
Deterring Certificate Subversion: Efficient
Double-Authentication-Preventing Signatures

Mihir Bellare1, Bertram Poettering2, and Douglas Stebila3(B)

1 Department of Computer Science and Engineering, University of California,
San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

mihir@eng.ucsd.edu

http://cseweb.ucsd.edu/∼mihir/
2 Department of Mathematics, Ruhr University Bochum, Bochum, Germany

bertram.poettering@rub.de

http://www.crypto.rub.de/
3 Department of Computing and Software, McMaster University,

Hamilton, ON, Canada
stebilad@mcmaster.ca

https://www.cas.mcmaster.ca/∼stebilad/

Abstract. We present highly efficient double authentication prevent-
ing signatures (DAPS). In a DAPS, signing two messages with the same
first part and differing second parts reveals the signing key. In the con-
text of PKIs we suggest that CAs who use DAPS to create certificates
have a court-convincing argument to deny big-brother requests to cre-
ate rogue certificates, thus deterring certificate subversion. We give two
general methods for obtaining DAPS. Both start from trapdoor iden-
tification schemes. We instantiate our transforms to obtain numerous
specific DAPS that, in addition to being efficient, are proven with tight
security reductions to standard assumptions. We implement our DAPS
schemes to show that they are not only several orders of magnitude more
efficient than prior DAPS but competitive with in-use signature schemes
that lack the double authentication preventing property.

1 Introduction

DAPS. Double authentication preventing signature (DAPS) schemes were intro-
duced by Poettering and Stebila (PS) [15]. In such a signature scheme, the
message being signed is a pair m = (a, p) consisting of an “address” a and a
“payload” p. Let us say that messages (a1, p1), (a2, p2) are colliding if a1 = a2

but p1 �= p2. The double authentication prevention requirement is that there be
an efficient extraction algorithm that given a public key PK and valid signa-
tures σ1, σ2 on colliding messages (a, p1), (a, p2), respectively, returns the secret
signing key SK underlying PK . Additionally, the scheme must satisfy standard
unforgeability under a chosen-message attack [10], but in light of the first prop-
erty we must make the restriction that the address components of all messages
signed in the attack are different.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 121–151, 2017.
DOI: 10.1007/978-3-662-54388-7 5

122 M. Bellare et al.

Why DAPS? PS [15] suggested that DAPS could deter certificate subversion.
This is of particular interest now in light of the Snowden revelations. We know
that the NSA obtains court orders to compel corporations into measures that
compromise security. The case we consider here is that the corporation is a
Certificate Authority (CA) and the court order asks it to produce a rogue cer-
tificate. Thus, the CA (eg. Comodo, Go Daddy, ...) has already issued a (legiti-
mate) certificate cert1 = (example.com,pk1, σ1) for a server example.com. Here
pk1 is the public key of example.com and σ1 is the CA’s signature on the pair
(example.com,pk1), computed under the secret key SK of the CA. Big brother
(this is what we will call the subverting adversary) is targeting clients communi-
cating with example.com. It obtains a court order that requires the CA to issue
another certificate—this is the rogue certificate—cert2 = (example.com,pk2,
σ2) in the name of example.com, where now pk2 is a public key supplied by
big brother, so that the latter knows the corresponding secret key sk2, and σ2 is
the CA’s signature on the pair (example.com,pk2), again computed under the
secret key SK of the CA. With this rogue certificate in hand, big brother could
impersonate example.com in a TLS session with a client, compromising security
of example.com’s communications.

The CA wants to deny the order (complying with it only hurts its repu-
tation and business) but, under normal conditions, has no argument to make
to the court in support of such a denial. Using DAPS to create certificates,
rather than ordinary signatures, gives the CA such an argument, namely that
complying with the order (issuing the rogue certificate) would compromise not
just the security of big brother’s target clients communicating with example.
com, but would compromise security much more broadly. Indeed, if big brother
uses the rogue certificate with a client, it puts the rogue certificate in the client’s
hand. The legitimate certificate can be viewed as public. So the client has σ1, σ2.
But these are valid signatures on the colliding messages (example.com,pk1),
(example.com,pk2), respectively, which means that the client can extract the
CA’s signing key SK . This would lead to widespread insecurity. The court may
be willing to allow big brother to compromise communications of clients with
example.com, but it will not be willing to create a situation where the security
of all TLS hosts with certificates from this CA is compromised. Ultimately this
means the court would have strong incentives to deny big brother’s request for
a court order to issue a rogue certificate in the first place.

Further discussion of this application of DAPS may be found in [15,16] and
also in the full version of this paper [2]. The latter includes comparisons with
other approaches such as certificate transparency and public key pinning.

Prior DAPS schemes. PS [15,16] give a factoring-based DAPS that we call
PS. Its signature contains n + 1 elements in a group Z

∗
N , where n is the length

of the output of a hash function and N is a (composite) modulus in the public
key. With a 2048-bit modulus and 256-bit hash, a signature contains 257 group
elements, for a length of 526,336 bits or 64.25 KiB. This is a factor 257 times
longer than a 2048-bit RSA PKCS#1 signature. Signing and verifying times are
also significantly greater than for RSA PKCS#1. Ruffing, Kate, and Schröder

Efficient Double-Authentication-Preventing Signatures 123

[17, Appendix A] give a chameleon hash function (CHF) based DAPS that we
call RKS and recall in the full version of this paper [2]. Instantiating it with
DLP-based CHFs makes signing quite efficient, but signature sizes and verifica-
tion times are about the same as in PS. The large signature sizes in particular
of both PS and RKS inhibits their use in practice.

Goals and contributions. If we want DAPS to be a viable practical option,
we need DAPS schemes that are competitive with current non-DAPS schemes on
all cost parameters, meaning signature size, key size, signing time and verifying
time. Furthermore, to not lose efficiency via inflated security parameters, we
need to establish the unforgeability with tight security reductions. Finally, given
the high damage that would be created by certificate forgery, we want these
reductions to be to assumptions that are standard (factoring, RSA, ...) rather
than new. This is what we deliver. We will give two general methods to build
DAPS, and thence obtain many particular schemes that are efficient while having
tight security reductions to standard algebraic assumptions in the random oracle
model. We begin with some background on our main tool, identification schemes.

Background. An identification scheme is a three-move protocol ID where the
prover sends a commitment Y computed using private randomness y, the verifier
sends a random challenge c, the prover returns a response z computed using
y and its secret key isk, and the verifier computes a boolean decision from
the conversation transcript Y ‖c‖z and public key ivk (see Fig. 2). Practical ID
schemes are typically Sigma protocols, which means they satisfy honest-verifier
zero-knowledge and special soundness. The latter says that from two accepting
conversation transcripts with the same commitment but different challenges,
one can extract the secret key. The identification scheme is trapdoor [3,12] if the
prover can pick the commitment Y directly at random from the commitment
space and compute the associated private randomness y using its secret key.

The classic way to get a signature scheme from an identification scheme is via
the Fiat-Shamir transform [9], denoted FS. Here, a signature of a message m is
a pair (Y, z) such that the transcript Y ‖c‖z is accepting for c = H(Y ‖m), where
H is a random oracle. This signature scheme meets the standard unforgeability
notion of [10] assuming the identification scheme is secure against impersonation
under passive attack (IMP-PA) [1]. BPS [3] give several alternative transforms of
(trapdoor) identification schemes to unforgeable signature schemes, the advan-
tage over FS being that in some cases the reduction of unforgeability to the
underlying algebraic assumption is tight. (That of FS is notoriously loose.) No
prior transform yields DAPS. Our first transform, described next, is however an
adaptation and extension of the MdCmtCh transform of [3].

Double-hash transform H2. The novel challenge in getting DAPS is to pro-
vide the double authentication prevention property. Our idea is to turn to iden-
tification schemes, and specifically to exploit their special soundness. Recall this
says that from two accepting conversations with the same commitment and
different challenges, one can extract the secret key. What we want now is to cre-
ate identification-based signatures in such a way that signatures are accepting

124 M. Bellare et al.

conversations and signatures of messages with the same address have the same
commitment, but if payloads differ then challenges differ. This will allow us, from
valid signatures of colliding messages, to obtain the secret key.

To ensure signatures of messages with the same address have the same com-
mitment, we make the commitment a hash of the address. This, however, leaves
us in general unable to complete the signing, because the prover in an identifi-
cation scheme relies on having create the commitment Y in such a way that it
knows some underlying private randomness y which is used crucially in the iden-
tification. To get around this, we use identification schemes that are trapdoor
(see above), so y can be derived from the commitment given a secret key. To
ensure unforgeability, we incorporate a fresh random seed into each signature.

In more detail, our first method to obtain DAPS from a trapdoor identifica-
tion scheme is via a transform that we call the double-hash transform and denote
H2 (cf. Sect. 5.1). To sign a message m = (a, p), the signer specifies the commit-
ment as a hash Y = H1(a) of the address, picks a random seed s of length sl (a
typical seed length would be sl = 256), obtains a challenge c = H2(a‖p‖s), uses
the trapdoor property of the identification scheme and the secret key to com-
pute a response z, and returns (z, s) as the signature. Additionally the public key
is enhanced so that recovery of the secret identification key allows recovery of
the full DAPS secret key. Theorem 1 establishes the double-authentication pre-
vention property via the special soundness property of the identification Sigma
protocol, and is unconditional. Theorem 2 shows unforgeability of the DAPS in
the ROM under two assumptions on the identification scheme: (1) CIMP-UU, a
notion defined in [3] (which refers to security under constrained impersonation
attacks, where in the successful impersonation the commitment was unchosen
by the adversary and the challenge was also unchosen by the adversary), and
(2) KR, security against key recovery. Specific identification schemes can be
shown to meet both notions under standard assumptions [3], yielding DAPS
from the same assumptions. If typical factoring or RSA based identification
schemes are used, DAPS signatures have size k + sl, where k is the bitlength of
the modulus.

Double-ID transform ID2. The signature size k+sl of H2 when instantiated
with RSA is more than the length k of a signature in RSA PKCS#1. We address
this via a second transform of trapdoor identification schemes into DAPS that
we call the double ID transform, denoted ID2. When instantiated with the same
identification schemes as above, corresponding DAPS signatures have length k+1
bits, while maintaining (up to a small constant factor) the signing and verifying
times of schemes obtained via H2.

The ID2 transform has several novel features. It requires that the identifica-
tion scheme supports multiple challenge lengths, specifically challenge lengths 1
and l (e.g., l = 256). To sign a message m = (a, p), first we work with the single
challenge-bit version of the identification scheme, computing for this a commit-
ment Y1 = H1(a), picking a random 1-bit challenge c1, and letting z1 be the
response, computed using the trapdoor and secret key. Now a random bijection
(a public bijection accessible, in both directions, via oracles) is applied to z1 to

Efficient Double-Authentication-Preventing Signatures 125

get a commitment Y2 for the l-bit challenge version of the identification scheme.
A challenge for this is computed as H2(a, p), and then a response z2 is produced.
The signature is simply (c1, z2). Section 5.2 specifies the transform in detail and
proves the DAP property and unforgeability, modeling the random bijection as
ideal. Notably, the CIMP-UU assumption used for the H2 transform needs to
be replaced by the (slightly stronger) CIMP-UC notion [3] (in CIMP-UC, the
challenge in the successful impersonation can be chosen by the adversary).

