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Abstract. Chen and Wee [CRYPTO, 2013] proposed the first almost
tightly and adaptively secure IBE in the standard model and left two
open problems which called for a tightly secure IBE with (1) constant-
size master public key and/or (2) constant security loss. In this paper,
we propose an IBE scheme with constant-size master public key and
tighter security reduction. This (partially) solves Chen and Wee’s first
open problem and makes progress on the second one. Technically, our
IBE scheme is built based on Wee’s petit IBE scheme [TCC, 2016] in the
composite-order bilinear group whose order is product of four primes.
The sizes of master public key, ciphertexts, and secret keys are not only
constant but also nearly optimal as Wee’s petit IBE. We can prove its
adaptive security in the multi-instance, multi-ciphertext setting [PKC,
2015] based on the decisional subgroup assumption and a subgroup vari-
ant of DBDH assumption. The security loss is O(log q) where q is the
upper bound of the total number of secret keys and challenge cipher-
texts per instance. It’s much smaller than those for all known adaptively
secure IBE schemes in a concrete sense.

1 Introduction

In 1984, Shamir introduced the notion of identity based encryptions [Sha84]
(IBE). The entire system is maintained by an authority called Key Generation
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Center (KGC) who publishes a master public key mpk and keeps the master
secret key msk. Each user receives his/her secret key sk for decryption from
KGC which is produced using msk. To encrypt a message to a user in the
system, one only needs mpk and user’s identity id, which can be a descriptive
tag such as email address.

Boneh and Franklin, in their seminal work [BF01] in 2001, formulated the
security notion of IBE and proposed a pairing-based IBE in the random oracle
model. Their security model has been accepted as standard model for IBE which
ensures that a ciphertext for target identity id∗ reveals nothing of the plaintext
even when adversary A holding mpk can obtain secret keys for any identity
other than id∗. We call it adaptive security in the paper. After that, a series
of work were devoted to constructing IBE schemes in the standard model (i.e.,
without random oracle) including Boneh and Boyen’s IBE [BB04a] in the selec-
tive model1, Boneh and Boyen’s IBE [BB04b] with huge security loss, Waters’
IBE [Wat05] with large mpk, and Gentry’s IBE [Gen06] based on q-type assump-
tion. The dual system methodology was proposed in 2009 by Waters [Wat09].
With this novel and powerful proof technique, Waters proposed an IBE scheme
with constant-size mpk in the standard model. The adaptive security is proven
based on standard and static complexity assumptions, and the security loss is
proportional to the amount of secret keys held by the adversary. This is the first
IBE scheme achieving all these features simultaneously.

Since Waters deals with only one secret key at a time in the proof, a security
loss of such an order of magnitude seems to be inherent. Fortunately, Chen and
Wee [CW13] combined the proof idea underlying Naor-Reingold PRF [NR04]
and the dual system methodology and showed an almost-tightly secure IBE
scheme. Here almost tight means the security loss can be bounded by a polyno-
mial in security parameter λ instead of the number of revealed secret keys. Soon
afterwards, Blazy et al. [BKP14] described a generic transformation from affine
MAC to IBE and constructed an affine MAC with almost-tight reduction. Their
method essentially follows Chen and Wee’s [CW13] but leads to a more efficient
IBE. Recently, the study of almost-tightly secure IBE has extended to the multi-
instance, multi-ciphertext setting [HKS15,GCD+16,AHY15,GDCC16]. However
the following two problems left by Chen and Wee [CW13] still remain open.

Question 1. Can we achieve master public key of constant size?
Question 2. Can we achieve constantly tight reduction?

It’s worth noting that Attrapadung et al. [AHY15] provided a technique
achieving a trade-off between the size of master public key and sizes of secret
keys and ciphertexts. As a special case, they can indeed reach constant-size
master public key but at the cost of larger secret keys and ciphertexts (and vice
1 In the selective model, the adversary has to choose the target identity id∗ before

seeing mpk. This is weaker than Boneh and Franklin’s adaptive security model.
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versa). Here we do not consider this as a satisfactory solution to Chen and Wee’s
first open problem. One must preserve advantages of Chen and Wee’s IBE such
as constant-size secret keys and ciphertexts.

1.1 Our Contribution

In this paper, we present an IBE scheme in the composite-order bilinear
group [BGN05] with constant-size master public key, ciphertexts, and secret
keys. The adaptive security in the multi-instance, multi-ciphertext setting relies
on several concrete decisional subgroup assumptions [BWY11] and a subgroup
variant of decisional bilinear Diffie-Hellman (DBDH) assumption. The security
reduction arises a probability loss of O(log q) in which q is the upper bound of
the total number of secret keys and challenge ciphertexts per instance.

We make a comparison in Table 1. On one hand, our IBE has the shortest
master public key, ciphertexts, secret keys and fastest decryption algorithm Dec.
In fact the performance is nearly optimal as Wee’s petit IBE [Wee16]. On the
other hand, we achieve a tighter reduction in a concrete sense2. Under typical
setting where q = 230 and n = 128, the security loss of our IBE scheme is
just a quarter of those for all previous ones [CW13,HKS15,AHY15]. Therefore
our result (partially) answers Chen and Wee’s first open problem and makes a
significant progress on the second one. We emphasize that the multi-instance,
multi-ciphertext setting [HKS15] is more realistic and complex than Boneh and
Franklin’s standard security notion [BF01]. This means that we are actually
working on Chen and Wee’s open problems in a more complex setting.

Our Strategy. Chen and Wee [CW13] have pointed out that solving these two
open problems may require some kinds of progresses in the underlying PRF,
which is another long-standing problem. As our high-level strategy, we reverse
the problem in order to circumvent the technical difficulty. In particular, instead
of reducing the size of master public key of a tightly secure IBE to constant, we
try to improve the tightness of an IBE scheme already with constant-size master
public key. Technically, we propose a variant of Wee’s petit IBE [Wee16] which
is tightly secure and inherits all advantages from Wee’s petit IBE. Our work is
inspired by Chen and Wee’s tight reduction technique from a very high level and
brings Chase and Meiklejohn’s idea [CM14] back to Wee’s petit IBE [Wee16] in
order to fulfil the intuition.

Our Method. Assume composite-order bilinear group (N = p1p2p3, G, GT , e).
Let’s review Wee’s petit IBE [Wee16]. From a high level, Wee followed the dual
system methodology [Wat09] and employed Déjà Q technique [CM14] with an

2 Let λ be the security parameter. In the common case that n = poly(λ) and q =
poly(λ), we can see that O(n) and O(log q) are equivalent to O(λ) and O(log λ),
respectively. Superficially, our reduction is also tighter in an asymptotical sense.
However O(log λ) here contains an adversarially-dependent constant while O(λ) is
totally independent of adversary.
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Table 1. Comparing existing tightly secure IBE in the composite-order bilinear group.

