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Preface

The 20th IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2017) was held March 28–31, 2017, in Amsterdam, The
Netherlands. The conference is sponsored by the International Association for Cryp-
tologic Research (IACR) and has an explicit focus on public-key cryptography.

These proceedings, consisting of two volumes, feature 36 papers; these were selected
by the Program Committee from 160 qualified submissions. Each submission was
reviewed independently by at least three reviewers, or four in the case of Program
Committee member submissions. Following the initial reviewing phase, the submis-
sions and their reviews were discussed over a period of one month, before final decisions
were then made. During this discussion phase, the Program Committee made substantial
use of a newer feature of the submission/review software, which allows direct yet
anonymous communication between the Program Committee and the authors; I think
this interaction proved very useful in resolving pending issues and questions.

The reviewing and selection process was an intensive and time-consuming task, and
I thank the members of the Program Committee, along with the external reviewers, for
all their hard work and their excellent job. I also want to acknowledge Shai Halevi for
his awesome submission/review software, which tremendously simplifies the program
chair’s work, and I thank him for his 24/7 and always-prompt assistance.

The conference program also included two invited talks, one by Vipul Goyal on
“Recent Advances in Non-Malleable Cryptography,” and the other by Kenny Paterson
on “The Evolution of Public Key Cryptography in SSL/TLS.” I would like to thank the
two invited speakers as well as all the other speakers for their contributions to the
program.

I also want to thank all the authors who submitted papers; you made it very challenging
for the Program Committee to decide on what should be “the best” submissions— which
of course is very much a matter of taste and perspective. I know that having good papers
rejected because of a tough competition, and because there is always some amount of
randomness involved, is disappointing, but I am optimistic that these “unlucky” papers
will find their place and get the deserved recognition.

Last but not least, I would like to thank Marc Stevens, the general chair, for setting
up a great conference and ensuring a smooth running of the event, and Ronald Cramer
for his advisory support and allowing me to tap into his experience.

January 2017 Serge Fehr



PKC 2017

The 20th International Conference on Practice
and Theory of Public-Key Cryptography

Amsterdam, The Netherlands
March 28–31, 2017

Sponsored by the
International Association of Cryptologic Research

General Chair

Marc Stevens CWI Amsterdam, The Netherlands

Program Chair

Serge Fehr CWI Amsterdam, The Netherlands

Program Committee

Masayuki Abe NTT Secure Platform Labs, Japan
Fabrice Benhamouda IBM Research, USA
Nir Bitansky MIT, USA
Zvika Brakerski Weizmann Institute of Science, Israel
Nishanth Chandran Microsoft Research, India
Dana Dachman-Soled University of Maryland, USA
Nico Döttling UC Berkeley, USA
Léo Ducas CWI Amsterdam, The Netherlands
Sebastian Faust Ruhr-University Bochum, Germany
Dario Fiore IMDEA Software Institute, Spain
Pierre-Alain Fouque Rennes 1 University, France
Georg Fuchsbauer ENS, France
Sanjam Garg UC Berkeley, USA
Jens Groth University College London, UK
Carmit Hazay Bar-Ilan University, Israel
Dennis Hofheinz KIT, Germany
Tibor Jager Paderborn University, Germany
Abhishek Jain Johns Hopkins University, USA
Marcel Keller University of Bristol, UK
Markulf Kohlweiss Microsoft Research, UK
Vadim Lyubashevsky IBM Research Zurich, Switzerland



Takahiro Matsuda AIST, Japan
Adam O’Neill Georgetown University, USA
Arpita Patra Indian Institute of Science, India
Ludovic Perret Sorbonnes University, UPMC/Inria/CNRS, France
Christophe Petit University of Oxford, UK
Vanishree Rao PARC, USA
Alessandra Scafuro North Carolina State University, USA
Gil Segev Hebrew University of Jerusalem, Israel
Fang Song Portland State University, USA
Daniele Venturi Sapienza University of Rome, Italy
Ivan Visconti University of Salerno, Italy
Hoeteck Wee ENS, France
Vassilis Zikas Rensselaer Polytechnic Institute, USA

External Reviewers

Hamza Abusalah
Shashank Agrawal
Tristan Allard
Miguel Ambrona
Daniel Apon
Diego F. Aranha
Nuttapong Attrapadung
Christian Badertscher
Saikrishna Badrinarayanan
Shi Bai
Foteini Baldimtsi
Marshall Ball
Carsten Baum
David Bernhard
Silvio Biagioni
Jean-Francois Biasse
Olivier Blazy
Jonathan Bootle
Joppe Bos
Cecilia Boschini
Florian Bourse
Elette Boyle
Chris Brzuska
Angelo De Caro
Wouter Castryck
Dario Catalano
Andrea Cerulli
Pyrros Chaidos
Jie Chen

Mahdi Cheraghchi
Céline Chevalier
Seung Geol Choi
Arka Rai Choudhary
Kai-Min Chung
Aloni Cohen
Sandro Coretti
Véronique Cortier
Anamaria Costache
Geoffroy Couteau
Lisa Eckey
Antonio Faonio
Luca di Feo
Tore Kasper Frederiksen
Tommaso Gagliardoni
Steven Galbraith
David Galindo
Pierrick Gaudry
Romain Gay
Marilyn George
Essam Ghadafi
Junqing Gong
Aurore Guillevic
Felix Günther
Ryo Hiromasa
Mohammad Hajiabadi
Yoshikazu Hanatani
Ethan Heilman
Justin Holmgren

Kristina Hostakova
Vincenzo Iovino
Malika Izabachène
Sune Jakobsen
Marc Joye
Charanjit Jutla
Ali El Kaafarani
Bhavana Kanukurthi
Koray Karabina
Aniket Kate
Dakshita Khurana
Eike Kiltz
Taechan Kim
Elena Kirshanova
Fuyuki Kitagawa
Yutaro Kiyomura
Susumu Kiyoshima
Lisa Kohl
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Luke Kowalczyk
Juliane Krämer
Mukul Kulkarni
Thijs Laarhoven
Sebastian Lauer
Moon Sung Lee
Tancrède Lepoint
Qinyi Li

VIII PKC 2017



Benoît Libert
Satyanarayana Lokam
Patrick Longa
Steve Lu
Yun Lu
Bernardo Magri
Mary Maller
Alex Malozemoff
Antonio Marcedone
Giorgia Azzurra Marson
Daniel Masny
Nicolas Meloni
Peihan Miao
Giacomo Micheli
Michele Minelli
Ameer Mohammed
Pratyay Mukherjee
Debdeep Mukhopadhyay
Patrick Märtens
Pierrick Méaux
Michael Naehrig
Gregory Neven
Anca Nitulescu
Luca Nizzardo
Ariel Nof
Koji Nuida
Maciej Obremski
Miyako Ohkubo
Cristina Onete
Michele Orrù
Daniel Page
Jiaxin Pan

Dimitris Papadopoulos
Sunoo Park
Anat Paskin-Cherniavsky
Alain Passelègue
Valerio Pastro
Cécile Pierrot
Rafael del Pino
Rachel Player
Oxana Poburinnaya
David Pointcheval
Antigoni Polychroniadou
Manoj Prabhakaran
Benjamin Pring
Srinivasan Raghuraman
Joost Renes
Răzvan Roşie
Dragos Rotaru
Tim Ruffing
Akshayaram Srinivasan
Yusuke Sakai
Kazuo Sakiyama
John M. Schanck
Benedikt Schmidt
Peter Scholl
Jacob Schuldt
Peter Schwabe
Sven Schäge
Ido Shahaf
Igor Shparlinski
Shashank Singh
Luisa Siniscalchi
Ben Smith

Douglas Stebila
Kim Taechan
Atsushi Takayasu
Vanessa Teague
Adrien Thillard
Aishwarya

Thiruvengadam
Yan Bo Ti
Mehdi Tibouchi
Junichi Tomida
Daniel Tschudi
Dominique Unruh
Alexander Ushakov
Satyanarayana Vusirikala
Xiao Wang
Yohei Watanabe
Avi Weinstock
Mor Weiss
David Wu
Keita Xagawa
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Eylon Yogev
Kazuki Yoneyama
Yang Yu
Mark Zhandry
Jean Karim Zinzindohoué
Michael Zohner

PKC 2017 IX



Contents – Part I

Cryptanalysis

LP Solutions of Vectorial Integer Subset Sums – Cryptanalysis
of Galbraith’s Binary Matrix LWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Gottfried Herold and Alexander May

Improved Algorithms for the Approximate k-List Problem
in Euclidean Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Gottfried Herold and Elena Kirshanova

Zeroizing Attacks on Indistinguishability Obfuscation over CLT13 . . . . . . . . 41
Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint,
and Mehdi Tibouchi

Protocols

Cut Down the Tree to Achieve Constant Complexity in Divisible E-cash . . . . 61
David Pointcheval, Olivier Sanders, and Jacques Traoré

Asymptotically Tight Bounds for Composing ORAM with PIR . . . . . . . . . . 91
Ittai Abraham, Christopher W. Fletcher, Kartik Nayak, Benny Pinkas,
and Ling Ren

Predictable Arguments of Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi

Removing Erasures with Explainable Hash Proof Systems . . . . . . . . . . . . . . 151
Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Scalable Multi-party Private Set-Intersection . . . . . . . . . . . . . . . . . . . . . . . . 175
Carmit Hazay and Muthuramakrishnan Venkitasubramaniam

Encryption Schemes

Tightly Secure IBE Under Constant-Size Master Public Key . . . . . . . . . . . . 207
Jie Chen, Junqing Gong, and Jian Weng

Separating IND-CPA and Circular Security for Unbounded Length
Key Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Rishab Goyal, Venkata Koppula, and Brent Waters

http://dx.doi.org/10.1007/978-3-662-54365-8_1
http://dx.doi.org/10.1007/978-3-662-54365-8_1
http://dx.doi.org/10.1007/978-3-662-54365-8_2
http://dx.doi.org/10.1007/978-3-662-54365-8_2
http://dx.doi.org/10.1007/978-3-662-54365-8_3
http://dx.doi.org/10.1007/978-3-662-54365-8_4
http://dx.doi.org/10.1007/978-3-662-54365-8_5
http://dx.doi.org/10.1007/978-3-662-54365-8_6
http://dx.doi.org/10.1007/978-3-662-54365-8_7
http://dx.doi.org/10.1007/978-3-662-54365-8_8
http://dx.doi.org/10.1007/978-3-662-54365-8_9
http://dx.doi.org/10.1007/978-3-662-54365-8_10
http://dx.doi.org/10.1007/978-3-662-54365-8_10


Structure-Preserving Chosen-Ciphertext Security with Shorter
Verifiable Ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Benoît Libert, Thomas Peters, and Chen Qian

Leakage-Resilient and Non-Malleable Codes

Non-malleable Codes with Split-State Refresh . . . . . . . . . . . . . . . . . . . . . . 279
Antonio Faonio and Jesper Buus Nielsen

Tight Upper and Lower Bounds for Leakage-Resilient, Locally Decodable
and Updatable Non-malleable Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi

Fully Leakage-Resilient Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Antonio Faonio and Jesper Buus Nielsen

Number Theory and Diffie-Hellman

On the Bit Security of Elliptic Curve Diffie–Hellman . . . . . . . . . . . . . . . . . 361
Barak Shani

Extended Tower Number Field Sieve with Application to Finite Fields
of Arbitrary Composite Extension Degree . . . . . . . . . . . . . . . . . . . . . . . . . 388

Taechan Kim and Jinhyuck Jeong

Provably Secure NTRU Instances over Prime Cyclotomic Rings . . . . . . . . . . 409
Yang Yu, Guangwu Xu, and Xiaoyun Wang

Equivalences and Black-Box Separations of Matrix Diffie-Hellman
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Jorge L. Villar

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-662-54365-8_11
http://dx.doi.org/10.1007/978-3-662-54365-8_11
http://dx.doi.org/10.1007/978-3-662-54365-8_12
http://dx.doi.org/10.1007/978-3-662-54365-8_13
http://dx.doi.org/10.1007/978-3-662-54365-8_13
http://dx.doi.org/10.1007/978-3-662-54365-8_14
http://dx.doi.org/10.1007/978-3-662-54365-8_15
http://dx.doi.org/10.1007/978-3-662-54365-8_16
http://dx.doi.org/10.1007/978-3-662-54365-8_16
http://dx.doi.org/10.1007/978-3-662-54365-8_17
http://dx.doi.org/10.1007/978-3-662-54365-8_18
http://dx.doi.org/10.1007/978-3-662-54365-8_18


Contents – Part II

Encryption with Access Control

Dual System Framework in Multilinear Settings and Applications to Fully
Secure (Compact) ABE for Unbounded-Size Circuits. . . . . . . . . . . . . . . . . . 3

Nuttapong Attrapadung

CCA-Secure Inner-Product Functional Encryption from Projective
Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa

Bounded-Collusion Attribute-Based Encryption
from Minimal Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Gene Itkis, Emily Shen, Mayank Varia, David Wilson,
and Arkady Yerukhimovich

Access Control Encryption for Equality, Comparison, and More . . . . . . . . . . 88
Georg Fuchsbauer, Romain Gay, Lucas Kowalczyk,
and Claudio Orlandi

Special Signatures

Deterring Certificate Subversion: Efficient
Double-Authentication-Preventing Signatures . . . . . . . . . . . . . . . . . . . . . . . 121

Mihir Bellare, Bertram Poettering, and Douglas Stebila

Chameleon-Hashes with Ephemeral Trapdoors: And Applications to
Invisible Sanitizable Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls,
Kai Samelin, and Daniel Slamanig

Improved Structure Preserving Signatures Under Standard
Bilinear Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Charanjit S. Jutla and Arnab Roy

Fully Homomorphic Encryption

Chosen-Ciphertext Secure Fully Homomorphic Encryption. . . . . . . . . . . . . . 213
Ran Canetti, Srinivasan Raghuraman, Silas Richelson,
and Vinod Vaikuntanathan

Circuit-Private Multi-key FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Wutichai Chongchitmate and Rafail Ostrovsky

http://dx.doi.org/10.1007/978-3-662-54388-7_1
http://dx.doi.org/10.1007/978-3-662-54388-7_1
http://dx.doi.org/10.1007/978-3-662-54388-7_2
http://dx.doi.org/10.1007/978-3-662-54388-7_2
http://dx.doi.org/10.1007/978-3-662-54388-7_3
http://dx.doi.org/10.1007/978-3-662-54388-7_3
http://dx.doi.org/10.1007/978-3-662-54388-7_4
http://dx.doi.org/10.1007/978-3-662-54388-7_5
http://dx.doi.org/10.1007/978-3-662-54388-7_5
http://dx.doi.org/10.1007/978-3-662-54388-7_6
http://dx.doi.org/10.1007/978-3-662-54388-7_6
http://dx.doi.org/10.1007/978-3-662-54388-7_7
http://dx.doi.org/10.1007/978-3-662-54388-7_7
http://dx.doi.org/10.1007/978-3-662-54388-7_8
http://dx.doi.org/10.1007/978-3-662-54388-7_9


FHE over the Integers: Decomposed and Batched
in the Post-Quantum Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Daniel Benarroch, Zvika Brakerski, and Tancrède Lepoint

Real-World Schemes

Ceremonies for End-to-End Verifiable Elections . . . . . . . . . . . . . . . . . . . . . 305
Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang

A Modular Security Analysis of EAP and IEEE 802.11 . . . . . . . . . . . . . . . . 335
Chris Brzuska and Håkon Jacobsen

Multiparty Computation

On the Computational Overhead of MPC with Dishonest Majority . . . . . . . . 369
Jesper Buus Nielsen and Samuel Ranellucci

Better Two-Round Adaptive Multi-party Computation . . . . . . . . . . . . . . . . . 396
Ran Canetti, Oxana Poburinnaya,
and Muthuramakrishnan Venkitasubramaniam

Constant Round Adaptively Secure Protocols
in the Tamper-Proof Hardware Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

Carmit Hazay, Antigoni Polychroniadou,
and Muthuramakrishnan Venkitasubramaniam

Primitives

Constrained Pseudorandom Functions for Unconstrained Inputs Revisited:
Achieving Verifiability and Key Delegation . . . . . . . . . . . . . . . . . . . . . . . . 463

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constraining Pseudorandom Functions Privately . . . . . . . . . . . . . . . . . . . . . 494
Dan Boneh, Kevin Lewi, and David J. Wu

Universal Samplers with Fast Verification . . . . . . . . . . . . . . . . . . . . . . . . . 525
Venkata Koppula, Andrew Poelstra, and Brent Waters

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

XIV Contents – Part II

http://dx.doi.org/10.1007/978-3-662-54388-7_10
http://dx.doi.org/10.1007/978-3-662-54388-7_10
http://dx.doi.org/10.1007/978-3-662-54388-7_11
http://dx.doi.org/10.1007/978-3-662-54388-7_12
http://dx.doi.org/10.1007/978-3-662-54388-7_13
http://dx.doi.org/10.1007/978-3-662-54388-7_14
http://dx.doi.org/10.1007/978-3-662-54388-7_15
http://dx.doi.org/10.1007/978-3-662-54388-7_15
http://dx.doi.org/10.1007/978-3-662-54388-7_16
http://dx.doi.org/10.1007/978-3-662-54388-7_16
http://dx.doi.org/10.1007/978-3-662-54388-7_17
http://dx.doi.org/10.1007/978-3-662-54388-7_18


Cryptanalysis



LP Solutions of Vectorial Integer
Subset Sums – Cryptanalysis of Galbraith’s

Binary Matrix LWE

Gottfried Herold(B) and Alexander May

Faculty of Mathematics, Horst Görtz Institute for IT-Security,
Ruhr-University Bochum, Bochum, Germany

{gottfried.herold,alex.may}@rub.de

Abstract. We consider Galbraith’s space efficient LWE variant, where
the (m × n)-matrix A is binary. In this binary case, solving a vectorial
subset sum problem over the integers allows for decryption. We show how
to solve this problem using (Integer) Linear Programming. Our attack
requires only a fraction of a second for all instances in a regime for m that
cannot be attacked by current lattice algorithms. E.g. we are able to solve
100 instances of Galbraith’s small LWE challenge (n,m) = (256, 400)
all in a fraction of a second. We also show under a mild assumption
that instances with m ≤ 2n can be broken in polynomial time via LP
relaxation. Moreover, we develop a method that identifies weak instances
for Galbraith’s large LWE challenge (n,m) = (256, 640).

Keywords: Binary matrix LWE · Linear programming · Cryptanalysis

1 Introduction

Over the last decade, the Learning with Errors (LWE) problem [16] has proved to
be extremely versatile for the construction of various cryptographic primitives.
Since LWE is as hard as worst-case lattice problems, it is consider one of the most
important post-quantum candidates. Let us recall that an LWE instance consists
of a random (m × n)-matrix A with elements from Zq and an m-dimensional
vector b ∈ Z

m
q , where b = As + e mod q with a secret random s ∈ Z

n
q and

where the entries of e ∈ Z
m
q are from a discretized normal distribution.

The LWE decisional problem is to distinguish (A, b) from (A,u) for random
u ∈ Z

m
q . While LWE has some intriguing hardness properties, it is known that one

has to choose quite large n in order to reach a desired security level against lattice
reduction attacks. This in turn makes the size of LWE instances (A, b), and thus
the size of public keys, undesirably large. For practical reasons, people therefore
looked into various variants of LWE, such as ring-LWE [13,14], LWE with short
secret [2,15] or LWE with short error [10,15]. Recently, some special instances of
ring-LWE were identified to have serious weaknesses [4,6], but these instances were
not suggested for cryptographic use. Moreover, it was shown that LWE with binary
secrets and errors can be attacked in slightly subexponential time 2O(n/ log log n)

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 3–15, 2017.
DOI: 10.1007/978-3-662-54365-8 1



4 G. Herold and A. May

by a BKW-type algorithm [11], where LWE dimension n = 128 was practically
brokenwithinhalf a day.Also, LWEwithbinary secret leads tomore efficient lattice
attacks [3]. While choosing special variants of LWE seems to slightly decrease the
security, the improved attacks do not substantially endanger the security of these
variants in general.

In this paper, we look at another LWE variant due to Galbraith [8]. In this
variant, A is replaced by a binary matrix. This makes Galbraith’s variant very
tempting for low-weight devices that are not capable of storing a sufficiently
large LWE instance.

In [8], Galbraith instantiates Regev’s encryption system [16] with his binary
matrix A and suggests to use the parameters (n,m, q) = (256, 640, 4093) that
were originally proposed by Lindner and Peikert [12] for Regev’s original scheme.
Galbraith also gives a thorough security analysis based on lattices, where in his
experiments he fixes n and tries to break encryption for increasing m. Based on
this analysis, he concludes that instances with m ≥ 400 might be hard to break
with lattice techniques.

For Regev’s original scheme, security follows from hardness of LWE for appro-
priate parameters; this is not automatically the case for binary matrix A with-
out changing parameters. For Galbraith’s choices, in order to break encryp-
tion, one can solve an equation of the form uA = c1 for a known matrix
A ∈ {0, 1}m×n, some known ciphertext component c1 ∈ Z

n and some unknown
vector u ∈ {0, 1}m. In other words, one has to find a subset of all rows of A
that sums to c1. We call this problem therefore a vectorial integer subset sum.
If the unknown vector u is short, a vectorial integer subset sum can certainly
be solved by finding a closest vector in some appropriate lattice. This is the
standard analysis that was carried out in [8] against this avenue of attack.

However, a vectorial integer subset sum is by its definition also an Integer
Linear Programming (ILP) problem. Namely, we are looking for an integral
solution u ∈ Z

m of m linear equations over the integers. While it is known
that ILP is in general NP-hard, it is also known that in many cases removing
the integrality constraint on u provides a lot of useful information about the
problem. Removing the integrality constraint is called a LP relaxation of the
problem. Without integrality constraints, the resulting problem can be solved in
polynomial time, using e.g. the ellipsoid method [9].

We show under a mild assumption on A that the vectorial subset sum prob-
lem can for parameters m ≤ 2n be solved by its LP relaxation (with success
probability 1

2 ). More precisely, the LP solution has the property that it is already
integral. This in turn means that vectorial integer subset sums with m ≤ 2n can
be solved in polynomial time. In practice, we are able to solve instances with
n = 256 and m ≤ 2n in a fraction of a second. Notice that this is already a
regime for m that seems to be infeasible to reach with current lattice reduction
algorithms.

However, m ≤ 2n does not quite suffice to break Galbraith’s (n,m) =
(256, 640)-challenge in practice. Namely, when we look at instances with m > 2n
the success probability of our MATLAB ILP solver drops quite quickly – when
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we allow only some fixed, small computation time. Yet, when looking at a large
number of instances of our vectorial integer subset sums, we realize experimen-
tally that there is still a significant number of weak instances that are vul-
nerable to LP relaxation with some additional tricks (such as e.g. the cutting
plane method). More concretely, we are able to show that at least 1 out of 215

instances of Regev-type encryptions with (n,m) = (256, 640) can be solved in
about 30 min. Interestingly, we are able to compute a simple score for every
instance I that accurately predicts whether I is indeed weak – based on an esti-
mation of the volume of the search space that comes from the LP relaxation. We
find that such a quick test for identifying weak instances I is a quite remarkable
property of Linear Programming. We are not aware of a similar property for
other cryptanalytic methods. We hope that our results motivate more cryptan-
alytic research using (Integer) Linear Programming.

Note that our attack breaks Galbraith’s instantiation of LWE encryption
with binary matrices, but does not break binary LWE itself. Due to that, our
attack allows ciphertext recovery, but not key recovery.

Our paper is organized as follows. In Sect. 2, we recall Galbraith’s scheme and
its cryptanalysis challenges. In Sect. 3, we model vectorial integer subset sums
in form of an Integer Linear Programming. We attack instances with m ≤ 2n in
Sect. 4 and show that they actually admit a polynomial time attack. In Sect. 5, we
show how to identify weak instances for large m and we present our experimental
results for Galbraith’s large challenge (n,m) = (256, 640).

2 Galbraith’s Binary Matrix LWE

Let us briefly recall Regev’s LWE encryption scheme. Let q be prime. One chooses
a public A ∈R Z

m×n
q and a private s ∈R Z

n
q . One then compute b = As +

e mod q, where the ei are sampled from a discrete normal distribution with
mean 0 and standard deviation σ. The public key consists of (A, b).

For encrypting some message M ∈ {0, 1}, one chooses a random nonce u ∈R

{0, 1}m and computes the ciphertext

c = (c1, c2) = (uA mod q, 〈u , b〉 + M
⌊
q
2

⌋
mod q) ∈ Z

n
q × Zq.

For decryption to 0 respectively 1, one checks whether c1s − c2 is closer to 0
respectively q

2 .
After analyzing lattice attacks, Lindner and Peikert [12] suggest to use the

parameters
(n,m, q) = (256, 640, 4093)

for medium security level and estimate that these parameters offer roughly 128-
bit security. However, for these parameters the public key (A, b) has already 247
kilobytes, which is way too much for constrained devices.

Therefore, Galbraith [8] suggested to construct the public matrix A with
binary entries simply from the seed of a PRNG. All that one has to store in
this case is the seed itself, and the vector b. A similar trick is also used in other
contexts to shorten the public key size [5].



6 G. Herold and A. May

Moreover, Galbraith gives a thorough security analysis of his LWE variant,
based on its lattice complexity. In his security analysis he considers the problem
of recovering the nonce u from

c1 = uA. (1)

Notice that since now A ∈ {0, 1}m×n, every entry of c1 is an inner product of two
random binary length-m vectors. Thus, the entries of c1 are random variables
from a binomial distribution B(m, 1

4 ) with expected value m
4 . Since m

4 � q, the
equality c1 = uA does not only hold modulo q, but also over the integers.

Hence, recovering u from (c1,A) can be seen as a vectorial integer subset sum
problem. Once u is recovered, one can easily subtract 〈u , b〉 from c2 and thus
recover the message m. Hence, solving the vectorial integer subset sum problem
gives a ciphertext only message recovery attack.

We would like to stress that this attack does not allow for key recovery of s.
We also note that in Regev’s original scheme, the security proof shows IND-CPA
security assuming that the LWE problem is hard. For this reduction, we need
that c1 is essentially independent of A, which is proven using the Leftover Hash
Lemma by setting parameters sufficiently large. In particular, u is required to
have sufficient entropy and Eq. (1) has many solutions for u in Regev’s non-
binary scheme, whereas the parameters in Galbraith’s binary scheme are set
such that u is the unique solution to Eq. (1). Due to that, our attack does not
give an attack on binary LWE. In fact, binary LWE was shown to be at least
as secure as standard LWE in [1], provided n is increased by a factor O(log q).
Consequently, it seems unlikely that the attack extends to binary LWE.

2.1 Previous Cryptanalysis and Resulting Parameter Suggestions

In his security analysis, Galbraith attacks the vectorial integer subset sum by
lattice methods. Namely, he first finds an arbitrary integer solution w ∈ Z

m

with c1 = wA. Then he solves CVP with target vector w in the lattice

L = {v ∈ Z
m | vA ≡ 0 mod q}.

Let v be a CVP-solution, then we usually have u = w − v .
Galbraith reports that for n = 256 and m ∈ [260, 340], the CVP-method

works well. He further conjectures that with additional tricks one should be able
to handle values up to m = 380 or 390, but that “it would be impressive to
solve cases with m > 400 without exploiting weeks or months of computing
resources”.

Based on his analysis, Galbraith raised the two following cryptanalysis chal-
lenges:

– C1 with (n,m) = (256, 400): The goal is to compute u from (A, c1) in less
than a day on an ordinary PC.

– C2 with (n,m) = (256, 640): The goal is mount an attack using current com-
puting facilities that would take less than a year.

According to Galbraith, breaking C1 should be interpreted “as causing
embarrassment to the author”, while C2 should be considered a “total break”.
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3 Modeling Our Vectorial Integer Subset Sum
as an Integer Linear Program

In the canonical form of an Integer Linear Program (ILP), one is given linear
constraints

A′x ≤ b ′,x ≥ 0 and x ∈ Z
m,

for which one has to maximize a linear objective function 〈f ,x 〉 for some f ∈ R
m

that can be freely chosen.
Notice that it is straightforward to map our vectorial integer subset sum

problem uA = c1 from Eq. (1) into an ILP. Namely, we define the inequalities

ATu ≤ c1

−ATu ≤ −c1 and
ui ≤ 1 for all i = 1, . . . , m.

ui ≥ 0 for all i = 1, . . . , m.

(2)

We can for simplicity chose f = 0, since we are interested in any feasible
solution to Eq. (2), and it is not hard to see that by the choice of our parameters
our solution u is a unique feasible solution. Namely, look at the map

{0, 1}m →
(
B

(
m, 1

4

))n

,

u 
→ uA,

where X ∼ B(m, 1
4 ) is a binomially distribution random variable with m exper-

iments and Pr[X = 1] = 1
4 for each experiment. Notice that the jth entry,

1 ≤ j ≤ n, of uA can be written as u1a1,j + . . . + umam,j , where we have the
event Xi that uiai,j = 1 iff ui = ai,j = 1, i.e. with probability 1

4 . Hence, we can
model the entries of uA as random variables from B(m, 1

4 ).
For the usual parameter choice q > m, the solution u of Eq. (2) is unique

as long as this map is injective, i.e. as long as the entropy of
(
B(m, 1

4 )
)n is

larger than m. The entropy of the binomial distribution
(
B(m, 1

4 )
)n is roughly

n
2 log2(

3
8πem). Thus, one can compute for which m we obtain unique solutions

u . Choosing e.g. n = 256, we receive unique u for m ≤ 1500. Hence, in the
remaining paper we can safely assume unique solutions to our vectorial subset
sum problem.

4 Attacking m ≤ 2n: Solving Challenge C1

We ran 100 instances of Eq. (2) on an ordinary 2.8 GHz laptop with n = 256
and increasing m. We used the ILP solver from MATLAB 2015, which was
stopped whenever it did not find a solution after time tmax = 10 s. We found
that the success probability of our attack dropped from 100% at m = 490 to
approximately 1% at m = 590, cf. Table 1. The largest drop of success probability
takes place slightly after m = 2n.



8 G. Herold and A. May

For comparison, we also solved the LP relaxation, i.e. Eq. (2) without inte-
grality constraint on u . This is much faster than ILP, so we solved 1000 instances
for each m. We checked whether the returned non-integral solution matched our
desired integral solution for u , in which case we call a run successful. The success
rate of LP relaxation is also given in Table 1.

It turns out that Galbraith’s small C1 challenge can already solely be solved
by its LP relaxation. Since LP relaxation is only the starting point for ILP, it
does not come as a surprise that ILP has a slightly larger success rate. However,
it is impressive that LP relaxation alone is already powerful enough to solve a
significant fraction of all instances.

Table 1. Success probability for solving Eq. (2) for n = 256. We used MATLAB 2015
and restricted to tmax = 10 s for the ILP.

m 400 450 480 490 500 510 512 520

Success (ILP) 100% 100% 100% 100% 96% 83% 79% 63%

Success (LP) 100% 99.6% 93.3% 82.3% 68.8% 55.6% 48.1% 35.4%

m 530 540 550 560 570 580 590 600

Success (ILP) 60% 32% 25% 12% 3% 1% 1% 0%

Success (LP) 19.8% 11.0% 4.5% 1.9% 0.8% 0.3% 0% 0%

We now give a theoretical justification for the strength of LP relaxation,
showing that under some mild heuristic, for m ≤ 2n, the solution of the LP
relaxation is unique. Since, by construction, we know that there is an integral
solution u to Eq. (2), uniqueness of the solution directly implies that the LP
solver has to find the desired u .

In the following lemma, we replace our linear constraints from A by some
random linear constraints from some matrix Ā over the reals. This will give us
already uniqueness of the solution u . Afterwards, we will argue why replacing
Ā back by our LWE matrix A should not affect the lemma’s statement.

Lemma 1. Let u ∈ {0, 1}2n. Let Ā ∈ R
n×2n be a random matrix, whose rows

are uniformly distributed on the sphere around 0 ∈ R
2n. Then

Pr[�x ∈ (R ∩ [0, 1])2n | Āx = Āu,x = u] =
1
2
.

Proof. Let us look at the 2n-dimensional unit cube U2n = {x ∈ (R ∩ [0, 1])2n}.
Obviously 0,u ∈ U2n, both lying at corners of U2n. Now, let us assume wlog.
that u = 0 (which can be achieved by reflections). Let H be the hyperplane
defined by the kernel of Ā.

Since Ā is randomly chosen from R
n×2n, it has full rank n with probability 1:

since we chose the entries of Ā from the reals R, we avoid any problems that
might arise from co-linearity. Thus, H as well as its orthogonal complement H⊥
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have dimension n. Notice that H⊥ = Im(ĀT). By construction, both H and
H⊥ intersect U2n in the corner 0 = u . We are interested whether one of the
hyperplanes goes through U2n.

The answer to this question is given by Farkas’ Lemma [7], which tells us
that exactly one of H and H⊥ passes through U2n. Notice first that not both can
pass through U2n. Now assume that H intersects U2n only in the zero point 0.
Then Farkas’ Lemma tells us that there is a vector in its orthogonal complement
H⊥ that fully intersects U2n. Notice that again by having vectors over the reals,
the intersection H⊥ ∩ U2n is n-dimensional.

By the randomness of Ā, the orientation of H in R
2n is uniformly random,

and hence the same holds for the orientation of H⊥. Since H and H⊥ share
exactly the same distribution, and since by Farkas’ Lemma exactly one out of
both has a trivial intersection with U2n, we have

Pr[H ∩ U2n = {u}] = Pr[H⊥ ∩ U2n = {u}] =
1
2
.

Let b = Āu = 0. Since H = ker(Ā), it follows that u is a unique solution to
the equation Ax = b in the case that H has trivial intersection with U2n. ��
Theorem 1. Under the heuristic assumption that our matrix AT behaves like
a random (n × m)-matrix, whose rows are uniformly distributed on the sphere
around 0m, LP relaxation solves Eq. (2) in polynomial time for all m ≤ 2n.

Proof. Notice that the case m = 2n follows directly from Lemma 1, since LP
relaxation has to find the unique solution u , and its running time is polynomial
using e.g. the ellipsoid method. For the case m < 2n we can simply append
2n − m additional columns to AT, and add a random subset of these to c1.

Now let us say a word about the heuristic assumption from Theorem 1. Our
assumption requires that the discretized AT defines a random orientation of a
hyperplane just as Ā. Since AT has by definition only positive entries, its columns
always have non-negative inner product with the all-one vector 1n. This minor
technical problem can be fixed easily by centering the entries of AT around 0 via
the following transformation of Eq. (2):

First, guess the Hamming weight w =
∑m

i=1 ui. Then subtract (12 , . . . , 1
2 )

from every column vector of AT and finally subtract w
2 from every entry of c1.

After this transformation AT has entries uniform from {± 1
2} and should fulfill

the desired heuristic assumption of Theorem 1.

5 Attacking m = 640: Solving Challenge C2

In order to tackle the m = 640 challenge, we could in principle proceed as in the
previous section, identify a weak instance for e.g. m = 590, brute-force guess 50
coordinates of u and run each time an ILP solver for 10 s.

However, we found out experimentally that even in dimension m = 640 the
density of weak instances is not negligible. Hence, it seems to be much more
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effective to identify weak instances than to brute-force coordinates. So in the
following we try to identify what makes particular instances weak.

We follow the paradigm that an ILP is the easier to solve, the more the LP
relaxation “knows about the problem”. In particular, we expect that a problem
is easy to solve if the solution polytope P of the LP relaxation of Eq. (2) is
small. In the extreme case, if P = {u}, then the problem can be solved by the
LP solver alone (cf. Theorem 1). To quantify the size of the solution space in
an easy-to-compute way, we compute the length of a random projection of P .
It turns out that this length, henceforth called score gives a very good prediction
on the hardness of an instance.

More concretely, for an instance I = (A, c), we choose a vector r with
random direction. Then we maximize and minimize the linear objective function
〈r ,u〉 under the linear constraints given by the LP relaxation of Eq. (2) and
consider their difference D. Clearly, Sr := D

‖r‖ is the length of the orthogonal
projection of P onto the span of r . Formally, the score of an instance I wrt. to
some direction r is defined as follows.

Definition 1. Let I = (A, c) be an instance. Consider the solution polytope P
of the LP relaxation of Eq. (2), i.e. P is defined as P = [0, 1]m ∩ {x | ATx = c}.
Let r ∈ R

m. Then the score Sr is defined via

fmax := max
x∈P

〈r ,x〉
fmin := min

x∈P
〈r ,x〉

Sr :=
fmax − fmin

‖r‖

(3)

Note that Sr can be computed by solving two LP problems, hence in polynomial
time.

Since Sr quantifies the search space for the ILP, instances with small score
should be easier to compute. For m = 640, we computed the scores of 219

instances, which took approximately 1 s per instance.

Independence of r andReliability of Our Score.We experimentally confirm
that for a given instance I, the value of Sr is mainly a function of I and does not
depend significantly on the particular choice of r . Therefore, we choose the fixed
vector r = (1, . . . , 1,−1, . . . ,−1) for r with exactly m

2 ones and m
2 −1’s. We use

the score S = Sr for this particular choice of r and sort instances according to S.
We confirm that the score S is a very good predictor for the success of ILP

solvers and the success probability drops considerably at some cutoff value for S.
E.g. for m = 520 and within a 10 s time limit, we find that we can solve

• >99% of instances with S ≤ 1.22,
• 60% of instances with 1.22 ≤ S ≤ 1.54 and
• <3% of instances with S > 1.54.
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Distribution of S . Average values for S can be found in Table 2. Figure 1
shows the distribution of S. Note that while the distribution looks suspiciously
Gaussian for m = 640, there is a considerable negative skewness and the tail
distribution towards 0 is much fatter than for a Gaussian (cf. Fig. 2). This fat
tail enables us to find a significant fraction of weak instances even for large m.

Notice that a score S = 0 basically means that LP relaxation finds the
solution.

Table 2. Average values for S for n = 256 and varying m. We used 1000 instances for
each m.

m 400 450 480 490 500 510 512 520

average of S 0 0.002 0.07 0.22 0.43 0.69 0.83 1.15

m 530 540 550 560 570 580 590 600

average of S 1.76 2.16 2.74 3.16 3.60 4.04 4.34 4.80

m 610 620 630 640

average of S 5.18 5.52 5.83 6.18

Results for m = 640. We generated a large number N = 219 of instances with
n = 256, m = 640, and tried to solve only those 271 instances with the lowest
score S, which in our case meant S < 3.2. We were able to solve 16 out of
those 271 weakest instances in half an hour each. We found 15 instances with
S < 2.175, of which we solved 12. The largest value of S, for which we could
solve an instance, was S ≈ 2.6.

Fixing Coordinates. Let us provide some more detailed explanation why
an ILP solver works well on instances with small score S. Consider some
r ∈ {0,±1}m of low Hamming weight |r |1 = w, so ‖r‖ =

√
w. Heuristically,

we expect that Sr should be approximately S, as Sr mainly depends on the
instance and not on the choice of r . Of course, for a vector r ∈ {0,±1}m with
low Hamming weight we have

Sr =
1√
w

(
max
x∈P

〈r , x 〉 − min
x∈P

〈r , x 〉
)
≤ 1√

w

(
max

x∈[0,1]m
〈r , x 〉 − min

x∈[0,1]m
〈r , x 〉

)
=

√
w,

but that only means we should expect Sr to be even smaller. Since we know
that for the true integer solution u , we have 〈r ,u〉 ∈ Z, we can add the cuts
〈r ,u〉 ≤ �fmax� and 〈r ,u〉 ≥ �fmin� to the set of equations, where fmax resp.
fmin are the maximum resp. minimum computed for Sr .

This is a special case of what is called cut generation in Integer Linear Pro-
gramming. If Sr <

√
w, i.e. fmax − fmin < w, then adding such a new inequality

always makes the solution space of the LP relaxation smaller. In fact, such an
inequality restricts the possible set that w out of the m variables ui can jointly
obtain. So if Sr <

√
w for many different r , we get lots of sparse relations

between the ui. Such inequalities are called good cuts.
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Fig. 1. pdf’s of S for n = 256 and varying values of m. Note that the y-axis is cropped
and does not show the true density at S = 0 (where the distribution technically does
not even have a finite continuous density). We rather give the probability for S = 0.
For m = 640, we never encountered an instance with S = 0.
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Fig. 2. Comparison of distribution of S for n = 256,m = 640 with a normal distribution.
The distribution of S has negative skewness and a much fatter tail towards 0. Hence, we
obtain more weak instances than we would expect from a normal distribution.

In particular, consider the case w = 1 and r = (0, 0, . . . , 0, 1, 0, . . . , 0), i.e. we
maximize/minimize an individual variable ui over P . If this maximum is <1, we
know that ui = 0 holds and if the minimum is >0, we know ui = 1. So if Sr < 1
holds for some r with |r |1 = 1, we can fix one of the ui’s and reduce the number
of unknowns by one – which makes fixing further ui’s even easier. If the score S
is small, we expect that the ILP solver can find lots of such good cuts, possibly
even cuts with w = 1.

Indeed, in all instances that we could solve, some variables could be fixed by
such good cuts with w = 1. For dimensions m ≤ 550, most instances that were
solved by the ILP could be solved by such cuts alone.

In fact, we preprocessed our 271 weak instances for m = 640 by trying to fix
each individual coordinate. This alone was sufficient to determine an average of
>100 individual coordinates of the solution u for S < 2.175, and in one case it
was sufficient to completely solve the problem.

6 Conclusion

According to Galbraith’s metric for the challenge C2 in Sect. 3, the results of
Sect. 5 can be seen as total break for binary matrix LWE. On the other hand, one
could easily avoid weak instances I by simply rejecting weak I’s during ciphertext
generation. This would however violate the idea of lightweight encryption with
binary matrix LWE.

Still, during our experiments we got the feeling that the vectorial integer
subset sum problem gets indeed hard for large m, even for its weakest instances.
So Galbraith’s variant might be safely instantiated for large m, but currently we
find it hard to determine m’s that fulfill a concrete security level of e.g. 128 bit.
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One possibility to render our attack inapplicable is to change parameters such
that modular reductions mod q occur in Eq. (1), since our attack crucially relies
on the fact that we work over Z. Note here that while there are standard ways to
model modular reduction via ILP as c1 = uA − kq, this renders LP relaxation
useless: by allowing non-integral k , we can choose any value for c1,u .
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Abstract. We present an algorithm for the approximate k-List problem
for the Euclidean distance that improves upon the Bai-Laarhoven-Stehlé
(BLS) algorithm from ANTS’16. The improvement stems from the obser-
vation that almost all the solutions to the approximate k-List problem
form a particular configuration in n-dimensional space. Due to special
properties of configurations, it is much easier to verify whether a k-tuple
forms a configuration rather than checking whether it gives a solution
to the k-List problem. Thus, phrasing the k-List problem as a problem
of finding such configurations immediately gives a better algorithm. Fur-
thermore, the search for configurations can be sped up using techniques
from Locality-Sensitive Hashing (LSH). Stated in terms of configuration-
search, our LSH-like algorithm offers a broader picture on previous LSH
algorithms.

For the Shortest Vector Problem, our configuration-search algorithm
results in an exponential improvement for memory-efficient sieving algo-
rithms. For k = 3, it allows us to bring down the complexity of the
BLS sieve algorithm on an n-dimensional lattice from 20.4812n+o(n) to
20.3962n+o(n) with the same space requirement 20.1887n+o(n). Note that
our algorithm beats the Gauss Sieve algorithm with time resp. space
of 20.415n+o(n) resp. 20.208n+o(n), while being easy to implement. Using
LSH techniques, we can further reduce the time complexity down to
20.3717n+o(n) while retaining a memory complexity of 20.1887n+o(n).

1 Introduction

The k-List problem is defined as follows: given k lists L1, . . . , Lk of elements from a
set X, find k-tuples (x1, . . . , xk) ∈ L1× . . .×Lk that satisfy some condition C. For
example, Wagner [19] considers X ⊂ {0, 1}n, and a tuple (x1, . . . , xk) is a solution
if x1 ⊕ . . . ⊕ xn = 0n. In this form, the problem has found numerous applications
in cryptography [14] and learning theory [6].

For �2-norm conditions with X ⊂ R
n and k = 2, the task of finding pairs

(x 1,x 2) ∈ L1 × L2, s.t. ‖x 1 + x 2‖ < min{‖x 1‖, ‖x 2‖}, is at the heart of cer-
tain algorithms for the Shortest Vector Problem (SVP). Such algorithms, called
sieving algorithms [1,17], are asymptotically the fastest SVP solvers known so
far.

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 16–40, 2017.
DOI: 10.1007/978-3-662-54365-8 2
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Sieving algorithms look at pairs of lattice vectors that sum up to a short(er)
vector. Once enough such sums are found, repeat the search by combining these
shorter vectors into even shorter ones and so on. It is not difficult to see that in
order to find even one pair where the sum is shorter than both the summands,
we need an exponential number of lattice vectors, so the memory requirement is
exponential. In practice, due to the large memory-requirement, sieving algorithms
are outperformed by the asymptotically slower Kannan enumeration [10].

Naturally, the question arises whether one can reduce the constant in the expo-
nent of the memory complexity of sieving algorithms at the expense of running
time. An affirmative answer is obtained in the recently proposed k-list sieving by
Bai, Laarhoven, and Stehlé [4] (BLS, for short). For constant k, they present an
algorithm that, given input lists L1, . . . , Lk of elements from the n-sphere Sn with
radius 1, outputs k-tuples with the property ‖x 1 + . . . + xn‖ < 1. They provide
the running time and memory-complexities for k = 3, 4.

We improve and generalize upon the BLS k-list algorithm. Our results are
as follows:

1. We present an algorithm that on input L1, . . . , Lk ⊂ Sn, outputs k-tuples
(x 1, . . . ,xk),∈ L1 × . . . × Lk, s.t. all pairs (x i,x j) in a tuple satisfy certain
inner product constraints. We call this problem the Configuration problem
(Definition 3).

2. We give a concentration result on the distribution of scalar products of
x 1, . . . xk ∈ Sn (Theorems 1 and 2), which implies that finding vectors that
sum to a shorter vector can be reduced to the above Configuration problem.

3. By working out the properties of the aforementioned distribution, we
prove the conjectured formula (Eq. (3.2) from [4]) on the input list-sizes
(Theorem 3), s.t. we can expect a constant success probability for sieving. We
provide closed formulas for the running times for both algorithms: BLS and
our Algorithm 1 (Theorem 4). Algorithm 1 achieves an exponential speed-up
compared the BLS algorithm.

4. To further reduce the running time of our algorithm, we introduce the so-
called Configuration Extension Algorithm (Algorithm2). It has an effect sim-
ilar to Locality-Sensitive Hashing as it shrinks the lists in a helpful way. This
is a natural generalization of LSH to our framework of configurations. We
briefly explain how to combine Algorithm1 and the Configuration Extension
in Sect. 7. A complete description can be found in the full version.

Roadmap. Section 2 gives basic notations and states the problem we consider in
this work. Section 3 introduces configurations – a novel tool that aids the analysis
in succeeding Sects. 4 and 5 where we present our algorithm for the k-List problem
and prove its running time. Our generalization of Locality Sensitive Hashing –
Configuration Extension – is described in Sect. 6 and its application to the k-list
problem in Sect. 7. We conclude with experimental results confirming our analysis
in Sect. 8. We defer some of the proofs and details on the Configuration Extension
Algorithm to the appendices as these are not necessary to understand the main
part.
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2 Preliminaries

Notations. We denote by Sn ⊂ R
n+1 the n-dimensional unit sphere. We use

soft-O notation to denote running times: T = Õ(2cn) means that we suppress
subexponential factors. We use sub-indices Ok(.) in the O-notation to stress that
the asymptotic result holds for k fixed. For any set x 1, . . . ,xk of vectors in some
R

n, the Gram matrix C ∈ R
k×k is given by the set of pairwise scalar products.

It is a complete invariant of the x 1, . . . ,xk up to simultaneous rotation and
reflection of all x i’s. For such matrices C ∈ R

k×k and I ⊂ {1, . . . , k}, we write
C[I] for the appropriate |I| × |I|-submatrix with rows and columns from I.

As we consider distances wrt. the �2-norm, the approximate k-List problem
we consider in this work is the following computational problem:

Definition 1 (Approximate k-List problem). Let 0 < t <
√

k. Assume
we are given k lists L1, . . . , Lk of equal exponential size, whose entries are iid.
uniformly chosen vectors from the n-sphere Sn. The task is to output an 1 −
o(1)-fraction of all solutions, where solutions are k-tuples x1 ∈ L1, . . . ,xk ∈ Lk

satisfying ‖x1 + · · · + xk‖2 ≤ t2.

We consider the case where t, k are constant and the input lists are of size cn

for some constant c > 1. We are interested in the asymptotic complexity for
n → ∞. To simplify the exposition, we pretend that we can compute with real
numbers; all our algorithms work with sufficiently precise approximations (pos-
sibly losing an o(1)-fraction of solutions due to rounding). This does not affect
the asymptotics. Note that the problem becomes trivial for t >

√
k, since all but

an 1 − o(1)-fraction of k-tuples from L1 × · · · × Lk satisfy ‖x 1 + . . . + xk‖2 ≈ k
(random x i ∈ Sn are almost orthogonal with high probability, cf. Theorem1).
In the case t >

√
k, we need to ask that ‖x 1 + . . . + xk‖2 ≥ t2 to get a mean-

ingful problem. Then all our results apply to the case t >
√

k as well.
In our definition, we allow to drop a o(1)-fraction of solutions, which is fine

for the sieving applications. In fact, we will propose an algorithm that drops
an exponentially small fraction of solutions and our asymptotic improvement
compared to BLS crucially relies on dropping more solutions than BLS. For this
reason, we are only interested in the case where the expected number of solutions
is exponential.

Relation to the Approximate Shortest Vector Problem. The main incentive to
look at the approximate k-List problem (as in Definition 1) is its straightforward
application to the so-called sieving algorithms for the shortest vector problem
(SVP) on an n-dimensional lattice (see Sect. 7.2 for a more comprehensive dis-
cussion). The complexity of these sieving algorithms is completely determined
by the complexity of an approximate k-List solver called as main subroutine.
So one can instantiate a lattice sieving algorithm using an approximate k-List
solver (the ability to choose k allows a memory-efficient instantiations of such a
solver). This is observed and fully explained in [4]. For k = 3, the running time
for the SVP algorithm presented in [4] is 20.4812n+o(n) requiring 20.1887n+o(n)
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memory. Running our Algorithm1 instead as a k-List solver within the SVP
sieving, one obtains a running time of 20.3962n+o(n) with the same memory com-
plexity 20.1887n+o(n). As explained in Sect. 7.2, we can reduce the running time
even further down to 20.3717n+o(n) with no asymptotic increase in memory by
using a combination of Algorithm1 and the LSH-like Configuration Extension
Algorithm. This combined algorithm is fully described in the full version of the
paper.

In the applications to sieving, we have t = 1 and actually look for solutions
‖ ± x 1 ± · · · ± xk‖ ≤ 1 with arbitrary signs. This is clearly equivalent by consid-
ering the above problem separately for each of the 2k = O(1) choices of signs.
Further, the lists L1, . . . , Lk can actually be equal. Our algorithm works for this
case as well. In these settings, some obvious optimizations are possible, but they
do not affect the asymptotics.

Our methods are also applicable to lists of different sizes, but we stick to the
case of equal list sizes to simplify the formulas for the running times.

3 Configurations

Whether a given k-tuple x 1, . . . ,xk is a solution to the approximate k-List prob-
lem is invariant under simultaneous rotations/reflections of all x i and we want
to look at k-tuples up to such symmetry by what we call configurations of points.
As we are concerned with the �2-norm, a complete invariant of k-tuples up to
symmetry is given by the set of pairwise scalar products and we define configu-
rations for this norm:

Definition 2 (Configuration). The configuration C = Conf (x1, . . . ,xk) of k
points x1, . . . ,xk ∈ Sn is defined as the Gram matrix Ci,j = 〈xi,xj〉.
Clearly, the configuration of the k-tuple x 1, . . . ,xk determines the length of the
sum ‖∑i x i‖:

∥
∥
∑

i

x i

∥
∥2 =

∑

i,j

〈x i,x j〉 = k + 2
∑

i<j

〈x i,x j〉. (1)

We denote by

C = {C ∈ R
k×k | C symmetric positive semi-definite, Ci,i = 1 ∀i},

C≤t = {C ∈ C |
∑

i,j
Ci,j ≤ t2} ⊂ C

the spaces of all possible configurations resp. those which give a length of at
most t. The spaces C and C≤t are compact and convex. For fixed k, it is helpful
from an algorithmic point of view to think of C as a finite set: for any ε > 0, we
can cover C by finitely many ε-balls, so we can efficiently enumerate C .

In the context of the approximate k-List problem with target length t, a
k-tuple x 1, . . . ,xk is a solution iff Conf (x 1, . . . ,xk) ∈ C≤t. For that reason, we
call a configuration in C≤t good. An obvious way to solve the approximate k-List
problem is to enumerate over all good configurations and solve the following
k-List configuration problem:
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Definition 3 (Configuration problem). On input k exponentially-sized lists
L1, . . . , Lk of vectors from Sn, a target configuration C ∈ C and some ε > 0, the
task is to output all k-tuples x1 ∈ L1, . . . ,xk ∈ Lk, such that |〈xi,xj〉 − Cij | ≤ ε
for all i, j. Such k-tuples are called solutions to the problem.

Remark 1. Due to 〈x i,x j〉 taking real values, it does not make sense to ask for
exact equality to C, but rather we introduce some ε > 0. We shorthand write
C ≈ε C ′ for |Ci,j − C ′

i,j | ≤ ε. Formally, our analysis will show that for fixed
ε > 0, we obtain running times and list sizes of the form Õε(2(c+f(ε))n) for some
unspecified continuous f with lim

ε→0
f(ε) = 0. Letting ε → 0 sufficiently slowly, we

absorb f(ε) into the Õ(.)-notation and omit it.

As opposed to the approximate k-List problem, being a solution to the k-List
configuration problem is a locally checkable property [12]: it is a conjunction of
conditions involving only pairs x i,x j . It is this and the following observation
that we leverage to improve on the results of [4].

It turns out that the configurations attained by the solutions to the approxi-
mate k-List problem are concentrated around a single good configuration, which
is the good configuration with the highest amount of symmetry. So in fact, we
only need to solve the configuration problem for this particular good configura-
tion. The following theorem describes the distribution of configurations:

Theorem 1. Let x1, . . . ,xk ∈ Sn be independent, uniformly distributed on the
n-sphere, n > k. Then the configuration C = C(x1, . . . ,xk) follows a distribution
μC on C with density given by

μC = Wn,k · det(C)
1
2 (n−k)dC = Õk

(
det(C)

n
2

)
dC ,

whereWn,k = π− k(k−1)
4

∏k−1
i=0

Γ (n+1
2 )

Γ (n+1−i
2 )

= Ok

(
n

k(k−1)
4

)
is a normalization constant

that only depends on n and k. Here, the reference measure dC is given by dC =
dC1,2 · · · dC(k−1),k (i.e. the Lebesgue measure in a natural parametrization).

Proof. We derive this by an approximate normalization of the so-called Wishart
distribution [20]. Observe that we can sample C ← μC in the following way:
We sample x 1, . . . ,xk ∈ R

n+1 iid from spherical n + 1-dimensional Gaussians,
such that the direction of each x i is uniform over Sn. Note that the lengths of
the x i are not normalized to 1. Then we set Ai,j := 〈x i,x j〉. Finally, normalize
to Ci,j := Ai,j√

Ai,iAj,j

.

The joint distribution of the Ai,j is (by definition) given by the so-called
Wishart distribution. [20] Its density for n + 1 > k − 1 is known to be

ρWishart =
e− 1

2TrA · det(A)
n+1−k−1

2

2
(n+1)k

2 π
k(k−1)

4
∏k−1

i=0 Γ (n+1−i
2 )

dA (2)
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where the reference density dA is given by dA =
∏

i≤j dAi,j . We refer to [8] for
a relatively simple computation of that density. Consider the change of variables
on R

k(k+1)/2 given by

Φ
(
A1,1, A2,2, . . . , Ak,k, A1,2, . . . , Ak−1,k

)

=
(
A1,1, A2,2, . . . , Ak,k,

A1,2√
A1,1A2,2

, . . . ,
Ak,k−1√

Ak−1,k−1Ak,k

)
,

i.e. we map the Ai,j ’s to Ci,j ’s while keeping the Ai,i’s to make the transformation
bijective almost everywhere. The Jacobian DΦ of Φ is a triangular matrix and
its determinant is easily seen to be

∣
∣det

(
DΦ

)∣∣ =
∏

i

1
√

Ai,i
k−1

.

Further, note that A = TCT , where T is a diagonal matrix with diagonal√
A1,1, . . . ,

√
Ak,k. In particular, det(A) = det(C)·∏i Ai,i. Consequently, we can

transform the Wishart density into
(
A1,1, . . . , Ak,k, C1,2, . . . , Ck−1,k

)
-coordinates

as

ρWishart =
e− 1

2

∑
i Ai,i det(C)

n−k
2

∏
i A

n−k
2

i,i

2
(n+1)k

2 π
k(k−1)

4
∏k−1

i=0 Γ (n−i+1
2 )

∏

i

√
Ai,i

k−1 ∏

i

dAi,i

∏

i<j

dCi,j .

The desired μC is obtained from ρWishart by integrating out dA1,1dA2,2 · · · dAk,k.
We can immediately see that μC takes the form μC = Wn,k det(C)

n−k
2 dC for

some constants Wn,k. We compute Wn,k as

Wn,k =
∫

· · ·
∫

A1,1 Ak,k

e− 1
2

∑
i Ai,i

∏
i A

n−k
2

i,i

2
(n+1)k

2 π
k(k−1)

4
∏k−1

i=0 Γ (n−i+1
2 )

∏

i

√
Ai,i

k−1 ∏

i

dAi,i

=
1

2
(n+1)k

2 π
k(k−1)

4
∏k−1

i=0 Γ (n−i+1
2 )

(∫ +∞

A1,1=0

A
n−1
2

1,1 e− 1
2A1,1 dA1,1

)k

=
2

(n+1)k
2

2
(n+1)k

2 π
k(k−1)

4
∏k−1

i=0 Γ (n−i+1
2 )

(∫ +∞

A1,1=0

(A1,1
2

)n+1
2 −1

e− 1
2A1,1 1

2dA1,1

)k

=
1

π
k(k−1)

4
∏k−1

i=0 Γ (n−i+1
2 )

(∫ +∞

x=0

x
n+1
2 −1e−x dx

)k

=
Γ (n+1

2 )k

π
k(k−1)

4
∏k−1

i=0 Γ (n−i+1
2 )

.

Finally, note that as a consequence of Stirling’s formula, we have Γ (n+z)
Γ (n) =

Oz(nz) for any fixed z and n → ∞. From this, we get

Wn,k =
Γ (n+1

2 )k

π
k(k−1)

4
∏k−1

i=0 Γ (n−i+1
2 )

= Ok

(
n
∑k−1

i=0
i
2

)
= Ok

(
n

k(k−1)
4

)
.
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The configurations C that we care about the most have the highest amount
of symmetry. We call a configuration C balanced if Ci,j = Ci′,j′ for all i �= j,
i′ �= j′. To compute the determinant det(C) for such balanced configurations,
we have the following lemma:

Lemma 1.

Let C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 a a . . . a
a 1 a . . . a
a a 1 . . . a
...

. . .
...

a a a . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R
k×k.

Then det(C) = (1 − a)k−1(1 + (k − 1)a).

Proof. We have C = (1−a) ·1k +a ·1 ·1t, where 1 ∈ R
k×1 is an all-ones vector.

Sylvester’s Determinant Theorem [2] gives

det(C) = (1 − a)k det
(
1k + a

1−a1 · 1t
)

= (1 − a)k det
(
11 + a

1−a1
t · 1)

= (1 − a)k(1 + a
1−ak) = (1 − a)k−1(1 + (k − 1)a).

For fixed k and C, the probability density Õ(
det(C)

n
2
)

of μC is exponential in
n. Since C ∈ C can only vary in a compact space, taking integrals will asymp-
totically pick the maximum value: in particular, we have for the probability that
a uniformly random k-tuple x 1, . . . ,xk is good:

∫

C good

μC = Õ
(

max
C good

det(C)
n
2

)
. (3)

We now compute this maximum.

Theorem 2. Let 0 < t <
√

k be some target length and consider the subset
C≤t ⊂ C of good configurations for target length at most t. Then det(C) attains
its unique maximum over C≤t at the balanced configuration CBal,t, defined by
Ci,j = t2−k

k2−k for all i �= j with maximal value

det(C)max = det(CBal,t) =
t2

k

(k2 − t2

k2 − k

)k−1

.

In particular, for t = 1, this gives Ci,j = − 1
k and det(C)max = (k+1)k−1

kk .
Consequently, for any fixed k and any fixed ε > 0, the probability that a randomly
chosen solution to the approximate k-List problem is ε-close to CBal,t converges
exponentially fast to 1 as n → ∞.

Proof. It suffices to show that C is balanced at the maximum, i.e. that all Ci,j

with i �= j are equal. Then computing the actual values is straightforward from
(1) and Lemma 1. Assume k ≥ 3, as there is nothing to show otherwise.
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For the proof, it is convenient to replace the conditions Ci,i = 1 for all i by the
(weaker) condition Tr (C) = k. Let C ′

≤t denote the set of all symmetric, positive
semi-definite C ∈ R

k×k with Tr (C) = k and
∑

i,j Ci,j ≤ t2. We maximize det(C)
over C ′

≤t and our proof will show that Ci,i = 1 is satisfied at the maximum.
Let C ∈ C ′

≤t. Since C is symmetric, positive semi-definite, there exists an
orthonormal basis v1, . . . , vk of eigenvectors with eigenvalues 0 ≤ λ1 ≤ . . . ≤ λk.

Clearly,
∑

i λi = Tr (C) = k and our objective det(C) is given by det(C) =∏
i λi. We can write

∑
i,j Ci,j as 1tC1 for an all-ones vector 1. We will show

that if det(C) is maximal, then 1 is an eigenvector of C. Since

t2 ≥ 1tC1 ≥ λ1‖1‖2 = kλ1, (4)

for the smallest eigenvalue λ1 of C, we have λ1 ≤ t2

k < 1. For fixed λ1, maxi-
mizing det(C) = λ1 · ∏k

i=2 λi under
∑k

i=2 λi = k − λ1 gives (via the Arithmetic
Mean-Geometric Mean Inequality)

det(C) ≤ λ1

(k − λ1

k − 1

)k−1

.

The derivative of the right-hand side wrt. λ1 is k(1−λ1)
k−1

(
k−λ1
k−1

)k−2
> 0, so we can

bound it by plugging in the maximal λ1 = t2

k :

det(C) ≤ λ1

(k − λ1

k − 1

)k−1

≤ t2

k

(k − t2

k

k − 1

)k−1

=
t2

k

( k2 − t

k2 − k

)k−1

(5)

The inequalities (5) are satisfied with equality iff λ2 = . . . = λk and λ1 = t2

k .
In this case, we can compute the value of λ2 as λ2 = k2−t2

k(k−1) from Tr (C) = k.

The condition λ1 = t2

k means that (4) is satisfied with equality, which implies
that 1 is an eigenvector with eigenvalue λ1. So wlog. v1 = 1√

k
1. Since the v i’s

are orthonormal, we have 1k =
∑

i v iv
t
i, where 1k is the k × k identity matrix.

Since we can write C as C =
∑

i λiv iv
t
i, we obtain

C =
∑

i

λiv iv
t
i = (λ1 − λ2)v1v

t
1 + λ2

k∑

i=1

v iv
t
i =

λ1 − λ2

k
11t + λ2 · 1k,

for det(C) maximal. From C = λ1−λ2
k 11t+λ2 ·1k, we see that all diagonal entries

of C are equal to λ2 + λ1−λ2
k and the off-diagonal entries are all equal to λ1−λ2

k .
So all Ci,i are equal with Ci,i = 1, because Tr (C) = k, and C is balanced.

For the case t >
√

k, and C≤t replaced by C≥t, the statement can be proven
analogously. Note that we need to consider the largest eigenvalue rather than
the smallest in the proof. We remark that for t = 1, the condition 〈x i,x j〉 =
Ci,j = − 1

k for all i �= j is equivalent to saying that x 1, . . . ,xk are k points of
a regular k + 1-simplex whose center is the origin. The missing k + 1th point of
the simplex is −∑

i x i, i.e. the negative of the sum (see Fig. 1).
A corollary of our concentration result is the following formula for the

expected size of the output lists in the approximate k-List problem.
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Fig. 1. A regular tetrahedron (3–simplex) represents a balanced configuration for k = 3.

Corollary 1. Let k, t be fixed. Then the expected number of solutions to the
approximate k-List problem with input lists of length |L| is

E[#solutions] = Õ
(

|L|k
( t2

k

(k2 − t2

k2 − k

)k−1)n
2
)

. (6)

Proof. By Theorems 1 and 2, the probability that any k-tuple is a solution is
given by Õ(det(CBal,t)

n
2 ). The claim follows immediately.

In particular, this allows us to prove the following conjecture of [4]:

Theorem 3. Let k be fixed and t = 1. If in the approximate k-List problem, the
length |L| of each input list is equal to the expected length of the output list, then

|L| = Õ
((

k
k

k−1

k+1

)n
2
)
.

Proof. This follows from simple algebraic manipulation of (6).

Our concentration result shows that it is enough to solve the configuration
problem for CBal,t.

Corollary 2. Let k, t be fixed. Then the approximate k-List problem with target
length t can be solved in essentially the same time as the k-List configuration
problem with target configuration CBal,t for any fixed ε > 0.

Proof. On input L1, . . . , Lk, solve the k-List configuration problem with target
configuration CBal,t. Restrict to those solutions whose sum has length at most t.
By Theorem 2, this will find all but an exponentially small fraction of solutions to
the approximate k-List problem. Since we only need to output a 1−o(1)-fraction
of the solutions, this solves the problem.

4 Algorithm

In this section we present our algorithm for the Configuration problem
(Definition 3). On input it receives k lists L1, . . . , Lk, a target configuration C in
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the form of a Gram matrix Ci,j = 〈x i,x j〉 ∈ R
k×k and a small ε > 0. The algo-

rithm proceeds as follows: it picks an x 1 ∈ L1 and filters all the remaining lists with
respect to the values 〈x 1,x i〉 for all 2 ≤ i ≤ k.More precisely,x i ∈ Li ‘survives’ the
filter if |〈x 1,x i〉 − C1,i| ≤ ε. We put such an x i into L

(1)
i (the superscript indicates

how many filters were applied to the original list Li). On this step, all the k-tuples
of the form (x 1,x 2, . . . ,xk) ∈ {x 1}×L

(1)
2 × . . .×L

(1)
k with a fixed first component

x 1 partially match the target configuration: all scalar products involving x 1 are as
desired. In addition, the lists L

(1)
i become much shorter than the original ones.

Next, we choose an x 2 ∈ L
(1)
2 and create smaller lists L

(2)
i from L

(1)
i by

filtering out all the x i ∈ L
(1)
i that do not satisfy |〈x 2,x i〉 − C2,i| ≤ ε for all

3 ≤ i ≤ k. A tuple of the form (x 1,x 2,x 3, . . . ,xk) ∈ {x 1}×{x 2}×L
(2)
3 ×. . .×L

(2)
k

satisfies the target configuration Ci,j for i = 1, 2. We proceed with this list-
filtering strategy until we have fixed all x i for 1 ≤ i ≤ k. We output all such
k-tuples. Note that our algorithm becomes the trivial brute-force algorithm once
we are down to 2 lists to be processed. As soon as we have fixed x 1, . . . ,xk−2

and created L
(k−2)
k−1 , L

(k−2)
k , our algorithm iterates over L

(k−2)
k−1 and checks the

scalar product with every element from L
(k−2)
k .

Our algorithm is detailed in Algorithm1 and illustrated in Fig. 2a.

Algorithm 1. k-List for the Configuration Problem
Input: L1, . . . , Lk – lists of vectors from Sn. Ci,j = 〈x i, x j〉 ∈ R

k×k – Gram matrix.
ε > 0.
Output: Lout – list of k-tuples x 1 ∈ L1, . . . , xk ∈ Lk, s.t. |〈x i, x j〉 − Cij | ≤ ε, for all
i, j.

1: Lout ← {}
2: for all x 1 ∈ L1 do
3: for all j = 2 . . . k do
4: L

(1)
j ← Filter(x 1, Lj , C1,j , ε)

5: for all x 2 ∈ L
(1)
2 do

6: for all j = 3 . . . k do
7: L

(2)
j ← Filter(x 2, L

(1)
j , C2,j , ε)

8:
. . .

9: for all xk ∈ L
(k−1)
k do

10: Lout ← Lout ∪ {(x 1, . . . xk)}
11: return Lout

1: function Filter(x , L, c, ε)
2: L′ ← {}
3: for all x ′ ∈ L do
4: if |〈x , x ′〉 − c| ≤ ε then
5: L′ ← L′ ∪ {x ′}
6: return L′
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L1 L2 L3
. . . Lk

x1

Filter Filter Filter

L
(1)
2 L

(1)
3

. . . L
(1)
k

x2

Filter Filter

L
(2)
3 L

(2)
k

(a) Pictorial representation of Alg. 1.
At level i, a filter receives as input xi

and a vector xj from L
(i−1)
j (for the in-

put lists, L = L(0)). xj passes through
the filter if |〈xi , xj〉 − Ci,j | ≤ ε, in

which case it is added to L
(i)
j . The con-

figuration C is a global parameter.

L1 L2 L3
. . . Lk

x1

Filter

L
(1)
2

. . .

x2

Filter ...

L
(2)
3

(b) The k-List algorithm given in [4]. The
main difference is that a filter receives as
inputs xi and a vector xj ∈ Lj , as opposed

to xj ∈ L
(i−1)
j . Technically, in [4], xi sur-

vives the filter if |〈xi ,x1 + . . .+xi−1〉| ≥ ci
for some predefined ci. Due to our concen-
tration results, this description is equiva-
lent to the one given in [4] in the sense
that the returned solutions are (up to a sub-
exponential fraction) the same.

Fig. 2. k-List algorithms for the configuration problem. Left: Our Algorithm 1. Right:
k-tuple sieve algorithm of [4].

5 Analysis

In this section we analyze the complexity of Algorithm 1 for the Configuration
problem. First, we should mention that the memory complexity is completely
determined by the input list-sizes |Li| (remember that we restrict to constant k)
and it does not change the asymptotics when we apply k filters. In practice, all
intermediate lists L

(j)
i can be implemented by storing pointers to the elements

of the original lists.
In the following, we compute the expected sizes of filtered lists L

(j)
i and

establish the expected running time of Algorithm 1. Since our algorithm has
an exponential running time of 2cn for some c = Θ(1), we are interested in
determining c (which depends on k) and we ignore polynomial factors, e.g. we
do not take into account time spent for computing inner products.

Theorem 4. Let k be fixed. Algorithm1 given as input k lists L1, . . . , Lk ⊂ Sn

of the same size |L|, a target balanced configuration CBal,t ∈ R
k×k, a target length
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0 < t <
√

k, and ε > 0, outputs the list Lout of solutions to the Configuration
problem. The expected running time of Algorithm1 is

T = Õ
(
|L| · max

1≤i≤k−1
|L|i · (k2 − t2)i

(k2 − k)i+1
·
( (k2 − k + (i − 1)(t2 − k))2

k2 − k + (i − 2)(t2 − k)

)n
2
)
. (7)

In particular, for t = 1 and |Lout| = |L| it holds that

T = Õ
(( k

1
k−1

k + 1
· max
1≤i≤k−1

k
i

k−1 · (k − i + 1)2

k − i + 2

)n
2
)

. (8)

Remark 2. In the proof below we also show that the expected running time of
the k-List algorithm presented in [4] is (see also Fig. 3 for a comparison) for
t = 1, |Lout| = |L|

TBLS = Õ
(( k

k
k−1

(k + 1)2
· max
1≤i≤k−1

(
k

i
k−1 · (k − i + 1)

))n
2
)
. (9)

Corollary 3. For k = 3, t = 1, and |L| = |Lout| (the most interesting setting
for SVP), Algorithm1 has running time

T = 20.3962n+o(n), (10)

requiring |L| = 20.1887n+o(n) memory.

Fig. 3. Running exponents scaled by 1/n for the target length t = 1. For k = 2, both
algorithms are the Nguyen-Vidick sieve [18] with log(T )/n = 0.415 (naive brute-force
over two lists). For k = 3, Algorithm 1 achieves log(T )/n = 0.3962.
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Proof (Proof of Theorem4). The correctness of the algorithm is straightforward:
let us associate the lists L(i) with a level i where i indicates the number of filtering
steps applied to L (we identify the input lists with the 0th level: Li = L

(0)
i ). So for

executing the filtering for the ith time, we choose an x i ∈ L
(i−1)
i that satisfies the

condition |〈x i,x i−1〉 − Ci,i−1| ≤ ε (for a fixed x i−1) and append to a previously
obtained (i − 1)-tuple (x 1, . . . ,x i−1). Thus on the last level, we put into Lout a
k-tuple (x 1, . . . ,xk) that is a solution to the Configuration problem.

Let us first estimate the size of the list L
(i−1)
i output by the filtering process

applied to the list L
(i−2)
i for i > 1 (i.e. the left-most lists on Fig. 2a). Recall that

all elements x i ∈ L
(i−1)
i satisfy |〈x i,x j〉 − Ci,j | ≤ ε, 1 ≤ j ≤ i − 1. Then the

total number of i-tuples (x 1,x 2, . . . ,x i) ∈ L1 × L
(1)
2 × . . . × L

(i−1)
i considered

by the algorithm is determined by the probability that in a random i-tuple, all
pairs (x j ,x j′), 1 ≤ j, j′ ≤ i satisfy the inner product constraints given by Cj,j′ .
This probability is given by Theorem1 and since the input lists are of the same
size |L|, we have1

|L1| · |L(1)
2 | · . . . |L(i−1)

i | = |L|i · det(C[1 . . . i])
n
2 , (11)

where det(C[1 . . . i]) denotes the i-th principal minor of C. Using (11) for two
consecutive values of i and dividing, we obtain

|L(i)
i+1| = |L| ·

(det(C[1 . . . i + 1]
det(C[1 . . . i])

)n
2
. (12)

Note that these expected list sizes can be smaller than 1. This should be thought
of as the inverse probability that the list is not empty. Since we target a bal-
anced configuration CBal,t, the entries of the input Gram matrix are specified
by Theorem 2 and, hence, we compute the determinants in the above quotient
by applying Lemma1 for a = tk−k

k2−k . Again, from the shape of the Gram matrix
CBal,t and the equal-sized input lists, it follows that the filtered list on each level
are of the same size: |L(i)

i+1| = |L(i)
i+2| = . . . = |L(i)

k |. Therefore, for all filtering
levels 0 ≤ j ≤ k − 1 and for all j + 1 ≤ i ≤ k,

∣
∣L(j)

i

∣
∣ = |L| ·

(k2 − t2

k2 − k
· k2 − k + j(t2 − k)
k2 − k + (j − 1)(t2 − k)

)n
2
. (13)

Now let us discuss the running time. Clearly, the running time of Algorithm1 is
(up to subexponential factors in n)

T = |L(0)
1 | · (|L(0)

2 | + |L(1)
2 | · (|L(1)

3 | + |L(2)
3 | · (. . . · (|L(k−2)

k | + |L(k−1)
k |))) . . .).

1 Throughout this proof, the equations that involve list-sizes |L| and running time T

are assumed to have Õ(·) on the right-hand side. We omit it for clarity.
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Multiplying out and observing that |L(k−2)
k | > |L(k−1)

k |, so we may ignore the
very last term, we deduce that the total running time is (up to subexponential
factors) given by

T = |L| · max
1≤i≤k−1

|L(i−1)| ·
i−1∏

j=1

|L(j)|, (14)

where |L(j)| is the size of any filtered list on level j (so we omit the subscripts).
Consider the value imax of i where the maximum is attained in the above formula.
The meaning of imax is that the total cost over all loops to create the lists
L
(imax)
j is dominating the running time. At this level, the lists L

(imax)
j become

small enough such that iterating over them (i.e. creation of L
(imax+1)
j ) does not

contribute asymptotically. Plugging in Eqs. (11) and (12) into (14), we obtain

T = |L| · max
1≤i≤k−1

|L|i
( (det C[1 . . . i])2

detC[1 . . . (i − 1)]

)n
2
. (15)

Using Lemma 1, we obtain the desired expression for the running time.
For the case t = 1 and |Lout| = |L|, the result of Theorem 3 on the size of

the input lists |L| yields a compact formula for the filtered lists:

∣
∣L(j)

i

∣
∣ =

(
k

1
k−1 · k − j

k − j + 1

)n
2
. (16)

Plugging this into either (14) or (15), the running time stated in (8) easily
follows.

It remains to show the complexity of the BLS algorithm [4], claimed in
Remark 2. We do not give a complete description of the algorithm but illustrate
it in Fig. 2b. We change the presentation of the algorithm to our configuration
setting: in the original description, a vector x i survives the filter if it satisfies
|〈x i,x 1 + . . . + x i−1〉| ≥ ci for a predefined ci (a sequence (c1, . . . , ck−1) ∈ R

k−1

is given as input to the BLS algorithm). Our concentration result (Theorem1)
also applies here and the condition |〈x i,x 1 + . . . + x i−1〉| ≥ ci is equivalent to a
pairwise constraint on the 〈x i,x j〉 up to losing an exponentially small fraction
of solutions. The optimal sequence of ci’s corresponds to the balanced configu-
ration CBal,t derived in Theorem 2. Indeed, Table 1 in [4] corresponds exactly to
CBal,t for t = 1. So we may rephrase their filtering where instead of shrinking
the list Li by taking inner products with the sum x 1 + . . . + x i−1, we filter Li

gradually by considering 〈x i,x j〉 for 1 ≤ j ≤ i − 1.
It follows that the filtered lists L(i) on level i are of the same size (in lead-

ing order) for both our and BLS algorithms. In particular, Eq. (12) holds for
the expected list-sizes of the BLS algorithm. The crucial difference lies in the
construction of these lists. To construct the list L

(i−1)
i in BLS, the filtering
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procedure is applied not to L
(i−2)
i , but to a (larger) input-list Li. Hence, the

running time is (cf. (14)), ignoring subexponential factors

TBLS = |L1| · (|L2| + |L(1)
2 | · (|L3| + |L(2)

3 | · (. . . · (|Lk| + |L(k−1)
k |))) . . .)

= |L|2 · max
1≤i≤k−1

·
i−1∏

j=1

|L(j)|.

The result follows after substituting (16) into the above product.

6 Configuration Extension

For k = 2, the asymptotically best algorithm with running time T =
(
3
2

)n
2

for t = 1 is due to [5], using techniques from Locally Sensitive Hashing. We
generalize this to what we call Configuration Extension. To explain the LSH
technique, consider the (equivalent) approximate 2-List problem with t = 1,
where we want to bound the norm of the difference ‖x 1 − x 2‖2 ≤ 1 rather
than the sum, i.e. we want to find points that are close. The basic idea is to
choose a family of hash functions H , such that for h ∈ H , the probability
that h(x 1) = h(x 2) is large if x 1 and x 2 are close, and small if they are far
apart. Using such an h ∈ H , we can bucket our lists according to h and then
only look for pairs x 1,x 2 that collide under h. Repeat with several h ∈ H
as appropriate to find all/most solutions. We may view such an h ∈ H as a
collection of preimages Dh,z = h−1(z) and the algorithm first determines which
elements x 1,x 2 are in some given Dh,z (filtering the list using Dh,z) and then
searches for solutions only among those. Note that, conceptually, we only really
need the Dh,z and not the functions h. Indeed, there is actually no need for the
Dh,z to be a partition of Sn for given h, and h need not even exist. Rather, we
may have an arbitrary collection of sets D(r), with r belonging to some index set.
The existence of functions h would help in efficiency when filtering. However, [5]
(and also [16], stated for the �1-norm) give a technique to efficiently construct
and apply filters D(r) without such an h in an amortized way.

The natural choice for D(r) is to choose all points with distance at most d for
some d > 0 from some reference point v (r) (that is typically not from any Li). This
way, a random pair x 1,x 2 ∈ D(r) has a higher chance to be close to each other
than uniformly random points x 1,x 2 ∈ Sn. Notationally, let us call (a description
of) D(r) together with the filtered lists an instance, where 1 ≤ r ≤ R and R is the
number of instances.

In our situation, we look for small sums rather than small differences. The
above translates to asking that x 1 is close to v (r) and that x 2 is far apart from
v (r) (or, equivalently, that x 2 is close to −v (r)). In general, one may (for k > 2)
consider not just a single v (r) but rather several related v

(r)
1 , . . . , v

(r)
m . So an

instance consists of m points v (r)
1 , . . . , v

(r)
m and shrunk lists L

′(r)
i where L

′(r)
i ⊂ Li

is obtained by taking those xi ∈ Li that have some prescribed distances di,j
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to v
(r)
j . Note that the di,j may depend on i and so need not treat the lists

symmetrically. As a consequence, it does no longer make sense to think of this
technique in terms of hash collisions in our setting.

We organize all the distances between v ’s and x ’s that occur into a single
matrix C (i.e. a configuration) that governs the distances between v ’s and x ’s:
the 〈v j , v j′〉-entries of C describe the relation between the v ’s and the 〈x i, v j〉-
entries of C describe the di,j . The 〈x i,x i′〉-entries come from the approximate
k-List problem we want to solve. While not relevant for constructing actual v (r)

j ’s

and L
′(r)
i ’s, the 〈x i,x i′〉-entries are needed to choose the number R of instances.

For our applications to sieving, the elements from the input list Li may
possibly be not uniform from all of Sn due to previous processing of the lists.
Rather, the elements x i from Li have some prescribed distance di,j to (known)
v j ’s: e.g. in Algorithm 1, we fix x 1 ∈ L1 that we use to filter the remaining
k − 1 lists; we model this by taking x 1 as one of the v j ’s (and reducing k by 1).
Another possibility is that we use configuration extension on lists that are the
output of a previous application of configuration extension.

In general, we consider “old” points v j and wish to create “new” points v �,
so we have actually three different types of rows/columns in C, corresponding
to the list elements, old and new points.

Definition 4 (Configuration Extension). Consider a configuration matrix
C. We consider C as being indexed by disjoint sets Ilists, Iold, Inew. Here, |Ilists| =
k corresponds to the input lists, |Iold| = mold corresponds to the “old” points,
|Inew| = mnew corresponds to the “new” points. We denote appropriate square
submatrices by C[Ilists] etc. By configuration extension, we mean an algorithm
ConfExt that takes as input k exponentially large lists Li ⊂ Sn for i ∈ Ilists,
mold “old” points vj ∈ Sn, j ∈ Iold and the matrix C. Assume that each input
list separately satisfies the given configuration constraints wrt. the old points:
Conf (xi, (vj)j∈Iold) ≈ C[i, Iold] for i ∈ Ilists, xi ∈ Li.

It outputs R instances, where each instance consists of mnew points v�, � ∈
Inew and shrunk lists L′

i ⊂ Li, where Conf ((vj)j∈Iold , (v�)�∈Inew) ≈ C[Iold, Inew]
and each x′

i ∈ L′
i satisfies

Conf (x′
i, (vj)j∈Iold , (v�)�∈Iold) ≈ C[i, Iold, Inew].

The instances are output one-by-one in a streaming fashion. This is important,
since the total size of the output usually exceeds the amount of available memory.

The naive way to implement configuration extension is as follows: indepen-
dently for each instance, sample uniform v �’s conditioned on the given con-
straints and then make a single pass over each input list Li to construct L′

i. This
would require Õ(maxi |Li| · R) time. However, using the block coding/stripe
techniques of [5,16], one can do much better. The central observation is that if
we subdivide the coordinates into blocks, then a configuration constraint on all
coordinates is (up to losing a subexponential fraction of solutions) equivalent to
independent configuration constraints on each block. The basic idea is then to
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construct the v �’s in a block-wise fashion such that an exponential number of
instances have the same v �’s on a block of coordinates. We can then amortize
the construction of the L′

i’s among such instances, since we can first construct
some intermediate L′′

i ⊂ Li that is compatible with the v �’s on the shared block
of coordinates. To actually construct L′

i ⊂ L′′
i , we only need to pass over L′′

i

rather than Li. Of course, this foregos independence of the v �’s across different
instances, but one can show that they are still independent enough to ensure
that we will find most solutions if the number of instances is large enough.

Adapting these techniques of [5,16] to our framework is straightforward, but
extremely technical. We work out the details in the full version of the paper.

A rough summary of the properties of our Configuration Extension Algorithm
ConfExt (see the full version for a proof) is given by the following:

Theorem 5. Use notation as in Definition 4. Assume that C, k,mold,mnew do
not depend on n. Then our algorithm ConfExt, given as input C, k,mold,mnew,
old points vj and exponentially large lists L1, . . . , Lk of points from Sn, outputs

R = Õ
(

det(C[Iold, Inew]) · det(C[Ilists, Iold])
det(C[Ilists, Iold, Inew]) · det(C[Iold])

)n
2

(17)

instances, where each output instance consists of mnew points v� and sublists
L′

i ⊂ Li. In each such output instance, the new points (v�)�∈Inew are chosen uni-
formly conditioned on the constraints (but not independent across instances).
Consider solution k-tuples, i.e. xi ∈ Li with Conf ((xi)i∈Ilists) ≈ C[Ilists]. With
overwhelming probability, for every solution k-tuple (xi)i∈Ilists , there exists at
least one instance such that all xi ∈ L′

i for this instance, so we retain all solu-
tions. Assume further that the elements from the input lists Li, i ∈ Ilists are iid
uniformly distributed conditioned on the configuration Conf (xi, (vj)j∈Iold) for
xi ∈ Li, which is assumed to be compatible with C. Then the expected size of the
output lists per instance is given by

E[|L′
i|] = |Li| · Õ

((
det(C[i, Iold, Inew]) · det(C[Iold])
det(C[Iold, Inew]) · det(C[i, Iold])

)n/2)
.

Assume that all these expected output list sizes are exponentially increasing in
n (rather than decreasing). Then the running time of the algorithm is given by
Õ(R·maxi E[|L′

i|]) (essentially the size of the output) and the memory complexity
is given by Õ(maxi |Li|) (essentially the size of the input).

7 Improved k-List Algorithm with Configuration
Extension

Now we explain how to use the Configuration Extension Algorithm within the
k-List Algorithm 1 to speed-up the search for configurations. In fact, there is a
whole family of algorithms obtained by combining Filter from Algorithm 1 and
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the configuration extension algorithm ConfExt. The combined algorithm is given
in Algorithm 2.

Recall that Algorithm 1 takes as inputs k lists L1, . . . , Lk of equal size and
processes the lists in several levels (cf. Fig. 2a). The lists L

(i)
j for j ≥ i at the ith

level (where the input lists correspond to the 0th level) are obtained by brute-
forcing over x i ∈ L

(i−1)
i and running Filter on L

(i−1)
j and x i.

We can use ConfExt in the following way: before using Filter on L
(i−1)
j , we

run ConfExt to create R instances with smaller sublists L
′(i−1)
j ⊂ L

(i−1)
j . We

then apply Filter to each of these L
′(i−1)
j rather than to L

(i−1)
j . The advantage

is that for a given instance, the L
′(i−1)
j are dependent (over the choice of j), so

we expect a higher chance to find solutions.
In principle, one can use ConfExt on any level, i.e. we alternate between using

ConfExt and Filter. Note that the x i’s that we brute-force over in order to apply
Filter become “old” v j ’s in the context of the following applications of ConfExt.

It turns out that among the variety of potential combinations of Filter and
ConfExt, some are more promising than others. From the analysis of Algorithm 1,
we know that the running time is dominated by the cost of filtering (appropri-
ately multiplied by the number of times we need to filter) to create lists at some
level imax. The value of imax can be deduced from Eq. (14), where the individual
contribution |L| · |L(i−1)| ·∏i−1

j=1 |L(j)| in that formula exactly corresponds to the
total cost of creating all lists at the i-th level.

It makes sense to use ConfExt to reduce the cost of filtering at this critical
level. This means that we use ConfExt on the lists L

(imax−1)
j , j ≥ imax − 1. Let

us choose mnew = 1 new point v �. The lists L
(imax−1)
j are already reduced by

enforcing configuration constraints with x 1 ∈ L1, . . . ,x imax−1 ∈ Limax−1 from
previous applications of Filter. This means that the x 1, . . . ,x imax−1 take the role
of “old” v j ’s in ConfExt. The configuration Cext ∈ R

(k+1)×(k+1) for ConfExt is
obtained as follows: The Cext[Ilists, Iold]-part is given by the target configura-
tion. The rest (which means the last row/column corresponding to the single
“new” point) can be chosen freely and is subject to optimization. Note that the
optimization problem does not depend on n.

This approach is taken in Algorithm2. Note that for levels below imax, it does
not matter whether we continue to use our Filter approach or just brute-force: if
imax = k, there are no levels below. If imax < k, the lists are small from this level
downward and brute-force becomes cheap enough not to affect the asymptotics.

Let us focus on the case where the input list sizes are the same as the output
list sizes, which is the relevant case for applications to Shortest Vector sieving.
It turns out (numerically) that in this case, the approach taken by Algorithm2 is
optimal for most values of k. The reason is as follows: Let T be the contribution
to the running time of Algorithm1 from level imax, which is asymptotically the
same as the total running time. The second-largest contribution, denoted T ′

comes from level imax −1. The improvement in running time from using ConfExt
to reduce T decreases with k and is typically not enough to push it below T ′.
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Consequently, using ConfExt between other levels will not help. We also observed
that choosing mnew = 1 was usually optimal for k up to 10. Exceptions to these
observations occur when T and T ′ are very close (this happens, e.g. for k = 6)
or when k is small and the benefit from using ConfExt is large (i.e. k = 3).

Since the case k = 3 is particularly interesting for the Shortest Vector sieving
(see Sect. 7.2), we present the 3-List algorithm separately in Sect. 7.1.

Algorithm 2. k-List with Configuration Extension
Input: L1, . . . , Lk – input lists. C ∈ R

k×k – target configuration. ε > 0 – measure of closeness.

Output: Lout – list of k-tuples x1 ∈ L1, . . . , xk ∈ Lk, s.t. |〈x i, xj〉 − Cij | ≤ ε, for all i, j.

1: imax, Cext = Preprocess(k, Ci,j ∈ R
k×k)

2: Lout ← {}
3: for all x1 ∈ L1 do

4: L
(1)
j ← Filter(x1, Lj , C1,j , ε) � j = 2, . . . , k

. . .

5: for all x imax−1 ∈ L
(imax−2)
imax−1 do

6: L
(imax−1)
j ← Filter(x imax−1, Limax−2

j , Cimax−1,j , ε) � j = imax, . . . , k

7: Iold ← {1, . . . , imax − 1}, Ilists ← {imax, . . . , k}, Inew ← {k + 1}.
8: mold ← imax − 1, k′ ← k + 1 − imax, mnew ← 1.

9: vj ← xj for j ∈ Iold.

10: Call ConfExt(n, k′, mold, mnew, Cext, L
(imax−1)
imax

, . . . , L
(imax−1)
k , (vj)j∈Iold , ε)

11: for all output instances w , L
′(imax−1)
imax

, . . . , L
′(imax−1)
k do � Output is streamed

12: for all x imax ∈ L
′(imax−1)
j do

13: L
(imax)
j ←Filter(x imax , L

′(imax−1)
j , Cimax,j , ε) � j = imax + 1 . . . k

14: Brute-force over L
(imax)
j to obtain x imax+1, . . . , xk compatible with C

15: Lout ← Lout ∪ {(x1, . . . , xk)}
16: return Lout

1: procedure Preprocess(k, C ∈ R
k×k)

2: Determine imax using Eq. (14)

3: Set Cext[{1, . . . , k}] ← C.

4: Determine optimal Cext
i,k+1 = Cext

k+1,i by numerical optimization.

5: return imax, Cext ∈ R
(k+1)×(k+1)

1: function Filter(x , L, c, ε): See Algorithm1

7.1 Improved 3-List Algorithm

The case k = 3 stands out from the above discussion as one can achieve a faster
algorithm running the Configuration Extension Algorithm on two points v1, v2.
This case is also interesting in applications to lattice sieving, so we detail on it
below.

From Eq. (14) we have imax = 2, or more precisely, the running time of the
3-List algorithm (without Configuration Extension) is T = |L1| · |L(1)

2 | · |L(1)
3 |.

So we start shrinking the lists right from the beginning which corresponds to
mold = 0. For the balance configuration as the target, we have C[Ilists] = −1/3 on
the off-diagonals. With the help of an optimization solver, we obtain the optimal
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values for 〈x i, v j〉 for i = {1, 2, 3} and j = {1, 2}, and for 〈v1, v2〉 (there are 7
values to optimize for), so the input to the Configuration Extension Algorithm
is determined. The target configuration is of the form

C =

⎛

⎜
⎜
⎜
⎜
⎝

1 −1/3 −1/3 0.47 −0.15
−1/3 1 −1/3 −0.17 0.26
−1/3 −1/3 1 −0.19 −0.14
0.47 −0.17 −0.19 1 −0.26

−0.15 0.26 −0.14 −0.26 1

⎞

⎟
⎟
⎟
⎟
⎠

(18)

and the number of instances is given by R = Õ(1.4038n) according to (17). The
algorithm runs in a streamed fashion: the lists L′

1, L
′
2, L

′
3 in line 2 of Algorithm 3

are obtained instance by instance and, hence, lines 3 to 9 are repeated R times.

Algorithm 3. 3-List with Configuration Extension
Input: L1, L2, L3 – input lists of vectors from Sn, |L| = 20.1887n+o(n)

C ∈ R
5×5 as in Eq. (18), ρ = 1.4038, ε > 0

Output: Lout ⊂ L1 × L2 × L3, s.t. |〈x i, x j〉 − Cij | ≤ ε, for all 1 ≤ i, j ≤ 3.

1: Lout ← {}
2: L′

1, L
′
2, L

′
3 ← ConfExt(k = 3, mold = 0, mnew = 2, C ∈ R

5×5, ε, L1, L2, L3,
(n1, . . . , nt))

3: for all x 1 ∈ L′
1 do

4: L
(1)
2 ← Filter(x 1, L

′
2, −1/3, ε)

5: L
(1)
3 ← Filter(x 1, L

′
3, −1/3, ε)

6: for all x 2 ∈ L
(1)
2 do

7: for all x 3 ∈ L
(1)
3 do

8: if |〈x 2, x 3〉 + 1/3| ≤ ε then
9: Lout ← (x 1, x 2, x 3)

10: return Lout

1: function Filter(x , L, c, ε): See Algorithm 1

From Theorem 3, it follows that if the input lists satisfy |L| = 20.1887n+o(n),
thenwe expect |Lout| = |L|.Also fromEq. (8), it follows that the 3-ListAlgorithm 1
(i.e. without combining with the Configuration Extension Algorithm) has running
time of 20.3962n+o(n). The above Algorithm 3 brings it down to 20.3717n+o(n).

7.2 Application to the Shortest Vector Problem

In this section we briefly discuss how certain shortest vector algorithms can
benefit from our improvement for the approximate k-List problem. We start by
stating the approximate shortest vector problem.

On input, we are given a full-rank lattice L(B) described by a matrix
B ∈ R

n×n (with polynomially-sized entries) whose columns correspond to basis
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vectors, and some constant c ≥ 1. The task is to output a nonzero lattice vector
x ∈ L(B), s.t. ‖x‖ ≤ cλ1(B) where λ1(B) denotes the length of the short-
est nonzero vector in L(B). x is a solution to the approximate shortest vector
problem.

The AKS sieving algorithm (introduced by Ajtai, Kumar, and Sivakumar
in [1]) is currently the best (heuristic) algorithm for the approximate shortest
vector problem: for an n-dimensional lattice, the running time and memory are
of order 2n. Sieving algorithms have two flavours: the Nguyen-Vidick sieve [18]
and the Gauss sieve [17]. Both make polynomial in n number of calls to the
approximate 2-List solver. Without LSH-techniques, the running time both the
Nguyen-Vidick and the Gauss sieve is the running time of the approximate 2-List
algorithm: 20.415n+o(n) with 20.208n+o(n) memory. Using our 3-List Algorithm 1
instead, the running time can be reduced to 20.3962n+o(n) (with only 20.1887n+o(n)

memory) introducing essentially no polynomial overhead. Using Algorithm3, we
achieve even better asymptotics: 20.3717n+o(n), but it might be too involved for
practical speed-ups due very large polynomial overhead for too little exponential
gain in realistic dimensions.

Now we describe the Nguyen-Vidick sieve that uses a k-List solver as a main
subroutine (see [4] for a more formal description). We start by sampling lattice-
vectors x ∈ L(B) ∩ Bn(2O(n) · λ1(B)), where Bn(R) denotes an n-dimensional
ball of radius R. This can be done using, for example, Klein’s nearest plane
procedure [11]. In the k-List Nguyen-Vidick for k > 2, we sample many such
lattice-vectors, put them in a list L, and search for k-tuples x 1, . . . ,xk ∈ L ×
. . .×L s.t. ‖x 1+. . .+xk‖ ≤ γ ·max1≤i≤k x i for some γ < 1. The sum x 1+. . .+xk

is put into Lout. The size of L is chosen in a way to guarantee that |L| ≈ |Lout|.
The search for short k-tuples is repeated over the list Lout. Note that since
with each new iteration we obtain vectors that are shorter by a constant factor
γ, starting with 2O(n) approximation to the shortest vector (this property is
guaranteed by Klein’s sampling algorithm applied to an LLL-reduced basis), we
need only linear in n iterations to find the desired x ∈ L(B).

Naturally, we would like to apply our approximate k-List algorithm to k
copies of the list L to implement the search for short sums. Indeed, we can do so
by making a commonly used assumption: we assume the lattice-vectors we put
into the lists lie uniformly on a spherical shell (on a very thin shell, essentially
a sphere). The heuristic here is that it does not affect the behaviour of the
algorithm. Intuitively, the discreteness of a lattice should not be “visible” to the
algorithm (at least not until we find the approximate shortest vector).

We conclude by noting that our improved k-List Algorithm can as well be
used within the Gauss sieve, which is known to perform faster in practice than
the Nguyen-Vidick sieve. An iteration of the original 2-Gauss sieve as described
in [17], searches for pairs (p, v), s.t. ‖p +v‖ < max{‖p‖, ‖v‖}, where p ∈ L(B)
is fixed, v ∈ L ⊂ L(B), and p �= v . Once such a pair is found and ‖p‖ > ‖v‖, we
set p ′ ← p+v and proceed with the search over (p ′, v), otherwise if ‖p‖ < ‖v‖,
we delete v ∈ L and store the sum p +v as p-input point for the next iteration.
Once no pair is found, we add p ′ to L. On the next iteration, the search is
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repeated with another p which is obtained either by reducing some deleted
v ∈ L before, or by sampling from L(B). The idea is to keep only those vectors
in L that cannot form a pair with a shorter sum. Bai, Laarhoven, and Stehlé
in [4], generalize it to k-Gauss sieve by keeping only those vectors in L that do
not form a shorter k-sum. In the language of configuration search, we look for
configurations (p, v1, . . . , vk−1) ∈ {p}×L× . . .×L where the first point is fixed,
so we apply our Algorithm1 on k − 1 (identical) lists.

Unfortunately, applying LSH/configuration extension-techniques for the
Gauss Sieve is much more involved than for the Nguyen-Vidick Sieve. For k = 2,
[13] applies LSH techniques, but this requires an exponential increase in mem-
ory (which runs counter to our goal). We do not know whether these techniques
extend to our setting. At any rate, since the gain from LSH/Configuration
Extension techniques decreases with k (with the biggest jump from k = 2
to k = 3), while the overhead increases, gaining a practical speed-up from
LSH/Configuration Extension within the Gauss sieve for k ≥ 3 seems unre-
alistic.

Open Questions. We present all our algorithms for a fixed k, and in the analysis,
we suppress all the prefactors (in running time and list-sizes) for fixed k in
the Ok(.) notation. Taking a closer look at how these factors depend on k, we
notice (see, for example, the expression for Wn,k in Theorem 1) that exponents
of the polynomial prefactors depend on k. It prevents us from discussing the
case k → ∞, which is an interesting question especially in light of SVP. Another
similar question is the optimal choice of ε and how it affects the pre-factors.

8 Experimental Results

We implement the 3-Gauss sieve algorithm in collaboration with S. Bai [3].
The implementation is based on the program developed by Bai, Laarhoven, and
Stehlé in [4], making the approaches comparable.

Lattice bases are generated by the SVP challenge generator [7]. It produces
a lattice generated by the columns of the matrix

B =

⎛

⎜
⎜
⎜
⎝

p x1 . . . xn−1

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞

⎟
⎟
⎟
⎠

,

where p is a large prime, and xi < p for all i. Lattices of this type are random
in the sense of Goldstein and Mayer [9].

For all the dimensions except 80, the bases are preprocessed with BKZ reduc-
tion of block-size 20. For n = 80, the block-size is 30. For our input lattices, we
do not know their minimum λ1. The algorithm terminates when it finds many
linearly dependent triples (v1, v2, v3). We set a counter for such an event and
terminate the algorithm once this counter goes over a pre-defined threshold.
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Table 1. Experimental results for k-tuple Gauss sieve. The running times T are given
in seconds, |L| is the maximal size of the list L. ε is the approximation parameter for
the subroutine Filter of Algorithm 1. The best running-time per dimension is type-set
bold.

n 2-sieve BLS 3-sieve Algorithm1 for k = 3

ε = 0.0 ε = 0.015 ε = 0.3 ε = 0.4

T , |L| T , |L| T , |L| T , |L| T , |L| T , |L|
60 1.38e3, 13257 1.02e4, 4936 1.32e3, 7763 1.26e3, 7386 1.26e3, 6751 1.08e3, 6296

62 2.88e3, 19193 1.62e4, 6239 2.8e3, 10356 3.1e3, 9386 1.8e3, 8583 2.2e3, 8436

64 8.64e3, 24178 5.5e4, 8369 5.7e3, 13573 3.6e3, 12369 3.36e3, 11142 4.0e4, 10934

66 1.75e4, 31707 9.66e4, 10853 1.5e4, 17810 1.38e4, 16039 9.1e3, 14822 1.2e4, 14428

68 3.95e4, 43160 2.3e5, 14270 2.34e4, 24135 2.0e4, 21327 1.68e4, 19640 1.86e4, 18355

70 6.4e4, 58083 6.2e5, 19484 6.21e4, 32168 3.48e5, 26954 3.3e4, 25307 3.42e4, 24420

72 2.67e5, 77984 1.2e6, 25034 7.6e4, 40671 7.2e4, 37091 6.16e4, 34063 6.35e4, 34032

74 3.45e5, 106654 – 2.28e5, 54198 2.08e5, 47951 2.02e5, 43661 2.03e5, 40882

76 4.67e5, 142397 – 3.58e5, 71431 2.92e5, 64620 2.42e5, 56587 2.53e5, 54848

78 9.3e5, 188905 – – – 4.6e5, 74610 4.8e5, 70494

80 – – – – 9.47e5, 98169 9.9e5, 98094

The intuition behind this idea is straightforward: at some point the list L will
contain very short basis-vectors and the remaining list-vectors will be their lin-
ear combinations. Trying to reduced the latter will ultimately produce the zero-
vector. The same termination condition was already used in [15], where the
authors experimentally determine a threshold of such “zero-sum” triples.

Up to n = 64, the experiments are repeated 5 times (i.e. on 5 random lattices),
for the dimensions less than 80, 3 times. For the running times and the list-sizes
presented in the table below, the average is taken. For n = 80, the experiment
was performed once.

Our tests confirm a noticeable speed-up of the 3-Gauss sieve when our Config-
uration Search Algorithm1 is used. Moreover, as the analysis suggests (see Fig. 3),
our algorithm outperforms the naive 2-Gauss sieve while using much less memory.
The results can be found in Table 1.

Another interesting aspect of the algorithm is the list-sizes when compared
with BLS. Despite the fact that, asymptotically, the size of the list |L| is the
same for our and for the BLS algorithms, in practice our algorithm requires a
longer list (cf. the right numbers in each column). This is due to the fact that
we filter out a larger fraction of solutions. Also notice that increasing ε – the
approximation to the target configuration, we achieve an additional speed-up.
This becomes obvious once we look at the Filter procedure: allowing for a smaller
inner-product throws away less vectors, which in turn results in a shorter list L.
For the range of dimensions we consider, we experimentally found ε = 0.3 to be
a good choice.
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Abstract. In this work, we describe a new polynomial-time attack on
the multilinear maps of Coron, Lepoint, and Tibouchi (CLT13), when
used in candidate indistinguishability obfuscation (iO) schemes. More
specifically, we show that given the obfuscation of the simple branching
program that computes the always zero functionality previously consid-
ered by Miles, Sahai and Zhandry (Crypto 2016), one can recover the
secret parameters of CLT13 in polynomial time via an extension of the
zeroizing attack of Coron et al. (Crypto 2015). Our attack is generaliz-
able to arbitrary oblivious branching programs for arbitrary functional-
ity, and allows (1) to recover the secret parameters of CLT13, and then
(2) to recover the randomized branching program entirely. Our analysis
thus shows that almost all single-input variants of iO over CLT13 are
insecure.

1 Introduction

Since their introduction, all candidates for multilinear maps [GGH13a,CLT13,
GGH15] have been shown to suffer from zeroizing attacks [GGH13a,CHL+15,
GGH15], sometimes even when no low-level encoding of zero was made available
to the adversary [CGH+15]. However, the leading application of multilinear
maps, indistinguishability obfuscation, has until now remained little affected by
this kind of attacks. This resistance seemed to come from the fact that the par-
ticular combinations enforced in indistinguishability obfuscation constructions
did not allow enough freedom to obtain a simple system of successful zero-tests
that could be solved using linear algebraic techniques; see the discussion on the
limitations of zeroizing attacks in [CGH+15, Sect. 1.2].

Attacks Against iO (Related Work). Attacks against simplified variants
of certain obfuscation schemes instantiated over the Coron-Lepoint-Tibouchi
(CLT13) multilinear maps [CLT13] have been described in [CGH+15]. Firstly,
the GGHRSW branching-program (BP) obfuscation procedure from [GGH+13b]
has been shown to be broken for branching programs with a special “decompos-
able” structure where the inputs bits can be partitioned in three sets, and so
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 41–58, 2017.
DOI: 10.1007/978-3-662-54365-8 3
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that one set only affects the first steps of the BP, a second set the middle steps of
the BP, and the last set the final steps of the BP. Secondly, the simple variants
of the circuit obfuscation procedures from [Zim15,AB15] has been shown to be
broken for simple circuits, such as point functions.

Recently in [MSZ16], Miles, Sahai and Zhandry introduced annihilation
attacks against multilinear maps, and applied them to cryptanalyze in polynomial-
time several candidate iO schemes [BGK+14,MSW14,AGIS14,PST14,BMSZ16]
over the Garg-Gentry-Halevi (GGH13) multilinear maps [GGH13a]. The core idea
of the attack against to differentiate whether an obfuscated program O comes
from a branching program A or a branching program A′ is the following: eval-
uate specific inputs xi’s that evaluate to 0 on A and A′, get the zero-tested values
yi = O(xi), and then evaluate an annihilating polynomial QA constructed
from A over the yi’s. When A was obfuscated, QA(y) belongs to an ideal I
independent of y and A; otherwise QA(y) �∈ I with high probability. Anni-
hilation polynomials can also be used to attack the order revealing encryption
scheme proposed in [BLR+15]. Concurrently to our work, Chen, Gentry and
Halevi [CGH16] used annihilation polynomials to attack the initial GGHRSW can-
didate iO scheme [GGH+13b] and Apon et al. [ADGM16] introduced the notion of
partially inequivalent branching programs, shown to be sufficient for annihilation
attacks.

Our Contributions. In the remaining of the document, we cryptanalyze
several constructions of indistinguishability obfuscation [GGH+13b,MSW14,
AGIS14,PST14,BGK+14,BMSZ16] when instantiated over CLT13. More specif-
ically, we show the following theorem.

Theorem 1. Let O denote the single-input variant of the iO candidates in
[GGH+13b,MSW14,AGIS14,PST14,BGK+14,BMSZ16] (over CLT13 multilin-
ear maps). There exists a branching program A such that, given O(A), one can
break the CLT13 multilinear maps in polynomial-time.

To show this, we use the branching program A that computes the always-
zero function previously considered in [MSZ16], in which every matrix is simply
the identity matrix. This branching program does not fit in the framework of
the zeroizing attacks proposed in [CGH+15], but we show that one can recon-
struct the three-ways structure required by the zeroizing attacks by using tensor
products. More precisely, consider a branching program evaluation on input x

A(x) = Â0 ×
2t∏

i=1

Âi,xinp(i) × Â2t+1 × pzt mod x0 ,

where inp(i) = min(i, 2t + 1 − i) denotes the input bit used at the i-th step
of the computation and Â = {Â0, Â2t+1, Âi,b | i ∈ [2t], b ∈ {0, 1}} is the
obfuscated branching program. We show that A(x) can be rewritten as a product
of consecutive factors

A(x) = B(x) × C(x) × D(x) × C ′(x) × B′(x) × pzt mod x0

=
(
B′(x)T ⊗ B(x)

) × (
C ′(x)T ⊗ C(x)

) × vec
(
D(x)

) × pzt mod x0,
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where the factors B′(x)T ⊗ B(x),C ′(x)T ⊗ C(x) and D(x) that can be made
to vary independently, and vec(D) denotes the vector formed by stacking the
columns of the matrix D on top of each other. We then show how to extend
the zeroizing attack approach described in [CHL+15,CGH+15] to construct a
block diagonal matrix, and apply the Cayley-Hamilton theorem to recover all
the secrets embedded in the CLT13 public parameters. Once the multilinear
map secret parameters have been recovered, one can then recover the random-
ized branching program Ã completely. Thus, one can distinguish between the
obfuscation of two branching programs whenever they are inequivalent under
Kilian’s randomization.

Our attack is applicable to the single-input version of the candidate obfusca-
tors from [MSW14,AGIS14,PST14,BGK+14,BMSZ16], to the GGHRSW obfus-
cator [GGH+13b] (as opposed to annihilations attacks).

Last, but not least, we then show how to generalize our attack to branching
programs with an essentially arbitrary structure, including oblivious branching
programs, and to programs achieving essentially arbitrary functionalities. This
shows that the previously mentioned single-input obfuscators should be consid-
ered broken when instantiated with CLT13.

2 Preliminaries

Notation. We use [a]n or a mod n to denote a unique integer x ∈ (−n
2 , n

2 ] which
is congruent to a modulo n. A set {1, 2, . . . , n} is denoted by [n]. Vectors and
matrices will be denoted by bold letters. The transpose of a matrix A is denoted
by AT .

2.1 Kronecker Product of Matrices

For any two matrices A ∈ Rm×n and B ∈ Rp×q, we define the Kronecker product
(or tensor product) of A and B as the block matrix A⊗B ∈ R(mp)×(nq) given by:

A ⊗ B =

⎡

⎢
⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤

⎥
⎦ , where A = (aij).

We will be using the following important property of the Kronecker product.
Consider a matrix C ∈ Rn×m and let ci ∈ Rn, i = 1, . . . , m be its column
vectors, so that C =

[
c1, . . . , cm

]
. We denote by vec(C) the column vector of

dimension mn formed by stacking the columns ci of C on top of one another:

vec(C) =

⎡

⎢
⎣

c1
...

cm

⎤

⎥
⎦ ∈ Rmn.
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Now for any three matrices A, B, and C for which the matrix product A ·B ·C
is defined, the following property holds [Lau04, Chap. 13]:

vec(A · B · C) = (CT ⊗ A) · vec(B)

(this follows from the fact that vec(xyT ) = y ⊗ x for any two column vectors
x and y). Note that for any column vector c, vec(c) = c. This property has
concurrently and independently been used in the variant of annihilation attacks
introduced by Apon et al. [ADGM16].

2.2 CLT13 Multilinear Map

We briefly recall the asymmetric CLT13 scheme; we refer to [CLT13] for a full
description. The CLT13 scheme relies on the Chinese Remainder Theorem (CRT)
representation. For large secret primes pk’s, let x0 =

∏n
k=1 pk. We denote by

CRT(a1, a2, . . . , an) or CRT(ak)k the number a ∈ Zx0 such that a ≡ ak (mod pk)
for all k ∈ [n]. The plaintext space of CLT13 scheme is Zg1 × Zg2 × · · · × Zgn

for small secret integers gk’s. An encoding of a vector a = (a1, . . . , an) at level
set S = {i0} is an integer α ∈ Zx0 such that α = [CRT(a1 + g1r1, . . . , an +
gnrn)/zi0 ]x0 for small rk’s, and where zi0 is a secret mask in Zx0 uniformly
chosen during the parameters generation procedure of the multilinear map.
To support a κ-level multilinearity, κ distinct zi’s are used. We do not consider
the straddling set system [BGK+14] since it is not relevant to our attacks.

Additions between encodings in the same level set can be done by modular
additions in Zx0 . Multiplication between encodings can be done by modular
multiplication in Zx0 , only when those encodings are in disjoint level sets, and
the resulting encoding level set is the union of the input level sets. At the top
level set [κ], an encoding of zero can be tested by multiplying it by the zero-test
parameter pzt = [

∏κ
i=1 zi · CRT(p∗

khkg−1
k )k]x0 in Zx0 where p∗

k = x0/pk, and
comparing the result to x0. If the result is small, then the encoding encodes a
zero vector.1

2.3 Indistinguishability Obfuscation

We borrow the definition of indistinguishability obfuscation from [GGH+13b],
where iO for circuits are defined.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT
machine iO is called an indistinguishability obfuscator for a circuit class {Cλ} if
the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

1 In this paper, for simplicity of notation, we only consider a single zero-testing element
instead of a vector thereof [CLT13].
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– For any (not necessarily uniform) PPT distinguisher D, there exists a neg-
ligible function α such that the following holds: For all security parameters
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for
all inputs x, then

|Pr[D(iO(λ,C0)) = 1] − Pr[D(iO(λ,C1)) = 1]| ≤ α(λ).

Circuits can be directly obfuscated using circuit obfuscators [Zim15,AB15,
DGG+16]. However, most of the iO candidate obfuscators (see [GGH+13b,
MSW14,AGIS14,PST14,BMSZ16,GMM+16]) first convert the circuits to
matrix branching programs, randomize them, and then obfuscated them using
a candidate multilinear maps scheme such as [GGH13a,CLT13,GGH15].

Obviously, for the converted branching program B, the iO obfuscator O
should preserve the functionality: B(x) = O(B)(x) for all x. Moreover, for
two functionally-equivalent branching programs B and B′, O(B) and O(B′)
should be computationally indistinguishable, unless they have different length
or types of matrices. The concrete instance of such branching programs and their
obfuscations are described in Sects. 3.1 and 3.2, respectively.

Note that, while the candidate multilinear maps [GGH13a,CLT13,GGH15]
have recently been found to fail to securely realize multi-party key exchanges
(see [HJ16,CHL+15,CLLT16a]), few weaknesses were found in the iO candi-
dates over CLT13 (and GGH15 [GGH15]), mainly due to the absence of the
low-level encodings of zeroes in the public domain. In [CGH+15], Coron et
al. described an attack against the circuit obfuscators for simple circuits, and the
GGHRSW obfuscator for branching programs with a special decomposable struc-
ture (but not on oblivious branching programs). Annihilations attacks [MSZ16]
were recently introduced and allowed to break many iO candidates over GGH13;
however, they do not carry to obfuscators over CLT13 as far as we know.

3 Zeroizing Attack on Indistinguishability Obfuscation
of Simple Branching Programs

For simplicity, we describe our attack on the simple single input branching pro-
gram introduced in [MSZ16]. We will show how to generalize our attack to obliv-
ious branching programs with arbitrary functionalities in Sect. 4.

3.1 Target Branching Program

We consider the following branching program A that evaluates to zero for all
t-bit inputs. Let us first define the function which describes what input bit is
examined at the i-th step:

inp(i) = min(i, 2t + 1 − i) for i ∈ [2t] .

Now, the branching program is defined as follows:

A = {inp,A0,A2t+1,Ai,b | i ∈ [2t], b ∈ {0, 1}} ,
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where

A0 = [0 1], A2t+1 = [1 0]T , Ai,0 = Ai,1 =
[
1 0
0 1

]
for i ∈ [2t].

It is evaluated in the usual way on x ∈ {0, 1}t:

A(x) := A0 ×
2t∏

i=1

Ai,xinp(i) × A2t+1.

3.2 Obfuscation of Branching Programs

To obfuscate a branching program, we follow the standard recipe of indistin-
guishability obfuscation constructions: use Kilian style randomization with extra
scalar multiplications by random numbers, and encode the resulting matrices
with the candidate multilinear maps.

Let us describe the obfuscation procedure of the branching program A from
Sect. 3.1, over the CLT13 multilinear map. Let

∏n
k=1 Zgk

be the plaintext space
of the CLT13 map, and denote g =

∏n
k=1 gk. We first choose random invert-

ible matrices {Ri ∈ Z
2×2
g }i∈[2t+1] and non-zero scalars {αi,b ∈ Zg}i∈[2t],b∈{0,1}.

Then the matrices in the branching program A are randomized using Kilian
randomization, and we define Ã the randomized branching program:

Ã = {inp, Ã0, Ã2t+1, Ãi,b | i ∈ [2t], b ∈ {0, 1}}
where

Ã0 = A0 · R−1
1 , Ã2t+1 = R2t+1 · A2t+1, Ãi,b = αi,b · Ri · Ai,b · R−1

i+1,

for i ∈ [2t], b ∈ {0, 1}.
Next, the randomized branching program Ã is encoded using the CLT13

scheme. In order to evaluate the randomized branching program, our multilinear
map must accommodate κ = 2t + 2 products, i.e. the multilinearity level is set
to [κ]. Each element ã ∈ Zg of the matrices Ãi,b’s is considered as a vector
([ã]g1 , . . . , [ã]gn

) ∈ Zg1 ×· · ·×Zgn
, and encoded as an integer â ∈ Zx0 at level S =

{i}. In particular, we have that â = [CRT([ã]g1 +g1r1, . . . , [ã]gn
+gnrn)/zi]x0 for

small random integers rk’s. The matrices Ã0 and Ã2t+1 are encoded analogously.
The resulting obfuscated branching program is

Â = {inp, Â0, Â2t+1, Âi,b | i ∈ [2t], b ∈ {0, 1}}

where Âi,b is an entry-wise encoding of Ãi,b. The obfuscated branching program
Â can be evaluated in the usual way: define A(x) be

A(x) := Â0 ×
2t∏

i=1

Âi,xinp(i) × Â2t+1 × pzt mod x0.

Then Â(x) = 0 if and only if A(x) is small compared to x0.
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3.3 Attack over CLT13 Encoding

As in the previous zeroizing attacks [CHL+15,CGH+15] against the CLT13
graded encoding scheme, our approach will be to decompose the zero-tested
values A(x) into a product of several factors that can be made to vary indepen-
dently. We then use those varying factors to construct a matrix that will reveal
the factorization of the modulus x0, and hence entirely break the security of the
scheme.

To obtain this decomposition, we will rely on the identity vec(ABC) =
(CT ⊗ A) vec(B) (see Sect. 2.1). First, we define several matrices B(x), B′(x),
C(x), C′(x), and D(x) as products of consecutive factors appearing in the prod-
uct A(x):

A(x) := Â0 ×
2t∏

i=1

Âi,xinp(i) × Â2t+1 × pzt mod x0

= Â0 ·
s∏

i=1

Âi,xinp(i)

︸ ︷︷ ︸
B(x)

× Âs+1,xinp(s+1)︸ ︷︷ ︸
C(x)

×
2t−s−1∏

i=s+2

Âi,xinp(i)

︸ ︷︷ ︸
D(x)

× Â2t−s,xinp(2t−s)︸ ︷︷ ︸
C′(x)

×
2t∏

i=2t−s+1

Âi,xinp(i) · Â2t+1

︸ ︷︷ ︸
B′(x)

×pzt mod x0 (1)

for a specific s ∈ [1, t − 2]. Using the identity above, we can then rewrite A(x)
as follows:

A(x) = B(x) × (C(x)D(x)C ′(x)) × B′(x) × pzt mod x0

= vec
(
B(x) × (

C(x)D(x)C ′(x)
) × B′(x)

)
× pzt mod x0

=
(
B′(x)T ⊗ B(x)

) × vec
(
C(x)D(x)C ′(x)

) × pzt mod x0

=
(
B′(x)T ⊗ B(x)

) × (
C ′(x)T ⊗ C(x)

) × vec
(
D(x)

) × pzt mod x0.

Note that in the above equation, B′(x)T ⊗ B(x) is a row vector of dimension 4,
C ′(x)T ⊗C(x) is a 4×4 matrix, and vec

(
D(x)

)
is a column vector of dimension 4.

Furthermore, recall that CRT values have the property that CRT(p∗
k ·uk)k =∑

k p∗
k · uk mod x0 for any tuple (uk)k, and the relation holds over Z when the

uk’s are small compared to the pk’s. Now, for a multilinear encoding α with level
set S, denote by [α](k) its underlying CRT component modulo pk (and similarly
for vectors and matrices of encodings); in other words:

α = CRT
(
[α](1), . . . , [α](n)

) ·
∏

i∈S

z−1
i mod x0.
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With that notation and since pzt =
∏κ

i=1 zi · ∑n
k=1 hkp∗

kg−1
k mod x0, where n is

the number of primes pk in x0, the expression of A(x) can be extended further as:

A(x) =
[
. . .

[
B′(x)T ⊗ B(x)

](k)
. . .

]

×

⎡

⎢
⎢
⎣

. . .

p∗
khkg−1

k · [
C ′(x)T ⊗ C(x)

](k)

. . .

⎤

⎥
⎥
⎦ ×

⎡

⎢
⎢
⎣

...
[
vec(D(x))

](k)

...

⎤

⎥
⎥
⎦ ,

(2)

where the three matrices are respectively of dimensions 1 × 4n, 4n × 4n and
4n × 1. For all x, the fact that the branching program evaluates to zero (and
hence A(x) is an encoding of zero) ensures that the relation holds over Q and not
just modulo x0: indeed, it guarantees that the factor that each p∗

k gets multiplied
with is small modulo pk.

Now the key point of the attack is that the first matrix in the relation above
depends only on the first s bits of the input x, the second matrix only on the
(s + 1)-st bit of x, and the third matrix on the remaining (t − s − 1) bits of x.
Given integers i, j, b with 0 ≤ i < 2s, 0 ≤ j < 2t−s−1 and b ∈ {0, 1}, denote by
W

(b)
ij the value A(x) ∈ Z corresponding to the input x whose first s bits are the

binary expansion of i, whose last (t − s − 1) bits are the binary expansion of j

and whose (s + 1)-st bit is b. By the above, we can write W
(b)
ij in the form:

W
(b)
ij = Xi · U (b) · Y j

where Xi is the row vector of size 4n, Y j the column vector of size 4n and U (b)

the square matrix of size 4n that appear in Eq. (2).
Assuming that 2min(s,t−s−1) ≥ 4n (which can be achieved by taking s = 	t/2


as long as 2t/2 ≥ 8n), we can thus form two matrices W (0), W (1) with any
choice of 4n indices i and j, and those matrices satisfy a relation of the form
W (b) = X · U (b) · Y with X, Y square matrices of dimension 4n independent
of b. The attack strategy is then similar to [CGH+15]. With high probability on
the sets of indices i and j, these matrices will be invertible over Q, and we will
have:

W (0)
(
W (1)

)−1 =
(
XU (0)Y

) · (
XU (1)Y

)−1 = X · U (0)
(
U (1)

)−1 · X−1.

In particular, the characteristic polynomials of the matrices W (0)
(
W (1)

)−1 and
U (0)

(
U (1)

)−1 are equal, and since we know the W (b), we can compute that
common polynomial P in polynomial time, together with its factorization. Now
the latter matrix is block diagonal, and satisfies:

U (0)
(
U (1)

)−1 ≡

⎡

⎢
⎢
⎣

. . .
Γ mod pk

. . .

⎤

⎥
⎥
⎦ (mod x0)
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where Γ =
(
C ′T

0 ⊗ C0

) · (
C ′T

1 ⊗ C1

)−1 (with obvious definitions for C0, C ′
0,

C1, C ′
1). Therefore, P decomposes as a product of factors Pk, k = 1, . . . , n,

such that Pk(Γ ) ≡ 0 (mod pk). Moreover, as characteristic polynomials over
Q are essentially random matrices, the polynomials Pk should heuristically be
irreducible with high probability, and hence occur directly in the factorization of
P (that assumption, which is well verified in practice, appears as Conjecture 1
in [CGH+15, Sect. 3.3]). This yields to the complete recovery of the pk’s as
pk = gcd

(
x0, Pk(Γ )

)
, where the Pk are the irreducible factors of P .

Clearly, once the pk’s are found, it is straightforward to break indistinguisha-
bility obfuscation. Indeed, given any two multilinear encodings at level {i},
applying rational reconstruction to their ratio modulo pk reveals zi mod pk, and
hence the entire zi. Then, even if the gk’s are kept secret, rational reconstruction
again applied to pzt allows to recover them. This makes it possible to completely
“decrypt” multilinear encodings, and hence obtain the full original randomized
branching program Ã.

In particular, we can distinguish between the obfuscation of two branching
programs whenever they are inequivalent under Kilian’s randomization.

3.4 Implementation of the Attack

Since the attack relies on some heuristic assumptions regarding e.g. the irre-
ducibility of the factors of the characteristic polynomial of U (0)

(
U (1)

)−1 corre-
sponding to its block diagonal submatrices, we have written an implementation
to check that these assumptions were indeed satisfied in practice. The source
code in Sage [S+16] is provided in the full version [CLLT16b].

Running that implementation, we have verified that we could always recover
the full factorization of x0 efficiently.

4 Generality of Our Attack

In the previous section, we have described a zeroizing attack that breaks CLT13-
based indistinguishability obfuscation for a specific branching program (previ-
ously considered in [MSZ16]) for which no previous attack was known in the
CLT13 setting. In particular, that program does not have the decomposable
structure required to apply the attack of [CGH+15, Sect. 3.4]. In that sense, we
do extend the scope of zeroizing attacks beyond the setting of [CGH+15].

However, our attack setting may seem quite special at first glance. In partic-
ular, the following aspects of our attack may seem to restrict its generality:

– we have described our attack against a somewhat simplified obfuscation con-
struction, that yields 2 × 2 matrix encodings and does not include all the
countermeasures against potential attacks suggested in [GGH+13b] and later
papers;

– our attack appears to rely in a crucial way on the specific structure of the
branching program A (and its inp function in particular) in order to achieve
the partitioning necessary to apply zeroizing techniques;
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– we only target a branching program for a very simple functionality (the iden-
tically zero function).

In this section, we show that all of these limitations can be overcome, so that
our attack is in fact quite general:

– we can apply it to almost all proposed (single-input) iO candidates instan-
tiated over CLT13 multilinear maps, including the single-input variants of
[GGH+13b,MSW14,AGIS14,PST14,BGK+14,BMSZ16];

– we can extend it to branching programs with an essentially arbitrary structure,
including oblivious branching programs;

– we can mount it with programs achieving essentially arbitrary functionalities.

4.1 Attacking Other Obfuscators

The attack of Sect. 3 targets a somewhat simplified obfuscator that takes a
branching program, randomizes it using Kilian-style random matrices together
with multiplicative bundling with random scalars αi,b, and outputs multilin-
ear encodings of the resulting randomized matrices directly. Actual candidate
constructions of indistinguishability obfuscation in the literature, on the other
hand, are usually more complicated, and typically involve extending the matrices
in the original branching program using diagonal blocks that get canceled out
when carrying out multilinear zero testing. The goal of these changes is usually
to protect against classes of attacks that could exploit the particular algebraic
structure of branching programs in undesirable ways—see e.g. [GMM+16] and
references therein.

However, for the most part, these additional security features have no inci-
dence on the applicability of our attack. This is because we only rely on the zero-
testing of top-level multilinear encodings of zero being small—the precise alge-
braic structure of the matrices involved is essentially irrelevant for our purposes.
This is in contrast, in particular, with Miles et al.’s annihilation attacks [MSZ16],
which do exploit algebraic properties of the branching program matrices (such
as low-degree polynomial relations they satisfy), and hence get thwarted by the
submatrices used in [GGH+13b,GMM+16]. Recently, Chen, Gentry and Halevi
extended annihilation attacks to [GGH+13b] using the “multiplicative bundling”
scalars.

More precisely, the only difference between proposed obfuscators that matters
in our attack is the dimension of the matrix encodings involved. If the obfuscated
branching program Â consists of w × w matrices instead of 2 × 2 matrices as
in Sect. 3, C′(x)T ⊗ C(x) is of dimension w2. As a result, we need to construct
matrices W (b) of dimension w2n, and in particular the number t of input bits
should satisfy 2t/2 ≥ 2w2n.

Note that this condition is never a restriction in non-trivial cases: this is
because 2t/2 < 2w2n implies that there is only a logarithmic number of input
bits, or in other words a polynomial-size domain. But indistinguishability obfus-
cation for functions with a polynomial-size domain is trivial: it is equivalent to
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giving out the graph of the function in full, since it is a canonical (hence indistin-
guishable) representation, and anyone with access to an obfuscation can recover
it in polynomial time.

We finish this paragraph by reviewing several candidate iO constructions and
discussing how they fit within the argument above. This will prove Theorem 1,
which we now recall.

Theorem 1. Let O denote the single-input variant of the iO candidates in
[GGH+13b,MSW14,AGIS14,PST14,BGK+14,BMSZ16] (over CLT13 multilin-
ear maps). There exists a branching program A such that, given O(A), one can
break the CLT13 multilinear maps in polynomial-time.

[AGIS14,MSW14,BMSZ16]. The obfuscator described in Sect. 3.2 is essentially
identical to the single-input versions of the constructions from [AGIS14,MSW14,
BMSZ16]. The only difference is that those papers do not directly encode matri-
ces at singleton multilinear levels {i}, but use a more complicated level structure
involving straddling sets. Since our attack relies on the honest evaluation of the
obfuscated branching program, it automatically respects the multilinear level
structure of any correct obfuscator. Therefore, it applies to those schemes with-
out any change.

[GGH+13b]. The main difference between the obfuscator described in Sect. 3.2
and the one proposed in [GGH+13b] is that the latter extends the original
branching program matrices Ai,b by random diagonal matrices Δi,b of dimension
d = 8t+10 before applying Kilian’s randomization and multilinear encoding (and
the matrices Ai,b themselves are assumed to be of dimension 5 instead of 2, to
accommodate for the original formulation of Barrington’s theorem). In other
words, the randomized branching program Ã has the form:

Ãi,b = αi,bRi ·
[
Ai,b

Δi,b

]
· R−1

i+1,

with the bookend matrices Ã0, Ã2t+1 adapted in such a way that the condition:

A(x) = 0 if and only if Ã0 ·
∏

i

Ãi,xinp(i) · Ã2t+1 = 0

continues to hold. Because that condition holds, our attack applies in exactly
the same way, except again for the fact that the dimension of encoded matrices
Ãi,b increases from 2 to w = d + 5 = 8t + 15. This means that the condition on
t becomes 2t/2 ≥ 2(8t + 15)2n, which is, again, not a meaningful restriction.

[PST14]. The situation for the obfuscator of [PST14] is similar. In that scheme,
the randomized branching program Ã takes the form:

Ãi,b = αi,bRi ·
[
Ai,b

I5

]
· R−1

i+1,
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where I5 is simply the 5×5 identity matrix, and the original branching program
matrices are also assumed to be of dimension 5. Again, our attack extends to that
setting directly, the only difference being that the dimension of encoded matrices
Ãi,b increases from 2 to w = 10. The fact that the scheme from [PST14] uses
straddling sets has, again, no bearing on the applicability of our techniques.

[BGK+14]. In the [BGK+14] obfuscator, the shape of the obfuscated branching
program and the zero-testing condition look a bit different. More precisely, in
that scheme, the randomized branching program is basically the same as Ã from
Sect. 3.2 together with the values αi,b of the scalar randomizers except that they
use random vectors for A0 and A2t+1. And αi,b and A0 ·A2t+1 are also included
in the randomized branching program. Moreover, the zero-testing condition is
modified: Ã(x) = 0 if and only if

Ã0 ·
∏

i

Ãi,xinp(i) · Ã2t+1 = γ ·
∏

i

αi,xinp(i) , (3)

where γ = A0 · A2t+1. The output of the obfuscator is then essentially the same
obfuscated branching program Â from Sect. 3.2 together with encodings α̂i,b of
the values αi,b at the same multilinear level as Âi,b as well as the encoding γ̂ of
γ. And the evaluation is carried out by applying zero-testing to Eq. (3), given
multilinear encodings Â0, Â2t+1, Âi,b, α̂i,b, and γ̂.

Our attack can be adapted to this construction. Since multiplication between
scalars is commutative, the scalar values on the right-hand side of (3) can be
freely decomposed into several parts. In view of (1), let us decompose the set
[2t] into a partition: S1 = {1, . . . , s, 2t − s + 1, . . . , 2t}, S2 = {s + 1, 2t − s}, and
S3 = {s+2, . . . , 2t−s−1}. Then we can decompose the above mentioned scalar
values into three parts:

γ
∏

i

αi,xinp(i) = γ
∏

i∈S1

αi,xinp(i) ×
∏

i∈S2

αi,xinp(i) ×
∏

i∈S3

αi,xinp(i) .

Since the left hand side of (3) is the same as in Sect. 3.2, the expression in (2)
can be extended to the zero-testing of (3) as follows:

A(x) =
[
. . .

[
B′(x)T ⊗ B(x)

](k) [
δ1

](k)
. . .

]

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

. . .

p∗
khkg−1

k · [
C ′(x)T ⊗ C(x)

](k)

p∗
khkg−1

k · [
δ2

](k)

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

...
[
vec(D(x))

](k)

−[
δ3

](k)

...

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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where δ1 = γ̂
∏

i∈S1
α̂i,xinp(i) , δ2 =

∏
i∈S2

α̂i,xinp(i) , and δ3 =
∏

i∈S3
α̂i,xinp(i) .

Here, the three matrices are respectively of dimensions 1 × 5n, 5n × 5n and
5n×1 when w = 2. And we can then complete the attack in a manner similar to
Sect. 3.3. The condition for this attack to succeed becomes: 2t/2 ≥ 2(w2 + 1)n.

4.2 Attacking Branching Programs with Arbitrary Structure

Another apparent limitation of our attack is related to the particular structure
of the branching program A, and in particular its inp function. Indeed, the
key point of our attack is our ability to obtain a partitioning of the branching
program, i.e. express the associated zero-test value A(x) as a product of three
successive factors depending on disjoint subsets of input bits. We achieved this
by observing that A(x) can be put in the form:

A(x) = B(x) · C(x) · D(x) · C ′(x) · B′(x) × pzt mod x0

where B(x),B′(x) depend on one subset of input bits, C(x), C′(x) a different,
disjoint subset, and D(x) on a third subset disjoint from the first two. We then
used the tensor product identity mentioned in Sect. 2.1 to reorder those matrices
so as to get a factor depending only on B(x) and B′(x) on the left, another one
depending only on C(x) and C ′(x) in the middle, and a last one depending only
on D(x) on the right:

A(x) =
(
B′(x)T ⊗ B(x)

) × (
C ′(x)T ⊗ C(x)

) × vec
(
D(x)

) × pzt mod x0.

This technique seems to rely in an essential way on the order in which input
bits are assigned to successive branching program layers, and although we did
not come up with the branching program A ourselves (as it was proposed earlier
in [MSZ16]), we have to admit that it is rather special.

Indeed, proposed candidate iO constructions are often supposed to operate
on oblivious branching programs, whose length is a multiple of the number t of
input bits and whose inp function is fixed to inp(i) = (i mod t)+1 (i.e. the input
bits are associated to successive layers in cyclic order). This is natural, since
all branching programs can be trivially converted to that form, and a canonical
inp function is needed to ensure indistinguishability. However, the branching
program A above is not oblivious, and it is not immediately clear that our
partitioning technique based on tensor products extends to that case.

