EQ1 and
E-EQ2). Once both terms are values, equivalence can be computed. Equivalence
is distinguished into equivalence for objects (EQ-NOMINAL-TRUE and EQ-
NOMINAL-FALSE) and equivalence for primitive values (EQ-PRIM-TRUE and
EQ-PRIM-FALSE). λDL considers two primitive values only equivalent if they
are syntactically equal. In case of objects, the knowledge base is queried. If the
knowledge system can unambiguously prove that a is equivalent to b, the two
objects are considered to be equal. Due to the open-world querying, objects are
considered to be different if the knowledge system is unsure or if it can actually
prove that the two objects are not equivalent. We do not consider equivalence
for lists or λ-abstractions.

Evaluation of typecase terms (see Fig. 5) is somewhat special. The terms are
first reduced to an object (E-TYPECASE). The semantics can then test the
object, case by case, until one of them matches (E-TYPECASE-SUCC and E-
TYPECASE-FAIL). For each case the knowledge system is queried whether the
axiom K |= a : C is true. Due to the open-world querying, it might happen
that the knowledge system cannot compute such a membership. In this case, the
typecase is reduced to its default.

764 M. Leinberger et al.

Fig. 6. Least upper bound of types.

5 Type System

The most distinguishing feature of the type system for λDL is the addition of
concept expressions, built according to the rules of Table 2, as types in the lan-
guage. For constructs unrelated to the knowledge system, this has little impact.

Least Upper Bound and Greatest Lower Bound. In the typing rules for a few
constructs, e.g., for typing if-then-else expressions, the least upper bound of two
types S and T has to be determined; see the designated judgment lub in Fig. 6.
In case of a least upper bound for primitive types, we simply assume the types
to be equal (LUB-PRIMITIVE). For two concepts C and D, a new concept
C � D is constructed (LUB-CONCEPT). For lists of the form S list and T list,
we compute the least upper bound of S and T as a new element type for the
list. For two functions, S1 → S2 and T1 → T2, the greatest-lower bound of the
argument types S1 and T1 (‘contra-variance’) as well as the least upper bound
of S2 and T2 (‘co-variance’) are computed.

The greatest-lower bound of two types S and T is defined analogously. For
instance, the greatest lower bound of two concepts C and D is the concept
C 	 D. The complete definition of the designated judgment glb can be found in
the technical report.

Typing Knowledge-Base Unrelated Constructs. The typing rules for constructs
unrelated to the knowledge base are mainly the standard ones as in common
simple (applied) lambda calculi. We only include rules here for constructs that
need special attention due to λDL.

The typing rule for if-then-else expressions needs to be adjusted in a manner
similar to type systems with subtyping; see the use of the lub-judgment in Fig. 7.

Fig. 7. Typing rules for constructs unrelated to the KB.

The Essence of Functional Programming on Semantic Data 765

Fig. 8. Typing rules for lists

Fig. 9. Typing rules for constructs related to the KB.

Figure 8 shows the typing rules for list-related forms of terms. The empty list
constructor has a type parameter (T-NIL). A cons function (T-CONS) is typed
using the least upper bound judgment. The remaining typing rules for functions
on lists are the standard ones. For instance, a null function takes a well-typed
list and returns a boolean value.

Typing of Knowledge-Base Related Constructs. Typing of terms related to the
knowledge base is summarized in Fig. 9. Queries (T-QUERY) have a concept
C; thus, the result is of type C list. Unsatisfiable queries are rejected by the
type system on the grounds of querying the knowledge system on whether C

766 M. Leinberger et al.

Fig. 10. Typing rule for typecase

is equivalent to ⊥. Projections (T-PROJ) require a term of type C and can
then be typed by the inverse of the relation used for the projection. This may
seem suprising at first sight, but it is actually the most precise type that can be
assigned to this term. Range-definitions of roles may be very general (e.g., the
range definition for influencedBy in the running example). Equivalence requires
two well-typed operands with either a non-empty intersection of the associated
concepts (T-EQN) or the same primitive type (T-EQ-P); the result is of type
bool. Lastly, single objects can be typed using a nominal concept—a concept
expression created through enumerating its members.

Consider the typing rule for typecase in Fig. 10. The term to be dispatched
on, t0, is of type D, i.e., a concept. The types of the non-default cases are
determined in a context where the variable xi for each case is bound to the type
Ci of the case. The idea is here that t0 is casted to Ci type-safely and to be
accessed as xi within ti. The result type of typecase is the least upper bound
of the types of all cases including the default case. (We use lub as a shortcut
for the repeated application of the lub-judgment.) There are additional premises
to ensure meaningful cases. That is, the intersection between all the Ci and D
should not be equivalent to ⊥, as it would then be impossible for a case to ever
match. Also, a case should never be subsumed by a preceding case, as cases are
tried sequentially.

Subtyping. Subtyping rules are summarized in Fig. 11. We rely on a standard
subtyping relation. A term t of type S is also of type T , if S <: T is true (T-
SUB). Any type is always a subtype of itself (S-RELF). Subtyping for concepts
is handled by the knowledge system. A concept C is a subtype of concept D if
the knowledge base can infer that K |= C � D (S-CONCEPT). The forward-
ing of this decision to the knowledge system is important because the knowl-
edge system can take inferred facts into account before making the conclusion.
Subtyping for list and function types is reduced to subtyping checks for their
associated types. A list S list is a subtype of T list if S <: T is true (S-LIST).
Function types are in a subtyping relationship (S-FUNC) if their domains are in

The Essence of Functional Programming on Semantic Data 767

Fig. 11. Subtyping rules.

a flipped subtyping relationship (‘contra-variance’) and their co-domains are in
a subtyping relationship (‘co-variance’).

Algorithmic Type Checking. We mention in passing that the type system is
more or less directly suited for algorithmic type checking. That is, the rules
are completely syntax driven with the routine exception of the rule for adding
subtyping for terms (T-SUB). There is no problematic rule like transitivity of
subtyping, as concept subtyping is taken care of by the knowledge systems.

6 Type Soundness

We show the soundness of λDL by proving that, given the design choices of λDL,
well-typed programs do not get stuck. As with many other languages, there are
exceptions to this rule, e.g., down-casting in object-oriented languages, cf. [2].
One may expect that typecases of λDL may constitute an exception, but the
default case avoids this problem. Thus, the only exception concerns lists.

We show that if a program is well-typed, then the only way it can get stuck
is by reaching a point where it tries to compute head nil or tail nil. We proceed
in two steps, by showing that a well-typed term is either a value or it can take a
step (progress) and by showing that if that term takes a step, the result is also
well-typed (preservation). We start by providing some forms about the possible
well-typed values (canonical forms) for each type.

Lemma 1 (Canonical Forms Lemma). Let v be a well-typed value. Then the
following observations can be made:

1. If v is a value of type C, then v is of the form a.
2. If v is a value of type T1 → T2, then v is of the form λ(x : S1).t2 with

T1 <: S1.

768 M. Leinberger et al.

3. If v is a value of type C list, then v is either of the form (cons v1...) or nil.
4. If v is a value of type bool, then either v is either true or false.

Proof. Immediate from the typing relation.

Given Lemma1, we can show that a well-typed term is either a value or it
can take a step. Given the design decisions of λDL, this is straightforward. In
particular, we rely on the interpretation of unknown facts as false (open-world
querying). We also foresee that no case of typecase fits to the runtime value and
thus insist on default case. Further, progress for querying relies on the restriction
to DL-safe queries, as this leads to finite query results that can be transformed
into lists of objects in one step.

Theorem 1 (Progress). Let t be a well-typed closed term. If t is not a value,
then there exists a term t′ such that t → t′. If Γ t : T , then t is either a
value, a term containing the forms head nil and tail nil, or there is some t′

with t → t′.

Proof. By induction on the derivation of Γ t : T . As large parts of the proof
are standard cases, we focus on the part specific to our language. The remaining
standard cases can be found in the technical report.

(T-QUERY) t = query C, Γ t : C list. Immediate since rule E-QUERY
applies (see Fig. 4).

(T-PROJ) t = t1.R, Γ t1 : C, Γ t : (∃R−.C). By hypothesis, either t1 is a
value or it can take a step. If it can take a step, rule E-PROJ applies. If its
a value, then by Lemma 1 t1 = a, therefore rule E-PROJV applies.

(T-TYPECASE)
t = case t0 of

case
default tn+1

Γ t0 : D, Γ t : W
By hypothesis, t0 is either a value or it can take a step. If it can take a step,
rule E-TYPECASE applies. If its a value, by Lemma 1, t0 = a. If case is
non-empty, either rules E-TYPECASE-SUCC or E-TYPECASE-FAIL apply.
Otherwise, rule E-TYPECASE-DEF applies (see Fig. 5).

(T-EQN) t1 = t2, Γ t1 : C, Γ t2 : D. Either t1 and t2 are values or they
can take a step. If they can take a step, rules E-EQ1 and E-EQ2 apply. If
both are values, by Lemma 1, t1 = a, t2 = b. Therefore, either rule EQ-
NOMINAL-TRUE or EQ-NOMINAL-FALSE applies.

(T-EQP) t1 = t2, Γ t1 : Π1, Γ t2 : Π1. Either t1 and t2 are values or they
can take a step. If they can take a step, rules E-EQ1 and E-EQ2 apply. If
both are values, them they are either syntactically equal or not. Therefore
either EQ-PRIM-TRUE or EQ-PRIM-FALSE applies.

(T-OBJ) Immediate, since t = a is a value.

For proving preservation, two additional Lemmas are required. One, that
substitution preserves the type and two, that the least upper bound judgment
computes a type that is really a supertype of its two input types.

The Essence of Functional Programming on Semantic Data 769

Lemma 2 (Substitution). If Γ, x : S t : T and Γ s : S, then Γ [x �→
s]t : T .

Proof. Substitution in λDL does not differ from standard approaches, e.g., as
described in [34]. Therefore, the proof is omitted.

Lemma 3 (Least Upper Bound). Let S, T and W be types. If lub(S, T) ⇒
W , then S <: W and T <: W .

Proof. Four cases must be considered: S and T are either primitives, concepts,
lists or functions.

Primitives: Result is immediate since S = T = W . By subtyping rule S-REFL,
S <: W and T <: W holds.

Concepts: S = C, T = D, W = C � D. Since K |= C � C � D and K |= D �
C � D, S <: W and T <: W hold via subtyping rule S-CONCEPT.

Lists: Immediate through the induction hypothesis and subtyping rules for lists.
Functions: Immediate through induction hypothesis and subtyping rules for

functions.

Given these lemmas, we can now continue to show that if a term takes a step
by the evaluation rules, its type is preserved. A problematic case for preservation
are projections. Existing approaches have problems assigning the most specific
type to such terms (e.g., projections involving influencedBy). They resolve this
by using assigning rather general types, which is ultimately not very helpful.
The usage of concept expressions as types on the other hand allows for assigning
the most specific type.

Theorem 2 (Preservation). Let t be a term and T a type. If Γ t : T and
t → t′, then Γ t′ : T .

Proof. By induction on the derivation of Γ t : T . Again, we examine only the
specific cases while the full proof can be found in the technical report.

(T-QUERY) t = query C, Γ t : C list. By applying rule E-QUERY,
t′ = cons a1 However, for each a, it is known that K |= a : C, therefore
{ a } <: C holds for each a and { a1 } � ... <: C list.

(T-PROJ) t = t1.R, Γ t1 : C, Γ t : (∃R−.C). There are two rules by which
t′ can be computed: E-PROJ and E-PROJV:
(1) t′ = t′1.R. By induction hypothesis, typing is preserved for t1. Therefore,

by T-PROJ, t′ : (∃R−.C) list.
(2) t′ = σ({?X | ?X ∈ O ∧ K |= (a, ?X) : R}) = cons b1 For a, it is

known that K |= a : C and for each b is known that K |= (a, b) : R holds.
Therefore, K |= b : (∃R−.C) must hold for each b. Thereby, { b1 }� ... <:
(∃R−.C) and by S-LIST ({ b1 } � . . .) list <: (∃R−.C) list

(T-TYPECASE)

770 M. Leinberger et al.

t = case t0 of
type C1 as x1 -> t1
...
type Cn as xn -> tn
default tn+1

Γ t0 : D, Γ t1 : T1, ..., Γ tn : Tn, Γ tn+1 : Tn+1,

lub(T1, ..., Tn+1) ⇒ W, Γ t : W
There are four rules by which t′ can be computed: E-TYPECASE, E-
TYPECASE-SUCC, E-TYPECASE-FAIL and E-TYPECASE-DEF.
(1)

t′ = case t′0 of
type C1 as x1 -> t1
...
type Cn as xn -> tn
default tn+1

By induction hypothesis, t1 → t′1 preserves the type. Therefore, by T-
TYPECASE, t′ : W .

(2) t′ = [x1 �→ a]t1, Γ t1 : T1. By Lemma2, substitution does not change
the type of t1. By Lemma 3, T1 <: W and therefore by rule T-SUB t1 : W .

(3)
t′ = case a of

type C2 asx2 -> t2
...
type Cn asxn -> tn
default tn+1

Γ t2 : T1, ..., Γ tn : Tn, Γ tn+1 : Tn+1,

lub(T2, ..., Tn+1) ⇒ W ′, Γ t′ : W ′

The removal of the first case causes T-TYPECASE to assign type t′ : W ′.
Removal of T1 makes W ′ more specific then W , but W ′ <: W holds.
Therefore by, T-SUB t′ : W .

(4) t′ = tn+1 Γ tn+1 : Tn+1. By Lemma 3, Tn+1 <: W , therefore by T-SUB
t′ : W .

(T-EQN) t1 = t2, Γ t1 : C, Γ t2 : D, Γ t : bool. There are 6 differ-
ent rules by which t′ can be computed: E-NOMINAL-TRUE, E-NOMINAL-
FALSE, E-PRIM-TRUE, E-PRIM-FALSE, E-EQ1 and E-EQ2.
(1) t′ = true. Immediate by rule T-TRUE.
(2) t′ = false. Immediate by rule T-FALSE.
(3) t′ = true. Immediate by rule T-TRUE.
(4) t′ = false. Immediate by rule T-FALSE.
(5) t′ = t′1=t2. By induction hypothesis, t1 → t′1. preserves the type. There-

fore, by rule T-EQN, t′ : bool.
(6) t′ = v1=t′2. By induction hypothesis, t2 → t′2. preserves the type. There-

fore, by rule T-EQN, t′ : bool.
(T-EQP) t1 = t2, Γ t1 : Π1, Γ t2 : Π1. Same as T-EQN.
(T-OBJ) Vacuously fulfilled since t = a is a value.

The Essence of Functional Programming on Semantic Data 771

As a direct consequence of Theorems 1 and 2, a well-typed closed term does
not get stuck during evaluation. The only exception concerns the handling of
lists, which can get stuck if head or tail is applied to an empty list. Empty lists
might be produced by queries with empty result sets.

To a certain degree, type safety holds even when the knowledge system is
evolving. Additional axioms are unproblematic, as DL is a monotonous logic—
they do not invalidate existing inferences. Deletion and modification of the actual
data (A-Box) is unproblematic unless the program contains statements explicitly
referencing the objects under modification. Of course, type safety cannot be
guaranteed if schematic parts (T-Box) of the knowledge system are altered.

7 Related Work

λDL is generally related to the integration of data models into programming
languages. We consider four different ways of integrating a data model: by using
generic representations, by mappings into the target language, through a pre-
processing step before compilation, or through language extensions or custom
languages.

Generic Representations. Generic representations offer easy integration into pro-
gramming languages and have the advantage that they can represent anything
the data can model, e.g., generic representations (such as DOM9) for XML [39].
This approach has also been applied to semantic data. Representations can
vary, however the most popular ones include axiom-based approaches (e.g., [20]),
graph-based ones (e.g., [11]) or statement-based ones (e.g., RDF4J10). All these
approaches are error-prone in so far that code on the generic representations is
not type-checked in terms of the involved conceptualizations.

Mappings. Mapping approaches on the other hand use schematic information of
the data model to create types in the target language. Type checking can be used
thus to check the valid use of the derived types in programs. This approach has
been successfully used for SQL [30], XML [3,26,39], and more generally [25,37].
Naturally, mappings have been studied in a semantic data context, too. The
focus is on transforming conceptual statements into types of the programming
language. Frameworks include ActiveRDF [31], Alibaba11, Owl2Java [22], Jas-
tor12, RDFReactor13, OntologyBeanGenerator14, Àgogo [33] and LITEQ [27].
However, mapping approaches are problematic for semantic data. For one, the
transformation of statements such as those shown in line 1 of Listing 3 is not
trivial due to the mixture of nominal and structural typing. Extremely general

9 https://www.w3.org/DOM/.
10 http://rdf4j.org/.
11 https://bitbucket.org/openrdf/alibaba.
12 http://jastor.sourceforge.net/.
13 http://semanticweb.org/wiki/RDFReactor.
14 http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator.

https://www.w3.org/DOM/
http://rdf4j.org/
https://bitbucket.org/openrdf/alibaba
http://jastor.sourceforge.net/
http://semanticweb.org/wiki/RDFReactor
http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator

772 M. Leinberger et al.

information on domains and ranges of roles such as influencedBy occurs fre-
quently. The question arises what types support such a role. Frameworks usually
resolve the situation by assigning the role to every type they create. In terms
of the range of the role, they usually assign the most general available type and
leave it to the developer to cast the values to their correct types—this is an
error-prone approach. Lastly, all mapping frameworks have problems with the
large number of potential types in semantic data sources.

Precompilation. A separate precompilation step, where the source code is sta-
tically analyzed and then transformed is another way to solve the problem of
integrating data models into programming languages. Especially queries embed-
ded in programming languages can be verified in this manner. This approach has
been applied to, for example, SQL queries [40]. The approach has been applied
to semantic data in a limited manner [17]—for queries that can be typed with
primitive types such as integer.

Language Extensions and Custom Type Systems. The most powerful approaches
extend existing languages or create new type systems to accommodate the spe-
cific requirements of the data model. Examples for such extensions are con-
cerned with relationships between objects [7] and easy data access to relational
and XML data [8]. Another example concerns programming language support
for the XML data model specifically in terms of regular expression type, as
in the languages CDuce [5] and XDuce [21]. While semantic data can be seen
as somewhat semi-structured and is often serialized in XML, the XML-focused
approaches do not address the logics-based challenges regarding semantic data.
Similarly, polymorphic record types in object oriented database system [29] are
oriented towards structural typing. For semantic data, a mixture between nomi-
nal and structural typing as combined in DL is required. Refinement types, e.g.,
as provided by F* [12], are somewhat closer to λDL. They allow for capturing pre-
and postconditions of functions at the type level and to verify correctness stati-
cally. By contrast, DL expressions are logic formulae over nominal and structural
type properties. They define new types which are subject to DL-based reasoning
for type checking. Another related approach is the idea of functional logic pro-
gramming [18]. However, λDL emphasizes type-checking on data axiomatized in
logic over the integration of the logic programming paradigm into a language.

The typecase construct of λDL is inspired by other forms of typecase such as
those in the context of dynamic typing [1], intensional polymorphism [14], and
generic functional programming [24]. None of these forms are concerned with
semantic data or description logics.

Language extensions and custom approaches have also been implemented for
semantic data. In one approach [32], the C# compiler was extended to allow for
OWL and XSD types in C#. The main technical difference to λDL is that λDL

makes use of the knowledge system for typing and subtyping judgments. λDL can
therefore make use of inferred data and has a strong typing mechanism. There
is also work on custom languages that use static type-checking for querying and
light scripting in order to avoid runtime errors [13,15]. However, the types are

The Essence of Functional Programming on Semantic Data 773

again limited in these cases, as they only consider explicitly given statements.
Furthermore, they face the same difficulties as mapping approaches when it
comes to schema information—they rely on domain and range specifications for
predicates to assign types.

8 Summary and Future Work

In this paper, we have motivated, introduced, and studied λDL: a typed λ-
calculus for semantic data that is built around concept expressions as types as
well as queries. We have shown that by using conceptualizations as they are
defined in the knowledge system itself, type safety can be achieved. This helps
in writing less error-prone programs, even when facing knowledge systems that
evolve or lack role definitions. There are these directions for future work.

Fixed-Domain Reasoning. While description logics usually employs an open-
world assumption that allows for the modeling of unknown facts, in some cases,
a closed-world assumption might be preferable. The semantics as presented in
Sect. 2 could be replaced by a fixed-domain semantics, e.g., as described by [16].
Future work aims to examine how expressiveness and the type safety property
of λDL are affected by such a semantics.

Contracts. Type-safety has been achieved in λDL by some rather harsh restric-
tions, e.g., by requiring a default case in typecase constructs. Additionally, it
is still possible to get stuck, e.g., when taking the head of an empty query
response. A possible improvement could be the introduction of contracts, as
they are applicable to functional programming [19]. Contracts have been applied
already to semantic data [23] while focusing on constraints regarding existence
and cardinality. We envision a form of contracts that also covers anonymous
objects.
λDL and System F . The presented calculus essentially combines ‘simple’ types
and concepts with subtyping. Parametric polymorphism à la System F would
be needed to arrive at a sufficiently expressive language for purposes of actual
programming. Further, the subtyping aspects of λDL may also call for a com-
prehensive integration of description logics and polymorphism with subtyping à
la System F<: [36]. Such an integration is not straightforward.

Modification of the Semantic Data. It is clearly desirable that semantic data
can also be modified. A corresponding extension of λDL is non-trivial because of
the aspect that facts are inferred by the knowledge system. Consider the facts
about music artists in Listing 3 and let us assume that we want to remove the
(implicit) fact that the beatles have made a song. The fact cannot be removed
directly. Instead, either the fact that the beatles are of type MusicArtist or
the fact that they have been played by coolFm must be removed. In order to
integrate modification of knowledge systems into λDL, the theory of knowledge
revision based on the AGM theory [35] can be considered and integrated into
the language.

774 M. Leinberger et al.

Enhanced Querying. Queries, as they are currently implemented, are limited
in their expressive power. A simple extension are queries for roles, such as
influencedBy that result in sets of pairs. Typing such queries is possible via the
addition of tuples to λDL. The addition of query languages closer to the power
of SQL is also possible. The biggest challenge in this regard is query subsump-
tion. When such queries are typed in the programming language, subsumption
checks are necessary to determine whether a function can be applied to query
results. Therefore only query languages with decidable query subsumption are
to be considered, e.g., [9].

References

1. Abadi, M., Cardelli, L., Pierce, B.C., Rémy, D.: Dynamic typing in polymorphic
languages. J. Funct. Program. 5(1), 111–130 (1995)

2. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

3. Alagić, S., Bernstein, P.A.: Mapping XSD to OO schemas. In: Norrie, M.C.,
Grossniklaus, M. (eds.) ICOODB 2009. LNCS, vol. 5936, pp. 149–166. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14681-7_9

4. Beneventano, D., Bergamaschi, S., Sartori, C.: Description logics for semantic query
optimization in object-oriented database systems. Trans. Database Syst. 28(1), 1–
50 (2003)

5. Benzaken, V., Castagna, G., Frisch, A.: Cduce: an XML-centric general-purpose
language. SIGPLAN Not. 38(9), 51–63 (2003)

6. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1–2), 70–118 (2005)

7. Bierman, G., Wren, A.: First-class relationships in an object-oriented language. In:
Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 262–286. Springer, Heidelberg
(2005). doi:10.1007/11531142_12

8. Bierman, G., Meijer, E., Schulte, W.: The essence of data access in Cω. In: Black,
A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 287–311. Springer, Heidelberg
(2005). doi:10.1007/11531142_13

9. Bourhis, P., Krötzsch, M., Rudolph, S.: Reasonable highly expressive query lan-
guages. In: Proceedings of International Joint Conference on Artificial Intelligence,
pp. 2826–2832. AAAI Press (2015)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.:
Ontology-based database access. In: Proceedings of Advanced Database Systems,
pp. 324–331 (2007)

11. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of WWW
- Alternate Track Papers and Posters, pp. 74–83. ACM (2004)

12. Chen, J., Bharagavan, K., Yang, J., Strub, P.-Y., Nikhil Swamy, C.F.: Secure dis-
tributed programming with value-dependent types. Technical report, March 2011

13. Ciobanu, G., Horne, R., Sassone, V.: Descriptive types for linked data resources. In:
Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp. 1–25. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46823-4_1

14. Crary, K., Weirich, S., Morrisett, J.G.: Intensional polymorphism in type-erasure
semantics. J. Funct. Program. 12(6), 567–600 (2002)

http://dx.doi.org/10.1007/978-3-642-14681-7_9
http://dx.doi.org/10.1007/11531142_12
http://dx.doi.org/10.1007/11531142_13
http://dx.doi.org/10.1007/978-3-662-46823-4_1

The Essence of Functional Programming on Semantic Data 775

15. Ciobanu, G., Horne, R., Sassone, V.: Minimal type inference for linked data con-
sumers. J. Log. Algebr. Meth. Program. 84(4), 485–504 (2015)

16. Gaggl, S.A., Rudolph, S., Schweizer, L.: Fixed-domain reasoning for description
logics. In: ECAI 2016. Frontiers in Artificial Intelligence and Applications, vol.
285, pp. 819–827. IOS Press (2016)

17. Groppe, S., Neumann, J., Linnemann, V.: SWOBE - embedding the semantic web
languages RDF, SPARQL and SPARUL into Java for guaranteeing type safety,
for checking the satisfiability of queries and for the determination of query result
types. In: Proceedings of Symposium on Applied Computing, pp. 1239–1246. ACM
(2009)

18. Hanus, M.: The integration of functions into logic programming: from theory to
practice. J. Log. Program. 19 & 20, 583–628 (1994)

19. Hinze, R., Jeuring, J., Löh, A.: Typed contracts for functional programming. In:
Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 208–225. Springer,
Heidelberg (2006). doi:10.1007/11737414_15

20. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

21. Hosoya, H., Pierce, B.C.: Xduce: a statically typed XML processing language. ACM
Trans. Internet Technol. 3(2), 117–148 (2003)

22. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic mapping of OWL
ontologies into Java. In: Proceedings of International Conference on Software Engi-
neering and Knowledge Engineering, pp. 98–103 (2004)

23. Kremen, P., Kouba, Z.: Ontology-driven information system design. IEEE Trans.
Syst. Man Cybern. Part C 42(3), 334–344 (2012)

24. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate: a practical design pattern
for generic programming. In: Proceedings of TLDI 2003, pp. 26–37. ACM (2003)

25. Lämmel, R., Meijer, E.: Mappings make data processing go ’round. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 169–218. Springer,
Heidelberg (2006). doi:10.1007/11877028_6

26. Lämmel, R., Meijer, E.: Revealing the X/O impedance mismatch. In: Backhouse,
R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719, pp.
285–367. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76786-2_6

27. Leinberger, M., Scheglmann, S., Lämmel, R., Staab, S., Thimm, M., Viegas, E.:
Semantic web application development with LITEQ. In: Mika, P., et al. (eds.)
ISWC 2014. LNCS, vol. 8797, pp. 212–227. Springer, Cham (2014). doi:10.1007/
978-3-319-11915-1_14

28. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J.
Web Sem. 3(1), 41–60 (2005)

29. Ohori, A., Buneman, P., Breazu-Tannen, V.: Database programming in
machiavelli—a polymorphic language with static type inference. In: Proceedings
of International Conference on Management of Data, (SIGMOD 1989), SIGMOD
1989, pp. 46–57. ACM (1989)

30. O’Neil, E.J.: Object/relational mapping 2008: hibernate and the entity data model
(EDM). In Proceedings of International Conference on Management of Data, pp.
1351–1356. ACM (2008)

31. Oren, E., Heitmann, B., Decker, S.: Activerdf: embedding semantic web data into
object-oriented languages. Web Semant. 6(3), 191–202 (2008)

32. Paar, A., Vrandečić, D.: Zhi# – OWL aware compilation. In: Antoniou, G.,
Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.)
ESWC 2011. LNCS, vol. 6644, pp. 315–329. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-21064-8_22

http://dx.doi.org/10.1007/11737414_15
http://dx.doi.org/10.1007/11877028_6
http://dx.doi.org/10.1007/978-3-540-76786-2_6
http://dx.doi.org/10.1007/978-3-319-11915-1_14
http://dx.doi.org/10.1007/978-3-319-11915-1_14
http://dx.doi.org/10.1007/978-3-642-21064-8_22
http://dx.doi.org/10.1007/978-3-642-21064-8_22

776 M. Leinberger et al.

33. Parreiras, F.S., Saathoff, C., Walter, T., Franz, T., Staab, S.: A gogo: automatic
generation of ontology APIs. In: ICSC 2009. IEEE (2009)

34. Pierce, B.C.: Types and Programming Languages. The MIT Press, Cambridge
(2002)

35. Qi, G., Liu, W., Bell, D.A.: Knowledge base revision in description logics. In:
Fisher, M., Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI),
vol. 4160, pp. 386–398. Springer, Heidelberg (2006). doi:10.1007/11853886_32

36. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP
Congress, pp. 513–523 (1983)

37. Syme, D., Battocchi, K., Takeda, K., Malayeri, D., Petricek, T.: Themes in
information-rich functional programming for internet-scale data sources. In: Pro-
ceedings of the DDFP, pp. 1–4. ACM (2013)

38. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

39. Wallace, M., Runciman, C.: Haskell and XML: Generic combinators or type-based
translation? In: Proceedings of the International Conference on Functional Pro-
gramming, pp. 148–159. ACM (1999)

40. Wassermann, G., Gould, C., Su, Z., Devanbu, P.T.: Static checking of dynamically
generated queries in database applications. ACM Trans. Softw. Eng. Methodol.
16(4), 14 (2007)

http://dx.doi.org/10.1007/11853886_32

A Classical Sequent Calculus with Dependent
Types

Étienne Miquey1,2(B)

1 PI.R2 (INRIA), IRIF, Université Paris-Diderot, Paris, France
emiquey@irif.fr

2 IMERL, Facultad de Ingenieŕıa, Universidad de la República, Montevideo, Uruguay

Abstract. Dependent types are a key feature of type systems, typi-
cally used in the context of both richly-typed programming languages
and proof assistants. Control operators, which are connected with clas-
sical logic along the proof-as-program correspondence, are known to
misbehave in the presence of dependent types, unless dependencies are
restricted to values. We place ourselves in the context of the sequent cal-
culus which has the ability to smoothly provide control under the form of
the μ operator dual to the common let operator, as well as to smoothly
support abstract machine and continuation-passing style interpretations.

We start from the call-by-value version of the λμμ̃ language and design
a minimal language with a value restriction and a type system that
includes a list of explicit dependencies and maintains type safety. We
then show how to relax the value restriction and introduce delimited con-
tinuations to directly prove the consistency by means of a continuation-
passing-style translation. Finally, we relate our calculus to a similar sys-
tem by Lepigre [19], and present a methodology to transfer properties
from this system to our own.

Keywords: Dependent types · Sequent calculus · Classical logic ·
Control operators · Call-by-value · Delimited continuations ·
Continuation-passing style translation · Value restriction

1 Introduction

1.1 Control Operators and Dependent Types

Originally created to deepen the connection between programming and logic,
dependent types are now a key feature of numerous functional programing lan-
guages. On the programming side, they allow for the expression of very precise
specifications, while on the logical side, they permit definitions of proof terms
for axioms like the full axiom of choice. This is the case in Coq or Agda, two
of the most actively developed proof assistants, which both provide dependent
types. However, both of them rely on a constructive type theory (Coquand and
Huet’s calculus of constructions for Coq [6], and Martin-Löf’s type theory [20]
for Agda), and lack classical logic.
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 777–803, 2017.
DOI: 10.1007/978-3-662-54434-1 29

778 É. Miquey

In 1990, Griffin discovered [12] that the control operator call/cc (short for
call with current continuation) of the Scheme programming language could be
typed by Peirce’s ((A → B) → A) → A), thus extending the formulæ-as-types
interpretation [17]. As Peirce’s law is known to imply, in an intuitionistic frame-
work, all the other forms of classical reasoning (excluded middle, reductio ad
absurdum, double negation elimination, etc.), this discovery opened the way for
a direct computational interpretation of classical proofs, using control operators
and their ability to backtrack. Several calculi were born from this idea, such as
Parigot’s λμ-calculus [22], Barbanera and Berardi’s symmetric λ-calculus [3],
Krivine’s λc-calculus [18] or Curien and Herbelin’s λ̄μμ̃-calculus [7].

Nevertheless, dependent types are known to misbehave in the presence of
control operators, causing a degeneracy of the domain of discourse [14]. Some
restrictions on the dependent types are thus necessary to make them compati-
ble with classical logic. Although dependent types and classical logic have been
deeply studied separately, the question to know how to design a system com-
patible with both features does not have yet a general and definitive answer.
Recent works from Herbelin [15] and Lepigre [19] proposed some restrictions on
the dependent types to tackle the issue in the case of a proof system in natural
deduction, while Blot [5] designed a hybrid realizability model where dependent
types are restricted to an intuitionistic fragment. Other works by Ahman et
al. [1] or Vákár [23] also studied the interplay of dependent types and different
computational effects (e.g. divergence, I/O, local references, exceptions).

1.2 Call-By-Value and Value Restriction

In languages enjoying the Church-Rosser property (like the λ-calculus or Coq),
the order of evaluation is irrelevant, and any reduction path will ultimately lead
to the same value. In particular, the call-by-name and call-by-value evaluation
strategies will always give the same result. However, this is no longer the case in
presence of side-effects. Indeed, consider the simple case of a function applied to
a term producing some side-effects (for instance increasing a reference). In call-
by-name, the computation of the argument is delayed to the time of its effective
use, while in call-by-value the argument is reduced to a value before performing
the application. If, for instance, the function never uses its argument, the call-
by-name evaluation will not generate any side-effect, and if it uses it twice, the
side-effect will occurs twice (and the reference will have its value increased by
two). On the contrary, in both cases the call-by-value evaluation generates the
side-effect exactly once (and the reference has its value increased by one).

In this paper, we present a language following the call-by-value reduction
strategy, which is as much a design choice as a goal in itself. Indeed, when con-
sidering a language with control operators (or other kind of side-effects), sound-
ness often turns out to be subtle to preserve in call-by-value. The first issues in
call-by-value in the presence of side-effects were related to references [25] and
polymorphism [13]. In both cases, a simple and elegant solution (but way too
restrictive in practice [11,19]) to solve the inconsistencies consists in a restriction
to values for the problematic cases, restoring then a sound type system. Recently,

A Classical Sequent Calculus with Dependent Types 779

Lepigre presented a proof system providing dependent types and a control oper-
ator [19], whose consistency is preserved by means of a semantical value restric-
tion defined for terms that behave as values up to observational equivalence.
In the present work, we will rather use a syntactic restriction to a fragment of
proofs that allows slightly more than values. This restriction is inspired by the
negative-elimination-free fragment of Herbelin’s dPAω system [15].

1.3 A Sequent Calculus Presentation

The main achievement of this paper is to give a sequent calculus presentation
of a call-by-value language with a control operator and dependent types, and
to justify its soundness through a continuation-passing style translation. Our
calculus is an extension of the λμμ̃-calculus [7] to dependent types. Amongst
other motivations, such a calculus is close to an abstract machine, which makes it
particularly suitable to define CPS translations or to be an intermediate language
for compilation [8]. In particular, the system we develop might be a first step to
allow the adaption of the well-understood continuation-passing style translations
for ML in order to design a typed compilation of a system with dependent types
such as Coq.

However, in addition to the simultaneous presence of control and dependent
types, the sequent calculus presentation itself is responsible for another difficulty.
As we will see in Sect. 2.5, the usual call-by-value strategy of the λμμ̃-calculus
causes subject reduction to fail. The problem can be understood as a desynchro-
nization of the type system with the reduction. It can be solved by the addition
of an explicit list of dependencies in the type derivations.

1.4 Delimited Continuations and CPS Translation

Yet, we will show that the compensation within the typing derivations does not
completely fix the problem, and in particular that we are unable to derive a
continuation-passing style translation. We present a way to solve this issue by
introducing delimited continuations, which are used to force the purity needed for
dependent types in an otherwise impure language. It also justifies the relaxation
of the value restriction and leads to the definition of the negative-elimination-
free fragment (Sect. 3). Finally, it permits the design in Sect. 4 of a continuation-
passing style translation that preserves dependent types and allows for proving
the soundness of our system.

1.5 Contributions of the Paper

Our main contributions in this paper are:

– we soundly combine dependent types and control operators by mean of a
syntactic restriction to the negative-elimination-free fragment;

– we give a sequent calculus presentation and solve the type-soundness issues
it raises in two different ways;

780 É. Miquey

– our second solution uses delimited continuations to ensure consistency with
dependent types and provides us with a CPS translation (carrying dependent
types) to a calculus without control operator;

– we relate our system to Lepigre’s calculus, which offers an additional way of
proving the consistency of our system.

For economy of space, most of our statements only comes with sketches of their
proofs, full proofs are given in the appendices of a longer version available at:

https://hal.inria.fr/hal-01375977.

2 A Minimal Classical Language

2.1 A Brief Recap on the λμμ̃-Calculus

We recall here the spirit of the λμμ̃-calculus, for further details and references
please refer to the original article [7]. The syntax and reduction rules (parame-
terized over a sets of proofs V and a set of contexts E) are given by:

Proofs p ::= V | μα.c
Values V ::= a | λa.p 〈t||μ̃x.c〉 → c[x := t] v ∈ V

Contexts e ::= E | μ̃a.c 〈μα.c||e〉 → c[α := e] e ∈ E
Co-values E ::= α | p · e 〈λx.t||u · e〉 → 〈u||μ̃x.〈t||e〉〉

Commands c ::= 〈p||e〉

where μ̃a.c can be read as a context let a = [] in c. A command can be
understood as a state of an abstract machine, representing the evaluation of a
proof (the program) against a context (the stack). The μ operator comes from
Parigot’s λμ-calculus [22], μα binds an evaluation context to a context variable
α in the same way μ̃a binds a proof to some proof variable a.

The λμμ̃-calculus can be seen as a proof-as-program correspondence between
sequent calculus and abstract machines. Right introduction rules correspond
to typing rules for proofs, while left introduction are seen as typing rules for
evaluation contexts. For example, the left introduction rule of implication can
be seen as a typing rule for pushing an element q on a stack e leading to the new
stack q · e:

Γ � q : A | Δ Γ | e : B � Δ

Γ | q · e : A → B � Δ
→l

Note that this presentation of sequent calculus involves three kinds of judgments
one with a focus on the right for programs, one with a focus on the left for
contexts and one with no focus for states, as reflected on the Cut typing rule:

Γ � p : A | Δ Γ | e : A � Δ

〈p||e〉 : Γ � Δ
Cut

https://hal.inria.fr/hal-01375977

A Classical Sequent Calculus with Dependent Types 781

As for the reduction rules, we can see that there is a critical pair if V and E
are not restricted:

c[α := μ̃x.c′] ←− 〈μα.c||μ̃x.c′〉 −→ c′[x := μα.c].

The difference between call-by-name and call-by-value can be characterized by
how this critical pair is solved, by defining V and E such that the two rules do
not overlap. The call-by-name evaluation strategy amounts to the case where
V � Proofs and E � Co-values, while call-by-value corresponds to V � Values
and E � Contexts. Both strategies can also been characterized through different
CPS translations [7, Sect. 8].

2.2 The Language

As shown by Herbelin [14], it is possible to derive inconsistencies from a minimal
classical language with dependent types. Intuitively, the incoherence comes from
the fact that if p is a classical proof of the form

call/cck (0, throw k (1, refl)) : Σx.x = 1,

the seek of a witness by a term wit p is likely to reduce to 0, while the reduction
of prf p would have backtracked before giving 1 as a witness and the correspond-
ing certificate. The easiest and usual approach to prevent this is to impose a
restriction to values for proofs appearing inside dependent types and operators.
In this section we will focus on this solution in the similar minimal framework,
and show how it permits to keep the proof system coherent. We shall see further
in Sect. 3 how to relax this constraint.

We give here a stratified presentation of dependent types, by syntactically
distinguishing terms—that represent mathematical objects—from proof terms–
that represent mathematical proofs1. We place ourselves in the framework of the
λμμ̃-calculus to which we add:

– a category of terms which contain an encoding2 of the natural numbers,
– proof terms (t, p) to inhabit the strong existential ∃xNA together with the

corresponding projections wit and prf ,
– a proof term refl for the equality of terms and a proof term subst for the

convertibility of types over equal terms.

For simplicity reasons, we will only consider terms of type N throughout this
paper. We address the question of extending the domain of terms in Sect. 6.2.

1 This design choice is usually a matter of taste and might seem unusual for some
readers. However, it has the advantage of clearly enlighten the different treatments
for term and proofs through the CPS in the next sections.

2 The nature of the representation is irrelevant here as we will not compute over it.
We can for instance add one constant for each natural number.

782 É. Miquey

The syntax of the corresponding system, that we call dL, is given by:

Terms t ::= x | n ∈ N | wit p
Proofs p ::= V | μα.c | (t, p) | prf p | subst p q
Values V ::= a | λa.p | λx.p | (t, V) | refl

Contexts e ::= α | p · e | t · e | μ̃a.c
Commands c ::= 〈p||e〉

The formulas are defined by:

A,B ::= 	 | ⊥ | t = u | ∀xN.A | ∃xN.A | Πa:AB.

Note that we included a dependent product Πa:AB at the level of proof terms, but
that in the case where a /∈ FV (B) this amounts to the usual implication A → B.

2.3 Reduction Rules

As explained in the introduction of this section, a backtracking proof might give
place to different witnesses and proofs according to the context of reduction,
leading to incoherences [14]. On the contrary, the call-by-value evaluation strat-
egy forces a proof to reduce first to a value (thus furnishing a witness) and to
share this value amongst all the commands. In particular, this maintains the
value restriction along reduction, since only values are substituted.

The reduction rules, defined below (where t → t′ denotes the reduction of
terms and c � c′ the reduction of commands), follow the call-by-value evalua-
tion principle:

〈μα.c||e〉 � c[e/α]
〈V ||μ̃a.c〉 � c[V/a]

〈λa.p||q · e〉 � 〈q||μ̃a.〈p||e〉〉
〈λx.p||t · e〉 � 〈p[t/x]||e〉

〈(t, p)||e〉 � 〈p||μ̃a.〈(t, a)||e〉〉 (p /∈ V)
〈prf (t, V)||e〉 � 〈V ||e〉
〈subst p q||e〉 � 〈p||μ̃a.〈subst a q||e〉〉 (p /∈ V)

〈subst refl q||e〉 � 〈q||e〉
wit (t, V) → t t → t′ ⇒ c[t] � c[t′]

In particular one can see that whenever the command is of the shape 〈C[p]||e〉
where C[p] is a proof built on top of p which is not a value, it reduces to
〈p||μ̃a.〈C[a]||e〉〉, opening the construction to evaluate p3.

Additionally, we denote by A ≡ B the transitive-symmetric closure of the
relation A � B, defined as a congruence over term reduction (i.e. if t → t′ then
A[t] � A[t′]) and by the rules:

0 = 0 � 	 0 = S(u) � ⊥
S(t) = 0 � ⊥ S(t) = S(u) � t = u

2.4 Typing Rules

As we previously explained, in this section we will limit ourselves to the simple
case where dependent types are restricted to values, to make them compatible
3 The reader might recognize the rule (ς) of Wadler’s sequent calculus [24].

A Classical Sequent Calculus with Dependent Types 783

with classical logic. But even with this restriction, defining the type system in the
most naive way leads to a system in which subject reduction will fail. Having a
look at the β-reduction rule gives us an insight of what happens. Let us consider
a proof λa.p : Πa:AB and a context q · e : Πa:AB (with q a value). A typing
derivation of the corresponding command is of the form:

Πp

Γ, a : A � p : B | Δ

Γ � λa.p : Πa:AB | Δ

Πq

Γ � q : A | Δ

Πe

Γ | e : B[q/a] � Δ

Γ | q · e : Πa:AB � Δ

〈λa.p||q · e〉 : Γ � Δ

while the command will reduce as follows:

〈λa.p||q · e〉 � 〈q||μ̃a.〈p||e〉〉.

On the right side, we see that p, whose type is B[a], is now cut with e which
type is B[q]. Consequently we are not able to derive a typing judgment for this
command any more.

The intuition is that in the full command, a has been linked to q at a previ-
ous level of the typing judgment. However, the command is still safe, since the
head-reduction imposes that the command 〈p||e〉 will not be executed until the
substitution of a by q4 and by then the problem would have been solved. Some-
how, this phenomenon can be seen as a desynchronization of the typing process
with respect to the computation. The synchronization can be re-established by
making explicit a dependencies list in the typing rules, allowing this typing
derivation:

Πq

Γ � q : A | Δ

Πp

Γ, a : A � p : B[a] | Δ

Πe

Γ, a : A | e : B[q] � Δ; {a|q}
〈p||e〉 : Γ, a : A � Δ; {a|q}
Γ | μ̃a.〈p||e〉 : A � Δ; {.|q}

〈q||μ̃a.〈p||e〉〉 : Γ � Δ; ε

Formally, we denote by D the set of proofs we authorize in dependent types,
and define it for the moment as the set of values:

D � V.

We define a dependencies list σ as a list binding pairs of proof terms5:

σ ::= ε | σ{p|q},

4 Note that even if we were not restricting ourselves to values, this would still hold:
if at some point the command 〈p||e〉 is executed, it is necessarily after that q has
produced a value to substitute for a.

5 In practice we will only bind a variable with a proof term, but it is convenient for
proofs to consider this slightly more general definition.

784 É. Miquey

Fig. 1. Typing rules

and we define Aσ as the set of types that can be obtained from A by replacing
none or all occurrences of p by q for each binding {p|q} in σ such that q ∈ D:

Aε � {A} Aσ{p|q} �
{

Aσ ∪ (A[q/p])σ if q ∈ D
Aσ otherwise.

Furthermore, we introduce the notation Γ | e : A � Δ;σ{·|†} to avoid the
definition of a second type of sequent Γ | e : A � Δ;σ to type contexts when
dropping the (open) binding {·|p}. Alternatively, one can think of † as any proof
term not in D, which is the same with respect to the dependencies list. The
resulting set of typing rules is given in Fig. 1, where we assume that every vari-
able bound in the typing context is bound only once (proofs and contexts are
considered up to α-conversion).

Note that we work with two-sided sequents here to stay as close as possible
to the original presentation of the λμμ̃-calculus [7]. In particular it means that a
type in Δ might depend on a variable previously introduced in Γ and reciprocally,
so that the split into two contexts makes us lose track of the order of introduction

A Classical Sequent Calculus with Dependent Types 785

of the hypothesis. In the sequel, to be able to properly define a typed CPS
translation, we consider that we can unify both contexts into a single one that is
coherent with respect to the order in which the hypothesis have been introduced.
We denote by Γ ∪Δ this context, where the assumptions of Γ remain unchanged,
while the former assumptions (α : A) in Δ are denoted by (α : A⊥⊥).

2.5 Subject Reduction

We start by proving a few technical lemmas we will use to prove the subject
reduction property. First, we prove that typing derivations allow weakening on
the dependencies list. For this purpose, we introduce the notation σ � σ′ to
denote that whenever a judgment is derivable with σ as dependencies list, then
it is derivable using σ′:

σ � σ′ � ∀c∀Γ ∀Δ(c : (Γ � Δ;σ) ⇒ c : (Γ � Δ;σ′)).

This clearly implies that the same property holds when typing contexts, i.e. if
σ � σ′ then σ can be replaced by σ′ in any derivation for typing a context.

Lemma 1 (Dependencies weakening). For any dependencies list σ we have:

1. ∀V (σ{V |V } � σ) 2. ∀σ′(σ � σσ′).

Proof. The first statement is obvious. The proof of the second is straightforward
from the fact that for any p and q, by definition Aσ ⊂ Aσ{a|q}. ��

As a corollary, we get that † can indeed be replaced by any proof term when
typing a context.

Corollary 2. If σ � σ′, then for any p, e, Γ,Δ:

Γ | e : A � Δ;σ{·|†} ⇒ Γ | e : A � Δ;σ′{·|p}.

We can now prove the safety of reduction, using the previous lemmas for
rules performing a substitution and the dependencies lists to resolve local incon-
sistencies for dependent types.

Theorem 3 (Subject reduction). If c, c′ are two commands of dL such that
c : (Γ � Δ) and c � c′, then c′ : (Γ � Δ).

Proof. The proof is done by induction on the typing rules, assuming that for
each typing proof, the conv rules are always pushed down and right as much
as possible. To save some space, we sometimes omit the dependencies list when
empty, noting c : Γ � Δ instead of c : Γ � Δ; ε, and denote the conv-rules by

Γ | e : B � Δ;σ
Γ | e : A � Δ;σ

≡

where the hypothesis A ≡ B is implicit. We only give the key case of β-
reduction.

786 É. Miquey

Case 〈λa.p||q · e〉 � 〈q||μ̃a.〈p||e〉〉:
A typing proof for the command on the left is of the form:

Πp

Γ, a : A � p : B | Δ

Γ � λa.p : Πa:AB | Δ

Πq

Πe

Γ | e : B′[q/a] � Δ; {·|†}
Γ | q · e : Πa:A′B′ � Δ; {·|λa.p}
Γ | q · e : Πa:AB � Δ; {·|λa.p} ≡

〈λa.p||q · e〉 : Γ � Δ

If q /∈ D, we define B′
q � B′ which is the only type in B′

{a|q}. Otherwise, we
define B′

q � B′[q/a] which is a type in B′
{a|q}. In both cases, we can build the

following derivation:

Πq

Γ � q : A′ | Δ

Γ � q : A | Δ
≡

Πp

Γ, a : A � p : B | Δ

Γ, a : A � p : B′ | Δ
≡ Πe

Γ, a : A | e : B′
q � Δ; {a|q}{·|p}

〈p||e〉 : Γ, a : A � Δ; {a|q}
Γ | μ̃a.〈p||e〉 : A � Δ; {.|q}

〈q||μ̃a.〈p||e〉〉 : Γ � Δ; ε

using Corollary 2 to weaken the dependencies in Πe. ��

2.6 Soundness

We sketch here a proof of the soundness of dL with a value restriction. A
more interesting proof through a continuation-passing translation is presented
in Sect. 4. We first show that typed commands of dL normalize by translation
to the simply-typed λμμ̃-calculus with pairs (i.e. extended with proofs of the
form (p1, p2) and contexts of the form μ̃(a1, a2).c). The translation essentially
consists of erasing the dependencies in types, turning the dependent products
into arrows and the dependent sum into a pair. The erasure procedure is defined
by:

(∀xNA)∗ � N
∗ → A∗ 	∗ � N

∗ → N
∗

(∃xNA)∗ � N
∗ ∧ A∗ ⊥∗ � N

∗ → N
∗

(Πa:AB)∗ � A∗ → B∗ (t = u)∗ � N
∗ → N

∗

and the translation for proofs, terms, contexts and commands is defined by:

〈p||e〉∗ � 〈p∗||e∗〉
α∗ � α

(t · e)∗ � t∗ · e∗

(q · e)∗ � q∗ · e∗

(μ̃a.c)∗ � μ̃a.c∗

x∗ � x

n∗ � n̄

(wit p)∗ � π1(p∗)
a∗ � a

refl∗ � λx.x

(λa.p)∗ � λa.p∗

(λx.p)∗ � λx.p∗

(μα.c)∗ � μα.c∗

(prf p)∗ � π2(p∗)
(t, p)∗ � μα.〈p∗||μ̃a.〈(t∗, a)||α〉〉

(substV q)∗ � μα.〈q∗||α〉
(subst p q)∗ � μα.〈p∗||μ̃ .〈μα.〈q∗||α〉||α〉〉 (p /∈ V)

A Classical Sequent Calculus with Dependent Types 787

where πi(p) � μα.〈p||μ̃(a1, a2).〈a1||α〉〉. We define n̄ as any encoding of the nat-
ural numbers with its type N

∗, the encoding being irrelevant here.
We can extend the erasure procedure to contexts, and show that it is adequate

with respect to the translation of proofs.

Proposition 4. If c : Γ � Δ;σ, then c∗ : Γ ∗ � Δ∗. The same holds for proofs
and contexts.

We can then deduce the normalization of dL from the normalization of the
λμμ̃-calculus, by showing that the translation preserves the normalization in the
sense that if c does not normalize, neither does c∗.

Proposition 5. If c : (Γ � Δ; ε), then c normalizes.

Using the normalization, we can finally prove the soundness of the system.

Theorem 6 (Soundness). For any p ∈ dL, we have � p : ⊥.

Proof. (Sketch) Proof by contradiction, assuming that there is a proof p such
that � p : ⊥, we can form the well-typed command 〈p||〉 : (� : ⊥) where is
any fresh α-variable, and use the normalization to reduce to a command 〈V ||〉.
By subject reduction, V would be a value of type ⊥, which is absurd. ��

2.7 Toward a Continuation-Passing Style Translation

The difficulty we encountered while defining our system mostly came from the
simultaneous presence of a control operator and dependent types. Removing
one of these two ingredients leaves us with a sound system in both cases: with-
out the part necessary for dependent types, our calculus amounts to the usual
λμμ̃-calculus. Without control operator, we would obtain an intuitionistic depen-
dent type theory that would be easy to prove sound.

To demonstrate the correctness of our system, we might be tempted to define
a translation to a subsystem without dependent types or control operator. We
will discuss later in Sect. 5 a solution to handle the dependencies. We will focus
here on the possibility of removing the classical part from dL, that is to define a
translation that gets rid of the control operator. The use of continuation-passing
style translations to address this issue is very common, and it was already studied
for the simply-typed λμμ̃-calculus [7]. However, as it is defined to this point, dL
is not suitable for the design of a CPS translation.

Indeed, in order to fix the problem of desynchronization of typing with respect
to the execution, we have added an explicit dependencies list to the type system
of dL. Interestingly, if this solved the problem inside the type system, the very
same phenomenon happens when trying to define a cps-translation carrying the
type dependencies.

Let us consider the same case of a command 〈q||μ̃a.〈p||e〉〉 with p : B[a] and
e : B[q]. Its translation is very likely to look like:

�q� �μ̃a.〈p||e〉� = �q� (λa.(�p�)�e�),

788 É. Miquey

where �p� has type (B[a] → ⊥) → ⊥ and �e� type B[q] → ⊥, hence the sub-
term �p� �e� will be ill-typed. Therefore the fix at the level of typing rules is not
satisfactory, and we need to tackle the problem already within the reduction
rules.

We follow the idea that the correctness is guaranteed by the head-reduction
strategy, preventing 〈p||e〉 from reducing before the substitution of a was made.
We would like to ensure the same thing happens in the target language (that
will also be equipped with a head-reduction strategy), namely that �p� cannot
be applied to �e� before �q� has furnished a value to substitute for a. This would
correspond informally to the term6:

(�q�(λa.�p�))�e�.

The first observation is that if q was a classical proof throwing the current
continuation away instead of a value (for instance μα.c where α /∈ FV (c)), this
would lead to an incorrect term �c� �e�. We thus need to restrict at least to proof
terms that could not throw the current continuation.

The second observation is that such a term suggests the use of delimited
continuations7 to temporarily encapsulate the evaluation of q when reducing
such a command:

〈λa.p||q · e〉 � 〈μt̂p.〈q||μ̃a.〈p||t̂p〉〉||e〉.
This command is safe under the guarantee that q will not throw away the contin-
uation μ̃a.〈p||t̂p〉. This will also allow us to restrict the use of the dependencies
list to the derivation of judgments involving a delimited continuation, and to
fully absorb the potential inconsistency in the type of t̂p.

In Sect. 3, we will extend the language according to this intuition, and see
how to design a continuation-passing style translation in Sect. 4.

3 Extension of the system

3.1 Limits of the Value Restriction

In the previous section, we strictly restricted the use of dependent types to
proof terms that are values. In particular, even though a proof-term might be
computationally equivalent to some value (say μα.〈V ||α〉 and V for instance), we
cannot use it to eliminate a dependent product, which is unsatisfying. We shall
then relax this restriction to allow more proof terms within dependent types.
6 We will see in Sect. 4.3 that such a term could be typed by turning the type A →

⊥ of the continuation that �q� is waiting for into a (dependent) type Πa:AR[a]
parameterized by R. This way we could have �q� : ∀R(Πa:AR[a] → R[q]) instead of
�q� : ((A → ⊥) → ⊥). For R[a] := (B(a) → ⊥) → ⊥, the whole term is well-typed.
Readers familiar with realizability will also note that such a term is realizable, since
it eventually terminates on a correct position �p[q/a]� �e�.

7 We stick here to the presentations of delimited continuations in [2,16], where t̂p is
used to denote the top-level delimiter.

A Classical Sequent Calculus with Dependent Types 789

We can follow several intuitions. First, we saw in the previous section that we
could actually allow any proof terms as long as its CPS translation uses its con-
tinuation and uses it only once. We do not have such a translation yet, but syn-
tactically, these are the proof terms that can be expressed (up to α-conversion)
in the λμμ̃-calculus with only one continuation variable (see Fig. 2), and which
do not contain application8. Interestingly, this corresponds exactly to the so-
called negative-elimination-free (nef) proofs of Herbelin [15]. To interpret the
axiom of dependent choice, he designed a classical proof system with dependent
types in natural deduction, in which the dependent types allow the use of nef
proofs.

Second, Lepigre defined in a recent work [19] a classical proof system with
dependent types, where the dependencies are restricted to values. However, the
type system allows derivations of judgments up to an observational equivalence,
and thus any proof computationally equivalent to a value can be used. In par-
ticular, any proof in the nef fragment is observationally equivalent to a value,
hence is compatible with the dependencies of Lepigre’s calculus.

From now on, we consider dLt̂p the system dL of Sect. 2 extended with delim-
ited continuations, and define the fragment of negative-elimination-free proof
terms (nef). The syntax of both categories is given by Fig. 2, the proofs in the
nef fragment are considered up to α-conversion for the context variables9. The
reduction rules, given below, are slightly different from the rules in Sect. 2:

〈μα.c||e〉 � c[e/α]

〈λa.p||q · e〉 q∈nef� 〈μt̂p.〈q||μ̃a.〈p||t̂p〉〉||e〉
〈λa.p||q · e〉 � 〈q||μ̃a.〈p||e〉〉

〈λx.p||Vt · e〉 � 〈p[Vt/x]||e〉
〈Vp||μ̃a.c〉 � c[Vp/a]

〈(Vt, p)||e〉 p/∈V� 〈p||μ̃a.〈(Vt, a)||e〉〉
〈prf (Vt, Vp)||e〉 � 〈V ||e〉

〈prf p||e〉 � 〈μt̂p.〈p||μ̃a.〈prf a||t̂p〉〉||e〉
〈subst p q||e〉 p/∈V� 〈p||μ̃a.〈subst a q||e〉〉

〈subst refl q||e〉 � 〈q||e〉
〈μt̂p.〈p||t̂p〉||e〉 � 〈p||e〉

c → c′ ⇒ 〈μt̂p.c||e〉 � 〈μt̂p.c′||e〉
wit p → t ⇐ ∀α, 〈p||α〉 � 〈(t, p′)||α〉

t → t′ ⇒ c[t] � c[t′]

where:
Vt ::= x | n Vp ::= a | λa.p | λx.p | (Vt, Vp) | refl.

In the case 〈λa.p||q · e〉 with q ∈ nef (resp. 〈prf p||e〉), a delimited continua-
tion is now produced during the reduction of the proof term q (resp. p) that is
involved in dependencies. As terms can now contain proofs which are not values,
we enforce the call-by-value reduction by asking proof values to only contain
term values. We elude the problem of reducing terms, by defining meta-rules
for them10. We add standard rules for delimited continuations [2,16], expressing

8 Indeed, λa.p is a value for any p, hence proofs like μα.〈λa.p||q · α〉 can drop the
continuation in the end once p becomes the proof in active position.

9 We actually even consider α-conversion for delimited continuations t̂p, to be able to
insert such terms inside a type, even though it might seem strange it will make sense
when proving subject reduction.

10 Everything works as if when reaching a state where the reduction of a term is needed,
we had an extra abstract machine to reduce it. Note that this abstract machine could
possibly need another machine itself, etc. We could actually solve this by making

790 É. Miquey

Fig. 2. dLt̂p: extension of dL with delimited continuations

the fact that when a proof μt̂p.c is in active position, the current context is
temporarily frozen until c is fully reduced.

3.2 Delimiting the Scope of Dependencies

For the typing rules, we can extend the set D to be the nef fragment:

D � nef

and we now distinguish two modes. The regular mode corresponds to a derivation
without dependency issues whose typing rules are the same as in Fig. 1 without
the dependencies list (we do not recall them to save some space); plus the new
rule of introduction of a delimited continuation t̂pI . The dependent mode is used
to type commands and contexts involving t̂p, and we use the sign �d to denote
the sequents. There are three rules: one to type t̂p, which is the only one where
we use the dependencies to unify dependencies; one to type context of the form
μ̃a.c (the rule is the same as the former rule for μ̃a.c in Sect. 2); and a last one
to type commands 〈p||e〉, where we observe that the premise for p is typed in
regular mode.

Additionally, we need to extend the congruence to make it compatible with
the reduction of nef proof terms (that can now appear in types), thus we add
the rules:

A[p] � A[q] if ∀α (〈p||α〉 � 〈q||α〉)
A[〈q||μ̃a.〈p||〉〉] � A[〈p[q/a]||〉] with p, q ∈ nef

the reduction of terms explicit, introducing for instance commands and contexts
for terms with the appropriate typing rules. However, this is not necessary from a
logical point of view and it would significantly increase the complexity of the proofs,
therefore we rather chose to stick to the actual presentation.

A Classical Sequent Calculus with Dependent Types 791

Due to the presence of nef proof terms (which contain a delimited form
of control) within types and dependencies lists, we need the following technical
lemma to prove subject reduction.

Lemma 7. For any context Γ,Δ, any type A and any e, μ.c:

〈μ.c||e〉 : Γ �d Δ, t̂p : B; ε ⇒ c[e/] : Γ �d Δ; ε.

Proof. By definition of the nef proof terms, μ.c is of the general form
μ.c = μ.〈p1||μ̃a1.〈p2||μ̃a2.〈. . .||μ̃an.〈pn||〉〉〉〉. In the case n = 2, proving the
lemma essantially amounts to showing that for any variable a and any σ:

{a|μ.c}σ � {a1|p1}{a|p2}σ.

��
We can now prove subject reduction for dLt̂p.

Theorem 8 (Subject reduction). If c, c′ are two commands of dLt̂p such that
c : (Γ � Δ) and c � c′, then c′ : (Γ � Δ).

Proof. Actually, the proof is slightly easier than for Theorem3, because most of
the rules do not involve dependencies. We only present one case here, other key
cases are proved in the appendix.

Case 〈λa.p||q · e〉 � 〈μt̂p.〈q||μ̃a.〈p||t̂p〉〉||e〉 with q ∈ nef:
A typing derivation for the command on the left is of the form:

Πp

Γ, a : A � p : B | Δ

Γ � λa.p : Πa:AB | Δ

Πq

Γ � q : A | Δ

Πe

Γ | e : B[q/a] � Δ

Γ | q · e : Πa:AB � Δ

〈λa.p||q · e〉 : Γ � Δ

We can thus build the following derivation for the command on the right:

Πq

Γ � q : A | Δ

Πp

Γ, a : A � p : B[a] | Δ

B[q] ∈ (B[a]){a|q}

Γ | t̂p : B[a] �d Δ, t̂p : B[q]; {a|q}{·|†}
〈p||t̂p〉 : Γ, a : A �d Δ, t̂p : B[q]; {a|q}
Γ | μ̃a.〈p||t̂p〉 : A �d Δ, t̂p : B[q]; {·|q}

〈q||μ̃a.〈p||t̂p〉〉 : Γ �d Δ, t̂p : B[q]; ε

Γ � μt̂p.〈q||μ̃a.〈p||t̂p〉〉 | Δ

Πe

Γ | e : B[q/a] � Δ

〈μt̂p.〈q||μ̃a.〈p||t̂p〉〉||e〉 : Γ � Δ

��
We invite the reader to check that interestingly, we could have already taken

D � nef in dL and still be able to prove the subject reduction. This shows that
the relaxation to the nef fragment is valid even without delimited continuations.

792 É. Miquey

4 A Continuation-Passing Style Translation

We shall now see how to define a continuation-passing style translation from dLt̂p

to an intuitionistic type theory, and use this translation to prove the soundness
of dLt̂p. Continuation-passing style translations are indeed very useful to embed
languages with control operators into purely functional ones [7,12]. From a log-
ical point of view, they generally amount to negative translations that allow to
embed classical logic into intuitionistic logic [9]. Yet, we know that removing
the control operator (i.e. classical logic) of our language leaves us with a sound
intuitionistic type theory. We will now see how to design a CPS translation for
our language which will allow us to prove its soundness.

4.1 Target Language

We choose the target language an intuitionistic theory in natural deduction that
has exactly the same elements as dLt̂p but the control operator: the language
makes the difference between terms (of type N) and proofs, it also includes
dependent sums and products for type referring to term as well as a dependent
product at the level of proofs. As it is common for CPS translations, the eval-
uation follows a head-reduction strategy. The syntax of the language and its
reduction rules are given by Fig. 3.

The type system, presented in Fig. 3, is defined as expected, with the addition
of a second-order quantification that we will use in the sequel to refine the type
of translations of terms and nef proofs. As for dLt̂p the type system has a
conversion rule, where the relation A ≡ B is the symmetric-transitive closure of
A � B, defined once again as the congruence over the reduction −→ and by the
rules:

0 = 0 � 	 0 = S(u) � ⊥
S(t) = 0 � ⊥ S(t) = S(u) � t = u.

4.2 Translation of the Terms

We can now define the translation of terms, proofs, contexts and commands.
The translation for delimited continuation follows the intuition we presented
in Sect. 2.7, and the definition for stacks t · e and q · e (with q nef) inline the
reduction producing a command with a delimited continuation. All the other
rules are natural, except for the translation of pairs (t, p) in the nef case:

�(t, p)�p � λk.(�t�t (λur.r (λq.k (u, q))))�p�p

The natural definition is the one given in the non nef case, but as we observe
in the proof of Lemma 11, this definition is incompatible with the expected type
for the translation of nef proofs. This somehow strange definition corresponds
to the intuition that we reduce �t�t within a delimited continuation, in order
to guarantee that we will not reduce �p�p before �t�t has returned a value to
substitute for u. Indeed, the type of �p�p depends on t, while the continuation

A Classical Sequent Calculus with Dependent Types 793

Fig. 3. Target language

Fig. 4. Continuation-passing style translation

794 É. Miquey

(λq.k (u, q)) depends on u, but both become compatible once u is substituted by
the value return by �t�t. The complete translation is given in Fig. 4.

