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Preface

The 11th International Tbilisi Symposium on Logic, Language, and Computation was
held at the Tbilisi State University in Tbilisi, Georgia, during September 21–26, 2015.
The symposium was organized by the Centre for Language, Logic and Speech at the
Tbilisi State University, the Georgian Academy of Sciences, and the Institute for Logic,
Language and Computation (ILLC) of the University of Amsterdam. The biennial
conference series and the proceedings are representative of the aims of the organizing
institutes: to promote the integrated study of logic, information, and language. While
the conference is open to contributions from any of the three fields, it aims to foster
interaction among them by achieving stronger awareness of developments in the other
fields, and of work that embraces more than one field or belongs to the interface
between fields. The scientific program consisted of tutorials, invited lectures, con-
tributed talks, and two workshops.

The symposium offered three tutorials, given on each of the three major disciplines
of the conference and aimed at students as well as researchers working in the other
areas. The tutorial speakers were Brunella Gerla, Lisa Matthewson, and Joel Ouaknine.
Six invited lectures were delivered at the symposium: two on logic by Melvin Fitting
and George Metcalfe, two on language by Rajesh Bhatt and Sarah Murray, and two on
computation by Helle Hvid Hansen and Mehrnoosh Sadrzadeh. The workshop on How
to Make Things Happen in the Grammar: The Implementation of Obligatoriness,
organized by Rajesh Bhatt and Vincent Homer featured invited talks by Omer Pre-
minger and Ivy Sichel as well as six contributed talks. The workshop on Automata and
Coalgebra was organized by Helle Hvid Hansen and Alexandra Silva and featured
invited talks by Bartek Klin, Clemens Kupke, and Stefan Milius.

This volume contains the abstracts for the tutorials and the invited lectures followed
by 18 papers that were selected after a rigorous, two-stage refereeing process during
which each paper was reviewed by at least two anonymous referees. Here we give a
brief overview of their contributions.

Rusiko Asatiani contributes to the semantics of the Georgian verbal morphology by
specifying an algorithm for deciding between the active and passive voice. In Georgian,
voice has semantic consequences that, however, do not boil down to a simple semantics
of voice. The algorithm predicts on the basis of input cognitive features which voice to
choose and consequently also predicts which features can be relevant on a given
occasion.

Anja Goldschmidt, Thomas Gamerschlag, Wiebke Petersen, Ekaterina Gabrovska,
and Wilhelm Geuder investigate the semantics of the German verb schlagen (to hit, to
beat) using modification by manner adverbs to discover more about the force com-
ponent in the meaning and agent-oriented adverbs for interactions between force and
agentivity. The investigation leads to an analysis of the verb schlagen in frame
semantics.



Justyna Grudzińska and Marek Zawadowski show how a version of dependent type
theory can give a more uniform account of the many readings of the indefinite in
examples like: Not every linguist studied every solution that some problem might have.
The diversity of the many readings is a challenge to the traditional generalized
quantifier account.

Petr Homola presents a novel method for translating Hobbs approach to interpre-
tation as abduction into answer set programming. This approach overcomes the
weaknesses of previous approaches to abduction, which did not allow for automatically
rejecting the inconsistent proofs. The current translation pairs abduction with an
inference system, where inconsistent proofs are automatically rejected and search space
is naturally reduced.

Dawei Jin gives an account of weak and strong intervention effects for why-questions
in Chinese, based on a distinction between monotone decreasing quantifiers (strong
effects) and quantifiers that are indefinite plurals (weak effects).

Liana Lortkipanidze, Nino Amirezashvili, Anna Chutkerashvili, Nino Javashvili,
and Liana Samsonadze document the design and implementation of their syntactic
annotation of the Georgian Literary Corpus. The program tools offer modules for the
morphologic, syntactic, and semantic levels. The paper gives the description of the
automatic syntactic analyzer.

Sebastian Löbner extends the frame formalism and its model-theoretic semantics by
first-order comparators. These are two-place attributes that capture basic comparison
relationships between objects of the same type. The extension is used for giving a
general frame decomposition for punctual verbs of change and a number of special
cases of such verbs, using a direct implementation of Allen’s calculus of temporal
intervals.

Ralf Naumann and Wiebke Petersen use logical systems for default reasoning and
belief revision to capture semantic prediction and for discarding faulty interpretational
hypotheses. The paper thereby gives a logical account of the neurophysiological
research findings in which sentence comprehension relies strongly on semantic pre-
diction and, as a result of this, on the retraction of errors.

Peter Sutton and Hana Filip solve the problem of variation between mass and count
conceptualization for the same nouns by distinguishing four classes: prototypical count
(bird), compound artifacts (furniture), granular (sand), and substance (mud). These are
compared from two perspectives: individuation and consistency, where the context
forces one to take priority over the other. This leads to variation for the compound
artifacts and the granular nouns.

Henk Zeevat defines a direct semantic interpretation of (augmented) dependency
graphs, using ideas from frame semantics and from discourse representation theory.
Dependency graphs as conceived in the paper are thereby not just useful for evaluating
stochastic parsers, but can also be used for disambiguation by semantic methods.

Richard Zuber provides an algebraic characterisation of the so-called reflexive and
anaphoric determiners (as in: John admires most linguists, including himself or John
and Mary like no authors, except each other). Such determiners turn out to be sub-
stantially different from ordinary determiners in the algebraic approach to NL semantics
going back to Keenan and Faltz.
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Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün, and Sonja Smets generalize
their previous topological semantics for belief by interpreting belief as the interior
of the closure of the interior operator. Their resulting belief logic is strictly stronger
than KD4 and strictly weaker than KD45. They encode in these spaces the semantics
for conditional beliefs and updates. Relevant soundness and completeness theorems are
proved.

Nick Bezhanishvili, Dick de Jongh, Apostolos Tzimoulis, and Zhiguang Zhao
provide a universal model for the positive fragment of intuitionistic logic. A repre-
sentation for characterizing positive formulae is presented and the universal model is
formulated using this characterization. An alternative proof of a theorem by Jankov is
provided, where it is shown that the intermediate logic KC, the logic of weak excluded
middle, is maximal with regard to intuitionistic propositional calculus.

Pietro Codara and Diego Valota use formal concept analysis to provide an intuitive
semantics for the Gödel–Dummett many-valued logic. The connecting point is the use
of a Heyting algebra, which provides a basis for formal concept analysis and an
algebraic variety for the class of Gödel–Dummett logics. A characterization of Gödel
implication and negation is developed in terms of concepts, and a Gödel algebra of
concepts is presented.

Zoltán Ésik (RIP) provides a representation theorem for stratified lattices. These are
lattices endowed with a certain sequence of preorder relations, representing infinite
supplies of truth values, and they have been developed as a framework for solving
fixpoint equations of non-monotone operators. The representation theorem is based on
the inverse limits of continuous lattices, and has as a corollary that fixpoints of certain
weakly monotone functions exist.

Christian Fermüller and Ondrej Majer relate Hintikka’s game semantics of inde-
pendence friendly (IF) logic to Giles’s game developed as semantics for Lukasiewicz
logic. The results are based on interpreting the expected payoffs of IF games as the
fuzzy truth values from the interval [0,1]. It is shown that any rational number is the
value of a propositional IF logic formulae and a logic with both fuzzy and IF con-
nectives is developed.

Melvin Fitting provides a new algorithm for connecting modal logics to justification
logics. The first such algorithm was developed by Artemov. The current algorithm
differs from that of Artemov in two ways. First, it works on the steps of the proof rather
than the proof as a whole. Second, the algorithm has two parts, one of which is specific
to the modal logic in consideration, in this case S4, the other general to all modal
proofs. This two-stage process is novel in the literature. The process is automated in
Prolog.

Dick De Jongh and Fatemeh Shirmohammadzadeh Maleki develop a Hilbert-style
proof system for the basic sub-intuitionistic logic F, introduced by Corsi and Restall,
and prove weak and strong completeness theorems. This provides an alternative to the
Kripke semantics of logic F, whose frames lack certain fundamental properties. Fur-
ther, the authors show that intuitionistic propositional logic is conservative over the
logic F and also over Visser’s basic logic.

TbiLLC 2015 was extra special since during the symposium week, Professor Dick
de Jongh (University of Amsterdam) and Professor Matthias Baaz (Vienna University
of Technology) were awarded honorary doctorates of the Ivane Javakhishvili Tbilisi
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State University in recognition of their contributions to the Georgian school of logic,
mathematics, and linguistics over the past two decades. In particular, they have both
been instrumental in the success of the TbiLLC symposium series and the Tbilisi
Summer School in Logic and Language not only through their scientific contributions,
but also by organizing and promoting these events, and by obtaining funding to ensure
their continuity. The award ceremony took place on September 25, 2016, and it was
attended by the symposium participants as well as numerous local staff and students.
The opening words were spoken by David Gabelaia (TSU Razmadze Mathematical
Institute), followed by speeches by the rector of the university and member of the
Georgian Academy of Sciences, Vladimer Papava, by the renowned Georgian linguist,
member, and former president of the Georgian Academy of Sciences, Thamaz
Gamkrelidze, and by Nick Bezhanishvili, scientific descendant of Dick de Jongh,
currently assistant professor at the ILLC, University of Amsterdam. The ceremony
concluded with the acceptance speech by Dick de Jongh. A full transcript of all
speeches and photos from the ceremony can be found on the TbiLLC 2015 website.