Scheme |mpk| |sk| |ct| + |key| Dec Tightness # pi Mimc

[CW13] O(n)|G| + |GT | 2|G| 2|G| + |GT | 2P O(n) 3 No

[HKS15] O(n)|G| + |GT | 2|G| 2|G| + |GT | 2P O(n) 4 Yes

[AHY15] O(n)|G| + |GT | 2|G| 2|G| + |GT | 2P O(n) 4 Yes

8|G| + |GT | O(n)|G| O(n)|G| + |GT | O(n)P O(n) 4 Yes

Ours 2|G| + |GT | |G| |G| + |GT | 1P O(log q) 4 Yes

– In the table, n is the binary length of identities, q is the upper bound of total number
of secret keys and challenge ciphertexts revealed to adversary in each instance.
– Column “#pi” shows the number of prime factors of group order N .
– Column “mimc” indicates whether the scheme can be proved in the multi-instance,
multi-ciphertext setting.
– The two sub-rows of row “[AHY15]” are for scheme Φcomp

cc and Φcomp
slp , respectively.

Note that Φcomp
slp employs the trade-off technique we have mentioned, and we just show

the parameter of an instantiation with constant mpk in the table.

extension. The IBE scheme is quite elegant as we described below.

mpk : g1, gα
1 , e(g1, u), H

skid : u
1

α+id · R3

ctid : g(α+id)s
1 , H(e(g1, u)s) · m

where g1, u ← Gp1 , α, s ← ZN , R3 ← Gp3 , H is selected from a pairwise inde-
pendent hash family. Here we consider Gp1 as normal space and Gp2 as semi-
functional space. Subgroup Gp3 is used to randomize secret keys.

To prove the adaptive security, he first transformed the challenge ciphertext
into the form

ctid∗ : S, H(e(S, skid∗)) · m
where S ← Gp1Gp2 and skid∗ is a secret key for target identity id∗. The core
step is to inject enough entropy into the semi-functional space of skid for all id
“touched” by adversary (including the target identity id∗). More formally, define

fi(x) =
i∑

j=1

rj

αj + x
∈ Zp2

where r1, . . . , ri, α1, . . . , αi ← Zp2 . It has been proved that fq behaves like a
truly random function given only q input-output pairs [Wee16,CM14] where q
depends on the total number of identities involved (in secret keys revealed to
adversary and the challenge ciphertext). The remaining task is to transform all
involved secret keys (including that used in ctid∗)

from u
1

α+id · g
f0(id)
2 · R3 into u

1
α+id · g

fq(id)
2 · R3
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where f0(id) = 0 for all id. Wee reached fq in q steps following the roadmap

f0 → f1 → f2 → · · · → fq.

In the kth step, he extracted one unit of entropy rk and αk from the normal
space (i.e., from u and α) and injected them into the semi-functional space (i.e.,
into fk−1). We illustrate the process in the graph below.

u
1

α+id

...
qth ext

��

2nd ext

��

1st ext

��

g
fq(id)
2

normal space semi-functional space

Chen and Wee’s success [CW13] teaches us that one must reach fq much
more quickly in order to obtain tighter reduction. In other word, we should try
to extract and inject more entropy each time. Our idea is to extract entropy
from fk (1 ≤ k ≤ q) itself rather than from u and α, and then inject them
back into fk. A key observation is that fk already has k units of entropy (i.e.,
α1, r1, . . . , αk, rk) and the structure of fk allows us to reach f2k directly which
will include 2k units of entropy. This significantly accelerates the process towards
fq. In particular, the roadmap now becomes

f0 ext
�� f20

ext

��

�� f21

ext

��

�� f22

ext

��

�� · · · �� f2n−1

ext

��

�� f2n

f̂20

inj

�����������
f̂21

inj

�����������
f̂22

���������� · · · f̂2n−1

inj

		����������

where f̂k indicates the entropy extracted from fk, both of which have the same
structure but f̂k are defined by independent randomness over Zp3 . It’s not hard
to see that we only need n = �log q� + 1 steps to reach fq.

To fulfill the above intuition, we introduce another semi-functional space,
which we call shadow semi-functional space, to temporarily store the entropy
extracted from fk (i.e., f̂k in the above graph) since we obviously can not put
them into the normal space. Furthermore the new semi-functional space should
allow us to flip all entropy back to the old semi-functional space as Chase and
Meiklejohn [CM14] did. We sketch our method in the following graph where the
IBE is now put into a bilinear group of order N = p1p2p3p4. Subgroup Gp3 acts
as the shadow semi-functional space and Gp4 is used to randomize secret key.
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u
1

α+id

ext



g

f2n (id)
2

1st ext

��

nth ext �� g
̂f2n−1 (id)
3

1st flip back

...



nth flip back

��

normal space semi-functional space shadow semi-functional space

We first extract one unit entropy from u and α and puts them into the semi-
functional space as [Wee16] which forms f20 = f1. In the kth step, we first

extract g
̂f2k−1 (id)
3 from g

f2k−1 (id)
2

and then
flip g

̂f2k−1 (id)
3 back as g

̂f2k−1 (id)
2

which forms g
f2k (id)
2 together with g

f2k−1 (id)
2 . All these technical steps can be real-

ized under several concrete instantiations of decisional subgroup assumption.

On the Multi-ciphertext Setting. We find that Wee’s proof idea [Wee16] and
our extension (see above) can be directly extended to the (single-instance) multi-
ciphertext setting but with the restriction that only one challenge ciphertext is
allowed for each target identity. This is the weak version of adaptive security in
the multi-ciphertext setting [HKS15]. The first observation is that each challenge
ciphertext has its own randomness s which is sufficient for hiding α on the
ciphertext side. That is we can always argue

{g
(α+id)s
1 , e(g1, u)s} = {g

(α+id)s
1 , e(g(α+id)s

1 , u
1

α+id )} = {gs
1, e(gs

1, u
1

α+id )}
even when there are more than one challenge ciphertexts; the second observation
is that it’s adequate to cope with more than one target identity by setting n =
�log qσ� where qσ is the total number of reveal keys and challenge ciphertexts.
The restriction is set here so as to avoid the following situation: After reaching
f2n , all l challenge ciphertexts for target identity id∗ will be in the form

S1, H(e(S1, u
1

α+id∗ ) · e(S1, g
f2n (id∗)
2 ) ) · m1, S1 ← Gp1Gp2 ;

S2, H(e(S2, u
1

α+id∗ ) · e(S2, g
f2n (id∗)
2 ) ) · m2, S2 ← Gp1Gp2 ;

...

Sl, H(e(Sl, u
1

α+id∗ ) · e(Sl, g
f2n (id∗)
2 ) ) · ml, Sl ← Gp1Gp2

where boxed terms have their own randomness S1, . . . , Sl, but share the same
f2n(id∗).
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To remove this restriction and achieve the full adaptive security [HKS15],
we employ a subgroup variant of decisional bilinear Diffie-Hellman (DBDH)
assumption (in subgroup Gp2). This allows us to utilize randomness S1, . . . , Sl

and argues that the joint distribution of all boxed terms sharing f2n(id∗) are
pseudorandom. Our proof idea is almost the same as [HKS15] but our assump-
tion is slightly simpler.