Before defining the translation of types, we first state a lemma expressing
the fact that the translations of terms and nef proof terms use the continuation
they are given once and only once. In particular, it makes them compatible with
delimited continuations and a parametric return type. This will allow us to refine
the type of their translation.

Lemma 9. The translation satisfies the following properties:

1. For any term t in dLt̂p, there exists a term t+ such that for any k we have
�t�t k =β k t+.

2. For any nef proof term p, there exists a proof p+ such that for any k we have
�p�p k =β k p+.

Proof. Straightforward mutual induction on the translation, adding similar
induction hypothesis for nef contexts and commands. The terms t+ and proofs
p+ are given in Fig. 5. We detail the case (t, p) with p ∈ nef to give an insight
of the proof.

�(t, p)�p k =β (�t�t (λur.r (λq.k (u, q)))) �p�p (by def.)
=β ((λur.r (λq.k (u, q))) t+) �p�p (by induction)
=β �p�p (λq.k (t+, q))
=β (λq.k (t+, q)) p+ (by induction)
=β k (t+, p+)

��

Fig. 5. Linearity of the translation for nef proofs

Moreover, we easily verify by induction on the reduction rules for � that the
translation preserves the reduction:

Proposition 10 (Preservation of reduction). Let c, c′ be two commands of
dLt̂p. If c � c′, then �c�c =β �c′�c

We could actually prove a finer result to show that any reduction step in dLt̂p

is responsible for at least one step of reduction through the translation, and use
the preservation of typing (Proposition 12) together with the normalization of
the target language to prove the normalization of dLt̂p for typed proof terms.

Claim 1 If c : Γ � Δ, then c normalizes.

A Classical Sequent Calculus with Dependent Types 795

4.3 Translation of Types

We can now define the translation of types, in order to show further that the
translation �p�p of a proof p of type A is of type �A�∗, where �A�∗ is the double-
negation of a type �A�+ that depends on the structure of A. Thanks to the
restriction of dependent types to nef proof terms, we can interpret a dependency
in p (resp. t) in dLt̂p by a dependency in p+ (resp. t+) in the target language.
Lemma 9 indeed guarantees that the translation of a nef proof p will eventually
return p+ to the continuation it is applied to. The translation is defined by:

�A�∗ � (�A�+ → ⊥) → ⊥ �t = u�+ � t+ = u+

�∀xN.A�+ � ∀xT+
.�A�∗ �	�+ � 	

�∃xN.A�+ � ∃xT+
.�A�+ �⊥�+ � ⊥

�Πa:AB�+ � Πa:�A�+�B�∗
N

+ � N

Observe that types depending on a term of type T are translated to types
depending on a term of the same type T , because terms can only be of type N.
As we shall discuss in Sect. 6.2, this will no longer be the case when extending the
domain of terms. We naturally extend the translation for types to the translation
of contexts, where we consider unified contexts of the form Γ ∪ Δ:

�Γ, a : A�+ � �Γ �+, a : �A�+

�Γ, x : N�+ � �Γ �+, x : T+

�Γ, α : A⊥⊥�+ � �Γ �+, α : �A�+ → ⊥.

As explained informally in Sect. 2.7 and stated by Lemma 9, the translation
of a nef proof term p of type A uses its continuation linearly. In particular,
this allows us to refine its type to make it parametric in the return type of the
continuation. From a logical point of view, it amounts to replace the double-
negation (A → ⊥) → ⊥ by Friedman’s translation [10]: ∀R.(A → R) → R.
Moreover, we can even make the return type of the continuation dependent
on its argument Πa:A→R(a), so that the type of �p�p will correspond to the
elimination rule:

∀R.(Πa:A→R(a)) → R(p+).

This refinement will make the translation of nef proofs compatible with the
translation of delimited continuations.

Lemma 11. The following holds:

1. Γ � t : N | Δ ⇒ �Γ ∪ Δ� � �t�t : ∀X(∀xT+
X(x) → X(t+)).

2. ∀p ∈ nef, (Γ � p : A | Δ ⇒ �Γ ∪ Δ� � �p�p : ∀X.(Πa:�A�+X(a) → X(p+))).
3. ∀c ∈ nef, (c : Γ � Δ, : B ⇒ �Γ ∪ Δ�, : Πb:B+X(b) � �c�c : X(c+)).

Proof. The proof is done by mutual induction on the typing rule of dLt̂p for
terms and nef proofs. We only give one case here to give an insight of the proof.

796 É. Miquey

Case (t, p): in dLt̂p the typing rule for (t, p) is the following:

Γ � t : N | Δ Γ � p : A(t) | Δ

Γ � (t, p) : ∃xNA(x) | Δ
∃i

Hence we obtain by induction, using the same notation Γ ′ for �Γ ∪ Δ�:

Γ ′ � �t�t : ∀X.(∀xT+
X(x) → X(t+))

Γ ′ � �p�p : ∀Y.(Πa:A(t+)Y (a) → Y (p+))

and we want to show that for any Z:

Γ ′ � �(t, p)�p : Πa:∃xT+AZ(a) → Z(t+, p+).

By definition, we have:

�(t, p)�p = λk.(�t�t (λur.r (λq.k (u, q))))�p�p,

so we need to prove that:

Γk � (�t�t (λur.r (λq.k (u, q))))�p�p : Z(t+, p+)

where Γk = Γ ′, k : Πa:∃xT+AZ(a). We let the reader check that such a type is
derivable by using X(x) � P (x) → Z(x, a) in the type of �t�p where P (t+) is
the type of �p�p, and using Y (a) � Z(t+, a) in the type of �p�p. The crucial
point is to see that the bounded variable r is abstracted with type P (x) in the
derivation, which would not have been possible in the definition of �(t, p)�p with
p /∈ nef. ��

Using the previous Lemma, we can now prove that the CPS translation is
well-typed in the general case.

Proposition 12 (Preservation of typing). The translation is well-typed, i.e.
the following holds:

1. if Γ � p : A | Δ then �Γ ∪ Δ� � �p�p : �A�∗,
2. if Γ | e : A � Δ then �Γ ∪ Δ� � �e�e : �A�+ → ⊥,
3. if c : Γ � Δ then �Γ ∪ Δ� � �c�c : ⊥.

Proof. The proof is done by induction on the typing rules of dLt̂p. It is clear
that for the nef cases, Lemma 11 implies the result by taking X(a) = ⊥. The
rest of the cases are straightforward, except for the delimited continuations that
we detail hereafter. We consider a command 〈μt̂p.〈q||μ̃a.〈p||t̂p〉〉||e〉 produced by
the reduction of the command 〈λa.p||q · e〉 with q ∈ nef. Both commands are
translated by a proof reducing to (�q�p (λa.�p�p)) �e�e. The corresponding typing
derivation in dLt̂p is of the form:

Πp

Γ, a : A � p : B | Δ

Γ � λa.p : Πa:AB | Δ

Πq

Γ � q : A | Δ

Πe

Γ | e : B[q/a] � Δ

Γ | q · e : Πa:AB � Δ

〈λa.p||q · e〉 : Γ � Δ

A Classical Sequent Calculus with Dependent Types 797

By induction hypothesis for e and p we obtain:

Γ ′ � �e�e : �B[q+]�+ → ⊥
Γ ′, a : A+ � �p�p : �B[a]�∗

Γ ′ � λa.�p�p : Πa:A+�B[a]�∗,

where Γ ′ = �Γ ∪ Δ�. Applying Lemma 11 for q ∈ nef we can derive:

Γ ′ � �q�p : ∀X.(Πa:A+X(a) → X(q+))
Γ ′ � �q�p : (Πa:A+�B[a]�∗ → �B[q+]�∗ ∀E

We can thus derive that:

Γ ′ � �q�p (λa.�p�p) : �B[q+]�∗,

and finally conclude that:

Γ ′ � (�q�p (λa.�p�p)) �e�e : ⊥.

��
We can finally deduce the correctness of dLt̂p through the translation,

since a closed proof term of type ⊥ would be translated in a closed proof of
(⊥ → ⊥) → ⊥. The correctness of the target language guarantees that such proof
cannot exist.

Theorem 13 (Soundness). For any p ∈ dLt̂p, we have: � p : ⊥.

5 Embedding in Lepigre’s Calculus

In a recent paper [19], Lepigre presented a classical system allowing the use of
dependent types with a semantic value restriction. In practice, the type system
of his calculus does not contain a dependent product Πa:AB strictly speaking,
but it contains a predicate a ∈ A allowing the decomposition of the dependent
product into

∀a((a ∈ A) → B)

as it is usual in Krivine’s classical realizability [18]. In his system, the relativiza-
tion a ∈ A is restricted to values, so that we can only type V : V ∈ A, but
the typing judgments are defined up to observational equivalence, so that if t is
observationally equivalent to V , one can derive the judgment t : V ∈ A.

Interestingly, as highlighted through the CPS translation by Lemma9, any
nef proof p : A is observationally equivalent to some value p+, so that we could
derive p : (p ∈ A) from p+ : (p+ ∈ A). The nef fragment is thus compatible with
the semantical value restriction. The converse is obviously false, observational
equivalence allowing us to type realizers that would otherwise be untyped11.
11 In particular, Lepigre’s semantical restriction is so permissive that it is not decidable,

while it is easy to decide wheter a proof term of dLt̂p is in nef.

798 É. Miquey

We sketch here an embedding of dLt̂p into Lepigre’s calculus, and explain
how to transfer normalization and correctness properties along this translation.
Actually, his language is more expressive than ours, since it contains records
and pattern-matching (we will only use pairs, i.e. records with two fields), but
it is not stratified: no distinction is made between a language of terms and a
language of proofs. We only recall here the syntax for the fragment of Lepigre’s
calculus we use, for the reduction rules and the type system the reader should
refer to [19]:

v, w ::= x | λx.t | {l1 = v1, l2 = v2}
t, u ::= a | v | t u | μα.t | p | v.li
π, ρ ::= α | v · π | [t]π
p, q ::= t ∗ π
A,B ::= Xn(t1, . . . , tn) | A → B | ∀a.A | ∃a.A

| ∀Xn.A | {l1 : A1, l2 : A2} | t ∈ A

Even though records are only defined for values, we can define pairs and projec-
tions as syntactic sugar:

(p1, p2) � (λv1v2.{l1 = v1, l2 = v2}) p1 p2
πi(p) � (λx.(x.li)) p

A1 ∧ A2 � {l1 : A1, l2 : A2}

We first define the translation for types (extended for typing contexts) where
the predicate Nat(x) is defined as usual in second-order logic:

Nat(x) � ∀X(X(0) → ∀y(X(y) → X(S(y))) → X(x))

and �t�t is the translation of the term t given in Fig. 6:

(∀xN.A)∗ � ∀x(Nat(x) → A∗)
(∃xN.A)∗ � ∃x(Nat(x) ∧ A∗)
(t = u)∗ � ∀X(X�t�t → X�u�t)

	∗ � ∀X(X → X)
⊥∗ � ∀XY (X → Y)

(Πa:AB)∗ � ∀a((a ∈ A∗) → B∗)

(Γ, x : N)∗ � Γ ∗, x : Nat(x)
(Γ, a : A)∗ � Γ ∗, a : A∗

(Γ, α : A⊥⊥)∗ � Γ ∗, α : ¬A∗

Note that the equality is mapped to Leibniz equality, and that the definitions of
⊥∗ and 	∗ are completely ad hoc, in order to make the conversion rule admissible
through the translation.

The translation for terms, proofs, contexts and commands of dLt̂p, given in
Fig. 6 is almost straightforward. We only want to draw the reader’s attention on
a few points:

– the equality being translated as Leibniz equality, refl is translated as the
identity λa.a, which also matches with 	∗,

– the strong existential is encoded as a pair, hence wit (resp. prf) is mapped
to the projection π1 (resp. π2).

A Classical Sequent Calculus with Dependent Types 799

Fig. 6. Translation of proof terms to Lepigre’s calculus

In [19], the coherence of the system is justified by a realizability model, and
the type system does not allow us to type stacks. Thus we cannot formally prove
that the translation preserves the typing, unless we extend the type system in
which case this would imply the adequacy. We might also directly prove the
adequacy of the realizability model (through the translation) with respect to
the typing rules of dLt̂p. We detail a proof of adequacy using the former method
in the appendix.

Proposition 14 (Adequacy). If Γ � p : A | Δ and σ is a substitution realiz-
ing (Γ ∪ Δ)∗, then �p�pσ ∈ �A∗�⊥⊥

σ .

This immediately implies the soundness of dLt̂p, since a closed proof p of type
⊥ would be translated as a realizer of 	 → ⊥, so that �p�p λx.x would be a
realizer of ⊥, which is impossible. Furthermore, the translation clearly preserves
normalization (that is that for any c, if c does not normalize then neither does
�c�c), and thus the normalization of dLt̂p is a consequence of adequacy.

It is worth noting that without delimited continuations, we would not have
been able to define an adequate translation, since we would have encountered
the same problem as for the CPS translation (see Sect. 2.7).

6 Further Extensions

As we explained in the preamble of Sect. 2, we defined dL and dLt̂p as minimal
languages containing all the potential sources of inconsistency we wanted to mix:
a control operator, dependent types, and a sequent calculus presentation. It had
the benefit to focus our attention on the difficulties inherent to the issue, but on
the other hand, the language we obtain is far from being as expressive as other
usual proof systems. We claimed our system to be extensible, thus we shall now
discuss this matter.

6.1 Adding Expressiveness

From the point of view of the proof language (that is of the tools we have to
build proofs), dLt̂p only enjoys the presence of a dependent sum and a dependent
product over terms, as well as a dependent product at the level of proofs (which

800 É. Miquey

subsume the non-dependent implication). If this is obviously enough to encode
the usual constructors for pairs (p1, p2) (of type A1 ∧ A2), injections ιi(p) (of
type A1 ∨ A2), etc., it seems reasonable to wonder whether such constructors
can be directly defined in the language of proofs. Actually this is a case, and we
claim that is possible to define the constructors for proofs (for instance (p1, p2))
together with their destructors in the contexts (in that case μ̃(a1, a2).c), with
the appropriate typing rules. In practice, it is enough to:

– extend the definitions of the nef fragment according to the chosen extension,
– extend the call-by-value reduction system, opening if needed the constructors

to reduce it to a value,
– in the dependent typing mode, make some pattern-matching within the

dependencies list for the destructors. For instance, for the case of the pairs,
the corresponding rule would be:

c : Γ, a1 : A1, a2 : A2 �d Δ, t̂p : B;σ{(a1, a2)|p}
Γ | μ̃(a1, a2).c : (A1 ∧ A2) �d Δ, t̂p : B;σ{·|p} ∧E

The soundness of such extensions can be justified either by extending the CPS
translation, or by defining a translation to Lepigre’s calculus (which already
allows records and pattern-matching over general constructors) and proving the
adequacy of the translation with respect to the realizability model.

6.2 Extending the Domain of Terms

Throughout the article, we only worked with terms of a unique type N, hence it is
natural to wonder whether it is possible to extend the domain of terms in dLt̂p, for
instance with terms in the simply-typed λ-calculus. A good way to understand
the situation is to observe what happens through the CPS translation. We see
that a term of type T = N is translated into a proof of type ¬¬T+ = ¬¬N,
from which we can extract a term of type N. However, if T was for instance
the function type N → N, we would only be able to extract a proof of type
T+ = N → ¬¬N. In particular, such a proof would be of the form λx.p, where p
might backtrack to a former position, for instance before it was extracted, and
furnish another proof. This accounts for a well-know phenomenon in classical
logic, where witness extraction is limited to formulas in the Σ1

0 -fragment [21].
It also corresponds to the type we obtain for the image of a dependent product
Πa:AB, that is translated to a type ¬¬Πa:A+B∗ where the dependence is in a
proof of type A+. This phenomenon is not surprising and was already observed
for other CPS translations for type theories with dependent types [4].

In other words, there is no hope to define a correct translation of (tf , p) :
∃fN→NA that would allow the extraction of a strong pair (�tf �, �p�) : ∃fN→NA∗.
More precisely, the proof �tf � is no longer a witness in the usual sense, but a
realizer of f ∈ N → N in the sense of Krivine classical realizability.

This does not mean that we cannot extend the domain of terms in dLt̂p (in
particular, it should affect neither the subject reduction nor the soundness), but

A Classical Sequent Calculus with Dependent Types 801

it rather means that the stratification between terms and proofs is to be lost
through a CPS translation. However, it should still be possible to express the
fact that the image of a function through the CPS is a realizer corresponding to
this function, by cleverly adapting the predicate f ∈ N → N to make it stick to
the intuition of a realizer.

6.3 A Fully Sequent-Style Dependent Calculus

While the aim of this paper was to design a sequent-style calculus embedding
dependent types, we only present the Π-type in sequent-style. Indeed, we wanted
to ensure ourselves in a first time that we were able of having the key ingredients
of dependent types in our language, even presented in a natural deduction spirit.
Rather than having left-rules, we presented the existential type and the equality
type with the following elimination rules:

Γ � p : ∃xNA(x) | Δ; σ p ∈ D
Γ � prf p : A(wit p) | Δ; σ

prf
Γ � p : t = u | Δ; σ Γ � q : B[t/x] | Δ; σ

Γ � subst p q : B[u/x] | Δ; σ
subst

However, it is now easy to have both rules in a sequent calculus fashion, for
instance we could rather have contexts of the shape μ̃(x, a).c (to be dual to proofs
(t, p)) and μ̃=.c (dual to refl). We could then define the following typing rules
(where we extend the dependencies list to terms, to compensate the conversion
from A[t] to A[u] in the former (subst)-rule):

c : Γ, x : N, a : A(x) � Δ; σ{(x, a)|p}
Γ | μ̃(x, a).c � Δ; σ{·|p} ∃ c : Γ � Δ; σ{t|u}

Γ | μ̃=.c : t = u � Δ; σ{·|p} =l

and define prf p and subst p q as syntactic sugar:

prf p � μα.〈p||μ̃(x, a).〈a||α〉〉 subst p q � μα.〈p||μ̃=.〈q||α〉〉.
For any p ∈ nef and any variables a, α, A(wit p) is in A(wit (x, a)){(x,a)|p}

which allows us to derive (using this in the (cut)-rule) the admissibility of the
former (prf)-rule (we let the reader check the case of the (subst)-rule):

Γ � p : ∃xN.A | Δ; σ

a : A(x) � a : A(x)

a : A(x) � a : A(wit (x, a))
≡

Γ | α : A(wit p) � α : A(wit p) | Δ

〈a||α〉 : Γ, x : N, a : A(x) � Δ, α : A(wit p); σ{(x, a)|p} cut

Γ | μ̃(x, a).〈a||α〉 : ∃xNA � Δ, α : A(wit p); σ{·|p}
〈p||μ̃(x, a).〈a||α〉〉 : Γ � Δ, α : A(wit p); σ{·|p}

Γ � μα.〈p||μ̃(x, a).〈a||α〉〉 : A(wit p) | Δ; σ

As for the reduction rules, we can define the following (call-by-value) reduc-
tions:

〈(Vt, V)||μ̃(x, a).c〉 � c[Vt/x][V/a] 〈refl||μ̃=.c〉 � c

802 É. Miquey

and check that they advantageously simulate the previous rules (the expansion
rules become useless):

〈subst refl q||e〉 � 〈q||e〉
〈prf (Vt, Vp)||e〉 � 〈V ||e〉

〈subst p q||e〉 p/∈V� 〈p||μ̃a.〈subst a q||e〉〉
〈prf p||e〉 � 〈μt̂p.〈p||μ̃a.〈prf a||t̂p〉〉||e〉.

Acknowledgments. The author wish to thanks Pierre-Marie Pédrot for a discussion
that led to the idea of using delimited continuations, Gabriel Scherer for his accu-
rate observations and the constant interest he showed for this work, as well as the
anonymous referees of an earlier version of this paper for their remarks.

References

1. Ahman, D., Ghani, N., Plotkin, G.D.: Dependent types and fibred computational
effects. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 36–54.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49630-5 3

2. Ariola, Z.M., Herbelin, H., Sabry, A.: A type-theoretic foundation of delimited
continuations. High.-Order Symbolic Comput. 22(3), 233–273 (2009)

3. Barbanera, F., Berardi, S.: A symmetric lambda calculus for classical program
extraction. Inf. Comput. 125(2), 103–117 (1996)

4. Barthe, G., Hatcliff, J., Sørensen, M.H.B.: CPS translations and applications: the
cube and beyond. High.-Order Symbolic Comput. 12(2), 125–170 (1999)

5. Blot, V.: Hybrid realizability for intuitionistic and classical choice. In: LICS 2016,
New York, USA, 5–8 July 2016

6. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2), 95–120
(1988)

7. Curien, P.-L., Herbelin, H.: The duality of computation. In: Proceedings of ICFP
2000, SIGPLAN Notices, vol. 35, no. 9, pp. 233–243. ACM (2000)

8. Downen, P., Maurer, L., Ariola, Z.M., Jones, S.P.: Sequent calculus as a compiler
intermediate language. In: ICFP 2016 (2016)

9. Ferreira, G., Oliva, P.: On various negative translations. In: van Bakel, S., Berardi,
S., Berger, U. (eds.) Proceedings Third International Workshop on Classical Logic
and Computation, CL&C 2010. EPTCS, Brno, Czech Republic, 21–22 August
2010, vol. 47, pp. 21–33 (2010)

10. Friedman, H.: Classically and intuitionistically provably recursive functions. In:
Müller, G.H., Scott, D.S. (eds.) Higher Set Theory. LNM, vol. 669, pp. 21–27.
Springer, Heidelberg (1978). doi:10.1007/BFb0103100

11. Garrigue, J.: Relaxing the value restriction. In: Kameyama, Y., Stuckey, P.J. (eds.)
FLOPS 2004. LNCS, vol. 2998, pp. 196–213. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24754-8 15

12. Griffin, T.G.: A formulae-as-type notion of control. In: Proceedings of the 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1990, pp. 47–58. ACM, New York (1990)

13. Harper, R., Lillibridge, M.: Polymorphic type assignment and CPS conversion.
LISP Symbolic Comput. 6(3), 361–379 (1993)

14. Herbelin, H.: On the degeneracy of Σ-types in presence of computational classical
logic. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 209–220. Springer,
Heidelberg (2005). doi:10.1007/11417170 16

http://dx.doi.org/10.1007/978-3-662-49630-5_3
http://dx.doi.org/10.1007/BFb0103100
http://dx.doi.org/10.1007/978-3-540-24754-8_15
http://dx.doi.org/10.1007/978-3-540-24754-8_15
http://dx.doi.org/10.1007/11417170_16

A Classical Sequent Calculus with Dependent Types 803

15. Herbelin, H.: A constructive proof of dependent choice, compatible with classical
logic. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, 25–28 June 2012, pp. 365–374. IEEE
Computer Society (2012)

16. Herbelin, H., Ghilezan, S.: An approach to call-by-name delimited continuations.
In: Necula, G.C.,. Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San
Francisco, California, USA, 7–12 January 2008, pp. 383–394. ACM, January 2008

17. Howard, W.A.: The formulae-as-types notion of construction. Privately circulated
notes (1969)

18. Krivine, J.-L.: Realizability in classical logic. Panoramas et synthèses 27, 197–229
(2009). In: Interactive Models of Computation and Program Behaviour

19. Lepigre, R.: A classical realizability model for a semantical value restriction. In:
Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 476–502. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49498-1 19

20. Martin-Löf, P.: Constructive mathematics and computer programming. In: Pro-
ceedings of a Discussion Meeting of the Royal Society of London on Mathematical
Logic and Programming Languages, pp. 167–184. Prentice-Hall, Inc., Upper Saddle
River (1985)

21. Miquel, A.: Existential witness extraction in classical realizability and via a nega-
tive translation. Log. Methods Comput. Sci. 7(2), 1–47 (2011)

22. Parigot, M.: Proofs of strong normalisation for second order classical natural deduc-
tion. J. Symb. Log. 62(4), 1461–1479 (1997)

23. Vákár, M.: A framework for dependent types and effects. CoRR, abs/1512.08009
(2015)

24. Wadler, P.: Call-by-value is dual to call-by-name. In: Runciman, C., Shivers, C.
(eds.) Proceedings of the Eighth ACM SIGPLAN International Conference on
Functional Programming, ICFP 2003, Uppsala, Sweden, 25–29 August 2003, pp.
189–201. ACM (2003)

25. Wright, A.: Simple imperative polymorphism. LISP Symbolic Comput. 8(4), 343–
356 (1995)

http://dx.doi.org/10.1007/978-3-662-49498-1_19

Context-Free Session Type Inference

Luca Padovani(B)

Dipartimento di Informatica, Università di Torino, Torino, Italy
luca.padovani@di.unito.it

Abstract. Some interesting communication protocols can be precisely
described only by context-free session types, an extension of conventional
session types with a general form of sequential composition. The com-
plex metatheory of context-free session types, however, hinders the defi-
nition of corresponding checking and inference algorithms. In this work
we address and solve these problems introducing a new type system for
context-free session types of which we provide two OCaml embeddings.

1 Introduction

Session types [9,10,12] are an established formalism for the enforcement of com-
munication protocols through static analysis. Recently, Thiemann and Vasconce-
los [25] have proposed context-free session types to enhance the expressiveness of
conventional session types. Protocols that benefit from such enhancement include
the serialization of tree-like data structures and XML documents [25], interactions
with non-uniform objects such as stacks and reentrant locks [6,19], and recursive
protocols for trust management [24]. Thiemann and Vasconcelos [25] study the
metatheory of context-free session types, leaving the definition of a type check-
ing algorithm for future work. In this paper we point out additional issues that
specifically afflict context-free session type inference and we describe a practical
solution to its implementation.

1let stack =
2let rec none u =
3match branch u with
4| `Push u →
5let x, u = receive u
6in none (some x u)
7| `End u → u
8and some y u =
9match branch u with
10| `Push u →
11let x, u = receive u
12in some y (some x u)
13| `Pop u → send y u
14in none

Let us consider the OCaml code
on the right to illustrate the prob-
lem concretely. The code models a
stack, a non-uniform object [19,22]
offering different interfaces through a
session endpoint u depending on its
internal state. An empty stack (lines
2–7) accepts either a Push or an End
operation. In the first case, the stack
receives the element x to be pushed
and moves into the non-empty state
with the recursive application some x
u. In the second case, it just returns

L. Padovani—Partly supported by European project HyVar (grant agreement H2020-
644298).

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 804–830, 2017.
DOI: 10.1007/978-3-662-54434-1 30

Context-Free Session Type Inference 805

the endpoint u. A non-empty stack (lines 8–13) with y on top accepts either
a Push operation, as in the empty case, or a Pop operation, in which case it
sends y back to the client. When an application some x u terminates, mean-
ing that x has been popped, the stack returns to its previous state, whatever
it was (lines 6 and 12). Note that, according to established conventions [8], all
session primitives including send return the endpoint u possibly paired with the
received message (receive) or injected through a tag that represents an oper-
ation (branch). Using the FuSe implementation of binary sessions [21], OCaml
infers for stack the type Sreg → β where Sreg is the (equi-recursive) session type
that satisfies the equation

Sreg = & [Push : ?α;Sreg] (1.1)

according to which the client can only push elements of type α. To understand
the reason why the End and Pop operations are not allowed by Sreg, we have to
consider that conventional session types can only describe protocols whose set
of (finite) traces is regular, whereas the set of (finite) traces that describe legal
interactions with stack is isomorphic to the language of balanced parentheses, a
typical example of context-free language that is not regular. The session type Sreg

above corresponds to the best ω-regular and safe approximation of this context-
free language that OCaml manages to infer from the code of stack. When OCaml
figures that the session type cannot precisely track whether the stack is empty
or not, it computes the “intersection” of the interfaces of these two states, which
results in Sreg (along with warnings informing that lines 7 and 13 are dead code).

Driven by similar considerations, Thiemann and Vasconcelos [25] propose
context-free session types as a more expressive protocol description language.
The key idea is to enforce the order of interactions in a protocol using a general
form of sequential composition ; instead of the usual prefix operator. For
example, the context-free session types Snone and Ssome that satisfy the equations

Snone = & [Push : ?α;Ssome;Snone, End : 1]
Ssome = & [Push : ?α;Ssome;Ssome, Pop : !α]

(1.2)

provide accurate descriptions of the legal interactions with stack: all finite, max-
imal traces described by Snone have each Push eventually followed by a matching
Pop. The “empty” protocol 1 marks the end of a legal interaction. Using Thie-
mann and Vasconcelos’ type system, it is then possible to work out a typing
derivation showing that stack has type Snone;A → A, where A is a session type
variable that can be instantiated with any session type.

In the present work we address the problem of inferring a type as precise
as Snone;A → A from the code of a function like stack. There are two major
obstacles that make the type system in [25] unfit as the basis for a type inference
algorithm: (1) a structural rule that rearranges session types according to the
monoidal and distributive laws of sequential composition and (2) the need to
support polymorphic recursion which, as explained in [25], ultimately arises as a
consequence of (1). Type inference in presence of polymorphic recursion is known
to be undecidable in general [13], a problem which often requires programmers to

806 L. Padovani

explicitly annotate polymorphic-recursive functions with their type. In addition,
the liberal handling of sequential compositions means that functions like stack
admit very different types (such as Sreg → β and Snone;A → A) which do
not appear to be instances of a unique, more general type scheme. It is therefore
unclear which notion of principal type should guide the type inference algorithm.

These observations lead us to reconsider the way sequential compositions are
handled by the type system. More specifically, we propose to eliminate sequential
compositions through an explicit, higher-order combinator @> called resumption
that is akin to functional application but has the following signature:

@> : (T → 1) → T;S → S (1.3)

Suppose f : T → 1 is a function that, applied to a session endpoint of type
T , carries out the communication over the endpoint and returns the depleted
endpoint, of type 1. Using @> we can supply to f an endpoint u of type T;S
knowing that f will take care of the prefix T of T;S leaving us with an endpoint
of type S. In other words, @> allows us to modularize the enforcement of a
sequential protocol T;S by partitioning the program into a part – the function
f – that carries out the prefix T of the protocol and another part – the evaluation
context in which f@>u occurs – that carries out the continuation S.

This informal presentation of @> uncovers a potential flaw of our approach.
The type T → 1 describes a function that takes an endpoint of type T and
returns an endpoint of type 1, but does not guarantee that the returned endpoint
is the same endpoint supplied to the function. Only in this case the endpoint
can be safely resumed. What we need is a type-level mechanism to reason about
the identity of endpoints. Similar requirements have already arisen in different
contexts, to identify regions [2,30] and to associate resources with capabilities
[1,26,28]. Reframing the techniques used in these works to our setting, the idea
is to refine endpoint types to a form [T]ρ where ρ is a variable that represents the
abstract identity of the endpoint at the type level. The signature of @> becomes

@> : ([T]ρ → [1]ρ) → [T;S]ρ → [S]ρ (1.4)

where the fact that the same ρ decorates both [T]ρ and [1]ρ means that @> can
only be used on functions that accept and return the same endpoint. In turn,
the fact that the same ρ decorates both [T;S]ρ and [S]ρ guarantees that f@>u
evaluates to the same endpoint u that was supplied to f , but with type S.

Going back to stack, how should we patch its code so that the (inferred)
session type of the endpoint accepted by stack is Snone instead of Sreg? We are
guided by an easy rule of thumb: place resumptions in the code anywhere a
; is expected in the corresponding point of the protocol. In this specific case,

looking at the protocols (1.2), we turn the recursive applications (some x u) on
lines 6 and 12 to (some x @> u). Thus, using the type system we present in this
paper, we obtain a typing derivation proving that the revised stack has type
[Snone]ρ → [1]ρ. Most importantly, the type system makes no use of structural
rules or polymorphic recursion and there is no ambiguity as to which protocol

Context-Free Session Type Inference 807

stack is supposed to carry out, for occurrences of ; in a protocol are tied to
the occurrences of @> in code that complies with such protocol.

As we will see, these properties make our type system easy to embed in any
host programming language supporting parametric polymorphism and (option-
ally) existential types. This way, we can benefit from an off-the-shelf solution
to context-free session type checking and inference instead of developing specific
checking/inference algorithms. In the remainder of the paper:

– We formalize a core functional programming language called FuSe{} featuring
threads, session-based communication primitives and a distinctive low-level
construct for resuming session endpoints (Sect. 2). The semantics of resump-
tion combinators (including @>) will be explained using this construct.

– We equip FuSe{} with an original sub-structural type system that features
context-free session types and abstract endpoint identities (Sect. 3). We prove
fundamental properties of well-typed programs emphasizing the implications
of these properties in presence of resumptions.

– We detail two implementations of FuSe{} primitives as OCaml modules which
embed FuSe{} type discipline into OCaml’s type system (Sect. 4). The two
modules solve the problems of context-free session type checking [25] and
inference, striking different balances between static safety and portability.

We defer a more technical discussion of related work to the end of the paper
(Sect. 5). Proofs and additional technical material can be found in the associated
technical report [20]. All the code in shaded background can be type checked,
compiled and run using OCaml and both implementations of FuSe{} [21].

2 A Calculus of Functions, Sessions and Resumptions

The syntax of FuSe{} is given in Table 1 and is based on infinite sets of
variables, identity variables, and of session channels. We use an involution · that
turns an identity variable or channel into the (distinct) corresponding identity
co-variable or co-channel. Each session channel a has two endpoints, one denoted
by the channel a itself, the other by the corresponding co-channel a. We say that
a is the peer endpoint of a and vice versa. Given an endpoint ε, we write ε for
its peer. A name is either an endpoint or a variable. An identity is either an
endpoint or an identity (co-)variable. We write ι for the co-identity of ι, which
is defined in such a way that ρ = ρ.

The syntax of expressions is mostly standard and comprises constants, vari-
ables, abstractions, applications, and two forms for splitting pairs and matching
tagged values. Constants, ranged over by c, comprise the unitary value (), the
pair constructor pair, an arbitrary set of tags C for tagged unions, the fixpoint
operator fix, a primitive fork for creating new threads, and a standard set
of session primitives [8] whose semantics will be detailed shortly. To improve
readability, we write (e1,e2) in place of the saturated application pair e1e2.
In addition, the calculus provides abstraction, application, packing and unpack-
ing of identities. These respectively correspond to introduction and elimination

808 L. Padovani

Table 1. FuSe{}: syntax (‡ marks the runtime syntax not used in source programs).

constructs for universal and existential types, which are limited to identities in
the formal development of FuSe{}. The distinguishing feature of FuSe{} is the
resumption construct {e}u indicating that e uses the endpoint u for completing
some prefix of a sequentially composed protocol. As we will see in Example 1,
resumptions are key to define operators such as @> introduced in Sect. 1. Values
are fairly standard except for two details that are easy to overlook. First, fix v
is a value and reduces only when applied to a further argument. This approach,
already used by Tov [26], simplifies the operational semantics (and the formal
proofs) sparing us the need to η-expand fix each time it is unfolded [31]. Sec-
ond, the body of an identity abstraction Λ ρ .v is a value and not an arbitrary
expression. This restriction, inspired by [26,28], simplifies the type system with-
out affecting expressiveness since the body of an identity abstraction is usually
another (identity or value) abstraction. In this respect, the fact that fix v is a
value allows us to write identity-monomorphic, recursive functions of the form
Λ ρ .fix λf. · · · which are both common and useful in practice. Processes are
parallel compositions of threads possibly connected by sessions. Note that the
restriction (νa)P binds the two endpoints a and ā in P . The definition of free
and bound names for both expressions and processes is the obvious one. We
identify terms modulo alpha-renaming of bound names.

Context-Free Session Type Inference 809

Table 2. FuSe{}: operational semantics.

Table 2 defines the (call-by-value) operational semantics of FuSe{}, where we
write e{v/x} and e{ι/ ρ} for the (capture-avoiding) substitutions of values and
identities in place of variables and identity variables, respectively. Evaluation
contexts are essentially standard, with the obvious addition of {E}u:

Context E :: = [] | E e | v E | �ι, E� | let �ρ, x� = E in e | {E}u

| let x, y = E in e | match E with {Ci ⇒ ei}i∈I

Reduction of expressions is mostly conventional. The reduction rule [R7]
erases the resumption { · }ε around a pair (v,ε), provided that the endpoint
in the right component of the pair matches the annotation of the resumption.
The type system for FuSe{} that we are going to define enforces this condition
statically. However, the rule also suggests an implementation of resumptions
based on a simple runtime check: {(v,ε)}ε′ reduces to (v,ε) if ε and ε′ are the
same endpoint and fails (e.g. raising an exception) otherwise. This alternative
semantics may be useful if the type system of the host language is not expressive
enough to enforce the typing discipline described in Sect. 3. We will consider this
alternative semantics for one of the two implementations of FuSe{} (Sect. 4.2).

Reduction of processes is essentially the same appearing in [8,25]. Rule [R8]
describes the spawning of a new thread, whose body is the application of fork’s
arguments. We have chosen this semantics of fork so that it matches OCaml’s.
Rule [R9] models session initiation, whereby create reduces a pair with the two
endpoints of the newly created session. Compared to [8], we have one primitive
that returns both endpoints of a new session instead of a pair of primitives that
synchronize over shared/public channels. This choice is mostly a matter of sim-
plicity: session initiation based on shared/public channels can be programmed on

810 L. Padovani

top of this mechanism. Also, the pair returned by create is packed to account for
the fact that the caller of create does not know the identities of the endpoints
therein. Note that, in the residual process, the leftmost occurrence of a repre-
sents an identity, hence it does not count as an actual usage of the endpoint a.
Rules [R10] and [R11] model the exchange of messages. The first one moves the
message from the sender to the receiver, pairing the message with the continua-
tion endpoint on the receiver side. The second one applies the first argument of
select to the receiver’s continuation endpoint. Typically, the first argument of
select will be a tag C which is effectively the message being exchanged in this
case. We adopt this slightly unusual semantics of select because it models accu-
rately the implementation and, at the same time, it calls for specific features of
the type system concerning the type-level identification of endpoints. Rule [R12]
lifts reductions from expressions to processes and rules [R13–R15] close reduc-
tions under parallel compositions, restrictions, and structural congruence, which
is basically the same of the π-calculus and is therefore omitted.

3 Type System

In this section we define the typing discipline for FuSe{}. To keep the formal
development as simple as possible, we work with a minimal type system and limit
polymorphism to identity variables. These limitations do not have interesting
effects on resumptions and will be lifted in the actual implementation.

The (finite) syntax of kinds, types, and session types is given below:

Kind κ :: = U | L
Type t, s :: = unit | t × s | {Ci of ti}i∈I | t →κ s | [T]ι | ∃ ρ .t | ∀ ρ .t

Session type T, S :: = 0 | 1 | ?t | !t | & [Ci : Ti]i∈I | ⊕[Ci : Ti]i∈I | T;S

Instead of introducing concrete syntax for recursive (session) types, we let
t, s and T , S range over the possibly infinite, regular trees generated by the
above constructors for types and session types, respectively. We introduce recur-
sive (session) types as solutions of finite systems of (session) type equations,
such as (1.1). The shape of the equation, with the metavariable Sreg occurring
unguarded on the lhs and guarded by at least one constructor on the rhs, guar-
antees that the equation has exactly one solution [3]. Type equality corresponds
to regular tree equality.

The kinds U and L are used to classify types as unlimited and linear, respec-
tively. Types of kind U denote values that can be used any number of times.
Types of kind L denote values that must be used exactly once. We have to
introduce a few more notions before seeing how kinds are assigned to types.

Types include a number of base types (such as unit, int and possibly others
used in the examples), products t × s, and tagged unions {Ci of ti}i∈I . The
function type t →κ s has a kind annotation κ indicating whether the function
can be applied any number of times (κ = U) or must be applied exactly once
(κ = L). This latter constraint typically arises when the function contains linear
values in its closure. We omit the annotation κ when it is U. An endpoint type

Context-Free Session Type Inference 811

[T]ι consists of a session type T , describing the protocol according to which
the endpoint must be used, and an identity ι of the endpoint. Finally, we have
existential and universal quantifiers ∃ ρ .t and ∀ ρ .t over identity variables. These
are the only binders in types. We write fid(t) for the set of identities occurring
free in t and we identify (session) types modulo renaming of bound identities.

A session type describes the sequence of actions to be peformed on an end-
point. The basic actions ?t and !t respectively denote the input and the output
of a message of type t. As in [25] and unlike most presentations of session types,
these forms do not specify a continuation, which can be attached using sequential
composition. External choices & [Ci : Ti]i∈I and internal choices ⊕[Ci : Ti]i∈I

describe protocols that can proceed according to different continuations Ti each
associated with a tag Ci. When the choice is internal, the process using the end-
point selects the continuation. When the choice is external, the process accepts
the selection performed on the peer endpoint. Therefore, an external choice cor-
responds to an input (of a tag Ci) and an internal choice to an output. Sequential
composition T;S combines two sub-protocols T and S into a protocol where all
the actions in T are supposed to be performed before any action in S. We have
two terminal protocols: 0 indicates that no further action is to be performed
on the endpoint; 1 indicates that the endpoint is meant to be resumed. As we
will see, this distinction affects also the kinding of endpoint types: an endpoint
whose protocol is 0 can be discarded for it serves no purpose; an endpoint whose
protocol is 1 must be resumed exactly once.

We proceed defining a labeled transition system that formalizes the (observ-
able) actions allowed by a protocol. This notion is instrumental in defining pro-
tocol equivalence which, in turn, is key in various parts of the type system.

Definition 1 (protocol LTS). Let done(·) be the least predicate on protocols
inductively defined by the following axiom and rule:

done(1)
done(T) done(S)

done(T;S)

Let
μ−→ be the least family of relations on protocols inductively defined by the

following axioms and rules, where μ ranges over labels ?t;, !t;, ?C;, !C;:

?t
?t−→ 1 !t

!t−→ 1
k ∈ I

& [Ci : Ti]i∈I
?Ck−→ Tk

k ∈ I

⊕[Ci : Ti]i∈I
!Ck−→ Tk

T
μ−→ T ′

T;S
μ−→ T ′;S

done(T) S
μ−→ S′

T;S
μ−→ S′

Protocol equivalence is defined in terms of a bisimulation relation:

Definition 2 (equivalent protocols). We write ∼ for the largest binary rela-
tion on protocols such that T ∼ S implies:

812 L. Padovani

– done(T) if and only if done(S);
– T

μ−→ T ′ implies S
μ−→ S′ and T ′ ∼ S′;

– S
μ−→ S′ implies T

μ−→ T ′ and T ′ ∼ S′.

We say that T and S are equivalent if T ∼ S holds.

Note that 0 is equivalent to all non-resumable session types that cannot make
any progress. For example, T1 = T1;S and T2 = 1;T2 are all equivalent to 0.

Proposition 1 (properties of ∼). The following properties hold:

1. (equivalence) ∼ is reflexive and transitive;
2. (associativity) T;(S;R) ∼ (T;S);R;
3. (unit) 1;T ∼ T;1 ∼ T .
4. (congruence) T ∼ T ′ and S ∼ S′ imply T;S ∼ T ′;S′.

The congruence property of ∼ is particularly important in our setting since
we use sequential composition as a modular construct for structuring programs.
We do not identify equivalent session types and assume that sequential compo-
sition associates to the right: T;S;R means T;(S;R). Although equivalence is
decidable, this fact has little importance in our setting compared to [25] since ∼
is never used in the typing rules concerning user syntax.

We are now ready to classify types according to their kind. We resort to a
coinductive definition to cope with possibly infinite types.

Definition 3 (kinding). Let :: be the largest relation between types and kinds
such that t ::κ implies either κ = L or

– t = unit or t = t1 → t2 or t = [T]ι and T ∼ 0, or
– t = ∃ ρ .s or t = ∀ ρ .s and s ::κ, or
– t = t1 × t2 and ti ::κ for every i = 1, 2, or
– t = {Ci of ti}i∈I and ti ::κ for every i ∈ I.

We say that t is unlimited if t ::U and that t is linear if its only kind is L,
namely if t ::κ implies κ = L. Endpoint types with a non-terminated session
type and function types with kind annotation L are linear since they denote
values that must be used exactly once. Base types and function types with
kind annotation U are unlimited since they denote values that can be used (or
discarded) without restrictions. Note that the kind of a function type t →κ s
solely depends on κ, but not on the kind of t or s. For example, [?int]ι → int
is unlimited even if [?int]ι is not. Endpoint types [T]ι are unlimited if T ∼ 0:
non-resumable endpoints on which no further actions can be performed can be
discarded. On the contrary, [1]ι is linear, since it denotes an endpoint that must
be resumed once. The kind of existential and universal types, products and
tagged unions is determined by that of the component types. For example, the
type t = {Nil of unit, Cons of int × t} of integer lists is unlimited, whereas
the type int × [1]ι is linear. Finally, note that Definition 3 accounts for a form

Context-Free Session Type Inference 813

of subkinding : t ::U implies t :: L. This is motivated by the observation that it is
safe to use a value of an unlimited type exactly once.

As usual, the session types associated with peer endpoints must be dual to
each other to guarantee communication safety. Duality expresses the fact that
every input action performed on an endpoint is matched by a corresponding
output performed on its peer and is defined thus:

Definition 4 (session type duality). Session type duality is the function ·
coinductively defined by the following equations:

0 = 0
1 = 1

?t = !t
!t = ?t

& [Ci : Ti]i∈I = ⊕[Ci : T i]i∈I

⊕[Ci : Ti]i∈I = & [Ci : T i]i∈I
T;S = T;S

It is easy to verify that duality is an involution, that is T = T .
The type system makes use of two environments: identity environments Δ are

sets of identities written ι1, . . . , ιn, representing the endpoints statically known
to a program fragment; type environments Γ are finite maps from names to types
written u1 : t1, . . . , un : tn associating a type with every (free) name occurring
in an expression. We write Δ,Δ′ for Δ ∪ Δ′ when Δ ∩ Δ′ = ∅. We write Γ(u)
for the type associated with u in Γ , dom(Γ) for the domain of Γ , and Γ1, Γ2 for
the union of Γ1 and Γ2 when dom(Γ1) ∩ dom(Γ2) = ∅. We extend kinding to type
environments in the obvious way, writing Γ ::κ if Γ(u) ::κ for all u ∈ dom(Γ). We
also need a more flexible way of combining type environments that allows names
with unlimited types to be used any number of times.

Definition 5 (environment combination [15]). We write + for the partial
operation on type environments such that:

Γ + Γ ′ def= Γ , Γ ′ if dom(Γ) ∩ dom(Γ ′) = ∅
(Γ , u : t) + (Γ ′, u : t) def= (Γ + Γ ′), u : t if t ::U

Note that Γ + Γ ′ is undefined if Γ and Γ ′ contain associations for the same
name with different or linear types. When Γ ::U, we have that Γ + Γ is always
defined and equal to Γ itself.

The type schemes of FuSe{} constants are given in Table 3 as associations
c : t. Note that, in general, each constant has infinitely many types. Although
most associations are as expected, it is worth commenting on a few details.
First, observe that the kind annotation κ in the types of pair, send and select
coincides with the kind of the first argument of these constants. In particular,
when t is linear and pair/send/select is supplied one argument v of type t,
the resulting partial application is also linear. Second, in accordance with their
operational semantics (Table 2) all the primitives for session communications
(send, receive, select, and branch) return the very same endpoint they take
as input as indicated by the identity ι that annotates the endpoint types in both
the domain and range of these constants. Finally, in an application select vε the
function v is meant to be applied to the peer of ε. This constraint is indicated by
the use of the co-identity ι and is key for the soundness of the type system. Note

814 L. Padovani

Table 3. Type schemes of FuSe{} constants.

also that the codomain of v matches the return type of branch, following the fact
that v is applied to the peer of ε after the communication has occurred (Table 2).
Finally, create returns a packaged pair of endpoints with dual session types. The
package must be opened before the endpoints can be used for communication.

The typing rules for FuSe{} are given in Table 4 and derive judgments Δ; Γ
e : t for expressions and Δ; Γ P for processes. When present, side conditions are
written to the right of the rule to which they apply. A judgment is well formed
if all the identities occurring free in Γ and t are included in Δ. From now on we
make the implicit assumption that all judgments are well formed.

We now discuss the most important aspects of the typing rules. In [t-const],
the implict well-formedness constraint on typing judgments restricts the set of
types that we can give to a constant to those whose free identities occur in Δ.
In [t-const] and [t-name], the unused part of the type environment must be
unlimited, to make sure that no linear name is left unused. The elimination rules
for products and tagged unions are standard. Note the use of + for combining
type environments so that the same linear resource is not used multiple times in
different parts of an expression. Rules [t-fun] and [t-app] deal with function
types. In [t-fun], the kind annotation on the arrow must be consistent with
the kind of the environment in which the function is typed. If any name in
the environment has a linear type, then the function must be linear itself to
avoid repeated use of such name. By contrast, the kind annotation plays no
role in [t-app]. Abstraction and application of identities are standard. The side
condition in [t-id-app] makes sure that the supplied identity is in scope. This
condition is not necessarily captured by the well formedness of judgments in case
ρ does not occur in t. Packing and unpacking are also standard. The identity
variable ρ introduced in [t-unpack] is different from any other identity known
to e2. This prevents e2 from using ρ in any context where a specific identity is
required. Also, well formedness of judgments requires fid(s) ⊆ Δ, meaning that
ρ is not allowed to escape its scope. The most interesting and distinguishing
typing rule of FuSe{} is [t-resume]. Let us discuss the rule clockwise, starting
from {e}u and recalling that the purpose of this expression is to resume u once

Context-Free Session Type Inference 815

Table 4. FuSe{}: static semantics.

the evaluation of e is completed. The rule requires u to have a type of the form
[T;S]ι, which specifies the identity ι of the endpoint and the protocols T and
S to be completed in this order. Within e the type of u is changed to [T]ι and
the evaluation of e must yield a pair whose first component, of type t, is the
result of the computation and whose second component, of type [1]ι, witnesses
the fact that the prefix protocol T has been entirely carried out on u. Once the
evaluation of e is completed, the type of the endpoint in the pair is reset to the
suffix S. The same identity ι relates all the occurrences of the endpoint both
in the type environments and in the expressions. Note that the annotation u in
{ · }u does not count as a proper “use” of u. Its purpose is solely to identify the
endpoint being resumed.

The typing rules for processes are mostly unremarkable. In [t-session] the
two peers of a session are introduced both in the type environment and in the
identity environment. The protocols T and S of peer endpoints are required
to be dual to each other modulo protocol equivalence. The use of ∼ accounts

816 L. Padovani

for the possibility that sequential compositions may be arranged differently in
the threads using the two peers. For instance, one thread might be using an
endpoint with protocol T , and its peer could have type 1;T in a thread that has
not resumed it yet. Still, T ∼ 1;T = 1;T .

We state a few basic properties of the typing discipline focusing on those
more closely related to resumptions. To begin with, we characterize the type
environments in which expressions and processes without free variables reduce.

Definition 6. We say that Γ is ground if dom(Γ) contains endpoints only; that
it is well formed if ε ∈ dom(Γ) implies Γ(ε) = [T]ε; that it is balanced if ε, ε ∈
dom(Γ) implies Γ(ε) = [T]ε and Γ(ε) = [S]ε and T ∼ S.

Note that in a well-formed environment the type associated with endpoint ε
is annotated with the correct identity of ε, that is ε itself.

As usual for session type systems, we must take into account the possibility
that the type associated with session endpoints changes over time. Normally this
only happens when processes use endpoints for communications. In our case,
however, also expressions may change endpoint types because of resumptions.
In order to track these changes, we introduce two relations that characterize the
evolution of type environments alongside expressions and processes. The first
relation is the obvious extension of equivalence ∼ to type environments:

Definition 7 (equivalent type environments). Let Γ = {εi : [Ti]εi
}i∈I and

Γ ′ = {εi : [Si]εi
}i∈I . We write Γ ∼ Γ ′ if Ti ∼ Si for every i ∈ I.

The second relation includes ∼ and mimics communications at the type level:

Definition 8. Let � be the least relation between type environments such that:

Γ � Γ ′ if Γ ∼ Γ ′

Γ , ε : [!t;T]ε, ε : [?t;S]ε � Γ , ε : [T]ε, ε : [S]ε
Γ , ε : [⊕[Ci : Ti]i∈I]ε, ε : [& [Ci : Si]i∈I]ε � Γ , ε : [Tk]ε, ε : [Sk]ε if k ∈ I

Concerning subject reduction for expressions, we have:

Theorem 1 (SR for expressions). Let Δ; Γ e : t where Γ is ground and
well formed. If e → e′, then Δ; Γ ′ e′ : t for some Γ ′ such that Γ ∼ Γ ′.

Theorem 1 guarantees that resumptions in well-typed programs do not change
arbitrarily the session types of endpoints. The only permitted changes are those
allowed by session type equivalence. Concerning progress, we have:

Theorem 2 (progress for expressions). If Γ is ground and well formed and
Δ; Γ e : t and e �→, then either e is a value or e = E [K v] for some E, v, w,
and K ∈ {fork w, create, send w, receive, select w, branch}.

That is, an irreducible expression that is not a value is a term that is meant to
reduce at the level of processes. Note that a resumption {(v,ε)}ε′ is not a value
and is meant to reduce at the level of expressions via [R7]. Hence, Theorem 2

Context-Free Session Type Inference 817

guarantees that in a well-typed program all such resumptions are such that
ε = ε′. An alternative reading for this observation is that each endpoint is
guaranteed to have a unique identity in every well-typed program.

Theorem 3 (SR for processes). Let Δ; Γ P where Γ is ground, well formed
and balanced. If P → Q, then Δ; Γ ′ Q for some Γ ′ such that Γ �∗ Γ ′.

Apart from being a fundamental sanity check for the type system, Theorem3
states that the communications occurring in processes are precisely those per-
mitted by the session types in the type environments. Therefore, Theorem 3 gives
us a guarantee of protocol fidelity. A particular instance of protocol fidelity con-
cerns sequential composition: a well-typed process using an endpoint with type
T;S is guaranteed to perform the actions described by T first, and then those
described by S. Other standard properties including communication safety and
(partial) progress for processes can also be proved [21].

Example 1 (resumption combinators). In prospect of devising a library imple-
mentation of FuSe{}, the resumption expression { ·}u is challenging to deal with,
for its typing rule involves an non-trivial manipulation of the type environment
whereby the type of u changes as u flows into and out of the expression. In
practice, it is convenient to encapsulate { · }u expressions in two combinators
that can be easily implemented as higher-order functions (Sects. 4.2 and 4.3):

@=
def= λf.λx.{f x}x

@>
def= λf.λx.let _, x = {((),f x)}x in x

The combinator @= is a general version of @> that applies to functions return-
ing an actual result in addition to the endpoint to be resumed. We derive

Δ; f : [T]ι →κ t × [1]ι f : [T]ι →κ t × [1]ι Δ;x : [T]ι x : [T]ι
Δ; f : [T]ι →κ t × [1]ι, x : [T]ι f x : t × [1]ι

Δ; f : [T]ι →κ t × [1]ι, x : [T;S]ι {f x}x : t × [S]ι
Δ; f : [T]ι →κ t × [1]ι λx.{f x}x : [T;S]ι →κ t × [S]ι

Δ; ∅ λf.λx.{f x}x : ([T]ι →κ t × [1]ι) → [T;S]ι →κ t × [S]ι

for every T , ι, t and S such that fid(T) ∪ fid(t) ∪ fid(S) ∪ {ι} ⊆ Δ. A similar
derivation allows us to derive

Δ; ∅ @> : ([T]ι →κ [1]ι) → [T;S]ι →κ [S]ι

In the implementation we will give @= and @> their most general type by
leveraging OCaml’s support for parametric polymorphism. Other combinators
for resuming two or more endpoints can be defined similarly. For example,

@@>
def= λf.λx.λy.let y, x = {let x, y = {f x y}y in (y,x)}x in (x,y)

is analogous to @>, but resumes two endpoints at once. �

818 L. Padovani

Example 2 (alternative communication API). It could be argued that the com-
munication primitives send and receive are not really “primitive” because their
types make use of both I/O actions and sequential composition. Alternatively,
we could equip FuSe{} with two primitives send' and receive' having the same
operational semantics as send and receive but the following types:

send' : t → [!t]ι →κ [1]ι t ::κ
receive' : [?t]ι → t × [1]ι

Starting from send' and receive', send and receive could then be derived
with the help of @= and @>, used below in infix notation:

send
def= λz.λx.send' z @> x

receive
def= λx.receive' @= x

We find a communication API based on send' and receive' appealing for
its cleaner correspondence between primitives and session type constructors. In
particular, with this API the resumption combinators account for all occurrences
of ; in protocols. In the formal model of FuSe{}, we have decided to stick to the
conventional typing of send and receive for continuity with other presentations
of similar calculi [8,25,29]. �
Example 3. This example illustrates the sort of havoc that could be caused
if two endpoints had the same identity. As a particular instance, we see the
importance of distinguishing the identity of peer endpoints. The derivation

...

x : [1]ι, y : [1]ι (y,x) : [1]ι × [1]ι
x : [1]ι, y : [1;S]ι {(y,x)}y : [1]ι × [S]ι

...

x̂ : [S]ι, ŷ : [1]ι (̂x,ŷ) : [S]ι × [1]ι
x : [1]ι, y : [1;S]ι let ŷ, x̂ = {(y,x)}y in (̂x,ŷ) : [S]ι × [1]ι

x : [1;T]ι, y : [1;S]ι {let ŷ, x̂ = {(y,x)}y in (̂x,ŷ)}x : [S]ι × [T]ι
x : [1;T]ι λy.{let ŷ, x̂ = {(y,x)}y in (̂x,ŷ)}x : [1;S]ι →L [S]ι × [T]ι

 λx.λy.{let ŷ, x̂ = {(y,x)}y in (̂x,ŷ)}x : [1;T]ι → [1;S]ι →L [S]ι × [T]ι
can be used to type check a function that, applied to two endpoints x and y whose
types are [1;T]ι and [1;S]ι respectively, returns a pair containing the same two
endpoints, but with their types changed to [S]ι and [T]ι. If there existed two
endpoints ε1 and ε2 with the same identity ι from two different sessions, the
function could be used to exchange their protocols, almost certainly causing
communication errors in the rest of the computation. If ε1 and ε2 were the peers
of the same session, then communication safety would still be guaranteed by the
condition T ∼ S, but protocol fidelity would be violated nonetheless. �

4 Context-Free Session Types in OCaml

In this section we detail two different implementations of FuSe{} communica-
tion and resumption primitives as OCaml functions. We start defining a few

Context-Free Session Type Inference 819

basic data structures and a convenient OCaml representation of session types
(Sect. 4.1) before describing the actual implementations. The first one (Sect. 4.2)
is easily portable to any programming language supporting parametric polymor-
phism, but relies on lightweight runtime checks to verify when an endpoint can
be safely resumed. The second implementation (Sect. 4.3) closely follows the
typing discipline of FuSe{} presented in Sect. 3, but relies on more advanced fea-
tures (existential types) of the host language. The particular implementation we
describe is based on OCaml’s first-class modules [7,32]. We conclude the section
revisiting and extending the running example of [25] (Sect. 4.4).

4.1 Basic Setup

To begin with, we define a simple module Channel that implements unsafe com-
munication channels. In turn, Channel is based on OCaml’s Event module, which
implements communication primitives in the style of Concurrent ML [23].

module Channel : sig
type t
val create : unit → t (* create a new unsafe channel *)
val send : α → t → unit (* send a message of type α *)
val receive : t → α (* receive a message of type α *)

end = struct
type t = unit Event.channel
let create = Event.new_channel
let send x u = Event.sync (Event.send u (Obj.magic x))
let receive u = Obj.magic (Event.sync (Event.receive u))

end

An unsafe channel is just an Event.channel for exchanging messages of type
unit. The unit type parameter is just a placeholder, for communication primi-
tives perform unsafe casts (with Obj.magic) on every exchanged message. Note
that Event.send and Event.receive only create synchronization events, and
communication only happens when these events are passed to Event.sync. Using
Event channels is convenient but not mandatory: the rest of our implementation
is essentially independent of the underlying communication framework.

The second ingredient of our library is an implementation of atomic boolean
flags. Since OCaml’s type system is not substructural we are unable to distinguish
between linear and unlimited types and, in particular, we are unable to prevent
multiple endpoint usages solely using the type system. Following ideas of Tov
and Pucella [27] and Hu and Yoshida [11] and the design of FuSe [21], the idea is
to associate each endpoint with a boolean flag indicating whether the endpoint
can be safely used or not. The flag is initially set to true, indicating that the
endpoint can be used, and is tested by every operation that uses the endpoint.
If the flag is still true, then the endpoint can be used and the flag is reset to
false. If the flag is false, then the endpoint has already been used in the past
and the operation aborts raising an exception. Atomicity is needed to make sure

820 L. Padovani

that the flag is tested and updated in a consistent way in case multiple threads
try to use the same endpoint simultaneously.

module Flag : sig
type t
val create : unit → t (* create a new atomic boolean flag *)
val use : t → unit (* mark as used or raise exception *)

end = struct
type t = Mutex.t
let create = Mutex.create
let use f = if not (Mutex.try_lock f) then raise Error

end

We represent an atomic boolean flag as a Mutex.t, that is a lock in OCaml’s
standard library. The value of the flag is the state of the mutex: when the mutex
is unlocked, the flag is true. Using the flag means attempting to acquire the
lock with the non-blocking function Mutex.try lock. As for Event channels, the
mutex is a choice of convenience more than necessity. Alternative realizations,
possibly based on lightweight compare-and-swap operations, can be considered.

We conclude the setup phase by defining a bunch of OCaml singleton types
in correspondence with the session type constructors:

type 0 = End
type 1 = Resume
type ϕ msg = Message (* either ?ϕ or !ϕ *)
type ϕ tag = Tag (* either &[ϕ] or ⊕[ϕ] *)
type (α,β) seq = Sequence (* α;β *)

The type parameter ϕ is the type of the exchanged message in msg and a
polymorphic variant type representing the available choices in tag. The type
parameteres α and β in seq stand for the prefix and suffix protocols of a sequen-
tial composition α ; β. The data constructors of these types are never used and
are given only because OCaml is more liberal in the construction of recursive
types when these are concrete rather than abstract. Hereafter, we use τ1, τ2, . . .
to range over OCaml types and α, β, . . . , ϕ to range over OCaml type variables.
Considering that OCaml supports equi-recursive types, we ignore once again the
concrete syntax for expressing infinite session types and work with infinite trees
instead. OCaml uses the notation τ as α for denoting a type τ in which occur-
rences of α stand for the type as a whole.

4.2 A Dynamically Checked, Portable Implementation

The first implementation of the library that we present ignores identities in types
and verifies the soundness of resumptions by means of a runtime check. In this
case, an endpoint type [T]ι is encoded as the OCaml type (τ1 , τ2) t where τ1
and τ2 are roughly determined as follows:

– when T is a self-dual session type constructor (either 0, 1, or ;), then both
τ1 and τ2 are the corresponding OCaml type (0, 1, or seq, respectively);

Context-Free Session Type Inference 821

– when T is an input (either ?t or & [Ci : Ti]i∈I), then τ1 is the encoding the
received message/choice and τ2 is 0; dually when T is an output.

More precisely, types and session types are encoded thus:

Definition 9 (encoding of types and session types). Let �·� and 〈〈·〉〉 be
the encoding functions coinductively defined by the following equations:

�0� = (0,0) t
�1� = (1,1) t
�?t� = (〈〈t〉〉 msg,0) t
�!t� = (0,〈〈t〉〉 msg) t

�& [Ci : Ti]i∈I� = ({Ci of �Ti�}i∈I tag,0) t
�⊕[Ci : Ti]i∈I� = (0,{Ci of �Ti�}i∈I tag) t

�T;S� = ((�T �,�S�) seq,(�T �,�S�) seq) t
〈〈[T]ι〉〉 = �T �

where 〈〈·〉〉 is extended homomorphically to all the remaining type constructors
erasing kind annotations on arrows and existential and universal quantifiers.

Note that identities ι in endpoint types are simply erased; we will revise this
choice in the second implementation (Sect. 4.3). The encoding is semantically
grounded through the relationship between sessions and linear channels [4,5,
14,21] and is extended here to sequential composition for the first time. The
distinguishing feature of this encoding is that is makes it easy to express session
type duality constraints solely in terms of type equality:

Theorem 4. If �T � = (τ1 , τ2) t, then �T � = (τ2 , τ1) t.

That is, we pass from a session type to its dual by flipping the type parameters
of the t type. This also works for unknown or partially known session types: the
dual of (α , β) t is (β , α) t.

We can now look at the concrete representation of the type (α , β) t:

type (α,β) t = { chan : Channel.t; pol : int; once : Flag.t }

An endpoint is a record with three fields, a reference chan to the unsafe
channel used for the actual communications, an integer number pol ∈ {+1,−1}
representing the endpoint’s polarity, and an atomic boolean flag once indicating
whether the endpoint can be safely used or not. Of course, this representation is
hidden from the user of the library and any direct access to these fields occurs
via one of the public functions that we are going to discuss.

The FuSe{} primitives for session communication are implemented by cor-
responding OCaml functions with the following signatures, which are directly
related to the type schemes in Table 3 through the encoding in Definition 9:

val create : unit → (α,β) t × (β,α) t
val send' : ϕ → (0,ϕ msg) t → (1,1) t
val receive' : (ϕ msg,0) t → ϕ × (1,1) t
val select : ((β,α) t → ϕ) → (0,ϕ tag) t → (α,β) t
val branch : (ϕ tag,0) t → ϕ

val (@=) : ((α,β) t → ϕ × (1,1) t) →
(((α,β) t,(γ,δ) t) seq,((β,α) t,(δ,γ) t) seq) t →
ϕ × (γ,δ) t

822 L. Padovani

We take advantage of parametric polymorphism to give these functions their
most general types. We implement the alternative communication API with the
primitives send' and receive' because their type signatures are simpler. From
these functions, send and receive can be easily derived as shown in Example 2.
We also omit @> which is just a particular instance of @= (Example 1). The types
for select and branch are slightly more general than those in Table 3, but the
tossing of tags between choices and unions cannot be expressed as accurately in
OCaml without fixing the set of tags. The given typing is still sound though.

Since this version of the library ignores endpoint identities, the endpoints
returned by create are already unpackaged. The implementation of create is

let create () = let ch = Channel.create () in
{ chan = ch; pol = +1; once = Flag.create () },
{ chan = ch; pol = -1; once = Flag.create () }

and consists of the creation of a new unsafe channel ch and two records referring
to it with opposite polarities and each with its own validity flag.

