
Serge Fehr (Ed.)

 123

LN
CS

 1
01

75

20th IACR International Conference
on Practice and Theory in Public-Key Cryptography
Amsterdam, The Netherlands, March 28–31, 2017
Proceedings, Part II

Public-Key Cryptography –
PKC 2017

Lecture Notes in Computer Science 10175

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Serge Fehr (Ed.)

Public-Key Cryptography –

PKC 2017
20th IACR International Conference
on Practice and Theory in Public-Key Cryptography
Amsterdam, The Netherlands, March 28–31, 2017
Proceedings, Part II

123

Editor
Serge Fehr
CWI
Amsterdam
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-54387-0 ISBN 978-3-662-54388-7 (eBook)
DOI 10.1007/978-3-662-54388-7

Library of Congress Control Number: 2017932641

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

The 20th IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2017) was held March 28–31, 2017, in Amsterdam, The
Netherlands. The conference is sponsored by the International Association for Cryp-
tologic Research (IACR) and has an explicit focus on public-key cryptography.

These proceedings, consisting of two volumes, feature 36 papers; these were selected
by the Program Committee from 160 qualified submissions. Each submission was
reviewed independently by at least three reviewers, or four in the case of Program
Committee member submissions. Following the initial reviewing phase, the submis-
sions and their reviews were discussed over a period of one month, before final decisions
were then made. During this discussion phase, the Program Committee made substantial
use of a newer feature of the submission/review software, which allows direct yet
anonymous communication between the Program Committee and the authors; I think
this interaction proved very useful in resolving pending issues and questions.

The reviewing and selection process was an intensive and time-consuming task, and
I thank the members of the Program Committee, along with the external reviewers, for
all their hard work and their excellent job. I also want to acknowledge Shai Halevi for
his awesome submission/review software, which tremendously simplifies the program
chair’s work, and I thank him for his 24/7 and always-prompt assistance.

The conference program also included two invited talks, one by Vipul Goyal on
“Recent Advances in Non-Malleable Cryptography,” and the other by Kenny Paterson
on “The Evolution of Public Key Cryptography in SSL/TLS.” I would like to thank the
two invited speakers as well as all the other speakers for their contributions to the
program.

I also want to thank all the authors who submitted papers; you made it very challenging
for the Program Committee to decide on what should be “the best” submissions— which
of course is very much a matter of taste and perspective. I know that having good papers
rejected because of a tough competition, and because there is always some amount of
randomness involved, is disappointing, but I am optimistic that these “unlucky” papers
will find their place and get the deserved recognition.

Last but not least, I would like to thank Marc Stevens, the general chair, for setting
up a great conference and ensuring a smooth running of the event, and Ronald Cramer
for his advisory support and allowing me to tap into his experience.

January 2017 Serge Fehr

PKC 2017

The 20th International Conference on Practice
and Theory of Public-Key Cryptography

Amsterdam, The Netherlands
March 28–31, 2017

Sponsored by the
International Association of Cryptologic Research

General Chair

Marc Stevens CWI Amsterdam, The Netherlands

Program Chair

Serge Fehr CWI Amsterdam, The Netherlands

Program Committee

Masayuki Abe NTT Secure Platform Labs, Japan
Fabrice Benhamouda IBM Research, USA
Nir Bitansky MIT, USA
Zvika Brakerski Weizmann Institute of Science, Israel
Nishanth Chandran Microsoft Research, India
Dana Dachman-Soled University of Maryland, USA
Nico Döttling UC Berkeley, USA
Léo Ducas CWI Amsterdam, The Netherlands
Sebastian Faust Ruhr-University Bochum, Germany
Dario Fiore IMDEA Software Institute, Spain
Pierre-Alain Fouque Rennes 1 University, France
Georg Fuchsbauer ENS, France
Sanjam Garg UC Berkeley, USA
Jens Groth University College London, UK
Carmit Hazay Bar-Ilan University, Israel
Dennis Hofheinz KIT, Germany
Tibor Jager Paderborn University, Germany
Abhishek Jain Johns Hopkins University, USA
Marcel Keller University of Bristol, UK
Markulf Kohlweiss Microsoft Research, UK
Vadim Lyubashevsky IBM Research Zurich, Switzerland

Takahiro Matsuda AIST, Japan
Adam O’Neill Georgetown University, USA
Arpita Patra Indian Institute of Science, India
Ludovic Perret Sorbonnes University, UPMC/Inria/CNRS, France
Christophe Petit University of Oxford, UK
Vanishree Rao PARC, USA
Alessandra Scafuro North Carolina State University, USA
Gil Segev Hebrew University of Jerusalem, Israel
Fang Song Portland State University, USA
Daniele Venturi Sapienza University of Rome, Italy
Ivan Visconti University of Salerno, Italy
Hoeteck Wee ENS, France
Vassilis Zikas Rensselaer Polytechnic Institute, USA

External Reviewers

Hamza Abusalah
Shashank Agrawal
Tristan Allard
Miguel Ambrona
Daniel Apon
Diego F. Aranha
Nuttapong Attrapadung
Christian Badertscher
Saikrishna Badrinarayanan
Shi Bai
Foteini Baldimtsi
Marshall Ball
Carsten Baum
David Bernhard
Silvio Biagioni
Jean-Francois Biasse
Olivier Blazy
Jonathan Bootle
Joppe Bos
Cecilia Boschini
Florian Bourse
Elette Boyle
Chris Brzuska
Angelo De Caro
Wouter Castryck
Dario Catalano
Andrea Cerulli
Pyrros Chaidos
Jie Chen

Mahdi Cheraghchi
Céline Chevalier
Seung Geol Choi
Arka Rai Choudhary
Kai-Min Chung
Aloni Cohen
Sandro Coretti
Véronique Cortier
Anamaria Costache
Geoffroy Couteau
Lisa Eckey
Antonio Faonio
Luca di Feo
Tore Kasper Frederiksen
Tommaso Gagliardoni
Steven Galbraith
David Galindo
Pierrick Gaudry
Romain Gay
Marilyn George
Essam Ghadafi
Junqing Gong
Aurore Guillevic
Felix Günther
Ryo Hiromasa
Mohammad Hajiabadi
Yoshikazu Hanatani
Ethan Heilman
Justin Holmgren

Kristina Hostakova
Vincenzo Iovino
Malika Izabachène
Sune Jakobsen
Marc Joye
Charanjit Jutla
Ali El Kaafarani
Bhavana Kanukurthi
Koray Karabina
Aniket Kate
Dakshita Khurana
Eike Kiltz
Taechan Kim
Elena Kirshanova
Fuyuki Kitagawa
Yutaro Kiyomura
Susumu Kiyoshima
Lisa Kohl
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Luke Kowalczyk
Juliane Krämer
Mukul Kulkarni
Thijs Laarhoven
Sebastian Lauer
Moon Sung Lee
Tancrède Lepoint
Qinyi Li

VIII PKC 2017

Benoît Libert
Satyanarayana Lokam
Patrick Longa
Steve Lu
Yun Lu
Bernardo Magri
Mary Maller
Alex Malozemoff
Antonio Marcedone
Giorgia Azzurra Marson
Daniel Masny
Nicolas Meloni
Peihan Miao
Giacomo Micheli
Michele Minelli
Ameer Mohammed
Pratyay Mukherjee
Debdeep Mukhopadhyay
Patrick Märtens
Pierrick Méaux
Michael Naehrig
Gregory Neven
Anca Nitulescu
Luca Nizzardo
Ariel Nof
Koji Nuida
Maciej Obremski
Miyako Ohkubo
Cristina Onete
Michele Orrù
Daniel Page
Jiaxin Pan

Dimitris Papadopoulos
Sunoo Park
Anat Paskin-Cherniavsky
Alain Passelègue
Valerio Pastro
Cécile Pierrot
Rafael del Pino
Rachel Player
Oxana Poburinnaya
David Pointcheval
Antigoni Polychroniadou
Manoj Prabhakaran
Benjamin Pring
Srinivasan Raghuraman
Joost Renes
Răzvan Roşie
Dragos Rotaru
Tim Ruffing
Akshayaram Srinivasan
Yusuke Sakai
Kazuo Sakiyama
John M. Schanck
Benedikt Schmidt
Peter Scholl
Jacob Schuldt
Peter Schwabe
Sven Schäge
Ido Shahaf
Igor Shparlinski
Shashank Singh
Luisa Siniscalchi
Ben Smith

Douglas Stebila
Kim Taechan
Atsushi Takayasu
Vanessa Teague
Adrien Thillard
Aishwarya

Thiruvengadam
Yan Bo Ti
Mehdi Tibouchi
Junichi Tomida
Daniel Tschudi
Dominique Unruh
Alexander Ushakov
Satyanarayana Vusirikala
Xiao Wang
Yohei Watanabe
Avi Weinstock
Mor Weiss
David Wu
Keita Xagawa
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Eylon Yogev
Kazuki Yoneyama
Yang Yu
Mark Zhandry
Jean Karim Zinzindohoué
Michael Zohner

PKC 2017 IX

Contents – Part II

Encryption with Access Control

Dual System Framework in Multilinear Settings and Applications to Fully
Secure (Compact) ABE for Unbounded-Size Circuits. 3

Nuttapong Attrapadung

CCA-Secure Inner-Product Functional Encryption from Projective
Hash Functions . 36

Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

Bounded-Collusion Attribute-Based Encryption
from Minimal Assumptions . 67

Gene Itkis, Emily Shen, Mayank Varia, David Wilson,
and Arkady Yerukhimovich

Access Control Encryption for Equality, Comparison, and More 88
Georg Fuchsbauer, Romain Gay, Lucas Kowalczyk,
and Claudio Orlandi

Special Signatures

Deterring Certificate Subversion: Efficient
Double-Authentication-Preventing Signatures . 121

Mihir Bellare, Bertram Poettering, and Douglas Stebila

Chameleon-Hashes with Ephemeral Trapdoors: And Applications to
Invisible Sanitizable Signatures . 152

Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls,
Kai Samelin, and Daniel Slamanig

Improved Structure Preserving Signatures Under Standard
Bilinear Assumptions. 183

Charanjit S. Jutla and Arnab Roy

Fully Homomorphic Encryption

Chosen-Ciphertext Secure Fully Homomorphic Encryption. 213
Ran Canetti, Srinivasan Raghuraman, Silas Richelson,
and Vinod Vaikuntanathan

Circuit-Private Multi-key FHE . 241
Wutichai Chongchitmate and Rafail Ostrovsky

http://dx.doi.org/10.1007/978-3-662-54388-7_1
http://dx.doi.org/10.1007/978-3-662-54388-7_1
http://dx.doi.org/10.1007/978-3-662-54388-7_2
http://dx.doi.org/10.1007/978-3-662-54388-7_2
http://dx.doi.org/10.1007/978-3-662-54388-7_3
http://dx.doi.org/10.1007/978-3-662-54388-7_3
http://dx.doi.org/10.1007/978-3-662-54388-7_4
http://dx.doi.org/10.1007/978-3-662-54388-7_5
http://dx.doi.org/10.1007/978-3-662-54388-7_5
http://dx.doi.org/10.1007/978-3-662-54388-7_6
http://dx.doi.org/10.1007/978-3-662-54388-7_6
http://dx.doi.org/10.1007/978-3-662-54388-7_7
http://dx.doi.org/10.1007/978-3-662-54388-7_7
http://dx.doi.org/10.1007/978-3-662-54388-7_8
http://dx.doi.org/10.1007/978-3-662-54388-7_9

FHE over the Integers: Decomposed and Batched
in the Post-Quantum Regime . 271

Daniel Benarroch, Zvika Brakerski, and Tancrède Lepoint

Real-World Schemes

Ceremonies for End-to-End Verifiable Elections . 305
Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang

A Modular Security Analysis of EAP and IEEE 802.11 335
Chris Brzuska and Håkon Jacobsen

Multiparty Computation

On the Computational Overhead of MPC with Dishonest Majority 369
Jesper Buus Nielsen and Samuel Ranellucci

Better Two-Round Adaptive Multi-party Computation 396
Ran Canetti, Oxana Poburinnaya,
and Muthuramakrishnan Venkitasubramaniam

Constant Round Adaptively Secure Protocols
in the Tamper-Proof Hardware Model . 428

Carmit Hazay, Antigoni Polychroniadou,
and Muthuramakrishnan Venkitasubramaniam

Primitives

Constrained Pseudorandom Functions for Unconstrained Inputs Revisited:
Achieving Verifiability and Key Delegation . 463

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constraining Pseudorandom Functions Privately . 494
Dan Boneh, Kevin Lewi, and David J. Wu

Universal Samplers with Fast Verification . 525
Venkata Koppula, Andrew Poelstra, and Brent Waters

Author Index . 555

XII Contents – Part II

http://dx.doi.org/10.1007/978-3-662-54388-7_10
http://dx.doi.org/10.1007/978-3-662-54388-7_10
http://dx.doi.org/10.1007/978-3-662-54388-7_11
http://dx.doi.org/10.1007/978-3-662-54388-7_12
http://dx.doi.org/10.1007/978-3-662-54388-7_13
http://dx.doi.org/10.1007/978-3-662-54388-7_14
http://dx.doi.org/10.1007/978-3-662-54388-7_15
http://dx.doi.org/10.1007/978-3-662-54388-7_15
http://dx.doi.org/10.1007/978-3-662-54388-7_16
http://dx.doi.org/10.1007/978-3-662-54388-7_16
http://dx.doi.org/10.1007/978-3-662-54388-7_17
http://dx.doi.org/10.1007/978-3-662-54388-7_18

Contents – Part I

Cryptanalysis

LP Solutions of Vectorial Integer Subset Sums – Cryptanalysis
of Galbraith’s Binary Matrix LWE . 3

Gottfried Herold and Alexander May

Improved Algorithms for the Approximate k-List Problem
in Euclidean Norm . 16

Gottfried Herold and Elena Kirshanova

Zeroizing Attacks on Indistinguishability Obfuscation over CLT13 41
Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint,
and Mehdi Tibouchi

Protocols

Cut Down the Tree to Achieve Constant Complexity in Divisible E-cash 61
David Pointcheval, Olivier Sanders, and Jacques Traoré

Asymptotically Tight Bounds for Composing ORAM with PIR 91
Ittai Abraham, Christopher W. Fletcher, Kartik Nayak, Benny Pinkas,
and Ling Ren

Predictable Arguments of Knowledge . 121
Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi

Removing Erasures with Explainable Hash Proof Systems 151
Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Scalable Multi-party Private Set-Intersection . 175
Carmit Hazay and Muthuramakrishnan Venkitasubramaniam

Encryption Schemes

Tightly Secure IBE Under Constant-Size Master Public Key 207
Jie Chen, Junqing Gong, and Jian Weng

Separating IND-CPA and Circular Security for Unbounded Length
Key Cycles . 232

Rishab Goyal, Venkata Koppula, and Brent Waters

http://dx.doi.org/10.1007/978-3-662-54365-8_1
http://dx.doi.org/10.1007/978-3-662-54365-8_1
http://dx.doi.org/10.1007/978-3-662-54365-8_2
http://dx.doi.org/10.1007/978-3-662-54365-8_2
http://dx.doi.org/10.1007/978-3-662-54365-8_3
http://dx.doi.org/10.1007/978-3-662-54365-8_4
http://dx.doi.org/10.1007/978-3-662-54365-8_5
http://dx.doi.org/10.1007/978-3-662-54365-8_6
http://dx.doi.org/10.1007/978-3-662-54365-8_7
http://dx.doi.org/10.1007/978-3-662-54365-8_8
http://dx.doi.org/10.1007/978-3-662-54365-8_9
http://dx.doi.org/10.1007/978-3-662-54365-8_10
http://dx.doi.org/10.1007/978-3-662-54365-8_10

Structure-Preserving Chosen-Ciphertext Security with Shorter
Verifiable Ciphertexts . 247

Benoît Libert, Thomas Peters, and Chen Qian

Leakage-Resilient and Non-Malleable Codes

Non-malleable Codes with Split-State Refresh . 279
Antonio Faonio and Jesper Buus Nielsen

Tight Upper and Lower Bounds for Leakage-Resilient, Locally Decodable
and Updatable Non-malleable Codes . 310

Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi

Fully Leakage-Resilient Codes . 333
Antonio Faonio and Jesper Buus Nielsen

Number Theory and Diffie-Hellman

On the Bit Security of Elliptic Curve Diffie–Hellman 361
Barak Shani

Extended Tower Number Field Sieve with Application to Finite Fields
of Arbitrary Composite Extension Degree . 388

Taechan Kim and Jinhyuck Jeong

Provably Secure NTRU Instances over Prime Cyclotomic Rings 409
Yang Yu, Guangwu Xu, and Xiaoyun Wang

Equivalences and Black-Box Separations of Matrix Diffie-Hellman
Problems . 435

Jorge L. Villar

Author Index . 465

XIV Contents – Part I

http://dx.doi.org/10.1007/978-3-662-54365-8_11
http://dx.doi.org/10.1007/978-3-662-54365-8_11
http://dx.doi.org/10.1007/978-3-662-54365-8_12
http://dx.doi.org/10.1007/978-3-662-54365-8_13
http://dx.doi.org/10.1007/978-3-662-54365-8_13
http://dx.doi.org/10.1007/978-3-662-54365-8_14
http://dx.doi.org/10.1007/978-3-662-54365-8_15
http://dx.doi.org/10.1007/978-3-662-54365-8_16
http://dx.doi.org/10.1007/978-3-662-54365-8_16
http://dx.doi.org/10.1007/978-3-662-54365-8_17
http://dx.doi.org/10.1007/978-3-662-54365-8_18
http://dx.doi.org/10.1007/978-3-662-54365-8_18

Encryption with Access Control

Dual System Framework in Multilinear Settings
and Applications to Fully Secure (Compact)

ABE for Unbounded-Size Circuits

Nuttapong Attrapadung(B)

National Institute of Advanced Industrial Science and Technology (AIST), Tokyo,
Japan

n.attrapadung@aist.go.jp

Abstract. We propose a new generic framework for constructing fully
secure attribute based encryption (ABE) in multilinear settings. It is
applicable in a generic manner to any predicates. Previous generic frame-
works of this kind are given only in bilinear group settings, where applica-
ble predicate classes are limited. Our framework provides an abstraction
of dual system paradigms over composite-order graded multilinear encod-
ing schemes in a black-box manner.

As applications, we propose new fully secure ABE systems for gen-
eral predicates, namely, ABE for circuits. We obtain two schemes for
each of key-policy (KP) and ciphertext-policy (CP) variants of ABE.
All of our four fully secure schemes can deal with unbounded-size cir-
cuits, while enjoy succinctness, meaning that the key and ciphertext
sizes are (less than or) proportional to corresponding circuit sizes. In the
CP-ABE case, no scheme ever achieves such properties, even when con-
sidering selectively secure systems. Furthermore, our second KP-ABE
achieves constant-size ciphertexts, whereas our second CP-ABE achieves
constant-size keys. Previous ABE systems for circuits are either selec-
tively secure (Gorbunov et al. STOC’13, Garg et al. Crypto’13, and
subsequent works), or semi-adaptively secure (Brakerski and Vaikun-
tanathan Crypto’16), or fully-secure but not succinct and restricted to
bounded-size circuits (Garg et al. ePrint 2014/622, and Garg et al.
TCC’16-A).

Keywords: Attribute-based encryption · Full security · Multilinear
maps · Dual system · Pair encodings · Circuits

1 Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [44], is a new
paradigm that generalizes traditional public key encryption. Instead of encrypt-
ing to a target recipient, a sender can specify in a more general way about who
should be able to view the message. In ABE for predicate R : X × Y → {0, 1},

This paper subsumes [4]. The full version is available at [6].

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 3–35, 2017.
DOI: 10.1007/978-3-662-54388-7 1

4 N. Attrapadung

a ciphertext encrypting message M is associated with a ciphertext attribute,
say, Y ∈ Y, while a secret key, issued by an authority, is associated with a key
attribute, say, X ∈ X, and the decryption will succeed if and only if R(X,Y) = 1.
From an application point of view, it is instructive to consider one kind of
attributes as policies, which are Boolean functions, and the other kind as inputs
to functions. In this sense, there are two variants of ABE. In Key-Policy (KP)
type [33], X is a set of Boolean functions, while Y is a set of inputs to functions,
and we define R(f, x) = f(x). In Ciphertext-Policy (CP) type [10], the roles of
X and Y are swapped (that is, ciphertexts are associated with policies).

A central theme to ABE has been to expand the class of allowable boolean
functions. Until recently, there were only ABE for simple classes such as boolean
formulae [10,33,37,40] and inner product predicate [7,34,41]. Only recently,
ABE systems that allow any unbounded polynomial-size circuits (but bounded-
depth) were proposed independently by Garg et al. (GGHSW) [24] and Gor-
bunov et al. (GVW) [31]. The former is based on multi-linear maps (more
precisely, graded encoding systems) [20,23], while the latter is based on the
Learning-With-Error assumption. They proposed key-policy variants, and by
using universal circuits, ciphertext-policy systems can also be obtained albeit
for only bounded-size circuits. Subsequently, Garg et al. [28] proposed ABE for
circuits based on witness encryption. Boneh et al. [13] (BGG+) proposed KP-
ABE for circuits with short keys or short ciphertexts.

Full vs Selective Security. The standard security for ABE is adaptive security,
or often called full security. However, previous ABE systems for circuits [13,
24,28,31] were proved only in a weaker model called selective security. Such
a notion requires the adversary to announce a target ciphertext attribute Y �

upfront before seeing the public key, after then, he can ask for secret keys of
X such that R(X,Y �) = 0. Contrastingly, full security allows the adversary to
adaptively ask for secret keys and choose a target in any order.

Complexity Leveraging. There is a trivial method to generically bootstrap
selective security to full security called complexity leveraging [12]. In this app-
roach, the security reduction would incur a loss factor |Y| (stemmed from the
probability of guessing Y � from the ciphertext attribute domain Y). In KP-ABE
for circuits that allows inputs of length n, we have |Y| = 2n, hence the loss factor
is exponential. Although this loss can be compensated by increasing the security
parameter by n, this is undesirable by two reasons. First, as a direct consequence,
it makes the resulting scheme inefficient. Second, and perhaps more importantly,
the resulting security reduction becomes “unfalsifiable” in the sense that even
an attacker with probability 1 in attacking the scheme cannot be used to solve
the underlying hard problem in sub-exponential time [16].

Fully Secure CP-ABE for Circuits. The situation for CP-ABE for
unbounded-size circuits is even more devastating since the loss factor can be
as large as double exponential, as the number of all Boolean functions with n
inputs is 22

n

. In this case, complexity leveraging cannot be used since we cannot
compensate by increasing the security parameter by 2n, which is exponential.

Dual System Framework in Multilinear Settings and Applications 5

Moreover, even when we restrict to bounded-depth circuits, the loss factor can
still be super-exponential or large exponential functions (in parameters such as
depth �).1,2

Problem Statement. To this end, we consider the following problem:

Problem 1: Is it possible to construct fully secure KP-ABE and CP-ABE
for circuits with polynomial reductions (in all parameters) to some non-
interactive assumptions?

Unbounded-size Circuits and Succinctness. It is desirable for new fully
secure schemes to preserve functionalities and efficiency from previous selectively
secure systems. For functionalities, the goal is ABE that allows unbounded-size
circuits. For efficiency, we require succinctness: the size of a key (resp., a cipher-
text) for circuit f is less than or proportional to the circuit size in KP-ABE
(resp., CP-ABE). In KP-ABE case, we refine our question to:

Problem 1′: Is it possible to construct fully secure KP-ABE that allows
unbounded circuits (possibly bounded-depth) and/or admits succinctness
(again, with polynomial reductions to non-interactive assumptions)?

In CP-ABE case, however, all the available schemes [24,31] are for bounded-size
circuits and do not admit succinctness, not to mention that they are selectively
secure. This is due to the use of universal circuits [46]. We thus ask:

Problem 2: Is it possible to construct (even selectively secure) CP-ABE
that allows unbounded-size circuits and/or admits succinctness?

Short Ciphertexts and Short Keys. Finally, we focus on optimizing the size
of a ciphertext (resp. a key) for an input string x in KP-ABE (resp. CP-ABE).
We say that a scheme admits constant-size ciphertext (resp., key) if the size
besides the description of x is constant in term of the length n of x. We ask:

Problem 3: Is it possible to construct fully-secure KP-ABE with constant-
size ciphertexts, fully-secure CP-ABE with constant-size keys (again, for
unbounded-size circuits and with polynomial reductions)?

1.1 Our Contributions on ABE Instantiations

Our contribution is twofold: a generic framework and instantiations. We first
introduce our results regarding instantiations, which are summarized as:

1 We do not elaborate the exact number as it is quite tricky to count the number of all
Boolean functions that can be computed by unbounded-size bounded-depth circuits.

2 When we further restrict to bounded-size circuits, the loss factor is 2poly(gmax), where
gmax is the maximum circuit size. This is exactly the reduction loss for all the
available fully secure CP-ABE via complexity leveraging (see Table 2).

6 N. Attrapadung

Table 1. KP-ABE for circuits.

Schemes |Cipher|† |Key|† Unbound Tool Security‡ Reduction Assumptions§

|circuit|?
GVW [31] O(n) O(g) yes LWE full O(2n) 2O(nε)-hardness of LWE

selective O(1) 2O(nε)-hardness of LWE

GGHSW [24] O(n′) O(g) yes �-multmap full O(2n) param-ass. size O(�)
selective O(1) param-ass. size O(�)

BGG+1 [13] O(n) O(1) yes LWE full O(2n) 2O(nε)-hardness of LWE

selective O(1) 2O(nε)-hardness of LWE

BGG+2 [13] O(1) O(n2 + g) yes �-multmap full O(2n) param-ass. size O(� + n)
selective O(1) param-ass. size O(� + n)

GGHZ1,2 [26, 27] poly(gmax) poly(gmax) no poly(gmax)- full poly(gmax, param-ass. size poly(gmax)
multmap qall)

BV [11]** O(n) O(1) yes LWE semi-adapt O(1) subexp-hardness of LWE

Our KP1 (§4) O(n′) O(g) yes 3�-multmap full O(q1) param-ass. size O(�m2)
semi-adapt O(1) param-ass. size O(�)

Our KP2 (§5) O(1) O(n2 + g) yes 3�-multmap full O(q1) param-ass. size O(�m2 + n2)
semi-adapt O(1) param-ass. size O(� + n)

Table 2. CP-ABE for circuits.

Schemes |Cipher|† |Key|† Unbound Tool Security‡Reduction Assumptions§

|circuit|?
GVW[31]¶ poly(gmax) poly(gmax) no LWE full 2poly(gmax) 2O(nε)-hardness of LWE

selective O(1) 2O(nε)-hardness of LWE

GGHSW[24]¶ poly(gmax) poly(gmax) no poly(gmax)- full 2poly(gmax) param-ass. size poly(gmax)
multmap selective O(1) param-ass. size poly(gmax)

BGG+1 [13]¶ poly(gmax) O(1) no LWE full 2poly(gmax) 2O(nε)-hardness of LWE

selective O(1) 2O(nε)-hardness of LWE

BGG+2 [13]¶ O(1) poly(n2, gmax) no poly(gmax)- full 2poly(gmax) param-ass. size poly(gmax)
multmap selective O(1) param-ass. size poly(gmax)

GGHZ1,2 [26, 27] poly(gmax) poly(gmax) no poly(gmax)- full poly(gmax, param-ass. size poly(gmax)
multmap qall)

Our CP1 (§6.2) O(g) O(n′) yes 3�-multmap full O(qall) param-ass. size O(�m2)

Our CP2 (§6.2) O(n2 + g) O(1) yes 3�-multmap full O(qall) param-ass. size O(�m2 + n2)

∗ Notation for variables: n is the length of input to a circuit; n′(≤ n) is the number of 1’s in the input bit string to
circuits; g is the size of a circuit (the number of gates including input nodes); gmax is the maximum bound for g
(if bounded); m is the width of a circuit; � is the bounded depth of circuits; q1 are the number of pre-challenge
key queries; qall is the number of all key queries. ε is a parameter for LWE (0 < ε < 1/2) [31].

∗∗ Only ABE of [11] achieves unbounded input length, i.e., the input string length n is not a-priori bounded.
† Sizes (|Cipher|, |Key|) are shown in the number of “unit” elements naturally defined in the respective underlying

tool. Let λ be the security parameter. For multi-linear maps, one unit element is a graded encoded element;
for previous (now-broken) candidates [20, 22], the size of one unit is poly(λ, κ) bits, for κ-multilinear maps. For
LWE, intuitively, one unit element is a matrix that defines a single instance of the LWE assumption; the size for
one unit is poly(λ, �1/ε) bits for the GVW [31] and the BGG+1 systems [13]. The overall ciphertext size is then
|Cipher||unit| + |Y |, where |Y | is the description size of ciphertext attribute (circuit f for CP, input string x for
KP). Similarly, The overall key size is |Key||unit| + |X|. We provide overall sizes in Table 3,4.

‡ For each scheme satisfying two levels of security, we provide respective reduction/assumptions in each line.
§ All multi-linear map based schemes in the tables use “parameterized” assumptions (param-ass.). To be able to

compare quantitively, we write their complexities in terms of the assumption size. (Intuitively but not necessarily,
the larger the size, the stronger the assumption is). All of these schemes use at most three assumptions, and the
size in the table represents the largest one.

¶ These CP-ABE schemes were obtained by converting from KP-ABE via universal circuits. In doing so, one must
fix gmax, i.e., the resulting schemes are for bounded-size circuit. An (asymptotically) optimal universal circuit [46]
has size O(gmax log gmax) and depth O(gmax), hence related parameters can be given by poly(gmax).

Dual System Framework in Multilinear Settings and Applications 7

Table 3. KP-ABE for circuits
(sizes given in more details).

Schemes |Cipher| |Key|
(no. of bits) (no. of bits)

GVW[31] O(n)poly(λ, �1/ε) O(g)poly(λ, �1/ε)

GGHSW[24] O(n′)poly(λ, �) + n O(g)poly(λ, �)

BGG+1,BV [13, 11] O(n)poly(λ, �1/ε) poly(λ, �1/ε) + |f |
BGG+2 [13] poly(λ, �) + n O(n2 + g)poly(λ, �)

GGHZ1,2 [26, 27] poly(gmax)poly(λ, gmax) poly(gmax)poly(λ, gmax)

Our KP1 (§4) O(n′)poly(λ, �) + n O(g)poly(λ, �)

Our KP2 (§5) poly(λ, �) + n O(n2 + g)poly(λ, �)

Table 4. CP-ABE for circuits (sizes given
in more details).

Schemes |Cipher| |Key|
(no. of bits) (no. of bits)

GVW [31] poly(gmax)poly(λ, g
1/ε
max) poly(gmax)poly(λ, g

1/ε
max)

GGHSW [24] poly(gmax)poly(λ, gmax) poly(gmax)poly(λ, gmax)

BGG+1 [13] poly(gmax)poly(λ, g
1/ε
max) poly(λ, g

1/ε
max) + n

BGG+2 [13] poly(λ, gmax) + |f | poly(gmax)poly(λ, gmax)

GGHZ1,2 [26, 27] poly(gmax)poly(λ, gmax) poly(gmax)poly(λ, gmax)

Our CP1 (§6.2) O(g)poly(λ, �) O(n′)poly(λ, �) + n

Our CP2 (§6.2) O(n2 + g)poly(λ, �) poly(λ, �) + n

Theorem 1. (Instantiations, informally). There exist fully secure KP-ABE,
CP-ABE for unbounded-size bounded-depth circuits with polynomial reductions
to some non-interactive assumptions on composite-order 3�-multilinear maps,
where � is the bounded depth. Constructively, we obtain 4 schemes:

1. fully secure KP-ABE admitting succinctness.
2. fully secure KP-ABE admitting succinctness and constant-size ciphertexts.
3. fully secure CP-ABE admitting succinctness.
4. fully secure CP-ABE admitting succinctness and constant-size keys.

Our schemes affirmatively answer Problem 1, constructing fully secure ABE
with polynomial reductions. (See below for independent works [26,27] that also
solve Problem 1.) Moreover, both of our KP-ABE schemes and both of our CP-
ABE schemes are the first to affirmatively answer Problem 1′ and Problem 2,
respectively. Finally, our second KP-ABE and our second CP-ABE provide the
first positive answers to Problem 3.

We provide comparisons to the other schemes in the literature in Tables 1
and 2 (and with sizes provided in more details in Tables 3 and 4).

Comparisons. From Tables 1 and 2, we can see that our first and second (fully
secure) KP-ABE schemes are comparable to the (selectively secure) KP-ABE of
GGHSW [24] and BGG+2 [13] in both functionality (unbounded-size circuits)
and efficiency (succinctness, constant-size ciphertext). On the other hand, both
of our (fully secure) CP-ABE schemes perform much better than all the previous
(selectively secure) schemes in both functionality (ours are the first to allow
unbounded-size circuits) and efficiency (ours are the first to be succinct).

In independent3 works, Garg et al. proposed fully-secure ABE [26] (and
FE [27], see Sect. 1.4) for circuits, thus also answer Problem 1; however, their
schemes are for bounded-size circuits and do not admit succinctness, due to their
essential use of “fixed-once and for all” universal circuits. Moreover, as shown in
Tables 1 and 2, our schemes require much less multi-linearity and admit tighter
reductions.

3 Our preliminary version [4] has been made available shortly after [26,27].

8 N. Attrapadung

On Assumptions. To prove security of our schemes, we introduce some new
non-interactive assumptions (thus, they are falsifiable [39]). They somewhat
extend the Multi-linear Decisional Diffie-Hellman Assumption (MDDH) [15,20,
23]. These assumptions are of “parameterized” type (or often called “q-type”),
where the size of assumption grows depending on some parameters. Although
they are not standard, we prove that they hold in the generic model. To compare
these assumptions quantitatively, in Tables 1 and 2, we represent their complexi-
ties in terms of their assumption sizes. Intuitively, but not necessarily, the larger
the size, the stronger the assumption is. We note that, in our schemes, the para-
meters for the assumptions depend only on the depth �, width m, or input length
n, of a circuit in one query (and not on the number of key queries). The reduc-
tion cost in our schemes is O(q1) where q1 is the number of pre-challenge key
queries.

Implementations. Unfortunately, currently there is no known secure multi-
linear map (see more later in Sect. 1.4). Hence, at present, our results can be
considered as only theoretical black-box reductions from fully secure succinct
ABE for unbounded circuits to (composite-order) multi-linear maps. Neverthe-
less, due to the nature of black-box usages, any future secure candidates can be
used.

1.2 Our Contributions on New Framework

The main building block behind our ABE schemes is a new generic and modular
framework, based on a new primitive called multilinear pair encoding. Our main
result for framework can be summarized as:

Theorem 2. (Framework, informally). Suppose that a (new) subgroup decision
assumption in multilinear settings holds. A “doubly-selectively” secure multilin-
ear pair encoding scheme for predicate R implies a fully secure ABE scheme for
predicate R via a generic construction.

Our Formalization. Our framework generalizes the recent framework by Attra-
padung [3] (and Wee [51]), which works only in bilinear settings, to multi-linear
settings. The framework of [3] provides an algebraic abstraction of dual-system
encryption techniques, introduced by Waters [48] and utilized by many works
[35–37,40,51], via a primitive called pair encoding. As seemingly inherent to
bilinear settings, pair encoding of [3] is confined to only linear functions, so that
the security proof under subgroup decision assumptions can be achieved. This
prevents multiplication of variables in encodings since it would exactly destroy
linearity. On the other hand, in generalizing to multi-linear settings, it is exactly
the multiplication operation that we would like to enable. We resolve this conun-
drum by formalizing our multilinear version of pair encoding via a new notion
we call multilinear programs, which allows both addition and multiplication. Our
novelty then lies in identifying a subclass of multilinear programs that we call
associative programs that will exactly admit the security proof under a subgroup

Dual System Framework in Multilinear Settings and Applications 9

decision assumption. Intuitively, associative programs allow us to compute the
same encodings in two equivalent ways (hence the name, associative); one is used
for the construction, and the other is used in simulation for the security proof.

“Doubly selective security” of pair encodings [3] can then be generalized
to multi-linear settings in a natural manner. This consists of selective and co-
selective notions for encodings, which mimic the definitions of selective and co-
selective security of ABE. Selective notion refers to the situation where a cipher-
text attribute is queried before a key attribute, while in co-selective notion, the
order is reversed. This reflects one of the advantages of the framework: to achieve
secure encodings in the selective notion, we can borrow algebraic techniques for
selective security of ABE, which is much easier to achieve than full security.

Dual Conversion. Another advantage of the pair encoding framework is that
it comes equipped with the powerful dual conversion [3,9]. For a predicate R :
X × Y → {0, 1}, its dual is defined by R̄ : Y × X → {0, 1} where R̄(Y,X) :=
R(X,Y). Hence KP-ABE and CP-ABE are dual to each other. Attrapadung and
Yamada [9] described a generic conversion that converts (bilinear) pair encoding
P for a predicate R to another scheme P for its dual while preserves doubly
selective security and efficiency. More precisely, selective security of P implies co-
selective security of P (and analogously in an alternating manner). We generalize
to multilinear settings in this paper. This, for the first time, allows us to convert
KP-ABE to CP-ABE for circuits without using universal circuits, which was the
only known (and highly inefficient) method so far.
Perspective. Ananth et al. [2] recently proposed a generic conversion from
selective to full security in functional encryption (FE) for sufficiently expressive
classes. (More on this later in Sect. 1.4.) However, they left an open problem
of constructing a similar selective-to-full conversion for ABE. The ABE case is
a harder task since the starting primitive, i.e., selectively secure ABE, is less
powerful than selectively secure FE. Our framework provides a partial solution
by starting with any doubly selectively secure pair encodings (rather than any
selective ABE), and converting to fully secure ABE via Theorem2.

Potential Applications. Although we demonstrate applications of our frame-
work by considering circuits, we may try to use it for plausibly constructing ABE
for “moderate” classes in the Chomsky hierarchy (e.g., Pushdown Automata,
Linear-bounded Automata) with the hope that it can be done under multilinear
maps with much lower multi-linearity (e.g., small constant), which itself might
be easier to achieve than general-purpose multi-linear maps. Indeed, this is the
case for ABE for Deterministic Finite Automata, where the sufficient multi-
linearity is 2 (i.e., bilinear) [3,49].

1.3 Our Techniques

Here, we highlight techniques for constructing new fully secure ABE for cir-
cuits. We first quickly note that the “information-theoretic variant” of dual sys-
tem techniques [3,51] will not work for circuit predicate due to “backtracking
attack” [24] (due to the multi-fanout property of circuits).

10 N. Attrapadung

We thus seek for “doubly selectively” secure encoding for the circuit
predicate, which exhibits the “computational variant” of dual system tech-
niques [3,36]. Our blueprint starts with KP-ABE of GGHSW [24]. We imme-
diately obtain selectively secure encoding by borrowing techniques for proving
selective security of KP-ABE. The missing piece is then to prove the co-selective
security for this encoding, or equivalently, the selective security of its dual encod-
ing. Intuitively, we need new techniques to directly prove selective security of
CP-ABE for circuits (without using universal circuits). One evidence that con-
structing selectively secure CP-ABE for circuits can be hard is that the Waters
CP-ABE [47], which is for Boolean formulae, is proved under an already more
complex (q-type) assumption than the KP-ABE counterpart [33], à la the Par-
allel BDHE [47].

Our goal is to generalize the selective proof of Waters’ CP-ABE to the case
of circuits. This poses two main issues. First, the output of a gate can be wired
as an input to another gate (we call this a hierarchy issue). Second, and more
essentially, the output of a gate (or a circuit input) can be wired as inputs
to many gates (this is called multi-fanout). In the Waters CP-ABE, these two
issues were not problematic since the scheme can be thought of using one big
gate (multi-fan-in) that can express a linear secret-sharing scheme.

We solve these issues by designing a new assumption and a security proof
that generalize “individual randomness” techniques similar to Waters [47], and
Rouselakis and Waters [43] to work with circuits. The security proof works by
“chaining” information on the paths from a given input gate to the output gate.
One technical difficulty is that the number of chains can be exponential in the
number of all gates (which would result in an exponential size assumption). We
resolve this by giving out “decomposed” elements separately and letting the
reduction multiply these terms on the fly to form the chains. In doing so, we
carefully avoid enabling multiplication that results in a term that would trivially
break the assumption. We note that our resulting assumption itself will not be
tied to any particular circuit; it is only parameterized by the width, the input
length, and the depth of the queried circuit.

Semi-adaptive Security Under Simpler Assumptions. For the purpose of
basing our schemes under simple assumptions, we consider semi-adaptive secu-
rity of ABE [19,45], which is an intermediate notion between selective and full
security. We establish a tight reduction from semi-adaptive security of our generic
construction to the selective security of pair encodings. Loosely speaking, this
enables us to upgrade the KP-ABE of GGHSW [24] from selective to semi-
adaptive security for almost free4, since the selective security of our encodings
relies on a similar (simple) assumption as that of GGHSW. See Tables 1 and 2.

1.4 Related Work

Multilinear Map Candidates. Our framework is based on multi-linear maps.
More precisely, we use composite-order asymmetric graded encoding systems
4 We although still need the subgroup decision assumption required for framework.

Dual System Framework in Multilinear Settings and Applications 11

(in a black-box manner). Multi-linear graded encoding systems was first pro-
posed by Garg et al. [23] and subsequently by Coron et al. [20] (CLT13). Gen-
try et al. [29] extended the CLT13 system to the composite-order setting. Unfor-
tunately, these candidates (and their variants, notably CLT15 [22]) were later
shown to be broken [17,18,21].5 As an alternative approach, multilinear maps
based on indistinguishability obfuscation (IO) are recently proposed in [1]. How-
ever, the current security proof of IO under a polynomial-size set of assumptions
requires complexity leveraging and hence exponential loss in reduction [30]. Nev-
ertheless, this sheds some light on possibility of multilinear maps in the future.

Fully Secure FE. Recently, Waters [50] and Ananth et al. [2] obtained fully-
secure functional encryption (FE) for circuits. Waters provides a direct scheme
based on IO [25,30], while Ananth et al. provide a generic conversion from
selective to full security for FE in unconditional manner and one can then use
selectively secure FE from [25,50], which is again based on IO. Due to an implicit
exponential loss via IO, we do not elaborately include [2,50] in Tables 1 and 2.

As mentioned earlier, Garg et al. [27] obtained fully secure FE for circuits
without obfuscation, hence also implies ABE with polynomial reduction. As
in [26], it uses universal circuits, and thus can deal only with bounded-size cir-
cuits. Its asymptotic efficiency is also similar to [26] (cf. Tables 1 and 2), albeit
with much larger polynomials. Moreover, it requires stronger multilinear maps
with the so-called Extension functionality [27].

Semi-adaptive Secure ABE. Very recently, Brakerski and Vaikun-
tanathan [11] obtained semi-adaptively secure KP-ABE for circuits that also
achieves a remarkable feature of unbounded input length. Also very recently,
Goyal et al. [32] proposed a generic selective-to-semi-adaptive conversion for
ABE.

2 Preliminaries

Predicate Family. We consider a predicate family R = {RΛ}Λ∈Nc , for some
constant c ∈ N, where a relation RΛ : XΛ × YΛ → {0, 1} is a predicate function
that maps a pair of key attribute in a space XΛ and ciphertext attribute in a
space YΛ to {0, 1}. The family index Λ = (n1, n2, . . .) specifies the description
of a predicate from the family, where we let n1 be the security parameter λ ∈ N.

ABE Syntax. An ABE scheme for predicate R consists of the following:

• Setup(1Λ) → (PK,MSK): takes as input a a family index Λ (which includes
the security parameter λ) of predicate family R, and outputs a master public
key PK and a master secret key MSK.

• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ YΛ, a
message M ∈ M (the message space), and PK. It outputs a ciphertext CT.

5 As a caveat, some schemes are plausibly secure in the setting where encodings of
zero are not given out. However, in ABE, we will need them for our security proof.

12 N. Attrapadung

• KeyGen(X,MSK,PK) → SK: takes as input a key attribute X ∈ XΛ and the
master key MSK. It outputs a secret key SK.

• Decrypt(CT,SK) → M : given a ciphertext CT with its attribute Y and the
decryption key SK with its attribute X, it outputs a message M or ⊥.

Correctness. Consider all indexes Λ, all M ∈ M, X ∈ XΛ, Y ∈ YΛ such that
RΛ(X,Y) = 1. If Encrypt(Y,M,PK) → CT and KeyGen(X,MSK,PK) → SK
where (PK,MSK) is generated from Setup(1Λ), then Decrypt(CT,SK) → M .

Security Notions for ABE. We use the standard definitions for full security
and semi-adaptive security. Due to the lack of space, we refer to the full version.
The advantages of A against the full and semi-adaptive security of the scheme
ABE are denoted by AdvABEA (λ),Advsemi,ABE

A (λ), respectively.

Circuit Notations. A circuit consists of six tuples f = (�, n, {mi}i∈[2,�], L, R,
Type). We first note that it is wlog that we consider only monotone and layered
circuits [24]. We let � be the number of layers (the depth), n be the number
of inputs, and mi be the number of gates in the i-th layer for i ∈ [2, �]. Define
m := maxi∈[2,�] mi, which represents the width. We also define m1 = n. We define
Inputs = {w1,1, . . . , w1,n}, and for i ∈ [2, �], Gatesi = {wi,1, . . . , wi,mi

}. We let
Gates =

⋃
i∈[2,n] Gatesi, and let Nodes = Inputs ∪ Gates. Also denote wtop = w�,1

(the output gate). We define Depth(wi,j) = i and Num(wi,j) = j. The two
functions L : Gates → Gates � {wtop} and R : Gates → Gates � {wtop} identify
the two input gates; that is, L(wi,j), R(wi,j) have outputs wired to wi,j as the
first input (left input) and the second input (right input), respectively. We require
that Num(L(wi,j)) < Num(R(wi,j)). The function Type : Gates → {OR,AND}
specifies the type of gate as either OR or AND. For w ∈ Gates, we denote fw(x)
to be the circuit evaluation of x at the output of w.

The predicate of KP-ABE for circuits is Rλ,n,� : Fn,�×{0, 1}n → {0, 1} where
R(f, x) = f(x), where Fn,� is the set of all circuits with bounded input length n
and bounded depth �.

Composite-order Graded Encoding. We use the same syntax of (composite-
order) graded encoding schemes as in [20,22,23]. Due to the lack of space, we
postpone the full definition to the full version and only give a short description
here. A composite-order asymmetric graded encoding scheme is parameterized
by multi-linearity κ ∈ N and the number of subrings ν ∈ N. It allows us to
encode a scalar a in a given ring R = ZN1 × · · · × ZNν

, together with an index,
which is a set S ⊆ [1, κ], to a corresponding encoding, which we denote it by
[a]S . Intuitively, it is hard to recover the original scalar from its encoding, yet
we are still allowed to perform some arithmetic operations on encodings. More
precisely, we are allowed to perform operations +,−, · on encodings as

[a]S + [b]S = [a + b]S , [a]S1 · [b]S2 = [a · b]S1∪S2 ,

and −[a]S = [−a]S , for a, b ∈ R, S, S1, S2 ⊆ [1, κ] such that S1 ∩ S2 = ∅.
We also give some notation, originally appeared in [26], when the encoded

scalar is projected to only subring components. In our ABE scheme, we will

Dual System Framework in Multilinear Settings and Applications 13

use ν = 2. We denote [a]1S := [a1]S where we set a1 ≡ a (mod N1) and
a1 ≡ 0 (mod N2). [a]2S is denoted similarly. Thus, [a]1S and [a]2S are inde-
pendently distributed due to the Chinese Remainder Theorem. Also, we can
decompose [a]S uniquely to [a]S = [a]1S + [a]2S . Moreover, we have orthogo-
nality: [a1]1S1

· [a2]2S2
= [0]S1∪S2

, for any a1, a2 ∈ R (and disjoint S1, S2). More
importantly, we can establish some subgroup decision problems. We describe
this in Sect. 3.4.

Our scheme will not require public encoding functionality of any element;
instead, we only need public encoding procedures of unknown random elements
(as is the case for previous candidates [20,22,23]). We denote it by [a]∅ ←
Samp(param), which gives us a level-∅ encoding of an unknown random element
a ∈ R. To encode it to level S, we need an encoding of 1, namely, [1]S , to
compute [a]∅ · [1]S = [a]S .

We briefly describe procedures for graded encodings here. InstGen(1λ, κ, ν)
outputs (param, esk, {Ni}i), where param is public parameter, esk is a secret
encoding key, and the order {Ni}i of subrings. By using esk, one can encode
any a ∈ R to [a]VS for any S, V . Extraction algorithm Ext takes param and a
level-[1, κ] encoding [a][1,κ] as inputs, and outputs a string K ∈ {0, 1}λ. We
require that if a ∈R R, then K ∈R {0, 1}λ (∈R means uniformly distributed). As
in all previous candidates, encodings may be non-deterministic. In such a case,
we have a re-randomization procedure, and we require that the extraction of two
encodings of the same value will result in the same string.

3 Our Dual System Framework in Multilinear Settings

In this section, we describe our framework for constructing ABE for any given
predicate R from a new primitive called multilinear pair encoding scheme (for
predicate R). This primitive is defined using formal variables in polynomials. To
capture a formal system of graded encoding, we introduce the following notion
of indexed polynomials, which are basically formal polynomials with the index
being sets, and their operations mimic those of graded encodings.

Definition 1 (Formal Variables and Polynomials). A formal variable is a
bit string, and distinct variables denote different strings. A fresh variable is any
string that has not been assigned to another former variable. A formal polynomial
is a polynomial with formal variables.

Definition 2 (Indexed Polynomial). An indexed polynomial p is defined as
a pair of formal polynomial a with coefficients in Z and a set S ⊆ [1, κ]. We
denote it as p = (a)S. We define its formal operations +,−, · as

(a1)S + (a2)S = (a1 + a2)S , (a1)S1 · (a2)S2 = (a1 · a2)S1∪S2 ,

and −(a)S = (−a)S, for S, S1, S2 ⊆ [1, κ] and S1 ∩ S2 = ∅.
Definition 3 (Indexed Singleton). An indexed singleton is an indexed poly-
nomial of a single variable (degree-1 monomial of a variable with coefficient 1)
or a constant. The former is also called indexed variable.

14 N. Attrapadung

We formalize algorithms that perform formal operations on indexed poly-
nomials as multilinear programs. Below, we then capture a kind of multilinear
programs, called associative programs, that will be useful for our framework. We
will typically denote a vector of indexed polynomials using bold fonts.

Definition 4 (Multilinear Program). A multilinear program, say P, is a
procedure that takes a vector of indexed polynomials, say x, as an input, per-
forms only formal operations on its elements, and outputs a vector of indexed
polynomials, say v. When a security parameter λ is considered, we require the
number of formal operations to be polynomial in λ.

Definition 5 (Associative Program). We say that a multilinear program P

is associative over an ordered pair of vectors (x,w) of indexed singletons if its
input is a vector of indexed polynomials each of which is of the form6

(xi)∅ · (wj1)Tj1
· · · (wjk

)Tjk
,

for some (wj1)Tj1
, . . . , (wjk

)Tjk
∈ w (for some k)7 and some variable xi such

that there exists (xi)Si
∈ x where Tj1 ∪ · · · ∪ Tjk

= Si.

Using Associative Programs. The reason why we define associative programs
is that we can identify the following associativity property:

(xi)∅ · (wj1)Tj1
· · · (wjk

)Tjk
= (xi)Si

· (wj1)∅ · · · (wjk
)∅ (1)

(where Tj1 ∪ · · · ∪ Tjk
= Si). Intuitively, this property will allows us to have two

ways of obtaining an equivalent element to be input to the program. Looking
forward in our ABE context, one way will allow us to define ABE constructions
and the other will allow us to simulate equivalent elements in the security proof.
More precisely, we have a lemma below. Before that, we define two more notions.

A Useful Notation. We define the notation of index-less projection that maps
a vector a of indexed polynomials to the same vector but with all indexes being
∅, denoted Va. That is,

a = {(ai)Si
|i ∈ [1, k]} �→ Va := {(ai)∅|i ∈ [1, k]}.

Extended Program. For a multilinear program P that is associative over
(x,w), we define its canonically extended multilinear program, denoted as EP,
that takes (Vx, w) as inputs, and does as follows. From Vx and w, EP computes
each indexed polynomial (xi)∅ · (wj1)Tj1

· · · (wjk
)Tjk

that appears in the input
set of P by formal multiplications. These thus comprise the whole input set to P

and EP then finally computes P and outputs the result. We have the following:

Lemma 1 (Associativity). For any vectors x,w of indexed polynomials, for
any multilinear program P that is associative over (x,w), we have

EP(Vx,w) = EP(x,Vw).

6 This form implies that all Tj1 , . . . , Tjk are pairwise disjoint.
7 Here, for a vector x, the notation ‘z ∈ x’ means that z is an element in x.

Dual System Framework in Multilinear Settings and Applications 15

Proof. The left-hand side and the right-hand side programs compute each input
to P in the form of left-hand side and right-hand side of Eq. (1), respectively,
which are equal. From that point on, both compute the same program P. �

Applying Graded-encoding Schemes to Formal System. Let us fix a
graded encoding scheme and use the bracket notation. For an indexed polynomial
p = (a)S , we denote its corresponding graded-encoded element as [p] = [a]S ,
where we abuse the bracket notation. It also applies component-wise to vectors.

Let P be a multilinear program with an input size z and an output size
z′ (sizes are the length of vectors). We define a corresponding algorithm that
takes a vector of z graded-encoded elements as an input and outputs a vector
of z′ graded-encoded elements. This algorithm has the same procedure as P

but replaces each formal operation +,−, · on indexed polynomials to operation
+,−, · on graded-encoded elements, resp. We thus abuse the notation and denote
this algorithm also as P. The following lemma will be useful in the proof.

Lemma 2 (Decomposability). For any multilinear program P, any input x,
we have P([x]) = P([x]1) + P([x]2).

Proof. We decompose [x] = [x]1 + [x]2. We claim that the decomposition will
be preserved for each operation. For +,−, it is trivial. For multiplication we see
that ([x]1S1

+ [x]2S1
)([x′]1S2

+ [x′]2S2
) = [x]1S1

· [x′]1S2
+ [x]2S1

· [x′]2S2
, due to

orthogonality. Hence, multiplication also preserves decomposition. �
We also obtain the following two corollaries from Lemmas 1 and 2, resp.,

which will be used in the security proof. They hold for any vectors x,w of
indexed polynomials, and for any multilinear program P that is associative over
(x,w).

Corollary 1. EP([Vx], [w]1) = EP([x]1, [Vw]) = EP([x]1, [Vw]1).

Proof. Since each input to P is of the form in Definition 5, when [x] is projected
to [x]1, the input term to P is also projected due to orthogonality. Hence, we
have the latter equality. The rest follows from Lemma1. �
Corollary 2. EP([x], [Vw]) = EP([x]1, [Vw]) + EP([x]2, [Vw]).

3.1 Multilinear Pair Encodings

Syntax. A multilinear pair encoding scheme for predicate family R consists of
four deterministic polynomial-time algorithms as P = (Init,EncK,EncC,Pair):8

8 We define syntax in such a way that it does not refer to multilinear maps. We do
this so that it can accommodate both perfect and computational flavor of security
(the former will not refer to mult-maps while the latter will, cf. Sect. 3.2), similarly
to [3,5].

16 N. Attrapadung

• Init(Λ) → (
κ,hc,hk, n

)
. It outputs a multi-linearity level κ, two vectors hc,hk

of indexed singletons, and an integer n specifying the number of all variables
in hc,hk. We require that each singleton is hi or 1, where h1, . . . , hn are
variables. Let Sc, Sk be the set of all indexes in hc,hk, respectively. Also let
Sc =

⋃
S∈Sc

S, Sk =
⋃

S∈Sk
S. We require that Sc∩Sk = ∅ and Sc∪Sk = [1, κ].

Also we require (1)Sk
∈ hk.9

• EncK(X,hk) → (
B, r,PX

)
. The Key Encoding algorithm takes X ∈ XΛ and

hk as inputs. It outputs two vectors B, r of indexed polynomials, and a
multilinear program PX . We require that r =

(
(r1)S1 , . . . , (rm)Sm

)
, where

r1, . . . , rm are fresh variables, for some S1, . . . , Sm ⊆ Sk for some integer m.
We require that

PX is associative over (r,hk) and EPX
(Vr,hk) = B.

We distinguish the first indexed polynomial in B and require it to have index
Sk; we call it the Master-key Masking term10 and denote it as (K0)Sk

. Hence,
B =

(
(K0)Sk

,K
)
.

• EncC(Y,hc) → (
C, s,PY

)
. The Ciphertext Encoding algorithm takes Y ∈ YΛ

and hc as inputs. It outputs two vectors C, s of indexed polynomials, and
a multilinear program PY . We require that s =

(
(s0)Sc , (s1)T1 , . . . , (sw)Tw

)
,

where s0, s1, . . . , sw are fresh variables, for some T1, . . . , Tw ⊆ Sc for some
integer w. We require that

PY is associative over (s,hc) and EPY
(Vs,hc) = C.

We distinguish the first indexed variable (s0)Sc in s where we require it to have
index Sc. Also, we require that (s0)Sc ∈ C and call it the Base Randomness
term. (Wlog, we let it be the first indexed polynomial in C).

• Pair(X,Y) → PX,Y . It outputs a description of multilinear program PX,Y .

Correctness. If R(X,Y) = 1 then PX,Y (K,C) = (K0s0)[1,κ], for K,K0,C, s0
defined as above. In particular, (K0)Sk

and (s0)Sc are the master-key masking
term in K and the base randomness term in C, respectively.

3.2 Security Definitions for Multilinear Pair Encoding

In this section, we formalize security notions for multilinear pair encoding. Look-
ing forward, intuitively, they are formalized so as to provide indistinguishability
between certain game switchings in the security proof for ABE. Nevertheless, it
is simpler than the full security of ABE as the adversary will not obtain elements
corresponding to public keys (graded-encoded hc in our context).

9 Or, (1)Sk is computable from hk. This is only for our purpose of dual conversion
in Sect. 6.

10 It will be used to mask the master-key in our generic scheme in Sect. 3.3, hence the
name.

Dual System Framework in Multilinear Settings and Applications 17

We formalize the computational security here, and postpone the information-
theoretic one to the full version. It generalizes that of (bilinear) pair encoding
in [3] (with a refinement regarding the number of queries in [9]). It consists
of two sub-notions: selective and co-selective master-key hiding (SMH,CMH) in
a graded encoding system G. We recall that G.Samp gives a level-∅ encoding of
random element. We use the same notation for a vector x of indexed polynomial:
that is, [Vx] ← Samp(param) gives [x1]∅, · · · , [xk]∅ ← Samp(param).

Selective Master-key Hiding. Let t1, t2 ∈ N. The (t1, t2)-SMH security is
defined via the following game between the challenger C and the adversary A in
the following order. For a definitional purpose, we fix b ∈ {0, 1}.

1 Setup: The challenger C setups the pair encoding P.Init(Λ) → (
κ,hc,hk, n

)
,

and setups the graded encoding G.InstGen(1λ, κ, 2) → (param, esk, N1, N2).
C graded-encodes 1 for all indexes in Sc ∪ Sk to obtain I :={
[1]1S , [1]2S

}
S∈Sc∪Sk

. The input to A is (param, I). C further samples
[Vh], [β]∅ ← Samp(param) for using in the next phases. From b, define

β� := 0 if b = 0 and β� := β if b = 1.

2 Ciphertext query phase: A makes a query Y for graded-encoded EncC. C
then runs P.EncC(Y,hc) → (

C, s,PY

)
, samples [Vs] ← Samp(param), and

returns [C]2 to A. At most t1 ciphertext queries are allowed.
3 Key query phase: A makes a query X for graded-encoded EncK. We

require that R(X,Y) = 0 for all queries Y in the previous phase. C runs
P.EncK(X,hk) → (

B, r,PX

)
, samples [Vr] ← Samp(param). Parse B =

((K0)Sk
,K) and returns

([β�]2Sk
+ [K0]2Sk

, [K]2)

to A. At most t2 key queries are allowed.
4 Guess: The adversary A outputs a guess b′ ∈ {0, 1}.

Let Expb(λ) denote the output of the game. We define the advantage of A as
Adv

(t1,t2)-SMH(P)
A (λ) := |Pr[Exp0(λ) = 1] − Pr[Exp1(λ) = 1]|. We say that P is

(t1, t2)-SMH in G if the advantage is negligible for all polynomial time attackers
A. If ti is not a-priori bounded, we denote ti = poly.

Remark 1. We note that, in the above game, C can compute the returned graded-
encoded elements by using I and known level-∅ graded-encoded variables, [Vh],
[Vs], [Vr]. Also note that, if graded encoding is noisy, C re-randomizes answers
to have a certain noise level before returning back to A.

Co-selective Master-key Hiding. The (t1, t2)-CMH security is defined in
exactly the same manner as that of SMH except that we swap the order of the
two query phases: we let the key query phase comes before the ciphertext query
phase. Now, t1, t2 denotes the number of key and ciphertext queries, respectively.
We note that an analogous restriction is required in the ciphertext query phase.

18 N. Attrapadung

3.3 Our Generic ABE Construction for Any Predicate

Construction. From a multi-linear pair encoding scheme P for predicate R
and a graded encoding system G, we construct an ABE scheme for R, denoted
ABE(P,G), as follows. We let the message space be M = {0, 1}λ.

• Setup(1Λ) → (PK,MSK). Initialize P.Init(Λ) → (
κ,hc,hk, n

)
and generate

G.InstGen(1λ, κ, 2) → (param, esk, N1, N2). For i ∈ [1, n], sample hi
$← R.

Sample α
$← R. It graded-encodes all elements in hc,hk, in ZN1 components

(by using the secret encoding key esk). Output:

PK =
(
param, [hc]1, [α]1[1,κ]

)
, MSK =

(
param, [hk]1, [α]1,2

Sk

)
.

• Encrypt
(
PK, Y,M

) → CT. Run P.EncC(Y,hc) → (
C, s,PY

)
. Sample [Vs] ←

Samp(param). Compute

[C]1 = EPY

(
[Vs], [hc]1

)
.

It then computes [αs0]1[1,κ] = [α]1[1,κ] · [s0]∅ and C0 = G.Ext(param,

[αs0]1[1,κ]) ⊕ M . Output CT =
(
[C]1, C0

)
.

• KeyGen
(
MSK,X

) → SK. Run P.EncK(X,hk) → (
(K0)Sk

,K, r,PX

)
. Sample

[Vr] ← Samp(param). Compute

([K0]1Sk
, [K]1) = EPX

([Vr], [hk]1)

Output SK =
(
[α]1,2

Sk
+ [K0]1Sk

, [K]1
)

.

• Decrypt(SK,CT) → M . Assume R(X,Y) = 1. Parse [s0]1Sc
from CT. Run

P.Pair(X,Y) → PX,Y . Compute PX,Y ([K]1, [C]1) → [K0s0]1[1,κ] and

([α]1,2
Sk

+ [K0]1Sk
) · [s0]1Sc

− [K0s0]1[1,κ] = [αs0]1[1,κ],

and obtain M as C0 ⊕ G.Ext(param, [αs0]1[1,κ]).

Semi-functional Algorithms. In the security proof, we will use semi-
functional algorithms defined below. In these, we will use hatted variables which
are fresh variables (thus are independent from their non-hatted counterparts).
For a vector x of indexed variables, let x̂ be a vector of indexed variables where
we swap each variable in x with its hatted counterpart. In particular, this defines
ĥc, ĥk, ŝ, r̂.

• SFSetup(1Λ) → (PK,MSK, P̂K, M̂SK). This is exactly the same as Setup

albeit it additionally outputs P̂K, M̂SK as follows. For i ∈ [1, n], sample
ĥi

$← R. It graded-encodes all elements in ĥc, ĥk projecting to subring ZN2

and outputs:

P̂K =
(
[ĥC]2, [α]2[1,κ]

)
, M̂SK = [ĥK]2,

It also outputs [1]2Sk
(for using as an input to SFKeyGen below).

Dual System Framework in Multilinear Settings and Applications 19

• SFEncrypt
(
PK, Y,M, P̂K

) → CT. First, proceed as Encrypt
(
PK, Y,M

)
to

obtain [C]1 and [αs0]1[1,κ]. Sample [Vŝ] ← Samp(param). Compute

[Ĉ]2 := EPY

(
[Vŝ], [ĥc]2

)
.

Compute [αŝ0]2[1,κ] = [α]2[1,κ] · [ŝ0]∅, and Ĉ0 = G.Ext(param, [αs0]1[1,κ] +

[αŝ0]2[1,κ]) ⊕ M . Output CT =
(
[C]1 + [Ĉ]2, Ĉ0

)
.

• SFKeyGen
(
MSK,X, type, aux

) → SK. aux is an auxiliary input. If type = 1,
let aux = M̂SK. If type = 2, let aux = (M̂SK, [1]2Sk

, [β]∅). If type = 3, let
aux = ([1]2Sk

, [β]∅). First, run KeyGen
(
MSK,X

) → ([α]1,2
Sk

+ [K0]1Sk
, [K]1).

Sample [Vr̂] ← Samp(param). If type = 1 or 2, compute

([K̂0]2Sk
, [K̂]2) := EPX

(
[Vr̂], [ĥk]2

)
.

For type = 2 or 3, also compute [β]2Sk
= [1]2Sk

· [β]∅. Output

SK =

⎧
⎪⎨

⎪⎩

(
[α]1,2

Sk
+ [K0]1Sk

+ [K̂0]2Sk
, [K]1 + [K̂]2

)
if type = 1

(
[α]1,2

Sk
+ [K0]1Sk

+ [β]2Sk
+ [K̂0]2Sk

, [K]1 + [K̂]2
)

if type = 2
(
[α]1,2

Sk
+ [K0]1Sk

+ [β]2Sk
, [K]1

)
if type = 3

.

3.4 Multilinear Subgroup Decision Assumption

We introduce a new subgroup decision assumption in multilinear settings. It
generalizes the First and Second Subgroup Decision Assumptions in [3,35,37],
which are defined in bilinear groups, to multilinear settings. We require the
composite settings with only two subrings, instead of three as in [3,35,37,51].

Definition 6 (MSD). For κ ∈ N, U ⊆ [1, κ], we define the (κ,U)-Multilinear
Subgroup Decision Assumption as follows. Let InstGen(1λ, κ, 2) → (param, esk,

N1, N2). For i ∈ U , let zi
$← R. Define Ū = [1, κ] \ U . For i ∈ Ū , let ai

$← R. It
states that the following distributions are computationally indistinguishable:

(

D,Z =
{

[zi]1{i}
}

i∈U

)

and
(

D,Z =
{

[zi]1,2
{i}

}

i∈U

)

,

where D =
(

param, I =
{

[1]1{i}
}

i∈[1,κ]
, A =

{
[ai]1,2

{i}
}

i∈Ū
, B = [1]2U

)

.

We are able to use only two subrings thanks to asymmetric settings. Intu-
itively, if we were to use symmetric ones, B, which has only the ZN2 component,
can be used to test Z by multiplying to it. (And hence to prevent it, a mask
from another subgroup was needed). In asymmetric settings, we cannot multiply
B with any element in Z since their indexes intersect.

Properties from MSD. We describe some properties from MSD that will be
used in the security proof. We can write Zi := [zi]1,2

{i} = [zi,1]1{i} + [zi,2]2{i}.

20 N. Attrapadung

The problem can be restated as to distinguish whether zi,2 = 0 for all i ∈ U or
zi,2 ∈R R for all i ∈ U . For further use in the proofs, we denote the following.
For S ⊆ U , we denote ZS :=

∏
i∈S Zi and zS,j :=

∏
i∈S zi,j , for j = 1, 2. Hence,

we have ZS = [zS,1]1S + [zS,2]2S by orthogonality. Similarly, we write Ai :=
[ai]1,2

{i} = [ai,1]1{i} + [ai,2]2{i}. For S ⊆ Ū , AS :=
∏

i∈S Ai and aS,j :=
∏

i∈S ai,j ,
for j = 1, 2; hence, we have AS = [aS,1]1S + [aS,2]2S . We also note that from I,
for any S ⊆ [1, κ], we can compute

∏
i∈S [1]1{i} = [1]1S .

3.5 Security for Our Generic Construction

Theorem 3. Suppose that a pair encoding P for predicate R is (1, 1)-CMH and
(1, poly)-SMH in G. Suppose the MSD Assumption holds in G. Then, our generic
construction, ABE(P,G), for predicate R is fully secure. More precisely, for any
PPT adversary A, there exist PPT algorithms B1,B2,B3,B4, whose running
times are the same as A plus some polynomial times, such that for any λ,

Adv
ABE(P,G)
A (λ) ≤ Adv

(κ,Sc)-MSD
B1

(λ) + (2q1 + 2)Adv(κ,Sk)-MSD
B2

(λ)

+ q1Adv
(1,1)-CMH(P)
B3

(λ) + Adv
(1,poly)-SMH(P)
B4

(λ),

where q1 is the number of queries in phase 1, κ is the multi-linearity level, and
Sc, Sk ⊆ [1, κ] are specified by the encoding scheme P.

Proof. We use a sequence of games in the following order:

Greal G0 G1,1

· · ·
Gk−1,3 Gk,1 Gk,2 Gk,3

· · ·
Gq1,3 Gq1+1 Gq1+2 Gq1+3 Gfinal

MSD MSD CMH MSD MSD SMH MSD =

where each game is defined as follows.11 Greal is the actual security game. Each of
the following game is defined exactly as its previous game in the sequence except
the specified modification as follows. For notational purpose, let G0,3 := G0.

– G0: We modify the challenge ciphertext to be semi-functional type.
– Gk,i where k ∈ [1, q1], i ∈ {1, 2, 3}: We modify the k-th queried key to be

semi-functional of type-i. We use fresh β for each key (for type i = 2, 3).
– Gq1+i where i ∈ {1, 2, 3}: We modify all the keys in phase 2 to be semi-

functional of type-i at once. We use the same β for all these keys (for type
i = 2, 3).

– Gfinal: We modify the challenge to encrypt a random message.

In the final game, the advantage of A is trivially 0. We prove the indistinguisha-
bility between all these adjacent games. Due to the lack of space, we provide
only two of these lemmata below and defer the rest to the full version. In these
lemmata, we define GjAdv

ABE(P,G)
A (λ) to be the advantage of A in the game

Gj . Summing all the advantage differences from these lemmata, we obtain the
advantage bound stated as in Theorem3. �
11 More precise definitions of these games are given in the full version.

Dual System Framework in Multilinear Settings and Applications 21

Proof Intuition. We describe some intuition for proofs of lemmata for game
switching with key modifications. We consider two categories. (Ciphertext mod-
ification works similarly to the first category below).

For the game switching where β is not changed (normal to type-1 keys,
type-2 to type-3 keys), the difference between the two games is exactly the key
encodings in the ZN2 component. We thus simulate the key randomness [r] using
Z from the MSD problem instance, where we have to distinguish whether Z has
the ZN2 component or not. The reduction would then compute EP([r], [Vhk

]),
where [Vhk

] is sampled by the reduction and is used for generating other keys.
But, due to associativity (Lemma 1), this is equal to EP([Vr], [hk]), and due to
decomposability (Lemma 2), we can deduce that it is exactly the form of normal
or semi-functional key as per definition, depending on whether Z has the ZN2

component or not. Hence, the reduction to MSD is established.
For the game switching where β is changed (type-1 to type-2 keys), the dif-

ference between the two games is exactly β. We can embed exactly the challenge
from the CMH or SMH game, where we have to distinguish if β� = 0 or β� is
random. If the switched key is in phase 1, we use CMH, where the key query
comes before the ciphertext query. If the switched key is in phase 2, we use SMH.
The parameter (1, poly) of SMH lets us switch all post-challenge keys at once.

We provide here the proofs for the game switching from Greal to G0 (changing
normal to semi-functional ciphertext), and Gk,1 to Gk,2 (changing type-1 to type-
2 semi-functional key).

Lemma 3 (Greal to G0). For any adversary A, there exists an algorithm B that
breaks the (κ, Sc)-MSD Assumption with |GrealAdv

ABE(P,G)
A (λ)−G0Adv

ABE(P,G)
A (λ)|

≤ Adv
(κ,Sc)-MSD
B (λ).

Proof. As an instance of the (κ, Sc)-MSD Assumption, the algorithm B obtains
an input (D, {Zi}i∈Sc) where Zi = [zi,1]1{i} + [zi,2]2{i}. B’s task is to guess
whether zi,2 = 0 or zi,2 ∈R R (both for all i ∈ Sc).

B simulates SFSetup as follows. First, B samples [α̃]∅ ← Samp(param) and
sets [α]1,2

Sk
= [α̃]∅ · ASk

for MSK, and [α]1[1,κ] = [α]1,2
Sk

· [1]1Sc
for PK.

For i ∈ [1, n], B samples [h̃i]∅ ← Samp(param). For each indexed variable
(hi)S in hc or hk (for some S), B computes [hi]1S = [h̃i]∅·[1]1S (computable since
[1]1S is available in I) and implicitly sets [ĥi]2S = [h̃i]∅ · [1]2S (unknown since
[1]2S is not available). Hence we have hi = h̃i mod N1 and ĥi = h̃i mod N2. Due
to CRT, hi and ĥi distribute independently, as required by definition of SFSetup.
This feature is called parameter-hiding [3,36]. All these terms completely define
PK,MSK. PK is given to A.

Phase 1,2. When A makes the j-th key query for X(j), B generates a key as
usual: SKj ← KeyGen(MSK,X(j)).

Challenge. The adversary A outputs messages M0,M1 ∈ {0, 1}λ along with
a target Y �. B chooses b

$← {0, 1}. B runs P.EncC(Y �,hc) → (
C, s,PY �

)
. Let

22 N. Attrapadung

w = |s| − 1. For i ∈ [0, w], sample [s̃i]∅ ← Samp(param). Suppose that s =(
(s0)Sc , (s1)T1 , . . . , (sw)Tw

)
. B then computes

[s̄] :=
(
[s̃0]∅ · ZSc , [s̃1]∅ · ZT1 , . . . , [s̃w]∅ · ZTw

)
,

[C̄] :=EPY �

(
[s̄], [Vh̃c

]
)
,

C̄0 :=G.Ext
(
param, [α]1,2

Sk
· [s̃0]∅ · ZSc

)
⊕ Mb

where ZS = [zS,1]1S + [zS,2]2S for S ⊆ Sc is indeed derivable from the problem
instance. (See at the end of Sect. 3.4 for the definition of ZS). B sets CT =
([C̄], C̄0). We claim that CT properly distributes as a normal or semi-functional
ciphertext. To prove this, we observe that

[C̄] = EPY �

(
[s̄], [Vh̃c

]
)

= EPY �

(
[s̄]1, [Vh̃c

]
)

+ EPY �

(
[s̄]2, [Vh̃c

]
)

(2)

= EPY �

(
[Vs], [hc]1

)
+ EPY �

(
[Vŝ], [ĥc]2

)
, (3)

where Eq. (2) is due to decomposability (via Corollary 1), while Eq. (3) is due
to the associativity (via Corollary 2), where the variable si, ŝi (for i ∈ [0, w])
in s, ŝ are implicitly set as si = s̃izTi,1 and ŝi = s̃izTi,2, respectively. (Denote
T0 = Sc). In particular, s0 = s̃0zSc,1 and ŝ0 = s̃0zSc,2, hence in C̄0 we have
[α]1,2

Sk
· [s̃0]∅ · ZSc = [αs0]1[1,κ] + [αŝ0]2[1,κ]. Hence, if zi,2 = 0 for all i ∈ Sc, then

CT is normal. Otherwise, zi,2 ∈R R for all i ∈ Sc, then CT is semi-functional.

Guess. The algorithm B has properly simulated Greal if zi,2 = 0 for all i ∈ Sc,
and G0 if zi,2 ∈R R for all i ∈ Sc. Hence, B can use the output of A to break the
(κ, Sc)-MSD Assumption. �
Lemma 4 (Gk,1 to Gk,2). For any adversary A against the ABE(P,G) scheme,
there exists an algorithm B that breaks the (1, 1)-CMH security of the pair encod-
ing scheme P with |Gk,1Adv

ABE(P,G)
A (λ) − Gk,2Adv

ABE(P,G)
A (λ)| ≤ Adv

(1,1)-CMH
B (λ).

Proof In the CMH game, B is given param and I =
{
[1]1S , [1]2S

}
S∈Sc∪Sk

from its
challenger. It simulates Gk,1 or Gk,2 for A as follows.

B simulates SFSetup as follows. It generates PK,MSK as in the construction
but using the given I instead. Namely, B runs P.Init(Λ) → (

κ,hc,hk, n
)
. It

samples [α]∅, [h1]∅, . . . , [hn]∅ ← Samp(param). By using I, B can then obtain
[hc]1, [α]1[1,κ] for PK, and [hk]1, [α]1,2

Sk
for MSK. It sends PK to A. We remark

that [ĥc]2, [ĥk]2 (as parts of P̂K, M̂SK) are not yet defined until the first query
that requires using them, which is the k-th key query below.

Phase 1. When A makes the j-th key query for X(j), B does as follows.

(Case j < k). B samples [βj]∅ ← Samp(param), and computes a type-3 semi-
functional key as SKj ← SFKeyGen(MSK,X(j), 3, [1]2Sk

, [βj]∅).

Dual System Framework in Multilinear Settings and Applications 23

(Case j = k). B generates a type-1 or type-2 semi-functional key as follows.
B first obtains KeyGen

(
MSK,X(k)

) → SK = ([α]1,2
Sk

+ [K0]1Sk
, [K]1). B then

makes a key query for X(k) to its challenger in the CMH game and obtains

ŜK =
(
[β�]2Sk

+ [K̂0]2Sk
, [K̂]2

)
.

This is the challenge for B to guess if β� = 0 or β� ∈R R. B then returns SK+ ŜK
to A. If β� = 0, then this is a type-1 semi-functional key. If β� ∈R R, then it is
of type-2. We note that this simulated key implicitly defines [ĥc]2, [ĥk]2.

(Case j > k). B generates a normal key as SKj ← KeyGen(MSK,X(j)).

Challenge. The adversary A outputs messages M0,M1 ∈ {0, 1}λ along with a
target Y � such that R(Xj , Y

�) = 0 for all j ∈ [1, q1]. B first obtains [C]1 by
running Encrypt

(
PK, Y,M

)
. B then makes a ciphertext query for Y � to its chal-

lenger in the CMH game and receives back [Ĉ]2. This query can be made since
R(Xk, Y �) = 0. B parses [s0]1Sc

from [C]1, and [ŝ0]2Sc
from [Ĉ]2. B then chooses

b
$← {0, 1} and computes Ĉ0 = G.Ext(param, [α]∅ · [1]1Sk

· [s0]1Sc
+ [α]∅ · [1]2Sk

·
[ŝ0]2Sc

) ⊕ Mb. B forms the challenge ciphertext as CT =
(
[C]1 + [Ĉ]2, Ĉ0

)
,

which is a properly distributed semi-functional ciphertext as required.

Phase 2. For each query in this phase, B generates a normal key as usual.

Guess. The algorithm B has properly simulated Gk,1 if β� = 0, and Gk,2 if β�

is random. Hence, B can use the output of A to guess β�. �

Variants of Security Theorems. We also obtain a theorem for the case of
(1, 1)-SMH, instead of (1, poly)-SMH. This results in looser reduction. We defer
their proofs to the full version, where we also provide some more variants.

Corollary 3 Suppose that a pair encoding P for predicate R is (1, 1)-CMH,
(1, 1)-SMH in G. Suppose that the MSD Assumption holds in G. Then, ABE(P,G)
is fully secure, with advantage bounded by

Adv
ABE(P,G)
A (λ) ≤ Adv

(κ,Sc)-MSD
B1

(λ) + 2qallAdv
(κ,Sk)-MSD
B2

(λ)

+ q1Adv
(1,1)-CMH(P)
B3

(λ) + q2Adv
(1,1)-SMH(P)
B4

(λ).

On the other hand, we can establish tight reduction from semi-adaptive secu-
rity to (1, poly)-SMH as shown in the following corollary.

Corollary 4 Suppose that a pair encoding P for predicate R is (1, poly)-SMH
in G. Suppose that the MSD Assumption holds in G. Then, ABE(P,G) is semi-
adaptively secure, with advantage bounded by

Adv
semi,ABE(P,G)
A (λ) ≤ Adv

(κ,Sc)-MSD
B1

(λ) + 2Adv(κ,Sk)-MSD
B2

(λ) + Adv
(1,poly)-SMH(P)
B3

(λ).

24 N. Attrapadung

4 Fully Secure KP-ABE for Circuits

We describe our first KP-ABE via multilinear pair encoding scheme PKPABE1. It
is based on the (selectively-secure) KP-ABE of GGHSW [24], albeit we require
3�-multilinear maps, instead of (�+1) as in [24]. More precisely, instead of using
all singleton-set levels {1}, . . . , {� + 1}, we implement the scheme on encodings
of levels in S := {[1, �+1], [�+2, 2�+1], {2�+2}, . . . , {3�}}. In the construction,
each of the first two “bundled” levels will always be used as a whole bundle.
We only decompose them in the simulation to accommodate the assumption in
the proof. Another difference are some additional terms T1, T2,D1,D2, for the
purpose of proving the CMH,SMH security using randomizer techniques [3,36].

Construction PKPABE1.

• Init
(
λ, n, �

) → (
κ,hc,hk, n̄

)
. Set κ = 3�. Set n̄ = n+2 where we use variables

h1, . . . , hn, φ1, φ2. Let S′ :=
{
[� + 2, 2� + 1], {2� + 2}, . . . , {3�}}. Define

hc =
(
(1)Sc , (h1)Sc . . . , (hn)Sc , (φ1)Sc , (φ2)Sc

)
,

hk =
({(1)S}S∈S′ , (h1)[�+2,2�+1] . . . , (hn)[�+2,2�+1], (φ1)Sk

, (φ2)Sk

)
,

where Sc = [1, � + 1], Sk = [� + 2, 3�].
• EncC

(
hc, x ∈ {0, 1}n

) → (
C, s,Px

)
.12 Let Ax = {j ∈ [1, n]|xj = 1}. Output

a ciphertext encoding C =
(
T1, C, {Cj}j∈Ax

, T2

)
where

T1 = (t)[1,�+1], C = (s)[1,�+1], Cj = (hjs)[1,�+1], T2 = (φ2t + φ1s)[1,�+1].

The indexed variable vector is s =
(
(t)[1,�+1], (s)[1,�+1]

)
. That is, the base

randomness term is (t)[1,�+1].13

• EncK
(
hk, f ∈ Fn,�

) → (
(K0)Sk

,K, r,Pf

)
.12 Set the indexed variable vector:

r =
(
(r)[�+2,3�],

{
(αw)[�+2,2�+iw]

}
w∈Nodes

,
{
(vw)[�+2,2�+1]

}
w∈Inputs

,

{
(�w){2�+iw}, (rw){2�+iw}

}
w∈Gates

)

where we denote iw := Depth(w). Define

D1 = (φ2r)[�+2,3�], D2 = (r)[�+2,3�], D3 = (φ1r − αwtop)[�+2,3�].

Define the key element Kw for each w ∈ Nodes as follows.
1. For each input node w ∈ Inputs (i.e., Depth(w) = 1), let j = Num(w).

Define Kw = (Uw,Kw) as

Uw = (vw)[�+2,2�+1], Kw = (αw + hjvw)[�+2,2�+1].

12 The multilinear programs Px output from EncC and Pf output from EncK are
straightforwardly deducible from the respective encodings.

13 That is, we use variable t in place of s0 of the generic construction.

Dual System Framework in Multilinear Settings and Applications 25

2. For each gate w ∈ Gates (i.e., Depth(w) > 1), define Lw = (�w){2�+iw},
Rw = (rw){2�+iw}, and do as follows.
− If Type(w) = OR, then set Kw = (Lw, Rw,Kw,1,Kw,2), where we let

Kw,1 = (αw + α L(w)�w)[�+2,2�+iw], Kw,2 = (αw + αR(w)rw)[�+2,2�+iw].

− If Type(w) = AND, then we set Kw = (Lw, Rw,Kw), where we let

Kw = (αw + α L(w)�w + αR(w)rw)[�+2,2�+iw].

Output the key encoding as ((K0)Sk
,K) where the master-key masking term

is (K0)Sk
= D1 and the rest is K =

(
D2,D3, {Kw}w∈Nodes

)
.

• Pair (f, x) → Pf,x. Assume f(x) = 1. We describe multilinear program Pf,x

that takes (C,K) as an input, and outputs (K0t)[1,3�]. It computes at each
node w such that fw(x) = 1 in the bottom-up manner. It will derive Ew :=
(αws)[1,2�+i], where i = Depth(w). We show this by induction on i (1 to �).
1. For each input node w ∈ Inputs = [1, n] such that fw(x) = 1, we have

xw = 1 and j := Num(w) ∈ Ax. Compute

Ew = C · Kw − Cj · Uw = (αws)[1,2�+1].

This effectively proves the base case of the induction.
2. For each gate w ∈ Gates such that fw(x) = 1, we have two cases.

− If Type(w) = OR, then f L(w)(x) = 1 or fR(w)(x) = 1. Wlog, we can
assume that f L(w)(x) = 1. Hence, E L(w) = (α L(w)s)[1,2�+i−1] by the
induction hypothesis, as Depth(L(w)) = i − 1. Then, compute

Ew = C · Kw,1 − E L(w) · Lw = (αws)[1,2�+i].

− If Type(w) = AND, then f L(w)(x) = 1 and fR(w)(x) = 1. Hence,
E L(w) = (α L(w)s)[1,2�+i−1], ER(w) = (αR(w)s)[1,2�+i−1], by the induc-
tion hypothesis. Then, compute

Ew = C · Kw − (
E L(w) · Lw + ER(w) · Rw

)
= (αws)[1,2�+i].

This concludes the induction. Finally, at the top gate wtop, where
Depth(wtop) = �, we obtain Ewtop = (αwtops)[1,3�]. Compute and obtain

T2 · D2 − Ewtop − C · D3 = (K0t)[1,3�],

as required.

Properties. We can see that the key encoding for circuit f contains (at most)
2n + 4g′ + 3 elements, where g′ is the number of internal gates. Hence it admits
succinctness (the size is O(g), where g = n + g′ is the size of a circuit). The
ciphertext encoding for x contains |Ax| + 3 ≤ n + 3 elements. Moreover, it has
no bound on circuit size and fan-out. We only require bounds on input length n
and depth �.

26 N. Attrapadung

Assumptions. We describe two new assumptions, SMDDH1 and EMDDH1,
which extend the regular Multi-linear DDH assumption (MDDH) [15,20,23] in
asymmetric setting. (S,E is for Simple/Esoteric extension, resp.) For assumption
X, we define the advantage AdvXA(λ) := |Pr[A(D,Z) = 1] − Pr[A(D,Z ′) = 1]|,
for adversary A, where D,Z,Z ′ are specified in each assumption.

Definition 7 (�-SMDDH1). Let InstGen(1λ, 3�, 2) → (param, esk). Sample
ζ, z, c1, . . . , c�+1, from R. The �-SMDDH1 Assumption states that the following
distributions are computationally indistinguishable:

(
D,Z = [c1 · · · c�+1z]2[�+2,3�]

)
and

(
D,Z ′ = [ζ]2[�+2,3�]

)
,

where D consists of: param,
{

[1]1{i}, [1]2{i}
}

i∈[1,3�]
, [z]2[1,�+1], [c1z]2[�+2,3�],

[c1]2[1,�+1], [c1]2[�+2,2�+1], [c1]2{2�+2}, . . . , [c1]2{3�},

[c2]2[�+2,2�+1], [c3]2{2�+2}, . . . , [c�+1]2{3�}.

SMDDH1 differs from MDDH (in asymmetric settings) in two aspects. First,
the target element is in the level [� + 2, 3�], instead of the whole, which is [1, 3�].
Second, it gives out one more element [c1z]2[�+2,3�]. We can see that this would
not help attacking since it cannot be multiplied with available c2, . . . , c� as they
are all encoded in levels that are subsets of [� + 2, 3�].

Definition 8 ((�,m)-EMDDH1). Let InstGen(1λ, 3�, 2) → (param, esk). Sample
b, z, v, c1, · · · , c�+1, μ1, · · · , μ�, ν1, · · · , ν�, ω1, · · · , ω�, {ai,j , di,j}i∈[1,�],j∈[1,m], and
ζ from R. Denote μ = μ1 · · · μ�, ν = ν1 · · · ν�, ω = ω1 · · · ω�. The (�,m)-EMDDH1
Assumption states that the following distributions are computationally indistin-
guishable:

(
D,Z = [c1 · · · c�+1b]2[�+2,3�]

)
and

(
D,Z ′ = [ζ]2[�+2,3�]

)
,

where D consists of 14: param,
{
[1]1S , [1]2S

}
S∈S

, [z
b]2[1,�+1], [v]2[1,�+1], [v]2[�+2,3�],

[vb]2[�+2,3�], [
c1···c�+1

v]2[�+2,3�], and

∀e∈{0,−1} [μia
e
i,j]2{i}, [

z

μ
]2{�+1},

∀e∈{0,1} [νia
e
i,jdi,j]2{i}, [

c1
ν

]2{�+1},

∀e∈{0,−1} [ωia
e
i,j]2{i}, [

ωi

ω
zv

1
ai,j

]2{i,�+1},

∀(e,e′)∈E [
ae

i,j

ae′
i,j′

di,j]2{i}, ∀(e,e′)∈E� [zc1
ae

i,j

ae′
i,j′

di,j]2{i,�+1},

[
c2

d1,j
]2[�+2,2�+1], ∀i∈[2,�] [

ci+1

di,j
]2{2�+i},

14 We refer the definition of S to the beginning of this section (Sect. 4).

Dual System Framework in Multilinear Settings and Applications 27

∀i∈[2,�]∀e∈{0,1} [ae
i,jdi,j]2{�+1+i},

∀e∈{0,1} [c1 · · · cia
e
i,jdi,j]2Si

, ∀e∈{0,1} [c1 · · · ci+1a
e
i,j

di,j

di,j′
]2Si

,

where, unless stated above, subscripts range for all i ∈ [1, �], j, j′ ∈ [1,m] such
that j′ �= j. Denote E = {(0, 0), (0, 1), (1, 0), (1, 1), (−1, 0)}; E� = E \ {(0, 0)}.
Denote S1 = {� + 2} and Si = [� + 2, � + 1 + i] ∪ [2� + 2, 2� + i] for i ≥ 2.

Due to the lack of space, we defer the intuition, some remark, and its generic
hardness for EMDDH1 to the full version. We provide some discussions regarding
EMDDH1 as follows.

On Assumption Simplicity. To compare simplicity of assumptions quantita-
tively, we measure their sizes. The size of EMDDH1 is O(�m2). In bilinear groups,
we already have the Expanded m-BDHE [49] assumption, or the one in [43], of
which size is O(m2). The expansion factor of O(�) in ours is somewhat natural
since we extend to 3�-linear maps. Indeed, the most basic assumption for �-linear
maps, namely, the normal �-MDDH [15,20,23], already has size Ω(�).

Comparing to Uber Assumption. The Uber Assumptions in multilinear set-
tings (Uber) are introduced in [38,42], for proving their IO schemes. Intuitively,
Uber assumes the indistinguishability of (D,Z) and (D,Z ′) for all non-trivial
triples of (D,Z,Z ′). We compare EMDDH1 to Uber as they share this similar
intuition. However, contrastingly to Uber, EMDDH1 requires only one such spe-
cific triple, parameterized by (�,m). Our scheme could possibly be proved as
well under Uber, so that new assumptions would not be needed. However, this
would be undesirable since Uber is not efficiently falsifiable [42]; while, on the
other hand, our assumptions are. In other words, we believe that it is important
to come up with such a specific triple, even if it might look complex. Indeed,
our novelty exactly lies in identifying such an explicit triple (D,Z,Z ′) defined
for EMDDH1.

Security. We now state the security theorems for our encoding PKPABE1. Their
proofs are deferred to the full version. From these and Theorem3, Corollary 4,
we also obtain the full and semi-adaptive security of our first KP-ABE below.

Theorem 4. PKPABE1 is (1, 1)-CMH under the (�,m)-EMDDH1 assumption with
tight reduction, where �,m is the bounded depth and the width of queried circuit.

Theorem 5. PKPABE1 is (1, poly)-SMH under the �-SMDDH1 assumption with
tight reduction, where � is the bounded depth.

Corollary 5. ABE(PKPABE1,G) is fully secure under EMDDH1,SMDDH1,MSD,
and semi-adaptively secure under SMDDH1,MSD, with advantage bounded by

Adv
ABE(PKPABE1,G)
A (λ) ≤Adv

(κ,Sc)-MSD
B1

(λ) + (2q1 + 2)Adv(κ,Sk)-MSD
B2

(λ)

+ q1Adv
(�,m)-EMDDH1
B3

(λ) + Adv�-SMDDH1
B4

(λ),

Adv
semi,ABE(PKPABE1,G)
A (λ) ≤Adv

(κ,Sc)-MSD
B′

1
(λ) + 2Adv(κ,Sk)-MSD

B′
2

(λ) + Adv�-SMDDH1
B′

3
(λ),

where κ = 3�, Sc = [1, � + 1],Sk = [� + 2, 3�].

28 N. Attrapadung

5 Fully Secure KP-ABE with Short Ciphertext

We describe our KP-ABE for circuits with short ciphertexts. We use similar
techniques from compact ABE for formulae of [3,8], which are also similar to [13,
19], for designing elements related to the input layer of circuits. The mechanism
regarding internal gates of circuits are exactly the same as our first KP-ABE.

Construction PKPABE2.

• Init
(
λ, n, �

) → (
κ,hc,hk, n̄

)
. Set κ = 3�. Set n̄ = n+4 where we use variables

h0, h1, . . . , hn, φ1, φ2, φ3. Define hc and hk as in our first KP-ABE except that
we have one additional term for each: (φ3)[1,�+1] in hc; (φ3)[�+2,2�+1] in hk.

• EncC
(
hc, x ∈ {0, 1}n

) → (
C, s,Px

)
. Let Ax = {j ∈ [1, n]|xj = 1}. Output a

ciphertext encoding C =
(
C,C1, C2, T1, T2

)
where

C = (s)[1,�+1], C1 = (φ3s + (h0 +
∑

j∈Ax

hj)u)[1,�+1], C2 = (u)[1,�+1]

T1 = (t)[1,�+1], T2 = (φ2t + φ1s)[1,�+1].

The indexed variable vector is s =
(
(t)[1,�+1], (s)[1,�+1], (u)[1,�+1]

)
.

• EncK
(
hk, f ∈ Fn,�

) → (
(K0)Sk

,K, r,Pf

)
. All the elements are the same as

our first KP-ABE except {Kw}w∈Inputs. Let j = Num(w). We define Kw =
(Uw,Kw, Fw, {Gw,i}i∈[1,n]�{j}) as

Uw = (vw)[�+2,2�+1], Kw = (αw + φ3vw)[�+2,2�+1],

Fw = ((h0 + hj)vw)[�+2,2�+1], Gw,i = (hivw)[�+2,2�+1].

• Pair(f, x) → Pf,x. Assume that f(x) = 1. We describe the multilinear pro-
gram Pf,x that takes (C,K) as an input and outputs (K0t)[1,3�]. It computes
exactly as in our first KP-ABE except the computation regarding input nodes.
For each input node w ∈ Inputs = [1, n] such that fw(x) = 1, we have xw = 1.
Let j = Num(w). We have j ∈ Ax. We compute:

Ew =C · Kw − C1 · Uw + C2 · Fw + C2 ·
∑

i∈Ax�{j}
Gw,i = (αws)[1,2�+1]

The rest of algorithm is defined as in PKPABE1.

Properties. We can see that the ciphertext encoding for string x always contains
5 elements (hence constant-size relative to n). The key encoding for circuit f
contains n(n − 1) + 4g′ + 6 elements, where g′ is the number of internal gates.

Assumptions. We use new assumptions SMDDH2, EMDDH2, which are similar
to SMDDH1, EMDDH1 respectively, albeit with some additional terms that will
be used for simulating the new input layer. In particular, SMDDH2 consists
of terms that are similar to the BDHE [14] and the Multi-linear BDHE [13]
assumptions (the terms of the form g, ga, . . . , gan

, gan+2
, . . . , ga2n

), depicted in
the last line of SMDDH2 below. Again, we prove their generic hardness in the
full version.

Dual System Framework in Multilinear Settings and Applications 29

Definition 9 ((�, n)-SMDDH2). Let InstGen(1λ, 3�, 2) → (param, esk). Sample
ζ, z, c1, . . . , c�+1, b from R. Let S = [�+2, 2�+1]. The (�, n)-SMDDH2 Assumption
states that the following distributions are computationally indistinguishable:

(
D,Z = [cn+1

1 c2 · · · c�+1b]2[�+2,3�]

)
and

(
D,Z ′ = [ζ]2[�+2,3�]

)
,

where D consists of: param,
{

[1]1{i}, [1]2{i}
}

i∈[1,3�]
, and

[z]2[1,�+1], [
z

b
]2[1,�+1], [c

n+1
1 b]2[�+2,3�],

[cn+1
1]2{2�+2}, . . . , [c

n+1
1]2{3�},

[c2]2[�+2,2�+1], [c3]2{2�+2}, . . . , [c�+1]2{3�},

[c1]2[1,�+1], . . . , [c
n+1
1]2[1,�+1], [c1]2S , . . . , [cn+1

1]2S
[c1c2]2S , . . . , [cn

1 c2]2S , [cn+2
1 c2]2S , . . . , [c2n+1

1 c2]2S .

Definition 10 ((�,m, n)-EMDDH2). The (�,m, n)-EMDDH2 is defined in
exactly the same manner as (�,m)-EMDDH1 except that the given part D con-
tains also additional elements as follows. The problem instance additionally sam-
ples bj for j ∈ [1, n]. It augments D to also contain, for j, j′ ∈ [1, n] such that
j �= j′,

[μ1bj]2{1}, [ν1b2j]2{1}, [
1
bj

]2{1}, [
zc1bj

b2j′
]2{1,�+1},

[bjc2]2[�+2,2�+1], [
c1
bj

]2{�+2}, [
c1
b2j

]2{�+2}, [
c1c2bj

bj′
]2{�+2}, [

c1c2bj

b2j′
]2{�+2}.

Security. We now state the security theorems for PKPABE2. We prove them in the
full version. The full/semi-adaptive security of the resulting ABE is also given
below.

Theorem 6. PKPABE2 is (1, 1)-CMH under the (�,m, n)-EMDDH2 assumption
with tight reduction, where � is the bounded depth, n is the input length, and m
is the width of the queried circuit.

Theorem 7. PKPABE2 is (1, poly)-SMH under the (�, n)-SMDDH2 assumption
with tight reduction, where � is the bounded depth and n is the input length.

Corollary 6. ABE(PKPABE2,G) is fully secure under EMDDH2,SMDDH2,MSD,
and semi-adaptively secure under SMDDH2,MSD, with advantage bounded by

Adv
ABE(PKPABE2,G)
A (λ) ≤Adv

(κ,Sc)-MSD
B1

(λ) + (2q1 + 2)Adv
(κ,Sk)-MSD
B2

(λ)

+ q1Adv
(�,m,n)-EMDDH2
B3

(λ) + Adv
(�,n)-SMDDH2
B4

(λ),

Adv
semi,ABE(PKPABE2,G)
A (λ) ≤Adv

(κ,Sc)-MSD

B′
1

(λ) + 2Adv
(κ,Sk)-MSD

B′
2

(λ) + Adv
(�,n)-SMDDH2

B′
3

(λ),

where κ = 3�, Sc = [1, � + 1],Sk = [� + 2, 3�].

30 N. Attrapadung

6 Dual Conversion and CP-ABE

In this section, we provide a generic dual conversion for multilinear pair encoding.
It uses essentially the same idea as the dual conversion for bilinear pair encoding
of [9]. We then apply it to our KP-ABE and obtain CP-ABE for circuits.

6.1 Generic Dual Conversion

Given a multi-linear pair encoding scheme P for predicate R, we construct a
scheme Con(P) for its dual predicate R̄ as follows. We also denote P = Con(P).

• P.Init(Λ): Run P.Init(Λ) → (
κ,hc,hk, n

)
. Parse Sc, Sk from hc,hk. Let

S̄c := Sk, S̄k := Sc, hc := (hk, (φ)S̄c
), hk := (hc, (φ)S̄k

),

where φ is a fresh variable. Output
(
κ,hc,hk, n + 1

)
.

• P.EncK(Y,hk): Parse hc from hk. Run P.EncC(Y,hc) → (
C, s,PY

)
. Define

K̄0 := φs0, K := C, r̄ := s.

Define PY exactly as PY (which outputs C) but with an additional input
(φs0)S̄k

, which is trivially wired to output (K̄0)S̄k
. Output

(
(K̄0)S̄k

,K, r̄,PY

)
.

• P.EncC(X,hc): Parse hk from hc. Run P.EncK(X,hk) → (
(K0)Sk

,K, r,PX

)
.

Define

C :=
(
(s̄0)S̄c

, (φs̄0 + K0)S̄c
,K

)
, s̄ :=

(
(s̄0)S̄c

, r
)
.

where s̄0 is a fresh variable. Define PX exactly as PX (which is a program
that outputs ((K0)Sk

,K)) but with additional inputs (s̄0)S̄c
, (φs̄0)S̄c

, which
is used for the two new output elements in C. Output

(
C, s̄,PX

)
.

• P.Pair(Y,X): Run P.Pair(X,Y) → PX,Y . Define program PY,X as:

PY,X(K,C) : Output (φs̄0 + K0)S̄c
(s0)S̄k

− PX,Y (K,C).

Note that (φs̄0 +K0)S̄c
and K are parsed from C, while (s0)S̄k

is parsed from
the first element of K = C. Outputs the description of PY,X .

Correctness. Assume R̄(Y,X) = 1. Hence, R(X,Y) = 1. From the correctness
of P, we have PX,Y (K,C) = (K0s0)[1,κ]. Hence

PY,X(K,C) = (φs̄0 + K0)S̄c
(s0)S̄k

− (K0s0)[1,κ]

= (φs̄0)S̄c
(s0)S̄k

= (s̄0)S̄c
(φs0)S̄k

= (K̄0s̄0)[1,κ],

as required. We must also verify the associativity of PY over (r̄,hk), and of PX

over (s̄,hc). But these are straightforward due to the associativity of PY over
(s,hc), and of PX over (r,hk), and the new elements can be easily inspected, in
particular, (s̄0)S̄c

(1)∅ = (s̄0)∅(1)S̄c
, and we have (1)S̄c

∈ hk.
The following lemma shows that the conversion preserves security (in an

alternating manner). The proof is similar to [9], and is given in the full version.

Lemma 5. (1, 1)-CMH security of P implies (1, 1)-SMH security of P. Oppo-
sitely, (1, 1)-SMH security of P implies (1, 1)-CMH security of P.

Dual System Framework in Multilinear Settings and Applications 31

6.2 Fully-Secure CP-ABE for Circuits

We obtain multi-linear pair encoding schemes for CP-ABE by applying the dual
conversion to our two encoding schemes for KP-ABE. In particular, we obtain
two schemes: PCPABE1 := Con(PKPABE1) and PCPABE2 := Con(PKPABE2). The effi-
ciency is obtained by swapping the key encoding size and the ciphertext encoding
size of the original KP-ABE schemes, plus one element for each encoding due to
the conversion. Therefore, both resulting CP-ABE schemes admit succinctness,
and the second CP-ABE achieves constant-size keys. The functionality is also
preserved, hence they can deal with unbounded-size circuits.

From Lemma 5 and the security of PKPABE1 and PKPABE2 (Theorems 4, 5, 6
and 7), and the fact that (1, poly)-SMH trivially implies (1, 1)-SMH, we have the
following corollaries. Recall that � is the bounded depth, n is the input length,
while m is the width of the queried circuit.

Corollary 7. PCPABE1 is (1, 1)-CMH under the �-SMDDH1 assumption.

Corollary 8. PCPABE1 is (1, 1)-SMH under the (�,m)-EMDDH1 assumption.

Corollary 9. PCPABE2 is (1, 1)-CMH under the (�, n)-SMDDH2 assumption.

Corollary 10. PCPABE2 is (1, 1)-SMH under the (�,m, n)-EMDDH2 assumption.

All the above corollaries admit tight reductions. From these and Corollary 3,
we obtain fully secure CP-ABE schemes with O(qall) reduction as follows.

Corollary 11. ABE(PCPABE1,G) is fully secure under EMDDH1,SMDDH1,MSD.
ABE(PCPABE2,G) is fully secure under EMDDH2,SMDDH2,MSD. We have

Adv
ABE(PCPABE1,G)
A (λ) ≤Adv

(κ,S̄c)-MSD
B1

(λ) + 2qallAdv
(κ,S̄k)-MSD
B2

(λ)

+ q1Adv
�-SMDDH1
B3

(λ) + q2Adv
(�,m)-EMDDH1
B4

(λ).

Adv
ABE(PCPABE2,G)
A (λ) ≤Adv

(κ,S̄c)-MSD
B1

(λ) + 2qallAdv
(κ,S̄k)-MSD
B2

(λ)

+ q1Adv
(�,n)-SMDDH2
B3

(λ) + q2Adv
(�,m,n)-EMDDH2
B4

(λ).

Here, κ = 3�, S̄c = [� + 2, 3�],S̄k = [1, � + 1].

References

1. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9562, pp. 446–473. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 19

2. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 32

http://dx.doi.org/10.1007/978-3-662-49096-9_19
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-662-48000-7_32

32 N. Attrapadung

3. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 31

4. Attrapadung N.: Fully secure and succinct attribute based encryption for circuits
from multi-linear maps. Cryptology ePrint Archive: report 2014/772 (2014)

5. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53890-6 20

6. Attrapadung, N.: Dual system framework in multilinear settings and applications
to fully secure (compact) ABE for unbounded-size circuits. Cryptology ePrint
Archive: report 2017/023 (2017). (The full version of this paper)

7. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 23

8. Attrapadung, N., Libert, B., Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19379-8 6

9. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg,
K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-16715-2 5

10. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19379-8 4

11. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53015-3 13

12. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 14

13. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-55220-5 30

14. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218 16

15. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temp. Math. 324, 71–90 (2003)

16. Boyen, X. Fan, X., Shi, E.: Adaptively secure fully homomorphic signatures based
on lattices. Cryptology ePrint Archive, report 2014/916 (2014)

http://dx.doi.org/10.1007/978-3-642-55220-5_31
http://dx.doi.org/10.1007/978-3-662-53890-6_20
http://dx.doi.org/10.1007/978-3-662-53890-6_20
http://dx.doi.org/10.1007/978-3-642-13013-7_23
http://dx.doi.org/10.1007/978-3-642-19379-8_6
http://dx.doi.org/10.1007/978-3-319-16715-2_5
http://dx.doi.org/10.1007/978-3-642-19379-8_4
http://dx.doi.org/10.1007/978-3-662-53015-3_13
http://dx.doi.org/10.1007/978-3-662-53015-3_13
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-642-55220-5_30
http://dx.doi.org/10.1007/11535218_16

Dual System Framework in Multilinear Settings and Applications 33

17. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multi-
linear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 1

18. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
New CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 20

19. Chen, J., Wee, H.: Semi-adaptive Attribute-Based Encryption and Improved
Delegation for Boolean Formula. In: Abdalla, M., Prisco, R. (eds.) SCN
2014. LNCS, vol. 8642, pp. 277–297. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10879-7 16

20. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

21. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 12

22. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 13

23. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

24. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 27

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. FOCS
2013, 40–49 (2013)

26. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryp-
tion from multilinear maps. Cryptology ePrint Archive: report 2014/622 (2014)

27. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
480–511. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 18

28. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
STOC 2013, 467–476 (2013)

29. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 27

30. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability Obfuscation from
the Multilinear Subgroup Elimination Assumption. In: FOCS 2015, pp. 151–170
(2015)

31. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

32. Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling function-
alities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol.
9986, pp. 361–388. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53644-5 14

http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://dx.doi.org/10.1007/978-3-319-10879-7_16
http://dx.doi.org/10.1007/978-3-319-10879-7_16
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_13
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-662-49099-0_18
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-662-53644-5_14

34 N. Attrapadung

33. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. ACM CCS 2006, 89–98 (2006)

34. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

35. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 27

36. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 12

37. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

38. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 2

39. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 6

40. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

41. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 35

42. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 28. http://dblp.uni-trier.de/rec/bibtex1/conf/crypto/
PassST14

43. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM CCS 2013, pp. 463–474 (2013)

44. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

45. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: Abdalla, M., Prisco, R. (eds.) SCN
2014. LNCS, vol. 8642, pp. 298–317. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10879-7 17

46. Valiant, L.G.: Universal circuits (preliminary report). In: STOC 1976, pp. 196–203
(1976)

47. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19379-8 4

http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-11799-2_27
http://dx.doi.org/10.1007/978-3-642-32009-5_12
http://dx.doi.org/10.1007/978-3-642-32009-5_12
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-540-45146-4_6
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://dblp.uni-trier.de/rec/bibtex1/conf/crypto/PassST14
http://dblp.uni-trier.de/rec/bibtex1/conf/crypto/PassST14
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-319-10879-7_17
http://dx.doi.org/10.1007/978-3-319-10879-7_17
http://dx.doi.org/10.1007/978-3-642-19379-8_4

Dual System Framework in Multilinear Settings and Applications 35

48. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

49. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-32009-5 14

50. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 33

51. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 26

http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-32009-5_14
http://dx.doi.org/10.1007/978-3-662-48000-7_33
http://dx.doi.org/10.1007/978-3-642-54242-8_26
http://dx.doi.org/10.1007/978-3-642-54242-8_26

CCA-Secure Inner-Product Functional
Encryption from Projective Hash Functions

Fabrice Benhamouda1(B), Florian Bourse2, and Helger Lipmaa3

1 IBM Research, Yorktown Heights, NY, USA
fabrice.benhamouda@normalesup.org

2 ENS, CNRS, INRIA, PSL Research University, Paris, France
3 Institute of Computer Science, University of Tartu, Tartu, Estonia

Abstract. In an inner-product functional encryption scheme, the plain-
texts are vectors and the owner of the secret key can delegate the ability
to compute weighted sums of the coefficients of the plaintext of any
ciphertext. Recently, many inner-product functional encryption schemes
were proposed. However, none of the known schemes are secure against
chosen ciphertext attacks (IND-FE-CCA).

We present a generic construction of IND-FE-CCA inner-product
functional encryption from projective hash functions with homomor-
phic properties. We show concrete instantiations based on the DCR
assumption, the DDH assumption, and more generally, any Matrix DDH
assumption.

Keywords: DCR · DDH · Inner-product functional encryption ·
Projective hash functions · CCA-security

1 Introduction

Traditionally, encryption has been an all-or-nothing affair: either a recipient owns
the secret key (and thus can decrypt) or she does not. Functional encryption
[10,21,28,32] enables a much more fine-grained handling of encrypted data. Here,
the owner of the master key can delegate partial secret keys to various recipients.
In a functional encryption scheme for functionality F , the knowledge of a secret
key corresponding to some y enables one to decrypt an encryption of z to F(y, z).
As such, functional encryption has many potential applications, and has spurred
a long line of research.

A functional encryption scheme can be required to satisfy several different
security requirements [10,28]. In the case of the adaptive IND-FE-CPA secu-
rity [10,28], it must be difficult for an adversary to distinguish functional cipher-
texts of any two plaintexts z0 and z1. This must hold even if the adversary is
given an oracle access to the partial secret key generator, where the secret key
queries must satisfy the condition that F(y, z0) = F(y, z1) for each queried y.
In the weaker selective security model, the adversary is required to choose z0
and z1 before seeing the public key and answers to any of the secret key queries.
See [10,28] for discussion.
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 36–66, 2017.
DOI: 10.1007/978-3-662-54388-7 2

Inner-Product Functional Encryption from PHFs 37

Constructing adaptively IND-FE-CPA secure functional encryption for arbi-
trary functionalities has been an elusive goal, achieved only recently under strong
assumptions like the existence of indistinguishability obfuscation or multilin-
ear maps [11,19,20,33]. However, achieving functional encryption for restricted
classes of functionalities is often easier. One of the simplest type of functional
encryption schemes is inner-product functional encryption (IPFE).

Inner-Product Functional Encryption. In an inner-product functional
encryption scheme, one encrypts a possibly long vector �z, and a recipient who
has a partial secret key k�y can obtain the inner product 〈�y, �z〉 of �y and �z.
Recently, Abdalla et al. [2] proposed the first IPFE schemes based on some
of the most standard (and yet useful) cryptographic assumptions like the DDH
and the LWE [31] assumptions. Unfortunately, their IPFE schemes are only
selectively IND-FE-CPA secure. Subsequent work has reached better security
notions while still relying on standard assumptions. In the secret key setting
for example, function privacy has been achieved using bilinear maps [7,17], as
well as a multi-input variant [4]. Adaptively IND-FE-CPA secure versions of the
IPFE schemes of [2] were recently proposed by Agrawal et al. [5], together with
a new scheme based on the DCR [29].

CCA Security. IND-CPA is a property every public-key encryption (PKE)
scheme should have. It ensures that the plaintext is protected from any eaves-
dropping. However, it does not guarantee any security against active adversaries.
The go-to security notion in this case is IND-CCA.1 Informally, it states that
a decryption oracle cannot help the adversary break the semantic security of
the scheme, and it has been studied for years in the setting of PKE [12,30]. It
has also been examined in the context of identity-based encryption [9,23] and
attribute-based encryption [34], which are particular cases of functional encryp-
tion. It is thus natural to analyze it for inner-product functional encryption. In
our setting of inner-product functional encryption, the decryption queries are as
follows: the adversary chooses a ciphertext c and a vector �y and gets back the
decryption of c with msk�y, a freshly generated secret key for �y. Note that in
this case, the decryption oracle is stronger than the partial key generation oracle
because it doesn’t have any requirement over its input �y, but on the other hand,
the adversary doesn’t get msk�y.

To the best of our knowledge, the only paper considering IND-FE-CCA secu-
rity is [26]. In this paper, Nandi and Pandit construct IND-FE-CCA secure
schemes from IND-FE-CPA secure ones with some properties that are verified by
a lot of functional encryption schemes: key-policy or ciphertext-policy attribute-
based encryption, and functional encryption for regular languages for example.
However, this does not apply for inner-product functional encryption, so another
technique is required.

In [27], Naor and Yung proposed a generic way of transforming an IND-CPA
encryption scheme into an IND-CCA encryption scheme. While this transform

1 In the current paper, CCA stands for CCA2.

38 F. Benhamouda et al.

could be adapted to functional encryption, it uses non-interactive zero-knowledge
proofs, the constructions of which have strong requirements, such as bilinear
groups or the random oracle model.

Our Contributions. In this paper, we propose a generic construction of IND-
FE-CCA IPFE. This generic construction yields the first IND-FE-CCA IPFE
schemes based on the DDH assumption, the DCR assumption, and any of the
MDDH assumptions [18]. MDDH assumptions generalize the DDH assumption
and might hold in settings where the DDH assumption cannot hold, as in sym-
metric bilinear groups.

Our generic construction is based on projective hash functions with homo-
morphic properties. Projective hash functions (PHFs) were introduced by
Cramer and Shoup in [14], as a way to explain their efficient IND-CCA encryp-
tion scheme [12] and to extend it to other assumptions. Similarly to the generic
IND-CCA encryption in [14], our IND-FE-CCA IPFE uses two PHFs and the
second PHF enables to reject ciphertexts which are not well-formed.

If the second PHF is not used in the scheme, we get a generic IND-FE-CPA
IPFE. We actually start by describing this generic IND-FE-CPA IPFE as a
warm-up for our main contribution, a generic IND-FE-CCA IPFE.

Interestingly, when instantiated using the DDH assumption, this IND-FE-
CPA scheme coincides exactly with the DDH-based IPFE of Agrawal et al. [5].
When instantiated using the DCR assumption, it corresponds to a variant of the
DCR-based IPFE over Z of Agrawal et al. that has slightly worse parameters
but avoids the use of discrete Gaussian distributions.

As a side contribution, we introduce a tag-based variant of functional encryp-
tion, where tags are associated to ciphertexts, together with a slightly weaker
IND-TBFE-CCA (i.e., tag-based) security notion, in which the adversary is not
allowed to query the decryption oracle with the tag of the challenge ciphertext.
To simplify the description of our IND-FE-CCA IPFE scheme, we actually first
construct an IND-TBE-CCA IPFE scheme. We then use an adapted version of
the generic transformation from tag-based PKE to CCA secure PKE in [22]:
the tag is the hash of a fresh verification key for a one-time signature scheme,
used to sign the ciphertext. This one-time signature prevents malleability of the
ciphertext.

Overview of Our Constructions. Our constructions are inspired from the
Cramer-Shoup encryption scheme [14]. A Cramer-Shoup ciphertext consists of
three parts: a random word b in some NP language (e.g., b is a DDH tuple),
the message masked by a hash of b for a (smooth) PHF, and another hash of b
for a (2-universal) PHF. The hash value of any PHF can be computed both by
someone knowing a witness for b together with the public key (called projection
key), and by someone knowing the secret key (called hashing key). The second
hash value is used to reject ill-formed ciphertexts. Without it, the scheme is
IND-CPA.

To build an IND-FE-CPA IPFE for vectors of dimension �, we mask each
coordinate of the message with a different hash value of the same word b. If

Inner-Product Functional Encryption from PHFs 39

the PHF is homomorphic, a linear combination of the corresponding hashing
keys will allow for the decryption of the same linear combination of the coordi-
nates, which is the inner product of the message and the coefficients of the lin-
ear combination. In order to reach IND-FE-CCA security and reject ill-formed
ciphertexts, we add � independent hash values of b for � independent 2-universal
homomorphic PHF. We could not naively use only one such hash, because then
anyone knowing the unique hashing key would be able to fake the last part of
the ciphertext.

Road Map. We first provide some general preliminaries and recall definitions
related to PHFs and functional encryption in Sect. 2. In this section, we also
define the concrete assumptions we are using: DDH, DCR, and MDDH. In
Sect. 3, we formally define the properties of the PHF used in our generic IND-
FE-CPA IPFE scheme, which is described in Sect. 4. We then move to the CCA
setting. In Sect. 5, we define the properties of the second PHF used in our generic
IND-FE-CCA IPFE scheme, which is described in Sect. 6.

2 Preliminaries

Let Z be the set of integers. If n is a positive integer, spf(n) is its smallest prime
factor. If S ⊂ Z and t ∈ Z, then let S + t = {s + t : s ∈ S}. If S is a finite set,
then |S| is its cardinal.

Let R be a commutative ring. We denote the set of d-dimensional column
vectors over R by Rd, the set of d-dimensional row vectors by R1×d, and the
set of � × d matrices by R�×d. Unless explicitly said otherwise, each vector is
a column vector. We denote vectors by using either boldface lower-case letters
or lower-case letters with an arrow over it as in b and �b. We denote matrices
by using boldface upper-case letters like in A. We have two possible notations
for vectors, as we sometimes need to consider vectors of vectors (�b) and vectors
of matrices (�A). The ith coefficient of a vector b or �b is denoted by bi, while
the ith coefficient of a vector of vectors �b is a vector and is denoted by bi. The
jth coefficient of this latter vector is bi,j . The same convention is used with
coefficients of matrices and coefficients of vectors of matrices.

Within this paper, κ is the security parameter. A function f(κ) is negligible,
if for any polynomial p, f(κ) = O(1/p(κ)).

If A is a randomized algorithm, then we denote by A(x) the output distri-
bution of A on input x. If S is a finite set, we denote by U(S) the uniform
distribution. If D is a distribution, we denote by x ←r D the assignment of a
fresh sample from D to the variable x. If D is a distribution over some set S and
if D is clear from context, x ←r D is also denoted by x ←r S. If S is a finite
set on which we did not explicitly defined any distribution, x ←r S stands for
x ←r U(S).

Statistical and Computational Indistinguishability. Let (Aκ)κ and (Bκ)κ

be two ensembles of distributions over some set Ω and indexed by the security

40 F. Benhamouda et al.

parameter κ. In the sequel the security parameter is often omitted for the sake
of simplicity. Let A be an algorithm, called an adversary. The advantage of A
in distinguishing (Aκ)κ and (Bκ)κ is defined by AdvA(κ) = |Prx←rAκ

[A(x) =
1] − Prx←rBκ

[A(x) = 1]|.
The distributions A and B are computationally indistinguishable if for any

(probabilistic) polynomial time A, its advantage AdvA(κ) is negligible. They are
statistically indistinguishable if this is true for any (not necessarily polynomial-
time) A. The statistical distance SD(A,B) of distributions A and B is the supre-
mum of the advantage of all adversaries in distinguishing them. Equivalently, if
A and B are defined over a finite or countable set Ω,

SD(A,B) =
1
2

∑

y∈Ω

| Pr
x←rA

[x = y] − Pr
x←rB

[x = y]|. (1)

We will often implicitly use the following lemmas.

Lemma 1. Let S1 and S2 be two finite sets. If S1 ⊆ S2, we have
SD(U(S1), U(S2)) = 1 − |S1|/|S2|. In particular, if |S2| = (1 + 1/t) · |S1| for
some positive integer t, then SD(U(S1), U(S2)) = 1/(t + 1).

Proof. SD(U(S1), U(S2)) = 1
2 (|S2 \ S1|/|S2| + |S1| · (1/|S1| − 1/|S2|)) = 1 −

|S1|/|S2|. �	
Lemma 2. Let S ⊆ Z be an interval and t be an integer. Then SD(U(S), U(S +
t)) = |t|/|S|.
Proof. In the sum in Eq. (1), exactly 2|t| terms are non-zero: the ones correspond-
ing to y in (S \ (S + t)) ∪ ((S + t) \ S). And these terms are equal to 1/|S|. �	

Abelian Groups. We extensively use Abelian groups. In particular, in our
concrete instantiations, we use prime-order cyclic groups over an elliptic curve
or subgroups of the (multiplicative) group Z

∗
N , for some positive integer N . We

denote the elements of such groups by using the Fraktur script like in g or b.
By extension, even in our generic constructions and definitions, we also use this
font to indicate values which, in our concrete instantiations, are group elements
in such group G or vectors of such elements. However, we are also considering
other Abelian groups (e.g., the group K of hashing keys of a key-homomorphic
PHF in Definition 6) that are not related to cryptographic assumptions and for
which group elements are not denoted using the Fraktur script.

Except if explicitly stated otherwise, we use additive notation for all our
Abelian groups, even when this is not usual (as in the case of subgroups of Z∗

N).
Let G be an Abelian group. We recall that if g is a group element of order M ,

then we have a canonical monomorphism w ∈ ZM �→ w · g ∈ G. If G is a
multiplicative group, this monomorphism corresponds to exponentiation. Hence,
we denote the inverse of this monomorphism by logg. That is, if b = w · g, then
logg b = w.

Inner-Product Functional Encryption from PHFs 41

Furthermore, let R be R = Z or R = ZM with M being such that the order
of any group element in G divides M . Then G can be seen as a R-module. This
means that for any w ∈ R and g ∈ G, w ·g is well defined. Importantly, by using
additive notation, we can use the standard “matrix-vector” notation without
prior explanation.

Basic Number Theory. Let N be a positive integer. Let ϕ(N) be the Euler
totient function. For any integer a and an odd prime q, the Legendre symbol

(
a
q

)

is defined as
(

a
q

)
:= 0, if a ≡ 0 (mod q),

(
a
q

)
:= +1, if a �≡ 0 (mod q) and for

some integer y, a ≡ y2 (mod q), and
(

a
q

)
:= −1, if a �≡ 0 (mod q) and there is

no such y. For any integer a and any positive odd integer N , the Jacobi symbol
is defined as the product of the Legendre symbols corresponding to the prime
factors of N ,

(
a
N

)
:=

∏t
i=1

(
a
pi

)αi

, where N =
∏t

i=1 pαi
i for distinct primes pi.

Let JN = {a ∈ ZN :
(

a
N

)
= 1}; clearly JN is a subgroup of Z∗

N . The Jacobi
symbol can be computed in polynomial time, given only a and N [25, Algorithm
2.149].

2.1 Subset Membership Problems and Concrete Assumptions

Our framework uses subset membership problems, which were originally defined
in [14]. Basically, a subset membership problem defines an NP language L ⊂ X ,
in which a random word in L is hard to distinguish from a random word in
X \ L. In this paper, we consider a slight extension, where we instead require a
random word in L to be hard to distinguish from a random word in a given set
L̄ ⊆ X \ L.

More formally, a subset membership problem P specifies an ensemble
(Iκ)κ≥0 of distributions. For every value of a security parameter κ ≥ 0, Iκ

is a probability distribution of instance descriptions. An instance description
Λ = Λ[X ,L,W, �, L̄] specifies the following: (a) finite, non-empty sets X , L, W,
and L̄, such that L is a proper subset of X and L̄ is a non-empty subset of X \L,
(b) a binary relation � ⊂ X × W. For b ∈ X and w ∈ W, we say that w is a
witness for b if (b, w) ∈ �. We require that instance descriptions and elements of
X and W can be uniquely encoded as bitstrings of length poly(κ).

A subset membership problem satisfies the following properties: (i) Iκ is effi-
ciently samplable, which means that there exists a probabilistic polynomial time
instance sampling algorithm that on input 1κ samples an instance Λ according to
the distribution Iκ; (ii) � is efficiently samplable, which means that there exists
a probabilistic polynomial time subset sampling algorithm that on input Λ out-
puts a random b ∈ L together with a witness w ∈ W for b; the distribution over
� implicitly defines a distribution over L; (iii) L̄ is efficiently samplable; (iv) X is
efficiently recognizable, which means that there exists a deterministic polynomial
algorithm that on input (Λ, ζ) checks whether ζ is a valid binary encoding of an
element of X ; (v) � is efficiently recognizable; (vi) (L, L̄)-indistinguishability: a
sample from L is computationally indistinguishable from a sample from L̄.

42 F. Benhamouda et al.

We do not require the distributions over �, L, and L̄ to be uniform. How-
ever, when we do not specify these distributions, we implicitly use the uniform
distributions.

Let us now introduce the subset membership problems we use in our concrete
instantiations. We name them according to the assumption under which we prove
their (L, L̄)-indistinguishability property, namely DDH, MDDH, and DCR.

DDH-Based Subset Membership Problem. Let G be an additive cyclic
group of prime order q, let X = G

2, let L be the subgroup of X generated by
g = (g1, g2)

ᵀ ∈ G
2, where gi are random generators of G, and let L̄ = X \ L. A

witness w ∈ W = Zq for b ∈ L is such that b = wg. In other words, we have
W = Zq and � = {(w · g, w) : w ∈ Zq}. We set Λ = (G,g).

This defines a subset membership problem, whose (L, L̄)-indistinguishability
property is equivalent to the DDH assumption.

MDDH-Based Subset Membership Problem. For some interesting cryp-
tographic cyclic groups, such as groups with a symmetric pairing, the DDH
assumption does not hold. That is why weaker assumptions, such as the deci-
sional linear assumption (DLIN [8]), have been considered. More recently, Escala
et al. introduced the Matrix Diffie-Hellman (MDDH) assumption family [18]
that generalizes DDH and its weaker variants like DLIN. Let us recall the MDDH
assumption families in the context of subset membership problems.

Let G be a cyclic group of prime order q. Let D be a distribution of matrices
in G

t×d with d < t being two positive integers. Let g ←r D. Let X = G
t. Let

L be the subgroup of X generated by the columns of g and let L̄ = X \ L. A
witness w ∈ W = Z

d
q for b ∈ L is such that b = g · w. In other words, we have

W = Z
d
q and � = {(g · w, w) : w ∈ Z

d
q}. We set Λ = (G,g).

This defines a subset membership problem, whose (L, L̄)-indistinguishability
property corresponds to the D-MDDH assumption.

When d = 1, t = 2, and D is the uniform distribution over vectors of two
generators of G, then we get back the DDH-based subset membership problem.

DCR-Based Subset Membership Problem. Let N = pq be a product
of two λ-bit random safe primes p = 2p′ + 1 and q = 2q′ + 1, where p′ and
q′ are also primes and where λ is a function of the security parameter κ. Let
N ′ = p′q′. Let s ≥ 1. Write Z∗

Ns+1
∼= GNs ⊕GN ′ ⊕G2⊕T , where ∼= denotes group

isomorphism, ⊕ is the direct sum or Cartesian product, Gi are cyclic groups of
order i, and T is the order-2 cyclic group generated by −1 mod Ns+1. Let
G = X = JNs+1 ∼= GNs ⊕ GN ′ ⊕ T . We recall that we use additive notation for
G. Let g be a random generator of L ∼= GN ′ , that is a subgroup of X ; g can be
thought of as a random 2Ns-th residue. A witness w ∈ W = Z for b ∈ L is such
that b = w · g. Finally, let g⊥ be an arbitrary generator of the cyclic group GNs

(for example g⊥ = 1 + N ∈ ZNs+1 , where + here is the additive law of ZNs+1)
and let L̄ = L + g⊥. We set Λ = (N, s, g, g⊥).

One cannot sample uniform witnesses as W = Z is infinite. We cannot
set W = ZN ′ , as computing N ′ from Λ = (N, s, g) requires to factor N .

Inner-Product Functional Encryption from PHFs 43

Instead, we sample witnesses uniformly from SN := {0, . . . , �N/4� − 1}. Clearly,
SD(U(ZN ′), U(SN)) = 1 − p′q′/(pq/4) = (2p′ + 2q′ + 1)/(pq) < 2(p + q)/(pq) <
4/spf(N). From this distribution over W, we can derive distributions over �, L,
and L̄ = L + g⊥. The two latter distributions are statistically close to uniform.

This setting defines a subset membership problem, whose (L, L̄)-
indistinguishability property can be proven under the Decisional Composite
Residuosity (DCR [29]) assumption. More precisely, we consider the DCR
assumption for moduli that are product of safe primes; the DCR assumption
then basically states that in the case s = 1, no probabilistic polynomial time
adversary can distinguish between uniform elements of L and X .2 This is a clas-
sical variant of DCR, which is equivalent to the original DCR assumption [29],
assuming that safe primes are sufficiently dense (see, e.g., [14]). We prove the
following lemma in the full version following [15]:

Lemma 3. Assuming the DCR assumption, the above subset membership prob-
lems is (L, L̄)-indistinguishable. More precisely, if there exists an adversary A
that has advantage εA in breaking (L, L̄)-indistinguishability, then there exists
an attacker B that runs in approximately the same time and that has advantage
εB in breaking DCR, such that εA ≤ 2s · εB + 8/spf(N).

2.2 Projective Hash Functions

In [14], Cramer and Shoup defined the influential notion of projective hash
functions (PHFs) to construct IND-CPA and even IND-CCA secure public-key
encryption schemes. In this section, we recall the definition of a PHF using the
notation of [3].

Let P be a subset membership problem, specifying an ensemble (Iκ)κ of
instance distributions. A projective hash function for P is a tuple PHF =
(hashkg, projkg, hash, projhash) of four probabilistic polynomial time algorithms:

– hashkg(Λ) generates a hashing key hk in some set K for the instance Λ =
Λ[X ,L,W, �],

– projkg(hk) (deterministically) derives from the hashing key hk a projection
key hp,

– hash(hk, b) (deterministically) computes the hash value H (in some efficiently
recognizable set Π) of b ∈ X under hk ∈ K,

– projhash(hp, b, w) (deterministically) computes the projected hash value pH of
b ∈ L using a witness w ∈ W.

A PHF must be complete, in the following sense:

– For any instance Λ, for any b ∈ X and w ∈ W, such that (b, w) ∈ �, for any
hashing key hk ∈ K, if hp ← projkg(hk), then

hash(hk, b) = projhash(hp, b, w).
2 The original assumption actually does not restrict the elements to be of Jacobi symbol

1, but doing this restriction yields an equivalent assumption, since we can multiply
element of Jacobi symbol −1 by an arbitrary Ns-residue of Jacobi symbol −1.

44 F. Benhamouda et al.

The instance Λ is implicitly included in the hashing key hk and the projection
key hp.

2.3 Functional Encryption

A functionality F defined over (Y,Z) is a function Y × Z → Σ ∪ {⊥}, where
Y is a key space, Z is a message space, and Σ is an output space that does not
contain the special symbol ⊥.

A functional encryption scheme for functionality F [10,28] is a tuple FE =
(setup, keygen, enc, dec) of four probabilistic polynomial time algorithms:

setup(1κ, �): generates system parameters pp, and then returns a master secret
and public key pair (msk, mpk), where both msk and mpk also contain pp,

keygenmsk(y ∈ Y): given a master secret key msk and a key (or a function) y,
returns a partial secret key msky = (pp, ky, y),

encmpk(z ∈ Z): given a master public key mpk and a plaintext z, returns a
ciphertext c,

decmsky
(c): returns S ∈ Σ ∪ {⊥}.

Note that according to this definition, pp and y are always a part of msky,
and thus ky is basically “the rest of” msky. The public value � contains some
information about y and z that can be made public (e.g., their lengths).

FE must be complete, in the sense that if (y, z) is in the domain of F , then
for all (msk,mpk) ←r setup(1κ), for all msky ←r keygenmsk(y), and for all
c ←r encmpk(z), it holds that decmsky

(c) = F(y, z).

Definition 4 (IND-FE-CCA Security). A functional encryption scheme
FE = (setup, keygen, enc, dec) is IND-FE-CCA secure (or, secure against cho-
sen ciphertext attacks) [26], if no probabilistic polynomial time adversary A has
a non-negligible advantage in the following game:

1. The challenger sets (msk,mpk) ←r setup(1κ, 1�) and sends mpk to A.
2. A makes adaptive secret key and decryption queries to the challenger. At

each secret key query, A chooses y ∈ Y and obtains msky = (pp, ky, y) ←r

keygenmsk(y). Let yi be the ith queried secret key.
At each decryption query, A chooses a ciphertext c′ and y ∈ Y, then the
challenger computes msky = (pp, ky, y) ←r keygenmsk(y) and sends back
decmsky

(c′) to A.
3. A chooses z0 �= z1 such that F(yi, z0) = F(yi, z1) for all queried yi. A sends

z0 and z1 to the challenger. The challenger chooses β ←r {0, 1}, and sends
c ←r encmpk(zβ) to A.

4. A makes more secret key queries for keys yi ∈ Y, with the condition that
F(yi, z0) = F(yi, z1), and possibly some more decryption queries (c′, y), with
the condition that c′ �= c.
Let qdec be the number of decryption queries made during the whole game,
and let (c′

j , yj) be the jth decryption query.
5. A outputs a bit βA ∈ {0, 1} and wins if βA = β.

Inner-Product Functional Encryption from PHFs 45

More precisely, the advantage of A is defined as

Advind−fe−cca
FE,A (κ) := 2 · |Pr[βA = β] − 1/2|.

FE is IND-FE-CCA secure, if Advind−fe−cca
FE,A is negligible for all probabilistic poly-

nomial time adversaries A.

FE is IND-FE-CPA secure (or, adaptively secure against chosen plaintexts
attacks, [10,28]), if Advind−fe−cca

FE,A is negligible for all probabilistic polynomial
time adversaries A that make no decryption queries.

The selective IND-FE-CPA security satisfied by [2] has the further require-
ment that the challenge messages �z0 and �z1 have to be chosen before the adver-
sary sees the public key mpk.

Definition 5 (Inner-Product Functional Encryption). In the inner-
product functional encryption [2], setup(1κ, �) in particular chooses a ring R and
two efficiently recognizable subsets Y and Z of R�, each y (resp., z) corresponds
to some vector �y ∈ Y ⊆ R� (resp., �z ∈ Z ⊆ R�), and F(�y, �z) := 〈�y, �z〉 ∈ R.

We insist on the fact that 〈�y, �z〉 is computed in R.

3 FE-CPA-Friendly Projective Hash Function

In this section, we first present the properties we need on PHFs in order to build
an IND-FE-CPA secure IPFE. Then we show some examples of standard PHFs
satisfying them.

3.1 Key Homomorphism and Projection Key Homomorphism

For correctness of the IPFE we will need the following property.

Definition 6 (Key Homomorphism [6]). A projective hash function PHF =
(hashkg, projkg, hash, projhash) for a subset membership problem P is key-
homomorphic, if it satisfies the following additional properties:

1. the set K of hashing keys and the set Π of hash values are additive Abelian
groups, with polynomial time group operations;

2. for any instance Λ, and any word b ∈ X , the function hk ∈ K �→ hash(hk, b) ∈
Π is a group homomorphism, that is, hash(hk, b) + hash(hk′, b) = hash(hk +
hk′, b), for any hk, hk′ ∈ K.

We do not require K to be finite. In the DCR construction, K = Z. However,
we require that each group element of K and Π has a unique representation as
a bit-string.

The next property, projection key homomorphism, is only required in Sect. 5.3
(for the CCA security). We will introduce it already here, since all our concrete
examples from Sect. 3.5 coincidentally satisfy this property.

46 F. Benhamouda et al.

Definition 7 (Projection Key Homomorphism). A projective hash func-
tion PHF = (hashkg, projkg, hash, projhash) for a subset membership problem P
is projection-key-homomorphic if it satisfies the following additional properties:

1. the set K of hashing keys and the set Khp of projection keys are additive
Abelian groups, with polynomial time group operations;

2. for any instance Λ, the function hk ∈ K �→ projkg(hk) ∈ Khp is a group
homomorphism, that is, projkg(hk + hk′) = projkg(hk) + projkg(hk′), for any
hk, hk′ ∈ K.

3.2 Strong Diversity

The second property we need for our PHFs is strong diversity. More precisely,
we require that for each b there exists a (not necessarily efficiently computable)
hashing key hk⊥(b), such that hk and hk+ hk⊥(b) result in the same projection
key, while the hash value of b under the key hk⊥(b) is equal to g⊥, where g⊥ is
a fixed efficiently computable group element.

Definition 8 (Strong diversity). A key-homomorphic projective hash func-
tion PHF = (hashkg, projkg, hash, projhash) for a subset membership problem P
is (hk⊥, g⊥,M⊥)-strongly diverse for a function hk⊥ : L̄ → Π, an element g⊥ of
Π, and a positive integer M⊥, if the following properties are satisfied:

1. g⊥ and M⊥ can be efficiently computed from Λ;
2. the group element g⊥ has order M⊥,
3. for any hashing key hk ∈ K and any word b ∈ L̄:

projkg(hk + hk⊥(b)) = projkg(hk), (2)
hash(hk⊥(b), b) = g⊥. (3)

We do not require hk⊥ to be efficiently computable, as we are only using it to
bound statistical distance.

In what follows, we will use the following straightforward lemma.

Lemma 9. If a key-homomorphic PHF is also projection-key homomorphic,
then Eq. (2) is true iff projkg(hk⊥(b)) = 0.

Relation with Diverse Groups. Diverse groups were introduced in [14] as a
way to construct PHFs. They can be seen as key-homomorphic projection-key-
homomorphic strongly diverse PHFs with the two following differences: L̄ = X\L
(instead of L̄ ⊆ X \L), and for any hk ∈ K and any b ∈ L̄, it is only required that
hash(hk + hk⊥(b), b) �= 0 instead of hash(hk + hk⊥(b), b) = g⊥. Nevertheless, all
the diverse groups we currently know of are also strongly diverse for L̄ = X \ L.

Inner-Product Functional Encryption from PHFs 47

3.3 Translation Indistinguishability

We also require one last statistical property, translation indistinguishability.
Informally it says that translating the hashing key of the PHF by a small mul-
tiple of hk⊥(b) cannot be detected with non-negligible probability. In the proof,
we use this as a statistical argument to conclude after using the computational
assumption.

Definition 10 (Translation indistinguishability). A key-homomorphic pro-
jective hash function PHF = (hashkg, projkg, hash, projhash) is (hk⊥,Mz, εti)-
translation-indistinguishable for a function hk⊥ : L̄ → Π, a positive integer
Mz, and εti ∈ [0, 1], if for any integer z ∈ {−Mz, . . . ,Mz} and for any b ∈ L̄,

SD(hashkg(Λ), hashkg(Λ) + z · hk⊥(b)) ≤ εti.

Important Particular Case: Key Uniformity. For many key-homomorphic
PHFs, like the above described ones based on DDH and MDDH, the output of
hashkg is actually uniform over the group K. In this case, the PHF is automati-
cally (·, ·, 0)-translation-indistinguishable. More formally, we have the following
lemma.

Lemma 11. Let PHF = (hashkg, projkg, hash, projhash) be a key-homomorphic
PHF such that the distribution of hashkg(Λ) is uniform over K. Let L̄ be a non-
empty subset of X , hk⊥ be a function from L̄ to Π and Mz be a positive integer.
Then PHF is (L̄, hk⊥,Mz, 0)-translation-indistinguishable.

Proof. Both hashkg(Λ) and hashkg(Λ) + z · hk⊥(b) are uniform group elements
in K. �	

3.4 FE-CPA Friendliness

In the following, we regroup all 3 properties we have defined under the FE-CPA
friendliness property.

Definition 12 (FE-CPA Friendliness). A projective hash function PHF =
(hashkg, projkg, hash, projhash) is (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly for a
function hk⊥ from L̄ to Π′, an element g⊥ of Π, and two positive integers
M⊥ and Mz, if it is key-homomorphic, (hk⊥, g⊥,M⊥)-strongly diverse, and
(hk⊥,Mz, εti)-translation-indistinguishable.

3.5 Examples

In this section, we describe FE-CPA-friendly PHFs for the subset membership
problems described in Sect. 2.1.

48 F. Benhamouda et al.

DDH. Let G be an additive cyclic group of prime order q, let X = G
2, let L

be the subgroup of X generated by g = (g1, g2)
ᵀ ∈ G

2, where gi are random
generators of G. A witness w ∈ W = Zq for b ∈ L is such that b = w ·g. We set
Λ = (G,g).

We recall the PHF of Cramer and Shoup [13, Sect. 8.1.1] defined as follows:

hashkg(Λ): output hk ←r Z
2
q = K,

projkg(hk): output hp ← hkᵀ · g ∈ G,
hash(hk,b): output H ← hkᵀ · b ∈ G = Π,
projhash(hp,b, w): output pH ← hp · w ∈ G = Π.

Lemma 13. Using above notation, let g⊥ an arbitrary generator of G, M⊥ = q,
Mz be a positive integer, and εti = 0. For any b ∈ X \ L, let hk⊥(b) be defined
as follows:

hk⊥(b) =
logg1

g⊥
logg1

b1 · logg1
g2 − logg1

b2
·
(

logg1
g2

−1

)

with b =
(
b1
b2

)

∈ G
2.

Then, the PHF described above is (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly.

Proof. We first remark that hk⊥(b) is well defined, as logg1
b1 ·logg1

g2 �= logg1
b2

since b /∈ L.
Key Homomorphism is straightforward.
Strong Diversity. Since the space of projection keys is also a group and

projkg is a group homomorphism, we can use Lemma 9. Hence, we just need to
prove that projkg(hk⊥(b)) = 0 and hash(hk⊥(b),b) = g⊥. This follows from the
following two facts:

projkg(hk⊥(b)) =
logg1

g⊥
logg1

b1 · logg1
g2 − logg1

b2
· (

logg1
g2 −1

) ·
(
g1
g2

)

,

hash(hk⊥(b),b) =
logg1

g⊥
logg1

b1 · logg1
g2 − logg1

b2
· (

logg1
g2 −1

) ·
(
b1
b2

)

.

Translation Indistinguishability follows from Lemma 11. �	

MDDH. Let Λ = (G, g) be defined as in the MDDH subsubsection of Sect. 2.1
on page 7. We recall that g ∈ G

t×d, X = G
t, L is the subgroup generated by

the columns of g, and L̄ = X \ L. A witness w ∈ W = Z
d
q for b ∈ L is such that

b = g · w.
We recall the PHF defined by Escala et al. in [18]:

hashkg(Λ): output hk ←r Z
t
q = K,

projkg(hk): output hp ← gᵀ · hk ∈ G
d,

hash(hk,b): output H ← hkᵀ · b ∈ G = Π,
projhash(hp,b, w): output pH ← hpᵀ · w ∈ G = Π.

Inner-Product Functional Encryption from PHFs 49

We can prove the following lemma similarly to Lemma13:

Lemma 14. Using above notation, let g⊥ an arbitrary generator of G, M⊥ = q,
Mz be a positive integer, and εti = 0. Let hk⊥(b) be an arbitrary vector satisfying
hk⊥(b)ᵀ · g = 0 and hk⊥(b)ᵀ · �b = g⊥, which exists as �b is not in the span of
the columns of g. Then, the PHF described above is (hk⊥, g⊥,M⊥,Mz, εti)-FE-
CPA-friendly.

DCR. Let Λ = (N, s, g, g⊥) be defined as in the DCR subsubsection of Sect. 2.1
on page 7. We have: G = X = JNs+1 ∼= GNs ⊕ GN ′ ⊕ T , L = GN ′ , and
L̄ = L + g⊥. The element g is a generator of L, while g⊥ is a generator of GNs .
We recall that we use additive notation for the group G.

We define the DCR-based PHF as follows:

hashkg(Λ): output hk ←r {0, . . . , �MNs+1/4�} =: K∗ ⊆ Z =: K, where M is
a positive integer and is a parameter of the scheme,

projkg(hk): output hp ← hk · g ∈ G,
hash(hk, b): output H ← hk · b ∈ G =: Π,
projhash(hp, b, w): output pH ← hp · w ∈ G = Π.

When M = 2, this PHF corresponds to the one of Cramer and Shoup in [14].
We insist on the fact that the set of hashing keys is K = Z so that it is a

group. However, hashkg only samples a hashing key from a finite subset K∗ of K.

Lemma 15. Using above notation, let M⊥ = Ns, Mz be a positive integer, and
εti = Mz/M . Let hk⊥ be defined as follows:

hk⊥(b) = N ′ · (N ′−1 mod Ns) (< N ′Ns < Ns+1/4).

Then, the PHF described above is (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly.

Key homomorphism and strong diversity are proven similarly as in the DDH
case, while translation indistinguishability follows from Lemma2. The complete
proof is given in full version.

Interestingly, because of our choice of L̄, hk⊥(b) does not depend on b. Note
also that for M < Mz/εti, this PHF is still key-homomorphic and strongly
diverse, but might lack the translation indistinguishability property that is nec-
essary for our application.

4 IND-FE-CPA Inner-Product Functional Encryption

In this section, we first show a generic construction of an IND-FE-CPA secure
inner-product functional encryption scheme from a FE-CPA-friendly projective
hash function. Then, we show two concrete instantiations, based on the DDH
and on the DCR assumptions.

50 F. Benhamouda et al.

4.1 Generic Construction

We now define our generic construction for IND-FE-CPA secure IPFEs. Intu-
itively, we use � PHFs in parallel, that are combined during decryption in order
to only reveal a linear combination of the hashes, which implies that it only
reveals this same linear combination of the messages. This restriction is enforced
by the key generation algorithm, which only outputs linear combinations of the
hashing keys.

Construction. We suppose that we have a (hk⊥, g⊥,M⊥, z, εti)-FE-CPA-
friendly projective hash function PHF = (hashkg, projkg, hash, projhash) for a
subset membership problem P. Let R be the ring Z or ZM⊥ , let � be a positive
integer parameter corresponding to the length of the message and key vectors,
and let Y and Z two subsets of R�.3 We always suppose � to be polynomial in
the security parameter κ.

We suppose that the following condition is satisfied.

Condition 1. Using the above notation:

1. if R = ZM⊥ , the order of any hashing key hk ∈ K divides M⊥;
2. Y and Z are efficiently recognizable subsets of R�;
3. for any �z ∈ Z and any i, zi ∈ {−Mz, . . . ,Mz};
4. there exists a polynomial time algorithm (in the security parameter κ) that

given as input c�y = 〈�y, �z〉 · g⊥ for �y ∈ Y and �z ∈ Z, can compute logg⊥ c�y =
〈�y, �z〉;

5. for any �y ∈ Y and �z ∈ Z, 〈�y, �z〉 is the same over R and over ZM⊥ (this
condition is trivial when R = ZM⊥).

The first subcondition implies that K is a R-module, which implies that, for
any t ∈ R, t ·hk is well defined. The second subcondition enables keygen and enc
to check in polynomial-time the validity of their arguments y and z respectively.
The third subcondition is used in the proof to apply the (hk⊥,Mz, εti)-translation
indistinguishability property. The fourth subcondition ensures that decryption
can be performed in polynomial time. The last subcondition is similar as the
condition in the “over Z constructions in [5]. If R = ZM⊥ , then—as in [5]—
a simple way to guarantee that subconditions 3 and 5 hold is to assume that
|yi|, |zi| < (M⊥/�)1/2 for each �y ∈ Y, �z ∈ Z, and i ≤ �. The fourth subcondition
can potential restrict the values |yi| and |zi| even more.

Our generic IND-FE-CPA IPFE scheme FEphf is depicted in Fig. 1.

Security. We define the following set:

ΔZ := {�z1 − �z0 : �z0, �z1 ∈ Z}.
Its cardinality |ΔZ| is at most (4Mz − 1)�, as the cardinality of Z is at most
2Mz.

We have the following security theorem.
3 Formally, Y and Z are collections of subsets indexed by � and Λ.

Inner-Product Functional Encryption from PHFs 51

Fig. 1. Generic inner-product functional encryption FEphf scheme

Theorem 16. Let P be a subset membership problem. Let PHF = (hashkg,
projkg, hash, projhash) be a (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly projective
hash function. We assume that Condition 1 is satisfied. Then the scheme FEphf

depicted in Fig. 1 is complete and adaptively IND-FE-CPA secure.
More precisely, if there exists an attacker A = AFE that has advantage εA

in breaking the IND-FE-CPA security of FEphf , then there exists an attacker B
that runs in approximately the same time and that has advantage εB in breaking
the (L, L̄)-indistinguishability, such that

εA ≤ 2 · εB + � · |ΔZ| · εti.

The proof is provided in App. 16. As a quick overview, the proof is structured
in two parts: first we use a computational assumption to show that sampling a
word outside of the language for the challenge ciphertext is indistinguishable to
the adversary. One this is done, the second part is a statistical argument claiming
that the view of the adversary is then almost independent of the chosen bit β.

Remark 17. When εti �= 0, there is an exponential loss in the security proof in
the term �|ΔZ|εti. This term comes from the fact that at one point we guess
the value of �z1 − �z0. This is not complexity leveraging, as the reduction loss
is with regards to a statistical property. In particular, we do not need to rely
on subexponential computational assumptions. Concretely, in our instantiations
with DCR, we just need to take this security loss into account in the parameter

52 F. Benhamouda et al.

M defining the bound on the size of the hashing key (see Sects. 3.5 and 4.3). This
approximately multiplies by log |ΔZ| the size of the secret keys which would be
obtained if this security loss was not taken into account.

We also remark that if we used a selective security notion, where the adver-
sary announces �z0 and �z1 before obtaining the public key, we would not lose
the factor |ΔZ|. We could then use classical complexity leveraging to go from
this selective notion to the adaptive one we are considering. But then, we would
need to use sub-exponential (L, L̄)-indistinguishability (if � is polynomial in the
security parameter), and the size of the ciphertexts, of the secret and public
keys, and of the public parameters (and not just of the secret keys) would be
multiplied by |ΔZ|.

4.2 DDH-Based Instantiation

Let us instantiate the framework with the DDH-based PHF defined in Sect. 3.5
on page 13. We set R = Zq and Mz = q (or any large enough integer). To satisfy
Condition 1, we need to choose the efficiently recognizable subsets Y and Z of
R� so that the discrete logarithm of 〈�y, �z〉 · g⊥ ∈ G is efficient to compute, for
any �y ∈ Y and �z ∈ Z. We recall that there exist generic algorithms to compute
the discrete logarithm of an element t · g⊥ in O(

√|T |) group operations, when
t is in an interval T ; and in O(T) group operations, when t is in an arbitrary
subset of T ⊆ Zq.

The resulting construction FEddh coincides with the DDH-based scheme
in [5]. An explicit description of FEddh is provided in full version. It can be
easily extended to use any MDDH-based PHF defined in Sect. 3.5.

Applying Theorem16, we immediately get the following security theorem.

Theorem 18. Under the DDH assumption in G, the scheme FEddh is complete
and IND-FE-CPA.

More precisely, if there exists an attacker A = AFE that has advantage εA
in breaking the IND-FE-CPA security of FEddh, then there exists an attacker B
that runs in approximately the same time and that has advantage εB in breaking
the DDH assumption, such that εA ≤ 2 · εB.

It is worth noting that the term � · |ΔZ| · εti has disappeared because of the
key-uniformity.

4.3 DCR-Based Instantiation

Let us instantiate the framework with the DCR-based PHF defined in Sect. 3.5
on page 14. We set R = Z. Contrary the DDH-based instantiation, the discrete
logarithm problem in the subgroup generated by g⊥ is easy: given t · g⊥, we can
always efficiently recover t. However, to satisfy Condition 1, we need to choose
Y and Z so that for any �y ∈ Y and �z ∈ Z, 〈�y, �z〉 is the same modulo M⊥ = Ns

and over the integers.
There are many ways to choose the parameters to satisfy this condition. We

propose one possible way here.

Inner-Product Functional Encryption from PHFs 53

Example 19 (Example of parameters for our DCR-based instantiation). Let My

and Mz be positive integers such that 2MyMz + 1 ≤ M⊥ = Ns. We set:

Y := {�y ∈ Z
� : ‖�y‖ ≤ My}, Z := {�z ∈ Z

� : ‖�z‖ ≤ Mz},

M := � · 2κ · Mz · |ΔZ| ≤ � · 2κ · Mz · (4 · Mz)
�
,

where ‖.‖ denotes the Euclidean norm, so that |〈�y, �z〉| ≤ MyMz (when the inner-
product is over the integers). For the last inequality, we use the rough inequality
|ΔZ| ≤ (4 · Mz)

�. �	
Then, we fix My and Mz so that 2MyMz + 1 ≤ M⊥. And we choose M so

that Mz/M is negligible.
The concrete DCR-based IPFE scheme FEdcr is fully described in full version.

FEdcr is length-flexible in the same sense as the cryptosystems of [15,16]. Namely,
by fixing the parameter s ∈ Z

+, one can obtain bigger or smaller sets Mz and
My. Larger s however makes the scheme less efficient. Note that the sizes of our
secret keys is slightly larger than those of [5], due to our security reduction; but
we do not need to sample discrete Gaussian, as all the distributions we are using
are uniform.

Applying Theorem16 and Lemma 3, we immediately get the following secu-
rity theorem.

Theorem 20. Under the DCR assumption, the scheme FEdcr is complete and
IND-FE-CPA.

More precisely, if there exists an attacker A = AFE that has advantage εA
in breaking the IND-FE-CPA security of FEdcr, then there exists an attacker B
that runs in approximately the same time and that has advantage εB in breaking
the DCR assumption, such that εA ≤ 4s · εB + 16/spf(N) + � · |ΔZ| · Mz/M .

Using parameters from Example 19, we have the following security bound:
εA ≤ 4s · εB + 16/spf(N) + 2−κ. Although there is an exponential loss in the
security reduction of Theorem 16, we emphasize that there is no exponential loss
using these parameters: the security loss is compensated by these well-chosen
parameters. Most importantly, all the algorithms of the resulting scheme run
in polynomial time (in the security parameter κ)4 and the reduction to DCR
is polynomial time. There is no complexity leveraging and we do not require
subexponential assumption nor exponential-size keys or ciphertexts.

5 FE-CCA-Friendly Projective Hash Functions

In order to achieve IND-FE-CCA security, we will require another kind of PHFs:
tag-based projective hash functions [1]. In this section, we first define this new
tool, as well as the properties we need for our construction. Then we show
tag-based PHFs satisfying these properties based on the same 3 examples as
previously: DDH, MDDH and DCR.
4 We recall that the length � of the vectors is assumed to be polynomial in κ.

54 F. Benhamouda et al.

As both a FE-CPA-friendly PHF and a FE-CCA-friendly PHF are used in
our constructions of IND-FE-CCA inner-product functional encryption scheme
in Sect. 6, we distinguish the two PHFs by adding a dagger to all the symbols
defining the latter PHF. Both PHFs will be used on the same subset membership
problem P.

5.1 Tag-Based Projective Hash Function

A tag-based projective hash function [1] is defined as a PHF, except that hash†

and projhash† take an additional input (in some efficiently recognizable set T)
called a tag τ . We suppose that we can efficiently uniquely encode any 2κ-bit
string as a tag τ , as a tag is usually the output of a collision-resistant hash-
function. In our constructions, T is ZM for some large integer M .

Definition 21 (Tag-based Projective Hash Function [1]). Let P be a
subset membership problem, specifying an ensemble (I�)�≥0 of instance dis-
tributions. A tag-based projective hash function for P is a tuple PHF† =
(hashkg†, projkg†, hash†, projhash†) of four probabilistic polynomial time algo-
rithms:

– hashkg†(Λ) generates a hashing key hk† in some set K† for the instance Λ =
Λ[X ,L,W, �],

– projkg†(hk†) (deterministically) derives from the hashing key hk† a projection
key hp† from the set Khp of possible projection keys,

– hash†(hk†, b, τ) (deterministically) computes the hash value H† (in some effi-
ciently recognizable set Π), of b ∈ X under hk† ∈ K†, for the tag τ ∈ T ,

– projhash†(hp†, b, w, τ) (deterministically) computes the projected hash value
pH† of b ∈ L using a witness w ∈ W, for the tag τ ∈ T .

It has to satisfy the following correctness property:

– For any instance Λ, for any b ∈ X and w ∈ W, s.t. (b, w) ∈ �, for any hashing
key hk† ∈ K†, for any tag τ ∈ T , if hp† ← projkg†(hk†), then:

hash†(hk†, b, τ) = projhash†(hp†, b, w, τ).

The notions of key homomorphism and projection key homomorphism can
be adapted to tag-based PHFs in a straightforward way (key homomorphism
has to hold for any tag τ ∈ T).

In the sequel, we sometimes omit the term “tag-based” when it is clear from
context.

5.2 2-Universality

We now recall the notion of 2-universality, first introduced by Cramer and Shoup
in [14], in order to ensure non-malleability. This will not be directly required by
the tag-based PHF we use in the construction, but by a slight modification on it
that will be used during the proof. It will ensure that decryption queries made
by the adversary do not leak too much information.

Inner-Product Functional Encryption from PHFs 55

Definition 22 (2-universality). A key-homomorphic tag-based projective hash
function PHF† = (hashkg†, projkg†, hash†, projhash†) for a subset membership
problem P is ε†

2u-2-universal if for any instance Λ, for any b ∈ X and b′ ∈ X \L,
for any distinct tags τ, τ ′ ∈ T , for any hp† ∈ Khp, and for any H† ∈ Π, H̃† ∈ Π:

Pr
hk†

[
H† = hash†(hk†, b, τ) ∧ H′† = hash†(hk†, b′, τ ′) ∧ hp† = projkg†(hk†)

]

≤ ε†
2u · Pr

hk†

[
H† = hash†(hk†, b, τ) ∧ hp† = projkg†(hk†)

]
,

where probabilities are taken over hk† ←r hashkg†(Λ). The PHF is 2-universal
if it is ε†

2u(κ)-2-universal for some negligible function ε†
2u(κ).

In our generic construction, we will not require the PHF used in the con-
struction to be 2-universal, but a variant of it where hashkg† is replaced by some
other (not necessarily polynomial time) algorithm.

5.3 Universal Translation Indistinguishability

We also need one last statistical property to conclude the proof, as in the IND-
FE-CPA case: universal translation indistinguishability . It is a strengthening
of the previous translation indistinguishability in the sense that the algorithm
defining the translation has to be the same for all words.

Definition 23 (Universal translation indistinguishability). A key-
homomorphic tag-based projective hash function PHF† = (hashkg†, projkg†,
hash†, projhash†) is (hashkg′†,Mz, ε

†
uti)-universally-translation-indistinguishable

for a (not necessarily polynomial time) algorithm hashkg′† taking as input Λ and
outputting a hashing key hk† in some set K′∗† ⊆ K, and for a positive integer Mz,
if for any integer z such that |z| ≤ Mz,

SD(hashkg†(Λ), hashkg†(Λ) + z · hashkg′†(Λ)) ≤ ε†
uti.

Important Particular Case: Key Uniformity. For many key-homomorphic
tag-based PHFs, the output of hashkg† is actually uniform over the group K†.
In this case, as for translation indistinguishability (Lemma11), the PHF is auto-
matically (hashkg′†, ·, 0)-universally-translation-indistinguishable, for hashkg′† =
hashkg†. More formally, we have the following lemma.

Lemma 24. Let PHF† = (hashkg†, projkg†, hash†, projhash†) be a key-
homomorphic tag-based PHF such that the distribution of hashkg†(Λ) is uniform
over K†. Let Mz be a positive integer. Then PHF is (hashkg†,Mz, 0)-universally-
translation-indistinguishable.

Proof. Both hashkg†(Λ) and hashkg†(Λ) + z · hashkg†(Λ) are uniform group ele-
ments in K†. �	

56 F. Benhamouda et al.

5.4 FE-CCA Friendliness

In the following, we regroup the properties we need under the FE-CCA friendli-
ness property. It is used as a shorthand for the sake of readability and regroups
projection key homomorphism, universal translation indistinguishability, and 2-
universality on a slight modification of the PHF.

Definition 25 (FE-CCA Friendliness). A tag-based projective hash func-
tion PHF† = (hashkg†, projkg†, hash†, projhash†) is (hashkg′†, Σ†, ε†

2u,Mz, ε
†
uti)-

FE-CCA-friendly for a (not necessarily polynomial time) algorithm hashkg′†

taking as input Λ and outputting a hashing key hk† in some set K′∗† ⊆ K, and
for a positive integer Mz, for a subset Σ† of Z, and for a positive integer Mz,
if PHF† is key-homomorphic, projection-key-homomorphic, (hashkg′†,Mz, ε

†
uti)-

universally-translation-indistinguishable and if for any t ∈ Σ†, the PHF
(t · hashkg′†, projkg†, hash†, projhash†) is ε†

2u-2-universal, where the algorithm
t · hashkg′† runs hashkg′† and multiplies the output by t.

Important Particular Case: Key Uniformity. For many key-homomorphic
PHFs, the output of hashkg† is actually uniform over the group K†. In this
case, we have the following lemma which proves FE-CCA friendliness from 2-
universality.

Lemma 26. Let PHF† = (hashkg†, projkg†, hash†, projhash†) be a ε†
2u-2-universal

tag-based PHF such that the distribution of hashkg†(Λ) is uniform over K†. Then
for any t ∈ Z, (t · hashkg†, projkg†, hash†, projhash†) is ε†

2u-2-universal.

Proof. Since hashkg†(Λ) is uniformly distributed, t·hashkg†(Λ) is as well, so both
schemes are equal. �	

5.5 Examples

2-universal tag-based PHFs can be constructed from diverse groups, as
in [14]. All the constructions in [14] are key-homomorphic and projection-key-
homomorphic. And for well-chosen parameters, they actually are FE-CCA-
friendly. Let us now describe these FE-CCA-friendly constructions for our three
usual example subset membership problems: DDH, MDDH, and DCRA.

DDH. Let G be a cyclic group of prime order q, let X = G
2, let L be the

subgroup of X generated by g = (g1, g2)
ᵀ ∈ G

2, where gi are random generators
of G∗. A witness w ∈ W = Zq for b ∈ L is such that b = w ·g. We set Λ = (G,g).

Inner-Product Functional Encryption from PHFs 57

We first recall the following 2-universal hash from [1]:

Tag set: T = Zq,
hashkg†(Λ): output hk† ←r Z

4
q =: K,

projkg†(hk†): output hp† ← (
g 0
0 g

)ᵀ · hk† ∈ G
2 =: Khp,

hash†(hk†,b, τ): output H† ← hk†ᵀ · (
b

τ ·b
) ∈ G =: Π;

projhash†(hp†,b, w, τ): output pH† ← hp†ᵀ · (w
τ ·w) ∈ G = Π.

We prove the following lemma in the full version.
Lemma 27. Using above notation, let hashkg′† = hashkg†, Σ† = Zq, ε†

2u = 1/q,
Mz be a positive integer, and ε†

uti = 0. Then, the PHF described above is a
(hashkg′†, Σ†, ε†

2u,Mz, ε
†
uti)-FE-CCA-friendly.

We use a slight extension of this PHF because we need an exponentially small
security parameter ε†

2u, due our security reduction. The following PHF can be
seen as repeating ν times the PHF of Lemma 27:

Tag set: T = Zq,
hashkg†(Λ): output hk† ←r Z

4×ν
q =: K;

projkg†(hk†): output hp† ← (
g 0
0 g

) · hk† ∈ G
2×ν =: Khp;

hash†(hk†,b, τ): output H† ← hk†ᵀ · (
b

τ ·b
) ∈ G

ν =: Π;
projhash†(hp†,b, w, τ): output pH† ← (w

τ ·w)ᵀ · hp† ∈ G
ν = Π.

We prove the following lemma in the full version.

Lemma 28. Using above notation, let hashkg′† = hashkg†, Σ† = Zq, ε†
2u =

1/qν , Mz be a positive integer, and ε†
uti = 0. Then, the PHF described above is

a (hashkg′†, Σ†, ε†
2u,Mz, εti)-FE-CCA-friendly.

MDDH. The previous construction can be extended in a straightforward way to
any MDDH-based subset membership problem in a straightforward way, similar
to what is done for our FE-CPA-friendly construction in Sect. 3.5 in page 3.5.

DCR. Let Λ = (N, s, g, g⊥) be defined as in the DCR subsubsection of Sect. 2.1
on page 7. We have: G = X = JNs+1 ∼= GNs ⊕ GN ′ ⊕ T , L = GN ′ , and
L̄ = L + g⊥. The element g is a generator of L, while g⊥ is a generator of GNs .
We recall that we use additive notation for the group G.

We define a PHF as follows:

Tag set: T = {0, . . . , �N/2�} ⊆ ZN ′

hashkg†(Λ): output hk† ←r {0, . . . , �νM†Ns+1/2�}2×ν =: K∗ ⊆ Z
2×ν =: K,

where M† is a positive integer and is a parameter of the scheme,
projkg†(hk†): output hp† ← (

g 0
0 g

)ᵀ · hk† ∈ G
2×ν =: Khp;

hash†(hk†, b, τ): output H† ← hk†ᵀ · (
b

τ ·b
) ∈ G

ν =: Π;
projhash†(hp†, b, w, τ): output pH† ← hp†ᵀ · (w

τ ·w) ∈ G
ν = Π.

58 F. Benhamouda et al.

We prove the following lemma in full version.

Lemma 29. Using above notation, Σ† = {−Ns + 1, . . . , Ns − 1} \ {0}, ε†
2u =

1/2ν , Mz be a positive integer, and ε†
uti = Mz/M

†. Define in addition the fol-
lowing algorithm:

hashkg′†(Λ): output hk† ←r Z
2×ν
N ′Ns = K∗†.

Then, the PHF described above is a (hashkg′†, Σ†, ε†
2u,Mz, ε

†
uti)-FE-CCA-

friendly.

6 IND-FE-CCA Inner-Product Functional Encryption

In this section, we construct IND-FE-CCA inner-product functional encryption
from FE-CPA-friendly PHFs and FE-CCA-friendly PHFs. For the sake of read-
ability, we split our construction into two parts: we first show how to construct
a CCA secure tag-based variant of inner-product functional encryption from
PHFs with the right properties. Then we show how to construct a non tag-based
functional encryption that reaches CCA security from the tag-based variant.

6.1 Tag-Based Functional Encryption

We now define tag-based functional encryption. It is an adaptation from the
concept of tag-based encryption [24] to the context of functional encryption.

Definition 30. A tag-based functional encryption scheme for functionality F
is a tuple TBFE = (setup, keygen, enc, dec) of four probabilistic polynomial time
algorithms:

setup(1κ, �): first generates system parameters pp, and then returns a master
secret and public key pair (msk,mpk), where both msk and mpk also contain
pp,

keygenmsk(y ∈ Y): given a master secret key msk and y, returns a partial secret
key msky = (pp, ky, y),

encmpk,τ (z ∈ Z): given a master public key mpk, a tag τ , and a plaintext z,
returns a ciphertext c,

decmsky,τ (c): given a partial secret key msky, a tag τ , and a ciphertext c, returns
S ∈ Σ ∪ {⊥}.
TBFE must be complete, in the sense that if (y, z) is in the domain of F ,

and τ is a tag, then for all (msk,mpk) ← setup(1κ), msky ← keygenmsk(y), and
c ←r encmpk,τ (z; r), it holds that decmsky,τ (c) = F(y, z).

In the following definition, we have highlighted differences with the IND-FE-
CCA definition, Definition 4.

Definition 31 (IND-TBFE-CCA Security). A tag-based functional encryp-
tion scheme TBFE = (setup, keygen, enc, dec) is IND-TBFE-CCA secure (or,
secure against chosen ciphertext attacks), if no probabilistic polynomial time
adversary A has a non-negligible advantage in the following game:

Inner-Product Functional Encryption from PHFs 59

1. The challenger sets (msk,mpk) ← setup(1κ, �) and sends mpk to A.
2. A makes adaptive secret key and decryption queries to the challenger. At

each secret key query, A chooses y ∈ Y and obtains msky = (pp, ky, y) ←
keygenmsk(y). At each decryption query, A chooses a ciphertext c′, a tag τ ′,
and y ∈ Y, then the challenger computes msky = (pp, ky, y) ← keygenmsk(y)
and sends back decmsky,τ ′(c′) to A. Let yi be the ith queried secret key.

3. A chooses a tag τ , and z0 �= z1 such that F(yi, z0) = F(yi, z1) for all queried
yi. She sends τ , z0, and z1 to the challenger. The challenger chooses β ←r

{0, 1}, and sends c ←r encmpk,τ (zβ) to A.
4. A makes more secret key queries for keys yi ∈ Y , with the condition that

F(yi, z0) = F(yi, z1), and decryption queries, with the condition that τ ′ �= τ .
Let qdec be the number of decryption queries made during the whole game,
and let (yj , τ

′
j , c

′
j) be the jth decryption query.

5. A outputs a bit βA ∈ {0, 1} and wins if βA = β.

More precisely, the advantage of A is defined as

Advind−tbfe−cca
TBFE,A (κ) := 2 · |Pr[βA = β] − 1/2|.

TBFE is secure against chosen ciphertext attacks (or, IND-TBFE-CCA secure),
if Advind−tbfe−cca

TBFE,A is negligible for all probabilistic polynomial time adversaries
Adv.

6.2 Generic Construction

Intuition. The core idea of our construction is similar to the one used in
the Cramer-Shoup encryption scheme [12,14]: adding a hash value (from a 2-
universal PHF) to ensure that the word b is in the language L, to our generic
IND-FE-CPA construction in Sect. 4.1. Then, at least information-theoretically,
the values hash(hki, b) used to decrypt a ciphertext (b,�c) could be computed
using only hpi and do not leak any information from hki. We can then con-
clude using the same ideas as in the IND-FE-CPA security proof of our generic
construction.

However, this does not work directly, as checking a 2-universal hash value
require to know the corresponding hashing key hk†, and knowing this hashing
key enables to fake these hash values. In other words, with the naive scheme
described previously, an attacker knowing a secret key for any �y could then
generate a ciphertext with b /∈ L, but a valid 2-universal hash values. This
completely removes the usefulness of the 2-universal hash value.

Our new idea is the following: instead of using only one hash value, we use �
such values. The secret key msk�y only enables to check that a linear combination
(with coefficient �y) of these hash values is valid. This uses the key homomorphism
property. Knowing msk�y enables to generate hash values that would be accepted
by the decryption oracle with �y, and knowing msk�y for multiple vectors �y enables
to generate hash values for any vector in the span of these �y. But intuitively, this
is not really an issue, as if the attacker already knows msk�y, calling the decryption

60 F. Benhamouda et al.

oracle for �y is of no use to him, as he could decrypt the given ciphertext himself.
The proof however is more subtle and requires a careful design of hybrid games
to deal with adaptivity and the fact that we are working over a ring and not
a field. In particular, we cannot directly rely on the notion of span of vectors.
Details can be found in the proof.

Construction. We suppose that we have a (hk⊥, g⊥,M⊥, z, εti)-FE-CPA-
friendly projective hash function PHF = (hashkg, projkg, hash, projhash) and a
(hashkg′†, Σ†, ε†

2u,Mz, ε
†
uti)-FE-CCA-friendly projective hash function PHF† =

(hashkg†, projkg†, hash†, projhash†) for the subset membership problem P. Let R
be the ring Z or ZM⊥ , let � be a positive integer parameter corresponding to the
length of the message and key vectors, and let Y and Z be two subsets of R�.
We always suppose � to be polynomial in the security parameter κ. The scheme
is depicted in Fig. 2.

We suppose that Condition 1 is satisfied, in addition to the following new
condition.

Fig. 2. Generic inner-product tag-based functional encryption TBFEphf from a FE-
CPA-friendly PHF and a FE-CCA-friendly tag-based PHF

Inner-Product Functional Encryption from PHFs 61

Condition 2. Using the above notation:

1. if R = ZM⊥ , the order of any hashing key hk ∈ K† divides M⊥; and
2. for any �y ∈ Y and �z ∈ Z, 〈�y, �z〉 ∈ Σ† ∪ {0} ⊆ R.

Security. We have the following security theorem.

Theorem 32. Let P be a subset membership problem. Let PHF =
(hashkg, projkg, hash, projhash) be a (hk⊥, g⊥,M⊥,Mz, εti)-FE-CPA-friendly
PHF. (hashkg′†, Σ†, ε†

2u,Mz, ε
†
uti)-FE-CCA-friendly projective hash function.

Then the scheme TBFEphf is complete and IND-TBFE-CCA.
More precisely, if there exists an adversary A = AFE that has advantage

εA in breaking the IND-TBFE-CCA security of TBFEphf , then there exists an
attacker B that runs in approximately the same time and that has advantage εB
in breaking the (L, L̄)-indistinguishability, such that

εA ≤ 2 · εB + � · |ΔZ| · (εti + 2 · ε†
uti) + 2 · qdec · |ΔZ| · ε†

2u,

where qdec is the number of queries to the decryption oracle.

The proof is in the full version.

Remark 33. In addition to the exponential loss �·|ΔZ|·(εti+2·ε†
uti) similar to the

one for the generic IND-FE-CPA construction (Theorem 16), there is an addition
exponential loss in the security proof in the term 2qdec|ΔZ|ε†

2u. We point out
however that the resulting requirement that |ΔZ|ε†

2u is negligible in the secu-
rity parameter can easily to achieve: given a ε†

2u-2-universal PHF, we can get
a (ε†

2u)
ν-2-universal PHF, by repeating it ν-times in parallel. This transforma-

tion preserves FE-CCA friendliness. Our examples in Sect. 5.5 actually already
uses this trick. We emphasize that the resulting key and ciphertext sizes remain
polynomial in the security parameter κ, and that we do not rely on complexity
leveraging nor subexponential assumptions (see Remark 17 on page 16).

Furthermore, as for the IND-FE-CPA construction from translation-
indistinguishable key-homomorphic PHF in Sect. 4.1, if we only consider a selec-
tive version of IND-TBFE-CCA where the adversary announces �z0 and �z1 before
receiving the public key, then we would not have this factor |ΔZ|.

6.3 DDH-Based Instantiation

Let us instantiate the framework with the DDH-based FE-CPA-friendly PHF
defined in Sect. 3.5 on page 13, and the DDH-based FE-CCA-friendly tag-based
PHF defined in Sect. 5.5 on page 21. We set R = Zq and Mz = q (or any large
enough integer). As for the IND-FE-CPA scheme in Sect. 4.2, we need to choose
the efficiently recognizable subsets Y and Z of R� so that the discrete logarithm
of 〈�y, �z〉 · g⊥ ∈ G is efficient to compute, for any �y ∈ Y and �z ∈ Z in order to
satisfy Condition 2. The resulting construction TBFEddh is depicted in Fig. 3 and
can be easily extended to use any MDDH-based PHF defined in Sect. 5.5.

62 F. Benhamouda et al.

Fig. 3. DDH-based inner-product tag-based functional encryption TBFEddh

Applying Theorem32, we immediately get the following security theorem.

Theorem 34. Under the DDH assumption in G, the scheme TBFEddh depicted
in Fig. 3 is complete and IND-TBFE-CCA.

More precisely, if there exists an attacker A = ATBFE that has advantage
εA in breaking the IND-TBFE-CCA security of TBFEddh, then there exists an
attacker B that runs in approximately the same time and that has advantage εB
in breaking the DDH assumption, such that εA ≤ 2 · εB + 2 · qdec · q�−ν .

In particular, setting ν = � + 1, we have the following bound: εA ≤ 2 · εB +
2 · qdec

q .

6.4 DCR-Based Instantiations

Let us now instantiate the framework with the DCR-based FE-CPA-friendly
PHF defined in Sect. 3.5 on page 14, and the DDH-based FE-CCA-friendly tag-
based PHF defined in Sect. 5.5 on page 22. We use the same parameters as
for the IND-FE-CPA scheme in Sect. 4.3. The resulting construction TBFEdcr

is depicted in Fig. 4. We switch back to the multiplicative notation so that the
scheme looks more familiar.

Applying Theorem32 and Lemma 3, we immediately get the following secu-
rity theorem.

Inner-Product Functional Encryption from PHFs 63

Fig. 4. DCR-based inner-product tag-based functional encryption TBFEdcr over the
integers (using multiplicative notation for elements of G = J∗

Ns+1)

Theorem 35. Under the DCR assumption, the scheme TBFEdcr depicted in
Fig. 4 is complete and IND-TBFE-CCA.

More precisely, if there exists an attacker A = ATBFE that has advantage
εA in breaking the IND-TBFE-CCA security of TBFEddh, then there exists an
attacker B that runs in approximately the same time and that has advantage εB
in breaking the DCR assumption, such that εA ≤ 4s · εB + 16/spf(N) + � · |ΔZ| ·
Mz · (1/M + 2/M†) + 2 · qdec · |ΔZ|/2ν .

Using parameters from Example 19 and setting M† = M and ν ≥ κ+log2(2 ·
qdec · |ΔZ|) = O(poly(κ)), we have the following security bound: εA ≤ 4s ·
εB + 16/spf(N) + 4 · 2−κ. Similarly to what happens in our DCR-based IND-
FE-CPA instantiation in Sect. 4.3, although there is an exponential loss in the
security reduction of Theorem 32, we emphasize that there is no exponential loss
using these parameters: the security loss is compensated by these well-chosen
parameters.

64 F. Benhamouda et al.

6.5 From Tag-Based Inner-Product Functional Encryption to CCA
Security

In the full version, we show how to construct a CCA-secure inner-product func-
tional encryption from the tag-based variant, a one-time signature, and a collision
resistant hash function. The transformation is a straightforward application of
the generic transformation that has been applied to PKE in [22]: the tag is the
hash of a fresh verification key for the one-time signature scheme, used to sign
the ciphertext. This prevents malleability.

