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ETAPS Foreword

Welcome to the proceedings of ETAPS 2017, which was held in Uppsala! It was the
first time ever that ETAPS took place in Scandinavia.

ETAPS 2017 was the 20th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program enables
participation in an exciting event, offering the possibility to meet many researchers
working in different directions in the field and to easily attend talks of different con-
ferences. Before and after the main conference, numerous satellite workshops take
place and attract many researchers from all over the globe.

ETAPS 2017 received 531 submissions in total, 159 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all authors for their interest in
ETAPS, all reviewers for their peer reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2017 was enriched by the unifying invited speakers Kim G. Larsen (Aal-
borg University, Denmark) and Michael Ernst (University of Washington, USA), as
well as the conference-specific invited speakers (FoSSaCS) Joel Ouaknine (MPI-SWS,
Germany, and University of Oxford, UK) and (TACAS) Dino Distefano (Facebook and
Queen Mary University of London, UK). In addition, ETAPS 2017 featured a public
lecture by Serge Abiteboul (Inria and ENS Cachan, France). Invited tutorials were
offered by Véronique Cortier (CNRS research director at Loria, Nancy, France) on
security and Ken McMillan (Microsoft Research Redmond, USA) on compositional
testing. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2017 took place in Uppsala, Sweden, and was organized by the Department
of Information Technology of Uppsala University. It was further supported by the
following associations and societies: ETAPS e.V., EATCS (European Association for
Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). Facebook, Microsoft, Amazon, and the city of Uppsala financially sup-
ported ETAPS 2017. The local organization team consisted of Parosh Aziz Abdulla
(general chair), Wang Yi, Bjorn Victor, Konstantinos Sagonas, Mohamed Faouzi Atig,
Andreina Francisco, Kaj Lampka, Tjark Weber, Yunyun Zhu, and Philipp Riimmer.

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its executive board. The ETAPS Steering Committee
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consists of an executive board, and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The executive board
consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Liittgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Parosh Abdulla (Uppsala), Amal Ahmed (Boston),
Christel Baier (Dresden), David Basin (Zurich), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Giuseppe Castagna (Paris), Tom Crick (Cardiff), Javier Esparza (Munich),
Jan Friso Groote (Eindhoven), Jurriaan Hage (Utrecht), Reiko Heckel (Leicester),
Marieke Huisman (Twente), Panagotios Katsaros (Thessaloniki), Ralf Kiisters (Trier),
Ugo del Lago (Bologna), Kim G. Larsen (Aalborg), Axel Legay (Rennes), Matteo
Maffei (Saarbriicken), Tiziana Margaria (Limerick), Andrzej Murawski (Warwick),
Catuscia Palamidessi (Palaiseau), Julia Rubin (Vancouver), Alessandra Russo
(London), Mark Ryan (Birmingham), Don Sannella (Edinburgh), Andy Schiirr
(Darmstadt), Gabriele Taentzer (Marburg), Igor Walukiewicz (Bordeaux), and Hon-
gseok Yang (Oxford).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. Finally, a big thanks to
Parosh and his local organization team for all their enormous efforts enabling a fantastic
ETAPS in Uppsala!

January 2017 Joost-Pieter Katoen



Preface

This volume contains the papers presented at the 26th European Symposium on Pro-
gramming (ESOP 2017) held at Uppsala, Sweden, April 22-29, 2017. ESOP is one
of the European Joint Conferences on Theory and Practice of Software (ETAPS). It is
devoted to fundamental issues in the specification, design, analysis, and implementa-
tion of programming languages and systems.

The 36 papers in this volume are selected out of 112 submissions based on origi-
nality and quality. Each submission was reviewed by three to six Program Committee
members and external reviewers, and its authors were given a chance to respond to
these reviews through the rebuttal mechanism. All submissions, reviews, and author
responses were considered during the extensive online discussions, which identified
64 submissions to be discussed further at the physical Program Committee meeting,
which was held at Oxford during December 15-16, 2016. At the meeting, the Program
Committee members compared the 64 submissions and made the final selection of
36 papers. For most of the other unselected 28 submissions, the Program Committee
members added summaries of discussions at the meeting to their reviews, so as to help
the authors understand decisions. The overall quality of the submissions was very high,
and many good papers had to be rejected because of the strict limit on the number of
papers to be presented at the conference.

The papers in the volume cover traditional as well as emerging topics in pro-
gramming languages. Their topics are: semantic foundation and type system for
probabilistic programming; techniques for verifying concurrent or higher-order pro-
grams; programming language for arrays or Web data; program analysis and verifi-
cation of non-standard program properties; foundation and application of interactive
theorem proving; graph rewriting; separation logic; session type; type theory; and
implicit computational complexity.

I want to thank the authors who submitted papers for consideration, and the
members of the Program Committee, who tried hard to come up with useful feedback
and to reach fair decisions on the submissions. Without the help of the external
reviewers, the Program Committee would not have been able to evaluate all the sub-
missions. I am grateful to the past ESOP PC chairs and particularly to Giuseppe
Castagna, who helped me to handle many organizational matters. I would like to thank
the ETAPS 2017 general chair, Parosh Aziz Abdulla, and his support staff for their
assistance, and the ETAPS Steering Committee and particularly its chair, Joost-Pieter
Katoen, for their amazing work in organizing this big joint conference. EasyChair was
used to handle the submissions, to carry out the online discussions, and to prepare these
proceedings. Finally, I want to thank Microsoft Research for sponsoring the physical
Program Committee meeting, and Junghun Yoo, Jayne Bullock, and Oxford CS staff
for helping me to organize this meeting.

January 2017 Hongseok Yang
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Disjoint Polymorphism

Joao Alpuim®™Y, Bruno C.d.S. Oliveira, and Zhiyuan Shi

The University of Hong Kong, Pokfulam, Hong Kong
{alpuim,bruno,zyshi}@cs.hku.hk

Abstract. The combination of intersection types, a merge operator and
parametric polymorphism enables important applications for program-
ming. However, such combination makes it hard to achieve the desirable
property of a coherent semantics: all valid reductions for the same expres-
sion should have the same value. Recent work proposed disjoint inter-
sections types as a means to ensure coherence in a simply typed setting.
However, the addition of parametric polymorphism was not studied. This
paper presents Fi: a calculus with disjoint intersection types, a variant
of parametric polymorphism and a merge operator. F; is both type-safe
and coherent. The key difficult occurs in an intersection type, it is not
statically known whether the instantiated type will be disjoint to other
components of the intersection. To address this problem we propose dis-
joint polymorphism: a constrained form of parametric polymorphism,
which allows disjointness constraints for type variables. With disjoint
polymorphism the calculus remains very flexible in terms of programs
that can be written, while retaining coherence.

1 Introduction

Intersection types [20,43] are a popular language feature for modern languages,
such as Microsoft’s TypeScript [4], Redhat’s Ceylon [1], Facebook’s Flow [3]
and Scala [37]. In those languages a typical use of intersection types, which has
been known for a long time [19], is to model the subtyping aspects of OO-style
multiple inheritance. For example, the following Scala declaration:

class A extends B with C

says that the class A implements both B and C. The fact that A implements two
interfaces/traits is captured by an intersection type between B and C (denoted
in Scala by B with C). Unlike a language like Java, where implements (which
plays a similar role to with) would be a mere keyword, in Scala intersection
types are first class. For example, it is possible to define functions such as:

def narrow(x : B with C) : B = x

taking an argument with an intersection type B with C.

The existence of first-class intersections has led to the discovery of other
interesting applications of intersection types. For example, TypeScript’s docu-
mentation motivates intersection types' as follows:

L https:/ /www.typescriptlang.org/docs/handbook /advanced-types.html.

© Springer-Verlag GmbH Germany 2017
H. Yang (Ed.): ESOP 2017, LNCS 10201, pp. 1-28, 2017.
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You will mostly see intersection types used for mizins and other concepts
that don’t fit in the classic object-oriented mold. (There are a lot of these
in JavaScript!)

Two points are worth emphasizing. Firstly, intersection types are being used
to model concepts that are not like the classical (class-based) object-oriented
programming. Indeed, being a prototype-based language, JavaScript has a much
more dynamic notion of object composition compared to class-based languages:
objects are composed at run-time, and their types are not necessarily statically
known. Secondly, the use of intersection types in TypeScript is inspired by com-
mon programming patterns in the (dynamically typed) JavaScript. This hints
that intersection types are useful to capture certain programming patterns that
are out-of-reach for more conventional type systems without intersection types.

Central to TypeScript’s use of intersection types for modelling such a
dynamic form of mixins is the function:

function extend<T, U>(first: T, second: U) : T & U {...}

The name extend is given as an analogy to the extends keyword commonly used
in OO languages like Java. The function takes two objects (first and second)
and produces an object with the intersection of the types of the original objects.
The implementation of extend relies on low-level (and type-unsafe) features of
JavaScript. When a method is invoked on the new object resulting from the
application of extend, the new object tries to use the first object to answer
the method call and, if the method invocation fails, it then uses the second
object to answer the method call.

The extend function is essentially an encoding of the merge operator. The
merge operator is used on some calculi [17,24,38,47,48] as an introduction form
for intersection types. Similar encodings to those in TypeScript have been pro-
posed for Scala to enable applications where the merge operator also plays a
fundamental role [39,46]. Unfortunately, the merge operator is not directly sup-
ported by TypeScript, Scala, Ceylon or Flow. There are two possible reasons for
such lack of support. One reason is simply that the merge operator is not well-
known: many calculi with intersection types in the literature do not have explicit
introduction forms for intersection types. The other reason is that, while pow-
erful, the merge operator is known to introduce (in)coherence problems [24,47].
If care is not taken, certain programs using the merge operator do not have a
unique semantics, which significantly complicates reasoning about programs.

Solutions to the problem of coherence in the presence of a merge operator
exist for simply typed calculi [17,38,47,48], but no prior work addresses poly-
morphism. Most recently, we proposed using disjoint intersection types [38] to
guarantee coherence in A;: a simply typed calculus with intersection types and
a merge operator. The key idea is to allow only disjoint types in intersections.
If two types are disjoint then there is no ambiguity in selecting a value of the
appropriate type from an intersection, guaranteeing coherence.

Combining parametric polymorphism with disjoint intersection types, while
retaining enough flexibility for practical applications, is non-trivial. The key issue



Disjoint Polymorphism 3

is that when a type variable occurs in an intersection type it is not statically
known whether the instantiated types will be disjoint to other components of
the intersection. A naive way to add polymorphism is to forbid type variables in
intersections, since they may be instantiated with a type which is not disjoint
to other types in an intersection. Unfortunately this is too conservative and
prevents many useful programs, including the extend function, which uses an
intersection of two type variables T and U.

This paper presents Fi: a core calculus with disjoint intersection types, a
variant of parametric polymorphism and a merge operator. The key innovation
in the calculus is disjoint polymorphism: a constrained form of parametric poly-
morphism, which allows programmers to specify disjointness constraints for type
variables. With disjoint polymorphism the calculus remains very flexible in terms
of programs that can be written with intersection types, while retaining coher-
ence. In F; the extend function is implemented as follows:

let extend T (U * T) (first : T, second : U) : T & U = first ,, second

From the typing point of view, the difference between extend in TypeScript and
F; is that the type variable U now has a disjointness constraint. The notation
U * T means that the type variable U can be instantiated to any types that
is disjoint to the type T. Unlike TypeScript, the definition of extend is trivial,
type-safe and guarantees coherence by using the built-in merge operator (, ,).

The applicability of F; is illustrated with examples using extend ported from
TypeScript, and various operations on polymorphic extensible records [29,31,
34]. The operations on polymorphic extensible records show that F; can encode
various operations of row types [52]. However, in contrast to various existing
proposals for row types and extensible records, F; supports general intersections
and not just record operations.

F; and the proofs of coherence and type-safety are formalized in the Coq the-
orem prover [2]. The proofs are complete except for a minor (and trivially true)
variable renaming lemma used to prove the soundness between two subtyping
relations used in the formalization. The problem arizes from the combination of
the locally nameless representation of binding [7] and existential quantification,
which prevents a Coq proof for that lemma.

In summary, the contributions of this paper are:

— Disjoint Polymorphism: A novel form of universal quantification where
type variables can have disjointness constraints. Disjoint polymorphism
enables a flexible combination of intersection types, the merge operator and
parametric polymorphism.

— Coq Formalization of F; and Proof of Coherence: An elaboration
semantics of System F; into System F is given. Type-soundness and coher-
ence are proved in Coq. The proofs for these properties and all other
lemmata found in this paper are available at: https://github.com/jalpuim/
disjoint-polymorphism.

— Applications: We show how F; provides basic support for dynamic mixins
and various operations on polymorphic extensible records.
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2 Overview

This section introduces F; and its support for intersection types, parametric poly-
morphism and the merge operator. It then discusses the issue of coherence and
shows how the notion of disjoint intersection types and disjoint quantification
achieves a coherent semantics. This section uses some syntactic sugar, as well
as standard programming language features, to illustrate the various concepts
in F;. Although the minimal core language that we formalize in Sect. 4 does not
present all such features and syntactic sugar, these are trivial to add.

2.1 Intersection Types and the Merge Operator

Intersection Types. The intersection of type A and B (denoted by A & B in F;)
contains exactly those values which can be used as both values of type A and of
type B. For instance, consider the following program in F;:

let x : Int & Bool = ... in —— definition omitted
let succ (y : Int) : Int = y+1 in
let not (y : Bool) : Bool = if y then False else True in (succ x, not x)

If a value x has type Int & Bool then x can be used anywhere where either a
value of type Int or a value of type Bool is expected. This means that, in the
program above the functions succ and not — simple functions on integers and
booleans, respectively — both accept x as an argument.

Merge Operator. The previous program deliberately omitted the introduction
of values of an intersection type. There are many variants of intersection types
in the literature. Our work follows a particular formulation, where intersection
types are introduced by a merge operator [17,24,38,47,48]. As Dunfield [24] has
argued a merge operator adds considerable expressiveness to a calculus. The
merge operator allows two values to be merged in a single intersection type. For
example, an implementation of x in Fy is 1, , True. Following Dunfield’s notation
the merge of vi and v; is denoted by vq,,vs.

2.2 Coherence and Disjointness

Coherence is a desirable property for a semantics. A semantics is coherent if any
valid program has exactly one meaning [47] (that is, the semantics is not ambigu-
ous). Unfortunately the implicit nature of elimination for intersection types built
with a merge operator can lead to incoherence. This is due to intersections with
overlapping types, as in Int&Int. The result of the program ((1,,2) : Int)
can be either 1 or 2, depending on the implementation of the language.

Disjoint Intersection Types. One option to restore coherence is to reject pro-
grams which may have multiple meanings. The A; calculus [38] — a simply-typed
calculus with intersection types and a merge operator — solves this problem
by using the concept of disjoint intersections. The incoherence problem with the
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expression 1,2 happens because there are two overlapping integers in the merge.
Generally speaking, if both terms can be assigned some type C then both of them
can be chosen as the meaning of the merge, which in its turn leads to multiple
meanings of a term. Thus a natural option is to forbid such overlapping values
of the same type in a merge. In A; intersections such as Int&Int are forbidden,
since the types in the intersection overlap (i.e. they are not disjoint). However
an intersection such as Char&Int is ok because the set of characters and integers
are disjoint to each other.

2.3 Parametric Polymorphism

Unfortunately, combining parametric polymorphism with disjoint intersection
types is non-trivial. Consider the following program (uppercase Latin letters
denote type variables):

let merge3 A (x : A) : A & Int = x,,3 in

The merge3 function takes an argument x of some type (A) and merges x with
3. Thus the return type of the program is A & Int. merge3 is unproblematic for
many possible instantiations of A. However, if merge3 instantiates A with a type
that overlaps (i.e. is not disjoint) with Int, then incoherence may happen. For
example:

merge3 Int 2

can evaluate to both 2 or 3.

Forbidding Type Variables in Intersections. A naive way to ensure that only
programs with disjoint types are accepted is simply to forbid type variables in
intersections. That is, an intersection type such as Char&Int would be accepted,
but an intersection such as A & Int (where A is some type variable) would be
rejected. The reasoning behind this design is that type variables can be instan-
tiated to any types, including those already in the intersection. Thus forbidding
type variables in the intersection will prevent invalid intersections arising from
instantiations with overlapping types. Such design does guarantee coherence and
would prevent merge3 from type-checking. Unfortunately the big drawback is
that the design is too conservative and many other (useful) programs would be
rejected. In particular, the extend function from Sect. 1 would also be rejected.

Other Approaches. Another option to mitigate the issues of incoherence, without
the use of disjoint intersection types, is to allow for a biased choice: multiple val-
ues of the same type may exist in an intersection, but an implementation gives
preference to one of them. The encodings of merge operators in TypeScript and
Scala [39,46] use such an approach. A first problem with this approach, which has
already been pointed out by Dunfield [24], is that the choice of the correspond-
ing value is tied up to a particular choice in the implementation. In other words
incoherence still exists at the semantic level, but the implementation makes it



6 J. Alpuim et al.

predictable which overlapping value will be chosen. From the theoretical point-
of-view it would be much better to have a clear, coherent semantics, which is
independent from concrete implementations. Another problem is that the inter-
action between biased choice and polymorphism can lead to counter-intuitive
programs, since instantiation of type-variables affects the type-directed lookup
of a value in an intersection.

2.4 Disjoint Polymorphism

To avoid being overly conservative, while still retaining coherence in the pres-
ence of parametric polymorphism and intersection types, F; uses disjoint poly-
morphism. Inspired by bounded quantification [14], where a type variable is
constrained by a type bound, disjoint polymorphism allows type variables to be
constrained so that they are disjoint to some given types.

With disjoint quantification a variant of the program merge3, which is
accepted by Fy, is written as:

let merge3 (A * Int) (x : A) : A & Int = x,,3 in

In this variant the type A can be instantiated to any types disjoint to Int. Such
restriction is expressed by the notation A * Int, where the left-side of * denotes
the type variable being declared (A), and the right-side denotes the disjointness
constraint (Int). For example,

merge3 Bool True

is accepted. However, instantiating A with Int fails to type-check.

Multiple Constraints. Disjoint quantification allows multiple constraints. For
example, the following variant of merge3 has an additional boolean in the merge:

let merge3b (A * Int & Bool) (x : A) : A & Int & Bool = x,,3,,True in

Here the type variable A needs to be disjoint to both Int and Bool. In F; such
constraint is specified using an intersection type Int & Bool. In general, multiple
constraints are specified with an intersection of all required constraints.

Type Variable Constraints. Disjoint quantification also allows type variables to
be disjoint to previously defined type variables. For example, the following pro-
gram is accepted by Fi:

let fst A (B * A) (x: A&B) : A=xin ...

The program has two type variables A and B. A is unconstrained and can be
instantiated with any type. However, the type variable B can only be instantiated
with types that are disjoint to A. The constraint on B ensures that the intersection
type A & B is disjoint for all valid instantiations of A and B. In other words, only
coherent uses of £st will be accepted. For example, the following use of fst:

fst Int Char (1,,’c’)
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is accepted since Int and Char are disjoint, thus satisfying the constraint on the
second type parameter of fst. Furthermore, problematic uses of fst, such as:

fst Int Int (1,,2)

are rejected because Int is not disjoint with Int, thus failing to satisfy the
disjointness constraint on the second type parameter of fst.

Empty Constraint. The type variable A in the fst function has no constraint.
In F; this actually means that A should be associated with the empty constraint,
which raises the question: which type should be used to represent such empty
constraint? Or, in other words, which type is disjoint to every other type? It
is obvious that this type should be one of the bounds of the subtyping lattice:
either L or T. The essential intuition here is that the more specific a type in the
subtyping relation is, the less types exist that are disjoint to it. For example,
Int is disjoint to all types except the n-ary intersections that contain Int, and
1; while Int&Char is disjoint to all types that do not contain Int or Char, and
L. This reasoning that T should be treated as the empty constraint. Indeed, in
Fi, a single type variable A is only syntactic sugar for A * T.

3 Applications

F; is illustrated with two applications. The first application shows how to mimic
some of TypeScript’s examples of dynamic mixins in F;. The second application
shows how F; enables a powerful form of polymorphic extensible records.

3.1 Dynamic Mixins

TypeScript is a language that adds static type checking to JavaScript. Amongst
numerous static typing constructs, TypeScript supports a form of intersection
types, without a merge operator. However, it is possible to define a function
extend that mimics the merge operator:

function extend<T, U>(first: T, second: U): T & U {
let result = <T & U>{};
for (let id in first) {
(<any>result) [id] = (<any>first) [id];
}
for (let id in second) {
if (!result.hasOwnProperty(id)) {
(<any>result) [id] = (<any>second) [id];
}
}
return result;
}
class Person { constructor(public name : string, public male : boolean) {
3
interface Loggable { log() : void; }
class ConsolelLogger implements Loggable { log() {...} }
var jim = extend(new Person("Jim",true), new ConsoleLogger());
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var n = jim.name;
jim.log();

In this example, taken from TypeScript’s documentation?, an extend func-
tion is defined for mixin composition. Two classes Person and ConsoleLogger
are also defined. Two instances of those classes are then composed in a variable
jim with the type of the intersection of both using extend. It is type-safe to
access both the properties from Person and ConsoleLogger in the object jim.

TypeScript’s implementation of extend relies on a biased choice. The func-
tion starts by creating a variable result with the type of the intersection. It then
iterates through first’s properties and copies them to result. Next, it iterates
through second’s properties but it only copies the properties that result does
not possess yet (i.e. the ones present in first). This means that the implemen-
tation is left-biased, as the properties of left type of the intersection are chosen
in favor of the ones in the right. However, in TypeScript this may be a cause of
severe problems since that, at the time of writing, intersections at type-level are
right-biased! For example, the following code is well-typed:

class Dog { constructor(public name : string, public male : string) { } }

var fool : Dog & Person = extend(new Dog("Pluto","yes"),new
Person("Arnold",true));

boolean b = fool.male; /* Undetected type-error here! */

There are a few problems here. Firstly both Dog and Person contain a name field,
and the use of extend will favour the name field in the first object. This could
be surprising for someone unfamiliar with the semantics of extend and, more
importantly, it could easily allow unintended name clashes to go undetected.
Secondly, note how fool.male is statically bound to a variable of type boolean
but, at run-time, it will contain a value of type String! Thus the example shows
some run-time type errors can still occur when using extend.

Other problematic issues regarding the semantics of intersection types can
include the order of the types in an intersection, or even intersections includ-
ing repeated types. This motivates the need to define a clear meaning for the
practical application of intersection types.

Dynamic Mizins in Fi. In F;, the merge operator is built-in. Thus extend is
simply defined as follows:

let extend T (U * T) (first : T, second : U) : T & U = first ,, second in

The disjointness constraint on U ensures that no conflicts (such as duplicated
fields of the same type) exists when merging the two objects. In practice this
approach is quite similar to trait-based OO approaches [50]. If conflicts exist
when two objects are composed, then they have to be resolved manually (by
dropping fields from some object, for example). Moreover if no existing imple-
mentation can be directly reused, a new one must be provided via record exten-
sion, analogously to standard method overriding in OO languages.

2 We have added the field male to the class Person.
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For the previous TypeScript examples, assuming a straightforward transla-
tion from objects to (polymorphic) records, then the composition of person and
consolelLogger is well-typed in Fy:

type Person = {name : String} & {male : Booll};
type Loggable = {log : T — T};

let person (n : String) (s : Bool) : Person = {name = n} ,, {male = s} in
let consolelLogger : Loggable = {log = ...} in

let jim = extend Person Loggable (person "Jim" true) consoleLogger in
let n = jim.name in

jim.log T

However, the intersection Dog & Person is not accepted. This is due to both
types sharing a field with the same name (name) and the same type (String).
Note that the name clash between male fields (which have different types) does
not impose any problem in this example: F; allows and keeps duplicated fields
whose types are disjoint. This feature of F; is further illustrated next.

3.2 Extensible Records

Fi can encode polymorphic extensible records. Describing and implementing
records within programming languages is certainly not novel and has been exten-
sively studied in the past, including systems with row types [52,53]; predicates
[28-30]; flags [45]; conditional constraints [42]; cases [10]; amongst others. How-
ever, while most systems have non-trivial built-in constructs to model various
aspects of records, F; specializes the more general notion of intersection types to
encode complex records.

Records and Record Operations in F;i. Systems with records usually rely on 3
basic operations: selection, restriction and extension/concatenation. Selection
and concatenation (via the merge operator) are built-in in the semantics of F;.
Merges in F; can be viewed as a generalization of record concatenation. In Fy,
following well-known encodings of multi-field records in systems with intersection
types and a merge operator [47,48], there are only three rather simple constructs
for records: (1) single field record types; (2) single field records; (3) field accessors.
Multi-field records in F; are encoded with intersections and merges of single field
records. An example is already illustrated in Sect. 3.1. The record type Person is
the intersection of two single field record types. The record person "Jim" true
is built with a merge of two single field records. Finally, jim.name and jim.log
illustrates the use of field accessors. Note how, through the use of subtyping,
accessors will accept any intersection type that contains the single record with
the corresponding field. This resembles systems with record subtyping [15,41].

Restriction via Subtyping. In contrast to most record systems, restriction is not
directly embedded in F;. Instead, F; uses subtyping for restriction:

let remove (x : {age : Int} & {name : String}) : {name : String} = x in

The function remove drops the field age from the record x.
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Polymorphic FExtensible Records. Records in F; can have polymorphic fields,
and disjointness enables encoding various operations expressible in systems with
polymorphic records. For example, the following variant of remove

let remove A (B * {1 : A}) (x : {1 :A2}&B) : B=xin...

takes a value x which contains a record of type 1 : A, as well as some extra
information of type B. The disjointness constraint on B ensures that values of
type B do not contain a record with type 1 : A. This example shows that one
can use disjoint quantification to express negative field information, which is very
close to the system described by Harper and Pierce [29]. Note, however, that F;
requires explicitly stating the type of field in the constraint, whereas systems
with a lacks (field) predicate only require the name of the field. The generality
of disjoint intersection types, which allows one to encode record types, is exactly
what forces us to add this extra type in the constraint. However, there is a slight
gain with Fi’s approach: remove allows B to contain fields with label 1, as long
as the field types are disjoint to A. Such fine-grained constraint is not possible
to express only with a lacks predicate.

Ezpressibility. As noted by Leijen [34], systems can typically be categorized into
two distinct groups in what concerns extension: strict and free. The former does
not allow field overriding when extending a record (i.e. one can only extend a
record with a field that is not present in it); while the latter does account for
field overriding. Our system can be seen as hybrid of these two kinds of systems.

With lightweight extensible records [31] — a system with strict extension — an
example of a function that uses record types is the following:

let avg, (R\x, R\y) => (r : {R | x:Int, y:Int}) = (r.x+r.y)/2

The type signature says that any record r, containing fields x and y and some
more information R (which lacks both fields x and y), can be accepted returning
an integer. Note how the bounded polymorphism is essential to ensure that R
does not contain x nor y.

On the other hand, in Leijen’s [34] system with free extension the more
general program would be accepted:

let avg, R (r : {x:Int, y:Int | R}) = (r.x+r.y)/2

In this case, if R contains either field x or field y, they would be shadowed by the

labels present in the type signature. In other words, in a record with multiple x

fields, the most recent (i.e. left-most) is used in any function which accesses x.
In F; the following program can written instead:

let avg; (R*{x:Int}&{y:Int}) (r : {x:Int}&{y:Int}&R) = (r.x+r.y)/2

Since F; accepts duplicated fields as long as the types of the overlapping fields
are disjoint, more inputs are accepted by this function than in the first system.
However, since Leijen’s system accepts duplicated fields even when types are
overlapping, avgs accepts less types than avg,. Another major difference between
F; and the two other mentioned systems, is the ability to combine records with
arbitrary types. Our system does not account for well-formedness of record types
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as the other two systems do (i.e. using a special row kind), since our encoding
of records piggybacks on the more general notion of disjoint intersection types.

4 The F; Calculus

This section presents the syntax, subtyping, and typing of Fi: a calculus with
intersection types, parametric polymorphism, records and a merge operator. This
calculus is an extension of the A; calculus [38], which is itself inspired by Dun-
field’s calculus [24]. F; extends A; with (disjoint) polymorphism.

4.1 Syntax

The syntax of F; (with the differences to A; highlighted in gray) is:

Types A,B:=T|Int|A —>B|A&B| o | V(xxA).B | {l: A}
Terms e ==T|i|x|Ax.e|lejezxler,,ez| AlaxA).e|eA|{l=c¢e}]|el
Contexts ' =:=-|T, a*x A |T,x:A

Types. Metavariables A, B range over types. Types include all constructs in Ai:
a top type T; the type of integers Int; function types A — B; and intersection
types A&B. The main novelty are two standard constructs of System F used to
support polymorphism: type variables o and disjoint (universal) quantification
V(axA). B. Unlike traditional universal quantification, the disjoint quantification
includes a disjointness constraint associated to a type variable «. Finally, F; also
includes singleton record types, which consist of a label 1 and an associated type
A. We will use [« := A] B to denote the capture-avoiding substitution of A for
« inside B and ftv(-) for sets of free type variables.

Terms. Metavariables e range over terms. Terms include all constructs in A;: a
canonical top value T; integer literals 1; variables x, lambda abstractions (Ax. e);
applications (e; ez); and the merge of terms e; and e, denoted as el,,e2.
Terms are extended with two standard constructs in System F: abstraction of
type variables over terms A(a*A). e; and application of terms to types e A. The
former also includes an extra disjointness constraint tied to the type variable
«, due to disjoint quantification. Singleton records consists of a label 1 and an
associated term e. Finally, the accessor for a label 1 in term e is denoted as e.l.

Contexts. Typing contexts I' track bound type variables o with disjointness
constraints A; and variables x with their type A. We will use [« := A] T" to
denote the capture-avoiding substitution of A for « in the co-domain of I' where
the domain is a type variable (i.e. all disjointness constraints). Throughout this
paper, we will assume that all contexts are well-formed. Importantly, besides
usual well-formedness conditions, in well-formed contexts type variables must
not appear free within its own disjointness constraint.
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Fig. 1. Subtyping rules of F;.

Syntactic Sugar. In F; we may quantify a type variable and omit its constraint.
This means that its constraint is T. For example, the function type Vo.oc — o is
syntactic sugar for V(oo x T). ¢ — o This is discussed in more detail in Sect. 6.

4.2 Subtyping

The subtyping rules of the form A <: B are shown in Fig. 1. At the moment, the
reader is advised to ignore the gray-shaded parts, which will be explained later.
Some rules are ported from Ai: ST, SZ, S—, S&R, S&L; and S&L,.

Polymorphism and Records. The subtyping rules introduced by F; refer to poly-
morphic constructs and records. Sx defines subtyping as a reflexive relation on
type variables. In SV a universal quantifier (V) is covariant in its body, and
contravariant in its disjointness constraints. The SREC rule says that records
are covariant within their fields’ types. The subtyping relation uses an auxiliary
unary ordinary relation, which identifies types that are not intersections. The
ordinary conditions on two of the intersection rules are necessary to produce
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unique coercions [38]. The ordinary relation needs to be extended with respect
to A;. As shown at the top of Fig. 1, the new types it contains are type variables,
universal quantifiers and record types.

Properties of Subtyping. The subtyping relation is reflexive and transitive.
Lemma 1 (Subtyping reflexivity). For any type A, A <: A.

Proof. By structural induction on A. ([l
Lemma 2 (Subtyping transitivity). If A <:B and B <: C, then A <: C.
Proof. By double induction on both derivations. O

4.3 Typing

Well-Formedness. The well-formedness rules are shown in the top part of Fig. 2.
The new rules over A; are WFa and WFYV. Their definition is quite straightfor-
ward, but note that the constraint in the latter must be well-formed.

Typing Rules. Our typing rules are formulated as a bi-directional type-system.
Just as in Ai, this ensures the type-system is not only syntax-directed, but also
that there is no type ambiguity: that is, inferred types are unique. The typing
rules are shown in the bottom part of Fig. 2. Again, the reader is advised to ignore
the gray-shaded parts, as these will be explained later. The typing judgements
are of the form: THe < Aand ' e = A. They read: “in the typing context I',
the term e can be checked or inferred to type A", respectively. The rules ported
from A; are the check rules for T (T-ToP), integers (T-INT), variables (T-VAR),
application (T-ApP), merge operator (T-MERGE), annotations (T-ANN); and
infer rules for lambda abstractions (T-LAM), and the subsumption rule (T-SUB).

Disjoint Quantification. The new rules, inspired by System F, are the infer rules
for type application T-TAPP, and for type abstraction T-BLAM. Type abstrac-
tion is introduced by the big lambda A(« * A). e, eliminated by the usual type
application e A (T-TAppP). The disjointness constraint is added to the con-
text in T-BLAM. During a type application, the type system makes sure that
the type argument satisfies the disjointness constraint. Type application per-
forms an extra check ensuring that the type to be instantiated is compatible
(i.e. disjoint) with the constraint associated with the abstracted variable. This
is important, as it will retain the desired coherence of our type-system; and it
will be further explained in Sect. 5. For ease of discussion, also in T-BLAM, we
require the type variable introduced by the quantifier to be fresh. For programs
with type variable shadowing, this requirement can be met straightforwardly by
variable renaming.

Records. Finally, T-REC and T-PROJR deal with record types. The former infers
a type for a record with label 1 if it can infer a type for the inner expression; the
latter says if one can infer a record type {l: A} from an expression e, then it is
safe to access the field 1, and inferring type A.
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T-MERGE
It €1,,€2 = A&B — (E],Ez)

l'e= A —E
'-{l=e = {l:A} < E

M-e= {l:A} —E
M-el= A < E

T-REC

T-ProJR

r-A NaxAFe =B < E o ¢ ftv(T)
'-AlaxxA).e = V(iexA).B — Ax. E

T-BLAM

're< A —E e checks against given type A

N=A Nx:AFe < B —E
'EAx.e < A—B — A.E

T-Lam

lN-e=A -E A<B < Equp r-B

T-Sus
'Fe < B < Equp E

Fig. 2. Well-formedness and type system of F;.
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WF&
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5 Disjointness

Section 4 presented a type system with disjoint intersection types and disjoint
quantification. In order to prove both type-safety and coherence (in Sect.6),
it is necessary to first introduce a notion of disjointness, considering polymor-
phism and disjointness quantification. This section presents an algorithmic set
of rules for determining whether two types are disjoint. After, it will show a few
important properties regarding substitution, which will turn out to be crucial
to ensure both type-safety and coherence. Finally, it will discuss the bounds of
disjoint quantification and what implications they have on F;.

5.1 Algorithmic Rules for Disjointness

The rules for the disjointness judgement are shown in Fig.3, which consists of
two judgements.

axxAel A<:B

— DT — DT D
TET*A AT Doym I'F oxB *
axAeTl A<:BDS Noax A1&AL B« C Dy
TFBx*a oYM T V(s A7).B*V(a*Asz).C
FEAsB L #L .
eC— ec
TH{l:A}x{l:B} - FE{l : A} ={l,: B} 7
ME A, B, o MFA«B  THA#B
rl—A1—>A2*B1—>Bz F}—A1&A2*B
MEA«B THA*By | AxxB
B — X
I'FA=xB,&B, FFAxB
B . A
—— X  Dax(ZR
Ar. B NS T, P B) e T Ay P ERe)
Dax(ZV Day \
Int ro V(o By ). B, 2V Ay 5 Ag rax V(ar By). By DAY
Dax(—R Da, (VR
Ay o Ag w1 By Dx(Ree) Vios Ay ). Ag ran (L2 B} DA (VReC)

Fig. 3. Algorithmic disjointness.
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Main Judgement. The judgement I' = A % B says two types A and B are disjoint
in a context I'. The rules are inspired in the disjointness algorithm described by
Ai. DT and DTSym say that any type is disjoint to T. This is a major difference
to Ay, where the notion of disjointness explicitly forbids the presence of T types
in intersections. We will further discuss this difference in Sect. 6.

Type variables are dealt with two rules: D« is the base rule; and DaSym is
its twin symmetrical rule. Both rules state that a type variable is disjoint to some
type B, if I contains any subtype of the corresponding disjointness constraint.
This rule is a specialization of the more general lemma:

Lemma 3 (Covariance of disjointness). IfT F A% B and B <: C, then
I'-A=xC.

Proof. By double induction, first on the disjointness derivation and then on the
subtyping derivation. The first induction case for D does not need the second
induction as it is a straightforward application of subtyping transitivity. O

The lemma states that if a type A is disjoint to B under I', then it is also
disjoint to any supertype of B. Note how these two variable rules would allow one
to prove o * o, for any variable «. However, under the assumption that contexts
are well-formed, such derivation is not possible as « cannot occur free in A.

The rule for disjoint quantification DV is the most interesting. To illustrate
this rule, consider the following two types:

(V(x % Int). Int& o) (V(o * Char). Char& o)

When are these two types disjoint? In the first type « cannot be instantiated
with Int and in the second case & cannot be instantiated with Char. There-
fore for both bodies to be disjoint, o« cannot be instantiated with either Int
or Char. The rule for disjoint quantification adds a constraint composed of the
intersection of both constraints into I' and checks for disjointness in the bodies
under that environment. The reader might notice how this intersection does not
necessarily need to be well-formed, in the sense that the types that compose it
might not be disjoint. This is not problematic because the intersections present
as constraints in the environment do not contribute directly to the (coherent)
coercions generated by the type-system. In other words, intersections play two
different roles in F;, as:

1. Types: restricted (i.e. disjoint) intersections are required to ensure coherence.
2. Constraints: arbitrary intersections are sufficient to serve as constraints
under polymorphic instantiation.

The rules DRec— and DRec. define disjointness between two single label
records. If the labels coincide, then the records are disjoint whenever their fields’
types are also disjoint; otherwise they are always disjoint. Finally, the remaining
rules are identical to the original rules.
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Axioms. Axiom rules take care of two types with different language constructs.
These rules capture the set of rules is that A %, B holds for all two types of
different constructs unless any of them is an intersection type, a type variable,
or T. Note that disjointness with type variables is already captured by D« and
DaSym, and disjointness with the T type is captured by DT and DT Sym.

5.2 Well-Formed Types

In F; it is important to show that the type-system only produces well-formed
types. This is crucial to ensure coherence, as shown in Sect. 6. However, in the
presence of both polymorphism and disjoint intersection types, extra effort is
needed to show that all types in F; are well-formed. To achieve this, not only
we need to show that a weaker version of the general substitution lemma holds,
but also that disjointness between two types is preserved after substitution. To
motivate the former (i.e. why general substitution does not hold in F;), consider
the type V(o * Int). (a&Int). The type variable o cannot be substituted by any
type: substituting with Int will lead to the ill-formed type Int&Int. To motivate
the latter, consider the judgement ocxInt F o« Int. After the substitution of Int
for & on the two types, the sentence & * Int F Int % Int is no longer true, since
Int is clearly not disjoint with itself. Generally speaking, a careless substitution
can violate the constraints in the context. However, if appropriate disjointness
pre-conditions are met, then disjointness can be preserved. More formally, the
following lemma holds:

Lemma 4 (Disjointness is stable under substitution). If (axD) €T and
' CxD and '+ A x B and well-formed context [ := C] T', then [ :=C] T' -
[ :=C] A x[x:=C] B.

Proof. By induction on the disjointness derivation of C and D. Special atten-
tion is needed for the variable case, where it is necessary to prove stability of
substitution for the subtyping relation. It is also needed to show that, if C and
D do not contain any variable x, then it is safe to make a substitution in the
co-domain of the environment. |

We can now prove a weaker version of the general substitution lemma:

Lemma 5 (Types are stable under substitution). IfTH A and T+ B and
(% C) €Tl and T+ Bx* C and well-formed context [x:=B] T, then [oc:=B] '+
[x:=B] A.

Proof. By induction on the well-formedness derivation of A. The intersection
case requires the use of Lemma4. Also, the variable case required proving that
if & does not occur free in A, and it is safe to substitute it in the co-domain of
I', then it is safe to perform the substitution. (I

Now we can finally show that all types produced by the type-system are well-
formed and, more specifically, justify that the disjointness premise on T-TApPpP
is sufficient for that purpose. More formally, we have that:
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Lemma 6 (Well-formed typing). We have that:

~IfThe < A, then TFA.
~IfThe = A, thenTF A.

Proof. By induction on the derivation and applying Lemma 5 in the case of
T-TAPP. O

Even though the meta-theory is consistent, we can still ask: what are the
bounds of disjoint quantification? In other words, which type(s) can be used to
allow unrestricted instantiation, and which one(s) will completely restrict instan-
tiation? As the reader might expect, the answer is tightly related to subtyping.

5.3 Bounds of Disjoint Quantification

Substitution raises the question of what range of types can be instantiated for a
given variable «, under a given context I'. To answer this question, we ask the
reader to recall the rule D«, copied below:

axAel A<B
N'FaxB

Given that the cardinality of Fi’s types is infinite, for the sake of this example
we will restrict the type universe to a finite number of primitive types (i.e.
Int and String), disjoint intersections of these types, T and L. Now we may
ask: how many suitable types are there to instantiate o with, depending on A?
The rule above tells us that the more super-types A has, the more types « has
to be disjoint with. In other words, the choices for instantiating o are inversely
proportional to the number of super-types of A. It is easy to see that the number
of super-types of A is directly proportional to the number of intersections in A.
For example, taking A as Int leads B to be either T or Int; whereas A as
Int&String leaves B as either T, Int or String. Thus, the choices of « are
inversely proportional to the number of intersections in A. Following the same
logic, choosing T (i.e. the O-ary intersection) as constraint leaves o with the most
options for instantiation; whereas L (i.e. the infinite intersection) will deliver the
least options. Consequently, we may conclude that T is the empty constraint:
a variable associated to it can be instantiated to any well-formed type. It is a
subtle but very important property, since F; is a generalization of System F.
Any type variable quantified in System F, can be quantified equivalently in F;
by assigning it a T disjointness constraint (as seen in Sect. 2.4).

Da

6 Semantics, Coherence and Type-Safety

This section discusses the elaboration semantics of F; and proves type-safety and
coherence. It will first show how the semantics is described by an elaboration
to System F. Then, it will discuss the necessary extensions to retain coherence,
namely in the coercions of top-like types; coercive subtyping, and bidirectional
type-system’s elaboration.
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6.1 Target Language

The dynamic semantics of the call-by-value F; is defined by means of a type-
directed translation to an extension of System F with pairs. The syntax and
typing of our target language is unsurprising:

Types Tuo=o|Int|Ti > T |Va.T| () | (Ty,T2)
Terms E z=x|i|M.E[Ei E2|Ax.E|ET] () | (E1,E2) | proj E | proj,E
Contexts G =:=-| G, x| G,x:T

The highlighted part shows its difference with the standard System F. The inter-
ested reader can find the formalization of the full target language syntax and
typing rules in our Coq development.

Type and Context Translation. Figure4 defines the type translation function ||
from F; types A to target language types T. The notation |-| is also overloaded
for context translation from F; contexts I' to target language contexts G.

Al=T M =G
o = o [ =-
ITI=10) INyocs Al = [T, o
AT — Azl = Aq] — |A2] Ny oAl = |17, o:|A]

V(e x A). B| = V. |B]
IA1&AL] = (|A1],1A2])
{L: A} = |A]

Fig. 4. Type and context translation.

6.2 Coercive Subtyping and Coherence

Coercive Subtyping. The judgement Ay <: A, — E present in Fig. 1, extends
the subtyping relation with a coercion on the right hand side of < . A coercion
E is just a term in the target language and is ensured to have type |A7] — |A3]
(by Lemma7). For example, Int&a <: o < Ax.proj,x , generates a target
coercion function with type: (Int, &) — «.

Rules ST, S«, SZ,S—, S&L;, S&L,, and S&R are taken directly from A;. In
rule S«, the coercion is simply the identity function. Rule SV elaborates disjoint
quantification, reusing only the coercion of subtyping between the bodies of both
types. Rule SREC elaborates records by simply reusing the coercion generated
between the inner types. Finally, all rules produce type-correct coercions:

Lemma 7 (Subtyping rules produce type-correct coercions). If
A1 <:A; — E, then-FE : |A;] — |A3].

Proof. By a straightforward induction on the derivation. O
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Unique Coercions. In order to prove the type-system coherent, the subtyping
relation also needs to be shown coherent. In F; the following lemma holds:

Lemma 8 (Unique subtype contributor). If A1&A; <: B, where A1&A;
and B are well-formed types, and B is not top-like, then it is not possible that
the following holds at the same time:

1. A1 <:B
2. A, <:B

Proof. By double induction: the first on the disjointness derivation (which follows
from A;&A; being well-formed); the second on type B. The variable cases Do
and DaSym needed to show that, for any two well-formed and disjoint types A
and B, and B is not toplike, then A cannot be a subtype of B. (I

Using this lemma, we can show that the coercion of a subtyping relation
A <: B is uniquely determined. This fact is captured by the following lemma:

Lemma 9 (Unique coercion). If A <:B — E; and A <: B — E, , where
A and B are well-formed types, then E1 = E,.

Proof. By induction on the first derivation and case analysis on the second. [J

6.3 Top-Like Types and Their Coercions

Lemma 8, which is fundamental in the proof of coherence of subtyping, holds
under the condition that B is not a top-like type. Top-like types in F; include T
as well as other syntactically different types that behave as T (such as T&T).
It is easy to see that the unique subtyping contributor lemma is invalidated if
no restriction on top-like types exists. Since every type is a subtype of T then,
without the restriction, the lemma would never hold.

Rules. Fi’s definition of top-like types extends that from A;. The rules that
compose this unary relation, denoted as ].[, are presented at the top of Fig.5.
The new rules are TLREC and TLV. Both rules say that their constructs are
top-like whenever their enclosing expressions are also top-like.

Coercions for Top-Like Types. Coercions for top-like types require special treat-
ment for retaining coherence. Although Lemma 8 does not hold for top-like types,
we can still ensure that that any coercions for top-like types are unique, even
if multiple derivations exist. The meta-function [A], shown at the bottom of
Fig.5, defines coercions for top-like types. With respect to A; the record and
V cases are now defined, and there is also a change in the & case (covering
types such as T&T). With this definition, although two derivations exist for
type Char&Int <: T, they both generate the coercion Ax.().
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JAT B[ 6] A
LT SAmEr T AoE AT TLRE
AT
WaxB)LA] -
e
[T1=0
[Alc = {]A( [A] [A1 — Az] = Ax. [A2]
c otherwise C [A1&AL] = ([A1], [Az])
[{t: A}] = [A]

[V(x*B).A] = Acx. [A]

Fig. 5. Top-like types and their coercions.

Allowing Owverlapping Top-Like Types in Intersections. In Fy T&T is a well-
formed disjoint intersection type. This may look odd at first, since all other
types cannot appear more than once in an intersection. Indeed, in Ay, T&T is
not well-formed. However, T-types are special in that they have a unique canon-
ical top value, which is translated to the unit value () in the target language. In
other words a merge of two T-types will always return the same value regardless
of which component of the merge is chosen. This is different from merges of
non T-types, which do not have this property. Thus, one may say that T-types
are coherent with every other type. This property makes T-types perfect can-
didates for the empty constraint, but such can only be achieved by allowing T
in intersections. This explains the more liberal treatment of top types F; when
compared to A;.

6.4 Elaboration of the Type-System and Coherence

In order to prove the coherence result, we refer to the bidirectional type-system
introduced in Sect. 4. The bidirectional type-system is elaborating, producing a
term in the target language while performing the typing derivation.

Key Idea of the Translation. This translation turns merges into usual pairs,
similar to Dunfield’s elaboration approach [24]. It also translates the form of
disjoint quantification and disjoint type application into regular (polymorphic)
quantification and type application. For example, A(ocxInt). Ax. (x,, 1) in F; will
be translated into System F’'s Ac. Ax. (x,1).

The Translation Judgement. The translation judgement '+ e : A — E extends
the typing judgement with an elaborated term on the right hand side of < .



22 J. Alpuim et al.

The translation ensures that E has type |A|. The two rules for type abstraction
(T-BLaAM) and type application (T-TAPP) generate the expected correspond-
ing coercions in System F. The coercions generated for T-REC and T-PrRoJR
simply erase the labels and translate the corresponding underlying term. All the
remaining rules are ported from A;.

Type-Safety. The type-directed translation is type-safe. This property is cap-
tured by the following two theorems.
Theorem 1 (Type preservation). We have that:

~IfTFe= A < E, then|T|FE : Al
~IfTFe <= A —E, then T FE : Al

Proof. By structural induction on the term and the respective inference rule. (]

Theorem 2 (Type safety). If e is a well-typed Fi term, then e evaluates to
some System F value v.

Proof. Since we define the dynamic semantics of F; in terms of the composition
of the type-directed translation and the dynamic semantics of System F, type
safety follows immediately. |

Uniqueness of Type-Inference. An important property of the bidirectional type-
checking is that, given an expression e, if it is possible to infer a type for it, then
e has a unique type.

Theorem 3 (Uniqueness of type-inference). If e = A; — E; and
e = Ay — E» , then A1 = As.

Proof. By structural induction on the term and the respective inference rule. [J

Coherency of Elaboration. Combining the previous results, we are finally able
to show the central theorem:

Theorem 4 (Unique elaboration). We have that:

- IfTFe= A —EjandTHe = A — E,, then E; = E,.
- IfTFe<= A - EjandTFe <« A — E,, then E; = E;.

(‘=7 means syntactical equality, up to o-equality.)

Proof. By induction on the first derivation. The most important case is the
subsumption rule:

're= A —E A <:B — Equp 'EB
'Fe< B —Egup E

T-SuB

We need to show that Egyp is unique (by Lemma9), and thus to show that
A is well-formed (by Lemma6). Note that this is the place where stability of
substitutions (used by Lemma 6) plays a crucial role in guaranteeing coherence.
We also need to show that A is unique (by Theorem 3). Uniqueness of A is needed
to apply the induction hypothesis. O
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7 Related Work

Intersection Types, Polymorphism and the Merge Operator. To our knowledge
no previous work presents a coherent calculus which includes parametric poly-
morphism, intersection types and a merge operator. Only Pierce’s Fo [40] sup-
ports intersection types, polymorphism and, as an extension, the merge operator
(called glue in Fa). However, with such extension, Fa is incoherent. Various
simply typed systems with intersections types and a merge operator have been
studied in the past. The merge operator was first introduced by Reynold’s in
the Forsythe [48] language. The merge operator in Forsythe is coherent [47],
but it has various restrictions to ensure coherence. For example Forsythe merges
cannot contain more than one function. Many of those restrictions are lifted in
Fi. Castagna et al. [17] studied a coherent calculus with a special merge opera-
tor that works on functions only. The goal was to model function overloading.
Unlike Reynold’s operator, multiple functions are allowed in merges, but non-
functional types are forbidden. More recently, Dunfield [24] formalised a system
with intersection types and a merge operator with a type-directed translation
to the simply-typed lambda calculus with pairs. Although Dunfield’s calculus is
incoherent, it was the inspiration for the A; calculus [38], which F; extends.

A1 solves the coherence problem for a calculus similar to Dunfield’s, by requir-
ing that intersection types can only be composed of disjoint types. A uses a spec-
ification for disjointness, which says that two types are disjoint if they do not
share a common supertype. F; does not use such specification as its adaptation
to polymorphic types would require using unification, making the specification
arguably more complex than the algorithmic rules (and defeating the purpose of
having a specification). Fi’s notion of disjointness is based on A;’s more general
notion of disjointness concerning T types, called T-disjointness. T-disjointness
states that two types A and B are disjoint if two conditions are satisfied:

1. (not ]A[) and (not ]BJ)
2. ¥C.if A <: C and B <: C then |C[

A significant difference between the F; and A, is that T-disjointness does not
allow T in intersections, while F; allows this. In other words, condition (1) is
not imposed by Fi. As a consequence, the set of well-formed top-like types is a
superset of Ai’s. This is covered in greater detail in Sect. 6.3.