Instantiations. We discuss three different instantiations of the above in Sect. 6.
The RSA-based GQ identification scheme [11] is not trapdoor as usually writ-
ten, but can be made so by including the decryption exponent in the secret
key [3]. Applying H2 and ID2, we get H2[GQ] and ID2[GQ]. The factoring-
based MR identification scheme of Micali and Reyzin [12] is trapdoor, which we
exploit (in the full version [2]) to get H2[MR]. For details see Fig. 15. (Both
GQ and MR support multiple challenge lengths and meet the relevant security
requirements.) Figure 1 shows the signing time, verifying time and signature size
for these schemes. In a bit we will discuss implementation results that measure
actual performance.

Reduction tightness. Figure 1 says the signing time for H2[GQ] is O(lk2 +
k3), but what this means in practice depends very much on the choice of k
(the length of composite N). Roughly speaking, we can expect that doubling
k leads to an 8-fold increase in runtime, so signing with k = 2048 is 8 times
slower than with k = 1024. So we want to use the smallest k for which we
have a desired level of security. Suppose this is approximately 128 bits. Many
keylength recommendations match the difficulty of breaking a 128-bit symmetric
cipher with the difficulty of factoring a 2048-bit modulus. But this does not
generally mean it is safe to use H2[GQ] with k = 2048, because the reduction of
unforgeability to RSA may not be tight: the Fiat-Shamir transform FS has a very

Scheme Signing Verifying |sig| (bits)

PS [15,16] O(nk3) 516.58 ms O(nk3) 161.84ms nk 528 384

RKS [17] O(n4) 13.48ms O(n4) 5.99ms 2n2 131 072

H2[GQ] O(lk2 + k3)
0.88ms O(lk2)

0.41 ms k + sl 2 304

ID2[GQ] 1.80ms 1.49 ms k + 1 2 049

H2[MR] O(k3) 1.27 ms O(lk2) 0.37 ms k + sl 2 304

Fig. 1. DAPS efficiency. Performance indications for the DAPS obtained by our H2
and ID2 transforms applied to the GQ and MR trapdoor identification schemes. The
first two rows show the prior scheme of PS [15,16] and the scheme of RKS [17], with
n being the length of the output of a hash function, eg. n = 256. By k we denote the
length of a composite modulus N in the public key, eg. k = 2048. The challenge length
of GQ and MR is l, and sl is the seed length, eg. l = sl = 256. The 4th column is the
size of a signature in bits. Absolute runtimes and signature sizes are for k = 2048-bit
moduli and n = l = sl = 256-bit hashes/challenges/seeds; details appear in Sect. 6.

126 M. Bellare et al.

loose reduction, so when signatures are identification based, one should be extra
suspicious. Remarkably, our reductions are tight, so we can indeed get 128 bits
of security with k = 2048. This tightness has two steps or components. First,
the reduction of unforgeability to the CIMP-UU/CIMP-UC and KR security of
the identification scheme, as given by Theorems 2 and 4, is tight. Second, the
reductions of CIMP-UU/CIMP-UC and KR to the underlying algebraic problem
(here RSA or factoring) are also tight (cf. Lemma 1, adapting [3]).

Implementation. The efficiency measures of Fig. 1 are asymptotic, with hid-
den constants. Implementation is key to gauge and compare performance in
practice. We implement our two GQ based schemes, H2[GQ] and ID2[GQ], as
well as H2[MR]. For comparison we also implement the prior PS DAPS, and also
compare with the existing implementation of RKS. Figure 16 shows the signing
time, verifying time, signature size and key sizes for all schemes. H2[GQ] emerges
as around 587 times faster than PS for signing and 394 times faster for verifying
while also having signatures about 229 times shorter. Compared with the previ-
ous fastest and smallest DAPS, RKS, H2[GQ] is 15× faster for both signing and
verifying, with signatures 56× shorter. ID2[GQ] is about a factor two slower
than H2[GQ] but with signatures about 15% shorter. H2[MR] has the small-
est public keys of our new DAPS schemes, with signing runtime about halfway
between H2[GQ] and ID2[GQ]. The DAPS by RKS remains the one with the
smallest public keys, (640 bits), but the schemes in this paper have public keys
that are still quite reasonable (between 2048 and 6144 bits). As Fig. 16 shows,
H2[GQ], H2[MR], and ID2[GQ] are close to RSA PKCS#1 in all parameters and
runtimes (but with potentially improved security, considering our reductions to
RSA and factoring are tight). This means that DAPS can replace the signatures
currently used for certificates with minimal loss in performance.

Necessity of our assumption. Trapdoor identification schemes may seem a
very particular assumption from which to obtain DAPS. However we show in
the full version of this paper [2] that from any DAPS satisfying double authenti-
cation prevention and unforgeability, one can build a CIMP-UU and CIMP-UC
secure trapdoor identification scheme. This shows that the assumption we make
is effectively necessary for DAPS.

2 Preliminaries

Notation. By ε we denote the empty string. If X is a finite set, x ←$ X denotes
selecting an element of X uniformly at random and |X| denotes the size of X. We
use a1‖a2‖ · · · ‖an as shorthand for (a1, a2, . . . , an), and by a1‖a2‖ · · · ‖an ← x we
mean that x is parsed into its constituents. If A is an algorithm, y ← A(x1, . . . ; r)
denotes running A on inputs x1, . . . with random coins r and assigning the result
to y, and y ←$ A(x1, . . .) means we pick r at random and let y ← A(x1, . . . ; r).
By [A(x1, . . .)] we denote the set of all y that have positive probability of being
returned by A(x1, . . .).

Our proofs use the code-based game playing framework of BR [5]. In these
proofs, Pr[G] denotes the event that game G returns true. When we speak of

Efficient Double-Authentication-Preventing Signatures 127

running time of algorithms, we mean worst case. For adversaries playing games,
this includes the running time of the adversary and that of the game, i.e., the
time taken by game procedures to respond to oracle queries is included. Boolean
flags (like bad) in games are assumed initialized to false.

In our constructions, we will need random oracles with different ranges. For
example we may want one random oracle returning points in a group Z

∗
N and

another returning strings of some length l. To provide a single unified notation,
following [3], we have the game procedure H take not just the input x but a
description Rng of the set from which outputs are to be drawn at random. Thus
y ← H(x,Z∗

N) will return a random element of Z∗
N , and so on.

Our ID2 transform also relies on a random bijection. In the spirit of a ran-
dom oracle, a random bijection is an idealized unkeyed public bijection to which
algorithms and adversaries have access via two oracles, one for the forward direc-
tion and one for the backward direction. Cryptographic constructions that build
on such objects include the Even-Mansour cipher and the SHA3 hash func-
tion. We denote by Π+(·,Dom,Rng) a bijection from Dom to Rng, and we
denote its inverse with Π−1. Once Dom and Rng are fixed, our results view
Π+1(·,Dom,Rng) as being randomly sampled from the set of all bijections from
Dom to Rng. We discuss instantiation of a random bijection in Sect. 6.

Signature schemes. A signature scheme DS specifies the following. The signer
runs key generation algorithm DS.Kg to get a verification key vk and a sign-
ing key sk. A signature of message m is generated via σ ←$ DS.Sig(vk, sk,m).
Verification is done by v ← DS.Vf(vk,m, σ), which returns a boolean v. DS is
correct if for all (vk, sk) ∈ [DS.Kg], all messages m ∈ {0, 1}∗ and all signatures
σ ∈ [DS.Sig(vk, sk,m)], we have DS.Vf(vk,m, σ) = true.

3 Identification Schemes

Identification schemes are our main tool. Here we give the necessary definitions
and results.

Identification. An identification (ID) scheme ID is a three-move protocol
between a prover and a verifier, as shown in Fig. 2. A novel feature of our formu-
lation (which we exploit for the ID2 transform) is that identification schemes
support challenges of multiple lengths. Thus, associated to ID is a set ID.clS ⊆ N

of admissible challenge lengths. At setup time the prover runs key generation
algorithm ID.Kg to generate a public verification key ivk, a private identifica-
tion key isk, and a trapdoor itk. To execute a run of the identification scheme
for a challenge length cl ∈ ID.clS, the prover runs ID.Cmt(ivk, cl) to generate a
commitment Y and a private state y. The prover sends Y to the verifier, who
samples a random challenge c of length cl and returns it to the prover. The prover
computes its response z ← ID.Rsp(ivk, isk, c, y). The verifier checks the response
by invoking ID.Vf(ivk, Y ‖c‖z) which returns a boolean value. We require perfect
correctness. For any ivk, cl we denote with ID.CS(ivk, cl) and ID.RS(ivk, cl) the
space of commitments and responses, respectively.

128 M. Bellare et al.

Prover

Input: ivk, isk, cl

(Y, y) ←$ ID.Cmt(ivk, cl)

z ← ID.Rsp(ivk, isk, c, y)

Y�
c�
z�

Verifier

Input: ivk, cl

c ←$ {0, 1}cl

v ← ID.Vf(ivk, Y ‖c‖z)

Game Gex
ID (A)

(ivk, isk, itk) ←$ ID.Kg
(Y, c1, z1, c2, z2) ←$ A(ivk, isk, itk)
T1 ← Y ‖c1‖z1 ; T2 ← Y ‖c2‖z2
v1 ← ID.Vf(ivk, T1) ; v2 ← ID.Vf(ivk, T2)
If ¬v1 ∨ ¬v2 ∨ (|c1| �= |c2|) ∨ (c1 = c2):

Return false
isk∗ ←$ ID.Ex(ivk, T1, T2)
Return (isk∗ �= isk)

Game Gzk
ID,cl(A)

(ivk, isk, itk) ←$ ID.Kg ; b ←$ {0, 1}
(Y1, y1) ←$ ID.Cmt(ivk, cl)
c1 ←$ {0, 1}cl

z1 ← ID.Rsp(ivk, isk, c1, y1)
Y0‖c0‖z0 ←$ ID.Sim(ivk, cl)
b′ ←$ A(ivk, cl, Yb‖cb‖zb)
Return (b = b′)

Fig. 2. Top: Message flow of an identification scheme ID. Bottom: Games defining
extractability and HVZK of an identification scheme ID.

In basic ID schemes, key generation only outputs ivk and isk. The inclusion
of itk was given by [3] in their definition of trapdoor ID schemes. Following [3]
(and extending to multiple challenge lengths) we say ID is trapdoor if it spec-
ifies an additional algorithm ID.Cmt−1 that can compute y from any Y using
trapdoor itk. The property required of ID.Cmt−1 is that the following two dis-
tributions on (Y, y) are identical for any admissible challenge length cl: (1) Let
(ivk, isk, itk) ←$ ID.Kg ; (Y, y) ←$ ID.Cmt(ivk, cl) and return (Y, y), and (2) Let
(ivk, isk, itk) ←$ ID.Kg ; Y ←$ ID.CS(ivk, cl) ; y ←$ ID.Cmt−1(ivk, itk, Y, cl) and
return (Y, y).

Further properties. We give several further identification-related defini-
tions we will use. First we extend honest-verifier zero-knowledge (HVZK) and
extractability to identification schemes with variable challenge length.