Acknowledgments. We would like to thank David Pointcheval for useful discus-
sions. This work was partially done while the first author was student at ENS, CNRS,
INRIA, and PSL Research University, Paris, France. The first author was supported in
part by the CFM Foundation and by the Defense Advanced Research Projects Agency
(DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236.
The second author was supported by the European Research Council under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement
No. 339563 – CryptoCloud). This third author was supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 653497
(project PANORAMIX), and by institutional research funding IUT2-1 of the Estonian
Ministry of Education and Research.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46803-6 3

2. Abdalla, M., Bourse, F., Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
733–751. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 33

3. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for condi-
tionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 671–689. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 39

4. Abdalla, M., Raykova, M., Wee, H.: Multi-input inner-product functional encryp-
tion from pairings. Cryptology ePrint Archive, Report 2016/425 (2016). http://
eprint.iacr.org/

5. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for linear
functions from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53015-3 12

6. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10 (2016)

7. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 20

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

http://dx.doi.org/10.1007/978-3-662-46803-6_3
http://dx.doi.org/10.1007/978-3-662-46447-2_33
http://dx.doi.org/10.1007/978-3-642-03356-8_39
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-48797-6_20
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3

Inner-Product Functional Encryption from PHFs 65

9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8 13

10. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

11. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54242-8 3

12. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. Cryptology ePrint Archive, Report
2001/085 (2001). Full version of [14]. http://eprint.iacr.org/2001/085

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

15. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K.-C. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

16. Damg̊ard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364.
Springer, Heidelberg (2003). doi:10.1007/3-540-45067-X 30

17. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner prod-
uct with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G.,
Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49384-7 7

18. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 8

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49 (2013)

20. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfus-
cation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
480–511. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 18

21. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

22. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). doi:10.1007/11681878 30

23. Kiltz, E., Vahlis, Y.: CCA2 secure IBE: standard model efficiency through authen-
ticated symmetric encryption. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 221–238. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79263-5 14

http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/978-3-642-54242-8_3
http://dx.doi.org/10.1007/BFb0055717
http://eprint.iacr.org/2001/085
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-45067-X_30
http://dx.doi.org/10.1007/978-3-662-49384-7_7
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-662-49099-0_18
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/11681878_30
http://dx.doi.org/10.1007/978-3-540-79263-5_14

66 F. Benhamouda et al.

24. MacKenzie, P., Reiter, M.K., Yang, K.: Alternatives to non-malleability: defini-
tions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol.
2951, pp. 171–190. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 10

25. Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

26. Nandi, M., Pandit, T.: Generic conversions from CPA to CCA secure functional
encryption. Cryptology ePrint Archive, Report 2015/457 (2015). http://eprint.iacr.
org/2015/457

27. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990, pp. 427–437 (1990)

28. O’Neill, A.: Definitional issues in functional encryption. Technical report 2010/556,
IACR (2010). http://eprint.iacr.org/2010/556. Accessed 18 Mar 2011

29. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

30. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 35

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93 (2005)

32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

33. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 33

34. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for
chosen-ciphertext secure attribute based encryption. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19379-8 5

http://dx.doi.org/10.1007/978-3-540-24638-1_10
http://eprint.iacr.org/2015/457
http://eprint.iacr.org/2015/457
http://eprint.iacr.org/2010/556
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/3-540-46766-1_35
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-662-48000-7_33
http://dx.doi.org/10.1007/978-3-642-19379-8_5

Bounded-Collusion Attribute-Based Encryption
from Minimal Assumptions

Gene Itkis1, Emily Shen1, Mayank Varia2, David Wilson1,
and Arkady Yerukhimovich1(B)

1 MIT Lincoln Laboratory, Lexington, MA, USA
{itkis,emily.shen,david.wilson,arkady}@ll.mit.edu

2 Boston University, Boston, MA, USA
varia@bu.edu

Abstract. Attribute-based encryption (ABE) enables encryption of
messages under access policies so that only users with attributes sat-
isfying the policy can decrypt the ciphertext. In standard ABE, an arbi-
trary number of colluding users, each without an authorized attribute
set, cannot decrypt the ciphertext. However, all existing ABE schemes
rely on concrete cryptographic assumptions such as the hardness of cer-
tain problems over bilinear maps or integer lattices. Furthermore, it is
known that ABE cannot be constructed from generic assumptions such
as public-key encryption using black-box techniques.

In this work, we revisit the problem of constructing ABE that tolerates
collusions of arbitrary but a priori bounded size. We present two ABE
schemes secure against bounded collusions that require only semantically
secure public-key encryption. Our schemes achieve significant improve-
ment in the size of the public parameters, secret keys, and ciphertexts
over the previous construction of bounded-collusion ABE from mini-
mal assumptions by Gorbunov et al. (CRYPTO 2012). In fact, in our
second scheme, the size of ABE secret keys does not grow at all with
the collusion bound. As a building block, we introduce a multidimen-
sional secret-sharing scheme that may be of independent interest. We
also obtain bounded-collusion symmetric-key ABE (which requires the
secret key for encryption) by replacing the public-key encryption with
symmetric-key encryption, which can be built from the minimal assump-
tion of one-way functions.

Keywords: Attribute-based encryption · Public-key encryption ·
Bounded collusion · Secret sharing

G. Itkis, E. Shen, D. Wilson and A. Yerukhimovich—This material is based upon
work supported by the Assistant Secretary of Defense for Research and Engineering
(ASDR&E) under Air Force Contract No. FA8721-05-C-0002. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Government.
M. Varia—This material is based upon work supported by the National Science
Foundation under Grant No. 1414119.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 67–87, 2017.
DOI: 10.1007/978-3-662-54388-7 3

68 G. Itkis et al.

1 Introduction

In traditional public-key encryption, data is encrypted for an individual user
whose public key is known at the time of encryption, and only the target user
is able to decrypt the resulting ciphertext. However, many applications require
encryption with more expressive access control capabilities. For example, elec-
tronic medical records contain a wealth of sensitive patient information that
should be accessible only to medical administrators (e.g., doctors, nurses, phar-
macists, and researchers) whose credentials satisfy complex access policies based
on their roles and relationships to the patient [2].

For these applications, straightforward encryption solutions are inadequate
for two reasons. First, the ciphertext must be decryptable by potentially many
users with distinct keys. The trivial solution of encrypting the data separately to
each user results in long ciphertexts. A long line of work on broadcast encryption
(e.g., [5,11,23]) aims to reduce the ciphertext size for this problem. Second, the
identities of the authorized users may not be known to the encryptor; instead
of encrypting to individual users we wish to encrypt to access policies so that
only users whose credentials satisfy the policy can decrypt. The trivial solution
of providing a separate key for each group of attributes results in long keys for
the recipients of messages.

Attribute-based encryption (ABE), introduced by Sahai and Waters [26],
addresses both of these issues. In ABE, each secret key corresponds to a predicate
f , and each ciphertext corresponds to a message and an index ind. Decryption
returns the message if and only if f(ind) = 1. Thus, ABE allows automatic
enforcement of any access policy that can be expressed as the evaluation of
f(ind). Two commonly considered special cases of ABE are ciphertext-policy
ABE (CP-ABE) [4], where the secret key predicate is a set of attributes and
the ciphertext index is an access policy over attributes, and key-policy ABE
(KP-ABE) [18], where the roles of the index and the predicate are reversed.

Since the introduction of ABE, many constructions and related primitives
have appeared in the literature (e.g., [4,12,16,18,22,24,28]). ABE has also been
implemented in some applications, including the protection of electronic medical
records [2]; we refer readers to [19, Sect. 3.2] for a longer overview of the history
of ABE.

However, all known constructions of ABE rely on concrete assumptions such
as the hardness of certain problems over bilinear maps or integer lattices rather
than generic assumptions such as the existence of CPA-secure public-key encryp-
tion. In fact, it is known that, when using black-box techniques, the security of
ABE cannot be based on such generic assumptions [6,21].

The difficulty of building ABE from generic assumptions stems from its col-
lusion resistance requirement, which states that two or more users, neither of
whose attributes satisfy the policy embedded in a ciphertext, should not be able
to decrypt the message using their joint key material. Intuitively, for CP-ABE
this requires the secret key corresponding to a set of attributes to be “bound”
together so that the contribution that each attribute makes to the key cannot
be detached and re-purposed toward decrypting a message requiring a different
combination of attributes. ABE typically requires security against unbounded

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 69

collusion. That is, even if a very large and a priori unbounded number of users
collude, they should fail to decrypt any ciphertexts that none of them can decrypt
individually.

In this work, we consider a relaxation of the unbounded collusion requirement
and instead consider schemes that are secure against an a priori bounded number
of colluders. Positive results have recently been shown in constructing bounded-
collusion ABE (BC-ABE) schemes assuming only the existence of public-key
encryption [15,25].1 We stress that this relaxation does not limit the number
of keys that may be issued, but rather only the number of colluders that the
scheme can withstand.

Such generic constructions of ABE based on public-key encryption have sev-
eral benefits. First, they can be instantiated from a number of standard cryp-
tographic hardness assumptions. Second, by replacing CPA-secure public-key
encryption with its symmetric-key counterpart, these schemes directly yield a
construction of symmetric-key ABE schemes that require the secret key for
encryption as well.2 In particular, this implies that bounded-collusion symmetric-
key ABE can be constructed from the minimal assumption of the existence of
one-way functions. By contrast, constructions of ABE based on specific assump-
tions lack a clear transformation into symmetric-key ABE without still relying
on “public-key” assumptions.

However, the only known constructions of BC-ABE from public-key encryp-
tion [15] require keys and ciphertexts that grow very quickly with the collusion
bound (see Table 1). Thus, it remains worthwhile to reduce the key and cipher-
text length in constructions of bounded-collusion ABE to understand what can
be achieved using these minimal assumptions.

1.1 Our Results

In this paper we address exactly this problem, showing two different construc-
tions of bounded-collusion ABE based only on the existence of public-key encryp-
tion, achieving shorter key sizes, public parameters, and ciphertexts. We adopt
the two-step procedure taken by Gorbunov et al. [15]: first design an ABE scheme
that is secure against an adversary with only a single key (which we call a 1-
ABE scheme), and then design a bootstrapping procedure that yields a BC-ABE
scheme secure against a larger number of collusions q (which we call a q-ABE
scheme). Indeed, we retain the 1-ABE scheme of [15], which can be instanti-
ated based only on CPA-secure public-key encryption. Therefore, the focus of
our work is to reduce the dependence on q in the construction of q-ABE from
1-ABE. Specifically, we show a construction satisfying the following theorem:
1 These works actually build bounded-collusion functional encryption (FE), a stronger

primitive that implies ABE. The bounded-collusion FE construction [15] actually
requires an additional assumption of the existence of bounded-degree PRGs, but, as
the authors show, this assumption is not needed for bounded-collusion ABE. For the
purposes of this paper, we will only discuss the ABE constructions.

2 Symmetric-key ABE is useful for applications such as publish-subscribe allowing a
single publisher to disseminate information to subscribers based on their attributes
or interests.

70 G. Itkis et al.

Theorem 1 (Informal). Suppose there exists a public-key (resp., symmetric-
key) 1-ABE scheme for a class of access policies. Then there exists a public-key
(resp., symmetric-key) BC-ABE scheme for the same class of access policies
tolerating collusions of size at most q with the following characteristics: public
parameters consisting of O(q2

log q λ) 1-ABE encryption keys, secret keys consisting

of O(1
log q λ) 1-ABE keys, and ciphertexts consisting of O(q2

log q λ) 1-ABE cipher-
texts, where λ is the security parameter.

We formalize and prove this theorem in Sect. 5. We then instantiate the 1-
ABE scheme with the construction of Sahai and Seyalioglu [25] (subsequently
improved to handle full, adaptive security by Gorbunov et al. [15]), which gives
1-ABE for the access policies expressed by arbitrary Boolean circuits from CPA-
secure encryption. This immediately yields the following result:

Corollary 1. If public-key (respectively, symmetric-key) encryption exists, then
there exist public-key (resp., symmetric-key) ABE schemes for access policies
expressed by boolean circuits tolerating collusion of size at most q. The sizes
of the public parameters, secret keys, and ciphertexts in the resulting BC-ABE
scheme come from two sources: (1) the use of CPA-secure encryption to con-
struct 1-ABE (e.g., in [15,25]) and (2) the use of 1-ABE to construct q-ABE in
Theorem1. In particular, the only dependencies of these parameters on q come
from Theorem1, since any 1-ABE construction from CPA-secure encryption is
clearly independent of q.

1.2 Comparison to Prior Work

We construct two schemes in this paper: a basic scheme in Sect. 4 that is easier
to analyze but whose bounds are slightly weaker than those in Theorem1, and
then an improved scheme that fully meets the theorem. This section and Table 1
compare the parameters of our schemes with two related works: Dodis et al.’s
bounded-collusion identity-based encryption (IBE) scheme [10] and Gorbunov
et al.’s bounded-collusion ABE scheme [15].

Our basic scheme has asymptotic dependence on q that is roughly comparable
to the Dodis et al. [10] construction of bounded-collusion IBE, a weaker primitive
than ABE, from public-key encryption, while avoiding the need for cover-free sets
used by that construction. Specifically, our scheme has shorter secret keys but
larger ciphertexts; the asymptotic size of the public parameters is the same in
both constructions.

Our basic scheme is also a significant improvement over the bounded-collusion
ABE scheme of [15], in which both the public parameters and the ciphertext grow
as O(q4). Indeed, the secret key size in our basic scheme does not grow with the
collusion bound. This is a significant improvement allowing us to keep secret key
sizes short even when tolerating a high collusion bound. Also, the dependence
on q of the ciphertext size of our basic scheme matches that of the best known
constructions of bounded-collusion functional encryption (which implies ABE)
from lattice assumptions [1].

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 71

Table 1. Comparison of bounded-collusion ABE schemes tolerating collusions of size
at most q (note: DKXY only provides IBE). Sizes are given in terms of number of
1-ABE keys or 1-ABE ciphertexts. Here λ is a security parameter.

DKXY [10] GVW [15] Basic scheme Improved scheme

Public parameters O(q2λ) O(q4λ) O(q2λ) O
(

q2

log q
λ
)

Secret keys O(qλ) O(q2λ) O(λ) O
(

1
log q

λ
)

Ciphertexts O(qλ) O(q4λ) O(q2λ) O
(

q2

log q
λ
)

Our improved scheme further reduces the size of public parameters, secret
keys, and ciphertexts each by a factor of log q. This leads to the somewhat
counterintuitive property that the size of secret keys decreases as the collusion
bound increases!

1.3 Our Techniques

Our main technique follows the same high-level approach taken by Gorbunov
et al. [15]. Specifically, during setup, N key pairs for a 1-ABE scheme are gener-
ated. The secret keys become the master secret key of the BC-ABE scheme while
the public keys become the public parameters. Then, every BC-ABE secret key
consists of a subset of the secret keys. To encrypt a message m with an index
ind, the message is first secret-shared and then each share is encrypted under
ind using a different 1-ABE public key. To make this work, the subset of keys
included in a BC-ABE secret key and the secret sharing are chosen in such a way
that if f(ind) = 1 for the predicate f encoded in a secret key, then that key will
allow the recovery of sufficiently many shares of m so decryption will succeed.
However, any set of q keys not satisfying ind reveals no information about m.
In particular, such a set of keys cannot be combined to recover the appropriate
shares to reconstruct m.

In [15] this property is achieved by using a t-out-of-n secret sharing of the
message and then partitioning the secret keys in such a way that sets of keys
included in different BC-ABE secret keys have small pairwise intersections. Since
at least t key intersections are needed to recover the message (each intersection
allows the attacker to recover one share), this guarantees that a large number of
keys is needed.

Our basic scheme improves on this technique by (1) using an n-out-of-n secret
sharing of the message and encrypting each share under l independent 1-ABE
keys and then (2) for each BC-ABE secret key giving 1 out of the l possible
keys to recover each share to reduce the probability of key intersection. This
requires an adversary to be able to reconstruct all of the n top level shares by
getting enough intersections for each of them. We show that this approach allows
us to reduce the size of the public parameters and the ABE secret keys while
still guaranteeing resistance against q bounded-collusions with overwhelming
probability.

72 G. Itkis et al.

Our improved scheme uses a multi-dimensional secret-sharing algorithm,
which has the properties that (1) there exist small sets of shares that suffice
to reconstruct the message and (2) such small sets of shares are rare, so for
shares chosen at random a large number of shares is needed to reconstruct the
message. By using multi-dimensional secret-sharing, the secret keys of our ABE
scheme only need to include keys allowing decryption of such a small set of
shares, whereas an adversary who only learns shares at random must recover a
large number of shares in order to reconstruct the message. This allows us to fur-
ther reduce the size of public parameters, keys, and ciphertexts by an additional
logarithmic factor in the collusion bound q.

1.4 Paper Organization

The rest of the paper is organized as follows. In Sect. 2, we provide more details on
related work. In Sect. 3, we give some necessary background and define bounded-
collusion ABE. In Sect. 4, we present our basic construction. Then, in Sect. 5,
we present our improved construction. Finally, in Sect. 6 we briefly discuss how
to instantiate 1-ABE.

2 Related Work

Impossibility of Unbounded Collusion From Generic Assumptions.
Several prior works have aimed to understand the difficulty of building ABE and
related primitives from generic assumptions such as CPA-secure encryption. Evi-
dence that such constructions are unlikely was first given by Boneh et al. [6], who
showed that there is no black-box construction of IBE from CPA-secure encryp-
tion or trapdoor permutations. This result was subsequently extended by Katz
and Yerukhimovich [21], who also ruled out constructions of ABE for several
classes of access policies. Finally, Goyal et al. [17] showed that for certain classes
of access policies, ABE cannot be even constructed from the much stronger
assumption that IBE exists. Note that the latter two works prove impossibility
of public-index predicate encryption, a construct that is equivalent to ABE and
that we will use in this paper as well (cf. Definition 3).

Bounded Collusion Constructions.
Our restriction to tolerating collusions of bounded size has been used before
to build ABE and related primitives from (somewhat) standard assumptions.
Early works [9,10] showed how to construct bounded-collusion identity-based
encryption (IBE), a special case of ABE where the only formulas allowed are
equalities over the set of attributes, from standard public-key encryption. Later,
Goldwasser et al. [14] showed a more efficient construction of bounded-collusion
IBE if the underlying encryption scheme satisfied a key-homomorphism property
and had an associated hash-proof system. This latter requirement of hash-proof
systems was subsequently removed by Tessaro and Wilson [27].

Going beyond IBE, Sahai and Seyalioglu [25] showed that standard public-
key secure encryption can be used to achieve 1-query security for functional

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 73

encryption, a powerful generalization of ABE. This construction was then lever-
aged and improved by Gorbunov et al. [15] to achieve bounded-collusion security
for functional encryption under the assumption that a low-depth pseudoran-
dom number generator exists. However, their construction can be used to realize
bounded-collusion ABE without this latter assumption.

Additionally, the bounded-collusion relaxation has also been used for sev-
eral constructions relying on stronger computational assumptions. For example,
Goldwasser et al. [13] show how to build a 1-key succinct functional encryption
scheme based on any fully-homomorphic encryption and attribute-based encryp-
tion for circuits, both of which can be realized from lattice assumptions. More
recently, Agrawal and Rosen [1] showed how to build a bounded-collusion func-
tional encryption scheme achieving online/offline encryption, allowing much of
the encryption procedure to be precomputed before the message is known, from
a specific lattice-based functional encryption scheme for inner product functions.

3 Definitions

In this section, we provide notation and definitions of the primitives we will use.

3.1 Preliminaries

For n ∈ N, we let [n] denote the set of integers {1, . . . , n}. Let negl denote a neg-
ligible function. Let ppt denote the class of algorithms that run in probabilistic
polynomial time. Additionally, we assume in this work that all sets are ordered.

We first define public- and symmetric-key encryption.

Definition 1 (Encryption scheme). A public-key (respectively, symmetric-
key) encryption scheme Σ for the message space M consist of three ppt algo-
rithms KeyGen, Enc, and Dec defined as follows.

– KeyGen(1λ) takes as input the unary representation of the security parame-
ter λ and outputs the public and private keys (pk, sk). (For a symmetric-key
encryption scheme, pk must be the empty string.)

– Enc(ek,m) takes as input an encryption key ek and a message m ∈ M and
outputs a ciphertext ct, where ek = pk (resp., ek = sk).

– Dec(sk, ct) takes as input the secret key sk and a ciphertext ct and outputs
either a message m ∈ M or the distinguished symbol ⊥.

For correctness we require the following condition: for all λ and m ∈ M, if we
compute (pk, sk) ← KeyGen(1λ) and ct ← Enc(ek,m), then Dec(sk, ct) = m.

We use a standard notion of security against chosen plaintext attacks defined
in terms of a left-or-right oracle. For b ∈ {0, 1}, we define Encb(ek,m0,m1) =
Enc(ek,mb).

74 G. Itkis et al.

Definition 2 (CPA-security for encryption). An encryption scheme Σ =
(KeyGen,Enc,Dec) is CPA-secure if for all valid ppt adversaries A,

|Pr[AEnc0(ek,·,·)(1λ, pk) = 1] − Pr[AEnc1(ek,·,·)(1λ, pk) = 1]| ≤ negl(λ),

where the probability is taken over the randomness of (pk, sk) ← KeyGen(1λ),
Enc, and A. An adversary A is valid if |m0| = |m1| for all Encb queries (m0,m1).

3.2 Attribute-Based Encryption with Bounded-Collusion Security

We now define attribute-based encryption (ABE) (also called predicate encryp-
tion with public index). This definition encompasses both ciphertext-policy ABE
and key-policy ABE.

Definition 3 (Attribute-based encryption scheme). A public-key, (respec-
tively, symmetric-key) attribute-based encryption scheme Π for a message space
M, an index space I, and a predicate space F consists of four ppt algorithms
(Setup,KeyGen,Enc,Dec) defined as follows.

– Setup(1λ, q) takes as input the unary representation of the security parameter λ
and (optionally) a collusion bound q, and outputs the master public and secret
keys (MPK,MSK). (For a symmetric-key attribute-based encryption scheme,
MPK must be the empty string.)

– KeyGen(MSK, f) takes as input the master secret key MSK and a predicate
f ∈ F , and outputs a secret key skf .

– Enc(EK,m, ind) takes as input an encryption key EK, a message m ∈ M,
and an index ind ∈ I, and outputs a ciphertext ct, where EK = MPK (resp.,
EK = MSK).

– Dec(skf , ct) takes as input a secret key skf and a ciphertext ct, and outputs
either a message m ∈ M or the distinguished symbol ⊥.

For correctness we require the following: for all λ, q ∈ N, m ∈ M, ind ∈ I, and
f ∈ F such that f(ind) = 1, if we compute (MPK,MSK) ← Setup(1λ, q), skf ←
KeyGen(MSK, f), and ct ← Enc(EK,m, ind), then we require Dec(skf , ct) = m.

We stress that in the above definition Setup takes the query bound q as a
parameter; therefore, MPK and MSK may depend on q.

We now define bounded-collusion security for attribute-based encryption.
Our definitions follow the functional encryption definitions of Brakerski and
Segev [7]. We define security in terms of left-or-right indistinguishability. For
b ∈ {0, 1}, we define Encb(EK, (m0,m1), ind) = Enc(EK,mb, ind).

Definition 4 (q-query security for ABE). An attribute-based encryption
scheme Π = (Setup,KeyGen,Enc,Dec) is q-query secure if for all valid ppt
adversaries A making at most q key queries,

AdvΠ,A,q(λ) = |Pr[AKeyGen(MSK,·),Enc0(EK,·,·)(1λ, q,MPK) = 1]

− Pr[AKeyGen(MSK,·),Enc1(EK,·,·)(1λ, q,MPK) = 1]| ≤ negl(λ).

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 75

In the definition of advantage, the probabilities are taken over the randomness
of (MPK,MSK) ← Setup(1λ, q), KeyGen, Enc, and A. An adversary A is valid
if for all Encb queries ((m0,m1), ind), |m0| = |m1|; furthermore, if there exists
any KeyGen query f such that f(ind) = 1, then m0 = m1.

4 Basic BC-ABE Construction

We now present our basic bounded-collusion construction that builds a q-query
secure attribute-based encryption scheme from a 1-query secure attribute-based
encryption scheme.

For intuition, consider an encryption algorithm that encrypts the message
with its associated index many times under independent instances of a 1-query
attribute-based encryption scheme. Let the secret key for a predicate be gener-
ated as the secret key for that predicate for one of the 1-query schemes, chosen
at random. Then an authorized user (a user with a predicate satisfied by the
index) can decrypt the message using the 1-query scheme for which she has a
key. If two unauthorized users collude, as long as their keys are from different
instances of the 1-query ABE scheme, the 1-query security property suffices to
ensure that they cannot learn anything about the message.

However, this simple parallel encryption approach does not scale well. If
the total number of users exceeds the number of 1-query ABE instances, there
will necessarily be two users with keys from the same instance, exceeding the
collusion bound for that instance.

Instead, in our construction, we first additively secret-share the message,
then perform parallel encryptions as described above on each additive share.
Each user is given for each additive share a key from a random 1-query ABE
instance. This approach allows us to make a combinatorial argument about the
number of unauthorized colluders necessary to reconstruct the message with
non-negligible probability.

Note, however, that unlike the message, the index is not secret shared and
is included in each of the 1-query ABE ciphertexts. For this reason our con-
struction cannot be used to achieve q-query security for the stronger primitive
of predicate encryption with private index, even if the 1-query scheme has this
stronger property. Specifically, the index will be revealed any time an adversary
receives two keys for any of the component 1-query schemes, thus breaking index
privacy.

4.1 Construction

Let 1-ABE be a 1-query secure attribute-based encryption scheme with message
space M, index space I, and predicate space F ; we require that M have the
property that the set of elements of each length form a finite group, so that we
may perform additive secret sharing. Additionally, let � and w be integers; we
will explain later how to set these parameters based on the security parameter
λ and the collusion bound q. We define the scheme q-ABE for message space M,

76 G. Itkis et al.

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w︷ ︸︸ ︷⎡
⎢⎢⎢⎣

sk1,1 sk1,2 · · · sk1,w

sk2,1 sk2,2 · · · sk2,w

...
. . .

...
sk�,1 sk�,2 · · · sk�,w

⎤
⎥⎥⎥⎦

↓ ↓ ↓
z1 z2 · · · zw

Fig. 1. Overview of our basic construction. A user with predicate f ∈ F receives w
1-ABE secret keys, one from each column, where ski,j ← 1-ABE.KeyGen(MSKi,j , f).
A ciphertext for a message m contains � · w 1-ABE ciphertexts, formed by using each
of the � keys in the jth column, individually, to encrypt secret share zj , where m =∑w

j=1 zj . One key from each column is required for decryption.

index space I, and predicate space F formally below; we also refer readers to
Fig. 1 for an informal visual depiction.

Setup(1λ, q): For each row i ∈ [�] and column j ∈ [w], independently sam-
ple (MPKi,j ,MSKi,j) ← 1-ABE.Setup(1λ). Output MPK = {MPKi,j}i∈[�],j∈[w]

and MSK = {MSKi,j}i∈[�],j∈[w].
KeyGen(MSK, f ∈ F): Choose one cell from each column uniformly at random;

formally, choose a set {r1, . . . , rw} R← [�]w. Next, for each column j ∈ [w], set
skrj ,j ← 1-ABE.KeyGen(MSKrj ,j , f). Output skf = {rj , skrj ,j}j∈[w].

Enc(EK,m ∈ M, ind ∈ I): Perform the following steps:
1. Perform a w-of-w secret sharing of m; formally, choose z1, . . . , zw

R← M
uniformly such that

∑w
j=1 zj = m. (Note that due to the finite group

requirement described above, |zj | = |m| for all j.)
2. Compute the set of ciphertexts cti,j ← 1-ABE.Enc(EKi,j , zj , ind) for each

row i ∈ [�] and column j ∈ [w],
3. Output the concatenation of � · w ciphertexts ct = {cti,j}i∈[�],j∈[w].

Dec(skf , ct): Perform the following steps:
1. Parse skf as {rj , skrj ,j}j∈[w] and parse ct as {cti,j}i∈[�],j∈[w].
2. For each column j ∈ [w], let zj ← 1-ABE.Dec(skrj ,j , ctrj ,j).
3. If any zj = ⊥, then output ⊥. Otherwise, output m =

∑w
j=1 zj .

Correctness. Suppose that a user receives a ciphertext ct = Enc(EK,m, ind)
and she possesses a secret key sk ← KeyGen(MSK, f) for a predicate f such that
f(ind) = 1. For each column j ∈ [w], the user possesses some secret key skrj ,j ; by
the correctness of the underlying 1-ABE scheme, this key suffices to decrypt the
message zj contained in the ciphertext 1-ABE.Enc(EKi,j , zj , ind). Finally, from
all of the secret shares, the user may recover the original message m =

∑w
j=1 zj .

As the scheme is written, repeated key queries would count as separate
queries towards the bound q. In order to avoid this, the values {r1, . . . , rw}
in KeyGen can be chosen pseudorandomly based on the predicate f so that the
same key is issued for repeated key queries. This conversion is straightforward
and we omit the details.

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 77

4.2 Setting the Parameters

The following combinatorial lemma provides a good setting of the parameters �
and w. We first define two probabilistic events about any set of up to q key queries
made to the q-ABE scheme. Let Badj denote the event that there exists a row
i ∈ [�] such that the key query responses include two or more keys corresponding
to MSKi,j . Additionally, let Bad denote the event that Badj occurs for all columns
j ∈ [w].

Lemma 1. Let the q-ABE scheme be instantiated with � = q2 and w = λ, and
suppose at most q KeyGen queries are made. Then Pr[Bad] ≤ negl(λ).

Proof. Consider a single column j ∈ [w]. Note that each skf contains exactly
one 1-ABE key skrj ,j for that value of j, where rj is chosen randomly. Thus, the
probability that q such values are all distinct is

1 ·
(

1 − 1
�

)

·
(

1 − 2
�

)

· . . . ·
(

1 − q − 1
�

)

≥
(

1 − q − 1
�

)q

.

Thus, for a given column j, the event Badj holds with probability at most (1 −
(1− q−1

�)q). The probability of Badj is independent for each j, so the probability
that Badj holds for all w columns is at most (1 − (1 − q−1

�)q)w. Letting � = q2

and w = λ, we find that Bad occurs with probability at most

(

1 −
(

1 − q − 1
q2

)q)λ

=
(

1 −
(

1 − 1
q

+
1
q2

)q)λ

<
(
1 − e−1

)λ ≤ negl(λ),

where the first inequality follows from the fact that (1 − 1
x + 1

x2)x > 1/e for all
x > 0.

Setting � and w as indicated in Lemma 1, we arrive at the following perfor-
mance characteristics for our q-ABE construction.

– MPK and MSK consist of O(q2λ) 1-ABE keys.
– The ciphertext size is O(q2λ) 1-ABE ciphertexts.
– Each decryption key has O(λ) 1-ABE secret keys.

4.3 Security

We now prove that the q-ABE scheme defined in Sect. 4.1 is q-query secure if the
underlying 1-ABE scheme is 1-query secure.

Theorem 2. Let 1-ABE be any public-key (respectively, symmetric-key) ABE
scheme that is 1-query secure. For any valid ppt ABE adversary A for the
resulting public-key (resp., symmetric-key) scheme q-ABE making at most q key
queries, there exists a valid ppt ABE adversary B for 1-ABE making at most 1
key query, with advantage Adv1-ABE,B,1(λ) ≥ 1

q2λAdvq-ABE,A,q(λ) − negl(λ).

78 G. Itkis et al.

Proof. Let A be an adversary against our q-ABE construction that makes at
most q key queries. We begin with the observation that the event Bad (and
also all Badj events) depends only on the randomness tape of q-ABE.KeyGen
(which chooses the random values rj), and not on the values fed in as input.
For the rest of this proof, we restrict KeyGen only to use randomness tapes that
will not lead to the event Bad within the first q key oracle queries, so that in
particular adversary A never causes the event Bad. Denote A’s advantage in this
modified security game as Adv′

q-ABE,A,q. Since Pr[Bad] is negligible by Lemma 1,
our restriction causes at most negligible change to our distinguishing advantage
by a standard reasoning up to failure argument:

Adv′
q-ABE,A,q(λ) ≥ Advq-ABE,A,q(λ) − 2 · Pr[Bad]. (1)

Given some column j∗ ∈ [w], we consider a series of hybrid experiments
Hj∗

0 ,Hj∗
1 , . . . ,Hj∗

� . Each experiment Hj∗
k is defined to use the same Setup and

KeyGen as the modified q-ABE game, but it responds to Encb oracle queries
((m0,m1), ind) by forming the ciphertext in a special way:

Choose zj uniformly at random for all j ∈ [w], j �= j∗. Let zj∗,0 = m0 −∑
j �=j∗ zj and zj∗,1 = m1 − ∑

j �=j∗ zj .

– For j �= j∗, for all i let cti,j ← 1-ABE.Enc(EKi,j , zj , ind).
– For i > k, let cti,j∗ ← 1-ABE.Enc(EKi,j∗ , zj∗,0, ind).
– For i ≤ k, let cti,j∗ ← 1-ABE.Enc(EKi,j∗ , zj∗,1, ind).

Finally, the modified Encb oracle outputs ct = {cti,j}i∈[�],j∈[w].
Note that for all j∗, Hj∗

0 corresponds exactly to the modified ABE security
game with the encryption oracle being Enc0, and Hj∗

� corresponds exactly to
the modified ABE security game with the encryption oracle being Enc1. Let
ε = Adv′

q-ABE,A,q(λ), and let pk denote the probability that A outputs 1 in
experiment Hj∗

k . Then ε = |p� − p0| ≤ ∑�
k=1 |pk − pk−1|, so there must exist

some k such that |pk − pk−1| ≥ ε/�.
We now construct an adversary B for 1-ABE that breaks 1-query security. B

first samples j∗ ∈ [w] uniformly at random, and chooses row i∗ ∈ [�] such that
|pi∗ − pi∗−1| ≥ ε/� for the chosen j∗. B then plays its game and interacts with
A as follows.

Setup. B sets MPKi∗,j∗ as the public key it receives from its 1-ABE game. For all
i, j such that i �= i∗ or j �= j∗, B sets (MPKi,j ,MSKi,j) ← 1-ABE.Setup(1λ).

Simulating the KeyGen oracle. When A makes a query to KeyGen for pred-
icate f , B honestly runs q-ABE.KeyGen, with two exceptions. First, if the
value rj∗ randomly chosen within q-ABE.KeyGen returns the value i∗, then B
queries f to its 1-ABE KeyGen oracle and sets ski∗,j∗ to be the result. Second,
if the event Badj∗ occurs, then B aborts execution of A and outputs a random
guess in its game.

Simulating the Encb oracle. B responds to any encryption oracle query by A
of the form ((m0,m1), ind) as follows. First, B chooses zj uniformly at random
for all j ∈ [w], j �= j∗. Let zj∗,0 = m0 − ∑

j �=j∗ zj and zj∗,1 = m1 − ∑
j �=j∗ zj .

B constructs the oracle response as follows:

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 79

– For j �= j∗, for all i let cti,j ← 1-ABE.Enc(EKi,j , zj , ind).
– For i > i∗, let cti,j∗ ← 1-ABE.Enc(EKi,j∗ , zj∗,0, ind).
– For i < i∗, let cti,j∗ ← 1-ABE.Enc(EKi,j∗ , zj∗,1, ind).
– Query ((zj∗,0, zj∗,1), ind) to the Encb oracle of the 1-ABE game, and set

cti∗,j∗ to be the result.
Output ct = {cti,j}i∈[�],j∈[w].

Guess. B outputs the same guess as A.

We argue that since A is a valid ABE adversary, B is also a valid ABE
adversary. Since A is valid, for all ((m0,m1), ind) queried to Encb and f queried
to KeyGen, we have that |m0| = |m1| and that if f(ind) = 1, then m0 = m1. It
follows that B is a valid ABE adversary: all shares are generated to be the same
length as the secret-shared message, so |zj∗,0| = |zj∗,1|. The same f and ind are
passed through to B’s game, so if f(ind) = 1 in B’s queries, then f(ind) = 1 in
A’s queries and m0 = m1, which means that the same shares are generated for
the two messages, i.e., zj∗,0 = zj∗,1. Furthermore, by construction, B queries its
1-ABE KeyGen oracle at most once.

Next, we return to the assumption from the beginning of this proof: by con-
struction of the KeyGen oracle, the event Bad cannot occur for A, i.e., there
exists at least one column that is not bad. As a result, with probability at least
1/w the event Badj∗ does not occur. Additionally, because the event Badj∗ is
independent of the specific calls made to KeyGen, it is equally likely to occur in
experiments Hj∗

i∗−1 and Hj∗
i∗ .

If the event Badj∗ occurs, then B has no distinguishing advantage in its
game by construction. Conversely, if the event Badj∗ does not occur, then B’s
simulation of all oracles is faithful since B does not abort. Furthermore, when
b = 0, B perfectly simulates Hj∗

i∗−1, and when b = 1, B perfectly simulates Hj∗
i∗ .

Putting everything together, we have

Adv1-ABE,B,1(λ) ≥ 1
w

· |pi∗ − pi∗−1| ≥ 1
�w

Adv′
q-ABE,A,q(λ),

which, combined with inequality (1) and using the values of � and w from
Lemma 1, completes the proof.

5 Improved BC-ABE Construction

We can improve the asymptotic parameters of the above construction by per-
forming another level of secret-sharing of each zj . Instead of simply performing
� independent 1-ABE encryptions, we can reshare the zj values once more, and
then encrypt those shares using the 1-ABE scheme. If this new resharing were
a simple linear scheme it would be equivalent to the first construction; instead,
we will arrange these shares in a multidimensional structure.

This multidimensional secret-sharing will be created to satisfy the following
two properties. First, there exist small sets of shares that are able to reconstruct.

80 G. Itkis et al.

Second, such sets of shares are rare, such that any party who only possesses the
ability to obtain random shares will need to collect many shares to reconstruct.

When we use the multidimensional secret-sharing inside of our BC-ABE con-
struction, the small sets of shares will correspond to the secret keys, yielding very
short secret keys. Intuitively, security will be achieved by ensuring that the set of
shares revealed when the adversary exceeds the collusion bound of the underlying
1-ABE schemes is effectively distributed randomly.

5.1 Multidimensional Secret-Sharing

In this section, we provide a multidimensional secret-sharing system. While we
only use the scheme toward an improved BC-ABE construction, we codify it
separately in this section because it may be of independent interest.

Definition 5 (Multidimensional secret-sharing). Given a message y, we
construct a multidimensional secret sharing scheme MultiSSs,d(y) that outputs
sd shares σ[1,1,...,1], . . . , σ[s,s,...,s] produced as follows.

1. Choose s · d “intermediate” shares ρ1,1, . . . , ρd,s uniformly at random such
that

∑
h∈[d],i∈[s] ρh,i = y. That is, the ρ’s form a sd-of-sd secret sharing of y.

2. For each v ∈ [s]d, form the share σv =
∑d

i=1 ρi,v[i].

We can visualize the sharing in terms of a d-dimensional hypercube of side
length s, where the shares σv are points whose coordinates are given by their sub-
script v. Each value ρh,i influences a (d−1)-dimensional slice of the hypercube—
namely, it is a summand in the computation of the σ values whose h-th coor-
dinate equals i. See Fig. 2 for a graphical representation of a three-dimensional
secret-sharing scheme (i.e., d = 3).

We observe that a carefully-chosen set of s shares suffice to recover the orig-
inal message y.

Definition 6. Let V = {v1, . . . ,v|V |} be a set containing vectors in [s]d. We
call this set spanning if it has the property that for each dimension h ∈ [d], the
list (v1[h], . . . ,v|V |[h]) contains all elements in [s].

If |V | = s, then we call this set minimally spanning. In this case, the list
(v1[h], . . . ,v|V |[h]) is a permutation of [s].

Lemma 2 (Correctness of MultiSS). Let {σv}v∈[s]d ← MultiSSs,d(y) be a
multidimensional secret-sharing of y, and let V be any minimally spanning set.
Then, the message y may be recovered from the s shares {σv}v∈V .

Proof. The sum
∑

v∈V σv includes each ρh,i term exactly once, so it sums to y.

Security provided by a multidimensional secret-sharing of y is captured in
the following lemma.

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 81

σ[1,s,s] σ[s,s,s]

ρ2,s σ[1,s,1] σ[s,s,1]

σ[1,1,s] σ[s,1,s] ρ3,s

ρ2,2 σ[1,2,1] σ[1,1,2] ρ3,2

ρ2,1 σ[1,1,1] σ[2,1,1] σ[s,1,1] ρ3,1

ρ1,1 ρ1,2 ρ1,s

Fig. 2. Visualization of a three-dimensional secret-sharing scheme MultiSSs,3(y). The
input value y is additively secret-shared into 3s values ρ1,1, . . . , ρ3,s. Each intermediate
value ρ contributes to a 2-dimensional planar face of the 3-dimensional cube in which
one of the dimensions is fixed to a given value (as specified by the indices to ρ).
Concretely, we construct each of the s3 shares as σ[t,u,v] = ρ1,t + ρ2,u + ρ3,v.

Lemma 3 (Security of MultiSS). Let {σv}v∈[s]d ← MultiSSs,d(y) be a multi-
dimensional secret-sharing of y, and let V ∗ ⊆ [s]d be any set of vectors that is
not spanning. Then, the set of shares {σv∗ : v∗ ∈ V ∗} information-theoretically
reveals no information about y.

Proof. Because v∗ is not spanning, there exist a dimension h ∈ [d] and value
i ∈ [s] such that v∗[h] �= i for all vectors v∗ ∈ V ∗. Thus, none of the shares
{σv∗ : v∗ ∈ V ∗} depend on the “intermediate” share ρh,i, implying that {σv∗}
reveals no information about y.

5.2 Construction

This construction uses similar ideas to the basic construction, with the addition
of multidimensional secret-sharing. Essentially,

– The message m is additively secret-shared into m =
∑

j zj , as before.
– Each of the shares zj is multidimensionally secret-shared to form a series of

sd shares denoted by σj
v for v ∈ [s]d.

– Each σj
v share is encrypted using a 1-query ABE scheme in a black-box man-

ner, producing a total of sdw resulting 1-ABE ciphertexts.

Users are given a set of keys that enable them to recover a specifically-crafted
subset of the shares. If the predicate is satisfied by the index, that subset will be
sufficient to reconstruct the original value at each stage of the sharing, ultimately

82 G. Itkis et al.

recovering the message. On the other hand, the multidimensional sharing step
ensures that a random subset of the shares will likely need to be very large in
order to recover the message. We thus gain additional collusion resistance, since
the locations where collisions occur are effectively random.

Formally, let 1-ABE be a 1-query ABE scheme whose message space M is a
finite group represented additively; we again require that M have the property
that the set of elements of each length form a finite group. Our improved q-
query secure CP-ABE scheme q-ABE∗ is defined below; it uses sdw independent
instances of the 1-ABE scheme, where s(λ), d(λ), and w(λ) are parameters that
are specified later in Sect. 5.3.

Setup(1λ, q): For v ∈ [s]d and j ∈ [w], let (MPKj
v,MSKj

v) ← 1-ABE.Setup(1λ).
Output MPK = {MPKj

v}v∈[s]d,j∈[w] and MSK = {MSKj
v}v∈[s]d,j∈[w].

KeyGen(MSK, f ∈ F): For each j ∈ [w], choose a set of d permutations of [s]
uniformly at random. Transpose them to produce a minimally spanning set
of s vectors V j . Sample a 1-ABE key skj

v ← 1-ABE.KeyGen(MSKj
v, f) for each

j ∈ [w] and v ∈ V j . Finally, output skf = {V j , {skj
v}v∈V j}j∈[w].

Enc(EK,m ∈ M, ind ∈ I): Perform the following steps:
1. Perform a w-of-w additive secret-sharing of m to get shares z1, . . . , zw

such that
∑

j∈[w] zj = m.
2. Multidimensionally secret-share each zj with d dimensions and s values

in each dimension to create sd shares {σj
v}v∈[s]d ← MultiSSs,d(zj).

3. For each v ∈ [s]d, j ∈ [w], set ctjv ← 1-ABE.Enc(EKj
v, σj

v, ind).
4. Output ct = {ctjv}v∈[s]d,j∈[w].

Dec(skf , ct): Perform the following steps:
1. Parse skf as {V j , {skj

v}v∈V j}j∈[w] and parse ct as {ctjv}v∈[s]d,j∈[w].
2. For each j ∈ [w] and each v ∈ V j , let σj

v ← 1-ABE.Dec(skj
v, ctjv).

3. Output m =
∑

j∈[w],v∈V j σj
v.

Correctness. Suppose that a user receives a ciphertext ct = Enc(EK,m, ind) and
she possesses a secret key sk ← KeyGen(MSK, f) for a predicate f such that
f(ind) = 1. By the correctness of the underlying 1-ABE scheme, each 1-ABE.Dec
in step 2 of q-ABE∗.Dec successfully returns σj

v. For each j ∈ [w], we may
reconstruct zj =

∑
v∈V j σv since KeyGen produces a minimally spanning set V j

(cf. Lemma 2), and the sum of all zj ’s equals the original message m due to the
w-of-w additive secret sharing.

5.3 Setting the Parameters

The combinatorial lemma in this section provides a good setting of the parame-
ters s, d, and w. Recall that each key query yields 1-ABE keys for a minimally
spanning set of vectors in each coordinate j ∈ [w]. Intuitively, we must choose s
and d to be large enough that there are several minimally spanning sets, so that
KeyGen rarely chooses the same vector twice. Specifically, the set of replicated
vectors across q key queries must not be spanning.

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 83

Formally, fix some index j ∈ [w] and consider A’s ability to learn the jth

secret share zj =
∑

h∈[d],i∈[s] ρ
j
h,i. The adversary A makes up to q queries, each of

which returns s keys skj
v for vectors v in a randomly-chosen minimally spanning

set V j (independent of the index queried). If A ever receives two keys for the
same v, then we no longer have any security against σv, and therefore we assume
the worst-case outcome that all of the shares ρj

h,i with v[h] = i have been
compromised. Let V̄ j denote the set of all vectors that are returned in two or
more key queries.

Let Goodj denote the event that there exists some ρj
h,i that remains uncom-

promised after A’s queries. Observe that this is precisely the event that V̄ j is
not spanning! In this case, the additive secret sharing protects zj and thus m as
well. Finally, let Good denote the event that there exists some j ∈ [w] for which
Goodj holds.

Lemma 4. Let s be any constant, and instantiate the q-ABE∗ scheme with d =
	2 logs q + 1
 and w = 	 λ

d·s
. For any adversary A who makes at most q KeyGen
queries, the event Good holds with overwhelming probability in λ.

Proof. First, consider a fixed h ∈ [d], i ∈ [s], and j ∈ [w]. We consider A’s
ability to learn ρj

h,i. By construction, each of A’s key queries yields exactly
one 1-ABE key skj

v where v is randomly chosen subject to the constraint that
v[h] = i. The probability that all of these vectors v are distinct (and thus ρj

h,i

is uncompromised) is therefore

1 ×
(

1 − 1
sd−1

)

×
(

1 − 2
sd−1

)

× · · · ×
(

1 − q − 1
sd−1

)

≥
(

1 − q − 1
sd−1

)q

.

This probability holds independently for all h ∈ [d], i ∈ [s], and j ∈ [w]. Hence,
Pr[Good] ≥ 1 − [1 − (1 − q−1

sd−1)q]sdw.
Next, if we instantiate s, d, and w with the values provided in the lemma,

we find that 1− Pr[Good] is negligible:

[

1 −
(

1 − q − 1
sd−1

)q]sdw

≤
[

1 −
(

1 − q − 1
q2

)q]λ

< (1 − e−1)λ = negl(λ).

We list below the key and ciphertext lengths produced by our construction,
when instantiated with the parameters specified in Lemma 4.

– The MPK and MSK consist of sd · w = O(q2λ
log q) 1-ABE public keys.

– A secret key consists of s · w = O(λ
log q) 1-ABE keys.

– A single ciphertext consists of sd · w = O(q2λ
log q) 1-ABE ciphertexts.

5.4 Security

We now prove that the q-ABE∗ scheme defined above is q-query secure if the
underlying 1-ABE scheme is 1-query secure.

84 G. Itkis et al.

Theorem 1 (Formal). Let 1-ABE be any public-key (respectively, symmetric-
key) ABE scheme that is 1-query secure. For any valid ppt adversary A for
the resulting public-key (resp., symmetric-key) q-ABE∗ construction instanti-
ated with the parameters given in Lemma 4, there exists a valid ppt adversary
B for 1-ABE making at most 1 key query, with advantage Adv1-ABE,B,1(λ) ≥
1

q2λAdvq-ABE∗,A,q(λ) − negl(λ).

Proof (sketch). Here, we provide a high-level description of the reduction to the
security of 1-ABE. The details mostly follow the same pattern as the proof of
Theorem 2, so here we highlight the differences. Lemma 4 provides the reasoning
up to failure argument analogous to that of Lemma1.

Recall that in the proof of Theorem2 we change a valid encryption of m0 into
a valid encryption of m1 by changing one of the additive shares (zj values) of the
final message. Since this value is encrypted using the underlying 1-ABE scheme �
times, we perform this change via a sequence of hybrids. Our reduction decreases
the advantage of the 1-ABE adversary by a factor of � due to the selection of a
hybrid step and a factor of w due to the selection of a secret share zj∗ to target.

In the q-ABE∗ construction, note that the message is effectively additively
shared among sdw different values ρj

h,i. We can thus change an encryption of
m0 into an encryption of m1 by changing a single one of the ρj

h,i values. In this
case, this value is a summand in sd−1 of the σ values that are encrypted using
the underlying 1-ABE scheme (specifically, σj

v where v[h] = i).
We thus require a hybrid step to change each of these encryptions to an

encryption of a new value reflecting the changed ρj
h,i; the proof is otherwise the

same. The advantage of the 1-ABE adversary decreases by a factor of sd−1 due
to the selection of a hybrid step and a factor of sdw due to the selection of ρj

h,i;
we omit the details. Thus, Adv1-ABE,B,1(λ) ≥ 1

sddw
Adv∗

q-ABE∗,A,q(λ) − negl(λ),
and instantiating this formula with the parameters from Lemma4 completes the
proof.

6 Instantiating 1-ABE

Thus far, we have presented two schemes for transforming any 1-ABE scheme
into a q-ABE scheme. To obtain a construction of bounded-collusion ABE from
CPA-secure encryption, we need to instantiate 1-ABE from CPA-secure encryp-
tion. To do so, we can use the construction of Gorbunov et al. [15] and Sahai-
Seyalioglu [25] for 1-query-secure functional encryption, restricting its function-
ality to that of attribute-based encryption.

In this section, we briefly sketch the resulting 1-ABE scheme. We assume
that it has predicates describable using n bits, that is F ⊆ {0, 1}n. Note that
the 1-FE from Gorbunov et al. [15] and Sahai-Seyalioglu [25] uses randomized
encodings [3,20], which can be instantiated using garbled circuits. For simplicity,

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 85

we will use the language of garbled circuits in this section. Given a CPA-secure
encryption scheme Σ, the 1-ABE scheme operates as follows.

Setup(1λ): Generate 2n key pairs for the public-key encryption scheme Σ to get
(pki,0, ski,0) and (pki,1, ski,1) for i ∈ [n]. Output MPK ← {pki,b}i∈[n],b∈{0,1}
and MSK ← {ski,b}i∈[n],b∈{0,1}

KeyGen(MSK, f): Let f [i] denote the i-th bit of f for i ∈ [n]. Output skf ←
{ski,f [i]}i∈[n].

Enc(MPK,M, ind): Let UM,ind(f) be a universal circuit that takes a predicate
f ∈ {0, 1}n and outputs M if f(ind) = 1 and 0 otherwise. Build a garbled
circuit for UM,ind. Encrypt the two labels for each wire corresponding to the
predicate f : for the i-th bit of f , encrypt the 0-label under pki,0 and the
1-label under pki,1. Output the garbled circuit and the encrypted wire labels.

Dec(skf , ct): Use skf to decrypt the wire labels corresponding to f . Evaluate
the garbled circuit and output the result.

As Sahai and Seyalioglu [25] show, the above scheme achieves selective secu-
rity for one query. Gorbunov et al. [15] show how to modify this scheme to
achieve adaptive security by using a variant of non-committing encryption [8].
This increases the number of underlying PKE components of the public para-
meters, keys, and the label encryptions by a factor of O(λ) due to having to
encrypt λ-bit long messages.

Thus, for a predicate description of size n and using a universal circuit U ,
the 1-ABE scheme has the following parameters:

– The public parameters consist of O(nλ) PKE public keys.
– Secret keys consist of O(nλ) PKE secret keys.
– Ciphertexts consist of O(|U |λ) bits for the garbled gates and O(nλ) PKE

ciphertexts for the encrypted wire labels.

Putting this construction together with the parameters of our improved
transformation from any 1-ABE scheme to a q-ABE scheme, we arrive at the
following result that crystallizes Corollary 1.

Corollary 2. If public-key (respectively, symmetric-key) CPA-secure encryp-
tion exists, then there exists a public-key (resp., symmetric-key) q-query secure
ABE scheme for predicates that are expressible using n bits and can be evalu-
ated by a universal circuit U with the following characteristics: public parame-
ters (resp., MSK) consisting of O(q2

log q nλ2) PKE public keys (resp., secret keys),
secret keys consisting of O(n

log q λ2) PKE secret keys, and ciphertexts consisting

of O(q2

log q |U |λ2) bits plus O(q2

log q nλ2) PKE ciphertexts.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.

References

1. Agrawal, S., Rosen, A.: Online-offline functional encryption for bounded collusions.
IACR Cryptology ePrint Archive, 2016:361 (2016)

86 G. Itkis et al.

2. Akinyele, J.A., Lehmann, C.U., Green, M.D., Pagano, M.W., Peterson, Z.N.J.,
Rubin, A.D.: Self-protecting electronic medical records using attribute-based
encryption. Cryptology ePrint Archive, Report 2010/565 (2010). http://eprint.
iacr.org/

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), Oakland,
California, USA, 20–23 May 2007, pp. 321–334 (2007)

5. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218 16

6. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
Philadelphia, PA, USA, 25–28 October 2008, pp. 283–292 (2008)

7. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 12

8. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp.
639–648 (1996)

9. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-76900-2 31

10. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002). doi:10.1007/3-540-46035-7 5

11. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 40

12. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 27

13. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Symposium on
Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June
2013, pp. 555–564 (2013)

14. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homo-
morphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28914-9 32

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 11

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Symposium on Theory of Computing Conference, STOC 2013, Palo Alto,
CA, USA, 1–4 June 2013, pp. 545–554 (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/978-3-662-46497-7_12
http://dx.doi.org/10.1007/978-3-540-76900-2_31
http://dx.doi.org/10.1007/3-540-46035-7_5
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-642-28914-9_32
http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-642-32009-5_11

Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions 87

17. Goyal, V., Kumar, V., Lokam, S., Mahmoody, M.: On black-box reductions between
predicate encryption schemes. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 440–457. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 25

18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, 30 October–3 November 2006, pp. 89–98 (2006)

19. Hamlin, A., Schear, N., Shen, E., Varia, M., Yakoubov, S., Yerukhimovich, A.:
Cryptography for big data security. In: Fei, H. (ed.) Big Data: Storage, Sharing,
and Security (3S), pp. 241–288. CRC Press, Taylor & Francis Group, Boca Raton
(2016). (Chapter 7)

20. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, Redondo Beach, California, USA,
12–14 November 2000, pp. 294–304 (2000)

21. Katz, J., Yerukhimovich, A.: On black-box constructions of predicate encryption
from trapdoor permutations. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 197–213. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 12

22. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

23. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 3

24. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
28–31 October 2007, pp. 195–203 (2007)

25. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security, CCS 2010, Chicago, Illinois, USA, 4–8 October 2010, pp. 463–472
(2010)

26. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

27. Tessaro, S., Wilson, D.A.: Bounded-collusion identity-based encryption from
semantically-secure public-key encryption: generic constructions with short cipher-
texts. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 257–274. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 15

28. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, effi-
cient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19379-8 4

http://dx.doi.org/10.1007/978-3-642-28914-9_25
http://dx.doi.org/10.1007/978-3-642-10366-7_12
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/3-540-44647-8_3
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-54631-0_15
http://dx.doi.org/10.1007/978-3-642-19379-8_4

Access Control Encryption for Equality,
Comparison, and More

Georg Fuchsbauer1(B), Romain Gay1, Lucas Kowalczyk2, and Claudio Orlandi3

1 ENS, CNRS, Inria and PSL Research University, Paris, France
{georg.fuchsbauer,romain.gay}@ens.fr
2 Columbia University, New York, USA

luke@cs.columbia.edu
3 Aarhus University, Aarhus, Denmark

orlandi@cs.au.dk

Abstract. Access Control Encryption (ACE) is a novel paradigm for
encryption which allows to control not only what users in the system are
allowed to read but also what they are allowed to write.

The original work of Damg̊ard et al. [DHO16] introducing this notion
left several open questions, in particular whether it is possible to con-
struct ACE schemes with polylogarithmic complexity (in the num-
ber of possible identities in the system) from standard cryptographic
assumptions.

In this work we answer the question in the affirmative by giving (effi-
cient) constructions of ACE for an interesting class of predicates which
includes equality, comparison, interval membership, and more.

We instantiate our constructions based both on standard pairing
assumptions (SXDH) or more efficiently in the generic group model.

1 Introduction

Access Control Encryption (ACE) is a novel paradigm for encryption that was
introduced by Damg̊ard, Haagh and Orlandi [DHO16]. (A similar concept had
previously been introduced in [IPV10].) The main difference between ACE
and other advanced encryption primitives (such as identity-based [Sha84,BF01,
Sak00], attribute-based [SW05] or functional encryption [BSW11]) is that while
previous concepts for encryption prevent parties from receiving messages (or
functions of these) that are not meant for them, ACE also prevents unauthorized
parties from sending messages to others they are not allowed to communicate
with.

In a nutshell, ACE considers a set of senders {Si}i∈{0,1}n and a set of receivers
{Rj}j∈{0,1}n . An ACE scheme is parameterized by a predicate P and P (i, j) = 1
indicates that Si is allowed to communicate with Rj while P (i, j) = 0 means
that no communication should be possible. All communication is assumed to
be routed through a special party, called the sanitizer, which is assumed to be
semi-honest ; in particular, the sanitizer will follow the protocol specification but
might try to learn additional information by colluding with other parties in the
system.
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 88–118, 2017.
DOI: 10.1007/978-3-662-54388-7 4

Access Control Encryption for Equality, Comparison, and More 89

During the key distribution phase each sender Si is given an encryption key
eki while each receiver is given a decryption key dkj . A sender can then create
a ciphertext c = Enc(eki,m) which is sent to the sanitizer. The sanitizer need
not know (nor does he learn) the message which is being transmitted nor the
identity of the sender, but performs a simple sanitization of the ciphertext and
broadcasts the output c′ = San(pp, c) to all receivers. Correctness of the ACE
scheme guarantees that if P (i, j) = 1 then Dec(dkj , c) = m i.e., authorized
receivers should be able to recover the message.

ACE also imposes two security requirements: the first, called the no-read rule,
requires any set of unauthorized receivers (even colluding with the sanitizer) to
be unable to learn any information from ciphertexts that they are not allowed to
decrypt. The second (and more interesting) one is called the no-write rule and
guarantees that no set of corrupt senders {Si} can transfer any information to
any set of corrupt receivers {Rj} under the condition that P (i, j) = 0 for each
combination of sender-receiver pair.

In [DHO16] the authors present two ACE schemes which can implement any
predicate P : {0, 1}n×{0, 1}n → {0, 1}. However, both constructions have severe
limitations. The first construction can be instantiated under standard number-
theoretic assumptions, such as the decisional Diffie-Hellman (DDH) assumption
or the decisional composite residuosity (DCR) assumption underlying Paillier
encryption. However, its complexity, e.g. in terms of key and ciphertext size, is
exponential in n and can therefore only be used when the number of identities
in a system is very small. The second construction, whose complexity is poly-
nomial in n, relies on a special flavor of general-purpose functional encryption
(defined in [DHO16]) that, to the best of our knowledge, can only be instanti-
ated using indistinguishability obfuscation [GGH+13]; the scheme is therefore
not practically useful at this time.

The authors of [DHO16] left as an open question whether it is possible to
construct asymptotically efficient ACE schemes without obfuscation, even for
limited classes of predicates. In this work we answer this question in the affirma-
tive by showing asymptotically efficient constructions for interesting predicates
such as equality, comparison, and interval membership, as summarized in Table 1
which are based on standard pairing assumptions (SXDH). (The construction
can be instantiated even more efficiently in the generic group model, see Table 2
for the exact constants involved in the constructions).

Technical Overview of Our Contributions. Our first technical contribution
is an ACE scheme for the equality predicate i.e.,

Peq(i, j) = 1 ⇔ i = j

The scheme can be instantiated using generic assumptions (see Sect. 3.2)
and very efficiently using cryptographic pairings and in particular structure-
preserving signatures on equivalence classes [HS14] (see Sect. 3.3). We show how
to instantiate this construction based on standard pairing assumptions (SDXH)
or more efficiently in the generic group model. See Table 2 for a detailed efficiency
comparison.

90 G. Fuchsbauer et al.

Table 1. Comparison of the construction in this work and in [DHO16], for predicates
P : {0, 1}n × {0, 1}n → {0, 1}. The ciphertext size dominates the complexity in all
three constructions, and is therefore used as a metric for comparison.

Construction Predicate Ciphertext size Assumption

[DHO16, Sect. 3] any O(2n) DDH or DCR

[DHO16, Sect. 4] any poly(n) iO

This work Peq,Pcomp, . . . O(n) SXDH

We then show how to use the scheme for equality in a black-box way to
implement ACE for a predicate defined in the following way. Let S and R be two
efficient functions which map identities into sets of identities:

S : {0, 1}n → 2{0,1}n

and R : {0, 1}n → 2{0,1}n

under the constraint that maxi,j{|S(i)|, |R(j)|} = poly(n). Then we can construct
efficient ACE for the predicate defined by

Pdisj(i, j) = 1 ⇔ S(i) ∩ R(j) �= ∅.

We show that this class of predicates is quite rich (using results
from [SBC+07,GMW15]) and includes useful predicates such as comparison
(i..e, the predicate Pcomp(i, j) = 1 ⇔ i ≤ j) and interval membership (i.e.,
the predicate Prange defined for all points z ∈ [N] and intervals I ⊂ [N] as
Prange(z, I) = 1 ⇔ z ∈ I).

In a nutshell, the composed ACE scheme works as follows: assuming an ACE
for equality, sender i is given all the encryption keys corresponding to the iden-
tities contained in the set S(i) and receiver j is given all the decryption keys for
identities contained in the set R(j). To encrypt a message, the sender encrypts
it under all his encryption keys (padding to the size of the largest possible set).
Now if the intersection of S(i) and R(j) is not empty, the receiver can decrypt at
least one of the ciphertexts and therefore learn the message; the scheme thus sat-
isfies correctness. Intuitively, the scheme also satisfies the no-read and no-write
rule since Pdisj(i, j) = 0 ⇒ S(i) ∩ R(j) = ∅, which allows us to use the security
property of the underlying equality ACE scheme.

For correctness, the receiver must be able to tell when decryption of the
underlying ACE succeeds. This can be achieved using standard techniques, e.g.,
by using a sparse message space. The trivial implementation of decryption, where
the receiver tries all keys on all ciphertexts, would lead to a decryption complex-
ity quadratic in the size of R(j). In Sect. 4 we overcome this shortcoming by
defining the overall predicate with disjunction of equalities instead of disjoint-
ness of sets.

We note that the linear construction from [DHO16] might at first glance look
similar to the one proposed here, with R(j) = {j} (each receiver is given a single
key) and S(i) = {j |P (i, j) = 1} (each sender is given a key for every receiver

Access Control Encryption for Equality, Comparison, and More 91

she is allowed to talk to). Note however that the complexity of this construction
is inherently exponential, due to the way that ciphertexts are constructed and
sanitized: in the linear construction of [DHO16], ciphertexts contain one entry
for every possible receiver in the system (senders encrypt the message using the
keys of all the receivers they are allowed to talk to and add random ciphertexts
for the other receivers), and the sanitization process treats each component of
the ciphertext differently (i.e., the sanitizer sanitizes each component of the
ciphertext using a receiver-dependent procedure). Our approach is to start with
an ACE for equality with the property that the sanitizer’s algorithm is oblivious
of the identity of the sender/receiver.

Finally, we note that all constructions in [DHO16] require the sanitizer to
store some secret information, the knowledge of which would allow the adversary
to break the no-write rule. In contrast, for the schemes presented in this paper,
the sanitizer does not need to store any secret information, thereby significantly
reducing the chances for an adversary to break the security of the system. In
particular, the adversary must perform an active corruption of the sanitizer in
order to break the no-write rule.

2 Defining ACE

ACE Notation. An access control encryption (ACE)1 scheme is defined by the
following PPT algorithms:

Setup: Setup is a randomized algorithm that on input the security parameter κ
and a policy P : {0, 1}n × {0, 1}n → {0, 1} outputs a master secret key msk
and public parameters pp (which include the message space M and ciphertext
spaces C, C′).

Key Generation: Gen is a deterministic algorithm2 that on input the master
secret key msk, a type t ∈ {sen, rec} and an identity i ∈ {0, 1}n, outputs a
key k. We use the following notation for the two kinds of keys in the system:

– eki ← Gen(msk, i, sen) and call it an encryption key for i ∈ {0, 1}n

– dkj ← Gen(msk, j, rec) and call it a decryption key for j ∈ {0, 1}n

We remark that, as opposed to [DHO16], there is no need for a private sani-
tizer key in our schemes.

Encrypt: Enc is a randomized algorithm that, on input an encryption key eki

and a message m, outputs a ciphertext c.
Sanitizer: San is a randomized algorithm that using the public parameters pp

transforms an incoming ciphertext c ∈ C into a sanitized ciphertext c′ ∈ C′.
Decryption: Dec is a deterministic algorithm that recovers a message m′ ∈

M ∪ {⊥} from a ciphertext c′ ∈ C′ using a decryption key dkj .

1 This section is taken almost verbatim from [DHO16].
2 This is without loss of generality, since we can always add a PRF key to msk and

derive the randomness for Gen from the PRF and the identity of the party.

92 G. Fuchsbauer et al.

Definition 1 (Correctness). For all m ∈ M, i, j ∈ {0, 1}n with P (i, j) = 1:

Pr [Dec (dkj ,San (pp,Enc (eki,m))) �= m] ≤ negl (κ)

with (pp,msk) ← Setup(1κ, P), eki ← Gen(msk, i, sen), dkj ← Gen(msk, j, rec),
and the probability is taken over the random coins of all algorithms.

Complementary to correctness, we require that it is detectable when decryp-
tion does not succeed, formalized as follows.

Definition 2 (Detectability). For all m ∈ M, i, j ∈ {0, 1}n with P (i, j) = 0:

Pr [Dec (dkj ,San (pp,Enc (eki,m))) �= ⊥] ≤ negl (κ)

with (pp,msk) ← Setup(1κ, P), eki ← Gen(msk, i, sen), dkj ← Gen(msk, j, rec),
and the probability is taken over the random coins of all algorithms.

Definition 3 (No-Read Rule). Consider the following game between a chal-
lenger C and a stateful adversary A:

No-Read Rule

Game Definition Oracle Definition

1. (pp,msk) ← Setup(1κ, P);
2. (m0, m1, i0, i1) ← AOG(·),OE(·)(pp);
3. b ← {0, 1};
4. c ← Enc(Gen(msk, ib, sen), mb);
5. b′ ← AOG(·),OE(·)(c);

OG(j, t):
1. Output k ← Gen(msk, j, t);

OE(i, m):
1. eki ← Gen(msk, i, sen);
2. Output c ← Enc(eki, m);

We say that A wins the No-Read game if b = b′, |m0| = |m1|, i0, i1 ∈ {0, 1}n

and for all queries q to OG with q = (j, rec) it holds that

P (i0, j) = P (i1, j) = 0.

We say an ACE scheme satisfies the No-Read rule if for all PPT A

advA
No-Read(ACE) = Pr[A wins the No-Read game] − 1

2 ≤ negl(κ).

Remark: The definition in [DHO16] requires 2 · |Pr[A wins the No-Read game]−
1
2 | ≤ negl(κ), which is unachievable, since any A whose output satisfies |m0| �=
|m1| has advantage = 1 (the same also applies to their version of Definition 4).

Our definition of the no-read rule is also weaker in that it does not guarantee
anonymity of the sender against an adversary who can decrypt the ciphertext
(in the context of attribute-based encryption a similar property is called weak
attribute hiding [OT12]). However, none of the applications of ACE described
in [DHO16] require this property.

Definition 4 (No-Write Rule). Consider the following game between a chal-
lenger C and a stateful adversary A:

Access Control Encryption for Equality, Comparison, and More 93

No-Write Rule

Game Definition Oracle Definition

1. (pp,msk) ← Setup(1κ, P);
2. m′ ← M; b ← {0, 1};
3. (c0, i

′) ← AOE(·),OS(·)(pp);
4. c1 ← Enc(Gen(msk, i′, sen), m′);
5. b′ ← AOE(·),OR(·)(San(pp, cb));

OS(j, t) and OR(j, t):
1. Output k ← Gen(msk, j, t);

OE(i, m):
1. eki ← Gen(msk, i, sen);
2. Output c ← San(pp,Enc(eki, m));

Let QS (resp. Q) be the set of all queries q = (j, t) that A issues to OS (resp.
both OS and OR). Let IS be the set of all i ∈ {0, 1}n such that (i, sen) ∈ QS and
let J be the set of all j ∈ {0, 1}n such that (j, rec) ∈ Q. Then we say that A wins
the No-Write game if b′ = b and all of the following hold:

1. i′ ∈ IS ∪ {0};
2. ∀i ∈ IS , j ∈ J , P (i, j) = 0;
3. San(pp, c0) �= ⊥.

We say an ACE scheme satisfies the No-Write rule if for all PPT A

advA
No-Write(ACE) = Pr[A wins the No-Write game] − 1

2 ≤ negl(κ).

Remark: Note that the no-write rule as defined in [DHO16] does not require the
third condition above, which essentially just requires the ciphertext output by the
adversary to be well-formed relative to the public parameters pp (which crucially
means that the adversary already knows if the ciphertext is well-formed or not).
The constructions in [DHO16] deal with this by letting the sanitizer output a
random encryption when running on an malformed ciphertext instead. We find
the notion presented here to be more natural.

3 ACE for Equality

Here, we show two how to build an ACE for the equality predicate defined by
Peq : {0, 1}n × {0, 1}n → {0, 1} and

Peq(x, y) = 1 ⇔ x = y.

We present two constructions, one based on generic assumptions and a second
(more efficient) one based on cryptographic pairings.

3.1 Generic Construction Preliminaries

We start with reviewing the notation we will use for standard cryptographic
building blocks and we refer to standard textbooks in cryptography (such as
[Gol09,KL14]), for formal definitions of security. For real functions f and g,
we write f(κ) ≈ g(κ) if |f(κ) − g(κ)| ≤ negl(κ), where negl is a negligible
function in κ.

94 G. Fuchsbauer et al.

Non-interactive Zero-Knowledge Proofs. Let L be a language and R a
relation s.t. x ∈ L if and only if there exists a witness w such that (x,w) ∈ R.
A non-interactive proof system [BFM88] for a relation R is defined by the PPT
algorithms (NIZK.Gen,NIZK.Prove,NIZK.Ver) with crs ← NIZK.Gen(1κ, L), π ←
NIZK.Prove(crs, x, w) and NIZK.Ver(crs, x, π) ∈ {0, 1}. We require correctness,
(perfect) soundness, knowledge extraction, and zero-knowledge.

Correctness. For all PPT adversaries A:

Pr

⎡

⎣
crs ← NIZK.Gen(1κ, L);
(x,w) ← A(crs);
π ← NIZK.Prove(crs, x, w)

: NIZK.Ver(crs, x, π) = 1 if (x,w) ∈ R

⎤

⎦ ≈ 1.

Soundness. For all PPT adversaries A:

Pr
[
crs ← NIZK.Gen(1κ, L);
(x, π) ← A(crs) : NIZK.Ver(crs, x, π) = 0 if x �∈ L

]

≈ 1.

Knowledge Extraction. We say that a system (NIZK.Gen,NIZK.Prove,NIZK.Ver)
has knowledge-extraction security if there exists a knowledge extractor, which is
a pair of PPT algorithms (E1, E2) with the following two properties:

1. For all PPT adversaries A:

Pr[crs ← NIZK.Gen(1κ, L) : A(crs) = 1]
≈ Pr[(crs, τ) ← E1(1κ, L) : A(crs) = 1].

2. For all PPT adversaries A:

Pr

⎡

⎣
(crs, τ) ← E1(1κ, L);
(x, π) ← A(crs);
w ← E2(crs, τ, x, π)

: NIZK.Ver(crs, x, π) = 0 or (x,w) ∈ R

⎤

⎦ ≈ 1.

Zero-Knowledge. We say that proof system (NIZK.Gen,NIZK.Prove,NIZK.Ver)
has zero-knowledge security if there exists a simulator, which is a pair of PPT
algorithms (S1, S2) with the following property: For all PPT adversaries A:

Pr[crs ← NIZK.Gen(1κ, L) : ANIZK.Prove(crs,·,·)(crs) = 1]

≈ Pr[(crs, τ) ← S1(1κ, L) : AS′(crs,τ,·,·)(crs) = 1],

where S′(crs, τ, x, w) = S2(crs, τ, x) if (x,w) ∈ R and outputs failure otherwise.
We speak of perfect correctness, perfect soundness, perfect knowledge extrac-

tion, and perfect zero-knowledge if for sufficiently large security parameters, and
for all adversaries (unbounded, and not just PPT), we have equalities in the
respective definitions.

Digital Signatures. A signature scheme is a tuple of PPT algorithms
(Sig.Gen,Sig.Sig,Sig.Ver) with (sk, vk) ← Sig.Gen(1κ), σ = Sig.Sig(sk,m), and

Access Control Encryption for Equality, Comparison, and More 95

Sig.Ver(vk,m, σ) ∈ {0, 1}. We require correctness and existential unforgeability
under chosen-message attacks. (Note that we defined the signature algorithm to
be deterministic. Any randomized signature scheme can be de-randomized using
a pseudorandom tape generated with a PRF on the message).

Anonymous and Weakly Sanitizable Public-Key Encryption. We use
a public-key encryption (PKE) scheme which must satisfy semantic security,
anonymity, and which must be weakly sanitizable. The syntax is as follows: pp ←
PKE.Par(1κ) outputs public parameters, (ek, dk) ← PKE.Gen(pp) outputs an
encryption/decryption key pair, c ← PKE.Enc(ek,m) outputs an encryption of
m, c′ ← PKE.San(pp, c) outputs a sanitized version of c and m′ ← PKE.Dec(dk, c)
decrypts ciphertext c.

Anonymity can be formalized as in [BBDP01] via a game where the adversary
receives (pp, ek0, ek1), chooses a message m, receives c ← PKE.Enc(ekb,m) and
must guess b.

In [DHO16] the notion of sanitizable encryption is introduced as a relaxation
of rerandomizable encryption. Here we only require an even weaker property: we
define an encryption scheme to be weakly sanitizable if the adversary cannot win
a game where he is given (pp, ek), chooses (m0, r0), (m1, r1), receives

c′ = PKE.San(pp,PKE.Enc(ek,mb; rb); r′)

with uniform randomness r′ and must guess b.
The weakening lies in the fact that sanitizations only have to be computation-

ally indistinguishable, whereas in the sanitizable PKE of [DHO16], sanitizations
of encryptions of the same message must be statistically indistinguishable.

An Anonymous and Weakly Sanitizable Scheme. An encryption scheme that
satisfies the above properties under the DDH assumption is the following simple
variation of ElGamal [Gam85]. As for the original scheme, the parameters pp =
(G, p, g) consist of the description of a DDH-hard group G of order p generated
by g; the decryption key is a random element dk ∈ Zp and the encryption key is
defined as ek = gdk. Encryption of a message m ∈ G is now defined as picking
random r ∈ Z

∗
p and s ∈ Zp and defining a ciphertext as

Enc(ek,m; (r, s)) = (d0, d1, c0, c1) = (gr, ekr, gs, eks · m).

A ciphertext (d0, d1, c0, c1) is sanitized by first checking if d0 = 1 or d1 = 1, in
which case the sanitizer outputs two random group elements; otherwise it picks
a random t ∈ Z

∗
p and returns (d t

0 · c0, d t
1 · c1) = (grt+s, ekrt+s · m), which is

(statistically close to) a fresh encryption of m.
This scheme can be made detectable (see Definition 2) using standard tech-

niques, e.g. by choosing a sparse message space M′, that is, with |M′|
p ≤ negl(κ),

where p is the order of G. Decryption of a sanitized ciphertext (dt
0c0, d

t
1c1) =

(grt+s, ekrt+s · m) with a different key dk′ �= dk yields: (grt+s)−dk′ · ekrt+s · m =
(gdk−dk′

)rt+s · m, which is statistically close to a random element of G. If
|M′|

p ≤ negl(κ), the probability that this element is in M′ is negligible and so:

96 G. Fuchsbauer et al.

Pr
[
Dec

(
dk′,San (pp,Enc (ek,m))

) �= ⊥] ≤ negl (κ),

meeting our definition for detectability.

Proposition 1. The above encryption scheme is anonymous and weakly
sanitizable.

Proof. For anonymity, notice that we can define a hybrid anonymity game where
the adversary is given an encryption of its message m under a new encryption
key ex = gx (where x is a random element of Zp) instead of ek0 or ek1 and move
from the game that uses ek0 to encrypt the challenge ciphertext to one that uses
ekx using DDH. Given a DDH challenge g, ga, gb, and gab+x where either x = 0
or x is a random element in Zp, one can play the game using ek0 = ga and create
the challenge ciphertext as ((gb)r̃, (gab+x)r̃, gb, gab+x · m). If x = 0, then this is
distributed like the game that uses ek0 (where dk = a, r = br̃ and s = b). If x
is a random element of Zp, then this is distributed like the game that uses ekx.
(Moving from ekx to ek1 follows symmetrically).

To see that the variant is weakly sanitizable, notice that we can similarly
define a hybrid sanitizability game where the adversary is given two random
group elements as its challenge sanitized ciphertext. In such a game, the challenge
sanitized ciphertext is independent of b, so the adversary cannot achieve any
advantage. We can move to this game using DDH. Given a DDH challenge
g, ga, gb, and gab+x where either x = 0 or x is a random element in Zp, one can
play the game using ek = ga and create the challenge sanitized ciphertext as
(gb, gab+x ·mb) (unless rb causes d0 or d1 to be the identity, in which case it uses
two random group elements). If x = 0, then this is distributed like the normal
game (a sanitized ciphertext (d t

0 · c0, d t
1 · c1) = (grt+s, ekrt+s · mb) looks like an

ElGamal encryption of mb when d0 �= 1 and d1 �= 1). If x is a random element of
Zp, then the challenge sanitized ciphertext is distributed as two random group
elements. ��

3.2 Generic Construction

Construction 1 (ACE for Equality – Generic). We construct an ACE scheme
ACE = (Setup,Gen,Enc,San,Dec) defined by the following algorithms:

Setup: Compute pppke ← PKE.Par(1κ) and (vk, sk) ← Sig.Gen(1κ).
Let L be the language defined by the following NP relation: for x = (vk, c)
and w = (pk, σ,m, r), define R(x,w) = 1 iff

Sig.Ver(vk, pk, σ) = 1 ∧ c = PKE.Enc(pk,m; r).

Compute crs ← NIZK.Gen(1κ, L). Pick a random PRF key K for a PRF F .
Output pp = (pppke, vk, crs) and msk = (sk,K).

Key Generation: Given the master secret key msk and an identity i, the
encryption and decryption keys are computed as follows: run

(pk, dk) ← PKE.Gen(pppke;FK(i)) and σ = Sig.Sig(sk, pk)

Access Control Encryption for Equality, Comparison, and More 97

and define

eki = (pk, σ) and dki = dk

Encryption: On input a message m and an encryption key eki = (pk, σ) pick
encryption randomness r, compute c′ = PKE.Enc(pk,m; r), let x = (vk, c′),
w = (pk, σ,m, r) and compute π ← NIZK.Prove(crs, x, w). Output c = (c′, π).

Sanitizer: On input pp = (pppke, vk, crs) and a ciphertext c = (c′, π) the san-
itizer outputs ⊥ if NIZK.Ver(crs, x = (vk, c′), π) = 0; otherwise it returns
c′′ ← PKE.San(pp, c′).

Decryption: Given a ciphertext c′ and a decryption key dkj = dk output

m′ = PKE.Dec(dk, c′).

Theorem 1. Construction 1 satisfies the No-Read Rule if the underlying PKE
scheme satisfies semantic security and anonymity, if the proof system is zero-
knowledge and the PRF is pseudorandom.

Proof. We assume that A makes queries OG(i0, sen) and OG(i1, sen) (this is
w.l.o.g., as any A can be transformed into such an adversary without affecting its
winning probability). We define a hybrid game which guesses A’s oracle queries
that lead to the creation of the encryption keys of users i0 and i1. If the guess was
wrong, the game outputs a random bit. (The differences to the original game are
items 0. and 6. below.) Let qmax be an upper bound on the number of OG(·, sen)
plus the number OE queries that A makes during the game. (The keys could
also be first created during an encryption query.) Since A is PPT, it is clear that
qmax is polynomial in κ.

Hybrid Game for No-Read Rule

Game Definition Oracle Definition

0. q0, q1 ← {1, . . . , qmax}; q̂ ← 1
1. (pp,msk) ← Setup(1κ, P);
2. (m0, m1, i0, i1) ← AOG(·),OE(·)(pp);
3. b ← {0, 1};
4. c ← Enc(Gen(msk, ib, sen), mb);
5. b′ ← AOG(·),OE(·)(c);
6. If Q[q0] = i0 and Q[q1] = i1

Return b′;
Else return b′ ← {0, 1};

OG(j, t):
0. If t = sen and Gen(msk, j, sen) has

not been called yet, then
Q[q̂] = j; q̂ = q̂ + 1;

1. Output ekj ← Gen(msk, j, t);

OE(i, m):
0. If t = sen and Gen(msk, i, sen) has

not been called yet, then
Q[q̂] = i; q̂ = q̂ + 1;

1. eki ← Gen(msk, i, sen);
2. Output c ← Enc(eki, m);

Lemma 1. An adversary that wins the no-read game with non-negligible advan-
tage also wins the hybrid game with non-negligible advantage.

Proof. Assume an adversary breaks the no-read rule, that is, there exists c s.t.

advA
No-Read(ACE) = Pr[b′ = b in the No-Read Game] − 1

2 ≥ 1
κc

98 G. Fuchsbauer et al.

for infinitely many κ. Let E denote the event that in the hybrid game Q[q0] = i0
and Q[q1] = i1. Note that this event is independent of A’s view; moreover,
conditioned on E occurring, the hybrid game and the original No-Read-Rule
game are equivalent; finally Pr[E] = q−2

max. We thus have

advA
hybrid(ACE) = Pr[b′ = b in the hybrid game] − 1

2

= Pr[b′ = b in hybrid |E] · Pr[E] + Pr[b′ = b in hybrid | ¬E] · Pr[¬E] − 1
2

= Pr[b′ = b in No-Read |E] · Pr[E] + 1
2 · Pr[¬E] − 1

2

= Pr[b′ = b in No-Read] · 1
q2
max

+ 1
2 · (1 − 1

q2
max

) − 1
2

= 1
q2
max

· advA
hybrid(ACE) ≥ 1

q2
max·κc

for infinitely many κ. Thus, advA
hybrid(ACE) is not negligible in κ. ��

Assuming an arbitrary PPT A, we will now show that H0, the hybrid above
with b fixed to 0, is computationally indistinguishable from H1 (b fixed to 1). By
Lemma 1, A cannot have won the original game, thus proving the theorem. We
define a sequence of hybrid games between H0 and H1 and show that each one
is computationally indistinguishable from the previous one (i.e., the probability
that the hybrid game returns 1 only changes negligibly).

Game Hb,1 (for b ∈ {0, 1}) is defined as Hb, except we use a truly random
function instead of F to generate all secret keys.

Hb,0 ≈c Hb,1 (which we use as shorthand for Pr[A wins Hb,0] ≈ Pr[Awins Hb,1]):
Indistinguishability follows from PRF security (as K is never revealed to A).

Game Hb,2 is the same as Hb,1, except crs, contained in pp, and π in the
challenge ciphertext c are simulated.

Hb,1 ≈c Hb,2: Indistinguishability follows from the zero-knowledge property of
the proof system.

Game H0,3 is the same as H0,2, except c is computed as encryption of m1

(instead of m0) under identity i0’s key.
H0,2 ≈c H0,3: Indistinguishability follows from semantic security of the encryp-

tion scheme: We construct a PPT reduction B that receives a challenge pk
and simulates game H0,2. When A makes the query that generates the q0-th
encryption key, B sets this key to pk. If A queries the corresponding decryp-
tion key, B aborts (outputting a random bit). When A outputs (m0,m1, i0, i1)
and i0 is not the identity corresponding to the q0-th key, B aborts. Other-
wise, B submits (m0,m1) as challenge to receive c from its challenger (which
is either m0 or m1 encrypted under pk) and forwards c to A together with
a simulated proof π. Reduction B perfectly simulates either H0,2 or H0,3,
depending on its own challenge: if B guesses q0 and q1 correctly, it does not
abort and otherwise it outputs a random bit anyway.

H0,3 ≈c H1,2: The two games differ in that m1 is encrypted under i0’s key in
H0,3 and i1’s key in H1,2. Indistinguishability follows from anonymity of the
encryption scheme: We construct a PPT reduction B, which receives pk0 and
pk1 and simulates H1,2 for A, except that it sets the q0th key to pk0 and
the q1th key to pk1. If A queries a corresponding decryption key or if in A’s
output (m0,m1, i0, i1), i0 does not correspond to the q0th key or i1 does not

Access Control Encryption for Equality, Comparison, and More 99

correspond to the q1th key then B aborts. Otherwise, B submits m1 as a
challenge to receive c from its challenger (which is m1 encrypted under pk0
or pk1), which it forwards to A together with a simulated proof π. Depending
on its own challenge, B perfectly simulates either H1,2 or H1,3: if B guesses
q0 and q1 correctly, it does not abort and otherwise it outputs a random bit
anyway.

We have thus shown H0 ≈c H0,1 ≈c H0,2 ≈c H0,3 ≈c H1,2 ≈c H1,1 ≈c H1, which
concludes the proof. ��
Theorem 2. Construction 1 satisfies the No-Write Rule if the underlying PKE
scheme is anonymous and weakly sanitizable, if the proof system is perfectly
sound and has knowledge extraction security, the signature scheme is unforgeable
and the PRF is pseudorandom.

Proof. Let H0 denote the No-Write-Rule game. W.l.o.g. we assume that A makes
a query OS(i′, sen) and that IS ∩ J = ∅ (i.e., A satisfies the 2nd item in the
winning condition in Definition 4). We start with defining two hybrid games
whose indistinguishability from H0 is immediate:

Game H1 is defined as H0, except we use a truly random function instead of F
to generate all secret keys.

H0 ≈c H1: Indistinguishability follows from PRF security.
Game H2 is the same as H1, except that crs is computed via the knowl-

edge extractor: (crs, τ) ← E1(1κ, L) (where τ is the extraction trapdoor).
When A outputs c0 = (c, π), we run the second part of the extractor:
w ← E2(crs, τ, x = (vk, c), π), where vk is contained in pp.

H1 ≈c H2: Indistinguishability follows from the first property of knowledge
extraction (i.e., a CRS output by E1 is indistinguishable from one output by
NIZK.Gen) of the proof system. (Running E2 has no effect on the outcome of
the game.)

Hybrid Game H2 for No-Write Rule
(Note that OE need not compute the proof as it is discarded by San anyway.)

Game Definition Oracle Definition

1. pppke ← PKE.Par(1κ);
(vk, sk) ← Sig.Gen(1κ);
(crs, τ) ← E1(1

κ, L); pp = (pppke, vk, crs)
2. m∗ ← M; b ← {0, 1};
3. ((c, π), i′) ← AOE(·),OS(·)((pppke, vk, crs));

(pk, σ, m, r) ← E2(crs, τ, x = (vk, c), π);
4. c0 := (c, π); c1 ← Enc(eki′ , m∗);
5. b′ ← AOE(·),OR(·)(San(pp, cb));
6. Return b′;

OS(j, t) and OR(j, t):
1. If pkj not yet defined, then

(pkj , dkj) ← PKE.Gen(pppke);
σj = Sig.Sig(sk, pkj);

If t = rec then return dkj ;
Else return ekj = (pkj , σj);

OE(i, m):
1. If pki not yet defined, then

(pkj , dkj) ← PKE.Gen(pppke);
2. c′ ← PKE.Enc(pk, m);

Return c′′ ← PKE.San(pp, c′);

100 G. Fuchsbauer et al.

For a particular run of game H2 (which is determined by the coins used by
the adversary and the challenger when running the probabilistic algorithms), we
now differentiate four types. We let w = (pk, σ,m, r) denote the output of E2.

Type 1: A outputs c0 = (c, π) with NIZK.Ver(crs, (vk, c), π) = 0 (where crs, vk
come from the public parameters used in the game).

Type 2: A outputs c0 = (c, π) with NIZK.Ver(crs, (vk, c), π) = 1 but R((vk, c),
w) = 0, i.e. Sig.Ver(vk, pk, σ) �= 1 or c �= PKE.Enc(pk,m; r).

Type 3: A outputs c0 = (c, π) with NIZK.Ver(crs, (vk, c), π) = 1, we have

Sig.Ver(vk, pk, σ) = 1 ∧ c = PKE.Enc(pk,m; r) (1)

and pk was not issued in an oracle query by OS .
Type 4 is defined as Type 3 except pk was issued in an oracle query by OS .

The 4 types are a partitioning of the coin space of the experiment, which we
denote by T1, . . . , T4. Let W2 denote the event that A wins hybrid game H2.

Lemma 2. Pr[W2 ∧ T1] = 0.

Proof. T1 means A outputs c0 = (c, π) with NIZK.Ver(crs, (vk.c), π) = 0. In this
case, the San procedure aborts, and by definition A loses the game. ��
Lemma 3. Pr[T2] ≈ 0.

Proof. In case T2 occurs A broke property 2 of knowledge-extraction security
of the proof system: it output a valid proof π for statement x = (vk, c) but the
extractor E2 failed to extract a witness w with R(x,w) = 1. ��
Lemma 4. Pr[T3] ≈ 0.

Proof. T3 implies that A output (c, π) from which E2 extracted w = (pk, σ,m, r)
with Sig.Ver(vk, pk, σ) = 1 and pk was not issued in an oracle query.

If T3 occurred with non-negligible probability then we could construct a
PPT adversary B that achieves the same advantage in the signature forg-
ing game as follows: B simulates H2 for A, creating a crs with an extrac-
tion trapdoor τ and using its signature oracle to respond to send key queries,
i.e., queries of the form (·, sen) to OS . When A outputs c0 = (c, π), B runs
(pk, σ,m, r) ← E2(crs, τ, (vk, c), π) and returns (pk, σ). If T3 occurred then B
did not query pk to its signing oracle, meaning B output a valid forgery. Assum-
ing our signature scheme is unforgeable, this (and thus T3) can only occur with
negligible probability. ��
Lemma 5.

∣
∣Pr[W2 |T4] − 1

2

∣
∣ ≈ 0.

Proof. T4 implies that A outputs c0 = (c, π) from which E2 extracted w =
(pk, σ,m, r) with c = PKE.Enc(pk,m; r) and pk was issued in an oracle query
by OS .

Similarly to the proof of Theorem1, we first define a hybrid game which
guesses A’s oracle queries that lead to the creation of the encryption keys

Access Control Encryption for Equality, Comparison, and More 101

of users i′ (from A’s output (c0, i′)) and i (the identity corresponding to pk
extracted by E2). If the guess was wrong, the game outputs a random bit.

Let qmax be an upper bound on the number of OS(·, sen) plus the number of
OE queries that A makes during the game. Since A is PPT, qmax is polynomial
in κ. (The differences to the original game are items 0., 6., and 7. below.)

Hybrid Game H3 for No-Write Rule

Game Definition Oracle Definition

0. q, q′ ← {1, . . . , qmax}; q̂ ← 1
1. pppke ← PKE.Par(1κ);

(vk, sk) ← Sig.Gen(1κ);
(crs, τ) ← E2(1

κ, L); pp = (pppke, vk, crs)
2. m∗ ← M; b ← {0, 1};
3. ((c, π), i′) ← AOE(·),OS(·)((pppke, vk, crs));

(pk, σ, m, r) ← E2(crs, τ, x = (vk, c), π);
4. c0 := (c, π); c1 ← Enc(eki′ , m∗);
5. b′ ← AOE(·),OR(·)(San(pp, cb));
6. Let i be s.t. pk = pki

7. If Q[q] = i and Q[q′] = i′

Return b′;
Else return b′ ← {0, 1};

OS(j, t) and OR(j, t):
1. If pkj not yet defined

(pkj , dkj) ← PKE.Gen(pppke);
σj = Sig.Sig(sk, pkj);
Q[q̂] = j; q̂ = q̂ + 1;

If t = rec then return dkj ;
Return ekj = (pkj , σj);

OE(i, m):
1. If pki not yet defined, then

(pkj , dkj) ← PKE.Gen(pppke);
Q[q̂] = i; q̂ = q̂ + 1;

2. c′ ← PKE.Enc(pk, m);
Return c′′ ← PKE.San(pppke, c′);

Following the argument from Lemma 1, we have that an adversary that wins
H2 with non-negligible advantage also wins H3 (event which we denote by W3)
with non-negligible advantage. Thus,

∣
∣Pr[W3 |T4] − 1

2

∣
∣ ≈ 0 ⇒ ∣

∣Pr[W2 |T4] − 1
2

∣
∣ ≈ 0. (2)

Assuming an arbitrary PPT A we will now show that if T4 occurs then H
(0)
3 , the

hybrid H3 with b fixed to 0, is indistinguishable from H
(1)
3 (b fixed to 1). Thus

|Pr[W3 |T4] − 1
2 | ≈ 0 and the lemma follows via (2).

To show indistinguishability of H
(0)
3 and H

(1)
3 , we define an intermediate

hybrid game H4 and show that, conditioned on T4, it is computationally indis-
tinguishable from both H

(0)
3 and H

(1)
3 (i.e., the probability that the hybrid game

returns 1 only changes negligibly).
In H

(0)
3 , A is given the challenge ciphertext c′ ← San(pp, c0). If T4 occurs then

(cf. (1)) the ciphertext contained in c0 = (c, π) satisfies c = PKE.Enc(pk,m; r)
(with pk, m and r extracted by E2). Moreover, T4 implies that π is valid and A
thus receives c′ ← PKE.San(pp,PKE.Enc(pk,m; r)).

Game H4 is the same as H
(0)
3 , except that we define the ciphertext given to A

as c′ ← PKE.San(pp,PKE.Enc(pk,m∗, r∗)) where m∗, r∗ are random.
Pr[1 ← H

(0)
3 |T4] ≈ Pr[1 ← H4 |T4]: Indistinguishability follows from sanitizing

security of the encryption scheme: We construct a PPT reduction B that
receives a challenge pk and simulates game H

(0)
3 . When A makes the query

102 G. Fuchsbauer et al.

that generates the q-th encryption key, B sets this key to pk. If A queries
the corresponding decryption key, B aborts (outputting a random bit). Note
that B will never abort if it guesses q and q′ correctly, since a correct guess
means that pk will be given out as a call to O(i, sen), and the security game
then prohibits a request for the decryption key for i.
Upon receiving (c0 = (c, π), i′) from A, B runs (pk′, σ,m0, r0) ← E2(crs, τ,
(vk, c), π) (where T4 implies that pk′ was queried in an oracle call).
If pk′ �= pk or i′ �= Q[q′] (B has not guessed q, q′ correctly), then B aborts.
Otherwise B submits (m0, r0,m

∗, r∗) for random m∗, r∗ and receives a san-
itized ciphertext c′, which it gives to A. The received c′ is a sanitization
of either A’s output c0 (for which we have c0 = PKE.Enc(pk,m0; r0)) or
of PKE.Enc(pk,m∗; r∗) (always assuming B’s guesses were correct). B can
answer decryption key oracle queries for all allowed queries.
Reduction B perfectly simulates either H

(0)
3 or H4, depending on its own

challenge: if B guesses q and q′ correctly, it does not abort and otherwise it
outputs a random bit anyway.

Pr[1 ← H4 |T4] ≈ Pr[1 ← H
(1)
3 |T4]: Letting ((c, π), i′) denote A’s output, the

two games differ in that m∗ is encrypted under pk in H4 (where pk is such
that c = PKE.Enc(pk,m; r)) and under i′’s key in H

(1)
3 . Indistinguishability

follows from anonymity of the encryption scheme: We construct a PPT B,
which receives pk0 and pk1, and simulates H

(1)
3 for A, except that it sets the

q-th and the q′-th created keys to pk0 and pk1, respectively. (If q = q′ then it
sets both to pk0.) If A queries a corresponding decryption key, B aborts.
Upon receiving (c0 = (c, π), i′) from A, B runs (pk, σ,m, r) ← E2(crs, τ,
(vk, c), π) and aborts if pk �= pk0 or if i′ does not correspond to the q′th key
(B’s guess was wrong). If q �= q′ then B submits a random m∗ as a challenge to
receive ĉ from its challenger (which is m∗ encrypted under pk0 or pk1); if q = q′

then B sets ĉ = PKE.Enc(pk0,m∗, r∗). Next, B gives c′ ← PKE.San(pp, ĉ)
to A.
Reduction B perfectly simulates either H

(1)
3 or H4 (which are the same if

q = q′), depending on its own challenge: if B guesses q and q′ correctly, it
does not abort and otherwise it outputs a random bit anyway. ��

The theorem now follows from Lemmas 2–5. Letting W0 denote the event that
A wins the No-Write game H0, we have

advA
No-Write(ACE) = Pr[W0] − 1

2 ≈ Pr[W2] − 1
2

≤ Pr[W2 ∧ T1]
︸ ︷︷ ︸

Lemma 2
= 0

+ Pr[T2]
︸ ︷︷ ︸
Lemma 3≈ 0

+ Pr[T3]
︸ ︷︷ ︸
Lemma 4≈ 0

+
(
Pr[W2 |T4] − 1

2︸ ︷︷ ︸
Lemma 5≈ 0

)
Pr[T4] + 1

2 Pr[T4] − 1
2︸ ︷︷ ︸

≤0

≤ negl.

��
Here we show how to instantiate the generic construction, based on the

SXDH assumption (Corollary 1), or based on the generic group model (Corol-
lary 2). Both instantiation use structure-preserving signatures (SPS) [AFG+10],

Access Control Encryption for Equality, Comparison, and More 103

Groth-Sahai proofs [GS08] and the weakly sanitizable version of ElGamal encryp-
tion [Gam85] described in Sect. 3.3. In Corollary 1, we use the most efficient SPS
scheme from SXDH, namely the one from [KPW15]. In Corollary 2, we use the
most efficient SPS scheme with a security proof in the generic group model,
which is [AGHO11]. The exact efficiency of the resulting ACE schemes are given
in Table 2 on p. 23.

Corollary 1. If the SXDH assumption holds, then by Theorems 1 and 2, Con-
struction 1 instantiated with the signature scheme from [KPW15], Groth-Sahai
proofs [GS08] and the weakly sanitizable version of ElGamal encryption [Gam85]
from Sect. 3.3 satisfies the No-Read and No-Write rules.

Corollary 2. Theorems 1 and 2 imply that Construction 1 instantiated with the
signature scheme from [AGHO11], Groth-Sahai proofs [GS08] and the weakly
sanitizable version of ElGamal encryption [Gam85] satisfies the No-Read and
No-Write rules in the generic group model.

3.3 A More Efficient Construction from Pairings

Our next construction is based on ElGamal encryption, which is anonymous and
re-randomizable; however, re-randomization of a ciphertext requires knowledge
of its public key, so the sanitizer, who will randomize ciphertexts before passing
them on, would be able to link ciphertexts to receivers.

Under a public key pk = gsk, a message m is encrypted as c0 = gr, c1 =
pkr · m. In order to enable randomization without revealing the public key, the
sender will randomize the public key as d = (gs, pks) for some random s �= 0.
Given c and d, the sanitizer now picks a random t and defines c′ := (c0 ·dt

0, c1 ·dt
1).

Since c′ = (gr+st, pkr+st ·m) is an ElGamal encryption of m under pk, the
receiver, who knows the corresponding secret key, can decrypt. On the other
hand, t randomizes the ciphertext, thus to someone computationally bounded
and not knowing sk, the pair looks random. This ensures anonymity towards the
sanitizer and thus the no-read rule.

However, the no-write rule can easily be violated: a sender could send cipher-
texts under any key and since the key is hidden, this would even be hard to
detect. To enforce sending ciphertexts under legitimate keys, in the previous
construction keys were signed; but without again resorting to proofs, it seems
hard to verify that the key underlying the randomized key d was signed.

Fortunately, structure-preserving signatures on equivalence classes (SPS-EQ)
[HS14] achieve precisely what is needed here, so the sketched construction goes
through without including any proofs in the ciphertext. This primitives allows
signing of pairs (d0, d1) of group elements and adapting such signatures to mul-
tiples of the message. In particular, given a signature σ on (d0, d1), anyone can
adapt the signature to (ds

0, d
s
1) for any s. On the other hand, unforgeability guar-

antees that these are the only transformations one can do. The signatures are
thus valid on all messages from the equivalence class

[(d0, d1)]R := {(m0,m1) | ∃s : m0 = ds
0 ∧ m1 = ds

1}.

104 G. Fuchsbauer et al.

Adaptivity of SPS-EQ requires that signatures that were adapted to a multiple of
the original message are indistinguishable from a fresh signature on the multiple.

Enforcement of the no-read rule follows in a straightforward fashion from
DDH (the tuple (gr, pkr · m, gs, pks) is indistinguishable from random under
DDH and an instance can be embedded by using the adaptivity property of
SPS-EQ). Enforcement of the no-write rule is harder to prove and relies on
unforgeability for SPS-EQ (which precludes the attack sketched above). The
latter ensures that the values (d0, d1) sent by the adversary must be multiples
of (g, pki) for some pki obtained from the key oracle.

The tricky part is that once the reduction embeds a DDH challenge, it can-
not find out which public key was used, and so cannot simulate the game. We
thus rely on the knowledge-of-exponent assumption which implies that for any
adversary that is given (g, pk) and returns (gs, pks) there exists an extractor that
extracts s from the adversary. Now the reduction can guess which public key pki

the adversary randomizes and efficiently check whether its guess was correct.
If it is not the case, the reduction can abort and output a random bit. (If the
reduction does not abort when its simulation is incorrect, we do not have any
guarantees as to the adversary’s behavior.)

Bilinear Groups. A bilinear-group generator BG.Gen is a PPT algorithm that
takes input a security parameter 1κ and outputs a description BG of a bilinear
group (p,G1,G2,GT , e, g, ĝ), where p is a prime of length κ; G1, G2 and GT are
groups of order p; g generates G1, ĝ generates G2 and e : G1 × G2 → GT is a
bilinear map that is non-degenerate, i.e. e(g, ĝ) generates GT .

We say that the DDH assumption holds in G1 for BG.Gen if no PPT adversary
A, given (p,G1,G2,GT , e, g, ĝ) ← BG.Gen(1κ), and (S, T, U) with s, t, u ← Z

∗
p,

b ← {0, 1} and S = gs, T = gt, U = g(1−b)u+bst, can decide b with non-negligible
advantage. It holds in G2 if the same is true when g is replaced by ĝ. We say
that SXDH holds for BG.Gen if DDH holds in both G1 and G2.

SPS-EQ. A structure-preserving signature scheme on equivalence classes [HS14,
FHS15] consists of the following PPT algorithms:

EQS.Gen, on input a bilinear group BG and a vector length � > 1 (in unary)
outputs a key pair (sk, pk). EQS.Sig takes a secret key sk and a representative
M = (m1, . . . ,m�) ∈ (G∗

1)
� of class [M]R and outputs a signature σ for the

equivalence class [M]R. EQS.Adp, on input a representative M ∈ (G∗
1)

�, a signa-
ture σ for M , a scalar μ and a public key pk, returns an updated signature σ′ for
the new representative M ′ = Mμ := (mμ

1 , . . . ,mμ
�). EQS.Ver takes a representa-

tive M ∈ (G∗
1)

�, a signature σ and a public key pk and outputs 1 if σ is valid for
M under pk and 0 otherwise. EQS.VfK checks if a secret key sk corresponds to a
public key pk and if so returns 1 and 0 otherwise.

The scheme should satisfy correctness, existential unforgeability under
chosen-message attacks (EUF-CMA) and perfect signature adaptation. Let
M ∈ G

∗
1, μ ∈ Z

∗
p, and (sk, pk) be output by EQS.Gen; σ by EQS.Sig(sk,M); and

σ′ by EQS.Adp(M,σ, μ, pk). Then the scheme is correct if EQS.VfK(sk, pk) = 1,
EQS.Ver(M,σ) = 1 and EQS.Ver(Mμ, σ′) = 1.

Access Control Encryption for Equality, Comparison, and More 105

Unforgeability is defined w.r.t. equivalence classes, i.e., a forgery must be on
a message from an equivalence class for which the forger has not seen signatures.

Definition 5 (EUF-CMA). Consider the following game for an adversary A:

EUF-CMA Game for SPS-EQ

Game Definition Oracle Definition

1. BG ← BG.Gen(1κ);
2. (sk, pk) ← EQS.Gen(BG, 1�);
3. (M∗, σ∗) ← AO(·)(pk);

O(M):
1. Return EQS.Sig(sk, M);

Let Q be the set of all queries that A issues to O. Then we say that A wins the
EUF-CMA game if the following hold:

1. For all M ∈ Q: [M∗]R �= [M]R;
2. EQS.Ver(M∗, σ∗, pk) = 1

An SPS-EQ scheme is EUF-CMA if for all � > 1 and all PPT algorithms A

advA
EUF-CMA(SPS-EQ) = Pr[A wins the EUF -CMA game] ≤ negl(κ).

The final property requires that signatures adapted by EQS.Adp are distrib-
uted like fresh signatures from EQS.Sig.

Definition 6 (Signature Adaptation). An SPS-EQ scheme perfectly adapts
signatures if for all tuples � > 1, (sk, pk,M, σ, μ) with

EQS.VfK(sk, pk) = 1 EQS.Ver(M,σ, pk) = 1 M ∈ (G∗
1)

� μ ∈ Z
∗
p

EQS.Adp(M,σ, μ, pk) and EQS.Sig(sk,Mμ) are identically distributed.

The most efficient construction of SPS-EQ is the following from [FHS14]. It
has perfect signature adaptation and satisfies EUF-CMA in the generic group
model (GGM).

SPS-EQ Construction from [FHS14]

EQS.Gen(BG, 1�):
Choose (xi)i∈[�] ← (Z∗

p)�;
sk ← (xi)i∈[�]; pk ← (ĝxi)i∈[�];
Return (sk, pk);

EQS.Sig((xi)i∈[�], M): //M ∈ (G∗
1)

�;
Choose y ← Z

∗
p;

Return σ =
∏

mxiy
i , gy−1

, ĝy−1)
;

EQS.Adp(pk, M, σ=(Z, Y, Ŷ), μ): //μ ∈ Z
∗
p

if EQS.Ver(pk, M, σ) = 0, return ⊥;
Choose ψ ← Z

∗
p;

Return σ′ = (Zψμ, Y ψ−1
, Ŷ ψ−1

);

EQS.Ver(pk, M, σ = (Z, Y, Ŷ))
Return 1 if all of the following hold:

Y �= 1;∏
i∈[�] e(Mi, X̂i) = e(Z, Ŷ);

e(Y, ĝ) = e(g, Ŷ);
Else return 0;

EQS.Ver(sk = (xi), pk = (X̂i)):
If for all i ∈ [�] : X̂i = ĝxi ;

then return 1;
Else return 0;

106 G. Fuchsbauer et al.

KEA. The knowledge of exponent assumption [BP04] for a bilinear group gen-
erator BG.Gen states that for every PPT algorithm A, which given the output
(p,G1,G2,GT , e, g, ĝ) of BG.Gen and a random h ← G1 as input outputs gs, hs

for some s, there exists a PPT extractor which, when given the coins of A as
input, extracts s with non-negligible probability. Note that KEA trivially holds
in the GGM, and since for our most efficient construction we already work in
the GGM to use SPS-EQ, this is not an extra assumption.

Construction 2 (ACE for Equality – Pairing). We construct an ACE scheme
ACE = (Setup,Gen,Enc,San,Dec) defined by the following algorithms:

Setup: Given a bilinear group BG = (p,G1,G2,GT , g, ĝ, e), run (sk, vk) ←
EQS.Gen(BG), pick a PRF key K and return pp = (BG, vk) and msk =
(sk,K).

Key Generation: Define dki = FK(0||i) and pki = gdki , and compute σi =
EQS.Sig(sk, (g, pki);FK(1||i)); Return eki = (pki, σi) and dki.

Encryption: On input a message m and an encryption key eki = (pki, σi),
pick randomness r, s ← Z

∗
p and compute σ′ ← EQS.Adp(vk, (g, pki), σi, s) and

return
c0 = gr, c1 = pkr

i · m, c2 = gs, c3 = pks
i , σ′.

Sanitizer: If EQS.Ver(vk, (c2, c3), σ′) = 0 then output ⊥. Else choose a random
t and return

c′
0 = c0 · ct

2, c′
1 = c1 · ct

3.

Decryption: Return m = c′
1 · (c′

0)
−dkj .

Correctness follows by inspection, and detectability of the ACE follows from the
detectability of the underlying PKE we use, namely ElGamal. We will now show
that the scheme also satisfies the no-read and the no-write rule.

Theorem 3. Construction 2 satisfies the No-Read Rule if the PRF is pseudo-
random, the SPS-EQ scheme has perfect adaptivity and the DDH assumption
holds in G1.

Proof. Plugging Construction 2 into the security game yields the game in Fig. 1
(where we replaced PRF values by consistent random values). The proof is sim-
ilar to that of Theorem 3 also proceeds by a series of hybrid games.

Game H: As the original game but at the beginning the challenger makes a
random guess q from {1, . . . , qmax} where qmax is a bound on the number of
OG(·, sen) queries plus the number of OE(·, ·) queries. Let (j∗, ·) be the qth
such query. If j∗ �= ib, the challenger returns a random bit as the output of
the game.

No-Write Game → H: This results in a polynomial loss 1
qmax

in the adversary’s
winning probability, shown analogously to Lemma1. If the latter was non-
negligible before, it is so afterwards.

Game Hb,1: As hybrid H with b fixed and the values of the PRF replaced with
(consistent) random values.

Access Control Encryption for Equality, Comparison, and More 107

Game Definition Oracle Definition

// assume w.l.o.g. A queries (i0, sen)
and (i1, sen) to OG

1. (sk, vk) EQS.Gen(BG);
pp = (BG, vk);

2. (m0, m1, i0, i1) AOG(·),OE(·)(pp);
4. r, s Z

∗
p;

σ EQS.Adp(vk, σib , s);
c = (gr, pkr

ib
mb, g

s, pks
ib

, σ);

5. b AOG(·),OE(·)(c);

OG(j, t): // t = rec ⇒ j /∈ {i0, i1}
1. If pkj not defined: dkj Zp; pkj = gdkj ;

If t = rec then return dkj ;
σj EQS.Sig(sk, (g, pkj));
Return ekj = (g, pkj , σj);

OE(i, m):
1. If pki not yet defined:

dki Zp; pki = gdki ;
σi EQS.Sig(sk, (g, pki));

2. r , s Z
∗
p; σ EQS.Adp(vk, σi, s);

Return (gr , pkr
i · m, gs , pks

i , σ);

Fig. 1. No-Read Rule for Construction 2 for fixed b and PRF outputs replaced by
random

Hb ≈c Hb,1: The games are indistinguishable by PRF security.
Game Hb,2: As Hb,1, but instead of running EQS.Adp, σ′ is computed as a fresh

signature on (gs, pks
ib

).
Hb,1 ≈c Hb,2: The two games are equally distributed by the perfect signature-

adaptation property of SPS-EQ.
Game Hb,3: Defined as Hb,2, except c is replaced by c = (gr, pkr

ib
mb, g

s, pkt
ib

, σ′),
that is, the 4th component is random.

Hb,2 ≈c Hb,3: Indistinguishable under DDH. Note that pkib
is known in advance

(as ib is guessed as j∗) and that dki is not revealed and s is not used anywhere
else (since Hb,2). The reduction can thus replace the values (g, pkib

, gs, pks
ib

)
with a DDH challenge.

Game Hb,4: Defined as Hb,3, except c is replaced by c = (gr, pku
ib

mb, g
s, pkt

ib
, σ′),

that is, the 2nd component is random.
Hb,3 ≈c Hb,4: Indistinguishable under DDH. The reduction replaces the values

(g, pkib
, gr, pkr

ib
) with a DDH challenge.

Since H0,4 ≡ H1,4 (in both the adversary receives c which consists of 4 random
group elements and a signature on the last 2), we showed that H0 and H1

are indistinguishable, which contradicts the assumption that A distinguishes
them. ��
Theorem 4. Construction 2 satisfies the No-Write Rule if the PRF is pseudo-
random, the SPS-EQ scheme is unforgeable, and KEA and DDH hold in G1.

Proof. As it is straightforward to prove indistinguishability to the original game,
let us immediately assume that all calls to the PRF are replaced by (consistent)
random values, which yields the game described in Fig. 2. (Note that in the
definition of OE , we need not generate σ in Gen, as it is then discarded by San
anyway.)

We first distinguish between two types of PPT adversaries:

108 G. Fuchsbauer et al.

Game Definition Oracle Definition

// A queries (i , sen) in step 3
// No queries (i, sen), (i, rec) for same i
// EQS.Ver(vk, (c0,2, c0,3), σ) = 1

1. (sk, vk) EQS.Gen(BG);
pp = (BG, vk);

2. r M; b {0, 1};
3. (c0, i) AOE(·),OS(·)(pp);
4. r, s Z

∗
p;

σ EQS.Adp(vk, σi , s);
c1 = (gr, pkr

i · mb, g
s, pks

i , σ);
5. t Z

∗
p; cb,0 = cb,0 · ct

b,2;
cb,1 = cb,1 · ct

b,3

b AOE(·),OR(·)(cb);

OS(j, t) and OR(j, t):
1. If pkj not yet defined:

dkj Zp; pkj = gdkj ;
If t = rec then return dkj ;
If σj not yet defined:

σj EQS.Sig(sk, (g, pkj));
Return ekj = (g, pkj , σj);

OE(i, m):
1. If pki not yet defined:

dki Zp; pki = gdki ;
2. r , s , t Z

∗
p;

// c = (gr , pkr
i · m, gs , pks

i , ·);
Return (gr +s t , pkr +s t

i · m);

Fig. 2. No-Write Rule for Construction 2 and PRF outputs replaced by random

Type 1 returns c0, which contains an SPS-EQ forgery with non-negligible proba-
bility; that is, (c0,2, c0,3) is not a multiple of any (g, pki) where pki is the key
obtained from oracle call OG(i, sen).

Type 2 returns such a forgery with negligible probability only.

Breaking EUF-CMA of SPS-EQ can be reduced to Type 1 forgeries in a straight-
forward fashion: the PPT reduction B simulates the no-write game using the
given vk and replacing all calls of EQS.Sig(sk, (g, pki)) by queries to its signa-
ture oracle; when A outputs c0 = (c0,0, c0,1, c0,2, c0,3, σ0) then B returns σ0 as a
forgery on M = (c0,2, c0,3). By assumption (Type 1), with non-negligible proba-
bility M is not a multiple of the messages (g, pki) queried to the signing oracle;
B thus breaks EUF-CMA.

We now show how to use Type 2 adversaries to break DDH assuming KEA. Let
qmax denote an upper bound on the number of A’s queries (·, sen) to OS and OR

plus the number of queries to OE .
We first construct a PPT algorithm B with input (g, h). B picks two uniform

values q0, q1 ← [qmax] and simulates the no-write game for A, except for the
following changes: when the q0th key pk is created during an oracle query (j0, ·),
B sets pkj0 = h. Let j1 be the index of the q1th key created. If A later queries
(j0, rec) or (j1, rec) to OS or OR then B aborts. When A outputs (c0, i′) then B
stops and returns (c0,2, c0,3).

Let us analyze B’s behavior: Since A is of Type 2, we know that with over-
whelming (i.e. all except with negligible) probability, A outputs (c0, i′) with
(c0,2, c0,c) = (ga, pka

j), for some a and j s.t. (j, sen) was queried to OS or OR.
Now with probability 1

q2
max

, we have j = j0 and i′ = j1. This event is independent
of A’s view and if it occurs then B’s simulation does not abort: by assumption
A makes queries (j, sen) and (i′, sen) and can therefore not make queries (j, rec)
and (i′, rec).

Access Control Encryption for Equality, Comparison, and More 109

With probability at least 1
q2
max

− negl(κ), B thus returns (ga, ha) for some a.
Assuming KEA there exists thus an extractor X that, given B’s coins, outputs a.

We now consider the following hybrid H of the no-write-rule game: first
choose h ← G1 and j0, j1 ← [qmax] then run the game setting pkj1 = h. On the
same coins as used to run the game run X and let a be its output. If A’s output
(c0, i′) satisfies

(c0,2, c0,3) = (ga, pka
j0) (3)

and i′ = j1 then return A’s final output b′. Else return a random bit b′ ← {0, 1}
Since H, until the event that A outputs c0 is defined as B, X’s output a

satisfies (3) with non-negligible probability, as shown above. The probability
that hybrid game H outputs A’s bit b′ is thus non-negligible.

Further note that setting h = pkj0 is only a syntactical change, so H differs
from the original game only in the event that the latter aborts (outputting a
random bit). An analysis analogue to “0 → 1” in the proof of Theorem3 shows
that if A wins the original game with non-negligible probability then it wins H
with non-negligible probability.

Define Hβ as H with b fixed to β. Our last step is now to show that under
DDH A cannot distinguish H0 from H1, which contradicts A winning H and
concludes the proof.

For this, we define another hybrid H ′
β which modifies Hβ in that c′

β is defined
as (cβ,0·ct

β,2, cβ,1·U), where U is a uniform group element. Thus, c′
β is a uniformly

random pair and so the game H ′
β is independent of β. Therefore H ′

0 is distributed
as H ′

1. What remains to show is that Hβ is indistinguishable from H ′
β .

We first show that H0 is indistinguishable from H ′
0. The games only differ

when X returns a satisfying (3) (otherwise both output a random bit). In this
case h = pkj0 . Consider a DDH adversary D0 that receives a challenge (P, T =
gt, U) where either U = P t or U is random. D0 simulates H0 setting h = P and
associating the values t from the challenge and the game: it sets ct

0,2 = T a and
c0,3 = Ua. If U = P t then D0 simulates H0; otherwise it simulates H ′

0.
Finally, H ′

1 is shown indistinguishable from H1 by a similar reduction: on
input a DDH challenge (P, T, U), D1 simulates H1, except that it sets pkj1 = P
and ct

1,2 = T s and c1,3 = Us. If U = P t then D1 simulates H1; otherwise it
simulates H ′

1. ��
Using Theorems 3 and 4 with the SPS-EQ from [FHS14], which has perfect

signature adaptation and satisfies EUF-CMA in the generic group model (GGM),
we obtain the following corollary. The concrete efficiency of the resulting scheme
is given in Table 2.

Corollary 3. In the generic group model, Construction 2 instantiated with the
SPS-EQ from [FHS14] satisfies the No-Read and No-Write rules.

3.4 Comparing the Two Constructions

In Table 2 we compare the efficiency and the assumptions required for our con-
structions. The most efficient way to instantiate the generic construction from

110 G. Fuchsbauer et al.

Sect. 3.2 is via structure-preserving signatures (SPS) [AFG+16], Groth-Sahai
proofs [GS08] and the weakly sanitizable version of ElGamal encryption [Gam85]
described in Sect. 3.3. The security of the latter two relies on the SXDH assump-
tion. The most efficient SPS scheme from SXDH is the one from [KPW15] (signa-
tures from G

6
1 ×G2, public keys from G

7
2). The most efficient SPS scheme with a

security proof in the generic group model (GGM) is from [AGHO11] (signatures
from G

2
1×G2, public keys from G1×G

3
2). See Corollaries 1 and 2. We also include

Construction 2 from Sect. 3.3, which does not require zero-knowledge proofs, and
which we proved secure in the GGM.

Table 2. Comparison of the constructions in Sects. 3.2 and 3.3. In all cases pp also
includes the description of the group. A ciphertext produced by Enc is denoted by c
while c′ denotes a sanitized ciphertext, output of San.

Construction pp ek dk c c′ Assumpt’n

Generic[·, ·] vk + crs 1G1 + sig 1Zp 4G1 + π 2G1

Generic[KPW15,GS12] 4G1 + 11G2 7G1 + 1G2 1Zp 34G1 + 16G2 2G1 SXDH

Generic[AGHO11,GS12] 5G1 + 7G2 3G1 + 1G2 1Zp 20G1 + 14G2 2G1 GGM

Construction 2 (Sect. 3.3) 2G2 3G1 + 1G2 1Zp 6G1 + 1G2 2G1 GGM

4 ACE for Disjunction of Equalities

In this section we show how to use the equality ACE scheme in a black-box
way to implement more interesting predicates. Intuitively, as stated in the intro-
duction, this is done by assigning sets of identities for the ACE scheme to each
sender and receiver, in such a way that the intersection between the set S(i) of
identities given to sender i and the set R(j) of identities given to receiver j is
non-empty if and only if P (i, j) = 1. Note however that in this case a receiver,
to be able to decrypt, would have to try each decryption key on each ciphertext,
thus resulting in quadratic complexity. To avoid this, we compose our scheme
using the following disjunction of equalities predicate instead: here each sender
is assigned a vector of identities x and each receiver a vector of identities y, and
the predicate is defined as Por-eq : D� × D� → {0, 1}, and

Por-eq(x,y) = 1 ⇔
�∨

i=1

(
xi = yi

)·

We give a generic construction that relies on any ACE for equality, namely,
for the predicate Peq : (D × [�]) × (D × [�]) → {0, 1}, defined by

Peq((x, i), (y, j)) = 1 ⇔ x = y and i = j,

such as those of Sect. 3.3
3 To use an ACE for predicate Peq : {0, 1}n ×{0, 1}n → {0, 1}, such as those in Sect. 3,

one uses an injective hash function from D × [�] to {0, 1}n, which exists as long as
2n ≥ |D| · [�].

Access Control Encryption for Equality, Comparison, and More 111

Construction 3 (ACE for Disjunction of Equality–Generic). We construct an
ACE scheme ACEor-eq for Por-eq from an
ACE scheme ACEeq = (Setupeq,Geneq,Enceq,Saneq,Deceq) for Peq. ACEor-eq is
defined by the following algorithms:

Setup: Output (pp,msk) ← Setupeq(1κ).
Key Generation: Given the master secret key msk and vectors x,y ∈ D�, the

encryption and decryption keys are computed as follows:

ekx = (ek(x1,1), . . . , ek(x�,�)) with ek(xi,i) ← Geneq(msk, (xi, i), sen) for i ∈ [�];
dky = (dk(y1,1), . . . , dk(y�,�)) with dk(yi,i) ← Geneq(msk, (yi, i), rec) for i ∈ [�].

Encryption: On input a message m and an encryption key ekx =
(ek(x1,1), . . . , ek(x�,�)) pick some independent randomness r1, . . . , r�, compute

ci = Enc(ek(xi,i),m; ri),

for i ∈ [�], and output c = (c1, . . . , c�).
Sanitizer: Given a ciphertext c = (c1, . . . , c�), apply Saneq component-wise.
Decryption: Given a ciphertext c = (c1, . . . , c�) and a decryption key dky =

(dk(y1,1), . . . , dk(y�,�)) for y ∈ D�, compute Dec(dk(yi,i), ci) for i ∈ [�]. Let
mi = Dec(dk(yi,i), ci), then output the first mi �= ⊥ or ⊥ if there is no such
successful decryption.

Remark: Note that the complexity of the composed scheme, including the decryp-
tion algorithm, is linear in �.

Lemma 6 (Correctness and Detectability). Construction 3 is correct, acc-
ording to Definition 1.

Proof. For all i ∈ [�] and xi, yi ∈ D such that xi = yi,

Pr[Deceq(dk(yi,i),Saneq(Enceq(ek(xi,i),m))) = m] ≥ 1 − negl(κ),

by correctness of ACEeq. Moreover, by detectability of ACEeq, for all xi, yi ∈ D
such that xi �= yi, we have:

Pr[Deceq(dk(yi,i),Saneq(Enceq(ek(xi,i),m))) = ⊥] ≥ 1 − negl(κ).

Therefore, by a union bound over the � disjunctions, we obtain that for all
x,y ∈ D� such that Por-eq(x,y) = 1:

Pr[Dec(dkx,San(pp,Enc(ekx,m))) = m] ≥ 1 − negl(κ),

that is, ACEor-eq is correct. A similar argument is used to show that ACEor-eq is
detectable. ��
Lemma 7 (No-Read-Rule). If the underlying ACEeq for Peq satisfies the No-
Read-Rule from Definition 3, then so does ACEor-eq from Construction 3. In par-
ticular, for any PPT adversary A against the No-Read-Rule for ACEor-eq, there
exists a PPT adversary B such that

advA
No-Read(ACEor-eq) ≤ � · advB

No-Read(ACEeq).

112 G. Fuchsbauer et al.

Proof. We define �+1 hybrid games, where for all i ∈ [�+1], Hybrid i is defined
as in the table below.

Hybrid i Oracle Definition

1. (pp,msk) ← Setup(1κ,Por-eq);
2. (m0, m1,x

(0),x(1)) ← AOG(·),OE(·)(pp);
3. For j ≤ i − 1: cj ← Enceq(ek(x(1)

j ,j)
, m1).

For j ≥ i: cj ← Enceq(ek(x(0)
j ,j)

, m0).

4. b′ ← AOG(·),OE(·)(c1, . . . , c�);

OG(j, t):
1. Output k ← Gen(msk, j, t);

OE(i, m):
1. eki ← Gen(msk, i, sen);
2. Output c ← Enc(eki, m);

We say an adversary A wins hybrid i if it returns 1 and |m0| = |m1|, x(0),
x(1) ∈ D�, and for all queries q to OG with q = (y, rec) it holds that

Por-eq(x(0),y) = Por-eq(x(1),y) = 0.

Note that for any PPT adversary A,

advA
No-Read(ACEor-eq) ≤ 1

2 |Pr[A wins Hybrid � + 1] − Pr[A wins Hybrid 1]|.

For all i ∈ [�], we build a PPT adversary Bi, such that:

|Pr[A wins Hybrid i + 1] − Pr[A wins Hybrid i]| ≤ 2 · advBi

No-Read(ACEeq),

thereby proving the lemma. This comes from the facts that ACEeq satisfies the
No-Read Rule, and that for all y ∈ D�, Por-eq(x(0),y) = Por-eq(x(1),y) = 0
implies Peq((x

(0)
i , i), (yj , j)) = Peq((x

(1)
i , i), (yj , j)) = 0 for all i, j ∈ [�]. ��

Lemma 8 (No-Write Rule). If the underlying ACEeq for Peq satisfies the
No-Write Rule from Definition 4 and the No-Read-Rule from Definition 3, then
ACEor-eq from Construction 3 satisfies the No-Write rule. In particular, for any
PPT adversary A against the No-Write Rule for ACEor-eq, there exist PPT adver-
saries B1 and B2 such that

advA
No-Write(ACEor-eq) ≤ � · advB1

No-Write(ACEeq) + 2� · advB2
No-Read(ACEeq).

Proof. As for the No-Read rule, we use a hybrid argument; for i ∈ [2�] Hybrid i
is defined in the tables below, where m0 ∈ M is an arbitrary, fixed message:

Hybrid i, for i ∈ [� + 1] Oracle Definition

1. (pp,msk) ← Setup(1κ,Por-eq);

2. ((c
(0)
1 , . . . , c

(0)
�),x′) ← AOE(·),OS(·)(pp);

3. (c
(1)
1 , . . . , c

(1)
�) ← Enc(Gen(msk,x′, sen), m0);

4. b′ ← AOE(·),OR(·)(San(pp, c(1)1 , . . . , c
(1)
i ,

c
(0)
i+1, . . . , c

(0)
�));

OS(j, t) and OR(j, t):
1. Output k ← Gen(msk, j, t);

OE(i, m):
1. eki ← Gen(msk, i, sen);
2. Output San(pp,Enc(eki, m));

Access Control Encryption for Equality, Comparison, and More 113

Hybrid � + i, for i ∈ [� + 1] Oracle Definition

1. (pp,msk) ← Setup(1κ,Por-eq);
2. m1 ← M
3. ((c

(0)
1 , . . . , c

(0)
�),x′) ← BOE(·),OS(·)(pp);

4. (c
(1)
1 , . . . , c

(1)
�) ← Enc(Gen(msk,x′, sen), m0);

4. (c
(2)
1 , . . . , c

(2)
�) ← Enc(Gen(msk,x′, sen), m1);

5. b′ ← BOE(·),OR(·)(San(pp, c(2)1 , . . . , c
(2)
i ,

c
(1)
i+1, . . . , c

(1)
�));

OS(j, t) and OR(j, t):
1. Output k ← Gen(msk, j, t);

OE(i, m):
1. eki ← Gen(msk, i, sen);
2. Output San(pp,Enc(eki, m));

Let IS and J be defined as in the No-Write Rule game from Definition 4.
We say an adversary A wins Hybrid i, for i ∈ [2�], if it returns 1 and all of the
following hold:

1. x′ ∈ IS ∪ {0};
2. ∀x ∈ IS ,y ∈ J , Por-eq(x,y) = 0.

We denote by εi the probability that A wins Hybrid i, for i ∈ [2�]. Note that for
any PPT adversary A:

advA
No-Write(ACEor-eq) ≤ 1

2 |ε2� − ε1|.

The proof proceeds in two steps:

First Step: for all i ∈ [�], we build PPT adversaries B1.i and B2.i such that
|εi−1 − εi| ≤ 2 · advB1.i

No-Write(ACEeq) + 2 · advB2.i

No-Read(ACEeq).
First, the No-Write Rule allows to switch the sanitized ciphertext in Hybrid

i − 1 from

San(pp, c
(1)
1 , . . . , c

(1)
i−1, c

(0)
i , c

(0)
i+1, . . . , c

(0)
�) to

San(pp, c
(1)
1 , . . . , c

(1)
i−1, c

(2)
i , c

(0)
i+1, . . . , c

(0)
�),

where c
(2)
i := Enc(Gen(msk, (x′

i, i), sen),m
∗) and m∗ ← M.

Namely, adversary B1.i playing against the No-Write Rule for Peq, after
receiving the public parameters pp, sends them to A and simulates all the queries
to OE(·) and OS(·) in the straightforward way: using its own oracles OE(·) and
OS(·) for Peq, coordinate-wise. Note that the restriction on A’s queries, namely
∀x ∈ IS ,y ∈ J , Por-eq(x,y) = 0, implies that Peq((xi, i), (yj , j)) = 0 for all
i, j ∈ [�]. Thus, B1.i can answer valid queries from A by valid queries to its own
oracles.

Then, B1.i receives the challenge ((c(0)1 , . . . , c
(0)
�),x′) from A, and it sends

(c(0)i , (x′
i, i)) to the challenger for Peq, to receive ctbi where b ← {0, 1}, and

ct0i := San(pp, c
(0)
i) and ct1i := San(pp,Enc(Gen(msk, (x′

i, i), sen),m
∗))

114 G. Fuchsbauer et al.

for m∗ ← M. Since B1.i knows m0 (here we crucially rely on the fact that m0 is
a fixed message, and not a random message as in the No-Write Rule experiment,
since it would be unknown to B1.i), it can compute

ctj := San(pp,Enc(Gen(msk, (x′
j , j), sen),m0)) for j < i,

using its OE oracle on input ((x′
j , j),m0). Finally, it sets ctj := c

(0)
j for j > i,

and sends the sanitized ciphertext (ct1, . . . , cti−1, ct
b
i , cti+1, . . . , ct�) to A, and

keeps simulating the oracles OE(·) and OR(·) as before.
Then, because ACEeq satisfies the No-Read Rule, and because for all y ∈ J ,

Por-eq(x′,y) = 0, which implies Peq((x′
i, i), (yj , j)) = 0 for all i, j ∈ [�], we can

switch a sanitized ciphertext from

San(pp, c
(1)
1 , . . . , c

(1)
i−1, c

(2)
i , c

(0)
i+1, . . . , c

(0)
�) to

San(pp, c
(1)
1 , . . . , c

(1)
i−1, c

(1)
i , c

(0)
i+1, . . . , c

(0)
�),

where c
(1)
i = Enc(Gen(msk, (x′

j , j), sen),m0), as in Hybrid i. Namely, adversary
B2.i simulates pp, OE(·), OS(·), OR(·), and computes sanitized ciphertexts ctj
for j > i as described previously for B1.i. For the ciphertexts ctj for j < i, B2.i

uses its oracle OE , and then, applies San to obtain the sanitized ciphertexts.
It can do so since applying San only requires to know pp. Then, B2.i sends
(m0,m1, (x′

i, i), (x
′
i, i)) to the No-Read Rule experiment, where m1 ← M, to

get back c ← Enc(Gen(msk, (x′
i, i)),mb). It sets cti := San(pp, c), and sends the

sanitized (ct1, . . . , ct�) to A.

Second Step: we build a PPT adversary B3.i such that |ε�+i−1 − ε�+i| ≤ 2 ·
advB3.i

No-Read(ACEeq).
We use the No-Read Rule as for the first step. Namely, B3.i simulates pp,

OE(·), OS(·), OR(·) as descried previously for B2.i. Then, B3.i ignores the chal-
lenge ((c(0)1 , . . . , c

(0)
�),x′) sent by A, samples m1 ← M, computes

ctj := San(pp,Enc(Gen(msk, (x′
j , j), sen),m1)) for j < i,

ctj := San(pp,Enc(Gen(msk, (x′
j , j), sen),m0)) for j > i,

thanks to its oracle OE . Then, B3.i sends (m0,m1, (x′
i, i), (x

′
i, i)) to the No-

Read Rule experiment, to get back c ← Enc(Gen(msk, (x′
i, i)),mb). It sets cti :=

San(pp, c), and sends the sanitized ciphertext (ct1, . . . , ct�) to A. ��

5 Predicates in Disjunction of Equalities

We show how to reduce the predicate Prange defined for all points z ∈ [N] and
intervals I ⊂ [N] as:

Prange(z, I) = 1 ⇔ z ∈ I

to Por-eq described in Sect. 4. This requires writing intervals I and points z as
vectors, using a standard tree structure [DVOS00].

Access Control Encryption for Equality, Comparison, and More 115

Lemma 9 (Interval to Vector [DVOS00]). There is an efficient PPT algo-
rithm IntVec, that on input an interval I ⊂ [N] outputs

(w1, w2, . . . , w2n) ∈ ({0, 1}∗ ∪ {⊥})2n
,

where n := �log N�, with the following properties:

– for each i = 1, . . . , n, we have w2i−1, w2i ∈ {0, 1}i ∪ {⊥};
– for all z ∈ [N], we have z ∈ I iff one of w1, . . . , w2t is a prefix of z.

Here, ⊥ is special symbol such that ⊥ /∈ ⋃n
i=1{0, 1}i.

For instance, IntVec([010, 110]) = (⊥,⊥, 01, 10, 110,⊥).

Remark 1 (Hashing bit strings into D). We want to use the ACE of Sect. 4,
which requires finding an injective map from

⋃n
i=1 {0, 1}i ∪ {⊥} into D, where

n := [�log N�]. Such map exists as long as |D| ≥ 2n+1 − 1.

Now we give the description of algorithm PtVec, used to map points to vectors.

PtVec: On input z ∈ [N], output (v1, . . . , v2n), where

v2i−1 = v2i := i’th bit prefix of z, i = 1, . . . , n.

For instance, PtVec(011) = (0, 0, 01, 01, 011, 011) (See Fig. 3).

Remark 2 (Duplicate Entries). Note that some strings appear more than once in
the vector. This is necessary since the predicate is a function of both the entries
in the vector and their positions.

Lemma 10. For any point z ∈ [N] and any interval I ⊆ [N],

z ∈ I iff Por-eq(PtVec(z), IntVec(I)) = 1.

Lemma 10 follows readily from Lemma 9.

ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Fig. 3. Tree structure [DVOS00] for interval [010, 110] (bar nodes), point 011 (hat
nodes) and point 111 (tilde nodes). The common node 01 allows to decrypt for 011 ∈
[010, 110]. No such node exists for 111 /∈ [010, 110], which prevents decryption.

116 G. Fuchsbauer et al.

Acknowledgements. We would like to thank the reviewers of PKC’17 for their dili-
gent proofreading and valuable remarks, helping us to improve the paper.

Fuchsbauer is supported in part by the French ANR ALAMBIC project (ANR-16-
CE39-0006). Gay is supported by ERC Project aSCEND (639554).

Kowalczyk is supported in part by the Defense Advanced Research Project Agency
(DARPA) and Army Research Office (ARO) under Contract #W911NF-15-C-0236;
NSF grants #CNS-1445424, #CNS-1552932, and #CCF-1423306; an NSF Gradu-
ate Research Fellowship #DGE-16-44869; and ERC Project aSCEND (639554). Any
opinions, findings, and conclusions or recommendations expressed are those of the
authors and do not necessarily reflect the views of the Defense Advanced Research
Projects Agency, Army Research Office, the National Science Foundation, or the U.S.
Government.

Orlandi is supported by the Danish Council for Independent Research (grant id:
6108-00169) and COST Action IC1306.

References

[AFG+10] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.:
Structure-preserving signatures and commitments to group elements. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14623-7 12

[AFG+16] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.:
Structure-preserving signatures and commitments to group elements. J.
Cryptol. 29(2), 363–421 (2016)

[AGHO11] Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-
preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-22792-9 37

[BBDP01] Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-
key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
566–582. Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 33

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 13

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th Annual ACM Symposium on
Theory of Computing, pp. 103–112 (1988)

[BP04] Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-
round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28628-8 17

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 16

[DHO16] Damg̊ard, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing
information flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 547–576. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53644-5 21

http://dx.doi.org/10.1007/978-3-642-14623-7_12
http://dx.doi.org/10.1007/978-3-642-22792-9_37
http://dx.doi.org/10.1007/3-540-45682-1_33
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-662-53644-5_21
http://dx.doi.org/10.1007/978-3-662-53644-5_21

Access Control Encryption for Equality, Comparison, and More 117

[DVOS00] De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Compu-
tational Geometry. Springer, Heidelberg (2000)

[FHS14] Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures
on equivalence classes and constant-size anonymous credentials. IACR
Cryptology ePrint Archive, 2014:944 (2014)

[FHS15] Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind
signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48000-7 12

[Gam85] El Gamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pp. 40–49 (2013)

[GMW15] Gay,R.,Méaux,P.,Wee,H.:Predicateencryptionformulti-dimensionalrange
queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 752–
776. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 34

[Gol09] Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2009)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–
432. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 24

[GS12] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

[HS14] Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence
classes and their application to anonymous credentials. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 26

[IPV10] Izabachène, M., Pointcheval, D., Vergnaud, D.: Mediated traceable anony-
mous encryption. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT
2010. LNCS, vol. 6212, pp. 40–60. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14712-8 3

[KL14] Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press,
Boca Raton (2014)

[KPW15] Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard
assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 14

[OT12] Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical)
inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29011-4 35

[Sak00] Sakai, R.: Cryptosystems based on pairings. In: Symposium on Cryptog-
raphy and Information Security 2000, SCIS 2000 (2000)

[SBC+07] Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-
dimensional range query over encrypted data. In: 2007 IEEE Symposium
on Security and Privacy (S&P 2007), 20–23 May 2007, Oakland, California,
USA, pp. 350–364 (2007)

http://dx.doi.org/10.1007/978-3-662-48000-7_12
http://dx.doi.org/10.1007/978-3-662-46447-2_34
http://dx.doi.org/10.1007/978-3-540-78967-3_24
http://dx.doi.org/10.1007/978-3-662-45611-8_26
http://dx.doi.org/10.1007/978-3-642-14712-8_3
http://dx.doi.org/10.1007/978-3-642-14712-8_3
http://dx.doi.org/10.1007/978-3-662-48000-7_14
http://dx.doi.org/10.1007/978-3-662-48000-7_14
http://dx.doi.org/10.1007/978-3-642-29011-4_35

118 G. Fuchsbauer et al.

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 5

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg
(2005). doi:10.1007/11426639 27

http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/11426639_27

Special Signatures

Deterring Certificate Subversion: Efficient
Double-Authentication-Preventing Signatures

Mihir Bellare1, Bertram Poettering2, and Douglas Stebila3(B)

1 Department of Computer Science and Engineering, University of California,
San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

mihir@eng.ucsd.edu

http://cseweb.ucsd.edu/∼mihir/
2 Department of Mathematics, Ruhr University Bochum, Bochum, Germany

bertram.poettering@rub.de

http://www.crypto.rub.de/
3 Department of Computing and Software, McMaster University,

Hamilton, ON, Canada
stebilad@mcmaster.ca

https://www.cas.mcmaster.ca/∼stebilad/

Abstract. We present highly efficient double authentication prevent-
ing signatures (DAPS). In a DAPS, signing two messages with the same
first part and differing second parts reveals the signing key. In the con-
text of PKIs we suggest that CAs who use DAPS to create certificates
have a court-convincing argument to deny big-brother requests to cre-
ate rogue certificates, thus deterring certificate subversion. We give two
general methods for obtaining DAPS. Both start from trapdoor iden-
tification schemes. We instantiate our transforms to obtain numerous
specific DAPS that, in addition to being efficient, are proven with tight
security reductions to standard assumptions. We implement our DAPS
schemes to show that they are not only several orders of magnitude more
efficient than prior DAPS but competitive with in-use signature schemes
that lack the double authentication preventing property.

1 Introduction

DAPS. Double authentication preventing signature (DAPS) schemes were intro-
duced by Poettering and Stebila (PS) [15]. In such a signature scheme, the
message being signed is a pair m = (a, p) consisting of an “address” a and a
“payload” p. Let us say that messages (a1, p1), (a2, p2) are colliding if a1 = a2

but p1 �= p2. The double authentication prevention requirement is that there be
an efficient extraction algorithm that given a public key PK and valid signa-
tures σ1, σ2 on colliding messages (a, p1), (a, p2), respectively, returns the secret
signing key SK underlying PK . Additionally, the scheme must satisfy standard
unforgeability under a chosen-message attack [10], but in light of the first prop-
erty we must make the restriction that the address components of all messages
signed in the attack are different.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 121–151, 2017.
DOI: 10.1007/978-3-662-54388-7 5

122 M. Bellare et al.

Why DAPS? PS [15] suggested that DAPS could deter certificate subversion.
This is of particular interest now in light of the Snowden revelations. We know
that the NSA obtains court orders to compel corporations into measures that
compromise security. The case we consider here is that the corporation is a
Certificate Authority (CA) and the court order asks it to produce a rogue cer-
tificate. Thus, the CA (eg. Comodo, Go Daddy, ...) has already issued a (legiti-
mate) certificate cert1 = (example.com,pk1, σ1) for a server example.com. Here
pk1 is the public key of example.com and σ1 is the CA’s signature on the pair
(example.com,pk1), computed under the secret key SK of the CA. Big brother
(this is what we will call the subverting adversary) is targeting clients communi-
cating with example.com. It obtains a court order that requires the CA to issue
another certificate—this is the rogue certificate—cert2 = (example.com,pk2,
σ2) in the name of example.com, where now pk2 is a public key supplied by
big brother, so that the latter knows the corresponding secret key sk2, and σ2 is
the CA’s signature on the pair (example.com,pk2), again computed under the
secret key SK of the CA. With this rogue certificate in hand, big brother could
impersonate example.com in a TLS session with a client, compromising security
of example.com’s communications.

The CA wants to deny the order (complying with it only hurts its repu-
tation and business) but, under normal conditions, has no argument to make
to the court in support of such a denial. Using DAPS to create certificates,
rather than ordinary signatures, gives the CA such an argument, namely that
complying with the order (issuing the rogue certificate) would compromise not
just the security of big brother’s target clients communicating with example.
com, but would compromise security much more broadly. Indeed, if big brother
uses the rogue certificate with a client, it puts the rogue certificate in the client’s
hand. The legitimate certificate can be viewed as public. So the client has σ1, σ2.
But these are valid signatures on the colliding messages (example.com,pk1),
(example.com,pk2), respectively, which means that the client can extract the
CA’s signing key SK . This would lead to widespread insecurity. The court may
be willing to allow big brother to compromise communications of clients with
example.com, but it will not be willing to create a situation where the security
of all TLS hosts with certificates from this CA is compromised. Ultimately this
means the court would have strong incentives to deny big brother’s request for
a court order to issue a rogue certificate in the first place.

Further discussion of this application of DAPS may be found in [15,16] and
also in the full version of this paper [2]. The latter includes comparisons with
other approaches such as certificate transparency and public key pinning.

Prior DAPS schemes. PS [15,16] give a factoring-based DAPS that we call
PS. Its signature contains n + 1 elements in a group Z

∗
N , where n is the length

of the output of a hash function and N is a (composite) modulus in the public
key. With a 2048-bit modulus and 256-bit hash, a signature contains 257 group
elements, for a length of 526,336 bits or 64.25 KiB. This is a factor 257 times
longer than a 2048-bit RSA PKCS#1 signature. Signing and verifying times are
also significantly greater than for RSA PKCS#1. Ruffing, Kate, and Schröder

Efficient Double-Authentication-Preventing Signatures 123

[17, Appendix A] give a chameleon hash function (CHF) based DAPS that we
call RKS and recall in the full version of this paper [2]. Instantiating it with
DLP-based CHFs makes signing quite efficient, but signature sizes and verifica-
tion times are about the same as in PS. The large signature sizes in particular
of both PS and RKS inhibits their use in practice.

Goals and contributions. If we want DAPS to be a viable practical option,
we need DAPS schemes that are competitive with current non-DAPS schemes on
all cost parameters, meaning signature size, key size, signing time and verifying
time. Furthermore, to not lose efficiency via inflated security parameters, we
need to establish the unforgeability with tight security reductions. Finally, given
the high damage that would be created by certificate forgery, we want these
reductions to be to assumptions that are standard (factoring, RSA, ...) rather
than new. This is what we deliver. We will give two general methods to build
DAPS, and thence obtain many particular schemes that are efficient while having
tight security reductions to standard algebraic assumptions in the random oracle
model. We begin with some background on our main tool, identification schemes.

Background. An identification scheme is a three-move protocol ID where the
prover sends a commitment Y computed using private randomness y, the verifier
sends a random challenge c, the prover returns a response z computed using
y and its secret key isk, and the verifier computes a boolean decision from
the conversation transcript Y ‖c‖z and public key ivk (see Fig. 2). Practical ID
schemes are typically Sigma protocols, which means they satisfy honest-verifier
zero-knowledge and special soundness. The latter says that from two accepting
conversation transcripts with the same commitment but different challenges,
one can extract the secret key. The identification scheme is trapdoor [3,12] if the
prover can pick the commitment Y directly at random from the commitment
space and compute the associated private randomness y using its secret key.

The classic way to get a signature scheme from an identification scheme is via
the Fiat-Shamir transform [9], denoted FS. Here, a signature of a message m is
a pair (Y, z) such that the transcript Y ‖c‖z is accepting for c = H(Y ‖m), where
H is a random oracle. This signature scheme meets the standard unforgeability
notion of [10] assuming the identification scheme is secure against impersonation
under passive attack (IMP-PA) [1]. BPS [3] give several alternative transforms of
(trapdoor) identification schemes to unforgeable signature schemes, the advan-
tage over FS being that in some cases the reduction of unforgeability to the
underlying algebraic assumption is tight. (That of FS is notoriously loose.) No
prior transform yields DAPS. Our first transform, described next, is however an
adaptation and extension of the MdCmtCh transform of [3].

Double-hash transform H2. The novel challenge in getting DAPS is to pro-
vide the double authentication prevention property. Our idea is to turn to iden-
tification schemes, and specifically to exploit their special soundness. Recall this
says that from two accepting conversations with the same commitment and
different challenges, one can extract the secret key. What we want now is to cre-
ate identification-based signatures in such a way that signatures are accepting

124 M. Bellare et al.

conversations and signatures of messages with the same address have the same
commitment, but if payloads differ then challenges differ. This will allow us, from
valid signatures of colliding messages, to obtain the secret key.

To ensure signatures of messages with the same address have the same com-
mitment, we make the commitment a hash of the address. This, however, leaves
us in general unable to complete the signing, because the prover in an identifi-
cation scheme relies on having create the commitment Y in such a way that it
knows some underlying private randomness y which is used crucially in the iden-
tification. To get around this, we use identification schemes that are trapdoor
(see above), so y can be derived from the commitment given a secret key. To
ensure unforgeability, we incorporate a fresh random seed into each signature.

In more detail, our first method to obtain DAPS from a trapdoor identifica-
tion scheme is via a transform that we call the double-hash transform and denote
H2 (cf. Sect. 5.1). To sign a message m = (a, p), the signer specifies the commit-
ment as a hash Y = H1(a) of the address, picks a random seed s of length sl (a
typical seed length would be sl = 256), obtains a challenge c = H2(a‖p‖s), uses
the trapdoor property of the identification scheme and the secret key to com-
pute a response z, and returns (z, s) as the signature. Additionally the public key
is enhanced so that recovery of the secret identification key allows recovery of
the full DAPS secret key. Theorem 1 establishes the double-authentication pre-
vention property via the special soundness property of the identification Sigma
protocol, and is unconditional. Theorem 2 shows unforgeability of the DAPS in
the ROM under two assumptions on the identification scheme: (1) CIMP-UU, a
notion defined in [3] (which refers to security under constrained impersonation
attacks, where in the successful impersonation the commitment was unchosen
by the adversary and the challenge was also unchosen by the adversary), and
(2) KR, security against key recovery. Specific identification schemes can be
shown to meet both notions under standard assumptions [3], yielding DAPS
from the same assumptions. If typical factoring or RSA based identification
schemes are used, DAPS signatures have size k + sl, where k is the bitlength of
the modulus.

Double-ID transform ID2. The signature size k+sl of H2 when instantiated
with RSA is more than the length k of a signature in RSA PKCS#1. We address
this via a second transform of trapdoor identification schemes into DAPS that
we call the double ID transform, denoted ID2. When instantiated with the same
identification schemes as above, corresponding DAPS signatures have length k+1
bits, while maintaining (up to a small constant factor) the signing and verifying
times of schemes obtained via H2.

The ID2 transform has several novel features. It requires that the identifica-
tion scheme supports multiple challenge lengths, specifically challenge lengths 1
and l (e.g., l = 256). To sign a message m = (a, p), first we work with the single
challenge-bit version of the identification scheme, computing for this a commit-
ment Y1 = H1(a), picking a random 1-bit challenge c1, and letting z1 be the
response, computed using the trapdoor and secret key. Now a random bijection
(a public bijection accessible, in both directions, via oracles) is applied to z1 to

Efficient Double-Authentication-Preventing Signatures 125

get a commitment Y2 for the l-bit challenge version of the identification scheme.
A challenge for this is computed as H2(a, p), and then a response z2 is produced.
The signature is simply (c1, z2). Section 5.2 specifies the transform in detail and
proves the DAP property and unforgeability, modeling the random bijection as
ideal. Notably, the CIMP-UU assumption used for the H2 transform needs to
be replaced by the (slightly stronger) CIMP-UC notion [3] (in CIMP-UC, the
challenge in the successful impersonation can be chosen by the adversary).

Instantiations. We discuss three different instantiations of the above in Sect. 6.
The RSA-based GQ identification scheme [11] is not trapdoor as usually writ-
ten, but can be made so by including the decryption exponent in the secret
key [3]. Applying H2 and ID2, we get H2[GQ] and ID2[GQ]. The factoring-
based MR identification scheme of Micali and Reyzin [12] is trapdoor, which we
exploit (in the full version [2]) to get H2[MR]. For details see Fig. 15. (Both
GQ and MR support multiple challenge lengths and meet the relevant security
requirements.) Figure 1 shows the signing time, verifying time and signature size
for these schemes. In a bit we will discuss implementation results that measure
actual performance.

Reduction tightness. Figure 1 says the signing time for H2[GQ] is O(lk2 +
k3), but what this means in practice depends very much on the choice of k
(the length of composite N). Roughly speaking, we can expect that doubling
k leads to an 8-fold increase in runtime, so signing with k = 2048 is 8 times
slower than with k = 1024. So we want to use the smallest k for which we
have a desired level of security. Suppose this is approximately 128 bits. Many
keylength recommendations match the difficulty of breaking a 128-bit symmetric
cipher with the difficulty of factoring a 2048-bit modulus. But this does not
generally mean it is safe to use H2[GQ] with k = 2048, because the reduction of
unforgeability to RSA may not be tight: the Fiat-Shamir transform FS has a very

Scheme Signing Verifying |sig| (bits)

PS [15,16] O(nk3) 516.58 ms O(nk3) 161.84ms nk 528 384

RKS [17] O(n4) 13.48ms O(n4) 5.99ms 2n2 131 072

H2[GQ] O(lk2 + k3)
0.88ms O(lk2)

0.41 ms k + sl 2 304

ID2[GQ] 1.80ms 1.49 ms k + 1 2 049

H2[MR] O(k3) 1.27 ms O(lk2) 0.37 ms k + sl 2 304

Fig. 1. DAPS efficiency. Performance indications for the DAPS obtained by our H2
and ID2 transforms applied to the GQ and MR trapdoor identification schemes. The
first two rows show the prior scheme of PS [15,16] and the scheme of RKS [17], with
n being the length of the output of a hash function, eg. n = 256. By k we denote the
length of a composite modulus N in the public key, eg. k = 2048. The challenge length
of GQ and MR is l, and sl is the seed length, eg. l = sl = 256. The 4th column is the
size of a signature in bits. Absolute runtimes and signature sizes are for k = 2048-bit
moduli and n = l = sl = 256-bit hashes/challenges/seeds; details appear in Sect. 6.

126 M. Bellare et al.

loose reduction, so when signatures are identification based, one should be extra
suspicious. Remarkably, our reductions are tight, so we can indeed get 128 bits
of security with k = 2048. This tightness has two steps or components. First,
the reduction of unforgeability to the CIMP-UU/CIMP-UC and KR security of
the identification scheme, as given by Theorems 2 and 4, is tight. Second, the
reductions of CIMP-UU/CIMP-UC and KR to the underlying algebraic problem
(here RSA or factoring) are also tight (cf. Lemma 1, adapting [3]).

Implementation. The efficiency measures of Fig. 1 are asymptotic, with hid-
den constants. Implementation is key to gauge and compare performance in
practice. We implement our two GQ based schemes, H2[GQ] and ID2[GQ], as
well as H2[MR]. For comparison we also implement the prior PS DAPS, and also
compare with the existing implementation of RKS. Figure 16 shows the signing
time, verifying time, signature size and key sizes for all schemes. H2[GQ] emerges
as around 587 times faster than PS for signing and 394 times faster for verifying
while also having signatures about 229 times shorter. Compared with the previ-
ous fastest and smallest DAPS, RKS, H2[GQ] is 15× faster for both signing and
verifying, with signatures 56× shorter. ID2[GQ] is about a factor two slower
than H2[GQ] but with signatures about 15% shorter. H2[MR] has the small-
est public keys of our new DAPS schemes, with signing runtime about halfway
between H2[GQ] and ID2[GQ]. The DAPS by RKS remains the one with the
smallest public keys, (640 bits), but the schemes in this paper have public keys
that are still quite reasonable (between 2048 and 6144 bits). As Fig. 16 shows,
H2[GQ], H2[MR], and ID2[GQ] are close to RSA PKCS#1 in all parameters and
runtimes (but with potentially improved security, considering our reductions to
RSA and factoring are tight). This means that DAPS can replace the signatures
currently used for certificates with minimal loss in performance.

Necessity of our assumption. Trapdoor identification schemes may seem a
very particular assumption from which to obtain DAPS. However we show in
the full version of this paper [2] that from any DAPS satisfying double authenti-
cation prevention and unforgeability, one can build a CIMP-UU and CIMP-UC
secure trapdoor identification scheme. This shows that the assumption we make
is effectively necessary for DAPS.

2 Preliminaries

Notation. By ε we denote the empty string. If X is a finite set, x ←$ X denotes
selecting an element of X uniformly at random and |X| denotes the size of X. We
use a1‖a2‖ · · · ‖an as shorthand for (a1, a2, . . . , an), and by a1‖a2‖ · · · ‖an ← x we
mean that x is parsed into its constituents. If A is an algorithm, y ← A(x1, . . . ; r)
denotes running A on inputs x1, . . . with random coins r and assigning the result
to y, and y ←$ A(x1, . . .) means we pick r at random and let y ← A(x1, . . . ; r).
By [A(x1, . . .)] we denote the set of all y that have positive probability of being
returned by A(x1, . . .).

Our proofs use the code-based game playing framework of BR [5]. In these
proofs, Pr[G] denotes the event that game G returns true. When we speak of

Efficient Double-Authentication-Preventing Signatures 127

running time of algorithms, we mean worst case. For adversaries playing games,
this includes the running time of the adversary and that of the game, i.e., the
time taken by game procedures to respond to oracle queries is included. Boolean
flags (like bad) in games are assumed initialized to false.

In our constructions, we will need random oracles with different ranges. For
example we may want one random oracle returning points in a group Z

∗
N and

another returning strings of some length l. To provide a single unified notation,
following [3], we have the game procedure H take not just the input x but a
description Rng of the set from which outputs are to be drawn at random. Thus
y ← H(x,Z∗

N) will return a random element of Z∗
N , and so on.

Our ID2 transform also relies on a random bijection. In the spirit of a ran-
dom oracle, a random bijection is an idealized unkeyed public bijection to which
algorithms and adversaries have access via two oracles, one for the forward direc-
tion and one for the backward direction. Cryptographic constructions that build
on such objects include the Even-Mansour cipher and the SHA3 hash func-
tion. We denote by Π+(·,Dom,Rng) a bijection from Dom to Rng, and we
denote its inverse with Π−1. Once Dom and Rng are fixed, our results view
Π+1(·,Dom,Rng) as being randomly sampled from the set of all bijections from
Dom to Rng. We discuss instantiation of a random bijection in Sect. 6.

Signature schemes. A signature scheme DS specifies the following. The signer
runs key generation algorithm DS.Kg to get a verification key vk and a sign-
ing key sk. A signature of message m is generated via σ ←$ DS.Sig(vk, sk,m).
Verification is done by v ← DS.Vf(vk,m, σ), which returns a boolean v. DS is
correct if for all (vk, sk) ∈ [DS.Kg], all messages m ∈ {0, 1}∗ and all signatures
σ ∈ [DS.Sig(vk, sk,m)], we have DS.Vf(vk,m, σ) = true.

3 Identification Schemes

Identification schemes are our main tool. Here we give the necessary definitions
and results.

Identification. An identification (ID) scheme ID is a three-move protocol
between a prover and a verifier, as shown in Fig. 2. A novel feature of our formu-
lation (which we exploit for the ID2 transform) is that identification schemes
support challenges of multiple lengths. Thus, associated to ID is a set ID.clS ⊆ N

of admissible challenge lengths. At setup time the prover runs key generation
algorithm ID.Kg to generate a public verification key ivk, a private identifica-
tion key isk, and a trapdoor itk. To execute a run of the identification scheme
for a challenge length cl ∈ ID.clS, the prover runs ID.Cmt(ivk, cl) to generate a
commitment Y and a private state y. The prover sends Y to the verifier, who
samples a random challenge c of length cl and returns it to the prover. The prover
computes its response z ← ID.Rsp(ivk, isk, c, y). The verifier checks the response
by invoking ID.Vf(ivk, Y ‖c‖z) which returns a boolean value. We require perfect
correctness. For any ivk, cl we denote with ID.CS(ivk, cl) and ID.RS(ivk, cl) the
space of commitments and responses, respectively.

128 M. Bellare et al.

Prover

Input: ivk, isk, cl

(Y, y) ←$ ID.Cmt(ivk, cl)

z ← ID.Rsp(ivk, isk, c, y)

Y�
c�
z�

Verifier

Input: ivk, cl

c ←$ {0, 1}cl

v ← ID.Vf(ivk, Y ‖c‖z)

Game Gex
ID (A)

(ivk, isk, itk) ←$ ID.Kg
(Y, c1, z1, c2, z2) ←$ A(ivk, isk, itk)
T1 ← Y ‖c1‖z1 ; T2 ← Y ‖c2‖z2
v1 ← ID.Vf(ivk, T1) ; v2 ← ID.Vf(ivk, T2)
If ¬v1 ∨ ¬v2 ∨ (|c1| �= |c2|) ∨ (c1 = c2):

Return false
isk∗ ←$ ID.Ex(ivk, T1, T2)
Return (isk∗ �= isk)

Game Gzk
ID,cl(A)

(ivk, isk, itk) ←$ ID.Kg ; b ←$ {0, 1}
(Y1, y1) ←$ ID.Cmt(ivk, cl)
c1 ←$ {0, 1}cl

z1 ← ID.Rsp(ivk, isk, c1, y1)
Y0‖c0‖z0 ←$ ID.Sim(ivk, cl)
b′ ←$ A(ivk, cl, Yb‖cb‖zb)
Return (b = b′)

Fig. 2. Top: Message flow of an identification scheme ID. Bottom: Games defining
extractability and HVZK of an identification scheme ID.

In basic ID schemes, key generation only outputs ivk and isk. The inclusion
of itk was given by [3] in their definition of trapdoor ID schemes. Following [3]
(and extending to multiple challenge lengths) we say ID is trapdoor if it spec-
ifies an additional algorithm ID.Cmt−1 that can compute y from any Y using
trapdoor itk. The property required of ID.Cmt−1 is that the following two dis-
tributions on (Y, y) are identical for any admissible challenge length cl: (1) Let
(ivk, isk, itk) ←$ ID.Kg ; (Y, y) ←$ ID.Cmt(ivk, cl) and return (Y, y), and (2) Let
(ivk, isk, itk) ←$ ID.Kg ; Y ←$ ID.CS(ivk, cl) ; y ←$ ID.Cmt−1(ivk, itk, Y, cl) and
return (Y, y).

Further properties. We give several further identification-related defini-
tions we will use. First we extend honest-verifier zero-knowledge (HVZK) and
extractability to identification schemes with variable challenge length.

HVZK of ID asks that there exists an algorithm ID.Sim (called the simulator)
that given the verification key and challenge length, generates transcripts which
have the same distribution as honest ones. Formally, if A is an adversary and
cl ∈ ID.clS is an admissible challenge length, let Advzk

ID,cl(A) = 2Pr[Gzk
ID,cl(A)]−1

where the game is shown in Fig. 2. Then ID is HVZK if Advzk
ID,cl(A) = 0 for all

(even computationally unbounded) adversaries A and all cl ∈ ID.clS.
Extractability of ID asks that there exists an algorithm ID.Ex (called the

extractor) which from any two (valid) transcripts that have the same commit-
ment but different same-length challenges can recover the secret key. Formally,
if A is an adversary, let Advex

ID(A) = Pr[Gex
ID(A)] where the game is shown in

Fig. 2. Then ID is perfectly extractable if Advex
ID(A) = 0 for all (even compu-

tationally unbounded) adversaries A. Perfect extractability is sometimes called

Efficient Double-Authentication-Preventing Signatures 129

special soundness. We say that an identification scheme is a Sigma protocol [7]
if it is both HVZK and perfectly extractable.

We define three further notions that are not standard, but sometimes needed
and true of typical schemes (cf. Sect. 6). For instance, at times we require that ID
includes a key-verification algorithm ID.KVf for which ID.KVf(ivk, isk) = true iff
(ivk, isk, itk) ∈ [ID.Kg] for some itk. We say that ID is commitment recovering if
ID.Vf verifies a transcript Y ‖c‖z by recovering Y from c, z and then comparing.
More precisely, we require that there exist an efficient algorithm ID.Rsp−1 that
takes a verification key, a challenge, and a response, and outputs a commitment,
such that ID.Vf(ivk, Y ‖c‖z) = true iff Y = ID.Rsp−1(ivk, c, z). Finally, ID is said
to have unique responses if for any commitment Y and any challenge c there is
precisely one response z such that we have ID.Vf(ivk, Y ‖c‖z) = true.

Game Gcimp-xy
ID (P)

i ← 0 ; j ← 0

(ivk, isk, itk) ←$ ID.Kg
(k, z) ←$ PTr,Ch(ivk)
If not (1 ≤ k ≤ j):

Return false
T ← CTk‖z
Return ID.Vf(ivk, T)

Game Gkr-pa
ID (I)

i ← 0 ; (ivk, isk, itk) ←$ ID.Kg
isk∗ ←$ ITr(ivk)
Return ID.KVf(ivk, isk∗)

Tr(cl)

If not cl ∈ ID.clS: Return ⊥
i ← i + 1 ; cli ← cl
(Yi, yi) ←$ ID.Cmt(ivk, cli)
ci ←$ {0, 1}cli

zi ← ID.Rsp(ivk, isk, ci, yi)
Ti ← Yi‖ci‖zi

Return Ti

Ch(l) // xy=uu

If not (1 ≤ l ≤ i): Return ⊥
j ← j + 1 ; c ←$ {0, 1}cll

CTj ← Yl‖c ; Return c

Ch(l, c) // xy=uc

If not (1 ≤ l ≤ i): Return ⊥
If (c = cl or |c| �= cll): Return ⊥
j ← j + 1
CTj ← Yl‖c ; Return c

Fig. 3. Games defining security of identification scheme ID against constrained imper-
sonation (CIMP-UU and CIMP-UC) and against key recovery under passive attack.

Security of identification. A framework of notions of security under con-
strained impersonation was given in [3]. We reproduce and use their CIMP-UU
and CIMP-UC notions but extend them to support multiple challenge lengths.
The value of these notions as starting points is that they can be proven to
be achieved by typical identification schemes with tight reductions to standard
assumptions, following [3], which is not true of classical notions like IMP-PA
(impersonation under passive attack [1]). The formalization relies on the games
Gcimp-xy

ID (P) of Fig. 3 associated to identification scheme ID and adversary P,

130 M. Bellare et al.

where xy ∈ {uu,uc}. The transcript oracle Tr returns a fresh identification
transcript Yi‖ci‖zi each time it is called, for a challenge length passed in by the
adversary. This models a passive attack. In the xy = uu case, the adversary
can call Ch with the index l of an existing transcript Yl‖cl‖zl to indicate that
it wants to be challenged to produce a response for a fresh challenge against
the commitment Yl. The index j records the session for future reference. In the
xy = uc case, the adversary continues to call Ch with the index l of an existing
transcript, but this time provides its own challenge c, indicating it wants to be
challenged to find a response. The game allows this only if the provided challenge
is different from the one in the original transcript. The adversary can call Tr

and Ch as many times as it wants, in any order. The adversary terminates by
outputting the index k of a challenge session against which it hopes its response
z will verify. Define the advantage via Advcimp-xy

ID (P) = Pr[Gcimp-xy
ID (P)].

We also define a metric of security of the identification scheme against key
recovery under passive attack. The formalization considers game Gkr-pa

ID (I) of
Fig. 3 associated to identification scheme ID and kr adversary I. The transcript
oracle Tr is as before. Adversary I aims to find a private key isk∗ that is func-
tionally equivalent to isk in the sense that ID.KVf(ivk, isk∗) = true. (In particu-
lar, it certainly succeeds if it recovers the private key isk.) We let Advkr-pa

ID (I)
= Pr[Gkr-pa

ID (I)] be the probability that it succeeds. The notion of KR secu-
rity from [3,14] did not give the adversary a Tr oracle (excluding even passive
attacks) and required that for success it find the target key isk (rather than, as
here, being allowed to get away with something functionally equivalent).

Achieving the notions. For typical identification schemes that are HVZK,
security against key recovery under passive attack corresponds exactly to the
standard assumption underlying the scheme, for example the one-wayness of
RSA for GQ. The following says that under the assumption of security against key
recovery under passive attack, we can establish both CIMP-UC and CIMP-UU
for identification schemes that are extractable. In the second case, however, we
require that the challenge-lengths used be large.

The identification schemes we will use to build DAPS are Sigma protocols,
meaning perfectly extractable, and hence for these schemes Advex

ID(A) below will
be 0. We omit the proof as it uses standard arguments [3].

Lemma 1. Let ID be an identification scheme. For any adversary P against
CIMP-UC we construct a key recovery adversary I and extraction adversary A
such that

Advcimp-uc
ID (P) ≤ Advkr-pa

ID (I) + Advex
ID(A).

Also for any adversary P against CIMP-UU that makes qc queries to its Ch ora-
cle, each with challenge length at least cl, we construct a key recovery adversary
I such that

Advcimp-uu
ID (P) ≤ Advkr-pa

ID (I) + Advex
ID(A) + qc · 2−cl.

In both cases, the running times of I and A are about that of P plus the time
for one execution of ID.Ex.

Efficient Double-Authentication-Preventing Signatures 131

Above, CIMP-UU was established assuming long challenges. We note that
this is necessary, meaning CIMP-UU does not hold for short challenges, such as
one-bit ones. To see this, assume cl ∈ ID.clS and q ≥ 1 is a parameter. Consider
the following attack (adversary) P. It makes a single query Y ‖c‖z ←$ Tr(cl).
Then for i = 1, . . . , q it queries ci ←$ Ch(1). If there is a k such that ck = c then
it returns (k, z) and wins, else it returns ⊥. We have

Advcimp-uu
ID (P) = 1 −

(

1 − 1
2cl

)q

≈ q

2cl
.

Thus, roughly, the attack succeeds in time 2cl, so if the latter is small, CIMP-UU
security will not hold. Our H2 transform will use long challenges and be able
to rely only on CIMP-UU, but our ID2 transform will require security on both
long and short (1-bit) challenges, and thus will rely on CIMP-UC in addition to
CIMP-UU. We note that given Lemma 1, we could use CIMP-UC throughout,
but for the reductions it is simpler and more convenient to work with CIMP-UU
when possible.

4 DAPS Definitions

Let DS be a signature scheme. When used as a DAPS [15,16], a message m =
(a, p) for DS is a pair consisting of an address a and a payload p. We require
(1) the double authentication prevention (DAP) property and (2) a restricted
form of unforgeability, as defined below.

Game Guf
DS(A)

(vk, sk) ←$ DS.Kg
A, M ← ∅
(m, σ) ←$ ASign(vk)
d ← DS.Vf(vk, m, σ)
Return (d ∧ (m /∈ M))

Sign(m)

(a, p) ← m
If a ∈ A: Return ⊥
A ← A ∪ {a}
M ← M ∪ {m}
σ ←$ DS.Sig(vk, sk, m)
Return σ

Game Gdap
DS (A)

(vk, sk) ←$ DS.Kg
(m1, m2, σ1, σ2) ←$ A(vk, sk)
v1 ← DS.Vf(vk, m1, σ1)
v2 ← DS.Vf(vk, m2, σ2)
If ¬v1 ∨ ¬v2: Return false
(a1, p1) ← m1 ; (a2, p2) ← m2

If a1 �= a2 ∨p1 = p2: Return false
sk∗ ←$ DS.Ex(vk, m1, m2, σ1, σ2)
Return (sk∗ �= sk)

Fig. 4. Games defining unforgeability and the DAP property of signature scheme DS.

The DAP property. Call messages m1 = (a1, p1) and m2 = (a2, p2) colliding
if a1 = a2 but p1 �= p2. Double authentication prevention (DAP) [15,16] requires
that possession of signatures on colliding messages allow anyone to extract the

132 M. Bellare et al.

signing key. It is captured formally by the advantage Advdap
DS (A) = Pr[Gdap

DS (A)]
associated to adversary A, where game Gdap

DS (A) is in Fig. 4. The adversary
produces messages m1,m2 and signatures σ1, σ2, and an extraction algorithm
DS.Ex associated to the scheme then attempts to compute sk. The adversary
wins if the key sk∗ produced by DS.Ex is different from sk yet extraction should
have succeeded, meaning the messages were colliding and their signatures were
valid. The adversary has sk as input to cover the fact that the signer is the
one attempting—due to coercion and subversion, but nonetheless—to produce
signatures on colliding messages. (And thus it does not need access to a Sign

oracle.) We note that we are not saying it is hard to produce signatures on
colliding messages—it isn’t, given sk—but rather that doing so will reveal sk. We
also stress that extraction is not required just for honestly-generated signatures,
but for any, even adversarially generated signatures that are valid, again because
the signer is the adversary here.

Unforgeability. Let Advuf
DS(A) = Pr[Guf

DS(A)] be the uf-advantage associated
to adversary A, where game Guf

DS(A) is in Fig. 4. This is the classical notion
of [10], except that addresses of the messages the signer signs must be all differ-
ent, as captured through the set A in the game. This is necessary because the
double authentication prevention requirement precludes security if the signer
releases signatures of two messages with the same address. In practice it means
that the signer must maintain a log of all messages it has signed and make sure
that it does not sign two messages with the same address. A CA is likely to
maintain such a log in any case so this is unlikely to be an extra burden.

Discussion. Regarding the dap property, asking that the key sk∗ returned by the
extractor DS.Ex be equal to sk may seem unnecessarily strong. It might suffice
if sk∗ was “functionally equivalent” to sk, allowing computation of signatures
that could not be distinguished from real ones. Such a property is considered
in PS [16]. Formalizing it would require adding another security game based on
indistinguishability. As our schemes (as well as the ones from [15,16]) achieve
the simpler and stronger property we have defined, we adopt it in our definition.

The dap game chooses the keys vk, sk honestly. Allowing these to be adversar-
ially chosen would result in a stronger requirement, also formalized in PS [15,16].
Our view is that our (weaker) requirement is appropriate for the application we
envision because the CA does not wish to create rogue certificates and has no
incentive to create keys allowing it, and the court order happens after the CA
and its keys are established, so that key establishment is honest.

5 Our ID to DAPS Transforms

We specify and analyze our two generic transformations, H2 and ID2, of trap-
door identification schemes to DAPS. Both deliver efficient DAPS, signature
sizes being somewhat smaller in the second case.

Efficient Double-Authentication-Preventing Signatures 133

5.1 The Double-Hash Transform

The construction. Let ID be a trapdoor identification scheme. Our H2 (dou-
ble hash) transform associates to it, a supported challenge length cl ∈ ID.clS,
and a seed length sl ∈ N, a DAPS DS = H2[ID, cl, sl]. The algorithms of DS are
defined in Fig. 5. We give some intuition on the design. In the signing algorithm,
we specify the commitment Y as a hash of the address, i.e., messages with the
same address result in transcripts with the same commitment. We then specify
the challenge c as a hash of the message (i.e., address and payload) and a random
seed. Signatures consist of the seed and the corresponding response. Concerning
the extractability property, observe that the ID.Ex algorithm, when applied to
colliding signature transcripts, reveals isk but not itk, whereas DAPS extraction
needs to recover both, i.e., the full secret key sk = (isk, itk). We resolve this
by putting in the verification key a particular encryption, denoted ITK , of itk,
under isk (we assume itk can be encoded in tl bits).

The scheme uses random oracles H(·, {0, 1}tl), H(·, ID.CS(ivk, cl)) and H(·,
{0, 1}cl). For simplicity it is assumed that the three range sets involved here are
distinct, which makes the random oracles independent. If the range sets are not
distinct, the scheme must be modified to use domain separation [4] in calling
these oracles. This can be done simply by prefixing the query to the i-th oracle
with i (i = 1, 2, 3 for our three oracles).

H2[ID, cl, sl].KgH

(ivk, isk, itk) ←$ ID.Kg
ITK ← itk ⊕ H(isk, {0, 1}tl)
vk ← (ivk, ITK) ; sk ← (isk, itk)
Return (vk, sk)

H2[ID, cl, sl].ExH(vk, m1, m2, σ1, σ2)

(ivk, ITK) ← vk
For i = 1, 2 do

(ai, pi) ← mi ; (zi, si) ← σi

Yi ← H(ai, ID.CS(ivk, cl))
ci ← H(ai‖pi‖si, {0, 1}cl)

isk∗ ← ID.Ex(ivk, Y1‖c1‖z1, Y2‖c2‖z2)
itk∗ ← H(isk∗, {0, 1}tl) ⊕ ITK
sk∗ ← (isk∗, itk∗) ; Return sk∗

H2[ID, cl, sl].SigH(vk, sk, m)

(ivk, ITK) ← vk ; (isk, itk) ← sk
(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
y ←$ ID.Cmt−1(ivk, itk, Y, cl)
c ← H(a‖p‖s, {0, 1}cl)
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

H2[ID, cl, sl].VfH(vk, m, σ)

(ivk, ITK) ← vk ; (a, p) ← m ; (z, s) ← σ
Y ← H(a, ID.CS(ivk, cl))
c ← H(a‖p‖s, {0, 1}cl)
Return ID.Vf(ivk, Y ‖c‖z)

Fig. 5. Our construction of a DAPS H2[ID, cl, sl] from a trapdoor identification scheme
ID, a challenge length cl ∈ ID.clS, and a seed length sl ∈ N.

DAP security of our construction. The following confirms that double
authentication prevention is achieved. We model H as a random oracle.

134 M. Bellare et al.

Theorem 1. Let DAPS DS = H2[ID, cl, sl] be obtained from trapdoor iden-
tification scheme ID, challenge length cl, and seed length sl as above. Let A
be an adversary making q ≥ 2 distinct H(·, {0, 1}cl) queries. If ID has perfect
extractability then

Advdap
DS (A) ≤ q(q − 1)/2cl+1.

Proof (Theorem 1). In game Gdap
DS (A) of Fig. 4, consider the execution of

the algorithm DS.ExH of Fig. 5 on vk,m1,m2, σ2, σ2 where (m1,m2, σ1, σ2) ←$

AH(vk, sk). Let Y1‖c1‖z1, Y2‖c2‖z2 be the transcripts computed within. Assume
σ1, σ2 are valid signatures of m1,m2, respectively, relative to vk = (ivk, ITK).
As per the verification algorithm DS.VfH of Fig. 5 this means that the tran-
scripts Y1‖c1‖z1, Y2‖c2‖z2 are valid under the ID scheme, meaning ID.Vf(ivk,
Y1‖c1‖z1) = ID.Vf(ivk, Y2‖c2‖z2) = true. If the messages m1 = (a1, p1) and
m2 = (a2, p2) output by A are colliding then we also have Y1 = Y2. This is
because a1 = a2 and verification ensures that Y1 = H(a1, ID.CS(ivk, cl)) and Y2

= H(a2, ID.CS(ivk, cl)). So if c1 �= c2 then the extraction property of ID ensures
that isk∗ = isk. If so, we also can obtain itk∗ = itk, so that the full secret
key sk = (isk, itk) is recovered. So Advdap

DS (A) is at most the probability that
the challenges are equal even though the payloads are not. But the challenges
are outputs of H(·, {0, 1}cl), to which the game makes at most q queries. So the
probability that these challenges collide is at most q(q − 1)/2cl+1. ��

We note this proof does not essentially rely on H being a random oracle.

Unforgeability of our construction. The following shows that the
restricted unforgeability of our DAPS tightly reduces to the cimp-uu plus kr
security of the underlying ID scheme. As before we model H as a random oracle.