Fortunately, it turns out that our technique does extend to oblivious (and
hence to arbitrary) branching programs as well, at the cost of an increase in
the dimension of the matrix encodings involved. There is in fact a simple greedy
algorithm that will convert any scalar expression consisting of a product of three
types of matrices Bi, Ci, Di to an equal product of three factors, the first of
which involves only the Bi’s, the second only the Ci’s and the third only the
Di’s. Writing down a description of the algorithm would be somewhat tedious,
but it is easy to understand on an example.
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If we consider for example an oblivious branching program A2 of length 2t
(i.e. with two groups of t layers associated with all successive input bits), the
corresponding zero-test value can be put in the form:

A(x) = B · C · D · B′ · C ′ · D′ · pzt mod x0

where, again, B,B′ depend on one subset of input bits, C, C ′ a different, disjoint
subset, and D, D′ on a third subset disjoint from the first two (and we omit the
dependence of these matrices on x to simplify notations). The matrices all have
dimension w×w, except the first and the last, which are of dimension 1×w and
w×1 respectively. Denoting by Azt the value such that A(x) = Azt ·pzt mod x0,
we can then put Azt in the desired partitioned form as follows:

Azt = BC · vec (
D · (B′C ′) · D′)

= BC
(
D′T ⊗ D

)
vec(IwB′C ′)

= BC
(
D′T ⊗ D

)(
C ′T ⊗ Iw

)
vec(B′)

=
(
vec(B′)T ⊗ B

) · vec
(
C

(
D′T ⊗ D

)(
C ′T ⊗ Iw

))

=
(
vec(B′)T ⊗ B

) · (
C ′ ⊗ Iw ⊗ C

) · vec (
D′T ⊗ D

)
,

and clearly a similar procedure works for any number of layer groups, allowing
us to adapt the attack to oblivious branching programs in general.

However, for an oblivious branching program of length mt (with m groups
of t layers), we can see that the dimension of the resulting square matrix in
the middle is given by w2m−1, and therefore, we need to have 2t/2 ≥ nw2m−1

to obtain sufficiently many zeros to apply the zeroizing technique. As a result,
we can attack oblivious branching programs only when the number m of layer
groups is not too large compared to the number t of input bits. In particular,
we cannot break the obfuscation of oblivious branching programs with length
greater than ω(t2) using that technique.

Thus, in principle, using oblivious branching programs whose length is quite
large compared to the number of inputs might be an effective countermeasure
against our attack. It remains to be seen whether further improvements could
yield to a successful attack against oblivious branching programs of length Ω(tc)
for c > 2.

On the flip side, we will see below that by adding “dummy” input bits,
we can pad essentially any oblivious branching program into another oblivious
branching program that computes the same functionality (ignoring the dummy
input bits), with the same number of layer groups, and whose obfuscation is
broken using our techniques.

4.3 Attacking Arbitrary Functionalities

The attack on Sect. 3 was described against a branching program for the always-
zero function. Since we do not use any property of the underlying matrices other
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than the fact that the program evaluates to zero on many inputs, it is clear that
the attack should extend to branching programs for other functionalities as well.
Describing the class of functionalities we can capture in that way is not easy,
however.

If we take for example a branching program A′′ with the same input size,
the same length and the same inp function as A (and with encoding matrices of
dimension w, say), then a sufficient condition for the attack to apply to A′′ is
essentially that we can find sufficiently many “contiguous” inputs on which the
program evaluates to zero. More precisely, suppose that we can find a subset R
of the set [t] of input bit indices and an assignment (yr)r∈R ∈ {0, 1}R of these
input bits such that A′′ evaluates to zero on all inputs x ∈ {0, 1}t that coincide
with (yr) on R. In other words:

(∀r ∈ R, xr = yr

)
=⇒ A′′(x) = 0.

Then we can break the obfuscation of A′′ using the obfuscator of Sect. 3.2 as
soon as 2(t−r)/2 ≥ 2w2n. The idea is simply to apply the attack in Sect. 3.3 with
s chosen in such a way that s + 1 is exactly the (	(t − r)/2
 + 1)-st element of
[t] \ R (in increasing order). Then, A(x) satisfies Eq. (2) for all values of x with
xr = yr for r ∈ R. This provides at least 2(t−r)/2−1 choices for Xi, 2(t−r)/2−1 for
Y j and two choices for U (b), so we have enough zero values to apply the attack.

While the condition above is quite contrived, it should be satisfied by many
branching programs (especially as t − r can be chosen to be logarithmic: it
follows that almost all functionalities should satisfy the condition), including
many natural examples (a branching program whose underlying circuit is the
nontrivial conjunction of two sub-circuits, one of which depends only on t − r
input bits would be an example). But it gives little insight into the class of
functionalities we end up capturing.

A different angle of approach towards this problem is the padding technique
already considered in [MSZ16, Sect. 3.3]. Given a branching program A0 imple-
menting any functionality and for which we can find an input where it evaluates
to zero, we can convert it into another branching program A∗

0 with slightly more
input bits, that implements the same functionality (it simply ignores the addi-
tional dummy input bits and evaluates to the same values as A0 everywhere),
and whose obfuscation is broken using our attack.

This is in fact trivial: take the branching program A0, and append to it
(before the final bookend matrix) additional layers associated with the new input
bits consisting entirely of identity matrices, in the same order as the inp function
of the branching program A from Sect. 3.1. Since all the added layers contain
only identity matrices, they do not change the functionality at all. Then, if we
simply fix the non-dummy input bits to the value on which we know A0 vanishes,
we are exactly reduced to the setting of Sect. 3.3, and our attack applies directly.

This may be a bit too trivial, however, since we could just as well append a
branching program with a “decomposable” structure in the sense of [CGH+15,
Sect. 3.4], and the corresponding attack would apply already.

A less trivial observation is that we can start from any oblivious branching
program A0 (for which we know an input evaluating to zero), and convert it
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to another oblivious branching program A∗
0 with more input bits but the same

number of layer groups, that implements the same functionality in the sense
above, and whose obfuscation is, again, broken using our attack.

The idea this time is to add layers associated with the dummy input bits with
all-identity matrices in each layer group. This does not change the functionality,
and once we fix the original input bits to the input evaluating to zero, we are
reduced to breaking an oblivious branching program for the always-zero function
with a fixed number m of layer groups and a number of input bits that we
can choose. By the discussion of Sect. 4.2 above, if the matrix encodings are of
dimension w, it suffice to add t dummy inputs bits where 2t/2 ≥ nw2m−1, which
is always achievable.

5 Conclusion

Our attack shows that the single-input candidate iO constructions for branching
programs over the CLT13 multilinear map proposed in the literature should be
considered insecure. We leave as a challenging open problem how to extend our
attack to the dual-input iO schemes.
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H2020 Programme under grant agreement number ICT-644209. We thank the PKC
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[DGG+16] Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfusca-
tion from low noise multilinear maps. Cryptology ePrint Archive, Report
2016/599 (2016). https://eprint.iacr.org/2016/599

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 1

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: Proceedings of the FOCS, pp. 40–49. IEEE Computer
Society (2013)

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 498–527. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46497-7 20

[GMM+16] Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.:
Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53644-5 10

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49890-3 21

[Lau04] Laub, A.J.: Matrix Analysis for Scientists and Engineers. Society for
Industrial and Applied Mathematics, Philadelphia (2004)

[MSW14] Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic
attacks. Cryptology ePrint Archive, Report 2014/878 (2014). https://
eprint.iacr.org/2014/878

http://dx.doi.org/10.1007/978-3-662-47989-6_12
http://dx.doi.org/10.1007/978-3-662-47989-6_12
https://eprint.iacr.org/2016/998
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-662-53008-5_21
http://dx.doi.org/10.1007/978-3-662-53008-5_21
https://eprint.iacr.org/2016/1011
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-40041-4_26
https://eprint.iacr.org/2016/599
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-49890-3_21
https://eprint.iacr.org/2014/878
https://eprint.iacr.org/2014/878


58 J.-S. Coron et al.

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear
maps: cryptanalysis of indistinguishability obfuscation over GGH13. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–
658. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 22

[PST14] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44371-2 28

[S+16] Stein, W., et al.: Sage Mathematics Software (Version 7.0) (2016). http://
www.sagemath.org

[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 15

http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://www.sagemath.org
http://www.sagemath.org
http://dx.doi.org/10.1007/978-3-662-46803-6_15


Protocols



Cut Down the Tree to Achieve Constant
Complexity in Divisible E-cash

David Pointcheval1, Olivier Sanders2(B), and Jacques Traoré3
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Abstract. Divisible e-cash, proposed in 1991 by Okamoto and Ohta,
addresses a practical concern of electronic money, the problem of paying
the exact amount. Users of such systems can indeed withdraw coins of a
large value N and then divide it into many pieces of any desired values
V ≤ N . Such a primitive therefore allows to avoid the use of several
denominations or change issues. Since its introduction, many construc-
tions have been proposed but all of them make use of the same frame-
work: they associate each coin with a binary tree, which implies, at least,
a logarithmic complexity for the spendings.

In this paper, we propose the first divisible e-cash system without such
a tree structure, and so without its inherent downsides. Our construc-
tion is the first one to achieve constant-time spendings while offering
a quite easy management of the coins. It compares favorably with the
state-of-the-art, while being provably secure in the standard model.

1 Introduction

Electronic payment systems have a strong impact on individual’s privacy, and
this is often underestimated by the users. Transaction informations, such as
payee’s identity, date and location, allow a third party (usually, the financial
institution) to learn a lot of things about the users: individuals’ whereabouts,
religious beliefs, health status, etc., which can eventually be quite sensitive.

However, secure e-payment and strong privacy are not incompatible, as shown
by Chaum in 1982 [12]: he introduced the concept of electronic cash (e-cash), the
digital analogue of regular cash, and in particular with its anonymity property.
Typically, e-cash systems consider three kinds of parties, the bank, users and
merchants. The bank issues coins, which can be withdrawn by users, and then
be spent to merchants. Eventually, the merchants deposit the money on their
account at the bank. It is better when the spending process does not involve the
bank, in which case the e-cash system is said offline. Ideally, users and merchants
should form a single set, which means that anyone receiving a coin should be
able to spend it again without depositing it to the bank. Unfortunately, such
a solution, called transferable e-cash implies [13] coins of growing size which
quickly becomes cumbersome.
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 61–90, 2017.
DOI: 10.1007/978-3-662-54365-8 4
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Although most of the features of regular cash, such as anonymity, can be
reproduced by e-cash, there is one fundamental difference between these two
systems: the latter can easily by duplicated, as any digital information. This
property is a major issue for money, since dishonest users could spend several
times the same coin to different merchants. To deter this bad behavior, e-cash
systems must enable (1) detection of double-spending (i.e. the reuse of a spent
coin), or alternatively over-spending (i.e. spending more money than withdrawn)
and (2) identification of defrauders.

Unfortunately, achieving such properties becomes tricky when anonymity of
transactions is required. Indeed, the bank can no longer trace the users’ payments
and check that, for each of them, the global amount spent remains lower than
the amount he withdrew. To enable detection of double-spending/over-spending,
most of the e-cash systems then make use of serial numbers: every coin is asso-
ciated with a unique number, only known to its owner until he spends the coin.
The serial number is indeed revealed during the transaction and stored by the
bank in a database. The bank can thus detect any reuse of serial numbers and
so any double-spending.

1.1 Divisible E-cash

In 1991, Okamoto and Ohta [21] showed that e-cash can do more than simply
emulate regular cash. They introduced the notion of divisible e-cash, where users
withdraw coins of value N and have the ability of dividing it into many pieces
of any desired values Vi ≤ N such that

∑
i Vi = N . Such a property enables the

user to pay the exact amount whatever the amount of the initially withdrawn
coin was, which was a problem for traditional e-cash (and regular cash) systems.
The authors proposed a framework representing each coin of value N = 2n by
a binary tree where each leaf is associated with a serial number, and so with a
value 1. When a user wants to spend a value 2� ≤ N , he reveals an information
related to a node s of depth n − �, allowing the bank to recover the 2� serial
numbers associated with the leaves descending from s. The benefit of this tree
structure is to provide a partial control on the amount of serial numbers the user
reveals. The latter can indeed send them by batches of 2�, for any 0 ≤ � ≤ n,
which is much more efficient than sending them one by one, while ensuring that
no information on serial numbers which do not descend from the spent nodes
will leak.

Following this seminal work, a large number of constructions (including for
example the following papers [2,8–11,20]) have been proposed, all of them mak-
ing use of this framework, with a binary tree. In 2007, Canard and Gouget [8]
proposed the first anonymous construction in the random oracle model, and
recently, Canard et al. [10] showed that both anonymity and efficiency can be
achieved in the standard model.

However, this binary tree structure has a major downside: it is tailored to
spend powers of 2. Unfortunately, such an event is unlikely in real life. In practice,
to pay a value V , the users must write V =

∑
i bi · 2i, for bi ∈ {0, 1} and then

repeat the Spend protocol v times, where v =
∑

i bi. Therefore, the constant-time



Cut Down the Tree to Achieve Constant Complexity in Divisible E-cash 63

sε

s0

s00

SN1 SN2

s01

SN3 SN4

s1

s10

SN5 SN6

s11

... ...

Fig. 1. Tree-based divisible coin

property claimed by several constructions is somewhat misleading: spendings can
be performed in constant-time as long as V is a power of 2 but not in the general
case, and in the worst case the complexity is logarithmic.

Moreover, this structure makes the coin management slightly more difficult.
Indeed, let us consider the case illustrated by the Fig. 1, where a user has already
spent a value V1 = 3 and so revealed the first three serial numbers SN1, SN2 and
SN3. Now assume that the user wants to spend a value V2 = 2. He cannot use
the node s01, since SN3 has already been revealed and so must use s10 or s11.
This means that the serial number SN4 will remain isolated, and the user will
have to spend it later as a unit. It is then necessary to maintain a list of unspent
serial numbers and try to avoid the presence of several “holes” in the tree, which
thereafter restricts a lot the value that can be spent at once.

1.2 Our Contribution

In this work, we aim at a greater simplicity and a better efficiency, and propose
the first divisible e-cash system which truly achieves constant-time spendings.
The main novelty of our construction it that we get rid of the tree structure and
so of its inherent downsides that we have described above. Our scheme enables
users to reveal, by sending a constant number of elements, the sequence of V
serial numbers SNj , . . . , SNj+V −1, for any j and V of their choice (provided that
j + V − 1 ≤ N), even if V is not a power of 2. If we reconsider the previous
example, this means that the user can now reveal, with a constant complexity,
SN4, . . . , SN4+V2−1, for any value V2.

We start from [10], which introduced the idea of a unique coin’s structure, but
make several changes to achieve constant-time spendings. The most important
one is that we generate the public parameters in such a way that a same element
can be used for spendings of any possible amount. This stands in sharp contrast
with previous constructions where each element was associated with a node
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of the tree and so with a unique amount. More specifically, we use bilinear
groups (i.e. a set of three cyclic groups G1, G2 and GT of prime order p, along
with a bilinear map e : G1 × G2 → GT ) and set the N serial numbers of a
coin as SNj = e(s, g̃)x·yj

, for j = 1, . . . , N , where x is the coin’s secret and
(y, s, g̃) ∈ Zp×G1×G2 are global parameters of the system (not all public). These
parameters additionally contain the elements sj = syj ∈ G1, for j = 1, . . . , N

and g̃j = g̃yj ∈ G2, for j = 1, . . . , N −1. The relations between all these elements
(namely the fact that they all depend on y) are at the heart of the efficiency of
our construction but have a strong impact on anonymity. Indeed, (1) they could
be used by an adversary to link transactions together and (2) they make the
anonymity property much more difficult to prove.

Regarding (2), the problem comes from the fact that the reduction in the
anonymity proof must take all these relations into account while being able
to reveal the non-critical serial numbers {e(s, g̃)x·yj }j∗−1

j=1 ∪ {e(s, g̃)x·yj }N
j=j∗+V ∗

and to insert the challenge serial numbers in {e(s, g̃)x·yj }j∗+V ∗−1
j=j∗ , for any

j∗, V ∗ ∈ [1, N ]. Nonetheless, we manage to prove the anonymity of our con-
struction under an assumption which, albeit new and rather complex, does not
depend on either j∗ and V ∗. We stress that the latter point was far from obvious.
We also investigate in the full version [22] another way of generating the public
parameters which allows to rely on a more classical assumption but at the cost
of significant increase of the complexity (which nevertheless remains constant).

Regarding (1), we must pay attention to the way the serial numbers SNi, for
i = j, . . . , j + V − 1, are revealed during a spending of value V . For example, we
show in Sect. 4.1 that the solution from [10] (namely sending sx

j ) would trivially
be insecure in our setting. The user will then rather send sx

j encrypted in a way
that prevents anyone from testing relations between spendings while ensuring
that only a specific amount of serial numbers can be recovered from it.

Our Spend protocol is then quite efficient: it mostly consists in sending an
encryption of sx

j along with a proof of well-formedness. As illustrated on Fig. 3 of
Sect. 5.2, it outperforms the state-of-the-art [11,20], whose complexity logarith-
mically depends on the spent value V . Since spending is the operation subject
to the strongest time constraints (for example, it should be performed in less
than 300 ms in a public transport system [19]) we argue that our construction
makes all the features of e-cash systems much more accessible.

1.3 Organization

In Sect. 2, we recall some definitions and present the computational assumptions
underlying the security of our scheme. Section 3 reviews the syntax of a divisible
E-cash system along with security properties definitions. We provide in Sect. 4
a high level description of our construction and a more detailed presentation
in Sect. 5. The latter additionally contains a comparison with state-of-the-art.
Eventually, the security analysis is performed in Sect. 6.

Due to space limitations, the description of an alternative scheme which
is less efficient, but whose anonymity relies on a quite classical assumption, is
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postponed to the full version [22]. The latter also presents an instantiation of our
divisible e-cash system and contains a proof of hardness of our new assumption
in the generic bilinear group model.

2 Preliminaries

2.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups G1, G2, and GT of prime order
p, along with a bilinear map e : G1 × G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
3. the map e is efficiently computable.

Galbraith et al. [16] defined three types of pairings: in Type-1, G1 = G2; in
Type-2, G1 �= G2 but there exists an efficient homomorphism φ : G2 → G1,
while no efficient one exists in the other direction; in Type-3, G1 �= G2 and
no efficiently computable homomorphism exists between G1 and G2, in either
direction.

Although Type-1 pairings were mostly used in the early-age of pairing-based
cryptography, they have been gradually discarded in favour of Type-3 pairings.
Indeed, the latter offer a better efficiency and are compatible with several com-
putational assumptions, such as the SXDH and the N −MXDH′ ones we present
below, which do not hold in the former.

2.2 Computational Assumptions

Our security analysis makes use of the SXDH, q − SDH [6] and N − BDHI [5]
assumptions which have been considered reasonable for Type-3 pairings.

Definition 1 (SXDH assumption). For k ∈ {1, 2}, the DDH assumption is
hard in Gk if, given (g, gx, gy, gz) ∈ G

4
k, it is hard to distinguish whether z = x ·y

or z is random. The SXDH assumption holds if DDH is hard in both G1 and G2

Definition 2 (q−SDH assumption). Given (g, gx, gx2
, ..., gxq

) ∈ G1, it is hard
to output a pair (m, g

1
x+m ) ∈ Zp × G1.

Definition 3 (N − BDHI assumption). Given ({gyi}N
i=0, {g̃yi}N

i=0) ∈ G
N+1
1 ×

G
N+1
2 , it is hard to compute G = e(g, g̃)1/y ∈ GT .

However, the anonymity of our construction relies on a new assumption, that we
call N − MXDH′. To provide more confidence in the latter, we first introduced
a weaker variant, called N − MXDH, that holds (as we prove it in the full ver-
sion [22]) in the generic bilinear group model for Type-3 pairings and next prove
that both variants are actually related as stated in Theorem6.
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Definition 4. ∀N ∈ N
∗, we define C = N3 − N2, S = C + 1, E = N2 − N ,

D = S + E and P = D + C, along with the following assumptions.

– (N − MXDH assumption). Given {(gγk

)P
k=0, (g

α·δ·γ−k

)E
k=0, (g

χ·γk

)P
k=D+1,

(gα·γ−k

, gχ·γk/α)C
k=0} ∈ G

P+E+3S+1
1 , as well as (g̃γk

, g̃α·γ−k

)C
k=0 ∈ G

2S
2 and

an element gz ∈ G1, it is hard to decide whether z = δ + χγD/α or z is
random.

– (N − MXDH′ assumption). Given {(gγk

, hγk

)P
k=0, (g

α·δ·γ−k

, hα·δ·γ−k

)E
k=0,

(gχ·γk

, hχ·γk

)P
k=D+1, (g

α·γ−k

, gχ·γk/α, hχ·γk/α)C
k=0} ∈ G

2P+5S+2E+2
1 , as well as

(g̃γk

, g̃α·γ−k

)C
k=0 ∈ G

2S
2 and a pair (gz1 , hz2) ∈ G

2
1, it is hard to decide whether

z1 = z2 = δ + χγD/α or (z1, z2) is random.

In the full version [22], we present another divisible e-cash protocol whose
proof relies on a more classical assumption, but at the cost of larger public
parameters and more complex (but still constant-size) protocols.

Regarding the N − MXDH assumption, the core idea is that the elements
provided in an instance allow to compute the sets S1 = {e(g, g̃)χ·γk}S−1

k=0 and
S2 = {e(g, g̃)χ·γk}P+C

k=D+1 but no element of S3 = {e(g, g̃)χ·γk}D
k=S . In the secu-

rity proof, we will manage to force the V ∗ “challenge” serial numbers SNj∗ , . . . ,
SNj∗+V ∗−1 (where V ∗ is the amount of the challenge transaction, i.e the one
where the adversary tries to identify the spender) to belong to S3 while ensuring
that the other ones belong to S1 ∪ S2 and so can be simulated. This requires a
great flexibility from the assumption, since the number V ∗ and the index j∗ are
adaptively chosen by the adversary. If N is the amount of the divisible coin, this
means that it must be possible, for any (j∗, V ∗) ∈ [1, N ]2, to insert j∗ − 1 serial
numbers in S1, V ∗ in S3 and N + 1 − (j∗ + V ∗) in S2, all of these sets being
constant. We show in Sect. 6.3 that this is the case when the integers C, S, E,
D and P are chosen as in the above definition.

Theorem 5. The N − MXDH assumption holds in the generic bilinear group
model: after qG group and pairing oracle queries, no adversary can solve the
N − MXDH problem with probability greater than 2N3 · (7N3 + qG)2/p.

The proof, that is quite classical, can be found in the full version [22]. It is worthy
to note that the integer N will represent the amount of a divisible coin and so
will remain negligible compared to p. For example, a typical value for N is 1000
which allows users to withdraw coins of value 10$, if the basic unit is the cent.

Theorem 6. The N −MXDH′ assumption holds if both the DDH assumption in
G1 and the N − MXDH assumption hold.

Proof. Let A be an adversary against the N − MXDH′ assumption with a non-
negligible advantage

Adv(A) = |Pr[A(S, gz, hz)|z = δ + χ · γD/α] − Pr[A(S, gz1 , hz2)|z1, z2 $← Zp]|,
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where S refers to the set of all elements, except gz1 and hz2 , provided in an
N − MXDH′ challenge. We define hybrid distributions:

Adv1(A) = |Pr[A(S, gz, hz)|z = δ + χ · γD/α] − Pr[A(S, gz, hz)|z $← Zp]|
Adv2(A) = |Pr[A(S, gz, hz)|z $← Zp] − Pr[A(S, gz1 , hz2)|z1, z2 $← Zp]|,

we then have: Adv(A) ≤ Adv1(A) + Adv2(A).
Since Adv(A) is non-negligible, at least Adv1(A) or Adv2(A) is non-negligible.
In the former case, A can be used to break the N −MXDH assumption: from

an N −MXDH instance, one can generate an N −MXDH′ instance with a random
scalar c and setting h = gc. By running A on this instance, it gives a valid guess
for it if and only if this would be a valid guess for the N −MXDH instance. The
advantage is thus the same.

In the latter case, A can be used to break the DDH assumption in G1. Indeed,
let (g, gz1 , h, hz2) be a DDH challenge. One can compute a valid set S from g and
h by using random (known) scalars α, γ and δ, and then run A on (S, gz1 , hz2). 	

One can note that the N−MXDH and N−MXDH′ assumptions would actually be
equivalent if the former implied the DDH assumption in G1 (which does not seem
to be true). Nevertheless, this theorem shows that the N − MXDH′ assumption
is not much stronger than the N − MXDH one, since the DDH assumption can
be considered reasonable.

2.3 Digital Signature Scheme

A digital signature scheme Σ is defined by three algorithms:

– the key generation algorithm Σ.Keygen which outputs a pair of signing and
verification keys (sk, pk) – we assume that sk always contains pk;

– the signing algorithm Σ.Sign which, on input the signing key sk and a message
m, outputs a signature σ;

– and the verification algorithm Σ.Verify which, on input m, σ and pk, outputs
1 if σ is a valid signature on m under pk, and 0 otherwise.

The standard security notion for a signature scheme is existential unforgeability
under chosen-message attacks (EUF-CMA) [17] which means that it is hard,
even given access to a signing oracle, to output a valid pair (m,σ) for a message
m never asked to the oracle. In this paper we will also use variants, first with
selective chosen-message attacks (SCMA) which restricts means for the adver-
sary by limiting the oracle queries to be asked before having seen the key pk;
or with one-time signature (OTS), which limits the adversary to ask one query
only to the signing oracle; and with strong unforgeability (SUF) which relaxes
the goal of the adversary which must now output a valid pair (m,σ) that was not
returned by the signing oracle (a new signature for an already signed message is
a valid forgery).
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2.4 Groth-Sahai Proof Systems

In [18], Groth and Sahai proposed a non-interactive proof system, in the common
reference string (CRS) model, which captures most of the relations for bilin-
ear groups. There are two types of setup for the CRS that yield either perfect
soundness or perfect witness indistinguishability, while being computationally
indistinguishable (under the SXDH assumption, in our setting).

To prove that some variables satisfy a set of relations, the prover first commits
to them (by using the elements from the CRS) and then computes one proof
element per relation. Efficient non-interactive witness undistinguishable proofs
are available for

– pairing-product equations, for variables {Xi}n
i=1 ∈ G1, {X̃i}n

i=1 ∈ G2 and
constant tT ∈ GT , {Ai}n

i=1 ∈ G1, {B̃i}n
i=1 ∈ G2, {ai,j}n

i,j=1 ∈ Zp:

n∏

i=1

e(Ai, X̃i)
n∏

i=1

e(Xi, B̃i)
n∏

i=1

n∏

j=1

e(Xi, X̃j)ai,j = tT ;

– or multi-exponentiation equations, for variables {Xi}n
i=1 ∈ Gk, {yi}n

i=1 ∈ Zp

and constant T ∈ Gk, {Ai}n
i=1 ∈ Gk, {bi}n

i=1 ∈ Zp, {ai,j}n
i,j=1 ∈ Zp for

k ∈ {1, 2}:
n∏

i=1

Ayi

i

n∏

j=1

X
bj

j

n∏

i=1

n∏

j=1

X
yi·ai,j

j = T.

Multi-exponentiation equations and pairing-product equations such that tT =
1GT

also admit non-interactive zero-knowledge (NIZK) proofs at no additional
cost.

3 Divisible E-cash System

We recall in this section the syntax and the security model of a divisible e-cash
system, as described in [10].

3.1 Syntax

A divisible e-cash system is defined by the following algorithms, that involve
three types of entities, the bank B, a user U and a merchant M.

– Setup(1k, N): On input a security parameter k and an integer N , this proba-
bilistic algorithm outputs the public parameters pp for divisible coins of global
value N . We assume that pp are implicit to the other algorithms, and that
they include k and N . They are also an implicit input to the adversary, we
will then omit them.

– BKeygen(): This probabilistic algorithm executed by the bank B outputs a
key pair (bsk, bpk). It also sets L as an empty list, that will store all deposited
coins. We assume that bsk contains bpk.
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– Keygen(): This probabilistic algorithm executed by a user U (resp. a merchant
M) outputs a key pair (usk, upk) (resp. (msk,mpk)). We assume that usk (resp.
msk) contains upk (resp. mpk).

– Withdraw(B(bsk, upk),U(usk, bpk)): This is an interactive protocol between
the bank B and a user U . At the end of this protocol, the user gets a divisible
coin C of value N or outputs ⊥ (in case of failure) while the bank stores the
transcript Tr of the protocol execution or outputs ⊥.

– Spend(U(usk, C, bpk,mpk, V ),M(msk, bpk, V )): This is an interactive protocol
between a user U and a merchant M. At the end of the protocol the merchant
gets a master serial number Z of value V (the amount of the transaction they
previously agreed on) along with a proof of validity Π or outputs ⊥. U either
updates C or outputs ⊥.

– Deposit(M(msk, bpk, (V,Z,Π)),B(bsk, L,mpk)): This is an interactive proto-
col between a merchant M and the bank B. B first checks the validity of the
transcript (V,Z,Π) and that it has not already been deposited. If one of these
conditions is not fulfilled, then B aborts and outputs ⊥. At the end of the
protocol B stores the V serial numbers SN1, . . . , SNV derived from Z in L or
returns a transcript (V ′, Z ′,Π ′) such that SNi is also a serial number derived
from Z ′, for some i ∈ [1, V ].

– Identify((v1, Z1,Π1), (v2, Z2,Π2), bpk): On inputs two different valid tran-
scripts (v1, Z1,Π1) and (v2, Z2,Π2), this deterministic algorithm outputs a
user’s public key upk if there is a collision between the serial numbers derived
from Z1 and from Z2, and ⊥ otherwise.

3.2 Security Model

Informally, to reconcile the interests of all parties, a divisible e-cash system
should (1) ensure detection of double-spending/over-spending and identification
of the defrauders, (2) preserve privacy of its users, (3) ensure that none of them
can be falsely accused of fraud. Regarding the first point, we recall that reuse of
money cannot be prevented (since digital coin can always be duplicated) but the
guarantee of being identified should constitute a strong incentive not to cheat.
The third point implicitly ensures that a coin can only be spent by its owner.

These security properties were formally defined as traceability, anonymity
and exculpability by the authors of [10]. For consistency, we recall the associated
security games, in Fig. 2, which make use of the following oracles:

– OAdd() is an oracle used by the adversary A to register a new honest user (resp.
merchant). The oracle runs the Keygen algorithm, stores usk (resp. msk) and
returns upk (resp. mpk) to A. In this case, upk (resp. mpk) is said honest.

– OCorrupt(upk/mpk) is an oracle used by A to corrupt an honest user (resp.
merchant) whose public key is upk (resp. mpk). The oracle then returns the
corresponding secret key usk (resp. msk) to A along with the secret values
of every coin withdrawn by this user. From now on, upk (resp. mpk) is said
corrupted.
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ExptraA (1k, N) – Traceability Security Game

1. pp ← Setup(1k, N)
2. (bsk, bpk) ← BKeygen()

3. [(V1, Z1, Π1), . . . , (Vu, Zu, Πu)]
$← AOAdd,OCorrupt,OAddCorrupt,OWithdrawB,OSpend(bpk)

4. If
∑u

i=1 Vi > m · N and ∀i �= j, Identify((Vi, Zi, Πi), (Vj , Zj , Πj)) =⊥,
then return 1

5. Return 0

ExpexcuA (1k, N) – Exculpability Security Game

1. pp ← Setup(1k, N)
2. bpk ← A()
3. [(V1, Z1, Π1), (V2, Z2, Π2)] ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If Identify((V1, Z1, Π1), (V2, Z2, Π2), bpk) = upk and upk not corrupted,

then return 1
5. Return 0

Expanon−b
A (1k, N) – Anonymity Security Game

1. pp ← Setup(1k, N)
2. bpk ← A()
3. (V, upk0, upk1,mpk) ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If upki is not registered for i ∈ {0, 1}, then return 0
5. If cupki > mupki · N − V for i ∈ {0, 1}, then return 0
6. (V, Z, Π) ← Spend(C(uskb, C,mpk, V ), A())
7. cupk1−b

← cupk1−b
+ V

8. b∗ ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
9. If upki has been corrupted for i ∈ {0, 1}, then return 0

10. Return (b = b∗)

Fig. 2. Security games for anonymous divisible E-cash

– OAddCorrupt(upk/mpk) is an oracle used by A to register a new corrupted
user (resp. merchant) whose public key is upk (resp. mpk). In this case, upk
(resp. mpk) is said corrupted. The adversary could use this oracle on a public
key already registered (during a previous OAdd query) but for simplicity, we do
not consider such case as it will gain nothing more than using the OCorrupt
oracle on the same public key.

– OWithdrawU (upk) is an oracle that executes the user’s side of the Withdraw
protocol. This oracle will be used by A playing the role of the bank against
the user with public key upk.

– OWithdrawB(upk) is an oracle that executes the bank’s side of the Withdraw
protocol. This oracle will be used by A playing the role of a user whose public
key is upk against the bank.

– OSpend(upk, V ) is an oracle that executes the user’s side of the Spend protocol
for a value V . This oracle will be used by A playing the role of the merchant
M.
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In the experiments, users are denoted by their public keys upk, cupk denotes the
amount already spent by user upk during OSpend queries and mupk the number
of divisible coins that he has withdrawn. This means that the total amount
available by a user upk is mupk · N . The number of coins withdrawn by all users
during an experiment is denoted by m.

In the anonymity security game, we differ a little bit from [10]: while cupkb
is

increased by V at step 6 during the Spend protocol, cupk1−b
is also increased by

V at step 7 to avoid A trivially wins by trying to make one of the two players
to overspend money.

Let A be a probabilistic polynomial adversary. A divisible E-cash system is:

– traceable if Succtra(A) = Pr[ExptraA (1k, V ) = 1] is negligible for any A;
– exculpable if Succexcu(A) = Pr[ExpexcuA (1k, V ) = 1] is negligible for any A;
– anonymous if Advanon(A) = |Pr[Expanon−1

A (1k, V )] - Pr[Expanon−0
A (1k, V )]| is

negligible for any A.

4 Our Construction

4.1 High Level Description

Our Approach. We start from [10,11], in order to keep the quite easy and effi-
cient withdrawal procedure (which mostly consists in certifying secret scalars).
But we would like to improve on the spending procedure, and namely to get
everything really constant (both in time and in size). Indeed, the user should be
able to send only one information revealing the serial numbers, corresponding to
the amount to be spent. But he should also be able to choose the sequence he
discloses. For example, if he wants to pay a value V with a coin whose (j − 1)
first serial numbers have already been used, then he should be able to send an
element φV,j revealing the V serial numbers SNj , . . . , SNj+V −1.

Description. All the serial numbers have the same structure, and are just
customized by a random secret scalar x which constitutes the secret of the coin
(our withdrawals are thus similar to the ones of [10,11]). More specifically, the
public parameters contain the N values sj = syj

(for j = 1, . . . , N), with a public
group element s ∈ G1, and some secret scalar y

$← Zp: for any coin’s secret x,
this defines the serial numbers SNj = e(s, g̃)x·yj

.
The critical point is to find a way to construct the unique φV,j and to decide

which elements should be provided in the public parameters pp to enable the
bank to compute the serial numbers (all the expected ones, but not more).

First Attempt. One could define φV,j as sx
j , in which case pp should contain the

set S = {g̃k = g̃yk}N−1
k=0 . Indeed, a user with a fresh coin (i.e. never involved in

a spending) must be able to spend a value N by revealing sx
1 and so the bank

needs to know S to recover SNi ← e(sx
1 , g̃i−1), for i = 1, . . . , N . One can note
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that S is actually enough for any spending, since, for any j ∈ [1, N ], recovering
SNj , . . . , SNj+V −1 from φV,j still requires elements from {g̃k}V −1

k=0 .
However, there is an obvious problem with this solution. Once S is published,

nothing prevents the bank from computing more serial numbers than the amount
V of the transaction. For example, if a user with a fresh coin spends a value 1,
then the bank is still able to recover all the serial numbers from φ1,1 = sx

1 .

Our Solution. It is therefore necessary to provide a way, for the user, to control
the amount of serial numbers which can be recovered from the element sx

j . To
this end, we define N (one for each possible value V ∈ [1, N ]) ElGamal [14]
public keys hV = gaV and add the sets SV = {g̃−aV

k }V −1
k=0 , for V = 1, . . . , N ,

to pp. To reveal V serial numbers from sx
j , the user now encrypts it under hV ,

which defines φV,j as (c0 = gr, c1 = sx
j · hr

V ), for some r ∈ Zp. By using the
elements from SV , the bank is still able to compute the V serial numbers since:

e(c1, g̃k) · e(c0, g̃−aV

k ) = e(sx
j · hr

V , g̃k) · e(gr, g̃−aV

k )

= e(sx
j , g̃k) · e(hr

V , g̃k) · e(gr, g̃−aV

k )

= e(syj ·x, g̃yk

) · e(gaV ·r, g̃k) · e(g−aV ·r, g̃k)

= e(s, g̃)x·yj+k

= SNj+k,

for k = 0, . . . , V − 1. But now, it can no longer derive additional serial numbers
because SV only contains V elements. Moreover, the elements of the other sets
SV ′ , for V ′ �= V , are useless since they correspond to other public keys.

One can note that ElGamal encryption was also used in [11] but to prevent
an adversary from testing relations across the different levels of the tree. We
here use it to enable a total control on the amount of revealed serial numbers.
A same element sx

j can thus be involved in spendings of different values, which
is the basis of the efficiency and the flexibility of our scheme.

Security Analysis. An interesting feature of our solution is that the bank does
not need to know the index j to compute the serial numbers. This is due to the
fact that SNj+1 = SNy

j , for all j ∈ [1, N − 1] and so that the computation of a
serial number is independent from j. Therefore, a spending does not reveal any
additional information about the coin (such as the spent part) and so achieves
the strongest notion of anonymity.

However, this has implications on the security analysis, since one must take
into account the relations between the different serial numbers. Anonymity will
then rely on a new assumption, called N − MXDH′, which seems reasonable for
Type-3 pairings, as we explain in Sect. 2.2.

Validity of a Transaction. Serial numbers are central to the detection of
double-spending and so to ensure the traceability of the scheme. It is therefore
necessary, during a spending of value V , to force the user to send a valid element
φV,j , by requesting a proof that the latter is well-formed. The user must then
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prove that (1) φV,j is an ElGamal encryption of some sx
j under hV (which is

known since it corresponds to the spent amount), where (2) x has been certified,
and (3) sj is a valid parameter for a transaction of value V . The first two
statements can easily be handled using the Groth-Sahai [18] methodology, but
this is not the case for the third one. Indeed, as we explained, sj (and so the
index j) cannot be revealed unless breaking the anonymity of the scheme which
would only achieve a weaker unlinkability property (as defined in [10]).

We could use the solution from [10] which consists in certifying each sj under
the public keys pk1, . . . , pkN−j+1 and to prove that the sj to be used is certified
under the public key pkV . However, such a solution is quite efficient for tree-based
schemes where each sj is associated with a unique node and so with a single
amount, but not for our scheme where sj can be involved in any transaction
of value V such that V ∈ [1, N − j + 1]. This would dramatically increase the
bank’s public key since it would contain about N2/2 certificates.

While our public parameters will be of quadratic size, because of the sets SV ,
we hope the part necessary to the user to be at most linear in N . We will then
use another solution which exploits the relation e(sj , g̃V −1) = e(sj+V −1, g̃). To
prove that j ≤ N − V + 1, the user will thus simply prove that there is some
sk, for k ∈ [1, N ], such that e(sj , g̃V −1) = e(sk, g̃). This can be done efficiently
if a certificate on each sk is provided by the bank. One may note that this proof
only ensures that j ≤ N − V + 1 and not that j ≥ 1. However, we will show, in
the security analysis, that a user is unlikely to produce a proof for an element
sj /∈ {s1, . . . , sN}.

Security Tags. Detection of double-spending may not be sufficient to deter
users from cheating. To prevent frauds it is also necessary to provide a way to
identify dishonest users. Since we aim at achieving the anonymity property, such
an identification cannot rely on some trusted entity with the power of tracing
any user of the system. We will then use the standard technique of security
tags which allows to recover the spender’s identity from any pair of transactions
detected as a double-spending. Similarly to the constructions of [10,11], we will
add to the public parameters the elements tj such that, ∀j ∈ [1, N ], tj = sc

j

for some c ∈ Zp and define, for a transaction involving φV,j , the security tag as
ψV,j = (gr′

, upkR ·txj ·hr′
V ) where upk is the user’s public key and R is some public

information related to the transaction. As we prove below, such a tag hides the
identity of a spender as long as he does not double-spend its coin.

Remark 7. Divisible e-cash systems do not usually specify the way the coin
should be spent. As explained above, our construction is the first one to allow
sequential spendings, contrarily to tree-based construction where the coins may
contain several holes (see Sect. 1.1). Therefore, for sake of simplicity, we assume
in the following that the user sequentially reveals the serial numbers and so
we associate each coin to an index j. The latter means that SN1, . . . , SNj−1

have already been revealed and that the next spending of value V will reveal
SNj , . . . , SNj+V −1.
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However, we stress that the user is free to spend the coin as he wants. The
only constraint is that two spendings must not reveal the same serial numbers,
otherwise the user will be accused of double-spending.

4.2 Setup

Public Parameters. Let (p,G1,G2,GT , e) be the description of bilinear groups
of prime order p, elements g, h, u1, u2, w be generators of G1, g̃ be a generator
of G2, and H be collision-resistant hash function onto Zp. A trusted authority
generates (z, y) $← Z

2
p and, for i = 1, . . . , N (where N is the value of the coin),

ai
$← Zp. It then computes the public parameters as follows:

– (s, t) ← (gz, hz);
– (sj , tj) ← (syj

, ty
j

), for j = 1, . . . , N ;
– g̃k ← g̃yk

, for k = 0, . . . , N − 1;
– hi ← gai , for i = 1, . . . , N ;
– h̃i,k ← g̃−ai·yk

, for i = 1, . . . , N and k = 0, . . . , i − 1.

These parameters can also be cooperatively generated by a set of users and the
bank, in a way similar to the one described in [10]. The point is that none of
these entities should know the scalars (ai)i, y or z.

We divide the public parameters pp into two parts, ppU ← {g, h, u1, u2, w,H,

{hi}N
i=1, {(sj , tj)}N

j=1} and ppB ← {{g̃k}N−1
k=0 , {(h̃i,k)i−1

k=0}N
i=1}. The former con-

tains the elements necessary to all the entities of the system whereas the latter
contains the elements only useful to the bank during the Deposit protocol. We
therefore assume that the users and the merchants only store ppU and discard
ppB. Note that the former is linear in N , while the latter is quadratic.

Our protocols make use of NIZK and NIWI proofs for multi-exponentiations
and pairing-product equations which are covered by the Groth-Sahai proof sys-
tem [18]. We then add to ppU the description of a CRS for the perfect soundness
setting and of a one-time signature scheme Σots (e.g. the one from [6]).

5 Our Divisible E-cash System

In this section, we provide an extended description of our new protocol and then
discuss its efficiency. We describe a concrete instantiation in the full version [22].

5.1 The Protocol

– Keygen(): Each user (resp. merchant) selects a random usk ← Zp (resp. msk)
and gets upk ← gusk (resp. mpk ← gmsk). In the following, we assume that upk
(resp. mpk) is public, meaning that anyone can get an authentic copy of it.
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– BKeygen(): The bank has two important roles to play. It must (1) deliver new
coins to users during withdrawals and (2) control the transactions to detect
double-spendings and identify the defrauders.

The first point will require a signature scheme Σ1 whose message space
is G

2
1 to certify the secret values associated with the withdrawn coins. We

can therefore use the construction from [1] which is optimal in type-3 bilinear
groups.

The second point relies on the proof of validity of the elements φV,j sent dur-
ing a transaction. As explained above, such a proof requires that the elements
sk are certified, for k = 1, . . . , N . For the same reasons, their dual elements tk
must be certified too. It is therefore necessary to select a structure-preserving
signature scheme Σ0 whose message space is G

2
1. We can then still choose the

one from [1] but our security analysis shows that a scheme achieving a weaker
security notion would be enough.

Once the schemes Σ0 and Σ1 are selected, the bank generates (sk0, pk0) ←
Σ0.Keygen(pp) and (sk1, pk1) ← Σ1.Keygen(pp). It then computes τj ←
Σ0.Sign(sk0, (sj , tj)) for all j ∈ 1, . . . , N and sets bsk ← sk1 and bpk ←
{pk0, pk1, τ1, . . . , τN}.

– Withdraw(B(bsk, upk),U(usk, bpk)): As explained in the previous section, each
coin is associated with a random scalar x, which implicitly defines its serial
numbers as SNk = e(sx

j , g̃) = e(s, g̃)x·yk

, for k = 1, . . . , N . Delivering a new
coin thus essentially consists in certifying this scalar x. However, for security
reasons, it is necessary to bind the latter with the identity of its owner. Indeed,
if this coin is double-spent, it must be possible to identify the user who has
withdrawn it. This could be done by certifying the pair (x, usk) ∈ Z

2
p (without

revealing them), using for example the scheme from [7], but, in the standard
model, the bank will rather certify the pair (uusk

1 , ux
2) ∈ G

2
1. This is due to

the fact that scalars cannot be efficiently extracted from Groth-Sahai proofs,
contrarily to group elements in G1.

In practice, the user computes uusk
1 and ux1

2 for some random x1
$← Zp

and sends them to the bank along with upk. He then proves knowledge of x1

and usk in a zero-knowledge way (using, for example, the Schnorr’s interactive
protocol [23]). If the bank accepts the proof, it generates a random x2

$← Zp,
computes u

$← ux1
2 · ux2

2 and σ ← Σ1.Sign(sk1, (uusk
1 , u)) (unless u was used in

a previous withdrawal) and returns σ and x2 to the user. The latter then sets
the coin’s secret x ← x1 + x2 and coin state C ← (x, σ, 1): the last element
of C is the index of the next serial number to be used. Hence the remaining
amount on the coin is N + 1 minus this index.

Informally, the cooperative generation of the scalar x allows us to exclude
(with overwhelming probability) false positives, i.e. a collision in the list L of
serial numbers maintained by the bank which would not be due to an actual
double-spending. We refer to Remark 8 for more details.

– Spend(U(usk, C, bpk,mpk, V ),M(msk, bpk, V )): Let C = (x, σ, j) be the coin
the user wishes to spend. The latter selects two random scalars (r1, r2)

$← Z
2
p and

computes R ← H(info), φV,j ← (gr1 , sx
j · hr1

V ) and ψV,j ← (gr2 , upkR · txj · hr2
V ),
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where info is some information related to the transaction (such as the date, the
amount, the merchant’s public key,...).

Now, he must prove that (1) his coin C is valid and (2) that the elements
φV,j and ψV,j are well-formed. The first point consists in proving knowledge
of a valid signature σ on (uusk

1 , ux
2), whereas the second point requires to prove

knowledge of τj+V −1 on (sj+V −1, tj+V −1). This can be efficiently done in the
standard model by using the Groth-Sahai methodology [18].

Unfortunately, the resulting proofs can be re-randomized which enables
a dishonest merchant to deposit several versions of the same transcript. To
prevent such a randomization, the user generates a one-time signature key
pair (skots, pkots) which will be used to sign the whole transcript. To ensure
that only the spender can produce this signature, the public key pkots will
be certified into μ ← w

1
usk+H(pkots) . One may note that these problems do not

arise in the ROM since the proofs would be simply converted into a (non-
randomizable) signature of knowledge by using the Fiat-Shamir heuristic [15].

More formally, once the user has computed φV,j , ψV,j and μ, he computes
Groth-Sahai commitments to usk, x, r1, r2, sj , tj , sj+V −1, tj+V −1, τj+V −1, σ, μ,
U1 = uusk

1 and U2 = ux
2 . He next provides:

1. a NIZK proof π that the committed values satisfy:

φV,j = (gr1 , sx
j · hr1

V ) ∧ ψV,j = (gr2 , (gR)usk · txj · hr2
V )

∧ U2 = ux
2 ∧ U1 = uusk

1 ∧ μ(usk+H(pkots)) = w

∧ e(sj , g̃V −1) = e(sj+V −1, g̃) ∧ e(tj , g̃V −1) = e(tj+V −1, g̃)

2. a NIWI proof π′ that the committed values satisfy:

1 = Σ0.Verify(pk0, (sj+V −1, tj+V −1), τj+V −1)
∧ 1 = Σ1.Verify(pk1, (U1, U2), σ).

Finally, he computes η ← Σots.Sign(skots,H(R||φV,j ||ψV,j ||π||π′)) and sends
it to M along with pkots, φV,j , ψV,j , π and π′.

The merchant accepts if the proofs and the signatures are correct in
which case he stores (V,Z,Π) ← (V, (φV,j , ψV,j), (π, π′, pkots, η)) while the
user updates its coin C ← (x, σ, j + V ).

– Deposit(M(msk, bpk, (V,Z,Π)),B(bsk, L,mpk)): When a transcript is
deposited by a merchant, the bank parses it as (V, (φV,j , ψV,j), (π, π′, pkots, η))
and checks its validity (in the same way as the merchant did during the Spend
protocol). B also verifies that it does not already exist in its database. If every-
thing is correct, B derives the serial numbers from φV,j = (φV,j [1], φV,j [2]) by
computing SNk ← e(φV,j [2], g̃k) · e(φV,j [1], h̃V,k), for k = 0, . . . , V − 1. If none
of these serial numbers is in L, the bank adds them to this list and stores
the associated transcript. Else, there is at least one SN′ ∈ L (associated with
a transcript (V ′, Z ′,Π ′)) and one k∗ ∈ [0, V − 1] such that SN′ = SNk∗ . The
bank then outputs the two transcripts (V,Z,Π) and (V ′, Z ′,Π ′) as a proof of
a double-spending.
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– Identify((V1, Z1,Π1), (V2, Z2,Π2), bpk): The first step before identifying a
double-spender is to check the validity of both transcripts and that there is
a collision between their serial numbers, i.e. there are k1 ∈ [0, V1 − 1] and
k2 ∈ [0, V2 − 1] such that:

SNk1 = e(φV1,j1 [2], g̃k1) · e(φV1,j1 [1], h̃V1,k1)

= e(φV2,j2 [2], g̃k2) · e(φV2,j2 [1], h̃V2,k2) = SNk2

Let Tb be e(ψVb,jb
[2], g̃kb

) · e(ψVb,jb
[1], h̃Vb,kb

), for b ∈ {1, 2}. The algorithm
checks, for each registered public key upki, whether T1 · T−1

2 = e(upki, g̃
R1
k1

·
g̃−R2

k2
) until it gets a match. It then returns the corresponding key upk∗ (or

⊥ if the previous equality does not hold for any upki), allowing anyone to
verify, without the linear cost in the number of users, that the identification
is correct.

Remark 8. A collision in the list L means that two transcripts (V1, Z1,Π1) �=
(V2, Z2,Π2) lead to a same serial number SN. Let Zb = (φVb,jb

, ψVb,jb
), for

b ∈ {1, 2}, the soundness of the NIZK proofs produced by the users during
the spendings implies that:

e(φV1,j1 [2], g̃k1 ) · e(φV1,j1 [1], h̃V1,k1 ) = e(s1, g̃k1 )
x1 = SN

= e(s2, g̃k2 )
x2 = e(φV2,j2 [2], g̃k2 ) · e(φV2,j2 [1], h̃V2,k2 )

for some k1 ∈ [0, V1 − 1], k2 ∈ [0, V2 − 1] and certified scalars x1 and x2, where
the elements s1 and s2 verify, with �1, �2 ∈ [1, N ]:

e(s1, g̃V1−1) = e(s�1 , g̃) and e(s2, g̃V2−1) = e(s�2 , g̃).

Therefore, we have, for b ∈ {1, 2}, e(sb, g̃) = e(s, g̃)y�b−Vb+1
, and so

SN = e(s, g̃)x1·y�1−V1+1+k1 = e(s, g̃)x2·y�2−V2+1+k2

A collision thus implies that x1 · x−1
2 = y�2−�1+V1−V2+k2−k1 . Since x1 and x2

are randomly (and cooperatively) chosen, without knowledge of y, a collision for
x1 �= x2 will only occur with negligible probability. We can then assume that
these scalars are equal and so that the collision in L is due to a double-spending.

Remark 9. The soundness of the proofs implies that the Identify algorithm will
output, with overwhelming probability, an identity upk each time a collision is
found in L. Indeed, let (V1, Z1,Π1), (V2, Z2,Π2) be the two involved transcripts,
and k1, k2 such that:

SNk1 = e(φV1,j1 [2], g̃k1) · e(φV1,j1 [1], h̃V1,k1)

= e(φV2,j2 [2], g̃k2) · e(φV2,j2 [1], h̃V2,k2) = SNk2
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For b ∈ {1, 2}, if Πb is sound, then (φVb,jb
[1], φVb,jb

[2]) = (grb , sxb
jb

· hrb

Vb
) for some

rb ∈ Zp and so:
SNk1 = e(sx1

j1
, g̃k1) = e(sx2

j2
, g̃k2) = SNk2 (1)

For the same reasons, Tb = e(ψVb,jb
[2], g̃kb

) · e(ψVb,jb
[1], h̃Vb,kb

) = e(upkRb

b ·
txb
jb

, g̃kb
), for b ∈ {1, 2}.

As explained in the previous remark, the equality (1) is unlikely to hold for
different scalars x1 and x2. We may then assume that x1 = x2 = x and so
that upk1 = upk2 = upk since the bank verifies, during a withdrawal, that the
same scalar x (or equivalently the same public value u = ux

2) is not used by two
different users.

The relation (1) also implies that e(txj1 , g̃k1) = e(txj2 , g̃k2) and so that:

T1 · T−1
2 = e(upkR1 , g̃k1) · e(upkR2 , g̃k2)

−1 = e(upk, g̃R1
k1

· g̃−R2
k2

).

The defrauder’s identity upk will then be returned by the algorithm Identify,
unless g̃R1

k1
· g̃−R2

k2
= 1G2 . However, such an equality is very unlikely for distinct k1

and k2 (for the same reasons as the ones given in Remark 8) but also for k1 = k2
since it would imply that R1 = R2 and so a collision on the hash function H.

The security of our divisible E-Cash system is stated by the following theorems,
whose proofs can be found in the next section.

Theorem 10. In the standard model, our divisible E-Cash system is traceable
under the N − BDHI assumption if Σ0 is an EUF-SCMA signature scheme, Σ1

is an EUF-CMA signature scheme, and H is a collision-resistant hash function.

Theorem 11. Let q be a bound on the number of OSpend queries made by
the adversary. In the standard model, our divisible E-Cash system achieves the
exculpability property under the q − SDH assumption if Σots is a SUF-OTS
signature scheme, and H is a collision-resistant hash function.

Theorem 12. In the standard model, our divisible E-Cash system is anony-
mous under the SXDH and the N − MXDH′ assumptions.

Remark 13. A downside of our construction is that its anonymity relies on a
quite complex assumption. This is due to the fact that most elements of the
public parameters are related, which must be taken into account by the assump-
tion. As we explain in the full version [22], we can rely on a more conventional
assumption (while keeping the constant size property) by generating these para-
meters independently. Unfortunately, this has a strong impact on the efficiency
of the protocol. Such a solution must then be considered as a tradeoff between
efficiency and security assumption.

5.2 Efficiency

We compare in Fig. 3, the efficiency of our construction with the state-of-the-
art, and namely Martens [20] (which improves the construction of [9]) and
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Schemes Martens Canard et al Our work
[20] [11]

Parameters

ppU ∪ bpk (N + 2) G1 + N G2

+ pk
(4N + n + 4) G1

+ 2 pk + N |Sign|
(3N + 5) G1

+ 2 pk + N |Sign|
ppB - (4N − 1) G2 (N2 + 3N + 2)/2 G2

Withdraw Protocol

Computations MEG1(N) + Sign 2 EG1 + Sign 2 EG1 + Sign

Coin Size 2N Zp + G1 + |Sign| 2 Zp + |Sign| 2 Zp + |Sign|
Spend Protocol

Computations (1 + 2v) EG1

+ v MEG1(N − V )
+ v MEG2(V ) + Sign
+ NIZK{(2v + 2) EG1

+ v P + Sign}

(1 + 7v) EG1 + Sign
+ NIZK{(3 + 4v) EG1

+ 2v P
+ (1 + v) Sign}

8 EG1 + Sign
+ NIZK{7 EG1 + 2 P

+ 2 Sign}

Communications 2v G1 + |Sign|
+ |NIZK|

4v G1 + |Sign|
+ |NIZK|

4 G1 + |Sign|
+ |NIZK|

Deposit Protocol

Computations 2V EG1 2V P 2V P

Communications V SN + |Spend| V SN + |Spend| V SN + |Spend|

Fig. 3. Efficiency comparison between related works and our construction for coins of
value N and Spend and Deposit of value V (V ≤ N). The computation and commu-
nication complexities are given from the user’s point of view. (n denotes the smallest
integer such that N ≤ 2n and v the Hamming weight of V . EG refers to an exponen-
tiation in G, MEG(m) to a multi-exponentiation with m different bases in G, P to a
pairing computation, and Sign to the cost of the signing protocol whose public key is
pk. NIZK{EG} denotes the cost of a NIZK proof of a multi-exponentiation equation in
G, NIZK{P} the one of a pairing-product equation, and NIZK{Sign} the one of a valid
signature. Finally, SN refers to the size of a serial number and |Spend| to the size of the
transcript of the Spend protocol.)

Canard et al. [11]. One can note that our table differs from those provided
in these papers. This is mostly due to the fact that they only describe the most
favorable case, where the spent value V is a power of 2. However, in real life,
such an event is quite unlikely. Most of the time, the users of such systems will
then have to write V =

∑
bi · 2i, for bi ∈ {0, 1} and repeat the Spend protocol

for each bi = 1. Our description therefore considers the Hamming weight v of V
(i.e. the number of bi such that bi = 1) but, for a proper comparison, also takes
into account the possible optimisations of batch spendings (for example proving
that the user’s secret is certified can be done only once).

Another difference with [20] comes from the fact that the author considered
that “a multi-base exponentiation takes a similar time as a single-base exponen-
tiation”. Although some works (e.g. [4]) have shown that an N -base exponentia-
tion can be done more efficiently that N single-base exponentiations, considering
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that the cost of the former is equivalent to the one of a single exponentiation
is a strong assumption, in particular when N can be greater than 1000 (if the
coin’s value is greater than 10$). Our table therefore distinguishes multi-base
exponentiations from single ones.

An important feature for an electronic payment system is the efficiency of
its Spend protocol. This is indeed the one subject to the strongest time con-
straints. For example, public transport services require that payments should
be performed in less than 300ms [19], to avoid congestion in front of turnstiles.
From this perspective, our scheme is the most effective one and, above all, is
the first one to achieve constant time (and size) spendings, no matter which
value is spent. Moreover, our divisible E-Cash system offers the same efficiency
as the withdrawals of [11], while keeping a reasonable size for the parameters
ppU . Indeed, in our protocol, ppU just requires 230 KBytes of storage space for
N = 1024 (defining the coin’s value as 10.24$) if Barreto-Naehrig curves [3] are
used to instantiate the bilinear groups. For the same settings, ppU amounts to
263 KBytes for [11] and 98 KBytes for [20].

From the bank’s point of view, the downside of our scheme is the additional
parameters ppB that the bank must store, and they amount to 33 MBytes, but
it should not be a problem for this entity. As for the other schemes, each deposit
of a value V requires to store V serial numbers whose size can be adjusted by
using an appropriate hash function (see Remark 14 below).

Remark 14. As explained in [10], the bank does not need to store the serial
numbers but only their smaller hash values, as fingerprints. Therefore, the size
of the V elements SN computed during a deposit of value V is the same for all
the schemes. The Deposit size then mostly depends on the size of the Spend
transcripts. By achieving smaller, constant-size spendings, we thus alleviate the
storage burden of the bank and so improve the scalability of our divisible E-Cash
system.

Remark 15. Public identification of defrauders has an impact on the complex-
ity of the system. This roughly doubles the size of the parameters and requires
several additional computations during a spending. Such a property also has
consequences on the security analysis which must rely on a stronger assump-
tion (namely the N − MXDH′ one instead of its weaker variant) involving more
challenge elements.

However, in some situations, it can be possible to consider an authority which
would be trusted to revoke user’s anonymity only in case of fraud. The resulting
e-cash system, called fair, obviously weakens anonymity but may be a reasonable
tradeoff between user’s privacy and legal constraints.

Our scheme can be modified to add such an entity. One way would be to
entrust it with the extraction key of the Groth-Sahai proof system. It could then
extract the element U1 = uusk

1 from any transaction and so identify the spender.
The elements tj would then become unnecessary and could be discarded from
the public parameters. Moreover, the elements ψV,j , along with the associated
proofs, would also become useless during the Spend protocol. The complexity
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of the scheme would then be significantly improved. The consequences of these
changes on the security analysis are discussed in Remark 21 of the next section.

6 Security Analysis

6.1 Proof of Theorem 10: Traceability

Let us consider a successful adversary A which manages to spend more than he has
withdrawn without being traced. This formally means that it is able to produce,
after qw withdrawals, u valid transcripts {(Vi, Zi,Πi)}u

i=1 representing an amount
of

∑u
i=1 Vi > N · qw, but such that Identify((Vi, Zi,Πi), (Vj , Zj ,Πj)) = ⊥, for

all i �= j. We can have the three following cases:

– Type-1 Forgeries: ∃i such that Πi contains commitments to a pair (s�i
, t�i

)
which was not signed in a τ� by the bank, during the key generation phase;

– Type-2 Forgeries: ∃i such that Πi contains commitments to a pair (uusk
1 , ux

2)
which was never signed by the bank, during a OWithdrawU query;

– Type-3 Forgeries: ∀1 ≤ i ≤ u, ∃τ�i
in bpk which is a valid signature on the pair

(s�i
, t�i

) committed in Πi and the pairs (uusk
1 , ux

2) involved in this transcript
were signed by the bank during a OWithdrawU query, but identification fails.

Intuitively, the first two cases imply an attack against the signatures schemes
Σ0 or Σ1, respectively. This is formally stated by the two following lemmas:

Lemma 16. Any Type-1 forger A with success probability ε can be converted
into an adversary against the EUF-SCMA security of Σ0 with the same success
probability.

Proof. The reduction R generates the public parameters (the group elements),
and sends {(sj , tj)}N

j=1 to the signing oracle of the EUF-SCMA security exper-
iment which returns the signatures {τj}N

j=1 along with the challenge public
key pk. It can run Σ1.Keygen to get the key pair (sk1, pk1) and set bpk as
(pk0 = pk, pk1, τ1, . . . , τN ). One may note that R is able to answer any query
from A since it knows bsk = sk1.

At the end of the game, R extracts (it has generated the CRS of the Groth-
Sahai proofs system and so knows the related extraction keys) from Πi, for
i ∈ [1, u], a valid signature τ�i

on some pair (s�i
, t�i

) under the public key pk.
Since A is a Type-1 forger with success probability ε, at least one of these pairs
does not belong to the set {(sj , tj)}N

j=1 and so is valid forgery which can be used
to break the EUF-SCMA security of Σ0, with probability ε. 	

Lemma 17. Any Type-2 forger A with success probability ε can be converted
into an adversary against the EUF-CMA security of Σ1 with the same success
probability.
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Proof. The reduction R generates the public parameters (the group elements)
and its public key as usual except that it sets pk1 as pk, the challenge public
key in the EUF-CMA security experiment. R can then directly answer all the
queries except the OWithdrawB ones for which it will forward the pairs (uusk

1 , ux
2)

to the signing oracle and forward the resulting signature σ to A.
The game ends when A outputs u transcripts such that one of them,

(2�, Z,Π), contains a commitment to a pair (uusk
1 , ux

2) which was never
signed by the bank during a OWithdrawB query. The soundness of the
proof implies that it also contains a commitment to an element σ such that
Σ1.Verify((uusk

1 , ux
2), σ, pk) = 1. Such a forgery can then be used to break the

EUF-CMA security of Σ1. 	

Now, it remains to evaluate the success probability of a Type-3 forger. The
following lemma shows that it is negligible under N − BDHI assumption.

Lemma 18. Any Type-3 forger A with success probability ε can be converted
into an adversary against the N −BDHI assumption with the same success prob-
ability.

Proof. Let ({gyi}N
i=0, {g̃yi}N

i=0) ∈ G
N+1
1 × G

N+1
2 be a N − BDHI challenge. The

reduction R generates random scalars c, z′ ← Zp and ai ← Zp, for i = 1, . . . , N ,
and sets the public parameters as follows:

– (sj , tj) ← ((gyj−1
)z′

, (gyj−1
)c·z′

), for j = 1, . . . , N ;
– g̃k ← g̃yk

, for k = 0, . . . , N − 1;
– hi ← gai , for i = 1, . . . , N ;
– h̃i,k ← (g̃yk

)−ai , for i = 1, . . . , N and k = 0, . . . , i − 1.

By setting (s, t) = (gz′·y−1
, gc·z′·y−1

)—recall that this pair is not published in
pp—, one can easily check that the simulation is correct: sj = syj

and tj = ty
j

.
R then generates the CRS for the perfect soundness setting and stores the
extraction keys. Finally, it computes the bank’s key pair (bsk, bpk) as usual and
so is able to answer every oracle queries.

At the end of the game, R extracts the elements s(i) committed in Πi, for
i = 1, . . . , u. Each of these proofs also contains a commitment to signature τ�i

on the pair (s�i
, t�i

) such that: e(s(i), g̃Vi−1) = e(s�i
, g̃). Since we here consider

Type-3 forgeries, �i ∈ [1, N ] (otherwise τ�i
/∈ bpk) and so s�i

= sy�i . Therefore,
we have s(i) = sy�i−Vi+1

, where �i − Vi + 1 ≤ N − Vi + 1. We then distinguish
the two following cases.

– Case 1: ∀i ∈ [1, u], �i − Vi + 1 ≥ 1;
– Case 2: ∃i ∈ [1, u] such that �i − Vi + 1 < 1.

The first case means that A only used valid elements s(i) (i.e. s(i) = sji
such

that ji ∈ [1, N − Vi + 1]) to construct the proofs Πi. So all the (
∑u

i=1 Vi) ser-
ial numbers derived from the u transcripts returned by A belong to the set
S = {∪qw

k=1{e(s, g̃)xk·y�}N
�=1}, where {xk}qw

k=1 is the list of the scalars certified
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by the bank during the OWithdrawU queries. An over-spending means that∑u
i=1 Vi > N · qw = |S|, so there is at least one collision in the list of the serial

numbers. However, a collision without identification of a defrauder is unlikely,
as we explained in Remark 9. Hence, case 1 can only occur with negligible prob-
ability.

Now, let us consider the second case: when such a case occurs, R is able
to extract the element sy�i−Vi+1

such that �i − Vi + 1 ≤ 0, and compute g ←
(sy�i−Vi+1

)1/z′
= gy�i−Vi with 1 − N ≤ �i − Vi ≤ −1. Let ki be the integer such

that �i − Vi + ki = −1. The previous inequalities imply that ki ∈ [0, N − 2] and
so R can break the N − BDHI assumption by returning e(g, g̃)y−1

= e(g, g̃ki
). 	


6.2 Proof of Theorem 11: Exculpability

The goal of the adversary A is to make the identify procedure to claim an honest
user upk guilty of double-spending: it publishes two valid transcripts (V1, Z1,Π1)
and (V2, Z2,Π2) such that upk = Identify((V1, Z1,Π1), (V2, Z2,Π2)), while this
user did not perform the two transactions (maybe one). We can obviously assume
that one of these transcripts has been forged by A.

Let us consider a successful adversary. We distinguish the two following cases:

– Type-1 forgeries: the public key pkots of the one-time signature scheme used
in this forged transcript is one of those used by the honest user to answer
OSpend queries.

– Type-2 forgeries: pkots was never used by this honest user.

Lemma 19. Let qs be a bound on the number of OSpend queries. Any Type-1
forger A with success probability ε can be converted into an adversary against the
SUF-OTS security of the one-time signature scheme Σots with success probability
greater than ε/qs.

Proof. The reduction R generates the public parameters along with the bank’s
key pair and selects an integer i∗ ∈ [1, qs]. Upon receiving the ith OSpend query,
it acts normally if i �= i∗, but uses the public key pk∗

ots and the signing oracle of
the SUF-OTS security experiment if i = i∗.

Let pkots be the public key involved in the forged transcript. R aborts if
pkots �= pk∗

ots, which occurs with probability 1−1/qs. Else, the forged transcript
contains a new one-time signature η under pk∗

ots which can be used against the
security of Σots. 	

Lemma 20. Let qs (resp. qa) be a bound on the number of OSpend queries (resp.
OAdd queries). Any Type-2 forger A with success probability ε can be converted
into an adversary against the qs −SDH assumption with success probability ε/qa.

Proof. Let (g, gα, . . . , gαqs ) be a qs − SDH challenge, the reduction R will make
a guess on the user upk∗ framed by A and will act as if its secret key was
α. Therefore, it selects 1 ≤ i∗ ≤ qa and generates the public parameters as
in the Setup algorithm except that it sets u1 as gz for some random z ∈ Zp.
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Next, it computes qs key pairs (sk(i)ots, pk
(i)
ots) ← Σots.Keygen(1k) and sets w as

g
∏qs

i=1(α+H(pk
(i)
ots)) (which is possible using the qs − SDH challenge [6], since the

exponent is a polynomial in α of degree qs). The reduction will answer the oracle
queries as follows.

– OAdd() queries: When the adversary makes the ith OAdd query to register a
user, R runs the Keygen algorithm if i �= i∗ and sets upk∗ ← gα otherwise.

– OCorrupt(upk/mpk) queries: R returns the secret key if upk �= upk∗ and
aborts otherwise.

– OAddCorrupt(upk/mpk) queries: R stores the public key which is now con-
sidered as registered.

– OWithdrawU (bsk, upk) queries: R acts normally if upk �= upk∗ and simulates
the interactive proof of knowledge of α otherwise.

– OSpend(upk, V ) queries: R acts normally if upk �= upk∗. Else, to answer the

jth query on upk∗, it computes μ ← g
∏qs

i=1,i�=j(α+H(pk
(i)
ots)) which satisfies μ =

w1/(α+H(pk
(j)
ots)), and uses sk

(j)
ots as in the Spend protocol.

The adversary then outputs two valid transcripts (V1, Z1,Π1) and (V2, Z2,Π2)
which accuse upk of double-spending. If upk �= upk∗ then R aborts which will
occur with probability 1 − 1/qa. Else, the soundness of the proof implies that
the forged transcript was signed under pkots and so that the proof involves an
element μ = w

1
α+H(pkots) . Since here we consider Type-2 attacks, pkots /∈ {pk(i)ots}i.

Therefore, H(pkots) /∈ {H(pk(i)ots)}i with overwhelming probability, due to the
collision-resistance of the hash function H. The element μ can then be used to
break the qs − SDH assumption in G1 (as in [6]). 	


6.3 Proof of Theorem 12: Anonymity

In this proof, we assume that the coins are spent in a sequential way: the index
j in C = (x, σ, j) is increased by V after each spending of an amount V , and the
new j is used in the next spending. A next coin is used when the previous coin
is finished. But the proof would also apply if the user could adaptively choose
the coin (x, σ), as well as (j, V ) for every spending.

We can make the proof with a sequence of games, starting from the initial
game for anonymity, with a random bit b (see Fig. 2), where the simulator emu-
lates the challenger but correctly generating all the secret values. The advantage
is ε, and we want to show it is negligible.

In a next game, the simulator makes a guess on the amount V ∗ ∈ [1, N ]
chosen by the adversary during the step 3 of the anonymity experiment (see
Fig. 2) and also makes a guess j∗ ∈ [1, N − V ∗ + 1] for the actual index of the
coin of the user upkb at the challenge time (but this challenge value could be
chosen by the adversary, as said above). In addition, we denote qw the bound on
the number of OWithdrawU queries, and the simulator selects a random integer
�∗ ∈ [1, qw], for the expected index of the OWithdrawU query that generates
the coin that will be used in the challenge. If during the simulation it appears
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they are not correct, one stops the simulation. This guess does not affect the
success probability of the adversary, when the guess is correct, but just reduces
the advantage from ε to 2ε/(qwN2).

Next, the simulator generates the CRS for the Groth-Sahai proofs in the per-
fect witness indistinguishability setting, so that it can later simulate the proofs.
This is indistinguishable from the previous game under the SXDH assumption.

Now, the simulator will simulate the public parameters from an N −MXDH′

challenge:

– (gγk

, hγk

)P
k=0 ∈ G

2P+2
1 ,

– (gα·δ·γ−k

, hα·δ·γ−k

)E
k=0 ∈ G

2E+2
1 ,

– (gχ·γk

, hχ·γk

)P
k=D+1 ∈ G

2C
1 ,

– and ((gα·γ−k

)C
k=0, (g

χ·γk/α, hχ·γk/α)C
k=0, ) ∈ G

3S
1 ,

– as well as (g̃γk

, g̃α·γ−k

)C
k=0 ∈ G

2S
2 ,

– and a pair (gz1 , hz2) ∈ G
2
1 be an N − MXDH′ challenge.

We recall that C = N3 −N2, S = C +1, E = N2 −N , D = S +E = N3 −N +1
and P = D+C = 2N3 −N2 −N +1. Let d be the quotient of the division of N2

by V ∗ (i.e. N2 = d · V ∗ + rd with 0 ≤ rd < V ∗), then the simulator constructs
the public parameters as follows.

– g and h are defined from gγk

and hγk

respectively, with k = 0;
– u1

$← G1 and u2 ← gw·γP

, for a random w ∈ Zp;
– g̃ is defined from g̃γk

, with k = 0;
– (sj , tj) ← (gγD+d(1−V ∗+j−j∗)

, hγD+d(1−V ∗+j−j∗)
), for j = 1, . . . , N ;

– g̃k ← g̃γd·k
, for k = 0, . . . , N − 1;

– hi ← gwi·α·γd(−i+1)
, for i ∈ [1, . . . , N ], with wi a random scalar;

– h̃i,k ← g̃−wi·α·γd(k−i+1)
, for i ∈ [1, . . . , N ] and k = 0, . . . , i − 1.

We must check that

(1) the simulation of the parameters is correct: let us define y = γd, (s, t) =
(gγD+d(1−V ∗−j∗)

, hγD+d(1−V ∗−j∗)
), and ai = α ·wi · γd(−i+1) for i ∈ [1, . . . , N ].

We then have:
– (sj , tj) = ((gγD+d(1−V ∗−j∗)

)γd·j
, (hγD+d(1−V ∗−j∗)

)γd·j
) = (syj

, ty
j

);
– g̃k = g̃yk

, for k = 0, . . . , N − 1;
– hi = gai , for i = 1, . . . , N ;
– h̃i,k = g̃−ai·yk

, for i = 1, . . . , N and k = 0, . . . , i − 1.
The simulation is therefore correct;

(2) all of these elements can be provided from the N −MXDH′ challenge: First,
recall that N2 = d·V ∗+rd with 0 ≤ rd < V ∗ ≤ N . Then 2 ≤ V ∗+j∗ ≤ N+1
and N ≤ d ≤ N2.

Let us consider the pairs (sj , tj) = (gγD+d(1−V ∗+j−j∗)
, hγD+d(1−V ∗+j−j∗)

),
for j = 1, . . . , N : 1 + j − (V ∗ + j∗) ≥ 2 − (N + 1) ≥ −N + 1, therefore,
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d(1−V ∗ +j −j∗) ≥ −d(N −1) ≥ −N2(N −1) ≥ −C. Moreover, d(1−V ∗ +
j−j∗) ≤ d(N−1) ≤ N2(N−1) ≤ C. Hence D−C ≤ D+d(1−V ∗+j−j∗) ≤
D+C = P . Since D = S+E = C +1+E, D−C = E+1 = N2−N +1 ≥ 0.
Hence, the pairs (sj , tj) can be defined from the tuple (gγk

, hγk

)P
k=0 of the

N − MXDH′ instance.
About the elements g̃k = g̃γd·k

, since we have 0 ≤ d ·k ≤ N2(N −1) = C,
for k = 0, . . . , N − 1, they all are in the tuple (g̃γk

)C
k=0.

Eventually, let us consider the elements hi = gwi·α·γd(−i+1)
and h̃i,k =

g̃−wi·α·γd(k−i+1)
, for i ∈ [1, N ] and k ∈ [0, i − 1]. Since −C ≤ −d(N − 1) ≤

d(−i + 1) ≤ 0 and −C ≤ d(k − i + 1) ≤ 0, they all can be computed from
the tuples (gα·γ−k

)C
k=0 and (g̃α·γ−k

)C
k=0, just using the additional random

scalar wi.
The reduction R is thus able to generate the public parameters from the

N − MXDH′ instance.

The simulator now has to answer all the oracle queries, with all the secret keys.

– OAdd() queries: run the Keygen algorithm and return upk (or mpk);
– OWithdrawU (bsk, upk) queries: for the �th OWithdrawU query, the simulator

plays normally if � �= �∗, but sending the pair (uusk
1 , (gχ·γP

)w = uχ
2 ) otherwise

(using the N −MXDH′ instance). It can then simulate the proof of knowledge
and receives a scalar x′ along with a signature σ on (uusk

1 , ux∗
2 ), where x∗ =

χ + x′. The coin is then implicitly defined as C∗ = (x∗, σ, 1) and we will now
denote its owner by upk∗;

– OCorrupt(upk/mpk) queries: the simulator plays normally (if the guesses are
correct, upk∗ cannot be asked to be corrupted);

– OAddCorrupt(upk/mpk): the simulator stores the public key which is now
considered as registered;

– OSpend(upk, V ) queries: if the coin to be used for the spending has not been
withdrawn during the �∗ − OWithdrawU -query, then the simulator knows all
the secret keys, and so it can play normally. Else, it proceeds as follows. One
can first remark that if the guesses are correct, j �∈ [j∗ − V + 1, j∗ + V ∗ − 1].
Otherwise this spending and the challenge spending would lead to a double-
spending.

• If j ≥ j∗ + V ∗, then D + d(1 − V ∗ + j − j∗) ≥ D + d ≥ D + 1, so sx∗
j and

tx
∗

j can be computed from the tuple (gχ·γk

, hχ·γk

)P
k=D+1. Indeed,

sx∗
j = (gγD+d(1−V ∗+j−j∗)

)x∗
= gχ·γD+d(1−V ∗+j−j∗) · (gγD+d(1−V ∗+j−j∗)

)x′

tx
∗

j = (hγD+d(1−V ∗+j−j∗)
)x∗

= hχ·γD+d(1−V ∗+j−j∗) · (hγD+d(1−V ∗+j−j∗)
)x′

.

The simulator can then send ElGamal encryptions of sx∗
j and tx

∗
j · gR·usk∗

under hV (which yields valid φV ∗,j∗ and ψV ∗,j∗) along with simulated
proofs.
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• If j ≤ j∗ − V , then we proceed as follows.
Let r ← −χ · γD+d(−V ∗+1+j−j∗)+d(V −1)/α and (r′

1, r
′
2)

$← Z
2
p. Then,

(gr/wV +r′
1 , sx′

j · hr′
1

V ) and (hr/wV · gr′
2 , tx

′
j · gR·usk∗ · hr′

2
V ) are valid pairs φV,j

and ψV,j which can be computed from the tuple (gχ·γk/α, hχ·γk/α)C
k=0 of

the N − MXDH′ instance: Since d · V ∗ = N2 − rd > N2 − N ,

D + d(−V ∗ + 1 + j − j∗) + d(V − 1) = D + d(V − V ∗ + j − j∗)

≤ D − d · V ∗ < D − N2 + N < D − E = S = C + 1

This is thus less or equal to C, as the indices of the tuple.
It then remains to prove that (gr/wV +r′

1 , sx′
j · hr′

1
V ) and (hr/wV · gr′

2 , tx
′

j ·
gR·usk∗ · h

r′
2

V ) are valid ElGamal encryptions of sx∗
j and tx

∗
j · gR·usk∗

under
hV . Let c be the secret scalar such that h = gc, r1 = r/wV + r′

1 and
r2 = c · r/wV + r′

2, we then have: gr1 = gr/wV +r′
1 and

sx∗
j · hr1

V = sχ
j · sx′

j · h
r/wV +r′

1
V

= gχ·γD+d(1−V ∗+j−j∗) · (gwV ·α·γd(−V +1)
)r/wV · sx′

j · h
r′
1

V

= gχ·γD+d(1−V ∗+j−j∗) · g−χ·γD+d(1−V ∗+j−j∗) · sx′
j · h

r′
1

V )

= sx′
j · h

r′
1

V

Similarly, gr2 = hr/wW · gr′
2 and as just above

tx
∗

j · gR·usk∗ · hr2
V = tx

′
j · tχj · gR·usk∗ · hc·r/wV

V · hr′
2

V

= tx
′

j · hχ·γD+d(1−V ∗+j−j∗) · gR·usk∗ · h−χ·γD+d(1−V ∗+j−j∗) · hr′
2

V

= tx
′

j · gR·usk∗ · hr′
2

V

The spending is thus correctly simulated since r′
1 and r′

2 are random
scalars.

During the challenge phase (i.e. the step 3 of the anonymity experiment), A
outputs two public keys upk0 and upk1 along a value V . If the guesses were
correct, V = V ∗, upk∗ = upkb and the coin involving x∗ is spent, at index
j = j∗. The simulator selects random r′

1 and r′
2, computes R ← H(info), and

returns, along with the simulated proofs, the pairs

φV ∗,j∗ = ((gz1)−1/wV ∗ · gr′
1 , sx′

j · g−δ·α·γ−d(V ∗−1) · h
r′
1

V ∗)

ψV ∗,j∗ = ((hz2)−1/wV ∗ · gr′
2 , tx

′
j · gR·usk∗ · h−δ·α·γ−d(V ∗−1) · h

r′
2

V ∗).

One can note that −d(V ∗ − 1) ≥ −N2 + N = −E and so that the pair
(gδ·α·γ−d(V ∗−1)

, hδ·α·γ−d(V ∗−1)
) belongs to the tuple (gα·δ·γ−k

, hα·δ·γ−k

)E
k=0.
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Let r1 = −z1/wV ∗ + r′
1 and r2 = −(c · z2)/wV ∗ + r′

2. If z1 = z2 = δ +χ ·γD/α,
then

(gr1 , sx∗
j∗ · hr1

V ∗) = (gr1 , sχ
j∗ · sx′

j∗ · h
−z1/wV ∗
V ∗ · h

r′
1

V ∗)

= (gr1 , sχ
j∗ · sx′

j∗ · g−χ·γD+d(1−V ∗) · g−δ·αγd(1−V ∗) · h
r′
1

V ∗)

= (g−z1/wV ∗+r′
1 , sx′

j∗ · g−δ·αγd(1−V ∗) · h
r′
1

V ∗) = φV ∗,j∗

and

(g
r2 , t

x∗
j∗ · g

R·usk∗ · h
r2
V ∗ ) = (g

r2 , t
χ
j∗ · t

x′
j∗ · h

−(c·z2)/wV ∗
V ∗ · g

R·usk∗ · h
r′
2

V ∗ )

= (g
r2 , t

χ
j∗ · t

x′
j∗ · h

−χ·γD+d(1−V ∗) · h
−δ·αγd(1−V ∗) · g

R·usk∗ · h
r′
2

V ∗ )

= (h
−z2/wV ∗ · g

r′
2 , t

x′
j∗ · h

−δ·αγd(1−V ∗) · g
R·usk∗ · h

r′
2

V ∗ ) = ψV ∗,j∗

The challenge spending is thus correctly simulated too.

In the next game, we replace the N − MXDH′ instance by a random instance,
with random z1 and z2. From the simulation of φV ∗,j∗ and ψV ∗,j∗ , we see that
they perfectly hide upk∗. Hence, the advantage of the adversary in this last game
is exactly zero.

Remark 21. One can note that the h-based elements hz2 , {hγk}P
k=0,

{hα·δ·γ−k}E
k=0, {hχ·γk}P

k=D+1 and {hχ·γk/α}C
k=0 provided in the N −MXDH′ chal-

lenge are only useful to simulate the security tags ψV,j and ψV ∗,j∗ . In the case of
fair divisible E-Cash system, they would no longer be necessary (see Remark 15)
and so the security of the resulting scheme could simply rely on the weaker
N − MXDH assumption.

7 Conclusion

We have proposed the first divisible e-cash system which achieves constant-time
spendings, regardless of the spent value. Moreover, our solution keeps the best
features of state-of-the-art, such as the efficiency of the withdrawals from [10] and
the scalability of [11]. We argue that this is a major step towards the practical
use of an e-cash system.

This also shows that the binary-tree structure, used by previous construc-
tions, can be avoided. It may therefore open up new possibilities and incite
new work in this area. We provide another construction in the full version [22]
whose security proof relies on a more classical assumption, still avoiding the tree
structure, but with larger public parameters.
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Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that
allows a trusted client to outsource storage to an untrusted server while
hiding the client’s memory access patterns to the server. The last three
decades of research on ORAMs have reduced the bandwidth blowup
of ORAM schemes from O(

√
N) to O(1). However, all schemes that

achieve a bandwidth blowup smaller than O(log N) use expensive com-
putations such as homomorphic encryptions. In this paper, we achieve
a sub-logarithmic bandwidth blowup of O(logd N) (where d is a free
parameter) without using expensive computation. We do so by using a
d-ary tree and a two server private information retrieval (PIR) protocol
based on inexpensive XOR operations at the servers. We also show a
Ω(logcD N) lower bound on bandwidth blowup in the modified model
involving PIR operations. Here, c is the number of blocks stored by the
client and D is the number blocks on which PIR operations are per-
formed. Our construction matches this lower bound implying that the
lower bound is tight for certain parameter ranges. Finally, we show that
C-ORAM (CCS 15) and CHf-ORAM violate the lower bound. Com-
bined with concrete attacks on C-ORAM/CHf-ORAM, we claim that
there exist security flaws in these constructions.

1 Introduction

Oblivious RAM is a cryptographic primitive that allows a client to privately
outsource storage to an untrusted server without revealing any information about
its data accesses, i.e., the server learns nothing about the data or the sequence
of addresses accessed. It was first proposed by Goldreich and Ostrovsky [22,23].
Since the initial theoretical work three decades ago, there has been a lot of effort
to improve ORAMs either as a stand-alone primitive [2,9,12,19,24,25,27,37,39,
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 91–120, 2017.
DOI: 10.1007/978-3-662-54365-8 5
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40,42,44,48,51,53,58] or for applications including secure outsourced storage [3,
33,41,49,50,59], secure processors [15–17,36,43,45,46] and secure multi-party
computation [20,34,35,54,55,60].

The standard ORAM model assumes the server to be a simple storage device
that only supports read and write operations. In this model, numerous works
have improved the bandwidth blowup (or bandwidth overhead) — the amount of
communication between the client and the server relative to an insecure scenario
that does not protect access patterns — from O(log3 N) to O(log N) where N
is the number of logical data blocks. But none could achieve sub-logarithmic
bandwidth blowup so far. In this sense, though not provably insurmountable [5],
the Ω(log N) bandwidth blowup barrier does seem hard to surpass.

To this end, a line of work deviates from the standard model and assumes
the existence of two non-colluding servers [34,41,49] with inexpensive server
computation (e.g., XOR) or no server computation. But these constructions
have been unable to surpass the Ω(log N) bandwidth blowup barrier.

Another line of work allows the server to perform some computation.
The most recent works involving server computation achieved O(1) width
blowup [2,12,39,40]. But this improvement in bandwidth comes with a huge
cost in the amount of server computation. In both Apon et al. [2] and Devadas
et al. [12], the server runs the ORAM algorithm using homomorphic encryp-
tion (fully homomorphic and additively homomorphic, respectively) with little
client intervention. In practice, in both schemes, the time for server computa-
tion will far exceed the time for server-client communication and become the
new bottleneck.

Thus, the state of the art leaves the following natural question:

Can we construct a sub−logarithmic ORAM without expensive computation?

A recent construction called CHf-ORAM [39] claims to have solved the
above challenge by combining ORAM with private information retrieval (PIR).
Using four non-colluding servers, CHf-ORAM claims to achieve O(1) bandwidth
blowup using simple XOR-based PIR protocols. However, we realized that there
exist security flaws in CHf-ORAM and its predecessor C-ORAM [40]. We give
two concrete attacks on a slight variant of C-ORAM, highlighting some subtleties
that the current C-ORAM proof does not capture.

Private information retrieval (PIR) and Oblivious RAM (ORAM) are two
closely related concepts, and they both hide access patterns. In fact, PIR
is frequently applied to ORAM constructions to improve bandwidth blowup
[37,39–41,61]. This led us to ask the following question:

What is the asymptotically optimal bandwidth blowup one can achieve by using

PIR in an ORAM construction?

In order to answer this question, we build on the seminal work of Goldreich
and Ostrovsky [23] and derive a Ω(logcD N) bandwidth lower bound for ORAMs
that leverage only PIR and PIR-write on top of the traditional model. Here, c
is the number of blocks stored by the client and D is the number of blocks
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on which PIR/PIR-write operations are performed. C-ORAM and CHf-ORAM
violate this lower bound, and thus cannot be secure.

Given the insecurity of C-ORAM and CHf-ORAM, the former question
remains open. We then positively answer the former question with a concrete
and provably secure construction. Our construction relies on a d-ary ORAM tree
and a private information retrieval (PIR) protocol involving two non-colluding
servers, where the servers perform simple XOR computations. Our construction
achieves O(logd N) bandwidth blowup with c = O(1) blocks of client storage
and PIR operations on D = d · polylog(N) blocks. Therefore, it matches the
Ω(logcD N) lower bound when d = Ω(log N), implying that under certain para-
meter ranges our construction is asymptotically optimal and the lower bound is
asymptotically tight.

We remark that there is a concurrent and independent work, MSKT-ORAM,
that achieves comparable bandwidth blowup using similar techniques [62].1 Our
construction has several advantages over the concurrent work and we make a
more detailed comparison in Sect. 2.

1.1 Our Contributions

Our contributions in this paper can be summarized as follows:

1. ORAM with sub-logarithmic bandwidth blowup. We show a provably
secure ORAM construction that achieves a bandwidth blowup of O(logd N)
(where d is a parameter) using O(1) blocks of client storage. Our construction
uses a d-ary tree and a PIR protocol (Sect. 4).

2. Extending the Goldreich-Ostrovsky lower bound to allow PIR oper-
ation. For a client storing c blocks of data and performing a PIR on D blocks
at a time, we show that the ORAM bandwidth blowup is lower bounded by
Ω(logcD N) (Sect. 5). Our construction matches this lower bound implying
that the lower bound is tight and that our construction is asymptotically
optimal for certain parameter ranges.

3. Security flaws in prior works. Using our lower bound and other concrete
attacks, we show that the bandwidth blowup claimed by C-ORAM and CHf-
ORAM [39,40] is not achievable (Sect. 6).

1.2 Overview of Our Construction

On a high level, an ORAM access has two phases. The first phase, called retrieval,
fetches and possibly updates the data block requested by the client. The second
phase, called eviction, reshuffles some data blocks on the server. Many recent

1 The title of that paper claims “constant bandwidth”, which would have been imme-
diately ruled out by our lower bound. On a closer look, the bandwidth blowup is
actually O(logd N). This calls for our lower bound to clear the confusion in this
direction.
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Table 1. Comparison with existing Oblivious RAM schemes. N denotes the
number of logical blocks stored by the ORAM. In [44,53], a stash of Ω(λ) blocks ensures
a failure probability of eΩ(−λ). For a negligible (in N) failure probability, these works
set λ = ω(log N).

Construction Bandwidth Client Block Server #Servers

blowup storage size computation

Path ORAM [53] 8 logN O(λ) Ω(log2 N) - 1

Ring ORAM [44] 2.5 logN O(λ) Ω(log2 N) XOR 1

Onion ORAM [12] O(1) O(1) Ω̃(log5 N) Homomorphic enc. 1

This work 4 logd N O(1) Ω(dλ logN) XOR 2

(with d = logN) 4 logN/ log logN Ω(λ log2 N)

ORAM constructions [12,44,53,54] are based on binary trees, in which the band-
width overhead on retrieval and eviction are both Θ(log N) due to the tree height.

Our construction uses a tree with larger fan-out d = ω(1), which decreases
the tree height to O(logd N) = O( log N

log d ). Based on a d-ary tree, we design a new
eviction algorithm whose bandwidth overhead is O(logd N). However, it increases
the bandwidth overhead by more than a factor of d on retrieval in the standard
model. We then use two-server private information retrieval (Sect. 3.3) to reduce
the retrieval bandwidth to O(1) (assuming moderately large block size). Our
basic eviction algorithm also requires Ω(d log N) blocks of client storage. We
again rely on two-server PIR to reduce the client storage to O(1). Overall, we
obtain a two-server ORAM with O(1) client storage and O(logd N), i.e., sub-
logarithmic bandwidth overhead (Table 1).

Although our bandwidth blowup decreases with the tree fan-out d, we can-
not keep increasing d for free due to block metadata. We discuss the trade-off
regarding d in Sect. 4.4.

2 Related Work

Oblivious RAM was first introduced by Goldreich and Ostrovsky around three
decades ago [22,23]. They proposed two constructions. The latter of the two used
a hierarchy of buffers of exponentially increasing size, which was later known as
the hierarchical ORAM framework.

They achieved O(log3 N) amortized bandwidth blowup under constant client
storage, Ω(log N) block size and computational security. Their model assumes
the server to be a simple storage device that is capable of only “read” and
“write” operations. In this model, they show an Ω(logc N) lower bound on the
bandwidth blowup, where c is the number of blocks stored by the client.

Follow-up works [24,25,27,57,58] in the hierarchical ORAM framework
reduced the bandwidth blowup from O(log3 N) to O(log2 N/ log log N). Most
of these works also used constant client storage and computational security, and
bandwidth blowups are amortized and holds for Ω(log N) block size. Ajtai [1]
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and Damg̊ard et al. [10] showed ORAM constructions that are statistically
secure. This was followed by the statistically secure ORAM construction by Shi
et al. [48], who introduced the tree-based paradigm. ORAM constructions in the
tree-based paradigm have improved the bandwidth blowup from O(log3 N) to
O(log N) [9,19,44,48,53,54]. Circuit ORAM [54] gets very close to the Goldreich-
Ostrovsky lower bound, achieving O(log N)ω(1) bandwidth blowup with con-
stant client storage for moderately large blocks of size Ω(log2 N). Most tree-
based ORAMs achieved statistical access pattern security, and obtained the
desired bandwidth blowup in the worst-case instead of an amortized blowup.
But the reported bandwidth results only hold for moderately large blocks of size
Ω(log2 N) due to the use of the ORAM recursion technique [48].

It is worth noting that our d-ary tree idea is similar to the techniques in the
following papers. Kushilevitz et al. [27] achieves O(log2 N/ log log N) bandwidth
blowup using Θ(log N) buffers for every large level. Gentry et al. [19] uses a
Θ(log N)-ary tree and a push-to-leaf procedure along a deterministic path to
achieve O(log2 N/ log log N) blowup. An concurrent work [62] uses a Θ(log N)-
ary tree, which we compare to in detail later. In all cases, the idea is to balance
the (sometimes implicit) bandwidth mismatch between the retrieval phase and
the eviction phase.

Many works deviated from the traditional ORAM model defined by Goldreich
and Ostrovsky by introducing multiple non-colluding servers and/or server-side
computation. Some of these papers refer to their work as oblivious outsourced
storage, but we still refer to them as ORAMs. We review these works below.

ORAMs using multiple non-colluding servers. Constructions in this cat-
egory so far have not been able to surpass the Ω(log N) bandwidth barrier
(except CHf-ORAM [39] which we discuss later in this section) [34,41,49]. Lu
and Ostrovsky [34] achieved a bandwidth blowup of O(log N). In their scheme,
each non-colluding server performs permutations that are hidden to the other
server due to which the Goldreich-Ostrovsky lower bound does not apply. Ste-
fanov and Shi [49] implemented a practical system using two servers and O(

√
N)

client storage. Their client storage can be reduced to O(1) using the standard
recursion technique [48]. Their construction required O(1) client-to-server band-
width blowup and O(log N) server-to-server bandwidth blowup.

ORAMs with server computation. There exist many ORAM schemes that
allow the server to do computation on data blocks [2,11,12,20,37,40,44,50,
51,57,59,61]. Most of these works still require Ω(log N) bandwidth blowup,
except the following ones. Apon et al. [2] use fully homomorphic encryption
to achieve an O(1) bandwidth blowup. However, the large overhead of FHE
makes the scheme impractical. Onion ORAM [12] improves upon Apon et al.
to achieve an O(1) bandwidth blowup by using only additively homomorphic
encryption or somewhat homomorphic encryption. The amount of server com-
putation is significantly reduced (compared to FHE) but is still quite large. In
addition, the O(1) bandwidth blowup of Onion ORAM can only be achieved for
very large block sizes (B = Ω(log5 N)). Both these schemes circumvent the
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Goldreich-Ostrovsky lower bound by using homomorphic operations on the
server side that require little client intervention.

Independent and concurrent work. MSKT-ORAM [62] is an independent
and concurrent work that achieves comparable bandwidth blowup using similar
techniques, i.e., a d-ary tree and two-server PIR applied to a poly-logarithmic
number of blocks. Our construction has several advantages stemming from
the following major differences: While we extended the most recent tree-based
ORAM, Onion ORAM [12], to a d-ary tree, MSKT-ORAM builds on top of the
very first tree-based ORAM by Shi et al. [48] and extends it to a d-ary tree.
Thus, MSKT-ORAM does not take advantage of the new techniques invented
afterwards, such as small block recursion [52], reverse lexicographical order [19],
higher bucket load [44], reduced eviction frequency [44], and an empty bucket
invariant [12]. As a result, MSKT-ORAM requires a block size as large as Ω(N ε)
for some constant ε, while we only require blocks of size polylog(N) bits; MSKT-
ORAM has a ω(log N) server storage blowup, while our construction has a
constant size server storage blowup (Sect. 4.1); MSKT-ORAM needs a PIR, a
physical read and a physical write operation to evict each block, while we can
eliminate the need for the physical read due to the empty bucket/slice invariant
(cf. Lemma 2 and Sect. 4.3); MSKT-ORAM also spends at least 2× more band-
width for both blocks and metadata during eviction, since Shi et al. [48] requires
two evictions after every access.

Oblivious RAM lower bound. As mentioned earlier, Goldreich and Ostrovsky
presented a lower bound of Ω(logc N) where c is the amount of client storage in
blocks. Their lower bound modeled the server as a simple storage device capable
of reading and writing blocks. Boyle and Naor revisit the ORAM lower bound
to relate it to the size of circuits for sorting [5]. In our work, we extend the lower
bound suggested by Goldreich and Ostrovsky to encompass private information
retrieval (PIR) as a possible operation performed by the client and obtain a lower
bound of Ω(logcD(N)) in Sect. 5. Here, c is the number of blocks stored by the
client and D is the number of blocks that a PIR is performed on. C-ORAM [40]
and CHf-ORAM [39] violate the lower bound and must have security flaws. Boyle
and Naor showed that an ORAM lower bound is difficult to obtain in a general
model, i.e., if the client is not restricted to a small set of operations.

Other related work. There has also been work to optimize ORAM for the num-
ber of rounds of communication [14,18,57], response time [11], parallelism [4,7]
and various other parameters [3,47]. Liu et al. developed compiler techniques to
achieve obliviousness with fewer ORAM accesses [30–32]. Some data structures
can be made oblivious without using a full ORAM [26,38,56].

Private information retrieval. A Private information retrieval (PIR) protocol
allows a user to retrieve some data block from a server without revealing the
block that was retrieved. It was first introduced by Chor et al. [8]. In our work,
we use a simple two server O(N) scheme from [8] to reduce the bandwidth cost
of accessing a block.
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3 Preliminaries

3.1 Problem Definition

Consider a scenario where a trusted client wishes to store data to a remote
untrusted server while preserving privacy. First, the client can protect confi-
dentiality of the data using standard encryption schemes. However, the access
pattern of the client, i.e., the order in which the client accesses the data, can
also reveal information. Oblivious RAM algorithms address this problem by hid-
ing the data access pattern, i.e., hiding which blocks were read/written from the
server. Intuitively, a server observing the resulting physical access pattern should
not be able to learn anything about the logical access pattern of the client.

The ORAM model traditionally treats the server as a simple storage
device [22,23]. But recent works have extended the ORAM model to allow for
server computation [2,12]. Informally, an ORAM that allows server computation
can be defined as follows:

Definition 1 (Informal). Let y = ((a1, op1, data1), . . . , (at, opt, datat)) be
the client’s logical data request sequence of length t. For each tuple yi =
(ai, opi, datai), ai represents the logical address of the data block accessed by
the client, opi ∈ {Read,Write} and datai is the data being written (datai = ⊥ if
opi = Read).

Let ORAM(y) represent the ORAM client’s sequence of interactions with
the server. We say an ORAM algorithm is correct if for each access i ∈ [t],
ORAM(yi) returns data that is consistent with yi except with negl(|y|) prob-
ability. We say an ORAM algorithm is secure if for two access patterns y and
z with |y| = |z|, their access patterns ORAM(y) and ORAM(z) are compu-
tationally or statistically indistinguishable. Respectively, the ORAM algorithms
are called computationally or statistically secure.

The sequence of interaction ORAM(y) may include simple physical read/
write requests, PIR requests, or any other complex protocols between the client
and the server.

Bandwidth blowup. In order to hide data access patterns, ORAM(y) involves
more communication between the server and the client than y. We define band-
width blowup as the ratio between the amount of communication (measured in
bits) in ORAM(y) to the amount of communication in y. Each unit of logic
data accessed by a client is referred to as a block. We denote N to be the total
number of logic data blocks in the ORAM.

3.2 Tree-Based ORAMs

In a tree-based ORAM, server storage is organized as a binary tree [48]. As
mentioned in the introduction, instead of a binary tree, in this work we use a
d-ary tree. Hence this brief introduction presents the general case and considers
d as an independent parameter.
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1: function Access(a, op, data)
2: l ← PosMap[a]
3: data ← ReadBlock(l, a)
4: l′ ← UniformRandom(0, dL − 1)
5: PosMap[a] ← l′

6: if op = read then
7: return data to client
8: else
9: data ← data′

10: Write data to the root bucket
11: evict()

Fig. 1. Tree-based ORAM data access algorithm. Here, PosMap is a map from
an address a to a leaf l of the tree. ReadBlock(l, a) retrieves a block of data with address
a from a path of buckets along leaf l.

Server storage. We consider d-ary tree with L + 1 levels, from level 0 to level
L. Thus, level i has di nodes. Recall that N is the total number of logical blocks
stored by the client. Then L is roughly logd N . Each node in the tree is called
a bucket and each bucket contains Z slots for logical blocks. A slot can also be
empty — in this case, we say it contains a dummy block; otherwise, we say it
contains a real block. Each block stores B bits of information. Dummy blocks
and real blocks are both encrypted using randomized symmetric encryption.

Metadata. Aside from the B bits of block data, tree-based ORAMs also store
some metadata for each block. The metadata stores the block identifier and
whether the block is real or dummy. The client also maintains a position map
PosMap that maps each real block to a random leaf in the tree.

In this work, we first assume that the client stores all the metadata locally.
We then describe how this metadata can be offloaded to the server (Sect. 4.3) to
achieve O(1) client storage.

Invariant. Tree-based ORAM maintains the invariant that if a block is mapped
to a leaf l of the tree, the block must be in some bucket on the path from the
root to the leaf l. Since a leaf uniquely determines a path and vice versa, we use
the two terms interchangeably.

Access. The pseudo-code for an access algorithm in a tree-based ORAM is
described in Fig. 1. To access a block with logical address a, the client performs
the following operations:

1. Look up the local PosMap to figure out the path l it is mapped to (line 2).
2. Download and decrypt every block on path p, discarding every block that

does not have address a. Due to the invariant, the client is guaranteed to find
block a on path l. This is done by ReadBlock(l, a) in Fig. 1 line 3.

3. Remap block a to a new random path l′ (i.e., update PosMap), i.e. logically
remove block a from its old position (lines 4 and 5).
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4. Re-encrypt block a and append it to the root bucket (line 10, encryption is
not shown in the figure).

5. Invoke an eviction procedure to percolate blocks towards leaves (line 11).

The first four steps correspond to the retrieval phase, and are similar for
many tree-based ORAMs [12,48,53]. Tree-based ORAMs differ in their eviction
procedures (which also affect the bucket size Z). Existing tree-based ORAM
schemes when extended to use a d-ary tree do not achieve sub-logarithmic band-
width blowup due to inefficient eviction. Hence, a main contribution of this paper
is to construct such an eviction scheme (Sect. 4).

3.3 Private Information Retrieval

Private information retrieval (PIR) allows a user to download one item from an
unprocessed database known to a server, without revealing to the server which
item is downloaded [8]. More formally, the setting has a server which is holding a
list of records Y = (y1, y2, · · · , ym), and a user who wants to download record yi

without revealing i to the server. A PIR scheme must enable this operation while
requiring communication that is strictly smaller than the size of the database
(otherwise, a trivial solution could have the user hide i by simply downloading
the entire database.) The database records are usually public data records, or
records which are owned by the server, and therefore the user cannot encrypt or
otherwise preprocess them.

Two categories of PIR techniques exist – one operates in a setting with a
single server and the other requires the existence of two or more non-colluding
servers. Single-server PIR protocols, such as [6,21,28], have been adopted by
Path-PIR [37] and Onion ORAM [12] to improve bandwidth. A downside, how-
ever, is that they require the server to perform operations on homomorphically
encrypted ciphertexts [29], making server computation the new bottleneck. PIR
in the presence of two or more non-colluding servers is conceptually simpler
and involves much less computation — typically only simple XOR operations.
It can also guarantee information-theoretic security (whereas it is known that
single-server PIR cannot be unconditionally secure).

The original investigation of two-server PIR assumed that each database
record is a single bit. The initial PIR paper described a two-server PIR protocol
with O(m1/3) communication [8] (and more efficient protocols with more than
two servers). This result was only recently improved to obtain a communication
of mO(

√
log log m/ log m) [13].

In the setting of ORAM, we are interested in a PIR of long records, where
the number of bits in each record |yj | is in the same order as the total number
of records m. In this case there is a simple PIR protocol that was adopted
in [41]: The database of records is replicated across the two servers, S1 and S2.
Suppose that the user is interested in retrieving record i. For the request, the
user generates a random bit string of length m, X = (x1, x2, · · · , xm). He then
generates X ′ = (x′

1, x
′
2, · · · , x′

m) by flipping the i-th bit in X, i.e., x′
i = x̄i and

x′
j = xj for j �= i. The user then sends X to S1, and X ′ to S2. S1 computes
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and responds with
∑

j xj · yj while S2 computes and responds with
∑

j x′
j · yj .

Here, the sums represent a bit-wise XOR, and · represents a bit-wise AND. The
user then sums up (XORs) the two responses to obtain

∑
j(xj + x′

j) · yj = yi.
The above protocol is denoted as TwoServerPIR(S1,S2, Y, i). The communication
overhead is O(|yj | + m) = O(|yj |).
PIR-writes. Analogous to PIR, we can define PIR-write operations. Our con-
struction in this paper does not use PIR-writes, but we briefly mention it below
since our lower bound in Sect. 5 allows PIR-writes.

A PIR-write operation lets a user update one record among a list of records on
a server without revealing to the server which record is updated. Notice that now
the records can no longer be public data; they have to be encrypted. Otherwise,
the server can trivially figure out which record is updated by comparing their
values before and after the update.

4 The Construction

Our construction follows the tree-based ORAM paradigm in the previous section
(Sect. 3.2). In this section, we present the changes in server storage and the
retrieval and eviction strategies to obtain a sub-logarithmic bandwidth overhead.
Figure 2 shows the pseudocode of our construction. Figure 3 shows how servers
store blocks and an example eviction for our construction.

Server storage. Our construction uses two servers S1 and S2, both storing
identical information (hence, Fig. 3 shows only one tree). Our d-ary tree has
L + 1 levels, numbered from 0 (the root) to L (the leaves). Each node in the
tree is called a bucket. Each bucket consists of Z slots that can each store one
block. Slots from the non-root buckets are equally divided into d slices, each of
size Z/d. Each leaf bucket has an bucket aux that can store Z blocks.

Metadata. Our construction requires metadata similar to the description in
Sect. 3.2, i.e., the position map PosMap and a block identifier for each slot. As
mentioned, we assume the client stores all metadata locally for the cloud storage
application, but can easily outsource them to the server without asymptotically
increasing bandwidth blowup (Sect. 4.3).

Initialization. Initially, the ORAM tree at both servers contain all dummy
blocks. The position map is initialized to contain independent and uniformly
random numbers for each block. The client initializes each block using a logical
write operation. If the client issues a logical read operation to a block that has
never been initialized, the behavior of the ORAM is undefined.

Access. Each client request is represented as a tuple (a, op, data′) where a is
the address of the block, op ∈ {Read,Write} and data′ is the data to be written
(data′ = ⊥ if op = Read). The client maintains a counter cnt for the total number
of accesses made so far. For each access (a, op, data′), the client does the following
(refer Fig. 2):
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1: Persistent variables cnt, G initialized to 0
2: cnt is the number of accesses performed so far since the previous eviction
3: G is the number of evictions performed so far, represented in base d
4: Let P(l) be the path from root to leaf l, and P(l, k) be the k-th bucket on P(l).

5: function Access(a, op, data′)
6: l ← PosMap[a]
7: data ← ReadBlock(l, a)
8: if op = read then
9: return data to client

10: else
11: data ← data′

12: l′ ← UniformRandom(0, dL − 1)
13: PosMap[a] ← l′

14: Write data to the cnt-th slot of the root bucket
15: cnt := cnt + 1 mod Z/2
16: if cnt = 0 then
17: le ← reverse(G)
18: EvictAlongPath(le)
19: G ← G + 1 mod dL

20: function ReadBlock(l, a)
21: (id1, id2, . . . , idZL) ← Retrieve block identifiers on P(l)
22: Suppose idi = a
23: return TwoServerPIR(S1,S2,P(l), i)

24: function EvictAlongPath(le)
25: for k ← 0 to L − 1 do
26: Let s be the (k+ 1)-th digit of G // For each bucket, (k+ 1)-th digit accesses

slices in a round-robin manner.
27: EvictToSlices(le, k, s)
28: // Additional processing for the leaf bucket P(le, L) to make it empty
29: Read all blocks in P(le, L) and its auxiliary bucket P(le, aux)
30: Move all real blocks from P(le, L) to P(le, aux)

31: function EvictToSlices(le, k, s)
32: // Evict from bucket P(le, k) to the s-th slice of each of its d children
33: Download all blocks in P(le, k)
34: for t ← 1 to d
35: Let S be the s-th slice of the t-th child of P(le, k)
36: Let T be the set of real blocks in P(le, k) that can be evicted to S
37: Upload T to S and pad remaining slots in S with dummy blocks

Fig. 2. Access and eviction algorithm for our oblivious RAM construction.

1. The client looks up position map PosMap[a] to obtain the leaf l associated
with block a (line 6).

2. Let P(l) represent the path from root to leaf l, and P(l, k) represent
the k-th bucket on P(l). The client retrieves the block identifiers on the
path (id1, id2 . . . , idZL) from its local storage. Due to the tree-based ORAM
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Fig. 3. Example eviction path for a three-level 4-ary tree at G = 2 i.e. G =
(02)4. For evicting the root bucket into its children buckets, the client downloads blue
colored root bucket and writes to the blue colored slices of its children. The figure shows
load of the buckets just before eviction from the root bucket. (Color figure online)

invariant, one of the identifiers on the path will be a. Without loss of gener-
ality, assume idi = a (lines 21 and 22).

3. The client invokes a two-server PIR protocol TwoServerPIR(S1,S2,P(l), i) to
retrieve the block with address a (line 23).

4. The client updates the data field of the block a to data′ if op = Write. It sets
a new leaf l′ for the block and updates PosMap. It updates the metadata to
remove the block from the tree. It appends the block a to the cnt-th slot of
the root bucket (lines 8–14).

5. The client increments cnt. If cnt = Z/2, the client resets cnt and performs
the eviction procedure described below (lines 15–19).

Eviction. The eviction procedure of our construction is a generalization of the
eviction procedure of Onion ORAM [12]. It differs from Onion ORAM in the
following two ways. First, we apply the eviction scheme on a reverse lexico-
graphical ordering [19] over a d-ary tree instead of a binary tree. Second, when
evicting from each bucket along a path, we write to only one slice of each child
bucket (instead of writing to the entire child buckets). This is essential for our
construction to achieve sub-logarithmic bandwidth blowup.

As shown in Fig. 2, we evict every Z/2 accesses along reverse lexicographical
ordering of paths. Given that we have a d-ary tree instead of a binary tree, we
represent the paths as numbers with base d. We use a counter G to maintain
the next path le that should be evicted. Eviction is performed for each non-leaf
bucket on path P(le). For the k-th bucket from the root, denoted P(le, k), the
client first downloads the bucket P(le, k). It then uploads all real blocks to the
s-th slice (which will be empty before this operation) of each of its children
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G = (02)4 G = (03)4 G = (10)4 G = (11)4

G = (12)4

2

0

3 0 1

2

0 1 1

1

G = (13)4

3

1

G = (20)4

0

2

G = (21)4

1

2

Fig. 4. Buckets and slices accessed for 2d consecutive evictions. Here, d = 4
and G = # evictions mod dL. (x)a denotes the number x represented in base a. The
dots in the slices represent real blocks at the end of the eviction operation. Note that for
each bucket, slices are accessed (written into) in a round-robin manner. If an eviction
path passes through a bucket at level i at t-th eviction then it passes through it again
at t + di evictions.

where s is the (k + 1)-th digit of G. (We show in Sect. 4.2 that there will be
sufficient room in these slices.) After this operation, the bucket P(le, k) will be
empty. Due to the reverse lexicographical order of eviction paths, P(le, k) will
be a child bucket for the next d − 1 evictions involving it (refer Fig. 4 for an
example), during each of which the slice being written to will be empty. For the
last level (level L), the client downloads all blocks in the leaf bucket P(le, L) and
its auxiliary bucket P(le, aux). It moves all real blocks to the auxiliary bucket
P(le, aux) and uploads both buckets to the server.

Example. An example showing 2d consecutive evictions is in Fig. 4 for d = 4. In
the example, we start with eviction number G = (02)4. Observe that the third
child of the root bucket is emptied at G = (02)4 as the reverse lexicographic
eviction path (20)4 passes through it. In the next d − 1 evictions, one slice of
the bucket is written to in a round-robin manner. Finally, at eviction number
G = (12)4, when the path (21)4 passes through it again, the last slice is written
into after which the entire bucket is emptied again. Similarly, it can be easily
seen that for each bucket at level i, a slice is written into every di−1 evictions
and the bucket is emptied every di evictions.

4.1 Parameterization and Overflow Analysis

We show that the buckets (and slices) in the tree overflow with negligible proba-
bility. In our construction, the root bucket and the auxiliary buckets are not par-
titioned into slices. Eviction is performed every Z/2 accesses, so the root bucket
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never overflows. Below, Lemma 1 analyzes auxiliary buckets while Lemma 2
analyzes slices in non-root non-auxiliary buckets.

Lemma 1. If the size of auxiliary buckets Zaux satisfies N ≤ dL · Zaux/2, the
probability that an auxiliary bucket overflows is bounded by e− Zaux

6 .

Proof. For an auxiliary bucket b, define Y (b) to be the number of real blocks in
b. Each of the N blocks in the ORAM has a probability of d−L to be mapped
to b independently. Thus, E[Y (b)] ≤ N · d−L ≤ Zaux/2, and a simple Chernoff
bound completes the proof. ��

The following lemma generalizes Onion ORAM [12] Lemma 1 to the scenario
of a d-ary tree.

Lemma 2. The probability that a slice of a non-root and non-auxiliary bucket
overflows after an eviction operation is bounded by e− Z

6d .

Proof. Consider a bucket b, and its i-th slice bi. Define Y (b) to be the number
of real blocks in b, and Y (bi) to be the number of blocks in bi after an eviction
operation.

We will first assume that all slices have infinite capacity and show that
E[Y (bi)] ≤ Z/2d, i.e., the expected number of blocks in a non-root slice after
an eviction operation is no more than Z/2d at any time. Then, we bound the
overflow probability given a finite capacity.

For a non-root and non-auxiliary bucket b, we define variables m and mi, 1 ≤
i ≤ d: the last EvictAlongPath operation where b is on the eviction path is the
m-th EvictAlongPath operation, and the EvictAlongPath operation where b is a
sibling bucket with eviction happening to slice i is the mi-th EvictAlongPath
operation. Clearly, during eviction to one of the d slices, the bucket b is on the
eviction path. Thus, one of mi is equal to m. We also time-stamp the blocks as
follows. When a block is accessed and remapped, it gets a time stamp m∗, if the
next EvictAlongPath would be the m∗-th EvictAlongPath operation.

Now consider bi and Y (bi). There exist the following cases:

1. If m ≥ mi, then Y (bi) = 0, because the entire bucket b becomes empty when
it is a parent bucket during the m-th EvictAlongPath operation, and the next
eviction that evicts blocks to slice bi has not occurred.

2. If m < mi, we must have mi−1 < mi. Otherwise, mi is the smallest among
m1, . . . ,md and it must be that m ≥ mi. We consider blocks with what time
stamp range can end up in bi.
– Blocks with time stamp m∗ ≤ m will not be in bi as these blocks would

have been evicted out of b in the m-th EvictAlongPath operation.
– Blocks with time stamp m < m∗ ≤ mi−1 or m∗ > mi will not be in bi as

these blocks are evicted to either slices ≤ i − 1 or slices > i respectively.
– Blocks with time stamp mi−1 < m∗ ≤ mi can be evicted to bi.
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There are at most (mi −mi−1)Z/2 blocks with time stamp mi−1 < m∗ ≤ mi.
Each of these blocks go to bucket b independently with probability d−j , where
j is the level of b. Due to the deterministic reverse lexicographic ordering of
eviction paths, it is easy to see that mi −mi−1 = dj−1. Therefore, E[Y (bi)] ≤
dj−1 · Z/2 · d−j = Z/2d.

In either case, we have μ = E[Y (bi)] ≤ Z/2d. Now that we have independence
and the expected number of blocks in a bucket, using a Chernoff bound with
δ = 1, a slice bi overflows with probability

Pr[Y (bi) > (1 + δ)u] ≤ e− δ2μ
3 = e− Z

6d . ��
Combining the two lemmas, we can set Z = Ω(dλ) and Zaux = Ω(λ). The

probability that any slice or any bucket overflows is e−Ω(λ). Following prior
work [12,44,53], it suffices to set λ = ω(log N) for N−ω(1) failure probability,
i.e., negligible in N .

Server Storage. The amount of server storage in our construction is

Zaux · dL + Z · ΣL
i=0d

i = Θ(N).

4.2 Security Analysis

Similar to all tree based ORAMs, for each access, the client performs the retrieval
phase on a random path. The use of PIR hides the location of the requested
block on that random path. Eviction is performed on a publicly known reverse
lexicographical ordering of paths. Along the eviction path, each bucket and a
predetermined slice in each child buckets are downloaded/uploaded. Thus, all
client operations observed by the servers are independent of the logical client
access patterns.

4.3 Reducing Client Storage

In the construction described so far, the client stores the Θ(N log N)-bit position
map, Θ(N log N)-bit metadata for all block and uses Θ(dλ) blocks of temporary
storage during the eviction operation. In this section, we optimize our scheme
to reduce the client storage to O(1) blocks.

A. Position map. The position map for the main ORAM has a Θ(log N)-bit
entry for each of the N blocks, amounting to Θ(N log N) bits of storage.

Position map can be stored recursively in smaller ORAMs as discussed by
Shi et al. [48]. As discussed in [52], when the data block size is Ω(log2 N) (which
is the case for our scheme), using a small block size for recursive position map
ORAMs, the asymptotic cost of recursion would be insignificant compared to the
main ORAM tree. Hence, recursion does not increase to the bandwidth blowup
asymptotically.
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1: function EvictToSlices(le, k, s)
2: // Evict from bucket P(le, k) to the s-th slice of each of its d children
3: Download metadata for bucket P(le, k) from S1

4: for t ← 1 to d
5: Let S be the s-th slice of the t-th child of P(le, k) and Si be its i-th slot //

S is empty
6: for each Si ∈ S
7: if ∃j such that the j-th block in P(le, k) can be evicted to S then
8: block = TwoServerPIR(S1,S2,P(le, k), j)
9: Locally update the metadata for the j-th block in P(le, k) to be dummy

10: Upload block along with its metadata to Si on both servers
11: else // no such j exists, do a dummy PIR and a dummy upload
12: Run TwoServerPIR(S1,S2,P(le, k), 1) and discard its output
13: Upload a dummy block with a dummy identifier to Si on both servers
14: Upload the updated metadata of P(le, k) to S1

Fig. 5. Evicting to children slices using O(1) blocks of client storage.

B. Metadata for each block in the tree. For each block of the tree, we store
whether the block is real or dummy. If it is real, the identifying address is stored.
This amounts to another Θ(N log N) bits of storage.

We can store the metadata of each block along with the block data on the
server. However, this would require downloading metadata from the server during
retrieval before performing each PIR operation. For Z = O(dλ), L < logd N and
a size of O(log N) bits for storing the identifier and whether the block is dummy,
the total amount of metadata downloaded for an access is O(dλ log N logd N).
Thus, for a block size of Ω(dλ log N logd N) bits, the asymptotic bandwidth for
downloading this metadata is absorbed.

C. Temporary storage for an eviction operation. During an eviction oper-
ation, the client downloads a bucket and a slice from each of its d children. This
is equivalent to downloading two buckets. Thus, for each step of the eviction
operation the client needs to store Z = O(dλ) blocks.

We now show how this client storage can be reduced to O(1). At a high level,
the client needs to perform the eviction from a bucket to its children buckets
without downloading the entire buckets. If the client can only store one block,
it needs to download one block at a time from the parent bucket and upload
it to one of its children buckets. And the client needs to do so obliviously. We
achieve this by hiding which block from the parent bucket is downloaded, again
using PIR, and letting the client upload to the children buckets in a deterministic
order. The new EvictToSlices algorithm for evicting a parent bucket to its children
slices is shown in Fig. 5.

To perform the eviction from a bucket P(le, k) to a slice S of its t-th child, the
client first downloads the metadata corresponding to P(le, k) (line 3). The client
uploads to each slot i in S (denoted Si) sequentially, one slot at a time (line 3).
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Before this eviction, each slot Si will be empty due to Lemma 2. There are two
cases:

1. If there exists a real block in P(le, k) that can be evicted to S, the client
downloads that block from P(le, k) using PIR (thus hiding its location in
P(le, k)), and uploads it (re-encrypted) to Si (lines 7–10).

2. If no real block in P(le, k) can be evicted to S, the client performs a dummy
PIR to download an arbitrary block from P(le, k), discards the PIR output,
and uploads an encrypted dummy block to Si (lines 11–13).

Thus, for each Si ∈ S in order, the client downloads a block from the parent
bucket using PIR (without revealing its position or whether its a dummy PIR)
and uploads a block to Si. This eviction process requires O(1) blocks of storage.

4.4 Bandwidth Analysis

Bandwidth blowup. We analyze the bandwidth blowup of our construction
while temporarily ignoring metadata for simplicity. The bandwidth blowup for
retrieving a block using PIR is O(1). On evictions, for each bucket on the path,
the client downloads the parent bucket and uploads to one slice from each of
the d child buckets, which is equivalent to two buckets of bandwidth. Thus, an
eviction costs 2ZL blocks of bandwidth and it is performed every Z/2 accesses,
giving an amortized bandwidth blowup of 4L < 4 logd N . Overall, the bandwidth
blowup of our scheme is O(logd N).

Trade-off regarding d. Although our bandwidth blowup decreases with d,
we cannot keep increasing d for free. The reason is that the client needs to
download a Θ(log N)-bit metadata for all dλ logd N blocks on a path, on each
access and eviction. Recursion contributes another O(log3 N) bits, but that is
no greater than the metadata overhead. So the raw bandwidth (in bits) per
access is O(B logd N + dλ logd N log N). While we usually focus on the multi-
plicative blowup term, when d becomes too large, the additive term will domi-
nate. Thus, the aforementioned bandwidth blowup only holds if the block size
is B = Ω(dλ log N). (If the client has large local storage and stores metadata
locally, the block size B can be a log N factor smaller.)

In other words, the optimal d should be determined as a function of the
block size B and the number of blocks N . For instance, for an application using
moderately large block size B = Ω(λ log2 N), we can set d = Θ(log N) and the
bandwidth blowup is O(log N/ log log N). If some application uses very large
blocks such as B = Ω(

√
Nλ log N), then we can set d = Θ(

√
N) and achieve a

bandwidth blowup of O(1).

5 Extending the Goldreich-Ostrovsky Lower Bound

Goldreich and Ostrovsky [23] gave an Ω(logc N) lower bound on the bandwidth
overhead assuming perfect correctness, perfect security and assuming the client
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to be restricted to the following operations: reading from a memory location and
writing to a memory location. Here, N represents the number of logical blocks
stored on the server and c is the number of logical blocks stored by the client.

In this section, we first review (a slight variant of) the original Goldreich-
Ostrovsky lower bound and its proof from [23]. We then extend the model to
include PIR and PIR-write as possible client operations, and analyze how this
changes the bound.

Following Goldreich-Ostrovsky and Boyle-Naor [5,23] (both papers consid-
ered the client as a CPU) we will use client and CPU interchangeably, and refer
to client storage as c registers.

5.1 Original Lower Bound

We present a slight variant of the CPU used in the original lower bound work [23]:

Definition 2. A CPU is modeled as a probabilistic random-access-machine
(RAM) which has c registers and is restricted to the following operations:

– READi reads a block from memory into a CPU register: For an addr ∈ [N ],
set Reg[i] ← val, where val is the content of the memory at location addr.

– WRITEi moves a block from a CPU register to memory: For some i ∈ [c] and
addr ∈ [N ], write the data in Reg[i] to location addr in the memory.

Our RAM model has slightly different operations than the original analysis
in [23] to simplify the exposition. This will cause only constant factor differences
in the bound. Given this model, the original lower bound can be stated as:

Theorem 1. Every statistically oblivious simulation of a probabilistic RAM
(Definition 2), which can access N blocks of data and hold c blocks in the CPU,
on input y makes at least max{|y|, Ω(t·logc N)} accesses to simulate t = poly(N)
steps.

Proof. As described by Goldreich and Ostrovsky [23], the task of simulating an
ORAM can be modeled as a game in between three players

1. The CPU, which can hold at most c blocks and has access to a random
function f

2. the program request sequence of length t
3. the observer

The CPU knows the program request sequence ahead of time. Suppose the
request access sequence is represented as r1, . . . , rt. The game takes place on a
memory consisting of N cells, each capable of storing a single block.

The game proceeds for t rounds. In each round i, the CPU loads ri in one
of its registers in such a way that the observer does not learn ri. The CPU does
so by making a sequence of operations as described in Definition 2. At any time
during the game, the CPU can store at most c blocks in memory. Round i ends
when the CPU holds block ri.
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For a t sized request sequence, the CPU’s response can be represented by
two q sized sequences. The first sequence consists of an externally visible access
pattern. Each entry in this sequence is a single address (each of which is sufficient
to implement either READi or WRITEi). The second sequence consists of hidden
operations performed by the CPU. Let us consider the possible number of hidden
actions that can be taken by the CPU, for a fixed visible access pattern. For each
visible read address, the block that is read can be stored in one of the c registers
in the CPU. Likewise, for each visible write address, the block written back could
have been removed from any one of the c registers in the CPU. Thus, hidden
from the observer, the system can evolve in c ways on a READ and c ways on a
WRITE.

Given that the CPU stores c blocks, a q length sequence can satisfy at most cq

program access sequences. Therefore, each visible access sequence can satisfy at
most (2c)qcq program request sequences. For perfect security, the visible access
sequence should be able to satisfy all N t possible request sequences, i.e.,

N t ≤ (2c)qcq

or q ≥ t log N
log c+log(2c) = Ω (t logc N). ��

The above is a bound on the number of operations. Since each operation
incurs at least 1 block of bandwidth, we also obtain an amortized bandwidth
blowup lower bound of Ω(logc N).2

5.2 Augmented Lower Bound (After Adding PIR)

We now extend the above result to allow the CPU to perform PIR and PIR-write.

Definition 3. A PIR-augmented CPU is modeled as a probabilistic random-
access-machine PIR-RAM which has c registers and is restricted to the following
operations:

– READi as described in Definition 2.
– WRITEi as described in Definition 2.
– PIR-READi reads a block from memory into a CPU register using PIR: For a

set of at most D addresses, set Reg[i] ← val, where val can be the content of
the memory at any of the locations in the set.

– PIR-WRITEi moves a block from a CPU register into memory privately using
a PIR-WRITE operation: For a set of at most D addresses, write the data in
Reg[i] to a location among one of the D addresses.

Theorem 2. Every statistically oblivious simulation of a probabilistic PIR-RAM
(Definition 3), which can access N blocks of data and hold c blocks in the
CPU and perform PIR on a maximum of D blocks, on input y makes at least
max{|y|, Ω(t · logcD N)} accesses to simulate t = poly(N) steps.
2 If we assume that the memory is initially permuted by the CPU unknown to the

server, then the total number of program request sequences is at most MM (2c)qcq

where M = poly(N) is the physical memory size. Hence, we have q = Ω((t −
M) logc N).
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Proof. The proof follows the same framework as the original lower bound. The
number of operations in the visible and hidden sequences due to READi or
WRITEi operations is unchanged. Now, the visible sequence additionally reveals
the set of D addresses accessed on a PIR request for PIR-READi/PIR-WRITEi.
In each of these operations, the client can select one out of D possible memory
blocks to read/write in the visible memory. Furthermore, for each of the above
D outcomes, the client can add the read block to (or remove the written block
from) any one of the c local registers. Thus, the system can evolve in cD possible
ways for each of the PIR-READ and PIR-WRITE operations.

Extending the original argument, each visible access sequence can satisfy
(2c+2cD)qcq program request sequences. For perfect security, the visible access
sequence should be able to satisfy all N t possible request sequences, i.e.,

N t ≤ (2c + 2cD)qcq

or q ≥ t log N
log c+log(2c+2cD) = Ω

(
t log N
log(cD)

)
. ��

Again, the bound is on the number of operations. Since each of the four
operations incurs at least 1 block of bandwidth, a bound on the number of
operations translates to a bound on amortized bandwidth blowup.

5.3 Discussion

Accounting for failure probability. The above lower bound assumes per-
fect security, i.e., each visible physical access sequence should be able to satisfy
all possible program request sequences. However, using an argument similar to
Wang et al. [54], the same lower bound can be extended to work for up to O(1)
failure probability (and hence, negligible failure probability).

PIR as a black box. Our lower bound is independent of the implementation
details of the PIR and PIR-write operations. The bound is applicable to any
statistically secure PIR construction that meets the interface in Definition 3,
regardless of the number of servers it uses. We also note that although the lower
bound considers PIR-WRITE as a possible operation, our construction does not
use this primitive.

Our construction and the lower bound. Our construction matches this
lower bound for certain parameter ranges. We use c = 1 register and perform
a PIR operation on D = O(d · poly(log N)) blocks. Thus, our lower bound is
asymptotically tight for d = Ω(log N) when the data block size B = Ω(d log2 N).

C-ORAM, CHf-ORAM and the lower bound. We discuss how the lower
bound is applicable to C-ORAM [40] and CHf-ORAM [39] in Sect. 6.2.

Circumventing the lower bound. The lower bound on bandwidth only
applies to black-box usage of PIR. Onion ORAM [12] circumvents the lower
bound and achieves O(1) bandwidth blowup. The reason is that the homomor-
phic select operation in Onion ORAM (a non-black-box usage of PIR) does not
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consume one unit of bandwidth. Therefore, while the number of operations in
Onion ORAM is still subject to the bound, the bound does not translate to a
bound on bandwidth blowup. It is also possible to circumvent the lower bound
by adding other operations (e.g., FHE [2]).

6 Security Analysis of C-ORAM

C-ORAM [40] is a CCS’15 paper that achieves constant bandwidth blowup over
smaller block sizes and performs less server computation (compared to Onion
ORAM [12]). C-ORAM introduces an eviction procedure that publicly and
homomorphically merges bucket contents. CHf-ORAM [39] extends C-ORAM
with four non-colluding servers to avoid homomorphic encryption. In this section,
we first give a short review of C-ORAM and CHf-ORAM. We then use the lower
bound described in the previous section to show that the results obtained by
C-ORAM and CHf-ORAM are impossible. Lastly, we give two concrete attacks
that apply to both C-ORAM and CHf-ORAM.

6.1 A Review of C-ORAM

C-ORAM follows the tree-based ORAM framework in Sect. 3.2. It has a large
bucket size Z = ω(log N) and performs one eviction every χ = O(Z) accesses.
On accesses, it relies on single-server PIR (or 2-server PIR in the case of CHf-
ORAM) to achieve constant bandwidth. Each eviction goes down a path in the
reverse lexicographical order. For each bucket on the path, C-ORAM moves
all blocks in it into the two child buckets. To perform this eviction procedure
using constant bandwidth, C-ORAM proposes the following “oblivious merge”
operation.

Each bucket may contain three types of blocks: real, noisy and zero. Essen-
tially, C-ORAM has two types of dummy blocks. A zero block is a dummy block
whose plaintext value is 0; a noisy block is a dummy block whose plaintext value
is arbitrary. Metadata in each bucket or maintained by the client tracks the type
of each block. C-ORAM then encrypts each block using an additive homomor-
phic encryption. Notice that if the server homomorphically merges an encrypted
real block with an encrypted zero block, the result would be an encryption of
the real block, i.e., E(r) + E(0) = E(r) for a plaintext real block r. However, if
a real block is merged with a noisy block or another real block, then the content
cannot be recovered. If a zero block is merged with a noisy block, it is “conta-
minated” and becomes a noisy block. Therefore, in order to merge two buckets,
C-ORAM needs to permute and align the two buckets in a very specific way, i.e.,
a real block in one bucket must always be aligned with a zero block in the other
bucket. Crucially, C-ORAM also prioritizes aligning two noisy blocks such that
it contaminates as few zero blocks as possible.

To make the presentation clear, we distinguish “permute” and “shuffle” oper-
ations. Whenever we say a set of blocks are “shuffled”, we mean the client down-
loads all the blocks, shuffles them secretly and uploads them back to the server;
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the server has no idea how the blocks are shuffled. Whenever we say a set of blocks
are “permuted”, we mean the client instructs the server to permute them, and
the server sees the permutation. Therefore, permuting a set of blocks does not
provide any obfuscation effect. Its only purpose is to enforce the merging rules
in C-ORAM, i.e., a real block should be merged with a zero block, and a noisy
block should be merged with another noisy block if possible.

Each eviction goes down a path, and merges each bucket on the path into
its two children. Note that shuffling all buckets involved an eviction would take
more than constant bandwidth. Therefore, when two buckets need to be merged
in C-ORAM, they are permuted and not shuffled, and the server sees the permu-
tations. It is unnecessary to permute both buckets. It is equivalent to permuting
only the parent bucket and merging it into the child bucket. Now we try to
analyze whether these permutations leak information about the access pattern.
C-ORAM argues that if the client secretly and randomly shuffles the root bucket
before each eviction, then all permutations look random and leak no information
to the server. Unfortunately, this belief is incorrect.

6.2 C-ORAM, CHf-ORAM and the Lower Bound

C-ORAM and CHf-ORAM introduced three new operations on top of the stan-
dard ORAM model: download a block from a path of poly-logarithmic blocks
using PIR-READ, upload a block to one hidden location in a bucket using
PIR-WRITE, and an oblivious merge operation. In an oblivious merge opera-
tion, the server applies plaintext permutations (chosen by the client) to buckets
before merging them. This operation creates only one possible outcome to the
system state, since no action is hidden from the server. Thus oblivious merge
does not affect the lower bound in Sect. 5.

CHf-ORAM achieves statistical security with negligible failure probability
and is thus subject to the lower bound in Theorem 2. The number of operations
required for t logical accesses is Ω( t log N

log(cD) ) where c = O(1) and D = polylog(N).