Intersection Types and Polymorphism, Without the Merge Operator. Recently,
Castagna et al. [18] studied a coherent calculus that has polymorphism and
set-theoretic type connectives (such as intersections, unions, and negations).
Their calculus is based on a semantic subtyping relation due to their inter-
pretation of intersection types. The difference to Fi, is that their intersections
are used between function types, allowing overloading (i.e. branching) of types.
For example, they can express a function whose domain is defined on any type,
but executes different code depending on that type:

AlIne—Bool]AlaInt—oInt)y (x € Int)?(x mod 2) =0:x
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In our system we cannot express some of these intersections, namely the ones that
do not have disjoint co-domains. However, F; accepts other kinds of intersections
which are not possible to express in their calculus. For example merges with
type (Int — Bool)&(Int — Int) are accepted in F;. Similarly to Castagna
et al. previous work [17], their work is focused on combining intersections with
functions (but without a merge operator), whereas F; is concerned with merges
between arbitrary types. Nevertheless, both systems need to express negative
information about type variables. That is, which types a given variable cannot be
instantiated to. In their calculus, difference takes this role (i.e. «\Int); whereas
in F;, one can express it using disjoint quantification (i.e. V(o * Int). ...).

Going in the direction of higher kinds, Compagnoni and Pierce [19] added
intersection types to System F, and used a new calculus, F{, to model multiple
inheritance. In their system, types include the construct of intersection of types
of the same kind K. Davies and Pfenning [22] studied the interactions between
intersection types and effects in call-by-value languages. They proposed a “value
restriction” for intersection types, similar to value restriction on parametric poly-
morphism. None of these calculi has a merge operator.

Recently, some form of intersection types has been adopted in object-oriented
languages such as Scala [37], TypeScript [4], Flow [3], Ceylon [1], and Grace [9].
There is also a foundational calculus for Scala that incorporates intersection
types [49]. The most significant difference between F; and those languages/calculi
is that they have no explicit introduction construct like our merge operator. The
lack of a native merge operator leads to several ad-hoc solutions for defining a
merge operator in those languages, as discussed in Sects. 1 and 3.1.

Extensible Records. The encoding of multi-field records using intersection types
and the merge operator first appeared in Forsythe [48]. Castagna et al. [17]
propose an alternative encoding for records. Similarly to Fi’s treatment of elab-
orating records is Cardelli’s work [13] on translating a calculus with extensible
records (F<.p) to a simpler calculus without records primitives (F<.). However,
he does not encode multi-field records as intersections/merges hence his trans-
lation is more heavyweight. Crary [21] used intersection types and existential
types to address the problem arising from interpreting method dispatch as self-
application, but he did not use intersection types to encode multi-field records.

Wand [52] started the work on extensible records and proposed row types [53]
for records, together with a concatenation operator, which is used in many calculi
with extensible records [29,35,42,44,51,53]. Cardelli and Mitchell [15] defined
three primitive operations on records that are also standard in type-systems with
record types: selection, restriction, and extension. Several calculi are based on
these three primitive operators (especially extension) [10,28,31,33,34,45]. The
merge operator in F; generalizes the concatenation operator for records, as its
components may contain any types (and not just records). Systems with con-
catenation typically use a set of constraints/filters (such as lacks and contains)
which are useful to combine several, possibly polymorphic, records [34]. In Fy,
constraints on labels are encoded using disjoint quantification and intersections.
Although systems with records can model structurally typed OO languages, it
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is harder to encode nominal objects. One advantage of the generality of intersec-
tions and merges is that it is easier to have nominal objects. Unlike systems with
records, which have been extensively studied, there is much less work on inter-
section type systems with a merge operator. An interesting avenue for future
work is to see whether some known compilation and type-inference techniques
for extensible records can be adapted to disjoint intersections and merges.

Traits and Mizins. Traits [23,26,36] and mixins [5,6,8,11,25,27] have become
very popular in object-oriented languages. They enable restricted forms of mul-
tiple inheritance. One of the main differences between traits and mixins are the
way in which ambiguity of names is dealt with. Traits reject programs which com-
pose classes with conflicting method implementations, whereas mixins assume a
resolution strategy, which is usually language dependent. Our example demon-
strated in Sect. 3 suggests that disjointness in F; enables a model with a philoso-
phy similar to traits: merging multiple values of overlapping types is forbidden.
However while our simple encodings of objects work for very dynamic forms of
prototype inheritance, the work on type systems for mixins/traits usually builds
on more conventional class-based OO models.

Constrained Types. The notion of disjoint quantification is inspired on bounded
polymorphism [12,16]. Such form of polymorphism typically uses types as sub-
typing bounds, whereas disjoint quantification uses types as disjoint (i.e. coher-
ent) bounds. Another line of work are qualified types [32], which uses predicates
on types to express constraints. However, qualified types are only applicable to
the class of Hindley-Milner languages and such predicates are only defined over
monotypes. F; falls outside this class of languages, plus its constraints can be
expressed using any arbitrary type (and not just monotypes).

8 Conclusion and Future Work

This paper described F;: a System F-based language that combines intersection
types, parametric polymorphism and a merge operator. The language is proved
to be type-safe and coherent. To ensure coherence the type system accepts only
disjoint intersections. To provide flexibility in the presence of parametric poly-
morphism, universal quantification is extended with disjointness constraints. We
believe that disjoint intersection types and disjoint quantification are intuitive,
and at the same time flexible enough to enable practical applications.

For the future, we intend to create a prototype-based statically typed source
language based on F;. We are also interested in extending our work to systems
with union types and a L type. Union types are also widely used in languages
such as Ceylon or Flow, but preserving coherence in the presence of union types
is challenging. The naive addition of 1 seems to be problematic. The proofs for F;
rely on the invariant that a type variable o can never be disjoint to another type
that contains «. The addition of | breaks this invariant, allowing us to derive,
for example, I' F o % . Finally, we could study a similar system with implicit
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polymorphism. Such system would require some changes in the subtyping and
disjointness relations. For instance, subtyping should allow V&. ¢« — « <: Int —
Int. Consequently, the disjointness relation would have to be modified, since
valid statements in F; such as I' F V. « — o * Int — Int would no longer hold
under the more powerful subtyping relation.
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Abstract. We introduce a generalized notion of inference system to sup-
port structural recursion on non well-founded datatypes. Besides axioms
and inference rules with the usual meaning, a generalized inference sys-
tem allows coazioms, which are, intuitively, axioms which can only be
applied “at infinite depth” in a proof tree. This notion nicely subsumes
standard inference systems and their inductive and coinductive interpre-
tation, while providing more flexibility. Indeed, the classical results on
the existence and constructive characterization of least and greatest fixed
points can be extended to our generalized framework, interpreting recur-
sive definitions as fixed points which are not necessarily the least, nor the
greatest one. This allows formal reasoning in cases where the inductive
and coinductive interpretation do not provide the intended meaning, or
are mixed together.

1 Introduction

Recently several approaches [5,10,11,18,19,25,32] have been proposed to pro-
gram with coinductive (coalgebraic) datatypes to support corecursion, that is,
the ability of defining predicates or functions by structural recursion on non-
well-founded datatypes. Such solutions are generally characterized by a strong
dichotomy between inductive and coinductive definitions, the former being based
on the notion of least fixed point, and the latter on that of greatest fixed point.
Moreover, some proposals provide language abstractions to allow the program-
mer to interpret corecursive definitions not in the standard coinductive way. As
a consequence, formal reasoning about programs that exploit such abstractions
cannot be based on usual proof principles.

In this paper, we introduce a framework for interpreting recursive definitions
as fixed points which are not necessarily the least, nor the greatest one. This
allows formal reasoning in cases where the inductive and coinductive interpreta-
tion do not provide the intended meaning, or are mixed together.

To introduce the idea, let us consider the following recursive definitions
of functions on lists of integers, with the meaning suggested by the name.
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let rec allPos = function [] -> true x::1 -> x >0 &&
allPos 1
let rec member y =
function [] -> false | x::1 -> x==y||member y 1
let rec elems = function
1 -> 11 |
x::1 -> let xs = elems 1 in if member x xs then xs else
X::XS
let rec maxElem = function [x] -> x | x::1 -> max x

(maxElem 1)

These definitions are written above in a widely-known programming language
syntax (OCaml) for concreteness, but this is not relevant here: for such first-order
functions, in most programming languages we can write analogous recursive def-
initions, and they are usually interpreted inductively. This means that, turning,
more abstractly, such recursive definitions into meta-rules of an inference sys-
tem, they are interpreted as the set of judgments which have a finite proof tree.
For instance, the meta-rules for the judgment allPos(l,b) are as follows:

allPos(1,b)

allPos(A,T) allPos(x:l, F) = allPos(x:1,b) z>0

where A and : denote the empty list, and the list constructor, respectively, and
T and F denote the boolean values. This interpretation works perfectly well on
finite lists. However, with the inductive interpretation the above functions may
happen to be undefined on infinite lists. For instance, the judgment allPos(l, b)
obviously has no finite proof tree if [ is an infinite list of positives.

Indeed, to support structural recursion on non-well-founded structures, such
as infinite lists or graphs, we typically have to use coinduction. The coinductive
interpretation of an inference system is the set of judgments which have a (finite
or infinite) proof tree.

In some cases, the coinductive interpretation actually yields the intended
meaning. For instance, taking a slightly different version of allPos as a unary
predicate allPos(l), as it would be expressed in a logic program:

allPos(1)
allPos(A) allPos(x : 1)

x>0

it is easy to see that with the coinductive interpretation we obtain the intended
meaning on infinite lists as well, since we get an infinite proof tree if and only
if all the elements in the list are positive. Indeed, this interpretation has been
fruitfully used in coinductive logic programming (coLP) [3,31-33].

However, considering instead the previous relation allPos(l,b), the coinduc-
tive interpretation fails to be a function, since for infinite lists of positives both
the judgment allPos(l,T) and allPos(l, F') can be proved. Moreover, if we con-
sider the predicate corresponding to the boolean function member:

member(x, )

TF#Y

member(z,z : 1) member(z,y : 1)
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then the correct interpretation is the inductive one. Indeed, the coinductive inter-
pretation contains all judgments member(z, ) where [ is an infinite list. Finally,
for the predicates corresponding to the other example functions, which do not
return a boolean, neither the inductive nor the coinductive interpretation yields
the intended semantics. In particular, the coinductive interpretation contains
too many elements. For instance, taking [ the infinite list of 1s, by coinductively
interpreting elems and mazElem we get, together with the correct judgments,
also wrong ones, as will be formally shown in the following section.

All these examples suggest the idea that we should be able to “filter out”
in some way the (infinite) proof trees corresponding to the coinductive inter-
pretation, keeping only some of them. We make this possible by introducing
coaxioms. A coaxiom is, intuitively, an axiom which can only be applied “at
infinite depth” in a proof tree. An inference system interpreted inductively cor-
responds to a generalized inference system with no coaxioms, while an inference
system interpreted coinductively corresponds to a generalized inference system
where there is a coaxiom for each judgment.

From the model-theoretic point of view, coaxioms allow the programmer to
choose the desired fixed point for a recursive definition, by selecting also fixed
points which are neither the least, nor the greatest one. For instance, in the
inference system for allPos(l,b), the intended meaning is the set of judgments
allPos(l,b) where b is true if and only if the (finite or infinite) list I contains only
positives. This set is a fized point which lies between the least, which is undefined
on infinite lists of positives, and the greatest, which returns both boolean values,
hence is undetermined, on such lists.

Coaxioms are partly inspired by an extension of coLLP and coinductive SLD
resolution (coSLD) [31-33] with finally clauses [5], to allow more flexible inter-
pretations of corecursive definitions of predicates, and by a related proposal in
the context of object-oriented programming [10,11]. In this paper we take a more
abstract and general approach and provide a framework for interpreting core-
cursive definitions in a flexible way and to formally reason on their correctness.

The rest of the paper is organized as follows: in Sect. 2 we introduce the notion
of generalized inference system with coaxioms, and show how to express the pre-
vious examples and others. In Sect. 3 we formally define the fixed point semantics
of inference systems with coaxioms in the more general setting of complete lat-
tices. In Sect. 4 we discuss the equivalent semantics based on the proof-theoretic
approach, and in Sect.5 we illustrate the related proof techniques on some of
the examples. In Sect. 6 we show some more involved examples and discuss some
subtleties, Sect. 7 surveys related work, and finally in Sect.8 we summarize our
contribution and discuss further work. A prototype meta-interpreter! has been
developed to test the examples provided in Sects. 2 and 6.

! Available at http://www.disi.unige.it/person/AnconaD /Software/esopl7artifact.
Zip.
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2 Inference Systems with Coaxioms

We recall some standard notions about inference systems [1,23].

Assume in the following a set U called the universe, whose elements are called
Judgments.

An inference system I consists of a set of inference rules, which are pairs

Pr .
—, with Pr C U the set of premises, ¢ € U the consequence.

The intuitive interpretation of a rule is that if the premises Pr hold then the
consequence ¢ should hold as well. In particular, an aziom is (the consequence
of) a rule with empty set of premises, which necessarily holds.

The (one step) inference operator Fr : p(U) — p(U) associated with an
inference system Z is defined by:

Fr(8) ={c| Prc s,%ez}

That is, Fz(S) is the set of judgments that can be inferred (in one step) from
the judgments in S using the inference rules. Note that this set always includes
axioms.

A set S is closed if Fz(S) C S, and consistent if S C Fz(S). That is, no new
judgments can be inferred from a closed set, and all judgments in a consistent
set can be inferred from the set itself.

The inductive interpretation of Z, denoted Ind(Z), is the smallest closed set,
that is, the intersection of all closed sets, and the coinductive interpretation of Z,
denoted ColInd(T), is the largest consistent set, that is, the union of all consistent
sets. Both interpretations are well-defined and can be equivalently expressed as
the least (respectively, greatest) fixed point of the inference operator. Moreover,
under continuity hypotheses on Fz, they can be computed as follows:

Ind(Z) = U{F3(0) | n > 0}
Colnd(Z) = ({FU) | n > 0}

The inductive and coinductive interpretation can also be characterized in terms
of proof trees. That is, defining a proof tree as a tree whose nodes are (labeled
with) judgments in U, and there is a node ¢ with set of children Pr only if there

P
exists a rule 77", it can be shown [23] that Ind(Z) and Colnd(Z) are the sets

of judgments which are the root of a finite? and an arbitrary (finite or infinite)
proof tree, respectively.

We introduce now our generalization.

An inference system with coaxioms is a pair (Z,) consisting of an inference
system Z and a set of coaxioms -, with v C U. A coaxiom ¢ will be written
%, very much like an axiom, and analogously to an axiom it can be used as an

initial assumption to derive other judgments. However, coaxioms will be used in
a special way, explained in the following.

2 Under the common assumption that the set of premises of all the rules are finite,
otherwise we should say a finite depth tree.
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To illustrate the notion, we will consider an introductory example which
computes the judgment n->A meaning that A is the set of nodes reachable
from a node n of a given graph. Let us represent a graph by its set of nodes V
and a function adj which returns all the adjacent nodes. As usual, sets of rules
can be expressed by a metarule with side conditions, and the same can be done
for sets of coaxioms.

THN& - N adj(n) = {n1,...,mk} : nevV
n=>{nfUNLU...UN; n—{

For instance, in the case of a graph with nodes a, b, ¢, with an arc from a into b
and conversely, and c isolated, we would get the following metarules and coax-
ioms:
bi)./\/’ CI,LN ° [ [ ]
a{a}UN  b5S{}UN  cS{c} a0 b0 50

If we interpret the metarules inductively (excluding the coaxioms), then we
get only the judgment ci>{c}. In other words, a visit computing n>N, like
other judgments on graphs, should mark already encountered nodes to avoid non
termination, since the graph structure is not well-founded. On the other hand,
if we interpret the metarules coinductively (excluding again the coaxioms), then
we get the correct judgments a->{a, b} and b=>{a, b}, but we also get the wrong
judgments a—>{a, b, c} and b={a, b, c}.

We define a different interpretation, called interpretation generated by the
coazioms and denoted Gen(Z,~), which takes into account the coaxioms in the
following way.

1. First, we take the smallest closed superset of the set of coaxioms. In other
words, we consider the inference system Z;,, obtained enriching Z by judg-
ments in v considered as axioms, and we take its inductive interpretation
Ind(Z,,).

2. Then, we take the largest consistent subset of Ind(Z,,,). In other words, we
take the coinductive interpretation of the inference system obtained from Z
by keeping only rules with consequence in Ind(Zy,,), that is, we define

Gen(Z,v) = Colnd(Inincz,,))

where Zng, with Z inference system and S C U, denotes the inference system
obtained from Z by keeping only rules with consequence in S.

In the example, in the first phase we obtain the following judgments (each
line corresponds to an iteration of the inference operator):

a0, b50, ¢ 50, c5{c}
a>0, b50, ¢ 50, c5{c}, a>{a}, b5{b}
a0, b50, ¢ 50, c>{c}, a>{a}, b5{b}, a>{a, b}, b>{a, b}

The last set is closed, hence it is Ind(Z).
In the second phase, each iteration of the inference operator removes judg-
ments which cannot be inferred from the previous step, that is, we get:
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c={c}, aS{a}, b5{b}, a>{a, b}, b>{a, b}
c={c}, a={a, b}, b5{a, b}

This last set is consistent, hence it is Gen(Z,~), and it is indeed the expected
result.

Note that the inductive and coinductive interpretation can be obtained as
special cases of the interpretation generated by coaxioms of an inference system,
notably:

— the inductive interpretation when the set of coaxioms is empty
— the coinductive interpretation when the set of coaxioms is the universe.

In terms of proof trees, judgments in Gen(Z,v) are those which have an
arbitrary (finite or infinite) proof tree ¢ in the inference system Z, whose nodes
all have a finite proof tree in Z,,. Note that for nodes in ¢ which are roots of a
finite subtree this always holds (a finite proof tree in Z is a finite proof tree in
T4y as well), hence the condition is only significant for nodes which are roots of
an infinite path in the proof tree.

For instance, in the example, the judgment ai>{a,b} has an infinite proof
tree in Z where each node has a finite proof tree in Z,,, as shown below.

a—{a, b} a0 ]
b5{a, b} b5 {b} a>{a}
a>{a,b}  a>{a,b} b>{a,b}

Moreover, there is another important property which will be proved in Sect. 4:
if a judgment belongs to Gen(Z,~), then, for all n > 0, it has a proof tree in the
inference system Z,,, where coaxioms can only be used at depth greater than n.

For instance, in the example, it is easy to see that, for any n, we can obtain
a finite proof tree for the judgment a~{a,b} in Z,,, where coaxioms are used at
depth greater than n, as shown below.

a>0
b0 b= {b}
a0 aL{a} ai>{a, b}

b>{b} b>{a,b} b>{a,b}
a>{a,b}  aS{a,b} a>{a,b}

This last property motivates the name “coaxioms”. Indeed, dually to axioms,
which can be used in the proof tree at every depth, including 0, coaxioms can
only be used “at an infinite depth” in the proof tree. Therefore, coaxioms filter
out undesired infinite proof trees; in other words, they bound from above the
greatest fixed point corresponding to the semantics of the generalized inference
system.

As a second example, we consider the definition of the first sets in a grammar.
Let us represent a context-free grammar by its set of terminals T, its set of non-
terminals N, and all the productions 4 ::= §; | ... | B, with left-hand side A,
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for each non-terminal A. Recall that, for each o € (T'U N)T, we can define the
set first(a) = {o | 0 € T,a—*cB3}. Informally, first(a) is the set of the initial
terminal symbols of the strings which can be derived from a string « in 0 or
more steps.

The following inference system with coaxioms defines the judgment
first(o, F), with F C T.

first(A,F) Ae N first(A,F) first(a,F') Ae N

first(oca, {c}) ot first(Aa, F) A/ first(Aa, FUF') A—="¢
first(Br, F1) ... first(Bn, Fn) , °
first(e, 0) first(A, FrU...UF,) As=Bu]. | B first(A, () AeN

The rules of the inference system correspond to the natural recursive defini-
tion of first. Note, in particular, that in a string of shape Ac, if the non-terminal
A is nullable, that is, we can derive from it the empty string, then the first set
for Aa should also include the first set for a.

As in the previous example on graphs, the problem with this recursive defi-
nition is that, since the non-terminals in a grammar can mutually refer to each
other, the function defined by the inductive interpretation can be undefined.
That is, a naive top-down implementation might not terminate. For this rea-
son, first sets are typically computed by an imperative bottom-up algorithm, or
the top-down implementation is corrected by marking already encountered non-
terminals, analogously to what is done for visiting graphs. Again as in the previ-
ous example, the coinductive interpretation may fail to be a function, whereas,
with the coaxioms, we get the expected result.

We express now as inference systems with coaxioms the recursive definitions
of functions shown at the beginning of Sect. 1. Let Z denote the set of integers,
and L the set of (finite and infinite) lists of integers.

The first example is the function which checks whether all the elements of

a list are positive, expressed by judgments of shape allPos(l,b) with I € L and
be{T, F}.

. allPos(l,b) - .
allPos(A,T)  allPos(x:l,F)" — allPos(z:1,b) allPos(l,T)

With the coaxioms, we obtain the expected function also on infinite lists
of positives: indeed, we only consider the infinite trees where the nodes have a
finite proof tree in the inference system enriched by the coaxioms. In this way,
the infinite tree where b = F' is filtered out.

The function which checks whether an element belongs to a list, expressed
by judgments of shape member(z,l,b) with x € Z,l € L and b € {T,F}, is a
very similar example, with the difference that the coaxioms map every list into
false rather than true.

member(x, 1, b) 4 .
member(x, A, F) member(z,x:l,T) member(xz,y:1,b) Y member(z,l, F)
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Analogously to the previous example, with the coaxioms we obtain the
expected result also on infinite lists which do not contain the element.

The function which returns the set of the elements contained in a list is
expressed by judgments of shape elems(l, zs), with I € L and xs € p(Z).

elems(l, xs) .
elems(A,0)  elems(x:l, {z} Uxs) elems(l, ()

In this case, the inductive interpretation gives the expected result only on
finite lists, and the coinductive interpretation fails to be a function on infinite
lists. For instance, for [ the infinite list of 1s, any judgment elems(l, zs) with
1 € xs can be derived. Indeed, for any such judgment we can construct an
infinite proof tree which is a chain of applications of the last metarule. With the
coaxioms, we only consider the infinite trees where the node elems(l, zs) has a
finite proof tree in the inference system enriched by the coaxioms. This is only
true for zs = {1}.

Note that coaxioms are needed to get the expected result not only on regular
lists. Considering for example the infinite list 1:2:1:1:2:1:1:1:2: .. it
is easy to see that the same reasoning holds.

Finally, the function which returns the greatest element contained in a (non-
empty) list is expressed by judgments of shape maz(l, x), with [ € L and z € Z.

maz(l,y) °
maz(z:A, )  maz(z:l, 2) 2 = max(z,y)

maz(z:l, x)

Analogously to the previous example, the coinductive interpretation fails to
be a function (for instance, for ! the infinite list of 1s, any judgment max(l, )
with > 1 can be derived), and the coaxioms “filter out” the wrong results.

3 Bounded Fixed Points

In this section, after recalling basic definitions, we define the bounded fized point
generated by an element, justifying its existence by the Knaster-Tarski theorem
[34]. Then, we show that the interpretation generated by coaxioms of an inference
system corresponds to a bounded fixed point in the powerset lattice. Finally, we
provide a constructive characterization of bounded fixed points, again justified
by a classical result (Kleene theorem). We refer to [22] for an history of these
theorems with a number of good references.

In the following we assume a complete lattice (L, <) with top and bottom
elements T and L, and meet and join operations M and L. Moreover, we use [ |
and | | to denote meet (greatest lower bound) and join (least upper bound) of a
set, respectively.

Basic Definitions. Let F': L — L, and « € L. Then, x is a pre-fixed point of
Fiff F(z) < z; x is a post-fixed point of F'iff x < F(x); and « is a fixed point of
Fiff x = F(z). Pre-fixed points will be also called closed, and post-fixed points
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will be also called consistent points. A function F': L — L is monotone if, for
all z,y € L, x <y = F(x) < F(y).

In this general setting, the role of the universe is played by the top T of L,
that of the inference system by a monotone function F, and that of the co-axioms
by a distinguished element ~ € L, called generator.

Definition of Bounded Fixed-Point. In the following we assume a monotone
function F': L — L. The bounded fized point generated by an element -y is the
greatest fixed point of the monotone function obtained by restricting F' to the
down-set of the least pre-fixed point above «y. The construction is detailed and
justified below. First of all we introduce two notations.

Definition 1. Let x € L. Then:

— The closure of x w.r.t. F is the element Vp(x) of L defined by

Ve(e) =[Rye L[z <y, Fly) <y}
~ The kernel of x w.r.t. F is the element Ap(x) of L defined by

Ap(x) =y e Ly <z, y < Fly)}.

We can also see Ar and Vg as endofunctions on L, which are instances of well-
known notions in lattice theory: closure and kernel operators.

From this definition immediately follows the bounded coinduction principle.
Indeed, given § € L, we have:

(Colnd) If z < F(z) (z post-fixed), and = < 3, then < Ap(B).

The standard coinduction principle can be obtained as a specific instance of
the more general principle above, by taking 0 = T; for this particular case the
hypothesis z < § can be omitted, since it trivially holds. We will show in detail
how to use this proof principle in Sect. 5.

The closure of an arbitrary element v turns out to be the best closed approx-
imation of -y, that is, the least pre-fixed point of F' above ~, as shown below.

Proposition 1. Let v € L. Then, z = V() is the least pre-fixred point of F
above 7.

Proof. Set S ={x € L|~v <z, F(z) <z}. We have to prove that z € S, which
then implies, by definition, that it is its least element. Since 7y is a lower bound
for all z € S, by definition of meet we get v < z. We can show that z is a
pre-fixed point of F by the following steps:

— forall z € S, F(z) <z (def. of S) and z < z (def. of [ ]);

— forall z € S, F(z) < z (def. of S) and F(z) < F(z) (F is monotone);
— for all z € S, F(z) < z (transitivity);

— F(z) < z (def. of ).
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Note that if ¥ = L we have that V(L) is the least pre-fixed point of F, that,
thanks to the Knaster-Tarski theorem, is the least fixed point of F.
The kernel of a pre-fixed point 3 turns out to be the greatest (post-)fized-point
of F below (3, as shown below.

Proposition 2. Let 8 € L. If § is a pre-fized point of F and z = Ap((8), then
F(z)=z.

Proof. If 3 is an element of a complete lattice, then Lg = {x € L | x < §} is
also a complete lattice, with top element (. If 3 is a pre-fixed point of F, then
Fis a monotone endofunction on Lg. Therefore, by the Knaster-Tarski theorem
F(z) =z

We can now define bounded fixed points generated by an element.

Definition 2 (Bounded fixed point). Let v € L. The bounded fixed point
of F generated by ~, denoted Gen(F,~), is the greatest fixed point of F below the
closure of v, that is, Gen(F,v) = Ap(Vp(7)).

The bounded fixed point is well-defined since, thanks to Proposition 2, there
exists the greatest fixed point below (3, provided that the bound is a pre-fixed
point. Since in general v might not be pre-fixed, we need to construct a pre-fixed
point from ~y. Note that the first step of this construction cannot be expressed
as the least fixed point of F on the complete lattice {x € L | x > v}, since in
general F may fail to be an endofunction (e.g., if F is the function which maps
any element to L < ). Indeed, V() is not a fixed point in general, but only
a pre-fixed point: we need the two steps to obtain a fixed point.

Note also that the definition of bounded fixed point is asymmetric, that is,
we take the greatest fixed point bounded from above by a least (pre-)fixed point,
rather than the other way round. This is motivated by the intuition, explained
in the previous section, that we essentially need a greatest fixed point, since we
want to deal with non-well-founded structures, but we want to “constrain” in
some way such greatest fixed point. Investigating the symmetric construction is
a matter of further work (see the Conclusion).

An important fact is that bounded fixed points are a generalization of both
least and greatest fixed points, since they can be obtained by taking particular
generators, as stated in the following proposition.

Proposition 3.

1. Gen(F,T) is the greatest fized point of F
2. Gen(F, L) is the least fized point of F.

Proof. 1. Note that Vp(T) = T, since the only pre-fixed point above T is T
itself, therefore we get Gen(F, T) = Ap(T), that is, the greatest fixed point
of F, by Proposition 2.

2. As already noted V(L) is the least fixed point of F, in particular V(L) is
post-fixed, therefore we get Gen(F, L) = Ap(Vp(Ll)) = Vr(L), namely it is
the least fixed point of F.

O
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Coaxioms as Generators. In Sect. 2 we have described two steps to construct
Gen(Z,), the interpretation generated by coaxioms 7 of an inference system Z.

1. First, we consider the inference system Z, ,, obtained enriching 7 by judgments

in «y considered as axioms, and we take its inductive interpretation Ind(Z, ).

2. Then, we take the coinductive interpretation of the inference system obtained

from Z by keeping only rules with consequence in Ind(Z,y), that is, we define
Gen(Z,v) = Colnd(Inmaz..))

The definition of bounded fixed point is the formulation of these two steps in
the general setting of complete lattices. Indeed, the inference operator F7 is a
monotone function on the complete lattice p(U) obtained by taking set inclu-
sion as order, and specifying the coaxioms ~ corresponds to fixing an arbitrary
element of L as generator. To show the correspondence in a precise way, we give
an alternative and equivalent characterization of closure.

Proposition 4. Let v € L and consider the function Fi, : L — L defined by
FLy(7) = F(z) U, that is clearly monotone. Then, Vg, (L) = Vp(y).

Proof. To prove the statement it is enough to show that y € L is a pre-fixed
point of F,, iff y is a pre-fixed point of F' and y > ~. This trivially follows
from the definition of F,, and U, indeed F(y) U~y = F,,(y) < y is equivalent to
Fly) <yandy<y. O

By this alternative characterization we can formally state the correspondence
with the two steps for defining Gen(Z, ).

Theorem 1. Let Z be an inference system and v, 3 € p(U), with B closed w.r.t.
Fz, then the following facts hold:

1. (Fr)uy = F(z,,) (s0 we can safely omit brackets)
2 Vpy(7) = Ind(T.s)
3. Ap,(B) = Colnd(Zrgp).

Proof. 1. We have to show that, for S C U, (Fr)u,(S) = Fiz, y(S). If ¢ €
(F7)u~(S), then either ¢ € v or ¢ € Fz(S); in the former case there exists

Pr
- € Iy by definition, in the latter there exists — & 7 such that Pr C S,
c c

P
and this implies e T4 Therefore in both cases ¢ € F(z,_)(S5).
c

P
Conversely, if ¢ € F(z, )(S5), then there exists = € 7., such that PrC S. By
c

P
definition of Z,,,, either = €T or ¢ € v and Pr= (), therefore in the former

c
case ¢ € F7(S) and in the latter ¢ € y, thus in both cases ¢ € (Fr)u(5).

2. By Proposition4 we get that Vg (y) = V(D) that is, the least fixed
point of Fz_, thanks to statement (1) of this proposition and Proposition 2.

Therefore, it corresponds to the inductive interpretation of the inference sys-
tem 7y, Ind(Z,).
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3. Let X = CoInd(Zng), we have to show the two inclusions. First note that
X is a post-fixed point w.r.t. Fz, indeed X C Fz_;(X), by definition of the
coinductive interpretation, and Fz,,(X) C Fz(X), since each c € Fz ,(X) is

Pr
the consequence of a rule — € Zng and by construction of Zrg, this rule is
c

also a rule of Z, therefore ¢ € Fz(X). In addition ¢ € 8 again by definition of
ZIng, thus X C 3, therefore by (COIND) we get X C Ap, (8).

On the other hand Apg,(3) is a post-fixed point of Fz, ,. To show this fact
first we note that for each S C 3 we have Fz(S) C Fz,,(S), indeed if ¢ €

Pr
Fz(S) then there exists a rule — € Z such that Pr C .S, moreover we have
c

P
that Fz(S) C Fz(B) C B since 3 is closed, so e TInp that implies that
c

¢ € Fz, ;. Then, since Ap,(3) is a post-fixed point of F7 below 3, we get that
Ap, (B) € F1(Ar,(8)) € F1,.,(Ar,(B)), so it is a post-fixed point. Therefore
by the coinduction principle we get the other inclusion.

Thanks to Theorem 1, we can conclude that, given an inference system with
coaxioms (Z,7):

GBH(I, 7) = CO[nd(II'IInd(Iu»Y)) = AFI (VFI (7)) = Gen(F177)

That is, the interpretation generated by coaxioms 7y of the inference system 7 is
exactly the bounded fixed point of Fr generated by 7.

Constructive Characterization of Bounded Fixed Point. The Kleene'’s
theorem states that, under continuity hypotheses on F, we can characterize its
greatest fixed point as the greatest lower bound of the descending chain obtained
by repeatedly applying F' to T. By considering this theorem for the sublattice
obtained as down-set of the bound, we can obtain a constructive characterization
of the bounded fixed point generated by an element.

We recall some basic definitions. A descending chain in L is a set C' = {x; |
1 € N} C L such that, for each i € N, z; > x;41. A function F': L — L preserves
meet of descending chains if and only if, for all descending chains C in L, we
have F([]C) =[] F(C) where F(C) = {F(z;) | z; € C}.

Given a function F : L — L and an element 8 € L, set Crg = {F"(0) |
n € N}.

Proposition 5. Let F': L — L be a function that preserves meet of descending
chains, and B € L a pre-fized point of F. Then:

1. Crp is a descending chain in L
2. Ap(B) =[1Crpg, that is, [ | Cr is the greatest fized point of F below (.

Proof. 1. Since F preserves meet of descending chains, it is monotone, therefore,
since (3 is pre-fixed, we get the thesis.
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2. If 8 is an element of a complete lattice, then Lg = {x € L | z < §} is also
a complete lattice, with top element 3. If 3 is a closed point of F, then F
is a monotone endofunction on Lg and it still preserves meet of descending
chains. Therefore applying Kleene’s theorem to Lg we get the thesis.

O

Note that for this constructive characterization we need an additional
hypothesis on F. Under this assumption, the result of Proposition 5 immediately
applies to our construction, as stated in the following corollary.

Corollary 1. Let F: L — L be a function that preserves meet of descending
chains, and v € L. Set 8 = Vp(y). Then Gen(F,v) =[]Crg.

Proof. By definition Gen(F,~) = Ap((). Since [ is pre-fixed by Proposition 1
and F preserves meet of descending chains, by Proposition 5 we get the thesis. O

The characterization introduced above is important, but requires stronger
assumptions on the function F. We now state a weaker result that is often enough
for proving soundness, as will be illustrated in Sect. 5.

Proposition 6. Let F': L — L be monotone and 8 € L a pre-fived point, then

Ar(B) = Ar <|_| CF,ﬁ)
hence, in particular, Ap(B) <[]Crpg.

Proof. Set z =[] Cpg. First of all we note that z is pre-fixed, indeed F(z) <
MET(B) = BN F"T(B) = 2. We prove separately the two inequalities.

- Ap(z) < Ap(B). By Proposition 2 Ap(z) is a fixed point, so in particular it is
a post-fixed point, below z, by definition of [ | we get z < 3, so by transitivity
Ap(z) < 8. By (CoIND) we get Ap(2) < Ap(B).

- Ap(B) < Ap(z). By Proposition2 Ap(() is a fixed point, so in particular a
post-fixed point, below 8. We prove by arithmetic induction that Ag(8) <
F*(B) for all n € N.

Base Ar(f) < F°(B) = f3 already proved.

Induction Let us assume Ap(3) < F"((), so by monotonicity of F we get
F(AR(B)) < F""(B). Since Ap(f) is a post-fixed point, we have that
Ap(B) < F(Ag(f)), therefore by transitivity we get Ap(8) < F*1(3).

By definition of [] we get Ap(8) < []Crpg = %, so by (COIND) we get
Ap(B) < Ap(2).

Finally by anti-symmetry we get the equality. a

Another way to read the lemma above is that, given a bound 3, we obtain the
same greatest fixed point if we take as bound [ | Cr g. Indeed from Proposition 6
and point 1 of Proposition 5 we can say more: given a bound § which is pre-fixed,
we obtain the same greatest fixed point below [ if we take as bound any element
F"(B) of the descending chain.
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4 Proof Trees

In this section we formally define several proof-theoretic characterizations of
inference systems with coaxioms, and prove their equivalence® with the model-
theoretic characterization given in the previous section.

First of all we recall the standard definition of proof trees and proof-theoretic
characterization of inference systems.

Definition 3. Given an inference system I, a proof tree in Z is a tree whose
nodes are (labeled with) judgments inU, and there is a node ¢ with set of children

r
Pr only if there exists a rule —. If a proof tree t in T has root j, then we say

c
that t is a proof tree for j, or that j has proof tree t, in L.
Theorem 2. Given an inference system I, and a judgment j € U,

1. j € Colnd(Z) iff j has a proof tree in T
2. j € Ind(Z) iff j has a finite proof tree in Z.

See [15,23].

The first proof-theoretic characterization is based on the following theorem,
which slightly generalizes the standard correspondence between proof trees in 7
and the coinductive interpretation of Z.

Theorem 3. Given an inference system I, and 3 C U a closed set of judgments,
we have that, for all j € U, j € Ap,(B) iff there exists a proof tree t for j in T
such that each node of t is in 3.

Proof. By Theorem 1, Ap,(8) = AFIW, (U) = CoInd(Zng). Thanks to Theorem
2 (1), we get that j € CoInd(Zng) iff there exists a proof tree t for j in Zng. By
Definition 3, each node of ¢ is (labeled by) a consequence c of a rule in Zng, that
is, ¢ € B by definition of Zng, and this implies the thesis. a

As a particular case, we get our first proof-theoretic characterization

Corollary 2. Given an inference system with coazioms (Z,7) and a judgment
Jj €U, we have that j € Gen(Z,~) iff there exists a proof tree t for j in T such
that each node of t has a finite proof tree in I .

Proof. By Theorem 1, Gen(Z,v) = Ap,(B), with 8 = Vg, (7). Thanks to The-
orem 3, we get that, for all j € U, j € Gen(Z,~) iff there exists a proof tree
t for j in Z such that each node of ¢ is in 8. Again by Theorem 1 we get that
B = Ind(Z.), so by Theorem2 (2) we get that a node j’ of ¢ is in § iff there
exists a finite proof tree for j/ in Z,,,. O

For the second proof-theoretic characterization, we need to define approzi-
mated proof trees.
In the definition below, let us denote by j; the root of tree ¢.

3 For the last, under the hypotheses of Proposition 5.



Generalizing Inference Systems by Coaxioms 43

Definition 4. Given an inference system with coaxioms (Z,7), the sets T, of
approximated proof trees of level n in (Z,7), for n € N, are inductively defined
as follows:

tedy ift finite proof tree in Iy

T P

L eT,if L e, Pr="{j|teT}, and TCT,_,
c c

In other words, an approximated proof tree of level n in (Z,) is a finite proof
tree in (Z,~y) where coaxioms can only be used at depth >n.

The following lemma states that approximated proof trees of level n corre-
spond to the n-th element of the descending chain Cr, g = {F7(8) | n € N},
with 8 = Vg, (v) = Ind(Z,,).

Lemma 1. Given an inference system with coazioms (Z,v), and a judgment
Jj € U, we have that, for alln € N, j € F2(Vp, (7)) iff j has an approzimated
proof tree of level n in (Z,7).

Proof. Let 8 be Vg, (). We prove the thesis by induction on n.

Base If n = 0, then, by Theorem 1, 8 = Vg, () corresponds to the inductive
interpretation of Z,,, therefore the equivalence holds by Theorem 2 (2).

Induction We assume the equivalence for n and prove it for n + 1. We prove
separately the two implications.

P
=Ifce F§+1(ﬁ), then there exists — € Z such that Pr C F7(B). Hence, by
c
inductive hypothesis, each judgment in Pr has an approximated proof tree of
level n, that is, Pr= {j; | t € T}, with TC7,. Hence, t = — is a proof tree
c

for ¢, and by definition, t € 7;,11.
< If t € 7,41 is an approximated proof tree for ¢ € U, then, by definition,

P T
there exists — € 7 such that t = —, Pr={j|te€eT} and T C 7,. By
c

c
inductive hypothesis we have Pr C Fz"((), and, by definition of Fz, this
implies ¢ € F3™'(3) as needed.

a

Corollary 3. Given an inference system with coaxioms (Z,7), and a judgment
j €U, the following are equivalent:

1. j € Gen(Z,7)
2. there exists a proof tree t for j in T such that each node has an approrimated
proof tree of level n in (Z,7), for all n € N.

Proof. By Theorem 1, Proposition 6, and Theorem 3, we get that, for all j € U,
J € Gen(Z,~) iff there exists a proof tree ¢ for j in Z such that each node j’ of ¢ is
in[]Cp, g with 8 = Vg, (7). By Lemmall, j' € [ ] C, g iff has an approximated
proof tree of level n, for all n € N. O
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If the hypotheses of Proposition 5 are satisfied, then we get a simpler equiv-
alent proof-theoretic characterization.

Corollary 4. Given an inference system with coaxioms (Z,7), and a judgment
Jj €U, if Fr preserves meet of descending chains, then the following are equiva-
lent:

1. j € Gen(Z,~)
2. j has an approzimated proof tree of level n in (I,7), for all n € N.

Proof. Let 8 be Vg (7). By Theorem1 and Proposition5, we get that
Gen(Z,v) =[] Cr, g, therefore the thesis follows immediately from Lemmal. O

5 Reasoning with Coaxioms

In this section we discuss proof techniques for inference systems with coaxioms.

Assume that G = Gen(Z,~) is the interpretation generated by coaxioms for
some (Z,~), and that S (for “specification”) is the intended set of judgments,
called walid in the following.

Typically, we are interested in proving S C G (completeness, that is, each
valid judgment can be derived) and/or G C S (soundness, that is, each derivable
judgment is valid). Proving both properties amounts to say that the inference
system with coaxioms actually defines the intended set of judgments.

In the following, set 8 = Vg, (v) = Ind(Z).

Completeness Proofs. To show completeness, we can use the bounded coinduction
principle. Indeed, since G = Ap,(3), if S < 8 and S is a post-fixed point of Fr,
by (CoIND) we get that S < G. That is, using the notations of inference systems,
to prove completeness it is enough to show that:

— Sg [nd(I,_,,y)
- SC F7(9)

We illustrate the technique on the inference system with coaxioms (Z,7)
which defines the judgment allPos(l,b) (page 7). Set S“°° the set of pairs (I, b)
where b is T if all the elements in [ are positive, F' otherwise. Completeness
means that the judgment allPos(l,b) can be proved, for all (I,b) € §*F°s By
the bounded coinduction principle, it is enough to show that

o SallPos g Ind(Iu»y)
- SallPos C FI(SallPOS)

To prove the first condition, we have to show that, for each (I,b) € SF°s,
allPos(l,b) has a finite proof tree in Z;,,. This can be easily shown, indeed:

— If [ contains a (first) non-positive element, hence | = x1 : ... : x, : x : I’ with
x; > 0 fori € [l.n], z <0, and b = F then we can reason by arithmetic
induction on n. Indeed, for n = 0, (I,b) is the consequence of the second rule
with no premises, and for n > 0 it is the consequence of the third rule where
we can apply the inductive hypothesis to the premise.
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— If I contains only positive elements, hence b = T, then (I,b) is a coaxiom,
hence it is the consequence of a rule with no premises in Z,,,.

To prove the second condition, we have to show that, for each (I,b) € S*°¢,
allPos(1,b) is the consequence of a rule with premises in S*7°%. This can be
easily shown, indeed:

— If Il = A, hence b = T, then allPos(A,T) is the consequence of the first rule
with no premises.

—Ifl =2 :10' with z <0, hence b = F, then allPos(l, F') is the consequence of
the second rule with no premises.

~ Ifl =2 : 1 with 2 > 0, and b = T, hence (I',T) € §*'F°° then allPos(l,T)
is the consequence of the third rule with premise (I’,T'), and analogously if
b=F.

Soundness Proofs. To show soundness, it is convenient to use the alternative
characterization in terms of approximated proof trees given in Sect. 4, as detailed
below. First of all, from Proposition6, G C ({F7(3) | n > 0}. Hence, to prove
G C S, it is enough to show that ({F7(5) | n > 0} C S. Moreover, by Lemma 1,
for all n € N, judgments in F7(3) are those which have an approximated proof
tree of level n. Hence, to prove set inclusion, we can show that all judgments
which have an approximated proof tree of level n for each n are in S or equiva-
lently, by contraposition, that judgments which are not in S, that is, non-valid
judgments, fail to have an approximated proof tree of level n for some n.

We illustrate the technique again on the example of allPos. We have to show
that, for each (1,b) & S*'F°% there exists n > 0 such that (I,b) cannot be proved
by using coaxioms at level greater than n. By cases:

— If [ contains a (first) non-positive element, hence = x1 : ... : x, : x : I/ with
x; > 0 for i € [1..n], < 0, then, assuming that coaxioms can only be used at
a level greater than n + 1, (I,b) can only be derived by instantiating n times
the third rule, and once the second rule, hence b cannot be T

— If [ contains only positive elements, then it is immediate to see that there is
no finite proof tree for (I, F).

6 Taming Coaxioms: Advanced Examples

Mutual Recursion. Circular definitions involving inductive and coinductive
judgments have no semantics in standard inference systems, because all judg-
ments have to be interpreted either inductively, or coinductively. The same prob-
lem arises in the context of coinductive logic programming [32], where a logic
program has a well-defined semantics only if inductive and coinductive predicates
can be stratified: each stratum defines only inductive or coinductive predicates
(possibly defined in a mutually recursive way), and cannot depend on predi-
cates defined in upper strata. Hence, it is possible to define the semantics of a
logic program only if there are no mutually recursive definitions involving both
inductive and coinductive predicates.
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We have already seen that an inductive inference system corresponds to a
generalized inference system with no coaxioms, while a coinductive one cor-
responds to a generalized one where coaxioms consist of all judgments in U;
however, between these two extremes, coaxioms offer many other possibilities
thus allowing a finer control on the semantics of the defined judgments.

There exist cases where two or more related judgments need to be defined
recursively, but for some of them the correct interpretation is inductive, while
for others is coinductive [5,31,32]. In such cases, coaxioms may be employed
to provide the correct definition in terms of a single inference system with no
stratification, although special care is required to get from the inference system
the intended meaning of judgments. To see this, let us consider the judgment
path0(t), where t is an infinite tree* over {0,1}, which holds iff there exists a
path starting from the root of ¢ and containing just Os; trees are represented as
infinite terms of shape tree(n, (), where n € {0, 1} is the root of the tree, and [
is the infinite list of its direct subtrees. For instance, if t; and ¢9 are the trees
defined by the syntactic equations

t1 = tree(0,1y) Iy = toity:ly to = tree(0,13) ly = tree(1,11):1lo

then we expect path0(t1) to hold, but not path0(ts).

To define path0, we introduce an auxiliary judgment is_in0 (1) testing whether
an infinite list [ of trees contains a tree ¢ such that path0(t) holds. Intuitively, we
expect path0 and is_in0 to be interpreted coinductively and inductively, respec-
tively; this reflects the fact that path0 checks a property universally quantified
over an infinite sequence (a safety property in the terminology of concurrent sys-
tems): all the elements of the path must equal 0; on the contrary, is_in0 checks
a property existentially quantified over an infinite sequence (a liveness property
in the terminology of concurrent systems): the list must contain a tree ¢ with
a specific property (that is, path0(t) must hold). Driven by this intuition, one
could be tempted to define the following inference system with coaxioms for all
judgments of shape path0(t), and no coaxioms for judgments of shape is_in0(1):

is_in0(l) . path0(t) is_in0(1)
path0(tree(0,1))  path0(t) is.in0(t:l)  is_in0(t:1)

Unfortunately, because of the mutual recursion between is_in0 and path0, the
inference system above does not capture the intended behavior: is_in0(l) is deriv-
able for every infinite list of trees [, even when [ does not contain a tree ¢ with
an infinite path starting from its root and containing just Os.

To overcome this problem, we replace the judgment is_in0 with the more
general one is_in, such that is_in(¢,!) holds iff the infinite list I contains the tree
t. Consequently, we can define the following generalized inference system:

iscin(t,l)  path0(t) . is_in(t, 1)
path0(tree(0,1)) path0(t) is_in(t,t:l)  is_in(t,t":1)

4 For the purpose of this example, we only consider trees with infinite depth and
branching.
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Now the semantics of the system corresponds to the intended one, and we
do not need to stratify the definitions into two separate inference systems.

Following the characterization in terms of proof trees and the proof tech-
niques provided in Sects. 4 and 5, we can sketch a proof of correctness. Let S be
the set where elements have either shape path0(t), where ¢ represents a tree with
an infinite path of just Os starting from its root, or is_in(t,1), where [ represents
an infinite list containing the tree t; then a judgment belongs to S iff it can be
derived in the generalized inference system defined above.

Completeness: We first show that the set S is a post-fixed point, that is, it is
consistent w.r.t. the inference rules, coaxioms excluded. Indeed, if £ has an infinite
path of 0s, then it has necessarily shape tree(0,[), where | must contain a tree
t’ with an infinite path of 0s. Hence, the inference rule for path0 can be applied
with premises is_in(t',1) € S, and path0(t') € S. If an infinite list contains a tree
t, then it has necessarily shape ¢':l where, either ¢ = t/, and hence the axiom for
is_in can be applied, or ¢ # ¢’ and t is contained in [, and hence the inference
rule for is_in can be applied with premise is_in(¢,1) € S.

We then show that S is bounded by the closure of the coaxioms. For the
elements of shape path0(t) it suffices to directly apply the corresponding coax-
iom; for the elements of shape is_in(t,1) we can show that there exists a finite
proof tree built possibly also with the coaxioms by induction on the first position
(where the head of the list corresponds to 0) in the list where ¢ occurs. If the
position is 0 (base case), then [ = #:I’, and the axiom can be applied; if the posi-
tion is n > 0 (inductive step), then | = ¢':I’ and ¢ occurs in I’ at position n — 1,
therefore, by inductive hypothesis, there exists a finite proof tree for is_in(t,l’),
therefore we can build a finite proof tree for is_in(¢,1) by applying the inference
rule for is_in.

Soundness: We first observe that the only finite proof trees that can be derived
for is_in(t,1) are obtained by application of the axiom for is_in, hence is_in(¢,1)
holds iff there exists a finite proof tree for is_in(¢,!) built with the inference rules
for is_in. Then, we can prove that, if is_in(¢,1) holds, then ¢ is contained in [ by
induction on the inference rules for is_in. For the axiom (base case) the claim
trivially holds, while for the other inference rule we have that if ¢ belongs to [,
then trivially ¢ belongs to t':l.

For the elements of shape path0(t) we first observe that by the coaxioms
they all trivially belong to the closure of the coaxioms. Then, any proof tree for
path0(t) must be infinite, because there are no axioms but only one inference
rule for path0 where path0 is referred in the premises; furthermore, such a rule
is applicable only if the root of the tree is 0. We have already proved that if
is_in(t,l) is derivable, then t belongs to [, therefore we can conclude that if
path0(t) is derivable, then ¢ contains an infinite path starting from its root, and
containing just 0s.

