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Abstract. Beside algebraic and proof-theoretical studies, a number of
different approaches have been pursued in order to provide a complete
intuitive semantics for many-valued logics. Our intention is to use the
powerful tools offered by formal concept analysis (FCA) to obtain fur-
ther intuition about the intended semantics of a prominent many-valued
logic, namely Gödel, or Gödel-Dummett, logic. In this work, we take a
first step in this direction. Gödel logic seems particularly suited to the
approach we aim to follow, thanks to the properties of its correspond-
ing algebraic variety, the class of Gödel algebras. Furthermore, Gödel
algebras are prelinear Heyting algebras. This makes Gödel logic an ideal
contact-point between intuitionistic and many-valued logics.

In the literature one can find several studies on relations between
FCA and fuzzy logics. These approaches often amount to equipping
both intent and extent of concepts with connectives taken by some
many-valued logic. Our approach is different. Since Gödel algebras are
(residuated) lattices, we want to understand which type of concepts are
expressed by these lattices. To this end, we investigate the concept lat-
tice of the standard context obtained from the lattice reduct of a Gödel
algebra. We provide a characterization of Gödel implication between con-
cepts, and of the Gödel negation of a concept. Further, we characterize
a Gödel algebra of concepts. Some concluding remarks will show how
to associate (equivalence classes of) formulæ of Gödel logic with their
corresponding formal concepts.

Keywords: Intended semantics · Concept lattice · Many-valued logic ·
FCA · Formal concept analysis · Fuzzy logic · Gödel Logic

1 Introduction

Gödel logic can be semantically defined as a many-valued logic, as follows.
Consider the set FORM of well-formed formulæ over propositional variables
{x1, x2, x3, . . . } in the language (∧,∨,→,⊥,�). An assignment is a function μ
from FORM to [0, 1] ⊆ R, such that, for any ϕ,ψ ∈ FORM,
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μ(⊥) = 0 , μ(�) = 1 ,

μ(ϕ ∧ ψ) = min{μ(ϕ), μ(ψ)} ,

μ(ϕ ∨ ψ) = max{μ(ϕ), μ(ψ)} ,

μ(ϕ → ψ) =

{
1 if μ(ϕ) ≤ μ(ψ) ,

μ(ψ) otherwise .

A formula ϕ such that μ(ϕ) = 1 for every assignment μ is called a tautology. To
indicate such a case we write � ϕ.

Gödel logic can also be syntactically defined as a schematic extension of
intuitionistic propositional calculus by the prelinearity axiom

(ϕ → ψ) ∨ (ψ → ϕ). (P)

We write 
 ϕ to mean that the formula ϕ is derivable from the axioms of Gödel
logic using modus ponens as the only deduction rule. Gödel logic is complete
with respect to the many-valued semantics defined above: in symbols, 
 ϕ if and
only if � ϕ. Details and proofs can be found in [22].

Even though Gödel logic is an axiomatic extension of intuitionistic logic,
the constructive intended semantics1 of the latter is not suitable for the former.
Indeed, think of formulæ of FORM as problems for which we have an algorithmic
solution. Then, (P) states that, for every choice of ϕ and ψ in FORM, the solution
to ϕ can be reduced to the solution to ψ, or the solution to ψ can be reduced
to the solution to ϕ. A rather strong assumption. This is a common problem of
informal intended semantics. They are tailored over a specific logic. Applying
them to some extension is not straightforward, or not even possible.

On the other hand, beside algebraic and proof-theoretical studies, a number
of different approaches have been attempted to provide semantics for Gödel
logics. To mention a few, we cite [5,18], where temporal-like and game-theoretic
semantics, respectively, are investigated.