This proceedings volume has the sad honor to contain one of the last papers by
Zoltán Ésik, who was a well-known and respected member of the theoretical computer
science community. We learned the shocking news of Zoltán’s passing during the
reviewing phase. As both reviewers recommended acceptance and remarked that the
manuscript was “written with extreme care” and could be “published virtually as is”,
we very much wanted to include it in the volume. We are thankful to his widow and
son, who kindly provided us with their consent to publish the paper. We are also
grateful to Dexter Kozen (Cornell University), who solved the practical issue of
obtaining the LaTeX source from the PDF manuscript. The preface is followed by a
short essay by Dexter Kozen in commemoration of Zoltan Ésik.

We would like to thank all the authors for their contributions, and the anonymous
reviewers for their high-quality reports. We would also like to express our gratitude to
the organizers of the symposium, who made the event an unforgettable experience for
all of its participants. The Tbilisi symposia are renowned not only for their high
scientific standards, but also for their friendly atmosphere, and heartwarming Georgian
hospitality, and the 11th symposium was no exception. Finally, we thank the ILLC
(University of Amsterdam), Sebastian Löbner, and Johan van Benthem for their gen-
erous financial support for the symposium.

December 2016 Helle Hvid Hansen
Sarah Murray

Mehrnoosh Sadrzadeh
Henk Zeevat
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Zoltán Ésik (1951–2016)

Through the years, Zoltán and I often agreed to disagree. Our tumultuous relationship
was at times magnificent, at time exasperating. Perhaps this is the normal state of affairs
with two strong-willed researchers with competing ideas and similar interests.
Nevertheless, I thoroughly relished my interactions with him, and I miss him terribly.

Zoltán’s work with Steve Bloom on iteration theories stands as a remarkable and
comprehensive achievement by any measure. It is a truly wide-ranging and
fundamental theory with far reaching implications. Zoltán and I were competitors in
a very real sense: My own work on Kleene algebra attempts to address many of the
same issues from a somewhat different perspective. Both systems purport to capture the
essence of imperative computation at a very basic equational level. We often argued
about the relative merits of the two systems, mostly inconclusively. My student
Konstantinos Mamouras, in his PhD thesis, discovered what was needed to reconcile
the two systems and managed to produce a unification; but I regret never having had
the pleasure of discussing this work with Zoltán or getting his reaction. I am sure he
would have had much to say.

Zoltán and I started working together on a topic of mutual interest during the
summer of 2013 at the LICS conference in New Orleans. We developed the basic ideas
and wrote down some rough notes, but we did not have the occasion to return to it until
shortly before his passing. He produced the penultimate version of a paper, which I am
currently in the process of revising for publication. I am grateful to have been a part of
one of his last works, although I am sure the final version would have been much
improved with his collaboration.

In spite of our occasional disagreements, I admired Zoltán greatly for his
consummate scholarship, clarity of thought, and good taste. I was always inspired by
his talks and his ideas. I am truly honored to be one of the last to have shared scientific
ideas with him. His untimely passing is a great tragedy and loss for our field. He will be
missed.

December 2016
Ithaca, New York, USA

Dexter Kozen
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Many-Valued Logic

(Tutorial in Logic)

Brunella Gerla
University of Insubria, Varese, Italy

The topic of my tutorial is many-valued logic. By many-valued logic we generally
mean a (propositional) logic in which there are more than two truth values. This is a
very general setting. We restrict it by considering only logics in which the connectives
are truth functional, that is, they can be described by a sort of many-valued truth tables.
So we investigate propositional logics in which the connectives are interpreted in [0,1]
(real unit interval): the conjunction is interpreted by a t-norm, that is, a commutative,
associative binary operation on [0,1] having 1 as neutral element and 0 as absorbent
element, and the implication is interpreted by the associated residuum that exists
whenever the t-norm is left continuous. The logic of formulas holding true (i.e. equal to
1) when interpreted by any left continuous t-norm is called Monoidal t-norm based
Logic (MTL) and can be axiomatized by a finite number of propositional axioms.
Adding axioms to MTL we get a whole hierarchy of many-valued logics, including
Łukasiewic, Gödel, Product, Nilpotent Minimum logics and, of course, classical
propositional logic. In our tutorial we will take a look at the axiomatic extensions of
MTL and then we shall focus on some of them. In particular, one of the aims is to show
the connections between logical systems and associated algebraic structures, general-
izing the existing connection between classical propositional logic and Boolean alge-
bras, or between intuitionistic logic and Heyting algebras. For instance, the
characterization of truth tables of some of the infinitely-valued propositional logics
of the MTL hierarchy can be seen from the algebraic side as the characterization of free
algebras in the related varieties.

Outline of the tutorial:

– Many-valued logics, t-norms, MTL and BL.
– Axiomatic extensions of MTL.
– Łukasiewicz logic and MV-algebras: merging lattice structure with groups.
– Gödel logic and Nilpotent Minimum logic: where only the order of truth valus

counts.
– (If time allows) Many-valued propositional formulas as events for non-classical

probabilities.



Cross-Linguistic Semantics:
Methods, Results, and Theoretical Implications

(Tutorial in Language)

Lisa Matthewson
The University of British Columbia, Vancouver, Canada

This tutorial series provides an introduction to the methods of cross-linguistic semantic
study, showcases some recent results from research on endangered languages of North
America, and situates the results with respect to the core enterprise of uncovering
linguistic universals and diversity.

Session 1 introduces the empirical and theoretical goals of cross-linguistic
semantics, and overviews both standard and recently-discovered methodologies for this
type of research. Session 2 is a case study on modals. Session 3 presents a case study
on quantifiers. We conclude with a discussion of what is known about universals and
variation in the semantic component of the grammar.

By default, the tutorial will be structured as three presentations with time for
discussion and questions. However, it is possible to run this as a more fully interactive
event. Interested participants should feel free to contact the convener at
lisa.matthewson@ubc.ca if they have requests.



Program Termination – Survey and Challenges

(Tutorial in Computation)

Joel Ouaknine
University of Oxford, Oxford, UK

In the quest for program analysis and verification, program termination — determining
whether a given program will always halt or could execute forever — has emerged as a
pivotal component. Unfortunately, this task was proven to be undecidable by Alan
Turing eight decades ago, before the advent of the first working computers! In recent
years, however, great strides were made in the automated analysis of termination of
programs, from simple counter machines to Windows device drivers.

Perhaps surprisingly, from a theoretical standpoint the study of termination
involves advanced techniques from a variety of mathematical fields, including analytic
and algebraic number theory, Diophantine geometry, real algebraic geometry, model
theory, and Ramsey theory.

In this tutorial, we will survey a cross section of topics ranging from the history of
program termination to the development of modern tools such as Microsoft Research’s
Terminator, presenting in the process some of the theoretical challenges that remain
and that we expect will drive the field for the foreseeable future.



Justification Logics, Realization,
and an Implementation

(Invited Lecture in Logic)

Melvin Fitting
City University of New York, New York City, USA

Gödel began a project to find an arithmetic semantics for intuitionistic logic, but did not
complete it. It was finished by Sergei Artemov, in the 1990’s. As an essential step in
this work, Artemov introduced the first justification logic, LP, (standing for logic of
proofs). LP is a modal-like logic, with an infinite family of proof or justification terms,
and can be seen as an explicit version of the familiar modal logic S4. Since then, many
other justification logic/modal logic pairs have been investigated, and justification logic
has become a subject of independent interest, going beyond the original connection
with intuitionistic logic. It is now known that there are infinitely many modal logics
with justification logic counterparts, but the exact extent of the family is not known.
Justification logics are connected with their corresponding modal logics via a Real-
ization Theorem. A Realization Theorem connecting LP and S4 has a constructive
proof, but there are other cases in which realization holds, but it is not known if a
constructive proof exists. I will discuss Realization Theorems in general, and LP/S4 in
particular. The realization proof I will talk about has a two part structure, going through
a quasi-realization stage. This gives some additional insight into the phenomenon.
I will conclude by demonstrating a computer implementation of the algorithm behind
realization for LP/S4.



(Uniform) Interpolation in Logic and Algebra

(Invited Lecture in Logic)

George Metcalfe
University of Bern, Bern, Switzerland

Interpolation is a property of logical systems, first introduced and proved for first-order
classical logic by William Craig in the 1950s. For a propositional logic L, it says, very
roughly, that if a formula A entails another formula B in L, then there is an “interpo-
lating” formula C whose variables occur in both A and B such that A entails C and
C entails B in L. Remarkably, there exists a (well-known) close connection between
interpolation and the algebraic property of amalgamation, which allows algebraic
structures to be suitably combined so that some common substructure is preserved. In
this talk, I will describe this relationship – a bridge between logic and algebra – in the
context of non-classical logics and their corresponding algebraic semantics. I will also
describe (new) algebraic characterizations of stronger interpolation properties, where
the interpolating formula C may be chosen “uniformly” based only on the formula
A (or B) and a subset X of its variables, providing then an interpolant for any B (or A)
whose overlapping variables with A (or B) occur in X.



PPIs and Movement in Hindi-Urdu

(Invited Lecture in Language)

Rajesh Bhatt and Vincent Homer
University of Massachusetts Amherst, Amherst, MA, USA

Typically, Positive Polarity Items (PPIs), e.g. would rather, cannot be interpreted in the
scope of a clausemate negation (barring rescuing or shielding) (Baker 1970, van der
Wouden 1997, Szabolcsi 2004 a.o.):

(1) a. John would rather leave. b. *John wouldn’t rather leave.