Theorem 2. Let DAPS DS = H2[ID, cl, sl] be obtained from trapdoor identi-
fication scheme ID, challenge length cl, and seed length sl as in Fig. 5. Let A
be a uf adversary against DS and suppose the number of queries that A makes
to its H(·, {0, 1}tl), H(·, ID.CS(ivk, cl)), H(·, {0, 1}cl), Sign oracles are, respec-
tively, q1, q2, q3, qs. Then from A we can construct cimp-uu adversary P and kr
adversary I such that

Advuf
DS(A) ≤ Advcimp-uu

ID (P) + Advkr-pa
ID (I) +

qs(2q3 + qs − 1)
2sl+1

.

Adversaries P, I make q2 + qs + 1 queries to Tr. Adversary P makes q3 queries
to Ch. The running time of adversary P is about that of A. The running time
of adversary I is that of A plus the time for q1 executions of ID.KVf.

Proof (Theorem 2). We assume that A avoids certain pointless behavior that
would only cause it to lose. Thus, we assume that, in the messages it queries to
Sign, the addresses are all different. Also we assume it did not query to Sign

the message m in the forgery (m,σ) that it eventually outputs. The two together
mean that the sets A,M in game Guf

DS(A), and the code and checks associated

Efficient Double-Authentication-Preventing Signatures 135

Game G0/G1

(ivk, isk, itk) ←$ ID.Kg
ITK ← itk ⊕ H(isk, {0, 1}tl)
vk ← (ivk, ITK)
(m, σ) ←$ ASign,H(vk)
Return DS.VfH(vk, m, σ)

H(x, Rng)

If (not HT[x, Rng]):
HT[x, Rng] ←$ Rng

Return HT[x, Rng]

Sign(m)

(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
y ←$ ID.Cmt−1(ivk, itk, Y, cl)
If (not HT[a‖p‖s, {0, 1}cl]):

HT[a‖p‖s, {0, 1}cl] ←$ {0, 1}cl

Else
bad ← true
HT[a‖p‖s, {0, 1}cl] ←$ {0, 1}cl

c ← HT[a‖p‖s, {0, 1}cl]
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Game G2 /G3

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
(m, σ) ←$ ASign,H(vk)
Return DS.VfH(vk, m, σ)

H(x, Rng)

If (not HT[x, Rng]):
HT[x, Rng] ←$ Rng
If ((Rng = {0, 1}tl) ∧ (x = isk)):

bad ← true ; HT[x, Rng] ← ITK ⊕ itk
Return HT[x, Rng]

Sign(m)

(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
y ←$ ID.Cmt−1(ivk, itk, Y, cl)
c ←$ {0, 1}cl

HT[a‖p‖s, {0, 1}cl] ← c
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Fig. 6. Games for proof of Theorem 2. Games G1, G2 include the boxed code and
games G0, G3 do not.

with them, are redundant and can be removed. We will work with this simplified
form of the game, that we call G0.

Identical-until-bad games G0,G1 of Fig. 6 move us to allow picking a random
seed in responding to a Sign query, regardless of whether the corresponding
hash table entry was defined or not. We have

Advuf
DS(A) = Pr[G0] = Pr[G1] + Pr[G0] − Pr[G1]

≤ Pr[G1] + Pr[G0 sets bad],

where the inequality is by the Fundamental Lemma of Game Playing of [5]. The
random choice of s made by procedure Sign ensures

Pr[G0 sets bad] ≤
qs−1∑

i=0

q3 + i

2sl
=

qs(2q3 + qs − 1)
2sl+1

.

Now we need to bound Pr[G1]. We start by considering whether the cipher-
text ITK = itk ⊕ H(isk, {0, 1}tl) helps A over and above access to Sign. Con-
sider the games G2,G3 of Fig. 6. They pick ITK directly at random rather

136 M. Bellare et al.

than as prescribed in the scheme. However, via the boxed code that it con-
tains, game G2 compensates, replying to H(·, {0, 1}tl) queries in such a way that
ITK = itk ⊕ H(isk, {0, 1}tl). Thus G2 is equivalent to G1. Game G3 omits the
boxed code, but the games are identical-until-bad. So we have

Pr[G1] = Pr[G2] = Pr[G3] + Pr[G2] − Pr[G3]
≤ Pr[G3] + Pr[G3 sets bad], (1)

where again the inequality is by the Fundamental Lemma of Game Playing of [5].
Now we have two tasks, namely to bound Pr[G3] and to bound Pr[G3 sets bad].
The first corresponds to showing A cannot forge if ciphertext ITK is random,
and the second corresponds to showing that changing the ciphertext to random
makes little difference. The first relies on the cimp-uu security of ID, the second
on its kr security.

To bound Pr[G3], consider game G4 of Fig. 7. It moves us towards using
cimp-uu by generating conversation transcripts Yi‖ci‖zi and having Sign use
these. We have

Pr[G3] = Pr[G4].

We build cimp-uu adversary P so that

Pr[G4] ≤ Advcimp-uu
ID (P).

The construction of P is described in detail in Fig. 8. The idea is as follows.
Adversary P uses its transcript oracle Tr to generate the transcripts that G4

generates directly. It can then simulate A’s Sign oracle as per game G4. Sim-
ulation of H(·,Rng) is done directly as in the game for Rng = {0, 1}tl and
Rng = ID.CS(ivk, cl). When a query x is made to H(·, {0, 1}cl), adversary P
parses x as a‖p‖s, sends the index of the corresponding Tr query to its chal-
lenge oracle Ch to get back a challenge, and returns this challenge as the response
to the oracle query. Finally when A produces a forgery, the response in the cor-
responding signature is output as an impersonation that is successful as long as
the forgery was valid.

To bound Pr[G3 setsbad], consider game G5 of Fig. 7. It answers Sign queries
just like G4, and the only modification in answering H queries is to keep track
of queries to H(·, {0, 1}tl) in the set T . The game ignores the forgery, returning
true if isk was queried to H(·, {0, 1}tl). We have

Pr[G3 sets bad] = Pr[G5].

We build I so that
Pr[G5] ≤ Advkr-pa

ID (I).

The idea is simple, namely that if the adversary queries isk to H(·, {0, 1}tl) then
we can obtain isk by watching the oracle queries of A. The difficulty is that, to
run A, one first has to simulate answers to Sign queries using transcripts, and it
is to enable this that we moved to G5. Again the game was crafted to make the
construction of adversary I quite direct. The construction is described in detail

Efficient Double-Authentication-Preventing Signatures 137

Game G4

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi) ←$ ID.Cmt(ivk, cl)
ci ←$ {0, 1}cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i2 ← 0
(m, σ) ←$ ASign,H(vk)
(a, p) ← m ; (z, s) ← σ
Y ← H(a, ID.CS(ivk, cl))
c ← H(a‖p‖s, {0, 1}cl)
Return ID.Vf(ivk, Y ‖c‖z)

Game G5

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi) ←$ ID.Cmt(ivk, cl)
ci ←$ {0, 1}cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i2 ← 0 ; T ← ∅
(m, σ) ←$ ASign,H(vk)
Return (isk ∈ T)

Sign(m) // G4, G5

(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
i ← Ind2(a)
HT[a‖p‖s, {0, 1}cl] ← ci

σ ← (zi, s) ; Return σ

H(x, Rng) // G4

If (not HT[x, Rng]):
HT[x, Rng] ←$ Rng
If (Rng = {0, 1}cl):

HT[x, Rng] ←$ {0, 1}cl

If (Rng = ID.CS(ivk, cl)):
i2 ← i2 +1 ; HT[x, Rng] ← Yi2 ; Ind2(x) ← i2

Return HT[x, Rng]

H(x, Rng) // G5

If (not HT[x, Rng]):
HT[x, Rng] ←$ Rng
If (Rng = {0, 1}tl):

T ← T ∪ {x}
If (Rng = ID.CS(ivk, cl)):

i2 ← i2 +1 ; HT[x, Rng] ← Yi2 ; Ind2(x) ← i2
Return HT[x, Rng]

Fig. 7. More games for the proof of Theorem 2.

in Fig. 8. The simulation of the Sign oracle is as before. The simulation of H

is more direct, following game G5 rather than invoking the Ch oracle. When A
returns its forgery, the set T contains candidates for the identification secret key
isk. Adversary I now verifies each candidate using the key-verification algorithm
of the identification scheme, returning a successful candidate if one exists. ��

5.2 The Double-ID Transform

Our ID2 transform roughly maintains signing and verifying time compared to
H2 but signatures are shorter, consisting of an ID response plus one bit. Since
the verifier can try both possibilities for this bit, if one is willing to double the
verification time, even this bit is expendable.

The construction. Our construction assumes two main ingredients: The first
is a trapdoor identification scheme ID that is commitment recovering, has unique
responses, and simultaneously supports challenge lengths 1 and cl � 1. For the
choice of cl we further assume |ID.RS(ivk, 1)| = |ID.CS(ivk, cl)| for all ivk, i.e.,

138 M. Bellare et al.

Adversary PTr,Ch(ivk)

ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi) ←$ Tr(cl)
i2 ← 0 ; j ← 0
(m, σ) ←$ ASign,H(vk)
(a, p) ← m ; (z, s) ← σ
Y ← H(a, ID.CS(ivk, cl))
c ← H(a‖p‖s, {0, 1}cl)
k ← Ind3(a‖p‖s)
Return (k, z)

Adversary ITr(ivk)

ITK ←$ {0, 1}tl

vk ← (ivk, ITK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi) ←$ Tr(cl)
i2 ← 0 ; T ← ∅ ; j ← 0
(m, σ) ←$ ASign,H(vk)
For all x ∈ T do

If ID.KVf(ivk, x):
Return x

Return ⊥

Sign(m) // P, I
(a, p) ← m ; s ←$ {0, 1}sl

Y ← H(a, ID.CS(ivk, cl))
i ← Ind2(a)
HT[a‖p‖s, {0, 1}cl] ← ci

σ ← (zi, s) ; Return σ

H(x, Rng) // P
If (not HT[x, Rng]):

HT[x, Rng] ←$ Rng
If (Rng = {0, 1}cl):

a‖p‖s ← x ; Y ← H(a, ID.CS(ivk, cl))
l ← Ind2(a) ; j ← j + 1 ; c ←$ Ch(l)
Ind3(x) ← j ; HT[x, Rng] ← c

If (Rng = ID.CS(ivk, cl)):
i2 ← i2+1; HT[x, Rng] ← Yi2 ; Ind2(x) ← i2

Return HT[x, Rng]

H(x, Rng) // I
If (not HT[x, Rng]):

If (Rng = {0, 1}tl): T ← T ∪ {x}
If (Rng = ID.CS(ivk, cl)):

i2 ← i2+1; HT[x, Rng] ← Yi2 ; Ind2(x) ← i2
Return HT[x, Rng]

Fig. 8. Adversaries for proof of Theorem 2.

the response space for 1-bit challenges has the same cardinality as the commit-
ment space for cl-bit challenges. The second component is a random bijection Π
(cf. Sect. 2) between sets ID.RS(ivk, 1) and ID.CS(ivk, cl), i.e., oracle Π+1 imple-
ments a random mapping from ID.RS(ivk, 1) to ID.CS(ivk, cl) and oracle Π−1

implements its inverse. In Sect. 6 we discuss trapdoor ID schemes that fulfill
these requirements and show how random bijections with the required domain
and range can be obtained.

The details of the ID2 transform are specified in Fig. 9. We write H1(·)
shorthand for H(·, ID.CS(ivk, 1)), and H2(·, ·) shorthand for H((·, ·), {0, 1}cl). As
in Sect. 5.1 we assume these random oracles are independent. Key generation is
as in H2. Signing works as follows: First a commitment Y1 ← H1(a) is derived
from the address using a random oracle that maps to the commitment space
ID.CS(ivk, 1), then a random 1-bit challenge c1 is picked and the corresponding
response z1 of the ID scheme computed. Using bijection Π+1, response z1 is
mapped to a commitment Y2 ∈ ID.CS(ivk, cl). A corresponding cl-bit challenge
is derived from the address and the payload per c2 ← H2(a, p). The DAPS sig-
nature consists of the response z2 corresponding to Y2 and c2, together with the
one-bit challenge c1. Signatures are verified using the commitment recovery algo-
rithm ID.Rsp−1 to recover Y2 from z2, computing z1 ← Π−1(Y2), recovering Y1

Efficient Double-Authentication-Preventing Signatures 139

ID2[ID, cl].KgH,Π±1

(ivk, isk, itk) ←$ ID.Kg
ITK ← itk ⊕ H(isk, {0, 1}tl)
vk ← (ivk, ITK) ; sk ← (isk, itk)
Return (vk, sk)

ID2[ID, cl].ExH,Π±1
(vk, m1, m2, σ1, σ2)

(ivk, ITK) ← vk
For i = 1, 2 do

(ai, pi) ← mi // a1 = a2 ∧ p1 �= p2

(c1,i, z2,i) ← σi ; c2,i ← H2(ai, pi)
Y2,i ← ID.Rsp−1(ivk, c2,i, z2,i)
T2,i ← Y2,i‖c2,i‖z2,i

z1,i ← Π−1(Y2,i)
Y1,i ← ID.Rsp−1(ivk, c1,i, z1,i)
T1,i ← Y1,i‖c1,i‖z1,i

If Y2,1 = Y2,2:
If c2,1 = c2,2: Return ⊥
isk∗ ←$ ID.Ex(ivk, T2,1, T2,2)

Else: // Y1,1 = Y1,2 ∧ c1,1 �= c1,2

isk∗ ←$ ID.Ex(ivk, T1,1, T1,2)
itk∗ ← H(isk∗, {0, 1}tl) ⊕ ITK
sk∗ ← (isk∗, itk∗) ; Return sk∗

ID2[ID, cl].SigH,Π±1
(vk, sk, m)

(ivk, ITK) ← vk ; (isk, itk) ← sk
(a, p) ← m
Y1 ← H1(a) ; c1 ←$ {0, 1}
y1 ←$ ID.Cmt−1(ivk, itk, Y1, 1)
z1 ← ID.Rsp(ivk, isk, c1, y1)
Y2 ← Π+1(z1) ; c2 ← H2(a, p)
y2 ←$ ID.Cmt−1(ivk, itk, Y2, cl)
z2 ← ID.Rsp(ivk, isk, c2, y2)
σ ← (c1, z2) ; Return σ

ID2[ID, cl].VfH,Π±1
(vk, m, σ)

(ivk, ITK) ← vk ; (a, p) ← m
(c1, z2) ← σ ; c2 ← H2(a, p)
Y2 ← ID.Rsp−1(ivk, c2, z2)
z1 ← Π−1(Y2)
Y1 ← ID.Rsp−1(ivk, c1, z1)
Return (Y1 = H1(a))

Fig. 9. Our construction of a DAPS ID2[ID, cl] from a trapdoor identification scheme
ID, where {1, cl} ⊆ ID.clS.

from c1 and z1 (again using the commitment recovery algorithm), and comparing
with H1(a). Extraction algorithm DS.Ex works in the obvious way.

DAP security. The ID2 construction achieves double authentication preven-
tion, as the following result confirms. The proof relies on the extractability prop-
erty of the ID scheme twice: once for each challenge length. We model H as a
random oracle as usual. Nothing is assumed of Π other than it being a bijection.

Theorem 3. Let DAPS DS = ID2[ID, cl] be obtained from trapdoor identifica-
tion scheme ID and challenge length cl as above. Let A be an adversary making
at most q queries to the H2(·) = H(·, {0, 1}cl) oracle. If ID has unique responses
and perfect extractability, then Advdap

DS (A) ≤ q(q − 1)/2cl+1.

Proof (Theorem 3). Assume, in experiment Gdap
DS (A), that the adversary out-

puts message-signature pairs (m1, σ1) and (m2, σ2) such that for i ∈ {1, 2}
we have DS.Vf(vk,mi, σi) = true. The latter implies for mi = (ai, pi) and
σi = (c1,i, z2,i) that for recoverable values z1,i, Y2,i and the corresponding
transcripts T1,i = H1(ai)‖c1,i‖z1,i and T2,i = Y2,i‖H2(ai, pi)‖z2,i we have
ID.Vf(ivk, T1,i) = ID.Vf(ivk, T2,i) = true and Y2,i = Π+1(z1,i). Assume a1 = a2

and p1 �= p2. We have either c1,1 �= c1,2 or c1,1 = c1,2. In the former case, the
two transcripts T1,1, T1,2 have the same commitment but different challenges.

140 M. Bellare et al.

This allows us to extract the secret key via the extractability property of ID;
further, by decrypting ITK we can recover itk, as required. Consider thus the
case c1,1 = c1,2 which implies z1,1 = z1,2 and Y2,1 = Y2,2 by the unique response
property of ID. If H2(a1, p1) �= H2(a2, p2) we can extract isk, itk from the two
transcripts T2,1, T2,2 as above. As p1 �= p2 and H is a random oracle, the proba-
bility for H2(a1, p1) = H2(a2, p2) is q(q − 1)/2cl+1. ��

Game G0 / G1

(ivk, isk, itk) ←$ ID.Kg
ITK ← itk ⊕ H(isk, {0, 1}tl)
vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

Return DS.VfH,Π±1
(vk, m, σ)

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
Return HT[x, Rng]

Π+1(z1)

If z1 ∈ dom(PT): Return PT+1(z1)
Y2 ←$ ID.CS(ivk, cl)
If Y2 ∈ rng(PT): bad ← 1

Y2 ←$ ID.CS(ivk, cl) \ rng(PT)
PT ← PT ∪ {(z1, Y2)}
Return PT+1(z1)

Sign(m)

(a, p) ← m
Y1 ← H1(a) ; c1 ←$ {0, 1}
y1 ←$ ID.Cmt−1(ivk, itk, Y1, 1)
z1 ← ID.Rsp(ivk, isk, c1, y1)
Y2 ← Π+1(z1) ; c2 ← H2(a, p)
y2 ←$ ID.Cmt−1(ivk, itk, Y2, cl)
z2 ← ID.Rsp(ivk, isk, c2, y2)
σ ← (c1, z2) ; Return σ

Π−1(Y2)

If Y2 ∈ rng(PT): Return PT−1(Y2)
z1 ←$ ID.RS(ivk, 1)
If z1 ∈ dom(PT): bad ← 1

z1 ←$ ID.RS(ivk, 1) \ dom(PT)
PT ← PT ∪ {(z1, Y2)}
Return PT−1(Y2)

Fig. 10. Games G0, G1 for proof of Theorem 4. Game G0 includes the boxed code and
game G1 does not.

Unforgeability. The following establishes that if the ID scheme offers cimp-uc
and kr security, then ID2 transforms it into an unforgeable DAPS. Here we
model H as a random oracle and Π as a public random bijection.

Theorem 4. Let DAPS DS = ID2[ID, cl] be obtained from trapdoor identifica-
tion scheme ID as in Fig. 9. Let N = min |ID.CS(ivk, cl)| where the minimum is
over all (ivk, isk, itk) ∈ [ID.Kg]. Let A be a uf adversary against DS and suppose
the number of queries that A makes to its H(·, {0, 1}tl), H(·, ID.CS(ivk, 1)), H(·,
{0, 1}cl), Π±1, Sign oracles are, respectively, q1, q2, q3, q4, qs. Then from A we
can construct dap adversary A′, kr adversary I and cimp-uc adversaries P1,P2

such that

Advuf
DS(A) ≤ Advdap

DS (A′) + Advkr-pa
ID (I)

+ 2Advcimp-uc
ID (P1) + 2Advcimp-uc

ID (P2) +
(q4 + qs)2

2N
.

Efficient Double-Authentication-Preventing Signatures 141

Adversaries I,P1,P2 make q2+q3+q4+qs queries to Tr, and adversaries P1,P2

make one query to Ch. Beyond that, the running time of A′,P1,P2 is about that
of A, and the running time of I is that of A plus the time for q1 executions of
ID.KVf.

Game G2

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

Return DS.VfH,Π±1
(vk, m, σ)

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
If Rng = {0, 1}tl:

If ID.KVf(ivk, x): bad1 ← 1
If x = isk: HT[x, Rng] ← ITK ⊕ itk

If Rng = ID.CS(ivk, 1):
Y1[x]‖c1[x]‖z1[x] ←$ Transc(1)
HT[x, Rng] ← Y1[x]

If Rng = {0, 1}cl:
Y2[x]‖c2[x]‖z2[x] ←$ Transc(cl)
HT[x, Rng] ← c2[x]

Return HT[x, Rng]

Algorithm Transc(cl)
(Y, y) ←$ ID.Cmt(ivk, cl)
c ←$ {0, 1}cl

z ← ID.Rsp(ivk, isk, c, y)
Return Y ‖c‖z

Sign(m)

(a, p) ← m
If ∃z ∈ dom(PT) s.t.

ID.Vf(ivk, Y1[a]‖0‖z) or
ID.Vf(ivk, Y1[a]‖1‖z): bad2 ← 1

If z1[a] ∈ dom(PT):
Y2 ← PT+1(z1[a]) ; c2 ← H2(a, p)
y2 ←$ ID.Cmt−1(ivk, itk, Y2, cl)
z2 ← ID.Rsp(ivk, isk, c2, y2)

Else:
Y2 ← Y2[a, p] ; z2 ← z2[a, p]
PT ← PT ∪ {(z1[a], Y2)}

σ ← (c1[a], z2) ; Return σ

Π+1(z1)

If z1 ∈ dom(PT): Return PT+1(z1)
Y2[z1]‖c2[z1]‖z2[z1] ←$ Transc(cl)
PT ← PT ∪ {(z1, Y2[z1])}
Return PT+1(z1)

Π−1(Y2)

If Y2 ∈ rng(PT): Return PT−1(Y2)
z1 ←$ ID.RS(ivk, 1)
PT ← PT ∪ {(z1, Y2)}
Return PT−1(Y2)

Fig. 11. Game G2 for proof of Theorem 4.

Proof (Theorem 4). In the proof, we handle queries to the random bijection Π
(with oracles Π+1 and Π−1) via lazy sampling and track input-output pairs
using a table PT. Notation-wise we consider PT ⊆ ID.RS(ivk, 1)× ID.CS(ivk, cl)
a binary relation to which a mapping of the form Π+1(α) = β or, equivalently,
Π−1(β) = α can be added by assigning PT ← PT ∪ {(α, β)}. We use functional
expressions for table look-up, e.g., whenever (α, β) ∈ PT we write PT+1(α) = β
and PT−1(β) = α. We annotate the domain of PT with dom(PT) = {α : (α, β) ∈
PT for some β}, and its range with rng(PT) = {β : (α, β) ∈ PT for some α}.

Without loss of generality we assume from A the following behavior: (a) if A
outputs a forgery attempt (m,σ) then σ was not returned by Sign on input m;
(b) A does not query Sign twice on the same address; (c) for all messages
m = (a, p), A always queries H1(a) before H2(a, p); further, A always queries

142 M. Bellare et al.

H2(a, p) before querying Sign(m); (d) before outputting a forgery attempt, A
makes all random oracle and random bijection queries required by the verifi-
cation algorithm to verify the signature. We further may assume that A does
not forge on an address a for which it queried a signature before: Otherwise,
by DAP security, the adversary could extract the secret key and forge also on a
fresh address; this is accounted for by the Advdap

DS (A′) term in the theorem state-
ment. The correspondingly simplified form of the Guf

DS(A) game is given as G0

in Fig. 10. (Note that queries to Π+1 and Π−1 are expected to be answered
with elements drawn uniformly at random from ID.CS(ivk, cl) \ rng(PT) and
ID.RS(ivk, 1) \ dom(PT), respectively, and that our implementation does pre-
cisely this, though in an initially surprising form).

Observe that in G0 the flag bad is set when resampling is required in the
processing of Π+1 and Π−1. The probability that this happens is at most (0 +
1+. . .+(q4+qs−1))/N , where N is the minimum cardinality of the commitment
space for challenge length cl, as defined in the theorem statement. We define game
G1 like G0 but with the resampling steps in the Π+1 and Π−1 oracles removed.
We obtain

Pr[G0] = Pr[G1] +
(q4 + qs)2 − (q4 + qs)

2N
.

Consider next game G2 from Fig. 11. It is obtained from G1 by applying
the following rewriting steps. First, instead of computing ITK by evaluating
itk⊕H(isk, {0, 1}tl) it picks ITK at random and programs random oracle H such
that relation ITK = itk⊕H(isk, {0, 1}tl) is maintained. Second, the way random
oracle queries of the form H(x, ID.CS(ivk, 1)) and H(x, {0, 1}cl) are processed is
changed: Now, the internal Transc algorithm is invoked to produce full identi-
fication transcripts for the corresponding challenge length; the H oracle outputs
one component of these transcripts and keeps the other components for itself.
Also the implementation of Π+1 is modified to use the Transc algorithm.

Concerning the Sign oracle, observe that G1 samples challenge c1 and derives
corresponding y1 and z1 values by itself. In G2, as we assume that H1(a) is always
queried before Sign(a, p), and as the H1(a) implementation now internally pre-
pares a full transcript, the c1, y1, z1 values from this transcript generation can
be used within the Sign oracle. That is, we replace the first invocations of
ID.Cmt−1 and ID.Rsp in Sign of G1 by the assignments Y1 ← Y1[a], y1 ← y1[a],
c1 ← c1[a], and z1 ← z1[a] in G2. (Note that this works only because we also
assume that Sign is not queried more than once on the same address.) Con-
sider next the assignment Y2 ← Π+1(z1) of Sign in G1 (which now would be
annotated Y2 ← Π+1(z1[a])) and the fact that Y2 is completed by Sign to a
transcript with challenge c2[a, p]. In the evaluation of Π+1(z1), two cases can be
distinguished: either the query is ‘old’, i.e., z1 ∈ dom(PT), in which case Sign

proceeds its computations using the stored commitment Y2 = PT+1(z1), or the
query is ‘fresh’, i.e., z1 /∈ dom(PT), in which case a new value Y2 is sampled from
ID.CS(ivk, cl). In both cases Sign completes Y2 to a full transcript with challenge
H2(a, p) = c2[a, p]. As we assume that each Sign(a, p) query is preceded by a
H2(a, p) query, and the latter internally generates a full transcript with challenge
c2[a, p], similarly to what we did for the values Y1, y1, c1, z1 above, in the case of

Efficient Double-Authentication-Preventing Signatures 143

a ‘fresh’ Π+1(z1) query game G2 sets Y2 ← Y2[a, p], y2 ← y2[a, p], c2 ← c2[a, p],
and z2 ← z2[a, p]. The two described cases correspond with the two branches of
the second If-statement in Sign of Fig. 11.

The remaining changes between G1 and G2 concern the two added flags bad1
and bad2 and can be ignored for now. Thus all changes between games G1 and G2

are pure rewriting, so we obtain

Pr[G1] = Pr[G2].

Consider next in more detail the flags bad1 and bad2 that appear in game G2.
The former is set whenever a value is queried to H(·, {0, 1}tl) that is a valid
secret identification key for verification key ivk, and the latter is set when Sign

is queried on some address a and the domain of PT contains an element that
is a valid response for commitment Y1[a] and one of the two possible challenges
c1 ∈ {0, 1}. Observe that any use of itk in H is preceded by setting bad1 ← 1,
and that any execution of the first branch of the second If-statement of Sign

in G2 is preceded by setting bad2 ← 1.
We’d like to proceed the proof by bounding the probabilities Pr[G2 sets bad1]

and Pr[G2 sets bad2] (based on the hardness of key recovery and cimp-uc imper-
sonation, respectively). However, the following technical problem arises: While in
the two corresponding reductions we would be able to simulate the Transc algo-
rithm with the Tr oracle, when aiming at bounding the probability of bad1 ← 1
it would be unclear how to simulate the Sign oracle (that uses isk and itk in
the first If-branch), and when aiming at bounding the probability of bad2 ← 1 it
would be unclear how to simulate the H oracle (that uses itk in the Rng = {0, 1}tl
branch). We help ourselves by defining the following three complementary events:
(a) neither bad1 nor bad2 is set, (b) bad1 is set before bad2 (this includes the
case that bad2 is not set at all), and (c) bad2 is set before bad1 (this includes the
case that bad1 is not set at all). In Fig. 12 we construct a kr adversary I and a
cimp-uc adversary P1 from A such that

Pr[G2 sets bad1 first] = Advkr-pa
ID (I)

and
Pr[G2 sets bad2 first] = 2Advcimp-uc

ID (P1).

The strategy for constructing the adversaries is clear: We derive I from G2

by stripping off all code that is only executed after bad2 is set, and we construct
P1 by removing all code only executed after bad1 is set. The P1-related code in
Sign deserves further explanation. The reduction obtained commitment Y1[a]
via H from the Tr oracle of the cimp-uc game, together with challenge c1[a]
and response z1[a]. As at the time the bad2 flag is set in G2 no information on
c1[a] was used in the game or exposed to the adversary, for the challenge c∗ for
which ID.Vf(ivk, Y1[a]‖c∗‖z) = true we have that c∗ �= c1[a] with probability 1/2.
The reduction thus tries to break cimp-uc security with challenge 1 − c1[a] and
response z. Whenever this challenge is admissible (i.e., with probability 1/2),
the response is correct. That is, P1 is successful with breaking impersonation
with half the probability of A having flag bad2 be set first.

144 M. Bellare et al.

In Fig. 13 we define game G3 which behaves exactly like G2 until either bad1
or bad2 is set. Thus we have

Pr[G2 sets neither bad1 nor bad2] = Pr[G3].

In G3 we expand the DS.Vf algorithm, i.e., the steps where the forgery attempt
of A is verified. If signature σ = (c1, z2) is identified as valid, the game sets flag
bad to 1 if c1 �= c1[a], i.e., if the challenge c1 included in the signature does not
coincide with the one simulated in the H oracle for address a. Using the assump-
tion that A does not forge on addresses a for which it posed a Sign(a, ·) query,
observe that the game did not release any information on c1[a], so by an infor-
mation theoretic argument, c1 �= c1[a] and thus bad ← 1 with probability 1/2.

In Fig. 13 we construct a cimp-uc adversary P2 from A that is successful
whenever bad is set in game G3. We obtain

Pr[G3] = 2Advcimp-uc
ID (P2).

Taken together, the established bounds imply the theorem statement. ��

Adversary ITr(ivk)

ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

Output ⊥ and stop

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
If Rng = {0, 1}tl: // only I

If ID.KVf(ivk, x): // only I
Output x and stop // only I

If Rng = ID.CS(ivk, 1):
as in G2

If Rng = {0, 1}cl:
as in G2

Return HT[x, Rng]

Algorithm Transc(cl)
Y ‖c‖z ←$ Tr(cl)
Return Y ‖c‖z

Adversary PTr,Ch

1 (ivk)

ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

Output ⊥ and stop

Sign(m)

(a, p) ← m
If ∃z ∈ dom(PT) s.t. // only P1

ID.Vf(ivk, Y1[a]‖0‖z) or // only P1

ID.Vf(ivk, Y1[a]‖1‖z): // only P1

Ch(#Y1[a], 1 − c1[a]) // only P1

Output (1, z) and stop // only P1

Y2 ← Y2[a, p] ; z2 ← z2[a, p]
PT ← PT ∪ {(z1[a], Y2)}
σ ← (c1[a], z2) ; Return σ

Π+1(z1)/Π−1(Y2)

as in G2

Fig. 12. Adversaries for proof of Theorem 4. The oracles and the Transc implemen-
tation are shared by both adversaries. In Sign, we write #Y1[a] for the number of the
Tr query in which the value of Y1[a] was established.

Efficient Double-Authentication-Preventing Signatures 145

Game G3

(ivk, isk, itk) ←$ ID.Kg
ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

(a, p) ← m ; (c1, z2) ← σ
Y2 ← ID.Rsp−1(ivk, c2[a, p], z2)
z1 ← Π−1(Y2)
Y1 ← ID.Rsp−1(ivk, c1, z1)
If Y1 �= Y1[a]: Return false
If c1 �= c1[a]: bad ← 1
Return true

Sign(m)

(a, p) ← m
If ∃z ∈ dom(PT) s.t.

ID.Vf(ivk, Y1[a]‖0‖z) or
ID.Vf(ivk, Y1[a]‖1‖z): bad2 ← 1

PT ← PT ∪ {(z1[a], Y2[a, p])}
σ ← (c1[a], z2[a, p]) ; Return σ

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
If Rng = {0, 1}tl:

If ID.KVf(ivk, x): bad1 ← 1
If Rng = ID.CS(ivk, 1):

Y1[x]‖c1[x]‖z1[x] ←$ Transc(1)
HT[x, Rng] ← Y1[x]

If Rng = {0, 1}cl:
Y2[x]‖c2[x]‖z2[x] ←$ Transc(cl)
HT[x, Rng] ← c2[x]

Return HT[x, Rng]

Π+1(z1)/Π−1(Y2)

as in G2

Algorithm Transc(cl)
as in G2

Adversary PTr,Ch

2 (ivk)

ITK ←$ {0, 1}tl ; vk ← (ivk, ITK)

(m, σ) ←$ ASign,H,Π±1
(vk)

(a, p) ← m ; (c1, z2) ← σ
Y2 ← ID.Rsp−1(ivk, c2[a, p], z2)
z1 ← Π−1(Y2)
Y1 ← ID.Rsp−1(ivk, c1, z1)
If Y1 �= Y1[a]: Return ⊥
If c1 �= c1[a]:

Ch(#Y1[a], c1)
Output (1, z1) and stop

Return ⊥
Algorithm Transc(cl)

Y ‖c‖z ←$ Tr(cl)
Return Y ‖c‖z

Sign(m)

(a, p) ← m
PT ← PT ∪ {(z1[a], Y2[a, p])}
σ ← (c1[a], z2[a, p]) ; Return σ

H(x, Rng)

If HT[x, Rng]: Return HT[x, Rng]
HT[x, Rng] ←$ Rng
If Rng = ID.CS(ivk, 1):

as in G3

If Rng = {0, 1}cl:
as in G3

Return HT[x, Rng]

Π+1(z1)/Π−1(Y2)

as in G3

Fig. 13. Top: game G3 for proof of Theorem 4. Bottom: one more adversary for proof
of Theorem 4. We write #Y1[a] for the number of the Tr query in which the value of
Y1[a] was established.

146 M. Bellare et al.

GQ.Kg

(N, p, q, e, d) ←$ RSA
x ←$ Z

∗
N

X ← xe mod N
Return
((N, e, X), x, d)

Prover

Input: (N, e, X), x, cl

y ←$ Z
∗
N

Y ← ye mod N

z ← yxc mod N

Y �
c�
z �

Verifier

Input: (N, e, X), cl

c ←$ {0, 1}cl

v ← (ze ≡ Y Xc (mod N))

GQ.Ex((N, e, X), Y1, c1, z1, Y2, c2, z2)

If ze
1 �≡ Y1X

c1 ∨ ze
2 �≡ Y2X

c2 : Return ⊥
If Y1 �= Y2 ∨ |c1| �= |c2| ∨ c1 = c2: Return ⊥
z ← z1z

−1
2 mod N

c ← c1 − c2 // w.l.o.g. c > 0
(a, b) ← egcd(e, c)
x ← Xazb mod N
Return x

GQ.Cmt−1((N, e, X), d, Y, cl)

y ← Y d mod N
Return y
. .

Game OWA
RSA

(N, p, q, e, d) ←$ RSA
x ←$ Z

∗
N ; X ← xe mod N

x′ ←$ A(N, e, X)
Return (x′ = x)

Fig. 14. Trapdoor identification scheme GQ associated to RSA generator RSA and
game defining the RSA one-wayness.

6 Instantiation and Implementation

We illustrate how to instantiate our H2 and ID2 transforms, using the GQ iden-
tification scheme as example, to obtain H2[GQ] and ID2[GQ]. Similar instantia-
tions and implementations are possible with many other trapdoor identification
schemes. For instance, see the full version of this paper [2] for instantiations based
on claw-free permutations [10] or the MR identification scheme by Micali and
Reyzin [12]. We implement H2[GQ], ID2[GQ], and H2[MR] to get performance
data.

6.1 GQ-Based Schemes

GQ. An RSA generator for modulus length k is an algorithm RSA that returns
a tuple (N, p, q, e, d) where p, q are distinct odd primes, N = pq is the modu-
lus in the range 2k−1 < N < 2k, encryption and decryption exponents e, d are
in Z

∗
ϕ(N), and ed ≡ 1 (mod ϕ(N)). The assumption is one-wayness, formalized

by defining the ow-advantage of an adversary A against RSA by Advow
RSA(A) =

Pr[OWA
RSA] where the game is in Fig. 14. Let L be a parameter and RSA be such

that gcd(e, c) = 1 for all 0 < c < 2L. (For instance, RSA may select encryption
exponent e as an L+1 bit prime number.) If egcd denotes the extended gcd algo-
rithm that given relatively-prime inputs e, c returns a, b such that ea+cb = 1, the
GQ identification scheme associated to RSA is shown in Fig. 14. Any challenge
length up to L is admissible, i.e., ID.clS ⊆ {1, . . . , L}, and for all cl ∈ ID.clS the
commitment and response space is ID.CS(ivk, cl) = ID.RS(ivk, cl) = Z

∗
N . Extrac-

tion works because of identity Xazb = xeax(c1−c2)b = x. Algorithm GQ.Cmt−1

Efficient Double-Authentication-Preventing Signatures 147

shows that the scheme is trapdoor; that it also is commitment recovering and
has unique responses follows from inspection of the ze = Y Xc condition of the
verification algorithm. Finally, it is a standard result, and in particular follows
from Lemma 1, that KR, CIMP-UU, CIMP-UC security of GQ tightly reduce to
the one-wayness of RSA (note the CIMP-UU case requires a restriction on the
deployed challenge lengths).

H2[GQ]. Figure 15 shows the algorithms of the H2[GQ] DAPS scheme derived
by applying our H2 transform to the GQ identification scheme of Fig. 14. To
estimate security for a given modulus length k we use Theorems 1 and 2, and
the reductions between CIMP-UU and KR security of GQ and the one-wayness
of RSA from Lemma 1. The reductions are tight and so we need to estimate the
advantage of an adversary against the one-wayness of RSA. We do this under the
assumption that the NFS is the best factoring method. Thus, our implementation
uses a 2048-bit modulus and 256-bit hashes and seeds. See below and Fig. 16 for
implementation and performance information.

ID2[GQ]. Figure 15 also shows the algorithms of the DAPS scheme derived by
applying the ID2 transform to GQ. Reductions continue to be tight so instan-
tiation and implementation choices are as for H2[GQ]. Concerning the random
permutation Π on Z

∗
N that the scheme requires, it effectively suffices to con-

struct one that maps ZN to ZN , and we propose one way to instantiate it in the
following.

A random permutation Π on ZN can be constructed from a random per-
mutation Γ on {0, 1}k, where 2k−1 < N < 2k, by cycle walking [6,13]: if x is
the input, let c ← Γ (x); if c ∈ ZN , return c; else recurse on c; the inverse is
analogous. A Feistel network can be used to construct a random permutation Γ
on {0, 1}2n from a set of public random functions F1, . . . , Fr on {0, 1}n. In other
words, for input x0‖x1 ∈ {0, 1}2n, return xr‖xr+1 where xi+1 = xi−1 ⊕ Fi(xi).
Dai and Steinberger [8] give an indifferentiability result for 8 rounds, under the
assumption that the Fi are independent public random functions. We construct
Fi on {0, 1}n as Fi(x) = H(i‖1‖x)‖ . . . ‖H(i‖	‖x) using H = SHA-256, where
	 = n/256 (assuming for simplicity n is a multiple of 256), and the inputs to
SHA-256 are encoded to the same length to avoid length extension attacks that
make Merkle–Damg̊ard constructions differentiable from a random oracle. Our
implementation uses r = 20 rounds of the Feistel network as a safety margin for
good indifferentiability and to avoid the non-tightness of the result [8] for r = 8.

6.2 Implementation and Performance

Implementation. We implemented H2[GQ], H2[MR], and ID2[GQ] (see [2]
for the specification of MR). For comparison purposes we also implemented the
original PS. Our implementation is in C1, using OpenSSL’s BIGNUM library for
number theoretic operations. We also compared with OpenSSL’s implementation

1 The source code can be downloaded from https://github.com/dstebila/daps.

https://github.com/dstebila/daps

148 M. Bellare et al.

H2[GQ].KgH

((N, e, X), x, d) ←$ GQ.Kg ; ITK ← d ⊕ H(x, {0, 1}k)
Return ((N, e, X, ITK), (x, d))

H2[GQ].SigH((N, e, X, ITK), (x, d), m)

(a, p) ← m ; s ←$ {0, 1}sl ; Y ← H(a,Z∗
N) ; y ← Y d mod N

c ← H(a‖p‖s, {0, 1}cl) ; z ← yxc mod N ; σ ← (z, s) ; Return σ

H2[GQ].VfH((N, e, X, ITK), m, σ)

(a, p) ← m ; (z, s) ← σ ; Y ← H(a,Z∗
N) ; c ← H(a‖p‖s, {0, 1}cl)

Return (ze ≡ Y Xc (mod N))

H2[GQ].ExH((N, e, X, ITK), m1, m2, σ1, σ2)

For i = 1, 2 do
(ai, pi) ← mi ; (zi, si) ← σi

Yi ← H(ai,Z
∗
N) ; ci ← H(ai‖pi‖si, {0, 1}cl)

x ← GQ.Ex((N, e, X), Y1, c1, z1, Y2, c2, z2)
d ← H(x, {0, 1}k) ⊕ ITK ; Return (x, d)

ID2[GQ].KgH,Π±1

((N, e, X), x, d) ←$ GQ.Kg ; ITK ← d ⊕ H(x, {0, 1}k)
Return ((N, e, X, ITK), (x, d))

ID2[GQ].SigH,Π±1
((N, e, X, ITK), (x, d), m)

(a, p) ← m ; Y1 ← H(a,Z∗
N) ; c1 ←$ {0, 1} ; y1 ← Y d

1 mod N
z1 ← y1x

c1 mod N ; Y2 ← Π+1(z1) ; y2 ←$ Y d
2 mod N

c2 ← H(a‖p, {0, 1}cl) ; z2 ← y2x
c2 mod N

σ ← (c1, z2) ; Return σ

ID2[GQ].VfH,Π±1
((N, e, X, ITK), m, σ)

(a, p) ← m ; (c1, z2) ← σ ; c2 ← H(a‖p, {0, 1}cl)
Y2 ← (z2)

eX−c2 ; z1 ← Π−1(Y2) ; Y1 ← (z1)
eX−c1

Return (Y1 = H(a,Z∗
N))

ID2[GQ].ExH,Π±1
((N, e, X, ITK), m1, m2, σ1, σ2)

For i = 1, 2 do
(ai, pi) ← mi ; (c1,i, z2,i) ← σi ; c2,i ← H(ai‖pi, {0, 1}cl)
Y2,i ← (z2,i)

eX−c2,i ; z1,i ← Π−1(Y2,i)
Y1,i ← (z1,i)

eX−c1,i

If Y2,1 = Y2,2: x ← GQ.Ex((N, e, X), Y2,1, c2,1, z2,1, Y2,2, c2,2, z2,2)
Else: x ← GQ.Ex((N, e, X), Y1,1, c1,1, z1,1, Y1,2, c1,2, z1,2)
d ← H(x, {0, 1}k) ⊕ ITK ; Return (x, d)

Fig. 15. DAPS schemes H2[GQ, cl, sl] and ID2[GQ, cl] derived via our transforms from
ID scheme GQ.

Efficient Double-Authentication-Preventing Signatures 149

Scheme
Operation count Runtime (ms) Size (bits)
sign verify sign verify pub. sig.

PS [16] n expk
k n expk

k 516.58 ±15.3 161.84 ±7.96 2 048 528 384

RKS [17] 2λ grp exp 2λ grp dbl exp 13.48 5.99 640 131 072

H2[GQ] (Fig. 15) 2 exp
k/2

k/2 +expl
k expl

k 0.88 ±0.04 0.41 ±0.02 6 144 2 304

ID2[GQ] (Fig. 15) 4 exp
k/2

k/2 +2 expl
k 3 expl

k 1.80 ±0.14 1.49 ±0.26 6 144 2 049

H2[MR] [2] 2 exp
k/2

k/2 +expl
k 1.5l mulk 1.27 ±0.16 0.37 ±0.01 2 048 2 304

RSA PKCS#1v1.5 2 exp
k/2

k/2 exp
|e|
k 0.53 ±0.08 0.02 ±0.00 2 048 2 048

Fig. 16. Operation count, average runtime, and public key/signature sizes of DAPS
schemes and RSA signatures. By expx

m we denote the cost of computing a modular
exponentiation with modulus of bitlength m and exponent of bitlength x. All concrete
values are for the λ = 128-bit security level: timing and size values for RSA and
factoring based schemes are based on k = 2048-bit moduli and n = l = 2λ = 256-bit
hash values, and for the RKS scheme we assume a group with 2λ = 256-bit element
representation, hash values of the same length, and a binary tree. See also [2].

of standard RSA PKCS#1v1.5 signatures currently used by CAs for creating cer-
tificates. We use the Chinese remainder theorem to speed-up secret key opera-
tions whenever possible. For GQ, we use encryption exponent e = nextprime(2cl);
for RSA public key encryption we use OpenSSL’s default public key exponent,
e = 65537. We compared against the RKS DAPS implementation.

Performance. We measured timings of our implementations on an Intel Core
i7 (6700K “Skylake”) with 4 cores each running at 4.0 GHz. The tests were run on
a single core with TurboBoost and hyper-threading disabled. Software was com-
piled for the x86 64 architecture with -O3 optimizations using llvm 8.0.0 (clang
800.0.38). The OpenSSL version used was v1.0.2j. We use RKS’ implementation
of their DAPS, which relies on a different library for the secp256k1 elliptic
curve. Table 16 shows mean runtimes in milliseconds (with standard deviations)
and key sizes using 2048-bit modulii and 256-bit hashes. For DAPS schemes,
address is 15 bytes and payload is 33 bytes; for RSA PKCS#1v1.5, message is
48 bytes. Times reported are an average over 30 s. The table omits runtimes for
key generation as this is a one-time operation.

Compared with the existing PS, our H2[GQ], ID2[GQ], and H2[MR] schemes
are several orders of magnitude faster for both signing and verification. When
using 2048-bit modulii, H2[GQ] signatures can be generated 587× and veri-
fied 394× faster, and ID2[GQ] signatures can be generated 287× and verified
108× faster; moreover our signatures are 229× and 257× shorter, respectively,
compared with PS, and ours are nearly the same size as RSA PKCS#1v1.5 sig-
natures. Compared with the previous fastest and smallest DAPS, RKS, H2[GQ]
signatures can be generated and verified 15× faster; ID2[GQ] generated 7×
and verified 4× faster; and H2[MR] generated 10× and verified 16× faster.
H2[GQ] and H2[MR] signatures are 56× shorter compared with RKS; H2[GQ]

150 M. Bellare et al.

and ID2[GQ] public keys are 9.6× larger, though still under 1 KiB total, and
H2[MR] keys are only 3.2× larger than RKS.

Signing times for our schemes are competitive with RSA PKCS#1v1.5: using
H2[GQ], ID2[GQ], or H2[MR] for signatures in digital certificates would incur
little computational or size overhead relative to currently used signatures.

Acknowledgments. We thank the authors of [17] for helpful comments about their
scheme. MB was supported by NSF grants CNS-1228890 and CNS-1526801, a gift from
Microsoft corporation and ERC Project ERCC (FP7/615074). BP was supported by
ERC Project ERCC (FP7/615074). DS was supported in part by Australian Research
Council (ARC) Discovery Project grant DP130104304 and Natural Sciences and Engi-
neering Research Council of Canada (NSERC) Discovery grant RGPIN-2016-05146 and
an NSERC Discovery Accelerator Supplement.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 28

2. Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: efficient
double-authentication-preventing signatures. Cryptology ePrint Archive, Report
2016/1016 (2016). http://eprint.iacr.org/2016/1016

3. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53890-6 15

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993. doi:10.1145/168588.168596

5. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). doi:10.1007/
11761679 25

6. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). doi:10.
1007/3-540-45760-7 9

7. Cramer, R.: Modular design of secure, yet practical protocls. Ph.D. thesis, Univer-
sity of Amsterdam (1996)

8. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53018-4 4

9. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

10. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988). doi:10.
1137/0217017

http://dx.doi.org/10.1007/3-540-46035-7_28
http://eprint.iacr.org/2016/1016
http://dx.doi.org/10.1007/978-3-662-53890-6_15
http://dx.doi.org/10.1007/978-3-662-53890-6_15
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/3-540-45760-7_9
http://dx.doi.org/10.1007/3-540-45760-7_9
http://dx.doi.org/10.1007/978-3-662-53018-4_4
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1137/0217017
http://dx.doi.org/10.1137/0217017

Efficient Double-Authentication-Preventing Signatures 151

11. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 216–231. Springer, Heidelberg (1990). doi:10.1007/0-387-34799-2 16

12. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes.
J. Cryptol. 15(1), 1–18 (2002). doi:10.1007/s00145-001-0005-8

13. Miracle, S., Yilek, S.: Reverse cycle walking and its applications. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 679–700. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53887-6 25

14. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–
369. Springer, Heidelberg (1998). doi:10.1007/BFb0055741

15. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 436–453.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11203-9 25

16. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. Int. J.
Inf. Secur. (2015). doi:10.1007/s10207-015-0307-8

17. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: penalizing equivocation
by loss of bitcoins. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 15, pp. 219–230.
ACM Press, October 2015. doi:10.1145/2810103.2813686

http://dx.doi.org/10.1007/0-387-34799-2_16
http://dx.doi.org/10.1007/s00145-001-0005-8
http://dx.doi.org/10.1007/978-3-662-53887-6_25
http://dx.doi.org/10.1007/BFb0055741
http://dx.doi.org/10.1007/978-3-319-11203-9_25
http://dx.doi.org/10.1007/s10207-015-0307-8
http://dx.doi.org/10.1145/2810103.2813686

Chameleon-Hashes with Ephemeral Trapdoors

And Applications to Invisible Sanitizable Signatures

Jan Camenisch1(B), David Derler2, Stephan Krenn3, Henrich C. Pöhls4,
Kai Samelin1,5, and Daniel Slamanig2

1 IBM Research – Zurich, Rüschlikon, Switzerland
{jca,ksa}@zurich.ibm.com

2 IAIK, Graz University of Technology, Graz, Austria
{david.derler,daniel.slamanig}@tugraz.at

3 AIT Austrian Institute of Technology GmbH, Vienna, Austria
stephan.krenn@ait.ac.at

4 ISL & Chair of IT-Security, University of Passau, Passau, Germany
hp@sec.uni-passau.de

5 TU Darmstadt, Darmstadt, Germany

Abstract. A chameleon-hash function is a hash function that involves
a trapdoor the knowledge of which allows one to find arbitrary collisions
in the domain of the function. In this paper, we introduce the notion of
chameleon-hash functions with ephemeral trapdoors. Such hash functions
feature additional, i.e., ephemeral, trapdoors which are chosen by the
party computing a hash value. The holder of the main trapdoor is then
unable to find a second pre-image of a hash value unless also provided
with the ephemeral trapdoor used to compute the hash value. We present
a formal security model for this new primitive as well as provably secure
instantiations. The first instantiation is a generic black-box construction
from any secure chameleon-hash function. We further provide three direct
constructions based on standard assumptions. Our new primitive has
some appealing use-cases, including a solution to the long-standing open
problem of invisible sanitizable signatures, which we also present.

1 Introduction

Chameleon-hash functions, also called trapdoor-hash functions, are hash func-
tions that feature a trapdoor that allows one to find arbitrary collisions in the
domain of the functions. However, chameleon-hash functions are collision resis-
tant as long as the corresponding trapdoor (or secret key) is not known. More
precisely, a party who is privy of the trapdoor is able to find arbitrary colli-
sions in the domain of the function. Example instantiations include trapdoor-
commitment, and equivocal commitment schemes.

The full version of this paper is available as IACR Cryptology ePrint Archive Report
2017/011. J. Camenisch and K. Samelin were supported by the EU ERC PERCY,
grant agreement n◦32131. D. Derler, S. Krenn, H.C. Pöhls and D. Slamanig were
supported by EU H2020 project Prismacloud, grant agreement n◦644962.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 152–182, 2017.
DOI: 10.1007/978-3-662-54388-7 6

Chameleon-Hashes with Ephemeral Trapdoors and Applications 153

One prominent application of this primitive are chameleon signatures [47].
Here, the intended recipient—who knows the trapdoor—of a signature σ for
a message m can equivocate it to another message m′ of his choice. This, in
turn, means that a signature σ cannot be used to convince any other party of
the authenticity of m, as the intended recipient could have “signed” arbitrary
messages on its own. Many other applications appear in the literature, some of
which we discuss in the related work section. However, all current constructions
are “all-or-nothing” in that a party who computes a hash with respect to some
public key cannot prevent the trapdoor holder from finding collisions. This can
be too limiting for some use-cases.

Contribution. We introduce a new primitive dubbed chameleon-hash functions
with ephemeral trapdoors. In a nutshell, this primitive requires that a collision
in the hash function can be computed only when two secrets are known, i.e.,
the main trapdoor, and an ephemeral one. The main trapdoor is the secret
key corresponding to the chameleon-hash function public key, while the second,
ephemeral, trapdoor is generated by the party computing the hash value. The
latter party can then decide whether the holder of the long-term secret key shall
be able to equivocate the hash by providing or withholding the second trapdoor
information. We present a formal security model for this new primitive. Fur-
thermore, we present stronger definitions for existing chameleon-hash functions
not considered before, including the new notion of uniqueness, and show how to
construct chameleon-hash functions being secure in this stronger model. These
new notions may also be useful in other scenarios.

Additionally, we provide four provably secure constructions for chameleon-
hash functions with ephemeral trapdoors. The first is bootstrapped, while the
three direct constructions are built on RSA-like and the DL assumption. Our new
primitive has some interesting applications, including the first provably secure
instantiation of invisible sanitizable signatures, which we also present. Additional
applications of our new primitive may include revocable signatures [43], but also
simulatable equivocable commitments [34]. However, in contrast to equivocable
commitments, we want that parties can actually equivocate, not only a simulator.
Therefore, we chose to call this primitive a chameleon-hash function rather than a
commitment. Note, the primitive is different from “double-trapdoor chameleon-
hash functions” [13,25,49], where knowing one out of two secrets is enough to
produce collisions.

Related Work and State-of-the-Art. Chameleon-hash functions were intro-
duced by Krawczyk and Rabin [47], and are based on some first ideas given
by Brassard et al. [12]. Later, they have been ported to the identity-based set-
ting (ID-based chameleon-hash functions), where the holder of a master secret
key can extract new secret keys for each identity [6,8,26,57,60]. These were
mainly used to tackle the key-exposure problem [7,47]. Key exposure means
that seeing a single collision in the hash allows to find further collisions by
extracting the corresponding trapdoor. This problem was then directly solved by

154 J. Camenisch et al.

the introduction of “key-exposure free” chameleon-hash functions [7,36,37,57],
which prohibit extracting the (master) secret key. This allows for the partial
re-use of generated key material. Brzuska et al. then proposed a formal frame-
work for tag-based chameleon-hashes secure under random-tagging attacks, i.e.,
random identities [15].

Beside this “plain” usage of the aforementioned primitive, chameleon-hash
functions also proved useful in other areas such as on/offline signatures [27,32,
58], (tightly) secure signature schemes [11,44,52], but also sanitizable signature
schemes [4,15,41] and identity-based encryption schemes [61]. Moreover they
are useful in context of trapdoor-commitments, direct anonymous attestation,
Σ-protocols, and distributed hashing [3,9,12,34].

Additional related work is discussed when presenting the application of our
new primitive.

2 Preliminaries

Let us give our notation, the required assumptions, building blocks, and the
extended framework for chameleon-hashes (without ephemeral trapdoors) first.

Notation. λ ∈ N denotes our security parameter. All algorithms implicitly
take 1λ as an additional input. We write a ← A(x) if a is assigned the output
of algorithm A with input x. An algorithm is efficient if it runs in probabilistic
polynomial time (ppt) in the length of its input. For the remainder of this paper,
all algorithms are ppt if not explicitly mentioned otherwise. Most algorithms
may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception. If S is
a set, we write a ← S to denote that a is chosen uniformly at random from
S. For a message m = (m[1],m[2], . . . ,m[�]), we call m[i] a block, while � ∈ N

denotes the number of blocks in a message m. For a list we require that we
have an injective, and efficiently reversible encoding, mapping the list to {0, 1}∗.
In the definitions we speak of a general message space M to be as generic as
possible. For our instantiations, however, we let the message space M be {0, 1}∗

to reduce unhelpful boilerplate notation. A function ν : N → R≥0 is negligible, if
it vanishes faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that
ν(n) ≤ n−k, ∀n > n0. For certain security properties we require that values only
have one canonical representation, e.g., a “4” is not the same as a “04”, even if
written as elements of N for brevity. Finally, for a group G we use G∗ to denote
G \ {1G}.

2.1 Assumptions

Discrete Logarithm Assumption. Let (G, g, q) ← GGen(1λ) be a group
generator for a multiplicatively written group G of prime-order q with log2 q = λ,
generated by g, i.e., 〈g〉 = G. The discrete-logarithm problem (DLP) associated
to GGen is to find x when given G, g, q, and gx with x ← Zq. The DL assumption

Chameleon-Hashes with Ephemeral Trapdoors and Applications 155

now states that the DLP is hard, i.e., that for every ppt adversary A, there exists
a negligible function ν such that:

Pr[(G, g, q) ← GGen(1λ), x ← Zq, x
′ ← A(G, g, q, gx) : x = x′] ≤ ν(λ).

We sometimes sample from Z
∗
q instead of Zq. This changes the view of an adver-

sary only negligibly, and is thus not made explicit.

2.2 Building Blocks

Collision-Resistant Hash Function Families. A family {Hk
R}k∈K of hash-

functions Hk
R : {0, 1}∗ → R indexed by key k ∈ K is collision-resistant if for any

ppt adversary A there exists a negligible function ν such that:

Pr[k ← K, (v, v′) ← A(k) : Hk
R(v) = Hk

R(v′) ∧ v �= v′] ≤ ν(λ).

Public-Key Encryption Schemes. Public-key encryption allows to encrypt
a message m using a given public key pk so that the resulting ciphertext can be
decrypted using the corresponding secret key sk. More formally:

Definition 1 (Public-Key Encryption Schemes). A public-key encryption
scheme Π is a triple (KGenenc,Enc,Dec) of ppt algorithms such that:

KGenenc. The algorithm KGenenc on input security parameter λ outputs the pri-
vate and public keys of the scheme: (skenc, pkenc) ← KGenenc(1λ).

Enc. The algorithm Enc gets as input the public key pkenc, and the message
m ∈ M and outputs a ciphertext c: c ← Enc(pkenc,m).

Dec. The algorithm Dec on input a private key skenc and a ciphertext c outputs
a message m ∈ M ∪ {⊥}: m ← Dec(skenc, c).

Definition 2 (Secure Public-Key Encryption Schemes). We call a public-
key encryption scheme Π IND-T secure, if it is correct, and IND-T-secure with
T ∈ {CPA,CCA2}.
The formal security definitions are given in the full version of this paper.

Non-interactive Proof Systems. Let L be an NP-language with associated
witness relation R, i.e., L = {x | ∃w : R(x,w) = 1}. Throughout this paper, we
use the Camenisch-Stadler notation [20] to express the statements proven in non-
interactive, simulation-sound extractable, zero-knowledge (as defined below). In
particular, we write π ← NIZKPoK{(w) : R(x,w) = 1} to denote the compu-
tation of a non-interactive, simulation-sound extractable, zero-knowledge proof,
where all values not in the parentheses are assumed to be public. For example,
let L be defined by the following NP-relation for a group (G, g, q) ← GGen(1λ):

((g, h, y, z), (a, b)) ∈ R ⇐⇒ y = ga ∧ z = gbha.

156 J. Camenisch et al.

Then, we write π ← NIZKPoK{(a, b) : y = ga ∧ z = gbha} to denote the
corresponding proof of knowledge of witness (a, b) ∈ Z

2
q with respect to the

statement (g, h, y, z) ∈ G4. Additionally, we use {false, true} ← Verify(x, π) to
denote the corresponding verification algorithm and crs ← Gen(1λ) to denote the
crs generation algorithm. We do not make the crs explicit and, for proof systems
where a crs is required, we assume it to be an implicit input to all algorithms.

Definition 3. We call a NIZKPoK secure, if it is complete, simulation-sound
extractable, and zero-knowledge.

The corresponding definitions can be found in the full version of this paper.

Chameleon-Hashes. Let us formally define a “standard” chameleon-hash. The
framework is based upon the work done by Ateniese et al. and Brzuska et al. [5,
15], but adapted to fit our notation. Additionally, we provide some extended
security definitions.

Definition 4. A chameleon-hash CH consists of five algorithms (CParGen,
CKGen,CHash,CHashCheck,Adapt), such that:

CParGen. The algorithm CParGen on input security parameter λ outputs public
parameters of the scheme: ppch ← CParGen(1λ). For brevity, we assume that
ppch is implicit input to all other algorithms.

CKGen. The algorithm CKGen given the public parameters ppch outputs the pri-
vate and public keys of the scheme: (skch, pkch) ← CKGen(ppch).

CHash. The algorithm CHash gets as input the public key pkch, and a mes-
sage m to hash. It outputs a hash h, and some randomness r: (h, r) ←
CHash(pkch,m).1

CHashCheck. The deterministic algorithm CHashCheck gets as input the pub-
lic key pkch, a message m, randomness r, and a hash h. It outputs a
decision d ∈ {false, true} indicating whether the hash h is valid: d ←
CHashCheck(pkch,m, r, h).

Adapt. The algorithm Adapt on input of secret key skch, the old message m, the
old randomness r, hash h, and a new message m′ outputs new randomness
r′: r′ ← Adapt(skch,m,m′, r, h).

Correctness. For a CH we require the correctness property to hold. In par-
ticular, we require that for all λ ∈ N, for all ppch ← CParGen(1λ), for all
(skch, pkch) ← CKGen(ppch), for all m ∈ M, for all (h, r) ← CHash(pkch,m),
for all m′ ∈ M, we have for all for all r′ ← Adapt(skch,m,m′, r, h), that true =
CHashCheck(pkch,m, r, h) = CHashCheck(pkch,m′, r′, h). This definition captures
perfect correctness. The randomness is drawn by CHash, and not outside. This
was done to capture “private-coin” constructions [5].

Indistinguishability. Indistinguishability requires that the randomnesses r does
not reveal if it was obtained through CHash or Adapt. The messages are chosen
1 The randomness r is also sometimes called “check value” [5].

Chameleon-Hashes with Ephemeral Trapdoors and Applications 157

by the adversary. We relax the perfect indistinguishability definition of Brzuska
et al. [15] to a computational version, which is enough for most use-cases, includ-
ing ours.

Fig. 1. Indistinguishability

Note that we need to return ⊥ in the HashOrAdapt oracle, as the adversary
may try to enter a message m /∈ M, even if M = {0, 1}∗, which makes the algo-
rithm output ⊥. If we would not do this, the adversary could trivially decide
indistinguishability. For similar reasons these checks are also included in other
definitions.

Definition 5 (Indistinguishability). A chameleon-hash CH is indistinguish-
able, if for any efficient adversary A there exists a negligible function ν such that∣
∣
∣Pr[IndistinguishabilityCHA (λ) = 1] − 1

2

∣
∣
∣ ≤ ν(λ) . The corresponding experiment is

depicted in Fig. 1.

Collision Resistance. Collision resistance says, that even if an adversary has
access to an adapt oracle, it cannot find any collisions for messages other than the
ones queried to the adapt oracle. Note, this is an even stronger definition than
key-exposure freeness [7]: key-exposure freeness only requires that one cannot
find a collision for some new “tag”, i.e., for some auxiliary value for which the
adversary has never seen a collision.

Definition 6 (Collision-Resistance). A chameleon-hash CH is collision-res-
istant, if for any efficient adversary A there exists a negligible function ν such
that Pr[CollResCHA (1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in
Fig. 2.

Uniqueness. Uniqueness requires that it is hard to come up with two different
randomness values for the same message m∗ such that the hashes are equal, for
the same adversarially chosen pk∗.

158 J. Camenisch et al.

Fig. 2. Collision resistance

Fig. 3. Uniqueness

Definition 7 (Uniqueness). A chameleon-hash CH is unique, if for any effi-
cient adversary A there exists a negligible function ν such that Pr[UniquenessCHA
(1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in Fig. 3.

Definition 8 (Secure Chameleon-Hashes). We call a chameleon-hash CH
secure, if it is correct, indistinguishable, and collision-resistant.

We do not consider uniqueness as a fundamental security property, as it depends
on the concrete use-case whether this notion is required.

In the full version of this paper, we show how to construct a unique
chameleon-hash satisfying our strong notions, based on the ideas by Brzuska
et al. [15].

3 Chameleon-Hashes with Ephemeral Trapdoors

As already mentioned, a chameleon-hash with ephemeral trapdoor (CHET)
allows to prevent the holder of the trapdoor skch from finding collisions, as long
as no additional ephemeral trapdoor etd is known. This additional ephemeral
trapdoor is chosen freshly for each new hash, and providing, or withholding, this
trapdoor thus allows to decide upon each hash computation if finding a collision
is possible for the holder of the long-term trapdoor. Hence, we need to introduce
a new framework given next, which is also accompanied by suitable security
definitions.

Chameleon-Hashes with Ephemeral Trapdoors and Applications 159

Definition 9 (Chameleon-Hashes with Ephemeral Trapdoors). A cham-
eleon-hash with ephemeral trapdoors CHET is a tuple of five algorithms (CParGen,
CKGen,CHash,CHashCheck,Adapt), such that:

CParGen. The algorithm CParGen on input security parameter λ outputs the pub-
lic parameters: ppch ← CParGen(1λ). For simplicity, we assume that ppch is
an implicit input to all other algorithms.

CKGen. The algorithm CKGen given the public parameters ppch outputs the long-
term private and public keys of the scheme: (skch, pkch) ← CKGen(ppch).

CHash. The algorithm CHash gets as input the public key pkch, and a message
m to hash. It outputs a hash h, randomness r, and the trapdoor information:
(h, r, etd) ← CHash(pkch,m).

CHashCheck. The deterministic algorithm CHashCheck gets as input the public
key pkch, a message m, a hash h, and randomness r. It outputs a decision
bit d ∈ {false, true}, indicating whether the given hash is correct: d ←
CHashCheck(pkch,m, r′, h).

Adapt. The algorithm Adapt gets as input skch, the old message m, the old ran-
domness r, the new message m′, the hash h, and the trapdoor information
etd and outputs new randomness r′: r′ ← Adapt(skch,m,m′, r, h, etd).

Correctness. For each CHET we require the correctness properties to hold.
In particular, we require that for all security parameters λ ∈ N, for all
ppch ← CParGen(1λ), for all (skch, pkch) ← CKGen(ppch), for all m ∈ M, for
all (h, r, etd) ← CHash(pkch,m), we have CHashCheck(pkch,m, r, h) = true, and
additionally for all m′ ∈ M, for all r′ ← Adapt(skch,m,m′, r, h, etd), we have
CHashCheck(pkch,m′, r′, h) = true. This definition captures perfect correctness.
We also require some security guarantees, which we introduce next.

Indistinguishability. Indistinguishability requires that the randomnesses r does
not reveal if it was obtained through CHash or Adapt. In other words, an outsider
cannot decide whether a message is the original one or not.

Definition 10 (Indistinguishability). A chameleon-hash with ephemeral
trapdoor CHET is indistinguishable, if for any efficient adversary A there exists a
negligible function ν such that

∣
∣
∣Pr[IndistinguishabilityCHET

A (λ) = 1] − 1
2

∣
∣
∣ ≤ ν(λ) .

The corresponding experiment is depicted in Fig. 4.

Public Collision Resistance. Public collision resistance requires that, even if an
adversary has access to an Adapt oracle, it cannot find any collisions by itself.
Clearly, the collision must be fresh, i.e., must not be produced using the Adapt
oracle.

Definition 11 (Public Collision-Resistance). A chameleon-hash with ephe-
meral trapdoor CHET is publicly collision-resistant, if for any efficient adversary
A there exists a negligible function ν such that Pr[PublicCollResCHET

A (1λ) = 1] ≤
ν(λ). The corresponding experiment is depicted in Fig. 5.

160 J. Camenisch et al.

Fig. 4. Indistinguishability

Fig. 5. Public collision-resistance

Private Collision-Resistance. Private collision resistance requires that even the
holder of the secret key skch cannot find collisions as long as etd is unknown.
This is formalized by a honest hashing oracle which does not return etd. Hence,
A’s goal is to return an actual collision on a non-adversarially generated hash h,
for which it does not know etd.

Definition 12 (Private Collision-Resistance). A chameleon-hash with
ephemeral trapdoor CHET is privately collision-resistant, if for any efficient adver-
sary A there exists a negligible function ν such that Pr[PrivateCollResCHET

A
(1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in Fig. 6.

Uniqueness. Uniqueness requires that it is hard to come up with two different
randomness values for the same message m∗ and hash value h∗, where pk∗ is
adversarially chosen.

Chameleon-Hashes with Ephemeral Trapdoors and Applications 161

Fig. 6. Private collision-resistance

Fig. 7. Uniqueness

Definition 13 (Uniqueness). A chameleon-hash with ephemeral trapdoor
CHET is unique, if for any efficient adversary A there exists a negligible function
ν such that Pr[UniquenessCHET

A (1λ) = 1] ≤ ν(λ). The corresponding experiment
is depicted in Fig. 7.

Definition 14 (Secure Chameleon-Hashes with Ephemeral Trapdo-
ors). We call a chameleon-hash with ephemeral trapdoor CHET secure, if it
is correct, indistinguishable, publicly collision-resistant, and privately collision-
resistant.

Note, we do not require that a secure CHET is unique, as it depends on the
use-case whether this strong security notion is required.

4 Constructions

Regarding constructions of CHET schemes, we first ask the natural question
whether CHETs can be built from existing primitives in a black-box way. Interest-
ingly, we can show how to elegantly “bootstrap” a CHET scheme in a black-box
fashion from any existing secure (and unique) chameleon-hash. Since, however,
a secure chameleon-hash does not exist to date, we show how to construct it in
based on the ideas by Brzuska et al. [15]. If one does not require uniqueness, one
can, e.g., resort to the recent scheme given by Ateniese et al. [5].

162 J. Camenisch et al.

We then proceed in presenting three direct constructions, two based on the
DL assumption, and one based on an RSA-like assumption. While the DL-based
constructions are not unique, the construction from RSA-like assumptions even
achieves uniqueness. We however note that this strong security notion is not
required in all use-cases. For example, in our application scenario (cf. Sect. 5),
the CHETs do not need to be unique.

4.1 Black-Box Construction: Bootstrapping

We now present a black-box construction from any existing chameleon-hash.
Namely, we show how one can achieve our desired goals by combining two
instances of a secure chameleon-hash CH.

Construction 1 (Bootstrapped Construction). We omit obvious checks
for brevity. Let CHET be defined as:

CParGen. The algorithm CParGen does the following:
1. Return ppch ← CH.CParGen(1λ).

CKGen. The algorithm CKGen generates the key pair in the following way:
1. Return (sk1ch, pk

1
ch) ← CH.CKGen(ppch).

CHash. To hash a message m, w.r.t. public key pk1ch do:
1. Let (sk2ch, pk

2
ch) ← CH.CKGen(ppch).

2. Let (h1, r1) ← CH.CHash(pk1ch,m).
3. Let (h2, r2) ← CH.CHash(pk2ch,m).
4. Return ((h1, h2, pk

2
ch), (r1, r2), sk

2
ch).

CHashCheck. To check whether a given hash h = (h1, h2, pk
2
ch) is valid on input

pkch = pk1ch, m, r = (r1, r2), do:
1. Let b1 ← CH.CHashCheck(pk1ch,m, r1, h1).
2. Let b2 ← CH.CHashCheck(pk2ch,m, r2, h2).
3. If b1 = false ∨ b2 = false, return false.
4. Return true.
Adapt. To find a collision w.r.t. m, m′, randomness r = (r1, r2), hash h =
(h1, h2, pk

2
ch), etd = sk2ch, and skch = sk1ch do:

1. If false = CHashCheck(pkch,m, r, h), return ⊥.
2. Compute r′

1 ← CH.Adapt(sk1ch,m,m′, r1, h1).
3. Compute r′

2 ← CH.Adapt(sk2ch,m,m′, r2, h2).
4. Return (r′

1, r
′
2).

The proof of the following theorem can be found in the full version of this paper.

Theorem 1. If CH is secure and unique, then the chameleon-hash with
ephemeral trapdoors CHET in Construction 1 is secure, and unique.

This construction is easy to understand and only uses standard primitives. The
question is now, if we can also directly construct CHET, which we answer to the
affirmative subsequently.

Chameleon-Hashes with Ephemeral Trapdoors and Applications 163

4.2 A First Direct Construction

We now present a direct construction in groups where the DLP is hard using
some ideas related to Pedersen commitments [53]. In a nutshell, the long-term
secret is the discrete logarithm x between two elements g and h (i.e., gx = h)
of the long-term public key, while the ephemeral trapdoor is the randomness
of the “commitment”. To prohibit that a seen collision allows to extract the
long-term secret key x, both trapdoors are hidden in a NIZKPoK. To make
the “commitment” equivocable, it is then again randomized. To avoid that the
holder of skch needs to store state, the randomness is encrypted to a public
key of a IND-CCA2 secure encryption scheme contained in pkch. Security then
directly follows from the DL assumption, IND-CCA2, the collision-resistance of
the used hash function, and the extractability property of the NIZKPoK system.
For brevity we assume that the NP-languages involved in the NIZKPoKs are
implicitly defined by the scheme. Note, this construction is not unique.

Construction 2 (CHET in Known-Order Groups). Let {Hk
Z∗

q
}k∈K denote

a family of collision-resistant hash functions Hk
Z∗

q
: {0, 1}∗ → Z

∗
q indexed by a

key k ∈ K and let CHET be as follows:

CParGen. The algorithm CParGen generates the public parameters in the following
way:
1. Let (G, g, p) ← GGen(1λ).
2. Let k ← K for the hash function.
3. Let crs ← Gen(1λ).2

4. Return ((G, g, q), k, crs).
CKGen. The algorithm CKGen generates the key pair in the following way:

1. Draw random x ← Z
∗
q . Set h ← gx.

2. Generate πpk ← NIZKPoK{(x) : h = gx}.
3. Let (skenc, pkenc) ← Π.KGenenc(1λ).
4. Return ((x, skenc), (h, πpk, pkenc)).

CHash. To hash m w.r.t. pkch = (h, πpk, pkenc) do:
1. Return ⊥, if h /∈ G∗.
2. If πpk is not valid, return ⊥.
3. Draw random r ← Z

∗
q .

4. Draw random etd ← Z
∗
q .

5. Let h′ ← getd.
6. Generate πt ← NIZKPoK{(etd) : h′ = getd)}.
7. Encrypt r, i.e., let C ← Π.Enc(pkenc, r).
8. Let a ← Hk

Z∗
q
(m).

9. Let p ← hr.
10. Generate πp ← NIZKPoK{(r) : p = hr}.
11. Let b ← ph′a.
12. Return ((b, h′, πt), (p,C, πp), etd).

2 Actually we need one crs per language, but we do not make this explicit here.

164 J. Camenisch et al.

CHashCheck. To check whether a given hash (b, h′, πt) is valid on input pkch =
(h, πpk, pkenc),m, r = (p,C, πp), do:
1. Return false, if p /∈ G∗ ∨ h′ /∈ G∗.
2. If either πp, πt, or πpk are not valid, return ⊥.
3. Let a ← Hk

Z∗
q
(m).

4. Return true, if b = ph′a.
5. Return false.

Adapt. To find a collision w.r.t. m, m′, (b, h′, πt), randomness (p,C, πp), and
trapdoor information etd, and skch = (x, skenc) do:
1. If false = CHashCheck(pkch,m, (p,C, πp), (b, h′, πt)), return ⊥.
2. Decrypt C, i.e., r ← Π.Dec(skenc, C). If r = ⊥, return ⊥.
3. If h′ �= getd, return ⊥.
4. Let a ← Hk

Z∗
q
(m).

5. Let a′ ← Hk
Z∗

q
(m′).

6. If p �= gxr, return ⊥.
7. If a = a′, return (p,C, πp).
8. Let r′ ← rx+a·etd−a′·etd

x .
9. Let p′ ← hr′

.
10. Encrypt r′, i.e., let C ′ ← Π.Enc(pkenc, r′).
11. Generate π′

p ← NIZKPoK{(r′) : p′ = hr′}.
12. Return (p′, C ′, π′

p).

Some of the checks can already be done in advance, e.g., at a PKI, which only
generates certificates, if the restrictions on each public key are fulfilled.

The proof of the following Theorem is given in the full version of this paper.

Theorem 2. If the DL assumption in G holds, Hk
Z

∗
|G|

is collision-resistant, Π

is IND-CCA2 secure, and NIZKPoK is secure, then the chameleon-hash with
ephemeral trapdoors CHET in Construction 2 is secure.

Two further constructions, one based on the DL assumption in gap-groups, and
one based on RSA-like assumptions (in the random oracle model, which is also
unique), are given in the full version of this paper.

5 Application: Invisible Sanitizable Signatures

Informally, security of digital signatures requires that a signature σ on a message
m becomes invalid as soon as a single bit of m is altered [40]. However, there
are many real-life use-cases in which a subsequent change to signed data by a
semi-trusted party without invalidating the signature is desired. As a simplified
example, consider a patient record which is signed by a medical doctor. The
accountant, which charges the insurance company, only requires knowledge of
the treatments and the patient’s insurance number. This protects the patient’s
privacy. In this constellation, having the data re-signed by the M.D. Whenever
subsets of the record need to be forwarded to some party induces too much

Chameleon-Hashes with Ephemeral Trapdoors and Applications 165

overhead to be practical in real scenarios or may even be impossible due to
availability constraints.

Sanitizable signature schemes (SSS) [4] address these shortcomings. They
allow the signer to determine which blocks m[i] of a given message m =
(m[1],m[2], . . . ,m[i], . . . ,m[�]) are admissible. Any such admissible block can
be changed to a different bitstring m[i]′ ∈ {0, 1}∗, where i ∈ {1, 2, . . . , �}, by
a semi-trusted party named the sanitizer. This party is identified by a pri-
vate/public key pair and the sanitization process described before requires the
private key. In a nutshell, sanitization of a message m results in an altered mes-
sage m′ = (m[1]′,m[2]′, . . . ,m[i]′, . . . ,m[�]′), where m[i] = m[i]′ for every non-
admissible block, and also a signature σ′, which verifies under the original public
key. Thus, authenticity of the message is still ensured. In the prior example, for
the server storing the data it is possible to already black-out the sensitive parts
of a signed document without any additional communication with the M.D. and
in particular without access to the signing key of the M.D.

Real-world applications of SSSs include the already mentioned privacy-
preserving handling of patient data, secure routing, privacy-preserving document
disclosure, credentials, and blank signatures [4,17–19,24,30,42].

Our Contribution. We introduce the notion of invisible SSSs. This strong pri-
vacy notion requires that a third party not holding any secret keys cannot decide
whether a specific block is admissible, i.e., can be sanitized. This has already
been discussed by Ateniese et al. [4] in the first work on sanitizable signatures,
but they neither provide a formal framework nor a provably secure construction.
However, we identify some use-cases where such a notion is important, and we
close this gap by introducing a new framework for SSSs, along with an extended
security model. Moreover, we propose a construction being provably secure in
our framework. Our construction paradigm is based on IND-CPA secure encryp-
tion schemes, standard, yet unique, chameleon-hashes, and strongly unforgeable
signature schemes. These can be considered standard tools nowadays. We pair
those with a chameleon-hash with ephemeral trapdoors.

Motivation. At PKC ’09, Brzuska et al. formalized the most common secu-
rity model of SSSs [15]. For our work, the most important property they are
addressing is “weak transparency”. It means that although a third party sees
which blocks of a message are admissible, it cannot decide whether some block
has already been sanitized by a sanitizer. More precisely, their formalization
explicitly requires that the third party is always able to decide whether a given
block in a message is admissible. However, as this may invade privacy, having a
construction which hides this additional information is useful as well. To address
this problem the notion of “strong transparency” has been informally proposed
in the original work by Ateniese et al. [4].

Examples. To make the usefulness of such a stronger privacy property more
visible, consider the following two application scenarios.

166 J. Camenisch et al.

In the first scenario, we consider that a document is the output of a workflow
that requires several—potentially heavy—computations to become ready. We
assume that the output of each workflow step could be produced by one party
alone, but could also be outsourced. However, if the party decides to outsource
the production of certain parts of the document it wants the potential involve-
ment of other parties to stay hidden, e.g., the potential and actual outsourcing
might be considered a trade secret. In order to regain some control that all tasks
are done only by authorized subordinates, the document—containing template
parts—is signed with a sanitizable signature. Such an approach, i.e., to use SSS
for workflow control, was proposed in [29].

The second one is motivated by an ongoing legal debate in Germany.3 Con-
sider a school class where a pupil suffers from dyslexia4 and thus can apply for
additional help to compensate the illness. One way to compensate this is to con-
sider spelling mistakes less when giving grades. Assume that only the school’s
principal shall decide to what extent a certain grade shall be improved. Of course,
this shall only be possible for pupils who are actually handicapped. For the pupil
with dyslexia, e.g., known to the teacher of the class in question, the grade is
marked as sanitizable by the principal. The legal debate in Germany is about an
outsider, e.g., future employer, who should not be able to decide that grades had
the potential to be altered and of course also not see for which pupils the grades
have been altered to preserve their privacy. To achieve this, standard sanitiz-
able signature schemes are clearly not enough, as they do not guarantee that an
outsider cannot derive which blocks are potentially sanitizable, i.e., which pupil
is actually handicapped. We offer a solution to this problem, where an outsider
cannot decide which block is admissible, i.e., can be altered.

State-of-the-Art. SSSs have been introduced by Ateniese et al. [4]. Brzuska
et al. formalized most of the current security properties [15]. These have been
later extended for (strong) unlinkability [17,19,35] and non-interactive public
accountability [18,19]. Some properties discussed by Brzuska et al. [15] have then
been refined by Gong et al. [41]. Namely, they also consider the admissible blocks
in the security games, while still requiring that these are visible to everyone.
Recently, Krenn et al. further refined the security properties to also account for
the signatures, not only the message [48].5 We use the aforementioned results as
our starting point for the extended definitions.

Also, several extensions such as limiting the sanitizer to signer-chosen val-
ues [21,31,46,56], trapdoor SSSs (which allow to add new sanitizers after signa-
ture generation by the signer) [23,59], multi-sanitizer and -signer environments
for SSSs [16,19,22], and sanitization of signed and encrypted data [33] have been

3 See for example the ruling from the German Federal Administrative Court (BVerwG)
29.07.2015, Az.: 6 C 33.14, 6 C 35.14.

4 A disorder involving difficulty in learning to read or interpret words, letters and
other symbols.

5 We want to stress that Krenn et al. [48] also introduce “strong transparency”, which
is not related to the definition given by Ateniese et al. [4].

Chameleon-Hashes with Ephemeral Trapdoors and Applications 167

considered. SSSs have also been used as a tool to make other primitives account-
able [55], and to build other primitives [10,51]. Also, SSSs and data-structures
being more complex than lists have been considered [56]. Our results carry over
to the aforementioned extended settings with only minor additional adjustments.
Implementations of SSSs have also been presented [18,19,50,54].

Of course, computing on signed messages is a broad field. We can therefore
only give a small overview. Decent and comprehensive overviews of other related
primitives, however, have already been published [2,14,28,38,39].

5.1 Additional Building Blocks

We assume that the reader is familiar with digital signatures, PRGs, and PRFs,
and only introduce the notation used in the following. A PRF consists of a
key generation algorithm KGenprf and an evaluation algorithm Evalprf ; similarly,
a PRG consists of an evaluation algorithm Evalprg. Finally, a digital signature
scheme Σ consists of a key generation algorithm KGensig, a signing algorithm
Sign, and a verification algorithm Verify. The formal definition and security
notions are given in the full version of this paper.

5.2 Our Framework for Sanitizable Signature Schemes

Subsequently, we introduce our framework for SSSs. Our definitions are based
on existing work [15,18,19,41,48]. However, due to our goals, we need to modify
the current framework to account for the fact that the admissible blocks are only
visible to the sanitizer. We do not consider “non-interactive public accountabil-
ity” [18,19,45], which allows a third party to decide which party is accountable,
as transparency is mutually exclusive to this property, but is very easy to achieve,
e.g., by signing the sanitizable signature again [18].

Before we present the formal definition, we settle some notation. The variable
ADM contains the set of indices of the modifiable blocks, as well as the number
� of blocks in a message m. We write ADM(m) = true, if ADM is valid w.r.t.
m, i.e., ADM contains the correct � and all indices are in m. For example, let
ADM = ({1, 2, 4}, 4). Then, m must contain four blocks, while all but the third
will be admissible. If we write mi ∈ ADM, we mean that mi is admissible. MOD
is a set containing pairs (i,m[i]′) for those blocks that shall be modified, meaning
that m[i] is replaced with m[i]′. We write MOD(ADM) = true, if MOD is valid
w.r.t. ADM, meaning that the indices to be modified are contained in ADM. To
allow a compact presentation of our construction we write X̃n,m with n ≤ m for
the vector (Xn,Xn+1,Xn+2, . . . , Xm−1,Xm).

Definition 15. (Sanitizable Signatures). A sanitizable signature scheme
SSS consists of eight ppt algorithms (SSSParGen,KGensig,KGensan,Sign,Sanit,
Verify,Proof, Judge) such that

SSSParGen. The algorithm SSSParGen, on input security parameter λ, gener-
ates the public parameters: ppsss ← SSSParGen(1λ). We assume that ppsss is
implicitly input to all other algorithms.

168 J. Camenisch et al.

KGensig. The algorithm KGensig takes the public parameters ppsss and returns
the signer’s private key and the corresponding public key: (pksig, sksig) ←
KGensig(ppsss).

KGensan. The algorithm KGensan takes the public parameters ppsss and returns
the sanitizer’s private key and the corresponding public key: (pksan, sksan) ←
KGensan(ppsss).

Sign. The algorithm Sign takes as input a message m, sksig, pksan, as well as a
description ADM of the admissible blocks. If ADM(m) = false, this algo-
rithm returns ⊥. It outputs a signature σ ← Sign(m, sksig, pksan,ADM).

Sanit. The algorithm Sanit takes a message m, modification instruction MOD,
a signature σ, pksig, and sksan. It outputs m′ together with σ′: (m′, σ′) ←
Sanit(m,MOD, σ, pksig, sksan) where m′ ← MOD(m) is message m modified
according to the modification instruction MOD.

Verify. The algorithm Verify takes as input the signature σ for a message m w.r.t.
the public keys pksig and pksan and outputs a decision d ∈ {true, false}:
d ← Verify(m,σ, pksig, pksan).

Proof. The algorithm Proof takes as input sksig, a message m, a signature σ, a
set of polynomially many additional message/signature pairs {(mi, σi)} and
pksan. It outputs a string π ∈ {0, 1}∗ which can be used by the Judge to
decide which party is accountable given a message/signature pair (m,σ): π ←
Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan).

Judge. The algorithm Judge takes as input a message m, a signature σ, pksig,
pksan, as well as a proof π. Note, this means that once a proof π is generated,
the accountable party can be derived by anyone for that message/signature
pair (m,σ). It outputs a decision d ∈ {Sig,San}, indicating whether the
message/signature pair has been created by the signer, or the sanitizer:
d ← Judge(m,σ, pksig, pksan, π).

Correctness of Sanitizable Signature Schemes. We require the usual correctness
requirements to hold. In a nutshell, every signed and sanitized message/signature
pair should verify, while a honestly generated proof on a honestly generated
message/signature pair should point to the correct accountable party. We refer
to [15] for a formal definition, which straightforwardly extends to our framework.

5.3 Security of Sanitizable Signature Schemes

Next, we introduce our security model, where our definitions already incorpo-
rate newer insights [15,19,41,48]. In particular, we mostly consider the “strong”
definitions by Krenn et al. [48] as the new state-of-the-art. Due to our goals, we
also see the data-structure corresponding to the admissible blocks, i.e., ADM,
as an asset which needs protection, which addresses the work done by Gong et
al. [41]. All formal definitions can be found in the full version of this paper.

Unforgeability. No one should be able to generate any new signature not seen
before without having access to any private keys.

Chameleon-Hashes with Ephemeral Trapdoors and Applications 169

Immutability. Sanitizers must only be able to perform allowed modifications.
In particular, a sanitizer must not be able to modify non-admissible blocks.

Privacy. Similar to semantic security for encryption schemes, privacy captures
the inability of an attacker to derive any knowledge about sanitized parts.

Transparency. An attacker cannot tell whether a specific message/signature
pair has been sanitized or not.

Accountability. For signer-accountability, a signer should not be able to accuse
a sanitizer if the sanitizer is actually not responsible for a given message, and
vice versa for sanitizer-accountability.

5.4 Invisibility of SSSs

Next, we introduce the new property of invisibility. Basically, invisibility requires
that an outsider cannot decide which blocks of a given message are admissible.
With ADM0∩ADM1, we denote the intersection of the admissible blocks, ignor-
ing the length of the messages.

In a nutshell, the adversary can query an LoRADM oracle which either makes
ADM0 or ADM1 admissible in the final signature. Of course, the adversary
has to be restricted to ADM0 ∩ ADM1 for sanitization requests for signatures
originating from those created by LoRADM and their derivatives to avoid trivial
attacks. The sign oracle can be simulated by querying the LoRADM oracle with
ADM0 = ADM1. We stress that our invisibility definition is very strong, as it
also takes the signatures into account, much like the definitions given by Krenn
et al. [48]. One can easily alter our definition to only account for the messages
in question, e.g., if one wants to avoid strongly unforgeable signatures, or even
allow re-randomizable signatures. An adjustment is straightforward.

Definition 16. (Invisibility). An SSS is invisible, if for any efficient adversary
A there exists a negligible function ν such that

∣
∣
∣Pr[InvisibilitySSSA (λ) = 1] − 1

2

∣
∣
∣ ≤

ν(λ) , where the corresponding experiment is defined in Fig. 8.

It is obvious that invisibility is not implied by any other property. In a nut-
shell, taking any secure SSS, it is sufficient to non-malleably append ADM to
each block m[i] to prevent invisibility. Clearly, all other properties of such a
construction are still preserved.

Definition 17. (Secure SSS). We call an SSS secure, if it is correct, private,
unforgeable, immutable, sanitizer-accountable, signer-accountable, and invisible.

We do neither consider non-interactive public accountability nor unlinkability
nor transparency as essential security requirements, as it depends on the concrete
use-case whether these properties are required.

5.5 Construction

We now introduce our construction and use the construction paradigm of
Ateniese et al. [4], enriching it with several ideas of prior work [15,41,50]. The

170 J. Camenisch et al.

Fig. 8. Invisibility

main idea is to hash each block using a chameleon-hash with ephemeral trap-
doors, and then sign the hashes. The main trick we introduce to limit the san-
itizer is that only those etdi are given to the sanitizer, for which the respective
block m[i] should be sanitizable. To hide whether a given block is sanitizable,
each etdi is encrypted; a sanitizable block contains the real etdi, while a non-
admissible block encrypts a 0, where 0 is assumed to be an invalid etd. For
simplicity, we require that the IND-CPA secure encryption scheme Π allows
that each possible etd, as well as 0, is in the message space M of Π, which
can be achieved using standard embedding and padding techniques, or using
KEM/DEM combinations [1]. To achieve accountability, we generate additional
“tags” for a “standard” chameleon-hash (which binds everything together) in
a special way, namely we use PRFs and PRGs, which borrows ideas from the
construction given by Brzuska et al. [15].

Construction 3. (Secure and Transparent SSS). The secure and transpar-
ent SSS construction is as follows:

SSSParGen. To generate the public parameters, do the following steps:
1. Let ppch ← CHET.CParGen(1λ).
2. Let pp′

ch ← CH.CParGen(1λ).
3. Return ppsss = (ppch, pp′

ch).
KGensig. To generate the key pair for the signer, do the following steps:

1. Let (pks, sks) ← Σ.KGensig(1λ).
2. Pick a key for a PRF, i.e., κ ← PRF.KGenprf(1λ).
3. Return (pks, (κ, sks)).

Chameleon-Hashes with Ephemeral Trapdoors and Applications 171

KGensan. To generate the key pair for the sanitizer, do the following steps:
1. Let (pkch, skch) ← CHET.CKGen(ppch).
2. Let (pk′

ch, sk
′
ch) ← CH.CKGen(pp′

ch).
3. Let (pkenc, skenc) ← Π.KGenenc(1λ).
4. Return ((pkch, pk

′
ch, pkenc), (skch, sk

′
ch, skenc)).

Sign. To generate a signature σ, on input of m = (m[1],m[2], . . . ,m[�]), sksig =
(κ, sks), pksan = (pkch, pk

′
ch, pkenc), and ADM do the following steps:

1. If ADM(m) �= true, return ⊥.
2. Draw x0 ← {0, 1}λ.
3. Let x′

0 ← PRF.Evalprf(κ, x0).
4. Let τ ← PRG.Evalprg(x′

0).
5. For each i ∈ {1, 2, . . . , �} do:

(a) Set (hi, ri, etdi) ← CHET.CHash(pkch, (i,m[i], pksig)).
(b) If block i is not admissible, let etdi ← 0.
(c) Compute ci ← Π.Enc(pkenc, etdi).

6. Set (h0, r0) ← CH.CHash(pk′
ch, (0,m, τ, �, h̃1,�, c̃1,�, r̃1,�, pksig)).

7. Set σ′ ← Σ.Sign(sks, (x0, h̃0,�, c̃1,�, pksan, pksig, �)).
8. Return σ = (σ′, x0, r̃0,�, τ, c̃1,�, h̃0,�).

Verify. To verify a signature σ = (σ′, x0, r̃0,�, τ, c̃1,�, etd0, h̃0,�), on input of m =
(m[1],m[2], . . . ,m[�]), w.r.t. to pksig = pks and pksan = (pkch, pk

′
ch, pkenc), do:

1. For each i ∈ {1, 2, . . . , �} do:
(a) Set bi ← CHET.CHashCheck(pkch, (i,m[i], pksig), ri, hi). If any bi =

false, return false.
2. Let b0 ← CH.CHashCheck(pk′

ch, (0,m, τ, �, h̃1,�, c̃1,�, r̃1,�, pksig), r0, h0).
3. If b0 = false, return false.
4. Return d ← Σ.Verify(pks, (x0, h̃0,�, c̃1,�, pksan, pksig, �), σ′).

Sanit. To sanitize a signature σ = (σ′, x0, r̃0,�, τ, c̃1,�, h̃0,�), on input of m =
(m[1],m[2], . . . ,m[�]), w.r.t. to pksig = pks, sksan = (skch, sk′

ch, skenc), and
MOD do:
1. Verify the signature, i.e., run d ← SSS.Verify(m,σ, pksig, pksan). If d =

false, return ⊥.
2. Decrypt each ci for i ∈ {1, 2, . . . , �}, i.e., let etdi ← Π.Dec(skenc, ci). If

any decryption fails, return ⊥.
3. For each index i ∈ MOD check that etdi �= 0. If not, return ⊥.
4. For each block m[i]′ ∈ MOD do:

(a) Let r′
i ← CHET.Adapt(skch, (i,m[i], pksig), (i,m[i]′, pksig), ri, etdi).

(b) If r′
i = ⊥, return ⊥.

5. For each block m[i]′ /∈ MOD do:
(a) Let r′

i ← ri.
6. Let m′ ← MOD(m).
7. Draw τ ′ ← {0, 1}2λ.
8. Let r′

0 ← CH.Adapt(sk′
ch, (0,m, τ, �, h̃1,�, c̃1,�, r̃1,�, pksig), (0,m′, τ ′, �, h̃1,�,

c̃1,�, r̃′
1,�, pksig), r0, h0).

9. Return (m′, (σ′, x0, r̃′
0,�, τ

′, c̃1,�, h̃0,�)).

172 J. Camenisch et al.

Proof. To create a proof π, on input of m = (m[1],m[2], . . . ,m[�]), a signature
σ, w.r.t. to pksan and sksig, and {(mi, σi) | i ∈ N} do:
1. Return ⊥, if false = SSS.Verify(m,σ, pksig, pksan).
2. Verify each signature in the list, i.e., run di ← SSS.Verify(mi, σi, pksig,

pksan). If for any di = false, return ⊥.
3. Go through the list of (mi, σi) and find a (non-trivial) colliding tuple

of the chameleon-hash with (m,σ), i.e., h0 = h′
0, where also true =

CH.CHashCheck(pk′
ch, (0,m, τ, �, h̃1,�, c̃1,�, r̃1,�, pksig), r0, h0), and true =

CH.CHashCheck(pk′
ch, (0,m′, τ ′, �, h̃′

1,�, c̃′
1,�, r̃′

1,�, pksig), r′
0, h

′
0) for some

different tag τ ′ or message m′. Let this signature/message pair be
(σ′,m′) ∈ {(mi, σi) | i ∈ N}.

4. Return π = ((σ′,m′),PRF.Evalprf(κ, x0)), where x0 is contained in (σ,m).
Judge. To find the accountable party on input of m = (m[1],m[2], . . . ,m[�]), a

valid signature σ, w.r.t. to pksan, pksig, and a proof π do:
1. Check if π is of the form ((σ′,m′), v) with v ∈ {0, 1}λ. If not, return Sig.
2. Also return ⊥, if false = SSS.Verify(m′, σ′, pksig, pksan), or false =

SSS.Verify(m,σ, pksig, pksan).
3. Let τ ′′ ← PRG.Evalprg(v).
4. If τ ′ �= τ ′′, return Sig.
5. If we have h0 = h′

0, true = CH.CHashCheck(pkch, (0,m, τ, �, h̃1,�, c̃1,�,

pksig), r0, pksig, h0) = CH.CHashCheck(pk′
ch, (0,m′, τ ′, �′, h̃′

1,�′ , c̃′
1,�′ , pksig),

r′
0, pksig, h

′
0), c̃1,� = c̃′

1,�′ , x0 = x′
0, � = �′, and h̃0,� = h̃′

0,�′ , return San.
6. Return Sig.

Theorem 3. If Π is IND-CPA secure, Σ, PRF, PRG, CHET are secure, CH is
secure and unique, Construction 3 is a secure and transparent SSS.

Note, CHET is not required to be unique. We prove each property on its own.

Proof. Correctness follows by inspection.

Unforgeability. To prove that our scheme is unforgeable, we use a sequence of
games:

Game 0: The original unforgeability game.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗)

with σ∗ = (σ′∗, x∗
0, r̃

∗
0,�∗ , τ̃∗, c̃∗

1,�∗ , h̃∗
0,�∗), where (σ′∗, (x0, h̃0,�, c̃1,�, pksan, pksig,

�)) was never obtained from the sign or sanitizing oracle. Let this event be E1.
Transition - Game 0 → Game 1: Clearly, if (σ′∗, (x0, h̃0,�, c̃1,�, pksan, pksig, �)) was

never obtained by the challenger, this tuple breaks the strong unforgeability of
the underlying signature scheme. The reduction works as follows. We obtain
a challenge public key pkc from a strong unforgeability challenger and embed
it as pksig. For every required “inner” signature σ′, we use the signing oracle
provided by the challenger. Now, whenever E1 happens, we can output σ′∗

together with the message protected by σ′∗ as a forgery to the challenger. That
is, E1 happens with exactly the same probability as a forgery. Further, both
games proceed identically, unless E1 happens. Taking everything together
yields |Pr[S0] − Pr[S1]| ≤ νunf-cma(λ).

Chameleon-Hashes with Ephemeral Trapdoors and Applications 173

Game 2: Among others, we now have established that the adversary can no
longer win by modifying pksig, and pksan. We proceed as in Game 1, but abort
if the adversary outputs a forgery (m∗, σ∗), where message m∗ or any of the
other values protected by the outer chameleon-hash were never returned by
the signer or the sanitizer oracle. Let this event be E2.

Transition - Game 1 → Game 2: The probability of the abort event E2 to hap-
pen is exactly the probability of the adversary breaking collision freeness for
the outer chameleon-hash. Namely, we already established that the adver-
sary cannot tamper with the inner signature and therefore the hash value
h∗
0 must be from a previous oracle query. Now, assume that we obtain pk′

ch

from a collision freeness challenger. If E2 happens, there must be a previous
oracle query with associated values (0,m, τ, �, h̃1,�, c̃1,�, r̃1,�, pksig) and r0 so
that h∗

0 is a valid hash with respect to some those values and r0. Further, we
also have that (0,m, τ, �, h̃1,�, c̃1,�, r̃1,�, pksig) �= (0,m∗, τ∗, �∗, h̃∗

1,�∗ , c̃∗
1,�∗ , r̃∗

1,�∗ ,

pksig), and can thus output ((0,m∗, τ∗, �∗, h̃∗
1,�∗ , c̃∗

1,�∗ , r̃∗
1,�∗ , pksig), r∗

0 , (0,m, τ,

�, h̃1,�, c̃1,�, r̃1,�, pksig), r0, h∗
0) as the collision. Thus, the probability that E2

happens is exactly the probability of a collision for the chameleon-hash. Both
games proceed identically, unless E2 happens. |Pr[S1]−Pr[S2]| ≤ νch-coll-res(λ)
follows.

Game 3: As Game 2, but we abort if the adversary outputs a forgery where
only the randomness r0 changed, i.e., we have previously generated a signature
with respect to r0 so that r0 �= r∗

0 . Let this be event be E3.
Transition - Game 2 → Game 3: If the abort event E3 happens, the adversary

breaks uniqueness of the chameleon-hash. In particular we have values (0,
m∗, τ∗, �∗, h̃∗

1,�∗ , c̃∗
1,�∗ , r̃∗

1,�∗ , pksig) in the forgery which also correspond to some
previous query, but r0 from the previous query is different from r∗

0 . Obtaining
pp′

ch from a uniqueness challenger thus shows that E3 happens with exactly
the same probability as the adversary breaks uniqueness of the chameleon
hash. Thus, we have that |Pr[S2] − Pr[S3]| ≤ νch-unique(λ).

In the last game, the adversary can no longer win the unforgeability game;
this game is computationally indistinguishable from the original game, which
concludes the proof.

Immutability. We prove immutability using a sequence of games.

Game 0: The immutability game.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗)

with σ∗ =(σ′∗, x∗
0, r̃

∗
0,�∗ , τ̃∗, c̃∗

1,�∗ , h̃∗
0,�∗) where (σ′∗, (x0, h̃0,�, c̃1,�, pksan, pksig, �))

was never obtained from the sign oracle.
Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. Clearly,

if (σ′∗, (x0, h̃0,�, c̃1,�, pksan, pksig, �)) was never obtained by the challenger, this
tuple breaks the strong unforgeability of the underlying signature scheme.
The reduction works as follows. We obtain a challenge public key pkc from
a strong unforgeability challenger and embed it as pksig. For every required
“inner” signature σ′, we use the signing oracle provided by the challenger.

174 J. Camenisch et al.

Now, whenever E1 happens, we can output σ′∗ together with the message
protected by σ′∗ as a forgery to the challenger. That is, E1 happens with
exactly the same probability as a forgery of the underlying signature scheme.
Further, both games proceed identically, unless E1 happens. Taking every-
thing together yields |Pr[S0] − Pr[S1]| ≤ νunf-cma(λ).

Game 2: As Game 1, but the challenger aborts, if the message m∗ is not deriv-
able from any returned signature. Note, we already know that tampering with
the signatures is not possible, and thus pksig, and pksan, are fixed. The same
is true for deleting or appending blocks, as � is signed in every case. Let this
event be denoted E2.

Transition - Game 1 → Game 2: Now assume that E2 is non-negligible.
We can then construct an adversary B which breaks the private collision-
resistance of the underlying chameleon-hash with ephemeral trapdoors. Let
the signature returned be σ∗ = (σ′∗, x∗

0, r̃
∗
0,�∗ , τ̃∗, c̃∗

1,�∗ , h̃∗
0,�∗), while A’s pub-

lic key is pk∗. Due to prior game hops, we know that A cannot tam-
per with the “inner” signatures. Thus, there must exists another signature
σ = (σ′∗, x∗

0, r̃
′∗
0,�∗ , τ̃ ′∗, c̃∗

1,�∗ , h̃∗
0,�∗) returned by the signing oracle. This, how-

ever, also implies that there must exists an index i ∈ {1, 2, . . . , �∗}, for which
we have CHET.CHashCheck(pkch, (i,m∗[i], pksig), r∗

i , h∗
i) = CHET.CHashCheck

(pkch, (i,m′∗[i], pksig), r′∗
i , h∗

i) = true, where m∗[i] �= m′∗[i] by assumption.
B proceeds as follows. Let qh be the number of “inner hashes” created.
Draw an index i ← {1, 2, . . . , qh}. For a query i �= j, proceed as in the
algorithms. If i = j, however, B returns the current public key pkc for the
chameleon-hash with ephemeral trapdoors. This key is contained in pk∗

san. B
then receives back control, and queries its CHash oracle with (i,m[i], pksig),
where i is the current index of the message m to be signed. Then, if
((i,m∗[i], pksig), r∗

i , (i,m′∗[i], pksig), r′∗
i , h∗

i) is the collision w.r.t. pkc, it can
directly return it. |Pr[S1] − Pr[S2]| ≤ qhνpriv-coll(λ) follows, as B has to guess
where the collision will take place.

As each hop changes the view of the adversary only negligibly, immutability is
proven, as the adversary has no other way to break immutability in Game 2.

Privacy. We prove privacy; we use a sequence of games.

Game 0: The original privacy game.
Game 1: As Game 0, but we abort if the adversary queries a verifying message-

signature pair (m∗, σ∗) which was never returned by the signer or the sanitizer
oracle, and queries it to the sanitization or proof generation oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, whenever the adversary queries such a new pair, we can output it
to break the unforgeability of our scheme, as this tuple is fresh. However, we
have already proven that this can only happen with negligible probability.
|Pr[S0] − Pr[S1]| ≤ νsss-unf(λ) follows.

Game 2: As Game 1, but instead of hashing the blocks (i,mb[i], pksig) for the
inner chameleon-hashes using CHash, and then Adapt to (i,m[i], pksig), we
directly apply CHash to (i,m[i], pksig).

Chameleon-Hashes with Ephemeral Trapdoors and Applications 175

Transition - Game 1 → Game 2: Assume that the adversary can distinguish this
hop. We can then construct an B which wins the indistinguishability game. B
receives pkc as it’s own challenge, B embeds pkc as pkch, and proceeds honestly
with the exception that it uses the HashOrAdapt oracle to generate the inner
hashes. Then, whatever A outputs, is also output by B. |Pr[S1] − Pr[S2]| ≤
νchet-ind(λ) follows.

Game 3: As Game 2, but instead of adapting (0,m, τ, �, h̃1,�, c̃1,�, r̃1,�, pksig) to
the new values, directly use CHash.

Transition - Game 2 → Game 3: Assume that the adversary can distinguish this
hop. We can then construct an B which wins the indistinguishability game. B
receives pk′

c as it’s own challenge, B embeds pk′
c as pk′

ch, and proceeds honestly
with the exception that it uses the HashOrAdapt oracle to generate the outer
hashes. Then, whatever A outputs, is also output by B. |Pr[S2] − Pr[S3]| ≤
νch-ind(λ) follows.

Clearly, we are now independent of the bit b. As each hop changes the view of
the adversary only negligibly, privacy is proven.

Transparency. We prove transparency by showing that the distributions of san-
itized and fresh signatures are indistinguishable. Note, the adversary is not
allowed to query Proof for values generated by Sanit/Sign.

Game 0: The original transparency game, where b = 0.
Game 1: As Game 0, but we abort if the adversary queries a valid message-

signature pair (m∗, σ∗) which was never returned by any of the calls to the
sanitization or signature generation oracle. Let us use E1 to refer to the abort
event.

Transition - Game 0 → Game 1: Clearly, whenever the adversary queries such
a new pair, we can output it to break the unforgeability of our scheme, as
this tuple is fresh. A reduction is straightforward. Thus, we have |Pr[S0] −
Pr[S1]| ≤ νsss-unf(λ).

Game 2: As Game 1, but instead of computing x′
0 ← PRF.Evalprf(λ, x0), we set

x′
0 ← {0, 1}λ within every call to Sign in the Sanit/Sign oracle.

Transition - Game 1 → Game 2: A distinguisher between these two games str-
aightfowardly yields a distinguisher for the PRF. Thus, we have |Pr[S1] −
Pr[S2]| ≤ νind-prf(λ).

Game 3: As Game 2, but instead of computing τ ← PRG.Evalprg(x′
0), we set

τ ← {0, 1}2λ for every call to Sign within the Sanit/Sign oracle.
Transition - Game 2 → Game 3: A distinguisher between these two games yields

a distinguisher for the PRG using a standard hybrid argument. Thus, we have
|Pr[S2] − Pr[S3]| ≤ qsνind-prg(λ), where qs is the number of calls to the PRG.

Game 4: As Game 3, but we abort if a tag τ was drawn twice. Let this event
be E4.

Transition - Game 3 → Game 4: As the tags τ are drawn completely random,
event E4 only happens with probability q2

t

22λ , where qt is the number of drawn

tags. |Pr[S3] − Pr[S4]| ≤ q2
t

22λ follows.

176 J. Camenisch et al.

Game 5: As Game 4, but instead of hash and then adapting the inner
chameleon-hashes, directly hash (i,m[i], pksig).

Transition - Game 4 → Game 5: Assume that the adversary can distinguish
this hop. We can then construct an B which wins the indistinguishability
game. In particular, the reduction works as follows. B receives pkc as it’s own
challenge, B embeds pkc as pkch, and proceeds honestly except that it uses the
HashOrAdapt oracle to generate the inner hashes. Then, whatever A outputs,
is also output by B. |Pr[S4] − Pr[S5]| ≤ νind-chet(λ) follows.

Game 6: As Game 5, but instead of hashing and then adapting the outer hash,
we directly hash the message, i.e., (0,m, τ, �, h̃1,�, c̃1,�, r̃1,�, pksig).

Transition - Game 5 → Game 6: Assume that the adversary can distinguish this
hop. We can then construct an B which wins the indistinguishability game. In
particular, the reduction works as follows. B receives pk′

c as it’s own challenge,
embeds pk′

c as pk′
ch, and proceeds honestly with the exception that it uses the

HashOrAdapt oracle to generate the outer hashes. Then, whatever A outputs,
is also output by B. |Pr[S5] − Pr[S6]| ≤ νind-ch(λ) follows.

We are now in the case b = 1, while each hop changes the view of the adversary
only negligibly. This concludes the proof.

Signer-Accountability. We prove that our construction is signer-accountable by
a sequence of games.

Game 0: The original signer-accountability game.
Game 1: As Game 0, but we abort if the sanitization oracle draws a tag τ ′

which is in the range of the PRG. Let this event be E1.
Transition - Game 0 → Game 1: This hop is indistinguishable by a standard

statistical argument: at most 2λ values lie in the range of the PRG. |Pr[S0]−
Pr[S1]| ≤ qs2

λ

22λ = qs

2λ follows, where qs is the number of sanitizing requests.
Note, this also means, that there exists no valid pre-image x0.

Game 2: As Game 1, but we now abort, if a tag was drawn twice by the
sanitization oracles. Let this event be E2.

Transition - Game 1 → Game 2: As the tags are drawn uniformly from {0, 1}2λ,
this case only happens with negligible probability. |Pr[S1] − Pr[S2]| ≤ q2

s

22λ

follows, where qs is the number of sanitization oracle queries.
Game 3: As Game 2, but we now abort, if the adversary was able to find

(pk∗, π∗,m∗, σ∗) for some message m∗ with a τ∗ which was never returned by
the sanitization oracle. Let this event be E3.

Transition - Game 2 → Game 3: In the previous games we have already estab-
lished that the sanitizer oracle will never return a signature with respect to
a tag τ in the range of the PRG. Thus, if event E3 happens, we know by
the condition checked in step 4 of Judge that at least one of the tags (either
τ∗ in σ∗, or τπ in π∗) was chosen by the adversary, which, in further con-
sequence, implies a collision for CH. Namely, assume that E3 happens with
non-negligible probability. Then we embed the challenge public key pkc in
pk′

ch, and use the provided adaption oracle to simulate the sanitizer oracle. If

Chameleon-Hashes with Ephemeral Trapdoors and Applications 177

E3 happens we can output ((0,m∗, τ∗, �∗, h̃∗
1,�∗ , c̃∗

1,�∗ , r̃∗
1,�∗ , pk∗), r∗

0 , (0,m′∗, τ ′∗,
�∗, h̃∗

1,�∗ , c̃1,�, r̃
∗
1,�∗ , pk∗), r′∗

0 , h∗
0), as a valid collision. These values can simply

be compiled using π∗, m∗, and σ∗. |Pr[S2] − Pr[S3]| ≤ νch-coll-res(λ) follows.
Game 4: As Game 3, but we now abort, if the adversary was able to find

(pk∗, π∗,m∗, σ∗) for a new message m∗ which was never returned by the
sanitization oracle. Let this event be E4.

Transition - Game 3 → Game 4: Assume that E4 happens with non-negligible
probability. In the previous games we have already established that the
only remaining possibility for the adversary is to re-use tags τ∗, τπ corre-
sponding to some query/response to the sanitizer oracle. Then, m∗ must
be fresh, as it was never returned by the sanitization oracle by assump-
tion. Thus, ((0,m∗, τ∗, �∗, h̃∗

1,�∗ , c̃∗
1,�∗ , r̃∗

1,�∗ , pk∗), r∗
0 , (0,m′∗, τ ′∗, �∗, h̃∗

1,�∗ , c̃1,�,
r̃∗
1,�∗ , pk∗), r′∗

0 , h∗
0), is a valid collision. These values can simply be compiled

using π∗, m∗, and σ∗. |Pr[S3] − Pr[S4]| ≤ νch-coll-res(λ) follows.

In the last game the adversary can no longer win; each hop only changes the
view negligibly. This concludes the proof.

Sanitizer-Accountability. We prove that our construction is sanitizer-accountable
by a sequence of games.

Game 0: The original sanitizer-accountability definition.
Game 1: As Game 0, but we abort if the adversary outputs a forgery (m∗, σ∗,

pk∗) with σ∗ = (σ′∗, x∗
0, r̃

∗
0,�∗ , τ̃∗, c̃∗

1,�∗ , h̃∗
0,�∗) where (σ′∗, (x0, h̃0,�, c̃1,�, pk

∗,
pksig, �)) was never obtained from the signing oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event. Clearly,
if (σ′∗, (x0, h̃0,�, c̃1,�, pk

∗, pksig, �)) was never obtained by the challenger, this
tuple breaks the strong unforgeability of the underlying signature scheme. The
reduction works as follows. We obtain a challenge public key pkc from a strong
unforgeability challenger and embed it as pksig. For every required “inner” sig-
nature σ′, we use the signing oracle provided by the challenger. Now, whenever
E1 happens, we can output σ′∗ together with the message protected by σ′∗

as a forgery to the challenger. That is, E1 happens with exactly the same
probability as a forgery. Further, both games proceed identically, unless E1

happens. Taking everything together yields |Pr[S0] − Pr[S1]| ≤ νunf-cma(λ).
Game 2: As Game 1, but we abort if the adversary outputs a forgery where

only the randomness r0 changed, i.e., we have previously generated a signature
with respect to r0 so that r0 �= r∗

0 . Let this event be E2.
Transition - Game 1 → Game 2: If the abort event E2 happens, the adversary

breaks uniqueness of the chameleon-hash. In particular we have values (0,
m∗, τ∗, �∗, h̃∗

1,�∗ , c̃∗
1,�∗ , r̃∗

1,�∗ , pksig) in the forgery which also correspond to some
previous query, but r0 from the previous query is different from r∗

0 . Obtaining
pp′

ch from a uniqueness challenger thus shows that E2 happens with exactly
the same probability as the adversary breaks uniqueness of the chameleon
hash and we have that |Pr[S1] − Pr[S2]| ≤ νch-unique(λ).

178 J. Camenisch et al.

In Game 2 the forgery is different from any query/answer tuple obtained using
Sign by definition. Due to the previous hops, the only remaining possibility is a
collision in the outer chameleon-hash, i.e., for h∗

0 = h′∗
0 we have CH.CHashCh-

eck(pk′∗, (0,m∗, τ∗, �∗, h̃∗
1,�∗ , c̃∗

1,�∗ , r̃∗
1,�∗ , pksig), r∗

0 , h
∗
0) = CH.CHashCheck(pk′∗, (0,

m′∗, τ ′∗, �′∗, h̃′∗
1,�′∗ , c̃′∗

1,�′∗ , r̃′∗
1,�′∗ , pksig), r′∗

0 , h′∗
0) = true. In this case the Judge algo-

rithm returns San and Pr[S2] = 0 which concludes the proof.

Invisibility. We prove that our construction is invisible by a sequence of games.
The idea is to show that we can simulate the view of the adversary without
giving out any useful information at all.

Game 0: The original invisibility game, i.e., the challenger runs the experiment
as defined.

Game 1: As Game 0, but we abort if the adversary queries a valid message-
signature pair (m∗, σ∗) which was never returned by the signer or the sanitizer
oracle to the sanitization or proof generation oracle.

Transition - Game 0 → Game 1: Let us use E1 to refer to the abort event.
Clearly, whenever the adversary outputs such a new pair, we can output it
to break unforgeability of our scheme, as this tuple is fresh. However, we
have already proven that this can only happen with negligible probability.
|Pr[S0] − Pr[S1]| ≤ νsss-unf(λ) follows.

Game 2: As Game 1, but we internally keep all etdi.
Transition - Game 1 → Game 2: This is only a conceptual change. |Pr[S1] −

Pr[S2]| = 0 follows.
Game 3: As Game 2, but we encrypt only zeroes instead of the real etdi in

LoRADM independent of whether block are admissible or not. Note, the chal-
lenger still knows all etdi, and can thus still sanitize correctly.

Transition - Game 2 → Game 3: A standard reduction, using hybrids, shows
that this hop is indistinguishable by the IND-CPA security of the encryption
scheme used. |Pr[S2]−Pr[S3]| ≤ qhνind-cpa(λ) follows, where qh is the number
of generated ciphertexts by LoRADM.6

At this point, the distribution is independent of the LoRADM oracle. Note, the
sanitization, and proof oracles, can be still be simulated without any restrictions,
as each etdi is known to the challenger. Thus, the view the adversary receives
is now completely independent of the bit b used in the invisibility definition. As
each hop only changes the view of the adversary negligibly, our construction is
thus proven to be invisible. ��

Acknowledgements. We are grateful to the anonymous reviewers of PKC 2017 for
providing valuable comments and suggestions that helped to significantly improve the
presentation of the paper.

6 We note that IND-CPA security of the encryption scheme Π is sufficient, as the
abort in Game 1 ensures that the adversary can only submit queries with respect
to ciphertexts which were previously generated in the reduction, i.e., where we can
simply look up the respective values etdi instead of decryption.

Chameleon-Hashes with Ephemeral Trapdoors and Applications 179

References

1. Abe, M., Gennaro, R., Kurosawa, K.: Tag-kem/dem: a new framework for hybrid
encryption. J. cryptology 21(1), 97–130 (2008)

2. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 1–20. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 1

3. Alsouri, S., Dagdelen, Ö., Katzenbeisser, S.: Group-based attestation: enhancing
privacy and management in remote attestation. In: Acquisti, A., Smith, S.W.,
Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol. 6101, pp. 63–77. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13869-0 5

4. Ateniese, G., Chou, D.H., Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol.
3679, pp. 159–177. Springer, Heidelberg (2005). doi:10.1007/11555827 10

5. Ateniese, G., Magri, B., Venturi, D., Andrade, E.R.: Redactable blockchain - or
- rewriting history in bitcoin and friends. IACR Cryptology ePrint Archive, 757
(2016)

6. Ateniese, G., Medeiros, B.: Identity-based chameleon hash and applications. In:
Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-27809-2 19

7. Ateniese, G., Medeiros, B.: On the key exposure problem in Chameleon hashes. In:
Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30598-9 12

8. Bao, F., Deng, R.H., Ding, X., Lai, J., Zhao, Y.: Hierarchical identity-based
chameleon hash and its applications. In: Lopez, J., Tsudik, G. (eds.) ACNS
2011. LNCS, vol. 6715, pp. 201–219. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21554-4 12

9. Bellare, M., Ristov, T.: A characterization of chameleon hash functions and new,
efficient designs. J. Cryptology 27(4), 799–823 (2014)

10. Bilzhause, A., Huber, M., Pöhls, H.C., Samelin, K.: Cryptographically Enforced
Four-Eyes Principle. In: ARES, pp. 760–767 (2016)

11. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from Chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 12

12. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

13. Bresson, E., Catalano, D., Gennaro, R.: Improved on-line/off-line threshold signa-
tures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 217–232.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71677-8 15

14. Brzuska, C., Busch, H., Dagdelen, O., Fischlin, M., Franz, M., Katzenbeisser, S.,
Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable signa-
tures for tree-structured data: definitions and constructions. In: Zhou, J., Yung,
M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13708-2 6

15. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00468-1 18

16. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: How
to partially delegate control for authenticated data. In: BIOSIG, pp. 117–128 (2009)

http://dx.doi.org/10.1007/978-3-642-28914-9_1
http://dx.doi.org/10.1007/978-3-642-13869-0_5
http://dx.doi.org/10.1007/11555827_10
http://dx.doi.org/10.1007/978-3-540-27809-2_19
http://dx.doi.org/10.1007/978-3-540-30598-9_12
http://dx.doi.org/10.1007/978-3-642-21554-4_12
http://dx.doi.org/10.1007/978-3-642-21554-4_12
http://dx.doi.org/10.1007/978-3-662-46447-2_12
http://dx.doi.org/10.1007/978-3-540-71677-8_15
http://dx.doi.org/10.1007/978-3-642-13708-2_6
http://dx.doi.org/10.1007/978-3-642-00468-1_18

180 J. Camenisch et al.

17. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 444–461. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 26

18. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for
sanitizable signatures. In: Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI
2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40012-4 12

19. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sani-
tizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.)
EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-53997-8 2

20. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). doi:10.1007/BFb0052252

21. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-11925-5 13

22. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several sign-
ers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT
2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31410-0 3

23. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-68914-0 16

24. Canard, S., Lescuyer, R.: Protecting privacy by sanitizing personal data: a new
approach to anonymous credentials. In: ASIACCS, pp. 381–392 (2013)

25. Catalano, D., Raimondo, M., Fiore, D., Gennaro, R.: Off-line/on-line signa-
tures: theoretical aspects and experimental results. In: Cramer, R. (ed.) PKC
2008. LNCS, vol. 4939, pp. 101–120. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78440-1 7

26. Chen, X., Tian, H., Zhang, F., Ding, Y.: Comments and improvements on key-
exposure free Chameleon hashing based on factoring. In: Lai, X., Yung, M., Lin,
D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 415–426. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21518-6 29

27. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic on-line/off-line signatures
without key exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 18–30. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72738-5 2

28. Demirel, D., Derler, D., Hanser, C., Pöhls, H.C., Slamanig, D., Traverso, G.: PRIS-
MACLOUD D4.4: overview of functional and malleable signature schemes. Tech-
nical report, H2020 Prismacloud (2015). www.prismacloud.eu

29. Derler, D., Hanser, C., Pöhls, H.C., Slamanig, D.: Towards authenticity and privacy
preserving accountable workflows. In: Aspinall, D., Camenisch, J., Hansen, M.,
Fischer-Hübner, S., Raab, C. (eds.) Privacy and Identity 2015. IAICT, vol. 476,
pp. 170–186. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41763-9 12

30. Derler, D., Hanser, C., Slamanig, D.: Blank digital signatures: optimization and
practical experiences. In: Camenisch, J., Fischer-Hübner, S., Hansen, M. (eds.)
Privacy and Identity 2014. IAICT, vol. 457, pp. 201–215. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-18621-4 14

http://dx.doi.org/10.1007/978-3-642-13013-7_26
http://dx.doi.org/10.1007/978-3-642-40012-4_12
http://dx.doi.org/10.1007/978-3-642-40012-4_12
http://dx.doi.org/10.1007/978-3-642-53997-8_2
http://dx.doi.org/10.1007/978-3-642-53997-8_2
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/978-3-642-11925-5_13
http://dx.doi.org/10.1007/978-3-642-31410-0_3
http://dx.doi.org/10.1007/978-3-642-31410-0_3
http://dx.doi.org/10.1007/978-3-540-68914-0_16
http://dx.doi.org/10.1007/978-3-540-78440-1_7
http://dx.doi.org/10.1007/978-3-540-78440-1_7
http://dx.doi.org/10.1007/978-3-642-21518-6_29
http://dx.doi.org/10.1007/978-3-540-72738-5_2
www.prismacloud.eu
http://dx.doi.org/10.1007/978-3-319-41763-9_12
http://dx.doi.org/10.1007/978-3-319-18621-4_14

Chameleon-Hashes with Ephemeral Trapdoors and Applications 181

31. Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures
and a black-box construction of strongly private schemes. In: Au, M.-H., Miyaji, A.
(eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26059-4 25

32. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptology
9(1), 35–67 (1996)

33. Fehr, V., Fischlin, M.: Sanitizable signcryption: Sanitization over encrypted data
(full version). IACR Cryptology ePrint Archive, report 2015/765 (2015)

34. Fischlin, M.: Trapdoor commitment schemes and their applications. Ph.D. thesis,
University of Frankfurt (2001)

35. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49384-7 12

36. Gao, W., Li, F., Wang, X.: Chameleon hash without key exposure based on Schnorr
signature. Comput. Stand. Interfaces 31(2), 282–285 (2009)

37. Gao, W., Wang, X., Xie, D.: Chameleon hashes without key exposure based on
factoring. J. Comput. Sci. Technol. 22(1), 109–113 (2007)

38. Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Fully-dynamic verifiable
zero-knowledge order queries for network data. ePrint 2015, 283 (2015)

39. Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order
queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149–171. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-28166-7 8

40. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17, 281–308 (1988)

41. Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In:
Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21518-6 21

42. Hanser, C., Slamanig, D.: Blank digital signatures. In: ASIACCS, pp. 95–106 (2013)
43. Hanzlik, L., Kuty�lowski, M., Yung, M.: Hard invalidation of electronic signatures.

In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 421–436. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-17533-1 29

44. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03356-8 38

45. Höhne, F., Pöhls, H.C., Samelin, K.: Rechtsfolgen editierbarer signaturen. Daten-
schutz und Datensicherheit 36(7), 485–491 (2012)

46. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006).
doi:10.1007/11927587 28

47. Krawczyk, H., Rabin, T.: Chameleon Hashing and Signatures. In: NDSS, pp. 143–
154 (2000)

48. Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures. In:
Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.)
DPM/QASA 2015. LNCS, vol. 9481, pp. 100–117. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-29883-2 7

http://dx.doi.org/10.1007/978-3-319-26059-4_25
http://dx.doi.org/10.1007/978-3-662-49384-7_12
http://dx.doi.org/10.1007/978-3-319-28166-7_8
http://dx.doi.org/10.1007/978-3-642-21518-6_21
http://dx.doi.org/10.1007/978-3-319-17533-1_29
http://dx.doi.org/10.1007/978-3-642-03356-8_38
http://dx.doi.org/10.1007/11927587_28
http://dx.doi.org/10.1007/978-3-319-29883-2_7

182 J. Camenisch et al.

49. Lai, R.W.F., Zhang, T., Chow, S.S.M., Schröder, D.: Efficient sanitizable signatures
without random oracles. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C.
(eds.) ESORICS 2016. LNCS, vol. 9878, pp. 363–380. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-45744-4 18

50. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of
sanitizable signatures revisited. In: ARES, pp. 188–197 (2013)

51. Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: On the relation between redactable
and sanitizable signature schemes. In: Jürjens, J., Piessens, F., Bielova, N. (eds.)
ESSoS 2014. LNCS, vol. 8364, pp. 113–130. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-04897-0 8

52. Mohassel, P.: One-time signatures and chameleon hash functions. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19574-7 21

53. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 9

54. Pöhls, H.C., Peters, S., Samelin, K., Posegga, J., Meer, H.: Malleable signa-
tures for resource constrained platforms. In: Cavallaro, L., Gollmann, D. (eds.)
WISTP 2013. LNCS, vol. 7886, pp. 18–33. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38530-8 2

55. Pöhls, H.C., Samelin, K.: Accountable redactable signatures. In: ARES, pp. 60–69
(2015)

56. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature —
performance, mixing properties, and revisiting the property of transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21554-4 10

57. Ren, Q., Mu, Y., Susilo, W.: Mitigating Phishing by a new id-based Chameleon
hash without key exposure. In: AusCERT, pp. 1–13 (2007)

58. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 21

59. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-13708-2 4

60. Zhang, F., Safavi-naini, R., Susilo, W.: Id-based Chameleon hashes from bilinear
pairings. IACR Cryptology ePrint Archive 2003, 208 (2003)

61. Zhang, R.: Tweaking TBE/IBE to PKE transforms with Chameleon hash func-
tions. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 323–339.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72738-5 21

http://dx.doi.org/10.1007/978-3-319-45744-4_18
http://dx.doi.org/10.1007/978-3-319-04897-0_8
http://dx.doi.org/10.1007/978-3-319-04897-0_8
http://dx.doi.org/10.1007/978-3-642-19574-7_21
http://dx.doi.org/10.1007/3-540-46766-1_9
http://dx.doi.org/10.1007/978-3-642-38530-8_2
http://dx.doi.org/10.1007/978-3-642-38530-8_2
http://dx.doi.org/10.1007/978-3-642-21554-4_10
http://dx.doi.org/10.1007/3-540-44647-8_21
http://dx.doi.org/10.1007/978-3-642-13708-2_4
http://dx.doi.org/10.1007/978-3-540-72738-5_21

Improved Structure Preserving Signatures
Under Standard Bilinear Assumptions

Charanjit S. Jutla1(B) and Arnab Roy2

1 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
csjutla@us.ibm.com

2 Fujitsu Laboratories of America, Sunnyvale, CA, USA
aroy@us.fujitsu.com

Abstract. We show that the recent structure-preserving signature
(SPS) scheme of Kiltz et al. [CRYPTO 2015], provably secure under the
standard bilinear pairings group assumption SXDH, can be improved to
have one less group element and one less pairing product equation in the
signature verification step. Our improved SPS scheme only requires six
group elements (five in one group, and one in the other), and two pair-
ing product equations for verification. The number of pairing product
equations is optimal, as it matches a known lower bound of Abe et al.
[CRYPTO 2011]. The number of group elements in the signature also
approaches the known lower bound of four for SXDH assumption. Fur-
ther, while the earlier scheme had a security reduction which incurred a
security loss that is quadratic in number of queries Q, our novel security
reduction incurs only a Q log Q factor loss in security.

Structure-preserving signatures are used pervasively in group signa-
tures, group encryptions, blind signatures, proxy signatures and many
other anonymous credential applications. Our work directly leads to
improvements in these schemes. Moreover, the improvements are usually
of a higher multiplicative factor order, as these constructions use Groth-
Sahai NIZK proofs for zero-knowledge verification of pairing-product
equations.

We also give our construction under the more general and standard
Dk-MDDH (Matrix-DDH) assumption. The signature size in our scheme
is 3k+2 elements in one group, and one element in the other. The number
of pairing product equations required for verification is only 2k, whereas
the earlier schemes required at least 2k + 1 equations.

Keywords: Structure preserving signatures · Bilinear pairings · SXDH ·
Matrix-DDH · Groth-Sahai · Cramer-Shoup · QA-NIZK

1 Introduction

The notion of structure-preserving signatures (SPS) was introduced in [AFG+10]
so that such signatures are compatible with the bilinear-pairings based efficient
non-interactive zero-knowledge (NIZK) proofs of Groth and Sahai [GS08]. The

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 183–209, 2017.
DOI: 10.1007/978-3-662-54388-7 7

184 C.S. Jutla and A. Roy

messages, signatures, and verification keys are required to be elements of groups
that support efficient bilinear-pairings (bilinear groups), and the signature verifi-
cation consists of just evaluating one or more bilinear-pairing product equations.
With the structure of the signature preserved, one can then build many interest-
ing cryptographic primitives and protocols that require (hiding) commitments
to such messages and signatures and yet retain the ability to prove properties
about these using Groth-Sahai NIZK proofs (GS-NIZK proofs). To list a few,
SPS have been used to build blind signatures [AO09,AFG+10], group signa-
tures [AHO10], traceable signatures [ACHO11], group encryption [CLY09], and
delegatable credential systems [Fuc11].

The first SPS was introduced by Groth in 2006 even before GS-NIZK proofs
were introduced [Gro06]. In the same work Groth also introduced NIZK proofs
for algebraic equations over bilinear groups, but since this construction was
rather inefficient, it was best viewed as a feasibility study. A variation of the
Camenisch-Lysyanskaya signature scheme [CL04] was shown to be an SPS secure
against random message attacks [GH08]. Cathalo et al. [CLY09] and Fuchs-
bauer [Fuc09] gave schemes which are efficient when signing a single group
element, but their signature size increases linearly in the size of the message.
In [AHO10], the authors presented the first constant-size SPS consisting of seven
group elements, provable under a non-interactive but dynamic q-type assump-
tion. In [AGHO11], the authors show a three group element SPS scheme provable
in the generic asymmetric pairings group model. Interestingly, they also showed
that any SPS scheme in asymmetric bilinear groups must require at least three
group elements and two pairing product verification equations. They also gave
a four group element SPS scheme under a non-interactive but dynamic q-type
assumption. In [AGO11], the authors show that any SPS scheme proven secure
by a black-box reduction of the standard SXDH assumption in asymmetric bilin-
ear groups must have four group elements.

Recently, Kiltz et al. [KPW15] and Libert et al. [LPY15] gave efficient SPS
schemes under standard bilinear assumptions such as SXDH (Symmetric eXter-
nal Diffie-Hellman assumption) or MDDH (Matrix-DDH assumption). While the
latter scheme required ten group elements, the former was even shorter requir-
ing only seven group elements (under SXDH). However, both schemes required
three pairing product equations for signature verification, which is sub-optimal.
Moreover, the security proofs given for both schemes incurred a quadratic (in
the number of signature queries) loss in security.

1.1 Our Contributions

In this work, we show that the scheme of Kiltz et al. [KPW15] can be modified to
have a signature size of only six group elements. More importantly, the number
of pairing product equations required for signature verification is reduced to two,
which is optimal by the lower bound of [AGHO11]. Further, we give a security
proof that only has a Q log Q security loss in reduction from standard SXDH or
MDDH assumptions.

Improved SPS Under Standard Bilinear Assumptions 185

The ramifications of these improvements are many-fold. First, note that since
SPS are used along with commitments, encryptions and GS-NIZK proofs, this
can lead to a multiplicative factor improvement in the final cryptographic appli-
cation. For example, every group element in the SPS that needs a Groth-Sahai
commitment leads to a factor two blowup. A CCA2-encryption such as the
Cramer-Shoup encryption [CS02] could lead to a factor four or five blowup.
Each pairing product equation can lead to up to eight extra group elements in
GS-NIZK proofs (under SXDH assumption), and indeed the type of extra pair-
ing product equation in [KPW15] does take eight extra group elements (four in
each of the two asymmetric bilinear groups).

Using the methodology of [AHO10,AFG+10], [LPY15] build a dynamic
group signature scheme with signature size of 30 group elements in G1, 14 group
elements in G2 and an integer tag. The improvements presented in this work are
directly applicable and should lead to a reduction of at least ten group elements
in the size of the signature. Similar improvements are expected in blind signature
schemes and other anonymous credentials based schemes.

We also give constructions and security proofs under the more general k-
MDDH (matrix-DDH) assumption. Our results and comparison with previous
work is summarized in Table 1.

As for the improved security reduction, [KPW15] show that if an adaptive
chosen-message attack adversary makes at most Q signature queries, then its
success probability of forging a signature on a new message is bounded from
above by (roughly)

Q2 · ADVddh + Q2/q

where q is the order of the cyclic groups, and ADVddh is the maximum advantage
an efficient adversary has in a (decisional Diffie-Hellman) DDH-challenge game
in either of the asymmetric bilinear groups. In this work, we show that the
success probability of forging a signature is at most (roughly)

Q · log Q · ADVddh + Q2/q

Since, by Pollard’s Rho method [Pol78], ADVddh is at least 1/
√

q, the first term in
both of the above success probabilities is dominant. Thus, for the same security
guarantee, and for large number of signatures (which should be expected for
group signatures and other such anonymous credential applications), the earlier
schemes would require almost twice the number of bits in representation of the
group elements.

1.2 Our Techniques

The underlying idea in the SPS schemes of both [KPW15] and [LPY15], and
our scheme is to hide a secret using a CCA2 encryption scheme, and in particu-
lar the Cramer-Shoup encryption [CS02], and prove in zero-knowledge that the
signer knows the secret encrypted in the ciphertext. This methodology of build-
ing signature schemes was already described in [CCS09] (also, see a refinement

186 C.S. Jutla and A. Roy

Table 1. Comparison with existing unbounded security SPS schemes with table
adapted from [KPW15]. (n1, n2) denotes n1 G1 elements and n2 G2 elements. The table
gives message, signature and public key sizes and finally the number of pairing product
equations needed for verification. RE(Dk) is the number of group elements needed for
representing a sample from Dk; RE(Dk) is the same for all but the last row of a sample.
For k-Linear assumption these are k + 1 and k respectively.

Assumption |m| |σ| |pk| #PPEs

[AGHO11] Interactive
(Generic)

(n1, n2) (2, 1) n1 + n2 + 2 2

[AGHO11] Non-interactive
(Generic)

(n1, n2) (3, 3) n1 + n2 + 2 2

[AGHO11] Non-Interactive
(Generic)

(n1, 0) (3, 1) n1 + 2 2

[ACD+12] SXDH, XDLIN (n1, 0) (7, 4) 20 + n1 4

[ACD+12] SXDH, XDLIN (n1, n2) (8, 6) 22 + n1 + n2 5

[ADK+13] 2-Lin (G1 = G2) n 14 22 + n 7

[AFG+10] q-SFP (n1, 0) (5, 2) 13 + n1 2

[LPY15] SXDH, XDLIN (n1, 0) (9, 1) 2n1 + 21 5

[KPW15] Dk − mddh (n1, n2) (4k + 3, k + 2) (n1 +n2 +3k+
3)k+2RE(Dk)

3k + 1

[KPW15] Dk − mddh (n1, 0) (3k + 3, 1) (n1 + 2k +
3)k + RE(Dk)

2k + 1

This paper Dk − mddh (n1, 0) (3k + 2, 1) (n1 + 2k +
3)k + RE(Dk)

2k

of this method in [JR13]). However, as is well-known, the Cramer-Shoup encryp-
tion scheme requires exponentiation with a tag which is computed from other
elements in the ciphertext in a 1-1 fashion. This enforces the tag to be different
if the ciphertext is changed in any way. However, this clearly is not structure-
preserving, as the 1-1 mapping is required to map from the group elements to
another group Zq, where q is the order of the bilinear groups.

In [KPW15] and [LPY15], the tag is instead chosen afresh at random (i.e.,
independent of other elements in the ciphertext), and its representation in the
bilinear group is given as part of the signature. The tag is also used in the
aforementioned exponentiation (in fact, more than one), and simple bilinear
tests can check that these values are consistent. To get a better understanding,
we now give some specific details. Let k be the secret of the signer. To create
the signature, it generates a Cramer-Shoup encryption, by picking r at random,
and setting

ρ = gr
1, ρ̂ = (gb

1)
r, γ = gk

1 · (gd
1)

r · (ge
1)

t·r

where t is the tag, and gb
1, g

d
1 , g

e
1 are part of the public key. In SPS, since t is

chosen afresh, the signer also gives ψ = gt·r
1 and τ = gt

2. Note that τ is in group

Improved SPS Under Standard Bilinear Assumptions 187

G2, whereas all other elements are in group G2. The consistency of ρ, ψ and τ
is easily checked by a bilinear pairing product equation, i.e., e(ρ, τ) = e(ψ, g2).

If one were to follow the methodology of [CCS09], the signer also gives a
NIZK proof π that ρ, ρ̂, ψ and γ are consistent with the public key, and some
public information about k. However, with the quasi-adaptive computationally-
sound NIZK proofs (QA-NIZK) of [JR13], one can give a QA-NIZK proof that
these elements are in an affine span of the underlying linear subspace language,
with the verifier CRS independent of the affine component (i.e. gk

1).
The scheme in [KPW15] (also [LPY15]) also gives an additional element

ψ̂ = (gb
1)

t·r, and the signature verification requires another consistency check,
i.e. e(ρ̂, τ) = e(ψ̂, g2). The main reason for this additional verification is
that [KPW15] does not follow the above methodology for the security proof, and
instead uses a core computational lemma which was used to give an unbounded-
simulation sound QA-NIZK scheme [KW15]. As mentioned earlier, it suffices
to use a (non simulation-sound) NIZK as long as one uses a CCA2 encryption
like Cramer-Shoup (which in itself is just a one-time simulation-sound method).
Now, readers familiar with Cramer-Shoup encryption will recall that the main
idea there is the ability for the simulator to use an alternate decryption. How-
ever, in signature schemes, as opposed to Cramer-Shoup encryption, there is no
real decryption, but just a verification of the signature using private trapdoor
keys. This can also be done efficiently using the bilinear pairing available, and
this is the reason why a single additional test of the relationship between ψ, ρ
and τ suffices. More details can be found in Sect. 3.1.

1.3 Recursive Complexity-Leveraging for Improved Security
Reduction

For improving the security reduction, we first note that [KPW15] requires a
complexity-leveraging technique, because the simulator of the challenger in the
SPS security game must guess a query index (the one for which the adversary
may use the same tag), and then try to simulate signatures only for indices
other than this guess. However, since the adversary is adaptive, this guess is
only correct with probability 1/Q, where Q is the maximum number of queries
the adversary makes.

We follow a recursive approach, where the simulator goes through Q hybrid
games. In the first Q/2 hybrid games, the simulator guesses a set Z of size Q/2,
and then simulates queries outside this set. Now, the simulator’s correct guess
probability that the adversary’s tag will match a tag in query from set Z is much
higher, i.e., 1/2. From the Q/2-th hybrid onwards, we show that the simulator
can switch to another sequence of hybrid games, where now the simulator guesses
a set Z of size Q/4, and so forth inductively. The penalty in the security reduction
in this switch is only a factor of two. Note that we are paying a penalty of factor
2m for only the last Q/2m−1 hybrids, and this leads to a reduction with only
a Q log Q security loss. We expect our novel complexity-leveraging technique to
be more widely applicable, and of independent interest.

188 C.S. Jutla and A. Roy

2 Preliminaries

We will consider cyclic groups G1,G2 and GT of prime order q, with an efficient
bilinear map e : G1 ×G2 → GT . Group elements g1 and g2 will typically denote
generators of the group G1 and G2 respectively. Following [EHK+13], we will use
the notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively
and use additive notations for group operations. When talking about a general
group G with generator g, we will just use the notation [a] to denote ag. The
notation generalizes to vectors and matrices in a natural component-wise way.

For two vector or matrices A and B, we will denote the product A�B as
A · B. The pairing product e([A]1, [B]2) evaluates to the matrix product [AB]T
in the target group with pairing as multiplication and target group operation as
addition.

We recall the Matrix Decisional Diffie-Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an effi-
ciently samplable distribution on Z

l×k
q which is full-ranked with overwhelming

probability. The Dl,k-MDDH assumption in group G states that with samples
A ← Dl,k, s ← Z

k
q and s′ ← Z

l
q, the tuple ([A], [As]) is computationally indistin-

guishable from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by Dk.

2.1 Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a word
and the second called a witness. Each witness relation R defines a corresponding
language L which is the set of all words x for which there exists a witness w,
such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distri-
bution D on a collection of (witness-) relations R = {Rρ} (with corresponding
languages Lρ). Recall that in a quasi-adaptive NIZK, the CRS can be set after
the language parameter has been chosen according to D. Please refer to [JR13]
for detailed definitions.

For our SPS construction we will also need a property called true-simulation-
soundness and an extension of QA-NIZKs called strong split-CRS QA-NIZK. We
also recall the definitions of these concepts below.

Definition 1 (QA-NIZK [JR13]). We call a tuple of efficient algorithms
(pargen, crsgen, prover, ver) a quasi-adaptive non-interactive zero-knowledge
(QA-NIZK) proof system for witness-relations Rλ = {Rρ} with parameters sam-
pled from a distribution D over associated parameter language Lpar, if there
exist simulators crssim and sim such that for all non-uniform PPT adversaries
A1,A2,A3, we have (in all of the following probabilistic experiments, the exper-
iment starts by setting λ as λ ← pargen(1m), and choosing ρ as ρ ← Dλ):

Quasi-Adaptive Completeness:

Pr

⎡

⎣
CRS ← crsgen(λ, ρ)
(x,w) ← A1(CRS, ρ)
π ← prover(CRS, x, w)

:
ver(CRS, x, π) = 1 if

Rρ(x,w)

⎤

⎦ = 1

Improved SPS Under Standard Bilinear Assumptions 189

Quasi-Adaptive Soundness:

Pr
[
CRS ← crsgen(λ, ρ)
(x, π) ← A2(CRS, ρ) :

x /∈ Lρ and
ver(CRS, x, π) = 1]

]

≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr
[
CRS ← crsgen(λ, ρ) : Aprover(CRS,·,·)

3 (CRS, ρ) = 1
]

≈
Pr

[
(CRS, trap) ← crssim(λ, ρ) : Asim∗(CRS,trap,·,·)

3 (CRS, ρ) = 1
]
,

where sim∗(CRS, trap, x, w) = sim(CRS, trap, x) for (x,w) ∈ Rρ and both ora-
cles (i.e. prover and sim∗) output failure if (x,w) �∈ Rρ.

Definition 2 (True-Simulation-Sound [Har11]). A QA-NIZK is called
true-simulation-sound if the verifier is sound even when an adaptive adver-
sary has access to simulated proofs on language members. More precisely, for all
PPT A,

Pr
[

(CRS, trap) ← crssim(λ, ρ)
(x, π) ← Asim(CRS,trap,·,·)(CRS, ρ)

:
x �∈ Lρ and

ver(CRS, x, π) = 1

]

≈ 0,

where the experiment aborts if the oracle is called with some x �∈ Lρ.

Definition 3 (Strong Split-CRS QA-NIZK [JR13]). We call a tuple of
efficient algorithms (pargen, crsgenv, crsgenp, prover, ver) a strong split-CRS
QA-NIZK proof system for an ensemble of distributions {Dλ} on collection
of witness-relations Rλ = {Rρ} with associated parameter language Lpar if there
exists probabilistic polynomial time simulators (crssimv, crssimp, sim), such that
for all non-uniform PPT adversaries A1,A2,A3, and λ ← pargen(1m), we have:

Quasi-Adaptive Completeness:

Pr

⎡

⎢
⎢
⎣

(CRSv, st) ← crsgenv(λ), ρ ← Dλ

CRSp ← crsgenp(λ, ρ, st)
(x,w) ← A1(λ,CRSv,CRSp, ρ)
π ← prover(CRSp, x, w)

:
ver(CRSv, x, π) = 1 if

Rρ(x,w)

⎤

⎥
⎥
⎦ = 1

Quasi-Adaptive Soundness:

Pr

⎡

⎣
(CRSv, st) ← crsgenv(λ), ρ ← Dλ

CRSp ← crsgenp(λ, ρ, st)
(x, π) ← A2(λ,CRSv,CRSp, ρ)

:
ver(CRSv, x, π) = 1 and

not (∃w : Rρ(x,w))

⎤

⎦ ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr

⎡

⎣
(CRSv, st) ← crsgenv(λ)
ρ ← Dλ

CRSp ← crsgenp(λ, ρ, st)
: Aprover(CRSp,·,·)

3 (λ,CRSv,CRSp, ρ) = 1

⎤

⎦

≈

Pr

⎡

⎣
(CRSv, trap, st) ← crssimv(λ)
ρ ← Dλ

CRSp ← crssimp(λ, ρ, st)
: Asim∗(trap,·,·)

3 (λ,CRSv,CRSp, ρ) = 1

⎤

⎦ ,

190 C.S. Jutla and A. Roy

where sim∗(trap, x, w) = sim(trap, x) for (x,w) ∈ Rρ and both oracles (i.e.
prover and sim∗) output failure if (x,w) �∈ Rρ.

2.2 Strong Split-CRS QA-NIZK for Affine Languages

We now describe a strong split-CRS QA-NIZK (pargen, crsgenv, crsgenp, prover,
ver) for affine linear subspace languages {L[M]1,[a]1}, consisting of words of the
form [Mx + a]1, with parameters sampled from a robust and efficiently witness-
samplable distribution D over the associated parameter language Lpar and with
soundness under a Dk-mddh assumption. Robustness means that the top square
matrix of M is full-ranked with overwhelming probability. The construction is
essentially the one of [JR13] adapted to the framework of [KW15].

Algorithm crsgenv: The algorithm crsgenv samples a matrix K ← Z
n×k
q , a

vector k ← Z
k
q and a matrix A(k+1)×k from the MDDH distribution Dk. Let Ā

be the top k × k square matrix of A. Then it computes:

CRSv :=
(
[C0]n×k

2 = [KĀ]2, [C1]1×k
2 = [k · Ā]2, [Ā]k×k

2

)

and state st = (K, k).
Algorithm crsgenp: Let ρ = ([M]n×t

1 , [a]n×1
1) be the language parameter sup-

plied to crsgenp and st = (K, k) be the state transmitted by crsgenv. Then it
computes:

CRSp :=
(
[P0]t×k

1 = [M�K]1, [P1]1×k
1 = [a · K + k�]1

)

Prover prover: Given candidate y = [Mx + a]1 with witness vector xt×1, the
prover generates the following proof consisting of k elements in G1:

π := x · [P0]1 + [P1]1

Verifier ver: Given candidate y, and proof π, compute:

e(y�, [C0]2) + e([1]1, [C1]2)
?= e(π, [Ā]2)

Simulators crssimv, crssimp and sim: The algorithms crssimv and crssimp are
identical to crsgenv and crsgenp respectively, except that crsgenv also outputs
trap := (K, [k]1). The proof simulator sim takes candidate y and trapdoor
(K, [k]1) and outputs:

π := y · K + [k�]1

Theorem 1. The above algorithms (pargen, crsgenv, crsgenp, prover, ver) consti-
tute a true-simulation-sound strong split-CRS QA-NIZK proof system for affine
languages {L[M]1,[a]1} with parameters ([M]1, [a]1) sampled from a robust and
efficiently witness-samplable distribution D over the associated parameter lan-
guage Lpar, given any group generation algorithm for which the Dk-mddh
assumption holds for group G2.

Improved SPS Under Standard Bilinear Assumptions 191

2.3 Projective Hash Proof System

For a language L, let X be a superset of L and let H = (Hk)k∈K be a collection
of (hash) functions indexed by K with domain X and range another set Π.
The hash function family is generalized to a notion of projective hash function
family if there is a set S of projection keys, and a projection map α : K → S,
and further the action of Hk on subset L of X is completely determined by the
projection key α(k). Finally, the projective hash function family is defined to be
ε-universal2 if for all s ∈ S, x, x∗ ∈ X, and π, π∗ ∈ Π with x �∈ L ∪ {x∗}, the
following holds:

Pr[Hk(x) = π | Hk(x∗) = π∗ ∧ α(k) = s] ≤ ε.

A projective hash function family is called ε-smooth if for all x ∈ X \ L, the
statistical difference between the following two distributions is ε: sample k uni-
formly from K and π′ uniformly from Π; the first distribution is given by the
pair (α(k),Hk(x)) and the second by the pair (α(k), π′). For languages defined
by a witness-relation R, the projective hash proof family constitutes a projective
hash proof system (PHPS) if α, Hk, and another public evaluation function Ĥ
that computes Hk on x ∈ L, given a witness of x and only the projection key
α(k), are all efficiently computable. An efficient algorithm for sampling the key
k ∈ K is also assumed.

The above notions can also incorporate labels. In an extended PHPS, the hash
functions take an additional input called label. The public evaluation algorithm
also takes this label. All the above notions are now required to hold for each
possible value of label. The extended PHPS is now defined to be ε-universal2
is for all s ∈ S, x, x∗ ∈ X, all labels l and l∗, and π, π∗ ∈ Π with x �∈ L and
(x, l) �= (x∗, l∗), the following holds:

Pr[Hk(x, l) = π | Hk(x∗, l∗) = π∗ ∧ α(k) = s] ≤ ε.

Since we are interested in distributions of languages, we extend the above def-
inition to distribution of languages. So consider a parametrized class of languages
{Lρ}ρ with the parameters coming from an associated parameter language Lpar.
Assume that all the languages in this collection are subsets of X. Let H as above
be a collection of hash functions from X to Π. We say that the hash family is
a projective hash family if for all Lρ, the action of Hk on Lρ is determined by
α(k). Similarly, the hash family is ε-universal2 (ε-smooth) for {Lρ}ρ if for all
languages Lρ the ε-universal2 (resp. ε-smooth) property holds.

2.4 Structure-Preserving Signatures

Definition 4 (Structure-preserving signature). A structure-preserving sig-
nature scheme SPS is defined as a triple of probabilistic polynomial time (PPT)
algorithms SPS = (Gen,Sign,Verify):

– The probabilistic key generation algorithm Gen(par) returns the public/secret
key (pk, sk), where pk ∈ G

npk for some npk ∈ poly(λ). We assume that pk
implicitly defines a message space M := G

n for some n ∈ poly(λ).

192 C.S. Jutla and A. Roy

– The probabilistic signing algorithm Sign(sk, [m]) returns a signature σ ∈ G
nσ

for nσ ∈ poly(λ).
– The deterministic verification algorithm Verify(pk, [m], σ) only consists of pair-

ing product equations and returns 1 (accept) or 0 (reject).

Perfect correctness holds if for all (pk, sk) ← Gen(par) and all messages [m] ∈ M
and all σ ← Sign(sk, [m]) we have Verify(pk, [m], σ) = 1.

Definition 5 (Unforgeability against chosen message attack). To an
adversary A and scheme SPS we associate the advantage function:

ADV
CMA
SPS (A) := Pr

[
(pk, sk) ← Gen(par)
([m∗], σ∗) ← ASignO(·)(pk)

:
[m∗] /∈ Qmsg and

Verify(pk, [m∗], σ∗) = 1

]

where SignO([m]) runs σ ← Sign(sk, [m]), adds the vector [m] to Qmsg (initial-
ized with ∅) and returns σ to A. An SPS is said to be (unbounded) CMA-secure
if for all PPT adversaries A, ADV

CMA
SPS (A) is negligible.

3 SPS Construction

Our SPS construction for a general Dk-mddh assumption is given in Fig. 1. We
also give the instantiation of this SPS for the Symmetric eXternal Diffie-Hellman
Assumption (sxdh) assumption in Fig. 2. The construction assumes groups G1

and G2 and a target group GT with an efficient bilinear pairing e from G1 ×G2

to GT .

3.1 Security of the SPS Scheme

In this section we state and prove the security of the scheme SPSmddh described
in Fig. 1. The proof is similar to the proof of CCA2 secure encryption scheme
of Cramer and Shoup [CS02], where tag-based universal2 projective hash proofs
were introduced. The main difference is that the tag in structure preserving sig-
natures (SPS) cannot be generated by hashing some of the group elements. The
tag is therefore generated randomly and independently in SPS. The adversary
may then try to forge a signature by setting the tag to be the same as the tag
in one of the signatures it obtained earlier, and choosing other elements in the
forged signature by modifying and combining elements of various signatures it
obtained. In contrast, in Cramer-Shoup encryption, any change in other group
elements of a ciphertext forces the tag to be different from all earlier ciphertext
tags. To circumvent this problem in SPS, the tag t is provided as both [t]2 and
[tr]1, where [r]1 is randomness introduced as part of the signature. The validity
of this relation can be checked publicly and efficiently using asymmetric bilinear
pairing. Intuitively, this disallows the adversary to modify and combine elements
from various signatures. It is now forced to modify at most one signature, while
keeping the tag the same as in that signature. However, an affine secret com-
ponent [k0]1 in the SPS signature, which is issued encrypted under an CCA2
encryption scheme and verified using a publicly verifiable QA-NIZK for affine
languages, then disallows even this kind of forgery.

Improved SPS Under Standard Bilinear Assumptions 193

Gen (q,G1,G2,GT , e, [1]1, [1]2, n, Dk) :

Let D be a distribution on (M̃, ã) defined as follows :

Sample B(k+1)×k ← Dk and (k0, k, d, e) ← Zq × Z
n
q × Z

k
q × Z

k
q .

Let M̃ :=

⎛
⎜⎜⎜⎜⎝

In×n 0n×k 0n×k

0(k+1)×n B 0(k+1)×k

0k×n 0k×k B

k� d · B e · B

⎞
⎟⎟⎟⎟⎠ ∈ Z

(n+2k+2)×(n+2k)
q

and ã :=

(
0(n+2k+1)×1

k0

)
∈ Z

n+2k+2
q .

Let Π be a strong split-CRS QA-NIZK for

L ˜M,ã
= {[M̃x + ã]1 | x ∈ Z

n+2k
q }, with (M̃, ã) ← D

which is true-simulation-sound under the Dk-mddh assumption in G2.

Sample (CRSv, trap, st) ← Π.crssimv and (M,a) ← D
Let pk := CRSv and sk := (M, a, trap)

Return (pk, sk)

Sign (sk = (M,a, trap), μ ∈ G
n
1):

Sample r ← Z
k
q and tag ← Zq

Let (μ, ρ, ρ̂, ψ, γ) := M

⎛
⎝ μ

[r]1
[tag · r]1

⎞
⎠ + [a]1 ∈ G

n
1 × G

k
1 × G1 × G

k
1 × G1

Let π := Π.sim(trap, (μ, ρ, ρ̂, ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂, ψ, γ, τ, π) ∈ G
k
1 × G1 × G

k
1 × G1 × G2 × G

k
1

Verify (pk = CRSv, μ, σ = (ρ, ρ̂, ψ, γ, τ, π)) :

Return Π.ver(CRSv, (μ, ρ, ρ̂, ψ, γ), π) and e(ρ, τ)
?
= e(ψ, [1]2)

Fig. 1. Structure Preserving Signature SPSmddh

Theorem 2. For any efficient adversary A, which makes at most Q signature
queries before attempting a forgery, its probability of success in the EUF-CMA
game against the scheme SPSmddh is at most

ADV
TSS
Π + Q2 ·

(

ADVDk−mddh +
3
2q

)

+
Q

q
+

1
q

194 C.S. Jutla and A. Roy

Gen (q,G1,G2,GT , e, [1]1, [1]2, n) : Sample b, k0, d and e uniformly from Zq and
k uniformly from Z

n
q . Define the language L of tuples (μ, ρ, ρ̂, ψ, γ) ∈ G

n+4, such
that there exists (m, r, r′) ∈ Z

n+2
q , such that:

μ = [m]1, ρ = [r]1, ρ̂ = [br]1, ψ = [r′]1, γ = [k0 + k · m + dr + er′]1

Let Π be a strong split-CRS QA-NIZK for the affine language L, which is
true-simulation-sound under the ddh assumption in G2. Let the simulation
CRS generator Π.crssimv output (CRSv, trap, st). Set pk := CRSv and sk :=
(b, k0, k, d, e, trap), and return (pk, sk).

Sign (sk = (b, k0,k, d, e, trap), μ ∈ G
n
1): Sample r and tag uniformly from Zq.

Let:

ρ = [r]1, ρ̂ = [br]1, ψ = [tag · r]1, γ = k · μ + [k0 + dr + tag · er]1

Let π := Π.sim(trap, (μ, ρ, ρ̂, ψ, γ)) and τ := [tag]2. Return:

σ := (ρ, ρ̂, ψ, γ, τ, π) ∈ G
4
1 × G2 × G1.

Verify (pk = CRSv, μ, σ = (ρ, ρ̂, ψ, γ, τ, π)) : Return the boolean:

Π.ver(CRSv, (μ, ρ, ρ̂, ψ, γ), π) and e(ρ, τ)
?
= e(ψ, [1]2).

Fig. 2. Structure Preserving Signature SPSsxdh

Proof. We go through a sequence of Games G0 to G6 which are described below
and summarized in Fig. 3. In the following, Probi[X] will denote probability of
predicate X holding in probability space defined in game Gi.

Game G0: Given setup parameters (q,G1,G2,GT , e, [1]1, [1]2, n,Dk), the chal-
lenger C initializes a list M to empty, generates (CRSv, trap, st) ← Π.crssimv,
and then samples B(k+1)×k ← Dk and (k0, k, d, e) ← Zq × Z

n
q × Z

k
q × Z

k
q .

Then it sends the setup parameters and CRSv to adversary A as public key.
For i ∈ [1..Q], A adaptively requests signature on μi (∈ G

n
1). The challenger C

generates signature σi by first sampling (r,tag) ← Z
k
q × Zq, and then setting:

σi :=

⎛

⎝
ρ = [Br]1, ρ̂ = [Br]1, ψ = tag [Br]1,

γ = k · μi + [k0]1 + d · ρ + e · ψ, τ = [tag]2,
π = Π.sim(trap, (μi,ρ, ρ̂,ψ, γ))

⎞

⎠

It then sends σi to A, and adds μi to the list M. After it obtains Q signatures,
A responds with a message μ∗ and a claimed signature on it σ∗. Adversary wins
if μ∗ �∈ M and (μ∗, σ∗) passes verify. Define:

WIN0
�
= (μ∗ �∈ M) and (verify(CRSv,μ∗, σ∗) = 1)

Improved SPS Under Standard Bilinear Assumptions 195

Gen() : · · · Sample B(k+1)×k ← Dk

Let t = (B B
−1

)� ∈ Z
k
q

Games 0-3 Sample (d, e) ← Z
k
q × Z

k
q

Games 4-6 Sample (d1, d2, e1, e2) ← Z
k
q × Zq × Z

k
q × Zq · · ·

Sign(sk, μj ∈ G
n
1) :

Sample (ρ, θ, φ) ← G
k
1 × G1 × G1

Game 0 Sample tag ← Zq

Games 1-6 Sample tag ← Zq \ {tagl}l<j

Let ψ := tag ρ

Let (ρ̂, γ) :=

Game 0-3 t · ρ, k · μy + [k0]1 + d · ρ + tag e · ρ
)

Game 4-5 t · ρ, k · μy + [k0]1 + (d1 + d2t) · ρ + tag (e1 + e2t) · ρ
)

Game 6 (θ, φ)

Let π := Π.sim(trap, (μj , ρ, ρ̂, ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂, ψ, γ, τ, π)

WIN
�
= (μ∗ M∈�) and Π.ver(CRSv, (μ

∗, ρ∗, ρ̂∗, ψ∗, γ∗), π∗) and e(ρ∗, τ∗) ?
= e(ψ∗, [1]2)

Games 2-6 and σ∗ = (ρ∗, ρ̂∗, ψ∗, γ∗, τ∗, π∗) :

Game 2 γ∗ ?
= k · μ∗ + [k0]1 + d · ρ∗ + e · ψ∗

Game 3 e(γ∗, [1]2)
?
= e(k · μ∗ + [k0]1 + d · ρ∗, [1]2) + e(e · ρ∗, τ∗)

Games 4-6 e(γ∗, [1]2)
?
= e(k · μ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂

∗, [1]2) + e(e1 · ρ∗ + e2ρ̂
∗, τ∗)

Games 0-4 and ρ̂∗ ?
= t · ρ∗

Fig. 3. G Games and winning conditions

This game exactly replicates the real construction to the adversary. So the
adversary’s advantage in G0 is the EUF-CMA advantage we seek to bound.

Game G1: The challenge-response in this game is the same as Game G0 except
that in each signature the value tag is chosen randomly but distinctly from all
the earlier tag’s. The winning condition remains the same, i.e. WIN0.

196 C.S. Jutla and A. Roy

The statistical difference between the view of the adversary in G0 and G1

is the probability of collision in the choice of tag for the Q signature queries in
G0, which is at most Q2/(2 · q).

Game G2: The challenge-response in this game is the same as G1. The winning
condition is now defined as

WIN2
�
= WIN0 and (σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) s.t.

(γ∗ = k · μ∗ + [k0]1 + d · ρ∗ + e · ψ∗)
and ((ρ∗, ρ̂∗) ∈ Span([B]1))

The difference in advantages of the adversary is upper bounded by the
unbounded true-simulation-soundness of Π:

|Prob2[WIN2] − Prob1[WIN1]| ≤ ADV
TSS
Π (1)

Game G3: The challenge-response in this game is the same as G2. The winning
condition is now defined as

WIN3
�
= WIN0 and (σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) s.t.

(e(γ∗, [1]2) = e(k · μ∗ + [k0]1 + d · ρ∗, [1]2) + e(e · ρ∗, τ∗))
and ((ρ∗, ρ̂∗) ∈ Span([B]1))

Note that the predicate WIN3 is efficiently computable by the challenger C
as it generated B as part of the language parameters (M,a). As WIN0 implies
e(ψ∗, [1]2) = e(ρ∗, τ∗), the winning condition is unchanged from the previous
game and thus, Prob2[WIN2] is the same as Prob3[WIN3].

Game G4: Define tk×1 �
= (B B

−1
)�. Since B is overwhelmingly a full ranked

matrix, we observe that ρ can be just sampled uniformly randomly from Z
k
q and

ρ̂ can be set to t · ρ in the signature generation algorithm. Also in the winning
condition (ρ∗, ρ̂∗) ∈ Span([B]1) can be equivalently written as ρ̂∗ ?= t · ρ∗, with
no other constraints on ρ∗.

In Game G4, the challenger C picks (d1, d2, e1, e2) at random from Z
2k+2
q ,

and sets d = d1 + d2t and e = e1 + e2t (i.e., instead of directly picking d and
e at random while defining Lpar). This has no statistical change in the view of
the adversary.

The winning condition is now defined and computed as:

WIN4
�
= WIN0 and (σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) s.t.

(e(γ∗, [1]2) = e(k · μ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂
∗, [1]2)

+ e(e1 · ρ∗ + e2ρ̂
∗, τ∗))

and (ρ̂∗ ?= t · ρ∗)

Since ρ̂∗ = t · ρ∗, it directly follows that (d1 + d2t) · ρ∗ is the same as
(d1 · ρ∗ + d2ρ̂

∗), and (e1 + e2t) · ρ∗ is the same as (e1 · ρ∗ + e2ρ̂
∗). Therefore

WIN4 ≡ WIN3.

Improved SPS Under Standard Bilinear Assumptions 197

Game G5: In this game, we define WIN5 to be the same as WIN4, except that
it does not have the conjunct ρ̂∗ ?= t · ρ.

WIN5
�
= WIN0 and (σ∗ = (ρ∗, ρ̂∗,ψ∗, γ∗, τ∗,π∗) s.t.

(e(γ∗, [1]2) = e(k · μ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂
∗, [1]2)

+ e(e1 · ρ∗ + e2ρ̂
∗, τ∗))

We now prove that:

|Prob5[WIN5] − Prob4[WIN4]| ≤ 1/q (2)

Firstly, note that the probability spaces in G4 and G5 are identical. We will now
show that an adversary A in Game G4 has probability at most 1/q of forcing
WIN5 while not satisfying WIN4, i.e., forcing WIN5 and ρ̂∗ �= t · ρ∗.

The claim is an easy consequence of private hash on a non-Span([B]1) word
being random and independent of the public (projection) hash key [CS02]. Here,
the public hash key is [d1 + d2t]1, with private hash key (d1, d2) (see Sect. 2.3).
The public hash key is given to the adversary as part of all the signatures issued
to the adversary. In particular it is used in computing γ component of the signa-
ture. The QA-NIZK proof is simulated, and the QA-NIZK simulator trapdoors
do not use (d1, d2). Further, (d1, d2) are not used anywhere else, including CRSv.

If (ρ∗, ρ̂∗) /∈ Span([B]1), then the right side of the pairing equation in WIN5

includes an additive component e(d1 · ρ∗ + d2ρ̂
∗, [1]2), which is the same as

e(P, [1]2) where P is the private hash of (ρ∗, ρ̂∗) using keys (d1, d2). Since, all
other additive terms on the right hand side of the pairing equation are inde-
pendent of this hash proof system, and the adversary A also supplies γ∗, the
probability of e(γ∗, [1]2) equaling the right hand side is at most 1/q. This finishes
the proof of the claim.

Game G6: In this game the challenger generates all signatures σi with ρ̂i and
γi set to uniformly and independently chosen random values. The computation
of ρ,ψ, τ and π and the winning condition remain the same as in G5.

We now claim that the difference between the advantage of the adversary in
Game G6 and Q times the advantage of the adversary in Game G5 is negligible
in Lemma 1 below, which is proved later:

Lemma 1.

|Prob5[WIN5] − Q · Prob6[WIN6]| ≤ Q2

(

ADVDk−mddh +
1
q

)

Now, in Game G6, all the signatures on the Q adversarial queries are gener-
ated without using k0. Since k0 is also not part of the public key (which includes
CRSv), the probability of adversary satisfying WIN6 is 1/q. Thus, probability of
WIN6 holding in Game G6 is at most 1/q:

Prob6[WIN6] ≤ 1/q

Thus the proof of Lemma 1 will conclude the proof, which we proceed to do next.

198 C.S. Jutla and A. Roy

Proof (of Lemma 1). To prove this lemma we consider several hybrid Games
G5,i, for i ∈ [0..Q], where G5,0 will turn out to be the same as G5, and G5,Q

will turn out to be the same as G6. The hybrid Games G5,i for i ∈ [0..Q] are
defined as follows.

Game G5,i: The game differs from G5 as follows: After it has generated the
public key and sent it to A just as in G5, the challenger now picks a random
index z from [1..Q]. If i < Q, it picks i distinct indices randomly from [1..Q]\{z}.
Call this set of indices as S (note S is empty in Game G5,0). If i = Q, let S be
the full set [1..Q]. While generating a signature on a query with index j ∈ S, the
challenger generates the signature as in Game G6 (i.e. random γi and ρ̂i terms),
and for a query with index outside S it generates the signature as in Game
G5. The winning predicate for the adversary remains the same, i.e., WIN5. As
the winning condition will remain the same till the end of proof, we just define
WIN ≡ WIN5. The game is described in Fig. 4.

Gen() : · · ·
Sample z ← [1..Q] and S ← 2[1..Q]\{z}, such that |S| = i

Sign(sk, μj ∈ G
n
1) :

Sample (ρ, θ, φ, tag) ← G
k
1 × G1 × G1 × (Zq \ {tagl}l<j)

Let ψ := tag ρ

If (j /∈ S) let (ρ̂, γ) :=

t · ρ, k · μj + [k0]1 + (d1 + d2t) · ρ + tag (e1 + e2t) · ρ
)

Else if (j ∈ S) let (ρ̂, γ) :=

(θ, φ)

Let π := Π.sim(trap, (μj , ρ, ρ̂, ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂, ψ, γ, τ, π)

WIN
�
= WIN0 and σ∗ = (ρ∗, ρ̂∗, ψ∗, γ∗, τ∗, π∗) :

e(γ∗, [1]2)
?
= e(k · μ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂

∗, [1]2) + e(e1 · ρ∗ + e2ρ̂
∗, τ∗)

Fig. 4. Games G5,i

Improved SPS Under Standard Bilinear Assumptions 199

Note that in Game G5,0, the probability of adversary winning, i.e. WIN
holding is the same as in Game G5, since the set S is empty, and hence z might
as well not be chosen.

To prove the requisite probability relations between the different games, con-
sider the following predicate GOOD, defined at the end of each game. We will
denote the components of the j-th signature σj by using subscript j.

GOOD
�
= ∀j ∈ [1..Q] \ {z} : (tag∗ �= tagj)

Lemma 2.
Prob5,0[WIN] ≤ Q · Prob5,0[WIN and GOOD]

Lemma 3. For i ∈ [1..Q − 1],

∣∣∣∣Prob5,i−1[WIN and GOOD]
−Prob5,i[WIN and GOOD]

∣∣∣∣ ≤ ADVDk-mddh + 1/q

Lemma 4.

|Prob5,Q−1[WIN] − Prob5,Q[WIN]| ≤ ADVDk-mddh + 1/q

Fig. 5. Lemmas

Given the definitions of Games G5,i and GOOD above, we now prove the
lemma via the three lemmas given in Fig. 5. Chaining Lemma 3 sequentially
(Q − 1) times, it follows that

∣
∣
∣
∣

Prob5,0[WIN and GOOD]−
Prob5,Q−1[WIN and GOOD]

∣
∣
∣
∣ ≤ (Q − 1) · (ADVDk−mddh + 1/q)

Now noting that Prob5,Q−1[WIN and GOOD] ≤ Prob5,Q−1[WIN] and using
Lemma 4, we get:

∣
∣
∣
∣
Prob5,0[WIN and GOOD]

− Prob5,Q[WIN]

∣
∣
∣
∣ ≤ Q · (ADVDk−mddh + 1/q)

Now, using Lemma 2, we finally establish Lemma 1:

|Prob5,0[WIN] − Q · Prob5,Q[WIN]| ≤ Q2

(

ADVDk−mddh +
1
q

)

We proceed to prove Lemmas 2, 3 and 4 now.

Proof (of Lemma 2). We equivalently show that:

Prob5,0[GOOD | WIN] ≤ (1 − 1/Q)

200 C.S. Jutla and A. Roy

First note that in Game G5,0, the value z can be chosen after the adversary has
supplied its forged signature. Now, observe that:

Prob5,0[GOOD | WIN] ≤ Prob5,0[tag∗ �= tagz | WIN and ∃j : tag∗ = tagj]

Since z is chosen after the adversary has replied with the forgery and given tag
∗

equals some tagj , the probability of z = j is at least 1/Q (regardless of WIN
holding or not), and thus the probability of tag∗ equaling tagz is at least 1/Q.

Discussion of Lemmas 3 and 4. From a formal proof perspective, one goes
through many hybrid games, where in each subsequent hybrid Game G5,i, the
signature of one more element is simulated without using the affine component
[k0]1. However, as is well known from proofs of Cramer-Shoup encryption, this
can only be done as long as the forgery uses a different tag from the signature
being simulated. Thus, the simulator instead guesses an index z, and picks the
additional signature to be simulated from a query index different from z. This is
always possible, as long as the simulator is in hybrid game G5,i, with i < Q− 1.
If the simulator’s guess turns out to be wrong, the adversary is declared out-
right winner. However, this gives the adversary only a Q factor advantage over
its success in an MDDH challenge game.

The other main difference from Cramer-Shoup encryption is that there is no
real decryption, but just a verification of the signature using private trapdoor
keys. This can also be done efficiently using the bilinear pairing available, and
this is the reason why a single additional test of the relationship between [t]2,
[tr]1 and [r]1 suffices.

The proof of Lemma 4, which handles the case i = Q − 1 is similar to (and
easier than) proof of Lemma 3 except that in game G5,Q−1, all but one signatures
are simulated without keys k0 and k. This makes the analysis similar to that of
a one-time signature scheme.

Proof (of Lemma 3). We will consider three hybrid games which are summarized
in Fig. 6. Game H0 will be the same as game G5,i−1, and H2 the same as G5,i.

Game H0: The challenger picks yet another index y at random from [1..Q] \
({z}∪S), and issues the signature on the y-th query in the same way as for other
indices not in S. The idea is that in these sequence of games we will convert the
signature generation on the y-th index to be same as for those indices in S. This
will effectively expand the set S by one element and thus enable us to transition
from Game G5,i−1 to G5,i, as long as i ≤ Q − 1. Games H0 and G5,i−1 are
semantically equivalent.

Game H1: In Game H1, the challenger issues the signature on the y-th query
as follows: it picks ρy, θ and tagy at random. It sets ρ̂y = θ, ψy = tagy ρy,
τy = [tagy]2 and γy = k ·μy + [k0]1 +(d1 ·ρy + d2ρ̂y)+tagy (e1 ·ρy + e2ρ̂y). It
computes a QA-NIZK πy, on the tuple (μj ,ρy, ρ̂y,ψy, γy) using the QA-NIZK
simulator crssim, just as in all previous games. It outputs as signature σy the
tuple (ρy, ρ̂y,ψy, γy, τy,πy). Rest of the game and the winning condition is the
same as H0. We now prove that:

∣
∣
∣
∣
ProbH0 [WIN and GOOD] −
ProbH1 [WIN and GOOD]

∣
∣
∣
∣ < ADVDk−mddh (3)

Improved SPS Under Standard Bilinear Assumptions 201

Gen() : · · ·
Sample z ← [1..Q] and S ← 2[1..Q]\{z}, such that |S| = i

Sample y ← [1..Q] \ ({z} ∪ S)

Sign(sk, μj ∈ G
n
1) :

Sample (ρ, θ, φ, tag) ← G
k
1 × G1 × G1 × (Zq \ {tagl}l<j)

Let ψ := tag ρ

If (j /∈ S ∪ {y}) let (ρ̂, γ) :=

t · ρ, k · μj + [k0]1 + (d1 + d2t) · ρ + tag (e1 + e2t) · ρ
)

Else if (j ∈ S) let (ρ̂, γ) :=

(θ, φ)

Else if (j = y) let (ρ̂, γ) :=

Game 0 t · ρ, k · μy + [k0]1 + (d1 + d2t) · ρ + tag (e1 + e2t) · ρ
)

Game 1 θ, k · μy + [k0]1 + (d1 · ρ + d2θ) + tag (e1 · ρ + e2θ)
)

Game 2 (θ, φ)

Let π := Π.sim(trap, (μj , ρ, ρ̂, ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂, ψ, γ, τ, π)

WIN
�
= WIN0 and σ∗ = (ρ∗, ρ̂∗, ψ∗, γ∗, τ∗, π∗) :

e(γ∗, [1]2)
?
= e(k · μ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂

∗, [1]2) + e(e1 · ρ∗ + e2ρ̂
∗, τ∗)

Fig. 6. H Games and winning condition

Let A be any efficient adversary playing against C in either game H0 or H1.
Using A and the challenger C we will build another adversary A′ that plays
against a Dk−mddh challenger. So, suppose the mddh challenger issues either
a real tuple ([B]1, ζ = [Br]1) or a fake tuple ([B]1, ζ = [r′]1 ∈ G

k+1
1), with

B ← Dk and (r, r′) ← Z
k
q ×Z

k+1
q . In the first case, we will say that A′ is in the

mddhreal game and in the latter case, we will say that A′ is in the mddhfake

game. A′ uses [B]1 to simulate C in building the language parameters Lpar by
choosing all other random values on its own. It then simulates C for the rest
of the game H0/H1, including interaction with A, till the point of issuing the
y-th signature. For the y-th signature, A′ sets (ρy, ρ̂y) := ζ, and picks tagy

at random, and sets ψy = tagy ρy. The values τy and γy and πy can then be
computed from values already obtained.

202 C.S. Jutla and A. Roy

After A′ issues this signature to A, adversary A′ continues the simulation
of C, along with its interaction with A till the computation and output of win-
ning condition. A′ outputs 1 iff WIN and GOOD. Now, note that if A′ is in the
mddhreal game, then the view of the adversary A is identical to its view in
H0. And, if A′ is in the mddhfake game, then the view of the adversary A is
identical to its view in H1. Thus:

Prob[A′(mddhreal) = 1] = ProbH0 [WIN and GOOD]

Prob[A′(mddhfake) = 1] = ProbH1 [WIN and GOOD].