A Numerical Example. It is well known that real numbers in the closed inter-
val [0,1] can be represented by infinite sequences (d;);cn+ of decimal® digits,

5 Of course the example can be generalized to any base B > 2.
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where N* denotes the set of all positive natural numbers. Indeed, (d;);en+ rep-
resents the real number which is the limit of the series > .~ 107'd; in the stan-
dard complete metric space of real numbers (such a limit always exists by com-
pleteness, because the associated sequence of partial sums is always a Cauchy
sequence). Such a representation is not unique for all rational numbers in [0,1]
(except for the bounds 0 and 1) that can be represented by a finite sequence of
digits followed by an infinite sequence of Os; for instance, 0.42 can be represented
either by the sequence 420, or by the sequence 419, where d denotes the infinite
sequence containing just the digit d.

For brevity, for r = (d;);en+, [r] denotes Y=, 107%d; (that is, the real num-
ber represented by r). We want to define the judgment add(rq,r2,7,¢) which
holds iff [r1] +[re] =[r] + ¢ with ¢ an integer number; that is, add(ry, 72,7, c)
holds iff the addition of the two real numbers represented by the sequences rq
and 79 yields the real number represented by the sequence r with carry c. We
will soon discover that, to get a complete definition for add, ¢ is required to
range over a proper superset of the set {0,1}, differently from what one could
initially expect.

We can define the judgment add with the following generalized inference sys-
tem, where < and mod denote the integer division, and the remainder operator,
respectively.

add(ry,ra,7,C)
add(dy:rq, da:ra, (s mod 10):r, s + 10)

s:d1+d2+c

add(ry,re, 1, c)

A real number in [0,1] is represented by an infinite list of decimal digits,
which, therefore, can always be decomposed as d:r, where d is the first digit
(corresponding to the exponent —1), and r is the rest of the list of digits. Here,
71, 2, and r range over the set of infinite lists of decimal digits, while the carry
must range over {—1,0, 1,2} to support a complete definition. As clearly emerges
from the proof of completeness provided below, besides the obvious values 0
and 1, the values —1 and 2 have to be considered for the carry to ensure a
complete definition of add because both add(0,0,9,—1) and add(9,9,0,2) hold,
and, hence, should be derivable; these two judgments allow the derivation of an
infinite number of other valid judgments, as, for instance, add(10, 10,19, 0) and
add (19, 19,40,0), respectively.

Also in this case we can sketch a proof of correctness: for all infinite sequences
of decimal digits 71, o and r, and all ¢ € {—1,0, 1,2}, add(ry, 72, r,c) is derivable
iff [r1] +[r2] =[r] + ¢

Completeness: By the coaxioms we trivially have that each element
add(r1,re,r,c) such that [r1] +[re] = [r] + ¢ with ¢ € {-1,0,1,2} belongs
to the closure of the coaxioms.

To show that the unique inference rule of the system is consistent with the
set of all correct judgments, let us assume that [r{] + [r5] = ['] + ¢ with
ry = dyiry, vh = doire, v = dir and ¢ € {—1,0,1,2}. Let us set s = 10¢’ + d,
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and ¢ = s —d; — ds, then s mod 10 = d and s + 10 = ¢/, and we get the desired
conclusion of the inference rule, and the side condition holds; it remains to show
that [r1] +[re] =[r] + ¢ with ¢ € {-1,0,1, 2}.

We first observe that by the properties of limits w.r.t. the usual arithmetic
operations, and by definition of [—], for all infinite sequence r of decimal digits, if
r = d:r', then [r] = 107 (d +[r']); then, from the hypotheses we get the equality
dy +[r1] + d2 +[re] = d +[r] + 10¢, and, therefore, [r1] +[r2] =[r] + ¢; finally,
since ¢ =[r1] +[r2] —[r], and 0 <[ri],[r2] ,[r] < 1, we get c € {-1,0,1,2}.

Soundness: Let v} = dy:r1, rh = da:ra, and ' = d:r be infinite sequences
of decimal digits, and ¢ € {-1,0,1,2}; we observe that the judgment
add(ry,r4,r',c) can be derived from the unique inference rule only with the
premise add(ry,rs,7,¢) where ¢ must equal 10¢’ + d — d; — dy and must range
over {—1,0,1,2}.

To prove soundness we show that if[r} | +[r5] #[r']+¢/, then add(ry, 5,1, )
cannot be derived in the inference system. Let us set &' = |[r'] + ¢ —[r]] —
[r5] |; obviously, under the hypothesis [ri] + [r5] # [*'] + ¢/, we get & > 0.
In particular, the following fact holds: if 6’ > 4 -107!, then 10¢ +d — dy —
de ¢ {—1,0,1,2}. Indeed, by the identity [r] = 1071(d +[r']) already used for
the proof of completeness, we have that & = 1071|[r] + ¢ —[r1] —[r2] |, with
c =10 +d—dy —do; 107Y([r] + ¢ —[r1] —[r2]) > 4- 107! implies ¢ > 3
(1] s[r] 5[] € [0,1]), and, hence, ¢ = 10¢' + d — dy — d2 ¢ {-1,0,1,2}. By
duality, 107'(r] + ¢ —[r1] —[r2]) < —4 - 107! implies ¢ < —2, hence ¢ =
10 +d—dy —dy & {—1,0, 1, 2}

By virtue of this fact, and thanks to the hypotheses, we can prove by arith-
metic induction over n that for all n > 1,if ¢’ > 4-10~", then there exists a finite
proof tree for add(r],ry,r’, ') where the coaxioms are applied at most at depth
n — 1. The base case is directly derived from the previously proven fact. For the
inductive step we observe that if the inference rule is applicable for deriving the
conclusion add(ry,r5,r’, ), then we can apply the inductive hypothesis for the
premise add(ry,72,7,¢) since we have already shown that ¢ = 10714, therefore
§>4-10"(m=1),

We can now conclude by observing that if [r{] +[r5] #[r'] + ¢/, then there
exists n such that ¢’ > 4-107", therefore, by the previous result, we deduce that
it is not possible to build a finite tree for add(ry,r5,r’,¢’) where the coaxioms
are applied at arbitrary depth k (in particular, k is bounded by n — 1); therefore
add(r},rh,r',¢) cannot be derived in the inference system.

From the proof of soundness we can also deduce that if we let ¢ range over Z,
then the inference system becomes unsound; for instance, add(0,0,0,1) would
be derivable, but [0] +[0] #[0] + 1:

Big-Step Operational Semantics with Divergence. It is well-known that
divergence cannot be captured by the big-step operational semantics of a
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programming language when semantic rules are interpreted inductively (that
is, in the standard way) [4,6,23]. When rules are interpreted coinductively some
partial result can be obtained under suitable hypotheses, but a practical way to
capture divergence with a big-step operational semantics is to introduce two dif-
ferent forms of judgment [14,23]: one corresponds to the standard big-step evalu-
ation relation, and is defined inductively, while the other one captures divergence,
and is defined coinductively in terms of the inductive judgment, thus requiring
stratification. Other approaches consist in considering coinductive trace-based
big-step semantics [27], and flag-based big-step semantics [29].

Syntax of terms and values
ex=v|xzl|ee v = AT.e Voo =0 | 0O
Semantic rules

e1 = Ar.e e =0V ex— v = U

1
(coax) e = 00 (val) V= v (app) €1 €2 = Voo
(l—inf) e] = o0 (r—inf) €1 =V €2 = o0
€1 €3 = OO €1 e = 00

Fig. 1. Call-by-value big-step semantics of A-calculus with divergence

With coaxioms a unique judgment can be defined in a more direct and com-
pact way. We show® how this is possible for the standard call-by-value oper-
ational semantics of the A-calculus in big-step style. Figurel defines syntax,
values, and semantic rules. The meta-variable v ranges over standard values,
that is, lambda abstractions, while v, includes also divergence, represented by
0. The evaluation judgment has the general shape e = v, meaning that either
e evaluates to a value v (when vy, # 00) or diverges (when vo, = 00).

For what concerns the semantic rules, only a coaxiom is needed, stating
that every expression may diverge. This ensures that co can be the only allowed
outcome for the evaluation of an expression which diverges; this can only happen
when the corresponding derivation tree is infinite. Rule (val) is standard. Rule
(app) deals with the evaluation of application when both expressions e; and es do
not diverge; the meta-variable v is required for the judgment es = v to guarantee
convergence of ey, while vy, is used for the result of the whole application, since
the evaluation of the body of the lambda abstraction could diverge. As usual,
e[z «+ v] denotes capture-avoiding substitution modulo a-renaming. Rules (l-inf)
and (r-inf) cover the cases when either e; or ey diverges when trying to evaluate
application, assuming that a left-to-right evaluation strategy has been imposed.

We show that the only judgment derivable for epx = (Az.z ) \z.x x is ep =
00. To this aim, we first disregard the coaxiom and exhibit an infinite derivation
tree for the judgment ep = v, derivable for all vo:

5 This example was inspired by Bart Jacobs.
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1 1
(va) Az.z x = Ax.x x (val)

(app)

Az.x x = Ax.x T (z z)[x — Az T] = Voo

(app) (z 2)[x — Az.x 2] = ea = Voo

In this particular case the derivation tree is also regular, but of course there are
examples of divergent computations whose derivation tree is not regular. The ver-
tical dots indicate that the derivation continues with the same repeated pattern.
The derivation corresponds to the coinductive interpretation of the standard
big-step semantics rules [4,23], which may exhibit non-deterministic behavior as
happens for this example; however, here the coaxiom plays a crucial role by fil-
tering out all undesired values, and, thus, leaving only the value co representing
divergence; indeed, by employing also the coaxiom, finite derivation trees can be
built for ex = v only when v, = co. By Corollary 3 we can get an infinite
sequence of approximating derivation trees of arbitrarily increasing level:

coax
( ) A = 00

(val) (val)

Az.z x = Ax.x T

(coax)

Az.x x = Az.x x (z z)[x — Az.z 2] = 00

(app) (z z)[x — Az.x ] = ea = o0

As a consequence, in the inference system with the coaxiom a valid infinite
derivation tree can be built for ex = vy only when v, = oc.

7 Related Work

Inference systems [1] are widely adopted to formally define operational seman-
tics, language translations, type systems, subtyping relations, and other rele-
vant judgments. Although inference systems have been introduced for dealing
with inductive recursive definitions, in the last two decades several authors have
focused on their coinductive interpretation.

Cousot and Cousot [14] define divergence by the coinductive interpretation
of an inference system which extends the big-step operational semantics. The
same approach is followed by other authors [16,23,30]. Leroy and Grall [23] ana-
lyze two kinds of coinductive big-step operational semantics for the call-by-value
A-calculus, and study their relationships with the small-step and denotational
semantics, and their suitability for compiler correctness proofs. Coinductive big-
step semantics is used as well to reason on cyclic objects stored in memory
[24,26], and to prove type soundness in Java-like languages [4,6]. Coinductive
inference systems are also considered in the context of type analysis and sub-
typing for object-oriented languages [7,9].

More recently, several solutions have been proposed to extend existing pro-
gramming languages to support corecursion, and are, therefore, more focused
on operational aspects, and their corresponding implementation issues; contri-
butions can be found for all main computational paradigms: logic [5,21,25],
functional [18,19], and object-oriented programming [10,11].
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For the logic paradigm, the starting point is coinductive logic programming
(coLP) [32], an extension of logic programming which provides both a declarative
and a sound but not complete operational semantics for coinductive predicates,
the former based on the notion of complete Herbrand base (finite and infinite
terms) and greatest fixed point. However, only the standard coinductive inter-
pretation is supported, and mixing between inductive and coinductive predicates
is only partially supported through stratification. Structural resolution [21] is an
extension of the operational semantics for coLP not limited to regular deriva-
tions. Other proposals [5,25] provide more flexible operational semantics. The
notion of finally clause [5] has inspired our notion of coaxiom: finally clauses
are user-defined facts that are resolved when an infinite, but regular, derivation
is detected, in replacement of the standard coinductive semantics. Despite the
existing strong correlation with this paper, the semantics of finally clauses does
not always coincide with a fixed point of the one step inference operator. Similar
considerations apply also to the work on coFJ [10,11], where with clauses play
a role similar to that of finally clauses for coLP. A first attempt to provide a
denotational model for this language, overtaken by the present work, has been
provided in [8].

CoCaml [18,19] is an extension of OCaml where the semantics of recur-
sive functions can be parametric in an equation solver which can be either pre-
defined, or explicitly provided by the programmer to support corecursion. The
intuition suggests that choosing a solver corresponds to choose a specific partial
order, in such a way that the desired function is a fixed point in the correspond-
ing CPO. Among the several proposed solvers, the pre-defined iterator solver has
an expressive power similar to that of the finally and with clauses mentioned
above.

As already mentioned, the spirit of our work is very different from that on
CoCaml, since we do not aim to extend a practical language with corecursion,
but, rather, to provide a very general framework which smoothly extends the
well-known notion of inference system, and that could be used in many useful
contexts, as shown in Sect.6. On the other hand, definitions of higher order
functions cannot be directly supported by inference systems. The foundation of
CoCaml [20] is based on the theory of recursion in the framework of coalgebras.
Our approach, instead, relies on the standard complete lattice of powersets, with
set inclusion as partial order. In this way, a single and simple model based on
classical results works uniformly for any possible recursive definition expressed
in terms of a generalized inference system.

Recursive and well-founded coalgebras [12] are a framework for generalized
structural recursion.

Completely iterative algebras [2] and corecursive and anti-founded algebras
[12] are frameworks for generalized structural corecursion; iterative algebras cor-
respond to the rational case as opposed to the coinductive one.

In guarded recursion [13,28] a judgment can be proved by also using recur-
sively the judgment itself, provided that such recursive call is guarded by intro-
duction rules. The goal, similar to ours, is to obtain a unique fixed point, however,
there is no counterpart of the guard notion in the general framework of inference
systems.
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8 Conclusion

We have presented a generalized notion of inference system by introducing coax-
ioms, to support flexible definitions of judgments by structural recursion on
non-well-founded datatypes.

Consequently, we have generalized the meta-theory of inference systems by
providing two equivalent semantics, one based on fixed points in a complete
lattice, and the other on the notion of proof tree. In the former case, the semantics
of an inference system is the greatest fixed point of its corresponding one step
inference operator, below the least pre-fixed point containing the coaxioms; in
the latter case, the standard notion of proof tree for the coinductive case is
generalized by requiring coaxioms to be applicable “at an infinite depth”.

We have provided proof techniques for proving soundness and completeness
results and shown their application to a range of different examples.

A compelling direction for further developments is exploring mechanization
in proof assistants and other proof techniques [17] for coaxioms.

A necessarily not complete prototype meta-interpreter has been implemented
in SWI-Prolog” to test the examples provided in Sects. 2 and 6. SWI-Prolog offers
a natural support to regular terms (a.k.a. cyclic terms) through unification, but
examples involving non-regular terms (or derivations) cannot terminate.

Extending the notion of coaxiom in the setting of object-oriented and func-
tional programming is more challenging, because of the gap between the under-
lying theories.

We plan to investigate the dual notion studied here: one could consider the
least fixed point above the greatest post-fixed point contained in the coaxioms,
instead of the greatest fixed point below the least pre-fixed point containing the
coaxioms. In particular, it would be interesting studying inference systems for
which the two different semantics coincide.
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Abstract. Classical Linear Logic (CLL) has long inspired readings of
its proofs as communicating processes. Wadler’s CP calculus is one of
these readings. Wadler gave CP an operational semantics by selecting
a subset of the cut-elimination rules of CLL to use as reduction rules.
This semantics has an appealing close connection to the logic, but does
not resolve the status of the other cut-elimination rules, and does not
admit an obvious notion of observational equivalence. We propose a new
operational semantics for CP based on the idea of observing communi-
cation. We use this semantics to define an intuitively reasonable notion
of observational equivalence. To reason about observational equivalence,
we use the standard relational denotational semantics of CLL. We show
that this denotational semantics is adequate for our operational seman-
tics. This allows us to deduce that, for instance, all the cut-elimination
rules of CLL are observational equivalences.

1 Introduction

Right from Girard’s introduction of Classical Linear Logic (CLL) [16], it has
appeared to offer the tantalising hope of a “Curry-Howard for Concurrency”:
a logical basis for concurrent computation, analogous to the standard Curry-
Howard correspondence between intuitionistic logic and sequential computation
in typed A-calculi [10,18]. To realise this hope, Abramsky proposed a programme
of “Processes as Proofs” [2] in the early nineties. Abramsky [1] and Bellin and
Scott [7] interpreted CLL proofs as terms in process calculi, matching (Cur)-
reduction to process reduction. However, these correspondences interpret CLL
proofs in an extremely restricted set of processes — those which never deadlock and
never exhibit racy or nondeterministic behaviour — and so their correspondences
could reasonably be criticised as not really capturing concurrency. Ehrhard and
Laurent [14] attempted to remedy this problem by demonstrating a correspon-
dence between a finitary m-calculus and Differential Linear Logic. However, their
work was forcefully criticised by Mazza [23], who points out that there are crucial
differences in how both systems model nondeterminism, and further states:

[...] all further investigations have failed to bring any deep logical insight
into concurrency theory, in the sense that no concurrent primitive has
found a convincing counterpart in linear logic, or anything even remotely
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resembling the perfect correspondence between functional languages and
intuitionistic logic. In our opinion, we must simply accept that linear
logic is not the right framework for carrying out Abramsky’s “proofs as
processes” program (which, in fact, more than 20 years after its inception
has yet to see a satisfactory completion).

Despite the apparent failure of Abramsky’s programme for concurrency, there
has recently been interest in using Linear Logic as a basis for calculi of struc-
tured communication, also known as session types. Session types were originally
proposed by Honda [17] in the context of the w-calculus as a way to ensure
that processes conform to a protocol. The linear logic-based study of session
types was initiated by Caires and Pfenning [9], who presented an assignment of
m-calculus terms to sequent calculus proofs of Intuitionistic Linear Logic (ILL)
that interprets the connectives of ILL as session types in the sense of Honda.
The fundamental ideas of Caires and Pfenning were later adapted by Wadler to
CLL [35,36], yielding a more symmetric system of “Classical Processes” (CP).

Wadler presents CP as a calculus with an associated reduction relation, and
shows that there is a type preserving translation into Gay and Vasconcelos’
functional language with session-typed communication [15]. This translation was
later shown to also preserve reduction semantics, and to be reversible, by Lindley
and Morris [20], establishing that CP can be seen as a foundational calculus for
session-typed communication.

In this paper, we take a more direct approach to CP. We treat CP as a pro-
gramming language in its own right by endowing it with an operational seman-
tics, a notion of observational equivalence, and a denotational semantics. We
do this for several reasons: (i) if CLL is intended as a logical foundation for
programming with structured communication, there ought to be a way of inter-
preting CP processes as executable artefacts with observable outputs, which, as
we argue below, Wadler’s reduction semantics does not; (i) establishing a theory
of observational equivalence for CP resolves the status of the (Cur)-elimination
rules on non-principal cuts by reading them as observational equivalences; and
(iii) we can use the rich theory of denotational semantics for CLL (see, e.g.,
Mellies [25]) to reason about observational equivalence in CP. We further envis-
age that the introduction of denotational semantics into the theory of CP and
session types will lead to further development of CP as a foundational calculus
for session-typed communication.

1.1 Problems with Wadler’s Reduction Semantics for CP
Our starting point is in asking the following question:
What is the observable output of a CP process?

The semantics proposed by Wadler [36] defines a reduction relation between CP
processes, derived from the CuT-elimination rules for principal cuts. For example,
processes that transmit and receive a choice interact via the following rule:

ve.(z[i].P | z.case(Qo, Q1)) = va.(P | Qi)
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Here, a shared communication channel is established by the va.(— | —) construct,
which is the syntax for the (Cut) rule. The x[i].P emits a bit 7 along channel x
and continues as P, while z.case(Qq, Q1) receives a bit along = and proceeds as
Qo or Q7 according to the value of that bit.

A problem arises with CP processes that have free channels that are not
connected to any other process. Since CP uses 7w-calculus notation, there is a
relatively rigid left-to-right sequentialisation of actions. This means that the
presence of attempts to communicate along unconnected channels can block
other communication. An example is the following process, where communication
along the unconnected z’ channel blocks the communication across z:

vr.(2'[0].x[1].P | z.case(Qo, Q1))

This arrangement corresponds to (CuT)-elimination for a “non-principal” cut,
i.e. the formula being cut in is not the last one introduced on both sides. In these
cases, (Cur)-elimination commutes the offending rule past the (Cur) rule:

2’ [0].vz.(x[1].P | z.case(Qo, Q1))

The rules that perform these rearrangements that do not correspond to any
actual communication are referred to as “commuting conversions”. They serve
to bubble “stuck” communication to the outermost part of a process term.

With the reduction rules as proposed, we have two answers to our question.
If a CP process P has no free channels, then we can always apply reduction rules
corresponding to actual interaction, but we will never see the results of any of
these interactions. Since CP is strongly normalising (a property it inherits from
CLL [3]), all closed processes have the same termination behaviour, so this does
not distinguish them. (CP, as presented by Wadler, does not admit completely
closed processes unless we also include the (MiXg) rule, as we do here.)

Alternatively, if a CP process P has free channels, then we can use the
commuting conversion rules to move the stuck prefixes to the outermost layer.
We could then either proceed to eliminate all (Cut)s deeper in the process term,
or we could halt immediately, in the style of weak reduction in the A-calculus.

This approach is appealing because it corresponds to the similar approach
to defining the result of A-calculus/proof-term reduction in sequential program-
ming. We could also define a natural equivalence between CP processes in terms
of barbed bisimulations [26], using the topmost action as the barb. However, in
a multi-output calculus like CP, we run into ambiguity. The process:

va.(y[0].2[1].P | 2[0].z.case(Qo, Q1))
can be converted in two steps to:

y[0].2[0].vz.(z[1] | z.case(Qo, Q1)) or z[0].y[0].vz.(x[1] | z.case(Qo, @1))

Intuitively, these processes are equivalent. Processes connected to distinct chan-
nels in CP are always independent so it is not possible for any observer to
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correlate communication over the channels y and z and to determine the dif-
ference between these processes. We could treat all CP processes quotiented by
these permutations, but that would presuppose these equivalences, rather than
having them induced by the actual behaviour of CP processes. (Bellin and Scott
do such an identification in [7], pg. 14, rule (1).) If we were to define obser-
vational equivalence of CP processes via barbed bisimulation of CP processes
up to permutations, then we would be effectively building the consequences of
linearity into the definition of equivalence, rather than deducing them.

Another approach to resolving the non-determinism problem is to restrict
processes to having one free channel that is designated as “the” output channel.
With only one channel there can be no ambiguity over the results of the ordering
of commuting conversions. This is the path taken in Caires and Pfenning’s [9]
ILL-based formalism. Pérez et al. [27] define a notion of observational equiva-
lence for Caires and Pfenning’s system based on a Labelled Transition System
(LTS) over processes with one free channel. CLL, and hence CP, do not have
a notion of distinguished output channel. Indeed, it is not immediately obvious
why a process dealing with multiple communication partners ought to designate
a particular partner as “the one” as Caires and Pfenning’s system does.

1.2 A Solution: Observed Communication Semantics

We appear to have a tension between two problems. CP processes need partners
to communicate with, but if we connect two CP processes with the (Cut) rule we
cannot observe what they communicate! If we leave a CP process’s channels free,
then we need reduction rules that do not correspond to operationally justified
communication steps, and we admit spurious non-determinism unless we make
ad-hoc restrictions on the number of free channels.

Our solution is based on the idea that the observed behaviour of a collection of
processes is the data exchanged between them, not their stuck states. In sequential
calculi, stuck computations are interpreted as values, but this viewpoint does not
remain valid in the world of message-passing communicating processes.

We propose a new operational semantics for CP on the idea of “visible”
applications of the (Cut) rule that allow an external observer to see the data
transferred. We define a big-step evaluation semantics that assigns observations
to “configurations” of CP processes. For example, the configuration:

Fe z[l].2]] |» z.case(z().0,2().0)::- |z: 11

consists of a pair of CP processes z[1].z[] and z.case(z().0,2().0) that will com-
municate over the public channel z, indicated by the |, notation. The split typing
context on the right hand side indicates that there are no unconnected channels,
-, and one observable channel z : 1 @ 1.

Our semantics assigns the observation to (1, %) to this configuration:

(z[1].z]] |& z.case(z().0,2().0)) | (1,x*)

This observation indicates that “1” was transferred, followed by “end-of-session”.
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Observations in our operational semantics are only defined for configurations
with no free channels. Hence we do not have the problem of processes getting
stuck for lack of communication partners, and the rules of our operational seman-
tics (Fig. 3) are only concerned with interactions and duplication and discarding
of servers. There is no need for non-operational steps.

Our operational semantics enables us to define observational equivalence
between CP processes in the standard way: if two processes yield the same
observed communications in all contexts, then they are observationally equiva-
lent (Definition 1). We will see that the (Cur)-elimination rules of CLL, seen as
equations between CP terms are observational equivalences in our sense (Sect. 5).

Proving observational equivalences using our definition directly is difficult,
for the usual reason that the definition quantifies over all possible contexts.
Therefore, we define a denotational semantics for CP processes and configura-
tions, based on the standard relational semantics for CLL (Sect. 3). This denota-
tional semantics affords us a compositional method for assigning sets of potential
observable communication behaviours to CP processes and configurations. In
Sect. 4 we show that, on closed configurations, the operational and denotational
semantics agree, using a proof based on | | -closed Kripke logical relations. Cou-
pled with the compositionality of the denotational semantics, adequacy yields a
sound technique for proving observational equivalences.

1.3 Contributions
This paper makes three contributions to logically-based session types:

1. In Sect.2, we define a communication observing semantics for Wadler’s CP
calculus. This semantics assigns observations to “configurations” of processes
that are communicating over channels. The data communicated over these
channels constitutes the observations an external observer can make on a net-
work of processes. Our semantics enables a definition of observational equiv-
alence for CP processes that takes into account the restrictions imposed by
CP’s typing discipline.

2. In Sect. 4, we show that the standard “folklore” relational semantics of CLL
proofs (spelt out in Sect. 3) is adequate for the operational semantics via a
logical relations argument. Adequacy means that we can use the relational
semantics, which is relatively straightforward to calculate with, to reason
about observational equivalence. An additional conceptual contribution is the
reading of the relational semantics of CLL in terms of observed communica-
tion between concurrent processes.

3. We use the denotational semantics to show that all of the standard Cut-
elimination rules of CLL are observational equivalences in our operational
semantics, in Sect. 5. This means that the CuTt-elimination rules can be seen as
a sound equational theory for reasoning about observational equivalence. We
also show that permutations of communications along independent channels
are observational equivalences.

In Sect. 7, we assess the progress made in this paper and point to areas for future
work.
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2 Observed Communication Semantics for CP

2.1 Classical Processes

Wadler’s CP is a term language for sequent calculus proofs in Girard’s Classical
Linear Logic (CLL), with a syntax inspired by the m-calculus [31].

Formulas. The formulas of CLL are built by the following grammar:
AB:=1|1L|AQB|ABB|A®B|A&B|!A|7A

The connectives of CLL are collected into several groupings, depending on their
proof-theoretic behaviour. As we shall see, these groupings will also have rele-
vance in terms of their observed communication behaviour.

The connectives 1, 1, ® and 23 are referred as the multiplicatives, and @ and &
are the additives. Multiplicatives correspond to matters of communication topol-
ogy, while the additives will correspond to actual data transfer. The ! and ?
connectives are referred to as the exponential connectives, because they allow
for unrestricted duplication of the multiplicative structure. Another grouping of
the connectives distinguishes between the positive connectives 1, ®, @, and !
that describe output, and the negative connectives 1,29, & and ? that describe
input. Positive and negative are linked via duality: each A has a dual A~:

1t =1 1i=1
(A@B)t=Al%3BL  (AxB)L=AlgBL
(Ao Bt =ALt&Bl (A&B)‘=AlaBL
(1A4)+ =74+ (7A)*t =14+

The key to the structure of the CP calculus is that CLL formulas are types
assigned to communication channels. Duality is how we transform the type of
one end of a channel to the type of the other end. Hence the swapping of positive
and negative connectives: we are swapping descriptions of input and output.

Ezample. The additive connective @ indicates the transmission of a choice
between two alternative sessions. Using the multiplicative unit 1 to represent
the empty session, we can build a session type/formula representing transmis-
sion of a single bit, and its dual representing the receiving of a single bit:

Bit=1&1 Bitt =1& |

With these, we can build the type of a server that accept arbitrarily many
requests to receive two bits and return a single bit:

Server = !(Bit* 23 Bit™ 3 Bit ® 1)

We read this type as making the following requirements on a process: the outer !
indicates that it must allow for arbitrarily many uses; it then must receive two
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Fig. 1. Classical processes

bits, transmit a bit, and then signal the end of the session. We obtain the type
of a compatible client by taking the dual of this type:

Client = Server™ = ?(Bit ® Bit ® Bit* %3 L)

We read this as requirements that are dual to those on the server: the 7 indicates
that it can use the server as many times as necessary, whereupon it must transmit
two bits, receive a bit and receive an end of session signal.

Processes. Processes in CP communicate along multiple named and typed chan-
nels, which we gather into contexts I"' = x1 : Ay,...,x, : A, where the channel
names x; are all distinct, and we do not care about order.

The syntax of processes in CP is given by the grammar:

PQu=z <2 [va.(PQ) 0| z] | z().P | z[].(P|Q) |
z(z').P | z[i].P | z.case(P, Q) | 7z[z'].P | lz(z').P ~ where i€ {0,1}
The rules defining CP are given in Fig. 1. They define a judgement -~ P:: I,

indicating that P is well-typed with respect to type assignment I'. We differ
from Wadler by writing P to the right of the I-; it is not an assumption.
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The rules are divided into four groups. The first group are the structural
rules: (Ax) introduces a process linking two channels, note the use of duality
to type the two ends of the link; (Cur) establishes communication between two
processes via a hidden channel z, again note the use of duality; and (Mixg) is
the nil process which performs no communication over no channels.

The second group contains the multiplicative rules. Following Wadler’s nota-
tion, square brackets [---] indicate output and round brackets (---) indicate
input. Thus (1) introduces a process that outputs an end-of-session signal and
dually (L) introduces a process that inputs such. Likewise, (®) introduces a
process that outputs a fresh channel name for a forked-off process P to com-
municate on, and dually (%) inputs a channel name for it to communicate on in
the future. Neither of these pairs communicates any unexpected information. By
duality, if a ® process is going to send a channel and fork a process, then it is
communicating with a2y process that is ready to receive a channel and commu-
nicate with that process. In our semantics in Sect. 2.3, multiplicative connectives
affect the structure of observations, but not their information content.

Processes that communicate information are introduced by the additive rules
in the third group. The process introduced by () transmits a bit ¢ along the
channel z, and continues using x according to the type A4;. Dually, (&) introduces
processes that receive a bit, and proceed with either P or ) given its value.

The final group covers the exponential rules. The rule (!) introduces an infi-
nitely replicable server process that can communicate according to the type A on
demand. To ensure that this process is infinitely replicable, all of the channels it
uses must also be connected to infinitely replicable servers, i.e., channels of type
?A;. We indicate the requirement that all the channels in I" be of 7°d typed by
the notation ?I". Processes introduced by the (?) rule query a server process to
obtain a new channel for communication. The exponentials are given their power
by the structural rules (C') and (W). Contraction, by rule (C) allows a process
to use the same server twice. Weakening, by the rule (W) allows a process to
discard a channel connected to a server.

Example. As a programming language, CP is very low-level. We make use of
the following syntactic sugar (from [4]) for transmitting and receiving bits along
channels of type Bit and Bit™:

«[0].P = zfy].(y]
a[1).P = zfy].(y]
case z.{0 — P;1— Q} o z.case(z().P,z().Q)

0yl

Using these abbreviations, we can write an implementation of our Server type
that computes the logical AND of a pair of bits:

F 12 (y).y(p)-y(q)-case p.{
0 — case ¢.{0 — y[0].y[}; 1 — y[0].y[};
1 — case ¢.{0 — y[0].y[}; 1 — y[1].y[]}} ::  : Server
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This process creates an infinitely replicable server via (!), receives two channels
via (%), receives two bits along them, and in each case transmits the appropriate
returned value and signals end of session. A dual client process is written so:

F ?z[y].y[1].y[1].case y.{0 — y().0; 1 — y().0} :: z : Client

This process contacts a server, sends the bit 1 twice, and then, no matter the
outcome, receives the end of session signal and halts.

2.2 Configurations

The well-typed process judgement = P:: I relates processes P to unconnected
channels I'. When processes communicate via the (CuT) rule, that commu-
nication is invisible to external observers: the common channel z is removed
from the context. In order to make communication visible, we introduce con-
figurations of processes. A configuration . C'::I" | © has unconnected chan-
nels I' and connected but observable channels ©. Observable channel contexts
© =x,: Ay,...,x, : A, are similar to normal channel contexts I', except
that we identify contexts whose type assignments are the same up to duality.
Thus, as observable channel contexts, z : A ® B,y : C & D is equivalent to
x: AR B,y : C & D. We make this identification because the CLL connectives
encode two things: (i) the form of the communication and (i) its direction (i.e.,
whether it is positive or negative). When observing communication, we are not
interested in the direction, only the content. Hence identification up to duality.
Configurations are defined using the rules in Fig. 2. The rule (crGProc) treats
processes as configurations with unconnected channels and no publicly observ-
able channels. The (craCut) rule is similar to the (Cut) rule in that it puts two
configurations together to communicate, but here the common channel is moved
to the observable channel context instead of being hidden. The remainder of
the rules, (CFGO0), (cFGW), and (crcC) are the analogues of the structural rules
of CP, lifted to configurations. The rule (crcC) is required to contract chan-
nel names appearing in two separate processes in a configuration, and (crFGW)
is required for weakening even when there are no processes in a configuration.
There are no contraction or weakening rules for observable contexts ©. Such
contexts record connected channels, which cannot be discarded or duplicated.

FP:I
——  (cFGPROC) —— (CFG0)
FePuI|- FeOQ:u- |-
FeCroTi,z: A6y FCCQ:FQ,x:AJﬂ@Q
(craCur)
'_c C(1 |.I‘ CQ ZZF1,F2|@1,@2,I:A
F.CT|O FeC Tz :7A,20:7A| O
(CFGW) (crcC)
FoCuTz:7A]0 Fo C{z1/x2} i Tz : 7A | O

Fig. 2. Configurations of classical processes
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We define a structural congruence Cy = C5 on configurations, generated by
commutativity and associativity (where permitted by the typing) for |, with 0
as the unit. Structural congruence preserves typing.

A configuration with no unconnected channels, . C'::- | O, is called a closed
configuration of type ©. Closed configurations will be our notion of complete
systems: the observed communication semantics we define below in Sect. 2.4 is
only defined for closed configurations.

Ezample. Continuing our example from above, we can connect the server process
ServerP to the client process ClientP in a configuration with a visible commu-
nication channel z, using the (craCut) rule:

k. ServerP |, ClientP ::- | x : Server

Note that this configuration also has typing . ServerP |, ClientP ::- | z : Client
due to the conflation of dual types in observation contexts.

2.3 Observations

Our observed communication semantics assigns observations to closed configu-
rations. The range of possible observations is defined in terms of the types of the
channels named in ©. As stated above, observations only track the data flowing
across a communication channel, not the direction. Therefore, the positive and
negative connective pairs each have the same sets of possible observations:

[1] = [1] = {x}

[A® B] =[A% B] [A] x [B]
[[Ao ® A1]] = [[Ao & Alﬂ = Eie{O,l}' [[Al]]
['A] = [?4] = M;([A])

where My (X) denotes finite multisets with elements from X. We will use the ()
for empty multiset, W for multiset union, and {ay, ..., a,| for multiset literals.
The sets of possible observations for a given observation context © = 7 :

Aq,...,x, : A, are defined as the cartesian product of the possible observations
for each channel: [O] = [z1 : A1,...,zn : Ap] = [A1] x -+ x [AL]-

2.4 Observed Communication Semantics

Observable evaluation is defined by the rules in Fig. 3. These rules relate closed
configurations ., C'::- | © with observations 6 € [©]. To derive C' || 0 is to say
that execution of C' completes with observed communication 6. For convenience,
in Fig.3, even though observations 6 are tuples with “anonymous” fields, we
refer to the individual fields by the corresponding channel name. The rules in
Fig. 3 makes use of the shorthand notation C[—] to indicate that the matched
processes involved in each rule may appear anywhere in a configuration.

The first rule, (STop), is the base case of evaluation, yielding the trivial obser-
vation () for the empty configuration. The next three rules, (LiNk), (Comm),



66 R. Atkey

CIC'{z/y}] ¥ Olz — a]

g &P Cleoyl, O 40k maymra ")
CIPLQ4oa  Clo4e ClP 0
Ca P ve O™ Cve Y CRlh e0P b o s
CIP 1y (Q | B)) U 0l — avy — b
Clalyl-(PIQ) |- 2(y)-R) U 0l > (@8] =)
CP 1. Q1] U bl
CLLP L z.case(Qo, Q0] ¥ 0l = (ia) o)
cPLadd clc b0 -
Clle(y) P I, 24.Q) I 0z > 1a) Clle(y)-P |- C'] U 0 v 0]
(W)L |y (220)-P g CNY Olrr v 22 2 Bl () O C=C

Cllz1(y).P |oy C'{z1/22}] I 0lz1 — W F] ¢l

Fig. 3. Observed communication semantics

and (0) describe the behaviour of the processes introduced by the (Ax), (Cur)
and (MIXg) rules respectively. (LINK) evaluates links via substitution of chan-
nel names; and the observed communication across the link is shared between
the two channels. (Comm) evaluates two processes communicating over a pri-
vate channel by evaluating them over a public channel and then hiding it. (0)
evaluates the empty process 0 by turning it into the empty configuration 0.

The rules (11), (®2), (®&) and (!?) describe how processes introduced by
dual pairs of rules interact across public channels, and the observed communica-
tion that results. For (1.1), the trivial message * is sent. For (®%), communica~
tion that occured across two independent channels is grouped into one channel.
For (®&), a single bit, ¢ is transmitted, which is paired with the rest of the
communication. For (17), an observation arising from a single use of a server is
turned into a multiset observation with a single element.

The rules (!W) and (!C) describe how server processes are discarded or dupli-
cated when they have no clients or multiple clients respectively. In terms of
observed communication, these correspond to multiset union (W) and the empty
multiset (@), respectively. Finally, the (=) rule states that configuration seman-
tics is unaffected by permutation of processes (we have elided the matching
reordering within 6, following our convention of using channel names to identify
parts of an observation).

Example. Our operational semantics assigns the following observation to the
configuration we built at the end of Sect. 2.2:

(ServerP |, ClientP) | (1((1,%),(1,%),(1,%),%)f)
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We observe the two 1-bits sent by the client, the 1-bit returned by the server,
and the final * indicating end of session. The additional s accompanying each
bit are an artifact of our encoding of bits as the formula 1 1.

2.5 Observational Equivalence

Observational equivalence between a pair of processes is defined as having the
same set of observations in all typed contexts. By its definition in terms of typed
contexts C'P[—], our definition of observational equivalence takes into account
the (in)abilities of typed processes to interact with each other. In particular,
the inability of CP processes to distinguish permutations of actions on distinct
channels yields a family of observational equivalences (Fig.8).

Our definition of observational equivalence is defined in terms of typed con-
texts CP[—], which consist of configurations and processes with a single (typed)
hole. Compared to the configuration contexts C[—] in Fig.3, configuration-
process contexts allow the hole to appear within a process.

Definition 1. Two processes = Py, Py :: I' are observationally equivalent, writ-
ten Py ~ Py, if for all configuration-process contexts CP[—] where . CP[P]:: - |
O and k. CP[Ps]::- | O, and all 0 € [O], CP[P] | 6 & CP[P] | 6.

Reasoning about observational equivalence is difficult, due to the quantification
over all contexts. In the next two sections, we present a denotational semantics
of CP which is sound for reasoning about observational equivalence.

3 Denotational Semantics of CP

The observed communication semantics of the previous section assigns obser-
vations to closed configurations. To reason about open configurations and
processes, and hence observational equivalence, we require a semantics that
assigns observations to processes and open configurations. We do this via a deno-
tational semantics that interprets processes and open configurations as relations
between the possible observations on each of their channels. Since CP processes
are a syntax for CLL proofs, our denotations of processes will be identical to the
relational semantics of proofs in CLL (see, for example, Barr [6]). We extend this
semantics to configurations by interpreting them as relations between observa-
tions on their unconnected channels and observations on their connected chan-
nels. Compared to other denotational semantics for process calculi (e.g. [30,32]),
this semantics is notable in its non-use of traces, synchronisation trees, or other
temporally ordered formalism to record the I/O behaviour of processes. This
is due to the linearity constraints imposed by the typing rules inherited from
CLL, which enforce the invariant that distinct channels are completely indepen-
dent. A trace-based semantics would impose an ordering on actions performed by
processes which is not observable by a CP context. This “temporal-obliviousness”
speaks to the point that CP is about structured communication determined by
types, not about concurrency. We return to this in Sect.5 when we discuss the
observational equivalences between processes that permute independent actions.

In Sect. 4, we will see that on closed configurations the operational semantics
and the denotational semantics agree.
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3.1 Semantics of Formulas

The semantics of formulas does not take into account whether data is being
transmitted or received; the relational semantics of CLL is sometimes referred
to as “degenerate” in this sense. We discuss this further in Sect.3.4. For now,
we use the same interpretation of formulas as we did for observation contexts in
Sect. 2.3:

[1] = [1] = {x}
[A®B] =[A%B] =][A]x[B]
[Ao ® A1] = [Ao & A1] = Zicqo,13- [Ad]
['A] = [74] = M;([A])

The sets of possible observations for a given context I" = xq : Ay,...,x, : Ap
are again defined as the cartesian product of the sets for each of the A;:

[I] =[x1: A1, .. oyzn s An] = [Ar] x -+ x [A4]

3.2 Semantics of Processes

The basic idea of the semantics of processes is that if (a1,...,a,) € [F P17,
then (ai,...,a,) is a possible observed behaviour of P along its unconnected
channels. So, to every - P:: I', we assign a subset of the interpretation of I

[FP::I'] C[I]

by induction on the derivation of F P::I'. The (Ax) rule is interpreted by the
diagonal relation, indicating that whatever is observed at one end of the linked
channels is observed at the other:

[Fzeyuz:Ay: At ={(a,a) | a € [A]}

The (Cur) rule is interpreted by taking observations from both processes that
share a common observation along the shared channel:

[Fve.(P|Q):T,A] ={(v,9) | (v,a) € [F P:: I,z : A],
(6,a) € [F QA z: AL}

The (MiXg) rule is interpreted as the only possible observation in an empty
context:

[F0:]={}
The multiplicative units observe trivial data:

[Faf]:x:1] ={(%)}
[Fz().PuT,x: L] ={(y,*) |vye[FP:I]}
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For the multiplicative binary connectives, the (®) rule is interpreted by combin-
ing the interpretations of its two subprocesses into a single observation; while
the (%) rule is interpreted by pairing the observations on two channels into one.

[Fzlyl.(PIQ):I'Az: A® B] = {(7,96,(a,b)) | (v,a) € [F P11y : A],
(6,b) e[F Q= A,z : B]}
[Fx(y).P:Tx: A% B] = {(vy,(a,0) | (v,a,0) € [F P::I,y: A,z : B]}

For the additive connectives, sending bits via the (®;) rules is interpreted by
prepending that bit on to the observation on that channel; and receiving a bit
via (&) is interpreted by taking the union of possible observations:

[Fzfi].P:Tz: Ao ® A1) = {(v, (¢,a)) | (v,a) € [F P x: A}
[F x.case(Py, Py) = Tz : Ag & A4]
=Uicro{(v: (,0)) [ (v,0) € [F P T A}

For the exponential connectives, a “server” process introduced by the (1) rule
is interpreted as the multiset of k-many observations of its underlying process,
taking the union of their auxillary observations on the context ?I". A “client”
process introduced by (7) makes a singleton multiset’s worth of observations:

[Flw(y).P 20w 1A] = (W5 b, Wi ol Qan, . ) |
Vie{l,...,k}.

(af,...,ala;) €[ Putly: Al}

2

[F?z[yl.P:Tx:7A] = {(v,1al}) | (v,a) € [F P:T,y: A]}

The exponential structural rules dictate how singleton observations from client
processes are combined, or channels are discarded. Contraction (C) is interpreted
via multiset union, and weakening (W) is interpreted by the empty multiset:

[F P{zi/xe} = Tyx1 : TA] = {(v, 01 Waz) |
(v,o1,0a0) € [F Pulxy : 7A 20 : 7A]}
FP:Iax:?A] ={(v,0)|ve[FP=:I]}

When these rules are put into communication with servers generated by (!) they
will dictate the multiplicity of uses of the server process.

Ezxample. We compute the denotation of the process ServerP from our running
example to be the set of arbitrarily sized multisets of possible interactions with
the underlying process:

[ServerP] = {la1,...,arl | Vi.a; € S}

where the underlying process’s denotation includes all possible 22 possibilities
for inputs and relates them to the corresponding output (their logical AND):

S = {((b1, %), (ba,*), (by Aba,x),*) | by € {0,1},by € {0,1}}
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The client’s denotation is a singleton multiset (recording the fact that it uses
the server only once). Dually to the server’s denotation, the first two bits are
determined but the last one is completely undetermined because we cannot know
what the response from the server will be.

[ClientP] = {1((1, %), (1,%), (b,*),*)] | b € {0,1}}

3.3 Semantics of Configurations

The denotational semantics of configurations extends the semantics of processes
to include the connected channels. Configurations . C':: I" | © are assigned sub-
sets of [I'] x [@]. The idea is that, if ((a1,...,a,), (b1,...,bn)) € [Fc. C:: I | O],
then (ai,...,a,) and (b1,...,b,) are a possible observed behaviour of C' along
its unconnected and connected channels respectively. We assign denotations to
each configuration by structural recursion on their derivations:

[Fe 0::- | [ ={(x%)}
[Fe P=T ] ={(7,%) |y € [F =TT}
[[Fc Cl |x CQSZFl,FQ ‘ 61,92,$2AH
{((717'72)’(‘917927a)) ‘ ((71,a),01) € [[l_c Ciulz: A @1]]7
(("}’2, ),92) S [[FC CQISFQ,Z : AJ‘ | 92]]}
[[l_c Culix:TA ‘ QH = {((77@) 0) ‘
[[l_c C{.’L‘l/.’L'Q}ZZF,Ltl :7A | @]‘] =

(v,0) e[F. C::T | O]}
{((v,a1 Wag),0) | ((v,a1,a2),0) € [Fc C:T 21 : 7A, 22 : 7A | O]}
The interpretation of (CFG0), (craC), and (craW) are similar to the analogous
rules for processes. The interpretation of (craCuT) is also similar, except that the
observation on the shared channel is retained. The interpretation of (creProc)
lifts interpretations of processes up to configurations with no connected channels.

Ezample. Using the above rules, we compute the denotation of our example
configuration linking our server to its client:

[Fe ServerP |, ClientP ::- | x:: Server] = {{((1,%), (1,%), (1,%),%)§}

The denotation is the set with the single observation we computed in Sect. 2.4
for this configuration. In Sect. 4, we will see that this is no accident.

3.4 More Precise Semantics?

As we noted in Sect. 3.1, the relational semantics of CLL assigns the same inter-
pretation to the positive and negative variants of each connective. Thus, the
semantics of formulas do not model the direction of data flow for inputs and
outputs. The logical relations we will define in Sect. 4 will refine the semantics
of formulas to identify subsets of the observations possible for each formula that
are actually feasible in terms of the input/output behaviour of connectives, but
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it is also possible to perform such a refinement purely at the level of the deno-
tational semantics. Girard’s motivating semantics for CLL was coherence spaces
[16], which can be seen as a refined version of the relational semantics where
particular distinguished subsets, cliques, are identified as the possible denota-
tions of processes. The defining property of coherence spaces is that for every
clique « in a coherence space and every clique § in its dual, the intersection
a N has at most one element. The coherence space semantics can be extended
to configurations by stipulating that subsets X assigned to configurations must
satisfy the property that if (71, 61) and (72, 62) are both in X, then whenever ;
and v are coherent (i.e., {71,72} is a clique), then 61 = 5. The semantics for
configurations in Sect. 3.3 satisfies this property, and the adequacy proof in the
next section goes through unchanged.

Operationally, this means that CP processes can only interact in at most one
way. Therefore, using a coherence space semantics would consistute a semantic
proof of determinacy for CP with our semantics. It might be possible to go
further and use Loader’s totality spaces [22], which stipulate that cliques in dual
spaces have exactly one element in their intersection, to also prove termination.
However, the construction of exponentials in totality spaces is not clear.

4 Adequacy

We now present our main result: on closed configurations, the operational and
denotational semantics agree. Consequently, we can use the denotational seman-
tics to reason about observational equivalences between CP processes (Sect. 5).

Theorem 1. Ift.C::- | O, then C | 0 iff 0 € [F. C::- | O].

The forwards direction of this theorem states that if an observation can be
generated by the evaluation rules, then it is also within the set of possible obser-
vations predicted by the denotational semantics. This is straightfoward to prove
by induction on the derivation of C' |} §. The backwards direction, which states
that the denotational semantics predicts evaluation, is more complex and occu-
pies the rest of this section.

4.1 Agreeability via | | -Closed Logical Relations

We adapt the standard technique for proving adequacy for sequential languages
[28] and use a logical relation to relate open configurations with denotations. For
each channel name z and CLL formula A, we use ternary relations that relate
observable contexts, denotations, and configurations, which we call agreeability
relations:

X C ZO:0bsCixt. P([A] x [O]) x Cfg(z : A| ©) (1)

where ObsCtxt is the set of observable contexts, P is the power set, and Clg(x :
A | ©) is the set of well-typed configurations . C'::x : A | ©. We are interested
in special agreeability relations: those that are closed under double negation.
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Negation. Given an agreeability relation X for a channel x : A, its negation
X+ is an agreeability relation for x : A+. Intuitively, if X identifies a set of
configurations and denotations with some property, then X is the set of con-
figurations and denotations that “interact well” with the ones in X. For our
purposes, “interact well” means that the communication we observe when the
two configurations interact is predicted by their associated denotations.

Definition 2 (Negation). Let X be a relation for x : A as in (1). Its negation
X+ is a relation for x : AL, defined as:

X+t ={©,a,0)|Y(O,a,C)c X,0,0a.
(a,0) ean(a,bd)ed = (Cl|,C)I(0,0,a)}

We are interested in agreeability relations that are L |-closed: X+ = X. These
are related denotations and configurations that “interact well with anything
that interacts well with them”. This kind of double-negation closure was used
by Girard [16] to construct the Phase Space semantics of CLL and to show
weak normalisation. Ehrhard notes that double-negation closure is a common
feature of many models of CLL [13]. Double-negation, (-)*~, has the following
properties, which mean that it is a closure operator [12]:

Lemma 1. 1. X C X++;
2. If X CY, thenY+ C X+;
3. X+ =X+,

By (3), X+ is automatically 1 L-closed for any agreeability relation X.