The communication primitives are defined in terms of corresponding opera-
tions on the underlying unsafe channel and make use of an auxiliary function

let fresh u = { u with once = Flag.create () }

that returns a copy of u with once overwritten by a fresh flag. We have:

let send' x u = Flag.use u.once; Channel.send x u.chan; fresh u
let receive' u = Flag.use u.once; (Channel.receive u.chan, fresh u)
let select f u = Flag.use u.once; Channel.send f u.chan; fresh u
let branch u = Flag.use u.once; Channel.receive u.chan (fresh u)

The flag associated with the endpoint u is used before communication takes
place and refreshed just before the endpoint is returned to the user. It is not
possible to refresh the flag by just releasing the lock in it, for any existing alias
to the endpoint must be permanently marked as invalid [21].

We complete the module with the implementation of @=, shown below:

let (@=) scope u =
let res, v = scope (Obj.magic u) in
if u.chan == v.chan && u.pol = v.pol then (res, Obj.magic v)
else raise Error

The endpoint u is passed to scope, which evaluates to a pair made of the
result res of the computation and the endpoint v to be resumed. The cast
Obj.magic u is necessary to turn the type of u from T;S to T , as required by
scope. The second line in the body of @= checks that the endpoint v resulting
from the evaluation of scope is indeed the same endpoint u that was fed in
it. Note the key role of the polarity in checking that u and v are the same
endpoint and the use of the physical equality operator ==, which compares only
the references to the involved unsafe channels. An exception is raised if v is
not the same endpoint as u. Otherwise, the result of the computation and v
are returned. The cast Obj.magic v effectively resumes the endpoint turning

Context-Free Session Type Inference 823

its type from 1 to S. The two casts roughly delimit the region of code that we
would write within { · }u in the formal model.

4.3 A Statically Checked Implementation

The second implementation we present reflects more accurately the typing infor-
mation in endpoint types, which includes the identity of endpoints. In this case,
we represent an endpoint type [T]ρ as an OCaml type (τ1 , τ2 , ρ ,ρ) t where
τ1 and τ2 are determined from T in a similar way as before. In addition, the
phantom type parameter ρ is the (abstract) identity of the endpoint and ρ that
of its peer (we represent identity variables as OCaml type variables and assume
that ρ is another OCaml type variable distinct from ρ). More formally, the revised
encoding of (session) types into OCaml types is given below:

Definition 10 (revised encoding of types and session types). Let �·�ι and
〈〈·〉〉 be the encoding functions coinductively defined by the following equations:

�0�ι = (0,0,ι,ι) t
�1�ι = (1,1,ι,ι) t
�?t�ι = (〈〈t〉〉 msg,0,ι,ι) t
�!t�ι = (0,〈〈t〉〉 msg,ι,ι) t

�& [Ci : Ti]i∈I�ι = ({Ci of �Ti�ι}i∈I tag,0,ι,ι) t
�⊕[Ci : Ti]i∈I�ι = (0,{Ci of �Ti�ι}i∈I tag,ι,ι) t
�T;S�ι = ((�T �ι,�S�ι) seq,(�T �ι,�S�ι) seq,ι,ι) t

〈〈[T]ι〉〉 = �T �ι

where 〈〈·〉〉 is extended homomorphically to all the remaining type constructors
erasing kind annotations on arrows and existential and universal quantifiers.

In Definition 10, ι is always an identity (co-)variable for we apply the encoding
to user types in which these variables are never instantiated. Once again, the
relation between the encoding of a session type and that of its dual can be
expressed in terms of type equality:

Theorem 5. If �T �ι = (τ1 , τ2 ,ι,ι) t, then �T �ι = (τ2 , τ1 ,ι,ι) t.

The concrete representation of (α , β ,ι,ι) t is the same that we have given
in Sect. 4.2. As an optimization, the pol field of that representation could be
omitted since there it is only necessary to verify an endpoint equality condition
which is statically guaranteed by the implementation we are discussing now.

The easiest way of representing an existential type in OCaml is by means of
its built-in module system [17]. In our case, we have to make sure that create
returns a packaged pair of peer endpoints, each with its own identity. The OCaml
representation of this type can be given by the following module signature

module type Package = sig
type i and j
val unpack : unit → (α,β,i,j) t × (β,α,j,i) t

end

which contains two abstract type declarations i and j, corresponding to the
identities of the two endpoints, and a function unpack to retrieve the endpoints

824 L. Padovani

once the module with this signature has been opened. Concerning the imple-
mentation of Package, there are two technical issues we have to address, both
related to the fact that there cannot be two different endpoints with the same
identity. First, we have to make sure that each session has its own implementa-
tion of the Package module signature. To this aim, we take advantage of OCaml’s
support for first-class modules [7,32], allowing us to write a function (create in
the specific case) that returns a module implementation. The second issue is that
we cannot store the two endpoints directly in the module, for the types of the
endpoints contain type variables (α and β in the above signature) which are not
allowed to occur free in a module. For this reason, we delay the actual creation
of the endpoints at the time unpack is applied. This means, however, that the
same implementation of Package could in principle be unpacked several times,
instantiating different sessions whose endpoints would share the same identities.
To make sure that unpack is applied at most once for each implementation of
Package we resort once again to an atomic boolean flag.

The signatures of the functions implementing the communication primitives
are essentially the same that we have already seen in Sect. 4.2, except for the
presence of identity variables ρ and σ and the type of create, which now returns
a packaged pair of endpoints:

val create : unit → (module Package)
val send' : ϕ → (0,ϕ msg,ρ,σ) t → (1,1,ρ,σ) t
val receive' : (ϕ msg,0,ρ,σ) t → ϕ × (1,1,ρ,σ) t
val select : ((β,α,σ,ρ) t → ϕ) → (0,ϕ tag,ρ,σ) t → (α,β,ρ,σ) t
val branch : (ϕ tag,0,ρ,σ) t → ϕ

val (@=) : ((α,β,ρ,σ) t → ϕ × (1,1,ρ,σ) t) →
(((α,β,ρ,σ) t,(γ,δ,ρ,σ) t) seq,
((β,α,σ,ρ) t,(δ,γ,σ,ρ) t) seq,ρ,σ) t →

ϕ × (γ,δ,ρ,σ) t

Note in particular the type of select, where we refer to both an endpoint
and its peer by flipping the type parameters corresponding to session types (α
and β) and those corresponding to identity variables (ρ and σ) as well.

The implementation of create is shown below, in which Previous.create
refers to the version of create detailed in Sect. 4.2:

let create () =
let once = Flag.create () in
(module struct

type i and j
let unpack () = Flag.use once; Previous.create ()

end : Package)

The implementation of the I/O primitives is the same as in Sect. 4.2 and need
not be repeated here. The resumption combinator shrinks to a simple cast

let (@=) = Obj.magic

Context-Free Session Type Inference 825

since the equality condition on endpoints that is necessary for its soundness is
now statically guaranteed by the type system. The cast is necessary because @=
coerces its first argument to a function with a different type. With this imple-
mentation of FuSe{}, a session is typically created thus

let module A = (val create ()) in (* create session *)
let a, b = A.unpack () in (* unpack endpoints *)
fork server a; (* fork server *)
client b (* run client *)

where client and server are suitable functions that use the two endpoints of
the session without making any assumption on their identities. Otherwise, the
abstract types A.i and A.j would escape their scope, resulting in a type error.

4.4 Extended Example: Trees over Sessions

In this section we revisit and expand an example taken from [25] to show how
context-free session types help improving the precision of (inferred) protocols
and the robustness of code. We start from the declaration

type α tree = Leaf | Node of α × α tree × α tree

defining an algebraic representation of binary trees, and we consider the following
function, which sends a binary tree over a session endpoint. Note that, for the
sake of readability, in this section we assume that OCaml polymorphic variant
tags are curried as in the formal model and write for example `Node instead of
its η-expansion fun x → `Node x.

1 let send_tree t u =
2 let rec send_tree_aux t u =
3 match t with
4 | Leaf → select `Leaf u
5 | Node (x, l, r) → let u = select `Node u in
6 let u = send x u in
7 let u = send_tree_aux l u in
8 let u = send_tree_aux r u in u
9 in select `Done (send_tree_aux t u)

The auxiliary function send tree aux serializes a (sub)tree t on the end-
point u, whereas send tree invokes send tree aux once and finally sends a
sentinel label `Done that signals the end of the stream of messages. FuSe infers
for send tree the type α tree → Treg → A where Treg is the session type

Treg = ⊕[`Leaf : Treg, `Node : !α;Treg, `Done : A] (4.1)

and A is a session type variable (the code in send tree does not specify in any
way how u will be used when send tree returns). Without the sentinel `Done,
the protocol Treg inferred by OCaml would never terminate (like Sreg in (1.1))
making it hardly useful. Even with the sentinel, though, Treg is very imprecise.

826 L. Padovani

For example, it allows the labels `Node, `Leaf, and `Done to be selected in this
order, even though send tree never generates such a sequence.1

To illustrate the sort of issues that this lack of precision may cause, it helps
to look at a consumer process that receives a tree sent with send tree:

1 let receive_tree u =
2 let rec receive_tree_aux u =
3 match branch u with
4 | `Leaf u → Leaf, u
5 | `Node u → let x, u = receive u in
6 let l, u = receive_tree_aux u in
7 let r, u = receive_tree_aux u in
8 Node (x, l, r), u
9 | _ → assert false (* impossible *)

10 in let t, u = receive_tree_aux u in
11 match branch u with
12 | `Done u → (t, u)
13 | _ → assert false (* impossible *)

This function consists of a main body (lines 2–9) responsible for building up
a (sub)tree received from u, the bootstrap of the reception phase (line 10), and
a final reception that awaits for the sentinel (lines 11–13). For receive tree,
OCaml infers the type Treg → α tree × A. The fact that send tree and
receive tree use endpoints with dual session types should be enough to reas-
sure us that the two functions communicate safely within the same session.
Unfortunately, our confidence is spoiled by two suspicious catch-all cases (lines 9
and 13) without which receive tree would be ill typed. In particular, omitting
line 9 would result in a non-exhaustive pattern matching (lines 3–8) because
label `Done can in principle be received along with `Leaf and `Node. A similar
issue would arise omitting line 13. Omitting both lines 9 and 13 would also be
a problem. In search of a typing derivation for receive tree, OCaml would try
to compute the intersection of the labels handled by the two pattern matching
constructs, only to find out that such intersection is empty.

We clean up and simplify send tree and receive tree using resumptions:

1 let rec send_tree t u =
2 match t with
3 | Leaf → select `Leaf u
4 | Node (x, l, r) → let u = select `Node u in
5 let u = send x u in
6 let u = send_tree l @> u in (*resumption*)
7 let u = send_tree r u in u
8 let rec receive_tree u =
9 match branch u with

1 The claim made in [25] that send tree aux is ill typed is incorrect. There exist
typing derivations for send tree aux proving that it has type α tree → T → T for
every T that satisfies the equation T = ⊕[`Leaf : T, `Node : !α;T, . . .].

Context-Free Session Type Inference 827

10 | `Leaf u → Leaf, u
11 | `Node u → let x, u = receive u in
12 let l, u = receive_tree @= u in (*resumption*)
13 let r, u = receive_tree u in Node (x, l, r), u

In send tree we use the simple resumption @> since the function only returns
the endpoint u. In receive tree we use @= since the function returns the received
tree in addition to the continuation endpoint. Note that we no longer need
an explicit sentinel message `Done that marks the end of the message stream
because the protocol now specifies exactly the number of messages needed to
serialize a tree. For the same reason, the catch-all cases in receive tree are
no longer necessary. For these functions, OCaml respectively infers the types
α tree → [Tcf]ρ → [1]ρ and [Tcf]ρ → α tree× [1]ρ where Tcf is the session type
such that

Tcf = ⊕[`Leaf : 1, `Node : !α;Tcf;Tcf]

The leftmost occurrence of ; in !α;Tcf;Tcf is due to the communication
primitive (either send or receive) and the rightmost one to the resumption.

Note that the only difference between the revised send tree and the homony-
mous function presented in [25] is the occurrence of @>. All the other examples in
[25] can be patched similarly by resuming endpoints at the appropriate places.

5 Related Work

The work most closely related to ours is [25] in which Thiemann and Vasconcelos
introduce context-free session types, develop their metatheory, and prove that
session type equivalence is decidable. In [25], the only typing rules that can
eliminate sequential compositions are those concerning send and receive. This
choice calls for a type system with (1) a structural rule that rearranges sequential
compositions in session types and (2) support for polymorphic recursion. As a
consequence, context-free session type checking, left as an open problem in [25],
appears to rely crucially on type annotations provided by the programmer. In
contrast, our approach relies on the use of resumptions inserted in the code. As
we have seen in Sect. 4, this approach makes it easy to embed the resulting
typing discipline in a host programming language and to take advantage of
its type inference engine. Overall, we think that our approach strikes a good
balance between expressiveness and flexibility: resumptions are unobtrusive and
typically sparse, their location is easy to spot in the code, and they give the
programmer complete control over the occurrences of sequential compositions in
session types, resolving the ambiguities that arise with context-free session type
inference (Sects. 1 and 4.4).

A potential limitation of our approach compared to [25] is that we require
processes operating on peer endpoints of a session to mirror each other as far
as the placement of resumptions is concerned. For example, a process using
an endpoint with type (!int;1);?bool may interact with another process that

828 L. Padovani

uses an endpoint with type (?int;1);!bool, but not with a process using an
endpoint with type ?int;!bool even though (?int;1);!bool ∼ ?int;!bool.
Both processes must resume the endpoints they use after the exchange of the
first message. Understanding the practical impact of this limitation requires
an extensive analysis of code that deals with context-free protocols. We have
not pursued such investigation, but we can make two observations nonetheless.
First, resumptions are often used in combination with recursion and interacting
recursive processes already tend to mirror each other by their own recursive
nature. We can see this by comparing send tree and receive tree (Sect. 4.4)
and also by looking at the examples in [25]. Second, it is easy to provide explicit
coercions corresponding to laws of ∼. Such coercions, whose soundness is already
accounted for by Theorem 1, can be used to rearrange sequential compositions
in session types. For example, a coercion (A;1);B → A;B composed with a
function ?int;!bool → α would turn it into a function (?int;1);!bool → α.
The use of coercions augments the direct involvement of the programmer, but is
a low-cost solution to broaden the cases already addressed by plain resumptions.

FuSe [21] is an OCaml implementation of binary sessions that combines sta-
tic protocol enforcement with runtime checks for endpoint linearity [11,27] and
resumption safety (Sect. 4.2). Support for sequential composition of session types
based on resumptions was originally introduced in FuSe to describe iterative pro-
tocols, showing that a class of unbounded protocols could be described without
resorting to (equi-)recursive types. The work of Thiemann and Vasconcelos [25]
prompted us to formalize resumptions and to study their implications to the
precision of protocol descriptions. This led to the discovery of a bug in early
versions of FuSe where peer endpoints were given the same identity (cf. the dis-
cussion at the end of Example 3) and then to the development of a fully static
typing discipline to enforce resumption safety (Sects. 3 and 4.3).

The use of type variables abstracting over the identity of endpoints has been
inspired by works on regions and linear types [2,30], by L3 [1], a language with
locations supporting strong updates, and Alms [26,28], an experimental general-
purpose programming language with affine types. In these works, abstract iden-
tities are used to associate an object with the region it belongs to [2,30], or to
link the (non-linear) reference to a mutable object with the (linear or affine)
capability for accessing it. Interestingly, in these works separating the reference
from the capability (hence the use of abstract identities) is not really a neces-
sity, but rather a technique that results in increased flexibility: the reference can
be aliased without restrictions to create cyclic graphs [1] or to support “dirty”
operations on shared data structures [28]. In our case, endpoint identities are
crucial for checking the safety of resumptions. As one of the anonymous review-
ers pointed out, the technique of using type variables abstracting over regions
can be traced back to the implementation of stateful computations in Haskell
[16], which was further elaborated and proven safe in [18].

Acknowledgments. The author is grateful to the anonymous ESOP reviewers for
their detailed and valuable feedback and to Hernán Melgratti for reading and com-
menting on an early draft of the paper.

Context-Free Session Type Inference 829

References

1. Ahmed, A., Fluet, M., Morrisett, G.: L3: a linear language with locations. Fundam.
Informaticae 77(4), 397–449 (2007)

2. Charguéraud, A., Pottier, F.: Functional translation of a calculus of capabilities.
In: Proceedings of ICFP 2008, pp. 213–224. ACM (2008)

3. Courcelle, B.: Fundamental properties of infinite trees. Theor. Comput. Sci. 25,
95–169 (1983)

4. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings
of PPDP 2012, pp. 139–150. ACM (2012)

5. Demangeon, R., Honda, K.: Full abstraction in a subtyped pi-calculus with linear
types. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
280–296. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6 19

6. Florijn, G.: Object protocols as functional parsers. In: Tokoro, M., Pareschi, R.
(eds.) ECOOP 1995. LNCS, vol. 952, pp. 351–373. Springer, Heidelberg (1995).
doi:10.1007/3-540-49538-X 17

7. Frisch, A., Garrigue, J.: First-class modules and composable signatures in Objec-
tive Caml 3.12. In: ACM SIGPLAN Workshop on ML (2010)

8. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.
Funct. Program. 20(1), 19–50 (2010)

9. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). doi:10.1007/3-540-57208-2 35

10. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/
BFb0053567

11. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 24

12. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.-
M., Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro,
G.: Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3 (2016)

13. Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: Type reconstruction in the presence of
polymorphic recursion. ACM Trans. Program. Lang. Syst. 15(2), 290–311 (1993)

14. Kobayashi, N.: Type systems for concurrent programs. In: Aich-
ernig, B.K., Maibaum, T. (eds.) Formal Methods at the Crossroads.
From Panacea to Foundational Support. LNCS, vol. 2757, pp. 439–
453. Springer, Heidelberg (2003). doi:10.1007/978-3-540-40007-3 26.
http://www.kb.ecei.tohoku.ac.jp/koba/papers/tutorial-type-extended.pdf

15. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Trans. Program. Lang. Syst. 21(5), 914–947 (1999)

16. Launchbury, J., Jones, S.L.P.: State in Haskell. Lisp Symbolic Comput. 8(4), 293–
341 (1995)

17. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Trans.
Program. Lang. Syst. 10(3), 470–502 (1988)

18. Moggi, E., Sabry, A.: Monadic encapsulation of effects: a revised approach
(extended version). J. Funct. Program. 11(6), 591–627 (2001)

19. Nierstrasz, O.: Regular types for active objects. In: Proceedings of OOPSLA 1993,
pp. 1–15. ACM (1993)

http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://dx.doi.org/10.1007/3-540-49538-X_17
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-540-40007-3_26
http://www.kb.ecei.tohoku.ac.jp/koba/papers/tutorial-type-extended.pdf

830 L. Padovani

20. Padovani, L.: Context-free session type inference. Technical report, Università di
Torino (2016). https://hal.archives-ouvertes.fr/hal-01385258/document. Accessed
04 Jan 2017

21. Padovani, L.: A simple library implementation of binary sessions. J. Funct. Pro-
gram. 27 (2017). https://doi.org/10.1017/S0956796816000289

22. Ravara, A., Vasconcelos, V.T.: Typing non-uniform concurrent objects. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 474–489. Springer,
Heidelberg (2000). doi:10.1007/3-540-44618-4 34

23. Reppy, J.H.: Concurrent Programming in ML. Cambridge University Press, Cam-
bridge (1999)

24. Südholt, M.: A model of components with non-regular protocols. In: Gschwind, T.,
Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS, vol. 3628, pp. 99–113. Springer,
Heidelberg (2005). doi:10.1007/11550679 8

25. Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: Proceedings of
ICFP 2016, pp. 462–475. ACM (2016)

26. Tov, J.A.: Practical programming with substructural types. Ph.D. thesis, North-
eastern University (2012)

27. Tov, J.A., Pucella, R.: Stateful contracts for affine types. In: Gordon, A.D. (ed.)
ESOP 2010. LNCS, vol. 6012, pp. 550–569. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-11957-6 29

28. Tov, J.A., Pucella, R.: Practical affine types. In: Proceedings of POPL 2011, pp.
447–458. ACM (2011)

29. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)
30. Walker, D., Watkins, K.: On regions and linear types. In: Proceedings of ICFP

2001, pp. 181–192. ACM (2001)
31. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.

115(1), 38–94 (1994)
32. Yallop, J., Kiselyov, O.: First-class modules: hidden power and tantalizing

promises. In: ACM SIGPLAN Workshop on ML (2010)

https://hal.archives-ouvertes.fr/hal-01385258/document
https://doi.org/10.1017/S0956796816000289
http://dx.doi.org/10.1007/3-540-44618-4_34
http://dx.doi.org/10.1007/11550679_8
http://dx.doi.org/10.1007/978-3-642-11957-6_29
http://dx.doi.org/10.1007/978-3-642-11957-6_29

Modular Verification of Higher-Order
Functional Programs

Ryosuke Sato(B) and Naoki Kobayashi

The University of Tokyo, Tokyo, Japan
{ryosuke,koba}@kb.is.s.u-tokyo.ac.jp

Abstract. Fully automated verification methods for higher-order func-
tional programs have recently been proposed based on higher-order
model checking and/or refinement type inference. Most of those meth-
ods are, however, whole program analyses, suffering from the scalabil-
ity problem. To address the problem, we propose a modular method
for fully automated verification of higher-order programs. Our method
takes a program consisting of multiple top-level functions as an input,
and repeatedly applies procedures for (i) guessing refinement intersec-
tion types of each function in a counterexample-guided manner, and (ii)
checking that each function indeed has the guessed refinement intersec-
tion types, until the whole program is proved/disproved to be safe. To
avoid the whole program analysis, we introduce the notion of modular
counterexamples, and utilize them in (i), and employ Sato et al.’s tech-
nique of reducing refinement type checking to assertion checking in (ii).
We have implemented the proposed method as an extension to MoCHi,
and confirmed its effectiveness through experiments.

1 Introduction

Thanks to the recent advance in higher-order model checking and refinement
type inference, various methods and tools for automated verification of functional
programs have been proposed recently [9,12,15,20,21]. For example, MoCHi [9,
18], a software model checker for functional programs, statically checks whether a
given program may fail due to run-time errors such as assertion failures, uncaught
exceptions, and pattern match failures, in a fully automatic manner. It outputs
refinement (intersection) types as certificates of the safety if the program does
not fail, and outputs a concrete execution path that causes a run-time error
otherwise. Most of the fully automated verification methods proposed so far are
whole program analyses, suffering from the scalability problem. (On the other
hand, semi-automated methods that rely on users’ annotations on invariants
usually work in a compositional manner [6,11,16,19,28].)

To address the scalability problem, we propose a modular verification method
for higher-order functional programs, which utilizes an existing software model
checker for functional programs as a backend. An input for the verification
method is a pair consisting of (i) a program P of the form:

let rec f1 x̃1 = t1 in · · · let rec fn x̃n = tn in fn

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 831–854, 2017.
DOI: 10.1007/978-3-662-54434-1 31

832 R. Sato and N. Kobayashi

(which is abbreviated as 〈f1 x̃ = t1, . . . , fn x̃ = tn〉) and (ii) a refinement type
specification τ . Here, f1, . . . , fi may occur in ti.1 Each function definition fi x̃i =
ti, which may contain local function definitions, is treated as a “module”, i.e.,
the unit of verification in our modular verification method. The goal is to check
whether |= P : τ , i.e., whether P has (semantically) type τ (which entails that
P does not fail; for example, P has type int → int only if, for every integer n,
P n does not fail, and either returns an integer or diverges).

Our method infers refinement types of each function by using the following
two components:

– typeSynthesizer, which generates a candidate refinement type environment
f1 : σ1, . . . , fn : σn (which maps each fi to the set σi of types) such that

τ ∈ σn from the type checking problem
?

|= 〈f1 x̃1 = t1, . . . , fn x̃n = tn〉 : τ and
modular counterexamples (which will be explained later).

– typeChecker, which checks whether

f1 : σ1, . . . , fk−1 : σk−1 |= fix(fk, λx̃k. tk) : τk

holds (where fix(fk, λx̃k. tk) denotes the recursive function defined by fk x̃k =
tk), given a refinement type environment f1 : σ1, . . . , fk−1 : σk−1, a candidate
τk of refinement type of fk, and a function definition fk x̃k = tk for some
k ∈ {1, . . . , n}, and outputs a modular counterexample if f1 : σ1, . . . , fk−1 :
σk−1 |= fix(fk, λx̃k. tk) : τk does not hold

Figure 1 describes the overall procedure of our method, utilizing the two
components mentioned above. Given a program P and a refinement type speci-
fication τ , the main function first sets (i) the type environment Γ (which keeps
the set of types that have already been proved to be valid) to the empty type
environment (line 2), (ii) the candidate type environment Γcand to one contain-
ing only fn : {τ} (line 3), and (iii) the set of (modular) counterexamples to the
empty set (line 4). The main function then calls validateTE (line 5). Given the
current type environment Γ and the current candidate type environment Γcand,
the function validateTE checks whether each τ ′ ∈ Γ (fi) is a valid type for fi

for each i ∈ {1, . . . , n}, by repeatedly calling typeChecker (line 10). Here, P (fi)
denotes fix(fi, λx̃i. ti), the function defined by fi x̃i = ti. If τ ′ is a valid type,
then it is added to the set Γ (fi) of valid types of fi (line 11); otherwise the
counterexample returned by typeChecker is added to Π (line 12). If the type
τ of the whole program has been proved correct, then the verification succeeds
(line 13). Otherwise, typeSynthesizer is called to obtain a refined candidate
type environment (line 15), and validateTE is called again (line 16). If there is
no way to refine the candidate, we can conclude that the program is untypable,
i.e., does not meet the specification (line 17).

1 Mutual recursion can be realized by passing fi+1, . . . , fn as arguments of fi. For
example, let rec f1 x = C1[f1, f2] and f2 x = C2[f1, f2] in f2 can be expressed as
let rec f1 f2 x = C1[f1 f2, f2] in let rec f ′

2 x = C2[f1 f ′
2, f

′
2] in f ′

2.

Modular Verification of Higher-Order Functional Programs 833

Fig. 1. The overall procedure

Our verification method is modular in that the (semantic) typability of each
function definition is checked separately by using typeChecker. The component
typeSynthesizer takes the whole program as an input, but as we describe later,
it looks at only part of the program that is relevant to the set Π of modular
counterexamples found so far. Thus, our new method is expected to scale to
larger programs than the previous whole program analysis approach [9,18], as
confirmed by experiments.

The description above explains how to verify a single whole program in
a modular manner. There is a further benefit when our modular verification
method is applied to verification of multiple programs that share the same
library. Suppose we have a library function f x = t1 and two client functions
g y = t2 and h z = t3, whose refinement type specifications are τ2 and τ3. In that

case, we run the procedure in Fig. 1 first for
?

|= 〈f x = t1, g y = t2〉 : τ2. If the
verification is successful, we obtain a witness type environment f : σ1, g : σ2.
The information that f has types σ1 can then be used in the verification of the
other client program. For that purpose, when the procedure in Fig. 1 is called

for the query
?

|= 〈f x = t1, h z = t3〉 : τ3, we just need to set Γ (f) to σ1 (instead
of ∅) on the second line. If the type information f : σ1 is sufficient, then the
verification of h will succeed without re-analyzing the definition of f . Otherwise,
additional types for f may be inferred by reanalyzing the definition of f , and
can later be used for analyzing other client programs.

The rest of this paper is structured as follows. Section 2 introduces the tar-
get language of our verification method. Section 3 overviews our method through
an example. Section 4 describes the two components. Section 5 reports an imple-
mentation and experimental results. Section 6 discusses related work, and Sect. 7
concludes the paper.

834 R. Sato and N. Kobayashi

2 Language

In this section, we introduce the target language of our verification method.

2.1 Syntax and Semantics

The target of our method is a simply-typed, call-by-value, higher-order functional
language with recursion. Its syntax is summarized in Fig. 2.

Fig. 2. Syntax

We use the meta-variables x, y, z, f , g, . . . for variables. We write ·̃ for a
sequence; for example, x̃ stands for a sequence of variables. For the sake of sim-
plicity, we consider only integers as base type values. We represent Booleans using
integers, and sometimes write true for 1 and false for 0. The meta-variables n
and op range over the sets of integers, and primitive operations on integers,
respectively.

A program P is a sequence of recursive function definitions 〈f1 x̃1 = t1, . . . ,
fn x̃n = tn〉. Here, we require that x̃i may not be an empty sequence and fi

may occur only in ti, . . . , tn. When P = 〈f1 x̃1 = t1, . . . , fn x̃n = tn〉, we write
dom(P) for {f1, . . . , fn}, and P (fi) for fix(fi, λx̃i. ti).

The term ∗int evaluates to some integer in a non-deterministic manner. We
write ∗bool for ∗int ≥ 0, which represents a non-deterministic Boolean. The term
op(t1, . . . , tk) applies the operation op to the values of t1, . . . , tk. We sometimes
use the infix notation for a binary operation and write x op y for op(x, y). The
term fix(f, λx. t) denotes the recursive function defined by f x = t.2 We write
λx. t for fix(f, λx. t) if f does not occur in t. The term t1 t2 applies t1 to t2. We
write let x = t1 in t2 for (λx. t2) t1, and also write t1; t2 if x does not occur in t2.
The conditional expression if � t1 then t2 else t3 evaluates t2 if the value of t1 is
non-zero and t3 otherwise; � is a label used only during verification. We assume
that a unique label is assigned to each conditional expression. We omit labels
when they are not important. The term fail aborts the execution. We write
assert�(t) for if � t then 1 else fail, which aborts the program if the value of t
is false (i.e., 0). We also write assume� (t) for if � t then 1 else fix(f, λx. f x) 0.

2 Thus, whether a recursive function is introduced by a top-level function definition
or by fix(f, λx. t) does not matter for an execution of a program; it matters only for
the modular verification method, which treats each top-level function definition as
the unit of modular verification.

Modular Verification of Higher-Order Functional Programs 835

We consider only programs that are well-typed in the standard simple type
system; the typing rules are omitted. We write K 	ST t : κ if t has simple type
κ under simple type environment K.

Fig. 3. Operational semantics of the language

The (small-step) operational semantics of the language is defined in Fig. 3. In
the figure, [[op]] is the semantic integer function denoted by op. We write −→∗

P

for the reflexive and transitive closure of −→P . We omit the subscript P when
it is clear from the context.

2.2 Refinement Intersection Types

We use refinement intersection types for describing properties of programs or
terms. The syntax of (refinement intersection) types is defined by:

τ (refinement types) ::= {x : int | φ} | (x : σ) → τ

σ (intersection types) ::= {τ1, . . . , τk}κ

φ (refinement predicates) ::= n | x | op(φ1, φ2).

The refinement type {x : int | φ} denotes the set of integers x that satisfy
the refinement predicate φ. For example, {x : int | x ≥ 0} is the type of non-
negative integers. We often abbreviate {x : int | true} to int. The intersection
type {τ1, . . . , τk}κ describes values that have type τi whose simple type is κ for
every i ∈ {1, . . . , k}. We often omit the subscript κ when they are not important,
and treat {τ1, . . . , τk}κ as a set of refinement types. The type (x : σ)→τ denotes

836 R. Sato and N. Kobayashi

the set of functions that take an argument v of (intersection) type σ and return
a value of type [v/x]τ . For example, (x : {y : int | true}) → {r : int | r ≥ x} is
the type of functions that take any integer as an argument and return an integer
no less than the argument. In (x : σ)→ τ , we allow x to occur in τ only if σ is of
the form {y : int | φ}. In other words, we do not allow dependencies on function
variables. We write σ → τ for (x : σ) → τ if x does not occur in τ .

We say that τ is a refinement of a simple type κ if τ :: κ is derivable from
the following rules:

{x : int | φ} :: int
σ :: κ1 τ :: κ2

((x : σ) → τ) :: (κ1 → κ2)
τi :: κ for each i ∈ {1, . . . , n}

{τ1, . . . , τn}κ :: κ

Henceforth, we consider only refinement types and intersection types that are
refinements of some simple types. For such a refinement type τ (an intersection
type σ, resp.), the simple type κ such that τ :: κ (σ :: κ, resp.) is uniquely
determined. We write ST (τ) (ST (σ), resp.) for it. We also write ST (Γ) for
f1 : ST (σ1), . . . , fk : ST (σk) when Γ = f1 : σ1, . . . , fk : σk.

Fig. 4. Semantics of types

The semantics of types is defined in Fig. 4 using logical relations. The relation
|=P

v v : τ means that the value v has type τ , and |=P t : τ means that
reduction of the closed (where the top-level functions f1, . . . , fn are considered
bound variables) term t never fails, and that every value v (if there is any) of
t has type τ . The relation Γ |=P t : τ (where Γ is a type environment of the
form f1 : σ1, . . . , fn : σn) means that for any values v1, . . . , vn that have types
σ1, . . . , σn, [v1/f1, . . . , vn/fn]t have type τ . We often omit the superscript P
when it is clear from the context.

For a program P = 〈f1 x̃1 = t1, . . . , fn x̃n = tn〉 and a type τ as a specifi-
cation, we write |= P : τ if there exists Γ = f1 : σ1, . . . , fn−1 : σn−1 such that
Γ |= P (fn) : τ and Γ |= P (fi) : τij for each i ∈ {1, . . . , n − 1} and τij ∈ σi. We

Modular Verification of Higher-Order Functional Programs 837

call such Γ a witness for |= P : τ . The goal of our verification is to check whether
|= P : τ holds for a given program P and a refinement type specification τ .

2.3 Examples

In this section, we introduce two examples. Using the first example, we will
explain how our method works in Sect. 3.

Example 1. Consider the following program Psum:

〈 add x y = if �1 y ≤ 0 then x else 1 + (add x (y − 1)),
sum x = if �2 x ≤ 0 then 0 else add x (sum (x − 1)),
main n = assert�3(0 ≤ sum n) 〉.

The function main takes an integer n as an argument, computes the sum of
integers up to n, and asserts that the sum is no less than 0. The relation |=
Psum : int → int means that main n never fails for any integer n. It is witnessed
by the following type environment Γsum:

add : {{x : int | x ≥ 0} → int → {r : int | r ≥ 0}} ,
sum : {int → {r : int | r ≥ 0}} ,
main : {int → int} .

��
Example 2. Consider the following program Ptwice:

〈 mult x y = if �1 y = 0 then 0

else if �2 y < 0 then −x + mult x (y + 1)
else x + mult x (y − 1),

twice f x = f (f x),

main n = if �3 n < 0 then assert�4(twice (mult n) 1 > 0) else 0 〉.
The function main takes an integer n as an argument. If n is negative, then it
computes the square of n, and asserts that the square is greater than 0. The
relation |= Ptwice : int → int is witnessed by the following type environment
Γtwice:

mult : {neg → neg → pos, neg → pos → neg} ,

twice : {{neg → pos, pos → neg} → pos → pos} ,

main : {int → int} .

Here, pos and neg are the types of positive and negative integers, which are
defined as {n : int | n > 0} and {n : int | n < 0}, respectively. Note here that
intersection types are required to make the analysis context-sensitive; in the
argument type of twice, neg → pos and pos → neg represent the types of the
first and second occurrences of f in the body of twice, respectively. ��

838 R. Sato and N. Kobayashi

3 An Overview of the Method Through an Example

We explain how our method works using the program Psum in Example 1. Suppose
we wish to verify that |= Psum : int → int.

On lines 2–4 of the overall procedure in Fig. 1, Γ (a type environment that
records the types that have been proved valid), Γcand (a candidate type environ-
ment), and Π (a set of modular counterexamples) are initialized as follows:

Γ = add : ∅, sum : ∅, main : ∅
Γcand = add : ∅, sum : ∅, main : {int → int}

Π = ∅
The main procedure then calls validateTE, to check the validity of the type

of main, i.e., whether Γ |= λn.assert(0 ≤ sum n) : int → int, by invoking
typeChecker. To check Γ |= t : τ in general, typeChecker uses the technique of
Sato et al. [17]: we prepare a context CΓ,τ that is most general in the sense that
CΓ,τ [t] fails if and only if Γ |= t : τ , and uses a software model checker [9,18] to
check whether CΓ,τ [t] fails. In the case of Γ |= λn.assert(0 ≤ sum n) : int → int,
the context CΓ,int→int is:

let add = λx.λy.fail in let sum = λx.fail in [] ∗int .

An important point to notice here is that instead of using the original definitions
of add and sum, functions synthesized from their types are used. This enables
modular verification of each top-level function. In the present case, since Γ (sum)
is empty, the weakest term (in the sense that it is most likely to fail) is chosen
as the code of sum. A model checker can output the following error path (i.e., a
reduction sequence that leads to fail):3

CΓ,int→int[λn.assert(0 ≤ sum n)]
−→P let add = · · · in let sum = · · · in (λn.assert(0 ≤ sum n))m
−→P let add = · · · in let sum = · · · in assert(0 ≤ sum m)
−→P let add = · · · in let sum = · · · in assert(0 ≤ (λx.fail)m)
−→P let add = · · · in let sum = · · · in assert(0 ≤ fail)

as a counterexample (where m is some integer). Thus, typeChecker can conclude
that Γ |= λn.assert(0 ≤ sum n) : int → int does not hold. The counterexample
is useful for refining the candidate type environment, but since it is redundant
(it contains information about how the part CΓ,int→int is reduced, which is irrel-
evant to the original program), we keep only information about which branches
have been taken inside the term being checked. In the present case, since no
branch has been taken, typeChecker returns (main, ε) (which means that main
may fail before encountering any conditional branch) as a modular counterex-
ample. Since the only candidate type main : int → int has been rejected, Γ
remains to be empty: add : ∅, sum : ∅, main : ∅.
3 Here, for the readability of the reduction sequence, we treat let-expressions as prim-

itives and extend the evaluation contexts with E:: = · · · | let x = v in E.

Modular Verification of Higher-Order Functional Programs 839

Now, typeSynthesizer is called to construct a new candidate type envi-
ronment (line 15), using the modular counterexamples collected so far. The
component typeSynthesizer prepares a kind of program slice4 of the origi-
nal program, which covers all the modular counterexamples. Since (main, ε) is
the only counterexample found so far, the following program slice is prepared.

〈 add x y = assume (false) ,
sum x = assume (false) ,
main n = let = 0 ≤ sum n in assume (false) 〉.

The program above contains only the part of the original program that runs the
main function up to the first branch; the rest of the code has been replaced by
the dummy code assume (false), which just diverges and never fails. We then
apply to the above program slice the technique of refinement intersection type
inference [21], which is complete for recursion-free programs (modulo a certain
assumption on the underlying logic). For the above program, we may obtain the
following candidate type environment (note that the type of sum has changed):

add : ∅, sum : {int → int} , main : {int → int} .

We then recheck whether the new candidate types are valid (line 16). This
time, typeChecker would fail for sum; it tries to prove that C[fix(sum, λx. · · ·)]
does not fail for

C ≡ let add = λx.λy.fail in [] ∗int,
but finds that the term actually fails when add is called. The new modular coun-
terexample (sum, (�2, else)) (which means that the else-branch has been taken at
�2) is then added. Since Γ has not changed, the type checking for main also fails
again, and typeSynthesizer is called with Π = {(sum, (�2, else)), (main, ε)}.

Suppose that the candidate type environment has been further updated, for
example, to:

add : {int → int → int} , sum : {int → int} , main : {int → int} .

This time, typeChecker succeeds for add and sum, and add : {int → int → int},
sum : {int → int} are added to Γ . The type check for main fails,
however. To check the type of main, typeChecker tries to prove that
C ′[λn.assert(0 ≤ sum n)] does not fail for

C ′ = let add = · · · in let sum = λx.∗int in [] ∗int,

but the term actually fails when sum = λx.∗int returns a negative integer. From
the error reduction sequence, the new modular counterexample (main, (�3, else))
is extracted and added to Π. (Recall that assert�(b) is treated as a shorthand
form of if � b then 1 else fail; thus, the else-branch is taken at �3 in the error

4 It is actually an extension of straightline programs [9], and deviates from the stan-
dard notion of program slices; see Sect. 4.

840 R. Sato and N. Kobayashi

reduction sequence.) The component typeSynthesizer then discovers that the
return type of sum should be {r : int | r ≥ 0}.

By repeating these steps, we may end up with the following set of modular
counterexamples (we only keep those that are maximal with respect to the prefix
relation):

{(add, (�1, then)), (add, (�1, else)(�1, then)),
(sum, (�2, else)(�2, then)), (main, (�3, else))}.

The element (sum, (�2, else)(�2, then)) means that, inside the function sum, the
else-branch is taken on the first visit of �2, and then the then-branch is taken
on the next visit. The component typeSynthesizer constructs the following
program slice:

〈 add′ x y = if y ≤ 0 then x else assume (false),
add x y = if y ≤ 0 then x else 1 + (add′ x (y − 1)),
sum′ x = if x ≤ 0 then 0 else assume (false),
sum x = if x ≤ 0 then assume (false) else add x (sum′ (x − 1)),
main n = let b = 0 ≤ sum n in if b then assume (false) else fail 〉.

Here, the functions add and sum have been duplicated (i) to avoid recursion
and (ii) to exclude out the part irrelevant to the modular counterexamples. The
refinement (intersection) type inference [21,23] is applied to the above program
slice, and the candidate type environment is updated accordingly to:

add : {{x : int | x ≥ 0} → int → {r : int | r ≥ 0}} ,
sum : {int → {r : int | r ≥ 0}} , main : {int → int} .

The component typeChecker can now successfully verify that all the above types
are valid, and add them to Γ . Since Γ now contains int → int as a type of main,
the verification succeeds (on line 13 of Fig. 1). The final type environment that
has been proved valid is:

add : {int → int → int, {x : int | x ≥ 0} → int → {r : int | r ≥ 0}} ,
sum : {int → int, int → {r : int | r ≥ 0}} ,
main : {int → int} .

The example above is oversimplified in that neither higher-order functions
nor local function definitions occur, and that intersection types are not used. We
present our method more formally in the next section.

4 Verification Method

This section describes our verification method in detail. As mentioned in Sect. 1,
our method consists of the two components typeChecker and typeSynthesizer,
which are described in Sects. 4.1 and 4.2, respectively.

Modular Verification of Higher-Order Functional Programs 841

4.1 typeChecker: Checking type candidate

The method typeChecker verifies whether

f1 : σ1, . . . , fk−1 : σk−1 |= fix(fk, λx̃k. tk) : τk

holds for each k ∈ {1, . . . , n}, given the program 〈f1 x̃1 = t1, . . . , fn x̃n = tn〉, the
current type environment f1 : σ1, . . . , fn : σn, and the current refinement type
candidate τn of fn.

We reduce a type judgment Γ
?

|= t : τ to a safety checking problem by using
an extension of Sato et al.’s method [17]. For example, the type checking problem

f : ({x : int | x > 0} → {r : int | r ≥ x})
?

|=
t : {y : int | y �= 0} → {s : int | s > y}

is reduced to the safety checking problem for the following program:

letf = λx. if x > 0 then let r = ∗int in assume (r ≥ x); r

else fail in

let y = let y′ = ∗int in assume (y′ �= 0); y′ in
let s = t y in assert(s > y)

Here, the bodies of f and y are “universal” terms of types {x : int | x > 0} →
{r : int | r ≥ x} and {y : int | y �= 0}, respectively. A universal term t of type τ
can simulate all the values of type τ , in the sense that, for any context C, term
t′ of type τ , and integer n, C[t′] −→∗ n implies C[t] −→∗ n, and C[t′] −→∗ fail
implies C[t] −→∗ fail.

As seen above, by using universal terms, we can reduce a type judgment
problem to a safety problem. In general, there exists a most general context
CΓ,τ with respect to a type environment Γ and a refinement type τ such that

CΓ,τ [t] �−→∗ fail if and only if Γ |= t : τ

for any t such that ST (Γ) 	ST t : ST (τ). Hence, we can check Γ |= t : τ
by checking the safety of term CΓ,τ [t]. If the term is safe, then t has type
τ , and otherwise, t does not have type τ for some f1, . . . , fn that have types
Γ (f1), . . . , Γ (fn), respectively.

Note that, even if the term CΓ,τ [t] is unsafe, we cannot conclude that t
does not have type τ in the original program P . The unsafety of CΓ,τ [t] just
indicates the untypability of t under the given type environment Γ , i.e., the type
environment is too weak to prove the typability of t.

Sato et al. [17] formalized the construction of CΓ,τ for refinement types with-
out intersection types. Below we extend their method to deal with refinement
intersection types. We define the most general context CΓ,τ with respect to Γ
and τ by using universal terms. The universal term synthesizer α∧ (−) is defined
in Fig. 5. The function α∧ (σ) (α (τ), resp.) synthesizes a universal term of type σ

842 R. Sato and N. Kobayashi

Fig. 5. Synthesis of universal terms

(τ , resp.). The function β∧ (v : σ) (β (v : τ), resp.) checks whether v has type σ
(τ , resp.). If β∧ (v : σ) returns false or aborts with fail, then v does not have type
σ. In the case of an intersection of function types, we use exceptions and treat
fail as an exception, which can be removed by CPS transformation. The function
wrap(τ, v), intuitively, forces v to have type τ by inserting assume expressions
into v. For integer types, wrap({x : int | P}, v) just assumes [v/x]P and returns
v. For functions types, wrap((x : σ) → τ , v) returns a new function that is an
eta-expansion of v and in which assume expressions are inserted. In the body of
the new function, if the then-branch is taken (which indicates that the argument
x may have type σ), the return value must have type τ . If f x is evaluated to
some value r, then the new function returns wrap(τ, r), which is forced to have
type τ . If the evaluation of f x fails, then the new function returns the universal
term of τ . If the else-branch is taken (which indicates that the argument x does
not have type σ), since the return value of the new function need not have type
τ , wrap((x : σ) → τ , v) returns the original result f x. Note that we can remove
“∗bool ∨ ” in the definitions of α ((x : σ) → τ) and wrap((x : σ) → τ , v), if we
know that β∧ (x : σ) terminates. Especially, we can remove “∗bool ∨ ” when σ is
an integer type like the example above.

By using α∧ (−) and β (− : −), the most general context CΓ,τ can be defined
as follows:

C(f1:σ1,...,fn:σn),τ = let f1 = α∧ (σ1) in . . . let fn = α∧ (σn) in

let f = [] in assert(β (f : τ))

Modular Verification of Higher-Order Functional Programs 843

The following lemma states the correctness of the construction of CΓ,τ , which
can be proved in a manner similar to the original construction of Sato et al. [17]
for refinement types without intersections.

Lemma 1. Suppose ST (Γ) 	ST t : ST (τ).

Γ |=P t : τ if and only if CΓ,τ [t] �−→∗
P fail.

The reduced problem can be checked by an existing safety checker (e.g.,
MoCHi [9,18]) that satisfies the following properties:

– It can check the safety of a given program t, i.e., whether t �−→∗
P fail.

– It can generate a counterexample, i.e., a concrete reduction sequence of the
form t −→∗

P fail, given an unsafe program.

We use counterexamples obtained by the checker to find type candidates of
top-level functions. Instead of using the counterexamples themselves, we use their
subsequence related to the target function. We call them modular counterexam-
ples. A modular counterexample π of top-level function f is a sequence of pairs
of labels and branching information {then, else}, i.e., π : (L × {then, else})∗

where L is the set of labels.
A modular counterexample of f is obtained from an ordinary counterexample

π as follows. We write L(t) for the set of the labels occurred in t, and write Lf

for L(t) where (f x̃ = t) ∈ P . Suppose the given counterexample π is of the
following form

CΓ,τ [t] −→∗ E1[if �1 v1 then t12 else t13]

−→∗ E2[if �2 v2 then t22 else t23]
...

−→∗ En[if �n vn then tn2 else tn3]
−→∗ fail.

Then, a modular counterexample of function f is

(�j1 , bj1) . . . (�jk , bjk) where 1 ≤ j1 < · · · < jk ≤ n,

{j1, . . . , jk} = {j | �j ∈ Lf} , and

bj =

{
then vj �= 0
else vj = 0

for each j ∈ {j1, . . . , jk}.

Example 3. Recall the program Psum in Example 1. Suppose that τ = int →
{r : int | r = 0} is given as a type candidate of sum and the following type envi-
ronment is given:

Γ = add : {int → int → int} .

Then, the most general context CΓ,τ is

CΓ,τ = let add = λx. λy. ∗int in

let x = ∗int in let r = [] x in assert(r = 0).

844 R. Sato and N. Kobayashi

Since sum does not have type τ under the type environment, we have the following
counterexample for some m �= 0:

CΓ,τ [tsum]
−→∗ let r = t′sum 1 in assert(r = 0)

−→∗ let r = if �2 1 ≤ 0 then 0 else tadd 1 (t′sum (1 − 1)) in assert(r = 0)

−→∗ let r = tadd 1 (if �2 0 ≤ 0 then 0 else . . .) in assert(r = 0)
−→∗ let r = tadd 1 0 in assert(r = 0)
−→∗ let r = m in assert(r = 0)
−→∗ fail

where

tsum = P (sum) = fix(sum, λx. if �2 x ≤ 0 then 0 else add x (sum (x − 1)))
t′sum = [tadd/add]tsum
tadd = λx. λy. ∗int .

There are two branches labeled with �2, which occurs in the body of sum. The
else-branch is taken on the first visit of �2, and the then-branch is taken on the
next visit. We then obtain the following modular counterexample:

(sum, (�2, else)(�2, then)).

��

4.2 typeSynthesizer: Synthesizing new refinement types

The function typeSynthesizer finds type candidates by using the modular
counterexamples found so far. It first generates a program slice of the origi-
nal program corresponding to modular counterexamples, and infers a refinement
type of the program slice. The inferred refinement type can be used as a type
candidate of the original program.

Given a set of modular counterexamples

Π ⊆ P (dom(P) × (L × {then, else})∗) ,

we generate a program slice of P (fi) that corresponds to Π, for which we write
DP,Π,fi

. We first construct a computation tree whose path corresponds to a
execution trace that follows the modular counterexamples. The corresponding
program DP,Π,fi

is obtained by (i) making a copy of each function for each call
in the computation tree, and (ii) for each copy, removing the branches not taken
in the corresponding execution trace.

Modular Verification of Higher-Order Functional Programs 845

Example 4. Recall the program Psum in Example 3. Suppose the target function
and the type are main and int→ int, and the following set Π of modular coun-
terexamples is given:

{(add, (�1, then)),
(add, (�1, else)(�1, then)),
(sum, (�2, else)(�2, else)(�2, then)),
(main, (�3, else)) }.

Then the program DPsum,Π,main corresponding to the modular counterexamples is

〈 add1 x y = if y ≤ 0 then x else assume (false),
add′

2 x y = if y ≤ 0 then x else assume (false),
add2 x y = if y ≤ 0 then assume (false) else 1 + add′

2 x (y − 1),
add x y = add1 x y � add2 x y,

sum′′
1 x = if x ≤ 0 then 0 else assume (false),

sum′
1 x = if x ≤ 0 then assume (false) else add x (sum′′

1 (x − 1)),
sum1 x = if x ≤ 0 then assume (false) else add x (sum′

1 (x − 1)),
sum x = sum1 x,

main1 n = if 0 ≤ sum n 0 then assume (false) else fail,

main n = main1 n 〉.
A function corresponding to each modular counterexample is generated: add1

from (add, (�1, then)), add2 from (add, (�1, else)(�1, then)), sum1 from (sum,
(�2, else)(�2, else)(�2, then)), and main1 from (main, (�3, else)). The function
typeSynthesizer then infers a refinement type of C∅,int→int[DPsum,Π,main], and
obtains the following types:

add : {{x : int | x ≥ 0} → int → {r : int | r ≥ 0}} ,

sum : {int → {r : int | r ≥ 0}} .

We use the above types as type candidates of add and sum. ��
If the constructed program is not typable, so is the original program. Then,

the function typeSynthesizer answers “There are no candidates” and our
method returns “no”. In this case, we can obtain an untypable execution trace,
and output the trace as an ordinary counterexample.

The concrete definition of typeSynthesizer is shown in AppendixA. The
construction is similar to that of straightline programs used in MoCHi [9].

The following lemma guarantees that the modular counterexample π is indeed
a counterexample in that a slice of P (fi) containing a path corresponding to π
is indeed (semantically) untypable.

Lemma 2. Let P be a program, and π be a modular counterexample against
Γ |= P (fi) : τi. If π ∈ Π and DP,Π,fi

is the slice of P (fi) corresponding to Π,
then Γ �|= DP,Π,fi

: τi.

846 R. Sato and N. Kobayashi

4.3 Properties of the Method

We now discuss properties of our method. The method is sound (under the
assumption that the underlying verifier is sound), in the sense that, if the method
returns “yes” (“no”, resp.), then the given program has (does not have, resp.)
the given type. This is an easy consequence of the soundness of typeChecker,
i.e., the soundness of the reduction from refinement type checking to assertion
checking.

Our method also satisfies a progress property, in that the set of modular
counterexamples monotonically increases until the method terminates. More pre-
cisely, in the overall procedure in Fig. 1, either Γ or Π strictly increases upon
each recursive call of validateTE. We can prove the progress as follows. Sup-
pose that validateTE is called with a non-empty candidate type environment
Γcand, that Γ does not change in the for-loop, and that τ ∈ Γ (fn) does not
hold on line 13. Let i be the least i such that Γcand(fi) �= ∅, and there exists
τ ′ ∈ Γcand(fi) such that Γ �|= P (fi) : τ ′; note that there always exists such i by
the assumption that τ ∈ Γ (fn) does not hold on line 13. Since Γcand(fi) �= ∅,
typeChecker(Γ, P (fi), τ ′) returns NG(π) for some π. We show π �∈ Π by contra-
diction. Suppose π ∈ Π. By Lemma 2, Γ �|= DP,Π,fi

: τ ′, where DP,Π,fi
is the

slice of P (fi) corresponding to Π. This contradicts τ ′ ∈ Γcand(fi), since in the
previous call of validateTE, Γcand has been constructed from Π (so, τ ′ has been
chosen so that Γ |= DP,Π,fi

: τ ′ holds). Thus, we have π �∈ Π, which implies
that Π strictly increases on line 12.

With a certain assumption on the underlying reachability checker used in
typeChecker, we can also guarantee the completeness for finding a counterex-

ample. Suppose that, for the problem CΓ,τ [P (fi)]
?

−→∗
P fail obtained from a

type checking problem Γ
?

|= P (fi) : τ , if there is a counterexample, the reach-
ability checker returns the one corresponding to the least (with respect to a
certain total order on modular counterexamples) modular counterexample that
does not belong to Π (if there is any). Then, by the progress property, every
counterexample is eventually enumerated, so that a counterexample to the orig-
inal verification problem is eventually found if there is any.

In order to guarantee the relative completeness for verification in the sense
of [24] (i.e., if |= P : τ , then the method is eventually able to prove it, modulo
a certain assumption on the underlying logic), we need to extend the method
to automatically infer implicit parameters (as in [24]) for each function module,
which is left for future work.

5 Experiments

We have implemented an automated verification tool for a subset of OCaml,
based on the proposed method. We use MoCHi [9] as the backend safety checker
used in typeChecker. We have tested our tool for programs taken from the
benchmark for MoCHi and Caml Examples [27]. We have conducted the exper-
iments on a machine with Intel Core i7-3930K (3.20 GHz, 16 GB of memory),

Modular Verification of Higher-Order Functional Programs 847

with timeout of 600 s. All the programs are available on the web http://www-kb.
is.s.u-tokyo.ac.jp/∼ryosuke/modular/.

Table 1 summarizes the experimental results. The column “program” shows
the names of the programs. The column “LOC” shows the number of lines of
code excluding comments and blank lines. The column “#module” shows the
number of modules, i.e., top-level functions. The columns “MoCHi” and “mod-
ular” show the running time in seconds of the original MoCHi and our new
verifier respectively. The column “#typeChecker” shows the number of calls to
typeChecker.

All the benchmark programs are safe except various-e and queen simple-e,
i.e., they are free from assertion failures, pattern matching failures, uncaught
exceptions, and array bound errors. We explain each benchmark program below.
The program sum add is Psum in Example 1. The programs harmonic, fold div,
and risers have been taken from the benchmark of MoCHi [18]. We have
chosen the programs which are no less than 18 lines and have no less than 3
modules. The program various is a composition of small programs taken from
the benchmark of MoCHi, namely sum, mult, and mc91.

The other programs colwheel–doctor have been taken from Caml Exam-
ples [27]. The program colwheel displays a color chart, which uses exceptions
and variants defined in Graphics module. The program queen solves the eight
queen problem, which uses arrays. We encode arrays as functions, and insert
assertions on array bounds. We insert assertions that the index used in an oper-
ation on array is no less than 0. The program queen simple is a simplified version
of queen, but the assertions on array bounds are more strict than queen. We also
insert assertions that the index used in an operation is less than the size of the

Table 1. Results of experiments

Program LOC #module MoCHi (sec) Modular (sec) #typeChecker

sum add 3 3 0.57 1.64 11

harmonic 18 4 0.88 5.48 17

fold div 19 4 0.86 5.71 18

risers 21 3 8.93 2.66 4

various 23 3 TIMEOUT 0.04 5

colwheel 69 5 TIMEOUT 25.06 7

queen 45 4 5.69 9.70 8

queen simple 20 2 TIMEOUT 14.86 7

soli 93 5 TIMEOUT 17.84 8

spir 75 11 5.06 48.94 21

doctor 568 12 TIMEOUT 543.93 45

various-e 23 3 0.34 2.24 5

queen simple-e 19 2 0.74 4.02 5

http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/modular/
http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/modular/

848 R. Sato and N. Kobayashi

array. The program soli solves a Peg solitaire game, which also uses exceptions,
variants, and arrays. The program spir shows an animation of a colorful spiral,
which uses an array. The program doctor is a chatterbot, which uses exceptions.
A program of name “xxx-e” is a buggy version of the program “xxx”.

As seen in Table 1, our new tool successfully verifies all the benchmark pro-
grams, whereas MoCHi failed to verify various, colwheel, queen simple,
soli, and doctor in 600 s. For the other programs (that MoCHi could also
verify) except risers, our new tool is actually slower than MoCHi. For those
programs, typeChecker was called many times before appropriate refinement
types were discovered. There is an obvious trade-off between the modular and
whole program verification; in reasoning about each function, the latter can use
more precise information about the other functions. We expect that the advan-
tage of the modular verification is clearer for larger programs.

6 Related Work

As mentioned in Sect. 1, most of the fully-automated verification methods for
higher-order functional programs [9,10,13–15,18,26] are whole program analy-
ses. The exceptions are those based on refinement type inference [21,30,31],
which have similarities to our method in that they consist of two components:
one to infer candidate refinement types of functions, and the other to check the
validity of the candidate refinement types; the latter can be carried out in a
compositional manner, based on a refinement type system. Each component is,
however, significantly different from ours. For the first component, Terauchi [21]
applies the technique of refinement type inference [23] to the recursion-free pro-
grams obtained by finitely unfolding recursive functions, whereas Zhu et al. [30]
apply a machine learning technique. Our typeSynthesizer component is closer
to Terauchi’s one [21], but only looks at a part of the program relevant to modu-
lar counterexamples found so far. It would be interesting to integrate Zhu et al.’s
machine learning technique [30,31] into our typeSynthesizer component, which
is left for future work. For the second component, both Terauchi [21] and Zhu
et al. [30] use a specific set of syntactic typing rules for refinement types, which
is not complete with respect to the semantic refinement type judgment. Our
typeChecker component reduces the semantic type judgment to a reachability
checking problem and delegates the latter to a software model checker [9,24], so
that the component is relatively complete in the sense of [24]. As a result, our
modular verification tool is as powerful as MoCHi, and can generate a concrete
error path as a counterexample if a given program does not satisfy a specifi-
cation, unlike Terauchi and Zhu et al.’s methods [21,30]. For the typeChecker
component, we have extended Sato et al.’s technique [17] to deal with inter-
section types. Voirol et al. [26] and Unno et al. [23] reduce the verification of
higher-order programs to the satisfiability checking of quantifier-free formulas
and Horn clauses, respectively, and then use constraint solvers; thus, the scal-
ability of the methods depends on those of the underlying solvers. We are not
aware of a good modular method for checking the satisfiability.

Modular Verification of Higher-Order Functional Programs 849

In contrast with fully-automated verification methods, semi-automated veri-
fication methods for functional programs [6,11,16,28,29] usually work in a com-
positional manner. Those methods, however, rely on annotations of invariants
(or predicates used in invariants [16]). Among them, liquid types [16,25] require
less annotations. Since the liquid types also rely on syntactic refinement typing
rules, the comment above on Zhu et al. and Terauchi’s methods [21,30] applies.

For finite state systems, a lot of techniques have been proposed for composi-
tional verification [1–5,7,8,22]. Some of them infer the interfaces of components
based on lazy parallel composition [3,22] and assume-guarantee reasoning [5,7].
It is not clear how to extend those methods to deal with higher-order functional
programs.

7 Conclusion

We have proposed an automated modular verification method for higher-order
functional programs. We have introduced the notion of modular counterexamples
to infer candidate refinement intersection types of each function module, and
extended Sato et al.’s method [17] to check the validity of the inferred candidate
types in a modular manner. We have implemented the proposed method and
confirmed its effectiveness through experiments.

Further optimizations are required to make our verification tool more scalable
for larger programs. Future work also includes a relatively complete modular
verification method (recall the discussion at the end of Sect. 4.3), and extensions
of the modular method for proving liveness properties.

Acknowledgment. We would like to thank anonymous referees for useful comments.
This work was supported by JSPS KAKENHI Grant Number JP15H05706.

A Definition of typeSynthesizer

This section gives the definition of the component typeSynthesizer. For the
simplicity, we use the intermediate language defined as follows:

D ::=
{
f1 x̃1 = e10 �� e11, . . . , fm x̃m = em0 � em1

}

e ::= a | assume (v) ; e | let x = ∗int in e

a ::= 〈〉 | x ṽ | f ṽ | fail
v ::= c | x ṽ | f ṽ | op(ṽ).

The semantics of the intermediate language is given in Fig. 6. When transforming
the original program, we keep information on the function definition dependen-
cies as relation R ⊆ dom(P) × F where F denote the set of functions (including
local functions). R(f, g) means that f is a top-level function and function g is
defined in the body of f in the original program. We write Ftop for the top-level
function of the original program P , i.e., dom(P). We assume that the translated

850 R. Sato and N. Kobayashi

program contains a distinguished function symbol main ∈ {f1, . . . , fn} whose
simple type is int → int, and main does not use its argument. The transforma-
tion from the target language to the intermediate language can be defined as a
combination of CPS transformation and λ-lifting.

Fig. 6. Operational semantics of the intermediate language

The operational semantics is given by Fig. 7. This semantics is used just for
collecting information on which branch is taken, and which function is called in
each application. The reduction is labeled with

ρ ∈ {ε} ∪ {(br, b) | b ∈ {then, else}} ∪ {(sp, π) | π : (L × {then, else})∗}
for recording which branch has been taken and which modular counterexample
has been used. The label (br, then) ((br, else), resp.) represents that the then-
branch (else-branch, resp.) is taken. The label (sp, π) represents that the modu-
lar counterexample π is used for the top-level function f on the application of f .
The evaluation ignores base values, as assume (v) ; e and let x = ∗int in e are
reduced to e. In the application of top-level function f , the function is duplicated
by the function Spawn(D,R, f, π) with respect to modular counterexample π.
We write (D,B, t)

ρ1...ρn=⇒ R,Π (D′, B′, t′) if

(D,B, t) (ε−→R,Π)∗ ρ1−→R,Π (ε−→R,Π)∗ · · ·
(ε−→R,Π)∗ ρn−→R,Π (ε−→R,Π)∗(D′, B′, t′).

To construct a program corresponding to modular counterexamples, we first
extract the set of sequences of labels, which can be viewed as a set of ordi-
nary counterexamples. We define the set B of sequence of labels from reduction
sequences according to Π by

B =
{

ρ̃
∣
∣
∣ (D, ∅, main 〈〉) ρ̃

=⇒R,Π (D′, B′, t′) for some D′, B′, and t′
}

.

We then construct a program from B by using function Construct(−,−),
which is defined in Fig. 8. In the figure, tρ1...ρn

is a term satisfying

(D, ∅, main 〈〉) ρ1...ρn=⇒ R,Π (D′, B′, tρ1...ρn
)

Modular Verification of Higher-Order Functional Programs 851

Fig. 7. Operational semantics of the intermediate language with respect to modular
counterexamples

for some D′ and B′. We assign an index to each element of B, and write I(ρ̃)
for the index of ρ̃. We assume I(ρ̃) ≤ I(ρ̃′) if ρ̃ is a prefix of ρ̃′. We write ρ̃j for
the element of B whose index is j.

Finally, by using the refinement (intersection) type inference [21,23], we infer
a refinement type of the constructed program in the context C∅,τ where τ is the
target type, and return the inferred types as type candidates.