HVZK of ID asks that there exists an algorithm ID.Sim (called the simulator)
that given the verification key and challenge length, generates transcripts which
have the same distribution as honest ones. Formally, if A is an adversary and
cl ∈ ID.clS is an admissible challenge length, let Advzk

ID,cl(A) = 2Pr[Gzk
ID,cl(A)]−1

where the game is shown in Fig. 2. Then ID is HVZK if Advzk
ID,cl(A) = 0 for all

(even computationally unbounded) adversaries A and all cl ∈ ID.clS.
Extractability of ID asks that there exists an algorithm ID.Ex (called the

extractor) which from any two (valid) transcripts that have the same commit-
ment but different same-length challenges can recover the secret key. Formally,
if A is an adversary, let Advex

ID(A) = Pr[Gex
ID(A)] where the game is shown in

Fig. 2. Then ID is perfectly extractable if Advex
ID(A) = 0 for all (even compu-

tationally unbounded) adversaries A. Perfect extractability is sometimes called

Efficient Double-Authentication-Preventing Signatures 129

special soundness. We say that an identification scheme is a Sigma protocol [7]
if it is both HVZK and perfectly extractable.

We define three further notions that are not standard, but sometimes needed
and true of typical schemes (cf. Sect. 6). For instance, at times we require that ID
includes a key-verification algorithm ID.KVf for which ID.KVf(ivk, isk) = true iff
(ivk, isk, itk) ∈ [ID.Kg] for some itk. We say that ID is commitment recovering if
ID.Vf verifies a transcript Y ‖c‖z by recovering Y from c, z and then comparing.
More precisely, we require that there exist an efficient algorithm ID.Rsp−1 that
takes a verification key, a challenge, and a response, and outputs a commitment,
such that ID.Vf(ivk, Y ‖c‖z) = true iff Y = ID.Rsp−1(ivk, c, z). Finally, ID is said
to have unique responses if for any commitment Y and any challenge c there is
precisely one response z such that we have ID.Vf(ivk, Y ‖c‖z) = true.

Game Gcimp-xy
ID (P)

i ← 0 ; j ← 0

(ivk, isk, itk) ←$ ID.Kg
(k, z) ←$ PTr,Ch(ivk)
If not (1 ≤ k ≤ j):

Return false
T ← CTk‖z
Return ID.Vf(ivk, T)

Game Gkr-pa
ID (I)

i ← 0 ; (ivk, isk, itk) ←$ ID.Kg
isk∗ ←$ ITr(ivk)
Return ID.KVf(ivk, isk∗)

Tr(cl)

If not cl ∈ ID.clS: Return ⊥
i ← i + 1 ; cli ← cl
(Yi, yi) ←$ ID.Cmt(ivk, cli)
ci ←$ {0, 1}cli

zi ← ID.Rsp(ivk, isk, ci, yi)
Ti ← Yi‖ci‖zi

Return Ti

Ch(l) // xy=uu

If not (1 ≤ l ≤ i): Return ⊥
j ← j + 1 ; c ←$ {0, 1}cll

CTj ← Yl‖c ; Return c

Ch(l, c) // xy=uc

If not (1 ≤ l ≤ i): Return ⊥
If (c = cl or |c| �= cll): Return ⊥
j ← j + 1
CTj ← Yl‖c ; Return c

Fig. 3. Games defining security of identification scheme ID against constrained imper-
sonation (CIMP-UU and CIMP-UC) and against key recovery under passive attack.

Security of identification. A framework of notions of security under con-
strained impersonation was given in [3]. We reproduce and use their CIMP-UU
and CIMP-UC notions but extend them to support multiple challenge lengths.
The value of these notions as starting points is that they can be proven to
be achieved by typical identification schemes with tight reductions to standard
assumptions, following [3], which is not true of classical notions like IMP-PA
(impersonation under passive attack [1]). The formalization relies on the games
Gcimp-xy

ID (P) of Fig. 3 associated to identification scheme ID and adversary P,

130 M. Bellare et al.

where xy ∈ {uu,uc}. The transcript oracle Tr returns a fresh identification
transcript Yi‖ci‖zi each time it is called, for a challenge length passed in by the
adversary. This models a passive attack. In the xy = uu case, the adversary
can call Ch with the index l of an existing transcript Yl‖cl‖zl to indicate that
it wants to be challenged to produce a response for a fresh challenge against
the commitment Yl. The index j records the session for future reference. In the
xy = uc case, the adversary continues to call Ch with the index l of an existing
transcript, but this time provides its own challenge c, indicating it wants to be
challenged to find a response. The game allows this only if the provided challenge
is different from the one in the original transcript. The adversary can call Tr

and Ch as many times as it wants, in any order. The adversary terminates by
outputting the index k of a challenge session against which it hopes its response
z will verify. Define the advantage via Advcimp-xy

ID (P) = Pr[Gcimp-xy
ID (P)].

We also define a metric of security of the identification scheme against key
recovery under passive attack. The formalization considers game Gkr-pa

ID (I) of
Fig. 3 associated to identification scheme ID and kr adversary I. The transcript
oracle Tr is as before. Adversary I aims to find a private key isk∗ that is func-
tionally equivalent to isk in the sense that ID.KVf(ivk, isk∗) = true. (In particu-
lar, it certainly succeeds if it recovers the private key isk.) We let Advkr-pa

ID (I)
= Pr[Gkr-pa

ID (I)] be the probability that it succeeds. The notion of KR secu-
rity from [3,14] did not give the adversary a Tr oracle (excluding even passive
attacks) and required that for success it find the target key isk (rather than, as
here, being allowed to get away with something functionally equivalent).

Achieving the notions. For typical identification schemes that are HVZK,
security against key recovery under passive attack corresponds exactly to the
standard assumption underlying the scheme, for example the one-wayness of
RSA for GQ. The following says that under the assumption of security against key
recovery under passive attack, we can establish both CIMP-UC and CIMP-UU
for identification schemes that are extractable. In the second case, however, we
require that the challenge-lengths used be large.

The identification schemes we will use to build DAPS are Sigma protocols,
meaning perfectly extractable, and hence for these schemes Advex

ID(A) below will
be 0. We omit the proof as it uses standard arguments [3].

Lemma 1. Let ID be an identification scheme. For any adversary P against
CIMP-UC we construct a key recovery adversary I and extraction adversary A
such that

Advcimp-uc
ID (P) ≤ Advkr-pa

ID (I) + Advex
ID(A).

Also for any adversary P against CIMP-UU that makes qc queries to its Ch ora-
cle, each with challenge length at least cl, we construct a key recovery adversary
I such that

Advcimp-uu
ID (P) ≤ Advkr-pa

ID (I) + Advex
ID(A) + qc · 2−cl.

In both cases, the running times of I and A are about that of P plus the time
for one execution of ID.Ex.

Efficient Double-Authentication-Preventing Signatures 131

Above, CIMP-UU was established assuming long challenges. We note that
this is necessary, meaning CIMP-UU does not hold for short challenges, such as
one-bit ones. To see this, assume cl ∈ ID.clS and q ≥ 1 is a parameter. Consider
the following attack (adversary) P. It makes a single query Y ‖c‖z ←$ Tr(cl).
Then for i = 1, . . . , q it queries ci ←$ Ch(1). If there is a k such that ck = c then
it returns (k, z) and wins, else it returns ⊥. We have

Advcimp-uu
ID (P) = 1 −

(
1 − 1

2cl

)q

≈ q

2cl
.

Thus, roughly, the attack succeeds in time 2cl, so if the latter is small, CIMP-UU
security will not hold. Our H2 transform will use long challenges and be able
to rely only on CIMP-UU, but our ID2 transform will require security on both
long and short (1-bit) challenges, and thus will rely on CIMP-UC in addition to
CIMP-UU. We note that given Lemma 1, we could use CIMP-UC throughout,
but for the reductions it is simpler and more convenient to work with CIMP-UU
when possible.

4 DAPS Definitions

Let DS be a signature scheme. When used as a DAPS [15,16], a message m =
(a, p) for DS is a pair consisting of an address a and a payload p. We require
(1) the double authentication prevention (DAP) property and (2) a restricted
form of unforgeability, as defined below.

Game Guf
DS(A)

(vk, sk) ←$ DS.Kg
A, M ← ∅
(m, σ) ←$ ASign(vk)
d ← DS.Vf(vk, m, σ)
Return (d ∧ (m /∈ M))

Sign(m)

(a, p) ← m
If a ∈ A: Return ⊥
A ← A ∪ {a}
M ← M ∪ {m}
σ ←$ DS.Sig(vk, sk, m)
Return σ

Game Gdap
DS (A)

(vk, sk) ←$ DS.Kg
(m1, m2, σ1, σ2) ←$ A(vk, sk)
v1 ← DS.Vf(vk, m1, σ1)
v2 ← DS.Vf(vk, m2, σ2)
If ¬v1 ∨ ¬v2: Return false
(a1, p1) ← m1 ; (a2, p2) ← m2

If a1 �= a2 ∨p1 = p2: Return false
sk∗ ←$ DS.Ex(vk, m1, m2, σ1, σ2)
Return (sk∗ �= sk)

Fig. 4. Games defining unforgeability and the DAP property of signature scheme DS.

The DAP property. Call messages m1 = (a1, p1) and m2 = (a2, p2) colliding
if a1 = a2 but p1 �= p2. Double authentication prevention (DAP) [15,16] requires
that possession of signatures on colliding messages allow anyone to extract the

132 M. Bellare et al.

signing key. It is captured formally by the advantage Advdap
DS (A) = Pr[Gdap

DS (A)]
associated to adversary A, where game Gdap

DS (A) is in Fig. 4. The adversary
produces messages m1,m2 and signatures σ1, σ2, and an extraction algorithm
DS.Ex associated to the scheme then attempts to compute sk. The adversary
wins if the key sk∗ produced by DS.Ex is different from sk yet extraction should
have succeeded, meaning the messages were colliding and their signatures were
valid. The adversary has sk as input to cover the fact that the signer is the
one attempting—due to coercion and subversion, but nonetheless—to produce
signatures on colliding messages. (And thus it does not need access to a Sign

oracle.) We note that we are not saying it is hard to produce signatures on
colliding messages—it isn’t, given sk—but rather that doing so will reveal sk. We
also stress that extraction is not required just for honestly-generated signatures,
but for any, even adversarially generated signatures that are valid, again because
the signer is the adversary here.

Unforgeability. Let Advuf
DS(A) = Pr[Guf

DS(A)] be the uf-advantage associated
to adversary A, where game Guf

DS(A) is in Fig. 4. This is the classical notion
of [10], except that addresses of the messages the signer signs must be all differ-
ent, as captured through the set A in the game. This is necessary because the
double authentication prevention requirement precludes security if the signer
releases signatures of two messages with the same address. In practice it means
that the signer must maintain a log of all messages it has signed and make sure
that it does not sign two messages with the same address. A CA is likely to
maintain such a log in any case so this is unlikely to be an extra burden.

Discussion. Regarding the dap property, asking that the key sk∗ returned by the
extractor DS.Ex be equal to sk may seem unnecessarily strong. It might suffice
if sk∗ was “functionally equivalent” to sk, allowing computation of signatures
that could not be distinguished from real ones. Such a property is considered
in PS [16]. Formalizing it would require adding another security game based on
indistinguishability. As our schemes (as well as the ones from [15,16]) achieve
the simpler and stronger property we have defined, we adopt it in our definition.