The scope of most of them is uniquely determined by their surface position. But
PPI indefinites are special: they can surface under negation and yet yield a grammatical
sentence under a wide scope interpretation:

(2) John didn’t understand something. ✓ SOME � NEG;*NEG � SOME

Here we address the question of the mechanism through which a PPI of the some
type takes wide scope out of an anti-licensing configuration. One possibility is (covert)
movement, another is mechanisms that allow indefinites to take (island-violating) ultra-
wide scope such as choice functions (Reinhart 1997). The relevant configurations that
have motivated choice functions for other languages can be set up for Hindi-Urdu too.

(3) logõ=ko lagtaa hai [ki Saima aur kuch tabalcii gaayab ho people=DAT seem is
that Saima and some.PL tabla.player disappear be gaye haĩ]
go.PFV.MPL are
‘People think that Saima and some tabla players have disappeared.’ (ok: SOME
� THINK)

We can therefore assume that a device that generates wide-scope for indefinites
without movement is available in Hindi-Urdu too. We show that in Hindi-Urdu at least,
this device is unable to salvage PPIs in the relevant configuration. Only good old
fashioned overt movement does the needful. If we think of overt movement in Hindi-
Urdu as being the analogue of covert movement elsewhere, then the Hindi-Urdu facts
are an argument that it is movement, albeit covert, that salvages PPIs in English too, not
alternative scope-shifting devices. We explore whether the conclusion from Hindi-
Urdu does in fact extend to English.



Complex Connectives

(Invited Lecture in Language)

Sarah E. Murray
Cornell University, Ithaca, NY, USA

This talk discusses the interpretation and analysis of several sentential connectives
found in Cheyenne (Algonquian), drawing on the author’s fieldwork as well as several
collections of texts. Coordinating connectives in English, including and (conjunction),
but (contrastive conjunction), and or (disjunction), are monomorphemic. In Cheyenne,
the basic form used for conjunction is naa. Other connectives are morphologically
complex, formed by combining naa with other morphemes, all of which have inde-
pendent uses.

These complex connectives, and certain uses of naa alone, complicate a compo-
sitional, truth-functional analysis of the Cheyenne connectives. In particular, though
disjunction is logically weaker than conjunction, the two forms for disjunction – naa
matȯ=héva and naa mó=héá’e – each contain the conjunction naa. Recently, several
authors have proposed analyses of related data from other languages, arguing the basic
element is not true conjunction. However, the data in these languages differ from
Cheyenne in crucial ways. Building on these analyses, and other proposals on the
semantics of disjunction, this talk proposes an analysis of the Cheyenne connectives
that preserves naa as conjunction.



Brzozowski Minimization via Dual
Adjunctions

(Invited Lecture in Computation)

Helle Hvid Hansen
Delft University of Technology, Delft, The Netherlands

Brzozowski’s minimisation algorithm [1] seems to work like magic. Given a (non)
deterministic automaton A, reverse its transitions, swap initial and final states, make it
deterministic and reachable; then do it all again. The result is a minimal deterministic
automaton that accepts the same language as A.

A direct correctness proof is not difficult, but a more insightful perspective was
given in [2] where Brzozowski’s algorithm was described in terms of a duality between
reachability and observability, and generalised to Moore automata and weighted
automata. At a more abstract level, the algorithm was explained by a dual adjunction of
automata. Around the same time, a similar minimisation construction for automata over
various base categories was presented in [3] in terms of dual equivalences between
coalgebras (automata) and algebras (logic).

The authors of these two lines of work have since joined forces with the aim of
finding a unifying framework and new examples. In this talk, I will give an overview of
our current insights, and show how to obtain a minimal deterministic automaton from a
finite alternating automaton via the duality between complete atomic Boolean algebras
and sets.
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A Multilinear Algebraic Computational Model
of Natural Language

(Invited Lecture in Computation)

Mehrnoosh Sadrzadeh
Queen Mary University of London, London, UK

Computational models of natural language can be be categorised into syntax, seman-
tics, and pragmatics. Syntactic models include Chomsky’s work on generative gram-
mars and its algebraic type-categorial counterparts (Ajdukiewicz, Lambek). Semantic
models mainly span around Montague’s translation of natural language sentences to
higher order logic formulae. These models do not deal with data-driven sources of text
such as Wikipedia, books, and news. The pragmatic models (Harris, Firth) argue that
representations of words should be based on the contexts in which they often occur.
Here, various statistical measures are developed to retrieve information from data and
to reason about them. A popular formal framework thereof is that of vector spaces.
These provide a solid base for word meanings, but it is less clear how to extend them to
phrases and sentences.

We provide a multilinear algebraic setting inspired by category theoretical models
of Lambek’s pregroup grammars, and of vector spaces and tensor products, and
develop a solution. Here, data from corpora and empirical evaluations provide essential
resources.

In this talk I will present our original framework (with Clark and Coecke [1], with
Grefenstette [2]), its extension to unified sentence spaces (with Kartsaklis and Pulman
[3]), to relative pronouns (with Clark and Coecke [4, 5]), and to quantifiers (with
Rypacek [6] and Hedges [7]). I will also go through experimental results as relevant to
each extension.

References

1. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for a compositional distri-
butional model of meaning. Linguistic Analysis, Volume dedicated to Lambek’s 90th
Birthday, J. van Benthem, M. Moortgat, W. Buszkowski, pp. 345–384 (2010)

2. Grefenstette, E., Sadrzadeh, M.: Concrete models and empirical evaluations for the categorical
compositional distributional model of meaning. Comput. Linguist. 41, 71–118 (2015)

3. Kartsaklis, D., Sadrzadeh, M., Pulman, S.: A unified sentence space for categorical distri-
butional-compositional semantics: theory and experiments. In: Proceedings of 24th Interna-
tional Conference on Computational Linguistics. COLING 2012, pp. 549–558 (2012)



4. Sadrzadeh, M., Clark, S., Coecke, C.: Frobenius anatomy of word meanings I: subject and
object relative pronouns. J. Logic Comput. 23, 1293–1317 (2013)

5. Sadrzadeh, M., Clark, S., Coecke, B.: Frobenius anatomy of word meanings 2: possessive
relative pronouns. J. Logic Comput. 26, pp. 3–29 (2016)

6. Rypacek, O., Sadrzadeh, M.: A low-level treatment of generalised quantifiers in categorical
compositional distributional semantics. In: Joint Proceedings of the Second International
Workshop on Natural Language and Computer Science (NLCS’14) and First International
Workshop on Natural Language Services for Reasoners (NLSR 2014). de Paiva, Neuper,
Quaresma, Retoré, Moss, Saludes (eds.), TR 2014/02, Center for Informatics and Systems
of the University of Coimbra, pp. 165–177 (2014)

7. Hedges, J., Sadrzadeh, M.: A Generalised Quantifier Theory of Natural Language in
Categorical Compositional Distributional Semantics with Bialgebras. Corr, abs/1602.01635,
presented in QPL2016 (2016)

XXVI M. Sadrzadeh



Contents

Language and Logic

An Algorithm Defining the Choice of ‘Active*Passive’ Formal
Paradigms in Georgian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Rusudan Asatiani

Towards Verb Modification in Frames: A Case Study on German
Schlagen (to hit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Anja Goldschmidt, Thomas Gamerschlag, Wiebke Petersen,
Ekaterina Gabrovska, and Wilhelm Geuder

Whence Long-Distance Indefinite Readings? Solving Chierchia’s
Puzzle with Dependent Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Justyna Grudzińska and Marek Zawadowski

First-Order Abduction as Enumeration of Stable Models . . . . . . . . . . . . . . . 54
Petr Homola

A Semantic Account of the Intervention Effects in Chinese Why-Questions . . . 66
Dawei Jin

Syntax Annotation of the Georgian Literary Corpus . . . . . . . . . . . . . . . . . . 89
Liana Lortkipanidze, Nino Amirezashvili, Ana Chutkerashvili,
Nino Javashvili, and Liana Samsonadze

Frame Theory with First-Order Comparators: Modeling the Lexical
Meaning of Punctual Verbs of Change with Frames . . . . . . . . . . . . . . . . . . 98

Sebastian Löbner

Semantic Predictions in Natural Language Processing, Default
Reasoning and Belief Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Ralf Naumann and Wiebke Petersen

A Probabilistic, Mereological Account of the Mass/Count Distinction . . . . . . 146
Peter R. Sutton and Hana Filip

Semantic Dependency Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Henk Zeevat

Reflexive and Reciprocal Determiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Richard Zuber

http://dx.doi.org/10.1007/978-3-662-54332-0_1
http://dx.doi.org/10.1007/978-3-662-54332-0_1
http://dx.doi.org/10.1007/978-3-662-54332-0_2
http://dx.doi.org/10.1007/978-3-662-54332-0_2
http://dx.doi.org/10.1007/978-3-662-54332-0_3
http://dx.doi.org/10.1007/978-3-662-54332-0_3
http://dx.doi.org/10.1007/978-3-662-54332-0_4
http://dx.doi.org/10.1007/978-3-662-54332-0_5
http://dx.doi.org/10.1007/978-3-662-54332-0_6
http://dx.doi.org/10.1007/978-3-662-54332-0_7
http://dx.doi.org/10.1007/978-3-662-54332-0_7
http://dx.doi.org/10.1007/978-3-662-54332-0_8
http://dx.doi.org/10.1007/978-3-662-54332-0_8
http://dx.doi.org/10.1007/978-3-662-54332-0_9
http://dx.doi.org/10.1007/978-3-662-54332-0_10
http://dx.doi.org/10.1007/978-3-662-54332-0_11


Logic and Computation

The Topology of Full and Weak Belief . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Alexandru Baltag, Nick Bezhanishvili, Aybüke Özgün, and Sonja Smets