852 R. Sato and N. Kobayashi

Fig. 8. The definition of Construct(D,B)

References

1. Berezin, S., Campos, S., Clarke, E.M.: Compositional reasoning in model checking.
In: Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol.
1536, pp. 81–102. Springer, Heidelberg (1998). doi:10.1007/3-540-49213-5 4

2. Burch, J., Clarke, E.M., Long, D.: Symbolic model checking with partitioned transi-
tion relations. In: Proceedings of the IFIP TC10/WG 10.5 International Conference
on Very Large Scale Integration (VLSI 1991), pp. 49–58 (1991)

http://dx.doi.org/10.1007/3-540-49213-5_4

Modular Verification of Higher-Order Functional Programs 853

3. Campos, S.V.A.: A quantitative approach to the formal verification of real-time
systems. Ph.D. thesis, Carnegie Mellon University (1996)

4. Chaki, S., Gurfinkel, A.: Automated assume-guarantee reasoning for omega-regular
systems and specifications. Innov. Syst. Softw. Eng. 7(2), 131–139 (2011)

5. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). doi:10.1007/3-540-36577-X 24

6. Filliâtre, J.C., Paskevich, A.: Why3 - where programs meet provers. In: Proceedings
of the 22nd European Conference on Programming Languages and Systems (ESOP
2013), pp. 125–128 (2013)

7. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-70545-1 14

8. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans.
Program. Lang. Syst. 16(3), 843–871 (1994)

9. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2011), pp. 222–233
(2011)

10. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Proceedings of the 37th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL 2010), pp. 495–508 (2010)

11. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

12. Matsumoto, Y., Kobayashi, N., Unno, H.: Automata-based abstraction for auto-
mated verification of higher-order tree-processing programs. In: Feng, X., Park, S.
(eds.) APLAS 2015. LNCS, vol. 9458, pp. 295–312. Springer, Cham (2015). doi:10.
1007/978-3-319-26529-2 16

13. Nguyen, P.C., Horn, D.V.: Relatively complete counterexamples for higher-order
programs. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2015), pp. 446–456. ACM
(2015)

14. Nguyen, P.C., Tobin-Hochstadt, S., Horn, D.V.: Soft contract verification. In: Pro-
ceedings of the 19th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2014), pp. 139–152 (2014)

15. Ong, C.H.L., Ramsay, S.J.: Verifying higher-order functional programs with
pattern-matching algebraic data types. In: Proceedings of the 38th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2011), pp. 587–598 (2011)

16. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI 2008), pp. 159–169 (2008)

17. Sato, R., Asada, K., Kobayashi, N.: Refinement type checking via assertion check-
ing. J. Inf. Process. 23(6), 827–834 (2015)

18. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: Proceedings of the ACM SIGPLAN 2013 Workshop
on Partial Evaluation and Program Manipulation (PEPM 2013), pp. 53–62. ACM
Press (2013)

http://dx.doi.org/10.1007/3-540-36577-X_24
http://dx.doi.org/10.1007/978-3-540-70545-1_14
http://dx.doi.org/10.1007/978-3-540-70545-1_14
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-319-26529-2_16
http://dx.doi.org/10.1007/978-3-319-26529-2_16

854 R. Sato and N. Kobayashi

19. Swamy, N., Kohlweiss, M., Zinzindohoue, J.K., Zanella-Béguelin, S., HriÅ£cu, C.,
Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bhargavan, K.,
Fournet, C., Strub, P.Y., Swamy, N., HriÅ£cu, C., Keller, C., Rastogi, A.,
Delignat-Lavaud, A., Forest, S., Bhargavan, K., Fournet, C., Strub, P.Y.,
Kohlweiss, M., Zinzindohoue, J.K., Zanella-Béguelin, S.: Dependent types and
multi-monadic effects in F*. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2016), pp.
256–270 (2016)

20. Terao, T., Tsukada, T., Kobayashi, N.: Higher-order model checking in direct style.
In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp. 295–313. Springer, Cham
(2016). doi:10.1007/978-3-319-47958-3 16

21. Terauchi, T.: Dependent types from counterexamples. In: Proceedings of the 37th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL 2010), pp. 119–130 (2010)

22. Touati, H., Savoj, H., Lin, B., Brayton, R., Sangiovanni-Vincentelli, A.: Implicit
state enumeration of finite state machines using BDD’s. In: 1990 IEEE Interna-
tional Conference on Computer-Aided Design (ICCAD 1990), pp. 130–133 (1990)

23. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Pro-
ceedings of the 11th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming (PPDP 2009), pp. 277–288 (2009)

24. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification
of higher-order functional programs. In: Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2013), pp. 75–86 (2013)

25. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Jones, S.L.P.: Refinement types
for haskell. In: Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming, pp. 269–282 (2014)

26. Voirol, N., Kneuss, E., Kuncak, V.: Counter-example complete verification for
higher-order functions. In: Proceedings of the 6th ACM SIGPLAN Symposium
on Scala (Scala 2015), pp. 18–29 (2015)

27. Weis, P.: Caml examples (2001). http://caml.inria.fr/pub/old caml site/
Examples/

28. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1999), pp. 214–227 (1999)

29. Zhu, H., Jagannathan, S.: Compositional and lightweight dependent type infer-
ence for ML. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 295–314. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35873-9 19

30. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming
(ICFP 2015), pp. 400–411 (2015)

31. Zhu, H., Petri, G., Jagannathan, S.: Automatically learning shape specifications.
In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, (PLDI 2016), pp. 491–507 (2016)

http://dx.doi.org/10.1007/978-3-319-47958-3_16
http://caml.inria.fr/pub/old_caml_site/Examples/
http://caml.inria.fr/pub/old_caml_site/Examples/
http://dx.doi.org/10.1007/978-3-642-35873-9_19
http://dx.doi.org/10.1007/978-3-642-35873-9_19

Commutative Semantics for Probabilistic
Programming

Sam Staton(B)

University of Oxford, Oxford, UK
sam.staton@cs.ox.ac.uk

Abstract. We show that a measure-based denotational semantics for
probabilistic programming is commutative.

The idea underlying probabilistic programming languages (Anglican,
Church, Hakaru, etc.) is that programs express statistical models as a
combination of prior distributions and likelihood of observations. The
product of prior and likelihood is an unnormalized posterior distribu-
tion, and the inference problem is to find the normalizing constant. One
common semantic perspective is thus that a probabilistic program is
understood as an unnormalized posterior measure, in the sense of mea-
sure theory, and the normalizing constant is the measure of the entire
semantic domain.

A programming language is said to be commutative if only data flow is
meaningful; control flow is irrelevant, and expressions can be re-ordered.
It has been unclear whether probabilistic programs are commutative
because it is well-known that Fubini-Tonelli theorems for reordering inte-
gration fail in general. We show that probabilistic programs are in fact
commutative, by characterizing the measures/kernels that arise from pro-
grams as ‘s-finite’, i.e. sums of finite measures/kernels.

The result is of theoretical interest, but also of practical interest,
because program transformations based on commutativity help with
symbolic inference and can improve the efficiency of simulation.

1 Introduction

The key idea of probabilistic programming is that programs describe statistical
models. Programming language theory can give us tools to build and analyze
the models. Recall Bayes’ law: the posterior probability is proportional to the
product of the likelihood of observed data and the prior probability.

Posterior ∝ Likelihood × Prior (1)

One way to understand a probabilistic program is that it describes the measure
that is the product of the likelihood and the prior. This product is typically
not a probability measure, it does not sum to one. The inference problem is to
find the normalizing constant so that we can find (or approximate) the posterior
probability measure.

A probabilistic programming language is an ML-like programming language
with three special constructs, corresponding to the three terms in Bayes’ law:
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 855–879, 2017.
DOI: 10.1007/978-3-662-54434-1 32

856 S. Staton

– sample, which draws from a prior distribution, which may be discrete (like a
Bernoulli distribution) or continuous (like a Gaussian distribution);

– score, or observe, which records the likelihood of a particular observed data
point, sometimes called ‘soft conditioning’;

– normalize, which finds the normalization constant and the posterior proba-
bility distribution.

The implementation of normalize typically involves simulation. One hope is that
we can use program transformations to improve the efficiency of this simulation,
or even to symbolically calculate the normalizing constant. We turn to some
transformations of this kind in Sect. 4.1. But a very first program transforma-
tion is to reorder the lines of a program, as long as the data dependencies are
preserved, e.g.

letx = t in

let y = u in

v

=
let y = u in

letx = t in

v

(2)

where x not free in u, y not free in t. This is known as commutativity. For exam-
ple, in a traditional programming language with memory, this transformation
is valid provided t and u reference different locations. In probabilistic program-
ming, a fundamental intuition is that programs are stateless. From a practical
perspective, it is essential to be able to reorder lines and so access more sophis-
ticated program transformations (e.g. Sect. 4.1); reordering lines can also affect
the efficiency of simulation. The main contribution of this paper is the result:

Theorem 4 (Sect. 4.2). The commutativity Eq. (2) is always valid in probabilistic
programs.

1.1 A First Introduction to Probabilistic Programming

To illustrate the key ideas of probabilistic programming, consider the following
simple problem, which we explain in English and then specify as a probabilistic
program.

1. A telephone operator has forgotten what day it is.
2. He receives on average ten calls per hour in the week and three calls per hour

at the weekend.
3. He observes four calls in a given hour.
4. What is the probability that it is a week day?

We describe this as a probabilistic program as follows:

Commutative Semantics for Probabilistic Programming 857

Lines 2–5 describe the combination of the likelihood and the prior. First, on
line 2, we sample from the prior: the chance that it is a week day is 5

7 . On line 3,
we set the rate of calls, depending on whether it is a week day. On line 4 we record
the observation that six calls were received when the rate was r, using the Poisson
distribution. For a discrete distribution, the likelihood is the probability of the
observation point, which for the Poisson distribution with rate r is r4e−r/4!.

We thus find a semantics for lines 2–5, an unnormalized posterior measure on
{true, false}, by considering the only two paths through the program, depending
on the outcome of the Bernoulli trial.

– The Bernoulli trial (line 2) produces true with prior probability 5
7 (it is a

week day), and then the rate is 10 (line 3) and so the likelihood of the data
is 104e−10/4! ≈ 0.019 (line 4). So the unnormalized posterior probability of
true is 5

7 × 0.019 ≈ 0.014 (prior×likelihood).
– The Bernoulli trial produces false with prior probability 2

7 (it is the weekend),
and then the likelihood of the observed data is 34e−3/4! ≈ 0.168; so the
unnormalized posterior measure of false is 2

7 × 0.168 ≈ 0.048.

The measure (true �→ 0.014, false �→ 0.048) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 0.014+0.048 =
0.062, to get a posterior probability measure (true �→ 0.22, false �→ 0.78). The
normalizing constant, 0.062, is sometimes called model evidence; it is an indica-
tion of how well the data fits the model.

Next we consider a slightly different problem. Rather than observing four calls
in a given hour, suppose the telephone operator merely observes that the time
between two given calls is 15 min. We describe this as a probabilistic program
as follows:

The difference here is that the observation is from the exponential distribution
(exp(r)), which is a continuous distribution, In Bayesian statistics, the likeli-
hood of a continuous distribution is taken to be the value of the probability
density function at the observation point. The density function of the exponen-
tial distribution exp(r) with rate r is (x �→ re−rx). So if the decay rate is 10,
the likelihood of time 15

60 is 10e−2.5 ≈ 0.82, and if the decay rate is 3, the like-
lihood is 3e−0.75 ≈ 1.42. We thus find that the unnormalized posterior measure
of true is 5

7 × 0.82 ≈ 0.586 (prior×likelihood), and the unnormalized posterior
measure of false is 2

7 × 1.42 ≈ 0.405. In this example, the model evidence is
0.586+ 0.405 ≈ 0.991. We divide by this to find the normalized posterior, which
is (true �→ 0.592, false �→ 0.408).

In these simple examples, there are only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such

858 S. Staton

as the uniform distribution on an interval, in which case a simulation can only
find an approximate normalizing constant. Suppose that the telephone operator
does not know what time it is, but knows a function f : [0, 24) → (0,∞) mapping
each time of day to the average call rate. Then by solving the following problem,
he can ascertain a posterior probability distribution for the current time.

normalize
(
let t = sample(uniform([0, 24))) in observe (15

60
) from exp(f(t)); return(t)

)
.
(3)

Although simulation might only be approximate, we can give a precise semantics
to the language using measure theory. In brief,

– programs of type A are interpreted as measures on A, and more generally
expressions of type A with free variables in Γ are measure kernels Γ � A;

– sampling from a prior describes a probability measure;
– observations are interpreted by multiplying the measure of a path by the

likelihood of the data;
– sequencing is Lebesgue integration: letx = t inu ≈ ∫

t(dx)u;
– normalization finds the measure of the whole space, the normalizing constant.

To put it another way, the programming language is a language for building
measures. For full details, see Sect. 3.2.

1.2 Commutativity and Infinite Measures

If, informally, sequencing is integration, then commutativity laws such as (2)
amount to changing the order of integration, e.g.

∫

t(dx)
∫

u(dy) v =
∫

u(dy)
∫

t(dx) v (4)

A first non-trivial fact of measure theory is Fubini’s theorem: for finite measures,
Eq. (4) holds. However, commutativity theorems like this do not hold for arbi-
trary infinite measures. In fact, if we deal with arbitrary infinite measures, we
do not even know whether sequencing

∫
t(dx) v is a genuine measure kernel. As

we will show, for the measures that are definable in our language, sequencing
is well defined, and commutativity does hold. But let us first emphasize that
infinite measures appear to be unavoidable because

– there is no known useful syntactic restriction that enforces finite measures;
– a program with finite measure may have a subexpression with infinite mea-

sure, and this can be useful.

To illustrate these points, consider the following program, a variation on (3).

let x = sample(gauss(0, 1)) in observe d from exp(1/f(x)); return(x) : R (5)

Commutative Semantics for Probabilistic Programming 859

Here gauss(0, 1) is the standard Gaussian distribu-
tion with mean 0 and standard deviation 1; recall
that its density f is f(x) = 1√

2π
e− x2

2 . The illustra-
tion on the right shows the unnormalized posterior
for (5) as the observed data goes from d = 0.1 (blue
dotted line) to d = 0 (red straight line). Notice that
at d = 0, the resulting unnormalized posterior mea-
sure on R is the flat Lebesgue measure on R, which assigns to each interval
(m,n) its size, (n−m). The Lebesgue measure of the entire real line, the would-
be normalizing constant, is ∞, so we cannot find a posterior probability measure.
A statistician would probably not be very bothered about this, because a tiny
change in the observed data yields a finite normalizing constant. But that is not
good enough for a semanticist, who must give a meaning to every program.

It is difficult to see how a simple syntactic restriction could eliminate pro-
gram (5) while keeping other useful programs such as (3). Another similar pro-
gram is

letx = sample(gauss(0, 1)) in score(g(x)/f(x)); return(x) : R (6)

where g(x) = 1
π(1+x2) is the density function of the stan-

dard Cauchy distribution and score(r) is shorthand for
(observe 0 from exp(r))—recall that the density of the expo-
nential distribution exp(r) at 0 is r = re−r×0. Program (6)
is the importance sampling algorithm for simulating a
Cauchy distribution from a Gaussian. To see why this algo-
rithm is correct, i.e. (6) = sample(cauchy(0, 1)), it is helpful
to rewrite it:

let x = sample(gauss(0, 1)) in score(1/f(x)) ; score(g(x)) ; return(x) : R.

Notice that the underlined subexpression is the Lebesgue measure, as in (5),
and recall that sequencing is integration. So program (6) is correct because it is
integrating the density g over the Lebesgue measure; this is equal to the Cauchy
probability measure, by definition of density.

1.3 Commutativity Through s-Finite Kernels

It is known that commutativity holds not just for finite measures but also for s-
finite measures, which are formed from a countable sum of finite measures. The
key contribution of this paper is that all closed probabilistic programs define
s-finite measures. To show this compositionally, we must also give a semantics
to open programs, which we interpret using a notion of s-finite kernel (Defi-
nition 2), which is a countable sum of finite, bounded kernels; these support
sequential composition (Lemma 3). Iterated integrals and interchange (4) are no
problem for s-finite measures (Proposition 5). We conclude (Theorem 4) that the
commutativity Eq. (2) is always valid in probabilistic programs.

860 S. Staton

Moreover, s-finite kernels are exactly what is needed, because:

Theorem 6 (Sect. 5.1). The following are equivalent:

– a probabilistic program expression of type A and free variables in Γ ;
– an s-finite kernel Γ � A.

(The probabilistic programming language here is an idealized one that includes
countable sum types, all measurable functions, and all probability distributions.)

Summary of Contribution. We use s-finite kernels to provide the first seman-
tic model (Sect. 3.2) of a probabilistic programming language that

– interprets programs such as those in Sect. 1.1;
– supports basic program transformations such as commutativity (Theorem 4);
– justifies program transformations based on statistical ideas such as conju-

gate priors, importance sampling and resampling, in a compositional way
(Sect. 4.1).

In Sect. 6 we relate our contributions with earlier attempts at this problem.

2 Preliminaries

2.1 Measures and Kernels

Measure theory generalizes the ideas of size and probability distribution from
countable discrete sets to uncountable sets. To motivate, recall that if we sample
a real number from a standard Gaussian distribution then it is impossible that
we should sample the precise value 0, even though that is the expected value.
We resolve this apparent paradox by recording the probability that the sample
drawn lies within an interval, or more generally, a measurable set. For example,
a sample drawn from a standard Gaussian distribution will lie in the interval
(−1, 1) with probability 0.68. We now recall some rudiments of measure theory;
see e.g. [32] for a full introduction.

A σ-algebra on a set X is a collection of subsets of X that contains ∅ and
is closed under complements and countable unions. A measurable space is a
pair (X,ΣX) of a set X and a σ-algebra ΣX on it. The sets in ΣX are called
measurable sets.

For example, the Borel sets are the smallest σ-algebra on R that contains the
intervals. We will always consider R with this σ-algebra. Similarly the Borel sets
on [0,∞] are the smallest σ-algebra containing the intervals. For any countable
set (e.g. N, {0, 1}) we will consider the discrete σ-algebra, where all sets are
measurable.

A measure on a measurable space (X,ΣX) is a function μ : ΣX → [0,∞]
into the set [0,∞] of extended non-negative reals that takes countable disjoint
unions to sums, i.e. μ(∅) = 0 and μ(

⊎
n∈N

Un) =
∑

n∈N
μ(Un) for any N-indexed

Commutative Semantics for Probabilistic Programming 861

sequence of disjoint measurable sets U . A probability measure is a measure μ
such that μ(X) = 1.

For example, the Lebesgue measure λ on R is generated by λ(a, b) = b − a.
For any x ∈ X, the Dirac measure δx has δx(U) = [x ∈ U]. (Here and elsewhere
we regard a property, e.g. [x ∈ U], as its characteristic function X → {0, 1}.)
To give a measure on a countable discrete measurable space X it is sufficient
to assign an element of [0,∞] to each element of X. For example, the counting
measure γ is determined by γ({x}) = 1 for all x ∈ X.

A function f : X → Y between measurable spaces is measurable if f -1(U) ∈
ΣX for all U ∈ ΣY . This ensures that we can form a pushforward measure f∗μ
on Y out of any measure μ on X, with (f∗μ)(U) = μ(f -1(U)).

For example, the arithmetic operations on R are all measurable. If U ∈ ΣX

then the characteristic function [− ∈ U] : X → {0, 1} is measurable.
We can integrate a measurable function f : X → [0,∞] over a measure μ on

X to get number
∫

X
μ(dx) f(x) ∈ [0,∞]. (Some authors use different notation,

e.g.
∫

f dμ.) Integration satisfies the following properties (e.g. [32, Theorem 12]):∫
X

μ(dx) [x ∈ U] = μ(U),
∫

X
μ(dx) rf(x) = r

∫
X

μ(dx) f(x),
∫

X
μ(dx) 0 = 0,∫

X
μ(dx) (f(x) + g(x)) = (

∫
X

μ(dx) f(x)) + (
∫

X
μ(dx) g(x)), and

limi

∫
X

μ(dx) fi(x) =
∫

X
μ(dx) (limi fi(x)) (7)

for any monotone sequence f1 ≤ f2 ≤ . . . of measurable functions f : X → [0,∞].
These properties entirely determine integration, since every measurable function
is a limit of a monotone sequence of simple functions [32, Lemma 11]. It follows
that countable sums commute with integration:

∫

X

μ(dx)
(∑

i∈N

fi(x)
)

=
∑

i∈N

∫

X

μ(dx) fi(x). (8)

For example, integration over the Lebesgue measure on R is Lebesgue inte-
gration, generalizing the idea of the area under a curve. Integration with respect
to the counting measure on a countable discrete space is just summation,
e.g.

∫
N

γ(di) f(i) =
∑

i∈N
f(i).

We can use integration to build new measures. If μ is a measure on X and
f : X → [0,∞] is measurable then we define a measure μf on X by putting
μf (U) def=

∫
U

μ(dx) f(x). We say f is the density function for μf . For example,
the function x �→ 1√

2π
e− 1

2x2
is the density function for the standard Gaussian

probability measure on R with respect to the Lebesgue measure.
A kernel k from X to Y is a function k : X × ΣY → [0,∞] such that each

k(x,−) : ΣY → [0,∞] is a measure and each k(−, U) : X → [0,∞] is measurable.
Because each k(x,−) is a measure, we can integrate any measurable function
f : Y → [0,∞] to get

∫
Y

k(x,dy) f(y) ∈ [0,∞]. We write k : X � Y if k is a
kernel. We say that k is a probability kernel if k(x, Y) = 1 for all x ∈ X.

2.2 s-Finite Measures and Kernels

We begin with a lemma about sums of kernels.

862 S. Staton

Proposition 1. Let X,Y be measurable spaces. If k1 . . . kn · · · : X � Y are
kernels then the function (

∑∞
i=1 ki) : X × ΣY → [0,∞] given by

(
∑∞

i=1 ki)(x,U) def=
∞∑

i=1

(ki(x,U))

is a kernel X � Y . Moreover, for any measurable function f : Y → [0,∞],
∫

Y

(
∑∞

i=1 ki)(x,dy) f(y) =
∞∑

i=1

∫

Y

ki(x,dy) f(y).

Proof. That
∑

i∈N
ki : X × ΣY → [0,∞] is a kernel is quite straightforward: it

is measurable in X because a countable sum of measurable functions is measur-
able (e.g. [32, Sect. 2.2]); it is a measure in Y because countable positive sums
commute:

∑∞
i=1(ki(x,

⊎∞
j=1 Uj)) =

∑∞
i=1(

∑∞
j=1 ki(x,Uj)) =

∑∞
j=1(

∑∞
i=1 ki(x,Uj))

The second part of the proposition follows once we understand that every mea-
surable function f : Y → [0,∞] is a limit of simple functions and apply the
monotone convergence theorem (7).

Definition 2. Let X,Y be measurable spaces. A kernel k : X � Y is finite if
there is finite r ∈ [0,∞) such that, for all x, k(x, Y) < r.

A kernel k : X � Y is s-finite if there is a sequence k1 . . . kn . . . of finite
kernels and

∑∞
i=1 ki = k.

Note that the bound in the finiteness condition, and the choice of sequence in
the s-finiteness condition, are uniform, across all arguments to the kernel.

The definition of s-finite kernel also appears in recent work by Kallenberg [20]
and Last and Penrose [23, Appendix A]. The idea of s-finite measures is perhaps
more established ([9, Lemma 8.6], [39, Sect. A.0]).

3 Semantics of a Probabilistic Programming Language

We give a typed first order probabilistic programming language in Sect. 3.1, and
its semantics in Sect. 3.2. The semantics is new: we interpret programs as s-finite
kernels. The idea of interpreting programs as kernels is old (e.g. [21]), but the
novelty here is that we can treat infinite measures. It is not a priori obvious that
a compositional denotational semantics based on kernels makes sense for infinite
measures; the trick is to use s-finite kernels as an invariant, via Lemma 3.

3.1 A Typed First Order Probabilistic Programming Language

Our language syntax is not novel: it is the same language as in [43], and as such
an idealized, typed, first order version of Anglican [46], Church [11], Hakaru [30],
Venture [26] and so on.

Commutative Semantics for Probabilistic Programming 863

Types. The language has types

A,B :: = R | P(A) | 1 | A × B | ∑
i∈I Ai

where I ranges over countable, non-empty sets. Alongside the usual sum and
product types, we have a special type R of real numbers and types P(A) of prob-
ability distributions. For example, (1 + 1) is a type of booleans, and P(1 + 1)
is a type of distributions over booleans, and

∑
i∈N

1 is a type of natural num-
bers. This is not a genuine programming language because we include countably
infinite sums rather than recursion schemes; this is primarily because countably
infinite disjoint unions play such a crucial role in classical measure theory, and
constructive measure theory is an orthogonal issue (but see e.g. [1]).

Types A are interpreted as measurable spaces [[A]].

– [[R]] is the measurable space of reals, with its Borel sets.
– [[P(A)]] is the set P ([[A]]) of probability measures on [[A]] together with the σ-

algebra generated by the sets {μ | μ(U) < r} for each U ∈ ΣX and r ∈ [0, 1]
(the ‘Giry monad’ [10]).

– [[1]] is the discrete measurable space with one point.
– [[A × B]] is the product space [[A]] × [[B]]. The σ-algebra Σ[[A×B]] is generated

by rectangles (U × V) with U ∈ Σ[[A]] and V ∈ Σ[[B]] (e.g. [32, Definition 16]).
– [[

∑
i∈I Ai]] is the coproduct space

⊎
i∈I [[Ai]]. The σ-algebra Σ[[

∑
i∈I Ai]] is gen-

erated by sets {(i, a) | a ∈ U} for U ∈ Σ[[Ai]].

Terms. We distinguish typing judgements: Γ
d t : A for deterministic terms, and
Γ
p t : A for probabilistic terms. Formally, a context Γ = (x1 : A1, . . . , xn : An)
means a measurable space [[Γ]] def=

∏n
i=1[[Ai]]. Deterministic terms Γ
d t : A denote

measurable functions from [[Γ]] → [[A]], and probabilistic terms Γ
p t′ : A denote
kernels [[Γ]] � [[A]]. We give a syntax and type system here, and a semantics in
Sect. 3.2.

Sums and Products. The language includes variables, and standard constructors
and destructors for sum and product types.

Γ, x : A, Γ ′
d x : A
Γ
d t : Ai

Γ
d (i, t) :
∑

i∈I Ai

Γ
d t :
∑

i∈I Ai (Γ, x : Ai
z ui : B)i∈I

Γ
z case t of {(i, x) ⇒ ui}i∈I : B
(z ∈ {d, p})

Γ
d () : 1
Γ
d t0 : A0 Γ
d t1 : A1

Γ
d (t0, t1) : A0 × A1

Γ
d t : A0 × A1

Γ
d πj(t) : Aj

In the rules for sums, I may be infinite. In the last rule, j is 0 or 1. We use some
standard syntactic sugar, such as false and true for the injections in the type
bool = 1 + 1, and if for case in that instance.

864 S. Staton

Sequencing. We include the standard constructs for sequencing (e.g. [25,29]).

Γ
d t : A
Γ
p return(t) : A

Γ
p t : A Γ, x : A
p u : B
Γ
p let x = t in u : B

Language-Specific Constructs. So far the language is very standard. We also
include constant terms for all measurable functions.

Γ
d t : A
Γ
d f(t) : B

(f : [[A]] → [[B]] measurable) (9)

Thus the language contains all the arithmetic operations (e.g. + : R × R → R)
and predicates (e.g. (=) : R×R → bool). Moreover, all the families of probability
measures are in the language. For example, the Gaussian distributions gauss :
R × R → P (R) are parameterized by mean and standard deviation, so that
we have a judgement μ : R, σ : R
d gauss(μ, σ) : P(R). (Some families are not
defined for all parameters, e.g. the standard deviation should be positive, but we
make ad-hoc safe choices throughout rather than using exceptions or subtyping.)

The core of the language is the constructs corresponding to the terms in
Bayes’ law (1): sampling from prior distributions, recording likelihood scores,

Γ
d t : P(A)
Γ
p sample(t) : A

Γ
d t : R
Γ
p score(t) : 1

and calculating the normalizing constant and a normalized posterior.

Γ
p t : A
Γ
d normalize(t) : R × P(A) + 1 + 1

Normalization will fail if the normalizing constant is zero or infinity. Notice that
normalization produces a probability distribution; in a complex model this could
then be used as a prior and sampled from. This is sometimes called a ‘nested
query’.

Note About Observations. Often a probability distribution d has a widely under-
stood density function f with respect to some base measure. For example, the
exponential distribution with rate r is usually defined in terms of the density
function x �→ re−rx with respect to the Lebesgue measure on R. The score con-
struct is typically called with a density. In this circumstance, we use the infor-
mal notation observe t from d for score(f(t)). For example, observe t from exp(r) is
informal notation for score(re−r×t). In a more realistic programming language,
this informality is avoided by defining a ‘distribution object’ to be a pair of
a probability measure and a density function for it. There is no difference in
expressivity between an observe construction and a score construct. For exam-
ple, score(r) can be understood as observe 0 from exp(r), since re−r0 = r.

(Technical point: although density functions can be understood as Radon-
Nikodym derivatives, these are not uniquely determined on measure-zero sets,

Commutative Semantics for Probabilistic Programming 865

and so a distribution object does need to come with a given density function.
Typically the density is continuous with respect to some metric so that the
likelihood is not vulnerable to small inaccuracies in observations. See e.g. [43,
Sect. 9] for more details.)

3.2 Denotational Semantics

Recall that types A are interpreted as measurable spaces [[A]]. We now explain
how to interpret a deterministic term in context, Γ
d t : A as a measurable
function [[t]] : [[Γ]] → [[A]], and how to interpret a probabilistic term in context,
Γ
p t : A, as an s-finite kernel [[t]] : [[Γ]] � [[A]].

The semantics is given by induction on the structure of terms. Before we
begin we need a lemma.

Lemma 3. Let X,Y,Z be measurable spaces, and let k : X × Y � Z and
l : X � Y be s-finite kernels (Definition 2). Then we can define a s-finite kernel
(k 	 l) : X � Z by

(k 	 l)(x,U) def=
∫

Y

l(x,dy) k(x, y, U)

so that ∫

Z

(k 	 l)(x,dz) f(z) =
∫

Y

l(x,dy)
∫

Z

k(x, y,dz) f(z)

Proof. Suppose k =
∑∞

i=1 ki and l =
∑∞

j=1 lj are s-finite kernels, and that the
ki’s and lj ’s are finite kernels. We need to show that k	l is a kernel and moreover
s-finite. We first show that each ki 	 lj is a finite kernel. Each (ki 	 lj)(x,−) :
ΣZ → [0,∞] is a measure:

(ki 	 lj)(x,
⊎∞

a=1 Ua) =
∫

Y
lj(x,dy) ki(x, y,

⊎∞
a=1 Ua)

=
∫

Y
lj(x,dy)

∑∞
a=1 ki(x, y, Ua) k is a kernel

=
∑∞

a=1

∫
Y

lj(x,dy) ki(x, y, Ua) Eq. (8)

The measurability of each (ki 	 lj)(−, U) : X → [0,∞] follows from the
general fact that for any measurable function f : X × Y → [0,∞], the function∫

Y
lj(−,dy) f(−, y) : X → [0,∞] is measurable (e.g. [32, Theorem 20(ii)]). Thus

(ki 	 lj) is a kernel. This step crucially uses the fact that each measure lj(x,−)
is finite.

To show that (ki 	 lj) is a finite kernel, we exhibit a bound. Since ki and lj
are finite, we have r, s ∈ (0,∞) such that ki(x, y, Z) < r and lj(x, Y) < s for all
x, y. Now rs is a bound on (ki 	 lj) since

(ki 	 lj)(x,Z) =
∫

Y
lj(x,dy) k(x, y, Z) <

∫
Y

lj(x,dy) r = rlj(x, Y) < rs.

So each (ki 	 lj) is a finite kernel. Note that here we used the uniformity in the
definition of finite kernel.

866 S. Staton

We conclude that (k 	 l) is an s-finite kernel by showing that it is a countable
sum of finite kernels:

(k 	 l)(x,U) = ((
∑

i ki) 	 (
∑

j lj))(x,U)

=
∫

Y

∑
j(lj(x,dy))

∑
i(ki(x, y, U))

=
∑

i

∫
Y

∑
j(lj(x,dy)) ki(x, y, U) Eq. (8)

=
∑

i

∑
j

∫
Y

lj(x,dy) ki(x, y, U) Proposition 1

=
∑

i

∑
j(ki 	 lj)(x,U)

The final part of the statement follows by writing f as a limit of a sequence
of simple functions and using the monotone convergence property (7).

Remark. It seems unlikely that we can drop the assumption of s-finiteness in
Lemma 3. The difficulty is in showing that (k 	 l) : X × ΣZ → [0,∞] is mea-
surable in its first argument without some extra assumption. (I do not have
a counterexample, but then examples of non-measurable functions are hard to
find.)

Semantics. We now explain the semantics of the language, beginning with
variables, sums and products, which is essentially the same as a set-theoretic
semantics.

[[x]]γ,d,γ′
def= d [[(i, t)]]γ

def= (i, [[t]]γ)
[[case t of {(i, x) ⇒ ui}i∈I]]γ

def= [[ui]]γ,d if [[t]]γ = (i, d)
[[()]]γ

def= () [[(t0, t1)]]γ
def= ([[t0]]γ , [[t1]]γ) [[πj(t)]]γ

def= di if [[t]]γ = (d0, d1)

Here we have only treated the case expressions when the continuation is deter-
ministic; we return to the probabilistic case later.

The semantics of sequencing are perhaps the most interesting: return is the
Dirac delta measure, and let is integration.

[[return(t)]]γ,U
def=

{
1 if [[t]]γ ∈ U

0 otherwise
[[letx = t inu]]γ,U

def=
∫

A

[[t]]γ,dx [[u]]γ,x,U

The interpretation [[return(t)]] is finite, hence s-finite. The fact that [[letx = t inu]]
is an s-finite kernel is Lemma 3: this is the most intricate part of the semantics.

We return to the case expression where the continuation is probabilistic:

[[case t of {(i, x) ⇒ ui}i∈I]]γ,U
def= [[ui]]γ,d,U if [[t]]γ = (i, d).

We must show that this is an s-finite kernel. Recall that [[ui]] : [[Γ × Ai]] � [[B]],
s-finite. We can also form [[ui]] : [[Γ]] × ⊎

j [[Aj]] � [[B]] with

[[ui]]γ,(j,a),U
def=

{
[[ui]]γ,a,U i = j

0 otherwise

Commutative Semantics for Probabilistic Programming 867

and it is easy to show that [[ui]] is an s-finite kernel. Another easy fact is that a
countable sum of s-finite kernels is again an s-finite kernel, so we can build an
s-finite kernel (

∑
i [[ui]]) : [[Γ]] × ⊎

j [[Aj]] � [[B]]. Finally, we use a simple instance
of Lemma 3 to compose (

∑
i [[ui]]) with [[t]] : [[Γ]] → ⊎

j [[Aj]] and conclude that
[[case t of {(i, x) ⇒ ui}i∈I]] is an s-finite kernel.

The language specific constructions are straightforward.

[[sample(t)]]γ,U
def= [[t]]γ(U) [[score(t)]]γ,U

def=

{
|[[t]]γ | if U = {()}
0 if U = ∅.

In the semantics of sample, we are merely using the fact that to give a measurable
function X → P (Y) is to give a probability kernel X � Y . Probability kernels
are finite, hence s-finite.

The semantics of score is a one point space whose measure is the argument.
(We take the absolute value of [[t]]γ because measures should be non-negative. An
alternative would be to somehow enforce this in the type system.) We need to
show that [[score(t)]] is an s-finite kernel. Although [[score(t)]]γ,1 is always finite,
[[score(t)]] is not necessarily a finite kernel because we cannot find a uniform
bound. To show that it is s-finite, for each i ∈ N0, define a kernel ki : [[Γ]] � 1

ki(γ, U) def=

{
[[score(t)]]γ,U if [[score(t)]]γ,U ∈ [i, i + 1)
0 otherwise

So each ki is a finite kernel, bounded by (i + 1), and [[score(t)]] =
∑∞

i=0 ki, so it
is s-finite.

We give a semantics to normalization by finding the normalizing constant
and dividing by it, as follows. Consider Γ
p t : A and let evidencet

def= [[t]]γ,[[A]].

[[normalize(t)]]γ
def=

⎧
⎪⎨

⎪⎩

(0, (evidencet,
[[t]]γ,(−)

evidencet
)) evidencet ∈ (0,∞)

(1, ()) evidencet = 0
(2, ()) evidencet = ∞

(In practice, the normalization will only be approximate. We leave it for future
work to develop semantic notions of approximation in this setting, e.g. [27].)

4 Properties and Examples

4.1 Examples of Statistical Reasoning

Lebesgue Measure, Densities and Importance Sampling. The Lebesgue
measure on R is not a primitive in our language, because it is not a probability
measure, but it is definable. For example, we can score the standard Gaussian
by the inverse of its density function, f(x) = 1√

2π
e− 1

2x2
.

868 S. Staton

[[
p letx = sample(gauss(0, 1)) in score(1
f(x)); return(x) : R]]−,U (10)

=
∫

U

gauss(0, 1)(dx) (1
f(x))

=
∫

U

lebesgue(dx) (f(x))(1
f(x)) since gauss(0, 1)(V) =

∫

V

lebesgue(dx) f(x)

= lebesgue(U)

(On the third line, we use the definition of density function.)
Some languages (such as Stan [40], also Core Hakaru [38]) encourage the

use of the Lebesgue measure as an ‘improper prior’. We return to the example
of importance sampling, proposed in the introduction. Consider a probability
measure p with density g. Then

[[sample(p)]] = [[letx = lebesgue in observex from p; return(x)]] (11)

— a simple example of how an improper prior can lead to a proper posterior.
We can derive the importance sampling algorithm for p by combining (11) with
(10):

[[sample(p)]] = [[letx = lebesgue in observex from p; return(x)]]

= [[letx = gauss(0, 1) in score(1
f(x)); score(g(x)); return(x)]]

= [[letx = gauss(0, 1) in score(g(x)
f(x)); return(x)]].

Conjugate Prior Relationships and Symbolic Bayesian Update. A key
technique for Bayesian inference involves conjugate prior relationships. In gen-
eral, inference problems are solved by simulation, but sometimes we can work
symbolically, when there is a closed form for updating the parameters of a prior
according to an observation. In a probabilistic programming language, this sym-
bolic translation can be done semi-automatically as a program transformation
(see e.g. [5]).

Recall that beta(α, β) is a probability measure on [0, 1] describing the distri-
bution of a bias of a coin from which we have observed (α−1) heads and (β −1)
tails. This has a conjugate prior relationship with the Bernoulli distribution. For
instance,

In the graph, notice that beta(3, 2) depicts the updated posterior belief of the
bias of the coin after an additional observation: it is more probable that the coin
is biassed to heads.

Commutative Semantics for Probabilistic Programming 869

Resampling. In many situations, particularly in Sequential Monte Carlo simu-
lations, it is helpful to freeze a simulation and resample from a histogram that has
been built (e.g. [31]). In practical terms, this avoids having too many threads
of low weight. Resampling in this way is justified by the following program
equation:

[[t]] = �case normalize(t) of (1, (e, d)) ⇒ score(e); sample(d)
| (2, ()) ⇒ score(0); t
| (3, ()) ⇒ t �

Notice that we cannot resample if the model evidence is ∞. For example, we can-
not resample from the expression above computing the Lebesgue measure (10),
although of course this doesn’t prevent us from resampling from programs that
contain it (e.g. (11)).

Hard Constraints. A hard constraint is a score of 0; a non-zero score is a soft
constraint. In our language, every type is inhabited, so for each type A we can
define a term

failA
def= score(0); f() : A (12)

picking arbitrary f : 1 → [[A]] at each type A. The semantics is [[failA]]γ,U = 0.
Hard constraints suffice for scores below 1, because then

[[score(r)]] = [[if sample(bern(r)) then () else fail1]].

Hard constraints cannot express scores above 1, which can arise from continuous
likelihoods — for instance, in the example in the introduction, the likelihoods
were 0.82 and 1.42. Inference algorithms often perform better when soft con-
straints are used.

4.2 Basic Semantic Properties

Standard β/η laws and associativity of let. The standard β/η laws for sums
and products hold. These are easy to verify. For instance,

[[case (i, t) of {(j, x) ⇒ uj}j∈I]] = [[ui[t/x]]].

We also have the standard associativity and identity laws for let:

[[letx = return(t) inu]] = [[u[t/x]]] [[letx = u in return(x)]] = [[u]]

[[let y = (letx = t inu) in v]] = [[letx = t in let y = u in v]]

For instance, the associativity law follows from Lemma 3.

870 S. Staton

Commutativity.

Theorem 4. For any terms Γ
p t : A, Γ
p u : B, Γ, x : A, y : B
p v : C, we have

[[letx = t in let y = u in v]] = [[let y = u in letx = t in v]].

This theorem is an immediate consequence of Proposition 5:

Proposition 5. Let μ and λ be s-finite measures on X and Y respectively, and
let f : X × Y → [0,∞] be measurable. Then

∫

X

μ(dx)
∫

Y

λ(dy) f(x, y) =
∫

Y

λ(dy)
∫

X

μ(dx) f(x, y)

Proof. This result is known (e.g. [39]) and it is easy to prove. Since μ and λ are
s-finite, we have μ =

∑∞
i=1 μi and λ =

∑∞
j=1 λj , with the μi’s and λj ’s all finite.

Now,
∫
X

(
∑

i μi)(dx)
∫
Y

(
∑

j λj)(dy) f(x, y)

=
∑

i

∫
X

μi(dx)
∑

j

∫
Y

λj(dy) f(x, y) using Proposition 2

=
∑

i

∑
j

∫
X

μi(dx)
∫
Y

λj(dy) f(x, y) using (8)

=
∑

i

∑
j

∫
Y

λj(dy)
∫
X

μi(dx) f(x, y) finite measures commute, [32, Theorem25]

=
∑

i

∫
Y

(
∑

j λj)(dy)
∫
X

μi(dx) f(x, y) using Proposition 2

=
∫
Y

(
∑

j λj)(dy)
∑

i

∫
X

μi(dx) f(x, y) using (8)

=
∫
Y

(
∑

j λj)(dy)
∫
X

(
∑

i μi)(dx) f(x, y) using Proposition 2.

(The commutativity for finite measures is often called Fubini’s theorem.)

Iteration. We did not include iteration in our language but in fact it is definable.
In brief, we can use the probabilistic constructs to guess how many iterations
are needed for termination. (We do not envisage this as a good implementation
strategy, we merely want to show that the language and semantic model can
accommodate reasoning about iteration.)

In detail, we define a construction iterate t fromx=u, that keeps calling t,
starting from x=u; if t returns u′ : A, then we repeat with x=u′, if t finally
returns in B, then we stop. This has the following derived typing rule:

Γ, x : A
p t : (A + B) Γ
d u : A
Γ
p iterate t fromx=u : B

We begin by defining the counting measure on N, which assigns to each set
its size. This is not a primitive, because it isn’t a probability measure, but we
can define it in a similar way to the Lebesgue measure:

countingN = [[
p letx = sample(poisson(1)) in score(x!e); return(x) : N]] (13)

(Recall that the Poisson distribution has poisson(1)({x}) = 1
x!e .)

Commutative Semantics for Probabilistic Programming 871

Now we can define

iterate t fromx = u
def= case countingN of (n, ()) ⇒ iteraten t fromx = u

where Γ
p iteraten t fromx=u : B is the program that returns v : B if t returns v
after exactly n iterations and fails otherwise:

iterate1 t fromx = u
def= case t[u/x] of(1, u′) ⇒ fail

|(2, v) ⇒ return(v)

iteraten+1 t fromx = u
def= case t[u/x] of(1, u′) ⇒ iteraten t fromx = u′

|(2, v) ⇒ fail

For a simple illustration, von Neumann’s trick for simulating a fair coin from a
biassed one d can be written d : P(bool)
p iterate t fromx=(): bool where

t
def= (let y = sample(d) in

let z = sample(d) in if y �= z then return(2, y) else return(1, ())) : 1 + bool

We leave for future work the relation between this iteration and other axioma-
tizations of iteration (e.g. [12, Chap. 3]).

5 Remarks About s-Finite Kernels

5.1 Full Definability

Theorem 6. If k : [[Γ]] � [[A]] is s-finite then there is a term Γ
p t : A such that
k = [[t]].

Proof. We show that probability kernels are definable. Consider a probabil-
ity kernel k : [[Γ]] � [[A]] with Γ = (x1 : B1 . . . xn : Bn). This corresponds
to a measurable function f : [[

∏n
i=1 B]] → P ([[A]]), with f(b1, . . . , bn)(U) =

k(b1, . . . , bn, U), and k = [[Γ
p sample(f(x1, . . . , xn)) : A]].
We move on to subprobability kernels, which are kernels k : [[Γ]] � [[A]] such

that k(γ, [[A]]) ≤ 1 for all γ. We show that they are all definable. Recall that
to give a subprobability kernel k : [[Γ]] � [[A]] is to give a probability kernel
k̄ : [[Γ]] � [[A + 1]]. Define

k̄(γ, U) =

{
k(γ, {a | (1, a) ∈ U}) + (1 − k(γ, [[A]])) (2, ()) ∈ U

k(γ, {a | (1, a) ∈ U}) otherwise

This probability kernel k̄ is definable, with k̄ = [[t]], say, and this has the property
that

k = [[case t of (1, x) ⇒ return(x) | (2, ()) ⇒ fail]].

where fail is the zero kernel defined in (12). So the subprobability kernel k is
definable.

872 S. Staton

Next, we show that all finite kernels k : [[Γ]] � [[A]] are definable. If k is finite
then there is a bound r ∈ (0,∞) such that k(γ, [[A]]) < r for all γ. Then 1

r k is
a subprobability kernel, hence definable, so we have t such that 1

r k = [[t]]. So
k = r[[t]] = [[score(r); t]].

Finally, if k is s-finite then there are finite kernels ki : [[Γ]] � [[A]] such that
k =

∑∞
i=1 ki. Since the ki’s are finite, we have terms ti with ki = [[ti]]. Recall that

a countable sum is merely integration over the counting measure on N, which
we showed to be definable in (13). So we have k = [[case countingN of i ⇒ ti]].

5.2 Failure of Commutativity in General

The standard example of the failure of Tonelli’s theorem (e.g. [32, Chap. 4.,
Example 12] can be used to explain why the commutativity program Eq. (2)
fails if we allow arbitrary measures as programs.

Let lebesgue be the Lebesgue measure on R, and let countingR be the counting
measure on R. Recall that countingR(U) is the cardinality of U if U is finite, and
∞ if U is infinite. Then

∫

R

lebesgue(dr)
∫

R

countingR(ds) [r = s] =
∫

R

lebesgue(dr) 1 = ∞
∫

R

countingR(ds)
∫

R

lebesgue(dr) [r = s] =
∫

R

countingR(ds) 0 = 0

So, by Proposition 5, the counting measure on R is not s-finite, and hence it is
not definable in our language. (This is in contrast to the counting measure on N,
see (13).)

Just for this subsection, we suppose that we can add the counting measure
on R to our language as a term constructor
p countingR : R and that we can
extend the semantics to accommodate it. (This would require some extension of
Lemma 3.) The Lebesgue measure is already definable in our language (10). In
this extended language we would have

[[
p let r = lebesgue in let s = countingR in [r = s] : bool]](),{true} = ∞
[[
p let s = countingR in let r = lebesgue in [r = s] : bool]](),{true} = 0.

So if such as language extension was possible, we would not have commutativity.

5.3 Variations on s-Finiteness

Infinite versions of Fubini/Tonelli theorems are often stated for σ-finite measures.
Recall that a measure μ on X is σ − finite if X =

⊎∞
i=1 Ui with each Ui ∈ ΣX

and each μ(Ui) finite. The restriction to σ-finite measures is too strong for our
purposes. For example, although the Lebesgue measure (lebesgue) is σ-finite, and
definable (10), the measure [[
p letx = lebesgue in () : 1]] is the infinite measure on
the one-point space, which is not σ-finite. This illustrates the difference between
σ-finite and s-finite measures:

Commutative Semantics for Probabilistic Programming 873

Proposition 7. A measure is s-finite if and only if it is a pushforward of a
σ-finite measure.

Proof. From left to right, let μ =
∑∞

i=1 μi be a measure on X with each
μi finite. Then we can form a σ-finite measure ν on N × X with ν(U) =∑∞

i=1 μi({x | (i, x) ∈ U}). The original measure μ is the pushforward of ν along
the projection N × X → X.

From right to left, let ν be a σ-finite measure on X =
⊎∞

i=1 Ui with each
restricted measure ν(Ui) finite. Let f : X → Y be measurable. For i ∈ N, let
μi(V) = ν({x ∈ Ui | f(x) ∈ V }). Then each μi is a finite measure on Y and∑∞

i=1 μi is the pushforward of ν along f , as required. (See also [9, Lemma 8.6].)

However, this does not mean that s-finite kernels (Definition 2) are ‘just’ kernels
whose images are pushforwards of σ-finite measures. In the proof of commuta-
tivity, we did only need kernels k : X � Y such that k(x) is an s-finite measure
for all x ∈ X. This condition is implied by the definition of s-finite kernel (Defin-
ition 2) but the definition of s-finite kernel seems to be strictly stronger because
of the uniformity in the definition. (This is not known for sure; see also the dis-
cussion about σ-finite kernels in [32, Sect. 4.10].) The reason we use the notion of
s-finite kernel, rather than this apparently weaker notion, is that Lemma3 (and
hence the well-defined semantics of let) appears to require the uniformity in the
definition of finite and s-finite kernels. In brief, the stronger notion of s-finite
kernel provides a compositional semantics giving s-finite measures.

6 Concluding Remarks

6.1 Related Work on Commutativity for Probabilistic Programs

Work Using Finite Kernels. Several other authors have given a semantics for
probabilistic programs using kernels. Subprobability kernels and finite measures
already appear in Kozen’s work on probabilistic programming [21]. Ramsey and
Pfeffer [34] focus on a language like ours but without score or normalize; they give
a semantics in terms of probability kernels. The measure-transformer-semantics
of Börgstrom et al. [3] incorporates observations by moving to finite kernels;
their semantics is similar to ours (Sect. 3.2), but they are able to make do with
finite kernels by considering a very limited language. In the more recent opera-
tional semantics by Börgstrom et al. [4], problems of commutativity are avoided
by requiring scores to be less than 1, so that all the measures are subproba-
bility measures. Jacobs and Zanasi [18] also impose this restriction to make a
connection with an elegant mathematical construction. With discrete countable
distributions, this is fine because density functions and likelihoods lie below 1.
But when dealing with continuous distributions, it is artificial to restrict to
scores below 1, since the likelihood of a continuous distribution may just as well
lie above 1 as below it. For example, the subprobability semantics could not
handle the example in Sect. 1.1. This is not merely a matter of scaling, because
density functions are sometimes unbounded, as shown in beta(0.5, 0.5) on the
right. Our results here show that, by using s-finite kernels, one can consider
arbitrary likelihoods without penalty.

874 S. Staton

Verification Conditions for Commutativity. Shan
and Ramsey [38] use a similar semantics to ours to
justify their disintegration program transformation.
They interpret a term Γ
p t : A as a measurable
function into a monad M of measures, [[t]]SR : [[Γ]] →
M(A), which actually amounts to the same thing as a
kernel. However, there is a problem with the seman-
tics in this style: we do not know a proof for Lemma3
without the s-finiteness restriction. In other words, we do not know whether
the monad of all measures M is a strong monad. A strength is needed to give
a semantics for the let construction. So it is not clear whether the semantics
is well-defined. Even if M is strong, it is certainly not commutative, as we
have discussed in Sect. 5.2, a point also emphasized by Ramsey [35]. Shan and
Ramsey [38] regain commutativity by imposing additional verification condi-
tions. Our results here show that these conditions are always satisfied because
all definable programs are s-finite kernels and hence commutative.

Contextual Equivalence. Very recently, Culpepper and Cobb [6] have proposed an
operational notion of contextual equivalence for a language with arbitrary like-
lihoods, and shown that this supports commutativity. The relationship between
their argument and s-finite kernels remains to be investigated.

Sampling Semantics. An alternative approach to denotational semantics for
probabilistic programs is based on interpreting an expression Γ
p t : A as a
probability kernel [[t]]′ : [[Γ]] � ([0,∞) × [[A]]), so that [[t]]′(γ) is a probability
measure on pairs (r, x) of a result x and a weight r. In brief, the probability mea-
sure comes from sampling priors, and the weight comes from scoring likelihoods
of observations. Börgstrom et al. [4] call this a sampling semantics by contrast
with the distribution semantics that we have considered here. This sampling
semantics, which has a more intensional flavour and is closer to an operational
intuition, is also considered by Ścibor et al. [37] and Staton et al. [43], as well
as Doberkat [7]. The two methods are related because every probability kernel
k : X � ([0,∞) × Y) induces a measure kernel k̄ : X � Y by summing over the
possible scores:

k̄(x,U) def=
∫

[0,∞)×U

k(x,d(r, y)) r (14)

An advantage to the sampling semantics is that it is clearly commutative,
because it is based on a commutative monad (P ([0,∞)×(−))), built by combin-
ing the commutative Giry monad P and the commutative monoid monad trans-
former. However, the sampling semantics does not validate many of the semantic
equations in Sect. 4.1: importance sampling, conjugate priors, and resampling are
only sound in the sampling semantics if we wrap the programs in normalize(. . .).
(See e.g. [43].) This makes it difficult to justify applying program transformations
compositionally. The point of this paper is that we can verify the semantic equa-
tions in Sect. 4.1 directly, while retaining commutativity, by using the measure
based (distributional) semantics.

Commutative Semantics for Probabilistic Programming 875

As an aside we note that the probability kernels X � ([0,∞) × Y) used in
the sampling semantics are closely related to the s-finite kernels advocated in
this paper:

Proposition 8. A kernel l : X � Y is s-finite if and only if there exists a
probability kernel k : X � ([0,∞) × Y) and l(x,U) =

∫
[0,∞)×U

k(x,d(r, y)) r.

Proof (notes). We focus on the case where X = [[A]] and Y = [[B]]. From left to
right: build a probability kernel from an s-finite kernel by first understanding
it as a probabilistic program (via Theorem6) and then using the denotational
semantics in [43]. From right to left: given a probability kernel k : [[A]] � ([0,∞)×
[[B]]), we build an s-finite kernel

[[x : A
p let (r, y) = sample(k(x)) in score(r); return(y) : B]] : [[A]] � [[B]].

Valuations Versus Measures. Some authors advocate using valuations on topo-
logical spaces instead of measures on measurable spaces. This appears to rule
out the problematic examples, such as the counting measure on R. Indeed,
Vickers [45] has shown that a monad of valuations on locales is commutative.
This suggests a constructive or topological model of probabilistic programming
(see [8,15]) but a potential obstacle is that conditioning is not always com-
putable [1].

6.2 Related Work on Commutativity More Generally

Multicategories and Data Flow Graphs. An early discussion of commuta-
tivity is in Lambek’s work on deductive systems and categories [22]. A judgement
x1 : A1, . . . , xn : An
 t : B is interpreted as a multimorphism (A1 . . . An) → B.
These could be drawn as triangles:

(This hints at a link with the graphical ideas underlying several probabilis-
tic programming languages e.g. Stan [40].) Alongside requiring associativity of
composition, Lambek requires commutativity:

which matches with our commutativity condition (2). (See also [42].) In this dia-
grammatic notation, commutativity says that the semantics is preserved under
topological transformations. Without commutativity, one would need extra con-
trol flow wires to give a topological description of what rewritings are accept-
able (e.g. [19,28]). Our main technical results (Lemma 3 and Proposition 5) can
be phrased as follows:

876 S. Staton

Measurable spaces and s-finite kernels X1 × · · · × Xn � Y form a multi-
category.

Monoidal Categories, Monads and Arrows. There is a tight connection
between multicategories and monoidal categories [13,24,42]. Our main technical
results (Lemma 3 and Proposition 5) together with the basic facts in Sect. 4.2
can be phrased as follows:

Consider the category whose objects are measurable spaces and morphisms
are s-finite kernels. The cartesian product of spaces extends to a monoidal
structure which distributes over the coproduct structure.

From this point of view, the key step is that given s-finite kernels k : X1 � Y1

and k2 : X2 � Y2, we can form (k1 ⊗ k2) : X1 × X2 � Y1 × Y2, with

(k1 ⊗ k2)((x1, x2), U) =
∫

X1

k1(x1,dy1)
∫

X2

k2(x2,dy2)[(y1, y2) ∈ U]

and the interchange law holds, in particular, (k1 ⊗ id) ◦ (id ⊗ k2) = (id ⊗ k2) ◦
(k1 ⊗ id).

One way of building monoidal categories is as Kleisli categories for commu-
tative monads. For example, the monoidal category of probability kernels is the
Kleisli category for the Giry monad [10]. However, we conjecture that s-finite
kernels do not form a Kleisli category for a commutative monad on the category
of measurable spaces. One could form a space Msfin(Y) of s-finite measures on
a given space Y , but, as discussed in Sect. 5.3, it is unlikely that every mea-
surable function X → Msfin(Y) is an s-finite kernel in general, because of the
uniformity in the definition (Definition 2). This makes it difficult to ascertain
whether Msfin is a strong commutative monad. Having a monad would give us a
slightly-higher-order type constructor T (A) and the rules

Γ
p t : A
Γ
d thunk(t) : T (A)

Γ
d t : T (A)
Γ
p force(t) : A

allowing us to thunk (suspend, freeze) a probabilistic computation and then force
(resume, run) it again [25,29]. The rules are reminiscent of, but not the same
as, the rules for normalize and sample. Although monads are a convenient way of
building a semantics for programming languages, they are not essential for first
order languages such as the language in this paper.

As a technical aside we recall that Power, Hughes and others have eschewed
monads and given categorical semantics for first order languages in terms of
Freyd categories [25] or Arrows [16] (see also [2,17,41]), and the idea of struc-
turing the finite kernels as an Arrow already appears in the work of Börgstrom et
al. [3] (see also [36,44]). Our semantics based on s-finite kernels forms a ‘count-
ably distributive commutative Freyd category’, which is to say that the identity-
on-objects functor

(
measurable spaces

& measurable functions

)

−→
(

measurable spaces
& s-finite kernels

)

Commutative Semantics for Probabilistic Programming 877

preserves countable sums and is monoidal. In fact every countably distributive
commutative Freyd category C → D corresponds to a commutative monad, not
on the category C but on the category of countable-product-preserving functors
Cop → Set (e.g. [33,43]). This functor category is cartesian closed, and so it is
also a fairly canonical semantics for higher order programs. (For a more concrete
variant, see also [14].)

6.3 Summary

We have given a denotational semantics for a probabilistic programming lan-
guage using s-finite kernels (Sect. 3.2). Compositionality relied on a technical
lemma (Lemma 3). This semantic model supports reasoning based on statisti-
cal techniques (Sect. 4.1), such as conjugate priors, as well as basic equational
reasoning (Sect. 4.2), such as commutativity (Theorem 4). The model is actu-
ally completely described by the syntax, according to our full definability theo-
rem (Theorem 6).

Acknowledgements. I am profoundly grateful to my coauthors on [43] for many
discussions about the problems and examples in this subject (C. Heunen, O. Kammar,
F. Wood, H. Yang). The MFPS 2016 special session on Probabilistic Programming
was also illuminating and it was helpful to discuss these issues with the participants
(J Börgstrom, D Roy, CC Shan and others). Thanks too to Adam Ścibior and the
ESOP reviewers.

Research supported by a Royal Society University Research Fellowship.

References

1. Ackerman, N.L., Freer, C.E., Roy, D.M.: Noncomputable conditional distributions.
In: Proceedings of the LICS 2011 (2011)

2. Atkey, R.: What is a categorical model of arrows? In: Proceedings of the MSFP
2008 (2008)

3. Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., van Gael, J.: Measure
transformer semantics for Bayesian machine learning. LMCS 9(3), 11 (2013)

4. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: Proceedings of the ICFP (2016)

5. Carette, J., Shan, C.-C.: Simplifying probabilistic programs using computer alge-
bra. In: Gavanelli, M., Reppy, J. (eds.) PADL 2016. LNCS, vol. 9585, pp. 135–152.
Springer, Cham (2016). doi:10.1007/978-3-319-28228-2 9

6. Culpepper, R., Cobb, A.: Contextual equivalence for probabilistic programs with
continuous random variables and scoring. In: Proceedings of the ESOP 2017 (2017,
to appear)

7. Doberkat, E.E.: Stochastic Relations: Foundations for Markov Transition Systems.
Chapman & Hall, London (2007)

8. Faissole, F., Spitters, B.: Synthetic topology in homotopy type theory for proba-
bilistic programming. In: Proceedings of the PPS 2017 (2017)

9. Getoor, R.K.: Excessive Measures. Birkhäuser (1990)
10. Giry, M.: A categorical approach to probability theory. Categorical Aspects Topol-

ogy Anal. 915, 68–85 (1982)

http://dx.doi.org/10.1007/978-3-319-28228-2_9

878 S. Staton

11. Goodman, N., Mansinghka, V., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: UAI (2008)

12. Haghverdi, E.: A categorical approach to linear logic, geometry of proofs and full
completeness. Ph.D. thesis, Ottawa (2000)

13. Hermida, C.: Representable multicategories. Adv. Math. 151, 164–225 (2000)
14. Heunen, C., Kammar, O., Staton, S., Yang, H.: A convenient category for higher-

order probability theory (2017). arXiv:1701.02547
15. Huang, D., Morrisett, G.: An application of computable distributions to the seman-

tics of probabilistic programs: part 2. In: Proceedings of the PPS 2017 (2017)
16. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1–3), 67–

111 (2000)
17. Jacobs, B., Heunen, C., Hasuo, I.: Categorical semantics for arrows. J. Funct.

Program. 19(3–4), 403–438 (2009)
18. Jacobs, B., Zanasi, F.: A predicate/state transformer semantics for Bayesian learn-

ing. In: Proceedings of the MFPS 2016 (2016)
19. Jeffrey, A.: Premonoidal categories and a graphical view of programs. Unpublished

(1997)
20. Kallenberg, O.: Stationary and invariant densities and disintegration kernels.

Probab. Theory Relat. Fields 160, 567–592 (2014)
21. Kozen, D.: Semantics of probablistic programs. J. Comput. Syst. Sci. 22, 328–350

(1981)
22. Lambek, J.: Deductive systems and categories II. In: Hilton, P.J. (ed.) Category

Theory, Homology Theory and Their Applications. LNM, vol. 86, pp. 76–122.
Springer, Heidelberg (1969)

23. Last, G., Penrose, M.: Lectures on the Poisson process. CUP (2016)
24. Leinster, T.: Higher operads, higher categories. CUP (2004)
25. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-

gramming languages. Inf. Comput. 185(2), 182–210 (2003)
26. Mansinghka, V.K., Selsam, D., Perov, Y.N.: Venture: a higher-order probabilistic

programming platform with programmable inference (2014). http://arxiv.org/abs/
1404.0099

27. Mardare, R., Panangaden, P., Plotkin, G.: Quantitative algebraic reasoning. In:
Proceedings of the LICS 2016 (2016)

28. Møgelberg, R.E., Staton, S.: Linear usage of state. Logical Methods Comput. Sci.
10 (2014)

29. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
30. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic infer-

ence by program transformation in Hakaru (system description). In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 62–79. Springer, Cham (2016).
doi:10.1007/978-3-319-29604-3 5

31. Paige, B., Wood, F.: A compilation target for probabilistic programming languages.
In: ICML (2014)

32. Pollard, D.: A user’s guide to measure theoretic probability. CUP (2002)
33. Power, J.: Generic models for computational effects. TCS 364(2), 254–269 (2006)
34. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability

distributions. In: POPL (2002)
35. Ramsey, N.: All you need is the monad.. what monad was that again? In: PPS

Workshop (2016)
36. Scherrer, C.: An exponential family basis for probabilistic programming. In: Pro-

ceedings of the PPS 2017 (2017)

http://arxiv.org/abs/1701.02547
http://arxiv.org/abs/1404.0099
http://arxiv.org/abs/1404.0099
http://dx.doi.org/10.1007/978-3-319-29604-3_5

Commutative Semantics for Probabilistic Programming 879

37. Ścibor, A., Ghahramani, Z., Gordon, A.D.: Practical probabilistic programming
with monads. In: Proceedings of the Haskell Symposium. ACM (2015)

38. Shan, C.C., Ramsey, N.: Symbolic Bayesian inference by symbolic disintegration
(2016)

39. Sharpe, M.: General Theory of Markov Processes. Academic Press, Cambridge
(1988)

40. Stan Development Team: Stan: A C++ library for probability and sampling, ver-
sion 2.5.0 (2014). http://mc-stan.org/

41. Staton, S.: Freyd categories are enriched Lawvere theories. In: Algebra, Coalgebra
and Topology, ENTCS, vol. 303 (2013)

42. Staton, S., Levy, P.: Universal properties for impure programming languages. In:
Proceedings of the POPL 2013 (2013)

43. Staton, S., Yang, H., Heunen, C., Kammar, O., Wood, F.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: Proceedings of the LICS 2016 (2016)

44. Toronto, N., McCarthy, J., Van Horn, D.: Running probabilistic programs back-
wards. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 53–79. Springer, Hei-
delberg (2015). doi:10.1007/978-3-662-46669-8 3

45. Vickers, S.: A monad of valuation locales available from the author’s website (2011)
46. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic

programming inference. In: AISTATS (2014)

http://mc-stan.org/
http://dx.doi.org/10.1007/978-3-662-46669-8_3

Conditional Dyck-CFL Reachability Analysis
for Complete and Efficient Library

Summarization

Hao Tang1, Di Wang1, Yingfei Xiong1(B), Lingming Zhang2, Xiaoyin Wang3,
and Lu Zhang1

1 Key Laboratory of High Confidence Software Technologies,
Ministry of Education, Peking University, Beijing, China

{tanghaoth90,wayne.wangdi,xiongyf,zhanglucs}@pku.edu.cn
2 Department of Computer Science, University of Texas at Dallas,

Richardson, TX, USA
lingming.zhang@utdallas.edu

3 Department of Computer Science, University of Texas at San Antonio,
San Antonio, TX, USA
xiaoyin.wang@utsa.edu

Abstract. Library summarization is an effective way to accelerate the
analysis of client code. However, information about the client is unknown
at the library summarization, preventing complete summarization of the
library. An existing approach utilizes tree-adjoining languages (TALs) to
provide conditional summaries, enabling the summarization of a library
under certain premises. However, the use of TAL imposes several prob-
lems, preventing a complete summarization of a library and reducing the
efficiency of the analysis.

In this paper we propose a new conditional summarization technique
based on the context-free language (CFL) reachability analysis. Our tech-
nique overcomes the above two limitations of TAL, and is more accessible
since CFL reachability is much more efficient and widely-used than TAL
reachability. Furthermore, to overcome the high cost from premise com-
bination, we also provide a technique to confine the number of premises
while maintaining full summarization of the library.

We empirically compared our approach with the state-of-art TAL con-
ditional summarization technique on 12 Java benchmark subjects from
the SPECjvm2008 benchmark suite. The results demonstrate that our
approach is able to significantly outperform TAL on both efficiency and
precision.

1 Introduction

Building a summary for a library is a key technique for scaling static analysis of
the library’s client programs [3,7,17]. Such a summary can significantly boost
client analysis, since client analysis can directly utilize the summary without
further analyzing the library. However, in most analysis, it is not possible to
treat library code as a complete program during the summarization, because

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 880–908, 2017.
DOI: 10.1007/978-3-662-54434-1 33

Conditional Dyck-CFL Reachability Analysis 881

many components required for the analysis are unknown without the presence
of the client. For example, when a library calls a virtual method, the actual
callee may depend on the client code. Furthermore, if the callee is a call-back
method, the body of the callee also depends on the client code.