The dap game chooses the keys vk, sk honestly. Allowing these to be adversar-
ially chosen would result in a stronger requirement, also formalized in PS [15,16].
Our view is that our (weaker) requirement is appropriate for the application we
envision because the CA does not wish to create rogue certificates and has no
incentive to create keys allowing it, and the court order happens after the CA
and its keys are established, so that key establishment is honest.

5 Our ID to DAPS Transforms

We specify and analyze our two generic transformations, H2 and ID2, of trap-
door identification schemes to DAPS. Both deliver efficient DAPS, signature
sizes being somewhat smaller in the second case.

Efficient Double-Authentication-Preventing Signatures 133

5.1 The Double-Hash Transform

The construction. Let ID be a trapdoor identification scheme. Our H2 (dou-
ble hash) transform associates to it, a supported challenge length cl ∈ ID.clS,
and a seed length sl ∈ N, a DAPS DS = H2[ID, cl, sl]. The algorithms of DS are
defined in Fig. 5. We give some intuition on the design. In the signing algorithm,
we specify the commitment Y as a hash of the address, i.e., messages with the
same address result in transcripts with the same commitment. We then specify
the challenge c as a hash of the message (i.e., address and payload) and a random
seed. Signatures consist of the seed and the corresponding response. Concerning
the extractability property, observe that the ID.Ex algorithm, when applied to
colliding signature transcripts, reveals isk but not itk, whereas DAPS extraction
needs to recover both, i.e., the full secret key sk = (isk, itk). We resolve this
by putting in the verification key a particular encryption, denoted ITK , of itk,
under isk (we assume itk can be encoded in tl bits).

The scheme uses random oracles H(·, {0, 1}tl), H(·, ID.CS(ivk, cl)) and H(·,
{0, 1}cl). For simplicity it is assumed that the three range sets involved here are
distinct, which makes the random oracles independent. If the range sets are not
distinct, the scheme must be modified to use domain separation [4] in calling
these oracles. This can be done simply by prefixing the query to the i-th oracle
with i (i = 1, 2, 3 for our three oracles).

H2[ID, cl, sl].KgH

(ivk, isk, itk) ←$ ID.Kg
ITK ← itk ⊕ H(isk, {0, 1}tl)
vk ← (ivk, ITK) ; sk ← (isk, itk)
Return (vk, sk)

H2[ID, cl, sl].ExH(vk, m1, m2, σ1, σ2)

(ivk, ITK) ← vk
For i = 1, 2 do

(ai, pi) ← mi ; (zi, si) ← σi

Yi ← H(ai, ID.CS(ivk, cl))
ci ← H(ai‖pi‖si, {0, 1}cl)

isk∗ ← ID.Ex(ivk, Y1‖c1‖z1, Y2‖c2‖z2)
itk∗ ← H(isk∗, {0, 1}tl) ⊕ ITK
sk∗ ← (isk∗, itk∗) ; Return sk∗

H2[ID, cl, sl].SigH(vk, sk, m)

(ivk, ITK) ← vk ; (isk, itk) ← sk
(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
y ←$ ID.Cmt−1(ivk, itk, Y, cl)
c ← H(a‖p‖s, {0, 1}cl)
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

H2[ID, cl, sl].VfH(vk, m, σ)

(ivk, ITK) ← vk ; (a, p) ← m ; (z, s) ← σ
Y ← H(a, ID.CS(ivk, cl))
c ← H(a‖p‖s, {0, 1}cl)
Return ID.Vf(ivk, Y ‖c‖z)

Fig. 5. Our construction of a DAPS H2[ID, cl, sl] from a trapdoor identification scheme
ID, a challenge length cl ∈ ID.clS, and a seed length sl ∈ N.

DAP security of our construction. The following confirms that double
authentication prevention is achieved. We model H as a random oracle.

134 M. Bellare et al.

Theorem 1. Let DAPS DS = H2[ID, cl, sl] be obtained from trapdoor iden-
tification scheme ID, challenge length cl, and seed length sl as above. Let A
be an adversary making q ≥ 2 distinct H(·, {0, 1}cl) queries. If ID has perfect
extractability then

Advdap
DS (A) ≤ q(q − 1)/2cl+1.

Proof (Theorem 1). In game Gdap
DS (A) of Fig. 4, consider the execution of

the algorithm DS.ExH of Fig. 5 on vk,m1,m2, σ2, σ2 where (m1,m2, σ1, σ2) ←$

AH(vk, sk). Let Y1‖c1‖z1, Y2‖c2‖z2 be the transcripts computed within. Assume
σ1, σ2 are valid signatures of m1,m2, respectively, relative to vk = (ivk, ITK).
As per the verification algorithm DS.VfH of Fig. 5 this means that the tran-
scripts Y1‖c1‖z1, Y2‖c2‖z2 are valid under the ID scheme, meaning ID.Vf(ivk,
Y1‖c1‖z1) = ID.Vf(ivk, Y2‖c2‖z2) = true. If the messages m1 = (a1, p1) and
m2 = (a2, p2) output by A are colliding then we also have Y1 = Y2. This is
because a1 = a2 and verification ensures that Y1 = H(a1, ID.CS(ivk, cl)) and Y2

= H(a2, ID.CS(ivk, cl)). So if c1 �= c2 then the extraction property of ID ensures
that isk∗ = isk. If so, we also can obtain itk∗ = itk, so that the full secret
key sk = (isk, itk) is recovered. So Advdap

DS (A) is at most the probability that
the challenges are equal even though the payloads are not. But the challenges
are outputs of H(·, {0, 1}cl), to which the game makes at most q queries. So the
probability that these challenges collide is at most q(q − 1)/2cl+1. ��

We note this proof does not essentially rely on H being a random oracle.

Unforgeability of our construction. The following shows that the
restricted unforgeability of our DAPS tightly reduces to the cimp-uu plus kr
security of the underlying ID scheme. As before we model H as a random oracle.

Theorem 2. Let DAPS DS = H2[ID, cl, sl] be obtained from trapdoor identi-
fication scheme ID, challenge length cl, and seed length sl as in Fig. 5. Let A
be a uf adversary against DS and suppose the number of queries that A makes
to its H(·, {0, 1}tl), H(·, ID.CS(ivk, cl)), H(·, {0, 1}cl), Sign oracles are, respec-
tively, q1, q2, q3, qs. Then from A we can construct cimp-uu adversary P and kr
adversary I such that

Advuf
DS(A) ≤ Advcimp-uu

ID (P) + Advkr-pa
ID (I) +

qs(2q3 + qs − 1)
2sl+1

.

Adversaries P, I make q2 + qs + 1 queries to Tr. Adversary P makes q3 queries
to Ch. The running time of adversary P is about that of A. The running time
of adversary I is that of A plus the time for q1 executions of ID.KVf.

Proof (Theorem 2). We assume that A avoids certain pointless behavior that
would only cause it to lose. Thus, we assume that, in the messages it queries to
Sign, the addresses are all different. Also we assume it did not query to Sign

the message m in the forgery (m,σ) that it eventually outputs. The two together
mean that the sets A,M in game Guf

DS(A), and the code and checks associated

Efficient Double-Authentication-Preventing Signatures 135

Game G0/G1

(ivk, isk, itk) ←$ ID.Kg
ITK ← itk ⊕ H(isk, {0, 1}tl)
vk ← (ivk, ITK)
(m, σ) ←$ ASign,H(vk)
Return DS.VfH(vk, m, σ)

H(x, Rng)

If (not HT[x, Rng]):
HT[x, Rng] ←$ Rng

Return HT[x, Rng]

Sign(m)

(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
y ←$ ID.Cmt−1(ivk, itk, Y, cl)
If (not HT[a‖p‖s, {0, 1}cl]):

HT[a‖p‖s, {0, 1}cl] ←$ {0, 1}cl

Else
bad ← true
HT[a‖p‖s, {0, 1}cl] ←$ {0, 1}cl

c ← HT[a‖p‖s, {0, 1}cl]
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Game G2 /G3

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
(m, σ) ←$ ASign,H(vk)
Return DS.VfH(vk, m, σ)

H(x, Rng)

If (not HT[x, Rng]):
HT[x, Rng] ←$ Rng
If ((Rng = {0, 1}tl) ∧ (x = isk)):

bad ← true ; HT[x, Rng] ← ITK ⊕ itk
Return HT[x, Rng]

Sign(m)

(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
y ←$ ID.Cmt−1(ivk, itk, Y, cl)
c ←$ {0, 1}cl

HT[a‖p‖s, {0, 1}cl] ← c
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Fig. 6. Games for proof of Theorem 2. Games G1, G2 include the boxed code and
games G0, G3 do not.

with them, are redundant and can be removed. We will work with this simplified
form of the game, that we call G0.

Identical-until-bad games G0,G1 of Fig. 6 move us to allow picking a random
seed in responding to a Sign query, regardless of whether the corresponding
hash table entry was defined or not. We have

Advuf
DS(A) = Pr[G0] = Pr[G1] + Pr[G0] − Pr[G1]

≤ Pr[G1] + Pr[G0 sets bad],

where the inequality is by the Fundamental Lemma of Game Playing of [5]. The
random choice of s made by procedure Sign ensures

Pr[G0 sets bad] ≤
qs−1∑
i=0

q3 + i

2sl
=

qs(2q3 + qs − 1)
2sl+1

.

Now we need to bound Pr[G1]. We start by considering whether the cipher-
text ITK = itk ⊕ H(isk, {0, 1}tl) helps A over and above access to Sign. Con-
sider the games G2,G3 of Fig. 6. They pick ITK directly at random rather

136 M. Bellare et al.

than as prescribed in the scheme. However, via the boxed code that it con-
tains, game G2 compensates, replying to H(·, {0, 1}tl) queries in such a way that
ITK = itk ⊕ H(isk, {0, 1}tl). Thus G2 is equivalent to G1. Game G3 omits the
boxed code, but the games are identical-until-bad. So we have

Pr[G1] = Pr[G2] = Pr[G3] + Pr[G2] − Pr[G3]
≤ Pr[G3] + Pr[G3 sets bad], (1)

where again the inequality is by the Fundamental Lemma of Game Playing of [5].
Now we have two tasks, namely to bound Pr[G3] and to bound Pr[G3 sets bad].
The first corresponds to showing A cannot forge if ciphertext ITK is random,
and the second corresponds to showing that changing the ciphertext to random
makes little difference. The first relies on the cimp-uu security of ID, the second
on its kr security.

To bound Pr[G3], consider game G4 of Fig. 7. It moves us towards using
cimp-uu by generating conversation transcripts Yi‖ci‖zi and having Sign use
these. We have

Pr[G3] = Pr[G4].

We build cimp-uu adversary P so that

Pr[G4] ≤ Advcimp-uu
ID (P).

The construction of P is described in detail in Fig. 8. The idea is as follows.
Adversary P uses its transcript oracle Tr to generate the transcripts that G4

generates directly. It can then simulate A’s Sign oracle as per game G4. Sim-
ulation of H(·,Rng) is done directly as in the game for Rng = {0, 1}tl and
Rng = ID.CS(ivk, cl). When a query x is made to H(·, {0, 1}cl), adversary P
parses x as a‖p‖s, sends the index of the corresponding Tr query to its chal-
lenge oracle Ch to get back a challenge, and returns this challenge as the response
to the oracle query. Finally when A produces a forgery, the response in the cor-
responding signature is output as an impersonation that is successful as long as
the forgery was valid.