Universal Models for the Positive Fragment of Intuitionistic Logic . . . . . . . . 229
Nick Bezhanishvili, Dick de Jongh, Apostolos Tzimoulis,
and Zhiguang Zhao

On Gödel Algebras of Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Pietro Codara and Diego Valota

A Representation Theorem for Stratified Complete Lattices . . . . . . . . . . . . . 263
Zoltán Ésik

Equilibrium Semantics for IF Logic and Many-Valued Connectives. . . . . . . . 290
Christian G. Fermüller and Ondrej Majer

Quasi-Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Melvin Fitting

Subintuitionistic Logics with Kripke Semantics. . . . . . . . . . . . . . . . . . . . . . 333
Dick de Jongh and Fatemeh Shirmohammadzadeh Maleki

Erratum to: Equilibrium Semantics for IF Logic and Many-Valued
Connectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1

Christian G. Fermüller and Ondrej Majer

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

XXVIII Contents

http://dx.doi.org/10.1007/978-3-662-54332-0_12
http://dx.doi.org/10.1007/978-3-662-54332-0_13
http://dx.doi.org/10.1007/978-3-662-54332-0_14
http://dx.doi.org/10.1007/978-3-662-54332-0_15
http://dx.doi.org/10.1007/978-3-662-54332-0_16
http://dx.doi.org/10.1007/978-3-662-54332-0_17
http://dx.doi.org/10.1007/978-3-662-54332-0_18


Language and Logic



An Algorithm Defining the Choice
of ‘Active~Passive’ Formal Paradigms

in Georgian

Rusudan Asatiani(&)

Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
rus_asatiani@hotmail.com

Abstract. Two different formal paradigms traditionally referred to as ‘Active’
and ‘Passive’ are clearly distinguished in Georgian; however, there are many
cases in which a simple semantic-functional interpretation of the paradigms
cannot be given inasmuch as the constructions pointed out as ‘Active’ or
‘Passive’ can actually represent a variety of verb semantics: non-conversive
passives (both dynamic and static), active intransitive processes, reflexives,
reciprocals, potentials, deponents, etc. Thus, the problem with these paradigms
is that it is difficult to predict the meaning from the form and, to such an extent,
traditional terms ‘Active’ and ‘Passive’ actually have a conventional character.
This paper suggests a cognitive model based on certain semantic features that
define the choice of either the passive or the active formal paradigms for
grammatical representations of so-called ‘medial’ verbs. The process of choice
is organized as an algorithm with four stages of implicational rules and mirrors
the hierarchically organized optimal dynamic process of linguistic structuring of
an active*passive continuum.

Keywords: Georgian � Active*passive opposition � Medial verbs �
Continuum of active*passive opposition � Algorithmic rules in grammar

1 Introduction: Posing the Problems

Two different paradigms establishing the formal opposition between verb forms are
clearly distinguished in Georgian. The main morphosyntactic features that define the
formal opposition and establish the paradigms can be summarized as in Table 1 below.

Georgian grammarians interpret A-, B-, C-arguments correspondingly as S, DO and
IO functions1 and discuss the opposition of paradigms in terms of the arguments’
functional changes;2 consequently, the distinguished paradigms are referred to as
‘Active’ (resp. I-paradigm) and ‘Passive’ (resp. II-paradigm). The Active paradigm
mostly represents active transitive constructions (see below (a)-examples), while their

1 The verb forms in the examples are glossed according to this tradition.
2 This assumes: Passive constructions are considered as conversive ones of the corresponding active
constructions, where a Patient is promoted to the subject position along the following string of
hierarchically organized functional relations: S > DO > IO, while an Agent is demoted and
transformed into a prepositional phrase; therefore, it no longer represents a core argument defined by
a verb valency.
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conversive passives (see below (b)-examples), as a rule, are grammaticalized by the
second, Passive-paradigm [8]3.

Table 1. Morphosyntactic Features of Formal Paradigms

Features I-Paradigm II-Paradigm

1. Vowel prefixes – i-, e-, -d, Ø
2. A-ARG.3.SG suffix (in Present) -s -a
3. A-ARG.3.PL suffix (in Aorist) -es -nen
4. Present tense marker -Ø -i
5. Thematic marker

(in I-series TAM formsa)
-eb-, -ob-, -op-,
-av-, -am-, -i-, -Ø-;

-eb-

6. Imperfective marker -d-, (-od-) -od-
7. A-ARG’s case NOM (in I-series)

ERG (in II-series)
DAT (in III-series)

NOM

8. B-ARG’s case DAT (in I-series)
NOM (in I- and II-series)

DAT

9. C-ARG’s case DAT DAT

aThere are 11 different verb forms expressing various combinations of Tense/
Mood/Aspect (TAM) categories. According toGeorgian grammarians, they
are called mts’k’rivi. Based on morphosyntactic features the screeves are
grouped and organized into three series. I-series includes: Present Indicat-
ive, Imperfect, Present Subjunctive, Future Indicative, Conditional; Future
Subjunctive; II-series consists of: Aorist Indicative and Optative; and III-
series comprises: Perfect, Pluperfect, and Perfect Subjunctive [8].

3 The main distinguishing formal features are bolded and, in this paper, are conventionally numbered
according to the Table 1 as f.1, f.2 …f.9.
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However, there are a lot of problems in this respect, both from formal and from
semantic-functional points of view [3]; all the features taken together obviously dis-
tinguish an opposition between the active and the passive constructions, although none
of them, taken independently, can be regarded as a simple marker. The following
examples illustrate this.

1. The main function of -s and -a suffixes is to mark S.3.SG. Once this function is
identified, examples can be found in various verb forms. For example, -s expresses
S.3.SG

– in the subjunctive mood of passive verb forms:
i(PASS)-xat’ (paint)-eb(THM)-od(IMP)-e(SUBJ)-s(S.3.SG) ‘it would be painted’,
i(CV)-dg(stand)-e(SUBJ)-s(S.3.SG) ‘it would stand’

– in some static verbs:
zi(sit.PRS)-s (S.3.SG) ‘s/he sits’

– in intransitive-active verbs:
cxovr(live)-ob(THM)-s(S.3.SG) ‘s/he lives’
pikr(think)-ob(THM)-s(S.3.SG) ‘s/he thinks’

The suffix-a can be a marker of active verbs’ S.3.SG in past tenses as well (see examples
(6-a), (7-a)).

2. The main function of -eb- is to mark out dynamic verb forms. In expressing this
func-tion, -eb- also occurs with some active transitive verbs (see examples (2-a),
(7-a)).

3. The vowel prefixes, too, are polyfunctional: In general, they represent derivational
changes of verb valency – either the increase or decrease of syntactically linked
verb arguments [1]. For instance, -i- expresses such categories as, e.g.:

– the subjective version:
i(SV)-c’er(write)-s(S.3.SG) ‘s/he writes smth. for him/herself’
i(SV)-šen(build)-eb(THM)-s(S.3.SG) ‘s/he builds smth. for her/himself’

– the reflexive:
i(CV)-ban(wash)-s(S.3.SG) ‘s/he takes a bath’
i(CV)-p’ars(shave)-av(THM)-s(S.3.SG) ‘he has a shave’

– potentials (see examples (10));
– deponents (see examples (8));
– the future tense of some intransitive-active verbs:

[i(CV)-cxovr(live)-eb(THM)]:FUT-s(S.3.SG) ‘s/he will live’
[i(CV)-mcer(sing)-eb(THM)]:FUT-s(S.3.SG) ‘s/he will sing’.4

4. The Nominative case characterizes subjects of some non-conversive passives (both,
dynamic and static) in present and in past tense forms as well; for example,

is(s/he.NOM.SG) dg(stand)-a(PRS)-s(S.3.SG) ‘s/he stands’
is(s/he.NOM.SG) i(CV)-dg(stand)-a(PST.S.3.SG) ‘s/he stood’

4 For the polyfunctionality of the i-prefix see [2].
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is(s/he.NOM.SG) gd(lay.strewn)-i(PRS)-a(S.3.SG) ‘s/he lies strewn’
is(s/he.NOM.SG) e(CV)-gd(lay.strewn)-o(PST.S.3.SG) ‘s/he lay strewn’.

The Ergative (or the Dative) case can also mark the subjects of intransitive, yet active,
verbs which show active, dynamic processes; for example:

man(s/he.ERG.SG) i(CV)-cxovr(live)-a(AOR.S.3.SG) ‘s/he lived’
man (s/he.ERG.SG) i(CV)-pikr(think)-a(AOR.S.3.SG) ‘s/he thought’
mas (s/he.DAT.SG) [u(SINV.3.CV)-cek’(dance)-v(THM)-i(0)]:PRF.ACT-a(OINV.3. [SINV.3.
SG]) ‘(supposedly) s/he has danced’
mas(s/he.DAT.SG) [u(CV)-muš(work)-av(THM)-i(0)]:PR-a(OINV.3[S.INV.3. SG]) ‘(sup-
posedly) s/he has worked’.

Georgian morphosyntactically marked passive constructions do not always express the
conversion of corresponding active ones; in fact they can express a variety of mean-
ings. The following examples illustrate this point.

Active semantics:5

Dynamic actions:

5 Verbs having passive form, but active semantics (so-called deponents) are analyzed in [11].
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Potentials:

Reciprocals:

The verbs without an active counterpart can produce corresponding
active-transitive semantics only by special derivational paradigms. Their base forms are
semantically intransitive verb forms, while for conversive-passives the base forms are
transitive ones.6

Thus, the problem with the paradigms is that it is difficult to predict the meaning
from the form and/or vice versa; and, to such an extent, the traditional terms ‘Active’
and ‘Passive’ actually have only a conventional character. It is obvious that the
question as to what the real function of the morphosyntactically differentiated para-
digms is still needs to be answered. These formal paradigms cannot be interpreted
simply, and their semantic and/or functional analysis definitely requires further
investigation.