Typical techniques (e.g., Rountev et al. [31,33], Lattner et al. [13], Madhavan
et al. [17], and Arzt et al. [1]) for dealing with unknown in library summarization
are based on distinguishing the known part from the unknown part, and building
summaries only for the known part. These techniques are based on the principle
of component level analysis (CLA) [31,33]. However, since the unknown compo-
nents are often required in critical steps of the analysis, the summaries we can
build for libraries are significantly limited. For example, in Java, any method
that is not declared as final or private can be overridden by a sub class, and thus
we cannot statically determine the target of most calls. As a result, in a major
portion of a library, we can build summaries for only intra-procedural analysis,
and postpone the more expensive inter-procedure analysis to the client analysis.
We refer to these techniques as unconditional summarization, in contrast to the
conditional summarization techniques discussed below.

To overcome the limitation in unconditional summarization, a recent app-
roach by Tang et al. [39] provides conditional summaries for data dependency
analysis, based on the tree-adjoining language (TAL) reachability analysis. We
shall refer to this technique as TALCRA (TAL Conditional Reachability Analy-
sis). The basic idea is to assume all possibilities of each unknown component,
where each possibility is called a premise, and pre-compute a conditional sum-
mary for all possible clients. When the client code is available, TALCRA obtains
the previously unknown component and instantiate the conditional summary
into an unconditional summary. In this way, TALCRA can obtain a more com-
plete summary than unconditional summarization techniques can.

However, TALCRA has several limitations. First, by nature, TAL reachability
analysis may assume premises that would not exist, and thus is computationally
more expensive than other analysis techniques such as context-free language
(CFL) reachability [27]. Second, due to the expressiveness of TAL reachability,
there can be only one premise for each conditional relation, and the premise
cannot cross method boundaries. Thus, in the cases where there are more than
one components, or the unknown component crosses multiple methods, TALCRA
cannot build a complete summary for the library.

To understand these problems concretely, let us consider an example program
in Fig. 1a. A dependency graph for this program is shown in Fig. 1b. In this figure,
nodes are variables and edges are flows-to relations between the variables, i.e.,
the inverse of dependency relations. The solid nodes and edges can be deduced
from the library alone, while the hollow nodes and dashed edges require client
code. Using unconditional summarization techniques, we are able to infer only
the following relations:

apub flows to bpub; (1)
cpub flows to dpub. (2)

882 H. Tang et al.

Fig. 1. A data dependency example

Using TALCRA, we can further infer the following conditional relations:

apub flows to cpub if bpub flows to cpub; (3)
cpub flows to epub if dpub flows to epub. (4)

However, TALCRA cannot infer the following two relations, both needed to fully
summarize the library.

apub flows to epub if bpub flows to cpub and dpub flows to epub, because
TAL summarization does not support more than one premises. (5)

cpub flows to epub if line 8 calls the method defined at line 14, because
TAL summarization does not allow premises to cross method bound-
aries, and these premises are in fact two edges between nodes in different

methods (dpub
{8−→x3m3 and x3m3

}8−→epub);

(6)

As a result, to build a complete summary of the library, TALCRA has to make
the most conservative assumption, possibly reducing the precision of the analysis.
For example, to build a summary for the library, we can use class hierarchy
analysis (CHA) [5] to generate unconditional virtual call edges. The result from
CHA is guaranteed to cover any client, but is not precise for the analysis of one
client, where we can use more precise control flow analysis.

Conditional Dyck-CFL Reachability Analysis 883

Also, TALCRA infers unnecessary conditional relations during library sum-
marization, such as the following one. This relation is useless because its premise
can never be satisfied, but TAL cannot utilize this fact and may further deduce
more useless relations based on this. This is because TAL reachability analysis
views a conditional reachability relation from the known component by nature,
and would treat any two separated paths as potentially connectable.

dpub flows to epub if x4m4 flows to x5m4; (7)

In this paper, we propose a novel approach to overcoming the limitations
in TALCRA, called ConCRA (Conditional Dyck-CFL Reachability Analysis).
Unlike TALCRA that relies on expensive TAL reachability analysis, our app-
roach is built upon the well-known Dyck-context-free-language (Dyck-CFL)
reachability analysis. CFL reachability analysis [27] is known to be applicable
to a large class of program analysis problems, and the Dyck-CFL reachability
problem is known to be able to express “almost all the applications of CFL reach-
ability” [10]. Therefore, our approach is applicable to a large class of program
analysis problems besides data dependency analysis.

The key idea of our approach is to attach premises to standard edges, and
analyze using standard CFL rules by assuming the existence of premises. In
this way, we can overcome the limitations in TALCRA. First, as we start from
the unknown component, in contrast to TALCRA that starts from the known
component, we can enumerate only the premises that may exist in some clients,
avoiding the high computation cost of producing unnecessary conditional reach-
ability relations. Second, as the premises are basically an attachment, there is no
particular constraint over the premises and multiple premises per one relation is
also supported. In the above example, our approach can produce the following
conditional relations, which completely summarize the flows-to behavior in the
library.

apub flows to epub if bpub flows to cpub and dpub flows to epub. (8)

apub flows to epub if bpub flows to cpub and line 8 calls the method defined

at line 14 (i.e., edges dpub
{8−→x3m3 and x3m3

}8−→epub exist).
(9)

However, allowing too many premises in one conditional relation may lead to
too many conditional relations due to the combinatorial effect of the premises.
We further propose to confine the number of premises in a reachability relation by
introducing bridging edges. In this way, our approach can still achieve complete
summaries with at most k premises in a relation. We denote the approach with
at most k premises as ConCRA-k and the approach with any number of premises
as ConCRA-f.

To evaluate the effectiveness and efficiency of ConCRA, we implemented a
context-sensitive, SSA-based, and field-insensitive data dependency analysis tool
based on ConCRA. In particular, our approach was empirically compared with
TALCRA technique on 12 Java benchmark subjects from the SPECjvm2008

884 H. Tang et al.

benchmark suite. Because of the configurable nature of our approach, we also
compare ConCRA-f and ConCRA-k with k ∈ {1, 5}.

The evaluation has several findings. (1) ConCRA is able to significantly out-
perform TALCRA, with up to 1.93X speedup for the library analysis and 5.04X
speedup for the client analysis (46.45X if compared to standard CFL technique).
(2) When computing complete summaries, ConCRA is up to 24.7% (100% vs.
80.2%) more precise than TALCRA, where the latter relies on CHA to compute
control flow analysis on library when the client information is not available.
(3) By balancing the library summarization time and the client analysis time,
ConCRA-1 seems to be the overall best configuration for the dependency analysis
used in our evaluation.

To sum up, the paper makes the following main contributions:

– A general extension to the well-known Dyck-CFL reachability analysis for
conditional reachability analysis, providing better efficiency and more com-
plete library summarization than the state-of-the-art TALCRA approach.

– An efficient technique for confining the number of premises to avoid combi-
natorial explosion of premises.

– An empirical evaluation demonstrating the superiority of our techniques over
the state-of-the-art TALCRA approach.

We organize the rest of this paper as follows. Section 2 presents the tech-
nical background. Section 3 presents our approach to conditional reachability
analysis. Section 4 presents an experimental evaluation of the proposed app-
roach. Section 5 discusses deeper issues of our research. Section 6 discusses exist-
ing research related to ours. Section 7 concludes this paper.

2 Background

Our approach is designed for the Dyck-CFL reachability problem. CFL reach-
ability is a generalization of a large class of program analysis problems. CFL
reachability concerns about the reachability between nodes on a graph. The
nodes of the graph are usually the values under analysis at different program
points, and the edges usually show possible reachability or dependencies between
values. To increase the precision of the analysis, a CFL is used to confine the
reachability. The edges are labelled with members of an alphabet Σ, and a node
is considered to be CFL reachable to another node if and only if the labels on a
path between the two nodes form a word in this language.

A frequently used CFL is the Dyck language, which is defined by the following
grammars.

S → {i S }i | S S | e | ε

L → L L | S | {i
R → R R | S | }i
D → R D | D L | S

Conditional Dyck-CFL Reachability Analysis 885

Basically, the Dyck language consists of a family of parentheses, which must
be matched when paired. In the above definition, {i and }i are a family of
parenthesis, and e is a terminal to be put on edges that are not parentheses.
According to the nature of the problem, the start symbol could be one of S,L,R
or D, which allows no unpaired parentheses, only unpaired left parentheses, only
unpaired right parentheses, or both.

The Dyck language captures the call-return relationship between procedures.
When a procedure is called, the edges from the caller to the callee are labelled
with {i, where i is the identifier of this call site. When the callee returns, the
edges from the callee to the caller are labelled with }i. An example of Dyck-CFL
reachability analysis is the data dependency analysis that we have seen in Sect. 1.

The CFL reachability problem can be solved by a dynamic programming
algorithm that adds edges of nonterminals to the graph. The context free gram-
mar is first normalized so that the right hand side of each production has at
most two symbols. For example, S → {i S }i is normalized into S → {i Pi

and Pi → S }i. Then the three rules in Fig. 2 are applied on the graph to add
new edges on the graph. The solid lines are existing edges and the dotted lines
are the added edges. The three rules can be exhaustively applied with a proper
worklist algorithm to achieve a complexity of O(l3n3) where l is the number of
nonterminal symbols and n is the number of nodes in the graph. When all rules
have been thoroughly applied, the reachability between two nodes is equal to
the existence of a direct edge with the start symbol between the two nodes.

Fig. 2. Rules for solving a CFL reachability problem

3 Approach

As mentioned in the introduction, our approach is based on conditional reacha-
bility. The core concept to implement conditional reachability is the conditional
edge, which is a special edge whose existence depends on the existence of a set of
other edges (known as premises). As a result, our summary for a library is a set
of conditional edges, where the premises capture the potential reachability built
by client code, and the conditional edges themselves capture the reachability
between the boundary nodes of the library. When the client code is available,
we can instantiate the conditional edges by analyzing the client code, which
directly gives us the reachability between the boundary nodes of the library
without analyzing the library code.

In the following sub-sections, we first present the basic definitions, then show
how we analyze the client with the conditional edges, and finally show our

886 H. Tang et al.

two algorithms, i.e., ConCRA-f and ConCRA-k. The data-dependency graph
in Fig. 1b will be used to make our description more clearly.

3.1 Definitions

Suppose an alphabet Σ containing all symbols in a Dyck language. We start by
defining general program graphs.

Definition 1 (Program Graph). A program graph G is a pair (V,E) where
V is a set of nodes, E is a set of directed edges between the nodes in V , labelled
with the symbols in Σ. We use G.V and G.E to denote the nodes and edges of
G, respectively. We use s

A−→t to denote an edge e from s to t with label A, and
use e.src, e.tgt and e.tag to denote s, t, A.

Since our approach summarizes library code for client analysis, we need to
define library graphs. The difference between a library graph and a program
graph is that a library graph has a set of boundary nodes for interacting with
the clients, and there are a set of premises that may be instantiated by a client.

Definition 2 (Library Graph). A library graph G is a program graph (V,E)
with the following additional components.
· Vinput(Input to library code): The nodes in G.V that can be connected from a
client node via a {i-edge (e.g., apub).

· Voutput(Output from library code): The nodes in G.V that can connect to a
client node via a }i-edge (e.g., epub).

· Vcall(Input to call-backs). The nodes in G.V that can be connected to a client
node via a {i-edge (e.g., bpub, dpub).

· Vreturn(Output from call-backs). The nodes in G.V that can be connected from
a client node via a }i-edge (e.g., cpub, epub).

· P (Premises). Premises are edges that can potentially be created using the infor-
mation from a client, P ∩ G.E = ∅.
We call the set of nodes Vinput ∪ Voutput ∪ Vcall ∪ Vreturn boundary nodes.

Correspondingly, the rest of the nodes are called inner nodes. We further use
Ventries = Vinput∪Vreturn to denote all incoming boundary nodes and use Vexits =
Voutput ∪ Vcall to denote all outgoing boundary nodes.

When the client code is available, the part of the graph representing the
client code is added to the library graph, forming an application graph.

Definition 3 (Application Graph). Let G be a library graph. Program graph
G′ is an application graph using G if and only if G′ satisfies the following
constraints:

1. G.V ⊂ G′.V ∧ G.E ⊆ G′.E. We call G.V library nodes, denoted as
G′.Vlib, and the nodes in G′.V − G.V as client nodes, denoted as G′.Vclt .

2. Any edge s
A−→t in G′.E − G.E satisfies one of the following conditions.

(1) Edges between client nodes. s ∈ G′.Vclt ∧ t ∈ G′.Vclt .

Conditional Dyck-CFL Reachability Analysis 887

(2) Edges between library nodes. s ∈ G.V , t ∈ G.V , and s
A−→t ∈ G.P .

(3) Input edges to the library. s ∈ G′.Vclt , t ∈ G.Vinput , A is {i for some
i, and any edge labelled with }i is an output edge from the library (e.g.,

zmain
{27−−→apub).

(4) Output edges from the library. s ∈ G.Voutput , t ∈ G′.Vclt , A is }i for
some i, and any edge labelled with {i is an input edge to the library (e.g.,

epub
}27−−→z1main).

(5) Input edges to call-backs. s ∈ G.Vcall , t ∈ G′.Vclt , A is {i for some i, and

any edge labelled with }i is an output edge from call-backs (e.g., bpub
{5−→x2m2).

(6) Output edges from call-backs. s ∈ G′.Vclt , t ∈ G.Vreturn , A is }i for
some i, and any edge labelled with {i is an input edge to call-backs (e.g.,

x2m2
}5−→cpub).

3. For an input edge s1
{i−→t1 to call-backs and an output edge s2

}i−→t2 from
call-backs, there is a premise s1

S−→t2 ∈ G.P .

The premises P should satisfy constraints 2(2) and 3. Let us consider data-
dependency library graphs. We notice that only values on virtual call sites (e.g.,
bpub, cpub, dpub, epub) are related to these constraints. For each parameter and
the return value of a virtual call site, we create a premise with label S between
them (e.g., bpub

S−→cpub, dpub
S−→epub) to satisfy constraint 3. For each virtual call

site and any of its potential targets, we create premises between their parameters

and return values (e.g., dpub
{8−→x3m3, x3m3

}8−→epub) to satisfy constraint 2(2).
We refer to these premises as call-back premises and virtual-call premises.

Since we are only concerned with the reachability between client nodes, we
only need to summarize the reachability between the boundary nodes. As a
result, the conditional reachability is defined as the reachability between two
boundary nodes under the condition that some pairs of boundary nodes are
reachable. The conditional edge is the key concept to implement conditional
reachability.

Definition 4 (Conditional Edge). A conditional edge e is a four-tuple, (A,

X, s, t), denoted as s
A|X−−−→ t, where A is a nonterminal, X is a subset of the

premises P .

Given a conditional edge s
A|X−−−→ t, when all edges in X are present on the graph,

we consider the premises of this conditional edge as satisfied, and instanti-
ate this conditional edge by putting a normal edge s

A−→t on the graph (e.g.,

apub
S|X−−→ epub (X={bpub

S−→cpub,dpub
{8−→x3m3,x3m3

}8−→epub})). Note that the

premises of a conditional edge can also be an empty set, e.g., s
A|∅−−→ t. In such

cases a conditional edge is the same as a normal unconditional edge. In this
paper, we do not distinguish a normal edge and a conditional edge with zero

premise, and refer to them both as unconditional edges (e.g., apub
S|∅−−→ bpub and

apub
S−→bpub are the same unconditional edge).

888 H. Tang et al.

With conditional edges, we can summarize a library as a set of conditional
edges, where the premises of these edges represent the potential reachability
relationships between the boundary nodes.

In some cases, two conditional edges may have the subsumption relationship.

Definition 5 (Edge Subsumption). (s1
A|X−−−→ t1)
 (s2

B|Y−−−→ t2) if and only
if A = B, X ⊆ Y , s1 = s2 and t1 = t2.

This represents that the latter edge requires additional premises compared
with the former edge, and thus is completely subsumed by the former edge and
can be removed from the graph.

3.2 Analyzing Libraries with ConCRA-f

We summarize the library by adding conditional edges to the graph in a way
similar to the standard CFL reachability analysis. Figure 3 depicts the rules for
generating conditional edges. Initially, the algorithm properly handles G.E and
G.P as initial conditional edges. The algorithm regards each original edge s

A−→t

in G.E as s
A|∅−−→ t. The additional rule (d) handles each edge s

A−→t in G.P by

adding s
A|

{s
A−→t}−−−−−−→ t (a conditional edge that depends on exactly the same edge)

to the graph. These initial conditional edges with zero or one premise are served
as the starting points to generate conditional edges with more premises. Rules
(a), (b), and (c) correspond to the three standard rules in Fig. 2 to generate a

conditional edge s
A|X−−−→ t. The algorithm handles A, s, and t by the standard

rules. The only difference is that the algorithm sets X as the union of the premises
of the concatenated conditional edges. Rules (a), (b), and (c) are the cases for
zero, one, and two concatenated conditional edges, respectively. Note that the
algorithm does not limit the number of premises in a conditional edge. Therefore,
we denote the algorithm as ConCRA-f (The “f” means “full”).

Fig. 3. Rules for building conditional edges in ConCRA-f

Conditional Dyck-CFL Reachability Analysis 889

We exhaustively apply these rules until no more edges can be added. Then
we locate each (un)conditional edge connecting two boundary nodes, i.e., e.src
and e.tgt are both in Ventries ∪Vexits . The set of such edges is the summary of the
library. In this way we capture all reachability relationships between boundary
nodes under all possible premises.

While this basic approach works, we can further optimize it in the following
ways:

– In complex situations, two conditional edges e1 and e2, where e1 subsumes e2,
may both be added to the graph. In such cases, we can safely remove e2 from
the graph.

– We can sort the edges in the worklist by the number of premises, so that the
edges with fewer premises are created first. In this way we can ensure the
subsumed edges are removed once created.

These optimizations lead to Algorithm 1. Algorithm 1 is a worklist algorithm
that implements the four rules in Fig. 3 with the optimizations mentioned above.
This algorithm maintains a worklist of edges W , iteratively adds each edge in
W to the graph (by storing to G.E), and checks whether any new edge can
be generated based on the current edge. Finally, the algorithm returns a set of
conditional edges between boundary nodes. The first optimization is applied in
line 11, where we process an edge only when there is no subsuming edge on the
graph. Furthermore, the worklist W is also a priority queue on the number of
the premises, ensuring that the edges with smaller number of premises are added
first, implementing the second optimization.

Complexity. Let us denote the total number of premises as m, the number of
symbols as l, and the number of nodes as n. Since each edge may be labelled with
one of the O(l) symbols and one of the O(2m) possible premises, the number of
edges in a graph is O(2mn2l). In each iteration, we need to check the applicability
of rules (a), (b), (c) for one edge and each production rule. Checking applicability
of rules (a) and (b) on one edge has O(1) complexity, and for rule (c), we may
need to look at O(2mnl) other edges. As a result, we have a complexity of
O(22mn3l3), exponential to the number of premises m.

3.3 Analyzing Clients

Client analysis is performed on the basis of the set of conditional edges computed
by library summarization. When the client code is present, we build an appli-
cation graph for the client. In the building process, we do not have to include
all nodes and edges for the library graph, but include only the boundary nodes,
the conditional edges between boundary nodes, and needed bridging edges. The
last one is needed for the ConCRA-k analysis as explained later.

When the application graph is built, a further filtering can be performed. We
remove those boundary nodes that do not connect to any client node by a direct
edge. All conditional edges that connect to these nodes are also removed.

890 H. Tang et al.

ALGORITHM 1. Analyzing libraries with ConCRA-f
Input: Γ, a context free grammar
Input: G, an library graph
Output: R, a set of conditional edges
Data: W , a priority queue of edges, where edges with smaller number of

premises has higher priority
1 for each n in G.V do
2 for each A → ε do

3 W ← W ∪ {n
A|∅−−→ n} ; /* rule (a) */

4 for each s
A−→t in G.P do

5 x ← s
A−→t

6 W ← W ∪ {s
A|{x}−−−−→ t} ; /* rule (d) */

7 W ← W ∪ G.E
8 G.E ← ∅
9 while W is not empty do

10 (e : s
A|X−−−→ t) ← the first edge in W

11 if ∀e′ ∈ G.E : ¬(e′ � e) then
12 G.E ← G.E ∪ {e}
13 for any B → A ∈ Γ do

14 W ← W ∪ {s
B|X−−−→ t} ; /* rule (b) */

15 for any B → A C ∈ Γ ∧ t
C|Y−−−→ t′ ∈ G.E do

16 W ← W ∪ {s
B|X∪Y−−−−−→ t′} ; /* rule (c) */

17 for any B → C A ∈ Γ ∧ s′ C|Y−−−→ s ∈ G.E do

18 W ← W ∪ {s′ B|X∪Y−−−−−→ t} ; /* rule (c) */

19 W ← W − {e}
20 for each e in G.E do
21 if e.src and e.tgt are both boundary nodes then
22 R ← R ∪ {e}

Client analysis with conditional edges is the same as the standard CFL reach-
ability analysis using rules in Fig. 2, with one additional rule described in Fig. 4.
This rule captures the instantiation of a conditional edge. When all premises for
a conditional edge are present in the graph, we instantiate this conditional edge
by adding an unconditional edge to the graph. The worklist algorithm imple-
menting these rules is depicted in Algorithm 2.

3.4 Soundness

Theorem 1 (Soundness of ConCRA-f). Let G be an arbitrary application
graph using library G′, analyzing G via the ConCRA-f summary of G′ produces
exactly the same set of edges between client nodes as analyzing G directly.

Conditional Dyck-CFL Reachability Analysis 891

Fig. 4. Additional rule for client analysis

Proof. To prove this theorem, first, we need to show that any path between two
client nodes recognized by our ConCRA-f summary together with client analysis
will be recognized by the Dyck-CFL. This is easy to prove as our summarization
rules in Fig. 3 is a direct extension to CFL rules in Fig. 2.

Second, we need to show that any path between two client nodes recognized
by the Dyck-CFL will be recognized by our ConCRA-f summary together with
client analysis. This part is more difficult. Due to space limit, we shall show only
how to prove this theorem for edges labelled with S. The other labels L, R, and
D can be similarly proved.

The proof is an induction over the length n of the path to show the following
two propositions hold, where the first one directly responds to our theorem: (1)
any path with length equal or less than n between two client nodes recognized
by Dyck-CFL will be recognized by client analysis; (2) any path with length
equal or less than n between two library nodes recognized by Dyck-CFL will be
recognized as a conditional edge in library summarization, and its premises will
be produced by client analysis.

When n = 0, the path can only be produced by rule S → ε, and the two
propositions trivially hold.

When n = 1, the path can only be produced by rule S → e, or rule S → S S
where one S on the righthand side is ε, and the two propositions trivially hold.

Suppose the two propositions hold for any length up to k. When length is
k + 1, the edge can be recognized by either S → {i S1 }i or S → S1 S2. Let
us consider S → {i S1 }i first. In the case where S is between two client nodes,
S1 can be a path between two client nodes or two library boundary nodes, but
cannot be a path between one client node and a library node because of the
pairing of parentheses in Definition 3. Thus, S1 will be recognized because of
induction hypothesis, and then S will be recognized.

In the case where S is between two library nodes, similarly S1 can be a
path between two client nodes or two library nodes. In the former case, S is
a path between Vcall and Vreturn , and thus is a premise itself. Also, S1 will be
recognized by client analysis because of the induction hypothesis, and thus S
will be recognized. In the latter case, S1 will be produced as a conditional edge
with all its premises recognizable because of the induction hypothesis, and thus
S will be recognized with all its premises recognized.

892 H. Tang et al.

ALGORITHM 2. Analyzing clients
Input: Γ, a context free grammar
Input: G, an application graph
Input: M , a set of conditional edges
Data: W , a worklist of edges

1 for each n in G.V do
2 for each A → ε do

3 W ← W ∪ {n
A−→n} ; /* rule (a) */

4 W ← W ∪ G.E
5 G.E ← ∅
6 while W is not empty do

7 (e : s
A−→t) ← an edge in W

8 if e /∈ G.E then
9 G.E ← G.E ∪ {e}

10 for any B → A ∈ Γ do

11 W ← W ∪ {s
B−→t} ; /* rule (b) */

12 for any B → A C ∈ Γ ∧ t
C−→t′ ∈ G.E do

13 W ← W ∪ {s
B−→t′} ; /* rule (c) */

14 for any B → C A ∈ Γ ∧ s′ C−→s ∈ G.E do

15 W ← W ∪ {s′ B−→t} ; /* rule (c) */

16 for any s′ B|X−−−→ t′ ∈ M ∧ X ⊆ G.E do

17 W ← W ∪ {s′ B−→t′} ; /* rule (d) */

18 M ← M − {s′ B|X−−−→ t′}
19 W ← W − {e}

Then let us consider S → S1 S2. In the case where S is between two client
nodes, S1 and S2 are also between two client nodes, otherwise the parenthe-
ses cannot be balanced. Thus, S1 and S2 will both be recognized by induction
hypothesis, and then S will be recognized. The case where S is between two
library nodes is similar.

Based on the above analysis, the two propositions hold for paths of any
length, and thus the theorem holds.

3.5 Analyzing Libraries with ConCRA-k

As analyzed before, the time complexity of ConCRA-f is exponential to the
number of premises, making it difficult to scale up. This time complexity is
caused by the massive number of edges with different premises between two
nodes. To avoid this, we can set an upper bound k on the number of the premises
of each conditional edge. We denote this technique as ConCRA-k.

Now the problem is how to represent all conditional edges with only k
premises. Our idea is to introduce bridging edges to represent conditional edges
with more premises using conditional edges with less premises.

Conditional Dyck-CFL Reachability Analysis 893

Fig. 5. Rules for building conditional edges in ConCRA-k

This idea leads to the rules in Fig. 5. The only difference from the rules in
Fig. 3 is that the original rule (c) is separated into two rules (c) and (d) in Fig. 5.
If the generated edge has less than or equal to k premises, the rule is the same as
before (rule (c)). If the generated edge requires more than k premises, we reset
its premises to one premise by introducing a new premise containing only the

edge itself (rule (d)). The edges s
B|X−−−→ r and r

C|Y−−→ t are the bridging edges of
A|{s A−→t}.

The concrete algorithm is listed in Algorithm 3. This algorithm is mostly
the same as Algorithm 1, and we only show the changed lines. The number at
the left of each line in Algorithm3 indicates the corresponding line number in
the original algorithm. First, when the premises of rules (c) or (d) are satisfied
(line 15 and line 17), we also record any potential dependencies in M if the
generated edge has more than k premises. When we add the edge with more
than k premises to the graph (line 12), we reset its premise to one. Note that
we only reset premise when the edge is about to be added to the graph. In this
way we can ensure that line 12 could still filter some subsumed edges. Finally,
when the conditional edges between boundary nodes are selected, we perform a
backtracking to add back all needed intermediate conditional edges (line 22).

Theorem 2 (Soundness of ConCRA-k). Let G be an arbitrary application
graph using library G′, analyzing G via the ConCRA-k summary of G′ produces
exactly the same set of edges between client nodes as analyzing G directly.

Proof. The proof of this theorem is similar to Theorem 1. The only difference is
that this time we need to reason that the chain of conditional edges produced
by rule 5d is complete, and this can be easily seen by examining all rules that
introduce new premises.

Complexity. Let us denote the number of premises as m, the number of
production rules as l, and the number of nodes as n. There are two differences

894 H. Tang et al.

ALGORITHM 3. Analyzing libraries with ConCRA-k
· · ·
Output: M , a dictionary from intermediate conditional edges to their

dependencies
· · ·

11 if ∀e′ ∈ G.E : ¬(e′ � e) then
12 if |X| > k then

x ← (s
A−→t)

e ← (s
A|{x}−−−−→ t)

G.E ← G.E ∪ {e}
. . .

15 for any B → A C ∈ Γ ∧ t
C|Y−−−→ t′ ∈ G.E do

16 W ← W ∪ {s
B|X∪Y−−−−−→ t′} ; /* rule (c), (d) */

if |X ∪ Y | > k then
/* append(k, v) adds v to key k */

M.append(s
B−→t′, {e, t

C|Y−−−→ t′})

17 for any B → C A ∈ Γ ∧ s′ C|Y−−−→ s ∈ G.E do

18 W ← W ∪ {s′ B|X∪Y−−−−−→ t} ; /* rule (c), (d) */

if |X ∪ Y | > k then

M.append(s′ B−→t, {s′ C|Y−−−→ s, e})· · ·
22 R ← AddDependencies(R)

from ConCRA-f. First, since any newly added edges may have its premises reset,
we need to consider m + n2l rather than just m. Second, there is only Ck

m+n2l

possible sets of premises. As a result, we have a complexity of O((Ck
m+n2l)

2n3l3).
This complexity is much smaller than ConCRA-f with a small k. For example,
we have a polynomial complexity when k = 1.

4 Empirical Evaluation

This section empirically evaluates the proposed techniques.

4.1 Evaluated Analyses

Our evaluation is based on the same context-sensitive, SSA-based, and field-
insensitive dependency analysis used in evaluating TALCRA [39] so that we can
compare with TALCRA. More concretely, we track the flows-to relations (the
inverse of dependency relations) between stack variables; we treat each variable
as a node and an assignment x=y as an edge from y to x; a method call z=x.f(y)
corresponds to a left-parenthesis edge from y to the argument of x.f() and
a right-parenthesis edge from the return value to z (The call site determines
the index of the parenthesis). We refer to a parenthesis edge as a call edge.

Conditional Dyck-CFL Reachability Analysis 895

Procedure AddDependencies(E)

1 for each s
A|X−−−→ t ∈ E do

2 W ← W ∪ X
3 end
4 while W is not empty do
5 e ← an edge in W
6 if M contains e then

/* lookup(e) returns the dependencies of e */

7 for each e′ = s′ A′|X′−−−−→ t′ ∈ M .lookup(e) do
8 E ← E ∪ {e′}
9 W ← W ∪ X ′

10 end

11 end
12 W ← W − {e}
13 end
14 return E

A virtual-call edge is a call edge belonging to a virtual call site. Our example in
Fig. 1 demonstrates the graph used in this analysis.

To summarize a library for this analysis, we need to provide the set of
premises G.P . G.P obtains call-back premises and virtual-call premises as we
mentioned in Sect. 3. Note that TALCRA does not support the latter type of
premises, so we also evaluate our techniques on the configuration where each
virtual-call edge in the library is treated as a normal edge. Therefore, the evalu-
ation contains two configurations: (1) VC-config : virtual-call edges are reserved
as premises in the library graph; (2) CHA-config : virtual-call edges are treated as
normal edges in the library graph. CHA-config library summaries are imprecise
because the virtual-call edges generated by imprecise library call graph construc-
tion approaches (e.g., class hierarchy analysis) are treated as normal edges.

4.2 Implementation

Our implementation has two parts. The first part, implemented in Java using the
SOOT framework1, generates the dependency graphs and exports the graphs to
files. The virtual call sites are resolved by CHA [5] in the library analysis, and
are resolved by Spark [14] in the client analysis. The virtual-call premises are
those produced by CHA. The second part, implemented in C++, reads the files
and performs the library summarization and client analysis of ConCRA, TAL-
CRA, as well as CLA [31]. We obtained the newest TALCRA implementation
from TALCRA web site2. We reimplemented CLA to use CFL reachability as
summary representation, rather than the original functional approach. Bascially,

1 http://sable.github.io/soot/.
2 http://www.utdallas.edu/%7elxz144130/tal.html, accessed 2016-01-29.

http://sable.github.io/soot/
http://www.utdallas.edu/%7elxz144130/tal.html

896 H. Tang et al.

there are two differences with CLA and ConCRA: (1) CLA does not use premises
and only summarizes unconditional edges between boundary nodes; (2) Bound-
ary nodes used by CLA include not only boundary nodes used by ConCRA, but
also the call-site nodes to procedures that may (transitively) call a virtual call.

We adopt several efficient data structures in library summarization and client
analysis. The worklist W for ConCRA-k and ConCRA-f is segregated into several
sets W1,W2, · · · . All newly-generated conditional edges with i premises are put
into Wi. The first edge returned by W is thus always an edge in the non-empty

Wi with the smallest i. Each conditional edge s
A|X−−−→ t added into G.E is indexed

by 〈A, s〉, 〈A, t〉 using 2-dimensional arrays, and 〈A, s, t〉 using a 2-dimensional
array of hash tables. The two arrays are used for efficiently acquiring the edges
with specific labels and common source or target nodes. The array of hash tables
is used to check whether an edge e is subsumed (Definition 5) by other edge e′.

We also implemented a standard whole-program CFL reachability analysis
as a control technique.

4.3 Setup

Benchmark. Our benchmark includes all 12 subjects in the SPECjvm20083

benchmark. The SPECjvm benchmark was widely used in evaluating the state-
of-art library-summarization work [39] as well as many related approaches in the
program analysis area [36,37,41,42].

In our evaluation, we treat JDK as library and build summaries for a
major portion of JDK. More specifically, we build summaries for two JAR files,
rt.jar and jce.jar, which include most commonly used Java packages, such as
java.util, java.io, java.lang, etc. Summarizing a popular portion of the library
instead of the whole library is a common practice used in existing evaluation on
summarization techniques [1,17,32] to reduce the summarization time.

Table 1 shows the statistics. Columns 1 lists all the benchmark subjects.
Columns 2–4 show the numbers of client nodes, the library nodes accessed by
the client, and all nodes in each subject’s data dependency graph4. Similarly,
Columns 5–7 present the Jimple code lines of the client, the library methods
called by the client, and the whole application for each subject. Here the library
nodes and library code refer to only the part of JDK in our summary.

Table 2 shows the information about summarized part of JDK including
the Jimple code lines, the size of the dependency graph, and the two types
of premises. Jimple is the fundamental intermediate representation of Java in
Soot. We use the lines of Jimple code instead of Java source code because we do
not have full Java source code for the benchmark. Based on our experience with

3 http://www.spec.org/jvm2008/.
4 Please note the statistics are different from the TALCRA paper [39] because that

evaluation was performed on an early version of the TALCRA tool that built the
graph differently.

http://www.spec.org/jvm2008/

Conditional Dyck-CFL Reachability Analysis 897

Table 1. Benchmark statistics

Bench. # Nodes # Jimple code lines

Clt Lib Total Clt Lib Total

check 1701 10838 12539 7752 160078 167830

compiler 917 10699 11616 4184 160042 164226

compress 1428 10576 12004 5025 160042 165067

crypto 2515 19002 21517 11547 229158 240705

derby 1380 16722 18102 10189 210054 220243

hello 598 10881 11479 847 160042 160889

mpeg 17588 37980 55568 243007 402569 645576

scimark 1557 10709 12266 7034 160042 167076

serial 11509 38419 49928 187517 407990 595507

startup 1083 16512 17595 2472 200060 202532

sunflow 19021 26606 45627 139362 283016 422378

xml 11749 23444 35193 122631 268431 391062

Total 71046 232388 303434 741567 2801524 3543091

JDK, the Jimple code lines are about 4 times as many as the original source
code, excluding comments and empty lines.

Table 2. Library statistics

Jimple code lines 526648

Dependency graph nodes 66736

Dependency graph edges 161239

Virtual call premises 64777

Call-back premises 10236

Compared Techniques. On both CHA-config and VC-config, we evaluated
ConCRA-f and ConCRA-k (with k values between 1 and 5) techniques, as well
as a standard CFL-reachability analysis and the CLA technique [31]. Moreover,
on the CHA-config, we evaluated the state-of-art TALCRA technique [39].

To evaluate the effectiveness of each studied technique, we measured the
time cost for each technique in both library summarization and client analysis.
Furthermore, we evaluated the precision of client analysis by measuring the
produced dependency edges.

Evaluation Platform. Our evaluation was performed on a Dell PowerEdge
R730 Server with 8-core 16-thread Intel(R) Xeon(R) CPU E5-2640 v2 @
2.00 GHz and 256 Gigabyte RAM running OpenJDK 1.7.0 79 on Ubuntu 14.10.

898 H. Tang et al.

4.4 ConCRA-f/ConCRA-k vs. TALCRA

On the CHA-config, we compare our techniques against TALCRA.
The results of library summarization are shown in Table 3. Columns 1 to 5 list

the library summarization statistics of CLA, TALCRA, ConCRA-1, ConCRA-2,
and ConCRA-f, respectively. Row 2 shows the summarization time. Row 2 also
lists the speedup information compared with the CLA technique in Columns 2
to 5. Row 3 shows the maximal memory usage during the summarization. We
omit the results of ConCRA-k (k = 3, 4, 5) because they are almost identical to
the result of ConCRA-f.

Table 3. Library summarization (CHA-config)

CLA TALCRA ConCRA-1 ConCRA-2 ConCRA-f

72.50s 87.78s 0.83X 45.33s 1.60X 63.30s 1.15X 71.79s 1.01X

1.45G 3.66G 5.15G 6.81G 7.39G

The experimental results of client analysis are shown in Table 4. In the table,
Column 1 lists all the benchmark subjects. Column 2 presents the time cost for
the standard CFL reachability analysis on the entire application graph (including
all the client and library nodes) as the control technique. Column 3 presents the
client analysis time for the CLA approach. Column 4 presents the client analysis
time for the TALCRA approach. Columns 5 to 7 present the corresponding client
analysis time for our ConCRA-k (k = 1, 2) and ConCRA-f techniques. Columns
4 to 7 also contains the speedup information compared with the standard CFL
reachability analysis. The last row presents the arithmetic mean of speedups on
all subjects achieved by these techniques. Again, we omit the results of ConCRA-
k (k = 3, 4, 5) because the results are very close to ConCRA-f’s (less than 8%
variation).

Library Summarization. To summarize the JDK library, ConCRA-f and
ConCRA-k are both faster than TALCRA. Compared with the TALCRA app-
roach, ConCRA-1, ConCRA-2, and ConCRA-f have 1.93X, 1.39X, and 1.22X
speed-up, respectively. We can observe that the library summarization time
grows when k increases, and the time is close to ConCRA-f when k > 2. The
reason is that the conditional edges with more than 2 premises in the summary
of ConCRA-f only account for 26.4% (9,070,850 out of 34,363,200) of the sum-
mary. This finding also explains why our techniques are practical despite the high
theoretical complexity upper bound analyzed in Sect. 3. The overall amount of
conditional edges (34,363,200) is reasonable in practice.

Client Analysis. Compared to standard CFL technique, all the ConCRA imple-
mentations significantly reduce the client analysis time. Across all subjects,
ConCRA-1 speeds up the client analysis time by 3.34X to 46.45X, with an arith-
metic mean of 14.10X. Our ConCRA implementations also outperform TALCRA
with speedups up to 5.04X.

Conditional Dyck-CFL Reachability Analysis 899

Table 4. Client analysis for CHA-config (run times in milliseconds)

Benchmark CFL CLA TALCRA ConCRA-1 ConCRA-2 ConCRA-f

check 433 397 1.09X 303 1.43X 82 5.29X 84 5.14X 85 5.09X

compiler 401 380 1.06X 274 1.46X 80 5.01X 80 5.00X 80 5.03X

compress 412 399 1.03X 290 1.42X 98 4.21X 94 4.37X 94 4.40X

crypto 4058 1820 2.23X 468 8.68X 101 40.18X 105 38.70X 102 39.63X

derby 4121 1486 2.77X 430 9.59X 96 42.97X 96 43.11X 94 43.94X

helloworld 400 390 1.02X 270 1.48X 75 5.32X 76 5.27X 76 5.26X

mpegaudio 623527 518671 1.20X 253623 2.46X 154986 4.02X 154384 4.04X 154580 4.03X

scimark 444 417 1.06X 306 1.45X 104 4.26X 106 4.18X 105 4.24X

serial 619523 518384 1.20X 247012 2.51X 151562 4.09X 151937 4.08X 151478 4.09X

startup 3745 1523 2.46X 406 9.21X 81 46.45X 84 44.62X 84 44.39X

sunflow 21675 33741 0.64X 12843 1.69X 5292 4.10X 5290 4.10X 5265 4.12X

xml 9361 7291 1.28X 3566 2.62X 2799 3.34X 2835 3.30X 2801 3.34X

1.42X 3.67X 14.10X 13.83X 13.96X

Interestingly, ConCRA-f and ConCRA-k with a large k do not exhibit superi-
ority over ConCRA-1. We suspect that there are two possible reasons: (1) larger
k leads to larger summaries, and the memory management time increases sig-
nificantly; (2) there is only a few number of instantiated conditional edges that
has many premises, so the performance boost from larger k is not significant.

4.5 ConCRA-f/ConCRA-k vs. CLA

On the VC-config, we compare our techniques against CLA.
The results of library summarization are shown in Table 5, in the same format

as Table 3. Columns 1 to 4 list the library summarization statistics of CLA,
ConCRA-1, ConCRA-2, and ConCRA-f, respectively. All of ConCRA-k with
k = 3, 4, 5 and ConCRA-f fail to build summaries on the VC-config within the
2-hour time limit.

Table 5. Library summarization (VC-config)

CLA ConCRA-1 ConCRA-2 ConCRA-f

0.40s 34.74s 0.01X 1059.61s 0.00X TimeOut

0.26G 5.34G 32.71G -

The results of client analysis are shown in Table 6. The meaning of Column
1 to 2 are same as in Table 4. Column 3 presents the client analysis time for the
CLA approach. Columns 4 to 5 present the corresponding client analysis time
for our ConCRA-k (k = 1, 2) techniques.

Library Summarization. ConCRA-1 and ConCRA-2 spends more time than
CLA, since ConCRA calculates a more complete summary than CLA does.

900 H. Tang et al.

Table 6. Client analysis for VC-config (run times in milliseconds)

Benchmark CFL CLA ConCRA-1 ConCRA-2

check 433 142 3.05X 137 3.16X 770 0.56X

compiler 401 139 2.88X 157 2.55X 728 0.55X

compress 412 149 2.77X 225 1.83X 954 0.43X

crypto 4058 1079 3.76X 151 26.94X 356 11.40X

derby 4121 1040 3.96X 120 34.23X 153 26.93X

helloworld 400 137 2.91X 77 5.21X 83 4.80X

mpegaudio 623527 340015 1.83X 167021 3.73X 169673 3.67X

scimark 444 167 2.66X 246 1.81X 986 0.45X

serial 619523 334689 1.85X 165408 3.75X 166616 3.72X

startup 3745 988 3.79X 239 15.70X 2978 1.26X

sunflow 21675 10844 2.00X 4755 4.56X 8183 2.65X

xml 9361 4724 1.98X 3164 2.96X 6496 1.44X

2.79X 8.87X 4.82X

ConCRA-1 can finish summarization in less than 1 min. ConCRA-2 spends much
more time than ConCRA-1, since the introduction of virtual call premises signif-
icantly enlarges the set of premises, causing ConCRA-2 to consider much more
potential combinations of premises than ConCRA-1.

Client Analysis. Compared to standard CFL technique, ConCRA-1 speeds
up the client analysis time significantly with an arithmetic mean of 8.87X.
ConCRA-1 also achieves an average speedup about 3 times as high as CLA
does. ConCRA-1 is slightly slower than CLA on a few subjects (compiler, com-
press, and scimark). We can observe these subjects are relatively small, which
caused the memory management became bottleneck in the analysis.

ConCRA-2 does not perform as well as ConCRA-1, and on some subjects, it
is even slower than the whole-program CFL technique. The summary ConCRA-2
calculates is so large that the overhead of memory management time becomes
prominent in client analysis. This finding indicates that ConCRA-1 has the over-
all best performance on the data dependency analysis in our evaluation.

4.6 Precision

As we analyzed before, techniques on the VC-config should be as precise as the
standard CFL reachability analysis while techniques on the CHA-config may be
imprecise due to the missing client information. In our evaluation, we count the
number of dependency edges produced by each algorithm, and we also compare
the analysis results against each other algorithm.

Table 7 shows client results about precision. Column 2 presents the num-
ber of dependencies found by standard CFL reachability analysis on the entire

Conditional Dyck-CFL Reachability Analysis 901

application graph. Column 3 presents the number of dependencies found on the
CHA-config and its precision compared to CFL results. Column 4 stands for the
VC-config. The precision is calculated by dividing the number from CFL analysis
with the number from the respective analysis.

There are two major findings. First, the dependency relations produced by
techniques on the VC-config are the same as those produced by the standard
CFL analysis, and both are a subset of the dependency relations produced by
techniques on the CHA-config. This serves as a side evidence that our imple-
mentation is correct. Second, the results by techniques on the CHA-config are
imprecise. On some subjects, the precision can be as low as 80.20%.

Table 7. Analysis precision

Benchmark CFL CHA-config (CLA,
TALCRA,
ConCRA)

VC-config (CLA,
ConCRA)

check 2012 2012(100.00%) 2012(100.00%)

compiler 764 836(91.39%) 764(100.00%)

compress 9729 9801(99.27%) 9729(100.00%)

crypto 4593 5197(88.38%) 4593(100.00%)

derby 7166 7180(99.81%) 7166(100.00%)

helloworld 329 337(97.63%) 329(100.00%)

mpegaudio 2713173 2793994(97.11%) 2713173(100.00%)

scimark 16028 16100(99.55%) 16028(100.00%)

serial 2479497 2551066(97.19%) 2479497(100.00%)

startup 840 841(99.88%) 840(100.00%)

sunflow 407547 508150(80.20%) 407547(100.00%)

xml 554780 555576(99.86%) 554780(100.00%)

In conclusion, both ConCRA-f and ConCRA-k are able to achieve speedups
over the state-of-art TALCRA technique on the CHA-config. They significantly
outperform traditional CFL technique for client analysis (e.g. ConCRA-1 and
ConCRA-f can achieve speedups of up to 46.45X and 44.39X, respectively). They
also achieve speedups up to 5.04X compared to TALCRA. In case of the VC-
config, ConCRA-1 achieves significant speedups over the standard CFL technique
for client analysis up to 34.23X, without precision loss. ConCRA-1 also generally
outperforms the CLA technique.

5 Discussion

Multiple Library Summaries. For the simplicity of the evaluation, we treat
the JDK implementation as the library code and all the other code and third-
party libraries of each subject as the client code. However, our approach supports

902 H. Tang et al.

the client code analysis with multiple library summaries. For example, for client
code c using two external libraries (l1 and l2). The client code analysis of c
can be directly built on top of the two separate library summaries by simply
collecting all conditional edges. We can even combine the two summaries into a
large summary by assuming virtual-call premises between them and apply the
library summarization rules.

Field Sensitivity. Following existing work for conditional reachability analy-
sis [39], we also evaluate our approach based on the context-sensitive, flow-
sensitive, and field-insensitive data-dependency analysis. Field-sensitivity can
also be encoded as a CFL reachability problem. However, achieving both context-
sensitive and field-sensitive analysis has been shown to be undecidable [26]. To
maintain both sensitivity to some extent, researchers have proposed to use regu-
lar language to approximate one CFL and keep the other one complete [37]. Our
conditional reachability analysis based on CFL provides a natural way to adapt
existing technique to further obtain field sensitivity to some extent. For example,
we can regularize the CFL for field sensitivity (i.e., RLf) and keep the CFL for
context sensitivity (i.e., CFLc). Therefore, data-dependency analysis consider-
ing both sensitivity can be approximated as the CFL-reachability problem using
RLf ∩CFLc. Then, we may still use our conditional reachability analysis based
on CFL to obtain library summary information to speed up client analysis. Fur-
thermore, in parallel with our work, Zhang and Su [45] recently proposed an
efficient algorithm based on linear-conjunctive-language reachability for solving
context-sensitive and field-sensitive data dependence analysis. The idea of con-
ditional reachability may also be applied to their approach, which is a future
work remaining to be explored.

Heap Objects and Global Variables. A standard way to handle heap objects
in dependence graphs is to promote them to the input and output of respective
methods by interprocedural mod-ref analysis. Existing tools such as WALA can
directly generate such graphs (system dependence graph with heap paramters).
However, this kind of graphs cannot be directly summarized by our approach
because heap objects and global variables defined in the clients may need to
promote to the library side. A possible solution is to assume the promoted nodes
and edges are part of the client graph. First we analyze library without the
promoted nodes and edges from the clients. Then when a client is available, we
analyze the precise boundary between the library and the client, and turn the
library analysis result into a summary. The concrete algorithm is a future work
to be explored.

6 Related Work

Our work is mainly related to existing research efforts on conditional analysis,
CFL reachability, and software library summarization.

Conditional Dyck-CFL Reachability Analysis 903

6.1 Conditional Analysis

Our analysis differs from normal reachability analysis because our analysis fur-
ther takes into account the conditions under which a code element can reach
another code element. In this sense, our research is related to existing research
efforts on conditional data dependency and information flow. Snelting et al. [35]
proposed a technique to extract conditions defined on program input variables
that must hold for certain data dependency in the program under analysis.
Komondoor and Ramalingam [11] proposed to identify conditional data depen-
dency for recovery of data models in programs written with weakly-typed lan-
guages. Sukumaran et al. [38] proposed to extend the program dependency graph
with conditions on the edges to specify the corresponding condition of a certain
dependency edge. Tschantz and Wing [40] developed a technique that detects
not only active but also passive conditional information flows to extract confi-
dentiality policies from software programs. Lochbihler and Snelting [15] further
considered data dependency controlled by temporal path conditions. Recently,
Jaffar et al. [9] proposed path-sensitive backward slicing that considers path con-
ditions when locating code elements that may affect certain program outputs.
The conditions considered in the above research efforts are all path conditions
in branch predicates. In contrast, the conditions considered in our approach are
reachability relationships between code elements.

Conditional must-not-alias analysis [19] calculates whether a pair of vari-
ables must not refer to a same memory location when another pair of variables
do not refer to a same memory location. This analysis is first used to detect
race conditions [19], and later in accelerating CFL-reachability-based points-to
analysis [42]. Similar to conditional must-not-alias analysis, our approach also
considers the reachability relationship between variables as conditions. However,
since the purpose of our approach is different (i.e., summarizing library code with
unknown components), we use as conditions the reachability relationships at the
library-client interface that are not available at the time of summarization, and
we further consider conditional reachability with multiple premises, neither of
which are covered in conditional must-not-alias analysis.

6.2 CFL Reachability

CFL reachability is a general framework developed in the area of database
by Yannakakis [43], and Reps et al. [28] first applied the framework to inter-
procedural slicing. Later, the framework is applied to a series of program analysis
tasks, including inter-procedural dataflow analysis [20,23,27], points-to analy-
sis [37,42], alias analysis [44,47], shape analysis [8,24,30], constant propaga-
tion [34], label-flow analysis [20], information flow analysis [16,18], race detec-
tion [21], and specification inference [2]. In 1998, Reps [25] wrote a survey on
the application of CFL reachability on various program analysis tasks.

Similar to us, the IDE framework [34] also attaches additional information to
the graph. This framework is designed to problems such as constant propagation,
where the “environment information”, such as the values of variables, is attached

904 H. Tang et al.

to each node. Later, Reps et al. [29] proposed a novel data flow analysis frame-
work based on reachability analysis of pushdown automata which allows adding
weights to the edges of pushdown automata. Compared to these approaches, our
approach attaches conditional information to the edges, and solves the library
summarization problem with the conditional edges.

6.3 Library Summarization

The main purpose of our proposed technique is to summarize libraries with con-
sideration of unknown components from client side, which is one of the emerging
but not well-solved problem in static analysis. In literature, we notice several
existing research efforts that try to address unknown components (e.g., call-
backs) when summarizing library code.

Rountev et al. [31,33] proposed a technique to accelerate dataflow analysis
by summarizing library code. Madhaven et al. [17] developed a general frame-
work to deal with unknown components in library summarization. Arzt et al. [1]
applies Rountev et al.’s technique [33] to taint analysis on Android applications.
These approaches identify the part of the library code that is not affected by the
unknown components, and build a partial summary for this part of library code.
Compared to these approaches, ConCRA is able to generate summaries (i.e., in
the form of conditional reachability) for the code affected by unknown compo-
nents. Lattner et al. [13] proposed a heap-cloning-based approach to context-
sensitive summarization of libraries with call-backs for pointer analysis. This
approach is in principle similar to Rountev et al. [31,33] and Madhaven et al.
[17], but is specifically tuned for pointer analysis. Furthermore, their approach
is tightly coupled with the problem of pointer analysis, and cannot be easily
migrated to other problems, whereas ConCRA is able to be applied on a large
class of problem using Dyck-CFL reachability analysis.

Other research efforts eliminate unknown components by make the most
conservative assumptions on them. Ravitch et al. [22] developed a technique to
automatically generate bindings for inter-programming language function calls.
Bastani et al. [2] deals with a related but different problem. Instead of building
library summaries for client analysis, they deal with the case where the library
code is missing, and try to infer a specification of the library code for manual
revision. Das et al. [4] proposed angelic verification to handle unknown external
function calls in program verification.

The work most closely related to our approach is by Tang et al. [39]. As
mentioned before, they proposed the TAL (Tree Adjoining Language) reachabil-
ity, and a summarization technique based on TAL reachability. TAL is a class
of languages that can be generated by production rules over two strings, rather
than CFL whose production rules are over one string, and the two strings can
be viewed as two separated paths that can be connected by a premise. Because
the types of premises are confined by TAL, it is not easy to extend this approach
to support multiple premises and more types of premises. Furthermore, in the
TALCRA, a technique called chaining nodes is used, whose effect is similar to
our ConCRA-1 analysis. However, they require a separate algorithm to identify

Conditional Dyck-CFL Reachability Analysis 905

chaining nodes, in contrast that our approach generates the bridging edges nat-
urally within one pass. Because of this separation, TALCRA may generate more
“bridging edges” than necessary and can remove them only after the identifica-
tion of chaining nodes, on the other hand our approach would not generate extra
bridging edges and is thus more efficient. Moreover, our approach also allows to
be adapted to ConCRA-k with any k, which is not supported by TALCRA.

There have been some other recent advancements on library code summa-
rization. Dillig et al. [6] proposed a flow-sensitive memory-safety analysis, in
which they used library summarization, and considered strong updates in the
summary building process. Kulkarni et al. [12] proposed to learn summaries from
a training corpus to accelerate the analysis of other programs that share code
with the corpus. In constract to our approach, they require the developers to
write a check function for each analysis to determine the soundness of the sum-
mary with respect to the current analysis task. Zhu et al. [48] proposed to infer
information-flow specifications of library code by analyzing the client code. How-
ever, these specifications need to be manually verified against library documents
to ensure correctness. Zhang et al. [46] proposed a general framework to hybrid
top-down and bottom-up analysis. In their analysis, bottom-up analysis and top-
down analysis can complement each other to achieve better performance. None
of the above four approaches support automatic summarization of library code
with unknown components.

7 Conclusion

In this paper, we demonstrate that by directly extending CFL-reachability analy-
sis rules with premises, we can turn a standard CFL-reachability analysis into
a conditional summarization approach with client analysis, and this approach is
more efficient and more general than existing summarization techniques based
on the dedicated TAL-reachability analysis. We believe that this approach indi-
cates the potential existence of a more generic method to extend existing analysis
techniques into a library summarization technique. This is a future direction to
be explored.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program under Grant No. 2016YFB1000105, and the National Natural Science
Foundation of China under Grant Nos. 61421091, 61225007, 61672045.

References

1. Arzt, S., Bodden, E.: Stubdroid: automatic inference of precise data-flow sum-
maries for the android framework. In: Proceedings of ICSE, pp. 725–735 (2016)

2. Bastani, O., Anand, S., Aiken, A.: Specification inference using context-free lan-
guage reachability. In: Proceedings of POPL, pp. 553–566 (2015)

3. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). doi:10.1007/
3-540-45937-5 13

http://dx.doi.org/10.1007/3-540-45937-5_13
http://dx.doi.org/10.1007/3-540-45937-5_13

906 H. Tang et al.

4. Das, A., Lahiri, S.K., Lal, A., Li, Y.: Angelic verification: precise verification mod-
ulo unknowns. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 324–342. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 19

5. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs
using static class hierarchy analysis. In: Tokoro, M., Pareschi, R. (eds.) ECOOP
1995. LNCS, vol. 952, pp. 77–101. Springer, Heidelberg (1995). doi:10.1007/
3-540-49538-X 5

6. Dillig, I., Dillig, T., Aiken, A., Sagiv, M.: Precise and compact modular procedure
summaries for heap manipulating programs. In: Proceedings of PLDI, pp. 567–577
(2011)

7. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proceedings of
PASTE, pp. 54–61 (2001)

8. Itzhaky, S., Bjørner, N., Reps, T., Sagiv, M., Thakur, A.: Property-directed shape
analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 35–51.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9 3

9. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Path-sensitive backward slicing.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 231–247. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33125-1 17

10. Kodumal, J., Aiken, A.: The set constraint/CFL reachability connection in prac-
tice. In: Proceedings of PLDI, pp. 207–218 (2004)

11. Komondoor, R., Ramalingam, G.: Recovering data models via guarded depen-
dences. In: Proceedings of WCRE, pp. 110–119 (2007)

12. Kulkarni, S., Mangal, R., Zhang, X., Naik, M.: Accelerating program analyses by
cross-program training. In: Proceedings of OOPSLA, pp. 359–377 (2016)

13. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. In: Proceedings of PLDI, pp. 278–289
(2007)

14. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using spark. In: Hedin, G.
(ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003). doi:10.
1007/3-540-36579-6 12

15. Lochbihler, A., Snelting, G.: On temporal path conditions in dependence graphs.
ASE 16(2), 263–290 (2009)

16. Macedo, H.D., Touili, T.: Mining malware specifications through static reachability
analysis. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol.
8134, pp. 517–535. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6 29

17. Madhavan, R., Ramalingam, G., Vaswani, K.: Modular heap analysis for higher-
order programs. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp.
370–387. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33125-1 25

18. Milanova, A., Huang, W., Dong, Y.: CFL-reachability and context-sensitive
integrity types. In: Proceedings of PPPJ, pp. 99–109 (2014)

19. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
Proceedings of POPL, pp. 327–338 (2007)

20. Pratikakis, P., Foster, J.S., Hicks, M.: Existential label flow inference via CFL
reachability. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 88–106. Springer,
Heidelberg (2006). doi:10.1007/11823230 7

21. Pratikakis, P., Foster, J.S., Hicks, M.W.: LOCKSMITH: context-sensitive correla-
tion analysis for race detection. In: Proceedings of PLDI, pp. 320–331 (2006)

22. Ravitch, T., Jackson, S., Aderhold, E., Liblit, B.: Automatic generation of library
bindings using static analysis. In: Proceedings of PLDI, pp. 352–362 (2009)

23. Rehof, J., Fähndrich, M.: Type-based flow analysis: from polymorphic subtyping
to CFL-reachability. In: Proceedings of POPL, pp. 54–66 (2001)

http://dx.doi.org/10.1007/978-3-319-21690-4_19
http://dx.doi.org/10.1007/3-540-49538-X_5
http://dx.doi.org/10.1007/3-540-49538-X_5
http://dx.doi.org/10.1007/978-3-319-08867-9_3
http://dx.doi.org/10.1007/978-3-642-33125-1_17
http://dx.doi.org/10.1007/3-540-36579-6_12
http://dx.doi.org/10.1007/3-540-36579-6_12
http://dx.doi.org/10.1007/978-3-642-40203-6_29
http://dx.doi.org/10.1007/978-3-642-33125-1_25
http://dx.doi.org/10.1007/11823230_7

Conditional Dyck-CFL Reachability Analysis 907

24. Reps, T.: Shape analysis as a generalized path problem. In: Proceedings of PEPM,
pp. 1–11 (1995)

25. Reps, T.: Program analysis via graph reachability. Inf. Softw. Technol. 40(11–12),
701–726 (1998)

26. Reps, T.: Undecidability of context-sensitive data-dependence analysis. TOPLAS
22(1), 162–186 (2000)

27. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of POPL, pp. 49–61 (1995)

28. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing. In: Proceedings
of FSE, pp. 11–20 (1994)

29. Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application
to interprocedural dataflow analysis. In: Cousot, R. (ed.) SAS 2003. LNCS, vol.
2694, pp. 189–213. Springer, Heidelberg (2003). doi:10.1007/3-540-44898-5 11

30. Rinetzky, N., Poetzsch-Heffter, A., Ramalingam, G., Sagiv, M., Yahav, E.: Modular
shape analysis for dynamically encapsulated programs. In: Nicola, R. (ed.) ESOP
2007. LNCS, vol. 4421, pp. 220–236. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-71316-6 16

31. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the
presence of large libraries. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol.
3923, pp. 2–16. Springer, Heidelberg (2006). doi:10.1007/11688839 2

32. Rountev, A., Ryder, B.G.: Points-to and side-effect analyses for programs built
with precompiled libraries. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp.
20–36. Springer, Heidelberg (2001). doi:10.1007/3-540-45306-7 3

33. Rountev, A., Sharp, M., Xu, G.: IDE dataflow analysis in the presence of large
object-oriented libraries. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 53–
68. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78791-4 4

34. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comput. Sci. 167(1–2), 131–170
(1996)

35. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. TOSEM 15(4), 410–457 (2006)

36. Sridharan, M., Gopan, D., Shan, L., Bod́ık, R.: Demand-driven points-to analysis
for Java. In: Proceedings of OOPSLA, pp. 57–76 (2005)

37. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. In: Proceedings of PLDI, pp. 387–400 (2006)

38. Sukumaran, S., Sreenivas, A., Metta, R.: The dependence condition graph: precise
conditions for dependence between program points. Comput. Lang. Syst. Struct.
36(1), 96–121 (2010)

39. Tang, H., Wang, X., Zhang, L., Xie, B., Zhang, L., Mei, H.: Summary-based
context-sensitive data-dependence analysis in presence of callbacks. In: Proceed-
ings of POPL, pp. 83–95 (2015)

40. Tschantz, M.C., Wing, J.M.: Extracting conditional confidentiality policies. In:
Proceedings of SEFM, pp. 107–116 (2008)

41. Xu, G., Rountev, A.: Merging equivalent contexts for scalable heap-cloning-based
context-sensitive points-to analysis. In: Proceedings of ISSTA, pp. 225–235 (2008)

42. Xu, G., Rountev, A., Sridharan, M.: Scaling CFL-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In: Drossopoulou, S. (ed.)
ECOOP 2009. LNCS, vol. 5653, pp. 98–122. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03013-0 6

43. Yannakakis, M.: Graph-theoretic methods in database theory. In: Proceedings of
PODS, pp. 230–242 (1990)

http://dx.doi.org/10.1007/3-540-44898-5_11
http://dx.doi.org/10.1007/978-3-540-71316-6_16
http://dx.doi.org/10.1007/978-3-540-71316-6_16
http://dx.doi.org/10.1007/11688839_2
http://dx.doi.org/10.1007/3-540-45306-7_3
http://dx.doi.org/10.1007/978-3-540-78791-4_4
http://dx.doi.org/10.1007/978-3-642-03013-0_6
http://dx.doi.org/10.1007/978-3-642-03013-0_6

908 H. Tang et al.

44. Zhang, Q., Lyu, M.R., Yuan, H., Su, Z.: Fast algorithms for Dyck-CFL reachability
with applications to alias analysis. In: Proceedings of PLDI, pp. 435–446 (2013)

45. Zhang, Q., Su, Z.: Context-sensitive data-dependence analysis via linear conjunc-
tive language reachability. In: Proceedings of POPL, pp. 344–358 (2017)

46. Zhang, X., Mangal, R., Naik, M., Yang, H.: Hybrid top-down and bottom-up inter-
procedural analysis. In: Proceedings of PLDI, pp. 249–258 (2014)

47. Zheng, X., Rugina, R.: Demand-driven alias analysis for C. In: Proceedings of
POPL, pp. 351–363 (2008)

48. Zhu, H., Dillig, T., Dillig, I.: Automated inference of library specifications for
source-sink property verification. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301,
pp. 290–306. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03542-0 21

http://dx.doi.org/10.1007/978-3-319-03542-0_21

A Higher-Order Logic for Concurrent
Termination-Preserving Refinement

Joseph Tassarotti1(B), Ralf Jung2(B), and Robert Harper1(B)

1 Carnegie Mellon University, Pittsburgh, USA
jtassaro@andrew.cmu.edu, rwh@cs.cmu.edu

2 MPI-SWS, Saarland Informatics Campus, Saarbrücken, Germany
rwh@cs.cmu.edu

Abstract. Compiler correctness proofs for higher-order concurrent lan-
guages are difficult: they involve establishing a termination-preserving
refinement between a concurrent high-level source language and an
implementation that uses low-level shared memory primitives. However,
existing logics for proving concurrent refinement either neglect proper-
ties such as termination, or only handle first-order state. In this paper,
we address these limitations by extending Iris, a recent higher-order con-
current separation logic, with support for reasoning about termination-
preserving refinements. To demonstrate the power of these extensions,
we prove the correctness of an efficient implementation of a higher-order,
session-typed language. To our knowledge, this is the first program logic
capable of giving a compiler correctness proof for such a language. The
soundness of our extensions and our compiler correctness proof have been
mechanized in Coq.

1 Introduction

Parallelism and concurrency impose great challenges on both programmers and
compilers. In order to make compiled code more efficient and help programmers
avoid errors, languages can provide type systems or other features to constrain
the structure of programs and provide useful guarantees. The design of these
kinds of concurrent languages is an active area of research. However, it is fre-
quently difficult to prove that efficient compilers for these languages are correct,
and that important properties of the source-level language are preserved under
compilation.

For example, in work on session types [8,14,16,38,41], processes communi-
cate by sending messages over channels. These channels are given a type which
describes the kind of data sent over the channel, as well as the order in which
each process sends and receives messages. Often, the type system in these lan-
guages ensures the absence of undesired behaviors like races and deadlocks; for
instance, two threads cannot both be trying to send a message on the same
channel simultaneously.

Besides preventing errors, the invariants enforced by session types also per-
mit these language to be compiled efficiently to a shared-memory target lan-
guage [39]. For example, because only one thread can be sending a message
c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 909–936, 2017.
DOI: 10.1007/978-3-662-54434-1 34

910 J. Tassarotti et al.

on a given channel at a time, channels can be implemented without perform-
ing locking to send and receive messages. It is particularly important to prove
that such an implementation does not introduce races or deadlocks, since this
would destroy the very properties that make certain session-typed languages so
interesting.

In this paper, we develop a higher-order program logic for proving the cor-
rectness of such concurrent language implementations, in a way that ensures that
termination is preserved. We have used this program logic to give a machine-
checked proof of correctness for a lock-free implementation of a higher-order
session-typed language, i.e., a language in which closures and channels can be
sent over channels. To our knowledge, this is the first such proof of its kind.

As we describe below, previously developed program logics cannot be used
to obtain these kinds of correctness results due to various limitations. In the
remainder of the introduction, we will explain why it is so hard to prove refine-
ments between higher-order, concurrent languages. To this end, we first have to
provide some background.