Duplicable and Discardable. We generalise the duplicable and discardable capa-
bility of I’d processes (the (!C) and (W) rules) to arbitrary configurations with
one free channel of !’d type:

Definition 3 (Duplicable and Discardable). A configurationt-. C =z : 1A |
21 1By, ... 2 2 1By s

1. duplicable if, for all . C" :: I,z : 2AL 2’ : 7AL | O,

DUC" |o C) o C{&'J, 21/ 215 25 20 3] U

=, 21 = Q1,...,2p > Qp,
!/ ! ! !/ !/ !/
= a2 a2 el
implies
D[C'{z/2'} | ClJOlx — aWa ,z1 — oy Wi, ..., 2z, — a, Wal]

2. discardable if, for all . C':: " | ©, D[C'] | 0 implies that D[C' |, C] |
Ol — 0,21 — 0,..., 2, — 0].

The definition of duplicability uses the (craC) rule to ensure that the second
configuration is well-typed. Likewise, discardability uses the (craW) rule. The
next lemma states that configurations built from duplicable and discardable
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[z :1] ={( {*} C)|C =z}
[z : 1] :[[:5.1]
[z: A®B] ={((©,0),0,0)|C = (- ([]. (P |P) ly; D)+ |y, Dn),
={((a,0),0',0) | (a,0') € B, (b,0) € B},
(9'7ﬂ'>( (P |y D1)-- |y, D)) € [2": A],
( ) 7( (P ‘yl Dl) ‘yn Dn)) € [[x : B]]}LL

[x: A% B] :[[x:AJ‘(X)BJ‘]]J‘
[[xZA()@A1H:{(9,0Z,C)|C (

a =

“(@[i].P |y; D1)- -+ |y, Dn),
((i,a),0) | (a,0) € B},
(8,8,(-+-(Ply, D1)-+ |y, Dn)) € [z: A}
[#: Ao & Ai] = [z : Ag @ AL ]+
[+:14]  ={(?0,0,C) | C= (- (a(&').P [,y D1)-- |y, Du),
o= {(za’lv . "akjvw?=1 92) | (ai70i) € /B}a
( '(P |y1 Dl) |yn Dn)) € [['T, : Aﬂv
C duplicable and discardable}*~+
[z : ?7A] =[z: !AL]]l

Fig. 4. 1 | -closed agreeability relations relating denotations and configurations

parts are themselves duplicable and discardable. We will use this in the proof
of Lemma4, below, when showing that processes of the form !z (y).P agree with
their denotations after they have been closed by connecting their free channels
to duplicable and discardable configurations.

Lemma 2. Let b Py @ TAy,...x, ¢ TAn, 2" © A be a process, and let (-
Ciumy o 1A | 703)1<i<n be duplicable and discardable configurations. Then the
configuration

Fo (o (lz(a).P ey Cr) e, Cn)uiz i 1A 701,21 : TAy, -+ 70,2 1 TA,
18 duplicable and discardable.

Interpretation of Process Types. Figure4 defines a 1 |-closed agreeability rela-
tion on z : A for each CLL proposition A by structural recursion. We only need
definitions for the positive cases, relying on negation for the negative cases. We
ensure that all the positive cases are | | -closed by explicitly doing so. The neg-
ative cases are the negations of the positive cases, and hence are automatically
1 1-closed by Lemma 1.

The general method for each definition in Fig. 4 is to define what the “ideal”
configuration inhabitant and denotation of each type looks like, and then use
L L-closure to close that relation under all possible interactions. In the case of
x : 1, there is one possible process, z[], and denotation, *. For the z : A ® B
case, ideal inhabitants are composed of two inhabitants of the types A and B
(processes P, P’ plus their associated support processes D; and D). In the
x : Ay @ A case, ideal inhabitants are processes that are inhabitants of A;
after outputing some i. For the exponentials, = : A, the ideal inhabitant is one
whose auxillary resources are all duplicable and discardable (indicated by the
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?0). In each case, the associated denotations are determined by the denotational
semantics defined in Sect. 3.

Agreeable Processes. The definition of [z : A] defines what it means for configu-
rations with one free channel to agree with a denotation. We use this definition
to define what it means for a process to agree with its denotation by connect-
ing it to configurations and denotations that are related and stating that the
communications predicted by the denotations is matched by evaluation:

Definition 4. A process - P::x1: Ay, ..., x, : A, is agreeable if for all
(O1,01,C1) € [z1: Ai]*, ..o, (O, an, Cy) € [z An]™,

if (a1,...,a,) € [F Puxy: Ar,...,xn : An] and (a1,01) € ay,...,(an,0,) €
ay,, then

((P |$1 01) |1’n CTL) ‘U’ (01,&1,...,97“0,”)

Closing an agreeable process so that it has one free channel yields an inhab-
itant of the semantic type of the free channel:

Lemma 3. If the process = P::xq: A1,..., T, : Ap,x : A is agreeable, then for
all (B4, 61,C1) € [r1: Ai]*, .., (On, Bny Cn) € [T, 2 An]*, it is the case that
((B1,21: A1, ..., Onyzn  Ap)ya, (- (P g, C1) o+ e, Cn)) € [z 4]

n

where
a:{(a701aala" '70naan)|(afl7"'7an7a) S [[Pﬂv(ahel) S 61;-"a(ana9n) S ﬂn}

For all processes, when connected to well-typed configurations, their denotational
semantics predicts their behaviour:

Lemma 4. All processes = P::I" are agreeable.

Proof. (Sketch) By induction on the derivation of - P:: I'. The structural rules
((Ax), (Cut), (Mi1Xp)) all involve relatively straightforward unfoldings of the def-
initions. The rest of the rules follow one of two patterns, depending on whether
they are introducing a negative or positive connective. For the negative con-
nectives, 1,2, &,7, and for the contraction and weakening rules, we are using
(craCut) to connect the configuration composed of P and configurations for the
other free channels with a triple (@, «, C) that is a semantic inhabitant of the
negation of a negative type. To proceed, we use the fact that the positive types
are all defined via double-negation closure to deduce the following:

v(©', o', C").
V(0. a”,C") € “ideal”. (€',a/,C")L(O",a",C")) =
(©,0,C) L(6V,d/, (")

where “ideal” indicates the defining property of the negation of the formula
being introduce, as defined in Fig.4, and —1 — indicates the property that the
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denotational semantics correctly predicts the operational semantics when CuT-
ing two configurations. Thus we can reason as if the triple (0, «, C) is an “ideal”
inhabitant of the negation of the introduced type.

For the positive connectives, 1, ®,®,!, the situation is slightly simpler. By
point (3) of Lemma 1, we deduce that, if (0, «, C) is the interacting process of
the negation of the introduced type, then:

V(@' a,C") € “ideal”. (0',a/,C")L(O,a,C)

Therefore, our job is to prove that the newly introduced process conforms to the
“ideal” specification introduced in Fig.4. This is mostly straightforward, save
for the (!) case, where we need an auxillary induction over the context ?I" to
deduce that all the configurations connected to these channels are themselves
duplicable and discardable.

Agreeable Configurations. We now extend the definition of agreeability from
processes to configurations. After we show that all configurations are agreeable,
the special case of this definition for closed processes will give us the backwards
direction of Theorem 1 (Corollary 1).

Definition 5. A configuration . C::xy : Ay, ..., x, : A, | © is agreeable if
for all (©1,01,C1) € [z : Ai]b, ..., (Onyan,Cn) € [z, : A.]Y, and
(a1y...,an,0) € [Fe Cixy @ Ay, iz 2 Ay | O] and (a1,61) € aq, ..., and
(an,0n) € an, then (- (C |z, C1) -+ |z, Cn) U (0,01,01,...,0p,an).

Lemma 5. All configurations . C::I' | © are agreeable.

Proof. By induction on the derivation of -, C':: I' | ©. Lemma4 is used to handle
the (cFePROC) case, and all the other cases are similar to the corresponding case
in the proof of Lemma 4.

When I' is empty, Lemma 5 yields the backwards direction of Theorem 1:
Corollary 1. IfF. C::- |© and § € [F. C::-| O], then C | 6.

5 Observational Equivalences

Theorem 1 enables us to predict the behaviour of processes without having to
first embed them in a closing configuration. In particular, we can use it as a
method for proving observational equivalences:

Corollary 2. If+ Py, Py :: " and [P1] = [FP2], then Py ~ P5.
Proof. For any closing configuration context CP[—| and observation 6, we have:

CP[P1] | 8 < 0 € [CP[P1]] by Theorem 1
< 0 € [CP[P]] since [P1] = [P]
< CP[P:] & by Theorem 1
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FP:Tx:A
Fvz.(Plx < y) ~ P{y/z} = T,y: A

FP:lxz:A I—Q::A,x:AL,y:B }—R::Z‘,y:Bl
Frz.(Plry.(Q|R)) ~ vy.(vx.(P|Q)|R) : [NA, X

FP:lx:A FQ::A,J::AJ‘
Fre.(P|lQ) ~ve.(Q|P): A

Fig. 5. Observational equivalences arising from permutation of cuts

FP:I
Fuvz(z]||lz().P)~P:: T

FP:ITy:A FQ:Azx:B FR::E,y:AJ‘,ac:BJ‘
Frz.(zly].(P|Q)|R) ~ vy.(Plvz.(Q|R)) : [, A, X

FP:Ilx: A }‘Qo::A,%:Aé FQio Azt AT
Fuz.(z[i].P | z.case(Qo, Q1)) = va.(P|Q;) == I', A

FP:?My: A FA=Ay: At
Fuz.(lx(y).P|?z[y].Q) ~ vy.(P|Q) : 7, A

FP:?y: A FQ:Axz:7A,2 174
F vz (lz(y).PlQ{z/2'}) ~ ve.(lz(y). Plva’.(12' (y).P|Q)) : 1T, A

FP:My: A FQ:A
Fre.(lz(y).PlQ) ~Q = A

Fig. 6. Observational equivalences arising from elimination of principal cuts

We now use this corollary to show that the cut elimination rules of CLL and
permutation rules yield observational equivalences for our operational semantics.
Since we have used the standard relational semantics of CLL, which is known
to be equationally sound for cut-elimination [25], all these statements are imme-
diate. The force of Corollary 2 is that these rules also translate to observational
equivalences for our independently defined operational semantics.

Cut-FElimination Rules. Figure 5 shows the rules arising from the interaction of
(Cur) with itself and the (Ax) rule: (Cur) is associative and commutative, and
has (Ax) as an identity element. These rules amount to the observation that one
can construct a category from CLL proofs (see Mellies [25], Sect. 2).

Figure 6 shows the rules arising from elimination of “principal cuts”: (CuT)
rule applications that are on a formula and its dual that are introduced by the two
immediate premises. Oriented left-to-right, and restricted to top-level (i.e., not
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FPuly:Az:C FQ:Azx:B }—R::E,Z:C’L
Frz.(z[y].(P|Q)|R) ~ z[y].(vz.(P|R)|Q) =: [ A, X,z : A® B

FP:uTyy:A +FQ:Az:Bz:C FR:X,z:0t
Frz.(zly].(PIQ)|R) ~ z[y].(Plvz.(Q|R)) = I A, X,z : AQ B

FP:Iy:Ax:B,z:C FQ:Az:Ch
Frz.(z(y).P| Q) ~z(y)vz.(P|Q) = A,z : A® B

FP:lx:A,,z:C FQ::A,Z:CJ'
Frz.(z[i].PlQ) ~ z[il.vz.(P|Q) :: I, Az : Ao & Ay

FP:lxz:Az:C FQ:Ix:B,z:C I—R::A,Z:CL
Frvz.(z.case(P, Q)|R) ~ z.case(vz.(P|R),vz.(Q|R)) = [, A,z : A& B

FPuMy:Az2:7C FQ:u?A,z:10"
Frz.(lz(y).PlQ) ~ lz(y).vz.(P|Q) = 7[1A z : 1A

FP:Ty:Az:C FQuAz:CH
Frz.(?z[y].P|Q) ~ ?z[yl.vz.(P|Q) :: I A,z : TA

FP:Iz:C I—Q::A,Z:C’l
Frz.(z().P| Q) ~z()vz.(P|Q) = I A z: L

Fig. 7. Observational equivalences arising from elimination of non-principal cuts (com-
muting conversions)

under a prefix), these are the rules that are taken as the reduction rules of CP by
Wadler. They are also the inspiration for our evaluation rules in Fig. 3. However,
here these rules are observational equivalences, so we can use them anywhere in
process to replace two communicating processes with the result of their commu-
nication. Figure7 presents the rules for eliminiating non-principal cuts: (CuT)
rule applications where the cut formula is not the most recently introduced one.
These rules are also called “commuting conversion” rules because they commute
input/output prefixes with applications of the (Cur) rule in order to expose
potential interactions. The fact that these are now observational equivalences
formalises the informal statement given by Wadler in Sect. 3.6 of [36] that these
rules are justified for CP. Note that the semantics we presented in Sect. 2.4 does
not make use of commuting conversions. It only requires immediate interactions
between process. Since there are no channels left unconnected, there is no way
for a process to get stuck.

Permutation of Independent Channels. Figure 8 presents a set of observational
equivalence rules arising from permutation of communication along independent
channels. We have omitted the type information to save space. The admissibility
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F z().z'().P ~ 2'().x().P

- 202y} (PIQ) = o/[y}.(z().PIQ)

- 2.2y (PIQ) ~ #'[y].(Pl=().Q)

F z().2'(y').P ~ 2’ (y').x().P

H z().2'[i].P ~ 2'[i].z().P

= x().2’ .case(P, Q) ~ z’.case(z().P, z().Q)

[ z().72 [y]. P ~ 7:6'[ N.z().P

- z[y)-('[y'].(PIQ)IR) ~ 2'[y'].(x[y].(P|R)|Q)

+ z[yl-('[y'].(P|Q)I R) ~ 2'[y'].(Pl[y].(Q| R))

F z[y].(Pl2'[y].(QIR)) ~ «'[y'].(Qlx[y].(P| R))

+ z[y].(«'(y).PlQ) ~ 2’ (y) x[y].(P|Q)

- [yl (Pl2'(y").Q) ~ 2'(y").x[y]-(P|Q)

+ z[y].(«'[i]. P|Q) ~ a'[i].x[y].(P|Q)

+ z[y].(P|2'[i].Q) ~ a'[i].x[y].(P|Q)

+ z[y).(«'.case(P, Q)| R) ~ a'.case(z[y].(P|R), z[y]-(Q|R))
- z[y].(Pla’ case(Q, R)) ~ a’.case(z[y].(P|Q), z[y].(P|R))
F z[y].(?2'[y']. P|Q) ~ ?a'[y'].[y].(P|Q)

+ z[y].(P?2'[y'].Q) ~ 7a'[y].[y].(P|Q)

- z(y).2'(y').P ~ ' (y).x(y).P

H z(y).x’[i].P o x’[i].x(y).P

F z(y).o’ .case(P, Q) ~ z’.case(z(y).P, z(y).Q)

+ o(y)T'ly'].P = Ta'ly’].x(y).P

- el [P ~ a'[jl.ali. P

F z[i].z’.case(P, Q) ~ z'.case(z[i]. P|z[i].Q)

H a:[z} 22’ [y P =~ ?2'[y'].x[i]. P

F z.case(z’.case(P, Q), z' .case(R, S)) ~ z’.case(z.case(P, R), z.case(Q, S))
F z.case(?2'[y'].P, 72’ [y'].Q) ~ ?x'[y].z.case(P, Q)

+ xfy. 72’ [y'|.P ~ Ta'[y'].2aly].P

Fig. 8. Permutation of communication along independent channels

of these rules is an indication of the relative weakness of CP contexts to make
observations on a process. If a process has a access to a pair of channels, the
processes connected to the other ends of those channels must be independent,
and so cannot communicate between themselves to discover which one was com-
municated with first. This is why the denotational semantics of CP that we
defined in Sect.3 does not explain processes’ behaviour in terms of traces as
is more common when giving denotation semantics to process calculi [30]. The
typing constraints of CP mean that there is no global notion of time: the only
way that a CP process can “know” the past from the future is by receiving a
bit of information via the (&) rule. Everything else that a CP process does is
pre-ordained by its type.

There are a large number of equations in Fig.8 due to the need to account
for the permutation of each kind of prefix with itself and with every other prefix.
The (®) rule is particularly bad due to the presence of two sub-processes, either
of which may do perform the permuted action.
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6 Related Work

Wadler’s papers introducing CP, [35,36], contain discussions of work related to
the formulation of CP as a session-typed language derived from CLL, and how
this relates to session types. Here, we discuss work related to logical relations and
observational equivalences for session-typed calculi, and the use of denotational
semantics for analysing the proofs of CLL.

Just as the Iron Curtain during the Cold War lead to the same work being
done twice, once in the East and once in the West, the existence of two logically-
based session-typed concurrency formalisms, one based on Intuitionistic Linear
Logic (ILL) [9], and one based on Classical Linear Logic, means that analogous
work is performed on both sides. (Indeed, ILL has both left and right rules for
each connective, meaning that working with ILL-based formalisms already dou-
bles the amount of work one needs to do.) Notions of observational equivalence
and logical relations for 7TDILL have already been studied by Pérez et al. [27].
Pérez et al. use logical relations to prove strong normalisation and confluence for
their session-typed calculus based on ILL, and define a notion of observational
equivalence between session-typed processes, based on bisimulation. They prove
observational equivalences based on the (CuT)-elimination rules of their calculus,
analogous to ones we proved in the previous section.

As we noted in the introduction Pérez et al. define an LTS over stuck
processes with one free output channel. They use this to coinductively define
their notion of observational equivalence. This means that to prove individual
equivalences requires the construction of the appropriate bisimulation relation.
In contrast, our denotational technique for proving equivalences is much more
elementary, involving only simple set theoretic reasoning. Moreover, their tech-
nique requires additional proofs that their definition of observational equivalence
is a congruence, a fact that is immediate in our definition.

Pérez et al. go further than we have done in also proving that their calculus is
strongly normalising and confluent, using a logical relations based proof. As we
discussed in Sect. 3.4, it is possible to use a coherence space semantics to prove
determinacy, and we conjecture that totality spaces can prove termination.

L 1-closed relations are a standard feature of proofs in the meta-theory
of Linear Logic: for example weak normalisation proofs by Girard [16] and
Baelde [5] and strong normalisation proofs by Accattoli [3]. They have also been
used for parametricity results in polymorphically typed m-calculi [8]. An inno-
vation in this paper is the use of Kripke | 1-closed relations to account for the
contexts © describing the possible observations on configurations.

7 Conclusions and Future Work

We have introduced an operational semantics for Wadler’s CP calculus that
agrees with the standard relational semantics of CLL proofs. We have been
able to show that the (Cur)-elimination rules of CLL are precisely observational
equivalences with respect to our operational semantics. We view this work as a
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crucial step in treating CP as a foundational language of structured communi-
cation. We now highlight some areas of research that we have opened up.

Refined Denotational Semantics for CP. As we discussed in Sect. 3.4, there is
a close connection between semantics of CLL that assign cliques to proofs and
the operational properties of the corresponding processes. Further refinements
of the relational semantics, beyond coherence spaces, such as Loader’s total-
ity spaces [22] and Ehrhard’s Finiteness spaces [13], should yield insights into
the operational behaviour of CP and its extensions with features such as non-
determinism. Laird et al. [19]’s weighted relational semantics interprets processes
as semiring-valued matrices. This could be used to model a variant of CP with
complexity measures. Probabilistic Coherence Spaces, introduced by Danos and
Ehrhard [11], are another refinement that model probabilistic computation.

Recursive Types for CP. In this paper, we have only investigated the basic
features of CP. Extensions of CP with recursive types, based on the work in
CLL by Baelde [5], have been carried out by Lindley and Morris [21]. Extension
of our operational semantics and the denotational semantics with recursive types
is an essential step in turning CP into a more realistic language for structured
communication. Constructing concurrency features on CP may be possible by
allowing racy interleaving of clients and servers expressive via recursive types.

Dependent Types for CP. More ambitiously, we intend to extend CP with
dependent types. Dependent types for logically-based session-typed calculi have
already been investigated by Toninho et al. [33] and Toninho and Yoshida [34].
However, these calculi enforce a strict separation between data and commu-
nication: there are session types Ilz:7.A(z) and Xax:7.A(x) which correspond
to receiving or transmitting a value of wvalue type 7. Taking inspiration from
McBride’s investigation of the combination of linear and dependent types [24],
we envisage a more general notion of session-dependent session type (z : A)> B,
where the value of z in B is determined by the actual observed data transferred
in the session described by A. This type is a dependent generalisation of Retoré’s
“before” connective [29]. To make this idea work, we need a notion of observed
communication in CP, which the observed communication semantics proposed
in this paper provides.

Acknowledgements. Thanks to Sam Lindley, J. Garrett Morris, Conor McBride and
Phil Wadler for helpful discussions and comments on this paper. This work was partly
funded by a Science Faculty Starter Grant from the University of Strathclyde.
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Abstract. Usually, it is the software manufacturer who employs verifi-
cation or testing to ensure that the software embedded in a device meets
its main objectives. However, these days we are confronted with the sit-
uation that economical or technological reasons might make a manufac-
turer become interested in the software slightly deviating from its main
objective for dubious reasons. Examples include lock-in strategies and
the NO, emission scandals in automotive industry. This phenomenon is
what we call software doping. It is turning more widespread as software
is embedded in ever more devices of daily use.

The primary contribution of this article is to provide a hierarchy of
simple but solid formal definitions that enable to distinguish whether
a program is clean or doped. Moreover, we show that these characteri-
sations provide an immediate framework for analysis by using already
existing verification techniques. We exemplify this by applying self-
composition on sequential programs and model checking of HyperLLTL
formulas on reactive models.

1 Introduction

The Volkswagen exhaust emissions scandal [43] has put software doping in the
spotlight: Proprietary embedded control software does not always exploit func-
tionality offered by a device in the best interest of the device owner. Instead the
software may be tweaked in various manners, driven by interests different from
those of the owner or of society. This is indeed a common characteristics for the
manner how different manufacturers circumvented [12,25] the diesel emission
regulations around the world. The exhaust software was manufactured in such
a way that it heavily polluted the environment, unless the software detected the
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car to be (likely) fixed on a particular test setup used to determine the NO,
footprint data officially published. Phenomena resembling the emission scandal
have also been reported in the context of smart phone designs [2], where software
was tailored to perform better when detecting it was running a certain bench-
mark, and otherwise running in lower clock speed. Another smart phone case,
disabling the phone [11] via a software update after “non-authorised” repair, has
later been undone [36].

Usually, it is the software manufacturer who employs verification or testing to
ensure that the software embedded in a device meets its main objectives. How-
ever, these days we are confronted with the situation that economical or tech-
nological reasons might make a manufacturer become interested in the software
slightly deviating from its main objective for dubious reasons. This phenomenon
is what we call software doping. It is turning more widespread as software is
embedded in ever more devices of daily use.

The simplest and likely most common example of software doping (effectu-
ating a customer lock-in strategy [3]) is that of ink printers [42] refusing to work
when supplied with a toner or ink cartridge of a third party manufacturer [41],
albeit being technically compatible. Similarly, cases are known where laptops
refuse to charge [40] the battery if connected to a third-party charger. More sub-
tle variations of this kind of doping just issue a warning message about the risk
of using a “foreign” cartridge [20]. In the same vein, it is known that printers
emit “low toner” warnings [33] earlier than needed, so as to drive or force the
customer into replacing cartridges prematurely. Moreover, there are allegations
that software doping has occurred in the context of electronic-voting so as to
manipulate the outcome [1]. Tampering with voting machines has been proved a
relatively easy task [21]. Common to all these examples is that the software user
has little or no control over its execution, and that the functionality in question
is against the interests of user or of society.

Despite the apparently pervasive presence of software doping, a systematic
investigation or formalisation from the software engineering perspective is not
existing. Fragmentary attention has been payed in the security domain with
respect to cryptographic protections being sabotaged by insiders [37]. Typical
examples are the many known backdoors, including the prominent dual EC
deterministic random bit generator standardised by NIST [14]. Software doping
however goes far beyond inclusion of backdoors.

Despite the many examples, it is not at all easy to provide a crisp character-
isation of what constitutes software doping. This paper explores this issue, and
proposes a hierarchy of formal characterisations of software doping. We aim at
formulating and enforcing rigid requirements on embedded software driven by
public interest, so as to effectively ban software doping. In order to sharpen our
intuition, we offer the following initial characterisation attempt [5].

A software system is doped if the manufacturer has included a
hidden functionality in such a way that the resulting behaviour
intentionally favors a designated party, against the interest of
society or of the software licensee.

(1)
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So, a doped software induces behaviour that can not be justified by the
interest of the licensee or of society, but instead serves another usually hidden
interest. It thereby favors a certain brand, vendor, manufacturer, or other mar-
ket participant. This happens intentionally, and not by accident. However, the
question whether a certain behaviour is intentional or not is very difficult to
decide. To illustrate this, we recall that the above mentioned smart phone case,
to be specific the iPhone-6, where “non-authorised” repair rendered the phone
unusable [11] after an i0S update, seemed to be intentional when it surfaced,
but was actually tracked down to a software glitch of the update and fixed later.
Notably, if the iOS designers would have had the particular intention to mis-
treat licensees who went elsewhere for repair, the same behaviour could well
have qualified as software doping in the above sense (1). As a result, we will look
at software doping according to the above characterisation, keeping in mind the
possibility of intentionality but not aiming to capture it in a precise manner.

In our work, we use concise examples that are directly inspired by the real
cases reviewed above. They motivate our hierarchy of formal characterisations
of clean or doping-free software.

A core observation will be that software doping can be characterised by con-
sidering the program if started from two different but compatible initial states.
If the obtained outputs are not compatible, then this implies that the software
is doped. Thinking in terms of the printer, one would expect that printing with
different but compatible cartridges would yield the same printout without any
alteration in the observed alerts. As a consequence, the essence of the property
of being clean can be cast as a hyperproperty [16,17].

We first explore characterisations on sequential software (Sect.2). We intro-
duce a characterisation that ensures the proper functioning of the system when-
ever it is confined to standard parameters and inputs. Afterwards, we give two
other characterisations that limit the behaviour of the system whenever it goes
beyond such standard framework. We then revise these characterisations so as
to apply to reactive non-deterministic systems (Sect. 3).

Traditionally hyperproperties require to be analysed in an ad-hoc manner
depending on the particular property. However, a general framework is provided
by techniques based on, e.g., self-composition techniques [6] or specific logic
such as HyperLTL [15]. Indeed, we show (Sect.4) how these properties can be
analysed using self-composition on deterministic programs, particularly using
weakest precondition reasoning [18], and we do the same (Sect.5) for reactive
systems using HyperLTL. In both settings we demonstrate principal feasibility
by presenting verification studies of simple but representative examples.

2 Software Doping on Sequential Programs

Think of a program as a function that accepts some initial parameters and, given
some inputs, produces some outputs, maybe in a non-deterministic manner.
Thus, a parameterised sequential non-deterministic program is a function S :
Param — In — 20Ut where Param is a set of parameters, each one of them fixing



86 P.R. D’Argenio et al.

a particular instance of the program S, and In and Out being respectively the
sets of inputs accepted by S and outputs produced by S. Notice that for a fixed
parameter p and input i € In, the run of program S(p)(i) may give a set of
possible outputs.

procedure PRINTER(cartridge_info) procedure PRINTER(cartridge_info)
if TYPE(cartridge_info) € Compatible if BRAND(cartridge_info) = my-brand
then then
READ(document) READ(document)
PRINT (stdout,document) PRINT( stdout,document)
else else
TURNON(alert_led) TURNON((alert_led)
end if end if
end procedure end procedure
Fig. 1. A simple printer. Fig. 2. A doped printer.

To understand a first possible definition, consider the program embedded
in a printer (a simple abstraction is given in Fig.1). This program may check
compatibility of the ink or toner cartridge and print whenever the cartridge is
compatible. In this case, we can think of the program PRINTER as a function
parameterised with the information on the cartridge, that receives a document
as input and produces a sequence of pages as outputs whenever the cartridge is
compatible, otherwise it turns on an alert led. In this setting, we expect that the
printer shows the same input-output behaviour for any compatible cartridge.

A printer manufacturer may manipulate this program in order to favour its
own cartridge brand. An obvious way is displayed in Fig.2. This is a sort of
discrimination based on parameter values. Therefore, a first approach to charac-
terising a program as clean (or doping-free) is that it should behave in a similar
way for all parameters of interest. By “similar behaviour” we mean that the
visible output should be the same for any given input in two different instances
of the same (parameterised) program. Also, by “all parameters of interest”, we
refer to all parameter values we are interested in. In the case of the printer,
we expect that it works with any compatible cartridge, but not with every car-
tridge. Such a compatibility domain defines a first scope within which a software
is evaluated to be clean or doped.

Formally, if Plntrs C Param, we could say that a parameterised program S is
clean (or doping-free) if for all pairs of parameters of interest p,p’ € Plntrs
and input i € In, S(p)(i) = S(p’)(i). Thus, the program of Fig.1 satisfies
this constraint whenever Compatible is the set of parameters of interest (i.e.
Compatible = Plntrs). Instead, the program of Fig. 2 would be rejected as doped
by the previous definition.

We could imagine, nonetheless, that the printer manufacturer may like to
provide extra functionalities for its own product which is outside of the standard
for compatibility. For instance (and for the sake of this discussion) suppose the
printer manufacturer develops a new file format that is more efficient or versatile
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at the time of printing, but this requires some new technology on the cartridge
(we could compare this to the introduction of the postscript language when
standard printing was based on dots or ASCII code). The manufacturer still
wants to provide the usual functionality for standard file formats that work with
standard compatible cartridges and comes up with the program of Fig. 3. Notice
that this program does not conform to the specification of a clean program
as given above since it behaves differently when a document of the new (non-
standard) type is given. This is clearly not in the spirit of the program in Fig.3
which is actually conforming to the expected requirements.

Thus, our first definition
’ procedure PRINTER(cartridge_info)

states that a program is clean if TYPE(cartridge_info) € Compatible then

if, for any possible instance from READ(document)

the set of parameters of inter- if (-NEWTYPE(document) o

est, it exhibits the same visi- V sUPPORTSNEWTYPE(cartridge-info))
. . then

ble outputs when supplied with PRINT(stdout, document)

the same input, provided this else

input complies with a given stan- TURNON (alert-led)

dard. Formally, we assume a set elS:nd if

Plntrs C Param of parameters of TURNON (alert_signal)
interest and a set Stdln C In of end if
standard inputs and propose the end procedure
following definition.

Fig. 3. A clean printer.
Definition 1. A parameterised
program S is clean (or doping-free) if for all pairs of parameters of interest
p,p’ € Plntrs and input i € In, if i € StdIn then S(p)(i) = S(p’)(i). If the program
18 not clean we will say that it is doped.

The characterisation given above is based on a comparison of the behaviour
of two instances of a program, each of them responding to different parameter
values within Plntrs. A second, different characterisation may instead require
to compare a reference specification capturing the essence of clean behaviour
against any possible instance of the program. The first approach seems more
general than the second one in the sense that the specification could be consid-
ered as one of the possible instances of the (parameterised) program. However,
we can consider a distinguished parameter p so that the instance S(p) is actually
the specification of the program, in which case, both definitions turn out to be
equivalent. In any case, it is important to observe that the specification may not
be available since it is also made by the software manufacturer, and only the
expected requirements may be known.

We remark that Definition 1 entails the existence of a contract which defines
the set of parameters of interest and the set of standard inputs. In fact, Defin-
ition 1 only asserts doping-freedom if the program is well-behaved within such
a contract, namely, as long as the parameters are within Plntrs and inputs are
within StdIn. A behaviour outside this realm is deemed immediately correct since
it is of no interest. This view results too mild in some cases where the change of
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behaviour of a program between a standard input and a non-standard but yet
not-so-different input is extreme.

Consider the electronic control unit procedure EMISSIONCONTROL()

(ECU) of a diesel vehicle, in particular READ(throttle)
its exhaust emission control module. For def-dose := SCRMODEL(throttle)
diesel engines, the controller injects a cer- NOg := throttle® / (k- def-dose)

. . . d d
tain amount of a specific fluid (an aqueous end procedure

urea solution) into the exhaust pipeline
in order to lower mono-nitrogen oxides
(NO,) emissions. We simplify this control problem to a minimal toy example.
In Fig.4 we display a function that reads the throttle position and calculates
which is the dose of diesel exhaust fluid (DEF) (stored in def_dose) that should
be injected to reduce the NO, emission. The last line of the program precisely
models the NO, emission by storing it in the output variable NOz after a (made
up) calculation directly depending on the throttle value and inversely depending
on the def_dose.

The Volkswagen emission scandal

Fig. 4. A simple emission control.

procedure EMISSIONCONTROL()

arose precisely because their software was READ(throttle)
instrumented so that it works as expected if throttle € ThrottleTestValues then
only if operating in or very close to the def_dose := SCRMODEL(throttle)

. o . . else
lab testing COIldIt'IOIlS [19].. For our snnpl%— def dose = ALTSCRMoDEL(throttle)
fied example, this behaviour is exempli- end if

fied by the algorithm of Fig. 5. Of course, NOz := throttle® / (k - def-dose)

the real case was less simplistic. Precisely, end procedure

in this setting, the lab conditions define

the set of standard inputs, i.e., the set Fig. 5. A doped emission control.
StdIn is actually ThrottleTestValues and, as a consequence, a software like this
one trivially meets the characterisation of clean given in Definition 1. However,
this unit is intentionally programmed to defy the regulations when being unob-
served and hence it falls directly within our intuition of what a doped software
is (see (1)).

The spirit of the emission tests is to verify that the amount of NO, in the car
exhaust gas does not exceed a given threshold in general. Thus, one would expect
that if the input values of the EM1SSTONCONTROL function deviates within “rea-
sonable distance” from the standard input values provided during the lab emis-
sion test, the amount of NO,, found in the exhaust gas is still within the regulated
threshold, or at least it does not exceed it more than a “reasonable amount”. A
similar rationale could be applied for regulation of other systems such as speed
limit controllers in scooters and electric bikes.

Therefore, we need to introduce two notions of distance din : (In x In) — Rx¢
and doyt : (Out x Out) — R>¢ on inputs and outputs respectively. In principle,
we do not require them to be metrics, but they need to be commutative and
satisfy that dj,(i,i) = dout(0,0) = 0 for all i € In and o € Out. Since programs
are non-deterministic, we need to lift the output distance to sets of outputs and
for that we will use the Hausdorff lifting which, as we will see, is exactly what
we need. Given a distance d, the Hausdorff lifting H(d) is defined by
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H(d)(A, B) = max { sup,¢ 4 infre g d(a, b), supye p infae a4 d(a, b) } (2)

Based on this, we provide a new definition that considers two parameters: para-
meter k; refers to the acceptable distance an input may deviate from the norm
to be still considered, and parameter k, that tells how far apart outputs are
allowed to be in case their respective inputs are within k; distance.

Definition 2. A parameterised program S is robustly clean if for all pairs of
parameters of interest p,p’ € Plntrs and inputs i,i’ € In, if i € StdIn is a standard
input and din(i,i") < k; then H(dow)(S(p)(i), S(p)({")) < Ko.

Requiring that H(douw)(S(p)(i), S(p')(i")) < ko is equivalent to demand that

1. for all o € S(p)(i) there exists o’ € S(p’)(i") such that dou(0,0") < ko, and
2. for all o’ € S(p’)(i") there exists o € S(p)(i) such that dou(0,0") < Ko.

Notice that this is what we actually need for the non-deterministic case: each
output of one of the program instances should be matched within “reasonable
distance” by some output of the other program instance.

Notice that i’ does not need to satisfy StdIn, but it will be considered as long
as it is within «; distance of any input satisfying StdIn. In such a case, outputs
generated by S(p’)(i’) will be requested to be within x, distance of some output
generated by the respective execution induced by a standard input. In addition,
notice that if the program S is deterministic and terminating we could simply
write that dow(S(p)(i), S(p")(I")) < Ko-

The concept of robustly clean programs generalises that of clean programs.
Indeed, by taking dj,(i,i) = 0 and dj,(i,i") > &; for all i # i, and doyt(0,0) = 0
and dout(0,0") > K, for all o # o/, we see that Definition 1 is subsumed by
Definition 2. Also, notice that the tolerance parameters x; and k, are values
that should be provided as well as the notions of distance dj, and dou:, and,
together with the set Plntrs of parameters of interest and the set StdIn of standard
inputs, are part of the contract that ensures that the software is robustly clean.
Moreover, the limitation to these tolerance values has to do with the fact that,
beyond it, particular requirements (e.g. safety) may arise. For instance, a smart
battery may stop accepting charge if the current emitted by a standardised
but foreign charger is higher than “reasonable” (i.e. than the tolerance values);
however, it may still proceed in case it is dealing with a charger of the same
brand for which it may know that it can resort to a customised protocol allowing
ultra-fast charging in a safe manner.

Ezxample 3. We remark that Definition 2 will actually detect as doped the pro-
gram of Fig.5 for appropriate distances d), and dou and tolerance parameters
ki and Ko. Indeed, suppose that SCRMODEL(x) = 22, ALTSCRMODEL(z) = z,
and k = 2. To check if the programs are robustly clean, take In = (0,2] (these
are the values that variable throttle takes), Stdln = (0, 1], let the distances dj,
and do,: be the absolute values of the differences of the values that take throttle
and NOz, respectively, and let k; = 2 and ko, = 1. With this setting, the program
of Fig.4 is robustly clean while the program of Fig. 5 is not.
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Definition 2 can be further generalised by adjusting to a precise desired gran-
ularity given by a function f : R — R U {oco} that relates the distances of the
input with the distances of the outputs as follows.

Definition 4. A parameterised program S is f-clean if for all pairs of parame-
ters of interest p,p’ € Plntrs and inputs i,V € In, if i € StdIn is a standard input

then H(dowt) (S(p)(i), S(p)(I")) < f(din(i, 1))

Like for Definition2, the definition of f-clean does not require i’ to satisfy
StdIn. Moreover, notice that it is important that f can map into oo, in which
case it means that input i’ becomes irrelevant to the property. Also here the
Hausdorff distance is elegantly encoding the requirement that

1. for all o € S(p)(i) there exists o' € S(p')(i') s.t. dout(0,0") < f(din(i,i')), and
2. for all o’ € S(p')(") there exists o € S(p)(i) s.t. dout(0,0") < f(din(i,i")).

This definition is strictly more general than Definition 2, which can be seen
by taking f defined by f(x) = ko, whenever z < k; and f(z) = oo otherwise.
(Notice here the use of co.) Also, if the program S is deterministic, we could
simply require that dou(S(p)(i), S(P')(i")) < f(din(i,1")).

In this new definition, the bounding function f, together with the distances
din and doyt, the set Plntrs of parameters of interest and the set StdIn of standard
inputs, are part of the contract that ensures that the software is f-clean.

Ezxample 5. For the example of the emission control take the setting as in Exam-
ple3 and let f(x) = x/2. Then the program of Fig. 4 is f-clean while the program
of Fig. 5 is not.

We remark that the notion of f-clean strictly relates the distance of the input
values with the distance of the output values. Thus, e.g., the accepted distance
on the outputs may grow according the distance of the input grows. Compare
it to the notion of robustly clean in which the accepted distance on the outputs
is only bounded by a constant (k,), regardless of the proximity of the inputs
(which is only observed w.r.t. to constant ;).

3 Software Doping on Reactive Programs

Though we use the Volkswagen ECU case study as motivation for introducing
Definitions 2 and 4, this program is inherently reactive: the DEF dosage depends
not only of the current inputs but also on the current state (which in turn is set
according to previous inputs). Therefore, in this section, we revise the definitions
given in the previous section within the framework of reactive programs.

We consider a parameterised reactive program as a function S : Param —
In“ — 2(0ut”) 5o that any instance of the program reacts to the k-th input
in the input sequence producing the k-th output in each respective output
sequence. Thus each instance of the program can be seen, for instance, as a
(non-deterministic) Mealy or Moore machine. In this setting, we require that
StdIn C In“. Thus, the definition of a clean reactive program strongly resembles
Definition 1.
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Definition 6. A parameterised reactive program S is clean if for all pairs of
parameters of interest p,p’ € Plntrs and input i € In”, if i € StdIn then S(p)(i) =
S(')().

Naively, we may think that the definition of robustly clean may be also reused
as given in Definition 2 by considering metrics on w-traces. Unfortunately this
definition does not work as expected: suppose two input sequences in In“ that
only differ by a single input in some late k-th position but originates a distance
larger than k;. Now the program under study may become clean even if the
respective outputs differ enormously at an early k’-th position (k' < k). Notice
that there is no justification for such early difference on the output, since the
input sequences are the same up to position &’.

In fact, we notice that the property of being clean is of a safety nature: if
there is a point in a pair of executions in which the program is detected to be
doped, there is no extension of such executions that can correct it and make the
program clean. In the observation above, the k’-th prefix of the trace should be
considered the bad prefix and the program deemed as doped.

Therefore, we consider distances on finite traces: dj, : (In* x In*) — R and
doyt : (Out™ x Out™) — R>p. Now, we provide a definition of robustly clean
on reactive programs that ensures that, as long as all j-th prefix of a given
input sequence, with j < k, are within x; distance, the k-th prefix of the output
sequence are within k. distance, for any & > 0. In the following definition, we
denote with i[..k] the k-th prefix of the input sequence i (and similarly for output
sequences).

Definition 7. A parameterised reactive program S is robustly clean if for all
pairs of parameters of interest p,p’ € Plntrs and input sequences i,i’ € In“, if
i € StdIn then, for all k > 0 the following must hold

(Vj <k :din(i[--5],1'[-5]) < ki) = H(douw ) (S(R)(D)[-K], S(p)(I)[--K]) < o,
where S(p)(i)[..k] = {o[..k] | 0 € S(p)(i)} and similarly for S(p’)(i")[..k].

By having as precondition that dj,(i[..5],i'[..7]) < &; for all 7 < k, this def-
inition considers the fact that once one instance of the program deviates too
much from the normal behaviour (i.e. beyond k; distance at the input), this
instance is not obliged any longer to meet (within s, distance) the output, even
if later inputs get closer again. This enables robustly clean programs to stop if
an input outside the standard domain may result harmful for the system. Also,
notice that, by considering the conditions through all k-th prefixes the definition
encompasses the safety nature of the robustly cleanness property.

Example 8. A slightly more realistic version of the emission control system on
the ECU is given in Fig. 6. It is a closed loop where the calculation of the DEF
dosage also depends on the previous reading of NO,.. Moreover, the DEF dosage
does not affect deterministically in the NO,, emission. Instead, there is a margin
of error on the NO, emission which is represented by the factor A and the
non-deterministic assignment of variable NOz in the penultimate line within the
loop.
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This non-deterministic assign- procedure EmissioNCONTROL()

ment is an (admittedly unrealis- NOz:=0
tic) abstraction of the chemical IOOEEAD (throttle)
. rotile
reaction between the exhaust gases def_dose := SCRMoDEL(throttle, NOz)

and the DEF dosage. Figure7
gives the version of the emis-
sion control system instrument- OuTPUT(NOz)
ing the cheating hack. We define en;gﬂ(}g;fme
the selective catalytic reduction

(SCR) models as follows:

. throttled throttled
NOw i€ (1= \)ette (1 4+ ) lireite |

Fig. 6. An emission control (reactive).

2 .
SCRMODEL(z,n) = {x ifk-n S v
(1+X)-2? otherwise

where A = 0.1 and k = 2, and ALTSCRMODEL(z,n) = z (i.e., it ignores the feed-
back of the NO, emission resulting in the same ALTSCRMODEL as in Exam-
ple3). We also take In = (0,2] (recall that these are the values that variable
throttle takes). The idea of the feedback in SCRMODEL is that if the previous
emission was higher than expected with the planned current dosage, then the
actual current dosage is an extra A portion above the planned dosage.

For the contract required by procedure EMISSIONCONTROL()

robustly cleanness, we let Stdln = NOz = 0

(0, 1]“) and define d|n(i, i') = loop

[last(i) — last(i’)] and similarly READ(throttle)

d (0 O') _ \last(o) _ last(o’)| if throttle € ThrottleTestValues then
Out®; N ’ def-dose := SCRMODEL(throttle, NOx)

where last(t) is the last element else

of the finite trace t. We take k; = def-dose := ALTSCRMODEL(throttle, NOz)

2 and K, = 1.1. (K, needs to end if s ,

be a little larger than in Exam- NOz :€ [(1 — \) et (1+ ) J’;C‘}fff;e]

ple 3 due to the non-deterministic ouTPUT(NOZ)

assignment to NOz.) end loop

In Sect. 6 we will use a model ©nd procedure

checking tool to prove that the
algorithm in Fig.6 is robustly
clean, while the algorithm of Fig. 7 is not.

As before, Definition 7 can be further generalised by adjusting to a precise
desired granularity given by a function f : R — RU{oo} that relates the distances
of the input with the distances of the outputs as follows.

Fig. 7. A doped emission control (reactive).

Definition 9. A parameterised reactive program S is f-clean if for all pairs of
parameters of interest p,p’ € Plntrs and input sequences i,i’ € In“, if i € StdIn
then for all k > 0, H(dow) (S(p) ()], S(')()[.-k]) < F(dm(iL K], '[-k])).

Like for Definition 7, the definition of f-cleanness also considers distance
on prefixes to ensure that major differences in late inputs do not impact on
differences of early outputs, capturing also the safety nature of the property.
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We observe that Definition9 is more general than Definition 7. As before,
define f by f(x) = ko, whenever z < 1 and f(x) = oo otherwise, but also
redefine the metric on the input domain as follows:

0 ifi[.k] =11k

1 if either i € Stdln or i’ € StdIn,i[..k] # i'[..k]
and din(i[..5],1'[..4]) < ki forall 0 < j <k

2 otherwise

AR (i[. ], 1 .k]) =

for all i,i’ € In and k > 0.

Example 10. For the example of the emission control take the setting as in Exam-
ple8 and let f(z) = x/2 + 0.3. The variation of f w.r.t. Example5 is necessary
to cope with the non-determinism introduced in these models. With this setting,
in Sect. 6 we will check that the program of Fig.6 is f-clean while the program
of Fig. 7 is not.

4 Analysis Through Self-composition

In this section we will focus on sequential deterministic programs and we will
see them in the usual way: as state transformers. Thus, if p, ' : Var — Val are
states mapping the variables of a program into values within their domain, we
denote with (S, ) |} ¢’ that a program S, initially taking values according to
1, executes and terminates in state p'. We indicate with (S, u) | L that the
program S starting at state pu does not terminate. As usual, we denote by u = ¢
that a predicate ¢ holds on a state u.

In this new setting, and restricting to deterministic programs, Definition 1
could be alternatively formulated as in Proposition 11. For this, we will assume
that S contains sets of variables Z,, Zj, and Z, which are respectively parameter
variables, input variables and output variables. Moreover, let Plntrs and StdIn be
predicates on states containing only program variables in &, and &, respectively.
They characterise the set of parameters of interest and the set of standard inputs.
Now, we can state,

Proposition 11. A sequential and deterministic program S is clean if and only
if for all states py, po and py such that py | Plntrs AStdIn, pe | Plntrs A Stdln,
i1() = (@) and (S,p01) U i, it holds that (S, jiz) U pty and t}(Fo) = 1i(o)
for some p.

The proof of the proposition is straightforward since it is basically a notation
change, hence we omit it. Also, notice that we omit any explicit reference to
non-terminating programs. This is not necessary due to the symmetric nature
of the predicates.
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In the nomenclature of [7] relations

7= {(/,Ll,/,cg) | M1 ': Plntrs A Stdln,
w2 = Pintrs A Stdin, and p1 (%) = pe (%)}

T = {(p1, p2) | 11(Zo) = pa(To)}

are called indistinguishable criteria', and if (u1,pu2) € Z then we say that ju
and pp are Z-indistinguishable?. Similarly, for Z’. Thus, Proposition 11 char-
acterises what in [7] is called termination-sensitive (Z,I’)-security and, by [7,
Proposition 3], the property of cleanness can be analysed using the weakest (con-
servative) precondition (wp) [18] through self-composition.

Proposition 12. Let [Z/%] indicate the substitution of each variable x by vari-
able x'. Then a deterministic program S is clean if and only if

==
(S L ) -

The term wp(S,true) in the antecedent of the implication is the weakest
precondition that ensures that program S terminates. It is necessary in the
predicate, otherwise it could become false only because program S does not
terminate.

With the same setting as before, and taking dj,, dout, ki and k. as for Defini-
tion 2, we obtain an alternative definition of robustly cleanness for deterministic
programs.

Proposition 13. A sequential and deterministic program S is robustly clean if
and only if for all states p1, pa, and ' such that py = PlntrsAStdIn, pg = Plntrs,
and din(p1 (), p2 (%)) < ki, the following two conditions hold:

Loaf (S,pn) b o/, then (S, p2) U phy and dou (' (7o), p5(%s)) < ko for some pip;
and

2. if (S, 2) U 1 then (S, 1) U 1y and dou (il (Zo), 1 (%0)) < Ko for some i

In this case, the indistinguishability criteria are

T = {(u1,p2) | p1 = Plntrs A StdIn, e = Plntrs, and din(p1(Zh), pe (%)) < ki}
7 = {(,u'h,u'?) ‘ dOUt(ul(fO)aNQ(fo)) < Ho}

Notice that Z is not symmetric. Then the first item of Proposition 13 charac-
terises termination-sensitive (Z,Z’)-security while the second item characterises
termination-sensitive (Z !, Z’)-security. Using again [7, Proposition 3], the prop-
erty of robustly cleanness can be analysed using wp through self-composition.

! In this definition, states should actually be considered as tuples of values rather than
state mappings in order to exactly match the definitions of [7, Sect. 3].

2 Also, to strictly follow notation in [7, Sect.3] we should have written w1 ~7; e
instead of (u1,p2) € Z.
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Proposition 14. A deterministic program S is robustly clean if and only if

Plntrs A StdIn A Pintrs[Z/Z] A din (%, T}) < ki

(WS, true) = wp(S: ST/, dow(i. 7) < o)
A wp(S[Z/Z], true) = wp(S[Z/Z]; S, dow(Zo, T0) < Ko)

Proceeding in a similar manner, we can also obtain an alternative definition
of f-cleanness for deterministic programs.

Proposition 15. A sequential and deterministic program S is f-clean if and
only if for all states p1, pa, and y' such that py = PlntrsAStdIn, and g = Plntrs,
the following two conditions hold:

1af (S, pa) s then (S, p2) by and dow(p' (Zo), 15(Zo)) < f (din(p1 (Zh), pa(T5))
for some pfy; and

2. 4f (S, p2) ', then (S, pa)dpy and dow (11 (o), ' (Zo)) < f(din(p11 (%), p2())
for some p.

Notice that the term f(d, (1 (%), u2(Z;)) appears in the conclusion of the
implications of both items. This may look unexpected since it seems to be related
to the input requirements rather than the output requirements, in particular
because it refers to the input states. This makes this case a little less obvious
than the previous one. To overcome this situation, we introduce a constant ¥ €
R>o which we assume universally quantified. Using this, we define the following
indistinguishability criteria

Iy = {(ul,,ug) | M1 ’: Plntrs A Stdlﬂ7
piz = Plntrs, and f(din(p1 (), p2(%i))) = Y}
Ty = {(p1, p2) | dout(p1(Zs), p2 (o)) < Y}

By using this, by Proposition 15, we have that S is f-clean if and only if for
every Y € Rxq, and for all states 1, pe, and g/ such that (ui1, pe) € Zy

1. if (S, p1) 4 1/, then (S, p2) § ph and (u/, uh) € T4, for some ph; and
2. 1f (S, p2) I ¢/, then (S, p1) 4 pf and (pf, ¢') € I3, for some pf.