6 For some structural features of the so-called passive forms and their semantic interpretations see [7].

8 R. Asatiani



2 A Continuum of Active~Passive Opposition

In many languages, as in Georgian, the active*passive constructions do not always
simply express syntactically defined converses, and the passive formal paradigm is also
used to mark other related constructions. In general, there are languages in which the
passive formal paradigm marks, for instance, reflexives and reciprocals in Russian and
deponents in Latin. In some languages, this paradigm goes further and expresses other
grammatical relations as well. In Japanese, for example, it is the formal representation
for potential, honorific, and spontaneous voice; moreover, in some other languages it is
used for plurals as well [9]. Consequently, attempts at new theoretical approaches were
undertaken to explain such cross-linguistic phenomena.

Shibatani’s [9, 10] interpretation seems to be efficient from this point of view. He
considers the active*passive opposition as a continuum, where polar dimensions fit in
with prototypical active and passive constructions, while non-polar, inter-medial
constructions share only some semantic-categorical features of the categories charac-
teristic for the prototypical ones.

Languages apply various strategies for the formal representation of such non-polar,
medial forms; they either develop new formal paradigms, or come to an optimal decision
and choose from the existing ones a paradigm that is conventionally regarded as the
most appropriate and conceptually proximate according to certain semantic-categorical
features (Fig. 1).

In such cases, it is much more difficult, and sometimes even impossible, to come up
with simple, either functional (due to the changes of syntactic functions) or semantic
(due to the distinguishing active*passive semantics), taxonomic interpretations con-
cerning the formal paradigms.

3 The Georgian Active~Passive Continuum

Georgian active*passive opposition could be interpreted as a continuum where a
prototypical active corresponds to active transitive constructions with effected objects
(including causatives), which are represented by the active paradigm. Prototypical
passives correspond to conversive forms of an active construction, in turn represented
by the passive paradigm. All other verbs can be qualified as medial ones.

AM PM

New Paradigm

Prototypical active Medial Prototypical passive 

Fig. 1. A continuum of active*passive opposition
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Medial verbs expressing static events (e.g., q’ri-a ‘lie.scattered/strewn-S.3.SG’,
peni-a ‘is.spread.out-S.3.SG’, k’idi-a ‘is.hanging.on-S.3.SG’, c’eri-a ‘is.written-S.3.SG’,
xat’i-a ‘is.drawn-S.3.SG’, abi-a ‘is.tied.(on)-S.3.SG’, etc.) show an auxiliary conjugation
in present tense.

Thus, they introduce the new paradigm expressing specific static morphology; that
is, the paradigm with auxiliary conjugation. These empirical data indicate that the
opposition ‘Dynamic-Static’ takes a distinct role in the process of formal represen-
tation of medial forms. All other verbs (including medial ones) representing non-static,
dynamic events instead of the auxiliary conjugation show specific thematic markers in
I-series forms (see line 5 in Table 1) and follow either the A- or P-paradigm.

So, the process of the grammaticalization of medial verbs can be explained by the
following general cognitive tendency:

In the process of the formal representation of medial forms, Georgian establishes the new
paradigm for static verbs, while for other medial dynamic forms applies either the active or the
passive formal paradigm. The strategy of choice is defined by the specific conventionally
accepted linguistic ‘decision’ as to which categorical-semantic features of the prototypical
constructions are regarded as central.

In order to demonstrate such categorical-semantic features, we must take into
account the following linguistic empirical facts observed during the process of the
formal representation of some intransitive, dynamic medial forms:

If a medial, prototypically non-active and/or non-passive, verb is telic,7 it selects the passive
formal paradigm. If a medial verb is atelic, then it chooses the active formal paradigm of
representation.

7 The feature ‘telicity’ was used by Dee Ann Holisky [6] for some intransitive-active verbs in
Georgian, but we suppose that it is decisive for the whole process of formal representation of an
active*passive continuum.
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A preverb8 could be considered as a marker of telicity, and a formal representation
of the above choice becomes fairly simple:

If a verb with medial semantics can take at least one preverb showing perfective aspect, then
the verb has the ‘passive form.’

Compare, for instance, the examples in (13) to the ones in (14):

The first set of medial verbs is telic. All these verbs (having preverbs) follow the
P-paradigm. The second set of atelic verbs (not having preverbs) follows the
A- paradigm.

4 The Hierarchically Organized Dynamic Paradigm

Linguistic representations of active, passive, and medial verb forms can be reinter-
preted as a hierarchically organized cognitive process that defines the choices of either
the active (AM) or passive (PM) formal paradigms. The decision of which paradigm
will be the most appropriate one for the concrete medial verb semantics is taken step by
step, conventionally based on the optimal cognitive interpretations originating from
some crucial semantic features.

8 In Georgian so-called preverbs are preverbal affixes that show a direction/orientation of an action
sometimes producing new semantics of a verb as well. Additionally, they form the future tense for
transitive and conversive-passive verb forms as well as the perfective forms [8]. Inasmuch as the
telicity is the property of a verb or verb phrase that presents an action or event as being complete in
some sense (resp. perfective), preverbs formally represent telicity as well. Thus, telic verbs can
distinguish the opposition between perfective and imperfective aspect represented in Georgian by
preverbs, while for atelic verbs this is semantically excluded.
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Step 1: Prototypically active and prototypically passive relations are represented by
the main formal paradigms, respectively, by the A- and P-paradigms.

Step 2: Medial (non-prototypical) relations are marked according to two different
strategies:

Strategy 1. The new paradigm (NM) is established.
Strategy 2. Either active or passive paradigms of representation are chosen

Further specific cognitive processes and semantic features define which of the
above strategies is chosen. First of all, the feature Dynamic~Static plays a crucial role
– verbs expressing static states are marked according to the strategy 1, and the new
paradigm of conjugation with the auxiliary verb to be is chosen. On the other hand,
verbs expressing dynamic action choose either the active or passive formal paradigm
of representation (Strategy 2).

Step 3: For the dynamic subgroup, further choices are determined by the semantic
feature Telicity:

Telic medial verbs choose the passive paradigm, atelic medial verbs - the active paradigm.9

We can represent the process as a productive-generative tree-structure.

The given classification of verbs that is based on the prototypical approach differs
from the traditionally distinguished verb classes, according to which class I contains
active transitive verbs (including derived causatives), class II – dynamic-passives,

9 In other words, the morphosyntactic features are absolutely identical with the morphosyntactic
features characteristic for the transitive and/or conversive-passive verb forms.
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class III – active-intransitive verbs, and class IV – affective and static verbs.10 These
four classes can be described and reinterpreted by the semantic features of Transitivity,
Dynamicity, and Telicity as well.

However, such an interpretation does not explain why some dynamic and telic
verbs actually expressing active semantics (see above examples (8)-(9)-(11)) follow the
P-paradigm. The distinguishing feature cannot be either Transitivity or Telicity and/or
Dynamicity. It is possible to add the fourth semantic feature of Activity, which makes
the semantic analysis more sufficient. In such a case, the conversive-passives defined
by the combination {intransitive, telic, dynamic, passive} would be opposed to other
“passives” expressed by the combination {intransitive, telic, dynamic, active}; but this
“addition” does not resolve the formal problems inasmuch as different combinations of
the features would be yet again represented by the same P-paradigm. The prototypical
approach is more efficient from this point of view. According to it, II class verbs are
divided into two subclasses and the process of formal representation is hierarchically
organized:

On the first stage, conversive-passives (being –[TRANSITIVE]) are formalized by
P-paradigm, while on the second and the third stages all other, so-called medial, forms
(also being –[TRANSITIVE]) are checked according to the features Dynamicity and
Telicity as was described above. Thus, given prototypical approach resolves the
problem of A-/P-paradigms choices and to such an extent it seems more appropriate.

The whole process of formal paradigm choices is governed by a general, cogni-
tively defined ‘conventional linguistic decision’:

The definite paradigm representing some core semantics serves better to represent certain
marginal semantics as well.

5 The Algorithm Defining the Choice of ‘Active’
and ‘Passive’ Formal Paradigms

The whole process can also be reinterpreted and represented as an algorithm which
describes the dynamic process of formal paradigm choices.

A generative strategy is based on the decisive semantic features defining the choice:
Dynamicity, Telicity, and Aorist. Instead of the feature Transitivity we prefer to
describe the whole process by semantic roles of verb arguments inasmuch as the

Table 2. Semantic interpretation of traditionally distinguished verb classes

Verb classes Dynamic Telic Transitive

I-class + + +
II-class + + –

III-class + – –

IV-class – – –

10 See [8] and compare with [5].
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semantic roles are decisive for Transitivity11 as well as for arguments case patterns,
which are also very important for the definition of A-/P-paradigms. Case patterns –

either the Nominative, or the Ergative, or the Dative constructions – are distinguished
on the basis of possible case marking combinations of arguments (see features 7-8-9 in
Table 1) that are actually realized and conditioned in Georgian by the categories of
tense, aspect, and mood.12 For the binary organization of the algorithm we apply the
feature Volitionality,13 which is regarded as the crucial, main one for describing and
distinguishing the semantic roles: An argument whose volition is included in an event
is pointed out as +[VL] (resp. Ag ! S), while an argument whose ‘VL’ is not included
in an event is pointed out as −[VL] (resp. Ad, Rec, Benef ! IO). As far as an
argument is concerned that is semantically ‘undergoer’ and does not exist indepen-
dently of an event (or not at all) [4] (resp. Patient ! DO), the feature VL seems to be
redundant for it; that is, it might be structurally qualified as an argument with a priori
zero VL. Thus, it is pointed out as Ø.