On the Multi-instance Setting. Hofheinz et al. [HKS15] also investigated the
so-called multi-instance setting where adversary A is allowed to attack multiple
IBE instances at the same time. Fortunately, our technique and result in the
single-instance setting (see above) can be extended to the multi-instance setting
with a tiny adjustment. The high-level idea is to apply our proof technique (for
the single-instance setting) to each instance in an independent but concurrent
manner.

Assume there are τ instances. For the ι-th (1 ≤ ι ≤ τ) instance, we define a
series of functions f

(ι)
20 , . . . , f

(ι)
2n as in the single-instance setting, which are inde-

pendent of those for other instances. Here we let n = �log q̂σ� in which q̂σ is the
upper bound of the total number of revealed secret keys and challenge cipher-
texts per instance. We depict the process in the graph below. In the ith step, we
create τ functions f

(1)
2i , . . . , f

(τ)
2i at a time using the random self-reducibility of

decisional subgroup assumption.

1st instance: f
(1)
20 f

(1)
21 f

(1)
22 f

(1)
2n

2nd instance: f
(2)
20 −→ f

(2)
21 −→ f

(2)
22 −→ · · · −→ f

(2)
2n

...
τth instance: f

(τ)
20 f

(τ)
21 f

(τ)
22 f

(τ)
2n

1st step 2nd step nth step

Then, utilizing the random self-reducibility of the subgroup variant of DBDH
assumption, we can prove the full adaptive security in the multi-instance setting.

1.2 Related Work

The dual system methodology has been applied to broader area of functional
encryptions [OT10,LOS+10]. In 2014, Wee [Wee14] and Attrapadung [Att14]
independently gave generic constructions of a large class of functional encryp-
tions with adaptive security including attribute based encryption, inner-product
encryption, and even functional encryption for regular language. They intro-
duced the notion of predicate/pair encoding and employed the dual system
methodology in the composite-order bilinear group. Their work have been
extended to the prime-order setting in [AC16,Att16,CGW15] recently.

Tight reduction under short public parameter has been studied in the field
of digital signature. Very recently, Hofheinz developed algebraic partitioning
technique [Hof16b] and adaptive partitioning technique [Hof16a] based on Chen
and Wee’s result [CW13], which leaded to tightly secure signatures with constant
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verification key and public key encryption against chosen ciphertext attack with
similar features. However it’s not quite direct to apply their technique to IBE.

Déjà Q technique was proposed by Chase and Meiklejohn [CM14]. They
showed that one can avoid the use of (a class of) q-type assumptions with
the help of a composite-order bilinear group equipped with decisional subgroup
assumption using the dual system methodology. Recently, Wee gave a petit IBE
scheme and broadcast encryption scheme [Wee16] with a extended Déjà Q tech-
nique. Their results have been used to build non-zero inner-product encryp-
tions [CLR16] and functional commitments for linear functions [LRY16] (which
implies many other important primitives such as accumulators.)

A recent work by Boyen and Li [BL16] established a generic framework from
PRF to signatures and IBE utilizing the powerful tools in the lattice world.
The reduction is constantly tight and the security loss of resulting scheme solely
depends on that of underlying PRF. We remark that all tightly secure IBE
schemes they showed still require non-constant-size master public key.

Independent Work. An independent work by Chase, Maller and Meikle-
john [CMM16] developed the basic Déjà Q technique [CM14] in a similar way to
us. We focus on solving or making progress on two open problems left by Chen
and Wee [CW13] in a specific area (i.e., tightly secure IBE) while Chase et al.
focus on a more general goal, i.e., tightly translating a broader class of q-type
assumptions into static one. Although they described four functional encryptions
including an IBE scheme, its master public key consists of O(n) group elements
with identity space {0, 1}n. As a matter of fact, neither Wee’s IBE nor ours can
be derived from an IBE under q-type assumption using Chase et al.’s new frame-
work [CMM16]. Therefore we believe it’s still necessary to propose and analyze
the IBE directly.

Open Problem. Our proposed IBE scheme works in the composite-order bilin-
ear group which can be a drawback. We leave it as an open problem to find a
prime-order IBE with tight(er) reduction, constant-size master public key, secret
keys and ciphertexts.

Organization. The paper will be organized as follows. Section 2 reviews several
basic notions, the decisional subgroup assumption and a core lemma given by
Wee [Wee16]. Section 3 describes our IBE scheme and proves the weak adap-
tive security in the single-instance, multi-ciphertext setting. We then extend the
basic result to full adaptive security and multi-instance setting in Sects. 4 and
5, respectively.

2 Preliminaries

Notation. Let S be a finite set. The notation s ← S means that we pick s from
S at random. “p.p.t.” is the abbreviation of “probabilistic polynomial time”.
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2.1 Composite-Order Bilinear Groups

Our IBE scheme is constructed in composite-order bilinear groups [BGN05]. We
assume a group generator GrpGen which takes as input the security parameter
1λ and outputs group description G = (N, G, GT , e), where order N is product of
4 distinct Θ(λ)-bit primes, group G and GT are all finite cyclic groups of order
N and e is an efficient, non-degenerated bilinear map from G × G to GT . With
N = p1p2p3p4 for primes p1, p2, p3, p4, we let Gpi

be the subgroup of order pi in
G and use G

∗
pi

to refer to the set of all generators in Gpi
, i.e., Gpi

\{1}.
We review several concrete instantiations of decisional subgroup assump-

tion [BWY11]. Since we can uniquely decompose G = Gp1 ×Gp2 ×Gp3 ×Gp4 , we
employ a special notation for sampling random elements from a composite-order
subgroup of G. For any two prime factors pi, pj of N with 1 ≤ i < j ≤ 4, we
use XiXj ← Gpi

Gpj
to indicate that we uniformly sample an element from the

subgroup of order pipj , whose respective components in Gpi
, Gpj

are Xi, Xj .
The notation can also be applied to more general cases.

Assumption 1 (SD1). For any p.p.t. adversary A the following advantage
function is negligible in λ.

AdvSD1
A (λ) = |Pr[A(G, g1, g4, T0) = 1] − Pr[A(G, g1, g4, T1)]|,

where G ← GrpGen(1λ), g1 ← G
∗
p1
, g4 ← G

∗
p4
,

T0 ← Gp1 and T1 ← Gp1Gp2Gp3 .

Assumption 2 (SD2). For any p.p.t. adversary A the following advantage
function is negligible in λ.

AdvSD2
A (λ) = |Pr[A(G, g1, g4,X1X2X3, T0) = 1] − Pr[A(G, g1, g4,X1X2X3, T1)]|,

where G ← GrpGen(1λ), g1 ← G
∗
p1
, g4 ← G

∗
p4
, X1X2X3 ← Gp1Gp2Gp3 ,

T0 ← Gp1 and T1 ← Gp1Gp2 .

Assumption 3 (SD3). For any p.p.t. adversary A the following advantage
function is negligible in λ.