With this new definition, and taking into account again the asymmetry of
Ty, the first item characterises termination-sensitive (Zy, Z}, )-security while the
second one characterises termination-sensitive (Z,, ! T},)-security. From this and
[7, Prop. 3], the property of f-cleanness can be analysed using wp and self-
composition.

Proposition 16. A deterministic program S is f-clean if and only if for all
Y € RZO
Pintrs A Stdin A Plntrs[Z/Z'] A f(di(%, 7)) =Y

wp(S, true) = wp(S; S[Z/Z], dout(Zo, Z) <Y
N wp(S[Z/Z], true) = wp(S[Z/Z]; S, dow(Zo, T,) <Y
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wp(z :=¢,Q) = Qle/x]

wp(if b then S; else Sy end if, Q) = b= wp(S1,Q) A —b = wp(S2, Q)
wp(S1;52,Q) = wp(S1, wp(Sz2,Q))
wp(while b do S end do,Q) = 3k : k> 0: Hi(Q)

where Ho(Q) = -bA Q and Hiy1(Q) = (b A wp(S, Hi(Q))) V Ho(Q)

Fig. 8. Equations for the wp calculus

Ezxample 17. In this example, we use Proposition 16 to prove correct our state-
ments in Example 3. First, we recall the definition of wp in Fig.8, and rewrite
the programs in Figs. 4 and 5 with all functions and values properly instantiated
in the way we need it here (see Figs.9 and 10).

On the one hand, none of the programs
have parameters, then Plntrs = true. On the
other hand, Stdin = (thrtl € (0,1]). Since
wp(EC, true) = true we have to prove that

2

wp(EC; EC, [NOx — NOz'| <Y)
A wp(EC; EC, |[NOz— NOz'| <)

thrtl € (0,1] A (w - Y)

(3)

where EC’ is another instance of EC with
every program variable x renamed by z’. More-
over, function f and distances d), and dout
are already instantiated. It is not difficult to
verify that wp(EC;EC/,|NOz—NOz'| < Y) =

def-dose := thrtl®
NOz := thrtl® / (2 - def-dose)

Fig. 9. Program EC.

if thrtl € ThrottleTestValues
then
def-dose := thrtl?
else
def-dose := thrtl
end if
NOz := thrtl® / (2 - def-dose)

Fig. 10. Program AEC.

(|thrtl—2thrtz’| < Y) and wp(EC'; EC, [INOz—NOz'| < V) = (\thrtz’z—thrtu < Y)
from which the implication follows and hence EC is f-clean.

For AEC we also have that wp(AEC, true) = true and hence we have to prove
a formula similar to 3. In this case, wp(AEC; AEC’, |[NOz — NOz'| <Y) is

(thrtl € (0,1] A thrtl" € (0,1]) =
A (thrtl € (0,1] A thrtl” ¢ (0,1]) =
(thrtl & (0,1] A thrtl” € (0,1]) =
A (thrtl ¢ (0,1] A thrtl’ ¢ (0,1]) =

’
\thrtl;thrtl | <Y

_ 12
|thrtl 2thrtl | <Y

2 ’
|thrtl 2thrtl | <Y

2 12
|thrtl ;thrtl | <Y

The predicate is the same for wp(AEC'; AEC, [NOz — NOz'| <Y'), since |a — b| =

|b — a|. Then, the predicate

(thrtt e (0,1) p Lortn’l ) -, (

wp(AEC; AEC/, [NOz — NOz'| <Y)
A Wp(AEC'; AEC, [NOz — NOz'| <Y)
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is equivalent to

, ’ |thrtl—thrtl’ |
(thrit e (0,1 Mrtitll v thril” € (0,1] = 25 <V
? A thrtl ¢ (0,1] = Hhri=thrlT]

which can be proved false if, e.g., thrtl =1 and thrtl’ = 1.5.

Notwithstanding the simplicity of the previous example, the technique can
be applied to complex programs including loops. We decided to keep it simple
as it is not our intention to show the power of wp, but the applicability of our
definition.

We could profit from [7] for the use of other verification techniques, including
separation logic and model checking where the properties can be expressed in
terms of LTL and CTL. Particularly, CTL permits the encoding of the full non-
deterministic properties given in Sect.2. We will not dwell on this since in the
next section we explore the encoding of the reactive properties through a more
general setting.

5 Analysis of Reactive Programs with HyperLTL

HyperLTL [15] is a temporal logic for the specification of hyperproperties of
reactive systems. HyperLTL extends linear-time temporal logic (LTL) with trace
quantifiers and trace variables, which allow the logic to refer to multiple traces
at the same time. The problem of model checking a HyperLTL formula over a
finite-state model is decidable [24]. In this section, we focus on reactive non-
deterministic programs and use HyperLTL to encode the different definitions of
clean reactive programs given in Sect. 3. In the following, we interpret a program
as a set S C (2AP)« of infinite traces over a set AP of atomic propositions.

Let m be a trace variable from a set V of trace variables. A HyperLTL formula
is defined by the following grammar:

Y o= 3mp | Vo | @ @)
o= ar | 29 [ oV [Xd |oUS

The quantifiers 3 and V quantify existentially and universally, respectively, over
the set of traces. For example, the formula V7. 37’. ¢ means that for every trace
7 there exists another trace 7’ such that ¢ holds over the pair of traces. If
no universal quantifier occurs in the scope of an existential quantifier, and no
existential quantifiers occurs in the scope of a universal quantifier, we call the
formula alternation-free. In order to refer to the values of the atomic propositions
in the different traces, the atomic propositions are indexed with trace variables:
for some atomic proposition a € AP and some trace variable 7 € V, a, states that
a holds in the initial position of trace w. The temporal operators and Boolean
connectives are interpreted as usual. In particular, X ¢ means that ¢ holds in
the next state of every trace under consideration. Likewise, ¢ U ¢/ means that
¢’ eventually holds in every trace under consideration at the same point in
time, provided ¢ holds in every previous instant in all such traces. We also use
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the standard derived operators: F¢ = truelU ¢, G¢ = —F—¢, and ¢ W ¢’ =
=(=¢" U (= A =¢")).

A trace assignment is a partial function IT : V — (2AP)% that assigns traces
to variables. Let II[m — t] denote the same function as IT except that 7 is
mapped to the trace t. For k € N, let ¢[k], t[k..], and t[..k] denote respectively
the k-th element of ¢, the k-th suffix of ¢, and the k-th prefix of ¢t. The trace
assignment suffix IT[k..] is defined by II[k.](7) = H(m)[k..]. By II |Es ¢ we
mean that formula ¢ is satisfied by the program S under the trace assignment
I1. Satisfaction is recursively defined as follows.

IIEs3n.yy iff H[r—t] =g for somet € S
II =5 Vr.op  iff H[m—t] =5 1 for every t € S
II Es5 ax iff a € II(m)[0]
Is—¢  iff s o
H':s¢1v¢2 iff H|:s¢1orH):s¢2
II'=s X¢ iff II[1..] s &
IT =5 ¢1 U ¢o iff there exists k > 0 s.t. II[k..] s ¢2 and
forall 0 < j<k,II[j..]FEs ¢1

We say that a program S satisfies a HyperLTL formula v if it is satisfied
under the empty trace assignment, that is, if & =g 1.

In the following, we give the different characterisations of cleanness for reac-
tive programs in terms of HyperLTL. For this, let AP = AP, U AP; U AP, where
AP,, AP;, and AP, are the atomic propositions that define the parameter values,
the input values, and the output values respectively. Thus, we take Param = 2AP»
In = 2AP" and Out = 2AP. Therefore, a program S C (2*7)“ can be seen as a
function S : Param — In® — 2(04*) where

teS ifandonlyif (t]AP,) € S(t[0]NAP,)(t | AP;), (5)

with t | A defined by (¢ | A)[k] = t[k] N A for all k € N.

For the propositions appearing in the rest of this sections, we will assume that
distances between traces are defined only according to its last element. That is,
for the distance dj, : (In* xIn*) — Rs there exists a distance di : (InxIn) — Rxq
such that di,(i,i) = di,(last(i),last(i’)) for every i,i’ € In*, and similarly for
dout : (Out™ x Out™) — Rsg. Let us call these type of distances past-forgetful.
Moreover, we will need the abbreviations given in Table 1 for a clear presentation
of the formulas.

The set of parameters of interest Plntrs C Param defines a Boolean formula
which we ambiguously call Plntrs. Also, we let Stdln be an LTL formula with
atomic propositions in AP;, that is, a formula obtained with the grammar in the
second line of (4) where atomic propositions have the form a € AP; (instead
of ar). Thus StdIn characterises the set of all input sequences through an LTL
formula. With Stdln, we represent the HyperLTL formula that is exactly like
StdIn but where each occurrence of a € AP; has been replaced by a,. Likewise,
we let Plntrs, represent the Boolean formula that is exactly like Plntrs with each
occurrence of a € AP, replaced by a,. We are now in conditions to state the
characterisation of a clean program in terms of HyperLTL.
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Table 1. Syntactic sugar for comparisons between traces

Pr = Pxr’ iff /\ Ar <7 Q! Czln(i7m i7r’) < Ki iff \/ /\ A N /\ 7%

a€APy i,i’€ln aci aci’
. S d(i,i") <k
ir =g iff /\ An < Qg
aEAP; - .
' dout(0r,0,7) < Ko iff \/ /\ ar N /\ A
Ox = Oyn/ iff /\ An <> Ag/ 0,0/ €0Out a€o a€co’
aEAP, d(0,0")<ro
douwt(0m,05) < fldin(in,ip)) iff \/ Naxn N aw AN\ ax A N an
0,0’ €0ut,i,i’€ln a€i a€i’ a€o a€co’

d(0,0")<f(d(i,i"))

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

V. Vg, 3wy (PIntrsy, A Plntrs,, A Stdin,,)
= (pr, = Pry A Glin, =iny ANOg, = oﬂé)) (6)
As it is given, the formula actually states that
Vp1 : Vp2 : Vit p1,p2 € Plntrs Ai € StdIn : S(p1)(i) € S(p2)(i)

Because of the symmetry of this definition (namely, interchanging p; and p), this
is indeed equivalent to Definition 6. Notice that in (6), 72 quantifies universally
the parameter of the second instance, while 7 represents the existence of the
output sequence in such instance. The proofs of Propositions 18 to 20 follow the
same structures. So we only provide the proof of Proposition 19 which is the
most involved.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dy, and dou if and only if S satisfies the following two HyperLTL
formulas

Vry. Vs, E|7Té.

(PIntrs;, A Plntrs., A Stdln,)

— (Prs = Pry A Glir, = ixg) A ((doue(0n,0;) < o) W (dinimy s iy) > 1) )
Vry. Vs, E|7T£.
(PIntrs;, A Plntrs., A Stdln,)
- (Pm = Pa; A Glimy = in) A ((620ut(07r'1707r2) < Ko) W (dln(iﬂ;,im) > Ki)))
(7)
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The difference between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on
the program that may deviate, the second one works in the other way around.
Thus each of the formulas capture each of the sup-inf terms in the definition of
Hausdorff distance (see (2)). To notice this, follow the existentially quantified
variable (7} for the first formula, and 7] for the second one). Also, the weak until
operator W has exactly the behaviour that we need to represent the interaction
between the distances of inputs and the distances of outputs. The semantics of
¢ W 9 is defined by

tEoWyiff VE>0: (Vj<k:t[j.]EvY) —tk.]E¢ (8)
Next, we prove Proposition 19.

Proof. We only prove that the first formula captures the bound on the left sup-
inf term of the definition of Hausdorff distance (see eq. (2)) in Definition 7. The
other condition is proved in the same way and corresponds to the other sup-inf
term of the Hausdorff distance. Taking into account the semantics of the weak
until operator given in Eq. 8, the semantics of HyperLTL in general and using
abbreviations in Table 1, formula 7 is equivalent to the following statement

Vt1€SIvt2€SIHt/2€SI
(t1 |= Plntrs A to = Plntrs A 1 |= StdlIn)

o ((t2 0] N AP,) = (£,0] NAP,) A (V5 > 0 : t[j] N AP; = t4[4] N AP;)
AVE >0: (V) <k :din(t:[j] N AP, t5[5] N AP;) < &)
— dow (t1[K] N AP, t4[k] N AP,) < no)

By applying some definitions and notation changes, this is equivalent to

Vi, €S:Vta € S:LeS:
((£1]0] N AP,) € Plntrs A (t5[0] N AP,) € Plntrs A (t, | AP;) € StdIn)

— ((t2 0] N APy) = (85[0 NAPp) A (t2 | APy) = (t5 | APy)
AVE > 0: (V) < k: din(ti[j] N AP, 5[] N AP;) < ki)
— dou(t1[K] 1 APo, t4[K] N APo) < o )
which, by logic manipulation, is equivalent to

Vp1 : Vpo : Vi @ Vig : Voy :
(HtleS:EtgeS:

(p1 = (t1[0) NAP,) € Plntrs) A (p2 = (t2[0] N AP}) € Plntrs)

Air = (t1 | AP) Aia = (t2 | AP) Aoy = (t1 | APo) Ay € Stdln)
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— Jdoy : Jth € S
(2 = (t4[0] N APy) Ao = (t5 | AP) Aoz = (£} | AP,)
AVE 20 (%) < s dini ], 207]) < ki) = dows(01[K], 02[K]) < o)

By (5) and the fact that distances are past-forgetful, the previous equation is
equivalent to

Vp1 : Vpo : Vi : Vig : Voy :
(p1, p2 € Plntrs Ay € Stdin AVE > 0: (Vj <k : din(i1].-5],i2[--7]) < &i)

Aoy € S(pl)(il)) — (3og € 8(p2)(iz) : dout(01[.-k], 02[..k]) < o)

which in turn corresponds to bounding the left sup-inf term of the Hausdorff
distance (see (2)) in Definition 7,
Vp1 : Vpo : Vip : Vig :
(P1,p2 € Plntrs Aiy € Stdin AVE > 0: (V5 < k = din(in[..5], i2[.-5]) < 1))
— (5UD,, ¢ 5(p1)(11) Moy e 8(pa) (ia) D0ut (01 [--K], 02[.K])) < #io
thus proving this part of the proposition. a

Finally, we also give the characterisation of an f-clean program in terms of
HyperLTL.

Proposition 20. A reactive program S is f-clean under past-forgetful distances
din and doy if and only if S satisfies the following two HyperLTL formulas

V. Vs, Hﬁé.

(PIntrsz, A Plntrs., A Stding,)
- (pTrz = pﬂ'é A G(iTrg = |7ré) NG (CzOut(oﬂlaoﬂ'é) S f(d|n(i7T17i7Té))))

V. Vs, 37r'1.

(PIntrsz, A Plntrs., A Stding,)
= (pry = Prg A Glir, = i) A G (doue(0n;,0n,) < f(dining. i) (9)

As before, the difference between the first and second formula is subtle and
can be noticed again by following the existentially quantified variables in each
of the formulas.

We remark that the HyperLTL characterisations presented in Propositions 19
and 20 can be extended to any distance of bounded memory, that is, distances
such that d(t,t') = d(t[k..],t'[k..]) for every finite traces ¢ and t' and a fixed
bound k € N. The solution proceeds by basically using the same formulas on an
expanded and annotated model (with the expected exponential blow up w.r.t.
to the original one).
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Ezxample 21. In our running example of the emission control system (see Exam-
ples8 and 10), the property of robustly cleanness reduces to checking formula

V7T1.V7T2. Hﬂ'é

Stdln,, — (G(tm — t0) A (dowt(ney s 1) < Fio) W (din(tey s ) > /s;)))
(10)

and the obvious symmetric formula. For readability reasons, we shorthandedly
write ¢ for thrtl and n for NOz. Notice that any reference to parameters disap-
pears since the emission control system does not have parameters, and the set
of standard inputs is characterised by the LTL formula Stdin = G(¢ € (0, 1]).
Likewise, we can verify that the model of the emission control system is f-clean
through the formula

V. Vs, 37'(/2.

Stdlnﬂ'l — (G(tﬂ"Q = tﬂ"é) NG (dAOUt(nﬂ'lvnﬂ‘é) < f(dA|n(t7F13 tﬂ'é)))) (11)

and the symmetric formula.

6 Experimental Results

We verified the cleanness of the emission control system using the HyperLTL
model checker MCHyper [24]. The input to the model checker is a description of
the system as an Aiger circuit and a hyperproperty specified as an alternation-
free HyperLTL formula. Since the HyperLTL formulas from the previous section
are of the form VmVme3nl ..., and are, hence, not alternation-free, MCHyper
cannot check these formulas directly. However, it is possible to prove or disprove
such formulas by strengthening the formulas and their negations manually into
alternation-free formulas that are accepted by MCHyper.

In order to prove that program EC in Fig. 9 is robustly clean, we strengthen
formula (10) by substituting 7o for the existentially quantified variable 7. The
resulting formula is alternation-free:

V1. V. Stding, — ((ciol,t(nm, Ny) < Kio) W (din(try s bry) > /1;)) (12)

MCHyper confirms that program EC satisfies (12). The program thus also satis-
fies (10). Notice that we had obtained the same formula if we would have started
from the formula symmetric to (10).

To prove that program AEC in Fig. 10 is doped with respect to (10), we
negate (10) and obtain

dmy. Ims. Vﬂ"Q.

—\(S’Edlmr1 — (G(tﬂz = tﬂé) A ((dOut(nﬂ'mnﬂé) < ko) W (dln(trrlatﬂé) > Hu))))
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This formula is of the form 3my. Ims. Vah. ... and, hence, again not alternation-
free. We replace the two existential quantifiers with universal quantifiers and
restrict the quantification to two specific throttle values, a for 71 and b for ms:

V. Vs, V7T/2.

Gtr, =a Alr, =b) —
~(Stdinz, = (Gltes = try) A ((dowe(nr, 7my) < Hio) W (din(try s trs) > 1)) ))

This transformation is sound as long as there actually exist traces with throttle
values a and b. We establish this by checking, separately, that the following
existential formula is satisfied:

Iy, Ima. G(tﬂ—l =aANtg, = b) (14)

MCHyper confirms the satisfaction of both formulas, which proves that (10) is
violated by program AEC. Precisely, the counterexample that shows the violation
of (10) is any pair of traces m; and 7 that makes G(tr, = aAtr, = b) true in (14).
We proceed similarly for the formula symmetric to (10) obtaining two formulas
just as before which are also satisfied by AEC and hence the original formula is
not. Also, we follow a similar process to prove that EC is f-clean but AEC is not.

Table 2. Experimental results from the verification of robust cleanness of EC and AEC

Program | NO,, Model size | Circuit size Property Time
Step #transitions | #latches | #gates (sec.)
EC 0.05 1436 17 9749 | (12) 0.92
0.00625 | 60648 23 505123 | (12) 22.19
AEC 0.05 3756 19 27574 | (13a) a = 0.1 1.62
(13b) a=0.1 16
(13a) a = 1 1.68
(13b) a =1 1.56
0.00625 | 175944 25 1623679 | (13a) a = 0.1 | 102.07
(13b) a=0.1| 96.3
(I13a) a=1 97.67
(13b)a=1 | 928

Table 2 shows experimental results obtained with MCHyper?® version 0.91 for
the verification of robustly cleanness. The Aiger models were constructed by
discretizing the values of the throttle and the NO,. We show results from two
different models, where the values of the throttle was discretised in steps of 0.1

3 https://www.react.uni-saarland.de/tools/mchyper/.
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units in both models and the values of the NO, in steps of 0.05 and 0.00625.
All experiments were run under OS X “El Capitan” (10.11.6) on a MacBook
Air with a 1.7GHz Intel Core i5 and 4GB 1333MHz DDR3. In Table2, the
model size is given in terms of the number of transitions, while the size of the
Aiger circuit encoding the model prepared for the property is given in terms
of the number of latches and gates. The specification checked by MCHyper is
the formula indicated in the property column. Formula (13b) is the formula
symmetric to (13a). For the throttle values a and b in formulas (13a) and (13b),
we chose b = 2 and let a vary as specified in the property column. Table3
shows similar experimental results for the verification of f-cleanness. With (12),
(13a"), and (13b’) we indicate the similar variations to (12), (13a), and (13b)
required to verify (11). Model checking takes less than two seconds for the coarse
discretisation and about two minutes for the fine discretisation.

Table 3. Experimental results from the verification of f-cleanness of EC and AEC

Program | NO, Model size | Circuit size Property Time
step #transitions | #latches | #gates (sec.)
EC 0.05 1436 5 9869 | (12") 1.08
0.00625 | 60648 8 505285 | (12) 21.74
AEC 0.05 3756 6 27708 | (13a’) a =0.1| 1.71
(13b)) a =0.1 1.72
(13a’) a =1 1.72
(13b")a=1 1.77
0.00625 | 175944 9 1623855 | (13a’) a = 0.1 | 95.29
(13b) a = 0.1 | 97.48
(13a’) a =1 |95.57
(13b’)a=1 |95.5

7 A Comprehensive Characterisation

If we concretely focus on the contract between the society or the licensee, and
the software manufacturer, we can think in a more general but precise definition.
It emerges by noticing that there is a partition on the set of inputs in three sets,
each one of them fulfilling a different role within the contract:

1. The set Stdln of standard inputs. For these inputs, the program is expected
to work exactly as regulated. It is the case, e.g., of the inputs defining the
tests for the NO, emission. Thus, it is expected that the program complies
to Definition 1 when provided only with inputs in StdIn.
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2. The set Comm of committed inputs such that CommNStdin = &. These inputs
are expected to be close according to a distance to Stdln and are not strictly
regulated. However, it is expected that the manufacturer commits to respect
certain bounds on the outputs. This would correspond to the inputs that do
not behave exactly like the tests for the NO, emission, but yet define “reason-
able behaviour” of the car on the road. The behaviour of the program under
this set of inputs can be characterised either by Definition 2 or Definition 4.

3. All other inputs are supposed to be anomalous and expected to be signif-
icantly distant from the standard inputs. In our emission control example,
this can occur, e.g., if the car is climbing a steep mountain or speeding up
in a highway. In this realm the only expectation is that the behaviour of the
output is continuous with respect to the input.

Bearing this partition in mind, we propose the following general definition.

Definition 22. A parameterised program S is clean (or doping-free) if for all
pairs of parameters of interest p,p’ € Plntrs and inputs i,i’ € In,

1. if i € StdIn then S(p)(i) = S(p')(i);

2. ifi € Stdln and i’ € Comm then H(dow)(S(p)(i), S(p") (") < f(din(i,i")).

3. for every € > 0 there exists § > 0 such that for all V ¢ Stdln U Comm and
i €ln, d(i,i") <& implies H(douw)(S(p)(i), S(p’) (")) <e.

Notice that, while Plntrs, Stdin, Comm, d),, dou, and f are part of the
contract entailed by the definition, € and § in item 3 are not since they are
quantified (universally and existentially, resp.) in the definition. In this case,
we choose for item 3 to require that the program S is uniformly continuous in
In\ (StdIn U Comm). However, we could have opted for stronger requirements
such as Lipschitz continuity. The chosen type of continuity would also be part
of the contract. Notice that this is the only case in which we require continuity.
Instead, discontinuities are allowed in cases 1 and 2 as long as the conditions
are respected since they may be part of the specification. In particular, notice
that f could be any function. Obviously, a similar definition can be obtained for
reactive systems.

We remark that cases 1 and 2 can be verified, as we showed in the paper. We
have not yet explored the verification of case 3.

8 Related Work

The term “software doping” has being coined by the press about a year ago
and, after the Volkswagen exhaust emissions scandal, the elephant in the room
became unavoidable: software developers introduce code intended to deceive [28].
Recently, a special session at ISOLA 2016 was devoted to this topic [34]. In [9],
Baum attacks the problem from a philosophical point of view and elaborates on
the ethics of it. In [5], we provided a first discussion of the problem and some
informal characterisations hinting at the formal proposal of this paper. Though
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all these works point out the need for a technical attack on the problem, none
of them provide a formal proposal.

Similar to software doping, backdoored software is a class of software that
does not act in the best interest of users; see for instance the recent analysis
in [37]. The primary emphasis of backdoored software is on leaking confidential
information while guaranteeing functionality.

Dope-freedom in sequential programs is strongly related to abstract non-
intereference [6,26] as already disussed in Sect. 4. More generally, our notions of
dope-freedom are hyperproperties [16], a general class that encompasses notions
across different domains, in particular non-interference in security [39], robust-
ness (a.k.a. stability) in cyber-physical systems [13], and truthfulness in algorith-
mic game theory [8]. There exist several methods for verifying hyperproperties,
including relational and Cartesian Hoare logics [10,38,44], self-composition and
product programs constructions [4,7], temporal logics [15,23,24], or games [35].
These techniques greatly vary in their completeness, efficiency, and scalability.

Another worthwhile direction to study is the use of program equivalence
analysis [22,27] for the analysis of cleanness.

9 Concluding Remarks

This article has focused on a serious and yet long overlooked problem, arising if
software developers intentionally and silently deviate from the intended objective
of the developed software. A notorious reason behind such deviations are simple
and blunt lock-in strategies, so as to bind the software licensee to a certain
product or product family. However, the motivations can be more diverse and
obscure. As the software manufacturer has full control over the development
process, the deviation can be subtle and surreptitiously introduced in a way that
the fact that the program does not quite conform to the expected requirements
may go well unnoticed.

We have pioneered the formalisation of this problem domain by offering sev-
eral formal characterisations of software doping. These can serve as a framework
for establishing a contract between the interested parties, namely the society or
the licensee, and the software manufacturer, so as to avoid and eventually ban
the development of doped programs.

We have also reported on the use of existing theories and tools at hand to
demonstrate that the formal characterisation can indeed be analysed in various
ways. In particular, the application of the self-composition technique opens many
research directions for further analysis of software doping as it has been widely
studied in the area of security [29,31], semantical differences [32] and cross or
relative verification [30].

As we have demonstrated, the use of HyperLTL enables the automatic analy-
sis of reactive models with respect to software doping. However, the complexity
of this technique imposes some serious limits on its applicability. Thus, further
studies in this direction are needed in order to enable analysis of reactive models
of relatively large size, or alternatively to analyse the program code directly.
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We believe our characterisations provide a first solid step to understand soft-
ware doping and that our result opens a large umbrella of new possibilities, both
in the direction of more dedicated characterisations as well as specifically tailored
analysis techniques. For instance, the idea of dealing with distances and thresh-
olds already rises the question of whether such distances could be quantified by
probabilities. Also, the NO, emission example would immediately suggest that
the technique should also be addressed with testing. Moreover, the fact that
the characterisations are hyperproperties also invites us to investigate for static
analysis of source code based on type systems, abstraction techniques, etc.
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Abstract. We introduce AmiCo, a tool that extends a proof assistant,
Isabelle/HOL, with flexible function definitions well beyond primitive
corecursion. All definitions are certified by the assistant’s inference ker-
nel to guard against inconsistencies. A central notion is that of friends:
functions that preserve the productivity of their arguments and that are
allowed in corecursive call contexts. As new friends are registered, core-
cursion benefits by becoming more expressive. We describe this process
and its implementation, from the user’s specification to the synthesis of
a higher-order definition to the registration of a friend. We show some
substantial case studies where our approach makes a difference.

1 Introduction

Codatatypes and corecursion are emerging as a major methodology for program-
ming with infinite objects. Unlike in traditional lazy functional programming,
codatatypes support total (co)programming [1,8,30,68], where the defined func-
tions have a simple set-theoretic semantics and productivity is guaranteed. The
proof assistants Agda [19], Coq [12], and Matita [7] have been supporting this
methodology for years.

By contrast, proof assistants based on higher-order logic (HOL), such as
HOL4 [64], HOL Light [32], and Isabelle/HOL [56], have traditionally pro-
vided only datatypes. Isabelle/HOL is the first of these systems to also offer
codatatypes. It took two years, and about 24 000 lines of Standard ML, to move
from an understanding of the mathematics [18,67] to an implementation that
automates the process of checking high-level user specifications and producing
the necessary corecursion and coinduction theorems [16].
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There are important differences between Isabelle/HOL and type theory sys-
tems such as Coq in the way they handle corecursion. Consider the codatatype
of streams given by

codatatype « stream = (shd: «) < (stl: « stream)

where < (written infix) is the constructor, and shd and stl are the head and tail
selectors, respectively. In Coq, a definition such as

corec natsFrom : nat — nat stream where
natsFrom n = n < natsFrom (n + 1)

which introduces the function n — n<dn+1<4n+2<---, is accepted after a
syntactic check that detects the <-guardedness of the corecursive call. In Isabelle,
this check is replaced by a deeper analysis. The primcorec command [16] trans-
forms a user specification into a blueprint object: the coalgebra b = An. (n, n+1).
Then natsFrom is defined as coreCsiream b, Where corecsream is the fixed primitive
corecursive combinator for a stream. Finally, the user specification is derived as
a theorem from the definition and the characteristic equation of the corecursor.

Unlike in type theories, where (co)datatypes and (co)recursion are built-in,
the HOL philosophy is to reduce every new construction to the core logic. This
usually requires a lot of implementation work but guarantees that definitions
introduce no inconsistencies. Since codatatypes and corecursion are derived con-
cepts, there is no a priori restriction on the expressiveness of user specifications
other than expressiveness of HOL itself.

Consider a variant of natsFrom, where the function add1 : nat — nat stream —
nat stream adds 1 to each element of a stream:

corec natsFrom : nat — nat stream where
natsFrom n = n < addl (natsFrom n)

Coq’s syntactic check fails on addl. After all, addl could explore the tail of
its argument before it produces a constructor, hence blocking productivity and
leading to underspecification or inconsistency.

Isabelle’s bookkeeping allows for more nuances. Suppose addl has been
defined as

corec addl : nat stream — nat stream where
addl ns = (shd ns + 1) < add1 (stl ns)

When analyzing addl’s specification, the corec command synthesizes its defin-
ition as a blueprint b. This definition can then be proved to be friendly, hence
acceptable in corecursive call contexts when defining other functions. Functions
with friendly definitions are called friendly, or friends. These functions preserve
productivity by consuming at most one constructor when producing one.

Our previous work [17] presented the category theory underlying friends,
based on more expressive blueprints than the one shown above for primitive
corecursion. We now introduce a tool, AmiCo, that automates the process of
applying and incrementally improving corecursion.
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To demonstrate AmiCo’s expressiveness and convenience, we used it to for-
malize eight case studies in Isabelle, featuring a variety of codatatypes and core-
cursion styles (Sect.2). A few of these examples required ingenuity and suggest
directions for future work. Most of the examples fall in the executable frame-
work of Isabelle, which allows for code extraction to Haskell via Isabelle’s code
generator. One of them pushes the boundary of executability, integrating friends
in the quantitative world of probabilities.

At the low level, the corecursion state summarizes what the system knows
at a given point, including the set of available friends and a corecursor up to
friends (Sect.3). Polymorphism complicates the picture, because some friends
may be available only for specific instances of a polymorphic codatatype. To
each corecursor corresponds a coinduction principle up to friends and a unique-
ness theorem that can be used to reason about corecursive functions. All of the
constructions and theorems are derived from first principles, without requiring
new axioms or extensions of the logic. This foundational approach prevents the
introduction of inconsistencies, such as those that have affected the termination
and productivity checkers of Agda and Coq in recent years.

The user interacts with our tool via the following commands to the proof assis-
tant (Sect. 4). The corec command defines a function f by extracting a blueprint b
from a user’s specification, defining f using b and a corecursor, and deriving the
original specification from the characteristic property of the corecursor. More-
over, corec supports mixed recursion—corecursion specifications, exploiting proof
assistant infrastructure for terminating (well-founded) recursion. Semantic proof
obligations, notably termination, are either discharged automatically or presented
to the user. Specifying the friend option to corec additionally registers f as a
friend, enriching the corecursor state. Another command, friend_of _corec, reg-
isters existing functions as friendly. Friendliness amounts to the relational para-
metricity [60,69] of a selected part of the definition [17], which in this paper we call
a surface. The tool synthesizes the surface, and the parametricity proof is again
either discharged automatically or presented to the user.

AmiCo is a significant piece of engineering, at about 7000 lines of Standard
ML code (Sect. 5). It subsumes a crude prototype [17] based on a shell script and
template files that automated the corecursor derivation but left the blueprint and
surface synthesis problems to the user. Our tool is available as part of the official
Isabelle2016-1 release. The formalized examples and case studies are provided in
an archive [14].

The contributions of this paper are the following;:

— We describe our tool’s design, algorithms, and implementation as a
foundational extension of Isabelle/HOL, taking the form of the corec,
friend_of_corec, corecursive and coinduction_upto commands and the
corec_unique proof method.

— We apply our tool to a wide range of case studies, most of which are either
beyond the reach of competing systems or would require type annotations
and additional proofs.
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More details, including thorough descriptions and proofs of correctness for the
surface synthesis algorithm and the mixed recursion—corecursion pipeline, are
included in a technical report [15]. Although our tool works for Isabelle, the
same methodology is immediately applicable to any prover in the HOL fam-
ily (including HOL4, HOL Light, HOL Zero [6], and HOL-Omega [34]), whose
users represent about half of the proof assistant community. Moreover, a similar
methodology is in principle applicable to provers based on type theory, such as
Agda, Coq, and Matita (Sect.6).

Conventions. We recall the syntax relevant for this paper, relying on the stan-
dard set-theoretic interpretation of HOL [27].

We fix infinite sets of type variables «, 3,... and term variables z,y, ...
and a higher-order signature, consisting of a set of type constructors including
bool and the binary constructors for functions (—), products (x), and sums
(4+). Types o, T are defined using type variables and applying type constructors,
normally written postfix. Isabelle /HOL supports Haskell-style type classes, with
:: expressing class membership (e.g.,int :: ring).

Moreover, we assume a set of polymorphic constants ¢, f, g, ... with declared
types, including equality = : & — «a — bool, left and right product projections
fst and snd, and left and right sum embeddings Inl and Inr. Terms ¢ are built from
constants ¢ and variables & by means of typed A-abstraction and application.
Polymorphic constants and terms will be freely used in contexts that require a
less general type.

2 DMotivating Examples

We apply AmiCo to eight case studies to demonstrate its benefits—in particu-
lar, the flexibility that friends provide and reasoning by uniqueness (of solutions
to corecursive equations). The first four examples demonstrate the flexibility
that friends provide. The third one also features reasoning by uniqueness. The
fourth example crucially relies on a form of nested corecursion where the oper-
ator under definition must be recognized as a friend. The fifth through seventh
examples mix recursion with corecursion and discuss the associated proof tech-
niques. The last example, about a probabilistic process calculus, takes our tool
to its limits: We discuss how to support corecursion through monadic sequenc-
ing and mix unbounded recursion with corecursion. All eight formalizations are
available online [14], together with our earlier stream examples [17].

Since all examples are taken from the literature, we focus on the formalization
with AmiCo. No detailed understanding is needed to see that they fit within the
friends framework. Background information can be found in the referenced works.

Remarkably, none of the eight examples work with Coq’s or Matita’s standard
mechanisms. Sized types in Agda [4] can cope with the first six but fail on the last
two: In one case a function must inspect an infinite list unboundedly deeply, and
in the other case the codatatype cannot even be defined in Agda. The Dafny
verifier, which also provides codatatypes [46], supports only the seventh case
study.
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2.1 Coinductive Languages

Rutten [62] views formal languages as infinite tries, i.e., prefix trees branch-
ing over the alphabet with boolean labels at the nodes indicating whether the
path from the root denotes a word in the language. The type « lang features
corecursion through the right-hand side of the function arrow (—).

codatatype « lang = Lang (o : bool) (0 : @« — « lang)

Traytel [66] has formalized tries in Isabelle using a codatatype, defined regular
operations on them as corecursive functions, and proved by coinduction that the
defined operations form a Kleene algebra. Because Isabelle offered only primitive
corecursion when this formalization was developed, the definition of concatena-
tion, iteration, and shuffle product was tedious, spanning more than a hundred
lines.

Corecursion up to friends eliminates this tedium. The following extract from
an Isabelle formalization is all that is needed to define the main operations on
languages:

corec (friend) + : a lang — « lang — « lang where
L+K=Llang(oLVoK)(Aa.d La+dK a)

corec (friend) - : « lang — «a lang — « lang where
L-K=Llang (0o LANo K)(Ma.if o Lthen (6 La-K)+d K aelsed La-K)

corec (friend) * : o lang — « lang where

L* = Lang True (Aa. d L a- L*)

corec (friend) | : o lang — « lang — « lang where

L|K=Llang(oLAoK)(Xa. (6 La-K)+(L-J K a))

Concatenation (-) and shuffle product (]|) are corecursive up to alternation (+),
and iteration (*) is corecursive up to concatenation (-). All four definitions use
an alternative A-based syntax for performing corecursion under the right-hand
side of —, instead of applying the functorial action map_, = o (composition)
associated with —.

The corec command is provided by AmiCo, whereas codatatype and
primcorec (Sect.3.2) has been part of Isabelle since 2013. The friend option
registers the defined functions as friends and automatically discharges the emerg-
ing proof obligations, which ensure that friends consume at most one constructor
to produce one constructor.

Proving equalities on tries conveniently works by coinduction up to con-
gruence (Sect.3.7). Already before corec’s existence, Traytel was able to write
automatic one-line proofs such as

lemma K - (L+M)=K-L+K-M
by (coinduction arbitrary: K L M rule: +.coinduct) auto

The coinduction proof method [16] instantiates the bisimulation witness of
the given coinduction rule before applying it backwards. Without corec, the
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rule +. coinduct of coinduction up to congruence had to be stated and proved man-
ually, including the manual inductive definition of the congruence closure under +.

Overall, the usage of corec compressed Traytel’s development from 750 to
600 lines of Isabelle text. In Agda, Abel [3] has formalized Traytel’s work up to
proving the recursion equation L* = e + L - L* for iteration (*) in 219 lines of
Agda text, which correspond to 125 lines in our version. His definitions are as
concise as ours, but his proofs require more manual steps.

2.2 Knuth—Morris—Pratt String Matching

Building on the trie view of formal languages, van Laarhoven [44] discovered a
concise formulation of the Knuth—-Morris—Pratt algorithm [41] for finding one
string in another:

is-substring-of zs ys = match (mk-table zs) ys

match ¢ zs = (o t V (s # [] A match (§ ¢ (hd z) (tl zs)))

mk-table zs = let table = tab xs (A_. table) in table

tab [] f = Lang True f

tab (z < xs) f = Lang False (\c. if ¢ = x then tab zs (§ (f x)) else f ¢)

Here, we overload the stream constructor < for finite lists; hd and tl are the
selectors. In our context, table : « lang is the most interesting definition because
it corecurses through tab. Since there is no constructor guard, table would appear
not to be productive. However, the constructor is merely hidden in tab and can
be pulled out by unrolling the definition of tab as follows.

As the first step, we register A defined by A zs f = § (tab xs f) as a friend,
using the friend of_corec command provided by our tool. The registration
of an existing function as a friend requires us to supply an equation with a
constructor-guarded right-hand side and to prove the equation and the para-
metricity of the destructor-free part of the right-hand side, called the surface
(Sect. 3.4). Then the definition of table corecurses through A. Finally, we derive
the original specification by unrolling the definition. We can use the derived
specification in the proofs, because proofs in HOL do not depend on the actual
definition (unlike in type theory).

corec tab : « list —» (o — « lang) — « lang where

tabzs f = Lang (zs = []) (Ac.if zs =[] V hd @s # c then f celse tab (tl zs) (§ (f ¢)))

definition A : « list —» (o — « lang) — a — «a lang where
A xs f =0 (tab zs f)

friend_of_corec A where
A zs fc=Lang
(if zs =[] V hd zs # c then o (f z) else tl zs = [])
(if zs =[] V hd xs # c then 6 (f z) else A (tl zs) (§ (f ¢)))
(two-line proof of the equation and of parametricity)

context fixes zs : « list begin
corec table : « lang where
table = Lang (zs = []) (A zs (A_. table))
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lemma table = tab xs (\_. table)
(one-line proof)
end

2.3 The Stern—Brocot Tree

The next application involves infinite trees of rational numbers. It is based on
Hinze’s work on the Stern-Brocot and Bird trees [33] and the Isabelle formal-
ization by Gammie and Lochbihler [25]. It illustrates reasoning by uniqueness
(Sect. 3.7).

The Stern—Brocot tree contains all the rational numbers in their lowest terms.
It is an infinite binary tree frac tree of formal fractions frac = nat x nat. Each
node is labeled with the mediant of its rightmost and leftmost ancestors, where
mediant (a, ¢) (b,d) = (a + b, ¢ + d). Gammie and Lochbihler define the tree via
an iterative helper function.

codatatype « tree = Node (root: a) (left: a tree) (right: « tree)

primcorec stern-brocot-gen : frac — frac — frac tree where
stern-brocot-gen | u =
let m=mediant [ u in Node m (stern-brocot-gen [ m) (stern-brocot-gen m )

definition stern-brocot : frac tree where
stern-brocot = stern-brocot-gen (0, 1) (1, 0)

Using AmiCo, we can directly formalize Hinze’s corecursive specification of the
tree, where nxt (m, n) = (m 4+ n,n) and swap (m,n) = (n, m). The tree is core-
cursive up to the two friends suc and 1/ t.

corec (friend) suc : frac tree — frac tree where
suc t = Node (nxt (root t)) (suc (left ¢)) (suc (right t))

corec (friend) 1/ _: frac tree — frac tree where
1/t = Node (swap (root t)) (1 /left t) (1 /right t)

corec stern-brocot : frac tree where
stern-brocot = Node (1, 1) (1 / (suc (1 / stern-brocot))) (suc stern-brocot)

Without the iterative detour, the proofs, too, become more direct as the
statements need not be generalized for the iterative helper function. For example,
Hinze relies on the uniqueness principle to show that a loopless linearization
stream stern-brocot of the tree yields Dijkstra’s fusc function [23] given by

fusc = 1 < fusc’ fusc’ = 1 <1 (fusc + fusc’ — 2 - (fusc mod fusc’))

where all arithmetic operations are lifted to streams elementwise—e.g.,
xS + YS = MaPyream (+) (xs £ ys), where £ zips two streams. We define fusc and
stream as follows. To avoid the mutual corecursion, we inline fusc in fusc’ for
the definition with corec, after having registered the arithmetic operations as
friends:



118 J.C. Blanchette et al.

corec fusc’ : nat stream where
fusc’ = 1 < ((1 < fusc”) + fusc’ — 2 - ((1 < fusc’) mod fusc’))

definition fusc : nat stream where
fusc = 1 < fusc’

corec chop: a tree — « tree where
chop (Node z I ) = Node (root ) r (chop )

corec stream : « tree — « stream where
stream ¢t = root ¢ < stream (chop t)

Hinze proves that stream stern-brocot equals fusc # fusc’ by showing that
both satisfy the corecursion equation z = (1,1) < Mapgyesm Step ©, where
step (m,n) = (n,m +n— 2 (m mod n)). This equation yields the loopless algo-
rithm, because siterate step (1, 1) satisfies it as well, where siterate is defined by

primcorec siterate : (¢ — a) — a — « stream where
siterate f & = x < siterate f (f x)

Our tool generates a proof rule for uniqueness of solutions to the recursion
equation (Sect.3.7). We conduct the equivalence proofs using this rule.

For another example, all rational numbers also occur in the Bird tree given
by

corec bird : frac tree where

bird = Node (1, 1) (1 / suc bird) (suc (1 / bird))

It satisfies 1 / bird = mirror bird, where mirror corecursively swaps all subtrees.
Again, we prove this identity by showing that both sides satisfy the corecursion
equation z = Node (1, 1) (suc (1 /x)) (1 /suc x). This equation does not corre-
spond to any function defined with corec, but we can derive its uniqueness
principle using our proof method corec_unique without defining the function.
The Isabelle proof is quite concise:

let 7H = Ax. Node (1, 1) (suc (1 /x)) (1 /suc )

have mb: mirror bird = 7H (mirror bird) by (rule tree.expand) . ..
have unique: Vt. t = 7H t — t = mirror bird by corec_unique (fact mb)
have 1/ bird = ?H (1 / bird) by (rule tree.ezpand) . ..
then show 1 / bird = mirror bird by (rule unique)

No coinduction is needed: The identities are proved by expanding the definitions
a finite number of times (once each here). We also show that odd-mirror bird =
stern-brocot by uniqueness, where odd-mirror swaps the subtrees only at levels of
odd depth.

Gammie and Lochbihler manually derive each uniqueness rule using a sep-
arate coinduction proof. For odd-mirror alone, the proof requires 25 lines. With
AmiCo’s corec_unique proof method, such proofs are automatic.
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2.4 Breadth-First Tree Labeling

Abel and Pientka [4] demonstrate the expressive power of sized types in Agda
with the example of labeling the nodes of an infinite binary tree in breadth-first
order, which they adapted from Jones and Gibbons [39]. The function bfs takes
a stream of streams of labels as input and labels the nodes at depth i according
to a prefix of the ith input stream. It also outputs the streams of unused labels.
Then bf ties the knot by feeding the unused labels back into bfs :

bfs ((z < zs) < ys) =
let (I, ys') = bfs ys; (r, ys”') = bfs ys’ in (Node z [ r, zs < ys”)

bf zs = let (¢, lbls) = bfs (zs <1 Ibls) in t

Because bfs returns a pair, we define the two projections separately and
derive the original specification for bfs trivially from the definitions. One of the
corecursive calls to bfse occurs in the context of bfsy itself—it is “self-friendly”
(Sect. 4.2).

corec (friend) bfsy : o stream stream — « stream stream
where bfsy ((x < zs) < ys) = xs < bfsy (bfsy ys)

corec bfsy : o stream stream — « tree where
bfs; ((z <0 xs) < ys) = Node z (bfs; ys) (bfs; (bfsy ys))

definition bfs: o stream — « tree where
bfs zss = (bfs; xss, bfsy xss)

corec labels : o stream — « stream stream where
labels s = bfsy (zs < labels xs)

definition bf : o stream — « tree where
bf xs = bfs; (zs < labels zs)

For comparison, Abel’s and Pientka’s formalization in Agda is of similar size,
but the user must provide some size hints for the corecursive calls.

2.5 Stream Processors
Stream processors are a standard example of mixed fixpoints:

datatype (o, 3, 9) sp, = Get (o — («, 3,9) sp,,) | Put 30
codatatype (a. ) sp, = In (out: (a, 3. (o §) sp,) sp,.

When defining functions on these objects, we previously had to break them into
a recursive and a corecursive part, using Isabelle’s primcorec command for the
latter [16]. Since our tool supports mixed recursion—corecursion, we can now
express functions on stream processors more directly.

We present two functions. The first one runs a stream processor:

corecursive run : («, §) sp, — « stream — [ stream where
run sp s = case out sp of
Get f = run (In (f (shd s))) (stl s)
| Put b sp=b<arun sp s
(two-line termination proof)
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The second function, oo, composes two stream processors:

corec (friend) get where

get f = In (Get (Aa. out (f a)))

corecursive oo: (83,7) sp, — (&, B8) sp, — («, ) sp, where
sp oo sp’ = case (out sp, out sp’) of
(Put b sp, ) = In (Put b (sp oo sp’))
| (Get f,Put b sp’) = In (f b) oo sp’
| (o, Get f') = get (Aa. spooln (f' a))
(two-line termination proof)

The selector out in the noncorecursive friend get is legal, because get also adds a
constructor. In both cases, the corecursive command emits a termination proof
obligation, which we discharged in two lines, using the same techniques as when
defining recursive functions. This command is equivalent to corec, except that
it lets the user discharge proof obligations instead of applying some standard
proof automation.

2.6 A Calculator

Next, we formalize a calculator example by Hur et al. [37]. The calculator inputs
a number, computes the double of the sum of all inputs, and outputs the current
value of the sum. When the input is 0, the calculator counts down to 0 and
starts again. Hur et al. implement two versions, f and g, in a programming lan-
guage embedded deeply in Coq and prove that f simulates g using parameterized
coinduction.

We model the calculator in a shallow fashion as a function from the current
sum to a stream processor for nats. Let calc abbreviate nat — (nat, nat) sp,. We
can write the program directly as a function and very closely to its specification
[37, Fig.2]. In f and g, the corecursion goes through the friends get and restart,
and the constructor guard is hidden in the abbreviation put  sp = In (Put z sp).

corec (friend) restart : calc — calc where
restart hn = if n > 0 then put n (restart h (n — 1)) else h 0

corec f : calc where
fn=putn (get (M. if v#£0 then f (2-v+ n) else restart f (v+n)))

corec g : calc where
g m =put (2-m) (get (Av. if v = 0 then restart g (2-m) else g (v +m)))

Our task is to prove that g m simulates f (2-m). In fact, the two can even be
proved to be bisimilar. In our shallow embedding, bisimilarity coincides with
equality. We can prove gm = f (2-m) by coinduction with the rule generated
for the friends get and restart.
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2.7 Lazy List Filtering

A classic example requiring a mix of recursion and corecursion is filtering on
lazy lists. Given the polymorphic type of lazy lists

codatatype a llist =[] | (Ihd: o) < (Itl: « llist)

the task is to define the function Ifilter : (¢ — bool) — « llist — « llist that
retains only the elements that satisfy the given predicate. Paulson [58] defined
Ifilter using an inductive search predicate. His development culminates in a
proof of

Ifilter P o Ifilter @ = Ifilter (A\x. P 2 A Q x) (1)

In Dafny, Leino [45] suggests a definition that mixes recursion and corecursion.
We can easily replicate Leino’s definition in Isabelle, where set converts lazy lists
to sets:

corecursive Ifilter : (& — bool) — « llist — « llist where
Ifilter P s = if V& € set zs. = P x then [
else if P (lhd zs) then Ihd zs < Ifilter P (Itl zs)
else Ifilter P (Itl zs)
(13-line termination proof)

The nonexecutability of the infinite V quantifier in the ‘if’ condition is unprob-
lematic in HOL, which has no built-in notion of computation. Lochbihler and
Holzl [48] define Ifilter as a least fixpoint in the prefix order on llist. Using five
properties, they substantiate that fixpoint induction leads to shorter proofs than
Paulson’s approach.

We show how to prove three of their properties using our definition, namely
(1) and

Ifilter P s =[] «— (VY € set xs. = P zs) (2)
set (lfilter P zs) = set zs N {x | P =} (3)

We start with (2). We prove the interesting direction, —, by induction on
x € set xs, where the inductive cases are solved automatically. For (3), the D
direction is also a simple induction on set. The other direction requires two
nested inductions: first on € set (lfilter P zs) and then a well-founded induction
on the termination argument for the recursion in [filter. Finally, we prove (1)
using the uniqueness principle. We first derive the uniqueness rule for Ifilter by a
coinduction with a nested induction; this approach reflects the mixed recursive-
corecursive definition of Ifilter, which nests recursion inside corecursion.

lemma Ifilter_unique:
(Vas. fas = if Vo € set zs. = P x then []
else if P (lhd zs) then Ihd zs < f (Itl zs)
else f (Itl zs)) —
f = [filter P
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(Our tool does not yet generate uniqueness rules for mixed recursive—corecursive
definitions.) Then the proof of (1) is automatic:

lemma Ifilter P o Ifilter Q = Ifilter (A\x. Pz A Q )
by (rule Ilfilter_unique) (auto elim: llist.set_cases)

Alternatively, we could have proved (1) by coinduction with a nested induc-
tion on the termination argument. The uniqueness principle works well because
it incorporates both the coinduction and the induction. This underlines that
uniqueness can be an elegant proof principle for mixed recursive—corecursive
definitions, despite being much weaker than coinduction in the purely corecur-
sive case. Compared with Lochbihler and Hoélzl’s proofs by fixpoint induction,
our proofs are roughly of the same length, but corecursive eliminates the need
for the lengthy setup for the domain theory.