An algorithm with the four stages of implicational rules mirrors the hierarchically
organized optimal generative process of linguistic structuring of an active*passive
continuum in Georgian as follows.

Certain combinations of rival features are formalized according to the following
strategy:

1. −[DYNAMIC] (resp. static) verbs follow the passive paradigm without any
restrictions (I stage); also, no restrictions are decisive for –[VOLITIONAL]
arguments which are always represented by the dative case. Affective verbs with
experiencer A-argument always are characterized by the dative construction as
well, while their morphology could be either the passive or static (I stage).

2. +[DYNAMIC] verbs must be necessarily checked:
a. Do they equate with events including Ø-argument or not? (II stage)

11 That is, if the arguments structure of a verb includes a patient, a verb is transitive, if not, intransitive.
12 A case pattern, in actual fact, is the main syntactic feature defining the grouping screeves into I, II

and III series; see [8] and especially [5].
13 For the feature VL see [5, 6].
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b. Do they represent events in Past (resp. +[AORIST]) or not? (III stage)
c. Do they represent events or actions as being complete in some sense (resp. +

[TELIC]) or not? (IV stage)
d. In case they are –[TELIC], the algorithm recursively returns to III stage,

continuing the checking according to the feature AORIST.

The algorithm stops after the application of one additional rule:

A verb which chooses the ergative construction with the active morphology must choose the
dative construction with the active morphology for III-series TAM forms as well.

6 Conclusions

The proposed analysis is an attempt to describe Georgian verb forms within the cog-
nitive, dynamic approach.

• The active*passive opposition is reinterpreted as a continuum;
• The continuum is structuralized according to choices between the formal

paradigms;
• The choices are defined as a dynamic process;
• The process is based on a conventional cognitive decision;
• The decisions are formulated as implicational rules
• The rules are determined by the semantic features Dynamicity, Volitionality,

Telicity, and Aorist.

Glossary

0: zero

1: 1st person

3: 3rd person

2: 2nd person

ACT: Active

ADV: adverbial case

AOR: aorist

CV: characteristic vowel

DAT: dative

DO: direct object

ERG: ergative

FUT: future
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GEN: genitive

IMP: imperfect

IO: indirect object

NOM: nominative

NV: neutral version

OINV: inverted object

OV: objective version

PASS: passive

PL: plural

PRF: perfect

PV: preverb

PRS: present

PST: past

PRT: participle

S: subject

SG: singular

SINV: inverted subject

SUBJ: subjunctive

SV: subjective version

THM: thematic suffix
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1 Introduction

In the literature on English verb classes, one class has been especially discussed
by syntacticians as well as semanticists: ‘verbs of contact by impact’. The name
of this class of verbs can be traced back at least to Levin (1993) [12], although
already Fillmore (1970) [5] discusses the verb hit from this perspective. In most
of the analyses of hit, the meaning components ‘motion’, ‘contact’ and ‘force’ are
identified as basic (cf. [12], Levin 1993, [6], Gao and Cheng 2003, among others).

Hit-verbs are described by Levin (1993:150) [12] as involving the movement
of one entity leading to contact with another entity. Although Levin does not
speak explicitly of a force component associated with these verbs, the choice of
the name for the class, ‘contact by impact’, clearly indicates that she takes the
presence of a (high) force to be crucial, especially as there is also a class of ‘verbs
of contact’ ([12], Levin 1993:155f). Furthermore, authors like Erteschik-Shir and
Rapoport (2010:59) [4] a.o. use notions like “forceful contact” in analyzing verbs
like hit. Gao and Cheng (2003:494) [6] also observe that English verbs of contact
by impact have a force component which “is specified in all the verbs” as again
already indicated by the name of the class. What is more, the authors also state
that actions referred to as hitting are characterized by the exertion of high force
([6], Gao and Cheng 2003:494). This force needs a source, which, on a cognitive
linguistic view, is typically the agent represented by the subject in English ([10],
Kim 2009:46f). Besides the source or the subject, there is also a patient/an
object receiving the force, which makes hit a standard case of a transitive verb
(cf. [10], Kim 2009:50; [5], Fillmore 1970:128).

When looking for ‘contact by impact’ verbs in German, the most prominent
representative is the verb schlagen, which is commonly treated as the transla-
tional equivalent of hit, but may often correspond more closely to English verbs
like beat, strike, knock, deliver a blow (which are usually neglected in the liter-
ature on hit). There are five relevant constructional variants of schlagen (other
variants as intransitive or particle verbs may have additional meaning compo-
nents or figurative meanings) which can be differentiated (following Geuder and
Gabrovska, ms. [7]):

Unaccusative construction: A theme argument (i.e., a moving entity, esp. in
ballistic movement) is realized as subject, typically combined with a PP that
encodes a target.

(1) Die
The

Gitarre
guitar

schlug
hit(PAST)

gegen
against

die
the

Tischkante.
edge.of.the.table

‘The guitar hit the edge of the table.’

Agentive-resultative construction: An agent argument is realized as subject co-
occurring with an accusative object introducing the theme and a resultative
predicate (often a directional PP).

(2) Er
He

schlug
hit(PAST)

die
the

Gitarre
guitar

gegen
against

die
the

Tischkante
edge.of.the.table

‘He hit the guitar against the edge of the table.’
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Simple transitive construction: Prototypically an agentive subject plus a patient
(i.e. receiver of a blow, frequently animate), realized as accusative object. A
transitive construction also occurs with a number of idiomatic meanings which
we do not consider here.

(3) Wenn
If

ein
a

Bauer
farmer

einen
a.ACC

Esel
donkey

hat,
has

dann
then

schlägt
beats

er
he

ihn
him

‘If a farmer has a donkey, then he beats it.’

Agentive oblique construction: Agentive subject, with adverbial goal complement
(mostly PP).

(4) Er
He

schlug
hit(PAST)

(mit
with

der
the

Faust)
fist

auf
on

den
the

Tisch.
table

‘He hit the table (with his fist).’

Double complement construction: Agentive subject, with accusative1 or dative
patient plus PP goal complement.

(5) a. Er
He

schlug
hit(PAST)

mich
me.ACC

auf
on

den
the

Rücken
back

b. Er
He

schlug
hit(PAST)

mir
me.DAT

auf
on

den
the

Rücken
back

‘He hit me on the back.’

In this paper we concentrate on the first and the third of these variants,
where either two inanimate and therefore non-agentive entities are involved (first
variant) or two animate entities, including a volitional agent (third variant).
These variants represent the two most extreme cases with respect to agentivity.

Based on a questionnaire study we will show that in German, the meaning
component ‘force’ is not always specified with a high value, contrary to what is
assumed for English hit. We propose that schlagen comes with a force attribute
which can receive any value: a high one (prototypical in the simple transitive
construction), or a low one (not prototypical in any construction, but possible
with all of them). As will be seen, the value of the force attribute is subject to
influences from adverbial modification and contextual inference.

The paper is structured as follows: In Sect. 2, we will explain how we use
adverbial modification to tease apart the meaning components of schlagen. Fur-
thermore we present and analyse the empirical data from the questionnaire study,
which illustrate the behavior of schlagen with respect to the force component in
the above constructions. In Sect. 3, we will give a first sketch of a frame seman-
tic analysis of schlagen along the lines of e.g. [14], Petersen 2015, integrating
the basic meaning components ‘force’ and ‘motion/contact’ and the argument
structure of the verb, as well as illustrating the effects of adverbial modification.

1 Following Vogel (2016) [17], the variant with an accusative object plus a goal PP
can be subsumed here as an extended version of the simple transitive construction.
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2 Schlagen and the Force Component

2.1 Adverbial Modification as a Tool to Tease Apart Verb Meanings

The German verb schlagen can appear in a number of grammatical constructions
(cf. Sect. 1). In order to map out its behaviour with respect to the force compo-
nent, we conducted a questionnaire study focusing (i) on the unaccusative con-
struction, involving an inanimate entity as theme argument in subject position
and a target-encoding PP (cf. 6), and (ii) on the simple transitive construction
with an animate agent in subject position and an animate patient as accusative
object (cf. 7). These two variants represent the two most extreme cases with
respect to agentivity (cf. Sect. 1). We chose them in order to explore effects of
agentivity on the force component.

(6) Die
the

Gitarre
guitar

schlägt
hits

gegen
against

die
the

Tischkante.
edge.of.the.table

‘The guitar hits the edge of the table.’

(7) Sophia
Sophia

schlägt
hits

Simon.
Simon

‘Sophia hits Simon.’

Since hit-verbs are generally described as ‘verbs of forceful contact’, one might
assume that the two variants should display the same force feature. On the other
hand, the construction in (7) is said to encode an action that especially affects
the object (more detailed discussion in [7], Gabrovska and Geuder ms.), hence
a difference in strength or kind of force might ensue. The first thing to test,
therefore, is whether the force feature is uniformly present with agentive and
non-agentive constructions.