AdvSD3
A (λ) = |Pr[A(G, g1, g4,X1X2X3, T0) = 1] − Pr[A(G, g1, g4,X1X2X3, T1)]|,

where G ← GrpGen(1λ), g1 ← G
∗
p1
, g4 ← G

∗
p4
, X1X2X3 ← Gp1Gp2Gp3 ,

T0 ← Gp2 and T1 ← Gp2Gp3 .

Assumption 4 (SD4). For any p.p.t. adversary A the following advantage
function is negligible in λ.

AdvSD4
A (λ) = |Pr[A(G, g1, g4,X1X2X3, Y2Y4, T0) = 1]

−Pr[A(G, g1, g4,X1X2X3, Y2Y4, T1)]|,
where G ← GrpGen(1λ), g1 ← G

∗
p1
, g4 ← G

∗
p4
, X1X2X3 ← Gp1Gp2Gp3 , Y2Y4 ←

Gp2Gp4 ,
T0 ← Gp2Gp4 and T1 ← Gp3Gp4 .
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2.2 Identity Based Encryptions

In the paper we define the notion of identity based encryption (IBE) in the
framework of key encapsulation mechanism (KEM).

Algorithms. An IBE (in the single-instance setting) is composed of the follow-
ing four p.p.t. algorithms:

– Setup(1λ) → (mpk,msk). The setup algorithm Setup takes as input the secu-
rity parameter 1λ and outputs master public/secret key pair (mpk,msk). We
assume that mpk includes ciphertext space C and key space K.

– KeyGen(mpk,msk, id) → sk. The key generation algorithm KeyGen takes as
input the master public key mpk, the master secret key msk and an identity
id and outputs its secret key sk.

– Enc(mpk, id) → (ct,key). The encryption algorithm Enc takes as input the
master public key mpk and an identity id and outputs a ciphertext ct ∈ C
along with key key ∈ K.

– Dec(mpk,ct, sk) → key. The decryption algorithm Dec takes as input the
master public key mpk, a ciphertext ct and a secret key sk and outputs key
key or ⊥.

Correctness. For any λ ∈ N, (mpk,msk) ∈ [Setup(1λ)], identity id, we require

Pr
[
Dec(mpk,ct, sk) = key

∣∣∣∣
sk ← KeyGen(mpk,msk, id)
(ct,key) ← Enc(mpk, id)

]
≥ 1 − 2−Ω(λ).

The probability space is defined by random coins of KeyGen and Enc.

Security notion. For any adversary A, we define the advantage function as

AdvIBE
A (λ) =

∣∣∣∣Pr
[
β = β′

∣∣∣∣
(mpk,msk) ← Setup(1λ), β ← {0, 1}

β′ ← AOKeyGen(·),OEnc
β (·)(1λ,mpk)

]
− 1

2

∣∣∣∣

where oracles are defined as

– OKeyGen: On input (id), the oracle returns KeyGen(mpk,msk, id) and sets
QK = QK ∪ {id}.

– OEnc
β : On input (id∗), the oracle samples (ct∗

1,key
∗
1) ← Enc(mpk, id∗),

(ct∗
0,key

∗
0) ← C ×K and returns (ct∗

β ,key∗
β). It then sets QC = QC ∪{id∗}.

The probability is defined over random coins used by Setup, oracle OKeyGen and
OEnc

β , and adversary A as well as random bit β. We say an IBE is adaptively
secure and anonymous if and only if the above advantage function is negligible
in λ for any p.p.t. adversary such that QC ∩ QK = ∅.

2.3 A Core Lemma

We review the lemma by Wee [Wee16] as follows.
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Lemma 1. Fix a prime p. For any adversary A making at most q queries, we
have ∣∣∣Pr

[
AOf (·)(1q) = 1

]
− Pr

[
AORF(·)(1q) = 1

]∣∣∣ ≤ q2

p

where oracles are defined as

– Of : The oracle is initialized by picking r1, . . . , rq, α1, . . . , αq ← Zp. On input
x ∈ Zp, it outputs

q∑

i=1

ri

αi + x
∈ Zp.

Every queries are answered using the same r1, . . . , rq, α1, . . . , αq we picked at
the very beginning.

– ORF: This oracle behaves as a truly random function RF : Zp → Zp. On input
x ∈ Zp, it returns RF(x) if it has been defined, otherwise it returns y ← Zp

and defines RF(x) = y.

3 Our IBE Scheme

This section describes our IBE scheme. At current stage, we prove its weak
adaptive security and anonymity in the single-instance, multi-challenge setting,
i.e., adversary can access only one IBE instance and only one challenge ciphertext
is allowed for each target identity.

3.1 Construction

Our IBE scheme is described as follows.

– Setup(1λ). Run G = (N, G, GT , e) ← GrpGen(1λ). Sample

α ← ZN , g1 ← G
∗
p1

, u ← Gp1 , g4 ← G
∗
p4

.

Pick H : GT → {0, 1}λ from a pairwise independent hash family. Output

mpk = (g1, gα
1 , e(g1, u), H) and msk = (α, u, g4).

– KeyGen(mpk,msk, id). Sample R4 ← Gp4 and output

sk = u
1

α+id · R4.

– Enc(mpk, id). Sample s ← ZN and output

ct = g
(α+id)s
1 and key = H(e(g1, u)s).

– Dec(mpk,ct, sk). Return

key = H(e(ct, sk)).

Correctness. We have

e(ct, sk) = e(g(α+id)s
1 , u

1
α+id · R4) = e(g1, u)(α+id)s· 1

α+id = e(g1, u)s.

This immediately proves the correctness.
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3.2 Security Analysis: An Overview

We prove the following theorem.

Theorem 1. For any p.p.t. adversary A sending at most qσ queries to OKeyGen

and OEnc
β , there exist B1, B2, B3, B4 such that

AdvIBE
A (λ) ≤ 5

2
· AdvSD1

B1
(λ) + 2 · AdvSD2

B2
(λ) + 2 · �log qσ� · AdvSD3

B3
(λ)

+
(
2 · �log qσ� +

1
2

)
· AdvSD4

B4
(λ) + 2−Ω(λ)

and max{T(B1),T(B2),T(B3),T(B4)} ≈ T(A) + q2
σ · poly(λ).

We prove the theorem using hybrid argument. We define the advantage func-
tion of any p.p.t. adversary A in Gamexxx as

AdvGamexxx

A (λ) = |Pr[β = β′] − 1/2|
Let n = �log qσ�. Our proof employs the following game sequence.

Gamereal is the real game.
Game0 is the real game with the following assumptions:

– A can not find id, id′ ∈ ZN such that id �= id′ but id = id′ mod p2;
– A can not find id ∈ ZN such that α + id = 0 mod p1 even given α.

One may notice that A can efficiently factorize the order N and break the
general decisional subgroup assumption when it violates one of the above two
assumptions. Technically, Game0 aborts immediately when A submits id ∈ ZN

(through OKeyGen or OEnc
β ) such that

– gcd(id − id′, N) /∈ {1, N} for some previous identity id′ ∈ ZN ;
– gcd(α + id, N) /∈ {1, N}.

Note that both N ∈ Z and α ∈ ZN are always available throughout our proof.
We prove the following lemma.