That completes the proof of the claim, as the maximum advantage any efficient
adversary has in winning an MDDH-challenge game is ADVDk−mddh.

Game H2: In Game H2, in the computation of the signature on y-th query, the
value γy is just sampled independently randomly from Zq. The winning condition
remains WIN. We now prove that the view of the adversary in Games H2 and
H1 is statistically indistinguishable. More precisely,

|ProbH2 [WIN and GOOD] − ProbH1 [WIN and GOOD]| ≤ 1/q

The claim is a consequence of private hash on a non-Span([B]1) word being
random and independent of the public universal2 projection hash key [CS02].
Here, the public universal2 projection hash key is the pair [d1 + d2t]1 and [e1 +
e2t]1, with private universal2 hash key (d1, d2, e1, e2). The public hash key is
given to the adversary as part of all the signatures issued to the adversary, with
the exception of the signature issued by C on query index y. In the y-th query, the
challenger discloses to the adversary one private hash on a non-Span([B]1) word.
In particular γy includes as an additive term (d1·ρy+d2ρ̂y)+tagy (e1·ρy+e2ρ̂y),
which is exactly the private universal2 hash on (ρy, ρ̂y) using tag ty. Now note
that GOOD and z �= y implies tag

∗ �= tagy, as y was chosen distinct from z.
Thus, tag

∗ is different from tagy used in the one private hash given to the
adversary on a non-Span([B]1) word.

Recall that the QA-NIZK proof is simulated, and the QA-NIZK simulator
trapdoors do not use (d1, d2, e1, e2). Further, (d1, d2, e1, e2) are not used any-
where else, including CRSv.

Thus the additive term (d1 ·ρy +d2ρ̂y)+tagy (e1 ·ρy +e2ρ̂y) in γy (in Game
H1) completely hides ([k0]1 + k · μy). Thus, γy can just as well be sampled
independently randomly. This is the same as Game H2, and that proves the
claim.

Thus, collecting all the inequalities, between consecutive games from H0 to
H2, it follows that:

∣
∣
∣
∣
Prob5,i−1[WIN and GOOD]
−Prob5,i[WIN and GOOD]

∣
∣
∣
∣ ≤ ADVDk−mddh + 1/q

Proof (of Lemma 4). The proof of this lemma is similar to proof of Lemma 3,
except that the predicate GOOD here is just defined to be true. The proof of

Improved SPS Under Standard Bilinear Assumptions 203

Lemma 3 goes through all the hybrid games with predicate GOOD defined as
true, except for the proof of

|ProbH2 [WIN and GOOD] − ProbH1 [WIN and GOOD]| ≤ 1/q.

This proof for Lemma 3 required the fact that GOOD implies that tag∗ �= tagy,
where y was the query index being simulated with a fake MDDH tuple. Since,
here we have defined GOOD to be true, there is no such restriction on tag

∗.
In case tag

∗ �= tagy, the proof continues to hold as before. If tag∗ = tagy,
we note that since we are in various hybrids of initial game H0 = G5,Q−1,
no signature generated by C (other than the y-th signature) uses k0 or k. The
trapdoors k0 and k are also not used in generation of public key. Thus, the
only information available to A about k0 and k is through the y-th signature
simulation, which includes k · μy + [k0]1 as an additive term. Thus, for WIN to
hold, A must produce γ∗ − (d1 · ρ∗ + d2ρ̂

∗) − tag
∗ (e1 · ρ∗ + e2ρ̂

∗) equal to
k ·μ∗ +[k0]1. By simple linear algebra, this latter quantity is random, even given
k · μy + [k0]1, for μ∗ �= μy.

This linear algebra fact is most conveniently seen by the following
information-theoretic argument: Let α

�
= k · μy + [k0]1 and β

�
= k · μ∗ + [k0]1.

Now sample (k, k′) ← Z
n
q ×Zq, and then set [k0]1 := [k′]1−k ·μy. Then we have

α = [k′]1 and β = [k′]1 + k · (μ∗ − μy). Thus α is uniformly random and inde-
pendent of k, while β has an independent uniformly random distribution due to
the additional term k · (μ∗ − μy), where k is uniformly random and (μ∗ − μy)
is non-zero.

3.2 Improved Security Reduction for the SPS Scheme

Theorem 3. For any efficient adversary A, which makes at most Q signature
queries before attempting a forgery, its probability of success in the EUF-CMA
game against the SPS scheme is at most

ADV
TSS
Π + Q · (2 + log Q) ·

(

ADVDk−mddh +
1
q

)

+
Q2

2q
+

1
q

Proof. In the proof of this theorem and related lemmas, without loss of gen-
erality, we will assume that the number of signature queries Q made by the
adversary is a power of two. This can cause at most a factor of two difference in
the success probability of the adversary.

The Games G0 to G6 are same as in proof of Theorem 2. However, we now
obtain a better upper bound on the probability of event WIN holding in Game
G5, as opposed to the bound obtained in Lemma1.

Lemma 5.

Prob5[WIN] ≤ Q · (2 + log Q) · (ADVDk−mddh + 1/q)

204 C.S. Jutla and A. Roy

Gen() : · · ·
Game G5,Q−2l−u Sample Z ← 2[1..Q], such that |Z| = 2l

Game G′
5,Q−2l Sample Z ← 2[1..Q], such that |Z| = 2l/2

Sample S ← 2[1..Q]\Z , such that |S| = i

Sign(sk, μj ∈ G
n
1) :

Sample (ρ, θ, φ, tag) ← G
k
1 × G1 × G1 × (Zq \ {tagl}l<j)

Let ψ := tag ρ

If (j /∈ S) let (ρ̂, γ) :=

t · ρ, k · μj + [k0]1 + (d1 + d2t) · ρ + tag (e1 + e2t) · ρ
)

Else if (j ∈ S) let (ρ̂, γ) :=

(θ, φ)

Let π := Π.sim(trap, (μj , ρ, ρ̂, ψ, γ)) and τ := [tag]2

Return (ρ, ρ̂, ψ, γ, τ, π)

WIN
�
= WIN0 and σ∗ = (ρ∗, ρ̂∗, ψ∗, γ∗, τ∗, π∗) :

e(γ∗, [1]2)
?
= e(k · μ∗ + [k0]1 + d1 · ρ∗ + d2ρ̂

∗, [1]2)

+ e(e1 · ρ∗ + e2ρ̂
∗, τ∗)

Fig. 7. Modified Games G5,i. Above, log Q ≤ l ≤ 0 and 0 ≤ u ≤ 2l − 1.

Proof. Again, to prove this lemma we consider several hybrid Games G5,i, for
i ∈ [0..Q], where G5,0 will turn out to be same as G5, and G5,Q will turn out
to be same as G6. The hybrid Games G5,i are defined slightly differently in this
proof as compared to the proof of Lemma1. These are summarized in Fig. 7 and
explained below.

Game G5,i: For 0 ≤ i < Q, the game differs from G5 as follows: After it has
generated the public key and sent it to A just as in G5, the challenger now picks
a random set Z of size 2�log (Q−i)	 of distinct indices from [1..Q]. It then picks i
distinct indices randomly from [1..Q] \ Z. Call this set of indices as S (note that
S is empty in Game G5,0). If i = Q, let S be the full set [1..Q]. While generating
signatures on a query with index j ∈ S, the challenger generates the signature
as in Game G6 (i.e., samples γ and ρ̂ uniformly randomly), and for all other

Improved SPS Under Standard Bilinear Assumptions 205

queries it generates the signature as in Game G5. The winning predicate for the
adversary remains the same, i.e., WIN.

Note that for hybrid Game G5,i, such that (Q − i) is a power of two, the
union of disjoint sets S and Z is the complete set of indices [1..Q]. However, in
the next hybrid Game G5,i+1, the set Z is cut by half in size, so that there is a
choice to pick S from [1..Q] \ Z. Thus, to relate such a hybrid Game G5,i (i.e.
when Q− i is a power of two) to the next hybrid Game G5,i+1, we introduce an
intermediate Game G′

5,i.
For i, define Game G′

5,i to be similar to Game G5,i except that the set of
random and distinct indices Z is chosen to be of size 2l−1. For S, we choose i
distinct indices from [1..Q] \ Z, as before. The rest of the game and the winning
condition remains the same.

For each hybrid Game G5,i or G′
5,i, define the following predicate

GOOD
�
= ∀j ∈ [1..Q] \ Z : (τ ∗ �= τ j)

In Lemma 6 below, we show that for i = Q − 2l, the probability of WIN and
GOOD holding in Game G5,i is at most two times the probability of WIN and
GOOD holding in Game G′

5,i. Note that, for i = 0 the predicate GOOD is equiv-
alent to true, as Z is the complete set. Thus, this implies that the probability
of WIN holding in Game G5 is at most two times the probability of WIN and
GOOD holding in Game G′

5,0.
Using Lemmas 6 and 7 below, we now prove the recurrence relation that for

l ∈ [2.. log Q]:

ProbG′
5,Q−2l

[WIN and GOOD] ≤ 2l−1 · (ADVDk−mddh + 1/q)+

2 · ProbG′
5,Q−2l−1

[WIN and GOOD]

Also, as a base case we have (from Lemma 7),

ProbG′
5,Q−2

[WIN and GOOD] ≤ 2 · (ADVDk−mddh + 1/q)+

ProbG5,Q
[WIN and GOOD]

However, in the proof of Lemma 1, we established that in the last hybrid Game
G5,Q, the probability of WIN is at most 1/q. Thus,

ProbG′
5,Q−2

[WIN and GOOD] ≤ 2 · ADVDk−mddh + 3/q

Thus, by maintaining the induction hypothesis, for every l ∈ [1.. log Q]:

ProbG′
5,Q−2l

[WIN and GOOD] ≤ (2l−1l + 2l) · (ADVDk−mddh + 1/q)

we get by induction that

ProbG′
5,0

[WIN and GOOD] ≤
(

Q

2
· log Q + Q

)

· (ADVDk−mddh + 1/q)

206 C.S. Jutla and A. Roy

Lemma 6. For i ∈ [0..Q − 1], and i = Q − 2l,

ProbG5,i
[WIN and GOOD] ≤ 2 · ProbG′

5,i
[WIN and GOOD]

Proof. For i, 0 ≤ i < Q, such that (Q − i) a power of two, note that the Game
G5,i can be defined by first picking a set S of i distinct and random indices
from [1..Q], and then setting Z = [1..Q] \ S. Similarly, the Game G′

5,i can be
defined by first picking a set S of i distinct indices, and then picking a set Z ′

of (Q − i)/2 distinct and random indices from Z = [1..Q] \ S. This set can be
picked after the adversary has replied with its claimed forgery. In other words,
the probability of WIN and GOOD holding in G′

5,i is same as probability of WIN
and GOOD′ holding in G5,i where GOOD′ is defined as

GOOD′ �
= ∀j ∈ [1..Q] \ Z ′ : (τ ∗ �= τ j)

Letting DIST stand for the predicate ∀j ∈ [1..Q] : (τ ∗ �= τ j), it follows that
GOOD′ and GOOD and ¬DIST is equivalent to GOOD′ and ¬DIST. Thus,

Pr[GOOD′ | ¬DIST and WIN] = Pr[GOOD′ | GOOD and ¬DIST and WIN]
· Pr[GOOD | ¬DIST and WIN]

Now, Pr[GOOD′ | GOOD and ¬DIST and WIN] is exactly 1/2. Thus, noting that
GOOD is equivalent to DIST ∨ (GOOD and ¬DIST), and GOOD′ is equivalent
to DIST ∨ (GOOD′ and ¬DIST), it follows that

Pr[GOOD | WIN] = Pr[DIST | WIN]
+ Pr[GOOD | ¬DIST and WIN] · Pr[¬DIST | WIN] (4)

Pr[GOOD′ | WIN] = Pr[DIST | WIN]

+
1
2

Pr[GOOD | ¬DIST and WIN] · Pr[¬DIST | WIN] (5)

Now, this implies Pr[GOOD | WIN] ≤ 2 · Pr[GOOD′ | WIN], because otherwise
we obtain a contradiction that Pr[DIST | WIN] < 0. Thus,

Pr[WIN and GOOD] ≤ 2 · Pr[WIN and GOOD′]

Lemma 7. For i ∈ [1..Q], if (Q − i + 1) is a power of two and i �= Q, then
∣
∣
∣
∣
ProbG′

5,i−1
[WIN and GOOD]

−ProbG5,i
[WIN and GOOD]

∣
∣
∣
∣ ≤ ADVDk−mddh + 1/q

Otherwise (i.e., if (Q − i + 1) is not a power of two or i = Q),
∣
∣
∣
∣
ProbG5,i−1

[WIN and GOOD]
−ProbG5,i

[WIN and GOOD]

∣
∣
∣
∣ ≤ ADVDk−mddh + 1/q

The proof of Lemma 7 is same as that for the proof of Lemma 3 (except for i
equal to Q, when it is same as proof of Lemma 4). The only difference is in the
proof of

|ProbH2 [WIN and GOOD] − ProbH1 [WIN and GOOD]| ≤ 1/q

where we now argue that GOOD and y �∈ Z implies t∗ �= ty.

Improved SPS Under Standard Bilinear Assumptions 207

Alternate Improved Reduction. The above reduction makes discrete ‘big jumps’
when Q−i is a power of two and a series of smooth ‘short jumps’ in between these
big jumps. Instead, we can smoothen the entire jump sequence by shortening the
set Z by 1 at every i while going from a primed game to an unprimed game. In
an unprimed game, Z and S will partition the set [1..Q], while in a primed game
there will be Q − i choices for Z ′. This will result in the following modifications
of Lemmas 6 and 7 :

Lemma 8. For i ∈ [0..Q − 2],

ProbG5,i
[WIN and GOOD] ≤ Q − i

Q − i − 1
· ProbG′

5,i
[WIN and GOOD]

Lemma 9. For i ∈ [1..Q − 1],
∣
∣
∣
∣
ProbG′

5,i−1
[WIN and GOOD]

−ProbG5,i
[WIN and GOOD]

∣
∣
∣
∣ ≤ ADVDk−mddh + 1/q

and ∣
∣
∣
∣
ProbG5,Q−1

[WIN and GOOD]
−ProbG5,Q

[WIN and GOOD]

∣
∣
∣
∣ ≤ ADVDk−mddh + 1/q

However, this still results in a Q log Q loss in security.

Acknowledgments. The authors would like to thank the anonymous referees for
helpful comments and filling a couple of gaps in the submission.

References

[ACD+12] Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and
simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4 3

[ACHO11] Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor
anonymous tags for traceable signatures. In: Lopez, J., Tsudik, G. (eds.)
ACNS 2011. LNCS, vol. 6715, pp. 183–200. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21554-4 11

[ADK+13] Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged
one-time signatures: tight security and optimal tag size. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36362-7 20

[AFG+10] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.:
Structure-preserving signatures and commitments to group elements. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14623-7 12

[AGHO11] Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-
preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-22792-9 37

http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-34961-4_3
http://dx.doi.org/10.1007/978-3-642-21554-4_11
http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1007/978-3-642-14623-7_12
http://dx.doi.org/10.1007/978-3-642-22792-9_37

208 C.S. Jutla and A. Roy

[AGO11] Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving
signatures from non-interactive assumptions. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-25385-0 34

[AHO10] Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear
groups for modular protocol design. IACR Cryptology ePrint Archive,
p. 133 (2010)

[AO09] Abe, M., Ohkubo, M.: A framework for universally composable non-
committing blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 435–450. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10366-7 26

[CCS09] Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme
secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
351–368. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 20

[CL04] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous cre-
dentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28628-8 4

[CLY09] Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive real-
ization in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 179–196. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10366-7 11

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). doi:10.1007/3-540-46035-7 4

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic frame-
work for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40084-1 8

[Fuc11] Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Pater-
son, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 14

[Fuc09] Fuchsbauer, G.: Automorphic signatures in bilinear groups and an applica-
tion to round-optimal blind signatures. IACR Cryptology ePrint Archive,
p. 320 (2009)

[GH08] Green, M., Hohenberger, S.: Universally composable adaptive oblivious
transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
179–197. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89255-7 12

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and con-
stant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). doi:10.1007/
11935230 29

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–
432. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 24

[Har11] Haralambiev, K.: Efficient cryptographic primitives for non-interactive
zero-knowledge proofs and applications. Ph.D. dissertation (2011)

http://dx.doi.org/10.1007/978-3-642-25385-0_34
http://dx.doi.org/10.1007/978-3-642-10366-7_26
http://dx.doi.org/10.1007/978-3-642-10366-7_26
http://dx.doi.org/10.1007/978-3-642-01001-9_20
http://dx.doi.org/10.1007/978-3-540-28628-8_4
http://dx.doi.org/10.1007/978-3-540-28628-8_4
http://dx.doi.org/10.1007/978-3-642-10366-7_11
http://dx.doi.org/10.1007/978-3-642-10366-7_11
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-20465-4_14
http://dx.doi.org/10.1007/978-3-540-89255-7_12
http://dx.doi.org/10.1007/11935230_29
http://dx.doi.org/10.1007/11935230_29
http://dx.doi.org/10.1007/978-3-540-78967-3_24

Improved SPS Under Standard Bilinear Assumptions 209

[JR13] Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear sub-
spaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269,
pp. 1–20. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7 1

[KPW15] Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard
assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 14

[KW15] Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
101–128. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 4

[LPY15] Libert, B., Peters, T., Yung, M.: Short group signatures via structure-
preserving signatures: standard model security from simple assumptions.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
296–316. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 15

[Pol78] Pollard, J.M.: Monte carlo methods for index computation (mod p). Math.
Comp. 32, 918–924 (1978)

http://dx.doi.org/10.1007/978-3-642-42033-7_1
http://dx.doi.org/10.1007/978-3-662-48000-7_14
http://dx.doi.org/10.1007/978-3-662-48000-7_14
http://dx.doi.org/10.1007/978-3-662-46803-6_4
http://dx.doi.org/10.1007/978-3-662-48000-7_15

Fully Homomorphic Encryption

Chosen-Ciphertext Secure Fully
Homomorphic Encryption

Ran Canetti1,3, Srinivasan Raghuraman2, Silas Richelson1,2(B),
and Vinod Vaikuntanathan2

1 Boston University, Boston, USA
silas.richelson@gmail.com

2 MIT, Cambridge, USA
3 Tel-Aviv University & CPIIS, Tel Aviv, Israel

Abstract. We give three fully homomoprhic encryption (FHE) schemes
that are secure against non-adaptive chosen ciphertext attacks (CCA1).
For the first two, we extend the generic transformation of Boneh, Canetti,
Halevi and Katz to turn any multi-key identity-based FHE scheme into
a CCA1-secure FHE scheme. We then show two instantiations of multi-
key identity-based FHE: One from LWE in the random oracle model, and
one from sub-exponentially secure indistinguishability obfuscation. Both
constructions are compact with respect to the function evaluated homo-
morphically but not compact with respect to the number of ciphertext
involved in the homomorphic evaluation. The third scheme uses succinct
non-interactive arguments of knowledge (SNARKs) and is fully compact.

1 Introduction

Fully homomorphic encryption (FHE) [RAD78,Gen09,BV11] is a powerful cryp-
tographic primitive that allows anyone to compute on encrypted data without
decrypting it, and without knowledge of the secret key. The basic security prop-
erty considered for FHE is semantic security [GM84], also known as security
against chosen plaintext attacks (CPA), where it is required that an adversary
that has access to the public parameters cannot distinguish between ciphertexts
that result from encrypting two adversarially chosen plaintexts. This should hold
even though the public parameters allow for encrypting messages and for homo-
morphic evaluation of ciphertexts.

However, CPA security provides only a weak guarantee in settings where
ciphertexts can be generated maliciously. Indeed, it is easy to come up (either
intentionally or unintentionally) with CPA-secure encryption schemes where one

Research supported in part by DARPA and the U.S. Army Office under contract
number W911NF-15-C-0226 and W911NF-15-C-0236, NSF CAREER Award CNS-
1350619, NSF Grant CNS-1413964 (MACS: A Modular Approach to Computer Secu-
rity, Israel Science Foundation grant, Alfred P. Sloan Research Fellowship, Microsoft
Faculty Fellowship, NEC Corporation, a Steven and Renee Finn Career Development
Chair from MIT, and a SIMONS Investigator Award Agreement Dated 6-5-12.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 213–240, 2017.
DOI: 10.1007/978-3-662-54388-7 8

214 R. Canetti et al.

can maliciously generate ciphertexts that completely compromise the security of
the scheme. The same holds, of course, for CPA-secure FHE schemes, So, for
instance, a client that sends a ciphertext c = Enc(x) along with a function f to
a server, expecting to obtain a ciphertext c′ = HomEval(f, c) that decrypts to
f(x), may instead receive a maliciously formed ciphertext c′′ such that Dec(c′′)
will output the secret decryption key which allows the server to fully recover x.
This is so even when using CPA-secure FHE, and even when x is much larger
than both the decryption key and c′′. Such attacks can indeed be taken care of
by adding verifiability mechanisms “at the protocol level” on top of plain CPA-
secure FHE schemes. However, can we have FHE scheme that guarantee, in of
themselves, security against malformed ciphertexts?

The golden standard of security for encryption schemes against malformed
ciphertetxts is security against chosen ciphertext attacks, also called CCA secu-
rity (see, e.g., [NY90,RS91,DDN91,CS98,Sah99] and more) which requires that
semantic security holds even when the adversary gets to ask for decryption
queries. CCA security comes in two flavors: the non-adaptive flavor, called CCA1
or lunchtime attack, where the adversary is limited to ask decryption queries
before she receives the challenge ciphertext, and the adaptive, or CCA2 version,
where she can continue asking decryption queries even after she receives the
challenge ciphertext (as long as the decryption queries are different from the
challenge ciphertext itself).

CCA2 security prevents any meaningful modification of a given ciphertext,
and so appears to be in direct contradiction with homomorphism (althouth
some works do manage to reconcile the two notions in a meaningful way, see
e.g. [CKN03,BSW12]). However, CCA1 security, which does consider security
in face of malformed ciphertexts, but only ones that were generated before the
challenge ciphertext is given, does not appear to be in contratiction for homo-
morphism. Indeed, the Cramer-Shoup-lite [CS98] scheme is both CCA1-secure
and additively homomorphic. Still, several works [LMSV10,ZPS12,DGM15] show
CCA1 attacks against (leveled) FHE schemes.1 Moreover, the key paradigm for
constructing unleveled FHE schemes goes through Gentry’s bootstrapping the-
orem [Gen09], wherein one publishes a circular encryption of the secret key as
part of the public evaluation key, an approach that by its very definition falls to
a CCA1 attack.

Loftus et al. [LMSV10] give a leveled CCA1-secure FHE scheme under a
highly non-standard “lattice-based knowledge assumption”. This state of affairs
leads us to ask:

Can we construct CCA1-secure fully homomorphic encryption schemes
under better-understood computational assumptions? Can they be
unleveled? Can they be compact?

1 A leveled FHE scheme is one that permits evaluation of circuits of a-priori bounded
polynomial depth on encrypted data. In contrast, a pure FHE scheme is one that
permits evaluation of circuits of any depth.

Chosen-Ciphertext Secure Fully Homomorphic Encryption 215

1.1 Our Results and Techniques

We answer the above question positively.

CCA1-Secure FHE from Multi-key Identity-Based FHE. Our starting point is
the work of Boneh et al. [BCHK07] who showed that any (semantically secure)
identity-based encryption scheme can be used to construct a chosen-ciphertext-
secure encryption scheme. An encryption of a message m in their (CCA1) con-
struction is simply an ID-based encryption of m under a randomly chosen iden-
tity. Namely, the public key of the scheme is the IBE master public key, and the
encryptor chooses a fresh random id every time, and outputs IBE.Enc(mpk, id,m).
In a nutshell, CCA1-security of the scheme follows from the fact that an ID-based
encryption under an identity id∗ is secure even given the secret keys for all iden-
tities id �= id∗.

A natural idea to get a CCA1 fully homomorphic encryption scheme is to
start with an Id-based fully homomorphic encryption scheme. This runs into a
difficulty since in an FHE scheme, one has to be able to homomorphically eval-
uate ciphertexts that come from different sources (encryptors) but all encrypted
to the same person (i.e., encrypted under the same public key). When we use
the [BCHK07] transformation, this translates to being able to compute on IBE
ciphertexts that all use the same master public key, but different identities. This
leads us to our first connection: we define the notion of a multi-key Id-based
FHE (IBFHE) scheme, and show that being able to construct one directly gives
us a CCA1-secure FHE scheme.

This immediately gives two constructions of leveled CCA1 FHE based on two
prior constructions of leveled multi-key IBFHE. The first is a generic construc-
tion from leveled multi-key FHE and IBE due to Brakerski, Cash, Tsabary and
Wee [BCTW16]. Their scheme is very simple: to encrypt, draw a key pair and
encrypt using the multi-key FHE; also encrypt the secret key using IBE. The
second construction is based on LWE in the random oracle model, due to Clear
and McGoldrick [CM15]. See Sect. 3 for our adaptation of the proof of [BCHK07],
and more information on these transformations.

Obfuscation Construction. Recently, [CLTV15] showed how to use indistin-
guishability obfuscation to build homomorphism into an encryption scheme by
publishing an obfuscation of a program which decrypts a pair of ciphertexts, eval-
uates and re-encrypts. Crucial to the proof of security is the ability to switch the
underlying encryption scheme to lossy mode so that the output of the program
which behaves honestly is statistically close to the output of the program which
ignores the inputs and outputs an encryption of 0. We use this same idea, though
in our setting things are more complex as we need to have the program continue
to output valid encryptions for all identities except for the challenge. This is our
main construction and is presented in Sect. 4.

A Note on Compactness. Compactness in FHE requires that the complexity of
decryption (and thus ciphertext size) does not grow too much with the com-
plexity of the function being evaluated. This prevents trivial schemes where the

216 R. Canetti et al.

evaluator simply sends the circuit to be evaluated to the decryptor who decrypts
and then evaluates the circuit. The ciphertexts in all of the above mentioned
schemes grow with the number of inputs to the circuit to be evaluated, but not
with the complexity of the circuit. We refer to such schemes as compact w.r.t.
circuit complexity and we stress that this is less ideal than true compactness.
The generic construction inherently is only compact w.r.t. circuit size (even if the
underlying multi-key FHE is truly compact). The LWE and IO based construc-
tions are also only compact w.r.t. circuit complexity, though it is not clear that
this is inherent. Obtaining a truly compact CCA1 FHE would represent progress
in either case, and would be particularly important for the LWE scheme as this
would improve other constructions which have used the multi-key FHE scheme
of [CM15]. We note that in many use cases multiple inputs to the FHE can be
“batched together” and encrypted with the same key in order to keep ciphertext
growth small.

CCA1 FHE from Knowledge Assumptions. Naor and Yung [NY90] show how
to go from CPA encryption to CCA1 encryption using non-interactive zero-
knowledge proofs (NIZKs). The CCA1 ciphertext is simply a (pair of) CPA
ciphertexts along with a NIZK proving correctness. We adopt this approach to
the FHE setting. We replace the NIZK with a zero-knowledge succinct non-
interactive argument of knowledge (zkSNARK) to preserve compactness since
otherwise the proof length would grow with the circuit being evaluated. This
construction is described in Sect. 5.

Another Approach to CCA1 FHE. In the appendix, we present a different app-
roach to constructing CCA1-secure FHE through what we call a linear-algebraic
encryption scheme, a variant of a single-key-secure functional encryption scheme
for linear functions. Although this approach currently only works to obtain addi-
tive homomorphism, we present it in the appendix as a potential approach to
obtain alternative constructions of CCA1-secure FHE.

2 CCA-Secure Fully Homomorphic Encryption

Definition 1. Let M, be a message space. A CCA1-secure fully homomor-
phic encryption scheme (CCA1 FHE) is a tuple of polynomial time algorithms
(Gen,Enc,Dec,Eval), defined as follows, which satisfy the correctness, compact-
ness and security properties below.

– Gen
(
1λ
)

: a randomized algorithm which outputs a public key, secret key pair
(pk, sk).

– Enc
(
μ, pk

)
: a randomized algorithm which outputs a ciphertext ct.

– Dec
(
ct, sk

)
: an algorithm which outputs a message μ ∈ M.

– Eval
({cti}, C): an algorithm which takes a collection of ciphertexts {cti} and

a circuit to be evaluated C and outputs an evaluated ciphertext cteval.

Chosen-Ciphertext Secure Fully Homomorphic Encryption 217

Correctness: For any μ ∈ M, and whp over (pk, sk) ← Gen
(
1λ
)
,

Pr
[
Dec
(
Enc(μ, pk), sk

)
= μ
]

= 1 − negl.

Homomorphic Correctness: For any {μi} ∈ Mpoly(λ), polynomially sized
circuit C, and whp over (pk, sk) ← Gen

(
1λ
)
, cti ← Enc

(
μi, pk

)
,

Pr
[
Dec
(
Eval

({cti}, C), sk) = C({μi}
)]

= 1 − negl.

Compactness: There exists a polynomial poly(·) st |cteval| ≤ poly(λ) for all
cteval ← Eval

({cti}, C). In particular, poly(·) is independent of the size, depth
or number of inputs to C.

CCA1 Security: For any PPT adversary A, its chance of winning the following
game against a challenger C is at most 1/2 + negl.
1. C draws (pk, sk) ← Gen(1λ) and sends pk to A.
2. For α = 1, . . . , poly:

– A sends ctα to C;
– C computes μα = Dec(ctα, sk) and returns μα to A.

3. A sends μ0, μ1 ∈ M to C.
4. C draws ct∗ ← Enc(μbit, pk) for a random bit ∈ {0, 1} and sends ct∗ to A.
5. A outputs guess ∈ {0, 1} and wins if guess = bit.

Remark. The query ciphertexts ctα above are chosen by the adversary and can
be base ciphertexts, evaluated ciphertexts, or may be altogether malformed.

Remark. We say that a CCA1 FHE scheme is leveled if there exists a polynomial
� = �(λ) such that homomorphic correctness only holds when C has depth at most
�. Also, we say that a CCA1 FHE is compact wrt circuit complexity if a weaker
compactness condition holds which allows |cteval| to grow with the number of
inputs to C, but demands that it remain independent of the size and depth of C.

Remark. In general, evaluated ciphertexts are allowed to have a slightly dif-
ferent form from fresh ciphertexts, in which case evaluated ciphertexts are
decrypted with a separate decryption algorithm EvalDec. For notational sim-
plicity, we refrain from explicitly specifying EvalDec. For all the schemes in this
paper, evaluated decryption is the same as ordinary decryption except for minor
differences.

3 Multi-key Identity-Based FHE to CCA1 FHE

In this section, we define the notion of multi-key identity-based FHE (IBFHE),
and show that it implies CCA1-secure FHE. The transformation preserves the
homomorphic (i.e., leveled or full) and compactness properties of the multi-
key IBFHE scheme. By applying this transformation on prior multi-key IBFHE

218 R. Canetti et al.

schemes we obtain two constructions of CCA1 FHE. Neither construction is fully
compact as in each construction, the evaluated ciphertext size grows with the
number of inputs to the circuit. They are however compact wrt circuit com-
plexity as evaluated ciphertext sizes are independent of the size or depth of the
circuit being evaluated. In Sect. 3.3 we apply our transformation to a recent con-
struction of [BCTW16] to obtain CCA1 FHE from any multi-key FHE and IBE.
In Sect. 3.4 we apply our transformation to the construction of [CM15] to obtain
leveled CCA1 FHE based on sub-exponential LWE in the random oracle model.

We point out that in both of these constructions, the ciphertext size grows
only with the number of batches of inputs to be evaluated. In settings where
the total number of users is small and the input to the circuits are known all at
once, this growth can be easily controlled.

3.1 Multi-key IBFHE

Definition 2. Let M, ID be message and identity spaces. A multi-key identity-
based fully homomorphic encryption scheme is a tuple of polynomial time algo-
rithms

(
Setup,Extract,Enc,Dec,Eval

)
, defined as follows, which satisfy the cor-

rectness and security properties below.

– Setup
(
1λ
)
: outputs the master key pair (mpk,msk).

– Extract
(
id,msk

)
: outputs a secret key skid for the identity id.

– Enc
(
μ, id,mpk

)
: encrypts message μ to identity id, outputting (ctid, id).

– Dec
(
ctid, id, skid

)
: decrypts ctid using skid, outputting μ.

– Eval
({(cti, idi)}, C): takes a family of ciphertexts and a circuit and outputs

(
cteval, ideval

)
.

Correctness: For any μ ∈ M, id ∈ ID, and whp over (mpk,msk) ← Setup
(
1λ
)
,

skid ← Extract(id,msk),

Pr
[
Dec
(
Enc(μ, id,mpk

)
, skid

)
= μ
]

= 1 − negl.

Homomorphic Correctness: For any {μi} ∈ Mpoly(λ), {idi} ∈ IDpoly(λ),
circuit C, and with high probability over (mpk,msk) ← Setup

(
1λ
)
, ski ←

Extract(idi,msk), cti ← Enc
(
μi, idi,mpk

)
,

Pr
[
Dec
(
Eval

({(cti, idi)}, C), skeval
))

= C({μi}
)]

= 1 − negl,

where skeval ← Extract(ideval,msk).
Compactness: There exists a polynomial poly(·) st |ideval|, |cteval| ≤ poly(λ)

for all evaluated (ideval, cteval) ← Eval
({idi, cti}, C). In particular, poly(·) is

independent of the size, depth or number of inputs to C.
Selective Security for Random Identities: For any PPT adversary A, its

chance of winning the following game against a challenger C is at most 1/2 +
negl.

Chosen-Ciphertext Secure Fully Homomorphic Encryption 219

1. C draws id∗ ← ID and (mpk,msk) ← Setup(1λ) and sends mpk to A.
2. For α = 1, . . . , poly:

– A sends idα to C;
– if idα = id∗, the game ends and A loses; if idα = idβ for β < α, C

returns skβ ; otherwise C draws skα ← Extract(idα,msk), sends skα to
A and stores (idα, skα).

3. A sends μ0, μ1 ∈ M to C.
4. C draws ct∗ ← Enc(μb, id

∗,mpk) for a random b ∈ {0, 1} and sends ct∗

to A.
5. A outputs b′ ∈ {0, 1} and wins if b′ = b.

Remark. A stronger version of security allows A to specify the identity id∗ he
wishes to attack after seeing mpk and the skα. Additionally, we could allow A
to ask another round of identity queries after receiving the challenge ciphertext
(provided he does not ask id∗). We use the above notion as it is sufficient for
CCA1 FHE.

Remark. As with CCA1 FHE, we consider relaxations of the above definition
where homomorphic correctness is only required to hold for circuits whose depth
is at most some polynomial � = �(λ). We call such schemes leveled. Similarly, we
consider relaxations of compactness where |ideval| and |cteval| may grow polyno-
mially with the number of inputs to C, but remain otherwise independent of the
complexity of C.

3.2 CCA1 FHE from Multi-key IBFHE

Let E be a multi-key IBFHE scheme. Our CCA1 FHE scheme is as follows.

– Gen
(
1λ
)
: Output (pk, sk) = (mpk,msk) ← E .Setup

(
1λ
)
.

– Enc
(
μ, pk

)
: Draw id ← ID and ctid ← E .Enc

(
μ, id,mpk

)
. Output ct = (ctid, id).

– Dec
(
ct, sk

)
: Parse ct = (E .ct, id). Draw skid ← E .Extract(id,msk), output μ ←

E .Dec(ctid, id, skid).
– Eval

({cti}, C): Parse cti = (E .cti, idi), output cteval = (E .cteval, ideval) ←
E .Eval

({(E .cti, idi)}, C).
Lemma 1. The above scheme is a CCA1-secure FHE scheme.

Proof. Correctness and homomorphic correctness follow immediately from the
same properties of E . CCA1 security follows from the security of E via the proof
from [BCHK07]. We sketch this proof for completeness. The idea is to use an
adversary A who wins the CCA1 game to construct B who wins the selective
IBE security game against a challenger C. This B receives mpk which he forwards
to A. Each time A asks a ciphertext query ctα, B asks C for secret keys for the
identity in ctα so he can decrypt them for A. As id∗ is random, the chance that
some idα = id∗ is negligible. When A sends (μ0, μ1), B forwards it to C and
receives ct∗. B sends (id∗, ct∗) to A, and forwards A’s guess to C. B wins the IBE
security game if and only if A wins the CCA1 game.

220 R. Canetti et al.

3.3 Generic Instantiation of Multi-key IBFHE

In a recent work, Brakerski et al. [BCTW16] give a generic construction of a
multi-key, attribute-based fully homomorphic encryption scheme from a multi-
key FHE and an ABE scheme. Their scheme is very simple: to encrypt, draw
a key pair and encrypt using the multi-key FHE; also encrypt the secret key
using ABE. Their transformation applies in our setting as well to give a generic
construction of multi-key IBFHE from multi-key FHE and IBE. The scheme
is only compact wrt circuit complexity. We omit the definitions of multi-key
FHE and IBE as they are analogous to our definition of multi-key IBFHE with
proper relaxations. We refer the reader to [MW16,GPV08] for definitions of these
primitives.

BuildingBlocks: Let (MK.Gen,MK.Enc,MK.Dec,MK.Eval) be a multi-key FHE
scheme, and let (IBE.Setup, IBE.Extract, IBE.Enc, IBE.Dec) be an IBE scheme.

Setup
(
1λ
)
: Draw and output (mpk,msk) ← IBE.Setup.

Extract
(
id,msk

)
: Draw and output skid ← IBE.Extract(id,msk).

Enc(μ, id,mpk): Draw (pk, sk) ← MK.Gen(1λ), ct1 ← MK.Enc(μ, pk) and ct2 ←
IBE.Enc(sk, id,mpk). Output (id, ctid) where ctid = (ct1, ct2).

Dec
(
ctid, id, skid

)
: Parse ctid = (ct1, ct2). Compute sk = IBE.Dec(ct2, id, skid),

output MK.Dec(ct1, sk).

Eval
({(idi, cti)}, C): Set ideval = {idi}. Parse cti = (cti,1, cti,2). Draw multi-key

evaluation cteval,1 ← MK.Eval
({cti,1}, C), and set cteval,2 = {cti,2}. Set cteval =

(cteval,1, cteval,2) and output (cteval, ideval).

Lemma 2. If MK and IBE are multi-key FHE and IBE schemes, respectively
and MK is compact wrt circuit complexity, then the above scheme is a multi-key
IBFHE scheme which is compact wrt circuit complexity.

Remark. The second component of the evaluated ciphertext cteval is the con-
catenation of the encryptions of all of the secret keys from the MK ciphertexts.
Therefore, the above multi-key IBFHE scheme is only compact wrt circuit com-
plexity even if MK is fully compact. Moreover, if MK is a leveled multi-key FHE
scheme then the resulting scheme is also leveled.

Remark. In the above scheme, evaluated identities are collections of identities:
ideval = {idi}. We define Extract to work on such inputs: Extract(ideval,msk) =
{ski} where ski ← Extract(idi,msk).

Proof. (Proof Sketch). Correctness follows immediately from correctness of MK
and IBE. Security follows from security of IBE to change the IBE portion of the
challenge ciphertext to an encryption of 0 instead of sk and then the security of
MK to say that A cannot distinguish encryptions of μ0 from μ1.

Combining Lemma 2 with Lemma 1 we get the following.

Chosen-Ciphertext Secure Fully Homomorphic Encryption 221

Theorem 1. If there exists a multi-key FHE scheme which is compact wrt cir-
cuit complexity and an IBE scheme with selective security for random identities
then there is a CCA1 FHE scheme which is compact wrt circuit complexity. If
the multi-key FHE scheme is leveled, then the resulting CCA1 FHE scheme is
also.

3.4 Multi-key IBFHE from LWE and ROs

Clear and McGoldrick [CM15] construct multi-key IBFHE (under the name
“multi-identity IBFHE”) from learning with errors in the random oracle model.
Like the generic construction above, their scheme is only compact wrt circuit
complexity, as their evaluated ciphertexts grow in size with the number of inputs
to the circuit. However, unlike the generic construction, their ciphertext growth
is dominated by the ciphertext growth in the multi-key FHE. In other words,
the failure of their scheme to be fully compact is due only to the failure of cur-
rent multi-key FHE scheme to be fully compact. Combining the main theorem
of [CM15] with Lemma 1 we get the following.

Theorem 2. Assuming sub-exponential LWE, there is a leveled CCA1 FHE
scheme in the random oracle model which is compact wrt circuit complexity.
The size of the evaluated ciphertexts in the scheme is S · poly(λ, log |C|, � where
S is the number of inputs to C, the circuit being evaluated, and � ≥ Depth(C) is
the maximum allowable depth for which homomorphic correctness still holds.

4 Instantiation from IO and Lossy Encryption

In this section, we construct a multi-key IBFHE from a sub-exponentially secure
indistinguishability obfuscation (IO) and sub-exponentially secure lossy encryp-
tion. The latter primitive can be instantiated from standard assumptions, e.g.,
the decisional Diffie-Hellman (DDH) assumption. The multi-key IBFHE scheme
in this section is fully compact and unleveled. The following lemma combined
with Lemma 1 gives compact, non-leveled CCA1 FHE.

Lemma 3. Assuming sub-exponential IO and sub-exponential hardness of DDH,
there is a compact, non-leveled multi-key IBFHE scheme.

In order to prove Lemma 3, we abstract an intermediate notion of encryption
that we call tag-puncturable encryption. We then show that a tag-puncturable
encryption scheme, together with IO, implies a multi-key IBFHE scheme, and
finish up with showing a construction of tag-puncturable encryption from IO
and additively homomorphic lossy encryption.

4.1 Tag-Puncturable Encryption

Definition 3. Let M, T AG be message and tag spaces where M is an abelian
group. Let BAD : T AG → {U : U ⊂ T AG} be such that |BAD(tag)| ≤ Bmax

222 R. Canetti et al.

for some parameter Bmax. Let ε > 0. A (BAD,Bmax, ε)–tag-puncturable, addi-
tively homomorphic encryption scheme is a tuple

(
Gen,Punc.Gen,Enc,Dec,Add

)

of polytime algorithms, defined as follows, which satisfy the properties below.

– Gen
(
1λ
)
: outputs the key pair (pk, sk).

– Punc.Gen
(
tag∗): outputs the keys (pk, sk, pktag∗ , sktag∗).

– Enc
(
μ, tag, pk

)
: encrypts μ to tag, outputting ciphertext cttag.

– Dec
(
cttag, tag, sk

)
: outputs message μ.

– Add
({cti}, tag

)
: outputs a homomorphically evaluated ciphertext ctadd.

Correctness: For any μ ∈ M, tag ∈ T AG, and whp over (pk, sk) ← Gen
(
1λ
)
,

Pr
[
Dec
(
Enc(μ, tag, pk

)
, tag, sk

)
= μ
]

= 1.

Homomorphic Correctness: For any {μi} ∈ Mk, tag ∈ T AG, and whp over
(pk, sk) ← Gen

(
1λ
)
, and cti ← Enc

(
μi, tag, pk

)
,

Pr
[
Dec
(
Add({cti}, tag), tag, sk

)
= μ1 + · · · + μk

]
= 1.

Key Indistinguishability: This property comes in two parts. First, for any
tag∗ ∈ T AG,

{
(pk, sk) : (pk, sk, pktag∗ , sktag∗) ← Punc.Gen(tag∗)

}
is distrib-

uted identically to Gen(1λ).
Secondly, for all PPT A,
∣
∣
∣PrPunc.Gen(tag∗)

(A(pk, sktag∗)=1
)−PrPunc.Gen(tag∗)

(A(pktag∗ , sktag∗) = 1
)∣∣
∣ ≤ ε.

(We remark that an alternate exposition could completely do away with Gen
and simply refer to Punc.Gen for both the “real” public keys and punctured
ones. We choose to keep Gen around for familiarity.)

Punctured Key Utility: For every tag∗ ∈ T AG, and with high probability
over (pk, sk, pktag∗ , sktag∗) ← Punc.Gen(tag∗), we have:

• Lossiness with Bad Keys: For all tag ∈ BADtag∗ , and μ0, μ1 ∈ M,

Enc(μ0, tag, pktag∗) ≈s Enc(μ1, tag, pktag∗).

• Correctness with Good Keys: For all tag /∈ BADtag∗ , and μ ∈ M,

Dec
(
Enc(μ, tag, pktag∗

)
, tag, sktag∗

)
= μ.

4.2 Multi-key IBFHE from Tag-Puncturable Encryption

The key ideas in this construction here borrow from recent works Canetti
et al. [CLTV15] and Dodis et al. [DHRW16].

Chosen-Ciphertext Secure Fully Homomorphic Encryption 223

– Parameters: Lmax = λω(1) is an upper bound on the number of levels, ε >
0 such that ε · Lmax = negl; let E be a (Lmax, ε)–tag-puncturable additively
homomorphic encryption scheme with tag space E .T AG = ID × [Lmax], and
for any tag∗ = (id∗, L∗) ∈ E .T AG, define the bad set BADtag∗ = {(id∗, L) :
L ≥ L∗}. Let the message space of E be E .T AG × M where M is the message
space of our multi-key IBFHE. Assume M is a ring. Also assume that the
homomorphism of E is only over the second coordinate of the message. Let
piO be an ε-secure PIO scheme.

– Setup
(
1λ
)
: Draw (pk, sk) ← E .Gen

(
1λ
)
. Also, let Peval[pk, sk] and Pcomb[pk, sk]

be the following probabilistic programs:
• (pk, sk) is hardwired into both; both take inputs (tag, ct), (tag′, ct′) ∈

E .T AG × E .CT ;
• both compute (id, L, μ) = E .Dec(ct, tag, sk) and (id′, L′, μ′) = E .Dec

(ct′, tag′, sk), if either decryption is not of this form, or if tag �= (id, L)
or tag′ �= (id′, L′), or if either of L or L′ is ≥ Lmax, output ⊥;

• now the programs differ:
Peval[pk, sk]: let η, η′ ∈ M be random st η + η′ = μ · μ′, draw

ctout ← E .Enc
(
(id, L+1, η), tag, pk

)
and ct′out ← E . Enc

(
(id′, L′+1, η′), tag′, pk

)
;

output
(
(id, L + 1, ctout), (id′, L′ + 1, ct′out)

)
; E-encryptions to tags

(id, L + 1), (id′, L′ + 1), respectively.
Pcomb[pk, sk]: let idout = id ⊕ id′, Lout = max{L, L′} + 1 and tagout =

(idout, Lout). Draw ctout ← E .Enc
(
(idout, Lout, μ+μ′), tagout, pk

)
; output

(tagout, ctout).
Let Oeval[pk, sk] = piO(Peval[pk, sk]

)
and Ocomb[pk, sk] = piO(Pcomb[pk, sk]

)
. Set

msk = sk and mpk =
(
pk,Oeval[pk, sk],Ocomb[pk, sk]

)
.

– Extract
(
id,msk

)
: Parse msk = sk. Let Pdec[id, sk] be the deterministic program:

• id and sk are hardwired, take input ct ∈ E .CT ;
• compute (id, L, μ) = E .Dec(ct, id, sk), if the decryption is not of this form,

or if L > Lmax, output ⊥; otherwise output μ.
Let Odec[id, sk] = iO(Pdec[id, sk]

)
. Output skid = Odec[id, sk].

– Enc
(
μ, id,mpk

)
: Parse mpk =

(
pk,Oeval[pk, sk],Ocomb[pk, sk]

)
, set tag = (id, 0),

msg = (id, 0, μ); draw ctid ← E .Enc(msg, tag, pk), and output (ctid, id).
– Dec

(
ctid, id, skid

)
: Parse skid = Odec[id, sk], output μ = Odec[id, sk](ctid).

– Eval
(
(ct1, id1), . . . , (ctt, idt), C,mpk

)
: Parse mpk =

(
pk,Oeval,Ocomb

)
and write

C as an algebraic circuit, organized so that each layer consists either entirely
of addition gates or entirely of multiplication gates.

1. Evaluate C a la GMW: For i, j = 1, . . . , t, define ciphertext ctij by
ctii = cti and ctij ← E .Enc

(
(idj , 0, 0), (idj , 0), pk

)
for i �= j. This defines

a set of ciphertexts {ctij}j for each input wire i, where for each j, ctij
is an E–ciphertext to tagj,0 = (idj , 0). Consider a gate of C with input
wires (u, v) and output wire w. Assume by induction that we have cipher-
text families {ctuj }j and {ctvj }j , where ctuj and ctvj are E–ciphertexts for
tagj,L = (idj , L), we describe how to construct {ctwj }j .

224 R. Canetti et al.

• Addition Gate: Set ctwj = E .Add(ctuj , ctvj , tagj,L), so ctwj is an E–
ciphertext to tagj,L.

• Multiplication Gate: For i, j = 1, . . . , t, draw
(
idi, L + 1,CTu

i,j

)
,
(
idj , L + 1,CTv

j,i

)← Oeval

(
(idi, L, ctui), (idj , L, ctvj)

)
.

Note that CTu
j,i and CTv

i,j are both E–ciphertexts to tagj,L+1. Set

ctwj = E .Add
({CTu

j,i}i, {CTv
i,j}i, tagj,L+1

)
.

After all gates of C have been computed as above we have (id1, . . . ,
idt, ct

out
1 , . . . , ctoutt) where {ctoutj }j is the ciphertext family for the out-

put wire of C. Note ctoutj is an E-ciphertext to tagj,Ldepth
where Ldepth is the

multiplicative depth of C.
2. Combine output ciphertexts: Initialize tageval = (id1, Ldepth) and

cteval = ctout1 . For j = 2, . . . , t:
• draw (tageval, cteval) ← Ocomb

(
(tageval, cteval), (tagj,Ldepth

, ctoutj)
)
;

• parse tageval = (ideval, Leval); output (cteval, ideval). Note cteval is an E-
ciphertext to tageval, where ideval =

⊕
i idi, and Leval = Ldepth+ t−1 �

Lmax.

Lemma 4. The above scheme is a multi-key identity-based FHE assuming the
existence of sub-exponential iO and that E is a (Lmax, ε)–tag-puncturable addi-
tively homomorphic encryption scheme.

4.3 Proof of Lemma 4

Correctness: This follows from the correctness of E and iO. For any μ ∈ {0, 1},
id ∈ ID, whp over (pk, sk) ← E .Gen(1λ), and ct ← E .Enc

(
(id, 0, μ), (id, 0), pk

)
,

E .Dec
(
ct, (id, 0), sk

)
= (id, 0, μ), and so Odec[id, sk](ct) = μ.

Homomorphic Correctness: For any {μi} ∈ Mt, {idi} ∈ IDt, circuit C, we
show that for any wire w at (multiplicative) level L, the ciphertexts {ctwj }j

satisfy μw =
∑

j E .Dec
(
ctwj , tagj,L, sk

)
. Homomorphic correctness then follows

from correctness of piO. This equality holds for the input wires by construc-
tion. Assume it is true for {ctuj } and {ctvj }, the ciphertexts for wires u and
v which are the input wires to a gate of C with output wire w. If the gate is
addition then we have
∑

j

E .Dec
(
ctwj , tagj,L, sk

)
=
∑

j

E .Dec
(E .Add(ctuj , ctvj , tagj,L), tagj,L, sk

))

=
∑

j

μu
j + μv

j = μu + μv = μw.

If the gate is multiplication then we have
∑
j

E .Dec
(
ctwj , tagj,L, sk

)
=
∑
j

E .Dec
(E .Add

({CTu
j,i}i, {CTv

i,j}i, tagj,L+1

)
, tagj,L+1, sk

)

=
∑
i,j

ηu
i,j + ηv

i,j =
∑
i,j

μu
i · μv

j = μu · μv = μw.

Chosen-Ciphertext Secure Fully Homomorphic Encryption 225

Security: We show that for any PPT A, its chance of winning the selective IBE
security game for random identities is at most 1/2 + negl. We use a hybrid
argument.

Hybrid H0: The IBE security game.

1. C draws id∗ ← E .ID and (pk, sk) ← E .Gen(1λ), computes the obfuscated
programs Oeval[pk, sk], Ocomb[pk, sk] and sends

(
pk,Oeval[pk, sk],Ocomb[pk, sk]

)

to A.
2. For α = 1, . . . , poly(λ):

– A sends idα to C;
– if idα = id∗, the game ends A loses; if idα = idβ for β < α, C sends skβ ;
– otherwise, C sends skα = Odec[idα, sk] to A, and records (idα, skα).

3. A sends μ0, μ1 ∈ M to C.
4. C chooses bit ← {0, 1}, ct∗ ← E .Enc

(
(id∗, 0, μbit), (id∗, 0), pk

)
, and sends ct∗

to A.
5. A outputs guess ∈ {0, 1} and wins if guess = bit.

Hybrid H1: This is the same as H0 except that C draws (pk, sk, pktag∗ , sktag∗) ←
E .Punc.Gen(tag∗), in step 1, where tag∗ = (id∗, Lmax). C still sends pk in step 1 and
uses sk in all obfuscations. The following claim holds because (pk, sk) output by
E .Punc.Gen(tag∗) are distributed identically to E .Gen(1λ), by key indistinguisha-
bility of E .

Claim 1. For any (unbounded) A, Pr
(A wins H0

)
= Pr

(A wins H1

)
.

Hybrid H2: This is the same as H1 except that C now uses sktag∗ , tag∗ = (id∗, Lmax)
in all obfuscations instead of sk. Note that Peval[pk, sk] (resp. Pcomb[pk, sk]) is
functionally equivalent to Peval[pk, sktag∗] (resp. Pcomb[pk, sktag∗]), as BADtag∗ =
{(id∗, Lmax)} and neither program ever decrypts at level Lmax. Moreover, since
A does not query idα = id∗ whp, Pdec[idα, sk] is functionally equivalent to
Pdec[idα, sktag∗]. The claim follows from the security of iO.

Claim 2. For any PPT A,
∣
∣
∣Pr
(A wins H1

)− Pr
(A wins H2

)∣∣
∣ = negl.

Hybrid H3: This is the same as H2 except that C uses sktag∗ where tag∗ = (id∗, 0)
in all obfuscations instead of (id∗, Lmax). The following claim is more involved
than the others, requiring a few sub-hybrids. We prove it below.

Claim 3. For any PPT A,
∣
∣
∣Pr
(A wins H2

)− Pr
(A wins H3

)∣∣
∣ = negl.

Hybrid H4: This is the same as H3 except that C uses (pktag∗ , sktag∗) where
tag∗ = (id∗, 0), instead of (pk, sktag∗). Indistinguishability follows from key-
indistinguishability of E . As pktag∗ is lossy, even an unbounded adversary cannot
have noticeable advantage in this hybrid’s game. This completes our proof of
security.

226 R. Canetti et al.

Claim 4. For any PPT A,
∣
∣
∣Pr
(A wins H3

)− Pr
(A wins H4

)∣∣
∣ = negl.

Claim 5. For any (unbounded) A, Pr
(A wins H4

) ≤ 1/2 + negl.

Proof (Proof of Claim 3). Recall we must argue that H2 and H3 are indistin-
guishable, where the only difference is that C uses (pk, sktag∗) where in H2,
tag∗ = (id∗, Lmax) and in H3, tag∗ = (id∗, 0). Let H3,i be the game where
C uses tag∗ = (id∗, i), so that H3,0 = H3 and H3,Lmax = H2. We prove that∣
∣
∣Pr
(A wins H3,i

)−Pr
(A wins H3,i−1

)∣∣
∣ ≤ 4ε for each i = 1, . . . , Lmax, from which

it follows that
∣
∣
∣Pr
(A wins H2

)− Pr
(A wins H3

)∣∣
∣ ≤ 4ε · Lmax = negl.

Let G0 = H3,i and let G1 be the same as G0 except that C uses
(pktag∗ , sktag∗) in the obfuscations Oeval and Ocomb instead of (pk, sktag∗). The

key-indistinguishability of E implies that for all PPT A,
∣
∣
∣Pr
(A wins G0

) −
Pr
(A wins G1

)∣∣
∣ ≤ ε.

Let G2 be the same as G1 except we change Peval and Pcomb so that instead of
outputting an encryption of an evaluated value under the tag (id∗, j) for j ≥ i,
they just output encryptions of 0. As pk(id∗,j) is lossy, the output distributions
of Peval and Pcomb in G2 are statistically close to those in G1. The security of piO
ensures that for all PPT A,

∣
∣
∣Pr
(A wins G1

)− Pr
(A wins G2

)∣∣
∣ ≤ ε.

Let G3 be the same as G2 except that C uses (pk, sktag∗) where tag∗ = (id∗, i)
instead of (pktag∗ , sktag∗), but Peval and Pcomb still encrypt 0 instead of valid
messages to tags (id∗, j) with j ≥ i. The key-indistinguishability of E again gives∣
∣
∣Pr
(A wins G2

)− Pr
(A wins G3

)∣∣
∣ ≤ ε for all PPT A.

Finally, let G4 be the same as G3 except that C uses (pk, sktag∗) where tag∗ =
(id∗, i− 1) instead of (id∗, i). Since neither obfuscation ever decrypts ciphertexts
with tag (id∗, i), program functionality does not change. Security of piO gives∣
∣
∣Pr
(A wins G3

)− Pr
(A wins G4

)∣∣
∣ ≤ ε for all PPT A. G4 = H3,i−1 so the result

follows.

4.4 Statistical Trapdoor Encryption

In order to instantiate our tag-puncturable encryption used in the previ-
ous section, we start from a statistical trapdoor encryption scheme, defined
below. This was also the starting point for the piO–based construction of FHE
from [CLTV15], who note that any lossy encryption scheme implies statistical
trapdoor encryption. Our construction also has the property that if the statis-
tical trapdoor scheme is additively homomorphic then so will be the resulting
tag-puncturable scheme. We can therefore use a DDH-based additively homo-
morphic, lossy encryption scheme as our starting point.

Definition 4. An ε–statistical trapdoor encryption scheme is a tuple of poly-
time algorithms

(
Gen,Enc,Dec, tGen

)
such that (Gen,Enc,Dec) is a semantically

Chosen-Ciphertext Secure Fully Homomorphic Encryption 227

secure encryption scheme and additionally tGen
(
1λ
)

outputs a trapdoor public
key pk∗ such that

– for any μ0, μ1 ∈ M and whp over pk∗ ← tGen(1λ),

{Enc(μ0, pk
∗)} ≈s {Enc(μ1, pk

∗)};

– for all PPT A,
∣
∣
∣PrGen(1λ)

(A(pk) = 1
)− PrtGen(1λ)

(A(pk∗) = 1
)∣∣
∣ ≤ ε.

4.5 From Statistical Trapdoor Encryption to Tag-Puncturable
Encryption

– Setup: Let E be a statistical trapdoor encryption scheme. Let piO be a piO
scheme and F be a puncturable PRF.

– Gen
(
1λ
)
: Sample a PRF key K and set sk = K. Let Pgen[K] be the probabilistic

program:
• K is hardwired, take input tag ∈ T AG;
• computes (pktag, sktag) = E .Gen(1λ;FK(tag));
• outputs pktag.

Set pk = piO(Pgen[K]
)

= Ogen[K]. Output (pk, sk).
– Enc

(
μ, tag, pk

)
: Parse pk = Ogen. Compute pktag = Ogen(tag) and output

cttag ← E .Enc(μ, pktag).
– Dec

(
cttag, tag, sk

)
: Compute (pktag, sktag) = E .Gen

(
1λ;FK(tag)

)
, output μ =

E .Dec(cttag, sktag).
– Punc.Gen

(
tag∗): Sample a PRF key K set sk = K, and pk = Ogen[K] =

piO(Pgen[K]
)
, as in Gen. Additionally, let Ktag∗ be K punctured at all tag ∈

BADtag∗ and set sktag∗ = Ktag∗ . Finally, let P∗
gen[Ktag∗] be the probabilistic

program:
• Ktag∗ is hardwired, take input tag ∈ T AG;
• if tag /∈ BADtag∗ , compute (pktag, sktag) = E .Gen

(
1λ;FKtag∗ (tag)

)
;

• if tag ∈ BADtag∗ , sample pk∗ ← E .tGen(1λ)
• output either pktag in the first case, or pk∗ in the second.

Output the data (pk, sk, pktag∗ , sktag∗) = (Ogen,K,O∗
gen,Ktag∗) where O∗

gen =
piO(P∗

gen[Ktag∗]
)
.

Lemma 5. The above scheme is a tag-puncturable encryption scheme assuming
that E is an ε–statistical trapdoor encryption scheme and that sub-exponential
iO exists.

Proof. Correctness follows immediately from correctness of E and piO. The
above scheme clearly satisfies the required punctured key utility properties as
Enc(μ, tag, pktag∗) is lossy if and only if tag ∈ BADtag∗ and piO is correct. We
now prove key-indistinguishability through a hybrid argument.

228 R. Canetti et al.

Hybrid H0: This is the distribution (pk, sktag∗) where (pk, sk, pktag∗ , sktag∗) ←
Punc.Gen(tag∗).

Hybrid H1: This is the distribution (pk′, sktag∗) where pk′ = piO(P′
gen[Ktag∗]) and

P′
gen[Ktag∗] be the probabilistic program:

– Ktag∗ is hardwired, take input tag ∈ T AG;
– if tag /∈ BADtag∗ , compute (pktag, sktag) = E .Gen

(
1λ;FKtag∗ (tag)

)
;

– if tag ∈ BADtag∗ , sample (pktag, sktag) = E .Gen
(
1λ; r

)
where r is sampled at

random
– output pktag.

The following claim holds because from the security of the puncturable PRF,
even in the presence of the punctured key Ktag∗ = sktag∗ , the output distributions
of the programs Pgen[K] and P′

gen[Ktag∗] are close, and hence, the security of piO
implies that the obfuscations of the programs are also indistinguishable even
given the punctured key.

Claim 6. For any PPT A,
∣
∣
∣Pr
(A wins H0

)− Pr
(A wins H1

)∣∣
∣ = negl.

Hybrid H2: This is the distribution (pktag∗ , sktag∗) where (pk, sk, pktag∗ , sktag∗) ←
Punc.Gen(tag∗).

The following claim holds because from the key-indistinguishability of E ,
the output distributions of the programs P′

gen[K] and P∗
gen[Ktag∗] are close (the

constrained key is not relevant here and hence security holds even in its presence),
and hence, the security of piO implies that the obfuscations of the programs are
also indistinguishable (even given the punctured key).

Claim 7. For any PPT A,
∣
∣
∣Pr
(A wins H1

)− Pr
(A wins H2

)∣∣
∣ = negl.

This completes the proof of key-indistinguishability.

5 CCA1 FHE from Knowledge Assumptions

Naor and Yung [NY90] show how to go from CPA encryption to CCA1 encryp-
tion using non-interactive zero-knowledge proofs (NIZKs). The CCA1 ciphertext
is simply a (pair of) CPA ciphertexts along with a NIZK proving correctness. In
this section we adopt this approach to the FHE setting. Applying this transfor-
mation directly results in a non-compact CCA1 FHE scheme even if the underly-
ing CPA FHE scheme is compact as the proof length grows with the complexity
of the circuit being evaluated. Thus we replace the NIZK with a zero-knowledge
succinct non-interactive argument of knowledge (zkSNARK) to preserve com-
pactness (argument of knowledge will be important in our proof of security).
The zkSNARKs we use in our scheme are defined in [BCCT13,BCC+14] and
constructed from knowledge assumptions. In Sect. 5.1 we formally define the
zkSNARK primitive we will use, and in Sect. 5.2 we give our scheme based
on them.

Chosen-Ciphertext Secure Fully Homomorphic Encryption 229

5.1 Zero-Knowledge SNARKs

Definition 5. Let L be a language in NP. A zero-knowledge succinct non-
interactive argument of knowledge (zkSNARK) for L is a tuple of algorithms
(Setup,Gen,Prove,Verify), defined as follows, which satisfy the correctness, suc-
cinctness, proof of knowledge, and zero-knowledge properties below.

– Setup
(
1λ
)
: is executed by a trusted third party and outputs crs ∈ {0, 1}poly(λ).

– Gen
(
1λ
)
: is executed by the verifier and outputs a reference string σ ∈

{0, 1}poly(λ).
– Prove

(
(crs, σ);x;w

)
: is executed by the prover and outputs a proof π certifying

(x,w) ∈ L.
– Verify

(
(crs, σ);x;π

)
: is executed by the verifier and outputs 1 or 0 according

to whether V accepts or rejects P’s proof.

Correctness: If (x,w) ∈ L then for any (crs, σ) ← Setup(1λ) × Gen(1λ),

Pr
[
Verify

(
(crs, σ);x;Prove((crs, σ);x;w)

)
= 1
]

= 1.

Succinctness: The length of the proof π output by Prove and the running time
of Verify are bounded by p(λ+ |x|) where p(·) is a polynomial which does not
depend on the language L.

Proof of Knowledge: For all PPT cheating provers Prove∗ who output (x, π)
on input (crs, σ), there exists a PPT extractor EProve∗ such that with high
probability over (crs, σ) ← Setup(1λ) × Gen(1λ),

Pr
[
Verify

(
(crs, σ);Prove∗(crs, σ)

)
= 1 & EProve∗(crs, σ) = (x,w) /∈ L

]
= negl.

Zero Knowledge: For all PPT cheating verifiers Verify∗ who output an adver-
sarial reference string σ∗, there exists a simulator S such that for all PPT
distinguishers D, and all (x,w) ∈ L,
∣
∣
∣
∣Prπ←Prove(crs,σ∗,x,w)

[
D(π) = 1

]
− Prπ←S(Verify∗,crs,x)

[
D(π) = 1

]∣∣
∣
∣ = negl.

Remark. The zkSNARKs defined above are publicly verifiable; one could (and
often does) consider a weaker designated verifier variant, where Gen(1λ) outputs
(σ, τ) where σ is a public reference string as above and τ is a private verification
tag, known only to the verifier. Our use of publicly verifiable zkSNARKS is for
convenience; our construction could be made to work using designated verifier
zkSNARKs using techniques of [BCCT12]. zkSNARKS can be constructed from
a variety of non-standard assumptions including knowledge assumptions and
extractable CRHF [BCCT12,BCCT13,BCC+14].

230 R. Canetti et al.

5.2 The Scheme

BuildingBlocks: Let (Gfhe,Efhe,Dfhe,Evfhe) be an FHE scheme, and let
(Ssnark,Gsnark,Psnark,Vsnark) be a zkSNARK.

Gen(1λ): Draw (pk0, sk0), (pk1, sk1) ← Gfhe(1λ), and (crs, σ) ← Ssnark(1λ) ×
Gsnark(1λ). Output (pk, sk) =

(
(pk0, pk1, crs, σ), (sk0, sk1)

)
.

Enc(μ, pk): For α = 0, 1, draw ωα ← $ and set ctα = Efhe(μ, pkα;ωα) for α = 0, 1.
Also draw π ← Psnark

(
(crs, σ); (ct0, ct1); (μ, ω0, ω1)

)
, a proof for the statement:

“∃ (μ, ω0, ω1) st ctα = Efhe(μ, pkα;ωα) for α = 0, 1.”

Output ct = (ct0, ct1, π).

Dec
(
ct, sk

)
: Parse ct = (ct0, ct1, π), and sk = (sk0, sk1). If Vsnark

(
(crs, σ);

(ct0, ct1);π
)

= 1, output Dfhe(ct0, sk0), otherwise output ⊥.

Eval
({cti}, C): Parse cti = (ct0i , ct

1
i , πi). For α = 0, 1, draw ω′

α ← $ set
ctαeval = Evfhe

({ctαi }, C;ω′
α

)
. Also draw πeval ← Psnark

(
(crs, σ); (ct0eval, ct

1
eval);

({ct0i }, {ct1i }, {πi}, C, ω′
0, ω

′
1)
)
, a proof for:

∃ ({ct0i }, {ct1i }, {πi}, C, ω′
0, ω

′
1)
)
st both

1. ctαeval=Evfhe({ctαi }, C, ;ω′
α) for α = 0, 1;

2. Vsnark

(
(crs, σ); (ct0i , ct

1
i);πi

)
= 1 ∀ i.

Output cteval = (ct0eval, ct
1
eval, πeval).

Theorem 3. If (Gfhe,Efhe,Dfhe,Evfhe) is an FHE scheme, and (Ssnark,Gsnark,
Psnark,Vsnark) is a zkSNARK then the above scheme is CCA1 FHE.

Proof (Proof Sketch). We use essentially the same hybrid argument as [NY90].
HybridH0

0: The CCA1 security game where C chooses bit = 0.

1. C draws (pk0, sk0), (pk1, sk1) ← Gfhe(1λ) and (crs, σ) ← Ssnark(1λ)×Gsnark(1λ),
and sends pk = (pk0, pk1, crs, σ) to A, and holds sk = (sk0, sk1) for later use.

2. For β = 1, . . . , poly(λ):
– A sends ctβ = (ct0β , ct1β , πβ) to C.
– C returns Dec(ctβ , sk) to A. This involves checking Vsnark

(
(crs, σ);

(ct0β , ct1β);πβ

)
= 1, and outputting Dfhe(ct0β , sk0).

3. A chooses (μ0, μ1) ← M and sends (μ0, μ1) to C.
4. C draws ωα ← $ and sets ctα = Efhe(μ0, pkα;ωα) for α = 0, 1. Furthermore,

C draws a certificate π ← Psnark

(
(crs, σ); (ct0, ct1); (μ0, ω0, ω1)

)
, sets ct∗ =

(ct0, ct1, π) and sends ct∗ to A.
5. A outputs guess ∈ {0, 1} and wins if guess = 0.

Hybrid H0
1: This is the same as H0

0 except for the way A’s queries are
answered. Each time A sends (ct0β , ct1β , πβ), C verifies πβ as usual: if
Vsnark

(
(crs, σ); (ct0β , ct1β);πβ) = 0, C returns ⊥. However, in addition, C com-

putes μα
β = Dfhe(ctαβ , skα) for α = 0, 1 and checks that μ0

β = μ1
β . If not, C aborts

and A wins the game. Otherwise, C returns μ0
β as usual.

Chosen-Ciphertext Secure Fully Homomorphic Encryption 231

Claim 8. For any PPT A,
∣
∣
∣Pr
(A wins H0

0

)− Pr
(A wins H0

1

)∣∣
∣ = negl.

Proof (Proof Sketch). This follows immediately from the proof of knowledge of
the zkSNARK.

Hybrid H0
2: This is the same as H0

1 except that C simulates the proof π in the
challenge ciphertext. Specifically, C produces ct∗ by drawing ctα ← Efhe(μbit, pkα)
as usual, but draws π ← S

(A, (crs, σ), (ct0, ct1)
)

instead of from Psnark(·) as in H1.

Claim 9. For any PPT A,
∣
∣
∣Pr
(A wins H0

1

)− Pr
(A wins H0

2

)∣∣
∣ = negl.

Proof (Proof Sketch). This follows immediately from the zero knowledge of the
zkSNARK.

Hybrid H0,1
2 : This is the same as H0

2 except for the way C produces ct∗. This
time, C draws ciphertexts ctα ← Efhe(μα, pkα) for α = 0, 1 as well as a simulated
π, and sends ct∗ = (ct0, ct1, π).

Claim 10. For any PPT A,
∣
∣
∣Pr
(A wins H0

2

)− Pr
(A wins H0,1

2

)∣∣
∣ = negl.

Proof (Proof Sketch). This follows immediately from the semantic security of
the underlying FHE scheme.

Hybrid H0,1
3 : This is the same as H0,1

2 except that now C answers ciphertext
queries by sending μ1

β instead of μ0
β . This game is identical to H0,1

2 because of
the equality check performed during decryption.

Claim 11. For any (unbounded) A, Pr
(A wins H0,1

2

)
= Pr

(A wins H0,1
3

)
.

Hybrid H1,1
3 : This is the same as H0,1

3 except for the way C produces ct∗. Now,
C draws ctα ← Efhe(μ1, pkα) for α = 0, 1 and simulates π as usual. C sends
ct∗ = (ct0, ct1, π).

Claim 12. For any PPT A,
∣
∣
∣Pr
(A wins H0,1

3

)− Pr
(A wins H1,1

3

)∣∣
∣ = negl.

Proof (Proof Sketch). This follows immediately from the semantic security of
the underlying FHE scheme.

Hybrid H1
2: This is the same as H1,1

3 except that C answers ciphertext queries by
sending μ0

β again instead of μ1
β . This game is identical to H1,1

3 because of the
equality check performed during decryption.

Claim 13. For any (unbounded) A, Pr
(A wins H1

2

)
= Pr

(A wins H1,1
3

)
.

We now complete the argument by going from H1
2 to H1

0 in reverse just as we went
from H0

0 to H2
0. The next claim follows, and completes the proof of Theorem 3.

Claim 14. For any PPT A,
∣
∣
∣Pr
(A wins H0

0

)− Pr
(A wins H1

0

)∣∣
∣ = negl.

232 R. Canetti et al.

A Linear Algebraic Encryption

In this section we define linear algebraic encryption, LAE, as an intermedi-
ate type of encryption with which to instantiate CCA. Roughly speaking, a
LAE scheme is an encryption scheme whose plaintext space M is a finite
field, and which supports M–linear operations on ciphertexts. If one encrypts
v ∈ Mk, coordinate by coordinate obtaining ciphertexts {cti}i=1,...,k, then
for any linear map ϕ : Mk → M�, one can compute evaluated cipher-
texts {ct′j}j=1,...,� ← Eval

({cti}, ϕ
)

which decrypt, using evaluated secret keys
{sk′

j} ← KeyEval
({ski}, ϕ

)
, to ϕ(v) ∈ M�. Syntactically, this puts LAE very

close to functional encryption for linear circuits; the correctness and security
properties are essentially the same. LAE, however, also requires soundness.
Specifically, it must be that evaluating ciphertexts and decrypting is the same as
decrypting and evaluating plaintexts even for adversarially chosen ciphertexts.
This will be crucial to obtain CCA security. We now define LAE formally.

Definition 6 (Linear Algebraic Encryption). Let M, CT , PK, and SK
represent the message, ciphertext, public key, and secret key spaces of the
scheme, respectively; let M be a finite field. A linear algebraic encryption
scheme is a tuple

(
Gen,Enc,Dec,CTEval,SKEval,EvalDec

)
of polytime algo-

rithms, defined as follows, which satisfy the correctness, soundness and security
properties below.

– Gen
(
1λ, 1k

)
: takes security parameter λ, k ∈ Z and outputs

({pki}, {ski}
) ∈

PKk × SKk. The algorithms below all also take (1λ, 1k) as implied inputs.
– Enc

({msgi}, {pki}
)
: is a randomized algorithm which takes

({msgi}, {pki}
) ∈

Mk × PKk and outputs ciphertexts {cti} ∈ CT k.
– Dec

({cti}, {ski}
)
: takes

({cti}, {ski}
) ∈ CT k×SKk and outputs {msgi} ∈ Mk.

– CTEval
({cti}, ϕ

)
: takes {cti} ∈ CT k, linear map ϕ : Mk → M� and outputs

{ct′j} ∈ CT �.
– SKEval

({ski}, ϕ
)
: takes {ski} ∈ SKk, a linear map ϕ : Mk → M� and outputs

{sk′
j} ∈ SK�.

– EvalDec
({ct′j}, {sk′

j}
)
: takes

({ct′j}, {sk′
j}
) ∈ CT �×SK� and outputs {msg′

j} ∈
M�.

Correctness: For any {msgi} ∈ Mk, and whp over
({pki}, {ski}

) $←
Gen
(
1λ, 1k

)
,

Pr
[
Dec
(
Enc({msgi}, {pki}

)
, {ski}

)
= {msgi}

]
= 1 − negl.

Soundness: For any ϕ : Mk → M� and whp over
({pki}, {ski}

) $← Gen
(
1λ, 1k

)
,

for any (potentially malformed) ciphertexts {cti} ∈ CT k, the following dis-
tributions are statistically close:

Chosen-Ciphertext Secure Fully Homomorphic Encryption 233

• draw {msgi} ← Dec
({cti}, {ski}

)
, output ϕ

({msgi}
)
;

• draw {ct′j} ← CTEval
({cti}, ϕ

)
, {sk′

j} ← SKEval
({ski}, ϕ

)
, output

EvalDec
({ct′j}, {sk′

j}
)
.

Security: For any PPT adversary A, its chance of winning the following game
against a challenger C is at most 1/2 + negl.
1. A sends (k, �, ϕ) to C where k = poly(λ), � < k and ϕ : Mk → M� is a

linear map.
2. C draws

({pki}, {ski}
) $← Gen

(
1λ, 1k

)
, {sk′

j} ← SKEval
({ski}, ϕ

)
, and

sends
({pki}, {sk′

j}
)

to A.
3. A chooses {msg0i }, {msg1i } ∈ Mk st ϕ

({msg0i }
)

= ϕ
({msg1i }

)
, and sends({msg0i }, {msg1i }

)
to C. C draws b ← {0, 1}, {ct∗i } ← Enc

({msgb
i}, {pki}

)

and sends {ct∗i } to A.
4. A sends a bit b′ ∈ {0, 1} to C and wins if b = b′.

Remark 1. If a LAE scheme is such that every tuple in CT k is a valid encryption
of some message vector in Mk, then perfect correctness implies soundness.

Remark 2. It is possible to define versions of the above security game where
A gets to choose ϕ after receiving {pki}, or in an adaptive, coordinate-by-
coordinate fashion. We use the above simple version as it is already sufficient for
CCA2 encryption.

A.1 Adding Homomorphism

Definition 7 (Additively Homomorphic LAE). Let LAE be a LAE scheme.
We say that LAE is additively homomorphic if there exists a PPT algorithm Add
which satisfies the properties below. Let m,m′ ∈ M be arbitrary and (pk, sk) ←
Gen(1λ).

– Add(ct, ct′): Given ct = Enc(m, pk) and ct′ = Enc(m′, pk), output ct + ct′

which satisfies Dec(ct + ct′, sk) = m + m′.

Remark. Though the definition of homomorphic LAE only requires homomor-
phic additions on single ciphertexts, it extends coordinate-wise to give homo-
morphic addition on ciphertext vectors. We also have soundness.

Claim 15 (Homomorphic Soundness). For any (possibly malformed)
ciphertexts ct, ct′ ∈ CT k and whp over (pk, sk) ← Gen(1λ, 1k) we have that
for any linear ϕ : Zk

q → Z
�
q, if skϕ = SKEval(sk, ϕ) then

EvalDec
(
CTEval(ct + ct′, ϕ), skϕ

)
= EvalDec

(
CTEval(ct, ϕ), skϕ

)

+EvalDec
(
CTEval(ct′, ϕ), skϕ

)
.

234 R. Canetti et al.

Proof Let v = EvalDec
(
CTEval(ct, ϕ), skϕ

)
and v′ = EvalDec

(
CTEval(ct′, ϕ),

skϕ

)
. We have

EvalDec
(
CTEval(ct + ct′, ϕ), skϕ

)
= ϕ
(
Dec(ct + ct′, sk)

)

= ϕ
(
Dec(ct, sk)

)
+ ϕ
(
Dec(ct′, sk)

)
= v + v′,

using soundness of LAE, additive homomorphism and linearity of ϕ.

A.2 Additively Homomorphic CCA1 Encryption from LAE

– Setup: Let LAE, be an additively homomorphic LAE scheme with message
space M = Zq for a large prime q = λω(1).

– Gen(1λ): Draw
({pki}, {ski}

)
i=1,...,5

← LAE.Gen
(
1λ, 15

)
. Output (pk, sk) =

({pki}, {ski}
)
.

– Enc(m, pk): Choose random r, s ← Zq, and compute ciphertexts {cti} ←
LAE.Enc

(
v, {pki}

)
, where v = (m − r − s, r, s, 0, 0) ∈ Z

5
q. Output ct = {cti}.

– Add(ct, ct′): Given ct = {cti} and ct′ = {ct′i}, output ct + ct′ = {cti + ct′i}
where + denotes the ciphertext addition of LAE.

– Dec(ct, sk): Parse ct = {cti}. Compute v = LAE.Dec
({cti}, {ski}

) ∈ Z
5. If

v4 = v5 = 0, output v1 + v2 + v3, otherwise output ⊥.

Theorem 4. The above scheme is an additively homomorphic CCA1 encryption
scheme.

Correctness and homomorphic correctness follow immediately from the same
properties of LAE. To prove security, we use a hybrid argument.

Hybrid Hbit
0 : The CCA1 Game

1. C draws
({pki}, {ski}

)← LAE.Gen(1λ, 15) and sends {pki} to A.
2. For α = 1, . . . , poly(λ):

– A sends a ciphertext ctα to C;
– C computes vα = LAE.Dec

(
ctα, {ski}

)
, checks that vα,4 = vα,5 = 0, if not

C returns ⊥; if so sends vα,1 + vα,2 + vα,3 to A.
3. A sends two messages m0,m1 ∈ Zq to C.
4. C sets m∗ = mbit, draws ct∗ ← Enc

(
m∗, {pki}

)
and returns ct∗ to A.

5. A outputs guess ∈ {0, 1} and wins if guess = bit.

Hybrid Hbit
1 : This is the same as Hbit

0 except for the way C answers ciphertexts
ctα. In step 1, in addition to

({pki}, {ski}
)← LAE.Gen(1λ, 15) C chooses random

linear ϕ : Z5
q → Zq such that ϕ(H) = 0 where H = {v ∈ Z

5
q : v4 = v5 = 0}.

Also, let ϕeval : Z5
q → Zq be a random linear map of the form ϕeval(v) = v1 +

v2 + v3 + av4 + bv5 for random a, b ∈ Zq. C computes vα = LAE.Dec
(
ctα, {ski}

)
,

as usual. If ϕ(vα) = 0, C returns ϕeval(vα), otherwise ⊥.

Chosen-Ciphertext Secure Fully Homomorphic Encryption 235

Claim 16. For any (computationally unbounded) adversary A and bit ∈ {0, 1},
∣
∣
∣Pr
(A wins Hbit

1

)− Pr
(A wins Hbit

0

)∣∣
∣ = negl(λ).

Proof (Proof Sketch). Note Hbit
1 is identical to Hbit

0 except that in Hbit
0 , C checks

that vα ∈ H, while in Hbit
1 , C checks that ϕ(vα) = 0. As ϕ : Z5

q → Zq is random
such that ϕ(H) = 0, for any vα /∈ H, Prϕ[ϕ(vα) = 0] = 1/q = negl(λ). Claim 16
follows from the union bound over the polynomially many query ciphertexts.

Hybrid Hbit
2 : This is the same as Hbit

1 except that instead of computing decryp-
tions honestly vα = LAE.Dec

(
ctα, {ski}

)
and checking ϕ(vα) = 0, C com-

putes ct′ = LAE.CTEval
({cti}, (ϕ,ϕeval)

)
, and evaluated decryption (v, w) =

LAE.EvalDec(ct′, sk′), where sk′ = LAE.SKEval
({ski}, (ϕ,ϕeval)

)
, and (ϕ,ϕeval) :

Z
5
q → Z

2
q is the linear map v �→ (

ϕ(v), ϕeval(v)
)
. If v = 0 C returns w, otherwise

⊥. The claim follows immediately from the soundness of LAE.

Claim 17. For any (computationally unbounded) adversary A and bit ∈ {0, 1},
∣
∣
∣Pr
(A wins Hbit

2

)− Pr
(A wins Hbit

1

)∣∣
∣ = negl(λ).

Hybrid Hbit
3 : This is the same as Hbit

2 except for the way the challenge ciphertext
is produced. Upon receiving (m0,m1) from A, C chooses a random v∗ ∈ Z

5
q such

that v∗
1 + v∗

2 + v∗
3 = mbit and ϕ(v∗) = 0. C draws ct∗ ← LAE.Enc

(
v∗, {pki}

)
, and

sends ct∗ to A.

Claim 18. For any PPT A and bit ∈ {0, 1},
∣
∣Pr
(A wins Hbit

2

) −
Pr
(A wins Hbit

3

)∣
∣ = negl(λ).

Proof (Proof Sketch.). Let A be a PPT adversary who distinguishes between Hbit
2

and Hbit
3 with noticeable advantage, we construct B who breaks the security of the

LAE scheme. B chooses ϕ as above and sends (ϕ,ϕeval) to C and receives {pki}, sk′

from C, and forwards {pki} to A. Every time A asks a query ctα, B uses sk′ to
decrypt the evaluated ciphertext like in both games. Upon receiving (m0,m1)
from A, B chooses v0,v1 such that ϕeval(v0) = ϕeval(v1) = mbit, v0 ∈ H and v1

is otherwise random such that ϕ(v1) = 0. B sends (v0,v1) to C and receives ct∗,
which he forwards to A. B forwards A’s guess back to C. It is clear that B wins
if and only if A guesses correctly between Hbit

2 or Hbit
3 .

Claim 19. For any A, Pr
(A wins H0

3

)
= Pr

(A wins H1
3

)
.

Proof (Proof Sketch). Consider the random process specified by m ∈ Zq: (1)
choose random ϕ : Z

5
q → Zq such that ϕ(H) = 0 and a, b ← Zq, defining

ϕeval : Z5
q → Zq (2) choose and output random v ∈ Z

5
q such that ϕ(v) = 0 and

ϕeval(v) = m. The randomness of ϕ and ϕeval ensures that the output of this
process is identically distributed for all m ∈ Zq, so H0

3 and H1
3 are identical.

236 R. Canetti et al.

B Instantiating Homomorphic LAE from DDH

In this section, we describe instantiations of linear algebraic encryption schemes
from the Decisional Diffie-Hellman (DDH) assumption. The idea is to use El-
Gamal encryption under different public keys but using the same randomness
in order to enable the linear homomorphism we need. We describe the scheme
below. The system is designed for small message spaces such as M = {0, 1}.

– Gen
(
1λ, 1k

)
takes security parameter λ, k ∈ Z. It chooses a group G of order

q, where q is a prime of length poly(λ), along with a generator g of G. Next,

it samples k random values αi
$← Zq, i ∈ [k]. Finally, it sets and outputs

pk =
(
G, g, q, {pki}

)
and sk =

({ski}
)
, where ski = αi and pki = gαi .

– Enc
({msgi}, pk

)
is a randomized algorithm which takes k messages msgi,

i ∈ [k] and the public key pk. It first chooses a random value r
$← Zq. It

outputs ct =
(
gr, {cti}

)
where cti = pkr

i g
msgi .

– Dec
(
ct, sk

)
takes a ciphertext ct =

(
gr, {cti}

)
and the secret key sk and outputs

{msgi} where for each i ∈ [k],

msgi = dLogg

(
cti

(gr)ski

)

where dLogg(·) denotes computing the discrete logarithm with respect to g.
– CTEval

({cti}, ϕ
)

takes a ciphertext ct =
(
gr, {cti}

)
and linear map ϕ : Mk →

M�. Let ϕ× denote the map which replaces addition in ϕ with multiplication
and multiplication in ϕ with exponentiation. More formally, suppose

ϕ(x) =

⎧
⎨

⎩

∑

i∈[k]

ϕi,jxi

⎫
⎬

⎭
j∈[�]

Define

ϕ×(x) =

⎧
⎨

⎩

∏

i∈[k]

x
ϕi,j

i

⎫
⎬

⎭
j∈[�]

The algorithm outputs ct′ = gr, {ct′j}j∈[�] = ϕ×({cti}).
– KeyEval

({ski}, ϕ
)

takes the secret key sk, a linear map ϕ : Mk → M� and
outputs sk′ = {sk′

j}j∈[�] = ϕ(sk).
– EvalDec

(
ct′, sk′) takes an evaluated ciphertext ct′ = gr, {ct′j} and an evaluated

secret key sk′ = {sk′
j} outputs {msg′

j} where for each j ∈ [�],

msg′
j = dLogg

(
ct′j

(gr)sk
′
j

)

where dLogg(·) denotes computing the discrete logarithm with respect to g.

Chosen-Ciphertext Secure Fully Homomorphic Encryption 237

Correctness and Soundness. The scheme is perfectly correct and sound. For
any {msgi} ∈ Mk and (pk, sk) $← Gen

(
1λ, 1k

)
,

Dec
(
Enc({msgi}, {pki}

)
, {ski}

)
=
{

dLogg

(
cti

(gr)ski

)}

=
{

dLogg

(
pkr

i g
msgi

(gski)r

)}

=
{
dLogg (gmsgi)

}

= {msgi}

For any ϕ : Mk → M�, (pk, sk) $← Gen
(
1λ, 1k

)
and any (potentially malformed)

ciphertexts ct,

ϕ
(
Dec
({cti}, {ski}

))
=

⎧
⎨

⎩

∑

i∈[k]

ϕi,jdLogg

(
cti

(gr)ski

)
⎫
⎬

⎭
j∈[�]

=

⎧
⎨

⎩
dLogg

⎛

⎝
∏

i∈[k]

[
cti

(gr)ski

]ϕi,j

⎞

⎠

⎫
⎬

⎭
j∈[�]

=

⎧
⎪⎨

⎪⎩
dLogg

⎛

⎜
⎝

⎡

⎢
⎣

∏

i∈[k]

ct
ϕi,j

i

g
r
∑

i∈[k]
ϕi,jski

⎤

⎥
⎦

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
j∈[�]

=

{

dLogg

(
ct′j

(gr)sk
′
j

)}

j∈[�]

= EvalDec
(
Eval

(
ct, ϕ

)
,KeyEval

(
sk, ϕ

))

Security. Security of the scheme is based on the security of the El-Gamal cryp-
tosystem and hence the Decisional Diffie-Hellman (DDH) assumption. We prove
here security for the case that k = 2 and � = 1 and note that the proof induc-
tively generalizes for larger k and �.

Suppose there exists a PPT adversary A who can break the security of the
LA encryption scheme with k = 2 and � = 1. We now construct a PPT adversary
B who breaks the semantic security of the El-Gamal encryption scheme with the
same advantage. Since we know that under the DDH assumption, the latter
advantage is negligible, so is the former.

B runs using A as follows. Let C denote the challenger of the El-Gamal
encryption scheme. A sends (k = 2, � = 1, ϕ) to B where ϕ : Mk → M� is a
linear map. Let ϕ = [ϕ1, ϕ2]. B also receives the public key pkEG =

(
G, g, q, h1

)

from C, where h = gα1 for some α1 ∈ Zq unknown to B. B then samples a

random α
$← Zq and computes

238 R. Canetti et al.

h2 =

(
gα

hφ1
1

)ϕ−1
2

Note that this implicitly sets h2 = gα2 , where φ([α1, α2]T) = α. B sets pk =(
G, g, q, {pki}

)
and sk′ = α, where pki = hi, and sends

(
pk, sk′) to A. A chooses

{msg0i }, {msg1i } ∈ Mk such that ϕ
({msg0i }

)
= ϕ
({msg1i }

)
= M (say), and sends({msg0i }, {msg1i }

)
to B. B forwards the messages

(
msg01,msg11

)
to C. C draws

b ← {0, 1}, r
$← Zq and computes ctEG =

(
gr, ct∗1 = hr

1g
msgb

1
)

and sends ctEG to
B. B constructs ct∗2 as follows. We have that

ϕ1msg01 + ϕ2msg02 = ϕ1msg11 + ϕ2msg12 = M

B computes

ct∗2 =
(

(gr)α · gM

(ct∗1)φ1

)ϕ−1
2

Note that this implicitly sets ct∗2 = hr
2g

msgb
2 . B then sends ct∗ =

(
gr, {ct∗i }

)
to

A. A sends a bit b′ ∈ {0, 1} to B which B forwards to C. Note that the implicit
bit chosen by B in the game against A is b and hence B succeeds with the same
probability as A. This completes the proof.

References

[BCC+14] Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H.,
Rubinstein, A., Tromer, E.: The hunting of the SNARK. IACR Cryptology
ePrint, Archive 2014:580 (2014)

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: Goldwasser [Gol12], pp. 326–349

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: Symposium
on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA,
pp. 111–120, June 1–4 2013 (2013)

[BCHK07] Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security
from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

[BCTW16] Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic
attribute based encryption. Manuscript (2016)

[BSW12] Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic
encryption for restricted computations. In: Goldwasser [Gol12], pp. 350–
366

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. Piscat-
away, IEEE (2011). Invited to SIAM Journal on Computing

[CKN03] Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext secu-
rity. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 33

http://dx.doi.org/10.1007/978-3-540-45146-4_33

Chosen-Ciphertext Secure Fully Homomorphic Encryption 239

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46497-7 19

[CM15] Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from
learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48000-7 31

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).
doi:10.1007/BFb0055717

[DDN91] Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended
abstract). In: Koutsougeras, C., Vitter, J.S. (eds.) Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, pp. 542–552. ACM,
New York (1991)

[DGM15] Dahab, R., Galbraith, S., Morais, E.: Adaptive key recovery attacks
on NTRU-based somewhat homomorphic encryption schemes. In:
Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp. 283–296.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-17470-9 17

[DHRW16] Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and
its applications. IACR Cryptology ePrint Archive 2016:272 (2016)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[Gol12] Goldwasser, S. (ed.): Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, 8–10 January 2012. ACM (2012)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, pp. 197–206, 17–20 May 2008

[LMSV10] Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-secure fully
homomorphic encryption. IACR Cryptology ePrint Archive 2010:560
(2010)

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 26

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. In: Ortiz, H., (ed.) Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, Baltimore, Maryland, USA,
13–17 May 1990, pp. 427–437. ACM (1990)

[RAD78] Rivest, R., Adleman, L. Dertouzos, M.: On data banks and privacy homo-
morphisms. In: Foundations of Secure Computation, pp. 169–177. Acad-
emic Press (1978)

[RS91] Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991.
LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992). doi:10.1007/
3-540-46766-1 35

http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-662-46497-7_19
http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/978-3-319-17470-9_17
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/3-540-46766-1_35
http://dx.doi.org/10.1007/3-540-46766-1_35

240 R. Canetti et al.

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: 40th Annual Symposium on Foundations
of Computer Science, FOCS 1999, New York, NY, USA, 17–18 October
1999, pp. 543–553. IEEE Computer Society (1999)

[ZPS12] Zhang, Z., Plantard, T., Susilo, W.: On the CCA-1 security of somewhat
homomorphic encryption over the integers. In: Ryan, M.D., Smyth, B.,
Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 353–368. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29101-2 24

http://dx.doi.org/10.1007/978-3-642-29101-2_24

Circuit-Private Multi-key FHE

Wutichai Chongchitmate1(B) and Rafail Ostrovsky1,2

1 Department of Computer Science, University of California,
Los Angeles, CA, USA

{wutichai,rafail}@cs.ucla.edu
2 Department of Mathematics, University of California,

Los Angeles, CA, USA

Abstract. Multi-key fully homomorphic encryption (MFHE) schemes
allow polynomially many users without trusted setup assumptions to
send their data (encrypted under different FHE keys chosen by users
independently of each other) to an honest-but-curious server that can
compute the output of an arbitrary polynomial-time computable func-
tion on this joint data and issue it back to all participating users for
decryption. One of the main open problems left in MFHE was dealing
with malicious users without trusted setup assumptions. We show how
this can be done, generalizing previous results of circuit-private FHE.
Just like standard circuit-private FHE, our security model shows that
even if both ciphertexts and public keys of individual users are not well-
formed, no information is revealed regarding the server computation—
other than that gained from the output on some well-formed inputs
of all users. MFHE schemes have direct applications to server-assisted
multiparty computation (MPC), called on-the-fly MPC, introduced by
López-Alt et al. (STOC ’12), where the number of users is not known in
advance. In this setting, a poly-time server wants to evaluate a circuit C
on data uploaded by multiple clients and encrypted under different keys.
Circuit privacy requires that users’ work is independent of |C| held by the
server, while each client learns nothing about C other than its output.
We present a framework for transforming MFHE schemes with no cir-
cuit privacy into maliciously circuit-private schemes. We then construct
3-round on-the-fly MPC with circuit privacy against malicious clients in
the plain model.

Keywords: Multi-key · Fully homomorphic encryption · Computing on
encrypted data · Malicious setting · Server-assisted MPC

R. Ostrovsky—Research supported in part by NSF grant 1619348, US-Israel BSF
grant 2012366, by DARPA Safeware program, OKAWA Foundation Research Award,
IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick
Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation
Research Award. The views expressed are those of the authors and do not reflect
position of the Department of Defense or the U.S. Government.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 241–270, 2017.
DOI: 10.1007/978-3-662-54388-7 9

242 W. Chongchitmate and R. Ostrovsky

1 Introduction

The multi-key fully homomorphic encryption scheme (MFHE), introduced by
López-Alt et al. [17], allows homomorphic computation on inputs encrypted with
different public keys. They construct a MFHE under the ring learning with errors
(RLWE) assumption, the decisional small polynomial ratio (DSPR) assumption,
and circular security of a multi-key homomorphic encryption scheme ESH based
on a variant of NTRU homomorphic encryption. In this paper we construct a
MFHE scheme that satisfies circuit privacy in the malicious setting, where public
keys and ciphertexts are not guaranteed to be well-formed. We also present a
framework for transforming multi-key homomorphic encryption schemes without
circuit privacy or fully homomorphic property into maliciously circuit-private
MFHE. We then demonstrate an instantiation of this framework using a modified
scheme based on MFHE in [17] without adding further assumptions.

As in [21], we only consider the plain model. In the common reference string
(CRS) model, the malicious case can be reduced to the semi-honest case by
adding non-interactive zero-knowledge (NIZK) arguments that public key and
ciphertext pairs are well-formed. Though, even in this case, difficulties can arise,
as the security needs to hold when the pairs are in the support of honestly
generated ones, but with different distributions—as discussed in [11].

In [17], the MFHE scheme is used to construct on-the-fly multiparty compu-
tation (MPC), which can perform arbitrary, dynamically chosen computation on
arbitrary sets of users chosen on-the-fly. This construction allows each client user
to encrypt data without knowing the identity or the number of other clients in
the system. The server can select any subsets of clients, and perform an arbitrary
function on the encrypted data without further input from the selected clients
(and without learning clients’ inputs). The encrypted result is then broadcast
to the clients who cooperate in the retrieval of the output using (short) MPC
protocol. Thus, most computation is done by the server while the decryption
phase is independent of both the function computed and the total number of
parties in the system. The resulting protocol is a five-round on-the-fly MPC
secure against semi-malicious users [3], which follows the protocol but chooses
random coins from an arbitrary distribution. The protocol can be strengthened
against malicious adversaries in the CRS model using NIZK arguments without
an increase in the number of rounds.

In this paper we construct a three-round on-the-fly MPC with circuit pri-
vacy against malicious users in the plain model. Specifically, all players send
their inputs to the server, which performs the computation and sends the results
back to all users, who then decrypt the result in one round. Since there is no
way to enforce which function the server will compute, we assume that the
server is honest but curious. As with our MFHE, the circuit privacy is guaran-
teed against unbounded malicious adversaries corrupting any number of clients.
We also note that a variant of circuit privacy can be achieved in [17] con-
struction by allowing the server to participate in the decryption phase MPC
described above with its encrypted result as an input. However, our construction
allows the server to minimize its interaction with the clients to only two rounds

Circuit-Private Multi-key FHE 243

(i.e., one message from client to server and one broadcast back to client). After
the server sends its output back to the clients, the clients communicate with one
another in only one additional round in order to decrypt the output. Since we
use multi-key homomorphic encryption from [17] as the base of our construction,
we also require the number of key pairs or users to be known is advance as in
their protocol.

To summarize, our main theorems are as follows:

Theorem 1 (informal). Assuming that there exists a privately expandable
multi-key homomorphic encryption scheme, then there exists a maliciously
circuit-private multi-key fully homomorphic encryption scheme.

Theorem 2 (informal). Assuming RLWE and DSPR assumptions, and circular
security of ESH , there exists a maliciously circuit-private multi-key fully homo-
morphic encryption scheme.

Theorem 3 (informal). Assuming the preconditions of Theorems 1 or 2 hold,
there exists a three-round on-the-fly MPC protocol where each client i ∈ [U] in
the system holds xi, and the server chooses a circuit C with N < U inputs and
a subset V ⊆ [U] with |V | = N . Only the clients in V learn C({xi}i∈V) (but
nothing else, not even |C|), and the server learns nothing about {xi}i∈[U].

1. The privacy guarantee for clients is indistinguishability-based computational
privacy against malicious adversaries corrupting t < N clients and honest-
but-curious servers.

2. The privacy guarantee for the server is based on unbounded simulation
(against possibly unbounded clients).

We note that condition 2 is incomparable with standard simulation framework as
it requires stronger (i.e., information-theoretic) guarantees, but also unbounded
simulation. As discussed in [21], this is unavoidable, even for single maliciously
circuit-private FHE.

1.1 Previous Work

Multi-key FHE. As stated above, [17] introduces the concept of MFHE and con-
structs this scheme based on a variant of the NTRU encryption scheme under
the RLWE and DSPR assumptions. The work of [7] gives an alternate construc-
tion based on [12], the FHE scheme under the LWE assumption. While their
construction only relies on standard assumption such as LWE, it requires an
additional set up step, equivalent to the CRS model. A recent work of [20] sim-
plifies the construction of [7], and adds a threshold decryption protocol which is
used to construct two-round MPC in the CRS model.

Circuit Privacy in FHE. In the semi-honest setting, where public keys and
ciphertexts are supported by properly generated pairs, circuit privacy has been
considered in [10,25], with the latter using Yao’s garbled circuit. The generaliza-
tion in [11] combines two HE schemes—one compact fully homomorphic and the
other semi-honestly circuit-private—into compact semi-honestly circuit-private
FHE.

244 W. Chongchitmate and R. Ostrovsky

The malicious setting has been addressed in the context of oblivious transfer
(OT) [1,13]. The work of [15] constructs maliciously circuit-private HE for a class
of depth-bounded branching programs by iteration from leaves of a branching
program.

Finally, the work of [21] devises a framework for transforming single-key FHE
schemes with no circuit privacy into maliciously circuit-private ones. They use
techniques akin to Gentry’s bootstrapping [10] and semi-honestly circuit-private
HE constructions [1,11] combining FHE schemes with maliciously circuit-private
HE schemes.

One-Round OT. Several definitions of OT security have been suggested—such
as a general framework for defining two-party computation [5]. The work of [1]
proposes a definition for one-round (2 messages) OT using unbounded simula-
tion, which implies information theoretic security for sender, and demonstrates a
construction based on the DDH assumption. In [15], Ishai and Paskin construct
a one-round OT with perfect sender privacy based on the DJ homomorphic
encryption scheme [8] in the semi-honest setting.

On-the-Fly MPC. In standard MPC protocols, the computational and commu-
nication complexities of each party depend on the circuit being computed. Thus,
it is difficult to construct on-the-fly MPC, where only the server performs most
of the computation, while the clients compute very little and do so independent
of the circuit. This idea is explored in the work of [14,16]. However, the com-
plexity of clients in the former protocol is still proportional to the size of the
circuit, while the latter is only for a small class of functions.

A line of work uses single-key FHE schemes [3,10] by running a short
MPC protocol to compute a joint public key and secretly shared correspond-
ing secret key. However, this approach does not capture the dynamic and non-
interactive properties of on-the-fly MPC. As mentioned above, López-Alt et
al. [17] constructed on-the-fly MPC from multi-key FHE. However, their ver-
sion is only secure against semi-malicious adversaries unless additional trusted
setup assumptions are made.

Circuit Privacy in MPC. Private function evaluation (PFE) is a special case
of MPC, where one party holds a function or circuit as an input. PFE follows
immediately from MPC by evaluating a universal circuit and taking a circuit one
wants to compute as an input. However, the known universal circuits have high
complexity, namely, O(g5) for arithmetic circuits [23] and O(g log g) for Boolean
circuits [24] for the class of circuits with at most g gates. This approach also does
not hide the size of the circuits evaluated. Previous work [18,19] has constructed
more efficient implementation of PFEs, even against an active adversary [19].

Comparison of MPC Protocols from MFHE. The following table illustrates the
comparison between our results and other MPC protocols constructed from
MFHE. Note that their securities are in different models, and thus are not
directly comparable (Table 1).

Circuit-Private Multi-key FHE 245

Table 1. Comparison of MPC protocols from MFHE

Construction Round Adversary Setup Server-assisted Circuit privacy

[17] 5 Semi-honest No Yes No

[17] 5 Malicious Yes Yes No

[20] 2 Malicious Yes No No

This work 3 Malicious No Yes Yes

1.2 Our Techniques

We now give an overview of our main construction of circuit-private MFHE in
three steps:

Step 1. The first step is to define the main new ingredient of our construction, the
privately expandable multi-key homomorphic encryption scheme. It is a multi-key
HE together with efficient algorithms Expand such that, given a list of public keys
and an encryption with respect to one of the keys, the output is a homomorphic
encryption that does not depend on which key it was previously encrypted with.
We note that in a standard construction of MFHE, a ciphertext may reveal which
key is used to encrypt it. This information may persist even after homomorphic
evaluation, thus revealing the structure of the evaluating program. Our new
property allows the scheme to hide the source of the encryption used at each
node of the branching program from an adversary, therefore hiding the branching
program itself when combined with the technique in [15].

We show how to construct a privately expandable multi-key HE scheme from
the multi-key somewhat homomorphic encryption scheme defined in [17]. The
main idea is as follows: first, we re-randomize a given ciphertext to be statisti-
cally indistinguishable from a fresh ciphertext using algebraic properties of the
scheme. We then show how to add encryptions of zero with respect to each of
the other keys, and show how to homomorphically decrypt the result to get
a “low-level” ciphertext. In fact, we note that our techniques are applicable to
other known multi-key FHE schemes as well, such as in [20] to obtain a privately
expandable multi-key FHE.

Step 2. The next step is to construct maliciously circuit-private multi-key HE for
a class of depth-bounded branching programs. A (deterministic binary) branch-
ing program is represented by a directed acyclic graph whose nonterminal nodes
with outdegree 2 are labeled with indices in [n], while terminal nodes with out-
degree 0 and edges are labeled with 0 or 1. An input x ∈ {0, 1}n naturally
induces a unique path from a distinguished initial node to a terminal node,
whose label determines P (x). Any logspace or NC function can be computed
by polynomial size branching programs. We inductively compute a ciphertext
for each node from terminal nodes upward. Given a ciphertext of each bit of
x ∈ {0, 1}n, encrypted with different public keys, we expand the ciphertexts to
hide public keys it was originally encrypted with. We use private expandability to

246 W. Chongchitmate and R. Ostrovsky

homomorphically compute ciphertext at each node with a key-hiding ciphertext
indistinguishable from a fresh one. Thus, each ciphertext reveals nothing about
the path leading to its corresponding node along the branching program, includ-
ing which bit each node uses to decide its path. Therefore, the output, which
is the ciphertext corresponding to the root, contains no information about the
program.

The protocol above is secure against semi-honest adversaries. We then show
how to modify the protocol to achieve security against malicious adversaries. We
use single-key malicious circuit-private FHE and a modified validation circuit
from [21], generalizing their techniques. The server (homomorphically) verifies
that public keys and ciphertexts received are well-formed. This guarantees that
each corrupted party uses proper public key and ciphertext, independent of other
parties. Since we can verify before expanding the ciphertexts, we can use single-
key FHE instead of multi-key.

Step 3. In this step we finally combine the protocol from the previous step
with compact MFHE with no circuit privacy to get maliciously circuit-private
MFHE. We modify the framework in [21] and obtain a framework for multi-
key HE. To evaluate a given circuit, we first use MFHE with no circuit privacy
to evaluate. Then we homomorphically decrypt the output using maliciously
circuit-private HE that can evaluate the decryption function. Then we homo-
morphically decrypt to the original compact MFHE output, and only return it
if public keys and ciphertexts are well-formed. This can be checked homomor-
phically similarly to the previous step. Using MFHE from [17] for instantiation,
we get a maliciously circuit-private MFHE scheme based on RLWE and DSPR
assumptions.

Application. Finally, we construct an on-the-fly MPC with circuit privacy from
the result of the last step. Unlike [17], we consider the plain model with no setup
assumptions and malicious adversaries corrupting an arbitrary number of clients.
Along the way, we also construct a one-round 1-out-of-2 OT that is secure against
malicious receivers with information theoretic security by augmenting a known
construction that is only secure against semi-honest receivers with circuit-private
FHE. Finally, by using a garbling scheme and our OT protocol, we can reduce
the number of rounds from the construction in [17] to three rounds, which is
optimal even against semi-honest adversaries in the plain model. The idea of the
third round is as follows: Instead of having the clients run an MPC protocol to
decrypt the output, the server constructs a collection of garbled circuits that
decrypts the output for each user. The clients create an OT query for each bit
of their secret keys and send it to the server along with the ciphertext in the
first round. The server then answers those queries with corresponding garbled
input for the garbled circuit. Finally, each client decrypts and broadcasts their
garbled inputs to all other clients to compute the final output from the garbled
circuits by each client.

The security of our protocol is based on unbounded simulation for the server,
which is necessary for circuit privacy as discussed in [15,21]. We note that it is

Circuit-Private Multi-key FHE 247

impossible to obtain ideal functionality definition due to the impossibility of any
computationally bounded simulators extracting the input in one round (without
trusted setup assumptions). Instead, we show the security for honest clients
based on indistinguishability of the view of the malicious adversaries corrupting
clients and the view of the honest-but-curious server.

2 Background

2.1 Notation

For positive integer n ∈ N, let [n] = {1, . . . , n}. For a string x ∈ {0, 1}∗, let
|x| denote its length. Let ⊕ denote bitwise XOR operation or bitwise addition
modulo 2. For a distribution A, let x ← A denote x is chosen according to a
distribution A. For a finite set S, let x ← S denote x is chosen uniformly from
the set S. Let λ denote the security parameter. A function f : N → R

+ is neg-
ligible if for every constant c > 0, there exists λ0 ∈ N such that f(λ) ≤ λ−c

for all λ ≥ λ0. Algorithms may be randomized unless stated otherwise. A PPT
algorithm runs in probabilistic polynomial-time; otherwise, it is unbounded. For
an algorithm A, let y ← A(x; r) denote running A on input x with random coins
r. If r is chosen uniformly at random, we denote y ← A(x). For two distributions
X,Y , X 	s Y means X and Y are statistically closed, i.e. Δ(X,Y) is negligible.
For two distributions X,Y , X 	c Y means X and Y are computationally indis-
tinguishable, i.e. for any PPT algorithm D, |Pr[D(X) = 1] − Pr[D(Y) = 1]| is
negligible.

Setup vs. Plain Model. We say a protocol is in the setup model or the common
reference string (CRS) model if every party has access to a common random
string r that was ideally drawn from some publicly known distribution prior to
the beginning of the protocol. Without such setup, we say a protocol is in the
plain model.

Malicious vs. Honest-but-Curious Party. We say a party participating in a pro-
tocol is honest-but-curious if it follows the protocol, but may perform additional
computation to learn more information than it should. We say a party is (fully)
malicious if it deviates from the protocol arbitrarily.

Representation Models. In order to use a function or a program as an input of
our algorithm, we consider a function represented by a string representation C.
The correspondence between a program C and a function f it represents must
be universally interpreted by an underlying representation model U . Formally,
a representation model U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a PPT algorithm that
takes a input (C, x) and returns f(x) for a function f represented by C. If
(C, x) is syntactically malformed, we let U(C, x) = 0 for completeness. We let
|C| denote the size of program C as a string representation as opposed to the
number of gates as a Boolean circuit.

248 W. Chongchitmate and R. Ostrovsky

2.2 Multi-key Homomorphic Encryption

We use the definition similar to the one defined in [17] with some modifications
from [20,21]. We fix the order of public keys in Eval and secret keys in Dec,
and allow the number of keys to be different from input size of the circuit. This
definition better suits our definition of circuit privacy that we will define in the
next section.

Definition 1 (Multi-key (Leveled) (U, C)-Homomorphic Encryption).
Let C be a class of circuits. A multi-key (leveled) (U, C)-homomorphic scheme
E = (KeyGen,Enc,Eval,Dec) is described as follows:

– (pk, sk) ← KeyGen(1λ, 1d): Given a security parameter λ (and the circuit depth
d), outputs a public key pk and a secret key sk.

– c ← Enc(pk, μ): Given a public key pk and a message μ, outputs a ciphertext c.
– ĉ ← Eval(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn)): Given a (description of) a

Boolean circuit C (of depth ≤ d) along with a sequence of N public keys and
n couples (Ii, ci), each comprising of an index Ii ∈ [N] and a ciphertext ci,
outputs an evaluated ciphertext ĉ.

– b := Dec(sk1, . . . , skN , ĉ): Given a sequence of N secret keys sk1, . . . , skN and
a ciphertext ĉ, outputs a bit b.

has the following properties:

– Semantic security: (KeyGen,Enc) satisfies IND-CPA semantic security.
– Correctness: Let (pki, ski) ← KeyGen(1λ, 1d) for i = 1, . . . , N . Let x =

x1 . . . xn ∈ {0, 1}n and C ∈ C be a Boolean circuit of depth ≤ d, C : {0, 1}n →
{0, 1}. For i = 1, . . . , n, let ci ← Enc(pkIi

, xi) for some Ii ∈ [N]. Let ĉ ←
Eval(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn)). Then

Dec(sk1, . . . , skN , ĉ) = U(C, (x1, . . . , xn)).

E is compact if there exists a polynomial p such that |ĉ| ≤ p(λ, d,N) independent
of C and n. If a scheme is multi-key (U, C)-homomorphic for the class C of all cir-
cuits (of depth ≤ d), we call it a multi-key (leveled) fully homomorphic (MFHE).
A scheme E is somewhat homomorphic if it is leveled (U, C)-homomorphic for
d ≤ dmax(λ,N). A scheme E is multi-hop if an output of Eval can be used as an
input as long as the sum of the depths of circuits evaluated does not exceed d.

2.3 López-Alt, Tromer and Vaikuntanathan’s Multi-key FHE
Scheme

In [17], López-Alt et al. construct a multi-key compact leveled fully homomorphic
encryption scheme. They first construct a multi-key leveled somewhat HE scheme
ESH , then apply Gentry’s bootstrapping [10]. The security of the scheme is
based on the ring learning with error (RLWE) assumption, the decisional small
polynomial ratio (DSPR) assumption, and the weak circular security of ESH .

Circuit-Private Multi-key FHE 249

Let q = q(λ) be an odd prime integer. Let the ring R = Z[x]/〈φ〉 for poly-
nomial φ ∈ Z[x] of degree m = m(λ) and Rq = R/qR. Let χ be the B-bounded
truncated discrete Gaussian distribution over R for B = B(λ).

Definition 2 (Ring Learning With Error (RLWE) Assumption [4]). The
(decisional) ring learning with error assumption RLWEφ,q,χ states that for any
l = poly(λ),

{(ai, ai · s + ei)}i∈[l] 	c {(ai, ui)}i∈[l]

where s, ei ← χ and ai, ui are sampled uniformly at random over Rq.

Definition 3 (Decisional Small Polynomial Ratio (DSPR) Assumption
[17]). The decisional small polynomial ration assumption DSPRφ,q,χ says that
it is hard to distinguish the following two distributions:

– a polynomial h := [2gf−1]q, where f ′, g ← χ such that f := 2f ′+1 is invertible
over Rq and f−1 is the inverse of f in Rq.

– a polynomial u sampled uniformly at random over Rq.

We describe the multi-key leveled somewhat HE scheme here as follows.

KeyGenSH(1λ, 1d):

1. For i = 0, 1, . . . , d,
(a) Sample f̃ i, gi ← χ and compute f i := 2f̃ i + 1. If f i is not invertible in

Rq, resample f̃ i.
(b) Let (f i)−1 be the inverse of f i in Rq.
(c) Let hi := [2gi(f i)−1]qi

∈ Rqi
.

(d) For i ≥ 1, sample si
γ , e i

γ , si
ζ , e

i
ζ ← χ�log qi�.

(e) Let γi :=
[
hisi

γ + 2e i
γ + Pow(f i−1)

]
qi

∈ R
�log qi�
qi

and ζi :=
[
hisi

ζ + 2e i
ζ + Pow

(
(f i−1)2

)]

qi

∈ R
�log qi�
qi .

2. Output pk = (h0, γ1, . . . , γd, ζ1, . . . , ζd) and sk = fd ∈ Rqd
.

EncSH(pk, μ):

1. Parse pk = h. Sample s, e ← χ.
2. Output c = [hs + 2e + μ]q0 ∈ Rq0 .

EvalSH(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn)):

1. For i ∈ [N], parse pki = (hi, γ
1
i , . . . , γd

i , ζ1i , . . . , ζd
i)

2. Given two ciphertexts c, c′ ∈ Rqi
associated with subsets of the public keys

K,K ′, respectively. Let c0 = [c+ c′] ∈ Rqi
and K ∪K ′ = {pki1 , . . . , pkit

}. For
j = 1, . . . , t, compute

cj =
[
〈Bit(cj−1), γi

ij
〉
]

qi

∈ Rqi

Then let cadd be the integral vector closest to (qi+1/qi) · ct such that cadd =
ct (mod 2). Output cadd ∈ Rqi+1 and the associated subset K ∪ K ′.

250 W. Chongchitmate and R. Ostrovsky

3. Given two ciphertexts c, c′ ∈ Rqi
associated with subsets of the public keys

K,K ′, respectively. Let c0 = [c · c′] ∈ Rqi
and K ∪ K ′ = {pki1 , . . . , pkit

}. For
j = 1, . . . , t,
(a) If pkij

∈ K ∩ K ′, compute

cj =
[
〈Bit(cj−1), ζi

ij
〉
]

qi

∈ Rqi

(b) Otherwise, compute

cj =
[
〈Bit(cj−1), γi

ij
〉
]

qi

∈ Rqi

Then let cmult be the integral vector closest to (qi+1/qi) · ct such that cmult =
ct (mod 2). Output cmult ∈ Rqi+1 and the associated subset K ∪ K ′.

DecSH(sk1, . . . , skN , c):

1. For i ∈ [N], parse ski = fi.
2. Let μ0 = [f1 . . . fN · c]qd

∈ Rqd
.

3. Output μ′ = μ0 (mod 2).

Remarks

1. In [17], a different notation for EvalSH(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))
is used, namely, EvalSH(C, (pk1, c1), . . . , (pkn, cn)). These two notations are
equivalent when N = n and Ij = j for j = 1, . . . , n. For brevity, we also use
this notation under such conditions.

2. We also denote the evaluation on intermediate ciphertexts c̃1, . . . , c̃n asso-
ciated with nonempty subsets of public keys K1, . . . ,Kn, respectively, by
EvalSH(C, (K1, c̃1), . . . , (Kn, c̃n)).

Theorem 4 [17]. Assuming the DSPR and RLWE assumptions, and that the
scheme ESH = (KeyGenSH ,EncSH ,EvalSH ,DecSH) described above is weakly cir-
cular secure, then there exists a multi-key compact leveled fully homomorphic
encryption scheme for N keys for any N ∈ N, obtained by bootstrapping ESH .

2.4 Circuit-Private Homomorphic Scheme

We describe the circuit privacy of single-key homomorphic encryption defined
in [15,21]. In the next section we will define our multi-key variant based on this
definition.

Definition 4. Let E = (KeyGen,Enc,Eval,Dec) denote a (U, C)-homomorphic
encryption scheme. We say E is (maliciously) circuit-private if there exist
unbounded algorithms Sim(1λ, pk∗, c∗

1, . . . , c
∗
n, b) and deterministic Ext(1λ, pk∗,

c∗) such that for all λ, pk∗, c∗
1, . . . , c

∗
n, and all programs C : {0, 1}n → {0, 1} ∈

(U, C), the following holds:

Circuit-Private Multi-key FHE 251

– for i = 1, . . . , n, x∗
i := Ext(1λ, pk∗, c∗

i)
– Sim(1λ, pk∗, c∗

1, . . . , c
∗
n, U(C, x∗

1, . . . , x
∗
n)) 	s Eval(1λ, C, pk∗, c∗

1, . . . , c
∗
n)

We say the scheme is semi-honestly circuit-private if the above holds only for
well-formed pk∗ = pk, c∗

i = ci, i.e. (pk, sk) ← KeyGen(1λ) and ci ← Enc(pk, xi)
for some xi ∈ {0, 1}, i = 1, . . . , n.

Theorem 5 [21]. Assume an FHE scheme with decryption circuits in NC1

exists. There exists a maliciously circuit-private single-key fully homomorphic
encryption scheme.

2.5 Branching Program

Definition 5. A (binary) branching program P over x = (x1, . . . , xn) is a tuple
(G = (V,E), v0, T, ψV , ψE) such that

– G is a connected directed acyclic graph. Let Γ(v) denote the set of children of
v ∈ V .

– v0 is an initial node of indegree 0.
– T ⊆ V is a set of terminal nodes of outdegree 0. Any node in V \ T has

outdegree 2.
– ψV : V → [n]∪{0, 1} is a node labeling function with ψV (v) ∈ {0, 1} for v ∈ T ,

and ψV (v) ∈ [n] for v ∈ V \ T .
– ψE : E → {0, 1} is an edge labeling function, such that outgoing edges from

each vertex is labeled by different values.

The height of v ∈ V , denoted height (v), is the length of the longest path from
v to a node in T . The length of P is the height of v0.

On input x, P (x) is defined by following the path induced by x from v0 to a
node vl ∈ T , where an edge (v, v′) is in the path if xψV (v) ∈ ψE(v, v′). By the
last property, such v′ is unique. Then P (x) = ψV (vl). Similarly, we also define
Pv(x) by following that path from any node v ∈ V instead of v0.

Definition 6. A layered branching program of length l is a branching program
P = (G = (V,E), v0, T, ψV , ψE) such that for any e = (v, v′) ∈ E, height(v) =
height(v′) + 1.

Every path from an initial node to a terminal node in a layered branching
program has the same length. Every branching program can be efficiently trans-
formed into a layered branching program of the same length [22]. For simplicity,
we assume all branching programs are layered.

3 Privately Expandable Multi-key Homomorphic
Encryption

In this section we will define the properties of multi-key homomorphic encryp-
tion which are required for the construction of multi-key circuit private HE for

252 W. Chongchitmate and R. Ostrovsky

branching programs discussed in the next section. Informally, private expand-
ability allows masking of a ciphertext encrypted under a public key using other
public keys in order to hide the key it was originally encrypted with. We then
show how to modify the multi-key HE from [17] to achieve such property. We
note that the multi-key HE from [20] can be modified to have this property in a
similar way.1 However, since it only works in the setup model, we cannot get a
meaningful result in circuit privacy.

3.1 Private Expandability

We define an “expanded” ciphertext as one that associates with all public keys
to be used in the evaluation algorithm. This notion is also used in [20]. However,
expanded ciphertexts in [20] do not hide the original public key it is encrypted
with. In both our construction and the one in [20], an expanded ciphertext can
be thought of as a single-key homomorphic encryption ciphertext that can be
decrypted with some function of all secret keys. In our case, it is the product of
all secret keys; in the [20] case, it is the appending of all secret keys.

Definition 7. A multi-key HE scheme (KeyGen,Enc,Eval,Dec) is privately
expandable if there exist polynomial time algorithms Ẽxpand, Ẽval, D̃ec such that,
for i = 1, . . . , N , (pki, ski) ← KeyGen(1λ),

– Let c ← Enc(pki, μ). Then for any j ∈ [N],

c̃ := Ẽxpand(pk1, . . . , pkN , i, c) 	s Ẽxpand(pk1, . . . , pkN , j,Enc(pkj , μ))

and D̃ec(sk1, . . . , skN , c̃) = μ

– if for i = 1, . . . , N , D̃ec(sk1, . . . , skN , c̃i) = bi, then

D̃ec(sk1, . . . , skN , Ẽval(P, pk1, . . . , pkN , c̃1, . . . , c̃l)) = P (b1, . . . , bl).

We sometimes replace Eval and Dec with Ẽval and D̃ec, respectively, and denote
(KeyGen,Enc,Expand,Eval,Dec) a privately expandable HE scheme if Expand,
Eval and Dec satisfy the above conditions.

3.2 Privately Expandable Multi-key HE Based on LTV Encryption
Scheme

In [17], Lopez et al. constructed a multi-key FHE scheme with security based
on ring learning with error assumption (RLWE) and decisional small polyno-
mial ration assumption (DSPR) by further assuming circular security. We will
show that we can modify the scheme to be privately expandable by constructing
Ẽxpand, Ẽval, D̃ec without additional assumption.

Let ESH = (KeyGenSH ,EncSH ,EvalSH ,DecSH) be the multi-key somewhat
homomorphic scheme given in [17] defined in the previous section.
1 See the full version [6] of this paper for details.

Circuit-Private Multi-key FHE 253

A ciphertext of ESH is a polynomial in Rq = Zq[x]/(xn + 1) which can be
represented by a vector in Z

n
q . In this scheme, N must be known in advance. We

choose n = N1/ε′
, q = 2nε

for some ε′ < ε. Thus, q = 2Nδ

for δ > 1. We need to
use a bootstrappable somewhat homomorphic version instead of a bootstrapped
FHE as we need its multi-hop property while we only need to evaluate low depth
circuits. Let t ∈ N and Ut be a discrete uniform distribution on {0, . . . , t}, which
can be sampled in time O(log t). We define

Ẽxpand
t

(pk1, . . . , pkN , i, c):

1. For each j ∈ {1, . . . , N}
– Parse pkj = hj .
– Let sj , ej ← Un

t .
– Let cj = hjsj + 2ej

2. Output ĉ = c +
N∑

j=1

cj .

The following lemma is a variant of the smudging lemma in [3]:

Lemma 1. Let a1, a2 ∈ Z
n be B-bounded. Then Δ(a1+b, a2+b) ≤ 4nB/t where

b ← Un
t . If t is superpolynomial in λ, then they are statistically indistinguishable.

Proof. Let c1, c2 ∈ Z be corresponding entries in a1 and a2, respectively. Then
|c1 − c2| ≤ 2B. Thus, Δ(c1 + Ut, c2 + Ut) ≤ 4B/t. Therefore, Δ(a1 + b, a2 + b) ≤
4nB/t. Since n and B are polynomial in λ, Δ(a1 + b, a2 + b) is negligible for
superpolynomial t. ��

We apply the above lemma to get the following result.

Lemma 2. Let (pkk, skk) ← KeyGenSH(1λ, 1d) for k = 1, . . . , N . For i ∈ [N],
let c ← EncSH(pki, μ). Let t ≤ 1

18 (q
N(nB)N). Then

ĉ := Ẽxpand
t

(pk1, . . . , pkN , i, c) 	s Ẽxpand
t

(pk1, . . . , pkN , j,EncSH(pkj , μ))

for any j ∈ [N], and DecSH(sk1, . . . , skN , ĉ) = μ.

Proof. Suppose t is superpolynomial. Then for any s, e ← χ and si, ei ← Un
t ,

[s + si] 	s [si] and [e + ei] 	s [ei] by Lemma 1. Thus, for c = his + 2e + m, we
have [c + (hisi + 2ei)] 	s [m + (hisi + ei)]. Then

Ẽxpand
t

(pk1, . . . , pkN , i, c) 	s [m +
∑

k∈[N]

(hksk + 2ek)].

By the same reason,

Ẽxpand
t

(pk1, . . . , pkN , j,EncE(pkj , μ)) 	s [m +
∑

k∈[N]

(hksk + 2ek)].

254 W. Chongchitmate and R. Ostrovsky

Therefore, they are statistically indistinguishable.
Now let ĉ = m +

∑
j∈[N](hjsj + 2ej) where sj , ej bounded by t. For each

j ∈ [N], fj(hjsj +2ej) = 2(gjsj +fjej) is bounded by E := 2nBt+2nB(2t+1) =
2nB(3t + 1) ≤ 8nBt. Then for f = f1 . . . fN ,

f ĉ = fm +
∑

j∈[N]

(
∏

k∈[N]\{j}
fk)fj(hjsj + 2ej)

is bounded by (nB)N + N(nB)N−1E ≤ 9N(nB)N t, which can be decrypted if
it is less than q/2. Thus, for t ≤ 1

18 (q
N(nB)N), the correctness follows from that

of LTV scheme. Note that as q = 2Nδ

= (2Nδ−1
)N , t is still superpolynomial in

N and thus λ. ��
Lemma 3 (implied from [17]). For any C > 0, for sufficiently large λ,N =
N(λ) ∈ N, there exists a multi-key somewhat homomorphic encryption scheme
for N keys and circuits of depth d ≥ CdDec where dDec is the depth of its decryp-
tion circuit.

The depth of circuits that can be evaluated is important here because the
construction in the next section will require that the scheme can perform eval-
uation twice.

Now let t satisfy the above condition. Let d0 = dDec and d ≥ 3d0 + 2. We
define a scheme F = (KeyGenF ,EncF ,ExpandF ,EvalF ,DecF) as follows:

KeyGenF (1λ, 1d):

1. Let (pk0, sk0) ← KeyGenSH(1λ, 1d0) and (pkE , skE) ← KeyGenSH(1λ, 1d+d0)
2. Let fsk = EncSH(pkE , sk0)
3. Output pk = (pk0, pkE , fsk) and sk = skE .

EncF (pk, μ):

1. Parse pk = (pk0, pkE , fsk).
2. Output EncSH(pk0, μ).

ExpandF (pk1, . . . , pkN , i, c):

1. Parse pkj = (pk0,j , pkE,j , fsk,j).

2. Let ĉ = Ẽxpand
t

(pk0,1, . . . , pk0,N , i, c)
3. Output c̃ = EvalSH(DecSH(·, ĉ), (pkE,1, fsk,1), . . . , (pkE,N , fsk,N)).

EvalF (P, pk1, . . . , pkN , c̃1, . . . , c̃n):

1. Parse pkj = (pk0,j , pkE,j , fsk,j).
2. Let K = {pk1, . . . , pkN}
3. Output c̃ = EvalSH(P, (K, c̃1), . . . , (K, c̃n)).

Circuit-Private Multi-key FHE 255

DecF (sk1, . . . , skN , c̃):

1. Parse skj = skE,j .
2. Output μ′ = DecSH(skE,1, . . . , skE,N , c̃).

Note that DecF has the same size as DecSH .

Lemma 4. The scheme F = (KeyGenF ,EncF ,ExpandF ,EvalF ,DecF) above is
a privately expandable multi-key compact somewhat homomorphic scheme that
can evaluate circuits up to a depth of 2d0 + 2.

Proof. The security and compactness of F follows directly from that of E . By
Lemma 2, for c = EncF (pki, μ), c̃ = ExpandF (pk1, . . . , pkN , i, c) is a level-d0
encryption of μ associated with K = {pkE,1, . . . , pkE,N} under scheme E . Thus,
the correctness of evaluation and decryption of F follows from that of E .

Also, by Lemma 2, ĉ 	s Ẽxpand
t

(pk1, . . . , pkN , j,EncE(pkj , μ)). Then the
result of homomorphically decrypting both sides gives c̃ 	s ẼxpandF (pk1, . . . ,
pkN , j,Enc(pkj , μ)). Since each fsk,j are level 1 encryption under E , the output
of ẼxpandF is of level d0. Thus, we can further evaluate circuits up to depth
2d0 + 2 as required. ��
Remarks

1. Recent results of Albrecht et al. [2] give a sub-exponential (in λ) attack on
DSPR assumption when q is super-polynomial, which is required in [17].

2. Since our protocol is also based on ESH with super-polynomial q, security
parameter and other variables involved need to be chosen carefully to remain
secure under such attack.

3. Another possible solution is to use the recent technique in [9] to construct a
privately expandable scheme without adding superpolynomial-size errors to
the ciphertexts. However, careful application of this technique is required in
order to guarantee that the resulting scheme is both privately expandable
and correctly decryptable. We leave this as an open problem.

4 Circuit-Private Multi-key HE for Branching Programs

We first define the multi-key version of circuit privacy given in the previous
section.

Definition 8. Let E = (KeyGen,Enc,Eval,Dec) denote a multi-key (U, C)-homo-
morphic encryption scheme. We say E is (maliciously) circuit-private if there
exist unbounded algorithms Sim(1λ, (pk∗

1 , c
∗
1), . . . , (pk∗

n, c∗
n), b) and deterministic

Ext(1λ, pk∗, c∗) such that for all λ, pk∗
1 , . . . , pk∗

N , I1, . . . , In, c∗
1, . . . , c

∗
n, and all

programs C : {0, 1}n → {0, 1} ∈ (U, C), the following holds:

256 W. Chongchitmate and R. Ostrovsky

– for i = 1, . . . , n, x∗
i := Ext(1λ, pk∗

Ii
, c∗

i)
– Sim(1λ, (pk∗

1 , . . . , pk∗
N), (I1, c∗

1), . . . , (In, c∗
n), U(C, x∗

1, . . . , x
∗
n))

	s Eval(1λ, C, (pk∗
1 , . . . , pk∗

N), (I1, c∗
1), . . . , (In, c∗

n))

We say the scheme is semi-honestly circuit-private if the above holds only
for well-formed pk∗

Ii
= pkIi

, c∗
i = ci pairs, i.e. (pkIi

, skIi
) ← KeyGen(1λ) and

ci ← Enc(pkIi
, xi).

In this section we construct a circuit-private multi-key HE for a class C of
(depth bound) branching programs. As discussed above, the difficulty in the
multi-key setting is that each decision one makes while traversing a branching
program is dependent on its corresponding input bit, which in turn is dependent
on which public key it is encrypted with. Using such encryption may reveal
bit positions of the path it takes to reach a terminal node. Using a privately
expandable multi-key HE scheme (previous section) solves this problem. Another
implication of private expandability is that we can generate a fresh expanded
encryption of bit b that is indistinguishable from an expanded encryption of any
given encryption of b. This allows us to construct a simulator for circuit privacy,
given an output bit.

We first give a construction that is secure against semi-honest adversaries
where each pair of public key and ciphertext is correctly generated. The intuition
behind this construction is as follows: given a branching program P , we assign
to each node of P a ciphertext that multi-key decrypt to an output computed
with that node as a root. Thus, the ciphertext assigned to the actual root will
decrypt to the actual output. In order to construct such a ciphertext (called label
below), we privately expand the input corresponding to a position given by ψV

of that node in order to hide the position. We then homomorphically construct a
ciphertext encrypting each bit of its child that is specified by the encrypted input
(without knowing the input bit). Note that this result will be an encryption of
an encryption of the output. Finally, we homomorphically decrypt it twice using
HE evaluation. We show that, in this case, the output can be simulated knowing
the public keys, ciphertext, and the output; it is thus independent of the program
being evaluated.

We then show that we can augment this construction to handle malicious
public key and ciphertext pairs using a single-key circuit-private FHE since the
evaluated output does not depend on the branching program, unlike in the gen-
eral case.

4.1 Semi-honest Model

Let F = (KeyGenF ,EncF ,ExpandF ,EvalF ,DecF) be a privately expandable
multi-hop multi-key compact somewhat homomorphic scheme that can evalu-
ate circuit up to depth 2d0+2 where d0 is the depth of DecF . Let l be the length
of branching programs, and let p(λ, l) be a polynomial to be specified later. Let
Dec2F (sk1, . . . , skN , c) = DecF (sk1, . . . , skN ,DecF (sk1, . . . , skN , c)). We describe
ES = (KeyGenS ,EncS ,EvalS ,DecS) together with Expand and Ẽnc, an expanded

Circuit-Private Multi-key FHE 257

encryption under a random public key. Note that [1] is an encryption of 1 with
no randomness.

KeyGenS(1λ, 1l):

1. Let d = p(λ, l).
2. Let (pkF , skF) ← KeyGenF (1λ, 1d).
3. Output pk = (pkF , fsk := EncF (pkF , skF)) and sk = skF .

EncS(pk, μ):

1. Parse pk = (pkF , fsk)
2. Let cα ← EncF (pkF , μ)
3. Output c

Expand(pk1, . . . , pkN , i, c):

1. For j = 1, . . . , N , parse pkj = (pkF,j , fsk,j).
2. Let cα = c and cγ = [1] − c
3. Compute c̃α = ExpandF (pkF,1, . . . , pkF,N , i, cα)

and c̃γ = ExpandF (pkF,1, . . . , pkF,N , i, cγ)
4. Output c̃ = (c̃α, c̃γ).

Ẽnc(pk1, . . . , pkN , μ):

1. Let i ← [N] and compute c ← Enc(pki, μ).
2. Output c̃ = Expand(pk1, . . . , pkN , i, c).

EvalS(P, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))

1. Let P = (G = (V,E), v0, T, ψV , ψE).
2. For j = 1, . . . , N , parse pkj = (pkF,j , fsk,j).

Let f̃sk,j = ExpandF (pkF,1, . . . , pkF,N , j, fsk,j)
3. For i = 1, . . . , n, Let (c̃α,i, c̃γ,i) = Expand(pk1, . . . , pkN , i, ci).
4. For each v ∈ T , let label(v) := ψV (v).
5. For each v ∈ V \ T with both children labeled, let h := height(v), i := ψV (v)

(a) For t = 1, . . . , s = |label(u0)| where Γ(v) = {u0, u1}, ψE(v, u0) = 0,
ψE(v, u1) = 1
i. Let r0 = label(u0)[t] and r1 = label(u1)[t].
ii. Let z1, z2 ← Ẽnc(pk1, . . . , pkN , 0)
iii. Consider 4 cases:

A. if r0 = r1 = 0, at := z1 + z2
B. if r0 = 0; r1 = 1, at := c̃α,i + z1
C. if r0 = 1; r1 = 0, at := c̃γ,i + z1
D. if r0 = r1 = 1, at := c̃α,i + c̃γ,i

(b) av = a1 . . . as; if h = 1, label(v) ← av

(c) otherwise, label(v) ← EvalF (Dec2F , pkF,1, . . . , pkF,N , f̃sk,1, . . . , f̃sk,N , av)
6. Output c̃ = label(root)

DecS(sk1, . . . , skN , ĉ)

1. Parse ski = skF,i.
2. Output μ′ := DecF (skF,1, . . . , skF,N , ĉ)

258 W. Chongchitmate and R. Ostrovsky

4.2 Correctness and Security Against Semi-honest Adversaries

The correctness is a direct result of the following lemma:

Lemma 5. Let x = x1 . . . xn. For i = 1, . . . , N , (pki, ski) ← KeyGen(1λ, 1l).
For i = 1, . . . , n, ci = Enc(pkIi

, xi) for some Ii ∈ [N]. Then for any branching
program P = (G = (V,E), v0, T, ψV , ψE) and for each v ∈ V \T with i = ψV (v),

1. DecF (skF,1, . . . , skF,N , av) = label(uxi
);

2. DecF (skF,1, . . . , skF,N , label(v)) = Pv(x);
3. DecS(sk1, . . . , skN , ĉ) = P (x).

Proof. Let Γ(v) = {u0, u1}. For each t ∈ [s], consider the value μ = xi that
c̃α,i encrypts. If μ = 0, we get a sum of two encryptions of 0 in the first two
cases, and a sum of an encryption of 1 and an encryption of 0 in the last two
cases. If μ = 1, we get a sum of two encryptions of 0 in the first case and third
case, and a sum of an encryption of 1 and an encryption of 0 in the second
case and the last case. All of which are correct with respect to r0, r1. Thus,
DecF (skF,1, . . . , skF,N , av) = label(uxi

).
For v with height(v)=1, we have label(v)=av. Thus, DecF (skF,1, . . . , skF,N ,

label(v)) = label(uxi
) = Pv(x) as uxi

∈ T . Now assume that height(v) > 1. Since
label(v) ← EvalF (Dec2F , f̃sk,1, . . . , f̃sk,N , av), inductively, by part 1, we have
DecF (skF,1, . . . , skF,N , label(v)) = Dec2F (skF,1, . . . , skF,N , av) = DecF (skF,1,
. . . , skF,N , label(uxi

)) = Pv(x).
Applying part 2 to the case v = v0, we get

DecS(sk1, . . . , skN , ĉ) = DecF (skF,1, . . . , skF,N , label(v0)) = Pv0(x) = P (x).

��
Now we prove circuit privacy against semi-honest adversaries, i.e., when each

public key and ciphertext pair is generated correctly.

Lemma 6. Assuming F is privately expandable HE scheme with circular secu-
rity. Then the scheme ES is a semi-honestly circuit-private HE scheme for
branching programs.

Proof. We construct a simulator SimS as follows:

SimS(1λ, 1l, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn), b):

1. For i = 1, . . . , N , parse pki = (pkF,i, fsk,i).
2. Let out0 = b.
3. For h = 1, . . . , l,

(a) For t = 1, . . . , s = |outh−1|, we construct outh[t] as follows:
i. Let y0, y2 ← Ẽnc(pk1, . . . , pkN , 0) and y1 ← Ẽnc(pk1, . . . , pkN , 1).
ii. Consider 2 cases:

A. If outh−1[t] = 0, outh[t] := y0 + y2.
B. If outh−1[t] = 1, outh[t] := y1 + y2.

Circuit-Private Multi-key FHE 259

(b) If h ≥ 2, replace outh with EvalF (Dec2F , pkF,1, . . . , pkF,N , f̃sk,1, . . . ,

f̃sk,N , outh)
4. Output out = outl

Let P = (G = (V,E), vr, T, ψV , ψE). For h = 1, . . . , l, let vh ∈ V be the
vertex at height h along the path indicated by x. We have b = U(P, x∗

1, . . . , x
∗
n) =

ψV (v0) and vl = v0. The result follows from the following claim when h = l:

Claim. For h = 0, . . . , l, outh 	s label(vh).

Proof. Clearly, out0 = label(v0) = U(P, x1, . . . , xn) = b. Suppose outh−1 =
label(vh−1). Let i = ψV (vh). For each bit b = outh−1[t], if b = 0, we have
outh[t] = y0 + y2 and

at =
{

z1 + z2 or c̃α,i + z1 if xi = ψE(vh, vh−1) = 0;
c̃γ,i + z1 if xi = ψE(vh, vh−1) = 1

Clearly, z1 and y0 have the same distribution as both are Ẽnc(pk1, . . . , pkN , 0).
By private expandability, c̃α,i, c̃γ,i are statistically indistinguishable from y2
when xi = ψE(vh, vh−1) = 0 and xi = ψE(vh, vh−1) = 1, respectively. We have
at 	s outh[t]. Similarly, if b = 1, we have outh[t] = y1 + y2 and

at =
{

c̃γ,i + z1 if xi = ψE(vh, vh−1) = 0;
c̃α,i + z1 or c̃α,i + c̃γ,i if xi = ψE(vh, vh−1) = 1

By private expandability, c̃γ,i, c̃α,i are statistically indistinguishable from y1
when xi = ψE(vh, vh−1) = 0 and xi = ψE(vh, vh−1) = 1, respectively, while
c̃γ,i is statistically indistinguishable from y2 and z1 when xi = ψE(vh, vh−1) =
1. Again, we have at 	s outh[t]. Now average over the choice of outh−1 	s

label(vh−1), we have at 	s outh, and the result follows by applying EvalF (Dec2F ,
f̃sk,1, . . . , f̃sk,N , ·) to both. ��
We have SimS((pk1, . . . , pkN), (I1, c1), . . . , (In, cn), b)	sEvalS(P, (pk1, . . . , pkN),
(I1, c1), . . . , (In, cn)). ��

4.3 Handling Malicious Inputs

Once we have an evaluation algorithm that can hide a branching program when
public keys and ciphertexts are well-formed, we then consider the case when
they are not properly generated. We use a single-key FHE with circuit privacy
in Theorem 5 (such as one constructed in [21]) to homomorphically check the
validity of each multi-key public key and ciphertext pair. If the check fails, we
“mask” the output using a random string. The simulator can be constructed
using the extractor guaranteed by the circuit privacy of single-key FHE to extract
random coins and verify directly. If the check fails, it returns a random string
with the same distribution as the masked output.

260 W. Chongchitmate and R. Ostrovsky

Let P be a circuit-private single-key FHE. We a define a circuit verifying
each public key and corresponding ciphertexts:

Validateλ,d,n(pk, sk, rk, (c1, r1), . . . , (cn, rn), out) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

out if (pk, sk) ← KeyGenF (rk)
and for each i ∈ [n],
ci = EncF (pk, µi; ri)
for some µi ∈ {0, 1};

0 otherwise

We add a random string S ∈ {0, 1}s, where s = s(λ, d) = |label(root)|, to the
output of Eval and return an encryption of S only if the verification passes. The
original output can be computed if S can be recovered; otherwise, it is uniformly
distributed. We define

vj = EvalP(Validate(pkj , ·, ·, {(ci, ·)}Ii=j , Sj), pkP,j , psk,j , pkr,j , {pre,i}Ii=j)

where pkr,j = EncP(pkP,j , rk,j), psk,j = EncP(pkP,j , skj) and pre,i = EncP
(pkP,i, re,i), all of which are included in the new public key pk or the new
ciphertext c. We also include skP in the new secret key sk. Finally, the new
Eval returns (label(root) ⊕ (S1 ⊕ . . . ⊕ SN), v1, . . . , vN).

We describe EM = (KeyGenM ,EncM ,EvalM ,DecM) using the above Expand

and Ẽnc.

KeyGenM (1λ, 1l):

1. Let d = p(λ, l).
2. Let (pkF , skF) ← KeyGenF (1λ, 1d; rk).
3. Let (pkP , skP) ← KeyGenP(1λ).
4. Compute fsk := EncF (pkF , skF ; re), pkr := EncP(pkP , rk)

and psk = EncP(pkP , skF).
5. Output pk = (pkF , fsk, pkr, psk) and sk = (skF , skP).

EncM (pk, μ):

1. Parse pk = (pkF , fsk, pkP , pkr, psk).
2. Let cF ← EncF (pkF , μ; re)
3. Compute pre = EncP(pkP , re)
4. Output c = (cF , pre).

EvalM (P, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))

1. Let P = (G = (V,E), v0, T, ψV , ψE).
2. For j = 1, . . . , N ,

(a) Parse pkj = (pkF,j , fsk,j , pkP,j , pkr,j , psk,j).
(b) Let Sj ← {0, 1}s and vj = EvalP(Validate(pkj , ·, ·, {(ci, ·)}Ii=j , Sj), pkP,j ,

psk,j , pkr,j , {pre,i}Ii=j).
(c) Let f̃sk,j = ExpandF (pkF,1, . . . , pkF,N , j, fsk,j)

3. For i = 1, . . . , n,

Circuit-Private Multi-key FHE 261

(a) Parse ci = (cF,i, pre,i).
(b) Let (c̃α,i, c̃γ,i) = Expand(pk1, . . . , pkN , i, cF,i).

4. For each v ∈ T , let label(v) := ψV (v).
5. For each v ∈ V \ T with both children labeled, let h := height(v), i := ψV (v)

(a) For t = 1, . . . , s = |label(u0)| where Γ(v) = {u0, u1}, ψE(v, u0) = 0,
ψE(v, u1) = 1
i. Let r0 = label(u0)[t] and r1 = label(u1)[t].
ii. Let z1, z2 ← Ẽnc(pk1, . . . , pkN , 0)
iii. Consider 4 cases:

A. if r0 = r1 = 0, at := z1 + z2
B. if r0 = 0; r1 = 1, at := c̃α,i + z1
C. if r0 = 1; r1 = 0, at := c̃γ,i + z1
D. if r0 = r1 = 1, at := c̃α,i + c̃γ,i

(b) av = a1 . . . as; if h = 1, label(v) ← av

(c) otherwise, label(v) ← EvalF (Dec2F , pkF,1, . . . , pkF,N , f̃sk,1, . . . , f̃sk,N , av)
6. Output ĉ = (label(root) ⊕ (S1 ⊕ . . . ⊕ SN), v1, . . . , vN)

DecM (sk1, . . . , skN , ĉ)

1. Parse ĉ = (c̃, vk,1, . . . , vk,N).
2. For j = 1, . . . , N ,

(a) Parse skj = (skF,j , skP,j).
(b) Let Sj = DecP(skP,j , vk,j).

3. Let c̃′ = c̃ ⊕ (S1 ⊕ . . . ⊕ SN)
4. Output μ′ := DecF (skF,1, . . . , skF,N , c̃′)

4.4 Security Against Malicious Adversaries

We now prove that the above construction is secure against malicious adversaries
as defined in Definition 8 by constructing a pair of algorithms ExtM and SimM .

Theorem 6. Assume F is a privately expandable multi-key HE scheme with
circular security and P is maliciously circuit-private FHE. Then the above con-
struction is a maliciously circuit-private HE scheme for the branching program.

Proof. Let ExtP and SimP be as defined in Definition 4. We construct ExtM and
SimM as follows:

ExtM (1λ, 1l, pk∗, c∗):

1. Parse pk∗ = (pk∗
F , f∗

sk, pk∗
P , p∗

kr, p
∗
sk). If it is malformed, output 0.

2. Let r∗
e = ExtP(pk∗

P , p∗
re) and sk∗

F = ExtP(pk∗
P , p∗

sk).
3. If (pk∗

F , sk∗
F) �= KeyGenF (1λ, 1d; r∗

e), return 0.
4. If c∗ = EncF (pk∗

F , μ; r∗
e) for some μ ∈ {0, 1}, output μ.

5. Otherwise, output 0.

262 W. Chongchitmate and R. Ostrovsky

SimM (1λ, 1l, (pk∗
1 , . . . , pk∗

N), (I1, c∗
1), . . . , (In, c∗

n), b):

1. For i = 1, . . . , n,
(a) Parse c∗

i = (c∗
F,i, p

∗
re,i).

(b) Let c̃∗
i = Expand(pk∗

1 , . . . , pk∗
N , i, c∗

i).
2. For j = 1, . . . , N ,

(a) Parse pk∗
j = (pk∗

F,j , f
∗
sk,j , pk∗

P,j , p
∗
kr,j , p

∗
sk,j).

(b) Do the same test as in Ext for pk∗
j and {c∗

i }Ii=j . If any of the test fails,
let vk,j = SimP(pk∗

P,j , p
∗
sk,j , p

∗
kr,j , {p∗

re,i}Ii=j , 0).
(c) Otherwise, let Sj ← {0, 1}s and vj = SimP(pk∗

P,j , p
∗
sk,j , p

∗
kr,j , {p∗

re,i}Ii=j ,
Sj).

(d) Let f̃∗
sk,j = ExpandF (pk∗

F,1, . . . , pk∗
F,N , j, f∗

sk,j)
3. If any of the tests above fail, let out be a random string of length s and skip

to the last step.
4. Otherwise, let out0 = b.
5. For h = 1, . . . , l,

(a) For t = 1, . . . , s = |outh−1|, we construct outh[t] as follows:
i. Let y0, y2 ← Ẽnc(pk1, . . . , pkN , 0) and y1 ← Ẽnc(pk1, . . . , pkN , 1).
ii. Consider 2 cases:

A. If outh−1[t] = 0, outh[t] := y0 + y2.
B. If outh−1[t] = 1, outh[t] := y1 + y2.

(b) If h ≥ 2, replace outh with EvalF (Dec2F , pk∗
F,1, . . . , pk∗

F,N , f̃∗
sk,1, . . . ,

f̃∗
sk,N , outh)

6. Output out = (outl ⊕ (S1 ⊕ . . . ⊕ SN), vk,1, . . . , vk,N)

We show that they satisfy the Definition 8.
Assume there exists j ∈ [N] such that Validate(pk∗

F,j , sk
∗
F,j , r

∗
k,j , {(c∗

i ,

r∗
e,i)}Ii=j , Sj) = 0 for sk∗

F,j = ExtP(1λ, pk∗
P,j , p

∗
sk,j), r∗

k,j = ExtP(1λ, pk∗
P,j , p

∗
kr,j)

and r∗
e,i = ExtP(1λ, pk∗

P,j , p
∗
re,i) for Ii = j. Then by circuit privacy of P, vi is sta-

tistically indistinguishable from SimP(1λ, pk∗
P,j , p

∗
sk,j , p

∗
kr,j , {p∗

re,i}Ii=j , 0) inde-
pendent from Sj . Thus, out has the same distribution as a random string of
length s in both Eval and SimM .

Now suppose that all Validate’s are not zero, then pk∗
F,i and c∗

F,i are generated
correctly. Since outl is computed the same way as in SimM , the result follows
from Lemma 6. ��

Combining the above result with Lemma 4 results in the following theorem:

Theorem 7. Let F be a privately expandable multi-hop multi-key compact
somewhat homomorphic encryption scheme that can evaluate a circuit up to
depth 2d + 2 where d is the depth of DecF . Then the scheme described above is
a maliciously circuit-private multi-key HE scheme for branching programs.

Corollary 1. Assuming RLWE and DSPR assumptions, and circular security
for ESH , there exists a maliciously circuit-private multi-key HE scheme for
branching programs.

Circuit-Private Multi-key FHE 263

5 Circuit-Private Multi-key FHE

In this section we devise a framework turning a compact MFHE scheme and
a circuit-private multi-key HE scheme into a circuit-private MFHE. This is a
multi-key variant of the framework in [21]. As we discussed earlier, it is difficult
to turn a single-key circuit-private HE scheme and a MFHE scheme into a circuit-
private MFHE in the plain model. When both homomorphic encryption schemes
are multi-key, each pair of public key and secret key can be generated together,
thus allowing homomorphic decryption between two schemes. We use MFHE
evaluation to evaluate a given circuit. We then switch to the circuit-private
scheme to verify the input. Finally, we switch it back to the original scheme for
compactness. Unlike the single-key case, we cannot verify all public keys and
ciphertexts at once as it would lead to a larger verification circuit. We rely on
the fully homomorphic property of the former to combine the result.

Let F = (KeyGenF ,EncF ,EvalF ,DecF) be a leveled compact multi-key FHE
scheme and P = (KeyGenP ,EncP ,EvalP ,DecP) be a leveled multi-key circuit-
private homomorphic scheme. Define the following programs:

KValidateλ,d
pkF ,out(skF , rFK) =

{
out if (pkF , skF) = KeyGenF (1λ, 1d; rFK)

0 otherwise.

CValidateλ,d
pkF ,cF ,out(rFE) =

{
out if cF = EncF (pkF , bi; rFE) for some bi ∈ {0, 1}
0 otherwise.

CombineDec(skP,1, . . . , skP,N , c1, . . . , cN+n)=

⎧⎨
⎩

m if DecP (skP,1, . . . , skP,N , ci)=m

for ∀i = 1, . . . , N + n

0 otherwise.

5.1 Construction

KeyGen(1λ, 1d):

1. Let (pkF , skF) = KeyGenF (1λ, 1d; rFK) and (pkP , skP) ← KeyGenP(1λ, 1d0)
where d0 is the maximum between the depth of KValidateλ,d

pkF ,out,
CValidateλ,d

pkF ,cF ,out and DecF .
2. Let pskF = EncP(pkP , skF), prFK

= EncP(pkP , rFK) and fskP = EncF (pkF ,
skP).

3. Output pk = (pkP , pkF , pskF , prFK
, fskP), sk = skF .

Enc(pk, μ):

1. Parse pk = (pkP , pkF , pskF , prFK
, fskP).

2. Let cF = EncF (pkF , μ; rFE) and prFE
← EncP(pkP , rFE).

3. Output c = (cF , prFE
).

Eval(C, (pk1, . . . , pkN), (I1, c1), . . . , (In, cn))

1. For i = 1, . . . , N , parse pki = (pkP,i, pkF,i, pskF ,i, prFK ,i, fskP ,i).
2. For i = 1, . . . , n, parse ci = (cF,i, prFE ,i).

264 W. Chongchitmate and R. Ostrovsky

3. If C is syntactically malformed, does not match n, or pki or ci has incorrect
size, replace C with a program returning 0.

4. Let outF = EvalF (C, (pkF,1, . . . , pkF,N), (I1, cF,1), . . . , (In, cF,n)).
5. Let outP = EvalP(DecF (·, outF), (pkP,1, . . . , pkP,N), (1, pskF ,1), . . . , (N,

pskF ,N)).
6. For i = 1, . . . , N , let

outK,i = EvalP(KValidateλ,d
pkF,i,outP , (pkP,1, . . . , pkP,N), (i, pskF ,i), (i, prFK ,i)).

7. For i = 1, . . . , n, let
outC,i = EvalP(CValidateλ,d

pkF,i,cF,i,outP , (pkP,1, . . . , pkP,N), (i, prFE ,i)).
8. Output ĉ = EvalF (DecP(·,CombineDec(·, outK,1, . . . , outK,N , outC,1, . . . ,

outC,n)), (pkF,1, . . . , pkF,N), (1, fskP ,1), . . . , (N, fskP ,N)).

Dec(sk1, . . . , skN , ĉ)

1. For i = 1, . . . , N , parse ski = skF,i.
2. Output y = DecF (skF,1, . . . , skF,N , ĉ).

We now prove that this construction gives a leveled compact circuit-private
MFHE.

Theorem 8. Assume a compact leveled MFHE scheme F and a leveled (U, CF)-
homomorphic circuit-private multi-key HE scheme P exist., where CF includes
DecF (·, outF), KValidateλ,d

pkF ,outP and CValidateλ,d
pkF ,cF ,outP for all λ, d, pkF , cF ,

outP , outF . The resulting scheme in the above construction is a leveled compact
circuit-private MFHE.

We refer to the full version of this paper for the proof.

5.2 Instantiation

Finally, if we instantiate the result of Theorem8 by our construction in Theo-
rem 7, we get the following results:

Corollary 2. Assume there exists a privately expandable multi-hop multi-key
compact somewhat homomorphic encryption scheme that can evaluate circuits
up to depth 2d+2 where d is the depth of its decryption circuit. Then there exists
a maliciously circuit-private multi-key fully homomorphic encryption scheme.

Corollary 3. Assuming RLWE and DSPR assumptions, and circular security
for ESH , there exists a maliciously circuit-private multi-key fully homomorphic
encryption scheme.

6 Three-Round On-the-Fly MPC with Circuit Privacy

In this section we consider one application of the circuit-private MFHE scheme—
on-the-fly MPC protocol. In this setting, a large number of clients Pi uploaded

Circuit-Private Multi-key FHE 265

their encrypted inputs to a server or a cloud, denoted by S. The server selects an
N -input function F on a subset of clients’ input, and performs the computation
without further information. Afterward, the server and the clients whose inputs
are chosen run the rest of the protocol. At the end of an on-the-fly MPC proto-
col, only those clients learn the output while the server and other parties learn
nothing. Furthermore, the communication complexity and the running time of
clients should be independent of the function F . As in standard MPC, the input
of each client should not be revealed to any other parties, including the server.
In addition, we require circuit privacy for the server. Clients should not learn
anything about the function other than its output. We give the formal definition
of on-the-fly MPC protocol from [20] as follows:

Definition 9. Let C be a class of functions with at most U inputs. An on-the-fly
multi-party computation protocol Π for C is a protocol between P1, . . . , PU , S
where Pi is given xi as input, for i ∈ [U], and S is given an ordered subset
V ⊆ [U] of size N and a function F on N inputs. At the end of the protocol,
each party Pi for i ∈ V outputs F ({xi}i∈V) while Pi for i /∈ V and S output ⊥.
The protocol consists of two phases:

– Offline phase is performed before F, V is chosen. All parties participate in this
phase.

– Online phase starts after F, V is chosen. Only S and Pi for i ∈ V participate
in this phase, and ignore all messages from Pi, i /∈ V .

We require that the communication complexity of the protocol and the compu-
tation time of P1, . . . , PU be independent of (the complexity of) the function F .
Furthermore, the computation time of Pi for i /∈ V is independent of the output
size of F .

We then define the security and circuit privacy of on-the-fly MPC protocol
in the plain model against malicious adversaries.

Definition 10. An adversary A corrupting a party receives all messages directed
to the corrupted party and controls the messages that it sends. Since the server
ignores messages from parties outside V , we assume w.l.o.g. that an adversary
only corrupts computing parties, i.e., parties in V .

Let ViewΠ,S(F, V,x) denote the collection of messages the server S receives
in an execution of protocol Π on a subset V ⊆ [U] with |V | = N , an N -input
function F ∈ C and input vector x. Let ViewΠ,A(F, V,x) denote the joint collec-
tion of messages A receives through corrupted parties in an execution of protocol
Π on V , F and x.

An on-the-fly multi-party computation protocol Π for C is secure if

– for every adversary A corrupting parties {Pi}i∈T with |T | = t < N , for all
V ⊆ [U] with |V | = N , for all N -input function F ∈ C and for all input
vectors x,x′ such that xi = x′

i for any i ∈ T ,

[ViewΠ,A(F, V,x)|y = F ({xi}i∈V)] 	c [ViewΠ,A(F, V,x′)|y = F ({x′
i}i∈V)] .

266 W. Chongchitmate and R. Ostrovsky

– for every server S, for all V ⊆ [U] with |V | = N , for all N -input function
F ∈ C and for all input vectors x,x′,

[ViewΠ,S(F, V,x)|y = F ({xi}i∈V)] 	c [ViewΠ,S(F, V,x′)|y = F ({x′
i}i∈V)] .

Let the ideal world protocol be where the computation of F is performed
through a trusted functionality F . Each party Pi sends their input xi to F ,
the server sends F and V to F , which performs the computation and sends the
output F ({xi}i∈V) to each Pi, i ∈ V . Let IDEALF,S(F, V, x) denote the joint
output of the ideal-world adversary S, parties P1, . . . , PU and the server S. Let
REALΠ,A(F, V, x) denote the joint output of the real-world adversary S, parties
P1, . . . , PU and the server S.

The protocol Π has (malicious) circuit privacy if for every malicious (and
possibly unbounded) adversary A corrupting any number of clients, there exists
an unbounded simulator S with black-box access to A such that for all V ⊆ [U]
with |V | = N , for all N -input function F ∈ C and for all input vectors x,
IDEALF,S(F, V, x) 	s REALΠ,A(F, V, x).

Adding circuit privacy to an on-the-fly MPC protocol via circuit-private
MFHE scheme has two implications beyond the definition state above. First,
it automatically strengthen the protocol against malicious adversaries without
using setup. This is because the evaluated output only depends on the output
and encrypted input even against malformed public keys and ciphertexts. On the
other hand, it implies that the clients do not know the function being evaluated,
which in turn makes it difficult, if even possible, to verify against a malicious
server. Therefore, we assume that the server is only honest-but-curious, that it
follows the protocol, but may try to learn clients’ input data.

Naturally, the MFHE scheme leads to server-assisted MPC by having each
client generate keys, and encrypt its inputs and uploads to the server. The server
then runs an evaluation algorithm on the encrypted inputs. However, in order
to decrypt the evaluated output, one needs to have all secret keys. One solution,
as in [17], is to run another MPC protocol with each client’s secret key as input
to decrypt. However, this results in multiple rounds in the plain model. In order
to solve this problem, we use a projective garbling scheme.

After the server runs the evaluation algorithm, it creates a garbled circuit of
MFHE decryption with secret keys as input. In order to create a garbled input,
the server cannot give e to the clients as it will allow the clients to generate
multiple garbled inputs, thus rendering the security meaningless. We solve this
problem by using a 1-out-of-2 oblivious transfer (OT). In order to minimize the
round complexity of our MPC protocol, we consider an OT protocol that runs
in one round. However, the standard one-round 1-out-of-2 OT protocols known
are only secure against semi-honest receivers.

We refer to the full version of this paper for the formal definitions of the gar-
bling scheme and OT, and the construction of a one-round 1-out-of-2 OT pro-
tocol that is secure against malicious receivers from maliciously circuit-private
single-key FHE.

Circuit-Private Multi-key FHE 267

Theorem 9. Assuming a circuit-private single-key FHE, there exists a one-
round 1-out-of-2 oblivious transfer protocol that is secure against malicious
receivers.

6.1 Construction

Let E = (KeyGen,Enc,Eval,Dec) be a (leveled) compact maliciously circuit-
private MFHE scheme with secret key length s = s(λ) and using r = r(λ)
random bits for key generation. For simplicity, we assume that each client’s
input is 1 bit. The protocol can be easily generalized to the case where each
client holds many bits of input. Compactness of the MFHE implies that the
evaluated output do not depend on the size of the input. Thus, the rest of our
protocol stays the same. Let (GOT, QOT, AOT,DOT) be a one-round 1-out-of-2
OT protocol. Let (GarbCircuit,GarbEval) be a projective gabling scheme. Let U
be the set of indices of all clients in the system. We describe an on-the-fly MPC
protocol ΠN (V, F, x) as follows:

On-the-Fly MPC Protocol

Step 1: For i ∈ [U], client Pi generates a key pair (pki, ski) = KeyGen(1λ; ri)
and encrypts his input ci ← Enc(pki, xi). For each j = 0, . . . , s + r − 1,
Pi also generates (pkj

OT,i, sk
j
OT,i) ← GOT(1λ). It computes bitwise qj

i =
QOT(pkj

OT,i, ski[j]) for j = 0, . . . , s − 1, and qs+j
i = QOT(pkj

OT,i, ri[j]) for
j = 0, . . . , r − 1. It then sends (pki, ci, pkOT,i,

−→q i) to the server S.
The server S then selects a circuit C representing the function F on

inputs {xi}i∈V for a subset V ⊆ U such that |V | = N . We may assume
w.l.o.g. that V = [N].

Step 2: The server S computes c = Eval(C, pk1, . . . , pkN , c1, . . . , cN). S com-
putes a garbled circuit (G, e) = GarbCircuit(1λ, gc,pk1,...,pkN

) where

gc,pk1,...,pkN
((sk1, r1), . . . , (skN , rN)) =

⎧
⎪⎪⎨

⎪⎪⎩

Dec(sk1, . . . , skN , c) if (pki, ski) =
KeyGen(1λ; ri)
for all i ∈ [N];

⊥ otherwise

and e = (X0
0 ,X1

0 , . . . , X0
N(r+s)−1,X

1
N(r+s)−1). For each i ∈ [N] and j =

0, . . . , r + s − 1, it computes aj
i = AOT(pkOT,i, q

j
i ,X

0
i(r+s)+j ,X

1
i(r+s)+j). It

sends (G, a0
i , . . . , a

r+s−1
i) (and V) to Pi for each i ∈ V .

Step 3: For i ∈ V , client Pi computes its garbled input Xi(r+s)+j =
DOT(skOT,i, a

j
i) for j = 0, . . . , r + s − 1 and broadcasts to other Pi′ ∈ V .

Each client computes y = GarbEval(G,X0, . . . , XN(r+s)−1).

268 W. Chongchitmate and R. Ostrovsky

Remarks

1. The upper bound on the number of clients whose inputs are used in a com-
putation must be known in advance. This requirement is inherited from the
multi-key homomorphic encryption scheme in [17] that we use to construct
our MFHE. It is also the case for the on-the-fly MPC construction in [17].

2. Private channel (from the server) between clients is required to prevent the
server learning clients’ secret keys. This requirement can be done by the
honest-but-curious server passing public keys of all parties in V along with
its messages in step 2. The public key of Pi can be used to encrypt a garbled
input from Pj to Pi.

3. We require circular security between MFHE and OT schemes. This can be
done without additional assumptions by using OT constructed from the same
circuit-private homomorphic scheme in Sect. 4.

Theorem 10. Let E = (KeyGen,Enc,Eval,Dec) be a leveled compact MFHE
scheme. Let OT = (GOT, QOT, AOT,DOT) be an OT protocol. Let Gb =
(GarbCir- cuit,GarbEval) be a projective garbling scheme. If E is maliciously
circuit-private, OT is secure against malicious receivers, and Gb is a secure gar-
bling scheme, then the protocol ΠN is a 3-round secure on-the-fly MPC protocol
with circuit privacy.

We refer to the full version of this paper for the proof.

7 Conclusion and Open Questions

We have shown that we can construct circuit-private MFHE from the existing
multi-key HE and single-key circuit-private FHE. We also use it to construct an
on-the-fly MPC with circuit privacy against malicious clients in the plain model.
However, our construction inherits the same assumption as the construction of
MFHE of López-Alt et al., including DSPR and RLWE. So, the main open
question is:

Is it possible to construct a multi-key homomorphic encryption (with circuit
privacy) under standard assumptions such as LWE in the plain model?

Since our technique only relies on properties that exist in many single-key
constructions, we expect that we can apply it to other multi-key HE as well.
Moreover, circuit privacy for on-the-fly MPC requires some degree of trust
toward a server party. Our construction assumes the server to be honest-but-
curious. We would like to capture a wider range of unintended behavior of the
server while still achieving circuit privacy. So, another open question is:

Is there a better model for on-the-fly MPC with circuit privacy?

Circuit-Private Multi-key FHE 269

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 8

2. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions: cryptanalysis of some FHE and graded encoding schemes. Technical
report, Cryptology ePrint Archive, Report 2016/127 (2016)

3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 29

4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

6. Chongchitmate, W., Ostrovsky, R.: Circuit-private multi-key FHE. Cryptology
ePrint Archive, Report 2017/010 (2017). http://eprint.iacr.org/

7. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 630–656. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 31

8. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, London (2001). doi:10.1007/3-540-44586-2 9.
http://dl.acm.org/citation.cfm?id=648118.746742

9. Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M., Coron, J.-S.
(eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 294–310. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49890-3 12

10. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

11. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption and
rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 155–172. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 9

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

13. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptol. 25(1), 158–193 (2012)

14. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 132–150. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 8.
http://dl.acm.org/citation.cfm?id=2033036.2033047

15. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 31. http://dl.acm.org/citation.
cfm?id=1760749.1760790

http://dx.doi.org/10.1007/3-540-44987-6_8
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://dx.doi.org/10.1007/3-540-44586-2_9
http://dl.acm.org/citation.cfm?id=648118.746742
http://dx.doi.org/10.1007/978-3-662-49890-3_12
http://dx.doi.org/10.1007/978-3-642-14623-7_9
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-22792-9_8
http://dl.acm.org/citation.cfm?id=2033036.2033047
http://dx.doi.org/10.1007/978-3-540-70936-7_31
http://dl.acm.org/citation.cfm?id=1760749.1760790
http://dl.acm.org/citation.cfm?id=1760749.1760790

270 W. Chongchitmate and R. Ostrovsky

16. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
IACR Cryptology ePrint Archive 2011, 272 (2011)

17. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of 44th
Annual ACM Symposium on Theory of Computing, STOC 2012, NY, USA, pp.
1219–1234 (2012). http://doi.acm.org/10.1145/2213977.2214086

18. Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for
private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 33

19. Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evalu-
ation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
486–505. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 26

20. Mukherjee, P., Wichs, D.: Two round mutliparty computation via multi-key FHE.
Cryptology ePrint Archive, Report 2015/345 (2015). http://eprint.iacr.org/

21. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 536–553. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 30

22. Pippenger, N.: On simultaneous resource bounds. In: Proceedings of 20th Annual
Symposium on Foundations of Computer Science, SFCS 1979, pp. 307–311 (1979).
http://dx.doi.org/10.1109/SFCS.1979.29

23. Raz, R.: Elusive functions and lower bounds for arithmetic circuits. In: Proceedings
of 40th Annual ACM Symposium on Theory of Computing, STOC 2008, NY, USA,
pp. 711–720 (2008). http://doi.acm.org/10.1145/1374376.1374479

24. Valiant, L.G.: Universal circuits (preliminary report). In: Proceedings of 8th
Annual ACM Symposium on Theory of Computing, STOC 1976, NY, USA, pp.
196–203 (1976). http://doi.acm.org/10.1145/800113.803649

25. Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryp-
tion over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 24–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 2

http://doi.acm.org/10.1145/2213977.2214086
http://dx.doi.org/10.1007/978-3-642-38348-9_33
http://dx.doi.org/10.1007/978-3-642-38348-9_33
http://dx.doi.org/10.1007/978-3-662-45608-8_26
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-44371-2_30
http://dx.doi.org/10.1109/SFCS.1979.29
http://doi.acm.org/10.1145/1374376.1374479
http://doi.acm.org/10.1145/800113.803649
http://dx.doi.org/10.1007/978-3-642-13190-5_2

FHE over the Integers: Decomposed
and Batched in the Post-Quantum Regime

Daniel Benarroch1, Zvika Brakerski1(B), and Tancrède Lepoint2

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

2 SRI International, New York, USA

Abstract. Fully homomorphic encryption over the integers (FHE-
OI) is currently the only alternative to lattice-based FHE. FHE-OI
includes a family of schemes whose security is based on the hardness of
different variants of the approximate greatest common divisor (AGCD)
problem. A lot of effort was made to port techniques from second gen-
eration lattice-based FHE (using tensoring) to FHE-OI. Gentry, Sahai
and Waters (Crypto 13) showed that third generation techniques (which
were later formalized using the “gadget matrix”) can also be ported.
However, the majority of these works was based on the noise-free variant
of AGCD which is potentially weaker than the general one. In particu-
lar, the noise-free variant relies on the hardness of factoring and is thus
vulnerable to quantum attacks.

In this work, we propose a comprehensive study of applying third
generation FHE techniques to the regime of FHE-OI. We present and
analyze a third generation FHE-OI based on decisional AGCD without
the noise-free assumption. We proceed to showing a batch version of our
scheme where each ciphertext can encode a vector of messages and oper-
ations are performed coordinate-wise. We use a similar AGCD variant to
Cheon et al. (Eurocrypt 13) who suggested the batch approach for sec-
ond generation FHE, but we do not require the noise-free component or
a subset sum assumption. However, like Cheon et al., we do require cir-
cular security for our scheme, even for bounded homomorphism. Lastly,
we discuss some of the obstacles towards efficient implementation of our
schemes and discuss a number of possible optimizations.

1 Introduction

In homomorphic encryption (HE), it is possible to transform a ciphertext Enc(x)
into Enc(f(x)) for some class of functions in a public manner, i.e. without any
secret information and without compromising the security of the encrypted mes-
sage. Rivest et al. [27] proposed the notion of fully homomorphic encryption

D. Benarroch—Supported by the Israel Science Foundation (Grant No. 468/14).
Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14),
the Alon Young Faculty Fellowship and Binational Science Foundation (Grant No.
712307).

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 271–301, 2017.
DOI: 10.1007/978-3-662-54388-7 10

272 D. Benarroch et al.

(FHE) where the scheme is homomorphic w.r.t any efficiently computable f .
This will allow to outsource computation to third parties without compromis-
ing security. In an exciting breakthrough, Gentry [19] presented the first can-
didate FHE scheme that was based on ideal lattices. Very shortly afterwards,
van Dijk et al. [30] proposed a scheme with a similar structure to Gentry’s but
one that was based on a different hardness assumption, namely the hardness of
the approximate greatest common divisor problem (AGCD) [22]. In AGCD, the
attacker’s goal is to find a hidden prime p given arbitrarily (polynomially) many
samples of random “near multiples” of p, i.e. samples of the form qp+ r where q
is chosen randomly from an appropriate domain, and r � p is random noise. In
the AGCD schemes, the basic elements are integers rather than lattice vectors,
and the scheme was referred to as FHE over the integers (henceforth FHE-OI).

Lattice based FHE developed and new schemes with better security and
efficiency guarantees emerged [2,4–6] in the lattice domain; this is sometimes
called second generation FHE. A sequence of works on FHE-OI showed that
many of these techniques can be applied in that regime as well, resulting in
schemes with comparable efficiency to the lattice setting [9,14–16]. In particular,
Cheon et al. [9] showed how to encrypt a vector of messages in a single ciphertext,
similarly to the [3,4,29] SIMD approach. In the batch setting, when performing a
homomorphic operation, the operation is performed in parallel on all coordinates
of the respective message vectors. This allows to increase the throughput of the
scheme while preventing the ciphertext size from growing too much. This was
later improved by Coron et al. [14] who presented a “scale invariant” version of
the batch scheme, again showing that the scale invariance notion from [2] can
be applied in the FHE-OI setting.

These last two works [9,14], however, deviate from the original formulation
of the AGCD assumption in a number of aspects: (i) In order to allow batched
ciphertexts, they change p from being prime to being a product of primes, so as
to allow encoding of multiple messages using the Chinese Remainder Theorem.
Furthermore, they required a circular secure variant of the assumption, where
indistinguishability holds even for elements of the form qp + r + m where m
depends on the factors of p. We discuss circular security further when we talk
about our batch scheme below. (ii) Rather than just assuming that finding p is
hard, they assume that the samples qp + r are indistinguishable from uniform
samples over some domain. This is now known as decisional AGCD. (iii) Only
in [9]: They require that the problem remains hard even if a single multiple
of p without noise is known, i.e. some x0 = q0p. This is known as the noise
free variant. However, they show that if this element is given, then there is a
reduction from the original AGCD problem to the new decisional batch AGCD.
(iv) They make an additional subset sum assumption.

Gentry et al. [20] proposed a new family of techniques for lattice based FHE,
sometimes referred to as third generation FHE. They showed how to decrease
the size of the public parameters and the asymptotic complexity of performing
a single homomorphic multiplication. It was later shown that this approach can
be used to weaken the hardness assumption of the scheme and achieve better

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 273

parameters [1,7] and even for implementations [11,17,23]. It was observed in [20]
that their techniques can be applied also to FHE-OI in the noise free variant.
Subset sum was no longer required, but a batched scheme was not introduced. It
is important to mention that third generation FHE is lacking in terms of infor-
mation rate. Whereas in second generation FHE, a (post-evaluation) ciphertext
of length � can encrypt Ω(�) bits of information, in third generation scheme only
o(�) bits are possible while maintaining full homomorphism.

Although having a noise free element simplifies the schemes, its impact on
security is unclear. On one hand, it allows to reduce from the hardness of the
search AGCD all the way to batch decision. On the other hand, it gives the
adversary additional information that might be harmful for security. One set-
ting where this additional information is known to be harmful is for post-quantum
security. In post quantum security, we are interested in schemes that can be run
on standard classical computers, but which are secure even against adversaries
that have a quantum computer. This corresponds to a situation where the major-
ity of the population cannot afford a quantum computer, but big organizations
or governments can, and the simple user would still like to maintain security
even against these quantum capabilities. Since factoring can be solved using a
quantum computer [28], noise free AGCD is not post quantum secure. On the
other hand, Cheon and Stehlé [10] showed that (non batched) decisional AGCD
without the noise free element is at least as hard as the learning with errors
(LWE) problem, which is widely regarded as post quantumly secure. We note
that even though a similar statement for the batch variant is not known, the [10]
result increases our confidence in its post quantum security.

1.1 Our Results

We construct third generation FHE-OI schemes, with and without batching
capabilities, based on decisional AGCD (without a noise free element). More
accurately, we construct leveled FHE: a parameterized homomorphic encryption
scheme, such that for any polynomial depth bound d = poly(λ) there is a proper
setting of parameters such that the scheme can evaluate all depth d circuits. Lev-
eled FHE schemes can be converted to plain FHE using Gentry’s bootstrapping
principle [19], albeit at the cost of making an additional hardness assumption
(the circular security of the scheme). Since the use of bootstrapping is identical
to previous schemes in the literature, we leave it out of this paper and focus on
constructing the leveled schemes.

Our first scheme is non-batched, i.e. each ciphertext encrypts a single bit
message, and is based on decisional AGCD. This scheme is similar to the [20]
proposed construction, but we do away with the noise free element. This scheme
is presented in Sect. 3. Our second scheme is batched and is based on batched
decisional AGCD in addition to a circular security assumption (similarly to [9,14]
as mentioned above). This scheme is presented in Sect. 4. Known attacks against
the batched AGCD problem work less well than for the classical AGCD problem:
this problem can potentially offer a higher degree of security (cf. [18]).

274 D. Benarroch et al.

Both schemes enjoy the same noise propagation features as the LWE scheme
of [1,7,20]: In all known FHE candidates, the limitation on the homomorphism
depth stems from noise accumulation. Upon encryption, ciphertexts contain a
certain amount of noise (appropriately defined), and performing homomorphic
operations increases the noise. For correct decryption, the noise has to be below
a predefined threshold, hence the limitation on the number of operations. In our
scheme, the noise grows by a poly(λ) factor with every multiplication or logical
NAND operation (the exact polynomial depends on the choice of parameters).
Furthermore, the noise growth is asymmetric as in [20], i.e. only the noise of one
of the two operands grows by a polynomial factor, and the noise of the other
does not grow at all. This means that we can apply similar optimizations such
as the ones in [1,7].