Thus, its bandwidth blowup is lower bounded by Ω( log N
log log N ). Instead, CHf-

ORAM claims to have achieved O(1) bandwidth, implying a flaw in its con-
struction.

C-ORAM achieves computational security due to the use of single-server
PIR-READ/PIR-WRITE, and thus does not directly violate the lower bound. How-
ever, unless carefully shown otherwise, it is extremely unlikely that any security
flaw of CHf-ORAM can be fixed by merely replacing information theoretically
secure PIR with computationally secure PIR.

6.3 An Attack on the Optimized Construction of C-ORAM

This subsection and the next one give two concrete attacks to C-ORAM to
give some insights on why it is insecure. Before we start, the following analogy
may aid understanding. Imagine a trivially broken ORAM as follows. The client
randomly shuffles all N blocks only once initially and keeps track of the mapping



Asymptotically Tight Bounds for Composing ORAM with PIR 113

locally. Then for each request, the client simply retrieves the requested block.
Each access is clearly to a random location due to the initial shuffle. But if
the same block is requested multiple times, these accesses will go to the same
location and this correlation reveals information.

C-ORAM essentially used a flawed argument like the above. While each per-
mutation looks random in isolation, there is correlation among permutations,
and the correlation leaks information. Both of our attacks exploit this fact.

Our first attack is on the optimized construction of C-ORAM, i.e., the “Sec-
ond Construction” in Sect. 3.3. The goal of the second construction is to decrease
D, i.e., the number of blocks to perform PIR on. The idea is to, on every access,
“clone” the requested path to temporary memory, and perform a C-ORAM evic-
tion operation (which we call a “shadow eviction”) along the cloned path. By
the ORAM invariant, the block of interest now lives in the leaf bucket and PIR
to only the leaf bucket (not the entire path) is sufficient to retrieve the block.
The cloned path is thrown out after the PIR operation.

This scheme suffers from correlations among permutation operations when a
pair of buckets (a parent and its child) are part of multiple shadow evictions in
between being involved in two regular evictions. Note that due to randomness
(even if one eviction happens after every access, as suggested in C-ORAM),
there is non-negligible probability that a pair of buckets deep in the tree are
involved in more than 1 shadow evictions between two regular evictions. In each
shadow eviction, the normal C-ORAM eviction rules apply: a real block can
only be merged with a zero block, and a noisy block is prioritized to be merged
with another noisy block. Since the contents of the two buckets remain the same
across these shadow evictions, it is easy to see that certain slots in one bucket
(e.g., the real blocks) will repeatedly “prefer” certain slots in the other bucket
(e.g., zero blocks). This bias can reveal the number of real blocks in the bucket.
It is well known that revealing bucket load in tree ORAMs is sufficient to leak
the access pattern [48]: more recently accessed blocks will be in buckets higher
in the tree than less recently used blocks.

6.4 An Attack on the Basic Construction of C-ORAM

Our second attack applies to both the basic version and the optimized ver-
sion of C-ORAM. For this attack, we need the first three evictions. Recall that
the basic C-ORAM performs one eviction every χ accesses, so we need client
access sequences of length 3χ. Concretely, consider the following two client access
patterns:

1. Access the same block 3χ times, i.e., X = {a1, . . . , a3χ} where ai = a,∀i
2. Access 3χ distinct blocks, i.e., X ′ = {a1, . . . , a3χ} where ai �= aj , ∀i �= j.

In this attack, we assume that initially all blocks in the C-ORAM tree are
zero blocks. Our attack also works if initially the server stores all real blocks in
leaf buckets, and all non-leaf buckets only contain zero blocks. We believe these
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Fig. 6. Public permutations in C-ORAM are correlated.

are the two most natural initial states for tree-based ORAMs.3 With access
pattern X, the root will contain 1 real block, χ − 1 noisy blocks and Z − χ zero
blocks before each eviction. With access pattern X ′, the root will contain χ real
blocks, 0 noisy block and Z − χ zero blocks before each eviction.

Figure 6 walks through the first three evictions in C-ORAM, and highlights
a pair of correlated permutations during the 2nd and 3rd eviction. The figure
shows the first three levels of the tree. O represents a bucket full of zero blocks.
Initially, all blocks are zero. A, B and C are the three buckets of blocks injected
into the root before the 1st, 2nd and 3rd eviction, respectively. A, B and C are
all randomly shuffled by the client.

On the first eviction (first row), A is injected to the root. The bottom of the
figure depicts an example of A assuming a small bucket size Z = 8 and χ = 4. It

3 Through personal communication with the C-ORAM authors, we learnt that
C-ORAM does not start in these two initial states. Instead, they assume each
bucket contains an equal number of noisy and zero blocks that are shuffled randomly.
However, the C-ORAM paper did not specify what the initial state is.
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contains χ = 4 real blocks, denoted r, and 4 zero blocks, denoted o. This would
be the case when the original access pattern is X ′ and four distinct blocks are
accessed. A is then evicted to the next level, producing A1 and A2. They are
then merged with the two children (both are all-zero buckets O), leaving the
root empty. A1 contains the set of blocks mapped to the left half of the tree,
and A2 contains the set of blocks mapped to the right half of the tree. In the
example at the bottom, we assume 3 blocks are mapped to the left half and 1
block is mapped to the right half. Notice that A1 and A2 are correlated. All the
real blocks in A1 are noisy blocks (denoted n) in A2 and vice versa. On the other
hand, all the zero blocks in A1 are zero blocks in A2 as well. We remark that
A1 and A2 will be independently permuted (not shown in the figure). The two
permutations will be truly random because merging with empty buckets imposes
no restrictions on how the two buckets are aligned. But as we noted earlier the
permutations do not provide any security benefits since the attacker sees the
permutation in clear. The attacker can easily apply the inverse permutation to
get the same view as our example in which the correlation exists.

The first eviction continues down the leftmost path and evicts A1 into A3 and
A4, and further evicts A3 down the tree (not shown). Again, a public random
permutation is applied for every merge, and similar correlations exist among all
the derivative of A once the attacker applies the inverse permutation.

The second eviction (second row) injects another shuffled bucket B. B pro-
duces B1 and B2. B1 is randomly permuted and merged with a zero bucket. B2,
however, needs to be permuted according to the C-ORAM rules (described in
Sect. 6.1) to align with A2. After that, the eviction goes on to evict the merged
bucket A2 + B2 and its children (not shown).

On the third eviction (third row), we focus on the left half of the tree. C
similarly produces C1 and C2. C1 is permuted and merged with B1. The merged
bucket is then permuted again to be merged with A4. This latter permutation (to
align B4 + C4 with A4) will have a strong correlation with the one that aligns A2

and B2 in the second row. More crucially, the type of correlation is very different
depending on whether the client access pattern is X or X ′, thereby revealing
the access pattern.

First consider access pattern X. In this case, A2, B2, A4 and B4 mostly
contain noisy and zero blocks (there are at most 3 real blocks in the system).
Furthermore, the noisy blocks occupy the same set of locations in A2 and A4,
and also in B2 and B4. If two noisy blocks are aligned during A2 + B2, those two
slots are also likely to be aligned in A4 + B4 because C-ORAM prioritizes noisy-
noisy merge. Define the number of repetitions between two permutations π and
π′ to be the size of the set {i | π(i) = π′(i)}. If we simply count the number of
repetitions between the above two permutations, it will be significantly higher
than 1, which is the expected value for two random permutations.

Now consider access pattern X ′. In this case, A2, B2, A4 and B4 will all
contain a moderate number of real blocks. Recall that all real blocks in A2 (B2)
are noisy blocks in A4 (B4) and vice versa, while all zero blocks in A2 (B2) are
zero blocks in A4 (B4). Now once a real block in A2 is aligned with a zero block



116 I. Abraham et al.

in B2, that same slot in A4—a noisy block—tends to avoid that previous slot in
B4—a zero block—again because C-ORAM prioritizes noisy-noisy merge. If we
again count the number of repetitions between these two permutations, it will
be much lower than the expected value 1 for two random permutations.

Utilizing these two different types of correlation, the attacker can easily dis-
tinguish X and X ′ by counting the repeated entries between the two highlighted
permutations above. We implement the above attack and run the experiment
10000 times with Z = 60 and χ = 20. For access pattern (i), the average num-
ber of repetition we get is 1.96. For access pattern (ii), the average number of
repetition is merely 0.81. We repeat the same experiment with Z = 120 and
χ = 40, and reproduce the results: 1.94 and 0.86. This shows our attack easily
distinguishes the two access patterns.

7 Conclusion and Open Problems

In this work, we design an Oblivious RAM with sub-logarithmic overhead where
the servers only perform XOR operations. We achieve this by using a novel
eviction scheme over a d-ary tree to obtain an eviction overhead of O(logd N)
and using two-server PIR to reduce the cost to retrieve a block. We show a
lower bound of Ω(logcD N) for bandwidth blowup for a client storing c blocks
of data and performing a PIR on D blocks of data at a time. Our construction
matches our lower bound under certain parameter ranges. C-ORAM [40] and
CHf-ORAM [39] violate the lower bound and have security flaws.

While we do achieve a sub-logarithmic bandwidth blowup, we do so by using
a two server PIR and server computation. It is still an open question whether a
sub-logarithmic bandwidth blowup can be obtained in the original model defined
by Goldreich and Ostrovsky (the GO bound does not rule it out if the client
uses c = ω(1) storage). Also, all known ORAM schemes that achieve O(log N)
bandwidth blowup require a block size of Ω(log2 N). Whether this bound (or a
sub-logarithmic bound) can be obtained for smaller block sizes remains open.
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Abstract. We initiate a formal investigation on the power of predictabil-
ity for argument of knowledge systems for NP . Specifically, we consider
private-coin argument systems where the answer of the prover can be
predicted, given the private randomness of the verifier; we call such pro-
tocols Predictable Arguments of Knowledge (PAoK).

Our study encompasses a full characterization of PAoK, showing that
such arguments can be made extremely laconic, with the prover sending
a single bit, and assumed to have only one round (i.e., two messages) of
communication without loss of generality.

We additionally explore PAoK satisfying additional properties
(including zero-knowledge and the possibility of re-using the same chal-
lenge across multiple executions with the prover), present several con-
structions of PAoK relying on different cryptographic tools, and discuss
applications to cryptography.

1 Introduction

Consider the classical proof system for Graphs Non-Isomorphism where, on com-
mon input two graphs (G0, G1), the verifier chooses a random bit b, and sends a
uniformly random permutation of the graph Gb to the prover. If the two graphs
are not isomorphic the prover replies correctly sending back the value b.

A peculiar property of the above proof system is that the verifier knows
in advance the answer of the prover, i.e., the answer given by the prover is
predictable. Another property is that it uses only one round of communication
and that the prover sends a single bit. Following the work of Goldreich et al. [30]
we call a proof system with these properties extremely laconic.

In this paper, we study the notion of predictability in interactive proof sys-
tems for NP . More specifically, we focus on the cryptographic setting where
the prover’s strategy is efficiently computable and, moreover, we aim for the
notion of knowledge soundness, where any convincing polynomial-time prover
must “know” the witness relative to the instance being proven.

We formalize this notion of Predictable Arguments of Knowledge (PAoK),
explore their properties and applications, and provide several constructions
based on various cryptographic tools and assumptions.

Our Contributions and Techniques. We proceed to describe our results and
techniques in more details.
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 121–150, 2017.
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Characterizing PAoK. Syntactically a PAoK is a multi-round protocol (P,V)
where in each round: (i) The verifier V, given the instance x and private coins
r, generates a challenge c (that is sent to P) together with a predicted answer b;
(ii) The prover P, given (x,w, c), generates an answer a. The prover is said to
convince the verifier if and only if a = b in all rounds.

Apart from being complete—meaning that an honest prover convinces the
verifier with overwhelming probability—PAoK satisfy the standard property of
knowledge soundness. Informally, this means that given any successful prover
convincing the verifier on instance x with probability ε, there exists an efficient
extractor recovering a witness for x with probability polynomially related to
ε. Looking ahead, our definition of knowledge soundness is parametrized by a
so-called instance sampler. Intuitively this means that only instances sampled
through the sampler are extractable, and allows to consider more fine-grained
flavours of extractability.1

Our first result is that PAoK can always be made extremely laconic, both in
term of round complexity and of message complexity (i.e., the number of bits
sent by the prover). Such a characterization is obtained as follows:

– First, we show that one can collapse any multi-round PAoK into a one-round
PAoK with higher message complexity. Let (P,V) be a ρ-round PAoK, where V
generates several challenges (c1, . . . , cρ) with ci used during round i.2 We turn
(P,V) into a one-round predictable argument (P̃, Ṽ) where the multi-round
PAoK is “cut” at a random index i∗ ∈ [ρ]; this essentially means that Ṽ runs
V and forwards (c1, . . . , ci∗), whereas P̃ runs P and replies with (a1, . . . , ai∗).
One can show that, if the initial PAoK has knowledge error ε, the transformed
PAoK has knowledge error ε/ρ. The latter can finally be made negligible via
parallel repetition. It is important to notice that parallel repetition, in gen-
eral, does not amplify soundness for argument systems [5,39]. However, it is
well known that for secret-coin one-round arguments (such as PAoK), parallel
repetition amplifies (knowledge) soundness at an exponential rate [5].

– Second, we show how to reduce the prover’s answer length to a single bit3

as follows. Let (P,V) be a PAoK with �-bit answers. We define a new PAoK
(P ′,V ′) where the verifier V ′ runs V in order to obtain a pair (c, b), samples
randomness r, and defines the new predicted answer to be the inner prod-
uct between b and r. Given challenge (c, r) the prover P ′ simply runs P in
order to obtain a and defines the answer to be the inner product between
a and r. Knowledge soundness follows by the Goldreich-Levin hard-core bit
theorem [28].

1 Similar fine-grained definitions have already been considered in the literature, e.g.,
for differing-inputs obfuscation [6].

2 It is easy to see that generating all the challenges at the same time, independently
of the prover’s answers, is without loss of generality.

3 This further justifies our interest to arguments (as opposed to proofs) for NP as
Goldreich et al. [30] showed that unless the polynomial-time hierarchy collapses
there does not exist a laconic proof system for all NP .
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Interestingly, we can wrap up the two results together showing that any PAoK,
no matter of the round or message complexity, can be made extremely laconic.

Constructions. Next, we turn to constructing PAoK. Our starting point is the
observation that full-fledged PAoK for a relation R imply (and in fact are equiv-
alent to) extractable witness encryption [31] (Ext-WE) for the same relation
R. Briefly, a witness encryption scheme allows to encrypt an arbitrary message
using a statement x belonging to an NP-language L; decryption can be per-
formed by anyone knowing a valid witness w for x. Extractable security means
that from any adversary breaking semantic security of the encryption scheme,
we can obtain an extractor computing a valid witness for x.

The equivalence between PAoK and Ext-WE can be seen as follows:

– From Ext-WE to PAoK we encrypt a random bit a using the encryption
scheme and then ask the prover to return a.

– From PAoK to Ext-WE, we first make the PAoK extremely laconic, then we
generate a challenge/answer pair (c, a) for the PAoK, and encrypt a single bit
β as (c, a ⊕ β).4

In light of the recent work by Garg et al. [23], the above result can be seen as a
negative result. In particular, [23] shows that, under the conjecture that a certain
special-purpose obfuscator exists, it is impossible to have an Ext-WE scheme for
a specific NP relation. The reason for this depends on the auxiliary informa-
tion that an adversary might have on the input: The assumed special-purpose
obfuscator could be used to obfuscate the auxiliary input in a way that allows
to decrypt ciphertexts, without revealing any information about the witness. As
stated in [23], such a negative result can be interpreted as an “implausibility
result” on the existence of Ext-WE with arbitrary auxiliary input for all of NP.
Given the equivalence between PAoK and Ext-WE such an implausibility result
carries over to PAoK as well.5

Motivated by the above discussion, we propose two constructions of PAoK
that circumvent the implausibility result of [23] by either restricting to spe-
cific NP relations, or by focusing on PAoK where knowledge soundness is only
required to hold for a specific class of instance samplers (and thus for restricted
auxiliary inputs). More in details:

– We show a simple connection between PAoK and so-called Extractable Hash-
Proof Systems6 [42] (Ext-HPS): Given an Ext-HPS for a relation R it is pos-
sible to construct a PAoK for a related relation R′ in a natural way.

4 Domain extension for Ext-WE can be obtained by encrypting each bit of a message
individually.

5 Very recently, Bellare et al. [7] show that assuming sub-exponential one-way func-
tions and sub-exponential indistinguishability obfuscation, differing-input obfusca-
tion for Turing Machines [2] is impossible. While this result adds another negative
evidence, it does not apply directly to Ext-WE.

6 The connection between Hash Proof Systems and Witness Encryption was already
noted by [23].
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– We can construct a PAoK for a specific instance sampler by assuming a weak7

form of differing-inputs obfuscation. The challenge c corresponds to an obfus-
cation of the circuit that hard-wires the instance x and a random value b, and
upon input w returns b if and only if (x,w) is in the relation.

Interestingly, we can show that, for the special case of so-called random self-
reducible relations,8 a PAoK with knowledge soundness w.r.t. the instance sam-
pler that corresponds to the algorithm for re-randomizing an instance in the
language, can be generically leveraged to obtain a full-fledged PAoK (with arbi-
trary auxiliary input) for any NP-relation that is random-self reducible.

Zero-Knowledge PAoK. Notice that, as opposed to standard arguments, pre-
dictable arguments are non-trivial to construct even without requiring them
to be zero-knowledge (or even witness indistinguishable).9 Nevertheless, it is
possible (and interesting) to consider PAoK that additionally satisfy the zero-
knowledge property. It is well known that argument systems with a deterministic
prover, such as PAoK, cannot be zero-knowledge in the plain model [29]. Moti-
vated by this, given any PAoK (for some fixed relation), we propose two different
transformations to obtain a zero-knowledge PAoK (for the same relation):

– The first transformation is in the non-programmable random oracle model.
Here we exploit the fact that PAoK are honest-verifier zero-knowledge. Our
strategy is to force the malicious verifier to act honestly; we achieve this by
having the prover check that the challenge was honestly generated using ran-
domness provided by the random oracle. In case the check fails the prover
will not reveal the answer, but instead it will output a special symbol ⊥.
To ensure knowledge soundness we define the check to be dependent on the
prover’s message, in such a way that a malicious prover cannot obtain the (pri-
vate) randomness of the verifier in case it does not already know the correct
answer.

– The second transformation is in the common random string (CRS) model,
and works as follows. The verifier sends the challenge c together with a non-
interactive zero-knowledge proof π that c is “well formed” (i.e., there exists
random coins r such that the verifier of the underlying PAoK with coins r
returns a pair (c, b)).

We leave it as an interesting open problem to construct a witness indistinguish-
able PAoK in the plain model.

Predictable ZAP. In the basic definition of PAoK, the verifier generates the
challenge c (together with the predicted answer b) depending on the instance x

7 Namely, following the terminology in [6], extractability only holds for a specific class
of circuit samplers, related to the underlying instance sampler.

8 Roughly speaking, a random self-reducible relation is a relation for which average-
case hardness implies worst-case hardness.

9 This is because the trivial protocol where the prover forwards a witness is not pre-
dictable.
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being proven. We also look at the special case where the challenge is generated
in an instance-independent manner, together with a trapdoor that later allows
to predict the prover’s answer a. The goal here is to have the same challenge
being used across multiple executions of a PAoK with the prover.

Protocols of this type have been already considered in the literature under
the name of ZAP [17]. There are however a few crucial differences: (i) ZAP are
public-coin, whereas predictable arguments are secret-coin; (ii) ZAP are witness
indistinguishable, whereas predictable arguments are interesting even without
requiring such a property. Hence, we formalize the notion of Predictable ZAP
(PZAP) which is a kind of secret-coin ZAP in which the prover’s answer can be
predicted (given the secret coins of the verifier and some trapdoor), and the same
challenge can be re-used across multiple executions. We insist on PZAP satisfying
knowledge soundness, but we do not require them to be witness indistinguish-
able; the definition of knowledge soundness features a malicious prover that can
adaptively choose the target instance while keeping oracle access to the verifier
algorithm. We also consider a weaker flavour, where the prover has no access to
the verifier. We give a construction of PZAP relying on the recently introduced
tool of Extractable Witness PRF [43]. We also show that weak PZAP can be
generically leveraged to PZAP using standard cryptographic tools. This result
shows that, under some standard cryptographic assumptions, for any construc-
tion of weak PZAP there exists another construction satisfying the definition
of PZAP. It is interesting to understand if given a construction of weak PZAP
the construction itself already satisfies the definition of PZAP. We give a nega-
tive evidence for this question. Namely, we show a black-box separation between
weak PZAP and PZAP, ruling out a large class of black-box reductions from the
former to the latter.

Applications. Although we find the concept of PAoK to be interesting in its
own right, we also discuss applications of PAoK to proving lower bounds in two
different cryptographic settings:

– Leakage-tolerant interactive protocols (as introduced by Bitanski et al. [9])
are interactive protocols whose security degrades gracefully in the presence of
arbitrary leakage on the state of the players.

Previous work [36] showed that any leakage-tolerant interactive protocol for
secure message transmission, tolerating leakage of poly-logarithmic size on the
state of the receiver, needs to have secret keys which are as long as the total
number of bits transmitted using that key. Using PAoK, we can strengthen
this negative result to hold already for leakage of a constant number of bits.
Details are deferred in the full version of the paper [21].

– Non-malleable codes (as introduced by Dziembowski et al. [18]) allow to
encode a message in such a way that the decoding of a tampered codeword
either yields the original message or a completely unrelated value.

Previous work [22] showed an interesting application of non-malleable codes
to protecting arbitrary computation (carried out by a von Neumann architec-
ture) against tampering attacks. This result requires to assume a leakage- and
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tamper-free CPU which is used to carry out “simple” operations on a constant
number of encodings.

A natural idea to weaken the assumption of a leakage-proof CPU, would
be to design a code which remains non-malleable even given a small amount
of leakage on the encoded message. Subsequent to our work [19], the concept
of PAoK has been exploited to show that such non-malleable codes tolerating
leakage from the encoding process cannot exist (under the assumption that
collision-resistant hash functions exist).

Giving up on Knowledge Extraction. As already discussed above, the
implausibility result of Garg et al. [23] has negative implications on some of
our results. We were able to circumvent these implications by either constructing
PAoK for restricted relations, or by considering weaker flavours of extractability.
Yet another way to circumvent the implausibility result of [23] is to give up on
knowledge soundness and to consider instead standard computational soundness
(i.e., a computationally bounded malicious prover cannot convince the verifier
into accepting a false statement).

Let us call a multi-round, predictable, computationally sound interactive pro-
tocol a predictable argument. It is easy to see that all our results for PAoK con-
tinue to hold for predictable arguments. In particular: (i) Predictable arguments
can be assumed w.l.o.g. to be extremely laconic; (ii) There exists a predictable
argument for a relation R if and only if there exists a (non-extractable) witness
encryption scheme for R; (iii) We can construct a predictable argument for a
relation R given any hash-proof system for R;10 (iv) Computationally sound
PZAP can be obtained based on any (non-extractable) Witness PRF.

Additional Related Work. A study of interactive proofs with laconic provers
was done already in [27,30]. They did not investigate proofs of knowledge,
though. As explained above our notion of PAoK is intimately related to
extractable witness encryption, as first proposed by Goldwasser et al. [31]—
where it is argued that the construction of Garg et al. [24] is extractable.
See [1,16] for more recent work on witness encryption.

In [25], Garg et al. introduce the concept of Efficiently Extractable Non-
Interactive Istance-Dependent Commitment Scheme (Ext-NI-ID Commitment
for short). The primitive resembles the concept of PAoK, however there is a cru-
cial difference. Ext-NI-ID Commitments are statistical hiding, this implies that
an Ext-NI-ID can be used to construct a Predictable Argument with “statistical
soundness” for the same language, however, the reverse implication does not
hold.

10 We note that, in the other direction, predictable arguments seem to imply some kind
of hash-proof system where “statistical smoothness” is replaced by “computational
smoothness.” We leave it as an interesting direction for future research to explore
potential applications of such “computationally smooth” hash-proof systems and
their connection to trapdoor hash-proof system (see Benhamouda et al. [8]).
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The problem we faced to amplify knowledge soundness of PAoK shares sim-
ilarities with the problem of amplifying computational soundness for argument
systems. Although it is well known that parallel repetition does not work in
general [5,39], there are some exceptions such as 3-message arguments [5,13],
public-coin arguments [15,38], and simulatable arguments [14,33] (a generaliza-
tion of both 3-message and public-coin). Relevant to ours is the work of Haitner
on random-terminating arguments [32].

Roadmap. We start by setting some basic notation, in Sect. 2. The definition
of PAoK, together with their characterization in terms of round-complexity and
amount of prover communication, can be found in Sect. 3. In Sect. 4 we explore
constructions of PAoK for random self-reducible relations. The two compilers
yielding zero-knowledge PAoK in the CRS model and in the non-programmable
random oracle model are presented in Sect. 5. In Sect. 6 we investigate the con-
cept of predictable ZAP. Finally, in Sect. 7, we discuss a few interesting open
problems related to our work.

2 Preliminaries

For a, b ∈ R, we let [a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N we let [a] =
{1, 2, . . . , a}. If x is a string, we denote its length by |x|; if X is a set, |X |
represents the number of elements in X . When x is chosen randomly in X , we
write x ←$ X . When A is an algorithm, we write y ←$ A(x) to denote a run of
A on input x and output y; if A is randomized, then y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. An algorithm
A is probabilistic polynomial-time (PPT) if A is randomized and for any input
x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most poly(|x|) steps.
Vectors and matrices are typeset in boldface. For a vector v = (v1, . . . , vn) we
sometimes write v[i] for the i-th element of v. We use Maj to denote the majority
function.

Throughout the paper we let κ ∈ N denote the security parameter. We
say that a function ν : N → [0, 1] is negligible in the security parameter, if
ν(κ) = κ−ω(1). A function μ : N → [0, 1] is noticeable in the security parameter,
if there exists a positive polynomial p(·) such that ν(κ) � 1/p(κ) for infinitely
many κ � κ0.

Let X and Y be a pair of random variables. The statistical distance between
X and Y is defined as Δ(X,Y ) := maxD |Pr[D(X) = 1] − Pr[D(Y ) = 1]|,
where the maximum is taken over all (possibly unbounded) distinguishers. In
case the maximum is taken over all PPT distinghuishers, we sometimes speak
of computational distance. For two ensembles X = {Xκ}κ∈N and Y = {Yκ}κ∈N,
we write X ≡ Y to denote that X and Y are identically distributed, X s≈ Y
to denote that X and Y are statistically close (i.e., their statistical distance is
bounded by a negligible function of the security parameter), and X c≈ Y to
denote that X and Y are computationally indistinguishable.
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Interactive Protocols. Let R ⊆ {0, 1}∗ × {0, 1}∗ be an NP-relation, naturally
defining a language LR := {x : ∃w s.t. (x,w) ∈ R}. We are typically interested
in efficiently samplable relations, for which there exists a PPT algorithm SamR
taking as input the security parameter (and random coins r) and outputting
a pair (x,w) ∈ R. An interactive protocol Π = (P,V) for R features a prover
P (holding a value x ∈ LR together with a corresponding witness w) and a
verifier V (holding x), where the goal of the prover is to convince the verifier
that x ∈ LR. At the end of the protocol execution, the verifier outputs either acc
or rej. We write 〈P(1κ, x, w),V(1κ, x)〉 for the random variable corresponding
to the verifier’s verdict, and P(1κ, x, w) � V(1κ, x) for the random variable
corresponding to a transcript of protocol Π on input (x,w).

Unless stated otherwise, all interactive protocols considered in this paper
are secret-coin, meaning that the verifier’s strategy depends on a secretly kept
random tape. We also call Π a ρ-round protocol if the protocol consists of ρ
rounds, where each round features a message from the verifier to the prover and
viceversa

3 Predictable Arguments of Knowledge

We start by defining Predictable Arguments of Knowledge (PAoK) as multi-
round interactive protocols in which the verifier generates a challenge (to be
sent to the prover) and can at the same time predict the prover’s answer to that
challenge; we insist on (computational) extractable security, meaning that from
any prover convincing a verifier with some probability we can extract a witness
with probability related to the prover’s success probability.

The main result of this section is that PAoK can be assumed without loss
of generality to be extremely laconic (i.e., the prover sends a single bit and the
protocol consists of a single round of communication). More in detail, in Sect. 3.1,
we show that any multi-round PAoK can be squeezed into a one-round PAoK.
In Sect. 3.2 we show that, for any � ∈ N, the existence of a PAoK where the
prover answer is of length � bits implies the existence of a laconic PAoK.

The Definition. In a multi-round protocol the verifier produces many challenges
c = (c1, . . . , cρ). W.l.o.g. in a predictable argument, we can assume that all
the challenges are generated together and then forwarded one-by-one to the
prover; this is because the answers are known in advance. Specifically, a ρ-round
predictable argument is fully specified by a tuple of algorithms Π = (Chall,Resp),
as described below:

1. V samples (c,b)←$Chall(1κ, x), where c := (c1, . . . , cρ) and b := (b1, . . . , bρ).
2. For all i ∈ [ρ] in increasing sequence:

– V forwards ci to P;
– P computes (a1, . . . , ai) := Resp(1κ, x, w, c1, . . . , ci) and forwards ai to V;
– V checks that ai = bi, and returns rej if this is not the case.

3. If all challenges are answered correctly, V returns acc.
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Notice that the algorithm Resp takes as input all challenges up-to round i in
order to generate the i-th answer.11

We say that prover P and verifier V, running the protocol above, execute
a PAoK Π upon input security parameter 1κ, common input x, and prover’s
private input w; we denote with 〈P(1κ, x, w),V(1κ, x)〉Π (or, when Π is clear
from the context, simply 〈P(1κ, x, w),V(1κ, x)〉) the output of such interaction.
We say that a prover P succeeds on the instance x and auxiliary input w if
〈P(1κ, x, w),V(1κ, x)〉 = acc. We give a granular definition of extractability
that is parametrized by an efficient instance sampler S, and that roughly says
that the protocol is sound and moreover sampled instances are extractable. Here,
the sampler is simply an algorithm taking as input the security parameter and
auxiliary input zS ∈ {0, 1}∗, and outputting an instance x together with auxiliary
information aux ∈ {0, 1}∗.

Definition 1 (Predictable Arguments of Knowledge). Let Π =
(Chall,Resp) be a ρ-round predictable argument for an NP relation R, with �-
bit prover’s answer. Consider the properties below.

Completeness: There exists a negligible function ν : N → [0, 1] such that for
all sequences {(xκ, wκ)}κ�0 where (xκ, wκ) ∈ R, we have that:

Pr
P,V

[〈P(1κ, xκ, wκ),V(1κ, xκ)〉 = rej] � ν(κ).

(S, f, ε)-Knowledge soundness: For all PPT provers P∗ there exists a PPT
extractor K such that for all auxiliary inputs zP , zS ∈ {0, 1}∗ the following
holds. Whenever

p(κ) := Pr
P∗,V,rS

[〈P∗(1κ, aux , x, zP ), V(x)〉 = acc : (x, aux) := S(1κ, zS ; rS)] > ε(κ)

then

Pr
K,rS

[∃w s.t. f(w) = y
(x,w) ∈ R

:
(x, aux ) := S(1κ, zS ; rS),
y ←$ K(1κ, x, zP , zS , aux )

]
� p(κ) − ε(κ).

We call Π a ρ-round S-PAoK for R, if Π satisfies completeness and (S, f, ε)-
knowledge soundness for any efficient computable function f , and moreover ε −
2−ρ� is negligible. We call Π an S-PAoK for R, if Π is a 1-round S-PAoK and
we call it a laconic S-PAoK if Π is an S-PAoK and � = 1. Sometimes we also
say that Π is a ρ-round (f,S)-PAoK if knowledge soundness holds for a specific
function f .

Consider the dummy sampler Sdummy that parses its input zS as (x, aux ) and
then outputs the pair (x, aux ). We call Π a ρ-round (f, ε)-PAoK for R, if Π
satisfies completeness and (Sdummy, f, ε)-knowledge soundness. We say that Π is
a ρ-round PAoK for R, if Π is a ρ-round Sdummy-PAoK for R.
11 In the description above we let Resp output also all previous answers a1, . . . , ai−1;

while this is not necessary it can be assumed w.l.o.g. and will simplify the proof of
Theorem 1.
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The reason why the above definition is parametrized by the function f instead
of considering the relation R′ = {(x, y) : ∃w s.t. (x,w) ∈ R ∧ y = f(w)} is
that such a relation might not be an NP-relation (as it might be hard to check
whether ∃w s.t. (x,w) ∈ R ∧ y = f(w). Our definition, instead, ensures that
the honest prover knows w but we can only extract f(w). Also note that, in the
above definition, the prover P∗ takes as input the auxiliary information returned
by the sampler.

3.1 On Multi-round PAoK

In this section we show that multi-round PAoK can be squeezed into a one-round
PAoK (maintaining knowledge soundness).

Let Π = (Chall,Resp) be a ρ-round PAoK. Consider the following protocol
between prover P̃n and verifier Ṽn—let us call it the collapsed protocol for future
reference—for a parameter n ∈ N to be determined later:

– Repeat the following sub-protocol Π̃ = (P̃, Ṽ) in parallel for all j ∈ [n]:
• Ṽ runs (cj ,bj) ←$ Chall(1κ, x); let cj = (cj

1, . . . , c
j
ρ) and similarly bj =

(bj
1, . . . , b

j
ρ). Then, Ṽ samples a random index i∗j ←$ [ρ], and forwards

(cj
1, . . . , c

j
i∗
j
) to P̃.

• P̃, given a pair (x,w) and challenges (cj
1, . . . , c

j
i∗
j
), com-

putes (aj
1, . . . , a

j
i∗
j
) ←$ Resp(1κ, x, w, cj

1, . . . , c
j
i∗
j
) and forwards (aj

1, . . . , a
j
i∗
j
)

to Ṽ.
• Ṽ is said to accept the j-th parallel execution if and only if aj

i = bj
i for all

i ∈ [i∗j ]
– Return acc if and only if all parallel executions are accepting.

We write Π̃n := (P̃n, Ṽn) for the n-fold repetition of the sub-protocol Π̃ =
(P̃, Ṽ). Note that the sub-protocol Π̃ is the one-round protocol (described above)
that simply cuts the multi-round protocol Π to a random round. We show the
following theorem:

Theorem 1. For any polynomial ρ(·) and any function f if Π is a ρ(κ)-round
f-PAoK, then the above defined collapsed protocol Π̃n = (P̃n, Ṽn) with parameter
n = ω(ρ log κ) is an f-PAoK.

We give an intuition for the proof. For simplicity, assume that Π is a 1
3 -PAoK

for the relation R. We claim that the knowledge error of the collapsed protocol is
not bigger than 1− 2

3ρ . To see this, consider a prover P∗ for the original protocol
Π which at the i-th iteration (where i ∈ [ρ]) forwards the challenge c1, . . . , ci to a
malicious prover P̃∗ for the collapsed protocol. Notice that conditioned on i∗ = i
the challenge has exactly the same distribution as a challenge for the collapsed
protocol. The prover P∗ fails if the malicious prover P̃∗ of the collapsed protocol
answered wrongly at least one of the queries that he received. So if we suppose
that P̃∗ succeeds with probability strictly bigger than 1− 2

3ρ , then, by the union
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bound, the failing probability of P∗ is strictly bounded by 2
3ρ · ρ, therefore P∗

succeeds with probability strictly bigger than 1
3 .

Finally, we can make the knowledge soundness error of the collapsed protocol
negligible via parallel repetition. It is important to notice that parallel repetition,
in general, does not amplify soundness for argument systems [5,39]. Luckily, it
does so (at an exponential rate) in the special case of secret-coin one-round
arguments (such as PAoK) [5]. The proof of the above theorem relies on the
well-known fact that parallel repetition decreases the (knowledge) soundness
error of one-round arguments at an exponential rate.

Lemma 1 (Theorem4.1 of [5], adapted to one-round protocols). Let
Π = (P,V) be a one-round argument of knowledge and denote by Πn = (Pn,Vn)
the one-round protocol that consists of the n-fold repetition of the initial protocol
Π. Suppose 0 < α, β < 1 and n � 2 is an integer. Suppose α > (16/β)·e−β·n/128.
Then there is an oracle algorithm R such that for any prover P∗, verifier V and
input string x, the following is true: If Pr[〈P∗(1κ, x, aux ),Vn(x)〉 = acc] � 2α
then Pr[

〈RP∗
(1κ, x, aux ),V(x)

〉
= acc] � 1−β. Furthermore, RP∗

runs in time
poly(n, |x|, α−1).

Proof (of Theorem1). Let P̃∗
n be a prover for the collapsed protocol such that

for some x and z succeeds with probability at least κ−c for some constant c. Let
α = 1

2κ−c and β = 1
2ρ , notice that setting n = ω(ρ log κ) the following equation

holds for κ big enough:

1
2κ−c = α > (16/β) · e−β·n/128 = 32ρ · e−ω(log κ)/256.

We can apply Lemma 1 with the parameters α and β set as above. Therefore,
consider a single instance of the sub-protocol Π̃, the prover RP̃∗

n succeeds with
probability 1 − β = 1 − 1

2ρ .
We build a prover P∗ for Π that succeeds with probability 1

2 . Specifically, Let
P̃∗ := RP̃∗

n and let P∗ interact with the verifier V of the multi-round protocol
as follow:

1. V samples (c,b)←$Chall(1κ, x), where c := (c1, . . . , cρ) and b := (b1, . . . , bρ).
2. For all i ∈ [ρ] in increasing sequence:

– Upon input challenge ci from the verifier V, prover P∗ runs internally P̃∗

on input (1κ, x) and challenge (c1, . . . , ci). If P̃∗ outputs (a1, . . . , ai), then
P∗ forwards ai to V; otherwise it aborts.

Rewriting explicitly the acceptance probability of P̃∗ in the collapsed protocol
on (x, z):

Pr
[
P̃∗(1κ, x, z, c1, . . . , ci) = (b1, . . . , bi) : (c,b) ←$ Chall(1κ, x), i ←$ [ρ]

]
�1− 1

2ρ .

Let Wi be the event that ai = bi in the interaction between P∗ and V described
above. We can write:
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Pr[〈P∗(1κ, x, z),V(1κ, x)〉 = acc]

= Pr[∀i ∈ [ρ] : Wi] = 1 − Pr[∃i ∈ [ρ] : ¬Wi] � 1 −
∑

i∈[ρ]

Pr[¬Wi]

= 1 − ρ · Ei ←$ [ρ]

[
Pr[P∗(1κ, x, c1, . . . , ci) �= ai : (c,b) ←$ Chall(1κ, x)]

]

� 1 − (
1
2ρ

) · ρ = 1
2 . (1)

where the equations above follow by the definition of average and by our assump-
tion on the success probability of P̃∗ on (x, z). Notice that for any successful P̃∗

n

we can define an extractor that is the same extractor for the machine P∗ exe-
cuting P̃∗ = RP̃∗

n as a subroutine. Moreover, since P̃∗
n succeeds with probability

κ−c then P∗ runs in polynomial time.

3.2 Laconic PAoK

We show that laconic PAoK (where the size of the prover’s answer is � = 1 bit)
are in fact equivalent to PAoK.

Theorem 2. Let R be an NP relation. If there exists a PAoK for R then there
exists a laconic PAoK for R.

The proof of the theorem, which appears in the full version of the paper [21],
relies on the Goldreich-Levin Theorem [26, Theorem 2.5.2]. Here is the intuition.
Let (P,V) be a PAoK with �-bit answers. We define a new PAoK (P ′,V ′) where
the verifier V ′ runs V in order to obtain a pair (c, b), samples randomness r, and
defines the new predicted answer to be the inner product between b and r. Given
challenge (c, r) the prover P ′ simply runs P in order to obtain a and defines the
answer to be the inner product between a and r. Knowledge soundness follows
by the Goldreich-Levin theorem.

4 Constructing PAoK

We explore constructions of PAoK. For space reasons we defer to the full version
of the paper [21] the constructions based on Extractable Witness Encryption [24,
31] and on Extractable Hash-Proof Systems [42].

In Sect. 4.1, we focus on constructing PAoK for so-called random self-
reducible relations. In particular, we show that, for such relations, a fully-extract-
able PAoK can be obtained by generically leveraging a PAoK for a (much weaker)
specific sampler (which depends on the random self-reducible relation).

In Sect. 4.2, we show that a PAoK for a specific sampler can be obtained
generically by using a differing-input obfuscator [6] for a related (specific) circuit
sampler.



Predictable Arguments of Knowledge 133

4.1 PAoK for Random Self-reducible Languages

We construct a PAoK for languages that are random self-reducible. Roughly
speaking, a random self-reducible language is a language for which average-case
hardness implies worst-case hardness. Random self-reducibility is a very natural
property, with many applications in cryptography (see, e.g., [3,37,40]). Infor-
mally a function is random self-reducible if, given an algorithm that computes
the function on random inputs, one can compute the function on any input.
When considering NP relations, one has to take a little more care while defining
random self-reducibility. We say that OR(·) is an oracle for the relation R, if on
any input x ∈ LR we have that (x,OR(x)) ∈ R.

Definition 2 (Self-reducible relation). An NP-relation R for a language
L is random self-reducible if there exists a tuple of PPT algorithms W :=
(Wsmp,Wcmp,Winv) such that, for any oracle OR for the relation R ⊆ X × W ,
the following holds

Correctness. For any x ∈ LR and for any r ∈ {0, 1}p(|x|), let x′ := Wsmp(x; r)
and w := Wcmp(x,w′; r) where w′ ← OR(x′). Then (x,w) ∈ R.

Witness re-constructability. For any x ∈ LR and for any r ∈ {0, 1}p(|x|),
let x′ := Wsmp(x; r) and w := Wcmp(x,w′; r) where w′ ← OR(x′), and define
w′′ := Winv(x,w; r). Then (x′, w′′) ∈ R.

Uniformity. For any x the output of Wsmp(x) is uniformly distributed over X.

We call the tuple of algorithms W an average-to-worst-case (AWC) reduction
with witness re-constructibility.

Notice that the reduction W has access to a “powerful” oracle that produces a
witness for a randomized instance, and uses such witness to compute a witness for
the original instance. Moreover, for any fixed instance the function can be easily
inverted. The witness re-constructibility property is not standard in the context
of random self reducibility, however we note that it holds for many interesting
random self-reducible relationships (e.g., for the case of discrete logarithm).

Theorem 3. Let R be an NP-relation which has AWC reduction W =
(Wsmp,Wcmp,Winv) with witness re-constructability. If there exists a (Wsmp, ε)-
PAoK for the relation R, then there exists an ε-PAoK for R.

The proof of the above theorem is deferred to the full version of the paper [21].
Here we discuss some intuition. Let Π ′ := (Chall′,Resp′) be a PAoK (w.r.t. the
sampler Wsmp) for R, the idea of the construction is to map the input instance
x into a random instance x′ using Wsmp(x; r) for a random r, then sample a
challenge using the algorithm Chall′ on input instance x′ and additionally send
the prover the auxiliary information r needed to compute a valid witness w′ for
x′. The response algorithm first computes the valid witness w′ for the instance x′

using Winv and then answers the challenge. Let Π be the PAoK described above,
given a prover P∗ for Π we need to define a knowledge extractor K. The point is
that P∗ can equivalently be seen as a prover for Π ′ where instances are sampled
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using Wsmp(x; ·). For this scenario the knowledge soundness of Π provides a
knowledge extractor K′, and such an extractor can output a valid witness for a
uniformly sampled instance. This is where we use the random self-reducibility
property. The extractor K′, in fact, can be seen as an oracle for the relation R
that with noticeable probability produces a valid witness for a uniformly chosen
instance. Therefore, using the AWC reduction W with oracle access to K′ we
can reconstruct a valid witness for the instance x.

4.2 PAoK for a Specific Sampler

We use the framework for obfuscation proposed by Bellare et al. in [6]. A circuit
sampling algorithm is a PPT algorithm S = {Sκ}κ∈N whose output is distributed
over Cκ × Cκ × {0, 1}p(κ), for a class of circuit C = {Cκ}κ∈N and a polynomial p.
We assume that for every C0, C1 ∈ Cκ it holds that |C0| = |C1|. Given any class
of samplers S for a class of circuits C consider the following definition:

Definition 3 (S-Obfuscator). A PPT algorithm Obf is an S-obfuscator for
the parametrized collection of circuits C = {Cκ}κ∈N if the following requirements
are met.

– Correctness: ∀κ,∀C ∈ Cκ,∀x : Pr[C ′(x) = C(x) : C ′ ←$ Obf(1κ, C)] = 1.
– Security: For every sampler S ∈ S, for every PPT (distinguishing) algorithm

D, and every auxiliary inputs zD, zS ∈ {0, 1}∗, there exists a negligible function
ν : N → [0, 1] such that for all κ ∈ N:
∣∣∣Pr

[
D(C′, aux, zD, zS) = 1 :

(C0, C1, aux) ←$ S(1κ, zS),
C′ ←$ Obf(1κ, C0)

]

− Pr

[
D(C′, aux, zD, zS) = 1 :

(C0, C1, aux) ←$ S(1κ, zS),
C′ ←$ Obf(1κ, C1)

] ∣∣∣ � ν(κ),

where the probability is over the coins of S and Obf.

Abusing the notation, given a circuit sampler S, we say that Obf is an S-
obfuscator if it is an {S}-obfuscator. It is easy to see that the above definition
allows to consider various flavours of obfuscation as a special case (including
indistinguishability and differing-input obfuscation [4]). In particular, we say
that a circuit sampler is differing-input if for any PPT adversary A and any
auxiliary input zS ∈ {0, 1}∗ there exists a negligible function ν : N → [0, 1] such
that the following holds:

Pr
[
C0(x) �= C1(x) :

(C0, C1, aux) ←$ S(1κ, zS)
x ← A(C0, C1, aux, zS)

]
� ν(κ).

Let Sdiff be the class of all differing-input samplers; it is clear that an Sdiff-
obfuscator is equivalent to a differing-input obfuscator.

Consider the following construction of a PAoK Π = (Chall,Resp) for a
relation R.
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– Upon input (1κ, x) algorithm Chall(1κ, x) outputs c := Obf(Cx,b) where
b ←$ {0, 1}κ and Cx,b is the circuit that hard-wires x and b and, upon input a
value w, it returns b if and only if (x,w) ∈ R (and ⊥ otherwise).

– Upon input (1κ, x, w, c), algorithm Resp(1κ, x, w, c) executes a := c(w) and
outputs a.

Given an arbitrary instance sampler S, let CS[S] be the circuit samplers that
sample randomness r′ := r‖b, execute (x, aux) := S(1κ, zS ; r), and output the
tuple (Cx,b, Cx,⊥, aux‖b). We prove the following result, whose proof appears in
the full version of the paper [21].

Theorem 4. Let S be an arbitrary instance sampler and Sdiff and CS[S] be
as above. If CS[S] ∈ Sdiff and Obf is a CS[S]-obfuscator, then the protocol Π
described above is an S-PAoK for the relation R.

By combining Theorem 4 together with Theorem 3 we get the following corollary.

Corollary 1. Let R be a random self-reducible NP-relation which is witness
reconstructible and has AWC reduction W = (Wsmp,Wcmp,Winv). If there exists
a CS[Wsmp]-obfuscator and CS[Wsmp] ∈ Sdiff then there exists a PAoK for R.

5 On Zero Knowledge

One can easily verify that PAoK are always honest-verifier zero-knowledge, since
the answer to a (honest) challenge from the verifier can be predicted without
knowing a valid witness.

It is also not too hard to see that in general PAoK may not be witness
indistinguishable (more details in the full version of the paper [21]).

Furthermore, we note that PAoK in the plain model can be zero-
knowledge only for trivial languages. The reason is that predictable arguments
have inherently deterministic provers and, as shown by Goldreich and Oren
[29, Theorem 4.5], the zero-knowledge property for such protocols is achievable
only for languages in BPP .

In this section we show how to circumvent this impossibility using setup
assumptions. In particular, we show how to transform any PAoK into another
PAoK additionally satisfying the zero-knowledge property (without giving up on
predictability). We provide two solutions. The first one in the common random
string (CRS) model,12 while the second one is in the non-programmable random
oracle (NPRO) model.

12 This model is sometimes also known as the Uniform Random String (URS) model.
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5.1 Compiler in the CRS Model

We start by recalling the standard notion of zero-knowledge interactive protocols
in the CRS model. Interactive protocols in the CRS model are defined analo-
gously to interactive protocols in the plain model (cf. Sect. 2), with the only
difference that at setup a uniformly random string ω ←$ {0, 1}� is sampled and
both the prover and the verifier additionally take ω as input. For space reasons,
the definition of zero-knowledge protocols in the CRS model is given in the full
version of the paper [21].

The Compiler. Our first compiler is based on a NIZK-PoK system (see full
version for the formal definition). Let Π = (Chall,Resp) be a PAoK for a relation
R, and assume that Chall uses at most ρ(|x|, κ) random bits for a polynomial ρ.
Let NIZK = (�,Prove,Ver) be a NIZK for the relation

Rchal = {((c, x), r) : ∃b s.t. (c, b) := Chall(1κ, x; r)} .

Consider the following one-round PAoK Π ′ = (Chall′,Resp′) in the CRS model.

– At setup a uniform CRS ω ←$ {0, 1}� is sampled.
– Algorithm Chall′ takes as input (1κ, ω, x) and proceeds as follows:

1. Sample random tape r ←$ {0, 1}ρ.
2. Generate a proof π ←$ Prove(ω, (c, x), r) for ((c, x), r) ∈ Rchal.
3. Output c′ := (c, π).

– Algorithm Resp′ takes as input (1κ, ω, x, w, c′) and proceeds as follows:
1. Parse c′ := (c, π); in case Ver(ω, (c, x), π) = 0 return ⊥.
2. Output b′ := Resp(1κ, x, w, c).

Roughly speaking, in the above construction the verifier sends the challenge c
together with a NIZK-PoK π that c is “well formed” (i.e., there exist random
coins r such that the verifier of the underlying PAoK with coins r returns a
pair (c, b)); the prover answers only in case the proof π is correct. We show the
following result, whose proof appears in the full version of the paper [21].

Theorem 5. Let Π be a PAoK for the relation R ∈ NP and let NIZK be a
NIZK-PoK for the relation Rchal. Then the protocol Π ′ is a ZK-PAoK in the
CRS model.

The knowledge soundness of Π ′ follows almost directly from the zero-know-
ledge property of NIZK and from the knowledge soundness of Π. In fact, one
can consider a mental experiment where the verifier generates a simulated proof
π instead of a real one. This proof does not carry any information about the ran-
domness but it is indistinguishable from a real one. A successful prover in the
real world is still successful in this mental experiment and, therefore, we reduced
to the knowledge soundness of Π. The zero-knowledge of Π ′ follows from the fact
that PAoK are honest-verifier zero-knowledge, and from the knowledge sound-
ness of NIZK. In particular, given a maliciously generated challenge (c∗, π∗),
the simulator can use the knowledge extractor of NIZK on π∗, extract a valid
witness r∗, and then produce a valid answer.
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5.2 Compiler in the NPRO Model

We start by recalling the definition of zero-knowledge in the NPRO model, for
interactive protocols. Recall that a NPRO is weaker than a programmable ran-
dom oracle. Intuitively, in the NPRO model the simulator can observe the veri-
fier’s queries to the hash function, but is not allowed to program the behaviour
of the hash function. The definition below is adapted from Wee [41].

Definition 4 (Zero-knowledge protocol in the NPRO model). Let
(P,V) be an interactive protocol for an NP relation R. We say that (P,V) satis-
fies the zero-knowledge property in the NPRO model if for every PPT malicious
verifier V∗ there exists a PPT simulator Z and a negligible function ν : N → [0, 1]
such that for all PPT distinguishers D, all (x,w) ∈ R, and all auxiliary inputs
z ∈ {0, 1}∗, the following holds:

Δ(Π, Z, V∗) := max
D,z

∣∣∣Pr
[DH(x, τ, z) = 1 : τ ← (PH(x, w) � V∗H

(x, z))
]

− Pr
[DH(x, τ, z) = 1 : τ ← ZH(x, z)

]∣∣∣ � ν(|x|).

The Compiler. Let Π = (Chall,Resp) be a PAoK for a relation R with �-bit
prover’s answer, and assume that Chall uses at most ρ(|x|, κ) random bits for a
polynomial ρ. Let H be a random oracle with output length ρ(κ). Consider the
following derived one-round PAoK Π ′ = (Chall′,Resp′).

– Algorithm Chall′ takes as input (1κ, x) and proceeds as follows:
1. Sample a random tag t1 ←$ {0, 1}ρ and compute r := H(t1).
2. Run (c, b) := Chall(1κ, x; r).
3. Define t2 := H(b), and set the challenge to c′ := (c, t) where t := t1 ⊕ t2.

– Algorithm Resp′ takes as input (x,w, c) and proceeds as follows:
1. Parse c′ := (c, t) and run a ←$ Resp(1κ, x, w, c).
2. Define t1 := t ⊕ H(a), and check whether (c, a) = Chall(1κ, x;H(t1)). If

this is the case, output a and otherwise output ⊥.

The main idea behind the above construction is to force the malicious verifier
to follow the underlying protocol Π; in order to do so we generate the challenge
feeding the algorithm Chall with the uniformly random string H(t1). What we
need now is to both make able the prover to check that the verifier followed
the algorithm Chall and to maintain soundness. Unfortunately, since PAoK are
private-coin protocols, we can’t simply make the verifier output t1; what we do
instead is to one-time pad the value with the value t2 which is computable only
knowing the answer. We show the following result:

Theorem 6. If Π is a PAoK with �-bit prover’s answer for the relation R, and
� = ω(log κ), then the protocol Π ′ is a ZK-PAoK in the NPRO model.

To prove soundness we show that t = t1 ⊕ t2 is essentially uniformly ran-
dom if the prover does not know b: this explains why we need � = ω(log κ),
otherwise a malicious prover could just brute force the right value of b and
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check for consistency. Note that here we are leveraging the power of the random
oracle model, that allows us to produce polynomially-long pseudorandomness
from unpredictability. To prove zero-knowledge we note that a simulator can
look into the random-oracle calls made by the malicious verifier while running
it. Given the output (c∗, t∗) produced by the malicious verifier two cases can
happen:

– The simulator finds an oracle call t′ that “explains” the challenge c∗, namely
(c∗, b) = Chall(1κ, x;H(t′)); in this case the simulator just outputs b. We argue
that the simulator produces an indistinguishable view because the protocol Π
has overwhelming completeness.

– The simulator does not find any t′ that explains the challenge. Then it outputs
⊥. Let b′ be the answer that the real prover would compute using the algo-
rithm Resp. We argue that the malicious verifier can find a challenge (c∗, t∗)
that passes the check, namely (c∗, b′) = Chall(1κ, x;H(H(b′) ⊕ t∗)) only with
negligible probability. Therefore the real prover would output ⊥ as well, and
so the views are indistinguishable.

Proof (of Theorem6). Completeness follows readily from the completeness of the
underlying PAoK.

We proceed to prove knowledge soundness of Π ′. Given a prover P ′∗ for Π ′

that makes the verifier accept with probability p(κ), we define a prover P∗ for
Π that is successful with probability p(κ)/Q(κ) where Q is a polynomial that
upper bounds the number of oracle calls made by P ′∗ to the NPRO H. Prover
P∗ proceeds as follow:

1. Upon input (1κ, c, z), set c′ := (c, t) for uniformly random t ←$ {0, 1}ρ and
run P∗(1κ, c′, z). Initialize counter j to j := 1, Q := ∅, and pick a uniformly
random index i∗ ←$ [Q(κ)].

2. Upon input a random oracle query x from P ′∗, pick y ←$ {0, 1}ρ and add the
tuple (x, y, j) to H. If j = i∗, then output x and stop. Otherwise set j ← j+1
and forward y to P ′∗.

3. In case P∗ aborts or terminates, output ⊥ and stop.

Without loss of generality we can assume that the prover P ′∗ does not repeat
random oracle queries, and that before outputting an answer a∗, it checks that
(c, a∗) := Chall(1κ, x;H(t ⊕ H(a∗))). We now analyse the winning probability of
P∗. Let a be the correct answer corresponding to the challenge c. Observe that
the view produced by P∗ is exactly the same as the real view (i.e., the view
that P ′∗, with access to the random oracle, expects from an execution with the
verifier V ′ from Π ′), until P ′∗ queries H with the value a. In this case, in fact,
P ′∗ expects to receive a tag t2 such that (c, a) := Chall(1κ, x;H(t ⊕ t2)). We can
write,
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Pr
[P∗(1κ, c, z) returns a

]

= Pr
[
(a, ∗, i∗) ∈ Q]

= Pr
[
a is the i∗-th query to H ∧ a = P ′∗(1κ, c′, z)

]

= Pr
[
a is the i∗-th query to H | a = P∗(1κ, c′, z)

]
Pr

[
a = P∗(1κ, c′, z)

]

� 1/Q(κ) · p(κ). (2)

Notice that in Eq.(2) the two probabilities are taken over two different probabil-
ity spaces, namely the view provided by P ′∗ to the prover P∗ together with i∗

on the left hand side and the view that P ′∗ would expect in an execution with
a honest prover together with the index i∗ in the right hand side. Knowledge
soundness of Π ′ follows.

We now prove the zero-knowledge property. Upon input (1κ, x, z) the simu-
lator Z proceeds as follows:

1. Execute algorithm V∗(1κ, x, z) and forward all queries to H; let Q be the set
of queries made by V∗.

2. Eventually V∗ outputs a challenge c∗ = (c′∗, t∗). Check if there exist (a∗, t∗1) ∈
Q such that (c′∗, a∗) = Chall(1κ, x;H(t∗1)) and t∗ = t∗1 ⊕ H(a∗). Output the
transcript τ := (c∗, a∗). If no such pair is found, output (c∗,⊥).

Let r′ be the randomness used by the prover. For any challenge c, instance x and
witness w, we say that r is good for c w.r.t. x,w, r′ if (c, a) = Chall(1κ, x; r)∧a =
Resp(1κ, x, w, c; r′). By completeness, the probability that r is not good, for
r←${0, 1}ρ, is negligible. Therefore by letting Good be the event that V∗ queries
H only on inputs that output good randomness for some c, by taking a union
bound over all queries we obtain

Pr[Good] � 1 − Q(κ) · ν′(κ) � 1 − ν(κ), (3)

for negligible functions ν, ν′ : N → [0, 1].
From now on we assume that the event Good holds; notice that this only mod-

ifies by a negligible factor the distinguishing probability of the distinguisher D.
We proceed with a case analysis on the possible outputs of the simulator and

the prover:

– The second output of Z is a �= ⊥, whereas the second output of P is ⊥.
Conditioning on Z’s second output being a �= ⊥, we get that the challenge c
is well formed, namely, c is in the set of all possible challenges for the instance
x and security parameter 1κ. On the other hand, the fact that P outputs
⊥ means that either algorithm Resp aborted or the check in step 2 of the
description of Π ′ failed. However, neither of the two cases can happen unless
event Good does not happen. Namely, if Resp outputs ⊥ the randomness H(t∗⊕
H(a)) is not good for c (w.r.t. x,w, r′), and therefore Resp must have output
a which, together with t∗, would pass the test in step 2 by definition of Z. It
follows that this case happens only with negligible probability.
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– The second output returned by Z is ⊥, whereas P’s second output is a �= ⊥.
Conditioning on Z’s second output being ⊥, we get that V∗ made no queries
(a∗, t∗1) such that (c, a∗) = Chall(1κ, x; t∗1) and t∗1 = H(t∗ ⊕ H(a∗)). In such a
case, there exists a negligible function ν : N → [0, 1] such that:

Pr[(c, a) = Chall(1κ, x;H(t∗ ⊕ H(a∗)))]

� Pr
[
t∗1 := (H(a) ⊕ t) ∈ Q ∨ Chall(1κ, x;H(t∗1)) = (c, a)

]

� Q · 2−ρ + 2−γ + ε � ν(κ), (4)

where 2γ is the size of the challenge space. Notice that by overwhelming com-
pleteness and � = ω(log κ), it follows that γ = ω(log κ).

– Both Z’s and P’s second output are not ⊥, but they are different. This event
cannot happen, since we are conditioning on Good.

Combining Eqs. (3) and (4) we obtain that Δ(Π,Z,V∗) is negligible, as desired.

On RO-Dependent Auxiliary Input. Notice that Definition 4 does not allow the
auxiliary input to depend on the random oracle. Wee [41] showed that this is
necessary for one-round protocols, namely zero-knowledge w.r.t. RO-dependent
auxiliary input is possible only for trivial languages. This is because the result
of [29] relativizes.

In a similar fashion, for the case of multi-round protocols, one can show that
also the proof of [29, Theorem 4.5] relativizes. It follows that the assumption of
disallowing RO-dependent auxiliary input is necessary also in our case.

6 Predictable ZAPs

We recall the concept of ZAP introduced by Dwork and Naor [17]. ZAPs are
two-message (i.e., one-round) protocols in which:

(i) The first message, going from the verifier to the prover, can be fixed “once
and for all,” and is independent of the instance being proven;

(ii) The verifier’s message consists of public coins.

Typically a ZAP satisfies two properties. First, it is witness indistinguishable
meaning that it is computationally hard to tell apart transcripts of the protocols
generated using different witnesses (for a given statement). Second, the protocol
remains sound even if the statement to be proven is chosen after the first message
is fixed.

In this section we consider the notion of Predictable ZAP (PZAP). With the
terminology “ZAP” we want to stress the particular structure of the argument
system we are interested in, namely a one-round protocol in which the first
message can be fixed “once and for all.” However, there are a few important
differences between the notion of ZAPs and PZAPs. First off, PZAPs cannot
be public coin, because the predictability requirement requires that the verifier
uses private coins. Second, we relax the privacy requirement and allow PZAPs
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not to be witness indistinguishable; notice that, in contrast to PZAPs, ZAPs
become uninteresting in this case as the prover could simply forward the witness
to the verifier. Third, ZAPs are typically only computationally sound, whereas
we insist on knowledge soundness.

More formally, a PZAP is fully specified by a tuple of PPT algorithms Π =
(Chall,Resp,Predict) as described below:

1. V samples (c, ϑ) ←$ Chall(1κ) and sends c to P.
2. P samples a ←$ Resp(1κ, x, w, c) and sends a to V.
3. V computes b := Predict(1κ, ϑ, x) and outputs acc iff a = b.

Notice that, in contrast to the syntax of PAoK, now the verifier runs two algo-
rithms Chall,Predict, where Chall is independent of the instance x being proven,
and Predict uses the trapdoor ϑ and the instance x in order to predict the prover’s
answer.

Care needs to be taken while defining (knowledge) soundness for PZAPs. In
fact, observe that while the verification algorithm needs private coins, in many
practical circumstances the adversary might be able to infer the outcome of
the verifier, and thus learn one bit of information about the verifier’s private
coins. For this reason, as we aim to constructing argument systems where the
first message can be re-used, we enhance the adversary with oracle access to the
verifier in the definition of soundness.

Definition 5 (Predictable ZAP). Let Π = (Chall,Resp,Predict) be as spec-
ified above, and let R be an NP relation. Consider the properties below.

Completeness: There exists a negligible function ν : N → [0, 1] such that for
all (x,w) ∈ R:

Pr
c,ϑ

[Predict(1κ, ϑ, x) �= Resp(1κ, x, w, c) : (c, ϑ) ← Chall(1κ)] ≤ ν(κ).

(Adaptive) Knowledge soundness with error ε: For all PPT provers P∗

making polynomially many queries to its oracle, there exists a PPT extractor
K such that for any auxiliary input z ∈ {0, 1}∗ the following holds. Whenever

pz(κ) := Pr

⎡

⎣a = b :
(c, ϑ) ←$ Chall(1κ),
(x, a) ←$ P∗V(1κ,ϑ,·,·)(c, z) where |x| = κ,
b := Predict(1κ, ϑ, x).

⎤

⎦ > ε(κ),

we have

Pr

⎡

⎣(x,w) ∈ R :
(c, ϑ) ←$ Chall(1κ),
(x, a) ←$ P∗V(1κ,ϑ,·,·)(c, z) where |x| = κ,
w ←$ K(1κ, x, z,Q).

⎤

⎦ � pz(κ) − ε(κ).

In the above equations, we denote by V(1κ, ϑ, ·, ·) the oracle machine that upon
input a query (x, a) computes b := Predict(1κ, ϑ, x) and outputs 1 iff a = b;
we also write Q for the list {((xi, ai), di)} of oracle queries (and answers to
these queries) made by P∗.
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Let � be the size of the prover’s answer, we call Π a predictable ZAP (PZAP)
for R if Π satisfies completeness and adaptive knowledge soundness with error
ε, and moreover ε−2−� is negligible. In case knowledge soundness holds provided
that no verification queries are allowed, we call Π a weak PZAP.

The definition of laconic PZAPs is obtained as a special case of the above
defn by setting � = 1. Note, however, that in this case we additionally need to
require that the value x returned by P∗ is not contained in Q.13

In the full version of the paper [21] we show a construction of PZAP based
on any extractable witness pseudo-random function (Ext-WPRF), a primitive
recently introduced in [43].

6.1 On Weak PZAP Versus PZAP

We investigate the relation between the notions of weak PZAP and PZAP. On
the positive side, we show that weak PZAP for NP can be generically leveraged
to PZAP for NP in a generic (non-black-box) manner. On the negative side, we
show an impossibility result ruling out a broad class of black-box reductions from
weak PZAP to PZAP. Both results assume the existence of one-way functions.

From Weak PZAP to PZAP. We show the following result:

Theorem 7. Under the assumption that non-interactive zero-knowledge proof
of knowledge systems for NP and non-interactive computationally-hiding com-
mitment schemes exist, weak PZAP for NP imply PZAP for NP.

Before coming to the proof, let us introduce some useful notation. Given a set
I ⊆ {0, 1}κ, we will say that I is bit-fixing if there exists a string in x ∈ {0, 1, �}κ

such that Ix = I where Ix := {y ∈ {0, 1}κ : ∀i ∈ [κ], (xi = yi ∨ xi = �)} is the
set of all κ-bit strings matching x in the positions where x is equal to 0/1. The
symbol � takes the role of a special “don’t care” symbol. Notice that there is a
bijection between the set {0, 1, �}κ and the family of all bit-fixing sets contained
in {0, 1}κ; in particular, for any I ⊆ {0, 1}κ there exists a unique x ∈ {0, 1, �}
such that I = Ix (and viceversa). Therefore, in what follows, we use x and Ix

interchangeably. We also enforce the empty set to be part of the family of all
bit-fixing sets, by letting I⊥ = ∅ (corresponding to x = ⊥).

We now give some intuition for the proof of Theorem7. The proof is divided
in two main steps. In the first step, we define three algorithms (Gen,Sign,Verify).
Roughly speaking, such a tuple constitutes a special type of signature scheme
where the key generation algorithm Gen additionally takes as input a bit-fixing
set I and returns a secret key that allows to sign messages m �∈ I. There are two
main properties we need from such a signature scheme: (i) The verification key
and any set of polynomially many (adaptively chosen) signature queries do not

13 This is necessary, as otherwise a malicious prover could query both (x, 0) and (x, 1),
for x �∈ L, and succeed with probability 1.
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reveal any information on the set I; (ii) It should be hard to forge signatures on
messages m ∈ I, even when given the set I and the secret key corresponding to I.
A variation of such a primitive, with a few crucial differences, already appeared in
the literature under the name of functional signatures [11].14 Fix now some NP-
relation R. In the second step of the proof, we consider an augmented NP-relation
where the witness of an instance (x,VK) is either a witness w for (x,w) ∈ R, or
a valid signature of x under VK. We then construct a PZAP based on a weak
PZAP and on a NIZK-PoK for the above augmented NP-relation.

The reduction from weak PZAP to PZAP uses a partitioning technique,
similar to the one used to prove unforgeability of several signature schemes (see,
e.g., [10,12,20,34,35]). Intuitively, we can set the reduction in such a way that
by sampling a random bit-fixing set I all the verification queries made by a
succeeding prover for the PZAP will not be in I with good probability (and
therefore such queries can be dealt with using knowledge of the signature key
corresponding to I); this holds because the prover has no information on the set
I, as ensured by property (i) defined above. On the other hand, the challenge x∗

output by the prover will be contained in the set I, which will allow the reduction
to break the weak PZAP. Here, is where we rely on property (ii) described above,
so that the reduction is not able to forge a signature for x∗, and thus the extracted
witness w∗ must be a valid witness for (x∗, w∗) ∈ R.

Proof (of Theorem7). Let Com be a computationally hiding commitment scheme
with message space {0, 1, �}κ ∪ {⊥}. Consider the following relation:

Rcom :=
{
(m, com), (x, r) : com = Com(x; r) ∧ m �∈ Ix

}
.

Let NIZK = (�,Prove,Ver) be a NIZK-PoK for the relation Rcom. We define
the following tuple of algorithms (Gen,Sign,Verify).

– Algorithm Gen takes as input the security parameter and a string x ∈
{0, 1, �}κ ∪ {⊥}, samples ω ←$ {0, 1}�(κ), and defines com := Com(x; r) for
some random tape r. It then outputs VK := (ω, com) and SK := (ω, x, r).

– Algorithm Sign takes as input a secret key SK and a message m, and outputs
σ := π ←$ Prove(ω, (m, com), (x, r)).

– Algorithm Verify takes as input a verification key VK and a pair (m,σ), parses
VK := (ω, com), and outputs the same as Ver(ω, (m, com), σ).

The lemmas below show two main properties of the above signature scheme.

Lemma 2. For any PPT distinguisher D, and any bit-fixing set I ⊆ {0, 1}κ,
there exists a negligible function ν : N → [0, 1] such that:

∣
∣ Pr[DSign(SKI ,·)(VK, I) : (VK,SKI) ←$ Gen(1κ, I)]

− Pr[DSign(SK,·)(VK, I) : (VK,SK) ←$ Gen(1κ,⊥)]
∣
∣ � ν(κ),

where D is not allowed to query its oracle on messages m ∈ I.
14 On a high level, the difference is that functional signatures allow to generate punc-

tured signature keys, whereas our signature scheme allows to puncture the message
space.
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Proof. We consider a series of hybrid experiments, where each hybrid is indexed
by a bit-fixing set I and outputs the view of a distinghuisher D taking as input
a verification key and the set I, while given oracle access to a signing oracle.

Hybrid HI
1: The first hybrid samples (VK, SK) ←$ Gen(1κ, I) and runs the

distinghuisher D upon input (VK, I) and with oracle access to Sign(SK, ·).
Hybrid HI

2: Let Z be the simulator of the underlying NIZK-PoK. The second
hybrid samples (ω̃, ϑ) ←$ Z0(1κ) and defines com := Com(x; r) (for random
tape r) and ṼK = (ω̃, com). It then runs the distinghuisher D upon input
(ṼK, I), and answers its oracle queries m by returning σ̃ ←$ Z1(ϑ, (m, com)).

The two claims below imply the statement of Lemma 2.

Claim. For all bit-fixing sets I, we have {HI
1}κ∈N

c≈ {HI
2}κ∈N.

Proof (of Claim). The only difference between the two experiments is in the way
the verification key is computed and in how the signature queries are answered.
In particular, the second experiment replaces the CRS with a simulated CRS
and answers signature queries by running the ZK simulator of the NIZK. Note
that the commitment com has the same distribution in both experiments.

Clearly, given any distinguisher that tells apart the two hybrids for some
set I we can derive a distinguisher contradicting the unbounded zero-knowledge
property of the NIZK. This concludes the proof.

Claim. Let I⊥ := ∅. For all bit-fixing sets I, we have {HI
2}κ∈N

c≈ {HI⊥
2 }κ∈N.

Proof (of Claim). Given a PPT distinguisher D telling apart HI
2 and HI⊥

2 , we
construct a PPT distinguisher D that breaks computational hiding of the com-
mitment scheme. Distinguisher D′ is given as input a value com′ which is either
a commitment to I or a commitment to I⊥. Thus, D′ simply emulates the view
for D but uses com′ instead of com.

The claim follows by observing that in case com′ is a commitment to I the
view generated by D′ is identical to that in hybrid HI

2, whereas in case com′ is a
commitment to I⊥ the view generated by D′ is identical to that in hybrid HI⊥

2 .
Hence, D′ retains the same advantage as D, a contradiction.

Lemma 3. For any PPT forger F , and for any bit-fixing set I, there exists a
negligible function ν : N → [0, 1] such that the following holds:

Pr
[
m∗ ∈ I ∧ Verify(VK,m∗, σ∗) = 1 :

(m∗, σ∗) ←$ F(I, r),
(VK,SKI) := Gen(1κ, I; r)

]
� ν(κ).

Proof. We rely on the knowledge soundness property of the NIZK-PoK and on
the binding property of the commitment scheme. By contradiction, assume that
there exists a PPT forger F , a bit-fixing set Ix, and some polynomial p(·), such
that for infinitely many values of κ ∈ N

Pr

⎡

⎣m∗ ∈ Ix ∧ Ver(ω, (m∗, com), σ∗) = 1 :
r ←$ {0, 1}∗, ω ←$ {0, 1}�

com ←$ Com(x; r)
(m∗, σ∗) ←$ F(ω, r, Ix)

⎤

⎦≥ 1/p(κ).
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Consider the following adversary B attacking the binding property of the
commitment scheme:

(i) Upon input 1κ, run (ω̃, ϑ) ←$ K0(1κ);
(ii) Obtain (m∗, σ∗) ←$ F(ω̃, r, Ix) for some x ∈ {0, 1, �}κ and r ←$ {0, 1}∗;
(iii) Extract (x′, r′) ←$ K1(ω̃, ϑ, (m∗, com), σ∗), where com = Com(x; r);
(iv) Output (x, r), (x′, r′) and m (as an auxiliary output).

By relying on the knowledge soundness property of the NIZK-PoK, and using the
fact that the forger outputs an accepting proof with non-negligible probability,
we obtain:

Pr[B wins]
= Pr [com = Com(x′; r′) ∧ (x, r) �= (x′, r′) : ((x, r), (x′, r′)),m) ←$ B(1κ)]

≥ Pr

⎡

⎣
com = Com(x′; r′),

m �∈ Ix′ ,
m ∈ Ix

: ((x, r), (x′, r′)),m) ←$ B(1κ)

⎤

⎦ − ν(κ)

≥ Pr

⎡

⎣ m∗ ∈ Ix,
Ver(ω, (m∗, com), σ∗) = 1 :

r ←$ {0, 1}∗, ω ←$ {0, 1}�

com ←$ Com(x; r)
(m∗, σ∗) ←$ F(ω, r, Ix)

⎤

⎦

� 1/p(κ) − ν(κ),

for some negligible function ν(·). The first inequality uses the fact that the
condition (m �∈ Ix′) ∧ (m ∈ Ix) implies Ix �= Ix′ (and thus x �= x′), and thus is
sufficient for violating the binding property. This concludes the proof.

We can now explain how to transform a weak PZAP for NP into a PZAP for
NP. Let R be an NP-relation. Consider the following derived relation:

R′ = {((x,VK), w) : (x,w) ∈ R ∨ Verify(VK, x, w) = 1)}.

Clearly, R′ is in NP, so let Π = (Chall,Resp,Predict) be a weak PZAP for R′.
Define the following PZAP Π ′ = (Chall′,Resp′,Predict′) for the relation R.

– Algorithm Chall′ takes as input (1κ, x) and proceeds as follows:
• Run (c, ϑ) ←$ Chall(1κ).
• Sample (VK,SK) ←$Gen(1κ,⊥), and let the challenge be c′ := (c,VK) and

the trapdoor be ϑ′ = (ϑ,VK).
– Algorithm Resp′ takes as input (1κ, x, w, c′), parses c′ := (c,VK), and outputs

a := Resp(1κ, (x,VK), w, c).
– Algorithm Predict′ takes as input 1κ, ϑ′, x, parses ϑ′ := (ϑ,VK), and outputs

b := Predict(ϑ, (x,VK)).

The lemma below concludes the proof of Theorem 7.

Lemma 4. Let Π and Π ′ be as above. If Π is a weak PZAP for R′, then Π ′ is
a PZAP for R.
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Proof. Given a prover P∗ for Π ′, we construct a prover Pα for Π ′ for a parameter
α ∈ [κ] to be determined later. The description of Pα follows.

– Upon input challenge c, choose s ∈ {0, 1, �}κ in such a way that α := |{i ∈
[κ] : si = �}|. Sample (VK,SKI) ←$ Gen(1κ, I) for I := Is, and forward the
challenge c′ := (c,VK) to P∗.

– Upon input a verification query (xi, ai) from P∗ behave as follows:
• In case xi ∈ I, stop simulating P∗, pick a random x∗ ←$ {0, 1}κ\I,

and return the instance (x∗,VK) and answer a∗ := Resp(1κ, c, (x∗,VK),
Sign(SKI , x

∗)).
• In case xi �∈ I, compute σ ←$ Sign(SKI , xi) and answer the verification

query with 1 iff a = Resp(1κ, c, (x,VK), σ).
– Whenever P∗ outputs (x∗, a∗), if x∗ ∈ I output ((x∗,VK), a∗). Else pick a

random x∗ ←$ {0, 1}κ\I and return the instance (x∗,VK) and answer a∗ :=
Resp(1κ, c, (x∗,VK),Sign(SKI , x

∗)).

We define the extractor for Π ′ (w.r.t. the relation R) to be the same as the
extractor K for Π (w.r.t. the relation R′). It remains to bound the probability
that K output a valid witness for the relation R.

Let Good be the event that x∗ ∈ I and all the xi’s corresponding to P∗’s
verification queries are such that xi �∈ I. Moreover, let ExtR (resp. ExtR′) be the
event that (x,w) ∈ R (resp. ((x,VK), w) ∈ R′) where w comes from running the
extractor K in the definition of PZAP. We can write:

Pr[ExtR] � Pr[ExtR ∧ Good] (5)
� Pr[ExtR′ ∧ Good] − ν(κ)
� Pr[ExtR′ ] − Pr[¬Good] − ν(κ)

�
(
Pr[P ′ succeeds] − ν′(κ)

) − Pr[¬Good] − ν(κ), (6)

for negligible functions ν(·), ν′(·). Here, Eq. (5) holds because of Lemma 3,
whereas Eq. (6) follows by knowledge soundness of Π.

Observe that, by definition of Pα, the success probability when we condition
on the event Good not happening is overwhelming (this is because in that case
Pα just computes a valid signature, and thus it succeeds with overwhelming
probability by completeness of Π), therefore:

Pr[Pα succeeds] � Pr[Pα succeeds|Good] · Pr[Good] + (1 − ν′′(κ)) Pr[¬Good],

for some negligible function ν′′(·). Combining the last two equations, we obtain
that there exists a negligible function ν′′′(·) such that:

Pr[ExtR] � Pr[Pα succeeds|Good] · Pr[Good] − ν′′′(κ).

We analyse the probability that Pα succeeds conditioning on Good and the
probability of event Good separately. We claim that the first term is negligibly
close to the success probability of P∗. In fact, when the event Good happens,



Predictable Arguments of Knowledge 147

by Lemma 2, the view generated by Pα is indistinguishable from the view in the
knowledge soundness definition of PZAP.

As for the second term, again by Lemma 2, it is not hard to see that it
is negligibly close to (1 − 2−κ+α)Q · 2−κ+α, where Q is an upper bound for
the number of verification queries made by the prover. Since when 2−κ+α :=
1 − Q/(Q + 1), then (1 − 2−κ+α)Q · 2−κ+α � 1/e, it suffices to set α := κ +
log(1 − Q/(Q + 1)) to enforce that the probability of Good is noticeable. This
concludes the proof.

Ruling-Out Challenge-Passing Reductions We show an impossibility
result ruling out a broad class of black-box reductions from weak laconic PZAP
to laconic PZAP. This negative result holds for so-called “challenge-passing”
black-box reductions, which simply forward their input to the inner prover of
the PZAP protocol.

Theorem 8. Assume that pseudo-random generators exist, and let Π be laconic
weak PZAP for NP. There is no challenge-passing black-box reduction from weak
knowledge soundness to knowledge soundness of Π.

The impossibility exploits the fact that oracle access to the verifier V∗ in the
adaptive-knowledge soundness of laconic PZAP is equivalent to oracle access to a
succeeding prover for the same relation. Consider the relation of pseudo-random
string produced by a PRG G. The adversary can query the reduction with either
a valid instance, namely a value x such that x = G(s) for s ←$ {0, 1}κ, or an
invalid instance x←$ {0, 1}κ+1. Notice that, since the reduction is black-box the
two instances are indistinguishable, therefore a good reduction must be able to
answer correctly both kind of instances. This allows us to use the reduction itself
as a succeeding prover. We refer the reader to the full version of the paper [21]
for the formal proof.

7 Conclusion and Open Problems

We initiated the study of Predictable Arguments of Knowledge (PAoK) systems
for NP. Our work encompasses a full characterization of PAoK (showing in par-
ticular that they can without loss of generality assumed to be extremely laconic),
provides several constructions of PAoK (highlighting that PAoK are intimately
connected to witness encryption and program obfuscation), and studies PAoK
with additional properties (such as zero-knowledge and Predictable ZAP).

Although, the notions of PAoK and Ext-WE are equivalent, we think that
they give two different points of view on the same object. Ultimately, this can
only give more insights.

There are several interesting questions left open by our work. First, one
could try to see whether there are other ways (beyond the ones we explored in
the paper) how to circumvent the implausibility result of [23]. For instance it
remains open if full-fledged PAoK for NP exist in the random oracle model.
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Second, while it is impossible to have PAoK that additionally satisfy the
zero-knowledge property in the plain model—in fact, we were able to achieve
zero-knowledge in the CRS model and in the non-programmable random oracle
model)—such a negative result does not apply to witness indistinguishability.
Hence, it would be interesting to construct PAoK that are additionally witness
indistinguishable in the plain model. An analogous question holds for PZAP.

Third, we believe the relationship between the notions of weak PZAP (where
the prover is not allowed any verification query) and PZAP deserves further
study. Our impossibility result for basing PZAP on weak PZAP in a black-
box way, in fact, only rules out very basic types of reductions (black-box, and
challenge-passing), and additionally only works for laconic PZAP. It remains
open whether the impossibility proof can be extended to rule-out larger classes
of reductions for non-laconic PZAP, or if the impossibility can somehow be
circumvented using non-black-box techniques.
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Abstract. An important problem in secure multi-party computation
is the design of protocols that can tolerate adversaries that are capa-
ble of corrupting parties dynamically and learning their internal states.
In this paper, we make significant progress in this area in the context
of password-authenticated key exchange (PAKE) and oblivious transfer
(OT) protocols. More precisely, we first revisit the notion of projective
hash proofs and introduce a new feature that allows us to explain any
message sent by the simulator in case of corruption, hence the notion
of Explainable Projective Hashing. Next, we demonstrate that this new
tool generically leads to efficient PAKE and OT protocols that are secure
against semi-adaptive adversaries without erasures in the Universal Com-
posability (UC) framework. We then show how to make these protocols
secure even against adaptive adversaries, using non-committing encryp-
tion, in a much more efficient way than generic conversions from semi-
adaptive to adaptive security. Finally, we provide concrete instantiations
of explainable projective hash functions that lead to the most efficient
PAKE and OT protocols known so far, with UC-security against adaptive
adversaries, without assuming reliable erasures, in the single global CRS
setting.

As an important side contribution, we also propose a new commit-
ment scheme based on DDH, which leads to the construction of the first
one-round PAKE adaptively secure under plain DDH without pairing,
assuming reliable erasures, and also improves previous constructions of
OT and two- or three-round PAKE schemes.

Keywords: Oblivious transfer · Password authenticated key exchange ·
Erasures · Universal composability · Adaptive adversaries

1 Introduction

1.1 Motivation

One of the most difficult problems in secure multi-party computation is the
design of protocols that can tolerate adaptive adversaries. These are adversaries
c© International Association for Cryptologic Research 2017
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which can corrupt parties dynamically and learn their internal states. As stated
in the seminal work of Canetti et al. [12], this problem is even more difficult
when uncorrupted parties may deviate from the protocol by keeping record of
past configurations, instead of erasing them, or just because erasures are not reli-
able. To deal with this problem, they introduced the concept of non-committing
encryption (NCE) and showed how to use it to build general multi-party compu-
tation protocols that remained secure even in the presence of such adversaries.
Unfortunately, the gain in security came at the cost of a significant loss in effi-
ciency. Though these results were later improved (e.g., [6,17,21,27]), NCE still
requires a large amount of communication and achieving efficient constructions
with adaptive security without assuming reliable erasures remains a difficult
task.

To address the efficiency issue with previous solutions, Garay, Wichs, and
Zhou [24] (GWZ) introduced two new notions. The first one was the notion of
semi-adaptive security in which an adversary is not allowed to corrupt a party if
all the parties are honest at the beginning of the protocol. The main advantage
of the new notion is that it is only slightly more difficult to achieve than static
security but significantly easier than fully-adaptive security. The second new
notion was the concept somewhat non-committing encryption. Unlike standard
NCE schemes, somewhat non-committing encryption only allows the sender of a
ciphertext to open it in a limited number of ways, according to an equivocality
parameter �.

In addition to being able to build very efficient somewhat non-committing
encryption schemes for small values of �, Garay et al. [24] also showed how to
build a generic compiler with the help of such schemes that converts any semi-
adaptively secure cryptographic scheme into a fully-adaptively secure one. Since
the equivocality parameter � needed by their compiler is proportional to the
input and output domains of the functionality being achieved, they were able to
obtain very efficient constructions for functionalities with small domains, such
as 1-out-of-2 oblivious transfers (OT). In particular, their results do not require
reliable erasures and hold in the universal composability (UC) framework [8,9].

Building on the results of Garay et al. [24], Canetti et al. [10] showed how to
use 1-out-of-2 OT protocols to build reasonably efficient password-based authen-
ticated key exchange (PAKE) protocols in the UC framework against adaptive
corruptions without erasures. The number of OT instances used in their protocol
is proportional to the number of bits of the password.

Even though both works provide efficient constructions of UC-secure OT
and PAKE schemes with adaptive security without erasures, the efficiency gap
between these protocols and those which assume reliable erasures (e.g., [1,18])
remains significant. In this work, we aim to reduce this gap.

1.2 Our Approach

In order to build more efficient OT and PAKE schemes with adaptive security
without erasures, we start from the constructions of Abdalla et al. [1], which were
the most efficient OT and PAKE constructions in the UC model with adaptive
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corruptions, with a single global common reference string (CRS)1, and assuming
reliable erasures. We then improve them to make them secure against semi-
adaptive adversaries, without erasures. Finally, we show how to enhance these
protocols with non-committing encryption (NCE) in order to achieve adaptive
security without erasures and without impacting too much their efficiency. All
our constructions assume the existence of a single global CRS (notice that even
with static corruptions, OT and PAKE in the UC model do not exist in the plain
model without CRS [14]).

Hash Proof Systems. At the heart of the OT and PAKE constructions in [1] is
the following idea: one party commits to his index (for OT) or his password (for
PAKE), and the other party derives from this commitment some hash value which
the first party can compute if his commitment was valid and contained some
given value (a valid password or a given index), or appears random otherwise.
This hash value is then used to mask the values to be transferred in the OT case
or is used to derive the session key in the PAKE case.

More precisely, this hash value is computed through a hash proof system or
smooth projective hash functions (SPHF) [20]. An SPHF is defined for a language
L ⊆ X . In our case, this language is the language of valid commitments of some
value. The first property of an SPHF is that, for a word C in L, the hash value
can be computed using either a secret hashing key hk (generated by the first
party) or a public projected key hp (derived from hk and given to the second
party) together with a witness w to the fact that C is indeed in L. However, for
a word C not in L, the hash value computed with hk is perfectly random, even
knowing hp. The latter is known as the smoothness property.

Explainable Hash Proof Systems. To make the protocol secure against semi-
adaptive adversaries, we face two main problems. The first is the fact the commit-
ment scheme has at the very least to be UC-secure against semi-adaptive adver-
saries, without relying on erasures. While this is not the case for the original com-
mitment scheme in [1], we show that it is true for a slight variant of it.

The second problem is the main challenge: in case of corruption of an honest
player, after this player sent some projection key hp, we need to exhibit a hashing
key hk that is compatible with the view of the adversary. In particular, this view
may contain a hash value of some commitment under hk. For that purpose, we
introduce the notion of explainable hash proof systems (EPHFs) which basically
are SPHFs with a trapdoor enabling to generate a projection key hp, and later
exhibit a hashing key hk for any hash value.

We propose two constructions of EPHFs. The first one works with any SPHF,
as long as there exists a trapdoor which enables to generate, for any hashing key
hk, a random hashing key hk′ associated to the same projection key as hp. This
property is achieved by most known SPHFs. Then to generate a hashing key hk′

corresponding to a given projection key hp (associated to some known hk) and
a given hash value H, we can draw hk′ as above until it corresponds to the hash

1 Here, global CRS just means multiple parties can share the same CRS, as in [18].
Our notion of global CRS is different from that in [11].
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value H. Unfortunately, this can only be done if the set of possible hash values
is small. One way to ensure this fact is to truncate the hash value to only ν
bits instead of keeping the entire hash value. In this case, the reduction requires
O(2ν) drawing of hk′.

This reduction gap means that ν has to be logarithmic in the security para-
meter. If we look carefully at current SPHF constructions over cyclic groups,
we remark that hashing keys are usually vectors of scalars, while hash values
are typically group elements. Therefore, intuitively, it does not seem possible
to recover a hashing key from a hash value, without performing some kind of
discrete logarithm computation on the hash value.2 As a result, it appears that
the best we can hope for in this case is to drop the cost from O(2ν) down to
O(2ν/2), through the use of a baby-step giant-step algorithm, or the Pollard’s
kangaroo method [30]. A straightforward application of this idea to an SPHF,
however, would require computing the discrete logarithm of the hash value, which
is impractical. Our second construction consists largely in making this idea work.

From Semi-adaptive to Adaptive Adversaries. Once we obtain OT and
PAKE protocols secure against semi-adaptive adversaries using EPHFs, we still
need to transform them into protocols secure against adaptive adversaries.

First, for PAKE, the GWZ transformation cannot directly be used because
channels are not authenticated, and some ideas of Canetti et al. in [4] need to
be combined to deal with this issue. Even then, the GWZ improvement of using
somewhat NCE cannot be applied directly because PAKE outputs are session
keys, and therefore there is an exponential number of them, which means the
equivocality parameter and the communication complexity of the resulting pro-
tocol would be exponential in the security parameter. Hence, to transform a
semi-adaptively secure PAKE protocol into an adaptively secure one, each bit
of each flow of the original protocol needs to be sent through an NCE channel.
While the resulting protocol would only be 3-round, its communication com-
plexity would be impractical: even with the most efficient NCE schemes known
so far [17], this would multiply the communication complexity of the original
protocol by about 320.3 This is why we propose a new transformation from
semi-adaptively secure to adaptively-secure PAKE, in which only K + 8νm bits
are sent via NCE channels (where K is the security parameter and νm is the
password length).

Second, for OT, while the GWZ transformation is very practical for bit OT
(i.e., OT for one-bit messages), it cannot be used for long messages nor for

2 We could alternatively use group elements for the hashing key, but that would require
bilinear maps, and the hash value would be in the target group GT of the pairing
e : G × G → GT . So we would still need to be able to convert a group element
from the target group GT to the original group G. In any case, the whole comment
just highlights our intuition. There might be other ways of avoiding any discrete
logarithm computation, using some novel ideas we have not thought about.

3 We are interested in minimizing the total communication complexiy of the NCE
scheme. With regards to this measure of efficiency, the NCE scheme of Hemenway,
Ostrovsky, and Rosen in [27] is less efficient than the scheme of Choi et al. [17].
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1-out-of-k OT for large k (e.g., polynomial in the security parameter) for simi-
lar reasons as in the PAKE case. Garay et al. [24] proposed a solution for long
messages consisting in running νm-bit string OT together with zero-knowledge
proofs to make sure the same index is used in all protocols. Here, we show how to
directly construct νm-bit string OT from our specific semi-adaptive protocol at a
much lower cost, by avoiding zero-knowledge proofs and reducing the number of
bits sent via NCE channels. Contrary to a solution obtained by the GWZ trans-
formation, the communication complexity of this new protocol is polynomial in
k (instead of being exponential in k).

Relying only on DDH. As an important side contribution, we propose a new
SPHF-friendly commitment scheme based on the plain Decisional Diffie-Hellman
assumption (DDH). In addition to being more efficient than the one of Abdalla
et al. [1], the new commitment scheme also does not require pairings. As a
result, the new scheme can be used to significantly improve previous OT and
PAKE schemes in the UC model with adaptive adversaries, assuming reliable
erasures. Moreover, it also yields to the first one-round PAKE scheme under
plain DDH, using [1]. All the previously known one-round PAKE schemes (even
only secure against statistical corruptions) use pairings, including the recent
extremely efficient scheme of Jutla and Roy in [28], where each user only sends
four group elements.

For our protocols to be secure, the underlying commitment scheme has to
possess strong properties, which makes its design quite challenging. First, we
need to be able to extract the inputs of the parties and, in particular, the com-
mitments produced by the adversary. Second, we also need to be able to simulate
a party without knowing its input and, in particular, his commitments; but we
still need to be able to later open these commitments to the correct input, in case
of corruption. In other words, the commitment has to be both equivocable and
extractable. Third, to be compatible with SPHF, an additional twist is required:
the language L of commitments of a given value need to be non-trivial. More
precisely, it should not be possible for a (polynomial-time) adversary to generate
a commitment which may be opened in multiple ways (even if a polynomial-time
adversary may not be able to find it), or in other words, a commitment generated
by a polynomial-time adversary has to be perfectly binding. This last property
is called robustness. Roughly speaking, a commitment satisfying all these three
properties is said to be SPHF-friendly.

Efficient constructions of equivocable and extractable commitments fall in
two categories: the one following the ideas of Canetti and Fischlin [13] (includ-
ing [1,3]), and the ones using non-interactive zero-knowledge proofs as decom-
mitment information as the Fischlin-Libert-Manulis schemes [23]. The latter ones
are not robust and cannot be used for our purpose. The first basically consists,
when the committed value is just one bit b, to commit in an equivocable way
to b, and provide two ciphertexts C0 and C1, where Cb contains the decommit-
ment information for b and C1−b is random. Extracting such a commitment can
be done by decrypting C0 and C1 and finding which of them contains a valid
decommitment information, while simulating such a commitment just consists
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of encryptions of valid decommitment information in C0 and C1 (for 0 and 1,
respectively).

The difficulty is to find an equivocable commitment and an encryption
scheme compatible with an SPHF, which essentially means that they have to be
structure-preserving. In [3], the Pedersen [31] commitment scheme is used. But
then the decommitment information has to be done bit by bit as it is a scalar,
which is very inefficient4. To solve this issue, in [1], one of the Haralambiev
structure-preserving commitment schemes [26] is used, at the expense of relying
on SXDH and pairings. Unfortunately, there does not seem to exist structure-
preserving commitment schemes under plain DDH. This is why we developed a
new way of constructing SPHF-friendly commitment schemes.

1.3 Organization of the Paper

Due to space restrictions, we focus on OT in the core of the paper. PAKE con-
structions are detailed in the full version [2].

After recalling some definitions in Sect. 2, we introduce our new notion of
explainable hash proof systems (EPHFs) in Sect. 3 and present our two construc-
tions. This is our first main contribution. Then, we show how to use EPHFs and
SPHF-friendly commitments to construct OT UC-secure against semi-adaptive
adversaries, in Sect. 4. Next, we introduce our new SPHF-friendly commitment
scheme under plain DDH, which is our second main contribution. Using the
latter, we also provide substantial improvements for OT and PAKE schemes in
the UC model, assuming reliable erasures. Finally, in Sect. 6, we show how to
efficiently enhance our OT semi-adaptive protocols with non-committing encryp-
tion (NCE) in order to achieve adaptive security. In particular, we propose several
adaptive versions of our semi-adaptive OT protocols, yielding different trade-offs
in terms of communication complexity and number of rounds. In each case, at
least one of our new protocols outperforms existing ones. A detailed related work
coverage can be found in the full version [2].

To better focus on the core ideas, standard definitions and notations are
recalled in the full version [2]. Additional details and proofs for EPHFs, all
the proofs of our semi-adaptively and adaptively secure protocols, and proofs
and some technical parts of our new SPHF-friendly commitment are in the full
version [2].

2 Definitions

Notations. As usual, all the players and algorithms will be possibly probabilistic
and stateful. Namely, adversaries can keep a state st during the different phases,
and we denote $← the outcome of a probabilistic algorithm or the sampling from
a uniform distribution. For example, A(x; r) will denote the execution of A with

4 In addition, the SPHF we can build is a weak form of SPHF, and cannot be used in
one-round PAKE protocol for example.
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input x and random tape r. For the sake of clarity, sometimes, the latter random
tape will be dropped, with the notation A(x).

Smooth Projective Hash Functions. Projective hashing was first introduced
by Cramer and Shoup [20]. Here we use the formalization of SPHF from [7].

Let (Xcrs)crs be a family of domains for the hash functions indexed by crs,
and let (Lcrs,par)crs,par be a family of languages, i.e., Lcrs,par is a subset of Xcrs.
For the sake of simplicity, we write crs-par = (crs, par). In this paper, we focus
on languages of commitments, whose corresponding plaintexts satisfy some rela-
tions, and even more specifically here equal to some value par. The value crs
will be the common reference string for these commitments. The value par is a
parameter which is not necessarily public. In case of PAKE for example, it is the
expected password.

A key property of an SPHF is that, for a word C in Lcrs-par, the hash value
can be computed by using either a secret hashing key hk or a public projection
key hp but with a witness w of the fact that C is indeed in L. More precisely,
an SPHF is defined by four algorithms:

– HashKG(crs) generates a hashing key hk for crs;
– ProjKG(hk, crs, C) derives the projection key hp;
– Hash(hk, crs-par, C) outputs the hash value (in a set Π, called the range of the

SPHF) from the hashing key hk, for any word C ∈ X ;
– ProjHash(hp, crs-par, C, w) outputs the hash value from the projection key hp,

and the witness w, for a word C ∈ L.

On the one hand, the correctness of the SPHF assures that if C ∈ Lcrs-par with
w a witness of this fact, then Hash(hk, crs-par, C) = ProjHash(hp, crs-par, C, w).
On the other hand, the security is defined through the smoothness, which guar-
antees that, if C �∈ Lcrs-par, Hash(hk, crs-par, C) is statistically indistinguishable
from a random element, even knowing hp. More formally, an SPHF is smooth
if, for any crs, any par, and any C /∈ Lcrs-par, the following two distributions are
statistically indistinguishable:

{(hp,H) |hk $← HashKG(crs); hp ← ProjKG(hk, crs, C);H ← Hash(hk, crs-par, C)}
{(hp,H) |hk $← HashKG(crs); hp ← ProjKG(hk, crs, C);H $← Π}.

We chose to restrict HashKG and ProjKG not to use the parameter par, but
just crs (instead of crs-par), as for some applications, such as PAKE, hk and
hp have to be independent of par, since par is a secret (the password in case of
PAKE). We know that this is a stronger restriction than required for our purpose,
since one can use par without leaking any information about it; and some of our
applications such as OT do not require par to be private at all. But, this is not
an issue, since none of our SPHFs uses par.

If ProjKG does not depend on C and satisfies a slightly stronger smoothness
property (called adaptive smoothness, which holds even if C is chosen after hp),
we say the SPHF is a KV-SPHF, as such an SPHF was introduced by Katz
and Vaikuntanathan in [29]. Otherwise, it is said to be a GL-SPHF, as such an
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SPHF was introduced by Gennaro and Lindell in [25]. More formally, a KV-SPHF
is said to be smooth if for any crs, any par, and any function f from the set of
projection keys to Xcrs-par\Lcrs-par, the following two distributions are statistically
indistinguishable:

{(hp, H) | hk $← HashKG(crs); hp ← ProjKG(hk, crs); H ← Hash(hk, crs-par, f(hp))}
{(hp, H) | hk $← HashKG(crs); hp ← ProjKG(hk, crs); H

$← Π}.

See [7] for details on GL-SPHF and KV-SPHF and language definitions.
We would like to remark that one can easily extend the range of an existing

SPHF by concatenating several hash values with independent hashing keys on
the same word. In this case, the global projection key would be the concatenation
of the respective projection keys. It is straightforward to see that the smoothness
property of the global SPHF follows directly from a classic hybrid argument over
the smoothness property of the underlying SPHF.

SPHF-Friendly Commitment Schemes. In this section, we briefly sketch the
definition of SPHF-friendly commitment schemes we will use in this paper (more
details are given in the full version [2]). This is a slightly stronger variant of the
one in [1], since it requires an additional polynomial-time algorithm C.IsBinding.
But the construction in [1] still satisfies it. This is a commitment scheme that
is both equivocable and extractable. It is defined by the following algorithms:
C.Setup(1K) generates the global parameters, passed through the global CRS crs
to all other algorithms, while C.SetupT(1K) is an alternative that additionally
outputs a trapdoor τ ; C.Com�(M) outputs a pair (C, δ), where C is the com-
mitment of the message M for the label �, and δ is the corresponding opening
data, used by C.Ver�(C,M , δ) to check the correct opening for C, M and �. It
always outputs 0 (false) on M = ⊥. The trapdoor τ can be used by C.Sim�(τ)
to output a pair (C, eqk), where C is a commitment and eqk an equivocation
key that is later used by C.Open�(eqk, C,M) to open C on any message M with
an appropriate opening data δ. The trapdoor τ can also be used by C.Ext�(τ, C)
to output the committed message M in C, or ⊥ if the commitment is invalid.
Eventually, the trapdoor τ also allows C.IsBinding�(τ, C,M) to check whether
the commitment C is binding to the message M or not: if there exists M ′ �= M
and δ′, such that C.Ver�(C,M ′, δ′) = 1, then it outputs 0.

All these algorithms should satisfy some correctness properties: all honestly
generated commitments open and verify correctly, can be extracted and are
binding to the committed value, while the simulated commitments can be opened
on any message.

Then, some security guarantees should be satisfied as well, when one denotes
the generation of fake commitments (C, δ) $← C.SCom�(τ,M), computed as
(C, eqk) $← C.Sim�(τ) and then δ ← C.Open�(eqk, C,M):

– Setup Indistinguishability : one cannot distinguish the CRS generated by
C.Setup from the one generated by C.SetupT;
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– Strong Simulation Indistinguishability : one cannot distinguish a real commit-
ment (which is generated by C.Com) from a fake commitment (generated by
C.SCom), even with oracle access to the extraction oracle (C.Ext), the binding
test oracle (C.IsBinding), and to fake commitments (using C.SCom);

– Robustness: one cannot produce a commitment and a label that extracts to
M (possibly M = ⊥) such that C.IsBinding�(τ, C,M) = 0, even with oracle
access to the extraction oracle (C.Ext), the binding test oracle (C.IsBinding),
and to fake commitments (using C.SCom).

Note that, for excluding trivial attacks, on fake commitments, the extraction
oracle outputs the C.SCom-input message and the binding test oracle accepts for
the C.SCom-input message too. Finally, an SPHF-friendly commitment scheme
has to admit an SPHF for the following language:

Lcrs-par = {(�, C) | ∃δ, C.Ver�(C,M , δ) = 1},

where crs-par = (crs, par) and M = par.
Basically, compared to the original definition in [1], the main difference is

that it is possible to check in polynomial time (using C.IsBinding) whether a
commitment is perfectly binding or not, i.e., does not belong to any L(crs,M ′)
for M ′ �= M , where M is the value extracted from the commitment via C.Ext.
In addition, in the games for the strong simulation indistinguishability and the
robustness, the adversary has access to this oracle C.IsBinding.

Finally, for our PAKE protocols, as in [1], we need another property called
strong pseudo-randomness. This property is a strong version of the pseudo-
randomness property. However, while the latter is automatically satisfied by any
SPHF-friendly commitment scheme, the former may not, because of an additional
information provided to the adversary. But, it is satisfied by the SPHF-friendly
commitment scheme in [1] and by our new commitment scheme introduced in
Sect. 5, which is the most efficient known so far, based on the plain DDH.

SPHF-Friendly Commitment Schemes without Erasures. We will say
that an SPHF-friendly commitment scheme is without erasures if this is an SPHF-
friendly commitment scheme where δ (and thus the witness) just consists of the
random coins used by the algorithm C.Com. Then, an SPHF-friendly commitment
scheme without erasures yields directly a commitment scheme that achieves UC-
security without erasures.

We remark that slight variants of the constructions in [1,3] are actually with-
out erasures, as long as it is possible to sample obliviously an element from a
cyclic group. To make these schemes without erasures, it is indeed sufficient to
change the commitment algorithm C.Com to generate random ciphertexts (with
elements obliviously sampled from the corresponding cyclic groups) instead of
ciphertexts of 0, for the unused ciphertexts (i.e., the ciphertexts bi,Mi

, for [1],
using the notations in that paper). This does not change anything else, since
these ciphertexts are not used in the verification algorithm C.Ver.

In the sequel, all SPHF-friendly commitment schemes are assumed to be
without erasures. Variants of [1,3] are possible instantiations, but also our quite
efficient constructions presented in Sect. 5 and the full version [2].
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3 Explainable Projective Hashing

In this section, we define the notion of explainable projective hash function
(EPHF) and then give two generic constructions of EPHF from SPHF. Both
constructions work with any SPHF built using the generic framework of [7],
basically as long as there is a way to generate the CRS so that the discrete
logarithms of all elements are known. This encompasses most SPHFs over cyclic
groups. The second construction is more efficient, but only enable building GL-
EPHF, while the first construction enables building both GL-EPHF and KV-EPHF
and is slightly more generic (it may work with SPHFs which are not built using
the generic framework).

3.1 Definition

Let us first suppose there exists an algorithm Setup which takes as input the
security parameter K and outputs a CRS crs together with a trapdoor τ . In our
case Setup will be C.SetupT, and the trapdoor τ will be the commitment trap-
door, which may need to be slightly modified, as we will see in our constructions.
This modification generally roughly consists in adding the discrete logarithms of
all used elements in the trapdoor C.SetupT and is possible with most concrete
commitment schemes.

An explainable projective hashing (EPH) is an SPHF with the following addi-
tional property: it is possible to generate a random-looking projection key hp,
and then receive some hash value H, some value par and some word C /∈ Lcrs-par,
and eventually generate a valid hashing key hk which corresponds to hp and H,
as long as we know τ . In other words, it is possible to generate hp and then
“explain” any hash H for a word outside the language Lcrs-par, by giving the
appropriate hk.

While dual projective hashing [33] implies a weak version of smoothness, our
notion of EPH implies the usual notion of smoothness, and is thus stronger than
SPHF. Then, an EPHF can be either a GL-EPHF or a KV-EPHF, depending on
whether the word C is known when hp is generated.

GL-EPHF. Formally, a GL-EPHF is defined by the following algorithms:

– Setup(1K) takes as input the security parameter K and outputs the global
parameters, passed through the global CRS crs or crs-par to all the other
algorithms, plus a trapdoor τ ;

– HashKG, ProjKG, Hash, and ProjHash behave as for a classical SPHF;
– SimKG(crs, τ, C) outputs a projection key hp together with an explainability

key expk (C is not given as input for KV-EPHF);
– Explain(hp, crs-par, C,H, expk) outputs an hashing key hk corresponding to hp,

crs-par, C, and H.

It must satisfy the same properties as an SPHF together with the following
properties, for any (crs, τ) $← Setup(1K):
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– Explainability Correctness. For any par, any C /∈ Lcrs-par and any hash value
H, if (hp, expk) $← SimKG(crs, τ, C) and hk

$← Explain(hp, crs-par, C,H, expk),
then hp = ProjKG(hk, crs, C) and H = Hash(hk, crs-par, C), with overwhelming
probability (over the random tape of Explain);

– Indistinguishability. As for smoothness, we consider two types of indistin-
guishability: a GL-EPHF is indistinguishable, if for any par and any C /∈ Lcrs-par,
the two following distributions are statistically indistinguishable:

{

(hk, hp)
∣
∣
∣
∣
H

$← Π; (hp, expk) $← SimKG(crs, τ, C);
hk

$← Explain(hp, crs-par, C,H, expk)

}

{
(hk, hp)

∣
∣hk $← HashKG(crs); hp ← ProjKG(hk, crs, C)

}
.

KV-EPHF. A KV-EPHF is a GL-EPHF, for which ProjKG and SimKG does not
take as input the word C, and which satisfies the same smoothness as a KV-SPHF,
and a stronger indistinguishability property. A KV-EPHF is ε-indistinguishable,
if for any par and any function f from the set of projection keys to X\Lcrs-par,
the two following distributions are statistically indistinguishable:

{

(hk, hp)
∣
∣
∣
∣
H

$← Π; (hp, expk) $← SimKG(crs, τ,⊥);
hk

$← Explain(hp, crs-par, f(hp),H, expk)

}

{
(hk, hp)

∣
∣hk $← HashKG(crs); hp ← ProjKG(hk, crs,⊥)

}
.

3.2 First Construction

This first construction enables to transform any GL-SPHF (or KV-SPHF) satis-
fying some properties of re-randomization of the hashing key into a GL-EPHF
(respectively, a KV-SPHF). These properties are satisfied by any GL-SPHF (or
KV-SPHF) built from the generic framework [7], when τ contains the discrete
logarithms of all elements defining the language, as shown in the full version [2].
We first present the construction for GL-EPHF.

GL-EPHF. Here are the properties we require:

(a) For any hashing key hk and associated projection key hp, it is possible to
draw a random hk′ corresponding to hp, such that hk′ looks like a fresh
hashing key (conditioned on the fact that its projection key is hp). More
precisely, we suppose there exists a randomized algorithm InvProjKG, which
takes as input τ , a hashing key hk, crs-par, and a word C /∈ Lcrs-par, and
outputs a random hashing key hk′, satisfying ProjKG(hk′, crs, C) = hp. For
any crs-par, for any C /∈ Lcrs-par, for any hashing key hk

$← HashKG(crs), the
two following distributions are supposed to be statistically indistinguishable:

{hk′ | hk′ $← HashKG(crs) such that ProjKG(hk, crs, C) = ProjKG(hk′, crs, C)}
{hk′ | hk′ $← InvProjKG(τ, hk, crs, C)}.
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For GL-SPHFs built from the generic framework [7], if we look at the discrete
logarithms of all the group elements defining the language and all the ones
in the projection key, hashing keys corresponding to a given projection key
hp essentially are the solutions of a linear system (the right-hand side of
the system corresponds to hp, while coefficients of the system depend on the
language). InvProjKG can then output a uniform solution of this linear system.

(b) A stronger property than smoothness, called strong smoothness, is required.
Informally, it ensures that smoothness holds even when the hashing key is
conditioned on any projection key. Formally, a GL-SPHF is strongly smooth
if for any crs-par, for any C /∈ Lcrs-par, for any projection key hp (generated
by hk

$← HashKG(crs) and hp ← ProjKG(hk, crs, C)), the two following distri-
butions are statistically indistinguishable:

{
Hash(hk′, crs-par, C)

∣
∣
∣
∣
hk′ $← HashKG(crs) such that

ProjKG(hk′, crs, C) = hp

}

{
H

∣
∣H $← Π

}
;

(c) There exists a parameter ν linear in logK and a randomness extractor Extract
with range {0, 1}ν , such that the two following distributions are statistically
indistinguishable:

{Extract(H) | H
$← Π} {H | H

$← {0, 1}ν}.

Details on the randomness extractor can be found in the full version [2]. But
we can use either a deterministic extractor exists for Π, which is possible
for many cyclic groups [16], or a probabilistic extractor with an independent
random string in the CRS.

Then, if the hash values H computed by Hash or ProjHash are replaced
by Extract(H), the resulting SPHF is a GL-EPHF. Indeed, if SimKG(crs, τ, C)
just generates hk

$← HashKG(crs) and hp ← ProjKG(hk, crs, C), and outputs
hp and expk = (τ, hk). Then, Explain(hp, crs-par, C,H, expk) just runs hk′ $←
InvProjKG(τ, hk, crs, C) many times until it finds hk′ such that Hash(hk′, crs-par,
C) = H. It aborts if does not find a valid hk′ after 2νK times. Thanks to the
smoothness and the above properties, its abort probability is negligible in the
security parameter K.5 Since ν is linear in logK, the resulting algorithm Explain
runs in polynomial time in K. A formal proof can be found in the full version [2].

We observe that ν impacts on the running time of SimKG which will only be
used in the proofs of our PAKE and OT protocols (and not in their constructions),
so that ν only impacts on the tightness of the proofs of the resulting protocols. In
all comparisons in this article, we will use ν = 1, which hinders performances of
our scheme; but our schemes are still very efficient. In practice, to gain constant

5 Notice that the strong smoothness is necessary to prove that as, otherwise, it would
have been possible that for some projection key hp, no such hk′ exist, and Explain
would not run in expected polynomial time. See details in the full version [2].
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factors, it would be advisable to use a greater ν, and thus larger blocks. Finally,
the range of the EPHF can be easily extended just by using multiple copies of
the EPHF: for a range of ν′, hk becomes a tuple of �ν′/ν	 original hashing keys,
the same for hp and H.

KV-EPHF. In the first generic construction for GL-SPHF, we get a KV-EPHF,
if Property (a) and Property (b) hold even if C can depend on hp. In other
words, instead of quantifying on any C /∈ Lcrs-par, we quantify on any function
f from the set of projection keys to X\Lcrs-par, and replace C by f(hp) in the
definition (similarly to what is done for the smoothness of KV-SPHF or the
indistinguishability of KV-EPHF).

As for GL-EPHF, any KV-SPHF built using the generic framework satisfies
these properties and so can be transformed into KV-EPHF, as long as discrete
logarithms of all elements in the matrix Γ can be known from τ .

3.3 Second Construction

We show a more efficient construction for GL-EPHF from any GL-SPHF built
using the generic framework in the full version [2]. The idea is to use the alge-
braic properties of this framework to replace the costly search for hk′ in Explain
(which requires O(2ν) guesses) by the computation of a small (less than 2ν) dis-
crete logarithm in ProjHash. This can be done in O(2ν/2) group operations by
ProjHash, using Pollard’s kangaroo method in [30]. The parameter ν can there-
fore be twice larger in our second construction, which makes it approximately
twice more efficient.

4 Semi-adaptive OT Without Erasures

In this section, we propose a new OT protocol that is UC-secure against semi-
adaptive adversaries, without requiring reliable erasures. The new protocol is
very similar to the UC-secure OT construction in [1], except that the underlying
SPHF-friendly commitment scheme has to be without erasures and the underly-
ing SPHF has to be explainable. The security proof, which can be found in the
full version [2], is however more complex.

4.1 Semi Adaptivity

The semi-adaptive setting has been introduced in [24], for two-party protocols
when channels are authenticated: the adversary is not allowed to corrupt any
player if the two players were honest at the beginning of the protocol. When
channels are not authenticated, as for PAKE, we restrict the adversary not to
corrupt a player Pi if an honest flow has been sent on its behalf, and it has been
received by Pj , without being altered.

In addition to those restrictions on the adversary, there are also some restric-
tions on the simulator and the protocol. First, the simulator has to be setup-
preserving, which means, in our case, that it first has to generate the CRS,
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before simulating the protocol execution. Second, the simulator has to be input-
preserving, which means that if the adversary corrupts some user and honestly
runs the protocol for some input x, the simulator submits the same input to
the functionality. Third, the protocol has to be well-formed, which means that
the number of flows and the size of each flow is independent of the input and
the random tapes of the users. All these restrictions are clearly satisfied by our
simulators and protocols. Formal definitions can be found in [24].

4.2 Oblivious Transfer

The ideal functionality of an Oblivious Transfer (OT) protocol is depicted in
Fig. 1. It is inspired from [18]. In Fig. 2, we describe a 2-round 1-out-of-k OT for
νm-bit messages, that is UC-secure against semi-adaptive adversaries. It can be
built from any SPHF-friendly commitment scheme, admitting a GL-EPHF, with
range Π = {0, 1}νm , for the language: Lcrs-par={(�, C) | ∃δ, C.Ver�(C,M , δ)=1},
where crs-par = (crs, par) and M = par.

Fig. 1. Ideal functionality for 1-out-of-k oblivious transfer F(1,k)-OT

In case of corruption of the database (sender) after it has sent its flow, since
we are in the semi-adaptive setting, the receiver was already corrupted and
thus the index s was known to the simulator. The latter can thus generate
“explainable” hpt for all t �= s, so that when the simulator later learns the
messages mt, it can explain hpt with appropriate hkt. Erasures are no longer
required, contrarily to [1].
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Fig. 2. UC-secure 1-out-of-k OT from an SPHF-friendly commitment for semi-adaptive
adversaries

The restriction that Π has to be of the form {0, 1}νm is implicit in [1]. Any
SPHF can be transformed to an SPHF with range Π of the form {0, 1}νm , using a
randomness extractor, as long as the initial range is large enough. However, this
is not necessarily the case for EPHF, since the extractor might not be efficiently
invertible. That is why we prefer to make this assumption on Π explicit.6

5 A New SPHF-Friendly Commitment Scheme

In this section, we present our new efficient SPHF-friendly commitment scheme
under the plain DDH. Due to lack of space, we only give an overview of the
scheme and a comparison with previous SPHF-friendly commitment schemes.
Details are left to the full version [2].

5.1 Scheme

High-Level Intuition. The basic idea of our scheme is a generalization of the
schemes in [1,3,13,15]. In these schemes, the commitment of a bit b consists of
an equivocable commitment7 (also known as trapdoor commitment [22]) a of b

6 As pointed out by an anonymous reviewer, if νm is linear in logK, this assumption is
not necessary, as any extractor can be inversed by evaluating it on 2νmK randomly
chosen inputs, similarly to what Explain does in the construction of Sect. 3.2.

7 For the resulting commitment scheme to not require erasures, we suppose that it is
not only possible to generate the opening data of a simulated commitment for any
message, but also the corresponding random coins used by C.Com. Please note that
we do not require the opening data to be the random coins, to provide more efficient
construction, as the one in [1] using the Haralambiev commitment scheme TC4 [26]
(see details in the sequel).
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together with two ciphertexts C0 and C1 (with an IND-CCA encryption scheme),
such that Cb contains a valid opening db of the commitment a for b, while C1−b

is sampled obliviously.
To extract some commitment C, it is sufficient to know the decryption key

of the underlying IND-CCA encryption scheme and check whether C0 or C1

contains a valid opening d0 or d1 of a for 0 or 1. To simulate a commitment C,
it is sufficient to know a trapdoor enabling to construct a commitment a and
two valid openings d0 and d1 for both 0 and 1.

The robustness property basically comes from the fact the adversary cannot
generate a commitment a and two valid openings d0 and d1, without breaking the
binding property of the commitment a. Therefore, any commitment C generated
by a polynomial-time adversary is perfectly binding.

However, for the resulting commitment to be compatible with SPHF,
the underlying primitives (equivocable commitment and IND-CCA encryption
scheme) have to be algebraic. In [3], Abdalla et al. propose to use the Ped-
ersen commitment [31], as the equivocable commitment, together with the
Cramer-Shoup [19] encryption scheme. Unfortunately, as the openings of the
Pedersen commitments are scalars, they have to be encrypted bit-by-bit for the
resulting commitment to be SPHF-friendly. This makes the commitment size of
one bit to be quadratic in the security parameter (or the commitment to contain
a linear number of group elements). This issue was solved in [1] by replacing the
Pedersen commitment, by the Haralambiev commitment TC4 [26], for which
the opening is a group element. However, this was at the expense on relying on
bilinear groups (and SXDH) instead of plain DDH.

More precisely, the Haralambiev commitment of a bit b consists in a group
element a = grbT b, with rb a random scalar, and g, T two public generators of
a cyclic group G of prime order p. The opening of a is db = ĥrb with ĥ another
generator of G. This can be check using a pairing as follows: e(a/T b, ĥ) ?= e(g, db).

Pairings are only used to check the validity of an opening, and are only
required in the security proof, as the committer needs to reveal rb anyway (as
it is part of his random tape), and rb is sufficient to check the validity of the
opening information db of a without pairing.

In our new scheme, we replace the need of a pairing by adding a 2-universal
hash [20]. A 2-universal hash proof system can be seen as a designated-verifier
one-time-simulation-sound zero-knowledge proof, which basically means that
(i) it can only be checked by the simulator which generated the CRS, (ii) the
simulator can generate fake or simulated proof for false statement, (ii) and the
adversary cannot generate proof for false statement even if it sees one fake proof.
Finally, the Cramer-Shoup (IND-CCA) encryption scheme can be replaced by
the ElGamal encryption scheme, as the 2-universal hash provides a form of non-
malleability which is sufficient for our purpose8. As the construction is no longer
black-box, new ideas are required in the proof of security of the scheme.

8 Actually, a Cramer-Shoup ciphertext basically consists in an ElGamal ciphertext
plus a Diffie-Hellman element and a proof that everything is well-formed.



Removing Erasures with Explainable Hash Proof Systems 167

Our New Scheme. Our new scheme is formally described and proven in the
full version [2].

Basically, the setup C.SetupT(1K) generates a cyclic group G of order
p, together with four generators g, h = gx, ĥ = gx̂, T = gt, a tuple
(α, β, γ, α′, β′, γ′) ← Z

6
p, and H is a random collision-resistant hash function

from some family H. It then computes the tuple (c = gαĥγ , d = gβhγ , c′ =
gα′

ĥγ′
, d′ = gβ′

hγ′
). The CRS crs is set as (g, h, ĥ,H, c, d, c′, d′, T ) and the trap-

door τ is the tuple (α, α′, β, β′, γ, γ′) (a.k.a., extraction trapdoor) together with
t (a.k.a., equivocation trapdoor) and (x, x̂) (only used in the EPHF).

To commit a vector of bits M = (Mi)i ∈ {0, 1}m under a label �, for i =
1, . . . ,m, we choose two random scalars ri,Mi

, si,Mi

$← Zp and set

ui,Mi
= gsi,Mi vi,Mi

= hsi,Mi ĥri,Mi wi,Mi
= (cri,Mi · dsi,Mi ) · (c′ri,Mi d′si,Mi )ξ

ui,Mi

$← G vi,Mi

$← G wi,Mi

$← G,

together with ai ← gri,Mi TMi , where ξ = H(�, (ai, (ui,b, vi,b)b)i). The commit-
ment is then C = (ai, (ui,b, vi,b, wi,b)b)i ∈ G

8m, while the opening information is
the 2m-tuple δ = (ri,Mi

, si,Mi
)i ∈ Z

2m
p .

The pair (ui,Mi
, vi,Mi

) is the ElGamal encryption of the opening di,Mi
=

ĥri,Mi of the equivocable commitment ai, while wi,Mi
is the 2-universal hash

proving that logg ai/TMi , the discrete logarithm in base g of ai (i.e., ri,Mi
when

generated honestly), is equal to the discrete logarithm in base ĥ of the plaintext
di,Mi

.
The equivocation trapdoor t enables to open ai to both 0 and 1,

and so enables simulating commitments, while the equivocation trapdoor
(α, α′, β, β′, γ, γ′) is the hashing key for the 2-universal hash proof system, i.e.,

enables to check the validity of the proof wi,Mi
as follows: wi,b

?= (ai/T b)α+ξα′
·

uβ+ξβ′
i,b · vγ+ξγ′

i,b .

5.2 Complexity and Comparison

Table 1 compares our new schemes with existing non-interactive UC-secure com-
mitments with a single global CRS. Since in most cryptographic schemes relying
on SPHF-friendly commitments, such as the OT and PAKE schemes in [1], the
most important metrics tend to be the size of the commitments and the size
of the projection keys, Table 1 focuses on these parameters. In this context, as
Table 1 shows, our new construction is the most efficient SPHF-friendly commit-
ment scheme (even for KV-SPHF, since group elements in G2 are larger than
elements in G1) resulting in the most efficient OT and PAKE schemes so far
(adaptively secure, assuming reliable erasures, under any assumption, with a sin-
gle global CRS). In addition, since the new commitment scheme is secure under
plain DDH, it allows for the construction of the first one-round PAKE (adap-
tively secure, assuming reliable erasures) under plain DDH, since the scheme of
Abdalla, Chevalier, and Pointcheval [3] does not support KV-SPHF (which is
required for one-round PAKE construction [1]).
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Table 1. Comparison with existing non-interactive UC-secure commitments with a
single global CRS

SPHF-
friendly

W/o
erasure

Assumption C size δ size KV/GL SPHF
hp size

[13] �a DDH 9m × G 2m × Zp −
[3]b � �a DDH (m +

16mK)×G

2mK × Zp −/(3m + 2) × G+
(Zp)a

[23]c, 1 DLin 5 × G 16 × G −
[23]c, 2 DLin 37 × G 3 × G −
[1] � �a SXDH 8m × G1

+ m × G2

m × Zp 2m × G1/G1 +
(Zp)a

Section 5.1 � � DDH 7m × G 2m × Zp 4m × G/2 × G +
(Zp)d

m = bit-length of the committed value, K = security parameter;
we suppose there exists a family of efficient collision-resistant hash functions (for effi-
ciency reason, since DDH implies the existence of such families).
a commitments in [1,3,13] were not described as without erasures, but slight variants
of them are, as explained in Sect. 2.
b we consider a slight variant without one-time signature but using labels and multi-
Cramer-Shoup ciphertexts, as in the scheme in [1] (which makes the scheme more
efficient). The size of the projection key is computed using the most efficient methods
in [1];
c we use a Pedersen commitment as a chameleon hash and multi-Cramer-Shoup cipher-
texts to commit to multiple bits in a non-malleable way (see [1] for a description of
the multi-Cramer-Shoup encryption scheme). We do not know a SPHF on such com-
mitment, since the opening information of a Pedersen commitment is a scalar;
d this Zp element may only be K-bit long and is useless when m = 1.

6 Adaptive OT Without Erasures

As explained in [24], one can transform any semi-adaptive protocols into adap-
tive ones by sending all the flows through secure channels. Such secure channels
can be constructed using non-committing encryption (NCE) [5,12,17,21]. How-
ever, even the most efficient instantiation of NCE [17] requires 8νNCEK group
elements to send νNCE bits securely, with ElGamal encryption scheme as (trap-
door) simulatable encryption scheme. If νNCE is Ω(K), this can be reduced to
about 320νNCE group elements.

In this section, we propose several adaptive versions of our semi-adaptive OT
and PAKE protocols. Some are optimized for the number of rounds, while others
are optimized for the communication complexity. In each case, at least one of
our new protocols performs better than existing protocols. Only the high-level
intuition is given in this section. Details are given in the full version [2].

First Scheme. A first efficient way to construct a bit (i.e., νm = 1) 1-out-of-2
OT secure against adaptive adversary consists in applying the generic transfor-
mation of Garay et al. [24] to our semi-adaptive OT.
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This transformation uses the notion of �-somewhat non-committing encryp-
tion scheme. This scheme enables to send securely long messages, but which
restricts the non-committing property to the following: it is only possible to
produce random coins corresponding to � different messages. Then, to get an
adaptive OT from a semi-adaptive OT, it is sufficient to execute the protocol in
a 8-somewhat non-committing channel. Indeed, the simulator can send via this
channel 8 versions of the transcript of the protocol: depending on which user
gets corrupted first and on which were their inputs and outputs. There are two
choices of inputs for the sender (the two index queries) and two outputs (the
message ms), hence four choices in total; and there are four choices of inputs for
the receiver (the two messages m0 and m1). Hence the need for 8 versions.

In [24], the authors also show how to extend their bit OT based on the DDH
version of the static OT of Peikert et al. [32] to string OT by repeating the
protocol in parallel and adding an equivocable commitment to the index and
a zero-knowledge proof to ensure that the sender always uses the same index
s. Actually, for both of our instantiations and for the one in [24], we can do
better, just by using the same commitment C to s (in our case) or the same
CRS (the one obtained by coin tossing) and the same public key of the dual
encryption system (in their case). This enables us to get rid off the additional
zero-knowledge proof and can also be applied to the QR instantiation in [24].
In addition, the commitment C to s (in our case) or the CRS and the public
key (in their case) only needs to be sent in the first somewhat non-committing
channel.

Furthermore, if the original semi-adaptive OT is a 1-out-of-k OT (with k =
2νk), then we just need to use a 2k+1-somewhat NCE instead of a 8-somewhat
NCE encrypt (because there are 2k possible inputs for the sender, and k possible
inputs and 2 possible outputs for the receiver, so 2k+2k ≤ 2k+1 possible versions
for the transcript).

Finally, the combination of all the above remarks yields a νm-bit string 1-out-
of-k OT scheme requiring only νm 2k+1-somewhat NCE channels, and so only
νm(k + 1) bits sent through NCE.

Second Scheme. Our second scheme can be significantly more efficient than
our first one, for several parameter choices. Essentially, it consists in using NCE
channels to send kνm random bits to mask the messages (in case the sender
is corrupted first) and 2νk random bits to enable the simulator to make the
commitment binding to the index s (in case the receiver gets corrupted first).
Methods used for this second part are specific to our new SPHF-friendly com-
mitment scheme, but can also be applied to the commitment scheme in [1].

The scheme is depicted in Fig. 3. Our 1-out-of-k OT protocol uses a NCE
channel of νNCE = 2νk + kνm bits, where k = 2νk , for νm-bit strings. This
channel is used to send a random value R. The last kνm bits of R are k νm-bit
values R1, . . . , Rk. These values are used to mask the messages m1, . . . ,mk sent
by the sender, to be able to reveal the correct messages, in case of corruption of
the sender (when both the sender and the receiver were honest at the beginning,
and so when m1, . . . ,mk were completely unknown to the simulator).
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Fig. 3. UC-secure 1-out-of-k OT from our SPHF-friendly commitment for adaptive
adversaries

The first 2νk bits of R are used to make the commitment C (which is normally
simulated when the receiver is honest) perfectly binding to the revealed index
s, in case of corruption of the receiver (when both the sender and the receiver
were honest at the beginning, and so when s was completely unknown to the
simulator). More precisely, they are used to partially hide the last component of
commitments: the wi,b; the bit R2i+b−1 indicates whether wi,b has to be inverted
or not before use. The full security proof is given in the full version [2].

Remark 1. Though the new protocol uses our new commitment scheme, it could
alternatively use the commitment scheme in [1], by just replacing wi,b by the
last part of the Cramer-Shoup ciphertexts in these schemes. The proof would be
very similar. This replacement may yield a more efficient scheme (under SXDH
however) when νm is large, since the projection key in [1] is shorter than for
our scheme and multiple projection keys need to be sent due to the generic
transformation of SPHF to EPH.
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Comparison. In Table 2, we give a detailed comparison of our OT schemes with
the DDH-based OT in [24]. The QR-based one in less efficient anyway. We see
that, for every parameters νm and k, at least one of our two schemes (if not
both) is the most efficient scheme regarding both the number of rounds and the
communication complexity.

The exact communication complexity cost depends on the exact instantiation
of NCE. But in all cases, at least one of our schemes outperforms existing schemes
both in terms of number of bits sent via a NCE channel, and in terms of auxiliary
elements (elements which are not directly used by the NCE scheme). In addition,
our second scheme always uses the smallest number of auxiliary elements; and
it requires kνm +2νk bits to be sent via a NCE channel, which is not worse than
the (k + 1)νm bits required by our first scheme, as long as νm ≥ 2νk.

Table 2. Comparison of 1-out-of-k OT UC-secure against adaptive adversaries, without
erasures, with k = 2νk

Rnda Communication complexity

[24] ≥8 (k + 1) · νm × NCE + 3 · (2k + 2k) · νm × G

+(2k + 2k) · (com(4 × G) + 2νk × G + νk × ZK + 4νmνk × G
)

1st 4 (k + 1) · νm × NCE + 3 · (2k + 2k) · νm × G

+(2k + 2k) · (7νk × G + νm · (2 × G + (Zp)b + 2)
)

2nd 3 (kνm + 2νk) × NCE + 7νk × G + νm · (2 × G + (Zp)b + 2
)

a number of rounds
b this element in Zp is not required when νm = νk = 1
Legend:
– ZK: zero-knowledge proof used in [24].
– com(x): communication complexity of a UC-commitment scheme for x bits.
This is used to generate the CRS for the scheme in [32]. If this commitment is
interactive, this increases the number of required rounds.
– x × NCE: x bits sent by non-committing encryption scheme.

Here are some details on the comparison. We suppose we use the NCE scheme
proposed in [17] (which is 2-round) and the ElGamal encryption as simulation
encryption scheme for the NCE scheme and the somewhat NCE construction
(which also requires a simulation encryption scheme). So all our schemes are
secure under DDH (plus existence of collision resistant hash functions and sym-
metric key encryption, but only for efficiency, since DDH implies that also).

In the comparison, we extend the schemes in [24] to 1-out-of-k schemes using
the method explained in Sect. 6 and the 1-out-of-k version of the schemes of
Peikert et al. [32], which consists in doing νk schemes in parallel and secret
sharing the messages (where k = 2νk).

To understand the costs in the table, recall that a 2l-somewhat non-
committing encryption scheme works as follows: one player sends a l-bit value
I using a full NCE scheme (2 rounds) together with 2l public keys all samples
obviously except the Ith one, and then the other player sends 2l ciphertexts
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samples obliviously except the Ith one which contains a symmetric key K. Then
to send any message through this 2l-somewhat NCE channel, a player just sends
8 messages all random except the Ith one which is an encryption of the actual
message under K. This means that if the original semi-adaptive protocol is x-
round, then the protocol resulting from the transformation of Garay et al., is
(x + 2)-round; and this costs a total of 3 · 2l group elements, in addition of the
group elements for the l-bit non-committing encryption.

Acknowledgments. This work was partially done while the second author was stu-
dent at ENS, CNRS, INRIA, and PSL Research University, Paris, France. The first
author and the third author were supported by the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007–2013 Grant
Agreement no. 339563 – CryptoCloud). The second author was supported in part by the
CFM Foundation and by the Defense Advanced Research Projects Agency (DARPA)
and Army Research Office (ARO) under Contract No. W911NF-15-C-0236.

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42033-7 12

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Removing erasures with explain-
able hash proof systems. Cryptology ePrint Archive, Report 2014/125 (2014).
http://eprint.iacr.org/2014/125

3. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for condi-
tionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 671–689. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 39

4. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005). doi:10.1007/11535218 22

5. Beaver, D.: Commodity-based cryptography (extended abstract). In: 29th ACM
STOC, pp. 446–455. ACM Press, May 1997

6. Beaver, D.: Plug and play encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 75–89. Springer, Heidelberg (1997). doi:10.1007/BFb0052228

7. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 25

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

10. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30057-8 27

http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://eprint.iacr.org/2014/125
http://dx.doi.org/10.1007/978-3-642-03356-8_39
http://dx.doi.org/10.1007/11535218_22
http://dx.doi.org/10.1007/BFb0052228
http://dx.doi.org/10.1007/978-3-642-40041-4_25
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://dx.doi.org/10.1007/978-3-642-30057-8_27


Removing Erasures with Explainable Hash Proof Systems 173

11. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 4

12. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May 1996

13. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 2

14. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005). doi:10.1007/11426639 24

15. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

16. Chevalier, C., Fouque, P.-A., Pointcheval, D., Zimmer, S.: Optimal random-
ness extraction from a Diffie-Hellman element. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 572–589. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 33

17. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10366-7 17

18. Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and com-
posable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36362-7 6

19. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998). doi:10.1007/BFb0055717

20. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

21. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 27

22. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC. pp. 416–426. ACM Press (May 1990)

23. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally
composable string commitments with adaptive security. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-25385-0 25

24. Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption
and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03356-8 30

25. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)

26. Haralambiev, K.: Efficient cryptographic primitives for non-interactive zero-
knowledge proofs and applications. Ph.D. thesis, New York University (2011)

http://dx.doi.org/10.1007/978-3-540-70936-7_4
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/11426639_24
http://dx.doi.org/10.1007/978-3-642-01001-9_33
http://dx.doi.org/10.1007/978-3-642-01001-9_33
http://dx.doi.org/10.1007/978-3-642-10366-7_17
http://dx.doi.org/10.1007/978-3-642-36362-7_6
http://dx.doi.org/10.1007/978-3-642-36362-7_6
http://dx.doi.org/10.1007/BFb0055717
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-44598-6_27
http://dx.doi.org/10.1007/978-3-642-25385-0_25
http://dx.doi.org/10.1007/978-3-642-03356-8_30
http://dx.doi.org/10.1007/978-3-642-03356-8_30


174 M. Abdalla et al.

27. Hemenway, B., Ostrovsky, R., Rosen, A.: Non-committing encryption from
Φ-hiding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 591–
608. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 24

28. Jutla, C.S., Roy, A.: Dual-system simulation-soundness with applications to UC-
PAKE and more. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 630–655. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 26

29. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 18

30. Montenegro, R., Tetali, P.: How long does it take to catch a wild kangaroo? In:
Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 553–560. ACM Press, May–June
2009

31. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 9

32. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 31

33. Wee, H.: Dual projective hashing and its applications—lossy trapdoor func-
tions and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 246–262. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 16

http://dx.doi.org/10.1007/978-3-662-46494-6_24
http://dx.doi.org/10.1007/978-3-662-48797-6_26
http://dx.doi.org/10.1007/978-3-642-19571-6_18
http://dx.doi.org/10.1007/3-540-46766-1_9
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-642-29011-4_16
http://dx.doi.org/10.1007/978-3-642-29011-4_16


Scalable Multi-party Private Set-Intersection

Carmit Hazay1(B) and Muthuramakrishnan Venkitasubramaniam2

1 Bar-Ilan University, Ramat-Gan, Israel
carmit.hazay@biu.ac.il

2 University of Rochester, Rochester, NY 14611, USA
muthuv@cs.rochester.edu

Abstract. In this work we study the problem of private set-intersection
in the multi-party setting and design two protocols with the following
improvements compared to prior work. First, our protocols are designed
in the so-called star network topology, where a designated party com-
municates with everyone else, and take a new approach of leveraging the
2PC protocol of [FNP04]. This approach minimizes the usage of a broad-
cast channel, where our semi-honest protocol does not make any use of
such a channel and all communication is via point-to-point channels. In
addition, the communication complexity of our protocols scales with the
number of parties.