Lemma 2 (from Gamereal to Game0). For any p.p.t. adversary A send-
ing at most qσ queries to OKeyGen and OEnc

β , there exist B1, B2 such that
max{T(B1),T(B2)} ≈ T(A) + qσ · poly(λ) and

|AdvGame0
A (λ) − AdvGamereal

A (λ)| ≤ 1
2

· AdvSD1
B1

(λ) +
1
2

· AdvSD4
B2

(λ) + 2−Ω(λ).

Game′
0 is identical to Game0 except that, for each query (id∗) to OEnc

β , we
compute key∗

1 as
key∗

1 = H(e(ct∗
1, skid∗))

where ct∗
1 is produced as before and skid∗ is obtained via a OKeyGen query

(id∗). From the correctness, we have that

Adv
Game′

0
A (λ) = AdvGame0

A (λ)

for any p.p.t. adversary A.
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Game′′
0 is identical to Game′

0 except that, for each query (id∗) to OEnc
β , we

compute ct∗
1 as

gs
1 instead of g

(α+id∗)s
1

where s ← ZN . We have

Adv
Game′′

0
A (λ) = Adv

Game′
0

A (λ)

for any p.p.t. adversary A since the two games are exactly the same unless
α + id∗ = 0 mod p1 for some query (id∗). We emphasize that it holds even
for the multiple challenge setting since s is freshly picked for each query.

Game1 is identical to Game′′
0 except that, for each query (id∗) to OEnc

β , we
compute ct∗

1 as
(g1g2g3)s instead of gs

1

where s ← ZN , g2 ← G
∗
p2

and g3 ← G
∗
p3

. We prove the lemma.

Lemma 3 (from Game′′
0 to Game1). For any p.p.t. adversary A sending at

most qσ queries to OKeyGen and OEnc
β , there exists B with T(B) ≈ T(A)+qσ·poly(λ)

and
|AdvGame1

A (λ) − Adv
Game′′

0
A (λ)| ≤ AdvSD1

B (λ) + 2−Ω(λ).

Game2.i (0 ≤ i ≤ n, n = �log qσ�) is identical to Game1 except that, for each
query (id) to OKeyGen (including those involved in OEnc

β ), we return

u
1

α+id · g

∑2i

j=1
rj

αj+id

2 · R4

where g2 ← G
∗
p2

and αj , rj ← ZN for all j ∈ [2i]. We must prove the following
lemma first.

Lemma 4 (from Game1 to Game2.0). For any p.p.t. adversary A sending at
most qσ queries to OKeyGen and OEnc

β , there exists B with T(B) ≈ T(A)+qσ·poly(λ)
and

|AdvGame2.0
A (λ) − AdvGame1

A (λ)| ≤ AdvSD2
B (λ) + 2−Ω(λ).

To move from Game2.i to Game2.(i+1), we need two additional games:

– Game2.i.1 is identical to Game2.i except that, for each query (id) to OKeyGen,
we return

u
1

α+id · g

∑2i

j=1
rj

αj+id

2 · g

∑2i

j=1
r̂j

α̂j+id

3 · R4

where g3 ← G
∗
p3

and αj , rj , α̂j , r̂j ← ZN for all j ∈ [2i].
– Game2.i.2 is identical to Game2.i except that, for each query (id) to OKeyGen,

we return

u
1

α+id · g

∑2i

j=1
rj

αj+id+
∑2i

j=1
r̂j

α̂j+id

2 · R4

where αj , rj , α̂j , r̂j ← ZN for all j ∈ [2i].
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We prove the following two lemmas.

Lemma 5 (from Game2.i to Game2.i.1). For any p.p.t. adversary A sending at
most qσ queries to OKeyGen and OEnc

β , there exists B with T(B) ≈ T(A) + q2
σ ·

poly(λ) and

|AdvGame2.i.1
A (λ) − AdvGame2.i

A (λ)| ≤ AdvSD3
B (λ) + 2−Ω(λ).

Lemma 6 (from Game2.i.1 to Game2.i.2). For any p.p.t. adversary A sending
at most qσ queries to OKeyGen and OEnc

β , there exists B with T(B) ≈ T(A) + q2
σ ·

poly(λ) and

|AdvGame2.i.2
A (λ) − AdvGame2.i.1

A (λ)| ≤ AdvSD4
B (λ) + 2−Ω(λ).

Observe that all rj and all r̂j are i.i.d. variables in Game2.i.2. By setting α2i+k =
α̂k and r2i+k = r̂k for all k ∈ [2i], one can claim that

AdvGame2.i.2
A (λ) = Adv

Game2.(i+1)

A (λ)

for any adversary A.

Game3 is identical to Game2.n except that, for each query (id) to OKeyGen, we
return

u
1

α+id · g
RF(id)
2 · R4

where g2 ← G
∗
p2

and RF is a truly random function. By the core lemma shown
in Sect. 2.3, we have

|AdvGame2.n

A (λ) − AdvGame3
A (λ)| ≤ 2−Ω(λ)

for any adversary A.
Game4 is identical to Game3 except that, for each query (id∗) to OEnc

β , we
directly sample key∗

1 ← {0, 1}λ. In Game3, we compute a challenge for id∗

as follows:

ct∗
1 = (g1g2g3)s and key∗

1 = H(e(gs
1, u

1
α+id∗ ) · e(g2, g2)s·RF(id∗) ).

Due to the restrictions in the security game, RF(id∗) will be evaluated only in
this place and the boxed term has entropy of p2 = Θ(λ) which means we can
sample key∗

1 ← {0, 1}λ instead but with small error. This comes from the
leftover hash lemma and the fact that the pairwise independent hash family
is a stronger extractor. Formally we have

|AdvGame4
A (λ) − AdvGame3

A (λ)| ≤ 2−Ω(λ)

for any adversary A.

Utilizing, in a reversed manner, a game sequence which is identical to the
above except that we always sample key∗

1 ← {0, 1}λ when answering queries to
OEnc

β , we may reach a game where we create

ct∗
1 ← Gp1 and key∗

1 ← {0, 1}λ for all id∗.

This means we can answer all queries to OEnc
β without β and this readily proves

the main theorem.
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3.3 Security Analysis: Proving All Lemmas

This subsection provides all omitted proofs.

Proof of Lemma 2.

Proof (a sketch). Let AbortA be the event that Game0 aborts with adversary A.
We have

|AdvGame0
A (λ) − AdvGamereal

A (λ)| ≤ Pr[AbortA].

As we have discussed, when AbortA occurs, one can reach a non-trivial factoriza-
tion of N . That is we can efficiently compute N1, N2 ∈ Z such that N = N1N2

and 1 < N1, N2 < N . Let us consider the following three cases:

1. If p4|N1 and p2 � N1, given (G, g1, g4,X1X2X3, Y2Y4, T ) where either T ←
Gp2Gp4 or T ← Gp3Gp4 , we observe that (Y2Y4)N1 ∈ Gp2 . This allows us to
break SD4 assumption by checking whether e((Y2Y4)N1 , T ) = 1.