To bound Pr[G3 setsbad], consider game G5 of Fig. 7. It answers Sign queries
just like G4, and the only modification in answering H queries is to keep track
of queries to H(·, {0, 1}tl) in the set T . The game ignores the forgery, returning
true if isk was queried to H(·, {0, 1}tl). We have

Pr[G3 sets bad] = Pr[G5].

We build I so that
Pr[G5] ≤ Advkr-pa

ID (I).

The idea is simple, namely that if the adversary queries isk to H(·, {0, 1}tl) then
we can obtain isk by watching the oracle queries of A. The difficulty is that, to
run A, one first has to simulate answers to Sign queries using transcripts, and it
is to enable this that we moved to G5. Again the game was crafted to make the
construction of adversary I quite direct. The construction is described in detail

Efficient Double-Authentication-Preventing Signatures 137

Game G4

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi) ←$ ID.Cmt(ivk, cl)
ci ←$ {0, 1}cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i2 ← 0
(m, σ) ←$ ASign,H(vk)
(a, p) ← m ; (z, s) ← σ
Y ← H(a, ID.CS(ivk, cl))
c ← H(a‖p‖s, {0, 1}cl)
Return ID.Vf(ivk, Y ‖c‖z)

Game G5

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi) ←$ ID.Cmt(ivk, cl)
ci ←$ {0, 1}cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i2 ← 0 ; T ← ∅
(m, σ) ←$ ASign,H(vk)
Return (isk ∈ T)

Sign(m) // G4, G5

(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
i ← Ind2(a)
HT[a‖p‖s, {0, 1}cl] ← ci

σ ← (zi, s) ; Return σ

H(x, Rng) // G4

If (not HT[x, Rng]):
HT[x, Rng] ←$ Rng
If (Rng = {0, 1}cl):

HT[x, Rng] ←$ {0, 1}cl

If (Rng = ID.CS(ivk, cl)):
i2 ← i2 +1 ; HT[x, Rng] ← Yi2 ; Ind2(x) ← i2

Return HT[x, Rng]

H(x, Rng) // G5

If (not HT[x, Rng]):
HT[x, Rng] ←$ Rng
If (Rng = {0, 1}tl):

T ← T ∪ {x}
If (Rng = ID.CS(ivk, cl)):

i2 ← i2 +1 ; HT[x, Rng] ← Yi2 ; Ind2(x) ← i2
Return HT[x, Rng]

Fig. 7. More games for the proof of Theorem 2.

in Fig. 8. The simulation of the Sign oracle is as before. The simulation of H

is more direct, following game G5 rather than invoking the Ch oracle. When A
returns its forgery, the set T contains candidates for the identification secret key
isk. Adversary I now verifies each candidate using the key-verification algorithm
of the identification scheme, returning a successful candidate if one exists. ��

5.2 The Double-ID Transform

Our ID2 transform roughly maintains signing and verifying time compared to
H2 but signatures are shorter, consisting of an ID response plus one bit. Since
the verifier can try both possibilities for this bit, if one is willing to double the
verification time, even this bit is expendable.

The construction. Our construction assumes two main ingredients: The first
is a trapdoor identification scheme ID that is commitment recovering, has unique
responses, and simultaneously supports challenge lengths 1 and cl � 1. For the
choice of cl we further assume |ID.RS(ivk, 1)| = |ID.CS(ivk, cl)| for all ivk, i.e.,

138 M. Bellare et al.

Adversary PTr,Ch(ivk)

ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi) ←$ Tr(cl)
i2 ← 0 ; j ← 0
(m, σ) ←$ ASign,H(vk)
(a, p) ← m ; (z, s) ← σ
Y ← H(a, ID.CS(ivk, cl))
c ← H(a‖p‖s, {0, 1}cl)
k ← Ind3(a‖p‖s)
Return (k, z)

Adversary ITr(ivk)

ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi) ←$ Tr(cl)
i2 ← 0 ; T ← ∅ ; j ← 0
(m, σ) ←$ ASign,H(vk)
For all x ∈ T do

If ID.KVf(ivk, x):
Return x

Return ⊥

Sign(m) // P, I
(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
i ← Ind2(a)
HT[a‖p‖s, {0, 1}cl] ← ci

σ ← (zi, s) ; Return σ

H(x, Rng) // P
If (not HT[x, Rng]):

HT[x, Rng] ←$ Rng
If (Rng = {0, 1}cl):

a‖p‖s ← x ; Y ← H(a, ID.CS(ivk, cl))
l ← Ind2(a) ; j ← j + 1 ; c ←$ Ch(l)
Ind3(x) ← j ; HT[x, Rng] ← c

If (Rng = ID.CS(ivk, cl)):
i2 ← i2+1; HT[x, Rng] ← Yi2 ; Ind2(x) ← i2

Return HT[x, Rng]

H(x, Rng) // I
If (not HT[x, Rng]):

If (Rng = {0, 1}tl): T ← T ∪ {x}
If (Rng = ID.CS(ivk, cl)):

i2 ← i2+1; HT[x, Rng] ← Yi2 ; Ind2(x) ← i2
Return HT[x, Rng]

Fig. 8. Adversaries for proof of Theorem 2.

the response space for 1-bit challenges has the same cardinality as the commit-
ment space for cl-bit challenges. The second component is a random bijection Π
(cf. Sect. 2) between sets ID.RS(ivk, 1) and ID.CS(ivk, cl), i.e., oracle Π+1 imple-
ments a random mapping from ID.RS(ivk, 1) to ID.CS(ivk, cl) and oracle Π−1

implements its inverse. In Sect. 6 we discuss trapdoor ID schemes that fulfill
these requirements and show how random bijections with the required domain
and range can be obtained.

The details of the ID2 transform are specified in Fig. 9. We write H1(·)
shorthand for H(·, ID.CS(ivk, 1)), and H2(·, ·) shorthand for H((·, ·), {0, 1}cl). As
in Sect. 5.1 we assume these random oracles are independent. Key generation is
as in H2. Signing works as follows: First a commitment Y1 ← H1(a) is derived
from the address using a random oracle that maps to the commitment space
ID.CS(ivk, 1), then a random 1-bit challenge c1 is picked and the corresponding
response z1 of the ID scheme computed. Using bijection Π+1, response z1 is
mapped to a commitment Y2 ∈ ID.CS(ivk, cl). A corresponding cl-bit challenge
is derived from the address and the payload per c2 ← H2(a, p). The DAPS sig-
nature consists of the response z2 corresponding to Y2 and c2, together with the
one-bit challenge c1. Signatures are verified using the commitment recovery algo-
rithm ID.Rsp−1 to recover Y2 from z2, computing z1 ← Π−1(Y2), recovering Y1

Efficient Double-Authentication-Preventing Signatures 139

ID2[ID, cl].KgH,Π±1

(ivk, isk, itk) ←$ ID.Kg
ITK ← itk ⊕ H(isk, {0, 1}tl)
vk ← (ivk, ITK) ; sk ← (isk, itk)
Return (vk, sk)

ID2[ID, cl].ExH,Π±1
(vk, m1, m2, σ1, σ2)

(ivk, ITK) ← vk
For i = 1, 2 do

(ai, pi) ← mi // a1 = a2 ∧ p1 �= p2

(c1,i, z2,i) ← σi ; c2,i ← H2(ai, pi)
Y2,i ← ID.Rsp−1(ivk, c2,i, z2,i)
T2,i ← Y2,i‖c2,i‖z2,i

z1,i ← Π−1(Y2,i)
Y1,i ← ID.Rsp−1(ivk, c1,i, z1,i)
T1,i ← Y1,i‖c1,i‖z1,i

If Y2,1 = Y2,2:
If c2,1 = c2,2: Return ⊥
isk∗ ←$ ID.Ex(ivk, T2,1, T2,2)

Else: // Y1,1 = Y1,2 ∧ c1,1 �= c1,2

isk∗ ←$ ID.Ex(ivk, T1,1, T1,2)
itk∗ ← H(isk∗, {0, 1}tl) ⊕ ITK
sk∗ ← (isk∗, itk∗) ; Return sk∗

ID2[ID, cl].SigH,Π±1
(vk, sk, m)

(ivk, ITK) ← vk ; (isk, itk) ← sk
(a, p) ← m
Y1 ← H1(a) ; c1 ←$ {0, 1}
y1 ←$ ID.Cmt−1(ivk, itk, Y1, 1)
z1 ← ID.Rsp(ivk, isk, c1, y1)
Y2 ← Π+1(z1) ; c2 ← H2(a, p)
y2 ←$ ID.Cmt−1(ivk, itk, Y2, cl)
z2 ← ID.Rsp(ivk, isk, c2, y2)
σ ← (c1, z2) ; Return σ

ID2[ID, cl].VfH,Π±1
(vk, m, σ)

(ivk, ITK) ← vk ; (a, p) ← m
(c1, z2) ← σ ; c2 ← H2(a, p)
Y2 ← ID.Rsp−1(ivk, c2, z2)
z1 ← Π−1(Y2)
Y1 ← ID.Rsp−1(ivk, c1, z1)
Return (Y1 = H1(a))

Fig. 9. Our construction of a DAPS ID2[ID, cl] from a trapdoor identification scheme
ID, where {1, cl} ⊆ ID.clS.

from c1 and z1 (again using the commitment recovery algorithm), and comparing
with H1(a). Extraction algorithm DS.Ex works in the obvious way.

DAP security. The ID2 construction achieves double authentication preven-
tion, as the following result confirms. The proof relies on the extractability prop-
erty of the ID scheme twice: once for each challenge length. We model H as a
random oracle as usual. Nothing is assumed of Π other than it being a bijection.

Theorem 3. Let DAPS DS = ID2[ID, cl] be obtained from trapdoor identifica-
tion scheme ID and challenge length cl as above. Let A be an adversary making
at most q queries to the H2(·) = H(·, {0, 1}cl) oracle. If ID has unique responses
and perfect extractability, then Advdap

DS (A) ≤ q(q − 1)/2cl+1.

Proof (Theorem 3). Assume, in experiment Gdap
DS (A), that the adversary out-

puts message-signature pairs (m1, σ1) and (m2, σ2) such that for i ∈ {1, 2}
we have DS.Vf(vk,mi, σi) = true. The latter implies for mi = (ai, pi) and
σi = (c1,i, z2,i) that for recoverable values z1,i, Y2,i and the corresponding
transcripts T1,i = H1(ai)‖c1,i‖z1,i and T2,i = Y2,i‖H2(ai, pi)‖z2,i we have
ID.Vf(ivk, T1,i) = ID.Vf(ivk, T2,i) = true and Y2,i = Π+1(z1,i). Assume a1 = a2

and p1 �= p2. We have either c1,1 �= c1,2 or c1,1 = c1,2. In the former case, the
two transcripts T1,1, T1,2 have the same commitment but different challenges.