Finally, in Sect. 5, we discuss a number of possible optimizations. We show
that using the subset sum assumption we can reduce the public key size, using
techniques inspired by Coron et al. [15]. We show that at the last steps of the
homomorphic evaluation, we do not have to pay the full cost of multiplication.
We then show that instead of binary decomposition of the ciphertext, which is a
major ingredient in [20] (and even earlier in [5]), one can use decomposition over a
larger index, specifically roughly polynomial in the security parameter. This will
reduce the ciphertext size and the evaluation complexity, but will increase the
noise growth. Lastly we discuss the limitations in choosing the actual parameters
for future implementation.

1.2 Our Techniques

Let p be a secret prime sampled from the appropriate distribution, and consider
a sequence of samples of the form xi = qip + ri, where qi is again sampled
uniformly across some properly defined domain, and ri is chosen uniformly across
a “small” domain so that |ri| � p. The decisional AGCD assumption is that the
xi’s are computationally indistinguishable from a uniform element modulo a
known parameter N ≈ qmaxp (in fact, the parameters are chosen so that first
N is selected and then the distribution qi’s is chosen so that the maximum
is approximately equal to N/p). Consider adding a few of the xi’s together,
for example taking two such samples, x1, x2 and letting y = x1 + x2. Then
y = (q1 + q2)p + (r1 + r2), and it has a similar structure to the original x’s.
However, not exactly: First of all, the noise r1 + r2 is bigger than the original
r. Secondly, and as it turns out more importantly, now y might be bigger than
the modulus N . Looking ahead, this will translate to ciphertext size growth
during homomorphic evaluation, a side effect that we need to prevent. Note
that the first intuition of taking the result modulo N does not help here. While
the ciphertext size will be reduced, the structure might be lost as well since
y (mod N) = y − kN for some integer k. The solution, as presented already
in [30], is to consider the first sample x0 = q0p + r0 as the modulus. Since
we know that y cannot be much larger than N (since it is just the sum of a
small number, say 2, of xi’s), this means that k is not so large, and therefore y
(mod x0) = y − kx0 = (q1 + q2 − kq0)p + (r1 + r2 − kr0) both lies in the right

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 275

domain, which we will now define to be integers modulo x0, and has the right
structure. We note that the aforementioned error free variant is simply taking
r0 = 0 which simplifies many of the computations ahead since there will not be
an r0 contribution to the noise term.

A Modified Distribution. The situation here is more challenging than [30],
though. For security purposes we would like to argue that xi (mod x0) is indis-
tinguishable from a uniform element modulo x0. However, this is actually not
true since xi and x0 are of similar magnitudes and therefore small elements
have a higher probability of appearing in xi (mod x0). We therefore consider
the conditional probability distribution of xi conditioned on xi < x0. This dis-
tribution is indeed indistinguishable from uniform modulo x0. We will therefore
use rejection sampling to sample the xi’s: we will sample according to the AGCD
distribution, and if we are above x0, we will discard the sample and repeat. This
will result in a distribution of xi that both has the structure that we desire and is
indistinguishable from uniform modulo x0. The only remaining problem is that
perhaps we get x0 that is so small that we will reject too often thus increasing
the computational complexity of generating the xi’s. There are a number of ways
to avoid this problem, we chose to just apply rejection sampling to the choice
of x0 itself and condition on it being larger than N/2, which implies that xi

will be rejected with probability at most 1/2. We note that if x0 was error free,
this process would not be needed since xi (mod x0) would have been distributed
exactly like a fresh AGCD sample with q uniformly modulo qmax. The formal
analysis of this process appears in Lemma 2.3.

Our Basic Scheme. Now that we have our building blocks, we can construct
a GSW-style homomorphic encryption scheme (as formulated by [1]). Consider
the operation of taking a number c modulo x0 and decomposing it into its
binary representation, which is a binary column vector of dimension �log x0�.
We denote this operation by G−1(c) (for reasons that will become clear later),
if c is a row vector, then G−1(c) is a binary matrix. The complement of this
operation is linear, i.e. there is a vector g s.t. g · G−1(c) = c (mod x0) for
all c. Therefore, we can devise a scheme where in order to encrypt a bit m,
we produce a ciphertext which is a row vector of the form c = mg + qp +
r, but which is still computationally indistinguishable from a uniform vector
over Zx0 . Such a ciphertext can be generated using standard methods from a
public key containing a sequence of xi’s: in a nutshell, a random subset sum
of the xi’s will preserve the structure and produce a “fresh” xi, although with
somewhat larger noise, which is indistinguishable from uniform even given the
public key due to the leftover hash lemma. One has to take special care when
reducing modulo x0 that the additional kr0 term does not become too large.
Such a ciphertext can be decrypted by first multiplying by G−1(p/2), and then
reducing modulo p, which results in mp/2 + rG−1(p/2). Since G−1(·) always
output a binary vector, then if r is short enough then rG−1(p/2) is only slightly
longer. So long as the norm of rG−1(p/2) is smaller than p/4, we will decrypt
the correct bit. Homomorphic evaluation is performed as in [1] by computing

276 D. Benarroch et al.

c1G−1(c2) (mod x0) which results in a ciphertext of the form c = m1m2g +
q′p + (r1G−1(c2) + m1r2 + kr0). Thus we have a noise growth very similar to
GSW style encryption, but with an additional term that depends on r0 are comes
from taking the result modulo x0. We therefore need to take into account in our
analysis a bound on the modulus k so that we can bound the noise growth. Note
that if x0 had been noise free, this complication does not arise. See Sect. 3 for
the full details, parameters and analysis.

A Batched Variant. The previous scheme only allows to encode a single bit
in a ciphertext vector. This is of course a significant efficiency constraint. We
show how to encode multiple bits in a single ciphertext vector using the Chinese
Remainder Theorem (CRT), inspired by previous works such as [9]. We will now
consider a batched AGCD distribution with samples of the form xi = qiπ + ri,
where π is now a composite π =

∏
i∈[�] pi, and the noise ri is defined as the

number modulo π s.t. |ri (mod pj)| � pj . Namely, ri is not a short element
by itself, but rather its CRT coefficients with respect to the pj ’s are short.
The batched AGCD hardness assumption again asserts that these samples are
indistinguishable from random modulo some known N . We will use our modified
distribution defined above to again generate x0 and a distribution over xi s.t. xi

(mod x0) has the right form and is indistinguishable from uniform. Now consider
a ciphertext of the form c = mg + qπ + r, except now m itself is not a bit, but
rather its CRT representation is a sequence of bits. Namely, m (mod pj) = mj

for some bit mj . Decryption can be performed in analogous way to the basic
scheme, multiplying by G−1(pj) and reducing modulo pj will allow to recover mj .
Similarly homomorphic operations are performed in the exact same manner as
before, since e.g. multiplying two “CRT containers” m,m′ will result in element-
wise multiplication in each slot corresponding to a factor pj .

This still leaves open the question of how to generate ciphertexts with the
aforementioned structure. It is not a problem to encrypt zero by generating
c′ = qπ+r as above. In the basic scheme this was enough since we could just take
mg + c′ (mod x0) and get our ciphertext. Here, we cannot even generate, given
the sequence of mj , the CRT representation m without using secret information
(that is, the factorization of π). We solve this problem by considering a set of
messages that span the message space, and placing their encryptions as a part
of the public key. Specifically, consider m∗

j s.t. m∗
j = 0 (mod pj′) if j �= j′ and

m∗
j = 1 (mod pj) and let c∗

j = m∗
jg+q∗

jπ + r∗
j . The c∗

� vectors can be generated
during the key generation process using the factorization of π. Now, in order to
encrypt a sequence of bits {mj}j , we take

∑
j mjc∗

j + c′ (mod x0), where c′ is a
freshly generated zero encryption as defined above. One can verify that this will
indeed encrypt the right message.

We were able to solve the functionality problem, but we can no longer base
security on batch AGCD, since in order to generate the public key we can no
longer use the xi alone without additional private information. Unfortunately,
we do not know how to resolve this problem and we make the explicit assump-
tion that the batch AGCD remains hard even when the c∗

j vectors are published
as a part of the public key. In order to increase our confidence in the validity of

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 277

this additional assumption, we show that it can be stated as assuming circular
security for a different scheme which is CPA secure. A circular secure encryp-
tion scheme is one that can securely encrypt functions of its own secret key.
This notion has been entangled in the FHE literature due to the batching tech-
nique which requires circular security in order to transform from leveled FHE
to unbounded FHE. It is commonly believed that “normal” encryption schemes
should be circular secure unless they are intentionally weakened. Clearly this
vague definition does not provide a strong guarantee and there are ongoing
attempts to come up with more natural schemes that are not circular secure.
Yet, by showing that the security of our scheme relates to the circular security
of a CPA secure scheme (which is in turn secure under batch AGCD), we can at
least deduce that breaking our scheme will imply a surprising result in the study
of encryption. We note that a similar assumption was made in previous works
[9,14] but without an explicit proof of the relation to circular security. Formally,
we consider the very encryption scheme which takes m ∈ Z (or some restriction
thereof) and encrypts it as c = mg + c′ (mod x0), where c′ is as above. We do
not provide a decryption algorithm since we do not require functionality for this
scheme, only security, but we consider the secret key to be the factorization of π.
This scheme can be shown to be CPA secure under batch AGCD on one hand,
and on the other our m∗

j can be written as a function of the secret key of this
scheme. Therefore if this auxiliary scheme is circular secure for any function of
the secret key, then our scheme is CPA secure.

For the formal statement and analysis of this scheme, see Sect. 4.

Optimizations Towards Practicality. In Sect. 5 we analyze parameters and sug-
gested optimizations towards implementation of our schemes. Let us only men-
tion here that one of the serious constraints appears to be the length of the
ciphertext which now becomes a log(x0) dimensional vector. We find that this
can be mitigated by considering a G−1(·) function that does not perform binary
decomposition but rather decomposes relative to a larger radix B. This will
have a negative effect on the noise growth, but will decrease the ciphertext size
to log(x0)/ log(B) which might enhance performance substantially. This opti-
mization was considered in the lattice setting as well, but we believe that it will
be much more effective in our setting.

2 Preliminaries

We denote the parameters of our encryption schemes by Greek letters (η, ρ, γ,
τ, λ, etc.), where λ is always the security parameter. Scalars are denoted by
lowercase Latin characters (p, q, x, y, r, etc.), whereas vectors are denoted by
lowercase bold English letters (x,y, r,q, etc.). Finally matrices are denoted by
uppercase English letters. For any integer, z, or any vector of integers z, we
denote by [z]p or [z]p the value in (−p/2, p/2] which is the remainder of z or
of each coordinate of z when divided by p. For a vector z, we denote the norm
‖z‖ to be the infinity norm of the vector, or the size of the maximum entry,

278 D. Benarroch et al.

‖z‖ := ‖z‖∞ = max
zi in z

|zi|. All logarithms mentioned in this paper are base two,

unless stated otherwise. We note that for all a,b ∈ Z
n it holds that

‖[a ± b]p‖ ≤ ‖[a]p‖ + ‖[b]p‖. (1)

Computational Indistinguishability. Distribution ensembles {D0,λ}λ, {D1,λ}λ

are computationally indistinguishable if for every polynomial time algorithm A it
holds that

∣
∣Pr[AD0,λ(1λ) = 1] − Pr[AD1,λ(1λ)] = 1

∣
∣ ≤ negl(λ), where the oracle

Db,λ is one that returns a fresh sample from Db,λ on every call.

Bit Decomposition. For some n ∈ Z, define the gadget vector, g = (1, 2, 4, . . . , 2n)
and the gadget function g−1 : Z ∩ [0, 2n+1) → {0, 1}n+1 to be the function that
computes the (n + 1)-th bit decomposition of any integer. For some integer, z,
the function is defined as g−1(z)T = vT = (v0, v1, . . . , vn) where vi ∈ {0, 1}
such that z = 〈g,v〉. By extension we define the augmented gadget function
G−1 : (Z ∩ [0, 2n+1))k → {0, 1}(n+1)×k to be the function that computes the
(n + 1)-th bit decomposition of every integer in a vector, z, of dimension k, and
arranges them as vector columns of an (n+1)×k binary matrix which we denote
G−1(z). Hence, g · G−1(z) = z.

CRT Representation. We recall the Chinese Remainder Theorem over the inte-
gers, which we use during the construction of the batch version of the scheme.

Definition 2.1. Given k pair-wise co-prime integers p = (p1, . . . , pk), let π =
∏k

i=1 pi. For k integers mi ∈ Zpi
, we define the CRT representation of m =

(m1, . . . ,mk) with respect to p, to be the unique field element m ∈ Zπ such that
[m]pi

= mi; we write m = CRTp1,...,pk
(m1, . . . ,mk) and recall that given p and

m, CRTp(m) is an efficiently computable ring isomorphism from
∏

Zpi
to Zπ.

Leftover Hash Lemma. A family H of hash functions from X to Y , both finite
sets, is said to be 2-universal if for all distinct x, x′ ∈ X,Prh←H[h(x) = h(x′)] =
1/|Y |. A distribution D is ε-uniform if its statistical distance from the uniform
distribution is at most ε, where the statistical distance between two distributions
D1,D2 over a finite domain X is 1

2

∑
x∈X |D1(x) − D2(x)|.

Lemma 2.1 (Simplified Leftover Hash Lemma (LHL) [21]). Let H be
a family of 2-universal hash functions from X to Y . Suppose that h ← H and
x ← X are chosen uniformly and independently. Then, (h, h(x)) is 1

2

√|Y |/|X|-
uniform over H × Y .

We present the following version of the LHL, specifically adapted to our
scheme.

Lemma 2.2. Set x = (x1, . . . , xm) ← Z
m
M uniformly and independently, set

S ← {0, 1}m×n for some n; and let y = x · S (mod M). Then (x,y) is
1/2

√
M/2m-uniform over Z

m+n
M .

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 279

Proof. Consider the following hash function family H ⊆ {0, 1}m×n → Z
n
M . Each

function h ∈ H is parametrized by the coordinates of x ∈ Z
m
M . Now, given any

S ∈ {0, 1}m×n, we define h(S) = x·S (mod M) ∈ Z
n
M . We have that the function

family is 2-universal. Therefore by Lemma 2.1, (h, h(S)) is 1/2
√

M/2m-uniform
over Z

m+n
M . ��

2.1 Homomorphic Encryption

A homomorphic (public-key) encryption scheme HE = (HE.Setup,HE.Keygen,
HE.Enc,HE.Dec,HE.Eval) with message space M is a 4-tuple of ppt algorithms
as follows (λ is the security parameter):

– Key generation (pk, sk)←HE.Keygen(1λ): Outputs a public encryption key
pk and a secret decryption key sk.

– Encryption c←HE.Enc(pk, μ): Using the public key pk, encrypts a message
μ ∈ M into a ciphertext c.

– Decryption μ←HE.Dec(sk, c): Using the secret key sk, decrypts a ciphertext
c to recover the message μ ∈ M.

– Homomorphic evaluation ĉ ←HE.Eval(C, (c1, . . . , c�), pk): Using the public
key pk, applies a circuit C : M� → M to c1, . . . , c�, and outputs a ciphertext ĉ.

A homomorphic encryption scheme is said to be secure if it is semantically secure.
It is (perfectly) correct w.r.t a class of circuits C, if for any efficiently computable
circuit C ∈ C and any set of inputs μ1, . . . , μ�, letting (pk, sk)←HE.Keygen(1λ)
and ci ←HE.Enc(pk, μi), it holds that HE.Dec(sk,HE.Eval(C, (c1, . . . , c�), pk)) =
C(μ1, . . . , μ�). The scheme is compact if the decryption circuit’s size only
depends on λ. The scheme is leveled fully homomorphic if for every L = poly(λ)
it can be instantiated so that it can evaluate all depth L circuits.

2.2 Approximate GCD (AGCD)

Variants of the Approximate GCD problem have been used for homomorphic
encryption in a number of previous works [9,10,14–16,20,30]. In this work, we
consider the decisional noisy variant, both in the standalone and batch regimes
(definitions follow). We also show that the decisional noisy variant implies the
hardness of “size-bounded” decisional AGCD which had been defined and used
implicitly in the noise-free setting but to our knowledge not in the noisy setting.

We start by defining the distribution that underlies the AGCD problem.
Essentially, this is a distribution over “near multiples” of a hidden parameter p,
followed by a definition of the (standalone) AGCD problem.

Definition 2.2. The distribution Dγ,ρ(p), parameterized by integers γ, ρ and a
η-bit prime p, is supported over γ-bit integers and defined as follows.

Dγ,ρ(p) = {sample q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : Output x = p · q + r}
(2)

280 D. Benarroch et al.

Definition 2.3 ((ρ, η, γ)-AGCD [9,30]). The (ρ, η, γ)-AGCD problem is to
find p given oracle access to Dγ,ρ(p), where p is a random η-bit prime. The
decisional AGCD problem is to distinguish between Dγ,ρ(p) and the uniform dis-
tribution on [0, 2γ) ∩ Z, given oracle access to both distributions.

We note that these definitions are valid even if p is a non-prime odd integer, and
our results carry over to this case as well.

The batched version is defined similarly, except with multiple p’s. We start
by defining a noise distribution via CRT representation, followed by the batch
AGCD problem definition.

Definition 2.4. Let p1, . . . , pl be η-bit primes. We define the following
distribution:

Φρ(p1, . . . , pl) = {r = CRTp1,...,pl
(r1, . . . , rl)|ri ← Z ∩ (−2ρ, 2ρ)}. (3)

Definition 2.5 ((ρ, η, Γ)-l-AGCD). Let ρ, η, Γ, l be parameters instantiated as
a function of the security parameter. Let p1, . . . , pl be random η-bit sized primes

and define π =
l∏

i=1

pi. Given oracle access to the distribution

Xρ,Γ (p1, . . . , pl) = {qπ + r|r ← Φρ(p1, . . . , pl), q ← Z ∩ [0, 2Γ /π)},

output at least one of p1, . . . , pl. The decisional version is to distinguish between
Xρ,Γ (p1, . . . , pl) and the uniform distribution on Z ∩ [0, 2Γ).

We note that for l = 1 we get exactly the non-batched version, so this is a strict
generalization.

Size Bounded AGCD. The distribution Dγ,ρ(p) defined above (and respectively
Xρ,Γ (p1, . . . , pl) in the batch variant) produces elements of varying length. For
functionality purposes, we would like to perform arithmetics with a single mod-
ulus x0 in our scheme, and this modulus must itself be ≈ q0p (and respectively
for the batch version). In some previous works [9,13–16,24], this was done by
defining the modulus as a special noise free element x0 = q0p. However, this
could potentially weaken security and in particular makes the scheme vulner-
able to quantum attacks (since factoring x0 reveals p). Sampling x0 from the
distribution Dγ,ρ(p) itself was proposed already in [14,30], the former work only
in the context of search AGCD, and the latter with an ad-hoc (unmentioned)
circular security assumption. Recall that the standalone AGCD is a special case
of the batched version, and therefore it is sufficient to take care of the latter.

We start by defining truncated versions of distributions, i.e. a distribution
conditioned on some external condition.

Definition 2.6. Let X be a distribution supported over Z and let k ∈ Z. The
distribution X(≤k) is the distribution X conditioned on X ≤ k. If Pr[X ≤ k] = 0
then X(≤k) is undefined. Analogously we can define X(≥k).

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 281

Via rejection sampling it is easy to see that if X is efficiently sampleable and
Pr[X ≤ k] is noticeable then X(≤k) is efficiently sampleable up to negligible
statistical distance.

Lemma 2.3. Let (ρ, η, γ), l be as in the l-AGCD problem. For any polynomial
t, we define the following distributions.

– The distribution Xt = (x0, x1, . . . , xt) where x0 ← Xρ,Γ (p1, . . . , pl)(≥2Γ /2) and
for i > 0, xi ← Xρ,Γ (p1, . . . , pl)(≤x0).

– The distribution Ut = (u0, u1, . . . , ut) where u0 is uniform over [2Γ /2, 2Γ) ∩Z

and for i > 0, ui is uniform over [0, u0) ∩ Z.

It holds that under the (ρ, η, Γ)-l-AGCD assumption, both distributions are
efficiently sampleable, up to negligible statistical distance, and computationally
indistinguishable for any polynomial t.

Proof. Let U be the uniform distribution over [0, 2Γ) ∩ Z. Then an equivalent
formulation for Ut is to set u0 ← U (≥2Γ /2) and for i > 0, ui ← U (≤u0). In
this formulation, Ut is efficiently sampleable given oracle access to U and using
rejection sampling, since for u0 the rejection probability is at most 1/2 and since
u0 ≥ 2Γ /2, the same holds for the rest of the ui’s. Note that in expectation only
a constant number of samples of U is required to sample each ui.

Replacing U with Xρ,Γ (p1, . . . , pl) implies the distribution Xt. Since U and
Xρ,Γ (p1, . . . , pl) are computationally indistinguishable under (ρ, η, Γ)-l-AGCD,
it implies that applying the same rejection sampler but with Xρ,Γ (p1, . . . , pl)
samples instead of U samples will efficiently sample from Xt and furthermore
that the resulting distribution is indistinguishable from Ut. ��

3 Our Basic Scheme

In this section we will describe the full construction of our decomposed homo-
morphic encryption scheme, we will analyze it for correctness and efficiency and
finally prove its underlying security.

3.1 Construction

We recall that for a specific η-bit odd integer p, we use the distribution from
Definition 2.2 over γ-bit integers.

HE.Keygen(1λ): We generate the public parameters params = {γ, ρ, η, τ} accord-
ing to the security parameter λ and the parameter constraints in Sect. 3.3.
Sample uniformly an η-bit integer p. Using Eq. (2) and via rejection sampling
first sample an integer x0 ← (Dγ,ρ(p))(≥2γ−1) and then τ integers {xi}1≤i≤τ ←
(Dγ,ρ(p))(≤x0), such that (x0, x1, . . . , xτ) ← Xτ , as in Definition 2.6. We write
x = (x1, . . . , xτ), we let pk = (params,x, x0) and sk = p.

282 D. Benarroch et al.

HE.Enc(pk,m): We randomly sample a matrix S ← {0, 1}τ×γ and we compute

c = [m · g + xS]x0

which is a vector of dimension γ = �log x0�.
HE.Eval(pk, C, c1, . . . ct): Given t ciphertexts and a binary circuit C with t input
bits, compute all the operations in the circuit over the integers and output the
resulting integer modulo x0. For pairwise ciphertexts, we compute the operations
HE.Mult(c1, c2) and HE.Nand(c1, c2) in the following manner.

cmult = HE.Mult(c1, c2)

= [c1G−1(c2)]x0 . (4)

We similarly define the homomorphic nand operation.

cnand = HE.Nand(c1, c2)

= [g − c1G−1(c2)]x0 .

Furthermore, our scheme allows for addition gates, HE.Add, only in the case
when it is known that at most one of the plaintext messages is 1. In this case
we perform the addition, between two ciphertexts, in the following way

cadd = HE.Add(c1, c2)
= [c1 + c2]x0 .

HE.Dec(sk, c): We have that sk = p. Hence, as mentioned earlier, this procedure
simply computes f = c · g−1(p/2) (mod p) and outputs the following

m ←
{

1 if |f | ≥ p/4
0 if |f | < p/4

.

3.2 Correctness and Noise Analysis

In this section we prove the correctness of our scheme and at the same time make
a parallel analysis of the size of the noise component in the different relevant
algorithms. Finally we present the optimal parameters as a function of the circuit
depth.

Theorem 3.1. For a Boolean circuit, C, of depth d, for (sk, pk) ←
HE.Keygen(1λ) and c ← HE.Eval(C, c1, . . . , ct) such that ci = HE.Enc(pk,mi),
where mi ∈ {0, 1}. We have that

HE.Dec(sk, c) = C(m1, . . . ,mt).

Remark 3.1. We note that we did not present the most general description of
the boolean circuit to be evaluated. We mention a circuit of depth d, without
considering the different effect of nand and add gates. Our description assumes
only nand gates in the circuit. If we had a circuit with add gates, then its depth
could be larger since the add gates contribute less to the growth of the noise of
the ciphertext, as we will see below.

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 283

After the encryption procedure, HE.Enc, the resulting ciphertext is a vector
of dimension �log x0� = γ with each entry being an integer in [−x0/2, x0/2). We
now formally define the noise component of a ciphertext and analyze the size.

Definition 3.1 (Noise Component HE). For any ciphertext c, we define its
noise component to be rm,p(c) = [c − mg]p and define its size to be the norm
rm,p(c) = ‖rm,p(c)‖. Note that we consider rm,p(c) over Z and not over Zp.

In the following lemma we first give an upper bound on the size of the noise
of a fresh ciphertext and then an upper bound on the noise growth during the
evaluation function for the multiplication, nand and addition functions.

Lemma 3.1 (Noise Size). Let (pk, sk) ← HE.Keygen(1λ). Let c1, c2 be two
ciphertexts, respectively encrypting messages m1,m2 ∈ {0, 1}, we define

B = max{rm1,p(c1), rm2,p(c2)}.

The following holds

1. Given a fresh encryption c = HE.Enc(pk,m), the noise component, rm,p(c)
has norm rm,p(c) ≤ τ2ρ+1.

2. For cmult = HE.Mult(c1, c2) and cnand = HE.Nand(c1, c2), we have that
rmmult,p(cmult) = rmnand,p(cnand) ≤ (2γ + 1)B, where mmult = m1m2 and
mnand = 1 − m1m2.

3. For cadd = HE.Add(c1, c2), we have that rmadd,p(cadd) ≤ 2B + 2ρ+1, where
madd = m1 + m2.

Proof. 1. Let pk = (x0,x) = (r0 + q0 · p, r + q · p). Given

c = [mg + xS]x0

= mg + rS + qS · p + kx0

the noise component is rm,p(c) = rS + kr0, where k is the multiple of x0 =
r0 + q0 · p that is added after the mod x0 operation on the ciphertext. The
first term comes from the matrix operation with the public key vector, xS =
qSp+rS, and has size ‖rS‖ ≤ τ2ρ. The second term derives from the mod x0

operation on the ciphertext. Since the ciphertext cannot grow by more than
τ · x0 in each coordinate, then we have that ‖k‖ ≤ τ , such that ‖kr0‖ ≤ τ2ρ.
Thus the claim follows and rm,p(c) ≤ τ2ρ+1.

2. Let c1, c2, B and cmult be as in the statement of the lemma. Then we have

‖rmmult,p(cmult)‖ = ‖[cmult − mmultg]p‖
= ‖[[c1 · G−1(c2)]x0 − mmultg]p‖
= ‖[c1 · G−1(c2) + kmultx0 − mmultg]p‖
≤ ‖[c1 · G−1(c2) − mmultg]p‖ + ‖[kmultx0]p‖,

284 D. Benarroch et al.

where the last inequality comes from Eq. (1). Now ‖kmult‖ ≤ γ and [x0]p =
r0,1 hence

‖rmmult,p(cmult)‖ ≤ ‖[c1 · G−1(c2) − mmultg]p‖ + γ · 2ρ

≤ ‖[m1c2 + (c1 − m1g)G−1(c2) − mmultg]p‖ + γ · 2ρ

≤ ‖[m1m2g + m1(c2 − m2g) + (c1 − m1g)G−1(c2) − mmultg]p‖ + γ · 2ρ

≤ ‖m1[c2 − m2g]p‖ + ‖[c1 − m1g]p‖ · ‖G−1(c2)‖ + γ · 2ρ

≤ rm2,p(c2) + rm1,p(c1)γ + γ · 2ρ

≤ B + Bγ + γ · 2ρ

since mmult = m1m2 by definition. Since r0 ≤ 2ρ ≤ B, we get

rmmult,p(cmult) ≤ B + γB + γ2ρ

≤ (2γ + 1)B,

which is exactly what we need. Analogously, the nand operation causes the
same increase in the size of the noise. This proves the statement.

3. Let c1, c2, B and cadd be as in the statement of the lemma. Then we have

‖rmadd,p(cadd)‖ = ‖[cadd − maddg]p‖
= ‖[[c1 + c2]x0 − m1g − m2g]p‖
= ‖[c1 − m1g + c2 − m2g − kaddx0]p‖
≤ ‖[c1 − m1g]p‖ + ‖[c2 − m2g]p‖ + ‖[kaddx0]p‖
≤ ‖rm1,p(c1)‖ + ‖rm2,p(c2)‖ + ‖kaddr0‖
≤ rm1,p(c1) + rm2,p(c2) + 2ρ+1

since in this case ‖c1+c2‖ ≤ 2x0, thus ‖kadd‖ ≤ 2. This proves the statement.
��

Generalizing the statement in 2, let us assume that we want to compute a
circuit of depth d on ciphertexts whose noise components are bounded by B.
The output ciphertext, cd, an encryption of md, will have a noise component
with norm rmd,p(cd) ≤ (2γ + 1)dB. We now prove decryption correctness.

Lemma 3.2 (Correctness Homomorphic Decryption). For any vector c ∈
Z

γ
x0

and any m ∈ Z2, if rm,p(c) < p/(4γ) then HE.Dec(sk, c) = m.

1 In order to upper bound kmult we know that ‖c1 · G−1(c2)‖ ≤ ‖c1‖ · γ ≤ x0/2 · γ
since c1 ∈ [−x0/2, x0/2). Thus for each coordinate 1 ≤ i ≤ l of cmult we have that

−x0/2 ≤ [(c1 · G−1(c2))[i]]x0

= (c1 · G−1(c2))[i] − kmult[i]x0 ≤ x0/2 . (5)

Hence, on the one hand we have −x0/2 ≤ (c1 ·G−1(c2))[i] − kmult[i]x0, which gives
kmult[i] ≤ (γ +1)/2. On the other hand we have that (c1 ·G−1(c2))[i]−kmult[i]x0 ≤
x0/2, which gives (γ − 1)/2 < kmult[i]. Thus we conclude that ‖kmult‖ ≤ γ.

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 285

Proof. Assume that for a ciphertext c ∈ Z
γ
x0

we have rm,p(c) < p/(4γ), then
during decryption, we have that

f = c · g−1(p/2) (mod p)

= mgg−1(p/2) + rm,p(c)g−1(p/2)
≤ m(p/2) + γrm,p(c),

where by assumption γ‖rm,p(c)‖ < p/4. So by the decryption algorithm, if
|f | ≤ m(p/2) + γrm,p(c) < p/4 then it necessarily means that m = 0. Whereas
if instead |f | ≤ m(p/2) + γrm,p(c) and |f | > p/4 then it must be the case that
m = 1, or else γrm,p(c) > p/4. Hence in any case we get HE.Dec(sk, c) = m,
which implies decryption correctness. ��

As mentioned earlier, one of the most important features of homomorphic
operations is the size of the noise component, which must be somewhat con-
trolled and, in our scheme, must be at all times less than p/(4γ) in order for
the ciphertext to decrypt correctly. This can give us mathematically an upper
bound on the number of operations that we can perform, relative to some given
parameters. Indeed, we can show the relationship between η − ρ and the depth
of the evaluation circuit d. Given that our scheme is not initially fully homomor-
phic, but only leveled-homomorphic, we must be able to compute η − ρ given
the circuit depth, d. This is proved in the next lemma.

Lemma 3.3. Given a circuit of depth d and the parameters (τ, γ), correctness
of the HE scheme implies that the following inequality is satisfied.

η − ρ > (d + 1) log γ + log τ + O(1). (6)

Proof. Let us assume that the given circuit is of depth d, then in the worst-case
scenario, a single ciphertext will undergo at most d multiplications with co-factor
of the same noise level. Hence we know that if cd is the output of the circuit,
then ‖rmd,p(cd)‖ ≤ (2γ +1)dB by Lemma 3.1. We also know by Lemma 3.2 that
the following inequality must hold for decryption correctness

‖rmd,p(cd)‖ < p/(4γ) < 2η/(4γ)

and we can get a bound for η − ρ. More specifically we have that log B <
(η − 2) − d log(2γ + 1) − log γ. If we assume that B is the size of the noise
of the input ciphertexts, which are fresh out of the encryption procedure, then
B = τ2ρ+1 by Lemma 3.1 and

(η − 2) − d log(2γ + 1) − log γ > log B

⇒ (η − 2) − d log(2γ + 1) − log γ − log τ > ρ + 1
⇒ η − ρ > (d + 1) log γ + log τ + O(1)

as required. ��

286 D. Benarroch et al.

Remark 3.2. Note that if instead, we are given the parameters, {ρ, η, τ, γ}, one
can derive d, an upper bound for the depth of the circuit, by rearranging Eq. (6)
as follows

d <
(η − 2) − (ρ + 1) log τ

log(2γ + 1)
.

3.3 Parameters

We present the constraints on the parameters needed in order for the HE scheme
to be correct and secure against known attacks. Let d be the depth of the circuit
used to evaluate the data and let λ be the security parameter.

– ρ is the bit-length of the noise components ri’s of the public key elements xi’s;
ρ = ω(λ), to protect against brute-force attacks on the noise [8,13,16];

– η is the bit-length of the secret key p; η = Ω(ρ + (d + 1) log γ + log τ) in order
to have correctness of the evaluation circuit (Lemma 3.3);

– γ is the bit-length of the elements of the public key, the xi’s; γ ≥ Ω(λ
log λ (η −

ρ)2) and γ > η2, to thwart different lattice reduction attacks on the AGCD as
studied in [10,18] such as the orthogonal lattice attacks [26,30], the simultane-
ous Diophantine approximation attack [25,30] and the multivariate polynomial
approach in [12,22].

– τ is the number of xi’s in the public key; τ = γ + Ω(λ), which is derived from
the constraints given by the Leftover Hash Lemma in Sect. 2, needed in the
security proof below. We note that the constraint requires that 1/2

√
x0/2τ

be negligible, where γ = �log x0�.

3.4 Semantic Security

To prove the security of this scheme, we cannot use the same techniques as in
DGHV because the use of the gadget vector causes the message to be encrypted
in a higher bit, and thus the LSB predictor procedure used in [30] fails to output
the correct bit. For this reason, we reduce the security of this scheme to the
decisional AGCD problem instead. Hence, simply stated, we prove that our
scheme is CPA secure under the decisional AGCD assumption.

Theorem 3.2. The above HE scheme is CPA secure under the (ρ, η, γ)-
decisional AGCD assumption.

Proof. For pk = (params,x, x0) ← HE.Keygen(1λ) and cb = HE.Enc(pk, b),
where b ← {0, 1}, pk′ = (params,u, u0) where u0 ← ([0, 2γ) ∩ Z)(≥2γ−1) and
u ← U([0, u0) ∩ Z)τ , we prove that (pk, cb) and (pk′,v), where v ← Z

γ
u0

, are
computationally indistinguishable. In other words, for every polynomial time
algorithm A,

∣
∣Pr[A(1λ, pk, cb) = 1] − Pr[A(1λ, pk′,v) = 1]

∣
∣ = negl(λ). In order

to do this we will use a three step hybrid argument and use Lemmas 2.2 and 2.3,
for l = 1, to show indistinguishability between each hybrid. For simplicity we
use the notation in Lemma2.3, where we sample from the distributions Xτ =
(x0, x1, . . . , xτ) and Uτ = (u0, u1, . . . , uτ).

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 287

Hybrid 0: We define the distribution (pk, cb) in the following way, let pk =
(params,x, x0) ← HE.Keygen(1λ), such that (x0, x1, . . . , xτ) ← Xτ , and let cb =
HE.Enc(pk, b) = [bg + xS]x0 for b ← {0, 1}. In this case, (pk, cb) is distributed
exactly as in our HE scheme.

Hybrid 1: We define the distribution (pk, cb) as follows, let pk = (params,u, u0),
such that (u0, u1, . . . , uτ) ← Uτ , and let cb = HE.Enc(pk, b) = [bg + uS]u0 .
Now, by Lemma 2.3 we know that (pk, cb)H0 and (pk, cb)H1 are computationally
indistinguishable because Xτ and Uτ are indistinguishable by the lemma. Hence
we have

∣
∣
∣
∣Pr
H0

[A(1λ, pk, cb) = 1] − Pr
H1

[A(1λ, pk, cb) = 1]
∣
∣
∣
∣ ≤ negl(λ).

Hybrid 2: In this hybrid we define the distribution (pk, cb) as follows. Again,
let pk = (params,u, u0), where (u0, u1, . . . , uτ) ← Uτ , and let cb = [bg + v]u0 ,
where v ← Z

γ
u0

is completely random. By the LHL in Lemma 2.2, the statistical
distance between (u0,u,uS) and (u0,u,v) is upper bounded by 1

2

√
u0/2τ =

negl(λ). Finally, we know that cb ≡ v, hence the probability of success for A in
this hybrid is exactly 1/2 since v is completely random. So we have that

∣
∣
∣
∣Pr
H1

[A(1λ, pk, cb) = 1] − Pr
H2

[A(1λ, pk, cb) = 1]
∣
∣
∣
∣ ≤ 1

2

√
u0/2τ .

Thus we conclude that
∣
∣
∣
∣Pr
H0

[A(1λ, pk, cb) = 1] − Pr
H2

[A(1λ, pk,v) = 1]
∣
∣
∣
∣

≤ negl(λ) +
1
2

√
u0/2τ

= negl(λ)

as desired. ��

4 Batch Generalization Construction

In this section we present a batched version of our scheme, called BHE, which
uses the CRT representation to encrypt several messages at a time.

4.1 Overview

In this section we generalize our construction to allow for encryption of several
messages at the same time. Given the messages m = (m1, . . . ,ml) where mi ∈
{0, 1} we want to pack these l ∈ Z messages into a single ciphertext. For this

288 D. Benarroch et al.

we will use the Chinese Remainder Theorem (CRT). It follows from the CRT
and from modular arithmetic that homomorphic multiplication, i.e. mult, and
hence the nand operation, will apply in parallel and component-wise. Let us
look at the general idea first. We sample l primes of η-bit length p1, . . . , pl and
define π =

∏l
i=1 pi. Given x0 ∈ Z ∩ [0, 2Γ) from the public key, the ciphertext

has the following structure:

c = [mg + r + qπ]x0

where we have that m = CRTp1,...,pl
(m1, . . . ,ml) for r = (r0, . . . , rn) such that

ri = CRTp1,...,pl
(ri,1, . . . , ri,l) for ri,j ← Z∩ (−2ρ, 2ρ) and finally q = (q1, . . . , qn)

such that qi ← Z ∩ [0, 2Γ /π).
This packing method still allows for homomorphic multiplication, in the same

way as for the single message construction,

c3 = BHE.Mult(c1, c2)

= [c1G−1(c2)]x0 .

Finally, decryption happens in a very similar way, we compute fi =
cg−1(pi/2) mod pi for all 1 ≤ i ≤ l. Then for each fi if |fi| ≥ pi/4 output
mi = 1, otherwise mi = 0.

4.2 The Batch Construction

BHE.Keygen(1λ): We first generate the parameters params = {Γ, ρ, η, τ, l}
according to the security parameter λ and correctness as explained in Sect. 4.4
below. Then we sample l η-bit primes p1, . . . , pl and let π =

∏l
i=1 pi. We define

πi = π
pi

and we let yi = CRTp1,...,pl
(0, . . . , 1, . . . , 0) = πi(π−1

i mod pi) mod π
where only the i-th coordinate is non-zero. We will post encryptions of the yi as
a part of the public key so as to allow public encryption.

We sample (x0, x1, . . . , xτ) ← Xτ , where Xτ is as defined in Lemma 2.3.
We denote x = (x1, . . . , xτ), r = (r1, . . . , rτ) and q = (q1, . . . , qτ). Thus by

sampling l matrices Wi ← {0, 1}τ×(Γ+1), the ciphertexts of the yi’s look like

yi = [yig + xWi]x0

= [yig + ri + qiπ]x0 (7)

where ri = rWi and qi = qWi. We set Y = (y1 . . .yl). The public key is
defined as pk = (params, x0,x,Y) and the secret key as sk = (p1, . . . , pl).

BHE.Enc(pk,m1, . . . ,ml): For mi ∈ {0, 1}, sample a matrix S ← {0, 1}τ×Γ . Then
we encrypt the messages m = (m1, . . . ,ml) as follows:

c = [mY + xS]x0 .

BHE.Eval(pk, C, c1, . . . ct): For any boolean circuit C we can homomorphically
compute the operations BHE.Mult and BHE.Nand in an almost identical manner
as in the non batch version. The former is computed as follows

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 289

cmult = BHE.Mult(c1, c2)

= [c1G−1(c2)]x0

and the latter as

cnand = BHE.Nand(c1, c2)

= [g − c1G−1(c2)]x0 .

BHE.Dec(sk, c): Given c we simply compute for each i = 1, . . . , l, fi = c ·
g−1(pi/2) mod pi. So for each fi if |fi| ≥ p/4 then mi = 1, otherwise mi = 0.

4.3 Correctness and Noise Analysis

The goal of this section is again to prove the correctness of our scheme.

Theorem 4.1. For a Boolean circuit of depth d, C, for (sk, pk) ←
BHE.Keygen(1λ) and c ← BHE.Eval(C, c1, . . . , ct) such that ci = BHE.Enc
(pk,mi), where mi ∈ {0, 1}l. We have that

BHE.Dec(sk, c) = C(m1, . . . ,mt).

Remark 3.1 also applies in this case.
We want to make an analysis of the noise components similar to the one in

Sect. 3.2. We will start by defining the noise component of the ciphertext for
the batched version of the scheme and then we will prove decryption correctness
and show how the size behaves in this batch version of the scheme. We first note
that after encryption, BHE.Enc(pk,m), the resulting ciphertext c is a vector of
dimension �log x0� = Γ with each entry being an integer in [−x0/2, x0/2).

Definition 4.1 (Batch Noise Component). For any ciphertext c, we define
its noise components to be rm,pi

(c) = [c−mg]pi
for any i = 1, . . . , l. Therefore its

size is the norm rm,pi
(c) = ‖rm,pi

(c)‖. Here m = CRTp1,...,pl
(m1, . . . ,ml). We

will further define the overall noise component of a ciphertext c to be rm,π(c) =
max
0≤i≤l

rm,pi
(c). We consider rm,pi

(c) over Z and not over Zpi
.

Lemma 4.1. Given a vector m ∈ {0, 1}l and a public key pk = (params,
x,Y, x0), the ciphertext is of the form c = BHE.Enc(pk,m) = [CRTp1,...,pl

(m1g + r1, . . . ,mlg + rl) + q · π]x0 .

Proof. The encryption procedure computes

BHE.Enc(pk,m) = [mY + xS]x0

= [
l∑

i=1

(miyig + mirWi + miqWiπ) + xS]x0

= [CRTp1,...,pl
(m1g, . . . , mlg)+

l∑

i=1

(mirWi+miqWi · π)+xS]x0 ,

290 D. Benarroch et al.

where the last steps is obtained by the linear nature of the CRT representation,
which allows for scalar multiplications and point-wise additions. Since x = r +
q · π, we have that for each pi

l∑

i=1

(mirWi) +
l∑

i=1

(miqWi · π) + rS + qS · π

=
l∑

i=1

mi

τ∑

j=1

rj · wj,i +
τ∑

j=1

rj · sj (mod pi)

= r̂i

where x = rj (mod pi) are vectors whose coordinates are in Φρ(p1, . . . , pl), as in
Eq. (3). So by combining the two we get that c = mig + r̂i (mod pi) and hence

c = BHE.Enc(pk,m) = [CRTp1,...,pl
(m1g + r1, . . . ,mlg + rl) + q · π]x0 (8)

as required. ��
In the following lemma we first give an upper bound on the size of the noise

of a fresh ciphertext in the batch scheme and then an upper bound on the noise
growth during the evaluation function for the multiplication, nand and addition
functions.

Lemma 4.2 (Batch Noise Size). Let (pk, sk) ← BHE.Keygen(1λ). For any
two ciphertexts c1, c2 ∈ Z

Γ
x0

, encrypting messages m1,m2 ∈ {0, 1}l, we define
B = max{rm1,π(c1), rm2,π(c2)}. The following holds

1. Given a fresh encryption c = BHE.Enc(pk,m), the noise component, rm,π(c)
has norm rm,π(c) ≤ (l + 2)τ2ρ.

2. For cmult = BHE.Mult(c1, c2) and cnand = BHE.Nand(c1, c2), we have that
rmmult,π(cmult) = rmnand,π(cnand) ≤ (2Γ + 1)B, where mmult = m1m2 and
mnand = 1 − m1m2.

3. For cadd = BHE.Add(c1, c2), we have that rmadd,π(cadd) ≤ 2B + 2ρ+1, where
madd = m1 + m2.

Proof. 1. Let pk = (x0,x) = (r0 + q0 · π, r + q · π). From Eq. (8) we know that

c = [mg + r̂ + q̂ · π]x0

= mg + r̂ + q̂ · π + kx0

where r̂ =
∑l

i=1(mirWi) + rS and q̂ =
∑l

i=1(miqWi) + qS. Thus the
noise component is rm,π(c) = (

∑l
i=1 mirWi) + rS + r0k, where k is the

multiple of x0 that is added after the mod x0 operation on the ciphertext.
As we have seen in Lemma 4.1 the first term, (

∑l
i=1 mirWi), comes from the

matrix operation mY such that ‖∑l
i=1 mirWi‖ ≤ lτ2ρ; the second term of

the noise above comes from the matrix operation with the public key vector,
xS = qSp + rS, with size ‖rS‖ ≤ τ2ρ. Finally, the last term derives from

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 291

the mod x0 operation on the ciphertext. We have that ‖k‖ ≤ τ , such that
‖r0k‖ ≤ τ2ρ. The claim follows since

rm,π(c) ≤ lτ2ρ + τ2ρ + τ2ρ = (l + 2)τ2ρ (9)

as required.
2. Let c1, c2, B and cmult be as in the statement of the lemma. Then we have

‖rmmult,π(cmult)‖ =
l

max
i=1

(‖[cmult − mmultg]pi
‖)

=
l

max
i=1

(‖[[c1G−1(c2)]x0 − mmultg]pi
‖)

=
l

max
i=1

(‖[c1G−1(c2) + kmultx0 − mmultg]pi
‖)

=
l

max
i=1

(‖[m1c2 + (c1 − m1g)G−1(c2) + kmultx0 − mmultg]pi
‖)

=
l

max
i=1

(‖[m1m2g + m1(c2 − m2g) + (c1 − m1g)G−1(c2)

+ kmultx0 − mmultg]pi
‖)

≤ l
max
i=1

(‖m1,i[c2 − m2g]pi
‖ + ‖[c1 − m1g]pi

‖ · Γ + ‖[kmultx0]pi
‖)

≤ l
max
i=1

(rm2,pi
(c2) + rm1,pi

(c1) · Γ + ‖kmultr0,i‖)

≤ rm2,π(c2) + rm1,π(c1) · Γ + ‖kmult2ρ‖
≤ B + BΓ + ‖kmult‖2ρ,

where mj,i is the i-th coordinate of mj and r0,i = [r0]p ≤ 2ρ such that
x0 = r0 + q0 · π and r0 ← Φρ(p1, . . . , pl). In order to upper bound ‖kmult‖ we
use a method analogous to the one in Lemma 3.1 as described with Eq. (5) to
conclude that ‖kmult‖ ≤ Γ . Hence we get that

rmmult,π(cmult) ≤ B + ΓB + Γ2ρ

≤ (2Γ + 1)B,

which is exactly what we need. Analogously, the nand operation causes the
same increase in the size of the noise. This proves the statement.

3. Let c1, c2, B and cadd be as in the statement of the lemma. Then we have

‖rmadd,π(cadd)‖ =
l

max
i=1

(‖[cadd − maddg]pi
‖

=
l

max
i=1

(‖[c1 − m1g + c2 − m2g + kaddx0]pi
‖)

≤ l
max
i=1

(‖[c1 − m1g]pi
‖ + ‖[c2 − m2g]pi

‖ + ‖[kaddx0]pi
‖)

≤ l
max
i=1

(‖rm1,pi
(c1)‖ + ‖rm2,pi

(c2)‖ + ‖kmultr0,i‖)

≤ rm1,π(c1) + rm2,π(c2) + 2ρ+1

292 D. Benarroch et al.

since we have that ‖c1 + c2‖ ≤ 2x0, thus ‖kadd‖ ≤ 2. As before we have that
r0,i = [r0]p ≤ 2ρ such that x0 = r0 + q0 · π and r0 ← Φρ(p1, . . . , pl). This
proves the statement. ��
Generalizing the statement in 2, let us assume that we want to compute a

circuit of depth d on ciphertexts whose noise components are bounded by B.
The output ciphertext, cd, an encryption of md, will have a noise component
with norm rmd,π(cd) ≤ (2Γ + 1)dB. We now prove decryption correctness.

Lemma 4.3 (Correctness Homomorphic Decryption BHE). For any vec-
tor c ∈ Z

Γ
x0

encrypting some messages m1, . . . ,ml ∈ Z2 under our scheme, such
that m = CRTp1,...,pl

(m1, . . . ,ml), we have that if rm,pi
(c) < pi/(4Γ) for all

i = 1, . . . , l then HE.Dec(c) = (m1, . . . ,ml).

Proof. Assume that for a ciphertext c ∈ Z
Γ
x0

we have rm,pi
(c) < p/(4Γ), then

during decryption, we have that

fi = c · g−1(pi/2) (mod pi)

= mgg−1(pi/2) + rm,π(c)g−1(pi/2) (mod pi)
≤ mi(pi/2) + Γrm,pi

(c)

where by assumption Γ‖rm,pi
(c)‖ < pi/4 for all 1 ≤ i ≤ l. So by the decryp-

tion algorithm, if |fi| ≤ mi(pi/2) + Γrm,pi
(c) < pi/4 then it necessarily means

that mi = 0. Whereas if instead |fi| ≤ mi(pi/2) + Γrm,pi
(c) and |f | > pi/4

then it must be the case that mi = 1, or else Γrm,pi
(c) > pi/4. Hence in

any case we get that BHE.Dec(sk, c) = (m1, . . . ,ml), which implies decryption
correctness. ��

4.4 Parameters

Our BHE scheme uses the same parameters as the HE scheme except for

Γ is the bit-length of the elements of the public key, the xi’s, we change the
symbol for convenience;

l is both the number of messages in the batch and the number of primes in the
secret key;

In the batched version of the decomposed scheme, some of the parameters
differ since we are now including several primes in the secret key. The following
are the constraints on the parameters needed in order for the BHE scheme to be
correct and secure against known attacks. Let d be the depth of the circuit used
to evaluate the data.

– ρ = ω(λ), to protect against brute-force attacks on the noise [8,13,16];
– η = Ω(ρ + (d + 1) log Γ + log τ + log l) in order to have correctness of the

evaluation circuit (Lemma 4.2);
– Γ ≥ Ω(λ

log λ (η − ρ)2) and Γ > η2, to thwart different lattice reduction attacks
on the AGCD as studied in [10,12,18,22,25,26,30].

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 293

– τ = Γ + Ω(λ), which is derived from the constraints given by the Leftover
Hash Lemma in Sect. 2, needed in the security proof in Sect. 4.5.

Remark 4.1. The previous constraints are similar to those of Sect. 3.3 (with η
depending additionally on log l) and comes from the fact that there is no known
attack on the (ρ, η, Γ)-l-AGCD (Definition 2.5) that exploits the CRT struc-
ture [18, Sect. 2.1]: the best known attack is to attack the AGCD on a single
prime p ∈ {p1, . . . , pl}. Thus, Γ has to be set larger than η2. Informally, this
shows that for the same parameters (Γ, η) as in Sect. 3, one can encrypt close
to l = η bits without increasing the ciphertext size while still maintaining cor-
rectness. (Note that the public key contains l additional ciphertexts compared
to the scheme of Sect. 3.)

4.5 Security

In this section we would like to prove, similar to the non-batched version of the
scheme, the semantic security. Unfortunately, the assumption in Definition 2.5 is
not enough to ensure the security of the batched version of the scheme as it does
not assure security when an encryption of key dependent messages is published,
needed to compute the CRT representation of a batch of messages during the
encryption procedure.

One way to go is to assume that even in spite of the new elements in the
public key, the vector x is still indistinguishable from uniform. This would allow
us to apply the same proof strategy as in the previous section. However, to
increase our confidence in the validity of this assumption, we show that one can
view it as assuming circular security for a different auxiliary scheme, one that we
can actually prove secure under Definition 2.5. Furthermore, since our auxiliary
scheme is only used in the proof of security, we do not even require that it is
properly decryptable, only that it is CPA secure (we proved correctness for our
actual scheme).

In what follows we introduce our auxiliary encoding scheme, AHE, which
encrypts large messages, instead of the CRT representation of a batch of bits.
We show that this scheme can be extended to the BHE. We prove that AHE is
secure under the decisional batch AGCD assumption (Definition 2.5) and finally
show that by adding the circular security assumption to AHE, we can make the
BHE scheme secure.

Auxiliary HE Scheme. As explained above, we only require key generation
and encryption for this scheme.

AHE.Keygen(1λ): We first generate the parameters params = {Γ, ρ, η, τ, l, k}
according to the security parameter λ and correctness. Then we sample l
η-bit primes p1, . . . , pl and we define π =

∏l
i=1 pi, as above. After this,

using the distribution in Definition 2.4 and rejection sampling, we first sam-
ple an integer x0 ← (Xρ,Γ (p1, . . . , pl))(≥2Γ −1) and then τ integers {xi}1≤i≤τ ←
(Xρ,Γ (p1, . . . , pl))(≤x0), such that (x0, x1, . . . , xτ) ← Xτ , as in Lemma 2.3. We

294 D. Benarroch et al.

write x = (x1, . . . , xτ), r = (r1, . . . , rτ) and q = (q1, . . . , qτ). We let the message
space be Zk for some k ≤ π, the public key pk = (params, x0,x) and the secret
key sk = (p1, . . . , pl).

AHE.Enc(pk,m): For a message m ∈ Zk, we sample a matrix S ← {0, 1}τ×Γ and
we compute

c = [mg + xS]x0 (10)

where again, c is a vector of dimension Γ = �log x0�.
Remark 4.2. Given a message m ∈ Zπ, the ciphertext generated by the AHE.Enc
is decryptable in a similar way to BHE, where the secret key is the prime factor-
ization of π. This only works in the case that m = CRTp1,...,pl

(m1, . . . ,ml).

Security of AHE. We start by proving a lemma that will be useful in proving
both of the next two theorems. Simply said we prove that the structure xS
mod x0, where x are AGCD samples, is computationally indistinguishable from
uniform. This will help us avoid redundancy in the proofs of security of AHE
and BHE since this structure is present in both of the encryption algorithms.

Lemma 4.4. Let (x0, x1, . . . , xτ) ← Xτ and (u0, u1, . . . , uτ) ← Uτ as in
Lemma 2.3, where x = (x1, . . . , xτ) and u = (u1, . . . , uτ). Then for v ← Z

Γ
u0

and S ← {0, 1}τ×Γ , the distribution (x, x0, [xS]x0) is computationally indistin-
guishable from the distribution (u, u0,v).

Proof. For convenience we write pk = (x, x0) and pk′ = (u, u0). On the one
hand, we know by Lemma 2.3 that pk and pk′ are indistinguishable, so it follows
that (pk, [xS]x0) is indistinguishable from (pk′, [uS]u0) where S ← {0, 1}τ×Γ .
On the other hand, we have by the LHL from Lemma2.2 that the statistical
distance between (pk′, [uS]u0) and (pk′,v) for v ← Z

Γ
u0

is upper bounded by
1
2

√
u0/2τ = negl(λ). Hence by transitivity, (pk, [xS]x0) is indistinguishable from

(pk′,v) for v ← Z
Γ
u0

.
In other words, for every polynomial time algorithm A, we have that

∣
∣Pr[A(1λ,x, x0, [xS]x0) = 1] − Pr[A(1λ,u, u0,v) = 1]

∣
∣ ≤ negl(λ).

��
Theorem 4.2. The above AHE scheme is CPA secure under the (ρ, η, Γ) − l-
decisional AGCD assumption.

Proof. For pk = (params,x, x0) ← AHE.Keygen(1λ) and c = AHE.Enc(pk, b),
where b ∈ Zk is chosen by the adversary, pk′ = (params,u, u0), as in Lemma 4.4,
we prove that (pk, c) and (pk′,v), where v ← Z

Γ
u0

, are computationally indis-
tinguishable.

In order to do this we will use a two step hybrid argument and use Lemma4.4
to show indistinguishability between the hybrids. Each hybrid is an interactive
exchange between a challenger, C, and a polynomial time adversary, A.

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 295

Hybrid 0: The adversary, A, gets pkH0 = pk from the challenger and then chooses
a message b ∈ Zk, which he sends back to the challenger. In turn, C computes
c = AHE.Enc(pk, b) = [bg + xS]x0 , which is then sent to the adversary. In this
case, (pk, c) is distributed exactly as in the AHE scheme.

Hybrid 1: The adversary, A, gets pkH1 = pk′ from the challenger and then
chooses a message b ∈ Zk, which he sends back to the challenger. In turn, C com-
putes c = [bg+v]u0 , which is then sent to the adversary. Now, by Lemma 4.4 we
know that (pk, c)H0 and (pk, c)H1 are computationally indistinguishable because
(pk, [xS]x0) is indistinguishable from (pk′, [uS]u0). Finally, we know that c ≡ v,
hence the probability of success for A in this hybrid is exactly 1/2 since v is
completely random.

In other words, for every polynomial time algorithm A,
∣
∣Pr[A(1λ, pk, c) = 1] − Pr[A(1λ, pk′,v) = 1]

∣
∣ = negl(λ).

��
Security of BHE. As mentioned earlier, in order to prove security of BHE
we must prove first that it is an extension of the AHE scheme under specific
conditions, mainly we have the following definition.

Definition 4.2. Let E(ME , CE) be a public encoding scheme with message space
ME and ciphertext space CE . We say that E ′(ME′ , CE′) is an extension by
ciphertext of E if for some integer n there exists c1, . . . , cn and function f :
Cn

E × ME′ ← CE′ such that for all m ∈ ME′ , E ′.Enc(pkE′ ,m) = f(c1, . . . , cn,m).
Furthermore, E ′ is a public encryption scheme if decryption is correct.

Lemma 4.5. The BHE public encryption scheme is an extension by ciphertext
of the AHE scheme.

Proof. Let (pk, sk) ← AHE and let f : (ZΓ
x0

)l × {0, 1}l ← Z
Γ
x0

be the function

f(c1, . . . , cl,m) = [mC + xS]x0

where S ← {0, 1}τ×Γ and C = (c1 . . . cl). Now in order to obtain exactly the
BHE scheme we must specify the ciphertexts used, which in this case are ci =
AHE.Enc(pk, yi) where yi = CRTp1,...,pl

(0, . . . , 0, 1, 0, . . . , 0) = πi(π−1
i mod pi).

This can be done as long as the AHE encryptions are done privately in the key
generation process and we let pkBHE = (pk,C) for C = (c1 . . . cl) and we let
skBHE = sk. Correctness of BHE follows by the previous section. ��

We now connect the circular security of AHE with the CPA security of BHE
secure. We start by defining the flavor of circular security we require. Note that
this definition applies to encoding schemes (that do not have decryption) and
not just to encryption schemes.

296 D. Benarroch et al.

Definition 4.3. A public key encoding scheme (Keygen,Enc) is weakly circular
secure, if for any polynomial sequence of functions fi from the secret key space to
the message space, it holds that (pk, {Encpk(fi(sk))}i) is computationally indis-
tinguishable from (pk, {Encpk(0)}i).

The security of BHE follows by applying the circularity of AHE to account
for the key dependent information in Y and then applying the standard security
argument. Hence we show that

Theorem 4.3. If AHE is circular secure and the (ρ, η, Γ)−l−AGCD assumption
holds, then BHE is CPA secure.

Proof. Let us assume that AHE is circular secure, where we write S for the secret
key space and M for the message space. We then let the sequence of functions,
fi : S → M, be the following

fi(p1, . . . , pl) = CRTp1,...,pl
(0, . . . , 1, . . . , 0).

We prove that for all polynomial time adversaries B, the probability of distin-
guishing in the BHE scheme between an encryption of any message in {0, 1}l,
c1, and a uniform vector is negl(λ).

We proceed to prove this by using a hybrid argument. In each of the hybrids,
some form of a CPA game is played between a challenger A and an adversary
B. Let (pk, sk) ← AHE.Keygen(1λ) and let cb be the BHE ciphertext that B
receives during the game after choosing the message mb ∈ {0, 1}l. We have that
pk = (params,x, x0) where (x, x0) = (x0, . . . , xτ) ← Xτ and we let (u, u0) =
(u0, u1, . . . , uτ) ← Uτ as in Lemma 2.3.

Hybrid 0: In this Hybrid, the challenger A generates AHE encryptions of func-
tions of the secret key, ci = AHE.Enc(pk,mi), where mi = fi(p1, . . . , pl). Then A
generates the BHE public key pk′ = (pk,Y), where Y = (c1 . . . cl) and sends pk′

to B. By Lemma 4.5, we have that pk′ is distributed exactly as the public key
in BHE.Keygen. The BHE-CPA game is then played and B has some probability
of success.

Hybrid 1: In this Hybrid, the challenger A generates AHE encryptions of zero,
ci = AHE.Enc(pk,mi), where mi = 0. Then A generates the public key pk′ =
(pk,Y), where Y = (c1 . . . cl) and sends pk′ to B. The BHE-CPA game is then
played and we claim that the probability of success for B is negligibly close to
the probability of success for B in Hybrid 0. Otherwise it would imply that B can
distinguish the AHE encryptions of key dependent messages from encryptions of
zero, contradicting the circular security assumption. Thus we have that

∣
∣
∣
∣Pr
H0

[B(1λ, pk′, cb) = 1] − Pr
H1

[B(1λ, pk′, cb) = 1]
∣
∣
∣
∣ = negl(λ).

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 297

Hybrid 2: In this Hybrid, the challenger A generates AHE encryptions of zero,
ci = AHE.Enc(pk,mi), where mi = 0. Then A generates the public key pk′ =
(params,u, u0,Y), where Y = (c1 . . . cl) and sends pk′ to B. Here A does not
send B some encryption of a message or of zero, like in the CPA game, instead
it sends the vector cb = [mbY + v]u0 where v ← Z

Γ
u0

. By Lemma 4.4 we know
that (pk′, cb)H1 is indistinguishable from (pk′, cb)H2 , which implies that B has
probability of success that is negligibly close to that of Hybrid 1, hence

∣
∣
∣
∣Pr
H1

[B(1λ, pk′, cb) = 1] − Pr
H2

[B(1λ, pk′, cb) = 1]
∣
∣
∣
∣ = negl(λ).

Furthermore, we know that cb ≡ v and since v is completely random, the prob-
ability of success of B is exactly 1/2. Thus, by transitivity, we have that

∣
∣
∣
∣Pr
H0

[B(1λ, pk′, cb) = 1] − Pr
H2

[B(1λ, pk′,v) = 1]
∣
∣
∣
∣ = negl(λ).

Hence we have showed that if the AHE scheme is circular secure, then there
does not exist an adversary that has non-negligible advantage in a CPA game
in the BHE scheme. ��

5 Towards Practicality

In this section, we suggest some optimizations to improve the asymptotic and
concrete parameters of our schemes, and discuss the obstacles towards efficient
implementation thereof (some benchmarks are provided in the full version of
this paper). Overcoming these limitations and obtaining a scheme as efficient as
the lattice-based variants [11,17,23] remains a challenging open problem. In this
section, for simplicity we focus on the scheme of Sect. 3 (our optimizations are
easily generalizable to the batch variant of Sect. 4).

5.1 Reducing the Public-Key Size

To satisfy the constraints on the parameters of Sect. 3 for a depth-d circuit, we
can take

ρ = 2λ, η = Õ(λ + d), γ = Õ(λ2 + d2) and τ = Õ(λ2 + d2).

This gives a public key of size Õ(λ6 + d6). To reduce the size of the public key,
we can use the technique suggested in [15] to use a subset-sum with words rather
than bits. In particular, to encrypt a message m ∈ {0, 1} as in Eq. (3), we sample
a random matrix S ∈ [0, β)τ×γ instead of a binary matrix. We have the following
corollary of Lemma 2.1.

Corollary 5.1. Let β ≥ 2. Set x = (x1, . . . , xm) ← Z
m
M uniformly and indepen-

dently, set S ← [0, β)m×n for some n; and let y = x · S (mod M). Then (x,y)
is 1/2

√
M/2log2 β·m-uniform over Z

m+n
M .

298 D. Benarroch et al.

Proof. Let us consider the hash function family H from [0, 2β)m to Z
n
M . Each

member h ∈ H is parametrized by the element (x1, . . . , xm) ∈ Z
m
M . Given S ∈

[0, β)m×n, we define h(S) = x · S. The family H is a 2-universal family of hash
functions, and by Lemma 2.1 we get the desired result. ��

In the proof of security (case 2) instead of concluding that the statistical
distance between (x,xS) and (x,u) where u ← U([0, 2γ)) ∩ Z is bounded by
1
2

√
x0/2τ , we get that it is bounded by 1

2

√
x0/2log2 β·τ . Also in Lemma 3.1, the

noise of a fresh encryption c of m now has norm

rm,p(c) ≤ τβ · 2ρ+1.

Eventually, this gives the following new parameter constraints:

log β · τ ≥ γ + O(λ), η − ρ > (d + 1) log γ + log τ + log β + O(1),

and by taking log β = Õ(λ + d), we reduce the public key size to Õ(λ5 + d5).

5.2 Evaluating Partial Gates

Let us recall that the decryption procedure first computes

f = c · g−1(p/2) (mod p),

and outputs m = 1 if |f | ≥ p/4 and m = 0 otherwise. Now, since p/2 ≤ 2η−1,
we have that

g−1(p/2) = (P0, P1, . . . , Pη−1, 0, . . . , 0),

where P0, . . . , Pη−1 ∈ {0, 1}. In particular, this shows that only the first η coeffi-
cients of c are useful during the decryption procedure (the other coefficients
are required for correctness when homomorphically processing themult and
nand gates; see Sect. 3.2). Therefore, when evaluating a circuit, one can only
compute the η first coefficients of the outputs of the last mult and nand gates,
and all the subsequent homomorphic additions; this reduces the computation
cost by a multiplicative factor ≈ γ/η.

5.3 Trade-Off on the Multiplication Complexity and the Ciphertext
Size

Recall that the homomorphic multiplication (Eq. (4)) of two ciphertexts c1 and
c2 is given by:

cmult = c1 · G−1(c2) mod x0.

In particular, computing cmult requires to compute γ times (for each coefficient)
about γ/2 modular additions of γ-bit numbers, i.e. a computational complexity
of O(γ2 log(γ)).

Now, assume that instead of using the gadget g = (1, 2, . . . , 2γ), we use the
gadget

gω = (1, ω, . . . , ωγ′
ω),

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 299

where ω ≥ 2 and γ′
ω = �γ′/ log2 ω� assuming that we now work with γ′-bit

integers; i.e. we perform a word decomposition instead of a bit decomposition
(taking γ′ ≥ γ to get the same homomorphic functionality). Then, computing
cmult requires to compute γ′

ω times (for each coefficient) γ′
ω modular multipli-

cations between an element of Zγ′ and of Zω; i.e. an approximate complexity of
O(γ′2

ω log(γ′) log(ω)) (via a schoolbook multiplication).
Now, if one works with ω ≥ 2, the noise bounds have to be revisited. In

particular, for any two ciphertexts c1, c2, where B = max{rm1,p(c1), rm2,p(c2)},
then

rmmult,p(cmult) = rmnand,p(cnand) ≤ (2γ′
ωω + 1)B,

and the decryption condition of a ciphertext c of a message m becomes

rm,p(c) < p/(4γ′
ωω).

We have the following new parameter constraint:

η − ρ > (d + 1)(log γ′
ω + log ω) + log τ + log β + O(1).

By taking log ω = Õ(λ), we obtain the same asymptotic complexities a before,
but concrete complexities will differ. We will see in Sect. 5.4 how this trade-off
(increasing ω also increases γ′) impacts concrete parameters.

5.4 Limitations

In order to choose concrete parameters, we use the analyses of the concrete
attacks against the AGCD problem from [8,10,15,16,18,30]. In particular, we
deduce from [8,16] that ρ should be conservatively set to 2λ, and from [10,18]
that the best lattice attacks require to work in dimension t ≥ (γ − ρ)/(η − ρ).

In [10], the AGCD based scheme is also a leveled homomorphic encryption
scheme and its parameters can be set significantly smaller than previous works [9,
14–16]: indeed, η − ρ can be selected to be small, and so can γ as long as (say)
800 ≥ (γ − ρ)/(η − ρ). In the regular scheme of Sect. 3, we also have that η − ρ
is small, and hence that γ can be small. Unfortunately, our ciphertexts are γ
time larger than the ciphertexts in [9], and the complexity of the homomorphic
multiplication is at least quadratic in γ. In practice, for (say) λ = 80, ρ = 160 and
η = 172 (which would only allow for one homomorphic multiplication), then γ ≈
12000, and the homomorphic multiplication would consist of about 109 modular
additions, which takes several seconds on a modern CPU. Using the optimization
of Sect. 5.3, one can reduce the homomorphic multiplication complexity at first;
e.g. when ω = 232 and γ ≈ 75000, performing an homomorphic multiplication
costs now 0.43 · 109 schoolbook modular multiplications between 32-bit words
and 75000-bit integers (which still takes several seconds on a modern CPU).
Unfortunately, as the gap between η and ρ widens, γ has to be significantly
increased so that the AGCD problem remains hard. As ω increases, the number
of unit operations increases again, and the unit operations becomes more and

300 D. Benarroch et al.

more costly (namely, modular multiplication between log ω-bit integers and γ-
bit integers). It follows from our experiments that the size of the ciphertext is a
bottleneck to make our schemes practical; a back of the hand computation shows
that they are about two order of magnitude slower than their competitors [11,23].
We leave as a challenging open problem to improve the efficiency of this scheme.
Note however that our batch variant can encrypt up to γ/η plaintexts in parallel
for roughly the same computational cost (cf. Remark 4.1), which decreases the
computational cost per bit of plaintext.

References

1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 17

2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 50

3. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 1

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106. IEEE Computer Society (2011). Full ver-
sion in https://eprint.iacr.org/2011/344.pdf

6. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

7. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS,
pp. 1–12. ACM (2014)

8. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divi-
sors: breaking fully-homomorphic-encryption challenges over the integers. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
502–519. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 30

9. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M.,
Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 20

10. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–
536. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 20

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53887-6 1

12. Cohn, H., Heninger, N.: Approximate common divisors via lattices. The Open
Book Series, vol. 1, no. 1, pp. 271–293 (2013)

http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-36362-7_1
https://eprint.iacr.org/2011/344.pdf
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-29011-4_30
http://dx.doi.org/10.1007/978-3-642-38348-9_20
http://dx.doi.org/10.1007/978-3-662-46800-5_20
http://dx.doi.org/10.1007/978-3-662-53887-6_1

FHE-OI: Decomposed and Batched in the Post-Quantum Regime 301

13. Coron, J.-S., Lepoint, T., Tibouchi, M.: Batch fully homomorphic encryption over
the integers. IACR Cryptology ePrint Archive, 2013:36 (2013)

14. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 18

15. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 28

16. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 27

17. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 24

18. Galbraith, S.D., Gebregiyorgis, S.W., Murphy, S.: Algorithms for the approximate
common divisor problem. IACR Cryptology ePrint Archive, 2016:215 (2016)

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178. ACM (2009)

20. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learn-
ing with errors: conceptually-simpler, asymptotically-faster, attribute-based. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

21. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

22. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001). doi:10.
1007/3-540-44670-2 6

23. Alhassan Khedr, P., Gulak, G., Vaikuntanathan, V.: SHIELD: scalable homomor-
phic implementation of encrypted data-classifiers. IEEE Trans. Comput. 65(9),
2848–2858 (2016)

24. Kim, J., Lee, M.S., Yun, A., Cheon, J.H.: CRT-based fully homomorphic encryption
over the integers. IACR Cryptology ePrint Archive, 2013:57 (2013)

25. Lagarias, J.C.: The computational complexity of simultaneous diophantine approx-
imation problems. SIAM J. Comput. 14(1), 196–209 (1985)

26. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001).
doi:10.1007/3-540-44670-2 12

27. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press
(1978)

28. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS, pp. 124–134. IEEE Computer Society (1994)

29. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014)

30. Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryp-
tion over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 24–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 2

http://dx.doi.org/10.1007/978-3-642-54631-0_18
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-29011-4_27
http://dx.doi.org/10.1007/978-3-662-46800-5_24
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/3-540-44670-2_6
http://dx.doi.org/10.1007/3-540-44670-2_6
http://dx.doi.org/10.1007/3-540-44670-2_12
http://dx.doi.org/10.1007/978-3-642-13190-5_2

Real-World Schemes

Ceremonies for End-to-End Verifiable Elections

Aggelos Kiayias1(B), Thomas Zacharias1, and Bingsheng Zhang2

1 University of Edinburgh, Edinburgh, UK
{akiayias,tzachari}@inf.ed.ac.uk

2 Security Lancaster Research Centre, Lancaster University, Lancaster, UK
b.zhang2@lancaster.ac.uk

Abstract. State-of-the-art e-voting systems rely on voters to perform
certain actions to ensure that the election authorities are not manipulat-
ing the election result. This so-called “end-to-end (E2E) verifiability” is
the hallmark of current e-voting protocols; nevertheless, thorough analy-
sis of current systems is still far from being complete.

In this work, we initiate the study of e-voting protocols as ceremonies.
A ceremony, as introduced by Ellison [23], is an extension of the notion
of a protocol that includes human participants as separate nodes of the
system that should be taken into account when performing the security
analysis. that centers on the two properties of end-to-end verifiability
and voter privacy and allows the consideration of arbitrary behavioural
distributions for the human participants.

We then analyse the Helios system as an e-voting ceremony. Security
in the e-voting ceremony model requires the specification of a class of
human behaviours with respect to which the security properties can be
preserved. We show how end-to-end verifiability and voter privacy are
sensitive to human behaviour in the protocol by characterizing the set of
behaviours under which the security can be preserved and also showing
explicit scenarios where it fails.

We then provide experimental evaluation with human subjects from
two different sources where people used Helios: the elections of the Inter-
national Association for Cryptologic Research (IACR) and a poll of
senior year computer science students. We report on the auditing behav-
iour of the participants as we measured it and we discuss the effects on
the level of certainty that can be given by each of the two electorates.

The outcome of our analysis is a negative one: the auditing behav-
iour of people (including cryptographers) is not sufficient to ensure the
correctness of the tally with good probability in either case studied. The
same holds true even for simulated data that capture the case of rela-
tively well trained participants while, finally, the security of the ceremony
can be shown but under the assumption of essentially ideally behaving
human subjects. We note that while our results are stated for Helios,
they automatically transfer to various other e-voting systems that, as
Helios, rely on client-side encryption to encode the voter’s choice.

A. Kiayias, T. Zacharias, B. Zhang—This research was partly supported by ERC
project #259152 (CODAMODA), Horizon 2020 project #653497 (PANORAMIX),
and project FINER, Greek Secretariat of Research and Technology, funded under
action ARISTEIA 1.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 305–334, 2017.
DOI: 10.1007/978-3-662-54388-7 11

306 A. Kiayias et al.

1 Introduction

A ceremony, introduced by Ellison [23], extends the notion of a security protocol
to include “human nodes” in the protocol specification together with regular
computer nodes. Human nodes, are computationally limited and error-prone;
they are able to interact with computer nodes via a user interface (UI) as well
as communicate with each other via direct communication lines. In this model,
computer nodes can be thought of as stateful and probabilistic interactive Turing
machines, while human nodes, even though they are stateful, they are limited in
terms of computational power and their behaviour can only be considered as a
random variable following some arbitrary probability distribution over a set of
“admissible behaviours” that are dictated by the UI’s they are provided with.
Designing and analyzing the security of ceremonies has proven to be valuable
for problems that non-trivially rely on human node interaction to ensure their
security properties, such as key provisioning and web authentication, see e.g.,
[10,23,31,44].

In this work, we initiate the study of secure E-voting ceremonies. An e-voting
ceremony is a protocol between computer and human nodes that aims to assist
a subset of the humans (the voters) to cast a ballot for a specified election
race. We argue that viewing e-voting as a ceremony (i.e., a protocol with human
and computer nodes) captures the security intricacies of the e-voting problem
much more effectively than standard protocol based modelling as it was done
so far. The reason for this, is that the properties of an election system, most
importantly verifiability, rely on human participant behaviour in a highly non-
trivial manner. The ability of human nodes to compromise overall security due
to their negligence is well known in e-voting system design (cf. [29]) and it is
high time that cryptographic models extend to incorporate formally the human
participants.

The capability to perform auditing is widely accepted as the most important
characteristic for modern e-voting systems. However, even widely deployed1 sys-
tems such as Helios [1] that are touted to be verifiable via auditing still provide
only unquantified guarantees of verifiability. The main reason for this is that the
correctness of the election result when the election authorities are adversarial is
impossible to verify unless the humans that participate in the protocol follow a
suitable behaviour. This means that the voters, beyond the ballot-casting pro-
cedure, are supposed to carry out additional steps that many may find to be
counterintuitive, see e.g., [43] for more discussion of this issue. This potentially
leads to the defective execution of the appropriate steps that are to be carried
out for verifiability to be supported and hence the verifiability of the election
may collapse. Recent studies have shown that voters have rather limited par-
ticipation and interest to perform the verification steps (e.g., [22] reports about
23 out of a sample of 747 people performed a verifiability check in a deployed
end-to-end (E2E) verifiable system). Given that the auditing performed by the

1 The web-site of the project reports that more than 100,000 votes have been cast
with the system.

Ceremonies for End-to-End Verifiable Elections 307

voters is critical for the integrity of the election result as a whole, it is imperative
to determine the class of distributions of behaviours that are able to detect (sig-
nificant) misbehaviour of the election authorities. Once this class is characterised
then one may then try to influence participants to approximate the behaviour
by training them.

Traditionally (cf. [11,12,14,28,42,45]), election verifiability was considered
at the “individual level” (i.e., a single voter is able to verify her vote intent
is properly included in the tally) and the “universal level” (i.e., the election
transcript appears to be properly formed). No voter behavioural characteristics
were taken into account in the security analysis and the protocols were deemed
“end-to-end verifiable” as long as they satisfied merely these two features2. The
work of [37–39] showed that individual verifiability and universal verifiability,
even if combined, can still fail to guarantee that the election tally is correct.
To mend the concept of verifiability, a “holistic” notion of global verifiability
was introduced. Nevertheless, such global verifiability is unattainable without
any assumption on human behaviour. Indeed, [39] establishes the verifiability
of the Helios system by assuming that voters perform an unbounded number
of independent coin flips — an assumption which should be at best considered
of theoretical interest, since no voter using the Helios system (or any e-voting
system for that matter) should be expected to actually perform ballot-casting
via the employment of independent coin flips.

Beyond verifiability, an e-voting system is supposed to also satisfy privacy
and other desired properties such as receipt-freeness/coercion resistance. These
properties interact with verifiability in various important ways: First, without
privacy it is substantially easier to achieve verifiability (this is due to the fact
that verification of the recording of one’s vote can be done in relatively straight-
forward manner assuming a public “bulletin-board” [4]). Second, receipt-freeness
combined with verifiability suggests that the receipt obtained by the voter from
ballot-casting can be delegated to a third-party without fear of coercion or pri-
vacy leakage. Given these reasons, a proper analysis of an e-voting system should
also include the analysis of at least these properties. The fact that privacy will
be entrusted to a set of “trustees” that are human participants in the e-voting
system, points again to the importance of the ceremony approach for the case
of privacy.

Our Results. Our results are as follows.
� We initiate the study of e-voting ceremonies, i.e., e-voting protocols that

involve computer and human nodes, and enable the human participant voters to
cast privately their ballots and calculate their tally. In an execution of an e-voting
ceremony, human nodes follow a certain behaviour which is sampled according
to some distribution over all possible admissible behaviours. No specific assump-
tions can be made about how human nodes behave and thus the distribution
of each human node is a parameter of the security analysis. It follows that the

2 A notable departure from this restriction is [48], nevertheless no formal security
analysis is performed for the verifiability of this system.

308 A. Kiayias et al.

security properties of e-voting ceremonies are conditional on vectors of proba-
bility distributions of human behaviours. Such vectors are specified over sets of
suitably defined deterministic finite state machines with output (transducers3)
that determine all possible ways that each human participant may interact with
the UI’s of the computer nodes that are available to them.

� Extending the work of [34,39], we provide a threat model for (end-to-end)
verifiability for e-voting ceremonies. Our threat model has the following charac-
teristics: (i) it provides a holistic approach to argue about end-to-end verifiability
by casting the property as an “attack game” played between the adversary and a
challenger. (ii) it provides an explicit final goal the adversary wants to achieve by
introducing a metric over all possible election outcomes and stating an explicit
amount of deviation that the adversary wants to achieve in this metric space.
(iii) the adversary is successful provided that the election tally appears to be
correct even though it deviates from the true tally according to the stated met-
ric while the number of complaining voters in any failed ballot-casting processes
is below a threshold (a ballot-casting process may fail because of adversarial
interference). (iv) the resources of the adversary include the complete control of
all trustees, election authorities, all voter PC’s as well as a subset of the vot-
ers themselves. Regarding privacy, we extend the work of [8,34], by providing a
threat model for privacy and passive coercion resistance in the sense of [2] for
e-voting ceremonies.

� We cast Helios as an e-voting ceremony: voters and trustees are the human
participants of the protocol that are supposed to handle credentials and receipts
as well as generate and validate ciphertexts. During ballot-casting, voters per-
form the Benaloh challenge process [5] and are free to choose to cast their ballot.
Voters may further choose to audit their ballot in the bulletin board if they wish
to. Trustees are supposed to execute deterministic steps in order to perform the
public-key generation during the setup stage of the election and are able to verify
their public-key in the bulletin board if they wish. The set of admissible behav-
iours for voters include any number of Benaloh challenges followed by casting
the ciphertext and choosing whether to audit it in the bulletin board.

� We analyse the Helios e-voting ceremony with respect to the threat-model
for privacy and passive coercion and end-to-end verifiability. The behaviours
of voters are an explicit component of the security analysis. Specifically, for
end-to-end verifiability, we characterise the space of admissible behaviours that
enable the verifiability of the election result and we prove an infeasibility and a
feasibility result:

1. It is infeasible to detect a large deviation in the published tally of the election
even if a high number of voters audit it, if (i) there is some i∗ that the average
voter will perform exactly i∗ Benaloh audits with high enough probability
compared to the tolerance level of complaints, or (ii) there is a set of indices

3 We opt to use a finite state machine for voters in order to emphasise that voters do
not perform complex calculations. Nevertheless, our model readily generalises if one
is willing to assume that voters can perform more complex tasks.

Ceremonies for End-to-End Verifiable Elections 309

J ∗ that if the average voter performs j ∈ J ∗ Benaloh audits, this can be
used as a predictor for not auditing the bulletin board; (see Theorem1 for
the precise formulation of the infeasibility result).

2. It is feasible to detect a deviation in the tally if a suitable number of voters
audit the election, provided that (i) for all i the probability that the adversary
performs exactly i Benaloh audits is sufficiently small, and (ii) if the number
j of Benaloh audits can be used as a predictor of not auditing the bulletin
board, then it holds that the likelihood of j Benaloh audits is sufficiently
small; (see Theorem 2 for the precise formulation of the feasibility result).

Regarding privacy, we show that assuming the trustees audit with sufficiently
high probability the correct posting of the public-key information, Helios main-
tains privacy under the assumption that the underlying public-key encryption
scheme is IND-CPA.

� We provide an experimental evaluation from two different sources of human
data where people used Helios. We report on the auditing behaviour of the par-
ticipants as we measured it and we discuss the effects on the level of certainty
that can be given in each of the two elections. The message from our evaluation
is a negative one: The behaviour profile of people is not such that it can provide
sufficient certainty on the correctness of the election result. For instance, as we
show from the data collected from the elections of the directors of the Interna-
tional Association for Cryptologic Research (IACR), for elections in the order of
hundreds (500) more than 3% of the votes could be overturned with significant
probability of no detection (25%), cf. Fig. 2. Based on public data on recent elec-
tion results of the IACR the votes for elected candidates were sufficiently close to
candidates that lost in the election and consequently, the results could have been
overturned with significant probability without being detected, cf. Table 3. Our
results are similarly negative in the second case study. Given our negative results
for actual human data, we turn to simulated results for investigating the case
when the voters are supposedly well trained with respect to election guidelines.
Even for a voter behaviour distribution with supposedly relatively well trained
voters our simulated experiment show that the validity of the election result is
sustained with rather low confidence.

We note that even though we focused on Helios in this work, our results
(including our threat-model analysis for ceremonies and associated security the-
orems) immediately apply to a number of other e-voting systems. Such systems
(that have been identified as single-pass systems in [8]) include [18–20,32,47].

Related Work

Ceremony Study. In 2008, protocol ‘ceremony’ was introduced by Ellison [23] to
expand a security protocol with out-of-band channels and the human users. Sub-
sequently, Karlof et al. [30] formalised the ‘conditioned-safe ceremony’ notion,
that encompasses forcing functions, defence in depth, and human tendencies.
They then evaluated an e-mail web authentication ceremony with 200 par-
ticipants. Later, the strengths and weaknesses of the ‘ceremony’ notion were
examined by Radke et al. [44] in the context of HTTPS, EMV and Opera

310 A. Kiayias et al.

Mini protocols/ceremonies. In 2013, Carlos et al. [9,40] claimed that even
though Dolev-Yao’s threat model can represent the most powerful attacker in a
ceremony, the attacker in this model is not realistic in certain scenarios, espe-
cially those related to human peers. They then proposed a threat model that can
be adjusted according to each ceremony and consequently adapt the model and
the ceremony analysis to realistic scenarios. In 2014, Hatunic-Webster et al. [26]
proposed an Anti-Phishing Authentication Ceremony Framework for investigat-
ing phishing attacks in authentication ceremonies, which builds on the human-
in-the-loop security framework of communication processing. Bella and Coles-
Kemp [3] introduced a layered analysis of security ceremonies. Their work focuses
on the human-computer interaction layer, which features a socio-technical pro-
tocol between a user “persona” and a computer interface. As a more related
work, in 2015, Johansen and Jøsang [27] proposed a formal probabilistic model
for verifying a security ceremony. In their work, the human agent interaction
with the user interface are modelled as a non-deterministic process.

E-Voting Modelling. Conventionally, the verifiability and privacy of an e-voting
system is modelled and analysed separately. In terms of the verifiability, indi-
vidual verifiability [11] and universal verifiability [28,45] was introduced about
20 years ago. End-to-end verifiability in the sense of cast-as-intended, recorded-
as-cast, tallied-as-recorded was introduced by [12,42] in 2004. The term of End-
to-end verifiability/integrity also appeared in [16]. Later, Küsters et al. [37] for-
mally proposed symbolic and computational definitions of verifiability. The ver-
ifiability of Helios was studied in both symbolic model [36] and computational
model [46]. [38] showed that individual verifiability and universal verifiability
are not sufficient to guarantee the “global” verifiability of an e-voting system
and In [39], they introduced clash attacks, which break the verifiability of some
variants of Helios. In terms of privacy, computational privacy was introduced
by Benaloh and Fischer [15], while receipt-freeness has been first studied by
Benaloh and Tuinstra [6]. Formal definitions for privacy and receipt-freeness
have been proposed in the context of applied pi calculus [21] and the universal
composability model [25,41]. In [38], the level of privacy of an e-voting system
is measured w.r.t. to the observation power the adversary has in a protocol
run. In [7], Bernhard et al. proposed a game-based notion of ballot privacy and
study the privacy of Helios. Their definition was extended by Bernhard et al. [8]
by allowing the adversary to statically corrupt election authorities. Both these
definitions, although they imply a strong indistinguishability property, do not
consider receipt-freeness.

Roadmap. The rest of the paper is organised as follows. In Sect. 2, we introduce
the entities, the syntax and the security framework of an e-voting ceremony. In
Sect. 3, we describe the Helios e-voting ceremony according to our syntax. In
Sect. 4, we analyse the E2E verifiability of Helios ceremony. Namely, we prove
(I) an infeasibility and (II) a feasibility result under specific classes of voter
behaviours, and we comment on the logical tightness of the two classes. In Sect. 5,
we prove the voter privacy/passive coercion resistance of the Helios ceremony.
In Sect. 6, we present evaluations of our results for the E2E verifiability of Helios

Ceremonies for End-to-End Verifiable Elections 311

ceremony. Our evaluations are based on actual human data obtained by elections
using Helios as well as simulated data for various sets of parameters. Finally, in
the concluding Sect. 7, where we recall the objectives, methodology, analysis and
results of this paper and discuss future work.

2 E-Voting Ceremonies

A ceremony [23] is an extension of a network protocol that involves human nodes
along side computer nodes. Computer nodes will be modeled in a standard way
while we will model humans as probability distributions over a support set of
simple finite state machines. We base our framework for ceremonies on the e-
voting system modeling from [34] suitably extending it to our setting.

2.1 The Entities of the E-Voting Ceremony

An e-voting ceremony VC is associated with three parameters set to be polyno-
mial in the security parameter λ; the number of voters n, the number of options
m and the number of trustees k. We use the notation O = {opt1, ..., optm} for
the set of options, V = {V1, ..., Vn} for the set of voters and T = {T1, . . . , Tk}
for the set of trustees. The allowed ways to vote is determined by the collection
of subsets U ⊆ 2O an the option selection U� of voter V� is an element in U .

Let U∗ be the set of vectors of option selections of arbitrary length. Let f be
the election evaluation function from U∗ to the set Z

m
+ so that f(U1, . . . ,Un) is

equal to an m-vector whose i-th location is equal to the number of times optj
was chosen in the option selections U1, . . . ,Un.

The interaction among the entities involved in an e-voting ceremony is
depicted in Fig. 1. The said entities comprise:

� The human nodes are the trustees T1, . . . , Tk, the voters V1, . . . , Vn and the
credential distributor (CD). The latter additional entity is responsible for issuing
the credentials generated at the setup phase to the voters. Note that in practice,
the CD may be an organization of more than one human nodes executing another
ceremony but we do not model this as part of the e-voting ceremony. Here we
make the simplifying choice of modeling CD as a single human node (that is able
to identify voters using an external identification mechanism operating among
humans).

� The computer nodes are the voting supporting devices (VSDs), the trustee
supporting devices (TSDs), the auditing supporting devices (ASDs), the election
authority (EA), and the bulletin board (BB).

Modelling Human Nodes. We model each human node as a collection of sim-
ple finite state machines that can communicate with computer nodes (via a
user interface) as well as with each other via direct communication. Specifically,
we consider a – potentially infinite – collection of transducers, i.e. finite state
machines with an input and an output tape, that is additionally equipped with
a communication tape.

312 A. Kiayias et al.

EA

CD

BB

T1ASD TSD

T2ASD TSD

...

TkASD TSD

...

VnVSD ASD

V2VSD ASD

V1VSD ASD

Fig. 1. The entities and the channels active in an e-voting ceremony. The human nodes
and the computer nodes used are shown as circles and rectangles respectively. Each
voter or trustee human node, interacts with two computer nodes (supporting devices)
while the CD human node interacts with the EA. The dotted lines denote read-only
access on the BB. The dotted lines denote read-only access on the BB. The grey dashed
lines denote channels between human nodes.

We restrict the size of each voter transducer to depend only on the number of
options m. Note that this has the implication that the voter transducer cannot
be used to perform cryptographic operations, which require polynomial number of
steps in λ. Transducers may interact with computer nodes, (supporting devices)
and use them to produce ciphertexts and transmit them to other computer
nodes. The transducers interact with each other via human level communication
channels (depicted as dashed gray lines in Fig. 1), where the exchanged messages
are readable by humans (e.g. credentials, PINs, or short message texts but not
cryptographic data).

Transducer collections corresponding to voter nodes, trustee nodes and the
CD will be denoted as the sets MV , MT , and MCD respectively. We assume
that all sets MV ,MT and MCD are polynomial time samplable, i.e., one can
produce the description of a transducer from the set in polynomial-time and
they have an efficient membership test.

2.2 Syntax and Semantics

In order to express the threat model for the e-voting ceremony, we need to
formally describe the syntax and semantics of the procedures executed by the

Ceremonies for End-to-End Verifiable Elections 313

ceremony. We think of an e-voting ceremony VC as a quintuple of algorithms and
ceremonies denoted by 〈Setup,Cast,Tally, Result,Verify〉 together with the
sets of transducers MV ,MT and MCD that express the human node operations;
these are specified as follows:

The Setup(1λ,O,V,U , T) Ceremony : The setup phase is a ceremony executed
by the EA, the BB, the transducers Mi1 , . . . ,Min

∈ MV that determine the
behaviour of voter V1, . . . , Vn respectively, a transducer MCD ∈ MCD describing
the behaviour of CD, the transducers MT

i ∈ MT , i = 1, . . . , k describing the
behaviour of the trustees T1, . . . Tk respectively and their TSDs. The ceremony
generates VC’s public parameters info (which include O,V,U) and the voter
credentials cr1, . . . , crn. After the ceremony execution, each TSD has a private
state sti, each trustee Ti obtains a secret si and the CD obtains the credentials
cr1, . . . , crn. In addition, the EA posts an election transcript τ initialised as info
on BB. At the end of the Setup, the CD will provide cr1, . . . , crn to the voters
V1, . . . , Vn.

The Cast Ceremony : The voting phase is a ceremony executed by the EA, the
BB, a transducer Mi�

∈ MV that determines the behaviour of voter V� and her
supporting devices VSD�, ASD�. V� executes the Cast ceremony according to the
behaviour Mi�

as follows: Mi�
has input (cr�,U�), where cr� is the voter’s cre-

dential and U� represents the option selection of V�. All communication between
the voter V� and EA (resp. BB) happens via VSD� (resp. ASD�), where BB has
input τ . Upon successful termination, Mi�

’s output tape contains the individual
audit information audit� returned by VSD�. If the termination is not successful,
Mi�

’s output tape possibly contains a special symbol ‘Complain’, indicating that
voter V� has decided to complain about the incorrect execution of the election
procedure. In any case of termination (successful or not), Mi�

’s output tape may
contain a special symbol ‘Audit’, indicating that V� has taken the decision to use
her individual audit information audit� to perform verification at the end of the
election; in this case, the individual audit information audit� will be provided as
input to the ASD of V�. At the end of the ceremony, EA updates its state and
BB updates the public transcript τ as necessary.

The Tally Ceremony : After voting period ends, the tally phase is a ceremony
executed by the EA, the BB and the trustees MT

i ∈ MT , i = 1, . . . , k as well as
their TSDs. Namely, the EA provides each trustee with the set of cast votes Vtally.
Then, the trustees collectively compute the election result and upon successful
termination and update the public transcript τ in the BB either directly or via
the EA.

The Result(τ) Algorithm: The election result can be computed from any party
by parsing the election transcript.

The Verify(τ, audit) Algorithm: The verification algorithm outputs a value in
{0, 1}, where audit is a voter’s individual audit information obtained after the
voter’s engagement in the Cast protocol.

The definition of correctness of an honest execution of VC is straightforward
and is provided in the full version of this paper [33, Definition 1].

314 A. Kiayias et al.

2.3 Threat Model for E2E Verifiability

In order to define the threat model for E2E verifiability we need first to deter-
mine the adversarial objective. Intuitively, the objective of the adversary is to
manipulate the election result without raising suspicion amongst the participat-
ing voters. To express this formally, we have to introduce a suitable notation;
given that option selections are elements of a set of m choices, we may encode
them as m-bit strings, where the bit in the i-th position is 1 if and only if option
Pi is selected. Further, we may aggregate the election results as the list with
the number of votes each option has received, thus the output of the Result
algorithm is a vector in Z

m
+ . In this case, a result is feasible if and only if the

sum of any of its coordinates is no greater than the number of voters.

Vote Extractor. Borrowing from [34], in order to express the threat model for
E2E verifiability properly, we will ask for a vote extractor algorithm E (not
necessarily efficient, e.g., not running in polynomial-time) that receives as input
the election transcript τ and the set of individual audit information {α�}�∈Vsucc ,
where by Vsucc, we denote the set of honest voters that voted successfully. Given
such input, E will attempt to compute n−|Vsucc| vectors 〈U�〉V�∈V\Vsucc

in {0, 1}m

which correspond to all the voters outside of Vsucc and can be either a option
selection, if the voter has voted adversarially or a zero vector, if the voter has
not voted successfully. In case E is incapable of presenting such selection, the
symbol ⊥ will be returned instead. The purpose of the algorithm E is to express
the requirement that the election transcript τ that is posted by the EA in the BB
at the end of the procedure contains (in potentially encoded form) a set of well-
formed actual votes. Using this notion of extractor, we are capable to express
the “actual” result encoded in an election transcript despite the fact that the
adversary controls some voters. Note when the extractor E fails it means that τ
is meaningless as an election transcript and thus unverifiable.

Election Result Deviation. Next, we want to define a measure of deviation from
the actual election result, as such deviation is the objective of the adversary in
an E2E verifiability attack. This will complete the requirements for expressing
the adversarial objective in the E2E attack game. To achieve this, it is natural to
equip the space of results with a metric. We use the metric derived by the 1-norm,
‖ · ‖1 scaled to half, i.e., d1 : Zm

+ ×Z
m
+ −→ R and d1(R,R′) = 1

2 ·∑m
i=1 |Ri −R′

i|,
where Ri, R

′
i is the i-th coordinate of R,R′ respectively. Intuitively, moving δ

votes from one option to another translates to a distance d1(R,R′) of exactly δ.

The E2E Verifiability Game. Let D = 〈D1, . . . ,Dn,DT
1 , . . . ,DT

k ,DCD〉 be a vec-
tor of distributions that consists of the distributions D1, . . . ,Dn over the collec-
tion of voter transducers MV , the distributions DT

1 , . . . ,DT
k over the collection

of trustee transducers MT and the distribution DCD over the collection of CD
transducers MCD. We define the E2E verifiability Ceremony game GA,E,D,δ,θ,φ

E2E

between the adversary A and a challenger C w.r.t. D and the vote extractor
E which takes as input the security parameter λ, the number of voters n, the

Ceremonies for End-to-End Verifiable Elections 315

number of options m, and the number of trustees k and is parameterised by (i)
the deviation amount, δ, (according to the metric d1(·, ·)) that the adversary
wants to achieve, (ii) the number of honest voters, θ, that terminate the Cast
ceremony successfully and (iii) the number of honest voters, φ, that submit a
complaint in case of unsuccessful termination during the Cast ceremony.

Throughout the game, the adversary fully controls the election by corrupting
the EA and all the trustees T = {T1, . . . Tk}, while the CD remains honest
during the setup phase. In addition, it corrupts all the voters VSDs and manages
the Cast ceremony executions. For each voter V�, the adversary may choose
to corrupt V� or to allow the challenger to play on her behalf. Note that the
challenger retains the control of the ASD4 for honest voters and samples for
each honest voter a transducer from the corresponding distribution. If a voter V�

is uncorrupted, the adversary provides the option selection that V� should use in
the Cast ceremony; the challenger samples a transducer Mi�

D�←− MV from voter
transducer distribution D� and then executes the Cast ceremony according to
Mi�

’s description to vote the given option selection and decide whether to audit
the election result at the end. The adversary finally posts the election transcript
in the BB. The adversary will win the game provided that there are at least
θ of honest voters that terminate the ballot-casting successfully and at most φ
complaining honest voters, but the deviation of the tally is bigger than δ w.r.t.
d1 or the extractor fails to produce the option election of the dishonest voters.
The attack game is specified in detail in Fig. 2.

Definition 1. Let ε ∈ [0, 1] and n,m, k, δ, θ, φ ∈ N with θ, φ ≤ n. The e-voting
ceremony VC w.r.t. the election function f achieves E2E verifiability with error
ε, transducer distribution vector D, a number of at least θ honest successful
voters, at most φ honest complaining voters and tally deviation at most d if
there exists a (not necessarily polynomial-time) vote extractor E such that for
every PPT adversary A:

Pr[GA,E,D,δ,θ,φ
E2E (1λ, n,m, k) = 1] ≤ ε.

Remark 1 (Universal voter distribution). In some e-voting systems, the voters
can be uniquely identified during the Cast ceremonies, e.g. the voter’s real ID
is used. Hence, the adversary is able to identify each voter V� and learn its pro-
file expressed by D�. Then, the adversary may choose the best attack strategy
depending on D�. Nevertheless, in case the credentials are randomly and anony-
mously assigned to the voters by the CD, the adversary will not be able to profile
voters given his view in the ballot-casting ceremony (recall that in the E2E game
the CD remains honest). Therefore, it is possible to unify the distributions to
a universal voter distribution, denoted as D, which reflects the profile of the
“average voter.” Specifically, in this case, we will have D1 = · · · = Dn = D.

4 In the voting phase client-side encryption systems like Helios [1], the voters’ ASDs
must be live for potential ballot auditing.

316 A. Kiayias et al.

E2E Verifiability Ceremony Game GA,E,D,δ,θ,φ
E2E (1λ, n, m, k)

The adversary A chooses a list of options O = {opt1, ..., optm}, a set of voters
V = {V1, ..., Vn}, a set of trustees T = {T1, . . . Tk} and the set of allowed
option selections U . It provides Ch with the sets O, V, T , U . Throughout the
game, the challenger C plays the role of the BB.
C and A engage in the Setup ceremony on input (1λ, O, V, U , T) with A
playing the role of EA and all trustees and their associated TSDs while C
plays the role of CD by following the transducer MCD DCD←− MCD. In this way
C obtains info and the voter credentials cr1, . . . , crn. . If the CD refuses to
distribute the credentials to the voters, then the game terminates.
A and C engage in an interaction where A schedules the Cast ceremonies
of all voters. For each voter V , A can either completely control the voter
or allow C operate on their behalf. In the latter case. A provides a option

selection U to C which samples a transducer Mi
D←− MV and engages with

the adversary A in the Cast ceremony so that A plays the role of VSD and
EA and C plays the role of V according to transducer Mi on input (cr , U)
and its associated ASD . Provided the ceremony terminates successfully, C
obtains the individual audit information audit produced by Mi , on behalf
of V .
Finally, A posts the election transcript τ to the BB.

We define the following subsets of honest voters (i.e., those controlled by C):

– Vsucc is the set of honest voters that terminated successfully.
– Vcomp is the set of honest voters s.t. the special symbol ‘Complain’ is written

on the output tape of the corresponding transducer.
– Vaudit is the set of honest voters s.t. the special symbol ‘Audit’ is written on

the output tape of the corresponding transducer.

The game returns a bit which is 1 if and only if the following conditions hold
true:

1. |Vsucc| ≥ θ,
2. |Vcomp| ≤ φ, (i.e., at most φ honest voters complain).
3. ∀ ∈ [n] : if V ∈ Vaudit, then Verify(τ, audit) = 1 .

and either one of the following two conditions:

4. (a) If = V ∈V\Vsucc ← E(τ, {audit }V ∈Vsucc), then

d1(Result(τ), f(1, . . . , Un)) ≥ δ .

(b) ⊥ ← E(τ, {audit }V ∈Vsucc).

Fig. 2. The E2E verifiability ceremony game between the challenger C and the
adversary A w.r.t. the vote extractor E and the vector of transducer distributions
D = 〈D1, . . . ,Dn,DT

1 , . . . ,DT
k ,DCD〉.

Ceremonies for End-to-End Verifiable Elections 317

2.4 Threat Model for Voter Privacy

The threat model of privacy concerns the actions that may be taken by the
adversary to figure out the choices of the honest voters. We specify the goal of
the adversary in a very general way. In particular, for an attack against privacy
to succeed, we ask that there is an election result, for which the adversary is
capable of distinguishing how people vote while it has access to (i) the actual
individual audit information that the voters obtain after ballot-casting as well
as (ii) a set of ceremony views that are consistent with all the honest voters’
views in the Cast ceremony instances they participate.

Observe that any system that is secure against such a threat scenario pos-
sesses also “passive coercion resistance”, i.e., voters cannot prove how they voted
by showing the individual audit information ceremony or even presenting the
view they obtain from the Cast. Given that in the threat model we allow the
adversary to observe the view of the voter in the Cast ceremony, we need to
allow the voter to be able to lie about her view (otherwise an attack could be
trivially mounted). We stress that the simulated view of the voter in the Cast
ceremony does not contain the view of the internals of the VSD. This means
that, with respect to privacy, the adversary may not look into the internals of
the VSD for the honest voters. The above is consistent, for instance, with the
scenario that the voter can give to the VSD her option choice to be encoded.
While the adversary will be allowed to observe a simulated view of the voter
during the Cast ceremony, it will be denied access to the internals of the VSD
during the Cast execution. This increases the opportunities where the voter can
lie about how she executes the Cast ceremony.

The Voter Privacy Game. Following the same logic as in the E2E Verifiability
game, we specify a vector of transducer distributions over the collection of voter
transducers MV , trustee transducers MT and CD transducers MCD denoted
by D = 〈D1, . . . ,Dn,DT

1 , . . . ,DT
k ,DCD〉. We then express the threat model as a

Voter Privacy game, denoted by GA,S,D
t-priv , that is played between an adversary A

and a challenger C, that takes as input the security parameter λ, the number of
voters n, the number of options m, and the number of trustees k as described in
Fig. 3 and returns 1 or 0 depending on whether the adversary wins. An important
feature of the voter privacy game is the existence of an efficient simulator S
that provides a simulated view of the voter in the Cast ceremony. Note that the
simulator is not responsible to provide the view of the voter’s supporting device
(VSD). Intuitively, this simulator captures the way the voter can lie about her
choice in the Cast ceremony in case she is coerced to present her view after she
completes the ballot-casting procedure.

The attack game is parameterised by t, v. The adversary starts by selecting
the voter, option and trustee identities for given parameters n,m, k and deter-
mines the allowed ways to vote. The challenger subsequently flips a coin b (that
will change its behaviour during the course of the game) and will perform the
Setup ceremony with the adversary playing the role of the EA, the CD and up to
t trustees along with their associated TSDs and ASDs.

318 A. Kiayias et al.

Voter Privacy Game GA,S,D,t,v
priv (1λ, n, m, k)

A on input 1λ, n, m, k, chooses a list of options O = {opt1, ..., optm}, a set of
voters V = {V1, ..., Vn}, a set of trustees T = {T1, ..., Tk} a trustee Th ∈ T
and the set of allowed option selections U . It provides C with the sets O, V, U
as well as the set of corrupted trustees Tcorr.
C flips a coin b ∈ {0, 1} and performs the Setup ceremony on input
(1λ, O, V, U , T) with the adversary playing the role of the EA,CD and all
trustees in Tcorr, while C plays the role of all the honest trustees. The role of
every honest trustee Th ∈ T \ Tcorr is played by C following the transducers

MTh
DTh←− MT .

The adversary A and the challenger C engage in an interaction where A
corrupts the EA and schedules the Cast ceremonies of all voters which may
run concurrently. A also controls the ASDs of all voters. At the onset of each
voter ceremony, A chooses whether voter V , = 1, . . . , n and its associated
VSD is corrupted or not.

• If V and its associated VSD are corrupted, then no specific action is
taken by the challenger, as the execution is internal to adversary.

• If V and its associated VSD are not corrupted, then A provides C with

two option selections 0, U1 . The challenger samples Mi
D←− MV

and sets V ’s input to (cr , Ub), where cr is the credential provided by
the adversarially controlled CD. Then, C and A engage in the Cast
ceremony with C controlling V (that behaves according to Mi) and
her VSD, while the adversary A observes the network interaction. When
the Cast ceremony terminates, the challenger C provides to A: (i) the
individual audit information audit that V obtains from the ceremony,
and (ii) if b = 0, the current view of the internal state of the voter V that
the challenger obtains from the Cast execution, or if b = 1, a simulated
view of the internal state of V produced by S(viewC), where viewC is the
current view of the challenger.

A and C engage in the Tally ceremony with the adversary playing the role
of the EA,CD and all trustees in Tcorr, while C plays the role of all the honest
trustees.
Finally, A terminates returning a bit b∗.

Denote the set of corrupted voters as Vcorr. The game returns a bit which is 1 if
and only if the following hold true:

1. b = b∗ (i.e., the adversary guesses b correctly).
2. |Tcorr| ≤ t (i.e., the number of corrupted trustees is bounded by t).
3. |Vcorr| ≤ v (i.e., the number of corrupted voters is bounded by v).
4. f(0

V ∈V\Vcorr) = f(1
V ∈V\Vcorr) (i.e., the election result w.r.t. the set of

non-corrupted voters does not leak b).

Fig. 3. The voter privacy game between the challenger C and the adversary A w.r.t.
the view simulator S and the vector of transducer distributions D = 〈D1, . . . ,Dn,
DT

1 , . . . ,DT
k ,DCD〉.

Ceremonies for End-to-End Verifiable Elections 319

The honest trustees’ behaviours will be determined by transducers selected at
random by the challenger from MT according to the corresponding distribution.
Subsequently, the adversary will schedule all Cast ceremonies selecting which
voters it prefers to corrupt and which ones it prefers to allow to vote honestly.
The adversary is allowed to corrupt at most v voters and their VSDs. In addition,
A is allowed to corrupt the ASDs of all voters. The voters that remain uncor-
rupted are operated by the challenger and they are given two option selections
to vote. For each uncorrupted voter V�, the challenger first samples a transducer
Mi�

← D� and then executes the Cast ceremony according to Mi�
’s description

to vote one of its two option selections based on b.
The adversary will also receive the individual audit information that is

obtained by each voter as well as either (i) the actual view (if b = 0) or (ii)
a simulated view, generated by S (if b = 1), of each voter during the Cast
ceremony (this addresses the individual audit information-freeness aspect of the
attack game). Upon completion of ballot-casting, the adversary will execute with
the challenger the Tally ceremony and subsequently the adversary will attempt
to guess b. The attack is successful provided that the election result is the same
with respect to the two alternatives provided for each honest voter by the adver-
sary and the adversary manages to guess the challenger’s bit b correctly. The
game is presented in detail in Fig. 3.

Definition 2. Let m,n, k, t, v ∈ N with t ≤ k and v ≤ n. Let VC be an e-voting
ceremony with m options, n voters and k trustees w.r.t. the evaluation election
unction f . We say that VC achieves voter privacy with error ε for transducer
distribution vector D, at most t corrupted trustees and v corrupted voters, if
there is an efficient simulator S such that for any PPT adversary A:

∣
∣
∣
∣Pr[GA,S,D,t,v

priv (1λ, n,m, k) = 1] − 1
2

∣
∣
∣
∣ ≤ ε ,

Threat Model Alternatives. The framework presented in this section is a first
attempt to model human behaviour in the cryptographic e-voting analysis, there-
fore various approaches or extensions could be considered. In the full version of
this paper [33, Sect. 2.5], we discuss on some selected possible alternatives on
this subject.

3 Syntax of Helios Ceremony

In this section, we present a formal description of Helios ceremony according to
the syntax provided in Subsect. 2.2. For simplicity, we consider the case of 1-out-
of-m elections, where the set of allowed selections U is the collection of singletons,
{{opt1}, . . . , {optm}}, from the set of options O. Our syntax does not reflect the
current implemented version of Helios, as it adapts necessary minimum modifi-
cations to make Helios secure. For instance, we ensure that each voter is given a
unique identifier to prevent Helios from the clash attacks introduced in [39]. In
addition, we consider a hash function H(·) that all parties have oracle access to,

320 A. Kiayias et al.

used for committing to election information and ballot generation, as well as the
Fiat-Shamir transformations [24] in the NIZK proofs that the system requires.
As we state below, in the generation of the NIZK proofs for ballot correctness,
the unique identifier is included in the hash to prevent replaying attacks pre-
sented in [17]. Moreover, we apply strong Fiat-Shamir transformations, where
the statement of the NIZK should also be included in the hash. As shown in [8],
strong Fiat-Shamir based NIZKs are simulation sound extractable, while weak
Fiat-Shamir based NIZKs make the Helios vulnerable.

Finally, we stress that we model trustees’ behaviour by considering the event
that the trustee will or will not the verify the correct posting of its partial public
key. This is done so that we capture the possible privacy vulnerability in Helios’s
implementation architecure studied in [35]; that is, in the case where no honest
trustee performs such verification then a malicious EA may act as man-in-the-
middle and replace the trustees’ partial public keys with ones it adversarially
generates, thus resulting to a total break of voters’ privacy.

The Helios’s transducers: We define the collections of transducers MV ,MT ,
MCD that reflect the admissible behaviours of voters, trustees and CD respec-
tively.

The set of admissible voter transducers is denoted by MV :=
{Mi,c,a}c,a∈{0,1}

i∈[0,q] , where q ∈ N; The transducer Mi,c,a audits the ballot created
by the VSD exactly i times (using its ASD) and then submits the (i + 1)-th
ballot created by the VSD; Upon successful termination, it outputs a individual
audit information audit obtained from the VSD; If the termination is not suc-
cessful and c = 1, Mi,c,a outputs a special symbol ‘Complain’ to complain about
its failed engagement in the Cast ceremony. In any case of termination, when
a = 1, Mi,c,a also outputs a special symbol ‘Audit’ and sends audit to the ASD.
To guarantee termination, we limit the maximum number of ballot audits by
threshold q.

The admissible trustee transducers are two and labelled as MT
0 ,MT

1 (so that
MT =

{
MT

0 ,MT
1

}
). At a high level, both MT

0 and MT
1 will utilise the TSD to

generate a partial public/secret key pair in the Setup ceremony. However, only
MT

1 will verify the correct posting of its partial public key in the BB, whereas
MT

0 will have no other interaction with the election.
The CD is required to check the validity of the credentials cr1, . . . , crn gen-

erated by the potentially malicious EA before distributing them. In Helios, we
define the credential cri := (IDi, ti), where IDi is a unique voter identity and ti is
an authentication token. The credential distributor first checks for all i, j ∈ [n]:
if i �= j then IDi �= IDj , and halts if the verification fails. Upon success, it ran-
domly sends each voter V� a credential though some human channels. Hence, we
define the set of CD transducers as MCD :=

{
MCD

σ

}
σ∈Sn

, where Sn stands for
all possible permutations [n] �→ [n].

We define the Helios ceremony quintuple 〈Setup,Cast,Tally, Result,
Verify〉, using the hash function H(·) as follows:

Ceremonies for End-to-End Verifiable Elections 321

The Setup(1λ,O,V,U , T) Ceremony : Each trustee transducer MTi

bi
∈

{
MT

0 ,MT
1

}
, i = 1, . . . , k sends signal to its TSD. The TSD generates a pair of

threshold ElGamal partial keys (pki, ski) and sends pki together with a Schnorr
(strong Fiat-Shamir) NIZK proof of knowledge of ski to the EA. In addition,
the TSD returns a trustee secret s̄i := (H(pki), ski) to MTi

bi
. If there is a proof

that EA does not verify, then EA aborts the protocol. Next, EA computes the
election public key pk =

∏
i∈[k] pki. The public parameters, info, which include

pk and the partial public keys pk1, . . . , pkk as well as the related NIZK proofs of
knowledge are posted in the BB by the EA.

Trustee Auditing Step [35]: for i = 1, . . . , k, if bi = 1, then MTi

bi
sends H(pki)

to its ASD, and the ASD will fetch info from the BB to verify if there exists a
partial public key pk∗ such that its hash matches H(pki). In case this verification
fails, Ti sends a message ‘Invalid public key’ to all the voters via the human
communication channels shown in Fig. 1.

Finally, the EA generates the voter credentials cr1, . . . , crn, where cri :=
(IDi, ti), and ti is a random authentication code. Then, forwards the credentials
to the CD transducer MCD. The CD transducer MCD

σ checks the uniqueness of
each IDi and distributes them to the voter transducers Mi�,c�,a�

for 	 ∈ [n],
according to the permutation σ over [n] that specifies its behaviour.

The Cast Ceremony : For each voter V�, the corresponding transducer Mi�,c�,a�

has a pre-defined number of i� ballot auditing steps, where i� ∈ [0, q]. The input
of Mi�,c�,a�

is (cr�,U�). If V� has received an ‘Invalid public key’ from at least
one trustee, then it aborts the ceremony. If no such message was sent, then for
u ∈ [i�], the following steps are executed:

1. Mi�,c�,a�
sends (ID�,U�) to its VSD, labelled as VSD�. Let optj�

be the option
selection of V�, i.e. U� = {optj�

}.
2. For j = 1, . . . ,m, VSD� creates a ciphertext, C�,j , that is a lifted ElGa-

mal encryption under pk of 1, if j = j� (the selected option position), or
0 otherwise. In addition, it attaches a NIZK proof π�,j showing that C�,j

is an encryption of 1 or 0. Finally, an overall NIZK proof π� is gener-
ated, showing that exactly one of these ciphertexts is an encryption of 1.
These proofs are strong Fiat-Shamir transformations of disjunctive Chaum-
Pedersen (CP) proofs [13]. To generate the CP proofs, the unique identi-
fier ID� is included in the hash. The ballot generated is ψ�,u = 〈ψ0

�,u, ψ1
�,u〉,

where ψ0
�,u =

〈
(C�,1, π�,1), . . . , (C�,m, π�,m), π�

〉
and ψ1

�,u = H(ψ0
�,u). The VSD

responds to Mi�,c�,a�
with the ballot ψ�,u.

3. Then, Mi�,c�,a�
sends a Benaloh audit request to VSD�. In turn, VSD� returns

the randomness r�,u that was used to create the ballot ψ�,u. The Mi�,c�,a�

sends (ID�, ψ�,u, r�,u) to its ASD, which will audit the validity of the ballot. If
the verification fails, Mi�,c�,a�

halts. If the latter happens and c� = 1, Mi�,c�,a�

outputs a special symbol ‘Complain’, otherwise it returns no output.

After the i�-th successfully Benaloh audit, Mi�,c�,a�
invokes VSD� to produce a

new ballot ψ� as described in step 2 above; however, upon receiving ψ�, Mi�,c�,a�

322 A. Kiayias et al.

now sends cr� to VSD�, indicating it to submit the ballot to the EA. The Mi�,c�,a�

then outputs audit� := (ID�, ψ
1
�). If a� = 1, Mi�,c�,a�

also outputs a special symbol
‘Audit’ which indicates that it will send audit� to ASD� which will audit the BB
afterwards, as specified in the Verify algorithm below.

When EA receives a cast vote (cr�, ψ�) from VSD�, it checks the validity of the
credential cr� and that ψ� is a well-formed ballot by verifying the NIZK proofs.
If the check fails, then it aborts the protocol. After voting ends, EA updates its
state with the pairs {(ψ�, ID�)}V�∈Vsucc

of cast votes and the associated identifiers,
where Vsucc is the set of voters that voted successfully.

The Tally Ceremony : In the Tally ceremony, EA sends {ψ�}V�∈Vsucc
to all trustee

transducers MTi

bi
’s TSD, i = 1, . . . , k. Next, the TSD of each MTi

bi
, i = 1, . . . , k,

performs the following computation: it constructs the product ciphertext Cj =∏
V�∈Vsucc

C�,j for j = 1, . . . , m. By the additive homomorphic property of (lifted)
ElGamal, each Cj is a valid encryption of the number of votes that the option
optj received. Then, the TSD uses ski to produce the partial decryption of all
Cj , denoted by xi

j , and sends it to the EA along with NIZK proofs of correct
partial decryption. The latter are Fiat-Shamir transformations of CP proofs. If
there is a proof that EA does not verify, then it aborts the protocol. After all
trustees finish their computation, EA updates τ with

{
(xi

1, . . . , x
i
m)

}
i∈[k]

and the
NIZK proofs.
The Result(τ) Algorithm: For each option optj , the Result algorithm computes
the number of votes, xj , that optj has received using the partial decryptions
x1

j , . . . , x
k
j . The output of the algorithm is the vector 〈x1, . . . , xm〉.

The Verify(τ, audit�) Algorithm: The algorithm Verify(τ, audit�) outputs 1 if
the following conditions hold:

1. The structure of τ and all election information is correct (using info).
2. There exists a ballot in τ , indexed by ID�, that contains the hash value ψ1

� .
3. The NIZK proofs for the correctness of all ballots in τ verify.
4. The NIZK proofs for the correctness of all trustees’ partial decryptions verify.
5. For j = 1, . . . , m, xj is a decryption of C′

j , where C′
j is the homomorphic

ciphertext created by multiplying the respective ciphertexts in the ballots
published on the BB (in an honest execution, C′

j should be equal to Cj).

4 E2E Verifiability of Helios E-Voting Ceremony

In a Helios e-voting ceremony, an auditor can check the correct construction
of the ballots and the valid decryption of the homomorphic tally by verifying
the NIZK proofs. In our analysis, it is sufficient to require that all NIZK proofs
have negligible soundness error ε(·) in the RO model. Note that in Sect. 3, we
explicitly modify Helios to associate ballots with the voters’ identities, otherwise
a clash attack [39] would break verifiability. For simplicity in presentation, we
assume that the identifiers are created by the adversary, i.e. the set {ID�}�∈[n]

matches the set of voters V.

Ceremonies for End-to-End Verifiable Elections 323

Throughout our analysis, we assume the honesty of the CD and thus the
distribution of the credentials is considered to be an arbitrary permutation over
[n]. Since there are only two admissible trustee transducers MT

0 ,MT
1 , the distri-

bution of trustee transducers DT
p is set as the p-biased coin-flip below:

Pr
DT

p

[M] =
{

p, if M = MT
1

1 − p, if M = MT
0

(1)

Moreover, in the Cast ceremony, the ballots and individual audit information
are produced before the voters show their credentials to the system. Since the
CD is honest, the adversary is oblivious the the maps between the credentials to
the voter transducers. The credentials are only required when the voters want
to submit their ballots, hence, according to the discussion in Remark 1, we will
consider only a universal voter transducer distribution D in the case study of
Helios. Namely, D1 = · · · = Dn = D.

4.1 Attacks on Verifiability

As mentioned earlier, we have modified Helios to prevent the system from clash
attacks [39]. For simplicity, we exclude all the trivial attacks that the adversary
may follow, i.e. the ones that will be detected with certainty (e.g. malformed or
unreadable voting interface and public information). Therefore, the meaningful
(non-trivial) types of attack that an adversary may launch are the following:

� Collision attack: the adversary computes two votes which hash to the
same value. The collision resistance of the hash function H(·), prevents from
these attacks except from some negligible probability ε′5.

� Invalid vote attack: the adversary creates a vote for some invalid plain-
text, i.e. a vector that does not encode a candidate selection (e.g., multiple votes
for some specific candidate). This attack can be prevented by the soundness
of the NIZK proofs, except from the negligible soundness error ε. The NIZK
verification is done via the voter’s ASD.

� VSD attack: the adversary creates a vote which is valid, but corresponds
to different selection than the one that the voter intended. A Benaloh audit
at the Cast ceremony step can detect such an attack with certainty, as the
randomness provided by the VSD perfectly binds the plaintext with the audited
ElGamal ciphertext.

� Replacement attack: the adversary deletes/inserts an honest vote
from/to the BB, or replaces it with some other vote of its choice, after voting
has ended. Assuming no hash collisions, any such modification will be detected
if the voter chooses to audit the BB via her ASD.

� Invalid tally decryption attack: the adversary provides a decryption
which is not the plaintext that the homomorphic tally vector encrypts. The
NIZK proofs of correct decryption prevent this attack, except for a negligible
soundness error ε.

5 This requires that H(·) has resistance to second preimage attacks.

324 A. Kiayias et al.

Remark 2 (Completeness of the attack list). It can be easily shown that the
above list exhausts all possible non-trivial attack strategies against Helios in our
threat model. Namely, in an environment with no clash, collision and invalid
encryption attacks, the set of votes is in the correct (yet unknown) one-to-one
correspondence with the set of voters, and all votes reflect a valid candidate
selection of the unique corresponding voter. As a result, a suitably designed vote
extractor will decrypt (in super-polynomial time) and output the actual votes
from the non-honest-and-successful voters, up to permutation. Consequently, if
no honest vote has been modified during and after voting, and the homomorphic
tally of the votes is correctly computed and decrypted, then the perfect binding
of the plaintexts and ciphertexts of ElGamal implies that the decryption of the
tally matches the intended election result.

4.2 Attacking the Verifiability of Helios E-Voting Ceremony

As explained in the previous subsection, any attempt of collision, invalid vote
and invalid tally decryption attacks has negligible probability of success for the
adversary due to the collision resistance of the hash function and the soundness
of the ZK proofs. Therefore, in a setting where no clash attacks are possible,
the adversary’s chances to break verifiability rely on combinations of VSD and
Replacement attacks. The probability of these attacks being detected depends
on the voter transducer distribution D which expresses their auditing behaviour
during and after voting. In the following theorem, we prove that the verifiability
of Helios is susceptible to VSD or/and Replacement attacks, when the voters
sample from a class of assailable voter transducer distributions.

Theorem 1 (Vulnerability of Helios ceremony). Assume an election run
of Helios with n voters, m candidates and k trustees. Let q, δ, θ, φ ∈ N, where
0 < θ, φ ≤ n and q is the maximum number of Benaloh audits. Let D be a
(universal) voter transducer distribution s.t. for some κ1, κ2, κ3, μ1, μ2 ∈ [0, 1)
at least one of the two following conditions holds:

(i) There is an i∗ ∈ {0, . . . , q} that determines “ vulnerable VSD auditing
behaviour”. Namely, (i.a) the probability that a voter executes at least i∗

Benaloh audits is 1 − κ1 AND (i.b) the probability that a voter, given that
she has executed at least i∗ Benaloh audits, will cast her vote after exactly
i∗ Benaloh audits is 1 − κ2 AND (i.c) the probability that a voter, given
that she will execute exactly i∗ Benaloh audits, will not complain in case of
unsuccessful audit is κ3.

(ii) There is a subset J ∗ ⊆ {0, . . . , q} that determines “ vulnerable BB auditing
behaviour”. Namely, (ii.a) the probability that a voter executes j Benaloh
audits for some j ∈ J ∗ is 1−μ1 AND (ii.b) for every j ∈ J ∗, the probability
that a voter, given she has executed j Benaloh audits, will not audit the BB
is at least 1 − μ2.

Let D =
〈
D, . . . ,D,DT1 , . . . ,DTk ,DCD

〉
be a transducer distribution vector

where DTi = DT
pi

, i = 1, . . . , k, is the pi-biased coin-flip trustee transducer distri-
bution in Eq. (1) for arbitrary pi ∈ [0, 1] and DCD is an arbitrary CD transducer

Ceremonies for End-to-End Verifiable Elections 325

distribution. Then, there is a PPT adversary A that wins the E2E verifiability
ceremony game GA,E,D,δ,θ,φ

E2E (1λ, n,m, k) in Fig. 2 for any vote extractor E, any
Δ ∈ [0, 1) as follows:

� under condition (i), provided the parameters δ, θ, φ satisfy:

δ ≤ (
1 − Δ)2(1 − κ2)(1 − κ1)n

θ ≤ n − (1 + Δ)(κ2 + Δ − Δκ2)(1 − κ1)n

φ ≥ (1 + Δ)2κ3(κ2 + Δ − Δκ2)(1 − κ1)n

with probability of success at least 1 − 5e−κ3β2β1
Δ2
3 where β1 = (1 −

Δ)(1 − κ1)n and β2 = (κ2 − Δ + Δκ2)(1 − κ2).
� under condition (ii), provided the parameter δ satisfies δ ≤ (1−Δ)(1−μ1)n

with probability of success at least (1 − e−(1−μ1)n
Δ2
2)(1 − μ2)δ .

Proof. We prove the Theorem in the full version [33, Theorem 1].

4.3 End-to-End Verifiability Theorem Helios E-Voting Ceremony

In this subsection, we prove the E2E verifiability of Helios e-voting ceremony
in the RO model, when the voter transducer distribution satisfies two condi-
tions. As we will explain at length in the next subsection, these conditions are
logically complementary to the ones stated in Theorem 1, as long as the com-
plaining behaviour of the voters is balanced (i.e. the voters have 1/2 probability
of complaining in case of unsuccessful termination).

Theorem 2 (Verifiability of Helios ceremony). Assume an election run
of Helios with n voters, m candidates and k trustees. Assume that the hash
function H(·) considered in Sect. 3 is a random oracle. Let q, δ, θ, φ ∈ N, where
0 < θ, φ ≤ n and q is the maximum number of Benaloh audits. Let D be a
(universal) transducer distribution and some κ1, κ2, κ3, μ1, μ2 ∈ [0, 1) s.t. the
two following conditions hold:

(i) There is an i∗ ∈ {0, . . . , q + 1} that guarantees “ resistance against VSD
attacks”. Namely, (i.a) the probability that a voter executes at least i∗

Benaloh audits is κ1 and (i.b) for every i ∈ {0, . . . , q}, if i < i∗, then the
probability that a voter, given that she will execute at least i Benaloh audits,
will cast her vote after exactly i Benaloh audits, is no more than κ2 AND the
probability that a voter, given that she will execute exactly i Benaloh audits,
will complain in case of unsuccessful audit is at least 1 − κ3.

(ii) There is a subset J ∗ ⊆ {0, . . . , q} that guarantees “ resistance against
Replacement attacks”. Namely, (ii.a) the probability that a voter executes j
Benaloh audits for some j ∈ J ∗ is 1 − μ1 AND (ii.b) for every j ∈ J ∗, the
probability that a voter, given she has executed j Benaloh audits, will audit
the BB is at least 1 − μ2.

326 A. Kiayias et al.

Let D =
〈
D, . . . ,D,DT1 , . . . ,DTk ,DCD

〉
be a transducer distribution vector

where DTi = DT
pi

, i = 1, . . . , k, is the pi-biased coin-flip trustee transducer distri-
bution in Eq. (1) for arbitrary pi ∈ [0, 1] and DCD is an arbitrary CD transducer
distribution. Then, for any Δ ∈ [0, 1) for any δ, θ, and under the constraint

φ ≤ (1 − Δ)(1 − κ3)
(1

(1 + Δ)κ2
− 1

)(δ

2
− (1 + Δ)κ1n

)
,

the Helios e-voting ceremony achieves E2E verifiability for D, a number of θ hon-
est successful voters, a number of φ honest complaining voters and tally deviation
δ with error

e−min
{

κ1n Δ2
3 , μ1n Δ2

3 , γ(δ
2 −(1+Δ)κ1n)Δ2

3 , ln
(

1
μ2

)
(δ
2 −(1+Δ)μ1n)

}

+

+ (μ1 + μ2 − μ1μ2)θ + negl(λ) ,

where γ = min
{

κ2 , 3
2 (1 − κ3)

(
1

(1+Δ)κ2
− 1

)}
.

Proof. We prove the Theorem in the full version [33, Theorem 2].

4.4 Illustrating Theorems 1 and 2

In order to provide intuition, we provide examples of assailable and resistant
voter transducer distributions, in the full version [33, Subsects. 4.2.1 and 4.3.1].
For every case, we illustrate our analysis via comprehensive graphs. Among
other remarks, we study the role of Δ as trade off factor between (a) optimising
the bounds stated in Theorems 1 and 2, and (b) the corresponding “effective-
ness zone” determined by the parameters δ, θ, φ (normalised by the electorate
size n).

4.5 On the tightness of the conditions of Theorems 1 and 2

The conditions stated in Theorems 1 and 2 determine two classes of voter trans-
ducer distributions that correspond to vulnerable and insusceptible settings,
respectively. We observe that weakening the condition (i) of Theorem1 (resp.
(i) of Theorem 2) cannot imply vulnerability (resp. security). Namely, in con-
dition (i) of Theorem1, if one of (1.a), (1.b) or (1.c) does not hold, then the
adversary cannot be certain that it will achieve a sufficiently large deviation
from VSD attacks without increasing rapidly the number of complaints. On the
other hand, if condition (i.a) of Theorem2 does not hold, then E2E verifiability
cannot be preserved when (1.b) becomes a disjunction, since a high complaint
rate alone is meaningless if the adversary has high success rate of VSD attacks.

Consequently, it is not possible to achieve logical (i.e. probability thresholds
are considered either sufficiently high or sufficiently low) tightness for interest-
ing sets of parameters δ, θ, φ only by negating the conditions of each of the two
theorems. However, this is possible if we assume that the voter’s complaining
behaviour is balanced by setting κ3 = 1−κ3 = 1/2. Namely, the voters flip coins
in order to decide whether they will complain in case of unsuccessful termination.
Given that κ3 = 1/2 is a “neutral” value, we have that

Ceremonies for End-to-End Verifiable Elections 327

Condition (i) of Theorem1 does not hold, iff condition (i) of Theorem2 holds.
Condition (ii) of Theorem1 does not hold, iff condition (ii) of Theorem2 holds.

The above statement is argued in detail in the full version [33, Subsect. 4.4].

5 Voter Privacy of Helios E-Voting Ceremony

In this section, we prove the voter privacy of the Helios e-voting ceremony.
The proof is carried out via a reduction. Namely, we show that unless no hon-
est trustee verifies the correct posting of their public data, if there exists a
PPT adversary A that wins the voter privacy/PCR game for Helios with non-
negligible distinguishing advantage, then there exists a PPT adversary B that
breaks the IND-CPA security of the ElGamal encryption scheme with blackbox
access to A. Throughout the proof, we view H(·) as a RO.

Theorem 3 (Voter Privacy of Helios ceremony). Assume an election run
of Helios with n voters, m candidates and k trustees. Assume that the hash func-
tion H(·) considered in Sect. 3 is a random oracle and the underlying ElGamal
encryption scheme is IND-CPA secure. Let t, v ∈ N, where t < k and v < n.

Let D =
〈
D, . . . ,D,DT1 , . . . ,DTk ,DCD

〉
be a transducer distribution vector

where DTi = DT
pi

, i = 1, . . . , k, is the pi-biased coin-flip trustee transducer
distribution in Eq. (1) for arbitrary pi ∈ [0, 1] and DCD is an arbitrary CD
transducer distribution.

Assume that p1, . . . , pk are sorted in increasing order as pi1 ≤ · · · ≤ pik
.

Then, Helios e-voting ceremony achieves voter privacy for D, at most t corrupted
trustees and v corrupted voters with error

1
2

·
k−t∏

x=1

(1 − pix
) + negl(λ) .

Proof. We prove the Theorem in the full version [33, Theorem 3].

6 Evaluating the E2E Verifiability of an E-Voting
Ceremony

In this section, we evaluate our results for the E2E verifiability of Helios, by
instantiating the bounds in Theorems 1 and 2 for various voter transducer dis-
tributions. Our evaluations are separated into two categories: (i) evaluations that
are based on actual human data that derive from elections using Helios and (ii)
evaluations that are based on simulated data for various sets of parameters.

328 A. Kiayias et al.

6.1 Evaluations Based on Human Data

Our human data are sampled from two independent surveys: the first sample
is from the member elections of the Board of Directors of the International
Association for Cryptographic Research (IACR); the second is a non-binding poll
among the students of the Department of Informatics and Telecommunications
(DI&T) of the University of Athens.

Due to space limitations, we present at length the methodology for both our
surveys in the full version [33, Subsect. 6.1.1]. Here, we provide the computed
parameters κ1, κ2, κ3, μ1, μ2 of Theorem 1 for the IACR and the DI&T surveys in
Table 1. For both surveys, no complaints or audit failures were reported. Hence,
due to lack of data, we choose a “neutral” value for κ3 equal to 0.5 (see also
Subsect. 4.5). Note that our analysis will hold for any other value of κ3 not close
to 0. The case of κ3 = 0, i.e., when the voter always complains to the authority
when a Benaloh audit goes wrong, would make VSD attacks unattractive in the
case that φ is small and would suggest that the attacker will opt for Replacement
attacks, if such attacks are feasible.

The parameters κ1, κ2, κ3, μ1, μ2 used in Theorem 1 express the vulnerability
of Helios ceremony against verifiability attacks w.r.t. a specific voter transducer
distribution. Namely, parameters κ1, κ3, μ1 determine the size of the subsets of
vulnerable voters, while κ2, μ2 can be seen as measures of the quality of the VSD
and Replacement attacks.

Table 1. Instantiated parameters κ1, κ2, κ3, μ1, μ2 of Theorem 1 for the IACR and the
DI&T surveys.

Survey i∗ J ∗ Parameters

κ1 κ2 κ3 μ1 μ2

IACR elections 0 {0} 0 0.315 0.5 0.315 0.084

DI&T poll 1 − 0.408 0.069 0.5 − −

Analysis of the IACR Survey: From the first row of Table 1, we read that μ2 =
0.084 which is a very small value as opposed to κ2 = 0.315. Thus, we expect
that elections where the electorate follows the voter transducer distribution of
IACR elections are much more vulnerable to Replacement attacks rather than
VSD attacks. Indeed, this is consistent with the analysis that we describe below.

We computed the percentage of tally deviation/No. of voters that the adver-
sary can achieve when the success probability is lower bounded by 25%, 10%, 5%
and 1% for various electorate scales. Specifically, we observed that the success
probability bounds stated in Theorem1 express more accurately the effective-
ness of the adversarial strategy for (i) medium to large scale elections when the
adversary attacks via the VSD and (ii) for small to medium scale elections when
the adversary attacks via the BB. As a consequence, we present our analysis for
n = 100, 500, 1000, 2500 and 5000 voters w.r.t. Replacement attack effectiveness
and for n = 5000, 10000 and 50000 voters w.r.t. VSD attack effectiveness.

Ceremonies for End-to-End Verifiable Elections 329

The data in Table 2 illustrate the power of Replacement attacks against com-
pact bodies of voters (e.g. organizations, unions, board elections, etc.) where BB
auditing is rare. We can see that in the order of hundreds, more than 5% of the
votes could be swapped with significant probability of no detection. This power
deteriorates rapidly as we enter the order of thousands, yet the election result
could still be undermined, as deviation between 1%–2%, is possible, without the
risk of any complaint due to unsuccessful engagement in the Cast ceremony (i.e.
θ = n, φ = 0). Therefore, even in a setting of high complaint rate (κ3 is close to
0), the adversary may turn into a Replacement attack strategy and still be able
to alter radically the election result, as marginal differences are common in all
types of elections. We stress that from published data we are aware of, there have
been elections for the IACR board where the votes for winning candidates were
closer than 3% to the votes of candidates that lost in the election. Therefore, if
the voter distribution had been as the one derived by Table 1, and 500 members
had voted, the result could have been overturned with success probability 25%
even if a single complaint was considered a “stop election event” (since φ = 0).

To provide more context, in Table 3, we provide the cutoff between elected
and non-elected candidates for the last 11 years of IACR elections for the Board
of Directors, followed by the exact success probability of a hypothetical Replace-
ment attack strategy to overturn the election result given the actual number of
cast ballots per year. We observe that the attacker success probability for many
of the elections is considerable (2011, 2014, 2015, 2016), or even unacceptable
(2006, 2008, 2009, 2013), at least in our estimation.

On the other hand, the effectiveness of a VSD attack strategy against an
election that follows the voter distribution in IACR elections would not have
a great impact unless an unnatural number of complaints could be tolerated.
Indeed, from our evaluation, it appears even for the scale of 5000, 10000 and
50000 that voters, the rate of complaints that is ignored must be close to 24%,
21% and 17% respectively, which is rather unacceptable in a real world setting.
Such number of complaints would most definitely lead to a stop election event.

We conclude that the IACR voter behaviour is susceptible to Replacement
attacks with significant probability of success but not VSD attacks unless there
is high tolerance in voter complaints.

Table 2. Percentage of tally deviation/No. of voters achieved in elections under
Replacement attack strategies against electorates following the voter transducer distri-
bution of IACR elections. The attack succeeds even when θ = n and φ = 0.

Voters Success probability %

≥25 ≥10 ≥5 ≥1

100 15.92 26.4 34.42 51.42

500 3.18 5.28 6.87 10.56

1000 1.59 2.64 3.42 5.28

2500 0.636 1.05 1.37 2.11

5000 0.31 0.52 0.68 1.05

330 A. Kiayias et al.

Table 3. Success probability of a hypothetical Replacement attack strategy against
the IACR elections for the Board of Directors per election year. The success probability
is computed given the number of participants and the cutoff between the last elected
director and the first candidate that was not elected. The dashed line denotes the
actual start of Helios use for IACR elections. Regarding the year 2007, no data were
recorded in https://www.iacr.org/elections/.

Year Participants Cutoff % Success probability %

2016 522 6.13 6.03

2015 437 6.87 7.35

2014 575 5.57 6.17

2013 637 2.99 19.14

2012 518 11.59 0.5

2011 621 4.03 11.35

2010 475 8.64 2.82

2009 325 4.93 24.8

2008 312 0.33 91.66

2007 − − −
2006 324 4.33 29.57

Analysis of the DI&T Poll: Due to space limitations, we present the analysis of
the DI&T poll in the full version [33, Subsect. 6.1.3]. In few words, from the
second row of Table 1, we read that κ2 = 0.069 which is a very small value
leading to significant VSD vulnerability.

6.2 Evaluations Based on Simulated Data

Our human data analysis is obtained by real bodies of voters that have an
imperfect voting behaviour. To understand what would be the security level of a
Helios e-voting ceremony when executed by an “ideally trained” electorate, we
evaluated the security of simulated elections. Namely, we computed the detection
probability that Theorem 2 can guarantee defined as (1 − ε) · 100%, where ε is
the error stated in Theorem 2.

The voter distributions we considered were chosen from {Dp,q}p∈[0,1],q∈N, a
collection of distributions defined as follows: when behaving according to distri-
bution Dp,q, the voter flips a coin b with bias p to perform Benaloh audits when
b = 1, up to a maximum number of q audits. In any case of termination, she
flips a coin b′ with bias p to perform BB audit when b′ = 1.

By the above description, we select as VSD resistance index i∗ = q and
BB resistance set J ∗ = {0, . . . , q}. For these i∗,J ∗ we compute the parameters
κ1 = μ1 = pq and κ2 = μ2 = 1−p, while we also set κ3 to the balanced parameter
1/2. Intuitively, this type of voter behaviour should result in a sufficient level of
resistance against of VSD and Replacement attacks, if the values 1 − p and pq

are small enough.

https://www.iacr.org/elections/

Ceremonies for End-to-End Verifiable Elections 331

As an instance of our search, we present our findings for n = 250000 voters
for distributions Dp,q, where p = 0.25, 0.5, 0.75 and q = 3, 5, 8, 10 in Table 4. In
particular, we present the deviation cutoff that can be guaranteed with detection
probability 90%, 99% and 99.9%, in an election where the ratio of complaining
voters is no more than 0.1%. For a more detailed description of our methodology,
we refer the reader to the full version [33, Sect. 6.2].

Table 4. Security w.r.t. detection probability 90%, 99% and 99, 9% of δ/n · % :=(tally
deviation)/(No. of voters) percentage for elections with n = 250000 voters and φ/n ≤
0, 1% for distributions Dp,q, where p = 0.25, 0.5, 0.75 and q = 3, 5, 8, 10. The detection
probability is defined as (1 − ε) · 100%, where ε is the error stated in Theorem 2.

Distribution Detection probability

90% 99% 99.9%

δ/n% δ/n% δ/n%

D0.25,3 6.1 7.31 8.71

D0.25,5 3.63 7.05 17.6

D0.5,3 28.99 30.17 31.12

D0.5,5 7.7 8.06 8.34

D0.5,8 1.5 1.62 1.69

D0.5,10 0.9 1.09 1.28

D0.75,8 26.2 27.71 28.35

D0.75,10 14.79 15.76 16.47

By reading the data in Table 4, we observe that the security guarantee is
optimised for the fair coin flipping case p = 0.5. Nevertheless, even for this
case, acceptable levels of security (e.g., (tally deviation)/(No. of voters) ≤ 3%
or error probability ≤ 1%) can be achieved only for relatively high values of
q ≥ 8. Besides, recall that these values are reached in the setting where a very
small rate (≤0.1%) of complaining voters is allowed. As a result, the auditing
behaviour of the voters and the complaint tolerance must be almost ideal in
order for a high level of security to be achieved.

7 Conclusion

We have introduced the concept of ceremonies to the setting of e-voting systems.
Our framework enables the modelling of all human participants to an e-voting
protocol as nodes in the protocol execution. Human nodes are modelled as ran-
dom variables over a set of admissible protocol behaviours which are described by
(finite state) transducers. Our analysis enables the exploration of feasibility and
infeasibility results regarding the verifiability of the Helios system (suitably mod-
ified to be a ceremony) conditioning on general classes of possible voter behav-
iours. The results from our characterization are essentially tight in the sense that

332 A. Kiayias et al.

behaviours excluded from our security theorem are too weak/predictable to offer
a reasonable level of verifiability.

Our results are only an initial step in the direction of fully incorporating
human behavior and interaction within cryptographic modeling. There are many
ways to extend the way human nodes are affected by the environment (e.g., tak-
ing into account the timing of other nodes) or being manipulated to perform the
protocol steps in a wrong order (cf. [29]). Still, even with our limited analysis, we
demonstrated that current election procedures, even those performed by cryp-
tographers, are extremely prone to manipulation. Our positive results, albeit
also modest, show that there exist behaviors that if uniformly regimented they
can provide a reasonable level of e-voting security. Designing e-voting protocols
for which this set of behaviors can be efficiently learnable by humans is a further
interesting direction motivated by our work.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium
(2008)

2. Alwen, J., Ostrovsky, R., Zhou, H.-S., Zikas, V.: Incoercible multi-party computa-
tion and universally composable receipt-free voting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 763–780. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48000-7 37

3. Bella, G., Coles-Kemp, L.: Layered analysis of security ceremonies. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376,
pp. 273–286. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30436-1 23

4. Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis YALEU/DCS/TR-561.
Yale University, New Haven (1987)

5. Benaloh, J.: Simple verifiable elections. In: Wallach, D.S., Rivest, R.L. (eds.) EVT.
USENIX Association (2006)

6. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended
abstract). In: STOC (1994)

7. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting
helios for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS
2011. LNCS, vol. 6879, pp. 335–354. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23822-2 19

8. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the fiat-shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34961-4 38

9. Carlos, M.C., Martina, J.E., Price, G., Custódio, R.F.: An updated threat model
for security ceremonies. In: Proceedings of ACM SAC, pp. 1836–1843. ACM (2013)

10. Carlos, M., Price, G.: Understanding the weaknesses of human-protocol interaction.
In: Blyth, J., Dietrich, S., Camp, L.J. (eds.) FC 2012. LNCS, vol. 7398, pp. 13–26.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34638-5 2

11. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

12. Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. IEEE Secur. Priv.
2(1), 38–47 (2004)

http://dx.doi.org/10.1007/978-3-662-48000-7_37
http://dx.doi.org/10.1007/978-3-642-30436-1_23
http://dx.doi.org/10.1007/978-3-642-23822-2_19
http://dx.doi.org/10.1007/978-3-642-23822-2_19
http://dx.doi.org/10.1007/978-3-642-34961-4_38
http://dx.doi.org/10.1007/978-3-642-34638-5_2

Ceremonies for End-to-End Verifiable Elections 333

13. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
doi:10.1007/3-540-48071-4 7

14. Chevallier-Mames, B., Fouque, P.-A., Pointcheval, D., Stern, J., Traoré, J.: On
some incompatible properties of voting schemes. In: Chaum, D., Jakobsson, M.,
Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards
Trustworthy Elections. LNCS, vol. 6000, pp. 191–199. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12980-3 11

15. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure elec-
tion scheme (extended abstract). In: FOCS (1985)

16. United States Election Assistance Commission. Voluntary voting systems guide-
lines (2005)

17. Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy.
ePrint Archive, 2010:625 (2010)

18. Cramer, R., Franklin, M., Schoenmakers, B., Yung, M.: Multi-authority secret-
ballot elections with linear work. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 72–83. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9 7

19. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 9

20. Damg̊ard, I., Groth, J., Salomonsen, G.: The theory and implementation of an
electronic voting system. In: Gritzalis, D. (ed.) Secure Electronic Voting. Advances
in Information Security, vol. 7, pp. 77–98. Springer, Heidelberg (2003)

21. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

22. Delis, A., Gavatha, K., Kiayias, A., Koutalakis, C., Nikolakopoulos, E.,
Roussopoulou, M., Sotirellis, G., Stathopoulos, P., Paschos, L., Vasilopoulos, P.,
Zacharias, T., Zhang, B.: Pressing the button for European elections 2014: public
attitudes towards verifiable e-voting in Greece. In: EVOTE (2014)

23. Ellison, C.M.: Ceremony design and analysis. IACR Cryptology ePrint Archive,
2007:399 (2007)

24. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

25. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol.
3089, pp. 46–60. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24852-1 4

26. Hatunic-Webster, E., Mtenzi, F., O’Shea, B.: Model for analysing anti-phishing
authentication ceremonies. In: ICITST, pp. 144–150 (2014)

27. Johansen, C., Jøsang, A.: Probabilistic modelling of humans in security ceremonies.
In: Garcia-Alfaro, J., Herrera-Joancomart́ı, J., Lupu, E., Posegga, J., Aldini, A.,
Martinelli, F., Suri, N. (eds.) DPM/QASA/SETOP -2014. LNCS, vol. 8872, pp.
277–292. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17016-9 18

28. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections.
IACR Cryptology ePrint Archive, 2002:165 (2002)

29. Karlof, C., Sastry, N., Wagner, D.: Cryptographic voting protocols: a systems per-
spective. In: USENIX (2005)

30. Karlof, C., Tygar, J.D., Wagner, D.: Conditioned-safe ceremonies and a user study
of an application to web authentication. In: SOUPS, ACM International Confer-
ence Proceeding Series. ACM (2009)

http://dx.doi.org/10.1007/3-540-48071-4_7
http://dx.doi.org/10.1007/978-3-642-12980-3_11
http://dx.doi.org/10.1007/3-540-68339-9_7
http://dx.doi.org/10.1007/3-540-69053-0_9
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-540-24852-1_4
http://dx.doi.org/10.1007/978-3-319-17016-9_18

334 A. Kiayias et al.

31. Karlof, C., Tygar, J.D., Wagner, D.: Conditioned-safe ceremonies and a user study
of an application to web authentication. In: NDSS (2009)

32. Kiayias, A., Korman, M., Walluck, D.: An internet voting system supporting user
privacy. In: ACSAC, pp. 165–174. IEEE Computer Society (2006)

33. Kiayias, A., Zacharias, T., Zhang, B.: Ceremonies for end-to-end verifiable elec-
tions. IACR Cryptology ePrint Archive, 2015:1166 (2015)

34. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 16

35. Kiayias, A., Zacharias, T., Zhang, B.: On the necessity of auditing for elec-
tion privacy in e-voting Systems. In: Katsikas, S.K., Sideridis, A.B. (eds.) e-
Democracy 2015. CCIS, vol. 570, pp. 3–17. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-27164-4 1

36. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting
protocols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 389–404. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15497-3 24

37. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. IACR Cryptology ePrint Archive, 2010:236 (2010)

38. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance:
new insights from a case study. In: IEEE Symposium on Security and Privacy, pp.
538–553. IEEE Computer Society (2011)

39. Küsters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting
systems. In: IEEE Symposium on Security and Privacy, pp. 395–409. IEEE Com-
puter Society (2012)

40. Martina, J.E., dos Santos, E., Carlos, M.C., Price, G., Custódio, R.F.: An adaptive
threat model for security ceremonies. Int. J. Inf. Secur. 14(2), 103–121 (2015)

41. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). doi:10.1007/11818175 22

42. Neff, C.A.: Practical high certainty intent verification for encrypted votes. Vote-
here, Inc. Whitepaper (2004)

43. Olembo, M.M., Bartsch, S., Volkamer, M.: Mental models of verifiability in voting.
In: Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol. 7985,
pp. 142–155. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39185-9 9

44. Radke, K., Boyd, C., Gonzalez Nieto, J., Brereton, M.: Ceremony analysis:
strengths and weaknesses. In: Camenisch, J., Fischer-Hübner, S., Murayama, Y.,
Portmann, A., Rieder, C. (eds.) SEC 2011. IAICT, vol. 354, pp. 104–115. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21424-0 9

45. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995). doi:10.1007/3-540-49264-X 32

46. Smyth, B., Frink, S., Clarkson, M.R.: Computational election verifiability: defini-
tions and an analysis of Helios and JCJ. Technical report

47. Tsoukalas, G., Papadimitriou, K., Louridas, P., Tsanakas, P.: From Helios to Zeus.
In: EVT/WOTE (2013)

48. Zagórski, F., Carback, R.T., Chaum, D., Clark, J., Essex, A., Vora, P.L.:
Remotegrity: design and use of an end-to-end verifiable remote voting system.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS
2013. LNCS, vol. 7954, pp. 441–457. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38980-1 28

http://dx.doi.org/10.1007/978-3-662-46803-6_16
http://dx.doi.org/10.1007/978-3-319-27164-4_1
http://dx.doi.org/10.1007/978-3-319-27164-4_1
http://dx.doi.org/10.1007/978-3-642-15497-3_24
http://dx.doi.org/10.1007/978-3-642-15497-3_24
http://dx.doi.org/10.1007/11818175_22
http://dx.doi.org/10.1007/978-3-642-39185-9_9
http://dx.doi.org/10.1007/978-3-642-21424-0_9
http://dx.doi.org/10.1007/3-540-49264-X_32
http://dx.doi.org/10.1007/978-3-642-38980-1_28
http://dx.doi.org/10.1007/978-3-642-38980-1_28

A Modular Security Analysis of EAP
and IEEE 802.11

Chris Brzuska1 and H̊akon Jacobsen2(B)

1 Hamburg University of Technology, Hamburg, Germany
brzuska@tuhh.de

2 Norwegian University of Science and Technology, Trondheim, Norway
hakoja@item.ntnu.no

Abstract. We conduct a reduction-based security analysis of the Exten-
sible Authentication Protocol (EAP), a widely used three-party authenti-
cation framework. We show that the main EAP construction, considered
as a 3P-AKE protocol, achieves a security notion which we call AKEw

under the assumption that the EAP method employs channel binding.
The AKEw notion resembles two-pass variant of the eCK model. Our
analysis is modular and reflects the compositional nature of EAP. Fur-
thermore, we show that the security of EAP can easily be upgraded
by adding an additional key-confirmation step. This key-confirmation
step is often carried out in practice in the form of a link-layer specific
AKE protocol that uses EAP for bootstrapping its authentication. A
concrete example of this is the extremely common IEEE 802.11 4-Way-
Handshake protocol used in WLANs. Building on our modular results
for EAP, we get as our second major result the first provable security
result for IEEE 802.11 with upper-layer authentication.

1 Introduction

The Extensible Authentication Protocol (EAP), specified in RFC 3748 [4], is a
widely used authentication framework for network access control. It is partic-
ularly common in wireless networks, being used by protocols like IEEE 802.11
(Wi-Fi), IEEE 802.16 (WiMAX) and various 3G/4G mobile networks. The typ-
ical use case of EAP is in settings where a client seeks to gain access to a
network controlled by an authenticator, but where the client and authenticator
do not share any common credentials. EAP allows the client and authenticator
to authenticate each other based on a mutually trusted server. Technically, EAP
is not a specific authentication mechanism on its own, but rather specifies a
certain generic three-party construction that composes other concrete authen-
tication protocols into a unified framework. This provides applications of EAP
the freedom to choose whatever concrete instantiation is suitable for their own
specific setting. The success of this approach is apparent by the huge and diverse
set of real-life deployments using the EAP framework.

H̊akon Jacobsen was supported by a STSM Grant from COST Action IC1306.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 335–365, 2017.
DOI: 10.1007/978-3-662-54388-7 12

336 C. Brzuska and H. Jacobsen

Fig. 1. The three-party EAP architecture. Example protocols shown in parenthesis.

Surprisingly then, given its prevalence and importance, there has been no
formal reduction-based provable security analysis of EAP. One reason for this
might be due to the general nature of EAP itself. As mentioned above, EAP is
not a single protocol on its own, but relies on other sub-protocols to instantiate it.
As such, many things in the EAP specification are left unspecified or considered
out of scope. However, in order to conduct a formal security analysis of EAP,
these details matter and require a careful treatment. Generally, the need to make
assumptions on protocols outside of EAP makes analysis harder (see also [15]),
because now it is not sufficient to consider a single protocol in isolation, but
rather it has to be considered it in tandem with other protocols.

Another reason for the lack of provable security analyses of EAP might be the
fact that it is a three-party protocol. As pointed out by Schwenk in his recent
work on Kerberos [28], apart from a few papers like [3,5,8,24,28] relatively
little work has been done on three-party protocols1 in the computational setting
compared to the huge literature on two-party protocols.

In this paper we aim to remedy this state-of-affairs by providing a formal
reductionist analysis of EAP. We then build on our result to obtain a result for
the extremely common IEEE 802.11 wireless standard with upper-layer authen-
tication. Current results on IEEE 802.11 have so far only focused on the much
simpler pre-shared key setting, while we can now provide an analysis of the full
protocol. Below we will further expand upon our results, but first we provide a
brief description of the EAP architecture and how IEEE 802.11 relates to it.

Review of EAP and IEEE 802.11. The general EAP architecture is shown in
Fig. 1. The exchange begins with the client and trusted server authenticating
each other using some concrete authentication protocol, like TLS. However, the
whole TLS exchange is wrapped within a generic set of EAP messages, known
as Request/Response messages. The combination of a concrete authentication
protocol together with the EAP encapsulation is called an EAP method. Numer-
ous EAP methods have been defined, with EAP-TLS being one of the most

1 Considered distinct from group-key exchange protocols.

A Modular Security Analysis of EAP and IEEE 802.11 337

widely supported. Besides authenticating each other, the EAP-method usually
also results in the client and server agreeing upon a shared key. The server will
forward this key to the authenticator over some separately established channel.
The EAP standard does not specify which protocol to use here, but in prac-
tice the de-facto standard is RADIUS [26].2 Once the key is transported from
the server to the authenticator—which so far has only operated in pass-through
mode between the client and the server—the EAP exchange is technically com-
plete. However, the client and authenticator now typically use the key distrib-
uted by EAP to authenticate each other using some link-layer specific protocol.
If the link-layer media is a wireless link provided by the IEEE 802.11 proto-
col [2], then this entire exchange is usually referred to as “802.11 with upper-layer
authentication”.

On the Difficulty of Modeling EAP. In this paper we consider the provable secu-
rity of both EAP and 802.11 with upper-layer authentication in the game-based
setting. We do this in a modular way: first considering the security properties
provided by EAP and 802.11 in isolation, then using a composition theorem
to link them together. However, since EAP inherently depends on other pro-
tocols, assessing the exact security guarantees it provides is in a sense harder
than for “standalone” protocols like TLS, IKE and SSH. While the EAP spec-
ification defines the security requirements of each EAP method [4, Sect. 7], this
only covers the communication between the client and the trusted server. Still,
as pointed out in the beginning, it is more accurate to think of EAP as a three-
party protocol. But RFC 3748 leaves unspecified how, for example, the derived
key should be transferred from the server to the authenticator. Hence, solely
using the security claims from RFC 3748 is not sufficient to decide the security
of EAP considered as a three-party protocol. In fact, without making further
assumptions on the various protocols that make up EAP, it is impossible to talk
about “the” EAP and its security. Consequently, in order to be able to analyze
EAP, we will have to make some assumptions on these protocols.

Firstly, in this paper we are going to assume that the communication between
the authenticator and the trusted server takes place over a secure channel. Specif-
ically, we model the link as a two-party authenticated channel establishment pro-
tocol (2P-ACCE) based on symmetric long-term pre-shared keys3 (see Sect. 2.3
for a formal definition). Since most key-transport protocols used between the
server and the authenticator support to be run over a secure channel (see e.g.
RADIUS-over-TLS [30]), this assumption seems reasonable.

Second, a well-known issue with the EAP architecture is the so-called “lying
authenticator problem”. Namely, a malicious authenticator may present false
2 Within the EAP standard lingo, the protocol run between the server and authen-

ticator is generally referred to as an Authentication, Authorization and Accounting
(AAA) protocol.

3 There is nothing fundamental about our assumption on symmetric PSKs here. We
made the choice simply because the trust-relationship between the server and authen-
ticator is commonly based on symmetric PSKs in practice. Our results work just as
well for certificate-based authentication.

338 C. Brzuska and H. Jacobsen

identity information to the client and the trusted server. Unless the EAP
method provides a feature known as channel binding [14], there is no way
for the client and server to verify that they are in fact talking to the same
authenticator (see [14, Sect. 3] for examples of attacks that this may enable).
Hence, in this paper we are generally going to assume that EAP provides chan-
nel binding, although we will also briefly explore the security guarantees pro-
vided by EAP without channel binding in Sect. 4.3. While there are a couple of
ways to achieve channel binding in EAP (see [14, Sect. 4.1]), here we are only
going to focus on the cryptographically simplest one, described in RFC draft
draft-ohba-eap-channel-binding-02 [25]. In this approach, the client and
authenticator identities are being input to the key-derivation step of EAP, cryp-
tographically binding the session key to the right pair of identities (see Sect. 4.2
for details).

Our Contributions. The main contributions of this paper are the following.

– We provide the first reductionist-based provable security result for three-party
EAP with channel binding.

– We show how the security guarantees of EAP can be upgraded by adding an
additional key-confirmation step (modeled as a 2P-AKE). This corresponds
to a common usage pattern where EAP is first used to bootstrap the estab-
lishment of a common key among the client and authenticator, then some
lower-layer specific 2P-AKE is run between the client and authenticator to
mutually prove possession of that key (in addition to establishing session keys
for the lower-layer link).

– We provide the first game-based provable security result for the IEEE 802.11
4-way-handshake protocol in the pre-shared key setting. This corresponds to
the setting typically found in home WLANs.

– More importantly however, the results above combine to provide the first
reductionist-based provable-security result for the full IEEE 802.11 protocol
with upper-layer authentication. This corresponds to the setting usually found
in enterprise and university WLANs. For instance, the eduroam network, which
is used to provide wireless roaming services to university and research insti-
tutions, uses IEEE 802.11 with upper-layer authentication.

– Our technical means for obtaining the above results are two modular compo-
sition theorems which may be of separate interest. Namely, the two theorems
consider a fairly generic way of constructing a 3P-AKE protocol, using generic
2P-AKEs and secure channels as building blocks. For instance, both Kerberos
and the AKA protocol used within the UMTS and LTE mobile networks, fit
the description of our 3P-AKE construction. In particular, for the latter pro-
tocol, our theorems might enable a more general and modular analysis than
the one recently provided by Alt et al. [5].

Technical Overview of Our Results. The main technical contributions of this
paper are two fairly generic composition theorems which correspond to the
“cryptographic core” of EAP and IEEE 802.11 with upper-layer authentica-
tion, respectively. To obtain these theorems, however, we have to provide an

A Modular Security Analysis of EAP and IEEE 802.11 339

appropriate security model. Our starting point is the original 3P-AKE model
of Bellare and Rogaway [8], but which we update to accommodate our needs.
Most importantly, EAP and IEEE 802.11—both when considered separately
and when combined—can achieve different levels of security. In order to capture
these differences we have to define three different corruption models of differing
strengths. These definitions are based on the eCK model4 [21], and are primarily
concerned with the level of adaptivity afforded to the adversary with respect to
corruption queries. Preempting our own results a bit, we show that standalone
EAP can achieve a restricted variant of forward secrecy, while IEEE 802.11 with-
out upper-layer authentication achieves no forward secrecy (this is natural since
it relies on symmetric primitives exclusively). However, when EAP and 802.11
are combined, the security is upgraded to achieve forward secrecy in our strongest
corruption model. Briefly, the difference between the strongest security model
and the intermediate one depends on what happens if the test-session does not
have partner. When the test-session does not have a partner in the strongest
model, the adversary is still allowed to learn all the long-term keys of the parties
involved, as long as this happens after the test-session accepted. On the other
hand, if the test-session does not have a partner in the intermediate model, then
the adversary is forbidden from learning any of these long-term keys. If the test-
session does have a partner, then there is no difference between the two models:
the adversary is allowed to learn any long-term key at any time. The formal
definitions of these models are provided in Sect. 2.2.

Intuitively, the reason why EAP on its own cannot achieve security in our
strongest model is because it does not provide explicit entity authentication.
Specifically, the client has no guarantee that the key-transport protocol between
the server and authenticator actually took place without running some lower-link
protocol to confirm. Suppose an adversary could learn the long-term key shared
between the server and the authenticator after the client accepted, but before the
key transport took place. Then it could simply impersonate the authenticator
towards the server and have it send over the session key it previously established
with the client. According to our strongest security model this adversary would
be valid (since the exposure of the PSK happened after the client accepted this
is allowed), whereas in the intermediate one it would not (since the client session
does have a partner, the PSK cannot be exposed at all). Essentially, the pur-
pose of the lower-layer protocol is to provide key-confirmation to the standalone
EAP protocol, which ensures that the client will always have a partner before it
accepts.

Besides the introduction of the three different corruption models, we only
provide a few other changes to the original 3P-AKE model of Bellare and
Rogaway [8]. For example, we support both asymmetric and symmetric long-
term keys, and dispense with the explicit SendS query to the trusted server
(now modeled simply as a regular Send query).

One thing we do keep from [8] however, is the concept of partner functions.
Interestingly, the use of partner functions has seen rather limited adoption when

4 However, we do not consider ephemeral key leakage in this paper.

340 C. Brzuska and H. Jacobsen

compared to partnering based on matching conversations [7] or abstract session
identifiers (SIDs) [6]. However, when modeling EAP, we are in the peculiar situ-
ation that the parties that we need to partner (the client and the authenticator)
do not have any messages in common! Naturally, this makes partnering based
on matching conversations more difficult, but it also severely limits our choice
of SIDs: we are essentially forced to pick their session keys as the SID. While
using the session key as the SID is reasonable in many settings (cf. [17]), it does
not guarantee public partnering (see [11]). This is important for modular com-
position proofs like our own. While partnering functions have been criticized
for being non-intuitive and hard to work with (even by Rogaway himself [27,
Sect. 6]), they generalize more naturally to the three-party setting than SIDs.
Essentially, this is because partner functions can take global transcript informa-
tion into consideration rather than only the local views of the two partners. In a
companion manuscript [10] we explore partner functions in more detail, showing
their soundness as a partnering tool for analyzing key exchange protocols.

After proving the two composition results in Sect. 3 for generic protocols, we
show how to apply them to EAP with and without upper-layer authentication
in Sects. 4 and 5, respectively.

2 Formal Models

2.1 A Unified Execution Model

Protocol Participants. An AKE protocol is carried out by a set of parties U ∈ P,
where U either takes on the role of initiator, responder or server, i.e., P is parti-
tioned into three disjoint sets I, R and S, consisting of the initiators, responders
and servers, respectively. In this paper we assume that all initiators and servers
are in possession of a long-term asymmetric key-pair (skU , pkU), while all respon-
ders and servers share a symmetric pre-shared key K. For every party holding
a public key, we assume that the other parties have an authenticated copy of it.

Syntax. A protocol is a tuple Π = (KG, Σ) of probabilistic polynomial-time
algorithms, where KG specifies how long-term keys are generated for each party,
and Σ specifies how (honest) parties behave. Each party U ∈ P can take part in
multiple executions of the protocol, both concurrently and subsequently, called
a session. We use an administrative label πi

U to refer to the ith session at user U .
This will sometimes also be simplified to π. Associated to each session πi

U , there
is a collection of variables that embodies the (local) state of πi

U during the
protocol.

– skU , pkU – the long-term private/public key of party U ,
– peers – a list of the identities of the intended communication peers of πi

U ,
– peerPK – a list of the public keys of the parties in πi

U .peers,
– peerPSK – a list of the long-term PSKs shared between U and πi

U .peers,
– �α = (α1, . . . , αn) – a vector of accept states αi ∈ {running, accepted, rejected},
– k ∈ {0, 1}λ ∪ {⊥} – the symmetric session-key derived by πi

U .

A Modular Security Analysis of EAP and IEEE 802.11 341

Fig. 2. Generic security experiment for a three-party protocol where all initiators and
servers are in possession of a public key, and all responders and servers share a sym-
metric PSK.

Only initiators and responders accepts sessions keys, i.e., if S ∈ S, then we
always have πi

S .k = ⊥. Note that this is pure formalism; we certainly except
many protocols in which the trusted server might be in possession of the session
key—in fact, the trusted server might be the one that choses and distributes
it—we simply do no not associate it with the variable k.

Remark 1. We use a list of acceptance states �α in order to model protocols
that are logically built out of sub-protocols. The individual acceptance states αi

provides a convenient way to signal to the adversary that a session has accepted
in some intermediate sub-protocol Πi of the full protocol Π. By convention, we
will let αn represent the running-state of the full protocol, and use αF

def= αn to
denote this state. Specifically, αF has the same role as the single running-state
variable α which is typically used by most other formal protocol models. Saying
that π is running, or that it has accepted or rejected, refers to the value of αF .

We require the following semantics of the variables �α = (α1, . . . , αn) and k:

αi = accepted =⇒ αi−1 = accepted, (1)
αi = rejected =⇒ αi+1 = rejected, (2)

π.αn = accepted =⇒ π.k �= ⊥. (3)

By convention, whenever we set αi = rejected, we also automatically set αj =
rejected for all i < j, in accordance with (2). Moreover, we assume that the
session key π.k is set only once.

A Unified Security Experiment. To define the security goals of both AKE and
ACCE protocols we use the unified experiment shown in Fig. 2. Experiment
ExpΠ,Q,A(λ) is parameterized on the protocol Π, a query set Q, and the adversary
A. While the query sets used to define AKE and ACCE security will be different,
they will both contain the following “base” query set Qbase:

– NewSession(U, [V,W]): This query creates a new session πi
U at party U , option-

ally specifying its intended communication peers V and W . The state vari-
ables are initiated as follows: πi

U .k = ⊥, πi
U .�α = {running, . . . , running}, if V

342 C. Brzuska and H. Jacobsen

and/or W are specified as U ’s peers, then πi
U .peers = {V,W}, πi

U .sk = skU ,
πi

U .pk = pkU , π.peerPK = {pkV , pkW }5 and π.peerPSK = {KUV ,KUW } (See
footnote 5). It is required that U , V and W all have different roles. Finally, if
U ∈ I, then πi

U also produces its first message m according to specification of
protocol Π. Both the administrative label πi

U and m are returned to A.
– Send(π,m): If π.αF �= running, return ⊥. Otherwise, π creates a response

message m∗ according to the specification Σ. This depends on π’s role and
current internal state. Both m∗ and π.�α are returned to A.

– Reveal(πi
U): If π.αF �= accepted or U ∈ S, return ⊥. Else, return πi

U .k. From
this point on πi

U is said to be revealed. Note that πi
U is not considered revealed

if the Reveal query was made before π accepted.
– LongTermKeyReveal(U, [V]): Depending on the second input parameter, this

query returns a certain long-term key of party U .
• LongTermKeyReveal(U): If U has an associated private-public key-pair

(skU , pkU), return the private key skU .
• LongTermKeyReveal(U, V): If U and V share a symmetric long-term key

KUV , return KUV .
After a long-term key is leaked we say that it is exposed and the corresponding
party corrupted.

Note that we are working in the post-specified peer model [13], meaning that
the identities of a session’s peers might not necessarily be known by the session
at the onset of the protocol, but are instead learned as the protocol progresses.

Protocol Correctness. It is required that a protocol satisfies the following correct-
ness requirement. In an honest execution of the protocol between an initiator
πi

A, a responder πj
B and a trusted server πk

S—meaning that all messages are
faithfully transmitted between them according the protocol description—then
all sessions end up accepting, and πi

A and πj
B both hold the same session key

k �= ⊥.

Remark 2. Note that experiment ExpΠ,Q,A(λ) does not provide any output and
does not define any “winning condition” for A. Instead, it provides a single execu-
tion experiment on which we can define many different winning conditions. This
is convenient when we later want to define AKE-security and ACCE-security.

Transcripts and Partner Functions. Consider a run of experiment ExpΠ,Q,A(λ),
where Qbase ⊆ Q. Let T be the ordered transcript consisting of all the Send and
NewSession queries made by A, together with their responses. A transcript T
is a prefix of T ′, written T ⊆ T ′, if the first |T | entries of T ′ are identical to
T . We let T denote the set of all possible transcripts generated from running
experiment ExpΠ,Q,A(λ). To define partnering in our security analysis we use the
concept of partner functions as introduced by Bellare and Rogaway [8].

5 In case V or W does not hold a public key, or if U does not a share a PSK with V
or W , then these values are set to ⊥.

A Modular Security Analysis of EAP and IEEE 802.11 343

Definition 1 (Partner functions). A partner function is a polynomial-time
function f : T × (P \ S) × N → ((P \ S) × N) ∪ {⊥}, subject to the following
requirement

f(T,U, i) = (V, j) =⇒ f(T ′, U, i) = (V, j) for all T ⊆ T ′. (4)

Instead of f(T,U, i) = (V, j), we also write fT (πi
U) = πj

V , or even just
fT (π) = π ′ if the exact identities of the sessions are irrelevant.

Definition 2 (Partnering). Let f be a partner function. A session π′ is a
partner to π if fT (π) = π ′.

Remark 3. Partnering is only defined between initiators and responders. Servers
are not considered partners to any session.

Partnering Soundness. For a security analysis based on partner functions to be
meaningful, the partner function needs to satisfy certain soundness properties.
Briefly, soundness demands that partners should: (1) end up with the same
session key, (2) agree upon who they are talking to, (3) have compatible roles, and
(4) be unique. These requirements are essentially the same as those demanded
for SIDs through the “Match-security” notion introduced by Brzuska et al. [11].

Definition 3 (Partnering soundness predicate). Consider a run of exper-
iment ExpΠ,Q,A(λ), and let T be the corresponding transcript. Predicate Sound

is true if and only if the following holds for all T ′ ⊆ T . If sessions πi
U and πj

V

have both accepted and fT ′(πi
U) = πj

V , then

1. πi
U .k = πj

V .k �= ⊥,
2. πi

U .peers = {V,W}, πj
V .peers = {U,W}, and W ∈ S,

3. U ∈ I ∧ V ∈ R or U ∈ R ∧ V ∈ I,
4. there is no π ′ �= πi

U such that fT ′(π ′) = fT ′(πi
U).

We let ExpSoundΠ,Q,A(λ) ⇒ 1 denote the event that predicate Sound evaluated to true.

Remark 4. Note that predicate Sound depends on the partner function f .

Remark 5. The use of partner functions to analyze key exchange protocols is
rare in the literature. To the best of our knowledge, besides the original paper
by Bellare and Rogaway [8], it has only been used in one other paper by Shoup
and Rubin [29].

2.2 2P-AKE and 3P-AKE

Syntax. A 2P/3P-AKE protocol has the same syntax as the general protocol
defined in Sect. 2.1. Moreover, in our framework, there is no syntactical difference
between a 2P-AKE protocol and a 3P-AKE protocol. However, in a 2P-AKE
protocol there is no trusted server session S ∈ S, and the session variables
π.peers, π.peerPK and π.peerPSK contain at most a single entry.

344 C. Brzuska and H. Jacobsen

Fig. 3. Freshness predicates for security models AKE∗ ∈ {AKE, AKEw, AKEstatic} and
ACCE. The list LTKeys only contains actually existing long-term keys, e.g., if V is a
responder party, then there is no corresponding private key skV .

AKE Security. Besides soundness, a secure AKE protocol is supposed to provide
secrecy of the distributed session keys. To capture this, the base query set Qbase

is extended with the following query.

– Test(πi
U): If πi

U .αF �= accepted or U ∈ S, return ⊥. Otherwise, draw a random
bit b, and return πi

U ’s session key if b = 0, or a random key if b = 1. We call
πi

U the test-session and the returned key the challenge-key. The Test query
can only be made once.

Let Q = Qbase ∪ {Test}. Experiment ExpΠ,Q,A(λ) stops when A outputs a
bit b′. The goal of the adversary is to correctly guess the secret bit b used to
answer the Test query. However, A is only given “credit” if the chosen test-session
was fresh. A session is fresh if the adversary did not learn its session by trivial
means, for example by revealing it or by impersonating its peers after having
obtained their long-term keys etc. Formally, in Fig. 3, we specify three freshness
predicates FreshAKE, FreshAKEw , and FreshAKEstatic , of various permissiveness with
respect to long-term key leakage. Each freshness predicate also give rise to a
corresponding security notion AKE, AKEw and AKEstatic.

The AKE model is our “partner function analogue” of the standard eCK
model (as defined in the updated version [21] of the original paper [22]), with
the main difference being that we do not consider leakage of ephemeral val-
ues. In particular, the AKE model captures both key-compromise impersonation
(KCI) attacks and forward secrecy. KCI attacks are captured since the test-
session’s own long-term private key can always be exposed by the adversary.
Forward secrecy is captured since the adversary can, under certain conditions,
learn the long-term keys of the peers of the test-session too. Specifically, the
forward secrecy guarantees provided by the AKE model are rather strong: if a
session has a partner, then the adversary is allowed to expose any long-term
key it wants, while if the session does not have a partner, then the adversary

A Modular Security Analysis of EAP and IEEE 802.11 345

must wait until after the session accepted before it can expose the relevant keys.
Note that partnering is used to model passiveness by the adversary in the test-
session. Intuitively, even if the adversary knew all the long-term keys before the
test-session started, if the test-session ends up with a partner, then the adversary
cannot actually have exploited its knowledge of the keys.

Compared to the AKE model, the AKEw model is more restrictive with
respect to forward secrecy: if the test-session does not have partner, then the
adversary is disallowed from exposing any of the relevant long-term keys. The
AKEw model is similar to the two-pass variant of the eCK model (see [21, Def-
inition 3]). As mentioned in the introduction, standalone EAP does not achieve
security in the AKE model, but we will show that it is secure in the AKEw

model.
Finally, the AKEstatic model targets protocols that do not provide any for-

ward secrecy, hence it disallows the adversary from exposing the long-term keys
altogether (of course, the adversary is allowed to expose long-term keys unrelated
to the test-session and its peers).

Definition 4 (Key-indistinguishability predicate). Suppose π was the test-
session chosen by A in a run of experiment ExpΠ,Q,A(λ), b was the random bit
used in answering the Test query, and suppose b′ was the final output of A.
Define predicate AKE∗ ∈ {AKE,AKEw,AKEstatic} as follows:

AKE∗ def=

{
b = b′, if Fresh∗

AKE(π) = true

true with probability 1/2, if Fresh∗
AKE(π) = false.

(5)

Let ExpAKE
∗

Π,Q,A(λ) ⇒ 1 denote the event that AKE∗ evaluated to true.

Definition 5 (AKE security). A protocol Π is AKE∗-secure, if there exists a
partnering function f , such that for all PPT adversaries A,

– AdvSoundΠ,A,f (λ) def= 1 − Pr[ExpSoundΠ,QA(λ) ⇒ 1] is negligible in security parameter λ,
and

– AdvAKE
∗

Π,A,f (λ) def= |2 · Pr[ExpAKE
∗

Π,Q,A(λ) ⇒ 1] − 1| is negligible in security parame-
ter λ,

where AKE∗ ∈ {AKE,AKEw,AKEstatic}.

2.3 (2P)-ACCE

Syntax. A (2P)-ACCE protocol is a two-party protocol as defined in Sect. 2.1,
together with an associated stateful authenticated encryption scheme (stAE)
stE = (st.Gen, stE.Init, stE.Enc, stE.Dec) (following [20]6). Intuitively, an ACCE

6 For simplicity, we omit the properties of length-hiding and associated data in our
treatment of ACCE. This omission is immaterial for the results established in this
paper.