2.8 Generative Probabilistic Values

Our final example relies on a codatatype that fully exploits Isabelle’s modular
datatype architecture built on bounded natural functors (Sect.3.1) and that
cannot be defined easily, if at all, in other systems. This example is covered in
more detail in the report [15].

Lochbihler [47] proposes generative probabilistic values (GPVs) as a seman-
tic domain for probabilistic input—output systems. Conceptually, each GPV
chooses probabilistically between failing, terminating with a result of type
«, and continuing by producing an output 7y and transitioning into a reac-
tive probabilistic value (RPV), which waits for a response p of the envi-
ronment before moving to the generative successor state. Lochbihler mod-
els GPVs as a codatatype («,7, p) gpv. He also defines a monadic language
on GPVs similar to a coroutine monad and an operation inline for com-
posing GPVs with environment converters. The definition of inline poses
two challenges. First, it corecurses through the monadic sequencing opera-
tion (>=)gpy : (8,7, p) gpv — (B — (a, 7, p) gpv) — (o, 7, p) gpv. Due to HOL
restrictions, all type variables in a friend’s signature must show up in the result-
ing codatatype, which is not the case for (>=)g,,. To work around this, we
define a copy gpv’ of gpv with a phantom type parameter 3, register (>=)gpv as
a friend, and define inline in terms of its copy on gpv’. Second, inline recurses in
a non-well-founded manner through the environment converter. Since our tool
supports only mixing with well-founded recursion, we mimic the tool’s internal
behavior using a least fixpoint operator.

Initially, Lochbihler had manually derived the coinduction rule up to >=g,,,
which our tool now generates. However, because of the copied type, our reformu-
lation ended up roughly as complicated as the original. Moreover, we noted that
coinduction up to congruence works only for equality; for user-defined predicates
(e.g., typing judgments), the coinduction rule must still be derived manually. But
even though this case study is not conclusive, it demonstrates the flexibility of
the framework.



Friends with Benefits 123

3 The Low Level: Corecursor States

Starting from the primitive corecursor provided by Isabelle [16], our tool derives
corecursors up to larger and larger sets of friends. The corecursion state includes
the set of friends & and the corecursor corecy. Four operations manipulate states:

— BASE gives the first nonprimitive corecursor by registering the first friends—
the constructors (Sect. 3.3);

— STEP incorporates a new friend into the corecursor (Sect. 3.4);

— MERGE combines two existing sets of friends (Sect. 3.5);

— INSTANTIATE specializes the corecursor type (Sect. 3.6).

The operations BASE and STEP have already been described in detail and
with many examples in our previous paper [17]. Here, we give a brief, self-
contained account of them. MERGE and INSTANTIATE are new operations whose
need became apparent in the course of implementation.

3.1 Bounded Natural Functors

The mathematics behind our tool assumes that the considered type construc-
tors are both functors and relators, that they include basic functors such as
identity, constant, sum, and product, and that they are closed under least and
greatest fixpoints (initial algebras and final coalgebras). The tool satisfies this
requirement by employing Isabelle’s infrastructure for bounded natural functors
(BNFs) [16,67]. For example, the codatatype o stream is defined as the greatest
solution to the fixpoint equation 3 = a x (3, where both the right-hand side o x 3
and the resulting type « stream are BNF's.

BNFs have both a functor and a relator structure. If K is a unary type
constructor, we assume the existence of polymorphic constants for the functorial
action, or map function, mapy : (@« — ) — a K — 8 K and the relational
action, or relator, relk : (&« — 8 — bool) — o K — 8 K — bool, and similarly for
n-ary type constructors. For finite lists, map, is the familiar map function, and
given a relation r, reljs; r relates two lists of the same length and with r-related
elements positionwise. While the BNFs are functors on their covariant positions,
the relator structure covers contravariant positions as well.

We assume that some of the polymorphic constants are known to be (relation-
ally) parametric in some type variables, in the standard sense [60]. For exam-
ple, if K is a ternary relator and ¢ : («, 8,v) K, then c is parametric in [ if
relc (=) r (=) c c holds for all » : § — ' — bool. In a slight departure from
standard practice, if a term does not depend on a type variable «, we consider
it parametric in «. The map function of a BNF is parametric in all its type
variables. By contrast, = : @ — a — bool is not parametric in «.

3.2 Codatatypes and Primitive Corecursion

We fix a codatatype J. In general, J may depend on some type variables, but
we leave this dependency implicit for now. While J also may have multiple,



124 J.C. Blanchette et al.

curried constructors, it is viewed at the low level as a codatatype with a single
constructor ctory : J Keor — J and a destructor dtorj : J — J Kgor:

codatatype J = ctor; (dtory: J Keior)

The mutually inverse constructor and destructor establish the isomorphism
between J and J Kcor. For streams, we have 8 Ko = oo X 3, ctor (h,t) = h < t,
and dtor zs = (shd zs, stl zs). Low-level constructors and destructors combine
several high-level constructors and destructors in one constant each. Internally,
the codatatype command works on the low level, providing the high-level con-
structors as syntactic sugar [16].

In addition, the codatatype command derives a primitive corecursor corec; :
(¢ = a Kqor) — a — J characterized by the equation corecy b = ctor o
mapy_, (corecy b) o b. The primcorec command, provided by Isabelle, reduces a
primitively corecursive specification to a plain, acyclic definition expressed using
this corecursor.

3.3 Corecursion up to Constructors

We call blueprints the arguments passed to corecursors. When defining a core-
cursive function f, a blueprint for f is produced, and f is defined as the corecursor
applied to the blueprint. The expressiveness of a corecursor is indicated by the
codomain of its blueprint argument. The blueprint passed to the primitive core-
cursor must return an « Kgor value—e.g., a pair (m, z) : nat X « for streams
of natural numbers. The remaining corecursion structure is fixed: After pro-
ducing m, we proceed corecursively with . We cannot produce two numbers
before proceeding corecursively—to do so, the blueprint would have to return
(m, (n, x)) : nat x (nat x ).

Our first strengthening of the corecursor allows an arbitrary number of con-
structors before proceeding corecursively. This process takes a codatatype J and
produces an initial corecursion state (F, ¥, corecs), where F is a set of known
friends, X5 is a BNF that incorporates the type signatures of known friends,
and corecy is a corecursor. We omit the set-of-friends index whenever it is clear
from the context. The initial state knows only one friend, ctor.

BASE :  J ~ (F, 3, corecy) where
F={ctor} a¥y=aKu corecs:(a—aXt)—a—]J

Let us define the type « E; used for the corecursor. First, we let o X% be
the free monad of ¥ extended with J-constant leaves:

datatype a X% = Oper ((a ¥%) Zg) | Var o | Cst J

Inhabitants of o X% are (formal) expressions built from variable or constant
leaf nodes (Var or Cst) and a syntactic representation of the constants in F.
Writing for Oper : (« Z*Sr) Ketor — a X%, we can build expressions such
as (1, Var (z : «)) and (2, [ctor] (3, Cst (zs : J))). The type a XF, of
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guarded expressions, is similar to o X%, except that it requires at least one
guard on every path to a Var. Formally, o £7 is defined as ((a £%) Ketor) £, 50
that Keor marks the guards. To simplify notation, we will pretend that « Z; -
a X

Guarded variable leaves represent corecursive calls. Constant leaves allow us
to stop the corecursion with an immediate result of type J. The polymorphism
of ¥* is crucial. If we instantiate o to J, we can evaluate formal expressions with
the function eval : J ¥* — J given by eval ([ctor] ) = ctor (mapy__ eval x),
eval (Var t) =, and eval (Cst ) = ¢. We also write eval for other versions of the
operator (e.g., for J XT).

The corecursor’s argument, the blueprint, returns guarded expressions con-
sisting of one or more applications of before proceeding corecursively. Pro-
ceeding corecursively means applying the corecursor to all variable leaves and
evaluating the resulting expression. Formally:

corecy b = eval o mapy.+ (corecy b) o b
F

3.4 Adding New Friends

Corecursors can be strengthened to allow friendly functions to surround the
context of the corecursive call. At the low level, we consider only uncurried
functions.

A function f : J K¢ — J is friendly if it consumes at most one constructor
before producing at least one constructor. Friendliness is captured by a mixture
of two syntactic constraints and the semantic requirement of parametricity of a
certain term, called the surface. The syntactic constraints amount to requiring
that f is expressible using corecs, irrespective of its actual definition.

Specifically, f must be equal to corecy b for some blueprint b : J Kf —
(J Kf) X1 that has the guarding constructor at the outermost position, and
this object must be decomposable as b = s o mapy,(id, dtor) for some s : (a x
a Keor) Kf — a 2T, The convolution operator (f, g) : @ — 3 X v combines two
functions f:a — fand g: o — 7.

We call s the surface of b because it captures b’s superficial layer while
abstracting the application of the destructor. The surface s is more polymorphic
than needed by the equation it has to satisfy. Moreover, s must be parametric in
«. The decomposition, together with parametricity, ensures that friendly func-
tions apply dtor at most once to their arguments and do not look any deeper—the
“consumes at most one constructor” property.

STEP : (¥, Xg, corecy) and f : J K¢ — J friendly ~~ (F', g/, corecs) where
F=FU{f} aSyp=as+aKs corecy :(a—alf)—a—]

The return type of blueprints corresponding to corecy: is E;,, where g
extends X4 with K. The type Z;, allows all guarded expressions of the previous
corecursor but may also refer to f. The syntactic representations [g]: o X5 Ky —
a X% of old friends g € F must be lifted to the type (o %) Kg — a X%, which is
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straightforward. In the sequel, we will reuse the notation [g] for the lifted syntactic
representations. In addition to [g], new expressions are allowed to freely use the
syntactic representation [f] : (a %) K¢ — o L%, of the new friend f, defined as
= Oper o Inr. Like for [ctor], we have eval ([f] ) = f (mapy, eval z). As before,
we have corecgs b = eval o mapy.+ (corecgs b) o b.

Consider the corecursive spefciﬁcation of pointwise addition on streams of
numbers, where « Keor is nat X « and dtor zs = (shd s, stl xs):

xzs @ ys = (shd zs 4 shd ys) < (stl zs @ stl ys)

To make sense of this specification, we take a Kg to be o X o and define @ as
corecy b, where the blueprint b is

Ap. (shd (fst p) + shd (snd p)) [<I] Var (stl (fst p), stl (snd p))

To register & as friendly, we must decompose b as s o mapy (id, dtor). Expanding
the definition of mapy, , we get

mapy, (id, dtor)
= Ap. ((fst p, dtor (fst p)), (snd p, dtor (snd p)))
= Ap. ((fst p, (shd (fst p), stl (fst p))), (snd p, (shd (snd p), stl (snd p))))

It is easy to see that the following term is a suitable surface s:
Ap'. (fst (snd (fst p’)) + fst (snd (snd p”))) [<] Var (snd (snd (fst p’)), snd (snd (snd p’)))

In Sect. 4, we give more details on how the system synthesizes blueprints and
surfaces.

3.5 Merging Corecursion States

Most formalizations are not linear. A module may import several other modules,
giving rise to a directed acyclic graph of dependencies. We can reach a situation
where the codatatype has been defined in module A; its corecursor has been
extended with two different sets of friends Fp and Fo in modules B and C,
each importing A; and finally module D, which imports B and C, requires a
corecursor that mixes friends from Fg and Fo. To support this scenario, we
need an operation that merges two corecursion states.

MERGE : (F1, Xg,, corecy, ) and (Fa, X, corecy,) ~ (F, X, corecy) where
F=FUF aly=alsy +alsy corecy:(a—aXt)—a—]J

The return type of blueprints for corecs is E}r, where X4 is the sum of the
two input signatures X5, and Xg,. By lifting the syntactic representations of
old friends using overloading, we establish the invariant that for each f € F
of a corecursor state, there is a syntactic representation |[f| : E; Kf — E;. The
function eval is then defined in the usual way and constitutes the main ingredient
in the definition of corecy with the usual characteristic equation. For operations
f € ¥, N Xg,, two syntactic representations are available; we arbitrarily choose
the one inherited from Yg,.



Friends with Benefits 127

3.6 Type Instantiation

We have so far ignored the potential polymorphism of J. Consider J = « stream.
The operations on corecursor states allow friends of type (o stream)K —
a stream but not (nat stream) K — nat stream. To allow friends for nat stream,
we must keep track of specialized corecursors. First, we need an operation for
instantiating corecursor states.

INSTANTIATE : (F, X5, corecy) ~~ (F[o/a], Xg[o/al, corecy[T/al)

Once we have derived a specific corecursor for nat stream, we can extend
it with friends of type (nat stream) K — nat stream. Such friends cannot
be added to the polymorphic corecursor, but the other direction works: Any
friend of a polymorphic corecursor is also a friend of a specialized corecursor.
Accordingly, we maintain a Pareto optimal subset of corecursor state instances
{(Fs, B, corecs,) | S < J}, where o/ < o denotes that the type o’ can be
obtained from the type o by applying a type substitution.

More specific corecursors are stored only if they have more friends: For each
pair of corecursor instances for S; and S, contained in the Pareto set, we have
Fs, D Fs, whenever S; < Sy. All the corecursors in the Pareto set are kept
up to date. If we add a friend to a corecursor instance for S from the set via
STEP, it is also propagated to all instances S’ of S by applying INSTANTIATE to
the output of STEP and combining the result with the existing corecursor state
for S’ via MERGE. When analyzing a user specification, corec selects the most
specific applicable corecursor.

Eagerly computing the entire Pareto set is exponentially expensive. Consider
a codatatype («, 3, v) J and the friends f for (nat, 8, v) J, g for (a, 5 :: ring, ¥) J,
and h for (a, 8, bool) J. The set would contain eight corecursors, each with a
different subset of {f, g, h} as friends. To avoid such an explosion, we settle for
a lazy derivation strategy. In the above example, the corecursor for (nat, 3 ::
constring, bool) J, with f, g, h as friends, is derived only if a definition needs it.

3.7 Reasoning Principles

The primary activity of a working formalizer is to develop proofs. To conveniently
reason about nonprimitively corecursive functions, corec provides two reasoning
principles: coinduction up to congruence and a uniqueness theorem.

Coinduction up to Congruence. Codatatypes are equipped with a coinduc-
tion principle. Coinduction reduces the task of proving equality between two
inhabitants [ and r of a codatatype to the task of exhibiting a relation R which
relates [ and r and is closed under application of destructors. A relation closed
under destructors is called a bisimulation. The codatatype command derives a
plain coinduction rule. The rule for stream follows:

Rlr Vzsxzs'.R xsxs' — shd xzs = shd xs’ A R(stl zs)(stl zs")
l=r
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To reason about functions that are corecursive up to a set of friends, a prin-
ciple of coinduction up to congruence of friends is crucial. For a corecursor with
friends &, our tool derives a rule that is identical to the standard rule except
with R7 (stl zs) (stl zs’) instead of R (stl zs) (st zs’), where RY denotes the
congruence closure of the relation R with respect to the friendly operations F.

After registering a binary @ on nat stream as friendly, the introduction rules
for the inductively defined congruence closure include

r=2a" R7zsuzs R7¥zs xs' R7ys ys'
R7 (z < zs) (z' < xs') R7 (x5 @ ys) (zs' @ ys')

Since the tool maintains a set of incomparable corecursors, there is also a
set of coinduction principles and a set of sets of introduction rules. The corec
command orders the set of coinduction principles by increasing generality, which
works well with Isabelle’s philosophy of applying the first rule that matches.

In some circumstances, it may be necessary to reason about the union of
friends associated with several incomparable corecursors. To continue with the
example from Sect. 3.6, suppose we want to prove a formula about (nat, 3 :: ring,
bool) J by coinduction up to f, g, h before the corresponding corecursor has been
derived. Users can derive it and the associated coinduction principle by invoking
a dedicated command:

coinduction_upto (nat, 8 :: ring, bool) J

Uniqueness Principles. It is sometimes possible to achieve better automation
by employing a more specialized proof method than coinduction. Uniqueness
principles exploit the property that the corecursor is the unique solution to a
fixpoint equation:

h = eval o maps;+ hob — h = corecs b

This rule can be seen as a less powerful version of coinduction, where the bisim-
ulation relation has been preinstantiated. In category-theoretic terms, the exis-
tence and uniqueness of a solution means that we maintain on J a completely
iterative algebra [51] (whose signature is gradually incremented with each addi-
tional friend).

For concrete functions defined with corec, uniqueness rules can be made
even more precise by instantiating the blueprint b. For example, the pointwise
addition on streams from Sect. 3.4

corec @ : nat stream — nat stream — nat stream where
xzs @ ys = (shd zs 4 shd ys) < (stl zs @ stl ys)

yields the following uniqueness principle:
(Vzs ys. h zs ys = (shd zs + shd ys) < h (stl zs) (stlys)) — h =@

Reasoning by uniqueness is not restricted to functions defined with corec.
Suppose t T is an arbitrary term depending on a list of free variables T. The
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corec_unique proof method, also provided by our tool, transforms proof obliga-
tions of the form

(Vz.hT=HTh)— hT=1tT

into VZ. t T = H T t. The higher-order functional H must be such that the
equation h T = H T h would be a valid corec specification (but without nested
calls to h or unguarded calls). Internally, corec_unique extracts the blueprint b
from H T h as if it would define h with corecy and uses the uniqueness principle
for corecy instantiated with b to achieve the described transformation.

4 The High Level: From Commands to Definitions

AmiCo’s two main commands corec (Sect.4.1) and friend_of _corec (Sect.4.2)
introduce corecursive functions and register friends. We describe synthesis algo-
rithms for any codatatype as implemented in the tool. We also show how to
capture the “consumes at most one constructor, produces at least one construc-
tor” contract of friends.

4.1 Defining Corecursive Functions

The corec command reduces the user’s corecursive equation to non(co)recursive
primitives, so as to guard against inconsistencies. To this end, the command
engages in a chain of definitions and proofs. Recall the general context:

— The codatatype J is defined as a fixpoint of a type constructor a Keior equipped
with constructor ctor and destructor dtor.

— The current set of friends JF contains ctor and has a signature Y5 (or X).
Each friend f € F of type J Kf — J has a companion syntactic expression
[fl: (aX*)Kf — a X%

— The corecursor up to ¥ is corecy : (« — a XT) — a — J.

In general, J may be polymorphic and f may take more than one argument,
but these are minor orthogonal concerns here. As before, we write o ¥* for the
type of formal expressions built from a-leaves and friend symbols [f], and o X+
for [ctor]-guarded formal expressions. For o« = J, we can evaluate the formal
expressions into elements of J, by replacing each [f| with f and omitting the
Var and Cst constructors. Finally, we write eval for the evaluation functions of
various types of symbolic expressions to J.

Consider the command

corec g: A — J where g = ug,

where ug . : J is a term that may refer to g and . The first task of corec is to
synthesize a blueprint object b: A — A ¥T such that

eval (mapg+h (b)) = up s (4)
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holds for all h : A — J. This equation states that the synthesized blueprint must
produce, by evaluation, the concrete right-hand side of the user equation. The
unknown function h represents corecursive calls, which will be instantiated to g
once g is defined. To the occurrences of h in uy, , correspond occurrences of Var
in b.

Equipped with a blueprint, we define g = corecy b and derive the user
equation:

gr = corecy bx {by definition of g}
= eval (mapy+ (corec b) (b x)) {by corecg’s equation}
= eval (mapg+g (b 2)) {by definition of g}
= Ug o {by equation (4) with g for h}

Blueprint Synthesis. The blueprint synthesis proceeds by a straightforward
syntactic analysis, similar to the one used for primitive corecursion [16]. We
illustrate it with an example. Consider the definition of & from Sect. 3.4. Ignoring
currying, the function has type (nat stream) Kg — nat stream, with a K¢ = a x
«. The term b is synthesized by processing the right-hand side of the corecursive
equation for @. After removing the syntactic sugar, we obtain the following term,
highlighting the corecursive call:

Ap. (shd (fst p) 4 shd (snd p)) <t (stl (fst p) @ stl (snd p))

The blueprint is derived from this term by replacing the constructor guard <1 =
Ctorsiream and the friends with their syntactic counterparts and the corecursive
call with a variable leaf:

b = Ap. (shd (fst p) + shd (snd p)) [<] Var (stl (fst p), stl (snd p))

Synthesis will fail if after the indicated replacements the result does not have
the desired type (here, nat — nat ). If we omit ‘(shd (fst p) + shd (snd p)) <’
in the definition, the type of b becomes nat — nat ¥*, reflecting the lack of a
guard. Another cause of failure is the presence of unfriendly operators in the
call context. Once b has been produced, corec proves that @ satisfies the user
equation we started with.

Mixed Recursion—Corecursion. If a self-call is not guarded, corec still gives
it a chance, since it could be a terminating recursive call. As an example, the
following definition computes all the odd numbers greater than 1 arising in the
Collatz sequence:

corec collatz : nat — nat lIlist where
collatz n = if n < 1 then [] else if even n then collatz % else n < collatz (3 - n + 1)

The highlighted call is not guarded. Yet, it will eventually lead to a guarded
call, since repeatedly halving a positive even number must at some point yield
an odd number. The unguarded call yields a recursive specification of the blue-
print b, which is resolved automatically by the termination prover.
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By writing corecursive instead of corec, the user takes responsibility for
proving termination. A manual proof was necessary for Ifilter in Sect. 2.7, whose
blueprint satisfies the recursion

b (P, zs) = if Vo € set 2s. = P x then
else if P (lhd zs) then Ihd zs [<] Var (P, Itl zs)
else b (P, Itl zs)

Termination is shown by providing a suitable well-founded relation, which exists
because Itl zs is closer than zs to the next element that satisfies the predicate P.

Like the corecursive calls, the recursive calls may be surrounded only by
friendly operations (or by parametric operators such as ‘case’, ‘if’; and ‘let’).
Thus, the following specification is rejected—and rightly so, since the unfriendly
stl cancels the corecursive guard that is reached when recursion terminates.

corec collapz : nat — nat llist where collapz n =
if n = 0 then [] else if even n then stl (collapz 5) else n < collapz (3 -n + 1)

4.2 Registering New Friendly Operations
The command
corec (friend) g:JK — J where gz = ug ,

defines g and registers it as a friend. The domain is viewed abstractly as a type
constructor K applied to the codatatype J.

The command first synthesizes the blueprint b : J K — J X7, similarly to the
case of plain corecursive definitions. However, this time the type ¥ is not X4, but
Y5 + K. Thus, ¥ mixes freely the type K with the components K of ¥, which
caters for self-friendship (as in the bfsy example from Sect. 2.4): g can be defined
making use of itself as a friend (in addition to the already registered friends).

The next step is to synthesize a surface s from the blueprint b. Recall from
Sect. 3.4 that a corecursively defined operator is friendly if its blueprint b can
be decomposed as s o mapg(id, dtor), where s : (& X aKgor) K — a TV is
parametric in a.

Once the surface s has been synthesized, proved parametric, and proved to be
in the desired relationship with b, the tool invokes the STEP operation (Sect. 3.4),
enriching the corecursion state with the function defined by b as a new friend,
called g.

Alternatively, users can register arbitrary functions as friends:

friend of _corec g:JK — J where gz = ug,

The user must then prove the equation g x = ugz,. The command extracts a
blueprint from it and proceeds with the surface synthesis in the same way as
corec (friend).

Surface Synthesis Algorithm. The synthesis of the surface from the blueprint
proceeds by the context-dependent replacement of some constants with terms.
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AmiCo performs the replacements in a logical-relation fashion, guided by type
inference.

We start with b : J K — J X7 and need to synthesize s : (& X o Keor) K —
a X7 such that s is parametric in o and b = s o map (id, dtor). We traverse b
recursively and collect context information about the appropriate replacements.
The technical report describes the algorithm in detail. Here, we illustrate it on
an example.

Consider the definition of a function that interleaves a nonempty list of
streams:

corec (friend) inter : (nat stream) nelist — nat stream where
inter zss = shd (hd zss) < inter (tl ss > stl (hd zss))

Here, (8 nelist is the type of nonempty lists with head and tail selectors hd :
(G nelist — (§ and tl : B nelist — 3 list and > : 8 list — 3 — [ nelist is defined
such that xzs > y appends y to zs. We have J = nat stream and K = nelist. The
blueprint is

b = Azss. shd (hd xss) [<] Var (tl zss > stl (hd zss))

From this, the tool synthesizes the surface

s = Azss’. (fst o snd) (hd zss")[<] Var ((map, fst o tl) xss’ > (snd o snd) (hd 2ss”))

When transforming the blueprint b : (nat stream) nelist — (nat stream) X©
into the surface s : (o x (nat x a)) nelist — a X7, the selectors shd and stl are
replaced by suitable compositions. One of the other constants, tl, is composed
with a mapping of fst. The treatment of constants is determined by their position
relative to the input variables (here, zss) and by whether the input is eventually
consumed by a destructor-like operator on J (here, shd and stl). Bindings can also
carry consumption information—from the outer context to within their scope—
as in the following variant of inter:

corec (friend) inter’ : (nat stream) nelist — nat stream where
inter’ zss = case hd zss of x < xs = x < inter’ (tl zss > xs)

The case expression is syntactic sugar for a .casegiream combinator. The desugared
blueprint and surface constants are

b = Azss. casestream (hd zss) (Ax zs. z [<] Var (tl zss > zs))
s = Azss'. (caseprog © snd) (hd zss”)(Az'zs’. 2’ [G] Var((mapyg fst o tl) zss’ > zs'))

The case operator for streams is processed specially, because just like shd and
stl it consumes the input. The expression in the scope of the inner A of the
blueprint contains two variables—zss and zs—that have nat stream in their
type. Due to the outer context, they must be treated differently: zss as an
unconsumed input (which tells us to process the surrounding constant tl) and
xs as a consumed input (which tells us to leave the surrounding constant >
unchanged). The selectors and case operators for J can also be applied indirectly,
via mapping (e.g., map,ejist Stl zs).
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5 Implementation in Isabelle/HOL

The implementation of AmiCo followed the same general strategy as that of
most other definitional mechanisms for Isabelle:

1. We started from an abstract formalized example consisting of a manual con-
struction of the BASE and STEP corecursors and the corresponding reasoning
principles.

2. We streamlined the formal developments, eliminating about 1000 lines of
Isabelle definitions and proofs—to simplify the implementation and improve
performance.

3. We formalized the new MERGE operation in the same style as BASE and
STEP.

4. We developed Standard ML functions to perform the corecursor state opera-
tions for arbitrary codatatypes and friendly functions.

5. We implemented, also in Standard ML, the commands that process user spec-
ifications and interact with the corecursor state.

HOL’s type system cannot express quantification over arbitrary BNFs,
thus the need for ML code to repeat the corecursor derivations for each new
codatatype or friend. With the foundational approach, not only the corecur-
sors and their characteristic theorems are produced but also all the intermediate
objects and lemmas, to reach the highest level of trustworthiness. Assuming the
proof assistant’s inference kernel is correct, bugs in our tool can lead at most to
run-time failures, never to logical inconsistencies.

The code for step 4 essentially constructs the low-level types, terms, and
lemma statements presented in Sect.3 and proves the lemmas using dedicated
tactics—ML programs that generalize the proofs from the formalization. In prin-
ciple, the tactics always succeed. The code for step 5 analyses the user’s specifi-
cation and synthesizes blueprints and surfaces, as exemplified in Sect. 4. It reuses
primcorec’s parsing combinators [16] for recognizing map functions and other
syntactic conveniences, such as the use of s as an alternative to o for corecursing
under —, as seen in Sect. 2.1.

The archive accompanying this paper [14] contains instructions that explain
where to find the code and the users’ manual and how to run the code.

6 Related Work and Discussion

This work combines the safety of foundational approaches to function defini-
tions with an expressive flavor of corecursion and mixed recursion—corecursion.
It continues a program of integrating category theory insight into proof assis-
tant technology [16-18,67]. There is a lot of related work on corecursion and
productivity, both theoretical and applied to proof assistants and functional
programming languages.

Theory of (Co)recursion. AmiCo incorporates category theory from many
sources, notably Milius et al. [52] for corecursion up-to and Rot et al. [61] for
coinduction up-to. Our earlier papers [17,67] discuss further theoretical sources.
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AmiCo implements the first general, provably sound, and fully automatic method
for mixing recursive and corecursive calls in function definitions. The idea of
mixing recursion and corecursion appears in Bertot [11] for the stream filter, and
a generalization is sketched in Bertot and Komendantskaya [13] for corecursion
up to constructors. Leino’s Dafny tool [46] was the first to offer such a mixture
for general codatatypes, which turned out to be unsound and was subsequently
restricted to the sound but limited fragment of tail recursion.

Corecursion in Other Proof Assistants. Coq supports productivity by a
syntactic guardedness check, based on the pioneering work of Giménez [26]. Mini-
Agda [2] and Agda implement a more flexible approach to productivity due to
Abel et al. [3,5], based on sized types and copatterns. Coq’s guardedness check
allows, in our terminology, only the constructors as friends [21]. By contrast,
Agda’s productivity checker is more expressive than AmiCo’s, because sized
types can capture more precise contracts than the “consumes at most one con-
structor, produces at least one constructor” criterion. For example, a Fibonacci
stream definition such as fib = 0 <1 < (fib + stl fib) can be made to work in
Agda, but is rejected by AmiCo because stl is not a friend. As mentioned in
Sect. 2.4, this flexibility comes at a price: The user must encode the productivity
argument in the function’s type, leading to additional proof obligations.

CIRC [50] is a theorem prover designed for automating coinduction via sound
circular reasoning. It bears similarity with both Coq’s Paco and our AmiCo.
Its freezing operators are an antidote to what we would call the absence of
friendship: Equality is no longer a congruence, hence equational reasoning is
frozen at unfriendly locations.

Foundational Function Definitions. AmiCo’s commands and proof methods
fill a gap in Isabelle/HOL’s coinductive offering. They complement codatatype,
primcorec, and coinduction [16], allowing users to define nonprimitive corecur-
sive and mixed recursive—corecursive functions. Being foundational, our work
offers a strong protection against inconsistency by reducing circular fixpoint def-
initions issued by the user to low-level acyclic definitions in the core logic. This
approach has a long tradition.

Most systems belonging to the HOL family include a counterpart to the
primrec command of Isabelle, which synthesizes the argument to a primitive
recursor. Isabelle/HOL is the only HOL system that also supports codatatypes
and primcorec [16]. Isabelle/ZF, for Zermelo-Fraenkel set theory, provides
(co)datatype and primrec [57] commands, but no high-level mechanisms for
defining corecursive functions.

For nonprimitively recursive functions over datatypes, Slind’s TFL package
for HOL4 and Isabelle/HOL [63] and Krauss’s function command for Isabelle/
HOL [42] are the state of the art. Krauss developed the partial function com-
mand for defining monadic functions [43]. Definitional mechanisms based on the
Knaster—Tarski fixpoint theorems were also developed for (co)inductive predi-
cates [31,57]. HOLCF, a library for domain theory, offers a fixrec command
for defining continuous functions [35].

Our handling of friends can be seen as a round trip between a shallow and
a deep embedding that resembles normalization by evaluation [9] (but starting
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from the shallow side). Initially, the user specification contains shallow (seman-
tic) friends. For identifying the involved corecursion as sound, the tool reifies
the friends into deep (syntactic) friends, which make up the blueprint. Then the
deep friends are “reflected” back into their shallow versions by the evaluation
function eval : J ¥* — J. A similar technique is used by Myreen in HOL4 for
verification and synthesis of functional programs [55].

In Agda, Coq, and Matita, the definitional mechanisms for (co)recursion are
built into the system. In contrast, Lean axiomatizes only the recursor [54]. The
distinguishing features of AmiCo are its dynamicity and high level of automation.
The derived corecursors and coinduction principles are updated with new ones
each time a friend is registered. This permits reuse both internally (resulting in
lighter constructions) and at the user level (resulting in fewer proof obligations).

Code Extraction. Isabelle’s code generator [29] extracts Haskell code from
an executable fragment of HOL, mapping HOL (co)datatypes to lazy Haskell
datatypes and HOL functions to Haskell functions. Seven out of our eight case
studies fall into this fragment; the extracted code is part of the archive [14]. Only
the filter function on lazy lists is clearly not computable (Sect. 2.7). In particular,
extraction works for Lochbihler’s probabilistic calculus (Sect. 2.8) which involves
the type spmf of discrete subprobability distributions. Verified data refinement
in the code generator makes it possible to implement such BNFs in terms of
datatypes, e.g., spmf as associative lists similar to Erwig’s and Kollmansberger’s
PFP library [24]. Thus, we can extract code for GPVs and their operations
like inlining. Lochbihler and Ziist [49] used an earlier version of the calculus to
implement a core of the Transport Layer Security (TLS) protocol in HOL.

Certified Lazy Programming. Our tool and the examples are a first step
towards a framework for friendship-based certified programming: Programs are
written in the executable fragment, verified in Isabelle, and extracted to Haskell.
AmiCo ensures that corecursive definitions are productive and facilitates coin-
ductive proofs by providing strong coinduction rules. Productivity and termi-
nation of the extracted code are guaranteed if the whole program is specified
in HOL exclusively with datatypes, codatatypes, recursive functions with the
function command, and corecursive functions with corec, and no custom con-
gruence rules for higher-order operators have been used. The technical report
[15, Sect. 6] explains why these restrictions are necessary.

If the restrictions are met, the program clearly lies within the executable
fragment and the code extracted from the definitions yields the higher-order
rewrite system which the termination prover and AmiCo have checked. In par-
ticular, these restrictions exclude the noncomputable filter function on lazy lists
(Sect. 2.7), with the test Vn € set xs. = P n.

A challenge will be to extend these guarantees to Isabelle’s modular archi-
tecture. Having been designed with only partial correctness in mind, the
code extractor can be customized to execute arbitrary (proved) equations—
which can easily break productivity and termination. A similar issue occurs
with friend_ of_corec, which cares only about semantic properties of the
friend to be. For example, we can specify the identity function id on
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streams by id (r <y < xs) =x <y < xs and register it as a friend with the
derived equation id x = shd x < stl . Consequently, AmiCo accepts the defi-
nition natsFrom n =n < id (natsFrom (n + 1)), but the extracted Haskell code
diverges. To avoid these problems, we would have to (re)check productivity and
termination on the equations used for extraction. In this scenario, AmiCo can
be used to distinguish recursive from corecursive calls in a set of (co)recursive
equations, and synthesize sufficient conditions for the function being productive
and the recursion terminating, and automatically prove them (using Isabelle’s
parametricity [36] and termination provers [20]).

AmiCo Beyond Higher-Order Logic. The techniques implemented in our
tool are applicable beyond Isabelle/HOL. In principle, nothing stands in the
way of AgdamiCo, AmiCoq, or MatitamiCo. Danielsson [22] and Thibodeau et
al. [65] showed that similar approaches work in type theory; what is missing is
a tool design and implementation. AmiCo relies on parametricity, which is now
understood for dependent types [10].

In Agda, parametricity could be encoded with sized types, and AgdamiCo
could be a foundational tool that automatically adds suitable sized types for
justifying the definition and erases them from the end product. Coq includes a
parametricity-tracking tool [40] that could form the basis of AmiCoq. The Paco
library by Hur et al. [37] facilitates coinductive proofs based on parameterized
coinduction [53,70]. Recent work by Pous [59] includes a framework to combine
proofs by induction and coinduction. An AmiCoq would catch up on the corecur-
sion definition front, going beyond what is possible with the cofiz tactic [21]. On
the proof front, AmiCoq would provide a substantial entry into Paco’s knowledge
base: For any codatatype J with destructor dtor : J — J K, all registered friends
are, in Paco’s terminology, respectful up-to functions for the monotonic operator
Ar x y. relg v (dtor x) (dtor y), whose greatest fixpoint is the equality on J.

A more lightweight application of our methodology would be an AmiCo for
Haskell or for more specialized languages such as CoCaml [38]. In these lan-
guages, parametricity is ensured by the computational model. An automatic
tool that embodies AmiCo’s principles could analyze a Haskell program and
prove it total. For CoCaml, which is total, a tool could offer more flexibility
when writing corecursive programs.

Surface Synthesis Beyond Corecursion. The notion of extracting a para-
metric component with suitable properties can be useful in other contexts than
corecursion. In the programming-by-examples paradigm [28], one needs to choose
between several synthesized programs whose behavior matches a set of input—
output instances. These criteria tend to prefer programs that are highly paramet-
ric. A notion of degree of parametricity does not exist in the literature but could be
expressed as the size of a parametric surface, for a suitable notion of surface, where
(id, dtor) is replaced by domain specific functions and fst by their left inverses.
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Abstract. For terminating double-pushout (DPO) graph rewriting sys-
tems confluence is, in general, undecidable. We show that confluence is
decidable for an extension of DPO rewriting to graphs with interfaces.
This variant is important due to it being closely related to rewriting of
string diagrams. We show that our result extends, under mild conditions,
to decidability of confluence for terminating rewriting systems of string
diagrams in symmetric monoidal categories.

Keywords: Confluence - DPO rewriting systems * Adhesive categories *
PROPs - String diagrams

1 Introduction

Confluence and termination are some of the most important properties of rewrit-
ing systems. For term rewriting, both confluence [3] and termination [27] are, in
general, undecidable. However, for systems known to be terminating, confluence
is decidable. The key, celebrated property observed by Knuth and Bendix [33]
is that the system is confluent exactly when all its critical pairs are joinable.

In recent years, an increasing amount of attention has been given to rewriting
structures that are richer than mere terms, many of which can be seen as var-
ious flavours (including higher-dimensional) of graphs. Here, unfortunately, the
status of confluence is murky because old certainties of critical pair analysis fail:
Plump [42], working in the well-established framework of the double-pushout
(DPO) graph rewriting mechanism [20], showed that joinability of critical pairs
does not entail confluence, and that confluence of terminating DPO rewriting
systems is, in general, undecidable.

In this paper we focus on an extension of DPO, called DPO with inter-
faces. This variant has emerged in several research threads, including rewrit-
ing with borrowed contexts [19], encodings of process calculi [5,24], connecting
DPO rewriting systems with computads in cospans categories [25,44] and, more
recently, for checking the equivalence of terms of symmetric monoidal theories
© Springer-Verlag GmbH Germany 2017
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[4]. Our key observation is that for DPO rewriting with interfaces, the Knuth-
Bendix property holds and therefore confluence of a terminating system can be
decided by checking whether its critical pairs are joinable. More precisely, if some
mild assumptions related to the computability of performing rewriting steps on
the underlying notion of term are satisfied, our result holds for the most general
venue available for DPO rewriting, namely, adhesive categories [34].

Our results do not falsify Plump’s: in DPO with interfaces, rather than rewrit-
ing graphs, one rewrites graph morphisms J — G, thought of as a graph G with
interface J. The latter allows one to “glue” G to other graphs, analogously to
how variables allow a single term to apply to a variety of contexts via substi-
tution. Plump’s result, in the light of our analysis, states that it is undecidable
to check whether rewriting is confluent for all morphisms 0 — G. Intuitively,
the failure of Knuth-Bendix for such morphisms is due to the loss of expressive
power of critical pairs, when deprived of an interface.

This reveals an attractive analogy with term rewriting: morphisms 0 — G —
representing graphs that cannot be non-trivially attached to other graphs, since
they have an empty interface — correspond to ground terms, that cannot be
extended since they have no variables. Now, the property that Plump showed to
be undecidable should be compared to ground confluence for term rewriting [40],
i.e., confluence with respect to all ground terms. And in fact, this property is
undecidable for terminating term rewriting systems [30]. Summarising, for both
term and DPO rewriting with interfaces, confluence of terminating rewriting
systems is decidable, while ground confluence is not.

Terminating term rewriting system | Terminating DPO system
Ground confluence | Undecidable (Kapur et al. [30]) Undecidable (Plump [42])
Confluence Decidable (Knuth and Bendix [33]) | Decidable (this paper)

Our interest in DPO rewriting with interfaces is motivated by symmetric
monoidal theories (SMTs) that appear in different fields of computer science,
like concurrency theory [11,37,47], quantum information [15,16], and systems
theory [1,6,7,23], just to mention a few. The terms of an SMT enjoy an efficient
graphical representation by means of string diagrams [29,45], in the sense that
structural equations are “baked into” the representation. Rewriting at the dia-
grammatic level can be used to determine equality of terms, i.e. the word problem
for an SMT. While rewriting of string diagrams has been broadly studied from
a foundational point of view (e.g. using computads [48] or polygraphs [12]), its
implementation has thus far received less attention.

In [4] we showed that rewriting of string diagrams, representing terms of
an SMT, can be soundly and effectively encoded into DPO rewriting with inter-
faces. This enables us to reuse the main result of this paper to study confluence of
rewriting of string diagrams. This problem is known to be particularly challeng-
ing: for example a directed form of the Yang-Baxter equation generates infinitely
many critical pairs [35,39)].
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We show that this issue can be avoided by using DPO with interfaces, and
that confluence is decidable. We identify two classes of terminating rewriting sys-
tems for which confluence can be decided by means of critical pair analysis. The
first one concerns SMTs containing a special Frobenius structure [14] (yielding
categories alternatively called well-supported compact closed [13], p- and dgs-
monoidal [9,25], or recently hypergraph categories [22,31]). For arbitrary SMTs,
not necessarily equipped with a special Frobenius structure, we identify a sec-
ond class of rewriting systems for which confluence can be decided. The rules of
these systems need to satisfy a simple condition that we call left-connectedness.
Many rewriting systems arising from SMTs (e.g., [21,26,35]), including afore-
mentioned Yang-Baxter rule, enjoy this property. Amongst these, we consider
a rewriting system for non-commutative bimonoids that has been shown to be
terminating in [4]. We exploit our approach to prove that it is also confluent and
thus conclude that equivalence of non-commutative bimonoids is decidable.

Related Work. For ordinary DPO rewriting, a variant of the Knuth-Bendix prop-
erty holds with respect to a stronger notion of joinability for critical pairs [42].
Moreover, confluence is decidable whenever all critical pairs satisfy a certain
syntactic condition called coverability [43]. Both these results however refer to
confluence for graphs without interfaces, namely ground confluence. Instead,
our same notion of confluence has been studied in [8] in the setting of Mil-
ner’s reactive systems. By instantiating Proposition 22 in [8] to the category of
input-linear cospans (of hypergraphs) and by using the results relating borrowed
context DPO rewriting with reactive systems over cospans in [46], one obtains a
variant of our Theorem 19. One restriction of that approach is that the matches
are required to be mono, which rules out our applications to SMTs.

2 Background

Notation. The composition of arrows f: a — b, g: b — ¢ in a category C is
written as f; g. For C symmetric monoidal, & is its monoidal product and
Oap: @D b— bd a is the symmetry for objects a,b € C.

2.1 DPO Rewriting

Adhesive Categories and (Typed) Hypergraphs. In order not to restrict ourselves
to any one concrete model of graphs, we work with adhesive categories [34].
Adhesive categories are relevant because they have well-behaved pushouts along
monomorphisms, and for this reason they are convenient as ambient categories
for DPO rewriting.

An important example is the category of finite directed hypergraphs Hyp.
An object G of Hyp is a hypergraph with finite set of nodes G, and for each
k,l € N finite set of hyperedges Gy, with k (ordered) sources and ! (ordered)
targets, i.e. for each 0 < i < k there is the i*" source map s;: Gr; — Gy,
and for each 0 < j < [, the j* target map tj: Gy — G.. The arrows of
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Hyp are homomorphisms: functions Gy — H, such that for each k,l, G, —
Hj,; they respect the source and target maps in the obvious way. The seasoned
reader will recognise Hyp as a presheaf topos, and as such, it is adhesive [34].
We shall visualise hypergraphs as follows:  is a node and 2UZ is .
an hyperedge, with ordered tentacles attached to the left bound- @_‘
ary linking to sources and those on the right linking to targets.
An example is on the right.

A signature X consists of a set of generators o:n — m D
with arity n and coarity m where m,n € N. Any signature 5
2} can be considered as a hypergraph with a single node, in
the obvious way. We can then express X-typed hypergraphs as the objects of
the slice category Hyp /X, denoted by Hyp ., which is adhesive, since adhesive
categories are closed under slice [34]. X-typed hypergraphs are drawn by labeling
hyperedges with generators in Y, as on the right.

DPO Rewriting. We recall the DPO approach [20] to rewriting in an adhesive
category C. A DPO rule is a span L — K — R in C. A DPO system R is a
finite set of DPO rules. Given objects G and H in C, we say that G rewrites
into H —notation G = H— if there esist L — K — R in R, object C and
morphisms such that the squares below are pushouts. A derivation from G into
H is a sequence of such rewriting steps.

L<=—K—R

L
G<=—C—H

The arrow m: L — G is called a match of L in G. A rule L — K — R is
said to be left-linear if the morphism K — L is mono. In this case, the matching
m fully determines the graphs C' and H, i.e., for fixed a rule and a matching
there is a unique H such that G =5 H. Here, by unique, we mean unique up-to
isomorphism. More generally, the rewriting steps will always be up-to iso: in a
step G =r H, G and H should not be thought of as single graphs but rather
as equivalence classes of isomorphic graphs.

Undecidability of Confluence. In DPO rewriting, the confluence of terminating
systems is not decidable, even if we restrict to left-linear rules.

Theorem 1 [42]. Confluence of terminating DPO systems over Hypy. is unde-
cidable.

Indeed, critical pair analysis for traditional DPO systems fails: for terminat-
ing DPO systems, joinability of critical pairs does not necessarily imply conflu-
ence.

Definition 2 (Pre-critical pair and joinability). Let R be a DPO system
with rules L1 — K1 — R1 and Ly +— K9 — Rs. Consider two derivations with
common source S
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Ri~—K, ——1I, \\fl f%/ Ly<— Ky —— Ry
i | i |— \\\\ // 1 \L |— \L
H, Ch S Cs H,

We say that Hy < S = Hs is a pre-critical pair if [f1, fa]: L1 + La — S is epi;
it 1s joinable if there exists W such that Hy =* W *<= H,.

Intuitively, in a pre-critical pair .S should not be bigger than L; + Ls. In a
critical pair, Ly and Lo must additionally overlap in S, so that the two rewrit-
ing steps are not parallel independent (see e.g. [17]). For the purposes of this
paper, this restriction is immaterial. We stick to pre-critical pairs in our results,
as proofs are less tedious. However, for the sake of succinctness, most of the
examples only display the critical pairs. For a pre-critical pair which is not a
critical pair, see for instance the first picture of Sect. 5.

Ezample 3 [42]. Consider a DPO system R consisting of the following two
rules, where we labeled nodes with numbers in order to make the graph
morphisms explicit.

,,,,,,,,,,,,,,,,,,,

ffffffffff

,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,

Amongst the several pre-critical pairs, only the following two have non-trivial
overlap.

Q==

Both are obviously joinable. However, R is not confluent, as witnessed by
the following

DPO Rewriting with Interfaces. Morphisms G «— J will play a special role in
our exposition. When C is Hypy,, we will call them (hyper)graphs with interface.
The intuition is that G is a hypergraph and J is an interface that allows G to
be “glued” to a context.

Given G «— J and H «— J in C, G rewrites into H with interface J —
notation (G «— J) =g (H « J) — if there exist rule L «— K — R in R, object
C and morphisms such that the diagram below commutes and the squares are
pushouts.

L
my

R
v
G H

E——
-
E——

Q==

-~
.
-~
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Hence, the interface J is preserved by individual rewriting steps.

When C has an initial object 0 (for instance, in Hypy, 0 is the empty hyper-
graph), ordinary DPO rewriting can be considered as a special case, by taking
J to be 0.

Like for traditional DPO, rewriting steps are modulo isomorphism: Gy < J :
f1 and G4 «— J : fy are isomorphic if there is an isomorphism ¢: G; — G2 with

fi59 = fa

steps

that are not joinable. Intuitively, the main difference with Example3 is that
here the interface {0,1} allows one to “look inside” the graph and distinguish
between the two nodes. Notice that if (1) were considered as a critical pair, the
counterexample of Plump [42] (Example 3) would not work. This is the start-
ing observation for our work: in Sect.3 we will introduce pre-critical pairs for
rewriting with interfaces and we will show that, as in term rewriting, joinability
of pre-critical pairs entails confluence.

2.2 PROP Rewriting

SMTs and PROPs. A uniform way to express an algebraic structure within a
symmetric monoidal category is with a symmetric monoidal theory (SMT). A
(one-sorted) SMT is a pair (X, E) where X is a signature defined as in Sect. 2.1.
The set of Y-terms is obtained by combining generators in X', the unit id: 1 —
1 and the symmetry o11: 2 — 2 with ; and @©. That means, given Y-terms
t:k—1l, u:l — m,v:m — n, one constructs new X-terms t; u: k — m and
t@v: k+m — [+ n. The set E of equations contains pairs (¢,t') of X-terms,
with the requirement that ¢ and ¢’ have the same arity and coarity.

X = =D —«OC =
> 2} e
ho S < - e

Fig. 1. The equations Er of special Frobenius monoids.
Just as ordinary (cartesian) algebraic theories have a categorical rendition

as Lawvere categories [28], the corresponding (linear!) notion for SMTs is a

! In the sense that variables can neither be copied, nor discarded.
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PROP [36] (product and permutation category). A PROP is a symmetric strict
monoidal category with objects the natural numbers, where & on objects is
addition. Morphisms between PROPs are identity-on-objects strict symmetric
monoidal functors. PROPs and their morphisms form a category PROP. Any
SMT (X, E) freely generates a PROP by letting the arrows n — m be the
X)-terms n — m modulo the laws of symmetric monoidal categories and the
(smallest congruence containing the) equations t = ¢’ for any (¢,¢') € E.

We write Sy, to denote the PROP freely generated by (X, @). There is a
graphical representation of the arrows of Sy as string diagrams, which we now
sketch, referring to [45] for the details. A X-term n — m is pictured as a box
with n ports on the left and m ports on the right, which are ordered and referred
to with top-down enumerations 1,...,n and 1,...,m. Compositions via ; and
@ are drawn respectively as horizontal and vertical juxtaposition, that means,

t; s is drawn and t @ s is drawn . There are specific diagrams for
the X-terms responsible for the symmetries: these are id;: 1 — 1, represented
as £, the symmetry o7 1: 1+ 1 — 1+ 1, represented as D, and the unit
object for @, that is, idy: 0 — 0, whose representation is an empty diagram D
Graphical representation for arbitrary identities id,, and symmetries o, ,,, are
generated using the pasting rules for ; and . It will be sometimes convenient
to represent id,, with the shorthand diagram and, similarly, ¢: n — m with

Ezxample 5.

(a) A basic example is the theory (X, Ens) of commutative monoids. The
signature X', contains two generators: multiplication — which we depict
Do} 2 = 1 — and unit, represented as [e}: 0 — 1. Equations in Ej; are
given in the leftmost column of Fig. 1: they assert commutativity, associa-
tivity and unitality.

(b) An SMT that plays a key role in our exposition is the theory (X, EF) of
special Frobenius monoids. The signature X is as follows and E'f is depicted
in Fig. 1.