The possibility of connecting descriptions of real-world contexts with power-
ful formal instruments is what makes formal concept analysis (FCA) a promising
framework, merging the intuitions of intended semantics with the advantages
of formal semantics. In the present work, we study formal contexts associated
with Gödel logic from the algebraic point of view. The algebraic semantics of
Gödel logic is the subvariety of Heyting algebras satisfying prelinearity. A Heyt-
ing algebra is a structure A = (A,∧,∨,→,�,⊥) of type (2, 2, 2, 0, 0) such that
(A,∧,∨,�,⊥) is a distributive lattice and the couple (∧,→) forms a residu-
ated pair. This means that the unique operation → that satisfies the residuation
property, x ∧ z ≤ y if and only if z ≤ x → y, is the residuum of ∧, defined as

x → y = max{z | x ∧ z ≤ y}. (1)

1 The intended semantics of a logical language consists of the collection of models that
intuitively the language talks about. In this specific case the intended semantics’ is
the informal description of truth as provability given by Brouwer.
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Hence, a Gödel algebra is a Heyting algebra satisfying the prelinearity equation
(x → y) ∨ (y → x) = �, for x, y ∈ A. Horn [23] showed that the variety of
Gödel algebras is locally finite. That is, the classes of finite, finitely generated
and finitely presented algebras coincide.

For an integer n ≥ 1, let FORMn be the set of all formulæ whose propositional
variables are contained in {x1, . . . , xn}. Two formulæ ϕ,ψ ∈ FORMn are called
logically equivalent if both 
 ϕ → ψ and 
 ψ → ϕ hold. Logical equivalence is an
equivalence relation, denoted by ≡. We denote the equivalence class of a formula
ϕ by [ϕ]≡. It is straightforward to see that the quotient set FORMn/ ≡, endowed
with the operations ∧,∨,�,⊥ induced by the corresponding logical connectives,
is a distributive lattice with top and bottom element � and ⊥, respectively.
If, in addition, FORMn/ ≡ is endowed with the operation → induced by the
logical implication, then FORMn/ ≡ becomes a Gödel algebra. The specific
Gödel algebra Gn = FORMn/ ≡ is, by construction, the Lindenbaum algebra of
Gödel logic over the language {x1, . . . , xn}. Lindenbaum algebras are isomorphic
to free algebras, thus Gn is the free n-generated Gödel algebra. Moreover, since
the variety of Gödel algebras is locally finite, every finite Gödel algebra can be
obtained as a quotient of a free n-generated Gödel algebra. For the rest of this
paper, all Gödel algebras are assumed to be finite.

In the next section, we recall some basic notions on FCA. In Sect. 3 we deal
with the concept lattice CA of the standard context obtained from a Gödel
algebra A. We prove that endowing CA with a suitable implication between
concepts, we obtain an algebra of concepts isomorphic to A. Further, we charac-
terize the Gödel negation in terms of concepts. In Sect. 4 we characterize Gödel
algebras of concepts. In Sect. 5 we show how to associate concepts belonging
to a Gödel algebras of concepts with Gödel logic formulæ. Finally, in Sect. 6
we discuss the integration of this approach with the studies on many-valued
(substructural) logics aimed to investigate their intended semantics.

2 Basic Notions on FCA

We recollect the basic definitions and facts about formal concept analysis needed
in this work. For further details on this topics we refer the reader to [20].

Recall that an element j of a distributive lattice L is called a join-irreducible if
j is not the bottom of L and if whenever j = a∨b, then j = a or j = b, for a, b ∈ L.
Meet-irreducible elements are defined dually. Given a lattice L = (L,,�, 1), we
denote by J(L) the set of its join-irreducible elements, and by M(L) the set of
its meet-irreducible elements.

Let G and M be arbitrary sets of objects and attributes, respectively, and let
I ⊆ G × M be an arbitrary binary relation. Then, the triple K = (G,M, I) is
called a formal context. For g ∈ G and m ∈ M , we interpret (g,m) ∈ I as “the
object g has attribute m”. For A ⊆ G and B ⊆ M , a Galois connection between
the powersets of G and M is defined through the following operators:

A′ = {m ∈ M | ∀g ∈ A : gIm} B′ = {g ∈ G | ∀m ∈ B : gIm}
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Every pair (A,B) such that A′ = B and B′ = A is called a formal concept.
A and B are the extent and the intent of the concept, respectively. Given a
context K, the set B(K) of all formal concepts of K is partially ordered by
(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (or, equivalently, B2 ⊆ B1). The
basic theorem on concept lattices [20, Theorem 3] states that the set of formal
concepts of the context K is a complete lattice (B(K),,�), called concept lattice,
where meet and join are defined by:

�

j∈J

(Aj , Bj) =

⎛
⎝⋂

j∈J

Aj ,

⎛
⎝⋃

j∈J

Bj

⎞
⎠

′′⎞
⎠ ,

⊔
j∈J

(Aj , Bj) =

⎛
⎝

⎛
⎝⋃

j∈J

Aj

⎞
⎠

′′

,
⋂
j∈J

Bj

⎞
⎠ ,

(2)

for a set J of indexes. The following proposition is fundamental for our treatise.