More concretely, (1) our first semi-honest secure protocol implies
communication complexity that is linear in the input sizes, namely
O((
∑n

i=1 mi) · κ) bits of communication where κ is the security para-
meter and mi is the size of Pi’s input set, whereas overall computational
overhead is quadratic in the input sizes only for a designated party, and
linear for the rest. We further reduce this overhead by employing two
types of hashing schemes. (2) Our second protocol is proven secure in
the malicious setting. This protocol induces communication complexity
O((n2+nmMAX+nmMIN log mMAX)κ) bits of communication where mMIN

(resp. mMAX) is the minimum (resp. maximum) over all input sets sizes
and n is the number of parties.

Keywords: Scalable multi-party computation · Private set-intersection

1 Introduction

Background on Secure Multi-party Computation. Secure multi-party computa-
tion enables a set of parties to mutually run a protocol that computes some
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function f on their private inputs, while preserving a number of security prop-
erties. Two of the most important properties are privacy and correctness.
The former implies data confidentiality, namely, nothing leaks by the proto-
col execution but the computed output. The latter requirement implies that
the protocol enforces the integrity of the computations made by the parties,
namely, honest parties learn the correct output. Feasibility results are well estab-
lished [Yao86,GMW87,MR91,Bea91], proving that any efficient functionality
can be securely computed under full simulation-based definitions (following the
ideal/real paradigm). Security is typically proven with respect to two adversarial
models: the semi-honest model (where the adversary follows the instructions of
the protocol but tries to learn more than it should from the protocol transcript),
and the malicious model (where the adversary follows an arbitrary polynomial-
time strategy), and feasibility holds in the presence of both types of attacks.

Following these works, many constructions focused on improving the effi-
ciency of the computational and communication costs. Conceptually, this line of
works can be split into two sub-lines: (1) Improved generic protocols that com-
pute any boolean or arithmetic circuit; see [IPS08,LOP11,BDOZ11,DPSZ12,
LPSY15] for just a few examples. (2) Protocols for concrete functionalities.
In the latter approach attention is given to constructing efficient protocols
for specific functions while exploiting their internal structure. While this app-
roach has been proven useful for many different two-party functions in both
the semi-honest and malicious settings such as calculating the kth ranked ele-
ment [AMP04], pattern matching and related search problems [HT10,Ver11], set-
intersection [JL09,HN12], greedy optimizations [SV15] and oblivious pseudoran-
dom function (PRF) evaluation [FIPR05], only minor progress has been achieved
for concrete multi-party functions.

2PC Private Set-Intersection. The set-intersection problem is a fundamental
functionality in secure computation and has been widely studied in the past
decade. In this problem a set of parties P1, . . . , Pn, holding input sets X1, . . . , Xn

of sizes m1, . . . ,mn, respectively, wish to compute X1 ∩ X2 ∩ . . . ∩ Xn. In the
two-party setting this problem has been intensively studied by researchers in
the last few years mainly due to its potential applications for dating services,
datamining, recommendation systems, law enforcement and more, culminating
with highly efficient protocols with practically linear overhead in the set sizes;
see for instance [FNP04,DSMRY09,JL09,HL10,HN12,Haz15]. For example, con-
sider two security agencies that wish to compare their lists of suspects without
revealing their contents, or an airline company that would like to check its list
of passengers against the list of people that are not allowed to go abroad.

Two common approaches are known to concretely solve this problem securely
in the plain model for two parties: (1) oblivious polynomial evaluation (OPE)
and (2) committed oblivious PRF evaluation.

In the first approach based on OPE, one party, say P1, computes a polynomial
Q(·) such that Q(x) = 0 for all x ∈ X1. The set of coefficients of Q(·) are
then encrypted using a homomorphic encryption scheme and sent to the other
party P2, who then computes the encryption of rx′ · Q(x′) + x′ for all x′ ∈ X2
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using fresh randomness rx′ via homomorphic evaluation. Finally, P1 decrypts
these computed ciphertexts and outputs the intersection of its input set X1

and these plaintexts. This is the approach (and variants thereof) taken by the
works [FNP04,DSMRY09,HN12].

The second approach uses a secure implementation of oblivious PRF eval-
uation. More precisely, in this approach, party P1 chooses a PRF key K and
computes the set PRFX1 = {PRFK(x)}x∈X1 . The parties then execute an obliv-
ious PRF protocol where P1 inputs the key K and P2 inputs its private set
X2. At the end of this protocol P2 learns the set PRFX2 = {PRFK(x′)}x′∈X2 .
Finally, P1 sends the set PRFX1 to P2, and P2 computes S = PRFX1 ∩ PRFX2

and outputs the corresponding elements x′ ∈ X2 whose PRF values are in S
as the actual intersection. This idea was introduced in [FIPR05] and further
used in [HL10,JL09,JL10]. Other solutions in the random oracle model such
as [CT10,CKT10,ACT11] take a different approach by applying the random ora-
cle on (one of) the sets members, or apply oblivious transfer extension [DCW13]
to implement a garbled Bloom filter.

By now, major progress had already been achieved for general two-party
protocols [KSS12,FJN+13,GLNP15,Lin16]. Moreover, it has been surprisingly
demonstrated that general protocols can be more efficient than the concrete
“custom-made” protocols for set-intersection [HEK12].

MPC Private Set-Intersection. While much progress has been made towards
achieving practical protocols in the two-party setting to realize set-intersection,
only few works have considered so far the multi-party setting. Moreover, most
of the previous approaches fail to leverage the highly efficient techniques that
were developed for the two-party case with scalable efficiency. Specifically, while
several recent works improve the efficiency of generic multi-party protocols
[LPSY15,LSS16,KOS16], they still remain inefficient for concrete applications
on big data.

The first concrete protocols that securely implemented the set-intersection
functionality were designed by Kissner and Song [KS05]. The core technique
underlying these protocols is based on OPE and extends the [FNP04] approach,
relying on expensive generic zero-knowledge proofs to achieve correctness. Fol-
lowing that, Sang and Shen introduced a new protocol with quadratic overhead
in the size of the input sets [SS07], which was followed by another protocol in the
honest majority setting based on Bilinear groups [SS08]. Cheon et al. improved
the communication complexity of these works by reducing the dependency on
the input sets from quadratic to quasi linear [CJS12]. Nevertheless, each party
still needs to broadcast O(mi) elements, where mi is the size of its input set,
implying that the overall communication complexity and group multiplications
per player grow quadratically with the number of parties. In [DMRY11], the
authors considered a new approach based on multivariate polynomials achieving
broadcast communication complexity of O(n · mMAX + mMAX · log2 mMAX) and
computational complexity O(n · m2

MAX), where mMAX is the maximum over all
input sets sizes and n is the number of parties. Finally, in a recent work [MN15],
Miyaji and Nishida introduced a semi-honest secure protocol based on Bloom
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filters that achieves communication complexity O(n · mMAX) and computational
complexity O(n · mMAX) for the designated party.

One can also consider using standard secure computation to securely real-
ize set-intersection. One popular approach for efficient protocols is [DPSZ12]
protocol, dubbed SPDZ, that describes a flavour of [GMW87] protocol for arith-
metic circuits. This protocol consists of a preprocessing phase that uses some-
what homomorphic encryption scheme to generate correlated randomness, that
is later used in an information theoretic online phase. The total overhead of
this approach is O(n · s + n3) where s is the size of the computed circuit. An
alternative approach to compute the offline phase, avoiding these costly prim-
itives, was recently introduced in [KOS16]. This protocol achieves a significant
improvement, and is only six times less efficient than a semi-honest version of
the protocol (where their experiments were shown for up to five parties), yet
its cost still approaches O(n2) overhead per multiplication triple. Finally, we
note that the round complexity of this approach is proportional to the circuit’s
multiplication depth.

A different approach was taken in [BMR90], extending the celebrated gar-
bled circuits technique of [Yao86] to the multi-party setting. This constant-round
protocol, developed by Beaver, Micali and Rogaway, has proven secure in the
presence of semi-honest adversaries (and malicious adversaries in the honest
majority setting). It is comprised of an offline phase for which the garbled cir-
cuit is created, and an online phase for which the garbled circuit is evaluated.
Recently, Lindell et al. [LPSY15] extended the [BMR90] protocol to the mali-
cious honest majority setting. For the offline phase the authors presented an
instantiation based on [DPSZ12]. In a more recent work, Lindell et al. [LSS16]
introduced a concretely efficient MPC protocol with malicious security, focusing
on reducing the round complexity into 9 rounds. The efficiency of this approach
is dominated by the efficiency of the protocol that realizes the offline phase.

Our main motivation in this paper is to develop a new approach for securely
realizing set-intersection in the multi-party setting. Concretely, we study whether
the multi-party variant of set-intersection can be reduced to the two-party case.
Meaning, can we securely realize private multi-party set-intersection using two-
party set-intersection protocols. Generally speaking, the paradigm of construct-
ing multi-party protocols from two-party protocols has several important advan-
tages. First, it may require using a broadcast channel fewer times than in the
classic approach (where every party typically communicates with everyone else
all the time). Moreover, it enables to leverage the extensive knowledge and expe-
rience gained while studying the two-party variant in order to achieve efficient
multi-party protocols. Finally, the mere idea of working on smaller pieces of
the inputs/problems also implies that we can achieve better running times and
implementations. Our new approach has not been considered yet in the past,
specifically because it is quite challenging to use two-party protocols for inter-
mediate computations without violating the privacy of the multi-party construc-
tion, and required pursuing a new approach.



Scalable Multi-party Private Set-Intersection 179

In light of this overview we pose the following questions,

Can we securely realize the set-intersection functionality with linear com-
munication complexity (and sub-quadratic computational complexity) in
the input sets sizes?

In particular, to what extent can multi-party set-intersection be reduced to
its two-party variant. Considering the set-intersection functionality, at first sight,
it seems that the answer to this question is negative as any 2PC protocol that
operates only on two input sets leaks information about the these intersections,
which is more than what should be leaked about the outputs by the protocol.
One potential solution would be to split the parties into pairs that repetitively
compute their pairwise intersection. While it is not clear how to prevent any
leakage within iterations, we further note that the round complexity induced
by such an approach is O(log n) where n is the number of parties, and that
the number of 2PC invocations is quadratic. It is worth noting that [CKMZ14]
also considered an approach of designing a three parties protocol by emulating
a two-party protocol, yet their techniques are quite different.

1.1 Our Results

In this paper we devise new protocols that securely compute the set-intersection
functionality in the multiparty setting while exploiting known techniques from
the two-party setting. In particular, we are able to save on quadratic overhead
in pairwise communication that is incurred in typical multiparty protocols and
obtain efficient protocols. More specifically, we consider a different network topol-
ogy than point-to-point fully connected network for which a single designated
party communicates with every party (i.e. star topology). An added benefit of
this topology is that not all parties must be online at the same time. This topol-
ogy has been recently considered in [HLP11] in a different context. In this work
we consider both the semi-honest and malicious settings.

The Semi-honest Setting. The main building block in our design is a threshold
additively homomorphic public-key encryption scheme (PKE). Our main obser-
vation is that one can employ the 2-round semi-honest variant of the [FNP04]
protocol, where a designated party P1 first interacts individually with every other
party via a variant of this protocol and learns the (encrypted) cross intersection
with every other party. Then in a second stage, P1 combines these results and
computes the outcome. More specifically, we leverage the following core insight,
where any element in P1’s input that appears in all other input sets is part of
the set-intersection. On the other hand, if some element from P1’s set does not
appear in one of the other sets then surely this element is not part of the set-
intersection. Therefore, it is sufficient to only examine P1’s set against the other
sets rather than examine all pairwise sets, which is the common approach in
prior works. Note that our protocol is the first multi-party protocol for realizing
private set-intersection that does not need to employ any broadcast channel at
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any phase during its execution, since all the communication is conducted directly
between P1 and each other party at a point-to-point level. More formally,

Theorem 11 (Informal). Assume the existence of a threshold additively homo-
morphic encryption scheme. Then, there exists a protocol that securely realizes
the private set-intersection functionality in the presence of semi-honest adver-
saries with no use of a broadcast channel and for n ≥ 2 parties.

Moreover, the communication complexity of our protocol is linear in the
input sets sizes, namely, O((

∑n
i=1 mi) · κ) bits of communication where κ is

the security parameter, whereas the computational overhead is quadratic in the
input sizes only the designated party P1, namely O(m2

1) exponentiations (where
the overhead of the rest of the parties is a linear number of exponentiations in
their input sets). Consequently, the designated party can be set as the party
with the smallest input set. Finally, by employing hash functions techniques, as
in [FNP04], we can further reduce P1’s overhead by splitting the input elements
into bins. We consider two hash schemes: simple hashing and balanced allocation
hashing. For simple hashing, this approach induces O((n − 1) · mMIN · log mMAX)
overhead where mMIN (resp. mMAX) is the minimum (resp. maximum) over all
input sets sizes and n is the number of parties. Whereas for balanced allocation
hash functions this approach induces O((n − 1) · mMIN · log log mMAX) overhead.
In both cases the communication complexity is O(B ·M · (n− 1)) where B is the
number of bins and M is the maximum bin size.

We note that the first variant based on simple hashing induces a simpler
protocol and the modification compared to the original protocol are minor. On
the other hand, the protocol based on balanced allocation hashing is slightly more
complicated as this hashing, that uses two hash functions, implies two oblivious
polynomial evaluations per elements from P1’s input. Consequently, P1 must
somehow learn which of the evaluations (if any) has evaluated to zero. We solve
this issue in two ways: either the parties communicate and compute the product
of the two evaluations, or the underlying additively homomorphic encryption
scheme supports single multiplication as well (e.g., [BGN05]). Finally, we note
that our approach is the first to employ these techniques due to its internal
design that heavily relies on a 2PC approach.

The Malicious Setting. Next, we extend our semi-honest approach for the mali-
cious setting. In this setting we need to work harder in order to ensure cor-
rectness since a corrupted P1 can easily cheat, by using different input sets in
the 2PC executions against different parties. It is therefore crucial that P1 first
broadcasts its committed input to the rest of the parties. Where later, each 2PC
protocol is carried out with respect to these commitments. It turns out that
even by adding this broadcast phase it is not enough to boost the security of
our semi-honest protocol since P1 may still abuse the security of the [FNP04]
protocol. Specifically, the main challenge is to prevent P1 from learning addi-
tional information about the intersection with individual parties as a corrupted
P1 may use ill formed ciphertexts or ciphertexts for which it does not know their
corresponding plaintexts, exploiting the honest parties as a decryption oracle.
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We recall that the [FNP04] follows by having the parties send encryptions
of polynomials defined by their input sets (as explained above). Then, towards
achieving malicious security, we design a polynomial check that verifies that P1

indeed assembled the encrypted polynomials correctly. This check follows by
asking the parties to sample a random element u which they later evaluate their
encrypted polynomials on and then compare these outcomes against the evalu-
ation of the combined protocol (which is publicly known). To avoid malleability
issues, we enforce correctness using a non-malleable proof of knowledge that is
provided by each party relative to its computation. This crucial phase allows
the simulator to extract the parties’ inputs by rewinding them on distinct ran-
dom values. Interestingly, this proof is only invoked once and thus induces an
overhead that is independent of the set sizes. We prove the following theorem.

Theorem 12 (Informal). Assume the existence of a threshold additively homo-
morphic encryption scheme and simulation sound zero-knowledge proof of
knowledge. Then, there exists a protocol that securely realizes the private set-
intersection functionality in the presence of malicious adversaries and for n ≥ 2
parties.

The communication complexity of the maliciously secure protocol is bounded
by O((n2 + nmMAX + nmMIN · log mMAX)κ) bits of communication where mMIN

(resp. mMAX) is the minimum (resp. maximum) over all input sets sizes and n is
the number of parties. The significant term in this complexity is O(n · mMAX · κ)
and this is linearly dependent on both the number of parties and the database
size. In contrast, previous works required higher complexity [DMRY11,CJS12].
In terms of of computational overhead, except for party P1, the computational
complexity of each party Pi is O(mMAX) exponentiations plus O(mMIN · mMAX)
groups multiplications, whereas party P1 needs to perform O(m1 · mMAX) expo-
nentiations.

Finally, we note that our building blocks can be instantiated based on the
El Gamal [Gam85] or Piallier [Pai99] public key encryptions schemes for the
semi-honest protocol. In the malicious setting, we either consider the El Gamal
scheme together with a Σ-protocol zero-knowledge proof of knowledge, that
can be made non-interactive using the Fiat-Shamir heuristic [FS86] which is
analyzed in the Random Oracle Model of Bellare and Rogaway [BR93]. The
analysis in this model implies the simulation soundness property we need for
non-malleability. A second instantiation can be shown based on the [BBS04]
public key encryption scheme and the simulation-sound non-interactive zero-
knowledge (NIZK) by Groth [Gro06].

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by κ. We say that a function μ : N → N

is negligible if for every positive polynomial p(·) and all sufficiently large κ it
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holds that μ(κ) < 1
p(κ) . We use the abbreviation PPT to denote probabilistic

polynomial-time. We further denote by a ← A the random sampling of a from
a distribution A, by [d] the set of elements (1, . . . , d) and by [0, d] the set of
elements (0, . . . , d).

We now specify the definition of computationally indistinguishable.

Definition 21. Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N

be two distribution ensembles. We say that X and Y are computationally indis-
tinguishable, denoted X

c≈ Y , if for every PPT machine D, every a ∈ {0, 1}∗,
every positive polynomial p(·) and all sufficiently large κ:

∣
∣Pr [D(X(a, κ), 1κ) = 1] − Pr [D(Y (a, κ), 1κ) = 1]

∣
∣ <

1
p(κ)

.

We define a d-degree polynomial Q(·) by its set of coefficients (q0, . . . , qd), or
simply write Q(x) = q0 + q1x + . . . qdx

d. Typically, these coefficients will be
picked from Zp for a prime p. We further write gQ(·) to denote the coefficients
of Q(·) in the exponent of a generator g of a multiplicative group G of prime
order p.

2.2 Hardness Assumptions

Let G be a group generation algorithm, which outputs (p,G,G1, e, g) given 1κ,
where G,G1 is the description of groups of prime order p, e is a bilinear mapping
(see below) and g is a generator of G.

Definition 22 (DLIN). We say that the decisional linear problem is hard rel-
ative to G, if for any PPT distinguisher D there exists a negligible function negl
such that

(p,G,G1, e, g, gx, gy, gxr, gys, gr+s) ≈c (p,G,G1, e, g, gx, gy, gxr, gys, gd)

where (p,G,G1, e, g) ← G(1κ) and x, y, r, s, d ← Zp.

Definition 23 (DDH). We say that the decisional Diffie-Hellman (DDH)
problem is hard relative to G, if for any PPT distinguisher D there exists a
negligible function negl such that

∣
∣
∣ Pr [D(G, p, g, gx, gy, gz) = 1] − Pr [D(G, p, g, gx, gy, gxy) = 1]

∣
∣
∣ ≤ negl(κ),

where (G, p, g) ← G(1κ) and the probabilities are taken over the choices of
x, y, z ←R Zp.

Definition 24 (Bilinear pairing). Let G, GT be multiplicative cyclic groups
of prime order p and let g be a generator of G. A map e : G × G → GT is a
bilinear map for G if it has the following properties:

1. Bi-linearity: ∀u, v ∈ G, ∀a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) generates GT .
3. e is efficiently computable.

We assume that the D-linear assumption holds in G.
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2.3 Public Key Encryption Schemes (PKE)

We specify first the definitions of public key encryption and IND-CPA.

Definition 25 (PKE). We say that Π = (Gen,Enc,Dec) is a public key
encryption scheme if Gen,Enc,Dec are polynomial-time algorithms specified as
follows:

– Gen, given a security parameter 1κ, outputs keys (PK,SK), where PK is a
public key and SK is a secret key. We denote this by (PK,SK) ← Gen(1κ).

– Enc, given the public key PK and a plaintext message m, outputs a ciphertext
c encrypting m. We denote this by c ← EncPK(m); and when emphasizing the
randomness r used for encryption, we denote this by c ← EncPK(m; r).

– Dec, given the public key PK, secret key SK and a ciphertext c, outputs a
plaintext message m s.t. there exists randomness r for which c = EncPK(m; r)
(or ⊥ if no such message exists). We denote this by m ← DecPK,SK(c).

For a public key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform
adversary A = (A1,A2), we consider the following IND-CPA game:

(PK,SK) ← Gen(1κ).
(m0,m1, history) ← A1(PK), s.t. |m0| = |m1|.
c ← EncPK(mb), where b ← {0, 1}.

b′ ← A2(c, history).
A wins if b′ = b.

Denote by AdvΠ,A(κ) the probability that A wins the IND-CPA game.

Definition 26 (IND-CPA). A public key encryption scheme Π =
(Gen,Enc,Dec) has indistinguishable encryptions under chosen plaintext attacks
(IND-CPA), if for every non-uniform adversary A = (A1,A2) there exists a
negligible function negl such that AdvΠ,A(κ) ≤ 1

2 + negl(κ).

Additively Homomorphic PKE. A public key encryption scheme is addi-
tively homomorphic if given two ciphertexts c1 = EncPK(m1; r1) and c2 =
EncPK(m2; r2) it is possible to efficiently compute EncPK(m1 +m2; r) with inde-
pendent r, and without the knowledge of the secret key. Clearly, this assumes
that the plaintext message space is a group; we actually assume that both the
plaintext and ciphertext spaces are groups (with respective group operations
+ or ·). We abuse notation and use EncPK(m) to denote the random variable
induced by EncPK(m; r) where r is chosen uniformly at random. We have the
following formal definition,

Definition 27 (Homomorphic PKE). We say that a public key encryption
scheme (Gen,Enc,Dec) is homomorphic if for all k and all (PK,SK) output by
Gen(1κ), it is possible to define groups M, C such that:
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– The plaintext space is M, and all ciphertexts output by EncPK(·) are elements
of C.1

– For every m1,m2 ∈ M it holds that

{PK, c1 = EncPK(m1), c1 ·EncPK(m2)} ≡ {PK,EncPK(m1),EncPK(m1+m2)}
where the group operations are carried out in C and M, respectively, and the
randomness for the distinct ciphertexts are independent.

Note that any such a scheme supports a multiplication of a plaintext by a scalar.
We implicitly assume that each homomorphic operation on a set of ciphertexts is
concluded with a refresh operation, where the party multiplies the result cipher-
text with an independently generated ciphertext that encrypts zero. This is
required in order to ensure that the randomness of the outcome ciphertext is
not related to the randomness of the original set of ciphertexts.

Threshold PKE. In a distributed scheme, the parties hold shares of the secret
key so that the combined key remains a secret. In order to decrypt, each party
uses its share to generate an intermediate computation which are eventually
combined into the decrypted plaintext. To formalize this notion, we consider two
multi-party functionalities: One for securely generating a secret key while keeping
it a secret from all parties, whereas the second functionality jointly decrypts a
given ciphertext. We denote the key generation functionality by FGEN, which is
defined as follows,

(1κ, . . . , 1κ) �→
(
(PK,SK1), . . . , (PK,SKn)

)

where (PK,SK) ← Gen(1κ), and SK1 through SKn are random shares of SK. In
the simulation, the simulator obtains a public key P̃K, either from the trusted
party or from the reduction, and enforces that outcome. Namely, that PK = P̃K.
Moreover, the decryption functionality FDEC is defined by,

(c,PK, . . . ,PK) �→
(
(m : c = EncPK(m)),−, . . . ,−

)
.

In the simulation, the simulator sends ciphertexts on behalf of the honest parties
which do not necessarily match the distribution of ciphertexts in the real exe-
cution (as it computes these ciphertexts based on arbitrary inputs). Moreover,
in the reduction the simulator is given a ciphertext (or more) from an external
source and must be able to decrypt it, jointly with the rest of the corrupted par-
ties, without knowing the secret key. We therefore require that in the simulation,
the simulator cheats in the decryption by biasing the decrypted value into some
predefined plaintext mS . It is required that the corrupted parties’ view is com-
putationally indistinguishable in both real and simulated decryption protocols.
One can view the pair of simulators (SGEN,SDEC) as a stateful algorithm where
1 The plaintext and ciphertext spaces may depend on PK; we leave this implicit.
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SDEC obtains a state returned by SGEN which includes the public key enforced
by SGEN as well as the corrupted parties’ shares. For simplicity we leave this
state implicit. Finally, we consider a variation of FDEC, denoted by FDecZero, that
allows the parties to learn whether a ciphertext encrypts zero or not, but noth-
ing more. Similarly to SDEC we can define a simulator SDecZero that receives as
output, either zero or a random group element and enforces that value as the
outcome plaintext. These functionalities can be securely realized relative to the
El Gamal and [BBS04], and Paillier and [BGN05], PKEs as specified next. We
denote the corresponding protocols that respectively realize FGEN and FDEC in
the semi-honest setting by πSH

GEN and πSH
DEC, and by πML

GEN and πML
DEC their malicious

variants.

The El Gamal PKE. A useful implementation of homomorphic PKE is the
El Gamal [Gam85] scheme that has two variations of additive and multiplicative
definitions (where the former is only useful for small domains plaintexts). In this
paper we exploit the additive variation. Let G be a group of prime order p in
which DDH is hard. Then the public key is a tuple PK = 〈G, p, g, h〉 and the
corresponding secret key is SK = s, s.t. gs = h. Encryption is performed by
choosing r ← Zp and computing EncPK(m; r) = 〈gr, hr · gm〉. Decryption of a
ciphertext c = 〈α, β〉 is performed by computing gm = β · α−s and then finding
m by running an exhaustive search. Consequently, this variant is only applicable
for small plaintext domains, which is the case in our work.

Threshold El Gamal. In El Gamal the parties first agree on a group G of order
p and a generator g. Then, each party Pi picks si ← Zp and sends hi = gsi to
the others. Finally, the parties compute h =

∏n
i=1 hi and set PK = 〈G, p, g, h〉.

Clearly, the secret key s =
∑n

i=1 sn associated with this public key is correctly
shared amongst the parties. In order to ensure correct behavior, the parties
must prove knowledge of their si by running on (g, hi) the zero-knowledge proof
πDL, specified in Sect. 2.6. To ensure simulation based security, each party must
commit to its share first and decommit this commitment only after the commit
phase is completed. Note that the simulator can enforce the public key outcome
by rewinding the corrupted parties after seeing their decommitment information.

Moreover, decryption of a ciphertext c = 〈c1, c2〉 follows by computing
the product c2 · (

∏n
i=1 csi

1 )−1, where each party sends c1 to the power of its
share together with a corresponding proof for proving a Diffie-Hellman rela-
tion. Here the simulator can cheat in the proof and return a share of the form
c2/(mS ·(∏i∈I csi

1

)
where I is the set of corrupted parties and mS is the message

to be biased. Note that the simulated share may not distribute as the real share
(this happens in case mS is different than the actual plaintext within c). Indis-
tinguishability can be shown by a reduction to the DDH hardness assumption.

The variation of FDEC allows the parties to learn whether a ciphertext
c = 〈α, β〉 encrypts zero or not, but nothing more. This can be carried out as
follows. Each party first raises c to a random non-zero power and rerandomizes
the result (proving correctness using a zero-knowledge proof). The parties then
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decrypt the final ciphertext and conclude that m = 0 if and only if the masked
plaintext was 0.

2.4 The Paillier PKE

The Paillier encryption scheme [Pai99] is another example of a public-key encryp-
tion scheme that meets Definition 27. We focus our attention on the follow-
ing, widely used, variant of Paillier due to Damg̊ard and Jurik [DJ01]. Specif-
ically, the key generation algorithm chooses two equal length primes p and
q and computes N = pq. It further picks an element g ∈ Z

∗
Ns+1 such that

g = (1+N)jrN mod Ns+1 for a known j relatively prime to N and rN . Let λ be
the least common multiple of p− 1 and q − 1, then the algorithm chooses d such
that d mod N ∈ Z

∗
N and d = 0 mod λ. The public key is N, g and the secret key

is d. Next, encryption of a plaintext m ∈ ZNs is computed by gmrNs

mod Ns+1.
Finally, decryption of a ciphertext c follows by first computing cd mod Ns+1

which yields (1 + N)jmd mod Ns

, and then computing the discrete logarithm of
the result relative to (1 + N) which is an easy task.

In this work we consider a concrete case where s = 1. Thereby, encryption of
a plaintext m with randomness r ←R Z

∗
N (ZN in practice) is computed by,

EncN (m, r) = (N + 1)m · rN mod N2.

Finally, decryption is performed by,

Decsk(c) =
[cφ(N) mod N2] − 1

N
· φ(N)−1 mod N.

The security of Paillier is implied by the Decisional Composite Residuosity
(DCR) hardness assumption.

Threshold Paillier. The threshold variant of Paillier PKE in the semi-honest
setting can be found in [Gil99], where the parties mutually generate an RSA
composite N . A malicious variant realizing this functionality can be found in
[HMRT12]. These protocols are fully simulatable in the two-party setting, but
can be naturally extended to the multi-party setting (in fact, Hazay et al. also
shows a variant that applies for any number of parties). In addition to a key
generation protocol, Hazay et al. also designed a threshold decryption protocol
which allows to bias the plaintext as required above.

The [BBS04] PKE. To setup the keys we choose at random x, y ← Z
∗
p.

The public key is (f, h) where f = gx, h = gy, and the secret key is (x, y).
To encrypt a message m ∈ G we choose r, s ← Zp and let the ciphertext be
(u, v, w) = (fr, hs, gr+s · m). To decrypt a ciphertext (u, v, w) ∈ G

3 we compute
m = Dec(u, v, w) = w/uxvy. This homomorphic scheme is IND-CPA secure
assuming the hardness of the DLIN assumption and can be viewed as an exten-
sion of the El Gamal PKE. Specifically, the protocols we discussed above with
respect to El Gamal can be directly extended for this PKE as well.
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The [BGN05] PKE. The public key is PK = (N,G,G1, e, g, h) where N =
q1q2, h = uq2 , g, u are random generators of G, and the secret key is SK = q1. To
encrypt a message m ∈ Zq2 we pick a random r ← [N −1] and compute gmhr. To
decrypt a ciphertext c we observe that cq1 = (gmhr)q1 = (gq1)m. Security follows
assuming the subgroup decision problem. In a threshold variant, the parties first
mutually generate a product of two primes N , so that the factorization of N
is shared amongst the parties. To decrypt, each party raises the ciphertext to
the power of its share. This scheme supports multiplication in the exponent via
the pairing operation, see Definition 24. Furthermore, the scheme is additively
homomorphic in both groups.

2.5 The Pedersen Commitment Scheme

The Pedersen commitment scheme [Ped91] is defined as follows. A key generation
algorithm (p, g, h,G) ← G(1κ) for which the commitment key is |ck = (G, p, g, h).
To commit to a message m ∈ Zp the committer picks randomness r ← Zp and
computes ComCK(m; r) = gmhr. The Pedersen commitment scheme is computa-
tionally binding under the discrete logarithm assumption, i.e., any two different
openings of the same commitment are reduced to computing logg h. Finally, it
is perfectly hiding since a commitment is uniformly distributed in G. Another
appealing property of this scheme is its additively homomorphism.

2.6 Zero-Knowledge Proofs

To prevent malicious behavior, the parties must demonstrate that they are
well-behaved. To achieve this, our protocols utilize zero-knowledge (ZK) proofs
of knowledge. The following proof πDL is required for proving consistency in
our maliciously secure threshold decryption protocol. Namely, πDL is employed
for demonstrating the knowledge of a solution x to a discrete logarithm prob-
lem [Sch89]. Formally stating,

RDL = {((G, g, h), x) | h = gx} .

2.7 Hash Functions

The main computational overhead of our basic semi-honest protocol is carried
out by P1, which essentially has to do m1 · mi comparisons for each i ∈ [2, n]
in order to compare each of its inputs to each of the other parties’ inputs. This
overhead can be reduced using hashing, if both parties use the same hash scheme
to map their respective items into different B bins. In that case, the items mapped
by some party to a certain bin must only be compared to those mapped by P1

to the same bin. Thus the number of comparisons can be reduced to be in the
order of the number of P1’s inputs times the maximum number of items mapped
to a bin. (Of course, care must be taken to ensure that the result of the hashing
does not reveal information about the inputs.) In this work we consider two hash
schemes: simple hashing and balanced allocations hashing; see [FHNP16] for a
thorough discussion.
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Simple Hashing. Let h be a randomly chosen hash function mapping ele-
ments into bins numbered 1, . . . ,B. It is well known that if the hash function
h maps m items to random bins, then, if m ≥ B log B, each bin contains with

high probability at most M = m
B +

√
m log B

B (see, e.g., [RS98,Wie07]). Setting
B = m/ log m and applying the Chernoff bound shows that M = O(log m)
except with probability (m)−s, where s is a constant that depends on the exact
value of M .2

Balanced Allocation. A different hash construction with better parameters
is the balanced allocation scheme of [ABKU99] where elements are inserted into
B bins as follows. Let h0, h1 : {0, 1}p(n) → [B] be two randomly chosen hash
functions mapping elements from {0, 1}p(n) into bins 1, . . . ,B. An element x ∈
{0, 1}p(n) is inserted into the less occupied bin from {h0(x), h1(x)}, where ties
are broken arbitrarily. If m elements are inserted, then except with negligible
probability over the choice of the hash functions h0, h1, the maximum number of
elements allocated to any single bin is at most M = O(m/B +log log B). Setting
B = m

log log m implies that M = O(log log m).3

3 The Semi-honest Construction

We begin with a description of a private MPC protocol that securely realizes
the following functionality in the presence of semi-honest adversaries. Specifi-
cally, the private set-intersection functionality FPSI for n parties is defined by
(X1, . . . , Xn) �→ (X1 ∩ . . . ,∩Xn, λ, . . . , λ) where λ is the empty string. For sim-
plicity we consider a functionality where only the first party receives an output.
Our protocol takes a new approach where party P1 interacts with every party
using a 2PC protocol that implements FPSI for two parties. At the end, P1 com-
bines the results of all these protocols and learns the intersection.

To be concrete, assume that P1 learns for each element xj
1 ∈ X1 whether it

is in Xi or not, for all j ∈ [m1] and i ∈ [2, n]. Then, P1 can conclude the overall
intersection. This is because an element from X1 that intersects with all other
sets must be in the overall intersection. On the other hand, any element that is
joint for all sets must be in X1 as well. Thus, we conclude that it is sufficient to
individually compare X1 with all other sets. This protocol, of course, is insecure
as it leaks the pairwise intersections (which is much more information than P1

2 As stated in [FHNP16], by setting B = m log log m/ log m we can make the error
probability negligible in m. However, any actual implementation will have to examine
the exact value of B which results in a sufficiently small error probability for the input
sizes that are expected. As for theoretical analysis, the subsequent construction,
based on balanced allocation hashing, presents a negligible error probability.

3 A constant factor improvement is achieved using the Always Go Left scheme
in [Vöc03] where h0 : {0, 1}p(n) → [1, . . . , B

2
], h1 : {0, 1}p(n) → [ b

2
+ 1, . . . , B]. An

element x is inserted into the less occupied bin from {h0(x), h1(x)}; in case of a tie
x is inserted into h0(x).
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should learn from a secure realization of FPSI). In order to hide this leakage
we suggest to use a subprotocol for which P1 learns an encryption of zero in
case the corresponding element is in the intersection, and an encryption of a
random element otherwise. If the encryption is additively homomorphic then P1

can combine all the results with respect to each element xj
1 ∈ X1, so that xj

1 is in
the overall intersection if and only if the combined ciphertext encrypts the zero
string. We implement this subprotocol using a variant of the [FNP04] protocol;
see below for a complete description.

The [FNP04] protocol (the semi-honest variant). More concretely, the [FNP04]
protocol is based on oblivious polynomial evaluation. The basic two-round semi-
honest protocol, executed between parties P̃1 and P̃2 on the respective inputs
X1 and X2 of sizes m1 and m2, works as follows:

1. Party P̃2 chooses encryption/decryption keys (PK,SK) ← Gen(1κ) for an
additively homomorphic encryption scheme (Gen,Enc,Dec).
P̃2 further computes the coefficients of a polynomial Q(·) of degree m2, with
roots set to the m2 elements of X2, and sends the encrypted coefficients, as
well as PK, to P̃1.

2. For each element xj
1 ∈ X1 (in random order), party P̃1 chooses a random value

rj (taken from an appropriate set depending on the encryption scheme), and
uses the homomorphic properties of the encryption scheme to compute an
encryption of rj · Q(xj

1) + xj
1. P̃1 sends the encrypted values to P̃2.

3. Upon receiving these ciphertexts, P̃2 extracts X1 ∩ X2 by decrypting each
value and then checking if the result is in X2. Note that if z ∈ X1 ∩ X2 then
by the construction of the polynomial Q(·) we get that r·Q(z)+z = r·0+z = z
for any r. Otherwise, r ·Q(z)+z is a random value that reveals no information
about z and (with high probability) is not in X2.

Towards realizing FPSI we slightly modify the [FNP04] protocol as follows. The
role of P̃2 remains almost the same and played by all parties Pi for i ∈ [2, n],
except that these parties do not generate a pair of keys but rather use a public
key that was previously generated by the whole set of parties in a key generation
phase. Whereas for each element xj

1 ∈ X1 (picked in random order), P̃1 computes
the encryption of rj ·Q(xj

1) and keeps it for itself. This role is computed by party
P1 that aggregates the polynomial evaluations and concludes the intersection as
explained in the beginning of this section. We denote P̃τ ’s message sent within
this modified protocol by πτ

FNP for τ ∈ {1, 2}.

Our Complete Protocol. Let (Gen,Enc,Dec) denote a threshold additively homo-
morphic cryptosystem with a public key generation and decryption protocols
πSH

GEN and πSH
DEC, respectively (in fact, we will be using protocol πSH

DecZero; see
Sect. 2.3). Then our protocol can be described using three phases. In the first
phase the parties run protocol πSH

GEN in order to agree on a public key without
disclosing its corresponding secret key to anyone. In the second 2PC phase P1

individually interacts with each party in order to generate the set of cipher-
texts as specified above (via the [FNP04] modified protocol). Finally, in the last
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phase, the parties carry out protocol πSH
DecZero for which P1 concludes the overall

intersection. More formally,

Protocol 1 (Protocol πPSI with semi-honest security).

– Input: Party Pi is given a set Xi of size mi for all i ∈ [n]. All parties are
given a security parameter 1κ and a description of a group G.

– The protocol:
• Key Generation. The parties mutually generate a public key PK and

the corresponding secret key shares (SK1, . . . ,SKn) by running a semi-
honestly secure protocol πSH

GEN that realizes FGEN.
• The 2PC phase. Party P1 engages in an execution of protocol

(π1
FNP, π2

FNP) specified above with each party Pi, for every i ∈ [2, n]. Let
(ci

1, . . . , c
i
m1

) denote the outcome of party P1 from the (i − 1)th execution
of 2PC protocol. (Recall that P1 has m1 elements in its set.)

• Concluding the intersection.
1. The parties mutually decrypt for P1 the set of ciphertexts

n∏

i=2

ci
1, . . . ,

n∏

i=2

ci
m1

by engaging in a semi-honestly secure protocol πSH
DecZero that realizes

FDecZero.
2. P1 outputs xj only if the decryption of

∏n
i=2 ci

j equals zero.

We continue with the proof of the following theorem,

Theorem 31. Assume that (Gen,Enc,Dec) is IND-CPA secure threshold addi-
tively homomorphic encryption scheme. Then, Protocol 1 securely realizes FPSI in
the presence of semi-honest adversaries in the {FGEN,FDecZero}-hybrid for n ≥ 2
parties.

Proof: We already argued for correctness, we thus directly continue with the
privacy proof. We consider two classes of adversaries. The first class involves
adversaries that corrupt a subset of parties that includes party P1, whereas
the second class does not involve the corruption of P1. We provide a separate
simulation for each class.

Consider an adversary A that corrupts a strict subset I of parties from the
set {P1, . . . , Pn}, including P1. We define a simulator S as follows.

1. Given {Xi}i∈I and Z = ∩n
i=1Xi, the simulator invokes the corrupted parties

on their corresponding inputs and randomness.
2. S generates (PK,SK) ← Gen(1κ) and invokes the simulator SGEN(PK) for

πSH
GEN in the key generation phase.

3. Next, S plays the role of the honest parties against P1 on arbitrary sets of
inputs. Namely, S sends ciphertexts encrypting the polynomials induced by
these inputs.
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4. Finally, at the concluding phase the simulator completes the decryption pro-
tocol as follows. For each xj

1 ∈ Z, S invokes SDecZero(0), forcing the decryption
outcome to be zero. Whereas for each xj

1 /∈ Z, the simulator invokes SDecZero(r)
for a uniformly distributed r ← G.

Note that the difference between the two views is with respect to the encrypted
polynomials sent by the simulator as opposed to the real parties. Then indis-
tinguishability follows from the privacy of πDecZero which boils down to the pri-
vacy of the threshold homomorphic encryption scheme. This can be shown via
a reduction to the indistinguishability of ciphertexts of the encryption scheme.
More formally, assume by construction the existence of an adversary A and a
distinguisher D that distinguishes the real and simulated executions with non-
negligible probability. We construct an adversary AΠ that distinguishes two
sets of ciphertexts. Concretely, upon receiving a public key PK, AΠ invokes the
simulator SGEN(PK) as would the simulator S do. Next, it outputs two sets of
vectors. One corresponds to the set of polynomials computed from the honest
parties’ inputs. Whereas the other set is arbitrarily fixed as generated in the
simulation. Upon receiving the vector of ciphertexts c̃ from its oracle, AΠ sends
c̃ to the corrupted P1 and completes the reduction as in the simulation.

Note that if c̃ corresponds to encryptions of the honest parties’ inputs, then
the adversary’s view is distributed as in the real execution. In particular, AΠ

always knows the correct plaintext to be decrypted (which is either zero or a
random value where this randomness is also known in the semi-honest model).
Therefore, the shares handed by AΠ are as in the real execution. On the other
hand, in case c̃ corresponds to the set of arbitrary inputs, then the adversary’s
view is distributed as in the simulation since the decrypted plaintext is not
correlated with the actual plaintext. This concludes the proof.

Next, we consider an adversary which does not corrupt P1. In this case the
simulator S is defined as follows.

1. Given {Xi}i∈I and Z = ∩n
i=1Xi, the simulator invokes the corrupted parties

on their corresponding inputs and randomness.
2. S generates (PK,SK) ← Gen(1κ) and invokes the simulator SGEN(PK) for

πGEN in the key generation phase.
3. Next, S plays the role of P1 against the corrupted parties on an arbitrary

set of inputs and concludes the simulation by playing the role of P1 on these
arbitrary inputs. (Note that this corruption case is even simpler as only P1

learns the output. In case all parties should learn the output then we apply
the same simulation technique as in the previous corruption case.)

Note that the difference is with respect to the polynomial evaluations made by
the simulated P1 which uses an arbitrary input. Then the indistinguishability
argument follows similarly as above via a reduction to the privacy of the encryp-
tion scheme as only P1 receives an output. �
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3.1 Communication and Computation Complexities

Note that the complexity of the protocol is dominated by the overhead of the
threshold cryptosystem as well as the underlying 2PC protocol for implementing
F2PC

PSI . We instantiate the latter using the [FNP04] and either the El Gamal PKE
[Gam85] or the Paillier PKE [Pai99] for the former. Note that the communica-
tion complexity of the [FNP04] variant we consider here is linear in m2, as m2+1
encrypted values are sent from P̃2 to P̃1 (these are the encrypted coefficients of
Q(·)). However, the work performed by P̃1 is high, as each of the m1 oblivious
polynomial evaluations includes performing O(m2) exponentiations, totaling in
O(m1 · m2) exponentiations. To save on computational work, Freedman et al.
introduced hash functions into their schemes. Below we consider two instantia-
tions of simple hashing (cf. Sect. 2.7) and balanced allocation hash function (cf.
Sect. 2.7).

Furthermore, the underlying threshold additively homomorphic encryption
scheme can be instantiated using either the additive variant of the El Gamal
PKE, for which the public key can be generated using the Diffie-Hellman app-
roach [DH76], or the Paillier PKE for which the public key can be generated
using [Gil99]. Finally, we note that our protocol is constant round and does not
need to use any broadcast channel.

Improved Computation Using Simple Hashing. In our protocol, the hash function
h will be picked by one of the parties (say P̃2) and known to both. Moreover, P̃2

defines a polynomial of degree M for each bin by fixing its mapped elements to be
the set of roots. As some of the bins contain less than M elements, P̃2 pads each
polynomial with zero coefficients up to degree M , so that the total degree of the
polynomial is M (since P2 must hide the actual number of elements allocated to
each bin). This results in B polynomials, all of degree M , with exactly m2 non-
zero roots. The rest of the protocol remains unchanged. Now, P̃1 needs to first
map each element xj

1 in its set and then obliviously evaluate the polynomial that
corresponds to that bin. Neglecting small constant factors, the communication
complexity is not affected as P̃i now sends B · Mi = O(mi) encrypted values.
There is, however, a dramatic reduction in the work performed by P̃1 as each
of the oblivious polynomial evaluations amounts now to performing just O(Mi)
exponentiations, and hence P̃1 performs O(m1 · ∑i Mi) exponentiations overall,
where Mi is a bin size for allocating Pi’s input.

Improved Computation Using Balanced Allocation Hashing. Loosely speaking,
they used the balanced allocation scheme of [ABKU99] with B = m2

log log m2
bins,

each of size M = O(m2/B + log log B) = O(log log m2). Party P̃2 now uses the
balanced allocation scheme to hash every x ∈ X into one of the B bins resulting
(with high probability) with each bin’s load being at most M . Instead of a single
polynomial of degree m2 party P̃2 now constructs a degree-M polynomial for each
of the B bins, i.e., polynomials Q1(·), . . . , QB(·) such that the roots of Qi(·) are
the elements put in the ith bin. Upon receiving the encrypted polynomials, party
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P̃1 obliviously evaluates the encryption of rj
0 · Qh0(x1

j )
(x1

j ) and rj
1 · Qh1(x1

j )
(x1

j )

for each of the two bins h0(x1
j ), h1(x1

j ) in which x1
j can be allocated, enabling P̃1

to extract X ∩ Y as above.
The communication and computational overheads are as above. Nevertheless,

a subtlety emerges in our semi-honest protocol that employs this tool, as P1

cannot tell which of the two bins contains the particular element. Consequently,
it cannot tell which of the two associated polynomials is evaluated to zero, where
this information is crucial in order to conclude the intersection. We suggest two
solutions in order to overcome this issue. Our first solution supports the El
Gamal and Paillier PKEs but requires more communication. Namely, the parties
run a protocol to compute the encryption of the product of plaintexts. This is
easily done by having P̃1 additively mask the two evaluations and then have P̃2

multiply the decrypted results and send the encrypted product back to P̃1. At
the end, P̃1 unmasks this cipehrtext and continues with the protocol execution.
Note that all the products can be computed in parallel.

Our second solution uses an encryption scheme that is additively homomor-
phic and multiplicative with respect to a single plaintexts multiplication. In this
case, it is possible to multiply the two results of the polynomials evaluations,
which will result zero if one of the evaluations is zero. An additively homomor-
phic encryption scheme that supports such a property is due to Boneh et al.
[BGN05] (cf. Sect. 2.4).

4 The Malicious Construction

Towards designing a protocol with stronger security we need to handle new
challenges that emerge due to the fact that party P1 may behave maliciously.
The main challenge is to prevent P1 from learning additional information about
the intersection with individual parties. To be concrete, we recall that our semi-
honest protocol follows by having P1 individually interacting with each party via
2PC protocol, where this stage is followed by decrypting the combined cipher-
texts generated in these executions. Then upon corrupting a subset of parties
which includes P1, a malicious adversary may use ill formed ciphertexts or cipher-
texts for which it does not know their corresponding plaintext, exploiting the
honest parties as a decryption oracle. Towards dealing with malicious attacks we
modify Protocol 1 as follows (for simplicity we concretely consider the El Gamal
PKE and adapt our ZK proofs for this encryption scheme).

1. First, P1 broadcasts commitments to its input X1 together with a zero-
knowledge proof. This phase is required in order to ensure that P1 uses the
same input against every underlying 2PC evaluation with every other party.
One particular instantiation for this commitment scheme can be based in Ped-
ersen’s scheme (cf. Sect. 2.5). This scheme is consistent with El Gamal PKE
(cf. 2.3) and the BBS PKE (cf. 2.4). An alternative scheme, e.g. [DN02], can
be considered when using the Paillier or the BGN PKEs (cf. Sect. 2.4); see
below for more details.
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2. To prevent P1 from cheating when assembling the encrypted polynomial, each
party chooses a random element λi ← G and encrypts the product of each
coefficient of Qi(·) with λi. More specifically, Pi sends an encryption of poly-
nomial λi · Qi(·), where the underlying set of roots remains unchanged. This
later allows the other parties to verify the correctness of P1’s computation,
which will allow to claim that P1 can only learn a random group element
upon deviating.

3. Next, the parties pick a random group element u ← G and compare the
evaluation of P1’s combined polynomial against the evaluations of their own
individual polynomials. Namely, each party broadcasts the value

∑
j(c

i
j)

uj

together with a zero-knowledge proof of knowledge. If concluded correctly,
this phase is followed by the parties verifying the equality of the following
equation

mMAX∑

j=1

(cj)xj

=
n∑

i=2

λ̃i

where mMAX is the maximum over all input sets sizes and n is the number
of parties. Note that equality is performed over the ciphertexts. For this
reason we can only work with additively homomorphic PKEs for which the
homomorphic operation does not add noise to the ciphertext. Our crucial
observation here is that the simulator can run the extractor of the proof
of knowledge and obtain the polynomials evaluations. Now, if the adversary
convinces the honest parties with a non-negligible probability that it indeed
knows the plaintext, then the simulator can rewind it sufficiently many times
in order to extract enough evaluation points for which it can fully recover the
corrupted parties’ polynomials, and hence their inputs.

4. Finally, P1 must prove that it correctly evaluated the combined polynomial
on its committed input X1 from Item 1. This phase is backed up with a ZK
proof due to Bayer and Groth [BG13], denoted by πEVAL, and formally stated
in Sect. 2.6.

Building blocks. Our protocol uses the following sub-protocols.

1. A coin tossing protocol πCOIN employed in order to sample a random group
element u ← G. Our protocol employs πCOIN only once, where u is locally
substituted by the parties in their private polynomials. These values are then
used by the parties to verify the behaviour of P1. The overhead of πCOIN is
O(n2) where n is the number of parties.

2. A ZK proof of knowledge πEXP for demonstrating the knowledge of the mes-
sage with respect to an additively homomorphic commitment scheme. We
employ this proof in two distinct places in our protocol, and for two different
purposes. First, when P1 broadcasts its polynomial in Step 2 and proves the
knowledge of these coefficients and second, in Step 4c when each party sends
its polynomial evaluation. As we demonstrate below, for both instantiations
we can use the same proof for the two purposes. Importantly, since we are in
the multi-party setting, where each party uses a homomorphic encryption to
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encrypt its polynomial, we must avoid the case for which an adversary may
“reuse” one of the encrypted polynomials as the polynomial of one of the
corrupted parties. We will require the proof to be simulation-extractable. We
will ensure this by showing that our proofs are non-malleable and straight-line
extractable.

3. A ZK proof of knowledge πEVAL for demonstrating the correctness of a poly-
nomial evaluation for a secret committed value [BG13]. This proof is an argu-
ment of knowledge such that given a polynomial P (·) = (p0, . . . , pd) and two
commitments , , ,′, proves the knowledge of a pair v, u such that P (v) = u
where ,= Com(u), ,′ = Com(v) and Com(·) denotes an homomorphic com-
mitment scheme (as noted in [BG13] any homomorphic commitment can be
used). Moreover, the polynomial can be committed as well. Formally stating,

REVAL =

⎧
⎨

⎩
(
P (·) = (p0, . . . , pd), , , ,′

)
, (r, r′, u, v) |

,= Com(u; r)
∧ ,′ = Com(v; r′)

∧ P (u) = v

⎫
⎬

⎭
.

Importantly, the communication complexity of this proof is logarithmic in the
degree of the polynomial, whereas the computational overhead by the verifier
is O(d) multiplications.

We next formally describe our protocol.

Protocol 2 (Protocol πML (with malicious security).

– Input: Party Pi is given a set Xi = {x1
i , . . . , x

mi
i } of size mi for all i ∈ [n]. All

parties are given a security parameter 1κ and a description of a group G.
– The protocol:

1. Key Generation. The parties mutually generate a public key PK and the cor-
responding secret key shares (SK1, . . . ,SKn) by running a maliciously secure
protocol πML

GEN that realizes FGEN.
2. The commitment phase. P1 creates commitments to its inputs {,1 , . . . , ,m1 }

and broadcasts them to all parties and proves the knowledge of their decom-
mitments using threshold πEXP.

3. The 2PC phase. For all i ∈ [2, n], party Pi computes the coefficients of a
polynomial Qi(·) = (qi

0, . . . , q
i
mi

) of degree mi, with roots set to the mi elements
of Xi. In addition, Pi chooses a random element λi ← G and computes the
product λi · qi

j for every coefficient within Qi. Finally, Pi sends P1 the sets of
ciphertexts

(
ci
1, . . . , c

i
mi

)
, encrypting the coefficients of λi · Qi(·).

4. Concluding the intersection.
(a) Upon receiving the ciphertexts from all parties, party P1 combines the fol-

lowing ciphertexts

c1 =
n∏

i=2

ci
1, . . . , cmMAX =

n∏
i=2

ci
mMAX

where mMAX = max(m2, . . . , mn). Note that P1 calculates the ciphertexts
encrypting the coefficients of the combined polynomial λ2 · Q2(·) + · · · +
λn · Qn(·). P1 then broadcasts ciphertexts

(
c1, . . . , cmMAX

)
to all parties.
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(b) Next, the parties verify the correctness of these ciphertexts. Specifically, the
parties first agree on a random element u from the appropriate plaintext
domain using the coin tossing protocol πCOIN.

(c) Then, each party broadcasts the ciphertext computed by
∑

j(c
i
j)

uj

, denoted

by λ̃i, together with a ZK proof of knowledge πEXP for proving the knowl-
edge of the plaintext.
If all the proofs are verified correctly, then the parties check that∑mMAX

j=1 (cj)
xj

=
∑n

i=2 λ̃i using the homomorphic property of the encryp-
tion scheme.

(d) If the verification phase is completed correctly, for every xj
1 ∈ X1, P1 eval-

uates the polynomial that is induced by the coefficients encrypted within
ciphertexts

(
c1, . . . , cmMAX

)
on xj

1 and proves consistency with the com-
mitments from Step 2 using the ZK proof πEVAL.

(e) Upon completing the evaluation, the parties decrypt the evaluation out-
comes for P1 using protocol πML

DecZero, who concludes the intersection.

We continue with the proof for this theorem,

Theorem 41. Assume that (Gen,Enc,Dec) is IND-CPA secure threshold addi-
tively homomorphic encryption scheme, and that πCOIN, πEXP, πEVAL, πGEN and
πDecZero are as above. Then, Protocol 2 securely realizes FPSI in the presence of
malicious adversaries for n ≥ 2 parties.

Proof: Intuitively, correctness follows easily due to a similar argument as in
the semi-honest case, where each element in P1’s set must zero all the other
polynomials if it belongs to the intersection. Next, we consider two classes of
adversaries. The first class involves adversaries that corrupt a subset of parties
that includes party P1, whereas the second class does not involve the corruption
of P1. We provide a separate simulation for each class.

Consider an adversary A that corrupts a strict subset I of parties from the
set {P1, . . . , Pn}, including P1. We define a simulator S as follows.

1. Given {Xi}i∈I the simulator invokes the corrupted parties on their corre-
sponding inputs and randomness.

2. S generates (PK,SK) ← Gen(1κ) and invokes the simulator SGEN(PK) for
πML

GEN in the key generation phase.
3. Next, S extracts the input X ′

1 of P1 by invoking the extractor of the proof of
knowledge πEXP.

4. S plays the role of the honest parties against P1 on arbitrary sets of inputs.
5. Finally, at the concluding phase the simulator completes the execution of the

protocol as follows. S completes the verification phase as the honest parties
would do. If the verification phase fails S aborts, sending ⊥ to the trusted
party.

6. Otherwise, S extracts the corrupted parties’ inputs (excluding party P1 for
which its input has already been extracted). More concretely, the simulator
repetitively rewinds the adversary to the beginning of Step 4b, where for
every iteration the parties evaluate their polynomial at a randomly chosen
point u and the simulator extracts the individual evaluations by running the
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extractor of the proof of knowledge πEXP and records these values only if they
pass the verification phase.

Upon recording d+1 values for each corrupted party, the simulator recon-
structs their polynomials and calculates the set of roots Xi of each polynomial
λi · Qi(·) for i ∈ I. In case S fails to record this many values, it outputs ⊥.

7. S sends {Xi}i∈I to the trusted party, receiving Z. S further verifies the πEVAL

proofs and aborts in case the verification fails.
8. Finally, for every xj

1 ∈ Z, S biases the decryption of the combined polynomials
to be zero. Whereas for each xj

1 /∈ Z, the simulator biases the decryption into
a random group element by running the simulator SML

DecZero on the appropriate
plaintext.

We briefly discuss the running time of the simulator. Observe that its run-
ning time is dominated by Step 6, when it repeatedly rewinds the adversary.
Nevertheless, using a standard analysis, the expected number of rewindings can
be shown to be polynomial. We next prove that the real and simulated execu-
tions are computationally indistinguishable. Note that the difference between
the executions boils down to the privacy of the encryption scheme. Namely, the
simulator sends encryptions of polynomials that were computed based on arbi-
trary inputs, as opposed to the honest parties’ real inputs. Our proof follows via
a sequence of hybrid games. We will begin with a scenario where P1 is in the set
of corrupted parties I. When P1 is honest, the proof is simpler and we discuss
this at the end.

Hybrid0: The first game is the real execution.

Hybrid1: This hybrid is identical to the real world with the exception that the
simulator S1 in this experiment extracts the corrupted parties inputs as in the
simulation. More precisely, it extracts the inputs of all corrupted parties from
πEXP and πEVAL, and aborts if it fails to extract. Since the probability that the
simulator fails to extract is negligible, it follows that this hybrid is statistically
close to the real world execution. Specifically, consider two cases. If the adver-
sary passes the verification check in Step 4b with non-negligible probability, then
using a standard argument the simulator will be able to extract enough evalu-
ation points. On the other hand, if the probability that the simulator reaches
the rewinding phase is negligible then indistinguishability will follow from the
aborting views output by the simulator.

Hybrid2: In this hybrid, the simulator extracts just as in Hybrid1 with the
following modifications. First, it invokes simulator SGEN for protocol πGEN in
Step 1. In addition, if the simulator does not abort when executing Step 4b, it
computes the set-intersection result Z based on the extracted inputs and the
honest parties’ inputs (which it knows in this hybrid). Next, it invokes simulator
SDecZero of the decryption protocols that is invoked in Step 4e. Note that SDecZero is
handed as plaintexts result of the set-intersection and needs to bias the outcome
towards these set of plaintexts. That is, for each element z ∈ X1 substituted in
the combined polynomial in Step 4d, the simulator enforces the decryption to
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be zero, and a random element otherwise. Note that indistinguishability follows
from the properties of the threshold decryption. In particular, the adversary’s
view in the previous hybrid includes the real execution of protocols πGEN and
πDEC, whereas in the current hybrid the adversary’s view includes the simulated
protocols executions. We further claim that the adversary’s set-intersection result
is identical in both executions condition on the even that extraction follows
successfully. This is due to the correctness enforced by the decryption protocol.

Hybrid3: In this hybrid, the simulator changes all the proofs given by the honest
parties in Step 4b to simulated ones. Moreover, recall that the simulator contin-
ues to extract the inputs of the corrupted parties. Now, since the zero-knowledge
proof we employ in this step is simulation extractable, it follows that Hybrid2

and Hybrid3 are computationally indistinguishable. Namely, as we require this
proof to be non-malleable and straight-line extractable, indistinguishability fol-
lows by simply posting either the real or the simulated proofs.

Hybrid4: In this hybrid, the simulator changes the inputs of the honest parties
in the 2PC phase to random inputs. Namely, the simulator sends the encryptions
of a random polynomial on behalf of each honest party in Step 3. Then indistin-
guishability of Hybrid3 and Hybrid4 follows from the IND-CPA security of the
underlying encryption scheme. Specifically, the simulator never needs to know
the secret key of the encryption scheme, so that the ciphertexts obtained from
the encryption oracle in the IND-CPA reduction can be directly plugged into the
protocol. More concretely, a simple reduction can follow by providing an adver-
sary A′, who wishes to break the IND-CPA security of the underlying PKE, a
public-key PK and a sequence of ciphertexts that either encrypt the real honest
parties’ polynomials or a set of random polynomials. A′ emulates the simulator
for this hybrid, with the exception that it plugs-in these ciphertexts on behalf of
the honest parties in Step 3. Note that the adversary’s view is either distributed
according to the current or the prior hybrid execution, where the no information
about the polynomials is revealed in Step 4c due to the random λ masks that
yield random polynomials evaluations.

As Hybrid4 is identical to the real simulator, the proof of indistinguishabiliy
follows via a standard hybrid argument.

Next, in the case that P1 is not corrupted, the simulator further plays the
role of this party in the simulation. In this case the proof follows almost as
above with the difference that now the simulator uses a fake input for P1 when
emulating Step 4d. This requires two extra hybrid games in the proof for which
the simulator switches to P1’s real input, reducing security to the privacy of the
underlying encryption scheme and the zero-knowledge property of πEVAL. �

4.1 An Instantiation of πEXP Based on DDH and the Random
Oracle

Our first instantiation uses the following building blocks. First, we use the
El Gamal PKE as the threshold additively homomorphic encryption scheme;
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we elaborate in Sect. 2.3 regarding this scheme. We further consider Pedersen’s
commitment scheme [Ped91] for the commitment scheme made by P1 in Step 2
(see Sect. 2.5 for the details of this commitment scheme). Finally we realize πEXP

using a standard Σ-protocol for the following relation

REXP = {((G, g, h, h′), (m, r)) | h′ = gmhr} .

We invoke this proof in two places in our protocol. First, P1 proves the knowledge
of its committed input in Step 2. Next, the parties prove the knowledge of
their evaluated polynomial in Step 4b (where for any El Gamal type ciphertext
〈c1, c2〉 = 〈gr, hr · gm〉 it is sufficient to prove the knowledge with respect to the
second group element c2, which can be viewed as a Pedersen’s commitment).
Importantly, as the latter proof must meet the non-malleability property, we
consider its non-interactive variant using the Fiat-Shamir heuristic [FS86] which
is analyzed in the Random Oracle Model of Bellare and Rogaway [BR93]. Finally,
we note that the overhead of this proof is constant. As mentioned before, we need
the proofs to satisfy the stronger simulation-extractability property. If we assume
the stronger programmability property of random oracles, we can show that
these proofs are non-malleable and straight-line extractable. For more details,
see [FKMV12].

4.2 An Instantiation of πEXP Based on the DLIN Hardness
Assumption

Our second instantiation is based on the [BBS04] PKE that is based on the DLIN
hardness assumption and the simulation-sound NIZK by Groth [Gro06]. In this
work, Groth demonstrates NIZK proofs of knowledge for Pedersen’s commitment
scheme, which can be used by P1 in Step 2 as in the previous instantiation, and
for a plaintext knowledge relative to [BBS04] which can be used by the parties
in Step 4b. To achieve non-malleability we will require that an independent
common reference string is sampled between every pair of parties.

4.3 Communication and Computation Complexities

Denoting by mMIN (resp. mMAX) the minimum (resp. maximum) over all input
sets sizes and n is the number of parties, we set m1 = mMIN. Next, note that the
communication complexity of Protocol 2 is dominated by the following factors:
(1) First, O(n2) groups elements in the threshold key generation phase in Step 1,
in the coin tossing generation phase in Step 4b and in Step 4c where the parties
broadcast their polynomial evaluation. (2) Second, the 2PC step for which each
party Pi computes its own polynomial boils down to O(

∑
i mi) and finally, (3)

the broadcast of the combined protocol and the overhead of the zero-knowledge
proof πEVAL yield O(n · mMAX + n · mMIN · log mMAX). All together this implies
O((n2 + n · mMAX + n · mMIN · log mMAX)κ) bits of communication.

In addition to the above, except for party P1, the computational complexity
of each party Pi is O(mMAX) exponentiations plus O(mMIN · mMAX) groups mul-
tiplications, whereas party P1 needs to perform O(m1 · mMAX) exponentiations.
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Abstract. Chen and Wee [CRYPTO, 2013] proposed the first almost
tightly and adaptively secure IBE in the standard model and left two
open problems which called for a tightly secure IBE with (1) constant-
size master public key and/or (2) constant security loss. In this paper,
we propose an IBE scheme with constant-size master public key and
tighter security reduction. This (partially) solves Chen and Wee’s first
open problem and makes progress on the second one. Technically, our
IBE scheme is built based on Wee’s petit IBE scheme [TCC, 2016] in the
composite-order bilinear group whose order is product of four primes.
The sizes of master public key, ciphertexts, and secret keys are not only
constant but also nearly optimal as Wee’s petit IBE. We can prove its
adaptive security in the multi-instance, multi-ciphertext setting [PKC,
2015] based on the decisional subgroup assumption and a subgroup vari-
ant of DBDH assumption. The security loss is O(log q) where q is the
upper bound of the total number of secret keys and challenge cipher-
texts per instance. It’s much smaller than those for all known adaptively
secure IBE schemes in a concrete sense.

1 Introduction

In 1984, Shamir introduced the notion of identity based encryptions [Sha84]
(IBE). The entire system is maintained by an authority called Key Generation
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Supérieure de Lyon in France. http://www.jchen.top
J. Gong—Supported by the French ANR ALAMBIC project (ANR-16-CE39-0006).
J. Weng—Supported by the National Natural Science Foundation of China (Nos.
61272413, 61472165, 61133014).

c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 207–231, 2017.
DOI: 10.1007/978-3-662-54365-8 9

http://www.jchen.top


208 J. Chen et al.

Center (KGC) who publishes a master public key mpk and keeps the master
secret key msk. Each user receives his/her secret key sk for decryption from
KGC which is produced using msk. To encrypt a message to a user in the
system, one only needs mpk and user’s identity id, which can be a descriptive
tag such as email address.

Boneh and Franklin, in their seminal work [BF01] in 2001, formulated the
security notion of IBE and proposed a pairing-based IBE in the random oracle
model. Their security model has been accepted as standard model for IBE which
ensures that a ciphertext for target identity id∗ reveals nothing of the plaintext
even when adversary A holding mpk can obtain secret keys for any identity
other than id∗. We call it adaptive security in the paper. After that, a series
of work were devoted to constructing IBE schemes in the standard model (i.e.,
without random oracle) including Boneh and Boyen’s IBE [BB04a] in the selec-
tive model1, Boneh and Boyen’s IBE [BB04b] with huge security loss, Waters’
IBE [Wat05] with large mpk, and Gentry’s IBE [Gen06] based on q-type assump-
tion. The dual system methodology was proposed in 2009 by Waters [Wat09].
With this novel and powerful proof technique, Waters proposed an IBE scheme
with constant-size mpk in the standard model. The adaptive security is proven
based on standard and static complexity assumptions, and the security loss is
proportional to the amount of secret keys held by the adversary. This is the first
IBE scheme achieving all these features simultaneously.

Since Waters deals with only one secret key at a time in the proof, a security
loss of such an order of magnitude seems to be inherent. Fortunately, Chen and
Wee [CW13] combined the proof idea underlying Naor-Reingold PRF [NR04]
and the dual system methodology and showed an almost-tightly secure IBE
scheme. Here almost tight means the security loss can be bounded by a polyno-
mial in security parameter λ instead of the number of revealed secret keys. Soon
afterwards, Blazy et al. [BKP14] described a generic transformation from affine
MAC to IBE and constructed an affine MAC with almost-tight reduction. Their
method essentially follows Chen and Wee’s [CW13] but leads to a more efficient
IBE. Recently, the study of almost-tightly secure IBE has extended to the multi-
instance, multi-ciphertext setting [HKS15,GCD+16,AHY15,GDCC16]. However
the following two problems left by Chen and Wee [CW13] still remain open.

Question 1. Can we achieve master public key of constant size?
Question 2. Can we achieve constantly tight reduction?

It’s worth noting that Attrapadung et al. [AHY15] provided a technique
achieving a trade-off between the size of master public key and sizes of secret
keys and ciphertexts. As a special case, they can indeed reach constant-size
master public key but at the cost of larger secret keys and ciphertexts (and vice
1 In the selective model, the adversary has to choose the target identity id∗ before

seeing mpk. This is weaker than Boneh and Franklin’s adaptive security model.
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versa). Here we do not consider this as a satisfactory solution to Chen and Wee’s
first open problem. One must preserve advantages of Chen and Wee’s IBE such
as constant-size secret keys and ciphertexts.

1.1 Our Contribution

In this paper, we present an IBE scheme in the composite-order bilinear
group [BGN05] with constant-size master public key, ciphertexts, and secret
keys. The adaptive security in the multi-instance, multi-ciphertext setting relies
on several concrete decisional subgroup assumptions [BWY11] and a subgroup
variant of decisional bilinear Diffie-Hellman (DBDH) assumption. The security
reduction arises a probability loss of O(log q) in which q is the upper bound of
the total number of secret keys and challenge ciphertexts per instance.

We make a comparison in Table 1. On one hand, our IBE has the shortest
master public key, ciphertexts, secret keys and fastest decryption algorithm Dec.
In fact the performance is nearly optimal as Wee’s petit IBE [Wee16]. On the
other hand, we achieve a tighter reduction in a concrete sense2. Under typical
setting where q = 230 and n = 128, the security loss of our IBE scheme is
just a quarter of those for all previous ones [CW13,HKS15,AHY15]. Therefore
our result (partially) answers Chen and Wee’s first open problem and makes a
significant progress on the second one. We emphasize that the multi-instance,
multi-ciphertext setting [HKS15] is more realistic and complex than Boneh and
Franklin’s standard security notion [BF01]. This means that we are actually
working on Chen and Wee’s open problems in a more complex setting.

Our Strategy. Chen and Wee [CW13] have pointed out that solving these two
open problems may require some kinds of progresses in the underlying PRF,
which is another long-standing problem. As our high-level strategy, we reverse
the problem in order to circumvent the technical difficulty. In particular, instead
of reducing the size of master public key of a tightly secure IBE to constant, we
try to improve the tightness of an IBE scheme already with constant-size master
public key. Technically, we propose a variant of Wee’s petit IBE [Wee16] which
is tightly secure and inherits all advantages from Wee’s petit IBE. Our work is
inspired by Chen and Wee’s tight reduction technique from a very high level and
brings Chase and Meiklejohn’s idea [CM14] back to Wee’s petit IBE [Wee16] in
order to fulfil the intuition.

Our Method. Assume composite-order bilinear group (N = p1p2p3, G, GT , e).
Let’s review Wee’s petit IBE [Wee16]. From a high level, Wee followed the dual
system methodology [Wat09] and employed Déjà Q technique [CM14] with an

2 Let λ be the security parameter. In the common case that n = poly(λ) and q =
poly(λ), we can see that O(n) and O(log q) are equivalent to O(λ) and O(log λ),
respectively. Superficially, our reduction is also tighter in an asymptotical sense.
However O(log λ) here contains an adversarially-dependent constant while O(λ) is
totally independent of adversary.
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Table 1. Comparing existing tightly secure IBE in the composite-order bilinear group.

Scheme |mpk| |sk| |ct| + |key| Dec Tightness # pi Mimc

[CW13] O(n)|G| + |GT | 2|G| 2|G| + |GT | 2P O(n) 3 No

[HKS15] O(n)|G| + |GT | 2|G| 2|G| + |GT | 2P O(n) 4 Yes

[AHY15] O(n)|G| + |GT | 2|G| 2|G| + |GT | 2P O(n) 4 Yes

8|G| + |GT | O(n)|G| O(n)|G| + |GT | O(n)P O(n) 4 Yes

Ours 2|G| + |GT | |G| |G| + |GT | 1P O(log q) 4 Yes

– In the table, n is the binary length of identities, q is the upper bound of total number
of secret keys and challenge ciphertexts revealed to adversary in each instance.
– Column “#pi” shows the number of prime factors of group order N .
– Column “mimc” indicates whether the scheme can be proved in the multi-instance,
multi-ciphertext setting.
– The two sub-rows of row “[AHY15]” are for scheme Φcomp

cc and Φcomp
slp , respectively.

Note that Φcomp
slp employs the trade-off technique we have mentioned, and we just show

the parameter of an instantiation with constant mpk in the table.

extension. The IBE scheme is quite elegant as we described below.

mpk : g1, gα
1 , e(g1, u), H

skid : u
1

α+id · R3

ctid : g(α+id)s
1 , H(e(g1, u)s) · m

where g1, u ← Gp1 , α, s ← ZN , R3 ← Gp3 , H is selected from a pairwise inde-
pendent hash family. Here we consider Gp1 as normal space and Gp2 as semi-
functional space. Subgroup Gp3 is used to randomize secret keys.

To prove the adaptive security, he first transformed the challenge ciphertext
into the form

ctid∗ : S, H(e(S, skid∗)) · m
where S ← Gp1Gp2 and skid∗ is a secret key for target identity id∗. The core
step is to inject enough entropy into the semi-functional space of skid for all id
“touched” by adversary (including the target identity id∗). More formally, define

fi(x) =
i∑

j=1

rj

αj + x
∈ Zp2

where r1, . . . , ri, α1, . . . , αi ← Zp2 . It has been proved that fq behaves like a
truly random function given only q input-output pairs [Wee16,CM14] where q
depends on the total number of identities involved (in secret keys revealed to
adversary and the challenge ciphertext). The remaining task is to transform all
involved secret keys (including that used in ctid∗)

from u
1

α+id · g
f0(id)
2 · R3 into u

1
α+id · g

fq(id)
2 · R3
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where f0(id) = 0 for all id. Wee reached fq in q steps following the roadmap

f0 → f1 → f2 → · · · → fq.

In the kth step, he extracted one unit of entropy rk and αk from the normal
space (i.e., from u and α) and injected them into the semi-functional space (i.e.,
into fk−1). We illustrate the process in the graph below.

u
1

α+id

...
qth ext

��

2nd ext

��

1st ext

��

g
fq(id)
2

normal space semi-functional space

Chen and Wee’s success [CW13] teaches us that one must reach fq much
more quickly in order to obtain tighter reduction. In other word, we should try
to extract and inject more entropy each time. Our idea is to extract entropy
from fk (1 ≤ k ≤ q) itself rather than from u and α, and then inject them
back into fk. A key observation is that fk already has k units of entropy (i.e.,
α1, r1, . . . , αk, rk) and the structure of fk allows us to reach f2k directly which
will include 2k units of entropy. This significantly accelerates the process towards
fq. In particular, the roadmap now becomes

f0 ext
�� f20

ext

��

�� f21

ext

��

�� f22

ext

��

�� · · · �� f2n−1

ext

��

�� f2n

f̂20

inj

�����������
f̂21

inj

�����������
f̂22

���������� · · · f̂2n−1

inj

		����������

where f̂k indicates the entropy extracted from fk, both of which have the same
structure but f̂k are defined by independent randomness over Zp3 . It’s not hard
to see that we only need n = �log q� + 1 steps to reach fq.

To fulfill the above intuition, we introduce another semi-functional space,
which we call shadow semi-functional space, to temporarily store the entropy
extracted from fk (i.e., f̂k in the above graph) since we obviously can not put
them into the normal space. Furthermore the new semi-functional space should
allow us to flip all entropy back to the old semi-functional space as Chase and
Meiklejohn [CM14] did. We sketch our method in the following graph where the
IBE is now put into a bilinear group of order N = p1p2p3p4. Subgroup Gp3 acts
as the shadow semi-functional space and Gp4 is used to randomize secret key.
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u
1

α+id

ext



g

f2n (id)
2

1st ext

��

nth ext �� g
f̂2n−1 (id)
3

1st flip back

...

nth flip back

��

normal space semi-functional space shadow semi-functional space

We first extract one unit entropy from u and α and puts them into the semi-
functional space as [Wee16] which forms f20 = f1. In the kth step, we first

extract g
f̂2k−1 (id)
3 from g

f2k−1 (id)
2

and then
flip g

f̂2k−1 (id)
3 back as g

f̂2k−1 (id)
2

which forms g
f2k (id)
2 together with g

f2k−1 (id)
2 . All these technical steps can be real-

ized under several concrete instantiations of decisional subgroup assumption.

On the Multi-ciphertext Setting. We find that Wee’s proof idea [Wee16] and
our extension (see above) can be directly extended to the (single-instance) multi-
ciphertext setting but with the restriction that only one challenge ciphertext is
allowed for each target identity. This is the weak version of adaptive security in
the multi-ciphertext setting [HKS15]. The first observation is that each challenge
ciphertext has its own randomness s which is sufficient for hiding α on the
ciphertext side. That is we can always argue

{g
(α+id)s
1 , e(g1, u)s} = {g

(α+id)s
1 , e(g(α+id)s

1 , u
1

α+id )} = {gs
1, e(gs

1, u
1

α+id )}
even when there are more than one challenge ciphertexts; the second observation
is that it’s adequate to cope with more than one target identity by setting n =
�log qσ� where qσ is the total number of reveal keys and challenge ciphertexts.
The restriction is set here so as to avoid the following situation: After reaching
f2n , all l challenge ciphertexts for target identity id∗ will be in the form

S1, H(e(S1, u
1

α+id∗ ) · e(S1, g
f2n (id∗)
2 ) ) · m1, S1 ← Gp1Gp2 ;

S2, H(e(S2, u
1

α+id∗ ) · e(S2, g
f2n (id∗)
2 ) ) · m2, S2 ← Gp1Gp2 ;

...

Sl, H(e(Sl, u
1

α+id∗ ) · e(Sl, g
f2n (id∗)
2 ) ) · ml, Sl ← Gp1Gp2

where boxed terms have their own randomness S1, . . . , Sl, but share the same
f2n(id∗).
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To remove this restriction and achieve the full adaptive security [HKS15],
we employ a subgroup variant of decisional bilinear Diffie-Hellman (DBDH)
assumption (in subgroup Gp2). This allows us to utilize randomness S1, . . . , Sl

and argues that the joint distribution of all boxed terms sharing f2n(id∗) are
pseudorandom. Our proof idea is almost the same as [HKS15] but our assump-
tion is slightly simpler.

On the Multi-instance Setting. Hofheinz et al. [HKS15] also investigated the
so-called multi-instance setting where adversary A is allowed to attack multiple
IBE instances at the same time. Fortunately, our technique and result in the
single-instance setting (see above) can be extended to the multi-instance setting
with a tiny adjustment. The high-level idea is to apply our proof technique (for
the single-instance setting) to each instance in an independent but concurrent
manner.

Assume there are τ instances. For the ι-th (1 ≤ ι ≤ τ) instance, we define a
series of functions f

(ι)
20 , . . . , f

(ι)
2n as in the single-instance setting, which are inde-

pendent of those for other instances. Here we let n = �log q̂σ� in which q̂σ is the
upper bound of the total number of revealed secret keys and challenge cipher-
texts per instance. We depict the process in the graph below. In the ith step, we
create τ functions f

(1)
2i , . . . , f

(τ)
2i at a time using the random self-reducibility of

decisional subgroup assumption.

1st instance: f
(1)
20 f

(1)
21 f

(1)
22 f

(1)
2n

2nd instance: f
(2)
20 −→ f

(2)
21 −→ f

(2)
22 −→ · · · −→ f

(2)
2n

...
τth instance: f

(τ)
20 f

(τ)
21 f

(τ)
22 f

(τ)
2n

1st step 2nd step nth step

Then, utilizing the random self-reducibility of the subgroup variant of DBDH
assumption, we can prove the full adaptive security in the multi-instance setting.

1.2 Related Work

The dual system methodology has been applied to broader area of functional
encryptions [OT10,LOS+10]. In 2014, Wee [Wee14] and Attrapadung [Att14]
independently gave generic constructions of a large class of functional encryp-
tions with adaptive security including attribute based encryption, inner-product
encryption, and even functional encryption for regular language. They intro-
duced the notion of predicate/pair encoding and employed the dual system
methodology in the composite-order bilinear group. Their work have been
extended to the prime-order setting in [AC16,Att16,CGW15] recently.

Tight reduction under short public parameter has been studied in the field
of digital signature. Very recently, Hofheinz developed algebraic partitioning
technique [Hof16b] and adaptive partitioning technique [Hof16a] based on Chen
and Wee’s result [CW13], which leaded to tightly secure signatures with constant
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verification key and public key encryption against chosen ciphertext attack with
similar features. However it’s not quite direct to apply their technique to IBE.

Déjà Q technique was proposed by Chase and Meiklejohn [CM14]. They
showed that one can avoid the use of (a class of) q-type assumptions with
the help of a composite-order bilinear group equipped with decisional subgroup
assumption using the dual system methodology. Recently, Wee gave a petit IBE
scheme and broadcast encryption scheme [Wee16] with a extended Déjà Q tech-
nique. Their results have been used to build non-zero inner-product encryp-
tions [CLR16] and functional commitments for linear functions [LRY16] (which
implies many other important primitives such as accumulators.)

A recent work by Boyen and Li [BL16] established a generic framework from
PRF to signatures and IBE utilizing the powerful tools in the lattice world.
The reduction is constantly tight and the security loss of resulting scheme solely
depends on that of underlying PRF. We remark that all tightly secure IBE
schemes they showed still require non-constant-size master public key.

Independent Work. An independent work by Chase, Maller and Meikle-
john [CMM16] developed the basic Déjà Q technique [CM14] in a similar way to
us. We focus on solving or making progress on two open problems left by Chen
and Wee [CW13] in a specific area (i.e., tightly secure IBE) while Chase et al.
focus on a more general goal, i.e., tightly translating a broader class of q-type
assumptions into static one. Although they described four functional encryptions
including an IBE scheme, its master public key consists of O(n) group elements
with identity space {0, 1}n. As a matter of fact, neither Wee’s IBE nor ours can
be derived from an IBE under q-type assumption using Chase et al.’s new frame-
work [CMM16]. Therefore we believe it’s still necessary to propose and analyze
the IBE directly.

Open Problem. Our proposed IBE scheme works in the composite-order bilin-
ear group which can be a drawback. We leave it as an open problem to find a
prime-order IBE with tight(er) reduction, constant-size master public key, secret
keys and ciphertexts.

Organization. The paper will be organized as follows. Section 2 reviews several
basic notions, the decisional subgroup assumption and a core lemma given by
Wee [Wee16]. Section 3 describes our IBE scheme and proves the weak adap-
tive security in the single-instance, multi-ciphertext setting. We then extend the
basic result to full adaptive security and multi-instance setting in Sects. 4 and
5, respectively.

2 Preliminaries

Notation. Let S be a finite set. The notation s ← S means that we pick s from
S at random. “p.p.t.” is the abbreviation of “probabilistic polynomial time”.
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2.1 Composite-Order Bilinear Groups

Our IBE scheme is constructed in composite-order bilinear groups [BGN05]. We
assume a group generator GrpGen which takes as input the security parameter
1λ and outputs group description G = (N, G, GT , e), where order N is product of
4 distinct Θ(λ)-bit primes, group G and GT are all finite cyclic groups of order
N and e is an efficient, non-degenerated bilinear map from G × G to GT . With
N = p1p2p3p4 for primes p1, p2, p3, p4, we let Gpi

be the subgroup of order pi in
G and use G

∗
pi

to refer to the set of all generators in Gpi
, i.e., Gpi

\{1}.
We review several concrete instantiations of decisional subgroup assump-

tion [BWY11]. Since we can uniquely decompose G = Gp1 ×Gp2 ×Gp3 ×Gp4 , we
employ a special notation for sampling random elements from a composite-order
subgroup of G. For any two prime factors pi, pj of N with 1 ≤ i < j ≤ 4, we
use XiXj ← Gpi

Gpj
to indicate that we uniformly sample an element from the

subgroup of order pipj , whose respective components in Gpi
, Gpj

are Xi, Xj .
The notation can also be applied to more general cases.

Assumption 1 (SD1). For any p.p.t. adversary A the following advantage
function is negligible in λ.

AdvSD1
A (λ) = |Pr[A(G, g1, g4, T0) = 1] − Pr[A(G, g1, g4, T1)]|,

where G ← GrpGen(1λ), g1 ← G
∗
p1
, g4 ← G

∗
p4
,

T0 ← Gp1 and T1 ← Gp1Gp2Gp3 .

Assumption 2 (SD2). For any p.p.t. adversary A the following advantage
function is negligible in λ.

AdvSD2
A (λ) = |Pr[A(G, g1, g4,X1X2X3, T0) = 1] − Pr[A(G, g1, g4,X1X2X3, T1)]|,

where G ← GrpGen(1λ), g1 ← G
∗
p1
, g4 ← G

∗
p4
, X1X2X3 ← Gp1Gp2Gp3 ,

T0 ← Gp1 and T1 ← Gp1Gp2 .

Assumption 3 (SD3). For any p.p.t. adversary A the following advantage
function is negligible in λ.

AdvSD3
A (λ) = |Pr[A(G, g1, g4,X1X2X3, T0) = 1] − Pr[A(G, g1, g4,X1X2X3, T1)]|,

where G ← GrpGen(1λ), g1 ← G
∗
p1
, g4 ← G

∗
p4
, X1X2X3 ← Gp1Gp2Gp3 ,

T0 ← Gp2 and T1 ← Gp2Gp3 .

Assumption 4 (SD4). For any p.p.t. adversary A the following advantage
function is negligible in λ.

AdvSD4
A (λ) = |Pr[A(G, g1, g4,X1X2X3, Y2Y4, T0) = 1]

−Pr[A(G, g1, g4,X1X2X3, Y2Y4, T1)]|,
where G ← GrpGen(1λ), g1 ← G

∗
p1
, g4 ← G

∗
p4
, X1X2X3 ← Gp1Gp2Gp3 , Y2Y4 ←

Gp2Gp4 ,
T0 ← Gp2Gp4 and T1 ← Gp3Gp4 .
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2.2 Identity Based Encryptions

In the paper we define the notion of identity based encryption (IBE) in the
framework of key encapsulation mechanism (KEM).

Algorithms. An IBE (in the single-instance setting) is composed of the follow-
ing four p.p.t. algorithms:

– Setup(1λ) → (mpk,msk). The setup algorithm Setup takes as input the secu-
rity parameter 1λ and outputs master public/secret key pair (mpk,msk). We
assume that mpk includes ciphertext space C and key space K.

– KeyGen(mpk,msk, id) → sk. The key generation algorithm KeyGen takes as
input the master public key mpk, the master secret key msk and an identity
id and outputs its secret key sk.

– Enc(mpk, id) → (ct,key). The encryption algorithm Enc takes as input the
master public key mpk and an identity id and outputs a ciphertext ct ∈ C
along with key key ∈ K.

– Dec(mpk,ct, sk) → key. The decryption algorithm Dec takes as input the
master public key mpk, a ciphertext ct and a secret key sk and outputs key
key or ⊥.

Correctness. For any λ ∈ N, (mpk,msk) ∈ [Setup(1λ)], identity id, we require

Pr
[
Dec(mpk,ct, sk) = key

∣
∣
∣
∣
sk ← KeyGen(mpk,msk, id)
(ct,key) ← Enc(mpk, id)

]
≥ 1 − 2−Ω(λ).

The probability space is defined by random coins of KeyGen and Enc.

Security notion. For any adversary A, we define the advantage function as

AdvIBE
A (λ) =

∣
∣
∣
∣Pr

[
β = β′

∣
∣
∣
∣
(mpk,msk) ← Setup(1λ), β ← {0, 1}

β′ ← AOKeyGen(·),OEnc
β (·)(1λ,mpk)

]
− 1

2

∣
∣
∣
∣

where oracles are defined as

– OKeyGen: On input (id), the oracle returns KeyGen(mpk,msk, id) and sets
QK = QK ∪ {id}.

– OEnc
β : On input (id∗), the oracle samples (ct∗

1,key
∗
1) ← Enc(mpk, id∗),

(ct∗
0,key

∗
0) ← C ×K and returns (ct∗

β ,key∗
β). It then sets QC = QC ∪{id∗}.

The probability is defined over random coins used by Setup, oracle OKeyGen and
OEnc

β , and adversary A as well as random bit β. We say an IBE is adaptively
secure and anonymous if and only if the above advantage function is negligible
in λ for any p.p.t. adversary such that QC ∩ QK = ∅.

2.3 A Core Lemma

We review the lemma by Wee [Wee16] as follows.
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Lemma 1. Fix a prime p. For any adversary A making at most q queries, we
have ∣

∣
∣Pr

[
AOf (·)(1q) = 1

]
− Pr

[
AORF(·)(1q) = 1

]∣∣
∣ ≤ q2

p

where oracles are defined as

– Of : The oracle is initialized by picking r1, . . . , rq, α1, . . . , αq ← Zp. On input
x ∈ Zp, it outputs

q∑

i=1

ri

αi + x
∈ Zp.

Every queries are answered using the same r1, . . . , rq, α1, . . . , αq we picked at
the very beginning.

– ORF: This oracle behaves as a truly random function RF : Zp → Zp. On input
x ∈ Zp, it returns RF(x) if it has been defined, otherwise it returns y ← Zp

and defines RF(x) = y.

3 Our IBE Scheme

This section describes our IBE scheme. At current stage, we prove its weak
adaptive security and anonymity in the single-instance, multi-challenge setting,
i.e., adversary can access only one IBE instance and only one challenge ciphertext
is allowed for each target identity.

3.1 Construction

Our IBE scheme is described as follows.

– Setup(1λ). Run G = (N, G, GT , e) ← GrpGen(1λ). Sample

α ← ZN , g1 ← G
∗
p1

, u ← Gp1 , g4 ← G
∗
p4

.

Pick H : GT → {0, 1}λ from a pairwise independent hash family. Output

mpk = (g1, gα
1 , e(g1, u), H) and msk = (α, u, g4).

– KeyGen(mpk,msk, id). Sample R4 ← Gp4 and output

sk = u
1

α+id · R4.

– Enc(mpk, id). Sample s ← ZN and output

ct = g
(α+id)s
1 and key = H(e(g1, u)s).

– Dec(mpk,ct, sk). Return

key = H(e(ct, sk)).

Correctness. We have

e(ct, sk) = e(g(α+id)s
1 , u

1
α+id · R4) = e(g1, u)(α+id)s· 1

α+id = e(g1, u)s.

This immediately proves the correctness.
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3.2 Security Analysis: An Overview

We prove the following theorem.

Theorem 1. For any p.p.t. adversary A sending at most qσ queries to OKeyGen

and OEnc
β , there exist B1, B2, B3, B4 such that

AdvIBE
A (λ) ≤ 5

2
· AdvSD1

B1
(λ) + 2 · AdvSD2

B2
(λ) + 2 · �log qσ� · AdvSD3

B3
(λ)

+
(
2 · �log qσ� +

1
2

)
· AdvSD4

B4
(λ) + 2−Ω(λ)

and max{T(B1),T(B2),T(B3),T(B4)} ≈ T(A) + q2
σ · poly(λ).

We prove the theorem using hybrid argument. We define the advantage func-
tion of any p.p.t. adversary A in Gamexxx as

AdvGamexxx

A (λ) = |Pr[β = β′] − 1/2|
Let n = �log qσ�. Our proof employs the following game sequence.

Gamereal is the real game.
Game0 is the real game with the following assumptions:

– A can not find id, id′ ∈ ZN such that id �= id′ but id = id′ mod p2;
– A can not find id ∈ ZN such that α + id = 0 mod p1 even given α.

One may notice that A can efficiently factorize the order N and break the
general decisional subgroup assumption when it violates one of the above two
assumptions. Technically, Game0 aborts immediately when A submits id ∈ ZN

(through OKeyGen or OEnc
β ) such that

– gcd(id − id′, N) /∈ {1, N} for some previous identity id′ ∈ ZN ;
– gcd(α + id, N) /∈ {1, N}.

Note that both N ∈ Z and α ∈ ZN are always available throughout our proof.
We prove the following lemma.

Lemma 2 (from Gamereal to Game0). For any p.p.t. adversary A send-
ing at most qσ queries to OKeyGen and OEnc

β , there exist B1, B2 such that
max{T(B1),T(B2)} ≈ T(A) + qσ · poly(λ) and

|AdvGame0
A (λ) − AdvGamereal

A (λ)| ≤ 1
2

· AdvSD1
B1

(λ) +
1
2

· AdvSD4
B2

(λ) + 2−Ω(λ).

Game′
0 is identical to Game0 except that, for each query (id∗) to OEnc

β , we
compute key∗

1 as
key∗

1 = H(e(ct∗
1, skid∗))

where ct∗
1 is produced as before and skid∗ is obtained via a OKeyGen query

(id∗). From the correctness, we have that

Adv
Game′

0
A (λ) = AdvGame0

A (λ)

for any p.p.t. adversary A.
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Game′′
0 is identical to Game′

0 except that, for each query (id∗) to OEnc
β , we

compute ct∗
1 as

gs
1 instead of g

(α+id∗)s
1

where s ← ZN . We have

Adv
Game′′

0
A (λ) = Adv

Game′
0

A (λ)

for any p.p.t. adversary A since the two games are exactly the same unless
α + id∗ = 0 mod p1 for some query (id∗). We emphasize that it holds even
for the multiple challenge setting since s is freshly picked for each query.

Game1 is identical to Game′′
0 except that, for each query (id∗) to OEnc

β , we
compute ct∗

1 as
(g1g2g3)s instead of gs

1

where s ← ZN , g2 ← G
∗
p2

and g3 ← G
∗
p3

. We prove the lemma.

Lemma 3 (from Game′′
0 to Game1). For any p.p.t. adversary A sending at

most qσ queries to OKeyGen and OEnc
β , there exists B with T(B) ≈ T(A)+qσ·poly(λ)

and
|AdvGame1

A (λ) − Adv
Game′′

0
A (λ)| ≤ AdvSD1

B (λ) + 2−Ω(λ).

Game2.i (0 ≤ i ≤ n, n = �log qσ�) is identical to Game1 except that, for each
query (id) to OKeyGen (including those involved in OEnc

β ), we return

u
1

α+id · g

∑2i

j=1
rj

αj+id

2 · R4

where g2 ← G
∗
p2

and αj , rj ← ZN for all j ∈ [2i]. We must prove the following
lemma first.

Lemma 4 (from Game1 to Game2.0). For any p.p.t. adversary A sending at
most qσ queries to OKeyGen and OEnc

β , there exists B with T(B) ≈ T(A)+qσ·poly(λ)
and

|AdvGame2.0
A (λ) − AdvGame1

A (λ)| ≤ AdvSD2
B (λ) + 2−Ω(λ).

To move from Game2.i to Game2.(i+1), we need two additional games:

– Game2.i.1 is identical to Game2.i except that, for each query (id) to OKeyGen,
we return

u
1

α+id · g

∑2i

j=1
rj

αj+id

2 · g

∑2i

j=1
r̂j

α̂j+id

3 · R4

where g3 ← G
∗
p3

and αj , rj , α̂j , r̂j ← ZN for all j ∈ [2i].
– Game2.i.2 is identical to Game2.i except that, for each query (id) to OKeyGen,

we return

u
1

α+id · g

∑2i

j=1
rj

αj+id+
∑2i

j=1
r̂j

α̂j+id

2 · R4

where αj , rj , α̂j , r̂j ← ZN for all j ∈ [2i].
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We prove the following two lemmas.

Lemma 5 (from Game2.i to Game2.i.1). For any p.p.t. adversary A sending at
most qσ queries to OKeyGen and OEnc

β , there exists B with T(B) ≈ T(A) + q2
σ ·

poly(λ) and

|AdvGame2.i.1
A (λ) − AdvGame2.i

A (λ)| ≤ AdvSD3
B (λ) + 2−Ω(λ).

Lemma 6 (from Game2.i.1 to Game2.i.2). For any p.p.t. adversary A sending
at most qσ queries to OKeyGen and OEnc

β , there exists B with T(B) ≈ T(A) + q2
σ ·

poly(λ) and

|AdvGame2.i.2
A (λ) − AdvGame2.i.1

A (λ)| ≤ AdvSD4
B (λ) + 2−Ω(λ).

Observe that all rj and all r̂j are i.i.d. variables in Game2.i.2. By setting α2i+k =
α̂k and r2i+k = r̂k for all k ∈ [2i], one can claim that

AdvGame2.i.2
A (λ) = Adv

Game2.(i+1)

A (λ)

for any adversary A.

Game3 is identical to Game2.n except that, for each query (id) to OKeyGen, we
return

u
1

α+id · g
RF(id)
2 · R4

where g2 ← G
∗
p2

and RF is a truly random function. By the core lemma shown
in Sect. 2.3, we have

|AdvGame2.n

A (λ) − AdvGame3
A (λ)| ≤ 2−Ω(λ)

for any adversary A.
Game4 is identical to Game3 except that, for each query (id∗) to OEnc

β , we
directly sample key∗

1 ← {0, 1}λ. In Game3, we compute a challenge for id∗

as follows:

ct∗
1 = (g1g2g3)s and key∗

1 = H(e(gs
1, u

1
α+id∗ ) · e(g2, g2)s·RF(id∗) ).

Due to the restrictions in the security game, RF(id∗) will be evaluated only in
this place and the boxed term has entropy of p2 = Θ(λ) which means we can
sample key∗

1 ← {0, 1}λ instead but with small error. This comes from the
leftover hash lemma and the fact that the pairwise independent hash family
is a stronger extractor. Formally we have

|AdvGame4
A (λ) − AdvGame3

A (λ)| ≤ 2−Ω(λ)

for any adversary A.

Utilizing, in a reversed manner, a game sequence which is identical to the
above except that we always sample key∗

1 ← {0, 1}λ when answering queries to
OEnc

β , we may reach a game where we create

ct∗
1 ← Gp1 and key∗

1 ← {0, 1}λ for all id∗.

This means we can answer all queries to OEnc
β without β and this readily proves

the main theorem.
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3.3 Security Analysis: Proving All Lemmas

This subsection provides all omitted proofs.

Proof of Lemma 2.

Proof (a sketch). Let AbortA be the event that Game0 aborts with adversary A.
We have

|AdvGame0
A (λ) − AdvGamereal

A (λ)| ≤ Pr[AbortA].

As we have discussed, when AbortA occurs, one can reach a non-trivial factoriza-
tion of N . That is we can efficiently compute N1, N2 ∈ Z such that N = N1N2

and 1 < N1, N2 < N . Let us consider the following three cases:

1. If p4|N1 and p2 � N1, given (G, g1, g4,X1X2X3, Y2Y4, T ) where either T ←
Gp2Gp4 or T ← Gp3Gp4 , we observe that (Y2Y4)N1 ∈ Gp2 . This allows us to
break SD4 assumption by checking whether e((Y2Y4)N1 , T ) = 1.

2. If p2p4|N1 and p3 � N1, given (G, g1, g4,X1X2X3, Y2Y4, T ) where either T ←
Gp2Gp4 or T ← Gp3Gp4 , we can break SD4 assumption by checking whether
TN1 = 1.

3. If p2p3p4|N1, it must be the case that N2 = p1. Given (G, g1, g4, T ) where
either T ← Gp1 or T ← Gp1Gp2Gp3 , we can break SD1 assumption by check-
ing whether TN2 = 1.

In all three cases, we have access to (G, g1, g4) which is sufficient for simulat-
ing Game0 for A. Therefore we can claim that there exist B1, B2 such that
max{T(B1),T(B2)} ≈ T(A) + qσ · poly(λ) and

Pr[AbortA] ≤ 1
2

· AdvSD1
B1

(λ) +
1
2

· AdvSD4
B2

(λ) + 2−Ω(λ).

This proves the lemma. ��
Proof of Lemma 3.

Proof. Given (G, g1, g4, T ) where either T ← Gp1 or T ← Gp1Gp2Gp3 , algorithm
B works as follows:

Initialization. Pick α ← ZN and u ← Gp1 . Select hash function H. Output

mpk = (g1, gα
1 , e(g1, u), H)

and store msk = (α, u, g4).
Answering OKeyGen. On input (id), return KeyGen(mpk,msk, id) directly.
Answering OEnc

β . On input (id∗), obtain skid∗ via a query (id∗) to OKeyGen.
Sample s′ ← ZN and compute

ct∗
1 = T s′

and key∗
1 = H(e(T s′

, skid∗)).

B then picks (ct∗
0,key

∗
0) ← Gp1 × {0, 1}λ and returns (ct∗

β ,key∗
β).

Finalize. B returns 1 if β = β′ and returns 0 in the other case.
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When T ← Gp1 , the simulation is identical to Game′′
0 ; when T ← Gp1Gp2Gp3 ,

the simulation is identical to Game1. The additive probability error 2−Ω(λ) is
caused by trivial subgroup components in T . Because we actually take T as a
generator, our simulation will deviate from both or one of the games if there
exists any trivial subgroup component in it. ��

Proof of Lemma 4.

Proof. Given (G, g1, g4,X1X2X3, T ) where either T = u ← Gp1 or T = ugr
2 ←

Gp1Gp2 for g2 ← G
∗
p2

and r ← ZN , algorithm B works as follows:

Initialization. Pick α ← ZN and select hash function H. Output

mpk = (g1, gα
1 , e(g1, T ), H).

Observe that e(g1, T ) = e(g1, u) in both cases.
Answering OKeyGen. On input (id), sample R4 ← Gp4 and return

T
1

α+id · R4.

Answering OEnc
β . On input (id∗), sample s′ ← ZN and compute

ct∗
1 = (X1X2X3)s′

and key∗
1 = H(e((X1X2X3)s′

, skid∗))

where skid∗ is obtained via oracle OKeyGen. B then picks (ct∗
0,key

∗
0) ← Gp1 ×

{0, 1}λ and returns (ct∗
β ,key∗

β).
Finalize. B returns 1 if β = β′ and returns 0 in the other case.

When T = u, the simulation is identical to Game1; when T = ugr
2, the simulation

is identical to Game2.0 where α1 = α mod p2 and r1 = r mod p2. The additive
probability error 2−Ω(λ) is caused by trivial subgroup components in X1X2X3. ��

Proof of Lemma 5.

Proof. Given (G, g1, g4,X1X2X3, T ) where either T = g2 ← Gp2 or T = g2g3 ←
Gp2Gp3 , algorithm B works as follows:

Initialization. Pick α ← ZN and u ← Gp1 . Select hash function H. Output

mpk = (g1, gα
1 , e(g1, u), H).

Sample α′
1, . . . , α

′
2i , r′

1, . . . , r
′
2i ← ZN .

Answering OKeyGen. On input (id), sample R4 ← Gp4 and return

u
1

α+id · T

∑2i

j=1

r′
j

α′
j
+id · R4.

Answering OEnc
β . On input (id∗), sample s′ ← ZN and compute

ct∗
1 = (X1X2X3)s′

and key∗
1 = H(e((X1X2X3)s′

, skid∗))

where skid∗ is obtained via oracle OKeyGen. B then picks (ct∗
0,key

∗
0) ← Gp1 ×

{0, 1}λ and returns (ct∗
β ,key∗

β).



Tightly Secure IBE Under Constant-Size Master Public Key 223

Finalize. B returns 1 if β = β′ and returns 0 in the other case.

When T = g2, the simulation is identical to Game2.i; when T = g2g3, the simu-
lation is identical to Game2.i.1. We set

αj = α′
j mod p2, rj = r′

j mod p2, for all j ∈ [2i]

for both cases and set

α̂j = α′
j mod p3, r̂j = r′

j mod p3, for all j ∈ [2i]

in the case of T = g2g3. The additive probability error 2−Ω(λ) is caused by trivial
subgroup components in X1X2X3 and T . ��

Proof of Lemma 6.

Proof. Given (G, g1, g4,X1X2X3, Y2Y4, T ) where either T = g2R4 ← Gp2Gp4 or
T = g3R4 ← Gp3Gp4 , algorithm B works as follows:

Initialization. Pick α ← ZN and u ← Gp1 . Select hash function H. Output

mpk = (g1, gα
1 , e(g1, u), H).

Sample α′
1, . . . , α

′
2i , r′

1, . . . , r
′
2i , α̂1, . . . , α̂2i , r̂1, . . . , r̂2i ← ZN .

Answering OKeyGen. On input (id), sample R′
4 ← Gp4 and return

u
1

α+id · (Y2Y4)
∑2i

j=1

r′
j

α′
j
+id · T

∑2i

j=1
r̂j

α̂j+id · R′
4.

Answering OEnc
β . On input (id∗), sample s′ ← ZN and compute

ct∗
1 = (X1X2X3)s′

and key∗
1 = H(e((X1X2X3)s′

, skid∗))

where skid∗ is obtained via oracle OKeyGen. B then picks (ct∗
0,key

∗
0) ← Gp1 ×

{0, 1}λ and returns (ct∗
β ,key∗

β).
Finalize. B returns 1 if β = β′ and returns 0 in the other case.

Let Y2Y4 = gy2
2 gy4

4 , we implicitly set

αj = α′
j mod p2 and rj = r′

j · y2 mod p2 for all j ∈ [2i].

When T = g3R4, the simulation is identical to Game2.i.1; when T = g2R4,
the simulation is identical to Game2.i.2. The additive probability error 2−Ω(λ) is
caused by trivial subgroup components in X1X2X3, Y2Y4 and T . ��
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4 Towards Full Adaptive Security

To prove the full adaptive security of our IBE scheme (in the single-instance
setting), we still employ the game sequence described in the previous section. In
fact, nearly all lemmas and results we have established still hold in the full adap-
tive security model where each target identity may have more than one challenge
ciphertexts. The only exception is that we can not prove the indistinguishability
between Game3 and Game4 just from the property of random function as before.

Following the work by Hofheinz et al. [HKS15], we find that we can prove the
indistinguishability between them under a subgroup variant of DBDH assump-
tion (see Assumption 5). This assumption is motivated by Dual System Bilinear
DDH assumption from [HKS15] but is simpler.

Assumption 5 (DBDH in Gp2). For any p.p.t. adversary A the following
advantage function is negligible in λ.

AdvDBDH
A (λ) = |Pr[A(G,D, T0) = 1] − Pr[A(G,D, T1)]|,

where G ← GrpGen(1λ), g1 ← G
∗
p1
, g2 ← G

∗
p2
, g3 ← G

∗
p3
, g4 ← G

∗
p4
, a, b, c,

r ← ZN ,

D = (G, g1, g3, g4, g2, g
a
2 , gb

2, g
c
2);

T0 = e(g2, g2)abc and T1 ← e(g2, g2)r.

We can define two efficient algorithms to re-randomize DBDH problem instances
as Hofheinz et al. [HKS15]. Given a DBDH instance, algorithm ReRand produces
an entirely fresh instance while algorithm ReRanda creates a fresh instance shar-
ing b and c with its input. Their formal definitions are given below.

– ReRanda(g2, g
a
2 , gb

2, g
c
2, T ) → (ga′

2 , T ′) where a′ ← ZN and

T ′ =
{

e(g2, g2)a′bc when T = e(g2, g2)abc

e(g2, g2)r′
for r′ ← ZN when T = e(g2, g2)r

– ReRand(g2, g
a
2 , gb

2, g
c
2, T ) → (ga′

2 , gb′
2 , gc′

2 , T ′) where a′, b′, c′ ← ZN and

T ′ =
{

e(g2, g2)a′b′c′
when T = e(g2, g2)abc

e(g2, g2)r′
for r′ ← ZN when T = e(g2, g2)r

We now prove that Game3 and Game4 are computationally indistinguishable
in the full adaptive security model. This will immediately derive the full adaptive
security of our IBE scheme in the single-instance setting.

Lemma 7 (from Game3 to Game4). For any p.p.t. adversary A sending at
most qσ queries to OKeyGen and OEnc

β , there exists B with T(B) ≈ T(A)+qσ·poly(λ)
and

|AdvGame3
A (λ) − AdvGame4

A (λ)| ≤ AdvDBDH
B (λ) + 2−Ω(λ).
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Proof. Given (G, g1, g3, g4, g2, g
a
2 , gb

2, g
c
2, T ) where either T = e(g2, g2)abc or T =

e(g2, g2)r for some r ← ZN , algorithm B works as follows:

Initialization. Pick α ← ZN and u ← Gp1 . Select hash function H. Output

mpk = (g1, gα
1 , e(g1, u), H).

Answering OKeyGen. On input (id), return

u
1

α+id · g
RF(id)
2 · R4

where R4 ← Gp4 and RF is a truly random function.
Answering OEnc

β . B maintains a list L. On input (id∗), sample s′ ← ZN . If one
can find a entry (id∗, ga′

2 , gb′
2 , gc′

2 , T ′) ∈ L, get

(ga∗
2 , T ∗) ← ReRanda(ga′

2 , gb′
2 , gc′

2 , T ′);

otherwise get

(ga∗
2 , gb∗

2 , gc∗
2 , T ∗) ← ReRand(ga

2 , gb
2, g

c
2, T )

and update the list as L = L ∪ {(id∗, ga∗
2 , gb∗

2 , gc∗
2 , T ∗)}. B then computes

ct∗
1 = (g1g3)s′ · ga∗

2 and key∗
1 = H(e(gs′

1 , u
1

α+id∗ ) · T ∗).

Finally B picks (ct∗
0,key

∗
0) ← Gp1 × {0, 1}λ and returns (ct∗

β ,key∗
β).

Finalize. B returns 1 if β = β′ and returns 0 in the other case.

We implicitly define RF as

RF(id∗) = b∗c∗ for all (id∗, ga∗
2 , gb∗

2 , gc∗
2 , T ∗) ∈ L (or id∗ ∈ QC).

For all (id∗, �, �, �, �) ∈ L (or id∗ ∈ QC), we have id∗ /∈ QK . Therefore our
simulation of RF is consistent. When T = e(g2, g2)abc, the simulation is identical
to Game3 where

T ∗ = e(ga∗
2 , g

RF(id∗)
2 );

when T = e(g2, g2)r for some r ← ZN , the simulation is identical to Game4 since
all inputs of H have min-entropy Θ(λ) and thus distributions of all key∗

1 are
statistically close to the uniform distribution over {0, 1}λ. ��

5 Towards Multi-instance Setting

Having obtained full adaptive security of our IBE scheme in the basic single-
instance setting, we now extend the result to the multi-instance setting [HKS15].
Typically, all instances in question will share some parameters. Formally, we
define two additional algorithms following [HKS15]:
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– Param(1λ) → gp. The parameter generation algorithm Param takes as input
the security parameter 1λ and outputs global parameter gp.

– Setupm(gp) → (mpk,msk). The setup algorithm Setupm takes as input the
global parameter gp and outputs master public/secret key pair (mpk,msk).

Each instance is established by running algorithm Setupm with the global para-
meter gp (shared among all instances) and a fresh random coin. For simplicity,
we assume that all instances have common ciphertext space C and key space K.
With master public/secret key pair (mpk,msk) generated by algorithm Setupm,
one can invoke algorithms KeyGen, Enc, Dec as in the single-instance setting.
Therefore the correctness can be defined in a natural way.

The full adaptive security and anonymity in the multi-instance setting can
be formulated by defining the advantage function as

AdvmIBE
A (λ) =

∣∣∣∣∣∣∣
Pr

⎡
⎢⎣β = β′

∣∣∣∣∣∣∣

gp ← Param(1λ), β ← {0, 1}
(mpk(ι),msk(ι)) ← Setupm(gp), ∀ι ∈ [τ ]

β′ ← AOKeyGen(·,·),OEnc
β (·,·)(1λ,mpk(1), . . . ,mpk(τ))

⎤
⎥⎦− 1

2

∣∣∣∣∣∣∣

where τ is the number of instances and oracles work as follows

– OKeyGen: On input (ι, id), the oracle returns KeyGen(mpk(ι),msk(ι), id) and
sets QK = QK ∪ {(ι, id)}.

– OEnc
β : On input (ι∗, id∗), the oracle samples (ct∗

1,key
∗
1) ← Enc(mpk(ι∗), id∗),

(ct∗
0,key

∗
0) ← C × K and returns (ct∗

β ,key∗
β). Set QC = QC ∪ {(ι∗, id∗)}.

5.1 Construction

We describe a multi-instance variant of our basic IBE scheme (shown in Sect. 3.1)
as follows.

– Param(1λ). Run G = (N, G, GT , e) ← GrpGen(1λ). Sample

g1 ← G
∗
p1

, g4 ← G
∗
p4

.

Pick H : GT → {0, 1}λ from a pairwise independent hash family. Output

gp = (G, g1, g4, H).

– Setupm(gp). Sample α ← ZN and u ← Gp1 . Output

mpk = (g1, gα
1 , e(g1, u), H) and msk = (α, u, g4).

The remaining algorithms KeyGen, Enc, Dec are defined as in Sect. 3.1.

5.2 Security

We prove the following theorem.
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Theorem 2. For any p.p.t. adversary A sending at most q̂σ queries to OKeyGen

and OEnc
β for each of τ instances, there exist B1, B2, B3, B4 such that

AdvmIBE
A (λ) ≤ 5

2
· AdvSD1

B1
(λ) + 2 · AdvSD2

B2
(λ) + 2 · �log q̂σ� · AdvSD3

B3
(λ)

+
(
2 · �log q̂σ� +

1
2

)
· AdvSD4

B4
(λ) + 2−Ω(λ)

and max{T(B1),T(B2),T(B3),T(B4)} ≈ T(A) + τ2 · q2
σ · poly(λ).

One may find that the above theorem is almost the same as Theorem 1. As
a matter of fact, it can be proved in a similar way. As we have discussed, our
main idea in this setting is to build an independent random function for each
instance in a concurrent manner. The remaining of this subsection is devoted to
showing how to upgrade the proof of Theorem 1 (c.f. Sect. 3.2 for game sequence
and Sect. 3.3 for proof details) to prove Theorem 2.

Game Sequence. It’s quite straightforward to extend Gamereal, Game0, Game′
0,

Game′′
0 , Game1 and Game4 to the multi-instance setting. The remaining Game2.i,

Game2.i.1, Game2.i.2, Game3 can be described as follows: Let G = (N, G, GT , e) ←
GrpGen(1λ). In all these games, master public keys given to adversary A are

mpk(1) = (g1, gα(1)

1 , e(g1, u
(1)), H), . . . , mpk(τ) = (g1, gα(τ)

1 , e(g1, u
(τ)), H)

where g1 ← G
∗
p1

, α(1), . . . , α(τ) ← ZN , u(1), . . . , u(τ) ← Gp1 and H is picked from
a family of pairwise-independent hash family; oracle OEnc

β works as follows:

– On input (ι∗, id∗), sample ct∗
1 ← Gp1Gp2Gp3 and compute

key∗
1 = H(e(ct∗

1, sk
(ι∗)
id∗ ))

where sk
(ι∗)
id∗ is obtained via a OKeyGen query (ι∗, id∗). Sample (ct∗

0,key
∗
0) ←

Gp1 × {0, 1}λ and return (ct∗
β ,key∗

β).

However, on input (ι, id), oracle OKeyGen behaves differently in those games:

– In Game2.i, it returns

(u(ι))
1

α(ι)+id · g

∑2i

j=1

r
(ι)
j

α
(ι)
j

+id

2 · R4

where g2 ← G
∗
p2

and α
(1)
j , r

(1)
j , . . . , α

(τ)
j , r

(τ)
j ← ZN for all j ∈ [2i].

– In Game2.i.1, it returns

(u(ι))
1

α(ι)+id · g

∑2i

j=1

r
(ι)
j

α
(ι)
j

+id

2 · g

∑2i

j=1

r̂
(ι)
j

α̂
(ι)
j

+id

3 · R4,

where g3 ← G
∗
p3

and α
(1)
j , r

(1)
j , α̂

(1)
j , r̂

(1)
j , . . . , α

(τ)
j , r

(τ)
j , α̂

(τ)
j , r̂

(τ)
j ← ZN for all

j ∈ [2i].
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– In Game2.i.2, it returns

(u(ι))
1

α(ι)+id · g

∑2i

j=1

r
(ι)
j

α
(ι)
j

+id
+
∑2i

j=1

r̂
(ι)
j

α̂
(ι)
j

+id

2 · R4,

where g2 ← G
∗
p2

and α
(1)
j , r

(1)
j , α̂

(1)
j , r̂

(1)
j , . . . , α

(τ)
j , r

(τ)
j , α̂

(τ)
j , r̂

(τ)
j ← ZN for all

j ∈ [2i].
– In Game3, it returns

(u(ι))
1

α(ι)+id · g
RF(ι)(id)
2 · R4

where g2 ← G
∗
p2

and RF(1), . . . ,RF(τ) are τ independent random functions.

Lemmas and Proofs. Most lemmas and proofs (including arguments) in
Sects. 3.3, 3.2 and 4 can be extended directly to cope with multiple instances.
In particular, in order to prove Game2.i ≈ Game2.i.1, Game2.i.1 ≈ Game2.i.2, and
Game3 ≈ Game4 (where “Gamexxx ≈ Gameyyy” means two games are compu-
tationally indistinguishable) in the multi-instance setting, one can just invoke
simulators described in the proofs of Lemmas 5, 6, and 7 for each instance
using independent random coins. It remains to give the following lemma show-
ing Game1 ≈ Game2.0 with proof.

Lemma 8. (from Game1 to Game2.0, multi-instance case). For any p.p.t.
adversary A sending at most q̂σ queries to OKeyGen and OEnc

β for each of τ
instances, there exists B with T(B) ≈ T(A) + τ · q̂σ · poly(λ) and

|AdvGame2.0
A (λ) − AdvGame1

A (λ)| ≤ AdvSD2
B (λ) + 2−Ω(λ).

Proof. Given (G, g1, g4,X1X2X3, T ) where either T = gμ
1 ← Gp1 or T = gμ

1 gr
2 ←

Gp1Gp2 for g2 ← G
∗
p2

and μ, r ← ZN , algorithm B works as follows:

Initialization. Pick α(1), . . . , α(τ), μ(1), . . . , μ(τ) ← ZN and select hash function
H. Compute

T (1) = Tμ(1)
, . . . , T (τ) = Tμ(τ)

and output

mpk(1) = (g1, gα(1)

1 , e(g1, T
(1)), H), . . . , mpk(τ) = (g1, gα(τ)

1 , e(g1, T
(τ)), H).

Here we implicitly set

u(1) = gμμ(1)

1 , . . . , u(τ) = gμμ(τ)

1 .

Answering OKeyGen. On input (ι, id), sample R4 ← Gp4 and return

(T (ι))
1

α(ι)+id · R4.
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Answering OEnc
β . On input (ι∗, id∗), sample s′ ← ZN and compute

ct∗
1 = (X1X2X3)s′

and key∗
1 = H(e((X1X2X3)s′

, skid∗))

where skid∗ is obtained via a OKeyGen query. B then picks (ct∗
0,key

∗
0) ←

Gp1 × {0, 1}λ and returns (ct∗
β ,key∗

β).
Finalize. B returns 1 if β = β′ and returns 0 in the other case.

When T = gμ
1 , the simulation is identical to Game1; when T = gμ

1 gr
2, the simu-

lation is identical to Game2.0 where we implicitly set

α
(1)
1 = α(1) mod p2

r
(1)
1 = rμ(1) mod p2

, . . . ,
α

(τ)
1 = α(τ) mod p2

r
(τ)
1 = rμ(τ) mod p2

.

This proves the lemma. ��
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Abstract. A public key encryption scheme is said to be n-circular secure
if no PPT adversary can distinguish between encryptions of an n length
key cycle and n encryptions of zero.

One interesting question is whether circular security comes for free
from IND-CPA security. Recent works have addressed this question,
showing that for all integers n, there exists an IND-CPA scheme that
is not n-circular secure. However, this leaves open the possibility that
for every IND-CPA cryptosystem, there exists a cycle length l, depen-
dent on the cryptosystem (and the security parameter) such that the
scheme is l-circular secure. If this is true, then this would directly lead
to many applications, in particular, it would give us a fully homomorphic
encryption scheme via Gentry’s bootstrapping.

In this work, we show that is not true. Assuming indistinguishability
obfuscation and leveled homomorphic encryption, we construct an IND-
CPA scheme such that for all cycle lengths l, the scheme is not l-circular
secure.

1 Introduction

Key dependent message security [9] extends the basic notion of semantic security
[22] by allowing the adversary to query for encryptions of function evaluations
on the hidden secret key. One of the most prominent examples of key depen-
dent message security is that of circular security, which addresses the following
question: “What can the adversary learn when given an encryption of the secret
key, or more generally, an encryption of a key cycle?”. An n length key cycle
consists of n ciphertexts, where the ith ciphertext is an encryption of the (i+1)th

secret key using the ith public key.1 The notion of circular security is captured
formally via a security game in which the adversary must distinguish between
an n length key cycle and n encryptions of zero (under the n different public
keys). An encryption scheme is said to be n-circular secure if no polynomial time
adversary can perform this task with non-negligible advantage.
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The problem of circular security has received a considerable amount of atten-
tion recently because it is a natural question giving rise to different applica-
tions [2,14,26]. Most notably, it gives us a path to achieve fully homomorphic
encryption from leveled homomorphic encryption via Gentry’s bootstrapping
approach [20].

In the past several years, there have been many interesting works [4–7,10–
13,23,27] that have addressed the question of circular security (or more generally,
key dependent message security), leading to circular secure encryption schemes
under fairly standard assumptions such as bilinear decisional Diffie Hellman
assumption (BDDH) and the Learning with Errors assumption (LWE)[29].

However, an important related question is whether any IND-CPA scheme
is also circular secure. If so, circular security would come for free and no addi-
tional construction mechanisms would need to be designed (beyond what we
already needed for IND-CPA security). Unfortunately, this is not true. For
n = 1, there exists a trivial counterexample — an IND-CPA scheme where
the encryption of the secret key is the secret key itself. The question for n > 1
was open for some time, and was resolved by Acar et al. [1]. They showed, under
the SXDH assumption, an IND-CPA secure encryption scheme that was not
2-circular secure. A similar counterexample with additional features was pro-
posed by Cash, Green and Hohenberger [16], also under the SXDH assumption.
In a recent work, Bishop, Hohenberger and Waters [8] expanded the state-of-the-
art for n = 2 by showing counterexamples under the k-linear assumption and
the LWE assumption. For arbitrary n, the first counterexamples were proposed
by Koppula, Ramchen and Waters [24], and Marcedone and Orlandi [28]. Given
any fixed integer n, Koppula, Ramchen and Waters showed how to construct an
IND-CPA scheme that is not n-circular secure using indistinguishability obfus-
cation (iO). Marcedone and Orlandi concurrently achieved a similar result under
the stronger notion of virtual black-box obfuscation (VBB). Recently, Alamati
and Peikert [3], and Koppula and Waters [25] proved similar results using LWE
assumption.

At first sight, these results might seem to shut the door on the prospect of
getting circular security automatically from IND-CPA security. However, they
miss an important distinction in the order of quantifiers. All prior works [3,24,
25,28] show that for every integer n, there exists an IND-CPA scheme which
is not n-circular secure. In particular, the parameters of their schemes (i.e. the
size of public parameters, secret keys and ciphertexts) depend on n. However,
this leaves open the possibility that for every cryptosystem, there exists some
polynomial function α(·), particular to that cryptosystem, such that the scheme
is α(·)-circular secure. More formally, we are interested in the following question:

Is it possible that for every IND-CPA secure public key encryption scheme,
there exists an integer α such that the scheme is also α-circular secure?2

If this were true, then this would provide an automatic path to Gentry’s
bootstrapping, and potentially other applications. For instance, suppose we
2 In comparison, the previous works addressed the following question: “Is it possible

that there exists an integer n such that every IND-CPA secure public key encryption
scheme is also n-circular secure?”.
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have a bootstrappable homomorphic encryption scheme (that is, a homomor-
phic encryption scheme for circuit class C where the decryption circuit is also
in C), and let us assume the scheme is α-circular secure. Then, in order to get
a homomorphic encryption scheme for all circuits, one simply needs to include
an α length key cycle as part of the public key. This key cycle can be used to
reduce the amount of noise in homomorphically evaluated ciphertexts, thereby
allowing us to perform arbitrary homomorphic evaluations.

With this motivation, we study the aforementioned question. Unfortunately,
the answer is in the negative, and we show this by constructing a class of public
key encryption schemes for which there does not exist any α such that they
are α-circular secure. Our construction uses indistinguishability obfuscator (iO)
for polynomial sized circuits, coupled with a leveled homomorphic encryption
(LHE) scheme that is capable of homomorphically evaluating its own decryption
circuit3. Such LHE schemes [13,21] are realizable from the LWE assumption.
Current iO candidates [19,32], on the other hand, rely on strong assumptions like
multilinear maps [17,18] and therefore, the reader might question the underlying
security of current construction. However, we would like to emphasize that our
result is a counterexample and it would hold as long as some iO scheme exists,
thus the concern over reliability of current candidates is somewhat mitigated.

Our Approach. Below, we sketch an outline of our construction, which has the
feature of being very intuitive. In our system, each public key consists of an LHE
public key PKHE and an auxiliary program Prog (to be described momentarily),
whose purpose is to aid the circular security adversary. The secret key consists
of the corresponding LHE secret key SKHE. The encryption and decryption pro-
cedures are simply the LHE encryption and decryption algorithms. The program
Prog is the obfuscation of a program that on input an LHE ciphertext, under
public key PKHE, decrypts it using (hardwired) secret key SKHE and outputs 1
iff the plaintext is SKHE itself. In other words, Prog acts as a publicly available
self-cycle (1-cycle) tester.

Our idea for testing secret key cycles of any (unbounded) length is to iter-
atively reduce size of the cycle by homomorphically decrypting last ciphertext
in the chain using the second-last ciphertext to generate a fresh ciphertext that
will act as a new end of the chain. More formally, consider a key cycle of length
n in which the last two ciphertexts ctn−1 and ctn are encryptions of skn and sk1
under public keys pkn−1 and pkn (respectively), and let CDec,n be a circuit that
takes an input x and uses it to decrypt ctn. Our cycle tester will homomorphi-
cally evaluate circuit CDec,n on input ctn−1. Since ctn−1 is an encryption of skn,
the homomorphic evaluation will output a new ciphertext ct′n−1 which would be
an encryption of sk1 under public key pkn−1. Thus, this successfully reduces the
length of key cycle from n to n−1, and iteratively applying this procedure would
eventually reduce the cycle size to 1. At this point, we could use the program

3 Recently, [15] provided constructions for LHE from sub-exponentially hard indis-
tinguishability obfuscation, one-way functions, and re-randomizable encryption
schemes.
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Prog1 which is part of first public key pk1 to test for a self-cycle. The crucial idea
in our cycle tester is that we start slicing the cycle from the end, thus existence
of a leveled homomorphic encryption scheme suffices, and we do not require a
fully homomorphic scheme for testing unbounded length key cycles.

Now let us move on to the IND-CPA security proof. Ideally we would like
to directly leverage the IND-CPA security of LHE scheme to prove IND-CPA
security of our construction because intuitively, the obfuscated program Prog
should not reveal the hardwired LHE secret key. However, indistinguishability
obfuscation is a relatively weak notion of program obfuscation, therefore using
it directly is a bit tricky so we need to tweak our scheme slightly as in [24]. In
our modified scheme, our secret key also contains a random string s, and the
program Prog has both SKHE and t hardwired, where t = PRG(s). On any input
ciphertext ct, it first decrypts using SKHE to recover (a, b) and then checks if
a = SKHE and t = PRG(b).

In order to use the IND-CPA security of the LHE scheme, we first need to
modify program Prog such that it does not contain SKHE anymore. To remove
SKHE from Prog, we make a hybrid jump in which we choose t randomly instead
of setting it as t = PRG(s). This hybrid jump is indistinguishable due to the
security of the pseudorandom generator. Note that if t is chosen uniformly at
random, then with high probability, this program outputs ⊥ on all inputs. As
a result, by the security of iO, this program is indistinguishable from one that
always outputs ⊥. In this manner, we can remove the secret key SKHE from Prog.
Once this is done, we can directly reduce a successful attack on our construction
to a successful attack on IND-CPA security of LHE scheme. Our construction is
described in detail in Sect. 4.

Organization. In Sect. 2, we describe the required notations and preliminaries.
The definition of circular security can be found in Sect. 3. In Sect. 4, we describe
our counterexample scheme. The circular security attack is included in Sect. 4.1
and the corresponding IND-CPA security proof in Sect. 4.2. Finally, in Sect. 5, we
discuss (informally) how our construction can be modified to achieve a stronger
negative result.

2 Preliminaries

Notation. Let R be a ring, and let CR,λ,k denote the set of circuits of size at
most poly(λ) and depth at most k, with domain and co-domain being R. For
simplicity of notation, we will skip the dependence of CR,λ,� on R, λ when it is
clear from the context.

2.1 Public Key Encryption

A public key encryption scheme PKE with message space M consists of three
algorithms Setup, Enc and Dec with the following syntax:
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– Setup(1λ) → (pk, sk) The setup algorithm takes as input the security parame-
ter 1λ and outputs a public key pk and secret key sk.

– Enc(pk,m ∈ M) → ct The encryption algorithm takes as input a public key
pk and a message m ∈ M and outputs a ciphertext ct.

– Dec(sk, ct) → x ∈ M ∪ {⊥} The decryption algorithm takes as input a secret
key sk, ciphertext ct and outputs x ∈ M ∪ {⊥}.

Correctness: For correctness, we require that for all security parameters λ,
(pk, sk) ← Setup(1λ) and messages m ∈ M, Dec(sk,Enc(pk,m)) = m.

Definition 1 (IND-CPA Security). A public key encryption scheme PKE =
(Setup,Enc,Dec) is said to be IND-CPA secure if for all security parameters λ,
stateful PPT adversaries A, Advind-cpaA,PKE(λ) is negligible in λ, where advantage of
A is defined as Advind-cpaA,PKE(λ) = |Pr[Exp-IND-CPA(PKE ,A, λ) = 1] − 1/2|, and
Exp-IND-CPA is defined in Fig. 1.

Exp-IND-CPA(PKE , A, λ)

b ← {0, 1}
(pk, sk) ← Setup(1λ)
(m0, m1) ← A(pk)
y ← Enc(pk, mb)

b̂ ← A(y)

Output (b̂
?
= b)

Fig. 1. IND-CPA security game

2.2 Homomorphic Encryption

Homomorphic encryption [20,30] is a powerful extension of public key encryp-
tion that allows one to evaluate functions on ciphertexts. In this work, we will
be using leveled homomorphic encryption schemes. Let R be a ring. A leveled
homomorphic encryption scheme HE with message space R consists of four algo-
rithms Setup,Enc,Dec,Eval with the following syntax:

1. Setup(1λ, 1�) → (pk, sk) The setup algorithm takes as input the security para-
meter λ, bound on circuit depth � and outputs a public key pk and secret key
sk.

2. Enc(pk,m ∈ R) → ct The encryption algorithm takes as input a public key
pk, message m ∈ R and outputs a ciphertext ct.

3. Eval(C ∈ C�, ct) → ct′ The evaluation algorithm takes as input a circuit
C ∈ C�, a ciphertext ct and outputs a ciphertext ct′.

4. Dec(sk, ct) → x The decryption algorithm takes as input a secret key sk and
ciphertext ct and outputs x ∈ R ∪ {⊥}.
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We will now define some properties of leveled homomorphic encryption
schemes. Let HE be any homomorphic encryption scheme with message space
R. First, we have the correctness property, which states that the decryption of
a homomorphic evaluation on a ciphertext must be equal to the evaluation on
the underlying message.

Definition 2 (Correctness). The scheme HE is said to be perfectly correct
if for all security parameter λ, circuit-depth bound �, (pk, sk) ← Setup(1λ, 1�),
circuit C ∈ C� and message m ∈ R, Dec(sk,Eval(C,Enc(pk,m))) = C(m).

Next, we have the compactness property which requires that the size of the
output of an evaluation on a ciphertext must not depend upon the evaluation
circuit. In particular, we require that there exists one decryption circuit such
that this circuit can decrypt any bounded-depth evaluations on ciphertexts.

Definition 3 (Compactness). The scheme HE is said to be compact if for all
λ, � there is a decryption circuit CDec

λ,� such that for all (pk, sk) ← Setup(1λ, 1�),
m ∈ R, C ∈ C�, CDec

λ,� (sk,Eval(C,Enc(pk,m))) = C(m).

Finally, we define the notion of bootstrappability. Gentry [20] showed that if
the decryption circuit is of low depth, then a homomorphic encryption scheme
for low depth circuits can be bootstrapped to a homomorphic encryption scheme
for polynomial depth circuits where the polynomial is apriori defined. We will use
this property for constructing our unbounded circular security counterexample.
We would like to emphasize that the following notion of bootstrappability does
not directly imply fully homomorphic encryption since an FHE scheme must
successfully evaluate a ciphertext on all polynomial depth circuits, and not just
on apriori defined polynomials.

Definition 4. A compact homomorphic encryption scheme HE is said to be
bootstrappable if for all security parameters λ, there exists a depth bound D =
D(λ) such that for all � ≥ D, depth(CDec

λ,� ) ≤ �.

Security: For security, we require that the underlying scheme is IND-CPA secure.

Definition 5. The scheme HE is secure if Γ = (Setup,Enc,Dec) is IND-CPA
secure (as per Definition 1).

2.3 Indistinguishability Obfuscation

Next, we recall the definition of indistinguishability obfuscation from [31].

Definition 6 (Indistinguishability Obfuscation). A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cλ}λ if it satisfies
the following conditions:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C ′(x) = C(x) where C ′ ← iO(C).
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– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher (Samp,D), there exists a negligible function negl(·) such that the
following holds: if for all security parameters λ ∈ N,Pr[∀x,C0(x) = C1(x) :
(C0;C1;σ) ← Samp(1λ)] > 1 − negl(λ), then

| Pr[D(σ, iO(C0)) = 1 : (C0;C1;σ) ← Samp(1λ)]−
Pr[D(σ, iO(C1)) = 1 : (C0;C1;σ) ← Samp(1λ)]| ≤ negl(λ)

[19] showed a candidate indistinguishability obfuscator for the circuit class
P/poly.