We propose that questions like this can be addressed by examining the pat-
terning of modifiers that occur with a verb. In this paper, we use adjectives (in
adverbial function, which in German remains morphologically unmarked) whose
lexical meaning specifies features like force and agentivity. We presume that
modifiers can be divided, just like verb meanings, along these lines into those
that are specified for agentive traits and others that target a pure force feature
(Schäfer 2013 [16] speaks of a class of ‘pure manner adverbs’). Hence, we can
compare modifier-verb pairs of the type hart/leicht schlagen (hit hard/lightly)
— in which only the force feature should be addressed — with constructions
like spielerisch schlagen (hit playfully) in which an agentive feature of the verb
is addressed, since playing requires an agent. We expect compatibility restric-
tions that derive from the semantic representations, for instance, the agentive
modifier spielerisch (playfully) should be unable to occur with the unaccusative
construction (cf. 6).

A more tricky question is what to expect of modifiers that target differ-
ent values on the forcefulness scale, i.e. hart/leicht. It is immediately apparent
that modifiers which denote low force are in principle compatible with hit-verbs,
although standard descriptions of the verb meaning do not really seem to leave
room for this. This leads us to the question of prototypical expectations, and
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generally speaking, to the role of inferencing in the interpretation of modifiers.
Hence, over and above simple semantic compatibility, we want to test whether
verb-modifier pairs lead to preferential assumptions in the course of interpre-
tation (which can be overridden). A tool to test this is the so-called denial-of-
expectation construction with the conjunction but (cf. [11], Lakoff 1971).

In order to address these questions, we conducted a questionnaire study that
examined the following contrasts. First, we are interested in the behaviour of
the pure manner adverbs:

Question A: Do the constructional variants of schlagen differ with respect to
the meaning component “forceful contact” — especially in the sense that the
transitive construction is specified for high force?

Question B: Do the constructional variants give rise to inferences about forces
in different ways?

These questions can be tested in terms of the following hypotheses.

2.2 Hypotheses

Firstly, in the denial-of-expectation construction, of the pure manner adverbs we
expect only leicht (lightly) in a simple transitive sentence to be acceptable, i.e.
no expectations that can be contrasted through the use of aber (but) should arise
in unaccusative sentences. The only expectation that we assume to arise is that
of high force in simple transitive sentences. This expectation can then felicitously
be “denied” by the use of leicht in combination with aber (cf. Table 1).

Table 1. Contrasts to be investigated with pure manner adverbs leicht (lightly) and
hart (hard)

(A) testing for semantic
compatibility of modifiers

(B) testing for a (default) expectation

Agentive,
transitive cases

Sie schlägt ihn
√
leicht/

√
hart

She hits him
√
lightly/

√
hard

Sie schlägt ihn, aber
√
leicht/??hart

She hits him, but
√
lightly/??hard

Non-agentive,
unacc. case

Die Gitarre schlägt
√
leicht/

√
hart

gegen die Tischkante
The guitar hits the edge of
the table

√
lightly/

√
hard

Die Gitarre schlägt gegen
die Tischkante, aber ??leicht/??hart
The guitar hits the edge of
the table, but ??lightly/??hard

Secondly, we examine the behaviour of spielerisch (playfully) as an example
of an agent-oriented modifier. While the reference to agentivity should be part of
its semantic representation, we presume that spielerisch is also able to indicate
a low amount of force used when combined with schlagen. This leads to the more
specific question of whether this “force effect” is a feature of the semantic repre-
sentation or an inference triggered by meaning components of other types. That
the reference to agentivity is part of the semantic representation of spielerisch
can easily be confirmed with our method:
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Agentivity Hypothesis: Agent-oriented manner adverbs such as spielerisch
(playfully) can only apply to schlagen in the case of an animate agent in the
simple transitive construction (and not in the unaccusative construction with
a non-agentive theme as subject).

The predictions that can be derived from the agentivity hypothesis, illus-
trated with some example sentences, can be found in Table 2 (the sentences with
leicht (lightly) are given for comparison, they should be acceptable with both
constructions).

Table 2. Predictions derivable from the agentivity hypothesis

Simple transitive construction Unaccusative construction
√

Sie schlägt ihn spielerisch # Die Gitarre schlägt spielerisch gegen die Tischkante
√

She hits him playfully # The guitar hits the edge of the table playfully
√

Sie schlägt ihn leicht
√

Die Gitarre schlägt leicht gegen die Tischkante
√

She hits him lightly
√

The guitar hits the edge of the table lightly

Moreover, we are testing the assumption that the indication of low force in
the case of spielerisch is a defeasible inference:

Force Inference Hypothesis: Modifiers of the type of spielerisch (playfully),
when combined with schlagen, have an effect on the force component of schla-
gen, i.e. indicate a low value. However, this is an inferential process, and hence
defeasible.

For the test sentences relating to the force inference hypothesis, we again
make use of the denial-of-expectation construction with aber (but). The idea is
that an adverb such as spielerisch, which results in a force decrease inference,
cannot be opposed to an adverb that also indicates a decrease of the force mag-
nitude such as e.g. leicht (lightly). Since both modify the force magnitude in
the same direction, they should not be contrastable in a denial-of-expectation
construction with aber (but). However, since spielerisch triggers a defeasible
and hence cancellable inference on the force component, it should be acceptable
with an adverb modifying the magnitude of the force in the opposite direction,
e.g. hart (hard). In this case, the inference should be cancelled. The predictions
derivable from the force inference hypothesis are given in Table 3.

Table 3. Predictions derivable from the force inference hypothesis

Contrast in opposite direction
√

Sie schlägt ihn spielerisch, aber doch recht hart√
She hits him playfully, but still rather hard

Contrast in same direction ?? Sie schlägt ihn spielerisch, aber doch recht leicht

?? She hits him playfully, but still rather lightly
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2.3 Questionnaire Design and Materials

The questionnaire comprised 95 test sentences, distributed over seven question-
naires á 21–22 sentences, including two control sentences that were direct con-
tradictions (e.g. hit hard and lightly). The sentences were randomized, and all
questionnaires were distributed among German native speakers in two versions,
one of which contained the test sentences in reversed order.

The sentences had to be rated on a 4-point Likert scale, where a 4 means
“clearly good”, a 3 “maybe good”, a 2 “maybe bad” and a 1 “clearly bad”. This
way, speakers were forced to make a commitment as to whether a sentence was
more on the acceptable side or more on the unacceptable side. The rating task
was preceded by an introduction, which included an example sentence from an
unrelated domain (speed) and asked speakers to rate sentences according to their
first intuition. Following the rating task, information about speakers’ language
background was collected via four questions relating to their language(s) and
place(s) they have been raised/lived.

15–20 participants were tested for each version of all seven questionnaires.
Participants who rated either of the direct contradictions in the two control
sentences higher than 1 were excluded from the analysis, as were participants
whose native language was not German. 165 participants in total were included
in the analysis.

2.4 Data and Results

An overview of the results can be found in Table 4.
At first glance, all of our expectations have been confirmed. The sentences

testing expectations arising about the force magnitude in either simple transitive
construction or unaccusative construction, making use of pure manner adverbs
hart (hard) and leicht (lightly) as well as the contrastive conjunction aber (but),
have received a visibly lower percentage of ratings 3 “maybe good” and 4 “clearly
good” than their counterparts without aber (65% and 44% vs. > 90%). The
exception are sentences of the type Sie schlug ihn, aber leicht (She hit him,
but lightly), which were judged just as good as their counterparts without aber
(100% vs. 93%).

This confirms our prediction that schlagen in transitive construction with
an animate agent prototypically denotes high force, and that no such default
interpretation is available for schlagen in the unaccusative construction with an
inanimate entity as subject.

It also seems true that adverbs of the type spielerisch (playfully) can only be
used to modify schlagen if the verb appears in a simple transitive construction
with an animate agent, and not if it is used in the unaccusative construction
(88% ratings 3 & 4 vs. 32%).

Finally, we can see that sentences of the type spielerisch, aber doch recht
hart (playfully, but hard) receive much higher ratings than sentences of the type
spielerisch, aber doch recht leicht (playfully, but lightly) (76.5% ratings 3 & 4
vs. 28%). This shows that modifiers of the type of playfully do indeed result in
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Table 4. Percentages of ratings 3 “maybe good” and 4 “clearly good” for all hypotheses
(observed, not estimated)

Hypothesis Example sentences %

Force expectations transitive case Sie schlägt ihn, aber leicht 100%

She hits him, but lightly

Sie schlägt ihn, aber hart 65%

She hits him, but hard

Sie schlägt ihn leicht 92.9%

She hits him lightly

Sie schlägt ihn hart 95%

She hits him hard

Force expectations unaccusative case Die Gitarre schlägt gegen den Tisch, aber leicht 65.8%

The guitar hits the table, but lightly

Die Gitarre schlägt gegen den Tisch, aber hart 44.1%

The guitar hits the table, but hart

Die Gitarre schlägt leicht gegen den Tisch 90.4%

The guitar hits the table lightly

Die Gitarre schlägt hart gegen den Tisch 92,5%

The guitar hits the table hard

Agentivity hypothesis Sie schlägt ihn spielerisch 88%

She hits him playfully

Sie schlägt ihn leicht 89.5%

She hits him lightly

Die Gitarre schlägt spielerisch gegen den Tisch 32%

The guitar hits the table playfully

Die Gitarre schlägt leicht gegen den Tisch 87%

The guitar hits the table lightly

Force inference hypothesis Sie schlägt ihn spielerisch, aber doch recht hart 76.5%

She hits him playfully, but still rather hard

Sie schlägt ihn spielerisch, aber doch recht leicht 28%

She hits him playfully, but sill rather lightly

a force decrease inference, as they can felicitously be contrasted with hard (a
force increasing adverb), but not with lightly (a force decreasing adverb).