Proposition 1 ([20, Proposition 12]). For every finite lattice L there is (up to
isomorphisms) a unique context KL, with L ∼= B(KL):

KL := (J(L),M(L),≤).

The context KL is called the standard context of the lattice L.
Since L is finite, J(L) is finite. Hence, the concept (J(L), ∅) is the top ele-

ment of B(KL). We denote it �G, emphasizing the fact that the join-irreducible
elements of L are the objects of our context. Analogously, the concept (∅,M(L))
is the bottom element of B(KL), and we denote it by ⊥M .

Example 1. Let L = ({a, b, c, d, e, f},≤) be the finite distributive lattice in
Fig. 1(a). Then, J(L) = {b, c, e}, and M(L) = {b, d, e}. Let G = {g1, g2, g3},
and M = {m1,m2,m3}. We relabel J(L), and M(L) via the labeling functions
λJ : J(L) → G, and λM : M(L) → M such that λJ(b) = g1, λJ(c) = g2,
λJ(e) = g3, λM (b) = m1, λM (d) = m2, and λM (e) = m3. The following tables
show the standard context KL, and its relabeling in terms of G and M :

≤ b d e

b × ×
c × ×
e ×

≤ m1 m2 m3

g1 × ×
g2 × ×
g3 ×

The concept lattice B(KL) is depicted in Fig. 1(b).

3 Gödel Algebras of Concepts

Definition 1. Let K be a finite context, and let B(K) be its concept lattice. For
every two concepts C1 = (G1,M1) and C2 = (G2,M2) in B(K), we define the
p-implication (⇒) as:
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f

e d

c b

a
(a) L

(G, ∅)

({g2, g3}, {m3}) ({g1, g2}, {m2})

({g2}, {m2, m3}) ({g1}, {m1, m2})

(∅, M)

(b) B(KL)

Fig. 1. A finite distributive lattice L, and its corresponding concept lattice B(KL).

C1 ⇒ C2 =
⊔

{(Gk,Mk) ∈ B(K) | Mk ⊇ M2\M1} . (⇒)

The following example better clarifies the previous definition.

Example 2. Consider the concept lattice depicted in Fig. 1(b). Then,

({g1, g2}, {m2}) ⇒ ({g2}, {m2,m3}) = ({g2, g3}, {m3}) ,

({g2}, {m2,m3}) ⇒ (∅,M) = ({g1}, {m1,m2}) .

The following proposition provides a way to build a concept lattice isomorphic
to every Gödel algebra.

Proposition 2. Let A = (A,∧,∨,→,�,⊥) be a Gödel algebra, and let CA =
B((J(A),M(A),≤)) be the concept lattice of its standard context. Then, the alge-
bra CA = (CA,,�,⇒,�G,⊥M ), where ⇒ is the p-implication, is isomorphic
to A.

Proof. Since each Gödel algebra is a finite lattice, it is isomorphic to the concept
lattice of the associated standard context (c.f. Proposition 1). Let f : A → CA
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be such an isomorphism. We have to show that f extends to an isomorphism of
Gödel algebras, that is

f(x → y) = f(x) ⇒ f(y) , (3)

for each x, y ∈ A. To this end, it suffices to prove the following claim.

Claim. The couple (,⇒) is a residuated pair.

We need to show that (,⇒) satisfies the residuum Eq. (1). That is

(C1 ⇒ C2) =
⊔

{Ci ∈ CA | Ci  C1 ≤ C2} , (4)

for every C1 = (G1,M1) and C2 = (G2,M2) in CA. We call Cz = (Gz,Mz) =⊔ {Ci ∈ CA | Ci  C1 ≤ C2}. By Definition 1, we have:

(C1 ⇒ C2) =
⊔

{(Gi,Mi) ∈ CA | Mi ⊇ M2\M1} = Cs = (Gs,Ms) . (5)

We have to show that Ms = Mz (equivalently, Gs = Gz). By (4), Mz is the
smallest subset of M that belongs to a concept, and such that Mz ∪ M1 ⊇ M2.
In other words, Mz is precisely the smallest Mt such that Mt ⊇ M2\M1. Hence,
by (5), Mz coincides with Ms. This settles the claim.