140 M. Bellare et al.

This allows us to extract the secret key via the extractability property of ID;
further, by decrypting ITK we can recover itk, as required. Consider thus the
case c1,1 = c1,2 which implies z1,1 = z1,2 and Y2,1 = Y2,2 by the unique response
property of ID. If H2(a1, p1) �= H2(a2, p2) we can extract isk, itk from the two
transcripts T2,1, T2,2 as above. As p1 �= p2 and H is a random oracle, the proba-
bility for H2(a1, p1) = H2(a2, p2) is q(q − 1)/2cl+1. ��

Game G0 / G1

(ivk, isk, itk) ←$ ID.Kg
ITK ← itk ⊕ H(isk, {0, 1}tl)
vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

Return DS.VfH,Π±1
(vk, m, σ)

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
Return HT[x, Rng]

Π+1(z1)

If z1 ∈ dom(PT): Return PT+1(z1)
Y2 ←$ ID.CS(ivk, cl)
If Y2 ∈ rng(PT): bad ← 1

Y2 ←$ ID.CS(ivk, cl) \ rng(PT)
PT ← PT ∪ {(z1, Y2)}
Return PT+1(z1)

Sign(m)

(a, p) ← m
Y1 ← H1(a) ; c1 ←$ {0, 1}
y1 ←$ ID.Cmt−1(ivk, itk, Y1, 1)
z1 ← ID.Rsp(ivk, isk, c1, y1)
Y2 ← Π+1(z1) ; c2 ← H2(a, p)
y2 ←$ ID.Cmt−1(ivk, itk, Y2, cl)
z2 ← ID.Rsp(ivk, isk, c2, y2)
σ ← (c1, z2) ; Return σ

Π−1(Y2)

If Y2 ∈ rng(PT): Return PT−1(Y2)
z1 ←$ ID.RS(ivk, 1)
If z1 ∈ dom(PT): bad ← 1

z1 ←$ ID.RS(ivk, 1) \ dom(PT)
PT ← PT ∪ {(z1, Y2)}
Return PT−1(Y2)

Fig. 10. Games G0, G1 for proof of Theorem 4. Game G0 includes the boxed code and
game G1 does not.

Unforgeability. The following establishes that if the ID scheme offers cimp-uc
and kr security, then ID2 transforms it into an unforgeable DAPS. Here we
model H as a random oracle and Π as a public random bijection.

Theorem 4. Let DAPS DS = ID2[ID, cl] be obtained from trapdoor identifica-
tion scheme ID as in Fig. 9. Let N = min |ID.CS(ivk, cl)| where the minimum is
over all (ivk, isk, itk) ∈ [ID.Kg]. Let A be a uf adversary against DS and suppose
the number of queries that A makes to its H(·, {0, 1}tl), H(·, ID.CS(ivk, 1)), H(·,
{0, 1}cl), Π±1, Sign oracles are, respectively, q1, q2, q3, q4, qs. Then from A we
can construct dap adversary A′, kr adversary I and cimp-uc adversaries P1,P2

such that

Advuf
DS(A) ≤ Advdap

DS (A′) + Advkr-pa
ID (I)

+ 2Advcimp-uc
ID (P1) + 2Advcimp-uc

ID (P2) +
(q4 + qs)2

2N
.

Efficient Double-Authentication-Preventing Signatures 141

Adversaries I,P1,P2 make q2+q3+q4+qs queries to Tr, and adversaries P1,P2

make one query to Ch. Beyond that, the running time of A′,P1,P2 is about that
of A, and the running time of I is that of A plus the time for q1 executions of
ID.KVf.

Game G2

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

Return DS.VfH,Π±1
(vk, m, σ)

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
If Rng = {0, 1}tl:

If ID.KVf(ivk, x): bad1 ← 1
If x = isk: HT[x, Rng] ← ITK ⊕ itk

If Rng = ID.CS(ivk, 1):
Y1[x]‖c1[x]‖z1[x] ←$ Transc(1)
HT[x, Rng] ← Y1[x]

If Rng = {0, 1}cl:
Y2[x]‖c2[x]‖z2[x] ←$ Transc(cl)
HT[x, Rng] ← c2[x]

Return HT[x, Rng]

Algorithm Transc(cl)
(Y, y) ←$ ID.Cmt(ivk, cl)
c ←$ {0, 1}cl

z ← ID.Rsp(ivk, isk, c, y)
Return Y ‖c‖z

Sign(m)

(a, p) ← m
If ∃z ∈ dom(PT) s.t.

ID.Vf(ivk, Y1[a]‖0‖z) or
ID.Vf(ivk, Y1[a]‖1‖z): bad2 ← 1

If z1[a] ∈ dom(PT):
Y2 ← PT+1(z1[a]) ; c2 ← H2(a, p)
y2 ←$ ID.Cmt−1(ivk, itk, Y2, cl)
z2 ← ID.Rsp(ivk, isk, c2, y2)

Else:
Y2 ← Y2[a, p] ; z2 ← z2[a, p]
PT ← PT ∪ {(z1[a], Y2)}

σ ← (c1[a], z2) ; Return σ

Π+1(z1)

If z1 ∈ dom(PT): Return PT+1(z1)
Y2[z1]‖c2[z1]‖z2[z1] ←$ Transc(cl)
PT ← PT ∪ {(z1, Y2[z1])}
Return PT+1(z1)

Π−1(Y2)

If Y2 ∈ rng(PT): Return PT−1(Y2)
z1 ←$ ID.RS(ivk, 1)
PT ← PT ∪ {(z1, Y2)}
Return PT−1(Y2)

Fig. 11. Game G2 for proof of Theorem 4.

Proof (Theorem 4). In the proof, we handle queries to the random bijection Π
(with oracles Π+1 and Π−1) via lazy sampling and track input-output pairs
using a table PT. Notation-wise we consider PT ⊆ ID.RS(ivk, 1)× ID.CS(ivk, cl)
a binary relation to which a mapping of the form Π+1(α) = β or, equivalently,
Π−1(β) = α can be added by assigning PT ← PT ∪ {(α, β)}. We use functional
expressions for table look-up, e.g., whenever (α, β) ∈ PT we write PT+1(α) = β
and PT−1(β) = α. We annotate the domain of PT with dom(PT) = {α : (α, β) ∈
PT for some β}, and its range with rng(PT) = {β : (α, β) ∈ PT for some α}.

Without loss of generality we assume from A the following behavior: (a) if A
outputs a forgery attempt (m,σ) then σ was not returned by Sign on input m;
(b) A does not query Sign twice on the same address; (c) for all messages
m = (a, p), A always queries H1(a) before H2(a, p); further, A always queries

142 M. Bellare et al.

H2(a, p) before querying Sign(m); (d) before outputting a forgery attempt, A
makes all random oracle and random bijection queries required by the verifi-
cation algorithm to verify the signature. We further may assume that A does
not forge on an address a for which it queried a signature before: Otherwise,
by DAP security, the adversary could extract the secret key and forge also on a
fresh address; this is accounted for by the Advdap

DS (A′) term in the theorem state-
ment. The correspondingly simplified form of the Guf

DS(A) game is given as G0

in Fig. 10. (Note that queries to Π+1 and Π−1 are expected to be answered
with elements drawn uniformly at random from ID.CS(ivk, cl) \ rng(PT) and
ID.RS(ivk, 1) \ dom(PT), respectively, and that our implementation does pre-
cisely this, though in an initially surprising form).

Observe that in G0 the flag bad is set when resampling is required in the
processing of Π+1 and Π−1. The probability that this happens is at most (0 +
1+. . .+(q4+qs−1))/N , where N is the minimum cardinality of the commitment
space for challenge length cl, as defined in the theorem statement. We define game
G1 like G0 but with the resampling steps in the Π+1 and Π−1 oracles removed.
We obtain

Pr[G0] = Pr[G1] +
(q4 + qs)2 − (q4 + qs)

2N
.

Consider next game G2 from Fig. 11. It is obtained from G1 by applying
the following rewriting steps. First, instead of computing ITK by evaluating
itk⊕H(isk, {0, 1}tl) it picks ITK at random and programs random oracle H such
that relation ITK = itk⊕H(isk, {0, 1}tl) is maintained. Second, the way random
oracle queries of the form H(x, ID.CS(ivk, 1)) and H(x, {0, 1}cl) are processed is
changed: Now, the internal Transc algorithm is invoked to produce full identi-
fication transcripts for the corresponding challenge length; the H oracle outputs
one component of these transcripts and keeps the other components for itself.
Also the implementation of Π+1 is modified to use the Transc algorithm.

Concerning the Sign oracle, observe that G1 samples challenge c1 and derives
corresponding y1 and z1 values by itself. In G2, as we assume that H1(a) is always
queried before Sign(a, p), and as the H1(a) implementation now internally pre-
pares a full transcript, the c1, y1, z1 values from this transcript generation can
be used within the Sign oracle. That is, we replace the first invocations of
ID.Cmt−1 and ID.Rsp in Sign of G1 by the assignments Y1 ← Y1[a], y1 ← y1[a],
c1 ← c1[a], and z1 ← z1[a] in G2. (Note that this works only because we also
assume that Sign is not queried more than once on the same address.) Con-
sider next the assignment Y2 ← Π+1(z1) of Sign in G1 (which now would be
annotated Y2 ← Π+1(z1[a])) and the fact that Y2 is completed by Sign to a
transcript with challenge c2[a, p]. In the evaluation of Π+1(z1), two cases can be
distinguished: either the query is ‘old’, i.e., z1 ∈ dom(PT), in which case Sign

proceeds its computations using the stored commitment Y2 = PT+1(z1), or the
query is ‘fresh’, i.e., z1 /∈ dom(PT), in which case a new value Y2 is sampled from
ID.CS(ivk, cl). In both cases Sign completes Y2 to a full transcript with challenge
H2(a, p) = c2[a, p]. As we assume that each Sign(a, p) query is preceded by a
H2(a, p) query, and the latter internally generates a full transcript with challenge
c2[a, p], similarly to what we did for the values Y1, y1, c1, z1 above, in the case of

Efficient Double-Authentication-Preventing Signatures 143

a ‘fresh’ Π+1(z1) query game G2 sets Y2 ← Y2[a, p], y2 ← y2[a, p], c2 ← c2[a, p],
and z2 ← z2[a, p]. The two described cases correspond with the two branches of
the second If-statement in Sign of Fig. 11.

The remaining changes between G1 and G2 concern the two added flags bad1
and bad2 and can be ignored for now. Thus all changes between games G1 and G2

are pure rewriting, so we obtain

Pr[G1] = Pr[G2].

Consider next in more detail the flags bad1 and bad2 that appear in game G2.
The former is set whenever a value is queried to H(·, {0, 1}tl) that is a valid
secret identification key for verification key ivk, and the latter is set when Sign

is queried on some address a and the domain of PT contains an element that
is a valid response for commitment Y1[a] and one of the two possible challenges
c1 ∈ {0, 1}. Observe that any use of itk in H is preceded by setting bad1 ← 1,
and that any execution of the first branch of the second If-statement of Sign

in G2 is preceded by setting bad2 ← 1.
We’d like to proceed the proof by bounding the probabilities Pr[G2 sets bad1]

and Pr[G2 sets bad2] (based on the hardness of key recovery and cimp-uc imper-
sonation, respectively). However, the following technical problem arises: While in
the two corresponding reductions we would be able to simulate the Transc algo-
rithm with the Tr oracle, when aiming at bounding the probability of bad1 ← 1
it would be unclear how to simulate the Sign oracle (that uses isk and itk in
the first If-branch), and when aiming at bounding the probability of bad2 ← 1 it
would be unclear how to simulate the H oracle (that uses itk in the Rng = {0, 1}tl
branch). We help ourselves by defining the following three complementary events:
(a) neither bad1 nor bad2 is set, (b) bad1 is set before bad2 (this includes the
case that bad2 is not set at all), and (c) bad2 is set before bad1 (this includes the
case that bad1 is not set at all). In Fig. 12 we construct a kr adversary I and a
cimp-uc adversary P1 from A such that

Pr[G2 sets bad1 first] = Advkr-pa
ID (I)

and
Pr[G2 sets bad2 first] = 2Advcimp-uc

ID (P1).