Refinement for concurrent languages. To show that a compiler is correct, one
typically proves that if a source expression E is well-typed, its translation Ê
refines E. In the sequential setting, this notion of refinement is easy to define1:
(1) if the target program Ê terminates in some value v, we expect E to also have
an execution that terminates with value v, and (2) if Ê diverges, then E should
also have a diverging execution.

In the concurrent setting, however, we need to change this definition. In
particular, the condition (2) concerning diverging executions is too weak. To see
why, consider the following program, where x initially contains 0:

while (*x == 0) {} || *x = 1;

Here, || represents parallel composition of two threads. In every execution where
the thread on the right eventually gets to run, this program will terminate. How-
ever, the program does have a diverging execution in which only the left thread
runs: because x remains 0, the left thread continues to loop. Such executions are
“unrealistic” in the sense that generally, we rely on schedulers to be fair and
not let a thread starve. As a consequence, for purposes of compiler correctness,
we do not want to consider these “unrealistic” executions which only diverge
because the scheduler never lets a thread run.

Formally, an infinite execution is said to be fair [23] if every thread which
does not terminate in a value takes infinitely many steps.2 In the definition of
refinement above, we change (2) to demand that if Ê has a fair diverging execu-
tion, then E also has a fair diverging execution. We impose no such requirement
about unfair diverging executions. This leads us to fair termination-preserving
refinement.
1 Setting aside issues of IO behavior.
2 This definition is simpler than the version found in Lehmann et al. [23], because

there threads can be temporarily disabled, i.e., blocked and unable to take a step. In
the languages we consider, threads can always take a step unless they have finished
executing or have “gone wrong”.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 911

Logics for proving refinement. To prove our compiler correct, we need to reason
about the concurrent execution and (non)termination of the source and target
programs. Rather than reason directly about all possible executions of these
programs, we prefer to use a concurrent program logic in order to re-use ideas
found in rely-guarantee reasoning [18] and concurrent separation logic [29]. How-
ever, although a number of concurrency logics have recently been developed for
reasoning about termination and refinements, they cannot be used to prove our
compiler correctness result because they either:

– are restricted to first-order state [15,24–26,31],
– only deal with termination, not refinement [15,31], or
– handle a weaker form of refinement that is not fair termination-preserving

[25,26,36].

Although the limitations are different in each of the above papers, let us
focus on the approach by Turon et al. [36] since we will build on it. That paper
establishes a termination-insensitive form of refinement, i.e., a diverging pro-
gram refines every program. Refinement is proven in a higher-order concurrent
separation logic which, in addition to the usual points-to assertions l ↪→ v, also
provides assertions about the source language’s state. For instance, the assertion3

source(i, E) says thread i in the source language’s execution is running expres-
sion E. A thread which “owns” this resource is allowed to modify the state of the
source program by simulating steps of the execution of E. Then, we can prove
that e refines E by showing:

{source(i, E)} e {v. source(i, v)}

As usual, the triple enforces that the post-condition holds on termination of e.
Concretely for the triple above, the soundness theorem for the logic implies that
if target expression e terminates with a value v, then there is an execution of
source expression E that also terminates with value v. However, the Hoare triple
above only expresses partial correctness. That means if e does not terminate,
then the triple above is trivial, and so these triples can only be used to prove
termination-insensitive refinements.

Ideally, one would like to overcome this limitation by adapting ideas from log-
ics that deal with termination for first-order state. Notably, Liang et al. [24] have
recently developed a logic for establishing fair refinements (as defined above).

However, there is a serious difficulty in trying to adapt these ideas. Seman-
tic models of concurrency logics for higher-order state usually involve step-
indexing [2,5]. In step-indexed logics, the validity of Hoare triples is restricted
to program executions of arbitrary but finite length. How can we use these to
reason about fairness, a property which is inherently about infinite executions?

In this paper, we show how to overcome this difficulty: the key insight is
that when the source language has only bounded non-determinism, step-indexed
Hoare triples are actually sufficient to establish properties of infinite program

3 The notation in Turon et al. [36] is different.

912 J. Tassarotti et al.

executions. Using this observation, we extend Iris [19,20], a recent higher-
order concurrent separation logic, to support reasoning about fair termination-
preserving refinement. The soundness of our extensions to Iris and our case
studies have been verified in Coq.

Overview. We start by introducing the case study that we will focus on in this
paper: a session-typed source language, a compiler into an ML-like language,
and the compiler’s correctness property – fair, termination-preserving refine-
ment (Sect. 2). Then we present our higher-order concurrent separation logic
for establishing said refinement (Sect. 3). We follow on by explaining the key
changes to Iris that were necessary to perform this kind of reasoning (Sect. 4).
We then use the extended logic to prove the correctness of the compiler for our
session-typed language (Sect. 5). Finally, we conclude by describing connections
to related work and limitations of our approach that we hope to address in future
work (Sect. 6).

2 Session-Typed Language and Compiler

This section describes the case study that we chose to demonstrate our logic:
a concurrent message-passing language and a type system establishing safety
and race-freedom for this language. On top of that, we explain how to imple-
ment the message-passing primitives in terms of shared-memory concurrency,
i.e., we define a compiler translating the source language into an ML-like target
language. Finally, we discuss the desired correctness statement for this compiler.

2.1 Source Language

The source language for our compiler is a simplified version of the language
described in Gay and Vasconcelos [14]. The syntax and semantics are given in
Fig. 1. It is a functional language extended with primitives for message pass-
ing and a command fork{E} for creating threads. The semantics is defined by
specifying a reduction relation for a single thread, which is then lifted to a con-
current semantics on thread-pools in which at each step a thread is selected
non-deterministically to take the next step.

Threads can communicate asynchronously with each other by sending mes-
sages over channels. For example, consider the following program (which will be
a running example of the paper):

let (x, y) = newch in
(
fork{send(x, 42)}; let (, v) = recv(y) in v

)
(1)

The command newch creates a new channel and returns two end-points
(bound to x and y in the example). An end-point consists of a channel id c
and a side s (either left or right), and is written as cs. Each channel is a pair of
buffers (b→, b←), which are lists of messages. Buffer b→ stores messages travel-
ing left-to-right (from x to y, in the example above), and b← is for right-to-left
messages, as shown in the visualization in Fig. 1.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 913

Fig. 1. Syntax, semantics, and session type system of message-passing source language

914 J. Tassarotti et al.

A thread can then use send(cs, V) to send a value V along the channel c, with
the side s specifying which buffer is used to store the message. For instance, when
s is left, it inserts the value at the end of the first buffer (SendLeft). This value
will then later be taken by a thread receiving on the right side (RecvRight).
Alternatively, if the buffer is empty when receiving, recv takes an “idle” step and
tries again (RecvRightIdle). (The reason send and recv return the end-point
again will become clear when we explain the type system.)

In the example above, after creating a new channel, the initial thread forks
off a child which will send 42 from the left end-point, x. Meanwhile, the parent
thread tries to receive from the right end-point y, and returns the message it
gets. If the parent thread does this recv before the child has done its send, there
will be no message and the parent thread will take an idle step. Otherwise, the
receiver will see the message and the program will evaluate to 42.

2.2 Session Type System

A type system for this language is shown in Fig. 1. This is a simplified version of
the type system given in Gay and Vasconcelos [14].4 In addition to base types Int
and Unit, we have pair types τ1⊗τ2, function types τ1 � τ2, and session types S.
Session types are used to type the end-points of a channel. These types describe
a kind of protocol specifying what types of data will flow over the channel, and
in what order messages are sent. Notice that this type system is higher-order
in the sense that both closures and channel end-points are first-class values and
can, in particular, be sent over channels.

Session types. The possible session types are specified by the grammar in Fig. 1.
If an end-point has the session type !τ. S, this means that the next use of this
end-point must be to send a value of type τ (Send). Afterward, the end-point
that is returned by the send will have type S. Dually, ?τ. S says that the end-
point can be used in a receive (Recv), in which case the message read will have
type τ , and the returned end-point will have type S. Notice that this is the same
end-point that was passed to the command, but at a different type. The type of
the end-point evolves as messages are sent and received, always representing the
current state of the protocol. Finally, end is a session type for an end-point on
which no further messages will be sent or received.

When calling newch to create a new channel, it is important that the types of
the two end-points match: whenever one side sends a message of type τ , the other
side should be expecting to receive a message of the same type. This relation
is called duality. Given a session type S, its dual S is the result of swapping
sends and receives in S. In our example (1), the end-point x is used to send a
single integer, so it can be given the type !Int. end. Conversely, y receives a single
integer, so it has the dual type !Int. end = ?Int. end.

4 For the reader familiar with that work: we leave out subtyping and choice types.
Also, we present an affine type system instead of a linear one.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 915

Affinity. The type system of the source language is affine, which means that
a variable in the context can be used at most once. This can be seen, e.g., in
the rule Fork: the forked-off thread Ef and the local continuation E are typed
using the two disjoint contexts Γ1 and Γ2, respectively.

One consequence of affinity is that after using an end-point to send or receive,
the variable passed to send/recv has been “used up” and cannot be used anymore.
Instead, the program has to use the channel returned from send/recv, which has
the new “evolved” type for the end-point.

The type system given here ensures safety and race-freedom. However, it does
not guarantee termination. We discuss alternative type systems guaranteeing
different properties in the conclusion.

2.3 Compilation

We now describe a simple translation from this session-typed source language to
a MiniML language with references and a forking primitive like the one in the
source language. We omit the details of the MiniML syntax and semantics as
they are standard.

Our translation needs to handle essentially one feature: the implementation
of channel communication in terms of shared memory references.

The code for the implementation of the channel primitives is shown in
Fig. 2. We write Ê for the translation in which we replace the primitives of the
source language with the corresponding implementations. Concretely, applying
the translation to our running example program we get:

let (x, y) = newch in let (x, y) = heapNewch in

fork{send(x, 42)}; ⇒ fork{heapSendx 42};
let (, v) = recv(y) in v let (, v) = heapRecv y in v

Each channel is implemented as a linked list which represents both buffers.
Nodes in this list are pairs (l, v), where l is a reference to the (optional) next
node, and v is the message that was sent. Why is it safe to use just one list?
Duality in the session types guarantees that if a thread is sending from one
end-point, no thread can at the same time be sending a message on the other
end-point. This ensures that at least one of the two buffers in a channel is always
empty. Hence we just need one list to represent both buffers.

heapNewch �
let l = ref none in (l, l)

heapSend l v �
let (l′, v′) = (l, v) in

let lnew = ref none in

l′ := some (lnew, v′);

lnew

heapRecv � rec f l.

match !l with

| none ⇒ f l

| some (l′, v) ⇒ (l′, v)

end

Fig. 2. Implementation of message passing primitives.

916 J. Tassarotti et al.

The implementation of newch, given by heapNewch, creates a new empty
linked list by allocating a new reference l which initially contains none. The
function heapSend implements send by appending a node to the end (l′) of the
list, and returning the new end. Meanwhile, for recv, heapRecv takes an end-point
l and waits in a loop until it finds that the end-point contains a node.

2.4 Refinement

Having given the implementation, let us now clarify what it means for the com-
piler to be correct. Intuitively, we want to show that if we take a well-typed source
expression E, all the behaviors of its translation Ê are also possible behaviors
of E. We say that Ê refines E.

Before we come to the formal definition of refinement, we need to answer
the question: which behaviors do we consider equivalent? In our case, the only
observation that can be made about a whole program is its return value, so
classifying “behaviors” amounts to relating return values. Formally speaking:

n ≈ n () ≈ () l ≈ cs λx.e ≈ λx.E
v1 ≈ V1 v2 ≈ V2

(v1, v2) ≈ (V1, V2)

For integer and unit values, we expect them to be exactly equal; similarly,
pairs are the same if their components are. Coming to locations/end-points and
closures, we do not consider them to be interpretable by the user looking at the
result of a closed program. So, we just consider all closures to be equivalent,
and all heap locations to relate to all channel end-points. Of course, the proof of
compiler correctness will use a more fine-grained logical relation between source
and target values.

Based on this notion of equivalent observations, we define what it means
for a MiniML program e to refine a source program E, written e � E. When
executing from an initial “empty” state ∅, the following conditions must hold:

1. If ([e], ∅) →∗ ([e1, . . . , en], σ) then no ei is stuck in state σ.
In other words: the target program does not reach a stuck state.

2. If ([e], ∅) →∗ ([v1, . . . , vn], σ) then either:
(a) ([E], ∅) →∗ ([V1, . . . , Vm], Σ) and v1 ≈ V1, or
(b) there is an execution of ([E], ∅) in which some thread gets stuck.
That is, if all threads of the target program terminate with a value, then either
all threads of the source program terminate in some execution and the return
values of the first (main) source thread and target thread are equivalent; or
the source program can get stuck.

3. If ([e], ∅) has a fair diverging execution, then ([E], ∅) also has a fair diverging
execution. Recall that an infinite execution is fair if every non-terminating
thread takes infinitely many steps. This last condition makes the refinement
a fair, termination-preserving refinement.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 917

To understand why we have emphasized the importance of fair termination-
preservation, suppose we had miscompiled our running example as:

let (x, y) = heapNewch in let (, v) = heapRecv y in v

That is, we removed the sender thread. We consider this to be an incorrect com-
pilation; i.e., this program should not be considered a refinement of the source
program. But imagine that we removed the word “fair” from condition (3) above:
then this bad target program would be considered a refinement of the source.
How is that? The program does not get stuck, so it satisfies condition (1).
Condition (2) holds vacuously since the target program will never terminate; it
will loop in heapRecv y, forever waiting for a message. Finally, to satisfy condi-
tion (3), we have to exhibit a diverging execution in the source program. Without
the fairness constraint, we can pick the (unfair) execution in which the sender
source thread never gets to run.

Notice that this unfair execution is very much like the example we gave in
the introduction, where a thread waited forever for another one to perform a
change in the shared state.

We consider such unfair executions to be unrealistic [23]; they should not give
license to a compiler to entirely remove a thread from the compiled program.
That’s why our notion of refinement restricts condition (3) to fair executions,
i.e., executions in which all non-terminating threads take infinitely many steps.

Compiler correctness. We are now equipped to formally express the correctness
statement of our compiler:

Theorem 1. For every well-typed source program E, we have that:

Ê � E

We prove this theorem in Sect. 5. In the intervening sections, we first develop
and explain a logic to help carry out this proof.

3 A Logic for Proving Refinement

Proving Theorem 1 is a challenging exercise. Both the source and the target
program are written in a concurrent language with higher-order state, which is
always a difficult combination to reason about. Moreover, the invariant relating
the channels and buffers to their implementation as linked lists is non-trivial and
relies on well-typedness of the source program.

The contribution of this paper is to provide a logic powerful enough to prove
theorems like Theorem 1. In this section, we will give the reader an impression of
both the logic and the proof by working through a proof of one concrete instance
of our general result: we will prove that the translation of our running example
is in fact a refinement of its source.

918 J. Tassarotti et al.

3.1 Refinement as a Hoare Logic

Our logic is an extension of Iris [19,20], a concurrent higher-order separation
logic. We use the ideas presented by Turon et al. [36] to extend this (unary)
Hoare logic with reasoning principles for refinement. Finally, we add some further
extensions which become necessary due to the termination-preserving nature of
our refinement. We will highlight these extensions as we go.

The following grammar covers the assertions from our logic that we will
need:5

P ::= False | True | P ∨ P | P ∗ P | A(P) | ∃x. P | ∀x. P | l ↪→ v | source(i, E, d) |
Stopped | c ↪→s (b→, b←) | StsSt(s, T) | {P } e {x. Q} | P � Q | P �� Q | . . .

Many of these assertions are standard in separation logics, and our example
proof will illustrate the non-standard ones.

Recalling the example and its translation,we want to prove:

let (x, y) = heapNewch in let (x, y) = newch in

fork{heapSendx 42}; � fork{send(x, 42)};
let (, v) = heapRecv y in v let (, v) = recv(y) in v

or, for short, eex � Eex. Following Ht-refine (Fig. 3), it is enough to prove

{source(i, Eex, d)} eex {v.∃V. source(i, V, 0) ∗ v ≈ V } (2)

In other words, we “just” prove a Hoare triple for eex (the MiniML pro-
gram). In order to obtain a refinement from a Hoare proof, we equip our logic
with assertions talking about the source program E. The assertion source(i, E, d)
states that source-level thread i is about to execute E, and we have delay d left.
(We will come back to delays shortly.) The assertion c ↪→s (b→, b←) says that
source-level channel c currently has buffer contents (b→, b←). As usual in sepa-
ration logic, both of these assertions furthermore assert exclusive ownership of
their thread or channel. For example, in the case of c ↪→s (b→, b←), this means
that no other thread can access the channel and we are free to mutate it (i.e.,
send or receive messages) – we will see later how the logic allows threads to share
these resources. Put together, these two assertions let us control the complete
state of the source program’s execution.

So far, we have not described anything new. However, to establish
termination-preserving refinement, we have to add two features to this logic:
step shifts and linear assertions.

5 Note that many of these assertions are not primitive to the logic, but are themselves
defined using more basic assertions provided by the logic. For instance, the Hoare
triple is actually defined in terms of a weakest precondition assertion. See Jung et
al. [19,20] for further details.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 919

Step shifts. The rules given in Fig. 3 let us manipulate the state of the source pro-
gram’s execution by taking steps in the source program. Such steps are expressed
using step shifts ��. Every step shift corresponds to one rule in the opera-
tional semantics (Fig. 1). For example, src-newch expresses that if we have
source(i,K[newch], d) (which means that the source is about to create a new
channel), we can “execute” that newch and obtain some fresh channel c and
ownership of the channel (c ↪→s ([], [])). We also obtain source(i,K[c], d′), so we
can go on executing the source thread.

Crucially, having P �� Q shows that in going from P to Q, the source has
taken a step. We need to force the source to take steps because the refinement
we show is termination-preserving. If a proof could just decide not to ever step
the source program, we could end up with a MiniML program e diverging, while
the corresponding source program E cannot actually diverge. That would make
Ht-refine unsound. So, to avoid this, all rules that take a step in the MiniML
program (Fig. 3) force us to also take a step shift.

A strict implementation of this idea requires a lock-step execution of source
and target program. This is too restrictive. For that reason, the source assertion
does not just record the state of the source thread, but also a delay d. Decre-
menting the delay counts as taking a step in the source (src-delay). When we
take an actual source step, we get to reset the delay to some new d′ – so long
as d′ is less than or equal to some fixed upper bound D that we use throughout
the proof. There are also rules that allow executing multiple source steps when
taking just a single step in the target program; we omit these rules for brevity.
For the remainder of this proof, we will also gloss over the bookkeeping for the
delay and just write source(i, e).

The assertion Stopped expresses that a source thread can no longer take
steps. As expected, this happens when the source thread reaches a value
(src-stopped).

Linearity. There is one last ingredient we have to explain before we start the
actual verification: linearity. Assertions in our logic are generally linear, which
means they cannot be “thrown away”, i.e., P ∗ Q
 P does not hold generically
in P and Q. As a consequence, assertions represent not only the right to perform
certain actions (like modifying memory), but also the obligation to keep perform-
ing steps in the source program. This ensures that we do not “lose track” of a
source thread and stop performing step shifts justifying its continued execution.

The modality A(P) says that we have a proof of P , and that this is an affine
proof – so there are no obligations encoded in this assertion, and we can throw
it away. Some rules are restricted to affine assertions, e.g., rules for framing
around a Hoare triple or a step shift (Ht-frame and step-frame). Again, this
affine requirement ensures that we do not “smuggle” a source thread around
the obligation to perform steps in the source. All the base assertions, with the
exception of source(i, e), are affine.

Coming back to the Hoare triple (2) above that we have to prove, the pre-
condition source(i, Eex) expresses that we start out with a source program exe-
cuting Eex (and not owning any channels), and we somehow have to take steps

920 J. Tassarotti et al.

Step Shift Rules: (all d and d′ must be ≤ some fixed upper-bound D)

src-newch
source(i, K[newch], d) �� ∃c. source(i, K[(cleft, cright)], d′) ∗ c ↪→s ([], [])

src-recv-right-miss
source(i, K[recv(cright)], d) ∗ c ↪→s ([], b←) �� source(i, K[recv(cright)], d′) ∗ c ↪→s ([], b←)

src-recv-right-hit
source(i, K[recv(cright)], d) ∗ c ↪→s (v b→, b←) �� source(i, K[(cright, v)], d′) ∗ c ↪→s (b→, b←)

src-send-left
source(i, K[send(cleft, v)], d) ∗ c ↪→s (b→, b←) �� source(i, K[cleft], d′) ∗ c ↪→s (b→ v, b←)

src-fork
source(i, K[fork{E}], d) �� ∃j. source(i, K[()], d′) ∗ source(j, E, df)

src-delay
d′ < d � source(i, K[E], d) �� source(i, K[E], d′)

src-pure-step
e1 → e2

source(i, e1, d) �� source(i, e2, d′)
src-stopped
source(i, V, 0) � Stopped

(Symmetric rules and side-condition on d′ omitted.)

Basic Hoare Triples:

ml-alloc
∀x. P �� Q

{P } ref v {x. Q ∗ x ↪→ v}

ml-load
P �� [v/y]Q

{P ∗ x ↪→ v} !x {y. Q ∗ x ↪→ v}

ml-store
P �� Q

{P ∗ x ↪→ v} x := w {Q ∗ x ↪→ w}

ml-fork
P �� Q0 ∗ Q1

{Q0} e {Stopped} {Q1} e′ {R}
{P } fork{e}; e′ {R}

ml-rec
P �� P ′ (∀v. {P } (rec f x. e) v {w. Q}) ⇒ ∀v. {P ′} [rec f x. e/f, v/x]e {w. Q}

∀v. {P } (rec f x. e) v {w. Q}

Ht-frame
{P } e {v. Q}

{P ∗ A(R)} e {v. Q ∗ A(R)}

step-frame
P �� Q

P ∗ A(R) �� Q ∗ A(R)

Ht-csq
P � P ′ {P ′} e {v. Q′} ∀v. Q′ � Q

{P } e {v. Q}

Refinement Rule:

Ht-refine
{source(i, E, d)} e {v. ∃V. source(i, V, 0) ∗ v ≈ V }

e
 E

Fig. 3. Selection of rules for step shifts and Hoare triples

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 921

in the source program to end up with source(i, V) such that V is “equivalent”
(in the sense defined in Sect. 2.4) to the return value of the target program.
Intuitively, because we can only manipulate source by taking steps in the source
program, and because we end up stepping from source(i, Eex) to “the same”
return value as the one obtained from e, proving the Hoare triple actually estab-
lishes a refinement between the two programs. Furthermore, since source is linear
and we perform a step shift at every step of the MiniML program, the refinement
holds even for diverging executions.

3.2 Proof of the Example

The rest of this section will present in great detail the proof of our example (2).
The rough structure of this proof goes as follows: after a small introduction cov-
ering the allocation of the channel, we will motivate the need for state-transition
systems (STS), a structured way of controlling the interaction between cooper-
ating threads. We will define the STS used for the example and decompose the
remainder of the proof into two pieces: one covering the sending thread and one
for the receiving thread.

Getting started. The first statement in both source and target program is the
allocation of a channel. The following Hoare triple that’s easily derived from
ml-alloc summarizes the action of heapNewch: It allocates a channel in both
programs.

{source(i,K[newch])} heapNewch

{x.∃l, c. x = (l, l) ∗ l ↪→ none ∗ c ↪→s ([], []) ∗ source(i,K[(cleft, cright)])} (3)

Let us pause a moment to expand on that post-condition. On the source side,
we have a channel c with both buffers being empty; on the target side we have
a location l representing the empty buffer with none. The return value x is a
pair with both components being l. Finally, the source thread changed from
K[newch] in the pre-condition to K[(cleft, cright)], meaning that the newch has
been executed and the context can now go on with its evaluation based on the
pair (cleft, cright).

We apply this triple for heapNewch with the appropriate evaluation context
K for the source program, and the post-condition of (3) becomes our new context
of current assertions. Next, we reduce the let on both sides, so we end up with

l ↪→ none ∗ c ↪→s ([], []) ∗ source(i, ecomm(c)) (4)

where
ecomm(c) � fork{send(cleft, 42)}; let (, v) = recv(cright) in v

and the remaining MiniML code is

fork{heapSend l 42}; let (, v) = heapRecv l in v

922 J. Tassarotti et al.

(In the following, we will perform these pure reduction steps and the substitu-
tions implicitly.)

As we can see, both programs are doing a fork to concurrently send and
receive messages on the same channel. Usually, this would be ruled out by the
exclusive nature of ownership in separation logic. To enable sharing, the logic
provides a notion of protocols coordinating the interaction of multiple threads on
the same shared state. The protocol governs ownership of both l (in the target)
and c (in the source), and describes which thread can perform which actions on
this shared state.

State-transition systems. A structured way to describe protocols is the use of
state-transition systems (STS), following the ideas of Turon et al. [36]. An STS
S consists of a directed graph with the nodes denoting states and the arrows
denoting transitions.

The STS for our example is given in Fig. 4. It describes the interaction of our
two threads over the shared buffer happening in three phases. In the beginning,
the buffer is empty (init). Then the message is sent by the forked-off sending
thread (sent). Finally, the message is received by the main thread (received).

The STS also contains two tokens. Tokens are used to represent actions that
only particular threads can perform. In our example, the state sent requires the
token [S]. The STS enforces that, in order to step from init to sent, a thread
must provide (and give up) ownership of [S]. This is called the law of token
preservation [36]: Because sent contains more tokens than init, the missing
tokens have to be provided by the thread performing the transition. Similarly,
[R] is needed to transition to the final state received.

To tie the abstract state of the STS to the rest of the verification, every STS
comes with an interpretation ϕ. For every state, it defines an affine assertion that
has to hold at that state. In our case, we require the buffer to be initially empty,
and to contain 42 in state sent. Once we reach the final state, the programs no
longer perform any action on their respective buffers, so we stop keeping track.

We need a way to track the state of the STS in our proof. To this end, the
assertion StsSt(s, T) states that the STS is at least in state s, and that we own
tokens T . We cannot know the exact current state of the STS because other
threads may have performed further transitions in the mean time. The proof
rules for STSs can be found in the appendix [34]; in the following, we will keep
the reasoning about the STS on an intuitive level to smooth the exposition.

Plan for finishing the proof. Let us now come back to our example program. We
already described the STS we are going to use for the verification (Fig. 4). The
next step in the proof is thus to initialize said STS.

Remember our current context is (4). When allocating an STS, we get to
pick its initial state – that would be init, of course. We have to provide ϕ(init)
to initialize the STS, so we give up ownership of l and c. In exchange, we obtain
StsSt and the tokens. Our context is now

StsSt(init, {[S], [R]}) ∗ source(i, ecomm(c)) (5)

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 923

The next command executed in both programs is fork. We are thus going to
apply ml-fork and prove the step shift using src-fork. The two remaining
premises of ml-fork are the following two Hoare triples:

{StsSt(init, [S]) ∗ source(j, send(cleft, 42))} heapSend l 42 {Stopped} (6)

{StsSt(init, [R]) ∗ source(j, let (, v) = recv(cright) in v)}
let (, v) = heapRecv l in v

{n. n = 42 ∗ source(j, 42)}
(7)

Showing these will complete the proof. The post-condition Stopped of (6) is
mandated by ml-fork; we will discuss it when verifying that Hoare triple. Note
that we are splitting the StsSt to hand the two tokens that we own to two
different threads.

Verifying the sender. To prove the sending Hoare triple (6), the context we
have available is StsSt(init, [S]) ∗ source(j, send(cleft, 42)), and the code we wish
to verify is (unfolding the definition of heapSend, and performing some pure
reductions):

let lnew = ref none in l := some (lnew, 42); lnew

The allocation is easily handled with ml-alloc, and it turns out we don’t
even need to remember anything about the returned lnew.

The next step is the core of this proof: showing that we can change the value
stored in l. Notice that we do not own l ↪→ ; the STS “owns” l as part of its
interpretation. So we will open the STS to get access to l.

Looking at Fig. 4, we can see that doing the transition from init to sent
requires the token [S], which we own – as a consequence, nobody else could
perform this transition. It follows that the STS is currently in state init. We
obtain ϕ(init), so that we can apply ml-store with src-send-left, yielding

l ↪→ some (l′, 42) ∗ c ↪→s ([], []) ∗ source(j, cleft) (8)

To finish up accessing the STS, we have to pick a new state and show that
we actually possess the tokens to move to said state. In our case, we cannot pick
received, since we do not own the token [R] necessary for that step. Instead, we
will pick sent and give up our token. This means we have to establish ϕ(sent).
Doing so consumes most of our context (8), leaving only source(j, cleft). What
remains to be done? We have to establish the post-condition of our triple (6),

S � init
sent
[S]

received
[S], [R]

ϕ(init) � l ↪→ none ∗ c ↪→s ([], [])

ϕ(sent) � l ↪→ some (, 42) ∗ c ↪→s ([42], [])

ϕ(received) � True

Fig. 4. STS for the example

924 J. Tassarotti et al.

which is Stopped. By src-stopped, this immediately follows from the fact that
we reduced the source thread to cleft, which is a value.

Notice that this last step was important: We showed that when the MiniML
thread terminates, so does the source thread. The original fork rule for Iris allows
picking any post-condition for the forked-off thread, because nothing happens
any more with this thread once it terminates. However, we wish to establish
that if all MiniML threads terminate, then so do all source threads – and for
this reason, ml-fork forces us to prove Stopped, which asserts that all the
threads we keep track of have reduced to a value. This finishes the proof of the
sender.

Verifying the receiver. The next (and last) step in establishing the refinement
(2) is to prove the Hoare triple for the receiving thread (7). This is the target
code to verify:

let (, v) = heapRecv l in v

Since heapRecv is a recursive function, we use ml-rec, which says that we can
assume that recursive occurrences of heapRecv have already been proven correct.
It may be surprising to see this rule – after all, rules like ml-rec are usually
justified by saying that all we do is partial correctness. Notice, however, that we
are not showing that Eex terminates. All we show is that, if Eex diverges, then so
does eex. That is, we are establishing termination-preservation, not termination.

In continuing the proof, we thus get to assume correctness of the recursive
call. Our current context is

StsSt(init, [R]) ∗ source(j, let (, v) = recv(cright) in v) (9)

and the code we are verifying is

match !l with none ⇒ heapRecv l | some (l′, v) ⇒ (l′, v) end

with post-condition (, n). n = 42 ∗ source(j, 42).
The first command of this program is !l. To access l, we have to again open

the STS. Since we own [R], we can rule out being in state received. We perform
a case distinction over the remaining two states.

– If we are in init, we get l ↪→ none ∗ c ↪→s ([], []) from the STS’s ϕ(received).
We use ml-load with src-recv-right-miss. Notice how we use c ↪→s ([], [])
to justify performing an “idle” step in the source. This is crucial – after all,
we are potentially looping indefinitely in the target, reading l over and over;
we have to exhibit a corresponding diverging execution in the source.
Since we did not change any state, we close the invariant again in the init
state. Next, the program executes the none arm of the match: heapRecv l.
Here, we use our assumption that the recursive call is correct to finish the
proof.

– Otherwise, the current state is sent, and we obtain l ↪→ some (, 42) ∗ c ↪→s

([42], []). We use ml-load with src-recv-right-hit; this time we know that
the recv in the source will succeed. We also know that we are loading (, 42)

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 925

from l. We pick received as the next state (giving up our STS token), and
trivially establish ϕ(received). We can now throw away ownership of l and
c as well as StsSt(received) since we no longer need them – we can do this
because all these assertions are affine.
All that remains is the source thread:

source(j, let (, v) = (cright, 42) in v)

Next, the target program will execute the some branch of the match. To finish,
we need to justify the post-condition: (, n). n = 42 ∗ source(j, 42). We already
established that the second component of the value loaded from l is 42, and
the source thread is easily reduced to 42 as well.

This finishes the proof of (7) and therefore of (2): we proved that eex � Eex.

4 Soundness of the Logic

We have seen how to use our logic to establish a refinement for a particular
simple instance of our translation. We now need to show that this logic is sound.

As already mentioned, our logic is an extension of Iris, so we need to adapt
the soundness proof of Iris [19]. The two extensions that were described in
Sect. 3.1 are:

1. We add a notion of a step shift, which is used to simulate source program
threads.

2. We move from an affine logic to a linear logic. This is needed to capture the
idea that some resources (like source) represent obligations that cannot be
thrown away.

In this section we describe how we adapt the semantic model of Iris to han-
dle these changes. Although our extensions sound simple, the modification of
the model requires some care. Many of the features we used in Sect. 3, such
as STSs [20] and reasoning about the source language, are derived construc-
tions that are not “baked-in” to the logic. As we change the model, we need to
ensure that all of these features can still be encoded. We also strive to keep our
extensions as general as possible so as to not unnecessarily restrict the flexibility
of Iris.

Brief review of the Iris model. We start by recalling some aspects of the Iris
model [19] that we modify in our extensions. A key concept is the notion of a
resource. Resources describe the physical state of the program as well as addi-
tional ghost state that is added for the purpose of verification and used, e.g., to
interpret STSs or the assertions talking about source programs. Resources are
instances of a partial commutative monoid-like algebraic structure; in particular,
two resources a, b can be composed to a · b. This operation is used to combine
resources held by different threads. When the composition a · b is defined, the
elements a and b are said to be compatible. Iris always ensures that the resources
held by different threads are compatible. This guarantees that, e.g., different

926 J. Tassarotti et al.

threads cannot own the same channel or the same STS token. The operation
also gives rise to a pre-order on resources, defined as a1 � a2 � ∃a3. a1 ·a3 = a2,
i.e., a1 is included in a2 if the former can be extended to the latter by adding
some additional resource a3.

Ideally, we would just interpret an assertion P as a set of resources. For
technical reasons (that we will mostly gloss over), Iris needs an additional com-
ponent: the step-index n. An assertion is thus interpreted as a set of pairs (n, a)
of step-indices and resources. We write n, a |= P to indicate that (n, a) ∈ P ,
and read this as saying that a satisfies P for n steps of the target program’s
execution.

Iris furthermore demands that assertions (interpreted as sets) satisfy two
closure properties: They must be closed under larger resources and smaller step-
indices. Formally:

1. If n, a |= P and a � a′, then n, a′ |= P .
2. If n, a |= P and n′ ≤ n, then n′, a |= P .

The first point above makes Iris an affine as opposed to a linear logic: we can
always “add-on” more resources and continue to satisfy an assertion. Put dif-
ferently, there is no way to state an upper bound on our resources. The second
point says that if P holds for n steps, then it also holds for fewer than n steps.

To give a model to assertions like l ↪→ v, we need a function HeapRes(l, v)
describing, as a resource, a heap which maps location l to v. We then define:

n, a |= l ↪→ v iff HeapRes(l, v) � a

Notice the use of �, ensuring that the closure property (1) holds.

Equipping Iris with linear assertions. In order to move to a linear setting with
minimal disruption to the existing features of Iris, we replace the judgment
n, a |= P with n, a, b |= P . That is, assertions are now sets of triples: a step-
index and two resources. The downward closure condition on n and the upward
closure condition on a still apply, but we do not impose such a condition on b:
this second resource will represent the “linear piece” of an assertion. Crucially,
whereas affine assertions like l ↪→ v continue to “live” in the a piece, the linear
source resides in b:

n, a, b |= l ↪→ v iff HeapRes(l, v) � a ∧ b = ε

n, a, b |= source(i, E, d) iff SourceRes(i, E, d) = b

where ε is the unit of the monoid. We assume SourceRes(i, E, d) to define, as a
resource, a source thread i executing E with d delay steps left.

As we can see, source describes the exact linear resources b that we own,
whereas ↪→ merely states a lower bound on the affine resources a (due to the
upwards closure on a). Notice that a and b are both elements of the same set
of resources; it is just their treatment in the closure properties of assertions
which makes one affine and the other linear. Because there is no upward closure

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 927

condition on the second monoid element, the resulting logic is not affine: if
n, a, b |= P ∗ Q, then it is not necessarily the case that n, a, b |= P .

We define the affine modality by:

n, a, b |= A(P) iff n, a, b |= P ∧ b = ε

This says that in addition to satisfying P , b should equal the unit of the monoid.
That is, the linear part is “empty”; there are no obligations encoded in P . That
makes it sound to throw away P or to frame it.

The advantage of this “two world” model is that it does not require us to
change many of the encodings already present in Iris, like STSs.

Step Shifts. We are now ready to explain the ideas behind the step shift. Remem-
ber the goal here is to account for the steps taken in the source program, in a
way that we can prove refinements by proving Hoare triples (Ht-refine). This
is subtle because by the definition of refinement (Sect. 2.4), we need to make
statements even about infinite executions, i.e., executions that never have to
satisfy the post-condition.

The key idea is to equip the resources of Iris with a relation that represents
a notion of taking a (resource) step. We write a � b, and say that a steps to b.
We will then pick the resources in such a way as to represent the status of a
source program,6 and we define the resource step to be taking a step in the
source program. All the other components of the resource, like STSs, will not be
changed by resource steps.

Recall that the resources owned by different threads always need to be com-
patible. To ensure this, we define a relation that performs a step while main-
taining compatibility with the resources owned by other threads. Formally, a
frame-preserving step-update a, b � a′, b′ holds if b � b′ and for all c such that
a · b · c is defined, so is a′ · b′ · c. The intuition is that, if a thread owns some
resources a and b, that restricts the ownership of other threads to frames c that
are compatible with a and b. Since a′ and b′ are also compatible with the frame,
the step is guaranteed not to interfere with resources owned by other threads.

These frame-preserving step-updates are reflected into the logic through the
step shift assertions: P �� Q holds if, whenever some resources satisfy P , it is
possible to perform a frame-preserving step-update to resources satisfying Q.

We then connect Hoare triples to these resource steps. To this end, we change
the definition of Hoare triples so that whenever a target thread takes a step, we
have to also take a step on our resources. This gives rise to the proof rules in
Fig. 3, which force the user of the logic to perform a step shift alongside every
step of the MiniML program. We also enforce that forked-off threads must have
a post-condition of Stopped, ensuring that target language threads cannot stop
executing while source language threads are still running.

6 Iris is designed to be parametric in the choice of resources, so we can pick a particular
resource for this source language and still use most of the general Iris machinery.

928 J. Tassarotti et al.

Soundness of the refinement. Having extended the definition of Hoare triples
in this way, we can prove our refinement theorem. Recall that the definition
of refinement had three parts. For each of these parts, we proved an adequacy
theorem for our extensions relating Hoare triples to properties of program exe-
cutions. These theorems are parameterized by the kind of resource picked by the
user, and in particular the kind of resource step. Below, we show these theorems
specialized to the case where resource steps correspond to source language steps.

The first refinement condition, which says that the target program must
not get stuck, follows from a “safety” theorem that was already present in the
original Iris:

Lemma 2. If {source(i, E, d)} e {v. source(i, V, 0) ∗ A(v ≈ V)} holds and we
have ([e], ∅) →∗ ([e1, . . . , en], σ), then each ei is either a value or it can take
a step in state σ.

The second refinement condition says that if the execution of e terminates,
then there should be a related terminating execution in the source. Remember
that the definition of the Hoare triple requires us to take a step in the source
whenever the target steps (modulo a finite number of delays). Hence a proof of
such a triple must have “built-up” the desired source execution:

Lemma 3. If {source(i, E, d)} e {v. source(i, V, 0) ∗ A(v ≈ V)} holds and we
have ([e], ∅) →∗ ([v1, . . . , vn], σ), then there exists V1, E2, . . . , Em, Σ s.t.
([E], ∅) →∗ ([V1, E2, . . . , Em], Σ). Moreover, each Ei is either stuck or a value,
and v1 ≈ V1.

Here, we are already making crucial use of both linearity of source and the
fact that forked-off threads must have post-condition Stopped: if it were not for
these requirements, even when all target threads terminated with a value vi, we
could not rule out the existence of source threads that can go on executing.

Finally, we come to the third condition, which says fair diverging executions
of the target should correspond to fair diverging executions of the source:

Lemma 4. If {source(i, E, d)} e {v. source(i, V, 0) ∗ A(v ≈ V)} holds and ([e], ∅)
has a diverging execution, then ([E], ∅) has a diverging execution as well. More-
over, if the diverging target execution is fair, then the source execution is too.

This is the hardest part of the soundness proof. We would like to start by
arguing that, just as for the finite case, if the target program took an infinite
number of steps, then the proof of the refinement triple must give a corresponding
infinite number of steps in the source program. Unfortunately, this argument is
not so simple because of step-indexing.

In Iris, Hoare triples are themselves step-indexed sets. We write n |=
{P } e {Q} to say that the triple holds at step-index n. Then, when we say
we have proved a Hoare triple, we mean the triple holds for all step-indices n
and all resources satisfying the precondition. As is usual with step-indexing,
when a triple {P } e {Q} holds for step-index n, that means when the precon-
dition is satisfied, execution of e is safe for up-to n steps, and if it terminates

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 929

within those n steps, the post-condition holds. In our case, it also means that
each step of the target program gives a step of the source program, for up to n
target steps.

This restriction to only hold “up to n steps” arises due to the way Hoare
triples are defined in the model: when proving the Hoare triple at step-index n,
if e steps to e′, we are only required to show (n − 1) |= {P ′} e′ {Q} for some P ′.

The restriction to a finite number of steps did not bother us for Lemmas 2
and 3. Since they only deal with finite executions, and the Hoare triple holds
for all starting indices n, we can simply pick n to be greater than the finite
execution we are considering. But we cannot do this when we want to prove
something about a diverging execution of the target. Whatever n we start with,
it is not big enough to get the infinite source execution we need.

Bounded non-determinism, infinite executions, and step-indexing. Our insight
is that when the source language has only bounded non-determinism, we can set
up a more careful inductive argument. By bounded non-determinism, we mean
that each configuration ([E, . . .], Σ) only has finitely many possible successor
configurations. The key result is the following quantifier inversion lemma:

Lemma 5. Let R be a step-indexed predicate on a finite set X. Then:

(∀n.∃x. n |= R(x)) ⇒ (∃x.∀n. n |= R(x))

Proof. By assumption, for each n, there exists xn ∈ X such that n |= R(xn).
Since X is finite, by the pigeon-hole principle, there must be some x ∈ X such
that m |= R(x) for infinitely many values of m. Now, given arbitrary n, this
means there exists m > n such that m |= R(x). Since step-indexed predicates
are downward-closed, n |= R(x). Hence ∀n. n |= R(x).

Ignoring delay steps for the moment, we apply this lemma to our setting to get:

Lemma 6. Suppose e steps to e′ and ∀n.∃Pn. n |= {source(i, E) ∗ Pn} e {Q}.
Then, ∃E′ such that E steps to E′ and ∀n.∃P ′

n. n |= {source(i, E′) ∗ P ′
n} e′ {Q}.

Proof. Let X by the set of E′ that E can step to, which we know to be
finite.7 Consider the step-indexed predicate R on X defined by n |= R(E′) �
(E → E′ ∧ ∃P ′

n. n |= {source(i, E′) ∗ P ′
n} e′ {Q}). By assumption, for each n > 0,

n |= {source(i, E) ∗ Pn} e {Q} for some Pn. The definition of Hoare triples implies
that there exists some E′ such that (n − 1) |= R(E′). Thus, ∀n.∃E′. n |= R(E′),
so we can apply Lemma 5 to get the desired result.

Notice that in the conclusion of Lemma 6, if e′ takes another step, we
can apply Lemma 6 again to the triples for e′. So, given some initial triple
{source(i, E)} e {Q} and a diverging execution of e, by induction we can repeat-
edly apply Lemma 6 to construct an infinite execution of the source program.

7 To be precise we ought to mention the initial states σ and Σ that e and E run in
and assume they satisfy the precondition of the triple.

930 J. Tassarotti et al.

Finally, we prove that if the execution of e was fair, this source execution will
be fair as well, giving us Lemma 4. Of course, for the full mechanized proof
we have to take into account the delay steps and consider the case where the
target thread owns multiple source threads. But all of these are finite additional
possibilities, they do not fundamentally change the argument sketched above.

5 Proof of Compiler Correctness

We now give a brief overview of our proof of Theorem 1. Recall that we want to
show that if E is a well-typed source expression, then Ê � E.

Our proof is a binary logical relations argument. We interpret each type τ
as a relation on values from the target and source language, writing v �V V : τ
to say that v and V are related at type τ . However, following the example of
[21,22], these are relations in our refinement logic, which means we can use all
of the constructs of the logic to describe the meaning of types. We then prove a
fundamental lemma showing that well-typed expressions are logically related to
their translation. Next, we show that our logical relation implies the triple used
in Ht-refine. Theorem 1 is then a direct consequence of these two lemmas.

Details of these proofs can be found in the appendix [34]; here we focus on
the definition of the logical relation itself. For most types, the interpretation is
straight-forward and fairly standard. For instance, v �V V : Int holds exactly
when v = V = n, for some integer n. The important exception, of course, is
the interpretation of session types, in which we need to relate the encoding of
channels as linked-lists to the source language’s primitive buffers.

Sessions as an STS. To interpret session types, we generalize the state transition
system from the example in Sect. 3 to handle the more complicated “protocols”
that session types represent.

What should the states of this STS be? In the STS used in Sect. 3, we had
three states: init, in which the message had not been sent; sent, where a message
had been sent from the left end-point, but not received; and received, where
the message had now been received at the right end-point. In the general case,
we will have more than one message, so our states need to track how many
messages have been sent/received on each end-point. We also need to know the
“current” type of the end-points, but notice that if we know the starting type
of an end-point, and how many messages have been sent/received on it, we can
always recover these current types. We write Sn for the type after n messages
have been sent/received starting from S.

We also need to know which heap locations ll and lr currently represent the
end-points of the channel. All together then, the states will be tuples (nl, nr, ll, lr)
describing how many messages have been sent/received on each end-point, and
the corresponding heap locations.

Remember that we also need to define the tokens and transitions associated
with each state of our STS. The transitions are simple: we can either advance
the left end-point, incrementing nl and updating ll, and similarly for the right

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 931

end-point. For the tokens, recall that in our example proof, we had [S] and
[R] tokens used by each thread to advance the state when they had interacted
with their respective end-points. In general, the threads will now use the end-
points multiple times, so we need a token for each of these uses on both sides.
Concretely, we will have two kinds of tokens, [Left n] and [Right n], which are
used when advancing the left and right end-point counter to n, respectively.

To complete the description of the STS, we have to talk about the interpre-
tation of the states. This interpretation has to relate the messages in the source
channel’s current buffers to the nodes in the linked list on the target heap. The
individual messages should, of course, be related by our logical relation (�V).
We lift this relation to lists of messages (�L) as follows:

[] �L [] : S

L-cons

(
v �V V : τ

) ∗ (
Lh �L Lc : S

)

vLh �L V Lc : ?τ. S

For now, ignore the
 symbol. The left rule says that two empty lists are equiv-
alent at any session type. The right rule says two lists are related at a receive
type ?τ. S, if their heads are related under τ , and the remainders of each list are
related at S. It is important that this is a receive type: if the current type of the
end-point is a send type, then there should not be any messages in its receive
buffer, so the rule for empty lists is the only one that applies.

We can now give our state interpretation, ϕ, which is parameterized by (a)
the starting type S of the left end-point (the right end-point’s starting type is by
necessity dual so there is no need to track it), and (b) the name c of the channel:

ϕS,c(nl, nr, ll, lr) � ∃Lc, Lh.
(
c ↪→s (Lc, []) ∗ linklist(Lh, ll, lr) ∗ (10)

(Lh �L Lc : Snl) ∗ nl + |Lc| = nr

)
∨ . . . (11)

Let us explain this piece by piece. To start, we have that there exists a list
of source values Lc and a list of target values Lh, representing the messages that
are stored in the buffer right now. We then distinguish between two cases: either
the first buffer is empty or the second buffer is empty. We omit the second case
(corresponding to the second disjunct) because it is symmetric. In the first case,
the channel’s first buffer contains Lc and the second buffer is empty (10, left). On
the target side, the buffer is represented as a linked list from ll to lr containing the
values Lh (10, right). Of course, the lists of values need to be related according
to the end-point’s current type Snl (11, left). Finally, the number of messages
sent/received through the left end-point, plus the number of messages still in
the buffer, should equal the total number of messages sent/received through
the right end-point (11, right). Therefore, when these remaining messages are
received by the left end-point, the two types will again be dual.

Informally then, the value relation at session types l �V cs : S says that there
exists an appropriate STS and tokens for the session S which relates l and cs.

932 J. Tassarotti et al.

We can then prove Hoare triples for the message-passing primitives that manip-
ulate this STS. For instance, for heapRecv we have (omitting delay steps):

{source(i,K[recv(cs)]) ∗ l �V cs : ?τ. S} heapRecv l

{(l′, v).∃V. source(i,K[(cs, V)]) ∗ (v �V V : τ) ∗ l′ �V cs : S}
This triple closely corresponds to the typing rule Recv (Fig. 1): typing judg-

ments in the premise become value relations in the pre-condition, and the con-
clusion is analogously transformed into the postcondition. Indeed, the proof of
the fundamental lemma for the logical relation essentially just appeals to these
triples.

There is something we have glossed over: when we defined the logical relation,
we used the STS, but the STS interpretation used the logical relation! This
circularity is the reason for the
 symbol guarding the recursive occurrence of
(�V) in L-cons. The details are spelled out in the appendix.

6 Conclusion and Related Work

We have presented a logic for establishing fair, termination-preserving refine-
ment of higher-order, concurrent languages. To our knowledge, this is the first
logic combining higher-order reasoning (and in particular, step-indexing) with
reasoning for termination-sensitive concurrent refinement. Moreover, we applied
this logic to verify the correctness of a compiler that translates a session-typed
source language with channels into an ML-like language with a shared heap.

All of these results have been fully mechanized in Coq. Our mechanization
builds on the Coq development described in Jung et al. [19] and the proof-mode
from Krebbers et al. [21]. The proofs use the axioms of excluded middle and
indefinite description. The proof scripts can be found online [1].

Second Case Study. Our logic is not tied to this source language and translation:
we have used it to mechanize a proof that the Craig-Landin-Hagersten queue
lock [9,27] refines a ticket lock. Further details can be found in the appendix [34].

Linearity. Linearity has been used in separation logics to verify the absence
of memory leaks: if heap assertions like l ↪→ v are linear, and the only way to
“dispose” of them is by freeing the location l, then post conditions must mention
all memory that persists after a command completes [17]. Our treatment of
linearity has limitations that make it unsuitable for tracking resources like the
heap. First, in our logic, only affine assertions can be framed (see Ht-frame),
because framing could hide the obligation to perform steps on source threads. Of
course, for resources like the heap this would be irrelevant, and this rule could
be generalized. Second, linear resources cannot be put in STS interpretations, so
they cannot be shared between threads. Since STSs are implemented in terms
of a more primitive feature in Iris called invariants, which are affine, allowing
linear resources to be put inside would circumvent the precise accounting that
motivates linearity in the first place. Thus, we would need to extend Iris with a
useful form of “linear” shared invariants, which we leave to future work.

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 933

Session Types. Starting from the seminal work of Honda [16], a number of
session-type systems have been presented with different features [8,14,35,38,41]
(among many others). The language presented here is a simplified version of the
one in Gay and Vasconcelos [14]. Wadler [38] has shown that a restricted subset
of the language in [14] does enjoy a deadlock freedom property. This property
holds only when the type system is linear, like the original in [14]. Pérez et al.
[30] and Caires et al. [7] give logical relations for session-typed languages, which
they use to prove strong normalization and contextual equivalence results. Their
logical relation is defined “directly”, instead of translating into an intermediary
logic. Early versions of another session-typed system [39] used a ring-buffer to
represent channels instead of linked lists, which would be interesting to verify.

Logics for Concurrency, Termination, and Refinement. There is a vast literature
on program logics for concurrency [6,10–13,15,19,20,24–26,28,29,31,32,36,37].
Indeed, the reason for constructing a logical relation on top of a program logic,
as in Krogh-Jespersen et al. [22], is so that we can take advantage of the many
ideas that have proliferated in this community.

Focusing on logics for refinement and termination properties: Benton [3] pio-
neered the use of a relational Hoare logic for showing the correctness of com-
piler transformations in the sequential setting. Yang [40] generalized this to
relational separation logic. We have already described [36], which developed a
higher-order concurrent separation logic for termination-insensitive refinement.
Liang et al. [25] also allow non-terminating programs to refine terminating ones.
This was extended in [26] for a termination-preserving refinement, but this deals
with termination-preservation without fairness. Most recently Liang and Feng
[24] addressed fair termination-preserving refinement. In their logic, threads can
explicitly reason about how their actions may or may not further delay other
threads, which is more general than our approach and may be needed for veri-
fying some of the examples they consider. It would be interesting to adapt this
more explicit fairness reasoning to the higher-order setting.

Hoffmann et al. [15] features a concurrent separation logic for total correct-
ness. Threads own resources called “tokens”, which must be “used up” every
time a thread repeats a while loop. This “using up” of tokens inspired our step
shifts. Later, da Rocha Pinto et al. [31] generalized this by using ordinals instead
of tokens: threads decrease the ordinal they own as they repeat a loop. This is
useful for languages with unbounded non-determinism. Our technique for cop-
ing with step-indexing in Sect. 4 relied on bounded non-determinism. It may
be possible to remove this limitation by using transfinite step-indexing [4,33]
instead.

Acknowledgments. The authors thank Robbert Krebbers, Jeehoon Kang,
Max Willsey, Frank Pfenning, Derek Dreyer, Lars Birkedal, and Jan Hoffmann for
helpful discussions and feedback. This research was conducted with U.S. Government
support under and awarded by DoD, Air Force Office of Scientific Research, National
Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a; and
with support by a European Research Council (ERC) Consolidator Grant for the

934 J. Tassarotti et al.

project “RustBelt”, funded under the European Union’s Horizon 2020 Framework Pro-
gramme (grant agreement no. 683289). Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily
reflect the views of these funding agencies.

References

1. Website with Coq development (2016). http://www.cs.cmu.edu/∼jtassaro/papers/
iris-refinement

2. Appel, A., McAllester, D.: An indexed model of recursive types for foundational
proof-carrying code. TOPLAS 23(5), 657–683 (2001)

3. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: POPL (2004)

4. Birkedal, L., Bizjak, A., Schwinghammer, J.: Step-indexed relational reasoning for
countable nondeterminism. Logical Methods Comput. Sci. 9(4), 1–22 (2013)

5. Birkedal, L., Støvring, K., Thamsborg, J.: The category-theoretic solution of recur-
sive metric-space equations. Theor. Comput. Sci. 411(47), 4102–4122 (2010)

6. Brookes, S.D.: Variables as resource for shared-memory programs: semantics and
soundness. Electr. Notes Theor. Comput. Sci. 158, 123–150 (2006)

7. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 330–349. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37036-6 19

8. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4 16

9. Craig, T.S.: Building fifo and priority-queueing spin locks from atomic swap. Tech-
nical report 93-02-02, Computer Science Department, University of Washington
(1993)

10. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44202-9 9

11. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 24

12. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL (2013)

13. Feng, X.: Local rely-guarantee reasoning. In: POPL, pp. 315–327 (2009)
14. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J.

Funct. Program. 20(1), 19–50 (2010)
15. Hoffmann, J., Marmar, M., Shao, Z.: Quantitative reasoning for proving lock-

freedom. In: LICS, pp. 124–133 (2013)
16. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993). doi:10.1007/3-540-57208-2 35
17. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-

tures. In: POPL, pp. 14–26 (2001)
18. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. TOPLAS 5(4), 596–619 (1983)
19. Jung, R., Krebbers, R., Birkedal, L., Dreyer, D.: Higher-order ghost state. In:

ICFP, pp. 256–269 (2016, to appear)

http://www.cs.cmu.edu/~jtassaro/papers/iris-refinement
http://www.cs.cmu.edu/~jtassaro/papers/iris-refinement
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/3-540-57208-2_35

A Higher-Order Logic for Concurrent Termination-Preserving Refinement 935

20. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning.
In: POPL, pp. 637–650 (2015)

21. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: POPL, pp. 205–217 (2017, to appear)

22. Krogh-Jespersen, M., Svendsen, K., Birkedal, L.: A relational model of types-and-
effects in higher-order concurrent separation logic. In: POPL, pp. 218–231 (2017,
to appear)

23. Lehmann, D., Pnueli, A., Stavi, J.: Impartiality, justice and fairness: the ethics of
concurrent termination. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol.
115, pp. 264–277. Springer, Heidelberg (1981). doi:10.1007/3-540-10843-2 22

24. Liang, H., Feng, X.: A program logic for concurrent objects under fair scheduling.
In: POPL, pp. 385–399 (2016)

25. Liang, H., Feng, X., Fu, M.: Rely-guarantee-based simulation for compositional
verification of concurrent program transformations. ACM Trans. Program. Lang.
Syst. 36(1), 3 (2014)

26. Liang, H., Feng, X., Shao, Z.: Compositional verification of termination-preserving
refinement of concurrent programs. In: CSL-LICS, pp. 65:1–65:10 (2014)

27. Magnusson, P.S., Landin, A., Hagersten, E.: Queue locks on cache coherent multi-
processors. In: International Symposium on Parallel Processing, pp. 165–171 (1994)

28. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state
transition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP
2014. LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54833-8 16

29. O’Hearn, P.: Resources, concurrency, and local reasoning. TCS 375(1), 271–307
(2007)

30. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations for
session-based concurrency. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp.
539–558. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28869-2 27

31. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P., Sutherland, J.: Modular ter-
mination verification for non-blocking concurrency. In: Thiemann, P. (ed.) ESOP
2016. LNCS, vol. 9632, pp. 176–201. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49498-1 8

32. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54833-8 9

33. Svendsen, K., Sieczkowski, F., Birkedal, L.: Transfinite step-indexing: decoupling
concrete and logical steps. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632,
pp. 727–751. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1 28

34. Tassarotti, J., Jung, R., Harper, R.: A higher-order logic for concur-
rent termination-preserving refinement. Available as arXiv:1701.05888 [cs.PL]
(2017). http://iris-project.org/pdfs/2017-esop-refinement-final.pdf. Extended ver-
sion with appendices

35. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and
sessions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 20

36. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP, pp. 377–390 (2013)

http://dx.doi.org/10.1007/3-540-10843-2_22
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-28869-2_27
http://dx.doi.org/10.1007/978-3-662-49498-1_8
http://dx.doi.org/10.1007/978-3-662-49498-1_8
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-662-49498-1_28
http://arxiv.org/abs/1701.05888
http://iris-project.org/pdfs/2017-esop-refinement-final.pdf
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-642-37036-6_20

936 J. Tassarotti et al.

37. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 18

38. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)
39. Willsey, M., Prabhu, R., Pfenning, F.: Design and implementation of concurrent

C0. In: Linearity (2016)
40. Yang, H.: Relational separation logic. TCS 375(1–3), 308–334 (2007)
41. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-

tured communication-based programming revisited: Two systems for higher-order
session communication. Electr. Notes Theor. Comput. Sci. 171(4), 73–93 (2007)

http://dx.doi.org/10.1007/978-3-540-74407-8_18

Modular Verification of Procedure Equivalence
in the Presence of Memory Allocation

Tim Wood1(B), Sophia Drossopolou1, Shuvendu K. Lahiri2,
and Susan Eisenbach1

1 Imperial College London, London, UK
tw00@doc.ic.ac.uk, {S.Drossopoulou,S.Eisenbach}@imperial.ac.uk

2 Microsoft Research, Redmond, USA
Shuvendu.Lahiri@microsoft.com

Abstract. For most high level languages, two procedures are equivalent
if they transform a pair of isomorphic stores to isomorphic stores. How-
ever, tools for modular checking of such equivalence impose a stronger
check where isomorphism is strengthened to equality of stores. This
results in the inability to prove many interesting program pairs with
recursion and dynamic memory allocation.

In this work, we present RIE, a methodology to modularly establish
equivalence of procedures in the presence of memory allocation, cyclic
data structures and recursion. Our technique addresses the need for find-
ing witnesses to isomorphism with angelic allocation, supports reasoning
about equivalent procedures calls when the stores are only locally iso-
morphic, and reasoning about changes in the order of procedure calls.
We have implemented RIE by encoding it in the Boogie program verifier.
We describe the encoding and prove its soundness.

Keywords: Program equivalence · Program verification · Version-aware
verification

1 Introduction

Program maintenance dominates the program lifecycle. A study of application
bugs that took more than one attempt to fix [35] found that 22–33% of fixes
required a supplementary fix, and found a diverse range of errors including
incomplete refactorings. A study of refactorings [8] found that across 12,922
refactorings from three software projects, 15% of refactorings induced a bug.
Automatic program equivalence verification [19,21,29,36] offers the potential to
reduce problems by allowing a programmer to automatically (without program-
mer annotations) verify that the new version is behaviourally equivalent to the
old.

The goal of these verification tools is to make the benefits of program equiva-
lence verification available to programmers who are not verification experts. An
automatic equivalence verification tool takes a pair of programs as input and then

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 937–963, 2017.
DOI: 10.1007/978-3-662-54434-1 35

938 T. Wood et al.

outputs whether the programs are equivalent or not (or perhaps times-out). Pro-
gram equivalence is undecidable in the general case, however, some success has
been achieved on programs with substantially similar structure. Since software is
frequently modified in small incremental steps, versions tend to be structurally
similar.

We know of two tools designed for fully-automatic program equivalence verifi-
cation of programs with heaps: Symdiff [29] and RVT [21]. Symdiff [22,26,29,30]
is built on top of the Boogie [3] intermediate verification language which, in
turn, uses the Z3 [16] satisfiability modulo theories (SMT) solver to discharge
proof obligations. RVT uses a designed-for-purpose verification algorithm, which
passes program fragments to the CBMC [14] bounded model checker.

Symdiff relates heaps using equality (of arrays modelling the heaps), which we
will call e-equivalence, so programs that differ in the order or amount of dynamic
memory allocation or garbage cannot be verified as equivalent by Symdiff. RVT
does support differences in allocation, but assumes that all heap data structures
are tree-like.1

E-equivalence is too restrictive for programmers, who expect to be able
to replace one procedure with another if the two have identical observable
behaviour. A more intuitive notion of procedure equivalence for programs with
dynamic memory allocation can be constructed using isomorphism between
memory locations. Definitions of program equivalence based on a notion of iso-
morphism have been used in several formal systems [11,37]. Our definition of
equivalence is:

Two procedures are equivalent, if they terminate for the same set of initial
stores, and if both procedures run to completion from isomorphic initial
stores, they result in isomorphic final stores.

Our definition of equivalence matches intuition: it allows for differences in the
order or amount of memory allocation and garbage and is not restricted to tree-
like structures. Achieving automatic and modular verification presents several
challenges:

Challenge 1 What kind of input do we need to give to an SMT solver so that
it can even do the verification? We need to establish an isomorphism between
unbounded heaps of arbitrary shape, which is computationally infeasible in
general. Furthermore, a direct axiomatisation of isomorphism involves exis-
tentially quantifying the mapping between memory locations that charac-
terises the isomorphism. SMT based verification systems are not very good
at producing witnesses to such existentials and so a direct axiomatisation of
isomorphism is ineffective.

Sometimes calls to equivalent procedures occur from stores that are not fully
isomorphic, rather the stores are isomorphic in the footprint of the called pro-
cedures. This leads to the next two challenges:

1 For details, see Definition 2 (and the paragraph following) on page 5 of the 2009
paper by Godlin and Strichman [21].

Verification of Equivalence with Memory Allocation 939

Challenge 2 How can our tool determine when stores correspond in the foot-
print of a called procedure?

Challenge 3 What should we do about equivalent calls from non-isomorphic
stores since they do not necessarily result in isomorphic stores?

Challenge 4 How do we decide which calls are equivalent when there may
be many possible candidates? Equivalent calls may occur in different orders
in each procedure, and moreover the procedure calls which correspond may
differ from execution to execution depending on the initial state (i.e. program
inputs).

1.1 Example

Consider the pair of equivalent procedures in Fig. 1 that differ in the order of
memory allocation.

Fig. 1. Both procedures copy a binary tree.

Both procedures are intended to copy the passed structure t. The proce-
dures are equivalent on any input, whether the input is tree shaped or not.
Our methodology RIE (Replace Isomorphism with Equality) and tool APE
(Automatic Program Equivalence tool) can verify that. The procedures differ
in two ways: Firstly, the allocation of the copied node has been moved from
before the recursive calls on line 5 to after the recursive calls on line 22. Sec-
ondly, the order of the recursive calls on lines 7 and 8 has been reversed on lines
19 and 20. The procedures are written in a simple language we call L, formalised
in Sect. 3.

The procedures are equivalent. An intuition as to why is: when t or r are
null both procedures leave the heap unchanged. Otherwise, both procedures
recursively copy all the nodes to the left, and all the nodes to the right, and
return a newly allocated root node via the parameter r. The only pre-existing
object modified by the procedures is the one pointed to by r. It is possible that
r aliases a node reachable from t, but even so only the v field of r is written
to, and only after the nodes have been copied. The objects allocated to rl and
rr do not alias anything, so the recursive calls cannot modify the tree, and

940 T. Wood et al.

hence swapping the order of the recursive calls does not affect the result. The
postcondition modifies {r} asserts that no existing object, other than r, is
modified. For this example, our tool APE requires this framing assertion. Our
approach can take advantage of any contracts that are available.

The procedures are not e-equivalent (so would fail to match in Symdiff)
when the stores are related with equality. With non-deterministic allocation a
procedure is not even equivalent to itself! It is straightforward to resolve with a
deterministic allocator, e.g. one that starts at 0 and allocates the next address.
Under this deterministic approach [29] a procedure is e-equivalent with itself,
but lcopy and rcopy are still not e-equivalent as the allocations on Line 5 and
Line 22 are allocated different addresses.

The example illustrates the challenges in the following ways. Challenge 1:
equivalence requires that the final stores are isomorphic, but the recursive calls
are unbounded so a tool has to check isomorphism of a graph of arbitrary
shape and unbounded size. Challenge 2: the stores are not equivalent prior
to the recursive calls. For instance, in lcopy three allocations (Lines 3 to 5)
have occurred before the recursive calls, but in rcopy only two allocations have
occurred (Lines 16 to 17). Challenge 3: the stores after the related calls on
Line 7 and Line 20 are not generally isomorphic, since the store after Line 20
contains the effects of two recursive calls but the store after Line 7 contains the
effect of only one recursive call. Challenge 4: we do not know in advance which
recursive call in lcopy (Lines 7 and 8) corresponds to which recursive call in
rcopy (Lines 19 and 20).