2. If p2p4|N1 and p3 � N1, given (G, g1, g4,X1X2X3, Y2Y4, T ) where either T ←
Gp2Gp4 or T ← Gp3Gp4 , we can break SD4 assumption by checking whether
TN1 = 1.

3. If p2p3p4|N1, it must be the case that N2 = p1. Given (G, g1, g4, T ) where
either T ← Gp1 or T ← Gp1Gp2Gp3 , we can break SD1 assumption by check-
ing whether TN2 = 1.

In all three cases, we have access to (G, g1, g4) which is sufficient for simulat-
ing Game0 for A. Therefore we can claim that there exist B1, B2 such that
max{T(B1),T(B2)} ≈ T(A) + qσ · poly(λ) and

Pr[AbortA] ≤ 1
2

· AdvSD1
B1

(λ) +
1
2

· AdvSD4
B2

(λ) + 2−Ω(λ).

This proves the lemma. ��
Proof of Lemma 3.

Proof. Given (G, g1, g4, T ) where either T ← Gp1 or T ← Gp1Gp2Gp3 , algorithm
B works as follows:

Initialization. Pick α ← ZN and u ← Gp1 . Select hash function H. Output

mpk = (g1, gα
1 , e(g1, u), H)

and store msk = (α, u, g4).
Answering OKeyGen. On input (id), return KeyGen(mpk,msk, id) directly.
Answering OEnc

β . On input (id∗), obtain skid∗ via a query (id∗) to OKeyGen.
Sample s′ ← ZN and compute

ct∗
1 = T s′

and key∗
1 = H(e(T s′

, skid∗)).

B then picks (ct∗
0,key

∗
0) ← Gp1 × {0, 1}λ and returns (ct∗

β ,key∗
β).

Finalize. B returns 1 if β = β′ and returns 0 in the other case.
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When T ← Gp1 , the simulation is identical to Game′′
0 ; when T ← Gp1Gp2Gp3 ,

the simulation is identical to Game1. The additive probability error 2−Ω(λ) is
caused by trivial subgroup components in T . Because we actually take T as a
generator, our simulation will deviate from both or one of the games if there
exists any trivial subgroup component in it. ��

Proof of Lemma 4.

Proof. Given (G, g1, g4,X1X2X3, T ) where either T = u ← Gp1 or T = ugr
2 ←

Gp1Gp2 for g2 ← G
∗
p2

and r ← ZN , algorithm B works as follows:

Initialization. Pick α ← ZN and select hash function H. Output

mpk = (g1, gα
1 , e(g1, T ), H).

Observe that e(g1, T ) = e(g1, u) in both cases.
Answering OKeyGen. On input (id), sample R4 ← Gp4 and return

T
1

α+id · R4.

Answering OEnc
β . On input (id∗), sample s′ ← ZN and compute

ct∗
1 = (X1X2X3)s′

and key∗
1 = H(e((X1X2X3)s′

, skid∗))

where skid∗ is obtained via oracle OKeyGen. B then picks (ct∗
0,key

∗
0) ← Gp1 ×

{0, 1}λ and returns (ct∗
β ,key∗

β).
Finalize. B returns 1 if β = β′ and returns 0 in the other case.

When T = u, the simulation is identical to Game1; when T = ugr
2, the simulation

is identical to Game2.0 where α1 = α mod p2 and r1 = r mod p2. The additive
probability error 2−Ω(λ) is caused by trivial subgroup components in X1X2X3. ��

Proof of Lemma 5.

Proof. Given (G, g1, g4,X1X2X3, T ) where either T = g2 ← Gp2 or T = g2g3 ←
Gp2Gp3 , algorithm B works as follows:

Initialization. Pick α ← ZN and u ← Gp1 . Select hash function H. Output

mpk = (g1, gα
1 , e(g1, u), H).

Sample α′
1, . . . , α

′
2i , r′

1, . . . , r
′
2i ← ZN .

Answering OKeyGen. On input (id), sample R4 ← Gp4 and return

u
1

α+id · T

∑2i

j=1

r′
j

α′
j
+id · R4.

Answering OEnc
β . On input (id∗), sample s′ ← ZN and compute

ct∗
1 = (X1X2X3)s′

and key∗
1 = H(e((X1X2X3)s′

, skid∗))

where skid∗ is obtained via oracle OKeyGen. B then picks (ct∗
0,key

∗
0) ← Gp1 ×

{0, 1}λ and returns (ct∗
β ,key∗

β).
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Finalize. B returns 1 if β = β′ and returns 0 in the other case.

When T = g2, the simulation is identical to Game2.i; when T = g2g3, the simu-
lation is identical to Game2.i.1. We set

αj = α′
j mod p2, rj = r′

j mod p2, for all j ∈ [2i]

for both cases and set

α̂j = α′
j mod p3, r̂j = r′

j mod p3, for all j ∈ [2i]

in the case of T = g2g3. The additive probability error 2−Ω(λ) is caused by trivial
subgroup components in X1X2X3 and T . ��

Proof of Lemma 6.

Proof. Given (G, g1, g4,X1X2X3, Y2Y4, T ) where either T = g2R4 ← Gp2Gp4 or
T = g3R4 ← Gp3Gp4 , algorithm B works as follows:

Initialization. Pick α ← ZN and u ← Gp1 . Select hash function H. Output

mpk = (g1, gα
1 , e(g1, u), H).

Sample α′
1, . . . , α

′
2i , r′

1, . . . , r
′
2i , α̂1, . . . , α̂2i , r̂1, . . . , r̂2i ← ZN .

Answering OKeyGen. On input (id), sample R′
4 ← Gp4 and return

u
1

α+id · (Y2Y4)
∑2i

j=1

r′
j

α′
j
+id · T

∑2i

j=1
r̂j

α̂j+id · R′
4.

Answering OEnc
β . On input (id∗), sample s′ ← ZN and compute

ct∗
1 = (X1X2X3)s′

and key∗
1 = H(e((X1X2X3)s′

, skid∗))

where skid∗ is obtained via oracle OKeyGen. B then picks (ct∗
0,key

∗
0) ← Gp1 ×

{0, 1}λ and returns (ct∗
β ,key∗

β).
Finalize. B returns 1 if β = β′ and returns 0 in the other case.

Let Y2Y4 = gy2
2 gy4

4 , we implicitly set

αj = α′
j mod p2 and rj = r′

j · y2 mod p2 for all j ∈ [2i].

When T = g3R4, the simulation is identical to Game2.i.1; when T = g2R4,
the simulation is identical to Game2.i.2. The additive probability error 2−Ω(λ) is
caused by trivial subgroup components in X1X2X3, Y2Y4 and T . ��
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4 Towards Full Adaptive Security

To prove the full adaptive security of our IBE scheme (in the single-instance
setting), we still employ the game sequence described in the previous section. In
fact, nearly all lemmas and results we have established still hold in the full adap-
tive security model where each target identity may have more than one challenge
ciphertexts. The only exception is that we can not prove the indistinguishability
between Game3 and Game4 just from the property of random function as before.