The strategy for constructing the adversaries is clear: We derive I from G2

by stripping off all code that is only executed after bad2 is set, and we construct
P1 by removing all code only executed after bad1 is set. The P1-related code in
Sign deserves further explanation. The reduction obtained commitment Y1[a]
via H from the Tr oracle of the cimp-uc game, together with challenge c1[a]
and response z1[a]. As at the time the bad2 flag is set in G2 no information on
c1[a] was used in the game or exposed to the adversary, for the challenge c∗ for
which ID.Vf(ivk, Y1[a]‖c∗‖z) = true we have that c∗ �= c1[a] with probability 1/2.
The reduction thus tries to break cimp-uc security with challenge 1 − c1[a] and
response z. Whenever this challenge is admissible (i.e., with probability 1/2),
the response is correct. That is, P1 is successful with breaking impersonation
with half the probability of A having flag bad2 be set first.

144 M. Bellare et al.

In Fig. 13 we define game G3 which behaves exactly like G2 until either bad1
or bad2 is set. Thus we have

Pr[G2 sets neither bad1 nor bad2] = Pr[G3].

In G3 we expand the DS.Vf algorithm, i.e., the steps where the forgery attempt
of A is verified. If signature σ = (c1, z2) is identified as valid, the game sets flag
bad to 1 if c1 �= c1[a], i.e., if the challenge c1 included in the signature does not
coincide with the one simulated in the H oracle for address a. Using the assump-
tion that A does not forge on addresses a for which it posed a Sign(a, ·) query,
observe that the game did not release any information on c1[a], so by an infor-
mation theoretic argument, c1 �= c1[a] and thus bad ← 1 with probability 1/2.

In Fig. 13 we construct a cimp-uc adversary P2 from A that is successful
whenever bad is set in game G3. We obtain

Pr[G3] = 2Advcimp-uc
ID (P2).

Taken together, the established bounds imply the theorem statement. ��

Adversary ITr(ivk)

ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

Output ⊥ and stop

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
If Rng = {0, 1}tl: // only I

If ID.KVf(ivk, x): // only I
Output x and stop // only I

If Rng = ID.CS(ivk, 1):
as in G2

If Rng = {0, 1}cl:
as in G2

Return HT[x, Rng]

Algorithm Transc(cl)
Y ‖c‖z ←$ Tr(cl)
Return Y ‖c‖z

Adversary PTr,Ch

1 (ivk)

ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

Output ⊥ and stop

Sign(m)

(a, p) ← m
If ∃z ∈ dom(PT) s.t. // only P1

ID.Vf(ivk, Y1[a]‖0‖z) or // only P1

ID.Vf(ivk, Y1[a]‖1‖z): // only P1

Ch(#Y1[a], 1 − c1[a]) // only P1

Output (1, z) and stop // only P1

Y2 ← Y2[a, p] ; z2 ← z2[a, p]
PT ← PT ∪ {(z1[a], Y2)}
σ ← (c1[a], z2) ; Return σ

Π+1(z1)/Π−1(Y2)

as in G2

Fig. 12. Adversaries for proof of Theorem 4. The oracles and the Transc implemen-
tation are shared by both adversaries. In Sign, we write #Y1[a] for the number of the
Tr query in which the value of Y1[a] was established.

Efficient Double-Authentication-Preventing Signatures 145

Game G3

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

(a, p) ← m ; (c1, z2) ← σ
Y2 ← ID.Rsp−1(ivk, c2[a, p], z2)
z1 ← Π−1(Y2)
Y1 ← ID.Rsp−1(ivk, c1, z1)
If Y1 �= Y1[a]: Return false
If c1 �= c1[a]: bad ← 1
Return true

Sign(m)

(a, p) ← m
If ∃z ∈ dom(PT) s.t.

ID.Vf(ivk, Y1[a]‖0‖z) or
ID.Vf(ivk, Y1[a]‖1‖z): bad2 ← 1

PT ← PT ∪ {(z1[a], Y2[a, p])}
σ ← (c1[a], z2[a, p]) ; Return σ

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
If Rng = {0, 1}tl:

If ID.KVf(ivk, x): bad1 ← 1
If Rng = ID.CS(ivk, 1):

Y1[x]‖c1[x]‖z1[x] ←$ Transc(1)
HT[x, Rng] ← Y1[x]

If Rng = {0, 1}cl:
Y2[x]‖c2[x]‖z2[x] ←$ Transc(cl)
HT[x, Rng] ← c2[x]

Return HT[x, Rng]

Π+1(z1)/Π−1(Y2)

as in G2

Algorithm Transc(cl)
as in G2

Adversary PTr,Ch

2 (ivk)

ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

(a, p) ← m ; (c1, z2) ← σ
Y2 ← ID.Rsp−1(ivk, c2[a, p], z2)
z1 ← Π−1(Y2)
Y1 ← ID.Rsp−1(ivk, c1, z1)
If Y1 �= Y1[a]: Return ⊥
If c1 �= c1[a]:

Ch(#Y1[a], c1)
Output (1, z1) and stop

Return ⊥
Algorithm Transc(cl)

Y ‖c‖z ←$ Tr(cl)
Return Y ‖c‖z

Sign(m)

(a, p) ← m
PT ← PT ∪ {(z1[a], Y2[a, p])}
σ ← (c1[a], z2[a, p]) ; Return σ

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
If Rng = ID.CS(ivk, 1):

as in G3

If Rng = {0, 1}cl:
as in G3

Return HT[x, Rng]

Π+1(z1)/Π−1(Y2)

as in G3

Fig. 13. Top: game G3 for proof of Theorem 4. Bottom: one more adversary for proof
of Theorem 4. We write #Y1[a] for the number of the Tr query in which the value of
Y1[a] was established.

146 M. Bellare et al.

GQ.Kg

(N, p, q, e, d) ←$ RSA
x ←$ Z

∗
N

X ← xe mod N
Return
((N, e, X), x, d)

Prover

Input: (N, e, X), x, cl

y ←$ Z
∗
N

Y ← ye mod N

z ← yxc mod N

Y �
c�
z �

Verifier

Input: (N, e, X), cl

c ←$ {0, 1}cl

v ← (ze ≡ Y Xc (mod N))

GQ.Ex((N, e, X), Y1, c1, z1, Y2, c2, z2)

If ze
1 �≡ Y1X

c1 ∨ ze
2 �≡ Y2X

c2 : Return ⊥
If Y1 �= Y2 ∨ |c1| �= |c2| ∨ c1 = c2: Return ⊥
z ← z1z

−1
2 mod N

c ← c1 − c2 // w.l.o.g. c > 0
(a, b) ← egcd(e, c)
x ← Xazb mod N
Return x

GQ.Cmt−1((N, e, X), d, Y, cl)

y ← Y d mod N
Return y
. .

Game OWA
RSA

(N, p, q, e, d) ←$ RSA
x ←$ Z

∗
N ; X ← xe mod N

x′ ←$ A(N, e, X)
Return (x′ = x)

Fig. 14. Trapdoor identification scheme GQ associated to RSA generator RSA and
game defining the RSA one-wayness.

6 Instantiation and Implementation

We illustrate how to instantiate our H2 and ID2 transforms, using the GQ iden-
tification scheme as example, to obtain H2[GQ] and ID2[GQ]. Similar instantia-
tions and implementations are possible with many other trapdoor identification
schemes. For instance, see the full version of this paper [2] for instantiations based
on claw-free permutations [10] or the MR identification scheme by Micali and
Reyzin [12]. We implement H2[GQ], ID2[GQ], and H2[MR] to get performance
data.

6.1 GQ-Based Schemes

GQ. An RSA generator for modulus length k is an algorithm RSA that returns
a tuple (N, p, q, e, d) where p, q are distinct odd primes, N = pq is the modu-
lus in the range 2k−1 < N < 2k, encryption and decryption exponents e, d are
in Z

∗
ϕ(N), and ed ≡ 1 (mod ϕ(N)). The assumption is one-wayness, formalized

by defining the ow-advantage of an adversary A against RSA by Advow
RSA(A) =

Pr[OWA
RSA] where the game is in Fig. 14. Let L be a parameter and RSA be such

that gcd(e, c) = 1 for all 0 < c < 2L. (For instance, RSA may select encryption
exponent e as an L+1 bit prime number.) If egcd denotes the extended gcd algo-
rithm that given relatively-prime inputs e, c returns a, b such that ea+cb = 1, the
GQ identification scheme associated to RSA is shown in Fig. 14. Any challenge
length up to L is admissible, i.e., ID.clS ⊆ {1, . . . , L}, and for all cl ∈ ID.clS the
commitment and response space is ID.CS(ivk, cl) = ID.RS(ivk, cl) = Z

∗
N . Extrac-

tion works because of identity Xazb = xeax(c1−c2)b = x. Algorithm GQ.Cmt−1

Efficient Double-Authentication-Preventing Signatures 147

shows that the scheme is trapdoor; that it also is commitment recovering and
has unique responses follows from inspection of the ze = Y Xc condition of the
verification algorithm. Finally, it is a standard result, and in particular follows
from Lemma 1, that KR, CIMP-UU, CIMP-UC security of GQ tightly reduce to
the one-wayness of RSA (note the CIMP-UU case requires a restriction on the
deployed challenge lengths).

H2[GQ]. Figure 15 shows the algorithms of the H2[GQ] DAPS scheme derived
by applying our H2 transform to the GQ identification scheme of Fig. 14. To
estimate security for a given modulus length k we use Theorems 1 and 2, and
the reductions between CIMP-UU and KR security of GQ and the one-wayness
of RSA from Lemma 1. The reductions are tight and so we need to estimate the
advantage of an adversary against the one-wayness of RSA. We do this under the
assumption that the NFS is the best factoring method. Thus, our implementation
uses a 2048-bit modulus and 256-bit hashes and seeds. See below and Fig. 16 for
implementation and performance information.

ID2[GQ]. Figure 15 also shows the algorithms of the DAPS scheme derived by
applying the ID2 transform to GQ. Reductions continue to be tight so instan-
tiation and implementation choices are as for H2[GQ]. Concerning the random
permutation Π on Z

∗
N that the scheme requires, it effectively suffices to con-

struct one that maps ZN to ZN , and we propose one way to instantiate it in the
following.

A random permutation Π on ZN can be constructed from a random per-
mutation Γ on {0, 1}k, where 2k−1 < N < 2k, by cycle walking [6,13]: if x is
the input, let c ← Γ (x); if c ∈ ZN , return c; else recurse on c; the inverse is
analogous. A Feistel network can be used to construct a random permutation Γ
on {0, 1}2n from a set of public random functions F1, . . . , Fr on {0, 1}n. In other
words, for input x0‖x1 ∈ {0, 1}2n, return xr‖xr+1 where xi+1 = xi−1 ⊕ Fi(xi).
Dai and Steinberger [8] give an indifferentiability result for 8 rounds, under the
assumption that the Fi are independent public random functions. We construct
Fi on {0, 1}n as Fi(x) = H(i‖1‖x)‖ . . . ‖H(i‖	‖x) using H = SHA-256, where
	 = n/256 (assuming for simplicity n is a multiple of 256), and the inputs to
SHA-256 are encoded to the same length to avoid length extension attacks that
make Merkle–Damg̊ard constructions differentiable from a random oracle. Our
implementation uses r = 20 rounds of the Feistel network as a safety margin for
good indifferentiability and to avoid the non-tightness of the result [8] for r = 8.