1.2 Contributions

We propose a sound methodology, RIE, for establishing isomorphic procedure
equivalence which is effective in an SMT solver. RIE enables our tool APE
to tackle challenge 1 by automatically establishing isomorphism using under-
approximation and heap equality! RIE works by proving equivalence under the
angelic allocation assumption; the memory locations are, as far as possible,
assumed to be allocated in such a way as to make isomorphic heaps also equal.

We describe a simple language L for which isomorphism implies equivalence
of observable behaviours, and give a formal definition of what it means for L to
be closed under isomorphism.

RIE also simplifies challenges two, three and four. RIE allows us to use equal-
ity in place of isomorphism, so challenge 2 is addressed by extending the notion
of heap equality to support partial heap equality, which we then apply to an over-
approximation of the footprint of the procedures. Furthermore RIE rescues us
from the need to produce a witness (from challenge 1) to the correspondence
between procedure behaviour, instead we address challenge 3 by equating the
write effects of equivalent procedures (soundly ignoring unobservable behavioural
differences). We combine our technique with mutual summaries to address
challenge 4.

In Sect. 2 we describe how RIE can be implemented to verify program equiv-
alence. In Sect. 3 we formalise equivalence and isomorphism and outline RIE’s

Verification of Equivalence with Memory Allocation 941

soundness proof. In Sect. 4 we discuss the effectiveness and limitations of RIE.
Finally in Sect. 5 we discuss some related work and conclude.

2 Encoding in a Verifier

Our tool APE takes as input an L program and produces as output ‘success’,
‘failure’, or times out. It does this by translating the input program into Boogie
code, which is fed into the Z3 SMT solver. The source code is available at https://
github.com/lexicalscope/ape.

In this section we illustrate RIE by showing how APE encodes the example
from Sect. 1.1 and how that encoding helps overcome the challenges detailed in
the introduction. In particular, we show how verification under the assumption
of “angelic allocation” proceeds. Previous work typically takes the approach of
abstracting or overapproximating programs with dynamic allocation [11,27,40,
43], storeless semantics [13] go as far as abstracting away the observable store
entirely. We make the surprising observation that under-approximating memory
allocation is also a useful approach, and our formal system proves it sound. RIE
establishes procedure equivalence by checking equivalence for only one pair of
execution traces for each initial store. Specifically:

All pairs of executions from isomorphic initial stores result in isomorphic
final stores if at least one pair of executions from each initial store results
in equal final stores.

In particular, it is not necessary to consider all pairs of isomorphic initial stores.
We prove this in Sect. 3.

RIE combines our ideas about establishing isomorphism using SMT technol-
ogy with the prior work on product programs and mutual summaries to produce
an automatic program equivalence tool that can verify our example. Standard
single program verification tools can be applied to the problem of procedure
equivalence using product programs [5,7,21,29,41], which encode the bodies of a
pair of procedures into a single procedure such that verifying a safety property
of the product procedure is equivalent to verifying a relational property of the
procedure pair [5]. Furthermore, a technique called mutual summaries [22] can
be applied to induce an SMT solver to search for interesting relations between
procedure calls.

2.1 Angelic Allocation

APE checks equivalence for one pair of executions for each initial store. It does
so by searching amongst the possible pairs of executions for a pair that result
in equal stores (modulo garbage). Of interest, then, are pairs of executions
where particular allocation sites (new) in each procedure are allocated the same
addresses. In Fig. 1 there are three allocation sites in each procedure. This gives
six possible correspondences between allocation sites (the variables on the left
of the equality are from lcopy, and the variables on the right are from rcopy):

https://github.com/lexicalscope/ape
https://github.com/lexicalscope/ape

942 T. Wood et al.

Fig. 2. A product procedure encoding of equivalence verification under angelic memory
allocation for procedures lcopy and rcopy.

a) rl = rl, rr = rr, n = n b) rl = rl, rr = n, n = rr

c) rl = rr, rr = rl, n = n d) rl = rr, rr = n, n = rl

e) rl = n, rr = rl, n = rr f) rl = n, rr = rr, n = rl

We do not know in advance which correspondence will be useful for verifica-
tion2. In our example, it happens that correspondence (a) is the useful one. Pairs
of (terminating) executions from the same initial store that have allocations in
this correspondence will result in equal final stores. Hence, no direct checks for
isomorphism are required. We will detail how procedure calls are handled shortly.

We induce the solver to search for the useful correspondence by constructing
a pair of executions for each correspondence and using a disjunction to assert
that at least one of them results in equivalent final stores. The Boogie-like pseudo
code in Fig. 2 shows how APE encodes lcopy and rcopy into a single (Symdiff-
style) product procedure. The inline commands (e.g. line 33) are not actual
Boogie syntax but should be taken to mean that the statements from the body
of the relevant procedure are copied into the product procedure at that point.
When the procedures are inlined, they are rewritten to work on their own private
copy of the heap with fresh variable names. After each inlined pair a different
correspondence between allocation sites is assumed (lines 35 and 40). Finally a
disjunction is asserted to challenge the verifier to prove that the final heaps are
equal for at least one of the inlined pairs (line 44).

Thus, RIE allows us to establish isomorphism using only heap equality!

2 It is interesting to note that in this example the variable names suggest which corre-
spondence is important, perhaps indicating that there may be useful heuristics that
could improve performance—such as trying correspondence (a) first.

Verification of Equivalence with Memory Allocation 943

2.2 Heap Equality

Here we described how APE establishes heap equality, and discuss why our
approach is powerful. Tools can relate programs in an intensional or exten-
sional way [10]. Intensionally equal heaps are defined in the same way, whereas
extensionally equal heaps have the same observable properties. For example, the
heaps3 h1 = h0[(5, f) �→ 7][(5, g) �→ 8] and h2 = h0[(5, g) �→ 8][(5, f) �→ 7] are not
intensionally equal, but they are extensionally equal. Extensional relationships
provide a powerful means to reason about reordering of store updates.

Fig. 3. Extensional equality of the reachable heap region. Written in Boogie.

APE uses the extensional axiomatisation of heap equality shown in Fig. 3.
The axiomatisation allows procedures to create different garbage by only requir-
ing equality of the reachable heap. The parameter $roots is a set of references,
and it overapproximates the references that are on the stack. The predicate
$Reachable is an axiomatisation of heap reachability (something is unreachable
when in a disjoint part of the heap) and is discussed in Sect. 4.3.

We define equality between heaps using a pair of implications that say that if
an object is reachable in either heap, its fields must be equal in both heaps. An
alternative, and perhaps more obvious, definition would be that the reachable
sets are equal, and that each object in the reachable set has equal fields in both
the heaps. The definitions are equivalent—since heaps that are equal in their
reachable parts have the same reachability relation. On several examples the
solver was unable to prove that the reachable sets are equal, but it is able to
prove our definition.

2.3 Procedure Call

Challenges two, three and four in the introduction relate to the need to reason
modularly about the behaviour of nested procedure calls, such as the recursive
calls in the example Fig. 1. In this section we describe how our encoding in Fig. 4
leverages RIE to address these challenges.

Equivalent procedure calls do not always occur from isomorphic stores
(challenge 2). This is overcome by considering only the region of the heap
3 h0[(5, f) �→ 7] is the heap made by copying h0 and setting field f of object 5 to 7.

944 T. Wood et al.

Fig. 4. Mutual summary of the lcopy and rcopy procedures. Written in Boogie.

reachable from the procedure parameters when trying to establish equivalence
of procedure calls. This corresponds to the predicate $Heap#EqualFromParams
on line 79, detailed in Sect. 3.6.

Equivalent procedure calls do not necessarily result in isomorphic stores
(challenge 3). This is overcome through our choice of procedure summary (line
80) and a frame axiom. The write effects of a pair of equivalent procedure calls
are related by the predicate $SameDiff (line 81). The frame axiom appears as
a free postcondition4 of every procedure (lines 63 and 69). Both are described
below.

Equivalent procedure calls are summarised by the predicate $SameDiff that
relates the pre and post stores of both calls. $SameDiff approximates the actual
behaviour of the procedures a surprising way, although equivalent procedures
can vary in the amount and shape of garbage, $SameDiff states that equivalent
procedure calls will always have equal effects, we justify this in Sect. 3.

The framing axioms (lines 63 and 69) restrict the write effects of the proce-
dures to the part of the heap that was reachable from the procedure parameters.
The axiom follows from the semantics of L. It is not known in advance which

4 A free postcondition may be assumed after a call, but is not checked.

Verification of Equivalence with Memory Allocation 945

procedure calls might be equivalent (challenge 4). This is overcome by how
the summary of the behaviour of equivalent procedures is encoded. Specifically,
the encoding of mutual summaries presented by Hawblitzel et al. [22] is used to
induce the SMT solver to search for related pairs of procedure calls. We detailed
this encoding below.

Figure 4 shows how APE encodes the mutual summary for the procedures
lcopy and rcopy. The encoding consists of several parts. Encountered calls to
the procedures are abstracted by a pair of uninterpreted predicates (lines 57 and
58) which we call abstraction predicates. The predicates are uninterpreted so we
precisely control their instantiation. They are given as free postconditions of
the procedures lcopy (line 61) and rcopy (line 67). Encountering calls to these
procedures causes the abstraction predicates to be instantiated in the solver’s
E-graph. We set triggers (lines 75 and 76) so that the solver will instantiate the
mutual summary axiom’s quantifiers (line 74) for each pair of instantiations of
the abstraction predicates. Non-vacuous instantiations of the axiom occur when
the solver is able to establish that the heaps reachable from the call parameters
are equal, and hence the antecedent is satisfied.

During a Simplify [17] style SMT solver proof search the quantifiers that
appear in an axiom are instantiated with ground terms from the solver’s E-
graph that match triggers associated with the quantifier. In-turn, the axiom is
applied to those instantiations to introduce new terms into the E-graph and so
on. Thus, APE controls the proof search by a combination of the logical meaning
of the axioms and the quantifier triggers.

The synthetic parameter $strat of lcopy (line 60) and rcopy (line 66)
is introduced to prevent the proof search from trying to establish equivalence
between procedure calls occurring under different allocation correspondences.
For example, in Fig. 2, the inlining of lcopy on line 33 and line 39 will con-
tain recursive calls to lcopy and rcopy respectively—but it is not useful to
find relations between these calls as they pertain to different allocations cor-
respondences. Specifically, the disjunction on line 44 asserts nothing about the
relationship between those heaps. The parameter $strat represents the allo-
cation correspondence in effect for that call, and the mutual summary trigger
(lines 75 and 76 of Fig. 4) restricts instantiation of the quantifiers to calls which
occurred under the same allocation correspondence.

We have completed our illustration of how the RIE methodology is imple-
mented in a modular program equivalence tool. Discussion about the effective-
ness and limitations of our approach is in Sect. 4.

3 Soundness of RIE

We now give a model of RIE and summarise a proof of its soundness. The
semantics of L come in two flavours: the V semantics is the ordinary semantics
of L. The A semantics models our Boogie encoding, which includes the various
approximations detailed in Sect. 2. We establish soundness of RIE by showing
that equivalence under A implies equivalence under V.

946 T. Wood et al.

We expect a mapping between procedures names, E , which pairs procedures
that are suspected to be equivalent. RIE takes the program and E as input and
tries to prove that indeed all pairs in E are equivalent.

We start with an overview of the semantics of L, then define isomorphism
and procedure equivalence. Then we detail how the various approximations are
modelled in the A semantics. Finally we give RIE’s soundness theorem5.

3.1 Semantics of L
L is a simple imperative language. Figure 5 describes the standard aspects of
L, while Fig. 6 describes the non-standard aspects. The following points are
interesting about our semantics:

– We distinguish between execution under V and A with a subscript, writing
where L ∈ {V,A}.

– We split procedure call into two: a “call” rule and a “body” rule, similar
to Godlin and Strichman [21], to treat procedure call concretely in V but
abstractly in A. The latter is a first ingredient in reflecting mutual summaries.

– Execution of pairs of procedures is included in the operational semantics,
modelled by the rules COMV and COMA:

σ1, s1 ‖ σ2, s2
tr1,tr2

L σ3 ‖ σ4

meaning statement s1 executed on store σ1 results in store σ3 producing trace
tr1, and similarly for statement s2. These rules reflect product programs [1,5,
29].

– We require the program adhere to a specification given by Con6.
– The semantics are instrumented to produce a trace of the states reached during

execution which we use to distinguish particular executions.
– although our semantics is a big step semantics, we keep the whole calling

context as part of the runtime configuration to allow us to give useful meaning
to isomorphism of stores.

– We assume loops have been encoded as recursive procedures.

We only discuss some of the rules of the operational semantics. NEW allocates
a new object.7 The address of the object must be fresh, and the object has
all fields set to null. ASSIGN updates a stack variable x with the result of
evaluating an expression e in the store σ.

BOD executes the body of a procedure p by looking up and executing p’s state-
ments. Our assumption that procedure contracts have already been verified, is

5 Full details of the proof can be found in the first author’s PhD thesis [44].
6 We expect single program contracts to have been verified; programs with no contracts

are also acceptable.
7 In a concrete implementation we do not require that there is no garbage collection,

just that the programmer cannot manipulate addresses.

Verification of Equivalence with Memory Allocation 947

Fig. 5. Grammar and operations of L

948 T. Wood et al.

Fig. 6. Procedure call and composition rules of L

modelled by the requirement (σ1, σ3) ∈ Con(p). Note that BOD pops the top of
the final stack, while CALLA and CALLV push new frames (using the function
mkframe).

CALLA models abstraction of procedure calls. The behaviour of the
abstracted call is restricted by the procedure’s contract Con(p), and the call
may not free any allocated address (All that RIE actually requires is that the
language not have concrete addresses so any language with garbage collection
which does not support pointer arithmetic can be handled).

Angelic allocation in the rule COMA is modelled by the predicate over trace
pairs I. The behaviour of called procedures in the A semantics is modelled by
the predicate over trace pairs M. We define I and M, as the paper progresses.

3.2 Isomorphism

Stores are isomorphic if they differ only in the actual values of heap addresses
or in garbage. An isomorphism is characterised by a bijection between values, π.
Definition 1 says that σ1 is isomorphic to σ2 with relation π iff the stacks of σ1 and
σ2 are the same height; for each corresponding stack frame the same variables are
defined; and π is an injection. Where π is the uniquely defined relation that maps
the stack variables of σ1 to σ2, commutes with field dereference, and preserves
the meaning of null, true, and false.

Definition 1 (Isomorphism).

σ1 ≈π σ2
def⇐⇒

Verification of Equivalence with Memory Allocation 949

– |σ1| = |σ2| ∧ ∀i ≤ |σ1| : dom(σ1[i]) = dom(σ2[i])
– π is an injection8, written in(π)

Where π is the smallest relation that satisfies:

π =πv ∪ {σ1[i](x) �→ σ2[i](x) | x ∈ dom(σ1[i]) ∧ i ≤ |σ1|} ∪
{σ1(a, f) �→ σ2(π(a), f) | a ∈ dom(π)}

And πv
def= [null �→ null, true �→ true, false �→ false]

In our notation: The number of stack frames in store σ is |σ|. The value of
variable x in the ith stack frame is σ[i](x). The domain of the mapping π is
dom(π), and dom(σ[i]) is the set of variables defined in the ith stack frame.

We also require that any contracts in the program are not sensitive to address
values or garbage. We write σi...j to mean σi, . . . , σj .

Definition 2 (Contracts in L). The contracts Con : Pid → P(Store ×Store),
are sets of pairs of Store representing the set of acceptable pre and post stores
of each procedure. We require that:

∀p, σ1...4, π1,2 : σ1 ≈π1 σ2 ∧ σ3 ≈π2 σ4 ∧ (σ1, σ3) ∈ Con(p) ∧ in(π1 ∪ π2)
=⇒ (σ2, σ4) ∈ Con(p)

Lemma 1 (Isomorphism is an equivalence relation). The relation ≈ is an
equivalence relation (reflexive, symmetric, transitive).

The crucial property of ≈ is that it is closed under execution. Namely, exe-
cuting a statement from isomorphic stores results in isomorphic executions. Exe-
cutions are isomorphic iff the elements of their traces are pairwise isomorphic
(written tr1 ≈ tr2), and have isomorphic write effects.

Lemma 2 (L closed under isomorphism).
For every execution σ1, s

tr1 σ3, store σ2, and injection π1 if σ1 ≈π1 σ2 then

– there exists an execution σ2, s
tr2 σ4

– if L = V, every execution σ2, s
tr2 σ4 is isomorphic to σ1, s

tr1 σ3

Executions σ1, s
tr1 σ3 and σ2, s

tr2 σ4 are isomorphic iff ∃π1,2 :

σ1 ≈π1 σ2 ∧ tr1 ≈ tr2 ∧ in(π1 ∪ π2) ∧ effect(σ1, σ3) ≈π2 effect(σ2, σ4)

Where trace isomorphism is:

tr1 ≈ tr2
def⇐⇒ tr1 ≈∅ tr2

tr1 ≈π tr2
def⇐⇒ ∃n : |tr1| = |tr2| = n ∧ ∃π1 . . . π2n :
(∀i ≤ n : tr1[i]↓2 ≈π2i−1 tr2[i]↓2) ∧
(∀i ≤ n : tr1[i]↓3 ≈π2i tr2[i]↓3) ∧
(∀i, j ≤ 2n : in(π ∪ πi ∪ πj))

8 in(π)
def⇐⇒ ∀(a, b), (c, d) ∈ π : (a = c ⇐⇒ b = d).

950 T. Wood et al.

And where effect(σ1, σ3)
def= σ3

heap \ σ1
heap

Proof. By induction on the derivation of σ1, s
tr1 σ3 . Most cases are straight-

forward since no instruction is sensitive to the actual value of addresses. Note
that every instruction makes the set of reachable addresses smaller, apart from
new which expands it by exactly one fresh address—this corresponds to the fact
that addresses are never synthesised and garbage is never resurrected. ��

A way to think of closure under isomorphism is that L is not sensitive to the
actual values of addresses nor garbage. Many industrial languages (such as C,
Java, Python, C�, etc.) contain features that are sensitive to the actual values
of heap addresses or order of allocation. Such sensitivity is typically not central
to the language and it is often not necessary to use such features.

3.3 Regional Isomorphism

As discussed in Sect. 2, APE works by establishing isomorphisms between the
heap regions reachable from procedure parameters (Line 79 of Fig. 4), so we
introduce a notion of isomorphism between heap regions. The heap regions reach-
able from two sequences of parameter names W and X are isomorphic iff the
sequences have the same length, and the relation (π) constructed by following
all paths from the parameters is an injection:

Definition 3 (Regional Isomorphism).

σ1
∼∼∼W,X

π σ2
def⇐⇒

|W | = |X| ∧ W ⊆ dom(σ1
top) ∧ X ⊆ dom(σ2

top) ∧ in(π)

Where π is the smallest relation which satisfies:

π =πv ∪ {σ1(W [i]) �→ σ2(X[i]) | i ≤ |X|} ∪ {σ1(a, f) �→σ2(π(a), f) | a ∈ dom(π)}

3.4 Procedure Equivalence

Procedures are equivalent if executing their bodies from isomorphic stores results
in isomorphic stores. Executing body p means looking up and executing the
statements that form the body of procedure p. Note that rule BOD pops the top
stack frame before completing, so stores σ3, σ4 in Definition 4 are as observed
by a caller. This means that equivalence relates to the observable behaviour of
the procedure body, and that differences in local variables, etc., are ignored.
The same definition of procedure equivalence applies to both the A and the V
semantics.

Definition 4 (Procedure equivalence).

Verification of Equivalence with Memory Allocation 951

3.5 Angelic Allocation

We describe how angelic allocation is modelled by the predicate I in the A
semantics rule COMA. The predicate selects the pairs of execution traces that
exhibit desirable allocation patterns.

Predicate I (Definition 6) retains only traces with heap regions that are equal
at particular isomorphic points (Definition 5) in the traces. In APE, these points
correspond to procedure entry, equivalent procedure calls and allocation sites.
APE only verifies procedures from equal (rather than isomorphic) initial stores,
discards execution pairs which don’t have interesting correspondences between
allocations, and assumes procedures have equal effects. Because we are only
trying to prove soundness of RIE, it is not necessary to fully specify how APE
chooses which stores to equate. Rather, we prove that any assumption of store
equality that the tool makes is sound, subject to the caveats in Definition 5.

Definition 5 (Isomorphic Points).
Any tool using RIE must define a function

pts : (Trace × Trace) → P(N × N × Lid∗ × Lid∗)

with the following properties:

1. The same set of points is produced for isomorphic traces:

∀tr3,4 : tr1 ≈ tr3 ∧ tr2 ≈ tr4 =⇒ pts(tr1, tr2) = pts(tr3, tr4)

2. The traces are isomorphic at each of the points:

∀(i, j,W,X) ∈ pts(tr1, tr2) : ∃π1 : tr1[i] ∼∼∼W,X
π1

tr2[j]

3. If the initial stores of tr1, tr2 are isomorphic, then the isomorphism is injective
with all the other isomorphisms. Otherwise the isomorphisms are empty.
– in(π ∪ Π(tr1, tr2))
– �π : fst(tr1) ≈π fst(tr2) =⇒ Π(tr1, tr2) = ∅

Where

Π(tr1, tr2) =
⋃ {

π
∣
∣ ∃(i, j,X, Y) ∈ pts(tr1, tr2) ∧ tr1[i] ∼∼∼X,Y

π tr2[j]
}

Definition 6 (Angelic Allocation).

I(tr1, tr2)
def⇐⇒ Π(tr1, tr2) ⊆ id

Definition 5 requires that the points are selected symmetrically for isomorphic
traces. This symmetry is critical for the soundness of RIE, which must verify
at least one pair of execution traces for each initial state. Furthermore, the def-
inition requires that the union of the isomorphisms between the selected heap
regions is an injection. This corresponds to the fact that RIE is implemented by
equating allocation sites, and will be discussed further in later sections, partic-
ularly Sect. 4.

952 T. Wood et al.

3.6 Mutual Summaries of Equivalent Procedures

APE uses mutual summaries, lines 73 and 80 in Fig. 4, to allow the verifier to
use facts about the behaviour of equivalent procedure calls in its proofs. It is
needed in order for procedure equivalence to be a transitive relation.

APE’s use of mutual summaries is modelled by the rule CALLA, which over-
approximates the behaviour of concrete procedure call. And the predicate M in
the rule COMA, which restricts the traces to those where the procedure pairs in
E behave equivalently.

The antecedent σ1
∼∼∼{x1...xn},{y1...yn}

π1
σ2 expresses that the regions reach-

able from the parameters are isomorphic (as needed for challenge 2), while the
conclusion effect(σ1, σ3) ≈π2 effect(σ2, σ4) expresses that the procedures have
isomorphic write effects (as needed for challenge 3). In our example, the encod-
ing of the antecedent is $Heap#EqualFromParams on line 79 of Fig. 4, while the
encoding of the conclusion is $SameDiff on line 80 of Fig. 4.

Definition 7 (Mutual Summaries of Equivalent Procedures).

M(tr1, tr2)
def⇐⇒ ∀π1, σ1...4, (p1, p2) ∈ E :

(call p1(x1 . . . xn), σ1, σ3) ∈ tr1 ∧
(call p2(y1 . . . yn), σ2, σ4) ∈ tr2 ∧
σ1

∼∼∼{x1...xn},{y1...yn}
π1

σ2

=⇒ ∃π2 : in(π1 ∪ π2) ∧ effect(σ1, σ3) ≈π2 effect(σ2, σ4)

3.7 Soundness of RIE

We now give the theorem which guarantees soundness of RIE, and describe
some keys points in its proof. Theorem 1 states that if all pairs in E are mutually
terminating and equivalent under the A semantics, then they are also equivalent
under the V semantics. Mutual termination (mt) means that both procedures
terminate for the same set of initial stores9.

Theorem 1 (RIE is sound).

If ∀(p3, p4) ∈ E :mtV(p3, p4) ∧ p3
A∼∼ p4

Then ∀(p1, p2) ∈ E : p1
V∼∼ p2

Where mtL(p3, p4)
def⇐⇒ ∀σ1...3 : σ1 ≈ σ2 =⇒

9 We could produce a total definition of procedure equivalence by including a notion of
mutual termination [18,22] in Definition 4. However, APE does not yet reason about
the termination behaviour of the procedures. A total notion of procedure equivalence
is important, particularly where a transitive procedure equivalence relation is needed.
Since our tool takes the same basic approach as Symdiff, it should be straightforward
to incorporate existing mutual termination checking techniques [18,20,22].

Verification of Equivalence with Memory Allocation 953

Proof. The proof proceeds by showing that for any pair of executions (tr1, tr2)
from isomorphic initial stores in the V semantics there exist an isomorphic execu-
tion (tr5 with tr1 ≈ tr5) such that that I and M hold for (tr1, tr5) and thus the
tr5 and tr2 executions compose by ‖ in the A semantics. Then by the assump-
tions and transitivity of ≈ we know that tr1, tr2 end in isomorphic stores. The
proof goes by an inner induction nested within an outer induction. We now write
the proof in some more detail:

Assume ∀(p3, p4) ∈ E :mtV(p3, p4) ∧ p3
A∼∼ p4.

To show:

First Part: From Definition 5 we see that there is a π2 = Π(tr1, tr2) (1). By
Lemma 3 (below) there exists a third execution such that
tr1 is isomorphic to tr3 with π2, i.e. tr1 ≈π2 tr3, which means by Lemma 1
(symmetry) we get tr3 ≈π−1

2
tr1 (2). Take any point (i, j,X, Y) ∈ pts(tr1, tr2).

To show: tr3[i] ∼∼∼X,Y
id tr2[j]. By (1) exists π4 such that tr1[i] ∼∼∼X,Y

π4
tr2[j] and

π4 ⊆ π2 (4). By (2) there exists π3 such that tr3[i] ≈π3 tr1[i] and π3 ⊆ π−1
2 (3).

Hence, by Lemma 1 (transitivity), we have that tr3[i] ∼∼∼X,Y
π3◦π4

tr2[j], we know π3

composed with π4 is large enough because X is a subset of the stack variables
defined in tr1[i], and dom(π3) includes the values of all stack variables. By (3),
(4), we know that π3 composed with π4 is a subset of the identity relation.
So tr3[i] ∼∼∼X,Y

id tr2[j]. Because tr1 ≈ tr3 we have by definition pts(tr1, tr2) =
pts(tr3, tr2). Then we get ∀(i, j,X, Y) ∈ pts(tr3, tr2) : tr3[i] ∼∼∼X,Y

id tr2[j]. And
thus we have Π(tr3, tr2) ⊆ id , which in turn gives us I(tr3, tr2) (5).

Second Part: We now proceed by induction on the size of the derivation of
.

It remains to show that, tr2 is also a trace under A and that there is an A
trace tr5 isomorphic to tr3 such that M(tr5, tr2) holds. Note that it is trivial
to prove that apart from ‖ all the rules of A semantics overapproximate the V
semantics (l1). By (l1) and induction on the derivation of
we get .

Base Case: there are no procedure calls in . By Lemma 2
then also has no procedure calls. By (l1) and induc-
tion on the derivation of we get .
Since there are no procedure calls, trivially M(tr3, tr2) and

. From the antecedent we know that
lst(tr3) ≈ lst(tr2), and since tr1 ≈ tr3 then by transitivity of ≈ we have
lst(tr1) ≈ lst(tr2). And since lst(tr1) = σ3 and lst(tr2) = σ4 base case is done.

Inductive Step: there are procedure calls in .

To show: there exists an execution such that M(tr5, tr2)
and tr5 ≈id tr3 (6). Proceed by an inner induction over the derivation of

954 T. Wood et al.

. Most cases are trivial. The interesting cases are CALLV
where the called procedure is in E , and the inductive case TRANS.

Inner Case: CALLV where the called procedure is in E . By case
there is and (p3, p4) ∈ E . Rule CALLV
can only be applied if a shallower tree is derivable for the body of
the called procedure. Therefore we apply the outer induction hypoth-
esis, the antecedent mtV(p3, p4), and Lemma 3, to deduce that there
exists σ7 such that and σ5 ≈id σ7. From
CALLA we see that (intu-
ition: we swap the behaviour of p3 for the behaviour of p4). Take
tr5 = (call p3(x1 . . . xn), σ2, σ7) and we have tr3 ≈id tr5. To show:
M(tr5, tr2). Take arbitrary (call p4(y1 . . . yn), σ8, σ10) ∈ tr2 such that
σ2

∼∼∼{x1...xn},{y1...yn}
π5

σ8. To show: ∃π6 : in(π5 ∪ π6) ∧ effect(σ2, σ5) ≈π6

effect(σ8, σ10). This follows straightforwardly from Lemma2 and the fact that
the same procedure p4 was executed to obtain σ5 as to obtain σ10. Inner case
done.

Inner Case: TRANS By case there is and hence exists
σ9, tr7,9 such that . The proof goes as expected,
by applying the inner induction hypothesis twice with one slight complex-
ity. The first application constructs another execution of s1 with the desired
properties; but that execution’s final store is not σ9! Rather it is some other
store (say σ11) that is isomorphic to σ9. Before we apply the inner induction
hypothesis a second time, we use Lemma 3 to construct an execution isomor-
phic to but with initial store σ11. M holds for the resultant
traces by the same argument as the CALLV case. Inner case done.
Hence M(tr5, tr2). From (5) and (6) we also have I(tr5, tr2). So we get
that is an execution under the
A semantics. Finally, from the antecedent we know that lst(tr3) ≈ lst(tr4),
and since tr1 ≈ tr3 ≈ tr5 and tr2 ≈ tr4 then by transitivity of ≈ we have
lst(tr1) ≈ lst(tr2). And since lst(tr1) = σ3 and lst(tr2) = σ4 we are done.

��
The soundness proof of Theorem 1 relies on constructing alternative execu-

tions that are isomorphic using the identity bijection, Lemma3 states that all
such alternative executions are derivable in L.

Lemma 3 (Sufficent non-determinism). Given statement s, stores σ1...3,
mapping π1, and alternative allocation strategy π2, such that:

– σ1 and σ2 are isomorphic with mapping π1: σ1 ≈π1 σ2

– s can execute to completion from σ1:
– π1 and π2 map common addresses in the same way in(π1 ∪ π2)
– ∀(a1, a2) ∈ π2 :(a1 ∈ σ1

heap ⇐⇒ a2 ∈ σ2
heap)

Then there exists an isomorphic execution such that:

tr1 ≈π2 tr2 ∧ ∀(a1, a2) ∈ π2 :(a1 ∈ σ3
heap ⇐⇒ a2 ∈ σ4

heap)

Verification of Equivalence with Memory Allocation 955

Proof. By induction on the derivation of the alternative execution
is constructed. In particular note that because π2 does not map between allo-
cated and unallocated addresses, the appropriate alternative address is always
unallocated when an allocation statement is reached. And that, since in(π1 ∪ π2)
then all addresses that were already allocated at the start of the execution
do not need to be allocated alternatives. The proof goes through for both V
and A. ��

4 Discussion

The number of correspondences between allocations (Sect. 2) is factorial in the
maximum number of allocation sites in either procedure. Hence RIE is only
practical for relatively small numbers of allocation sites. However, this is not
as restrictive as it may seem because our approach is modular. In practice,
when loops are encoded as procedure calls, then many interesting procedures
contain only small numbers of allocations. In some cases it is also possible to
split a procedure into chunks or abstract common parts. It is also likely that the
applicability of this technique can be significantly extended by using additional
static analysis to eliminate some of the permutations in advance. For example,
the types of the objects being allocated could be used to eliminate permutations
that aligned objects of different types.

Framing of procedure calls is important in verifying equivalence for many
examples. APE has a fairly naive approach to framing and disjointness of heap
regions, which restricts the class of examples it can currently deal with. However,
our techniques, and choice of Dafny [32] style heap encoding, should be amenable
to a more powerful framing methodology. Improving APE’s framing support is
likely to significantly improve its completeness.

We considered many alternative approaches to establishing isomorphism. The
natural approach using existentials does not work very well. We investigated
several approaches using universal quantification. We tried defining heaps to be
isomorphic if all pairs of paths that lead to related addresses in one heap also
lead to related addresses in the other. We tried several approaches for limit-
ing which, and what depth of paths should be considered by the solver. But
the underlying doubly exponential complexity of comparing all pairs of paths
impedes the applicability of that approach. The requirement that disjoint heap
effects of procedure calls commute was an important design force: many alter-
native approaches required extensive additional axioms to handle the various
cases, whereas our current approach of enumerating allocators seems to handle
many cases naturally.

4.1 Examples

There are a collection of programs available from https://github.com/lexical
scope/ape\#automatic-procedure-equivalence-tool that show the capabilities of

https://github.com/lexicalscope/ape#automatic-procedure-equivalence-tool
https://github.com/lexicalscope/ape#automatic-procedure-equivalence-tool

956 T. Wood et al.

Fig. 7. Examples with the maximum number of allocations per procedure and timings

APE. Several of them have been listed in Fig. 7 with timings performed on an
Intel Core i5-3210M@2.5 GHz processor with 8 GB memory.

We surmise that the amount of time APE takes to verify an example is related
to the number of allocations, the number of paths through the procedure, the
number of procedure calls, the complexity of any framing reachability that needs
to be solved, and the order that Z3 happens to apply the axioms (i.e. how far
into the search space the solution lies—for example, reordering procedure calls
usually slows the verification down).

RIE’s approach of using equality to establish isomorphism does prevent APE
from establishing isomorphism in some cases where it would be helpful to do so.
The example in Fig. 8 is from a refactoring of some code which manipulates a
doubly linked list. Both procedures add an element to a list, but first remove it
if it is already present. The left procedure has a redundant check that the item
is in the list, in the right procedure this redundancy is removed.

The isomorphism between lines 88 and 105 relates the addresses in rf0 and
rf. The isomorphism between lines 91 and 105 relates the addresses in rf1
and rf. If we were to assume equality for both of these isomorphisms then we
would have rf = rf0 = rf1. However, rf0 is allocated by the new statement
on line 87 whereas rf1 is allocated by the subsequent new statement on line 90.
The semantics of new require that each allocation gives an address which was
not previously allocated—i.e. that rf0 �= rf1.

RIE, therefore, restricts the selected points in Definition 6 to prevent contra-
dictory isomorphisms being selected. Due to this restriction a verifier using RIE
alone may fail to produce a proof for some procedures that are in fact equiva-
lent according to our definitions. Any tool using RIE in practice may choose to
equate one pair of calls to find, but it must find some other way to deal with
the other pair of calls (such as manually adding an additional specification of
find).

Verification of Equivalence with Memory Allocation 957

Fig. 8. A difficult example where two stores in one execution are isomorphic with the
same store in the other execution.

4.2 Definitions of Isomorphism and Procedure Equivalence

Our definition of procedure equivalence is useful because it is a contextual equiv-
alence [34] for L. This means that given equivalent procedures p1, p2 and a pro-
gram that calls p1, one can always change the program to call p2 instead without
affecting the observable behaviour of the program. Of particular interest to pro-
grammers is Corollary 1: the relation ≈ preserves the meaning of all assertions.

Corollary 1 (Isomorphism is assertion preserving).

∀σ1, σ2, b : σ1 ≈ σ2 =⇒ (σ1 � b ⇐⇒ σ2 � b)

Proof. Follows from Lemma 2 ��
Interestingly, it is possible to define isomorphism almost equivalently as the

least-fixed-point interpretation of the relation:

where σ∅ is the empty store. That is, it could be defined as a smallest relation
closed under the atomic operations of the semantics. However, even though the
semantics is naturally closed under ≈′, the definition is not as helpful when trying
to decide if a particular pair of stores are isomorphic. Regardless, a definition in
this least-fixed-point style would allow us to construct a notion of isomorphism
even for a semantics where we did not know an appropriate direct definition.
Perhaps it is interesting to consider what assertion language would be preserved
for any particular semantics given such a definition.

958 T. Wood et al.

4.3 Reachability

Establishing reachability enables APE to prove interesting examples, but is ancil-
lary to the focus of this paper RIE and angelic allocation. Still, our definition
of equivalence allows differences in garbage (which is unreachable memory), and
APE use reachability to reason about read and write effect framing as described
in Sect. 2.3—so an useful axiomatisation of reachability is needed.

Fig. 9. The partial axiomatisation of reachability used by APE, written in Boogie. The
triggers are elided {...}. The function $Read(h,a,f) is the value of field f of object a

in heap h, the predicate $Allocated($h,$a) holds if object $a is allocated in heap $h.
The predicate $Edge($h, $a, $f, $c) holds if the field $f of object $a has the value
$c in heap $h.

Figure 9 shows our Boogie encoding of reachability. We give several axioms
for the predicate $Reach, which the tool instantiates in different circumstances
controlled by various triggers (controlled programatically, users cannot write
them). Rather than precisely deciding the reachability set, often it is necessary
to prove disjointness of certain heap regions. For example, garbage objects are
disjoint from the reachable region, and a property of a region is preserved over a
procedure call if the region is disjoint from the call effects. Our choice of axioms
enable the tool to establish a lack of reachability by showing either that there
are no outgoing (line 130) or no incoming (line 127) edges to a particular heap
region. Although the axioms line 127 and line 130 are logically equivalent, we
use triggers to unroll them in different situations.

5 Related Work and Conclusions

The study of program equivalence arguably pre-dates the study of functional cor-
rectness. In his 1969 paper [23], Hoare identified that “Many [previous] axiomatic
treatments of computer programming [2,24,46] tackle the problem of proving
the equivalence, rather than the correctness, of algorithms”. To date, practical

Verification of Equivalence with Memory Allocation 959

approaches to program equivalence rely on structural similarity of the programs.
Many works focus on methods to account for some structural differences. The
importance of program structure in proving program equivalence was observed
by Dijkstra in 1972 [15], where he also observes that programmers are often
called upon to modify existing programs.

Key developments in program equivalence have come from research into non-
interference in secure information flow and compiler translation validation. Non-
interference is the property that the values of secret inputs do not influence public
outputs. Translation validation provides assurances that the program output by
a compiler is correct with respect to the input program. Translation validation
concerns itself with correctness of particular compiler runs, and does prove the
compiler implementation correct. Non-interference can be formalised in terms of
program equivalence [25], or more generally as a safety property over pairs of
program traces [7,41]. Methods for reducing safety properties over trace pairs
to safety properties over single traces have been explored [9,33] and generalised,
particularly via product programs [4,6] and similar [38,42,47]. Product programs
combine a pair of programs into one, such that useful invariants can be formu-
lated at interesting points in the product, and can generalise to relations between
programs [5]. Compiler translation validation [28,31,38,42,47] is inherently a
program equivalence question. Many techniques have been applied, several vari-
ations of product programs [47], constructing bisimulations between control flow
graphs [28], iteratively applying equality axioms [38], or normalising [42] graph
representations of the programs.

Relational Hoare Logic [5,10–12,45] (RHL) was proposed by Benton, in
2004 [10], in the course of proving the correctness of various compiler opti-
misations. The Hoare triple {P}S{Q} is extended to a Hoare quadruple by
inclusion of two statements, rather than one, {P}C1 ∼ C2{Q}. The pre and
post conditions are lifted to relations over stores. RHL has been extended by
various rules to account for differences in structure between the programs [5,10].
Barthe, Crespo, and Kunz [5] pointed out that RHL is closely related to the
idea of product programs. Several formal works tackle the problem of prov-
ing program equivalence in the presence of dynamic memory allocation. Pitts
uses a simulation between memory locations when defining a semantic approach
to program equivalence [37], the memory model is flat not a heap. Benton et
al. uses isomorphism between heap regions when proposing an RHL that sup-
ports dynamic allocation [11]. Yang constructs a relational separation logic with
support for dynamic allocation [45]. Sumner and Zhang propose a different app-
roach, canonical memory addresses are constructed based on program control
flow and syntactic elements. Banerjee, Schmidt, and Nikouei [1] propose a logic
for weaving programs with structural differences so that relational properties
of programs can be expressed. They extend this with a region logic to support
reasoning about encapsulation in dynamically allocating programs; catering for
equivalence between programs which vary the representation of objects.

960 T. Wood et al.

5.1 Fully Automatic Equivalence Verification Tools

To our knowledge there are four other tools with the objective of fully auto-
mated verification of procedure equivalence for imperative programs: Symd-
iff [29], RVT [21], SCORE [36], and Rêve [19]. Symdiff [29] uses program ver-
ification to prove or provide counter examples of equivalence. It uses mutual
summaries, and can infer intermediate summaries to establish equivalence. Con-
ditional equivalence [22] can show partial equivalence over a subset of proce-
dure inputs and construct summaries of interprocedural behavioural differences.
Symdiff is built on Boogie [3]. Symdiff has no built-in support for procedures
that differ in memory allocation. RVT [21] proves equivalence of some C pro-
grams. RVT generates loop and recursion free program fragments, which are
verified by the CBMC [14] bounded model checker. Loops are encoded as recur-
sive functions. Recursive calls are replaced by uninterpreted functions. Recently
support for unbalanced recursive functions has been added [39]. RVT is extended
to dynamic data structures involving pointers by generating (symbolic) bounded
tree-like data structures as inputs for procedures. These initial tree-like struc-
tures are isomorphic up to some bound. RVT then verifies (up to the same
bound) that those data structures remain isomorphic, at procedure calls and
procedure return. The bound is determined by a syntactic overapproximation
of the maximum depth of modification. No rigorous proof is presented for this
extension to pointers. Rêve [19] and SCORE [36] support numerical programs
without heaps. Rêve uses Horn constraints to verify equivalence of deterministic
imperative programs with unbounded integer variables. Rêve infers inductive
coupling predicates and as such can deal with loops and recursion where, for
example, the number and meaning of procedure parameters has changed. The
authors of Rêve propose in the future to extend their tool with an RVT-like
approach to the heap. SCORE uses abstract interpretation over an interleav-
ing of the programs. A good interleaving is found by searching. SCORE deals
with numerical programs. For non-equivalent programs SCORE can compute an
overapproximation of the semantic difference. The precision of this overapprox-
imation is related to the size of the syntactic difference.

5.2 Conclusion

We defined procedure equivalence, and a sound methodology RIE, for automat-
ically proving equivalence of programs which vary in dynamic memory alloca-
tion. We described our RIE encoding APE for equivalence verification (available
at https://github.com/lexicalscope/ape). Our approach is fully automatic, and
applicable to programs which manipulate heap data structures of any shape.

References

1. Banerjee, A., Schmidt, D.A., Nikouei, M.: Relational logic with framing and
hypotheses. In: FSTTCS (2016)

2. de Barker, J.W.: Axiomatics of simple assignment statements. In: MR 94 (1968)

https://github.com/lexicalscope/ape

Verification of Equivalence with Memory Allocation 961

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). doi:10.1007/11804192 17

4. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.)
LFCS 2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35722-0 3

5. Barthe, G., Crespo, J.M., Kunz, C.: Product programs and relational program
logics. J. Logical Algebraic Methods Program. 85(5), 847–859 (2016)

6. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21437-0 17

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the 17th IEEE Workshop on Computer Security Foundations.
IEEE Computer Society (2004)

8. Bavota, G., et al.: When does a refactoring induce bugs? An empirical study. In:
2012 IEEE 12th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE (2012)

9. Benton, N.: Abstracting allocation. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207,
pp. 182–196. Springer, Heidelberg (2006). doi:10.1007/11874683 12

10. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM (2004)

11. Benton, N., et al.: Relational semantics for effect-based program transformations
with dynamic allocation. In: Proceedings of the 9th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming. ACM (2007)

12. Beringer, L.: Relational decomposition. In: Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 39–54. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-22863-6 6

13. Bozga, M., Iosif, R., Laknech, Y.: Storeless semantics and alias logic. In: Proceed-
ings of the 2003 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation, PEPM 2003, San Diego, California, USA. ACM
(2003)

14. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog pro-
grams using bounded model checking. In: 2003 Proceedings of the Design Automa-
tion Conference. IEEE (2003)

15. Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic
Press Ltd., Cambridge (1972)

16. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

17. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

18. Elenbogen, D., Katz, S., Strichman, O.: Proving mutual termination. Form. Meth-
ods Syst. Des. 47(2), 204–229 (2015)

19. Felsing, D., et al.: Automating regression verification. In: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE
2014. ACM (2014)

20. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Informatica 45(6), 403–439 (2008)

http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-642-35722-0_3
http://dx.doi.org/10.1007/978-3-642-35722-0_3
http://dx.doi.org/10.1007/978-3-642-21437-0_17
http://dx.doi.org/10.1007/11874683_12
http://dx.doi.org/10.1007/978-3-642-22863-6_6
http://dx.doi.org/10.1007/978-3-540-78800-3_24

962 T. Wood et al.

21. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th
Annual Design Automation Conference. ACM (2009)

22. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly com-
paring programs using automated theorem provers. In: Bonacina, M.P. (ed.) CADE
2013. LNCS (LNAI), vol. 7898, pp. 282–299. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38574-2 20

23. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

24. Igarishi, S.: An axiomatic approach to equivalence problems of algorithms with
applications. Ph.D. thesis (1964)

25. Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Sci.
Comput. Program. 37, 1–3 (2000)

26. Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Conditional equivalence. Technical report
MSR-TR-2010-119. Microsoft, October 2010

27. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order
imperative programs. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM (2006)

28. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM (2009)

29. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 54

30. Lahiri, S., et al.: Differential assertion checking. In: Foundations of Software Engi-
neering. ACM (2013)

31. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs’. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014. ACM (2014)

32. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

33. Leino, K.R.M., Müller, P.: Verification of equivalent-results methods. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 307–321. Springer, Hei-
delberg (2008). doi:10.1007/978-3-540-78739-6 24

34. Milner, R.: Fully abstract models of typed λ-calculi. Theor. Comput. Sci. 4(1),
1–22 (1977)

35. Park, J., et al.: An empirical study of supplementary bug fixes. In: 2012 9th IEEE
Working Conference on Mining Software Repositories (MSR) (2012)

36. Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation.
In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications. ACM (2014)

37. Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G., Dyb-
jer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378–412.
Springer, Heidelberg (2002). doi:10.1007/3-540-45699-6 8

38. Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for LLVM. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 737–742.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 59

http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-38574-2_20
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-540-78739-6_24
http://dx.doi.org/10.1007/3-540-45699-6_8
http://dx.doi.org/10.1007/978-3-642-22110-1_59

Verification of Equivalence with Memory Allocation 963

39. Strichman, O., Veitsman, M.: Regression verification for unbalanced recursive
functions. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM
2016. LNCS, vol. 9995, pp. 645–658. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-48989-6 39

40. Tennent, R.D., Ghica, D.R.: Abstract models of storage. High.-Order Symbolic
Comput. 13(1), 119–129 (2000)

41. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). doi:10.1007/11547662 24

42. Tristan, J.-B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for LLVM. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM (2011)

43. Tzevelekos, N.: Program equivalence in a simple language with state. Comput.
Lang. Syst. Struct. 38(2), 181–198 (2012)

44. Wood, T.: Equivalence verification for memory allocating procedures. Ph.D. thesis,
Imperial College London, Under Submission

45. Yang, H.: Relational separation logic. Theor. Comput. Sci. 375, 1–3 (2007)
46. Yanov, Y.: Logical operator schemes. In: Kybernetilca I (1958)
47. Zaks, A., Pnueli, A.: CoVaC: compiler validation by program analysis of the cross-

product. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 35–51. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68237-0 5

http://dx.doi.org/10.1007/978-3-319-48989-6_39
http://dx.doi.org/10.1007/978-3-319-48989-6_39
http://dx.doi.org/10.1007/11547662_24
http://dx.doi.org/10.1007/978-3-540-68237-0_5

Abstract Specifications for Concurrent Maps

Shale Xiong(B), Pedro da Rocha Pinto, Gian Ntzik, and Philippa Gardner

Imperial College London, London, UK
{sx14,pmd09,gn408,pg}@ic.ac.uk

Abstract. Despite recent advances in reasoning about concurrent data
structure libraries, the largest implementations in java.util.concurrent

have yet to be verified. The key issue lies in the development of modu-
lar specifications, which provide clear logical boundaries between clients
and implementations. A solution is to use recent advances in fine-grained
concurrency reasoning, in particular the introduction of abstract atom-
icity to concurrent separation logic reasoning. We present two specifica-
tions of concurrent maps, both providing the clear boundaries we seek.
We show that these specifications are equivalent, in that they can be built
from each other. We show how we can verify client programs, such as a
concurrent set and a producer-consumer client. We also give a substan-
tial first proof that the main operations of ConcurrentSkipListMap in
java.util.concurrent satisfy the map specification. This work demon-
strates that we now have the technology to verify the largest implementa-
tions in java.util.concurrent.

1 Introduction

We study reasoning about fine-grained concurrent data-structure libraries, with
the aim of developing modular specifications which provide a clear logical bound-
ary between client programs and implementations. We refer to a specification as
modular if it enables us to verify client programs without exposing the details
of the underlying implementation. Implementations should be provably correct
with respect to such specifications. Specifications should be general enough to
allow for the verification of strong functional properties of arbitrary clients. Such
a balance has been difficult to achieve.

There has been substantial recent work on the modular specification of
concurrent libraries and the verification of their clients and implementations
using concurrent separation logics: see for example [7]. However, we have only
just reached a stage where specifications are fully modular. In particular, an
important step has been the introduction of abstract atomicity to concur-
rent separation-logic reasoning [6,16,17,20,26,27]. We revisit the concurrent
map example, a pivotal example in the original development of concurrent
abstract predicates [5,10]. We demonstrate significant improvement with this
work, by presenting two specifications of concurrent maps: one based on the
whole map data structure; and the other on key-value pairs. These specifica-
tions are more general, yielding better functional properties of client programs

c© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 964–990, 2017.
DOI: 10.1007/978-3-662-54434-1 36

Abstract Specifications for Concurrent Maps 965

and simpler proofs that implementations meet the specifications. In particu-
lar, we are able to give a substantial first proof that the main operations of
ConcurrentSkipListMap in java.util.concurrent satisfy the map specifica-
tion. This work demonstrates that we now have the reasoning techniques required
to verify the largest implementations in java.util.concurrent.

The specification and verification of concurrent maps has been fundamental
to the development of abstract fine-grained concurrent reasoning. At one point,
it was known how to verify Sagiv’s BLink tree algorithm [24] in RGSep [28], but
it was not known how that reasoning could be lifted to an abstract specifica-
tion. In an effort to answer this question, concurrent abstract predicates and the
associated CAP reasoning were introduced [10], and a specification of concurrent
maps using key-value pairs presented [5]. At the time, it was quite an achieve-
ment that such a complex algorithm could be proven correct with respect to a
simple abstract specification. However, it was also known that the specification
had substantial limitations. It was not general enough, in that it had specific pro-
tocol tags embedded in the specification to manage interaction between threads.
This meant that, although CAP reasoning was sufficiently expressive to demon-
strate the memory safety of all clients, it could only verify functional correctness
properties for some. It also meant that, although implementations such as Sagiv’s
BLink tree were indeed proven correct with respect to the specification, the proofs
were complex due to the explosion of cases caused by the protocol tags. The key
point is that CAP reasoning was not able to establish the correct specification
boundary.

In this paper, we present two modular specifications for concurrent maps,
which we believe provide clear logical boundaries for verifying implementations
and clients. First, we present an abstract concurrent map specification where
the focus is on the entire map data structure; such a specification is partic-
ularly suitable for verifying implementations. Using this map specification we
verify an implementation of an abstract concurrent set specification, similar to
ConcurrentSkipListSet from java.util.concurrent. Second, we present an
alternate concurrent map specification, in which the focus is on key-value pairs,
rather than on the entire map data structure. This type of specification is more
appropriate for clients who only require access to some of the key-value pairs of
the map. These two specifications are equivalent in the sense that the key-value
specification can be built as a client of the map specification, and vice versa;
they present two different views of the same data structure.

We demonstrate how to build the CAP specification from our more general
key-value specification in the technical report [29], immediately inheriting all
of the client examples given in [5]. We verify a functional correctness property
of a simple producer-consumer client using the key-value specification, which
cannot be verified using the CAP specification. We also verify that the main
operations of ConcurrentSkipListMap from java.util.concurrent satisfy the
map specification. As far as we are aware, this is the largest verified example of
an algorithm of java.util.concurrent in the literature. Despite this, the proof
is comparatively simpler than the CAP-style proof Sagiv’s BLink tree algorithm.

966 S. Xiong et al.

This is because the verification of our specification is decoupled from how the
map is used by concurrent clients.

The strength of our results is due to advances in fine-grained concurrent rea-
soning, in particular the introduction of abstract atomicity made popular with
the work on linearisability [15] and recently integrated into the reasoning of con-
current separation logics [6,16,17,20,26,27]. Atomicity is a common and useful
abstraction for operations of concurrent data structures. Intuitively, an opera-
tion is abstractly atomic if it appears to take effect at a single instant during
its execution. The implementation of the operation may take multiple steps to
complete, updating the underlying representation of the data structure several
times. However, only one of these updates should effect the abstract change in
the data structure corresponding to the abstract atomic operation. The benefit
of abstract atomicity is that a programmer can use such a data structure in a
concurrent setting while only being concerned with the abstract effects of its
operations. We use TaDA [6], a program logic which captures abstract atomic-
ity by introducing the notion of an atomic triple. These triples generalise the
concept of linearisability, in the sense that they specify operations to be atomic
with respect to interference restrictions on the data abstraction, in contrast to
unrestricted interference on the module boundary given by linearisability. The
outcome is the clear specification boundary that we seek. In fact, whilst study-
ing the concurrent map example, we realised that we could extend TaDA with
additional proof rules to provide more modular specifications than before.

The results in this paper demonstrate that choosing the right abstraction for
the specification is essential for scalable reasoning about concurrent data struc-
tures in general, and concurrent maps in particular. For concurrent maps, we
have demonstrated that the right abstraction is feasible using the TaDA program
logic. With TaDA, we have introduced two general specifications of concurrent
maps, which do not impose unnecessary constraints on the client reasoning. We
have verified the main operations of ConcurrentSkipListMap, a large real-world
concurrent data structure algorithm given in java.util.concurrent.

2 Abstract Map Specification

Our goal is to specify formally a fragment of the ConcurrentMap module from
java.util.concurrent. The map module consists of a constructor makeMap
which creates an empty map, a get operation which returns the value currently
mapped to a given key, a put operation which changes the mapping associated
with a given key, and a remove operation which removes the mapping for a given
key. None of these operations allows zero to be either a key or a value.

Figure 1 shows our abstract specification for the main operations of the
ConcurrentMap module. This specification is abstract in the sense that it does
not contain any references to the underlying implementation. To represent the
map as a resource, we introduce an abstract predicate Map(s, x,M). The first
parameter of the predicate, s ∈ T1, ranges over an abstract type T1. It cap-
tures invariant implementation-specific information about the map, which does

Abstract Specifications for Concurrent Maps 967

Fig. 1. Specification for a concurrent map.

not change during the execution of the operation. To the client, the type is
opaque; the implementation realises the type appropriately. The second para-
meter, x ∈ Loc, represents the physical address of the map object. The last
parameter, M, contains a set of mappings that represent the abstract state of
the map.

The makeMap operation is specified with a standard Hoare triple that asserts
that it will return a freshly allocated map object with no mappings. We should
note here that, since TaDA is an intuitionistic logic, the precondition True has
the same behaviour as the emp of classical separation logic. Also, ret is a special
variable that holds the return value of an operation.

The get, put and remove operations are specified with an atomic triple, with
the intended meaning that these operations appear to take place atomically, at
a distinct point in time. TaDA is designed so that shared resources can only be
accessed by atomic operations; a non-atomic operation could potentially violate
any invariant that the shared resources are expected to have.

The atomic triple, introduced by TaDA [6], specifies an atomic operation:

� A

x ∈ X.〈P (x)〉 C 〈Q(x)〉
the intuitive meaning of which we will explain shortly. Prior to that, we need to
introduce the notion of a linearisation point : a linearisation point of an operation
is the instant at which that operation appears to take effect [15]. The precondi-
tion P (x) and postcondition Q(x) specify the program state before and after the
linearisation point of the program C. The pseudo-quantification

A

x ∈ X spec-
ifies that the environment is allowed to freely change the value of x before the
linearisation point of C, as long as x ∈ X and P (x) continues to hold. At and
only at the linearisation point, current program C changes the program state
from P (x) to Q(x). Afterwards there are no guarantees as to the truthfulness of
Q(x) because the environment can interfere with no constraint1. For example,
the specification for get in Fig. 1 means that immediately after the linearisation
point, get preserves the state of the mappings and returns the current value
associated with the key k, or 0 if the mapping does not exist. Before the lineari-
sation point, the environment can change the value of the mappings, but cannot
deallocate the structure because the precondition mandates its existence; after
1 For a detailed exposition of the atomic triples, readers should refer to [6,7].

968 S. Xiong et al.

the linearisation point, the environment can interfere fully and even deallocate
the structure.

The put operation is similar to get, except that it inserts or replaces the
mapping for the key k with the value v (M[k �→ v] denotes the update of the
existing key k with value v, or the addition of a new (k, v) pair, depending on
the mapping previously existed). The operation returns the previous mapping
associated with the key, or 0 if that mapping did not exist. Finally, the remove
operation removes an existing mapping associated with the key k and returns
its previous contents, similarly to the put operation.

We show that our specification is strong enough to reason about arbitrary
clients, e.g. a concurrent set and producer-consumer, in Sect. 3, and verify that
a complex skiplist implementation satisfies it in Sect. 4. Moreover, we derive an
alternative key-value specification which provides a fiction of disjointness and
can also be used for client reasoning.

3 Client Reasoning

We illustrate the advantages of our specification by showing three different ways
of using it. The first example is an implementation of a concurrent set module,
similar to the ConcurrentSkipListSet found in java.util.concurrent, that
makes use of a map internally and illustrates the modularity of our specification.
The second example is a new key-value specification that incorporates atomic-
ity and allows dynamic control of the number of abstract key-value predicates
being used. It is motivated by the fact that some clients find it preferable to work
with individual key-value pairs rather than the whole map and is inspired by
the original key-value specification for concurrent maps presented in Concurrent
Abstract Predicates (CAP) [5,10]. The third example is a simplified producer-
consumer scenario that makes use of the key-value specification. We use it to
show how abstract atomicity can be used to improve client reasoning, allow-
ing us to prove stronger properties about functional correctness than previous
approaches [1,2,5].

In this section, when necessary, we will elaborate on certain important notions
of TaDA. The reader can refer to the full set of TaDA rules in [4], which also
includes the two additional rules with which we have extended TaDA.

3.1 Concurrent Set

We consider a concurrent set module, with the specification given in Fig. 2.
This module consists of two methods: setPut, which inserts an element in the
set and returns true if the element did not previously exist and false if it did;
and setRemove, which removes an element from the set and returns true if the
element previously existed in the set and false otherwise. The implementation
internally uses a concurrent map to keep track of the elements that are in the
set. If an element e is in the set, then there exists a corresponding mapping with
the key e in the underlying map.

Abstract Specifications for Concurrent Maps 969

Fig. 2. Specification for a concurrent set.

Shared Regions, Transition Systems and Guards. In order to verify the
specification using TaDA [6], we must provide an interpretation for the abstract
predicate Set(s, x,S). For this, we will introduce the shared regions, transition
systems and guards of TaDA.

A shared region encapsulates resources that may be shared by multiple
threads, with the proviso that they can only be accessed by atomic operations.
It has an abstract state with a concrete interpretation denoted by I(−). Each
region is identified by a unique region identifier and adheres to a region type.

For the concurrent set module, we introduce a region type SLSet. A region
of this type is parameterised by the physical address x of the underlying map
and an additional physical address y, which corresponds to the address of the
set. It also carries the parameter s, which captures the invariant information of
the underlying map implementation. Lastly, the abstract state S corresponds to
the contents of the set. The interpretation of SLSet is as follows:

I(SLSetr(s, x, y,S)) def= ∃M. x �→ y ∗ Map(s, y,M) ∧ S = dom(M)

Therefore, we have that SLSet encapsulates a heap cell that contains the address
of the underlying map as well as the underlying map itself, and also relates the
abstract state of the region to the domain of the mappings. The subscript r is
the unique region identifier.

A shared region is associated with abstract resources, called guards, and a
labelled transition system, where labels are guards, that defines how the region
can be updated. In TaDA, the assertion [G]r denotes a guard named G for the
region r. The guards for a region form a partial commutative monoid (PCM),
to which we refer to as a guard algebra, with a composition operation •, which
is lifted to ∗ in TaDA assertions. For the SLSet region, we introduce two types
of guards, G and 0. The guard algebra for the set module is as follows:

G • 0 = 0 • G = G 0 • 0 = 0 G • G is undefined

where the guard 0 is the unit of this PCM. This guard algebra ensures that the
guard G is unique. The type of the region, t, defines the transition system and
the guard algebra associated with the region.

The labelled transition system associates certain actions with certain guards;
these actions determine how a thread that holds this guard can update the shared
state of the region. An action is a pair consisting of a pre- and a post-condition.
The labelled transition system for the set region is as follows:

G : ∀S, e.S � S ∪ {e} G : ∀S, e.S � S\ {e}
The guard G allows a thread to change its abstract state S, effectively chang-
ing the contents of the set by either adding or removing an element e. The 0

970 S. Xiong et al.

guard has no bound action. Note that in the following discussion, if there is no
ambiguity, each region implicitly has a unit guard 0 with no bound action.

Given the region and its guards, we are now ready to give the interpretation
of the abstract type and our abstract predicate:

T2
def= RId × T1 × Loc Set((r, s′, y), x,S) def= SLSetr(s′, x, y,S) ∗ [G]r

where RId is the set of region identifiers, T1 is the abstract type of the concurrent
map specification and Loc is the set of physical addresses. For the first parameter
of Set, s, we have that s ∈ T2. Recall that abstract types T1 and T2 encapsulate
invariant, implementation-specific information and are opaque for clients.

Given this interpretation of the set module, it remains to prove that the
implementations of the operations, which use a concurrent map, satisfy the set
specifications. We present the proof of the setPut in Fig. 3, whereas we omit
the proof for setRemove due to its similarity and it can be found in technical
report [29]. The proof begins by substituting the abstract predicate Set(s, x,S)
with its interpretation, where we also substitute the logical parameter s ∈ T2

with its interpretation as the triple (r, s′, y), where r is the identifier of the SLSet
region, s′ is the abstract logical parameter of the underlying Map predicate, and
y is the physical address of the underlying Map predicate.

The remaining proof rules used will be explained shortly. We also show a
further example of how to use the set specification in the technical report [29],
by proving a parallel sieve of Eratosthenes.

Proof Rules. There are four key rules that are used in Fig. 3: make atomic,
update region, and atomicity weakening. The first rule that we will describe is

Fig. 3. Proof of correctness of the setPut operation.

Abstract Specifications for Concurrent Maps 971

make atomic, which allows us to prove that program C can be seen as abstractly
atomic. A simplified version of this rule is as follows:

{(x, y) | x ∈ X, y ∈ f(x)} ⊆ Tt(G)∗

r : x ∈ X � f(x) � {∃x ∈ X. tr(�z, x) ∗ r �⇒ �
}
C
{∃x ∈ X, y ∈ f(x). r �⇒ (x, y)

}

� A

x ∈ X.
〈
tr(�z, x) ∗ [G]r

〉
C
〈∃y ∈ f(x). tr(�z, y) ∗ [G]r

〉

This rule establishes that C atomically updates the region r, from a state
x ∈ X to a state y ∈ Q(x). To do so, it requires the guard G for the region, which
must permit the update according to the appropriate transition system Tt(G)∗,
where t is the region type; this is established by the first premiss. Here, the
region type t is SLSet, the guard G is our guard G, and the transition system
is Tt(G) = {S,S ∪ {e}}∪{S,S \ {e}}. The ∗ denotes reflexive-transitive closure.

We use ta(�z, x) to represent a region with region type t, identifier a, parame-
ters �z and abstract state x. In our example, the SLSet region is parametrised
with the physical address of the underlying map, the physical address of the set,
the invariant implementation-specific information, and the abstract state, which
corresponds to the contents of the set. The second premiss introduces two nota-
tions. The first, r : x ∈ X � f(x), is called the atomicity context. The atomicity
context records the abstract atomic action that is to be performed. The second,
r �⇒ −, is the atomic tracking resource. The atomic tracking resource indicates
whether or not the atomic update has occurred (the r �⇒ � indicates it has
not) and, if so, the state of the shared region immediately before and after (the
r �⇒ (x, y)). The resource r �⇒ � also plays two special roles that are normally
filled by guards. Firstly, it limits the interference on region r: the environment
may only update the state so long as it remains in the set X, as specified by
the atomicity context. Secondly, it confers permission for the thread to update
the region from state x ∈ X to any state y ∈ f(x); in doing so, the thread also
updates r �⇒ � to r �⇒ (x, y). This permission is expressed by the update region
rule (see below), and ensures that the atomic update happens only once.

In essence, the second premiss is capturing the notion of atomicity (with
respect to the abstraction in the conclusion) and expressing it as a proof obliga-
tion. Specifically, the region must be in the state x for some x ∈ X, which may
be changed by the environment, until at some point the thread updates it to
some y ∈ f(x). The atomic tracking resource bears witness to this.

In the proof shown in Fig. 3, we apply the make atomic rule to declare an
atomic update. The local variable y holds the address of the underlying map.
Then, at the linearisation point, i.e. the put operation, we apply the update
region rule to update the tracking resource from r �⇒ � to r �⇒ (S,S ∪ {e}). The
slightly simplified version of the update region rule is as follows:

� A

x ∈ X.

〈

I(tr()�z, x)∗ P (x)

〉

C

〈∃y∈ f(x).I(tr()�z, y)∗ Q1(x, y)
∨ I(tr(�z, x))∗ Q2(x)

〉

r : x ∈ X�f(x) � A

x ∈ X.

〈
tr(�z, x) ∗ P (x)

∗ r �⇒ �

〉

C

〈 ∃y ∈ f(x). tr(�z, y) ∗ Q1(x, y) ∗
r �⇒ (x, y) ∨ tr(�z, x) ∗ Q2(x) ∗ r �⇒ �

〉

972 S. Xiong et al.

In the conclusion, the first disjunct of the postcondition specifies that an
atomic update has occurred, and that C updates the abstract state of the region
r (of type t and parameters �z) from x to y and also P (x) to Q1(x, y), and in
doing so consumes the tracking resource. As the atomic update might affect
resources contained in P (x), the postcondition Q1(x, y) is parametrised by y.
By having y = x, we can also allow for the abstract state of the region to remain
unchanged and not perform the atomic update, which is useful when reasoning
about an atomic read. The second disjunct of the postcondition specifies that
C only change the local resource to Q2(x) and that the atomic action has not
taken place. Note that the tracking resource is only allowed to change only once
from � to (x, y), at the instant in which the atomic update takes effect.