346 C. Brzuska and H. Jacobsen

Fig. 4. The Encrypt and Decrypt queries for the ACCE security experiments. The vari-
ables k, b, stE, stD, �C, u, v and in-sync all belong to the internal state of π. At the
creation of every session π, a bit b is drawn uniformly at random from {0, 1}, stE and
stD and are initialized by stE.Gen, the list �C is initialized to ∅, the counters u and v
are set to 0, and in-sync is set to true.

protocol is an amalgamation of an ordinary 2P-AKE protocol and a secure chan-
nel based on symmetric keys, where the session keys of the 2P-AKE protocol are
used to key the secure channel.

Correctness of the stAE scheme demands that if the deterministic algorithm
st.Init produced initial states st0E , st0D; and the ACCE session key k was used to
produce a sequence of ciphertext/state pairs (Ci, st

i+1
E) ← stE.Enc(k,mi, st

i
E)

such that Ci �= ⊥ for all i ≥ 0; then one must have, for all i ≥ 0, that m′
i = mi

in the sequence of decryptions (m′
i, st

i+1
D) ← stE.Dec(k,Ci, st

i
D).

ACCE Security. To define security of an ACCE protocol, we extend the base
query set Qbase with two additional queries, Encrypt and Decrypt, that allow
the adversary to interact with the channels established in the protocol. The two
queries are specified in Fig. 4.

Let Q = Qbase ∪ {Encrypt,Decrypt}. Experiment ExpΠ,Q,A(λ) stops when A
outputs a pair (π, b′), consisting of a session π and a bit b′. The goal of the
adversary, formally captured in the following predicate, is to break either the
confidentiality or integrity of one of the channels established by a fresh session.

Definition 6 (ACCE predicates). Consider a run of experiment ExpΠ,Q,A
(λ), and let T be the corresponding transcript. Suppose (π, b′) was the final output
by A.

– Predicate ACCE-int is true if and only if, sometime during ExpΠ,Q,A(λ), A
made a Decrypt query that output something other than ⊥ for a fresh session π.

– Predicate ACCE-priv is defined as follows:

ACCE-priv def=

{
π.b = b′, if Fresh(π) = true

true with probability 1/2, if Fresh(π) = false.
(6)

Let ExpACCE-intΠ,Q,A (λ) ⇒ 1 (resp. ExpACCE-privΠ,Q,A (λ) ⇒ 1) denote the event that
ACCE-int (resp. ACCE-priv) evaluated to true.

A Modular Security Analysis of EAP and IEEE 802.11 347

Definition 7 (ACCE security). A protocol Π is ACCE-secure, if there exists
a partnering function f , such that for all PPT adversaries A, the following are
all negligible in the security parameter λ,

– AdvSoundΠ,A,f (λ) def= Pr[ExpSoundΠ,Q,A(λ) ⇒ 1],

– AdvACCE-intΠ,A,f (λ) def= Pr[ExpACCE-intΠ,Q,A (λ) ⇒ 1],

– AdvACCE-privΠ,A,f (λ) def= |2 · Pr[ExpACCE-privΠ,Q,A (λ) ⇒ 1] − 1|.
Remark 6. Our definition of ACCE security is slightly different from the stan-
dard one introduced by Jager et al. [16]. Specifically, in the standard formulation
of ACCE, the Decrypt oracle is conditional, meaning that if π.b = 0, then Decrypt
always returns ⊥ irregardless of whether the supplied ciphertext was a valid
forgery or not. This is done in order to encode both the channel privacy and the
channel integrity goal as a single distinguishing game. However, this makes proofs
relying on ACCE security more cumbersome since the Decrypt query does not
actually provide a proper decryption oracle. By casting ACCE channel security
as two separate security goals, the Decrypt query becomes a proper decryption
oracle. In the full version we prove that our definition of ACCE is equivalent
with the standard one.

2.4 Explicit Entity Authentication

Explicit entity authentication is frequently considered one of the required secu-
rity properties of a protocol. However, in this paper we will only prove/assume
it for some protocols, because some of the protocols we consider simply cannot
achieve it. The need for AKE protocols to provide explicit entity authentication
has actually been somewhat disputed in the literature (see e.g. [8, Sect. 1.6], [27,
Sect. 6] or [19, Sect. 1.2]). On the other hand, explicit entity authentication has
always been part of the requirements of ACCE security [16,18,20]. Since the
definition of entity authentication is formulated identically for both AKE and
ACCE protocols, we give a merged definition here. Let QAKE denote the query
set of the AKE experiment, and let QACCE denote the query set of the ACCE
experiment.

Definition 8 (Entity authentication predicate). Let T be the transcript of
experiment ExpΠ,A,QX

(λ). Predicate Auth is true if and only if the following holds
for all T ′ ⊆ T . For all fresh sessions π in T ′:

π.α = accepted =⇒ ∃π ′ suchthat fT ′(π) = π ′. (7)

Let ExpX-Auth
Π,QX,A(λ) ⇒ 1 denote the event that Auth is true, where X ∈

{AKE,ACCE}.
Definition 9 (Explicit entity authentication). A protocol Π provides
explicit entity authentication if there exists partner function f , such that for
all PPT adversaries A, it holds that

348 C. Brzuska and H. Jacobsen

1. Π is X-secure, and
2. AdvX-EA

Π,A,Q(λ) def= 1−Pr[ExpX-Auth
Π,A,f (λ) ⇒ 1] is negligible in security parameter λ,

where X ∈ {AKE,AKEw,AKEstatic,ACCE}.
Remark 7. Note that the explicit entity authentication of an AKE (resp. ACCE)
scheme needs to hold with the same partner function as used to prove its AKE
(resp. ACCE) security.

3 Generic Composition Results

In this section we prove two composition theorems for two fairly generic con-
structions of 3P-AKE protocols. The first construction, shown as protocol Π3

in Fig. 5, resembles the standalone EAP. It uses as building blocks any secure
2P-AKE protocol (in the strongest AKE model), any secure 2P-ACCE proto-
col, and a pseudorandom function for channel binding. The second construction,
shown as protocol Π5 in Fig. 5, resembles the EAP combined with a subsequent
key-confirmation step, modeled here as a 2P-AKE protocol secure in the weakest
AKEstatic model. We emphasize that the 3P-AKE protocol used as the underlying
building block by protocol Π5, does not necessarily have to be based on the Π3

construction. Any 3P-AKE protocol secure according to the AKEw model works.
In Sects. 4 and 5, we will see how these generic constructions can be instantiated
with EAP and IEEE 802.11 with upper-layer authentication, respectively.

A B S

A, B, Π1 (2P-AKE)

Π2 (2P-ACCE)

Ckey-message

Π4 (2P-AKEstatic)

kAS , kAB

α3 = accepted
kAS , kAB

α1 = accepted

α2 = accepted

A, kAB

α3 = accepted

α2 = accepted

A, kAB

α3 = accepted

α4 = α5 = accepted α4 = α5 = accepted

Π3

(3P-AKEw)Π5

(3P-AKE)

kAB ← PRF(kAS , A, B)

Fig. 5. (Right) Construction of a 3P-AKEw-secure protocol Π3, using as building
blocks a 2P-AKE-secure protocol Π1, an ACCE-secure protocol Π2, and a pseudo-
random function PRF. (Left) Construction of a 3P-AKE secure protocol Π5, using as
building blocks a 3P-AKEw secure protocol Π3 and a 2P-AKEstatic-secure protocol Π4.

3.1 2P-AKE + 2P-ACCE + Channel Binding =⇒ 3P-AKEw

Construction. From a 2P-AKE protocol Π1 (based on public keys), a 2P-ACCE
protocol Π2 (based on pre-shared symmetric keys), and a pseudorandom function
PRF, we construct the 3P-AKE protocol Π3 shown in Fig. 5. Specifically, protocol

A Modular Security Analysis of EAP and IEEE 802.11 349

Π3 works as follows. First, sub-protocol Π1 is run between the initiator A and
the trusted server S to derive an intermediate key kAS . A also communicates
the identities A and B to S, where B is the identity of responder that A wants
to talk to. Note that A knows both S and B at the beginning of the protocol
whereas S learns about B from the identities communicated by A. Technically,
this means that a session at A needs to be initialized with the identities of S
and B (setting the peers variable accordingly), while a session at S will update
its peers variable to include B after receiving this identity from A.

From kAS , both A and S derive the key kAB ← PRF(kAS , A,B). This key
will be the ultimate session key shared between A and B in protocol Π3. In order
for S to transfer kAB to B they establish a secure channel using sub-protocol Π2.
Once established, S sends the session key kAB over the channel to B. Alongside
kAB , the server S also sends the identity of A to B (causing the receiving B to
update its peers variable). For simplicity, we assume that the transfer of A and
kAB is done using a single channel message, which we call the Ckey message.
Note that the initiator A accepts in protocol Π3 when it has derived kAB , while
the responder B accepts once it has received—and properly decrypted—the Ckey

message, finally obtaining kAB .

Result. Our first composition result shows that protocol Π3 is 3P-AKEw-secure
if sub-protocol Π1 is 2P-AKE-secure, sub-protocol Π2 is 2P-ACCE-secure, and
PRF is a pseudorandom function. Note that since Π3 does not provide explicit
entity authentication—in fact, no initiator session A will have a partner at the
time it accepts—it cannot achieve security in the strongest AKE model due to
the attack mentioned for standalone EAP in the introduction.

Roughly, the proof of the first composition theorem works as follows. The 2P-
AKE-security of sub-protocol Π1 allows us to swap out the intermediate keys
kAS with random ones. The PRF-security of the function PRF then allows us
to replace the derived session keys kAB with random ones. Finally, the ACCE
channel-privacy of sub-protocol Π2 ensures that the adversary learns nothing
about the session keys transfered in the Ckey messages.

However, in order to make our proof work, we have to make one technical
assumption on the partner function of sub-protocol Π2. Namely, we have to
assume that it is symmetric, meaning that f2(π) = π ′ implies f2(π ′) = π . Note
that this requirement is straightforwardly met by partner functions based on
SIDs.

Theorem 1. Let Π3 be the protocol described in Sect. 3.1. If protocol Π1 is 2P-
AKE-secure, Π2 is ACCE-secure using a symmetric partner function, and PRF
is a secure PRF, then there exists a partner function f3, such that protocol Π3

is 3P-AKEw-secure.

350 C. Brzuska and H. Jacobsen

Concretely, if Π1 is AKE-secure with the partner function f1, and Π2 is
ACCE-secure with the symmetric partner function f2, then we can create a part-
ner function f3, and adversaries B1, . . . ,B4 and D, such that

Adv3P-AKEw

Π3,A,f3 (λ) ≤ AdvACCE-EAΠ2,B1,f2(λ) + AdvACCE-intΠ2,B2,f2(λ)

+ (nπ +1)2 · |I ∪ R|2 ·
(
AdvACCE-privΠ2,B3,f2

(λ)+Adv2P-AKE
Π1,B4,f1(λ) + AdvPRFPRF,D(λ)

)
,

(8)

where nπ is an upper bound on the number of sessions at each party.

Proof. We begin by defining the partner function f3 using the partner functions
for sub-protocols Π1 and Π2.

Defining the Partner Function for Π3. Intuitively, f3 is constructed by “com-
posing” the two partner functions f1 and f2 assumed to exist for sub-protocols
Π1 and Π2. For example, if πi

A is an initiator session, then f3(πi
A) = πj

B if there
exists a trusted server session πk

S , such that f1(πi
A) = πk

S and f2(πk
S) = πj

B ,
That is, πj

B is πi
A’s f3-partner if there exists a server session πk

S that acts as the
connection between them in the two sub-protocols Π1 and Π2.7

More detailed, when πi
A is an initiator session having intended peers B

(responder) and S (server), then:

– f3,T3(π
i
A) = πj

B if,
1. f1,T1(π

i
A) = πk

S and f2,T2(π
k
S) = πj

B ,
2. πj

B .peers = {A,S},
3. πk

S .peers = {A,B} (in particular, this means that πk
S received the same

identities that πi
A sent on the A-S link Fig. 5),

– f3,T3(π
i
A) = ⊥, otherwise.

When πj
B is a responder session having intended peers A and S, then f3 is defined

similarly by “reversing” the order of f1 and f2:

– f3,T3(π
j
B) = πi

A if,
1. f2,T2(π

j
B) = πk

S and f1,T1(π
k
S) = πi

A;
2. πi

A.peers = {B,S},
3. πk

S .peers = {A,B},
– f3,T3(π

j
B) = ⊥, otherwise.

Soundness. The soundness of f3 follows from the soundness of f1 and f2, the
ACCE-security of protocol Π2 (specifically, its channel integrity), together with
the fact that PRF is deterministic. The proof is given in the full version.

AKEw-Security. The proof of AKEw-security of protocol Π3 is structured as a
sequence of games. In the following, when we say that a certain game aborts, we
mean that the challenger stops the execution of the experiment and outputs a
random bit on A’s behalf.
7 Technically, to make this formally precise, one needs to extract from the 3P-AKE

transcript T two transcripts T1 and T2, containing the queries pertaining to the two-
party sub-protocols Π1 and Π2, respectively, so that running f1 and f2 on them is
well-defined. The details are provided in the full paper.

A Modular Security Analysis of EAP and IEEE 802.11 351

Game 0: This is the real 3P-AKEw security game, hence

AdvG0

Π3,A,f3
(λ) = Adv3P-AKEw

Π3,A,f3
(λ).

Game 1: This game proceeds as the previous one, but aborts if a fresh responder
or trusted server session accepts maliciously in sub-protocol Π2, meaning that it
accepted without a partner in Π2 according to f2.

Lemma 1. AdvG0

Π3,A,f3
(λ) ≤ AdvG1

Π3,A,f3
(λ) + AdvACCE-EA

Π2,B1,f2
(λ).

Proof (Sketch). Reduction B1 begins by creating all the long-term keys for sub-
protocol Π1 and selecting a random bit b. Essentially, B1 will simulate the Π1

part of Π3 itself, while forwarding all messages pertaining to Π2 to its 2P-ACCE
challenger. In particular, B1 creates all the intermediate keys kAS itself, and
from them derive the session keys kAB . In order to create the Ckey message of
some trusted server session π, B1 issues an Encrypt(π, kAB , kAB) query to its
own ACCE experiment. Moreover, when A issues a Test query, then depending
on bit b, B1 returns the real session key or a random key. When A terminates,
then B1 terminates too (in this case no malicious accept has occurred).

To analyze B1’s winning probability, we only have to observe that B1 provides
a perfect simulation of Π3 for A. This means that if a malicious accept occurs in
sub-protocol Π2, then a malicious accept also occurs in B1’s ACCE experiment.

��
Remark 8. Note that the abort condition in Game 1 does not mean that every
session in protocol Π3 will have a partner (according to f3). In fact, all the
initiator sessions in protocol Π3 will accept without a partner.

Game 2: This game proceeds as the previous one, but it aborts if a fresh respon-
der session accepts on receiving a Ckey message that was not legitimately pro-
duced by its partner in Π2.

Lemma 2. AdvG1

Π3,A,f3
(λ) ≤ AdvG2

Π3,A,f3
(λ) + AdvACCE-int

Π2,B2,f2
(λ).

Proof (Sketch). B2 works exactly like algorithm B1 in the previous proof, but it
also simulates the abort on malicious accept. This simulation is possible because
the partnering function f2 is based on the public transcript T2. It only remains
to argue that the new abort event of Game 2 implies a forgery in B2’s ACCE
experiment. This amounts to showing that if a session in Π3 is fresh according to
FreshAKEw , then the corresponding session in Π2 is fresh according to FreshACCE.
But this is true because the FreshAKEw predicate is more restrictive than the
FreshACCE predicate. ��

Game 3: In this game the challenger tries to guess the test-session chosen by A,
together with its eventual partner (if any). If the guess is wrong, or if A violates
the freshness of the guessed test-session, the challenger aborts with a random
output. Technically, the challenger proceeds as follows.

352 C. Brzuska and H. Jacobsen

For m ≤ n, let [m,n] def= {m,m + 1, . . . n}. First, the challenger randomly
guesses the test-session (U, i)←$ (I ∪ R) × [1, nπ], where nπ is an upper bound
on the number of sessions at each party. Then, depending on the role of U , the
challenger either guess (V, j)←$ I×[0, nπ] or (V, j)←$ R×[0, nπ] as the expected
partner of (U, i), where a pick of j = 0 means that (U, i) is not expected to get
any partner session at its peer V . Finally, the challenger aborts by outputting a
random bit if either of the following bad event occurs:

(i) (U, i) was not selected as the test-session by A.
(ii) (U, i) was guessed to be without a partner, but gets one.
(iii) (U, i) was guessed to have a partner, but either gets none or someone dif-

ferent from (V, j).
(iv) A makes a Reveal or Corrupt query that would make (U, i) unfresh.

Lemma 3.

AdvG2

Π3,A,f3
(λ) ≤ (nπ + 1)2 · |I ∪ R|2 · AdvG3

Π3,A,f3
(λ). (9)

Proof. The occurrence of the bad events is independent from A’s view up to the
moment of where the bad event occurs. When none of the bad events occurs,
then A’s success probability is the same in G2 and G3, and the challenger guesses
the right (pair of) session(s) with probability at least 1/

(
(nπ + 1) · |I ∪ R|)2.

And if a bad event occurs, then A wins G3 with probability at least 1/2. ��
In the remaining games, let π∗ = πi

U denote the guessed test-session, and
let π ′ = πj

V denote its expected partner. Define the co-partner of π∗ to be the
trusted server session being involved in the protocol run between π∗ and π′.
Specifically, if π∗ is an initiator, then its co-partner is defined to be f1,T1(π

∗);
while if π∗ is a responder, then its co-partner is defined to be f2,T2(π

∗).

Game 4: This game proceeds as the previous one, except that it swaps out the
intermediate key kAS derived in sub-protocol Π1 with a random key for the
guessed initiator session (either π∗ or π′) and its co-partner (if any).

Lemma 4. AdvG3

Π3,A,f3
(λ) ≤ AdvG4

Π3,A,f3
(λ) + Adv2P-AKE

Π1,B3,f1
(λ).

Proof (Sketch). Reduction B3 begins by drawing a random bit b and creates
all the long-term PSKs for sub-protocol Π2. It also guesses the sessions π∗ and
π′ as in Game 3. B3 then runs A and forwards all of its queries pertaining
to sub-protocol Π1 to its own AKE experiment, while all queries pertaining
to sub-protocol Π2 reduction B3 answers itself using the PSKs it created. It
also implements all the abort conditions of the previous games. To answer A’s
Test(π∗) query, B3 does the following. If b = 1 then it responds with a random
key as normal. If b = 0 and π∗ is an initiator session, then B3 forwards A’s
Test(π∗) query to its own AKE game to obtain π∗’s intermediate key kAS in sub-
protocol Π1. B3 then uses kAS to derive the session key kAB which it returns to
A. If b = 0 and π∗ is a responder session, then by our abort conditions, π∗ must

A Modular Security Analysis of EAP and IEEE 802.11 353

have a co-partner πk
S by Game 1. To obtain the intermediate key kAS needed to

derive kAB , B3 queries Test(πk
S) to its own AKE experiment and returns kAB to

A. When A outputs its guess b′, then B3 stops and outputs 0 if b = b′, and 1
otherwise.

Note that if the test-query in B3’s own AKE experiment returns real keys
kAS , then B4 perfectly simulates Game 3, while if it returns random keys then B3

simulates Game 4. However, we still need to argue that the test-session chosen
in B3’s experiment is fresh. If π∗ is an initiator session then B3 also uses π∗ as
the test-session in its own AKE experiment, hence it is fresh since the predicate
FreshAKEw is more restrictive than FreshAKE. If π∗ is a responder session, then
the test-session chosen by B3 is π∗’s co-partner πk

S , so we need to argue that πk
S

is fresh in B3’s AKE experiment. There are two cases to consider: either π∗ has
an f3-partner or it does not. If π∗ does have a partner (which by Game 3 must
be π′), then A cannot have made any Reveal(π′) queries since this would violate
the AKEw-freshness of π∗. Moreover, since f3 is constructed from f1 and f2, π′

must be πk
S ’s f1-partner. Thus, B3 is also allowed to forward any Corrupt query

to either A or S without violating the freshness of πk
S according to FreshAKE. If

π∗ does not have an f3-partner, then A cannot have made any Corrupt query
to A or S (since this would violate AKEw-freshness), and thus neither has B3.
Moreover, if π∗ does not have an f3-partner then in particular its co-partner πk

S

cannot have an f1-partner. Thus, B3 can safely forward all of A’s Reveal queries
without violating the AKE-freshness of πk

S . ��

Game 5: This game proceeds as the previous one, except that when deriving
the session key kAB for the guessed initiator session (either π∗ or π′) and its
co-partner (if it exists), the challenger uses a random function $(·, ·) rather than
PRF(kAS , ·, ·).
Lemma 5. AdvG4

Π3,A,f3
(λ) ≤ AdvG5

Π3,A,f3
(λ) + AdvPRFPRF(D).

Proof Algorithm D has access to an oracle O which either implements the func-
tion PRF(k̃, ·, ·) with an independent and uniformly distributed key k̃, or a ran-
dom function $(·, ·). D begins by drawing a random bit b and creates all the
long-term keys for sub-protocols Π1 and Π2. Next, it runs A and answers all
its queries according to Game 4 by using the keys it created, except that it
answers A’s Test(π∗) query as follows. If b = 1, then D returns a random key.
If b = 1, then D answers as follows. If π∗ is an initiator session, then D answers
with O(U, V) (recall that π∗ = πi

U and π ′ = πj
V). If π∗ is a responder session,

then D answers with O(V ′, U ′), where V ′ and U ′ were the identities that the
co-partner of π∗ received over the initiator-server link in Fig. 5 (recall that if π∗

is a responder session it is guaranteed to have a co-partner by Game 1). When
A outputs its guess b′, then D stops and outputs 0 if b = b′, and 1 otherwise.

When D’s oracle O implements PRF, then D perfectly simulates Game 4,
while if O implements a random function $(·, ·), then D perfectly simulates
Game 5. Thus, the advantage difference of A winning in Game 4 and Game 5
corresponds exactly to the probability difference that D outputs 1 when inter-
acting with PRF or a random function $(·, ·) as its oracle O. ��

354 C. Brzuska and H. Jacobsen

Note that by the change in Game 5, the session key of π∗ and π′ is derived
using a random function rather then the pseudorandom function PRF. In the
following, let k̃AB denote the session key derived in this manner at the co-partner
of π∗ (if it exists).

Game 6: This game proceeds as the previous one, but when creating the Ckey

message of the co-partner of π∗, the challenger encrypts the “dummy” string 0λ

instead of the session key k̃AB . If this Ckey message is eventually delivered to
the intended responder session (either π∗ or π′), then its session key is still set
to k̃AB however.

Lemma 6 AdvG5

Π3,A,f3
(λ) ≤ AdvG6

Π3,A,f3
(λ) + AdvACCE-priv

Π2,B4,f2
(λ).

Proof (Sketch). Reduction B4 begins by drawing a random bit b and creates all
the long-term keys for sub-protocol Π1. It also guesses the sessions π∗ and π′ as
in Game 3, and implements all of the abort conditions introduced so far. All of
A’s queries pertaining to sub-protocol Π1 B4 answers itself using the long-term
keys it created, while queries pertaining to sub-protocol Π2 B4 forwards to its
own ACCE experiment. In particular, B4 creates the Ckey message of a server
session πk

S as follows.
If πk

S is not the co-partner of the test-session π∗, then B4 makes the query
Encrypt(πk

S , A‖kAB , A‖kAB) to its ACCE experiment, where “A” is the identity
of the initiator that π received on the A-S link in Fig. 5, and kAB is the session
key B4 derived from π’s intermediate key kAS in sub-protocol Π1. The returned
ciphertext is used as the Ckey message of πk

S . If π is the co-partner of π∗, then
B4 instead makes the query Encrypt(πk

S , A‖kAB , A‖0λ) to create Ckey.
Finally, when A outputs its guess b′, then B4 outputs the following to its

ACCE experiment. If the test-session π∗ has a co-partner πk
S , then B4 outputs

(πk
S , 0) if b = b′ and (πk

S , 1) otherwise. If the test-session does not have a co-
partner, then B4 simply outputs an arbitrary session together with a random bit.

Note that if the test-session does not have a co-partner then there is no
difference between Game 5 and Game 6, and B4 perfectly simulates it. If the
test-session has a co-partner πk

S , and πk
S .b = 0 in B4’s ACCE experiment, then

B4 perfectly simulates Game 5 (since the Ckey message of πk
S is an encryption

of the actual session key kAB). On the other hand, if πk
S .b = 1 then B4 perfectly

simulates Game 6 (since the Ckey message of πk
S is an encryption of 0λ). What

remains to show that πk
S is fresh in B4’s ACCE experiment, i.e., that πk

S is fresh
according to predicate FreshACCE.

Suppose first that the test-session π∗ is a responder. This is where we will use
the assumption that the partner function f2 for sub-protocol Π2 is symmetric.
By Game 1 π∗ has a co-partner f2(π∗) = πk

S , and by the symmetry of f2 we also
have f2(πk

S) = π∗. It follows that πk
S is fresh according to FreshACCE (note that

since B4 makes no Reveal query to πk
S in its ACCE experiment, we only have to

consider the exposure of its PSK).
Now suppose the test-session is an initiator. There are two cases to consider:

either π∗ has an f3-partner or it does not have an f3-partner. If π∗ has an f3-
partner π′, then by the construction of f3 from f1 and f2, we have in particular

A Modular Security Analysis of EAP and IEEE 802.11 355

that f2(πk
S) = π ′. Again, this implies that πk

S is fresh according to FreshACCE.
Conversely, if π∗ does not have an f3-partner, then none of the long-term keys
and PSKs of its peers can be exposed if π∗ is to be fresh according to FreshAKEw .
In particular, this means that the long-term PSK of πk

S must be unexposed.
Thus, πk

S is fresh according to FreshACCE (this is regardless of whether it has an
f2-partner or not). ��

Concluding the Proof of Theorem 1. We argue that AdvG6

Π3,A,f3
(λ) = 0. By

the change in Game 5, the session key of the test-session π∗ is derived using a
random function $(A,B), where “A” and “B” are the identities of the initiator
and responder that π∗ believes took part in this protocol run. We claim that the
only other session that holds a session key derived from $(·, ·) using the same
identities “A” and “B”, is π∗’s partner π′ (if it exists).

First, note that the random function is evaluated for at most two sessions:
one initiator session and one server session. Second, the session key derived by
the server session is delivered to at most one responder session. Finally, the
identities used to evaluate $(·, ·) at the initiator and server might be different
since the adversary can modify the communicated identities at the A-S link in
Fig. 5.

However, if the adversary modifies these identities, then the initiator and
server derive independent keys, which ultimately means that the initiator and
responder will have independent keys too. Moreover, the initiator and responder
sessions will not be partners since the communicated identities at the S-B link
in Fig. 5 will be different too (recall that f3-partnering includes the sessions’
recorded peers, and by Game 2 the adversary is unable to change the Ckey

message). On the other hand, if the identities were the same, then the initiator
and responder session would necessarily be f3-partners. This follows because the
initiator has the server session as its co-partner (in sub-protocol Π1), and the
server session’s Ckey message is only delivered to its co-partner (in sub-protocol
Π2). Combined with their agreement on their peers, this means that they would
be partners by the definition of f3.

Altogether, since the session key of the test-session is derived using an inde-
pendent random function, and since the corresponding Ckey message leaks noth-
ing about the session key by Game 6, the adversary has zero advantage in Game 6
as claimed. Combining all the lemmas yields the theorem. ��

Note that the conclusion above only holds because of the channel binding.
In particular, if the identities of A and B did not go into to the evaluation of
the pseudorandom function PRF, then Π3 would be vulnerable to a simple UKS
attack: just change the responder identity sent over the (unauthenticated) A-S
link from B to B′. Without channel binding, A and B′ obtain the same session
key but disagree on their intended peers.

3.2 3P-AKEw + 2P-AKE =⇒ 3P-AKE

Construction. From a 3P-AKE protocol Π3 and a 2P-AKE protocol Π4, we
construct the 3P-AKE protocol Π5 shown in Fig. 5. Specifically, protocol Π5

works as follows. First, sub-protocol Π3 is run between A, B and S in order

356 C. Brzuska and H. Jacobsen

to establish an intermediate “session key” KΠ3 . Then, sub-protocol Π4 is run
between A and B using KΠ3 as the their shared “long-term key”. The session
key derived in Π4 becomes A and B’s final session key in Π5.

Result. Our second composition result shows that protocol Π5 is 3P-AKE-secure
if sub-protocol Π3 is 3P-AKEw-secure and sub-protocol Π4 is 2P-AKEstatic-secure
with explicit entity authentication. We remark that the last requirement is nec-
essary in order for our proof to go through. In fact, Π5 inherits the property of
explicit entity authentication from sub-protocol Π4. On the other hand, while
Π4 does not achieve forward secrecy on its own, protocol Π5 does. The reason
is that within Π5, sub-protocol Π4 is merely used to upgrade the security of Π3,
which does provide forward secrecy (albeit limited).

Theorem 2 Let Π5 be the protocol described in Sect. 3.2. If protocol Π3 is 3P-
AKEw-secure and protocol Π4 is 2P-AKE static-secure with explicit entity authen-
tication, then there exists a partner function f5 such that protocol Π5 is 3P-AKE-
secure.

Concretely, for partner functions f3 and f4, we can create a partner function
f5, and adversaries B1, B2 and B3, such that

Adv3P-AKE
Π5,A,f5(λ) ≤ (nπ + 1)2 · |I ∪ R|2 ·

(
2 · Adv3P-AKEw

Π3,B1,f3(λ) + Adv2P-AKEstatic

Π4,B2,f4 (λ)
)

+ (nπ + 1)2 · |I ∪ R|2 · Adv2P-AKEstatic-EA
Π4,B3,f4 (λ)

(10)

where nπ is an upper bound on the number of sessions at each party.

The proof of Theorem2 is very similar to that of Theorem 1 and is provided
in the full version.

4 Security of EAP

4.1 EAP with Channel Binding

In this section we explore the security guarantees provided by EAP. As men-
tioned in the introduction, there is no single definitive version of EAP which we
can use for this purpose, because the specification itself (RFC 3748 [4]) leaves
many of its components undefined. Thus, any analysis of EAP will have to make
assumptions on these components.

In Theorem 1, let us identify sub-protocol Π1 with the EAP method run
between the client and the trusted server. Let sub-protocol Π2 be the key-
transport protocol run between the server and the authenticator. Finally, sup-
pose that EAP employs the channel binding mechanism defined in [25]. Then
we immediately get the following result for EAP.

Theorem 3 (3P-AKEw security of EAP). If the chosen EAP method used
within EAP is 2P-AKE-secure, the key-transport protocol is 2P-ACCE-secure,
and the employed key derivation function is a secure PRF that provides channel
binding on the client’s and authenticator’s identities, then EAP is 3P-AKEw-
secure.

A Modular Security Analysis of EAP and IEEE 802.11 357

To be even more concrete, we can also instantiate sub-protocols Π1 and Π2

with some actual protocols. For example, Brzuska et al. [12] recently showed that
the EAP-TLS method constitutes a secure 2P-AKE protocol, thus satisfying the
requirements on sub-protocol Π1. For sub-protocol Π2 we take RADIUS-over-
TLS [30], which then reduces to the security of TLS. Multiple papers [9,16,18,
20,23] have shown TLS to be a secure 2P-ACCE protocol. Hence, RADIUS-over-
TLS fulfills the requirement on sub-protocol Π2.

4.2 Channel-Binding Scope

In Theorems 1, and 3, we assumed that the channel binding mechanism included
the identity of the client and the authenticator in order to bind the identities
cryptographically to the session key. Implicitly, this also assumes that all iden-
tities are globally unique and belong to the same namespace. This is a standard
assumption when doing cryptographic modeling. However, in reality, the various
links in EAP take place over different types of communication media with differ-
ent types of identities and addressing schemes. For instance, in IEEE 802.11 with
upper-layer authentication, the communication between the client and the access
point is based on link-layer addresses, the communication between the client and
the server is typically based on usernames (client) and domain names (server),
while the communication between the server and the access point might be based
solely on IP addresses. Mapping between these identifiers is not always straight-
forward (see [15]). In fact, some of the identifiers might not even be available to
all the protocol participants. Specifically, since the communication between the
client and the access point happens at the link-layer, the IP addresses used by
the access point towards the server might not be available to the client unless the
access point broadcasts it. In practice, most link-layer protocols have facilities
for providing this kind of information to the client8, but there is no guarantee
that the authenticator will actually provide it.

Moreover, in some settings this information may not even be relevant. For
example, in a WLAN supported by many access points, the client might not
care about which specific access point it connects to, as long as it connects to a
legitimate access point of that WLAN. Thus, in this case the granularity of the
channel-binding should not be at the individual access point level, but rather at
the WLAN level, defined by all the access points broadcasting the same network
identifier (SSID). However, in this case the security guarantees provided by the
channel-binding will be weaker. Specifically, when channel-binding occurs at the
individual level, then the corruption of a single access point will not influence
clients connecting to access points having a different identity. On the other hand,
when channel-binding occurs at the network level, then a single corrupted access
point will affect all connections within that network. In this case, the channel
binding only protects connections occurring in networks having a different SSID.

8 For instance, the Identity type field in EAP Request messages are often “piggy-
backed” by layer 2 protocols (like EAPOL/802.1X [1]) to include this information.

358 C. Brzuska and H. Jacobsen

More generally, the information included in the channel-binding defines the
scope of the protection it provides, and can include more than just identities. For
instance, physical media types, data rates, cost-information, channel frequencies,
etc., can all be used as input to the channel-binding. The specifications for
channel-binding within EAP [14,25] leaves open exactly the kind of information
that should go into the binding, because the amount of information that will be
available to both the client and the server can vary.

4.3 EAP Without Channel Binding

Without channel binding, it suffices to compromise a single access point in order
to compromise an entire network. As access points are typically not highly pro-
tected devices, this is a substantial attack vector on enterprise networks. Even
if the channel binding only included the network name, it would clearly be an
upgrade over EAP without channel binding, and comes at essentially no cost.
The situation in the AKA protocol used in the UMTS and LTE mobile networks
is similar. The AKA protocol is similarly structured as the EAP protocol9, where
a mobile client that wants to connect to a base station first has to authenticate to
its home operator. So-called authentication vectors, which in particular includes
a session key, are then forwarded from the operator to the base station in much
the same way as the server forwards the session key to the authenticator in
EAP. Moreover, similar to many EAP methods, the AKA protocol too lacks
channel-binding for its authentication vectors. In their recent analysis of the
AKA protocol, Alt et al. [5] noted (Sect. 5) this lack of channel-binding, and
suggested a fix identical to the key-derivation approach analyzed in this paper.

5 Security of IEEE 802.11

5.1 Description of the IEEE 802.11 Protocol

IEEE 802.11 [2] is the most widely used standard for creating WLANs. It sup-
ports three modes of operation depending on the network topology: infrastruc-
ture mode, ad-hoc mode, and mesh network mode. In ad-hoc mode and mesh-
networking mode there is no central infrastructure, and the wireless clients talk
directly to each other. On the other hand, in infrastructure mode the clients
only communicate through an access point (AP), which provides connectivity to
a larger WAN. In this paper we only cover IEEE 802.11 in infrastructure mode,
which is by far the most common mode.

The IEEE 802.11 protocol is a layer 2 protocol, aiming to secure the wire-
less link between the client and the AP. It defines two main security proto-
cols: the 4-Way-Handshake (4WHS), used to authenticate and establish session
keys between the client and the AP; and the Counter Mode CBC-MAC proto-
col (CCMP), used to secure the actual application data. We will only cover the
4WHS in this paper.
9 In fact, EAP is widely used within mobile networks.

A Modular Security Analysis of EAP and IEEE 802.11 359

The 4WHS is based on a symmetric Pairwise Master Key (PMK), shared
between the client and the AP. The analysis of IEEE 802.11 will therefore cru-
cially depend on how this PMK is obtained. In Sect. 5.2 we will analyze the
4WHS when the PMK is simply taken for granted, i.e., the PMK is a pre-shared
key. This is already quite significant on its own because it corresponds to the
setting found in virtually every wireless home-network. Still, in most enterprise
and university environments, the PMK is not a pre-shared key, but is rather
distributed to the client and AP through some upper-level authentication mech-
anism involving a mutually trusted server. While technically outside the scope
of the IEEE 802.11 standard, the de-facto protocol for this is EAP. The analysis
of IEEE 802.11 with upper-level authentication is the topic of Sect. 5.3.

5.2 Analyzing the 4-Way-Handshake

The 4WHS is shown in Fig. 6. It depends on a pseudorandom function PRF
and a MAC scheme Σ = (kg,MAC,Vrfy). Identities are based on the parties’
48-bit link-layer addresses. This makes it possible to compare the parties’ iden-
tities based on their corresponding numerical values. Particularly, the functions
max{A,B} and min{A,B} returns, respectively, the largest and the smallest of
two link-layer addresses A and B. We use the notation [x]k

def= x‖σ to denote a
message x together with its MAC tag σ, computed with Σ.MAC and key k.

The 4WHS begins with the AP sending the message m1 = ηAP ‖p1 to the
client C, where ηAP is a nonce and p1 is some auxiliary information included in
the IEEE 802.11 packet.

On receiving m1, C generates its own nonce ηC and derives a key PTK =
kμ‖kα ← PRFK(P‖η) using the pseudorandom function PRF and the long-term
key it shares with AP . Here P‖η = min{AP,C}‖max{AP,C}‖min{ηAP , ηC}‖
max{ηAP , ηC}. The sub-key kα will be the session key output by the 4WHS,
while kμ will be used by the MAC scheme Σ to protect the handshake mes-
sages. After deriving PTK, C creates and sends the next protocol message
m2 = [ηC‖p2]kµ

.
On receiving m2 = [ηC‖p2]kµ

, AP uses the containing nonce ηC to derive the
keys PTK = kμ‖kα ← PRFK(P‖η). Using kμ as the key, it verifies the integrity
of m2 with the MAC scheme Σ.Vrfy. If the verification goes through, AP creates
and send the third protocol message m3 = [ηAP ‖p3]kµ

.
On receiving m3, C first verifies it using the MAC key kμ. If the check goes

through, it sends out the final handshake message m4 = [p4]kµ
. Additionally, it

sets its own acceptance state to α = accepted. Once AP receives and verifies m4,
it sets its acceptance status to α = accepted too.

Remark 9. The fourth handshake message m4 serves no cryptographic purpose
and could safely have been omitted. However, to stay true to the actual 4WHS,
we leave it in.

In the following analysis, let PAP = I and PC = R, i.e., in the 4WHS
protocol APs are the initiators and the clients are the responders.

360 C. Brzuska and H. Jacobsen

C AP

m1 = (ηAP , p1)

m2 = [ηC , p2]kµ

m3 = [ηAP , p3]kµ

m4 = [p4]kµ

ηAP ← {0, 1}λ

ηC ← {0, 1}λ

kμ kα ← PRFK(P η) kμ kα ← PRFK(P η)
if Σ.Vrfy(kμ, m2) = 1:

continueif Σ.Vrfy(kμ, m3) = 1:
α = accept

α = accepted

Fig. 6. The IEEE 802.11 4-Way-Handshake protocol. The client C and
the access point AP share a symmetric key PMK = K, P‖η =
min{AP, C}‖ max{AP, C}‖ min{ηAP , ηC}‖ max{ηAP , ηC}, and Σ = (kg,MAC,Vrfy) is
MAC scheme.

Theorem 4. The 4WHS protocol is AKE static-secure. In particular, for any
PPT adversary A, there exists a partner function f and algorithm D, such that

Adv2P-AKEstatic

4WHS,A,f (λ) ≤ |PC | · |PAP | · AdvprfPRF(D) +
(nP nπ)2

2λ+1
, (11)

where nπ is the number of sessions at each party, and nP = |PC | + |PAP |.
For this protocol it is natural to use SIDs as our partnering mechanism.

However, because our paper is phrased in terms of partnering functions, we
“synthetically” encode the SID as a partnering function by saying that the part-
ner session is the first other session that gets the same SID P‖η. Taking the first
one is important because a partner function is a function and not a relation.

Proof. Suppose P‖η = min{U, V }‖max{U, V }‖min{ηU , ηV }‖max{ηU , ηV } was
the string that πi

U input to its pseudorandom function PRF. Then fT (πi
U) is

defined to be the first session at V that input the same string P‖η to its
PRF. Note that this can be computed based on publicly available transcript
information.

Soundness. The soundness of f is immediate from its definition and PRF being
deterministic.

AKE static-Security.

Game 0: This is the real 2P-AKE security game, hence

AdvG0

4WHS,A,f (λ) = Adv2P-AKEstatic

4WHS,A,f (λ).

Game 1: This game proceeds as the previous one, but aborts if not all the nonces
in the game are distinct, hence

AdvG0

4WHS,A,f (λ) ≤ AdvG1

4WHS,A,f (λ) +
(nP nπ)2

2λ+1
. (12)

A Modular Security Analysis of EAP and IEEE 802.11 361

Game 2: In this game the challenger guesses the pre-shared key that will be
used by the test-session and aborts if that guess was wrong, hence

AdvG1

4WHS,A,f (λ) ≤ |PAP | · |PC | · AdvG2

4WHS,A,f (λ). (13)

Let PMK∗ denote the guessed pre-shared key. Note that by the FreshAKEstatic

requirement (Fig. 3), PMK∗ cannot be exposed.

Game 3: In this game the challenger replaces the pseudorandom function PRF
with a random function $(·) in all evaluations using the guessed pre-shared key
PMK∗. That is, calls of the form PRF(PMK∗, ·) are instead answered by $(·).
Lemma 7. AdvG2

4WHS,A,f (λ) ≤ AdvG3

4WHS,A,f (λ) + AdvprfPRF,D(λ).

Proof. Algorithm D has access to an oracle O, which either implements the
function Π.PRF(P̃MK, ·) for some independently and uniformly distributed key
P̃MK, or it implements a truly random function $(·). D begins by choosing
a random bit b and guessing a client-AP pair (C,AP). All computations that
would normally involve the pre-shared key of C and AP , algorithm D will instead
forward to its oracle O. For all other client-AP pairs, D creates their the pre-
shared keys itself, allowing it to simulate them perfectly. If A outputs b′, then
D outputs 1 if b = b′, and 0 otherwise.

When O = Π.PRF(P̃MK, ·), then D perfectly simulates Game 2 since the
PMKs are chosen independently and uniformly at random; while when O = $(·),
then D perfectly simulates Game 3. ��
Concluding the Proof of Theorem 4. Suppose the test-session in Game 3 accepted
with the “SID” P‖η. By Game 1 we know that the only sessions that evaluated
the pseudorandom function on this SID was the test-session and possibly its
partner. However, by Game 3 the PRF is now a truly random function unavail-
able to the adversary (since we are in the static corruption model). In particular,
this means that the PTK derived by the test-session (and possibly its partner)
is a truly random string P̃TK = k̃μ‖k̃α ← {0, 1}2λ, and where k̃α is independent
of all other values. Thus, AdvG3

4WHS,A,f (λ) = 0, and Theorem 4 follows. ��
We now turn to proving explicit entity authentication for the 4WHS.

Theorem 5. The 4WHS provides explicit entity authentication. In particular,
for any PPT adversary A, there exists algorithms D and F , such that

Adv2P-AKEstatic-EA
4WHS,A,f (λ) ≤ |PC | · |PAP | ·

(
AdvprfPRF,D(λ) +

(nP nπ)2

2λ+1
+ 2nπ · AdvUF-CMA

Σ,F (λ)

)
,

(14)
where f , nπ , and nP are the same as in Theorem4.

Proof. This proof uses the exact same three game hops as in the proof of The-
orem 4, differing only in its interpretation of the guessed pre-shared key PMK∗:
instead of hoping that PMK∗ belongs to the test-session, we now hope that it

362 C. Brzuska and H. Jacobsen

belongs to the first session that accepts maliciously. To recap, in Game 3 the
challenger aborts if any nonces collide, or the first session that accepts mali-
ciously uses a different pre-shared key then PMK∗. Moreover, all evaluations
of PRF(PMK∗, ·) are replaced with a truly random function $(·). Since all the
game hops are the same, we only have the analyze the probability that a session
accepts maliciously in Game 3.

Lemma 8. AdvG3-EA
4WHS,f,A(λ) ≤ 2nπ · AdvUF-CMA

Σ,F (λ).

Proof. The forger F has access to two oracles OMAC and OVrfy, which implements
the MAC and Vrfy algorithms of the MAC scheme Σ for some independent
random key k̃μ. Among all the sessions that use PMK∗, F will guess a random
session π∗ and embed the oracles OMAC and OVrfy into it. Let V ∗ denote the
intended communication partner of π∗. We consider two cases based on whether
π∗ is a client or an AP.

Case U∗ ∈ PAP . F will simulate Game 3 by creating all the pre-shared keys
and implementing the random function $(·) by lazy-sampling. However, when
creating and verifying the handshake messages of π∗, it will use the oracles
OMAC and OVrfy. Specifically, when receiving the handshake message m2, π∗ will
accept only if OVrfy(m2) = 1. Moreover, if any session accepts maliciously before
π∗, then F aborts. Additionally, F also aborts if the nonce ηC contained in m2

was created by a session at V ∗ that received the correct nonce ηAP from π∗. Note
that this event simply means that F ’s guess of π∗ was wrong, because if π∗ were
to accept on receiving this m2 message, it could not have accepted maliciously
by the definition of f , since the session creating ηC would be its partner (here
we are also using that all the nonces are unique).

By the uniqueness of nonces, and the assumptions above, no session will
evaluate $(·) on the same input as π∗. Hence, embedding the oracles OMAC,
OVrfy into π∗ provides a perfect simulation of Game 3. But this means that π∗

accepts maliciously iff OVrfy(m2) = 1, with m2 being a valid forgery.

Case U∗ ∈ PC . Similar to the previous case, F embeds OMAC, OVrfy into π∗,
and aborts if the guess was wrong. This again provides a perfect simulation of
Game 3, and π∗ accepts maliciously iff the call to OVrfy is a valid forgery.

Since in both cases malicious acceptance by π∗ implies a forgery for Σ, the
lemma follows. ��

5.3 Security of IEEE 802.11 with Upper-Layer Authentication

In enterprise and university networks it is both inconvenient and less secure for
every user to share a common PMK when accessing the WLAN. In these environ-
ments, user authentication is instead handled by a central authentication server,
which is then accessed via some EAP variant. While the IEEE 802.11 standard
technically allows for upper-level authentication mechanisms other than EAP,

A Modular Security Analysis of EAP and IEEE 802.11 363

the de-facto standard is EAP. Since we have already proved that certain vari-
ants of EAP satisfies the 3P-AKEw notion (Theorem 3), and that the 4WHS is a
secure 2P-AKE protocol with static corruption (Theorems 4 and 5); the security
of IEEE 802.11 with upper-level authentication now follows directly by applying
our second composition theorem (Theorem 2) with Π3 = EAP and Π4 = 4WHS.

Theorem 6 (3P-AKE security of IEEE 802.11 w/upper-layer authen-
tication). If the PMK for the 4WHS is derived using a variant of EAP that is
3P-AKEw-secure, then the IEEE 802.11 protocol with upper-layer authentication
is 3P-AKE-secure.

Acknowledgments. We would like to thank Colin Boyd, Britta Hale and Cas Cre-
mers for helpful comments and discussions. Chris Brzuska is grateful to NXP for sup-
porting his chair for IT Security Analysis.

References

1. IEEE standard for local and metropolitan area networks - port-based network
access control. IEEE Std 802.1X-2010 (Revision of IEEE Std 802.1X-2004), pp.
C1–205, February 2010

2. IEEE standard for information technology-telecommunications and information
exchange between systems local and metropolitan area networks-specific require-
ments part 11: wireless LAN medium access control (MAC) and physical layer
(PHY) specifications. IEEE Std 802.11-2012, pp. 1–2793, March 2012

3. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30580-4 6

4. Aboba, B., Blunk, L.J., Vollbrecht, J.R., Carlson, J., Levkowetz, H.: Extensible
Authentication Protocol. RFC 3748, RFC Editor, June 2004. https://tools.ietf.
org/html/rfc3748

5. Alt, S., Fouque, P.-A., Macario-rat, G., Onete, C., Richard, B.: A cryptographic
analysis of UMTS/LTE AKA. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 18–35. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-39555-5 2

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 11

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer,
Heidelberg (1994). doi:10.1007/3-540-48329-2 21

8. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: 27th ACM STOC, pp. 57–66. ACM Press, May/June 1995

9. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y.,
Zanella-Béguelin, S.: Proving the TLS handshake secure (as It Is). In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 235–255. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 14

10. Brzuska, C., Cremers, C., Jacobsen, H., Kohbrok, K., Warinschi, B.: Partner mech-
anisms in key exchange protocols (2017, unpublished manuscript)

http://dx.doi.org/10.1007/978-3-540-30580-4_6
https://tools.ietf.org/html/rfc3748
https://tools.ietf.org/html/rfc3748
http://dx.doi.org/10.1007/978-3-319-39555-5_2
http://dx.doi.org/10.1007/978-3-319-39555-5_2
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/978-3-662-44381-1_14

364 C. Brzuska and H. Jacobsen

11. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
ACM CCS 11. pp. 51–62. ACM Press, October 2011

12. Brzuska, C., Jacobsen, H., Stebila, D.: Safely exporting keys from secure channels.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
670–698. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 26

13. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-
exchange protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–
161. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 10. http://eprint.
iacr.org/2002/120/

14. Hartman, S., Clancy, T.C., Hoeper, K.: Channel-Binding Support for Extensi-
ble Authentication Protocol (EAP) Methods. RFC 6677, RFC Editor, July 2012.
https://tools.ietf.org/html/rfc6677

15. Hoeper, K., Chen, L.: Where EAP security claims fail. In: QSHINE, p. 46. ACM
(2007)

16. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 273–293. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 17

17. Kobara, K., Shin, S., Strefler, M.: Partnership in key exchange protocols. In: Li, W.,
Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V. (eds.) ASIACCS
09, pp. 161–170. ACM Press, New York (2009)

18. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA in
the standard model. Cryptology ePrint Archive, report 2013/367 (2013). http://
eprint.iacr.org/2013/367

19. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005). doi:10.1007/11535218 33

20. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 429–448. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 24

21. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. Cryptology ePrint Archive, report 2006/073 (2006). http://eprint.iacr.
org/2006/073

22. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75670-5 1

23. Li, Y., Schäge, S., Yang, Z., Kohlar, F., Schwenk, J.: On the security of the pre-
shared key ciphersuites of TLS. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 669–684. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 38

24. Nam, J., Choo, K.K.R., Paik, J., Won, D.: Two-round password-only authenti-
cated key exchange in the three-party setting. Cryptology ePrint Archive, report
2014/017 (2014). http://eprint.iacr.org/2014/017

25. Ohba, Y., Parthasarathy, M., Yanagiya, M.: Channel Binding Mechanism based
on Parameter Binding in Key Derivation. RFC (Informational), RFC Editor,
December 2006. https://tools.ietf.org/html/draft-ohba-eap-channel-binding-02

26. Rigney, C., Willens, S., Rubens, A., Simpson, W.: Remote Authentication Dial
in User Service (RADIUS). RFC 2865, RFC Editor, June 2000. https://tools.ietf.
org/html/rfc2865

27. Rogaway, P.: On the role definitions in and beyond cryptography. In: Maher, M.J.
(ed.) ASIAN 2004. LNCS, vol. 3321, pp. 13–32. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30502-6 2

http://dx.doi.org/10.1007/978-3-662-49890-3_26
http://dx.doi.org/10.1007/3-540-45708-9_10
http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2002/120/
https://tools.ietf.org/html/rfc6677
http://dx.doi.org/10.1007/978-3-642-32009-5_17
http://eprint.iacr.org/2013/367
http://eprint.iacr.org/2013/367
http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1007/978-3-642-40041-4_24
http://eprint.iacr.org/2006/073
http://eprint.iacr.org/2006/073
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dx.doi.org/10.1007/978-3-642-54631-0_38
http://eprint.iacr.org/2014/017
https://tools.ietf.org/html/draft-ohba-eap-channel-binding-02
https://tools.ietf.org/html/rfc2865
https://tools.ietf.org/html/rfc2865
http://dx.doi.org/10.1007/978-3-540-30502-6_2
http://dx.doi.org/10.1007/978-3-540-30502-6_2

A Modular Security Analysis of EAP and IEEE 802.11 365

28. Schwenk, J.: Nonce-based kerberos is a secure delegated AKE protocol. Cryptology
ePrint Archive, report 2016/219 (2016). http://eprint.iacr.org/2016/219

29. Shoup, V., Rubin, A.: Session key distribution using smart cards. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 321–331. Springer, Heidelberg
(1996). doi:10.1007/3-540-68339-9 28

30. Winter, S., McCauley, M., Venaas, S., Wierenga, K.: Transport Layer Security
(TLS) encryption for RADIUS. RFC 6614 (Experimental), RFC Editor, May 2012.
https://tools.ietf.org/html/rfc6614

http://eprint.iacr.org/2016/219
http://dx.doi.org/10.1007/3-540-68339-9_28
https://tools.ietf.org/html/rfc6614

Multiparty Computation

On the Computational Overhead of MPC
with Dishonest Majority

Jesper Buus Nielsen1 and Samuel Ranellucci2,3(B)

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
jbn@cs.au.dk

2 Department of Computer Science, George Mason University,
Virginia, USA

3 Department of Computer Science, University of Maryland,
Maryland, USA
samuel@umd.edu

Abstract. We consider the situation where a large number n of players
want to securely compute a large function f with security against an
adaptive, malicious adversary which might corrupt t < cn of the parties
for some given c ∈ [0, 1). In other words, only some arbitrarily small
constant fraction of the parties are assumed to be honest. For any fixed
c, we consider the asymptotic complexity as n and the size of f grows.
We are in particular interested in the computational overhead, defined
as the total computational complexity of all parties divided by the size of
f . We show that it is possible to achieve poly-logarithmic computational
overhead for all c < 1. Prior to our result it was only known how to get
poly-logarithmic overhead for c < 1

2
. We therefore significantly extend

the area where we can do secure multiparty computation with poly-
logarithmic overhead. Since we allow that more than half the parties are
corrupted, we can only get security with abort, i.e., the adversary might
make the protocol abort before all parties learn their outputs. We can,
however, for all c make a protocol for which there exists d > 0 such that
if at most dn parties are actually corrupted in a given execution, then
the protocol will not abort. Our result is solely of theoretical interest. In
its current form, it has not practical implications whatsoever.

1 Introduction

We consider the situation where a large number n of players want to securely
compute a large function f with security against an adaptive, malicious adver-
sary which might corrupt t < cn of the parties for some given constant c ∈ [0, 1).
In other words, only some arbitrarily small constant fraction of parties are
assumed to be honest. We also require that there exists d > 0 such that if
at most dn parties are actually corrupted in a given execution, then the proto-
col will not abort. We call this the setting with constant honesty and constant
termination guarantee.

For any fixed c, we consider the asymptotic complexity as n and the size of
f grows. We are in particular interested in the computational overhead, defined
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 369–395, 2017.
DOI: 10.1007/978-3-662-54388-7 13

370 J.B. Nielsen and S. Ranellucci

by summing the total computational complexity of all parties and dividing by
the size of f . We show that it is possible to achieve poly-logarithmic computa-
tional overhead for all c < 1. Prior to our result, it was only known how to get
poly-logarithmic overhead for settings with constant honesty and constant termi-
nation guarantee for c < 1

2 (cf. [DIK+08,CDD+15,BSFO12,BCP15,CDI+13]).
We therefore significantly extend the area where we can do secure multiparty
computation with poly-logarithmic overhead. Let us state up front that our result
is only meant as an asymptotic feasibility result. The constants hidden by the
asymptotic analysis are so huge that the protocol has no practical implications.

Our protocol is based on standard assumptions. It can be built in a white-box
manner from essentially any multiparty computation protocol secure against any
number of corrupted parties and a secure multiparty computation protocol which
has poly-logarithmic overhead and which is secure when at most a quarter of
parties are corrupt. Both protocols should be secure against a malicious, adaptive
adversary. We give an information-theoretic secure protocol in the hybrid model
with oblivious transfer and a small number of initial broadcasts. We also give a
computationally secure protocol in the hybrid model with a CRS and a PKI.

We note that approaches based on selecting a small committees and having
the committee run the computation are doomed to failure in our model. This
is because any small committee can be corrupted by the adaptive adversary.
The protocol from [CPS14] is insecure in our model precisely for this reason.
We also note that our protocol, in contrast to the low overhead protocols of
[DPSZ12,DZ13,DKL+13], does not rely on pre-processing. The IPS compiler
[IPS08] is also a generic protocol with low computational overhead, but it has
a quadratic overhead in the number of players, so it does not have a low com-
putational overhead in the sense that we consider here. Finally, notice that an
approach based on fully homomorphic encryption, where the n parties send their
encrypted inputs to one party and lets this party do the computation can have
a poly-logarithmic computational overhead. However, it does not have constant
termination guarantee. To ensure this, it seems one would still need some con-
stant fraction of the parties to do all the computation, suffering a blow up in the
overhead of a factor Θ(n).

2 Technical Overview

Our protocol follows the same high level approach as [DIK+08] which is based
on the work of [Bra87]. Our protocol is also inspired by the IPS compiler from
[IPS08] and the player virtualization technique from [HM00]. The main idea is
that we will run an honest majority protocol with poly-logarithmic overhead.
Following [IPS08], we call this the outer protocol. Each of the parties Pi in the
outer protocol will be emulated by a constant number of the parties running
a protocol with security against any number of corrupted parties. The set of
parties that run Pi is called committee number i. The protocol that committees
run is called the inner protocol.

We use an expander graph to set up the committees so that except with neg-
ligible probability, a vast majority of committees will contain at least one honest

On the Computational Overhead of MPC with Dishonest Majority 371

player as long as at most cn of the real parties are corrupted. We call a commit-
tee consisting of only honest parties an honest committee. We call a committee
containing at least one honest party and at least one corrupted party a crashable
committee. We call a committee consisting of only corrupted parties a corrupted
committee. Since the inner protocol is secure against any number of corrupted
parties, an honest committee corresponds to an honest party in the outer pro-
tocol and a corrupted committee corresponds to a corrupted party in the outer
protocol. Since the inner protocol only guarantees termination when all parties
in the committee are honest, a crashable committee corresponds to a party in the
outer protocol which is running correctly and which has a private state, but which
might crash—if a corrupted committee member makes the inner protocol abort.

We need the outer protocol to tolerate a large constant fraction of malicious
corruptions (one quarter) along with any number of fail-stop errors. At the same
time, we need it to guarantee termination if there is a large enough fraction
of honest parties. On top of that the protocol needs to have poly-logarithmic
overhead. Prior to our work, there is no such protocol in the literature. We show
how to build such a protocol in a white-box manner from off-the-shelf protocols
with poly-logarithmic overhead.

There are many additional complications along the way. Most honest major-
ity protocols rely on private and authenticated channels. Since an adversary can
corrupt players so that all committees contain a corrupted member,1 we need
a way to allow the inner protocols emulated by different sets of parties to com-
municate securely while hiding the messages from the committee members. We
should also prevent corrupted committee members from attacking the delivery
or authentication of the transmitted messages. In addition, when a user sends
his input to an emulated party of the outer protocol emulated by a commit-
tee that may only have a single honest party, we should still be able guarantee
that he can securely send a message to the inner protocol. This is necessary to
ensure that an honest party cannot be prevented from giving input. To prevent
this, we employ a multitude of new techniques described in the following techni-
cal sections which includes player elimination and the use of a tamper-resilient
secret-sharing scheme.

Although the basic approach is the same, there are important technical dif-
ferences between this work and [DIK+08]. In the following, we describe the most
important ones. The work of [DIK+08] employs Verifiable Secret Sharing (VSS)
to solve the problem of secure message transmission between parties. It also
uses VSS to allow real parties to provide their inputs to the emulated parties of
the outer protocol. The work of [DIK+08] can employ VSS because it can set
up committees so that it is guaranteed that most committees have an honest
majority. In contrast, since it could be that a majority of players are corrupt,
we cannot ensure that any committee has an honest majority and therefore we
cannot employ VSS. Another difference is that we need an explicit bipartite

1 If we for instance start out with a setting where 99 out of every 100 parties are
corrupted and we start forming random committees, of course we should expect all
or essentially all committees to get a corrupted member.

372 J.B. Nielsen and S. Ranellucci

expander graph with constant left degree and constant right degree. Since we
could not find such a construction in the literature, we constructed such an
expander using standard techniques.

3 Setting the Stage

We use λ to denote the security parameter. We consider a setting with n players
P1, . . . ,Pn. Here Pi is just a distinct name for each of the participating players.
We use P = {P1, . . . ,Pn} to denote the set of players. We assume that all players
agree on P. We assume that n is a function of λ and that n(λ) ≥ λ. We often
write n instead of n(λ).

We also assume that the parties agree on a circuit C to be computed. We
assume that all parties have a fixed size input in C. We use s = sizeBool(C) to
denote the size of C.

By a protocol π, we mean a generic protocol which has an instantiation
π(C, λ, n) for each circuit C, value of the security parameter λ and number n
of parties. We assume that there exists a uniform poly-time Turing machine
which produces circuits computing π(f, λ, n) given input (C, 1λ, 1n). We do
not consider the production of π(C, λ, n) as part of the complexity of π. We
use comp(π(C, n, λ)) to denote the expected total work done by all parties in
π(C, n, λ), where the work is measured as local computation, counting the send-
ing and receiving of one bit as 1 towards the work. Note that comp(π(C, n, λ))
in particular is an upper bound on the communication of the protocol.

We are interested in the complexity of MPC as the size of C and the number of
parties grow. We are in particular interested in the overhead of the computation,
defined as the complexity of the protocol divided by the size of C. As usual, we
are also interested in how the complexity grows with the security parameter λ
and the number of parties n. In defining the computational overhead, we follow
[DIK10]. Let OH be a function OH : N × N × N → R. We say that π has
computational overhead OH if there exists a polynomial p : N×N×N → N such
that for all C, n and λ it holds that

comp(π(C, n, λ)) ≤ size(C) · OH(n, λ, size(f)) + p(n, λ, log size(f)).

Let NC be Nick’s class, i.e., the set of functions that can be computed by
circuits of poly-logarithmic depth. We want to securely evaluate f in a dis-
tributed manner without much overhead. Current techniques even for hon-
est majority only achieve this if the computation of f can be parallelised.
This is why we consider NC. Previous protocols essentially have the same
restriction. For instance, the protocol in [DIK10] has a complexity of the form
s log(s) + d2 · poly(n, log(s)), where s is the size of the circuit computing f and
d is the depth of the circuit. That means that if d is not polylog(s), then the
overhead will not be polylog(s).

We prove security in the UC model assuming a synchronous model, point-to-
point channels and broadcast. The UC model is originally best geared towards
modeling asynchronous computation, but it can be adapted to model synchro-
nous computation.

On the Computational Overhead of MPC with Dishonest Majority 373

3.1 UC and Synchronous Computation

Our study is cast in the synchronous model. Still, we would like to prove security
in the UC model which by design considers asynchronous computation. The
reason why we would like to use the UC model is to give modular proofs. We
need to consider reactive secure computations for which the UC model is the
de facto standard. One can cast synchronous computation in the UC model by
using the techniques of [KMTZ13]. The model from [KMTZ13] is, however, much
more refined and detailed than what we need, so we have decided to go for a
simpler model that we present below.

We are going to assume that synchrony is ensured by the environment giving
the parties Pi special inputs tick modeling that the time has increased by one
tick for Pi. The parties can then simply count what time it is. We then simply
require that the environment keeps the clocks of two honest parties at most one
tick apart. To make sure that all parts of a composed protocol and all ideal
functionalities know what time it is, we require that all parties which receive an
input tick passes it on to all its sub-protocols and ideal functionalities.

In a bit more detail, synchrony is defined via a synchrony contract that all
entities must follow for as long as all other entities do so. We describe the contract
now for the different entities of the UC framework. In doing so, we describe the
behaviour that the entity must show, assuming that all other parties followed
the contract until that point. If an entity A observes another entity B breaking
the contract, then A is allowed to exhibit arbitrary behaviour after that point.

Synchronous Environment. A round is defined by all parties having received
the input tick from the environment. The environment might in each round
give additional input xi to a party Pi by inputting (tick, xi). In most of our
we use ri to denote the round in which Pi is. We say that party Pi is in round
ri, if it has received the input tick exactly ri times from the environment.
The environment must ensure that ri ≤ rj +1 for all honest parties Pi and Pj .
Furthermore, when the environment sends tick to an honest party, it cannot
send another tick to that party until it has received an output from Pi.

Synchronous Parties. If a party Pi gets input tick from its environment it
must after this input, send tick exactly once to each of its ideal functionali-
ties. Note that the caller might be a super-protocol instead of an environment
and that Pi might be calling a sub-protocol instead of an ideal functional-
ity. This is transparent to Pi and we will use environment to denote the
entity calling Pi and ideal functionality to denote the entity being called by
Pi. When an honest party received back an output from all the sub-entities
to which it input tick, it must deliver an output to its environment as the
next thing.

Notice that if we compose a synchronous environment with a synchronous
protocol to get a new environment, then we again have a synchronous environ-
ment, which is the main observation needed to lift the UC composition theorem
to the synchronous setting.

374 J.B. Nielsen and S. Ranellucci

In the following we will ignore the inputs tick as they are only used to define
which round we are in. We will say that Pi gets input xi in round ri if it gets
input (tick, xi) in that round. We will say that Pi gets no input in round ri if
it gets input (tick) in that round.

A synchronous ideal functionality is given by a transition function Tr which
in each evaluation takes the state from the previous evaluation, an input from
each other party and computes a new state and one output for each of the other
parties. Each evaluation is started by the honest parties, each giving an input.
For simplicity we require that these inputs are all given in the same round. We
also assume that each evaluation has a fixed round complexity, given by a round
function R. Evaluation number e will take R(e) rounds. If a corrupted party
does not give an input, a default value is used. For a given transition function Tr
and round function R the corresponding synchronous ideal functionality F sync

Tr,R

is given in Fig. 1.

Initialize Let e = 0; This is a counter of how many evaluations were done so far.
Throughout, let C denote the current set of corrupted parties and let H denote
the current set of honest parties. Let σ = 1λ; This is the initial internal state.
Let State ← inputting.

Honest Input If in some round all parties Pi ∈ H give an input xi and State =
inputting, then set xj = ⊥ for Pj ∈ C, store (x1, . . . , xn), let e ← e+1 and let
State ← computing. (If in some round some honest party Pi gives an input xi

and some honest party Pj does not give an input or State �= inputting, then
do a complete breakdown.)

Corrupt Input On input (Pi, x) for Pi ∈ C while State = computing, update
xi ← x. Then turn over the activation to the adversary.

Compute During the next R(e) rounds after setting State ← computing all honest
parties just output tick.

Eval If the adversary inputs (eval) and State = computing, then compute
(σe, y1, . . . , yn) ← Tr(σe−1, x1, . . . , xn). Set State ← evaluated. Output
{(i, yi)}Pi∈C to the adversary.

Output In round R(e) + 1, after setting State ← computing, output yi to Pi for
Pi ∈ H and let the adversary decide the order of delivery.

Abort The ideal functionality can be parametrized by an abort threshold a. If a is
not specified, it is assumed that a = n. If the adversary inputs (abort) and
|C| > a, then output abort to all honest parties and terminate.

Total Breakdown Doing a total breakdown in a given round means that the ideal
functionality outputs the current and all previous σi to the adversary along
with all previous inputs and then switches to a mode where it is the adversary
that determines which messages are sent by the ideal functionality.

Fig. 1. Synchronous ideal functionality F sync

Tr for transition function Tr and round
function R

We will be using an ideal functionality for synchronous communication.
In each evaluation, party Pi has input (xi,1, . . . , xi,n) and receives the output

On the Computational Overhead of MPC with Dishonest Majority 375

(x1,i, . . . , xn,i), i.e., in each round each party can send a message to each other
party. We will not write this ideal functionality explicitly in our formal state-
ments. We consider it the ground model of communication, i.e., it is present in
all our (hybrid) models. The round complexity of each evaluation is 1.

We will be using an ideal functionality for broadcast between a set of parties
P1, . . . ,Pn. In each evaluation each party has input xi and receives the output
(x1, . . . , xn). The round complexity is the same in all rounds but might depend
on the number of parties. For n parties, we use Rbroadcast(n) to denote the round
complexity of each round of broadcast among n parties.

3.2 Broadcast

For our protocols, we require a synchronous broadcast channel. A broadcast
channel is a primitive that allows a player to broadcast a message to a subset of
the players. When a player receives a broadcasted message, he is assured that
each other player received the same message.

The ideal functionality is for one sender S and r receivers R1, . . . ,Rr.

Broadcast On input m from S and input begin from all honest receivers Ri in
the same round, wait for Rbroadcast rounds and then output m to all receivers,
letting the adversary determine the order of delivery.

Corrupt sender If S is corrupt and does not provide an input, then let m = ⊥.
Furthermore, if S is corrupt and the adversary inputs (replace input, m′)
before an output was delivered to the first honest party, then let m ← m′.

Fig. 2. The broadcast functionality Fbroadcast

4 The Outer Protocol

The outer protocol πout involves n users U1, . . . ,Un and m servers S1, . . . ,Sm.
Only the users have inputs and outputs. The protocol computes an n-party
function f : Dn → En given by circuit C. We assume that D = {0, 1}k and that
E = D ∪ {⊥}, but the protocol obviously generalises to differently structured
inputs and outputs. We use ⊥ to signal that a user did not get an output.

We assume that f is fixed and that the protocol runs in some fixed number
of rounds, which we denote by Rout.

We assume that the only interactions involving users is in the first round
where all users send a message to all servers (we call these the input messages)
and in some given round Rout all servers send a message to all users (we call
these the output messages). We use Inout to denote the randomized function
used to compute input messages from an input and we use Outout to denote the
deterministic function used to compute the output from output messages.

376 J.B. Nielsen and S. Ranellucci

We assume that in each round r, each server Sj sends one message yr
j,k to

each of the other servers Sk. We use yr
j,j to denote the state of Si after round r

and at the start of round r + 1. We use Trout to denote the transition function
of the servers: the function applied in each round to compute a new state and
the messages to be sent in the given round.

Inputs
For i = 1, . . . , n user Ui has input xi and has random tape ti. For j = 1, . . . , m
server Sj has no input and has random tape rj .

Server initialization
For j, k = 1, . . . , m server Sj lets y0

k,j be the empty string.
Generation of input shares

For i = 1, . . . , n user Ui samples (xi,1, . . . , xi,m) ← Inout(xi; ti).
Distribution of input shares

For i = 1, . . . , n and j = 1, . . . , m user Ui sends xi,j to server Sj .
Embedding of input shares

For j = 1, . . . , m server Sj sets y0
j,j ← (x1,j , . . . , xn,j , rj).

Evaluation rounds
For r = 1, . . . ,Rout round r runs as follows:
Transition

For j = 1, . . . , m server Sj computes (yr
j,1, . . . , y

r
j,m) ←

Trout(r, y
r−1
1,j , . . . , yr−1

m,j).
Communication

For j, k = 1, . . . , m server Sj sends yr
j,k to server Sk.

Generation of output shares
For j = 1, . . . , m server Sj computes (zj,1, . . . , zj,n) ← Trout(Rout +
1, yRout

1,j , . . . , yRout

m,j)
Distribution of output shares

For j = 1, . . . , m and i = 1, . . . , n server Sj sends zj,i to user Ui.
Output reconstruction

For i = 1, . . . , n user Ui computes zi ← Outout(z1,i, . . . , zn,i).

Fig. 3. Running an outer protocol πout = (Rout, Inout,Trout,Outout) for f

We assume that users can be actively corrupted. To actively corrupt Ui the
adversary will input (active-corrupt) to Ui. In response to this Ui sends
its internal state to the adversary, will forward all incoming messages to the
adversary, and from now on, it is the adversary that determines what Ui sends.
After an active corruption, a user is called malicious. A user is called correct if it
is not malicious. We assume that a server Sj can be actively corrupted or crash-
stop corrupted. Active corruption is handled as usual. To crash-stop corrupt
Sj the adversary will input (crash-stop-corrupt) to Sj . In response to this
Sj , sends crashed to all other servers and stops giving any outputs and stops
sending any messages. After this we say that Sj is crashed. The adversary might
actively corrupt a crashed server. A server is called correct if it is not malicious
nor crashed. We work with two thresholds tmal

out
tterm
out

which are values between

On the Computational Overhead of MPC with Dishonest Majority 377

and 0 and 1 that represent proportions of servers. We assume that at most a
tmal
out

proportion of servers are actively corrupted. We will allow any number of
malicious users and we will allow any number of crashed servers. However, we
will only guarantee termination if less than a tterm

out
proportion of servers are

incorrect (Fig 4).

The ideal functionality is for n users U1, . . . ,Un and m servers S1, . . . ,Sm and a
function f .

Input If in some round all correct users Ui give an input xi and in the same round
all correct servers get an input begin, then set xi = ⊥ for all actively corrupted
users. In the first round where a correct user or correct server gets an input not
of the above form, do a total break down.

Compute During the next Rout rounds, output nothing. We call this the computa-
tion period.

Eval If during the computation period the adversary inputs eval or if Rout

rounds have passed without such an input from the adversary, then compute
(z1, . . . , zn) ← f(x1, . . . , xn). After this we say that the evaluation has taken
place. Now for all Ui which are passively or actively corrupted, output (i, zi) to
the adversary.

Replace inputs If the evaluation has not yet taken place and the adversary inputs
(replace input, i, x′

i) and Ui is actively corrupted, then set xi ← x′
i.

Replace outputs If the evaluation has taken place and outputs have not yet been
delivered and the adversary inputs (replace output, i) and there are more than
ttermout incorrect servers, then set zi = ⊥.

Output After Rout + 1 rounds have passed output zi to Ui. After this we say that
outputs have been delivered.

Fig. 4. The ideal functionality F tterm
out

out corresponding to an outer protocol for f

Definition 1. We say that πout is a (tmal
out

, tterm
out

)-suitable outer protocol if it
UC realises the corresponding F tterm

out

out against a proportion tmal
out

of adaptive, active
corruptions and any number of adaptive crash-stop corruptions.

Theorem 1. There exists a suitable outer protocol π for all C ∈ NC with OH =
polylog(n) · log(size(C)).

Proof (sketch). We only sketch a proof of the theorem as the desired protocol
can be built in a fairly straightforward manner from off-the-shelf techniques.

Starting from [DIK10] we get a protocol π for m servers and a circuit C which
is perfectly secure against m/4 adaptive, active corruptions. We can extend
this to the client-server setting by having each Ui secret share its input among
S1, . . . ,Sm and then computing the function f ′ which first reconstructs the secret
sharings, computes f , and outputs secret sharings of the results. We denote the
resulting protocol by π′

f . It runs the protocol πf ′ , i.e., the protocol π from
[DIK10] for the function f ′.

378 J.B. Nielsen and S. Ranellucci

The secret-sharing scheme used for the inputs and outputs should have the
following properties. First, that given m shares of which at most 1

4m are incor-
rect, one can efficiently reconstruct the message. Furthermore, the secret-sharing
scheme should also have the property that given at most m/4 shares, one gets no
information on the secret. Finally, when secret sharing a message x, the secret-
sharing scheme should produce a secret sharing of size O(|x| + m) and it should
be possible to share and reconstruct in time O(|x| + m). The secret sharing
scheme from [CDD+15] meets these criteria.

We now do a generic, white-box transformation of the protocol π into a
protocol π′

f which can tolerate crash errors. Each server Sj will run exactly as in
π except that it keeps a counter cj which is initialized to 0 and which is increased
whenever Sj sees a party sent crashed. There is a threshold t = m/8 and when
cj ≥ t, server Sj will crash itself, i.e., it sends crashed to all parties and stops
sending messages. If at the end of the computation of f ′, a server is not crashed,
it sends its share of the output of Ui to Ui.

The intuition behind π′
f is that we try to keep the number malicious servers

plus the number of crashed servers within the threshold m/4 of π. We will use
m/8 of the budget for crashes and have m/8 left for tolerating some additional
malicious corruptions. If we see too many crashed servers, then all servers will
shut down the execution of π by self-crashes. We say that π was shut down if all
correct servers did a self-crash.

We are going to reduce the security of π′
f to that of π by considering all

parties which deviate from π′
f as actively corrupted. Notice that in π′

f there are
three types of parties which deviate from the underlying protocol πf ′ . (1) The
servers Sj which are actively corrupted in π′

f . (2) The servers Sj which are crash-
stop corrupted in π′

f . (3) The correct servers Sj which did a self-crash and hence
stopped running πf ′ . At any point in the execution, let di denote the number of
servers which deviated from π and are of type i and let d = d1 + d2 + d3. We
are going to show that at any point before the shut-down point, it holds that
d < m/4. This means that up to the shut-down point, we can perfectly emulate
an attack on π′

f by an attack on πf ′ using < m/4 active corruption. This also
holds after the shut-down point since all honest parties have self-crashed and
therefore there is no more communication from honest parties to simulate.

What remains is to show that if d ≥ m/4, then the shut-down point has been
reached. Assume that d ≥ m/4. If in a given round there are (d1, d2, d3) deviators
of the various types, then at the beginning of the next round all correct servers
have seen d2 + d3 messages crashed as both crashed and self-crashed parties
sent out crashed to all parties. Hence before the next round begins it will hold
for all correct Sj that cj ≥ d2+d3 = d−d1 ≥ m/4−d1 ≥ m/4−m/8 = m/8 = t.
Hence the shut-down point has been reached.

We then show that if any party gets an output then all honest users have
their inputs considered correctly and all honest parties who get an output get
the correct output. If the shut-down point is reached, then clearly no party gets
an output, so assume that the shut-down point was not reached. Then the attack
can be emulated given m/4 active corruptions. This means that at most m/4 of

On the Computational Overhead of MPC with Dishonest Majority 379

the shares of the honest parties are missing or modified. Therefore each honest
Ui will correctly reconstruct zi.

This ends the proof that the protocol is secure. We now address when the
protocol is guaranteed to terminate.

It is clear that as long as d1 + d2 < t, we will have that d3 = 0 as all
cj ≤ d1 + d2 until the first self-crash. This shows that as long as d1 + d2 < t
we will have d < t = m/8 and therefore we will have guaranteed termination
of π′

f . Furthermore, if d1 + d2 < m/8 then at least m − d ≥ 7
8m shares of

the secret shared inputs are correct and at most d1 + d2 ≤ m/8 are incorrect.
Hence, all honest parties will have their inputs xi reconstructed inside f ′. It will
similarly be guaranteed that each Uj receives at least m − d ≥ 7

8m shares of the
secret shared output and that at most m/8 of these are incorrect. Hence Ui can
compute the correct zi.

We then address the complexity of the functions. By the assumptions on the
secret sharing scheme and on the size of f , we have that |f ′| = O(|f | + n · m).
Assuming that m = O(n), this is of the form |f ′| = O(|f |) + poly(n), so for
the sake of computing the overhead, we can assume that |f ′| = O(|f |). When
f ∈ NC, then the protocol from [DIK10] has OH = polylog(n) · log(|f ′|).

5 The Inner Protocol

The inner protocol πout involves c parties U1, . . . ,Uc. It must securely realize
reactive secure computation, i.e., there are several stages of inputs and outputs
and a secure state is kept between the stages. Each stage is computed via a
transition function Trin. We need that the round complexity of each stage is
known before the protocol is run. The round complexity of stage Stage is denoted
by Rin(Stage).

Definition 2. We say that πin is a suitable inner protocol for (Trin,Rin) if it
UC realises FTrin,Rin

in against adaptive, active corruption of any number of parties.

Theorem 2. For for all c and poly-sized Trin there exists Rin and πin such that
πin is a suitable inner protocol for (Trin,Rin) in the OT-hybrid model with statis-
tical security and complexity O(poly(c)|Trin|), where in the complexity the calls
to the OT functionality are counted as the size of the inputs and outputs.

Proof. One can use the protocol from [IPS08]. One can in particular note that
once the circuit to be computed is fixed, [IPS08] has a fixed round complexity.

Theorem 3. For all c and poly-sized Trin there exists Rin and πin such that πin

is a suitable inner protocol for (Trin,Rin) in the CRS model with computational
complexity O(poly(c)|Trin|λ).

Proof. Replace the ideal OTs in Theorem 2 by the adaptive secure OT from
[GWZ09].

380 J.B. Nielsen and S. Ranellucci

The ideal functionality is for c parties P1, . . . ,Pc, transition function Trin and round
complexity function Rin.

Init Initialize a stage counter Stage ← 1 and initialize a state variable State ←
inputting.

Input If in some round all correct parties Ui give an input xi and State =
Inputting, then set xi = ⊥ for all actively corrupted parties. Set State ←
computing. If in some round some honest party gives an input and (State �=
inputting or some honest party does not give an input), then do a complete
breakdown.

Compute During the Rin(Stage) rounds which follow State being set to computing,
output tick to all parties.

Replace inputs If State = computing and the adversary inputs
(replace input, i, x′

i) and Pi is actively corrupted, then set xi ← x′
i.

Eval If State = computing and the adversary inputs eval or if Rin(Stage) rounds
have passed since State was set to computing without such an input from the
adversary, then compute (σStage+1, y1, . . . , yc) ← Trin(σStage, x1, . . . , xc) and for
all corrupted Pi, output (i, yi) to the adversary. Set State ← evaluated.

Replace outputs If State = evaluated and the adversary inputs
(replace output, i) and Pi is honest, then set yi = ⊥.

Output Exactly Rin(Stage) rounds after State was set to computing, output yi to
Pi and let the adversary specify the order of delivery. Set State ← inputting.
If any honest Pi receives ⊥, then do a crash (see below).

Crash Set State ← crash, output crash to all parties, ignore all future input,
and in all future rounds output tick to all parties.

Crashing If all honest parties input crash in the same round, then do a crash as
above. If some corrupted party inputs crash then do a crash as above. If in
some round, some honest party inputs crash and some honest party does not
input crash, then do a complete breakdown.

Fig. 5. The ideal functionality Fin for the inner protocol

6 Combining the Inner Protocol and the Outer Protocol

In this section, we describe how to combine the inner and outer protocol into
the protocol that we call the combined protocol. This is a new instance of a
black-box protocol transformation defined by [IKP+16]. First, we will describe
tools that we will need. The first tool is called an expander graph. The second
tool called authentic secret sharing is a secret sharing scheme that allows an
honest party that receives shares to detect tampering. Our third tool is called
Authenticated One-Time Encryption which is an information-theoretic authen-
ticated encryption scheme. It is analogous to the one-time pad. Finally, we will
describe how to run the combined protocol. We will describe what to do when
an emulated server crashes, how emulated servers can exchange keys with other
parties even when its committee only has a single honest party and then how the
servers can then use those keys to securely communicate. We will then describe
our final protocol and prove that it has poly-log overhead and some termination
guarantees.

On the Computational Overhead of MPC with Dishonest Majority 381

6.1 More Tools

Threshold Bipartite Expander Graph. A threshold bipartite expander
graph is a bipartite graph with n left nodes and m right nodes which guar-
antees that that for any set of left nodes that has size greater or equal to αn,
the size of the neighborhood of that set is greater or equal to βm. Recall that
given a graph G = (V,E) and some subset S ⊆ V , the neighbourhood of S
denoted by N(S) is the set of nodes that are adjacent to a node in S, i.e.,
N(S) := {v ∈ V | ∃ u ∈ S : (u, v) ∈ E}. As usual a bipartite graph is a graph
G = (L ∪ R,E) where L ∩ R = ∅, N(L) ⊆ R and N(R) ⊆ L. The left (right)
degree is the maximal degree of a node in L (R).

Definition 3. A (n,m,α, β)-threshold bipartite expander is a bipartite graph
G = (L ∪ R,E) with |L| = n, |R| = m such that if S ⊆ L and |S| ≥ αn then
N(S) ≥ βm.

We show that for all constant 0 < α < 1 and 0 < β < 1 there exists m = O(n)
and an (n,m,α, β)-threshold bipartite expander where the left degree is O(1)
and the right degree is O(1).

We describe a simple construction of a bipartite threshold expander graph. It
is inspired by [SS96]. We will show that for any α > 0, that there exists a degree
d such that for every n, β there exists an explicit way of constructing graphs
such that the resulting graph is (n, n, α, β)-threshold bipartite expander graph
except with probability negligible in n. In addition, the degree of the graph is at
most d and each right node has at least one edge. We denote the binary entropy
function as H.

The construction is rather simple. First, we sample at random a set of d
permutations.

Π ← {π1, . . . , πd : [n] → [n]}
We denote L = {1, . . . , n} as the set of left edges and R = {n + 1, . . . , 2n} as

the set of right edges. We select the graph as follows:

E ←
⋃

π∈Π

{(1, n + π(1)), . . . , (n, n + π(n))} (1)

G ← (L ∪ R,E) (2)

Theorem 4. For any 0 < α, β < 1, let d =
⌈
−H(α)+H(β)

α log β

⌉
+ 1 then for any n ∈

N the previous construction results in a bipartite (n, n, α, β)-threshold expander
except with probability smaller than 2αn log β

We note that the number of left sets of size αn is equal to
(

n
αn

)
. We note

that the number of right sets of size (1 − β)n is equal to
(

n
βn

)
=

(
n

(1−β)n

)
.

We will now upper bound the probability that the neighborhood of αn left
nodes does not intersect a set of (1 − β)n right nodes. We can see that for each
permutation, for each element in the left set, the probability that the element is

382 J.B. Nielsen and S. Ranellucci

not mapped to an element in the right set is less than or equal to β. Therefore
we have that the probability is upper bounded βαnd.

By the union bound, we know that the probability that there exists such sets
is less than βαnd

(
n

αn

)(
n

βn

)
. By applying Stirling’s approximation, we get that this

probability is upper bounded by

2nH(α)+nH(β)+αnd log(β) = 2n(H(α)+H(β)+αd log(β))

Finally, by setting d =
⌈
−H(α)+H(β)

α log β

⌉
+ 1

2n(H(α)+H(β)+αd log(β)) ≤ 2αn log β

Lemma 1. For the construction above, the degree of the graph is at most d.

This follows since there are d permutations in Π and each node gains at most
one edge per permutation.

Lemma 2. For the construction above, each right node has at least one edge.

This follows since each permutation assigns each right node to a left node.

Authentic Secret Sharing. Let F be a finite field and n be an integer. A secret
sharing scheme consists of two algorithms share and rec. For every s ∈ F, share(s)
outputs a randomized set of shares (s1, . . . , sn). We use share(s) to denote the
distribution on (s1, . . . , sn) when the input is s. The algorithm rec takes as input
(s′

1, . . . , s
′
n) and gives an output in F ∪ {⊥} where ⊥ signals error.

For any i ∈ [n] we let (s1, . . . , sn)−i = (s1, . . . , si−1, si+1, . . . , sn). For any
(s1, . . . , sn)−i and any s we let ((s1, . . . , sn)−i, s) = (s1, . . . , si−1, s, si+1, . . . , sn).
For all i and all s ∈ F and all unbounded adversaries A taking as input
(s1, . . . , sn)−i and giving outputs (s′

1, . . . , s
′
n)−i consider the game where we

sample (s1, . . . , sn) ← share(s) and compute s′ = rec(A((s1, . . . , sn)−i), si). Note
that it might be the case that s′ = ⊥. We use A−i(s) to denote the distribu-
tion of s′, i.e., the result of reconstructing with the n − 1 possibly modified
shares. Let δ(⊥) = ⊥ and δ(x) = for x �= ⊥. We use Â−i(s) to denote
(δ(s′), (s1, . . . , sn)−i), i.e., the shares seen by the adversary plus the information
whether reconstructing with the wrong shares gave an error or not.

Definition 4 (authentic secret sharing). Let (share, rec) be a secret sharing
scheme. We call (share, rec) an authentic secret sharing scheme if the following
conditions hold.

Reconstruction. For all s ∈ F it holds that Pr[rec(share(s)) = s] = 1.
Sound. For all s ∈ F and all i ∈ [n] and all unbounded adversaries A it holds

that Pr[A−i(s) ∈ {s,⊥}] = 1.
Privacy. For all s, s̄ ∈ F and all i ∈ [n] and all unbounded adversaries A it

holds that Â−i(s) and Â−i(s̄) are statistically close.

On the Computational Overhead of MPC with Dishonest Majority 383

Authenticated One-Time Encryption. An Authenticated One-Time Enc-
ryption scheme is given by a key space, encryption algorithm and decryption
algorithm (K,Enc,Dec). For each message length m and value λ of the security
parameter we have a key space Km,λ. Given K ∈ Km,λ, λ and message x ∈
{0, 1}m the encryption algorithm outputs a ciphertext A = EncK,λ(x). Given
K ∈ Km,λ, λ, m and ciphertext A the decryption algorithm outputs message
x = DecK,λ,m(A).

Correctness. For all m and all x ∈ {0, 1}m it holds with probability 1 for a
random key K ← Km,λ that DecK,λ,m(EncK,λ(x)) = x.

Security. Let A be a computationally unbounded algorithm. Input λ to A and
run it to get m and x0, x1 ∈ {0, 1}m. Sample a uniformly random bit b ←
{0, 1}. Sample K ← Km,λ and A ← EncK,λ(xb). Let Om,K,A(B) be the oracle
which on input B �= A returns DecK,λ,m(B). Compute g ← AOm,K,A(B)(A)
for g ∈ {0, 1}. The advantage of A is given by AdvA(λ) = |Pr[g = b]− 1

2 |. We
say that (K,Enc,Dec) is secure if AdvA(λ) ∈ negl(λ) for all A which makes
at most a polynomial number of queries to its oracle.

Authenticity. Let A be a computationally unbounded algorithm. Input λ to A
and run it to get m. Sample K ← Km,λ. Let Om,K(B) be the oracle which
on input B returns DecK,λ,m(B). Compute c ← AOm,K,A(B)(). We say that
(K,Enc,Dec) has authenticity if Pr[DecK,λ,m(c) �= ⊥] ∈ negl(λ) for all A
which makes at most a polynomial number of queries to its oracle.

We say that an Authenticated One-Time Encryption scheme has overhead
O(1) if it holds for all messages x and all K ∈ K|x|,λ that |K| + |EncK(x)| ∈
O(|x| + poly(λ)) for a polynomial independent of |x| and if we can encrypt and
decrypt in time O(|K|+ |EncK(x)|+ |x|). This means that for large enough x we
have that |K|+ |EncK(x)| ∈ O(|x|) and that we can encrypt and decrypt in time
O(|x|). We can construct such a scheme off-the-shelf. Let MAC be an information-
theoretic MAC which can handle message of length O(λ) using keys of length
O(λ) and which can be computed in time poly(λ). Such a scheme is described
for instance in [WC81]. Let H be a family of almost universal hash-functions
which can be computed in linear time, see for instance [IKOS07]. For messages
of length m, the key for the encryption scheme will consist of (L,H,P), where
L is a random key for the MAC, H ← H is a random hash function from the
family and P is uniformly random in {0, 1}m. To encrypt, compute C = x ⊕ P ,
M = H(C) and A = MACL(M) and send (C,A). To decrypt, if |C| �= m, output
⊥. Otherwise, compute M = H(C) and A′ = MACL(M). If A′ �= A, output ⊥.
Otherwise, output C ⊕ P . The complexity is as claimed and the security follows
from [WC81].

6.2 The Combined Protocol

For the combined protocol we have n parties P1, . . . ,Pn of which at most n ·
tmal,comb are corrupted. We want to compute a function f . The parties are going
to run one execution of the outer protocol to compute f . In the outer protocol we

384 J.B. Nielsen and S. Ranellucci

have n users U1, . . . ,Un and m servers S1, . . . ,Sm of which we need that at most
tmal,out ·m are corrupted. Party Pi is going to run the code of Ui. Each server Sj

is going to be emulated by a small subset of the parties. The inner protocol will
be used to emulate servers. We set α = 1− tmal,comb and set β = 1− tmal,out. We
use a (n,m,α, β)-threshold expander graph G = (V,E) to form the committees.
For j = 1, . . . , m we let

Cj = {Pi | (i, j) ∈ V }
We call Cj committee j. Using the graph from Sect. 6.1, the size of committees
is constant and except with negligible probability all sets of αn parties have
members in at least βm committees.

We will present our result in a hybrid model with ideal functionalities for
the inner protocol. We call this the inner-hybrid model. For each i = 1, . . . , m,
we are going to have an ideal functionality Fj of the form given in Fig. 5 with
c = |Cj | and the parties being Cj . We call Fj virtual server j and we specify later
the behaviour of Fj .

We set up some notation. Let P = {P1, . . . ,Pn}. At any point in the execu-
tion, Phonest ⊂ P denotes the set of parties which are honest in the combined
protocol and we let Pmal be the set of maliciously corrupted parties.

We use S = {1, . . . ,m} to denote the identities of the virtual servers. We
define three disjoint subsets as follows

Shonest = {j ∈ S | Cj ⊆ Phonest}
Smal = {j ∈ S | Cj ⊆ Pmal}

Scrashable = S \ (Shonest ∪ Smal)

If j ∈ Shonest, then all parties in committee j are honest. Therefore, Fj is secure
and also has guaranteed output delivery. This will correspond to Sj being secure
in the outer protocol. If j ∈ Smal, then all parties in committee j are malicious.
Therefore, Fj provides no security. This will correspond to Sj being malicious
in the outer protocol. If j ∈ Scrashable, then at least one party in committee j
is honest and at least one party is malicious. Therefore Fj provides privacy and
correctness, but some or all honest parties might not learn the output. If at some
point a party in committee j does not get an output, then Fj will abort. This
corresponds to Sj crashing in the outer protocol. We will let the honest party in
Cj which received output ⊥ inform all other parties that Fj has aborted. Overall,
this will correspond to a crash-stop corruption of Sj in the outer protocol.

By the way we have set the parameters of the threshold expander graph it
follows that if |Pmal| ≤ n · tmal,comb then |Smal| ≤ m · tmal,out. We have therefore
almost perfectly emulated the entities U1, . . . ,Un,S1, . . . ,Sm of the outer proto-
col with the needed adversary structure as long as |Pmal| ≤ n · tmal,comb. The only
significant difference between U1, . . . ,Un,S1, . . . ,Sm and P1, . . . ,Pn, F1, . . . ,Fm

is the fact that in the outer protocol, the entities U1, . . . ,Un,S1, . . . ,Sm can
send private messages to each other, whereas most of the entities P1, . . . ,Pn,
F1, . . . ,Fm cannot send private messages to each other. This is going to give us
the so-called secret communication problems when we emulate the protocol in
Fig. 3.

On the Computational Overhead of MPC with Dishonest Majority 385

Distribution of Input Shares. To give inputs, each Ui sends a share to Sj .
In the emulated outer protocol this corresponds to Pi inputting a message to
Fj . If Pi �∈ Cj , this is not allowed.

Server Communication. As part of the evaluation, each Sj sends a message to
Sk. In the emulated outer protocol, this corresponds to Fj sending a message
to Fk. This is not allowed since ideal functionalities cannot communicate.

Distribution of Output Shares. To give outputs, Sj sends a share to Ui. In
the emulated outer protocol this corresponds to Fj outputting a message to
Pi. If Pi �∈ Cj , this is not allowed.

Another problem is that in the outer protocol, if a server Si crashes, it will
by definition notify the other servers. However, now the code of Si is “trapped”
inside Fi so Si must notify Sj via the parties Ci and Cj and there might be
corrupted parties among Ci ∪ Cj . We call this the abort propagation problem.
Handling of the abort propagation problem is described in Fig. 6.

The parties run a copy of the outer protocol. The code and state for Si will be inside
Fi. If Si crashes inside Fi, then Fi will also crash, i.e., it will enter a state with
State = crash and will output crash to all parties. As we will describe later, there
will be other events which can trigger Fi to crash. In all those cases, we want that
all other Fj learn that Fi has crashed. This is handled as follows:

Define Crashing We say that Fi is crashed if it enters a state where State = crash.
If this happens, it outputs crash to all P ∈ Ci

Crash Alerting If at any point during the execution a party P ∈ Ci sees Fi output
crash, then for j = 1 . . . m, P broadcasts (crash, i) to all parties in Ci ∪ Cj .

Crash Recording A crash alert is received as follows.

– If at any point during the execution, a party Pk ∈ Cj receives a broadcast
(crash, i) from a party in Ci to Ci ∪ Cj then Pk inputs (crash, i) to Fj .

– If Fj receives input (crash, i) from all parties in Cj then it inputs (crash, i)
to Sj as if coming from Si in a run of the outer protocol. If Fj receives input
(crash, i) from all honest parties but some corrupted party did not give
input (crash, i) then Fj does a crash. a If Fj receives input (crash, i) from
some honest parties but some other honest party did not input (crash, i),
then Fj does a complete break down.

a Recall that in the UC model ideal functionalities know which parties are corrupt.

Fig. 6. Crash handling part of πcomb

We handle all three secret communication problems by letting the entities
that need to communicate share a secret key which is used to encrypt the given
message using an Authenticated One-Time Encryption scheme. Then the authen-
ticated ciphertext c can be sent in cleartext between the two involved entities.
This solves the problem as an ideal functionality Fj for instance can output c
to all members of Cj which can then all send c to all the members of Ck who

386 J.B. Nielsen and S. Ranellucci

will input it to Fk. Our way to solve the secret communication problems is
significantly more complicated than the approach in [IPS08] and other player
emulation protocols. The reason is that previous techniques incur an overhead
of at least n. For instance, in [IPS08] each message is secret shared among all
parties, which means that messages will become a factor n longer. We need
constant overhead. This is not an issue for [IPS08] as they consider n to be a
constant. Also, the technique in [IPS08] do not guarantee termination if there is
just one corrupted party.

To have servers and players share keys, we use a subprotocol to do so. This
introduces another problem. It is possible that all committees contain at least
one corrupt player. When a player is generating a key with a committee, a
problem may arise. This can occur because either the player is corrupt or the
committee contains at least one dishonest member. It is imperative that a server
with at least one honest member must get the key from each honest user or abort.
Otherwise, the corrupt parties can prevent honest parties from giving inputs. We
employ player elimination techniques [HMP00] to solve this problem.

Distribution of Input Shares. When Ui needs to send a message m to Sj

and they are both honest there will exist a random secret key Ki
j which is

held by Pi and which is inside Fj . Then Pi computes c = EncKi
j
(m) and

sends it to each Pk ∈ Cj . Then each Pk inputs c to Fj . Let ck denote the
value input by Pk. Then the virtual server Fj computes mk = DecKi

j
(c). If

|{mk}k∈Cj
\ {⊥}| = 1, then let m be the unique value in {mk}k∈Cj

\ {⊥}.
Otherwise, let m = ⊥. Notice that if Pi is honest and there is at least one
honest Pk ∈ Cj , then the correct ciphertext will be input to the virtual server
and therefore m ∈ {mk}k∈Cj

. Furthermore, no corrupted committee member
can input another valid ciphertext. In particular, when the correct message
is not received, either Pi is corrupted or j ∈ Smal.

Server Communication. When Si needs to send a message m to Sj and they
are both honest there will exist a random secret key Ki,j which is inside Fi

and Fj . Then Fi computes c = EncKi,j
(m) and outputs it to all Pk ∈ Fi.

Then all Pk ∈ Fi sends c to all Pl ∈ Cj and they all input all the ciphertexts
they received. The virtual server decrypts all ciphertexts and sets m to be
the unique message different from ⊥ if it exists and ⊥ otherwise. If Ci crashes
the message is also set to ⊥. Assume that Ci is not crashed and Cj is not
corrupted. Then all the honest parties Pk ∈ Ci sent the correct ciphertext
and no party knows the secret key, so the only correct ciphertext input to the
virtual server is the correct one. Hence m arrives correctly. Assume then that
that Ci is crashed and Cj is not corrupt. Then the message is set to ⊥ as it
should be.

Distribution of Output Shares. When Sj needs to send a message m to Ui

and they are both honest there will exist a random secret key Ki
j which is held

by Pi and which is inside Fj . Then Fj computes c = EncKi
j
(m) and outputs

it to all parties Pk ∈ Cj , who all forward it to Pi. The party decrypts all
ciphertexts and sets m as above. Assume that Cj is not crashed or corrupted
and that Pi is honest. Then all the honest parties Pk ∈ Cj sent the correct

On the Computational Overhead of MPC with Dishonest Majority 387

ciphertext and no party knows the secret key, so the only correct ciphertext
sent to Pi is the correct one. Hence m arrives correctly. Assume then that Cj

is crashed and that Pi is honest. Then the message is set to ⊥ as it should be.
Assume that Cj is corrupted and that Pi is honest. Then any message might
arrive, but this is allowed as it correspond to Sj being corrupted. Similarly if
Pi is corrupted.

It should be clear that the above emulation of the outer protocol should
work as long as the security of the encryption scheme is not broken. We are,
however, still left with the problem of getting the keys in place. We describe the
key distribution protocols below.

Generating Input Keys. The basic idea behind generating the key Kj
i is

to let Pi generate it and distribute an authentic secret sharing {Kj
i,k}k∈Cj

←
share(Kj

i,k) among the parties Pk ∈ Cj who will input the shares to Fj which
will in turn compute Kj

i ← rec({Kj
i,k}k∈Cj

) and store it for later use. The main
problem arises when the reconstruction fails. This will prevent Pi from giving
(secure) inputs to Fj . Unfortunately the error can arise either due to Pi being
corrupted or some Pk ∈ Cj being corrupted. In the later case Cj is crashable but
might not be crashed, in which case Pi must be able to give secure inputs, as an
honest Ui can give secure inputs to an honest Sj in the outer protocol.

We describe how to handle the case when reconstruction fails. First Fj will
output to all parties in Cj all the shares {K̂j

i,k}k∈Cj
that was input. If this does

not crash Cj then all parties Pk ∈ Cj will broadcast {K̂j
i,k}k∈Cj

to Cj ∪ {Pi}. If all
parties Pk ∈ Cj do not broadcast the same values, then all honest parties Pk ∈ Cj

will crash Cj by sending crash to all parties and Fj . Otherwise, Pi will identify
the indices k such that K̂j

i,k �= Kj
i,k and will broadcast the indices to Cj ∪ {Pi}.

If Pi does not do so, then Pi is corrupted and the parties in Cj will ignore all
future messages from Pi. If parties were excluded, then the above procedure
is repeated, but now Pi secret shares only among the committee members that
were not excluded. Notice that only corrupted parties are excluded. Therefore, if
Cj is not corrupted, the procedure will terminate before all committee members
were excluded, at which point Kj

i was added to Fj . If eventually all committee
members were excluded, Pi will consider Cj corrupted (Fig 7).

Generating Committee Keys. The basic idea behind generating Ki,j is to
let Fi generate Ki,j and sample an authentic secret sharing {Ki,j,k}k∈Ci

←
share(Ki,j) and output Ki,j,k to Pk. Then Pk inputs Ki,j,k to Cj using the method
for when Uk gives input to Fj . Recall that when Uk gives input to Fj it will
succeed unless Fj crashes or Cj detects Uk as being corrupted. If Fj crashes there
is no need to generate a key. If Cj detects Pk as corrupted, they all broadcast
this to Ci ∪ Cj and Pk. Notice that if this happens, then either Pk is corrupted,
and it is secure to excluded it, or Cj is corrupt, which corresponds to Sj being
corrupt, and hence there is no reason to keep the key secret, so again it is secure

388 J.B. Nielsen and S. Ranellucci

Key Generation We use a key generation protocol KeyGenerationU↔S
i,j run between

Pi and the parties in Cj . It is invoked by all parties in the same round by giving
the input (key, kid, m), where kid is a fresh key id and m is the length of the
message that will later be encrypted. It proceeds as follows:
1. Let C = Cj ;
2. If C = ∅, then Pi terminates the protocol. Otherwise it proceeds as follows.
3. Pi samples Ki

j ← Km,λ;
4. Pi samples an authenticated secret sharing {Ki

j,k}k∈C ← share(Ki
j) among

the parties C.
5. For k ∈ C, party Pi sends Ki

j,k to Pk and Pk inputs Ki
j,k to Fj .

6. Let K̂i
j,k be the value of Ki

j,k received by Fj ;

7. Fj computes K̂i
j ← rec({K̂i

j,k}k∈C);

8. If K̂i
j �= ⊥, then Fj outputs success to all parties in Cj and stores

(kid, m, K̂i
j). All parties terminate the protocol.

9. If K̂i
j = ⊥, then Fj outputs {K̂i

j,k}k∈C to all parties in Cj ;

10. Each party Pk ∈ Cj broadcasts {K̂i
j,k}k∈C to Cj ∪ {Pi}.

11. If Pk ∈ Cj sees that not all parties from Cj broadcast the same values, then
Pk inputs crash to Fj and waits for two rounds to let the crash propagate.

12. If Fj crashed during the above, then each Pk ∈ Cj broadcasts crash to
Cj ∪ {Pi};

13. If Fj did not crash during the above but still some Pk ∈ Cj broadcast
crash, then all honest Pk ∈ Cj inputs crash to Fj ;

14. If Pi did not see any Pk ∈ Cj broadcast crash, then Pi received {K̂i
j,k}k∈C

from all parties. It then finds k such that K̂i
j,k �= Ki

j,k and broadcasts k to
Cj ;

15. If Pi does not broadcast k ∈ C then Pi is corrupt and the protocol terminates
with the output being some dummy key.

16. If Pi does broadcast k ∈ C, then each P ∈ Cj sets C ← C \ {k} and inputs
k to Fj ;

17. Unless all P ∈ Cj input the same k, Fj will crash. Otherwise it sets C ←
C \ {k};

18. Pi and all parties in Cj go to Step 2.

Fig. 7. User-Server key-generation communication part of πcomb

to exclude Pk. Let C′
i ⊆ Ci be the parties that were not excluded. If any parties

were excluded, then Fi generates a new key Ki,j and samples an authentic secret
sharing {Ki,j,k}k∈C′

i
← share(Ki,j) and outputs Ki,j,k to Pk. The procedure is

repeated until C′
i = ∅ or Ci crashed or Cj crashed or in some attempt all keys

{Ki,j,k}k∈C′
i

were successfully input to Fj . In the three first cases, either Ci or
Cj is corrupted and there is no need for a key. In the last case, Fj computes
Ki,j ← rec({Ki,j,k}k∈C′

i
). If Ki,j �= ⊥, then the key is the same as generated

by Fi unless the security of the secret sharing scheme was broken. Assume then
Ki,j = ⊥. Since we are in a situation which might correspond to both Si and Sj

being honest (if for instance Ci and Cj are crashable but not crashed) we have

On the Computational Overhead of MPC with Dishonest Majority 389

User-Server communication We use a communication protocol SendU→S
i,j run

between Pi and the parties in Cj . It is invoked by all parties in the same round
by giving the input (send, kid), where some (kid, K, m) is stored. In addition
Pi inputs x ∈ {0, 1}m. It proceeds as follows.
1. Delete (kid, K, m).
2. If x ∈ {0, 1}m then Pi computes c = Encλ,K(x) and sends c to all parties

Pk ∈ Cj .
3. Each Pk inputs the received c to Fj . Let ck be the value received from Pk.
4. For k ∈ Cj the ideal functionality computes xk = Decλ,m,K(ck).
5. If there exists x ∈ {0, 1}m such that {x} = {xk}k∈Cj \ {⊥}, then store

(message, kid, x). Otherwise, store (message, kid, ⊥).
Server-User communication We use a communication protocol SendS→U

j,i run
between Pi and the parties in Cj . It is invoked by all parties in the same round
by giving the input (send, kid), where some (kid, K, m) is stored. It proceeds
as follows.
1. Fj deletes (kid, K, m).
2. Fj computes c = Encλ,K(x) and sends c to all parties Pk ∈ Cj .
3. Each Pk ∈ Cj , awaits c from Fj .
4. Each Pk ∈ Cj , sends c to Pi. Let ck be the value received from Pk.
5. For k ∈ Cj , Pi computes xk = Decλ,m,K(ck).
6. If there exists x ∈ {0, 1}m such that {x} = {xk}k∈Cj \ {⊥}, then store

(message, kid, x). Otherwise, store (message, kid, ⊥).

Fig. 8. User-server communication

to handle Ki,j = ⊥ by trying again. When Ki,j = ⊥ the virtual server Fj will
output this to Cj along with {Ki,j,k}k∈C′

i
which will all broadcast the shares to

Ci ∪Cj . If they do not all broadcast the same value, then the honest parties in Cj

will crash Cj which is safe as there must be a corrupted party in Cj . If they all
broadcast the same value, denote this value by {Ki,j,k}k∈C′

i
. Then all parties in

Ci will give these values to Fi. Again, if they do not all give the same values, the
Fi will crash. Otherwise Fi will find the indices k for which the wrong shares
arrived at Fj . This only happens if Pk is corrupted, so it is not safe to remove
Pk from the set of parties among which the secret sharing is done and try again.
The code is given in Figs. 9 and 10.

Putting the Pieces Together. We now describe how to put the pieces
together. The combined protocol is given in Fig. 11. Since the tools we use are
information-theoretically secure, the information theoretic security of πcomb is
fairly straight forward to argue, using the arguments we gave above for the
security of the individual sub-protocols.

Termination. To analyze termination, we use that each party is in at most
d = O(1) committees and that n = O(m). Let δ = m/(8nd). If less than δn
parties are corrupted, there will be at most dδn = m/8 committees which even

390 J.B. Nielsen and S. Ranellucci

Key Generation We use a key generation protocol KeyGenerationS↔S
i,j run between

the parties in Ci ∪ Cj . It is invoked by all parties in the same round by giving
the input (key, kid, m), where kid is a fresh key id and m is the length of the
message that will later be encrypted. It proceeds as follows:
1. All parties in Ci ∪ Cj set C = Ci;
2. If C = ∅, then terminate and use a dummy key. Otherwise proceed as

follows.
3. Fi samples Ki,j ← Km,λ;
4. Fi samples an authenticated secret sharing {Ki,j,k}k∈C ← share(Ki

j) among
the parties C.

5. For k ∈ C, the functionality Fi outputs Ki,j,k to Pk.
6. For k ∈ C, party Pk uses the code in Fig. 8 to send Ki,j,k to Fj .
7. Let K̂i,j,k be the value of Ki,j,k received by Fj (if the transmission fails,

then K̂i,j,k = ⊥ which will trigger a reconstruction error which is handled
below);

8. Fj computes K̂i,j ← rec({K̂i,j,k}k∈C);
9. If K̂i,j �= ⊥, then Fj outputs success to all parties in Cj and stores

(key, kid, i, j, m, K̂i,j). All parties terminate the protocol.
10. If K̂i,j = ⊥, then Fj outputs {K̂i,j,k}k∈C to all parties in Cj .
11. Each party Pk ∈ Cj broadcasts {K̂i

j,k}k∈C to Ci ∪ Cj .
12. If Pk ∈ Cj sees that not all parties from Cj broadcasts the same values,

then Pk inputs crash to Fj and waits for two rounds to make the crash
propagate. In this case no key is needed.

13. If Fi does not consider Fj crashed during the above, then all Pk ∈ Ci inputs
{K̂i

j,k}k∈C to Fi. If they do not all input the same value, Fi will crash.

14. If Fi did not crash it will find k such that Ki,j,k �= K̂i,j,k and outputs k
to all parties in Ci. Following the usual patterns, they will all broadcast k
to Ci ∪ Cj , crash Fi if there is not agreement and otherwise let all parties
input k to Fj which will crash if there is not agreement.

15. If neither Fi nor Fj is crashed, then set C ← C \ {k} and go to Step 2.

Fig. 9. Server-server communication part of πcomb (Key Generation)

contain a corrupted member. Therefore the total number of corrupted commit-
tees plus crashable committees will be at most m/8. Since the outer protocol is
secure (including termination guarantee) against m/8 malicious corruptions, it
follows that the combined protocol guarantees termination against δn malicious
corruptions.

Complexity. We now address the complexity of the combined protocol when
run in inner-hybrid model. We count one computational step by some Fj as
1 towards the complexity. We count one computational step by some Pi as 1
towards the complexity. We count the sending of a message x by some Pi as |x|
towards the complexity. We count the broadcast of one bit to log(n) parties as
polylog(n). Notice that throughout the protocol, we ever only broadcast to sets
of parties of constant size, as all committees have constant size. Let c denote

On the Computational Overhead of MPC with Dishonest Majority 391

Communication Defines a procedure SendS→S
i,j . It is invoked by all parties in the

same round by giving the input (send, kid), where some (key, i, j, kid, K, m) is
stored inside Fi and some (message, i, j, kid, x ∈ {0, 1}m) is stored inside Fi.
It proceeds as follows:
1. Fi deletes (key, i, j, kid, K, m);
2. Fi computes c = Encλ,K(x) and outputs c to all parties Pk ∈ Ci.
3. Each Pk ∈ Ci sends c to all parties Pl ∈ Cj . The parties Pl might receive

conflicting values, in which case they keep them all.
4. For l ∈ Cj each Pl inputs all the values c received from parties Pk ∈ Ci to

Fj . The functionality accepts at most |Ci| values from each party.
5. Let A denote the set of ciphertexts c received by Fj . There might be up to

|Ci| · |Cj | such values.
6. If there exist x ∈ {0, 1}m such that {x} = {Decλ,K,m(c)}c∈A \ {⊥}, then

store (message, i, j, kid, x). Otherwise, store (message, i, j, kid, ⊥).

Fig. 10. Server-Server communication part of πcomb (communication)

the complexity of running the outer protocol as a plain protocol. We want to
compute the complexity of running the combined protocol and show that it is
of the form O(c ·polylog(n))+ poly(n, λ). This would show that the overhead of
the outer protocol is OH = polylog(n). The emulation of the computation of the
outer protocol clearly introduces no other overhead than the abort handling, key
generation and the encryption of messages. It is clear that crash handling sends
at most O(n2) messages of constant size. This can be swallowed by the poly(n, λ)
term. It is clear that one attempt of a key generation of a key of length k will have
complexity O(k), as secret sharing is done among a constant number of parties
and secret sharing and reconstruction is linear and we broadcast a constant
number of messages in one attempt. Since C initially has constant size and each
attempt of generating a key sees the size of C go down by at least 1 and the
procedure stops when C = ∅, it follows that key generation has complexity O(k).
By assumption the overall complexity of key generation and sending a message
is therefore O(k) + poly(λ). There are in the order of 2n + m2Rout messages,
so the total complexity of sending the encrypted messages of total length M
will be O(M) + (2n + m2) · poly(λ). The total length M of the messages is
already counted as part of the complexity c and can therefore be swallowed by
the O(c ·polylog(n)) terms. The remaining (2n + m2) ·poly(λ) can be swallowed
by poly(n, λ) as m = O(n).

Theorem 5. For all c ∈ [0, 1) there exists a protocol π for the inner-hybrid
model for all f ∈ NC secure against malicious, adaptive corruption of up to cn
parties and with termination guarantee against a non-zero constant fraction of
corruptions with OH = polylog(n) · log(size(f)).

We can use the UC theorem to replace each Fj by a suitable inner protocol.
Using the fact that all Cj have constant size along with Theorem 2, this gives
a combined protocol for the model with OT and a broadcast between sets of
parties of constant size with an overhead of OH = polylog(n) · log(size(f)).

392 J.B. Nielsen and S. Ranellucci

Formation For j = 1, . . . , m initialize Fj with committee Cj as defined above. The
code of Fj is describe in the figures above . Below, we describe further behaviour
of Fj .

Crash Handling Start running the sub protocols in Fig. 6. If Fj learns that Fi is
crashed as part of the crash handling, then this is added to the current state
yr

j,j of Sj below as in a run of the outer protocol.
Key Generation For all Ui and Sj and messages x of length m and with id kid

to be sent from Ui to Sj or Sj to Ui, run KeyGenerationU↔S
i,j (kid, m). For all Si

and Sj and messages x of length m and with id kid to be sent from Si to Sj in
the outer protocol, run KeyGenerationS↔S

i,j (kid, m). All parties wait a number of
rounds which upper bounds the worst case running time of all the sub protocols
to stay synchronized.

Computation Now emulate the outer protocol πout as follows.
Inputs For i = 1, . . . , n party Pi has input xi.
Server initialization For j, k = 1, . . . , m functionality Fj initializes Sj by

letting y0
k,j be the empty string.

Generation of input shares For i = 1, . . . , n user Pi samples
(xi,1, . . . , xi,m) ← Inout(xi; ti) for a random tape ti.

Distribution of input shares For i = 1, . . . , n and j = 1, . . . , m user Pi

sends xi,j to server Fj using SendU→S
i,j .

Embedding of input shares For j = 1, . . . , m functionality Fj sets y0
j,j ←

(x1,j , . . . , xn,j , rj) for a random tape rj .
Evaluation rounds For r = 1, . . . ,Rout round r is emulated as follows:

Transition
For j = 1, . . . , m functionality Fj computes (yr

j,1, . . . , y
r
j,m) ←

Trout(r, y
r−1
1,j , . . . , yr−1

m,j).
Communication

For j, k = 1, . . . , m functionality Fj sends yr
j,k to functionality Fk using

SendS→S
j,k

Generation of output shares For j = 1, . . . , m functionality Sj computes
(zj,1, . . . , zj,n) ← Trout(Rout + 1, yRout

1,j , . . . , yRout

m,j)
Distribution of output shares For j = 1, . . . , m and i = 1, . . . , n server Sj

sends zj,i to party Pi using SendS→U
j,i .

Output reconstruction For i = 1, . . . , n party Pi computes zi ←
Outout(z1,i, . . . , zn,i).

Fig. 11. The combined protocol πcomb

When we want to tolerate that more than half the parties are corrupted, there
is no way to implement the broadcast from scratch. We can, however, weaken
the assumption on broadcast to only having access to poly(n) broadcasts which
are all performed prior to the protocol being run. They might even be performed
prior to knowing f . The broadcasts can either be used to set up a public-key
infrastructure and then rely on signatures. They can also be used to run the
setup phase of the protocol from [PW92] which can then be used to implement
an unbounded of number of broadcasts in the online phase.

The protocol from [PW92] has information theoretic security. To broad-
cast between c parties the protocol from [PW92] has complexity poly(c) · λ to

On the Computational Overhead of MPC with Dishonest Majority 393

broadcast one bit. Since we broadcast poly(n, λ) bits among log-size sets this
will all in all contribute with a complexity of poly(n, λ), which does not affect
the overhead.

Corollary 1. For all c ∈ [0, 1) there exists an information-theoretically secure
protocol π secure against adaptive, malicious corruption of up to cn parties and
with termination guarantee against a non-zero constant fraction of corruptions
for the hybrid model with initial broadcast and oblivious transfer for all f ∈ NC
with OH = polylog(n) · log(size(f)).

We can similarly use Theorem 3 to get a protocol for the CRS model and
initial broadcast between log-size sets of parties. In this case we will only get
computational security, and we might therefore as well go for the weaker model
where we assume a PKI instead of initial broadcasts. Given a PKI we can imple-
ment the broadcasts using for instance the protocol in [DS83].

Corollary 2. For all c ∈ [0, 1) there exists a protocol π secure against adaptive,
malicious corruption of up to cn parties and with termination guarantee against
a non-zero constant fraction of corruptions for the (PKI, CRS)-hybrid model for
all f ∈ NC with OHArith = λ · polylog(n) · log(size(f)).

Acknowledgments. This work is supported by European Research Council Starting
Grant 279447. Samuel Ranellucci is supported by NSF grants #1564088 and #1563722.
This work is partially supported by the H2020-LEIT-ICT project SODA, project num-
ber 731583. The authors would also like to thank the anonymous reviewers for their
valuable comments and suggestions. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

[BCP15] Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation:
multi-party computation for (Parallel) RAM programs. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 742–762.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 36

[Bra87] Bracha, G.: An o (log n) expected rounds randomized byzantine generals
protocol. J. ACM (JACM) 34(4), 910–920 (1987)

[BSFO12] Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure
multiparty computation with a dishonest minority. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32009-5 39

[CDD+15] Cramer, R., Damg̊ard, I.B., Döttling, N., Fehr, S., Spini, G.: Linear
secret sharing schemes from error correcting codes and universal hash
functions. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 313–336. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46803-6 11

http://dx.doi.org/10.1007/978-3-662-48000-7_36
http://dx.doi.org/10.1007/978-3-642-32009-5_39
http://dx.doi.org/10.1007/978-3-662-46803-6_11
http://dx.doi.org/10.1007/978-3-662-46803-6_11

394 J.B. Nielsen and S. Ranellucci

[CDI+13] Cohen, G., Damg̊ard, I.B., Ishai, Y., Kölker, J., Miltersen, P.B., Raz, R.,
Rothblum, R.D.: Efficient multiparty protocols via log-depth thresh-
old formulae. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 185–202. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 11

[CPS14] Choudhury, A., Patra, A., Smart, N.P.: Reducing the overhead of MPC
over a large population. In: Abdalla, M., Prisco, R. (eds.) SCN 2014.
LNCS, vol. 8642, pp. 197–217. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10879-7 12

[DIK+08] Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scal-
able multiparty computation with nearly optimal work and resilience. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85174-5 14

[DIK10] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computa-
tion and the computational overhead of cryptography. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13190-5 23

[DKL+13] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority–or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40203-6 1

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32009-5 38

[DS83] Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement.
SIAM J. Comput. 12(4), 656–666 (1983)

[DZ13] Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of
boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 621–641. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36594-2 35

[GWZ09] Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryp-
tion and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 30

[HM00] Hirt, M., Maurer, U.: Player simulation and general adversary structures
in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000)

[HMP00] Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party compu-
tation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
143–161. Springer, Heidelberg (2000). doi:10.1007/3-540-44448-3 12

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) Proceed-
ings of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, 11–13 June, pp. 21–30. ACM (2007)

[IKP+16] Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure
protocol transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 430–458. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53008-5 15

http://dx.doi.org/10.1007/978-3-642-40084-1_11
http://dx.doi.org/10.1007/978-3-642-40084-1_11
http://dx.doi.org/10.1007/978-3-319-10879-7_12
http://dx.doi.org/10.1007/978-3-319-10879-7_12
http://dx.doi.org/10.1007/978-3-540-85174-5_14
http://dx.doi.org/10.1007/978-3-642-13190-5_23
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/978-3-642-03356-8_30
http://dx.doi.org/10.1007/3-540-44448-3_12
http://dx.doi.org/10.1007/978-3-662-53008-5_15
http://dx.doi.org/10.1007/978-3-662-53008-5_15

On the Computational Overhead of MPC with Dishonest Majority 395

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 572–591. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85174-5 32

[KMTZ13] Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
477–498. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 27

[PW92] Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any
number of faulty processors. In: Finkel, A., Jantzen, M. (eds.) STACS 1992.
LNCS, vol. 577, pp. 337–350. Springer, Heidelberg (1992). doi:10.1007/
3-540-55210-3 195

[SS96] Sipser, M., Spielman, D.A.: Expander codes. IEEE Trans. Inf. Theory
42(6), 1710–1722 (1996)

[WC81] Wegman, M.N., Carter, L.: New hash functions and their use in authenti-
cation and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

http://dx.doi.org/10.1007/978-3-540-85174-5_32
http://dx.doi.org/10.1007/978-3-540-85174-5_32
http://dx.doi.org/10.1007/978-3-642-36594-2_27
http://dx.doi.org/10.1007/3-540-55210-3_195
http://dx.doi.org/10.1007/3-540-55210-3_195

Better Two-Round Adaptive Multi-party
Computation

Ran Canetti1,2, Oxana Poburinnaya1(B),
and Muthuramakrishnan Venkitasubramaniam3

1 Boston University, Boston, USA
{canetti,oxanapob}@bu.edu

2 Tel Aviv University and CPIIS, Tel Aviv, Israel
3 University of Rochester, Rochester, USA

muthuv@cs.rochester.edu

Abstract. The only known two-round multi-party computation proto-
col that withstands adaptive corruption of all parties is the ingenious
protocol of Garg and Polychroniadou [TCC 15]. We present protocols
that improve on the GP protocol in a number of ways. First, concentrat-
ing on the semi-honest case and taking a different approach than GP, we
show a two-round, adaptively secure protocol where:
– Only a global (i.e., non-programmable) reference string is needed. In

contrast, in GP the reference string is programmable, even in the
semi-honest case.

– Only polynomially-secure indistinguishability obfuscation for cir-
cuits and injective one way functions are assumed. In GP, sub-
exponentially secure IO is assumed.

Second, we show how to make the GP protocol have only RAM com-
plexity, even for Byzantine corruptions. For this we construct the first
statistically-sound non-interactive Zero-Knowledge scheme with RAM
complexity.

1 Introduction

Adaptive security of protocols, namely security against an adversary that decides
whom to corrupt adaptively during the execution of the protocol, has been an
ongoing focus in cryptography. Indeed, adaptive security better captures real life
adversaries, which can often make adaptive corruption choices.

Two cases which are of particular importance in this setting are (a) the
case where no data erasures are possible, hence the adversary gets to see all
the past internal states of a corrupted party, and (b) the case where all par-
ties are eventually corrupted. Indeed, while for static corruptions the case of
all parties being corrupted is uninteresting, for adaptive corruptions the case
of all parties being eventually corrupted is of central interest. For one, in the
case of protocols for computing randomized functions, it allows requiring that

Research supported by the NSF MACS Frontier project, ISF grant 1523/14, Google
Faculty Research Grant and NSF Awards CNS-1526377/1618884.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 396–427, 2017.
DOI: 10.1007/978-3-662-54388-7 14

Better Two-Round Adaptive Multi-party Computation 397

the internal randomness of the function remains hidden even when the entire
state of the system is exposed. It also allows arguing about the security of other,
uncorrupted parties in a larger system which uses our protocol. Furthermore, the
combination of these properties allows demonstrating leakage tolerance proper-
ties even when all parties may leak some side-channel information on their local
computations [BCH12]. We call protocols that are secure in this setting fully
adaptive.

Constructing fully adaptive protocols is a significant challenge. The difficulty
here is that the adversary eventually sees all the inputs and random choices of
the parties, and yet security of the output and the computational process should
be maintained. Indeed, such protocols with constant number of rounds appeared
only recently [CGP15,DKR14,GP14]; among these protocols, only [GP14] is a
multiparty protocol with two rounds (which is the minimum possible).

We construct better two-round, fully adaptive protocols for general multi-
party computation. Our improvements span a number of security, functional-
ity, and efficiency aspects. We start by presenting and discussing some of these
aspects.

Randomness-Hiding Functionalities. Consider a set S of parties that want to
run a secure function evaluation protocol in order to jointly generate an obfus-
cated program, where the program is to be used in some other protocol that
involves additional parties. Security of the obfuscated program should be pre-
served even when everybody in the set S is corrupted (which could be impor-
tant for the remaining honest parties in the other protocol). Note that this
program-obfuscating functionality is randomized, and security of the overall sys-
tem requires that the randomness of this function remains secret even when all
parties in S are corrupted. Another example of such a task is to instruct parties
to joinly sample an RSA public key N = pq without knowing the actual factor-
ization p, q, even when the secret information of all parties is pooled together.
We call protocols that hide the actual randomness which was used to compute
the function even when everybody is corrupted randomness-hiding.

We note that the standard methodology of evaluating a randomized func-
tionality via secure evaluation of a circuit, where some of the input values to
the circuit are the result of xor-ing the local random inputs of all parties, results
in a protocol that is inherently not randomness-hiding1. With this approach
the adversary corrupting everybody learns the randomness of each and every
party, and therefore the internal randomness of the function (e.g. random coins
of obfuscation); thus no security is left.

Randomness hiding is also useful in another, perhaps less obvious, scenario.
Adaptive security is often used to argue leakage tolerance [BCH12]: assume par-
ties are computing a randomized functionality, and the adversary decides to
leak 1 bit of each party’s randomness. If the protocol looses security when every-
body is corrupted, the simulator from [BCH12] cannot simulate such leakage,

1 For instance, parties can choose randomness ri, make it part of their input, and
evaluate the functionality F ((x1, r1), . . . , (xn, rn)) = f(x1, . . . , xn;

⊕
ri).

398 R. Canetti et al.

since the argument from [BCH12] requires that the simulator should be able to
potentially simulate the full randomness of each party whose internal state was
leaked, even though the adversary actually sees only a single bit of randomness
of each party.2 In contrast, if the protocol supports randomness-hiding function-
alities, then the simulator can simulate randomness of all parties, and therefore
the protocol remains leakage-tolerant even if the adversary decides to leak from
everybody.

Global Common Reference String. In the common reference string (CRS) model,
all parties have access to a string, generated in advance by a trusted entity
(which doesn’t need to participate in the protocol). In a local (sometimes called
programmable) CRS model, which is most often used, the simulator has the
power to generate the CRS itself. This makes the task of designing protocols
easier, since the simulator can generate the CRS in such a way that it knows
corresponding trapdoors and therefore has more power than the adversary. The
major drawback of a local CRS is that when two different protocols use the
same CRS, there is no guarantee of security whatsoever, even if each of them
separately is secure. Thus, to preserve security of a protocol that was proven
secure in the local CRS model within a larger system, one has to make sure that
no other protocol in the system will ever use that same CRS, either inadvertently
or via malicious protocol design. See e.g. [CDPW07] for more discussion.

To overcome these issues with composability, the global CRS model was intro-
duced. In this model the simulator doesn’t have the power to generate the CRS;
instead, it has to work with a given CRS. The global CRS model makes sig-
nificantly weaker trust assumptions on the reference string and its generation
process. In particular, a global CRS can be known globally and used by all pro-
tocols in the system without any prior coordination; in this sence composition-
wise the global CRS model is very close to the plain model: once we proved that
the protocol is secure with a global CRS, we don’t need to take this CRS into
account anymore, since it can be used by any other protocol without the risk of
compromising security.

On the Need of the Common Reference String. Our protocol works in a com-
mon reference string (CRS) model. While there is no evidence that computing
randomness-hiding functionalities require a CRS3, it is not known how to com-
pute general randomness-hiding functionalities in the plain model. In fact, this
is an interesting open problem, and solving it would allow to remove the CRS
requirement from many works (including this work), where the CRS is an obfus-
cated program whose keys and randomness should remain hidden.

2 To be more precise, [BCH12] require that there exist a translation function which
maps ideal world internal state into real world internal state.

3 Indeed, some simple functions can be computed in a randomness-hiding way even in
the plain model; for instance, the function f(r) = gr, where g is a group generator
and r is randomness, can be simply computed by choosing a random element in a
group; in this case randomness r remains unknown.

Better Two-Round Adaptive Multi-party Computation 399

As discussed in [IKOS10], adaptively secure protocols for randomized func-
tionalities are tightly connected to extractable one way functions (EOWF).
Namely, this work shows that the existence of such a protocol for general func-
tionalities in the plain model implies that EOWFs with uniform auxiliary input
don’t exist, since one-wayness of the function can be broken by first using the
simulator to obtain random coins for a given output and then by running the
extractor on these random coins to extract the actual input of the EOWF.

We also stress that the CRS appears to be essential, even in the semi-honest
setting. Recall that in the case of non-adaptive semi-honest security, CRS is
not needed; indeed, instead of having a CRS, parties can generate the CRS by
themselves, in the plain model, in the beginning of the protocol, at the cost of
one more round. However, this is not true in the case of adaptive security. The
reason is that our CRS contains secrets (e.g. randomness of the obfuscation,
PRF keys) which shouldn’t be known to anybody, including parties running the
protocol. Working in the plain model would require parties to generate this CRS
in a way that even all parties together do not know corresponding secrets. As
discussed in the previous paragraph, this is an open problem.

Computation and Communication Complexity. The majority of existing proto-
cols assume that the function is represented as a circuit. This means that the
work of parties and, in some cases, the length of communication both depend
on the size of a circuit to be computed. Given that Turing machines and RAM
machines may have significantly more efficient parameters than circuits, building
MPC protocols which use the advantage of more efficient models of computation
is an important task. (In particular, in the case of RAM computation that does
not necessarily need to access all the input, the gap could be exponential.)

Although we cannot take advantage of a potentially sublinear RAM compu-
tations (indeed, unlike, say, the persistent garbled RAM setting where database
garbling phase could be long, but the actual computations are very short, the
MPC setting requires the computation to touch every input), multiparty com-
putation can still benefit from the RAM model in several ways. As one example,
consider the case where parties are willing to trade some security for efficiency;
in this case they can obtain efficiency close to the input-specific running time
(rather than worst-case running time)4. For instance, let’s say there is a data-
base with medical data, and a group of researchers is interested in average age of
persons satisfying some sparse property P (say, having rare medical condition).
If these researches don’t care about hiding P , then they can compute the average
fairly efficiently, with running time comparable to the number of entries satisfy-
ing P . However, if P cannot be made public, then need to run a protocol with P
being their secret input; this immediately makes their running time worst-case

4 Recall that the security of MPC requires that no information about inputs of parties
is leaked. Running time of a program M on input x could potentially leak information
about x. Therefore if full security is needed then programs should necessarily work
as long as their worst-case running time, even if computation on this particular input
is short.

400 R. Canetti et al.

(for all possible P), which is comparable to the size of the database. If these
researches are willing to sacrifice some security to gain efficiency (for instance,
if others are allowed to learn that P is a rare disease, but cannot learn which
one), then they can perform very efficient computation (like in the first case),
while still having meaningful security guarantees.

On the Limitations of the [IK02,AIK06] Approach in the Fully Adaptive Setting.
A natural approach to obtaining protocols with RAM efficiency is to use ideas
of [IK02,AIK06]: Instead of directly evaluating the desired function, have the
parties jointly evaluate a garbling (or, randomized encoding) of the function and
input. Then each party locally computes the output. Plugging-in a RAM-efficient
garbling scheme [CHJV15,CH16] results in RAM-efficient protocols. However,
this approach has a caveat in our fully adaptive setting: note that the func-
tionality which needs to be computed (i.e. garbling) is randomized. If we want
to achieve full adaptive security, the randomness used in the garbling should
remain hidden even when everybody is corrupted; in other words, for the whole
construction to be secure, the underlying protocol should be randomness-hiding.
However, the only two-round protocol with full adaptive security we know (that
of [GP14]) is not randomness-hiding, and therefore to use this approach we need
to come up with adaptively secure randomness-hiding protocol first.

1.1 Our Results: Semi-honest Setting

Our main result is the first two-round MPC protocol with global (non-
programmable) CRS, which is secure against adaptive semi-honest corruption of
all parties. Besides globality, our protocol has other features: First, the protocol
allows to securely compute even randomness-hiding functionalities, and further-
more, it guarantees leakage tolerance even when every party can be leaked from
(for the discussion on why this is usually not the case, see the paragraph about
randomness-hiding functionalities in the first part of the introduction). Second,
the protocol is RAM-friendly, i.e. the amount of communication in our protocol
only depends on the RAM size of a function, not on its circuit size, and the work
of each party which obtains the output is proportional to RAM complexity of the
function. Third, we assume only polynomially secure IO and injective OWFs.

Theorem 1. Assuming injective one way functions and indistinguishability
obfuscation for circuits, there exists a two-round multiparty protocol with global
CRS for computing any randomized functionalities, even randomness-hiding
ones. The protocol is adaptively secure against honest-but-curious corruptions
of possibly all parties, with oblivious simulation. Its communication complexity
depends on λ, {|xi|}n

i=1, y, |f |RAM (logarithmic parameters omitted), and time and
space of every party depends on λ, {|xi|}n

i=1, y, |f |RAM, and time or space needed
to evaluate RAM f(x1, . . . , xn) in the worst case.

Our result improves the state of the art in a number of ways. In particular,
this is:

Better Two-Round Adaptive Multi-party Computation 401

– The first 2-round fully adaptive semi-honest MPC with global setup5;
– The first 2-round fully adaptive semi-honest MPC which doesn’t require

subexponential security of iO;
– The first 2-round fully adaptive semi-honest MPC which supports all (even

randomness-hiding) functionalities, and which therefore is fully leakage
tolerant.

Making this Protocol Secure Against Malicious Adversaries. The common tech-
niques [CLOS02] can be applied to compile this protocol into its malicious ver-
sion. The resulting protocol needs 4 rounds - two rounds should be added in the
beginning to do a malicious coin toss by first committing to inputs and random-
ness and then partially opening randomness. We observe however that the first
round of the semi-honest protocol is a commitment round as well, and thus in
the malicious version we can use CLOS commitments as if they were round-1
messages of the semi-honest protocol. Thus, then protocol requires only three
rounds (round 1 for commitments, round 2 for partial opening randomness, and
round 3 for round 2 of the semi-honest protocol). The resulting protocol preserves
all properties of the semi-honest version (in particular, it remains randomness-
hiding as long as there is at least one uncorrupted party during round 2, which
could be corrupted later). The only property that is lost is globality of the CRS,
which is inherent in the malicious setting). The resulting protocol outperforms
the protocol by Dachman-Soled et al. [DKR14], which is a 4-round protocol
against semi-honest adversaries.

1.2 Our Results: Malicious Setting

As an additional result, we show how to make the protocol of [GP14] RAM-
efficient: namely, we construct the first RAM-efficient statistically-sound non-
interactive zero-knowledge proofs, and then plug this NIZK into the protocol
of [GP14]. Compared to the malicious version of our first protocol, this protocol
needs only two rounds (instead of three), however, it requires subexponentially-
secure iO, and is not randomness-hiding.

Theorem 2 [GP14]. Assuming the existence of RAM-efficient statistically
sound NIZK, subexponentially secure iO for circuits, and one way functions,
there exists a two-round multiparty protocol with local CRS adaptively secure
against malicious corruptions of possibly all parties. Its communication com-
plexity depends on λ, {|xi|}n

i=1, y, |f |RAM (logarithmic parameters omitted), and
time and space of every party depends on λ, {|xi|}n

i=1, y, |f |RAM, and time or
space needed to evaluate RAM f(x1, . . . , xn) in the worst case.

RAM-Efficient Statistically Sound NIZK. We construct the first RAM-efficient
NIZK with statistical soundness, assuming statistically-sound NIZK for circuits
(which can be obtained from trapdoor permutations) and a RAM-efficient gar-
bling scheme (which can be built from iO and OWFs [CH16]):
5 We underline that the approach of [GP14] requires a local CRS even in the honest-

but-curious setting.

402 R. Canetti et al.

Theorem 3. (Informal) Assuming statistically sound non-interactive zero
knowledge (NIZK) for circuits and a succinct garbling scheme for RAM, there
exists a NIZK for RAM, where the work of the prover and the size of the proof
depends on |R|RAM, and the work of the verifier depends on the RAM complexity
of R (where R(x,w) is a relation which defines the language for the proof).

We note that our succinct NIZK is useful also in other settings. For instance,
in the two-round protocol of Garg et al. [GGHR14] the parties exchange obfus-
cated programs which compute next message functions (of some underlying
many-round protocol) together with a proof that the computation was done
correctly. If the underlying protocol has number of rounds proportional to the
RAM complexity of the function (say, the protocol by Damgard et al. [DMN11]),
plugging our RAM-efficient NIZK makes [GGHR14] protocol RAM-efficient.

1.3 Related Work

Fully Adaptively Secure Protocols. Until now, only three constant-round fully
adaptively secure protocols were known. [CGP15] is a two-round protocol for
two-party computation; [DKR14] is an MPC protocol, but requires 4 rounds;
both protocols have global CRS and allow to compute randomness-hiding func-
tionalities. [GP14] is a two-round MPC protocol secure against malicious adver-
saries; thus their reference string is necessarily local6. Their protocol doesn’t
support randomness-hiding functionalities.

All three protocols require the function to be represented as a circuit: namely,
the core part in both [CGP15,DKR14] are Yao garbled circuits7. The protocol
of [GP14] requires a statistically-sound NIZK for the statement f(x1, . . . , xn) =
y, and prior to our work such proofs required verification time proportional to
the size of the circuit.

In addition, [CGP15,GP14] require subexponentially-secure iO.

RAM-Efficient Protocols. Existing protocols for (even static) RAM MPC follow
one of the two approaches. The work of Boyle et al. [BCP15] shares a paradigm
of Damgard et al. [DMN11] which instructs parties to jointly evaluate steps of
a RAM CPU; this approach results in number of rounds proportional to the
number of CPU steps needed to compute a function.

The other approach, introduced by Ishai and Kushilevitz [IK02,AIK06],
requires parties to jointly evaluate a randomized encoding of the function and
input and then locally compute the output of this randomized encoding. Thus,

6 We note however that merely using their protocol in the semi-honest case doesn’t
allow for a local CRS: their approach requires proving statements to an obfuscated
program, which requires NIZK (and therefore a local CRS) even in the honest-but-
curious case.

7 Which cannot be easily switched to the garbling scheme for RAM. For instance, in
both protocols the underlying garbling scheme should support bit-by-bit garbling
of an input. [DKR14] makes even further use of the actual construction of garbled
circuits.

Better Two-Round Adaptive Multi-party Computation 403

plugging a RAM-efficient garbling scheme [CHJV15,CH16] into known construc-
tions results in statically-secure RAM-efficient protocols. However, in order to
achieve adaptive security, the underlying protocol must support randomness-
hiding functionalities. Prior to our work, no fully adaptive, two round protocol
with randomness hiding was known.

Constant Round Adaptively Secure RAM-efficient Protocols. Combining several
existing techniques, it is possible to construct adaptively secure protocols for
RAM. Namely, following the Ishai-Kushilevitz approach outlined above, we can
plug the succinct garbling schemes for RAM into constant-round adaptively
secure MPC (such as [DKR14,GP14]). The first protocol yields a fully adaptive
MPC for RAM with 4 rounds; we refer to this protocol as “augmented [DKR14]”.

The second construction, however, loses full security, since evaluating a gar-
bling is a randomized functionality, and since their protocol doesn’t guarantee
secrecy of randomness of the function when everybody is corrupted. Namely, the
simulator of the composed scheme will not be able to simulate the random coins
of each party, since it needs to simulate generation randomness of the garbling
scheme, consistent with simulated garbled values. This can be circumvented by
using a garbling scheme where the simulator can also simulate random coins of
the garbling, i.e. “adaptively secure” garbling8 It is possible to construct such
a garbling scheme by putting a mechanism allowing deniability (like in deniable
encryption of [SW14]) on top of a garbling algorithm of RAM-efficient garbling
scheme, say, [CH16], and obfuscating the whole circuit. This obfuscated circuit
is a CRS of an adaptive garbling scheme9. Such a construction seems to give a
RAM-efficient MPC protocol, which even allows to compute randomness-hiding
functionalities (roughly, because the deniability mechanism of [SW14] generates
random coins which are hidden from everybody). Still, this approach, which we
call “augmented [GP14]”, requires subexponentially-secure iO, and, since they
use NIZK even in the semi-honest case, a local CRS.

In the table below we compare our result with existing work on constant
round fully adaptive MPC [DKR14,GP14], as well as with augmented versions of
these protocols described above. All parameters are for the semi-honest setting.

Rounds Supports
RAM

Global
CRS

Randomness
hiding

Assumptions

[DKR14] 4 − + + iO+OWF

[GP14] 2 − − − subexp. iO+OWF

augmented [DKR14] 4 + + + iO+OWF

augmented [GP14] 2 + − + subexp. iO+OWF

our result 2 + + + iO+OWF

8 Note that usually the term “adaptive security” in the context of garbling is used to
denote a different property: that the adversary can choose new inputs and functions
after seeing garbled values.

9 With this approach the environment has to fix inputs before seeing the CRS, i.e. this
garbling scheme is only selectively secure. However, this is good enough for the pro-
tocol of [GP14], since they anyway use complexity leveraging and subexponentially-
secure iO.

404 R. Canetti et al.

Succinct NIZK Proofs. The only approach for building NIZK proof systems
where the length of the proof is independent of a circuit is based on encrypting
satisfying assignment via FHE and making the verifier homomorphically evaluate
the SAT circuit. This includes the work of [Gen09], who proposed the approach,
and [Gro11], who shows how to bring the size of the proof down from |w| ·poly(λ)
to |w|+poly(λ) (where w is the witness and λ is a security parameter); thus, the
question of communication complexity of NIZK is resolved. However, in both
schemes the verifier needs to do the work proportional to the circuit complexity
of the function. Up to now we didn’t know any fully succinct NIZK proof system
(i.e. NIZK where both communication complexity and work of both parties is
smaller than the circuit size).

1.4 Our Techniques: Semi-honest Case

Our MPC protocol takes a different approach than either of [GP14,DKR14,
CGP15]. We present and motivate the approach.

First Attempt. A natural idea for building MPC protocols is to use an obfuscated
program to emulate a trusted party. That is, the CRS contains an obfuscated
program which collects all inputs, does the computation, and outputs the result.

More precisely, the CRS should contain an encryption program Enc, which
takes an input xi and outputs its encryption ci, and a decryption/evaluation pro-
gram Eval, which takes c1, . . . , cn, decrypts them, computes y = f(x1, . . . , xn)
and outputs y. The parties can compute f(x1, . . . , xn) by encrypting ci =
Enc(xi), broadcasting ci, and computing y ← Eval(c1, . . . , cn). However, such
a protocol is clearly insecure: each party (say, P1) can compute many different
y′ = f(x′

1, x2, . . . , xn) for any desired x′
1 by generating c′

1 = Enc(x′
1) and running

Eval(c′
1, c2, . . . , cn).

A natural way to mitigate such an attack is to make the parties commit to
their input first, and only then exchange ciphertexts and do the computation.
Therefore we now have two rounds: in the first round parties exchange their
commitments ai, and in the second round they exchange ciphertexts ci. To make
sure that no party can run Eval on a different input than the one he committed
to, Eval should check that xi in ci is consistent with the commitment ai in the
previous round. To achieve this, we need to put into ci not only xi, but also
ai together with its opening. Note however that this still allows a curious party
to generate a different c′

i encrypting a different x′
i and a different, but valid

commitment a′
i to x′

i, and then run Eval; thus we have to include all first-round
commitments a1, . . . , an within each ci (together with an opening for ai), so that
a curious party couldn’t modify its own ai without being noticed.

At this point the protocol looks like this:

1. The CRS: Programs Enc and Eval, a CRS for a commitment scheme μbind

2. Round 1: Each party broadcasts ai ← Commit(xi), and keeps decommitment
information ri;

3. Round 2: Each party broadcasts ci ← Enc(xi; ri; a1, . . . , an)

Better Two-Round Adaptive Multi-party Computation 405

4. Evaluation: Each party computes y ← Eval(c1, . . . , cn).

Here Eval decrypts each ci and performs two checks: first, it checks that the set
of (a1, . . . , an) is the same in each ci. Second, it checks that for all i ri is a correct
opening of ai to xi. If all checks pass, it outputs f(x1, . . . , xn).

While this idea works in general, the exact implementation becomes a chal-
lenge. Our goal is to show that a real execution is indistinguishable from a
simulated one, where the simulated execution (and in particular, programs and
communication) is generated by a simulator who doesn’t know inputs of parties.
One difficulty is to be able to switch the ciphertext from real (encrypting xi) to
simulated, and at the same time be able to generate Eval with the secret key of
encryption inside. Several ways to accomplish this are known. One approach is
to use a “double encryption + NIZK” paradigm [NY90]; this method is chosen
by [GP14] and it leads to a protocol secure against malicious adversaries. How-
ever, one disadvantage of this approach is that the CRS is necessarily local, even
in the semi honest case.

The approach we take in order to switch ci from real to simulated in the
presence of the secret key is the “punctured key” technique, which guarantees
that real and dummy ciphertexts are indistinguishable, even in the presence of
“almost all” key - i.e. the key which decrypts everything except for this cipher-
text. This allows us to first indistinguishably modify Eval such that it needs only
a punctured key, and then switch a ciphertext (which the punctured secret key
cannot decrypt) to a dummy ciphertext.

However, this approach has two shortcomings, which are not obvious from
this discussion, but which would appear if we went deeper into the simulation and
proofs. First, the technique requires hardwiring input-dependent values (such as
xi and ci) into the program in the proof. This means that the inputs have to be
fixed before the adversary sees Eval (and therefore the whole CRS), giving only
selective security. Second, with this approach the programs in the simulated
CRS have to contain simulated ciphertexts, and therefore we can only hope to
get local, or programmable, CRS.

Second Attempt. To solve both issues, we exploit an indirection technique similar
to the one used in [KSW14,CPR16]: namely, we generate Enc and Eval during
the runtime instead of fixing them in the CRS. Note that Enc is needed only
in round 2 (and Eval is needed even later). Therefore we can let parties agree
on generation randomness rGen in round 1, and then, after round 1 is complete,
each party can run a special generation program Gen (which is now in the CRS
instead of Enc and Eval) to produce a fresh pair of Enc and Eval, which are then
used as before. In addition, we add to the CRS a special program Explain, which
inverts Gen, i.e. for any given output it produces consistent randomness rGen;
this is used by the simulator only.

Therefore the protocol now looks like this:

– The global CRS: programs Gen,Explain, a CRS for a commitment scheme
μbind

406 R. Canetti et al.

– Round 1: parties broadcast commitments ai = Commit(xi; ri) together with
randomness rGen,i;

– After round 1: each party sets generation randomness rGen ← ⊕
rGen,i and

obtains Enc,Eval ← Gen(rGen);
– Round 2: each party broadcasts ci ← Enc(xi; ri; a1, . . . , an);
– Evaluation: each party computes y ← Eval(c1, . . . , cn).

The simulator works as follows. First it generates programs Enc′,Eval′ (which,
as we said earlier, are different from real world programs). Next it uses Explain
to generate randomness rGen on which Gen outputs these simulated Enc′,Eval′.
It generates all rGen,i such that they xor to rGen, and sets ai and ci to be a
dummy commitment and a dummy ciphertext. (rGen,i, ai, ci) constitute simulated
communications. To handle corruption of a party, the simulator equivocates the
commitment; also the simulator needs to show the randomness for encryption,
which it can do as long as underlying encryption is non-committing or deniable.
Note that the the only reason why the simulator needs to generate the CRS is
a commitment scheme.

Third Attempt. So far our CRS is still local due to a commitment scheme.
However, it turns out that we don’t need the full power of the commitments;
for the proof of security our commitment scheme should be statistically binding
only at round-1 commitments, not everywhere. Since we are in the semi-honest
setting, it is enough to have a commitment scheme that is statistically binding
only on honestly generated commitments. We call this primitive honest-but-
curious (HBC) commitments.

Such a primitive can be easily constructed from one way functions: consider
a length-doubling prg mapping {0, 1}l to {0, 1}2l. For random s ∈ {0, 1}l, r ∈
{0, 1}2l, let (prg(s), r) be a commitment to 0 and (r, prg(s)) be a commitment
to 1. To open the commitment, show s. As long as a commitment was generated
honestly, i.e. r was truly random, it doesn’t have a valid prg preimage and
therefore this commitment is statistically binding. The simulator can simulate
the commitment by generating prg(s0), prg(s1) and later open it to any bit. (Note
that dishonest sender could cheat in the same way, and therefore binding holds
only for honestly generated commitments. But it suffices for our MPC protocol,
since we need a statistical binding property only for round 1 commitments ai,
which are generated by honest parties.)

Note that HBC commitments don’t require a CRS, and therefore the CRS
of the overall scheme is now global.

The Choice of Encryption Scheme for the MPC Protocol. As we said earlier,
perhaps the most challenging part of the proof is to switch ciphertexts from real
to simulated, while keeping the decryption key inside Eval. For this we take a
punctured programming approach, and therefore we need an encryption scheme
where it is possible to give a partial key, called a punctured key, which doesn’t
reveal anything about the challenge ciphertext. Our goal is the following: first
we want to modify Eval so that it uses a punctured key instead of a real one;

Better Two-Round Adaptive Multi-party Computation 407

this should be done without changing the functionality of Eval, since we want
to base security on iO. Importantly, modified Eval should not contain xi, or any
input-dependent values, since Eval should be generated by a simulator during the
protocol execution, when the simulator might not know inputs of the parties yet.
Next we want to use security of the punctured key and switch the ciphertext
from real to simulated.

The puncturable deterministic encryption [Wat15], which is commonly used
in this scenario, doesn’t help us: if we were using this scheme, the punctured
program would depend on inputs, making the simulation impossible. We there-
fore use a different encryption scheme, which we call a puncturable randomized
encryption (PRE)10. In addition, this primitive may be viewed as a simulation-
secure variant of PDE, and might be of independent interest.

Puncturable Randomized Encryption (PRE). In a definition of a semantically
secure encryption scheme a real ciphertext is indistinguishable from a simulated
one, even in the presence of a public key. A much stronger CCA security requires
that ciphertexts are still indistinguishable even given access to a decryption
oracle, i.e. to the functionality of a secret key everywhere except the challenge
ciphertext. One can consider an ultimate version of CCA security and require
that ciphertexts are indistinguishable even when the secret key itself is given in
the clear (of course, for this to be meaningful, the secret key shouldn’t be able to
decrypt the challenge ciphertext, just like in case of standard definition of CCA-
security). This is exactly what our puncturable randomized encryption achieves.
In other words, a PRE scheme is a symmetric key encryption scheme secure
under simulation security definition, where the simulator needs to simulate a
punctured key as well: that is, we require that a real-world punctured key and
a ciphertext (k{c}, c) are indistinguishable from simulated (k{c}, c).

We build a secret key version of this primitive using puncturable PRFs and an
injective public key encryption scheme (injective means that there doesn’t exist a
tuple (x, r, x′, r′) such that (x, r) �= (x′, r′) and Encpk(x; r) = Encpk(x′; r′)). The
secret key of a PRE consists of a public key of encryption scheme pk and a PRF
key k. To encrypt a message m with randomness r, compute T ← Encpk(m; r),
C ← Fk(T) ⊕ (m, r), and set the ciphertext to be (T,C). To decrypt (T,C),
compute (m, r) ← C ⊕ Fk(T) and verify that T = Encpk(m; r).

To puncture a key at a ciphertext (T ∗, C∗) = PRE.Enc(m; r), output
(pk, k{T ∗}), i.e. puncture PRF key k at T ∗. This punctured PRE key doesn’t
give any information about plaintext of the ciphertext (T ∗, C∗): intuitively, C∗

looks uniformly random since k is punctured at T ∗, and T ∗ itself doesn’t reveal
m since it is a ciphertext of a public key encryption. On the other hand, the
punctured key still allows to encrypt all other plaintexts-randomness pairs and
decrypt all other ciphertexts: note that for a given T there is only a single C
which makes (T,C) a valid encryption; therefore puncturing out k{T ∗} affects
exactly one valid ciphertext, i.e. (T ∗, C∗).

10 Note that merely randomizing the PDE plaintext doesn’t yield a PRE.

408 R. Canetti et al.

The simulator can generate a dummy ciphertext (T ∗, C∗) by setting T ∗ ←
Encpk(0; r) and choosing C∗ at random. It can also generate a corresponding
punctured key as (pk, k{T ∗}). This simulated ciphertext and punctured key
(T ∗, C∗), (pk, k{T ∗}) can be shown to be indistinguishable from real ones by
invoking security of a punctured PRF and an encryption scheme.

Computing Randomness-Hiding Functionalities. So far we described a protocol
for deterministic functionalities. Here we describe how we handle randomized
functionalities in a randomness-hiding way, i.e. the actual randomness used to
compute the function should remain hidden even when all parties are corrupted
and all their randomness is learned by the adversary.

It might seem first that to achieve randomness hiding we can use ideas
of [SW14] and let the encryption program internally choose randomness by
applying an extractor to the random input provided by a party - the technique
used in both [CGP15,DKR14] to achieve randomness hiding. Namely, let the
encryption program B generate a ciphertext containing not only input xi of a
party, but also randomness ri derived internally by the program without help
of the party. Later Eval can decrypt ciphertexts, learn all xi and ri and com-
pute the function as f(x1, . . . , xn;

⊕
ri). However, this approach is bound to fail

in our case: for our proof of security to go through, we crucially need the fact
that round-1 messages (i.e. commitments) completely determine the computa-
tion, and therefore parties would have to commit to ri in round 1. This means
that parties have to know ri themselves, and therefore the randomness of the
computation will be revealed upon corruption.

Another idea to let our protocol compute randomized functionalities while
hiding the randomness is to randomize program Eval in a natural way, i.e. let
Eval apply a PRF on its inputs, and use the resulting randomness for computing
the function. Hopefully, security of a PRF will guarantee that this randomness
remains hidden. However, this idea still doesn’t work in of itself: it again violates
our crucial property that round-1 messages should determine the computation.
Namely, if randomness was derived as a PRF of inputs to Eval (recall that
Eval takes round-2 ciphertexts as inputs), this property would be violated, since
for a given set of round-1 messages there may be many corresponding round-2
ciphertexts, and thus many possible randomness of the computation.

Our actual solution modifies the previous attempt so that the crucial
computation-fixing property is not violated. For this, we let program Eval decrypt
ciphertexts, compute a PRF on round-1 commitments and evaluate a random-
ized functionality with resulting randomness. Intuitively, security of a PRF (and
obfuscation on top of it) guarantees that this value remains hidden. The simu-
lator can generate simulated Eval where this PRF is punctured and the result
of the computation is hardcoded. For this idea to work it is important that Eval
is generated during the runtime; if it was fixed in the CRS, we would have to
hardwire outputs for every execution and therefore the CRS would have to grow
with the number of executions.

Better Two-Round Adaptive Multi-party Computation 409

Achieving RAM Efficiency. There are two ways to use our construction in order
to achieve an efficient protocol. One way is to use iO for RAM in all programs
involved. However, iO for RAM requires sub-exponential security of underly-
ing iO for circuits. The other way, which only needs polynomially-secure iO for
circuits, is to use the protocol to evaluate a functionality which takes parties’
inputs and a function and outputs garbled function and garbled inputs; then par-
ties can evaluate garbling themselves locally. If a RAM-efficient garbling scheme
is used [CH16], then the whole protocol becomes RAM-efficient. Note that it is
enough to use statically secure garbling scheme, since our base protocol supports
randomness-hiding functionalities, i.e. doesn’t reveal randomness of the compu-
tation even when everybody is corrupted11. The composed scheme also supports
randomized randomness-hiding functionalities: to evaluate such a functionality
f(x1, . . . , xn; r), parties should use basic protocol to evaluate a randomized func-
tion F (x1, . . . , xn; (r1, r2)) which uses r1 as randomness to garble function f and
inputs x1, . . . , xn, r2 (r2 being random input of f).

1.5 Our Techniques: Malicious Case

To obtain a two-round RAM efficient protocol in a malicious setting, we observe
that the protocol of [GP14] becomes RAM-efficient, as long as statistically-sound
NIZK they use is RAM-efficient. Let us briefly describe their protocol. Very
roughly, in their protocol parties exchange commitments in round 1, and in
round 2 they broadcast their input encrypted twice together with a NIZK proof
that plaintexts are the same (the actual statement for the proof is more com-
plicated, as discussed below). The CRS contains an obfuscated program which
expects to see commitments from round 1, together with ciphertexts from round
2 and corresponding proofs. This program checks NIZKs and uses a hardwired
decryption key of a double encryption to decrypt the ciphertexts and evaluate
the function. Each party can feed its transcript to this program and obtain the
output.

So far the protocol seems to work in any model of computation: indeed, if we
use iO for RAM to obfuscate the evaluation program in the CRS, then the work
of each party becomes proportional to RAM complexity of a function. However,
the problem is that the NIZK statement is more complicated than described
above: it also requires proving that y = f(x1, . . . , xn), which is needed for the
security proof to go through. As usual in “iO + NIZK” techniques, the NIZK
has to be statistically sound. For all known NIZKs, this means that the verifier

11 If the protocol revealed randomness of the computation, then the garbling scheme
would have to be adaptively secure, i.e. the simulator of the garbling scheme would
have to first simulate it and then, once it learned inputs, provide consistent genera-
tion randomness of the garbling scheme (note that the term “adaptive security” is
ambiguous: in the context of garbling it usually denotes a different property, saying
that simulation is possible even if inputs or functions are chosen adaptively after
seeing some garbled values. Here by adaptive security we mean that random coins
can be generated by the simulator).

410 R. Canetti et al.

(in our case, the obfuscated evaluation program) has to do work proportional to
the circuit complexity of f , even if the program is obfuscated with iO for RAM.

Therefore to make this protocol RAM-efficient, it suffices to build RAM-
efficient statistically sound NIZK.

RAM-Efficient Statistically Sound NIZK for NP. Let a language L be specified
by a relation R(x,w). We build a statistically sound NIZK where, roughly, the
work of the prover and NIZK length depends on |R|RAM, and the work of the
verifier depends on worst-case RAM complexity of R.

Our main idea is the following: to prove that x∗ ∈ L, the prover should send
to a verifier a garbled program GProg(R(x,w)), a garbled input GInp(x∗, w∗),
and a NIZK proof (for circuits) that the garbling was done correctly: i.e. that
the prover followed the garbling algorithm, and that it garbled correct function
R and input x. The verifier should accept the proof if the NIZK proof verifies,
and if the evaluation of a garbled program on a garbled input results in 1.

However, there are two issues. First, since we assume that we only have a
NIZK for circuits, we need to make sure that the statement which we prove
(i.e. that garbling was done correctly) is independent of the circuit complexity
of R (in particular, we need a garbling scheme where the size of circuits which
generate garbling, i.e. the size of GInp,GProg, only depend on a size of RAM
description of a program to be garbled).

Second, note that this scheme guarantees that the garbler follows the gar-
bling instructions (because of the NIZK), but there is no way to guarantee that
the prover uses truly random coins to garble. This might introduce problems.
Consider a garbling scheme which is not perfectly correct: say, for some choice of
parameters the garbled program always outputs 1, no matter what the underly-
ing program does12. In this case a malicious and unbounded prover could choose
these bad parameters and therefore convince the verifier in wrong statements,
since the evaluation of a garbled program results in 1 no matter whether R(x,w)
holds or not. Thus, we need a garbling scheme where the evaluation can never
result in the wrong answer, i.e. where the computation always results in either
a correct result or ⊥. We call this property perfect correctness with abort.

We observe that the garbling scheme of Canetti and Holmgren ([CH16])
already has both properties; see full version [CPV16] for details. Thus, our
scheme yeilds a NIZK system when instantiated with the garbling scheme
by [CH16].

Organization. Section 2 contains definitions and constructions of building blocks
for our protocol, namely, of an honest-but-curious commitment and a punc-
turable randomized encryption. The protocol itself is given in Sect. 3, together
with an overview of hybrids. The full proof of security and our NIZK is presented
in the full version [CPV16]. The description of the malicious version of our main
protocol is given in AppendixB.

12 Note that the proof of garbling done correctly doesn’t save us, since the garbler
followed the garbling algorithm; it’s just the scheme itself allows for wrong garbling.

Better Two-Round Adaptive Multi-party Computation 411

2 Building Blocks

In this section we define and build puncturable randomized encryption (PRE)
and an honest-but-curious commitment - primitives used in our MPC protocol
(Sect. 3).

2.1 Puncturable Randomized Encryption

Puncturable randomized encryption (PRE) is a randomized, symmetric key
encryption. Besides standard algorithms Gen,Enc,Dec, there is additional pro-
cedure Puncture(k, c∗) which takes as input a key k and a ciphertext c∗ =
Enc(m∗; r∗) and outputs a partial, or punctured, key k{c∗}. Such a key has two
properties. First, it doesn’t reveal any information about the plaintext of c∗;
this is captured by requiring that a simulator should simulate a ciphertext and
a punctured key without knowing a plaintext. Second, the key should still have
the same functionality in all other points: namely, it should correctly decrypt all
other c �= c∗, and it should correctly encrypt all other (m, r) �= (m∗, r∗).

PRE can be viewed as a randomized, simulation-secure analog of a punc-
turable deterministic encryption (PDE) [SW14].

Definition 1. Puncturable randomized encryption (PRE) is a tuple of algo-
rithms (Gen,Enc,Dec,Puncture,Sim), which satisfy the following properties:

– Statistical correctness: With overwhelming probability over the choice
of the key k ← Gen(1λ), for any message m and randomness r
Deck(Enck(m; r)) = m.

– Statistical correctness of the punctured key: With overwhelming prob-
ability over the choice of the key k ← Gen(1λ), for any message m∗ and
randomness r∗, let c∗ ← Enck(m∗; r∗), and k{c∗} ← Puncture(k, c∗). Then:

• for any (m, r) such that (m, r) �= (m∗, r∗), Enck(m; r) = Enck{c∗}(m; r);
• for any c �= c∗ Deck(c) = Deck{c∗}(c) (in particular, both decryptions

should output ⊥ on the same set of ciphertexts, except c∗).
– Simulation security with the punctured key: For any PPT adversary

A and for any message m∗, consider the following experiment: k ← Gen(1λ),
r∗ is chosen at random, c∗ ← Enck(m∗; r∗), k{c∗} ← Puncture(k, c∗), and
(cSim, k{cSim}) ← Sim(). Then
Pr[A(k{c∗},m∗, c∗) = 1] − Pr[A(k{cSim},m∗, cSim) = 1] < negl(λ).

Simulation security says that even if an adversary has almost all key, it
cannot tell whether it sees an encryption of a known message m∗ or a simulated
encryption (as long as randomness of encryption remains hidden). Note that
simulation security with the punctured key implies normal security of PRE as
a secret-key encryption, since with k{c∗} the adversary can answer encryption-
decryption queries itself.

412 R. Canetti et al.

Our Construction in a Nutshell. The key of a PRE consists of a key K of a
puncturable PRF and a public key pk of an injective encryption scheme. To
encrypt message m under randomness r, the sender computes T ← Encpk(m; r),
C ← FK(T)⊕(m, r), and sets its ciphertext to be (T,C). To decrypt, the receiver
computes (m, r) ← FK(T)⊕C and checks whether T = Encpk(m; r). To puncture
the key at a ciphertext (T,C), output (pk,K{T}), where K{T} is a PRF key
punctured at T .

In this construction the encryption scheme should be injective for both mes-
sage and randomness. We observe that the encryption scheme by [SW14], where
the ciphertext is (prg(r), Fk(prg(r)) ⊕ m), satisfies this property, as long as the
underlying prg is injective. In turn, (the family of) injective prgs exists assum-
ing iO and injective OWFs: indeed, the fact that iO(PRF) is a hardcore func-
tion [BST14] immediately implies that this is also a prg family; this prg can be
made injective by putting an injective PRF [SW14] inside. Note that injective
PRF doesn’t require injective OWFs; instead, the existence of injective OFWs
is required for the proof of [BST14] (that iO(PRF) is a hardcore function) to go
through.

Therefore we obtain PRE assuming iO and injective OWFs.

More Detailed Description. We construct PRE from puncturable PRFs and
a public key encryption which is injective with respect to both message and
randomness (i.e. it should hold that Encpk(m1; r1) = Encpk(m2; r2) implies
(m1, r1) = (m2, r2)).

Lemma 1. [SW14,BST14] Assuming indistinguishability obfuscation for cir-
cuits and injective one way functions, there exists a public key encryption which
is statistically injective with respect to both message and randomness.

Proof. In short, the work of [BST14] essentially builds an injective prg, which
can be plugged into encryption scheme of [SW14] to obtain injective PKE. We
briefly present all constructions here for completeness.

Overall Encryption Scheme. Recall that in the PKE scheme of [SW14] the public
key is an obfuscated program which takes (m, r) as input, computes t = prg(r),
and outputs (t, Fk(t)⊕m) as a ciphertext. Note that this scheme is only injective
for messages, but not for randomness, since underlying prg could map two dif-
ferent randomness to the same output. Thus for this encryption to be injective,
we need an injective prg. In addition, note that for this construction it is enough
to have a family of prgs (which is statistically injective): the prg could be cho-
sen from the family during the process of the key generation for the encryption
scheme.

Injective PRG Family. We note that the work of Bellare et al. [BST14], which
proves that iO(PRF) is a hardcore function for any injective OWF13, also implies

13 In fact, for them it is enough that OWF is poly-to-one. Thus we can relax our
assumptions for MPC protocol from injective OWF to poly-to-one OWF.

Better Two-Round Adaptive Multi-party Computation 413

that iO(PRF) is a prg family, as long as there exist injective OWFs. Indeed, in
their work they show that H = iO(PRF) is a hardcore function for any injec-
tive OWF f , i.e. that for random r (f,H, f(r),H(r)) ≈c (f,H, f(r), U|H(r)|).
This implies the following: as long as there exists an injective OWF f , it holds
that (f,H, f(r),H(r)) ≈c (f,H, f(r), U|H(r)|) and therefore it also holds that
(H,H(r)) ≈c (H,U|H(r)|), which means that this is a prg family.

This prg family is statistically injective, as long as the underlying PRF is
statistically injective.

Injective PRF Family. Sahai and Waters [SW14] build a statistically injective
puncturable PRF family from a PRF family {Fk(x)} (which in turn can be built
from OWFs) and a 2-universal hash function h(x) (which exists unconditionally)
as Fk(x) ⊕ h(x), as long as the output of a PRF is large enough. Namely, they
show that as long as m(λ) > 2n(λ) + e(λ), there exists such a statistically injec-
tive PRF family which maps n(λ) bits to m(λ) bits and has a failure probability
2−e(λ) (i.e. with probability 2−e(λ) over the choice of the PRF key the PRF is
not injective).

This concludes the proof that a statistically injective PKE exists assuming iO
and injective OWFs. We underline that this PKE is only statistically injective,
since underlying PRFs might be non-injective with some negligible probability.

From Injective PKE to PRE. Our PRE is constructed as follows (see Fig. 1 for
a more concise description):

– Key generation: PRE.Gen(1λ, rGen) uses rGen to sample a PRF key K and
generate (pk, sk)-pair of a public key encryption scheme which is statistically
injective for messages and randomness. It sets PRE.k ← (K, pk).

– Encryption: PRE.EncPRE.k(m; r) sets T ← Encpk(m; r) and C ← FK(T) ⊕
(m, r) (if the key K is punctured at point T , encryption outputs ⊥). It outputs
the ciphertext c = (T,C).

– Decryption: PRE.DecPRE.k(c) parses c as (T,C) and sets (m, r) ← FK(T) ⊕
C (if the key K is punctured at point T , decryption outputs ⊥). Next it
verifies that Encpk(m; r) = T ; if this check passes, it outputs m, otherwise it
outputs ⊥.

– Puncture: PRE.Puncture(PRE.k, c) parses c as (T,C) and punctures the PRF
key at T ; it outputs the PRE punctured key (pk,K{T}).

– Simulation: PRE.Sim() first chooses the key PRE.k by sampling a PRF key
K and generating (pk, sk)-pair of a public key encryption scheme. Next it
generates T = Encpk(0; r) for random r and sets C to be a random string.
It sets the simulated ciphertext cSim to be (T,C) and outputs it. Next, it
punctures the PRF key K at T and sets the simulated punctured key k{cSim}
to be (pk,K{T}).

Theorem 4. Assuming that PKE is a public key encryption scheme, injective
for both messages and randomness, and assuming one way functions, the con-
struction presented on Fig. 1 is a puncturable randomized encryption.

414 R. Canetti et al.

Construction of a PRE

PRE.Gen(1λ, rGen):

1. Sample PRF.K and (PKE.pk,PKE.sk);
2. Output (PRF.K, PKE.pk)

PRE.EncPRE.k(m; r):

1. T ← Encpk(m; r)
2. If K is punctured at T , output ⊥ and halt;
3. C ← FK(T) ⊕ (m, r).
4. outputs (T, C).

PRE.DecPRE.k(T, C):

1. If K is punctured at T , output ⊥ and halt;
2. (m, r) ← FK(T) ⊕ C
3. If Encpk(m; r) = T then output m, else ⊥.

PRE.Puncture(PRE.k, c = (T, C)):

1. Output PRE.k{c} = (pk, K{T})

PRE.Sim():

1. PRE.k ← PRE.Gen(rGen) for random rGen;
2. T = Encpk(0; r) for random r;
3. C ← random ;
4. output c = (T, C), PRE.k{c} = (pk, K{T});

Fig. 1. Construction of a PRE from a puncturable PRF and injective PKE.

Proof. Before showing correctness and security, we note the following useful
property of our encryption:

First Part of a Ciphertext Determines the Second. For a given T ∗, there exists
at most one C∗ such that (T ∗, C∗) is a valid (i.e. decrypted to non-⊥) ciphertext.
Indeed, due to injectivity of underlying PKE, there exists at most one (m∗, r∗)
pair such that T ∗ = PKE.Encpk(m∗; r∗). Therefore the check in the decryption
algorithm will only pass for C∗ = FK(T ∗) ⊕ (m∗, r∗).

Correctness. This scheme is statistically correct, as immediately follows from
correctness of encryption C = FK(T) ⊕ (m, r) and the fact that the check T =
Encpk(m; r) passes for honestly generated ciphertext.

Next, correctness of the punctured key also holds, as long as underlying PKE
is injective: indeed, there is only a single (m, r)-pair which results in T = T ∗,
and therefore puncturing out T ∗ in k only affects encryption of m∗ with r∗.
On a decryption side, since only (T ∗, C∗) is a valid ciphertext with T = T ∗,
puncturing k only affects the decryption of (T ∗, C∗). Indeed, ciphertexts of the

Better Two-Round Adaptive Multi-party Computation 415

form (T �= T ∗, C) are decrypted in the same way regardless of which key is used,
the full key or the punctured one. On the other hand, ciphertexts of the form
(T ∗, C �= C∗) are rejected by decryption with both real and punctured keys:
indeed, decryption with the full key rejects it since the ciphertext is invalid, and
decryption with the punctured key rejects it since decryption tries to evaluate
the PRF at the punctured point T ∗, so the check in line 1 of decryption fails.

Security. To show security, we need to show that the punctured key, the message,
and the ciphertext, i.e. ((K{T ∗}, pk),m∗, (T ∗, C∗)), is indistinguishable in the
two cases: in one case T ∗ = Encpk(m∗; r∗), C∗ = FK(T ∗) ⊕ (m∗, r∗), and in the
other case T ∗ = Encpk(0) and C∗ is randomly chosen. We do this by considering a
middle distribution where T ∗ is real, i.e. T ∗ = Encpk(m∗; r∗), but C∗ is random.
The middle and the real distribution are indistinguishable due to the property
of a punctured PRF: FK(T ∗) is indistinguishable from random, therefore so is
FK(T ∗) ⊕ (m∗, r∗). Middle and simulated distributions are indistinguishable by
security of a PKE.

2.2 Honest-but-Curious Equivocal Commitments

Motivated by the fact that standard non-interactive commitments are unnec-
essary strong for our protocol (i.e. support malicious behavior of the sender)
and at the same time make the CRS local, we consider a weaker semi-honest
commitment which doesn’t have this disadvantage.

Namely, an honest-but-curious commitment scheme (HBCCommit,Verify) can
be used to commit to a value x with randomness r using c ← HBCCommit(x; r),
which later can be opened to convince the verifier that it was x that was commit-
ted to. The difference between this primitive and the standard commitment is in
the security guarantee. Here we only require that an honestly generated commit-
ment cannot be opened in a different way, even by an unbounded adversary. The
other way to state this property is to say that for overwhelming fraction of ran-
domness, commitments are statistically binding; this means that a semi-honest
sender will generate a statistically binding commitment. (Still, there can be a
negligible fraction of commitments which can be easily opened in both ways).

In addition, we require the commitment scheme to be equivocal, or adaptively
secure, i.e. the simulator should be able to provide randomness consistent with
the simulated commitment.

Unlike its stronger counterpart, honest-but-curious commitment can be con-
structed in a plain model, in a fairly simple way.

Definition 2. An honest-but-curious commitment scheme for a message space
M is a pair of PPT algorithms (HBCCommit(x; r),Verify(x, r, c)), such that the
following properties hold:

– Correctness: For any x, r Verify(x, r,HBCCommit(x; r)) = 1;
– Most commitments are statistically binding: For any x ∈ M

Pr
r

[∃r′, x′ s.t. x′ �= x ∧ Verify(x′, r′,HBCCommit(x; r)) = 1] < negl(λ).

416 R. Canetti et al.

– Computational hiding and equivocation: There exist a PPT simulator
Sim such that for any x ∈ M it holds that

{(r, x, c) : c ←HBCCommit(x; r), r ← {0, 1}|r|} ≈c

{(r, x, c) : (c, state) ← Sim(), r ← Sim(x, state)}.

Construction. We build a semi-honest commitment scheme for message space
M = {0, 1}. Consider a prg with exponentially sparse range (say, length-doubling
prg, mapping λ bits to 2λ bits). To commit to 0, output (prg(s), r), and to commit
to 1, output (r, prg(s)), where s is a random value of size λ, and r is a random
value of size 2λ. To open the commitment, show (s, r).

Since honestly generated (i.e. random) r is outside the image of the prg
with overwhelming probability, there is no s such that prg(s) = r, and therefore
for honestly generated commitment there doesn’t exist the wrong opening. On
the other hand, the simulator can generate its commitment as (prg(s0), prg(s1))
and later open it to any bit b, showing sb and claiming that the other value is
randomly chosen. Thus we proved the following statement:

Theorem 5. Assuming the existence of one way functions, the above scheme is
an honest-but-curious commitment scheme for the message space M = {0, 1}.

3 Our MPC Protocol Against Semi-honest Adversaries

In this section we present our two-round, RAM-efficient, semi-honest protocol
with global CRS.

Our protocol is described in Fig. 2 and corresponding programs are given in
Figs. 3 and 4. The CRS consists of two programs, Gen and ExplainGen. Gen is a
generation algorithm which produces “encryption” program B, “decryption-and-
evaluation” program Eval and program ExplainB. Both ExplainGen and ExplainB
are not used in the protocol execution; they are used in the simulation only in
order to provide consistent randomness for Gen and B.

The protocol

CRS: programs Gen and ExplainGen
inputs: xi; randomness: rcom,i, rB,i, rGen,i

1. Round 1: Each party Pi computes ai ← HBCCommit(i, xi; rcom,i) and broadcasts
(ai, rGen,i);

2. Each party sets rGen ← rGen,i and runs {B,Eval,ExplainB} ← Gen(rGen);
3. Round 2: Each party broadcasts bi ← B(i, xi, rcom,i, a1, . . . , an; rB,i);
4. Each party sets its output to be y ← Eval(b1, . . . , bn).

Fig. 2. MPC protocol.

Better Two-Round Adaptive Multi-party Computation 417

In the first round everybody uses the semi-honest commitment scheme
(defined and constructed in Sect. 2.2) to “commit” to (i, xi) with randomness
rcom, i. In addition, parties exchange randomness rGen,i and everybody sets (the
same) rGen ← ⊕

rGen,i. Everybody runs Gen(rGen) to obtain the same programs
B,Eval,ExplainB.

In round 2 everybody runs bi ← B(i, xi, rcom, i, a1, . . . , an; rB,i) (which essen-
tially encrypts all round 1 messages together with a party’s own opening of a
commitment, under some randomness rB,i) and sends out bi. Then everybody
computes y ← Eval(b1, . . . , bn). Eval decrypts every ciphertext, validates each
commitment using opening provided in corresponding ciphertext, and in addi-
tion checks that all ciphertexts agree on the set of round-one commitments. If
these checks pass, Eval does the computation (computing randomness as a PRF
of commitments, if the function is randomized) and outputs y.

The central encryption scheme used by program B to encrypt and by Eval
to decrypt is a puncturable randomized encryption (PRE), which we built in
Sect. 2.1) from iO and injective OWFs. In addition, both Gen and B have a
trapdoor branch which helps the simulator to generate consistent randomness
with the help of programs ExplainGen,ExplainB. Essentially helper programs
ExplainGen,ExplainB use a special encryption scheme (puncturable deterministic
encryption, PDE, [Wat15]), in order to encode an instruction “output output∗

and halt” into a random-looking value, which pretends to be true randomness
of a party. Gen and B try to decrypt this value in a trapdoor branch and fol-
low the instruction encoded. In addition, this technique requires to use a special
PRF, called extracting PRF, FExt [SW14] We don’t elaborate on this mechanism
further since it closely follows the original idea of [SW14], [DKR14].