3 Circular Security

In this section, we define the notion of n-circular security. At a high level, n-
circular security deals with the following question: “What additional information
can a PPT adversary learn given an n-length encryption cycle (that is, a sequence
of n ciphertexts where the ith ciphertext is an encryption of the (i + 1)th secret
key using the ith public key)?”. In this work, we consider the following notion of
circular security, where the adversary must distinguish between an n-encryption
cycle and n encryptions of 0 (where the ith encryption is computed using the
ith public key).

Definition 7. A public key cryptosystem PKE is said to n-circular secure
if for all security parameters λ, PPT adversaries A, AdvcircA,PKE(λ, n) is
negligible in λ, where advantage of A is defined as AdvcircA,PKE(λ, n) =
|Pr[Exp-circ(n,PKE ,A, λ) = 1] − 1/2|, and Exp-circ is defined in Fig. 2.

Exp-circ(n, PKE , A, λ)

b ← {0, 1}
(pki, ski) ← Setup(1λ) for i ≤ n

ct
(0)
i ← Enc(pki, sk(i mod n)+1)

ct
(1)
i ← Enc(pki,0)

b̂ ← A
(
{(pki, ct

(b)
i )}i

)

Output (b̂
?
= b)

Fig. 2. Security game for n-circular security

3.1 Separating IND-CPA and Circular Security

First, let us recall the theorem statement from [24].

Theorem 1 ([24]). If there exists a secure indistinguishability obfuscator for
polynomial size circuits (Defintion 6) and a secure pseudorandom generator, then
for every positive integer n, there exists a public key encryption scheme PKE
such that
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– For all PPT adversaries A, there exists a negligible function negl1(·) and λ0

such that for all security parameters λ > λ0, Adv
ind-cpa
A,PKE(λ) ≤ negl1(λ), and

– There exists a PPT algorithm Test and a negligible function negl2(·) such that
for all security parameters λ, AdvcircTest,PKE(λ, n) ≥ 1/2 − negl2(λ).

We observe that the counterexample provided by Koppula, Ramchen, and
Waters could be trivially extended to prove the following (slightly stronger)
statement.

Theorem 2. If there exists a secure indistinguishability obfuscator for polyno-
mial size circuits (Defintion 6) and a secure pseudorandom generator, then there
exists a public key encryption scheme PKE such that

– For all PPT adversaries A, there exists a negligible function negl1(·) and λ0

such that for all security parameters λ > λ0, Adv
ind-cpa
A,PKE(λ) ≤ negl1(λ), and

– There exists a PPT algorithm Test, polynomial p(·) and a negligible func-
tion negl2(·) such that for all security parameters λ and n ≤ p(λ),
AdvcircTest,PKE(λ, n) ≥ 1/2 − negl2(λ).

The KRW counterexample could be extended as follows — For security para-
meter λ and polynomial p(·), instantiate p(λ) copies of KRW scheme where each
scheme is designed to be insecure for a certain length key cycle.

Our result proves a stronger statement which is not implied by the KRW
counterexample. It is formally stated below.

Theorem 3. If there exists a secure indistinguishability obfuscator for polyno-
mial size circuits (Defintion 6), secure bootstrappable homomorphic encryption
scheme (Definitions 4 and 5), and a secure pseudorandom generator, then there
exists a public key encryption scheme PKE such that

– For all PPT adversaries A, there exists a negligible function negl1(·) and λ0

such that for all security parameters λ > λ0, Adv
ind-cpa
A,PKE(λ) ≤ negl1(λ), and

– There exists a PPT algorithm Test, a negligible function negl2(·) such that for
all security parameters λ and positive integers α, AdvcircTest,PKE(λ, α) ≥ 1/2 −
negl2(λ).

4 Unbounded Circular Insecure Public Key
Encryption Scheme

In this section, we prove Theorem 3 by constructing a public key encryption
scheme PKE = (SetupPKE, EncPKE, DecPKE) that breaks circular security with
unbounded length key cycles. Let HE = (SetupHE, EncHE, EvalHE, DecHE) be
a secure bootstrappable homomorphic encryption scheme, iO be a secure indis-
tinguishability obfuscator and PRG be a secure pseudorandom generator that
maps � bit inputs to 2� bit outputs. The construction is described as follows:
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SelfCycleTest

Constants: Secret key SKHE, Value t.
Inputs: Ciphertext ct.

1. Decrypt ct as (sk, s) = DecPKE(SKHE, ct).
2. If sk = SKHE and PRG(s) = t output 1, otherwise output 0.

Fig. 3. SelfCycleTest

– SetupPKE(1λ) : It runs HE setup algorithm to obtain a public and secret
key pair as (PKHE, SKHE) ← SetupHE(1λ, 1D), where D is a depth such that
depth(CDecHE

λ,D ) ≤ D.4 It uniformly samples s ← {0, 1}�, sets t = PRG(s), and
computes the obfuscation of program SelfCycleTest (described in Fig. 3) as
Prog ← iO(SelfCycleTest). It sets the public key and secret key as PKPKE =
(PKHE,Prog), SKPKE = (SKHE, s).

– EncPKE(PKPKE,m; r): It computes ciphertext as ct = EncHE(PKHE,m; r),
where PKPKE = (PKHE,Prog).

– DecPKE(SKPKE, ct): It outputs DecHE(SKHE, ct), where SKPKE = (SKHE, s).

The proof of Theorem3 is described in two parts. First, we show a poly-time
attack on circular security of PKE in Sect. 4.1. Next, we prove it to be IND-CPA
secure in Sect. 4.2.

4.1 Attack on Unbounded Circular Security

We construct a PPT adversary A which breaks unbounded circular security of
above construction as follows:

1. Challenger generates n public and secret key pairs as {(pki, ski)}n
i=1 by inde-

pendently running the setup algorithm n times
(
(pki, ski) ← SetupPKE(1λ)

for i ≤ n
)
. It uniformly chooses a bit b ← {0, 1}, and computes cipher-

texts cti ← EncPKE(pki,mi,b) for i ≤ n, where mi,0 = sk(i mod n)+1 and
mi,1 = 0|mi,0|. Finally, it sends {(pki, cti)}n

i=1 to A.
2. A receives n public key and ciphertext pairs {(pki, cti)}n

i=1, and proceeds as
follows:
– It sets ct′n = ctn.
– For i = n − 1 to i = 1 :

– Compute ct′i = EvalHE(Ci, cti), where Ci is the HE decryption circuit
CDecHE with ct′i+1 hardwired as the its second input, i.e. Ci(x) =
CDecHE(x, ct′i+1).

5

4 Note that such a depth D exists since our HE scheme is bootstrappable (Definition 4).
5 Actually, the circuits Ci are not standard HE decryption circuits because ciphertexts
cti are encryptions of (i+ 1)th secret key and an extra element, therefore the circuit
must ignore the second element during homomorphic decryption.
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– A runs program Prog1 on input ct′1, and outputs b′ = Prog1(ct′1) as its
guess, where pk1 = (pk′

1,Prog1).
3. A wins if its guess is correct (b′ = b).

Lemma 1. If PRG is a secure pseudorandom generator, then there exists a
negligible function negl(·) such that for all security parameters λ and positive
integers n, AdvcircA,PKE(λ, n) ≥ 1/2 − negl(λ).

Proof. We prove this lemma in two parts. First, we consider a length n key cycle
and show that adversary A always correctly guesses challenger’s bit b as 1. Next,
we show that, with all but negligible probability, A correctly guesses b as 0.

As we described earlier, the basic idea is to slice the ring structure of n
ciphertexts by iteratively reducing an n-circular attack to an (n − 1)-circular
attack and finally, reducing it to a 1-circular attack. For slicing the ring of
ciphertexts, we use bootstrappability of the underlying scheme. The correctness
of the above reduction is proven by induction over cycle length n. The base case
n = 1 follows directly from the correctness of program Prog1. For the induction
step, assume that A correctly identifies a length k key cycle. To prove that A also
identifies length k + 1 key cycle, we only need to show that A correctly reduces
a (k + 1)-circular instance to a k-circular instance. Note that given k + 1 public
key, ciphertext pairs ({(pki, cti)}k+1

i=1 ). A computes ct′k as ct′k = EvalHE(Ck, ctk).
If ctk+1 is an encryption of sk1 under pkk+1, and ctk is an encryption of skk+1

under pkk, then ct′k will be an encryption of sk1 under pkk as the scheme HE is
bootstrappable satisfying Definition 4. Therefore, using inductive hypothesis, we
can conclude that A correctly identifies length k + 1 key cycle. Thus, the above
reduction correctly reduces circular instances with unbounded length key cycles
to 1-circular instances, and therefore A guesses the bit b as 1 with probability 1.

To conclude our proof we just need to show that if the cycle is encryption
of all zeros, then A outputs 0 with all but negligible probability. This follows
from the fact that PRG is a secure pseudorandom generator. Consider a hybrid
experiment in which the value t1 is sampled uniformly at random instead of
being computed as t1 = PRG(s1). Since PRG is a length doubling pseudorandom
generator, we can claim that in the hybrid experiment (with all but negligible
probability) Prog1 outputs 0 because there does not exist any pre-image s for
t1. Therefore, if PRG is a secure pseudorandom generator, A will always output
0 with all but negligible probability. Thus, A wins the n-circular security game
with all but negligible probability.

4.2 IND-CPA Security

Lemma 2. If iO is a secure indistinguishability obfuscator for polynomial size
circuits (Definition 6), HE is a secure bootstrappable homomorphic encryption
scheme (Definitions 4 and 5), and PRG is a secure pseudorandom generator,
then public key encryption scheme PKE is IND-CPA secure (Definition 1).
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Proof. We prove above lemma by contradiction. Let A be any PPT adversary
that wins the IND-CPA security game against PKE with non-negligible advan-
tage. We argue that such an adversary must break security of at least one under-
lying primitive. To formally prove security, we construct a series of hybrid games
as follows.

Game 1: This game is the original IND-CPA security game described in Defin-
ition 1.

1. Challenger runs HE setup algorithm to obtain a public and secret key pair
as (PKHE, SKHE) ← SetupHE(1λ). It uniformly samples s ← {0, 1}�, sets t =
PRG(s), and computes the obfuscation of program SelfCycleTest (described
in Fig. 3) as Prog ← iO(SelfCycleTest). It sets the public key and secret key
as PKPKE = (PKHE,Prog), SKPKE = (SKHE, s). Finally, it sends PKPKE to A.

2. A receives PKPKE from challenger, and computes messages m0,m1. It sends
(m0,m1) to the challenger.

3. Challenger chooses bit b ← {0, 1}, computes ct∗ ← EncPKE(PKPKE,mb), and
sends ct∗ to A.

4. A receives challenge ciphertext ct∗ from challenger, and outputs its guess b′.
5. A wins if it guesses correctly, that is if b = b′.

Game 2: Game 2 is same as Game 1, except challenger uniformly samples t from
{0, 1}2� instead of computing it as t = PRG(s).

1. Challenger runs HE setup algorithm to obtain a public and secret key
pair as (PKHE, SKHE) ← SetupHE(1λ). It uniformly samples s ← {0, 1}�,
t ← {0, 1}2�, and computes the obfuscation of program SelfCycleTest
(described in Fig. 3) as Prog ← iO(SelfCycleTest). It sets the public key
and secret key as PKPKE = (PKHE,Prog), SKPKE = (SKHE, s). Finally, it
sends PKPKE to A.

2–5. Same as before.

Game 3: Game 3 is same as Game 2, except challenger computes Prog as obfus-
cation of program Zero.

1. Challenger runs HE setup algorithm to obtain a public and secret key pair as
(PKHE, SKHE) ← SetupHE(1λ).Ituniformlysampless ← {0, 1}�,t ← {0, 1}2�,
and computes the obfuscation of program Zero (described in Fig. 4) as Prog

← iO(Zero)6. It sets the public key and secret key as PKPKE = (PKHE,Prog),
SKPKE = (SKHE, s). Finally, it sends PKPKE to A.

2–5. Same as before.

We now establish via a sequence of claims that the adversary’s advantage
between each adjacent game is negligible. Let Advi = |Pr[b′ = b] − 1/2| denote
the advantage of adversary A in Game i of guessing the bit b.
6 Note that program Zero must be padded such that it is of same size as program
SelfCycleTest.
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Zero

Inputs: Ciphertext ct.

1. Output 0.

Fig. 4. Zero

Claim 1. If PRG is a secure pseudorandom generator, then for all PPT A,
|Adv1 − Adv2| ≤ negl(λ) for some negligible function negl(·).
Proof. We describe and analyze a PPT reduction algorithm B that plays the
pseudorandom generator security game. B first receives a PRG challenge T ∈
{0, 1}2�. It then plays the security game with A as described in Game 1 with the
exception that in step 1 it lets t = T . If A wins (i.e. b′ = b), then B guesses ‘1’ to
indicate that T was chosen in the image space of PRG(·); otherwise, it outputs
‘0’ to that T was chosen randomly.

We observe that when T is generated as T = PRG(r), then B gives exactly
the view of Game 1 to A. Otherwise if T is chosen randomly the view is of Game
2. Therefore if |Adv1 − Adv2| is non-negligble, B must also have non-negligible
advantage against the pseudorandom generator.

Claim 2. If iO is a secure indistinguishability obfuscator, then for all PPT A,
|Adv2 − Adv3| ≤ negl(λ) for some negligible function negl(·).
Proof. We describe and analyze a PPT reduction algorithm B that plays the
indistinguishability obfuscation security game with A. B runs steps 1 as in Game
2, except it creates two programs as C0 = SelfCycleTest and C1 = Zero. It
submits both of these to the IO challenger and receives back a program P . It sets
Prog = P and finishes step 1. It executes steps 2–5 as in Game 2. If the attacker
wins (i.e. b′ = b), then B guesses ‘0’ to indicate that P was and obfuscation of
C0; otherwise, it guesses ‘1’ to indicate it was an obfuscation of C1.

We observe that when P is generated as an obfuscation of C0, then B gives
exactly the view of Game 2 to A. Otherwise if P is chosen as an obfuscation
of C1 the view is of Game 2. In addition, the programs are functionally equiv-
alent with all but negligible probability. The reason is that t is outside the
image of the pseudorandom generator with probability at least 1 − 2�. There-
fore if |Adv2 − Adv3| is non-negligble, B must also have non-negligible advantage
against the indisguishability obfuscation game.

Claim 3. If HE is a secure bootstrappable homomorphic encryption scheme,
then for all PPT A, Adv3 ≤ negl(λ) for some negligible function negl(·).
Proof. We describe and analyze a PPT reduction algorithm B that plays the
IND-CPA security game with HE challenger. B receives public key PKHE from
HE challenger. It runs step 1 as described in Game 3 with the exception that it
uses PKHE generated by HE challenger instead of running the setup algorithm.
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B forwards the challenge messages (m0,m1) it receives from A to HE challenger
as its challenge, and receives ct∗ as the challenge ciphertext, which it then for-
wards to A. Finally, Boutputs the same bit as A.

We observe that if A wins (i.e. b′ = b), then B also wins because it exactly
simulates the view of Game 3 for A. Therefore if Adv3 is non-negligble, B must
also have non-negligible advantage against HE challenger.

5 Unbounded Counterexamples with Mixed
Cryptosystems

We conclude by making the following observation pertaining to our counterexam-
ple. In our construction, we started slicing the key cycle from the end, and after
every cycle length reduction iteration, the new (homomorphically) evaluated
ciphertext is encrypted under a different public key. Concretely, if we consider
an n-length key cycle, then after ith cycle reduction iteration, the ciphertext
ct′n−i generated is encrypted under public key pkn−i. Therefore, the cycle test-
ing algorithm works in the presence of a LHE scheme. We observe that if we
instantiate our idea with an unbounded fully homomorphic encryption (FHE)
scheme as opposed to a leveled one, then the cycle testing algorithm could be
alternatively evaluated by slicing the key cycle from the start. More formally,
in the first iteration, our new cycle tester would homomorphically evaluate cir-
cuit CDec,2 on ct1, where CDec,2 is a circuit that takes an input x and uses it to
decrypt ct2. Since ct1 and ct2 are encryptions of sk2 and sk3 under public keys
pk1 and pk2 (respectively), the homomorphic evaluation would generate a new
ciphertext ct′2 that would be an encryption of sk3 under public key pk1. Note that
this also reduces the key cycle length by one, but in the forward direction and it
requires the encryption scheme to be fully homomorphic. Therefore, iteratively
applying this procedure would finally generate a ciphertext ct′1 which encrypts
secret key sk1 under public key pk1, and as before, the self-cycle could be tested
using Prog1.

The crucial observation in the alternative cycle testing procedure is that
we require only one encryption scheme to be homomorphic encryption scheme.
This opens up the possibility of creating a counterexample for circular security
under mixed public key encryption (PKE) framework, where the cycle could
comprise of distinct and variegated PKE schemes with a universal message and
key space. In particular, this shows that just one “bad” key could poison the
circular security for any arbitrary length cycle.
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Abstract. Structure-preserving cryptography is a world where mes-
sages, signatures, ciphertexts and public keys are entirely made of ele-
ments of a group over which a bilinear map is efficiently computable.
While structure-preserving signatures have received much attention the
last 6 years, structure-preserving encryption schemes have undergone
slower development. In particular, the best known structure-preserving
cryptosystems with chosen-ciphertext (IND-CCA2) security either rely
on symmetric pairings or require long ciphertexts comprised of hundreds
of group elements or do not provide publicly verifiable ciphertexts. We
provide a publicly verifiable construction based on the SXDH assumption
in asymmetric bilinear groups e : G× Ĝ → GT , which features relatively
short ciphertexts. For typical parameters, our ciphertext size amounts
to less than 40 elements of G. As a second contribution, we provide
a structure-preserving encryption scheme with perfectly randomizable
ciphertexts and replayable chosen-ciphertext security. Our new RCCA-
secure system significantly improves upon the best known system featur-
ing similar properties in terms of ciphertext size.

Keywords: Structure-preserving encryption · Chosen-ciphertext secu-
rity · RCCA security · Public ciphertext verifiability

1 Introduction

Structure-preserving cryptography is a paradigm where handled objects all live
in discrete-log-hard abelian groups over which a bilinear map is efficiently com-
putable. The structure-preserving property allows for a smooth interaction of the
considered primitives with Groth-Sahai (GS) proof systems [36], making them
very powerful tools for the modular design of privacy-preserving cryptographic
protocols [3,8,16,17,19,27,32,37,44,51].

In structure-preserving signatures (SPS) [6,8], messages, signatures, public
keys all live in the source groups (G, Ĝ) of a bilinear map e : G× Ĝ → GT . The
roots of SPS schemes can be traced back to the work of Groth [34], which ini-
tiated a line of work seeking to obtain short signatures [4–6,23,40,45], security
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 247–276, 2017.
DOI: 10.1007/978-3-662-54365-8 11
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under standard assumptions [4,18,24,37,40,45], tight security proofs [5,37] or
lower bounds [1,7]. Beyond signatures, structure-preserving cryptography was
also developed in the context of commitment schemes [6,9,10,35,42], public-
key [5,16] and identity-based encryption [41,52] as well as in deterministic
primitives [2].

Structure-preserving encryption. Camenisch et al. [16] came up with
the first chosen-ciphertext-secure (IND-CCA2) structure-preserving public-key
encryption scheme. Structure-preserving CCA2 security is motivated by appli-
cations in the realization of oblivious third parties protocols [20] or proofs of
knowledge of leakage-resilient signatures [28]. Among the use cases of structure-
preserving CCA-secure encryption, [16] mentions various settings where a user,
who has a ciphertext and a Groth-Sahai proof of its well-formedness, wants to
convince a third party that it is in possession of such a ciphertext without reveal-
ing it. Structure-preserving encryption also allows two users to jointly compute
an encryption (of a function) of two plaintexts such that neither player learns
the plaintext of the other player and only one of them obtains the ciphertext.

As pointed out in [16], structure-preserving encryption should make it pos-
sible to efficiently and non-interactively prove possession of a valid ciphertext,
which rules out the use of standard techniques – like hash functions [26] or ordi-
nary (i.e., non-structure-preserving) one-time signatures [21,29,50] – that are
typically used to achieve chosen-ciphertext security [49] in the standard model.
In particular, the original Cramer-Shoup cryptosystem [26] does not provide the
sought-after structure-preserving property and neither do direct applications of
the Canetti-Halevi-Katz paradigm [21]: for example, merely combining Kiltz’s
tag-based encryption [39] with a one-time SPS does not work as the security
proof of [39] requires (hashed) verification keys to be encoded as exponents.
Nevertheless, Camenisch et al. [16] managed to twist the design principle of
Cramer-Shoup [26] so as to obtain a variant of the scheme that only resorts
to algebraic operations when it comes to tying all ciphertexts components alto-
gether in a non-malleable manner.

While efficient and based on the standard Decision Linear assumption [14],
the initial construction of [16] still suffers from certain disadvantages. In the first
variant of their scheme, for example, one of the ciphertext components lives in
the target group GT of a bilinear map e : G× Ĝ → GT which complicates its use
in applications requiring to prove knowledge of a ciphertext: recall that Groth-
Sahai proofs require witnesses to live in the source group of a bilinear (i.e.,
they need strictly structure-preserving components in the sense of [9]). While
Camenisch et al. [16] suggested a technique of moving all ciphertext components
to the source groups in their scheme, this is only known to be possible using
symmetric bilinear groups (where G = Ĝ) as it relies on the one-sided pairing
randomization technique of [8]. Another limitation of [16] is that, analogously to
the original Cramer-Shoup system [26], valid ciphertexts (i.e., which lie in the
range of the legitimate encryption algorithm) are not publicly recognizable. As a
result, only the sender of a ciphertext (who knows the random encryption coins)
can generate a proof that this particular ciphertext is indeed a valid ciphertext
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without revealing it. Ideally, any ciphertext observer should be able to commit
to that ciphertext and prove statements about it without any interaction with
the sender, which would be possible with publicly verifiable ciphertexts.

Abe et al. [5] provided several constructions of structure-preserving CCA2-
secure encryption with publicly verifiable ciphertexts. On the downside, their
solutions incur substantially longer ciphertexts than [16]: under the Decision
Linear assumption, the most efficient solution of [5] entails 321 group elements
per ciphertext. Moreover, it was only described in terms of symmetric pairings.

In addition, symmetric pairings have become significantly less efficient (see,
e.g., [31]) as the use of small-characteristic fields is now considered insecure [11].
This motivates the search for efficient structure-preserving CCA2-secure systems
which provide shorter ciphertexts and can operate in asymmetric pairings.

Our Contributions. We provide a new CCA2-secure structure-preserving
encryption scheme wherein the validity of ciphertexts is publicly verifiable and
ciphertexts only consist of 16 elements of G and 11 elements of Ĝ. By “public
verifiability”, we mean that ciphertexts which are rejected by the decryption
algorithm should be recognizable given the public key. While stronger defini-
tions of verifiability could be used1, this notions suffices to ensure confidentiality
in settings – like threshold decryption [13,46,54] – where potentially harmful
decryption queries should be publicly detectable. In particular, our first scheme
readily implies a CCA2-secure structure-preserving cryptosystem that enables
threshold decryption in the adaptive corruption setting.

In our first scheme, the ciphertext size amounts to 38 elements of G assuming
that each element of Ĝ has a representation which is twice as large as the rep-
resentation of G elements. The security is proved under the standard symmetric
eXternal Diffie-Hellman (SXDH) assumption [53] in asymmetric bilinear maps.

As a second contribution, we provide a different structure-preserving cryp-
tosystem which features perfectly re-randomizable ciphertexts and replayable
chosen-ciphertext (RCCA) security. As defined by Canetti, Krawczyk and
Nielsen [22], RCCA security is a meaningful relaxation of CCA2 security that
tolerates a “benign” form of malleability: namely, anyone should be able to
randomize a given ciphertext into another encryption of the same plaintext.
Under the SXDH assumption, our construction features statistically randomiz-
able ciphertexts which only consist of 34 elements of G and 18 elements of Ĝ.
Under the same2 assumption, the best known RCCA-secure realization thus far
was the scheme of Chase et al. [25] which costs 49 elements of G and 20 elements
of Ĝ.

Our techniques. Our structure-preserving CCA2 secure cryptosystem builds
on a public-key encryption scheme suggested by Libert and Yung [46], which is

1 For example, we could additionally require that all ciphertexts outside the range of
the decryption algorithm are rejected by the decryption procedure.

2 The authors of [25] only described a construction from the DLIN assumption with
93 elements per ciphertext. Their approach extends to the SXDH assumption and
happens to provide structure-preserving schemes.
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not structure-preserving in its original form. Our starting observation is that,
unlike Kiltz’s tag-based encryption scheme [39], the security proof of [46] does
not require to interpret one-time signature verification keys as exponents. The
construction of [46] is obtained by tweaking the Cramer-Shoup paradigm [26] and
replacing the designated verifier NIZK proofs of ciphertext validity by a univer-
sally verifiable Groth-Sahai proof. In order to obtain publicly verifiable proofs
with the desired security property called simulation-soundness [50], the authors
of [46] used Groth-Sahai common reference strings (CRSes) which depend on the
verification key of a one-time signature. In the security proof, the key idea was to
enable the simulation of fake NIZK proofs of ciphertext validity while making it
impossible for the adversary to create such a fake proof himself. In Groth-Sahai
proofs, this can be achieved by programming the Groth-Sahai CRSes in such
a way that they form a linear subspace of dimension 1 in the challenge cipher-
text whereas adversarially-generated ciphertexts involve CRSes of dimension 2
(which are perfectly sound CRSes).

We build on the observation that the approach of [46] still works if one-time
verification keys consist of group elements instead of exponents. One difficulty
is that we need one-time signature verification keys comprised of a single group
element while the best known one-time SPS [6] have longer verification keys.
Our solution is to “hash” the one-time verification keys of [6] in a structure-
preserving manner. For this purpose, we apply a strictly structure-preserving
commitment scheme proposed by Abe et al. [10] as if it was a chameleon
hash function: namely, we replace the hash value by a commitment to the
one-time verification key while the corresponding de-commitment information
is included in the ciphertext. One caveat is that [10] considers a relaxed secu-
rity notion for strictly structure-preserving commitments, called chosen-message
target collision-resistance, which appears insufficient for our purposes. We actu-
ally need a stronger notion, called enhanced chosen-message target collision-
resistance (ECM-TCR), where the adversary should also be able to come up
with a different opening to the same message for a given commitment. Fortu-
nately, we can prove that the strictly structure-preserving commitment of [10]
does provide ECM-TCR security under the SXDH assumption.

The security proof of our construction addresses another technical hurdle
which arises from the fact that ciphertexts contain elements from both sources
groups G and Ĝ. Directly adapting the security proof of [46] would require to
sign all elements of G and Ĝ that are contained in the ciphertext, which would
require a one-time SPS where messages contain elements of both groups (G, Ĝ).
While such schemes exist [4], they are less efficient than one-time SPS schemes
for unilateral messages. Our solution to this problem is to modify the security
proof of Libert and Yung [46] in such a way that not all ciphertexts components
have to be signed using the one-time signature. In short, we leverage the fact
that only Groth-Sahai commitments have to live in the group Ĝ: proof elements
and other components of the ciphertext can indeed dwell in G. In GS com-
mitments for linear multi-exponentiation equations, we notice that Groth-Sahai
commitments are uniquely determined by the proof elements and the statement.
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For this reason, even if the adversary tampers with the GS commitments of the
challenge ciphertext, it will be unable to create another ciphertext that will be
accepted by the decryption oracle. This saves us from having to one-time-sign
the Groth-Sahai commitments in the encryption algorithm, which is the reason
why we only need such a system for unilateral messages.

Our construction of RCCA-secure encryption extends the ideas of Chase
et al. [25]. In a nutshell, the RCCA-secure scheme of [25] combines a semantically
secure encryption scheme and a randomizable witness indistinguishable proof
of a statement of the form “Either I know the plaintext OR a signature of a
ciphertext that this ciphertext is a randomization of”. Our construction proceeds
in an analogous way by demonstrating a statement of the form “Either I know
the plaintext OR this ciphertext is a randomization of the challenge ciphertext”.

In a high level, for the two branches of the statement we rely on proofs which
nicely share a common structure to optimize our OR-proof. On the one hand,
for the knowledge of the plaintext we use a quasi-adaptive NIZK (QA-NIZK)
proof, which are NIZK proofs introduced by [38] where the CRS may depend
on the specific language for which proofs have to be generated. Our QA-NIZK
is built from the one-time structure-preserving linearly homomorphic signature
(LHSPS) of Libert, Peters, Joye and Yung [42]. On the other hand, for the one-
time signature we use the strongly unforgeable one-time SPS of Abe et al. [5]
that we make re-randomizable thanks to LHSPS. These tools allows to combine
some of the verification equations for which Groth-Sahai proofs of satisfiability
are included in ciphertexts.

Related Work. Several different approaches [15,30,47,48] were taken to rec-
oncile chosen-ciphertext-security and homomorphism. Relaxed flavors of chosen-
ciphertext security [22] opened the way to perfectly randomizable encryption
schemes offering stronger guarantees than just semantic security. Groth described
[33] a weakly RCCA secure variant of Cramer-Shoup which only encrypts mes-
sages in a bit-by-bit manner. Prabhakaran and Rosulek [47] showed how to more
efficiently encrypt many bits at once in a RCCA-secure realization from the DDH
assumption. While their solution features shorter ciphertexts than our RCCA-
secure scheme, it is not structure-preserving as it cannot be readily instantiated
in groups with a bilinear maps. On the other hand, unlike our scheme and the
one of [25], it allows re-randomizing ciphertexts without knowing under which
public key they were encrypted.

Prabhakaran and Rosulek subsequently generalized the RCCA security
notion [22] into a model [48] of homomorphic encryption that only supports
a limited form of malleability. Boneh, Segev and Waters [15] took a different
approach aiming for restricted malleability properties. Chase et al. [25] consid-
ered a modular design of HCCA-secure encryption [48] based on malleable proof
systems. Their proposals turn out to be the only known HCCA/RCCA-secure
structure-preserving candidates thus far.
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2 Background and Definitions

2.1 Hardness Assumptions

We consider groups (G, Ĝ,GT ) of prime-order p endowed with a bilinear map
e : G × Ĝ → GT .

Definition 1. The Diffie-Hellman problem (DDH) in G, is to distinguish
the distributions (g, ga, gb, gab) and (g, ga, gb, gc) with a, b, c

R← Zp. The Diffie-
Hellman assumption asserts the intractability of DDH for any PPT distinguisher.

In the asymmetric setting (G, Ĝ,GT ), we consider the SXDH assumption, which
posits that the DDH assumption holds in both G and Ĝ.

Definition 2. The Double Pairing problem (DP) in (G, Ĝ,GT ) is, given
a pair of group elements (ĝz, ĝr) ∈ Ĝ

2, to find a non-trivial triple (z, r) ∈
G

2\{(1G, 1G)} such that e(z, ĝz) · e(r, ĝr) = 1GT
.

It is known [8] that the DP assumption is implied by the DDH assumption
in G. By exchanging the roles of G and Ĝ in the definition of DP, we obtain a
variant of the assumption which implies the hardness of DDH in Ĝ.

2.2 One-Time Structure-Preserving Signatures

Structure-preserving signatures (SPS) [6,8] are signature schemes where mes-
sages and public keys all consist of elements of a group over which a bilinear
map e : G × Ĝ → GT is efficiently computable. Constructions based on simple
assumptions were put forth in [4,5].

In the forthcoming sections, we will rely on one-time SPS schemes.

Definition 3. A one-time signature scheme is a tuple of efficient algorithms
OT S = (Setup,KeyGen,Sign,Verify) where:

Setup(λ): This algorithm takes as input a security parameter λ and generates
the public parameters PP for the scheme.

KeyGen (PP): This algorithm takes as input PP and generates a one-time secret
key osk and a one-time verification key ovk.

Sign(PP, osk,M): Given as input (PP, osk) and a message M , this algorithm
produces a signature σ for M .

Verify(PP, ovk,M , σ): The verification algorithm takes (PP, ovk,M , σ) and
returns 1 or 0.

Correctness mandates that, for any λ ∈ N, any PP ← Setup(λ), any pair
(osk, ovk) ← KeyGen(PP), we have Verify(PP, ovk,M ,Sign(PP, osk,M)) = 1 for
any message M .

In addition, a one-time signature is said structure-preserving if the compo-
nents of ovk, M and σ all live in the source groups (G, Ĝ) of a configuration
(G, Ĝ,GT ) of bilinear groups.
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Definition 4. A one-time signature scheme OT S = (Setup,KeyGen,Sign,
Verify) is strongly unforgeable against chosen message attack (SUF -CMA) if

AdvSUF -CMA
OTS,A = Pr

⎡

⎣ (m�, σ�) �∈ QSignOT ∧
Verify(ovk,m�, σ�) = 1

∣
∣
∣
∣
∣
∣

PP ← Setup(1λ)
(ovk, osk) ← KeyGen(PP)
(m�, σ�) ← ASignOT

osk (·)(ovk)

⎤

⎦

is negligible against any PPT adversary A. Here, SignOT
osk (·) is a signing oracle

which allows the adversary to obtain a signature σm of only one message m for
which (m,σm) is stored in QSignOT .

We recall a construction of the one-time Structure-Preserving Signature
scheme which was proposed in [5].

Setup(λ): Choose asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2λ

and output PP = (G, Ĝ,GT ).
KeyGen(PP): Generates the signing key osk and the verification key ovk using

the security parameter λ and the number n of messages to be signed.
1. Choose ĝz, ĝr, g

R← Ĝ.
2. For i = 1 to n, pick (χi, γi)

R← Z
2
p and compute ĝi = ĝχi

z ĝγi
r .

3. Pick (ζ, ρ) R← Z
2
p and compute Â = gζ

z · gρ
r .

4. Set osk = ({(χi, γi)}n
i=1, ζ, ρ) ∈ G

2n+2 and

ovk = (ĝz, ĝr, {ĝi}n
i=1, Â) ∈ Ĝ

n+3.

Sign(osk,M = (M1, . . . ,Mn)): In order to sign M = (M1, . . . ,Mn) ∈ G
n,

compute z = gζ
∏n

i=1 Mχi

i and r = gρ
∏n

i=1 Mγi

i . Output σ = (z, r).
Verify(ovk,M = (M1, . . . ,Mn), σ = (z, r)): Return 1 if and only if the following

equations are satisfied: e(z, ĝz) · e(r, ĝr) = e(g, Â) · ∏n
i=1 e(Mi, ĝi).

2.3 Partial One-Time Signature

A special case of the one-time signature presented in Sect. 2.2 is called Partial
One-Time Signature (POTS) [12]. In a such scheme, part of the verification key
can be re-used in multiple signatures and the remaining part must be refreshed
at every signature generation.

Definition 5. A partial one-time signature (POTS) scheme is a tuple of algo-
rithms POTS = (Setup,KeyGen,OKeyGen,Sign,Verify).

Setup(λ): The setup algorithm takes as input a security parameter λ and gen-
erates the public parameters PP for the scheme.

KeyGen(PP): The key generation algorithm takes as input the public parameters
PP and generates the long-term signing key sk and long-term verification
key vk.

OKeyGen(PP): The key generation algorithm takes PP and generates the one-
time signing key osk and the one-time verification key ovk.
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Sign(PP, sk, osk, M): The signature algorithm uses the (PP, osk) to produce a
valid signature σ for the message vector M .

Verify(PP, vk, ovk, M, σ): The verification algorithm takes (PP, vk, ovk,M , σ)
and returns 1 or 0.

Correctness requires that, for any PP ← Setup(λ), (sk, vk) ← KeyGen(PP)
and (osk, ovk) ← OKeyGen(PP), the partial one-time signature scheme is correct
if and only if Verify(PP, vk, ovk,M ,Sign(PP, sk, osk,M)) = 1.

We focus on the strong unforgeability against one-time chosen-message attack
of our POTS.

Definition 6. A POTS scheme POTS = (Setup,KeyGen,OKeyGen,Sign,
Verify) is strongly unforgeable against one-time chosen-message attack (or OT-
CMA secure) if:

AdvOT -SU-CMA
POTS,A (λ)

= Pr

⎡

⎣
∃ (m′, σ′) s.t. (ovk�, σ′,m′) ∈ Q
∧ (ovk�, σ�,m�) �∈ Q
∧ Verify(vk, ovk�,m�, σ�) = 1

∣
∣
∣
∣
∣
∣

PP ← Setup(1λ)
(vk, sk) ← KeyGen(PP)
(ovk�, σ�,m�) ← AOsk(PP, vk)

⎤

⎦

is negligible for any PPT adversary A. Here, the signing oracle takes as input a
message m, generates (ovk, osk) ← OKeyGen(PP), σ ← Sign(sk, osk,m). Then,
it records (ovk,m) to Q and returns (σ, ovk).

Here, we recall an instantiation of the POTS scheme [4], which is strongly
unforgeable against the one-time chosen-message attack (SU-OTCMA) under
the DP assumption.

Setup(λ, �): On input of a security parameter λ and an integer � ∈ poly(λ), the
setup algorithm chooses a large prime p > 2λ, asymmetric groups (G, Ĝ,GT )
of prime order p, with a bilinear map e : G× Ĝ → GT and the corresponding
generators (g, ĝ) ∈ G × Ĝ. The algorithm outputs

PP = (p,G, Ĝ,GT , e, g, ĝ, �).

KeyGen(PP): Parse PP as (p,G, Ĝ,GT , e, g, ĝ, �). Choose wz
R← Z

∗
p and compute

gz ← gwz . For i ∈ {1, . . . , �}, choose χi
R← Zp and compute gi ← gχi . Return

vk = (gz, g1, . . . , g�) ∈ G
�+1 sk = (wz, χ1, . . . , χ�) ∈ Z

�+1
p

OKeyGen(PP): Parse PP, choose a ← Zp, compute A ← ga and output

ovk = A osk = a

Sign(sk, osk, M̂): Parse M̂ as (M̂1, . . . , M̂�) ∈ Ĝ
�. Parse sk and osk, choose

ζ
R← Z

∗
p, then compute and output

Ẑ = ĝζ R̂ = ĝa−ζwz
∏�

i=1M̂i
−χi

.
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Verify(vk, ovk, M̂, σ): Parse σ as (Ẑ, R̂) ∈ Ĝ
2, M̂ as (M̂1, . . . , M̂�) ∈ Ĝ

� and
ovk as A ∈ G. The algorithm returns 1 if the following equation holds:

e(A, ĝ) = e(gz, Ẑ) · e(g, R̂) ·
�∏

i=1

e(gi, M̂i)

otherwise the algorithm returns 0.

2.4 One-Time Linearly Homomorphic Structure-Preserving
Signatures

Libert et al. [42] considered structure-preserving with linear homomorphic prop-
erties (see the full version of the paper for formal definitions). This section recalls
the one-time linearly homomorphic structure-preserving signature (LHSPS)
of [42].

Keygen(λ, n): Given a security parameter λ and the dimension n ∈ N of the
subspace to be signed, choose bilinear group (G, Ĝ,GT ) of prime order p.
Then, choose ĝz, ĝr

R← Ĝ. For i = 1 to n, pick χi, γi
R← Zp and compute

ĝi = ĝz
χi ĝr

γi . The private key is defined to be sk = {(χi, γi)}n
i=1 while the

public key is pk =
(
ĝz, ĝr, {ĝi}n

i=1

) ∈ Ĝ
n+2.

Sign(sk, (M1, . . . , Mn)): To sign a (M1, . . . ,Mn) ∈ G
n using sk =

{(χi, γi)}n
i=1, output σ = (z, r) ∈ G

2, where z =
∏n

i=1 Mχi

i , r =
∏n

i=1,M
γi

i .
SignDerive(pk, {(ωi, σ(i))}�

i=1): given pk as well as � tuples (ωi, σ
(i)), parse

σ(i) as σ(i) =
(
zi, ri

)
for i = 1 to �. Compute and return σ = (z, r), where

z =
∏�

i=1 zωi
i , r =

∏�
i=1 rωi

i .
Verify(pk, σ, (M1, . . . , Mn)): Given a signature σ = (z, r) ∈ G

2 and a vector
(M1, . . . ,Mn), return 1 iff (M1, . . . ,Mn) �= (1G, . . . , 1G) and (z, r) satisfy

e(z, ĝz) · e(r, ĝr) =
n∏

i=1

e(Mi, ĝi).

The one-time security of the scheme (of which the definition is recalled in
the full version of the paper) was proved [42] under the DP assumption. In
short, the security notion implies the infeasibility of deriving a signature on a
vector outside the subspace spanned by the vectors authenticated by the signer.
Here, “one-time” security means that a given public key allows signing only one
subspace.

We remark that the one-time structure-preserving signature of Sect. 2.2 can
be seen as a special case of the above LHSPS scheme, in which we fix the first
element of the vector to be signed. The one-time security of this signature scheme
can be directly deduced from the security of the LHSPS scheme.
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2.5 Strictly Structure-Preserving (Trapdoor) Commitments

In this section, we recall the notion of Chosen-Message Target Collision Trapdoor
Commitment as it was defined by Abe et al. [10].

Definition 7. A non-interactive commitment scheme is a tuple of polynomial-
time algorithms {Setup,KeyGen,Commit,Verify} that:

Setup(λ): The parameter generation algorithm takes the security parameter λ
and outputs a public parameter PP.

KeyGen(PP): The key generation algorithm takes PP and outputs the commit-
ment key ck.

Com(PP, ck,m): The commitment algorithm takes (PP, ck) and a message m,
then it outputs a commitment com and an opening information open.

Verify(PP, com,m, open): The verification algorithm takes (PP, com,m, open)
and outputs 1 or 0.

In trapdoor commitment schemes, the Setup algorithm additionally outputs a
trapdoor tk which, on input of a message m and random coins r such that
c = Com(PP, ck,m; r), allows opening the commitment c to any message m′. In
our construction, we need a length-reducing commitment scheme which satisfies
a stronger notion of Chosen-Message Target Collision Resistance (CM-TCR)
than the one considered in [10, Definition 10].

Definition 8. A Commitment Scheme provides enhanced chosen-message
target collision-resistance (ECM-TCR) if the advantage

AdvECM-TCR
A (λ)

= Pr

⎡

⎣
∃(m†, open†) s.t. (com�,m†, open†) ∈ Q
∧ (com�,m�, open�) �∈ Q
∧ Verify(ck, com�,m�, open�) = 1

∣
∣
∣
∣
∣
∣

PP ← Setup(1λ)
ck ← KeyGen(PP)
(com�,m�, open�) ← AOck(ck)

⎤

⎦

is negligible for any PPT adversary A. Here, Ock is an oracle that, given a
message m, executes (com, open) ← Com(PP, ck,m), records (com,m, open) in
Q and returns (com, open).

We note that Definition 8 captures a stronger requirement than the original
definition [10, Definition 10] in that the latter only requires that the adversary
be unable to open a target commitment com� to a different message than the
one queried to the oracle Ock. Here, the adversary is also considered successful
if it provides a different opening open� �= open′ of com� to the same message
m� = m† as the one queried to Ock.

We now recall the Strictly Structure-Preserving Trapdoor Commitment of
Abe et al. [10] and show that it actually satisfies our stronger notion of ECM-
TCR security.
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TC.Setup(λ, �): On input of a security parameter λ and an integer � ∈ poly(λ),
the public parameters are generated by choosing a large prime p > 2λ, asym-
metric groups (G, Ĝ,GT ) of prime order p, with a bilinear map e : G×Ĝ → GT

and group generators (g, ĝ) ∈ G × Ĝ. The algorithm outputs

PP = (p,G, Ĝ,GT , e, g, ĝ, �).

TC.KeyGen(PP): For i = 1, . . . , � + 2, choose ρi
R← Z

∗
p and compute

X̂i ← ĝρi ∀i ∈ {1, . . . , � + 2}.

Output the commitment key ck := {X̂i}�+2
i=1 . Optionally, the algorithm may

output the trapdoor tk := {ρi}�+2
i .

TC.Commit(PP, ck, M): To commit to M̂ = (M̂1, . . . , M̂�) ∈ Ĝ
�, conduct the

following step.
1. Generate a key pair (vkpots, skpots) for the partial one-time signature of

Sect. 2.3. Namely, choose skpots
R← (wz, χ1, . . . , χ�) ∈ Z

�+1
p and set

vkpots = (gz, g1, . . . , g�) = (gwz , gχ1 , . . . , gχ�) ∈ G
�+1.

2. Choose a
R← Zp and compute ovkpots = A = ga and oskpots = a.

3. Using skpots, generate a partial one-time signature on the message M̂
w.r.t. to the one-time secret key oskpots. To this end,
a. Pick ζ1 ∈ Zp.
b. Compute (Ẑ, R̂) ∈ Ĝ

2 as a partial one-time signature of M̂ as

Ẑ = ĝζ1 R̂ = ĝa−ζ1wz

�∏

i=1

M̂χi

i

4. Generate a commitment to the message.
a. Set (m1, . . . ,m�+2) ← (χ1, . . . , χ�, wz, a)
b. Parse ck as (X̂1, . . . , X̂�+2).
c. Choose a random value ζ2 ← Z

∗
p and compute:

Ĉ = ĝζ2 ·
�+2∏

i=1

X̂mi
i D = gζ2

5. Output the commitment ˆcom = Ĉ as well as the opening information

open =
(
D, gz, g1, . . . , g�, A = ga, Ẑ, R̂

) ∈ G
�+3 × Ĝ

2. (1)

TC.Verify(ck, ˆcom, M̂, open): Given ˆcom = Ĉ ∈ Ĝ, parse M̂ as (M̂1, . . . , M̂�)
and open as in (1).
1. Set N = (N1, . . . , N�+2) = (g1, . . . , g�, gz, A)
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2. Using ovkpots = A ∈ G, return 1 if the following equalities hold:

e(g, Ĉ) = e(D, ĝ) ·
�+2∏

i=1

e(Ni, X̂i) (2)

e(A, ĝ) = e(gz, Ẑ) · e(g, R̂) ·
�∏

i=1

e(gi, M̂i).

Otherwise, return 0.

Using tk := {ρi}�+2
i , it is possible to trapdoor-open a commitment ˆcom = Ĉ

in the same way as a Pedersen commitment since Ĉ is nothing but a Pedersen
commitment to (skpots, oskpots).

We now prove that the above commitment does not only provide CM-TCR
security as defined in [10], but also ECM-TCR security. The proof builds on the
same ideas as that of [10] but also takes advantage of the strong unforgeability3

of the underlying partial one-time signature.

Theorem 1. The scheme provides ECM-CTR security under the SXDH
assumption.

Proof. For the sake of contradiction, let us assume that a PPT adversary A can
win the game of Definition 8 with noticeable probability. We observe that the
adversary can only win in two mutually exclusive cases.

I. A outputs a commitment Ĉ� ∈ Ĝ for which it provides an opening

M� = (M�
1 , . . . ,M�

n)
open� =

(
D�, g�

z , g�
1 , . . . , g

�
� , A�, Ẑ�, R̂�

)
,

where (D�, g�
z , g�

1 , . . . , g
�
� , A�) differs from the tuple (D†, g†

z, g
†
1, . . . , g

†
� , A

†)
returned by Ock as part of the opening

open† =
(
D†, g†

z, g
†
1, . . . , g

†
� , A

†, Ẑ†, R̂†),

of Ĉ� when A queried Ock to obtain a commitment to M̂
†

= (M̂†
1 , . . . , M̂†

� ).
II. A outputs a commitment Ĉ� ∈ Ĝ which it opens by revealing a pair

M� = (M�
1 , . . . ,M�

n)
open� =

(
D�, g�

z , g�
1 , . . . , g

�
� , A�, Ẑ�, R̂�

)
,

such that (D†, g†
z, g

†
1, . . . , g

†
� , A

†) = (D�, g�
z , g�

1 , . . . , g
�
� , A�). In this case, we

must have either M� �= M † or (Ẑ�, R̂�) �= (Ẑ†, R̂†).

3 Note that, while [4] only considered the standard notion of unforgeability, it is
straightforward that their scheme also provides strong unforgeability.
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Let us first assume that situation I occurs with noticeable probability. We
show that A can be turned into an algorithm BI that breaks the DDH assumption
in Ĝ by finding a pair (Z,R) such that e(Z, ĝ) · e(R, ĥ) = 1GT

for a given pair
(ĝ, ĥ) ∈ Ĝ

2. This algorithm BI proceeds in the same way as in [10]. Namely,
it creates the commitment key ck by choosing ρi, θi

R← Zp and setting X̂i =
ĝρi · ĥθi for each i ∈ {1, . . . , � + 2}. It faithfully answers all queries made by A
to Ock. By hypothesis, A outputs a commitment Ĉ� ∈ Ĝ as well as an opening
(M�, open�) which satisfy the conditions of situation I. In particular, open� =(
D�, g�

z , g�
1 , . . . , g

�
� , A�, Ẑ�, R̂�

)
satisfies

e(g, Ĉ�) = e(D�, ĝ) ·
�∏

i=1

e(g�
i , X̂i) · e(g�

z , X̂�+1) · e(A�, X̂�+2) (3)

and the set Q must contain open† =
(
D†, g†

z, g
†
1, . . . , g

†
� , A

†, Ẑ†, R̂†) such that

e(g, Ĉ�) = e(D†, ĝ) ·
�∏

i=1

e(g†
i , X̂i) · e(g†

z, X̂�+1) · e(A†, X̂�+2). (4)

Dividing (4) out of (3), we find that the pair

Z =
(D�

D†
)

·
(g�

z

g†
z

)ρ�+1 ·
(A�

A†
)ρ�+2 ·

�∏

i=1

(g�
i

g†
i

)ρi

R =
(D�

D†
)

·
(g�

z

g†
z

)θ�+1 ·
(A�

A†
)θ�+2 ·

�∏

i=1

(g�
i

g†
i

)θi

satisfies e(Z, ĝ) ·e(R, ĥ) = 1GT
. Moreover, we have Z �= 1G with all but negligible

probability since {ρi}�
i=1 are completely independent of A’s view.

We now turn to situation II and show that it implies an algorithm BII that
defeats the strong unforgeability of the partial one-time signature scheme. Algo-
rithm BII takes as input a POTS verification key vkpots = (g†

z, g
†
1, . . . , g

†
� ) sup-

plied by its own challenger in the POTS security game. It generates ck = {X̂i}�+2
i=1

by picking ρi
R← Zp and defining X̂i = ĝρi for each i ∈ {1, . . . , � + 2}. Letting

Qc ∈ poly(λ) denote the number of queries made by A to Ock, BII draws a
random index k� R← {1, . . . , Qc} as a guess that A will choose to equivocate the
commitment Ĉ† returned as the output of the k�-th query. It answers all queries
to Ock as follows. For each k ∈ {1, . . . , Qc}\{k�}, the k-th query is answered
by faithfully running the commitment algorithm. When the k�-th query occurs,
BII embeds vkpots = (g†

z, g
†
1, . . . , g

†
� ) into the opening of the k�-th commitment.

To this end, it chooses ζ
R← Z

∗
p and computes Ĉ† = ĝζ .

Next, BII queries its own POTS challenger to obtain a signature (A†, (Ẑ, R̂))
on the message M̂ = (M̂1, . . . , M̂�) ∈ Ĝ

� queried by A at this k�-th query. Upon
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receiving a partial one-time signature (A†, (Ẑ†, R̂†)) from its POTS challenger,
BII defines (N1, . . . , N�, N�+1, N�+2) = (g†

1, . . . , g
†
� , g

†
z, A

†) and computes

D† = gζ ·
�+2∏

i=1

N−ρi

i ∈ G,

which satisfies e(g, Ĉ†) = e(D†, ĝ) · ∏�+2
i=1 e(Ni, X̂i). Given that (A†, (Ẑ†, R̂†))

satisfies the second verification equation of (2) by construction, we observe that

open† =
(
D†, g†

z, g
†
1, . . . , g

†
� , A

†, Ẑ†, R̂†)

forms a valid opening of Ĉ†. When A halts, we know that, with probability
1/Qc, it chooses to output a pair (M�, open�) which opens Ĉ� = Ĉ†. Given
that (D�, g�

z , g�
1 , . . . , g

�
� , A�) = (D†, g†

z, g
†
1, . . . , g

†
� , A

†) and since we must have
(M�, open�) �= (M †, open†) by the definition of ECM-TCR security, we know
that (M�, (Ẑ�, R̂�)) �= (M †, (Ẑ†, R̂†)). This means that BII can win the game
against its POTS challenger by outputting (M�, (A�, Ẑ�, R̂�)). In turn, the result
of [4] implies that BII would contradict the DDH assumption in G. 	


3 A Structure-Preserving CCA2-Secure Public-Key
Cryptosystem with Shorter Publicly Verifiable
Ciphertexts

In this section, we use the all-but-one hash proof systems of [46] and com-
bine them with the structure-preserving commitment scheme of Sect. 2.5 and
a strongly unforgeable signature scheme. We show that the ECMTCR property
of the commitment scheme suffices to construct the sought-after CCA2-secure
structure preserving encryption scheme with publicly verifiable ciphertexts.

In the notations hereafter, for any vector ĥ = (ĥ1, ĥ2) ∈ Ĝ
2 and any g ∈ G,

we denote by E(g, ĥ) the vector (e(g, ĥ1), e(g, ĥ2)). For any vectors û1, û2 ∈ Ĝ
2,

the product û1 · û2 ∈ Ĝ
2 refers to the component-wise multiplication in Ĝ.

KeyGen(λ):
1. Run the setup algorithm of the commitment scheme in Sect. 2.5 to obtain

PP = (p,G, Ĝ,GT , e, g, ĝ, � = 6) ← TC.Setup(λ, 6), which will be used to
commit to messages in Ĝ

6.
2. Generate (ck, tk) ← TC.KeyGen(PP), where ck ∈ Ĝ

8 is the commitment
key and tk ∈ Z

8
p is the trapdoor key which can be erased.

3. Choose also group generators g1, g2
R← G and random values x1, x2

R← Zp

and set X = gx1
1 gx2

2 .
4. Choose ρu

R← Zp and ĥ
R← Ĝ

2 at random.
5. Define (û1, û2) with û1 = (ĝ, ĥ) ∈ Ĝ

2 and û2 = (ĝρu , ĥρu) ∈ Ĝ
2. Note

that û1 and û2 are linearly dependent.
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6. Define SK = (x1, x2) and

PK = (g1, g2, û1, û2,X,PP, ck).

Encrypt(M,PK): To encrypt M ∈ G, conduct the following steps.
1. Generate a key pair (SSK,SVK) ← OT1.KeyGen(PP, 5) for the one-time

SPS of Sect. 2.2 so as to sign messages in G
5. Let the resulting key pair

consist of SSK =
({χi, γi}5i=1, ζ, ρ

) ∈ Z
14
p and SVK =

({ĝi}5i=1, Â
) ∈ Ĝ

6,

where ĝi = ĝχi
z · ĝδi

r and Â = ĝζ
z · ĝρ

r .
2. Choose θ

R← Zp and compute

C0 = M · Xθ, C1 = gθ
1 , C2 = gθ

2 .

3. Generate a commitment to SVK = ({ĝi}5i=1, Â) and let

( ˆcom, open) ← TC.Commit(PP, ck,SVK) ∈ Ĝ × (G9 × Ĝ
2)

be the resulting commitment/opening pair.
4. Define vector û ˆcom = û2 · (1, ˆcom) ∈ Ĝ

2 as well as the Groth-Sahai CRS
û ˆcom = (û ˆcom, û1) ∈ Ĝ

2.
5. Pick r

R← Zp. Compute Ĉθ = ûθ
ˆcom · ûr

1.
6. Using the randomness of the commitment Cθ, generate proof elements

π = (π1, π2) = (gr
1, g

r
2) ∈ G

2 showing that the committed θ ∈ Zp satisfies
the multi-exponentiation equations

C1 = gθ
1 C2 = gθ

2

7. Output the ciphertext

C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) ∈ G
16 × Ĝ

11 (5)

where σ ← OT1.Sign(SSK, (C0, C1, C2, π1, π2)) ∈ G
2.

Decrypt(PK, C, SK): Parse the ciphertext C as in (5). Then, conduct the fol-
lowing steps.
1. Parse PK as (g1, g2,X,PP, ck) and SK as (x1, x2).
2. Return ⊥ if OT1.Verify(SVK, (C0, C1, C2, π1, π2), σ) = 0.
3. Return ⊥ if ˆcom = 1

Ĝ
or TC.Verify(ck, ˆcom,SVK, open) = 0.

4. Verify that π = (π1, π2) is a valid Groth-Sahai proof w.r.t.
(C1, C2,Cθ, ˆcom). Namely, it should satisfy

E(g1, Ĉθ) = E(C1, û ˆcom) · E(π1, û1) (6)

E(g2, Ĉθ) = E(C2, û ˆcom) · E(π2, û1)

5. If the above verifications all succeed, output M = C0/(Cx1
1 · Cx2

2 ).
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Note that, in step 3 of the decryption algorithm, the condition ˆcom �= 1
Ĝ

ensures
that vectors (û ˆcom, û1) form a perfectly sound Groth-Sahai CRS, so that cipher-
texts such that logg1

(C1) �= logg2
(C2) are always rejected.

The proof of the following theorem follows the strategy of [46] with additional
arguments showing that omitting to sign the Groth-Sahai commitments does not
affect the security of the scheme.

Theorem 2. The scheme provides IND-CCA2 security under the SXDH
assumption. More precisely, AdvCCA(λ) ≤ 5 × AdvSXDH(λ) + qd × 2−λ.

Proof. The proof proceeds with a sequence of games that begins with the real
game and ends with a game where no advantage is left to the adversary what-
soever. In each game, we call Wi the event that the experiment outputs 1. The
security parameter λ is implicitly given in all the games. Let qd denote the
number of decryption queries made by the adversary.

Game 0: This is the real game. The adversary is given the public key PK which
contains vectors (û1, û2) such that

û1 = (ĝ, ĥ) ∈ Ĝ
2 û2 = (ĝρu , ĥρu) ∈ Ĝ

2, (7)

where ĝ, ĥ
R← Ĝ, ρu

R← Zp. In the challenge phase, it chooses two messages
M0,M1 ∈ G and obtains a challenge ciphertext

C� = (SVK�, ˆcom�, open�, C�
0 , C�

1 , C�
2 , Ĉ

�

θ,π
�,σ�)

where, for some random bit β
R← {0, 1},

C�
0 = Mβ · Xθ�

, C�
1 = gθ�

1 , C�
2 = gθ�

2 ,

as well as ( ˆcom, open) ← TC.Commit(PPTC , ck,SVK), Ĉ
�

θ = ûθ�

ˆcom� · ûr�

1 and
π� = (π�

1 , π
�
2) = (gr�

1 , gr�

2 ), where û ˆcom� = û2 · (1, ˆcom�). We assume w.l.o.g.
that SVK� and ˆcom� = Ĉ� are generated at the outset of the game.

The adversary’s decryption queries are always faithfully answered by the
challenger. When the adversary halts, it outputs β′ ∈ {0, 1} and wins if
β′ = β. In this case, the experiment outputs 1. Otherwise, it outputs 0. The
adversary’s advantage is thus |Pr[W0] − 1/2|.

Game 1: This game is like Game 0 except that, if the adversary makes a pre-
challenge decryption query C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such
that ˆcom = ˆcom�, the experiment halts and outputs a random bit. Since Game
1 is identical to Game 0 until this event F1 occurs, we have the inequality
|Pr[W1] − Pr[W0]| ≤ Pr[F1]. Moreover, since ˆcom� was chosen uniformly in
Ĝ and remains independent of A’s view until the challenge phase, we have
|Pr[W1] − Pr[W0]| ≤ Pr[F1] ≤ qd/p.

Game 2: In this game, we modify the generation of the public key and define

û1 = (ĝ, ĥ) ∈ Ĝ
2 (8)

û2 = (ĝρu , ĥρu) · (1, ˆcom�)−1 ∈ Ĝ
2,
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for a random ρu
R← Zp, instead of computing (û1, û2) as in (7). Note that

(û1, û2) are now linearly independent and ˆcom� is no longer statistically hid-
den before the challenge phase. However, a straightforward argument based
on the semantic security of ElGamal (and thus the DDH assumption in Ĝ)
shows that this modification does not affect the adversary’s view. We have
|Pr[W2] − Pr[W1]| ≤ 2 × AdvDDH

Ĝ,B (λ).
Game 3: This game is like Game 2 but we modify the decryption oracle.

Namely, if the adversary makes a post-challenge decryption query for a valid
ciphertext C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such that ˆcom = ˆcom�

but (SVK, open) �= (SVK�, open�), the experiment halts and outputs a random
bit. If we call F3 the latter event, we have |Pr[W3] − Pr[W2]| ≤ Pr[F3]. As
shown by Lemma 1, event F3 implies an adversary B3 against the ECM-
TCR property (as formalized by Definition 8) of the trapdoor commit-
ment in Sect. 2.5, which contradicts the SXDH assumption. We thus have
|Pr[W3] − Pr[W2]| ≤ AdvECM-TCR

TC,B3
(λ) ≤ AdvSXDH

B3
(λ).

Game 4: We modify again the decryption oracle in post-challenge decryption
queries. After the challenge phase, if the adversary A queries the decryption
of a ciphertext C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such that we have
( ˆcom, open) = ( ˆcom�, open�) but (C0, C1, C2, π1, π2) �= (C�

0 , C�
1 , C�

2 , π�
1 , π

�
2),

the experiment halts and outputs a random bit. If we call F4 this event,
we have the inequality |Pr[W4] − Pr[W3]| ≤ Pr[F4] since Game 4 is iden-
tical to Game 3 until F4 occurs. Moreover, F4 would contradict the strong
unforgeability of the one-time structure-preserving signature and thus the DP
assumption. This implies |Pr[W4] − Pr[W3]| ≤ AdvSUF-OTS

B (λ) ≤ AdvDP
B (λ).

Game 5: We introduce another modification in the decryption oracle. We reject
all ciphertexts C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such that

( ˆcom, open) = ( ˆcom�, open�) ∧
(C0, C1, C2, π1, π2) = (C�

0 , C�
1 , C�

2 , π�
1 , π

�
2) ∧ Ĉθ �= Ĉ

�

θ. (9)

Let F5 be the event that the decryption oracle rejects a ciphertext that would
not have been rejected in Game 4. We argue that Pr[W5] = Pr[W4] since
Game 5 is identical to Game 4 until event F5 occurs and we have Pr[F5] = 0.
Indeed, for a given (C�

1 , C�
2 , π�

1 , π
�
2) ∈ G

4, there exists only one commitment
Ĉ

�

θ ∈ Ĝ
2 that satisfies the equalities (6). This follows from the fact that, since

(C�
1 , C�

2 , π�
1 , π

�
2) = (gθ�

1 , gθ�

2 , gr�

1 , gr�

2 ), relations (6) can be written

E(g1, Ĉ
�

θ) = E(gθ�

1 , û ˆcom) · E(gr�

1 , û1) = E(g1, û
θ�

ˆcom) · E(g1, û
r�

1 )

E(g2, Ĉ
�

θ) = E(gθ�

2 , û ˆcom) · E(gr�

2 , û1) = E(g2, û
θ�

ˆcom) · E(g2, û
r�

1 )

which uniquely determines the only commitment Ĉ
�

θ = ûθ�

ˆcom · ûr�

1 ∈ Ĝ
2 that

satisfies (6). This shows that Pr[F5] = 0, as claimed.
Game 6: In this game, we modify the distribution of the public key. Namely,

instead of generating the vectors (û1, û2) as in (8), we set

û1 = (ĝ, ĥ) ∈ Ĝ
2 û2 = (ĝρu , ĥρu) · (1, Ĉ�−1) ∈ Ĝ

2. (10)
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Said otherwise, û2 is now the product of two terms, the first one of which lives
in the one-dimensional subspace spanned by û1. Under the DDH assumption
in Ĝ, this modified distribution of PK should have not noticeable impact on
the adversary’s behavior. A straightforward reduction shows that |Pr[W6] −
Pr[W5]| ≤ AdvDDH

B (λ). Note that, although the vectors (û ˆcom� , û1) ∈ Ĝ
2 are

no longer linearly independent, Ĉ
�

θ = ûρu·θ�+r�

1 remains the only commitment
that satisfies the verification equations for a given tuple (C�

1 , C�
2 , π�

1 , π
�
2).

Game 7: In this game, we modify the challenge ciphertext and replace the NIZK
proof π� = (π�

1 , π
�
2) ∈ G

2 by a simulated proof which is produced using
ρu ∈ Zp as a simulation trapdoor. Namely, (Ĉ

�

θ,π
�) is obtained by picking

r
R← Zp and computing

Ĉ
�

θ = ur
1, π�

1 = gr
1 · C�

1
−ρu , π�

2 = gr
2 · C�

2
−ρu

Observe that, although (Ĉ
�

θ, π
�
1 , π

�
2) are generated without using the witness

θ� = logg1
(C�

1 ) = logg2
(C�

2 ), the NIZK property of GS proofs ensures that
their distribution remains exactly as in Game 6: indeed, if we define r̃ =
r − ρu · θ�, we have

Ĉ
�

θ = ûθ�

ˆcom� · ûr̃
1, π�

1 = gr̃
1, π�

2 = gr̃
2,

which implies Pr[W7] = Pr[W6].
Game 8: We modify the generation of the challenge ciphertext, which is gener-

ated using the private key SK = (x1, x2) instead of the public key: Namely,
the challenger computes

C�
1 = gθ�

1 , C�
2 = gθ�

2 , C�
0 = Mβ · C�

1
x1 · C�

2
x2 ,

while (Ĉ
�

θ, π
�
1 , π

�
2) are computed using the NIZK simulation trapdoor ρu ∈ Zp

as in Game 7. This change does not affect the adversary’s view since the
ciphertext retains the same distribution. We have Pr[W8] = Pr[W7].

Game 9: We modify again the distribution of the challenge ciphertext which is
obtained as

C�
1 = g

θ�
1

1 , C�
2 = g

θ�
2

2 , C�
0 = Mβ · C�

1
x1 · C�

2
x2 ,

for random and independent θ�
1 , θ

�
2

R← Zp, while the NIZK proof (Ĉ
�

θ, π
�
1 , π

�
2)

is simulated using ρu ∈ Zp as in Game 8. Since the witness θ� ∈ Zp was
not used anymore in Game 8, a straightforward reduction shows that any
noticeable change in A’s output distribution implies a DDH distinguisher in
G. We have |Pr[W9] − Pr[W8]| ≤ AdvDDH

B,G (λ).

In the final game, it is easy to see that Pr[W9] = 1/2 since the challenge
ciphertext does not carry any information about β ∈ {0, 1}. Indeed, we have

C�
1 = g

θ�
1

1 , C�
2 = g

θ�
1+θ′

1
2 , C�

0 = Mβ · Xθ�
1 · g2

θ′
1·x2 ,



Structure-Preserving Chosen-Ciphertext Security 265

for some random θ′
1 ∈R Zp, which implies that the term g2

θ′
1·x2 perfectly

hides Mβ in the expression of C�
0 . This follows from the fact that x2 ∈ Zp

is perfectly independent of the adversary’s view. Indeed, the public key leaves
x2 ∈ Zp completely undetermined as it only reveals X = gx1

1 gx2
2 . During

the game, decryption queries are guaranteed not to reveal anything about x2

since all NIZK proofs (Ĉθ, π1, π2) take place on Groth-Sahai CRSes (û ˆcom, û1)
which are perfectly sound (as they span the entire vector space Ĝ

2) when-
ever ˆcom �= ˆcom�. This implies that, although the adversary can see a sim-
ulated NIZK proof (Ĉ

�

θ, π
�
1 , π

�
2) for a false statement in the challenge phase,

it remains unable to trick the decryption oracle into accepting a ciphertext
C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such that logg1

(C1) �= logg2
(C2). As

a consequence, the adversary does not learn anything about x2 from responses
of the decryption oracle. 	

Lemma 1. In Game 3, there exists an ECM-TCR adversary with advantage
ε ≥ Pr[F3] against the trapdoor commitment scheme of Sect. 2.5 and which runs
in about the same time as A.

Proof. Let A be an adversary against the SP-CCA encryption scheme as in
the proof of Theorem 2 and let the event F3 be defined as in Game 3. Then, we
build an adversary B3 against the ECM-CTR security of the structure-preserving
trapdoor commitment defined in Sect. 2.5 which efficiently runs A.

The challenger B3 is given the public parameter PPTC and a commitment
key ck generated as in the trapdoor commitment scheme as well as an access to
a commit-open oracle Ock as defined in Definition 8. Then, B3 runs step 3 to
step 6 of the key generation algorithm of the encryption scheme to get PK and
SK = (x1, x2) as specified in Game 2 and Game 3.

The adversary A is given PK and B3 is easily able to answer to A’s decryption
queries as described in Game 2 and Game 3 thanks to SK. In order to compute
the challenge ciphertext given {m0,m1}, B3 picks β

R← {0, 1}, runs all the steps
of the encryption algorithm with mβ except for step 3 for which B3 queries Ock

on SVK� to get ( ˆcom�, open�). The computed ciphertext C� is then given to A.
Assuming that F3 occurs, which means that A makes a post-challenge decryp-

tion query for a valid ciphertext C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such
that ˆcom = ˆcom� but (SVK, open) �= (SVK�, open�), the challenger simply out-
puts ( ˆcom�,SVK, open).

Obviously, we have TC.Verify(ck, ˆcom�,SVK, open) = 1 since C is valid. How-
ever, during the ECM-TR experiment B3 only chose a single message SVK� so
that there is only one target in Q = {( ˆcom�,SVK�, open�)}. Moreover, since we
also have ( ˆcom�,SVK, open) �∈ Q, we find Pr[F3] = AdvECM-TCR

TC,B3
(λ). 	


While we do not explicit provide a threshold decryption mechanism in the
paper, this can be easily achieved in the same way as in the SXDH-based thresh-
old cryptosystem described in [46]. As a result, we readily obtain a robust and
non-interactive structure-preserving threshold cryptosystem with CCA2-security
in the adaptive corruption setting.
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It would be interesting to improve the efficiency of the scheme using quasi-
adaptive NIZK arguments [38] in the same way as in [43]. Unfortunately, we did
not manage to obtain the required simulation-soundness property while keeping
the QA-NIZK arguments structure-preserving.

4 A Randomizable RCCA-Secure Construction

Given a message M over G, the encryption algorithm computes an ElGamal-
like encryption of the form (c0, c1, c2) = (fθ, gθ,M · hθ). In order to have an
alternative decryption in the reduction as well as publicly verifiable ciphertexts,
the algorithm then derives an LHSP signature (Sect. 2.4) on the vector v =
(cb

0, c
b
1, g

1−b, c1−b
1 , c1−b

2 ), where b = 1 is a hidden bit. This is made possible by
giving an LHSP signature on v1 = (f, g, 1, 1, 1) and v2 = (1, 1, 1, g, h) in the
public key since v = vθ

1. Note that, if b = 0, the encryption algorithm cannot
derive a signature on v since (1, 1, g, c1, c2) is outside the linear span of v1 and
v2. The goal of the security reduction is to compute the challenge ciphertext
with b = 0 (using the signing key) and force the adversary to keep this b = 0 in
any re-randomization of the challenge. This allows detecting when the adversary
attempts to obtain the decryption of a replayed ciphertext.

In order to make freshly generated ciphertexts indistinguishable from (re-
randomizations of) the challenge ciphertext, we use Groth-Sahai commitments
and NIWI proofs to hide b. The encryption algorithm computes a commitment
to gb and v and proves that b ∈ {0, 1} and that v is well-formed with respect to
(c0, c1, c2). Then, it proves that the LHSP signature on v is valid.

This proof can be seen as a quasi-adaptive NIZK proof [38] that either
(c0, c1, c2) is well-formed or that I know a one-time signature on (c1, c2) (of
Sect. 2.2) which corresponds to an LHSP signature on (g, c1, c2), where g is the
fixed element of the verification-key.

In order to statistically re-randomize ciphertext, the OR-proof should be effi-
ciently and publicly adaptable and at the same time it should not support any
other kind of malleability. Even though in the NIWI setting the Groth-Sahai
proofs are perfectly re-randomizable the constants of the proofs are modified
when we compute (c′

0, c
′
1, c

′
2) = (c0, c1, c2) · (f, g, h)θ′

as well as the variables
v′ = v · (vb

1 · v1−b
2 )θ′

. Since proving that v′ has the correct form requires the
same random coins as those used in the commitment of gb, the encryption algo-
rithm simply adds in the ciphertext a commitment to vb

1 · v1−b
2 , a proof of well-

formedness and a Groth-Sahai NIWI proof of an LHSP signature that can be
derived from the public key.

At a first glance, ciphertexts may appear not to prevent malleability of the
encrypted message M since nothing seems to “freeze” c2 in the ciphertext when
c1−b
2 = 1 in honest execution. However, the ciphertext actually binds c2 in the

proof elements which depend on the random coins of the commitments.

Keygen(λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2λ with gen-
erators f, g

R← G, ĝ, ĥ
R← Ĝ and do the following.
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1. Choose a random exponent α
R← Zp and set h = gα.

2. Choose random u1,u2
R← G

2 and û1, û2
R← Ĝ

2.
3. Define v1 = (f, g, 1, 1, 1) and v2 = (1, 1, 1, g, h), then generate a crs for a

QA-NIZK proof system for the language of vectors in span〈v1,v2〉: pick
tk = (χj , γj)5j=1

R← Z
2×5
p and compute ĝj = ĝχj ĥγj , for each 1 ≤ j ≤ 5,

as well as the language dependent parameters (z1, r1) = (fχ1gχ2 , fγ1gγ2)
and (z2, r2) = (gχ4hχ5 , gγ4hγ5). Then, we have

e(z1, ĝ) · e(r1, ĥ) = (f, ĝ1) · (g, ĝ2),

e(z2, ĝ) · e(r2, ĥ) = (g, ĝ4) · (h, ĝ5).

4. Define the private key as SK = α ∈ Zp and erase tk. The public key
PK ∈ G

11 × Ĝ
16 is defined to be

PK =
(
f, g, h, u1, u2, z1, r1, r2, z2, ĝ, ĥ, û1, û2, {ĝj}5j=1

)
.

Encrypt(PK, M): To encrypt M ∈ G, conduct the following steps:
1. Pick θ

R← Zp and compute (c0, c1, c2) = (fθ, gθ,M ·hθ).
2. Define the bit b = 1 and set G = gb ∈ G and ĝb ∈ Ĝ. Prove that

e( G , ĝ) = e(g, ĝb ) e( G , ĝ/ ĝb ) = 1GT
. (11)

Namely, compute commitments to G = gb (resp. ĝb), which are obtained
as CG = (1, G) · u

rg

1 · u
sg

2 (resp. Ĉb = (1, ĝb) · ûrb
1 · ûsb

2 ), for random
rg, sg, rb, sb

R← Zp. Let πG ∈ G
2 × Ĝ

2 and πbit ∈ G
4 × Ĝ

4 be the proof
elements for relations (11).

3. Define (Θ0, Θ1, Θ2) = (cb
0, c

b
1, c

b
2) and prove that4

e( Θ1 , ĝ) = e(c1, ĝb ) e( Θ2 , ĝ) = e(c2, ĝb ). (12)

More precisely, compute commitments to Θi as Ci = (1, Θi) ·ur̄i
1 ·us̄i

2 , for
each i ∈ {0, 1, 2}, and for random r̄i, s̄i

R← Zp. The corresponding proof
elements π1, π2 both live in G

2 × Ĝ
2.

4. Derive a QA-NIZK proof (z, r) = (zθ
1 , r

θ
1) that v := vθ

1 ∈ G
5 belongs to

span〈v1,v2〉. Since b = 1, we have

v = (vθ
1)

b · (vθ
2)

1−b = (cb
0, c

b
1, 1, 1, 1) = (cb

0, c
b
1, g

1−b, c1−b
1 , c1−b

2 ),

which allows generating a NIWI proof πenc ∈ Ĝ
2 that (z, r,Θ0, Θ1, Θ2, g

b)
satisfy

e( z , ĝ) · e( r , ĥ) = e( Θ0 , ĝ1) · e( Θ1 , ĝ2) · e(g/ gb , ĝ3)

· e(c1/ Θ1 , ĝ4) · e(c2/ Θ2 , ĝ5).
(13)

together with the Groth-Sahai commitments Cz, Cr ∈ G
2 of z, r ∈ G.

4 Note that we intentionally omit to prove the validity of Θ0 as the unforgeability of
the LHSP signature is sufficient for this purpose. As a consequence, c0 does not have
to be in the ciphertext.
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5. To enable re-randomization, define H = hb and F = f b and compute
Groth-Sahai commitments to H and F as CH = (1, hb) ·u1

rh ·u2
sh ∈ G

2

and CF = (1, f b) · u1
rf · u2

sf ∈ G
2 for random rh, rf , sh, sf

R← Zp. Then,
generate a NIWI proof πH ∈ G

2 × Ĝ
2 that

e( H , ĝ) = e(h, ĝb ).

6. Derive a QA-NIZK argument (zrand, rrand) = (zb
1 · z1−b

2 , rb
1 · r1−b

2 ) that
w := vb

1 · v1−b
2 belongs to span〈v1,v2〉. Since w = (f b, gb, 1, g1−b, h1−b),

generate a proof πrand ∈ Ĝ
2 that

e( zrand , ĝ) · e( rrand , ĥ)

= e( F , ĝ1) · e( G , ĝ2) · e(g/ G , ĝ4) · e(h/ H , ĝ5),

together with the commitments Czrand
, Crrand

∈ G
2.

Return the ciphertext c = (c1, c2, πEnc, πRand) of G34 × Ĝ
18 where,

πEnc = (CG, Ĉb, πG, πbit, C0, C1, C2, π1, π2, Cz, Cr, πenc),
πRand = (CH , πH , CF , Czrand

, Crrand
, πrand).

ReRand(PK, c): Parse c = (c1, c2, πEnc, πRand) as above and do the following:
1. Pick θ′ R← Zp and compute (c′

1, c
′
2) = (c1 ·gθ′

, c2 ·hθ′
).

2. Update5 the commitments C0, C1, C2 and the proofs π1, π2 of relations
(12) according to the update of the constants c1, c2 into c′

1, c
′
2. Namely,

compute (C ′
0, C

′
1, C

′
2) = (C0 ·Cθ′

F , C1 ·Cθ′
G , C2 ·Cθ′

H ) as well as π′
1 = π1 ·πθ′

G

and π′
2 = π2 · πθ′

H .
2. Update6 Cz, Cr and the NIWI proof πenc for relation (13). Namely, com-

pute C ′
z = Cz · Cθ′

zrand
and C ′

r = Cr · Cθ′
rrand

as well as π′
enc = πenc · πθ′

rand.
We should have

Θ′
0 = f b·(θ+θ′), Θ′

1 = gb·(θ+θ′), Θ′
2 = M b · hb·(θ+θ′),

while C ′
z and C ′

r are now commitments to

z′ = z · zθ′
rand = (zb

1 · z1−b
2 )θ+θ′

r′ = r · rθ′
rand = (rb

1 · r1−b
2 )θ+θ′

.

3. Re-randomize CG, Ĉb, C
′
0, C

′
1, C

′
2, C

′
z, C

′
r, CH , CF , Czrand

, Crrand
and the

proofs πG, πbit, π
′
1, π

′
2, π

′
enc, πH , πrand so as to get C ′′

G, Ĉ ′′
b , C ′′

0 , C ′′
1 , C ′′

2 , C ′′
z ,

C ′′
r , C ′′

H , C ′′
F , C ′′

zrand
, C ′′

rrand
and π′′

G, π′′
bit, π′′

1 , π′′
2 , π′′

enc, π
′′
H , π′′

rand.

5 This is can be done efficiently because c contains the commitments and the proofs
CG, πG ∈ πEnc and CH , πH , CF ∈ πRand for which πG, πH should not only be asso-
ciated to the bit b but should also contain the same random coins of Ĉb used in
π1, π2.

6 At this point, {C′
i}i=0,1,2 are no longer commitments to {Θi}i=0,1,2 since the vari-

ables have changed into Θ′
0 = Θ0 · F θ′

, Θ′
1 = Θ1 · Gθ′

and Θ′
2 = Θ2 · Hθ′

.
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Return the ciphertext c′ = (c′
1, c

′
2, π

′
Enc, π

′
Rand) where,

π′
Enc = (C ′′

G, Ĉ ′′
b , π′′

G, π′′
bit, C

′′
0 , C ′′

1 , C ′′
2 , π′′

1 , π′′
2 , C ′′

z , C ′′
r , π′′

enc),
π′
Rand = (C ′′

H , π′′
H , C ′′

F , C ′′
zrand

, C ′′
rrand

, π′′
rand).

Decrypt(SK, c): Parse c = (c1, c2, πEnc, πRand) as above and check whether
all the proofs are valid. If not, output ⊥, and otherwise return M = c1/cα

2 .

As far as efficiency goes, ciphertexts consist of 34 elements of G and 18
elements of Ĝ. Correctness follows from the correctness of the Groth-Sahai proofs
and the correctness of the underlying LHSP signatures.

We show that the above scheme, denoted by E , is statistically re-randomizable
even for adversarially chosen ciphertexts, as defined in [47] (with the difference
that the randomization algorithm uses the public key).

Theorem 3. The above scheme E provides statistical unlinkability.

Proof. We only consider valid adversarially-generated ciphertext c since the
validity of ciphertext is efficiently recognizable. Given c ← A(PK), we define
two distributions on ciphertexts as in the definition of unlikability. The first dis-
tribution generates c′ ← Encrypt(PK,Decrypt(SK, c)) while the second distribu-
tion generates c′ ← ReRand(PK, c). Clearly if we write c′ = (c′

1, c
′
2, π

′
Enc, π

′
Rand),

the first distribution generates (c1, c2) as a fresh ElGamal ciphertext and the
perfectly NIWI proofs (π′

Enc, π
′
Rand) are completely random subject to the ver-

ification of all the pairing product equations detailed in the encryption algo-
rithm of E . Indeed, the key generation algorithm sets the CRSes (u1,u2) and
(û1, û2) as random elements as in the perfect NIWI setting of the Groth-Sahai
proof system [36]. For the same reason, ReRand transforms c into a perfectly
re-randomized ciphertext c′. Indeed, step 1 leads to a perfectly re-randomized
ElGamal ciphertext (c′

1, c
′
2) = (c1, c2) · (g, h)θ′

. Steps 2 and 3 adapt the Groth-
Sahai commitments and proofs with respect to the constant (c′

1, c
′
2) to keep the

validity of the ciphertext. Finally, step 4 completely re-randomizes these commit-
ments and proofs and the NIWI setting ensures that the resulting (π′

Enc, π
′
Rand)

are uniformly re-distributed among all the valid proofs satisfying the same pair-
ing product equations with the constant (c′

1, c
′
2). Consequently, c′ is distributed

as a fresh ciphertext of Decrypt(SK, c) even if the adversary tried to put some
subliminal information in c. 	


Next, we show that E is secure against a Replayable Chosen-Ciphertext
Attack (RCCA) in the sense of [22].

Theorem 4. The above scheme E provides RCCA security under the SXDH
assumption. More precisely, we have AdvRCCA

A,E (λ) ≤ 4×AdvSXDH(λ)+qd×2−λ.

Proof. The proof uses a sequence of games starting with the real game and
ending with a game where even an unbounded adversary has no advantage. For
each i, Si is the event that the challenger outputs 1 in Game i meaning that the
adversary rightly guesses which message is encrypted in the challenge ciphertext.
We assume that security parameter λ is given in each game.
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Game 1: This is the real attack game where the adversary chooses M0 and
M1 and obtains a challenge ciphertext c� as a real encryption of Mβ , for
some β

R← {0, 1} chosen by the challenger, in the challenge phase. We recall
that the adversary may query the decryption of any ciphertext. In the post-
challenge phase, when the challenger uses SK to faithfully reply to the decryp-
tion queries it runs the decryption algorithm and returns ⊥ if the (public)
verification fails. If the decryption returns M , the challenger sends back M
except if M ∈ {M0,M1}, in which case “replay” is returned. We denote by
S1 the event that the adversary outputs β′ = β, which causes the challenger
to output 1.

Game 2: This game is like Game 1 except that, in the challenge phase, the
challenge ciphertext c� = (c�

1, c
�
2, π

�
Enc, π

�
Rand), the proofs

π�
Enc = (C�

G, Ĉ�
b , π�

G, π�
bit, C

�
0 , C�

1 , C�
2 , π�

1 , π
�
2 , C

�
z , C�

r , π�
enc),

π�
Rand = (C�

H , π�
H , C�

F , C�
zrand

, C�
rrand

, π�
rand).

are obtained by computing π�
Enc, π

�
Rand as simulated proofs using the trapdoor

tk = {(χi, γi)}5i=1. This is achieved by computing (z̃, r̃) ∈ G
2 as a linearly

homomoprhic signature on the vector v� = (1G, 1G, g, c�
1, c

�
2). In step 2 of

the encryption algorithm, the challenger thus sets b = 0, and conducts the
remaining steps of the encryption algorithm except for (z̃, r̃) at step 4. Thanks
to the perfect witness indistinguishability of Groth-Sahai proofs (recall that
(u1,u2) and (û1, û2) form CRSes for the perfect NIWI setting in the real
game), the NIWI proofs π�

Enc, π
�
Rand have exactly the same distribution as in

Game 1 and A’s view remains unchanged. We have Pr[S2] = Pr[S1]. Note
that tk is also used to generate the LHSP signatures on the vectors v1,v2 of
the public key.

Game 3: In this game, we modify the distribution of the public key. In step
2 of the key generation algorithm, we choose u2 = uξ

1 and û2 = ûζ
1, with

ξ, ζ
R← Zp, instead of choosing u2

R← G
2 and û2

R← G
2 uniformly. Under the

SXDH assumption, this change should not significantly affect A’s behavior
and we have |Pr[S3] − Pr[S2]| ≤ 2 × AdvSXDH(λ). Note that

(
u1,u2) and

(û1, û2

)
now form perfectly sound CRSes.

Game 4: We modify the decryption oracle. When the adversary A queries the
decryption of c = (c1, c2, πEnc, πRand), the challenger parses the proofs as

πEnc = (CG, Ĉb, πG, πbit, C0, C1, C2, π1, π2, Cz, Cr, πenc),
πRand = (CH , πH , CF , Czrand

, Crrand
, πrand)

and rejects c if the proofs do not properly verify. Otherwise, instead of merely
using the private key SK = α to compute M = c1/cα

2 as in the real decryption
algorithm, the challenger B uses the extraction trapdoor β = logu1,1

(u1,2) of
the Groth-Sahai CRS (u1,u2), where u1 = (u1,1, u1,2), to extract the wit-
nesses gb, (z, r) and v = (Θ0, Θ1, g/gb, c1/Θ1, c2/Θ2) from their commitments
CG, Cz, Cr and {Ci}2i=0 which are contained in πEnc. Then, the challenger uses
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tk = {(χi, γi)}5i=1 to compute an LHSP signatures on v = (v1, v2, v3, v4, v5)

z† =
∏5

i=1v
χi

i , r† =
∏5

i=1v
γi

i ,

and rejects the ciphertext in the event that z† �= z. If c is not rejected, B
computes M = c1/cα

2 . If M ∈ {M0,M1} in the post-challenge phase, B returns
“replay” as in the actual RCCA game. Otherwise, it returns M to A. It is
easy to see that, if B rejects a ciphertext that would not have been rejected
in Game 3, then B is able to solve the DP problem. This is because (u1,u2)
and (û1, û2) are perfectly sound Groth-Sahai CRSes and the validity of the
proof πenc implies that (z, r) would be another valid homomorphic signature
on v ∈ G

5 than the one that B can compute. Therefore, this would provide
B with two distinct linearly homomorphic signatures on the same vector and
allow B to solve an instance of the DP problem as done in the proof of [42,
Theorem 1]. We thus have |Pr[S4] − Pr[S3]| ≤ AdvDP

B (λ).
Game 5: We modify the decryption oracle in all pre-challenge and post-challenge

decryption queries c = (c1, c2, πEnc, πRand) to avoid the use of the secret key
SK = α = logg h. This change allows modifying the generation of the public
element h = gxfy with uniformly sampled x, y

R← Zp.
In the case of pre-challenge queries, if the commitment CG contained in

πEnc opens to gb = 1 (meaning that b = 0), B rejects the ciphertext. In the
case of post-challenge queries c, if gb = 1 (i.e., b = 0) and the ciphertext is not
rejected by the rules of Game 4, the challenger B returns “replay” without
extracting the encrypted message. Additionally, in all decryption queries, if
gb = g (namely, b = 1), B computes M := c2 · c−x

1 · Θ−y
0 . Before the challenge

phase, it always outputs M . In the case of post-challenge queries, B returns
“replay” if M ∈ {M0,M1} and M otherwise. We now analyze the adversary’s
view in this game under the light of the unforgeability of LHSP signatures:

Before the challenge: It is easy to see that the probability to reject a cipher-
text that would not have been rejected in Game 4 is statistically negligible.
This follows from the fact that, from the public key, A has only obtained
linearly homomorphic signatures on (v1,v2), the span of which clearly does
not contain v = (Θ0, Θ1, g/gb, C1/Θ1, C2/Θ2) when g/gb �= 1G. Therefore,
pre-challenge decryption queries for which gb = 1 are rejected in Game 4
except in the event that z† = z. This event only occurs with probability
at most 1/p at each such query since z† (as computed from v using tk) is
completely unpredictable from the public key. This follows from the fact that
honestly-generated LHSP signatures are deterministic functions of tk while
there exist exponentially many valid signatures on each vector of messages.
The signing key tk retains sufficient entropy to make it statistically impossi-
ble to predict the honestly-generated signature on a vector outside the span
of (v1,v2), which are given in PK.

After the challenge: First, the perfect soundness of the Groth-Sahai proofs
{πi}2i=1 for relation (12) allows extracting witnesses that satisfy Θi = cb

i ,
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for each i ∈ {1, 2}, and then v = (Θ0, c
b
1, g

1−b, c1−b
1 , c1−b

2 ). The difference
with pre-challenge queries is that the adversary is also given information on
the signature on v� from the challenge ciphertext c�. Hence, in post-challenge
queries, LHSP signatures must be in span〈v1,v2,v

�〉. Secondly, we consider
the two cases b ∈ {0, 1}:
– If gb = 1G (i.e., b = 0), we have v = (Θ0, 1G, g, c1, c2). Since c was not

rejected, the vector v must be in span〈v2, (1G, 1G, g, c�
1, c

�
2)〉 (i.e. without

v1 because the second component of v is 1G) except with probability 1/p.
Indeed, otherwise, the same argument as in Game 4 shows that c can
only avoid rejection if it contains a commitment Cz to z† = z and we
argued that it is statistically independent of A’s view for vectors outside
span〈v1,v2, (1G, 1G, g, c�

1, c
�
2)〉. This means that v = v0 · vθ

2, for some θ,
where v0 := (1G, 1G, g, 1G,Mβ). Said otherwise, the queried ciphertext is
a randomization of the challenge ciphertext, so that B can rightfully return
“replay” without changing the view of A.

– If gb = g (i.e., b = 1), we have v = (Θ0, c1, 1G, 1G, 1G). Since c was not
rejected, v must be in the span of v1 except with probability 1/p (via
the same argument on the event z† = z as above). With overwhelming
probability (p − 1)/p, we thus have Θ0 = f logg c1 , which implies that

cx
1 · Θy

0 = hlogg c1 = cα
1

if SK := α = x + logg(f) · y is the secret key that underlies h = gxfy. It
follows that A obtains the same response as in Game 4.

At each decryption query, B’s response deviates from its response in Game
4 with probability at most 1/p. A union bound over all decryption queries
leads to |Pr[S5] − Pr[S4]| ≤ qd/p if qd is the number of decryption queries.

Game 6: We modify the distribution of the challenge ciphertext. Namely, we
choose (c�

0, c
�
1, c

�
2) as a completely random triple (c�

0, c
�
1, c

�
2)

R← G
3 instead of

a well-formed tuple (1G, 1G,Mβ) · (f, g, h)θ�

, for a random θ� R← Zp. Under
the SXDH assumption, this modification has no noticeable impact on A’s
output distribution since, given a DDH1 instance (g, f, ga, fa+c) (where either
c = 0 or c ∈R Zp), it is sufficient to define h = gx · fy, as previously, and
set c�

0 = fa+c, c�
1 = ga and c�

2 = Mβ · (ga)x · (fa+c)y during the challenge
phase. At this point, (ga)x · (fa+c)y = ha · fcy and we obtain the inequality
|Pr[S6] − Pr[S5]| ≤ AdvSXDH(λ).

In Game 6, no information about β ∈ {0, 1} is leaked anywhere, so that we
get Pr[S6] = 1/2. Since the SXDH assumption implies the DP assumption, we
thus find the following advantage

|Pr[S1] − 1/2| ≤ 4 × AdvSXDH(λ) + qd × 2−λ,

which concludes the proof. 	
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Abstract. Non-Malleable Codes for the split state model allow to
encode a message into two parts such that arbitrary independent tam-
pering on the parts either destroys completely the content or maintains
the message untouched. If the code is also leakage resilient it allows
limited independent leakage from the two parts. We propose a model
where the two parts can be refreshed independently. We give an abstract
framework for building codes for this model, instantiate the construc-
tion under the external Diffie-Hellman assumption and give applications
of such split-state refreshing. An advantage of our new model is that it
allows arbitrarily many tamper attacks and arbitrarily large leakage over
the life-time of the systems as long as occasionally each part of the code
is refreshed. Our model also tolerates that the refreshing occasionally is
leaky or tampered with.

1 Introduction

Non-malleable codes (NMCs) are a natural relaxation of the notions of error cor-
recting codes and error detecting codes, which tolerates more attacks by relaxing
the security guarantees. An error correcting code guarantees that the encoded
message is always correctly decoded. The price for this guarantee is that the code
can tolerate only limited attacks, e.g., that some small constant fraction of the
codeword is tampered with. An error detecting code decodes either the correct
message or returns some special symbol ⊥ signalling an error. They can tolerate
more general attacks, e.g., that some larger constant fraction of the codeword
is tampered with. A NMC only guarantees that either the encoded message is
correctly decoded or the decoder outputs a message which is unrelated to the
encoded message. This weak guarantee allows much more general tampering. It
is for instance possible to tolerate tampering that modifies the entire codeword.

Despite the weaker security guarantee, NMCs can be used to protect against
physical attacks. Consider a physical device D with an embedded secret key K.
For instance a signature card which on input m outputs σ = SignK(m). Assume
the device might fall into the hands of an adversary that can apply a physical
attack on the device to tamper with K, producing a different but related key K ′.
Now, on input m the device outputs σ = SignK′(m). We would like to ensure
that the adversary cannot learn any information about K from seeing SignK′(m).
Let Encode and Decode denote the encoding and decoding algorithms of a NMC.
Consider now a device D̃ on which we store an encoded key X ← Encode(K). On
c© International Association for Cryptologic Research 2017
S. Fehr (Ed.): PKC 2017, Part I, LNCS 10174, pp. 279–309, 2017.
DOI: 10.1007/978-3-662-54365-8 12
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input m the device outputs σ = SignDecode(X)(m). We call D̃ the strengthened
device. In face of a tampering with the key the strengthened device outputs
σ = SignDecode(X′)(m). The value of Decode(X ′) will either be K or an unrelated
key K ′. NMC security guarantees that when K ′ is an unrelated key, then the
adversary could in fact have computed K ′ itself without any access to K. It
follows that the adversary either learns a correct signature σ = SignK(m) or a
value σ = SignK′(m) it could have computed itself without access to the device.
This ensures that tampering does not result in information leaking from the
device.

Formally security is defined as a tampering game between an adversary and a
simulator S. The adversary submits to the tampering game a message m and the
game computes a random encoding X ← Encode(m). The adversary then sub-
mits a tampering function T . Now the game either computes m′ = Decode(T (X))
and gives m′ to the adversary. Or, it computes m′ = S(T ) and gives m′ to the
adversary. The code is called secure if for all adversaries there exists an efficient
simulator such that the adversary cannot guess which of the two cases occurred
except with negligible advantage. A small but crucial modification of the game
is needed. Notice that the adversary might for instance submit T equal to the
identity function. In that case m′ = m in the first case, so the simulator would
be required to compute m too, which is impossible as it is not given m as input
and m might be a random value. The game is therefore modified to allow S to
give a special output ∗ in which case the game sets m′ = m before giving m′

to the adversary. Security therefore demonstrates that the adversary when sub-
mitting a tampering function T could itself efficiently have computed whether
the tampering will have no effect (when S(T ) = ∗) and in case there is an effect,
which message m′ = S(T ) would be the result of the tampering.

It is clear that we need to put some restriction on the tampering function. If
the adversary submits the function T (X) = Encode(Decode(X)+1) the simulator
would have to output m+1 without knowing m. The most popular way to restrict
the tampering functions is to assume the split-state model (STM), which was first
used to get leakage-resilient cryptography (see Dziembowski et al. [21]). In this
model we assume that the encoding X consists of two parts X = (X0,X1) stored
on two separate storage devices or separate parts of a chip. The assumption is
that the adversary can only tamper independently with the two parts, i.e., in the
model it submits tampering functions T = (T 0, T 1) and the result of tampering
is (X ′0,X ′1) = (T 0(X0), T 1(X1)). This is also the model we consider in this
paper. In the split state model it is possible to construct codes which tolerates
arbitrary tampering, except that the two parts must be tampered independently.

Unfortunately NMC security is not sufficient for device strengthening if the
adversary can repeatedly tamper with the device. To see this assume for simplic-
ity that the encoding has the property that if a single bit is flipped in an encoding
X, then Decode(X ′) = ⊥. Consider then the tampering function Oi which over-
writes the i’th bit in X by 0. Each Oi is allowed in the split-state model. Now,
Decode(Oi(X)) = ⊥ if and only if the i’th bit of X is 1. Hence by applying
O1, . . . , O|X| an adversary can learn X and then compute m = Decode(X). This
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means that if the code is secure then by definition the simulator can also compute
m, which it cannot. Let us call the above attack the fail-or-not attack.

Two different ways to circumvent the fail-or-not attack has been proposed in
the literature. In [34] Liu and Lysyanskaya propose that the strengthened device
whenever it reconstructed the key K = Decode(X) resamples a new encoding
X ′ ← Encode(K) and overrides X by X ′ on the storage medium. This way
the adversary gets to tamper with each fresh encoding only once and the NMC
assumption is sufficient. In [25] Faust et al. propose a model where the encoding
X remains the same in all tamperings. Instead the authors assume that the
strengthened device self destructs when it detects that Decode(X) = ⊥. In the
fail-or-not attack the adversary is using failure or not to leak information on
the encoding X. If the device self destructs on failure this can however only be
exploited to leak logarithmic many bits, namely in which round of tampering
the self destruction happened. The authors in [25] then use a code which can
tolerate limited leakage on the two halves of the encoding and constructs the
code such that computing in which round the device would have self-destructed
can be done using only limited independent leakage from the two halves, reducing
tampering to leakage, an idea we use in our new code too.

Both [25,34] consider codes which are additionally leakage resilient in the
split state model. In [25] this is needed anyway to protect against tampering
and in [34] it is argued to be a natural requirement as we assume the device to
be in the hands of an adversary which might learn leakage on the two parts X0

and X1 by measuring the device during operation. In both [25,34] it is assumed
that the circuitry doing the encoding (and refreshing) cannot be tampered with
and that it is leakage free, i.e., only the storage devices are subject to tampering
and leakage. Below we will partially relax this assumption by allowing occasional
leakage and tampering of the refresh procedure.

Our Contributions We propose a new model in line with [34]. In particular we do
not assume the device can self destruct and we use refreshing to protect against
the fail-or-not attack. We propose two extra requirements on the refreshing which
we motivate below. First, we want the refreshing to be split-state, i.e., the refresh-
ing algorithm should be of the form Refresh(X) = (Refresh0(X0),Refresh1(X1)).
Second, the code should tolerate multiple tampering attacks in between refreshes.

To motivate the model, imagine the following application for strengthen-
ing a device. The parts X0 and X1 are placed in separate storages. When the
key is needed the device computes K = Decode(X) and outputs SignK(m).
In addition to this, occasionally the device will read up a part Xi and write
back X ′i = Refresh(Xi). The refreshing of the parts might also be done by
separate processes sitting in the storage device of the part, as opposed to the
circuitry doing the decoding. The practical motivation is as follows. In all exist-
ing codes the encoding process is considerably more complex than the decoding
process. For instance encoding necessarily needs cryptographic strength random-
ness, whereas decoding can be deterministic. It could therefore be much harder
to create a leakage and tamper free implementation of Encode. Also, refreshing
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by decoding and re-encoding is unnecessarily risky as (real-world) leakage from
this process could be leakage on the decoded key K.

Notice on the other hand that if a partial refreshing X ′i = Refresh(Xi) is
tampered with, then it can simply be considered just another tampering attack
on Xi in the split state model. In the same way, if a partial refreshing X ′

i =
Refresh(Xi) is leaky, then it can simply be considered just another leakage attack
on Xi in the split state model. For this to be true it is important that the
refreshing is split state, motivating our first extra requirement. As a consequence,
if only occasionally the refreshing succeeds in being tamper and leakage free, all
the failed attempts can be recast as tamper and leakage attacks. This means
the code remains secure if it can tolerate several tamper and leakage attacks in
between refreshes, motivating our second extra requirement. Notice that for this
to be true, the security of the code should not depend on the two parts being
refreshed at the same time. We can only assume that each part occasionally gets
refreshed.

Our model works as follows. The adversary submits to the game a message m
and the game samples (X0,X1) ← Encode(m). The adversary can then repeat-
edly submit leakage or tamper queries. In a leakage query the adversary submits
(i, L) and is given R = L(Xi). In a tampering query the adversary submits
(T 0, T 1) and is given m′ = Decode(T 0(X0), T 1(X1)).1 The adversary can also
make a refresh query by submitting an index j to the game. Then the game
refreshes the corresponding part: Ej ← Refreshj(Ej). We give a simulation-
based security definition. The simulator is not given m. To simulate a leakage
query the simulator is given (j, L) and must return some value R to the adver-
sary. To simulate a tampering query the simulator is given (T 0, T 1) and must
return some value m′, where m′ = ∗ is replaced with m′ = m before m′ is
returned to the adversary. To simulate a refresh query the simulator is given
j and has to return nothing. The adversary must not be able to tell whether
it is interacting with the real world or the simulator. The only restriction on
the adversary is that the length of the leakage and the number of tampering
attacks in between refreshes must be limited. For any polynomials p(κ), q(κ) we
construct a code that can tolerate p(κ) bits of leakage and q(κ) many tampering
attacks in between successful refreshes.

Our definition is not strong according to the notions of Non-Malleable Codes
given in the original paper [20]. In the security experiment of the strong NMCs
the adversary receives either the entire tampered codeword (as opposed to receive
the decoded message of the tampered codeword) or ∗ in case that the tampering
function keeps the codeword unaltered. The goal of the adversary is to distin-
guish the codewords of two different message given the result of the tampering
function. However, such definition cannot be met in presence of a split-state
refresh algorithm. In fact the adversary could forward, as tampering function,

1 Notice that tampering does not overwrite the codeword. This is called non-persistent
tampering and is stronger than persistent tampering in the split state model as the
set of tampering functions is closed under composition—subsequent tamperings can
just first reapply all previous tampering functions (cf. Jafargholi and Wichs [32]).
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the refreshing function itself and receives a valid codeword (since it won’t be the
same codeword). Given the codeword, it can easily distinguish by decoding.

Our techniques borrow ideas from both [25,34]. In X1 we will keep a secret
key sk for a public-key encryption scheme. In X0 we will keep the corresponding
public key pk = PK(sk), an encryption c = Enc(pk ,m) of the encoded message
and a simulation-sound NIZK proof of knowledge π of some sk such that pk =
PK(sk) using c as a label. Decoding will check the proof and if it is correct and
sk matches pk . If so, it outputs Dec(sk ′, c). To tolerate leakage and to allow
refreshing we use a leakage resilient encryption scheme which allows to refresh
sk and c independently. The public key pk in X1 will never be refreshed, which
is secure as pk might in fact be public. To allow the proof of knowledge to be
refreshed we use a non-malleable proof with some controlled malleability. We
give a concrete instantiation of this framework based on the Continual Leakage-
Resilient scheme of Dodis et al. [18] and the Controlled-Malleable NIZK system
of Chase et al. [10] instantiated with Groth-Sahai proofs [30].

The structure of the encoding scheme is very similar to the one proposed by
[34], however there are few substantial differences: 1. We substitute the PKE
and the NIZK scheme with cryptographic primitives that allow efficient refresh
mechanisms; 2. The NP relationship of the NIZK is different. (In fact, it is
inspired by the scheme of [25].)

The main proof technique is to reduce tampering to legal leakage queries on
the encryption scheme. In the reduction we are given separate leakage oracles
of sk and c. To simulate leakage from X1, leak from sk . To simulate leakage
from X0, once and for all produce a simulated proof π with label c and simulate
each leakage query from X0 by leaking from (pk , c, π). As for tampering queries,
assume that the parts have been tampered into X ′1 = sk ′ and X ′0 = (pk ′, c′, π′).
First we use leakage to check whether the decoding would fail. Leak from X ′1 the
value pk ′′ = PK(sk′). Then leak from X ′0 a single bit telling whether pk ′ = pk ′′

and whether π′ is a valid proof. This is exactly enough to determine whether the
decoding would fail or not. If the decoding would fail, output ⊥. Otherwise, if the
proof π′ still has c as label (which implies that X ′0 = (pk ′′, c, π′) when the proof
is valid), then output ∗ indicating that the decoding would output the original
encoded message. If the label of π′ is not c, then use the extraction trapdoor of
the proof to extract the secret key sk ′ matching pk ′′. Then output Dec(sk ′, c′).
This allows to simulate each tampering attack with limited leakage on X0 and
X1. Therefore the scheme remains secure as long as refreshing happens often
enough for the leakage needed to simulate tampering to not grow about the
leakage tolerance of the encryption scheme.

In [18], it was shown that Continually Leakage-Resilient Codes with Split-
State Refresh are impossible to construct without computational assumptions.
The result holds even when the leakage between each updates is 1 bit. It is
easy to see that the same result holds for Non-Malleable Codes with Split-State
Refresh. (This is because a tampering attack corresponds at least to 1 bit of
leakage.)
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More Related Work. Non-Malleable Codes were introduced to achieve tamper-
proof security of arbitrary cryptographic primitives. Since their introduction
many works have constructed NMCs in different models both under crypto-
graphic assumptions or information theoretically (see [1–3,12,15,19,26,32,38]).

A related line of work on tamper resilience (see [14,27,31,33]) aims at con-
structing secure compilers protecting against tampering attacks targeting the
computation carried out by a cryptographic device (typically in the form of
boolean and arithmetic circuits).

A third line of work on tamper resilience instead aims at constructing ad
hoc solutions for different contexts like for example symmetric encryption [6,
28,36], public-key encryption [5,7,16,17,24,35,39], hash functions [29] and more
[8,13,38].

Roadmap. In the following we will first introduce some known notation and
abstract definitions of the properties we need from the primitives in the abstract
framework. Then we describe and prove the abstract framework, followed by an
instantiation based on External Diffie-Hellman assumption [4,9]. At the end we
will present the application to continual-tamper-and-leakage resilient cryptogra-
phy in more details.

2 Preliminaries

2.1 Notation and Probability Preliminaries

We let N denote the naturals and R denote the reals. For a, b ∈ R, we let
[a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N we let [a] = {0, 1, . . . , a}. If x is a
bit-string, we denote its length by |x| and for any i ≤ |x| we denote with x(i) the
i-th bit of x; If X is a set, |X | represents the number of elements in X . When
x is chosen randomly in X , we write x ←$ X . When A is an algorithm, we write
y ← A(x) to denote a run of A on input x and output y; if A is randomized, then
y is a random variable and A(x; r) denotes a run of A on input x and randomness
r. An algorithm A is probabilistic polynomial-time (PPT) if A is allowed to use
random choices and the computation of A(x; r) terminates in at most poly(|x|)
steps for any input x ∈ {0, 1}∗ and randomness r ∈ {0, 1}∗.

Let κ be a security parameter. A function negl is called negligible in κ (or
simply negligible) if it vanishes faster than the inverse of any polynomial in κ.
For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the language associated with R is LR =
{x : ∃w s.t. (x,w) ∈ R}.

For two ensembles X = {Xκ}κ∈N, Y = {Yκ}κ∈N, we write X c≈ε Y, meaning
that every probabilistic polynomial-time distinguisher D has ε(κ) advantage in
distinguishing X and Y, i.e., 1

2 |P[D(Xκ) = 1] − P[D(Yκ) = 1]| ≤ ε(κ) for all
sufficiently large values of κ.

We simply write X c≈Y when there exists a negligible function ε such that
X c≈ε Y. Similarly, we write X ≈ε Y (statistical indistinguishability), mean-
ing that every unbounded distinguisher has ε(κ) advantage in distinguishing
X and Y.
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Given a string X = (X1,X2) ∈ ({0, 1}∗)2 and a value � ∈ N let O�(X) be
the split-state leakage oracle. O�(X) accepts as input tuple of the form (i, f)
where the first element i is an index in {0, 1} and the the second element f is
a function defined as a circuit. If the total amount of leakage is below �, O�(X)
outputs f1(Xi1) otherwise it outputs the special symbol ⊥. More formally, the
oracle O�(X) is a state machine that maintains state variables O�(X).l0 and
O�(X).l1 and upon input (i, f) where f is an efficiently computable function
with co-domain {0, 1}o for a value o ∈ N outputs f(Xi) if (li + o) ≤ � and then
updates the value li to li + o, otherwise it outputs the value ⊥.

Given two PPT interactive algorithms A and B we write (y, k) ← A(x) �
B(z) to denote the joint execution of the algorithm A with input x and the
algorithm B with input z. The string y (resp. z) is the output of A (resp. B)
after the interaction. In particular we write A � O�(X) to denote A having
oracle access to the leakage oracle with input X. Moreover, we write A � B, C
to denote A interacting in an interleaved fashion both with B and with C.

2.2 Cryptographic Primitives

NIZK Proof of Knowledge. We first introduce the necessary notation for
label-malleable NIZK (lM-NIZK for short) argument system. A label-malleable
NIZK is intuitively a non-malleable NIZK except that from a proof under a given
label one can generate a new proof for the same statement under a different label
without using the witness. A lM-NIZK NIZK := (I,P,V,RandProof, LEval) with
label space L is a tuple of PPT algorithms where: (1) The algorithm I upon
input the security parameter 1κ, creates a common reference string (CRS) ω;
(2) The prover algorithm P upon input ω, a label L ∈ L and a valid instance
x together with a witness w produces a proof π. We write PL(ω, x,w); (3) The
verifier algorithm V upon input ω, a label L an instance x together with a proof
π outputs a verdict in {0, 1}. We write VL(ω, x, π); (4) The label-derivation
algorithm LEval upon input ω, a transformation φ, a label L an instance x and
a proof π outputs a new proof π′.

Definition 1 (Adaptive multi-theorem zero-knowledge). Let NIZK be
a non-interactive argument system for a relation R. We say that NIZK satisfies
adaptive multi-theorem zero-knowledge if the following holds:

(i) There exists a PPT algorithm S0 that outputs a CRS ω and a trapdoor τsim .
(ii) There exist a PPT simulator S1 and a negligible function ν such that, for

all PPT adversaries A, we have that
∣
∣
∣P [A(ω) � P(ω, ·) = 1| ω ← I(1κ)]

− P [A(ω) � SIM(τsim , ·) = 1| (ω, τsim) ← S0(1κ)]
∣
∣
∣ ≤ ν(κ).

The simulation oracle SIM(τsim , ·) takes as input a tuple (L, x,w) and
checks if (x,w) ∈ R, and, if true, ignores w and outputs a simulated argu-
ment S1(τsim , L, x), and otherwise outputs ⊥.
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Fig. 1. Experiments defining T -ml-SE and label derivation privacy of NIZK.

Given NIZK that supports the set of labels L, we say that a set T is a set
of label transformations for NIZK iff for any φ ∈ T the co-domain of φ is a
subset of L.

Definition 2 (T -Malleable Label Simulation Extractability). Let T be a
set of label transformations for NIZK. Let NIZK be a non-interactive argu-
ment system for a relation R. We say that NIZK is T -malleable label simula-
tion extractable (T -ml-SE) if the following holds:

(i) There exists an algorithm S0 that outputs a CRS ω, a simulation trapdoor
τsim , and an extraction trapdoor τext .

(ii) There exists a PPT algorithm Ext such that, for all PPT adversaries A, the
probability, taken over the experiment ExpT −lmSE

Ext,S,A (as defined in Fig. 1), of
the conjunction of the following events is negligible in the security parameter
κ:
(a) (L∗, x∗) 
∈ Q and V(ω,L∗, x∗, π∗) = 1;
(b) (x∗, w) 
∈ R;
(c) Either φ 
∈ T or for any (L, x) either (L, x) 
∈ Q or φ(L) 
= L∗.
Moreover, we say that A wins the T -lm SE Experiment when all the above
events happen.

Definition 3 (Label Derivation Privacy). Let NIZK a lM-NIZK, and
let T be a set of label transformations. We say that NIZK has label deriva-
tion privacy if for all PPT A, there exists a negligible function negl such that
(P

[
ExpT −lDP

NIZK(κ) = 1
]
− 1

2 ) ≤ negl(κ) (where the experiment is defined in Fig. 1).

Public-Key Encryption. A public-key encryption (PKE) scheme is a tuple
of algorithms E = (Setup,Gen,Enc,Dec) defined as follows. (1) Algorithm Setup
takes as input the security parameter and outputs public parameters pub ∈
{0, 1}∗. all algorithms are implicitly given pub as input. (2) Algorithm Gen takes
as input the security parameter and outputs a public/secret key pair (pk , sk);
the set of all secret keys is denoted by SK and the set of all public keys by
PK. Additionally, we require the existence of a PPT function PK which upon
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an input sk ∈ SK produces a valid public key pk . (3) The randomized algorithm
Enc takes as input the public key pk , a message m ∈ M, and randomness
r ∈ R, and outputs a ciphertext c = Enc(pk ,m; r); the set of all ciphertexts is
denoted by C. (4) The deterministic algorithm Dec takes as input the secret key
sk and a ciphertext c, and outputs m = Dec(sk , c) which is either equal to some
message m ∈ M or to an error symbol ⊥. Additionally, we also consider two PPT
algorithms: 1. Algorithm UpdateC takes as input a public key pk a ciphertext c
and outputs a new ciphertext c. 2. Algorithm UpdateS takes as input a secret
key sk and outputs a new secret key sk ′.

Correctness (with Updates). We say that E satisfies correctness if for all pub ←
Setup(1κ) and (pk , sk) ← Gen(pub) we have that:

P [Dec(UpdateS(sk),UpdateC(pk ,Enc(pk ,m))) = m] = 1,

where the randomness is taken over the internal coin tosses of algorithms Enc,
UpdateS and UpdateC. Additionally, we require that for any pk , sk ← Gen(pub):
(A) any sk ′ such that PK(sk ′) = pk and any c ∈ C we have that Dec(sk , c) =
Dec(sk ′, c); (B) any sk ′ ← UpdateS(sk) we have that PK(sk) = PK(sk ′).

CLRS Friendly PKE Security. We now turn to define Continual-Leakage
Resilient Storage Friendly public key encryption.

Definition 4. For κ ∈ N, let � = �(κ) be the leakage parameter. We say
that E = (Setup,Gen,Enc,Dec,UpdateC,UpdateS) is �-CLRS Friendly if for all
PPT adversaries A there exists a negligible function ν : N → [0, 1] such that∣
∣
∣P

[
Expclrs

E,A(κ, �) = 1
]

− 1
2

∣
∣
∣ ≤ ν(κ), (where the experiment is defined in Fig. 2).

We observe that Definition 4 is weaker than the definition of Dodis et al. [18], in
fact we do not consider leakage from the update process. We introduce an extra
property on the UpdateC algorithm of a CLRS Friendly PKE.

Fig. 2. Experiment defining CLRS security of E.
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Definition 5. We say that E is perfectly ciphertext-update private if for any
κ ∈ N, pub ← Setup(1κ), (pk , sk) ← Gen(pub) and any m ∈ M the distributions
{Encode(pk ,m)} and {UpdateC(pk ,Enc(pk ,m))} are equivalent.

If E is a CLRS Friendly PKE then the weaker version of the property above
where the two distributions are computationally indistinguishable already holds.
The construction in Sect. 4 can be proved secure using the computational
ciphertext-update privacy property. However, we prefer to include the perfectly
ciphertext-update privacy property because it simplifies the exposition.

3 Definition

In this section we consider three definitions of Non-Malleable Codes with Refresh
(NMC-R). The syntax given allows the scheme to depends on a common reference
string following [34].

A coding scheme in the CRS model is a tuple Σ = (Init,Encode,Decode)
of PPT algorithms with the following syntax: (1) Init on input 1κ outputs a
common reference string crs. (2) Encode on inputs crs and a message m ∈ Mκ

outputs X ∈ Cκ; (3) Decode is a deterministic algorithm that on inputs crs and
a codeword X ∈ Cκ decodes to m′ ∈ Mκ. A coding scheme is correct if for any
κ and any m ∈ Mκ we have Pcrs,re

[Decode(crs,Encode(crs,m; re)) = m] = 1.
We consider coding schemes with an efficient refreshing algorithm. Specifi-

cally, for a coding scheme Σ there exists an algorithm Rfrsh that upon inputs crs
and a codeword X ∈ Cκ outputs a codeword X ∈ Cκ. For correctness we require
that P [Decode(crs,Rfrsh(crs,X)) = Decode(crs,X)] = 1, where the probability
is over the randomness used by the algorithms and the generation of the CRS.

We are interested in coding schemes in the split-state model where the two
parts can be refreshed independently and without the need of any interactions.
Given a codeword X := (X0,X1), we consider the procedure Rfrsh(crs, (i,Xi))
for i ∈ {0, 1} that takes the i-th piece of the codeword and outputs a new
piece X ′i. Abusing of notation, given a codeword X := (X0,X1) when we write
Rfrsh(crs,X) we implicitly mean the execution of both Rfrsh(crs, (i,X0)) and
Rfrsh(crs, (i,X1)). Similarly, given a split-state function T = (T 0, T 1) we equiv-
alently write T (X) meaning the application of both T 0(X0) and T 1(X1).

We require that for any codeword X := (X0,X1) and for any i ∈ {0, 1}, let
X̄ such that X̄i ← Rfrsh(crs, (i,Xi)) and X̄i−1 = Xi then P[Decode(crs, X̄) =
Decode(crs,X)] = 1.

NMC with Refresh in the STM. We now give the security definition for Non-
Malleable Codes with Refresh. Although the definition would be meaningful for
a more general setting, for the sake of concreteness, we specialize it for the split-
state model. Let Im be a function from M ∪ {∗} to M which substitutes the
symbol ∗ in input with the message m and acts as the identity function otherwise.
Let Tamper and SimTamper be the experiments described in Fig. 3.
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Fig. 3. Experiments defining the security of NMC with Refresh Σ. Notice that tj for
j ∈ {0, 1} counts the number of rounds since the last refresh of Xj . If tj > τ or if the
adversary triggers it then a refresh of Xj is executed.

Definition 6 (Non-Malleable Codes with Refresh). For κ ∈ N, let � =
�(κ), ρ = ρ(κ), τ = τ(κ) be parameters. We say that the coding scheme Σ is a
(�, ρ, τ)-Non-Malleable Code with Refresh (NMC-R) in the split state model if for
any adversary A = (A0,A1,A2) where A0 and A2 are a PPT algorithm and A1 is
deterministic polynomial time, there exists a PPT simulator S = (S0,S1,S2,S3)
and a negligible function ν such that

∣
∣P

[
TamperA,Σ(κ, �, ρ, τ) = 1

] − P
[
SimTamperA,S(κ, �, ρ, τ) = 1

]∣∣ ≤ ν(κ).

We give some remarks regarding the definition above. The simulator S is
composed of four different parts S0,S1,S2,S3. The algorithm S0 upon input
1κ produces a CRS together with some trapdoor information aux , the CRS
produced and the output of Init are computational indistinguishable.

For simplicity, we assume that the state information aux is stored in a com-
mon read-and-write memory that the simulators S0,S1,S2,S3 have access to.
We will sometime referee to S1 as the tampering simulator, to S2 as the leakage
simulator and to S3 as the refresh simulator.

The adversary A is composed by a PPT algorithm A0, a deterministic algo-
rithm A1 and PPT distinguishing algorithm A2. The adversary A0 can sample a
message m (as function of the CRS) and some state information z. The latter may
encode some side information z about the message m and other information that
A0 wants to pass to A1. Notice that we can assume without loss of any generality
A1 to be deterministic, in fact, z may also contain random coins. The tampering
simulator, the leakage simulator and the refresh simulator take as input the state
information z. In addition, in each round, the tampering simulator S1 receives
a split-state tampering function Ti+1 and it outputs a message m̄i+1. First, we
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notice that, in general, the tampering Ti+1 can be produced as a function of
the initial message m, therefore the simulator (which does not know m) cannot
compute the tampering function by its own, even given z. Secondly, the adver-
sary can efficiently produce a tampering function that keeps the same encoded
message but modifies the codeword (for example, by submitting the refreshing
algorithm Rfrsh as tampering function). The task of the tampering simulator
is to detect this (outputting the special symbol ∗), in this case the function Im

forwards to A the initial message m. (We stress that the simulator does not know
the message m, so it cannot forward m directly to A but it needs to pass by Im.)

The tamper experiment takes four parameters: the security parameter κ, the
leakage parameter �, the round parameter ρ and the tampering parameter τ .
The tampering parameter τ counts how many times the adversary can tamper
with the codeword before a refresh of the codeword is needed.

4 Construction

Let E = (Setup,Gen,Enc,Dec,UpdateC,UpdateS) be a CLRS friendly PKE with
ciphertext space CE . Let R be the NP relation defined below:

R := {(pk , sk) : pk = PK(sk), sk ∈ SK} .

Let T be a set of label transformations defined below:

T := {φ : ∃pk , sk : ∀m, r : Dec(sk , φ(Enc(pk ,m; r)) = m, pk = PK(sk)} .

Notice that both R and T are implicitly parametrized by the public parameters
pub of the PKE scheme. Let U be the following set of label transformations:

U := {UpdateC(pk , · ; ru) : ru ∈ {0, 1}κ, pk ∈ PK} .

It is easy to check that U ⊆ T . In fact, by the correctness of PKE, there exists
sk such that P [Dec(sk ,UpdateC(pk ,Enc(pk ,m)) = m] = 1 and pk = PK(sk).

Let NIZK := (I,P,V, LEval) be a lM-NIZK argument system for the relation
R with label space CE and set of transformation T . Let Σ be the following coding
scheme with refresh in the CRS model:

– Init(1κ): Sample ω ← I(1κ) and pub ← Setup(1κ). Return crs = (ω, pub).
– Encode(crs,m): Parse crs = (ω, pub), sample (sk , pk) ← Gen(pub), compute

c ← Enc(pk ,m) and π ← Pc(ω, pk , sk). Set X0 := (pk , c, π) and X1 := sk and
return X := (X0,X1).

– Decode(crs,X): Parse crs = (ω, pub) and X = (X0,X1) where X1 = sk and
X0 = (pk , c, π). Check: (A) pk = PK(sk) and (B) Vc(ω, pk , π) = 1.

If both checks (A) and (B) hold then return Dec(sk , c), otherwise return ⊥.
– Rfrsh(crs, (j,Xj)):

– j = 0, parse X0 = (c, pk , π), r ←$ {0, 1}κ, compute c′ :=
UpdateC(pk , c; r) and π′ ← LEval (ω, UpdateC(pk , ·; r), (pk , c, π)), return
X0 := (pk , c′, π′).
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– j = 1, parse X1 = sk and compute sk ′ ← UpdateS(sk), return X1 :=
(sk ′).

Theorem 1. For any polynomial τ(κ), if E is an �′-CLRS-Friendly PKE
scheme (Definition 4) with public key space PK and message space M and
where �′(κ) := �(κ) + τ(κ) · (max(κ + 1, log(|M| + 2) + 1, log |PK|)) and
if NIZK is an adaptive multi-theorem zero-knowledge (Definition 1) label-
malleable non-interactive argument of knowledge system with malleable label sim-
ulation extractability (Definition 2) and label derivation privacy (Definition 3)
then the scheme above is a (�, ρ, τ)-Non-Malleable Code with Refresh for any
polynomial ρ(κ).

The leakage rate of the encoding scheme depends on the relation between the size
of the proofs of the NIZK system and the parameters of the CLRS Friendly PKE.
Roughly, setting τ be a constant, assuming the size of the secret key and the size
of the ciphertext of the PKE be approximately the same and let r = |sk |/� be
the leakage ratio of the CLRS-Friendly PKE then the leakage ratio of the coding
scheme is strictly less than r/(2+1/poly(κ)). This comes from the extractability
property2 of the NIZK system and the O(κ)-bits of leakage needed to support
tampering attacks.

Proof. The correctness follows immediately from the correctness of the E and
NIZK and U ⊆ T . The proof of security is divided in two parts. We first define
a simulator, then we define a sequence of mental experiments starting with the
initial Tamper experiment and proceeding toward the SimTamper experiment
and we prove that the experiments are computationally indistinguishable.

The Simulator. Let S̃ be the simulator of the NIZK as postulated by Def-
inition 1. Given an adversary A = (A0,A1,A2) consider the following simulator
S = (S0,S1,S2,S3) for the SimTamper experiment:

Simulator S0(1κ):

– Set the variables t0, t1, l0, l1 to 0.
– Run the NIZK simulator (ω, τsim , τext) ← S̃0(1κ).
– Sample (pk , sk) ← Gen(pub), c ← Enc(pk , 0κ) and π ← S̃1(ω, c, pk).
– Set the joint state aux to (τsim , τext ,X

0,X1, t0, t1) where (X0,X1) =
((pk , c, π), (sk)).

Simulator S1(T, z):

– Parse T = (T 0, T 1) and aux as (τsim , τext ,X
0,X1, t0, t1) where (X0,X1) =

((pk , c, π), (sk)).
– Compute X̃i = T i(Xi) for i ∈ {0, 1}.
– Check p̃k = PK(s̃k) and Vc̃(ω, p̃k , π̃) = 1 (check (A) and (B) of Decode),

if at least one of the checks fails then return ⊥.
2 We also are assuming that the NIZK system is not succinct.
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– Compute (sk ′, φ, c′) ← Ext(τext , c̃, p̃k , π̃):
(I) If p̃k = PK(sk ′) then output m̃ = Dec(sk ′, c̃);

(II) If φ(c′) = c̃, c′ = c and T ∈ T return ∗;
(III) Else abort.

Simulator S2(z):

– Parse aux as (τsim , τext ,X
0,X1, t0, t1, l0, l1) where (X0,X1) =

((pk , c, π), (sk)).
– Upon message (i, L) where i ∈ {0, 1}, compute y ← L(Xi). If li + |y| ≤ λ then

update li := li + |y| and output y else output ⊥.

Simulator S3(j, z):

– Parse aux as (τsim , τext ,X
0,X1, t0, t1, l0, l1) where (X0,X1) =

((pk , c, π), (sk)); If j 
∈ {0, 1} and t0, t1 ≤ τ set Xi+1 := Xi; Else:
– If j = 0 or (t0 > τ) then compute c′ ← UpdateC(pk , c) and π′ ←

S̃1(τsim , c′, pk) and reset l0, t0 to 0;
– If j = 1 or (t1 > τ) then compute sk ′ ← UpdateS(sk) and reset l1, t1 to 0.

– Set aux as (τsim , τext ,X
′0,X ′1, t0, t1, l0, l1) where (X ′0,X ′1) =

((pk , c′, π′), (sk ′)).

The Hybrids. We consider a sequence of mental experiments, starting with the
initial Tamper experiment which for simplicity we denote by G0. We summarize
the sequence of mental experiments in Fig. 4.

Game G0. This is exactly the game defined by the experiment Tamper, where
Σ is the coding scheme described above. In particular, the Init algorithm
of Σ samples a CRS ω ← I(1κ) for NIZK, a pair (pk , sk0) ← Gen(pub),
encrypts c0 ← Enc(pk ,m) and computes π0 ← Pc(ω, pk , sk). The Rfrsh∗ algo-
rithm if Σ upon input j = 0 samples randomness ru ←$ {0, 1}κ, defines the
transformation φu(·) := UpdateC(pk , · ; ru) and computes ci+i := φu(ci) and
πi+1 := LEval(ω, φu, (pk , ci, πi)).

Game G1. We change the way the proofs πi+1 are refreshed. For each itera-
tion i ∈ [ρ(κ)], the refresh procedure Rfrsh∗ upon input j = 0 parses X0

i

as (pk , ci, πi), samples randomness ru ←$ {0, 1}κ, defines the transformation
φu(·) := UpdateC(pk , · ; ru), computes ci+1 ← φu(ci) and a fresh proof:

πi+1 ← Pci+1(ω, pk , sk i).

Finally, it sets X0
i+1 := (pk , ci+1, πi+1).

Game G2. We change the way the CRS for the NIZK and the proofs πi are
computed. Let ω, τsim , τext ← S̃0(1κ) and for i ∈ [ρ(κ)] if Rfrsh∗ is called at
the i-th iteration with input j = 0 then the proof πi+1 is computed as:

πi+1 ← S̃1(τsim , ci+1, pk).

Also the proof π0 is computed in the same way.



Non-malleable Codes with Split-State Refresh 293

Fig. 4. Games in the proof of Theorem 1. Game G0 does not execute any of the colored
actions, whereas each colored game executes all actions from the previous game plus
the ones of the corresponding color. G6 executes all actions from the previous game
but it does not execute the dash-boxed instructions. Additionally, G8 does not execute
any of the boxed instructions.
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Game G3. We extract the witness from the proof π̃ and abort if the extraction
procedure fails. The game is the same as G2 but, for each iteration i, let
X̃i+1 be the tampered codeword where X̃i+1 = (p̃k , c̃, π̃), (s̃k). The game first
checks if Vc̃(ω, p̃k , π̃) = 1 and if so then it runs:

sk ′, φ, c′ ← Ext(τext , π̃).

Let C be the set of ciphertexts produced by the game until the i-th iteration.
Namely C := {c0, . . . , ci}. If both the conditions: (i) p̃k = PK(sk ′) and (ii)
φ(c′) = c̃, c′ ∈ C and φ ∈ T do not hold then the game outputs a special
symbol Abort.

Game G4. We change the output of Decode to match point (I) of the simulator
S1. The game is the same as G3 but, for each iteration i ∈ [ρ(κ)], after the
extraction, if the condition p̃k = PK(sk ′) holds, it sets the message mi+1 :=
Im(Dec(sk ′, c̃)).

Game G5. We change the output of Decode. The game is the same as G4

but, for each iteration i ∈ [ρ(κ)], after the i-th extraction, if the conditions
φ(c′) = c̃, c′ ∈ C, where C = {c0, . . . , ci} and φ ∈ T hold, it sets the message
mi+1 := Im(∗) (the original message).

Game G6. We do not decode explicitly anymore. The game is the same as G5

but, for each iteration i ∈ [ρ(κ)], in the execution of the decoding algorithm
Decode, we do not execute the instruction mi+1 := Dec(s̃k , c̃).

Game G7. We change the output of Decode to match point (II) of the simulator
S1. The game is the same as G6 but, for each iteration i ∈ [ρ(κ)], after the i-th
extraction, let the set C be redefined as the singleton containing the ciphertext
produced after the last refresh, namely C := {ci}, the game checks that the
conditions φ(c′) = c̃, c′ ∈ C (instead of c′ ∈ {c0, . . . , ci}) and φ ∈ T hold then
it sets the message mi+1 := Im(∗) (the original message).

Game G8. We replace the ciphertext c with a dummy ciphertext. The game is
the same as G7 but it sets c ← Enc(pk , 0κ) (instead of c ← Enc(pk ,m)).

It is easy to check that G8 is equivalent to the SimTamperA,S.

Lemma 1. For all PPT adversaries A there exists a negligible function ν0,1 :
N → [0, 1] such that |P [G0(κ) = 1] − P [G1(κ) = 1]| ≤ ν0,1(κ).

Proof. We reduce to label derivation privacy of NIZK via an hybrid argument.
For any l ∈ [ρ(κ)+1], let Hybl be the hybrid experiment that executes the same
code of G1 until the l-th iteration (the proofs are new) and then executes the
same code of G1 (the proofs are re-labeled). In particular, for any l, in the hybrid
Hybl, for any 0 ≤ i < l the proof πi is computed as Pci+1(σ, pk , sk) while for
i ≥ l the proof πi is computed as LEval (ω, φu, (pk , ci, πi)). Moreover, Hybρ+1

is equivalent to G1 while Hyb1 is equivalent to G0.
Suppose there exist a PPT adversary A, an index l ∈ [ρ(κ)] and a polynomial

p(·) such that, for infinitely many values of κ ∈ N, the adversary A distinguishes
between Hybl and Hybl+1 with probability at least 1/p(κ).
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We can construct an adversary B that breaks label derivation privacy. The
adversary B with input ω ← I(1κ) runs the code of hybrid Hybl on A until
the l-th iteration. At this point B forwards to its own challenger the tuple
(φu, cl−1, pk , sk , πl−1) where φu(·) := UpdateC(pk , · ; ru) with ru ←$ {0, 1}κ, and
receives back the proof π′. Notice that cl := φu(cl−1).

If the challenge bit is b = 0 then π′ ← Pcl(ω, pk , sk), and therefore B perfectly
simulates Hybl+1 otherwise if b = 1 then π′ ← LEval(ω, φu, (pk , cl−1, πl−1)),
therefore B perfectly simulates Hybl. Therefore B can break label derivation
privacy of NIZK with advantage 1/p(κ).

Lemma 2. For all PPT adversaries A there exists a negligible function ν1,2 :
N → [0, 1] such that |P [G1(κ) = 1] − P [G2(κ) = 1]| ≤ ν1,2(κ).

Proof. We reduce to adaptive multi-theorem zero-knowledge of NIZK.
Suppose there exist a PPT adversary A and a polynomial p such that, for

infinitely many values of κ ∈ N, |P [G1(κ) = 1] − P [G2(κ) = 1]| ≥ 1/p(κ). Let B
be a PPT adversary for the multi-theorem zero-knowledge game that runs the
same code of G2 but for any i, instead of computing the proof πi, forwards to
its oracle the query (ci, pk , sk).

The view provided by B to A is equivalent to G2 if B’s oracle is P and
equivalent to G3 if B’s oracle is SIM(τsim , ·). Therefore B can break multi-
theorem zero-knowledge of NIZK with advantage 1/p(κ).

Lemma 3. For all PPT adversaries A there exists a negligible function ν2,3 :
N → [0, 1] such that |P [G2(κ) = 1] − P [G3(κ) = 1]| ≤ ν2,3(κ).

Proof. We reduce to the T -Malleable label simulation extractability of NIZK.
Let Abort be the event that the game G3 aborts with message Abort. Notice
that the two games proceed exactly the same until the event Abort happens.
Therefore, we have

|P [G2(κ) = 1] − P [G3(κ) = 1]| ≤ P [Abort].

Suppose there exist a PPT adversary A and a polynomial p such that, for infi-
nitely many values of κ ∈ N, P [Abort] ≥ 1/p(κ), where the probability is over
the game G3 with adversary A.

Let B be a PPT adversary for the malleable label simulation extractability
that runs the same code of G3 but for any i, instead of computing the proof πi,
forwards to its oracle the query (ci, pk) and, if the event during the i-th iteration
the message Abort is raised, outputs the value X̃0

i+1 = (p̃k , c̃, π̃). Notice, that
the message Abort is raised only if the winning condition of the malleable label
simulation extractability experiment are met. Therefore the winning probability
of B is the probability of the event Abort in G3.

Lemma 4. P [G3(κ) = 1] = P [G4(κ) = 1].

Proof. Notice that the two games proceed the same until PK(s̃k) = PK(sk ′) but
Dec(s̃k , c̃) 
= Dec(sk ′, c̃). Let WrongDec be such event. Then we have

|P [G3(κ) = 1] − P [G4(κ) = 1]| ≤ P [WrongDec].
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By the correctness of E we have that the event WrongDec has probability 0.

Lemma 5. P [G4(κ) = 1] = P [G5(κ) = 1].