TaDA allows eliminating existential quantification only for Hoare triples.
However, a rule of following form would not be sound:

� 〈P (x)
〉
C
〈
Q(x)

〉

� 〈∃x. P (x)
〉
C
〈∃x. Q(x)

〉

The conclusion allows the environment to change the value of x because of the
quantification, while in the premiss the value cannot be changed by the environ-
ment. This means that anything that could be potentially existentially quantified
has to be exposed as a parameter and bounded by the pseudo-quantification

A

.
We overcome this problem by extending the logic with the atomic exists proof
rule that allows the elimination of existential quantification, as follows:

� A

x ∈ X.
〈
P (x)

〉
C
〈
Q(x)

〉

� 〈∃x ∈ X. P (x)
〉
C
〈∃x ∈ X. Q(x)

〉

In this rule, C tolerates changes of the value of x as long as they are contained in
X by lifting the existential quantification to pseudo-quantification. This proof
rule allows us to hide the underlying states from the abstract specification of
a module, while maintaining the soundness of TaDA. We apply this rule both
before and after the update region rule in Fig. 3.

We now show how standard Hoare triples are derived from atomic Hoare
triples. In fact, the proof in Fig. 3 implicitly performs this step when applying
the update region rule. In TaDA, this is captured by the atomicity weakening
rule, a simplified form of which is given below:

� A

x ∈ X.
〈
P (x)

〉
C
〈
Q(x)

〉

∀x ∈ X � {P (x)
}
C
{
Q(x)

}

The Hoare triple in the conclusion states that the program C updates the state
from P (x) to Q(x) without any interference from the environment on x, since
∀x ∈ X in the context fixes the value of x during execution. Note that in TaDA,
assertions are implicitly required to be stable, which means that the assertions
must hold with respect to a protocol. Recall the atomic specification of put in
Fig. 1: at that level, no protocol for how the concurrent map is used is defined,

Abstract Specifications for Concurrent Maps 973

and therefore the precondition and postcondition assertions are trivially stable.
However, when applying the update region rule in Fig. 3, we are using the con-
current map as part of the protocol defined for the SLSet region, so we must
keep assertions stable with respect to that protocol. For example, at the point
of the update region, we implicitly weaken the atomic postcondition before tran-
sitioning to the non-atomic postcondition, to keep the postcondition stable.

3.2 Key-Value Specification

The concurrent map specification in Fig. 1 is given in terms of all the key-value
mappings present in the map and we have used this specification to verify a
concurrent set implementation. However, for some clients it may be preferable
to work with individual key-value pairs rather than the whole map. Inspired by
the key-value specification using Concurrent Abstract Predicates (CAP) [5,10],
we introduce a new key-value specification. This new specification is atomic,
in contrast to the CAP-stype specification. We show how to build a key-value
specification from the map specification and vice versa, meaning that these two
specifications are, in fact, equivalent and simply represent two different ways of
thinking about a concurrent map.

CAP-Style Approach. Concurrent map specifications in terms of individual
key-value pairs were first introduced using CAP [5,10]. To allow sharing between
threads, concurrent abstract predicates associate key-value pairs with fractional
permissions [3] and special tags {def, ins, rem, unk} that define the protocol via
which multiple threads access shared key-value pairs. Each operation is specified
for all protocol tags. For example, consider the following CAP-style specification
of remove (the specifications for get and put are in the technical report [29]):

{CAPKeydef(x, k, v)1} remove(x, k) {CAPKeydef(x, k, 0)1 ∧ ret = v}
{CAPKeyrem(x, k, v)π} remove(x, k) {CAPKeyrem(x, k, 0)π ∧ ret ∈ {v, 0}}

{CAPKeyunk(x, k)π} remove(x, k) {CAPKeyunk(x, k)π}

The concurrent abstract predicate CAPKey is used as a key-value pair
resource for the map with address x. The tag determines what the current thread
and the environment can do with this resource in accordance to Table 1. The
subscript π is a fractional permission, in the range (0, 1], controlling how the
resource is shared between threads: when π = 1, the current thread fully owns
the key-value pair resource, whereas when π < 1, the resource is shared. In the
def case, if v �= 0, CAPKeydef(x, k, v)1 asserts the existence of the key-value pair
(k, v); otherwise, if v = 0 the key key is not mapped to a value. In this case,
only the current thread is manipulating this key-value pair with full permission
π = 1. In the ins case, CAPKeyins(x, k, v)π asserts that the current thread and
the environment are allowed to insert the value v for key key. Consequently,
the specification prohibits threads from performing a remove in this case. In the
rem case, CAPKeyrem(x, k, v)π asserts that the both the current thread and the
environment are allowed to remove the key key from the map. Consequently,

974 S. Xiong et al.

in the precondition of the specification, the key may or may not exist in the
map. However, it certainly does not exist in the postcondition. Finally, in the
unk case, CAPKeyunk(x, k)π asserts that both the thread and the environment are
arbitrarily manipulating the key key. This case allows arbitrary interference and
thus we know nothing about the existence of the key or its value. Specifications
with unk are overly weak and only allow memory-safety proofs.

Table 1. Sharing protocols for key-value pairs of a concurrent map in CAP.

Thread Environment Thread Environment

put remove put remove put remove put remove

def � � ✗ ✗ ins � ✗ � ✗

unk � � � � rem ✗ � ✗ �

There are two significant drawbacks in the CAP approach. First, the specifi-
cation hard-codes specific protocols by which threads access the shared resource,
i.e. the tag and the fractional permission. This limits the verification of functional
correctness properties to only those clients that fit the hard-coded protocols; the
producer-consumer example in Sect. 3.3 does not. Second, each operation has
to be separately verified per each protocol tag, drastically increasing the proof
effort.

Atomic Key-Value Specification. We introduce our key-value based speci-
fication in Fig. 4. This specification allows us to provide a functional correctness
proof of the producer-consumer example shown in Sect. 3.3. It can derive the
CAP-style specification, which is in the technical report [29].

Fig. 4. Key-value specification for a concurrent map.

The specification uses two abstract predicates: Key and Collect. Both pred-
icates are parametrised with s and x. The former abstracts implementation-
defined invariant information, and the latter is the physical address identifying
the map. When v is not 0, the predicate Key(s, x, k, v) represents a mapping
from key k to value v in the map. When v = 0, it states that the key k is not in
the map. The predicate Collect(s, x,S) keeps track of how many Key predicates

Abstract Specifications for Concurrent Maps 975

are in use: one for each element of S. Initially, the set S is empty. The axiom at
the bottom of Fig. 4 allows constructing new Key predicates by increasing the
size of the set tracked by Collect.

In order to verify the specification with respect to the map specification in
Fig. 1, we introduce a shared region with type KVMap. The interpretation of
the region is defined to be a façade of the concurrent map predicate as follows:

I(KVMapr(s
′, x,M)) def= Map(s′, x,M)

We associate the region with guards K(k) and Collect(S). The guard K(k)
grants the capability to insert and remove mappings with the key k according
to the following transition system defined for the region:

K(k) : ∀M, v.M � M[k �→ v] K(k) : ∀M.M � M \ {(k,M(k))}
The guard Collect(S) is used to track how many guards K are in use. We
impose the following guard algebra:

Collect(S) = Collect(S � {k}) • K(k)

where k > 0. This equivalence enforces that the number of K guards matches
the set in Collect.

Now we define the interpretation of the abstract predicates as follows:

T3
def
= RId × T1

Collect((r, s′), x, S) def
= ∃M.KVMapr(s

′, x, M) ∗ [Collect(S)]r ∧ dom(M) ⊆ S
Key((r, s′), x, k, v)

def
= ∃M.KVMapr(s

′, x, M) ∗ [K(k)]r
∧ if v = 0 then k /∈ dom(M) else (k, v) ∈ M

The abstract predicate Collect((r, s′), x,S) is defined so that the KVMap region
contains a map M, the keys of which are a subset of S. Through the guard
Collect(S), the set S tracks the keys that are currently in use. The abstract
predicate Key((r, s′), x, k, v) is defined such that the KVMap region contains a
map M, in which a mapping for key k either exists or not, depending on the
value of v, with the guard K(k), granting the capability to modify the mapping.
The client axiom shown in Fig. 4 follows directly from the guard equivalence and
the interpretation of the abstract predicates.

In Fig. 5 we prove that the get operation satisfies its key-value specification
given in Fig. 4. The proof in Fig. 5 begins by substituting the abstract predicate
Key(s, x, k, v) with its interpretation, where we also substitute the logical para-
meter s ∈ T3 with its interpretation as the pair (r, s′), where r is the identifier of
the KVMap region, and s′ is the abstract logical parameter of the underlying
Map predicate. From there we use the atomic exists rule to eliminate the exis-
tential quantification of the abstract map M to a pseudo-quantification which
allows M to be changed by the environment up to the point where get atom-
ically takes effect. To justify the atomic read on the KVMap region, we make
use of the use atomic TaDA proof rule discussed below.

976 S. Xiong et al.

Fig. 5. Proof of correctness of the get operation.

Proof Rule. The use atomic proof rule of TaDA allows us to justify an atomic
update on the abstract state of a shared region by an atomic update on the
region’s interpretation. A simplified form of this rule is as follows:

{(x, y) | x ∈ X, y ∈ f(x)} ⊆ Tt(G)∗

� A

x ∈ X.
〈
I(tr(�z, x)) ∗ [G]r

〉
C
〈∃y ∈ f(x). I(tr(�z, y)) ∗ [G]r

〉

� A

x ∈ X.
〈
tr(�z, x) ∗ [G]r

〉
C
〈∃y ∈ f(x). tr(�z, y) ∗ [G]r

〉

Similarly to the make atomic rule, in order to justify the atomic update on region
r of type t from abstract state x to abstract state y ∈ f(x), the precondition is
required to include a guard G for which this update is allowed by the region’s
transition system according to the first premiss.

We use the use atomic rule in the last step in the proof in Fig. 5 to justify the
atomic read of the key k by the atomic map specification of the get operation
in Fig. 1. The key-value based specifications for the rest of the concurrent map
operations are proven similarly.

Rebuilding the Atomic Map Specification. So far, we have started with a
concurrent map specification in terms of the entire map, from which we then jus-
tified a key-value based specification. We now show that the opposite direction,
of starting from a key-value based specification and then deriving a whole-map
specification, is also possible. First, we introduce a region type NewMap. We
interpret this region as all the key-values pairs in use:

I(NewMapr(s, x,M)) def= ∃K.Collect(s, x,K) ∧ dom(M) ⊆ K∗
�

k∈K

(∃v.Key(s, x, k, v)∧
if v �= 0 then (k, v) ∈ M else k /∈ dom(M)

)

where � denotes the iteration of ∗. The abstract state M includes all key-value
mappings that exist in the concurrent map, as well as keys that do not exist but
are in use in the form of Key predicates. Recall that if the fourth parameter of
the Key predicate is 0, the corresponding key does not exist in the concurrent

Abstract Specifications for Concurrent Maps 977

map. Also, those Key are allocated through Collect, their key fields are in the set
K, which is the reason of dom(M) ⊆ K.

The labelled transition system for this region is defined as follows:

NMap : ∀M, k, v. M � M[k �→ v]
NMap : ∀M, k. M � M \ {(k, M(k))}

where the guard algebra is defined so that the composition NMap • NMap is
undefined. This guarantees the uniqueness of the Nmap guard.

We can now give an alternative implementation of the abstract predicate
Map in terms of the NewMap region and the NMap guard:

Map((r, s′), x,M) def= NewMapr(s
′, x,M) ∗ [NMap]r

By starting from the key-value based concurrent map specification in Fig. 4 we
can justify the whole-map specification in Fig. 1, similarly to the proof in Fig. 5.

We have shown that the whole-map specification and key-value based speci-
fication are equivalent in the sense that they specify the same structure in two
different ways. Clients are free to pick the specification that suits them best.

3.3 Producer-Consumer

We now consider a simplified producer-consumer example that uses the key-
value specification. Sergey et al. [25] proved a producer-consumer example, but
here we only mean to use the producer-consumer to explain the improvement of
our specification for concurrent map. The example, shown in Fig. 6, consists of a
program that creates two threads, one that inserts ten elements into a map, and
another that removes those elements from the map. By using TaDA’s guards and
shared regions, we can prove that, at the end, the map is empty. We contrast
this with the CAP-style approach from [5], where we cannot know anything
about the state of the map after both threads finish processing. Note that our
programming language and TaDA support dynamic creation of threads. We use
the parallel composition (‖) in this example to simplify the presentation.

Shared Region, Transition System and Guards. In order to verify the
program, we introduce a region type PC that encapsulates the shared key-value
mappings ranging from l to u. This region is parametrised by the address of
the map x and mappings M. Moreover, we introduce a distinguished abstract
state ◦ to represent the state where the region is no longer required. This is the
state we reach after both threads return. Before showing the interpretation of
the region, we define the transition system for the PC region, as follows:

Put({k}) : ∀v, M. M � M {(k, v)}
Rem(Nu

l) : ∀k ∈ N
u
l , v, M. M {(k, v)} � M

Put(Nu
l) • Rem(Nu

l) : ∀M. M � ◦
where N

u
l denotes {k | k ∈ N ∧ l ≤ k ≤ u}. The guard Put(S) allows a thread

to insert any element whose key is in S to the map, while Rem(Nu
l) allows

978 S. Xiong et al.

Fig. 6. Producer-consumer proof.

the removal of a key-value mapping from the map. The composition Put(Nu
l) •

Rem(Nu
l) allows the map to transition from a state M to ◦, where the region is

no longer needed.
The guard algebra allows Put guards to be combined according to the fol-

lowing equivalence:

Put(S) • Put(S ′) = Put(S � S ′)

Additionally, the • operator does not allow the following compositions:

Rem(−) • Rem(−) Put(S) • Put(S ′) if S ∩ S ′ �= ∅
This guarantees that there is only one Rem(−) guard and one guard of type
Put for each key.

We can now define the interpretation of the region states:

I(PCr(s, x, l, u, M))
def
= ([Put(dom(M))]r ∧ dom(M) ⊆ N

u
l) ∗

�
k∈Nu

l

(Key(s, x, k, v) ∧ if k ∈ dom(M) then v �= 0 else v = 0)

I(PCr(s, x, l, u, ◦)) def
= True

Abstract Specifications for Concurrent Maps 979

where l and u are immutable parameters and indicate the range of keys. The
PC region requires that after a thread inserts an element into the map, it must
also leave the corresponding Put guard that allowed it inside the region. This
ensures that when a thread removes the element, it can guarantee that other
threads do not insert it back by owning the guard that allows the insertion.
Additionally, by interpreting the state ◦ as True, we allow a thread transitioning
into the state ◦ to acquire the map that previously belonged to that region.

After the constructing the map with makeMap, the main thread owns the keys
in the range 1 to 10 used subsequently by the producer and consumer threads.
To allow for the keys to be shared, we create an instance of the PC region
encapsulating those keys, which is done by the create region rule. Given that
the producer and consumer work on key range from 1 to 10, the PC region is
parametrised by 1 and 10.

Proof Rule. In the original TaDA, the allocation of shared regions was deferred
to the semantic model. In contrast, we introduce a new proof rule that enables
the creation of a shared region in the logic, using view shifts [9]. The rule to
create a new shared region, of type t at state x, is as follows:

G ∈ Gt ∀r. P ∗ [G]r � I(tr(z, x)) ∗ Q(r)

P � ∃r. tr(z, x) ∗ Q(r)

The first premiss ensures that the guard G must be part of the guard algebra of
the region type t. The second premiss states that if the guard G is compatible
with P for a region identifier r, then we must be able to satisfy the interpretation
of the region at state x and some frame Q(r). The guard G may be split to satisfy
the interpretation of the region at state x and Q(r). All the other resources,
such as heap resources or guards from other regions, required to satisfy the
interpretation must be already in P . Note that the premiss must hold for any
fresh region identifier r, as we do not decide which particular identifier will be
used to create the region. The conclusion of the rule specifies that we can allocate
a new region and the required guard G, where r is a fresh region identifier. Note
that forgetting a region can be done by logical implication, because TaDA is
an intuitionistic logic. We can see the use of creating a region and forgetting a
region at the beginning and the end of the proof shown in Fig. 6.

In the proof shown in Fig. 6, after creating the region, we split the [Put]r
and [Rem]r guards between the producer and consumer threads, respectively,
using the standard parallel composition rule of concurrent separation logic [21].
We implicitly use the use atomic rule for the put and remove operations in
each thread. The left thread, after performing the put operation, must release
the corresponding guard [Put({i})]r back into the region, so that the invariant
of the region is maintained. The right thread, if the remove operation has suc-
cessfully removed the key j from the map, takes the corresponding [Put({j})]r
from the region. This describes the ownership transfer of key-value pairs from
the left thread to the right. At the end, we transfer the state of PC from ∅ to ◦
and forget this region. Therefore, the Key predicates for the keys in the example
range have value 0, meaning that they do not exist in the map.

980 S. Xiong et al.

Contrast the producer-consumer proof with one which uses the CAP-style
approach previously summarised in Sect. 3.2. According to Table 1, the only pro-
tocol tag that allows threads to both insert and remove keys from the map is
unk. However, the specifications of the map operations for this protocol in the
CAP-approach are too weak, losing all information about the value associated
with the key or even its existence in the map:

{CAPKeyunk(x, k)π} put(x, k, v) {CAPKeyunk(x, k)π}
{CAPKeyunk(x, k)π} remove(x, k) {CAPKeyunk(x, k)π}

Thus, the postcondition derived can only establish memory safety.
By hard-coding predetermined protocols according to which multiple threads

can access a data structure, CAP-style specifications restrict how clients can con-
currently access the data structure whilst retaining strong information about the
shared state. It is possible to amend the original specification with a protocol that
fits a particular client, such as the producer-consumer example. However, this
would break modularity as it requires the same implementation to be reproved
with respect to each additional protocol. In effect, if we want to reason about
strong functional properties of arbitrary clients with the CAP-style approach,
we are unable to completely forget the implementation details by using a general
abstract specification for the data structure.

In contrast, atomic specifications, such as those in Fig. 4, are decoupled from
the clients’ use cases. Clients are free to define the protocols according to which
the data structure is accessed, by selecting the guards, guard algebras and state
transition systems. Therefore, atomic triples in the style of TaDA lead to general
specifications and modular reasoning.

4 Implementation: Concurrent Skiplist

In Sect. 2, we have introduced the abstract specification for the
ConcurrentMap. One of its implementations is the ConcurrentSkipListMap
of java.util.concurrent. We extract the main structure of the
ConcurrentSkipListMap implementation (OpenJDK 8) and prove that its oper-
ations satisfy the atomic specification previously shown in Fig. 1. This is one of
the largest examples available in the java.util.concurrent library and high-
lights the scalability of modern concurrent separation logics.

Data Structure. A skiplist is built from layers of linked lists. The bottom
layer is a linked list of key-value pairs, stored in key order. Each higher layer is
a linked list that acts as an index to the layer below it, with approximately half
the number of nodes of the lower layer. This results in obtaining a fast search
performance, comparable to that of B-trees [23].

Figure 7a depicts a snapshot of the Java concurrent skiplist. The linked list
at the bottom layer is the node-list. The first node of the node-list is always the
sentinel node; for example, the node m in Fig. 7a. Nodes after the sentinel node

Abstract Specifications for Concurrent Maps 981

store key-value pairs of the map in key order, where keys are immutable. A dead
node is a node whose value is 0 and a marker node, or a marker, is a node whose
value is a pointer to itself.2 Markers are used to ensure the correct removal of
dead nodes from the node-list, as we will explain shortly.

Fig. 7. Concurrent skiplist.

Each layer above the node-list is an index-list. An index-list node stores
three pointers as its value: (a) a right-pointer to the next index-list node, (b) an
immutable down-pointer to a node in the lower layer (the down-pointers from
the lowest layer point to null) and (c) an immutable node-pointer to a node
from the node-list. The key of each index-list node is the key of the node-list
2 In Java, the value of a non-marker node is a pointer to its concrete value. For
simplicity, here we assume that non-marker nodes directly store concrete values and
there is no clash between concrete values and pointers.

982 S. Xiong et al.

node to which it points, and is also immutable. All index-list nodes connected
by their down-pointers should point to the same node-list node. For instance, in
Fig. 7a, the index-list nodes e, f, and i are grouped vertically because they all
point to the node-list node a. The first node of an index-list, also called the head
node, additionally stores the level of the index-list, which is an immutable field.
All head nodes point to the sentinel node, as shown in Fig. 7a.

Algorithm. A search for a key, the get operation, proceeds from the top index-
list and from its left to right, until the current key is the greatest key lower than
or equal to the target key. If the key is equal, the key has been found. Otherwise,
the search moves down to the lower layer through the down-pointer. The search
stops if the key has been found or if all layers have been traversed.

The put operation searches for the given key first. If the key is found,
it replaces the associated value with the new value by performing an atomic
compare-and-set (CAS). Otherwise, if the key is not found, a new node is added
to the node-list as the successor of the node with the greatest key lower than
the new node key. To do so, a new node with the key-value pair is created, and
its next-pointer field is set to its predecessor’s successor. Then, this new node is
linked into the node-list by a CAS. This is shown in Fig. 7b.

Adding a node-list node also involves adding some index-list nodes as well,
in order to maintain the performance. A column of index-list nodes is created
first, and then they are linked into the corresponding layer from top to bottom
by the process shown in Fig. 7b. Due to interference from the environment, a
situation such as that for the f, g and h nodes in Fig. 7a may appear. In this
case, the right-pointer of f is first set to g, and the CAS is performed again.

To delete a key-value mapping, the remove operation CAS the value to 0,
turning the node, and all index-list nodes pointing to it, into dead nodes. Dead
nodes are unlinked by subsequent key searches, and then left for the garbage
collector. To unlink a dead index-list node, the right-pointer of its predecessor
is CASsed to its successor. However, unlinking a dead node-list node is subtle,
because a new node may be concurrently added to the position after the dead
node [13]. To prevent this, a marker node is added by CAS as the successor to the
dead node first, which stops other threads from modifying the structure between
the marker and its successor. Then, the marker and the dead node are unlinked
by doing another CAS. Figure 7c illustrates unlinking the node-list node c.

Shared Region, Transition System and Guards. In Table 2, we introduce
predicates for the various skiplist node types and two reachability predicates.
They are formally defined in the technical report [29].

To prove that the skiplist satisfies the map specification, we introduce a new
region type SLMap. The region is parametrised by the physical address x, a
list of key-value pairs L, a set of live node-list nodes N , a set of dead node-
list nodes B and an immutable sentinel node m, for example in Fig. 7a, x = x,
L = [(4,−), (6,−), (9,−)], N = {a, b, d}, c ∈ B and m = m. The interpretation
of the SLMap region is defined in terms of the index-lists described by the

Abstract Specifications for Concurrent Maps 983

Table 2. Auxiliary predicates.

Predicate Meaning Example in Fig. 7a

node(x, k, v, n) A node-list node at the address x with a
key-value pair (k, v) and its next node n

node(a, 4, , b)

index(x, p, d, r) An index-list node at the address x with
three pointers, a node-pointer p, a
down-pointer d and a right-pointer r

index(f, a, i, h)

head(x, l, p, d, r) A head node at level l at the address x
with p, d and r having the same meaning
as in index

head(l2, 2, m, l1, g)

marker(x, n) A marker node at the address x and its
next node n

marker(z, d)

x �∗ y The node x reaches y in the same layer a �∗ c

x �∗ N The node x reaches one node in the set N m � {a, b}

predicate iLists and the node-list described by the predicate nList:

I(SLMapr(x, M, N , B, m))
def
= ∃h. x.head �→ h ∗ iLists(h, m, N , B) ∗ nList(m, M, N , B)

where the .head denotes the offset 0.
The predicate iLists describes the index-lists and it is defined as follows:

P ∈ (Loc × Loc∗)∗

iLists(h, m, N , B) def
= ∃P, H. P ↓1⊆ N B ∧ wellForm(P) ∧ rows(m, H ++ [h], P, l)

where ↓i denotes the i -th projection and ++ denotes list concatenation. The P is
a list of tuples. For each tuple, the first element is an address of a node-list node
and the second element is a list of addresses of index-list nodes. The predicate
wellForm(P) asserts that each tuple in P is a grouped column and the node it
points to in Fig. 7a. It is also asserts that all tuples are in key order. In the
end, this gives us P = [(a, [i, f, e]), (b, [k, g, j]), (c, [n]), (d, [o, h])] in Fig. 7a. The
predicate rows describes the concrete heap structure of all index-lists. Note that
TaDA is intuitionistic logic, so P ∧ Q can assert overlapping resources.

The predicate wellForm and an auxiliary predicate chain are defined as
follows:

wellForm(P)
def
= P = [] ∨ ∃p, k, I, i, I′, P ′.
(P = [(p, D)] ++ P ′ ∧ wellForm(P ′) ∧ node(p, k, ,) ∧ chain(p, d, D′) ∧∧

p′∈P′↓1

(∃k′. node(p′, k′, ,) ∧ k < k′) ∧ D = D′ ++ [d]

)

chain(p, d, D)
def
= (D = [] ∧ d = 0) ∨

(∃d′, D′. D = D′ ++ [d′] ∧ index(d, p, d′,) ∗ chain(p, d′, D′))

where
∧

denotes iteration of conjunct. The predicate wellForm describes that the
order of the tuples in the list P is the order of the first elements, by asserting
that the key of the node p smaller than others in P ′ (the first conjunct in the

984 S. Xiong et al.

third line). The predicate chain asserts that the second element of each tuple in
P, denoted by D, represents a linked list of index-list nodes that point to the
same node-list node p.

The predicate rows describes the index-list at level l and all below:

rows(m, H, P, l)
def
= (l = 0 ∧ H(0) = 0) ∨(∃i, I. head(H(l), l, m, H(l − 1), i) ∗

P ↓2↓l= [i] ++ I ∧ iTail(i, I) ∗ rows(m, H, P, l − 1)

)

iTail(i, I) def
= (I = ∅ ∧ i = 0) ∨ ∃i′, i′′, I′.

(I = [i′] ++ I′ ∧ i′′ ∈ I {0} ∧ index(i, , , i′′) ∗ iTail(i′, I′))

where H represents a list of head nodes, and H(l) denotes the l -th element of the
list. An index-list is a linked list that starts with a head node followed by the rest
index-list nodes. Note that the head node, described by the predicate head, must
point to the sentinel node m. The notation P ↓2 denotes the second projection
of P that is a list in which each element is a list of index-list nodes. Therefore,
P ↓2↓l denotes a list of index-nodes at level l, e.g. in Fig. 7a, P ↓2↓2= [f, g, h].
Due to the situation shown in Fig. 7a, the predicate iTail asserts a quasi list
starting with i, where each node points to an index-list note with larger key, but
this quasi list is not strictly ordered.

The predicate nList describes the node-list of the skiplist:

nList(m, M, N , B) def
= ∃n, L. node(m, , , n) ∗ toList(M) = [n] ++ L ∧

nTail(n, L, N , B) ∧ ∧
n∈B

(n �∗ N {0})

toList(M)
def
=

⎧
⎨

⎩

[] M = ∅
[(k, M(k))] ++ toList(M \ {(k, M(k))}) otherwise

where k = min(dom(M))

The node-list starts with the sentinel node m, followed by the rest described by
the predicate nTail. Note that the tail also includes some dead nodes and markers
pending unlinking. The function toList converts the partial function from keys
to values, to a list of key-value pairs in the order of ascending keys. The last
conjunct of the predicate nList asserts that all dead nodes must eventually reach
a live node or null. The predicate nTail is defined as follows:

nTail(n, L, N , B) def
= (N = ∅ ∧ L = [] ∧ n = 0) ∨(∃n′ ∈ N B, k, v, L′. n ∈ N ∧ L = [k, v] ++ L′ ∧

node(n, k, v, n′) ∗ nTail(n′, L′, N \ {n}, B)
)

∨
(∃n′ ∈ N B, . n ∈ B ∧ nTail(n′, L, N , B \ {n}) ∗
(∃n′′. node(n, , 0, n′) ∨ (node(n, , 0, n′′) ∗ marker(n′′, n′)))

)

where the second disjunct asserts a live node and the third disjunct asserts a
dead node and a potentially marker.

Finally, The predicate node(x, k, v, n) asserts a node-list node at the address
x that stores the key-value pair (k, v) and the next-pointer n. The predicate
marker(x, n) asserts a marker. They are interpreted as concrete heap cells:

node(x, k, v, n)
def
= x.key �→ k ∗ x.value �→ v ∗ x.next �→ n

marker(x, n)
def
= node(x, , x, n)

Abstract Specifications for Concurrent Maps 985

where the field notation E.field is shorthand for E + offset(field). Here,
offset(key) = 0, offset(value) = 1, and offset(next) = 2.

We associate the SLMap region with a single guard L, with L • L
being undefined. The labelled transition system of the region comprises three
transitions:

L : ∀L, N , B, k, v, v′. (M[k �→ v], N , B) � (M[k �→ v′], N , B)
L : ∀L, N , B, k, v, n. (M, N , B) � (M {(k, v)}, N {n}, B)
L : ∀L, N , B, k, v, n. (M {(k, v)}, N {n}, B) � (M, N , B {n})

The first allows to replace an old value v with a new value v′; the second inserts
a new key-value pair (k, v) and the corresponding new node n; and the third
deletes a key k with the associated value and moves the node n to the dead
nodes set.

Given the new region, guards and transition system, we instantiate the
abstract map predicate and the abstract type:

T1
def= RId × Loc Map((r,m), x,M) def= ∃N ,B.SLMapr(x,M,N ,B,m) ∗ [L]r

Code of the put Operation. The implementation, shown in Fig. 8, is given
in a simple imperative programming language, following the structure of the
ConcurrentSkiplistMap implementation found in java.util.concurrent
(OpenJDK 8). In the Java implementation, shared fields are declared as either
final field, i.e. immutable field, or volatile field, i.e. no caching or reordering,
so that there is no weak memory behaviour3. In the language we use, the seman-
tics of single heap cell read and write are equivalent to those of volatile fields
in Java. We use the outer, inner and continue variables to emulate the control
flow commands break and continue. We introduce variables to record interme-
diate values to eliminate the side-effects of boolean expressions. This algorithm
assumes a garbage-collector as it only unlinks dead nodes.

The put operation has two layer of loops. The inner loop traverses the node-
list until finding a node with the target key k, or the processor where a new
node will be added. If it observes any unexpected state due to the interference
from the environment, for example dead nodes, the inner loop stops and jumps
to the beginning of the outer loop. If a new node has been successfully added,
it jumps to the end outer loop and then adds index-list nodes to preserve the
performance. The code and proofs of buildIndexChain and insertIndexChain
are present in the technical report [29]. These operations, which are opaque to
clients, preserve the invariant of the skiplist.

Proof of the put Operation. We present the sketch proof that put satisfies
the map specification in Fig. 1. A detail version is in the technical report [29]. For
brevity, we use � and ⊥ to denote the boolean value true and false respectively.
We use the predicate flow to describe the control flow within the outer loop.

� ≡ true ⊥ ≡ false flow(c, i) ≡ continue = c ∧ inner = i

3 More detail in JSR 133 (Java Memory Model).

986 S. Xiong et al.

Fig. 8. Skiplist’s put proof.

Abstract Specifications for Concurrent Maps 987

The predicate wkNdReach used in the sketch proof asserts that either x
reaches y, or y is a dead node. Since the algorithm works on three nodes b,
n and f, we use the predicate bnf to describe their reachability relations.

wkNdReach(x, y)
def
= x �∗ y ∨ ((y �∗ N {0}) ∧ y ∈ B)

bnf ≡ wkNdReach(b, n) ∗ wkNdReach(n, f) ∧ (b.key < k ∨ b = m)

The node b is the sentinel node m, or its key is smaller than the target key k.
The predicate restart describes the cases when the algorithm needs to restart:

(a) CAS fails; (b) node n is dead or a marker; (c) node b is dead; (d) n2, which
is the second read of the successor of node b, is inconsistent with n.

restart ≡ cas = ⊥ ∨ n.value = 0 ∨ marker(n,) ∨ b.value = 0 ∨ n �= n2

Additional specifications and proofs of auxiliary operations used in the proof
of put, such as CASValue and findPredecessor, are given in the technical
report [29]. We also prove that the skiplist implementation of the remove oper-
ation satisfies the specification of Fig. 1 in the same report.

5 Related Work

There is much recent work on modular specification of concurrent libraries using
concurrent separation logic [6,16,17,20,26,27]. Here we focus on related work
which uses separation logic to either reason about concurrent Java programs
and java.util.concurrent, or reason about concurrent sets and maps.

Amighi et al. [1] used concurrent separation logic with permissions to reason
about several lock modules in java.util.concurrent and their clients. Their
approach is modular, but is not general enough to prove strong functional prop-
erties about arbitrary clients.

Blom et al. [2] reason about concurrent sets in a Java-like language, using a
proof theory based on concurrent separation logic extended with histories and
permissions. They specify and prove a coarse-grained concurrent set implemen-
tation using a specification that exposes histories to the client. The histories
allow them to prove properties about client in a modular way. However, the con-
current set specification abstracts the values in the set, losing information about
the exact state of the set, which limits its applicability to the clients. There has
been some work on lock-coupling list implementations of concurrent sets, such
as the original work on Concurrent Abstract Predicates reasoning [10,12]. Liang
and Feng [19] and separately O’Hearn et al. [22] have reasoned about Heller’s
lazy set [14], and the latter is not able to reason about clients. Jacobs et al. [16]
has given an atomic specification of a concurrent set using higher-order reason-
ing and proved that a simple course-grained linked-list satisfies the specification.
None of this work is aimed at java.util.concurrent.

In this paper, using TaDA [6], we have specified concurrent maps, have given
modular proofs of functional properties of clients, and have verified the main
operations of the ConcurrentSkiplistMap from java.util.concurrent. The

988 S. Xiong et al.

most challenging part was the verification of the skiplist algorithm, due to its size
and complexity. As far as we know, this is the first formal proof of this algorithm.

In fact, there has been little reasoning with separation logic about concurrent
maps. Da Rocha Pinto et. al. use CAP [10] to develop map specifications that
allow thread-local reasoning combined with races over elements of the data struc-
ture [5]. They prove several map implementations, including Sagiv’s BLink Tree
algorithm [24]. They cannot prove strong functional properties about a client
using the map, e.g. when two threads perform concurrent insert and remove
operations over the same key, they can only conclude the set of possibilities at
the end of the execution. The closest specification to our work is a map speci-
fication using Total-TaDA [8], which was used to verify an implementation of a
map based on a linked list in a total-correctness setting. We improve upon this
specification by moving to a more abstract specification, which was possible due
to the way in which we extended TaDA.

6 Conclusions

We have given an abstract map specification that captures the atomicity
intended in the java.util.concurrent English specification [18]. We have used
it to specify a concurrent set module that makes use of the map internally. We
have shown how to build a key-value specification on top of the map specifi-
cation, to present clients with an alternative view of the data structure, and
demonstrated that these two specifications are equivalent. We have verified a
functional correctness property for a simple producer-consumer client. Lastly,
we have given the first formal proof of the ConcurrentSkipListMap and shown
that it satisfies the atomic map specification.

These results are substantially stronger than related results found in previ-
ous work [1,2,5]. They are possible due to the abstract atomicity given by the
TaDA atomic triples. So far, all of the proofs using TaDA [6] have been done by
hand, but despite this, our examples are comparatively substantial. Indeed, the
verification of the ConcurrentSkipListMap is one of the most complex exam-
ples studied in the literature. This example, we believe, is at the limit of what
is possible to be done with hand-written proofs.

6.1 Future Work

Tool support. We recognise the need for mechanisation and automation in order
to increase the level of confidence in our proofs. We are currently working on
extending Caper [11] for a fragment of TaDA. This will allow us to provide
machine-checked proofs and tackle more modules of the java.util.concurrent
package.

Object-Oriented languages. Another avenue for future work is to adapt TaDA
to handle object-oriented features from Java, such as monitors, inheritance and
interfaces. Our logical abstractions seem particularly well suited to reason about
such programming language features.

Abstract Specifications for Concurrent Maps 989

Acknowledgements. We thank Andrea Cerone, Petar Maksimović, Julian Suther-
land and the anonymous reviewers for useful feedback. This research was supported by
the EPSRC Programme Grants EP/H008373/1 and EP/K008528/1, and the Depart-
ment of Computing in Imperial College London.

References

1. Amighi, A., Blom, S., Huisman, M., Mostowski, W., Zaharieva-Stojanovski, M.:
Formal specifications for java’s synchronisation classes. In: Proceedings of PDP
2014, pp. 725–733 (2014)

2. Blom, S., Huisman, M., Zaharieva-Stojanovski, M.: History-based verification of
functional behaviour of concurrent programs. In: Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9276, pp. 84–98. Springer, Cham (2015). doi:10.1007/
978-3-319-22969-0 6

3. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proceedings of POPL 2005, pp. 259–270 (2005)

4. da Rocha Pinto, P.: Reasoning with time and data abstractions. Ph.D. thesis,
Imperial College London (2017)

5. da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., Wheelhouse,
M.J.: A simple abstraction for complex concurrent indexes. In: Proceedings of
OOPSLA 2011, pp. 845–864 (2011)

6. Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44202-9 9

7. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: Steps in modular speci-
fications for concurrent modules (invited tutorial paper). Electr. Notes. Theor.
Comput. Sci. 319, 3–18 (2015)

8. Rocha Pinto, P., Dinsdale-Young, T., Gardner, P., Sutherland, J.: Modular ter-
mination verification for non-blocking concurrency. In: Thiemann, P. (ed.) ESOP
2016. LNCS, vol. 9632, pp. 176–201. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49498-1 8

9. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL, pp. 287–300 (2013)

10. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 24

11. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper:
automatic verification for fine-grained concurrency. In: Proceedings of ESOP 2017
(2017)

12. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00590-9 26

13. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch, J.
(ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001). doi:10.
1007/3-540-45414-4 21

14. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.:
A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G.,
Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 3–16. Springer,
Heidelberg (2006). doi:10.1007/11795490 3

http://dx.doi.org/10.1007/978-3-319-22969-0_6
http://dx.doi.org/10.1007/978-3-319-22969-0_6
http://dx.doi.org/10.1007/978-3-662-44202-9_9
http://dx.doi.org/10.1007/978-3-662-49498-1_8
http://dx.doi.org/10.1007/978-3-662-49498-1_8
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/978-3-642-00590-9_26
http://dx.doi.org/10.1007/3-540-45414-4_21
http://dx.doi.org/10.1007/3-540-45414-4_21
http://dx.doi.org/10.1007/11795490_3

990 S. Xiong et al.

15. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

16. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: Proceedings of POPL 2011, pp. 271–282 (2011)

17. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L.,
Dreyer, D.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: Proceedings of POPL 2015, pp. 637–650 (2015)

18. Lea, D., et al.: Java specification request 166: Concurrency utilities (2004)
19. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-

tion points. SIGPLAN Not. 48(6), 459–470 (2013)
20. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state

transition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP
2014. LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54833-8 16

21. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1-3), 271–307 (2007)

22. O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying lin-
earizability with hindsight. In: Proceedings of PODC 2010, pp. 85–94 (2010)

23. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33(6), 668–676 (1990)

24. Sagiv, Y.: Concurrent operations on b-trees with overtaking. In: Proceedings of
PODS 1985, pp. 28–37 (1985)

25. Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algo-
rithms with histories and subjectivity. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 333–358. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46669-8 14

26. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In:
Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54833-8 9

27. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In: Proceedings of ICFP 2013, pp. 377–390
(2013)

28. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 18

29. Xiong, S., da Rocha Pinto, P., Ntzik, G., Gardner, P.: Abstract specifications
for concurrent maps (extended version). Technical Report 2017/1, Department of
Computing, Imperial College London (2017). https://www.doc.ic.ac.uk/research/
technicalreports/2017/#1

http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-642-54833-8_16
http://dx.doi.org/10.1007/978-3-662-46669-8_14
http://dx.doi.org/10.1007/978-3-642-54833-8_9
http://dx.doi.org/10.1007/978-3-540-74407-8_18
https://www.doc.ic.ac.uk/research/technicalreports/2017/#1
https://www.doc.ic.ac.uk/research/technicalreports/2017/#1

Author Index

Alpuim, João 1
Ancona, Davide 29
Andersen, Kristoffer Just 420
Atkey, Robert 56

Barthe, Gilles 83
Biewer, Sebastian 83
Birkedal, Lars 420, 696
Bizjak, Aleš 696
Blanchette, Jasmin Christian 111
Bonchi, Filippo 141
Bouajjani, Ahmed 170
Boutillier, Pierre 201
Bouzy, Aymeric 111

Caires, Luís 229
Charguéraud, Arthur 260
Chatterjee, Krishnendu 287
Cobb, Andrew 368
Cotton-Barratt, Conrad 314
Crubillé, Raphaëlle 341
Culpepper, Ryan 368

D’Argenio, Pedro R. 83
da Rocha Pinto, Pedro 420, 964
Dagnino, Francesco 29
Dal Lago, Ugo 341, 393
Dinsdale-Young, Thomas 420
Dodds, Mike 639
Doko, Marko 448
Dreyer, Derek 696
Drossopolou, Sophia 937
Dunfield, Jana 476

Ehrhard, Thomas 201
Eisenbach, Susan 937
Emmi, Michael 170
Enea, Constantin 170

Ferreira, Francisco 504
Finkbeiner, Bernd 83

Gadducci, Fabio 141
Gardner, Philippa 964
Georges, Aina Linn 530
Gibbons, Jeremy 556
Gotsman, Alexey 639
Grellois, Charles 393
Guéneau, Armaël 584

Harper, Robert 909
Hermanns, Holger 83

Jansen, Christina 611
Jourdan, Jacques-Henri 696
Jung, Ralf 696, 909

Katelaan, Jens 611
Khyzha, Artem 639
Kissinger, Aleks 141
Kobayashi, Naoki 831
Kop, Cynthia 668
Kragl, Bernhard 287
Krebbers, Robbert 696
Krivine, Jean 201
Kumar, Ramana 584
Kunčar, Ondřej 724

Lahiri, Shuvendu K. 937
Lämmel, Ralf 750
Leinberger, Martin 750
Lochbihler, Andreas 111

Matheja, Christoph 611
Miquey, Étienne 777
Mishra, Samarth 287
Murawska, Agata 530
Murawski, Andrzej S. 314
Myreen, Magnus O. 584

Noll, Thomas 611
Norrish, Michael 584
Ntzik, Gian 964

Oliveira, Bruno C.d.S. 1
Ong, C.-H. Luke 314
Otis, Shawn 530
Ozkan, Burcu Kulahcioglu 170

Padovani, Luca 804
Parkinson, Matthew 639
Pavlogiannis, Andreas 287
Pérez, Jorge A. 229
Pientka, Brigitte 504, 530
Popescu, Andrei 111, 724
Pottier, François 260

Sato, Ryosuke 831
Shi, Zhiyuan 1
Simonsen, Jakob Grue 668
Sobociński, Paweł 141
Staab, Steffen 750
Staton, Sam 855

Tang, Hao 880
Tasiran, Serdar 170
Tassarotti, Joseph 909
Traytel, Dmitriy 111

Vafeiadis, Viktor 448

Wang, Di 880
Wang, Xiaoyin 880
Wood, Tim 937

Xiong, Shale 964
Xiong, Yingfei 880

Zanasi, Fabio 141
Zhang, Lingming 880
Zhang, Lu 880
Zucca, Elena 29
Zuleger, Florian 611

992 Author Index

	ETAPS Foreword
	Preface
	Organization
	Contents
	Disjoint Polymorphism
	1 Introduction
	2 Overview
	2.1 Intersection Types and the Merge Operator
	2.2 Coherence and Disjointness
	2.3 Parametric Polymorphism
	2.4 Disjoint Polymorphism

	3 Applications
	3.1 Dynamic Mixins
	3.2 Extensible Records

	4 The Fi Calculus
	4.1 Syntax
	4.2 Subtyping
	4.3 Typing

	5 Disjointness
	5.1 Algorithmic Rules for Disjointness
	5.2 Well-Formed Types
	5.3 Bounds of Disjoint Quantification

	6 Semantics, Coherence and Type-Safety
	6.1 Target Language
	6.2 Coercive Subtyping and Coherence
	6.3 Top-Like Types and Their Coercions
	6.4 Elaboration of the Type-System and Coherence

	7 Related Work
	8 Conclusion and Future Work
	References

	Generalizing Inference Systems by Coaxioms
	1 Introduction
	2 Inference Systems with Coaxioms
	3 Bounded Fixed Points
	4 Proof Trees
	5 Reasoning with Coaxioms
	6 Taming Coaxioms: Advanced Examples
	7 Related Work
	8 Conclusion
	References

	Observed Communication Semantics for Classical Processes
	1 Introduction
	1.1 Problems with Wadler's Reduction Semantics for CP
	1.2 A Solution: Observed Communication Semantics
	1.3 Contributions

	2 Observed Communication Semantics for CP
	2.1 Classical Processes
	2.2 Configurations
	2.3 Observations
	2.4 Observed Communication Semantics
	2.5 Observational Equivalence

	3 Denotational Semantics of CP
	3.1 Semantics of Formulas
	3.2 Semantics of Processes
	3.3 Semantics of Configurations
	3.4 More Precise Semantics?

	4 Adequacy
	4.1 Agreeability via -Closed Logical Relations

	5 Observational Equivalences
	6 Related Work
	7 Conclusions and Future Work
	References

	Is Your Software on Dope?
	1 Introduction
	2 Software Doping on Sequential Programs
	3 Software Doping on Reactive Programs
	4 Analysis Through Self-composition
	5 Analysis of Reactive Programs with HyperLTL
	6 Experimental Results
	7 A Comprehensive Characterisation
	8 Related Work
	9 Concluding Remarks
	References

	Friends with Benefits
	1 Introduction
	2 Motivating Examples
	2.1 Coinductive Languages
	2.2 Knuth--Morris--Pratt String Matching
	2.3 The Stern--Brocot Tree
	2.4 Breadth-First Tree Labeling
	2.5 Stream Processors
	2.6 A Calculator
	2.7 Lazy List Filtering
	2.8 Generative Probabilistic Values

	3 The Low Level: Corecursor States
	3.1 Bounded Natural Functors
	3.2 Codatatypes and Primitive Corecursion
	3.3 Corecursion up to Constructors
	3.4 Adding New Friends
	3.5 Merging Corecursion States
	3.6 Type Instantiation
	3.7 Reasoning Principles

	4 The High Level: From Commands to Definitions
	4.1 Defining Corecursive Functions
	4.2 Registering New Friendly Operations

	5 Implementation in Isabelle/HOL
	6 Related Work and Discussion
	References

	Confluence of Graph Rewriting with Interfaces
	1 Introduction
	2 Background
	2.1 DPO Rewriting
	2.2 PROP Rewriting

	3 Confluence for DPO Rewriting with Interfaces
	4 Confluence for PROP Rewriting
	4.1 From PROPs to Frobenius Termgraphs
	4.2 Confluence for Rewriting in S+Frob
	4.3 Confluence for Left-Connected Rewriting in S

	5 Case Study: Non-commutative Bimonoids
	6 Conclusion
	References

	Verifying Robustness of Event-Driven Asynchronous Programs Against Concurrency
	1 Introduction
	2 Motivating Examples
	2.1 A Violation to Event Serializability
	2.2 A Violation to Event Determinism
	2.3 A Robust Program

	3 Programs
	3.1 Asynchronous Event-Driven Programs
	3.2 Multi-thread Asynchronous Semantics
	3.3 Single-Thread Asynchronous Semantics

	4 Robustness of Asynchronous Programs
	5 Conflict Robustness
	5.1 Conflict-Event Serializability
	5.2 Conflict Determinism

	6 Checking Conflict Determinism
	6.1 Simulating Borderline Violations
	6.2 Witnessing Borderline Violations
	6.3 Reduction to the Procedural Semantics

	7 Checking Conflict Robustness
	8 Experimental Evaluation
	8.1 Event-Determinism Experiments
	8.2 Event-Serializability Experiments

	9 Related Work
	References

	Incremental Update for Graph Rewriting
	1 Introduction
	1.1 Combinatorial Models in Systems Biology
	1.2 Rule-Based Modeling
	1.3 Rewrite and Update
	1.4 Outline

	2 Concrete Domain
	2.1 Graphs as Sets
	2.2 Effects
	2.3 The Update Problem

	3 Exploration Domains
	3.1 Observable Witnesses
	3.2 Exploration Boundaries
	3.3 Specifying the Incremental Update Function

	4 Abstraction
	4.1 Graph: a category of graphs
	4.2 Extension and Matching
	4.3 Proof of the Extension Theorem

	5 The Update Algorithm
	5.1 Abstract Effects
	5.2 Extension Basis Synthesis
	5.3 Implementing the Incremental Update Function
	5.4 Correctness Proof

	6 Conclusion
	References

	Linearity, Control Effects, and Behavioral Types
	1 Introduction
	2 The Core Language and Its Type System
	2.1 Reduction Semantics
	2.2 Basic Typing Rules, Congruence Rules, and Reduction Rules
	2.3 Non-determinism and Failure

	3 Main Results
	4 Higher-Order Concurrency, Non Determinism, and Exceptions
	5 Further Related Work
	6 Concluding Remarks
	References

	Temporary Read-Only Permissions for Separation Logic
	1 Introduction
	1.1 Redundancy in Specifications
	1.2 Can ``RO'' Be Interpreted by Macro-Expansion?
	1.3 Towards True Read-Only Permissions

	2 Overview
	2.1 A ``Read-Only'' Modality
	2.2 A Read-Only Frame Rule
	2.3 A Framed Sequencing Rule
	2.4 A New Read Axiom
	2.5 Illustration

	3 Logic
	3.1 Calculus
	3.2 Permissions
	3.3 Reasoning Rules
	3.4 Treatment of Variables and Functions

	4 Model
	4.1 A Model of Permissions
	4.2 A Model of Triples

	5 Related Work
	5.1 The C/C++ ``const'' Modifier
	5.2 The ``Read-Only Frame'' Connective
	5.3 Thoughts About Lexical Scope
	5.4 Fractional Permissions

	6 Potential Applications and Extensions
	6.1 Where Read-Only Permissions Could (or Could Not) Help
	6.2 Parallelism and Concurrency

	7 Conclusion
	References

	Faster Algorithms for Weighted Recursive State Machines
	1 Introduction
	2 Preliminaries
	3 Configuration Distance Algorithm
	3.1 Configuration Automata
	3.2 Algorithm for Finite-Height Semirings

	4 Distance Extraction
	4.1 Distances over General Semirings
	4.2 Distances over Semirings with Small Domain
	4.3 A Speedup for Sparse RSMs

	5 Context-Bounded Reachability in Concurrent Recursive State Machines
	6 Experimental Results
	6.1 A Family of Dense RSMs
	6.2 Boolean Programs from SLAM/SDV
	6.3 Discussion

	7 Related Work
	8 Conclusion
	References

	ML and Extended Branching VASS
	1 Introduction
	2 A Stateful Call-by-Value Functional Language RML
	3 Game Semantics of RML
	4 Visibly Pushdown Class Memory Automata
	5 RMLEBVASS to VPCMA
	6 VPCMA to RMLEBVASS
	7 VPCMA and EBVASS
	7.1 From VPCMA to EBVASS
	7.2 From EBVASS to SVPCMA

	8 Undecidability for unitunit(unitunit) unit
	References

	Metric Reasoning About -Terms: The General Case
	1 Introduction
	2 Metrics and Trivialization, Informally
	3 A Linear Probabilistic -Calculus
	3.1 Some Useful Terminology and Notation
	3.2 Context Distance

	4 On Trivialization
	4.1 Strictly Positive Types
	4.2 Parallel Disjunction

	5 Tuples and Full Abstraction
	5.1 A Labeled Markov Chain over Tuples
	5.2 Distributions as States
	5.3 A Coinductively-Defined Metric
	5.4 Full Abstraction
	5.5 On an Up-to-Context Technique

	6 Probabilistic -Calculi, in Perspective
	6.1 On Stable Fragments of M!
	6.2 Call-by-Name
	6.3 Call-by-Value

	7 Related Work
	8 Conclusions
	References

	Contextual Equivalence for Probabilistic Programs with Continuous Random Variables and Scoring
	1 Introduction
	2 Probabilistic Programming
	3 Measures and Integration
	4 Syntax and Semantics
	4.1 Syntax
	4.2 Evaluation Relation
	4.3 Entropy Space
	4.4 Measure Semantics
	4.5 Digression: Interpretation of Probabilistic Programs
	4.6 Contextual Equivalence

	5 A Logical Relation for Contextual Equivalence
	5.1 Compatibility Lemmas
	5.2 Fundamental Property
	5.3 Soundness

	6 Proving Equivalences
	6.1 Structural Equivalences
	6.2 Deep Equivalences
	6.3 Combining Equivalences

	7 Conclusion
	References

	Probabilistic Termination by Monadic Affine Sized Typing
	1 Introduction
	1.1 Related Works

	2 Why is Monadic Affine Typing Necessary?
	3 A Simple Probabilistic Functional Programming Language
	4 Monadic Affine Sized Typing
	4.1 Affine Simple Types for
	4.2 Monadic Affine Sized Types

	5 Typability Implies Termination: Reducibility Strikes Again
	6 Conclusions and Perspectives
	References

	CAPER
	1 Introduction
	2 Motivating Examples
	2.1 Spin Lock
	2.2 Ticket Lock
	2.3 Stack-Based Bag

	3 Proof System
	3.1 Guards
	3.2 Interference Reasoning
	3.3 Symbolic Execution

	4 Proof Search
	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Tackling Real-Life Relaxed Concurrency with FSL++
	1 Introduction
	2 Atomic Reference Counter
	2.1 The Algorithm
	2.2 Why Is ARC Correct?

	3 Extending FSL
	3.1 FSL Basics
	3.2 Partial Permissions for Non-atomics
	3.3 Compare-and-Swap Rules
	3.4 Ghost State

	4 Verification of ARC
	4.1 Function new
	4.2 Function read
	4.3 Implementing fetch_and_add
	4.4 Function clone
	4.5 Function drop

	5 Discussion
	5.1 The Additional Acyclity Assumption
	5.2 Without the Acyclicity Assumption Ghosts Are Too Strong
	5.3 Deallocation

	6 Related Work
	6.1 Program Logics
	6.2 Other Approaches

	References

	Extensible Datasort Refinements
	1 Introduction
	2 Datasort Refinements
	3 A Type System with Extensible Refinements
	3.1 Syntax
	3.2 Unrefined Types and Signatures
	3.3 Signatures
	3.4 Introduction Form
	3.5 Elimination Form: Case Expressions
	3.6 Typing
	3.7 Subtyping
	3.8 Signature Well-Formedness

	4 Typing Pattern Matching
	4.1 Unrefined Pattern Typing, Match Typing, and Pattern Operations
	4.2 The intersect function

	5 Operational Semantics
	6 Metatheory
	7 Bidirectional Typing
	8 Related Work
	9 Future Work
	References

	Programs Using Syntax with First-Class Binders
	1 Introduction
	2 Main Ideas
	2.1 Example: Removing Syntactic Sugar
	2.2 Finding the Path to a Variable
	2.3 Closure Conversion

	3 Core-ML: A Functional Language with Pattern Matching and Data Types
	4 A Syntactic Framework
	4.1 The Definition of SF
	4.2 Contextual Types

	5 Core-ML with Contextual Types
	5.1 SF Objects as SF Patterns
	5.2 Typing Rules for Core-ML with Contextual Types

	6 Core-ML with GADTs
	7 Deep Embedding of SF into Core-MLgadt
	8 From Core-ML with Contextual Types to Core-MLgadt
	9 A Proof of Concept Implementation
	10 Related Work
	11 Conclusion and Future Work
	References

	LINCX: A Linear Logical Frameworkwith First-Class Contexts
	1 Introduction
	2 Motivating Examples
	2.1 Example: Code Simplification
	2.2 Example: CPS Translation

	3 LINCX: A Linear Logical Framework with First-Class Contexts
	3.1 Syntax of Contextual Linear LF
	3.2 Contexts and Context Joins
	3.3 Typing for Terms and Substitutions
	3.4 Hereditary Substitution
	3.5 Decidability of Type Checking in Contextual Linear LF
	3.6 LINCX's Meta-Language
	3.7 Writing Programs About LINCX Objects

	4 Mechanization of LINCX
	5 Related Work
	6 Conclusion and Future Work
	References

	APLicative Programming with Naperian Functors
	1 Introduction
	1.1 Static Types for Multi-dimensional Arrays
	1.2 Embedding Static Typing
	1.3 The Main Idea
	1.4 Structure of This Paper

	2 Vectors with Bounds Checking
	3 Applicative and Naperian Functors
	4 Folding and Traversing
	5 Multidimensionality
	6 Alignment
	7 Symbolic Transformations
	8 Flat Representation
	9 Conclusions
	9.1 Related Work

	References

	Verified Characteristic Formulae for CakeML
	1 Introduction
	1.1 Background on CF
	1.2 Background on CakeML
	1.3 A Tour of the Material

	2 A Formal Proof of Soundness for Characteristic Formulae
	2.1 Adapting CFML to CakeML
	2.2 Realising CFML Axioms
	2.3 Proving CF Soundness

	3 Sound Extensions of CF for I/O and Exceptions
	3.1 Support for I/O
	3.2 Support for Exceptions

	4 Interoperating with the CakeML Translator
	5 Case Study: A Verified cat Implementation
	6 Discussion of Related Work
	7 Summary
	References

	Unified Reasoning About Robustness Properties of Symbolic-Heap Separation Logic
	1 Introduction
	2 Symbolic Heaps
	3 Heap Automata
	4 A Zoo of Robustness Properties
	4.1 Tracking Equalities and Allocation
	4.2 Satisfiability
	4.3 Establishment
	4.4 Reachability
	4.5 Garbage-Freedom
	4.6 Acyclicity

	5 Implementation
	6 Entailment Checking with Heap Automata
	6.1 Entailment Between Predicate Calls
	6.2 Entailment Between Symbolic Heaps
	6.3 Complexity
	6.4 Expressiveness

	7 Conclusion
	References

	Proving Linearizability Using Partial Orders
	1 Introduction
	2 Linearizability, Abstract Histories and Commitment Points
	3 Running Example: The Time-Stamped Queue
	4 The TS Queue: Informal Development
	5 Programming Language
	6 Logic
	7 The TS Queue: Proof Details
	8 The Optimistic Set: Informal Development
	9 Related Work
	10 Conclusion and Future Work
	References

	The Power of Non-determinism in Higher-Order Implicit Complexity
	1 Introduction
	1.1 Overview and Contributions
	1.2 Overview of the Ideas in the Paper
	1.3 Related Work

	2 A Purely Functional, Non-deterministic, Call-by-Value Programming Language
	2.1 Syntax
	2.2 Typing
	2.3 Semantics

	3 Cons-Free Programs
	4 Turing Machines, Decision Problems and Complexity
	4.1 (Deterministic) Turing Machines
	4.2 Decision Problems
	4.3 Complexity and the EXPTIME Hierarchy
	4.4 Decision Problems and Programs

	5 Deterministic Characterisations
	5.1 Simulating TMs Using Deterministic Cons-Free Programs
	5.2 Simulating Deterministic Cons-Free Programs Using an Algorithm

	6 Non-deterministic Characterisations
	6.1 Simulating TMs Using (Non-deterministic) Cons-Free Programs
	6.2 Simulating Cons-Free Programs Using an Algorithm
	6.3 Correctness proofs of Algorithms 7 and 13

	7 Recovering the EXPTIME hierarchy
	8 Conclusion and Future Work
	References

	The Essence of Higher-Order Concurrent Separation Logic
	1 Introduction
	2 The Iris 3.0 Base Logic
	2.1 Separation Logic
	2.2 Resource Algebras
	2.3 Resource Ownership
	2.4 Resource Updates
	2.5 The Always Modality
	2.6 The Later Modality and Guarded Fixed-Points
	2.7 Timeless Assertions
	2.8 Consistency

	3 Weakest Preconditions
	3.1 Programming Language
	3.2 Proof Rules
	3.3 Definition of Weakest Preconditions

	4 Recovering the Iris Program Logic
	4.1 Dynamic Composable Resources
	4.2 A Registry of Invariants
	4.3 World Satisfaction
	4.4 Fancy Update Modality
	4.5 Weakest Preconditions
	4.6 Adequacy

	5 Paradoxes Involving the ``later'' Modality
	6 Related Work
	7 Conclusion
	References

	Comprehending Isabelle/HOL's Consistency
	1 Introduction
	2 The Isabelle/HOL Logic Recalled
	2.1 HOL Syntax and Deduction
	2.2 The Isabelle/HOL Definitional Mechanisms

	3 New Proof of Consistency
	3.1 HOL with Comprehension (HOLC)
	3.2 Consistency of HOLC
	3.3 Translation of Isabelle/HOL to HOLC

	4 Application: Logical Extensions
	4.1 Two Extensions for Traveling from Types to Sets
	4.2 Consistency of the Extensions

	5 Conclusions and Related Work
	References

	The Essence of Functional Programming on Semantic Data
	1 Introduction
	2 Description Logics
	3 DL in a Nutshell
	3.1 Key Design Principles
	3.2 Example Use Case

	4 Core Language
	5 Type System
	6 Type Soundness
	7 Related Work
	8 Summary and Future Work
	References

	A Classical Sequent Calculus with Dependent Types
	1 Introduction
	1.1 Control Operators and Dependent Types
	1.2 Call-By-Value and Value Restriction
	1.3 A Sequent Calculus Presentation
	1.4 Delimited Continuations and CPS Translation
	1.5 Contributions of the Paper

	2 A Minimal Classical Language
	2.1 A Brief Recap on the -Calculus
	2.2 The Language
	2.3 Reduction Rules
	2.4 Typing Rules
	2.5 Subject Reduction
	2.6 Soundness
	2.7 Toward a Continuation-Passing Style Translation

	3 Extension of the system
	3.1 Limits of the Value Restriction
	3.2 Delimiting the Scope of Dependencies

	4 A Continuation-Passing Style Translation
	4.1 Target Language
	4.2 Translation of the Terms
	4.3 Translation of Types

	5 Embedding in Lepigre's Calculus
	6 Further Extensions
	6.1 Adding Expressiveness
	6.2 Extending the Domain of Terms
	6.3 A Fully Sequent-Style Dependent Calculus

	References

	Context-Free Session Type Inference
	1 Introduction
	2 A Calculus of Functions, Sessions and Resumptions
	3 Type System
	4 Context-Free Session Types in OCaml
	4.1 Basic Setup
	4.2 A Dynamically Checked, Portable Implementation
	4.3 A Statically Checked Implementation
	4.4 Extended Example: Trees over Sessions

	5 Related Work
	References

	Modular Verification of Higher-Order Functional Programs
	1 Introduction
	2 Language
	2.1 Syntax and Semantics
	2.2 Refinement Intersection Types
	2.3 Examples

	3 An Overview of the Method Through an Example
	4 Verification Method
	4.1 typeChecker: Checking type candidate
	4.2 typeSynthesizer: Synthesizing new refinement types
	4.3 Properties of the Method

	5 Experiments
	6 Related Work
	7 Conclusion
	A Definition of typeSynthesizer
	References

	Commutative Semantics for Probabilistic Programming
	1 Introduction
	1.1 A First Introduction to Probabilistic Programming
	1.2 Commutativity and Infinite Measures
	1.3 Commutativity Through s-Finite Kernels

	2 Preliminaries
	2.1 Measures and Kernels
	2.2 s-Finite Measures and Kernels

	3 Semantics of a Probabilistic Programming Language
	3.1 A Typed First Order Probabilistic Programming Language
	3.2 Denotational Semantics

	4 Properties and Examples
	4.1 Examples of Statistical Reasoning
	4.2 Basic Semantic Properties

	5 Remarks About s-Finite Kernels
	5.1 Full Definability
	5.2 Failure of Commutativity in General
	5.3 Variations on s-Finiteness

	6 Concluding Remarks
	6.1 Related Work on Commutativity for Probabilistic Programs
	6.2 Related Work on Commutativity More Generally
	6.3 Summary

	References

	Conditional Dyck-CFL Reachability Analysis for Complete and Efficient Library Summarization
	1 Introduction
	2 Background
	3 Approach
	3.1 Definitions
	3.2 Analyzing Libraries with ConCRA-f
	3.3 Analyzing Clients
	3.4 Soundness
	3.5 Analyzing Libraries with ConCRA-k

	4 Empirical Evaluation
	4.1 Evaluated Analyses
	4.2 Implementation
	4.3 Setup
	4.4 ConCRA-f/ConCRA-k vs. TALCRA
	4.5 ConCRA-f/ConCRA-k vs. CLA
	4.6 Precision

	5 Discussion
	6 Related Work
	6.1 Conditional Analysis
	6.2 CFL Reachability
	6.3 Library Summarization

	7 Conclusion
	References

	A Higher-Order Logic for Concurrent Termination-Preserving Refinement
	1 Introduction
	2 Session-Typed Language and Compiler
	2.1 Source Language
	2.2 Session Type System
	2.3 Compilation
	2.4 Refinement

	3 A Logic for Proving Refinement
	3.1 Refinement as a Hoare Logic
	3.2 Proof of the Example

	4 Soundness of the Logic
	5 Proof of Compiler Correctness
	6 Conclusion and Related Work
	References

	Modular Verification of Procedure Equivalence in the Presence of Memory Allocation
	1 Introduction
	1.1 Example
	1.2 Contributions

	2 Encoding in a Verifier
	2.1 Angelic Allocation
	2.2 Heap Equality
	2.3 Procedure Call

	3 Soundness of RIE
	3.1 Semantics of L
	3.2 Isomorphism
	3.3 Regional Isomorphism
	3.4 Procedure Equivalence
	3.5 Angelic Allocation
	3.6 Mutual Summaries of Equivalent Procedures
	3.7 Soundness of RIE

	4 Discussion
	4.1 Examples
	4.2 Definitions of Isomorphism and Procedure Equivalence
	4.3 Reachability

	5 Related Work and Conclusions
	5.1 Fully Automatic Equivalence Verification Tools
	5.2 Conclusion

	References

	Abstract Specifications for Concurrent Maps
	1 Introduction
	2 Abstract Map Specification
	3 Client Reasoning
	3.1 Concurrent Set
	3.2 Key-Value Specification
	3.3 Producer-Consumer

	4 Implementation: Concurrent Skiplist
	5 Related Work
	6 Conclusions
	6.1 Future Work

	References

	Author Index