6.2 Implementation and Performance

Implementation. We implemented H2[GQ], H2[MR], and ID2[GQ] (see [2]
for the specification of MR). For comparison purposes we also implemented the
original PS. Our implementation is in C1, using OpenSSL’s BIGNUM library for
number theoretic operations. We also compared with OpenSSL’s implementation

1 The source code can be downloaded from https://github.com/dstebila/daps.

https://github.com/dstebila/daps

148 M. Bellare et al.

H2[GQ].KgH

((N, e, X), x, d) ←$ GQ.Kg ; ITK ← d ⊕ H(x, {0, 1}k)
Return ((N, e, X, ITK), (x, d))

H2[GQ].SigH((N, e, X, ITK), (x, d), m)

(a, p) ← m ; s ←$ {0, 1}sl ; Y ← H(a,Z∗
N) ; y ← Y d mod N

c ← H(a‖p‖s, {0, 1}cl) ; z ← yxc mod N ; σ ← (z, s) ; Return σ

H2[GQ].VfH((N, e, X, ITK), m, σ)

(a, p) ← m ; (z, s) ← σ ; Y ← H(a,Z∗
N) ; c ← H(a‖p‖s, {0, 1}cl)

Return (ze ≡ Y Xc (mod N))

H2[GQ].ExH((N, e, X, ITK), m1, m2, σ1, σ2)

For i = 1, 2 do
(ai, pi) ← mi ; (zi, si) ← σi

Yi ← H(ai,Z
∗
N) ; ci ← H(ai‖pi‖si, {0, 1}cl)

x ← GQ.Ex((N, e, X), Y1, c1, z1, Y2, c2, z2)
d ← H(x, {0, 1}k) ⊕ ITK ; Return (x, d)

ID2[GQ].KgH,Π±1

((N, e, X), x, d) ←$ GQ.Kg ; ITK ← d ⊕ H(x, {0, 1}k)
Return ((N, e, X, ITK), (x, d))

ID2[GQ].SigH,Π±1
((N, e, X, ITK), (x, d), m)

(a, p) ← m ; Y1 ← H(a,Z∗
N) ; c1 ←$ {0, 1} ; y1 ← Y d

1 mod N
z1 ← y1x

c1 mod N ; Y2 ← Π+1(z1) ; y2 ←$ Y d
2 mod N

c2 ← H(a‖p, {0, 1}cl) ; z2 ← y2x
c2 mod N

σ ← (c1, z2) ; Return σ

ID2[GQ].VfH,Π±1
((N, e, X, ITK), m, σ)

(a, p) ← m ; (c1, z2) ← σ ; c2 ← H(a‖p, {0, 1}cl)
Y2 ← (z2)

eX−c2 ; z1 ← Π−1(Y2) ; Y1 ← (z1)
eX−c1

Return (Y1 = H(a,Z∗
N))

ID2[GQ].ExH,Π±1
((N, e, X, ITK), m1, m2, σ1, σ2)

For i = 1, 2 do
(ai, pi) ← mi ; (c1,i, z2,i) ← σi ; c2,i ← H(ai‖pi, {0, 1}cl)
Y2,i ← (z2,i)

eX−c2,i ; z1,i ← Π−1(Y2,i)
Y1,i ← (z1,i)

eX−c1,i

If Y2,1 = Y2,2: x ← GQ.Ex((N, e, X), Y2,1, c2,1, z2,1, Y2,2, c2,2, z2,2)
Else: x ← GQ.Ex((N, e, X), Y1,1, c1,1, z1,1, Y1,2, c1,2, z1,2)
d ← H(x, {0, 1}k) ⊕ ITK ; Return (x, d)

Fig. 15. DAPS schemes H2[GQ, cl, sl] and ID2[GQ, cl] derived via our transforms from
ID scheme GQ.

Efficient Double-Authentication-Preventing Signatures 149

Scheme
Operation count Runtime (ms) Size (bits)
sign verify sign verify pub. sig.

PS [16] n expk
k n expk

k 516.58 ±15.3 161.84 ±7.96 2 048 528 384

RKS [17] 2λ grp exp 2λ grp dbl exp 13.48 5.99 640 131 072

H2[GQ] (Fig. 15) 2 exp
k/2

k/2 +expl
k expl

k 0.88 ±0.04 0.41 ±0.02 6 144 2 304

ID2[GQ] (Fig. 15) 4 exp
k/2

k/2 +2 expl
k 3 expl

k 1.80 ±0.14 1.49 ±0.26 6 144 2 049

H2[MR] [2] 2 exp
k/2

k/2 +expl
k 1.5l mulk 1.27 ±0.16 0.37 ±0.01 2 048 2 304

RSA PKCS#1v1.5 2 exp
k/2

k/2 exp
|e|
k 0.53 ±0.08 0.02 ±0.00 2 048 2 048

Fig. 16. Operation count, average runtime, and public key/signature sizes of DAPS
schemes and RSA signatures. By expx

m we denote the cost of computing a modular
exponentiation with modulus of bitlength m and exponent of bitlength x. All concrete
values are for the λ = 128-bit security level: timing and size values for RSA and
factoring based schemes are based on k = 2048-bit moduli and n = l = 2λ = 256-bit
hash values, and for the RKS scheme we assume a group with 2λ = 256-bit element
representation, hash values of the same length, and a binary tree. See also [2].

of standard RSA PKCS#1v1.5 signatures currently used by CAs for creating cer-
tificates. We use the Chinese remainder theorem to speed-up secret key opera-
tions whenever possible. For GQ, we use encryption exponent e = nextprime(2cl);
for RSA public key encryption we use OpenSSL’s default public key exponent,
e = 65537. We compared against the RKS DAPS implementation.

Performance. We measured timings of our implementations on an Intel Core
i7 (6700K “Skylake”) with 4 cores each running at 4.0 GHz. The tests were run on
a single core with TurboBoost and hyper-threading disabled. Software was com-
piled for the x86 64 architecture with -O3 optimizations using llvm 8.0.0 (clang
800.0.38). The OpenSSL version used was v1.0.2j. We use RKS’ implementation
of their DAPS, which relies on a different library for the secp256k1 elliptic
curve. Table 16 shows mean runtimes in milliseconds (with standard deviations)
and key sizes using 2048-bit modulii and 256-bit hashes. For DAPS schemes,
address is 15 bytes and payload is 33 bytes; for RSA PKCS#1v1.5, message is
48 bytes. Times reported are an average over 30 s. The table omits runtimes for
key generation as this is a one-time operation.

Compared with the existing PS, our H2[GQ], ID2[GQ], and H2[MR] schemes
are several orders of magnitude faster for both signing and verification. When
using 2048-bit modulii, H2[GQ] signatures can be generated 587× and veri-
fied 394× faster, and ID2[GQ] signatures can be generated 287× and verified
108× faster; moreover our signatures are 229× and 257× shorter, respectively,
compared with PS, and ours are nearly the same size as RSA PKCS#1v1.5 sig-
natures. Compared with the previous fastest and smallest DAPS, RKS, H2[GQ]
signatures can be generated and verified 15× faster; ID2[GQ] generated 7×
and verified 4× faster; and H2[MR] generated 10× and verified 16× faster.
H2[GQ] and H2[MR] signatures are 56× shorter compared with RKS; H2[GQ]

150 M. Bellare et al.

and ID2[GQ] public keys are 9.6× larger, though still under 1 KiB total, and
H2[MR] keys are only 3.2× larger than RKS.

Signing times for our schemes are competitive with RSA PKCS#1v1.5: using
H2[GQ], ID2[GQ], or H2[MR] for signatures in digital certificates would incur
little computational or size overhead relative to currently used signatures.

Acknowledgments. We thank the authors of [17] for helpful comments about their
scheme. MB was supported by NSF grants CNS-1228890 and CNS-1526801, a gift from
Microsoft corporation and ERC Project ERCC (FP7/615074). BP was supported by
ERC Project ERCC (FP7/615074). DS was supported in part by Australian Research
Council (ARC) Discovery Project grant DP130104304 and Natural Sciences and Engi-
neering Research Council of Canada (NSERC) Discovery grant RGPIN-2016-05146 and
an NSERC Discovery Accelerator Supplement.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 28

2. Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: efficient
double-authentication-preventing signatures. Cryptology ePrint Archive, Report
2016/1016 (2016). http://eprint.iacr.org/2016/1016

3. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53890-6 15

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993. doi:10.1145/168588.168596

5. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/
11761679 25

6. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). doi:10.
1007/3-540-45760-7 9

7. Cramer, R.: Modular design of secure, yet practical protocls. Ph.D. thesis, Univer-
sity of Amsterdam (1996)

8. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53018-4 4

9. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

10. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988). doi:10.
1137/0217017

http://dx.doi.org/10.1007/3-540-46035-7_28
http://eprint.iacr.org/2016/1016
http://dx.doi.org/10.1007/978-3-662-53890-6_15
http://dx.doi.org/10.1007/978-3-662-53890-6_15
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/3-540-45760-7_9
http://dx.doi.org/10.1007/3-540-45760-7_9
http://dx.doi.org/10.1007/978-3-662-53018-4_4
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1137/0217017
http://dx.doi.org/10.1137/0217017

Efficient Double-Authentication-Preventing Signatures 151

11. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 216–231. Springer, Heidelberg (1990). doi:10.1007/0-387-34799-2 16

12. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes.
J. Cryptol. 15(1), 1–18 (2002). doi:10.1007/s00145-001-0005-8

13. Miracle, S., Yilek, S.: Reverse cycle walking and its applications. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 679–700. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53887-6 25

14. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–
369. Springer, Heidelberg (1998). doi:10.1007/BFb0055741

15. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 436–453.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11203-9 25

16. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. Int. J.
Inf. Secur. (2015). doi:10.1007/s10207-015-0307-8

17. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: penalizing equivocation
by loss of bitcoins. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 15, pp. 219–230.
ACM Press, October 2015. doi:10.1145/2810103.2813686

http://dx.doi.org/10.1007/0-387-34799-2_16
http://dx.doi.org/10.1007/s00145-001-0005-8
http://dx.doi.org/10.1007/978-3-662-53887-6_25
http://dx.doi.org/10.1007/BFb0055741
http://dx.doi.org/10.1007/978-3-319-11203-9_25
http://dx.doi.org/10.1007/s10207-015-0307-8
http://dx.doi.org/10.1145/2810103.2813686

	Deterring Certificate Subversion: Efficient Double-Authentication-Preventing Signatures
	1 Introduction
	2 Preliminaries
	3 Identification Schemes
	4 DAPS Definitions
	5 Our ID to DAPS Transforms
	5.1 The Double-Hash Transform
	5.2 The Double-ID Transform

	6 Instantiation and Implementation
	6.1 GQ-Based Schemes
	6.2 Implementation and Performance

	References