Proof. Notice that two games proceed the same until φ(ci) = c̃ and φ ∈ T but
Dec(sk ′, c̃) 
= m (the original message). Let NotSame be such event. Therefore,
we have

|P [G3(κ) = 1] − P [G4(κ) = 1]| ≤ P [NotSame].

The definition of the set T and φ ∈ T together with the fact that ci is an
encryption of m under pk and φ(ci) = c̃ imply that Dec(sk ′, c̃) = m. In fact
φ ∈ T implies that Dec(sk , φ(c)) decrypts correctly if c is a valid ciphertext
under pk and pk = PK(sk). Therefore, we have that the event NotSame has
probability 0.

Lemma 6. P [G5(κ) = 1] = P [G6(κ) = 1].

Proof. G6 does not execute the instruction mi+1 := Dec(s̃k , c̃), however notice
that already in game G5 either the value mi+1 is overwritten or the game outputs
Abort. So the two game are semantically the same.

Lemma 7. For all PPT adversaries A there exists a negligible function ν6,7 :
N → [0, 1] such that |P [G6(κ) = 1] − P [G7(κ) = 1]| ≤ ν6,7(κ).

Proof. We reduce to the CLRS security of E via an hybrid argument. For l ∈
[ρ(κ)] let Hybl be an hybrid experiment that executes the code of G6 until the
(l−1)-th iteration and, after that, executes the code of G7. Specifically, for every
i < l the hybrid Hybl, at the i-th iteration, runs the extractor and checks if
the conditions T ′(c) = c̃, c′ ∈ {c0, . . . , ci} and T ∈ T hold, and, if yes, it sets
mi+1 := m. For every i ≥ l the hybrid Hybl, at the i-th iteration, runs the
extractor and checks if the conditions T ′(c) = c̃, c′ = ci and T ∈ T hold, and, if
yes, it sets mi+1 := m. In particular, Hyb0 is equivalent to G7 while Hybρ is
equivalent to G8.

Given an adversary A and an index k ∈ [l−1] define the event OldCTk over the
random experiment Hybl to hold if A at the l-th iteration outputs a tampering
function Tl such that Tl(X0

l ) = (p̃k , c̃, π̃) and, let (⊥, T ′, c′) ← Ext(τext , c̃, π̃),
then c′ = ck.

Let OldCT be the event {∃k ∈ [l − 1] : OldCTk}. It is easy to check that
∣
∣P [Hybl = 1] − P

[
Hybl+1 = 1

]∣∣ ≤ P [OldCT].

In fact, if the event OldCT does not happen in Hybl then the condition c′ = cl

holds, therefore the two hybrids behave exactly the same.
Suppose there exist an adversary A and a polynomial p(·) such that, for

infinitely many values of κ ∈ N, the adversary A distinguishes between game G6

and G7 with probability at least 1/p(κ). Then P [OldCT] ≥ 1/p(κ).
We build a PPT adversary B that breaks CLRS Friendly PKE Security of

E. Let H a family of 2-wise independent hash functions with domain CE and co-
domain {0, 1}κ. We introduce some useful notation in Fig. 5. A formal description
of B follows:
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Adversary B:
1. Receive pub, pk from the challenger of the CLRS security experiment

and get oracle access to O�(, ).
2. Set variables i, t0, t1 to 0 (as in the Tamper experiment).
3. Run ω, τsim , τext ← S̃0(1κ), set crs := (pub, ω) and send crs to A0.
4. Let m, z be the output from A0, let m′ be a valid plaintext for E such

that the first bit of m′ differs from the first bit of m and |m′| = |m|.
Send the tuple m,m′ to the challenger. Set st0 := z.

5. For i = 0 to (l − 1) execute the following loop:
(a) Sample ri ←$ {0, 1}κ and run the adversary A1(mi, sti), upon

query (j, L) from A1, if j = 1 forward the same query to the
leakage oracle, if j = 0 forward the query (0,LL,ri,pk ) to the
leakage oracle.

(b) Eventually, the adversary A1 outputs (Ti+1, st i+1, j).
(c) Forward the query (1,PK(T 1

i+1(·))) to the leakage oracle and let
pk ′ be the answer. Forward the query (0,VT 0

i+1,ri,pk ,pk ′) to the
leakage oracle and let a be the answer, if a = 0 then set mi+1 := ⊥
and continue to the next cycle.

(d) Otherwise, forward the query (0,MTi+1,ri,pk ) and let m′ be the
answer, if m′ is Abort∗ then abort, otherwise set mi+1 :=
m′. Execute the refresh algorithm Rfrsh∗(j) as defined by
G6. (In particular, use the trapdoor τsim to sample πi+1 ←
S̃1(τsim , ci+1, pk).)

6. Sample H ←$ H and rl ←$ {0, 1}κ and run the adversary A1 on input
(ml−1, st l−1) and reply to the leakage oracle queries as in step (5a).
Eventually, the adversary A1 outputs (Tl, st l, j) forward the leakage
query (0,HTl,rl,pk ,H), let h be the answer of the leakage oracle.

7. Set x to be the empty string. For i := 1 to η, where η := 2p2(κ) +
2p(κ)|c|, execute the following:
(a) Sample rl+i ←$ {0, 1}κ and run the adversary A1 on input

(ml−1, st l−1) and reply to the leakage oracle queries as in step
(5a).

(b) Eventually the adversary A1 outputs (Tl, st l, j), forward the query
(0,HTl,r,pk ,x) to the leakage oracle, let a the answer, if a 
= ⊥ set
x := x‖a.

(c) Call the oracle Update(0) and increase the counter i.
8. If |x| < |c| then sample b′ ←$ {0, 1} and output b′. Otherwise, query

the leakage oracle with (1, (Dec(·, x))(0)) and let a be the answer. If
a = m(0) output 0 else output 1.

We compute the amount of leakage performed by B. For any executions of
the loop in step (5) the adversary B forwards all the leakage queries made by A
and, additionally:

– In step (5c) leaks log |PK| bits from the secret key and 1 bit from the cipher-
text;
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Fig. 5. Leakage functions on the ciphertext of E.

– In step (5d) leaks log(|M| + 2) bits from the ciphertext (the output is either
a message or ∗ or Abort);

Notice that τ many of the leakage queries described above are allowed before
an invocation of Update is forced. Moreover, in step (6) the adversary B leaks κ
bit from the ciphertext and for any executions of the loop in step (7) leaks 1 bit
from the ciphertext and then it calls the Update algorithm.

Let �A the maximum amount of leakage between each invocation of the Rfrsh∗

algorithm done by A, then the amount of leakage done by B is:

�′ = �A + τ · (max(κ + 1, log(|M| + 2) + 1, log |PK|))

We compute the winning probability of B. Let c0, . . . , cl+η be the set of
ciphertexts produced (either by Enc, in the case of c0, or by the UpdateC pro-
cedure otherwise) during the CLRS Security Experiment with B. Consider the
following events and random variables:

– Let Collision be the event {∃i, j ≤ [l + η] : i 
= j ∧ H(ci) = H(cj)};
– Let Hit be the event that {∃k < l : h = H(ck)}, where h is the output of the

leakage query (0,HTl,rl,pk ,H) (see step 6).
– Let Hiti be the random variable equal to 1 if the condition (h = H(c)) in

the i-th execution of the leakage query (0,HTl,rl+i,pk ,x) (see step 7) holds, 0
otherwise.

– Let Complete be the event |x| = |c|.
It is easy to check that if (¬Collision ∧ Hit ∧ Complete) holds then, at step (8),
there exist a positive index k < l such that (x = ck) holds. Therefore conditioned
on the conjunction of the events the adversary B wins3 with probability 1.
3 Notice we assume perfect correctness of E.
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Claim. P [Collision] ≤ (η + l)2 · 2−κ.

Proof. Recall that H is 2-wise independent, therefore for any fixed x, y ∈ CE such
that x 
= y, P [H(x) = H(y)] = 2−κ, where the probability is taken over the sam-
pling of H. Moreover, the ciphertexts ci for i ∈ [l+η] are sampled independently
of the choice of H, therefore given two indices i, j where i 
= j, by averaging over
all the possible assignment of ci, cj we have that P [H(ci) = H(cj)] = 2−κ. By
union bound we get the claim.

Claim. P [Hit | b = 0] = P [OldCT].

Proof. In fact, the adversary B (on challenge the ciphertext Enc(pk ,m)) follows
the code of Hybl until step 6. In particular, B has only oracle access to the
ciphertext and the secret key (as prescribed by the CLRS Security experiment),
while the hybrid Hybl has full access to them. However, the adversary B can
perform the same operations via its own leakage oracle access. Therefore, in the
execution of the leakage query (0,HTl,rl,pk ,H) at step (6), the event c′ = ck where
sk ′, T ′, c′ ← Ext(τext , p̃k) holds with the same probability of the event OldCT in
the hybrid Hybl.

Claim. P [Complete] ≤ 2−2κ+1.

Proof. Let ϕ be the variable that denotes all the randomness used (including
the challenger randomness) in the CLRS experiment between the challenger and
the adversary B just before the execution of the step 7. Let Good the event that
{P [Hit] ≥ 1/2p(κ)}. By a Markov argument the probability P [ϕ ∈ Good] is at
least 1/2. We can condition on the event Good.

We analyze the random variables {Hiti}i∈[η]. Fixing the choice of the ran-
domness ϕ, for any i, the random variable Hiti depends only on rl+i and on the
output of UpdateC at the (l + i)-th invocation. Notice that the adversary B at
each iteration of step 7 samples a fresh rl+i, moreover by the perfectly ciphertext-
update privacy (see Definition 5) of E, for any j 
= i the ciphertext ci and cj are
independent (in fact, for any k the distribution of ck+1 does not depend on the
value of ck). Therefore, the random variables {Hiti}i∈[η] for any assignment of ϕ
are independent. Let Z :=

∑
j∈[η] Hitj , we have that E [Z |Good] ≥ η/2p(κ).

P [¬Complete |Good]
= P [Z < |c| |Good] = P [Z < E [Z |Good] − (E [Z |Good] − |c|) |Good]
= P [Z < E [Z |Good] − p(κ) · κ |Good] ≤ 2−2κ

Where, in the last step of the above disequations, we used the Chernoff bound.

Let Guess := (¬Hit ∨ ¬Complete), namely the event that triggers B to guess the
challenge bit at random. Obviously, for any a ∈ {0, 1}, P [b′ = b | Guess, b = a] =
1
2 . For any a ∈ {0, 1} and infinitely many κ:
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P[b′ = b]

≥ 1
2P [Guess] + P [b′ = b ∧ Hit ∧ Complete]

≥ 1
2P [Guess] + P [¬Collision ∧ Hit ∧ Complete] (1)

≥ 1
2P [Guess] + (P [Hit] − P [¬Complete] − P [Collision])

≥ 1
2P [Guess] + P [Hit] − 2−2κ+1 − (η + l)2 · 2−κ

≥ (
1
2 − 1

2P [Hit]
)

+ P [Hit] − 2−2κ+1 − (η + l)2 · 2−κ (2)

≥ 1
2 + 1

4 · (P [OldCT] + P [Hit | b = 1]) − ((η + l)2 + 1) · 2−κ.

Where Eq. (1) follows because P [b′ = b | ¬Collision ∧ Hit ∧ Complete] = 1 and
Eq. (2) follows because P [Guess] ≥ 1 − P [Hit].

Lemma 8. For all PPT adversaries A there exists a negligible function ν7,8 :
N → [0, 1] such that |P [G7(κ) = 1] − P [G8(κ) = 1]| ≤ ν7,8(κ).

Proof. We reduce to the CLRS Friendly PKE Security of E.
By contradiction, assume that there exists a PPT an adversary and a poly-

nomial p(·) such that for infinitely many values of κ ∈ N, we have that A dis-
tinguishes between game G7 and game G8 with probability at least 1/p(κ). We
build a PPT adversary B that breaks CLRS Friendly PKE Security of E. The
adversary B follows the points (1) to (5) of the adversary defined in Lemma 7
with the following modifications: (i) The adversary B runs internally D; (ii) The
messages for the challenge are m and 0κ; (iii) The cycle in step (5) runs for
i = 0 to ρ(κ); (iv) The adversary B eventually outputs the same output bit as A.
Let �A the maximum amount of leakage between each invocation of the Rfrsh∗

algorithm done by A, then the amount of leakage done by B is:

�′ = �A + τ · (max(log(|M| + 2) + 1, log |PK|))
A formal description of B follows.

Adversary B:
1. Receive pub, pk from the challenger of the CLRS security experiment

and get oracle access to O�().
2. Set variables i, flg, l0, l1, t0, t1 to 0 (as in the Tamper experiment).
3. Run ω, τsim , τext ← S̃0(1κ), set crs := (pub, ω) and send crs to A0.
4. Let m, z be the output from A0. Send (m, 0κ) to the challenger and

set st0 := z.
5. For i = 0 to ρ(κ) execute the following loop:

(a) Sample ri ←$ {0, 1}κ and run the adversary A1(mi, sti), upon
query (j, L) from A1, if j = 1 forward the same query to the
leakage oracle, if j = 0 forward the query (0,LL,ri,pk ) to the leak-
age oracle.

(b) Eventually, the adversary A1 outputs (Ti+1, st i+1, j).
(c) Forward the query (1,PK(T 1

i+1(·))) to the leakage oracle and let
pk ′ be the answer. Forward the query (0,VT 0

i+1,ri,pk ,pk ′) to the
leakage oracle and let a be the answer, if a = 0 then set mi+1 := ⊥
and continue to the next cycle.
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(d) Otherwise, forward the query (0,MTi,ri,pk ) and let m′ be the
answer, if m′ is Abort∗ then abort, otherwise set mi+1 := m′.

(e) Execute the refresh algorithm Rfrsh∗(j) as defined by G6.
(In particular, use the trapdoor τsim to sample πi+1 ←
S̃1(τsim , ci+1, pk).)

6. Output A2(stρ).

The view provided by B to A is equivalent to G7 if the challenge bit b of the
PKE Friendly Security experiment is 0. (This because the encrypted message is
m.) Otherwise the view is equivalent to G8.

Wrapping up all together we have that:
∣
∣P [G0 = 1]−P [G8 = 1]

∣
∣

≤
∑

i∈[7]

|P [Gi = 1] − P [Gi+1 = 1]| ≤
∑

i∈[7]

νi,i+1 ≤ negl(κ).

5 Concrete Instantiations

For a group G of prime order q and a generator g of G, we denote by [a]g :=
ga ∈ G the implicit representation of an element a ∈ Zq. Let G be a PPT pairing
generation algorithm that upon input the security parameter 1κ outputs a tuple
gd = (G1,G2,GT , q, g, h, e) where the first three elements are the description
of groups of prime order q > 2κ, g (resp. h) is a generator for the group G1

(resp. G2) and e is an efficiently computable non-degenerate pairing function
from G1 × G2 → GT . In what follow, we indicate vectors with bold chars and
matrices with capital bold chars, all vectors are row vectors, given a group G,
two matrices X ∈ G

n×m,Y ∈ G
m×t for n,m, t ≥ 1 and an element a ∈ G we

denote with X · Y the matrix product of X and Y and with a · X the scalar
multiplication of X by a. Given two elements [a]g ∈ G1 and [b]h ∈ G2 we denote
with [a]g • [b]h = [a · b]e(g,h) the value e([a]g, [b]h), the notation is extended to
vectors and matrices in the natural way. Given a field F and natural numbers
n,m, j ∈ N where j ≤ min(n,m) we define Rkj(Fn×m) to be the set of matrices
in F

n×m with rows rank j; given a matrix B we let Rank(B) be the rank of B .

Definition 7. The k-rank hiding assumption for a pairing generation algorithm
pub := (G1,G2,GT , q, g1, g2, e) ←$ G(1κ) states that for any i ∈ {1, 2} and for
any k ≤ j, j′ ≤ min(n,m) the tuple (gi, [B]gi

) and the tuple (gi, [B′]gi
) for ran-

dom B ←$ Rkj and B′ ←$ Rkj′ are computational indistinguishable.

The k-rank hiding assumption was introduced by Naor and Segev in [37] where
the authors showed to be implied by the more common k-linear (DLIN) assump-
tion. The assumption gets weaker as k increases. In fact for k = 1 this assumption
is equivalent to DDH assumption. Unfortunately, it is known that DDH cannot
hold in symmetric pairings where G1 = G2. However, it is reasonable to assume
that DDH holds in asymmetric pairings. This assumption is often called external
Diffie-Hellman assumption (SXDH) (see [4,9]).
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5.1 The Encryption Scheme

We consider a slight variation of the CLRS Friendly PKE scheme of [18]. Con-
sider the following PKE scheme E = (Setup,Gen,Enc,Dec,UpdateC,UpdateS)
with message space M := {0, 1} and parameters n,m, d ∈ N.

– Setup(1κ): Sample gd ← G(1κ) and vectors p,w ←$ Z
m
q such that p · wT = 0

mod q. Return pub := (gd, [p]g, [w ]h). (Recall that all algorithms implicitly
take pub as input.)

– Gen(pub): Sample t ←$ Z
m
q , r ←$ Z

n
q and compute sk := [rT ·w +1T

n · t ]h, set
α := p · tT and compute pk := [α]g. The latter can be computed given only
[p]g ∈ G

m
1 and t ∈ Z

m
q . Return (pk , sk).

– Enc(pk , b): Sample u ←$ Z
n
q and compute c1 := [uT ·p]g and c2 := [αu+b1n]g.

Return C := (c1, c2).
– Dec(sk , C): Let f = e(g, h), parse sk = [S ]h ∈ G

n×m
2 , let S1 be the first row

of S and parse C = ([C ]g, [c]g) ∈ (
G

n×m
1 × G

n
1

)
. Compute b := [c−C ·ST

1 ]f
and output 1 if and only if b = [1n]f . In particular, [b]f can be computed by
first computing [c]f := e([c]g, h) and then [C · ST

1 ]f :=
∏

i e(C [i],S [i]).
– UpdateC(pk , C): Parse C = ([C ]g, [c]g) ∈ (

G
n×m
1 × G

n
1

)
. Sample B ←$ Z

n×n
q

such that B · 1T
n = 1n and the rank of B is d. Return ([B · C ], [B · cT ]).

– UpdateS(sk): Parse sk = [S ]h ∈ G
n×m
2 . Sample A ←$ Z

n×n
q such that A·1T

n =
1n and the rank of A is d. Return [A · S ]h.

Some remarks are in order. First, the main difference between the scheme above
and the PKE of [18] is in the public-keys and in the ciphertexts spaces. Let
EDLWW be the scheme proposed by [18]. A public key for EDLWW is the target
group element [p · tT ]f , while in the scheme above, a public key belongs to the
group G1. Similarly, a ciphertext for EDLWW is a tuple (c1, c2) where c2 ∈ G

n
T .

The message space of EDLWW is GT , while the message space of the scheme above
is {0, 1}. This is a big disadvantage, however, thanks to this modification, the
public keys, secret keys and ciphertexts belong either to G1 or G2. As we will
see, this modification is necessary to use lM-NIZK based on Groth-Sahai proof
systems [30].

Second, we cannot directly derive from the secret key the public key. However,
we can define the function PK′ that upon input sk = [S ]h produces pk ′ =
[p]g • [S1]h, where S1 is the first row of S . Notice that the NMC Σ and the
simulator S1 of Theorem 1 need to check if the public key stored in one side
is valid for the secret key stored in the other side. We can fix4 this issue by
checking the condition e(pk , h) = PK′(sk) instead.

Theorem 2. For any m ≥ 6, n ≥ 3m−6, d := n−m+3 the above scheme is an
�-CLRS-friendly encryption scheme under the External Diffie-Hellman Assump-
tion on G for � = min{m/6 − 1, n − 3m + 6} · log(q) − ω(log κ).
4 In particular, the reduction in Lemma 7 in steps 5c can leak (1,PK′(Ti+1(·))) and

then, in step 5d, we need to modify the function VT0
i+1,ri,pk,pk

′ to check if e(p̃k , h) =

pk ′ and the function MTi+1,ri,pk to check if e(p̃k , h) = PK′(sk ′).
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The proof of security follows the same line of [18]. The PKE scheme E is perfectly
ciphertext-update private. See the full version [23] of the paper for more details.

Unfortunately, the message space of the PKE is {0, 1} which limits the num-
ber of applications of NMC-R. We propose two different way to overcome this
weakness:

– For any k ∈ N let E×k the direct product encryption scheme that given a
message in {0, 1}κ encrypts it bit by bit. In the full version of the paper we
show that if E is a �-CLRS-Friendly secure PKE then E×k is a �-CLRS-
Friendly secure PKE. Unfortunately, the leakage-rate of the encoding scheme
gets much worse. In fact, the size of the chipertexts increase κ times but the
leakage parameter stays the same.

– We define CLRS-Friendly Key Encapsulation Mechanisms and the Non-
Malleable Key-Encoding schemes with Refresh. The latter notion is strictly
weaker than Non-Malleable Codes, however, it still allows useful applications
in the setting of tamper resilience cryptography. We defer all the details to
the full version of the paper.

5.2 The Label-Malleable NIZK

We can cast a lM-NIZK as a special case of the Controlled-Malleable NIZK
(cM-NIZK) argument of knowledge systems [10]. Roughly speaking, cM-NIZK
systems allow malleability (from a specific set of allowable transformation) both
on the instance and on the NIZK proof. Similarly to lM-NIZK AoK systems, cM-
NIZK systems have a form of simulation sound extractability called Controlled-
Malleable Simulation Sound Extractability (cM-SSE). Informally, the extractor
will either extract a valid witness or will track back to a tuple formed by an
instance queried to the simulation oracle and the associated simulated proof.

The elegant framework of [10] (full version [11]) builds on the malleability
of Groth-Sahai proof systems [30] and provides a set of sufficient conditions to
have efficient cM-NIZK systems. Here we translate the conditions to the setting
of lM-NIZK systems.

Definition 8. For a relation R and a set of transformations T on the set of
labels L, we say (R, T ) is LM-friendly if the following five properties hold:

1. Representable statements and labels: any instance and witness of R can
be represented as a set of group elements; i.e., there are efficiently computable
bijections Fs : LR → G

ds
is

for some ds and is, Fw : WR → Gdw
id

for some dw

and iw where LR := {x|∃w : (x,w) ∈ R} and LR := {w|∃x : (x,w) ∈ R} and
Fl : L → G

dl
il

for some dl and il = is.
2. Representable transformations: any transformation in T can be repre-

sented as a set of group elements; i.e., there is an efficiently computable bijec-
tion Ft : T → Gdt

it
for some dt and some it.

3. Provable statements: we can prove the statement (x,w) ∈ R (using the
above representation for x and w) using pairing product equations; i.e.,
there is a pairing product statement that is satisfied by Fs(x) and Fw(w)
iff (x,w) ∈ R.
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4. Provable transformations: we can prove the statement “φ(L′) = L ∧ φ ∈
T ” (using the above representations for labels L,L′ and transformation φ)
using a pairing product equation, i.e. there is a pairing product statement
that is satisfied by Ft(φ), Fl(L), Fl(L′) iff T ∈ T ∧ φ(L′) = L.

5. Transformable transformations: for any φ, φ′ ∈ T there is a valid trans-
formation t(φ) that takes the statement “φ(L′) = L ∧ φ ∈ T ” (phrased using
pairing products as above) for the statement “(φ′ ◦φ)(L′) = φ(L)∧ (φ′ ◦φ) ∈
T ” and that preserves5 the label L′.

The definition above is almost verbatim from [11], the only differences are that
the point (1) is extended to support labels and that the original definition has
a condition on the malleability of the tuple statement/witness (which trivially
holds for lM-NIZK). We adapt a theorem of [11] to the case of Label Malleability:

Theorem 3. If the DLIN assumption holds then we can construct a lM-NIZK
that satisfies derivation privacy for any LM-friendly relation and transformation
set (R, T ).

With this powerful tool in our hand, we are now ready to show that there exists
a lM-NIZK for the relation and transformation set (Rpub , Tpub) defined above:

Rpub = {([α]g, [S ]h) : [α]g = [p · ST
1 ]g},

Tpub =
{

φB (C , c) :=
(
[B · CT ]g, [B · cT ]g

)
: 1 = B · 1T

}
.

where pub = (gd, [p]g, [w ]h) ← Setup(1κ). Notice that the set of all the possible
updates of a ciphertext,

{
φ : φ(·) = UpdateC(pub, pk , · ;B),B ∈ Z

n×n
q ,1n = B · 1T

n , rank(B) = d
}

,

is a subset of Tpub . Therefore, we can apply the generic transformation of Sect. 4
given a lM-NIZK for the relation Rpub and the set of transformations Tpub and
the CLRS-Friendly PKE defined above. We show that the tuple (Rpub , Tpub) is
LM-Friendly.

Representable statements and labels: Notice that LRpub
⊆ G1, while the

set of valid label is the set G
n×m
1 × G

n
1 .

Representable transformations: We can describe a transformation φB ∈
Tpub as a matrix of elements [B ]h ∈ G

n×n
2 .

Provable statements: The relation Rpub can be represented by the pairing
product statement [α]g • [1]h = [p] • [ST

1 ]h.
Provable transformations: Given a transformation φB ∈ Tpub and labels

c = ([C ]g, [c]g), c′ = ([C ′]g, [c′]g), the statement “φB (c′) = c ∧ φB ∈ T ” is
transformed as the system of pairing product statements:

⎧
⎨

⎩

[B ]h • [C ′T ]g = [C ]g • [1]h
[B ]h • [c′T ]g = [c]g • [1]h
[B ]h • [1T ]g = [1 ]f

(3)

5 See full version for the formal definition.



Non-malleable Codes with Split-State Refresh 305

Transformable transformations: Let φB , c, c′ be as before and let φB ′ ∈ Tpub .
We show that we can transform the system in Eq. (3) to be a valid system
of pairing product statement for the statement (φB ′ ◦ φB )(c′) = φB ′(c) ∧
(φB ′ ◦φB ) ∈ T . Given the system of pairing product equations in Eq. (3) and
B ′ ∈ Z

n×n
q we can perform operations at the exponent and derive:

⎧
⎨

⎩

[B ′ · B ]h • [C ′T ]g = [B ′ · CT ]g • [1]h
[B ′ · B ]h • [c′T ]g = [B ′ · cT ]g • [1]h
[B ′ · B ]h • [1T ]g = [1 ]f

The Set T ×k
pub of Transformations for E×k . For any k ∈ N, let the PKE

scheme E×k be defined as in Sect. 5.1, let CE×k = (CE)k be the ciphertexts
space of E×k and let T ×k

pub = (Tpub)k. Explicitly, the set of transformations is
defined as:

T ×k
pub =

⎧
⎪⎨

⎪⎩
φB̄ :

φB̄(c̄) =
(
[B i · CiT ]g, [B i · ciT ]g : i ∈ [k]

)
,

c̄ = (C 1, c1), . . . , (C k, ck),
B̄ = B1, . . . ,Bk, ∀i ∈ [k] : 1 = B i · 1T

⎫
⎪⎬

⎪⎭

For any positive polynomial k(κ), the tuple (Rpub , T ×k
pub ) is LM-Friendly. The

result follows straight forward from the framework presented in Sect. B.3 of [11]
where it is shown that the for any pair of transformations on statements over
pairing product equations we can derive a new transformation for the conjunction
of the statements.

6 Applications

Following the same approach of [22,34] we show a compiler that maps any
functionality G(s, ·) to a Continually-Leakage-and-Tamper Resilient function-
ality G′(s′, ·) equipped with refresh procedure Rfrsh. Consider the experiments
in Fig. 6.

Definition 9. A compiler Φ = (Setup,FCompile,MCompile,Rfrsh) is a Split-
State (�, ρ, τ)-Continually-Leakage-and-Tamper (for short (�, ρ, τ)-CLT) Com-
piler in the CRS model if for every PPT adversary A there exists a simula-
tor S such that for every efficient functionality G : {0, 1}κ × {0, 1}i → {0, 1}o

for κ, i, o ∈ N and any secret state s ∈ {0, 1}κ, the output of the real experi-
ment TamperFunc(G,s)

A,Φ (κ, �, ρ, τ) and the output of the simulated experiment
IdealFunc(κ) are indistinghuishable.

Given a NMC-R Σ, consider the following compiler Π = (Setup,MCompile,
Enc,FCompile,Rfrsh):

– Setup(1κ): Output crs ←$ Σ.Init(1κ);
– MCompile(crs, s): Output s′ ←$ Σ.Enc(crs, s);
– FCompile(crs, G): Output G′(s′, x) := G(Σ.Dec(crs, s′));
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Fig. 6. Experiment defining the security of CLT Resilient Compiler.

– Rfrsh(crs, s′): Output Σ.Rfrsh(crs, s′).

Theorem 4. Let Σ be a (�, ρ, τ)-Non-Malleable Code with Refresh then Π as
defined above is a Split-State (�, ρ, τ)-CTL Compiler in the CRS model.
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Abstract. In a recent result, Dachman-Soled et al. (TCC 2015) pro-
posed a new notion called locally decodable and updatable non-malleable
codes, which informally, provides the security guarantees of a non-
malleable code while also allowing for efficient random access. They also
considered locally decodable and updatable non-malleable codes that
are leakage-resilient, allowing for adversaries who continually leak infor-
mation in addition to tampering. Unfortunately, the locality of their
construction in the continual setting was Ω(log n), meaning that if the
original message size was n blocks, then Ω(log n) blocks of the codeword
had to be accessed upon each decode and update instruction.

In this work, we ask whether super-constant locality is inherent in this
setting. We answer the question affirmatively by showing tight upper and
lower bounds. Specifically, in any threat model which allows for a rewind
attack—wherein the attacker leaks a small amount of data, waits for the
data to be overwritten and then writes the original data back—we show
that a locally decodable and updatable non-malleable code with block
size X ∈ poly(λ) number of bits requires locality δ(n) ∈ ω(1), where
n = poly(λ) is message length and λ is security parameter. On the
other hand, we re-visit the threat model of Dachman-Soled et al. (TCC
2015)—which indeed allows the adversary to launch a rewind attack—
and present a construction of a locally decodable and updatable non-
malleable code with block size X ∈ Ω(λ1/µ) number of bits (for constant
0 < μ < 1) with locality δ(n), for any δ(n) ∈ ω(1), and n = poly(λ).

1 Introduction

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [22]
as a relaxation of error-correcting codes, and are useful in settings where
privacy—but not necessarily correctness–is desired. Informally, a coding scheme
is non-malleable against a tampering function if by tampering with the code-
word, the function can either keep the underlying message unchanged or change
it to an unrelated message. The main application of non-malleable codes pro-
posed in the literature is for achieving security against leakage and tampering
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attacks on memory (so-called physical attacks or hardware attacks), although
non-malleable codes have also found applications in other areas of cryptogra-
phy [16,17,29] and theoretical computer science [12].

Standard non-malleable codes are useful for protecting small amounts of
secret data stored on a device (such as a cryptographic secret key) but unfor-
tunately are not suitable in settings where, say, an entire database must be
protected. This is due to the fact that non-malleable codes do not allow for ran-
dom access: Once the database is encoded via a non-malleable code, in order to
access just a single location, the entire database must first be decoded, requiring
a linear scan over the database. Similarly, in order to update a single loca-
tion, the entire database must be decoded, updated and re-encoded. In a recent
result, [18] proposed a new notion called locally decodable and updatable non-
malleable codes, which informally speaking, provides the security guarantees of
a non-malleable code while also allowing for efficient random access. In more
detail, we consider a message m = m1, . . . ,mn consisting of n blocks, and an
encoding algorithm enc(m) that outputs a codeword Ĉ = ĉ1, . . . , ĉn̂ consisting
of n̂ blocks. As introduced by Katz and Trevisan [35], local decodability means
that in order to retrieve a single block of the underlying message, one does not
need to read through the whole codeword but rather, one can access just a
few blocks of the codeword. Similarly, local updatability means that in order to
update a single block of the underlying messages, one only needs to update a
few blocks of the codeword.

As observed by [18], achieving these locality properties requires a modifica-
tion of the previous definition of non-malleability: Suppose a tampering function
f only modifies one block of the codeword, then it is likely that the output of
the decoding algorithm, dec, remains unchanged in most locations. (Recall dec
gets as input an index i ∈ [n] and will only access a few blocks of the code-
word to recover the i-th block of the message, so it may not detect the mod-
ification.) In this case, the (overall) decoding of the tampered codeword f(Ĉ)
(i.e. (decf(Ĉ)(1), . . . ,decf(Ĉ)(n))) can be highly related to the original message,
which intuitively means it is highly malleable.

To handle this issue, [18] consider a more fine-grained experiment. Informally,
they require that for any tampering function f (within some class), there exists
a simulator that, after every update instruction, computes a vector of decoded
messages m∗, and a set of indices I ⊆ [n]. Here I denotes the coordinates of
the underlying messages that have been tampered with. If I = [n], then the
simulator thinks that the decoded messages are m∗, which should be unrelated
to the most recent messages placed in each position by the updater. On the other
hand, if I � [n], the simulator thinks that all the messages not in I remain
unchanged (equivalent to the most recent values placed there by the simulator
or the original message, if no update has occurred in that position), while those
in I become ⊥. This intuitively means the tampering function can do only one
of the following cases:

1. It destroys a block (or blocks) of the underlying messages while keeping the
other blocks unchanged, OR
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2. If it modifies a block of the underlying message to a valid encoding, then
it must have modified all blocks to encodings of unrelated messages, thus
destroying the original message.

It turns out, as shown by [18], that the above is sufficient for achieving
tamper-resilience for RAM computations. Specifically, the above (together with
an ORAM scheme) yields a compiler for any RAM program with the guarantee
that any adversary who gets input/output access to the compiled RAM program
Π running on compiled database D who can additionally apply tampering func-
tions f ∈ F to the database D adaptively throughout the computation, learns
no more than what can be learned given only input/output access to Π running
on database D. Dachman-Soled et al. in [18] considered locally decodable and
updatable non-malleable codes that are also leakage-resilient, thus allowing for
adversaries who continually leak information about D in addition to tampering.
The locality achieved by the construction of [18] is Θ(log(n)), meaning that when
encoding messages of length n number of blocks, the decode and update proce-
dures each require access to Θ(log(n)) number of blocks of the encoding. Thus,
when using the encoding scheme of [18] to compile a RAM program into its secure
version, the overhead is at least Ω(log(n)) memory accesses for each read/write
access in the underlying program. In practice, such an overhead is often pro-
hibitive.1 In this work, we ask whether it is possible to construct leakage-resilient,
locally decodable and updatable non-malleable codes that achieve significantly
better locality.

Rewind attacks. When considering both leakage and tampering attacks (even just
a single leakage query followed in a later round by a single tampering query) so-
called rewind attacks become possible. In a rewind attack, the attacker does the
following (1) leak information on only a “few” blocks of memory in rounds 1, . . . , i;
(2) wait during rounds i + 1, . . . , j until these memory locations are (with high
probability) modified by the “updater” (the entity that models the honest com-
putation on the data); (3) re-write the old information into these memory loca-
tions in round j + 1, with the goal of causing the state of the computation to be
rewound. Rewind attacks can be thwarted by ensuring that when the old informa-
tion is written back, it becomes inconsistent with other positions of the codeword
and an error is detected. On the other hand, a bad outcome of a rewind attack
occurs if when decoding certain blocks of memory, with non-negligible probabil-
ity, the old values from round i are recovered and no error is detected. This is a
problem since such an outcome cannot be simulated by a simulator as required
in the security definition: The decoding of these blocks depends on the original
message and yet is no longer equal to “same” (since the values decoded are not
the most recent values placed in those positions by the updater).

1 Although the ORAM scheme used in the compiler also has ω(log(n)) overhead,
in many applications of interest, properties of the specific RAM program can be
leveraged so that the overhead of ORAM can be reduced such that it becomes
practically feasible. On the other hand, the Θ(log(n)) overhead of the encoding
scheme of [18] is entirely agnostic to the RAM program being run on top and thus,
the high overhead would be incurred in all applications.
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1.1 Our Results

Our results show that any construction of locally decodable and updatable non-
malleable codes in a threat model which allows for a rewind attack as above
will require “high locality.” Specifically, we show tight upper and lower bounds:
(1) Every such construction will require super-constant locality, moreover;
(2) Super-constant locality is sufficient for achieving constructions in the same
threat model as [18] (which, as discussed, allows for rewind attacks). Throughout
the paper, we assume that the decode and update procedures are non-adaptive
in the sense that once an encoding scheme Π = (enc,dec) is specified, then
for each n ∈ N, the sets of codeword blocks Si := Sdec

i ∪ Sup
i accessed in order

to decode/update the i-th message block, i ∈ [n], are fixed (and do not depend
on the codeword Ĉ). This is a natural requirement, which holds true for the
encoding scheme of [18].

Specifically, we show the following:

Theorem 1 (Informal). Let λ be security parameter and let Π = (enc,dec)
be a locally decodable and updatable non-malleable code with non-adaptive decode
and update which takes messages over alphabet Σ and outputs codewords over
alphabet Σ̂, where |Σ|, |Σ̂| ∈ poly(λ), in a threat model which allows for a rewind
attack. Then, for n = poly(λ), Π has locality δ(n) ∈ ω(1).

Moreover, for every δ(n) ∈ ω(1), there exists a Π = (enc,dec) with non-
adaptive decode and update in a threat model which allows for a rewind attack,
which takes messages over alphabet Σ and outputs codewords over alphabet Σ̂,
where |Σ| ∈ poly(λ) and |Σ̂| ∈ Ω(λ1/μ) for constant 0 < μ < 1, such that for
n = poly(λ), Π has locality δ(n).

Specifically, for the positive result, the construction of leakage resilient locally
decodable updatable codes is secure against the same classes of tampering and
leakage functions, F , G, as the construction of [18], but improves the locality
from O(log n) to δ(n), for any δ(n) ∈ ω(1).

We emphasize that, for the lower bound, our attack works even in a threat
model which allows only a single bit of leakage in each round. We leave as an open
question extending our lower bound to the setting where decode and update may
be adaptive (i.e. the next position accessed by decode and/or update depends
on the values read in the previous positions) or randomized.

1.2 Our Techniques

Lower Bound. We assume that there exists a locally decodable and updatable
non-malleable code with non-adaptive decode and update and constant locality,
c, for all message lengths n = poly(λ) (where n is the number of blocks in the
message). We then arrive at contradiction by showing that for every constant
c, there exists a constant c′ > c, such that the security guarantee cannot hold
when encoding messages of length X c′

number of blocks, where X ∈ poly(λ)
is the bit length of the codeword blocks. Specifically, for messages of length
n := X c′ ∈ poly(λ) number of blocks, we will present an explicit attacker and
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an explicit updater for which there cannot exist a simulator as required by the
definition of locally decodable and updatable non-malleable codes.

The attack we present is a rewind attack, as discussed before. Intuitively,
the main difficulty of designing the attack is to determine which positions of the
codeword are to be leaked and subsequently re-wound to their original values so
that with high probability in the real game, the corresponding message block will
decode (with no error detected) to the original value in that position, as opposed
to the most recently updated value. For purposes of our attack, we assume that
the original message is either equal to 0 in all n blocks or equal to 1 in all n
blocks.

Sunflower Lemma. For i ∈ [n], let the sets Si ⊆ [n̂] correspond to the blocks
(where each block has size X ∈ poly(λ) bits) of the codeword accessed in order to
decode/update the i-th block of the message. Note that by the locality assump-
tion, the size of each set Si is |Si| = c. We use the Sunflower Lemma of Erdős
and Rado [24] to choose constant c′ large enough such that when the message
is of length n := X c′

number of blocks, we are guaranteed to have a Sunflower
SF := {Si0 , Si1 , . . . , Sik

}, where i0, . . . , ik ∈ [n], of size k + 1, where k � X · c. A
sunflower is a collection of sets such that the intersection of any pair is equal to
the core core, i.e. Sij

∩ Si�
= core for all j �= 	. There exists k petals, Sij

\core,
and it is required that none of them are empty. See Sects. 3.1 and 3.2 for more
details.

The Compression Function. Given a fixed initial codeword Ĉ and sunflower
SF (as defined above) we define a (randomized) compression function FĈ :
{0, 1, same}k → {0, 1}X·c which takes as input values x1, . . . , xk ∈ {0, 1, same}
indicating how to update (or not) the corresponding message block ij , j ∈ [k],
where Sij

is in the sunflower. Specifically, for j = 1 to k: If xj = same, mes-
sage block ij does not get updated. Otherwise updateĈ(ij , xj) is executed.
The output of the function FĈ is the contents of the sunflower core, core,
after all the updates have been completed. Note that core can consist of at
most c codeword blocks since core ⊆ Sij

for all j ∈ [k]. Therefore, the out-
put length of FĈ is at most X · c bits. Note that this means that FĈ is a
compression function, since we chose k � X · c. Now this, in turn, means
that the output of FĈ cannot contain all of the information in its input.
Indeed, it can be shown (cf. [20]) that with high probability over the choice
of j∗ ∈ [k], the two distributions FĈ(X1, . . . , Xj∗−1, same,Xj∗+1, . . . , Xk) and
FĈ(X1, . . . , Xj∗−1,Xj∗ ,Xj∗+1, . . . , Xk) are statistically close when each Xj ,
j ∈ [k] is chosen uniformly at random from {0, 1, same}. See Sects. 3.1, 3.3 and
3.4 for more details.

The Attacker and the Updater. The attacker first finds the sunflower SF := {Si0 ,
Si1 , . . . , Sik

} in polynomial time and then chooses j∗ ∈ [k] at random. In the
first round (or multiple rounds if the attacker is allowed only a single bit of
leakage) the attacker leaks the contents of the positions in Ĉ corresponding
to decoding of ij∗ (Sij∗ ), minus the contents of the blocks in the core of the
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sunflower. We denote the entire leaked information by yj∗ . The attacker then
writes those same values, yj∗ , back in the k + 1-st round. The updater chooses
values x1, . . . , xk ∈ {0, 1, same} and in each round from 1 to k, requests the
corresponding update (i.e. update message block ij to 0, if xj = 0, update to
1 if xj = 1 and do not update this block at all, if xj = same). See Sect. 3.5 for
more details.

Putting it All Together. Note that the input to the decoding algorithm when
decoding position ij∗ is exactly: (yj∗ , FĈ0

(X1, . . . , Xj∗−1,Xj∗ ,Xj∗+1, . . . , Xk))
(the contents of the positions in Ĉ corresponding to decoding of ij∗ , minus the
contents of the blocks in the core of the sunflower, and the core itself). Addi-
tionally, note that since {Si0 , Si1 , . . . , Sik

} form a sunflower, if xj∗ = same, then
the rewind attack has no effect (since the blocks in Sij∗ \core were not accessed
during any update request) and so decode on input (yj∗ , FĈ0

(X1, . . . , Xj∗−1,
same, Xj∗+1, . . . , Xk)) must correctly output 1 if the original encoding was
1 and 0 if the original encoding was 0 (without outputting ⊥). Since FĈ is
a compression function, it means that with high probability decode on input
(yj∗, FĈ(X1, . . . , Xj∗−1, Xj∗ , Xj∗+1, . . . , Xk)) will output 1 if the original encod-
ing was 1 and 0 if the original encoding was 0, regardless of the value of Xj∗ .
Intuitively, since the output of decode now depends on the original message
block in the ij∗ -th position, as opposed to the most recently updated value, the
simulator must fail in at least one of the two cases (either when the original mes-
sage was 0 or 1) and so the encoding scheme cannot satisfy the non-malleability
definition. See Sect. 3.6 for more details.

Upper Bound. Here we take advantage of the fact that codeword blocks are
large–X ∈ Ω(λ1/μ) number of bits, for constant 0 < μ < 1–to replace the
Merkle Tree used in the original construction of [18] with an alternative data
structure we call a t-slice Merkle Tree. Note that the Ω(log λ) locality of the
construction of [18] came from the fact that an entire path (and siblings) of the
binary Merkle tree from root to leaf of length log(n) had to be traversed for each
decode and update instruction. Our new data structure is a t := X 1−μ-ary tree
for constant 0 < λ < 1 and uses as a building block a collision resistant hash
function h : {0, 1}X → {0, 1}X μ

(note h has output length X μ ∈ Ω(λ)) and so,
for messages of length n = poly(λ) blocks, an entire path of the tree from root
to leaf will always have length less than δ(n), for any δ(n) ∈ ω(1). Moreover, the
root of the tree can be updated and verified without reading any of the siblings
along the path from root to leaf, due to the use of a carefully constructed hash
function with a specific structure. This allows us to achieve a locally decodable
and updatable code with locality δ(n), for any δ(n) ∈ ω(1). See Sect. 4 for more
details.

1.3 Related Work

Non-Malleable Codes. The concept of non-malleability was introduced by Dolev,
Dwork and Naor [19] and has been applied widely in cryptography since. It has
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since been studied in both the computational as well as the information-theoretic
setting. Error-correcting codes and early works on tamper resilience [28,32] gave
rise to the study of non-malleable codes. The notion of non-malleable codes was
formalized in the seminal work of Dziembowski, Pietrzak and Wichs [22]. Split
state classes of tampering functions introduced by Liu and Lysyanskaya [37], have
subsequently received a lot of attention with a sequence of improvements achiev-
ing reduced number of states, improved rate, or adding desirable features to the
scheme [1–3,6,11,21]. Recently [5,7] gave efficient constructions of non-malleable
codes for “non-compartmentalized” tampering function classes. Other works on
non-malleable codes include [2,4,8,10,15,25,33]. We guide the interested reader
to [34,37] for illustrative discussion of various models for tamper and leakage
resilience. There are also several inefficient, existential or randomized construc-
tions for much more general classes of functions (sometimes presented as efficient
constructions in a random-oracle model) in addition to those above [14,22,27].

Locally Decodable Codes. The idea of locally decodable codes was introduced by
Katz and Trevisan in [35], when they considered the possibility of recovering
the message by looking at a limited number of bits from a (possibly) corrupted
encoding obtained from an error correcting code. They also showed the impossi-
bility of achieving the same for schemes with linear encoding length. This work
was followed by [13,23,38] who achieved constant locality with super-polynomial
code length, while on the other hand locally decodable codes with constant rate
and sub-linear locality have been constructed by [30,31,36]. We refer the inter-
ested reader to [39], a survey on locally decodable codes by Yekhanin.

Locally Updatable and Locally Decodable Codes. The notion of locally updatable
and locally decodable codes was introduced by Chandran et al. in [9] where the
constraint of locality, i.e. restricting the number of bits accessed, is also applied to
updating any codeword obtained from encoding of another message. They gave
information theoretic construction with amortized update locality of O(log2 k)
and read locality of (super-linear) polynomial in k, where k is the length of input
message. Another variant called locally updatable and locally decodable-detectable
codes was also introduced in the same work which ensures that decoding never
outputs an incorrect message. Chandran et al. in [9] gave the construction of
such codes in computational setting with poly-logarithmic locality.

Locally Decodable and Updatable Non-Malleable Codes. Dachman-Soled et al.
in [18] introduced the notion of locally decodable and updatable non-malleable
codes and presented a construction in the computational setting. The construc-
tion of [18] also achieves leakage resilience in addition to the tamper resilience.
Dachman-Soled et al. in [18] then used this notion to construct compilers that
transform any RAM machine into a RAM machine secure against leakage and
tampering. This application was also studied by Faust et al. [26], who presented
a different approach which does not use locally decodable and updatable non-
malleable codes. Recently, Chandran et al. [10] gave a construction of locally
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decodable and updatable non-malleable codes in the information-theoretic set-
ting. However, they addressed only the one-time leakage and tampering case,
and to achieve continual leakage and tampering, require a periodic refresh of
the entire memory. The locality of their construction is super-constant, thus
affirming our results.

Bounds on Non-Malleable Codes. Cheragachi and Guruswami [14] studied the
“capacity” of non-malleable codes in order to understand the optimal bounds
on the efficiency of non-malleable codes. This work has been instrumental in
asserting the claims of efficient constructions for non-malleable codes since then
(cf. [1,5,6]). We note that our work is the first study establishing similar tight
bounds for the locality of the locally decodable and updatable non-malleable codes.

2 Definitions

Definition 1 (Locally Decodable and Updatable Code). Let Σ, Σ̂ be sets
of strings, and n, n̂, p, q be some parameters. An (n, n̂, p, q) locally decodable and
updatable coding scheme consists of three algorithms (enc,dec,update) with
the following syntax:

– The encoding algorithm enc (perhaps randomized) takes input an n-block (in
Σ) message and outputs an n̂-block (in Σ̂) codeword.

– The (local) decoding algorithm dec takes input an index in [n], reads at most
p blocks of the codeword, and outputs a block of message in Σ. The overall
decoding algorithm simply outputs (dec(1),dec(2), . . . ,dec(n)).

– The (local) updating algorithm update (perhaps randomized) takes inputs
an index in [n] and a string in Σ ∪ {ε}, and reads/writes at most q blocks
of the codeword. Here the string ε denotes the procedure of refreshing without
changing anything.

Let Ĉ ∈ Σ̂n̂ be a codeword. For convenience, we denote decĈ ,updateĈ as
the processes of reading/writing individual block of the codeword, i.e. the code-
word oracle returns or modifies individual block upon a query. Here we view Ĉ
as a random access memory where the algorithms can read/write to the memory
Ĉ at individual different locations. In binary settings, we often set Σ = {0, 1}κ

and Σ̂ = {0, 1}κ̂.

Definition 2 (Correctness). An (n, n̂, p, q) locally decodable and updatable
coding scheme (with respect to Σ, Σ̂) satisfies the following properties. For any
message M = (m1,m2, . . . ,mn) ∈ Σn, let Ĉ = (ĉ1, ĉ2, . . . , ĉn̂) ← enc(M) be a
codeword output by the encoding algorithm. Then we have:

– for any index i ∈ [n], Pr[decĈ(i) = mi] = 1, where the probability is over the
randomness of the encoding algorithm.
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– for any update procedure with input (j,m′) ∈ [n]×Σ∪{ε}, let Ĉ ′ be the resulting
codeword by running updateĈ(j,m′). Then we have Pr[decĈ′

(j) = m′] = 1,
where the probability is over the encoding and update procedures. Moreover,
the decodings of the other positions remain unchanged.

Remark 1. The correctness definition can be directly extended to handle any
sequence of updates.

Definition 3 (Continual Tampering and Leakage Experiment). Let
k be the security parameter, F ,G be some families of functions. Let
(enc,dec,update) be an (n, n̂, p, q)-locally decodable and updatable coding
scheme with respect to Σ, Σ̂. Let U be an updater that takes input a message
M ∈ Σn and outputs an index i ∈ [n] and m ∈ Σ. Then for any blocks of mes-
sages M = (m1,m2, . . . ,mn) ∈ Σn, and any (non-uniform) adversary A, any
updater U , define the following continual experiment CTamperLeakA,U,M :

– The challenger first computes an initial encoding Ĉ(1) ← enc(M).
– Then the following procedure repeats, at each round j, let Ĉ(j) be the current

codeword and M (j) be the underlying message:
– A sends either a tampering function f ∈ F and/or a leakage function

g ∈ G to the challenger.
– The challenger replaces the codeword with f(Ĉ(j)), or sends back a leakage

	(j) = g(Ĉ(j)).
– We define m(j) def=

(
decf(Ĉ(j))(1), . . . ,decf(Ĉ(j))(n)

)
.

– Then the updater computes (i(j),m) ← U(m(j)) for the challenger.
– Then the challenger runs updatef(Ĉ(j))(i(j),m) and sends the index i(j)

to A.
– A may terminate the procedure at any point.

– Let t be the total number of rounds above. At the end, the experiment outputs
(
	(1), 	(2), . . . , 	(t),m(1), . . . ,m(t), i(1), . . . , i(t)

)
.

Definition 4 (Non-malleability and Leakage Resilience against Contin-
ual Attacks). An (n, n̂, p, q)-locally decodable and updatable coding scheme with
respect to Σ, Σ̂ is continual non-malleable against F and leakage resilient against
G if for all ppt (non-uniform) adversaries A, and ppt updaters U , there exists
some ppt (non-uniform) simulator S such that for any M = (m1, . . . ,mn) ∈
Σn, CTamperLeakA,U,M is (computationally) indistinguishable to the follow-
ing ideal experiment IdealS,U,M :

– The experiment proceeds in rounds. Let M (1) = M be the initial message.
– At each round j, the experiment runs the following procedure:

– At the beginning of each round, S outputs (	(j), I(j),w(j)), where I(j) ⊆
[n].
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– Define

m(j) =
{
w(j) ifI(j) = [n]
m(j)|I(j) := ⊥,m(j)|Ī(j) := M (j)|Ī(j) otherwise,

where x|I denotes the coordinates x[v] where v ∈ I, and the bar denotes
the complement of a set.

– The updater runs (i(j),m) ← U(m(j)) and sends the index i(j) to the
simulator. Then the experiment updates M (j+1) as follows: set M (j+1) :=
M (j) for all coordinates except i(j), and set M (j+1)[i(j)] := m.

– Let t be the total number of rounds above. At the end, the experiment outputs
(
	(1), 	(2), . . . , 	(t),m(1), . . . ,m(t), i(1), . . . , i(t)

)
.

3 Lower Bound

In this section we prove the following theorem:

Theorem 2. Let λ be security parameter and let Π = (enc,dec) be a locally
decodable and updatable non-malleable code with non-adaptive decode and update
which takes messages over alphabet Σ and outputs codewords over alphabet Σ̂,
where log |Σ|, log |Σ̂| ∈ poly(λ), in a threat model which allows for a rewind
attack. Then, for n := n(λ) ∈ poly(λ), Π has locality δ(n) ∈ ω(1).

We denote by X := log |Σ̂| ∈ poly(λ) the number of bits in each block of the
codeword. For purposes of the lower bound, we can take X to be any polynomial
in λ (or smaller).

In the following, we assume that Π = (enc,dec) is a locally decodable and
updatable non-malleable code with non-adaptive decode and update and with
constant locality. We then present an efficient rewind attacker along with an
updater that break the security of Π, thus proving the theorem.

3.1 Attack Preliminaries

Definition 5 (Sunflower). A sunflower (or Δ-system) is a collection of sets
Si for 1 ≤ i ≤ k such that the intersection of any two set is core Y , i.e. Si ∩Sj =
core for all i �= j. There exists k petals Si\core and it’s required that none of
them are empty. A family of pairwise disjoint sets form a sunflower with an
empty core.

The following famous lemma is due to Erdős and Rado.

Lemma 1 (Sunflower Lemma [24]). Let F be family of sets each of cardi-
nality s. If |F| > s!(k − 1)s then F contains a sunflower with k petals.



320 D. Dachman-Soled et al.

Definition 6 (Statistical Distance). Let D1 and D2 be two distribution over
a shared universe of outcomes. let supp(D) be the set of values assumed by D
with nonzero probability, and let D(u) := Pr[D = u]. The statistical distance of
D1 and D2 is defined as

||D1 − D2||stat :=
1
2

∑

u∈supp(D1)∪supp(D2)

|D1(u) − D2(u)|.

Definition 7 (Distributional Stability [20]). Let U be a finite universe
and t, n ≥ 1 be integers. Let Di for 1 ≤ i ≤ t be a collection of t mutually
independent distributions over {0, 1}n and F be a possibly-randomized mapping
F (x1, . . . , xt) : {0, 1}n×t → U , for j ∈ [t] let

γj := E
y∼Dj

[||F (D1, . . . ,Dj−1, y,Dj+1, . . . ,Dt) − F (D1, . . . ,Dt)||stat].

F is δ-distributionally stable for δ ∈ [0, 1] with respect to D1, . . . ,Dt if

1
t

t∑

j=1

γj ≤ δ.

Lemma 2 (Compression Functions are Distributionally Stable [20]).
Let R(x1, . . . , xt) : {0, 1}n×t → {0, 1}≤t′

be any possibly-randomized mapping,
for any n, t, t′ ∈ N

+. R is δ-distributionally stable with respect to any independent
input distributions D1, . . . ,Dt, where it may take either of the following two
bounds:

1. δ :=
√

ln 2
2 . t′+1

t

2. δ := 1 − 2− t′
t −3.

3.2 Applying the Sunflower Lemma

For i ∈ [n], the sets Si ⊆ [n̂] correspond to the blocks (each of size X ) of
the codeword accessed in order to update/decode mi (i.e. the set Si := Sdec

i ∪
Sup

i , where Sdec
i , Sup

i are the sets of blocks accessed by the decode and update
procedures, respectively). By hypothesis, we have that for i ∈ [n], |Si| = c, for
constant c. Choose n = X c′ ∈ poly(λ), where c′ is a constant such that

X c′
> c! · (22, 500 · c · X )c

Then by the Sunflower Lemma, {S1, . . . , Sn} contains a sunflower with k + 1 :=
22, 500 · c · X + 1 petals. Let SF := {Si0 , Si1 , . . . , Sik

}, where i0, . . . , ik ∈ [n]. For
codeword Ĉ, Let core(Ĉ) denote the content of the set of blocks that make up
the core of the sunflower. For set S�, 	 ∈ [n], let set�(Ĉ) denote the content of
the blocks in set S�.
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3.3 The Compression Functions

Given a fixed initial codeword Ĉ, sunflower SF := {Si0 , . . . , Sik
}, where

i0, . . . , ik ∈ [n] (as defined above) with k + 1 := 22, 500 · c · X + 1 petals, define
the following (randomized) function FĈ : {0, 1, same}k → {0, 1}X·c as follows:

– On input x1, . . . , xk ∈ {0, 1, same}
– For j = 1 to k:

• If xj = same, run updateĈ(i0, 0).
• Otherwise run updateĈ(ij , xj).

where Ĉ denotes the current codeword at any point in time.
– Run updateĈ(i0, 0).
– Output the contents of core(Ĉ).

3.4 Closeness of Distributions

For 	 ∈ [k], let X� be a random variable distributed as X, where X is distrib-
uted as U{0,1,same}, i.e. its value is chosen uniformly from the set {0, 1, same}.
Let Ĉ0 ← enc(0 . . . 0) and Ĉ1 ← enc(1 . . . 1). Let y0

j := setij
(Ĉ0)\core(Ĉ0)

denote the contents of the positions in Ĉ0 corresponding to decoding of ij ,
minus the contents of the blocks in the core of the sunflower. Similarly, let
y1

j := setij
(Ĉ1)\core(Ĉ1) denote the contents of the positions in Ĉ1 correspond-

ing to decoding of ij , minus the contents of the blocks in the core of the sunflower.
We prove the following claim, which will be useful in the subsequent analysis.

Claim 3.1. For every Ĉ0 ← enc(0 . . . 0) and Ĉ1 ← enc(1 . . . 1), we have that:

– With probability at least 0.8 over j ∼ [k], the statistical distance between
(y0

j , FĈ0
(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y0

j , FĈ0
(X1, . . . , Xk)) is at

most 0.1.
– With probability at least 0.8 over j ∼ [k], the statistical distance between

(y1
j , FĈ1

(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y1
j , FĈ1

(X1, . . . , Xk)) is at
most 0.1.

Proof. First, by Lemma 2 and the fact that FĈ is a compression function, we
have that for every codeword Ĉ:

1

k

k∑
j=1

E
x∼X

[||FĈ(X1, . . . , Xj−1, x, Xj+1, . . . , Xk) − FĈ(X1, . . . , Xk)||stat] <

√
c · X

k
.

By linearity of expectation, we have

E
x∼X

[
1

k

k∑
j=1

(||FĈ(X1, . . . , Xj−1, x, Xj+1, . . . , Xk) − FĈ(X1, . . . , Xk)||stat)
]

<

√
c · X

k
.
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Now, by Markov’s inequality, we have that

1

k

k∑
j=1

(||FĈ(X1, . . . , Xj−1, same, Xj+1, . . . , Xk) − FĈ(X1, . . . , Xk)||stat) < 3

√
c · X

k
.

Applying Markov’s inequality again, we have that with probability at least 0.8
over choice of j ∼ [k],

||FĈ(X1, . . . , Xj−1, same, Xj+1, . . . , Xk) − FĈ(X1, . . . , Xk)||stat < 15 ·
√

c · X
k

= 0.1,

where the final equality holds since we take k + 1 := 22, 500 · c · X + 1. Finally,
since the above holds for every Ĉ, we have that for every Ĉ0 ← enc(0 . . . 0), and
Ĉ1 ← enc(1 . . . 1):

– With probability at least 0.8 over j ∼ [k], the statistical distance between
FĈ0

(X1, . . . , Xj−1, same,Xj+1, . . . , Xk) and FĈ0
(X1, . . . , Xk) is at most 0.1.

– With probability at least 0.8 over j ∼ [k], the statistical distance between
FĈ1

(X1, . . . , Xj−1, same,Xj+1, . . . , Xk) and FĈ1
(X1, . . . , Xk) is at most 0.1.

The above implies that for every Ĉ0 ← enc(0 . . . 0) and Ĉ1 ← enc(1 . . . 1),
we have that with probability at least 0.8 over j ∼ [k], the statistical distance
between (y0

j , FĈ0
(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y0

j , FĈ0
(X1, . . . , Xk))

is at most 0.1, and with probability at least 0.8 over j ∼ [k], the
statistical distance between (y1

j , FĈ1
(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and

(y1
j , FĈ1

(X1, . . . , Xk)) is at most 0.1, since y0
j , y1

j can be deduced from Ĉ0, Ĉ1,
respectively, and Ĉ0, Ĉ1 are part of the description of the functions. This con-
cludes the proof of the claim.

3.5 The Attack

In this section we describe the polynomial-time attacker and updater:
Description of attacker:

– Find the Sunflower SF := {Si0 , . . . , Sik
}, where i0, . . . , ik ∈ [n] and k + 1 :=

22, 500 · c · X + 1, contained in {S1, . . . , Sn} in O(n2) time.2
– Choose j∗ ∼ [k]
– In the first round, submit leakage function 	(Ĉ) defined as 	(Ĉ) :=

setij∗ (Ĉ)\core(Ĉ) which returns Leaked, i.e. the contents of the positions in Ĉ
corresponding to decoding of ij∗ , minus the contents of the blocks in the core
of the sunflower.3

2 This can be done by finding the pairwise intersection Si ∩ Sj for all i, j ∈ [n],
yielding sets core1, . . . , coren2 and the sorting these sets lexicographically. The core
of the sunflower core := corei, where corei is the most frequently appearing core. The
petals are the corresponding sets that share that pairwise intersection.

3 If the attacker may leak only a single bit per round, we instead add here r <
X · c number of rounds where in each round the attacker leaks a single bit from
setij∗ (Ĉ)\core(Ĉ). During each of these rounds, the updater requests a “dummy”

update, updateĈ(j)
(i0, 0).
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– Wait until the k+1-st round. In the k+1-st round, choose tampering function
f which replaces the contents of setij∗(Ĉ(k))\core(Ĉ(k)), i.e. the positions in
Ĉ(k) corresponding to decoding of ij∗ , minus the contents of the blocks in the
core of the sunflower, with the values, Leaked, that were leaked via 	.

Description of Updater:

– Choose x1, . . . , xk ∼ {0, 1, same}k.
– For j = 1 to k:

• If xj = same, request updateĈ(j)
(i0, 0)

• Otherwise request updateĈ(j)
(ij , xj)

where Ĉ(j) denotes the current codeword in round j.
– In round j > k, request updateĈ(j)

(i0, 0).

3.6 Attack Analysis

Let J∗ be the random variable corresponding to choice of j∗ in the attack
described above. For j ∈ [k], let upij

be the event that location ij gets updated
and let upij

be the event that location ij does not get updated. Recall that
for j ∈ [k], mij

denotes the original message in block ij . We have the following
properties, which can be verified by inspection:

Fact 1.(a) For j ∈ [k], Pr[upij
| mij

= 0] = Pr[upij
| mij

= 1] = 0.67;
Pr[upij

| mij
= 0] = Pr[upij

| mij
= 1] = 0.33.

(b) For j ∈ [k], if the ij-th block of original message was a mij
= 0, then

conditioned on an update occurring on block ij , m
(k)
ij

= 0 with probability

0.5 and m
(k)
ij

= 1 with probability 0.5. Conditioned on no update occurring

on block ij , m
(k)
ij

= 0 with probability 1.
(c) For j ∈ [k], if the ij-th block of original message was a mij

= 1, then
conditioned on an update occurring on block ij , m

(k)
ij

= 1 with probability

0.5 and m
(k)
ij

= 0 with probability 0.5. Conditioned on no update occurring

on block ij , m
(k)
i = 1 with probability 1.

We next present the main technical claim of this section:

Claim 3.2. For the attack and updater specified in Sect. 3.5:

Case 1: If the original message was m = 0, then with probability at least 0.7,
m

(k+1)
iJ∗ = 0.

Case 2: If the original message was m = 1, then with probability at least 0.7,
m

(k+1)
iJ∗ = 1.

We first show how to use Claim 3.2 to complete the proof of Theorem 2 and
then present the proof of Claim 3.2.
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Proof (of Theorem 2). We show that the above claim implies that the candidate
scheme is not secure under Definitions 3 and 4. Definition 4 requires the exis-
tence of a simulator S which (for the above attack and updater) outputs one of
{same,⊥}∪{0, 1}κ for the decoding of position i in round k +1. Recall that if S
outputs same, then the output of the experiment in the corresponding position,
denoted m

(k+1)
iJ∗ ,S , is set to m

(k+1)
iJ∗ ,S := m

(k)
iJ∗ . We begin by defining the following

notation for each j ∈ [k]:

p0up,j := Pr[S outputs same | mij
= 0 ∧ upij

]

p1up,j := Pr[S outputs same | mij
= 1 ∧ upij

]

p0up,j := Pr[S outputs same | mij
= 0 ∧ upij

]

p00,j := Pr[S outputs 0 | mij
= 0]

p10,j := Pr[S outputs 0 | mij
= 1]

Note that since S does not see the original message, we have that for each j ∈ [k]:

(a) p0up,j = p1up,j (b) p00,j = p10,j . (1)

Additionally we have, for each j ∈ [k]::

Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 0]

= Pr[upij
| mij

= 0] · Pr[S outputs same | mij
= 0 ∧ upij

]

· Pr[m(k)
ij

= 0 | mij
= 0 ∧ upij

]

= 0.67 · p0up,j · 0.5, (2)

where the first equality follows since (S outputs same | mij
= 0 ∧ upij

) and
(m(k)

ij
= 0 | mij

= 0∧upij
) are independent events and the last line follows from

Fact 1, items (a) and (b). Similarly, for each j ∈ [k]:

Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 1]

= Pr[upij
| mij

= 1] · Pr[S outputs same | mij
= 1 ∧ upij

]

· Pr[m(k)
ij

= 0 | mij
= 1 ∧ upij

]

= 0.67 · p1up,j · 0.5

= 0.67 · p0up,j · 0.5, (3)

where the second to last line follows from Fact 1, items (a) and (c), and the last
line follows due to (1a). Moreover, we have for each j ∈ [k]:

Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 0]

= Pr[upij
| mij

= 0] · Pr[S outputs same | mij
= 0 ∧ upij

]

= 0.33 · p0up,j , (4)



Tight Upper and Lower Bounds for Leakage-Resilient 325

where the last line follows from Fact 1, item (a). Finally, for each j ∈ [k]:

Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 1] = 0. (5)

Given Claim 3.2, in order for S to succeed, if the original message was m = 0,
then m

(k+1)
iJ∗ ,S must be equal to 0 with probability (nearly) 0.7, whereas if the

original message was m = 1, then m
(k+1)
iJ∗ ,S must be equal to 1 with probability

(nearly) 0.7. Thus we have that:

0.7 =
∑

j∈[k]

Pr[J∗ = j] · Pr[m(k+1)
ij ,S = 0 | mij

= 0]

=
∑

j∈[k]

1
k

· (Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 0]

+ Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 0]

+ Pr[S outputs 0 | mij
= 0])

=
∑

j∈[k]

1
k

· (0.67 · p0up,j · 0.5 + 0.33 · p0up,j + p00,j), (6)

where the last line follows due to (2) and (4). On the other hand we have:

0.3 ≥
∑

j∈[k]

Pr[J∗ = j] · Pr[m(k+1)
ij ,S = 0 | mij

= 1]

=
∑

j∈[k]

1
k

· (Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 1]

+ Pr[S outputs same ∧ m
(k)
ij

= 0 ∧ upij
| mij

= 1]

+ Pr[S outputs 0 | mij
= 1])

=
∑

j∈[k]

1
k

· (0.67 · p0up,j · 0.5 + p10,j)

=
∑

j∈[k]

1
k

· (0.67 · p0up,j · 0.5 + p00,j). (7)

where the second to last line follows due to (3) and (5) and the last line follows
due to (1b). But subtracting (7) from (6), this implies that 0.33·∑j∈[k]

1
k ·p0up,j ≥

0.4, which is impossible since for each j ∈ [k], pup,j ≤ 1. Thus we have reached
contradiction and so the theorem is proved.

We conclude by proving the Claim.

Proof (of Claim 3.2). The proof of the claim relies on the fact that decode takes
as input DEC(y0

j∗ , FĈ0
(X1, . . . , Xk)) in Case 1 and DEC(y1

j∗ , FĈ1
(X1, . . . , Xk)) in

Case 2, where y0
j := setij

(Ĉ0)\core(Ĉ0) denotes the contents of the positions in
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Ĉ0 corresponding to decoding of ij , minus the contents of the blocks in the core
of the sunflower, and similarly, y1

j := setij
(Ĉ1)\core(Ĉ1) denotes the contents of

the positions in Ĉ1 corresponding to decoding of ij , minus the contents of the
blocks in the core of the sunflower.

But note that, due to the structure of the Sunflower, updates to posi-
tions i0, . . . , ij∗−1, ij∗+1, . . . , ik do not modify the contents of setij∗ (Ĉ0)\core(Ĉ0)
(and setij∗ (Ĉ1)\core(Ĉ1)) and so DEC(y0

j∗ , Fĉ0(X1, . . . , Xj∗−1, same,Xj∗+1, . . . ,

Xk)) = 0 with overwhelming probability and DEC(y1
j∗ , Fĉ1(X1, . . . , Xj∗−1, same,

Xj∗+1, . . . , Xk)) = 1 with overwhelming probability, since when Xj = same, the
rewind attack has no effect and decode outputs the original message.

Moreover, we have shown in Claim 3.1 that for every Ĉ0 ← enc(0 . . . 0) and
Ĉ1 ← enc(1 . . . 1), we have that:

1. With probability at least 0.8 over j∗ ∼ [k], the statistical distance between
(y0

j , FĈ0
(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y0

j , FĈ0
(X1, . . . , Xk)) is at

most 0.1.
2. With probability at least 0.8 over j∗ ∼ [k], the statistical distance between

(y1
j , FĈ1

(X1, . . . , Xj−1, same,Xj+1, . . . , Xk)) and (y1
j , FĈ1

(X1, . . . , Xk)) is at
most 0.1.

Hence with each will not be satisfied with probability at most 0.2. Now, con-
ditioned on each being satisfied, it can be concluded from (1) that the prob-
ability of DEC(y0

j , FĈ0
(X1, . . . , Xk)) = 1 is at most 0.1. Similarly from (2),

DEC(y1
j , FĈ1

(X1, . . . , Xk)) = 0 with probability at most 0.1. Taking a union
bound, we have that in each case, DEC procedure will fail to output the orig-
inal message with probability at most 0.3. This means that with probability at
least 0.7 over all coins, DEC(y0

j∗ , FĈ0
(X1, . . . , Xk)) = 0, whereas with probability

at least 0.7 over all coins DEC(y1
j∗ , FĈ1

(X1, . . . , Xk)) = 1, completing the proof
of the claim.

4 Matching Upper Bound

In this section we show how to construct a locally updatable and decodable
non-malleable code with super-constant locality. This is achieved by replacing
the Merkle Tree in the construction presented in [18] by a new data struc-
ture, t-slice Merkle Tree which we defined below (see Definition 8). Intuitively,
the locality of updating/decoding in the construction given by Dachman-Soled
et al. [18] is lower-bounded by the depth of the Merkle Tree, since, in order to
detect tampering, each update/decode instruction must check the consistency
of a leaf by traversing the path from leaf to root. Our initial idea is to replace
the binary Merkle Tree of depth log(n) with a t-ary Merkle tree (where t is a
super-constant function of n defined below) of constant depth. Unfortunately,
this simple solution does not quite work. Recall that in order to verify consis-
tency of a leaf in a standard Merkle tree, one needs to access not only the path
from leaf to root, but also the siblings of each node on the path. This would
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mean that in the t-ary tree, we would need to access at least Ω(t) sibling nodes,
where t is super-constant, thus still requiring super-constant locality. Our solu-
tion, therefore, is to construct t-ary Merkle trees of a particular form, where
verifying consistency of a leaf can be done by traversing only the path from leaf
to root, without accessing any sibling nodes. We call such trees t-slice Merkle
trees. Details of the construction follow in Definitions 8, 9, 10 and 11. Finally,
in Theorem 3 we show that the t-slice Merkle Tree is collision resistant, which
allows us to retain security while replacing the Merkle tree in the construction
of [18] with our t-slice Merkle Tree. This then leads to our matching upper bound
in Theorem 4.

Definition 8 (t-slice Merkle Tree). Let X and h : {0, 1}X → {0, 1}X/t be a
hash function that maps a block of size X to block of size X/t. Let a block of
data at level j with index i denoted by αj

i and M = (m1,m2, . . . ,mn) being the
input data and set α0

i := mi+1 for 0 ≤ i ≤ n−1. A t-slice Merkle Tree Treet
h(M)

is defined recursively in the following way:

– Bottom layer of the tree contains n blocks of data each of size X , i.e.,
(α0

0, α
0
1, . . . , α

0
n−1).

– To compute the content of non-leaf node at level j with index i set αj
i :=

h(αj−1
i·t )|| . . . ||h(αj−1

((i+1)·t)−1).

– Once a single block αj
i remains, set the root of Merkle Tree Rootth(M) := h(αj

i )
and the height of tree H := j + 1 and terminate.

For k ∈ [0, . . . , t − 1], we denote the k-th slice of αj
i by αj

i [k] The internal blocks
of Merkle Tree (including the root) are denoted as Treet

h(M).

Definition 9 (Path). Given a Merkle Tree Treet
h(M) with n leaves of height

H and its root Rootth(M), a path pi := p0i , . . . , p
H−1
i , for i ∈ [0, . . . n − 1] is a

sequence of H blocks from leaf to root defined as follows: For j ∈ [0, . . . ,H − 1],
pj

i := αj
�, where 	 :=

∑H−1
k=j βk ·tk−j and βH−1, . . . , β0 is the base t representation

of i, where βH−1 is the most significant digit and β0 is the least significant digit.

Definition 10 (Consistency). Let βH−1, . . . , β0 be the base t representation
of i, where βH−1 is the most significant digit and β0 is the least significant digit.
Path pi := p0i , . . . , p

H−1
i is consistent with Rootth(M) if the following hold:

– pH−1
i = Rootth(M).

– For j ∈ [H − 2], h(pj
i ) = pj+1

i [	 mod t], where 	 :=
∑H−1

k=j βk · tk−j (i.e. the
hash of the j-th element on the path is equal to the (	 mod t)-th slice of the
j + 1-st element on the path).

Definition 11 (Update). Given a path pi := p0i , . . . , p
H−1
i in Merkle Tree

Treet
h(M) and new message block α′0

i , Let βH−1, . . . , β0 be the base t representa-
tion of i, where βH−1 is the most significant digit and β0 is the least significant
digit. The update procedure computes a modified path p′

i := p′0
i , . . . , p

′H−1
i as

follows (the rest of the tree remains the same):
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– p′0
i := α′0

i .
– For j ∈ [1, . . . ,H − 1], p′j+1

i [	 mod t] := h(p′j
i ), where 	 :=

∑H−1
k=j βk · tk−j

(i.e. the (	 mod t)-th slice of the j + 1-st element on the path is equal to the
hash of the j-th element on the path).

– For j ∈ [H − 1], γ ∈ [0, . . . , t]\{	 mod t}, where 	 :=
∑H−1

k=j βk · tk−j,
p′j+1

i [γ] := pj+1
i [γ] (i.e. all other slices of the j + 1-st element on the path

stay the same as in the original path pi).

Lemma 3. Let X ∈ Ω(λ1/μ), h : {0, 1}X → {0, 1}X μ

, and t := X 1−μ, for
constant 0 < μ < 1. Assuming n = poly(λ) := X c for constant c, the height of
the t-slice Merkle Tree will be constant H = c−1

1−μ .

Proof. In the beginning the message blocks M = (m1,m2, . . . ,mn) are at the
leaves of the tree and size of each block is X , i.e. |mi| = X . After applying a hash
function to each of the blocks separately, their size becomes X μ and by concate-
nating X 1−μ number of hashes a single block of size X will be formed. In this level
there will therefore be X c

X 1−μ = X c+μ−1 block of size X . Applying hash function to
each of them will form new blocks of size X μ and there will be X c+2μ−2 blocks of
size X . In general in level i-th there will be X c+iμ−i blocks of size X . The root of
the t-slice Merkle Tree is of size X , so the height of the tree is for the case where
X c+iμ−i = X resulting the i and hence the height of tree is c−1

1−μ .

Theorem 3. Let X ∈ Ω(λ1/μ), h : {0, 1}X → {0, 1}X μ

, and t := X 1−μ, for
constant 0 < μ < 1. Assuming h is a collision resistant hash function, consider
the resulting t-slice Merkle Tree. Then for any message M = (m1,m2, . . . ,mn)
with mi ∈ {0, 1}X , any polynomial time adversary A,

Pr
[
(m′

i, pi) ← A(M, h) : m′
i �= mi, pi is a consistent path with Rootth(M)

]
≤ negl(k).

Moreover, given a path pi passing the leaf mi, and a new value m′
i, the update

algorithm computes Rootth(M ′) in constant time H := c−1
1−μ , where M ′ =

(m1, . . . ,mi−1,m
′
i,mi+1, . . . ,mn).

Proof. The second part of Theorem 3 is immediate by inspection of Definition 11.
For the first part of the theorem, we assume towards contradiction that for

some message M = (m1,m2, . . . ,mn) with mi ∈ {0, 1}X , there is an efficient
adversary A such that

Pr
[
(m′

i, p
′
i) ← A(M, h) : m′

i �= mi, p
′
i is a consistent path with Rootth(M)

]
= 1/poly(λ).

We construct adversary A′ which finds a collision in hash function h. The pro-
cedure is as follows:

– On input h, adversary A′ instantiates A on input (M,h).
– Adversary A returns (m′

i, p
′
i), where p′

i := p′0
i , . . . , p

′H−1
i .

– A′ checks that p′H−1
i = Rootth(M).
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– For j ∈ [H − 2], if p′j+1
i = pj+1

i , p′j
i �= pj

i and h(p′j
i ) = p′j+1

i [	 mod t], where
	 :=

∑H−1
k=j βk · tk−j , then A′ returns collision (p′j

i , p
j
i ).

Note that if m′
i �= mi, then p′

i �= pi and so at some point the “if statement”
above must hold. Moreover, if p′

i is a consistent path, then it must be the case
that p′H−1

i = Rootth(M) and for j ∈ [H − 2], h(p′j
i ) = p′j+1

i [	 mod t], where
	 :=

∑H−1
k=j βk · tk−j , by definition of consistency. Thus, the above adversary

A′ will succeeds with same probability as the adversary A and breaks collision
resistance of h with probability 1/poly(λ). Thus, we arrive at contradiction and
so the theorem is proved.

Theorem 4. Assume there exists a semantically secure symmetric encryption
scheme, and a non-malleable code against the tampering function class F , and
leakage resilient against the function class G. Then there exists a leakage resilient,
locally decodable and updatable coding scheme that is non-malleable against con-
tinual attacks of the tampering class

F̄ def=

⎧
⎪⎪⎨

⎪⎪⎩

f : Σ̂2n+1 → Σ̂2n+1 and |f | ≤ poly(k), such that :
f = (f1, f2), f1 : Σ̂2n+1 → Σ̂, f2 : Σ̂2n → Σ̂2n,

∀(x2, . . . , x2n+1) ∈ Σ̂2n, f1( · , x2, . . . , x2n+1) ∈ F ,
f(x1, x2, . . . , x2n+1) = (f1(x1, x2, . . . , x2n+1), f2(x2, . . . , x2n+1)) .

⎫
⎪⎪⎬

⎪⎪⎭
,

and is leakage resilient against the class

Ḡ def=

⎧
⎨

⎩

g : Σ̂2n+1 → Y and |g| ≤ poly(k), such that :
g = (g1, g2), g1 : Σ̂2n+1 → Y ′, g2 : Σ̂2n → Σ̂2n,

∀ (x2, . . . , x2n+1) ∈ Σ̂2n, g1( · , x2, . . . , x2n+1) ∈ G.

⎫
⎬

⎭
.

Moreover, for n := X c ∈ poly(λ), the coding scheme has locality δ(n), for any
δ(n) ∈ ω(1).

Our construction is exactly the same as that of Dachman-Soled et al. [18],
except we replace their (standard) Merkle tree with our t-slice Merkle tree with
the parameters described above. We note that the only property of the Merkle
hash used in the security proof of [18] is the “collision resistance” property,
analogous to our Theorem 3 above for the t-slice Merkle tree. Thus, our security
proof follows exactly as theirs does and we therefore omit the full proof. On
the other hand, as described in Definitions 10 and 11, updates and consistency
checks require time and number of accesses to memory proportional to the height
of the tree, H, which is c−1

1−μ for our choice of parameters, as shown in Lemma 3
above. Since n = X c ∈ poly(λ), it means that the height of the tree will always
be less than δ(n), for any δ(n) ∈ ω(1). On the other hand, [18] used a standard
(binary) Merkle tree with height Θ(log n). Therefore, while [18] requires locality
Θ(log n), we achieve locality δ(n), for any δ(n) ∈ ω(1).

Finally, we give a concrete example of the resulting leakage and tam-
pering classes we can tolerate via Theorem 4 when instantiating the under-
lying non-malleable code with a concrete construction. Specifically, we con-
sider instantiating the underlying non-malleable code with the construction of



330 D. Dachman-Soled et al.

Liu and Lysyanskaya [37], which achieves both leakage and tamper resilience for
split-state functions. Combining the constructions of [18,37] yields codewords
consisting of 2n + 1 blocks. We next describe the leakage and tampering classes
Ḡ, F̄ that can be tolerated on the 2n + 1-block codeword. Ḡ consists of leakage
functions g such that g restricted to the first block (i.e. g1) is any (poly-sized)
length-bounded split-state function; g2 on the other hand, can leak all other
parts. F̄ consists of tampering functions f such that f restricted to the first block
(i.e. f1) is any (poly-sized) split-state function. On the other hand f restricted
to the rest (i.e. f2) is any poly-sized function. We also remark that the function
f2 itself can depend on the split-state leakage on the first part.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49099-0 15

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions
and applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp.
459–468. ACM Press, June 2015

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combi-
natorics. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 774–783. ACM Press,
May/June 2014

4. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014,
pp. 398–426. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 17

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47989-6 26

6. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
375–397. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 16

7. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49896-5 31

8. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. Cryptology ePrint Archive, Report 2015/129 (2015). http://
eprint.iacr.org/2015/129

9. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decod-
able codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 489–514. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54242-8 21

10. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49099-0 14

http://dx.doi.org/10.1007/978-3-662-49099-0_15
http://dx.doi.org/10.1007/978-3-662-46494-6_17
http://dx.doi.org/10.1007/978-3-662-47989-6_26
http://dx.doi.org/10.1007/978-3-662-46494-6_16
http://dx.doi.org/10.1007/978-3-662-49896-5_31
http://dx.doi.org/10.1007/978-3-662-49896-5_31
http://eprint.iacr.org/2015/129
http://eprint.iacr.org/2015/129
http://dx.doi.org/10.1007/978-3-642-54242-8_21
http://dx.doi.org/10.1007/978-3-662-49099-0_14
http://dx.doi.org/10.1007/978-3-662-49099-0_14


Tight Upper and Lower Bounds for Leakage-Resilient 331

11. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: 55th FOCS, pp. 306–315. IEEE Computer Society Press,
October 2014

12. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 670–683. ACM
Press, June 2016

13. Chee, Y.M., Feng, T., Ling, S., Wang, H., Zhang, L.F.: Query-efficient locally
decodable codes of subexponential length. Comput. Complex. 22(1), 159–189
(2013). http://dx.doi.org/10.1007/s00037-011-0017-1

14. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M.
(ed.) ITCS 2014, pp. 155–168. ACM, January 2014

15. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 19

16. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9562, pp. 306–335. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 13

17. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46494-6 22

18. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46494-6 18

19. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

20. Drucker, A.: New limits to classical and quantum instance compression. SIAM J.
Comput. 44(5), 1443–1479 (2015)

21. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043,
pp. 239–257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 14

22. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.
(ed.) ICS 2010, pp. 434–452. Tsinghua University Press, January 2010

23. Efremenko, K.: 3-query locally decodable codes of subexponential length. In:
Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 39–44. ACM Press, May/June 2009

24. Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. Lond. Math. Soc.
35(1), 85–90 (1960)

25. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54242-8 20

26. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
579–603. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 26

27. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-55220-5 7

http://dx.doi.org/10.1007/s00037-011-0017-1
http://dx.doi.org/10.1007/978-3-642-54242-8_19
http://dx.doi.org/10.1007/978-3-662-49096-9_13
http://dx.doi.org/10.1007/978-3-662-46494-6_22
http://dx.doi.org/10.1007/978-3-662-46494-6_22
http://dx.doi.org/10.1007/978-3-662-46494-6_18
http://dx.doi.org/10.1007/978-3-662-46494-6_18
http://dx.doi.org/10.1007/978-3-642-40084-1_14
http://dx.doi.org/10.1007/978-3-642-54242-8_20
http://dx.doi.org/10.1007/978-3-662-46447-2_26
http://dx.doi.org/10.1007/978-3-642-55220-5_7


332 D. Dachman-Soled et al.

28. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
Tamper-Proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 15

29. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 1128–1141. ACM Press, June
2016

30. Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting. In:
Kleinberg, R.D. (ed.) ITCS 2013, pp. 529–540. ACM, January 2013

31. Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander
codes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013. LNCS, vol. 7965, pp. 540–551. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39206-1 46

32. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keeping
secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 308–327. Springer, Heidelberg (2006). doi:10.1007/11761679 19

33. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 19

34. Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky
memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 21

35. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: 32nd ACM STOC, pp. 80–86. ACM Press, May 2000

36. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding.
In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 167–176. ACM Press,
June 2011

37. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 30

38. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
J. ACM 55(1), 1:1–1:16. http://doi.acm.org/10.1145/1326554.1326555

39. Yekhanin, S.: Locally decodable codes: a brief survey. In: Chee, Y.M., Guo, Z.,
Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol.
6639, pp. 273–282. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20901-7 18

http://dx.doi.org/10.1007/978-3-540-24638-1_15
http://dx.doi.org/10.1007/978-3-642-39206-1_46
http://dx.doi.org/10.1007/978-3-642-39206-1_46
http://dx.doi.org/10.1007/11761679_19
http://dx.doi.org/10.1007/978-3-662-46494-6_19
http://dx.doi.org/10.1007/978-3-642-22792-9_21
http://dx.doi.org/10.1007/978-3-642-32009-5_30
http://doi.acm.org/10.1145/1326554.1326555
http://dx.doi.org/10.1007/978-3-642-20901-7_18


Fully Leakage-Resilient Codes

Antonio Faonio(B) and Jesper Buus Nielsen

Aarhus University, Aarhus, Denmark
afaonio@gmail.com

Abstract. Leakage resilient codes (LRCs) are probabilistic encoding
schemes that guarantee message hiding even under some bounded leak-
age on the codeword. We introduce the notion of fully leakage resilient
codes (FLRCs), where the adversary can leak λ0 bits from the encod-
ing process, namely, the message and the randomness involved during
the encoding process. In addition the adversary can as usual leak from
the codeword. We give a simulation-based definition requiring that the
adversary’s leakage from the encoding process and the codeword can
be simulated given just λ0 bits of leakage from the message. We give a
fairly general impossibility result for FLRCs in the popular split-state
model, where the codeword is broken into independent parts and where
the leakage occurs independently on the parts. We then give two feasi-
bility results for weaker models. First, we show that for NC0-bounded
leakage from the randomness and arbitrary poly-time leakage from the
parts of the codeword the inner-product construction proposed by Dav́ı
et al. (SCN’10) and successively improved by Dziembowski and Faust
(ASIACRYPT’11) is a FLRC for the split-state model. Second, we pro-
vide a compiler from any LRC to a FLRC in the common reference
string model where the leakage on the encoding comes from a fixed leak-
age family of small cardinality. In particular, this compiler applies to the
split-state model but also to other models.

Keywords: Leakage-resilient cryptography · Impossibility · Fully-
leakage resilience · Simulation-based definition · Feasibility results

1 Introduction

Leakage-resilient codes (LRCs) (also known as leakage-resilient storages) allow
to store safely a secret information in a physical memory that may leak some
side-channel information. Since their introduction (see Dav̀ı et al. [12]) they
have found many applications either by their own or as building blocks for
other leakage and tamper resilient primitives. To mention some, Dziembowski
and Faust [15] proposed an efficient and continuous leakage-resilient identifi-
cation scheme and a continuous leakage-resilient CCA2 cryptosystem, while
Andrychowicz et al. [5] proposed a practical leakage-resilient LPN-based ver-
sion of the Lapin protocol (see Heyse et al. [28]) both relying on LRCs based on
the inner-product extractor. LRC found many applications also in the context
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of non-malleable codes (see Dziembowski et al. [17]), which, roughly speaking,
can be seen as their tamper-resilience counterpart. Faust et al. [23] showed a
non-malleable code based on LRC, Aggarwal et al. [1] proposed a construction
of leakage and tamper resilient code and Faust et al. [21] showed continuous
non-malleable codes based on LRC [21] (see also Jafargholi and Wichs [29]).

The security requirement of LRC states that given two encoded messages,
arbitrarily but bounded length leakage on the codeword is indistinguishable.
Ideally, a good LRC should be resilient to a leakage that can be much longer
than the size of the message protected, however, to get such strong guarantee
some restriction on the class of leakage allowed must be set. Intuitively, any
scheme where the adversary can even partially compute the decoding function
as leakage cannot be secure. A way to fix this problem is to consider randomly
chosen LRCs. As showed in [12], and successively improved in [23,29], for any
fixed set of leakage functions, there exists a family of efficiently computable
codes such that with high probability a code from this family is leakage resilient.
From a cryptographic perspective, the results known in this direction can be
interpreted as being in the “common reference string” model, where the leakage
class is set and, then, the LRC is sampled.

Another way, more relevant for our paper, is to consider the split-state model
[16,27] where the message is encoded in two (or more) codewords and the leakage
happens adaptively but independently from each codeword, thus the decoding
function cannot automatically be part of the allowed leakage, which opens the
possibility of constructing a LRC.

It is easy to see that the encoding algorithm must be randomized, otherwise
two fixed messages can be easily distinguished. However, the security of LRC
does not give any guarantee when there is leakage from the randomness used in
the encoding process. In other words, while the encoded message can be stored
in a leaky device the encoding process must be executed in a completely leak-
free environment. A stronger flavour of security where we allow leakage from the
encoding process is usually called fully leakage resilient.

Our Contributions. We generalize the notion of LRC to the setting of fully
leakage resilience. Roughly speaking, a fully leakage-resilient code (FLRC) hides
information about the secret message even when the adversary leaked informa-
tion during the encoding process. Our contributions are summarized as follow:

1. We provide a simulation-based definition of fully leakage-resilient codes. The
definition postulates that for any adversary leaking λ0 bits from the encoding
process and λ1 bits from the codewords there exists a simulator which provides
a view that is indistinguishable. Our definition is, in some sense, the minimal
one suitable for the fully leakage resilience setting. As a sanity check, we show
that our new notion is implied by the indistinguishability-based definition of
[12] for λ0 = 0.

2. We show that there does not exist an efficient coding scheme in the split-
state model that is a fully leakage resilient code if the leakage function is
allowed to be any poly-time function. Our result holds for coding schemes
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where the length of the messages is at least linear in the security parameter
and under the sole assumption that collision-resistant hash functions exist. We
can generalize the impossibility result to the case of constant-length messages
under the much stronger assumption that differing-input obfuscation (diO)
exists (see [3,9]).

3. We provide two feasibility results for weaker models. We show that, if the
leakage from the randomness is computable by bounded-depth constant fan-
in circuits (i.e. NC0-computable leakage), the inner-product extractor LRC
of [12] is fully leakage resilient. We show a compiler from any LRC to a fully
leakage resilient code in the common reference string model for any fixed
leakage-from-the-encoding-process family of small cardinality.

Simulation-Based Security. Consider the naive fully leakage-resilient extension of
the indistinguishability-based security definition of LRC. Roughly speaking, the
adversary plays against a challenger and it can leak λ0 > 0 bits from a random
string ω ←$ {0, 1}∗, in a second phase, the adversary sends to the challenger
two messages m0,m1, the challenger chooses a random bit b and encodes the
message mb using the randomness ω. After this, the adversary gets access to
leakage from the codewords. We show an easy attack on this definition. The
attacker can compute, via one leakage function on the randomness, the encoding
of both m0 and m1 and find a coordinate in which the two codewords differ,
successively, by leaking from the codeword only one bit, it can check whether
m0 or m1 has been encoded.

The problem with the indistinguishability-based security definition sketched
above is that it concentrates on preserving, in the presence of leakage on the
randomness, the same security guarantees as the (standard) leakage resilient
definition. However, the ability of leaking before and after the challenge gener-
ation, as shown for many other cryptographic primitives, gives to the adversary
too much power.

Following the leakage-tolerant paradigm introduced by Bitansky et al. [7], we
instead consider a simulation-based notion of security. The definition postulates
that for any adversary leaking λ0 bits from the encoding process and λ1 bits from
the codeword there exists a simulator which provide a view that is indistinguish-
able. In particular, the adversary chooses one input message and forwards it to
the challenger of the security game. After that, the adversary can leak first from
the encoding process and then from the codeword. The job of the simulator is to
produce an indistinguishable view of the leakage oracles to the adversary given
only leakage oracle access to the message. It is not hard to see that, without the
help of leakage oracle on the message, the task would be impossible. In fact, the
adversary can leak bits of the input message, if the input message is randomly
chosen the simulator cannot provide an indistinguishable view. Therefore, the
simulator can leak up to λ0(1+γ) bits from the message for a “slack parameter”
γ � 0. The idea is that some information about the message can unavoidably
leak from the encoding process, however the amount of information about the
message that the adversary gathers by jointly leaking from the encoding process
and from the codeword should not exceed by too much the the bound given by
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the leakage on the encoding process. The slack parameter is often considered as
a reasonable weakening of the model in the context of fully leakage resilience (see
for example [19,26,27,39]), we include it in our model to make the impossibility
results stronger. For the feasibility results we will instead ignore it.

The Impossibility Results. We give an impossibility result for FLRCs in the split-
state model. Recall that, in the split state model, the codeword is divided in two
parts which are stored in two independent leaky devices. Each leakage query can
be any poly-time function of the data stored in one of the parts.

Here we give the intuition behind the attacker. For simplicity let us set the
slack parameter γ equal to 0. In our attack we leak from the encoding process
a hash of each of the two parts of the codeword. The leakage function takes
the message and the randomness, runs the encoding algorithm to compute the
two parts L and R (the left part and the right part) and leaks two hash values
hl = h(L) and hr = h(R). Then we use a succinct argument of knowledge
system to leak an argument of knowledge of pre-images L and R of hl and
hr for which it holds that (L,R) decodes to m. Let λ0 be equal to the length
of the two hashed values and the transcript of the succinct argument. After
this the message can be encoded. The adversary uses its oracle access to L
to leak, in sequence, several succinct arguments of knowledge of L such that
hl = h(L). Similarly, the adversary uses its oracle access to R to leak, in sequence,
several succinct arguments of knowledge of R such that hr = h(R). By setting
λ1 � λ0 we can within the leakage bound λ1 on L and R leak 17λ0 succinct
arguments of knowledge of L and R. Suppose that the code is secure, then
there exists a simulator which can simulate the leakage of hl and hr and all
the arguments given at most λ0 bits of leakage on m. Since the arguments are
accepting in the real world and the simulator is assumed to be good it follows
that the simulated arguments are accepting with probability close to 1. Since
the simulator has access to only λ0 bits of leakage on m it follows that for one
of the 17λ0 simulated arguments produced by the simulator it uses the leakage
oracle on m with probability at most 1

4 . This means that with probability 3
4 the

simulator is not even using the leakage oracle to simulate this argument, so if we
remove the access to leakage from m the argument will still be acceptable with
probability close to 3

4 . Hence if the argument systems has knowledge error just
1
2 we can extract L from this argument with probability close to 1

4 . Similarly
we can extract from one of the arguments of knowledge of R the value R with
probability close to 1

4 . By collision resistance and soundness of the first argument
leaked from the encoding process it follows that (L,R) decodes to m. This means
that we can extract from the simulator the message m with probability negligibly
close to 1

16 while using only λ0 bits of leakage on m. If m is uniformly random
and just λ0 + 6 bits long, this is a contradiction. In fact, the amount of min-
entropy of m after have leaked λ0 bits is λ0 + 6 − λ0 = 6, therefore m cannot be
guessed with probability better than 2−6.

Similar proof techniques have been used already by Nielsen et al. [38] to prove
a connection between leakage resilience and adaptive security and recently by
Ostrovsky et al. [40] to prove an impossibility result for certain flavors of leakage-
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resilient zero-knowledge proof systems. The way we apply this type of argument
here is novel. It is in particular a new idea to use many arguments of knowledge
in sequence to sufficient restrict the simulators ability to leak from its leakage
oracle in one of the proofs.

The definition of FLR makes sense only when the leakage parameter λ0 is
strictly smaller than the size of the message. The proposed attack needs to leak
at least a collision resistant hash function of the codeword, therefore the length
of the message needs to be super-logarithmic in the security parameter. Thus the
technique cannot be used to give an impossibility result for FLRC with message
space of constant length. We can overcome this problem relying on the concept
of Predictable ZAP (PZAP) recently proposed by Faonio et al. [20]. A PZAP is
an extremely succinct 2-message argument of knowledge where the prover can
first see the challenge from the verifier and then decide the instance. This allows
the attacker to implement the first check by just leaking a constant-length argu-
ment that the hashed values of the two parts of the codeword are well formed
(without actually leaking the hashed values) and then, successively, leak the
hashed values from the codeword and check the validity of the argument. PZAP
are shown to imply extractable witness encryption (see Boyle et al. [9]) and
therefore the “implausibility” result of Garg et al. [25] applies. We interpret our
second impossibility result as an evidence that constant-length FLRC are hard
to construct as such a code would not only make extractable witness encryp-
tion implausible, but it would prove it impossible under the only assumption
that collision-resistant hash functions exists. We provide more details in the full
version of the paper [18].

The Feasibility Results. The ability to leak a collision resistant hash function of
the randomness is necessary for the impossibility result. Therefore, the natural
question is: If we restrict the leakage class so that collision resistant hash func-
tions cannot be computed as leakage on the randomness, can we find a coding
scheme that is fully leakage resilient? We answer this question affirmatively.

We consider the class NC0 of constant-depth constant fan-in circuits and we
show that the LRC based on the inner-product extractor (and more general
LRCs where there is an NC0 function that maps the randomness to the code-
word) are fully leakage resilient. The intuition is that NC0 leakage is not powerful
enough to break all the “independence” between the two parts of the codeword.
Technically, we are able to cast every leakage query on the randomness into two
slightly bigger and independent leakage queries on the two parts of the code-
word. Notice that collision resistant hash functions cannot be computed by NC0

circuits. This is necessary. In fact, proving a similar result for a bigger complex-
ity class automatically implies a lower bound on the complexity of computing
either collision resistant hash functions or arguments of knowledge. Intuitively,
this provides a strong evidence that is hard to construct FLRC even for bounded
classes of leakage.

Another important property that we exploit in the impossibility result is
that, given access to the leakage oracle on the randomness, we can compute
the codeword. A second path to avoid the impossibility results is to consider
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weaker models of security where this is not permitted. We point out that the
schemes proposed by [12,23,29] in the common reference string model can be
easily proved to be fully leakage resilient. Inspired by the above results we provide
a compiler that maps any LRC to FLRC for any fixed leakage-from-the-encoding
family F of small cardinality. Notice that the bound is on the cardinality of the
leakage class and not on its complexity (in principle, the leakage class could
contain collision resistant hash functions).

We remark that the definition of FLRC already assumes a CRS (this to
include in our model the result of Liu and Lysyanskaya [34]). The key point is
that, by fixing F ahead (namely, before the common reference string is sampled)
and because of the small cardinality, the adversary cannot make the leakage on
the encoding “depends” from the common reference string, disabling therefore
the computation of the encoded word as leakage on the encoding process.

Technically, we use a result of Trevisan and Vadhan [43] which proves that
for any fixed leakage class F a t-wise independent hash function (the parame-
ter t depends on the cardinality of F) is a deterministic extractor with high
probability. The proof mostly follows the template given in [23].

Related Work. Cryptographic schemes are designed under the assumption
that the adversary cannot learn any information about the secret key. However,
side-channel attacks (see [32,33,42]) have showed that this assumption does
not always hold. These attacks have motivated the design of leakage-resilient
cryptosystems which remain secure even against adversaries that may obtain
partial information about the secret state. Starting from the groundbreaking
result of Micali and Reyzin [36], successively either gradually stronger or differ-
ent models have been considered (see for example [2,16,24,37]). Fully leakage
resilient schemes are known for signatures [11,19,35], zero-knowledge proof sys-
tem [4,26,41] and multi-party computation protocols [8,10]. Similar concepts of
leakage resilient codes have been considered, Liu and Lysyanskaya [34] and suc-
cessively Aggarwal et al. [1] constructed leakage and tamper resilient codes while
Dodis et al. [13] constructed continual leakage resilient storage. Simulation-based
definitions in the context of leakage-resilient cryptography were also adopted in
the case of zero-knowledge proof (see [4,26,41]), public-key encryption (see [27])
and signature schemes (see [39]). As mentioned already, our proof technique for
the impossibility result is inspired by the works of Nielsen et al. [38] and Ostro-
vsky et al. [40], however, part of the analysis diverges, and instead resembles an
information theoretic argument already known in leakage-resilient cryptography
(see for example [2,19,30]).

In [22] the authors present a RAM model of computation where a CPU
is connected to some constant number of memories, paralleling the split-state
model that we use here. The memories and buses are assumed to be leaky,
but the CPU is assumed to be leakage free. Besides leakage, the paper also
shows how to handle tampering, like moving around codewords in the memories.
They show how to use a leakage-resilient and tamper-resilient code to securely
compute on this platform. In each step the CPU will read from the disks a
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number of codewords, decode these, do a computation on the plaintext, re-
encode the results and write the codewords back in the memories. One should
wonder if it is possible to get a similar result for the more realistic model where
there is a little leakage from the CPU? It is clear that if the CPU can leak, then
it can also leak from the plaintexts it is working on. This can be handled by
having the computation that is done on the plaintexts being leakage resilient
in itself. The challenging part is then to show that the leakage from the CPU
during re-encoding of the results to be stored in the memories can be simulated
given just a little leakage on the results themeselves. This would in particular
require that the code is fully leakage-resilient in the sense we define in this paper.
Our negative results therefore do not bode well for this proof strategy. On the
other hand, our positive results open up the possibility of tolerating some simple
leakage from the CPU or getting a result for weaker models, like the random
oracle model. Note, however, that the code would have to be tamper-resilient
in addition to being fully leakage resilient, so there still seem to be significant
obstacles towards proving such a result.

Roadmap. In Sect. 2 we introduce the necessary notation for probability and
cryptographic tools. In Sect. 3 we provide the simulation-based definition for
Fully Leakage-Resilient Codes. In Sect. 4 we state and prove the main impossi-
bility result for linear-size message spaces. In Sect. 5 we provide the two feasi-
bility results, specifically, in Sect. 5.1 we give a FLR code for the class NC0 and
in Sect. 5.2 we give a compiler from Leakage-Resilient Codes to Fully Leakage-
Resilient Codes for any fixed class of small cardinality.

2 Preliminaries

We let N denote the naturals and R denote the reals. For a, b ∈ R, we let
[a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N we let [a] = {1, 2, . . . , a}. If x is a
string, we denote its length by |x|; if X is a set, |X | represents the number of
elements in X . When x is chosen randomly in X , we write x ←$ X . When A is
an algorithm, we write y ← A(x) to denote a run of A on input x and output
y; if A is randomized, then y is a random variable and A(x; r) denotes a run
of A on input x and randomness r. An algorithm A is probabilistic polynomial-
time (ppt) if A is allowed to use random choices and for any input x ∈ {0, 1}∗

and randomness r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most
poly(|x|) steps.

Let κ be a security parameter. A function negl is called negligible in κ (or
simply negligible) if it vanishes faster than the inverse of any polynomial in κ.
For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the language associated with R is LR =
{x : ∃w s.t. (x,w) ∈ R}.

For two ensembles X = {Xκ}κ∈N, Y = {Yκ}κ∈N, we write X c≈ε Y, meaning
that every probabilistic polynomial-time distinguisher D has ε(κ) advantage in
distinguishing X and Y, i.e., 1

2 |Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1]| ≤ ε(κ) for all
sufficiently large values of κ.
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We simply write X c≈ Y when there exists a negligible function ε such that
X c≈ε Y. Similarly, we write X ≈ε Y (statistical indistinguishability), meaning
that every unbounded distinguisher has ε(κ) advantage in distinguishing X and
Y. Given two ensembles X and Y such that X ≈ε Y the following holds:

1
2

∑

z

∣
∣ Pr[Xκ = z] − Pr[Yκ = z]

∣
∣ � ε(κ).

We recall the notion of (average) conditional min-entropy. We adopt the defi-
nition given in [2], where the authors generalize the notion of conditional min-
entropy to interactive predictors that participate in some randomized experiment
E. The conditional min-entropy of random variable X given any randomized
experiment E is defined as H̃∞ (X | E) = maxB

(− log Pr[B()E = X]
)
, where the

maximum is taken over all predictors without any requirement on efficiency.
Note that w.l.o.g. the predictor B is deterministic, in fact, we can de-randomize
B by hardwiring the random coins that maximize its outcome. Sometimes we
write H̃∞(X|Y ) for a random variable Y , in this case we mean the average con-
ditional min-entropy of X given the random experiment that gives Y as input
to the predictor. Given a string X ∈ {0, 1}∗ and a value λ ∈ N let the oracle
OX

λ (·) be the leakage oracle that accepts as input functions f1, f2, . . . defined as
circuits and outputs f1(X), f2(X), . . . under the restriction that

∑
i |fi(X)| � λ.

We recall here a lemma of Alwen et al. [2] and a lemma from Bellare and
Rompel [6] that we make us of.

Lemma 1. For any random variable X and for any experiment E with ora-
cle access to OX

λ (·), consider the experiment E′ which is the same as E except
that the predictor does not have oracle access to OX

λ (·). Then H̃∞ (X | E) �
H̃∞ (X | E′) − λ.

Lemma 2. Let t � 4 be an even integer. Suppose X1, . . . , Xn are t-wise inde-
pendent random variables taking values in [0, 1]. Let X :=

∑
i Xi and define

μ := E[X] to be the expectation of the sum. Then, for any A > 0, Pr[|X − μ| �
A] � 8

(
tμ+t2

A2

)t/2

.

2.1 Cryptographic Primitives

Arguments of Knowledge. Our results are based on the existence of round-
efficient interactive argument systems. We follow some of the notation of Wee
[44]. The knowledge soundness definition is taken from [40]. A public-coin argu-
ment system (P (w), V )(x) with round complexity ρ(κ) is fully described by the
tuple of ppt algorithms (Prove, Judge) where:

– V on input x samples uniformly random strings y1, . . . , yρ(κ) ←$ {0, 1}κ, P on
inputs x,w samples uniformly random string rP ←$ {0, 1}κ.

– For any i ∈ [ρ(κ)], V sends the message yi and P replies with the message
xi := Prove(x,w, y1, . . . , yi; rP ).
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– The verifier V executes j := Judge
(
x, y1, . . . , yρ(κ), x1, . . . , xρ(κ)

)
and accepts

if j = 1.

Definition 1 (Argument of knowledge). An interactive protocol (P, V ) is
an argument of knowledge for a language L if there is a relation R such that
L = LR := {x|∃w : (x,w) ∈ R}, and functions ν, s : N → [0, 1] such that
1 − ν(κ) > s(κ) + 1/poly(κ) and the following conditions hold.

– (Efficiency): The length of all the exchanged messages is polynomially
bounded, and both P and V are computable in probabilistic polynomial time;

– (Completeness): If (x,w) ∈ R, then V accepts in (P (w), V )(x) with probability
at least 1 − ν(|x|).

– (Knowledge Soundness): For every ppt prover strategy P ∗, there exists an
expected polynomial-time algorithm K (called the knowledge extractor) such
that for every x, z, r ∈ {0, 1}∗ if we denote by p∗(x, z, r) the probability that
V accepts in (P (z; r), V )(x), then p∗(x, z, r) > s(|x|) implies that

Pr[K(P ∗, x, z, r) ∈ R(x)] � p∗(x, z, r) − s(|x|).
The value ν(·) is called the completeness error and the value s(·) is called the
knowledge error. We say (P, V ) has perfect completeness if ν = 0. The com-
munication complexity of the argument system is the total length of all mes-
sages exchanged during an execution; the round complexity is the total num-
ber of exchanged messages. We write AoKν,s(ρ(κ), λ(κ)) to denote interactive
argument on knowledge systems with completeness error ν, knowledge error s,
round-complexity ρ(κ) and communication complexity λ(κ). Sometimes we also
write λ(κ) = λP (κ) + λV (κ) to differentiate between the communication com-
plexity of the prover and of the verifier. We say (P, V ) is succinct if λ(κ) is
poly-logarithmic in the length of the witness and the statement being proven.

We remark that for our results interactive arguments are sufficient; in par-
ticular our theorems can be based on the assumption that collision-resistant
function ensembles exist [31].

Collision Resistant Hash Functions. Let (GenCRH,EvalCRH) be a tuple of ppt
algorithms such that upon input 1κ the algorithm Gen outputs an evaluation key
h and upon inputs h and a string x ∈ {0, 1}∗ the deterministic algorithm EvalCRH

outputs a string y ∈ {0, 1}�CRH(κ). We shorten the notation by writing h(x) for
EvalCRH(h, x).

Definition 2. A tuple (EvalCRH,GenCRH) is a collision-resistant hash function
(family) with output length 	CRH(κ) if for all non-uniform polynomial time adver-
sary Bcoll there exists a negligible function negl such that the following holds:

Pr
h ←$ GenCRH(1κ)

[
h(x0) = h(x1) ∧ x0 �= x1 | (x0, x1) := Bcoll(h)

]
< negl(κ).

For simplicity we consider the model of non-uniform polynomial time adversaries.
Note, however, that our results hold also if we consider the model ppt adversaries.
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3 Definition

In this section we give the definition of Fully Leakage Resilient Codes. The
definition given is specialized for the 2-split-state model, we adopt this definition
instead of a more general one for simplicity. The results given in Sect. 4 can
be adapted to hold for the more general k-split model (see Remark 1). LRCs
of [12,21,29] in the common reference string model can be proved fully-leakage
resilience (see Sect. 5). Therefore the syntax given allows the scheme to depends
on a common reference string to include the scheme of [34].

An (α, β)-split-coding scheme is a tuple Σ = (Gen,Enc,Dec) of ppt algorithms
with the following syntax:

– Gen on input 1κ outputs a common reference string crs;
– Enc on inputs crs and a message m ∈ Mκ outputs a tuple (L,R) ∈ Cκ × Cκ;
– Dec is a deterministic algorithm that on inputs crs and a codeword (L,R) ∈

Cκ × Cκ decodes to m′ ∈ Mκ.

Here Mκ = {0, 1}α(κ), Cκ = {0, 1}β(κ) and the randomness space of Enc is
Rk = {0, 1}p(κ) for a fixed polynomial p.

A split-coding scheme is correct if for any κ and any m ∈ Mκ we have
Prcrs,re

[Dec(crs,Enc(crs,m; re)) = m] = 1. In what follows, whenever it is clear
from the context, we will omit the security parameter κ so we will write α, β
instead of α(κ), β(κ), etc.
Given an (α, β)-split-coding scheme Σ, for any A = (A0,A1) and any function
λ0, λ1 let Realλ0,λ1

A,Σ (κ) be the following experiment:

Sampling Phase. The experiment runs the adversary A0 on input
crs ←$ Gen(1κ) and randomness rA ←$ {0, 1}p(κ) for a polynomial p that bounds
the running time of A0. The adversary outputs a message m ∈ Mκ and a state
value st. The experiment samples ω ←$ Rκ and instantiates a leakage oracle
Oω‖m

λ0
.

Encoding Phase. The experiment runs the adversary A1 on input st and crs.
Moreover, the experiment sets an index i := 0.

– Upon query (rand, f) from the adversary where f is the description of a
function with domain Rκ × Mκ, the experiment sets i := i + 1, computes
lki

ω := Oω‖m
λ0

(f) and returns the value to the adversary.
– Eventually, the adversary notifies the experiment by sending the message
encode.

The message is encoded, namely the experiment defines (L,R) := Enc(crs,m;ω)
and instantiates the oracles OL

λ1
, OR

λ1
. Moreover, the experiment sets two indexes

l := 0 and r := 0.

– Upon query (L, f) from the adversary where f is the description of a function
with domain Cκ, the experiment sets l := l + 1, computes lkl

L := OL
λ1

(f) and
returns the value to the adversary.
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– Upon query (R, f) from the adversary where f is the description of a function
with domain Cκ, the experiment sets r := r + 1, computes lkr

R := OR
λ1

(f) and
returns the value to the adversary.

By overloading the notation, we let Realλ0,λ1
A,Σ be also the tuple of random vari-

ables that describes the view of A in the experiment:

Realλ0,λ1
A,Σ :=

⎛

⎜
⎜
⎝

rA, crs,

lkω := (lk1ω, lk2ω, . . . , lki
ω),

lkL := (lk1L, lk2L, . . . , lkl
L),

lkR := (lk1R, lk2R, . . . , lkr
R)

⎞

⎟
⎟
⎠ ,

Given an adversary A = (A0,A1), a simulator S and a slack parameter γ(κ)
such that 0 � γ(κ) < α(κ)

λ0(κ)
− 1 let Idealλ0,λ1

A,S,γ(κ) be the following experiment:

Sampling Phase. The experiment runs the adversary A0 on input
crs ←$ Gen(1κ) and randomness rA ←$ {0, 1}p(κ) for a polynomial p that
bounds the running time of A0. The adversary outputs a message m ∈ Mκ

and a state value st. The experiment instantiates an oracle Om
λ0·(1+γ).

Encoding Phase. The experiment runs the adversary A1 on input st and crs,
and the simulator S on input crs.

– Upon query (X, f) from the adversary where X ∈ {rand, L, R} the experi-
ment forwards the query to the simulator S which returns an answer to the
adversary.

– Upon query (msg, f) from the simulator the experiment computes lkm :=
Om

λ0·(1+γ)(f) and returns an answer to the simulator.

As we did with Realλ0,λ1
A,Σ we denote with Idealλ0,λ1

A,S,γ also the tuple of random
variables that describe the view of A in the experiment. To mark the distinction
between the real experiment and ideal experiment we upper script the “simu-
lated” components of the ideal experiment with a tilde, namely:

Idealλ0,λ1
A,S,γ =

(
rA, crs, l̃kω, l̃kL, l̃kR

)

Given a class of leakage functions Λ we say that an adversary is Λ-bounded if it
submits only queries (rand, f) where the function f ∈ Λ.

Definition 3 (Simulation-based Λ-fully leakage resilient code). An
(α, β)-split-coding scheme is said to be (Λ, λ0, λ1, ε)-FLR-sim-secure with slack
parameter 0 � γ < α/λ0 − 1 if for any ppt adversary A that is Λ-bounded there
exists a ppt simulator S such that

{
Realλ0,λ1

A,Σ (κ)
}

κ∈N

c≈ε

{
Idealλ0,λ1

A,S,γ(κ)
}

κ∈N

.

Let P/poly be the set of all polynomial-sized circuits.

Definition 4 (Simulation-based fully leakage resilient code). An (α, β)-
split-coding scheme is said to be (λ0, λ1, ε)-FLR-sim-secure with slack parameter
γ if it is (P/poly, λ0, λ1, ε)-FLR-sim-secure with slack parameter γ. We simply say
that a split-coding scheme is (λ0, λ1)-FLR-sim-secure if there exists a negligible
function negl and a constant γ < α/λ0 −1 such that the scheme is (λ0, λ1, negl)-
FLR-sim-secure with slack parameter γ.
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In the full version of the paper [18] we prove that the game-based definition
of [12] implies FLR-sim-security for λ0 = 0.

4 Impossibility Results

In this section we show the main result of this paper. Throughout the section we
let the class of leakage functions be Λ = P/poly. We prove that (α, β)-split-coding
schemes that are (λ0, λ1)-FLR-sim-secure don’t exist for many interesting para-
meters of α, β, λ0 and λ1. We start with the case α(κ) = Ω(κ), the impossibility
results holds under the only assumption that collision resistant hash functions
exist. For the case α(κ) = O(1), the impossibility results holds under the stronger
assumption that adaptive-secure PAoK exists.

Theorem 1. If public-coin AoKnegl(κ),1/2(O(1), 	AoK(κ)) for NP and collision-
resistant hash functions with output length 	CRH(κ) exist then for any λ0 �
	AoK(κ) + 2 · 	CRH(κ) for any γ � 0 and for any (α, β)-split-coding scheme Σ
with α(κ) � λ0(κ) · (1+γ)+ 	CRH(κ)+7 and if λ1(κ) � 17λ0(κ) · (1+γ) · 	AoK(κ)
then Σ is not (λ0, λ1)-FLR-sim-secure.

Proof. We first set some necessary notation. Given a random variable x we
use the notation x̄ to refer to a possible assignment of the random variable.
Let (GenCRH,EvalCRH) be a collision resistant hash function with output length
	CRH(κ).

Leakage-Aided Prover. Let Π = (Prove, Judge) be in AoK1/2,negl(κ)(O(1), 	AoK
(κ)) and a public-coin argument system for NP. For concreteness let ρ be the
round complexity of the Π. We say that an attacker leaks an argument of knowl-
edge for x ∈ LR from X ∈ {rand, L, R} if the attacker proceeds with the following
sequence of instructions and leakage-oracle queries:

– Let rp be a random string long enough to specify all random choices done by
the prover of Π. For j ∈ [ρ] do the following:
1. Sample a random string yj ←$ {0, 1}κ;
2. Send the query

(
X,Prove(x, ·, y1, . . . , yj ; rp)

)
and let zj be the answer to

such query.
– Let π := y1, . . . , yρ, z1, . . . , zρ be the leaked transcript, compute the value

j := Judge
(
x, π

))
, if j = 1 we say that the leaked argument of knowledge is

accepting.

Consider the adversary A′ = (A′
0,A′

1) that does the following:

1. Pick a collision resistant hash function h ← GenCRH(1κ);
2. Pick m ←$ Mκ and send it to the challenger;
3. Compute h(m).

This ends the code of A′
0, formally, A′

0(1κ) outputs m that is forwarded to the
experiment which instantiates a leakage oracle Om

λ0·(1+γ), also A′
0(1κ) outputs

the state st := (h, h(m)). Here starts the code of A′
1(h, h(m)):
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4. Leak Hashed Values. Define the following function:

f0(ω‖m) := (h(L), h(R) where L,R = Enc(crs,m;ω)) ;

Send the query (rand, f0). Let (hl, hr) be the answer to the query.
5. Leak Argument of Knowledge of Consistency. Consider the following

relation:

Rst :=

⎧
⎨

⎩
(xcrs, xl, xr, xm), (wl, wr) :

h(wl) = xl

h(wr) = xr

h(Dec(xcrs, wl, wr)) = xm

⎫
⎬

⎭

Leak an argument of knowledge for (crs, hl, hr, h(m)) ∈ LRst from rand.
Notice that a witness for the instance can be defined as function of (ω‖m).
If the leaked argument is not accepting then abort. Let π0 be the leaked
transcript.

6. Send the message encode.
7. Leak Arguments of Knowledge of the Left part. Consider the following

relation:
Rhash :=

{
(y, x) : h(x) = y

}

Let τ := 17λ0 · (1 + γ), for all i ∈ [τ ] leak an argument of knowledge for
hl ∈ LRhash from L. If the leaked argument is not accepting then abort. Let
πL

i be the leaked transcript.
8. Leak Arguments of Knowledge of the Right part. For all i ∈ [τ ] leak

an argument of knowledge for hr ∈ LRhash from R. If the leaked argument is
not accepting then abort. Let πR

i be the leaked transcript.

Consider the following randomized experiment E:

– Pick uniformly random m ←$ Mκ and h ←$ GenCRH(1κ) and set st = (h, h(m))
and forward to the predictor the state st.

– Instantiate an oracle Om
λ0·(1+γ) and give the predictor access to it.

Lemma 3. H̃∞(m | E) � α − 	CRH − λ0 · (1 + γ).

Proof. Consider the experiment E′ which is the same as E except that the pre-
dictor’s input is h (instead of (h, h(m))). We apply Lemma 1:

H̃∞ (m | E) � H̃∞ (m | E′) − 	CRH.

Consider the experiment E′′ which is the same as E′ except that the predictor’s
oracle access to Om

λ0·(1+γ) is removed. We apply Lemma 1:

H̃∞ (m | E′) � H̃∞ (m | E′′) − λ0 · (1 + γ).

In the last experiment E′′ the predictor has no information about m and more-
over h is independently chosen with respect to m, therefore:

H̃∞ (m | E′′) = log |M| = α.

�
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Lemma 4. If Σ is (λ0, λ1)-FLR-sim-secure then H̃∞(m|E) � 6.

Proof. Assume that Σ is an (λ0, λ1, ε)-FLR-sim-secure split-coding scheme for a
negligible function ε and a slack parameter γ. Since A′ is ppt there exists a ppt
simulator S ′ such that:

{Realλ0,λ1
A′,Σ (κ)}κ

c≈ε(κ){Idealλ0,λ1
A′,S′,γ(κ)}κ. (1)

For the sake of the proof we first build a predictor which tries to guess m.
We then use this predictor to prove the lemma. Let K be the extractor given by
the knowledge soundness property of the argument of knowledge for the relation
Rhash. Consider the following predictor B that takes as input (h, h(m)) and has
oracle access to Om

λ0·(1+γ):

1. Pick two random tapes ra, rs for the adversary A′
1 and the simulator S ′

and run both of them (with the respective randomness ra, rs) forwarding
all the queries from A′

1 to S ′ and from S ′ to Om
λ0·(1+γ). (The adversary

A′
1 starts by leaking the values hl, hr and an argument of knowledge for

(hl, hr) ∈ LRst . Eventually the adversary sends the message encode.)
2.L. Extract (hl, L

′) ∈ Rhash using the knowledge extractor K. For any
i ∈ [τ ], let s̄t

L
i be the actual internal state of S ′ during the above run of S ′

and A′
1 just before the i-th iteration of step 7 of A′

1.
Let Pleak be a prover of Π for Rhash that upon input the instance hl, ran-
domness rp and auxiliary input s̄t

L
i does the following:

– Run a new instance S ′
i of S ′ with the internal state set to s̄tL

i .
– Upon message yj with j ∈ [ρ] from the verifier, send to S ′

i the message
(L,Prove(hl, ·, y1, . . . , yj ; rp)).

– Upon message (msg, f ′) from the simulator S ′
i reply ⊥ to S ′

i.
Notice that Pleak makes no leakage oracle queries.

(i) If the value L′ is unset, run the knowledge extractor K on the prover
Pleak on input hl and auxiliary input stLi and proper randomness1. The
knowledge extractor K outputs a value L′ or aborts. If hl = h(L′) then
set L′ otherwise we say that the i-th extraction aborts.

(ii) Keep on running A′
1 and S ′ as in the simulated experiment until reaching

the next iteration.
If all the extractions abort, the predictor aborts.

2.R. Extract (hr, R
′) ∈ Rhash using the knowledge extractor K. The pro-

cedure is the same as step 2.L of the predictor, for notational completeness
let us denote with stRi the internal state of S ′ just before the i-th iteration
of step 8.

3. The predictor outputs m′ := Dec(L′, R′) as its own guess.

We compute the probability that B predicts m correctly. We set up some useful
notation:

1 The randomness for Pleak is implicitly defined in the random string ra.
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– Let ExtL (resp. ExtR) be the event that K successfully extracts a value L′

(resp. R′).
– Let CohSt be the event {h(Dec(L′, R′)) = h(m)} .
– Let Coll be the event {h(Dec(L′, R′)) = h(m) ∧ Dec(L′, R′) �= m}.

Recall that m′ := Dec(L′, R′) is the guess of B. We can easily derive that:

Pr
[
m′ = m

]
= Pr

[
ExtL ∧ ExtR ∧ CohSt ∧ ¬Coll] (2)

In fact, ExtL and ExtR imply that L′ and R′ are well defined and the event
(CohSt ∧ ¬Coll) implies that Dec(L′, R′) = m.

Claim 1. Pr[ExtL] � 1
4 − negl(κ).

Proof. Consider the execution of step 7 between the adversary and the simulator.
Let s̄t = s̄t

L
1 , . . . , s̄t

L
τ ∈ {0, 1}∗ be a fixed observed value of the states of S ′ in the

different rounds, i.e., s̄t
L
i is the observed state of S ′ just before the i-th iteration

in step 7.
We define a probability FreeL(s̄tLi ) of the simulator not asking a leakage query

in round i, i.e., the probability that the simulator queries its leakage oracle if
run with fresh randomness starting in round i. We can assume without loss of
generality that the randomness rs of the simulator is part of s̄t

L
i . Therefore the

probability is taken over just the randomness ra of the adversary, m, h and the
challenges used in the proof in round i. Notice that even though it might be
fixed in s̄t = s̄t

L
1 , . . . , s̄t

L
τ whether or not the simulator leaked in round i (this

information might be contained in the final state s̄t
L
τ ), the probability FreeL(s̄tLi )

might not be 0 or 1, as it is the probability that the simulator leaked in round
i if we would rerun round i with fresh randomness of the adversary consistent
with s̄t

L
i .

Recall that s̄t = s̄t
L
1 , . . . , s̄t

L
τ ∈ {0, 1}∗ is a fixed observed value of the states

of S ′ in the different rounds. Let Good(s̄t) be a function which is 1 if

∃i ∈ [τ ] : FreeL(s̄tLi ) � 3
4

and which is 0 otherwise.2 After having defined Good(s̄t) relative to a fixed
observed sequence of states, we apply it to the random variable st describing
the states of S ′ in a random run. When applied to st, we simply write Good.

We use the law of total probability to condition to the event {Good = 1}:

Pr[ExtL] � Pr[ExtL |Good = 1] · Pr[Good = 1] . (3)

We will now focus on bounding Pr[ExtL |Good = 1] · Pr[Good = 1]. We first
bound Pr[Good = 1] and then bound Pr[ExtL |Good = 1]. We first prove that

Pr[Good = 1] = 1 − negl(κ) .

2 Intuitively, Good is an indicator for a good event, that, as we will show, has over-
whelming probability.
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To see this notice that the simulator by the rules of the experiment never queries
its leakage oracle in more than λ0 · (1 + γ) rounds: it is not allowed to leak more
than λ0 · (1+γ) bits and each leakage query counts as at least one bit. Therefore
there are at least τ − λ0 · (1 + γ) rounds in which the simulator did not query
its oracle. If Good = 0, then in each of these rounds the probability of leaking,
before the round was executed, was at least 1

4 and hence the probability of not
leaking was at most 3

4 . Set λ′ := λ · (1 + γ), we can use a union bound to bound
the probability of observing this event

Pr[Good = 0] ≤
(

τ

τ − λ′

) (
3
4

)τ−λ′

≤
(

τ

λ′

)
2log2(3/4)(τ−λ′) . (4)

We now use that τ = 17λ0 · (1 + γ) = 17λ′ and that it holds for any constant
c ∈ (0, 1) that limn→∞

(
n
cn

)
= 2H2(c)·n, where H2 is the binary entropy function.

We get that

Pr[Good = 0] ≤ 2H2(1/17)17λ′
2log2(3/4)16λ′

= (2H2(1/17)17+log2(3/4)16)λ′
< 2−λ0 .

We now bound Pr[ExtL |Good = 1]. Let ExtL(i) be the event that K success-
fully extracts the value L′ at the i-th iteration of the step 7 of the adversary A.
Let AcceptL(i) be the event that Pleak on input hl and auxiliary input stLi gives
an accepting proof. It follows from knowledge soundness of Π that

Pr
[
ExtL(i)|Good = 1

]
� Pr

[
AcceptL(i)|Good = 1] − 1

2 .

Let LeakL(i) be the event that the simulator queries its leakage oracle in round
i. It holds for all i that

Pr
[
AcceptL(i)|Good = 1] ≥ 1 − Pr

[
LeakL(i)|Good = 1

] − negl(κ) .

To see this assume that Pleak upon message (msg, f ′) from S ′
i would send to

the simulator f ′(ω‖m) instead of ⊥. In that case it gives an acceptable proof
with probability 1 − negl(κ) as the adversary leaks an acceptable proof in the
real world and the simulator simulates the real world up to negligible difference.
Furthermore, sending ⊥ when the simulator queries its oracle can only make
a difference when it actually sends a query, which happens with probability
Pr[LeakL(i)]. Combining the above inequalities we get that

Pr
[
ExtL(i)|Good = 1

]
� 1 − Pr

[
LeakL(i)

∣
∣Good = 1] − negl(κ) − 1

2 .

When Good = 1 there exists some round i∗ such that FreeL(s̄tLi∗) � 3
4 , which

implies that Pr
[
ExtL(i∗)|Good = 1

]
� 3

4 − negl(κ) − 1
2 . Clearly ExtL(i∗) implies

ExtL, so we conclude that Pr
[
ExtL|Good = 1

]
� 1

4 − negl(κ).

Claim 2. Pr[ExtR|ExtL] � 1
4 − negl(κ).

The proof proceeds similar to the proof of Claim 1, therefore it is omitted. The
reason why the condition ExtL does not matter is that the proof exploits only
the knowledge soundness of the proof system. Whether the extraction of the left
part succeeded or not does not remove the knowledge soundness of the proofs
for the right part, as they are done after the proofs for the left part.
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Claim 3. Pr[CohSt |ExtL ∧ ExtR] � 1
2 − negl(κ).

Proof. We reduce to the collision resistance property of h and the knowledge
soundness of the argument system Π. Suppose that

Pr[h(Dec(L′, R′)) �= h(m) |ExtL ∧ ExtR] � 1/poly(κ)

Consider the following collision finder adversary Bcoll(h):

1. Sample uniformly random m ←$ M and random h ←$ GenCRH(1κ);
2. Run an instance of the predictor BOm

λ0·(1+γ)(h, h(m)). The predictor needs
oracle access to Om

λ0·(1+γ) which can be simulated by Bcoll(h).
3. Let L′, R′ be defined as by the execution of the predictor B and let ra, rs

be the same randomness used by B in its step 1. Simulate an execution of
A1(h, h(m); ra) and S ′(1κ; rs) and break them just before the adversary leaks
an argument of knowledge for Rst. Let st′ be the internal state of S(1κ; rs).
Let P ′

leak be a prover for Π for the relation Rst that upon input the instance
(crs, h(L′), h(R′), h(m)) and auxiliary input z := (st′,m) does the following:

– Run an S ′ with the internal state set to st′. Sample a random string rp

long enough to specify all random choices done by the prover of Π.
– Upon message yj with j ∈ [ρ] from the verifier, send to S ′ the message

(rand,Prove((crs, h(L′), h(R′), h(m)),Enc(crs, · ; ·), y1, . . . , yj ; rp)). (The
next-message function of the prover of Π that uses as input the witness
Enc(crs,m;ω) and the internal randomness set to rp.)

– Upon message (msg, f ′) from the simulator S ′ reply forwarding f ′(m).
4. Run Kst on the prover P ′

leak on input (crs, h(L′), h(R′), h(m)) and auxiliary
input z. Let L′′, R′′ be the witness output by the extractor.

5. If L′ �= L′′ output (L′, L′′) else (R′, R′′).

It is easy to check that Bcoll simulates perfectly the randomized experiment E.
Therefore:

Pr[h(Dec(L′, R′)) �= h(m)] � (5)
� Pr[h(Dec(L′, R′)) �= h(m) |ExtL ∧ ExtR] Pr[ExtL ∧ ExtR]

� 1/poly(κ) · ( 1
16 − negl(κ))

On the other hand, the extractor Kst succeeds with probability at least 1 −
negl(κ) − 1

2 . Therefore, L′′ and R′′ are such that h(L′′) = h(L′), h(R′′) = h(R′)
and h(Dec(L′′, R′′)) = h(m).

Combining the latter and the statement of the event in Eq. (5), we have
h(Dec(L′, R′)) �= h(m) = h(Dec(L′′, R′′)) which implies that either L′′ �= L′ or
R′′ �= R′. Lastly, notice that Bcoll is an expected polynomial time algorithm.
However we can make it polynomial time by aborting if the number of step
exceeds some fixed polynomial. By setting the polynomial big enough the prob-
ability of Bcoll finding a collision is still noticeable.
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Claim 4. Pr
[
Coll |CohSt ∧ ExtL ∧ ExtR

]
� negl(κ).

Recall that Coll is the event that h(m) = h(m′) but m �= m′. It can be easily
verified that under collision resistance of h the claim holds, therefore the proof
is omitted. Summarizing, we have:

Pr[m′ = m] = Pr
[
ExtL ∧ ExtR ∧ CohSt ∧ ¬Coll]

� ( 1
16 − negl(κ)) · ( 12 − negl(κ)) · (1 − negl(κ)) � 1

64 .

which implies the statement of the lemma.
We conclude the proof of the theorem noticing that, if Σ is (λ0, λ1)-FLR-sim-
secure split-coding scheme by the parameter given in the statement of the the-
orem we have that Lemmas 3 and 4 are in contraction. �
Remark 1. The result can be generalized for a weaker version of the split-state
model where the codeword is split in many parts. The probability that the
predictor in Lemma 4 guesses the message m degrades exponentially in the
number of splits (the adversary needs to leak one hash for each split and then
executes step 7 for any split). Therefore, the impossibility holds when the number
of splits is o((α − λ0(1 + γ))/	CRH). We present the theorem, as stated here, for
sake of simplicity.

The Case of Constant-Size Message. For space reason we defer the impos-
sibility result for the case of constant-size message fully leakage resilient codes
the full version of the paper [18].

5 Feasibility Results

In this section we give two feasibility results for weaker models of security.

5.1 The Inner-Product Extractor is a NC0-Fully LR Code

We start by giving a well-known characterization of the class NC0.

Lemma 5. Let f ∈ NC0 where f :=
(
fn : {0, 1}n → {0, 1}m(n)

)
n∈N

for a
function m. For any n there exists a value c = O(m), a set {i1, . . . , ic} ⊆
[n] of indexes and a function g such that for any x ∈ {0, 1}n, f(x) =
g(xi1 , xi2 , . . . , xic

).

The lemma above shows that any function in NC0 with output length m such
that m(n)/n = o(1) cannot be collision resistant, because an adversary can guess
an index i /∈ {i1, . . . , ic} and output 0n, (0i−1‖1‖0n−i) as collision.

Let F be a finite field and let Φn
F

= (Enc,Dec) be as follows:

– Enc on input m ∈ F picks uniformly random L,R ←$ F
n under the condition

that 〈L,R〉 = m.
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– Dec on input L,R outputs 〈L,R〉.
Theorem 2 (from [15]). The encoding scheme Φn

F
as defined above for |F| =

Ω(κ) is a (0, 0.3 · n log |F||)-FLR-SIM-secure for n > 20.

We will show now that the scheme is also fully leakage resilient for NC0-bounded
adversaries.

Theorem 3. For any n ∈ N and n > 20 there exists a positive constant δ ∈ R

such that, for any λ0, λ1 such that δ · λ0 + λ1 < 0.3 · |Fn| the encoding scheme
Φn
F

is (NC0, λ0, λ1)-FLR-SIM-secure.