By the preceding claim, ⇒ is precisely the unique (Gödel) residuum of .
Since the lattice isomorphisms f also preserves , we have shown (3), and our
statement is proved. �

We have derived the natural notion of implication between concepts in case
the concept lattice is a Gödel algebra. Indeed, the p-implication satisfy the resid-
uation law. It is now easy to provide a characterization of the Gödel negation of
a concept.

Definition 2. Let B(K) be a concept lattice over a context K, and let
(G1,M1) ∈ B(K). We call the p-complement of (G1,M1) the following oper-
ation:

∼ (G1,M1) =
⊔

{(Gk,Mk) ∈ B(K) | Mk ⊇ M\M1} .

Corollary 1. The p-complement is the Gödel negation in a Gödel algebra of
concepts.

Proof. In Gödel logic the negation connective is derived from the implication:
¬x := x → ⊥. An easy computation shows that, if C is a concept of a Gödel
algebra of concepts, then ∼ C = C ⇒ ⊥. �
Example 3. Consider the concept lattice depicted in Fig. 1(b). Then,

∼ ({g1, g2}, {m2}) = (∅,M) ,

∼ ({g2}, {m2,m3}) = ({g1}, {m1,m2}).

Compare the second negation with Example 2.
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4 Characterizing Gödel Algebras of Concepts

Let K be a finite context, and let (B(K),,�) be its concept lattice. If, for each
C1, C2 ∈ B(K), there exists a greatest context C ∈ B(K) such that C1C ≤ C2,
then B(K) is a residuated lattice. The concept C is called the residuum, and
it is denoted by C1 ⇒ C2. Since the residuum, if it exists, is unique, we have
that ⇒ must be exactly the p-implication defined in Definition 1. Indeed, in the
proof of Proposition 2 it is shown that (,⇒) is a residuated pair. In general,
a concept lattice need not be a distributive lattice. However, the existence of a
residuum respect to the  implies distributivity. Hence, in order to provide a
characterization of Gödel algebras of concepts, we do not need to characterize
distributivity. Nonetheless, the characterization of distributivity in concept lat-
tices is an important topic in itself. An intrinsic characterization of distributivity
in the finite case is provided in [26]. The infinite case has also been investigated,
see [15].

The following proposition characterizes those concept lattices which are
Gödel algebras.

Proposition 3. Let K be a finite context, and let (B(K),,�) be its concept
lattice. Then,

(i) (B(K),,�,⇒,�G,⊥M ) is a Heyting algebra if and only if for each C1 =
(G1,M1), C2 = (G2,M2) ∈ B(K) there exists a greatest contest C ∈ B(K)
such that C1  C ≤ C2.

Moreover, let Cl = (Gl,Ml) ∈ B(K) be such that Ml is the smallest set of
attributes satisfying Ml ⊇ M2\M1. Analogously, let Cr = (Gr,Mr) ∈ B(K) be
such that Mr is the smallest set of attributes satisfying Mr ⊇ M1\M2.

(ii) The Heyting algebra (B(K),,�,⇒,�G,⊥M ) is a Gödel algebra if and only
if Ml ∩ Mr = ∅.

Proof. The first part of the proposition is an immediate translation of the resid-
uation property in terms of concepts. It has already been discussed in the begin-
ning of the present section. We just need to prove (ii). Recall that Gödel algebras
are Heyting algebras with a prelinear implication. We have to prove that the p-
implication ⇒ satisfies the prelinearity equation (C1 ⇒ C2) � (C2 ⇒ C1) = �G,
for every C1, C2 ∈ B(K), if, and only if, Ml ∩ Mr = ∅.

Let

C1 ⇒ C2 = Cs = (Gs,Ms) =
⊔

{(Gi,Mi) ∈ B(K) | Mi ⊇ M2\M1} ,

C2 ⇒ C1 = Cz = (Gz,Mz) =
⊔

{(Gi,Mi) ∈ B(K) | Mi ⊇ M1\M2} .