{(D}:2->1,[e}:0-1, (G: 1 =2, fo]: 1 =0}

Er includes the theory of commutative monoids in the leftmost column.
Dually, the equations in the middle column assert that {«J and fe] form
a cocommutative comonoid. Finally, the two rightmost equations describe
an interaction between these two structures. We call Frob the PROP freely
generated by (Xr, EF).

(¢) The theory of non-commutative bimonoids has signature Xnp

{(DF:2-1,[cF: 01, F0: 1> 2,{]: 1 -0}
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and the following equations Enp.
P> L= T - T o -
> - o -
DF = — —OC_: = — %

We call NB the PROP freely generated from (X'np, Enp). In [4], we showed
that the rewriting system that is obtained by orienting the equalities from
left to right terminates. In this paper, we will show that is also confluent.
For this, it will be convenient to use u,n, v, €, respectively, to refer to the
generators in Yyp.
Rewriting in a« PROP. Fix an arbitrary PROP X. A rewriting rule is a pair
(I,7) where I,r: i — j in X have the same domain and codomain. We say
that ¢ — j is the rule’s type and sometimes write (I,7): (4,7). A rewrit-
ing system R is a finite set of rules. Given two arrows d,e: n — m in
X, d ~gr eiff I,r): (i,j) € Roex : nm — k+1d,¢c0 : k+j — n such
that d = ¢1; (id @ 1);¢c2 and e = ¢1; (idg @ 1) ; ca, ie., diagrammatically

k k
n - m — n m n - m — n m .
The following well-known example illustrates the subtlety of critical pair

analysis when rewriting in monoidal categories.

Ezample 6 (From [35], see also [39]). Fix ¥ = {y: 2 — 2} and consider the
rewriting system on Sy consisting of the following rule:

T - S50

A critical pair analysis yields an infinite number of critical pairs. Indeed, as
shown in [35,39], any diagram ¢ : 1 +m — 1 + n that does not decompose
non-trivially into ¢ = u + v for some u, v yields a critical pair

in which clearly there are two embeddings of the left-hand side of (2) (depicted
in blue and yellow, respectively, in a colour version of the paper) with an overlap
(in green).

In [38] this problem was solved by freely adding duals to monoidal cate-
gories. In Sect. 4, we will show another solution based on our earlier work [4]: a
translation from PROPs to DPO rewriting with interfaces. The example below
anticipates this encoding. It will be useful as a running example for the next
section, which is devoted to critical pair analysis and confluence in DPO rewrit-
ing with interfaces.
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Ezxample 7. Treating the rewriting system of Example 6 as DPO system over
Hypy with v:2 — 2 € X' yields the following DPO rules.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Below, we give a DPO derivation with interface (in grey), corresponding to
a critical pair from the family identified in Example 6.

3 Confluence for DPO Rewriting with Interfaces

Differently from Definition 2, when considering pre-critical pairs in the setting
of DPO with interfaces, the interface of the pre-critical pair plays a crucial role.

Definition 8 (Pre-critical pair with interface). Let R be a DPO system
with rules L1 «— K1 — Ry and Ly — Ko — Rs. Consider two derivations with
source S «— J

Ri<~—K ——1IL, ; ; Ly<— Ky —— Ry
| | " v v
H1—| Cq RS/V/—| Cs [_Hz (3)

We say that (Hy — J) < (S «— J) = (Hy < J) is a pre-critical pair if
[f1, f2]: L1 + Lo — S is epi and (1) is a pullback; it is joinable if there exists
W «— J such that (Hy — J) =* (W «— J) *<= (Hy < J).

Definition 8 augments Definition 2 with the interface J, given by “intersect-
ing” C and C5. Intuitively, J is the largest interface that allows both the rewrit-
ing steps.
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Ezample 9. Consider the pair of rewriting steps (1) in Example4. This is a
pre-critical pair: the reader can check that the interface is indeed a pullback,
constructed as in (t). Observe moreover that this pair is not joinable.

Plump’s Example 3 shows that in ordinary DPO, joinability of pre-critical
pairs does not imply confluence. Our Example 9 shows that the argument does
not work for DPO with interfaces. Indeed, as we shall see in Theorem 19, in the
presence of interfaces joinability suffices for confluence. To prove it, we assume
the following.

Assumption 10. Our ambient category C is assumed (1) to possess an epi-
mono factorisation system, (2) to have binary coproducts, pushouts and pull-
backs, (3) to be adhesive (4) with all the pushouts stable under pullbacks.

All of the above hold in any presheaf category. Additionally, all four are closed
under slice. It follows that Hypy is an example of such a category. The final
property allows us to treat non left-linear rules: to this aim we need the following
simple pushout decomposition lemma (aka “mixed decomposition” from [2]).

Lemma 11. Suppose in the following diagram m is mono, (1) + (1) is a pushout
and (1) is a pullback. Then both () and (1) are pushouts.

K—(0' —C

VGO I € M (4)

L——G ——G

The following construction mimics [18]. It allows us to restrict —or “clip”’— a
DPO rewriting step with match f: L — G to any subobject of G’ through which
f factors.

Construction 12 (One-step clipping). Suppose we have a DPO rewriting

step as below left, together with factorisation L — G' 2 G where m is mono.
As shown below right, we get C' by pulling back G' — G +— C and K — C" by
the universal property.

L<—K—R L K R

el L el

G<=—C——>H "G C H

By Lemma 11 the two leftmost squares are both pushouts. Next, H' is the
pushout of C' — K — R and H' — H follows from its universal property.

L K R
e | £ yd
G’ ¢ c’ ¢ H' l
m\ AN N

G C H
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By pushout pasting also the bottom-rightmost square is a pushout. Finally,
observe that C' — C is mono since it is the pullback of m along C — G.
This means that each of the two squares in diagram below is, as well as being a
pushout, also a pullback, since each is a pushout along a mono in an adhesive
category.

G ~—0C —H

L I

G=—C——H

Ezxample 13. We use the clipping construction to restrict pairs of derivations
with common source into pre-critical pairs. For example, consider the two DPO
rewriting rules illustrated in Example7. We can factorise the two matches
through their common image, and clip, as illustrated below.

Note that the clipped derivations result with the two matches being jointly
epi, which is one of the properties of a pre-critical pair. This generalises: given
two rewriting steps with common source (G131 «— I) < (Go — I) = (G123 < I),
next construction produces a pre-critical pair (G}, «— J') < (G « J') =
(G’ o + J') using clipping.

Construction 14 (Pre-critical pair extraction). Start with two rewrites
from Gy — I

Riq Ky Ly, ; ; Lip K2 Rio
1 2
- { IS | Y
Gi1 Cia Go Ci2 Gipe
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and factorise [f1, f2]: L1,1 + L1.2 — Gy to obtain

Ly Ly
N/
f %6 f
Go

Next apply Construction 12 twice, obtaining

Ry K1 Ly Lo Ko Rio
A e \ N P B
Hi, Cia Gj Clo Hi,
SN N b |
H1 1 Cl 1 G() Cl 2 Hl 2
. 4 7
............................... -7 e
Finally pull back C1 ; — Gj « C1 5 to obtain pre-critical pair
Ria Ky Lia Lis K9 Rio
Ve Ve N N
Gia e ™ G catl G Gho

B —

Ezxample 15. We can now complete the pre-critical pair extraction process, com-
menced in Example 13, following the steps of Construction 14.

Construction 14 means that we are able to extract a pre-critical pair from
two rewriting steps with common source. If the pre-critical pair is joinable, we
would then like to embed the joining derivations to the original context.
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The following is a useful step in this direction. Assuming a mono G{, — G,
it allows us to extend a derivation from G{, < J' to a corresponding one from
Go « J, if we can obtain Gy by glueing G}, and some context Cy along J'. Stated
more formally, we want the following diagram commute and (}) be a pushout.

J —= G}
ooy (5)
—Cy——=G
J \\.‘._._0_”/ 0
Construction 16 (Embedding). The extended derivation is constructed as in
the commuting diagram below, where each square is a pushout diagram.

Li< K| >R, Ly< Ky >Ry L,<K,>R,
J — G 1 G 4 Gy, - G<~—0C —@G,

Lo | o [l m No | [ o] e |
Co e Gg C] CZ GZ e Gn Cn Gn

1
(e2) (en)

(1) J!

l

—Co

J

We shall now explain each of the components. The upper row of pushouts
together with morphisms J' — C! witnesses the original derivation (G, «—
J) = (G — ),

Fori=1...n, (¢) is formed as the pushout of Cy — J' — C! and (§;) as
the pushout of C; «— C} — G, as shown in the diagram below.

J—=Cl—> G

| e ] e (6)

Co —— O,L' —— Gz
It remains to construct pushouts (7;), which is done in the following diagram.

J G
\ cr /
(G'i) Vl ('Y'i) (7)
C
BN
C(] I —— Gi—l

The exterior square in (7) is a pushout: for i = 1 it is () from (5), while
for i > 2 it is obtained by composing (e;—1) and (0;—1) from (6). The universal
property of (e;) yields the morphism C; — G;_1. By pushout decomposition, the
diagram (v;) is a pushout.
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Ezample 17. In Example 15 we saw two derivations from

following the steps in Construction 16 because the square in the following is a
pushout.

Constructions 14 and 16 are the main ingredients for showing the Knuth-
Bendix property for DPO with interfaces. Before we prove it, we need one tech-
nical lemma from the theory of adhesive categories.

Gy<—20C1,
Lemma 18. Consider the cube on the right, where the ar P
top and bottom faces are pullbacks, the rear faces are C’{,l -~ J i
both pullbacks and pushouts, and m is mono. Then, the
n Go <
front faces are also pushouts. P

—Ci2
A

Cia J

Theorem 19 (Local confluence). For a DPO system with interfaces, if all
pre-critical pairs are joinable then rewriting is locally confluent: given (G11 «—
I) < (Gy «— I) = (G1,2 < I), there exists W «— I such that

(Go — I)
= SN
(G1,1 — I) (G1,2 — I)

=X i=
(W — I).
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Proof. Following the steps of Construction 14, we obtain a pre-critical pair
(G1) )= (Go =)= (G T)
Because pre-critical pairs are by assumption joinable we have derivations
(Giy = J) =" (W& 0" (Gl = ).

Suppose w.l.o.g. that the leftmost derivation requires n steps and the rightmost
m. To keep the notation consistent with Construction 16, we fix notation G7, ; :=
W'=: G, .

Now let J be the pullback object of Ci 1 — Gp « Ci . By the universal
property, we obtain maps ¢: I — J and &: J' — J.

Recall by Construction 12 that the rear faces of (8) are both J =G}
pullbacks and pushouts. Then, by Lemma 18, the square on ¢ M
the right is a pushout. J— Gy

We are now in position to apply Construction 16 by taking Cy = J, which
yields

(Go — J) = (Gr1 — J) =" (Gpy <2 )

’

extending (G — J') = (G}, — J') =" (G, < J') and

n,l

(Go — J) = (Gro — J) =" (G <= J)

extending (Gf — J') = (Gly — J') =* (Glg <= T').
The next step is to prove that (G, 1 Ny J) = (G2 2 J). To see this, it is

enough to observe that both the following squares are pushouts of J & J LN
W' =Gy, = Gl

ria,  rfa,,
3! v 3 V
J 4B>1Gn,1 J 4B>2Gm,2

Indeed, the leftmost is a pushout by composition of squares (e, ) and (d,,) in the
embedding construction and the rightmost by composition of (e,,) and (d,,).



156 F. Bonchi et al.

To complete the proof, it remains to show that, in the above derivations,
interface J extends to interface I as in the statement of the theorem. But this
trivially holds by precomposing with ¢: I — J. (]

We are now ready to give our decidability result. To formulate it at the level
of generality of adhesive categories we need some additional definitions.

A quotient of an object X is an equivalence class of epis with domain X. Two
epis e1 : X — Xq, es: X — X5 are equivalent when there exists isomorphism
p: X1 — Xo such that e; ; ¢ = es. Note that quotient is the dual of subobject.

A DPO rewriting system with interfaces is computable when

— pullbacks are computable,

— for every pairs of rules L; — K; — R;, Lj < K; — R;, the set of quotients of
L; + L is finite and computable,

— for all G « J, it is possible to compute every H « J such that (G «— J) =
(H « J).

Computability refers to the possibility of effectively computing each rewriting
step as well as to have a finite number of pre-critical pairs. More precisely, the
first two conditions ensure that the set of all pre-critical pairs is finite (since
every objects has finitely many quotients) and each of them can be computed,
while the last one ensures that any possible rewriting step can also be computed.
Thus, these assumptions rule out the rewriting of infinite structures, singleing out
instead those structures where it is reasonable to apply the DPO mechanism, like
finite hypergraphs in Hypy., which are exactly what is needed for implementing
rewriting of SMTs.

Corollary 20. For a computable terminating DPO system with interfaces, con-
fluence is decidable.

Proof. By Theorem 19, if all pre-critical pairs are joinable then the system is
confluent. If not all pre-critical pairs are joinable, then at least one pair witnesses
the fact that the system is not confluent. Therefore, to decide confluence, it is
enough to check that all pre-critical pairs are joinable.

Since the system is computable, there are only finitely many pre-critical pairs
and these can be computed. For each pair, one can decide joinability: indeed each
rewriting step can be computed (since the system is computable) and there are
only finitely many (H < J) such that (G « J) =* (H < J) (since the system
is terminating). O

It is worth to remark that this result is not in conflict with Theorem 1:
Corollary 20 refers to confluence of all hypergraphs with interfaces G < J. The
property that Theorem 1 states as undecidable is whether the rewriting is conflu-
ent for all hypergraphs with empty interface G < 0. Observe that the restriction
to hypergraphs with empty interface would make the above proof fail: a non-
joinable pre-critical pair (S « J), with J non empty, does not witness that
rewriting is not confluent for all G « 0.
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A similar problem arises with term rewriting, when restricting to confluence
of ground terms [30]. As an example consider the following term rewriting system
defined on the signature with two unary symbols, f and g, and one constant c.

flg(f(x)) — = fle) —c gle) = ¢

The critical pair f(g(z)) «— f(g(f(g(f(2))))) — g(f(x)) is not joinable, but
the system is obviously ground confluent, as every ground term will eventually

rewrite into c.

Our work therefore allows one to view Theorem 1 in a new light: as hyper-
graphs with empty interface are morally the graphical analogous of ground terms,
we can say that ground confluence is not decidable for DPO rewriting with inter-
faces.

4 Confluence for PROP Rewriting

As emphasised in the introduction, a major reason for interest in DPO rewriting
with interfaces is that PROP rewriting (Sect.2.2) may be interpreted therein.
In this section we investigate how our confluence result behaves with respect to
this interpretation. The outcome is that confluence is decidable for terminat-
ing PROP rewriting systems, where terms are taken modulo a chosen special
Frobenius structure (Corollary 28). For arbitrary symmetric monoidal theories,
confluence is also decidable, provided that certain additional conditions hold
(Corollary 41).

4.1 From PROPs to Frobenius Termgraphs

In this subsection we report a result from [4] that is crucial for the encoding of
PROP rewriting into DPO rewriting with interfaces in Hypy, (cf. Sect. 2.1).

First, we obtain our domain of interpretation by restricting the category
Csp(Hypy) with arrows the cospans G7 «— G2 — G35 of X-hypergraphs to those
with G, G3 discrete.

Definition 21 (Frobenius termgraphs). Anyk € N can be seen as a discrete
hypergraph with k vertices. The objects of the PROP FTermy of X-Frobenius

termgraphs are natural numbers and arrows n — m are cospans n LLadm
in Hypy. (where n, m are considered as hypergraphs). FTermy, therefore, is a
full subcategory of Csp(Hyps.).

Explicitly, composition in FTermy; is defined by pushout as in Csp(Hypy.)
and the monoidal product & by coproduct in Hypy,. The idea behind the dis-
creteness restriction is that f and g tell what are the “left and right dangling
wires” in the string diagram encoded by G. In pictures, we shall represent n
and m as actual discrete graphs— with n and m nodes respectively— and use
number labels (and sometimes colours, whenever available to the reader) to help
visualise how they get mapped to nodes of G.
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Given a signature X, we define a PROP morphism ||-]|: Sy — FTermy,.
Since Sy is the PROP freely generated by an SMT with no equations, it suffices
to define ||-]] on the generators: for each o: n — m in X, we let ||o]] be the
following cospan of type n — m.

Ezample 22. The two sides of the PROP rewriting rule (2) (Example6) get
interpreted as the following cospans in FTermy.

Proposition 23 [4]. ||-]|: Sy — FTermy is faithful.

The encoding || || is an important part of Theorem 24 below. This is a pivotal
result in our exposition, as it serves as a bridge between algebraic and combina-
torial structures. Indeed, it provides a presentation, by means of generators and
equations, for the PROP FTermy: the disjoint union of the SMTs of Sy and
Frob.

Theorem 24 [4]. There is an isomorphism of PROPs &: Sy + Frob =N
FTermsy.

The isomorphism @ is given as [||-]],%]: Sz + Frob — FTermy, where
1: Frob — FTermy is the unique PROP morphism mapping the generators of
Frob as follows

,,,,,,,,,,,,

The special role played by Frob is what justifies the terminology Frobenius
termgraph: it is used to model those features of the graph domain that are not
part of the syntactic domain, e.g. the ability of building a “feedback loop” around
some a: 1 — 1in 3.
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4.2 Confluence for Rewriting in Sy + Frob

We can use Theorem 24 to apply results for graphs with interfaces to Sy + Frob.
First, one can turn the cospan n — G <= m = &(d) interpreting a string diagram
d into a graph with interface, which is defined as

’_ni>G<ﬁm_‘ = Gﬂn+m.

For a system R we define the rewriting system "®(R)" in FTermy as
{(fe(®),re(r)7) | (,r) € R}

Ezxample 25. The PROP rewriting system R of Example 6 consists of just a sin-
gle rule, let us call it (d,e). The resulting DPO rewriting system with interfaces
TP(R)" is then presented in Example 7. Also, Example 22 is an intermediate step
of this transformation, as it shows the cospans [|¢]] = &(c¢) and ||d]| = &(d).
One can obtain both graphs with interfaces "®(c)? and "®(d)™ by “folding” the
domain/codomain of the cospans into the interface of Example 7.

Observe that a rule in "®(R)™ just consists of a pair of hypergraphs with a
common interface, i.e., it is a DPO rule of the form L «— n+m — R. Thus, PROP
rewriting in FTermy coincides with DPO rewriting with interfaces: together
with Theorem 24, this correspondence yields the following result.

Theorem 26 [4]. Let R be a rewriting system on Sy + Frob.

1. If d ~g e, then "®(d)T =y "P(e).
2. If "®(d)" =rgryn (H < J), then e such that "®(e)? = (H « J) and
d R €.

One can read Theorem 26 as: DPO rewriting with interfaces is sound and
complete for any symmetric monoidal theory with a chosen special Frobenius
structure, i.e. one of shape (X' + Xp,E + Ep), with (XYp, Er) the SMT of
Frob. There are various relevant such theories in the literature, such as the
ZX-calculus [15], the calculus of signal flow graphs [6], the calculus of stateless
connectors [10] and monoidal computer [41].

The combination of the result above with Theorem 19 is however not sufficient
for ensuring the decidability of the confluence for a terminating rewriting system
R on Sy + Frob. Indeed, Theorem 19 and Theorem 26 ensure that if all the
pre-critical pairs in "@(R)™ are joinable, then the rewriting in R is confluent.
However, for the decidability of confluence in R the reverse is also needed: if
one pre-critical pair in "@(R)™ is not joinable, then R should not be confluent.
To conclude this fact, it is enough to check that all pre-critical pairs of "@(R)™
lay in the image of "®(-)7, i.e., that they all have discrete interfaces. The key
observation is given by the lemma below.

Lemma 27 (Pre-critical pair with discrete interface). Consider a pre-
critical pair in Hypy, as in (3), Definition 8. If both K; and Ky are discrete, so
1s the interface J.
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Proof. For i = 1,2, since K; is discrete, the hyperedges of C; are exactly those
of G; that are not in f;(L;). Since [f1, f2]: L1+ Lo — S is epi, all the hyperedges
of G are either in f1(L1) or fa(L2). Therefore, J cannot contain any hyperedge.

O

Since in every rule L «— K — R in "®(R)7, K is discrete, from Lemma 27
and Theorem 19 we derive the following result.

Corollary 28. Confluence is decidable for terminating rewriting systems on
S5 + Frob.

Proof. To decide confluence of a rewriting system R on Sy + Frob, it is enough
to check whether all pre-critical pairs in "®(R)™ are joinable. Indeed, if all pre-
critical pairs are joinable, then ~-% is confluent by Theorems 19 and 26. For
the other direction, suppose that there exists a pre-critical pair r4x)r< (S —
J) =ramy- that is not joinable. By construction, in every rule L — K — R in
"®(R)7, K is discrete. Therefore, by Lemma 27, also J is discrete. This is the
key fact to entail that there exists d in S5 + Frob, such that "&(d)™ = (S « J).
By Theorem 26, d witnesses that ~~»% is not confluent.

Now, if R is terminating, then by Theorem 26, also "®(R)™ is terminating.
The latter is also computable and therefore joinability of pre-critical pairs of
"®(R)™ can easily be decided by following the steps in the second part of the
proof of Corollary 20. (]

4.3 Confluence for Left-Connected Rewriting in Sy

So far, we have shown a procedure to decide confluence for rewriting on
Sx + Frob. In order to study PROP rewriting in absence of a chosen Frobenius
structure, we focus on component ||-|]: Sy — FTermy of the isomorphism @.

We first recall from [4] a combinatorial characterisation of the image of [|-]].
It is based on a few preliminary definitions. We call a sequence of hyperedges
€1,€2,...,¢e, a directed path if at least one target of e is a source for ex41 and
a directed cycle if additionally at least one target of e, is a source for e;. The
in-degree of a node v in an hypergraph G is the number of pairs (h,) where
h is an hyperedge with v as its i-th target. Similarly, the out-degree of v is the
number of pairs (h, j) where h is an hyperedge with v as its j-th source. We call
input nodes those with in-degree 0, output nodes those with out-degree 0, and
internal nodes the others. We write in(G) for the set of inputs and out(G) for
the set of outputs.

Definition 29. An hypergraph G is monogamous directed acyclic (mda) if

1. it contains no directed cycle (directed acyclicity) and
2. every node has at most in- and out-degree 1 (monogamy).

A cospan n L6 & min FTermy is monogamous directed acyclic when G is
an mda-hypergraph, f is mono and its image is in(G), g is mono and its image
is out(G).



Confluence of Graph Rewriting with Interfaces 161

Ezample 30. The following four cospans are not monogamous.

Theorem 31 [4]. n — G «— m in FTermy is in the image of ||-]| iff it is mda.

As for a graph with interface G L J, we call it monogamous directed acyclic
if so is G and the image of f coincides with m(G) + out(G) This means that

there exists a cospan n — G <= m such that "n = G < m? = G <L J, ie.,
J=n+mand f=[i,o].

We are now in position to interpret PROP rewriting for Sy in DPO-rewriting
for mda-hypergraphs with interfaces, via the mapping [] def T||-]]7 that takes
string diagrams to mda hypergraphs with interfaces.

As shown in [4], this interpretation is generally unsound. There are two main
reasons, which we illustrate in the next two examples. They motivate our restric-
tion to PROP rewriting systems that make the interpretation sound, in Defini-
tion 34 below.

Ezample 32. Consider ¥ = {a1: 0 — lias:1 — 0,a3:1 — 1}
and the PROP rewriting system R ={ ~w @)=} o S ». In
FTermy, [R] is given by the DPO rule of mda-hypergraphs with interface

! 90,1 i ‘ay 0e—{Ct3)—el | . .
SR Suli RAA A - .. The rule is not left-linear and therefore pushout

complements are not necessarily unique for the application of this rule, as wit-
nessed by the following two DPO rewriting steps.

The different outcome is due to the fact that f maps 0 to the leftmost and
1 to the rightmost node, whereas g swaps the assignments. Even though both
rewriting steps could be mimicked at the syntactic level in Sy + Frob (as guar-
anteed by Theorem 26, cf. [4, Ex. 4.8]), the rightmost one is illegal for R in
Ss.

Ezample 33. Take ¥ = {a1: 1 — 2,a2:2—1l,a3: 1 —1,a4: 1 — 1} and a
PROP rewriting system R on Sy given by the rewriting rule below left, inter-
preted in [R] as below right. The next line introduces a diagram ¢ of Sy and its
interpretation.
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Now, the left-hand side of the rule in R cannot be matched in c¢. However,
their interpretation in FTermy; yields a legal DPO rewriting step as below.

The two examples motivate the following definition.

Definition 34. An mda-hypergraph G is strongly connected if for every input
x € in(G) and output y € out(G), there exists a directed path from x toy. A DPO
system with interface is called left-connected if it is left-linear and, for every rule
L—K—R,L— K and R — K are mda-hypergraphs with interface and L is
strongly connected. We call a PROP rewriting system R on Sx left-connected if
[R] is left-connected.

Non-commutative bimonoids (Example 5(c), see also Sect. 5 below) and the
Yang-Baxter rule of Example 6 are examples of left-connected rewriting systems.

Intuitively, in Definition 34, strong connectedness prevents matches leaving
“holes”, as in Example 33, whereas left-linearity guarantees uniqueness of the
pushout complements, and prevents the problem in Example32. We are then
able to prove the following.

Theorem 35. Let R be a left-connected rewriting system on Sy .

1. If d ~g e, then|[d = [d-
2. If[d =yry (H < J), then 3e such that]d = (H «— J) and d ~r e.

Remark 36. For confluence, restricting to left-linearity is not particularly harm-
ful. Indeed, an mda-hypergraph with interface G «+— J is not mono iff G has one
node that is both input and output, i.e., an isolated node. A rule with a strongly
connected L «— K is not left-linear precisely when L is discrete, with a single
node. Such a rule cannot be part of a terminating system, i.e. one where local
confluence implies confluence.
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The above theorem allows us to use DPO rewriting with interfaces as a
mechanism for rewriting Sx. The last ingredient that we need for confluence
is a suitable notion of pre-critical pair. One cannot simply reuse Definition 8.
Indeed, we want to enforce that the common source S « J (cf. (3)) of the two
derivations is an mda-hypergraph with interfaces, so that it is in the image of
[] and we can reason about pre-critical pairs ‘syntactically’ in Sy. However,
while Lemma 27 guarantees that this is always the case for rewriting systems on
Sx + Frob, with Definition 8 this is not guaranteed for Sy even in presence of
left-connected rules, as shown by the two examples below.

Ezample 87. We concoct a pre-critical pair by instantiating (3) as shown below.

L, K, Ly Ky, S
T ; T o oo A
et et X

Although L, « K and Ly «+— K5 are left-hand sides of left-connected rules,
S is not monogamous, thus this pre-critical pair does not correspond to anything
in the syntax.

Ezample 38. Even if we restrict to left-connected rules with an mda-hypergraph,
defining the interface J by pullback as in Definition 34 may not yield an mda-
hypergraph with interface. Here is an example, where two rules match in an
mda-hypergraph G, but the interface contains one extra node 4 which is neither
an input nor an output of G.

The previous two examples motivate the following definition.

Definition 39 (Mda pre-critical pair). Let R be a left-connected DPO sys-
tem containing the rules L1 «— K1 — Ry and Ly «— Ko — Rs. Consider the
following derivations with common source S « J.

Ri~—K, ——1I, g<— Ky —— Ry

A

H, Ch Cs Hy

~_ 1
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We say that (Hy «— J) < (S « J) = (Hs < J) is an mda pre-critical pair if
[f1, f2]: L1 + Lo — S is epi and S «— J is an mda-hypergraph with interface;
it 4s joinable if there exists an mda-hypergraph with interface W «— J such that
(Hy — J)=" (W « J) *<= (Hy < J).

We will drop the prefix mda, when there is no risk of confusion with Definition 8.
We are now in position to state the confluence theorem for left-connected systems.

Theorem 40 (Local confluence for left-connected systems). For a left-
connected DPO system with interfaces, if all mda pre-critical pairs are joinable
then rewriting is locally confluent: given an mda-hypergraph with interface Gy «—
I and (Gi1 «— I) <= (Go < I) = (G1,2 < I), there exists an mda-hypergraph
with interface W «— I such that

(Go < I)
== SN
(G111« 1I) (G2 I)

* *

X =
(W — I).

The proof of Theorem 40 follows steps analogous to the one of Theorem 19.
The essential difference is that mda pre-critical pairs now have interfaces that are
not necessarily pullbacks. The assumption of left-connectedness is, nevertheless,
enough to ensure that the fundamental pieces, Constructions 14 and 16, can be
reproduced.

Corollary 41. Let R be a terminating left-connected rewriting system on Syx.
Then confluence of ~x is decidable.

Proof. By Theorem 35 and 40, it is enough to check whether pre-critical pairs in
[R] are joinable. This is decidable since R is terminating and [R] is computable. O

Example 42. The PROP rewriting system R of Example6 is left-connected.
Once interpreted as the DPO system with interfaces of Example 7, we can do
critical pair analysis. The mda pre-critical pair below (where the middle grey
graph acts as the interface for the rewriting steps) is not joinable, meaning that
R is not confluent.

We emphasise that the decision procedure relies on the fact that there are
only finitely many pre-critical pairs to consider — the above one being the only
to feature a nontrivial overlap of rule applications. This is in contrast with a
naive, ‘syntactic’ analysis, which as we observe in Example6 yields infinitely
many pre-critical pairs for R.
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We will devote the next section to a positive example of our confluence result.

5 Case Study: Non-commutative Bimonoids

We conclude with an application of the left-connected case, showing confluence
of the theory NB of non-commutative bimonoids (Example 5(c)). Below is the
interpretation of the theory as a DPO system [Ryg], which was shown to be
terminating in [4].

o N S iy 1 TR TN X
NB; = [l iieitiog L ONBy = Ul e o e P
,,,,,,,,,,,,,,,,,,,, e [ S |e3! [T i, 4 1
P T i Tol 17 777777777 o Tol
NB; := P () At NB, := W e 1;—)3“
T s-- L RS Lo L
T Y N Vo, o
NB; := in 1(_:“1_):“ NB(’:in 1 L6 lel i ™ 01
,,,,,,,,,,,,,, i o - Cmmmmmme o2 ooy
Py . posmmmeeen g iy
1 i ' c)! ! ! ] HU
NB, = | @3- 8 NBg := |0 R et
11 ' - R | 1 | 1
77777777777777777777777777777777777777777 ‘
Fgreeoooooeoooe 5ormn TSR e,
i i DY el ! - 7] 2)!
NBy :=! L0~ it i =y @) NBuo= (0@l -l ]

Given that the system is terminating, it suffices to show local confluence.
Observe that [Ryg] is left-connected: monogamicity is ensured by the fact that
it is in the image of []; strong connectedness and left-linearity hold by inspection
of the set of rules. We can thus use Theorem 40 and local confluence follows from
joinability of the pre-critical pairs. Among them, the pairs without overlap of
rule applications pose no problem: they are trivially joinable in one step, by
applying the other rule. One example is given below, with the middle grey graph
acting as the interface for all depicted derivation steps.

Thus we confine ourselves to analysing actual critical pairs, with overlapping
rule applications. One such pair is given below, also involving rules NB; and
NBy. Again, we show how it is joined, with the interface of each step drawn in
the centre.
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Overall there are 22 critical pairs to consider. For space reasons, for each
of them we only show the graph exhibiting the overlap. It is straightforward to
check that the corresponding pairs are all joinable.

@ -
i [
50 2agrs GREERES
) (T

g S

K

: ,

. Ug Sy

() i (1)

We can thereby conclude that NB is a confluent rewriting system. Since it is
also terminating, equivalence of terms in NB is decidable by means of rewriting.
Note that, by virtue of Corollary 41, the above pre-critical pair analysis can be
automated.

6 Conclusion

The starting observation of this paper (Theorem 19) is that the Knuth-Bendix
property holds for DPO with interfaces; as an easy corollary (Corollary 20), for a
terminating system, confluence is decidable. The relevance of this is two-fold. On
the conceptual side, it puts graph rewriting in tight correspondence with term
rewriting: when considering rewriting with interfaces, confluence is decidable
both for graphs and terms [33], while the appropriate notion of ground confluence
is undecidable in both cases [30,42].

On the side of applications, our result allows one to study confluence for
SMTs. One simple consequence of Theorem 19 and of our previous work in [4]
is that, for all those SMTs including a special Frobenius structure — which are
already commonplace in computer science [1,6,7,10,11,15,16,23,47] — local con-
fluence can be checked by means of critical pair analysis. Moreover, when ter-
mination is guaranteed, confluence can be decided automatically (Corollary 28).
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An analogous result (Corollary 41) holds for those SMTs that do not include a
special Frobenius structure, but whose set of rules satisfies the left-connected
conditions. Hence it applies to a variety of other non-Frobenius theories, such
as those in [21,26,35]. In both cases, these decision procedures are amenable to
implementation in string diagram rewriting tools like Quantomatic [32] (via an
encoding of hypergraphs) or directly in hypergraph-based rewriting tools.
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Abstract. We define a correctness criterion, called robustness against
concurrency, for a class of event-driven asynchronous programs that are
at the basis of modern UI frameworks in Android, iOS, and Javascript.
A program is robust when all possible behaviors admitted by the pro-
gram under arbitrary procedure and event interleavings are admitted
even if asynchronous procedures (respectively, events) are assumed to
execute serially, one after the other, accessing shared memory in isola-
tion. We characterize robustness as a conjunction of two correctness cri-
teria: event-serializability (i.e., events can be seen as atomic) and event-
determinism (executions within each event are insensitive to the inter-
leavings between concurrent tasks dynamically spawned by the event).
Then, we provide efficient algorithms for checking these two criteria
based on polynomial reductions to reachability problems in sequential
programs. This result is surprising because it allows to avoid explicit
handling of all concurrent executions in the analysis, which leads to
an important gain in complexity. We demonstrate via case studies on
Android apps that the typical mistakes programmers make are captured
as robustness violations, and that violations can be detected efficiently
using our approach.

1 Introduction

Asynchronous event-driven programming is a widely adopted style for building
responsive and efficient software. It allows programmers to use asynchronous
procedure calls that are stored for later executions, in contrast with synchro-
nous procedure calls that must be executed immediately. Asynchronous calls are
essential for event-driven programming where they correspond to callbacks han-
dling the occurrences of external events. In particular, modern user interface (UT)
frameworks in Android, i0S, and Javascript, are instances of asynchronous event-
driven programming. These frameworks dedicate a distinguished main thread,
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called UI thread, to handling user interface events. Since responsiveness to user
events is a key concern, common practice is to let the Ul thread perform only
short-running work in response to each event, delegating to asynchronous tasks
the more computationally demanding part of the work. These asynchronous tasks
are in general executed in parallel on different background threads, depending
on the computational resources available on the execution platform.

The apparent simplicity of Ul programming models is somewhat deceptive.
The difficulty of writing safe programs given the concurrency of the underlying
execution platform is still all there. A formal programming abstraction that is
simple, yet exposes both the potential benefits and the dangers of the UI frame-
works would go a long way in simplifying the job of programmers. Programs
written against this abstraction would then be insensitive to implementation and
platform changes (e.g., automatic load balancing). Indeed, the choice of parame-
ters such as the number of possible threads running in parallel, the dispatching
policy of pending tasks over these threads, the scheduling policy for execut-
ing shared-memory concurrent tasks, etc., should be transparent to program-
mers, and the semantics of a program should be independent from this choice.
Therefore the conformance to this abstraction (i.e., a program can be soundly
abstracted according it) would be a highly desirable correctness criterion.

The objectives of our work are (1) to provide such a programming abstraction
that leads to a suitable correctness criterion for event-driven shared memory
asynchronous programs, and (2) to provide efficient algorithms for verifying that
a program is correct w.r.t. this criterion.

The programming abstraction we consider compares two semantics, the
multi-thread and the single-thread semantics:

— The multi-thread semantics reflects the concurrency of the actual program:
The main (UI) thread and asynchronous tasks posted to background threads
interact over the shared memory in a concurrent way. No limit on the num-
ber of tasks, no limit on the number of threads, and no restriction on the
dispatching and scheduling policies are assumed.

— The single-thread semantics is a reference model where a program is supposed
to run on a single thread handling user events in a serial manner, one after the
other. Each event is handled by executing its corresponding code including the
created asynchronous tasks until completion. The asynchronous tasks created
by an event handler (and recursively, by its callee) are executed asynchronously
(once the execution of the creator finishes) serially and in the order of their
invocation.

While the multi-thread semantics provides greater performance and responsive-
ness, the single-thread semantics is simpler to apprehend. The inherent non-
determinism due to concurrency and asynchronous task dispatching from the
multi-thread semantics is not present in the context of the single-thread one.
We consider that a desirable property of a program is that its multi-thread
semantics is a refinement of its single-thread semantics in the sense that the sets
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of observable reachable states of the program w.r.t. both semantics are exactly
the same. A program that satisfies this refinement condition is said to be robust
against concurrency (or simply robust). In fact, robustness violations correspond
to “concurrency bugs”, i.e., violations that are due to parallelization of tasks,
and that do not show up when tasks are executed in a serial manner.

Then, let us focus now on the problem of verifying the robustness of a given
program. We show in this paper that, surprisingly, for the class of Ul event-driven
asynchronous programs, this problem can be reduced in linear time to the state
reachability problem in sequential programs. This means that the robustness of
such a concurrent program can be checked in polynomial time on an (instru-
mented) sequential version of the program, without exploring all its concurrent
executions. Let us describe the way we achieve that.

First, we show that robustness against concurrency can be characterized as
the conjunction of event-serializability and event determinism, which are variants
of the classical notions of serializability and determinism, adapted to our context.
Intuitively, since the single-thread semantics defines a unique execution, given a
set of external events (partially ordered w.r.t. some causality relation imposed
by the environment), then (1) the executions of the event handlers must be seri-
alizable (to an order compatible with their causality relation), i.e., the execution
of each event handler and its subtasks can be seen as an atomic transaction, and
(2) the execution of each event handler is deterministic, i.e., it always leads to
the same state, for any possible scheduling of its parallel subtasks.

To search efficiently for event-serializability and event-determinism vio-
lations, we make use of conflict-based approzimations in the style of [27],
called conflict-serializability and conflict-determinism, respectively. Indeed, these
conflict-based criteria do not take into account actual data values, but rather
syntactical dependencies between operations (e.g., writing to the same vari-
able), which makes them stronger, but also “easier” to check, while still accu-
rate enough for catching real bugs, introducing rarely false positives, as our
experiments show. We reduce verifying conflict event-serializability and conflict
event-determinism to detecting cycles in appropriately defined dependency (or
happen-before) relations between concurrent events and asynchronous procedure
invocations, respectively. Our key contribution is that these cycle detections can
be done by reasoning about the computations of sequential programs instead
of concurrent programs, avoiding explicit encodings of (potentially unbounded)
sets of pending tasks and exploring all their possible interleavings. Let us explain
this in more details.

An event handler is conflict-deterministic when all its executions have
conflict-preserving permutations where tasks are executed serially in the same
order as in the single-thread semantics. Scheduling tasks in this order corre-
sponds to the DFS (Depth First Search) traversal of the call-tree of tasks (repre-
senting the relation caller-callee). We show that detecting a conflict-determinism
violation, i.e., an asynchronous execution with no serial DFS counterpart, can
be done by reasoning about an instrumented version of the procedural program



Verifying Robustness of Event-Driven Asynchronous Programs 173

obtained from the code of the event handler by roughly, turning pasynchronous
calls to synchronous ones. This instrumented program simulates borderline
violations, if any, i.e., violations where removing the last action leads to a correct
execution. We show that the amount of auxiliary memory needed to witness such
violations is finite (and small). Moreover, such violations are “almost” asynchro-
nous executions where tasks are scheduled serially according to the DFS traversal
of the call-tree. Such executions can be simulated using synchronous procedure
calls because roughly, the latter are also initiated according to the DF'S traversal
of the call-tree. However, they are interleaved in a different way compared to the
asynchronous calls and the event handler must undergo a syntactic transforma-
tion described in Sect. 6.3.

As for conflict-serializability, a first issue in checking it is that event handlers
may consist of different concurrently-executing tasks. This issue is solved by
assuming that the conflict-determinism check is done a-priori. If this check fails
then the program is not robust and otherwise, checking conflict-serializability can
assume sequential event handlers which are in fact the instrumented procedural
programs used in the conflict-determinism check.

Even assuming sequential event handlers, general results about conflict-
serializability state that this problem is PSPACE-complete for a fixed number of
threads [6,15], and EXPSPACE-complete for an unbounded number of threads
[10] (assuming a fixed data domain and absence of recursive procedure calls).
However, we prove that, in the programming model we consider in this paper,
the problem of checking conflict-serializability is polynomiall This result relies
on two facts: (1) there is only one distinguished thread, the UI thread, for which
the order in which procedure invocations are executed is relevant, and (2) we
assume that each asynchronous task executed in the background (not on the UI
thread) is running on a fresh thread. This assumption is valid since background
threads are not manipulated explicitly by the programmer but by the runtime,
and therefore, we need to consider the situation where concurrency is maximal.

In fact, we show that when events are conflict-deterministic, the problem of
checking conflict-serializability can also be reduced to a reachability problem in
a sequential program. Again, we prove that it is sufficient to focus on a particu-
lar class of (borderline) violations of conflict-serializability. Then, we show that
detecting these violations can be done by reasoning about the executions of a
program where events are executed in a sequential manner, in any order (cho-
sen nondeterministically), and where the tasks generated by each event are exe-
cuted as in the single-thread semantics. For that, we define an instrumentation of
that program that consists in simulating the delaying effects of the multi-thread
semantics, guessing the actions involved in the violation and tracking the depen-
dencies between them in order to check the correctness of the guess (that they
indeed form a cycle). The cycle detection in the case of conflict-serializability is
technically more complex than in the case of conflict-determinism. But still, a
crucial point in the reduction is that we do not need to store the whole cycle
during the search, but it is enough to maintain a fixed number of variables to
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traverse the elements of this cycle. This leads to a polynomial reduction of the
conflict-robustness problem to a reachability problem in a sequential program.

Our reductions hold regardless of the used data domain, for programs with
recursive procedure calls, and unbounded numbers of events and tasks. These
reductions allow to leverage existing analysis tools for sequential programs
to check conflict-robustness. When the data domain is bounded, we obtain a
polynomial-time algorithm for checking conflict-robustness for UI event-driven
asynchronous programs (with recursive procedure calls, and unboundedly many
events and tasks).

We validate our approach on a set of real-life applications, showing that with
few exceptions all detected robustness violations are undesirable behaviours.
Interestingly, the use of conflict versions of the correctness criteria characterizing
robustness is efficient and quite accurate, producing only few false positives (that
can be eliminated easily).

Finally, let us mention that our work also leads to an efficient approach
for verifying functional correctness of Ul event-driven asynchronous programs
that consists in reducing this problem to two separate problems: (1) showing
that the program is functionally correct w.r.t the single-thread semantics, and
(2) showing that it is robust against concurrency. Both of these problems can
indeed be solved efficiently by considering only particular types of computations
that are captured by sequential programs.

To summarize, our contributions are:

— Introduction of the notion of robustness against concurrency that pro-
vides a programming abstraction for event-driven asynchronous programs,
and its characterization as the conjunction of event-serializability and
event-determinism.

— Efficient algorithms for checking robustness based on reductions from conflict
event-serializability and conflict event-determinism to state reachability prob-
lems in sequential programs. Decidability and complexity results for verifying
robustness in the case of finite data domains.

— Experimentations showing the relevance of our correctness criteria and the
efficiency of our approach.

2 DMotivating Examples

We demonstrate the relevance of robustness using several excerpts from Android
applications. To argue that robustness is not too strong as a requirement, we
discuss two concurrency bugs reported in open-source repositories that are also
robustness violations, more precisely, event-serializability and event-determinism
violations. We also provide a typical example of a robust program.
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2.1 A Violation to Event Serializability

ActionEditText msgTxt;
boolean onKey (...) {
// actions on UI thread
new SendTask ().execute ();

}

void onDoubleClicked (String name) {
text += "_" + name;
msgTxt.setText (text);

}

class SendTask extends AsyncTask {
void onPreExecute () {
e.command = msgTxt.getText ();
}
void doInBackground(..) {
write msgTxt.getText () into JSON obj
/% corrected version:
write e.command into JSON obj */
}
}

Fig.1. A program with an event-
serializability violation.

Figurel lists a real code excerpt from
the Android IrcCloud app [2] for chatting
on the IRC. Under the concrete multi-
thread semantics, the user event of press-
ing the “send” key is handled by the pro-
cedure onKey. Actions associated with this
event handler include actions performed
by onkKey on the main (UI) thread, actions
performed by SendTask.onPreExecute()
on the UI thread before the actions per-
formed asynchronously on a background
thread by SendTasks’s doInBackground
procedure. Another event handler in
this example is onDoubleClicked, which
appends to the message text the name
name of the user whose name is clicked on.
The multi-thread semantics allows inter-

ference between the two event handlers,
onDoubleClicked can interleave with doInBackground. In contrast, the single-
thread semantics allows no such interference. The event handlers and the asyn-
chronous tasks they create are executed entirely on the Ul thread, and all the
tasks created by onKey are executed before any other event handler invocation.
This program is not robust and a violation can be generated under
the following scenario. Suppose that the user types “Hello”, presses “send”,
and then double-clicks on another TRC wuser’s name. Under the multi-
thread semantics, onDoubleClicked may start running on the UI thread while
SendTask.doInBackground is in progress. These two procedures’ accesses can inter-
fere with each other. In particular, the ordering of msgTxt.getText () with respect
to the appending of name to msgTxt determines whether “Hello” or “Hello foo”
gets sent on the network. Moreover, since onKey first records msg.getText() to a
field e.command, an execution of these two events can end in a program state in
which e.command contains “Hello” while msgTxt contains “Hello foo”. This end
state is not possible with any execution of these two event handlers under the
single-thread semantics, where the event handlers are executed serially one after
the other. This is a violation to event serializability. Actually, this behavior was
reported as a bug, and the code was updated [1] so that e.command (instead of
msgTxt, which may have changed) is written into a JSON object and sent on
the network. It was the designers’ intent for the entire event handling code for
the “send” key to appear atomic. With this modification the program becomes
robust.
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2.2 A Violation to Event Determinism

void iconPackUpdated () { Figure2 lists an event handler called
new Thread( new Runnable () { . .
void run() { iconPackUpdated which creates an asyn-
SO ropRowAdanter () chronous task (the first runnable to be exe-
mAdapter=new AppRowAdapter (..); N
b} ). start () cuted by the created thread) to initial-
new Handler ().postDelayed ( ize the mAdapter object. Then it creates
new Runnable () {
void run() | another task, to be run by the UI thread,
3 that uses mAdapter to update the list view
if (setAdapter) . .
listView.setAdapter (madapter); Of displayed icons. In an effort to ensure
that the second task runs after the first task

mAdapter.notifyDataSetChanged ();
} ), 1000); completes, the programmer posts the sec-

’ ond task after a second’s delay.

Under the concrete multi-thread seman-
tics, it is possible for the first task not to
complete even after a second. In this case,
the second runnable code will produce a
null pointer exception, while in other schedules, the code works as intended.
Although the programmer had intended a deterministic outcome there are exe-
cutions with different outcomes, including errors. Therefore, this event handler
is not event-deterministic, and not robust.

Fig.2. A program with an event-
determinism violation.

2.3 A Robust Program

The program in Fig.3 has two event handlers searchForNews and showDetail
which can be invoked by the user to search for news containing a keyword and
to display the details of a selected news respectively.

The procedure searchForNews creates two AsyncTask objects SearchTask and
SaveTask whose execute method will invoke asynchronously doInBackground fol-
lowed by onPostExecute, in the case of the former. Under the multi-thread seman-
tics, doInBackground is invoked on a new thread and onPostExecute is invoked

// Event 1 class SearchTask extends AsyncTask {
void searchForNews (String key) { List result = null;

new SearchTask.execute (key); void doInBackground (String key) {

new SaveTask.execute (key); } result =

// get from the network

// Event 2 }
void showDetail (int id) { void onPostExecute () {

// show detail of the idth news list = result;

new DownloadTask.execute (id); } // display the list of titles } }
class SaveTask extends AsyncTask { class DownloadTask extends AsyncTask {

void doInBackground (String key) { String content = null;

// write key to the database } } void doInBackground (int id) {

content = ... // get from the network
}
void onPostExecute () {

// display the content } }

Fig. 3. A robust program.
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on the main thread. When the user input to search for news is triggered, the
invocation doInBackground of searchTask connects to the network, searches for
the keyword and fetches the list of resulting news titles. Then, the invocation
onPostExecute displays the list of titles to the user. SaveTask saves the keyword
to a database representing the search history in the background. The back-
ground tasks SearchTask.doInBackground and SaveTask.doInBackground might
interfere but any interleaving produces the same result, i.e., searchForNews is
deterministic.

The second event, to show the details of a title, can be triggered once the list
of titles are displayed on the screen. It invokes an asynchronous task to download
the contents of the news in the background and then displays it. In this case,
the tasks are executed in a fixed order and the event is trivially deterministic.

Concerning serializability, the invocation of SaveTask in the first event and the
second event might interleave (under the concrete semantics). However, assum-
ing that the second event is triggered once the results are displayed, any such
interleaving results in the same state as a serial execution of these events.

3 Programs

In order to give a generic definition of robustness, which doesn’t depend on any
particular asynchronous-programming platform or syntax, we frame our discus-
sion around the abstract notion of programs defined in Sect. 3.1. Two alternative
multi-thread and single-thread semantics to programs are given in Sects. 3.2 and
3.3. We consider programs that are data-deterministic, in the sense that the
evaluation of every (Boolean) expression is uniquely determined by the variable
valuation.

3.1 Asynchronous Event-Driven Programs

We define an event handler as a procedure which is invoked in response to a user
or a system input. For simplicity, we assume that inputs can arrive in any order.
Event handlers may have some asynchronous invocations of other procedures, to
be executed later on the same thread or on a background thread.

We fix sets G and L of global and local program states. Local states ¢ € L
represent the code and data of an asynchronous procedure or event-handler
invocation, including the code and data of all nested synchronous procedure
calls. A program is defined as a mapping between pairs of global and local states
which gives the semantics of each statement in the code of a procedure (the
association between threads, local states, and procedure invocations is defined in
Sects. 3.2 and 3.3). To formalize the conflict-based approximation of robustness,
this mapping associates with each statement a label called program action that
records the set of variables read or written and the asynchronous invocations in
that statement. An event set E C L is a set of local states; each e € F represents
the code and data for a single event handler invocation (called event for short).
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x:=y y:=x assumey call p(y) async[w]p(y) return

Fig.4. A canonical program syntax. The metavariables x and y range over global
and local variable names, respectively, p ranges over procedure names, and w over the
symbols “main” and “any”.

Formally, let X = {rd(z),wr(z):z € ...} be the set of memory accesses,
W = {main, any} the set of invocation places, and B = {invoke(¢,w) : ¢ € L,
w € W}lU{return}UX U{e} the set of program actions, where ¢ represents irrel-
evant program actions. The rd(z) and wr(z) represent read and write accesses
to variable x; invoke({, w) represents an asynchronous invocation whose initial
local state is ¢; the invocation is to be run on a distinguished main thread when
w = main, and on an arbitrary thread when w = any. Finally, the return pro-
gram action represents the return from an asynchronous procedure invocation.