We reduce an adversary A for the (NC0, λ0, λ1)-FLR-SIM game (with λ0 > 0)
to an adversary for the (0, δ · λ0 + λ1)-FLR-SIM game. Given Lemma 5 and the
structure of Φn

F
, the task is very easy. In fact, the randomness ω picked by

Enc can be parsed as (L0, . . . , Ln−1, R0, . . . , Rn−2). Whenever the adversary A
queries the oracle Oω

λ0
the reduction splits the leakage function in two pieces and

leak from OL and OR the relative piece of information necessary to compute
the leakage function. Because of Lemma 5 we know that for each function the
amount of leakage done on the two states is bounded by a constant δ.

Proof. Given a vector X ∈ F
n let bit(X)i be the i-th bit of a canonical bit-

representation of X. Given A = (A0,A1) we define a new adversary A′ that
works as follows:

0. Instantiate an execution of (m, st) ←$ A0(1κ);
1. Execute A1(st) and reply to the leakage oracle queries it makes as follow:

– Upon message (rand, f) from A1, let I be the set of indexes such that f
depends on I only. Define IL := I ∩ [qn] and IR := I ∩ [qn + 1, 2qn].
Define the functions:

fL(L) := (bit(L)i for i ∈ IL) and fR(R) := (bit(R)i for i ∈ IR).

Send the queries (L, fL) and (R, fR) and let lkL and lkR be the answers to
the queries. Hardwire such values and evaluate the function f on input m.
Namely, compute lkf := f(fL(L), fR(R),m) and send it back to A1(st).

– Upon message (X, f) where X ∈ {L, R} from A1 forward the message.

W.l.o.g. assume that every leakage query to Oω‖m
λ0

has output length 1 and that
the adversary makes exactly λ0 queries. By Lemma 5 there exists a constant
δ ∈ N such that for the i-th leakage query made by A1 to Oω‖m

λ0
the adversary

A′ leaks δ bits from OL
λ1

,OR
λ1

. By construction:

{Realλ0,λ1
A,Φn

F

(κ)}κ∈N ≡ {Real0,λ1+δ·λ0
A′,Φn

F

(κ)}κ∈N .

Let S ′ be the simulator for the adversary A′ as provided by Theorem 2, thus:

{Real0,λ1+δ·λ0
A′,Φn

F

(κ)}κ∈N ≈negl(κ){Ideal0,λ1+δ·λ0
A′,S′ (κ)}κ∈N.
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Let S be defined as the machine that runs the adversary A′ interacting with the
simulator S ′. Notice that:

{Ideal0,λ1+δ·λ0
A′,S′ (κ)}κ∈N ≡ {Idealλ0,λ1

A,S (κ)}κ∈N.

This conclude the proof of the theorem. �
The proof exploits only marginally the structure of Φn

F
. It is not hard to see that

the theorem can be generalized for any coding scheme (Gen,Enc,Dec) where for
any message m ∈ M and any crs the function Enc(crs,m; ·) is invertible in NC0.
We present the theorem, as stated here, only for sake of concreteness. Moreover,
the The construction is secure under the slightly stronger definition where the
adversary does not lose access to Oω‖m

λ0
after having sent the message encode.

5.2 A Compiler from LRC to FLRC

Given a (α, β)-split-coding scheme Σ = (Gen,Enc,Dec) with randomness space
R, let Hr,t denote a family of efficiently computable t-wise independent hash
function with domain {0, 1}r and co-domain R. We define Σ′ = (Gen′,Enc′,
Dec′ := Dec):

– Gen′ on input 1κ executes crs ←$ Gen(1κ) and samples a function h ←$ Hr,t.
It outputs crs′ = (h, crs).

– Enc′ on input a message m ∈ M and (h, crs) picks a random string
ω ←$ {0, 1}r and returns as output Enc(crs,m;h(ω)).

Theorem 4. For any encoding scheme Σ and any leakage class F , if Σ is
(0, λ1, ε)-FLR-SIM-secure then Σ′ is (F , λ0, λ1, 3ε)-FLR-SIM-secure for any 0 �
λ0 < α whenever:

r � λ0 + λ1 + 2 log(1/ε) + log(t) + 3,

t � λ0 · log |F| + α + λ0 + λ1 + 2 log(1/ε).

We leverage on the fact that with overwhelming probability a t-wise independent
hash function (where t is set as in the statement of the theorem) is a deterministic
strong randomness extractor for the class of of sources defined by adaptively
leaking from the randomness using functions from F . We can, therefore, reduce
an adversary for the (F , λ0, λ1)-FLR-SIM game to an adversary for the (0, λ1)-
FLR-SIM game. The reduction samples a uniformly random string ω′ ←$ {0, 1}r

and replies all the leakage oracle queries on the randomness by applying the
the leakage function on ω′. By the property of the randomness extractor, this
leakage is indistinguishable from to the leakage on the real randomness. It is not
hard to see that the above result can be generalized to every class of leakage that
allows an efficient average-case strong randomness extractor [14]. We present the
result, as stated here, only for sake of concreteness.

Proof. Given an adversary A′ against Σ′, we define a ppt adversary A = (A0,A1)
against Σ as follow:
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– Adversary A0: On input crs, it picks at random h ←$ Hr,t, a random string
ω ←$ {0, 1}r and a random string r ←$ {0, 1}p(κ) for a polynomial p that
bounds the running time of A′ and runs A′

0(1κ; r). Upon leakage oracle query
f to Oω

λ0
from A′

0, it replies f(ω). Eventually, the adversary A′
0 outputs a a

message m ∈ M and a state value st, A0 outputs m and st′ = (st, h).
– Adversary A1: On inputs st′ = (st, h) and crs, it runs A′

1(st, (h, crs)) and
forwards all the queries made by A′

1.

W.l.o.g. the adversary A0 makes the sequence (rand, f1), (rand, f2), . . . ,
(rand, fλ0) of queries. Let f := (f1, . . . , fλ0) ∈ Fλ0 , therefore view of A′ in
the real experiment is:

Realλ0,λ1
A′,Σ′(κ) =

(
r, (h, crs),f(ω), lkL, lkR

)

On the other hand, by definition of the adversary A, the view provided to A′ is:

Hyb(κ) =
(
r,f(ω), (h, crs), lkL′ , lkR′

)
,

where L′, R′ = Enc(crs,m;ω′) and ω ←$ {0, 1}r and ω′ ←$ R.

Claim 5
{
Realλ0,λ1

A′,Σ′(κ)
}

κ∈N
≈2ε(κ)

{
Hyb(κ)

}
κ∈N

.

Before proceeding with the proof of the claim we show how the theorem follows.
Let S be the simulator for the adversary A as given by the hypothesis of the
theorem:

{Real0,λ1
A,Σ(κ)}κ∈N

c≈ε(κ) {Ideal0,λ1
A,S (κ)}κ∈N. (6)

Let S ′ be defined as the adversary A interacting with the simulator S. Therefore,
if we consider Ideal0,λ1

A,S (κ) =
(
(r, h, ω), crs, l̃kL, l̃kR

)
, it holds that:

Idealλ0,λ1
A′,S′(κ) =

(
r, (h, crs),f(ω), l̃kL, l̃kR

)
.

It follows from a simple reduction to Eq. (6) that:
{
Hyb(κ)

}
κ∈N

c≈ε(κ){Idealλ0,λ1
A′,S′(κ)}κ∈N.

We conclude by applying Claim 5 to equation above. �
Proof (of the claim). Since we are proving statistical closeness we can de-
randomize the adversary A′ by setting the random string that maximize the
distinguishability of the two random variables. Similarly we can de-randomize
the common reference string generation algorithm Gen. Therefore, w.l.o.g., we
can consider them fixed in the views.

Recall that the adversary A defines for A′ a hybrid environment where the
leakage on the randomness is on ω ←$ {0, 1}r but the codeword is instantiated
using fresh randomness ω′ ←$ R. We prove the stronger statement that the two
views are statistical close with high probability over the choice of the t-wise hash
function h. For convenience, we define two tuples of random variables:

Realh :=
(
f(ω), lkL, lkR

∣
∣(L,R) = Enc

(
crs,m; h(ω)

))

Hybh :=
(
f(ω), lkL′ , lkR′

∣
∣(L′, R′) = Enc

(
crs,m; ω′))
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Notice that in both distributions above the function f are random variable. For
any fixed sequence of functions f = f0, . . . , fλ0 , let Realh,f (resp. Hybh,f ) be the
distribution Realh (resp. Hybh) where the leakage functions are set. We prove
that

Pr[Hybh ≈ε Realh] � 1 − ε ,

where the probability is over the choice of h ←$ Hr,t. Let Bad be the event
{Hybh �≈ε Realh}.

Pr[Bad] ≤ Pr
h ←$ Hr,t

[∃f1, . . . , fλ0 ∈ F ,m ∈ M : Realh,f �≈ε Hybh,f

]

�
∑

f∈Fλ0

∑

m∈M
Pr

h ←$ Hr,t

[ ∑

v

∣
∣ Pr

ω
[Realh,f = v] − Pr

ω,ω′
[Hybh,f = v]

∣
∣ > 2ε

]

Let λ := λ0 + λ1 and let pv := Prω,ω′ [Hybh,f = v]. Define p̃v := max{pv, 2−λ}.
Note that: ∑

v∈{0,1}λ

p̃v �
∑

v

pv +
∑

v

2−λ � 2

Define the indicator random variable Yω̄,v for the event {Realh,f = v |ω = ω̄},
where the randomness is over the choice of h ←$ Hr,t.

For any view v, the random variables {Yω̄,v}ω̄∈{0,1}r are t-wise independent.
Moreover, E[

∑
ω̄∈{0,1}r Yω̄,v] = 2rpv. In fact, for any h̄ ∈ H, any ω̄ ∈ {0, 1}r

and any v ∈ {0, 1}λ it holds that Prh[Realh,f = v |ω = ω̄] = Prω′ [Hybh,f =
v |ω = ω̄, h = h̄]. It follows that

Pr
h ←$ Hr,t

[ ∑

v

∣
∣ Pr

ω
[Realh,f = v] − pv

∣
∣ > 2ε

]

� Pr
h ←$ Hr,t

[
∃v :

∣
∣ Pr

ω
[Realh,f = v] − pv

∣
∣ > ε · p̃v

]

�
∑

v∈{0,1}λ

Pr
h ←$ Hr,t

[∣
∣ Pr

ω
[Realh,f = v] − pv

∣
∣ > ε · p̃v

]

�
∑

v∈{0,1}λ

Pr
h ←$ Hr,t

[∣
∣
∑

ω̄

Yω̄,v − 2rpv

∣
∣ > 2rε · p̃v

]

�
∑

v∈{0,1}λ

8
(

t · 2rpv + t2

(2rε · p̃v)2

)t/2

(7)

�
∑

v∈{0,1}λ

8
(

2t · 2rp̃v

(2rε · p̃v)2

)t/2

(8)

� 2λ · 8
(

2t

2r−λ · ε2

)t/2

(9)
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where Eq. (7) follows by Lemma 2 and Eqs. (8) and (9) follow because 2r · p̃v �
2r−λ � t. Combining all together we have:

Pr[Bad] � |F|λ0 · |M| · 2λ0+λ1 · 8
(

2t

2r−λ0−λ1 · ε2

)t/2

.

To make the above negligible we can set:

r � λ0 + λ1 + 2 log(1/ε) + log(t) + 3,

t � λ0 · log |F| + α + λ0 + λ1 + 2 log 1/ε.

6 Conclusion and Open Problems

We defined the notion of Fully Leakage Resilient Codes. Although natural, our
definition is too strong to be met in the popular split-state model. Fortunately,
by restricting the class of leakage from the randomness we were able to achieve
two different feasibility results.

There is still a gap between our impossibility result and the possibility results.
As we showed, in the plain model the problem of finding a FLR Code in the
split-state model is strictly connected to the complexity of computing the next-
message function of a prover of a succinct argument of knowledge and to the
complexity of computing an collision resistant hash function. A construction of
FLR code for, let say, the class NC provides, therefore, a complexity lower bound
for at least one of the two mentioned tasks and it would be a very surprising
result. An interesting open problem is to show FLR codes for AC0.

Our definition restricts the simulator to be efficient, this seems a natural
restriction and it is necessary for our impossibility result. It would be interesting
to show either a FLR code with unbounded-time simulator or to generalize our
impossibility result in this setting.
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Abstract. This paper gives the first bit security result for the elliptic
curve Diffie–Hellman key exchange protocol for elliptic curves defined
over prime fields. About 5/6 of the most significant bits of the x-
coordinate of the Diffie–Hellman key are as hard to compute as the
entire key. A similar result can be derived for the 5/6 lower bits.
The paper improves the result for elliptic curves over extension fields,
that shows that computing one component (in the ground field) of the
Diffie–Hellman key is as hard to compute as the entire key.
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1 Introduction

The notion of hardcore functions goes back almost to the invention of public
key cryptography. Loosely speaking, for a one-way function f , a function b is a
hardcore function for f if given f(x) it is hard to compute b(x) (while given x,
computing b(x) is easy).

The main interest is in functions b that output some bits of x, which gives
this research field the name bit security. That is, while computing x from f(x)
is computationally hard by definition, one tries to assess the hardness of com-
puting partial information about x. This can be done by providing an (efficient)
algorithm that computes b(x), or more commonly by reducing the problem of
computing x to computing b(x). That is, one provides an (efficient) algorithm
that inverts f given an algorithm that computes b on f .

For popular candidates for one-way functions, such as the RSA function
(RSAN,e(x) = xe mod N) and discrete exponentiation in a subgroup of prime
order (EXPg(x) = gx; g has prime order), all single-bit functions are known to
be hardcore. This result, which is standard these days, took more than 15 years
to achieve, where year after year small improvements were made. An impor-
tant aspect to consider is the success in computing b(x). The mentioned result
applies to every algorithm that computes b(x) with a non-negligible success over
a trivial guess. See [11] for a survey on hardcore functions which presents the
developments over the years.
c© International Association for Cryptologic Research 2017
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The notion of a hardcore function can be generalized to suit the Diffie–
Hellman key exchange protocol. Let (G, ·) be a group and let g ∈ G. For a
function b, given gu and gv, we consider the hardness of computing b(s) for
(the Diffie–Hellman key) s = guv. Proving bit security for Diffie–Hellman key
exchange has known less success than the aforementioned results. For G = Z

∗
p,

the multiplicative group of integers modulo a prime p, the
√

log p + log log p
most (and least) significant bits of s are hard to compute as s itself [9] (see
also [13]; a similar result holds for twice as many consecutive inner bits, as
a consequence of [19, Sect. 5.1]). For G = F

∗
pm , the multiplicative group of a

finite extension field, represented as a vector space over Fp, computing a single
component of s is as hard to compute as s itself [25], which follows from the
fact that a single component of a product st is linear in all of the components
of s. Moreover, using this linearity, a result in a similar fashion to the case
of G = Z

∗
p can be obtained from [22] for a single component (see also [16]).

These results need – essentially – a perfect success in computing the partial
information.

The case of the elliptic curve Diffie–Hellman key exchange protocol has known
even fewer results, mainly because of the inherent nonlinearity of the problem.
For elliptic curves over prime fields there are no known (non-trivial) results. For
the group of elliptic curve points over an extension field of degree 2, computing
a single component of the x-coordinate of s is as hard to compute as s itself [14,
Remark 3.1]. This result requires perfect success in computing the component.
We mention that for the case of elliptic curves over prime fields it is claimed
in [7] that computing the top (1 − ε) fraction of bits of the x-coordinate of s,
for ε ≈ 0.02, is as hard as computing all of them, but a proof is not provided,
probably since it is a weak result, as the authors mentioned. Obtaining bit secu-
rity results for elliptic curve Diffie–Hellman keys has been an open problem for
almost 20 years [6, Sect. 5] (see also [11, Sect. 5]).

Some results on hardness of bits, related to the elliptic curve Diffie–Hellman
protocol, were given by Boneh and Shparlinski [8] and by Jetchev and Venkatesan
[15] (building on [8] and assuming the generalized Riemann hypothesis). These
results differ from ours in two aspects. They do not provide hardness of bits for
the elliptic curve Diffie–Hellman protocol for a single fixed curve. Furthermore,
the techniques used to achieve these results are very different from ours, as they
reduce the problem to an easier linear problem, while we keep working with the
non-linear addition law.

In this paper we study the bit security of the elliptic curve Diffie–Hellman
key exchange protocol. Our main result is Theorem 2, where we show that about
5/6 of the most significant bits of the x-coordinate of the Diffie–Hellman key are
as hard to compute as the entire key. As above, this result holds if one assumes
a perfect success in computing these bits. This result directly follows from the
solution to the elliptic curve hidden number problem given in Theorem 1. This
solution is based on the ideas behind the solution to the modular inversion
hidden number problem given in [7] and follows the formal proof given by Ling,
Shparlinski, Steinfeld and Wang [17] (earlier ideas already appear in [2,3]).
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Additional results are given in Sect. 6. In Sect. 6.1 we show how to derive the
same result for the least significant bits. Section 6.2 addresses the case of elliptic
curves over extension fields. This problem was first studied by Jao, Jetchev and
Venkatesan [14]. We improve the known result to hold for both coordinates of
the Diffie–Hellman key and to any constant extension degree. More details on
these results appear in the full version of this paper [21].

As the literature on the elliptic curve hidden number problem is very minimal
and incomplete, short discussions – some of which are quite trivial – appear
throughout the paper in order to give a complete and comprehensive study of the
problem. We hope that this work will initiate the study of bit security of elliptic
curve Diffie–Hellman key exchange that will lead to improvements either in the
number of hardcore bits or in the required success probability for computing
them.

2 Mathematical Background

Throughout the paper p > 3 is an m-bit prime number and Fp is the field with p
elements represented by {−p−1

2 , . . . , p−1
2 }. For k > 0 and x ∈ Fp, we denote by

MSBk(x) any h ∈ Fp such that |x − h| ≤ p
2k+1 .1 We have h = MSBk(x) = x − e

for |e| ≤ p
2k+1 , which we loosely call noise.

2.1 Elliptic Curves

Throughout the paper E is an elliptic curve over Fp, given in a short Weierstrass
form

y2 = x3 + ax + b, a, b ∈ Fp and 4a3 + 27b2 �= 0 .

A point P = (x, y) ∈ F
2
p that satisfies this equation is a point on the curve E.

We denote the x-coordinate (resp. y-coordinate) of a given point P by xP or Px

(resp. yP or Py). The set of points on E, together with the point at infinity O, is
known to be an abelian group. Hasse’s theorem states that the number of points
#E on the curve E(Fp) satisfies

|#E − p − 1| ≤ 2
√

p .

The (additive) inverse of a point Q = (xQ, yQ) is −Q = (xQ,−yQ). For
an integer n we denote by [n]P the successive n-time addition of a point P ;
[−n]P = [n](−P ). Addition of points P = (xP , yP ) and Q = (xQ, yQ), where
P �= ±Q, is given by the following formula. Let s = sP+Q = yP −yQ

xP −xQ
, then

(P + Q)x = s2 − xP − xQ and (P + Q)y = −(yP + s((P + Q)x − xP )) .

1 The function MSBk is standard and thought of as providing the k most significant
bits of x. It differs from the classical definition of most-significant-bits functions by
(at most) 1 bit. For broad discussions see [4, Sect. 5], [5, Sect. 3] and [19, Sect. 5.1].
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2.2 Lattices

Let B = {b1, . . . , br} a set of linearly independent vectors in the Euclidean space
R

s, for some integers r ≤ s. The set L = {∑r
i=1 nibi | ni ∈ Z} is called an r-

dimensional lattice and B is a basis for L. The (Euclidean) norm of a vector
v ∈ R

s is denoted by ‖v‖.
For a lattice L in R

s and a real number γ ≥ 1, the γ-shortest vector problem
(γ-SVP) is to find a non-zero lattice vector v ∈ L with norm not larger than
γ times the norm of the shortest non-zero vector in L. In other words, ‖v‖ ≤
γ min{‖u‖ | 0 �= u ∈ L}.

This problem is a fundamental problem in lattice cryptography. References
to surveys and state-of-the-art algorithms for γ-SVP are given in Sect. 1.2 in the
work of Ling, Shparlinski, Steinfeld and Wang [17], and like their work our result
uses the γ-SVP algorithms of Schnorr [20] and Micciancio–Voulgaris [18].

3 Hidden Number Problems

The hidden number problem was introduced by Boneh and Venkatesan [9] in
order to study bit security of the Diffie–Hellman key exchange protocol in the
multiplicative group of integers modulo a prime p. This problem is formulated
as follows.

HNP: Fix a prime p, an element g ∈ Z
∗
p and a positive number k.

Let α ∈ Z
∗
p be a hidden number and let Oα,g be an oracle that on

input x computes the k most significant bits of αgx mod p. That is,
Oα,g(x) = MSBk(α · gx mod p). The goal is to recover the hidden
number α, given query access to the oracle Oα,g.

Various natural variants of this problem can be considered, such as changing
the group the elements are taken from and the function the oracle is simulating.
Moreover, one can consider oracles with different probability of producing the
correct answer. The survey [24] covers many of these generalizations as well as
different applications.

The elliptic curve equivalent, known as the elliptic curve hidden number prob-
lem, is formulated as follows for ψ ∈ {x, y}.

EC-HNPψ: Fix a prime p, an elliptic curve E over Fp, a point R ∈ E
and a positive number k. Let P ∈ E be a hidden point and let OP,R

be an oracle that on input t computes the k most significant bits of
the ψ-coordinate of P +[t]R. That is, OP,R(t) = MSBk((P +[t]R)ψ).
The goal is to recover the hidden point P , given query access to
the oracle OP,R.

The elliptic curve hidden number problem, to the best of our knowledge,
was first considered (more generally, and only for the x-coordinate) by Boneh,
Halevi and Howgrave-Graham [7], and besides being mentioned in the surveys
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[23,24] there is no other literature about it.2 We remark that there are no known
solutions to this problem, even for large k’s (except, of course, of trivial cases,
i.e., k ≥ log p − O(log log p)).

A related3 non-linear problem is the modular inversion hidden number prob-
lem, which was introduced by Boneh, Halevi and Howgrave-Graham [7]. It is
formulated as follows.

MIHNP: Fix a prime p and positive numbers k, d. Let α ∈ Zp be a
hidden number and let t1, . . . , td ∈ Zp\{−α} chosen independently
and uniformly at random. The goal is to find the secret number α

given the d pairs
(
ti,MSBk

(
1

α+ti

))
.

We now explain the relation between the elliptic curve hidden number prob-
lem and bit security of the elliptic curve Diffie–Hellman key exchange protocol.

Remark 1. Given an elliptic curve E over a field Fq, a point Q ∈ E and the values
[a]Q and [b]Q, the Diffie–Hellman key P is the value P = ECDHQ([a]Q, [b]Q) =
[ab]Q. Suppose one has an oracle that on input [u]Q and [v]Q outputs some
partial information on [uv]Q. Then, one can choose an integer t and calculate
[t]Q, and by adding [t]Q and [a]Q, one gets [a]Q + [t]Q = [a + t]Q. Querying
the oracle on [b]Q and [a + t]Q, one gets partial information on [(a + t)b]Q =
[ab]Q + [tb]Q = P + [t]([b]Q) = P + [t]R, for R = [b]Q. Repeating for several t’s,
if it is possible to solve the elliptic curve hidden number problem, one can find
the Diffie–Hellman key P = [ab]Q.

In the proof below we use the fact that one can get MSBk(xP ) for the secret
point P . This can be easily justified by taking t = 0 in EC-HNP, or equivalently
querying the oracle from Remark 1 on [a]Q and [b]Q. Moreover,

Remark 2. Similar to HNP [9, Sect. 4.1] and MIHNP [7, Sect. 2.1], EC-HNP can
be self-randomized. Indeed, given {(Qi,O((P + Qi)ψ))}1≤i≤n, for an oracle O,
choose 1 ≤ i0 ≤ n, and define a new secret P ′ := P + Qi0 . Let Q′

i := Qi − Qi0 ,
then we have P + Qi = P ′ + Q′

i, and so O((P ′ + Q′
i)ψ) = O((P + Qi)ψ).

If one can find P ′, recovering P = P ′ − Qi0 is easy. This shows that given
{(Qi,O((P +Qi)ψ))}i, one can randomize the secret P as well as the ‘multipliers’
Qi. Alternatively, if access to the oracle is still provided, one can query on ti0 +ti
to receive O((P ′+Qi)ψ), as well as taking the approach of [9, Sect. 4.1]. This self-
randomization allows us to assume without loss of generality that R in EC-HNP
is a generator for 〈Q〉.

2 In [14] (a variant of) this problem is studied for elliptic curves over extension fields.
3 We show below that the technique used to solve this problem also applies to EC-

HNP. In addition, [23] reveals that obtaining bit security results for the elliptic curve
Diffie–Hellman scheme has been a primary motivation for studying this problem.
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4 Main Results

The main result is Theorem 2, which gives the first bit security result for prime-
field elliptic curve Diffie–Hellman key exchange. This result follows from the
following theorem, which shows how to recover the secret point in EC-HNPx

given a γ-SVP algorithm.

Theorem 1. Let E be an elliptic curve over a prime field Fp, let n be an inte-
ger and k a real number. Let an unknown P = (xP , yP ) ∈ E\{O} and a known
generator R ∈ E\{O} be points on the curve. Let O be a function such that
O(t) = MSBk((P + [t]R)x), and denote Qi := [ti]R. Then, given a γ-SVP algo-
rithm, there exists a deterministic polynomial-time algorithm that recovers the
unknown xP with 2n + 1 calls to O and a single call to the γ-SVP algorithm
on a (3n + 3)-dimensional lattice with polynomially bounded basis, except with
probability

P1 ≤ 8n(6ηΔ + 1)6n+3

(p − 2
√

p − 2)n
+

16(6ηΔ + 1)6

p − 2
√

p − 2
+

2n + 3
p − 2

√
p

over the choices of xQ1 , . . . , xQn
, when it returns no answer or a wrong answer,

where η = 2γ
√

3n + 1 and Δ = � p
2k+1 �.4 If the correct x-coordinate xP has

been recovered, the algorithm determines which of the two candidates ±yP is the
correct y-coordinate, except with probability

P2 ≤ (16Δ)n

(p − 2
√

p − 2)n

over the choices of xQ1 , . . . , xQn
.

Remark 3. In the theorem, as in the corollary below, R is taken to be a generator
of E in order to give precise bounds on the probabilities. Both results hold even
if R is not a generator of E, as long as it generates a “large enough” subgroup.
The size of the subgroup appears in the denominator of the probabilities bounds
(see footnote 7), and so the results also hold if the subgroup’s order is greater
than p/poly(log(p)), for example. For substantially smaller subgroups, one would
need to adjust the value for k.

The following corollary shows that one can solve EC-HNPx given an oracle
for k > ( 56 + ε)m most significant bits (where m is the bit length of p, and
for any constant ε). Similar to Ling et al. [17], we consider two different SVP
approximation algorithms to show the influence of ε on the running time and
the minimum allowed value for p.

Corollary 1. Fix 0 < δ ≤ 3ε < 1/2. Let n0 = � 1
6ε�, p be an m-bit prime,

E be an elliptic curve over Fp and k > (5/6 + ε)m. There exist deterministic

4 As the matter of exact precision is not important, we set Δ to be an integer.
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algorithms Ai, for i = 1, 2, that solve EC-HNPx (with MSBk and a generator R)
for m ≥ mi, with probability at least 1 − p−δ over the choices of xQ1 , . . . , xQn0

where

m1 = �c1ε−1 log ε−1� and m2 = �c2ε−2 (log log ε−1)2

log ε−1
� ,

for some absolute effectively computable constants c1, c2, and their running time
is Ti where

T1 = (2ε−1
m)O(1) and T2 = (ε−1m)O(1) .

As a consequence, following Remark 1, we get a hardcore function for the elliptic
curve Diffie–Hellman problem and the following bit security result for elliptic
curve Diffie–Hellman key exchange.

Theorem 2. Fix 0 < δ ≤ 3ε < 1/2. Let p be an m-bit prime, E be an elliptic
curve over Fp, a point P ∈ E\{O} of order at least p/poly(log(p)) and k >
(5/6 + ε)m. Given an efficient algorithm to compute MSBk (([ab]P )x) from [a]P
and [b]P , there exists a deterministic polynomial-time algorithm that computes
[ab]P with probability at least 1 − pδ.

In a nutshell, the approach of solving non-linear problems like MIHNP and
EC-HNP is to form some polynomials with desired small roots, and use a lattice
basis reduction algorithm to find some of these roots. The polynomials’ degree,
the number of their monomials, and subsequently the dimension of the lattice,
play a main role in the quality of the result one can obtain.

4.1 Our Approach

The first obstacle in approaching EC-HNP is the nonlinearity (over the ground
field) of the addition rule. This can be easily overcome by the “linearization”
approach of Boneh et al. [7], which we adopt, but at the cost of not being able
to use Babai’s algorithm for closest lattice point [1]. This prevents non-linear
problems, like MIHNP and EC-HNP, of achieving results as good as the result
for the linear HNP.

The second obstacle in approaching EC-HNPx (and similarly EC-HNPy) is
that while one only gets partial information of xP , the formula for (P + Q)x

also involves (the unbounded unknown) yP . Similar to the approach of [7], one
can isolate this unknown in one equation, and substitute to all of the other
equations, hence ‘losing’ one equation. Doing so will impose an extra bounded
unknown in each equation, as well as many additional monomials, coming from
the noise term of the equation we use to eliminate yP .5 This will therefore result
in a significantly large dimension of the lattice one constructs.6 Instead, we show
5 Alternatively, once yP is isolated, one can square both sides of the equation to

eliminate yP using the elliptic curve equation. While this allows us to keep all initial
equations, doing so will result in polynomials of a larger degree with many more
monomials.

6 We speculate that this is the reason why [7] can only rigorously solve EC-HNPx

given (1 − ε) fraction of the bits, for ε ≈ 0.02.
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how one can combine two correlated equations to eliminate yP . This helps us
to define one bounded unknown (twice as large) while keeping the number of
monomials relatively small. Taking this approach we form new equations from
pairs of initial equations, causing a ‘loss’ of about half of the equations.

Formally, we proceed as follows.

Eliminating yP . For some integer t consider the pair Q = [t]R,−Q = [−t]R ∈
E, and suppose P �= ±Q. Let P = (xP , yP ) and Q = (xQ, yQ), therefore −Q =
(xQ,−yQ), and write sP+Q = yP −yQ

xP −xQ
and sP−Q = yP −y−Q

xP −x−Q
= yP +yQ

xP −xQ
. The

following operations take place in Fp.

(P + Q)x + (P − Q)x = s2P+Q − xP − xQ + s2P−Q − xP − xQ

=
(

yP − yQ

xP − xQ

)2

+
(

yP + yQ

xP − xQ

)2

− 2xP − 2xQ

= 2

(
y2

P + y2
Q

(xP − xQ)2
− xP − xQ

)

= 2

(
xQx2

P + (a + x2
Q)xP + axQ + 2b

(xP − xQ)2

)

.

(1)

Constructing Polynomials with Small Roots. Write h0 = MSBk(xP ) =
xP − e0, h = MSBk((P + Q)x) = (P + Q)x − e and h′ = MSBk((P − Q)x) =
(P − Q)x − e′. Letting h̃ = h + h′ and ẽ = e + e′ and plugging xP = h0 + e0 in
(1) we get

h̃ + ẽ = (P + Q)x + (P − Q)x

= 2

(
xQ(h0 + e0)2 + (a + x2

Q)(h0 + e0) + axQ + 2b

(h0 + e0 − xQ)2

)

.

Multiplying by (h0+e0−xQ)2 and rearranging we get that the following bivariate
polynomial

F (X,Y ) = X2Y + (h̃ − 2xQ)X2 + 2(h0 − xQ)XY

+ 2[h̃(h0 − xQ) − 2h0xQ − a − x2
Q]X + (h0 − xQ)2Y

+ [h̃(h0 − xQ)2 − 2h2
0xQ − 2(a + x2

Q)h0 − 2axQ − 4b]

satisfies F (e0, ẽ) ≡ 0 mod p.
Repeating with n different Qi leads to n polynomials of the form

Fi(X,Y ) = X2Y + AiX
2 + A0,iXY + BiX + B0,iY + Ci , (2)

that satisfy Fi(e0, ẽi) ≡ 0 mod p. Our aim is to find “small” roots for Fi; if one
of these roots satisfies X = e0, we can substitute in h0 and recover xP .
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We start with a simple argument that shows that indeed we expect to solve
EC-HNPx with more than the top 5/6 fraction of the bits. The argument is
identical to the argument given in [7, Sect. 3.1].

4.2 A Simple Heuristic Argument

The solutions to the system of the n polynomials in (2) can be represented by
a lattice of dimension 4n + 3, as follows. The lattice is spanned by the rows of a
matrix M of the following structure

M =
(

E R
0 P

)

where E and P are diagonal square matrices of dimensions 3n+3 and n, respec-
tively, and R is a (3n + 3) × n matrix. Each of the first 3n + 3 rows of M is
associated with one of the terms in (2), and each of the last n columns is associ-
ated with one of these equations. For example, for n = 2 we get the matrix (m
is the bit size of p and k the number of bits we get)

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 C1 C2

0 2k−m 0 0 0 0 0 0 0 B0,1 0

0 0 2k−m 0 0 0 0 0 0 0 B0,2

0 0 0 2k−m 0 0 0 0 0 B1 B2

0 0 0 0 22(k−m) 0 0 0 0 A0,1 0

0 0 0 0 0 22(k−m) 0 0 0 0 A0,2

0 0 0 0 0 0 22(k−m) 0 0 A1 A2

0 0 0 0 0 0 0 23(k−m) 0 1 0

0 0 0 0 0 0 0 0 23(k−m) 0 1
0 0 0 0 0 0 0 0 0 p 0
0 0 0 0 0 0 0 0 0 0 p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For e0, ẽi, the last n columns give us equations over the integers:

e20ẽi + Aie
2
0 + A0,ie0ẽi + Bie0 + B0,iẽi + Ci − kip = 0 .

For the corresponding solution vector

v := 〈1, ẽ1, . . . , ẽn, e0, e0ẽ1, . . . , e0ẽn, e20, e
2
0ẽ1, . . . , e

2
0ẽn, k1, . . . , kn〉 ,

we get that vM =

〈1,
ẽ1

2m−k
, . . . ,

ẽn

2m−k
,

e0
2m−k

,
e0ẽ1

22(m−k)
, . . . ,

e0ẽn

22(m−k)
,

e20
22(m−k)

,
e20ẽ1

23(m−k)
, . . . ,

e20ẽn

23(m−k)
, 0, . . . , 0〉.

Therefore, vM is a lattice point with 3n + 3 non-zero entries, all of which are
smaller than 1, so its Euclidean norm is smaller than

√
3n + 3.

The determinant of the lattice is pn

2(m−k)(6n+3) . We apply the heuristic for
short lattice vectors and expect that vM is the shortest vector if

√
3n + 3 �√

4n + 3
(
2(k−m)(6n+3)pn

)1/(4n+3)
. Substituting p = 2m+O(1) and ignoring lower
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terms we get 2k � 25/6m, and so we expect that vM is the shortest lattice
vector when we get more than 5

6m bits. Therefore, this becomes a problem of
recovering the shortest lattice vector.

Boneh et al. [7] suggest using Coppersmith’s method [10] and construct a
lattice that leads to a smaller bound on the number of bits one needs in order
to recover the secret element in this kind of non-linear problems. This approach
has to assume linear independence of the equations involved, and therefore does
not provide a proof, but only a heuristic. Since the aim of this paper is to prove
bit security, we do not follow this path.

We now turn to a complete formal proof of Theorem1. It follows the same
arguments as in the proof of Theorem 1 in [17], where necessary adaptations
have been made.

5 Proofs

The proof of Theorem1 is very technical. The algorithm of recovering xP appears
in Algorithm 1, but we first lay the groundwork, so that the probability analysis
that appears after the algorithm could be understood. We first give an overview
of the key points of the proof.

Overview
In the algorithmic part:

• Using O, we construct the polynomial relations (as in (2) above)

Fi(X,Y ) = X2Y + AiX
2 + A0,iXY + BiX + B0,iY + Ci

for which Fi(e0, ẽi) ≡ 0 mod p.
• Using these relations, we construct a lattice (see (4)), such that the vector

e := (Δ3,Δ2e0,Δ
2ẽ1, . . . ,Δ

2ẽn,Δe20,Δe0ẽ1, . . . ,Δe0ẽn, e20ẽ1, . . . , e
2
0ẽn)

is a short lattice vector.
• We run a γ-SVP algorithm on the lattice to receive a short lattice vector

f := (Δ3f ′
0,Δ

2f0,Δ
2f1 . . . ,Δ2fn,Δf0,0,Δf0,1, . . . ,Δf0,n, f00,1, . . . , f00,n) .

As e and f are two short lattice vectors, we expect them to be a (scalar)
multiple of each other.

• Supposing this is the case, the scalar f ′
0 is found by observing the first coor-

dinate of e and f . We then compute e0 = f0/f ′
0 provided f ′

0 �= 0.
• From the relation h0 = xP − e0 we derive xP = h0 + e0.

The second part of the proof analyzes the success probability of the algorithm,
as follows:

• If e0 �= f0/f ′
0 or f ′

0 = 0 the algorithm fails.
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• To derive the probability of these events we form a certain family of low-degree
polynomials (see (12)), for which we are interested in their set of zeros. The
number of polynomials in the family is a function of Δ = � p

2k+1 �, and so a
function of k.

• Claim 5.1 shows that if yP �= 0, then the polynomials are not identically zero.
• We show that these events occur if the points xQi

are roots of some of these
polynomials. Thus, we derive an exact expression of the probability of these
events to hold.

The last part of the proof shows how one can determine the correct value for yP

using a consistency check with all of the given values.

5.1 Proof of Theorem 1

Assume without loss of generality 3ηΔ ≤ 3ηΔ3 < p, as otherwise the bound
on the probability makes the claim trivial, and that the unknown P is chosen
uniformly at random (see Remark 2). Throughout, unless stated otherwise, i, j
are indices such that 1 ≤ i ≤ n and 0 ≤ j ≤ n. Set t0 = 0, choose ti ∈ [1,#E−1]
independently and uniformly at random, and query the oracle O on ±tj to
get the 2n + 1 values O(±tj) denoted by h0 = MSBk(Px) = xP − e0, hi =
MSBk((P +Qi)x) = (P +Qi)x−ei and hi′ = MSBk((P −Qi)x) = (P −Qi)x−ei′ ,
for some integers −Δ ≤ ej , ei′ ≤ Δ. Denote h̃i = hi + hi′ and ẽi = ei + ei′ , and
suppose P �= ±Qi.

The following has been shown in Sect. 4.1. For every 1 ≤ i ≤ n, one has

h̃i + ẽi = hi + ei + hi′ + ei′ = (P + Qi)x + (P − Qi)x

≡ 2

(
xQi

(h0 + e0)2 + (a + x2
Qi

)(h0 + e0) + axQi
+ 2b

(h0 + e0 − xQi
)2

)

(mod p) .

Consider the polynomials

Fi(X,Y ) := X2Y + AiX
2 + A0,iXY + BiX + B0,iY + Ci ,

where (all congruences hold mod p)

Ai ≡ h̃i − 2xQi
,

Bi ≡ 2[h̃i(h0 − xQi
) − 2h0xQi

− a − x2
Qi

] ,

Ci ≡ h̃i(h0 − xQi
)2 − 2((h2

0 + a)xQi
+ (a + x2

Qi
)h0 + 2b) .

A0,i ≡ 2(h0 − xQi
) ,

B0,i ≡ (h0 − xQi
)2, and

It holds that F (e0, ẽi) ≡ 0 (mod p) for every 1 ≤ i ≤ n. As e0, ẽi are rela-
tively small, one hopes that finding a small solution to one of these polynomials
would allow to recover e0 and subsequently P . To achieve this goal, we use these
relations to construct a lattice and apply the γ-SVP algorithm.

Formally, we start by ‘balancing’ the coefficients (as lattice basis reduction
algorithms work better where all the coefficients are of similar size). For every
1 ≤ i ≤ n, set
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ai ≡ Δ−1Ai (mod p) , a0,i ≡ Δ−1A0,i (mod p) ,

bi ≡ Δ−2Bi (mod p) , b0,i ≡ Δ−2B0,i (mod p) , and

ci ≡ Δ−3Ci (mod p) .

(3)

The vector

e = (Δ3,Δ2e0,Δ
2ẽ1, . . . ,Δ

2ẽn,Δe20,Δe0ẽ1, . . . ,Δe0ẽn, e20ẽ1, . . . , e
2
0ẽn)

belongs to the lattice L consisting of solutions

x = (x′
0, x0, x1, . . . , xn, x0,0, x0,1, . . . , x0,n, x00,1, . . . , x00,n) ∈ Z

3n+3

of the congruences

cix
′
0 + bix0 + b0,ixi + aix0,0 + a0,ix0,i + x00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

x′
0 ≡ 0 (mod Δ3) ,

xj ≡ 0 (mod Δ2) 0 ≤ j ≤ n , and
x0,j ≡ 0 (mod Δ) 0 ≤ j ≤ n .

The lattice L is generated by the rows of a (3n + 3) × (3n + 3) matrix M of
the following structure:

M =

⎛

⎝
Δ2 0 M1

0 Δ M2

0 0 P

⎞

⎠ (4)

where Δ2, Δ and P are diagonal square matrices of dimensions n+2, n+1 and
n, respectively, such that the diagonal of P consists of the prime p, the matrix
Δ consists of Δ and the matrix Δ2 of Δ2, except of the first diagonal entry
which is Δ3; and the matrices M1 and M2 are of dimensions (n + 2) × n and
(n + 1) × n respectively, given by

M1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−C1 −C2 . . . −Cn

−B1 −B2 −Bn

−B0,1 0 0
0 −B0,2

... 0
. . .

...
0 0 −B0,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, M2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−A1 −A2 . . . −An

−A0,1 0 0

0 −A0,2

...
... 0

. . .
...

0 0 −A0,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As |ẽi| = |ei + ei′ | ≤ 2Δ for every 1 ≤ i ≤ n, we have

‖e‖ ≤
√

3Δ6 + 12nΔ6 =
√

3 + 12nΔ3 ≤ 2Δ3
√

3n + 1 .

Run the γ-SVP algorithm and denote the vector it outputs by

f = (Δ3f ′
0,Δ

2f0,Δ
2f1 . . . ,Δ2fn,Δf0,0,Δf0,1, . . . ,Δf0,n, f00,1, . . . , f00,n) , (5)
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where f ′
0, fj , f0,j , f00,i ∈ Z. Notice that

‖f‖ ≤ γ‖e‖ ≤ 2γΔ3
√

3n + 1 = ηΔ3 for η = 2γ
√

3n + 1 ,

and also that

|f ′
0| ≤ ‖f‖Δ−3 ≤ η ,

|fj | ≤ ‖f‖Δ−2 ≤ ηΔ ,

|f0,j | ≤ ‖f‖Δ−1 ≤ ηΔ2 , and

|f00,i| ≤ ‖f‖ ≤ ηΔ3 .

As e, f are both short lattice vectors, we expect them to be scalar multiples of
each other. Therefore, let

d = f ′
0e − f = (0,Δ2d0,Δ

2d1, . . . ,Δ
2dn,Δd0,0,Δd0,1, . . . ,Δd0,n, d00,1, . . . , d00,n),

where

d0 = f ′
0e0 − f0 , |d0| = |f ′

0e0 − f0| ≤ η|e0| + |f0| ≤ ηΔ + ηΔ = 2ηΔ ,

di = f ′
0ẽi − fi , |di| = |f ′

0ẽi − fi| ≤ η|ẽi| + |fi| ≤ η2Δ + ηΔ = 3ηΔ ,

d0,0 = f ′
0e

2
0 − f0,0 , |d0,0| = |f ′

0e
2
0 − f0,0| ≤ η|e0|2 + |f0,0|

≤ ηΔ2 + ηΔ2 = 2ηΔ2 , (6)
d0,i = f ′

0e0ẽi − f0,i , |d0,i| = |f ′
0e0ẽi − f0,i| ≤ η|e0ẽi| + |f0,i|

≤ η2Δ2 + ηΔ2 = 3ηΔ2 , and

d00,i = f ′
0e

2
0ẽi − f00,i , |d00,i| = |f ′

0e
2
0ẽi − f00,i| ≤ η|e20ẽi| + |f00,i|

≤ η2Δ3 + ηΔ3 = 3ηΔ3 .

Notice that if f ′
0 �= 0 and also one of the coordinates of d (except of the

first one) is zero, we can recover some previously unknown information. More
precisely, suppose f ′

0 �= 0, then

If d0 = 0, then e0 = f0/f ′
0 ; (7)

If di = 0, then ẽi = fi/f ′
0 , 1 ≤ i ≤ n ; (8)

If d0,0 = 0, then e20 = f0,0/f ′
0 ; (9)

If d0,i = 0, then e0ẽi = f0,i/f ′
0 , 1 ≤ i ≤ n ; (10)

If d00,i = 0, then e20ẽi = f00,i/f ′
0 , 1 ≤ i ≤ n . (11)

As ẽi = ei + ei′ it is unclear how to use these values in general to recover the
secret xP . We therefore focus on e0, from which we derive xP . Although there
are several ways to recover e0 from these equations, for the sake of the proof we
only focus on (7), thus in case f ′

0 �= 0 we take h0 + f0/f ′
0 as the candidate for

xP , and if f ′
0 = 0, we fail. We remark that a more involved approach can be

taken (to determine e0 and in the case f ′
0 = 0), using the consistency check in

AppendixA.
A pseudocode for the algorithm that recovers xP is the following.
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Algorithm 1. Find xP

1: Construct a lattice, generated by the rows of the matrix M as in (4).
2: Run the γ-SVP algorithm on the lattice to get the vector f as in (5).
3: if f ′

0 �= 0 then
return h0 + f0/f ′

0

else
Fail

Probability of Failure
We now define the following events:

(E-1) yP = 0;
(E-2) d0 �= 0 and (E-1) does not hold;
(E-3) f ′

0 = 0 and (E-1) and (E-2) do not hold.

It is clear that if none of the events hold, one can recover xP . The requirement
yP �= 0 will be made clear in Claim 5.1 below.

As there are at most 3 values for xP ∈ Fp that satisfy the equation x3
P +

axP +b ≡ 0 (mod p), and since P is assumed to be chosen uniformly at random,
the probability that (E-1) holds satisfies

Pr[(E-1)] ≤ 3
#E − 1

≤ 3
p − 2

√
p

.

In order to derive a bound on the probability of the other events we form
some useful equations. As

ciΔ
3 + biΔ

2e0 + b0,iΔ
2ẽi + aiΔe20 + a0,iΔe0ẽi + e20ẽi ≡ 0 (mod p), 1 ≤ i ≤ n ,

and

ciΔ
3f ′

0+biΔ
2f0+b0,iΔ

2fi+aiΔf0,0+a0,iΔf0,i+f00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

we get (by the definition of d)

biΔ
2d0 + b0,iΔ

2di + aiΔd0,0 + a0,iΔd0,i + d00,i ≡ 0 (mod p), 1 ≤ i ≤ n ,

and therefore (using (3) above)

Bid0 + B0,idi + Aid0,0 + A0,id0,i + d00,i ≡ 0 (mod p), 1 ≤ i ≤ n .

Multiplying by (xP −xQi
)2 and using the definitions for Ai, A0,i, Bi and B0,i we

get for every 1 ≤ i ≤ n

(xP − xQi
)2

(
2[h̃i(h0 − xQi

) − 2h0xQi
− a − x2

Qi
]d0 + (h2

0 − 2h0xQi
+ x2

Qi
)di

+ (h̃i − 2xQi
)d0,0 + 2(h0 − xQi

)d0,i + d00,i

)
≡ 0 (mod p) ,
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which simplifies, as a polynomial in xQi
, to

Uix
4
Qi

− Vix
3
Qi

+ Wix
2
Qi

+ YixQi
+ Zi ≡ 0 (mod p), 1 ≤ i ≤ n , (12)

where (all congruences hold mod p)

Ui ≡ di − 2d0 ,

Vi ≡ 2(2xP − 2e0 − ẽi)d0 + (4xP − 2e0)di + 2d0,0 + 2d0,i ,

Wi ≡ 2(3x3
P − 6e0xP − 3ẽixP + e0ẽi − 3a)d0 + (6x2

P − 6e0xP + e20)di

+ (6xP − ẽi)d0,0 + (6xP − 2e0)d0,i + d00,i ,

Yi ≡ 2(3ẽix
2
P − 2e0ẽixP + 2axP − 2ae0 − 4b)d0 − 2(2x3

P − 3e0x
2
P + e20xP )di

+ (2ẽixP + 2a)d0,0 − (6x2
P − 4e0xP )d0,i − 2xP d00,i , and (13)

Zi ≡ 2(−ẽix
3
P + e0ẽix

2
P + ax2

P − 2ae0xP + 4bxP − 4be0)d0
+ (x4

P − 2e0x
3
P + e20x

2
P )di + (−ẽix

2
P + 2axP + 4b)d0,0

+ (2x3
P − 2e0x

2
P )d0,i + x2

P d00,i .

We now show that if for some 1 ≤ i ≤ n the left hand side of (12) is the
constant zero polynomial, then d0 = 0 = d0,0. We conclude that if d0 �= 0 or
d0,0 �= 0, then the left hand side of (12) is a non-constant polynomial in xQi

(of
degree at most 4) for every 1 ≤ i ≤ n.

Claim. Let 1 ≤ i ≤ n, and assume yP �= 0. The left hand side of (12) is constant
if and only if d0 = d0,0 = di = d0,i = d00,i = 0.

Proof. The first implication is clear from (13). Suppose that the left hand side
of (12) is constant for some 1 ≤ i ≤ n. Then Ui ≡ Vi ≡ Wi ≡ Yi ≡ Zi ≡ 0
(mod p). One can express the latter as a system of 5 equations in the 5 variables
d0, di, d0,0, d0,i and d00,i. A non-zero solution exists if and only if the system is
singular. We show that the system is nonsingular if and only if yP �= 0, which
completes the proof.

We use the first 4 equations to eliminate di, d0,i, d00,i and remain with the
“global” variables d0, d0,0. One then has

−2(2x3
P + 3e0x

2
P + 2axP + ae0 + 2b)d0 + (3x2

P + a)d0,0 ≡ 0 (mod p) ,

which simplifies to

−4yP d0 − 2e0(3x2
P + a)d0 + (3x2

P + a)d0,0 ≡ 0 (mod p) .

If 3x2
P + a ≡ 0 (mod p), then yP d0 ≡ 0 (mod p). Otherwise, one can express

d0,0 in terms of d0. Plugging this value, with the other recovered variables, to
the last equation, one gets

(x6
P + 2ax4

P + 2bx3
P + a2x2

P + 2abxP + b2)d0 ≡ y4
P d0 ≡ 0 (mod p) .

In both cases, since yP �= 0, we have d0 ≡ d0,0 ≡ di ≡ d0,i ≡ d00,i ≡ 0
(mod p), and since all of these values are of size smaller than p (as we suppose
3ηΔ < 3ηΔ3 < p), the claim follows. �
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We use this claim to bound the probabilities of (E-2) and (E-3), which will
prove the first claim in the theorem. The probability of events (E-2) and (E-3)
is taken over the choice of the points Qi for 1 ≤ i ≤ n. That is, we consider the
number of n-tuples

(xQ1 , . . . , xQn
) ∈ (Ex\{xP })n

such that (E-2) holds or (E-3) holds, where Ex := {z ∈ Fp | ∃Q ∈ E,Qx = z}.7

Note that #E − 1 ≤ 2|Ex| ≤ #E + 2.

Probability of Event (E-2). Assume (E-2) holds, that is d0 �= 0 and yP �= 0,
and fix some values of dj , d0,j for 0 ≤ j ≤ n and d00,i for 1 ≤ i ≤ n. Let us
consider the number of n-tuples

(xQ1 , . . . , xQn
) ∈ (Ex\{xP })n

satisfying (12).
Since d0 �= 0 Claim 5.1 shows that the left hand side of (12) is nonconstant

for all 1 ≤ i ≤ n. Thus, as all the relations in (12) are satisfied, there are at most
4 values xQi

that satisfy each relation, and so there are at most 4n n-tuples that
satisfy these n non-constant polynomials.

From (6) above we get: as d0 �= 0 it can take at most 4ηΔ values, each di

can take at most 6ηΔ + 1 values, d0,0 can take at most 4ηΔ2 + 1 values, each
d0,i can take at most 6ηΔ2 + 1 values, and each d00,i can take at most 6ηΔ3 + 1
values. Therefore, there are at most

4n4ηΔ(6ηΔ + 1)n(4ηΔ2 + 1)(6ηΔ2 + 1)n(6ηΔ3 + 1)n <

4n4ηΔ(6ηΔ + 1)n(4ηΔ + 1)2(6ηΔ + 1)2n(6ηΔ + 1)3n < 4n(6ηΔ + 1)6n+3

n-tuples (xQ1 , . . . , xQn
) for which event (E-2) happens. Denote them by Q. The

probability that d0 �= 0 (given yP �= 0) satisfies

Pr[(E-2)] ≤ |Q|
|Ex\{xP }|n <

4n(6ηΔ + 1)6n+3

(
1
2 (#E − 1) − 1

)n ≤ 8n(6ηΔ + 1)6n+3

(p − 2
√

p − 2)n
.

Probability of Event (E-3). Assume (E-3) holds, that is f ′
0 = 0, d0 = 0 and

yP �= 0. We may suppose that for all the n-tuples in Q event (E-3) holds, and
thus consider the remaining n-tuples which are not in Q. We first notice that
d0,0 = 0. Indeed, if d0,0 �= 0, then by Claim 5.1 the left hand side of (12) is
nonconstant for all 1 ≤ i ≤ n. In that case, the only n-tuples that satisfy (12)
are in Q. We therefore have f0 = f ′

0e0 − d0 = 0 = f ′
0e

2
0 − d0,0 = f0,0.

Consider the set S = {i ∈ {1, . . . , n} | di = d0,i = d00,i = 0}. Let l = |S|, and
notice that if l = n then f0 = fi = f0,0 = f0,i = f00,i = 0, and since f ′

0 = 0 by
assumption then f = 0. As f is a non-zero vector by construction, l < n.

7 In the case that R is not a generator of E, one would define Ex := {z ∈ Fp | ∃Q ∈
〈R〉, Qx = z}. Proving the theorem for any R boils down to proving that the roots
of (12) are not restricted to Ex.
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Fix some values of di, d0,i, d00,i for 1 ≤ i ≤ n. We now consider the number
of n-tuples

(xQ1 , . . . , xQn
) /∈ Q

satisfying (12). If i ∈ S then the left hand side of (12) is the constant zero, and
so there are |Ex| − 1 possible values for xQi

satisfying (12). If i /∈ S then either
di �= 0 or d0,i �= 0 or d00,i �= 0 and by Claim 5.1 the left hand side of (12) is
nonconstant, so there are at most 4 solutions xQi

to the corresponding equation
in (12).

Overall, there are at most 4n−l(|Ex| − 1)l n-tuples (xQ1 , . . . , xQn
) /∈ Q that

satisfy (12). The possible values for each di, d0,i, d00,i for each i /∈ S are given
above. So overall there are at most

4n−l(|Ex| − 1)l(6ηΔ + 1)n−l(6ηΔ2 + 1)n−l(6ηΔ3 + 1)n−l

< 4n−l(|Ex| − 1)l(6ηΔ + 1)n−l(6ηΔ + 1)2(n−l)(6ηΔ + 1)3(n−l)

= 4n−l(|Ex| − 1)l(6ηΔ + 1)6(n−l)

n-tuples (xQ1 , . . . , xQn
) /∈ Q for which event (E-3) happens. Denote them by

Q′. Over these tuples (not in Q), the probability that f ′
0 = 0 (given d0 = 0 and

yP �= 0) is bounded by

|Q′|
|Ex\{xP }|n ≤

n−1∑

l=0

(
4(6ηΔ + 1)6

|Ex| − 1

)n−l

≤
n∑

l=1

(
4(6ηΔ + 1)6

1
2 (#E − 1) − 1

)l

=
n∑

l=1

(
1
2

16(6ηΔ + 1)6

#E − 3

)l

≤
n∑

l=1

(
1
2

)l (16(6ηΔ + 1)6

p − 2
√

p − 2

)l

.

If 16(6ηΔ+1)6

p−2
√

p−2 < 1, then the latter is smaller than 16(6ηΔ+1)6

p−2
√

p−2 . In any case we get
that this probability is bounded by

16(6ηΔ + 1)6

p − 2
√

p − 2
.

We finally get that the probability that event (E-3) happens satisfies

Pr[(E-3)] ≤ |Q|
|Ex\{xP }|n +

|Q′|
|Ex\{xP }|n <

8n(6ηΔ + 1)6n+3

(p − 2
√

p − 2)n
+

16(6ηΔ + 1)6

p − 2
√

p − 2
.

Notice that the probability that Qi = ±P for some 1 ≤ i ≤ n is

2
#E − 1

≤ 2
p − 2

√
p

.

Thus, the probability that Qi = ±P for any 1 ≤ i ≤ n is bounded by

2n

p − 2
√

p
.

This concludes the first claim in the theorem.
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Now suppose xP has been recovered. To determine which of the two values
±√

x3
P + axP + b is the correct y-coordinate of P , we run the consistency check,

which is presented in AppendixA, on both candidates. It is clear that the correct
candidate will pass the test. If both candidates pass the consistency check then
we cannot determine the point P . We analyze the probability of the event in
which the incorrect candidate −P = (xP ,−yP ) passes the test.

We consider how many Qi lead the system to be consistent with both ±yP .
Recall that

hi+ei =
(

yQi
− yP

xQi
− xP

)2

−xP −xQi
=

xP x2
Qi

+ (a + x2
P )xQi

+ axP + 2b − 2yQi
yP

(xQi
− xP )2

.

If −P passes the test, then there exist ēi with |ēi| ≤ Δ such that hi = (P −
Qi)x − ēi, for all 1 ≤ i ≤ n. We therefore have

hi+ēi =
(

yQi
+ yP

xQi
− xP

)2

−xP −xQi
=

xP x2
Qi

+ (a + x2
P )xQi

+ axP + 2b + 2yQi
yP

(xQi
− xP )2

.

Subtracting one from the other and multiplying by (xP − xQi
)2 we get

(ei − ēi)(xP − xQi
)2 = −4yP yQi

.

Squaring both sides and rearranging results in

(ei − ēi)2(xP − xQi
)4 − 16y2

P (x3
Qi

+ axQi
+ b) ≡ 0 (mod p) .

This is a non-constant polynomial in xQi
of degree 4 and therefore for every ēi

there are at most 4 values for xQi
that satisfy this equation. Since there are at

most 2Δ possible values for each ēi, and since we can form n such equations,8 we
conclude that the probability that the point (xP ,−yP ) passes the consistency
check is bounded by

4n(2Δ)n

(|Ex| − 1)n
≤ (16Δ)n

(p − 2
√

p − 2)n
.

This concludes the proof.

5.2 Proof of Corollary 1

Consider the bounds on P1 and P2 in Theorem 1. One needs 1−P1−P2 ≥ 1−p−δ,
therefore P1 + P2 ≤ p−δ, for the claim to hold. As P2 is smaller than the first
bound on P1 in Theorem 1 we get that P1 + P2 is bounded by

2
8n(6ηΔ + 1)6n+3

(p − 2
√

p − 2)n
+

16(6ηΔ + 1)6

p − 2
√

p − 2
+

2n + 3
p − 2

√
p

. (14)

8 Notice that we can also form n equations from the values hi′ . For each i each solution
xQi should satisfy an additional equation (ei′ − ēi′)(xP −xQi)

2 = 4yP yQi . However,
adding the two equations results in the condition ei + ei′ − ēi − ēi′ = 0. While this
condition can be always satisfied (e.g. ēi′ = ei, ēi = ei′), the probability it holds
depends on the model for the oracle, i.e. how the noise terms ei, ei′ are generated.
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It is sufficient to bound the latter by p−δ.
Consider the third term in (14). For the claim to hold, one needs

2n0 + 3
p − 2

√
p

<
1
pδ

,

from which it is easy to derive the minimal p (thus the minimal bit size m of
p) for the condition to hold. We therefore let δ′ such that p−δ′

= p−δ − 2n0+3
p−2

√
p

(assuming the later is positive) and bound each of the other terms in (14) by
p−δ′

2 . Notice that δ′ > δ.
Plugging p = 2m+O(1) and Δ = 2m−k+O(1) in the first term (14), and since

k > (5/6 + ε)m, we have

2 · 8n(6ηΔ + 1)6n+3

(p − 2
√

p − 2)n
=

23n+1(2O(1)η2m−k+O(1) + 1)6n+3

(2m+O(1) − 2m/2+O(1) − 2)n

= η6n+32(6n+3)(m−k+O(1))−(m+O(1))n

≤ η6n+32(6n+3)(m/6−mε+O(1))−(m+O(1))n

= 2(6n+3)(log η−mε)+m/2+O(n) .

The latter is smaller than p−δ′

2 = 2−δ′(m−1+O(1)) if (6n+3)(log η − εm)+m/2+
O(n) ≤ −δ′(m + O(1)), which simplifies to (for some sufficiently large absolute
constant C0)

(6n + 3)(ε − m−1(log η + C0)) ≥ δ′ +
1
2

> δ +
1
2

. (15)

Using 3ε ≥ δ and n ≥ n0, it is easy to verify that (for a sufficiently large absolute
constant C1)

m > ε−1(2 log η + C1) (16)

implies (15).

Similarly, to show that the second term in (14) is bounded by p−δ′

2 one gets
the condition (for some sufficiently large absolute constant C2)

6(ε − m−1(log η + C3)) ≥ δ′ > δ ,

which can be shown to hold when (for a sufficiently large absolute constant C3)

m > (6 log η + C3)(6ε − δ)−1 .

The latter is implied by (15), therefore by (16), provided C0 is large enough.
For A1 we apply the 1-SVP algorithm (with running time Õ(22d)) of Mic-

ciancio and Voulgaris [18] to a lattice of dimension d = 3n0 + 3, which gives
η = 2

√
3n0 + 1. For A2, we use the 2O(d(log log d)2/ log d)-SVP algorithm (with

running time Õ(d)) of Schnorr [20] for the dimension d = 3n0 + 3, which gives
η = 2n0+2

√
3n0 + 1. Using n0 = � 1

6ε�, the bounds mi follow.
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6 Additional Results

The techniques presented in the previous sections can be used to show some
additional results, which we briefly sketch here. Considering EC-HNP with the
LSBk function, similar results can be derived for the least significant 5/6 bits of
the x-coordinate as we show in Sect. 6.1. In Sect. 6.2 we address the bit security
of the Diffie–Hellman key exchange protocol in elliptic curves over extension
fields Fq. We refer to the full version of this paper [21] for more details.

6.1 EC-HNP with Least Significant Bits

As we allow k to take any (positive) real value, we define LSBk by LSBk(x) := x
(mod �2k�). In other words, LSBk(x) gives x mod l for 2 ≤ l = �2k� ≤ p, not
necessarily a power of 2.

Let h = LSBk((P + Q)x) = (P + Q)x mod l = (s2P+Q − xP − xQ − qp) − le

for some q and |e| < p
2l ≤ p

2k+1 . For u = l−1 ∈ Z
∗
p we have (where the operations

are in Fp)

h : = hu =

((
yP − yQ

xP − xQ

)2

− xP − xQ − qp − le

)

u

= u

((
yP −yQ

xP −xQ

)2

−xP − xQ

)

−q′p−e≡u

((
yP − yQ

xP − xQ

)2

− xP − xQ

)

− e .

Now let h0 = LSBk(xP ) = xP − le0 and h′ = LSBk((P − Q)x) = (P − Q)x

mod l = (s2P−Q − xP − xQ − rp) − le′ for some r and |e0|, |e′| < p
2l ≤ p

2k+1 . Then

h′ := h′u ≡ u

((
yP + yQ

xP − xQ

)2

− xP − xQ

)

− e′ (mod p) .

Letting h̃ = h + h′ and ẽ = e + e′ and plugging xP = h0 + le0 in (1) above we
get

h̃ + ẽ = u ((P + Q)x + (P − Q)x)

≡ 2u

(
xQ(h0 + le0)2 + (a + x2

Q)(h0 + le0) + axQ + 2b

(h0 + le0 − xQ)2

)

(mod p) .

Multiplying by (h0+le0−xQ)2 results in a bivariate polynomial in e0, ẽ of degree
3, similar to (2) above. We expect to get a similar result to the one presented
above.

6.2 Bit Security of Elliptic Curve Diffie–Hellman over Extension
Fields

The field Fq = Fpd is a d-dimensional vector space over Fp. We fix a basis
{b1, . . . ,bd} for Fq, and represent points x ∈ Fq with respect to that basis:
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for x =
∑d

i=1 xibi we write x = (x1, . . . , xd). We consider E(Fq), the group of
elliptic curve points over Fq.

For the elliptic curve hidden number problem in this setting, a natural ques-
tion is whether the ability to recover one component allows to recover the entire
secret point. This problem, in the elliptic curve context, was studied by Jao,
Jetchev and Venkatesan (JJV) [14]. They consider the following hidden num-
ber problem for elliptic curves, which they call multiplier elliptic curve hidden
number problem: Given an oracle O that computes a single component of the
x-coordinate of the map r → [r]P , that is O(r) = ([r]P )i

x, recover the point P .
The algorithm given by JJV to this problem is polynomial in log(p) but not

in d, and therefore suits problems where one fixes the degree d and let log p
grow. That is, for extension fields Fpd of a constant degree. However, there is a
drawback in JJV’s approach: they can only work with small multipliers r. As
a consequence, it is not clear that by considering only small multipliers, this
hidden number problem has a unique solution, or a small set of solutions.9

This leads them to give precise statements only for degrees 2 and 3
(Propositions 3.1 and 3.2), but to leave the constant degree case (Sect. 3.3) with a
description of a general approach, and so a proof of bit security cannot be derived
in this case. Moreover, we show that the solution for d = 3 is incomplete. The
approach presented here overcomes this drawback, and therefore gives a com-
plete solution to any constant extension degree. Moreover, the solution holds
for the y-coordinate as well. Our solution is based on (a generalization of) the
algorithm given by JJV.

In a nutshell, the essence of the solution is to construct a system of (small
degree) polynomials for which xP = (x1

P , . . . , xd
P ) is a simultaneous solution,

which will result in some small number of candidates for P .

Improved Results. Our approach overcomes the drawback in the previous
work, as the ‘multipliers’ Q are not restricted to any (short) interval. As already
mentioned in [14], in the case of random multipliers, it is easy to argue for
uniqueness.10

Proposition 1. Let E be an elliptic curve over an extension field Fpd . There
exists an algorithm, polynomial in log p, that solves EC-HNP given an oracle
that outputs a complete component of either the x or y coordinates.

Proof (sketch). Consider the x-coordinate case. Similar to the solution of EC-
HNP over a prime field, one queries the oracle O on ±t to get one component of
(P + [t]R)x and (P − [t]R)x. Denote Q := [t]R, and let {b1, . . . ,bd} be a basis
for F

d
p. It holds that

9 For comparison, it is easy to show that restricting to small multipliers in HNP in F
∗
p

yields exponentially many solutions.
10 We note that the multipliers here and in [14] have different context, as the elliptic

curve hidden number problem is defined differently. However, the arguments for
uniqueness stay the same.
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(P +Q)x+(P −Q)x =2

(
xQx2

P +(a + x2
Q)xP + axQ + 2b

(xP − xQ)2

)

=
R1(x1

P , . . . , xd
P )

R2(x1
P , . . . , xd

P )
,

where R1, R2 are polynomials (depending on xQ) of degree 2 in F
d
p[x

1, . . . , xd].
Rewrite

R1(x1, . . . , xd)
R2(x1, . . . , xd)

=
R1

1b1 + . . . + Rd
1bd

R1
2b1 + . . . + Rd

2bd
,

where for 1 ≤ j ≤ d each polynomial Rj
1(x

1, . . . , xd), Rj
2(x

1, . . . , xd) has coeffi-
cients in Fp. We “rationalize” the denominator to express

R1(x1, . . . , xd)
R2(x1, . . . , xd)

= r1(x1, . . . , xd)b1 + . . . + rd(x1, . . . , xd)bd ,

where rj are rational functions with coefficients in Fp, of degree at most 2d.
We suppose to have access to component i, that is, we know (P + Q)i

x and
(P − Q)i

x. We have

O(t) + O(−t) = (P + Q)i
x + (P − Q)i

x = ri(x1
P , . . . , xd

P ) =
ri
Q,1(x

1
P , . . . , xd

P )
ri
Q,2(x

1
P , . . . , xd

P )
.

Multiplying by ri
Q,2(x

1, . . . , xd) and rearranging we get the following polynomial

gQ(x1, . . . , xd) := ri
Q,1(x

1, . . . , xd) − ri
Q,2(x

1, . . . , xd)
(
(P + Q)i

x + (P − Q)i
x

)
,

where gQ(xP ) = gQ(x1
P , . . . , xd

P ) = 0, and gQ is of degree at most 2d.
We repeat with different points Q and look for a simultaneous solution to the

system {gQ = 0}. When choosing the Q’s uniformly and independently, standard
arguments (like the root counting above) can be used to show that a sufficiently
large system {gQ} is expected to have a unique (simultaneous) root.

The case of the y-coordinate is a simple adaptation of the method, where
one takes the third-degree polynomial

(P + Q)y − (P − Q)y = 2yQ

(
x3

P + 3xQx2
P + 3axP + axQ + 4b
(xP − xQ)3

)
.

�

Corollary 2. For an elliptic curve defined over a constant-degree extension
field, computing a single component of the Diffie–Hellman key (for either the
x or y coordinates) is as hard as computing the entire key.

We refer to the full version of this paper [21] for a general method and a com-
parison between JJV’s approach and our approach. We finish with a correction
to JJV’s work.
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Correction. We finish with a couple of remarks regarding the solution for d = 3
in [14, Sect. 3.2]. In this case JJV take the resultant of two bivariate polynomials
of degree 10, 25 in each variable. First, as we show in AppendixB, this resultant
is a univariate polynomial of degree at most 500, not 250 as written there. More
importantly, while the resultant’s degree is bounded by a constant value, in
general it can also be identically zero, which will then not yield a constant-sized
set of possible solutions (as the zero polynomial is satisfied by every point).
This point is important, especially because the authors identify a problem with
showing uniqueness of the solution, or the existence of a small set of solutions.
However, the paper [14] does not treat this point.

7 Comments

It is desirable to get bit security results also in the case of an imperfect oracle.
The main obstacle in achieving such a result is that the lattice constructed by
the algorithm has to be of an exact shape, which will not be achieved in general
if some equations are not of the right form. It should be noted that like other
problems (see for example [9, Sect. 4.1] for HNP) one can consider an imperfect
oracle which is very likely to answer all the queries correctly, when its inputs
are random. In addition, one can consider the approach suggested in [12] for
imperfect oracles.

A natural question is whether a similar strong bit security result can be shown
for the y-coordinate of the elliptic curve Diffie–Hellman key. Unfortunately, the
trick presented in this paper, using 2 correlated equations to eliminate one vari-
able, seems out of reach when one works with the y-coordinate. We remark that
one can still get some results using the approaches described in Sect. 4.1, but
they ought to be weak results.

Moreover, while Weierstrass equations are normally used to represent elliptic
curves, Edwards curves are also of interest. The y-coordinate in Edwards curves
is considered analogous to the x-coordinate in Weierstrass curves. One therefore
expects to have analogous equations for (P + Q)y + (P − Q)y and for the y-
coordinate of point multiplication, i.e. ([r]P )y. It is of interest to get solutions
for the elliptic curve hidden number problem using Edwards curves as well.

Acknowledgements. Many thanks to my supervisor Steven Galbraith for his help
and guidance.

A Consistency Check – Filtering Impossible Secrets

We introduce a test that takes a candidate P ′ for the secret point P , and deter-
mines whether P ′ is not the secret. That is, after running the test, P ′ is either
guaranteed not to be P or it is potentially the secret point P . We give a bound
on the probability that the outcome of the test is inconclusive, for P ′ �= P (it is
clear that if P ′ = P the test is inconclusive). Specifically, given the candidate for
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xP from Theorem 1, one can test which value (if any) is the correct y-coordinate
yP . Moreover, one can test whether yP �= 0 or P �= ±Qi.

Given a candidate P ′ = (xP ′ , yP ′), the consistency check goes over the pairs
(Q,h = MSBk((P + Q)x)) and checks if these values are consistent with the
problem’s settings. That is, we use h to derive a candidate ē for the noise e, and
check if |ē| ≤ Δ. Formally, using h0 = xP − e0 we compute

ē0 := xP ′ − h0 mod p ,

and check if |ē0| ≤ Δ. If so then for every 1 ≤ i ≤ n using hi = MSBk((P +Qi)x)
we compute

ēi :=
(

yP ′ − yQ

xP ′ − xQ

)2

− xP ′ − xQ − hi mod p ,

and check if |ēi| ≤ Δ. We do the same process with hi′ . If at any point this
inequality does not hold, we can stop the test and determine that P ′ �= P .
Otherwise, P ′ passes the consistency check and is potentially the secret point P .

For completeness, we analyze the probability (over the samples Qi) of the
event in which a candidate P ′ �= P passes the consistency check. Hence, suppose
that P ′ = (xP ′ , yP ′) passed the consistency check.

Probability of xP ′ �= xP . Given hi, hi′ , from Sect. 4.1 above we have

hi + hi′ = 2

(
xP x2

Qi
+ (a + x2

P )xQi
+ axP + 2b

(xP − xQi
)2

)

− ei − ei′ .

Since P ′ passed the consistency check there exist |ēi|, |ēi′ | ≤ Δ such that

hi + hi′ = 2

(
xP ′x2

Qi
+ (a + x2

P ′)xQi
+ axP ′ + 2b

(xP ′ − xQi
)2

)

− ēi − ēi′ .

Subtracting these two equations and multiplying by (xP − xQi
)2(xP ′ − xQi

)2

we get

(ei + ei′ − ēi − ēi′)(xP − xQi
)2(xP ′ − xQi

)2 =

2
(
(xP x2

Qi
+ (a + x2

P )xQi
+ axP + 2b)(xP ′ − xQi

)2

− (xP ′x2
Qi

+ (a + x2
P ′)xQi

+ axP ′ + 2b)(xP − xQi
)2

)
.

By rearranging we get a polynomial in xQi
of degree 4. By simple algebra one

can check that this polynomial is identically zero if and only if xP ′ = xP (thus
ei + ei′ − ēi − ēi′ = 0). We assume xP ′ �= xP . Therefore for every ēi, ēi′ there
are at most 4 values for xQi

that satisfy this equation. Since there are 2Δ + 1
possible values for each ēi, ēi′ we conclude that the probability that xP ′ �= xP is
bounded by

4n(2Δ + 1)2n

(|Ex| − 1)n
≤ 2n(4Δ + 2)2n

(p − 2
√

p − 2)n
.
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Probability of xP ′ = xP and yP ′ �= yP . The probability that P ′ = (xP ,−yP )
passes the consistency check, is analyzed at the end of the proof of Theorem1,
and shown to be bounded by

4n(2Δ)n

(|Ex| − 1)n
≤ (16Δ)n

(p − 2
√

p − 2)n
.

Remark 4. Although the aim of this paper is to give a bit security result and not
a practical algorithm, for completeness purposes we consider a matter of practice.
In the case in which the value d0 �= 0, the recovered value e := f0/f ′

0 �= e0, and
therefore xP ′ := h + e �= xP . Running the consistency check on P ′ might reveal
that indeed P ′ �= P . One can derive from Eqs. (8)–(11) other candidates for e0
and subsequently candidates for xP , and apply the consistency check on them. If
none of these candidates pass the consistency check, then one can test P ′ where
yP ′ = 0 and P ′ = ±Qi. We analyze the probability that there exists P ′ �= P
that is consistent with all 2n + 1 samples.

We use the analysis above which shows that the probability that a candidate
P ′ with xP ′ �= xP passes the test with the 2n equations is bounded by

(4Δ + 2)2n

(|Ex| − 1)n
≤ 2n(4Δ + 2)2n

(p − 2
√

p − 2)n
.

We also have xP ′ − ē0 = h0 = xP −e0, so xP ′ = xP −e0 + ē0 can take 2Δ values.
Thus, the probability that any P ′ with xP ′ �= xP passes the consistency check
is bounded by

2n+1Δ(4Δ + 2)2n

(p − 2
√

p − 2)n
.

With the above bound for yP ′ �= −yP we get that the probability that there
exists P ′ �= P that passes the consistency check is bounded by

2n+1Δ(4Δ + 2)2n

(p − 2
√

p − 2)n
+

(16Δ)n

(p − 2
√

p − 2)n
.

B Resultant’s Degree

Claim. Let p, q ∈ k[x, y] be two polynomials with

degx p = nx , degy p = ny ,

degx q = mx , degy q = my .

Then the degree (in x) of the resultant of p and q in variable y is at most
mynx + nymx.

Proof. The Sylvester matrix of p and q with respect to y is a (my+ny)×(my+ny)
matrix. The first my rows, coming from the coefficients of p, contain polynomials
in x of degree at most nx. Similarly, the last ny rows contain polynomials in x
of degree at most mx. The resultant of p and q in variable y is given by the
determinant of this matrix, which is formed by summing products of an entry
from each row. The first my rows contribute at most mynx to the degree of x,
and the last ny rows contribute at most nymx. �
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Abstract. We propose a generalization of exTNFS algorithm recently
introduced by Kim and Barbulescu (CRYPTO 2016). The algorithm,
exTNFS, is a state-of-the-art algorithm for discrete logarithm in Fpn

in the medium prime case, but it only applies when n = ηκ is a
composite with nontrivial factors η and κ such that gcd(η, κ) = 1.
Our generalization, however, shows that exTNFS algorithm can be also
adapted to the setting with an arbitrary composite n maintaining its
best asymptotic complexity. We show that one can compute a dis-
crete logarithm in medium case in the running time of Lpn(1/3, 3

√
48/9)

(resp. Lpn(1/3, 1.71) if multiple number fields are used), where n is
an arbitrary composite. This should be compared with a recent vari-
ant by Sarkar and Singh (Asiacrypt 2016) that has the fastest running
time of Lpn(1/3, 3

√
64/9) (resp. Lpn(1/3, 1.88)) when n is a power of

prime 2. When p is of special form, the complexity is further reduced
to Lpn(1/3, 3

√
32/9). On the practical side, we emphasize that the key-

size of pairing-based cryptosystems should be updated following to our
algorithm if the embedding degree n remains composite.

Keywords: Discrete logarithm problem · Number field sieve · Finite
fields · Cryptanalysis

1 Introduction

Discrete logarithm problem (DLP) over a multiplicative subgroup of finite fields
FQ, Q = pn, gathers its particular interest due to its prime importance in pairing-
based cryptography. Over a generic group, the best known algorithm of the DLP
takes exponential running time in the bitsize of the group order. However, in
the case for the multiplicative group of finite fields one can exploit a special
algebraic structure of the group to design better algorithms, where the DLP can
be solved much more efficiently than in exponential time. For example, when
the characteristic p is small compared to the extension degree n, the best known
algorithms have quasi-polynomial time complexity [3,11].
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Recall the usual LQ-notation,

LQ(�, c) = exp
(
(c + o(1))(log Q)�(log log Q)1−�

)
,

for some constants 0 ≤ � ≤ 1 and c > 0. We call the characteristic p = LQ(�p, cp)
medium when 1/3 < �p < 2/3 and large when 2/3 < �p ≤ 1. We say that a field
Fpn is in the boundary case when �p = 2/3.

For medium and large characteristic, all the best known attacks are variants
of the number field sieve (NFS) algorithm. Initially used for factoring, NFS was
rapidly introduced in DLP to target prime fields [10,23]. It was about a decade
later by Schirokauer [24] that NFS was adapted to target non-prime fields Fpn

with n > 1. This is known today as tower number field sieve (TNFS) [4]. On
the other hand, an approach by Joux et al. [14], which we denote by JLSV,
was on a main stream of recent improvements on DLP over medium and large
characteristic case. JLSV’s idea is similar to the variant used to target prime
fields, except the step called polynomial selection. This polynomial selection
method was later supplemented with generalized Joux-Lercier (GJL) method
[2,18], Conjugation (Conj) method [2], and Sarkar-Singh (SS) method [22] lead-
ing improvements on the complexity of the NFS algorithm. However, in all these
algorithms the complexity for the medium prime case is slightly larger than that
of large prime case. Moreover there was an anomaly that the best complexity
was obtained in the boundary case, �p = 2/3.

Finally, in a recent breakthrough by Kim and Barbulescu [17], they obtained
an algorithm, called exTNFS, of better complexity for the medium prime case
than in the large prime case. Although this approach only applies to fields of
extension degree n where n = ηκ has factors η, κ > 1 such that gcd(η, κ) = 1,
it was enough to frighten pairing-based community since a number of popular
pairing-friendly curves, such as Barreto-Naehrig curve [7], are in the category
that exTNFS applies.

Then one might ask a question whether transitioning into pairing-friendly
curves with embedding degree n, a prime power, would be immune to this recent
attack by Kim and Barbulescu. In practice, pairings with embedding degree of a
prime power, such as Kachisa-Schafer-Scott curve with embedding degree 16 [16]
or Barreto-Lynn-Scott curve with embedding degree 27 [6], were considered to
be suitable for protocols in which products of pairings play a major part [25].
Unfortunately, our answer is also negative to use such pairings: we show that our
algorithm has the same complexity as exTNFS algorithm for any composite n, so
the keysize of the pairing-based cryptosystems should be also updated according
to our algorithm whenever the embedding degree is composite.

Related Works. When the extension degree n, which is composite, cannot
be factored into relatively prime factors (for example, n is a prime power),
the best known attacks for the medium prime case still had the complexity
LQ

(
1/3, 3

√
96/9

)
until Sarkar and Singh proposed an algorithm [20] of the best

complexity LQ

(
1/3, 3

√
64/9

)
. Note that, however, this is still slightly larger than

the best complexity of Kim-Barbulescu’s exTNFS. Recently, soon after a preprint
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Table 1. The complexity of each algorithm. Each cell in the second indicates c if the

complexity is LQ(1/3, (c/9)
1
3 ) when p = LQ(�p), 1/3 < �p < 2/3.

Method Complexity Conditions on n

in the medium case

NFS-(Conj and GJL) [2] 96 n: any integers

exTNFS-C [20] ≥64a n = 2i for some i > 1

exTNFS-KimBar [17] ≥48a n = ηκ (η, κ �= 1), gcd(η, κ) = 1

exTNFS-D [21] ≥48a n: any composite

exTNFS-new (this article) ≥48a n: any composite

≤54.28 n = 2i for some i > 1
aThe best complexity is obtained when n has a factor of the appropriate size (refer
to each paper for details).

Table 2. The complexity of each algorithm using multiple number fields. Each cell in

the second column indicates an approximation of c if the complexity is LQ(1/3, (c/9)
1
3 )

when p = LQ(�p), 1/3 < �p < 2/3.

Method Complexity Conditions on n

in the medium case

MNFS-(Conj and GJL) [19] 89.45 n: any integers

MexTNFS-C [20] ≥61.29a n = 2i for some i > 1

MexTNFS-KimBar [17] ≥45.00a n = ηκ (η, κ �= 1), gcd(η, κ) = 1

MexTNFS-D [21] ≥45.00a n: any composite

MexTNFS-new (this article) ≥45.00a n: any composite

≤59.80 n = 2i3j for some i + j > 1

≤50.76 n = 2i for some i > 1
aThe best complexity is obtained when n has a factor of the appropriate size (refer

to each paper for details).

of our paper [13] has been published, Sarkar and Singh proposed an algorithm
called exTNFS-D [21]. Their algorithm has the best complexity as same as our
new algorithm, but it provides a wider range of finite fields for which the algo-
rithm achieves a lower complexity than the previous algorithms. One can see
Table 1 for a comparison of these previous algorithms on the asymptotic com-
plexity.

All currently known variants of NFS admit variants with multiple number
fields (MNFS) which have a slightly better asymptotic complexity. The complex-
ity of these variants is shown in Table 2.

When the characteristic p has a special form, as it is the case for fields in
pairing-based cryptosystems, one can further accelerate NFS algorithms using
variants called special number field sieve (SNFS). In Table 3 we list asymptotic
complexity of each algorithm. When n is a prime power, the algorithm suggested
by Joux and Pierrot had been the best algorithm before our algorithm.
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Table 3. The complexity of each algorithm used when the characteristic has a spe-
cial form (SNFS). Each cell indicates an approximation of c if the complexity is

LQ(1/3, (c/9)
1
3 ) when p = LQ(�p), 1/3 < �p < 2/3.

Method Complexity Conditions on n

in the medium case

SNFS-JP [15] 64 n: any integers

SexTNFS-KimBar [17] 32 n = ηκ (η, κ �= 1), gcd(η, κ) = 1

SexTNFS-new (this article) 32 n: any composite

Recently, Guillevic, Morain, and Thomé [12] observed that Kim-Barbulescu’s
technique can be adapted to target the fields of extension degree 4. However,
they did not pursue the idea to analyze further its complexity.

Our Contributions. We propose an algorithm that is a state-of-the-art algo-
rithm for the DLP over finite fields of composite extension degrees in the medium
prime case as far as we aware. We remark that our algorithm applies to target
fields of arbitrary composite extension degree n. If n can be written as n = ηκ
for some η and κ with gcd(η, κ) = 1, our algorithm has the same complexity as
Kim-Barbulescu’s exTNFS [17]. However, our algorithm allows to choose factors
η and κ freely from the co-primality condition, so we have more choices for the
pair (η, κ). This helps us to find a better (η, κ) that practically yields a better
performance, although the asymptotic complexity is unchanged.

If n is a prime power, the complexity of our algorithm is less than that of
Sarkar-Singh’s variant [20], a currently best-known algorithm for this case.

When n is a b-smooth integer for an integer b ≤ 4, we obtain an upper
bound for the asymptotic complexity of our algorithm. For example, when n
is a power of 2, our algorithm always has the asymptotic complexity less than
LQ(1/3, 1.82). If multiple NFS variants are used, the complexity can always be
lowered to LQ(1/3, c), c ≤ 1.88, when n is a 4-smooth composite integer, and
LQ(1/3, c), c ≤ 1.78, when n is a power of 2.

When p is of special form, pairings with embedding degree such as n = 4, 9, 16
was not affected by Kim-Barbulescu’s algorithm, however, due to our variant of
SNFS, the keysize of such pairings should be also updated following to our new
complexity.

Our Main Idea. Our main idea comes from a simple modification during the
polynomial selection in exTNFS algorithm. In exTNFS algorithm, for a field of
a composite extension degree, one represents it as Fpn = F(pη)κ , where Fpη =
R/pR and R = Z[t]/h(t) for an irreducible polynomial h of degree η, and selects
polynomials f and g such that they have a common irreducible factor k of degree
κ modulo p, where F(pη)κ = Fpη [x]/k(x).

In Kim-Barbulescu’s exTNFS, f and g are chosen so that they have coeffi-
cients in Z, therefore k has its coefficients in Fp. Since any irreducible polynomial
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of degree κ over Fp is still irreducible over Fpη if and only if η and κ are relatively
prime, Kim-Barbulescu’s algorithm only works under the prescribed condition.
Although they mentioned that drawing f and g from R[x] instead of Z[x] can
get rid of this condition, all known NFS algorithms only discuss the polynomial
selections with integer coefficients and the possibility of using polynomials in
R[x] in NFS algorirhtms has remained rather unclear.

In this work, we observe that the idea described above is actually well adapted
to the setting of exTNFS algorithm. Indeed, we simply modify most of known
polynomial selection methods described in [17] so that the coefficients of poly-
nomials are chosen from R and they can be used in exTNFS algorithm. Further-
more, we show that the formula of the size of norms in number fields constructed
by those polynomials, which plays important role in the complexity analysis,
has the same bound as in Kim-Barbulescu’s exTNFS. Consequently, this leads
us to get an algorithm with the same complexity as Kim-Barbulescu’s algo-
rithm while our algorithm applies to fields of any composite extension degrees.
Recently, Sarkar-Singh’s algorithm [20] exploited a similar idea, but their poly-
nomial selection methods are slightly different from ours and it has slightly larger
complexity than ours.

Organization. We briefly recall exTNFS algorithm and introduce our algo-
rithm in Sect. 2. The complexity analysis is given in Sect. 3. The variants such as
multiple number field sieve and special number field sieve are discussed in Sect. 4.
In Sect. 5, we make a precise comparison to the state-of-the-art algorithms at
cryptographic sizes. We conclude with cryptographic implications of our result
in Sect. 6.

2 Extended TNFS

2.1 Setting

Throughout this paper, we target fields FQ with Q = pn where n = ηκ such that
η, κ �= 1 and the characteristic p is medium or large, i.e. �p > 1/3.

We briefly review exTNFS algorithm and then explain our algorithm.
Recall the commutative diagram that is familiar in the context of NFS algo-
rithm (Fig. 1). First we select an irreducible polynomial h(t) ∈ Z[t] of degree
η which is also irreducible modulo p. We put R := Z[t]/h(t) = Z(ι) then
R/pR � Fpη . We select two polynomials f and g with coefficients in R so that
they have a common factor k(x) of degree κ modulo p. We further require k
to be irreducible over Fpη . Note that the only difference of our algorithm from
Kim-Barbulescu’s exTNFS is that the coefficients of f and g are chosen from R
instead of Z.

The conditions on f , g and h yield two ring homomorphisms from R[x]
to (R/pR)/k(x) = Fpηκ through R[x]/f(x) (or R[x]/g(x)). Thus one has the
commutative diagram in Fig. 1 which is a generalization of the classical diagram
of NFS.
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R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

(R/pR)[x]/〈k(x)〉
mod p

mod k(x)

mod p

mod k(x)

Fig. 1. Commutative diagram of exTNFS. We can choose f and g to be irreducible
polynomials over R such that k = gcd(f, g) mod p is irreducible over R/pR = Fpη .

After the polynomial selection, the exTNFS algorithm proceeds as all other
variants of NFS, following the same steps: relations collection, linear algebra and
individual logarithm. We skip the description on it and refer to [17] for further
details.

2.2 Detailed Descriptions

Polynomial Selection

Choice of h. We have to select a polynomial h(t) ∈ Z[t] of degree η which
is irreducible modulo p and whose coefficients are as small as possible. As in
TNFS [4] we try random polynomials h with small coefficients and factor them
in Fp[t] to test irreducibility. The ratio of irreducible polynomials over all monic
polynomials of degree η over Fp is close to 1/η, thus one succeeds after η trials
and since η ≤ 3η we expect to find h such that ‖h‖∞ = 1.

Choice of f and g. Next we select f and g in R[x] which have a common factor
k(x) modulo p of degree κ which remains irreducible over Fpη = R/pR. We
can adapt all the polynomial selection methods discussed in the previous NFS
algorithms, such as JLSV’s method [14], GJL and Conj [2] method, and so on
[5,15,19,22], except that one chooses the coefficients of f and g from R instead
of Z. To fix ideas, we describe polynomial selection methods based on JLSV2

method and Conjugation method. A similar idea also applies with GJL method,
but we skip the details.

Generalized JLSV2 Method. We describe a generalized method of polynomial
selection based on JLSV2 method [14]. To emphasize that the coefficients of
polynomial are taken from a ring R = Z[ι] instead of a smaller ring Z, we call it
as generalized JLSV 2 method (gJLSV2 method).

First, we select a bivariate polynomial g̃(t, x) ∈ Z[t, x] such that

g̃(t, x) = g0(t) + g1(t)x + · · · + gκ−1(t)xκ−1 + xκ,

where gi(t) ∈ Z[t]’s are polynomials of degree less than η with small integer
coefficients. We also require g̃ mod (p, h(t)) to be irreducible in Fpη [x]. Set an
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integer W ≈ p1/(d+1) where d is a parameter such that d ≥ κ (the parameter W
is chosen in the same way as the original JLSV2 method as if we are targeting
FP κ for some prime P instead of Fpn). Take g(t, x) := g̃(t, x + W ) and consider
the lattice of dimension (d + 1)η defined by the following matrix M :

M :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

vec(pt0x0 mod h)
...

vec(ptixj mod h)
...

vec(ptη−1xκ−1 mod h)

vec(g mod h)
...

vec(tixjg mod h)
...

vec(tη−1xd−κg mod h)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1)

where, for all bivariate polynomial w(t, x) =
∑d

i=0 wj(t)xj with wj(t) =
∑η−1

i=0

wj,it
i, vec(w) = (w0,0, . . . , w0,η−1, . . . , wd,0, . . . , wd,η−1) of dimension (d + 1)η.

For instance, vec(ptixj) = (0, . . . , 0, p, 0, . . . , 0) where only (jη + i + 1)-th entry
is nonzero and vec(g) = (g0,0, . . . , g0,η−1, . . . , gκ−1,0, . . . , gκ−1,η−1, 1, 0, . . . , 0) for
a monic polynomial g of degree κ with respect to x. Note that the determinant
of M is |det(M)| = pκη.

Finally, take the coefficients of f(t, x) =
∑d

j=0 fj(t)xj with fj(t) =
∑η−1

i=0 fj,it
i as the shortest vector of an LLL-reduced basis of the lattice L and

set k = g mod p. Then by construction we have

– degx(f) = d ≥ κ and ‖f‖∞ := max{fi,j} = O
(
p

κη
(d+1)η

)
= O(p

κ
d+1 );

– degx(g) = κ and ‖g‖∞ = max{gi,j} = O(p
κ

d+1 ).

Example 1. We target a field Fp4 for p ≡ 7 mod 8 prime. For example, we
take p = 1000010903. Set η = κ = 2 and d = 2 ≥ κ. Choose h(t) = t2 + 1
so that h mod p is irreducible over Fp. Consider R = Z(ι) = Z[t]/h(t) and
Fp2 = Fp(ι) = Fp[t]/h(t). Choose g̃ = x2+(t+1)x+1 and W = 1001 ≥ p1/(d+1).
Then we set

g =
(
g̃(t, x + W ) mod h

)
= x2 + (ι + 2003)x + 1001ι + 1003003.

Construct a lattice of dimension 6 defined by the following matrix (blank entries
are filled with zeros)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p
p

p
p

1003003 1001 2003 1 1 0
−1001 1003003 −1 2003 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Run the LLL algorithm with this lattice and we obtain

f = (499ι − 499505)x2 + (499992ι − 498111)x + 493992ι − 50611.

One can check that f, g, k = g mod p and h are suitable for exTNFS algorithm.
Note that ‖f‖∞ and ‖g‖∞ are of order p2/3.

Algorithm 1. Polynomial selection with the generalized JLSV2

method (gJLSV)
Input: p prime, n = ηκ integer such that η, κ > 1 and d ≥ κ integer
Output: f, g, k, h with h ∈ Z[t] irreducible of degree η, and f, g ∈ R[x] irreducible over

R = Z[t]/hZ[t], and k = gcd(f mod p, g mod p) in Fpη = Fp[t]/h(t) irreducible of
degree κ

1: Choose h ∈ Z[t] with small coefficients, irreducible of degree η such that p is inert
in Q[t]/h(t);

2: Choose a bivariate polynomial g̃(t, x) = xκ +
∑κ−1

i=0 gj(t)x
j with small coefficients;

3: Choose an integer W ≈ p1/(d+1) and set g = g̃(t, x + W ) mod h;
4: Reduce the rows of the matrix L as defined in (1) using LLL, to get

LLL(M) =

⎛
⎜⎜⎝

f0,0 f0,1 · · · fd,η−1

∗

⎞
⎟⎟⎠

5: return (f =
∑

0≤i≤d,0≤j<η fi,jt
jxi, g, k = g mod p, h)

Generalized Conjugation Method. We describe a polynomial selection method
based on Conjugation method [2,17]. Again, we call it as the generalized Conju-
gation method (gConj method).

First, one chooses two bivariate polynomials g(1)(t, x) and g(0)(t, x) in Z[t, x]
of form

g(1)(t, x) = g
(1)
0 (t) + g

(1)
1 (t)x + · · · + g

(1)
κ−1(t)x

κ−1

and
g(0)(t, x) = g

(0)
0 (t) + g

(0)
1 (t)x + · · · + g(0)κ (t)xκ,

where g
(s)
i (t) ∈ Z[t] are polynomials with small coefficients in Z and of degree

less than or equal to η − 1. Then g(s) mod (p, h(t)) is a polynomial of degree
≤ κ over Fpη = Fp(ι) for each s = 0, 1.

Next one chooses a quadratic, monic, irreducible polynomial μ(x) ∈ Z[x]
with small coefficients. If μ(x) has a root δ modulo p and g(0)+δg(1) mod (p, h)
is irreducible over Fpη , then set k(x) = g(0) + δg(1) mod (p, h). Otherwise, one
repeats the above steps until such g(1), g(0), and δ are found. Once it has been
done, find u and v such that δ ≡ u/v (mod p) and u, v ≤ O(

√
p) using rational

reconstruction. Finally, we set f = ResY (μ(Y ), g(0)+Y g(1)) and g = vg(0)+ug(1).
By construction we have
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– degx(f) = 2κ and ‖f‖∞ = max{fi,j} = O(1);
– degx(g) = κ and ‖g‖∞ = max{gi,j} = O(

√
p) = O(Q

1
2ηκ ).

The bound on ‖f‖∞ depends on the number of polynomials g(0) + δg(1) tested
before we find one which is irreducible over Fpη . Heuristically this happens on
average after κ trials. Since there are 32ηκ > κ choices of g(0) and g(1) of norm
1 we have ‖f‖∞ = O(1). We give some examples in the followings.

Example 2. We target a field Fp4 for p ≡ 7 mod 8 prime. For example, we take
p = 1000010903. If we choose h(t) = t2 + 1 then h mod p is irreducible over
Fp. Consider R = Z(ι) = Z[t]/h(t) and Fp2 = Fp(ι) = Fp[t]/h(t). Choose an
irreducible polynomial μ(x) = x2 −2 ∈ Z[x] with small coefficients. It has a root√

2 = 219983819 ∈ Fp modulo p. We take k(x) = (x2 + ι) +
√

2x ∈ Fp2 [x] and
f(x) = (x2 + ι +

√
2x)(x2 + ι − √

2x) = x4 + (2ι − 2)x2 + 1 ∈ R[x]. Then we
find u, v ∈ Z such that u/v ≡ √

2 mod p where their orders are of
√

p. Now we
take g(x) = v(x2 + ι) + ux = 25834(x2 + ι) + 18297x ∈ R[x]. One easily checks
that f and g are irreducible over R and k is irreducible over Fp2 so that they
are suitable for exTNFS algorithm.

Example 3. Now we target a field Fp9 . Again, we take p = 1000010903 for
example. Choose h(t) = t3 + t + 1 ∈ Z[t] which remains irreducible mod-
ulo p. Let R = Z(ι) = Z[t]/h(t) and Fp3 = Fp(ι) = Fp[t]/h(t). We set
μ(x) = x2 − 3. Compute u and v such that u/v ≡ √

3 mod p. Then the poly-
nomials k(x) = (x3 + ι) +

√
3x ∈ Fp3 [x], f(x) = (x3 + ι)2 − 3x2 ∈ R[x] and

g(x) = v(x3 + ι) + ux ∈ R[x] satisfy the conditions of polynomial selection for
exTNFS algorithm.

Relation Collection. Recall the elements of R = Z[t]/h(t) can be represented
uniquely as polynomials of Z[t] of degree less than deg h = η. In the setting of
exTNFS, we sieve all the pairs (a, b) ∈ Z[t]2 of degree ≤ η − 1 such that ‖a‖∞,
‖b‖∞ ≤ A (a parameter A to be determined later) until we obtain a relation
satisfying

Nf (a, b) := Rest(Resx(a(t) − b(t)x, f(x)), h(t)) and
Ng(a, b) := Rest(Resx(a(t) − b(t)x, g(x)), h(t))

are B-smooth for a parameter B to be determined (an integer is B-smooth if
all its prime factors are less than B). It is equivalent to say that the norm of
a(ι) − b(ι)αf and a(ι) − b(ι)αg are simultaneously B-smooth in Kf = Q(ι, αf )
and Kg = Q(ι, αg), respectively.

For each pair (a, b) one obtains a linear equation where the unknowns are
logarithms of elements of the factor base as in the classical variant of NFS
for discrete logarithms where the factor base is chosen as in [17]. Other than
the polynomial selection step, our algorithm follows basically the same as the
description of the exTNFS algorithm. For full description of the algorithm, refer
to [17].
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Algorithm 2. Polynomial selection with the generalized Conjugation
method (gConj)
Input: p prime and n = ηκ integer such that η, κ > 1
Output: f, g, k, h with h ∈ Z[t] irreducible of degree η, and f, g ∈ R[x] irreducible over

R = Z[t]/hZ[t], and k = gcd(f mod p, g mod p) in Fpη = Fp[t]/h(t) irreducible of
degree κ

1: Choose h ∈ Z[t], irreducible of degree η such that p is inert in Q[t]/h(t)
2: repeat
3: Select g

(0)
0 (t), . . . , g

(0)
κ−1(t), polynomials of degree ≤ η − 1 with small integer

coefficients;
4: Select g

(1)
0 (t), . . . , g

(1)

κ′−1(t), polynomials of degree ≤ η−1, and g
(1)

κ′ (t), a constant
polynomial with small integer coefficients, for an integer κ′ < κ;

5: Set g(0)(t, x) = xκ +
∑κ−1

i=0 g
(0)
i (t)xi and g(1)(t, x) =

∑κ′
i=0 g

(1)
i (t)xi;

6: Select μ(x) a quadratic, monic, irreducible polynomial over Z with small coeffi-
cients;

7: until μ(x) has a root δ modulo p and k = g(0) + δg(1) mod (p, h) is irreducible
over Fpη ;

8: (u, v) ← a rational reconstruction of δ;
9: f ← ResY (μ(Y ), g0 + Y g1 mod h);

10: g ← vg0 + ug1 mod h;
11: return (f, g, k, h)

3 Complexity

From now on, we often abuse the notation for a bivariate polynomial f(t, x) in
Z[t, x] and a polynomial f(x) = f(t, x) mod h = f(ι, x) in R[x]. Unless stated,
deg(f) denotes both the degree of f(x) ∈ R[x] and the degree of f(t, x) ∈ Z[t, x]
with respect to x. The norm of f(x) ∈ R[x], denoted by ‖f‖∞, is defined by the
maximum of the absolute value of the integer coefficients of f(t, x).

The complexity analysis of our algorithm basically follows that of all the
other NFS variants. Recall that in the algorithm we test the smoothness of
the norm of an element from the number field Kf and Kg. As a reminder to
readers, we quote the formula for the complexity of exTNFS algorithm [17]: For
a smoothness parameter B, the factor base has (2 + o(1))B/ log B elements, so
the cost of linear algebra is B2+o(1). Thus the complexity of exTNFS algorithm
is given by (up to an exponent 1 + o(1))

complexity(exTNFS) =
B

Prob(Nf , B)Prob(Ng, B)
+ B2, (2)

where Nf denotes the norm of an element from Kf over Q, B is a smoothness
parameter, and Prob(x, y) denotes the probability that an integer less than x is
y-smooth.

It leads us to consider the estimation of the norm sizes. We need the following
lemma that can be found in [17, Lemma 2].
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Lemma 1 ([17], Lemma 2). Let h ∈ Z[t] be an irreducible polynomial of degree
η and f be an irreducible polynomial over R = Z[t]/h(t) of degree deg(f). Let
ι (resp. α) be a root of h (resp. f) in its number field and set Kf := Q(ι, α).
Let A > 0 be a real number and T an integer such that 2 ≤ T ≤ deg(f). For
each i = 0, . . . ,deg(f) − 1, let ai(t) ∈ Z[t] be polynomials of degree ≤ η − 1 with
‖ai‖∞ ≤ A.

1. We have

∣
∣NKf /Q

( T−1∑

i=0

ai(ι)αi
)∣∣ < Aη deg(f)‖f‖(T−1)η

∞ ‖h‖(T+deg(f)−1)(η−1)
∞ D(η,deg(f)),

where D(η, κ) =
(
(2κ − 1)(η − 1) + 1

)η/2(η + 1)(2κ−1)(η−1)/2
(
(2κ − 1)!η2κ

)η.
2. Assume in addition that ‖h‖∞ is bounded by an absolute constant H and that

p = LQ(�p, c) for some �p > 1/3 and c > 0. Then

Nf (a, b) ≤ Edeg(f)‖f‖η
∞LQ(2/3, o(1)), (3)

where E = Aη

The above formula remains the same when we restrict the coefficients of f to be
integers.

Proof. The proof can be found in [17].

We summarize our results in the following theorem. The results are similar
to Theorem 1 in [17], however, we underline that in our algorithm n is any
composite. We also add the results on the upper bound of the complexity when
n is a b-smooth number for b ≤ 4.

Theorem 1 (under the classical NFS heuristics). If Q = pn is a prime power
such that p = LQ(�p, cp) with 1/3 < �p and n = ηκ is a composite such that
η, κ �= 1, then the discrete logarithm over FQ can be solved in LQ(1/3, (C/9)1/3)
where C and the additional conditions are listed in Table 4.

For each polynomial selection, the degree and the norm of the polynomials
have the same formula as in [17]. Although in our case the polynomials f and
g have coefficients in R, the formula for the upper bound of the norm Nf (a, b)
remains the same as Kim-Barbulescu’s algorithm by Lemma 1. Finally, the analy-
sis is simply rephrasing of the previous results, so we simply omit the proof. In
the next subsection, we briefly explain how to obtain the upper bound of the
complexity when n has prime factors 2 or 3. The case is interesting since most
pairings use such fields to utilize tower extension field arithmetic for efficiency.

3.1 exTNFS When n = 2i

Recall that our algorithm with Conjugation method has the same expression for
the norms as in [2] replacing p with P = pη. Write P = LQ(2/3, cP ) and denote
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Table 4. Complexity of exTNFS variants.

Algorithm C Conditions

exTNFS-gJLSV2 64 κ = o
(
( log Q
log log Q

)
1
3

)

exTNFS-gGJL 64 κ ≤ ( 8
3
)− 1

3 ( log Q
log log Q

)
1
3

exTNFS-gConj 48 κ = 12− 1
3 ( log Q

log log Q
)
1
3

≤ 54.28 n = 2i (i > 1)

MexTNFS-gJLSV2
92+26

√
13

3
κ = o

(
( log Q
log log Q

)
1
3

)

MexTNFS-gGJL 92+26
√
13

3
κ ≤ ( 7+2

√
13

6
)−1/3( log Q

log log Q
)
1
3

MexTNFS-gConj
(3+

√
33+12

√
6))3

14+6
√
6

κ = ( 56+24
√
6

12
)−1/3( log Q

log log Q
)
1
3

≤ 59.80 n = 2i3j (i + j > 1)

≤ 50.76 n = 2i (i > 1)

SexTNFS-new 32 κ = o
(
( log Q
log log Q

)
1
3

)

p is d-SNFS with d = (2/3)
1
3 +o(1)
κ

( log Q
log log Q

)
1
3

τ−1 by the degree of sieving polynomials. Then the complexity of exTNFS-gConj
is LQ(1/3, CNFS(τ, cP )) where

CNFS(τ, cP ) =
2

cP τ
+

√
4

(cP τ)2
+

2
3
cP (τ − 1). (4)

Let k0 =
(

log Q
log log Q

)1/3

. When n = 2i for some i > 1, we can always find a

factor κ of n in the interval
[

k0
3.31 , k0

1.64

]
so that cP lies in the interval [1.64, 3.31]

(observe that the ratio (k0/1.64)/(k0/3.31) is larger than 2). Since C(τ, cP ) is
less than 1.82 when τ = 2 and 1.64 ≤ cP ≤ 3.31, the complexity of exTNFS is
always less than LQ(1/3, 1.82) in this case.

This result shows that the DLP over Fpn can always be solved in the
running time less than LQ(1/3, 1.82) when n is a power of 2. Compare that
exTNFS-C [20] has a larger asymptotic complexity of LQ(1/3, 1.92) and they
even require the specified condition on a factor of n.

4 Variants

4.1 The Case When p Has a Special Form (SexTNFS)

A generalized polynomial selection method also admits a variant when the char-
acteristic has a special form. It includes the case for the fields used in pairing-
based cryptosystems. The previous SexTNFS by Kim and Barbulescu cannot be
applied to pairing-friendly fields with prime power embedding degree, such as
Kachisa-Schaefer-Scott curve [16] p = (u10 +2u9 +5u8 +48u6 +152u5 +240u4 +
625u2 + 2398u + 3125)/980 of embedding degree 16.
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For a given integer d, an integer p is d-SNFS if there exists an integer u and
a polynomial Π(x) with small integer coefficients (up to a small denominator)
so that

p = Π(u),

deg Π = d and ‖Π‖∞ is bounded by an absolute constant not depending on p.

We consider the case when n = ηκ (η, κ �= 1) with κ = o

((
log Q

log log Q

)1/3
)

and p is d-SNFS. In this case our exTNFS selects h, f and g so that

– h is a polynomial over Z and irreducible modulo p, deg h = η and ‖h‖∞ =
O(1);

– f and g are two polynomials with coefficients from R = Z[ι], have a common
factor k(x) modulo p which is irreducible over R/pR = Fpη = F(ι) of degree κ.

We choose such polynomials using the method of Joux and Pierrot [15]. Find
a bivariate polynomial S of degree κ − 1 with respect to x such that

S(t, x) = S0(t) + S1(t)x + · · · + Sκ−1(t)xκ−1 ∈ Z[t, x],

where Si(t)’s have their coefficients in {−1, 0, 1} and are of degree ≤ η − 1. We
further require that k = xκ+S(t, x)−u mod (p, h) is irreducible over Fpη . Since
the proportion of irreducible polynomials in Fq (q: a prime power) of degree κ
is 1/κ and there are 3ηκ choices we expect this step to succeed. Then we set

{
g = xκ + S(t, x) − u mod h
f = Π(xκ + S(t, x)) mod h.

If f is not irreducible over R[x], which happens with low probability, start over.
Note that g is irreducible modulo p and that f is a multiple of g modulo p.
More precisely, as in [15], we choose S(t, x) so that the number of its terms is
approximately O(log n). Since 3log n > κ, this allows us enough chance to get an
irreducible polynomial g. The size of the largest integer coefficient of f comes
from the part S(t, x)d and it is bounded by σd = O

(
(log n)d

)
, where σ denotes

the number of the terms in S(t, x). By construction we have:

– deg(g) = κ and ‖g‖∞ = u = O(p1/d);
– deg(f) = κd and ‖f‖∞ = O((log n)d).

We inject these values in Eq. (1) and obtain the same formula as in Kim-
Barbulescu’s SexTNFS variant. Thus we obtain the same complexity as in their
paper. Again, we note that our polynomial selection applies to fields of arbitrary
composite extension degree n.

4.2 The Multiple Polynomial Variants (MexTNFS-gConj)

One can also accelerate the complexity of exTNFS with the generalized Conju-
gation method using multiple polynomial variants. The description is similar to
the previous multiple variant of NFS: choose an irreducible quadratic polynomial
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μ(x) ∈ Z[x] such that it has small coefficients, and has a root δ modulo p. As
before, choose k = g0 + δg1 ∈ Fpη [x] and set f = ResY (μ(Y ), g0 + Y g1) ∈ R[x],
where g0 and g1 are polynomials in R[x]. We find two pairs of integers (u, v) and
(u′, v′) using rational reconstruction such that

δ ≡ u/v ≡ u′/v′ mod p,

where we require (u, v) and (u′, v′) are linearly independent over Q and the
integers u, v, u′, v′ are all of the size of

√
p.

Next we set f1 = f , f2 = vg0 + ug1 and f3 = v′g0 + u′g1 and select other
V − 3 irreducible polynomials fi := μif2 + νif3 where μi =

∑η−1
j=0 μi,jι

j and

νi =
∑η−1

j=0 νi,jι
j are elements of R such that ‖μi‖∞, ‖νi‖∞ ≤ V

1
2η where V =

LQ(1/3, cv) is a parameter which will be selected later. Denote αi a root of fi

for i = 1, 2, . . . , V .
By construction, we have:

– deg(f1) = 2κ and ‖f1‖∞ = O(1);
– deg(fi) = κ and ‖fi‖∞ = V

1
2η (pηκ)1/(2κ) for 2 ≤ i ≤ V .

As before, evaluating these values into Eq. (1), we obtain:

|Nf1(a, b)| < E2κLQ(2/3, o(1))

|Nfi
(a, b)| < Eκ(pκη)

1
2κ LQ(2/3, o(1)) for 2 ≤ i ≤ V.

We emphasize that
(
V 1/(2η)

)η
= V 1/2 = LQ(2/3, o(1)).

Then, one can proceed the computation identical to [19]. When P = pη =
LQ(2/3, cP ) such that cP > ( 7+2

√
13

6 )1/3 and τ−1 is the degree of the enumerated
polynomials r, then the complexity obtained is LQ(1/3, CMNFS(τ, cP )) where

CMNFS(τ, cP ) =
2

cP τ
+

√
20

9(cP τ)2
+

2
3
cP (τ − 1). (5)

The best case occurs when cP = (56+24
√
6

12 )1/3 and τ = 2 (linear polynomials):

complexity(best case of MexTNFS-gConj) = LQ

⎛

⎝1/3,
3 +

√
3(11 + 4

√
6)

(
18(7 + 3

√
6)

)1/3

⎞

⎠ .

MexTNFS when n =2i2j . We separate this case into following two cases.

Case 1: n = 2i3j for i + j > 1. In this case, we can always find a fac-

tor κ of n in the interval
[

k0
3.89 , k0

1.27

]
where k0 =

(
log Q

log log Q

)1/3

so that cP ,
where pη = LQ(1/3, cP ), is in the interval [1.27, 3.89]. Observe that the ratio
(k0/1.27)/(k0/3.89) is larger than 3. Since CMNFS(τ, cP ) in Eq. (5) is less than
1.88 when τ = 2 and 1.27 ≤ cP ≤ 3.89, we have a result that the complexity of
MexTNFS is always less than LQ(1/3, 1.88).
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Case 2: n = 2i for some i > 1. If n is a power of 2 we get a better result than
Case 1. In this case we can always find a factor κ of n in the interval

[
k0
3.09 , k0

1.52

]

where k0 is the same as Case 1. Again we check that the ratio (k0/1.52)/(k0/3.09)
is larger than 2. Since CMNFS(τ, cP ) ≤ 1.78 for τ = 2 and 1.52 ≤ cP ≤ 3.09, the
complexity of MexTNFS is always less than LQ(1/3, 1.78) in this case.

This result shows that, if multiple variants are used, the DLP over Fpn can
always be solved in the running time less than LQ(1/3, 1.88) when n is 4-smooth
or less than LQ(1/3, 1.78) when n is a power of 2 using MexTNFS algorithm.
Recall that MexTNFS-C [20] has the best asymptotic complexity LQ(1/3, 1.88)
only when n is a power of 2 and has a factor of the specified size.

5 Comparison and Examples

In the context of NFS algorithm including its variants such as TNFS, exTNFS,
we compute a large number of integers that are usually given by the norms
of elements in number fields, and factor these numbers to test if they are B-
smooth for a parameter B. These B-smooth numbers are used to produce a
linear relation of the discrete logarithm of the factor base elements, and we solve
a linear system from those relations. Thus if we reduce the size of the norms
computed in the algorithm we reduce the work of finding B-smooth numbers,
further it allows us to improve the total complexity.

The term, the norm size, in this section is used for the bitsize of the product
of the norms |Nf (r mod f)Ng(r mod g)|, where r ∈ R[x] is a polynomial over
R of degree less than τ and f and g are polynomials selected by each polynomial
selection method. Each coefficient of r is considered as a polynomial in Z[x] of
degree less than η whose coefficients are bounded by a parameter A = E1/η.

As recent results [17,20] show, the exTNFS variants have a smaller size of
the norms than that in classical NFS. Thus, in this section, we mainly compare
the norm size with exTNFS variants.

5.1 A Precise Comparison When p Is Arbitrary

We present the norm sizes in Table 5 depending on each variant of polynomial
selection from exTNFS variants. Note that in our algorithm the extension degree
n can be any composite integer.

We remark that a recent variant by Sarkar and Singh, exTNFS-C [20], is only
interested in the case of λ = η where λ ≤ η denotes a parameter if k = k0+k1x+
· · · + kκxκ ∈ Fpη [x] such that ki ∈ Fpη ’s are represented as polynomials over Fp

of degree λ − 1. When λ = 1, all the coefficients of k are in Fp. Then κ = deg(k)
and η should be relatively prime so that k is irreducible over Fpη . Thus this case
is not interesting since the case is already covered by Kim-Barbulescu’s exTNFS.
We do not consider the case when 1 < λ < η as mentioned in [20].

We extrapolate the parameter E using the formula E = cLQ(1/3, (8/9)1/3)
such that log2 E = 30 when log2 Q = 600 (chosen from the record by Bouvier
et al. [8]).
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Table 5. Comparison of norm sizes, where τ = deg r(x), d = deg(f) and K, λ are
integer parameters subject to the conditions in the last column.

Method Norms product Conditions and parameters

exTNFS-JLSV2 [17] E
2(κ+d)

τ Q
τ−1
d+1 n = ηκ, gcd(η, κ) = 1, d := deg(f) ≥ κ

exTNFS-GJL [17] E
2(2d+1)

τ Q
τ−1
d+1 n = ηκ, gcd(η, κ) = 1, d ≥ κ

exTNFS-Conj [17] E
6κ
τ Q

(τ−1)
2κ n = ηκ, gcd(η, κ) = 1

exTNFS-C [20] E
2κ0(2K+1)

τ Q
(τ−1)(K(λ−1)+κ1)

κ(Kλ+1) n = ηκ = ηκ0κ1, K ≥ κ1, λ = ηa

exTNFS-gJLSV2 (this) E
2(κ+d)

τ Q
τ−1
d+1 n = ηκ, d := deg(f) ≥ κ

exTNFS-gGJL (this) E
2(2d+1)

τ Q
τ−1
d+1 n = ηκ, d ≥ κ

exTNFS-gConj (this) E
6κ
τ Q

(τ−1)
2κ n = ηκ

aIf λ = 1, exTNFS-C is only applicable when gcd(η, κ) = 1.

The Case of Fields Fp9 . One of the interesting cases is when the extension
degree n is a prime power, e.g. n = 4, 9, 16, 32 and so on. In this section, we
particularly focus on the case n = 9 although one can also carry out a similar
analysis for other cases.

In this case the previous best polynomial selection method is exTNFS-C [20],
so we compare our method with exTNFS-C. We apply the algorithms with η = 3
and κ = 3. In particular, we have the following choices:

– exTNFS-C with κ0 = 3, K = κ1 = 1 and λ = 3 has the optimal norm size of
E9Q1/4 when τ = 2.

– exTNFS-C with κ0 = 1, K = κ1 = 3 and λ = 3 has the optimal norm size of
E7Q3/10 when τ = 2.

– exTNFS-gJLSV2 has the optimal size of the norms E6Q1/4 when τ = 2.
– exTNFS-gGJL has the optimal size of the norms E7Q1/4 when τ = 2.
– exTNFS-gConj has the optimal size of the norms E9Q1/6 when τ = 2.

We plot the values of the norms in Fig. 2. Note that exTNFS-gJLSV seems
to be the best choice when the bitsize of target fields is between 300 and 1800
bits, otherwise exTNFS-gConj seems to be the best choice as the size of fields
grows.

The Case of Fields Fp12 . When n is a composite that is not a prime power,
such as n = 6, 12, 18, and so on, one can always find factors η and κ such that
n = ηκ and gcd(η, κ) = 1. Thus it is possible to apply the polynomial selection
as in Kim-Barbulescu’s exTNFS that is already the best choice in the sense of
asymptotic complexity. However, from a practical perspective, one might have
better choice by allowing to choose η and κ that are not necessarily relatively
prime. We plot the case of n = 12 as an example. Note that exTNFS-gConj with
κ = 2 seems to be the best choice when the size of fields is small (say, less than
500 bits) and exTNFS-gJLSV with κ = 2 seems to be the best choice as the size
of fields grows as shown in Fig. 3. Remark that κ = 2 seems to be the best choice
in both cases. Note that this choice is not applicable with Kim-Barbulescu’s
method since η = 6 and κ = 2 are not relatively prime.
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Fig. 2. Plot of the norms bitsize for several variants of NFS targeting FQ = Fp9 with
η = κ = 3. Horizontal axis indicates the bitsize of pn while the vertical axis the bitsize
of the norms product.
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Fig. 3. Plot of the norms bitsize for several variants of NFS targeting FQ = Fp12 with
various choices for κ. Horizontal axis indicates the bitsize of pn while the vertical axis
the bitsize of the norms product.
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5.2 Precise Comparison When p Is a Special Prime

In Table 6, we provide precise norm sizes when p is a d-SNFS prime. Note that
our SexTNFS can be applied with arbitrary composite n maintaining the same
formula for the norm sizes as in [17].

To compare the precise norm sizes, we choose the parameter E using the
formula E = cLQ(1/3, (4/9)1/3) and the pair log2 Q = 1039, log2 E = 30.38 (due
to the records by Aoki et al. [1]).

We plot the norm sizes for each method in Figs. 4 and 5. In our range of
interest, each of the norm sizes has the minimum value when τ = 2, i.e. sieving
only linear polynomials, so we only consider the case when τ = 2.

The Case of n = 12 and p is a 4 − SNFS Prime. This case is interesting
due to Barreto-Naehrig pairing construction [7]. We plot the norm size in Fig. 4

Table 6. Comparison of norm sizes when p is d-SNFS prime.

Method Norms product Conditions

STNFS [4] E
2(d+1)

τ Q
τ−1

d

SNFS-JP [15] E
2n(d+1)

τ Q
τ−1
nd

SexTNFS-KimBar [17] E
2κ(d+1)

τ Q
τ−1
κd n = ηκ, gcd(κ, η) = 1 2 ≤ η < n

SexTNFS-new (this work) E
2κ(d+1)

τ Q
τ−1
κd n = ηκ, 2 ≤ η < n
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Fig. 4. Comparison when n = 12 and p is a 4-SNFS for 300 ≤ log2 Q ≤ 3000. Horizontal
axis indicates the bitsize of Q = pn while the vertical axis the bitsize of the norms
product.
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Fig. 5. Comparison when n = 16 and p is a d = 10-SNFS prime. Horizontal axis
indicates the bitsize of pn while the vertical axis the bitsize of the norms product.

corresponding to each polynomial selection method. Note that exTNFS-gConj
with κ = 2 seems to be the best choice when the bitsize of fields is small (less
than about 1000 bits) and SexTNFS with κ = 2 seems to be the best choice as
the bitsize of fields grows. It should be remarked again that SexTNFS method
with κ = 2 is impossible to apply with Kim-Barbulescu’s method.

The Case of n = 16 and p is a 10 − SNFS Prime. We consider another
interesting case that appears in pairing-friendly constructions, Kachisa-Schaefer-
Scott curve [16] with embedding degree 16.

We compare the precise norm sizes of our SexTNFS with exTNFS-(g)Conj
and exTNFS-C. As shown in Fig. 5, we suggest to use exTNFS-gConj with κ = 4
when the bitsize of target fields is small and to use SexTNFS with κ = 2 when
the bitsize of target fields is large. The cross point appears when the bitsize is
around 8000 bits.

6 Conclusion

In this work, we show that the best complexity of Kim-Barbulescu’s exTNFS
algorithm is still valid for fields of any composite extension degree n. It asserts
that pairings with embedding degree of a prime power cannot be an alternative
to avoid the attack by Kim and Barbulescu and the keysize for such pairings
also needs to be updated following to our attack.
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It is also interesting to remark that fields with extension degree of form
n = 2i3j tend to be vulnerable to our attack compared to fields of any other
extension degree. It is because when n is a smooth number it is more likely to
find a factor of n so that its size is close to the desired size to obtain the best
asymptotic complexity. Note that a large number of pairings have embedding
degree only divisible by 2 or 3 for an efficient field arithmetic.

From a practical point of view, our algorithm also performs better than
Kim-Barbulescu’s algorithm although the asymptotic complexity remains the
same. For example, when n = 12, the choice of (η, κ) = (6, 2) is better than
(η, κ) = (4, 3) in terms of the norm sizes where the former case can only be
covered by our algorithm.

Precise evaluation of the keysize for pairing-based cryptosystems should be
further studied. It would be also an interesting question to find efficient alterna-
tives for Barreto-Naehrig curve that are not affected by our attack. Such curves
potentially have a large embedding degree or a prime embedding degree. Pairings
of embedding degree one might be also alternatives as considered in [9]. Never-
theless, such pairings might be very slow and still need to be further improved
for cryptographers to use them.

Acknowledgement. The authors would like to thank Razvan Barbulescu for his fruit-
ful comments on an early draft of this paper.
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Abstract. Due to its remarkable performance and potential resistance
to quantum attacks, NTRUEncrypt has drawn much attention recently;
it also has been standardized by IEEE. However, classical NTRUEncrypt
lacks a strong security guarantee and its security still relies on heuris-
tic arguments. At Eurocrypt 2011, Stehlé and Steinfeld first proposed a
variant of NTRUEncrypt with a security reduction from standard prob-
lems on ideal lattices. This variant is restricted to the family of rings
Z[X]/(Xn + 1) with n a power of 2 and its private keys are sampled
by rejection from certain discrete Gaussian so that the public key is
shown to be almost uniform. Despite the fact that partial operations,
especially for RLWE, over Z[X]/(Xn + 1) are simple and efficient, these
rings are quite scarce and different from the classical NTRU setting. In
this work, we consider a variant of NTRUEncrypt over prime cyclotomic
rings, i.e. Z[X]/(Xn−1 + · · · + X + 1) with n an odd prime, and obtain
IND-CPA secure results in the standard model assuming the hardness
of worst-case problems on ideal lattices. In our setting, the choice of
the rings is much more flexible and the scheme is closer to the original
NTRU, as Z[X]/(Xn−1 + · · ·+X +1) is a large subring of the NTRU ring
Z[X]/(Xn−1). Some tools for prime cyclotomic rings are also developed.

Keywords: Lattice-based cryptography · NTRU · Learning with
errors · Provable security

1 Introduction

The well-known public key system NTRU was created and refined by Hoffstein,
Pipher and Silverman in [17,18]. The NTRU encryption scheme, NTRUEncrypt,
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is one of the fastest known lattice-based cryptosystems and regarded as an alter-
native to RSA and ECC due to its potential of countering attacks by quantum
computers. The underlying problem of NTRUEncrypt has been used to design
various cryptographic primitives including digital signatures [16], identity-based
encryption [8] and multi-linear maps [11,23]. In the course of assessing the secu-
rity of NTRU, Coppersmith and Shamir first claimed in [5] that one can convert
breaking NTRU to solving hard problems on the so-called NTRU lattice. Then an
army of cryptanalyses [1,2,4,9,10,12,15,19,21,22,29,34] have brought security
estimations on NTRU and its variants, and NTRU is still considered secure in
practice.

The Learning With Errors problem (LWE), introduced by Regev in 2005 [32],
is shown to be as hard as certain lattice problems in the worst case. The Ring
Learning With Errors problem (RLWE) is an algebraic variant of LWE, proposed
by Lyubashevsky, Peikert and Regev [25], whose hardness is guaranteed by some
hard problems over ideal lattices. Due to its better compactness and efficiency
over LWE, RLWE has been used as the foundation of new cryptographic applica-
tions. In a celebrated paper [33], Stehlé and Steinfeld first modified NTRUEncrypt
by incorporating RLWE and proved that the security of NTRU follows by a reduc-
tion from RLWE provided that a right set of parameters are used, which is the
first sound theoretical base for the security of NTRU in the asymptotic sense.
It is worth noting that several novel ideas and powerful techniques have been
developed in [33]. One remarkable contribution is to show that, for n being
a power of 2, and private keys f, g sampled according suitable conditions and
parameters from the ring Z[X]/(Xn + 1), the public key h = f

g is close to that
uniformly sampled under the statistical distance. Based on the provably secure
NTRU scheme, more interesting cryptographic primitives are achieved, such as
fully homomorphic encryption [3,24], proxy re-encryption [30].

In most known ring-based cryptosystems, the rings of the form Z[X]/(X2m

+
1) are preferred choices. This family of rings has some nice algebraic features and
various results on it have been already established. However, as these rings are
very scarce, it has a limitation on the choice of the rings. It is noted that another
family of rings, the prime cyclotomic rings of the form R = Z[X]/(Xn−1 + · · ·+
X + 1) with n being a prime, is also of particular interest in many aspects,
especially in the context of RLWE and NTRU. As a large subring, this ring is
much closer to the original NTRU ring. It is also remarked that a class of subfield
attacks [1] is proposed recently and affects the asymptotic security of NTRU for
large moduli q. Note that the subfield attack is not applicable to the setting of
[33], but it is still meaningful to consider NTRU over the fields with no subfields
of desired relative degree. In this sense, prime cyclotomic ring seems a good
choice of the potential to counter the subfield attack. Establishing IND-CPA
(indistinguishability under chosen-plaintext attack) secure results with respect
to this class of rings will be an important topic. Indeed, as stated in [33], the
results for Z[X]/(X2m

+ 1) are likely to hold for more general cases including
that for prime cyclotomic rings. However, to the best of our knowledge, there
were no actual discussions on this issue found in literature.
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Our Contribution. The main purpose of this paper is to study the problem of
provable security of NTRU in a modified setting with respect to prime cyclotomic
rings. We show results similar to that of [33] still hold over prime cyclotomic
rings. Consequently, to instantiate a provably secure NTRU, the density of usable
cyclotomic polynomial degree n < N is increased from Θ

(
log N

N

)
to Θ

(
1

log N

)
.

Even though some main ideas of [33] are applicable in our discussion, many
technical differences also need to be taken care of. Furthermore, some new results
on prime cyclotomic rings developed here might be of general interest. We believe
that these results could be used to design more applications based on prime
cyclotomic rings.

Organization. We start in Sect. 2 with some notations and basic facts that will
be useful to our discussion. We shall develop and prove a series of relevant
results over prime cyclotomic rings in Sect. 3. Section 4 describes a modified
NTRUEncrypt over prime cyclotomic rings and a reduction to its IND-CPA secu-
rity from RLWE which has been proven hard under worst-case assumptions on
ideal lattices. We conclude in Sect. 5. We have a couple of results whose proofs
are similar to that in [33], these proofs are included in AppendicesA, B and C
for completeness.

2 Preliminaries

Lattice. A lattice L is a discrete subgroup of R
m and represented by a basis,

i.e. there is a set of linearly independent vectors b1, · · · ,bn ∈ R
m such that

L = {∑i xibi|xi ∈ Z}. The integer m is the dimension and the integer n is the
rank of L. A lattice is full-rank if its rank equals its dimension. The first minimum
λ1(L) (resp. λ∞

1 (L)) is the minimum of Euclidean (resp. �∞) norm of all non-zero
vectors of the lattice L. More generally, the k-th minimum λk(L) for k ≤ n is the
smallest r such that there are at least k linearly independent vectors of L whose
norms are not greater than r. Given a basis B = (b1, · · · ,bn) of a full-rank lattice
L, the set P(B) = {∑i cibi|ci ∈ [0, 1)} is the fundamental parallelepiped of B
whose volume |det(B)| is an invariant of L, called the volume of L and denoted
by det(L). The dual lattice of L is the lattice L̂ = {c ∈ R

m|∀i, 〈c,bi〉 ∈ Z} of
the same dimension and rank with L.

Given a ring R with an additive isomorphism θ mapping R to the lattice
θ(R) in an inner product space and an ideal I of R, we call the sublattice θ(I)
an ideal lattice. Due to their smaller space requirement and faster operation
speed, ideal lattices have been a popular choice for most lattice-based cryptosys-
tems. More importantly, the hardness of classical lattice problems, SVP (Shortest
Vector Problem) and γ-SVP (Approximate Shortest Vector Problem with approx-
imation factor γ), does not seem to substantially decrease (except maybe very
large approximate factors [6]). Thus, it is believed that the worst-case hardness
of γ-SVPover ideal lattices, denoted by γ-Ideal-SVP, is against subexponential
quantum attacks, for any γ ≤ poly(n).
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Probability and Statistics. Let D be a distribution over a discrete domain E.
We write z ←↩ D to represent the random variable z that is sampled from the
distribution D and denote by D(x) the probability of z evaluates to x ∈ E.
We denote by U(E) the uniform distribution over a finite domain E. For two
distributions D1,D2 over a same discrete domain E, their statistical distance
is Δ(D1;D2) = 1

2

∑
x∈E |D1(x) − D2(x)|. Two distributions D1,D2 are said to

be statistically close with respect to n if their statistical distance Δ(D1;D2) =
o(n−c) for any constant c > 0.

Gaussian Measures. We denote by ρr,c(x) the n-dimensional Gaussian function

with center c ∈ R
n and width r, i.e. ρr,c(x) = exp

(
−π‖x−c‖2

r2

)
. When the center

is 0, the Gaussian function is simply written as ρr(x). Let S be a subset of R
n,

we denote by ρr,c(S) (resp. ρr(S)) the sum
∑

x∈S ρr,c(x) (resp.
∑

x∈S ρr(x)).
Let DL,r,c be the discrete Gaussian distribution over a lattice L with center
c and width r, the probability of a vector x ∈ L under this distribution is
DL,r,c(x) = ρr,c(x)

ρr,c(L) . For δ > 0, the smoothing parameter ηδ(L) is the smallest

r > 0 such that ρ1/r(L̂) ≤ 1 + δ. The smoothing parameter is bounded in terms
of some lattice quantities. The following lemmata will be useful in our discussion.

Lemma 1 ([28], Lemma 3.3). Let L ⊆ R
n be a full-rank lattice and δ ∈ (0, 1).

Then ηδ(L) ≤
√

ln(2n(1+1/δ))
π · λn(L).

Lemma 2 ([31], Lemma 3.5). Let L ⊆ R
n be a full-rank lattice and δ ∈ (0, 1).

Then ηδ(L) ≤
√

ln(2n(1+1/δ))/π

λ∞
1 (L̂) .

Lemma 3 ([28], Lemma 4.4). Let L ⊆ R
n be a full-rank lattice and δ ∈ (0, 1).

For c ∈ R
n and r ≥ ηδ(L), we have Prb←↩DL,r,c(‖b − c‖ ≥ r

√
n) ≤ 1+δ

1−δ 2−n.

Lemma 4 ([14], Corollary 2.8). Let L′ ⊆ L ⊆ R
n be full-rank lattices and

δ ∈ (0, 1
2 ). For c ∈ R

n and r ≥ ηδ(L′), we have Δ(DL,r,c mod L′;U(L/L′)) ≤ 2δ.

Lemma 5 ([14], Theorem 4.1). There exists a polynomial-time algorithm
that, given a basis (b1, · · · ,bn) of a lattice L ⊆ Z

n, a parameter r =
ω(

√
log n)max ‖bi‖ and c ∈ R

n, outputs samples from a distribution statisti-
cally close to DL,r,c with respect to n.

Furthermore, we denote by ψr the Gaussian distribution with mean 0 and
width r over R and by ψn

r the spherical Gaussian distribution over R
n of the

vector (v1, · · · , vn) in which each vi is drawn from ψr independently. In this
paper, we shall restrict ψr over Q rather than R. As explained in [7], this will
only lead to a negligible impact on our results.

Cyclotomic Ring. Let ξn be a primitive n-th complex root of unity and Φn(X)
the n-th cyclotomic polynomial. It is known that Φn(X) ∈ Z[X] and is of degree
ϕ(n), the totient of n. All roots of Φn(X) form the set {ξi

n|i ∈ Z
∗
n}. In this paper,
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we will be working with a cyclotomic ring of the form R = Z[X]/Φn(X). For
any prime n, if a prime q satisfies q = 1 mod n, then Φn(X) splits into n − 1
distinct linear factors modulo q. Given n, the existence of infinite such primes
is guaranteed by Dirichlet’s theorem on arithmetic progressions. Furthermore,
by Linnik’s theorem, the smallest such q can be bounded by poly(n) (a more
precise bound O(n5.2) has been proven in [36]). Another important class of rings
involved in our discussion is the family of rings of the form Rq = R/qR. As
indicated earlier, our main focus will be prime cyclotomic rings, i.e. those rings
associate with polynomials Φn(X) = Xn−1 + Xn−2 + · · · + 1 with n a prime.