Following the work by Hofheinz et al. [HKS15], we find that we can prove the
indistinguishability between them under a subgroup variant of DBDH assump-
tion (see Assumption 5). This assumption is motivated by Dual System Bilinear
DDH assumption from [HKS15] but is simpler.

Assumption 5 (DBDH in Gp2). For any p.p.t. adversary A the following
advantage function is negligible in λ.

AdvDBDH
A (λ) = |Pr[A(G,D, T0) = 1] − Pr[A(G,D, T1)]|,

where G ← GrpGen(1λ), g1 ← G
∗
p1
, g2 ← G

∗
p2
, g3 ← G

∗
p3
, g4 ← G

∗
p4
, a, b, c,

r ← ZN ,

D = (G, g1, g3, g4, g2, g
a
2 , gb

2, g
c
2);

T0 = e(g2, g2)abc and T1 ← e(g2, g2)r.

We can define two efficient algorithms to re-randomize DBDH problem instances
as Hofheinz et al. [HKS15]. Given a DBDH instance, algorithm ReRand produces
an entirely fresh instance while algorithm ReRanda creates a fresh instance shar-
ing b and c with its input. Their formal definitions are given below.

– ReRanda(g2, g
a
2 , gb

2, g
c
2, T ) → (ga′

2 , T ′) where a′ ← ZN and

T ′ =
{

e(g2, g2)a′bc when T = e(g2, g2)abc

e(g2, g2)r′
for r′ ← ZN when T = e(g2, g2)r

– ReRand(g2, g
a
2 , gb

2, g
c
2, T ) → (ga′

2 , gb′
2 , gc′

2 , T ′) where a′, b′, c′ ← ZN and

T ′ =
{

e(g2, g2)a′b′c′
when T = e(g2, g2)abc

e(g2, g2)r′
for r′ ← ZN when T = e(g2, g2)r

We now prove that Game3 and Game4 are computationally indistinguishable
in the full adaptive security model. This will immediately derive the full adaptive
security of our IBE scheme in the single-instance setting.

Lemma 7 (from Game3 to Game4). For any p.p.t. adversary A sending at
most qσ queries to OKeyGen and OEnc

β , there exists B with T(B) ≈ T(A)+qσ·poly(λ)
and

|AdvGame3
A (λ) − AdvGame4

A (λ)| ≤ AdvDBDH
B (λ) + 2−Ω(λ).
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Proof. Given (G, g1, g3, g4, g2, g
a
2 , gb

2, g
c
2, T ) where either T = e(g2, g2)abc or T =

e(g2, g2)r for some r ← ZN , algorithm B works as follows:

Initialization. Pick α ← ZN and u ← Gp1 . Select hash function H. Output

mpk = (g1, gα
1 , e(g1, u), H).

Answering OKeyGen. On input (id), return

u
1

α+id · g
RF(id)
2 · R4

where R4 ← Gp4 and RF is a truly random function.
Answering OEnc

β . B maintains a list L. On input (id∗), sample s′ ← ZN . If one
can find a entry (id∗, ga′

2 , gb′
2 , gc′

2 , T ′) ∈ L, get

(ga∗
2 , T ∗) ← ReRanda(ga′

2 , gb′
2 , gc′

2 , T ′);

otherwise get

(ga∗
2 , gb∗

2 , gc∗
2 , T ∗) ← ReRand(ga

2 , gb
2, g

c
2, T )

and update the list as L = L ∪ {(id∗, ga∗
2 , gb∗

2 , gc∗
2 , T ∗)}. B then computes

ct∗
1 = (g1g3)s′ · ga∗

2 and key∗
1 = H(e(gs′

1 , u
1

α+id∗ ) · T ∗).

Finally B picks (ct∗
0,key

∗
0) ← Gp1 × {0, 1}λ and returns (ct∗

β ,key∗
β).

Finalize. B returns 1 if β = β′ and returns 0 in the other case.

We implicitly define RF as

RF(id∗) = b∗c∗ for all (id∗, ga∗
2 , gb∗

2 , gc∗
2 , T ∗) ∈ L (or id∗ ∈ QC).

For all (id∗, �, �, �, �) ∈ L (or id∗ ∈ QC), we have id∗ /∈ QK . Therefore our
simulation of RF is consistent. When T = e(g2, g2)abc, the simulation is identical
to Game3 where

T ∗ = e(ga∗
2 , g

RF(id∗)
2 );

when T = e(g2, g2)r for some r ← ZN , the simulation is identical to Game4 since
all inputs of H have min-entropy Θ(λ) and thus distributions of all key∗

1 are
statistically close to the uniform distribution over {0, 1}λ. ��

5 Towards Multi-instance Setting

Having obtained full adaptive security of our IBE scheme in the basic single-
instance setting, we now extend the result to the multi-instance setting [HKS15].
Typically, all instances in question will share some parameters. Formally, we
define two additional algorithms following [HKS15]:
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– Param(1λ) → gp. The parameter generation algorithm Param takes as input
the security parameter 1λ and outputs global parameter gp.

– Setupm(gp) → (mpk,msk). The setup algorithm Setupm takes as input the
global parameter gp and outputs master public/secret key pair (mpk,msk).

Each instance is established by running algorithm Setupm with the global para-
meter gp (shared among all instances) and a fresh random coin. For simplicity,
we assume that all instances have common ciphertext space C and key space K.
With master public/secret key pair (mpk,msk) generated by algorithm Setupm,
one can invoke algorithms KeyGen, Enc, Dec as in the single-instance setting.
Therefore the correctness can be defined in a natural way.

The full adaptive security and anonymity in the multi-instance setting can
be formulated by defining the advantage function as

AdvmIBE
A (λ) =

∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣β = β′

∣
∣
∣
∣
∣
∣
∣

gp ← Param(1λ), β ← {0, 1}
(mpk(ι),msk(ι)) ← Setupm(gp), ∀ι ∈ [τ ]

β′ ← AOKeyGen(·,·),OEnc
β (·,·)(1λ,mpk(1), . . . ,mpk(τ))

⎤

⎥
⎦− 1

2

∣
∣
∣
∣
∣
∣
∣

where τ is the number of instances and oracles work as follows

– OKeyGen: On input (ι, id), the oracle returns KeyGen(mpk(ι),msk(ι), id) and
sets QK = QK ∪ {(ι, id)}.

– OEnc
β : On input (ι∗, id∗), the oracle samples (ct∗

1,key
∗
1) ← Enc(mpk(ι∗), id∗),

(ct∗
0,key

∗
0) ← C × K and returns (ct∗

β ,key∗
β). Set QC = QC ∪ {(ι∗, id∗)}.

5.1 Construction

We describe a multi-instance variant of our basic IBE scheme (shown in Sect. 3.1)
as follows.

– Param(1λ). Run G = (N, G, GT , e) ← GrpGen(1λ). Sample

g1 ← G
∗
p1

, g4 ← G
∗
p4

.

Pick H : GT → {0, 1}λ from a pairwise independent hash family. Output

gp = (G, g1, g4, H).