A program P : G x L — G x L x B maps global states g € G and local
states £ € L to new states and program actions; each P(g,¢) represents a single
program transition. We assume that when b is an asynchronous invocation or
return program action and P(g,¢) = (¢/,-,b) then g = ¢'.

Canonical Program Syntax. Supposing that the global states g € G are maps
from program variables x to values g(x), and that local states £ € L map program
variables y to values ¢(y) and a program counter variable pc to program state-
ments £(pc), we give an interpretation to the canonical program syntax listed in
Fig. 4. We assume atomicity of the statements at the bytecode level. For simplic-
ity, we omit the interpretation of synchronous procedure calls call p(y) which
is defined as usual. For instance, writing £ to denote £[pc — £(pc)-+1], then

P(g,0) is

— {glz—L(y)], £, wr(z)) when £(pc) is a global-variable write z := y,
- <g,€+ [y—g(x)],rd(x)) when ¢(pc) is a global-variable read y := =z,
— (g,£",rd(y)) when £(pc) is assume(y) and ¢(y) # 0,
- <g,€ €> when {¢(pc) is assume (y) and £(y) = 0,
— {g,£* invoke(¢',w)) when ¢(pc) is an asynchronous invocation async|w] p(y),

where ¢ maps the parameters of procedure p to the invocation arguments y
and pc to the initial statement of p, and
— (g, ¢,return) when ¢(pc) is the return statement.

The semantics of other statements, including if-then-else conditionals, while
loops, or goto statements, etc. (we assume that Boolean conditions use only local
variables), is standard, and yield the empty program action e.

An event is called sequential when its code doesn’t contain asynchronous
invocations async|w] p(y). Also, a program P with event set F is called sequential
when every event e € E is sequential. Otherwise, P is called concurrent.

3.2 Multi-thread Asynchronous Semantics

Our multi-thread semantics maximizes the set of possible program behaviors
by allowing events to interleave and interfere with each other. It dispatches the
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event handlers serially on the main thread but allows the asynchronous proce-
dure invocations to execute on separate threads, not necessarily in invocation
order. Configurations of the multi-thread semantics thus maintain sets of run-
ning procedure invocations as well as an unordered queue of pending invocations,
and invocations are associated with events and threads.

To characterize executions by the event-serializability and event-determinism
criteria, we expose the following set A of actions in execution traces:

A ={start(j),end(j) : j € N} U X U {invoke(7), begin(¢), return(i) : ¢ € N}

By convention, we denote asynchronous procedure invocation, event, and thread
identifiers, respectively, with the symbols i, j, k. The start(j) and end(j) actions
represent the start and end of event j; the invoke(i), begin(i), and return(s)
actions represent an asynchronous procedure invocation (when it is added to
the queue of pending invocations), the start of i’s execution (when it is removed
from the queue), and return of 4, respectively. The set X of memory accesses is
defined as in the program actions of Sect. 3.1.

A task w = (¢,i,j,k) is a local state £ € L along with invocation, event and
thread identifiers 4, j, k € N, and U denotes the set of tasks. We write invoc(u),
event(u), and thread(u) to refer to i, j, and k, respectively. A configuration
¢ = (g,t,q) is a global state g € G along with sets ¢, ¢ C U of running and waiting
tasks such that: (1) invocation identifiers are unique, i.e., invoc(uy) # invoc(usz)
for all uy # ug € tUq, and (2) threads run one task at a time, i.e., thread(u;) #
thread(us) for all uy # us € t. The set of configurations is denoted by C,,. We say
that a thread k is idle in ¢ when k ¢ {thread(u) : u € t}, and that an identifier
1,7,k is fresh when i,5,k & {a(u):u € (tUq)} for a € {invoc, event, thread},
respectively. A configuration is idle when all threads are idle.

The transition function — in Fig.5 is determined by a program P and event
set E, and maps a configuration ¢; € C,, and thread identifier £ € N to another
configuration ¢o € C,, and label A = (i,j,a) where i and j are invocation
and event identifiers, and ¢ € A is an action—we write invoc()), event(\),
and act(A) to refer to 4, 7, and a, respectively. EVENT transitions mark the
beginnings of events. We assume that all events are initiated on thread 0, which
is also referred to as the main thread. Also, for simplicity, we assume that events

ASYNC
EVENT P(g. 1) = (.0 invoke(ba,w))  up = (la,id, ko)
ecE i, j are fresh ip is fresh ky is 0 if w = main or fresh otherwise
gutg 2 0 Ui 0} UL g S o g
DISPATCH RETURN
u=({,i,jk) kis idle P(g,0) = (-, return) Jj € {event(u) :ucrUq}
81,qU{u} Llojbegn@®), g1U{u},q g tU{(L.i.j.k)}g Llojretm@®), &0
END EVENT LOCAL
P(g.0) = (-, return) Jj & {event(u) :uecrUq} P(g,0)=(g' .0 ,a) a € {&e,rd(x),wr(x)}

@t U{(L Ky} g RPN KEIADD, oy g g S (g

Fig. 5. The multi-thread transition function — for a program P with event set F.
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can be initiated arbitrarily at any time. Adding causality constraints between
events, e.g., one event can be initiated only when a certain action has been
executed, is possible but tedious. ASYNC transitions create pending asynchronous
invocations, DISPATCH transitions begin the execution of pending invocations,
and RETURN transitions signal their end (the condition in the right ensures that
this is not a return from an event). END EVENT transitions mark the end of an
event and by an abuse of notation, they map ¢; and k to a configuration c; and
two labels, return(i) denoting the end of the asynchronous invocation and end(j)
denoting the end of the event. All other transitions are LOCAL.

An ezecution of a program P under the multi-thread semantics with event

set E to configuration ¢, is a configuration sequence cycy...c, such that

Em Am . . .
Cm Smrmil, C¢m+1 for 0 < m < n. We say that ¢,, is reachable in P with E

under the multi-thread semantics, and we call the sequence A; ...\, the trace
of cocy ... ¢n. The reachable states of P with E, denoted R,,(P,E), is the set
of global states in reachable idle configurations. The set of traces of P with F
under the multi-thread semantics is denoted by [P, E ]|, We may omit P when
it is understood from the context, and write [E |, instead of [P, E ],.

The call tree of a trace T is a ranked tree CallTree. = (V, E,O) where V are
the invocation identifiers in t, and the set of edges E contains an edge from 4
to io whenever iy is invoked by 41, i.e., T contains a label (i1, -, invoke(is)). The
function O : E — N labels each edge (i1,i2) with an integer n whenever iz is
the nth invocation made by i1, i.e., (i1, -, invoke(iz)) is the nth label of the form
(i1, -, invoke(-)) occurring in t (reading T from left to right).

3.3 Single-Thread Asynchronous Semantics

Conversely to the multi-thread semantics of Sect. 3.2, our single-thread seman-
tics minimizes the set of possible program behaviors by executing all events
and asynchronous invocations on the main thread, the asynchronous procedure
invocations being executed in a fized order.

We explain the order in which asynchronous invocations are executed using
the event handler searchForNews in Fig.3. This event handler is supposed to
add the keyword to the search history only after the fetching of the news con-
taining that keyword succeeds. This expectation corresponds to executing the
asynchronous procedures according to the DFS traversal of the call tree. In gen-
eral, this traversal is relevant because it preserves causality constraints which are
imprinted in the structure of the code, like in the case of standard synchronous
procedure calls. The DFS traversal of the call tree also has a technical advantage
as it corresponds with the call stack semantics of synchronous procedure calls.
Note however that this semantics is not equivalent to interpreting asynchronous
invocations as synchronous, since the caller finishes before the callee starts. In
the formalization of this semantics, the DFS traversal is modeled using a stack
of FIFO queues for storing the pending invocations.

The formalization of the single-thread semantics reuses the notions of task
and label in Sect.3.2. Let Uy be the set of tasks u = ({,4,7,0) executing on
thread 0. We overload the term configuration which in this context is a tuple
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Fig. 6. The single-thread transition function = for a program P with events E (¢ and
() are the empty sequence and tuple, resp.,). Also, f and f’ are tuples, and § is obtained
by popping a queue from ¢ if this queue is empty, or § = ¢, otherwise.

¢ = (g,u,q) where g € G, u € (UpU{L}) is a possibly-empty task placeholder (at
most one task is running at any moment), and ¢ € (Tuples(Up))* is a sequence of
tuples of tasks (a tuple, resp., a sequence, denotes a FIFO queue, resp., a stack).
Cs is the set of configurations of the single-thread semantics. We call ¢ € C; idle
ifu=_1.

The transition function = in Fig.6 is essentially a restriction of — where
all the procedures run on the main thread, an event begins when there are no
pending invocations, and the rules ASYNC and DISPATCH use a stack of FIFO
queues for storing pending invocations. The effect of pushing/popping a queue
to the stack or enqueuing/dequeueing a task to a queue is represented using
the concatenation operation -, resp.,o, for sequences, resp., tuples. Every task
created by ASYNC is posted to the main thread and it is enqueued in the queue
on the top of the stack ¢q. DISPATCH dequeues a pending task from the queue f
on the top of g, and pushes a new empty queue to ¢ (for storing the tasks created
during the newly started invocation) if f doesn’t become empty. Moreover, the
rules RETURN and END EVENT pop the queue on the top of ¢ if it is empty.

An execution of a program P under the single-thread semantics with event set

. . 0, 41
E to configuration ¢, is a sequence cycy . . . ¢, 8.t. ¢y =———= 41 for 0 <m < n.

We say that ¢, is reachable in P with E under the single-thread semantics,
and we call the sequence ;...\, the trace of cocy . ..c,. The reachable states
of P with E, denoted Rs(P,FE), is the set of global states reachable in idle
configurations.

The set of traces of P with E under the single-thread semantics is denoted
by [P, E]s (P may be omitted when it is understood from the context).

4 Robustness of Asynchronous Programs

Our robustness criterion is defined as the equality of the single-thread and
multi-thread semantics of a program, and decomposed into two independently-
checkable criteria, event serializability and event determinism.
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Given a program P with event set F, each execution under the single-thread
semantics can be simulated by an execution under the multi-thread semantics:
the latter corresponds to a special scheduling policy that consists in executing
all tasks created by an event before starting executing tasks corresponding to
another event, and moreover, tasks are executed atomically, in the order given by
the DFS traversal of the call tree. This implies that the multi-thread semantics is
a relaxation of the single-thread semantics, and therefore, Rs(P, E) C R,,(P, E).
The reverse direction is the most interesting one:

Definition 1 (Robustness). A program P with events E is robust against con-
currency (or simply robust) when all reachable states in the multi-thread seman-
tics are also reachable in the single-thread semantics: R, (P, E) C Ry(P, E).

Robustness means that for the considered program, the concurrency intro-
duced by the multi-thread semantics does not modify the set of observable states,
ie,, Rpn(P, E) = Rs(P, E). We introduce in the following two correctness criteria
that capture precisely the notion of robustness.

We say an execution with trace \j - -+ A\, is event-serial when for all ny < ngs,
if act(Ay,) = start(j) and act(A,,) = start(j’), then there is no such that ny <
ng < nz and act(A,,) = end(j).

Definition 2 (Event-serializability). A program P with events E is event-
serializable if every global state in R, (P, E) can be reached by an event-serial
execution’t.

Given an event e, an e-ezecution starting from global state gy is a go-initialized
execution (according to the multi-thread semantics) with trace A;--- A, such
that (1) act(A1) = start(j), (2) act(\,) = end(j), for some j, and (3) for every
m € N such that 1 < m < n, act()\,,) is neither a start nor an end action.
Intuitively, we consider executions of individual events, from their starting point
until the completion of all the tasks they have created. Then, let R,, (P, go,e€)
be the set of global states in final configurations of e-executions starting from
go- Notice that e-executions from gg differ by the scheduling order of the tasks
created by e that are running in parallel on different threads.

Definition 3 (Event-determinism). An event e of a program P is determin-
istic if for every global state go, the set R, (P,go,e) is a singleton or empty.
A program P with events E is event-deterministic, if every e € FE is
deterministic.

Notice that our notion of determinism is defined for events that are running
alone, without interference of other events.

Theorem 1. A program is robust against asynchrony if and only if it is event-
serializable and event-deterministic.

! For simplicity, we have ignored the set of events which are executed when comparing
global state reached by aribitrary and event-serial executions, resp. Reaching a global
state using the same set of events is easy to formalize but tedious.
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5 Conflict Robustness

Following an idea introduced in the context of database transactions [27],
we define a syntactic, conservative notion of conflict robustness that is the
conjunction of two properties: conflict-event serializability and conflict-event
determinism.

5.1 Conflict-Event Serializability

Let <C A x A be a conflict relation that relates any two actions a,a’ accessing
the same variable, i.e., a,a’ € {rd(z),wr(z)} for some x, one of them being a
write. A trace is conflict-event serializable iff the “conflict-event graph” which
tracks the conflict relation between concurrent events is acyclic.

Formally, the conflict-event graph of a trace t is the directed graph FvG. =
(V, E) whose nodes V are the event identifiers of t, and which contains an edge
from j; to jo when T contains a pair of labels A\; and Ao such that A; occurs
before Ag, act(A1) < act(Az2), event(A1) = j1, and event(Ag) = ja.

Definition 4. A trace T is called conflict-event serializable when FEvG- is
acyclic. A program P with event set E is conflict-event serializable iff every
trace in [P, E|m is conflict serializable.

A permutation v’ of a trace T is conflict-preserving when every pair A1, Ay of
labels in T appear in the same order in v whenever act(\;) < act(Az2). Note that
a conflict-preserving permutation v’ leads to the same global state as the original
trace t. From now on, whenever we use permutation we mean conflict-preserving
permutation. A trace T is conflict-event serializable iff it is a conflict-preserving
permutation of an event-serial trace.

Theorem 2. A program P with event set E is event-serializable when it is
conflict-event serializable.

5.2 Conflict Determinism

We define conflict determinism, which is also based on the acyclicity of a certain
class of “conflict graphs”, called conflict-invocation graphs. These graphs repre-
sent the conflicts between the asynchronous invocations, but also the order in
which these invocations would be executed under the single-thread semantics,
i.e., the DFS traversal of the call tree. If the conflict-invocation graph of every
trace T of an event e is acyclic, then e is deterministic because every trace T is a
conflict-preserving permutation of the trace ty corresponding to the single-thread
semantics, and thus leads to the same global state as #.

Given a trace T, let <4f; be the total order between the invocation identifiers
in t defined by the DFS traversal of CallTree;. The conflict-invocation graph
of a trace t is the directed graph InvG(t) = (V,E) whose nodes V are the
asynchronous invocation identifiers in t, and which contains an edge from i; to
o when i1 <gps 42, or T contains a pair of labels A; and A of 41 and iz, resp.,
such that act(\1) < act(A2) and Ay occurs before As.
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Definition 5. A trace T is DFS-serial iff InvG(t) is acyclic. An event e is
conflict-deterministic iff every trace in[e]n is DFS-serial.

A trace Tt is called invocation-serial iff for every three labels A1, Ao, A3 occur-
ring in T in this order, if invoc(A\1) = invoc(A3), then invoc(A1) = invoc(Az). For
an event e, a DFS-serial trace t in [e ], is a permutation of an invocation-serial
trace 1y € [e ], where invoc(A1) <g4f invoc(Ag) for every two labels A; and Ao
occurring in this order in tg.

Theorem 3. An event is deterministic when it is conflict-deterministic.

6 Checking Conflict Determinism

We reduce the problem of checking conflict determinism of an event to a reach-
ability problem in a sequential program. We present the reduction in two steps.
First, conflict determinism of an event interpreted under the multi-thread seman-
tics, whose asynchronous invocations run concurrently, is reduced to a reacha-
bility problem in a program running on the single-thread semantics, where asyn-
chronous invocations are executed serially (Sects. 6.1 and 6.2). The latter is then
reduced to a reachability problem in a sequential program (Sect. 6.3).

This reduction uses the fact that a certain class of conflict determinism viola-
tions can be simulated by a sequential program up to conflict-preserving permu-
tations of actions (note that any conflict-preserving permutation of a violation is
also a violation). This class of violations called borderline violations are minimal
in the sense that removing the last action leads to a correct trace. Besides the
simulation, we show that fixed-size additional memory is required to witness the
conflicts inducing a cycle in the conflict invocation graph.

Definition 6 (Borderline Conflict Determinism Violation). A trace t is
a borderline violation to conflict determinism if it is not DFS-serial but every
strict prefix of T is DFS-serial.

For instance, the trace t; given in Fig.7(a) contains a borderline violation.
This trace is generated by an event e that invokes two procedures p and g
in this order, each procedure on a different thread. The only conflict between
memory accesses is that between the wr(z) actions in g and resp., p. The conflict-
invocation graph of t; contains a cycle between the invocations of p and ¢: the
edge from the invocation of p to that of ¢ is implied by the fact that p is invoked
before ¢ within the same procedure (we have “p <47 ¢”), and the edge in the
other direction exists because ¢ writes to the variable x before p does. The trace
7, until after the second wr(z) is a borderline violation since its maximal strict
prefix (without the second wr(z)) is DFS-serial. The last label of a borderline
violation T, in this example wr(x), is called the pivot of t. The label of T which
precedes and conflicts with its pivot and which induces the cycle in its conflict-
invocation graph is called the root of t. Formally, if 71 is the invocation containing
the pivot of T, the root of T is an action conflicting with the pivot and which is
included in an invocation 45 such that i; <gfs i2. For the trace in Fig. 7(a), the
root is the action wr(z) in the invocation of q.
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Fig. 7. Simulating borderline conflict determinism violations on the single-thread
semantics. The event e makes two fresh thread asynchronous invocations to p and
q in this order. Boxes represent sequences of trace labels ordered from top to bottom.
Actions of the same thread are aligned vertically. The arrows represents transition label
conflicts. For readability, we omit the event and task identifiers in the trace labels and
keep only the memory accesses. The grey blocks labeled by delay, resp., skip, denote
sequences of actions that are delayed, resp., skipped.

6.1 Simulating Borderline Violations

We define a code-to-code translation from an event e to an event detStr™ (e) which
simulates? permutations of every DFS-serial or borderline violation trace in [e ] .
The event detStr™ (e) uses additional non-deterministically enabled statements to
simulate the particular interleavings present in those traces. The instrumentation
required to witness violations is introduced in Sect. 6.2.

Overview. We give an informal description of the translation using as examples
the traces pictured in Fig. 7.

Delaying the Pivot. We first explain the simulation of the invocation that con-
tains the pivot, which may interfere with invocations that are supposed to be

2 We refer to the standard notion of (stuttering) simulation where (sequences of)
transitions in detStr~(e) are mapped to transitions of e.
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executed later under the single-thread semantics. For the borderline violation in
Fig.7(a), the invocation of p that contains the pivot wr(x) destroys the value
written to x by ¢, an invocation which is executed after p under the single-thread
semantics.

The maximal strict prefix (ending before the second wr(z)) is DFS-serial
and can be reordered to a trace where the order between transition labels is
consistent with the invocation order (i.e., e before p and before ¢). Figure 7(b)
pictures such a reordering, denoted by t}. Our goal is to show that the trace T}
can be simulated by an execution under the single-thread semantics of a slightly
modified version of e. First note that t} is not admitted by the single-thread
semantics of e because the invocation of p is only partially included in this prefix.
And the single-thread semantics executes every task until completion. However,
it is possible to “delay” the execution of the pivot wr(x) in p until ¢ finishes,
even under the single-thread semantics, by adding a suitable set of auxiliary
variables to e. This mechanism is pictured in Fig. 7(c). Every statement in the
procedure p is guarded by (the negation of) an auxiliary Boolean flag skip which
can be non-deterministically flipped to true in order to skip over statements.
Moreover, an auxiliary global variable pivotLabel will record the next control
flow label £ when this flag is set to true. Then, extending the invocation of ¢ with
goto pivotLabel allows to resume the invocation of p and execute the pivot. To
simulate every borderline violation, the goto statement is non-deterministically
enabled in every invocation.

Incomplete Invocations. While the violation in Fig. 7(a) includes only one incom-
plete invocation (the one containing the pivot) this is not always the case.
A borderline violation may contain unboundedly-many other incomplete invo-
cations. For instance, the violation in Fig. 7(d) includes incomplete invocations
of e and ¢ (they finish after the pivot). Should the simulation of this borderline
violation execute e and ¢ entirely, the pivot may never be enabled. The correct
simulation, pictured in Fig. 7(e), will make use of the same mechanism based on
the Boolean flag skip in order to skip over statements in e and ¢. In general,
an invocation can be skipped in its entirety. This simulation also shows that the
goto statement can be executed after an incomplete invocation.

Main Thread Invocations. The last issue concerns the main thread which has the
particularity of being able to execute more than one invocation (all the other
threads execute a single invocation). It executes invocations serially and only
the last one may be incomplete. For instance, consider the DFS-serial trace t3
pictured in Fig. 7(f). This is the trace of an event e that invokes p1, ¢, p2, and
ps, in this order, and except ¢ all the tasks are assigned to the main thread.
Since p; is invoked before ps, a DFS-serial permutation t4 of t3 contains the
incomplete invocation of p; before the complete invocation of p3, as shown in
Fig.7(g). None of the semantics we defined allows such traces. The problem is
that both invocations are executed by the main thread which has to complete a
task before executing another one. Our simulation will however admit such traces
but it will verify that they are conflict-preserving permutations of valid traces.
This verification procedure (included in the definition of detStr™ (e)) checks that
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the conflict invocation graph doesn’t contain a path of memory conflicts, i.e.,
conflicts induced by read and write accesses, from the incomplete invocation
on the main thread to any future complete invocation on the same thread. Let
us consider again the trace t3 in Fig. 7(f). Since t3 is DFS-serial, its conflict
invocation graph doesn’t contain paths of memory conflicts from p3 to any other
invocation ordered before p3 in the DFS traversal of the call tree. This includes
the incomplete invocation p; and ¢. For the permutation tj, this implies that its
conflict invocation graph contains no paths of memory conflicts from p; to ps.
When a trace satisfies this condition, i.e., an incomplete invocation on the main
thread doesn’t conflict with a future complete invocation on the same thread,
all the complete invocations on the main thread can be reordered before the
incomplete one (preserving the order between conflicting trace labels) and this
results in a valid trace (under the multi-thread semantics). The simulation of
14 on the single-thread semantics, pictured in Fig. 7(g), enables this verification
procedure during the invocation of p; because it is executed on the main thread
and it skips over statements. It is also possible that other invocations on the
main thread, e.g., ps, are skipped entirely.

Notations. We introduce several notations used in the definition of detStr™ (e).
This event is obtained by rewriting every statement s of a procedure transitively
invoked by e to a code fragment s1;if(c) then s; sy where s; and so are state-
ments and c is a Boolean expression. We use before(s), guard(s), and after(s)
to refer to s1, ¢, and s, respectively. For every statement s, ¢(s) denotes the
control flow label of s, that can be used for instance in goto statements. Also,
rdSet(s), resp., wrSet(s), is the set of global variables read, resp., written, by s.
We have wrSet(s) = {z} and rdSet(s) = ) when s is x := y, and wrSet(s) =0
and rdSet(s) = {x} when s is y := z. Otherwise, rdSet(s) = wrSet(s) = 0.

We assume that every procedure p is augmented with two local variables
rdSetProc and wrSetProc tracking the global variables read and written by p,
respectively (rdSet(s) and wrSet(s) are added to rdSetProc and wrSetProc,
respectively, after every statement s that gets executed).

The instrumentation uses the non-deterministic choice denoted by x* (for-
mally, * is a distinguished Boolean variable that evaluates non-deterministically
to true or false). To refer to the different non-deterministic choices in the
instrumentation, we may index them with natural numbers.

To reduce clutter in the instrumentation, we use [s],,(b) to denote a state-
ment s that is executed at most once during the execution of the event and the
Boolean variable b is set to true when s gets executed.

For an event e, let P(e) be the set of the procedures possibly invoked by
e, which is defined inductively by: (1) e € P(e) and (2) for every p € P(e),
if async[w] q(y) occurs syntactically in the code of e, then ¢ € P(e). Also, let
Po(e) be the subset of P(e) consisting of procedures posted to the main thread,
i.e., in the previous inductive definition, we take w = main. W.l.o.g. we assume
that the procedures in Py(e) are distinct from the procedures ¢ contained in
asynchronous invocations “asynclany] ¢(...)” executed on other threads.

All the Boolean variables added by the instrumentation are initially false.
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Defining the Instrumentation

Dealing with Fresh Thread Invocations. To simulate incomplete invocations exe-
cuted by threads other than the main thread, every procedure in P(e) \ Py(e) is
augmented with a Boolean flag skip that is non-deterministically set to true.
Once skip is set to true, the rest of statements are skipped and the first skipped
statement may be chosen as the pivot and its label stored in pivotLabel. The
pivot may get executed non-deterministically at a later time.

The program instrumentation to simulate borderline violations is given in
Fig.8a. For every statement s of procedure p € P(e) \ Py(e), guard(s) and
before(s) are defined respectively at lines 1 and 4 where skip is a local variable
and pivotLabel is a global variable.

Dealing with Main Thread Invocations. For procedures in Py(e), the instrumen-
tation ensures that at most one invocation of such a procedure is incomplete,
and also, that the invocation graph contains no path of memory conflicts from
such an incomplete invocation to any future complete invocation of a procedure
in Py(e). Such paths of memory conflicts may cross invocations of procedures
which are not in Py(e), therefore the instrumentation of the latter must also be
modified.

To simulate an incomplete invocation on the main thread, for every statement
s of a procedure p € Py(e), before(s) is defined as in line 15 in Fig. 8a where
skip is a Boolean local variable. As for invocations executed on other threads,
the first skipped statement may be chosen as the pivot. To be able to track

1/ guard(s) for p € P(e)\ Bo(e): 22 // at the beginning of each p € P(e):
2 !skip 23 if( %6 ) then skipProc := true
3 24  validMain:= false
4 // before(s) for p € P(e)\ By(e): 25
5 if( !skip & *; ) then 26 // after(s) for p € P(e), after(s):
6 skip := true 27  if( skipMainSet & (rdSetGlobalNwrSetProc # 0
7 if ( %, ) then 28 | wrSetGlobal NrdSetProc # 0
8 [pivotLabel := {(s)],, (pivotSet) 29 | wrSetGlobal NwrSetProc # 0
9 if( skip&pivotSet & x3) then 30 | conflictDetected) ) then
10 [goto pivotLabel], (gotoDone) 31 rdSetGlobal := rdSetGlobal UrdSetProc
11 32 wrSetGlobal := wrSetGlobal UwrSetProc
12 // guard(s) for p € Py(e): 33 conflictDetected := true
13 !skipProc & ! skip 34
14 35  // at the end of each p € P(e):
15 // before(s) for p € P(e): 36  if( skipMainSet & ! skipProc & ! skip ) then
16 if ( *4 ) then 37 assume ! conflictDetected
17 [skip := true],,(skipMainSet) 38 validMain :=true
18 rdSetGlobal := rdSetProc 39 if( pivotSet & %7 ) then
19 wrSetGlobal := wrSetProc 40 [goto pivotLabel],, (gotoDone)
20 if ( *5 ) then
21 [pivotLabel := /(s)],, (pivotSet)
(a) Simulating Borderline Violations
41 // added to before(s): 44 // added to after(s):
42  if (!skip&pivotSet &) then 45  if (conflict(pivotLabel, rootLabel) & pivotLabel == /(s)
43 [rootLabel := {(s)],, (rootSet) 46 & gotoDone & rootSet ) then error := true;

(b) Witnessing Borderline Violations

Fig. 8. Instrumentation for checking conflict-determinism.
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paths of memory conflicts, the variables read and written during the incomplete
invocation are stored in the global variables rdSetGlobal and wrSetGlobal,
respectively. For invocations of procedures p € Py(e), skip can be set to true
at most once during the execution of the event.

Other tasks posted to the main thread can be skipped entirely or executed
completely, by setting a local flag skipProc. When they are executed completely,
a global Boolean flag validMain is used to witness that they are not the des-
tination of a path of memory conflicts as explained above. At the beginning of
each procedure, validMain is reset to false as shown at line 22. Then, guard(s)
of every statement s of a procedure p € Py(e) checks for skipProc as in line 13.

Once an incomplete invocation on the main thread is present, i.e.,
skipMainSet is true, the procedure for checking the absence of paths of memory
conflicts is enabled. For every statement s of every procedure p € P(e), after(s)
is set as in line 26 where conflictDetected is a Boolean local variable. This
conditional checks whether the current procedure conflicts with the incomplete
invocation or transitively, with all the other invocations that conflict with the
latter. If this is the case, then its set of memory accesses is continuously added
to the global sets rdSetGlobal and wrSetGlobal of memory accesses.

When a main thread invocation finishes, if it has been executed completely
and if it follows an incomplete main thread invocation, the instrumentation
checks for absence of paths of memory conflicts and may non-deterministically
execute the pivot. The code at line 35 is added at the end of every p € Py(e).

Relationship Between e and detStr™ (e). The following result expresses the rela-
tionship between the original event e and detStr™ (e). It shows that the single-
thread semantics of detStr™ (e) simulates permutations of all the DFS-serial
traces and borderline violations of e under the multi-thread semantics (modulo
a thread id renaming). Moreover, every trace of detStr™(e) under the single-
thread semantics where the last value of validMain is true, this set of traces
being denoted by [detStr~ ()3 ain " corresponds to a trace of e under the
multi-thread semantics (modulo the instrumentation added in detStr™ (e) and a
thread id renaming). For a trace t of detStr™ (e), T is the trace obtained from t
by erasing all transition labels corresponding to statements added by the instru-
mentation. For readability, we ignore the issue of renaming thread ids.

Theorem 4. For every trace 11 in [e]m, if 11 is DFS-serial or a borderline
conflict determinism violation, then there exists a trace Ty in[detStr™ (e)]s such
that T} = Tg is a conflict-preserving permutation of t1. Moreover, for every trace
11 in[detStr™ (e)]*iMIR there exists a trace tg infe]n such that 1o = T1.

6.2 Witnessing Borderline Violations

The instrumentation used to verify that a trace is indeed a borderline violation
consists in guessing a candidate for the root and then, when the pivot gets
executed, checking whether it conflicts with the chosen candidate. For instance,
if we consider the single-thread semantics simulation in Fig.7(c), the action



190 A. Bouajjani et al.

wr(z) in ¢ is guessed as the root and its label is stored in an auxiliary variable
rootLabel. This label is used to check that the root candidate conflicts with
the pivot when the latter is executed. The root must be chosen after the pivot
in order to guarantee that this leads to a cycle in the conflict invocation graph
(i.e., the DFS traversal of the call tree orders the invocation containing the pivot
before the one containing the root).

We define a new event detStr(e) that sets an error flag to true whenever
the current trace is not DFS serial and the root and pivot candidates are valid.
This event is obtained from detStr™ (e) by adding two global variables error and
rootLabel, and:

— Concatenating the code at line 41 in Fig. 8b to before(s). This allows to non-
deterministically choose s to be the root of the violation. In order to avoid
choosing the pivot after the root, we must also replace %5 and *5 in detStr™ (e)
with | rootSet & %, and ! rootSet & x5, respectively.

— Concatenating the code at line 44 in Fig. 8b to after(s) where

conflict(pivotLabel, rootLabel) ::= T'dSet(Zfl(pivotLabel)) n wrSet(Zil(rootLabel)) #0
||rdSet(£™* (rootLabel)) N wrSet(£~* (pivotLabel)) # @

||lwrSet (£~ (rootLabel)) N wrSet(£ " (pivotLabel)) #

This allows to validate that the root does indeed conflict with the pivot, once
the latter gets executed. If the conflict is validated, then error is set to true.

Since the added instrumentation only reads variables of detStr™(e), the new
event detStr(e) still satisfies the claim in Theorem 4.

Theorem 5. An event e (under the multi-thread semantics) satisfies conflict
determinism iff the program detStr(e) under the single-thread semantics does
not reach a state where error = true.

For complexity, detStr(e) can be constructed in linear time and its number
of variables increases linearly in the number of variables and procedures of e.
6.3 Reduction to the Procedural Semantics

As a continuation to Theorem 5, we define a code-to-code translation from an
event e to a sequential event seq(e) such that seq(e) admits exactly the set of
traces of e under the single-thread semantics?.

Single-Thread Semantics vs Procedural Semantics. Essentially, seq(e) is obtained
from e by rewriting asynchronous procedure invocations to regular procedure

3 Modulo the omission of the labels invoke(i), begin(i), return(i) related to asynchro-
nous invocations.
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calls. However, this rewriting can’t be applied directly because of the following
issue. Consider a procedure p invoking another procedure ¢. If the invocation
of ¢ is asynchronous, the single-thread semantics executes p completely before
starting ¢q. Under the procedural semantics, when ¢ is invoked using a regular
procedure call, the execution of p is blocked when ¢ is invoked and resumed when
q is completed. For instance, consider the event:

procedure e; (D{y:=1;async[main] p();y:=2;} procedure p(){y:=3;}

Executing e; on the single-thread semantics, we get the sequence of assignments
y := 1,y := 2,y := 3. Rewriting async [main] p() to a regular procedure call
call p(), we get an event that executesy := 1,y := 3,y := 2 in this order.

This issue doesn’t exist if all the asynchronous invocations occur at the end
of the procedures. For instance consider the following event es:

procedure ex(){x:=1;async[main] p();} procedure g() {x:=3;}
procedure p(){x:=2;async[main] ¢();}

Rewriting every async[main] _ to a procedure call call _, we get an event
that executes the assignments on x in exactly the same order as e; under the
single-thread semantics. This holds because the single-thread semantics executes
the asynchronous invocations according to the DFS traversal of the call tree,
which corresponds to the “stack” semantics of procedure calls.

Therefore, the event seq(e) is obtained in two steps. A first translation is used
to move all asynchronous invocations at the end of the procedures. This results
in an event having exactly the same single-thread semantics as the original one.
Then, we replace every asynchronous invocation with a procedure call.

Defining seq(e). The event e is extended with auxiliary data structures that
store the names and the inputs of the asynchronous invocations. Using these
data structures, all the invocations are delayed till the end of the encompassing
procedure. Thus,

— each procedure p is extended with an auxiliary local variable invocList which
stores a list of procedure names and inputs,

— when an asynchronous procedure g is invoked in p with inputs y, the proce-
dure name ¢ together with its parameters y is appended to the local variable
invocList of p without invoking g,

— before returning from a procedure p, all the procedures stored in invocList
are invoked in the order they are recorded.

For the event eq, this boils down to simply moving the invocation in e; at the
end (i.e., after y := 1). It is easy to see that the obtained event has the same
single-thread semantics as the original event.
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Let seq(e) be the event obtained from e by applying the transformation above
and then, replacing every asynchronous invocation asynclw] p(y) with call
p(y).

For an event e, we overload the equality relation between traces 11 € [d;
and 15 € [seq(e]]s as follows: t1 = g iff removing the labels invoke(4), begin(i),
return(z) with ¢ € N from ty, and the transition labels corresponding to state-
ments added by the instrumentation from to, we get the same trace.

A sequential program Seq has the same set of traces under the multi-thread
and the single-thread semantics, so its set of traces is denoted [Seq].

Theorem 6. For any event e, [ds =[seq(e)].

For an event e, let detSeq(e) = seq(detStr(e)). By Theorem 6, detSeq(e)
still satisfies the claim in Theorem 4. The following is a direct consequence of
Theorems 5 and 6.

Corollary 1. An event e (under the multi-thread semantics) satisfies conflict
determinism iff the sequential event detSeq(e) does not reach a state where
error = true.

Concerning complexity, let e be an event where each procedure invokes at
most k other procedures, for some fixed k. Then, the time complexity of con-
structing detSeq(e) and its number of variables are quadratic in the number of
variables and procedures of e and k.

7 Checking Conflict Robustness

Building on the reduction of conflict determinism to reachability in sequential
programs, we show that a similar reduction can be obtained for conflict robust-
ness. This reduction is based on two facts: (1) incomplete executions of conflict-
deterministic events can be simulated by a sequential program, which has been
proved in Sect. 6, and (2) conflict serializability for a set of conflict deterministic
events can be again reduced to reachability in sequential programs. To prove
the latter we use the concept of borderline violation, this time for conflict seri-
alizability. We show that interleavings corresponding to such violations can be
simulated by a sequential program. This program behaves like a “most-general
client” of the event-based program in the sense that it executes an arbitrary set
of events, in an arbitrary order, but serially without interference from others.
We show that the memory required to track the conflicts which induce a cycle
in the conflict graph is of bounded size, although the conflict graph cycles are of
unbounded size in general.

Definition 7 (Borderline Conflict Serializability Violation). A trace ¢ is
a borderline violation to conflict serializability if it is not conflict serializable
but every strict prefiz of T is conflict serializable.
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Fig. 9. Simulating borderline conflict serializability violations with a sequential pro-
gram. Boxes represent sequences of trace labels ordered from top to bottom. Actions
of the same event are aligned vertically. The arrows represent all the conflicts in the
trace. The grey blocks labeled by delay, resp., skip, denote sequences of actions that
are delayed, resp., skipped.

The trace 1; in Fig.9(a) contains a borderline violation. Its conflict-event
graph contains a cycle between the three events eq, ey, and e3. The prefix of
1; ending just before rd(z) satisfies conflict serializability. The last label of a
borderline violation Tt is called the pivot of T (in this example rd(z)) and the
event that contains the pivot is called the delayed event of T (in this example e;).

Simulating Borderline Violations. For a set of conflict-deterministic events
E, we define a code-to-code translation to a set of sequential events that simu-
lates every conflict-serializable trace and every borderline serializability violation
of E under the multi-thread semantics.

As for conflict determinism, the maximal strict prefix of a borderline violation
can be reordered to a trace where events are executed serially, but possibly not
until completion (because it satisfies conflict serializability). Such a reordering for
the trace 1 is given in Fig. 9(b). This reordering can be simulated by a sequential
program that executes the conflict determinism instrumentations detSeq(e;) with
i € [1,3] instead of the original events, as shown in Fig.9(c). The sequential
program chooses non-deterministically the delayed event, in this case e;, and
the pivot, and stores the latter in an auxiliary variable pivotSerLabel when
leaving the delayed event. While executing other possibly incomplete events
using the skipping mechanism introduced for conflict determinism, it may non-
deterministically choose to execute goto pivotSerLabel, in this case after es.

Witnessing Borderline Violations. To establish that a trace is indeed a bor-
derline violation, the instrumentation guesses for each event a statement called
exit point which conflicts with an action of a future event and a statement called
entry point which conflicts with the currently recorded exit point of a previ-
ous event. The conflict is validated each time an entry point is chosen. This
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instrumentation is demonstrated in Fig. 9(c). For instance, while simulating e,
wr(x) is guessed as the exit point and its label is recorded in the auxiliary
exit variable. During the simulation of e, wr(z) is guessed as the entry point
and the conflict is validated. As the simulation of e; shows, the exit point may
occur before the entry point. In this case, the instrumentation uses an addi-
tional variable tempExit to store the exit point of the current event until the
conflict with a previous event is validated. Once the conflict is confirmed the
value of tempExit is copied to exit. Since the conflicts must form a path in the
conflict event graph, there is no need to recall more than one exit point at a
time.

The instrumentation added for checking conflict robustness is similar to the
one used for conflict determinism. Let robSeq(e) denote the sequential event
obtained from detSeq(e) by adding this instrumentation. For an event set F, let
robSeq(E) = {robSeq(e) : e € E}.

Then, let robSeq(E) be the set of events robSeq(e) with e € E.

Theorem 7. A program P with events E satisfies conflict robustness iff
robSeq(E) doesn’t reach a state where error = true.

For complexity, robSeq(E) can be constructed in linear time and the number
of additional variables is linear in the number of procedures in detSeq(E). The
complexity of checking conflict robustness is given by the following theorem.

Theorem 8. Checking conflict robustness of a program P with events E, a fixed
number of variables which are all Boolean, and a fixred number of procedures, each
procedure containing a fized number of asynchronous invocations, is polynomial
time decidable.

8 Experimental Evaluation

The goal of our experimental work [5] is to show that (i) event-serializability
and event-determinism violations correspond to actual bugs, and (ii) detecting
these violations using the reduction to reachability in sequential programs is
feasible.

We use the Soot framework [7] to implement the instrumentation required
for robustness checking. The reachability of the error state in the instrumented
sequential program is verified using Java Path Finder (JPF) [4].

We applied the conflict-robustness checking algorithm to a set of Android
apps from the FDroid [3] repository. The application code for reflection, depen-
dency to external libraries (e.g., for http connection, analytics tracker, maps),
and the code which only effects the display (e.g., displaying web pages, anima-
tion, custom graphics) is eliminated. The remaining code factors out the vari-
ables that does not effect the concurrent behavior of the program and keeps the
program logic.
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We define an event as a procedure which is invoked by the Android app in
order to initialize an activity, in response to an user input (e.g., clicking on a
button, writing text, navigating back) or a system input (e.g., location change,
network disconnect). Our tool receives as input a driver class which initiates the
application and invokes a set of events. The tool checks conflict-robustness for
the set of executions defined by the driver class. In our experiments, we take
into consideration causality constraints between events, e.g., the event handler
of a Ul component can not be invoked if it is not visible on the screen.

8.1 Event-Determinism Experiments

Table 1. Experimental data for conflict determinism. Table1 lists the exper-
The last column lists whether the event is found conflict jmental data related to
deterministic. conflict-deterministic che-
cking. Related to the

Application|Event handler #inst #c |#m |#r/w|H#(*) t(m:s)[Det?

aarddict Create activity 1307780 [177|3016| 90 1428 [0:01 |Y size of the event han-
Lookup word 77203 [222(3604| 60 103 [<1s |Y .
Scan sd 21334 [167|2941 15 21 [<1s |Y dlers, we list the number

apphangar |Select 1t-em 58908 [222(3560| 48 70 [<1s |Y Of analyzed instructions
Update icon pack| 13308927 (264(4004| 95 28833 [00:33 [N

bookworm [Generate cover 34528 [194[2928] 30 41 [<1s Y (#lnSt), loaded classes
Retrieve cover 36789 [213[3440] 31 41 [<1s |Y
Save odits 63017 |189]3015(108 158 |<1s |Y (#C) and methods (#m)
Search book 53250 |185]3012[ 50 69 |[<1s |Y Cp] :

: carch boo <ls The analysis time is affec-

grigtfs Fav stops 53995 |162[2885[142 113 [<1s |Y
Process bustimes 65945 [159]2749(105 168 |[<1s |Y ted by the number of
Search route 55077 |167]|2968| 34 67 [<ls |Y e .
Search stop 56742 |168[2968| 52 75 [0:01 |Y resolved non-deterministic

irccloud Save prefs 103344 [293[3478] 18 15 [<1s |Y B ( (*))
Save settings 102868 [293[3478] 17 13[<1s |Y data choices # ’ the
Select buffer 136224103 [379[4330[761_|260605 [8:04 |Y number of asynchronous
Send message 162682 [356[4140[171 77 [<1ls |Y . R

vlille Load stations 971665 [404[5808[236 131 [0:01 [Y HlVOC&thIlS, whether the
Load favorites 9583 [141]2400] 37 0l<is [|Y . :
Update stations 975974 |416[5905(265 131 [0:01 |Y instrumented read/wrlte

accesses are made in these
invocations, and the execution time of the analyzed program.

We have applied our algorithm to various event handlers and all but one are
found to be deterministic. A determinism violation is found in iconPackUpdated
benchmark as explained in Sect. 2. The pivot of the violation is a write access to
the mAdapter variable by a procedure running in the background, and the root is
a read on the same variable made by a procedure running on the main thread.

8.2 Event-Serializability Experiments
Table 2 shows experimental data for conflict-serializability checking.
True Bugs. Four of the benchmarks had traces with conflict serializability

violations which we concluded were true bugs (and true event-serializability vio-
lations) after examining the code and the consequences of these violations.
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Table 2. Experimental data for conflict serializabil- The violation in aarddict
ity. The last two columns say whether the example is app occurs between the ini-
serializable and whether a violation is not spurious.  tialization of the activity

(initializes the UI compo-

Application|Seq.[#inst #c [#m [#r/w|# (*)  [t(m:s)[Ser?[Bu A

aarddict 1 [1084371993[224[3620[154 [1764359|23:12 [N |Y nents and starts the dic-
2 [101776570 |169|2957]100 [195370 |1:42 |N |Y . .

bookworm |1  |22701600 |183[2801|202 [77614 [0:42 |Y |- tionary service to load the
2 [19179949 |183]2801[201 |61896 [0:33 [Y |- dictionaries) and an event
3 |1094300968[189]3016]286 |3494089[33:51 |Y |-
4 3547795 188[3029[131 [15961 [0:08 |N [Y handler to IOOkup a word.

fs 1 |74082801 |168[2969[123 [279857 [2:04 |Y |- .

i B e R The lookup cannot retrieve
3 1130239 139[2692[77 4712 0:02 [y |- the requested word lf the
4 60736622 |170]2984[161 [163236 |1:21 |N |N . o

irccloud 1 33713083 [293[3479[141 [147000 [2:55 |Y |- Service gets initialized after
2 1761539 2933479140 |7851 0:10 |Y |- he look Th . f
3 |171715464 |294|3485|147 |534338 |08:51 |Y |- the lookup. e pivot o
. B R R AR S S the serializability violation is
6 |54556857 |358|4165|849 |208076 |5:28 |N  |Y a write access to a vari-
7 |[11104756 |357|4154]833 [39599 [0:59 |N |Y . . .

Vlille 1 |48935337 |406|5824|286 143461 |3:05 |N |Y able dictionaryService 1n
2 |394535226 |406|5824|292 |1319041|28:52 |N |N an asynchronous procedure

invoked on the main thread
that conflicts with the asynchronous procedure invoked on a background thread
by the second event handler. We detected an event serializability violation in the
bookworm app between the events dealing with user inputs to search for a book
and navigating back to the previous screen. In this violation, while the first
event handler performs the search in the background and not yet updated the
currSearchTerm variable, the second event handler saves the stale currSearchTerm
value in the cache. The pivot of the violation is a write access to the current
search term in an asynchronous procedure invoked on the background thread.
A violation detected in the irccloud app is presented in Sect. 2, which causes the
app to send wrong messages. The pivot is a read access to the message text in
an asynchronous procedure invoked on a background thread that conflicts with
a write access in the double click event. A similar violation occurs in another
user input sequence where the user types some text after pressing the “send”
key. In the vlille benchmark, the serializability violation in the first line occurs
when the user removes an item from the favorites list while the items are being
loaded. The app throws an exception when the removal in the second event
handler interleaves with the asynchronous procedure in the background.

Avoidable False Alarms. In the grtftfs benchmark, the conflict-
serializability violation is not a bug or a serializability violation. (Conflict-
serializability is stronger than serializability.) This violation is triggered by
making two queries one after another. In an execution where the second event
handler overwrites the query before the first event handler reads it in the back-
ground, both asynchronous procedures end up performing the same, later search.
While technically this is not a serializability violation, we believe it is worthwhile
to report conflict-serializability violations to the programmer, because fixing
them would lead to improved code.
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Inter-related Events. Some event handlers intervene the execution of another
event by design. For such inter-related events, the event-serializability violation
might not be a bug. The vlille benchmark has such an example (the second row
on the table). In this scenario, the user navigates back while the app is loading
a list of items asynchronously in a background thread. The event handler for
back navigation sets the mCancelled flag of the AsyncTask. If this flag is set, the
first event handler does not invoke the AsyncTask’s asynchronous onPostExecute
procedure. Our techniques can be modified to consider inter-related events and
task cancellation, but we leave this for future work.

9 Related Work

The UI framework in Android has been the focus of much work. Most existing
tools for detecting concurrency errors investigate race detection [8,21,25]. Race
conditions are low-level symptoms for a much broader class of concurrent pro-
grams which are often not indicative of actual programming errors. In this paper,
we attempt to characterize and detect higher-level concurrency errors in Android
programs. Robustness violations are incomparable with data-race freedom viola-
tions. Data races do not generally imply cyclic data dependencies among events,
and cyclic data dependencies do not imply data races: e.g., surrounding each indi-
vidual memory access within a cycle by a common lock eliminates possible races,
but preserves cycles. Furthermore, checking conflict robustness is fundamentally
more efficient than checking for data race freedom. Conflict event serializability
requires tracking events, while data race freedom requires tracking individual
program actions like reads and writes, which greatly outnumber events. More-
over, conflict robustness reduces to reachability in sequential programs, yielding
significantly lower asymptotic complexity.

Recent work [29] proposes a static analysis to detect “anomalies” in event
driven programs, i.e. accesses to the same memory location by more than one
event handlers. Since many events access shared memory locations, this app-
roach produces many false alarms, but programs without anomalies are conflict-
event serializable. The works in [23,24] refactor applications by moving long
running jobs to asynchronous tasks and transform improperly-used asynchrony
constructs into correct constructs. Ensuring transformed asynchronous tasks do
not race with their callers lends support to our work as it guarantees event-
determinism.

The works in [12-14,26] target exploring interesting subsets of executions
and schedules for asynchronous programs, that offer a large coverage of the exe-
cution space. This is orthogonal to the focus of our paper which is to investigate
correctness criteria.

Conflict serializability [27] has been introduced in the context of databases
and since then used as a tractable approximation of atomicity. We use serializ-
ability to formalize the fact that event handlers behave as if they were executed in
isolation, without interference from others. While in other uses of serializability



198 A. Bouajjani et al.

the transactions are sequential, in our case a single invocation of an event handler
consists of several asynchronous procedures that can interleave arbitrarily in
between them. Farzan and Madhusudan [15,16] and Bouajjani et al. [10] inves-
tigate decision procedures for conflict serializability of finite-state concurrent
models while checking serializability in general has been approached using both
static, e.g., [18,20,32,34], and dynamic tools, e.g., [17,19,30,33].

Determinism has been largely advocated in the context of concurrent pro-
grams, e.g., [9,31], since it simplifies the debugging and verification process. Prior
work has introduced static verification techniques, e.g., [22] but also dynamic
analyses based on testing, e.g., [11,28]. Differently from prior work, we provide
a methodology for checking determinism of event-driven asynchronous programs
that ultimately reduces to a reachability problem in a sequential program.
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Abstract. Graph rewriting formalisms are well-established models for
the representation of biological systems such as protein-protein inter-
action networks. The combinatorial complexity of these models usually
prevents any explicit representation of the variables of the system, and
one has to rely on stochastic simulations in order to sample the possi-
ble trajectories of the underlying Markov chain. The bottleneck of sto-
chastic simulation algorithms is the update of the propensity function
that describes the probability that a given rule is to be applied next.
In this paper we present an algorithm based on a data structure, called
extension basis, that can be used to update the counts of predefined
graph observables after a rule of the model has been applied. Extension
basis are obtained by static analysis of the graph rewriting rule set. It is
derived from the construction of a qualitative domain for graphs and the
correctness of the procedure is proven using a purely domain theoretic
argument.

1 Introduction

1.1 Combinatorial Models in Systems Biology

As the quest for a cure for cancer is progressing through the era of high through-
put experiments, the attention of biologists has turned to the study of a collection
of signaling pathways, which are suspected to be involved in the development of
tumors.

These pathways can be viewed as channels that propagate, via protein-
protein interactions, the information received by the cell at its surface down
to the nucleus in order to trigger the appropriate genetic response. This sim-
plified view is challenged by the observation that most of these signaling cas-
cades share components, such as kinases (which tend to propagate the signal)
and phosphatases (which have the opposite effect). This imp