Given a positive integer n, we define the polynomial Θn(X) to be Xn − 1
if n is odd, and X

n
2 + 1 if n is even. It is easy to see that there is a natural

ring extension R′ = Z[X]/Θn(X) of the cyclotomic ring R = Z[X]/Φn(X). In
particular, when n > 1 is a power of 2, R = R′; when n is a prime, the relation
Θn(X) = Φn(X) ·(X −1) implies a ring isomorphism R′ � R×Z by the Chinese
Remainder Theorem.

Hardness of RLWE. The “pure” Ring Learning With Errors problem (RLWE)
introduced in [25] involves the dual of the ring. For the ring Z[X]/(X2m

+1), its
dual is just a scaling of itself. Therefore, many RLWE instances are established
over such rings to avoid dual. In [7], Ducas and Durmus proposed an “easy-to-
use” RLWE setting and instantiated RLWE over prime cyclotomic rings. In this
paper, we follow the setting of [7].

Definition 1 (RLWE error distribution in [7]). Let R = Z[X]/Φn(X). Given
ψ a distribution over Q[X]/Θn(X), we define ψ as the distribution over R
obtained by e = e′ mod Φn(X)� ∈ R with e′ ←↩ ψ. Here we denote by f�
the polynomial whose coefficients are derived by rounding coefficients of f to the
nearest integers.

Definition 2 (RLWEdistribution in [7]). Let R = Z[X]/Φn(X) and Rq =
R/qR. For s ∈ Rq and ψ a distribution over Q[X]/Θn(X), we define As,ψ as
the distribution over Rq × Rq obtained by sampling the pair (a, as + e) where
a ←↩ U(Rq) and e ←↩ ψ.

Definition 3 (RLWEq,ψ,k). Let R = Z[X]/Φn(X) and Rq = R/qR. The prob-
lem RLWEq,ψ,k in the ring R is defined as follows. Given k samples drawn from
As,ψ where s ←↩ U(Rq) and k samples from U(Rq × Rq), distinguish them with
an advantage 1/poly(n).

The following theorem indicates that RLWE under the above settings is hard
based on the worst-case hardness of γ-Ideal-SVP. The ideal lattices we dis-
cuss here are with respect to the so-called canonical embedding, i.e. θ(f) =
(f(ξi

n))i∈Z∗
n
.

Theorem 1 ([7], Theorem 2). Let n be an odd prime, and let Rq be the ring
Zq[X]/Φn(X) where q is a prime congruent to 1 modulo 2n. Also, let α ∈ (0, 1)
be a real number such that αq > ω(

√
log n). There exists a randomized quantum
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reduction from γ-Ideal-SVP on ideal lattices in Z[X]/Φn(X) to RLWEq,ψn
t ,k for

t =
√

nαq
(

(n−1)k
log((n−1)k)

)1/4

(with γ = Õ
(√

n
α

)
) that runs in time O(q · poly(n)).

Let R×
q be the set of all invertible elements of Rq. By restricting As,ψ to R×

q ×
Rq, we obtain a modified RLWE distribution and denote it by A×

s,ψ. Replacing
As,ψ and U(Rq × Rq) by A×

s,ψ and U(R×
q × Rq) respectively, we get a variant

of RLWE which is denoted by RLWE×. When q = Ω(n), the invertible elements
account for a non-negligible fraction in the Rq. Thus RLWE× remains hard.
Furthermore, as explained in [33], the nonce s in A×

s,ψ can be sampled from ψ

without incurring security loss. We denote by RLWE×
HNF this variant of RLWE×.

3 New Results on Prime Cyclotomic Rings

In this section, we will report on a series of results on prime cyclotomic rings.
Some of the results are adapted from corresponding conclusions in [33], but the
modifications are not trivial considering the differences between the cyclotomic
rings of prime and a power of 2 orders. Firstly, we present several notations and
basic properties aiming at prime cyclotomic rings.

3.1 Notations and Properties

Let n be a prime and R be the ring Z[X]/Φn(X) = Z[X]/(Xn−1 + · · · + 1). For
any f ∈ R, we call a vector (f0, · · · , fn−2) ∈ Z

n−1 the coefficient vector of f

if f =
∑n−2

i=0 fiX
i. For any s = (s1, · · · , sm) ∈ Rm, we view s as a m(n − 1)-

dimensional vector in Z
m(n−1) by coefficient embedding. Given s, t ∈ Rm, their

Euclidean inner product is denoted by 〈s, t〉. To get a clean expression of 〈s, t〉
as a coefficient of a polynomial related to s and t, we introduce two operations
on f ∈ R as follows.

Let f ∈ R of coefficient vector (f0, · · · , fn−2), we define f� to be the polyno-
mial

∑n−2
i=0 (
∑n−2

j=i fj)Xi and f� the polynomial
∑n−3

i=0 (fi−fi+1)Xi+fn−2X
n−2,

respectively. One important consequence is that, regarding � and � as two func-
tions over R, these operations are inverse to each other, namely

Proposition 1. Let n be a prime and R = Z[X]/Φn(X), then

∀f ∈ R, (f�)� = (f�)� = f.

Proof. Let (g0, · · · , gn−2) and (h0, · · · , hn−2) be the coefficient vectors of the
polynomials f� and f� respectively. According to the definitions of these two
operations, we have

gi =
n−2∑

j=i

fj for i ∈ {0, · · · , n − 2}
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and
hi = fi − fi+1 for i < n − 2 and hn−2 = fn−2.

Then, a straightforward computation leads to that

gi − gi+1 = fi for i < n − 2 and gn−2 = fn−2

and
n−2∑

j=i

hj = fi for i ∈ {0, · · · , n − 2}.

Thus we conclude that g� = h� = f , i.e. (f�)� = (f�)� = f . ��
The following lemma manifests an expression of the Euclidean inner product

of two elements in R.

Lemma 6. Let n be a prime and R = Z[X]/Φn(X). Denote by X−1 the inverse
of X. Let f ∈ R of coefficient vector (f0, · · · , fn−2) and g ∈ R of coefficient
vector (g0, · · · , gn−2). Then

n−2∑

i=0

figi = the constant coefficient of the polynomial f(X)g�(X−1).

Proof. Let (g′
0, · · · , g′

n−2) be the coefficient vector of the polynomial g�. Notice
that the term Xn is equivalent to the identity element of R. Hence X−1 is
equivalent to Xn−1 when it comes to the algebraic computations over R. Then
we have

f(X)g�(X−1) = f(X)g�(Xn−1) =
∑

i,j∈{0,··· ,n−2}
fig

′
jX

i+(n−1)j .

The constant coefficient of f(X)g�(X−1) is only contributed by the term
Xi+(n−1)j with i + (n − 1)j = 0, n − 1 mod n, i.e. i = j or j − 1. Note that
Xn−1 = −(Xn−2 + · · · + 1), thus the constant coefficient of f(X)g�(X−1)
equals

∑n−2
i=0 fig

′
i −∑n−3

i=0 fig
′
i+1 =

∑n−3
i=0 fi(g′

i − g′
i+1) + fn−2g

′
n−2. The terms

{g′
i − g′

i+1}n−3
i=0 and g′

n−2 are the coefficients of the polynomial (g�)� = g. Con-
sequently, the constant coefficient of f(X)g�(X−1) equals

∑n−2
i=0 figi. ��

Corollary 1. Let n be a prime and R = Z[X]/Φn(X). For any s =
(s1, · · · , sm) ∈ Rm and t = (t1, · · · , tm) ∈ Rm, then

〈s, t〉 = the constant coefficient of the polynomial
m∑

i=1

si(X)t�i (X−1).

Remark. For the ring Z[X]/(Xn + 1), the Euclidean inner product of any two
elements f and g equals the constant coefficient of the polynomial f(X)g(X−1),
which is simpler than the case in our discussion. The rather involved expression
of Euclidean inner product contributes to a sequence of technical differences
compared to that in [33].
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Now we introduce several norms and demonstrate some relations among
them. For any t ∈ R, we define its T2-norm by T2(t)2 =

∑n−1
i=1 |t(ξi

n)|2 and
its algebraic norm by N(t) =

∏n−1
i=1 |t(ξi

n)|. Also we define the polynomial norm
‖t‖ by the Euclidean norm of the coefficient vector of t.

Lemma 7. Let n be a prime and R = Z[X]/Φn(X). For any t ∈ R, we have

N(t)
2

n−1 ≤ 1
n − 1

T2(t)2 and ‖t‖2 =
T2(t)2 + t(1)2

n
≥ T2(t)2

n
.

Proof. The first inequality can be proven directly by arithmetic-geometric
inequality. Since ‖t‖2 =

∑n−1
i=0 |t(ξi

n)|2
n = T2(t)

2+t(1)2

n is the Parseval’s identity
[35], the second one follows immediately, as t(1)2 ≥ 0. ��

Moreover, we present the following result to illustrate that the product of
two polynomials in R is of well-bounded norm.

Lemma 8. Let n be a prime and R = Z[X]/Φn(X). For any f, g ∈ R, we have

‖fg‖∞ ≤ 2‖f‖‖g‖ and ‖fg‖ ≤ 2
√

n − 1‖f‖‖g‖.

Proof. Let R′ = Z[X]/(Xn − 1) and f ′, g′ ∈ R′ be the polynomials with the
same coefficients as f, g respectively, i.e. the coefficients of Xn−1 are 0. Let h′ =∑n−1

i=0 h′
iX

i be the product of f ′ and g′ in R′ where h′
i ∈ Z for i ∈ {0, · · · , n − 1}.

Let h = f · g ∈ R. Notice that Φn(X) is a factor of Xn − 1, hence we know that
h′ mod Φn(X) = h ∈ R, i.e. h = h′ mod Φn(X) =

∑n−2
i=0 (h′

i − h′
n−1)X

i.
Let (f0, · · · , fn−2) and (g0, · · · , gn−2) be the coefficient vectors of f and

g. We also set fn−1 = gn−1 = 0. For any i ∈ {0, · · · , n − 1}, we have
h′

i =
∑n−1

j=0 fjg(i−j) mod n. By Cauchy-Schwarz inequality, we know that |h′
i| ≤

‖f‖‖g‖. Therefore

‖h‖∞ = max
0≤i≤n−2

|h′
i − h′

n−1| ≤ max
0≤i≤n−2

(|h′
i| + |h′

n−1|) ≤ 2‖f‖‖g‖.

By equivalence of norms, we conclude that ‖h‖ ≤ √
n − 1‖h‖∞ ≤

2
√

n − 1‖f‖‖g‖. ��
Remark. The second inequality indicates that an upper bound of the multiplica-
tive expansion factor of R, which is γ×(R) = maxf,g∈R

‖fg‖
‖f‖‖g‖ , is 2

√
n − 1. This

is comparable to that of power-of-2 cyclotomic rings in the asymptotic sense, as
the expansion factor of the ring Z[X]/(Xn + 1) is exactly

√
n (see [13]).

3.2 Duality Results for Module Lattices

In [33], Stehlé and Steinfeld reveals a nice duality between two module lattices
for the n-th cyclotomic ring with n a power of 2. However, that duality cannot be
simply generalized to the case of prime cyclotomic rings. Next, we will propose
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a new duality relationship between two module lattices for a prime cyclotomic
ring.

To begin with, we introduce a few families of R-modules. Let q be a prime
such that Φn(X) splits into n − 1 distinct linear factors modulo q and Rq =
R/qR. We denote by {φi}i=1,··· ,n−1 all roots of Φn(X) modulo q. Note that if φ

is a root of Φn(X) modulo q, then so is φ−1 mod q. By the Chinese Remainder
Theorem, we see that

Rq � Zq[X]/(X − φ1) × · · · × Zq[X]/(X − φn−1) � (Zq)n−1.

From this, we see that each ideal of Rq is of the form
∏

i∈S(X − φi) · Rq with
S ⊆ {1, · · · , n − 1}, and we denote it by IS . Let R×

q be the set of all invertible
elements of Rq. Given a ∈ Rm

q , we define two R-modules a⊥(IS) and L(a, IS)
in exactly the same manner as in [33]:

a⊥(IS) :=

{

(t1, · · · , tm) ∈ Rm| ∀i, (ti mod q) ∈ IS and
m∑

i=1

tiai = 0 mod q

}

,

L(a, IS) := {(t1, · · · , tm) ∈ Rm| ∃s ∈ Rq,∀i, (ti mod q) = ai · s mod IS} .

Then we can define a new R-module L�
(a, IS) to be

L�
(a, IS) :=

{
(t1, · · · , tm) ∈ Rm|(t�1 , · · · , t�m) ∈ L(a, IS)

}
.

Module lattices a⊥(IS) and L�
(a, IS) can be related by duality argument.

More precisely,

Lemma 9. Let n be a prime and R = Z[X]/Φn(X). Let q be a prime such that
Φn(X) splits into n − 1 distinct linear factors modulo q and Rq = R/qR. Given
S ⊆ {1, · · · , n − 1} and a ∈ Rm

q , let a× ∈ Rm
q be defined by a×

i = ai(X−1)
and I×

S̄
be the ideal

∏
i∈S̄(X − φ−1

i ) · Rq where S̄ is the complement of S. Then
(considering both sets as m(n − 1)-dimensional lattices by identifying R with
Z

n−1)

â⊥(IS) =
1
q
L�(a×, I×

S̄
).

Proof. Firstly, we prove that 1
q L�(a×, I×

S̄
) ⊆ â⊥(IS). For any t = (t1, · · · , tm) ∈

a⊥(IS) and t′ = (t′1, · · · , t′m) ∈ L�(a×, I×
S̄

), Corollary 1 says that
their inner product 〈t, t′〉 equals the constant coefficient of the polynomial∑m

i=1 ti(X)t′�i (X−1). According to the definition of L�(a×, I×
S̄

) and Proposi-
tion 1, there exists s ∈ Rq such that (t′�i mod q) = a×

i · s + b′
i for some b′

i ∈ I×
S̄

.
Then we get

m∑

i=1

ti(X)t′�i (X−1) = s(X−1) ·
m∑

i=1

ti(X)ai(X) +
m∑

i=1

ti(X)b′
i(X

−1) mod q
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Both two sums in the right hand side evaluate to 0 in Rq, which means that
〈t, t′〉 = 0 mod q. Therefore, we finish the proof of this part.

Secondly, it suffices to prove that ̂L�(a×, I×
S̄

) ⊆ 1
qa

⊥(IS). For any

t ∈ L�(a×, I×
S̄

) and t′ ∈ ̂L�(a×, I×
S̄

), the constant coefficient of
∑m

i=1 t′i(X)t�i (X−1) = 〈t′, t〉 is an integer due to duality. Notice that if

(t1, · · · , tm) ∈ L�(a×, I×
S̄

), then
(
(t�1 · Xk)�, · · · , (t�m · Xk)�

)
∈ L�(a×, I×

S̄
).

Thus, for k ∈ {1, · · · , n − 2}, the constant coefficient of
∑m

i=1 t′i(X)t�i (X−1)X−k

is also an integer, which implies that all coefficients of
∑m

i=1 t′i(X)t�i (X−1)

are integers. For any (t1, · · · , tm) ∈ ̂L�(a×, I×
S̄

), we deduce from the fact
(q�, 0, · · · , 0) ∈ L�(a×, I×

S̄
) that qt1 ∈ Z

n−1. Let νI×
S̄

be the poly-

nomial
∏

i∈S̄(X − φ−1
i ). Since

(
ν�

I×
S̄

, 0, · · · , 0
)

∈ L�(a×, I×
S̄

), we obtain

qt1(X) · νI×
S̄

(X−1) = 0 mod Rq, that means (qt1 mod q) ∈ IS . For the
same reason, we have (qti mod q) ∈ IS for any i ∈ {1, · · · ,m}. If we set
s = 1, then (a×�

1 , · · · , a×�
m ) ∈ L�(a×, I×

S̄
). It shows that the polynomial

∑m
i=1 (qti(X)ai(X)) = q

∑m
i=1

(
ti(X)a×

i (X−1)
)

= 0 mod q. Combining the fact
that (qti mod q) ∈ IS , we conclude that q(t1, · · · , tm) ∈ a⊥(IS). The proof is
completed. ��
Remark. The above result on the duality is different from that proven in [33],
because the inner product has a more involved form. The original ideas of [33]
have been exploited here, but we also add more details to treat technical differ-
ences.

3.3 On the Absence of Unusually Short Vector in L�(a, IS)

We now show that for a ←↩ U((R×
q )m), the first minimum of L�(a, IS) for

the �∞ norm is overwhelming unlikely unusually small. First we observe that
the lattice L�(a, IS) is transformed from the lattice L(a, IS). To describe the
transformation, we define a matrix H ∈ Z

m(n−1)×m(n−1) as

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
−1 1

−1
. . .
. . . 1

−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗ Idm,

where Idm is an m-dimensional identity matrix. Let B ∈ Z
m(n−1)×m(n−1) be a

basis of L(a, IS) whose rows correspond to the basis vectors, then B′ = B · H is
a basis of L�(a, IS). It is thus easy to see that L�(a, IS) and L(a, IS) are of the
same volume, i.e. det

(L�(a, IS)
)

= det (L(a, IS)) = q(m−1)|S|. This is because
there are qm(n−1−|S|)+|S| points of L(a, IS) in the cube [0, q−1]m(n−1). Also, the
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first minimums of these two lattices may not have a significant difference. Hence
we first present a result on L(a, IS) which is a variant on prime cyclotomic rings
of Lemma 8 in [33].

Lemma 10. Let n ≥ 7 be a prime and R = Z[X]/Φn(X). Let q be a prime such
that Φn(X) splits into n − 1 distinct linear factors modulo q and Rq = R/qR.
For any S ⊆ {1, · · · , n − 1}, m ≥ 2 and ε > 0, set

β := 1− 1

m
+

1 −
√

1 + 4m(m − 1)
(
1 − |S|

n−1

)
+ 4mε

2m
≥ 1− 1

m
−ε−(m−1)

(
1 − |S|

n − 1

)
,

then we have λ∞
1 (L(a, IS)) ≥ 1√

n
qβ with probability ≥ 1 − 2n−1

(q−1)ε(n−1) over the
uniformly random choice of a in (R×

q )m.

Remark. The above lemma can be shown by following the original idea but
with some slight modifications on the inequalities for different norms in prime
cyclotomic rings. For completeness, we give a proof in AppendixA. It is also
noted that our statement of the lemma is essentially the same as that in Lemma
8 of [33], this is primarily because there is a simple relation for the Euclidean
and algebraic norms in both prime and power-of-2 cyclotomic rings.

Next, we shall show that the first minimum λ∞
1 (L(a, IS)) is at most n

2 times
that of L�(a, IS).

Lemma 11. Let n ≥ 7 be a prime and R = Z[X]/Φn(X). Let q be a prime such
that Φn(X) splits into n − 1 distinct linear factors modulo q and Rq = R/qR.
Then, for any a ∈ (R×

q )m and S ⊆ {1, · · · , n − 1}, we have

λ∞
1 (L(a, IS)) ≤ n − 1

2
λ∞

1 (L�(a, IS)).

Proof. We first show that ‖X
n−1
2 t�‖∞ ≤ n−1

2 ‖t‖∞ for any t ∈ R. Let
(t0, · · · , tn−2) be the coefficient vector of t. We denote by (t�0 , · · · , t�n−2) and
(t′0, · · · , t′n−2) the coefficient vectors of the polynomials t� and X

n−1
2 t�, then:

t′i =

⎧
⎪⎪⎨

⎪⎪⎩

t�n+1
2 +i

− t�n−1
2

, i < n−3
2

−t�n−1
2

, i = n−3
2

t�
i− n−1

2
− t�n−1

2
, i > n−3

2

.

From t�i =
∑n−2

j=i tj , we get

t′i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∑
n−1
2 +i

j= n−1
2

tj , i < n−3
2

−∑n−2

j= n−1
2

tj , i = n−3
2

∑n−3
2

j=i− n−1
2

tj , i > n−3
2

.
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Notice that each t′i is a sum of consecutive tj ’s of length at most n−1
2 , thus

‖X
n−1
2 t�‖∞ = maxi |t′i| ≤ n−1

2 maxi |ti| = n−1
2 ‖t‖∞ holds.

For any s = (s1, · · · , sm) ∈ L�(a, IS), the vector s� = (s�
1 , · · · , s�

m) belongs
to L(a, IS) and thus the vector s′ =

(
X

n−1
2 s�

1 , · · · ,X
n−1
2 s�

m

)
is also in L(a, IS).

Then

‖s′‖∞ = max
i

‖X
n−1
2 s�

i ‖∞ ≤ n − 1
2

max
i

‖si‖∞ =
n − 1

2
‖s‖∞.

Since there exists a unique s ∈ L(a, IS) such that r = s� for any r ∈ L�(a, IS),
we conclude that λ∞

1 (L(a, IS)) ≤ n−1
2 λ∞

1 (L�(a, IS)). ��
Lemmata 10 and 11 lead to the following result on L�(a, IS) immediately.

Lemma 12. Let n ≥ 7 be a prime and R = Z[X]/Φn(X). Let q be a prime such
that Φn(X) splits into n − 1 distinct linear factors modulo q and Rq = R/qR.
For any S ⊆ {1, · · · , n − 1}, m ≥ 2 and ε > 0, set

β := 1− 1

m
+

1 −
√

1 + 4m(m − 1)
(
1 − |S|

n−1

)
+ 4mε

2m
≥ 1− 1

m
−ε−(m−1)

(
1 − |S|

n − 1

)
,

then we have λ∞
1 (L�(a, IS)) ≥ 2

(n−1)
√

n
qβ with probability ≥ 1− 2n−1

(q−1)ε(n−1) over
the uniformly random choice of a in (R×

q )m.

3.4 Results on Regularity

Let Dχ be the distribution of the tuple (a1, · · · , am,
∑m

i=1 tiai) ∈ (R×
q )m × Rq

with ai’s being independent and uniformly random in R×
q and ti’s being sam-

pled from the distribution χ over Rq. We call the statistical distance between
Dχ and the uniform distribution over (R×

q )m × Rq the regularity of the general-
ized knapsack function (t1, · · · , tm) �→∑m

i=1 tiai. In [27], Micciancio gave some
results on regularity for general finite rings and constructed a class of one-way
functions. In [33], an improved result was claimed for the ring Z[X]/(Xn + 1)
with n a power of 2 and a Gaussian distribution χ.

We can derive the result of the regularity for prime cyclotomic rings. It pro-
vides a foundation of security for more cryptographic primitives based on prime
cyclotomic rings. In the later part, we will concentrate on NTRU applications
corresponding to the case m = 2.

Lemma 13. Let n ≥ 7 be a prime and R = Z[X]/Φn(X). Let q be a prime
such that Φn(X) splits into n − 1 distinct linear factors modulo q and Rq =
R/qR. Let S ⊆ {1, · · · , n − 1}, m ≥ 2, ε > 0, δ ∈ (0, 1

2 ), c ∈ R
m(n−1) and

t ←↩ DZm(n−1),r,c, with r ≥ n−1
2

√
n ln(2m(n−1)(1+1/δ))

π · q 1
m +(m−1)

|S|
n−1+ε. Then for

all except a fraction ≤ 2n−1

(q−1)ε(n−1) of a ∈ (R×
q )m, we have

Δ
(
t mod a⊥(IS);U(Zm(n−1)/a⊥(IS))

)
≤ 2δ.
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In particular, for all except a fraction ≤ 2n−1(q − 1)−ε(n−1) of a ∈ (R×
q )m, we

have ∣
∣
∣DZm(n−1),r,c(a

⊥(IS)) − q−(n−1)−(m−1)|S|
∣
∣
∣ ≤ 2δ.

Proof. By combining Lemmata 2, 4, 9 and 12, the first part follows.
For a ∈ (R×

q )m, the lattice a⊥(IS) is of the volume det
(
a⊥(IS)

)
=

det
(

1
q L�(a×, I×

S̄
)
)−1

= qm(n−1)/q(m−1)(n−1−|S|) = qn−1+(m−1)|S|. Notice that

|Zm(n−1)/a⊥(IS)| = det
(
a⊥(IS)

)
, thus we complete the proof of the second

part. ��
Remark. Our regularity result is under the coefficient embedding. We have also
considered the canonical embedding and generalized some results of [26]. In the
latter case, for δ = q−εn with ε ∈ (0, 1), the polynomial factor of the lower
bound of required width gets reduced to O(n1.5) from O(n2) in Lemma 13 and
the power exponent can also be slightly smaller. However, our key result, which
is Theorem 2 in next section, requires the parameter δ in Lemma 13 to be very
small. Under the canonical embedding and with δ = q−n−εn, a desired result
similar to the lemma is not currently available. Thus we only work with the
coefficient embedding in this paper and leave the relevant results for our next
work.

3.5 Bounded Gap of Ideal Lattices

Let I be an ideal of the n-th cyclotomic ring and LI be the ideal lattice corre-
sponding to I (under the coefficient embedding). For the case that n is a power
of 2, one has λϕ(n)(LI) = λ1(LI). For n being a prime, however, we do not know
whether this nice property hold or not, but we are able to show that the gap
between λn−1(LI) and λ1(LI) is bounded by

√
n.

Lemma 14. Let n be a prime and R = Z[X]/Φn(X). For any non-zero ideal I
of R, we have:

λn−1(LI) ≤ √
n · λ1(LI).

Proof. Let a = (a0, · · · , an−2) be a non-zero shortest vector of LI and a ∈ R be
the polynomial of coefficient vector a. Then the polynomial Xk · a also induces
a vector of LI denoted by a(k) =

(
a
(k)
0 , · · · , a

(k)
n−2

)
. For any k ∈ {1, · · · , n − 2},

the coordinates of a(k) can be represented by the ai’s as follows:

a
(k)
i =

⎧
⎪⎨

⎪⎩

an−k+i − an−1−k, i < k − 1
−an−1−k, i = k − 1
ai−k − an−1−k, i > k − 1

.
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Then, we have

‖a(k)‖ =

√√
√
√

n−2∑

i=0

a2
i − 2an−1−k(

∑

i�=n−1−k

ai) + (n − 2)a2
n−1−k

≤
√√
√
√

n−2∑

i=0

a2
i + (n − 1)a2

n−1−k + (
∑

i�=n−1−k

ai)2

≤
√√
√
√

n−2∑

i=0

a2
i + (n − 1)a2

n−1−k + (n − 2)(
∑

i�=n−1−k

a2
i )

≤ √
n · ‖a‖.

All these a(k)’s and a are linearly independent so that we conclude that
λn−1(LIS

) ≤ √
n · λ1(LIS

). ��
Back to the ring Rq, combining Minkowski’s theorem, we obtain the following

corollary.

Corollary 2. Let n ≥ 7 be a prime and R = Z[X]/Φn(X). Let q be a prime such
that Φn(X) splits into n − 1 distinct linear factors modulo q and Rq = R/qR.
Let S ⊆ {1, · · · , n − 1} and denote by LIS

the lattice generated by the ideal
〈q,∏i∈S(X − φi)〉. Then

λn−1(LIS
) ≤ √

n · λ1(LIS
) ≤ n · q

|S|
n−1 .

4 Revised NTRUEncrypt over Prime Cyclotomic Rings

In this section, we will describe a variant of NTRUEncrypt over prime cyclotomic
rings with provable security under the worst-case hardness assumption. The
revised NTRUEncrypt is determined by parameters n, q, p, r, α, k and denoted
by NTRUEncrypt(n, q, p, r, α, k). First, we choose a prime n ≥ 7 and let R be
the ring Z[X]/Φn(X). Then we pick a prime q = 1 mod n so that Φn(X) =∏n−1

i=1 (X − φi) mod q with distinct φi’s, and let Rq = R/qR. The parameter
p ∈ R×

q is chosen to be of small norm, such as p = 2, 3 or p = x+2. The parameter
r is the width of discrete Gaussian distribution used for key generation. The
parameters α and k are used for RLWE error generation. We list below three
main components of NTRUEncrypt(n, q, p, r, α, k):

– Key Generation. Sample f ′ from DZn−1,r; if f = pf ′ + 1 mod q /∈ R×
q ,

resample. Sample g from DZn−1,r; if g mod q /∈ R×
q , resample. Then return

private key sk = f ∈ R×
q with f = 1 mod p and public key pk = h = pg/f ∈

R×
q .

– Encryption. Given message M ∈ R/pR, let t =
√

nαq
(

(n−1)k
log((n−1)k)

)1/4

, set

s, e ←↩ ψn
t and return ciphertext C = hs + pe + M ∈ Rq.
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– Decryption. Given ciphertext C and private key f , compute C ′ = f · C mod
q and return C ′ mod p.

Next we explain when and why the scheme works and how to assess its
security.

4.1 Key Generation

In the above key generation algorithm, we generate the polynomials f and g
by using a discrete Gaussian sampler. Lemma 5 provides a sampler outputting
a distribution within exponentially small statistical distance to a certain dis-
crete Gaussian. Actually, the conditions in our results are more demanding than
that in Lemma 5. Ignoring the negligible impact, we assume we already have a
polynomial-time perfect discrete Gaussian sampler.

To ensure both f and g are invertible modulo q, we may need to resample
quite a few times. The following result indicates that the key generation algo-
rithm terminates in expected polynomial time for some selective parameters.

Lemma 15. Let n ≥ 7 be a prime and R = Z[X]/Φn(X). Let q be a prime such
that Φn(X) splits into n − 1 distinct linear factors modulo q and Rq = R/qR.

For any δ ∈ (0, 1/2), let r ≥ n
√

ln(2(n−1)(1+1/δ))
π · q1/(n−1). Then

Pr
f ′←↩D

Zn−1,r

(
(p · f ′ + a mod q) /∈ R×

q

) ≤ (n − 1)(
1
q

+ 2δ)

holds for a ∈ R and p ∈ R×
q .

Proof. It suffices to bound the probability that p·f ′+a belongs to I := 〈q,X−φk〉
by (1/q + 2δ) for any k ≤ n − 1. First we have λn−1(LI) ≤ nq

1
n−1 by Corollary

2 since the ideal I corresponds to I{k}. This, together with Lemma 1, implies
that r ≥ ηδ(LI). Applying Lemma 4, we have that the probability of p · f ′ + a =
0 mod I does not exceed 1/q + 2δ. ��

Next, we claim that the norms of f and g are small with overwhelming
probability.

Lemma 16. Let n ≥ 7 be a prime and R = Z[X]/Φn(X). Suppose q > 8n is
a prime such that Φn(X) splits into n − 1 distinct linear factors modulo q and

Rq = R/qR. Let r ≥ n
√

2 ln(6(n−1))
π · q1/(n−1). The secret key polynomials f , g

satisfy, with probability ≥ 1 − 2−n+4,

‖f‖ ≤ 2n‖p‖r and ‖g‖ ≤ √
n − 1r.

If deg p = 0, then ‖f‖ ≤ 2
√

n − 1 · ‖p‖r with probability ≥ 1 − 2−n+4.
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Proof. Setting δ = 1
10(n−1)−1 , then we get r ≥

√
ln(2(n−1)(1+1/δ))

π from the
assumption. Applying Lemma 1 to Z

n−1, we know that r ≥ ηδ(Zn−1). Therefore,
we can use Lemma 3 to get,

Pr
g←↩D

Zn−1,r

(‖g‖ ≥ r
√

n − 1
) ≤ 1 + δ

1 − δ
21−n.

Since r ≥ n
√

ln(2(n−1)(1+1/δ))
π · q1/(n−1), Lemma 15 yields

Pr
g←↩D

Zn−1,r

(‖g‖ ≥ r
√

n − 1 | g ∈ R×
q

) ≤
Prg←↩D

Zn−1,r

(‖g‖ ≥ r
√

n − 1
)

Prg←↩D
Zn−1,r

(
g ∈ R×

q

)

≤ 1 + δ

1 − δ
21−n · 1

1 − (n − 1)(1/q + 2δ)
≤ 24−n.

This means that the norm of the key polynomial g is less than r
√

n − 1 with
probability ≥1−24−n. The same argument holds true for the polynomial f ′ such
that f = p · f ′ + 1.

If deg p = 0, we have ‖f‖ ≤ 1 + ‖p‖‖f ′‖ ≤ 2‖p‖r
√

n − 1 with probability
≥1 − 24−n. For general cases, applying Lemma 8, we know that ‖f‖ ≤ 1 +
‖p‖‖f ′‖ ≤ 1 + 2(n − 1)‖p‖r ≤ 2n · ‖p‖r with probability ≥1 − 24−n. ��

We are also able to prove that the public key h, the ratio of pg and f = pf ′+1,
enjoys a favorable uniformity for some well-chosen r’s, just like that shown in
[33]. We denote by D×

r,z the discrete Gaussian DZn−1,r restricted to R×
q + z.

Theorem 2. Let n ≥ 7 be a prime and R = Z[X]/Φn(X). Suppose q > 8n is
a prime such that Φn(X) splits into n − 1 distinct linear factors modulo q and
Rq = R/qR. Let 0 < ε < 1

2 and r ≥ (n − 1)2
√

ln(8nq) · q
1
2+2ε. Then

Δ

(
y1 + p · D×

r,z1

y2 + p · D×
r,z2

mod q;U(R×
q )
)

≤ 23(n−1)

qε(n−1)�

for p ∈ R×
q , yi ∈ Rq and zi = −yip

−1 mod q for i ∈ {1, 2}.
Remark. Our proof follows essentially the same approach as in [33]. For com-
pleteness, we include it in Appendix B. This result provides a new instance of
Decisional Small Polynomial Ratio (DSPR) assumption introduced in [24].

4.2 Decryption

Just like in the classical NTRUEncrypt, the correctness of decryption is based
on the fact that a polynomial of �∞ norm < q/2 is invariant under modulo q
reduction. In our decryption procedure, we have C ′ = f · C = pgs + pfe +
fM mod q. When ‖pgs + pfe + fM‖∞ < q

2 , C ′ is in fact pgs + pfe + fM and
hence C ′ mod p = fM mod p = M due to f = 1 mod p, i.e. the decryption
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succeeds. Now we are to confirm that, given a set of proper parameters, the �∞
norms of pgs, pfe and fM will be small enough (e.g., less than q

6 ) with high
probability. This ensures a successful decryption.

We first show that the polynomial drawn from RLWE error distribution has
a relatively small norm with a high probability.

Lemma 17. Let n ≥ 7 be a prime and R = Z[X]/Φn(X). For t > 1 and u > 0,
we have

Pr
b←↩ψn

t

(
‖b‖ ≥

(√
2n(

√
u + 2)

)
t
)

≤ exp(−u).

Proof. We will need the following inequality in our proof:

x�2 ≤ 1
4ε

+
1

1 − ε
x2.

In fact, for x ∈ R, we have (x� − x)2 ≤ 1
4 . For any ε ∈ (0, 1), we have x�2 ≤

1
4 − x2 + 2x�x ≤ 1

4 − x2 + 1
1−εx

2 + (1 − ε)x�2 = 1
4 + ε

1−εx
2 + (1 − ε)x�2. A

routine computation leads to the result.
Let b = b′ mod Φn(X)� ∈ R with b′ ←↩ ψn

t . Let vector v = 1
t (b0, · · · , bn−1)

where (b0, · · · , bn−1) is the coefficient vector of b′. Then we obtain

‖b‖2 ≤ 1
1 − ε

n−2∑

i=0

(bi − bn−1)2 +
n − 1

4ε
=

t2

1 − ε
‖Mv‖2 +

n − 1
4ε

,

where

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −1
1 −1

. . .
...

1 −1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R
n×n.

Let Σ = M�M, we have

Σ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −1
1 −1

. . .
...

1 −1
−1 −1 · · · −1 (n − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R
n×n.

In our estimation, we need traces tr(Σ), tr(Σ2) and the operator norm ‖Σ‖.
It is easy to check that tr(Σ) = 2(n − 1), tr(Σ2) = (n − 1)(n + 2). It can be
calculated that the characteristic polynomial of Σ is λ(λ − 1)n−2(λ − n), so n is
the largest eigenvalue of Σ and hence ‖Σ‖ = n.

All coordinates of b′ follow the distribution ψt independently, so the coor-
dinates of v follow standard Gaussian independently. As shown in [20], an tail
bound for ‖Mv‖2 holds
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Pr
(
‖Mv‖2 > 2(n − 1) + 2

√
(n − 1)(n + 2)u + 2nu

)

= Pr
(
‖Mv‖2 > tr (Σ) + 2

√
tr (Σ2) u + 2‖Σ‖u

)
≤ exp(−u).

Let

ε =

⎛

⎜
⎜
⎝1 +

√√
√
√4t2

(
2(n − 1) + 2

√
(n − 1)(n + 2)u + 2nu

)

n − 1

⎞

⎟
⎟
⎠

−1

∈ (0, 1)

and

A =

√
2(n − 1) + 2

√
(n − 1)(n + 2)u + 2nu

1 − ε
+

n − 1
4t2ε

.

Then it can be verified that

A =
√

2(n − 1) + 2
√

(n − 1)(n + 2)u + 2nu +

√
n − 1
4t2

<
√

2n(
√

u + 2),

thus we have

Pr
b←↩ψn

t

(
‖b‖ ≥

(√
2n(

√
u + 2)

)
t
)

≤ Pr
b←↩ψn

t

(‖b‖ > At)

≤ Pr
v←↩ψn

1

(
1

1 − ε
‖Mv‖2 +

n − 1
4t2ε

> A2

)

= Pr
(
‖Mv‖2 > 2(n − 1) + 2

√
(n − 1)(n + 2)u + 2nu

)

≤ exp(−u). ��
Setting u in Lemma 17 to Θ(log1+κ n) and applying Lemmata 8 and 16, we

are able to get the following:

Lemma 18. In NTRUEncrypt(n, q, p, r, α, k), let t =
√

nαq
(

(n−1)k
log((n−1)k)

)1/4

>

1. Then for κ > 0, we have

‖pgs‖∞, ‖pfe‖∞ ≤ 8
√

2n2Θ
(
log

1+κ
2 n
)

‖p‖2rt

with probability at least 1 − n−Θ(logκ n).
Furthermore, if deg p = 0, then

‖pgs‖∞, ‖pfe‖∞ ≤ 4
√

2nΘ
(
log

1+κ
2 n
)

‖p‖2rt

with probability at least 1 − n−Θ(logκ n).
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It is also hoped that fM has smaller norm. Indeed, we can prove

Lemma 19. In NTRUEncrypt(n, q, p, r, α, k), we have

1. ‖M‖ ≤ (n − 1)‖p‖.
2. ‖fM‖∞ ≤ 4n2‖p‖2r with probability at least 1 − 2−n+4.

Furthermore, if deg p = 0, we have ‖M‖ ≤
√

n−1
2 ‖p‖ holds, and with probability

at least 1 − 2−n+4, ‖fM‖∞ ≤ 2n‖p‖2r holds.

Proof. By reducing modulo the pXi’s, we can write M into
∑n−2

i=0 εipXi with
−1/2 < εi ≤ 1/2. Using Lemma 8, we have

‖M‖ ≤ 2
√

n − 1‖
n−2∑

i=0

εiX
i‖‖p‖ ≤ (n − 1)‖p‖.

For the case deg p = 0, we have ‖M‖ = ‖p‖ · ‖∑n−2
i=0 εiX

i‖ ≤
√

n−1
2 ‖p‖. Then,

combining Lemmata 8 and 16 with the above result, the proof is completed. ��
Overall, we give a set of parameters such that NTRUEncrypt decrypts cor-

rectly with high probability.

Theorem 3. If ω
(
n2 log0.5 n

) ‖p‖2rt/q < 1(resp. ω
(
n log0.5 n

) ‖p‖2rt/q < 1 if

deg p = 0) and t =
√

nαq
(

(n−1)k
log((n−1)k)

)1/4

> 1, then the decryption algorithm of

NTRUEncrypt recovers M with probability 1−n−ω(1) over the choice of s, e, f, g.

4.3 Security Reduction and Parameters

In a manner similar to [33], we are able to establish a security reduction of
NTRUEncrypt from the decisional RLWE×

HNF . One technical idea is that one can
produce a legal pair of public key and ciphertext pair (h = pa,C = pb + M =
hs + pe + M) by using the pair (a, b = as + e) sampled from RLWE distribution.
The proof of Lemma 20 is shown in Appendix C.

Lemma 20. Let n ≥ 8 be a prime and R = Z[X]/Φn(X). Suppose q > 8n
is a prime such that Φn(X) splits into n − 1 distinct linear factors modulo q

and Rq = R/qR. Let ε, δ > 0, p ∈ R×
q , t =

√
nαq
(

(n−1)k
log((n−1)k)

)1/4

, and r ≥
(n − 1)2

√
ln(8nq) · q

1
2+ε. If there exists an IND-CPA attack against the variant

of NTRUEncrypt that runs in time T and has success probability 1/2 + δ, then
there exists an algorithm solving RLWEq,ψ,k with ψ = ψn

t that runs in time
T ′ = T + O(kn) and has success probability 1

2 + δ′ where δ′ = δ
2 − q−Ω(n).

Now we integrate all above results and discuss the parameter requirements.
To ensure the uniformity of public keys, the parameters r, n and q should sat-
isfy the condition claimed in Theorem 2, i.e. r ≥ (n − 1)2

√
ln(8nq) · q

1
2+2ε

for 0 < ε < 1
2 . To ensure a high probability of success decryption, we need
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that t =
√

nαq
(

(n−1)k
log((n−1)k)

)1/4

> 1 and ω
(
n2 log0.5 n

) ‖p‖2rt/q < 1 (resp.

ω
(
n log0.5 n

) ‖p‖2rt/q < 1 if deg p = 0) as stated in Theorem 3. To satisfy
the condition of RLWE (Theorem 1), it requires that αq > ω(

√
log n). From

these requirements, to obtain a variant of NTRUEncrypt with provable security
against IND-CPA attack, we may set main parameters as follows.

– q = poly(n), ε ∈ (0, 1
2

)
, and q

1
2−ε = ω

(
n4.75 log1.5 n‖p‖2

)
,

– r = n2
√

ln(8nq) · q
1
2+ε,

– k = O(1), αq = Ω(log0.75 n) and t =
√

nαq
(

(n−1)k
log((n−1)k)

)1/4

=

Ω(n0.75 log0.5 n).

If p is set to be an integer (i.e. deg p = 0) which is a most routine case used
in NTRUEncrypt scheme, the parameters may be relaxed:

– q = poly(n), ε ∈ (0, 1
2

)
, and q

1
2−ε = ω

(
n3.75 log1.5 n‖p‖2

)
,

– r = n2
√

ln(8nq) · q
1
2+ε,

– k = O(1), αq = Ω(log0.75 n) and t =
√

nαq
(

(n−1)k
log((n−1)k)

)1/4

=

Ω(n0.75 log0.5 n).

Combining with Theorem1, we have obtained our main result.

Theorem 4. Let n ≥ 8 be a prime and R = Z[X]/Φn(X). Suppose q = poly(n)
is a prime such that Φn(X) splits into n − 1 distinct linear factors modulo
q and q

1
2−ε = ω

(
n4.75 log1.5 n‖p‖2

)
(resp. q

1
2−ε = ω

(
n3.75 log1.5 n‖p‖2

)
, if

deg p = 0), for arbitrary ε ∈ (0, 1
2

)
and p ∈ R×

q . Let r = n2
√

ln(8nq) · q
1
2+ε

and t =
√

nαq
(

(n−1)k
log((n−1)k)

)1/4

where k = O(1) and αq = Ω(log0.75 n). If there
exists an IND-CPA attack against the variant of NTRUEncrypt(n, q, p, r, α, k) that
runs in time poly(n) and has success probability 1

2 + 1
poly(n) , then there exists

a poly(n)-time algorithm solving γ-Ideal-SVP on ideal lattices in Z[X]/Φn(X)
with γ = O

(√
nq/ log0.75 n

)
. Moreover, the decryption success probability exceeds

1 − n−ω(1) over the choice of the encryption randomness.

In the modified NTRUEncrypt, the parameter r is Ω̃(n2 · q
1
2+ε) and that in

[33] is Ω̃(n · q 1
2+ε). Note tha the term q

1
2+ε is much greater than its polynomial

coefficient n2 or n, thus, in this sense, our result is close to that for power-
of-2 cyclotomic rings. By setting ε = o(1) and p to be of degree 0, the smallest
modulus q and approximate factor γ reach Ω̃(n7.5) and Ω̃(n8) respectively. These
compare to Ω̃(n5) and Ω̃(n5.5) for NTRUEncrypt over power-of-2 cyclotomic
rings.

5 Conclusion and Future Work

In this paper, we extended the provable security of an NTRU variant, originally
proposed by Stehlé and Steinfeld for power-of-2 cyclotomic rings, to the family
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of prime cyclotomic rings. As this class of rings is closer to the original NTRU
rings, the results here may bring a new security estimation for the original NTRU
settings. We also developed a series of tools for prime cyclotomic rings that
provide a foundation to generalize more cryptosystems to this class of rings.
These tools might be of some independent interest.

We present a theoretical construction with suggested parameters in the
asymptotic sense. There are a batch of cryptanalyses work aiming at NTRU,
such as hybrid attack [19], subfield attack [1] and straightforward attack [22].
Detailed analyses of our NTRU variant against these attacks should be well-
considered. Furthermore, the operations over the rings Z[X]/(Xn ± 1) are still
more efficient than that over prime cyclotomic rings. The further investigation
of the relation between the prime cyclotomic ring and NTRU ring may improve
the efficiency of related cryptosystems. We leave them to the future work.

As shown in [25,26], canonical embedding provides a neat description of the
geometry of cyclotomic rings, which may lead to more compact and general
results. To get similar conclusions with respect to the canonical embedding, we
need to develop more powerful tools and that is left as a future investigation.

The ideal lattices (under the coefficient embedding) over prime cyclotomic
rings are not (anti-)circulant, thus to study the gap between their minimums
could be useful in cryptanalysis. Another interesting problem is a finer estimation
of Euclidean norm of elements in an ideal of the prime cyclotomic ring, as it is
useful in reducing some complexity estimations.
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973 Program (No. 2013CB834205), the Strategic Priority Research Program of the Chi-
nese Academy of Sciences (No. XDB01010600) and NSF of China (No. 61502269).

A Proof of Lemma 10

Let p be the probability over the randomness of a that λ∞
1 (L(a, IS)) < B,

where B = 1√
n
qβ . For a non-zero vector t of �∞ norm < B and s ∈ Rq/IS , let

p(t, s) = Pra(∀i, ti = ais mod IS) and pi(ti, s) = Prai
(ti = ais mod IS), then we

have p(t, s) =
∏m

i=1 pi(ti, s).
Let νIS

be the polynomial
∏

i∈S(X − φi). We only need to consider such
(t, s) pairs that gcd(ti, νIS

) = gcd(s, νIS
) for all i ∈ {1, · · · ,m}: if not so, we

can prove p(t, s) = 0 due to the invertibility of ai. For each such pair, we denote
by d the degree of gcd(s, νIS

). Notice that there are (q − 1)d+n−1−|S| distinct
ai’s in R×

q such that ti = ais mod IS , i.e. pi(ti, s) = (q − 1)d−|S|, then we have
p(t, s) =

∏m
i=1 pi(ti, s) = (q − 1)m(d−|S|).
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The probability p is bounded by

p ≤
∑

s∈Rq/IS

∑

0<‖t‖∞<B

p(t, s)

≤
∑

0≤d≤|S|

∑

S′⊆S,|S′|=d
h=
∏

i∈S′ (X−φi)

∑

s∈Rq/IS

h|s

∑

t∈Rm
q

∀i,0<‖ti‖∞<B
h|ti

(q − 1)m(d−|S|).

For h =
∏

i∈S′(X − φi) of degree d, let N(B, d) be the number of t ∈ Rq such
that ‖t‖∞ ∈ (0, B) and t = ht′ for t′ ∈ Rq of degree < n − 1 − d. We now show
two bounds for N(B, d) depending on d.

Suppose that d ≥ β(n − 1), then N(B, d) = 0. Indeed, for any t = ht′ with
t′ ∈ Rq, the ideal 〈t〉 is a full-rank sub-ideal of the ideal 〈h, q〉. Thus, we have
N(t) = N(〈t〉) ≥ N(〈h, q〉) = qd. Combined with Lemma 7 and equivalence of
norms, we conclude that ‖t‖∞ ≥ ‖t‖√

n−1
≥ T2(t)√

n(n−1)
≥ N(t)1/(n−1)

√
n

≥ qβ

√
n
, which

implies N(B, d) = 0 when d ≥ β(n − 1).
Suppose that d < β(n − 1), then N(B, d) ≤ (2B)n−1−d. Let t =

∑n−2
i=0 tiX

i,
h =
∑d

i=0 hiX
i and t′ =

∑n−2−d
i=0 t′iX

i. From t = ht′, we have

(t0, · · · , tn−2−d) = (t′0, · · · , t′n−2−d)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h0 h1 · · · hn−2−d

h0 h1

...

h0
. . .
. . . h1

h0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The constant coefficient of h0 is non-zero modulo prime q, so the polynomial t′

will be determined once the (n−1−d) low-order coefficients of t are determined,
and vice versa. Thus each possible t is uniquely decided by its (n−1−d) low-order
coefficients and this leads to N(B, d) ≤ (2B)n−1−d.

Notice that the number of subsets of S is 2|S| and the number of s ∈ Rq/IS

divisible by h =
∏

i∈S′(X − φi) of degree d is q|S|−d. Thus the probability p can
be bounded as follows:

p ≤ 2|S| max
d<β(n−1)

(2B)m(n−1−d)

(q − 1)m(|S|−d)
· q|S|−d ≤ 2n−1 max

d<β(n−1)

(2B)m(n−1−d)( q
q−1

)n−1−d

(q − 1)(m−1)(|S|−d)
.

Since n ≥ 7, q = 1 mod n and β ≤ 1 − 1
m , we have (2B)m( q

q−1 ) < (q − 1)βm

and then

max
d<β(n−1)

(2B)m(n−1−d)( q
q−1 )n−1−d

(q − 1)(m−1)(|S|−d)
< (q−1)

βm(n−1)−(m−1)|S|+β(n−1)(m−1−βm)
=(q−1)

−ε(n−1)
.

We now complete the proof.
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B Proof of Theorem 2

For a ∈ R×
q , we define Pra = Prf1,f2 ((y1 + pf1)/(y2 + pf2) = a), where fi ←↩

D×
r,zi

. It suffices to prove that |Pra−(q−1)−(n−1)| ≤ 22(n−1)+5

q�ε(n−1)� ·(q−1)−(n−1) =: ε′

for all except a fraction ≤ 22(n−1)

(q−1)ε(n−1) of a ∈ R×
q .

To translate Pra into a more straightforward form, we introduce another
probability Pra = Prf1,f2 [a1f1 + a2f2 = a1z1 + a2z2] for a = (a1, a2) ∈ (R×

q )2,
and then obtain Pra = Pr−a2·a−1

1
after a simple computation. For (a1, a2) ∈

(R×
q )2, we consider the equation a1f1 + a2f2 = a1z1 + a2z2 of the pair (f1, f2).

All its solutions form the set z+a⊥×, where z = (z1, z2) and a⊥× = a⊥⋂(R×
q +

qZ
n−1)2. Then, we have

Pra =
DZ2(n−1),r(z + a⊥×)

DZn−1,r(z1 + R×
q + qZn−1) · DZn−1,r(z2 + R×

q + qZn−1)
.

Thanks to a ∈ (R×
q )2, for any (x1, x2) ∈ a⊥, the elements x1 and x2 lie in the

same ideal IS of Rq. To circumvent the restriction on invertibility, we exploit the
inclusion-exclusion principle and change the three above sums into the following
forms.

DZ2(n−1),r(z + a⊥×) =
∑

S⊆{1,··· ,n−1}
(−1)|S| · DZ2(n−1),r(z + a⊥(IS)), (1)

D
Zn−1,r(zi+R×

q +qZ
n−1

) =
∑

S⊆{1,··· ,n−1}
(−1)

|S| ·D
Z
2(n−1),r

(zi+IS+qZ
n−1

), for i ∈ {1, 2}. (2)

First, let’s prove the Eq. 1. For DZ2(n−1),r(z + a⊥(IS)) with |S| ≤ ε(n − 1),
let δ = q−(n−1)−ε(n−1)� and m = 2, then Lemma 13 implies that, for all except
a fraction ≤ 2n−1

(q−1)ε(n−1) of a ∈ (R×
q )2,

∣∣∣D
Z2(n−1),r(z + a⊥(IS)) − q−(n−1)−|S|

∣∣∣ =
∣∣∣D

Z2(n−1),r,−z(a
⊥(IS)) − q−(n−1)−|S|

∣∣∣ ≤ 2δ.

For the case |S| > ε(n − 1), we can find S′ ⊆ S with |S′| = ε(n − 1)�. Because
a⊥(IS) ⊆ a⊥(IS′), we have DZ2(n−1),r,−z(a⊥(IS)) ≤ DZ2(n−1),r,−z(a⊥(IS′)).
Using the result proven before, we conclude that DZ2(n−1),r,−z(a⊥(IS)) ≤ 2δ +
q−(n−1)−ε(n−1)�. Therefore, the following inequality holds

∣
∣
∣
∣DZ2(n−1),r(z + a⊥×) − (q − 1)n−1

q2(n−1)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

S⊆{1,··· ,n−1}
(−1)|S|

(
DZ2(n−1),r(z + a⊥(IS)) − q−(n−1)−|S|

)
∣
∣
∣
∣
∣
∣

≤2nδ + 2
n−1∑

k=�ε(n−1)�

(
n − 1

k

)
q−(n−1)−ε(n−1)� ≤ 2n+1q−(n−1)−ε(n−1)�,
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for all except a fraction ≤ 22(n−1)

(q−1)ε(n−1) of a ∈ (R×
q )2.

Next, we are to prove the Eq. 2. Let δ = q−(n−1)/2. Lemma 2 shows that
λn−1(LIS

) ≤ n · q|S|/(n−1). For S of cardinality ≤ (n−1)/2, by Lemma 1, we get
that r ≥ ηδ(IS + qZ

n−1). Using Lemma 4, we know |DZn−1,r,−zi
(IS + qZ

n−1) −
q−|S|| ≤ 2δ. For the case |S| > (n − 1)/2, using the same argument, we have
DZn−1,r,−zi

(IS + qZ
n−1) ≤ 2δ + q−(n−1)/2. Therefore,

∣
∣
∣
∣DZn−1,r(zi + R×

q + qZ
n−1) − (q − 1)n−1

qn−1

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

S⊆{1,··· ,n−1}
(−1)|S|

(
DZ2(n−1),r(zi + IS + qZ

n−1) − q−|S|
)
∣
∣
∣
∣
∣
∣

≤2n(δ + q−(n−1)/2) = 2n+1q−(n−1)/2.

Overall, we prove that, except for a fraction ≤ 22(n−1)

(q−1)ε(n−1) of a ∈ (R×
q )2,

DZ2(n−1),r(z + a⊥×) = (1 + δ0) · (q − 1)n−1

q2(n−1)
,

DZn−1,r(zi + R×
q + qZ

n−1) = (1 + δi) · (q − 1)n−1

qn−1
, for i ∈ {1, 2}.

where |δi| ≤ 22nq−ε(n−1)� for i ∈ {0, 1, 2}, which implies that |Pra − (q −
1)−(n−1)| ≤ ε′.

C Proof of Lemma 20

Let A be the given IND-CPA attack algorithm. Given oracle O that outputs k
samples drawn from either U(R×

q × Rq) or A×
s,ψ for previously chosen s ←↩ ψ.

We construct an algorithm B to solve RLWE×
HNF . Algorithm B first calls O to

get k samples (h′
1, C

′
1), · · · , (h′

k, C ′
k). Then algorithm B picks i ←↩ U({1, · · · , k})

and calculates the public key hi = p · h′
i. When A outputs a challenge message

pair (M0,M1), B picks b ←↩ U({0, 1}), computes the challenge ciphertext Ci =
p ·C ′

i +Mb and sends it to A. Finally, A outputs its guess b′, and then B outputs
1 if b′ = b and 0 otherwise.

All h′
i’s are uniformly random in R×

q , and thus so are the public keys hi’s
due to p ∈ R×

q . Theorem 2 shows that the statistical distance between the
distribution of the public key given to A and that in the genuine attack is q−Ω(n).
Furthermore, if O outputs samples from A×

s,ψ, the pair (hi, Ci) is of the form
(hi, his+pe+Mb) which corresponds to actual “public key and ciphertext” pair
in the IND-CPA attack. Therefore A succeeds and B outputs 1 with probability
≥ 1

2 + δ − q−Ω(n).
If O outputs samples from U(R×

q × Rq), then Ci is uniformly random in Rq

and independent of b. Algorithm B outputs 1 with probability 1/2 in this case.
Thus the advantage of B in distinguishing U(R×

q ×Rq) and A×
s,ψ is greater than

δ/2 − q−Ω(n).
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Universitat Politècnica de Catalunya, Barcelona, Spain
jorge.villar@upc.edu

Abstract. In this paper we provide new algebraic tools to study the
relationship between different Matrix Diffie-Hellman (MDDH) Problems,
which are recently introduced as a natural generalization of the so-called
Linear Problem. Namely, we provide an algebraic criterion to decide
whether there exists a generic black-box reduction, and in many cases,
when the answer is positive we also build an explicit reduction with the
following properties: it only makes a single oracle call, it is tight and it
makes use only of operations in the base group.

It is well known that two MDDH problems described by matrices
with a different number of rows are separated by an oracle computing
certain multilinear map. Thus, we put the focus on MDDH problems of
the same size. Then, we show that MDDH problems described with a
different number of parameters are also separated (meaning that a suc-
cessful reduction cannot decrease the amount of randomness used in the
problem instance description).

When comparing MDDH problems of the same size and number of
parameters, we show that they are either equivalent or incomparable.
This suggests that a complete classification into equivalence classes could
be done in the future. In this paper we give some positive and negative
partial results about equivalence, in particular solving the open problem
of whether the Linear and the Cascade MDDH problems are reducible
to each other.

The results given in the paper are limited by some technical restric-
tions in the shape of the matrices and in the degree of the polynomials
defining them. However, these restrictions are also present in most of the
work dealing with MDDH Problems. Therefore, our results apply to all
known instances of practical interest.

Keywords: Matrix Diffie-Hellman problems · Black-box reductions ·
Decisional linear assumption · Black-box separations

1 Introduction

Matrix Decisional Diffie-Hellman (MDDH) Problems were recently introduced
in [9] as a natural generalization of the Linear Problem, and they have found
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many applications (see, for instance [1–9]) and they are further generalized to
computational problems in [13,15]. A MDDH problem is defined as a set of
matrices A ∈ Z

�×k
q , for � > k, sampled from a probability distribution D�,k.

Informally, the D�,k-MDDH problem is telling apart the two probability distrib-
utions ([A], [Aw]) and ([A], [z]), where A ← D�,k, w ← Z

k
q and z ← Z

�
q. The

bracket notation (also called ‘implicit’ notation) means giving the vectors and
matrices “in the exponent” (see Sect. 2). Most interesting examples correspond
to the case � = k + 1, and usually D�,k is defined by evaluating a degree-one
polynomial map A(t) on a random point t ∈ Z

d
q (we denote this problem as

DA
k -MDDH).1

The broadly used DDH and k-Lin problems are indeed instances of MDDH
problems (namely, L1-MDDH and Lk-MDDH problems). Other useful instances
were introduced in [9,15], like the Cascade (Ck-MDDH) and the Symmetric Cas-
cade (SCk-MDDH) problems (see Sect. 2.3 for more details on these examples).
This wide range of decisional problems is typically organized into families of
increasing hardness, allowing us to trade compactness for hardness. In particu-
lar, Ck-MDDH and Lk-MDDH both depend on k parameters, and they offer the
same security guarantees (generically), while SCk-MDDH has optimal represen-
tation size (only one parameter) but it is supposed to be easier than Ck-MDDH.
The applications of the MDDH problems that appeared in the papers listed above
suggest that, in most scenarios, the k-Lin problem can be successfully replaced
by any other hard MDDH problem.

Using tools from algebraic geometry, in [9] a general criterion for the hard-
ness of DA

k -MDDH in the (symmetric) k-linear generic group model is given,
based on the properties of the so-called determinant polynomial dA associated
to the MDDH problem. This criterion is one of the few known general theorems
that transforms the problem of proving the generic hardness of a computational
problem, chosen from a wide family, into a simple algebraic problem. This can
be done thanks to a purely algebraic reformulation of the generic group model
formalized by Maurer in [14], including also the multilinear map functional-
ity. A clear and detailed reference for this algebraic reformulation, applied to a
very general generic group model supporting several groups and homomorphisms
among them, can be found in [4].

Although proving the hardness of a problem in a generic model does not give
all the guarantees about the security of the protocols based on it, at least, it
constitutes a proof that the protocol is well-designed. Indeed, the meaning of a
1 MDDH problems beyond these technical limitations are hard to use because,

firstly, there are no known efficient algebraic tools to show the generic hardness
of unbounded families of D�,k-MDDH problems with � > k + 1, meaning that the
hardness must be proven individually for every instance in the family. Secondly,
dealing with MDDH problems defined by non-linear polynomial maps produces the
same effect in the generic hardness analysis, and in addition, it limits the practi-
cal applicability of the MDDH problem instances. Indeed, in the linear case, [A]
(typically required to be publicly known) can be easily recovered by evaluating the
polynomial map in the exponent, given only the parameters [t]. This compression of
the public information is partially lost when using polynomial maps of higher degree.
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problem being hard on a generic group is that the only possible successful algo-
rithms solving it are specific to a particular choice of the base group. Moreover,
even when a specific attack against a protocol based on such problem is found,
there is still the possibility to avoid it by properly changing the base group. For
instance, the subexponential algorithms solving the Discrete Logarithm prob-
lem in certain groups have no known equivalent in the realm of random elliptic
curves. On the other hand, even if we know that two problems are generically
hard, it still makes sense looking for reductions (or separations) between them,
because they have implications about the impact of solving one of the problems
implemented on a specific group family.

Indeed, in the current candidates for multilinear maps (or the richer struc-
ture called graded encodings) considered in the literature, most decisional prob-
lems inspired on DDH (including the MDDH problems) are easy. However, these
attacks are specific to the platforms considered in the constructions, and they
do not rule out the existence of other constructions in the future. Therefore,
the research on general results about the hardness and relationship of decisional
problems related to DDH remains to be of great theoretical interest.

Finding reductions between decisional problems is a rather difficult task: A
decisional problem typically specifies two probability distributions that are hard
to tell apart, and then the reduction has to transform the two specific probability
distributions defining one of the problems into the two distributions defining the
other, tolerating only a negligible error probability. One can find many subtleties
when trying to build such reductions, or to rule out their existence, as shown for
example in [16]. Most known reductions fall in the class of black-box reductions,
and they typically use the base groups in a generic way. This suggests the pos-
sibility of finding an algebraic formulation that captures the notion of generic
black-box reducibility for a wide family of decisional problems, assuming that
their description is uniform enough. A natural candidate is the family of MDDH
problems. However, known results about equivalence or separation of MDDH
problems essentially reduce to:

– [9]. D�,k-MDDH and D�′,k′-MDDH problems with k < k′ are separated by
an oracle that computes a (k + 1)-linear map.2 Namely, D�,k-MDDH is easily
solved by means of the oracle, while D�′,k′-MDDH could remain hard (e.g., it
can still be hard in the generic k′-linear group model).

– [10]. All hard DA
�,k-MDDH problems with � = k + 1, described by a univariate

degree-one polynomial map A(t) are equivalent.
– [10]. By using randomization and “algebraic reductions” one can obtain reduc-

tions between some known families of MDDH problems. For instance, SCk-
MDDH is reduced to Ck-MDDH, and all D�,k-MDDH problems reduce to U�,k-
MDDH problems (based on the uniform matrix distribution).

2 This is actually valid in the general case provided that k is constant (i.e., indepen-
dent of the security parameter). However, for some compact matrix distributions,
including Lk, Ck and SCk), a (k +1)-linear map can efficiently solve the D�,k-MDDH
problem even when k grows linearly in the complexity parameter.
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Many other questions remain unanswered. For instance, it is an open problem
whether a reduction between Ck-MDDH and Lk-MDDH exists, in either way.

In this paper we focus on the general problem of finding a simple algebraic
criterion for the existence of reductions between two MDDH problems with the
same size k. When the answer is positive, we also try to build a simple reduction.
The results we provide here are a first step of the big project of classifying all
MDDH assumptions (or at least a wide family of them) into equivalence classes.

1.1 Our Results

The main theorem in [9,10] gives sufficient conditions for the hardness, in the
generic k-linear group model, of a wide family of MDDH problems defined by
polynomial matrix distributions DA

k , based on some properties (degree and irre-
ducibility) of the determinant polynomial dA (i.e., the determinant of A(t)‖z as
a polynomial in (t,z), see Definition 8). In the particular case of one-parameter
polynomial matrix distributions, the converse theorem is also proved in [10].
We prove that a similar converse also holds for matrix distributions with many
parameters in Theorem 3, by using different techniques. We also give additional
technical properties that any dA must fulfil when DA

k is hard (i.e., the DA
k -

MDDH problem is hard in the generic k-linear group model), and they are based
on the geometric notion called elusiveness, recently introduced in [15].

Our main contribution is giving positive and negative results about the exis-
tence of black-box reductions between the two generically hard problems DA

k -
MDDH and DB

k -MDDH defined by degree-one polynomial matrix distributions
with d and e parameters, respectively. The first result shows how to extract from
any successful generic black-box reduction with polynomially-many oracle calls
a polynomial map f of degree one fulfilling the simple polynomial equation

λdA = dB ◦ f (1)

(Informal) Theorem 4. If there exists a generic black-box reduction from the
DA

k -MDDH problem to the DB
k -MDDH problem, then Eq. 1 is satisfied by some

polynomial map f , for some nonzero constant λ.

This polynomial map is also shown to be injective, which means that nec-
essarily e ≥ d, that is, a successful generic black-box reduction cannot decrease
the number of parameters, or equivalently, it cannot derandomize the instance
of DA

k -MDDH to build an instance of DB
k -MDDH. This result itself is enough to

show a black-box separation between MDDH problems defined from the distribu-
tions SCk and Ck, and also Lk and Uk, for the same size k. At this point, we know
many black-box separations between MDDH problems. Informally, bigger prob-
lems do not reduce to smaller problems, and problems with many parameters
do not reduce to problems with fewer parameters.

To gain a deeper understanding of the reducibility of MDDH problems, we
show that Eq. 1 captures it by proving the converse of Theorem 4.
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(Informal) Theorem 5. If there exists a solution to Eq. 1, then

1. there exists a black-box deterministic reduction from DA
k -MDDH to DB

k -
MDDH, using a single oracle call, that succeeds with overwhelming probability
if the oracle is perfect.

2. if in addition f is surjective, then the reduction is actually a tight black-box
reduction, and it works for any imperfect oracle.

3. otherwise, if DB
k is random self-reducible, then there also exists a (probabilis-

tic) tight black-box reduction with the same properties.

The last item requires a stronger notion of random self-reducibility, compared to
the one used in [9,10], in which not only the vector z, but also the matrix A is
randomized. We prove in this paper that the usual matrix distributions Ck, SCk,
Lk, RLk and the uniform one are random self-reducible in this stronger way.
These results directly show that, among other relations, SCk-MDDH reduces to
Ck-MDDH, and Lk-MDDH reduces to RLk-MDDH, as one can expect.

The previous theorem is extremely powerful when e = d, since then any
possible solution f to Eq. 1 must be a bijective map. Thus, using the inverse map
we also show in Theorem 6 that DA

k -MDDH and DB
k -MDDH are either equivalent

(by simple tight reductions involving only operations in the base group), or they
are incomparable by generic black-box reductions. This fact opens the possibility
to build an entire classification of all degree-one polynomial MDDH problems
into equivalence classes. Although we leave the general problem open, we also
provide some partial results and tools to carry out the classification. Recall that
all MDDH problems in an equivalence class must have the same size and number
of parameters.

In the positive way, we give two easy-to-check sufficient conditions for equiv-
alence: the first one directly uses the determinant polynomial, while the second
is related to a polynomial vector space XA associated to any polynomial matrix
distribution (in the way defined in [12]),

(Informal) Corollary 2. If dA = dB, then DA
k -MDDH ⇔ DB

k -MDDH.

(Informal) Corollary 3. If XA = XB, then DA
k -MDDH ⇔ DB

k -MDDH.

Actually, the second result implies the first, since the polynomial vector space
XA is determined by dA. However, the equality of determinant polynomials can
be checked trivially, while the equality of two vector spaces (given by generating
sets) involves some linear algebra computations.

Although most natural algebraic reductions of matrix problems keep XA

invariant, there are other less natural reductions that do not, and therefore the
equality of polynomial vector spaces does not solve the equivalence problem
completely. Nevertheless, the special case of the one-parameter family of degree-
one polynomial matrix distributions is completely solved since there is only one
possible choice for the vector space XA, and then all hard one-parameter MDDH
problems are equivalent. This result has proved in [10] in a rather different way.

Next, we address the problem of showing separations between DA
k -MDDH and

DB
k -MDDH with e = d ≥ 1, like for instance Ck-MDDH and Lk-MDDH. Although
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one can try to show directly that Eq. 1 has no solutions, it is a cumbersome task
when k and d grow. This kind of problem is often solved by looking for invariant
objects. Namely, we look for easy-to compute objects associated to matrix dis-
tributions, such that they are constant within an equivalence class, while they
typically change between different equivalence classes. In this paper, we propose
two invariant objects: the singular locus and the automorphism group. Roughly
speaking, for every matrix distribution DA

k we can define the algebraic variety
VA containing all the zeros of the determinant polynomial, and also the auto-
morphism group AutA containing all bijective polynomial maps that leave VA

invariant. Then,

(Informal) Lemma 6. If DA
k -MDDH ⇔ DB

k -MDDH, then VA and VB have the
same number of (rational) singular points.

(Informal) Lemma 7. If DA
k -MDDH ⇔ DB

k -MDDH, then AutA ∼= AutB.

The singular locus turns to be quite easy to compute for matrix distributions.
Indeed we use it to solve the open problem of the black-box separation between
Lk-MDDH and Ck-MDDH. Namely, we show that the variety associated to Lk

has singular points, while the one corresponding to Ck has not. This suggests
that Ck is “cleaner” than Lk, so the former would be a preferable choice (as
singular points are associated to easy problem instances).

However, the singular locus is a too coarse invariant, meaning that many
non-equivalent matrix distributions have no singular points, and then they can-
not be separated using this technique. We propose a second invariant which is
presumably finer that the singular locus, the group of black-box self-reductions,
or the group of automorphisms of the matrix distribution. Although computing
the whole group is a hard task, we could compute only some property of the
group, like the number of elements of order two. However, we could not give any
concrete example such that this technique is simpler than directly showing the
nonexistence of solutions to Eq. 1.

1.2 Roadmap

In Sect. 2 we describe the basics about MDDH problems, the known generic hard-
ness results, and a new more general “converse” theorem is given in Sect. 3. The
main contributions are in Sects. 4 and 5. In the former we show the importance
of Eq. 1 for the reducibility of MDDH problems, while the latter deals with the
classification of MDDH problems with the same number of parameters. In par-
ticular, we give the separation result between of the most used MDDH problems:
the Ck-MDDH and the Lk-MDDH problems.

2 Preliminaries

2.1 Additive Notation for Group Elements

In this paper we adopt the additive notation for group operations, as it is now
a de facto standard for papers dealing with matrix problems. Let G be a cyclic
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group of prime-order q and g a generator of G. We will denote every group
element h ∈ G by its (possibly unknown) discrete logarithm with respect to
the generator g. More precisely, we will write h = [x], where x ∈ Zq such that
h = gx. We naturally extend this notation to vectors and matrices. Thus, for a
matrix A = (aij) ∈ Z

n×m
q , we will write [A] = (gaij ) ∈ Gn×m.

Notice that computing x ∈ Zq from [x] ∈ G is hard, since it means solving
the Discrete Logarithm Problem in G. Similarly, given [x], [y] ∈ G and z ∈ Zq,
one can efficiently compute [x + y], [xz], [yz] ∈ G but not [xy] ∈ G, since the
latter would mean solving the Computational Diffie-Hellman Problem in G.

For a non-degenerated bilinear symmetric pairing e : G × G → GT we use
a similar notation. For [x], [y] ∈ G we will write [z]T = [xy]T = e([x], [y]),
where, as one would expect, [z]T = gz

T ∈ GT and [1]T = gT = e(g, g) is a
generator of GT . Similarly, for a k-linear map e : Gk → GT we will write
[z]T = [x1 · · · xk]T = e([x1], . . . , [xk]).

2.2 A Generic Model for Groups with a Multilinear Map

In this section we sketch the random-encodings based and the purely-algebraic
generic models for groups with a multilinear map, used in the paper. The latter
is similar to the model used in [4,9,11], and it is a purely algebraic version of
Maurer’s generic group model [14] including the k-linear map functionality.

As we are dealing with decisional problems entirely described by group ele-
ments, we can notably simplify the exposition. Consider first Maurer’s model, in
which an algorithm A does not deal with proper group elements in G or GT , but
only with labels, and it has access to an additional oracle internally performing
the group operations. Namely, on start A receives the labels (X1, 1), . . . , (Xn, 1),
corresponding to some group elements [x1], . . . , [xn] ∈ G (along with some addi-
tional labels (0, 1), (1, 1), (0, T ), (1, T ) corresponding to [0], [1], [0]T , [1]T , which
we assume are implicitly given to A). Then A can adaptively make the following
queries to the generic group oracle:

– GroupOp((Y1, i), (Y2, i)), i ∈ {1, T}: group operation in G or GT for two pre-
viously issued labels, resulting in a new label (Y3, i).

– GroupInv((Y1, i)), i ∈ {1, T}: group inversion in G or GT , resulting in a new
label (Y2, i).

– GroupML((Y1, 1), . . . , (Yk, 1)): k-linear map of k previously issued labels in G,
resulting in a new label (Yk+1, T ).

– GroupEqTest((Y1, i), (Y2, i)), i ∈ {1, T}: test two previously issued labels in G
or GT for equality of the corresponding group elements, resulting in a bit (1
indicates equality). Here, the oracle stores the actual input group elements
and the results of the operations corresponding to the oracle calls.

Every badly formed query (for instance, containing an unknown label) is
answered with a special rejection symbol ⊥. Similarly, the output of A consists of
some labels (Z1, 1), . . . , (Za, 1), (Za+1, T ), . . . , (Za+b, T ) representing group ele-
ments in either G or GT , and perhaps some non-group elements z̃.
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In a generic group model based on random encodings, every group element
handled by the algorithm is replaced by a random label (just a string selected
from a large enough set, in order to prevent guessing a valid label from scratch).
The generic oracle keeps the real group elements (or elements in an isomorphic
copy of the group) associated to the labels, and carries out all group operations
queried by the algorithm. The label mapping is injective, meaning that equal
group elements (perhaps resulting from different computations) are assigned to
the same label. Therefore, only the first three oracle queries (GroupOp, GroupInv
and GroupML) are necessary in this generic group model. The GroupEqTest query
is now trivial due to the mentioned injectivity.

On the other hand, in the purely algebraic generic model, the labels are
indeed polynomials in X = (X1, . . . , Xn). More precisely the labels are (Y, i) for
Y ∈ Zq[X] and i ∈ {1, T}. The oracle no longer performs group operations but
only polynomial operations in the labels. As a consequence, the labels received
by A are completely predictable to it, that is, A knows the coefficients of every
label Y as a polynomial in X, for every intermediate group element handled
during the computations, including the group elements in the output. Observe
that due to the limitation in the oracle syntax, the elements in G correspond
to polynomials of degree at most 1, while the elements in GT correspond to
polynomials of degree at most k. And these are the only polynomials that can
appear in the labels.

To model the possible constraints in the inputs [x1], . . . , [xn], we assume
that x = (x1, . . . , xn) is sampled by evaluating a polynomial map h at a a
uniformly distributed random point s ∈ Z

d
q . Thus, the generic group oracle

formally assigns polynomials X1, . . . , Xn ∈ Zq[S] to the input labels. Then, the
oracle call GroupEqTest is modified and it just compares the labels as polynomials
in S. This modification in the oracle only amounts into a negligible difference
between the models. Indeed, as a usual step in generic model proofs, detecting
the model difference means finding a (bounded degree) polynomial that vanishes
at a random point s, and this probability is shown to be negligible by using
Schwartz-Zippel Lemma and the union bound.

All the information A can obtain from the purely algebraic generic group
oracle is via the equality test queries, since for any intermediate group element
A knows the corresponding polynomial in X, but not necessarily the associated
polynomial in S. When dealing with a decisional problem, there are two different
sampling polynomial maps h0, h1, and A’s goal is guessing which one is used
by the generic group oracle. In this setting, A wins if it finds two different
“computable” polynomials (i.e., of degree at most k) in X such that they are
equal when composed to h0, but they are different when composed to h1, or vice
versa. Proving that the decisional problem is generically hard exactly means
proving that such polynomials do not exist.

When dealing with algorithms in the generic group model with access to
extra oracles (e.g. reductions), the transition between a generic group model
based on random encodings to its purely algebraic counterpart is a bit more
subtle. This is mainly due to the interaction of the generic model with the extra
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oracle, which can leak some information about the group elements themselves.
For the reducibility results given in Sect. 4, we will use in the proofs both the
random encodings based generic model and the purely algebraic one.

2.3 The Matrix DDH Problem Family

We recall some definitions from [9,10,15].

Definition 1 (Matrix Distribution). Let �, k ∈ N with � > k.3 We call D�,k

a matrix distribution if it is a probabilistic algorithm that, given any large enough
prime q 4, it outputs matrices in Z

�×k
q , in time polynomial in log q, that have full

rank k with overwhelming probability. We actually identify D�,k to the probability
distribution of its output. For simplicity, we write Dk = Dk+1,k.

Definition 2 (Polynomial Matrix Distribution). We call D�,k a polynomial
matrix distribution with d parameters if there exists a polynomial map A : Zd

q →
Z

�×k
q of constant degree (i.e., not depending on q) such that for a uniformly

sampled t ∈ Z
d
q , the matrix A(t) follows the distribution D�,k. We will write

DA
�,k to emphasize that the matrix distribution is defined via a polynomial map.

We call the degree of DA
�,k to the minimum possible degree of a polynomial map

A producing the distribution D�,k.

We define the D�,k-matrix decision problem as to distinguish the two distri-
butions ([A], [Aw]) and ([A], [z]), where A ← D�,k, w ← Z

k
q and z ← Z

�
q.

Definition 3 (D�,k-MDDH Problem). Let D�,k be a matrix distribution and
IG an instance generator algorithm. The D�,k-Matrix Decision Diffie-Hellman
(D�,k-MDDH) Problem, defined with respect to IG, is telling apart the two prob-
ability distributions

Dreal = (q,G, g, [A], [Aw]), Drandom = (q,G, g, [A], [z]),

where (q,G, g) ← IG(1λ), A ← D�,k, w ← Z
k
q and z ← Z

�
q.

The D�,k-MDDH Assumption for an instance generator IG says that for all
probabilistic polynomial time distinguishers A,

|Pr[A(Dreal) = 1] − Pr[A(Drandom) = 1]| ∈ negl .

Definition 4 (Hard Matrix Distribution). We say that a matrix distribu-
tion D�,k is hard if the D�,k-MDDH Problem is hard in the generic k-linear group
model.5

3 We assume that k and � are constant (i.e., independent of the security parameter).
4 From now on we assume that q is implicitly given as input to D�,k.
5 This is the maximum level of generic security achievable, since a (k + 1)-linear map

solves all D�,k-MDDH problem instances.
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Some particular families of matrix distributions were presented in [9,15].
Namely,

Lk :

⎛

⎜
⎜
⎝

a1 0
. . .

0 ak

1 · · · 1

⎞

⎟
⎟
⎠ , Ck :

⎛

⎜
⎝

a1 0
1

. . .. . . ak

0 1

⎞

⎟
⎠ , RLk :

⎛

⎜
⎜
⎝

a1 0
. . .

0 ak

b1 · · · bk

⎞

⎟
⎟
⎠ ,

where ai, bi ← Zq. Lk, Ck and RLk are respectively called the Linear, the Cas-
cade and the Randomized Linear matrix distributions. The Symmetric Cascade
distribution, SCk, is defined from Ck by taking a1 = · · · = ak = a, and sim-
ilarly the Incremental Linear distribution, ILk, is defined from Lk by taking
ai = a + i − 1. The Uniform matrix distribution U�,k is simply taking uniformly
distributed matrices in Z

�×k
q . Also from the same source, the Circulant matrix

distribution is defined as follows

CIk,d :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 0
... a1

ad

...
. . .

1 ad a1

1
. . .

...
. . . ad

0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(k+d)×k
q , where ai ← Zq.

2.4 Algebraic Reductions and Random Self-Reducibility

The algebraic nature of matrix distributions makes it easy to find some nat-
ural generic reductions among the corresponding problems. The following set of
transformations were introduced in [10].

Definition 5 (Algebraic Reductions6). We say that a matrix distribution
D1

�,k is algebraically reducible to another one D2
�,k if there exists an efficiently

samplable distribution T that, on the input of a large prime q, it outputs a pair
of matrices (L,R), L ∈ Z

�×�
q and R ∈ Z

k×k
q , with the following property: Given

A ← D1
�,k the distribution of LAR is statistically close to D2

�,k. In this case we

write D1
�,k

alg⇒ D2
�,k, or simply D2

�,k = T ∗(D1
�,k).

As shown in [10] and later in [15], algebraic reductions between matrix dis-
tributions also imply generic reductions between the MDDH problems.

Lemma 1 (from [15]). D1
�,k

alg⇒ D2
�,k implies D1

�,k-MDDH ⇒ D2
�,k-MDDH.

6 This definition can be extended to deal with matrix distributions of different sizes,
by adding some restrictions to the shapes of R and L. However, here we are mainly
focusing on self-reductions.
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By taking T to produce independent uniformly distributed invertible matri-
ces, it is easy to see that for any matrix distribution D�,k, D�,k

alg⇒ U�,k, which
implies that U�,k-MDDH is the hardest of the MDDH problems of size � × k. It

is also easy to prove that Lk
alg⇒ RLk and SCk

alg⇒ Ck.
As mentioned in [9], MDDH problems show some random self-reducibility

properties. In particular, all variants of the Dk-MDDH problems (that is, with
� = k + 1) with a nonuniform distribution of the vector z (either in the real or
the random instances) can be reduced to the corresponding proper Dk-MDDH
problem (i.e., with z distributed as in Definition 3). Indeed, it suffices to apply
the map (A,z) �→ (A, λz +Aw) for random w ← Z

k
q and λ ← Z

×
q , which works

fine for both real and random instances.
Stronger self-reducibility properties of the Dk-MDDH problems (i.e., includ-

ing also the distribution of the matrix A) are known for specific matrix distri-
butions, like Ck, SCk, RLk, RLk or the uniform distribution. To this end, we
can use the algebraic reductions, given in Definition 5, to explicitly build random
self-reductions (according to Lemma 1) transforming any probability distribution
of the parameters t ∈ Z

d
q into some probability distribution statistically close to

the uniformly one. In particular, for Ck we can choose an algebraic reduction T
producing diagonal matrices

L(λ) =

⎛

⎜
⎜
⎝

1 0
λ−1
1

. . .
0 λ−1

k

⎞

⎟
⎟
⎠ R(λ) =

⎛

⎝
λ1 0

. . .
0 λk

⎞

⎠

where λ1, . . . , λk ← Z
×
q are taken at random. Observe that T can be seen as the

transformation in the parameter space (a1, . . . , ak) �→ (λ1a1, . . . , λkak). Using
now λ1 = · · · = λk, we can show the strong random self-reducibility of SCk-
MDDH. Similarly, for RLk we can take

L(λ) =

⎛

⎜
⎝

λ1 0
. . .

λk
0 1

⎞

⎟
⎠ R(μ) =

⎛

⎝
μ1 0

. . .
0 μk

⎞

⎠

for random λ1, . . . , λk, μ1, . . . , μk ← Z
×
q , corresponding to the map (a1, . . . , ak,

b1, . . . , bk) �→ (λ1μ1a1, . . . , λkμkak, μ1b1, . . . , μkbk). Finally, for Lk we just set
μ1 = · · · = μk = 1.7 We formally define this stronger notion of self-reducibility.

Definition 6 (Random Self-reducibility). A matrix distribution Dk (or the
Dk-MDDH problem) is defined to be random self-reducible if there exists a proba-
bilistic polynomial-time transformation R such that on the input of any possible

7 Actually, these transformations do not randomize some ‘badly selected’ parameters,
that is, when some ai = 0 or bi = 0. In practice, we can discard these values in the
sampling algorithm, incurring only in a negligible difference, but here we are forced
to include them due to the algebraic framework.
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instance8 (q,G, g, [A], [z]) of the Dk-MDDH problem, it outputs ([Ã], [z̃]) with
the following properties

1. if there exists w ∈ Z
k
q such that z = Aw, then the probability distribution of

(q,G, g, [Ã], [z̃]) is statistically close to Dreal.
2. otherwise, the probability distribution is statistically close to Drandom.

where Dreal and Drandom are given in Definition 3.

Definition 7 (Quasi Random Self-reducibility). We say that Dk is quasi
random self-reducible if there exists a transformation R fulfiling the properties
required in Definition 6 only when the matrix A in the input instance of R
belongs to a subset X ⊂ Z

(k+1)×k
q such that Pr[A /∈ X ; A ← Dk] ∈ negl .

Clearly, for the above families, the composition of T and the map (A,z) �→
(A, λz +Aw), for random w ← Z

k
q and λ ← Z

×
q , behaves as the transformation

R in the previous definitions. This proves the following result.

Theorem 1. The matrix distributions Ck, SCk, Lk, RLk and the uniform dis-
tribution are quasi random self-reducible9 in the sense of Definition 7.

2.5 Generic Hardness of the MDDH Problems

Here we will focus on the case � = k + 1, as presented in [9]. However, in [11]
more general results for the case � > k +1 are given, and they are applied to the
particular family CIk,d in [15].

Given a polynomial matrix distribution DA
k , the hardness of the DA

k -MDDH
problem in the k-linear generic group model (i.e., the hardness of DA

k ) is tightly
related to the properties of the so-called determinant polynomial corresponding
to DA

k .

Definition 8 (Determinant Polynomial). Given a polynomial matrix distri-
bution DA

k , described by the polynomial map A : Zd
q → Z

(k+1)×k
q , the associated

determinant polynomial dA ∈ Zq[t1, . . . , td, z1, . . . , zk+1] is defined as the deter-
minant dA(t,z) = det(A(t)‖z).

Observe that developing the determinant by its last column, we can write

dA(t,z) =
k+1∑

i=1

dA,i(t)zi (2)

which means that dA(t,z) is linear (i.e., homogeneous of degree one) in z.

8 That is, R transforms every particular real instance into a randomly distributed
real one, and the same for random instances. Therefore, ([Ã], [z̃]) is independent of
([A], [z]) for real and random instances.

9 Indeed, SCk can be shown to be random self-reducible by using a more sophisticated
transformation leading to a �→ a + λ for λ ∈ Zq.
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Once we associate a polynomial dA to the polynomial matrix distribution
DA

k , other mathematical objects are automatically defined, like the principal
ideal IA = (dA) ⊂ Zq[t,z] or the associated algebraic variety VA = V (IA) =
{(t,z) ∈ Z

d
q × Z

k+1
q | dA(t,z) = 0}10. It is precisely using these objects how the

following hardness criterion is derived.

Theorem 2 (Determinant Hardness Criterion (from [9])). Let DA
k be a

polynomial matrix distribution, which outputs matrices A(t) for uniform t ∈ Z
d
q .

Let dA be the associated determinant polynomial.

1. If all matrices A(t) have full rank even for ti in the algebraic closure Zq, then
the determinant polynomial dA is irreducible over Zq.

2. If A(t) has degree one, dA is irreducible over Zq, and the total degree of dA
is k + 1, then DA

k is a hard matrix distribution (i.e., DA
k -MDDH problem is

hard in the generic k-linear group model). In particular, for any polynomial
h ∈ Zq[t,z], if h((t,A(t)w)) = 0 for all t ∈ Z

d
q and w ∈ Z

k
q , then h ∈ IA

(i.e., h is a multiple of dA).

The intuition behind this result is that in the generic k-linear group model11,
any successful strategy to solve the DA

k -MDDH problem amounts to evaluate a
known nonzero polynomial h of degree at most k that vanishes at all points
(t,A(t)w), for t ∈ Z

d
q and w ∈ Z

k
q . The irreducibility of dA is used to show that

h must belong to the principal ideal IA. Finally, the degree requirement for dA
just shows that no such polynomial h exists.

This powerful result allows to directly prove at once the generic hardness of a
whole family of MDDH problems, by just analyzing the properties of a particular
polynomial, or a family of polynomials. For instance, in [9] the criterion is applied
to the SC, C and L families (actually, the hardness of Ck is implied by the
hardness of SCk, and similarly with RLk and Lk, from the results on algebraic
reductions given above).

3 A Partial Converse of Theorem2

From now on, we restrict the study to the particular case of polynomial matrix
distributions DA

�,k of degree one with � = k +1, as considered also in Theorem2.
Namely, DA

�,k can be sampled by the map A(t) = A0 + A1t1 + . . . + Adtd for
uniformly distributed t = (t1, . . . , td) ∈ Z

d
q , and fixed matrices A0, . . . ,Ad ∈

Z
(k+1)×k
q . This family covers the most useful instances among the matrix distri-

butions, including Ck, Lk, SCk, RLk and the uniform one. We also assume that
the parameters t1, . . . , td are all meaningful, that is, the map A : Zd

q → Z
(k+1)×k
q

is injective, or equivalently, A1, . . . ,Ad are linearly independent matrices. This
in particular implies that the parameters t1, . . . , td can be expressed as linear

10 To properly define the variety we need to consider the algebraic closure of the field.
But here we only consider the subset of rational points, i.e., with coordinates in Zq.

11 See Sect. 2.2 for details.
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combinations of the entries of the matrix A(t). Therefore, there exist efficient
(generic) algorithms computing [t] from [A(t)], and vice versa. We call these
polynomial matrix distributions compact degree-one.

Recall that the determinant polynomial dA is defined as the determinant of
(A(t)‖z) as a polynomial in Zq[t,z], IA is the ideal generated by dA, and VA is
the set of (rational) zeros of dA. For notational convenience, we also define the
set V def

A = {t ∈ Z
d
q | rankA(t) < k} (which is also the set of rational points in

an algebraic variety).
We start the exposition with a few technical lemmas stating additional prop-

erties of the compact degree-one matrix distributions.

Lemma 2. Define r = maxt∈Zd
q
rankA(t). Then rankA(t) = r with over-

whelming probability, and there exists a nonzero polynomial h ∈ Zq[t,z] of total
degree at most r + 1 such that h(t,A(t)w) = 0 for all t ∈ Z

d
q and w ∈ Z

k
q .

Proof. Clearly, there exists a r-minor of A(t) that is nonzero, as a polynomial
in Zq[t]. By Schwartz-Zippel Lemma [17] this polynomial, whose degree cannot
exceed r < k, can only vanish at a negligible fraction of Z

d
q (a fraction r

q ),

which proves that rankA(t) = r with overwhelming probability. Let Â(t) be
any (r + 1) × r submatrix of A(t) containing the previous r-minor, and let
(Â(t)‖ẑ) be the same matrix but adding as an extra column the part of z

corresponding to the rows of Â(t). As before, rank Â(t) = r with overwhelming
probability. In addition, rank(Â(t)‖ẑ) = r + 1 with overwhelming probability if
z ← Z

�
q, while rank(Â(t)‖ẑ) ≤ rank(A(t)‖z) ≤ r when z = A(t)w. Therefore

h = det(Â(t)‖ẑ) fulfils the required properties: h is a nonzero polynomial of
total degree at most r + 1, and h(t,A(t)w) = 0 for all t ∈ Z

d
q and w ∈ Z

k
q . ��

Another interesting property of a hard matrix distribution D�,k is the so-
called k-elusiveness, introduced in [15].

Definition 9 (m-Elusiveness (from [15])). A matrix distribution D�,k is
called m-elusive for some m < � if for all m-dimensional subspaces F ⊂ Z

�
q,

Pr(F ∩ kerA� �= {0}) ∈ negl , where the probability is computed with respect to
A ← D�,k.

Lemma 3 (proved in [15]). All hard matrix distributions D�,k are k-elusive.

We will need another technical lemma about the determinant polynomial of
a hard compact degree-one matrix distribution, which essentially states that dA
cannot be constant along any line in the space Z

d
q × Z

k+1
q .

Lemma 4. Let DA
k be a hard compact degree-one matrix distribution with d para-

meters. If there exist vectors τ ∈ Z
d
q and ζ ∈ Z

k+1
q such that dA(t + τ ,z + ζ) =

dA(t,z), for all t ∈ Z
d
q and z ∈ Z

k+1
q , then necessarily (τ , ζ) = (0,0).
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Proof. Recall the linearity property of the determinant polynomial dA(t,z1 +
z2) = dA(t,z1) + dA(t,z2). In particular, dA(t,z + A(t)w) = dA(t,z) for any
w ∈ Z

k
q , since clearly dA(t,A(t)w) = 0.

Using now that A(t + τ ) = A(t) + B, where B =
∑d

i=1 τiAi, and dA(t +
τ ,z + ζ) = dA(t,z) for any z ∈ Z

k+1
q , we have for any w ∈ Z

k
q ,

dA(t+τ ,A(t+τ )w+ζ) = dA(t,A(t+τ )w) = dA(t,A(t)w+Bw) = dA(t,Bw)

and, on the other hand, by the linearity property

dA(t + τ ,A(t + τ )w + ζ) = dA(t + τ , ζ) = dA(t,0) = 0

Thus, dA(t,Bw) = 0 which implies that Bw ∈ ImA(t) for all w ∈ Z
k
q and

t ∈ Z
d
q \ V def

A . Therefore, for all such t we have ImB ⊆ ImA(t) or equivalently
kerA(t)� ⊆ kerB�.

By the k-elusiveness property, this is only possible if dim kerB� > k, that is,
B = 0. In addition, by the compactness property, necessarily τ = 0. But now, for
all t ∈ Z

d
q , dA(t, ζ) = dA(t,0) = 0 which implies ζ ∈ ImA(t) for all t ∈ Z

d
q \V def

A .
Then, kerA(t)� is included in the orthogonal subspace {ζ}⊥, which contradicts
again the k-elusiveness property, unless dim{ζ}⊥ > k or equivalently ζ = 0. ��

Now we state and prove a partial converse of Theorem2.12

Theorem 3. Let DA
k be a hard compact degree-one matrix distribution, produc-

ing matrices A(t) = A0 + A1t1 + . . . + Adtd. Then, the set V def
A is a negligible

fraction of Zd
q , and the determinant polynomial dA has the following properties:

1. dA is irreducible in Zq[t,z] with total degree k + 1.
2. dA cannot be constant along any direction in the space Z

d
q ×Z

k+1
q , i.e., dA(t+

τ ,z + ζ) = dA(t,z) for all t ∈ Z
d
q and all z ∈ Z

k+1
q only if (τ , ζ) = (0,0).

3. The polynomials dA,1, . . . , dA,k+1 in Eq. 2 are linearly independent13.

Proof. If DA
k is hard then no nonzero polynomial h ∈ Zq[t,z] of degree at most

k fulfils h(t,A(t)w) = 0 for all t ∈ Z
d
q and w ∈ Z

k
q . Otherwise, a distinguisher

only needs to check whether h(t,z) = 0 (using the k-linear map) to tell apart
‘real’ and ‘random’ instances of the DA

k -MDDH problem.
Consider the maximal rank r = maxt∈Zd

q
rankA(t). If r < k then, according

to Lemma 2, the DA
k -MDDH problem is easy in a k-linear group (as shown also

in [9]). Thus, it must be r = k, and the same lemma states in addition that
rankA(t) = k with overwhelming probability, or equivalently, V def

A only holds
a negligible fraction of the parameter space Z

d
q . Actually, all instances (t,z) of

the DA
k -MDDH problem with t ∈ V def

A are easy.

12 A more limited converse of the same theorem appeared in [10], but for the special
case of d = 1. It is worth mentioning that for d = 1, V def

A is not only a negligible
fraction of Zd

q , but it is the empty set.
13 In [12] this property is named irredundancy of the matrix distribution.
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Moreover, the total degree of the determinant polynomial dA must be k + 1
(it cannot be larger because the degree of A is one). Otherwise, we could let
h = dA and solve the DA

k -MDDH problem, as explained in the first paragraph
of the proof. Notice that dA cannot be the zero polynomial because it would
contradict the fact that rankA(t) = k with overwhelming probability.

Consider now the irreducibility of the determinant polynomial. If dA were
reducible in Zq[t,z], it follows that dA can be split as dA = cd0, where c ∈ Zq[t]
and d0 ∈ Zq[t,z] are nonconstant. Indeed, the degree of dA in z is one. Thus, only
one of the irreducible factors of dA can depend explicitly on z, and its coefficients
must be elements in the base field Zq (as there is no other conjugate irreducible
factor)14. Clearly, for any t such that c(t) �= 0, we know that d0(t,A(t)w) = 0
for all w ∈ Z

k
q . Hence, by Schwartz-Zippel lemma, as a polynomial in Zq[t,w],

d0(t,A(t)w) is the zero polynomial. Again, we could use h = d0 to solve the
DA

k -MDDH problem, since deg d0 < deg dA = k + 1.
On the other hand, under the conditions of the theorem Lemma4 ensures

that dA cannot be constant along any direction in the space Z
d
q × Z

k+1
q .

We now proceed in a similar way with the last item in the theorem statement.
According to Eq. 2, any nontrivial linear dependency relation of the polynomials
dA,1, . . . , dA,k+1 can be written as

dA(t, ζ) =
k+1∑

i=1

dA,i(t)ζi = 0

for a fixed nonzero ζ ∈ Z
k+1
q and for all t ∈ Z

d
q . Again, Lemma 4 implies that

such nonzero vector ζ does not exist. ��
Notice that the last item in the theorem statement allow us to associate

every hard polynomial matrix distribution of degree one DA
k with a polynomial

vector space XA ⊂ Zq[t] of dimension k +1, generated by dA,1, . . . , dA,k+1. This
association is actually at the heart of the polynomial view of MDDH problems,
introduced in [12]. Moreover, since the total degree of dA is k + 1 then the max-
imum of the degrees of dA,1, . . . , dA,k+1 is exactly k. Clearly, for d = 1 the only
possible choice is XA = Zq[t]≤k, the vector space of all polynomials of degree at
most k. We will show later that this actually means that there is essentially a
unique hard polynomial matrix distribution of degree one with only one parame-
ter, and this matrix distribution is the symmetric cascade distribution SCk. This
was proved for the first time in [10] by means of completely different algebraic
tools, more related to matrix Jordan normal forms. This uniqueness does not
directly extend to the case d ≥ 2, because the number of possible choices for the
vector space XA increases fast with d.

4 MDDH Problems of the Same Size

The goal of this section is to obtain some criteria to analyze in a compact
way the possible black-box reductions between MDDH problems, in terms of
14 All these facts are indeed used in [9] to prove Theorem 2.
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the determinant polynomials or other mathematical objects associated to the
matrix distributions. The idea is then to avoid the classical case-by-case app-
roach to show reductions or separation results between computational problems,
and deal instead with large families of problems at once. As explained in the pre-
vious section, we restrict ourselves to the study of compact degree-one matrix
distributions, but we also restrict to the case of reductions between Dk-MDDH
problems, that is with the same size and with � = k + 1.

In a more general approach we would take into consideration the possible
reductions between two Dk1-MDDH and Dk2-MDDH problems with k1 < k2.
However, since any Dk-MDDH problem is easy in a m-linear group with m > k,
then Dk1-MDDH and Dk2-MDDH are separated by an oracle computing a (k1+1)-
linear map, meaning that the large problem could remain hard while the small
one is clearly easy. Therefore, we focus only on the case k2 = k1, in which there
is no a priori hardness implication.

Recall that the determinant polynomial dA is defined as the determinant of
(A(t)‖z) as a polynomial in Zq[t,z], IA is the ideal generated by dA, VA is the
set of (rational) zeros of dA, and V def

A = {t ∈ Z
d
q | rankA(t) < k}.

Once the properties of the determinant polynomials of hard polynomial
matrix distributions of degree one are understood, we can find a purely alge-
braic criterion for the existence of generic reductions among them. Indeed, as
usually in the generic algebraic models, the criterion either gives an explicit
reduction or completely rules out its existence.

Theorem 4. Let DA
k and DB

k be hard compact degree-one matrix distributions,
producing matrices A(t) = A0 + A1t1 + . . . + Adtd and B(s) = B0 + B1s1 +
. . . + Bese, and let dA and dB be the corresponding determinant polynomials.
If there exists a generic black-box reduction from the DA

k -MDDH problem to the
DB

k -MDDH problem, then there exists a polynomial map f : Zd+k+1
q → Z

e+k+1
q

of degree one such that λdA = dB ◦ f for some nonzero constant λ ∈ Zq.

Proof. Because of the compactness of the two matrix distributions we know
that the matrices A1, . . . ,Ad are linearly independent, and so are B1, . . . ,Be.
Then there are efficient linear maps computing [t] from [A(t)], and [s] from
[B(s)]. Thus, we can consider the instances of the two DA

k -MDDH and DB
k -

MDDH problems respectively defined by ([t], [z]) and ([s], [u]).
Let R be a black-box reduction in the generic k-linear group model from

the DA
k -MDDH problem to the DB

k -MDDH problem, and assume that DA
k is a

hard matrix distribution, and there is no polynomial map f : Zd+k+1
q → Z

e+k+1
q

of degree one such that λdA = dB ◦ f for some nonzero constant λ ∈ Zq. We
use a sequence of games in order to prove that R can only have a negligible
advantage even when it has access to an oracle solving the DB

k -MDDH problem
with overwhelming probability. Each game in the sequence, Game Gi, is played by
the reduction R and a (possibly inefficient) challenger Ci, specific for that game,
that simulates all the environment for R. Namely it provides the input for R,
and simulates the oracle O solving the DB

k -MDDH problem with overwhelming
probability and the generic group oracle.
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Notice that in the generic k-linear group model R’s input is an encoding
of an instance of DA

k -MDDH, ([t], [z]), consisting only of elements in G. These
group elements are generated by evaluating a polynomial map h at a random
point. Namely, for a ‘real’ instance h1(t,w) = (t,A(t)w) = (t,z), and for a
‘random’ instance, h0 is the identity map. Observe that both polynomials h0,
h1 have degree 1. For notational convenience, we will denote ‘real’ instances
by b = 1 and ‘random’ instances by b = 0, where b is a variable defined by
the challenger. Thus, in the generic k-linear group model every group element
[y] ∈ G or [y]T ∈ GT handled by R can be seen as a polynomial in the formal
variables (T ,W ) or (T ,Z), depending on the type of input instance given to
R. To give more notational uniformity to the proof we will consider that the
polynomial Y associated to a group element [y] or [y]T depends on the variables
(T ,Z), formally representing the entries of (t,z). Thus, Y ∈ Zq[T ,Z] but then
composing Y with the sampling polynomial, y = Y ◦ hb is either in Zq[T ,W ] if
b = 1, or it is in Zq[T ,Z] if b = 0.15

The combination of the generic k-linear group model with algorithms with
additional oracle access is not a trivial task, since depending of the oracle def-
inition, some essential information about the representation of the group ele-
ments can be leaked to the algorithm, thus breaking the usual arguments in the
generic model proofs. For this reason we give a more detailed proof that ana-
lyzes step-by-step the transition between a generic k-linear group model based
on random encodings to its purely algebraic counterpart. It is worth noticing
that the methodology used here is specific for the MDDH problem structure,
and therefore it cannot be directly applied to other scenarios.

In the proof we will consider two different simulation strategies for both the
generic group oracle and the oracle O. We describe them before detailing the
sequence of games.

Real (value-based) simulation of the generic group oracle. This is the usual
strategy for the simulation. The challenger maintains two tables T1, Tk with
entries (y, Y, y, Ly), where y ∈ Zq, Y ∈ Zq[T ,Z] is a polynomial representing
y, y = Y ◦ hb (hb is the sampling polynomial defined above), and Ly is a string
called ‘label’, randomly drawn from a large enough set (making hard for R to
guess a valid label).16 The tuple (y, Y, y, Ly) represents either the group element
[y] or [y]T , depending on the table it belongs to. The tables are initialized with
(0, 0, 0, L0) and (1, 1, 1, L1) and (0, 0, 0, L0,k) and (1, 1, 1, L1,k), for the neutral
element and generator of G and GT . Group elements in the input of R, ([t], [z]),
are replaced by freshly generated labels, which are stored in the table T1 along
with their discrete logarithms (t,z) and the corresponding formal variables T ,Z
and their composition with hb.

All operations queried by R to the generic group oracle are performed on the
discrete logarithms stored in the tables and on the associated polynomials. For

15 Indeed, the polynomial Y models what R knows about [y] in the generic k-linear
group model, while the challenger also knows y, or even the discrete logarithm y.

16 It suffices, for instance, taking a set of size greater than q5.
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instance, for a query GroupOp(L1, L2), two tuples (y1, Y1, y1, L1), (y2, Y2, y2, L2)
are located at either one of the tables T1 or Tk. If a tuple (y1 + y2, Y3, y3, L3)
already exists in the same table then L3 is answered to R. Otherwise, a fresh
random label L3 is generated, the tuple (y1 + y2, Y1 + Y2, y1 + y2, L3) is added
to the table and L3 is answered to R. The other oracle queries GroupInv(L1)
and GroupML(L1, . . . , Lk) work similarly, except that in the last case labels
L1, . . . , Lk are looked only at table T1 and the resulting tuple is added to table
Tk. Any improper query (e.g., containing an unknown or invalid label) made by
R is rejected by the oracle.

Observe that the polynomials stored in the tables are unused in this simula-
tion. But always in any tuple (y, Y, y, Ly), y is the result of evaluating Y at the
point (t,z) sampled by the challenger (or evaluating y at either (t,w) if b = 1
or (t,z) if b = 0).

Algebraic (polynomial-based) simulation of the generic group oracle. In this sim-
ulation the discrete logarithms stored in the tables are no longer used, and the
polynomial components are used instead. Namely, in a query GroupOp(L1, L2),
instead of looking for a tuple (y1 +y2, Y3, y3, L3), it looks for (y3, Y3, y1 +y2, L3).
Notice that now a label is not associated to a true group element, but to an alge-
braic relation with the parameters used in the sampling procedure. Therefore,
the two simulations will differ when after some query to the real generic group
oracle there exist two different tuples (y1, Y1, y1, L1), (y2, Y2, y2, L2) in the same
table such that y1 = y2 while y1 �= y2. This implies that the non-zero polynomial
y2 − y1 vanishes at the random point ((t,w) if b = 1 or (t,z) if b = 0) used in
the sampling procedure.

In a standard proof in the generic k-linear group model we can easily upper
bound the probability that such a difference occurs between the two simula-
tion strategies, by just considering the degree of the polynomials and applying
Schwartz-Zippel lemma. However, things are not so simple when R has access
to extra oracles, that could leak some information about the group elements
outside of the generic k-linear group model. We then consider also an algebraic
simulation of the additional oracle O.

For technical reasons, we need to ensure that only ‘good’ instances of DA
k -

MDDH and DB
k -MDDH are handled by R, i.e., instances with rankA(t) =

rankB(s) = k. This is not an issue since for any black-box reduction R there
exists another one R′ with at least the same advantage solving DA

k -MDDH, and
running essentially within the same time, fulfilling the previous requirement.
The only differences between both reductions are that R′ directly solves any
instance ([t], [z]) of DA

k -MDDH with rankA(t) < k via the k-linear map (as
already described in the proof of Theorem3), and all queries ([s], [u]) to the
oracle O made by R with rankB(s) < k are directly solved by R′ itself, also
with the k-linear map. From now on, we will assume that R = R′.

Real (value-based) simulation of the oracle O. We will simulate an oracle O that
solves the DB

k -MDDH problem with overwhelming probability. Since we are con-
sidering R = R′, we only deal with instances ([s], [u]) such that rankB(s) = k.
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With this restriction, u ∈ ImB(s) if and only if det(B(s)‖u) = 0, or equiva-
lently, dB(s,u) = 0. Thus, we define O to output 1 if and only if dB(s,u) = 0.
Notice that ‘real’ instances are correctly solved with probability one, while ‘ran-
dom’ instances are solved correctly only with probability 1 − 1/q, because the
latter instances include the former ones.17 In this simulation, in order to com-
pute dB(s,u) the challenger needs the real values of ([s], [u]). But in the generic
k-linear group model (either value-based or polynomial-based one) the simula-
tor can recover the discrete logarithms (s,u) from the labels queried by R and
the table T1, maintained by the generic group oracle. As before, any improper
query (e.g., containing an unknown or invalid label) made by R is rejected by
the oracle. Once (s,u) are known, the challenger directly evaluates dB(s,u) and
obtains the oracle answer.

Algebraic (polynomial-based) simulation of the oracle O. Similarly as happens to
the generic group oracle, in the algebraic version the challenger retrieves from the
table T1 the polynomials (S,U) corresponding to the labels queried by R, and
not the discrete logarithms. This means that the simulator obtains a polynomial
map f of degree one,18 expressing the variables (S,U) as polynomials in (T ,Z).
Now the challenger computes the composition g = dB ◦ f ◦ hb, which is also
a polynomial. If g = 0 (as a polynomial) then the oracle answer is set to 1,
otherwise the answer is 0. Again, both simulations can differ only when g is a
non-zero polynomial but it vanishes at the random point ((t,w) or (t,z)) used
in the sampling procedure.

Essentially, switching from the value-based simulation to the polynomial-
based one means delaying the sampling of the parameters, which could cause
some inconsistencies in the simulation. We introduce a sequence of games such
that the oracles switch gradually from one model to the other, and we bound
the error probability in each step in the sequence. Let Q be the number of calls
to O made by R, let ni for i = 1, . . . , Q be the number of calls to the generic
group oracle made by R before the i-th oracle call to O, and let n∞ be the total
number of calls to the generic group oracle made by R.

Game Greal,b, b ∈ {0, 1}: This game perfectly simulates the environment for
R as a distinguisher for the DA

k -MDDH problem (fed with a ‘real’ instance if
b = 1, and a ‘random’ instance if b = 0), with oracle access to a solver for the
DB

k -MDDH problem, that answers correctly with an overwhelming probability. In
this game, the challenger Creal,b initializes the tables T1 and Tk and computes the
input labels for R, as explained in the previous paragraph “Real (value-based)
simulation of the generic group oracle”. Then Creal,b uses the real simulation of
both the generic group oracle and the oracle O. Finally, Creal,b just forwards R’s
output bit.

17 This problem could be overcome by redefining the MDDH problems as telling apart
‘real’ from non-‘real’ instances.

18 Observe that all the group elements considered here are in �, and the group opera-
tion in � corresponds to linear combinations of the associated polynomials.
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Game Gi,b, i = 1, . . . , Q, b ∈ {0, 1}: The challenger performs the same initial-
ization as Creal,b, but it uses instead the algebraic simulation of both the generic
group oracle and the oracle O, until R makes the i-th query to O. Then, Ci,b

switches to the real simulation to answer this query and all subsequent queries
to the two oracles. Finally, Ci,b just forwards R’s output bit.

Game G′
i,b, i = 1, . . . , Q, b ∈ {0, 1}: The challenger C′

i,b only differs from Ci,b in
that it uses the algebraic simulation also to answer the i-th query to O (thus,
the switching point is moved to just after answering that query).

Game Galg,b, b ∈ {0, 1}: The challenger performs the same initialization as Creal,b,
but it uses instead the algebraic simulation of both the generic group oracle and
the oracle O all the time. Finally, Ci,b just forwards R’s output bit.

Now we analyze the differences between the games. It should be mentioned
that during the simulation, R itself can partially maintain the tables T1 and Tk.
Namely, it can associate each label Ly to the corresponding polynomial Y .

Step Greal,b → G1,b, b ∈ {0, 1}: The only possible difference between games can
occur if in some query to the generic group oracle before the first query to O
it happens that there exist two different tuples (y1, Y1, y1, L1), (y2, Y2, y2, L2) in
the same table (T1 or Tk) such that y1 = y2 while y1 �= y2, which implies that
the non-zero polynomial y2 − y1 vanishes at the random point ((t,w) if b = 1 or
(t,z) if b = 0) used in the sampling procedure. Lets call this event F1,b. Then,
by Schwartz-Zippel lemma,

Pr[F1,b] ≤
(

n1

2

)
k

q

since there are at most
(
n1
2

)
different pairs of polynomials (y1, y2) in the tables.

Indeed, the degree of the polynomial y2 − y1 is upper bounded by k, since the
sampling polynomial hb has degree 1.

Step Gi,b → G′
i,b, b ∈ {0, 1}, 1 ≤ i ≤ Q: The games are identical until the i-th

query to O is made. Moreover, at this point, conditioned to b, the view of R
is independent of the true values (t,z) if b = 0, or (t,w) if b = 1. The only
difference between the two games can occur because of the simulation of O in
this query. Namely, there exists a nonzero polynomial g = dB ◦ f ◦ hb, of degree
at most deg dB = k + 1 that vanishes at the random point ((t,w) or (t,z)) used
in the sampling procedure. Lets call this event F ′

i,b. Again, by Schwartz-Zippel
lemma,

Pr[F ′
i,b] ≤ k + 1

q
.

Step G′
i,b → Gi+1,b, b ∈ {0, 1}, 1 ≤ i ≤ Q − 1: The games proceed identically

until the i-th query to O is answered. Again, at this point, conditioned to b, the
view of R is independent of the true values (t,z) if b = 0, or (t,w) if b = 1.
As in the step Greal,b → G1,b, the only difference between games is due to the
simulation of the generic group oracle. Lets call Fi+1,b to the event that between
the i-th and the (i + 1)-th calls to O, as a consequence of a query to the generic
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group oracle, there exist two different tuples (y1, Y1, y1, L1), (y2, Y2, y2, L2) in
the same table (T1 or Tk) such that y1 = y2 while y1 �= y2, but at least one of
them is generated within this period. By Schwartz-Zippel lemma,

Pr[Fi+1,b] ≤
((

ni+1

2

)
−

(
ni

2

))
k

q
.

Step G′
Q,b → Galg,b, b ∈ {0, 1}: This step follows exactly the same argument as

any other G′
i,b → Gi+1,b with i < Q. Therefore, we define Falg,b accordingly, and

Pr[Falg,b] ≤
((

n∞
2

)
−

(
nQ

2

))
k

q
.

Step Galg,0 → Galg,1: As a final step, we argue that the two games must be
identical. Otherwise, either DA

k is not a hard matrix distribution, or there exists
a polynomial map f : Zd+k+1

q → Z
e+k+1
q of degree one such that λdA = dB ◦ f

for some nonzero constant λ ∈ Zq. Firstly let us assume that the first difference
in the oracle answers given to R occurs in a query to the generic group oracle.
Then there exists two different tuples (y1, Y1, y1, L1), (y2, Y2, y2, L2) in the same
table (T1 or Tk) such that y1 = y2 in one game while y1 �= y2 in the other. But
this can only happen if Y1 �= Y2 and Y1 ◦ h1 = Y2 ◦ h1, because h0 is the identity
map. Therefore, by Theorem 2 the existence of the polynomial Y2 − Y1, which
has degree at most k, contradicts the fact that DA

k is a hard matrix distribution.
Suppose now that the first difference between games occur in a query to O.

This implies that there exists a polynomial map f of degree one such that the
composition g = dB◦f◦hb is the zero polynomial only in one of the games. Again,
using that h0 is the identity, it must happen that dB ◦ f �= 0 and dB ◦ f ◦ h1 = 0.
But then, Theorem 2 applied to the hard matrix distribution DA

k implies that
dB ◦f is a multiple of dA. Finally, k+1 = deg dA ≤ deg(dB ◦f) ≤ deg dB = k+1
and then dB ◦ f can only be a nonzero scalar multiple of dA, which contradicts
the assumption about the nonexistence of such map f .

Summing up, using the triangle inequality, the advantage of R solving the
DA

k -MDDH problem is

|Pr[Greal,1[R] = 1] − Pr[Greal,0[R] = 1]| ≤

≤ Pr[Falg,1] + Pr[Falg,0] +
Q∑

i=1

(
Pr[F ′

i,1] + Pr[Fi,1] + Pr[Fi,0] + Pr[F ′
i,0]

) ≤

≤ n2
∞k

q
+

2Q(k + 1)
q

∈ negl
��

Not all polynomial maps of degree one can actually fulfil the equation λdA =
dB ◦ f . In particular, any such f must be injective.

Lemma 5. Let DA
k and DB

k be as in Theorem 4. Any polynomial map of degree
one such that λdA = dB ◦ f for a nonzero λ ∈ Zq is injective.
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Proof. For any non-injective map f there exists (τ , ζ) ∈ Z
d
q × Z

k+1
q \ {(0,0)}

such that f(τ , ζ) = f(0,0). Indeed, since f is a polynomial map of degree one,
we can write f(t,z) = f(0,0) + g(t,z) where the map g is linear. Then, for all
t, τ ∈ Z

d
q and all z, ζ ∈ Z

k+1
q ,

f(t + τ ,z + ζ) − f(t,z) = g(t + τ ,z + ζ) − g(t,z) = g(τ , ζ) = f(τ , ζ) − f(0,0)

Then, any collision f(t1,z1) = f(t2,z2) implies f(τ , ζ) = f(0,0) for τ = t1−t2
and ζ = z1 − z2. Conversely, f(τ , ζ) = f(0,0) implies f(t + τ ,z + ζ) = f(t,z)
for all t ∈ Z

d
q and z ∈ Z

k+1
q . Now, from the equation λdA = dB ◦ f we know

that dA(t + τ ,z + ζ) = λdB(f(t + τ ,z + ζ)) = λdB(f(t,z)) = dA(t,z) for all
t ∈ Z

d
q and z ∈ Z

k+1
q , which contradicts Lemma 4 unless (τ , ζ) = (0,0). This

finally proves the injectivity of f . ��
The necessary injectivity of the map f gives us the following result, that

essentially claims that a successful generic black-box reduction between MDDH
problems cannot reduce the amount of randomness in the problem instance.

Corollary 1. Let DA
k and DB

k be as in Theorem4. If there exists a generic
black-box reduction from the DA

k -MDDH problem to the DB
k -MDDH problem,

then e ≥ d.

We now address the natural question about whether the converse of The-
orem 4 is also true. We easily show that the converse actually holds, but for
reductions using a perfect oracle (i.e., that correctly solves all instances of the
problem). Building a more general reduction from the map f , working with
imperfect oracles, is a bit more involved. Indeed, it requires some extra proper-
ties of f , or some random self-reducibility properties of the MDDH problems.

Theorem 5. Let DA
k and DB

k be as in Theorem4. If there exists a degree one
polynomial map f : Zd+k+1

q → Z
e+k+1
q such that λdA = dB ◦ f for some nonzero

constant λ ∈ Zq, then

1. there exists a black-box deterministic reduction from the DA
k -MDDH prob-

lem to the DB
k -MDDH problem, using a single oracle call, that succeeds with

overwhelming probability if the oracle is perfect.
2. if in addition f is surjective, then the above reduction is actually a tight black-

box reduction using a single oracle call, for any imperfect oracle.
3. otherwise, if DB

k is random self-reducible (see Definition 6)19, then there also
exists a (probabilistic) tight black-box reduction with the same properties.

Proof. To prove the theorem, we just show a reduction R making a single ora-
cle call, based on the map f . Namely, on the input of an instance ([t], [z]) of
DA

k -MDDH, R computes ([s], [u]) by applying f to it. Observe that these com-
putations only involve group operations in G, since deg f = 1. Then R queries
the oracle on ([s], [u]) and just forwards its answer.
19 If it is only quasi random self-reducible, then one have to additionally check whether

the image of f intersects properly with the set X of randomizable instances (see
again Definition 7 for more details).
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For convenience, we classify the problem instances ([t], [z]) of DA
k -MDDH (we

omit here (q,G, g) for simplicity) into four types: ‘good real’, ‘bad real’, ‘good
non-real’, ‘bad non-real’. Here ‘real’ refers to instances such that z ∈ ImA(t),
while ‘bad’ corresponds to t ∈ V def

A . Let YA and NA respectively denote the
sets of good real and good non-real instances, and UYA

and UNA
the corre-

sponding uniform probability distributions. Notice that dA(t,z) �= 0 if and only
if (t,z) ∈ NA. On the other hand, the probability distribution DA

real given in
Definition 3 produces both good and bad real instances, while DA

random produces
the four types. Theorem 3 ensures that V def

A is a negligible fraction of the set Zd
q ,

that is, there exists a negligible function εA such that
∣
∣V def

A

∣
∣ = εAqd (where |X |

denotes the cardinality of a set X ). Thus DA
random produces elements in NA with

overwhelming probability, while DA
real produces elements in YA with overwhelm-

ing probability. Therefore, we can replace the distributions DA
real and DA

random

by UYA
and UNA

without any noticeable change in Definition 3. We also apply
the same considerations to the DB

k -MDDH problem.
The map f transforms NA into NB, since λdA = dB◦f and then dA(t,z) �= 0

if and only if dB(s,u) �= 0. The case of good real instances is not so easy, as f
can map the elements in YA into either of the three types: good real, bad real
and bad non-real. However, we can show that f maps uniformly distributed ele-
ments in YA into YB with overwhelming probability. Namely, consider a generic
distinguisher A solving the DA

k -MDDH problem in the following way: First, A
computes ([s], [u]) from ([t], [z]) using f . Then, A checks whether s ∈ V def

B , that
is, rankB(s) < k using the k-linear map. If so, A decides that ([t], [z]) ∈ YA.
Otherwise, it decides ([t], [z]) ∈ NA. It is easy to see that the advantage of A is
Pr[f(t,z) /∈ YB; (t,z) ← YA], since bad DB

k -MDDH instances never come from
NA. Then A breaks the generic hardness of DA

k -MDDH unless f maps uniformly
distributed elements in YA into YB with overwhelming probability.

With these ideas in mind we consider now the three cases in the theorem
separately. Since f preserves good real and good non-real instances with over-
whelming probability, the reduction R succeeds with overwhelming probability
for a perfect oracle solving the DB

k -MDDH problem. However, the general case of
an imperfect oracle is harder, because we need to show that f(UYA

) ≈ UYB
and

f(UNA
) ≈ UNB

, where ≈ denotes that two distributions are statistically close.
Let us assume that f is surjective (i.e., the second case in the theorem).

According to Lemma 5, f is injective, so it is a bijection and then e = d. There-
fore, f(UNA

) = UNB
.20 Similarly, consider the subset Y ′

A = YA ∩ f−1(YB),
containing all good real instances of DA

k -MDDH transformed by f into good
real instances of DB

k -MDDH. Because of the above discussion, UY′
A

≈ UYA
. In

particular, there exists a negligible function ε such that |Y ′
A| = (1 − ε) |YA|.

We also claim that f(UY′
A
) ≈ UYB

. Indeed, |YA| = (1 − εA)qdqk, since every
good real instance can be uniquely written as (t,A(t)w) for t ∈ Z

d
q \ V def

A

and w ∈ Z
k
q , and similarly |YB| = (1 − εB)qdqk for some negligible func-

tion εB. Moreover, by definition, f(Y ′
A) ⊂ YB, and by the injectivity of f ,

20 An injective map f always transforms the uniform probability distribution on a
subset X into the uniform distribution on the image subset Y = f(X ).
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|f(Y ′
A)| = |Y ′

A| = (1 − ε) |YA| = (1 − ε)(1 − εA)qdqk, that differs from
|YB| only in a negligible fraction. Finally, we have that UYA

≈ UY′
A

implies
f(UYA

) ≈ f(UY′
A
), and along with f(UY′

A
) ≈ UYB

imply that f(UYA
) ≈ UYB

.
This proves that R has the same advantage as the oracle, up to a negligible
function.

Concerning the third part of the theorem, if f is not surjective then we would
need to randomize it. This is actually possible when DB

k is random self-reducible
(according to Definition 6). Indeed, we have seen that except for a negligible
error probability f maps real instances into real instances, and also non-real
instances into non-real instances. Therefore, the composition of the reduction
in Definition 6 and the map f produces the right distributions (except for a
negligible statistical distance) for real and random instances, even when f is
not surjective. Therefore, a tight reduction from the DA

k -MDDH problem to the
DB

k -MDDH problem is obtained also in this case. ��
It is easy to see that when DB

k is only quasi random self-reducible, if the
images (s,u) = f(t,z) both for (t,z) ← DA

real and (t,z) ← DA
random fulfil s ∈ X

with overwhelming probability, where X is the set of rerandomizable matrices
in Definition 7, then we can also prove the existence of the reduction.

It is noticeable that, as a byproduct of the last two theorems, whenever a
generic black-box reduction from DA

k -MDDH to DB
k -MDDH exists, and either

d = e or DB
k -MDDH is random self-reducible, then there also exists a simple

reduction with the following properties: (1) The reduction only makes a single
oracle query. (2) It never uses the multilinear map, and then it only performs
some group operations in the base group G. (3) It is probabilistic only when the
random self-reducibility property is needed. Intuitively, this means that there is
little hope in that making many oracle calls or trying to use the multilinear map
helps finding a reduction between two reasonable MDDH problems.

Some examples of reductions from MDDH families can be easily obtained by
combining the previous theorem and the quasi random self-reducibility of Ck, Lk

and RLk. In particular, using the trivial inclusions as the map f , one obtains
ILk ⇒ Lk ⇒ RLk and SCk ⇒ Ck. It is also known that ILk and SCk are
equivalent. Thus, SCk ⇒ Lk.

5 MDDH Problems of the Same Size and Randomness

We now focus on the case e = d, that is, the two MDDH problems have the same
(minimal) number of parameters. From Corollary 1 this is the only case in which
two MDDH problems can be equivalent by generic black-box reductions. Notice
that e = d implies that any injective polynomial map f : Z

d+k+1
q → Z

d+k+1
q

of degree one is indeed a bijection, and its inverse map g is also a polynomial
map of degree one. Therefore, if there exists a generic black-box reduction from
the DA

k -MDDH problem to the DB
k -MDDH problem then there exists a bijective

polynomial map f : Zd+k+1
q → Z

d+k+1
q (of degree one) such that λdA = dB ◦ f

for λ ∈ Z
×
q , which also implies λ−1dB = dA ◦ g, where g is the inverse of f .
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As a consequence of the previous results, this shows the existence of a generic
black-box reduction in the opposite way (observe that we are in the case g is
bijective). In summary, we conclude that either the two problems are equivalent
or they are incomparable via generic black-box reductions.

Theorem 6. Let DA
k and DB

k be hard polynomial degree one matrix distrib-
utions, both with d parameters. Then either DA

k -MDDH and DB
k -MDDH are

equivalent or they are incomparable, by generic black-box reductions.

This result suggests the possibility of classifying all MDDH problems of the
same size and number of parameters into equivalence classes. In particular, we
can consider the following positive consequences of the previous theorems.

Corollary 2. Let DA
k and DB

k be hard polynomial matrix distributions of degree
one. If dA = dB then DA

k -MDDH and DB
k -MDDH are equivalent.

Proof. The identity map is a particular bijective degree one polynomial map f ,
and we just need to apply Theorem 5. ��
This means that the determinant polynomials hold enough information about
the MDDH problems to decide their equivalence. However, dA �= dB does not
mean the separation of the MDDH problems. The following result using the
polynomial vector spaces is more complete, since dA = dB implies XA = XB,
but the converse is not true in general.

Corollary 3. Let DA
k and DB

k be hard polynomial matrix distributions of degree
one. If the polynomial vector spaces XA and XB are equal, then DA

k -MDDH and
DB

k -MDDH are equivalent.

Proof. The equality of the two vector spaces implies the existence of an invertible
matrix M ∈ Z

d×d
q such that dA,i =

∑d
j=1 mi,jdB,j . Then

dA(t,z) =
d∑

i=1

dA,i(t)zi =
d∑

i=1

d∑

j=1

dB,j(t)zimi,j =

=
d∑

j=1

dB,j(t)
d∑

i=1

zimi,j = dB(t,M�z)

and finally dA = dB ◦ f for f(t,z) = (t,M�z), which is a bijective polynomial
map of degree one. ��
As pointed out in previous section, for d = 1 there is a unique choice for the
vector space XA. Thus, there exists a unique hard one-parameter polynomial
matrix distribution of degree one, up to equivalence of the corresponding MDDH
problems, which is the symmetric cascade distribution SCk.

The story does not end here, as still equivalent MDDH problems could have
different vector spaces, XA �= XB. We failed to provide a simple and efficient way
to show the equivalence of two MDDH problems in the general case. Although



Equivalences and Black-Box Separations of Matrix Diffie-Hellman Problems 461

we managed to notably simplify the set of possible reductions between MDDH
problems, it is still hard taking into account all possible bijective polynomial
maps f fulfiling the equation λdA = dB ◦ f , specially for large k and d, or for
large problem subfamilies. Observe that some maps f transform only the zi (as
in the last corollary), or only the ti, or they can mix both types of variables, as
in the following toy example. Consider the self-reduction of C2-MDDH induced
by the map f(a1, a2, z1, z2, z3) = (a1, z3, z1, z2, a2), that exchanges the second
parameter a2 and z3. It solves the equation λdA = dA ◦ f for λ = 1, due to the
symmetry of dA. Namely, dA(a1, a2, z1, z2, z3) = a1a2z3 − a1z2 + z1, and a2 and
z3 only appear in one of the monomials. A similar construction could be used
to show a reduction between two more complex but differently looking MDDH
problems. At this point, we can consider the complementary approach of proving
separations between (families of) MDDH problems.

5.1 Invariants, Singularities and Separations

When the goal is obtaining a separation between two MDDH problems, one has
to rule out the existence of any map f satisfying the equation λdA = dB ◦ f .
Trying to show the nonexistence of solutions directly form the equation is not
an impossible task for well-structured determinant polynomials, but it takes a
lot of computations and one have to deal with many unknowns (in principle, the
description of f requires (k + 1 + d)(k + 2 + d) unknowns).

However, we can consider the following simple example with k = 3 and d = 2,
for two variants of C3, one A with parameters (a1, a2, a2) and the other B with
parameters (b1, b1, b2),

A(a1, a2) =

⎛

⎜
⎜
⎝

a1 0 0
1 a1 0
0 1 a2

0 0 1

⎞

⎟
⎟
⎠ B(b1, b2) =

⎛

⎜
⎜
⎝

b1 0 0
1 b2 0
0 1 b2
0 0 1

⎞

⎟
⎟
⎠

where dA(a,z) = a2
1a2z4 − a2

1z3 + a1z2 − z1 and dB(b,u) = b1b
2
2u4 − b1b2u3 +

b1u2 − u1. Here, dA has only one monomial of total degree 4. Therefore if the
equation λdA = dB◦f holds for a degree one polynomial map f , then necessarily
λa2

1a2z4 comes from the terms of degree 4 of b1b
2
2u4. Since we are in a unique

factorization domain, this means that b1 can only depend on one of a1, a2 or
z4, and the same happens to b2 and u4. Actually, because of the square, b2 can
only depend on a1 (i.e., b2 = β20 + β21a1, for some constants β20, β21), while
we can still choose whether b1 depends only on a2 and u4 depends only on z4,
or vice versa. But now, moving to the degree 3 terms, b1b

2
2u4 does not depend

on z3 and the monomial a2
1z3 can only come from b1b2u3, and u3 must depend

(among other variables) on z3. But then the degree of b1b2 in a1 must be at least
2, which contradicts what happened with the degree 4 terms. Therefore, we
conclude that no such f exists, and the two MDDH problems are incomparable.
This approach can be applied to obtain more general separation results, but the
computations scale badly with the size and the number of parameters of the
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matrix distribution, and also depends heavily on the configuration of the matrix
itself. Thus, we look for a different strategy.

Another natural way separate two MDDH problems is looking for some easy
to compute invariants associated to the determinant polynomial (or to other
mathematical objects related to it), where ‘invariant’ means here a quantity that
is preserved by all bijective polynomial maps f of degree one. If the invariant
takes different values for two MDDH problems, then no such map f can exist,
and both problems are incomparable. One possible candidate for invariant is the
singular locus, i.e., the set of points (t,z) ∈ Z

d
q × Z

k+1
q such that both dA and

its gradient ∇dA are zero.

Lemma 6. Given two hard polynomial matrix distributions DA
k and DB

k of
degree 1 such that there exists a bijective polynomial map f and λ �= 0 such
that λdA = dB ◦ f , then VA and VB have the same number of rational singular
points.

Proof. It is easy to see that any bijective polynomial f satisfying λdA = dB ◦ f
maps singular points to singular points. Indeed, the map f can be written
as (s,u) = f(t,z) = f(0,0) + M(t‖z) for an invertible matrix M . Thus,
∇dA(t,z) = λ−1∇dB(s,u) · M and ∇dA(t,z) = 0 if and only if ∇dB(s,u) = 0.
Therefore, the number of singular points of VA and VB must be the same. ��

If (t,z) is a singular point of DA
k , so is (t,0), and the singular points of DA

k

with z = 0 are precisely the points (t,0) such that rankA(t) < k, (or simply
t ∈ V def

A . Indeed, using Eq. 2 the gradient of dA is

(
∂dA
∂t1

, . . . ,
∂dA
∂td

, dA,1, . . . , dA,k+1

)
where

∂dA
∂tj

(t,z) =
k+1∑

i=1

∂dA,i

∂tj
(t)zi

Then, the first d components of the gradient at a point (t,0) are necessarily
zero, and (t,0) is singular if and only if dA,i(t) = 0 for i = 1, . . . , k+1, since this
implies that ∇dA = 0 and it always holds that dA(t,0) = 0. This also shows
that if (t,z) is singular, then so is (t,0). Moreover, the polynomials dA,i are by
construction the k-minors of A, and then the above means that (t,0) is singular
if and only if rankA(t) < k, or equivalently t ∈ V def

A . This allows us to prove
the separation between the cascade and the linear MDDH problems.

Theorem 7. There is no generic black-box reduction between the Ck-MDDH and
Lk-MDDH problems (in either way), for any k ≥ 2.

Proof. According to Lemma 6, to prove the theorem it is enough showing that
VCk

has no singular points, while VLk
has. Indeed, V def

Ck
= ∅, since rankA(t) = k

for all t ∈ Z
k
q . Thus, VCk

has no singular points. However, for Lk, rankA(t) < k
whenever two or more ti are zero, which happens for all k ≥ 2. ��

The singular locus is a too coarse invariant, as there are many non-equivalent
polynomial matrix distributions without singular points. Another interesting
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invariant is the group of “automorphisms” of the matrix distribution, that is the
group AutA of the bijective polynomial maps f such that λdA = dA ◦f for some
nonzero constant λ. These maps actually correspond to the black-box generic
self-reductions of the DA

k -MDDH problem.

Lemma 7. Given two hard polynomial matrix distributions DA
k and DB

k of
degree 1 such that there exists a bijective polynomial map f and a nonzero con-
stant λ such that λdA = dB ◦f , then the groups AutA and AutB are isomorphic.

Proof. As usually for this type of statement, we show that for any map gA ∈
AutA, the conjugate gB = f ◦ gA ◦ f−1 is in AutB. Firstly, it is clear that gB
is a bijective polynomial map, because f and gA are. In addition, using now
μdA = dA ◦ gA for certain nonzero constant μ, dB ◦ gB = dB ◦ f ◦ gA ◦ f−1 =
λdA ◦ gA ◦ f−1 = μλdA ◦ f−1 = μdB ◦ f ◦ f−1 = μdB Similarly, f−1 transforms
gB ∈ AutB into gA = f−1 ◦ gB ◦ f ∈ AutA. ��
Now we can use this invariant to separate MDDH problems with no singular
points. Computing the whole group AutA is in general a complex task, but for our
purposes we only need to find a difference between AutA and AutB that prevents
the isomorphism. For instance, two isomorphic groups have the same number of
elements of order two, or they have to be either both abelian or both nonabelian,
etcetera. Unfortunately, we could not find examples of matrix distributions such
that showing that the automorphism groups are non isomorphic is easier than
proving that the equation λdA = dB ◦ f has no solutions.
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