Theorem 6. Assuming injective one way functions14 and indistinguishability
obfuscation for circuits, the presented protocol is a two-round multiparty proto-
col with global CRS adaptively secure against honest-but-curious corruptions of
possibly all parties. The protocol allows to compute any randomized functional-
ities, even randomness-hiding ones. Its communication complexity depends on
λ, {|xi|}n

i=1, y, |f |RAM (logarithmic parameters omitted), and time and space of
every party depends on λ, {|xi|}n

i=1, y, |f |RAM, and time or space needed to eval-
uate RAM f(x1, . . . , xn) in the worst case.

On Achieving RAM Efficiency. There are two ways to use our construction
in order to achieve an efficient protocol. One way is to use iO for RAM in all
programs involved (in particular, the program Gen, which obfuscates three pro-
grams, should use an obfuscator for RAM). The other way is to use the protocol
to evaluate a functionality which takes parties’ inputs and a function and out-
puts garbled function and garbled inputs; then parties can evaluate garbling

14 In fact, this requirement can be relaxed down to one way functions with at most
polynomial-size preimage, since such OWF suffices to prove that the construction
of [BST14] is secure; and therefore the PRE scheme (Sect. 2.1) exists under this
assumption and iO.

418 R. Canetti et al.

Programs in the CRS:

Program Gen(rGen)
Constants: an extracting PRF key ExtGen, faking PDE key fGen

– Trapdoor branch:
1. set (Prog1,Prog2,Prog3, ρ̃) ← PDE.DecfGen(rGen). If decryption returns ⊥ then goto

normal branch;
2. output Prog1,Prog2,Prog3 and halt;

– Normal branch:
1. uGen ← FExtGen(rGen);
2. use uGen to sample extracting PRF key ExtB, PRE key K, PRF key k, faking PDE key

fB and obfuscation randomness for B,Eval,ExplainB;
3. output obfuscated programs B[ExtB, fB, K],Eval[K, k],ExplainB[fB].

Program ExplainGen(Prog1,Prog2,Prog3; ρ)
Constants: faking PDE key fGen

1. Set M = ((Prog1,Prog2,Prog3), prg(ρ));
2. Set rGen ← PDE.EncfGen(M);
3. output rGen.

Fig. 3. Programs in the CRS of our protocol. Program Gen chooses keys and outputs
obfuscated programs B,Eval,ExplainB, defined in Fig. 4. Program ExplainGen is only
used by the simulator in order to generate consistent random coins for Gen.

themselves locally. If a RAM-efficient garbling scheme is used [CH16], then it
suffices to use iO for circuits to make the whole protocol RAM-efficient. Note
that it is enough to use statically secure garbling scheme, since our base pro-
tocol supports randomness-hiding functionalities, i.e. doesn’t reveal randomness
of the computation even when everybody is corrupted15. The composed scheme
also supports randomized randomness-hiding functionalities: to evaluate such a
functionality f(x1, . . . , xn; r), parties should use basic protocol to evaluate a ran-
domized function F (x1, . . . , xn; (r1, r2)) which uses r1 as randomness to garble
function f and inputs x1, . . . , xn, r2 (r2 being random part of input).

Unlike the first approach, the second approach doesn’t require
subexponentially-secure iO (which is an assumption currently required for iO
for RAM).

15 If the protocol revealed randomness of the computation, then the garbling scheme
would have to be adaptively secure, i.e. the simulator of the garbling scheme would
have to first simulate it and then, once it learned inputs, provide consistent genera-
tion randomness of the garbling scheme (note that the term “adaptive security” is
ambiguous: in the context of garbling it usually denotes a different property, saying
that simulation is possible even if inputs or functions are chosen adaptively after
seeing some garbled values. Here by adaptive security we mean that random coins
can be generated by the simulator).

Better Two-Round Adaptive Multi-party Computation 419

Programs produced by the CRS:

Program B(i, xi, rcom,i, a1, . . . , an; rB,i)
Constants: an extracting PRF key ExtB, faking PDE key fB, PRE key K

– Trapdoor branch:
1. set (i , x , rcom,i, a1, . . . , an, b , ρ̃) ← PDE.DecfB(rB,i). If decryption returns ⊥ then

goto normal branch;
2. if (i , x , rcom,i, a1, . . . , an) = (i, xi, rcom,i, a1, . . . , an) then goto normal branch;
3. output b and halt;

– Normal branch:
1. Set M = (i, xi, rcom,i, a1, . . . , an)
2. uB,i ← FExtB(M, rB,i)
3. Set b ← PRE.EncK(M ; prg(uB,i))
4. Output b

Program Eval(b1, . . . , bn)
Constants: PRE key K, key k of a PRF G

1. For every i decrypt:
(a) Set Mi ← PRE.DecK(bi);
(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an). If the format is wrong (in particular, if i is

wrong), output ⊥.
2. For every i check consistency:

(a) Verify that the set (a1, . . . , an) is the same in all M1, . . . , Mn;
(b) Verify that ai = HBCCommit(i, xi; rcom,i)

3. Set R ← Gk(a1, . . . , an).
4. Output y ← f(x1, . . . , xn; R). (If f is deterministic, ignore R).

Program ExplainB(i, x, rcom,i, a1, . . . , an; b; ρ)
Constants: PDE key fB

1. Set M = ((i, x, rcom,i, a1, . . . , an), b, prg(ρ))
2. Set rB,i ← PDE.EncfB(M)
3. output rB,i

Fig. 4. Programs used in the protocol.

In both cases, we assume that the simulator gets all necessary information
about the computation (such as worst-case running time, space, etc.) from the
ideal functionality. As discussed in the introduction, setting a lower (than the
worst-case) bound on the running time/space of the computation might be useful
if parties agree to sacrifice some security for efficiency.

Correctness. Correctness of the scheme can be immediately verified. Note that
in case of randomized functionalities the randomness for the computation is
obtained via a PRF G, and therefore the distribution of the output is only
computationally close to the ideal distribution.

Simulation. The simulator works as follows:

420 R. Canetti et al.

CRS: The simulator generates the CRS honestly.

Round 1: Each a∗
i is simulated by a simulator of a semi-honest commit-

ment scheme. Each b∗
i is simulated by PRE.Sim, together with a punctured

key K{{b∗
i }n

i=1}. Eval1,B1 are generated as in Fig. 5 (using punctured keys
K{{b∗

i }n
i=1} and k{(a∗

1, . . . , a
∗
n)}), and ExplainB is generated as in Fig. 3. r∗

Gen

is set to explain these B1,Eval1,ExplainB (i.e. it is generated as r∗
Gen ←

ExplainGen(Eval1,B1,ExplainB; ρ) for random ρ). Each r∗
Gen,i is set to sum up to

r∗
Gen. (a∗

i , r
∗
Gen,i) is a simulated first message of each party.

Round 2: b∗
i (generated in round 1) is a simulated second message of each party.

Simulating internal state: r∗
com, i ← HBCCommit.Sim(a∗

i , xi) is generated,
and r∗

B,i is set to explain b∗
i on input (i, x∗

i , r
∗
com, i, a∗

1, . . . , a
∗
n) (i.e. it is gener-

ated as r∗
B,i ← ExplainB((i, x∗

i , r
∗
com, i, a∗

1, . . . , a
∗
n), b∗

i ; ρi)) for some random ρi.
(r∗

com, i, r
∗
B,i) is internal state of each party.

Simulator’s Knowledge of the Output. Note that the simulator is required to
hardwire the output y∗ into Eval1 (Fig. 5); Eval1 has to be generated at the end
of round 1, since r∗

Gen (which is determined right after round 1 ends) depends
on it. It could be that at that moment nobody is corrupted, and the simulator,
formally speaking, doesn’t know the output y∗.

However, we can always assume that it knows y∗ as soon as the simula-
tion starts. The idea is similar to the idea allowing parties to compute different
outputs: they should evaluate a different function f ′((x1, r1), . . . , (xn, rn)) =
f1(x1, . . . , xn) ⊕ r1|| . . . ||fn(x1, . . . , xn) ⊕ rn, where ri is randomness chosen by
party i. In this new protocol the simulator can set the output to be a random
value z (which can be chosen even before the protocol starts), and as soon as
party i is corrupted and the simulator learns yi, it can set ri ← zi ⊕ yi (where
zi is the i-th block of z corresponding to the output of party i).

Leakage Resilience. For an adaptively secure protocol to be leakage resilient,
the simulator has to be corruption oblivious, i.e. when simulating leakage from a
party, the simulator can only use ideal-world leakage from this party; even if some
information was leaked from other parties before (and therefore the simulator
knows the information and simulated leakage), it cannot be used in simulation
of leakage of the current party.

A convenient way to think about this is to imagine that the simulator S
should have special subroutines S1, . . . , Sn (each Si handles leakage from party
i), such that the only possible information flow between them all is S → Si. In
other words, Si gets as input ideal leakage together with necessary information
from S (e.g. trapdoors, but not leakage from other parties, since S doesn’t know
it) and simulates leakage based on this information. S itself doesn’t see anything
Si learns from the ideal functionality or simulates. For a more formal treatment,
see [BCH12].

Our simulation is corruption oblivious. Each internal state of the party (i.e.
r∗
com, i, r

∗
B,i) can be simulated by a subroutine Si which gets from S a trapdoor to

Better Two-Round Adaptive Multi-party Computation 421

open HBC commitment, the program ExplainB, and communication a∗
1, . . . , a

∗
n,

b∗
i . Si can first set r∗

com, i by opening the commitment appropriately, and then
it can generate r∗

B,i ← ExplainB((i, xi, rcom, i, a
∗
1, . . . , a

∗
n); b∗

i ; ρ) for random ρ.

3.1 An Overview of the Hybrids

Here we present an overview of the hybrids. The full proof with security reduc-
tions is in the full version [CPV16].

We start with a real execution, where r∗
com, i, r

∗
B,i, r

∗
Gen are randomly cho-

sen, each a∗
i is set to HBCCommit(i, x∗

i ; r
∗
com, i), (B,Eval) ← Gen(r∗

Gen), b∗
i ←

B(i, x∗
i , r

∗
com, i, a

∗
1 . . . , a∗

n; r∗
B,i), y∗ ← Gk(a∗

1, . . . , a
∗
n).

Hybrid 1: We make challenge programs B, Eval, and ExplainB independent of
Gen: Namely, we choose internal keys of B,Eval,ExplainB, as well as their obfus-
cation randomness, at random (instead of generating these values by running
Gen). In addition, r∗

Gen is now a simulated randomness such that Gen(r∗
Gen) out-

puts B,Eval via the trapdoor branch (instead of r∗
Gen being randomly chosen).

Indistinguishability holds by selective indistinguishability of source and expla-
nation for program Gen (Sect. A).

Hybrid 2: We make randomness for challenge ciphertexts b∗
i independent of

B: Namely, we use randomness prg(u∗
i), where u∗

i is chosen at random (instead
of u∗

i being computed according to B). In addition, r∗
B,i is now a simulated

randomness such that B(i, x∗
i , r

∗
com, i, a

∗
1, . . . , a

∗
n; r∗

B,i) outputs b∗
i via the trapdoor

branch (instead of r∗
B,i being randomly chosen). Indistinguishability holds by

selective indistinguishability of source and explanation for program B (Sect. A).
This modification is done for every party.

Hybrid 3: For every party i we switch randomness used to generate challenge
b∗
i from prg(u∗

B,i) to truly random ũ∗
B,i, by security of a prg.

Hybrid 4: We modify programs B, Eval so that they only use a punctured
version of a PRE key K{{b∗

i }n
i=1} and a PRF key k{(a∗

1, . . . , a
∗
n)} (see Fig. 5.

Note that K is punctured at several points, while k is punctured at a single
point (a∗

1, . . . , a
∗
n)). We don’t change functionality of these programs and rely on

security of iO.
In program B we can puncture the key K directly (since challenge ciphertexts

use truly random ũ∗
B,i as randomness for encryption, and since B always com-

putes randomness as prg(u∗
i), the program never tries to compute a ciphertext

with challenge randomness ũ∗
B,i; by correctness of a punctured PRE key, this

key correctly computes ciphertexts with randomness different from randomness
used for puncturing, i.e. ũ∗

B,i).
Eval is modified as follows: if it gets as input the challenge set (b∗

1, . . . , b
∗
n),

then it just outputs hardwired y∗. If none of the input ciphertext is a challenge
ciphertext, then it just uses a punctured key K{{b∗

i }n
i=1} to do its normal compu-

tation (by correctness of a PRE punctured key, these ciphertexts are decrypted
correctly). The only difference is that it uses punctured PRF key k{(a∗

1, . . . , a
∗
n)}

to compute randomness R for the computation. (If it happened that b’s decrypted

422 R. Canetti et al.

Programs used in the proof and the simulation

Program B1(i, xi, rcom,i, a1, . . . , an; rB,i)
Constants: an extracting PRF key ExtB, faking PDE key fB, punctured PRE key K{{b∗

i }n
i=1}

– Trapdoor branch:
1. set (i , x , rcom,i, a1, . . . , an, b , ρ̃) ← PDE.DecfB(rB,i). If decryption returns ⊥ then

goto normal branch;
2. if (i , x , rcom,i, a1, . . . , an) = (i, xi, rcom,i, a1, . . . , an) then goto normal branch;
3. output b and halt;

– Normal branch:
1. Set M = (i, xi, rcom,i, a1, . . . , an)
2. uB,i ← FExtB(M, rB,i)
3. Set b ← PRE.EncK{{b∗

i }n
i=1}(M ; prg(uB,i))

4. Output b

Program Eval1(b1, . . . , bn)
Constants: puncturedPRE keyK{{b∗

i }n
i=1}, punctured PRF key k{(a∗

1, . . . , a
∗
n)} , a∗

1, . . . , a
∗
n,

b∗
1, . . . , b

∗
n, y∗

Case 0: If there is i = j such that bi = b∗
j , output ⊥.

Case 1: If for all i bi = b∗
i , then output y∗ and halt.

Case 2: If for some i bi = b∗
i (denote such set as I), then:

1. For every i ∈ I decrypt:
(a) Set Mi ← PRE.DecK{{b∗

i }n
i=1}(bi);

(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an)
2. For every i ∈ I check consistency:

(a) Verify that the set (a1, . . . , an) is the same as (a∗
1, . . . , a

∗
n)

(b) Verify that ai = HBCCommit(i, xi; rcom,i)
3. Output y∗.

Case 3: If for all i bi = b∗
i , then:

1. For every i decrypt:
(a) Set Mi ← PRE.DecK{{b∗

i }n
i=1}(bi);

(b) Parse Mi as (i, xi, rcom,i, a1, . . . , an)
2. For every i check consistency:

(a) Verify that the set (a1, . . . , an) is the same in all M1, . . . , Mn;
(b) Verify that ai = HBCCommit(i, xi; rcom,i)

3. If (a1, . . . , an) = (a∗
1, . . . , a

∗
n) then output y∗

4. Set R ← Gk{(a∗
1 ,...,a∗

n)}(a1, . . . , an).
5. Output y ← f(x1, . . . , xn; R).

Fig. 5. Programs used in the proof and the simulation.

Better Two-Round Adaptive Multi-party Computation 423

to the challenge set a∗
1, . . . , a

∗
n, then the program outputs hardwired y∗, if con-

sistency checks pass. Recall that honestly generated {a∗
i }n

i=1 completely define
all inputs and randomness of the computation, therefore y∗ is the only non-⊥
output in this case). Thus the evaluation of both punctured keys on punctured
inputs is avoided.

The question is what to do in Eval when some inputs are challenge ciphertexts
and some are not. We claim that in this case the program should output either
y∗ or ⊥ (but cannot output a different y′ �= y∗): indeed, since at least one of
the ciphertexts is a challenge ciphertext, it contains challenge a∗

1, . . . , a
∗
n, and by

statistical binding of an honest-but-curious commitment, each a∗
i can be verified

only for x∗
i . R is completely determined by (a1, . . . , an) too; thus Eval can only

output y∗ = f(x∗
1, . . . , x

∗
n;R∗) or ⊥. Therefore we modify the program as follows:

we decrypt only non-challenge ciphertexts, and compare their a1, . . . , an with
challenge a∗

1, . . . , a
∗
n. In addition, we check that their openings of commitments

are correct. If these checks pass, we output hardwired y∗, otherwise ⊥.

Hybrid 5: We switch each ciphertext b∗
i from a real ciphertext encrypting

(i, x∗
i , r

∗
com, i, a∗

1, . . . , a
∗
n) to a simulated one. At the same time we switch the

PRE key from the real punctured key to the simulated punctured key. Indis-
tinguishability holds by the simulation security of a PRE with the punctured
key.

Hybrid 6: We exploit the computational hiding property of an equivocal
honest-but-curious commitment scheme and switch commitments a∗

i to simu-
lated, together with commitment randomness r∗

com, i, for each party.

Hybrid 7: Finally, using security of a PRF G with punctured key
k{(a∗

1, . . . , a
∗
n)}, we switch randomness R∗ from Gk(a∗

1, . . . , a
∗
n) to truly ran-

dom value, thus making the output y∗ = f(x∗
1, . . . , x

∗
n;R∗) independent of our

programs.
At this point the transcript can be simulated by a simulator who might

not know inputs during the execution of the protocol (and only gets them
upon corruption of a party), but knows the output, as explained in the begin-
ning of the proof. Namely, commitments a∗

i and ciphertexts b∗
i are simulated;

Eval,B,ExplainB are programs generated by the simulator using the PRE key
K{{b∗

i }n
i=1}, PRF key k{(a∗

1, . . . , a
∗
n)}. Hardwired variables inside programs

B,Eval are {a∗
i }n

i=1, {b∗
i }n

i=1, y
∗, which are all known to the simulator at the

end of round 1; thus, Eval,B,ExplainB, and therefore r∗
Gen and each r∗

Gen,i, can
be simulated. Internal state of the party can be generated by opening the com-
mitment and by running ExplainB to get randomness consistent with simulated
Eval,B,ExplainB.

Acknowledgments. We thank Justin Holmgren for pointing out that our MPC pro-
tocol can be used to compute a garbling scheme in [IK02] manner, which allows us to
avoid the use of subexponentially-secure iO even in the RAM setting.

424 R. Canetti et al.

A Explainability Compiler

The original construction of a deniable encryption by Sahai and Waters [SW14]
gives a way to make a single algorithm “adaptively secure”: i.e. it transforms a
randomized program Alg(x; r) into a different one Ãlg(x; r) (by adding a trapdoor
branch and rerandomizing the program) so that is possible to generate fake
randomness consistent with a given input and output.

The important property which we use in our proofs is indistinguishability
of source and explanation. Roughly speaking, indistinguishability of source says
that for random r Alg(x; r) and Ãlg(x; r) are indistinguishable. Indistinguisha-
bility of explanations says that real randomness r is indistinguishable from fake
randomness r which results in the same output a = Ãlg(x; r). These properties
combined together state that random r and the output a = Ãlg(x; r) are indistin-
guishable from the output of original program a = Alg(x;u) on some random u,
together with fake randomness r which makes compiled Ãlg(x; r) output a. This
holds even when the program to generate fake randomness is publicly available.

The way to think about indistinguishability of source and explanation is the
following: it is possible to move from “a real world” (random r, a ← Ãlg(x; r))
to a “hybrid” where a ← Alg(x;u), and r is fake, but pretending to be real
randomness. Essentially this step allows to “detach” a from a complicated Ãlg
and make it the result of a simpler Alg. Because of this detaching, in the next
hybrid we could use security of the primitive realized by Alg while still being
able to generate internal state r: say, if Alg is an encryption scheme, then in the
next hybrid we could switch it to encryption of a different value.

We also note that this indistinguishability is only selective, i.e. the input x
has to be known before the indistinguishability game can be played. This imposes
some restrictions on the constructions and proofs (in particular, this is one of
the reasons why we need nested programs).

Since this technique became standard in the world of adaptive security, we
only briefly outlined it here. For formal definitions, constructions, and proofs, we
refer the reader to the paper of Dachman-Soled et al. [DKR14] who formalized
the technique under the name of explainability compiler.

B Three Round MPC Against Malicious Adversaries

In this section we present our three-round, RAM-efficient, maliciously secure
protocol with local CRS. Our protocol is described in Fig. 6. The CRS con-
sists of two programs, Gen and ExplainGen. The CRS will also contain a CRS
σCLOS corresponding to the adaptively secure commitment scheme of [CLOS02]
and a CRS σNIZK corresponding to a NIZK argument system that is simula-
tion sound and secure against adaptive adversaries [GOS06].16 We will denote

16 We remark that the [GOS06] do not explicitly claim simulation soundness. It is easy
to obtain a simulation-sound argument by sampling an independent CRS for every
pair of parties.

Better Two-Round Adaptive Multi-party Computation 425

by adComx(msg; r) the procedure to commit using the commitment scheme
of [CLOS02] where x is the common reference string for the commitment, msg
is the message and r is the randomness required. We will rely exactly on the
same programs for Gen and ExplainGen from the semi-honest protocols described
in Figs. 3 and 4. Recall that Gen is a generation algorithm which produces
“encryption” program B, “decryption-and-evaluation” program Eval and pro-
gram ExplainB.

The protocol

CRS: σCLOS, σNIZK and programs Gen and ExplainGen,
inputs: xi; randomness: r1com,i, r

2
com,i, r

3
com,i, {rB,i,j}j=1,...,n , rGen,i

1. Round 1: Each party Pi computes ai ← adComσCLOS(i, xi; r
1
com,i), rGen,i ←

adComσCLOS(rGen,i; r
2
com,i), rB,i,j ← adComσCLOS(rB,i,j ; r

3
com,i) and broadcasts

(ai, rGen,i, rB,i,j);
2. Round 2: Each party Pi broadcasts rGen,i, {rB,i,j}j=i and proof Πi of the statement Si

using an NIZK proof with CRS σNIZK;
3. Each party sets rGen ← rGen,i and runs {B,Eval,ExplainB} ← Gen(rGen);
4. Round 3: Each party broadcasts bi ← B(i, xi, rcom,i, a1, . . . , an; rB,i) where rB,i =

j rB,j,i;
5. Each party sets its output to be y ← Eval(b1, . . . , bn).

Language Si used in the protocol:

Si := ((rGen,i, rGen,i, rB,i,j , rB,i,j) : ∃r2com,i, r
3
com,i, such that

rGen,i = adComσCLOS(rGen,i; r
2
com,i) and rB,i,j = adComσCLOS(rB,i,j ; r

3
com,i))

Fig. 6. Malicious MPC protocol.

In the first round everybody uses the commitment scheme of [CLOS02] to sep-
arately commit to (i, xi), {rB,i,j}j=1,...,n (to be used as a coin toss for encryption
randomness) and rGen,i (to be used as a coin toss for generation randomness).

In the second round, all parties reveal rGen,i and {rB,i,j}j �=iand prove using
an NIZK proof that this is indeed the string committed to in the first round.
More formally, party Pi proves the following NP-statement:

Si := ((r̃Gen,i, rGen,i, r̃B,i,j , rB,i,j) : ∃r2com, i, r
3
com, i, such that

r̃Gen,i = adComσCLOS
(rGen,i; r2com, i) and r̃B,i,j = adComσCLOS

(rB,i,j ; r3com, i)),

where r̃Gen,i is defined in round 1 of the protocol and rGen,i is the message revealed
by party Pi in round 2. Then everybody sets (the same) rGen ← ⊕

rGen,i. Every-
body runs Gen(rGen) to obtain the same programs B,Eval,ExplainB.

In the third round, all parties perform exactly the same instructions as they
executed in round 2 of the semi-honest protocol. Namely, everybody runs the
program B as: bi ← B(i, xi, rcom, i, a1, . . . , an; rB,i) (using randomness rB,i =⊕

j rB,j,i) and broadcasts bi. Then everybody computes y ← Eval(b1, . . . , bn).

426 R. Canetti et al.

Theorem 7. The protocol described above UC-securely implements Fmulti−f for
any functionality f in the presence of malicious adaptive adversaries.

We present a formal proof of the Theorem in the full version [CPV16].

References

[AIK06] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private ran-
domizing polynomials and their applications. Comput. Complex. 15(2),
115–162 (2006)

[BCH12] Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive pro-
tocols. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 15

[BCP15] Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation:
multi-party computation for (Parallel) RAM programs. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 742–762.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 36

[BST14] Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any
one-way function and a framework for differing-inputs obfuscation. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 102–
121. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 6

[CDPW07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61–85. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 4

[CGP15] Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively Secure Two-
Party Computation from Indistinguishability Obfuscation. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 557–585. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46497-7 22

[CH16] Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: Proceedings
of the ACM Conference on Innovations in Theoretical Computer Science.
Cambridge, MA, USA, 14–16 January, pp. 169–178 (2016)

[CHJV15] Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling
and indistinguishability obfuscation for RAM programs. In: Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC. Portland, OR, USA, 14–17 June, pp. 429–437 (2015)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing, 19–21 May. Montréal,
Québec, Canada, pp. 494–503 (2002)

[CPR16] Canetti, R., Poburinnaya, O., Raykova, M.: Optimal-rate non-committing
encryption in a CRS model. IACR Cryptology ePrint Archive 2016:511
(2016)

[CPV16] Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Better two-round
adaptive multiparty computation. In: Cryptology ePrint Archive, Report
2016/614 (2016). http://eprint.iacr.org/2016/614

[DKR14] Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally com-
posable, multi-party computation in constant rounds. IACR Cryptology
ePrint Archive 2014, 858 (2014)

http://dx.doi.org/10.1007/978-3-642-28914-9_15
http://dx.doi.org/10.1007/978-3-662-48000-7_36
http://dx.doi.org/10.1007/978-3-662-45608-8_6
http://dx.doi.org/10.1007/978-3-540-70936-7_4
http://dx.doi.org/10.1007/978-3-662-46497-7_22
http://eprint.iacr.org/2016/614

Better Two-Round Adaptive Multi-party Computation 427

[DMN11] Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM
without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
144–163. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 10

[Gen09] Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis. Stan-
ford, CA, USA, AAI3382729 (2009)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54242-8 4

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge
for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
339–358. Springer, Heidelberg (2006). doi:10.1007/11761679 21

[GP14] Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from
indistinguishability obfuscation. IACR Cryptology ePrint Archive 2014:844
(2014)

[Gro11] Groth, J.: Minimizing non-interactive zero-knowledge proofs using fully
homomorphic encryption. IACR Cryptology ePrint Archive 2011:12 (2011)

[IK02] Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation
via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S.,
Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002.
LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). doi:10.1007/
3-540-45465-9 22

[IKOS10] Ishai, Y., Kumarasubramanian, A., Orlandi, C., Sahai, A.: Proceedings on
invertible sampling and adaptive security. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 466–482. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-17373-8 27

[KSW14] Khurana, D., Sahai, A., Waters, B.: How to generate and use universal
parameters. IACR Cryptology ePrint Archive 2014:507 (2014)

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against
chosen ciphertext attacks. In: Proceedings of the 22nd Annual ACM Sym-
posium on Theory of Computing. Baltimore, Maryland, USA, 13–17 May,
pp. 427–437 (1990)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Symposium on Theory of Computing, STOC
2014, New York, NY, USA, 31 May-03 June, pp. 475–484 (2014)

[Wat15] Waters, B.: A punctured programming approach to adaptively secure func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48000-7 33

http://dx.doi.org/10.1007/978-3-642-19571-6_10
http://dx.doi.org/10.1007/978-3-642-54242-8_4
http://dx.doi.org/10.1007/978-3-642-54242-8_4
http://dx.doi.org/10.1007/11761679_21
http://dx.doi.org/10.1007/3-540-45465-9_22
http://dx.doi.org/10.1007/3-540-45465-9_22
http://dx.doi.org/10.1007/978-3-642-17373-8_27
http://dx.doi.org/10.1007/978-3-642-17373-8_27
http://dx.doi.org/10.1007/978-3-662-48000-7_33
http://dx.doi.org/10.1007/978-3-662-48000-7_33

Constant Round Adaptively Secure Protocols
in the Tamper-Proof Hardware Model

Carmit Hazay1(B), Antigoni Polychroniadou2,
and Muthuramakrishnan Venkitasubramaniam3

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@gmail.com

2 Aarhus University, Aarhus, Denmark
3 University of Rochester, Rochester, NY, USA

Abstract. Achieving constant-round adaptively secure protocols
(where all parties can be corrupted) in the plain model is a notori-
ously hard problem. Very recently, three works published in TCC 2015
(Dachman-Soled et al., Garg and Polychroniadou, Canetti et al.), solved
the problem in the Common Reference String (CRS) model. In this work,
we present a constant-round adaptive UC-secure computation protocol
for all well-formed functionalities in the tamper-proof hardware model
using stateless tokens from only one-way functions. In contrast, all prior
works in the CRS model require very strong assumptions, in particular,
the existence of indistinguishability obfuscation.

As a corollary to our techniques, we present the first adaptively secure
protocols in the Random Oracle Model (ROM) with round complexity
proportional to the depth of circuit implementing the functionality. Our
protocols are secure in the Global Random Oracle Model introduced
recently by Canetti, Jain and Scafuro in CCS 2014 that provides strong
compositional guarantees. More precisely, we obtain an adaptively secure
UC-commitment scheme in the global ROM assuming only one-way func-
tions. In comparison, the protocol of Canetti, Jain and Scafuro achieves
only static security and relies on the specific assumption of Discrete
Diffie-Hellman assumption (DDH).

1 Introduction

Background. Secure multi-party computation enables a set of parties to mutually
run a protocol that computes some function f on their private inputs, while guar-
anteeing maximal privacy of the inputs. It is by now well known how to securely
compute any efficient functionality [3,5,30,47,56] in various models and under
the stringent simulation-based definitions. However, these results were originally
investigated in the stand-alone setting, where a single instance of the protocol
is run in isolation. A stronger notion is that of concurrent security, which guar-
antees security even when many different protocol executions are carried out
concurrently. The strongest (as well as most realistic) model of concurrent secu-
rity is universally-composable (UC) security [5] which guarantees security even

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 428–460, 2017.
DOI: 10.1007/978-3-662-54388-7 15

Constant Round Adaptively Secure Protocols 429

when an unbounded number of different protocol executions are run concurrently
in an arbitrary uncontrolled environment. Unfortunately, UC-security cannot be
achieved for general functions, unless trusted setup is assumed [9,12,42]. Previ-
ous works overcome this barrier either by using some trusted setup infrastructure
[1,7,9,14,15,39,41], or by relaxing the definition of security [2,13,27,37,52,54].

Typical protocols, including results mentioned above only consider benign
models of static corruption in which the adversary is required to pick which
parties it corrupts before the execution (which may include many concurrent
protocol sessions) begins. In practice, this is a highly restrictive model. A more
realistic model known as the adaptive corruption model, introduced by Canetti
et al., considers an adversary that can hijack a host any time during the course of
the computation [8]. This models “hacking” attacks where an external attacker
breaks into parties’ machines in the midst of a protocol execution and it captures
additional threats. In general, security against static corruptions does not guar-
antee security against adaptive corruptions [6]. Furthermore, adaptive security
has been a notoriously difficult notion to achieve.

Adaptive Security Requires Stronger (General) Computational
Assumptions. Lindell and Zarosim showed that there exists no black-box con-
struction of an adaptively secure oblivious transfer (OT) protocol from enhanced
trapdoor-permutations [45]. In practice, the constructions we know, actually
require much stronger assumptions. The smallest general assumption to con-
struct adaptively secure OT in the plain model is trapdoor simulatable public-key
encryption [17]. In the UC-setting, the work of [20,55] showed how to achieve
adaptive UC-security in various models (including trusted setups and relaxed
security notions) assuming the existence of simulatable public-key encryption
[21]. In the Common Reference String model (CRS) model,1 the construction
was improved to rely on the weaker assumption of trapdoor simulatable public-
key encryption [36]. In the tamper-proof model, where the parties are assumed
to have the capability of creating “tamper-proof hardware tokens”, the work
of Goyal et al. [33] shows how to realize unconditional (and hence, adaptive)
UC-security in the tamper-proof model assuming stateful tokens. Yet, when we
consider the weaker and more realistic model of stateless tokens, there is no
known construction of adaptively secure protocols.

Adaptive Security Requires Higher Round Complexity. At present, we
have no constant-round adaptively secure protocols for general functionalities in
the plain model, where all parties can be corrupted. If we further restrict the
constructions to rely on black-box simulation techniques, the work of Garg and
Sahai [29] shows that a linear number of rounds are required (in the multi-party
setting). A notable exception here, is the work of [22,38] who provide constant-
round adaptively secure protocols under a restricted class of adversaries that

1 In the CRS model, all parties receive as common input in an initial setup phase, a
string sampled from an a priori fixed distribution (from some trusted authority).

430 C. Hazay et al.

is allowed to corrupt at most n − 1 parties among n parties. [38] also presents
constant-round adaptively secure protocols secure against arbitrary corruptions
assuming the stronger model of erasures. However, in standard models, where
all parties can be corrupted the round-complexity of the best protocol is pro-
portional to the depth of the circuit computing the function [6,14,38]. In fact,
even in the UC-setting, the round complexity suffers the depth of circuit bar-
rier [14,20,55]. Only very recently, and under very strong assumptions, namely
existence of (subexponentially-hard) indistinguishability obfuscation (iO) of cir-
cuits, the works of [10,19,28] provided the first constant-round adaptively secure
protocols in the CRS model.2

As such, the best known adaptively secure protocols require very strong
assumptions and often higher round complexity. Given the state of affairs, in
this work, we are motivated by the following natural question concerning adap-
tive security:

– Can we construct adaptive UC-secure constant-round protocols under
standard polynomial-time assumptions from minimal setup?

As mentioned before, concurrent security cannot be achieved without assum-
ing some form of trusted setup [9,12,42]. However, in many scenarios, it is impos-
sible to agree on a trusted entity. Specifically, protocols in the literature that
rely on a trusted setup are rendered completely insecure if the setup is compro-
mised. In the absence of setup, concurrently secure protocols have to rely on
relaxed notions of security. The most popular notion in this line of work is secu-
rity with super-polynomial simulators (SPS) [2,41,52,54] which is a relaxation
of the traditional simulation-based notion, that allows the simulator to run in
super-polynomial time. All these constructions require super-polynomial secu-
rity of the underlying cryptographic primitives. Breakthrough work by Canetti,
Lin and Pass showed how to obtain SPS security from standard polynomial
time assumptions [13]. In the adaptive setting, the works of [2,20,55] show how
to obtain adaptive UC-secure protocols with SPS under super-polynomial time
assumptions. More recently, the work of [37] shows how to obtain a O(nε) (for
any constant 0 < ε < 1) round adaptive UC-secure protocol with SPS under
standard polynomial time assumptions.

Motivated by designing practical protocols in the concurrent setting, another
approach taken by Canetti et al. [11] considers the Random Oracle Model of
Bellare and Rogaway [4]. In order to provide strong compositional guarantees,
they introduce the Global Random Oracle Model and show how to obtain UC-
secure protocols in the static setting. Their construction is based on the Deci-
sional Diffie-Hellman assumption (DDH). In this line of work, we are interested
in addressing the following questions that remain open:

Can we construct UC-secure protocols in the Global Random Oracle Model
from minimal general assumptions?, and
Can we construct adaptive UC-secure protocols in the Global Random Ora-
cle Model?

2 The work of [19] assumes only polynomially-hard indistinguishability obfuscation.

Constant Round Adaptively Secure Protocols 431

Our Results. We answer all our questions in the affirmative. Furthermore, all
our results will be presented in the stronger global-UC (GUC) setting of [7] that
provide strong(-er) compositional guarantees. We will rely on the recent work
[34] who model tokens for the GUC-setting. In order to incorporate adaptive
corruptions we will have to determine the precise capabilities of the adversary
when it can also corrupt the creator of the token post-execution and know the
actual code embedded in the token. This is discussed in the next section and we
argue that the FgWRAP-functionality introduced in the work [34] will be sufficient
to capture the adversary’s capabilities.

Our first result shows how to construct constant-round adaptive GUC-secure
protocols in the tamper-proof hardware model assuming only stateless tokens
and the existence of one-way functions. More precisely, we obtain the following
theorem.

Theorem 1 (Informal). Assuming the existence of one-way functions, there
exists a constant-round GUC-secure protocol for the commitment functionality
in the presence of adaptive, malicious adversaries in the FgWRAP-hybrid.

Next, we extend the ideas in this protocol to obtain an adaptive GUC-secure
protocol for the oblivious-transfer functionality from one-way functions.

Theorem 2 (Informal). Assuming the existence of one-way functions, there
exists a constant-round GUC-secure protocol for the oblivious-transfer function-
ality in the presence of adaptive, malicious adversaries in the FgWRAP-hybrid.

Combining this protocol with the adaptive UC-secure protocol in the OT-
hybrid of Ishai et al. [38], we can obtain as a corollary an adaptive GUC-secure
protocol in the FgWRAP-hybrid assuming only one-way functions. However, this
protocol will require O(d) rounds where d is the depth of the circuit comput-
ing the function. Our main contribution in this work is to reduce the round
complexity and show how to realize any well-formed functionality in O(1)-
rounds independent of the complexity of the function. Below, we state this main
theorem.

Theorem 3 (Informal). Assuming the existence of one-way functions, there
exists a constant-round GUC-secure two-party protocol to realize any well-formed
functionality in the presence of malicious adaptive adversaries in the FgWRAP-
hybrid.

As noted in [34], the FgWRAP-functionality closely follows the approach taken
by Canetti et al. [11] where they capture the global non-programmable random
oracle using the FgRO-functionality described in [35]. In this work we show that
a variant of our GUC-commitment protocol directly yields a GUC-commitment
scheme in the FgRO-hybrid. More precisely, we obtain the following theorem.

Theorem 4 (Informal). Assuming the existence of one-way functions, there
exists a constant-round GUC-secure protocol for the commitment functionality in
the presence of adaptive, malicious adversaries in the global, non-programmable
random oracle model, i.e. FgRO-hybrid.

432 C. Hazay et al.

This commitment scheme can be combined with the protocol of [17], to obtain
a malicious adaptive GUC-oblivious transfer protocol assuming the existence
of UC-secure semi-honest adaptive oblivious-transfer protocol. This oblivious-
transfer can be further combined with the work of [38] to realize any functionality
in the FgRO-hybrid with adaptive security. More formally, we obtain the following
corollary.

Corollary 1. Assuming the existence of semi-honest UC-secure adaptive
oblivious-transfer protocol, there exists a malicious adaptive O(dF)-round GUC-
secure protocol to securely realize any (well-formed) functionality in the FgRO-
hybrid where dF is the depth of the circuit that implements FgRO.

If we instead combine the commitment scheme with the protocol of Hazay
and Venkitasubramaniam [36], we obtain a GUC-secure protocol in the static
setting assuming stand-alone semi-honest oblivious-transfer.

Corollary 2. Assuming the existence of semi-honest oblivious-transfer proto-
col, there exists a constant-round static and malicious GUC-secure protocol to
securely realize any (well-formed) functionality in the FgRO-hybrid.

We remark that the round complexity of our adaptively secure protocol in
Corollary 1 is proportional to the depth of the circuit implementing the function-
ality, while the protocol in Corollary 2 in the static setting requires only constant
number of rounds. These corollaries improve the result of [11] in two ways. First,
we show that under the minimal assumption of one-way functions, we can get
a GUC-commitment that is adaptively secure. In contrast, the result of [11],
obtains a GUC-commitment secure in the static setting assuming DDH. Second,
we obtain static and adaptive GUC-secure computation of general functionali-
ties under minimal assumptions, namely, semi-honest OT in the static setting
and GUC-secure semi-honest adaptive OT in the adaptive setting.

Related Work. The work of Goldreich and Ostrovsky [31] first considered the use
of hardware tokens in the context of software obfuscation via Oblivious RAMs.
A decade later, Katz in [40] demonstrated the feasibility of achieving UC-secure
protocols for arbitrary functionalities assuming tamper-proof tokens under static
corruptions. In his formulation, the parties can create a token that computes
arbitrary functionalities such that any adversary that is given access to the token
can only observe the input/output behavior of the token. In the UC framework,
Katz described an ideal functionality FWRAP that captures this model. Note that
tokens can either be stateful or stateless, depending on whether the tokens are
allowed to maintain some state between invocations (where stateless tokens are
easier to implement). Following [40], Goldwasser et al. [32] investigated the use
of one-time programs, that allow a semi-honest sender to create simple stateful
tokens where a potentially malicious receiver executes them exactly once (or a
bounded number of times). Their work considered concrete applications such as
zero-knowledge proofs and focused on minimizing the number of required tokens.

Constant Round Adaptively Secure Protocols 433

The construction of [40] relied on stateful tokens based on the DDH assump-
tion, and was later improved by Lin et al. [41] to rely on the minimal assumption
of one-way functions. Goyal et al. [33] resolved the power of stateful tokens and
showed how to obtain unconditionally secure protocols using stateful tokens.
The work of Chandran et al. [16] was the first to achieve UC-security using
only stateless tokens. Choi et al. [18] gave the first constant-round UC-secure
protocols using stateless tokens assuming collision-resistant hash-functions. The
works of [46,50] consider a GUC-like formulation of the tokens for the two-party
setting where the parties have fixed roles. The focus in [46,50] was to obtain a
formulation that accommodates reusability of a single token for several indepen-
dent protocols in the UC-setting for the specific two-party case. In contrast to
the work of [34], [46,50] does not explicitly model or discuss adversarial trans-
ferability of the tokens. Finally, the work of Hazay et al. [34] resolved the ques-
tion of identifying the minimal assumptions to construct UC-secure protocols
under static corruptions with stateless tokens, namely, they show how to realize
constant-round two-party and multi-party UC-secure protocols assuming only
the existence of one-way functions. Besides these works, there have been several
works in the tamper-proof token model [16,18,20,24–26,33,41,48] addressing
various efficiency parameters. In the adaptive setting, the works of [20,55] and
[33] construct adaptive UC-secure protocols in the tamper-proof model using
stateful tokens with round-complexity proportional to the depth of the circuit.
While the works of [20,55] rely on simulatable public-key encryption schemes,
Goyal et al. in [33] provide unconditionally secure protocols (which in particular
imply adaptive UC-security). As such, none of the previous works have addressed
the feasibility of adaptive security using stateless tokens, and our work is the
first to address this question.

2 Modelling Tamper Proof Model with Adaptive
Corruptions

We begin with a brief overview of the tamper-proof hardware model and point
out some subtleties that arise when considering adaptive adversaries.

In recent work [34], it was shown that the standard (and most popular) formal-
ization of the tamper proof hardware tokens (namely the FWRAP-functionality due
to Katz [40],) does not fully capture the power of the adversary in a concurrent set-
ting. In particular, the formulation in [40] does not capture a man-in-the-middle
attack where an adversary can transfer the tokens received from one session to
another. In [34], a new formulation of tamper-proof hardware in the Global Uni-
versal Composable (GUC) framework was introduced that addressed these short-
comings. A side effect of this formulation is that this functionality denies the abil-
ity of the simulator to “program” the token.3 In the same work [34], they provide
3 In contrast, in many previous constructions that relied on tamper-proof hardware,

the simulator emulated the token for the adversary. In such a simulation, it would be
possible for a simulator to program the responses to the queries made by the adver-
sary.

434 C. Hazay et al.

constant-round constructions of two party and multi-party secure protocols in the
GUC-setting tolerating static adversaries. Our approach is to extend this frame-
work to incorporate adaptive adversaries. First, we explain a subtlety that arises
when considering adaptive adversaries. Consider a protocol where one party P1

creates a token T and sends it to party P2. Suppose an adversary corrupts P2 at
the beginning of the protocol and P1 at the end of the execution. This adversary
can gain access to the token received by P2 during the protocol and the code of
the program P installed in the token at the end of the execution after corrupting
P1. In such a scenario, one needs to determine the extent to which an adversary
can verify that program P was installed in token T . There are two possible ways
to model this:

First Model: In this model, if the receiver of a token is corrupted the adversary
has input/output access to the token. If in addition the adversary corrupts the
creator of the token, it will obtain the code of the program, i.e. a circuit layout,
and it will be able to completely verify that the token precisely contains this
circuit.

Second Model: In this model, if the receiver of a token is corrupted the adver-
sary has input/output access to the token. If in addition the adversary cor-
rupts the creator of the token, it will obtain the code of the program (by con-
cluding it from the randomness provided by the simulator), however, it will
continue to have only input/output access to the physical token. In essence, it
will be able to verify the “functionality” on a arbitrary (but bounded) number
of points of the function.

It is clear that the first model is stronger as it guarantees that the functionality
of the token is exactly the code provided by the creator. In the second model,
the adversary will only be able to verify in a polynomial number of points of the
function. We argue that the second model is realistic as it is reasonable to assume
that the integrity of a physical token remains intact even for an adversary with
some auxiliary digital information, such as the code or circuit embedded in the
token. In essence, we require that a tamper-proof token remain “tamper-proof”
always and restrict the adversary to only input/output access.

All our results will be in the second model with the exception of our adaptive
GUC-commitment which will be secure even in the first model. As mentioned
before we will rely on the FgWRAP-functionality to capture tokens. In order to
incorporate the second model, we can use the FgWRAP-functionality without mod-
ification. If the creator is corrupted, the creator simply provides the token to
the adversary together with the creator’s secret input and randomness, which
induce the program code as would have embedded by the honest creator. The
FgWRAP-functionality will continue to provide only input/output access to the
functionality in the token throughout the lifetime of the execution. We remark
however that if one wanted to capture the first model, the FgWRAP-functionality
would have to be modified so that when the creator of a token is corrupted, the
functionality directly provides the code embedded in the token to the adversary.
As we will be considering only the second model, we do not formalize the first
model in this work.

Constant Round Adaptively Secure Protocols 435

3 Our Techniques

We begin with our approach for our main theorem where we construct a constant-
round adaptively secure protocol in the FgWRAP-hybrid.

Constant-Round Secure Computation. Recently, the works of [10,19,28] show
how to get constant-round malicious adaptive UC-secure protocols in the CRS
model assuming indistinguishability obfuscation. A first attempt here would be
to replace the obfuscated programs with tokens. Several problems arise with this
intuition:

– The main advantage of the CRS model with obfuscation is that it can pro-
vide publicly available (concealed) code that is correct by simply placing an
obfuscated code in the CRS. In contrast with tokens, one of the parties need
to generate the tokens and it could be malicious.

– Second and more importantly in the case of adaptive corruption, the creator
of the token can be corrupted at which point the code embedded in the token
needs to be revealed. In contrast, in the CRS model, no adversary can get the
random coins used to generate the CRS model.

We instead pursue a different approach. Let us begin with the following simple
(yet, incorrect) approach. On a high-level the idea is to use tokens to enable
evaluation of the garbled circuit in Yao’s garbling technique [56]. That basic
intuition here is that we view the garbling technique as system of labels where
evaluation can be performed by “multiplexer” tokens (MPLX) where for each
gate given labels corresponding to the inputs, the MPLX picks the corresponding
output label for a gate. This basic idea can be made to work in the static
setting to construct a secure computation protocol. However, in the adaptive
setting things get problematic. The simulator in the garbling technique relies on
a “fake” garbled circuit where only the “active keys” are correctly embedded
in the garbled tables for the evaluator.4 In the adaptive setting, if the garbled
circuit evaluator is corrupted at the beginning and the generator is corrupted
at the end of the execution the simulator needs to reveal the fake garbling as a
real garbling. This is not possible in the FgWRAP modelling of the tokens as the
simulator is not allowed to “program” the token after creation.5

Instead, we solve this problem differently. We will not alter the honest gen-
erator’s strategy. We modify the simulation strategy as follows:

– We embed a key K to a symmetric encryption scheme in each gate token.
– The token will be hardwired with three labels, �ω1 , �ω2 and �ω3 which will be

the active labels for this gate and a random string r.

4 Using the terminology of [44], active keys are observed by the evaluator while eval-
uating the garbled circuit, while inactive labels are the labels that remain hidden
during the evaluation.

5 In the FgWRAP-hybrid programmability is explicitly removed so as to provide stronger
compositional guarantees.

436 C. Hazay et al.

– On input �1, �2, the token will behave as follows: If �1 = �ω1 and �2 = �ω2 it
will output �ω3 . This corresponds to what the evaluator can obtain prior to
corrupting the generator.

– If either �1 or �2 is different from the hardwired labels, it attempts to do the
following. It decrypts the label that is different using the key K to obtain a
string z that it reads as (x, y). The token then evaluates the circuit assuming
the generator’s input is x and the evaluator’s input is y to obtain the actual
values in the wires ω1 and ω2 that are the inputs to this gate, say b1 and
b2. With this information, the token internally assigns the bit b1 to label �ω1

and b2 to label �ω2 and G(b1, b2) to �ω3 where G ∈ {AND,XOR} is the gate
function. Next, it outputs based on the following strategy:

1. If �1 = �ω1 and �2 �= �ω2 output �ω3 if G(b1, 1−b2) = G(b1, b2), and output
Enc(K, (x, y); r) otherwise.

2. If �1 �= �ω1 and �2 = �ω2 output �ω3 if G(1−b1, b2) = G(b1, b2), and output
Enc(K, (x, y); r) otherwise.

3. If �1 �= �ω1 and �2 �= �ω2 output �ω3 if G(1 − b1, 1 − b2) = G(b1, b2), and
output Enc(K, (x, y); r) otherwise.

In essence, this strategy figures out what bits the active labels should be
associated with, and outputs the labels correctly. Furthermore, the information
required to figure out the association is passed along. While this high-level idea
allows to “equivocate” the circuit, we need the encryption to satisfy some
additional properties such as non-malleability and evasiveness. Note that the
above strategy does provide a fake code to be embedded in the token, but
once the sender is corrupted post-execution the simulator reveals an honest
looking code to the adversary which does not include any information about
the fake code e.g., the secret key K.

We formally described our protocol and argue correctness in Sect. 6. Then we
show how to adopt the cut-and-choose compilation of Lindell and Pinkas [43] in
conjunction with our adaptive GUC-commitment protocol and adaptive GUC-
OT protocol that we explain next to obtain a protocol that is secure against
malicious adaptive adversaries in Sect. 6.1.

Commitments. Recall that an adaptive GUC-commitment is a commitment
scheme between a sender and a receiver that can be (straight-line) equivocated
and also allows both parties to be corrupted at the end of the execution. More-
over, as we rely on the FgWRAP-functionality to model tokens we need a simulator
that is only allowed to observe queries to the tokens made by the adversary but
not program them.

Our starting point is the static GUC-commitment scheme from [34] which in
turn rely on the work of [33]. Roughly speaking, in order to extract the sender’s
input, the receiver chooses a function F from a pseudorandom function family
that maps {0, 1}m to {0, 1}n bits where m � n, and incorporates it into a
token which is transferred to the sender. Next, the sender commits to its input
message b by first querying the PRF token on a random string u ∈ {0, 1}m to
obtain v. Then, it sends comb = (Ext(u; r) ⊕ b, r, v) where Ext(·, ·) is a (strong)

Constant Round Adaptively Secure Protocols 437

randomness extractor. Now, since the PRF is highly compressing, it holds with
high probability that conditioned on v, u has high min-entropy and therefore
Ext(u; r) ⊕ b, r statistically hides b. Furthermore, since the simulator monitors
the queries made by the sender to the PRF token, by observing which query
yielded the response v and with the knowledge of this query u it extracts the
message b. The commitment is statistically binding since it is computationally
infeasible for an adversarial receiver to obtain two values u, u′ that map to v.
This commitment scheme allows for extraction but not equivocation. To make
this protocol equivocal, [34] use the Pass-Wee look-ahead commitment scheme
[53] that allows for transforming an extractable commitment to one that also
admits equivocation.

If we consider the same protocol under adaptive corruption, we need a sim-
ulator that will be able to equivocate. Unfortunately, the previous protocol fails
to be secure when the receiver is corrupted first and the sender is corrupted
post-execution. This is because, in the Pass-Wee scheme, several commitments
are made using the extractable commitment scheme and only a subset of them
are revealed during the commitment and decommitment phase. If additionally,
the sender is corrupted at the end of the execution, the simulator will have to
open the remaining commitments. The simulator will not be able to do this since
they will not contain messages generated according to the honest sender’s strat-
egy and given a commitment to some message b, comb = (Ext(u; r) ⊕ b, r, v),
the simulator cannot equivocate the message since the value v binds u. This is
because given a PRF it is infeasible for a simulator to find u �= u′ such that
PRF(u) = PRF(u′) (even if the key of the PRF is revealed).

As such this approach does not help us with adaptive corruption. We instead
follow a different approach, starting from the work of [36]. More precisely, in this
work, the authors show how to construct an adaptive UC-commitment scheme in
the CRS model starting from a public-key encryption scheme which additionally
has the property that ciphertexts can be obliviously generated and any valid
ciphertext can be later revealed as obliviously generated. The high-level idea is
that such an encryption scheme provides a mechanism to construct a straight-line
extractable commitment scheme which additionally has an oblivious generation
property (i.e., analogous to the property for ciphertexts just specified above).
Then given such a primitive, it is shown how to compile it into a commitment
scheme that is adaptively secure. We will first directly construct a primitive
that has this extractability property in the FgWRAP-hybrid and then use their
compilation to get a full-fledged adaptive GUC-commitment.

To obtain an extractable commitment with oblivious generation, our first
attempt is to modify the static extractable commitment from [34] as follows:
Instead of sending comb = (Ext(u; r) ⊕ b, r, v) as the message, suppose that the
sender sent (Ext(u; r) ⊕ b, r,Com(v)) where Com is any non-interactive com-
mitment scheme with pseudorandom commitments.6 This commitment scheme
has an oblivious generation property where the sender can simply send a

6 In our protocol, we only need a statistically binding commitment scheme and we
will rely on the construction of Naor [49] based on one-way functions.

438 C. Hazay et al.

random string. However, it loses its extractability property as the simulator
will no longer be able to identify the right “u” query that leads to v, as it only
sees Com(v) rather than v.

To regain extractability, we use unique unforgeable signatures. More pre-
cisely, the receiver generates a (sk, vk)-pair of a signature scheme and sends vk
to the sender. The sender commits to its query u using the scheme Com and
obtains a signature σ on the commitment from the receiver. Then we modify the
PRF token, to reply with PRF(u) only if it can provide (c, d, σ) such that c is a
commitment to u with decommitment information d and σ is a valid signature
of c using sk. We also modify the decommitment phase, were in addition to u, we
require the sender to provide a decommitment of u to c. This will allow to regain
extractability as this protocol will force the sender to use only the commitment
that it used to obtain a signature from the receiver to obtain a response from
the PRF token. More precisely, let c be the message that the sender sends in
the first step to receive a signature σ from the receiver. Then, the simulator will
monitor the queries made by the sender to the PRF token and wait until the
sender makes a valid query of the form (c, d, σ) and use d (i.e., a decommitment
of c to u) to extract u.

The binding property of this scheme will follow from the binding property
of the Com scheme and the unforgeability of the signature scheme. Given this
extractable commitment scheme with oblivious generation property we compile
using the protocol of [36] to obtain a full-fledged adaptive GUC-commitment.
We describe and prove correctness of our extractable commitment scheme in
Sect. 4.1 and full-fledged GUC-commitment in the full version [35].

Oblivious Transfer. Our oblivious transfer protocol will closely follow the static
GUC-secure OT protocol in [34]. On a high-level, the idea here is that the receiver
commits to its input bit b and the sender sends a token that contains s0, s1 and
reveals sb only if the receiver provides a valid decommitment to b. We refer to
such a token as an OT-type token. This basic protocol is vulnerable to input-
dependent attacks and we rely on standard mechanisms to design a combiner
to address this. In particular, following an approach analogous to [34], we will
adapt the combiner of [51]. While our protocol structure remains the same as [34],
certain subtleties arise that we list below and briefly mention how we address
them.

– The protocol in [34] involves the sender sending several OT-type tokens and
along with it commitments to all the entries in these tokens via a GUC-
commitment. Furthermore, the OT-type tokens in addition to revealing one
of the entries in the token given the receiver’s bit b, also reveals a decom-
mitment of that entry for the GUC-commitment scheme. A main issue that
arises here is that we require a token to reveal a decommitment of a GUC-
commitment scheme and this is infeasible if the GUC-commitments were made
in a FCOM-hybrid since there is no notion of a decommitment besides a mes-
sage communicated from FCOM. Previous works in this area [14] rely on a
Commit-and-Prove functionality to address this issue. We instead construct

Constant Round Adaptively Secure Protocols 439

an OT protocol directly in the FgWRAP-hybrid instead of constructing it in
the (FCOM,FgWRAP)-hybrid. More precisely, we first describe an (adaptively
secure) commitment scheme ΠCOM in the FgWRAP-hybrid that comes with an
NP-relation for verifying decommitments and is straight-line extractable and
equivocable. We then use this as a sub-protocol in our OT-protocol. The for-
mal properties and realization of our commitment scheme, as well as our OT
protocol and its security proof can be found in the full version [35].

– Since we need to deal with adaptive corruptions, in the case of a malicious
receiver where the adversary also corrupts the sender post-execution we have
the following subtle issue. Here the simulator can extract the receiver’s input
b and obtain sb from the FOT functionality. However, the simulator needs to
provide the OT-type tokens in the protocol without having complete knowl-
edge of the sender’s real inputs. This is because in the FgWRAP-hybrid the
simulator is not allowed to program the tokens and needs to provide an actual
code to the FgWRAP-hybrid whenever the adversary expects to receive a token.
Furthermore, when the sender is corrupted at the end of the execution and
the simulator learns the real inputs of the sender, it needs to provide the code
incorporated in the tokens (that looks like something the honest sender strat-
egy generated). We handle this issue by providing a strategy for the simulator
to provide a fake code to be embedded in the token but later reveal an honest
looking code to the adversary. Indistinguishability of the real and ideal world
will then follow by establishing that it would be computationally infeasible for
the adversary to find the query that distinguishes the alleged code revealed
by the simulator and the actual code embedded in the token.

Note that a reader can first read our two-party protocol in Sect. 6 since the
OT (Sect. 5) and commitment (Sect. 4) protocols are treated in a black box way.

4 Adaptive GUC-Commitments from OWF Using Tokens

In this section we construct adaptively secure GUC-commitment schemes using
tokens. In the heart of our construction lies the observation that the adaptive
UC-commitment scheme from [36] can be realized using extractable commit-
ment schemes with some additional feature. Loosely speaking, extractable com-
mitment scheme is a weaker primitive than UC-commitment in the sense that it
does not require equivocality. Namely, the simulator is not required to commit to
one message and then later convince the receiver that it committed to a different
value. In the following section we consider extractable commitment schemes with
oblivious generation, for which the committer can obliviously generate a com-
mitment without knowing the committed message. This property is analogue to
public key encryption scheme with oblivious sampling of ciphertexts (where the
plaintext is not known), and allows to use this primitive as a building block in
our adaptively secure GUC-commitments. Moreover, any commitment made to a
message can later be revealed as a commitment that was obliviously generated.
In Sect. 4.1 we define our new notion of security for extractable commitment
schemes with oblivious generation of commitments and present our extractable

440 C. Hazay et al.

commitment scheme. In [35] we discuss how to realize UC-commitment schemes
based on the construction from [36] and our new notion of extractable commit-
ments with oblivious generation.

4.1 Extractable Commitments with Oblivious Generation

We begin with our definition of extractable commitment schemes. A commit-
ment scheme is a protocol between a sender S with input a message m and
a receiver R. The protocol is marked by two distinct phases: a commitment
phase and a decommitment phase. We will consider our definition in the FgWRAP-
hybrid, i.e. both the sender and the receiver will have access to the ideal FgWRAP-
functionality. Since, this protocol will eventually be incorporated into a protocol
in the GUC-setting, the parties will have as common input a session identifier sid.
All the commitment schemes presented in this work will have a non-interactive
decommitment phase that can be verified via a NP-relation Rdecom with the
statement being the transcript of the commitment phase. This relation will be
referred to as the decommitment relation. While our definitions can be general-
ized, for simplicity of exposition, we will restrict our definition to such protocols
in this work. We call this property stand-alone verifiability and define it formally
below.

Definition 1. We say that a commitment scheme 〈S,R〉 in the FgWRAP-hybrid
is stand-alone verifiable with NP-relation R if in the decommitment phase the
sender sends a single decommitment message (m, d) and the receiver outputs 1 if
and only if R(τ, (m, d)) = 1 where τ is the transcript of the interaction between
S and R in the commitment phase (excluding the communication between the
parties and the FgWRAP-functionality).

Definition 2. A commitment scheme (〈S,R〉,Rdecom) with stand-alone verifia-
bility is said to be an extractable with oblivious generation if the following prop-
erties hold.

Straightline Extractability: For every malicious sender S∗, there exists a
strategy Ext that, after the completion of commitment phase in an interac-
tion between S∗ and the honest receiver R with common input (1κ, sid) in the
FgWRAP-hybrid can do the following: On input the transcript of the commit-
ment phase τ and the queries made by S∗ to all tokens it receives via FgWRAP

for the current session sid can output m such that, the probability that S∗

outputs (m′, d′) with m′ �= m and Rdecom(τ, (m′, d′)) = 1 is negligible.
Oblivious Generation: There is a PPT algorithm Ŝ and polynomial-time com-

putable function Adapt such that for any message m and any malicious
receiver R∗, it can produce random coins for Ŝ which “explains” a (possi-
bly partial) transcript generated in an interaction using 〈S,R〉 with R∗ where
S’s input is m. More formally, for every PPT machine R∗, it holds that, the
following ensembles are computationally indistinguishable.

Constant Round Adaptively Secure Protocols 441

– {(τ, v) ← staR
∗

〈Ŝ,R〉(1
κ, sid, r,m, z) : (v, r)}

– {(τ, v) ← staR
∗

〈S,R〉(1
κ, sid, r′, z) : (v,Adapt(τ))}

where κ ∈ N,m ∈ {0, 1}κ, r ∈ {0, 1}p(n), r′ ∈ {0, 1}q(n), z ∈ {0, 1}∗ and where
staR

∗
〈S,R〉(1

κ, sid, r,m, z) and staR
∗

〈Ŝ,R〉(1
κ, sid, r′, z) denote the random variables

describing the (possibly partial) transcript of the interaction and output of R∗(z)
upon interacting with the sender S on input m randomness r and Ŝ on random-
ness r′, respectively.

Next, we construct a commitment scheme that satisfies these properties. We
present our protocol in Fig. 1. Informally speaking, our construction follows by
having the sender commit using a PRF token, where extraction is carried out
by monitoring the sender’s queries to this token. In order to force the sender to
use the token only once, the receiver signs on a commitment of the PRF query,
where the token verifies the validity of both the decommitment and the signature.
A similar approach was pursued in the work of [18] where digital signatures,
which require an additional property of unique signatures, are employed. Recall
first that a signature scheme (GenSig,Sig,Ver) is said to be unique if for every
verification key vk and every message m, there exists only one signature σ for
which Vervk(m,σ) = 1. Such signature schemes can be constructed based on
specific number theoretic assumptions [23]. In [34] a different approach was taken
using one-time signatures based on statistically binding commitment schemes
that can be based on one-way functions. Their scheme ensures uniqueness in the
sense of [18]. We follow their approach in this paper as well.

Lemma 1. Assume the exitance of one-way functions. Then protocol ΠOBL−EXT

presented in Fig. 1 is an extractable commitment scheme with oblivious gen-
eration in the global FgWRAP-hybrid in the presence of adaptive malicious
adversaries.

Proof. We prove that the protocol ΠOBL−EXT satisfies both straight-line
extractability and the oblivious generation property:

Straightline Extractability: We need to define the Ext algorithm. Recall that
Ext receives the transcript τ and the queries that S∗ makes to the token it
receives from R, namely the PRF token. This can be obtained from the FgWRAP

functionality by issuing the query (retreive, sid,mid). In the list of queries, Ext
finds a tuple (c, u, σ, r) where c is the first message sent by the sender and
σ is the signature the receiver returned. Then, it checks if the randomness r
correctly decommits c to u. If no valid query is made or the decommitment is
incorrect, the extracted value is set to ⊥. Otherwise, it retrieves the message
by computing m = m′ + H(u) where (m′, c′) is the second message sent by
the sender in the commit phase. If there are multiple valid queries then it sets
the extracted value to ⊥.
Correctness of extraction follows from the unforgeability of the signature
scheme and the statistically-binding property of the commitment scheme
Com. More formally, we show that the probability that Ext fails to retrieve the

442 C. Hazay et al.

Protocol ΠOBL−EXT

The commitment scheme ExtCom is run between sender S and receiver R and relation
Rdecom. Let (1) Com denote the Naor commitment scheme [50] which is statistically
binding and has pseudorandom commitments (2) (GenSig, Sig,Ver) denote a one-time
signature scheme with unique signatures (3) PRFk : {0, 1}5κ → {0, 1}κ is a PRF and
(4) H : {0, 1}κ → {0, 1} denote a hardcore predicate.

Input: S holds a message m ∈ {0, 1}. Common inputs are 1κ and session identifier
sid.

Commit Phase:

R → S: R generates (sk, vk) ← GenSig(1κ) of a unique (or one-time) signature
scheme ΠSIG and sends vk to S.

S → R: S samples u ← {0, 1}5κ and sends c = Com(u; r) to R.
R → S: R computes σ ← Sig(sk, c) and forwards σ to S. R also sends a PRF

token TKPRF
R by sending (Create, sid, S, R,mid, M1) to FgWRAP where M1

is the functionality that on input (sid∗, (c, σ, u, r)) proceeds as follows:
– If sid∗ = sid return ⊥.
– Otherwise, if c = Com(u; r) and Ver(vk, c, σ) = 1 return v =

PRFk(u).
S obtains (Create, sid, R, S,mid, M1) from the functionality FgWRAP.

S → R: S sends (Run, sid, S,mid, (c, σ, u, r)) and obtains v. It then sends
(m , c) to R where m = H(u) + m and c = Com(v; r)).

Decommit Phase:
S reveals (m, u, r, r) and R checks if the relation Rdecom(τ, (m, (u, r, r))) is
satisfied where the transcript τ = (vk, c, m , c) and

Rdecom((vk, c, m , c), (m, (u, r, r))) = 1 iff

c = Com(u; r) ∧ PRFk(u) = v ∧ m = H(u) + m ∧ c = Com(v; r))

Fig. 1. Extractable commitments with oblivious generation.

correct message is negligible. First, we claim that the sender will be able to
run the PRF token only on one input, namely (c, u, σ, r) for which σ is a valid
signature for c and c is a valid commitment to u that was computed using
randomness r. This is because for any other valid query, the sender is able to
produce a valid signature for message other than c or produce two decommit-
ments of c to Com. Now, since Ext receives all queries from the FgWRAP, given
any adversarial sender S∗ that is able to give a valid query (c′, u′, σ′, r′) where
c′ �= c or u′ �= u, we can construct an adversary that respectively breaks the
unforgeability of the signature scheme or the binding property of Com.

Oblivious Generation: The oblivious sender algorithm Ŝ simply sends ran-
dom strings of appropriate length in the first and second messages. Namely,
in the first message it picks a random string of length C and in the second
message it sends |m|+C where |m| = 1 is the length of the message and C is
the length of the commitment message using Com. Given a partial transcript,

Constant Round Adaptively Secure Protocols 443

the Adapt algorithm simply reconstructs the random tape of S by observing
the messages sent in the transcript by the honest sender S and placing that
message in the random tape.
The indistinguishability property of the randomness output by the Adapt
algorithm follows essentially from the pseudorandomness of the Naor’s com-
mitment scheme Com [49] and the statistically hiding property of H(u) given
v for any length compressing PRF. More formally, we consider a sequence of
hybrids executions, starting from an execution of a commitment to a message
m and obtaining an oblivious generated commitment.

– Hybrid H1: The output of this hybrid is the view of R∗ when it is interact-
ing with a simulator that follows the honest sender’s strategy S with input
m.

– Hybrid H2: In this hybrid, the simulator follows the honest strategy with
the exception that in the fourth message instead of committing to v, it sends
a random string. The indistinguishability of Hybrids H1 and H2 follows from
the pseudorandomness of the commitment made using Com.

– Hybrid H3: In this hybrid, the simulator follows the strategy as in H2 with
the exception that instead of sending H(u)+m as part of the fourth message,
it sends a random bit. Indistinguishability follows from the hiding property
of the Com scheme. More formally, consider any adversary R∗ such that the
outputs of Hybrid H2 and H3 can be distinguished. Using R∗ we construct
an adversary A, that on input a commitment c made using Com, can extract
the committed value by internally emulating H2 (or H3), by feeding c as part
of the first message and then using the Goldreich-Levin theorem to extract
u. In this reduction, A cannot obtain the value v = PRF(u) since it cannot
produce a decommitment of c. Yet, since in hybrid H2 we already replaced
the commitment to v in the fourth message to a random string, A can
still complete the execution without knowing the value v. This adversary A
violates the hiding property of Com.

– HybridH4: In this hybrid, the simulator follows the strategy Ŝ. Observe that
this strategy is the same strategy as in H3 with the exception that instead of
sending a commitment to randomly sampled u in the second message, it sends
a random string. The indistinguishability of Hybrids H3 and H4 follows from
the pseudorandomness of the commitment made using Com.

We further address here an adaptive corruption of the sender as we use our pro-
tocol as a sub-protocol in order to construct a GUC commitment scheme that
maintains adaptive security. In case of such corruption the adversary demands
the sender’s actual randomness or the randomness according to oblivious gener-
ation. The only case we will need to address in our proof is explaining a valid
commitment as an obliviously generated one, for which our Adapt algorithm
takes care even on partial transcripts.

4.2 Obtaining GUC-Commitments in the gRO Model

An implication of the above extractable commitment scheme is that we can fur-
ther realize FCOM in the global random oracle model [11]. Specifically, our com-

444 C. Hazay et al.

mitment, shown in the full version [35], calls an extractable commitment which
is implemented, in turn, using PRF tokens (for which the simulator exploits in
order to extract the committed message). A similar construction can be shown
using a global random oracle that is used instead of the PRF tokens. Namely,
instead of using signature schemes and pseudorandom commitment schemes in
order to enforce a single usage of the PRF token, the sender directly calls the
random oracle on some random value u, obtaining the value v, and then mask-
ing the committed message by sending (u + m, v). Consequently, we obtain the
first GUC-commitment construction in the global random oracle model from
OWF with adaptive security. In contrast, the scheme in [11] only achieves secu-
rity against static corruptions and relies on concrete number theoretic assump-
tions. We remark here that while the construction of an extractable commitment
scheme with oblivious generation is easy to construct in the gRO model follow-
ing our construction from the previous section, obtaining this corollary relies
on the compilation of such a commitment to a full-fledged adaptively secure
commitment that we present in the full version [35].

More formally, we claim the following.

Corollary 3. Assume the existence of one-way functions. Then the protocol
specified above is an extractable commitment scheme with oblivious generation
in the FgRO-hybrid in the presence of adaptive malicious adversaries.

Intuitively, this scheme is extractable since the simulator can monitor the
sender’s queries to the random oracle. That is, the simulator obtains from FgRO

the query list made by the adversary and search a pair (u, v) that is consistent
with the commitment (m′, v). If so, it outputs the message m = m′ + u. Else,
it sets the extracted message to ⊥. Finally, oblivious sampling holds trivially as
well due to the fact that the random oracle behaves like a truly random function
and given an honestly generated commitment (u+m, v) the message is indistin-
guishable from a truly random string and therefore can be revealed as something
that is obliviously generated.

In [17], they show how to obtain adaptive UC-secure computation of arbitrary
functionalities assuming UC-secure adaptive semi-honest oblivious-transfer in
the FCom-hybrid (See Theorem 1). Combining this result with Corollary 3, we
obtain the following corollary.

Corollary 4. Assume the existence of UC-secure adaptive semi-honest oblivious
transfer. Then for any well-formed functionlaity F , there exists a O(dF)-round
protocol that securely realizes F in the GUC-setting in the presence of adaptive
malicious adversaries, where dF is the depth of the circuit that implements F .

In [36], they provide a compiler that takes any extractable commitment
scheme (even without oblivious generation) and constructs a UC-secure proto-
cols for general functionalities in the static setting assuming semi-honest (static)
oblivious transfer. Combining this result with Corollary 3, we obtain the follow-
ing result:

Constant Round Adaptively Secure Protocols 445

Corollary 5. Assume the existence of (static) semi-honest oblivious-transfer.
Then for any well-formed functionality F , there exists a O(1)-round protocol that
securely realizes F in the GUC-setting in the presence of malicious adversaries.

This result improves the result of Canetti, Jain and Sahai that relies on the
specific DDH assumption for their construction.

5 Adaptive OT from OWF Using Tokens

In this section we present our GUC OT protocol. On a high-level, our protocol
is identical to the OT protocol from [34] with the exception that the parties
apply the adaptive commitment scheme from Sect. 4. In contrast, [34] relies on a
UC-commitment scheme in the token model that is secure only against static cor-
ruptions. Namely, we describe our protocol ΠOT in the FgWRAP-hybrid model with
sender S and receiver R using the following building blocks: let (1) Com be a non-
interactive perfectly binding commitment scheme, (2) let SS = (Share,Recon) be
a (κ+1)-out-of-2κ Shamir secret-sharing scheme over Zp, together with a linear
map φ : Z2κ

p → Z
κ−1
p such that φ(v) = 0 iff v is a valid sharing of some secret,

(3) F, F ′ be two families of pseudorandom functions that map {0, 1}5κ → {0, 1}κ

and {0, 1}κ → {0, 1}p(κ), respectively (4) H denote a hardcore bit function and
(5) Ext : {0, 1}5κ × {0, 1}d → {0, 1} denote a randomness extractor where the
source has length 5κ and the seed has length d. Our protocol is presented in
Fig. 2 and involves using our GUC-commitment scheme.

Theorem 5. Assume the existence of one-way functions. Then protocol ΠOT

presented in Fig. 2 GUC realizes FOT in the FgWRAP-hybrid model in the presence
of adaptive malicious adversaries.

Proof Overview. On a high-level, our proof follows analogously to the proof in
[34] (which in turn relies on the simulation strategy of [51]). Crucially, we need
to address the issue of adaptive corruptions in our proof of both parties. In case
of a receiver corruption we need to be able to generate a view for the receiver
corresponding to its input and output. As part of the protocol, the receiver
commits to its input before receiving the tokens and uses the decommitment as
input to the tokens. We further note that the simulation strategy in [34] for a
corrupted sender relies on following the honest receiver’s strategy and extracting
the sender’s input by monitoring the sender’s queries to the tokens. While this
strategy is appropriate to handle static corruptions, it requires handling new sub-
tleties in case of adaptive corruption. Specifically, it is still possible to rely on the
honest receiver’s strategy, however, upon post corrupting the receiver the simu-
lator must be able to produce random coins for the receiver that demonstrates
consistency with its real input. To achieve this, we make the receiver commit
its input using a GUC-commitment scheme secure against adaptive corruptions.
Such a scheme is described in our previous section. This enables us to equivocate
the receiver’s input. Next, in case of sender corruption we again need to be able
to equivocate the sender’s OT inputs. In fact, we need to be able to equivocate

446 C. Hazay et al.

Protocol ΠOT

Input: S holds two strings s0, s1 ∈ {0, 1}κ and R holds a bit b.

The Protocol:
R ↔ S:

1. R selects a random subset T1−b ⊆ [2κ] of size κ/2. Define Tb = [2κ]/T1−b. For
every j ∈ [2κ], R sets bj = β if j ∈ Tβ .

2. R samples uniformly at random c1, . . . , cκ ← {0, 1}.
3. Finally, R and S engage in 3κ instances of protocol ΠCOM, described in

the full version [36], where upon completing the commitment phase S holds
transcripts of the commitment phase ({combj }j∈[2κ], {comci}i∈[κ]) to values
({bj}j∈[2κ], {ci}i∈[κ]), respectively.

S ↔ R:

1. S picks two random strings x0, x1 ← Zp and secret shares them using SS. In
particular, S computes [xb] = (x1

b , . . . , x
2κ
b) ← Share(xb) for b ∈ {0, 1}.

2. S commits to the shares [x0], [x1] as follows. It picks random matrices A0, B0 ←
Z

κ×2κ
p and A1, B1 ← Z

κ×2κ
p such that ∀i ∈ [κ]:

A0[i, ·] + B0[i, ·] = [x0], A1[i, ·] + B1[i, ·] = [x1].

S computes two matrices Z0, Z1 ∈ Z
κ×κ−1
p and sends them in the clear such that:

Z0[i, ·] = φ(A0[i, ·]), Z1[i, ·] = φ(A1[i, ·]).
3. S and R engage in 8κ2 instances of protocol ΠCOM, described in the full version

[36], where upon completing the commitment phase R holds the transcripts of the
commitment phase (comA0 , comB0 , comA1 , comB1) to matrices A0, B0, A1, B1,
respectively.

4. S sends C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1 to R.
5. For all j ∈ [2κ], S creates a token TKj by sending

(Create, sid, R, S,mid3κ+j , M3) to FgWRAP where M3 is the functional-
ity that on input (bj , decombj), aborts if decombj is not a valid decom-
mitment of the commitment in the first round to bj . Otherwise it outputs
(Abj [·, j], decomAbj

[·,j], Bbj [·, j], decomBbj
[·,j]).

6. For all i ∈ [κ], S creates a token TKi by sending (Create, sid, R, S,mid5κ+i, M4)
to FgWRAP where M4 is the functionality that on input (ci, decomci) aborts if
decomci is not verified correctly. Otherwise it outputs,

(A0[i, ·], decomA0[i,·], A1[i, ·], decomA1[i,·]), if c = 0

(B0[i, ·], decomB0[i,·], B1[i, ·], decomB1[i,·]), if c = 1

Output Phase: See Figure 3.

Fig. 2. GUC OT with tokens.

s1−b among (s0, s1) of the sender’s inputs where b is the receiver’s input. In the
protocol, the sender commits to the secret-sharing of two random strings x0 and
x1 and masks the real inputs with them. The tokens allow the receiver to extract

Constant Round Adaptively Secure Protocols 447

the shares of xb and obtain sb. The main argument in [34] is that the receiver will
not be able to receive sufficiently many shares of x1−b and hence s1−b remains
hidden. In our protocol we first rely on an adaptive GUC-commitment, and thus
able to equivocate the sender’s commitments. However, the tokens reveal the
values stored in the commitments (by producing the decommitments) and these
values need to be changed corresponding to x1−b for equivocation.

In more details, for sender corruption, our simulation proceeds analogously
to the simulation from [51] where the simulator generates the view of the mali-
cious sender by following the honest receiver’s strategy to simulate messages
and then extracting all the values committed to by the sender. In [51] they rely
on extractable commitments and extract the sender’s inputs via rewinding, we
here directly extract its inputs by monitoring the queries made by the malicious
sender to the tokens embedded within our GUC-commitment protocol ΠCOM.
The proof of correctness follows analogously. More explicitly, the share consis-
tency check ensures that for any particular column that the receiver obtains,
if the sum of the values agree on the same bit, then the receiver extracts the
correct share of [xb] with high probability. Note that it suffices for the receiver to
obtain κ+1 good columns for its input b to extract enough shares to reconstruct
xb since the shares can be checked for validity. Namely, the receiver chooses κ/2
indices Tb and sets its input for these OT executions as b. For the rest of the
OT executions, the receiver sets its input as 1 − b. Denote this set of indices by
T1−b. Then, upon receiving the sender’s response to its challenge and the OT
responses, the receiver first performs the shares consistency check. If this check
passes, it performs the shares validity check for all columns, both with indices in
T1−b and for the indices in a random subset of size κ/2 within Tb. If one of these
checks do not pass, the receiver aborts. If both checks pass, it holds with high
probability that the decommitment information for b = 0 and b = 1 are correct
in all but s ∈ ω(log n) indices. Therefore, the receiver will extract [xb] success-
fully both when its input b = 0 and b = 1. Furthermore, it is ensured that if the
two checks performed by the receiver pass, then a simulator can extract both x0

and x1 correctly by simply extracting the sender’s input to the OT protocol and
following the receiver’s strategy to extract.

On the other hand, when the receiver is corrupted, our simulation proceeds
analogous to the simulation in [51] where the simulator generates the view of the
malicious receiver by first extracting the receiver’s input b and then obtaining
sb from the ideal functionality. It then completes the execution by following
the honest sender’s code with (s0, s1), where s1−b is set to random. Moreover,
while in [51] the authors rely on a special type of interactive commitment that
allows the extraction of the receiver’s input via rewinding, we instead extract
this input directly by monitoring the queries made by the malicious receiver to
the tokens embedded within protocol ΠCOM. The proof of correctness follows
analogously. Informally, the idea is to show that the receiver can learn κ + 1
or more shares for either x0 or x1 but not both. In other words there exists a
bit b for which a corrupted receiver can learn at most κ shares relative to s1−b.

448 C. Hazay et al.

Output Phase for ΠOT

Output Phase:
1. For all j ∈ [2κ], R sends (Run, sid, S,mid3κ+j , (bj , decombj)) receiving

back (Abj [·, j], decomAbj
[·,j], Bbj [·, j], decomBbj

[·,j]).

2. For all i ∈ [κ], R sends (Run, sid, S,mid5κ+i, (ci, decomci)) receiving back
(A0[·, i], A1[·, i]) or (B0[·, i], B1[·, i]).

Combiner:
Shares Validity Check Phase: For all i ∈ [κ], if ci = 0 check that Z0[i, ·] =

φ(A0[i, ·]) and Z1[i, ·] = φ(A1[i, ·]). Otherwise, if ci = 1 check that
φ(B0[i, ·]) + Z0[i, ·] = 0 and φ(B1[i, ·]) + Z1[i, ·] = 0. If the tokens do
not abort and all the checks pass, the receiver proceeds to the next phase.

Shares Consistency Check Phase: For each b ∈ {0, 1}, R randomly chooses a
set Tb for which bj = b of κ/2 coordinates. For each j ∈ Tb, R checks that
there exists a unique xj

b such that Ab[i, j] + Bb[i, j] = xj
b for all i ∈ [κ]. If

so, xj
b is marked as consistent. If the tokens do not abort and all the shares

obtained in this phase are consistent, R proceeds to the reconstruction phase.
Else it abort.

Reconstruction Phase: For j ∈ [2κ]/T1−b, if there exists a unique xj
b such that

Ab[i, j] + Bb[i, j] = xj
b, mark share j as a good column. If R obtains less

than κ + 1 good shares, it aborts. Otherwise, let xj1
b , . . . , x

jκ+1
b be any set

of κ + 1 consistent shares. R computes xb ← Recon(xj1
b , . . . , x

jκ+1
b) and

outputs sb = Cb ⊕ xb.

Fig. 3. Output phase for ΠOT.

Thus, by replacing s1−b with a random string, it follows from the secret-sharing
property that obtaining at most κ shares keeps s1−b information theoretically
hidden. The proof can be found in the full version [35] (Fig. 3).

6 Adaptively Secure Two-Party Computation

In this section we demonstrate the feasibility of constant-round adaptively secure
two-party computation in the token model. Loosely speaking, the idea is to
associate a token with each gabled gate where the gabled table is embedded
within the token, where the token mimics the circuit’s evaluator in the sense
that it returns the output label that corresponds to the pair of the input labels
of this gate entered by the receiver (if such a key exists). This allows to implement
each garbled gate in a form of OT rather than providing a set of four ciphertexts.
We further make use of notions such as active/inactive labels as defined in [44],
where active labels are the labels that observed by the receiver while evaluating
the garbled circuit, while inactive labels are the labels that remain hidden during
the evaluation.

In more detail, the basic tokens that we will use in our protocol will intuitively
implement the functionality of a garbled gate in Yao’s construction. Given a

Constant Round Adaptively Secure Protocols 449

function f , let C be the boolean circuit (with the conventions made in [44]) such
that for every x, y ∈ {0, 1}n, C(x, y) = f(x, y) where f : {0, 1}n × {0, 1}n →
{0, 1}n. The sender will follow typical garbled circuit constructions and first
create labels for each wire in the circuit. Next, instead of garbling a gate by
using the labels as keys to an encryption scheme, we will incorporate in a token
the functionality that on input, labels of the incoming wires, will output the
corresponding label of the output wire. In essence, the token behaves as 1-out-
of-4 OT token. More precisely, for every wire identified by index ω in the circuit,
we pick two random strings lab0ω, lab1ω ∈ {0, 1}κ. Then corresponding to gate
Gatec, the sender S creates a token that on input (�1, �2) finds α and β such
that �1 = labα

ω1
and �1 = labβ

ω2
and outputs labGatec(α,β)

ω3
where ω1, ω2 are the

incoming wire identifiers, ω3 is the identifier of the output wire to gate c and
Gatec ∈ {AND, XOR} is the corresponding boolean function of the gate c.

Furthermore, assume that the oblivious transfer protocol that realizes FOT is
simulatable in the presence of malicious receivers and semi-honest senders, then
the combined protocol is secure with these security guarantees. We note that
the main challenge in achieving security for protocols that are based on garbled
circuits, is proving the case where the sender is corrupted after the garbled circuit
has been sent, whereas the receiver is statically corrupted. This is due to the
fact that the corrupted receiver observes active labels that are determined by an
arbitrary input for the sender. Then, upon corrupting the sender, the simulator
must provide randomness that is consistent with the sender’s real input which
is a difficult task. Our idea follows by having the simulator define a different
set of tokens in the simulation that are embedded with the active labels and a
symmetric key K, where the inactive labels are determined on the fly using key
K upon corrupting the sender and obtaining its input x. The complete proof
follows.

Theorem 6. Let f be a well-formed functionality. Then, protocol Π from Fig. 4
GUC realizes f in the presence of malicious receivers and semi-honest senders
in the {FgWRAP,FOT}-hybrid.
Proof. Let A be a malicious PPT real adversary attacking protocol Π from
Fig. 4 in the {FgWRAP,FOT}-hybrid model. We construct an ideal adversary S
with access to Ff which simulates a real execution of Π with A such that no
environment Z can distinguish the ideal process with S and Ff from a hybrid
execution of Π with A. S starts by invoking a copy of A and running a simulated
interaction of A with environment Z, emulating the honest party. We describe
the actions of S for every corruption case.

Simulating the Communication with Z: Every message that S receives from Z
is internally fed to A and every output written by A is relayed back to Z.

The hardest adaptive corruption case to argue here is if the receiver is cor-
rupted at the begining of the execution and the sender is corrupted at the end.

Simulating Static Corruption of the Receiver and Adaptive Corruption of the
Sender Post-execution. We begin by describing our simulation:

450 C. Hazay et al.

Adaptively secure 2PC Π in the presence of malicious receivers

ProtocolΠ is presented in the (FgWRAP, FOT)-hybrid model with sender S and receiver
R.

Auxiliary Input: A boolean circuit C such that for every x, y ∈ {0, 1}n, C(x, y) =
f(x, y) where f : {0, 1}n × {0, 1}n → {0, 1}n.

Inputs: S holds x ∈ {0, 1}n and R holds y ∈ {0, 1}n. Let x = x1, . . . , xn and
y = y1, . . . , yn.

The Protocol: Let (lab01, lab
1
1), . . . , (lab

0
n, lab1n) be the circuit-input labels corre-

sponding to input wires ω1, . . . , ωn, and let (lab0n+1, lab
1
n+1), . . . , (lab

0
2n, lab12n)

be the circuit-input labels corresponding to input wires ωn+1, . . . , ω2n. Then,
1. For every i ∈ [n], the parties call the FOT functionality in which S sends the

message (S, sid, lab0n+i, lab
1
n+i) and R sends (R, sid, yi). Then, R receives

(sid, labyi
n+i).

2. S sends the labels labx1
1 , . . . , labxn

n and the decoding information d to R.
3. Next, the sender creates tokens for machines Mc for every gate c and sends

them to the R via FgWRAP. More precisely, for every intermediate wire iden-
tified by index ω in the circuit, S chooses two random strings lab0ω, lab1ω ∈
{0, 1}κ. Then corresponding to gate Gatec, S creates a token TKGatec

S by send-
ing (Create, sid, R, S,midc, Mc) to FgWRAP, where Mc is the functionality
that on input (sid∗, (1 2)) proceeds as follows:
– If sid∗ = sid, then return ⊥.
– Otherwise, if 1 = labα

ω1 and 2 = labβ
ω2 output labGatec(α,β)

ω3 .
Where ω1, ω2 are the incoming wire identifiers, ω3 is the identifier of the
output wire to gate Gatec and Gatec ∈ {AND,XOR} is the corresponding
boolean function of this gate.

Circuit Evaluation: Upon receiving the labels labx1
1 , . . . , labxn

n and
laby1

n+1, . . . , lab
yn
2n , R evaluates the circuit, obtaining the output f(x, y) as

follows.

1. For every gate Gatec ∈ C, let ω1
c , ω

2
c (resp., ω3

c) denote the input (resp., out-
put) wires of gate Gatec, then R sends (Run, sid, S,midc, (lab

α
ω1
c
, labβ

ω2
c
)) and

obtains labGatec(α,β)

ω3
c

.

2. R runs the algorithm z ← De(d, z̃) and outputs z, where z̃ is the encoding of
the output wires.

Fig. 4. Adaptively secure 2PC in the presence of malicious receivers

1. Upon corrupting R the simulator S generates first the codes to be emu-
lated in the tokens. Towards this it first samples a single label for each wire
ω, i.e. l̃abω ← {0, 1}κ. For each gate c, it sends (Create, sid,S,R,midc,Mc)
to FgWRAP for all Gatec ∈ C where the code Mc is defined as follows: Let
l̃abω1

c
, l̃abω2

c
, l̃abω3

c
, a secret key K for a non-malleable symmetric encryption

ΠENC = (Gen,Enc,Dec) with pseudorandom ciphertext, and randomness r be
hardwired in the token where ω1

c , ω
2
c are the input wire identifiers and ω3

c is

Constant Round Adaptively Secure Protocols 451

the output wire identifier.7 Upon receiving the input (�1, �2), Mc proceeds in
one of the following four cases:
Case 1: Both labels are active key labels. If �1 = l̃abω1

c
and �2 = l̃abω2

c

of this gate then output l̃abω3
c
.

Case 2: One of them is active and the other is not. If �1 �= l̃ab
α

ω1
c

and

�2 = l̃ab
β

ω2
c

then perform the following actions:
(a) Compute τc = DecK(�1). Check if τc is of the form (x, y, ω1

c) where
x, y ∈ {0, 1}n, and abort if it is not of that form.

(b) Next determine inputs α, β and output γ to gate c assuming S’s input
is x and R’s input is y by running C(x, y).

(c) Set labα
ω1

c
= l̃abω1

c
and labβ

ω2
c

= l̃abω1
c

and labγ
ω3

c
= l̃abω3

c
. Let lab1−γ

ω3
c

=
EncK(x, y, ω3

c ; r) where r is the randomness hardwired in the token.
(d) Output lab

Gatec(1−α,β)
ω3

c
.

If �1 = l̃ab
α

ω1
c

and �2 �= l̃ab
β

ω2
c
, we first compute τc = DecK(�2) and checking

if τc is of the form (x, y, ω2
c). Next, we perform the same steps (c) and (d)

as above to determine α, β and γ and make label associations. Finally,
instead of the last step (e), we output lab

Gatec(α,1−β)
ω3

c
.

Case 3: Neither of them is active. If �1 �= l̃ab
α

ω1
c

and �2 �= l̃ab
β

ω2
c
, we first

compute τc = DecK(�1) and τ̃c = DecK(�2). Next we check if τc is of the
form (x, y, ω1

c) and τ̃c is of the form (x, y, ω2
c) for the same x and y. If so,

we perform the same steps (c) and (d) as above to determine α, β and
γ and make label associations. Finally, instead of the last step (e), we
output labGatec(1−α,1−β)

ω3
c

. Else, if the plaintexts are of incorrect format the
token aborts.

Making the Size of Tokens Proportional to the Width of the Evaluated Circuit.
We consider a levelled circuit with fan-in two. A levelled circuit is a circuit
in which the incoming edges to the gates of depth i comes only from the
gates of depth i − 1 or from the inputs. That said, edges only exist between
adjacent levels of the circuit. Furthermore, the width of a levelled circuit is
the maximum size of any level. We define the evaluated circuit as a sequence
of circuits C = C1||...||Cd where Ci denotes the circuit in level i for i ∈ [d].
The high-level idea is to evaluate the circuit level by level where each level will
receive the labels of the previous level and will output the output labels for
the next level. In particular, each token will run Cd(xd, yd) instead of C(x, y)
where xd denotes the input of S in level d and yd denotes the input of R in level
d. In addition, the underlying encryption scheme will encrypt plaintexts of the
form (xd, yd, ·). Therefore, each token performs a computation proportional
to the width of the circuit rather than the entire circuit.

7 Looking ahead, these input labels are the (respective inputs/output) active labels
observed by the evaluator. Moreover, the input labels for each gate equal the output
labels of the gates connected to it.

452 C. Hazay et al.

2. S emulates the OT executions by playing the role of FOT and extracting the
receiver’s inputs y = y1, . . . , yn to these executions. The simulator sends y
to the trusted party computing f , receiving back f(x, y). S completes the
FOT executions by sending the receiver the active labels that it picked for the
receiver’s input wires.

3. When the sender is corrupted post execution, it receives the sender’s real
input x. In this case the simulator needs to explain the sender’s view, i.e.
it needs to explain the sender’s input to the OT queries and the code for
Mc supplied to the FgWRAP. Towards this, the sender first generates labels
for the inactive label for all gates. For any input wire ω, the inactive label
is set as EncK(x, y, ω) where the randomness is chosen uniformly and for
any intermediate wire it is set to EncK(x, y, ω; r) where r is the randomness
hardwired in the gate for which ω is the output wire. It supplies all the labels
to the adversary.

4. S outputs whatever A does.

Note that the receiver’s view is composed of the set of input labels it obtains from
the OT executions and the tokens evaluations. Indistinguishability of real and
simulated cases, assuming that the receiver cannot invoke any of the tokens on
an inactive label, boils down to the ability of generating a fresh valid ciphertext
that encrypts the parties’ inputs and the corresponding identifiers under the
key K that is hardwired inside the tokens. Intuitively, this event occurs with
negligible probability due to the evasiveness property of the encryption scheme.
More formally, we prove indistinguishability of the real and simulated executions
via the following sequence of hybrid games.

Hybrid1: The hybrid is the real execution as defined in Protocol Π in Fig. 4.

Hybrid2: In this hybrid game we consider a simulator S2 that knows the sender’s
real input and generates the tokens just like honest sender. This game produces
an identical distribution as the real execution.

Hybrid3: In this game simulator S3 generates all active labels uniformly at
random, but the inactive labels are generated using random encryptions of
zc = (x, y, idc). To prove that this game is indistinguishable from the previ-
ous hybrid game, we consider a sequence of sub-hybrids Hybridi

2 for i ∈ [m]
the total number of inactive labels. Specifically, in Hybridi

2 the first i inac-
tive labels are encryptions of (x, y, ωj) whereas the rest of the inactive labels
are picked uniformly as random. Note that Hybrid0

2 is identically distrib-
uted to hybrid Hybrid2, whereas Hybridm

2 is identically distributed to hybrid
Hybrid3. The indistinguishability of Hybridi−1

2 and Hybridi
2 directly follows

from the pseudorandomness of the ciphertexts. More formally, assume by contra-
diction the existence of an adversary A, a distinguisher D and a polynomial q(·)
such that

∣
∣ Pr[D(Hybrid2) = 1] − Pr[D(Hybrid3) = 1]

∣
∣ ≥ 1/q(κ) for infinitely

many κ’s, where D obtains the malicious receiver’s view in the corresponding
hybrid execution. Then we claim that there exists an index i ∈ [m] such that

∣
∣ Pr[D(Hybridi−1

2) = 1] − Pr[D(Hybridi
2) = 1]

∣
∣ ≥ 1/(q(κ) · m).

Constant Round Adaptively Secure Protocols 453

We define an adversary AENC that breaks the pseudorandom property of the
underlying symmetric encryption scheme as follows. Upon receiving access to the
encryption oracle, AENC uses its oracle to generate the first i−1 inactive labels as
required in the simulation. For the rest of the inactive labels, namely those with
indices in {(i+1), . . . ,m} the adversary picks random strings. Finally, for the ith

inactive label, the adversary provides the message (x, y, ωi) to the challenger. The
challenger either returns a uniform random string or an encryption of (x, y, ωi).
The adversary feeds whatever the challenger provides in the pseudorandomness
security game internally, as the label for the ith inactive label. It follows from our
construction that depending on the challenger’s message, the view of the receiver
is distributed according to Hybridi−1

2 or Hybridi
2 and thus, this adversary

breaks the pseudorandomness property of the ciphertexts. In addition, we would
like to claim that the adversary, who corrupts the sender after the generation of
the garble circuit and the tokens, cannot produce a ciphertext for a valid input
which will allow it to query the token on EncK(g1(x), g2(y), ·) where g1, g2 are
arbitrary functions that produce related plaintexts. As such an attack will allow
the adversary to learn some additional information about the receiver’s input
breaking its privacy or learning a new, in addition to an output he may already
learns. We claim that the probability of this event to occur is negligible due to
the non-malleability of the encryptions scheme. Specifically, the simulator may
monitor the adversary’s queries to the token and observe if such an event occurs.

Hybrid4: In this game simulator S4 generates all the tokens as in the simula-
tion. To prove that this game is indistinguishable from the previous hybrid game,
we will rely on the evasiveness of the underlying encryption scheme. First, we
observe that the distribution of the labels provided by the real simulator before
and after the sender is corrupted are identically distributed in both hybrids.
This is because the active labels are uniformly generated in both hybrids and
the inactive labels are encryptions of (x, y, ωi) for the different wires in the cir-
cuit. Next, we observe that the only way an adversary can distinguish Hybrid4

from Hybrid3 is if it feeds any of the tokens a fresh valid ciphertext of a message
that is different from all the labels provided by the simulator after the sender
is corrupted. By the evasiveness of the underlying encryption scheme the prob-
ability that an adversary can generate such ciphertexts is negligible. Therefore,
the view of the adversary in Hybrid3 and Hybrid4 is statistically close.

Hybrid5: The last hybrid game is the simulation which is identical to hybrid
Hybrid4.

Simulating Static Corruption of the Sender. We begin by describing our simu-
lation:

1. Upon corrupting S the simulator receives the adversary’s input x and proceeds
as follows.

2. S first communicates with the functionality FgWRAP, that upon receiving the
messages for creating the tokens {(Create, sid,R,S,midc,Mc)}Gatec∈C from A
stores the codes of these tokens.

454 C. Hazay et al.

3. S obtains the inputs labels from A and then plays the role of FOT, receiving
from the adversary n pairs of input labels.

4. S outputs whatever A does.

Security for this case is proven in a straightforward manner as the adversary
does not receive any message from the receiver in the hybrid model.

- In case no party is corrupted yet, the simulator generates the active labels
for the entire set of wires and simulates the message from the sender to the
receiver that includes the sender’s input labels and the decoding information.

Simulating the Adaptive Corruption of the Receiver After Corrupting the Sender.

– Upon corrupting the sender, the simulator receives the adversary’s input x
and proceeds as follows.

1. S emulates the tokens transfer phase as the honest sender would do.
Namely, S creates the tokens honestly and provides the corrupted sender
with the randomness that is used to generate the garbled gates.

2. Next, S provides the sender’s queries made to FOT where the
input to the ith OT query is the pair of the random labels
((lab0n+1, lab

1
n+1), . . . , (lab

0
2n, lab12n)) that correspond to the receiver’s

input labels. S further explains the message that includes the sender’s
input labels and the decoding information.

– Upon corrupting the receiver second, the simulator receives the adversary’s
input y and output f(x, y)) and proceeds as follows.

1. In this case the simulator needs to explain the receiver’s internal state con-
dition on the sender’s view. This implies that the simulator needs only
to explain the OT queries and the messages to FOT and FgWRAP. Specif-
ically, the description of the garbled circuit is already determined upon
corrupting the sender, whereas the sender’s active input labels are already
fixed in the protocol communication. The receiver’s OT queries/responses
can be explained accordingly to y1, . . . , yn and the active input labels of
the receiver, respectively. Note that the simulator knows the active input
labels of the receiver as it generated the garbled circuit.

2. Finally, the communication with FgWRAP can be explained by mimicking
the flow of the garbled circuit evaluation as determined by the simulator.
Simulation here follows honestly as the simulator generated the tokens
honestly.

3. S outputs whatever A does.
Indistinguishability for this case follows directly as the parties observe the
same messages as in the real execution. Specifically, the simulator generates
the tokens honestly and the receiver obtains the correct input labels in the
OT and thus, the correct labels for the entire evaluation.

Constant Round Adaptively Secure Protocols 455

6.1 Adaptively Secure Malicious Two-Party Computation

We recall that the protocol presented in Fig. 4 obtains security in the pres-
ence of malicious receiver and semi-honest sender. In the following, we briefly
discuss how to transform this protocol into fully secure in the presence of mali-
cious senders as well by adopting the protocol from [43]. Loosely speaking the
main tool for achieving correctness of garbling is by applying the cut-and-choose
technique, where the sender generates s garbled circuits and the receiver asks to
open half of them at random. One immediate issue that emerges when consider-
ing tokens, is what does it mean to open a garbled circuit that is implemented
using tokens and how can the token’s functionality be verified for correctness.
Our approach considers asking the sender to commit to any pair of labels through
the garbling (that is, the labels associated with each wire). Then, upon receiv-
ing an opening request for a garbled circuit, the sender further decommit these
commitments for which the receiver can invoke the token on each pair of labels
and verify whether the correct output label has been obtained.

We give a high-level description of our protocol based on the [43] protocol
with the modifications required for embedding the tokens.

– Auxiliary Input: A boolean circuit C such that for every x, y ∈ {0, 1}n, C(x, y) =
f(x, y) where f : {0, 1}n × {0, 1}n → {0, 1}n and a statistical parameter s.

– Inputs: S holds x ∈ {0, 1}n and R holds y ∈ {0, 1}n. Let x = x1, . . . , xn and
y = y1, . . . , yn.

– The protocol:
0. Circuit Construction. The parties decide on a circuit computing f . They

then change the circuit by replacing each input wire of R by a gate whose
input consists of s new input wires of R and whose output is the exclusive-or
of these wires (such an s-bit exclusive-or gate can be implemented using s − 1
two-bit exclusive-or gates).

1. Tokens and Commitments Constructions. Next, the sender constructs
s independent copies of a garbled circuit of C, where for each such garbled
circuit it creates a set of tokens as in Protocol Π from Fig. 4. More precisely,
for every intermediate wire identified by index ω in the circuit, let the two
random strings lab0ω, lab1ω ∈ {0, 1}κ denote the labels associated with this
wire. Then corresponding to gate Gatec, S creates a token TKGatec

S by send-
ing (Create, sid, R, S,midc, Mc) to FgWRAP, where Mc is the functionality that
on input �1, �2 proceeds as follows:

• If �1 = labα
ω1 and �2 = labβ

ω2 output lab
Gatec(α,β)
ω3 .

Where ω1, ω2 are the incoming wire identifiers, ω3 is the identifier of the output
wire to gate Gatec and Gatec ∈ {AND,XOR} is the corresponding boolean
function of this gate.
S commits to the garbled values of the wires corresponding to R’s input to each
circuit by running n instances of ΠCOM. Moreover, S executes additional s×n
instances of ΠCOM for the garbled values corresponding to the input wires of
the circuits. These commitments-sets are constructed in a special way in order
to enable consistency checks (here we follow the same method of [43]). Finally,
S commits to the labels associated with each internal wire in each garbled
circuit (we note that these commitments instances are not part of the [43]
protocol and are required to verify the tokens’ functionality).

456 C. Hazay et al.

2. Oblivious Transfers. For every i ∈ [n], the parties call the FOT functionality
in which R receives the garbled values for the wires that correspond to its input
bit (in every circuit). This phase is carried out exactly as in [43].

3. Send Tokens and Commitments. S sends R all the commitments of Step
1 and forwards the tokens generated in that step to FgWRAP.

4. Coin Tossing. S and R run a coin-tossing protocol in order to choose a
random string that defines which commitments and garbled circuits will be
opened.

5. Decommitment Phase for Check Circuits. S opens the garbled circuits
and committed input values that were chosen in the previous step. R verifies
the correctness of the opened circuits and runs consistency checks based on
the decommitted input values and internal wires while verifying the tokens
functionality.
More specifically, the check phase is computed as in [43] with the following
additional phase. Upon opening some garbling and obtaining the labels that
are associated with all wires, the receiver first verifies that the output label of
each garbled gate is consistent with the corresponding committed label from
Step 1. Next, the receiver invokes each token on each possible pair of input
labels and verifies that the output label is consistent with the committed wires.
Meaning, the receiver checks that the token indeed implements a lookup table
of size four and that the entries of the table correspond to a valid garbled gate.

6. Send Input Labels. S sends R the garbled values corresponding to S’s input
wires in the unopened circuits as well as the decoding information.

7. Circuits Evaluations. Assuming that all of the checks pass, R evaluates
the unopened circuits and takes the majority value as its output. Namely,
upon receiving the labels labx1

1,j , . . . , lab
xn
n,j and laby1

n+1,j , . . . , lab
yn
2n,j for the jth

unopened circuit, R evaluates the circuit, obtaining the output f(x, y) as fol-
lows.

(a) For every gate Gatec ∈ C, let ω1
c , ω

2
c (resp., ω3

c) denote the input (resp., out-
put) wires of gate Gatec, then R sends (Run, sid, S,midc, (lab

α
ω1
c ,j , lab

β

ω2
c ,j

))

and obtains lab
Gatec(α,β)

ω3
c ,j

.

(b) R runs the algorithm z ← De(d, z̃) and outputs z, where z̃ is the encoding
of the output wires.

Theorem 7. Let f be a well-formed functionality. Then, the above two-party
protocol GUC realizes f in the presence of malicious adversaries in the
{FgWRAP,FOT}-hybrid.
The proof for a corrupted receiver remains almost identical to the proof of The-
orem 6 and the proof from [43], where input extraction is carried out via the
OT executions and the original simulation for a single set of tokens is repeated s
times with the exception that the simulator prepares s/ 2 valid garbled circuits
and then biases the coin tossing outcome so that the valid garbled circuits are
the check circuits.

The main difference is with respect to the security proof of the sender. Loosely
speaking, we apply the same standard cut-and-choose analysis from [43], where a
corrupted sender cannot cheat in the garbling constructions and the input labels
it provides for the evaluations. Yet, when using tokens the prime challenge is to

Constant Round Adaptively Secure Protocols 457

ensure that the tokens’ functionality is correct. We recall that in our protocol
the tokens functionality is a lookup table of four rows that corresponds to the
garbling of some gate. Then, by enforcing the sender to commit to all wire labels,
the receiver can be convinced that the tokens were generated correctly with very
high probability. Namely, with all but negligible probability, the tokens’ func-
tionality (for the evaluation circuits) are consistent with the committed labels.
We stress that this does not imply that the token cannot be maliciously designed,
encoded with some internal state, yet the cut-and-choose argument ensures that
with high probability the tokens are encoded with a valid lookup table for their
corresponding gates.

Acknowledgements. The first author acknowledges support from the Israel Ministry
of Science and Technology (grant No. 3-10883) and support by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office. The second author acknowl-
edges support from the Danish National Research Foundation and the National Science
Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the
Theory of Interactive Computation and from the Center for Research in Foundations
of Electronic Markets (CFEM), supported by the Danish Strategic Research Council.
In addition, this work was done in part while visiting the Simons Institute for the The-
ory of Computing, supported by the Simons Foundation and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant CNS-1523467. The third author is
supported by Google Faculty Research Grant and NSF Awards CNS-1526377/1618884.

References

1. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS, pp. 186–195 (2004)

2. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In: FOCS, pp. 543–552 (2005)

3. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). doi:10.
1007/3-540-46766-1 31

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS, pp. 62–73 (1993)

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

6. Canetti, R., Damg̊ard, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus
non-adaptive security of multi-party protocols. J. Cryptol. 17(3), 153–207 (2004)

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 4

8. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC, pp. 639–648 (1996)

9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 2

http://dx.doi.org/10.1007/3-540-46766-1_31
http://dx.doi.org/10.1007/3-540-46766-1_31
http://dx.doi.org/10.1007/978-3-540-70936-7_4
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44647-8_2

458 C. Hazay et al.

10. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46497-7 22

11. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: CCS, pp. 597–608 (2014)

12. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptol. 19(2),
135–167 (2006)

13. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)

14. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC (2002)

15. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: how to use an
imperfect reference string. In: FOCS, pp. 249–259 (2007)

16. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 545–562. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 31

17. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box construc-
tions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 387–402. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 23

18. Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) uni-
versally composable oblivious transfer using a minimal number of stateless tokens.
In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54242-8 27

19. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46497-7 23

20. Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive
and concurrent secure computation from new adaptive, non-malleable commit-
ments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp.
316–336. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7 17

21. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 27

22. Damg̊ard, I., Polychroniadou, A., Rao, V.: Adaptively secure multi-party compu-
tation from LWE (via equivocal FHE). In: Cheng, C.-M., Chung, K.-M., Persiano,
G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 208–233. Springer, Heidel-
berg (2016). doi:10.1007/978-3-662-49387-8 9

23. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30580-4 28

24. Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and composable
security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.)
TCC 2011. LNCS, vol. 6597, pp. 164–181. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19571-6 11

25. Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: General statisti-
cally secure computation with bounded-resettable hardware tokens. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 319–344. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46494-6 14

http://dx.doi.org/10.1007/978-3-662-46497-7_22
http://dx.doi.org/10.1007/978-3-662-46497-7_22
http://dx.doi.org/10.1007/978-3-540-78967-3_31
http://dx.doi.org/10.1007/978-3-642-00457-5_23
http://dx.doi.org/10.1007/978-3-642-54242-8_27
http://dx.doi.org/10.1007/978-3-662-46497-7_23
http://dx.doi.org/10.1007/978-3-662-46497-7_23
http://dx.doi.org/10.1007/978-3-642-42033-7_17
http://dx.doi.org/10.1007/3-540-44598-6_27
http://dx.doi.org/10.1007/978-3-662-49387-8_9
http://dx.doi.org/10.1007/978-3-540-30580-4_28
http://dx.doi.org/10.1007/978-3-642-19571-6_11
http://dx.doi.org/10.1007/978-3-642-19571-6_11
http://dx.doi.org/10.1007/978-3-662-46494-6_14

Constant Round Adaptively Secure Protocols 459

26. Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Implementing resettable UC-
functionalities with untrusted tamper-proof hardware-tokens. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 642–661. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 36

27. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation
in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 8

28. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 614–637. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 24

29. Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest
majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 105–123. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 8

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In STOC, pp. 218–229 (1987)

31. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

32. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85174-5 3

33. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 19

34. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53641-4 15

35. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Constant round adap-
tively secure protocols in the tamper-proof hardware model. Manuscript (2016)

36. Hazay, C., Venkitasubramaniam, M.: On black-box complexity of universally com-
posable security in the CRS model. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 183–209. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 8

37. Hazay, C., Venkitasubramaniam, M.: Composable adaptive secure protocols with-
out setup under polytime assumptions. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9985, pp. 400–432. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53641-4 16

38. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer–efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
572–591. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 32

39. Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent composition of secure pro-
tocols in the timing model. J. Cryptol. 20(4), 431–492 (2007)

40. Katz, J.: Universally Composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 7

41. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: STOC, pp.
179–188 (2009)

42. Lindell, Y.: General composition and universal composability in secure multi-party
computation. In: FOCS, pp. 394–403 (2003)

http://dx.doi.org/10.1007/978-3-642-36594-2_36
http://dx.doi.org/10.1007/978-3-642-36594-2_36
http://dx.doi.org/10.1007/978-3-642-29011-4_8
http://dx.doi.org/10.1007/978-3-642-29011-4_8
http://dx.doi.org/10.1007/978-3-662-46497-7_24
http://dx.doi.org/10.1007/978-3-642-32009-5_8
http://dx.doi.org/10.1007/978-3-540-85174-5_3
http://dx.doi.org/10.1007/978-3-642-11799-2_19
http://dx.doi.org/10.1007/978-3-662-53641-4_15
http://dx.doi.org/10.1007/978-3-662-48800-3_8
http://dx.doi.org/10.1007/978-3-662-48800-3_8
http://dx.doi.org/10.1007/978-3-662-53641-4_16
http://dx.doi.org/10.1007/978-3-662-53641-4_16
http://dx.doi.org/10.1007/978-3-540-85174-5_32
http://dx.doi.org/10.1007/978-3-540-72540-4_7

460 C. Hazay et al.

43. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72540-4 4

44. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

45. Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure
oblivious transfer. J. Cryptol. 24(4), 761–799 (2011)

46. Mechler, J., Müller-Quade, J., Nilges, T.: Universally composable (non-interactive)
two-party computation from untrusted reusable hardware tokens. IACR Cryptol-
ogy ePrint Archive 2016:615 (2016)

47. Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992). doi:10.1007/
3-540-46766-1 32

48. Moran, T., Segev, G.: David and Goliath commitments: UC computation for asym-
metric parties using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 30

49. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

50. Nilges, T.: The cryptographic strength of tamper-proof hardware. Ph.D. thesis,
Karlsruhe Institute of Technology (2015)

51. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party com-
putation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 339–358. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 17

52. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 10

53. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00457-5 24

54. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: STOC, pp. 242–251 (2004)

55. Venkitasubramaniam, M.: On adaptively secure protocols. In: Abdalla, M., Prisco,
R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 455–475. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-10879-7 26

56. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FCOS,
pp. 162–167 (1986)

http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/3-540-46766-1_32
http://dx.doi.org/10.1007/3-540-46766-1_32
http://dx.doi.org/10.1007/978-3-540-78967-3_30
http://dx.doi.org/10.1007/978-3-540-78967-3_30
http://dx.doi.org/10.1007/978-3-662-48000-7_17
http://dx.doi.org/10.1007/3-540-39200-9_10
http://dx.doi.org/10.1007/978-3-642-00457-5_24
http://dx.doi.org/10.1007/978-3-319-10879-7_26

Primitives

Constrained Pseudorandom Functions
for Unconstrained Inputs Revisited: Achieving

Verifiability and Key Delegation

Pratish Datta(B), Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. In EUROCRYPT 2016, Deshpande et al. presented a con-
struction of constrained pseudorandom function (CPRF) supporting
inputs of unconstrained polynomial length based on indistinguishabil-
ity obfuscation and injective pseudorandom generators. Their construc-
tion was claimed to be selectively secure. We demonstrate in this paper
that their CPRF construction can actually be proven secure not in the
selective model, rather in a significantly weaker security model where
the adversary is forbidden to query constrained keys adaptively. We also
show how to allow adaptive constrained key queries in their construc-
tion by innovating new technical ideas. We suitably redesign the secu-
rity proof. We emphasize that our modification does not involve any
additional heavy duty cryptographic tool. Our improved CPRF is fur-
ther enhanced to present the first constructions of constrained verifiable
pseudorandom function (CVPRF) and delegatable constrained pseudoran-
dom function (DCPRF) supporting inputs of unconstrained polynomial
length, employing only standard public key encryption (PKE).

Keywords: Constrained pseudorandom functions · Verifiable con-
strained pseudorandom function · Key delegation · Indistinguishability
obfuscation

1 Introduction

Constrained Pseudorandom Functions: Constrained pseudorandom func-
tions (CPRF), concurrently introduced by Boneh and Waters [6], Boyle et al. [7],
as well as Kiayias et al. [19], are promising extension of the notion of standard
pseudorandom functions (PRF) [15]. PRF is a fundamental primitive in mod-
ern cryptography. A PRF is a deterministic keyed function with the following
property: Given a key, the function can be computed in polynomial time at all
points of its input domain. But, without the key it is computationally hard to
distinguish the PRF output at any arbitrary input from a uniformly random
value, even after seeing the PRF evaluations on a polynomial number of inputs.
A CPRF is an augmentation of a PRF with an additional constrain algorithm
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 463–493, 2017.
DOI: 10.1007/978-3-662-54388-7 16

464 P. Datta et al.

which enables a party holding a master PRF key to derive constrained keys
that allow the evaluation of the PRF over certain subsets of the input domain.
However, PRF evaluations on the rest of the inputs still remain computationally
indistinguishable from random.

Since their inception, CPRF’s have found countless applications in vari-
ous branches of cryptography ranging from broadcast encryption, attribute-
based encryption to policy-based key distribution, multi-party on-interactive key
exchange. Even the simplest class of CPRF’s, known as puncturable pseudoran-
dom functions (PPRF) [23], have turned out to be a powerful tool in conjunction
with indistinguishability obfuscation [14]. In fact, the combination of these two
primitives have led to solutions of longstanding open problems including deni-
able encryption, full domain hash, adaptively secure functional encryption for
general functionalities, and functional encryption for randomized functionalities
through the classic punctured programming technique introduced in [23].

Over the last few years there has been a significant progress in the field of
CPRF’s. In terms of expressiveness of the constraint predicates, starting with
the most basic type of constraints such as prefix constraints [6,7,19] (which
also encompass puncturing constraints) and bit fixing constraints [6,13], CPRF’s
have been constructed for highly rich constraint families such as circuit con-
straints [4,6,8,16] employing diverse cryptographic tools and based on various
complexity assumptions. In terms of security, most of the existing CPRF con-
structions are only selectively secure. The stronger and more realistic notion of
adaptive security seems to be rather challenging to achieve without complexity
leveraging. In fact, the best known results so far on adaptive security of CPRF’s
require super-polynomial security loss [13], or work for very restricted form of
constraints [17], or attain the security in non-collusion mode [8], or accomplish
security in the random oracle model [16].

Constrained Verifiable Pseudorandom Functions: An interesting enhance-
ment of the usual CPRF’s is verifiability. A verifiable constrained pseudorandom
function (CVPRF), independently introduced by Fuchsbauer [12] and Chandran
et al. [9], is the unification of the notions of a verifiable random function (VRF)
[21] and a standard CPRF. In a CVPRF system, a public verification key is set
similar to a traditional VRF, along with the master PRF key. Besides enabling
the evaluation of the PRF, the master PRF key can be utilized to generate a
non-interactive proof of correctness of the evaluation. This proof can be verified
by any party using only the public verification key. On the other hand, as in the
case of a CPRF, here also the master PRF key holder can give out constrained
keys for specific constraint predicates. A constrained key corresponding to some
constraint predicate p allows the evaluation of the PRF together with the gen-
eration of a non-interactive proof of correct evaluation for only those inputs x
for which p(x) = 1. In essence, CVPRF’s resolve the issue of trust on a CPRF
evaluator for the correctness of the received PRF output. In [9,12], the authors
have shown that the CPRF constructions of [6] for the bit fixing and circuit con-
straints can be augmented with the verifiability feature without incurring any
significant additional cost.

CPRF’s for Unconstrained Inputs Revisited 465

Delegatable Constrained Pseudorandom Functions: Key delegation is
another interesting enrichment of standard CPRF’s. This feature empowers the
holder of a constrained key, corresponding to some constraint predicate p ∈ P

with the ability to distribute further restricted keys corresponding to the joint
predicates p ∧ p̃, for constraints p̃ ∈ P, where P is certain constraint family over
the input domain of the PRF. Such a delegated key can be utilized to evaluate
the PRF on only those inputs x for which [p(x) = 1] ∧ [p̃(x) = 1], whereas, the
PRF outputs on the rest of the inputs are computationally indistinguishable from
random values. The concept of key delegation in the context of CPRF’s has been
recently introduced by Chandran et al. [9], who have shown how to extend the
bit fixing and circuit-based CPRF constructions of [6] to support key delegation.

CPRF’s for Unconstrained Inputs: Until recently, the research on CPRF’s
has been confined to inputs of apriori bounded length. In fact, all the CPRF con-
structions mentioned above could handle only bounded length inputs. Abusalah
et al. [2] have taken a first step forward towards overcoming the barrier of
bounded input length. They have also demonstrated highly motivating applica-
tions of CPRF’s supporting apriori unconstrained length inputs such as broadcast
encryption with an unbounded number of recipients and multi-party identity-
based non-interactive key exchange with no pre-determined bound on the num-
ber of parties. They presented a selectively secure CPRF for unconstrained length
inputs by viewing the constraint predicates as Turing machines (TM) that can
handle inputs of arbitrary polynomial length. In a more recent work, Abusalah
and Fuchsbauer [1] have made progress towards efficiency improvements by con-
structing TM-based CPRF’s with much shorter constrained keys compared to
the CPRF construction of [2].

However, both the aforementioned CPRF constructions rely on the existence
of public-coin differing-input obfuscators and succinct non-interactive arguments
of knowledge, which are believed to be risky assumptions due to their inherent
extractability nature. In EUROCRYPT 2016, Deshpande et al. [10] presented a
CPRF for TM constraints, supporting inputs of unconstrained polynomial length,
which they claimed to be selectively secure. Their CPRF construction utilizes
indistinguishability obfuscators (IO) for circuits and injective pseudorandom gen-
erators. Currently, there is no known impossibility or implausibility result on IO
and, moreover, in the last few years, there has been a significant progress towards
constructing IO based on standard complexity assumptions.

Our Contributions: Unfortunately, the CPRF construction of [10] can not be
proven secure in the selective model, as will be shown in this paper, rather the
construction actually derives its security in a significantly weaker model. Further,
as per as we know, there is no existing construction of CVPRF’s or delegatable
CPRF’s (DCPRF) supporting inputs of unconstrained length. Our work in this
paper is two-fold:

– Firstly, we identify a flaw in the security argument of the CPRF construction of
[10], by a thorough analysis of the construction and its security proof. Selective
security is a security notion for CPRF’s where the adversary is bound to declare

466 P. Datta et al.

upfront the challenge input, on which it wishes to distinguish the PRF output
from random, but is allowed to query the legitimate constrained keys and PRF
values adaptively. We observe that the CPRF construction of [10] can be proven
secure only if the adversary is not just forced to declare the challenge input,
but also is bound to make all the constrained key queries prior to setting up
the system. To address the security limitation of the CPRF construction of
[10], we carefully modify their construction by innovating new technical ideas,
which might be useful elsewhere, and suitably redesign the security proof.
For building our improved CPRF system, we additionally use a somewhere
statistically binding (SSB) hash function [18,22] beyond the cryptographic
tools used in [10]. Currently, efficient constructions of SSB hash based on
standard number theoretic assumptions exist [22]. In effect, our modified CPRF
stands out to be the first IO-based provably selectively secure CPRF for TM
constraints that can handle inputs of arbitrary polynomial length.

– Secondly, we enhance our construction of CPRF with verifiability and key del-
egation features, thereby, developing the first IO-based selectively secure con-
structions of CVPRF and DCPRF supporting inputs of unconstrained polyno-
mial length. Towards achieving these two augmentations of our CPRF, we only
assume the existence of a perfectly correct and chosen plaintext attack (CPA)
secure public key encryption scheme, which is evidently a minimal assump-
tion. Finally, we note that following [9,12], our CVPRF construction would
imply the first selectively unforgeable policy-based signature (PBS) scheme [5]
where policies are represented as Turing machines.

2 Preliminaries

Here we give the necessary background on various cryptographic primitives we
will be using throughout this paper. Let λ ∈ N denotes the security parameter.
For n ∈ N and a, b ∈ N ∪ {0} (with a < b), we let [n] = {1, . . . , n} and [a, b] =

{a, . . . , b}. For any set S, υ
$←− S represents the uniform random variable on S.

For a randomized algorithm R, we denote by ψ = R(υ; ρ) the random variable

defined by the output of R on input υ and randomness ρ, while ψ
$←− R(υ) has

the same meaning with the randomness suppressed. Also, if R is a deterministic
algorithm ψ = R(υ) denotes the output of R on input υ. We will use the
alternative notation R(υ) → ψ as well to represent the output of the algorithm
R, whether randomized or deterministic, on input υ. For any string s ∈ {0, 1}∗,
|s| represents the length of the string s. For any two strings s, s′ ∈ {0, 1}∗, s‖s′

represents the concatenation of s and s′.

2.1 Turing Machines

A Turing machine (TM) M is a 7-tuple M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 with
the following semantics:

– Q: The finite set of possible states of M .
– Σinp: The finite set of input symbols.

CPRF’s for Unconstrained Inputs Revisited 467

– Σtape: The finite set of tape symbols such that Σinp ⊂ Σtape and there exists
a special blank symbol ‘ ’ ∈ Σtape\Σinp.

– δ : Q × Σtape → Q × Σtape × {+1,−1}: The transition function of M .
– q0 ∈ Q: The designated start state.
– qac ∈ Q: The designated accept state.
– qrej(�= qac) ∈ Q: The distinguished reject state.

For any t ∈ [T = 2λ], we define the following variables for M , while running on
some input (without the explicit mention of the input in the notations):

– posM,t: An integer which denotes the position of the header of M after the
tth step. Initially, posM,0 = 0.

– symM,t ∈ Σtape: The symbol stored on the tape at the posM,t
th location.

– sym
(write)
M,t ∈ Σtape: The symbol to be written at the posM,t−1

th location
during the tth step.

– stM,t ∈ Q: The state of M after the tth step. Initially, stM,0 = q0.

At each time step, theTM M reads the tape at the header position and based
on the current state, computes what needs to be written on the tape at the
current header location, the next state, and whether the header must move left
or right. More formally, let (q, ζ, β ∈ {+1,−1}) = δ(stM,t−1, symM,t−1). Then,
stM,t = q, sym

(write)
M,t = ζ, and posM,t = posM,t−1 + β. M accepts at time t if

stM,t = qac. In this paper we consider Σinp = {0, 1} and Σtape = {0, 1, }. Given
any TM M and string x ∈ {0, 1}∗, we define M(x) = 1, if M accepts x within
T steps, and 0, otherwise.

2.2 Indistinguishability Obfuscation

Definition 2.1 (Indistinguishability Obfuscation: IO [14]). An indistin-
guishability obfuscator (IO) IO for a certain circuit class {Cλ}λ is a probabilistic
polynomial-time (PPT) uniform algorithm satisfying the following conditions:

� Correctness: IO(1λ, C) preserves the functionality of the input circuit C,
i.e., for any C ∈ Cλ, if we compute C ′ = IO(1λ, C), then C ′(υ) = C(υ) for
all inputs υ.

� Indistinguishability: For any security parameter λ and any two circuits
C0, C1 ∈ Cλ with same functionality, the circuits IO(1λ, C0) and IO(1λ, C1)
are computationally indistinguishable. More precisely, for all (not necessarily
uniform) PPT adversaries D = (D1,D2), there exists a negligible function
negl such that, if

Pr
[
(C0, C1, ξ)

$←− D1(1λ) : ∀ υ,C0(υ) = C1(υ)
] ≥ 1 − negl(λ),

then
∣
∣Pr

[D2(ξ, IO(1λ, C0)) = 1
] − Pr

[D2(ξ, IO(1λ, C1)) = 1
]∣
∣ ≤ negl(λ).

When clear from the context, we will drop 1λ as an input to IO and λ as a
subscript of C.

468 P. Datta et al.

2.3 IO-Compatible Cryptographic Primitives

In this section, we present the syntax and correctness requirement of certain IO-
friendly cryptographic tools which we will be using in the sequel. The security
properties of these primitives can be found in the full version of this paper or in
the references provided in the respective subsections below.

2.3.1 Puncturable Pseudorandom Function
Definition 2.2 (Puncturable Pseudorandom Function: PPRF [23]). A
puncturable pseudorandom function (PPRF) F : Kpprf × Xpprf → Ypprf consists
of an additional punctured key space Kpprf-punc other than the usual key space
Kpprf and PPT algorithms (F .Setup,F .Eval,F .Puncture,F .Eval-Punctured)
described below. Here, Xpprf = {0, 1}�pprf-inp and Ypprf = {0, 1}�pprf-out , where
�pprf-inp and �pprf-out are polynomials in the security parameter λ,

F .Setup(1λ) → K : The setup authority takes as input the security parameter
1λ and uniformly samples a PPRF key K ∈ Kpprf.

F .Eval(K,x) → r : The setup authority takes as input a PPRF key K ∈ Kpprf

along with an input x ∈ Xpprf. It outputs the PPRF value r ∈ Ypprf on x. For
simplicity, we will represent by F(K,x) the output of this algorithm.

F .Puncture(K,x) → K{x} : Taking as input a PPRF key K ∈ Kpprf along
with an element x ∈ Xpprf, the setup authority outputs a punctured key
K{x} ∈ Kpprf-punc.

F .Eval-Puncured(K{x}, x′) → r or ⊥ : An evaluator takes as input a punctured
key K{x} ∈ Kpprf-punc along with an input x′ ∈ Xpprf. It outputs either a
value r ∈ Ypprf or a distinguished symbol ⊥ indicating failure. For simplicity,
we will represent by F(K{x}, x′) the output of this algorithm.

The algorithms F .Setup and F .Puncture are randomized, whereas, the algo-
rithms F .Eval and F .Eval-Punctured are deterministic.

� Correctness Under Puncturing: Consider any security parameter λ, K ∈
Kpprf, x ∈ Xpprf, and K{x} $←− F .Puncture(K,x). Then it must hold that

F(K{x}, x′) =
{F(K,x′), if x′ �= x

⊥, otherwise

2.3.2 Somewhere Statistically Binding Hash Function
Definition 2.3 (Somewhere Statistically Binding Hash Function: SSB
[18,22]). A somewhere statistically binding (SSB) hash consists of PPT algo-
rithms (SSB.Gen,H,SSB.Open,SSB.Verify) along with a block alphabet Σssb-blk

= {0, 1}�ssb-blk , output size �ssb-hash, and opening space Πssb = {0, 1}�ssb-open , where
�ssb-blk, �ssb-hash, �ssb-open are some polynomials in the security parameter λ. The
algorithms have the following syntax:

SSB.Gen(1λ, nssb-blk, i
∗) → hk : The setup authority takes as input the security

parameter 1λ, an integer nssb-blk ≤ 2λ representing the maximum number of
blocks that can be hashed, and an index i∗ ∈ [0, nssb-blk − 1] and publishes a
public hashing key hk.

CPRF’s for Unconstrained Inputs Revisited 469

Hhk : x ∈ Σnssb-blk

ssb-blk → h ∈ {0, 1}�ssb-hash : This is a deterministic function that
has the hash key hk hardwired. A user runs this function on input x =
x0‖ . . . ‖xnssb-blk−1 ∈ Σnssb-blk

ssb-blk to obtain as output h = Hhk(x) ∈ {0, 1}�ssb-hash .
SSB.Open(hk, x, i) → πssb : Taking as input the hash key hk, input x ∈ Σnssb-blk

ssb-blk,
and an index i ∈ [0, nssb-blk − 1], a user creates an opening πssb ∈ Πssb.

SSB.Verify(hk, h, i, u, πssb) → β̂ ∈ {0, 1} : On input a hash key hk, a hash value
h ∈ {0, 1}�ssb-hash , an index i ∈ [0, nssb-blk − 1], a value u ∈ Σssb-blk, and an
opening πssb ∈ Πssb, a verifier outputs a bit β̂ ∈ {0, 1}.

The algorithms SSB.Gen and SSB.Open are randomized, while the algorithm
SSB.Verify is deterministic.

� Correctness: For any security parameter λ, integer nssb-blk ≤ 2λ, i, i∗ ∈
[0, nssb-blk − 1], hk

$←− SSB.Gen(1λ, nssb-blk, i
∗), x ∈ Σnssb-blk

ssb-blk, and πssb

$←−
SSB.Open(hk, x, i), we have SSB.Verify(hk,Hhk(x), i, xi, πssb) = 1.

2.3.3 Positional Accumulator
Definition 2.4 (Positional Accumulator [20,22]). A positional accumulator
consists of PPT algorithms (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-
Enforce-Write, ACC.Prep-Read, ACC.Prep-Write, ACC.Verify-Read, ACC.Write-
Store, ACC.Update) along with a block alphabet Σacc-blk = {0, 1}�acc-blk , accu-
mulator size �acc-accumulate, proof space Πacc = {0, 1}�acc-proof where �acc-blk,
�acc-accumulate, �acc-proof are some polynomials in the security parameter λ. The
algorithms have the following syntax:

ACC.Setup(1λ, nacc-blk) → (ppacc, w0, store0) : The setup authority takes as
input the security parameter 1λ and an integer nacc-blk ≤ 2λ representing the
maximum number of blocks that can be accumulated. It outputs the public
parameters ppacc, an initial accumulator value w0, and an initial storage value
store0.

ACC.Setup-Enforce-Read(1λ, nacc-blk, ((x1, i1), . . . , (xκ, iκ)), i∗) → (ppacc, w0,
store0) : Taking as input the security parameter 1λ, an integer nacc-blk ≤
2λ representing the maximum number of blocks that can be accumu-
lated, a sequence of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk ×
[0, nacc-blk − 1])κ, and an additional index i∗ ∈ [0, nacc-blk − 1], the setup
authority publishes the public parameters ppacc, an initial accumulator value
w0, together with an initial storage value store0.

ACC.Setup-Enforce-Write(1λ, nacc-blk, ((x1, i1), . . . , xκ, iκ))) → (ppacc, w0,
store0) : On input the security parameter 1λ, an integer nacc-blk ≤ 2λ denot-
ing the maximum number of blocks that can be accumulated, and a sequence
of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk × [0, nacc-blk − 1])κ,
the setup authority publishes the public parameters ppacc, an initial accu-
mulator value w0, as well as, an initial storage value store0.

ACC.Prep-Read(ppacc, storein, iin) → (xout, πacc) : A storage-maintaining party
takes as input the public parameter ppacc, a storage value storein, and an
index iin ∈ [0, nacc-blk −1]. It outputs a symbol xout ∈ Σacc-blk ∪{ε} (ε being
the empty string) and a proof πacc ∈ Πacc.

470 P. Datta et al.

ACC.Prep-Write(ppacc, storein, iin) → aux : Taking as input the public parame-
ter ppacc, a storage value storein, together with an index iin ∈ [0, nacc-blk −
1], a storage-maintaining party outputs an auxiliary value aux.

ACC.Verify-Read(ppacc, win, xin, iin, πacc) → β̂ ∈ {0, 1} : A verifier takes as input
the public parameter ppacc, an accumulator value win ∈ {0, 1}�acc-accumulate ,
a symbol xin ∈ Σacc-blk ∪ {ε}, an index iin ∈ [0, nacc-blk − 1], and a proof
πacc ∈ Πacc. It outputs a bit β̂ ∈ {0, 1}.

ACC.Write-Store(ppacc, storein, iin, xin) → storeout : On input the public
parameters ppacc, a storage value storein, an index iin ∈ [0, nacc-blk − 1],
and a symbol xin ∈ Σacc-blk, a storage-maintaining party computes a new
storage value storeout.

ACC.Update(ppacc, win, xin, iin,aux) → wout or ⊥ : An accumulator-updating
party takes as input the public parameters ppacc, an accumulator value win ∈
{0, 1}�acc-accumulate , a symbol xin ∈ Σacc-blk, an index iin ∈ [0, nacc-blk − 1], and
an auxiliary value aux. It outputs the updated accumulator value wout ∈
{0, 1}�acc-accumulate or the designated reject string ⊥.

Following [10,20], in this paper we will consider the algorithms ACC.Setup,
ACC.Setup-Enforce-Read, and ACC.Setup-Enforce-Write as randomized while all
other algorithms as deterministic.

� Correctness: Consider any symbol-index pair sequence ((x1, i1), . . . , (xκ, iκ))

∈ (Σacc-blk × [0, nacc-blk − 1])κ. Fix any (ppacc, w0, store0)
$←− ACC.Setup(1λ,

nacc-blk). For j = 1, . . . , κ, iteratively define the following:

– storej = ACC.Write-Store(ppacc, storej−1, ij , xj)
– auxj = ACC.Prep-Write(ppacc, storej−1, ij)
– wj = ACC.Update(ppacc, wj−1, xj , ij ,auxj)

The following correctness properties are required to be satisfied:

(i) For any security parameter λ, nacc-blk ≤ 2λ, index i∗ ∈ [0, nacc-blk −
1], sequence of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk ×
[0, nacc-blk − 1])κ, and (ppacc, w0, store0)

$←− ACC.Setup(1λ, nacc-blk),
if storeκ is computed as above, then ACC.Prep-Read(ppacc, storeκ, i∗)
returns (xj , πacc) where j is the largest value in [κ] such that ij = i∗.

(ii) For any security parameter λ, nacc-blk ≤ 2λ, sequence of symbol-index pairs
((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk × [0, nacc-blk − 1])κ, i∗ ∈ [0, nacc-blk − 1],

and (ppacc, w0, store0)
$←− ACC.Setup(1λ, nacc-blk), if storeκ and wκ are

computed as above and (xout, πacc) = ACC.Prep-Read(ppacc, storeκ, i∗),
then ACC.Verify-Read(ppacc, wκ, xout, i

∗, πacc) = 1

2.3.4 Iterator
Definition 2.5 (Iterator [20]). A cryptographic iterator consists of PPT
algorithms (ITR.Setup, ITR.Set-Enforce, ITR.Iterate) along with a message space
Mitr = {0, 1}�itr-msg and iterator state size �itr-st, where �itr-msg, �itr-st are some
polynomials in the security parameter λ. Algorithms have the following syntax:

CPRF’s for Unconstrained Inputs Revisited 471

ITR.Setup(1λ, nitr) → (ppitr, v0) : The setup authority takes as input the secu-
rity parameter 1λ along with an integer bound nitr ≤ 2λ on the number
of iterations. It outputs the public parameters ppitr and an initial state
v0 ∈ {0, 1}�itr-st .

ITR.Setup-Enforce(1λ, nitr, (μ1, . . . , μκ)) → (ppitr, v0) : Taking as input the secu-
rity parameter 1λ, an integer bound nitr ≤ 2λ, together with a sequence of κ
messages (μ1, . . . , μκ) ∈ Mκ

itr
, where κ ≤ nitr, the setup authority publishes

the public parameters ppitr and an initial state v0 ∈ {0, 1}�itr-st .
ITR.Iterate(ppitr, vin ∈ {0, 1}�itr-st , μ) → vout : On input the public parame-

ters ppitr, a state vin, and a message μ ∈ Mitr, an iterator outputs an
updated state vout ∈ {0, 1}�itr-st . For any integer κ ≤ nitr, we will write
ITR.Iterateκ(ppitr, v0, (μ1, . . . , μκ)) to denote ITR.Iterate(ppitr, vκ−1, μκ),
where vj is defined iteratively as vj = ITR.Iterate(ppitr, vj−1, μj) for all
j = 1, . . . , κ − 1.

The algorithm ITR.Iterate is deterministic, while the other two are randomized.

2.3.5 Splittable Signature
Definition 2.6 (Splittable Signature: SPS [20]). A splittable signature
scheme (SPS) for message space Msps = {0, 1}�sps-msg and signature space Ssps =
{0, 1}�sps-sig , where �sps-msg, �sps-sig are some polynomials in the security parame-
ter λ, consists of PPT algorithms (SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split,
SPS.Sign-ABO) which are described below:

SPS.Setup(1λ) → (sksps,vksps,vksps-rej) : The setup authority takes as input
the security parameter 1λ and generates a signing key sksps, a verification
key vksps, together with a reject verification key vksps-rej.

SPS.Sign(sksps,m) → σsps : A signer given a signing key sksps along with a
message m ∈ Msps, produces a signature σsps ∈ Ssps.

SPS.Verify(vksps,m, σsps) → β̂ ∈ {0, 1} : A verifier takes as input a verification
key vksps, a message m ∈ Msps, and a signature σsps ∈ Ssps. It outputs a bit
β̂ ∈ {0, 1}.

SPS.Split(sksps,m
∗) → (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) : On input

a signing key sksps along with a message m∗ ∈ Msps, the setup author-
ity generates a signature σsps-one,m∗ = SPS.Sign(sksps,m

∗), a one-message
verification key vksps-one, and all-but-one signing-verification key pair
(sksps-abo,vksps-abo).

SPS.Sign-ABO(sksps-abo,m) → σsps or ⊥ : An all-but-one signer given an all-
but-one signing key sksps-abo and a message m ∈ Msps, outputs a signature
σsps ∈ Ssps or a distinguished string ⊥ to indicate failure. For simplicity of
notation, we will often use SPS.Sign(sksps-abo,m) to represent the output of
this algorithm.

We note that among the algorithms described above, SPS.Setup and SPS.Split
are randomized while all the others are deterministic.

472 P. Datta et al.

� Correctness: For any security parameter λ, message m∗ ∈Msps, (sksps,vksps,

vksps-rej)
$←− SPS.Setup(1λ), and (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo)

$←−
SPS.Split(sksps,m

∗) the following correctness conditions hold:

(i) ∀m ∈ Msps,SPS.Verify(vksps,m,SPS.Sign(sksps,m)) = 1.
(ii) ∀m �= m∗ ∈ Msps,SPS.Sign(sksps,m) = SPS.Sign-ABO(sksps-abo,m).
(iii) ∀σsps ∈ Ssps,SPS.Verify(vksps-one,m

∗, σsps) = SPS.Verify(vksps,m
∗, σsps).

(iv) ∀m �= m∗ ∈ Msps, σsps ∈ Ssps,SPS.Verify(vksps-abo,m, σsps) =
SPS.Verify(vksps,m, σsps).

(v) ∀m �= m∗ ∈ Msps, σsps ∈ Ssps,SPS.Verify(vksps-one,m, σsps) = 0.
(vi) ∀σsps ∈ Ssps, SPS.Verify(vksps-abo,m

∗, σsps) = 0.
(vii) ∀m ∈ Msps, σsps ∈ Ssps,SPS.Verify(vksps-rej,m, σsps) = 0.

3 Our CPRF for Turing Machines

3.1 Notion

Definition 3.1 (Constrained Pseudorandom Function for Turing
Machines: CPRF [10]). Let Mλ be a family of TM’s with (worst case) running
time bounded by T = 2λ. A constrained pseudorandom function (CPRF) with key
space Kcprf, input domain Xcprf ⊂ {0, 1}∗, and output space Ycprf ⊂ {0, 1}∗ for
the TM family Mλ consists of an additional key space Kcprf-const and PPT algo-
rithms (CPRF.Setup, CPRF.Eval, CPRF.Constrain,CPRF.Eval-Constrained) des-
cribed as follows:

CPRF.Setup(1λ) → skcprf : The setup authority takes as input the security
parameter 1λ and generates the master CPRF key skcprf ∈ Kcprf.

CPRF.Eval(skcprf, x) → y : On input the master CPRF key skcprf along with
an input x ∈ Xcprf, the setup authority computes the value of the CPRF
y ∈ Ycprf. For simplicity of notation, we will use CPRF(skcprf, x) to indicate
the output of this algorithm.

CPRF.Constrain(skcprf,M) → skcprf{M} : Taking as input the master CPRF
key skcprf and a TM M ∈ Mλ, the setup authority provides a constrained
key skcprf{M} ∈ Kcprf-const to a legitimate user.

CPRF.Eval-Constrained(skcprf{M}, x) → y or ⊥ : A user takes as input a con-
strained key skcprf{M} ∈ Kcprf-const, corresponding to a legitimate TM
M ∈ Mλ, along with an input x ∈ Xcprf. It outputs either a value y ∈ Ycprf

or ⊥ indicating failure.

The algorithms CPRF.Setup and CPRF.Constrain are randomized, whereas, the
other two are deterministic.

� Correctness Under Constraining: Consider any security parameter λ,
skcprf ∈ Kcprf, M ∈ Mλ, and skcprf{M} $←− CPRF.Constrain(skcprf,M). The
following must hold:

CPRF.Eval-Constrained(skcprf{M}, x) =
{
CPRF(skcprf, x), if M(x) = 1
⊥, otherwise

CPRF’s for Unconstrained Inputs Revisited 473

� Selective Pseudorandomness: This property of a CPRF is defined through
the following experiment between an adversary A and a challenger B:

• A submits a challenge input x∗ ∈ Xcprf to B.
• B generates a master CPRF key skcprf

$←− CPRF.Setup(1λ). Next it selects

a random bit b
$←− {0, 1}. If b = 0, it computes y∗ = CPRF(skcprf, x

∗).

Otherwise, it chooses a random y∗ $←− Ycprf. It returns y∗ to A.
• A may adaptively make a polynomial number of queries of the following kinds

to B:
– Evaluation query: A queries the CPRF value at some input x ∈ Xcprf

such that x �= x∗. B provides the CPRF value CPRF(skcprf, x) to A.
– Key query: A queries a constrained key corresponding to TM M ∈ Mλ

subject to the constraint that M(x∗) = 0. B gives the constrained key

skcprf{M} $←− CPRF.Constrain(skcprf,M) to A
• A eventually outputs a guess bit b′ ∈ {0, 1}.

The CPRF is said to be selectively pseudorandom if for any PPT adversary A,
for any security parameter λ,

Advcprf,sel-prA (λ) = |Pr[b = b′] − 1/2| ≤ negl(λ)

for some negligible function negl.

Remark 3.1. As pointed out in [9,16], note that in the above selective pseudo-
randomness experiment, without loss of generality we may assume that the
adversary A only makes constrained key queries and no evaluation query. This
is because any evaluation query at input x ∈ Xcprf can be replaced by con-
strained key query for a TM Mx ∈ Mλ that accepts only x. Since, the restriction
on the evaluation queries is that x �= x∗, Mx(x∗) = 0, and thus Mx is a valid
constrained key query. We will use this simplification in our proof.

3.2 The CPRF Construction of Deshpande et al.

In EUROCRYPT 2016, Deshpande et al. [10] presented a CPRF construction
supporting inputs of unconstrained polynomial length based on indistinguisha-
bility obfuscation and injective pseudorandom generators, which they claimed to
be selectively secure. Unfortunately, their security argument has a flaw. In this
section, we give an informal description of their CPRF construction and point
out the flaw in their security argument.

Overview of the CPRF Construction of [10]: The principle ideas behind
the CPRF construction of [10] are as follows: To produce the CPRF output their
construction uses a PPRF F and a positional accumulator. A master CPRF key
consists of a key K for the PPRF F and a set of public parameters ppacc of the
positional accumulator. The CPRF evaluation on some input x = x0 . . . x�x−1 ∈

474 P. Datta et al.

Xcprf ⊂ {0, 1}∗ is simply F(K,winp), where winp is the accumulation of the bits
of x using ppacc.

A constrained key of the CPRF, corresponding to some TM M , comprises of
ppacc along with two programs P1 and Pcprf, which are obfuscated using IO.
The first program P1, also known as the initial signing program, takes as input
an accumulator value and outputs a signature on it together with the initial
state and header position of the TM M . The second program Pcprf, also called
the next step program, takes as input a state and header position of M along
with an input symbol and an accumulator value. It essentially computes the
next step function of M on the input state-symbol pair, and eventually outputs
the proper PRF value, if M reaches the accepting state. The program Pcprf also
performs certain authenticity checks before computing the next step function of
M in order to prevent illegal inputs. For this purpose, Pcprf additionally takes
as input a signature on the input state, header position, and accumulator value,
together with a proof for the positional accumulator. The program Pcprf verifies
the signature as well as checks the accumulator proof to get convinced that
the input symbol is indeed the one placed at the input header position of the
underlying storage of the input accumulator value. If all these verifications pass,
then Pcprf determines the next state and header position of M , as well as, the
new symbol that needs to be written to the input header position. The program
Pcprf then updates the accumulator value by placing the new symbol at the
input header position as well as signs the updated accumulator value along with
the computed next state and header position of M . The signature scheme used
by the two programs is a splittable signature. In order to deal with the positional
accumulator related verifications and updations, the program Pcprf has ppacc

hardwired.
Evaluating the CPRF on some input x using a constrained key, corresponding

to some TM M , consists of two steps. In the first step, the evaluator computes
the accumulation winp of the bits of x using ppacc, which are also included in the
constrained key, and then obtains a signature on winp together with the initial
state and header position of M by running the program P1. The second step is
to repeatedly run the program Pcprf, each time on input the current accumula-
tor value, current state and header position of M , along with the signature on
them. Additionally, in each iteration the evaluator also feeds winp to Pcprf. The
iteration is continued until the program Pcprf either outputs the PRF evaluation
or the designated null string ⊥ indicating failure.

The Flaw: In order to prove selective pseudorandomness of the above CPRF
construction, the authors of [10] extends the techniques introduced in [20] in the
context of proving security of message-hiding encoding scheme for TM’s. More
precisely, the authors of [10] proceed as follows: During the course of the proof,
the authors aim to modify the constrained keys given to the adversary A in
the selective pseudorandomness experiment, discussed in Sect. 3.1, to embed the
punctured PPRF key K{w∗

inp
} punctured at w∗

inp
instead of the full PPRF key

K, which is part of the master CPRF key sampled by the challenger B. Here,
w∗

inp
is the accumulation of the bits of the challenge input x∗, submitted by

CPRF’s for Unconstrained Inputs Revisited 475

the adversary A, using ppacc, included within the master CPRF key generated
by the challenger B. In order to make this substitution, it is to be ensured
that the obfuscated next step programs included in the constrained keys never
outputs the PRF evaluation for inputs corresponding to w∗

inp
even if reaching the

accepting state. The proof transforms the constrained keys one at a time through
multiple hybrid steps. Suppose that the total number of constrained keys queried
by A be q̂. Consider the transformation of the νth constrained key (1 ≤ ν ≤ q̂)
corresponding to the TM M (ν) that runs on the challenge input x∗ for t∗(ν) steps
and reaches the rejecting state. In the course of transformation, the obfuscated
next step program P(ν)

cprf of the νth constrained key is first altered to one that
never outputs the PRF evaluation for inputs corresponding to w∗

inp
within the first

t∗(ν) steps. Towards accomplishing this transition, the challenger B at various
stages needs to generate ppacc in read/write enforcing mode where the enforcing
property should be tailored to the steps of execution of the specific TM M (ν)

on x∗. For instance, at some point of transformation of the νth constrained key,
ppacc needs to be set in the read enforcing mode by B on input (i) the entire
sequence of symbol-position pairs arising from iteratively running M (ν) on x∗

upto the tth step and (ii) the enforcing index corresponding to the header position
of M (ν) at the tth step while running on x∗, where 1 < t ≤ t∗(ν). Evidently, if
A makes the constrained key queries adaptively, which it is allowed to do in the
selective pseudorandomness experiment, then B can determine those symbol-
position pairs only after receiving the νth queried TM M (ν) from A. However,
B would also require ppacc while creating the constrained keys queried by A
before making the νth constrained key query and even possibly for preparing
the challenge value for A. Thus, it is immediate that B must generate ppacc

prior to receiving the νth query from A. This is impossible as setting ppacc

in read enforcing mode requires the knowledge of the TM M (ν), which is not
available before the νth constrained key query of A. A similar conflict also arises
when B attempts to setup ppacc in the write enforcing mode tailored to M (ν).
This serious flaw renders the proof of selective pseudorandomness of the CPRF
construction of [10] invalid. Ofcourse, this problem would clearly not arise if
the pseudorandomness of the CPRF construction of [10] is analysed in a weaker
model in which the adversary A is forced to submit all the constrained key
queries along with the challenge input at the beginning of the experiment, i.e.,
before the challenger B performs the setup. However, this weaker model is rather
unrealistic as it renders the adversary A completely static.

3.3 Our Techniques to Fix the Flaw of [10]

Observe that a set of public parameters of the positional accumulator must be
included within each constrained key. This is mandatory due to the required
updatability feature of positional accumulator, which is indispensable to keep
track of the current situation while running the obfuscated next step program
Pcprf iteratively in the course of evaluating the CPRF on some input. The root
cause of the problem in the selective security argument of [10] is the use of a
single set of public parameters ppacc of the positional accumulator throughout

476 P. Datta et al.

the system. Therefore, as a first step, we attempt to assign a fresh set of public
parameters of the positional accumulator to each constrained key. However, for
compressing the PRF input to a fixed length, on which F can be applied produc-
ing the PRF output, we need a system-wide compressing tool. We employ SSB
hash for this purpose. The idea is that while evaluating the CPRF on some input
x using a constrained key, corresponding to some TM M , the evaluator first
computes the hash value h by hashing x using the system wide SSB hash key,
which is part of the master key. The evaluator also computes the accumulator
value winp by accumulating the bits of x using the public parameters of posi-
tional accumulator included in the constrained key. Then, using the obfuscated
initial signing program P1, included in the constrained key, the evaluator will
obtain a signature on winp along with the initial state and header position of
M . Finally, the evaluator will repeatedly run the obfuscated next step program
Pcprf, included in the constrained key, each time giving as input all the quanti-
ties as in the evaluation algorithm of [10], except that it now feeds the SSB hash
value h in place of winp in each iteration. This is because, in case Pcprf reaches
the accepting state, it would require h to apply F for producing the PRF output.

However, this approach is not completely sound yet. Observe that, a possibly
malicious evaluator can compute the SSB hash value h on the input x, on which
it wishes to evaluate the CPRF although M does not accepts it, and initiates
the evaluation by accumulating the bits of only a substring of x or some entirely
different input, which is accepted by M . To prevent such malicious behavior, we
include another IO-obfuscated program P2 within the constrained key, known as
the accumulating program, whose purpose is to restrict the evaluator from accu-
mulating the bits of a different input rather than the hashed one. The program
P2 takes as input an SSB hash value h, an index i, a symbol, an accumulator
value, a signature on the input accumulator value (along with the initial state
and header position of M), and an opening value for SSB. The program P2 veri-
fies the signature and also checks whether the input symbol is indeed present at
the index i of the string that has been hashed to form h, using the input opening
value. If all of these verifications pass, then P2 updates the input accumulator
value by writing the input symbol at the ith position of the accumulator stor-
age. We also modify the obfuscated initial signing program P1, included in the
constrained key, to take as input a hash value and output a signature on the
accumulator value corresponding to the empty accumulator storage, along with
the initial state and header position of M .

Moreover, for forbidding the evaluator from performing the evaluation by
accumulating an M -accepted substring of the hashed input, we define our PRF
output as the evaluation of F on the pair (hash value, length) of the input in
stead of just the hash value of the input. Note that, without loss of generality,
we can set the upper bound of the length of PRF inputs to be 2λ, where λ is the
underlying security parameter in view of the fact that by suitably choosing λ we
can accommodate inputs of any polynomial length. This setting of upper bound
on the input length is implicitly considered in [10]. Now, as the input length is
bounded by 2λ, the input length can be expressed as a bit strings of length λ.

CPRF’s for Unconstrained Inputs Revisited 477

Thus, the PRF input length can be safely fed along with the SSB hash value of
PRF input to F , which can handle only inputs of apriori bounded length. Hence,
the obfuscated next step programs Pcprf included in our constrained keys must
also take as input the length of the PRF input for producing the PRF value if
reaching to the accepting state.

Therefore, to evaluate the CPRF on some input using a constrained key, cor-
responding to some TM M , an evaluator first hash the PRF input. The evaluator
also obtains a signature on the empty accumulator value included in the con-
strained key, by running the obfuscated initial signing program P1 on input the
computed hash value. Next, it repeatedly runs the obfuscated accumulating pro-
gram P2 to accumulate the bits of the PRF input. Finally, it runs the obfuscated
next step program Pcprf iteratively on the current accumulator value along with
other legitimate inputs until it obtains either the PRF output or ⊥.

Regarding the proof of security, notice that the problem with enforcing the
public parameters of the positional accumulator while transforming the queried
constrained keys will not appear in our case as we have assigned a separate set of
public parameters of positional accumulator to each constrained key. However,
our actual security proof involves many subtleties that are difficult to describe
with this high level description and is provided in full details in the sequel. We
would only like to mention here that to cope up with certain issues in the proof
we further include another IO-obfuscated program P3 in the constrained keys,
known as the signature changing program, that changes the signature on the
accumulation of the bits of the PRF input before starting the iterative compu-
tation with the obfuscated next step program Pcprf.

We follow the same novel technique introduced in [10] for handling the tail
hybrids in the final stage of transformation of the constrained keys. Note that
as in [10], we are also considering TM’s which run for at most T = 2λ steps
on any input. Unlike [20], the authors of [10] have devised a beautiful approach
to obtain an end to end polynomial reduction to the security of IO for the tail
hybrids by means of an injective pseudorandom generator (PRG). We directly
adopt that technique to deal with the tail hybrids in our security proof. A high
level overview of the approach is sketched below. Let us call the time step 2τ

as the τ th landmark and the interval [2τ , 2τ+1 − 1] as the τ th interval. Like
[10], our obfuscated next step programs Pcprf included within the constrained
keys take an additional PRG seed as input at each time step, and perform some
additional checks on the input PRG seed. At time steps just before a landmark,
the programs output a new pseudorandomly generated PRG seed, which is then
used in the next interval. Using standard IO techniques, it can be shown that
for inputs corresponding to (h∗, �∗), if the program Pcprf outputs ⊥, for all
time steps upto the one just before a landmark, then we can alter the program
indistinguishably so that it outputs ⊥ at all time steps in the next interval. Here
h∗ and �∗ are respectively the SSB hash value and length of the challenge input
x∗ submitted by the adversary A in the selective pseudorandomness experiment.
Employing this technique, we can move across an exponential number of time
steps at a single switch of the next step program Pcprf.

478 P. Datta et al.

3.4 Formal Description of Our CPRF

Now we will formally present our CPRF construction where the constrained keys
are associated with TM’s. Let λ be the underlying security parameter. Consider
the family Mλ of TM’s, the members of which have (worst-case) running time
bounded by T = 2λ, input alphabet Σinp = {0, 1}, and tape alphabet Σtape =
{0, 1, }. Our CPRF construction utilizes the following cryptographic building
blocks:

(i) IO: An indistinguishability obfuscator for general polynomial-size circuits.
(ii) SSB = (SSB.Gen,H,SSB.Open,SSB.Verify): A somewhere statistically

binding hash function with Σssb-blk = {0, 1}.
(iii) ACC = (ACC.Setup,ACC.Setup-Enforce-Read,ACC.Setup-Enforce-Write,

ACC.Prep-Read,ACC.Prep-Write,ACC.Verify-Read,ACC.Write-Store,
ACC.Update): A positional accumulator with Σacc-blk = {0, 1, }.

(iv) ITR = (ITR.Setup, ITR.Setup-Enforce, ITR.Iterate): A cryptographic iterator
with an appropriate message space Mitr.

(v) SPS = (SPS.Setup,SPS.Sign,SPS.Verify,SPS.Split,SPS.Sign-ABO):
A splittable signature scheme with an appropriate message space Msps.

(vi) PRG : {0, 1}λ → {0, 1}2λ: A length-doubling pseudorandom generator.
(vii) F = (F .Setup,F .Puncture,F .Eval): A puncturable pseudorandom func-

tion whose domain and range are chosen appropriately. For simplicity, we
assume that F has inputs and outputs of bounded length instead of fixed
length inputs and outputs. This assumption can be easily removed by using
different PPRF’s for different input and output lengths.

Our CPRF construction is described below:

CPRF.Setup(1λ) → skcprf = (K,hk): The setup authority takes as input the
security parameter 1λ and proceeds as follows:
1. It first chooses a PPRF key K

$←− F .Setup(1λ).

2. Next it generates hk
$←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).

3. It sets the master CPRF key as skcprf = (K,hk).
CPRF.Eval(skcprf, x) → y = F(K, (h, �x)): Taking as input the master CPRF

key skcprf = (K,hk) along with an input x = x0 . . . x�x−1 ∈ Xcprf, where
|x| = �x, the setup authority executes the following steps:
1. It computes h = Hhk(x).
2. It outputs the CPRF value on input x to be y = F(K, (h, �x)).

CPRF.Constrain(skcprf,M) → skcprf{M} = (hk,ppacc, w0, store0,ppitr, v0,
P1,P2,P3,Pcprf): On input the master CPRF key skcprf = (K,hk) and a
TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈ Mλ, the setup authority performs
the following steps:
1. At first, it selects PPRF keys K1, . . . ,Kλ,Ksps,A,Ksps,E

$←− F .Setup(1λ).

2. Next, it generates (ppacc, w0, store0)
$←− ACC.Setup(1λ, nacc-blk = 2λ)

and (ppitr, v0)
$←− ITR.Setup(1λ, nitr = 2λ).

CPRF’s for Unconstrained Inputs Revisited 479

3. Then, it constructs the following obfuscated programs:
– P1 = IO(Init-SPS.Prog[q0, w0, v0,Ksps,E]),
– P2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,ppitr,Ksps,E]),
– P3 = IO(Change-SPS.Prog[Ksps,A,Ksps,E]),
– Pcprf = IO(Constrained-Key.Prog

cprf
[M, T = 2λ, ppacc, ppitr, K,

K1, . . . ,Kλ,Ksps,A]),
where the programs Init-SPS.Prog,Accumulate.Prog,Change-SPS.Prog, and
Constrained-Key.Prog

cprf
are depicted respectively in Figs. 1, 2, 3 and 4.

4. It Provides the constrained key skcprf{M} = (hk,ppacc, w0, store0,
ppitr, v0,P1,P2,P3,Pcprf) ∈ Kcprf-const to a legitimate user.

CPRF.Eval-Constrained(skcprf{M}, x) → y = F(K, (h, �x)) or ⊥: A user takes
as input its constrained key skcprf{M} = (hk,ppacc, w0, store0,ppitr, v0,

Fig. 1. Init-SPS.Prog

Fig. 2. Accumulate.Prog

480 P. Datta et al.

Fig. 3. Change-SPS.Prog

Fig. 4. Constrained-Key.Prog
cprf

CPRF’s for Unconstrained Inputs Revisited 481

P1,P2,P3,Pcprf) ∈ Kcprf-const corresponding to some legitimate TM M =
〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 and an input x = x0 . . . x�x−1 ∈ Xcprf with
|x| = �x. It proceeds as follows:

1. It first computes h = Hhk(x).
2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . , �x, it iteratively performs the following:

(a) It computes πssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes auxj = ACC.Prep-Write(ppacc, storej−1, j − 1).
(c) It computes out = P2(j − 1, xj−1, q0, wj−1,auxj , vj−1, σ̆sps,j−1, h,

πssb,j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out =

(wj , vj , σ̆sps,j).
(e) It computes storej = ACC.Write-Store(ppacc, storej−1, j −1, xj−1).

4. It computes σsps,0 = P3(q0, w�x , v�x , h, �x, σ̆sps,�x).
5. It sets posM,0 = 0 and seed0 = ε.
6. Suppose, M runs for tx steps on input x. For t = 1, . . . , tx, it iteratively

performs the following steps:
(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc,

store�x+t−1, posM,t−1).
(b) It computes aux�x+t = ACC.Prep-Write(ppacc, store�x+t−1,

posM,t−1).
(c) It computes out = Pcprf(t, seedt−1,posM,t−1, symM,t−1, stM,t−1,

w�x+t−1, πacc,t−1,aux�x+t, v�x+t−1, h, �x, σsps,t−1).
(d) If t = tx, it outputs out. Otherwise, it parses out as out = (posM,t,

sym
(write)
M,t , stM,t, w�x+t, v�x+t, σsps,t, seedt).

(e) It computes store�x+t = ACC.Write-Store(ppacc, store�x+t−1,

posM,t−1, sym
(write)
M,t).

Theorem 3.1. Assuming IO is a secure indistinguishability obfuscator for
P/poly, F is a secure puncturable pseudorandom function, SSB is a somewhere
statistically binding hash function, ACC is a secure positional accumulator, ITR
is a secure cryptographic iterator, SPS is a secure splittable signature scheme,
and PRG is a secure injective pseudorandom generator, our CPRF construc-
tion satisfies correctness under constraining and selective pseudorandomness
properties.

The proof of Theorem 3.1 is provided in the full version of this paper.

Remark 3.2. We note that concurrently and independently of our work,
Deshpande et al. [11] have recently provided an alternative fix to the flaw in
[10] discussed in Sect. 3.2, by replacing the standard positional accumulators
used in the CPRF construction of [10] with an advanced variant of positional
accumulators, namely, history-less positional accumulators [3]. Unlike standard
positional accumulators, in case of history-less positional accumulators, setting
up the public parameters in read/write enforcing mode does not require any

482 P. Datta et al.

history of symbol-index pairs as input. Consequently, the problem in the simu-
lation of [10] discussed in Sect. 3.2, resulting from the use of standard positional
accumulators, would clearly not arise if history-less positional accumulators are
utilized in the CPRF construction of [10] instead. However, we emphasize that
our approach towards resolving the flaw of [10] brings about some new subtle
technical ideas which might be useful elsewhere as well.

4 Our CVPRF for Turing Machines

4.1 Notion

Definition 4.1 (Constrained Verifiable Pseudorandom Function for
Turing Machines: CVPRF). Let Mλ be a family of TM’s with (worst-case)
running time bounded by T = 2λ. A constrained verifiable pseudorandom func-
tion (CVPRF) for Mλ with key space Kcvprf, input domain Xcvprf ⊂ {0, 1}∗, and
output space Ycvprf ⊂ {0, 1}∗ consists of a constrained key space Kcvprf-const,
a proof space Πcvprf, along with PPT algorithms (CVPRF.Setup, CVPRF.Eval,
CVPRF.Prove, CVPRF.Constrain, CVPRF.Prove-Constrained, CVPRF.Verify)
which are described below:

CVPRF.Setup(1λ) → (skcvprf,vkcvprf) : The setup authority takes as input the
security parameter 1λ and generates a master CVPRF key skcvprf along with
a public verification key vkcvprf.

CVPRF.Eval(skcvprf, x) → y : Taking as input the master CVPRF key skcvprf

and an input x ∈ Xcvprf, the trusted authority outputs the value of the func-
tion y ∈ Ycvprf. For simplicity of notation, we will denote by CVPRF(skcvprf,
x) the output of this algorithm.

CVPRF.Prove(skcvprf, x) → πcvprf : Taking as input the master CVPRF key
skcvprf and an input x ∈ Xcvprf, the trusted authority outputs a proof
πcvprf ∈ Πcvprf.

CVPRF.Constrain(skcvprf,M) → skcvprf{M} : On input the master CVPRF key
skcvprf and a TM M ∈ Mλ, the setup authority provides a constrained key
skcvprf{M} to a legitimate user.

CVPRF.Prove-Constrained(skcvprf{M}, x) → (y, πcvprf) or ⊥ : A user takes as
input its constrained key skcvprf{M} corresponding to a legitimate TM M ∈
Mλ and an input x ∈ Xcvprf. It outputs either a value-proof pair (y, πcvprf) ∈
Ycvprf × Πcvprf or (⊥,⊥) indicating failure.

CVPRF.Verify(vkcvprf, x, y, πcvprf) → β̂ ∈ {0, 1} : A verifier takes as input the
public verification key vkcvprf, an input x ∈ Xcvprf, a value y ∈ Ycvprf,
together with a proof πcvprf ∈ Πcvprf. It outputs a bit ˆbeta ∈ {0, 1}.

The algorithms CVPRF.Setup, CVPRF.Prove, CVPRF.Constrain and CVPRF.
Prove-Constrained are randomized, while the other two algorithms are deter-
ministic.

� Provability: For any security parameter λ, (skcvprf,vkcvprf)
$←− CVPRF.

Setup(1λ), M ∈ Mλ, skcvprf{M} $←− CVPRF.Constrain(skcvprf,M), x ∈ Xcvprf,

and (y, πcvprf)
$←−CVPRF.Prove-Constrained(skcvprf{M}, x), the following holds:

CPRF’s for Unconstrained Inputs Revisited 483

• If M(x) = 1, then y = CVPRF(skcvprf, x) and CVPRF.Verify(vkcvprf, x, y,
πcvprf) = 1.

• If M(x) = 0, then (y, πcvprf) = (⊥,⊥).

The security requirements of a CVPRF are formally defined in the full version of
this paper.

4.2 Techniques Adapted in Our CVPRF Construction

Let us now sketch our technical ideas to extend our CPRF construction to incor-
porate the verifiability feature. The additional tool that we use for this enhance-
ment is a public key encryption (PKE) scheme which is perfectly correct and
chosen plaintext attack (CPA) secure. Besides the PPRF key K, used to gener-
ate the PRF output, and the SSB hash key, we include within the master key
another PPRF key Kpke to generate randomness for the setup and encryption
algorithms of PKE. As earlier, the PRF output on some input x is F(K, (h, �x)),
where h and �x are respectively the SSB hash value and length of x. The non-
interactive proof of correctness consists of a PKE public key pkpke together
with a pseudorandom string rpke,2. The randomness rpke,1 for setting up the
PKE public key pkpke along with the pseudorandom string rpke,2 are formed as
rpke,1‖rpke,2 = F(Kpke, (h, �x)).

The public verification key comprises of the same SSB hash key as included
in the master PRF key, together with an IO-obfuscated program Vcvprf, known
as the verifying program. The verifying program Vcvprf has the PPRF keys K
and Kpke hardwired in it. It takes as input an SSB hash value h and PRF
input length �inp. It first computes the concatenated pseudorandom strings
r̂pke,1‖r̂pke,2 = F(Kpke, (h, �inp)). Next, it runs the PKE setup algorithm using
the generated randomness r̂pke,1 and creates a PKE public key p̂kpke. The pro-
gram outputs p̂kpke together with the ciphertext ĉtpke encrypting the PRF value
F(K, (h, �inp)) under p̂kpke utilizing the randomness r̂pke,2.

To verify a purported PRF value-proof pair (y, πcvprf = (pkpke, r)) for some
input x using the public verification key, a verifier first hashes x using the SSB
hash key and then obtains a PKE public key-ciphertext pair (p̂kpke, ĉtpke) by
running the obfuscated verifying program Vcvprf on input the computed hash
value and length of the input x. The verifier accepts the proof if p̂kpke matches
with pkpke, as well as ĉtpke matches with the ciphertext formed by encrypt-
ing the purported PRF value y under pkpke using the string r included within
the proof. Observe that the soundness of verification follows directly from the
perfect correctness property of the underlying PKE scheme. Specifically, due to
the perfect correctness of PKE, it is guaranteed that two different values cannot
map to the same ciphertext under the same public key.

Finally, to enable the generation of the proof along with the PRF value using
a constrained key, we modify the obfuscated next step program, which we denote
as Pcvprf, included in the constrained key to output the proof together with the
PRF value when it reaches the accepting state.

484 P. Datta et al.

4.3 Formal Description of Our CVPRF

Here we will provide our CVPRF for TM’s. This construction is obtained by
extending our CPRF construction described in Sect. 3.4. Let λ be the underlying
security parameter. Let Mλ be a class of TM’s, the members of which have
(worst-case) running time bounded by T = 2λ, input alphabet Σinp = {0, 1}, and
tape alphabet Σtape = {0, 1, }. Our CVPRF construction for TM family Mλ will
employ all the building blocks utilized in our CPRF construction. Additionally,
we will use a perfectly correct and chosen plaintext attack (CPA) secure public
key encryption scheme PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) with an
appropriate message space. The formal description of our CVPRF construction
follows:

CVPRF.Setup(1λ) → (skcvprf = (K,Kpke,hk),vkcvprf = (hk,Vcvprf)): The
setup authority takes as input the security parameter 1λ and proceeds as
follows:
1. It first chooses PPRF keys K,Kpke

$←− F .Setup(1λ).

2. Next it generates hk
$←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).

3. Then, it creates the obfuscated program Vcvprf = IO(Verify.Prog
cvprf

[K,
Kpke]), where the program Verify.Prog

cvprf
is described in Fig. 5.

4. It sets the master CVPRF key as skcvprf = (K,Kpke,hk) and publishes
the public verification key vkcvprf = (hk,Vcvprf).

Fig. 5. Verify.Prog
cvprf

CVPRF.Eval(skcvprf, x) → y = F(K, (h, �x)): Taking as input the master CVPRF
key skcvprf = (K,Kpke,hk) along with an input x = x0 . . . x�x−1 ∈ Xcvprf,
where |x| = �x, the setup authority proceeds in an identical fashion to
CPRF.Eval(skcprf, x) described in Sect. 3.4.

CVPRF.Prove(skcvprf, x) → πcvprf = (pkpke, rpke,2): The setup authority takes
as input the master CVPRF key skcvprf = (K,Kpke,hk) along with an input
x = x0 . . . x�x−1 ∈ Xcvprf, where |x| = �x. It proceeds as follows:
1. At first, it computes h = Hhk(x).
2. Then, it computes rpke,1‖rpke,2 = F(Kpke, (h, �x)), (pkpke, skpke) =

PKE.Setup(1λ; rpke,1).
3. It outputs πcvprf = (pkpke, rpke,2).

CPRF’s for Unconstrained Inputs Revisited 485

Fig. 6. Constrained-Key.Prog
cvprf

CVPRF.Constrain(skcvprf,M) → skcvprf{M} = (hk,ppacc, w0, store0, ppitr,
v0,P1,P2,P3,Pcvprf): On input the master CVPRF key skcvprf = (K, Kpke,
hk) and a TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈ Mλ, the setup authority
proceeds identically to CPRF.Constrain(skcprf,M) with the only difference
that in place of Pcprf it includes Pcvprf = IO(Constrained-Key.Prog

cvprf
[M,

T = 2λ,ppacc,ppitr,K,Kpke,K1, . . . ,Kλ,Ksps,A]) within the constrained key
skcvprf{M}, where the program Constrained-Key.Prog

cvprf
is depicted in

Fig. 6.
CVPRF.Prove-Constrained(skcvprf{M}, x) → (y = F(K, (h, �x)), πcvprf =

(pkpke, rpke,2)) or ⊥: A user takes as input its constrained key skcvprf{M} =
(hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pcvprf) corresponding to some
legitimate TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 and an input x =
x0 . . . x�x−1 ∈ Xcvprf with |x| = �x. It proceeds in the exact same manner
as the algorithm CPRF.Eval-Constrained(skcprf{M}, x) described in Sect. 3.4.
However, note that now the constrained key skcvprf{M} of the user contains
the obfuscated program Pcvprf instead of Pcprf. Thus, it utilizes the program
Pcvprf in place of Pcprf in the course of execution.

CVPRF.Verify(vkcvprf, x, y, πcvprf) → β̂ ∈ {0, 1}: A verifier takes as input the
public verification key vkcvprf = (hk,Vcvprf), an input x = x0 . . . x�x−1 ∈
Xcvprf, where |x| = �x, a value y ∈ Ycvprf, and a proof πcvprf = (pkpke, r) ∈
Πcvprf. It executes the following:
1. It first computes h = Hhk(x).
2. Next, it computes (p̂kpke, ĉtpke) = Vcvprf(h, �x).
3. If [pkpke = p̂kpke] ∧ [PKE.Encrypt(pkpke, y; r) = ĉtpke], it outputs 1.

Otherwise, it outputs 0.

486 P. Datta et al.

Theorem 4.1. Assuming IO is a secure indistinguishability obfuscator for
P/poly, F is a secure puncturable pseudorandom function, SSB is a somewhere
statistically binding hash function, ACC is a secure positional accumulator, ITR
is a secure cryptographic iterator, SPS is a secure splittable signature scheme,
PRG is a secure injective pseudorandom generator, and PKE is a perfectly correct
CPA secure public key encryption scheme, our CVPRF construction satisfies all
the properties of a secure CVPRF.

The proof of Theorem4.1 is given in the full version of this paper.

5 Our DCPRF for Turing Machines

5.1 Notion

Definition 5.1. (Delegatable Constrained Pseudorandom Function
for Turing Machines: DCPRF). Let Mλ be a family of TM’s with
(worst-case) running time bounded by T = 2λ. A delegatable constrained
pseudorandom function (DCPRF) with key space Kdcprf, input domain
Xdcprf ⊂ {0, 1}∗, and output space Ydcprf ⊂ {0, 1}∗ for the TM fam-
ily Mλ consists of an additional key space Kdcprf-const and PPT algorithms
(DCPRF.Setup, DCPRF.Eval, DCPRF.Constrain, DCPRF.Delegate, DCPRF.Eval-
Constrained) described as follows:

DCPRF.Setup(1λ) → skdcprf : The setup authority takes as input the security
parameter 1λ and generates the master DCPRF key skdcprf ∈ Kdcprf.

DCPRF.Eval(skdcprf, x) → y : On input the master DCPRF key skdcprf along
with an input x ∈ Xdcprf, the setup authority computes the value of the
DCPRF y ∈ Ydcprf. For simplicity of notation, we will use DCPRF(skdcprf, x)
to indicate the output of this algorithm.

DCPRF.Constrain(skdcprf,M) → skdcprf{M} : Taking as input the master
DCPRF key skdcprf ∈ Kdcprf and a TM M ∈ Mλ, the setup authority provides
a constrained key skdcprf{M} ∈ Kdcprf-const to a legitimate user.

DCPRF.Delegate(skdcprf{M}, M̃) → skdcprf{M ∧ M̃} : Taking as input a con-
strained key skdcprf{M} ∈ Kdcprf-const corresponding to a legitimate TM

M ∈ Mλ along with another TM M̃ ∈ Mλ, a user gives a delegated con-
strained key skdcprf{M ∧ M̃} ∈ Kdcprf-const to a legitimate delegate.

DCPRF.Eval-Constrained(skdcprf{M}/skdcprf{M ∧ M̃}, x) → y or ⊥ : A user
takes as input a constrained key skdcprf{M} ∈ Kdcprf-const obtained from the
setup authority, corresponding to TM M ∈ Mλ, or a delegated constrained
key skdcprf{M ∧ M̃} ∈ Kdcprf-const delegated by a constrained key holder
holding the constrained key skdcprf{M} ∈ Kdcprf-const, corresponding to TM

M̃ ∈ Mλ, along with an input x ∈ Xdcprf. It outputs either a value y ∈ Ydcprf

or ⊥ indicating failure.

The algorithms DCPRF.Eval and DCPRF.Eval-Constrained are deterministic,
while, all the others are randomized.

CPRF’s for Unconstrained Inputs Revisited 487

� Correctness under Constraining/Delegation: Let us consider any secu-

rity parameter λ, x ∈ Xdcprf, skdcprf

$←− DCPRF.Setup(1λ), M,M̃ ∈ Mλ,

skdcprf{M} $←− DCPRF.Constrain(skdcprf,M) and skdcprf{M ∧ M̃} $←−
DCPRF.Delegate(skdcprf{M}, M̃). The following must hold:

DCPRF.Eval-Constrained(skdcprf{M}/skdcprf{M ∧ M̃}, x) =
{
DCPRF(skdcprf, x), if M(x) = 1/[M(x) = 1] ∧ [M̃(x) = 1]
⊥, otherwise

The security notion of a DCPRF, namely, the pseudorandomness property is
formally defined in the full version of this paper.

5.2 Techniques Adapted in Our DCPRF Construction

Here again our starting point is our CPRF construction. We again use a perfectly
correct and CPA secure PKE scheme for accomplishing key delegation. Precisely,
while generating a constrained key corresponding to some TM M , we create a
PPRF key K ′ specific to that constrained key. We then modify the output of the
next step program, which we refer to as Pdcprf, when it reaches the accepting
state. In stead of outputting the PRF value, the program Pdcprf outputs an
encryption of the PRF value. For performing this encryption it generates a PKE
public key pkpke. The program computes the randomness rpke,1 for generating
the PKE public key pkpke as well as the randomness rpke,2 for the encryption
as rpke,1‖rpke,2 = F(K ′, (h, �inp)), where h and �inp denote respectively the SSB
hash value and length of the PRF input. We also include the PPRF key K ′ in
the clear within the constrained key. Thus, while evaluating the PRF on some
input using the constrained key, the evaluator will be able to recompute the
pseudorandom string rpke,1 using K ′ and then can generate the necessary PKE
secret key skpke by running the setup algorithm using the randomness rpke,1 on
its own. Once the secret key skpke is obtained, the evaluator can simply decrypt
the ciphertext obtained from the next step program Pdcprf to uncover the PRF
value. However, if a party does not have the key K ′ or the randomness that
would have to be used for creating the required PKE secret key, then it cannot
derive the PRF value from the ciphertext obtained from the next step program
Pdcprf. We encash this idea to design the key delegation functionality.