– Setupm(gp). Sample α ← ZN and u ← Gp1 . Output

mpk = (g1, gα
1 , e(g1, u), H) and msk = (α, u, g4).

The remaining algorithms KeyGen, Enc, Dec are defined as in Sect. 3.1.

5.2 Security

We prove the following theorem.
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Theorem 2. For any p.p.t. adversary A sending at most q̂σ queries to OKeyGen

and OEnc
β for each of τ instances, there exist B1, B2, B3, B4 such that

AdvmIBE
A (λ) ≤ 5

2
· AdvSD1

B1
(λ) + 2 · AdvSD2

B2
(λ) + 2 · �log q̂σ� · AdvSD3

B3
(λ)

+
(
2 · �log q̂σ� +

1
2

)
· AdvSD4

B4
(λ) + 2−Ω(λ)

and max{T(B1),T(B2),T(B3),T(B4)} ≈ T(A) + τ2 · q2
σ · poly(λ).

One may find that the above theorem is almost the same as Theorem 1. As
a matter of fact, it can be proved in a similar way. As we have discussed, our
main idea in this setting is to build an independent random function for each
instance in a concurrent manner. The remaining of this subsection is devoted to
showing how to upgrade the proof of Theorem 1 (c.f. Sect. 3.2 for game sequence
and Sect. 3.3 for proof details) to prove Theorem 2.

Game Sequence. It’s quite straightforward to extend Gamereal, Game0, Game′
0,

Game′′
0 , Game1 and Game4 to the multi-instance setting. The remaining Game2.i,

Game2.i.1, Game2.i.2, Game3 can be described as follows: Let G = (N, G, GT , e) ←
GrpGen(1λ). In all these games, master public keys given to adversary A are

mpk(1) = (g1, gα(1)

1 , e(g1, u
(1)), H), . . . , mpk(τ) = (g1, gα(τ)

1 , e(g1, u
(τ)), H)

where g1 ← G
∗
p1

, α(1), . . . , α(τ) ← ZN , u(1), . . . , u(τ) ← Gp1 and H is picked from
a family of pairwise-independent hash family; oracle OEnc

β works as follows:

– On input (ι∗, id∗), sample ct∗
1 ← Gp1Gp2Gp3 and compute

key∗
1 = H(e(ct∗

1, sk
(ι∗)
id∗ ))

where sk
(ι∗)
id∗ is obtained via a OKeyGen query (ι∗, id∗). Sample (ct∗

0,key
∗
0) ←

Gp1 × {0, 1}λ and return (ct∗
β ,key∗

β).

However, on input (ι, id), oracle OKeyGen behaves differently in those games:

– In Game2.i, it returns

(u(ι))
1

α(ι)+id · g

∑2i

j=1

r
(ι)
j

α
(ι)
j

+id

2 · R4

where g2 ← G
∗
p2

and α
(1)
j , r

(1)
j , . . . , α

(τ)
j , r

(τ)
j ← ZN for all j ∈ [2i].

– In Game2.i.1, it returns

(u(ι))
1

α(ι)+id · g

∑2i

j=1

r
(ι)
j

α
(ι)
j

+id

2 · g

∑2i

j=1

r̂
(ι)
j

α̂
(ι)
j

+id

3 · R4,

where g3 ← G
∗
p3

and α
(1)
j , r

(1)
j , α̂

(1)
j , r̂

(1)
j , . . . , α

(τ)
j , r

(τ)
j , α̂

(τ)
j , r̂

(τ)
j ← ZN for all

j ∈ [2i].
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– In Game2.i.2, it returns

(u(ι))
1

α(ι)+id · g

∑2i

j=1

r
(ι)
j

α
(ι)
j

+id
+
∑2i

j=1

r̂
(ι)
j

α̂
(ι)
j

+id

2 · R4,

where g2 ← G
∗
p2

and α
(1)
j , r

(1)
j , α̂

(1)
j , r̂

(1)
j , . . . , α

(τ)
j , r

(τ)
j , α̂

(τ)
j , r̂

(τ)
j ← ZN for all

j ∈ [2i].
– In Game3, it returns

(u(ι))
1

α(ι)+id · g
RF(ι)(id)
2 · R4

where g2 ← G
∗
p2

and RF(1), . . . ,RF(τ) are τ independent random functions.

Lemmas and Proofs. Most lemmas and proofs (including arguments) in
Sects. 3.3, 3.2 and 4 can be extended directly to cope with multiple instances.
In particular, in order to prove Game2.i ≈ Game2.i.1, Game2.i.1 ≈ Game2.i.2, and
Game3 ≈ Game4 (where “Gamexxx ≈ Gameyyy” means two games are compu-
tationally indistinguishable) in the multi-instance setting, one can just invoke
simulators described in the proofs of Lemmas 5, 6, and 7 for each instance
using independent random coins. It remains to give the following lemma show-
ing Game1 ≈ Game2.0 with proof.

Lemma 8. (from Game1 to Game2.0, multi-instance case). For any p.p.t.
adversary A sending at most q̂σ queries to OKeyGen and OEnc

β for each of τ
instances, there exists B with T(B) ≈ T(A) + τ · q̂σ · poly(λ) and

|AdvGame2.0
A (λ) − AdvGame1

A (λ)| ≤ AdvSD2
B (λ) + 2−Ω(λ).

Proof. Given (G, g1, g4,X1X2X3, T ) where either T = gμ
1 ← Gp1 or T = gμ

1 gr
2 ←

Gp1Gp2 for g2 ← G
∗
p2

and μ, r ← ZN , algorithm B works as follows:

Initialization. Pick α(1), . . . , α(τ), μ(1), . . . , μ(τ) ← ZN and select hash function
H. Compute

T (1) = Tμ(1)
, . . . , T (τ) = Tμ(τ)

and output

mpk(1) = (g1, gα(1)

1 , e(g1, T
(1)), H), . . . , mpk(τ) = (g1, gα(τ)

1 , e(g1, T
(τ)), H).

Here we implicitly set

u(1) = gμμ(1)

1 , . . . , u(τ) = gμμ(τ)

1 .

Answering OKeyGen. On input (ι, id), sample R4 ← Gp4 and return

(T (ι))
1

α(ι)+id · R4.
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Answering OEnc
β . On input (ι∗, id∗), sample s′ ← ZN and compute

ct∗
1 = (X1X2X3)s′

and key∗
1 = H(e((X1X2X3)s′

, skid∗))

where skid∗ is obtained via a OKeyGen query. B then picks (ct∗
0,key

∗
0) ←

Gp1 × {0, 1}λ and returns (ct∗
β ,key∗

β).
Finalize. B returns 1 if β = β′ and returns 0 in the other case.

When T = gμ
1 , the simulation is identical to Game1; when T = gμ

1 gr
2, the simu-

lation is identical to Game2.0 where we implicitly set

α
(1)
1 = α(1) mod p2

r
(1)
1 = rμ(1) mod p2

, . . . ,
α

(τ)
1 = α(τ) mod p2

r
(τ)
1 = rμ(τ) mod p2

.

This proves the lemma. ��
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