Hence, prelinearity equation can be rewritten as:

Cs � Cz = (J(B(K)), ∅) .

We observe that Ml = Ms, and Mr = Mz. Thus, Cs � Cz = (J(B(K)), ∅) is
equivalent to Ml ∩ Mr = ∅, and (ii) is proved. �
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5 Formal Concepts Described by Gödel Logic Sentences

In Sect. 3 we have associated formal concepts with elements of a finite Gödel
algebra. Moreover, we have endowed the concept lattice with suitable operations,
showing that every Gödel algebra is isomorphic to its associated concept lattice
endowed with a p-implication. In this section, we advance some remarks on the
logical counterpart of Gödel algebras, namely Gödel logic. Consider the free
n-generated Gödel algebra Gn. Since every finite Gödel algebra can be obtained
as a quotient of a free n-generated Gödel algebra, we can effectively associate
every Gödel logic formula with a corresponding concept. Knowing that Gn is
a finite (distributive) lattice whose elements are formulæ in n variables (up to
logical equivalence), and since for every finite lattice there is a unique reduced
context K, one can, indeed, relate (equivalence classes of) logical formulæ in Gn

with the concepts in K. That is precisely what we do in this section.
We start with a small example that can be dealt with via a trivial computa-

tion: the free 1-generated Gödel algebra G1. Comparing Figs. 1 and 2, one imme-
diately notes that the lattice structure of G1 is isomorphic to B(KL) in Fig. 1(b).
Hence, by Proposition 1, there exists a lattice isomorphism f : L(G1) → B(KL)
such that

f(�) = (G, ∅) , f(¬¬x) = ({g2, g3}, {m3}) ,

f(x ∧ ¬x) = ({g1, g2}, {m2}) , f(x) = ({g2}, {m2,m3}) ,

f(¬x) = ({g1}, {m1,m2}) , f(⊥) = (∅,M) .

Moreover, by Proposition 2, B(KL) = CG1 and f is an isomorphism of algebras.
Then,

f([x ∨ ¬x]≡ → [x]≡) = f([¬¬x]≡)
= ({g2, g3}, {m3}) = ({g1, g2}, {m2}) ⇒ ({g2}, {m2,m3}) ,

f([x]≡ → [⊥]≡) = f([¬x]≡)
= ({g1}, {m1,m2}) = ({g2}, {m2,m3}) ⇒ (∅,M) .

Compare with Example 2.
Let us consider a more complicated structure. Take the formula ψ = ¬¬x1 ∧

¬¬x2 ∧ (x1 ∨ x2) over {x1, x2}, and let A be the Gödel algebra G2/(ψ = �)
depicted in Fig. 3 (note that the equivalence classes displayed are the ones of
G2/(ψ = �), not of G2).

Observe that J(A) = {[x1]≡, [x2]≡, [x1 ∧ x2]≡}, and M(A) = {[x1]≡, [x2]≡}.
Let G = {g1, g2, g3}, and M = {m1,m2}, and define the labeling functions
λJ : J(L) → G and λM : M(L) → M by λJ([x1 ∧ x2]≡) = g1, λJ([x1]≡) = g2,
λJ([x2]≡) = g3, λM ([x1]≡) = m1, and λM ([x1]≡) = m2. The following two tables
provide the standard context CA, and its relabeling in terms of G and M .
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[ ]≡

[¬¬x]≡ [x ∨ ¬x]≡

[x]≡ [¬x]≡

[ ]

Fig. 2. The free 1-generated Gödel algebra G1.

[ψ]≡

[x1]≡ [x2]≡

[x1 ∧ x2]≡

[ ]

Fig. 3. A quotient of the free 2-generated Gödel algebra.

≤ [x1]≡ [x2]≡
[x1 ∧ x2]≡ × ×
[x1]≡ ×
[x2]≡ ×

≤ m1 m2

g1 × ×
g2 ×
g3 ×

Figure 4 shows the concept lattice associated with the Gödel algebra A =
G2/(ψ = �).

The characterization of free finitely generated Gödel algebras is a well-
investigated topic that is beyond the scope of this paper. A functional represen-
tation is given in [21], while [1] is a state-of-the-art treatise on representations
of many-valued logics. For our purposes it is sufficient to know that [2] con-
tains a recursive description of Gn, together with normal forms for Gödel logic,
while in [14] the authors provide a combinatorial method to generate Gn and its
quotients.