The structure of our delegated key is as follows: Suppose a party holding a
constrained key, corresponding to some TM M , wishes to construct a delegated
key for M ∧ M̃ , where M̃ is some other TM. The party generates all the compo-
nents and obfuscated programs as those formed while constructing a constrained
key for M̃ with the only exception that it embeds the PPRF key K ′, included
in its constrained key, inside the obfuscated next step program for M̃ in place
of the PPRF key K, which is part of the master PRF key and provides the PRF
output. In fact, since the party only has a constrained key and not the master
key, it does not possess the key K in the clear and hence cannot embed it within

488 P. Datta et al.

the obfuscated programs that it generates. The delegated key, corresponding to
M ∧ M̃ consists of all the generated components and obfuscated programs for
M̃ together with all the components and obfuscated programs included in the
constrained key for M possessed by the delegator except the PPRF key K ′.

The idea is that, while evaluating the PRF on some input x using the del-
egated key for M ∧ M̃ , the evaluator proceeds in three steps. In the first step,
provided M̃(x) = 1, the evaluator computes the output of F with key K ′ on the
SSB hash value and length of x by making use of the delegated key components
pertaining to M̃ . Next, using the obtained PPRF output, the evaluator runs the
PKE setup algorithm to obtain the necessary PKE secret key. In the second step,
utilizing the delegated key components associated to M , the evaluator obtains
a ciphertext encrypting the PRF output on x, provided M(x) = 1. Finally, the
evaluator decrypts the ciphertext using the computed PKE secret key to reveal
the PRF output.

5.3 Formal Description of Our DCPRF

In this section, we will present our DCPRF for TM’s. The construction pre-
sented here considers only one level of delegation, however, it can readily be
generalized to support multiple delegation levels. Let λ be the underlying secu-
rity parameter. Consider the class Mλ of TM’s, the members of which have
(worst-case) running time bounded by T = 2λ, input alphabet Σinp = {0, 1},
and tape alphabet Σtape = {0, 1, }. Our DCPRF construction is an augmenta-
tion of our CPRF construction with a delegation functionality and employs all
the cryptographic building blocks utilized by our CPRF construction. In addi-
tion, we use a perfectly correct and CPA secure public key encryption scheme
PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) with an appropriate message
space. The formal description of our DCPRF follows:

DCPRF.Setup(1λ) → skdcprf = (K,hk): The setup authority takes as input
the security parameter 1λ and proceeds the same way as CPRF.Setup(1λ)
described in Sect. 3.4.

DCPRF.Eval(skdcprf, x) → y = F(K, (h, �x)): Taking as input the master DCPRF
key skdcprf = (K,hk) and an input x = x0 . . . x�x−1 ∈ Xdcprf, where |x| = �x,
the setup authority executes identical steps as CPRF.Eval(skcprf, x) described
in Sect. 3.4.

DCPRF.Constrain(skdcprf,M) → skdcprf{M} = (K ′,hk,ppacc, w0, store0,
ppitr, v0,P1,P2,P3,Pdcprf): On input the master DCPRF key skdcprf =
(K,hk) and a TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈ Mλ, the setup
authority performs the following steps:

1. At first, it selects PPRF keys K ′,K1, . . . ,Kλ,Ksps,A,Ksps,E
$←−

F .Setup(1λ).

2. Next, it generates (ppacc, w0, store0)
$←− ACC.Setup(1λ, nacc-blk = 2λ)

and (ppitr, v0)
$←− ITR.Setup(1λ, nitr = 2λ).

3. Then, it constructs the obfuscated programs

CPRF’s for Unconstrained Inputs Revisited 489

Fig. 7. Constrained-Key.Prog
dcprf

– P1 = IO(Init-SPS.Prog[q0, w0, v0,Ksps,E]),
– P2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,ppitr,Ksps,E]),
– P3 = IO(Change-SPS.Prog[Ksps,A,Ksps,E]),
– Pdcprf = IO(Constrained-Key.Prog

dcprf
[M,T = 2λ,ppacc,ppitr,K,K ′,

K1, . . . ,Kλ,Ksps,A]),
where the programs Init-SPS.Prog,Accumulate.Prog, and Change-SPS.Prog
are depicted respectively in Figs. 1, 2 and 3 in Sect. 3.4, while the program
Constrained-Key.Prog

dcprf
is described in Fig. 7.

4. It provides the constrained key skdcprf{M} = (K ′,hk,ppacc, w0, store0,
ppitr, v0,P1,P2,P3,Pdcprf) to a legitimate user.

DCPRF.Delegate(skdcprf{M}, M̃) → skdcprf{M ∧ M̃} = (K̃ ′,hk,ppacc, p̃pacc,

w0, w̃0, store0, s̃tore0, ppitr, p̃pitr, v0, ṽ0, P1, P̃1, P2, P̃2, P3, P̃3,
Pdcprf, P̃dcprf): A user takes as input a constrained key skdcprf{M} = (K ′,
hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pdcprf), corresponding to a legit-
imate TM M ∈ Mλ and another TM M̃ = 〈Q̃,Σinp, Σtape, δ̃, q̃0, q̃ac, q̃rej〉 ∈
Mλ. It proceeds as follows:

1. It first picks fresh PPRF keys K̃ ′, K̃1, . . . , K̃λ, K̃sps,A, K̃sps,E
$←−

F .Setup(1λ).

2. Next it generates (p̃pacc, w̃0, s̃tore0)
$←− ACC.Setup(1λ, nacc-blk = 2λ)

and (p̃pitr, ṽ0)
$←− ITR.Setup(1λ, nitr = 2λ) afresh.

3. Then, it constructs the obfuscated programs
– P̃1 = IO(Init-SPS.Prog[q̃0, w̃0, ṽ0, K̃sps,E]),
– P̃2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk, p̃pacc, p̃pitr, K̃sps,E]),
– P̃3 = IO(Change-SPS.Prog[K̃sps,A, K̃sps,E]),

490 P. Datta et al.

– P̃dcprf = IO(Constrained-Key.Prog
dcprf

[M̃, T = 2λ, p̃pacc, p̃pitr,K
′,

K̃ ′, K̃1, . . . , K̃λ, K̃sps,A]),
where the programs Init-SPS.Prog,Accumulate.Prog, and Change-SPS.Prog
are depicted respectively in Figs. 1, 2 and 3 in Sect. 3.4, while the program
Constrained-Key.Prog

dcprf
is described in Fig. 7.

4. It gives the delegated key skdcprf{M ∧ M̃} = (K̃ ′,hk,ppacc, p̃pacc,

w0, w̃0, store0, s̃tore0,ppitr, p̃pitr, v0, ṽ0,P1, P̃1,P2, P̃2,P3, P̃3,Pdcprf,
P̃dcprf) to a legitimate delegate.

DCPRF.Eval-Constrained(skdcprf{M}/skdcprf{M ∧ M̃}, x) → y = F(K, (h,
�x)) or ⊥: A user takes as input a constrained key skdcprf{M}
= (K ′,hk,ppacc, w0, store0,ppitr, v0, P1,P2,P3,Pdcprf) obtained from the
setup authority, corresponding to some legitimate TM M = 〈Q,Σinp, Σtape,

δ, q0, qac, qrej〉 ∈ Mλ, or a delegated key skdcprf{M ∧ M̃} = (K̃ ′,hk,

ppacc, p̃pacc, w0, w̃0, store0, s̃tore0,ppitr, p̃pitr, v0, ṽ0,P1, P̃1,P2, P̃2,P3,
P̃3,Pdcprf, P̃dcprf) obtained from the holder of the constrained key
skdcprf{M}, corresponding to TM M̃ = 〈Q̃,Σinp, Σtape, δ̃, q̃0, q̃ac, q̃rej〉 ∈ Mλ,
along with an input x = x0 . . . x�x−1 ∈ Xdcprf with |x| = �x. It proceeds as
follows:

(A) If M(x) = 0, it outputs ⊥. Otherwise, it performs the following steps:
1. It first computes h = Hhk(x).
2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . , �x, it iteratively performs the following:

(a) It computes πssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes auxj = ACC.Prep-Write(ppacc, storej−1, j − 1).
(c) It computes out = P2(j −1, xj−1, q0, wj−1,auxj , vj−1, σ̆sps,j−1, h,

πssb,j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out = (wj , vj ,

σ̆sps,j).
(e) It computes storej = ACC.Write-Store(ppacc, storej−1, j − 1,

xj−1).
4. It computes σsps,0 = P3(q0, w�x , v�x , h, �x, σ̆sps,�x).
5. It sets posM,0 = 0 and seed0 = ε.
6. Suppose, M accepts x in tx steps. For t = 1, . . . , tx, it iteratively

performs the following steps:
(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc,

store�x+t−1,posM,t−1).
(b) It computes aux�x+t = ACC.Prep-Write(ppacc, store�x+t−1,

posM,t−1).
(c) It computes out = Pdcprf(t, seedt−1,posM,t−1, symM,t−1,

stM,t−1, w�x+t−1, πacc,t−1,aux�x+t, v�x+t−1, h, �x, σsps,t−1).
(d) If t = tx, it sets ctpke = out. Otherwise, it parses out as out =

(posM,t, sym
(write)
M,t , stM,t, w�x+t, v�x+t, σsps,t, seedt).

(e) It computes store�x+t = ACC.Write-Store(ppacc, store�x+t−1,

posM,t−1, sym
(write)
M,t).

CPRF’s for Unconstrained Inputs Revisited 491

(B) If the user is using the constrained key skdcprf{M}, then it computes
rpke,1‖rpke,2 = F(K ′, (h, �x)), (pkpke, skpke) = PKE.Setup(1λ; rpke,1),
and outputs PKE.Decrypt(skpke,ctpke). On the other hand, if the user
is using the delegated key skdcprf{M ∧ M̃} and M̃(x) = 0, then it
outputs ⊥, while if M̃(x) = 1, it further executes the following steps:
1. It computes ˜̆σsps,0 = P̃1(h).
2. Then for j = 1, . . . , �x, it iteratively performs the following:

(a) It computes π̃ssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes ãuxj = ACC.Prep-Write(p̃pacc, s̃torej−1, j − 1).
(c) It computes õut = P̃2(j−1, xj−1, q̃0, w̃j−1, ãuxj , ṽj−1, ˜̆σsps,j−1, h,

π̃ssb,j−1).
(d) If õut = ⊥, it outputs õut. Else, it parses õut as õut = (w̃j , ṽj ,

˜̆σsps,j).
(e) It computes s̃torej = ACC.Write-Store(p̃pacc, s̃torej−1, j − 1,

xj−1).
3. It computes σ̃sps,0 = P̃3(q̃0, w̃�x , ṽ�x , h, �x, ˜̆σsps,�x).
4. It sets pos

M̃,0
= 0 and s̃eed0 = ε.

5. Suppose, M̃ accepts x in t̃x steps. For t = 1, . . . , t̃x, it iteratively
performs the following steps:
(a) It computes (sym

M̃,t−1
, π̃acc,t−1) = ACC.Prep-Read(p̃pacc,

s̃tore�x+t−1,posM̃,t−1
).

(b) It computes ãux�x+t = ACC.Prep-Write(p̃pacc, s̃tore�x+t−1,
pos

M̃,t−1
).

(c) It computes õut = P̃dcprf(t, s̃eedt−1,posM̃,t−1
, sym

M̃,t−1
,

st
M̃,t−1

, w̃�x+t−1, π̃acc,t−1, ãux�x+t, ṽ�x+t−1, h, �x, σ̃sps,t−1).
(d) If t = t̃x, it sets c̃tpke = õut. Otherwise, it parses õut as õut =

(pos
M̃,t

, sym
(write)

M̃,t
, st

M̃,t
, w̃�x+t, ṽ�x+t, σ̃sps,t, s̃eedt).

(e) It computes s̃tore�x+t = ACC.Write-Store(p̃pacc, s̃tore�x+t−1,

pos
M̃,t−1

, sym
(write)

M̃,t
).

(C) Finally, it computes
– r̃pke,1‖r̃pke,2 = F(K̃ ′, (h, �x)),
– (p̃kpke, s̃kpke) = PKE.Setup(1λ; r̃pke,1),
– rpke,1‖rpke,2 = PKE.Decrypt(s̃kpke, c̃tpke),
– (pkpke, skpke) = PKE.Setup(1λ; rpke,1),
and outputs PKE.Decrypt(skpke,ctpke).

Theorem 5.1. Assuming IO is a secure indistinguishability obfuscator for
P/poly, F is a secure puncturable pseudorandom function, SSB is a somewhere
statistically binding hash function, ACC is a secure positional accumulator, ITR
is a secure cryptographic iterator, SPS is a secure splittable signature scheme,
PRG is a secure injective pseudorandom generator, and PKE is CPA secure, our
DCPRF construction satisfies the correctness and selective pseudorandomness
properties.

492 P. Datta et al.

The proof of Theorem5.1 is given in the full version of this paper.

References

1. Abusalah, H., Fuchsbauer, G.: Constrained PRFs for unbounded inputs with short
keys. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol.
9696, pp. 445–463. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39555-5 24

2. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained PRFs for unbounded
inputs. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 413–428. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-29485-8 24

3. Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating RAM
computations with adaptive soundness and privacy. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 3–30. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5 1

4. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46497-7 2

5. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54631-0 30

6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

8. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 1

9. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522
(2014)

10. Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions
for unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 5

11. Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions
for unconstrained inputs. Cryptology ePrint Archive, Report 2016/301, Version
20160819:153952 (2016)

12. Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M.,
Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-10879-7 7

13. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 82–101. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 5

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp.
40–49. IEEE (2013)

http://dx.doi.org/10.1007/978-3-319-39555-5_24
http://dx.doi.org/10.1007/978-3-319-29485-8_24
http://dx.doi.org/10.1007/978-3-662-53644-5_1
http://dx.doi.org/10.1007/978-3-662-53644-5_1
http://dx.doi.org/10.1007/978-3-662-46497-7_2
http://dx.doi.org/10.1007/978-3-662-46497-7_2
http://dx.doi.org/10.1007/978-3-642-54631-0_30
http://dx.doi.org/10.1007/978-3-642-54631-0_30
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-662-46497-7_1
http://dx.doi.org/10.1007/978-3-662-49896-5_5
http://dx.doi.org/10.1007/978-3-662-49896-5_5
http://dx.doi.org/10.1007/978-3-319-10879-7_7
http://dx.doi.org/10.1007/978-3-662-45608-8_5

CPRF’s for Unconstrained Inputs Revisited 493

15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (JACM) 33(4), 792–807 (1986)

16. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. Cryptology ePrint Archive, Report 2014/720 (2014)

17. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6 4

18. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: The 2015 Conference on Innovations in Theoretical
Computer Science, pp. 163–172. ACM (2015)

19. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: The 2013 ACM SIGSAC Confer-
ence on Computer Communications Security, pp. 669–684. ACM (2013)

20. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: The 47th Annual ACM on Symposium on
Theory of Computing, pp. 419–428. ACM (2015)

21. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science, pp. 120–130. IEEE (1999)

22. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of some-
where statistically binding hashing and positional accumulators. In: Iwata, T.,
Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 121–145. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48797-6 6

23. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: The 46th Annual ACM Symposium on Theory of Computing,
pp. 475–484. ACM (2014)

http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_6

Constraining Pseudorandom Functions Privately

Dan Boneh, Kevin Lewi, and David J. Wu(B)

Stanford University, Stanford, USA
{dabo,klewi,dwu4}@cs.stanford.edu

Abstract. In a constrained pseudorandom function (PRF), the mas-
ter secret key can be used to derive constrained keys, where each con-
strained key k is constrained with respect to some Boolean circuit C. A
constrained key k can be used to evaluate the PRF on all inputs x for
which C(x) = 1. In almost all existing constrained PRF constructions,
the constrained key k reveals its constraint C.

In this paper we introduce the concept of private constrained PRFs,
which are constrained PRFs with the additional property that a con-
strained key does not reveal its constraint. Our main notion of privacy
captures the intuition that an adversary, given a constrained key k for
one of two circuits C0 and C1, is unable to tell which circuit is associated
with the key k. We show that constrained PRFs have natural applica-
tions to searchable symmetric encryption, cryptographic watermarking,
and much more.

To construct private constrained PRFs we first demonstrate that our
strongest notions of privacy and functionality can be achieved using indis-
tinguishability obfuscation. Then, for our main constructions, we build
private constrained PRFs for bit-fixing constraints and for puncturing
constraints from concrete algebraic assumptions.

1 Introduction

A pseudorandom function (PRF) [41] is a (keyed) function F : K ×X → Y with
the property that, for a randomly chosen key msk ∈ K, the outputs of F (msk, ·)
look indistinguishable from the outputs of a truly random function from X to Y.
Constrained PRFs1, proposed independently by Boneh and Waters [12], Boyle et
al. [16], and Kiayias et al. [47], behave just like standard PRFs, except that the
holder of the (master) secret key msk ∈ K for the PRF is also able to produce
a constrained key skC for a Boolean circuit C. This constrained key skC can be
used to evaluate the PRF F (msk, ·) on all inputs x ∈ X where C(x) = 1, but
skC reveals nothing about F (msk, x) when C(x) = 0. Constrained PRFs have
found many applications, for example, in broadcast encryption [12] and in the
“punctured programming” techniques of Sahai and Waters [54].

The Goldreich-Goldwasser-Micali (GGM) PRF [41] is a puncturable PRF,
that is, a constrained PRF for the special class of puncturing constraints. In a

The full version of this paper is available at http://eprint.iacr.org/2015/1167.pdf.
1 They have also been called functional PRFs [16] and delegatable PRFs [47].

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 494–524, 2017.
DOI: 10.1007/978-3-662-54388-7 17

http://eprint.iacr.org/2015/1167.pdf

Constraining Pseudorandom Functions Privately 495

puncturable PRF, each constrained key k is associated with an input x0 ∈ X , and
the constrained key enables the evaluation at all points x �= x0 while revealing
no information about F (msk, x0). It is not difficult to see that the constrained
key k completely reveals the point x0.

Boneh and Waters [12] show how to use multilinear maps [28,29,33,36] to
construct constrained PRFs for more expressive classes of constraints, including
bit-fixing constraints as well as general circuit constraints (of a priori bounded
depth). Subsequent works in this area have focused on achieving adaptive notions
of security [43,44], developing schemes with additional properties such as verifia-
bility [19], and constructing (single-key) circuit-constrained PRFs from standard
lattice-based assumptions [17].

Constraining Privately. In this work, we initiate the study of private con-
strained PRFs, which are a natural extension of constrained PRFs with the
additional property that the constrained keys should not reveal their constraints.

Our definition of privacy requires that an adversary, given a single constrained
key sk for one of two possible circuits C0 and C1, cannot tell which circuit was
used as the constraint for sk. We also generalize this definition to the setting
where the adversary obtains multiple constrained keys. Since the adversary can
compare the outputs from multiple constrained keys, some information is nec-
essarily leaked about the underlying constraints. In this setting, our privacy
property ensures that the adversary learns the minimum possible. We formally
define our privacy notion in Sect. 2.

For the special case of a puncturable PRF (where the adversary only has
access to a single constrained key), the privacy requirement is that for any two
adversarially-chosen points x0, x1 ∈ X , the adversary cannot distinguish a secret
key punctured at x0 from one punctured at x1. In particular, this means that
using a secret key punctured at the input x to evaluate the PRF on x must return
a value that is unpredictable to the adversary, as opposed to a fixed constant value
or ⊥ as is done in existing (non-private) constrained PRF constructions.

While privacy is a very simple requirement to impose on constrained PRFs,
it is not clear how to adapt existing schemes to satisfy this property, even just
for puncturing. As a first attempt to constructing private puncturable PRFs, let
the PRF input space X be {0, 1}n, and consider the GGM tree-based PRF [41],
where the outputs are computed as the leaf nodes of a binary tree with the PRF
secret key occupying the root node. To puncture the GGM PRF at an input
x, the puncturing algorithm reveals the secret keys of all internal nodes that
are adjacent2 to the path from the root to the leaf node corresponding with x.
Certainly then, the GGM construction is not private—given the punctured key,
an adversary can easily reconstruct the path from the root to the punctured leaf
node, and hence, recover the input x.

However, the GGM PRF is a private constrained PRF for the class of length-�
prefix constraints, for an integer � ≤ n. This class refers to the family of con-
straints described by a prefix s ∈ {0, 1}�, where an input satisfies the constraint
2 Here, an internal node is “adjacent” to a path if it does not lie on the path but its

parent does.

496 D. Boneh et al.

if its first � bits match s. To constrain the GGM PRF on a prefix s, the constrain
algorithm reveals the secret key for the internal node associated with s in the
GGM tree. Then, to evaluate an input x using the constrained key, the evaluator
discards the first � bits of x and, beginning with the node associated with the
constrained key, uses the remaining bits of x to traverse down the GGM tree,
outputting the value associated with the resulting leaf node. Privacy follows from
the fact that, without the original root of the GGM tree, the secret key for the
internal node for s appears to be distributed uniformly and independently of s.

While the GGM PRF provides an efficient solution to privately constraining
PRFs under fixed-length prefix constraints, this is insufficient for the applica-
tions we have in mind. Instead, we construct private constrained PRFs for more
general classes of constraints: puncturing and general circuit constraints.

1.1 Applications of Private Constrained PRFs

To illustrate the power of private constrained PRFs we first describe a few nat-
ural applications, including private constrained MACs, watermarkable PRFs,
and searchable encryption. In Sect. 6.2, we also describe an application to sym-
metric deniable encryption.

Private Constrained MACs. Constrained MACs are the secret-key variant
of constrained signatures, which were first introduced by Boyle et al. [16]. In
a constrained MAC, the holder of the master secret key can issue constrained
secret keys to users. Given a constrained key, a user can only generate MACs
for messages that conform to some pre-specified constraint. Here, we consider
private constrained MACs, where the constraint is also hidden from the user.
Just as a secure PRF implies a secure MAC, a private constrained PRF yields
a private constrained MAC.

As a concrete example, suppose a company would like to enforce spending
limits on its employees. For business reasons, they do not want employees to
be able to learn their precise spending limit, which might reveal confidential
information about their position and rank within the company. For example, an
employee Alice might only be allowed to create spending requests for at most
$500. In this case, Alice’s company could issue a constrained key to Alice that
restricts her to only being able to compute MACs for messages which contain
her name and whose spending requests do not exceed $500. If Alice attempts to
create a MAC for a spending request that either exceeds $500 or is not bound to
her name, then the computed MAC will not pass verification. Moreover, privacy
of the constrained key ensures that Alice cannot tell if the MAC she constructed
is valid or not with respect to the master verification key. Hence, without inter-
acting with the verifier, Alice learns nothing about her exact spending limit. A
key advantage in this scenario is that the verifier, who is issued a constrained
key3 from the offline key distributor, is able to verify Alice’s requests without
knowing or learning anything about her spending limits.
3 The verifier’s constrained key is chosen so that the constraint is always satisfied.

Note that this is not the same as giving out the master verification key, which may
allow the verifier to learn Alice’s spending limits.

Constraining Pseudorandom Functions Privately 497

Watermarking PRFs. A watermarking scheme for programs [5,24,25,45,51]
consists of a marking algorithm, which takes as input a program and embeds
a “mark” in it, and a verification algorithm that takes an arbitrary program
and determines whether it has been marked. The requirement is that a marked
program should preserve the functionality of the original program on almost all
inputs, but still be difficult for an adversary to remove the watermark without
destroying the functionality. As discussed in [5,24,45], the marking algorithm
can be extended to embed a string into the program; correspondingly, the verifi-
cation algorithm would extract the embedded string when run on a watermarked
program. We say such schemes are message-embedding [24].

Hopper et al. [45] first introduced the formal notion of a secretly-verifiable
watermarking scheme, which was then discussed and adapted to the setting of
watermarking cryptographic programs in Barak et al. [5]. In a secretly-verifiable
scheme, only the holder of a secret key can test if a program is watermarked.
More recently, Cohen et al. [24] showed how to construct publicly-verifiable
watermarking for puncturable PRFs from indistinguishability obfuscation. In
the publicly-verifiable setting, anyone with the public parameters is able to test
whether a program is watermarked or not. Moreover, Cohen et al. noted that
watermarkable PRFs have applications in challenge-response authentication and
traitor tracing. We survey more related work in Sect. 6.1.

In our work, we show that starting with a private programmable PRF, we
obtain a watermarkable family of PRFs, where the associated watermarking
scheme is secretly-verifiable and supports message embedding. Intuitively, a pro-
grammable PRF is a puncturable PRF, except with the property that the holder
of the master secret key can additionally specify the value the constrained key
evaluates to at the punctured point. The privacy requirement stipulates that a
programmed key hides the point which was “reprogrammed.” We give the formal
definitions of this concept and a concrete construction based on indistinguisha-
bility obfuscation in the full version of this paper [10].

We now give an overview of our construction of a watermarkable PRF. For
simplicity, we describe our construction without message embedding. To mark
a key msk for a private programmable PRF F , the marking algorithm first
evaluates F (msk, ·) at several (secret) points z1, . . . , zd ∈ X to obtain values
t1, . . . , td. The marking algorithm then derives a pseudorandom pair (x, y) from
the values t1, . . . , td, and outputs a programmed key for msk with the value at
x replaced by y. To test whether a circuit C is marked or not, the verification
algorithm applies the same procedure as the marking algorithm to obtain a
test point (x′, y′). The test algorithm then outputs “marked” if C(x′) = y′ and
“unmarked” otherwise. Privacy is crucial here because if the adversary knew the
“reprogrammed” point x, it can trivially remove the watermark by producing a
circuit that simply changes the value at x. We show in Sect. 6.1 that this simple
construction not only satisfies our notion of secretly-verifiable watermarking,
but can also be easily extended to support embedding arbitrary messages as the
watermark.

498 D. Boneh et al.

Although our current constructions of private programmable PRFs rely on
indistinguishability obfuscation, we stress that advances in constructing private
programmable PRFs from weaker assumptions or with improved efficiency would
have implications in constructing watermarkable PRFs as well.

Searchable Encryption. In searchable symmetric encryption (SSE) [6,20,30,
40,55], a server holds a set of encrypted documents and a client wants to retrieve
all documents that match its query. For simplicity, suppose each document is
tagged, and the client wants to retrieve all documents with a particular tag. One
of the simplest SSE approaches is to compute and store an encrypted index on
the server. Specifically, fix a PRF F and a key msk. For each tag t, the encrypted
index maps the token F (msk, t) onto an encrypted list of document indices that
match the tag. To search for a tag t, a user who holds the PRF key msk can issue
a query F (msk, t). The server returns the encrypted list of matching documents.

We consider a new notion called restrictable SSE, where multiple parties
can search the database, and the database owner wants to prevent some users
from searching for certain tags. For example, suppose a company hosts all of
its documents in a central database and tags each document with the name
of its associated project. Moreover, suppose the company is developing a top-
secret project and wants to restrict access so that only employees working on the
project are able to search for documents related to the project. Using restrictable
SSE, the company can issue restricted search keys to all employees not working
on the project. Security of the constrained PRF ensures that an employee is
unable to search for documents pertaining to the secret project. If we moreover
assume that the tags are drawn from a small (polynomially-sized) domain (e.g.,
the English dictionary), privacy ensures that an employee cannot tell if a search
came back empty because she was not allowed to search for a particular tag, or
if there are actually no documents that match the tag. Privacy also ensures that
unauthorized employees cannot infer the name of the secret project from their
search keys.

By instantiating F with a private constrained PRF, we easily obtain a
restrictable SSE system. The construction is collusion resistant: if several
employees who individually cannot search for the tag t combine their search
keys, they still cannot search for t. However, it does become possible for them
to test whether a certain tag is in the intersection of their restricted sets.

Online/Offline 2-Server Private Keyword Search. In private keyword
search [23,32,53], a server holds a database D = {w1, . . . , wn} of keywords,
and a client wants to determine whether a specific keyword is in the database
without revealing the keyword to the server. This setting differs from searchable
encryption in that the server learns nothing about the client’s query, whereas in
the searchable encryption framework, information about the client’s query (such
as whether or not there are any matching results) could be leaked.

In the 2-server variant of this problem [15,39], the database is shared among
two servers. The client can send queries to each server independently, and then
combine the results of the queries to obtain the answer. We assume moreover that

Constraining Pseudorandom Functions Privately 499

the two servers are non-colluding. Recently, Boyle, Gilboa and Ishai [15,39] gave
a secure solution for the 2-server variant of the problem that is more efficient
than the solutions for 1-server private keyword search, and relies on weaker
cryptographic assumptions.

Using a private puncturable PRF, we can construct an online/offline version
of the 2-server keyword-search protocol. In an online/offline 2-server private
keyword search protocol, there is an “offline” server and an “online” server.
The offline server can process the search query before the client has decided
its query (for instance, the offline computation can be preformed in a separate
setup phase). When the client issues a search query, it only communicates with
the online server. The client then combines the response from both servers to
learn the result of the query. Our protocol can be seen as a hybrid between the
1-server and 2-server protocols. In the 1-server setting, there is no offline setup
component in the protocol, while in the 2-server setting, we require both servers
to be online during the query phase.

To implement online/offline 2-server private keyword search using private
puncturable PRFs, during the offline (setup) phase, the client generates a master
secret key msk for the private puncturable PRF, and sends msk to the offline
server. Let {0, 1}m be the range of the PRF. For each word wi ∈ D, the offline
server computes si = F (msk, wi), and returns s =

⊕n
i=1 si to the client. Note

that all computation in the offline phase is independent of the client’s search
query. In the online phase, after the client has determined its search query w∗,
she sends a key skw∗ punctured at w∗ to the online server. For each word wi ∈ D,
the online server evaluates skw∗ on wi to obtain a value ti. Finally, the online
server returns the value t =

⊕n
i=1 ti. To learn the result of the keyword search,

the client tests whether z = s ⊕ t is the all-zeros string 0m or not. If z = 0m,
then the client concludes w∗ /∈ D; otherwise, the client concludes that w∗ ∈ D.
To see why, consider the case where w∗ /∈ D, so w∗ �= wi for all i. By correctness
of the punctured PRF, si = ti for all i, in which case z = 0m. Conversely, if
w∗ = wi∗ for some i∗, then for all i �= i∗, si = ti. Moreover, security of the PRF
implies that si∗ �= ti∗ with high probability, and so z �= 0m.

For the security parameter λ and a dictionary of n keywords, the size of
the search tokens sent to the online and offline servers is O(λ log N). The size
of the responses from each server is O(λ) bits. For single-server private key-
word search, Ostrovsky and Skeith [53] show how to construct a private key-
word search protocol, using homomorphic encryption and a private informa-
tion retrieval (PIR) protocol. Instantiating the PIR protocol with the scheme
of Gentry and Ramzan [38] results in a 1-server private keyword search with
O(λ + log N) communication, which is optimal. We remark that although our
current constructions do not result in a more efficient private keyword search
protocol, improved constructions of private puncturable PRFs would have direct
implications for the online/offline 2-server variant of private keyword search.

500 D. Boneh et al.

1.2 Constructing Private Constrained PRFs

We formally define our notion of privacy in Sect. 2. In this section, we briefly
outline our constructions of private constrained PRFs. As a warmup, we begin
with a construction from indistinguishability obfuscation, and then we give an
overview of our two constructions from concrete assumptions on multilinear maps
for bit-fixing constraints and puncturing constraints.

A Construction from Indistinguishability Obfuscation. Indistinguishabil-
ity obfuscation (iO) [3–5,34,37,54,56] is a powerful primitive that has enabled a
number of new constructions in cryptography [14,34,54]. Informally, an indistin-
guishability obfuscator is a machine that takes as input a program and outputs
a second program with the identical functionality, but at the same time, hides
some details on how the original program works.

We first show how indistinguishability obfuscation can be used to construct
a private constrained PRF for general circuit constraints. Suppose F : K ×X →
Y is a PRF with master secret key msk ∈ K. We use F in conjunction with
iO to construct a private circuit-constrained PRF. We describe the constrain
algorithm. On input a circuit C, the constrain algorithm samples another secret
key sk ∈ K and outputs the obfuscation of the following program P :

“On input x, if C(x) = 1, output F (msk, x). Otherwise, output F (sk, x).”

In the above program, note that C, msk, and sk are all hard-coded into the
program. Let P̂ be the obfuscated program. Evaluation of the PRF using the
constrained key corresponds to evaluating the program P̂ (x). We see that on all
inputs x where C(x) = 1, P̂ (x) = F (msk, x), so correctness is immediate.

At a high level, the constrain algorithm generates a “fake” PRF key sk, and
the constrained key is just a program that either evaluates the “real” PRF or
the fake PRF, depending on the value of C(x). Since the adversary cannot dis-
tinguish between the outputs under the real PRF key from those under the
fake PRF key, the adversary cannot simply use the input-output behavior of the
obfuscated program to learn anything about C. Moreover, in Sect. 3, we show
that if the underlying PRF F is puncturable (not necessarily privately), the
indistinguishability obfuscation of the program does in fact hide the constrain-
ing circuit C. We note though that for general circuits, our security reduction
requires subexponential hardness of iO (and one-way functions). For restricted
classes of circuits, such as puncturing, however, we can obtain security from
polynomially-hard iO (and one-way functions).

Multilinear Maps. Although our construction from indistinguishability obfus-
cation is clean and simple, we treat it primarily as a proof-of-feasibility for private
constrained PRFs. For our two main constructions, we build private constrained
PRFs for more restrictive classes of constraints based on concrete assumptions
over multilinear maps.

Multilinear maps [11,28,29,33,36] have been successfully applied to many
problems in cryptography, most notably in constructing indistinguishability

Constraining Pseudorandom Functions Privately 501

obfuscation [2–4,34,37,56]. Unfortunately, a number of recent attacks [13,21,
22,26,27,46] have invalidated many of the basic assumptions on multilinear
maps. However, indistinguishability obfuscation is an example of a setting where
the adversary often does not have the necessary information to carry out these
attacks, and so some of the existing constructions are not known to be bro-
ken [31,35]. In our first construction from multilinear maps, we rely on the
Multilinear Diffie-Hellman (MDH) assumption [11,33] over prime-order mul-
tilinear maps. In our second construction, we rely on the Subgroup Decision
assumption [9,33] as well as a generalization which we call the Multilinear Diffie-
Hellman Subgroup Decision (MDHSD) assumption over composite-order multi-
linear maps.4 Our assumptions plausibly hold in existing multilinear map candi-
dates, notably the Garg et al. construction in the prime-order setting [33], and
the Coron et al. construction for the composite-order setting [28]. We also note
that starting from iO, it is also possible to construct multilinear maps where the
MDH assumption holds [1].

Two Constructions from Multilinear Maps. Using multilinear maps, we
give two constructions of private constrained PRFs: one for the class of bit-fixing
constraints, and the other for puncturing. A bit-fixing constraint is described
by a pattern s ∈ {0, 1, ?}n. An input x ∈ {0, 1}n satisfies the constraint if it
matches the pattern—that is, for each coordinate i, either si = ? or si = xi. Our
private bit-fixing PRF builds off of the Boneh-Waters bit-fixing PRF [12] based
on prime-order multilinear maps [11,33]. We give the full construction in Sect. 4.
In Sect. 5, we give the full construction of our privately puncturable PRF from
composite-order multilinear maps. Here, security and privacy are based on the
n-MDHSD and Subgroup Decision assumptions.

1.3 Related Work

Kiayias et al. [47] introduced a notion of policy privacy for delegatable PRFs.
In a delegatable PRF, a proxy can evaluate the PRF on a subset of its domain
by using a trapdoor derived from the master secret key, where the trapdoor
(constrained key) is constructed based on a policy predicate (circuit constraint)
which determines which values in the domain the proxy is able to compute the
PRF on. Here, policy privacy refers to the security property that the trapdoor
does not reveal the underlying policy predicate. The notion of policy privacy is
conceptually similar to our notion of privacy for constrained PRFs, except that
the delegatable PRFs which they construct are for policy predicates that describe
a consecutive range of PRF inputs. Moreover, this restriction is reflected in their
definition of policy privacy, and hence, their notion of privacy is incomparable to
ours. However, we note that their delegatable PRF constructions are GGM-based
and, thus, more efficient than our PRF constructions.

4 In the full version [10], we show this assumption holds in a generic multilinear map
model.

502 D. Boneh et al.

As discussed earlier, Boyle et al. [16] introduced the notion of constrained
signatures (which they call functional signatures). Here, in addition to the mas-
ter signing key, there are secondary signing keys for functions f which restrict
the signer to only being able to construct valid signatures for a range of messages
determined by f . They also proposed the notion of function privacy, which intu-
itively states that a signature constructed from a secondary signing key should
not reveal the function associated with the signing key, nor the message that the
function was applied to. However, critically, this notion of privacy does not pre-
vent the secondary signing key itself from revealing the function it corresponds
to; in this respect, their notion of function privacy is incomparable to our notion
of privacy for constrained PRFs.

In Sect. 6.1, we also survey the related work on cryptographic watermarking.

Private Puncturing and Distributed Point Functions. Recently, Boyle,
Gilboa and Ishai introduced the notion of a distributed point function (DPF) [15,
39], which are closely related to private puncturable PRFs. In a DPF, there are
two functions Gen and Eval. The function Gen takes as input a pair x, y ∈ {0, 1}∗

and outputs two keys k0 and k1, and Eval is defined such that Eval(k0, x′) ⊕
Eval(k1, x′) = 0|y| if x′ �= x, and Eval(k0, x) ⊕ Eval(k1, x) = y. The security of
the DPF stipulates that each of the keys individually appear to be distributed
independently of x and y. A DPF is similar to a private puncturable PRF in
that we can view k0 as the master secret key for a PRF and k1 as a constrained
key punctured at x. However, there are two significant differences: first, the keys
k0 and k1 need not be PRF keys (in the sense that Eval(k0, ·) and Eval(k1, ·)
need not be pseudorandom),5 and second, the keys k0 and k1 are generated
together depending on x, whereas in a puncturable PRF, the master secret key
is generated independently of x. We note though that a private puncturable PRF
can be used directly to construct a DPF: we simply let k0 be the master secret
key of the PRF and k1 be a key punctured at x.

2 Private Constrained PRFs

In this section, we first review some notational conventions that we use through-
out the work, along with the definition of a pseudorandom function (PRF). Then,
we define constrained PRFs and the notion of privacy.

2.1 Conventions

For an integer n, we write [n] to denote the set {1, . . . , n}. For a finite set S, we
write x

r←− S to denote that x is drawn uniformly at random from S. For two finite
sets S and T , we write Funs(S, T) to denote the set of all (well-defined) functions
f : S → T . Hence, if f

r←− Funs(S, T), then for every distinct input a ∈ S, the

5 Though this property is not explicitly required by a DPF, in existing construc-
tions [15,39], the functions Eval(k0, ·) and Eval(k1, ·) are individually pseudorandom.

Constraining Pseudorandom Functions Privately 503

value f(a) is distributed uniformly and independently in T . We say a function
f(λ) is negligible in the parameter λ, denoted as negl(λ), if f(λ) = o(1/λc) for
all c ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input. For two families of distributions D1 and D2,
we write D1 ≡ D2 if the two distributions are identical. We write D1

c≈ D2 if
the two distributions are computationally indistinguishable, that is, no efficient
algorithm can distinguish D1 from D2, except perhaps with negligible probability.

2.2 Pseudorandom Functions

We first review the definition of a pseudorandom function (PRF) [41]. Unless
otherwise noted, we will specialize the domain of our PRFs to {0, 1}n and the
range to {0, 1}m.

Definition 2.1 (Pseudorandom Function [41]). Fix the security parameter
λ. A PRF F : K × {0, 1}n → {0, 1}m with key space K, domain {0, 1}n, and
range {0, 1}m is secure if for all efficient algorithms A,

∣
∣
∣ Pr

[
k

r←− K : AF (k,·)(1λ) = 1
]
−

Pr
[
f

r←− Funs({0, 1}n, {0, 1}m) : Af(·)(1λ) = 1
]∣
∣
∣ = negl(λ).

We also review the definition of a constrained PRF [12,16,47]. Consider a
PRF F : K × {0, 1}n → {0, 1}m, and let msk be the master secret key for F .
In a constrained PRF, the holder of msk can derive keys sk for some circuit
C : {0, 1}n → {0, 1}, such that given sk, the evaluator can compute the PRF
on all inputs x ∈ {0, 1}n where C(x) = 1. More precisely, we have the following
definition.

Definition 2.2 (Constrained PRF [12,16,47]). A constrained PRF
for a circuit class C is a tuple of algorithms Π = (cPRF.Setup,
cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) over the input space {0, 1}n and
output space {0, 1}m, with the following properties:

– cPRF.Setup(1λ) → msk. On input the security parameter λ, the setup algo-
rithm cPRF.Setup outputs the master secret key msk.

– cPRF.Constrain(msk, C) → sk. On input the master secret key msk and a cir-
cuit C ∈ C, the constrain algorithm cPRF.Constrain outputs a secret key sk for
the circuit C.

– cPRF.ConstrainEval(sk, x) → y. On input a secret key sk, and an input x ∈
{0, 1}n, the constrained evaluation algorithm cPRF.ConstrainEval outputs an
element y ∈ {0, 1}m.

– cPRF.Eval(msk, x) → y. On input the master secret key msk and an input x ∈
{0, 1}n, the evaluation algorithm cPRF.Eval outputs an element y ∈ {0, 1}m.

504 D. Boneh et al.

Correctness. A constrained PRF is correct for a circuit class C if msk ←
cPRF.Setup(1λ), for every circuit C ∈ C and input x ∈ {0, 1}n such that
C(x) = 1, it is the case that

cPRF.ConstrainEval(cPRF.Constrain(msk, C), x) = cPRF.Eval(msk, x).

Security. We now describe two security properties for a constrained PRF. The
first property is the basic security notion for a constrained PRF and is adapted
from the definitions of Boneh and Waters [12]. This notion captures the property
that given several constrained keys as well as PRF evaluations at points of the
adversary’s choosing, the output of the PRF on points the adversary cannot com-
pute itself looks random. The second property, which we call privacy, captures
the notion that a constrained key does not reveal the associated constraining
function. Each security definition is accompanied by an experiment between a
challenger and an adversary, along with admissibility restrictions on the power
of the adversary.

Definition 2.3 (Experiment ExptcPRFb). For the security parameter λ ∈ N,
a family of circuits C, and a bit b ∈ {0, 1}, we define the experiment ExptcPRFb

between a challenger and an adversary A, which can make oracle queries of
the following types: constrain, evaluation, and challenge. First, the challenger
sets msk ← cPRF.Setup(1λ) and samples a function f

r←− Funs({0, 1}n, {0, 1}m)
uniformly at random. For b ∈ {0, 1}, the challenger responds to each oracle query
made by A in the following manner.

– Constrain oracle. On input a circuit C ∈ C, the challenger returns a con-
strained key sk ← cPRF.Constrain(msk, C) to A.

– Evaluation oracle. On input x ∈ {0, 1}n, the challenger returns y ←
cPRF.Eval(msk, x).

– Challenge oracle. On input x ∈ {0, 1}n, the challenger returns y ←
cPRF.Eval(msk, x) to A if b = 0, and y ← f(x) if b = 1.

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also output by ExptcPRFb . Let
Pr[ExptcPRFb (A) = 1] denote the probability that ExptcPRFb outputs 1 with A.

At a high level, we say that a constrained PRF is secure if no efficient adver-
saries can distinguish ExptcPRF0 from ExptcPRF1 . However, we must first restrict the
set of allowable adversaries. For example, an adversary that makes a constrain
query for a circuit C ∈ C and a challenge query for a point x ∈ {0, 1}n where
C(x) = 1 can trivially distinguish the two experiments. Hence, we first define an
admissibility criterion that precludes such adversaries.

Definition 2.4 (Admissible Constraining). We say an adversary is
admissible if the following conditions hold:

– For each constrain query C ∈ C and each challenge query y ∈ {0, 1}n,
C(y) = 0.

Constraining Pseudorandom Functions Privately 505

– For each evaluation query x ∈ {0, 1}n and each challenge query y ∈ {0, 1}n,
x �= y.

Definition 2.5 (Constrained Security). A constrained PRF Π is secure if
for all efficient and admissible adversaries A, the following quantity is negligible:

AdvcPRF[Π,A] def=
∣
∣
∣Pr[ExptcPRF0 (A) = 1] − Pr[ExptcPRF1 (A) = 1]

∣
∣
∣ .

Remark 2.6 (Multiple Challenge Queries). In our constructions of constrained
PRFs, it will be convenient to restrict the adversary’s power and assume that
the adversary makes at most one challenge query. As was noted by Boneh
and Waters [12], a standard hybrid argument shows that any constrained PRF
secure against adversaries that make a single challenge oracle query is also
secure against adversaries that make Q challenge oracle queries while only incur-
ring a 1/Q loss in advantage. Thus, this restricted definition is equivalent to
Definition 2.5.

Remark 2.7 (Adaptive Security). We say that a constrained PRF Π is selec-
tively secure if for all efficient adversaries A, the same quantity AdvcPRF[Π,A]
is negligible, but in the security game, the adversary first commits to its chal-
lenge query x ∈ {0, 1}n at the start of the experiment. If we do not require the
adversary to first commit to its challenge query, then we say that the scheme
is adaptively (or fully) secure. A selectively-secure scheme can be shown to be
fully secure using a standard technique called complexity leveraging [7] (at the
expense of a super-polynomial loss in the security reduction).

Privacy. In the privacy game, the adversary is allowed to submit two circuits
C0, C1 to the challenger. On each such query, it receives a PRF key constrained
to Cb for some fixed b ∈ {0, 1}. The adversary can also query the PRF at points of
its choosing, and its goal is to guess the bit b. We now give the formal definitions.

Definition 2.8 (Experiment Exptcprivb). For the security parameter λ ∈ N, a
family of circuits C, and a bit b ∈ {0, 1}, we define the experiment Exptcprivb

between a challenger and an adversary A, which can make evaluation and
challenge queries. First, the challenger obtains msk ← cPRF.Setup(1λ). For
b ∈ {0, 1}, the challenger responds to each oracle query type made by A in
the following manner.

– Evaluation oracle. On input x ∈ {0, 1}n, the challenger returns y ←
cPRF.Eval(msk, x).

– Challenge oracle. On input a pair of circuits C0, C1 ∈ C, the challenger
returns sk ← cPRF.Constrain(msk, Cb).

Eventually, A outputs a bit b′ ∈ {0, 1}, which is also output by ExptcPRFb . Let
Pr[Exptcprivb (A) = 1] denote the probability that Exptcprivb outputs 1.

506 D. Boneh et al.

Roughly speaking, we say that a constrained PRF is private if no efficient
adversary can distinguish Exptcpriv0 from Exptcpriv1 . As was the case with constrain-
ing security, when formulating the exact definition, we must preclude adversaries
that can trivially distinguish the two experiments.

Definition 2.9 (Admissible Privacy). Let C
(i)
0 , C

(i)
1 ∈ C be the pair of cir-

cuits submitted by the adversary on the ith challenge oracle query, and let d be
the total number of challenge oracle queries made by the adversary. For a circuit
C ∈ C, define S(C) ⊆ {0, 1}n where S(C) = {x ∈ {0, 1}n : C(x) = 1}. Then, an
adversary is admissible if:

1. For each evaluation oracle query with input x, and for each i ∈ [d], it is the
case that C

(i)
0 (x) = C

(i)
1 (x).

2. For every pair of distinct indices i, j ∈ [d],

S
(
C

(i)
0

)
∩ S

(
C

(j)
0

)
= S

(
C

(i)
1

)
∩ S

(
C

(j)
1

)
. (2.1)

Definition 2.10 (d-Key Privacy). A constrained PRF Π is (adaptively) d-
key private if for all efficient and admissible adversaries A that make d chal-
lenge oracle queries, the following quantity is negligible:

Advcpriv[Π,A] def=
∣
∣
∣Pr[Exptcpriv0 (A) = 1] − Pr[Exptcpriv1 (A) = 1]

∣
∣
∣ .

Furthermore, we say a constrained PRF is multi-key private if it is d-key pri-
vate for all d ∈ N.

Remark 2.11 (Admissibility Requirement). We remark that any non-admissible
adversary (Definition 2.9) can trivially win the privacy game if the constrained
PRF is secure (Definition 2.5). Thus, Definition 2.9 gives the minimal require-
ments for a satisfiable notion of multi-key privacy for constrained PRFs. To
see this, take an adversary A that makes two challenge queries (C(1)

0 , C
(1)
1) and

(C(2)
0 , C

(2)
1). Suppose that for some x, C

(1)
0 (x) = 1 = C

(2)
0 (x), but C

(1)
1 (x) = 1

and C
(2)
1 (x) = 0. Let sk1 and sk2 be the keys A receives from the challenger in

Exptcprivb . For i ∈ {1, 2}, the adversary computes zi = cPRF.ConstrainEval(ski, x).
When b = 0, correctness implies that z1 = z2. When b = 1, security of the
constrained PRF implies that z2 �= z1 with overwhelming probability. The claim
follows.

Remark 2.12 (Weaker Notions of Privacy). In some cases, we also consider a
weaker notion of privacy where the adversary is not given access to an evaluation
oracle in experiment Exptcprivb . While this can be a weaker notion of privacy (for
instance, in the case of d-key privacy for bounded d), in all of our candidate
applications, a scheme that satisfies this weaker notion suffices.

Puncturable PRFs. A puncturable PRF [12,16,47,54] is a special case of a
constrained PRF, where the constraining circuit describes a point function,

Constraining Pseudorandom Functions Privately 507

that is, each constraining circuit Cx∗ is associated with a point x∗ ∈ {0, 1}n,
and Cx∗(x) = 1 if and only if x �= x∗. More concretely, a puncturable
PRF is specified by a tuple of algorithms Π = (cPRF.Setup, cPRF.Puncture,
cPRF.ConstrainEval, cPRF.Eval), which is identical to the syntax of a constrained
PRF with the exception that the algorithm cPRF.Constrain is replaced with the
algorithm cPRF.Puncture.

– cPRF.Puncture(msk, x) → sk. On input the master secret key msk and an input
x ∈ {0, 1}n, the puncture algorithm cPRF.Puncture outputs a secret key sk.

The correctness and security definitions (for constrained security and privacy)
are analogous to those for private constrained PRFs.

3 Private Circuit Constrained PRFs from Obfuscation

In this section, we show how multi-key private circuit-constrained PRFs follow
straightforwardly from indistinguishability obfuscation and puncturable PRFs
(implied by one-way functions [12,16,41,47]). First, we review the notion of
indistinguishability obfuscation introduced by Barak et al. [5].

Definition 3.1 (Indistinguishability Obfuscation(iO) [5,34]). An indis-
tinguishability obfuscator iO for a circuit class {Cλ} is a uniform and efficient
algorithm satisfying the following requirements:

– Correctness. For all security parameters λ ∈ N, all circuits C ∈ Cλ, and all
inputs x, we have that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1.

– Indistinguishability. For all security parameters λ, and any two circuits
C0, C1 ∈ Cλ, if C0(x) = C1(x) for all inputs x, then for all efficient adversaries
A, we have that the distinguishing advantage AdviO,A(λ) is negligible:

AdviO,A(λ) = |Pr[A(iO(C0)) = 1] − Pr[A(iO(C1)) = 1]| = negl(λ).

For general circuit constraints, our construction will require the stronger
assumption that the indistinguishability obfuscator and puncturable PRF be
secure against subexponential-time adversaries. However, for more restrictive
circuit families, such as puncturing, our construction can be shown to be secure
assuming the more standard polynomial hardness of iO and the puncturable
PRF We provide a more detailed discussion of this in the full version [10]. Also
in the full version, we define the notion of a private programmable PRF and
show how to adapt our private circuit-constrained PRF to also obtain a private
programmable PRF from (polynomially-hard) iO and one-way functions.

Construction Overview. Our starting point is the circuit-constrained PRF by
Boneh and Zhandry [14, Construction 9.1]. In the Boneh-Zhandry construction,

508 D. Boneh et al.

the master secret key msk is a key for a puncturable PRF, and a constrained key
for a circuit C : {0, 1}n → {0, 1} is an obfuscation of the program that outputs
cPRF.Eval(msk, x) if C(x) = 1 and ⊥ otherwise. Because the program outputs ⊥
on inputs x where C(x) = 0, simply evaluating the PRF at different points x
reveals information about the underlying constraint. In our construction, we
structure the program so that on an input x where C(x) = 0, the program’s
output is the output of a different PRF. Intuitively, just by looking at the outputs
of the program, it is difficult to distinguish between the output of the real PRF
and the output of the other PRF. In Theorem 3.3, we formalize this intuition
by showing that our construction provides multi-key privacy.

Construction. We now describe our construction of a multi-key private circuit-
constrained PRF. Let iO be an indistinguishability obfuscator, and let ΠF =
(F.Setup,F.Puncture,F.ConstrainEval,F.Eval) be any puncturable (but not nec-
essarily private) PRF. Our multi-key private circuit-constrained PRF ΠioPRF =
(cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) is given as follows:

– cPRF.Setup(1λ). The setup algorithm outputs msk ← F.Setup(1λ).
– cPRF.Constrain(msk, C). First, the constrain algorithm computes msk′ ←

F.Setup(1λ). Then, it outputs an obfuscated program iO
(
P1

[
C,msk′,msk

])
,

where P1

[
C,msk′,msk

]
is the program shown in (Fig. 1).6

– cPRF.ConstrainEval(sk, x). The constrained evaluation algorithm outputs the
evaluation of the obfuscated program sk on x.

– cPRF.Eval(msk, x). The evaluation algorithm outputs F.Eval(msk, x).

Constants: a circuit C : {0, 1}n → {0, 1}, and master secret keys
msk0, msk1 for the puncturable PRF ΠF = (F.Setup,F.Puncture,
F.ConstrainEval,F.Eval).

On input x ∈ {0, 1}n:

1. Let b = C(x). Output F.Eval(mskb, x).

Fig. 1. The program P1 [C,msk0,msk1]

Correctness. By definition, the program P1[C,msk′,msk] outputs F.Eval
(msk, x) on all x ∈ {0, 1}n where C(x) = 1. Correctness of ΠioPRF immediately
follows from correctness of the indistinguishability obfuscator.

Security. We now state our security theorems, but defer their formal proofs to
the full version [10].
6 We pad the program P1 [C,msk′,msk] to the maximum size of any program that

appears in the hybrid experiments in the proofs of Theorem 3.2 and 3.3.

Constraining Pseudorandom Functions Privately 509

Theorem 3.2. Suppose iO is an indistinguishability obfuscator and ΠF is
a selectively-secure puncturable PRF. Then, ΠioPRF is selectively secure
(Definition 2.5).

Theorem 3.3. Suppose iO is a indistinguishability obfuscator, and ΠF is a
selectively-secure puncturable PRF, both secure against subexponential adver-
saries. Then, ΠioPRF is multi-key private (Definition 2.10).

We note that Theorem 3.3 only requires subexponentially-secure7 iO if the set
of challenge circuits {C

(j)
0 }j∈[d] and {C

(j)
1 }j∈[d] the adversary submits differs on

a super-polynomial number of points. In particular, this implies that ΠioPRF is a
private puncturable PRF assuming only polynomial hardness of iO and selective
security of ΠF. We discuss this in greater detail in the full version [10].

4 A Private Bit-Fixing PRF

In this section, we construct a constrained PRF for the class of bit-fixing circuits,
a notion first introduced in [12]. First, a bit-fixing string s is an element of
{0, 1, ?}n. We say a bit-fixing string s matches x ∈ {0, 1}n if for all i ∈ [n], either
si = xi or si = ?. We now define the class of bit-fixing circuits.

Definition 4.1 (Bit-Fixing Circuits [12]). For a circuit C : {0, 1}n →
{0, 1}, a string s ∈ {0, 1, ?}n is bit-fixing for C if C(x) = 1 on precisely the
inputs x ∈ {0, 1}n that s matches. The class of bit-fixing circuits Cbf is the
class of all circuits C : {0, 1}n → {0, 1} for which there exists a bit-fixing string
for C.

Our bit-fixing construction uses multilinear maps [11], which are a gener-
alization of bilinear maps [8,48,49]. While constructing ideal multilinear maps
remains an open problem, there have been several recent candidates of graded
encodings schemes [28,29,33,36], which are often a suitable substitute for ideal
multilinear maps. For ease of presentation, we describe our constructions using
the simpler abstraction of ideal multilinear maps. However, we note that we
can easily map our constructions to the language of graded encodings using the
same techniques as in [12, Appendix B]. We begin by defining multilinear maps
over prime-order groups. In the full version [10], we also recall the �-Multilinear
Diffie-Hellman assumption [11,33] over prime-order multilinear maps.

Definition 4.2 (Prime-Order Multilinear Map [11,28,29,33,36]). We
define a prime-order multilinear map to consist of a setup algorithm MMGen
along with a map function e, defined as follows.

– MMGen(1λ, 1�). The setup algorithm MMGen takes as input the security para-
meter λ and a positive integer �, and outputs a sequence of groups

−→
G =

(G1, . . . ,G�) each of prime order p (for a λ-bit prime p). The algorithm also
outputs canonical generators gi ∈ Gi for each i ∈ [�], and the group order p.

7 Specifically, we require that for all efficient adversaries A, the distinguishing advan-
tage AdviO,A(λ) defined in Definition 3.1 satisfies 2n · AdviO,A(λ) = negl(λ).

510 D. Boneh et al.

– e(ga1
1 , . . . , ga�

1). The map function e : (G1)� → G� takes as input � elements
from G1 and outputs an element in G� such that, for all a1, . . . , a� ∈ Zp,

e(ga1
1 , . . . , ga�

1) = ga1a2···a�

� .

Construction Overview. Our starting point is the bit-fixing PRF by Boneh
and Waters [12]. The Boneh-Waters bit-fixing PRF uses a symmetric multilinear
map. To provide context, we give a brief description of the Boneh-Waters con-
struction. Let {0, 1}n be the domain of the PRF, and let

−→
G = (G1, . . . ,Gn+1)

be a sequence of leveled multilinear groups of prime order p. For each i ∈ [n+1],
let gi be a canonical generator of Gi; for notational convenience, we will often
write g = g1. In the Boneh-Waters construction, they define the multilinear map
in terms of a collection of bilinear maps ei,j : Gi ×Gj → Gi+j for each i, j ∈ [n]
where i + j ≤ n + 1. The master secret key in the Boneh-Waters PRF consists
of exponents α, {di,0, di,1}i∈[n] ∈ Zp. For an input x ∈ {0, 1}n, the value of the

PRF at x is g
α
∏

i∈[n] di,xi

n+1 . A constrained key for a pattern s ∈ {0, 1, ?}n consists

of a “pre-multiplied” element g
α
∏

i∈S di,si

1+|S| , where S ⊆ [n] is the subset of indices

where si �= ?, along with components g
di,b

1 for i /∈ S and b ∈ {0, 1}. While this
construction is selectively secure [12], it does not satisfy our notion of privacy. By
simply inspecting the constrained key and seeing which elements g

di,b

1 are given
out, an adversary can determine the indices si in the pattern s where si = ?.

A first attempt to make the Boneh-Waters construction private is to publish
gα along with a complete set of group elements {gd∗

i,0 , gd∗
i,1}i∈[n] where d∗

i,b = di,b

if si = ? or si = b, and otherwise, set d∗
i,b

r←− Zp. By construction, this only
permits evaluation of the PRF at the points x that match s. However, this does
not yield a secure constrained PRF, since an adversary that sees more than one
constrained key can mix and match components from different keys, and learn
the value of the PRF at points it could not directly evaluate given any of the
individual keys. To prevent mixing and matching attacks in our construction,
we rerandomize the elements in the constrained key. We give our construction
below.

Construction. For simplicity, we describe the algorithm cPRF.Constrain as tak-
ing as input the master secret key msk and a bit-fixing string s ∈ {0, 1, ?}n

rather than a circuit C ∈ C. We define ΠbfPRF = (cPRF.Setup, cPRF.Constrain,
cPRF.ConstrainEval, cPRF.Eval) as follows.

– cPRF.Setup(1λ). The setup algorithm runs MMGen(1λ, 1n+1) and outputs a
sequence of groups

−→
G = (G1, . . . ,Gn+1) each of prime order p, along with

generators gi ∈ Gi for all i ∈ [n+1]. As usual, we set g = g1. Next, for i ∈ [n],
it samples (di,0, di,1)

r←− Z
2
p, along with a random α

r←− Zp. It outputs

msk =
(
g, gn+1, α, {di,0, di,1}i∈[n]

)
. (4.1)

Constraining Pseudorandom Functions Privately 511

– cPRF.Constrain(msk, s). Let msk be defined as in Eq. (4.1) and s = s1s2 · · · sn.
For i ∈ [n] and b ∈ {0, 1}, the constrain algorithm samples n random elements
β1 . . . , βn

r←− Zp uniformly and independently, along with n random elements
r1, . . . , rn

r←− Zp. Define β0 = (β1β2 · · · βn)−1. For each i ∈ [n], define

(Di,0,Di,1) =

⎧
⎪⎨

⎪⎩

(
gdi,0 , gri

)
, if si = 0

(
gri , gdi,1

)
, if si = 1

(
gdi,0 , gdi,1

)
, if si = ?

.

It outputs
sk =

(
(gα)β0 ,

{
(Di,0)βi , (Di,1)βi

}
i∈[n]

)
. (4.2)

– cPRF.ConstrainEval(sk, x). Write sk =
(
gσ, {gμi,0 , gμi,1}i∈[n]

)
, and let x =

x1x2 · · · xn. The constrained evaluation algorithm computes and outputs y =
e(gσ, gμ1,x1 , . . . , gμn,xn).

– cPRF.Eval(msk, x). Let msk be defined as in Eq. (4.1), and let x = x1x2 · · · xn.

The evaluation algorithm outputs y = g
α
∏

i∈[n] di,xi

n+1 .

Correctness and Security. We now state the correctness and security theo-
rems for ΠbfPRF, but defer the formal proofs to the full version [10].

Theorem 4.3. The bit-fixing PRF ΠbfPRF is correct.

Theorem 4.4. Under the (n + 1)-MDH assumption, the bit-fixing PRF ΠbfPRF

is selectively secure.

Theorem 4.5. The bit-fixing PRF ΠbfPRF is (unconditionally) 1-key private in
the model where the adversary does not have access to an evaluation oracle.

5 A Private Puncturable PRF

Recall from Sect. 2 that a puncturable PRF is a special class of constrained
PRFs where the constraint can be described by a point function that is 1 every-
where except at a single point s ∈ {0, 1}n. In this section, we give a construction
of a private puncturable PRF using multilinear maps over a composite-order
ring. We give an adaptation of Definition 4.2 to the composite-order setting.
In the full version [10], we review the standard Subgroup Decision assump-
tion [9,33] over composite-order groups, and a new assumption which we call the
�-Multilinear Diffie-Hellman Subgroup Decision (MDHSD) assumption. Also in
the full version, we show that the �-MDHSD assumption holds in a generic model
of composite-order multilinear maps, provided that factoring is hard.

Definition 5.1 (Composite-Order Multilinear Map [11,28,29]). We
define a composite-order multilinear map to consist of a setup algorithm
CMMGen along with a map function e, defined as follows:

512 D. Boneh et al.

– CMMGen(1λ, 1�). The setup algorithm CMMGen takes as input the security
parameter λ and a positive integer �, and outputs a sequence of groups

−→
G =

(G1, . . . ,G�) each of composite order N = pq (where p, q are λ-bit primes).
For each Gi, let Gp,i and Gq,i denote the order-p and order-q subgroups of
Gi, respectively. Let gp,i be a canonical generator of Gp,i, gq,i be a canonical
generator of Gq,i, and gi = gp,igq,i. In addition to

−→
G , the algorithm outputs

the generators gp,1, . . . , gp,�, gq,1, . . . , gq,�, and the primes p, q.
– e(ga1

1 , . . . , ga�
1). The map function e : (G1)� → G� takes as input � elements

from G1 and outputs an element in G� such that, for all a1, . . . , a� ∈ ZN ,

e(ga1
1 , . . . , ga�

1) = ga1a2···a�

� .

Construction Overview. Our construction builds on the Naor-Reingold
PRF [50], and uses composite-order multilinear maps of order N = pq (Defi-
nition 5.1). In our description, we use the same notation for group generators
as in Definition 5.1. The master secret key in our construction is a collection
of exponents {di,0, di,1}i∈[n] where each di,b for all i ∈ [n] and b ∈ {0, 1} is
random over ZN . The value of the PRF at a point x ∈ {0, 1}n is the element

g
∏

i∈[n] di,xi
p,n ∈ Gp,n.

Suppose we want to puncture at a point s = s1 · · · sn ∈ {0, 1}n. Our con-
strained key consists of a collection of points {Di,0,Di,1}i∈[n]. For b �= si, we set

Di,b = g
di,b

p,1 ∈ Gp,1 to be an element in the order-p subgroup, and for b = si,

we set the element Di,b = g
di,b

p,1 g
di,b

q,1 ∈ G1 to be an element in the full group. To
evaluate the PRF at a point x ∈ {0, 1}n using the constrained key, one applies
the multilinear map to the components Di,xi

in the constrained key. By mul-
tilinearity and the fact that the order-p and order-q subgroups are orthogonal,
if any of the inputs to the multilinear map lie in the Gp,1 subgroup, then the
output will be an element of the Gp,n subgroup. Thus, as long as there exists
some index i ∈ [n] such that xi �= si, the constrained key will evaluate to the
real PRF output. If however x = s, then the constrained key on x will evaluate
to an element of the full group Gn. We show in Theorem 5.3 that under the
n-MDHSD assumption, this element hides the true value of the PRF at x, which
gives puncturing security. Moreover, since the constrained key is just a collection
of random elements in either Gp,1 or in G1, the scheme is 1-key private under
the Subgroup Decision assumption (Theorem 5.4).

Construction. For simplicity in our description, we describe the cPRF.Constrain
algorithm as taking as input the master secret key msk and a point s ∈ {0, 1}
to puncture rather than a circuit C. We define ΠpuncPRF = (cPRF.Setup,
cPRF.Puncture, cPRF.ConstrainEval, cPRF.Eval) as follows.

– cPRF.Setup(1λ). The setup algorithm runs CMMGen(1λ, 1n) and outputs a
sequence of groups

−→
G = (G1, . . . ,Gn), each of composite order N = pq, along

with the factorization of N , and the generators gp,i, gq,i ∈ Gi of the order-p
and order-q subgroups of Gi, respectively for all i ∈ [n]. Let g1 = gp,1gq,1 be

Constraining Pseudorandom Functions Privately 513

the canonical generator of G1. Finally, the setup algorithm samples 2n random
elements (d1,0, d1,1), . . . , (dn,0, dn,1)

r←− Z
2
N , and outputs the following master

secret key msk:

msk =
(
p, q, g1, gp,1, gp,n, {di,0, di,1}i∈[n]

)
(5.1)

– cPRF.Puncture(msk, s ∈ {0, 1}n). Write s = s1s2 · · · sn. Let g1 = gp,1gq,1. For
each i ∈ [n], define

(Di,0,Di,1) =

{
(gdi,0

1 , g
di,1
p,1), if si = 0

(gdi,0
p,1 , g

di,1
1), if si = 1

.

The algorithm then outputs the constrained key sk = {Di,0,Di,1}i∈[n].
– cPRF.ConstrainEval(sk, x). Write sk as {Di,0,Di,1}i∈[n], and x = x1x2 · · · xn.

The constrained evaluation algorithm outputs y = e(D1,x1 , . . . , Dn,xn
).

– cPRF.Eval(msk, x). Let msk be defined as in Eq. (5.1), and x = x1x2 · · · xn.

The evaluation algorithm outputs y = g
∏

i∈[n] di,xi
p,n .

Correctness and Security. We now state the correctness and security theo-
rems, but defer the formal analysis to the full version [10].

Theorem 5.2. The puncturable PRF ΠpuncPRF is correct.

Theorem 5.3. Under the n-MDHSD assumption, the puncturable PRF
ΠpuncPRF is selectively secure.

Theorem 5.4. Under the Subgroup Decision assumption, the puncturable PRF
ΠpuncPRF is 1-key private in the model where the adversary does not have access
to an evaluation oracle.

6 Applications

In Sect. 1.1, we outlined several applications of private constrained PRFs.
Several of our applications (private constrained MACs, restrictable SSE, and
online/offline 2-server private keyword search) follow readily from our defini-
tions of private constrained PRFs, and so we do not elaborate further on them.
In this section, we give a more formal treatment of using private constrained
PRFs to build secretly-verifiable message-embedding watermarking of PRFs and
symmetric deniable encryption.

6.1 Watermarking PRFs

In this section, we show how to construct watermarkable PRFs from private
programmable PRFs.8 The watermarking scheme we give is secretly-verifiable
8 Intuitively, a programmable PRF is the same as a puncturable PRF except that the

holder of the master secret key can also program the value at the punctured point.
We give a formal definition of programmable PRFs in the full version [10].

514 D. Boneh et al.

and supports message embedding [24], where the marking algorithm can embed a
string into the program that can later be extracted by the verification algorithm.
We first introduce some definitions for unremovability and unforgeability. The
unremovability definitions are adapted from the corresponding definition in [24]
while the unforgeability definitions are adapted from that in [25]. We then show
how to construct a watermarkable PRF from any private programmable PRF.
Finally, we conclude with a survey of related work.

Definition 6.1 (Watermarkable Family of PRFs [24, adapted]). For the
security parameter λ and a message space {0, 1}t, a secretly-verifiable message-
embedding watermarking scheme for a PRF with key-space K is a tuple of algo-
rithms Π = (WM.Setup,WM.Mark,WM.Verify) with the following properties.

– WM.Setup(1λ) → msk. On input the security parameter λ, the setup algorithm
outputs the watermarking secret key msk.

– WM.Mark(msk,m) → (k,C). On input the watermarking secret key msk and
a message m ∈ {0, 1}t, the mark algorithm outputs a PRF key k ∈ K and a
marked circuit C.

– WM.Verify(msk, C ′) → m. On input the master secret key msk and an arbitrary
circuit C ′, the verification algorithm outputs a string m ∈ {0, 1}t ∪ {⊥}.

Definition 6.2 (Circuit Similarity). Fix a circuit class C on n-bit inputs.
For two circuits C,C ′ ∈ C and for a non-decreasing function f : N → N, we
write C ∼f C ′ to denote that the two circuits agree on all but an 1/f(n) fraction
of inputs. More formally, we define

C ∼f C ′ ⇐⇒ Pr
x

r←−{0,1}n

[C(x) �= C ′(x)] ≤ 1/f(n).

We also write C �∼f C ′ to denote that C and C ′ differ on at least a 1/f(n)
fraction of inputs.

Definition 6.3 (Correctness ([24, adapted])). Fix the security parameter
λ. A watermarking scheme for a PRF with key-space K and domain {0, 1}n

is correct if for all messages m ∈ {0, 1}t, msk ← WM.Setup(1λ), (k,C) ←
WM.Mark(msk,m), we have that

– The key k is uniformly distributed over the key-space K of the PRF.
– C(·) ∼f F (k, ·), where 1/f(n) = negl(λ).
– Pr[WM.Verify(msk, C) = m] with overwhelming probability.

Watermarking Security. We define watermarking security in the context of
an experiment Exptwm between a challenger and an adversary A, which can make
marking oracle and challenge oracle queries.

Definition 6.4 (Experiment Exptwm). First, the challenger samples msk ←
WM.Setup(1λ), and the challenger then responds to each oracle query made by
A in the following manner.

Constraining Pseudorandom Functions Privately 515

– Marking oracle. On input a message m ∈ {0, 1}t, the challenger returns the
pair (k,C) ← WM.Mark(msk,m) to A.

– Challenge oracle. On input a message m ∈ {0, 1}t, the challenger computes
(k,C) ← WM.Mark(msk,m) but only returns C to A.

Eventually, A outputs a circuit C ′, and the challenger computes and outputs
WM.Verify(msk, C ′), which is also the output of the experiment, denoted as
Exptwm(A).

Definition 6.5 (Unremoving Admissibility). An adversary A is unre-
moving admissible if A only queries the challenge oracle once, and C(·) ∼f

C ′(·), where C is the output of the challenge oracle query, C ′ is the output of A,
and 1/f(n) = negl(λ).

Definition 6.6 (Unremovability). A watermarking scheme Π is unremov-
able if for all efficient and unremoving admissible adversaries A, if m ∈ {0, 1}t

is the message submitted by A to the challenge oracle in Exptwm, the probability
Pr[Exptwm(A) �= m] is negligible.

Definition 6.7 (δ-Unforging Admissibility). We say an adversary A is δ-
unforging admissible if A does not make any challenge oracle queries, and
for all i ∈ [Q], Ci(·) �∼f C ′(·), where Q is the total number of marking queries
the adversary makes, Ci is the output of the marking oracle on the ith query, C ′

is the circuit output by the adversary, and 1/f(n) ≥ δ for all n ∈ N.

Definition 6.8 (δ-Unforgeability). We say a watermarking scheme Π is δ-
unforgeable if for all efficient and δ-unforging admissible adversaries A, the
probability Pr[Exptwm(A) �= ⊥] is negligible.

Construction. Fix the security parameter λ, positive integers n, �, t ≥ λ,
and a positive real value δ < 1, such that d = λ/δ = poly(λ). Let F :
K × ({0, 1}� × {0, 1}t)d → {0, 1}n × {0, 1}� × {0, 1}t be a PRF, and let
Πpprf = (pPRF.Setup, pPRF.Program, pPRF.ProgramEval, pPRF.Eval) be a pro-
grammable PRF with input space {0, 1}n and output space {0, 1}� × {0, 1}t.
We construct a watermarking scheme Πwm = (WM.Setup,WM.Mark,WM.Verify)
for the PRF Πpprf as follows:

– WM.Setup(1λ). The setup algorithm chooses k
r←− K and (z1, . . . , zd)

r←−
({0, 1}n)d uniformly at random and outputs msk = (k, z1, . . . , zd).

– WM.Mark(msk,m). The mark algorithm first parses msk = (k, z1, . . . , zd). It
generates k′ ← pPRF.Setup(1λ), and then computes the point (x, y, τ) =
F (k, (pPRF.Eval(k′, z1), . . . , pPRF.Eval(k′, zd))) and v = m ⊕ τ . Then, it com-
putes skk ← pPRF.Program(k′, x, (y, v)) and outputs (k′, C), where C(·) =
pPRF.ProgramEval(skk, ·).

– WM.Verify(msk, C). The verification algorithm first parses msk =
(k, z1, . . . , zd) and then computes (x, y, τ) = F (k, (C(z1), . . . , C(zd))). It then
sets (y′, v) = C(x) and outputs v ⊕ τ if y = y′, and ⊥ otherwise.

516 D. Boneh et al.

We state our correctness and security theorems here, but defer their proofs to
the full version [10].

Theorem 6.9. If F is a secure PRF and Πpprf is a programmable PRF, then
the watermarking scheme Πwm is correct.

Theorem 6.10. If F is a secure PRF and Πpprf is a private programmable PRF,
then the watermarking scheme Πwm is unremovable.

Theorem 6.11. If F is a secure PRF and Πpprf is a programmable PRF, then
for δ = 1/poly(λ), the watermarking scheme Πwm is δ-unforgeable.

Related Work. Recently, Cohen et al. [24] showed how to construct publicly-
verifiable watermarking for puncturable PRFs from indistinguishability obfusca-
tion. They pursue the notion of approximate functionality-preserving for water-
marking, where the watermarked program agrees with the original program on
most inputs. Previously, Barak et al. [5] showed that assuming iO, perfectly
functionality-preserving watermarking is impossible.

Cohen et al. [25] gave a construction from iO which achieves publicly-
verifiable watermarking for relaxed notions of unremovability and unforgeability,
namely where the adversary can only query the marking oracle before receiving
the challenge program in the unremovability game and moreover, is only allowed
to query the challenge oracle once (lunchtime unremovability). In addition, the
adversary must submit a forged program which differs on the same set of inputs
with respect to all programs submitted to the mark oracle in the unforgeability
game.

In a concurrent work to [25], Nishimaki and Wichs [51] considered a relaxed
notion of watermarking security for message-embedding schemes by considering
“selective-message” security, where the adversary must commit to the message
to be embedded into the challenge program before interacting with the mark
oracle. This limitation is removed in their subsequent work [24].

Comparison to Previous Works. In previous constructions of watermarkable
PRFs [24,25,51], the authors show how to watermark any family of puncturable
PRFs. In contrast, our construction gives a family of watermarkable PRFs from
private programmable PRFs. In our construction, we also consider a slightly
weaker version of the mark oracle which takes as input a message and outputs a
random program that embeds the message. This is a weaker notion of security
than providing the adversary access to a marking oracle that take as input an
(adversarially-chosen) program and a message and outputs a watermarked pro-
gram with the embedded message.9 In addition, we consider secretly-verifiable
watermarking constructions while Cohen et al. and Nishimaki and Wichs focus
on publically-verifiable constructions. However, despite these limitations, we note

9 The reason for this stems from the fact that we require PRF security in our security
reductions, which cannot be guaranteed when the PRF key is chosen adversarially
(as opposed to randomly).

Constraining Pseudorandom Functions Privately 517

that the family of watermarkable PRFs we construct are still sufficient to instan-
tiate the motivating applications for watermarkable PRFs by Cohen et al. [24].
In our model, we are able to achieve full security for unremovability as well as
strong unforgeability.

6.2 Symmetric Deniable Encryption

The notion of deniable encryption was first introduced by Canetti et al. [18].
Informally speaking, a deniable encryption scheme allows a sender and receiver,
after exchanging encrypted messages, to later on produce either fake random-
ness (in the public-key setting), or a fake decryption key (in the symmetric-key
setting) that opens a ciphertext to another message of their choosing. Of course,
the fake randomness or decryption key that is constructed by this “deny” algo-
rithm should look like legitimately-sampled randomness or an honestly-generated
decryption key.

Recently, Sahai and Waters [54] used indistinguishability obfuscation [4,5,
34,37,54,56] to give the first construction of public-key deniable encryption that
achieves the security notions put forth by Canetti et al.10 In all prior construc-
tions of deniable encryption, the adversary is able to distinguish real randomness
from fake randomness with advantage 1/n, where n roughly corresponds to the
length of a ciphertext in the scheme [18].

Surprisingly, the machinery of private puncturable PRFs provides a direct
solution to a variant of symmetric deniable encryption. In the symmetric setting,
we assume that an adversary has intercepted a collection of ciphertexts c1, . . . , cn

and asks the sender to produce the secret key to decrypt this collection of mes-
sages. The deniable encryption scheme that we construct enables the sender
to produce a fake secret key sk that looks indistinguishable from an honestly
generated encryption key, and yet, will only correctly decrypt all but one of the
intercepted ciphertexts.11 In our particular construction, the sender (or receiver)
has a trapdoor that can be used to deny messages. Our framework is similar to
the flexibly deniable framework where there are separate key-generation and
encryption algorithms [18,52] for so-called “honest” encryption and “dishonest”
encryption. A second difference in our setting is that we only support denying
to a random message rather than an arbitrary message of the sender’s choos-
ing. Thus, our scheme is better-suited for scenarios where the messages being
encrypted have high entropy (e.g., cryptographic keys).

In this section, we give a formal definition of symmetric deniable encryption
adapted from those of Canetti et al. [18]. We then give a construction of our vari-
ant of symmetric deniable encryption from private puncturable PRFs. Finally,
we conclude with a brief survey of related work in this area.
10 In fact, their construction achieves the stronger notion of publicly deniable encryp-

tion where the sender does not have to remember the randomness it used to construct
a particular ciphertext when producing fake randomness.

11 It is important to define our notions with respect to multiple intercepted messages.
Otherwise, the one-time-pad is a trivial (one-time) symmetric deniable encryption
scheme.

518 D. Boneh et al.

Definition 6.12 (Symmetric Deniable Encryption [18, adapted]). A
symmetric deniable encryption scheme is a tuple of algorithms ΠDE = (DE.Setup,
DE.Encrypt,DE.Decrypt,DE.Deny) defined over a key space K, a message space
M and a ciphertext space C with the following properties:

– DE.Setup(1λ) → (dk, sk). On input the security parameter λ, the setup algo-
rithm outputs a secret key sk ∈ K and a denying key dk.

– DE.Encrypt(sk,m) → ct. On input the secret key sk ∈ K and a message m ∈
M, the encryption algorithm outputs a ciphertext ct ∈ C.

– DE.Decrypt(sk, ct) → m. On input a secret key sk ∈ K and a ciphertext ct ∈ C,
the decryption algorithm outputs a message m ∈ M.

– DE.Deny(dk, ct) → sk′. On input a denying key dk and a ciphertext ct, the
deny algorithm outputs a key sk′ ∈ K.

The first property we require is that the tuple of algorithms (DE.Setup,
DE.Encrypt,DE.Decrypt,DE.Deny) should satisfy the usual correctness and
semantic security requirements for symmetric encryption schemes [42].

Definition 6.13 (Correctness). A symmetric deniable encryption scheme
ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,DE.Deny) is correct if for all mes-
sages m ∈ M, with (sk, dk) ← DE.Setup(1λ), we have that

Pr [DE.Decrypt(sk,DE.Encrypt(sk,m)) �= m] = negl(λ),

where the probability is taken oven the randomness of DE.Setup and DE.Encrypt.

Definition 6.14 (Semantic Security [42, adapted]). A symmetric deni-
able encryption scheme ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,DE.Deny)
is semantically secure if for all efficient adversaries A and (sk, dk) ←
DE.Setup(1λ),

∣
∣
∣Pr

[
AO0(sk,·,·)(1λ) = 1

]
− Pr

[
AO1(sk,·,·)(1λ)

]∣
∣
∣ = negl(λ),

where for b ∈ {0, 1}, Ob(sk, ·, ·) is an encryption oracle that takes as input two
messages m0,m1 ∈ M and outputs the ciphertext DE.Encrypt(sk,mb).

Finally, we define the notion of deniability for a symmetric deniable encryp-
tion scheme. Our notion is similar to that defined in Canetti et al. [18, Def-
inition 4]. Let m1, . . . ,mn be a collection of messages, and let ct1, . . . , ctn be
encryptions of these messages under a symmetric key sk. Suppose without loss
of generality that the sender wants to deny to message mn. Then, the fake
secret key sk′ output by DE.Deny should be such that the joint distribution
(sk′, ct1, . . . , ctn) of the fake secret key and the real ciphertexts should look
indistinguishable from the joint distribution (sk, ct1, . . . , ctn−1, ct

∗) of the real
secret key and the real ciphertexts with ctn substituted for an encryption ct∗

of a random message. Our definition captures both the property that the fake
secret key looks indistinguishable from a legitimately-generated secret key and
that the fake secret key does not reveal any additional information about the
denied message mn beyond what the adversary could already infer. We now
proceed with the formal security definition.

Constraining Pseudorandom Functions Privately 519

Definition 6.15 (Experiment ExptDE
b). For the security parameter λ ∈ N,

we define the experiment ExptDE
b between a challenger and an adversary A as

follows:

1. The challenger begins by running (sk, dk) ← DE.Setup(1λ).
2. The adversary A chooses a tuple of messages (m1, . . . ,mq) ∈ Mq and an

index i∗ ∈ [q]. It gives (m1, . . . ,mq) and i∗ to the challenger.
3. For each i ∈ [q], the challenger computes cti ← DE.Encrypt(sk,mi). Then,

depending on the bit b, the challenger does the following:
– If b = 0, the challenger first runs sk′ ← DE.Deny(dk, cti∗), and then sends(

sk′, {cti}i∈[q]

)
to the adversary.

– If b = 1, the challenger chooses a random message m∗ r←− M, and com-
putes ct∗ ← DE.Encrypt(sk,m∗). It sends

(
sk, {cti}i�=i∗ ∪ {ct∗}

)
to the

adversary.
4. At the end of the experiment, the adversary outputs a bit b′ ∈ {0, 1}, which

is the output of the experiment. Let Pr[ExptDE
b (A) = 1] denote the probability

that adversary A outputs 1 in experiment ExptDE
b .

Definition 6.16. A symmetric deniable encryption scheme ΠDE = (DE.Setup,
DE.Encrypt,DE.Decrypt,DE.Deny) is deniable if for all efficient adversaries A,

∣
∣
∣Pr[ExptDE

0 (A) = 1] − Pr[ExptDE
1 (A) = 1]

∣
∣
∣ = negl(λ).

Construction. We now describe our construction of a symmetric deniable
encryption scheme from a private puncturable PRF (such as the one from
Sect. 5). Let Πcprf = (cPRF.Setup, cPRF.Puncture, cPRF.ConstrainEval,
cPRF.Eval) be a private puncturable PRF with key space K, domain {0, 1}n and
range {0, 1}�. We use Πcprf to build a symmetric deniable encryption scheme
ΠDE = (DE.Setup,DE.Encrypt,DE.Decrypt,DE.Deny) with key space K and mes-
sage space {0, 1}� as follows:

– DE.Setup(1λ). On input the security parameter λ, run msk ← cPRF.Setup(1λ)
to obtain the master secret key for the puncturable PRF. Choose a random
point x

r←− {0, 1}n and run skx ← cPRF.Puncture(msk, x) to obtain a punctured
key. Set the symmetric key to sk = skx and the denying key dk = msk. Output
(sk, dk).

– DE.Encrypt(sk,m). On input the symmetric key sk and a message m ∈ {0, 1}�,
choose a random value r

r←− {0, 1}n and output the pair

(r, cPRF.ConstrainEval(sk, r) ⊕ m).

– DE.Decrypt(sk, ct). On input the symmetric key sk and a ciphertext ct =
(ct0, ct1), output cPRF.ConstrainEval(sk, ct0) ⊕ ct1.

– DE.Deny(dk, ct). On input the denying key dk = msk and a ciphertext ct =
(ct0, ct1), output cPRF.Puncture(msk, ct0).

520 D. Boneh et al.

Correctness and Security. We state our correctness and security theorems
here, but defer their proofs to the full version [10].

Theorem 6.17. The deniable encryption scheme ΠDE is correct.

Theorem 6.18. If Πcprf is a secure PRF, then ΠDE is semantically secure.

Theorem 6.19. If Πcprf is a 1-key private, selectively-secure PRF, then ΠDE is
deniable (Definition 6.16).

Related Work. In their original paper, Canetti et al. also propose a relaxed
definition of deniable encryption called flexibly deniable encryption. In a flexibly
deniable encryption scheme, there are two separate versions of the setup and
encryption algorithms: the “honest” version and the “dishonest” version. The
guarantee is that if a user encrypts a message m using the dishonest encryption
algorithm to obtain a ciphertext ct, it is later able to produce randomness r that
makes it look as if ct is an honest encryption of some arbitrary message m′ under
randomness r. Using standard assumptions, Canetti et al. give a construction
of a sender-deniable flexibly deniable encryption scheme trapdoor permutations:
that is, a scheme that gives the sender the ability to later fake the randomness
for a particular ciphertext. O’Neill et al. [52] later extend these ideas to con-
struct a secure flexibly bideniable encryption scheme from lattices. A bideniable
encryption scheme is one that allows both the sender and the receiver to fake
randomness for a particular message. We note that in a flexibly deniable encryp-
tion scheme, only ciphertexts generated via the “dishonest” algorithms can later
be opened as honestly-generated ciphertexts of a different message.

Canetti et al. also introduce the notion of deniable encryption with pre-
planning. In this setting, the sender can commit (“pre-plan”) to deny a message
at a later time. The authors show that in the pre-planning model, there are
trivial constructions of symmetric deniable encryption schemes if the ciphertext
length is allowed to grow with the number of possible openings of a particular
message. We note that our construction does not require pre-planning.

There are several differences between our definitions and those of Canetti et
al. that we note here. Let ci be the ciphertext that the sender chooses to deny.
First, unlike the definitions proposed in Canetti et al., the sender cannot program
the key sk so that ci decrypts to an arbitrary message of its choosing. Rather,
ci will decrypt to a uniformly random message under the fake key sk′. Thus,
our deniable encryption scheme is best suited for scenarios where the messages
being encrypted are drawn uniformly from a message space, for instance, when
encrypting cryptographic keys. Next, our key generation algorithm outputs a
“trapdoor” that the sender (or receiver) uses to generate fake keys. This is similar
to the flexibly deniable encryption setting when we have two sets of algorithms
for key generation and encryption. However, in our construction, there is only
one encryption algorithm, and all ciphertexts output by the encryption algorithm
can be denied (provided that the sender or receiver has the denying key).

We note also that the Sahai-Waters construction provides strictly stronger
guarantees than those achieved by our construction. However, our primary moti-
vation here is to show how private puncturable PRFs can be directly applied to
provide a form of symmetric deniable encryption without relying on obfuscation.

Constraining Pseudorandom Functions Privately 521

7 Conclusions

In this work, we introduce the notion of privacy for constrained PRFs, and give
a number of interesting applications including watermarkable PRFs and search-
able encryption. We also give three constructions of private constrained PRFs:
one from indistinguishability obfuscation, and two from concrete assumptions
on multilinear maps. Our indistinguishability obfuscation result achieves the
strongest notion of privacy for general circuit constraints. Our multilinear map
constructions yield private bit-fixing PRFs and private puncturable PRFs.

We leave open the question of constructing private constrained PRFs from
simpler and more standard assumptions (such as from lattices or pairing-based
cryptography). In particular, is it possible to construct a private puncturable
PRF from one-way functions? Currently, our best constructions for private punc-
turable PRFs require multilinear maps.

Acknowledgments. This work was funded by NSF, DARPA, a grant from ONR, the
Simons Foundation, and an NSF Graduate Research Fellowship. Opinions, findings and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of DARPA.

References

1. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9562, pp. 446–473. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 19

2. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
barrington’s theorem. In: ACM CCS, pp. 646–658 (2014)

3. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 21

4. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 13

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

6. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 13

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 14

8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8 13

9. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30576-7 18

http://dx.doi.org/10.1007/978-3-662-49096-9_19
http://dx.doi.org/10.1007/978-3-662-46497-7_21
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-540-30576-7_18

522 D. Boneh et al.

10. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
IACR Cryptology ePrint Archive, 2015:1167 (2015)

11. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temp. Math. 324(1), 71–90 (2003)

12. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

13. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. IACR Cryptology ePrint Archive, 2014:930 (2014)

14. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 27

15. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 12

16. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

17. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 1

18. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer,
Heidelberg (1997). doi:10.1007/BFb0052229

19. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: verifiable and delegatable. IACR Cryptology ePrint Archive, 2014:522
(2014)

20. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17373-8 33

21. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 20

22. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multi-
linear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 1

23. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. IACR
Cryptology ePrint Archive, 1998:3 (1998)

24. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC, pp. 1115–1127 (2016)

25. Cohen, A., Holmgren, J., Vaikuntanathan, V.: Publicly verifiable software water-
marking. IACR Cryptology ePrint Archive, 2015:373 (2015)

http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-46803-6_12
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-662-46497-7_1
http://dx.doi.org/10.1007/BFb0052229
http://dx.doi.org/10.1007/978-3-642-17373-8_33
http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-46800-5_1

Constraining Pseudorandom Functions Privately 523

26. Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E.,
Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new
MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-47989-6 12

27. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 mul-
tilinear maps. IACR Cryptology ePrint Archive, 2015:1037 (2015)

28. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

29. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 13

30. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: ACM CCS, pp.
79–88 (2006)

31. Fernando, R., Rasmussen, P.M.R., Sahai, A.: Preventing CLT zeroizing attacks on
obfuscation. IACR Cryptology ePrint Archive, 2016:1070 (2016)

32. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7 17

33. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

34. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

35. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5 10

36. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 20

37. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: FOCS, pp. 151–170
(2015)

38. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005). doi:10.1007/11523468 65

39. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 35

40. Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, 2003:216 (2003)
41. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.

ACM 33(4), 792–807 (1986)
42. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker

keeping secret all partial information. In: STOC, pp. 365–377 (1982)
43. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained

pseudorandom functions. IACR Cryptology ePrint Archive, 2014:720 (2014)

http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-47989-6_13
http://dx.doi.org/10.1007/978-3-540-30576-7_17
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/11523468_65
http://dx.doi.org/10.1007/978-3-642-55220-5_35

524 D. Boneh et al.

44. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6 4

45. Hopper, N., Molnar, D., Wagner, D.: From weak to strong watermarking. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-70936-7 20

46. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 21

47. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: CCS, pp. 669–684 (2013)

48. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)

49. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–
261 (2004)

50. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

51. Nishimaki, R., Wichs, D.: Watermarking cryptographic programs against arbitrary
removal strategies. IACR Cryptology ePrint Archive, 2015:344 (2015)

52. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9 30

53. Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005).
doi:10.1007/11535218 14

54. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

55. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

56. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 15

http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-540-70936-7_20
http://dx.doi.org/10.1007/978-3-662-49890-3_21
http://dx.doi.org/10.1007/978-3-642-22792-9_30
http://dx.doi.org/10.1007/11535218_14
http://dx.doi.org/10.1007/978-3-662-46803-6_15

Universal Samplers with Fast Verification

Venkata Koppula1(B), Andrew Poelstra2, and Brent Waters1

1 University of Texas at Austin, Austin, USA
{kvenkata,bwaters}@cs.utexas.edu
2 Blockstream, San Francisco, USA

apoelstra@blockstream.com

Abstract. Recently, Hofheinz et al. [9] proposed a new primitive called
universal samplers that allows oblivious sampling from arbitrary distri-
butions, and showed how to construct universal samplers using indistin-
guishability obfuscation (iO) in the ROM.

One important limitation for applying universal samplers in practice
is that the constructions are built upon indistinguishability obfuscation.
The costs of using current iO constructions is prohibitively large. We ask
is whether the cost of a (universal) sampling could be paid by one party
and then shared (soundly) with all other users? We address this ques-
tion by introducing the notion of universal samplers with verification.
Our notion follows the general path of [9], but has additional semantics
that allows for validation of a sample.

In this work we define and give a construction for universal samplers
with verification. Our verification procedure is simple and built upon
one-time signatures, making verification of a sample much faster than
computing it. Security is proved under the sub exponential hardness of
indistinguishability obfuscation, puncturable pseudorandom functions,
and one-time signatures.

1 Introduction

The Random Oracle Model (ROM), introduced by Bellare and Rogaway [3], is
a widely used heuristic in cryptography. In the random oracle model a hash
function H is modeled as an oracle that when sampled with an input x will
output a sample of a fresh random string u. This functionality has been applied
in numerous cryptographic applications that have leveraged features of the model
such programmability and rewinding. However, one significant limitation of the
model is that it can only be used to sample from random strings, whereas in
many applications we would like the ability of (obliviously) sample from arbitrary
distributions.1

B. Waters—Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare,
Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

1 One could define the random oracle model to provide samples from arbitrary distri-
butions on arbitrary sets. However, such a model no longer heuristically corresponds
to real world hash functions.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part II, LNCS 10175, pp. 525–554, 2017.
DOI: 10.1007/978-3-662-54388-7 18

526 V. Koppula et al.

Recently, Hofheinz et al. [9], addressed this problem. They proposed a new
primitive called universal samplers that allows oblivious sampling from arbitrary
distributions, and showed how to construct universal samplers using indistin-
guishability obfuscation (iO) in the ROM.

Hofheinz et al. argued that universal samplers can give way to a powerful
notion of universal setup. Several cryptographic schemes require the use of a
trusted setup to generate common parameters. For example, in an elliptic curve-
based public key scheme we might want to generate a common set of curve
parameters for everyone to use. However, each such cryptographic scheme pro-
posed will require its users to agree on some trusted user or process for setting up
the parameters for the specific scheme. In practice the cost of executing such a
setup for every single instance can be quite onerous and might serve as a barrier
to adoption. In particular, the effort to get everyone to agree on an authority or
gather an acceptable set of parties together to jointly perform (via multiparty
computation) the setup process can be difficult. Such “human overhead” is dif-
ficult to measure in terms of traditional computational metrics. Using universal
parameters, however, one can service several schemes with one universal trusted
setup. Here the trusted setup party (or parties) will create a universal sampler.
Then if any particular scheme has a setup algorithm described by circuit d,
its users can simply universally sample from the distribution d to get a set of
parameters for that particular scheme.

In addition to the application of universal setup described above, Hofheinz
et al. provided that several applications of universal samplers, non-interactive
key exchange and broadcast encryption. Subsequent works [10,11] used universal
parameters to construct universal signature aggregators and constrained pseudo-
random functions respectively.

The Costs of Using Universal Samplers. One important limitation for applying
universal samplers in practice is that the constructions are built upon indis-
tinguishability obfuscation. The costs of using current iO constructions is pro-
hibitively large. Even so we might hope that efforts toward moving the per-
formance of iO to practice [1,2,17] will follow the path of other cryptographic
primitives such as multiparty computation and ORAM. Such primitives were
once considered way too expensive to even consider, however, sustained algorith-
mic and engineering efforts (see for example the references in [12]) have gotten
reduced the costs by several orders of magnitude and gotten them to the point
where many interesting programs or computations can be executed. A central
concern though is that even if we assume that the performance costs of obfus-
cation follow a similar trajectory to other works that the costs will still remain
significantly above “traditional” cryptographic primitives such as encryption,
signing, etc. that have costs imperceptible to a human.

In the context of universal samplers and a trusted universal setup, it might be
acceptable for a well funded party to invest the computation needed to determine
a parameter needed for a given scheme, but not acceptable to assume that every
single party using the scheme is willing to pay such a high cost.

Universal Samplers with Fast Verification 527

We ask whether the cost of a (universal) sampling could be paid by one
party and then shared (soundly) with all other users. Returning to our elliptic
curve example, one could imagine that NIST would run a universal sampler for
a particular setup scheme to obtain a set of curve parameters p. Could NIST
then share the parameters p with all other users in a manner that convinced
them that they were sampled correctly, but where the cost of verification was
much smaller than repeating the sampling? We restate this question in terms of
universal samplers:

Is it possible to construct a universal sampler that allows for fast verifica-
tion (that is, verification that uses only traditional cryptography)?

We address this question by introducing the notion of universal samplers
with verification. Our notion follows the general path of [9], but has additional
semantics that allows for validation of a sample. In our system the Setup outputs
a Universal Sampler parameter U as before, but also outputs a verification key
VK.2

The sampling algorithm Sample as in [9] will maps the sampler parameters
U and input circuit d(·) to an element p sampled from d, but also output a
certificate σ which can be thought of as a signature on p. Finally, we include an
additional algorithm, Check, that takes VK, σ, and the input circuit, and checks
whether these are consistent.

We can see now that there are two paths to obtaining a sample from the dis-
tribution d. One can call Sample(U, d) and obtain p. Or one can let another party
perform this step and receive p, σ and validate this by calling Check(VK, d, p, σ).

We require two security properties. The first is the prior indistinguishability
of real world and ideal world given in [9]. The second property we require is that
it should be computationally infeasible for any poly-time adversary A to produce
a triple d∗, p∗, σ∗ such that Check(VK, d∗, p∗, σ∗) = 1 and Sample(U, d∗) �= p∗.
Intuitively, it should be hard to produce a signature that convokes a third party
of the “wrong” output.

The first thing we observe is that any standard universal sampler scheme
implies one with verification, but in an uninteresting way. To do this we can
simply let VK = U and have the Check algorithm run Sample(U, d) itself. This
will clearly result in a secure universal sampler with verification if the base
universal sampler is secure, but not result in any of the savings that motivated
our discussion above.

For this reason any scheme of interest must have a verification algorithm
Check that is significantly more efficient than running Sample. Ideally, the cost
will be close to that of “traditional” cryptographic primitives. We choose not to
formalize this final requirement.

2 As in [9] there is a single trusted setup process that runs Setup to produces the
sampler parameters. It is then expected to erase the random coins it used. Also
as noted by [9] one could employ multi-party computation to distribute this initial
setup task among multiple parties.

528 V. Koppula et al.

Our Technical Approach. We begin our technical exposition by describing what
we call prefix-restricted signature scheme. This is specialized signature scheme
that will we use to sign samples output from our universal sampler. A prefix-
restricted signature scheme is over a message space M1 × M2 and differs from
an ordinary signature scheme in the following ways:

– A secret key can either be a “master secret key” or admit a “punctured” form
at a message (m∗

1,m
∗
2) capable of signing any message (m1,m2) such that (a)

m1 �= m∗
1 or (b) (m1,m2) = (m∗

1,m
∗
2).

– In our security game an attacker selectively gives (m∗
1,m

∗
2) and receives back

a corresponding punctured signing key. No signing queries are allowed. The
attacker should be unable to provide a signature on any message (m1,m2)
where m1 = m∗

1 and m2 �= m∗
2.

– The scheme is deterministic, even with respect to the master and punctured
keys. Moreover, signatures produced by punctured keys (on messages for which
this is possible) must be equal to those produced by unpunctured keys on the
same messages.

This notion shares a similar flavor to earlier related concepts such as con-
strained signature [5]. It is actually the last property of matching signature
outputs between all key types that is critical for our use and the most tricky
to satisfy. Looking ahead, the reason we will need this is to be able to argue
that two programs are equivalent when we switch from using a master key to a
punctured key in an experiment.

While achieving some form of signature delegation has been considered in
other works and transforming a standard signature scheme to a deterministic
one can be done by a straightforward application of a PRF [8], forcing such
a constrained signature key to output the same signatures as a master key is
somewhat more tricky.

We construct a prefix-restricted signature scheme from a deterministic one-
time signature scheme (on arbitrary length messages) and a puncturable pseudo
random function [4,6,13,15]. Briefly recall that a puncturable PRF is a PRF
when one can create a punctured key that allows a keyed function F (K, ·) to be
evaluated at all but a small number of points.

Let the length of the first message piece, M1, be n and let mi be the i-bit
prefix of m and mi be the i-bit prefix of m with bit i flipped. To sign a message
m = (m1,m2). We will first create a Naor-Yung [14] style certificate tree of
length n. To create a signature on m for each i = 1 to n we first generate a
two verify and signing key pairs (one as the 0 key and the other as the 1 key).
We denote the keys output in step i as (SKmi ,VKmi) ← KeyGen1(1λ;F (K,mi))
and (SKmi ,VKmi) ← KeyGen1(1λ;F (K,mi)). Importantly, notice that instead
of sampling these keys randomly we replace the setup random coins with the
output of F (K,mi) and F (K,mi). Next we create a signature chain by letting
σi be the signature on (VKmi−1|0, (VKmi−1|1) with key SKmi . Finally, at the
bottom of the tree we sign the whole message m using the final key SKmi .
Verification is done by verifying the chain and then the signature on the final
message.

Universal Samplers with Fast Verification 529

A punctured key for (m∗
1,m

∗
2) can be created by giving out (SKmi for i ∈

[1, n], a puncturable PRF key that is punctured as all prefixes of m∗
1, a signature

on (m∗
1,m

∗
2), and the signature certificates along the path. The fact that the

one-time signatures are deterministic coupled with the deterministic process for
generating one-time keys allows for corresponding signatures from the master
and punctured keys to be the same.

The Main Construction. Now that we have this tool in place we can get back to
our universal sampler construction. As mentioned in the work of [9], when using
indistinguishability obfuscation in the random oracle model, the hash function(s)
modeled as a random oracle must be outside the obfuscated circuit(s). Our
approach for doing so is different from that of [9], and a remarkable feature of our
scheme is its simplicity. The sampler setup algorithm will first generate a prefix
restricted signature scheme verification and signing key pair. Next the universal
sampler parameters are created as the obfuscation of a program that takes two
inputs x, d and outputs p = d(r), where r is computed using a puncturable PRF
on input x||d. The program also outputs a signature σ (using the signing key) on
(x||d, p) using a prefix-restricted signature scheme. The sampler parameters, U ,
are the obfuscated program and the verification key VK of the universal sampler
is the verification key of the prefix restricted signature.

To sample from a distribution d, one computes x = H(d) and runs the
sampler output on inputs x, d. Finally, the verification algorithm is used to check
that p was the correct output sample for a circuit d when given a prefix restricted
signature σ. The verification algorithm first computes x = H(d). Then, it simply
checks that the signature σ verifies on the message m = (m1,m2) = (x||d, p).

We can now examine the overhead of verification in our sampler which is
simply the prefix restricted signature verification on (x||d, p). The cost of per-
forming this will be � one-time signature verifications where � is the bit length of
x||d. In our construction the bit length of x will be roughly the size of the output
size of samples plus a security parameter and the bit length of d corresponds to
the string describing the circuit. While the time to verify these � one time sig-
natures is significantly longer than a standard signature scheme, the verification
time will be much shorter than running the obfuscated program. Moreover, we
would expect it to remain so even as improvements in obfuscation move towards
making it realizable.

Proving Security. The security of our universal sampler with verification is based
on subexponential hardness of the underlying building blocks of indistinguisha-
bility obfuscation, puncturable pseudorandom functions, and prefix restricted
signatures. In addition, the random oracle heuristic is used to prove security.

Let’s start by looking at verification security. At a high level our proof pro-
ceeds at as a sequence of games. Assume there exists a PPT attacker A that
makes at most q (unique) queries to the random oracle and produces a forgery
σ∗ of an output p∗ on d∗. Our proof starts by guessing both value of d∗ and
which random oracle query i ∈ [q] corresponds to d∗. The reduction will abort

530 V. Koppula et al.

if the guess is incorrect. It is this complexity leveraging step of guessing over all
possible d∗ values that requires the use of sub exponential hardness.

Next, suppose that the actual output of the Sample algorithm on input d is out
and let H(d∗) = x∗). We change the sampler parameters U to be an obfuscation
of a program that uses a restricted key that cannot sign a message (m1 =
x∗||d∗,m2) if m2 �= out. This transition is indistinguishable to the attacker by
indistinguishability obfuscation. For this proof step to go through it is critical the
signatures produced from the master key and punctured keys are deterministic
and consistent so that the corresponding programs are equivalent. Finally, the
proof can be completed by invoking the hardness of breaking the prefix restricted
signature.

We now turn to the proof of proving existing definition from [9] of the indis-
tinguishability of real world and ideal. Our proof proceeds in a similar manner
to theirs in that we switch from generating samples from the obfuscated pro-
gram to receiving them via “delayed backdoor programming” from the random
oracle. One important difference is that our main obfuscated program computes
the output of samples directly, whereas the main program of Hofheinz et al.
produces a one-time sampler program, which is then itself invoked to produce
the actual sample.

In doing things directly we benefit from a more direct construction at the
expense of applying complexity leveraging. Our proof will proceeds as a hybrid
that programs the outputs of the random oracle one at a time. At each step our
reduction must guess the input to the random oracle. Thus, if D is the number
of possible circuits, we get a loss of D · q in the reduction. (We emphasize that
we avoid a loss of Dq which could not be overcome with complexity leveraging.)
Again, this loss is balanced out by the use of sub exponential hardness. We also
made our proof steps more modular than those in [9]. One tool in doing so is
the introduction of a tool we call a puncturable pseudorandom deterministic
encryption scheme.

Other Applications of Fast Verification. In addition, to the application of estab-
lishing a set of common parameters for a cryptographic scheme [9] give multiple
other applications of universal samplers. Here we sketch how some of these can
benefit if the sampler has fast verification.

In the Identity-Based Encryption scheme given in [9] a user performs an
encryption to an identity Id by first running Sample(U, dID) where d is a circuit
that samples and outputs a fresh public key pkID. This key is then used to
encrypt to the identity. Consider a scenario where more than one party wishes
to perform an IBE encryption to the same identity. Using a sampler with fast
verification a single party can perform the work of computing pkID and then
share this with all other parties (sparing the rest of them from performing the
computation). The other parties will be convinced of the authenticity via the
certificate and verification procedure.

Another possibility is that instead of multiple parties wishing to perform
the computation, there could be a single party running on a machine that has
a untrusted processing environment that is coupled with a trusted, but more

Universal Samplers with Fast Verification 531

expensive environment. Here it would make sense for the untrusted environment
to perform the sampling and pass on the answer to the more trusted environment
to do the rest of the Identity-Based Encryption.

In general these motivational examples will transcend to other applications
of universal samplers ranging from non-interactive key exchange [9] to new con-
structions of constrained PRFs [10]. In particular, adding the fast verification
property helps in any multiparty scenario where multiple (untrusting) parties
want to share the output of a call to a sample algorithm. Or where a single
party can move the Sample algorithm to an untrusted environment.

1.1 Organization

In Sect. 2, we introduce some notations and preliminaries. Next, we define our
primitive - universal sampler with verification in Sect. 3. To construct a selec-
tively secure universal sampler with (fast) verification, we require the notion of
prefix-restricted signature schemes defined in Sect. 4. For the construction, we
also require the notion of puncturable pseudorandom deterministic encryption
scheme defined in Sect. 5. Finally, in Sect. 6, we present our fast verification
universal sampler scheme.

2 Preliminaries

2.1 Notations

For integers �ckt, �inp, �out, let C[�ckt, �inp, �out] be the set of circuits that have
size at most �ckt bits, take �inp bits as input and output �out bits.

2.2 Puncturable Pseudorandom Functions

The notion of constrained PRFs was introduced in the concurrent works of
[4,6,13]. Punctured PRFs, first termed by [15] are a special class of constrained
PRFs.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is
an additional key space Kp and three polynomial time algorithms F.setup, F.eval
and F.puncture as follows:

– F.setup(1λ) is a randomized algorithm that takes the security parameter λ as
input and outputs a description of the key space K, the punctured key space
Kp and the PRF F .

– F.puncture(K,x) is a randomized algorithm that takes as input a PRF key
K ∈ K and x ∈ X , and outputs a key K{x} ∈ Kp.

– F.eval(K{x}, x′) is a deterministic algorithm that takes as input a punctured
key K{x} ∈ Kp and x′ ∈ X . Let K ∈ K, x ∈ X and K{x} ← F.puncture(K,x).
For correctness, we need the following property:

F.eval(K{x}, x′) =

{
F (K,x′) if x �= x′

⊥ otherwise

532 V. Koppula et al.

We will now recall the selective security game for puncturable PRFs. The
following definition is equivalent to the one in [15]. Consider a challenger C and
adversary A. The security game between C and A consists of two phases.

Challenge Phase: The adversary A sends its challenge string x∗. The chal-
lenger chooses a uniformly random PRF key K ← K. Next, it chooses
a bit b ∈ {0, 1} and a uniformly random string y ← Y. It computes
K{x∗} ← F.puncture(K,x∗). If b = 0, the challenger outputs K{x∗} and
(F (K,x∗), y). Else, the challenger outputs K{x∗} and (y, F (K,x∗)).

Guess: A outputs a guess b′ of b.

A wins the security game if b = b′. The advantage of A in the security game
against F is defined as AdvF

A = Pr[b = b′] − 1/2.

Definition 1. The PRF F is a selectively secure puncturable PRF if for all
probabilistic polynomial time adversaries A AdvF

A(λ) is negligible in λ.

Remark 1. Note the difference between this definition and the one in previous
works is in the challenge phase. Here, we require that the challenger output a
punctured PRF key and a pair (y0, y1) ∈ Y2. It chooses a bit b. If b = 0, then
y0 = F (K,x∗) and y1 is chosen uniformly at random. Else, y0 is chosen uniformly
at random and y1 = F (K,x∗).

Remark 2. This definition can be extended to handle multiple points being punc-
tured. More formally, we can define the notion of t-puncturable PRFs, where the
PRF key K can be punctured at t points. In the selective security game, the
adversary chooses the t puncture points, sends them to the challenger. The chal-
lenger outputs a key punctured at the t points, along with t output strings,
which are either PRF evaluations at the t points or uniformly random strings.

2.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation from [7,15].

Definition 2 (Indistinguishability Obfuscation). Let C = {Cλ}λ∈N be a family
of polynomial-size circuits. Let iO be a uniform PPT algorithm that takes as
input the security parameter λ, a circuit C ∈ Cλ and outputs a circuit C ′. iO is
called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C ′(x) = C(x) where C ′ ← iO(1λ, C).

– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher B = (Samp,D), there exists a negligible function negl(·) such
that the following holds: if for all security parameters λ ∈ N, ∀x,C0(x) =
C1(x) : (C0;C1;σ) ← Samp(1λ), then

Universal Samplers with Fast Verification 533

| Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ) ← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ) ← Samp(1λ)]|
≤ negl(λ).

In a recent work, [7] showed how indistinguishability obfuscators can be con-
structed for the circuit class P/poly. We remark that (Samp,D) are two algo-
rithms that pass state, which can be viewed equivalently as a single stateful
algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

3 Universal Samplers with Verification

We will now define the syntax and security definitions for universal samplers
with verification. In this primitive, as in [9], there is an algorithm Setup which
outputs a sampler parameter U as well as a sampling algorithm Sample which
maps the sampler parameters and input circuit to an element sampled from
the desired distribution. We modify this definition so that Setup also outputs a
verification key VK, and Sample also outputs a ‘certificate’ σ asserting that the
sampler output matches the input circuit. An additional algorithm, Check, takes
VK, σ, and the input circuit, and checks whether these are consistent.

Syntax. Let �ckt, �inp and �out be polynomials. An (�ckt, �inp, �out)-universal sam-
pler scheme consists of algorithms Setup, Sample and Check defined below.

– Setup(1λ) takes as input the security parameter λ and outputs the sampler
parameters U and a verification key VK.

– Sample(U, d) takes as input the universal sampler U and a circuit d ∈
C[�ckt(λ), �inp(λ), �out(λ)]. The output of the function is the induced para-
meters pd ∈ {0, 1}�out(λ) and a certificate σd.

– Check(VK, d, p, σ) takes as input the verification key VK, the circuit d ∈
C[�ckt(λ), �inp(λ), �out(λ)], p ∈ {0, 1}�out(λ) and a certificate σ. It outputs either
0 or 1.

For simplicity of notation, we will drop the dependence of �ckt, �inp, �out on λ
when the context is clear.

Correctness. For correctness, we require that any honestly generated output and
certificate must pass the verification. More formally, for all security parameters
λ, (U,VK) ← Setup(1λ), circuit d ∈ C[�ckt, �inp, �out],

Check(VK, d,Sample(U, d)) = 1.

534 V. Koppula et al.

3.1 Security

For security, we require the primitive to satisfy the real vs ideal world definition
from [9]. In addition to that, we also need to ensure that no adversary can output
‘fake certificates’. This intuition is captured by the following unforgeability defin-
itions. Informally, we require that any PPT adversary should not be able to out-
put a tuple (d∗, p∗, σ∗) such that Sample(U, d∗) �= p∗ but Check(U, d∗, p∗, σ∗) = 1.
For clarity of presentation, we chose to present the [9] definitions for real vs ideal
world indistinguishability in Appendix 3.2.

The security definition given here is an adaptive game in the random ora-
cle model. One could consider presenting the definition in the standard model.
However, as shown in [9], the simulation security definition must involve the
random oracle. As a result, we choose to have a random oracle based definition
for unforgeability as well.

Definition 3. An (�ckt, �inp, �out)-universal sampler scheme (Setup,Sample,
Check) is said to be a aptively secure against forgeries if every PPT adversary
A, Pr[A wins in Expt] ≤ negl(λ), where Expt is defined as follows.

1. The challenger sends (U,VK) ← Setup(1λ) to A.
2. A sends random oracle queries (RO, x). For each unique query, the challenger

chooses a uniformly random string y and outputs y. It also adds the tuple
(x, y) to its table.

3. A sends its output (p∗, σ∗) to the challenger.

A wins if Check(VK, d∗, p∗, σ∗) = 1 and Sample(U, d∗) �= p∗.

3.2 Simulation Security - Real vs Ideal World Indistinguishability

In this part, we will recall the adaptive security definition for universal samplers
from [9]. As in [9], an admissible adversary is an interactive Turing Machine that
outputs one bit, with the following input/output behavior:

– A takes as input security parameter λ and sampler parameters U .
– A can send a random oracle query (RO, x), and receives the output of the

random oracle on input x.
– A can send a message of the form (params, d) where d ∈ C[�ckt, �inp, �out]. Upon

sending this message, A is required to honestly compute pd = Sample(U, d),
making use of any additional random oracle queries, and A appends (d, pd) to
an auxiliary tape.

Let SimUGen and SimRO be PPT algorithms. Consider the following two
experiments:

RealA(1λ):

1. The random oracle RO is implemented by assigning random outputs to each
unique query made to RO.

Universal Samplers with Fast Verification 535

2. U ← SetupRO(1λ).
3. A(1λ, U) is executed, where every message of the form (RO, x) receives the

response RO(x).
4. Upon termination of A, the output of the experiment is the final output of

the execution of A.

IdealASimUGen,SimRO(1λ):

1. A truly random function F that maps �ckt bits to �inp bits is implemented by
assigning random �inp-bit outputs to each unique query made to F . Through-
out this experiment, a Samples Oracle O is implemented as follows: On input
d, where d ∈ C[�ckt, �inp, �out], O outputs d(F (d)).

2. (U, τ) ← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the
Samples Oracle O.

3. A(1λ, U) and SimRO(τ) begin simultaneous execution.
– Whenever A sends a message of the form (RO, x), this is forwarded to
SimRO, which produces a response to be sent back to A.

– SimRO can make any number of queries to the Samples Oracle O.
– Finally, after A sends any message of the form (params, d), the auxiliary

tape of A is examined until an entry of the form (d, pd) is added to it. At
this point, if pd is not equal to d(F (d)), then experiment aborts, resulting
in an Honest Sample Violation.

4. Upon termination of A, the output of the experiment is the final output of
the execution of A.

Definition 4. A universal sampler scheme U = (Setup, Sample), parameterized
by polynomials �ckt, �inp and �out, is said to be adaptively secure in the random
oracle model if there exist PPT algorithms SimUGen and SimRO such that for
all PPT adversaries A, the following hold:3

Pr[IdealASimUGen,SimRO(1λ)aborts] = 0

and ∣
∣
∣Pr[RealA(1λ) = 1] − Pr[IdealASimUGen,SimRO(1λ) = 1]

∣
∣
∣ ≤ negl(λ).

4 Prefix-Restricted Signatures

In this section we describe a primitive, prefix-restricted signature schemes. These
are a form of constrained signature [5] which will be used as a building block in
the main construction. A prefix-restricted signature schemes is over a message
space M1 × M2 and differs from an ordinary signature scheme in the following
ways:

3 The definition in [9] only requires this probability to be negligible in λ. However, the
construction actually achieves zero probability of Honest Sample Violation. Hence,
for the simplicity of our proof, we will use this definition.

536 V. Koppula et al.

– A secret key can either be a “master secret key” or admit a “punctured” form
at a message (m∗

1,m
∗
2) capable of signing any message (m1,m2) such that (a)

m1 �= m∗
1 or (b) (m1,m2) = (m∗

1,m
∗
2).

– In our security game an attacker selectively gives (m∗
1,m

∗
2) and receives back

a corresponding punctured signing key. No signing queries are allowed. The
attacker should be unable to provide a signature on any message (m1,m2)
where m1 = m∗

1 and m2 �= m∗
2.

Our security property does not allow the adversary to make signing queries
on any message; these are not needed for our purposes.

– The scheme is deterministic, even with respect to punctured keys. That is,
signatures produced by punctured keys (on messages for which this is possible)
must be equal to those produced by unpunctured keys on the same messages.

This last point is the most important, since this strong determinism is required
to obtain the functional equivalence required by indistinguishability obfuscation;
it is also the reason that we could not use an existing primitive.

4.1 Definition

Let M1 and M2 be two message spaces. We define a prefix-restricted signature
scheme for message space M1 × M2 as a collection of five algorithms:

– Pre.Setup(1λ) is a randomized algorithm that takes as input the security para-
meter λ and outputs a master signing key MSK and verification key VK.

– Pre.Sign(MSK, (m1,m2)) is a deterministic algorithm that takes a master sign-
ing key MSK and message pair (m1,m2), and outputs a signature σ.

– Pre.Verify(VK, (m1,m2), σ) is deterministic and takes a message pair (m1,m2),
verification key VK and signature σ, and outputs a bit.

– Pre.Restrict(MSK, (m∗
1,m

∗
2)) (possibly randomized) takes a master signing key

MSK and message pair (m∗
1,m

∗
2), and outputs a restricted key SK{m∗

1,m
∗
2}.

– Pre.ResSign(SK{m∗
1,m

∗
2}, (m1,m2)) is deterministic and takes a restricted

signing key SK{m∗
1,m

∗
2}, a message pair (m1,m2), and outputs a signature σ.

Correctness. We define correctness by the following conditions:

1. For all (MSK,VK) ← Pre.Setup(1λ) and message pairs (m1,m2) ∈ M1×M2,

Pre.Verify(VK, (m1,m2),Pre.Sign(MSK, (m1,m2))) = 1.

2. For all (MSK,VK) ← Pre.Setup(1λ), (m∗
1,m

∗
2) ∈ M1 × M2, SK{m∗

1,m
∗
2} ←

Pre.Restrict(MSK, (m∗
1,m

∗
2)), and messages (m1,m2) ∈ M1 × M2 such that

either m1 �= m∗
1 or (m1,m2) = (m∗

1,m
∗
2),

Pre.Sign(MSK, (m1,m2)) = Pre.ResSign(SK{m∗
1,m

∗
2}, (m1,m2)).

Universal Samplers with Fast Verification 537

Security. For security, we require that no polynomial time adversary can output
a forgery, even after receiving a restricted signing key.

Definition 5. A two message signature scheme is selectively secure if every
PPT adversary A has at most negligible advantage in the following security game:

1. A provides a message pair (m∗
1,m

∗
2).

2. The challenger generates the keys (MSK,VK) ← Pre.Setup(1λ) and
SK{m∗

1,m
∗
2} ← Pre.Restrict(MSK, (m∗

1,m
∗
2)) and sends the tuple (SK

{m∗
1,m

∗
2},VK) to A.

3. A replies with a message pair (m1,m2) such that m1 = m∗
1 but m2 �= m∗

2, and
signature σ and wins if it verifies; that is, Pre.Verify(VK, (m1,m2), σ) = 1.

We define A’s advantage to be Pr[A wins].

4.2 Construction

Next, we construct a restricted-prefix signature scheme from a secure punc-
turable PRF F and secure deterministic one-time signature scheme (KeyGen1,
Sign1, Verify1). Deterministic one-time signature schemes can be constructed
using one-way functions.

We consider m = (m1,m2) to be a single message; let N be the total
length |m| = |m1| + |m2| and n = |m1|. Our message space is thus {0, 1}N =
{0, 1}n × {0, 1}N−n. We further define � to be the bit-length of the verification
keys produced by KeyGen1, and require the domain of F (K, ·) to be all bitstrings
of length at most n. Assume also that the message space of the one-time signa-
ture scheme is all bitstrings of length at most max{N, 2�+1}. Finally, ε denotes
the empty string.

For any message m and i ∈ {1, . . . , N} we define

mi = the i-bit prefix of m

mi = the i-bit prefix of m with bit i flipped
m[i] = the ith bit of m

m[i] = the opposite of the ith bit of m

Notice that with this notation, if m = (m1,m2) that m1 = mn.
Finally, we also define an operator switchb(x, y) as follows:

switchb(x, y) =

{
(x, y) if b = 0.

(y, x) otherwise

Our algorithms are defined as follows:

– Pre.Setup(1λ) first generates a puncturable PRF key K ← F.setup(1λ), then
(SKε,VKε) ← KeyGen1(1λ;F (K, ε)).
The verification key is VKε; the secret key is (K,SKε).

538 V. Koppula et al.

– Pre.Sign((K,SKε),m) For each i from 1 to n compute

(SKmi ,VKmi) = KeyGen1(1
λ;F (K,mi))

(SKmi ,VKmi) = KeyGen1(1
λ;F (K,mi))

(VKi,VK′
i) = switchm[i](VKmi ,VKmi)
σi = Sign(SKmi−1 , (VKi,VK′

i))

Finally, compute
σ∗ = Sign(SKmn ,m)

and output
σ =

{
(VKi,VK′

i, σi)n
i=1, σ

∗}

– Pre.Verify(VKε,m, σ =
{
(VKi,VK′

i, σi)n
i=1, σ

∗}) checks that for each i from 0
to (n − 1), that

Verify1(VKi, σi+1, (VKi+1,VK′
i+1)) = 1

Here we consider VK0 = VKε. We check also that

Verify1(VKn, σ∗,m) = 1

We output 1 if the above checks passed; otherwise output 0.
– Pre.Restrict((K,SKε),m) computes, for each i from 1 to n,

(SKmi ,VKmi) = KeyGen1(1
λ;F (K,mi))

(SKmi ,VKmi) = KeyGen1(1
λ;F (K,mi))

(VKi,VK′
i) = switchm[i](VKmi ,VKmi)
σi = Sign(SKmi−1 , (VKi,VK′

i))

as well as
σ∗ = Sign(SKmn ,m)

It bundles these up into

σ =
{
(VKi,VK′

i, σi)n
i=1, σ

∗}

Next, it punctures the key K at {mi}n
i=1 ∪ {ε} to obtain a punctured key K ′.

It outputs the punctured key as

SK{m} = {σ, {SKmi}n
i=1,K

′}
– Pre.ResSign(SK{m∗},m) First, expand SK{m∗} as

SK{m∗} =
{
σ =

{
(VKi,VK′

i, σ
∗
i)n

i=1, σ
∗} , {SK′

i}n
i=1,K

′}

We have three cases:
• If m = m∗ output σ.
• Otherwise, if mn = mn

∗ but m �= m∗ output ⊥.

Universal Samplers with Fast Verification 539

• Otherwise, there is some least bit position i∗, 1 ≤ i∗ < n such that
m[i] �= m∗[i]. For 1 ≤ i ≤ i∗ set (VKres

i ,VK′res
i , σi) = (VKi,VK′

i, σ
∗
i). For

i∗ < i ≤ n compute

(SKmi ,VKmi) = KeyGen1(1
λ;F (K ′,mi))

(SKmi ,VKmi) = KeyGen1(1
λ;FK′(mi))

(VKres
i ,VK′res

i) = switchm[i](VKmi ,VKmi)
σi = Sign(SKmi−1 , (VKres

i ,VK′res
i))

(Notice that since mi−1 �= mi−1
∗ for all i > i∗, we are not evaluating

FK′ on any punctured points.) Finally compute σ∗ = Sign(SKmn ,m) and
output

σ =
{
(VKres

i ,VK′res
i , σi)n

i=1, σ
∗}

Correctness. For correctness, we need to show that any signature computed
using the master signing key verifies, and any signature computed using the
restricted key on an unrestricted message is same as the signature computed
using the master signing key. The first property is immediate, and follows from
the correctness of the one-time deterministic signature scheme.

To prove the second correctness condition, let m be any N bit message,
and let (K,SKε) be any master signing key output by Pre.Setup. The restricted
key SK{m} consists of a signature σ = {(VKj ,VK′

j , σj)j≤n, σ∗}, n secret keys
{SKmi}i≤n and a PRF key K ′ punctured at {ε ∪ {mi}}. The restricted secret
key SK{m} can be used to sign m and any message m̃ such that mn �= m̃n.
Clearly, Pre.ResSign(SK{m},m) = Pre.Sign(SK,m) = σ.

Consider any message m̃ such that mn �= m̃n. Let i ≤ n be the first index
such that m[i] �= m̃[i], and let σ̃ = Sign(SK, m̃), σ̃res = ResSign(SK{m}, m̃),

where σ̃ = {(ṼKj , ṼK′
j , σ̃j)j≤n, σ̃∗} and σ̃res = {(ṼKres

j , ˜VK′res
j , σ̃res

j)j≤n, σ̃∗res}.
We need to show that σ̃ = σ̃res.

From the definition of Pre.ResSign, it follows that for j ≤ i, (ṼKres
j ,

˜VK′res
j , σ̃res

j) = (ṼKj , ṼK′
j , σ̃j) for all j ≤ i. Similarly, from the definition of

Pre.Sign, it follows that (ṼKj , ṼK′
j , σ̃j) = (ṼKj , ṼK′

j , σ̃j) for all j ≤ i (this is
because for j < i,mj = m̃j , and for j = i, (VKj ,VK′

j) = (ṼKj , ṼKj)).
Finally, for all j > i, the punctured PRF key K ′ can be used to compute the

correct secret key/verification key pair, since m̃j �= mj for all j > i. Therefore,
the signature components for j > i are same for both σ̃ and σ̃res. This concludes
our correctness proof.

Security. We prove security of this construction in the following theorem.

Theorem 1. Assuming F is a selectively secure puncturable PRF and (Setup1,
KeyGen1, Sign1, Verify1) is a secure one time signature scheme, the prefix-
restricted signature scheme described above is secure against forgeries as
described in Definition 5.

540 V. Koppula et al.

Proof. To prove this theorem, we will first define a sequence of hybrid
experiments.

Hybrid Hyb0. This is identical to the security game for the prefix-restricted
signature scheme.

1. A sends a message m∗ of length N .
2. The challenger chooses a puncturable PRF K ← F.setup(1λ).

Next, it computes (SKε,VKε) = Setup1(1λ;F (K, ε)).
3. It computes a signature σ for message m∗. Let SK0 = SKε. For i = 1 to n,

do the following:
(a) It computes the keys (SKm∗i ,VKm∗i) = Setup1(1λ;F (K,m∗i)), (SKm∗i ,

VKm∗i) = Setup1(1λ;F (K,m∗i)).
(b) Next, it computes (VKi,VK′

i) = switchm∗[i](VKm∗i ,VKm∗i) and σi =
Sign1(SKm∗(i−1) , (VKi,VK′

i)) for 1 ≤ i ≤ n.
(c) Finally, it signs m∗ using SKm∗n , that is, it computes σ∗ =

Sign1(SKm∗n ,m∗). It sets σ = {(VKi,VK′
i, σi)}, σ∗}.

4. It computes a punctured key K ′ ← F.puncture(K, {{m∗i}i≤n ∪ ε}) and sets
SK{m∗} = {σ, {SKm∗i}i≤n,K ′}.

5. Finally, the challenger sends VKε,SK{m∗} to A.
6. A responds with a forgery σ̃ = {{(ṼKi, ṼK′

i, σ̃i)}, σ̃∗} and wins if
(a) For all 1 ≤ i ≤ n, Verify1(ṼKi−1, (ṼKi, ṼK′

i), σ̃i) = 1, where ṼK0 = VKε.
(b) Verify1(ṼKn,m∗, σ̃∗) = 1.

Hybrid Hyb1. In this experiment, the challenger chooses (SKm∗i ,VKm∗i) using
true randomness, instead of the pseudorandom string given by F (K,m∗i).

1. A sends a message m∗ of length N .
2. The challenger chooses a puncturable PRF K ← F.setup(1λ).

Next, it computes (SKε,VKε) = Setup1(1λ).
3. It computes a signature σ for message m∗. Let SK0 ← SKε. For i = 1 to n,

do the following:
(a) It computes the keys (SKm∗i ,VKm∗i) ← Setup1(1λ), (SKm∗i ,VKm∗i) =

Setup1(1λ;F (K,m∗i)).
(b) Next, it computes (VKi,VK′

i) = switchm∗[i](VKm∗i ,VKm∗i) and σi =
Sign1(SKm∗(i−1) , (VKi,VK′

i)) for 1 ≤ i ≤ n.
(c) Finally, it signs m∗ using SKm∗n , that is, it computes σ∗ =

Sign1(SKm∗n ,m∗). It sets σ = {(VKi,VK′
i, σi)}, σ∗}.

4. It computes a punctured key K ′ ← F.puncture(K, {{m∗i}i≤n ∪ ε}) and sets
SK{m∗} = {σ, {SKm∗i}i≤n,K ′}.

5. Finally, the challenger sends VKε,SK{m∗} to A.
6. A responds with a forgery σ̃ = {{(ṼKi, ṼK′

i, σ̃i)}, σ̃∗} and wins if
(a) For all 1 ≤ i ≤ n, Verify1(ṼKi−1, (ṼKi, ṼK′

i), σ̃i) = 1, where ṼK0 = VKε.
(b) Verify1(ṼKn,m∗, σ̃∗) = 1.

Universal Samplers with Fast Verification 541

Hybrid Hyb2. In the previous hybrid, the challenger sends VKε and n verification
keys VKm∗i for 1 ≤ i ≤ n as part of the signature σ. In the forgery, the adversary
sends n tuples (ṼKi, ṼK′

i, σi). In this game, the challenger guesses the first i such
that VKm∗i �= ṼKi. It chooses i ← {1, . . . , n + 1}, where i = n + 1 indicates the
guess that VKm∗i = ṼKi for all i. The attacker wins if its forgery verifies and
this guess is correct.

1. A sends a message m∗ of length N .
2. The challenger first chooses i∗ ← {1, . . . , n + 1}.

3. It chooses a puncturable PRF K ← F.setup(1λ).
Next, it computes (SKε,VKε) = Setup1(1λ).

4. It computes a signature σ for message m∗. Let SK0 ← SKε. For i = 1 to n,
do the following:
(a) It computes the keys (SKm∗i ,VKm∗i) ← Setup1(1λ), (SKm∗i ,VKm∗i) =

Setup1(1λ;F (K,m∗i)).
(b) Next, it computes (VKi,VK′

i) = switchm∗[i](VKm∗i ,VKm∗i) and σi =
Sign1(SKm∗(i−1) , (VKi,VK′

i)) for 1 ≤ i ≤ n.
(c) Finally, it signs m∗ using SKm∗n , that is, it computes σ∗ =

Sign1(SKm∗n ,m∗). It sets σ = {(VKi,VK′
i, σi)}, σ∗}.

5. It computes a punctured key K ′ ← F.puncture(K, {{m∗i}i≤n ∪ ε}) and sets
SK{m∗} = {σ, {SKm∗i}i≤n,K ′}.

6. Finally, the challenger sends VKε,SK{m∗} to A.
7. A responds with a forgery σ̃ = {{(ṼKi, ṼK′

i, σ̃i)}, σ̃∗} and wins if
(a) For all i < i∗,VKm∗i = ṼKi and VKm∗i∗ �= ṼKi∗ .

(b) For all 1 ≤ i ≤ n, Verify1(ṼKi−1, (ṼKi, ṼK′
i), σ̃i) = 1, where ṼK0 = VKε.

(c) Verify1(ṼKn,m∗, σ̃∗) = 1.

Analysis. We will now analyse the probability of an adversary’s success in each
of these hybrids. Let Probi

A denote the probability of adversary A winning in
hybrid Hybi.

Lemma 1. Assuming F is a selectively secure puncturable pseudorandom func-
tion, for any PPT adversary A, |Prob0A − Prob1A| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |Prob0A −Prob1A| = γ.
We will construct a PPT algorithm B that uses A to break the selective PPRF
security of F . B works as follows.

1. B receives message m∗ from A. B then requests the PPRF challenger for a
key punctured at the set {{m∗i}i≤n ∪ ε} along with the n + 1 evaluations
at (ε,m∗1, . . . ,m∗n). It receives a punctured key K ′ and the n + 1 strings
(y0, . . . , yn), where yi is either the PRF evaluation at m∗i or a uniformly
random string.

2. Using K ′, it computes the PRF evaluations at m∗i for all i ≤ n, that is, it
sets yi = F (K ′,m∗i).

542 V. Koppula et al.

3. B first computes (SKε,VKε) = KeyGen1(1λ; y0).
4. It then computes, for 1 ≤ i ≤ n, (SKm∗i ,VKm∗i) = KeyGen1(1λ; yi),

(SKm∗i ,VKm∗i) = KeyGen1(1λ; yi).
5. Next, it computes, for 1 ≤ i ≤ n, (VKi,VK′

i) = switchm∗[i](VKm∗i ,VKm∗i),
σi = Sign1(SKm∗i , (VKi,VK′

i)) and σ∗ = Sign1(SKm∗n ,m). It sets σ =
{(VKi,VK′

i, σi)i≤n, σ∗}.
6. B sets the restricted key SK{m∗} = {σ, {SKm∗i}i≤n,K ′} and sends

SK{m∗},VKε to A.
7. Finally, A sends a forgery. If the forgery verifies, B sends b′ = 0, indicating

the evaluations y0, . . . , yn were pseudorandom; else it sends b′ = 1.

To analyse B’s advantage in the PPRF security game, let b denote the bit chosen
by challenger. Then Pr[b′ = 1|b = 0] = Prob0A and Pr[b′ = 1|b = 1] = Prob1A.
Therefore, if |Prob0A − Prob1A| is non-negligible, then so is B’s advantage in the
PPRF security game.

Claim 1. For any adversary A, Prob2A = Prob1A/(q + 1).

Proof. This follows directly from the description of the hybrid experiments Hyb1
and Hyb2. The challenger’s choice of i∗ is independent of A’s view. Therefore,
Pr[A wins in Hyb2] = Pr[i∗ is correct guess] Pr[A wins in Hyb1].

Lemma 2. Assuming S1 = (KeyGen1,Sign1,Verify1) is a one-time secure deter-
ministic signature scheme, Prob2A is negligible in λ.

Proof. We will construct an algorithm B that breaks the one-time security of S1

with probability Prob2A. B is defined as follows.

1. B chooses i∗ ← {1, . . . , q + 1}. It receives verification key VK∗ from the S1

challenger.
2. A sends the challenge message m∗.
3. For all i �= (i∗ − 1), it chooses (SKm∗i ,VKm∗i) ← KeyGen1(1λ) and

sets VKm∗i∗−1 = VK∗. It also computes (SKm∗i ,VKm∗i) = KeyGen1(1λ;
F (K,m∗i)).

4. Next, it must compute signatures on the verification key pairs. For all i �= i∗,
it computes σi = Sign1(SKm∗(i−1) , switchm∗[i](VKm∗i ,VKm∗i)). For i = i∗, if
i∗ �= n+1, it sends as signature query the tuple switchm∗[i∗](VKm∗i∗ ,VK

m∗i∗)
to the S1 challenger; if i∗ = n+1, it sends m as the signature query. It receives
σ∗ in response. Therefore, B can perfectly simulate the signature σ on m∗.

5. To compute the restricted signing key, it computes K ′ ←
F.puncture(K, {{m∗i} ∪ ε}). It has all the required signing keys SKm∗i . There-
fore, it sends VKε and SK{m∗} = {{SKm∗i},K ′, σ}.

6. A finally sends a forgery. If A wins in Hyb2, then it must send (ṼKi∗ , ṼKi∗) �=
(VKm∗i∗ ,VK

m∗i∗) but Verify1(VKm∗(i∗−1) , (ṼKi∗ , ṼKi∗)) = 1. Therefore B
sends (ṼKi∗ , ṼKi∗) as forgery to S1 challenger, and wins with the same prob-
ability as A.

Universal Samplers with Fast Verification 543

5 Pseudorandom Puncturable Deterministic
Encryption (PPDE)

In this section we describe another primitive, pseudorandom puncturable deter-
ministic encryption schemes. This is a variation of puncturable deterministic
encryption as put forth by Waters [16].

In this scheme, there is a setup algorithm PPDE.Setup which generates a key
K, as well as a deterministic encryption algorithm PPDE.Enc which takes the key
K and message m. Since encryption is deterministic, the security property cannot
by IND-CPA; instead we introduce a “puncturing algorithm” PPDE.Puncture
which inputs a key K and message m and outputs a punctured key K{m}; the
security property is that the encryption of m appears uniformly random to an
adversary in possession of K{m}.

The actual construction uses techniques very similar to the “hidden trigger”
mechanism using puncturable PRF’s, as described in [15]; this is also used by [16].

5.1 Definition

Let M be the message space. A pseudorandom puncturable deterministic encryp-
tion scheme (or PPDE scheme) for M and ciphertext space CT ⊆ {0, 1}� (for
some polynomial �), is defined to be a collection of four algorithms.

– PPDE.Setup(1λ) takes the security parameter and generates a key K in
keyspace K. This algorithm is randomized.

– PPDE.Enc(K,m) takes a key K ∈ K and message m ∈ M and produces a
ciphertext ct ∈ CT . This algorithm is deterministic.

– PPDE.Dec(K, ct) takes a key K ∈ K and ciphertext ct ∈ CT and outputs
m ∈ M ∪ {⊥}. This algorithm is deterministic.

– PPDE.Puncture(K,m) takes a key K ∈ K and message m ∈ M and produces a
punctured key K{m} ∈ K and y ∈ {0, 1}�. This algorithm may be randomized.

Correctness. A PPDE scheme is correct if it satisfies the following conditions.

1. Correct Decryption: For all messages m and keys K ← K, we require

PPDE.Dec(K,PPDE.Enc(K,m)) = m.

2. Correct Decryption Using Punctured Key: For all distinct messages m,
for all keys K ← K,

Pr

[
#{ct : Decrypt(K{m}, ct) �= Decrypt(K, ct)} > 1

∣
∣
∣

(K{m}, y) ← Puncture(K,m)

]

is less than negl(λ), where all probabilities are taken over the coins of
PPDE.Puncture.

544 V. Koppula et al.

3. For all messages m∗ ∈ M and keys K ← K,
{

y
∣
∣
∣ (K{m∗}, y) ← PPDE.Puncture(K,m∗)

}
≈ U�

where U� denotes the uniform distribution over {0, 1}�.

Definition 6. A PPDE scheme is selectively secure if no PPT algorithm A can
determine the bit b in the following game except with probability negligibly close
to 1

2 :

1. A chooses a message m∗ to send to the challenger.
2. The challenger chooses K ← PPDE.Setup(1λ) and computes (K{m∗}, y) ←

PPDE.Puncture(K,m∗) and ct = PPDE.Enc(K,m∗). Next, it chooses b ←
{0, 1}. If b = 0, it sends (K{m∗}, (ct, y)); otherwise it sends (K{m∗}, (y, ct)).

3. A outputs a guess b′ for b.

5.2 Construction

Next, we construct a secure PPDE scheme using a pair F1, F2 of selectively secure
puncturable PRFs. Here F1 : {0, 1}m → {0, 1}n and F2 : {0, 1}n → {0, 1}m,
where m and n are polynomials in the security parameter λ. Additionally, we
require F1 to be statistically injective.

Our keyspace K will be the product of the keyspaces of F1 and F2; the
message space M = {0, 1}m and ciphertext space is CT = {0, 1}m+n.

Our algorithms are defined as follows:

– PPDE.Setup(1λ) runs the setup algorithms for F1 and F2 to obtain keys K1,
K2 respectively. It outputs K = (K1,K2).

– PPDE.Enc((K1,K2),m) computes A = F1(K1,m) and outputs

ct = (A,F2(K2, A) ⊕ m)

– PPDE.Dec((K1,K2), (ct1, ct2)) computes the message m = F2(K2, ct1) ⊕ ct2.
It then checks that F1(K1,m) = ct1; if so it outputs m, otherwise it outputs ⊥.

– PPDE.Puncture((K1,K2),m) chooses y = (y1, y2) ∈ CT uniformly randomly.
It computes A = F1(K1,m), then punctures K1 at m to obtain K1{m} and
K2 at {A, y1} to produce K2{A, y1}. It outputs

K{m} = (K1{m},K2{A, y1}), y = (y1, y2).

Correctness. We observe that as long as F1 is injective (which occurs except
with negligible probability in the coins of PPDE.Setup), decryption will be cor-
rect on all inputs using the punctured key. Here “correct” means: identical to
the behavior at the punctured key on all points except the encryption of the
punctured message, where the output is changed to ⊥. (If F1 were not injective,
the puncturing of K2 at the output of F1 may cause other PRF outputs to be
changed to ⊥, violating the requirement that the set of changed outputs have
size at most 1.)

Universal Samplers with Fast Verification 545

Correctness of decryption using non-punctured keys is immediate.

Security. We argue security through a series of hybrids.

Theorem 2. Suppose that no PPT adversary has advantage greater than ε1 in
the selective security game against F1 or greater than ε2 in the selective security
game against F2. Then no PPT adversary has advantage greater than ε1 + ε2 in
the selective security game as defined in Definition 6.

Proof. Let A be an arbitrary PPT adversary. We start by defining a sequence
of hybrids.

Hyb0. This hybrid is identical to the original security game with b = 0.

1. A chooses a message m∗ to send to the challenger.
2. The challenger produces (K1,K2) = PPDE.Setup(1λ). He computes the

punctured key (K{m∗}, (y1, y2)) ← PPDE.Puncture((K1,K2),m∗) and sends
K{m∗} to A. He also computes A = F1(K1,m

∗) and sends ct =
(A,F2(K2, A) ⊕ m∗).

Hyb1. This hybrid is same as the previous one, except that A is replaced by y1.

1. A chooses a message m∗ to send to the challenger.
2. The challenger produces (K1,K2) = PPDE.Setup(1λ). He computes the

punctured key (K{m∗}, (y1, y2)) ← PPDE.Puncture((K1,K2),m∗) and sends
K{m∗} to A.
He sends ct = (y1, F2(K2, y1) ⊕ m∗) as the ciphertext.

Hyb2. This hybrid is the same as the previous one, except that F2(K2, A) is
replaced by y2. The ciphertext is now (y1, y2 ⊕ m∗).

1. A chooses a message m∗ to send to the challenger.
2. The challenger produces (K1,K2) = PPDE.Setup(1λ). He computes the

punctured key (K{m∗}, (y1, y2)) ← PPDE.Puncture((K1,K2),m∗) and sends
K{m∗} to A.
He sends ct = (y1, y2 ⊕ m∗) as the ciphertext.

We see that Hyb2 is the original security game with b = 1, except for the
presence of y2 ⊕m∗ in place of y2, which does not affect an attacker’s advantage.
We need only now to argue that these hybrids are indistinguishable.

Hyb0 to Hyb1. We claim that an attacker A which can distinguish between Hyb0
and Hyb1 with advantage ε can be used by a simulator B to win the selective
security game against F1 with advantage ε.

B acts as follows:

1. A sends a message m∗ to B, who gives it to the PRF challenger. The challenger
replies with a punctured key K1(m∗) and a challenge pair (x1, x2) consisting
of F1(K1,m

∗) and a uniformly random element.

546 V. Koppula et al.

2. B computes K2 = SetupF2
(1λ) and K2(x1, x2) = PunctureF2(K2, {x1, x2}).

He sets K(m∗) = (K1(m∗),K2(x1, x2)), ct = (x1, F2(K2, x1)), and sends
these to A.

3. A outputs a guess b that he is in Hybb.

We see that if A is in Hyb0, this is exactly the case that the PRF challenger
set x1 = F1(K1,m

∗); Hyb1 is the case when x2 = F1(K1,m
∗). Thus A’s guess

can be translated into a guess for which of {x1, x2} is equal to F1(K1,m
∗) which

is correct exactly when A is, so that A’s advantage can be at most εF1 .
Hyb1 to Hyb2. We claim that an attacker A which can distinguish between Hyb1
and Hyb2 with advantage ε can be used by a simulator B to win the selective
security game against F2 with advantage ε.

B acts as follows:

1. A sends a message m∗ to B. B computes K1 = SetupF1
(1λ) and chooses

(y1, y2) uniformly at random. It computes A = F1(K1,m
∗) and submits

{y1, A} to the challenger as his selective challenge.
2. The challenger replies with a punctured key K2(A, y1) and a pair (x1, x2)

consisting of both F2(K2, A) and a uniformly random element. (In fact, the
challenger also provides a pair consisting of F2(K2, y1), but we do not need
this and ignore it.)

3. B sets K(m∗) = (K1(m∗),K2(A, y1)) and sends this to A. He also sends
ct = (A, x1 ⊕ m∗).

4. A outputs a guess b that he is in Hybb+1.

We see that if A is in Hyb1, this is exactly the case that the PRF challenger set
x1 = F2(K2, A); Hyb2 is exactly the case that the challenger set x2 = F2(K2, A).
We conclude that A’s advantage can be at most εF2 .

Conclusion. Summing the attacker’s maximum advantage in distinguishing the
hybrids and winning in the game of Hyb2, we see that the maximum advantage
in the selective security game for the PPDE scheme is εF1 + εF2 .

6 Signed Universal Samplers

In this section, we will describe our construction for a signed universal sampler
scheme. We will show that it is both simulation secure (as per Definition 4) and
secure against forgeries (as per Definition 3).

A remarkable feature of our scheme is its simplicity. The sampler setup algo-
rithm will first generate a prefix restricted signature scheme verification and
signing key pair. Next the universal sampler parameters are created as the obfus-
cation of a program that takes two inputs x, d and outputs p = d(r), where r
is computed using a puncturable PRF on input x||d. The program also outputs
a signature σ (using the signing key) on (x||d, p) using a prefix-restricted signa-
ture scheme. The sampler parameters, U , are the obfuscated program and the
verification key VK of the universal sampler is the verification key of the prefix
restricted signature.

Universal Samplers with Fast Verification 547

To sample from a distribution d, one computes x = H(d) and runs the
sampler output on inputs x, d. Finally, the verification algorithm is used to check
that p was the correct output sample for a circuit d when given a prefix restricted
signature σ. The verification algorithm first computes x = H(d). Then, it simply
checks that the signature σ verifies on the message m = (m1,m2) = (x||d, p).

Our Construction. Let (Pre.Setup, Pre.Sign, Pre.Verify, Restrict,ResSign) be a
restructed-prefix signature scheme, F a puncturable PRF with algorithms
F.setup, F.puncture and F.eval, PPDE = (PPDE.Setup, PPDE.Enc, PPDE.Dec,
PPDE.Puncture) a puncturable deterministic encryption scheme with pseudoran-
dom ciphertexts.

Our (�ckt, �rnd, �out)-signed universal sampler scheme consists of the following
algorithms.

USampler

Inputs x ∈ {0, 1} 1 , d ∈ {0, 1} ckt .

Constants Puncturable PRF key KF , prefix-restricted signing key
SKpre.

Compute r = F (K, (x||d)).
Compute out = d(r).
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Fig. 1. Program USampler

– Setup(1λ) The setup algorithm first chooses a signing and verification key
for the restricted-prefix signature scheme; it computes (SKpre,VKpre) ←
Pre.Setup(1λ). Next, it chooses a puncturable PRF key KF ← F.setup(1λ)
and sets U to be an obfuscation of the program USampler4 defined in Fig. 1;
that is, U ← iO(USampler) and VK = VKpre. It outputs (U,VK).

– Sample(U, d) The sample generation algorithm computes x = H(d) and
(pd, σ) = U(x, d).It outputs (pd, σ).

– Verify(VK, d, pd, σ) The verification algorithm computes x = H(d) and then
outputs Pre.Verify(VK, (x||d, pd), σ).

6.1 Proof of Unforgeability

We will define a sequence of hybrids to show that the construction satisfies the
adaptive unforgeability definition.

Without loss of generality, let us assume the adversary A makes q unique
random oracle queries before submitting the forgery corresponding to one of the
queries.
4 Padded to be of the same size as the corresponding programs in the proof.

548 V. Koppula et al.

Proof Intuition. This proof is fairly straightforward. The challenger first guesses
the random oracle query which corresponds to the forgery. Let this query be
d∗. The challenger then modifies the obfuscated program USampler to use a
restricted signing key. Once the program has a restricted signing key, we can use
the security of our special signature scheme to argue that the adversary cannot
forge a signature corresponding to d∗.

Hybrid Hyb0. Hyb0 is the real security game between an adversary A and
challenger.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre) ← Pre.Setup(1λ) and computes U ← iO(USampler
{KF ,SKpre}).
It sends (U,VKpre) to A.

2. A sends q random oracle queries. For ith query di, the challenger chooses
uniformly random strings xi ← {0, 1}�1 , sets H1(di) = xi; it sends H1(di)
to A.

3. A finally sends the forgery (d∗, p∗, σ∗) and wins if
(a) d∗ = di for some i ∈ [q],
(b) Sample(U, d∗)1 �= p∗; that is, x∗ = H1(d∗), (out, σ) = U(x∗, d∗) and

out �= p∗,
(c) Verify(VKpre, (x∗||d∗, p∗), σ∗) = 1.

Hybrid Hyb1. In this experiment, the challenger guesses the random oracle query
which will correspond to the forgery. If this guess is incorrect, the challenger
aborts.

1. Challenger first chooses i∗ ← [q].
2. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),

(SKpre,VKpre) ← Pre.Setup(1λ) and computes U ← iO(USampler{KF ,
SKpre}).
It sends (U,VKpre) to A.

3. A sends q random oracle queries. For ith query di, the challenger chooses
uniformly random strings xi ← {0, 1}�1 , sets H1(di) = xi; it sends H1(di) to
A.

4. A finally sends the forgery (d∗, p∗, σ∗) and wins if
(a) d∗ = di,
(b) Sample(U, d∗)1 �= p∗; that is, x∗ = H1(d∗), (out, σ) = U(x∗, d∗) and

out �= p∗,
(c) Verify(VKpre, (x∗||d∗, p∗), σ∗) = 1.

Hybrid Hyb2. In this experiment, the challenger guesses the circuit sent as the
(i∗)th random oracle query. If this guess is incorrect, the challenger aborts.

1. Challenger first chooses i∗ ← [q].
2. Challenger chooses d′ ← {0, 1}�ckt , x′ ← {0, 1}�1and

sets H1(d′) = x′.

Universal Samplers with Fast Verification 549

3. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre) ← Pre.Setup(1λ) and computes U ← iO(USampler
{KF ,SKpre}).
It sends (U,VKpre) to A.

4. A sends q random oracle queries. For ith query di, if i �= i∗, the challenger
chooses uniformly random strings xi ← {0, 1}�1 , sets H1(di) = xi; it sends
H1(di) to A.
If i = i∗ and di = d′, it sends x′ to A, else it aborts.

5. A finally sends the forgery (d∗, p∗, σ∗) and wins if
(a) d∗ = d′,
(b) (out, σ) = U(x′, d′) and out �= p∗,
(c) Verify(VKpre, (x′||d′, p∗), σ∗) = 1.

Hybrid Hyb3. In this experiment, the challenger outputs the obfuscation of
USampler′ (defined in Fig. 2) instead of USampler. The only difference between
USampler and USampler′ is that USampler′ uses a restricted signing key.

USampler

Inputs x ∈ {0, 1} 1 , d ∈ {0, 1} ckt .

Constants Puncturable PRF key KF , prefix-restricted signing key
SK{(x ||d , out)}.

Compute r = F (K, (x||d)).
Compute out = d(r).
Compute σ = ResSign(SK{(x ||d , out)}, (x||d, out)).
Output (out, σ).

Fig. 2. Program USampler′

1. Challenger first chooses i∗ ← [q].
2. Challenger chooses d′ ← {0, 1}�ckt , x′ ← {0, 1}�1 and sets H1(d′) = x′.
3. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),

(SKpre,VKpre) ← Pre.Setup(1λ).
It computes r′ = F (KF , x′||d′), out′ = d(r′).
It computes SK{(x′||d′, out′)} ← Restrict(SKpre, (x′||d′, out′)).
It sets U ← iO(USampler′{KF ,SK{x′||d′, out′}}).
It sends (U,VKpre) to A.

4. A sends q random oracle queries. For ith query di, if i �= i∗, the challenger
chooses uniformly random strings xi ← {0, 1}�1 , sets H1(di) = xi; it sends
H1(di) to A.
If i = i∗ and di = d′, it sends x′ to A, else it aborts.

550 V. Koppula et al.

5. A finally sends the forgery (d∗, p∗, σ∗) and wins if
(a) d∗ = d′,
(b) (out, σ) = U(x′, d′) and out �= p∗,
(c) Verify(VKpre, (x′||d′, p∗), σ∗) = 1.

Next, we need to analyse the adversary’s advantage in each of these games.
This analysis is included in the full version of our paper.

6.2 Proof of Simulation Security

Let us assume the adversary A queries the random oracle by sending a message
(RO, d) before sending a message (params, d). Without loss of generality, let q be
the number of queries made by A. We will define a sequence of hybrid experi-
ments, and then show that any PPT adversary cannot distinguish between the
hybrid experiments with advantage non-negligible in the security parameter λ.

Proof Intuition. First, we give a high level intuition of our proof strategy. The
main idea is to gradually change the random oracle query responses from uni-
formly random strings to more structured strings which will allow simulation.
First, the challenger modifies the program USampler in order to allow trapdoors.
The program, instead of computing r = F (KF , x||d) and p = d(r), first decrypts
the string x. It also has a string α hardwired. If the decryption is successful, and
the output message is (d̃, a,m) where d = d̃, PRG(a) = α, then the program
simply outputs m as the sampled parameter. Due to the security of PRG, we can
argue that the adversary cannot notice the difference. Now, the challenger can
modify the random oracle queries. For a query corresponding to circuit d, the
challenger outputs an encryption of (d, a, d(t)) where t is a uniformly random
string. This looks like a uniformly random string due to the property of PPDE
ciphertexts. However, note that the obfuscated program has the decryption key
hardwired. Using the techniques from punctured programming, we show how
to transform the random oracle responses from truly random strings to PPDE
encryptions.

Experiment Expt0. This experiment corresponds to the real world. The challenger
runs the universal sampler setup honestly to compute U , and sends it to the
adversary A. Next, for each random oracle query, it outputs a uniformly random
string.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre) ← Pre.Setup(1λ).
It computes U ← iO(USampler{KF ,SKpre}).
It sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth query dj ,
– The challenger chooses uniformly random strings xj ← {0, 1}�1 , sets

H1(dj) = xj ; it sends H1(dj) to A.
3. A finally sends a bit b.

Universal Samplers with Fast Verification 551

USampler-1

Inputs x ∈ {0, 1} 1 , d ∈ {0, 1} ckt .

Constants Puncturable PRF key KF ,
PPDE key KPPDE, α ∈ {0, 1}2λ, prefix-restricted signing key SKpre.

Compute m = PPDE.Dec(KPPDE, x). If m =⊥, let m = (d̃, a, y) ∈
{0, 1}λ × {0, 1} out .
if m =⊥ and d̃ = d and α = PRG(a) then

Set out = y.
else

Compute r = F (K, (x||d)).
Compute out = d(r).

end if
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Fig. 3. Program USampler-1

The output of this experiment is b.

Experiment Expt1. In this experiment, the challenger outputs an obfuscation of
USampler-1 (defined in Fig. 3) as the universal sampler program output during
setup. This new program has a PPDE key hardwired, and it uses this key to
decrypt the input string. If the decryption is successful (and some additional
checks are satisfied), the program outputs the decrypted string. Else, its output
is the same as in previous experiment.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre) ← Pre.Setup(1λ).
It chooses KPPDE and α ← {0, 1}2λ.
It computes U ← iO(USampler{KF ,SKpre,KPPDE, α}) and sends (U,VKpre)
to A.

2. A sends q random oracle queries. For jth query dj ,
– The challenger chooses uniformly random strings xj ← {0, 1}�1 , sets

H1(dj) = xj ; it sends H1(dj) to A.
3. A finally sends a bit b.

Experiment Expt2. In this experiment, the string α hardwired in the program is
a pseudorandom string, computed using PRG.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre) ← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE,
a ← {0, 1}λand sets α = PRG(a).

552 V. Koppula et al.

It computes U ← iO(USampler{KF ,SKpre,KPPDE, α}) and sends (U,VKpre)
to A.

2. A sends q random oracle queries. For jth query dj ,
– The challenger chooses uniformly random strings xj ← {0, 1}�1 , sets

H1(dj) = xj ; it sends H1(dj) to A.
3. A finally sends a bit b.

The output of this experiment is b
Next, we will have q hybrid experiments Expt2,i for 0 ≤ i ≤ q. In each

hybrid, the challenger changes the response to the random oracle queries.
Instead of sending uniformly random strings, it sends encryptions computed
using PPDE.Enc(·, ·).

Experiment Expt2,i. In this experiment, the challenger queries the Parameters
Oracle to compute the response for the first i random oracle queries. For the
remaining queries, it outputs a uniformly random string.

1. Challenger computes universal samplers. It chooses KF ← F.setup(1λ),
(SKpre,VKpre) ← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a ← {0, 1}λ and sets α =
PRG(a).
It computes U ← iO(USampler − 1{KF ,SKpre,KPPDE, α}) and sends
(U,VKpre) to A.

2. A sends q random oracle queries. For jth query dj ,
– if j ≤ i, the challenger queries the Parameter Oracle.

On input dj , it receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.

– if j > i, the challenger chooses uniformly random strings xj ← {0, 1}�1 ,
sets H1(dj) = xj ; it sends H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is b.

Clearly, Expt2,0 is identical to experiment Expt2, while Expt2,q corresponds
to the ideal world. We now need to show that any PPT adversary has almost
identical advantage in each of the experiments described above. Due to space
constraints, the detailed analysis is included in the full version. Here, we give an
outline of the proof.

In the first hybrid, the challenger replaces the program USampler with pro-
gram USampler-1. The only difference between these two programs is that
USampler-1 first decrypts the input x using PPDE key. If the decryption is
successful and can be parsed as (d̃, a,m), then the program checks if d = d̃ and
PRG(a) = α, where α is a uniformly random string. As a result, this step is never
executed, and hence the two programs are identical. Therefore, using security of
iO, the hybrids are computationally indistinguishable.

Universal Samplers with Fast Verification 553

Next, the challenger replaces α with a pseudorandom string. It chooses a
string a and sets α = PRG(a). This step is indistinguishable due to the security
of PRG.

Now, the first step of the program is “Decrypt x. If decryption is successful,
and outputs (d̃, a,m) and d = d̃ and PRG(a) = α, then output m”. This gives
the challenger a ‘trapdoor’. Now, the adversary sends encryption of (d, a, d(t)) as
the response for RO(d). To prove that the adversary cannot distinguish between
the encryptions and random strings, we define q hybrids. In the ith hybrid, the
first i responses are encryptions, while the remaining are random strings. We now
need to show that the ith and (i + 1)th hybrids are indistinguishable. For this,
the main idea is to first puncture the PPDE key, and then switch the random
RO responses to ciphertexts. However, to puncture the PPDE key, we will need
to know the ‘puncture point’ in advance, resulting in a subexponential security
loss. Here, note that the security loss is q · 2�ckt , not 2q�ckt . This allows us to use
complexity leveraging with subexponential security for iO, PRG and F .

References

1. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: Proceedings of 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014,
pp. 646–658 (2014)

2. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 21

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 15

5. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 27

6. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

7. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

8. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 8

9. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal parameters. In: ASIACRYPT (2016)

10. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. Cryptology ePrint Archive, Report 2014/720 (2014).
http://eprint.iacr.org/

http://dx.doi.org/10.1007/978-3-662-46497-7_21
http://dx.doi.org/10.1007/978-3-642-42045-0_15
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-662-44371-2_27
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/3-540-47721-7_8
http://eprint.iacr.org/

554 V. Koppula et al.

11. Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In:
Advances in Cryptology - EUROCRYPT 2015–34th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
26–30 April 2015, Proceedings, Part II, pp. 3–34 (2015)

12. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8043, pp. 18–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 2

13. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: ACM Conference on Computer and
Communications Security, pp. 669–684 (2013)

14. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of 21st Annual ACM Symposium on Theory of Com-
puting, 14–17 May 1989, Seattle, Washigton, USA, pp. 33–43 (1989)

15. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484 (2014)

16. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 678–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 33

17. Zimmerman, J.: How to obfuscate programs directly. In: Advances in Cryptol-
ogy - EUROCRYPT 2015–34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, 26–30 April 2015,
Proceedings, Part II, pp. 439–467 (2015)

http://dx.doi.org/10.1007/978-3-642-40084-1_2
http://dx.doi.org/10.1007/978-3-662-48000-7_33

Author Index

Abdalla, Michel I-151
Abraham, Ittai I-91
Attrapadung, Nuttapong II-3

Bellare, Mihir II-121
Benarroch, Daniel II-271
Benhamouda, Fabrice I-151, II-36
Boneh, Dan II-494
Bourse, Florian II-36
Brakerski, Zvika II-271
Brzuska, Chris II-335

Camenisch, Jan II-152
Canetti, Ran II-213, II-396
Chen, Jie I-207
Chongchitmate, Wutichai II-241
Coron, Jean-Sébastien I-41

Dachman-Soled, Dana I-310
Datta, Pratish II-463
Derler, David II-152
Dutta, Ratna II-463

Faonio, Antonio I-121, I-279, I-333
Fletcher, Christopher W. I-91
Fuchsbauer, Georg II-88

Gay, Romain II-88
Gong, Junqing I-207
Goyal, Rishab I-232

Hazay, Carmit I-175, II-428
Herold, Gottfried I-3, I-16

Itkis, Gene II-67

Jacobsen, Håkon II-335
Jeong, Jinhyuck I-388
Jutla, Charanjit S. II-183

Kiayias, Aggelos II-305
Kim, Taechan I-388
Kirshanova, Elena I-16

Koppula, Venkata I-232, II-525
Kowalczyk, Lucas II-88
Krenn, Stephan II-152
Kulkarni, Mukul I-310

Lee, Moon Sung I-41
Lepoint, Tancrède I-41, II-271
Lewi, Kevin II-494
Libert, Benoît I-247
Lipmaa, Helger II-36

May, Alexander I-3
Mukhopadhyay, Sourav II-463

Nayak, Kartik I-91
Nielsen, Jesper Buus I-121, I-279, I-333,

II-369

Orlandi, Claudio II-88
Ostrovsky, Rafail II-241

Peters, Thomas I-247
Pinkas, Benny I-91
Poburinnaya, Oxana II-396
Poelstra, Andrew II-525
Poettering, Bertram II-121
Pöhls, Henrich C. II-152
Pointcheval, David I-61, I-151
Polychroniadou, Antigoni II-428

Qian, Chen I-247

Raghuraman, Srinivasan II-213
Ranellucci, Samuel II-369
Ren, Ling I-91
Richelson, Silas II-213
Roy, Arnab II-183

Samelin, Kai II-152
Sanders, Olivier I-61
Shahverdi, Aria I-310
Shani, Barak I-361

Shen, Emily II-67
Slamanig, Daniel II-152
Stebila, Douglas II-121

Tibouchi, Mehdi I-41
Traoré, Jacques I-61

Vaikuntanathan, Vinod II-213
Varia, Mayank II-67
Venkitasubramaniam, Muthuramakrishnan

I-175, II-396, II-428
Venturi, Daniele I-121
Villar, Jorge L. I-435

Wang, Xiaoyun I-409
Waters, Brent I-232, II-525
Weng, Jian I-207
Wilson, David II-67
Wu, David J. II-494

Xu, Guangwu I-409

Yerukhimovich, Arkady II-67
Yu, Yang I-409

Zacharias, Thomas II-305
Zhang, Bingsheng II-305

556 Author Index

	Preface
	PKC 2017 The 20th International Conference on Practice and Theory of Public-Key Cryptography
	Contents – Part II
	Contents – Part I
	Encryption with Access Control
	Dual System Framework in Multilinear Settings and Applications to Fully Secure (Compact) ABE for Unbounded-Size Circuits
	1 Introduction
	1.1 Our Contributions on ABE Instantiations
	1.2 Our Contributions on New Framework
	1.3 Our Techniques
	1.4 Related Work

	2 Preliminaries
	3 Our Dual System Framework in Multilinear Settings
	3.1 Multilinear Pair Encodings
	3.2 Security Definitions for Multilinear Pair Encoding
	3.3 Our Generic ABE Construction for Any Predicate
	3.4 Multilinear Subgroup Decision Assumption
	3.5 Security for Our Generic Construction

	4 Fully Secure KP-ABE for Circuits
	5 Fully Secure KP-ABE with Short Ciphertext
	6 Dual Conversion and CP-ABE
	6.1 Generic Dual Conversion
	6.2 Fully-Secure CP-ABE for Circuits

	References

	CCA-Secure Inner-Product Functional Encryption from Projective Hash Functions
	1 Introduction
	2 Preliminaries
	2.1 Subset Membership Problems and Concrete Assumptions
	2.2 Projective Hash Functions
	2.3 Functional Encryption

	3 FE-CPA-Friendly Projective Hash Function
	3.1 Key Homomorphism and Projection Key Homomorphism
	3.2 Strong Diversity
	3.3 Translation Indistinguishability
	3.4 FE-CPA Friendliness
	3.5 Examples

	4 IND-FE-CPA Inner-Product Functional Encryption
	4.1 Generic Construction
	4.2 DDH-Based Instantiation
	4.3 DCR-Based Instantiation

	5 FE-CCA-Friendly Projective Hash Functions
	5.1 Tag-Based Projective Hash Function
	5.2 2-Universality
	5.3 Universal Translation Indistinguishability
	5.4 FE-CCA Friendliness
	5.5 Examples

	6 IND-FE-CCA Inner-Product Functional Encryption
	6.1 Tag-Based Functional Encryption
	6.2 Generic Construction
	6.3 DDH-Based Instantiation
	6.4 DCR-Based Instantiations
	6.5 From Tag-Based Inner-Product Functional Encryption to CCA Security

	References

	Bounded-Collusion Attribute-Based Encryption from Minimal Assumptions
	1 Introduction
	1.1 Our Results
	1.2 Comparison to Prior Work
	1.3 Our Techniques
	1.4 Paper Organization

	2 Related Work
	3 Definitions
	3.1 Preliminaries
	3.2 Attribute-Based Encryption with Bounded-Collusion Security

	4 Basic BC-ABE Construction
	4.1 Construction
	4.2 Setting the Parameters
	4.3 Security

	5 Improved BC-ABE Construction
	5.1 Multidimensional Secret-Sharing
	5.2 Construction
	5.3 Setting the Parameters
	5.4 Security

	6 Instantiating 1-ABE
	References

	Access Control Encryption for Equality, Comparison, and More
	1 Introduction
	2 Defining ACE
	3 ACE for Equality
	3.1 Generic Construction Preliminaries
	3.2 Generic Construction
	3.3 A More Efficient Construction from Pairings
	3.4 Comparing the Two Constructions

	4 ACE for Disjunction of Equalities
	5 Predicates in Disjunction of Equalities
	References

	Special Signatures
	Deterring Certificate Subversion: Efficient Double-Authentication-Preventing Signatures
	1 Introduction
	2 Preliminaries
	3 Identification Schemes
	4 DAPS Definitions
	5 Our ID to DAPS Transforms
	5.1 The Double-Hash Transform
	5.2 The Double-ID Transform

	6 Instantiation and Implementation
	6.1 GQ-Based Schemes
	6.2 Implementation and Performance

	References

	Chameleon-Hashes with Ephemeral Trapdoors
	1 Introduction
	2 Preliminaries
	2.1 Assumptions
	2.2 Building Blocks

	3 Chameleon-Hashes with Ephemeral Trapdoors
	4 Constructions
	4.1 Black-Box Construction: Bootstrapping
	4.2 A First Direct Construction

	5 Application: Invisible Sanitizable Signatures
	5.1 Additional Building Blocks
	5.2 Our Framework for Sanitizable Signature Schemes
	5.3 Security of Sanitizable Signature Schemes
	5.4 Invisibility of SSSs
	5.5 Construction

	References

	Improved Structure Preserving Signatures Under Standard Bilinear Assumptions
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Recursive Complexity-Leveraging for Improved Security Reduction

	2 Preliminaries
	2.1 Quasi-Adaptive NIZK Proofs
	2.2 Strong Split-CRS QA-NIZK for Affine Languages
	2.3 Projective Hash Proof System
	2.4 Structure-Preserving Signatures

	3 SPS Construction
	3.1 Security of the SPS Scheme
	3.2 Improved Security Reduction for the SPS Scheme

	References

	Fully Homomorphic Encryption
	Chosen-Ciphertext Secure Fully Homomorphic Encryption
	1 Introduction
	1.1 Our Results and Techniques

	2 CCA-Secure Fully Homomorphic Encryption
	3 Multi-key Identity-Based FHE to CCA1 FHE
	3.1 Multi-key IBFHE
	3.2 CCA1 FHE from Multi-key IBFHE
	3.3 Generic Instantiation of Multi-key IBFHE
	3.4 Multi-key IBFHE from LWE and ROs

	4 Instantiation from IO and Lossy Encryption
	4.1 Tag-Puncturable Encryption
	4.2 Multi-key IBFHE from Tag-Puncturable Encryption
	4.3 Proof of Lemma 4
	4.4 Statistical Trapdoor Encryption
	4.5 From Statistical Trapdoor Encryption to Tag-Puncturable Encryption

	5 CCA1 FHE from Knowledge Assumptions
	5.1 Zero-Knowledge SNARKs
	5.2 The Scheme

	A Linear Algebraic Encryption
	A.1 Adding Homomorphism
	A.2 Additively Homomorphic CCA1 Encryption from LAE

	B Instantiating Homomorphic LAE from DDH
	References

	Circuit-Private Multi-key FHE
	1 Introduction
	1.1 Previous Work
	1.2 Our Techniques

	2 Background
	2.1 Notation
	2.2 Multi-key Homomorphic Encryption
	2.3 López-Alt, Tromer and Vaikuntanathan's Multi-key FHE Scheme
	2.4 Circuit-Private Homomorphic Scheme
	2.5 Branching Program

	3 Privately Expandable Multi-key Homomorphic Encryption
	3.1 Private Expandability
	3.2 Privately Expandable Multi-key HE Based on LTV Encryption Scheme

	4 Circuit-Private Multi-key HE for Branching Programs
	4.1 Semi-honest Model
	4.2 Correctness and Security Against Semi-honest Adversaries
	4.3 Handling Malicious Inputs
	4.4 Security Against Malicious Adversaries

	5 Circuit-Private Multi-key FHE
	5.1 Construction
	5.2 Instantiation

	6 Three-Round On-the-Fly MPC with Circuit Privacy
	6.1 Construction

	7 Conclusion and Open Questions
	References

	FHE over the Integers: Decomposed and Batched in the Post-Quantum Regime
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	2.1 Homomorphic Encryption
	2.2 Approximate GCD (AGCD)

	3 Our Basic Scheme
	3.1 Construction
	3.2 Correctness and Noise Analysis
	3.3 Parameters
	3.4 Semantic Security

	4 Batch Generalization Construction
	4.1 Overview
	4.2 The Batch Construction
	4.3 Correctness and Noise Analysis
	4.4 Parameters
	4.5 Security

	5 Towards Practicality
	5.1 Reducing the Public-Key Size
	5.2 Evaluating Partial Gates
	5.3 Trade-Off on the Multiplication Complexity and the Ciphertext Size
	5.4 Limitations

	References

	Real-World Schemes
	Ceremonies for End-to-End Verifiable Elections
	1 Introduction
	2 E-Voting Ceremonies
	2.1 The Entities of the E-Voting Ceremony
	2.2 Syntax and Semantics
	2.3 Threat Model for E2E Verifiability
	2.4 Threat Model for Voter Privacy

	3 Syntax of Helios Ceremony
	4 E2E Verifiability of Helios E-Voting Ceremony
	4.1 Attacks on Verifiability
	4.2 Attacking the Verifiability of Helios E-Voting Ceremony
	4.3 End-to-End Verifiability Theorem Helios E-Voting Ceremony
	4.4 Illustrating Theorems1 and 2
	4.5 On the tightness of the conditions of Theorems1 and 2

	5 Voter Privacy of Helios E-Voting Ceremony
	6 Evaluating the E2E Verifiability of an E-Voting Ceremony
	6.1 Evaluations Based on Human Data
	6.2 Evaluations Based on Simulated Data

	7 Conclusion
	References

	A Modular Security Analysis of EAP and IEEE 802.11
	1 Introduction
	2 Formal Models
	2.1 A Unified Execution Model
	2.2 2P-AKE and 3P-AKE
	2.3 (2P)-ACCE
	2.4 Explicit Entity Authentication

	3 Generic Composition Results
	3.1 2P-AKE + 2P-ACCE + Channel Binding -> 3P-AKE-
	3.2 3P-AKEw + 2P-AKE -> 3P-AKE

	4 Security of EAP
	4.1 EAP with Channel Binding
	4.2 Channel-Binding Scope
	4.3 EAP Without Channel Binding

	5 Security of IEEE 802.11
	5.1 Description of the IEEE 802.11 Protocol
	5.2 Analyzing the 4-Way-Handshake
	5.3 Security of IEEE 802.11 with Upper-Layer Authentication

	References

	Multiparty Computation
	On the Computational Overhead of MPC with Dishonest Majority
	1 Introduction
	2 Technical Overview
	3 Setting the Stage
	3.1 UC and Synchronous Computation
	3.2 Broadcast

	4 The Outer Protocol
	5 The Inner Protocol
	6 Combining the Inner Protocol and the Outer Protocol
	6.1 More Tools
	6.2 The Combined Protocol

	References

	Better Two-Round Adaptive Multi-party Computation
	1 Introduction
	1.1 Our Results: Semi-honest Setting
	1.2 Our Results: Malicious Setting
	1.3 Related Work
	1.4 Our Techniques: Semi-honest Case
	1.5 Our Techniques: Malicious Case

	2 Building Blocks
	2.1 Puncturable Randomized Encryption
	2.2 Honest-but-Curious Equivocal Commitments

	3 Our MPC Protocol Against Semi-honest Adversaries
	3.1 An Overview of the Hybrids

	A Explainability Compiler
	B Three Round MPC Against Malicious Adversaries
	References

	Constant Round Adaptively Secure Protocols in the Tamper-Proof Hardware Model
	1 Introduction
	2 Modelling Tamper Proof Model with Adaptive Corruptions
	3 Our Techniques
	4 Adaptive GUC-Commitments from OWF Using Tokens
	4.1 Extractable Commitments with Oblivious Generation
	4.2 Obtaining GUC-Commitments in the gRO Model

	5 Adaptive OT from OWF Using Tokens
	6 Adaptively Secure Two-Party Computation
	6.1 Adaptively Secure Malicious Two-Party Computation

	References

	Primitives
	Constrained Pseudorandom Functions for Unconstrained Inputs Revisited: Achieving Verifiability and Key Delegation
	1 Introduction
	2 Preliminaries
	2.1 Turing Machines
	2.2 Indistinguishability Obfuscation
	2.3 IO-Compatible Cryptographic Primitives

	3 Our CPRF for Turing Machines
	3.1 Notion
	3.2 The CPRF Construction of Deshpande et al.
	3.3 Our Techniques to Fix the Flaw of [10]
	3.4 Formal Description of Our CPRF

	4 Our CVPRF for Turing Machines
	4.1 Notion
	4.2 Techniques Adapted in Our CVPRF Construction
	4.3 Formal Description of Our CVPRF

	5 Our DCPRF for Turing Machines
	5.1 Notion
	5.2 Techniques Adapted in Our DCPRF Construction
	5.3 Formal Description of Our DCPRF

	References

	Constraining Pseudorandom Functions Privately
	1 Introduction
	1.1 Applications of Private Constrained PRFs
	1.2 Constructing Private Constrained PRFs
	1.3 Related Work

	2 Private Constrained PRFs
	2.1 Conventions
	2.2 Pseudorandom Functions

	3 Private Circuit Constrained PRFs from Obfuscation
	4 A Private Bit-Fixing PRF
	5 A Private Puncturable PRF
	6 Applications
	6.1 Watermarking PRFs
	6.2 Symmetric Deniable Encryption

	7 Conclusions
	References

	Universal Samplers with Fast Verification
	1 Introduction
	1.1 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Puncturable Pseudorandom Functions
	2.3 Indistinguishability Obfuscation

	3 Universal Samplers with Verification
	3.1 Security
	3.2 Simulation Security - Real vs Ideal World Indistinguishability

	4 Prefix-Restricted Signatures
	4.1 Definition
	4.2 Construction

	5 Pseudorandom Puncturable Deterministic Encryption (PPDE)
	5.1 Definition
	5.2 Construction

	6 Signed Universal Samplers
	6.1 Proof of Unforgeability
	6.2 Proof of Simulation Security

	References

	Author Index