A general procedure to associate formal concepts with Gödel logic formulæ
can be sketched out, based on the preceding examples. Let ϕ1, . . . , ϕm, ψ be
Gödel logic formulæ over {x1, . . . , xn}, with m ≥ 0, and n ≥ 1. Generate Gn

(see [2,14]) and apply Proposition 1, obtaining CGn
. Then, {ϕ1, . . . , ϕm} 
 ψ
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({g1, g2, g3}, ∅)

({g1, g2}, {m1}) ({g1, g3}, {m2})

({g1}, {m1, m1})

( , m1, m2 )

Fig. 4. The concept lattice associated with the Gödel algebra G2/(ψ = �)

amounts to evaluating ψ over Gn/(ϕ1 = �, . . . , ϕm = �). Proposition 2 states
that CGn

is isomorphic to Gn. Hence, such evaluation provides also a concept in
CGn

, that is, precisely the concept associated with ψ. This allows us to express
formal concepts associated with ψ, for every theory {ϕ1, . . . , ϕm} in Gödel logic.

6 Concluding Remarks

In the basic setting of FCA (see Sect. 2) it is assumed that concepts are crisp.
In the literature one can find several studies whose aim is the “fuzzification”
of I, the relation between G and M . The first one being [10], while [7,8] are
good overview of these investigations. A further generalization of this type of
approach is given in [6], where the author considers both relation and order in
FCA as defined over fuzzy sets (or residuated lattices in general). Our method
diverges from those approaches. We exploit the classical notions of FCA to obtain
new insight on algebraic semantics of many-valued logics. Indeed, in the above
sections we have shown that it is possible to associate a formal concept with
every formula of Gödel logic. Further, we have provided a characterization of
concept lattices isomorphic to Gödel algebras in terms of formal contexts. In
this way we could effectively find contexts over which Gödel logic can be used
to reason about.

In other words, whenever a concept lattice satisfies Proposition 3, we are
dealing with a Gödel algebra of concepts. Under such conditions, concepts can
be combined via the lattice operators meet and join – see (2) –, but also via
the operations of p-implication and p-complement introduced in Sect. 3. The
latter operations correspond, respectively, with the Gödel logic implication and
negation, as shown in Proposition 2 and Corollary 1. In this sense we can say that
our new interpretation can be viewed as an alternative semantics for Gödel logic.
In order to acquire a full understanding of this semantics, we aim to investigate,
in future work, the effect of the p-implication and p-complement over concepts
obtained from contexts describing real-world scenarios. The ultimate goal is
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to get more insight about the meaning of Gödel logic by running empirical
experiments over real data. Through this work we believe that this can be done.

The approach used in this work is not limited to Gödel logic, but it can be
generally applied to many non-classical logics. Broadly speaking, it is sufficient
that the corresponding algebraic semantics has a complete lattice reduct. As
a many-valued logic, Gödel logic is a schematic extension of the fundamental
system BL introduced by Hájek in [22], which in turn is a schematic extension
of the Monoidal T-norm Logic (MTL) [16]. Hence, we believe that extending
our method to other logics in this hierarchy could be an interesting task. The
first issue to deal with is the fact that these logics have a monoidal conjunction
in addition to the lattice one. A good starting point would be investigate log-
ics where representations of free algebras are already available, e.g., Nilpotent
Minimum logic [3,11], or Revised Drastic Product logic [27]. Further, many-
valued logics are just particular substructural logics whose algebraic semantics
is provided by the class of residuated lattices [19], giving thus space for further
generalizations.

Additional research has to be done to compare our method with other inves-
tigations regarding alternative semantics and intended meaning of many-valued
logics. For the former we can cite probabilistic [3,4], temporal [9] and game-
theoretic [17] approaches, and [12,13,24,25] for the latter.

Acknowledgements. We thank Matteo Bianchi for useful discussions about the sub-
ject of the paper. We acknowledge the support of our Marie Curie INdAM-COFUND
fellowships.

References

1. Aguzzoli, S., Bova, S., Gerla, B.: Free algebras and functional representation. In:
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