In order to test whether the observed results are significant, we have run a
general linear mixed effects model for all hypotheses. Unfortunately, we had too
few observations to be able to create a general linear mixed effects model testing
the force expectations in the transitive case (cf. first hypothesis in Table 4).

The model testing the force expectations in the unaccusative case (cf. second
hypothesis in Table 4), while confirming the general trend observable in Table 4
above, shows that the differences are not significant: the odds of rating a sentence
with contrastive but 3 (maybe good) or 4 (clearly good) are 0.042 times (but hard,
p = .06) and 0.116 times (but lightly, p = .21) the odds of rating a sentence
without contrastive but 3 or 4. That means there is a trend that participants
liked sentences with but less than sentences without but, i.e. there don’t seem to
be any expectations about the force magnitude that can be contrasted (“denied”)
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with hard or lightly in the unaccusative construction with an inanimate entity
as subject.

The model for the agentivity hypothesis yields significant results: the odds
of giving a sentence with schlagen ratings 3 (maybe good) or 4 (clearly good)
are significantly higher for a sentence in unaccusative construction with a force-
related adverb such as lightly (p < .001) or for a sentence in simple transitive
construction with any adverb (p = .002): more than 30 times the odds of giving
a sentence with schlagen in unaccusative construction and with an adverb of
the type playfully ratings 3 or 4. I.e. participants mostly did not accept agent-
oriented manner adverbs with inanimate subjects in unaccusative construction.

Lastly, the model for the differences in rating for the force inference hypoth-
esis, while confirming the trend observable in Table 4, also does not show sig-
nificant results: the odds of giving ratings 3 (maybe good) or 4 (clearly good)
for sentences of type playfully, but lightly are 0.063 (p = .057) times the odds
of giving sentences of type playfully, but hard ratings 3 or 4. That means that
sentences of the type playfully, but lightly are less acceptable than sentences of
the type playfully, but hard, which provides evidence for the prediction that the
low force reading of playfully is a cancellable inference.

To sum up: while we have evidence for all our predictions, it seems that
the observations about expectations relating to the magnitude of the force of
schlagen in transitive and unaccusative constructions (without modification)
are not as strong as expected. On the other hand, the force decrease infer-
ence that playfully-type adverbs trigger when combined with schlagen is clearly
observable in our data (only just not significant). And it is very clearly the
case that agent-oriented manner adverbs cannot combine with schlagen in the
unaccusative construction with an inanimate theme in subject position.

In the next section, we will present a model of schlagen in the framework of
Frame Semantics à la Petersen (2015) [14], which can integrate these findings
about schlagen in both constructions (simple transitive and unaccusative), as
well as explicitly model its other meaning components (movement and contact).

3 A Frame Semantic Model of hit-verbs

In this section, we discuss the modelling of our findings in a Frame representation,
a relational model of conceptual structure that is built on functional attributes
([14], Petersen 2015). In contrast to lexical decomposition models that focus on
event structure (ultimately elaborating on the insights of Dowty, 1979 [2]), a
Frame model is able to include a detailed analysis of the manner component
of a verb’s meaning and the way it relates to arguments, including implicit
arguments, of the event. The manner component of schlagen will be characterised
as based on notions of force exertion. As already pointed out by Levin (1993)
[12], however, movement is another component that has to be factored in. Hence,
the meaning of schlagen will involve at least two entities, dubbed here theme
and recipient, and a movement of the theme towards the recipient (or: ‘target’,
‘patient’), leading up to contact, the whole process being marked by a notion of
force transmission.
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There are various different scenarios of schlagen that would require variants
of the representation, but for our purposes here, we concentrate on a single
prototypical case in which a number of parameters is fixed that would have to
be variable to yield a fully general account. It is possible to integrate a frame
model in a compositional semantics with a fully-developed syntax-semantics
interface, but we are bypassing this aspect for simplicity (see e.g. [9], Kallmeyer &
Osswald 2013, for compositional aspects of frame theory). Our main goal with
the following model is merely to sort out which attributes are basically involved
in the concept schlagen, how they are interrelated, and how, in principle, modi-
fiers are able to create the effects demonstrated above in our empirical study.

The final result will be a complex frame (cf. Fig. 1). In the following, we will
discuss each part of the frame in some more detail, and then explain the effects
of the various modifiers.
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Fig. 1. The complete frame of the verb schlagen (to hit)

3.1 Argument Roles

At a coarse level of analysis, we can identify the scene as an interaction between
individuals (but note that this view will be refined presently). As pointed out
in the introduction, different uses of schlagen differ in the way how arguments
are realised. It is also possible to gather more arguments than were seen in our
standard examples (8a/b), cf. (8c), which may indicate that sometimes implicit
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arguments have to be taken into account in a full representation even of simple
examples like (8a):

(8) a. Sophia
Sophia

schlägt
hits

Simon.
Simon

[Agent, Recipient/Patient]

b. Die
The

Gitarre
guitar

schlägt
hit

gegen
(against)

die
the

Tischkante.
edge.of.the.table

[Theme, Recipient/Target]
c. Katja

Katja
schlägt
hit

die
the

Flasche
bottle

gegen
against

den
the

Tisch.
table

[Agent, Theme, Recipient/Target]

A role label like ‘agent’ can directly be used as an attribute in the sense of Frame
theory – its status as a functional notion is already evident in the standard event-
semantic notation agent(e,x) (cf. [13], Parsons 1990), which means a mapping
of events onto individuals. In the graphic frame representation (adopted in [14],
Petersen 2015) attributes are shown as labels of the arcs of a graph, and their
values as nodes (cf. Fig. 1). Hence, the attribute agent leads to a node that
introduces the relevant individual. Due to the recursive nature of the attribute-
value structure used in Frame Semantics, more information can be added as
a next step, e.g. if the agent also controls an instrument, is in a particular
intentional state in the event, etc. Conversely, the same individuals can be the
value of other attributes, too. This latter case becomes important as soon as an
event description is more finely decomposed: the classic thematic roles may in
fact sum up information from different aspects of the description (mirroring a
set of “proto-role entailments” in the sense of Dowty 1991 [3]). This is why we
set up the participant roles as a separate array, beside the core description of the
event. The thematic roles are focal parts of the representation but not primitives:
they can be linked in various ways to different parts of the decomposed event
description. In the frame fragment in Fig. 2, agent and theme are shown as
arguments of schlagen (the central node). But theme has at the same time
incoming arrows from (i.e., is the value of) diverse attributes, stating that the
moving object may simultaneously also be an instrument in the sense that it is
manipulated by an agent (“hit the table with the bottle”).

We will next specify the movement/contact and force transmission compo-
nents of schlagen in the frame.
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Fig. 2. The argument roles in the frame of schlagen
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3.2 Components of the Event Description

In line with standard views of hit-verbs, we distinguish between a ‘movement’
component and a ‘force transmission’ component in their description. The illus-
tration in Fig. 3 shows these as attributes of the node “Schlag” (hit); the val-
ues in each case are events. The force-transmission component specifies force-
related attributes of the participants (in terms of the roles of impacter and
its force-dynamic antagonist, called impactee). Similarly, the movement com-
ponent assigns its own semantic roles which we have dubbed here, with some
amount of foresight, ‘contacter’ and ‘contactee’.
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Fig. 3. The argument roles of the movement and force transmission components

The contactee role derives from the presence of a reference object that serves
to localise the movement path, as in “hit the bottle against the table”. However,
in order to simplify the discussion, we do not represent the semantic composition
of schlagen with prepositional phrases, rather, we present the movement node
as having already inherited all the relevant information about a movement that
leads up to contact. The resulting network of attributes now says that the moving
object is at the same time the impacter, the source of a forceful impact, and
that the goal of the movement is the impactee, the target of the impact. As
shown before, the moving object may also be under the control of an agent in
some particular scenario, making it also the agent’s instrument.

The two subcomponents movement and force transmission can now be
considered in more detail (cf. Fig. 4).

movement is described in terms of the two arguments just shown and the
path. The path is described as a linear order of points in space, as is standardly



30 A. Goldschmidt et al.

done (e.g. [18], Zwarts 2005). Some kind of path is always present due to the verb
meaning, irrespective of the addition of PPs in the syntax. Its linear ordering of
points specifies a designated starting point and endpoint, among other things,
which we can encode as attributes of the path. Furthermore, there is one point on
the path on which an impact takes place, i.e. a force transmission event between
impacter and impactee. In the typical case, this would be the endpoint (as e.g.
specified in the path description “against the table”), but our representation
leaves it open in principle whether this or some other point of the path will be
identified with the value of the attribute contact point.
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Fig. 4. The movement and force transmission components

On the left hand side of the representation in Fig. 4, the force transmission
event is described in terms of the attributes place (of impact, as just men-
tioned), potential causal effects, the participant roles (cf. Fig. 3), and, as we
additionally assume here, a measure function that directly maps the force trans-
mission event onto a value for the magnitude/strength of its impact (which has to
be distinguished from the question of effects such as doing damage or not). This,
in sum, is a preliminary proposal for encoding the distinction of the two domains
force dynamics and spatial description in schlagen events, and their interaction.
Let us now consider how the functioning of modifiers could be understood on
such a basis.

3.3 Modification

In general, (manner) modification in frames can be understood as a mechanism
that narrows down admissible values of the attributes in an event description,
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but it may also lead to the addition of new attributes (a sketch of adverbial mod-
ification in frames can be found in [8], Geuder 2006). The process is driven by
the lexical semantics of the modifiers, i.e. the adjectives that underlie adverbial
forms. Additionally, however, many effects of manner modification are not due to
hard-wired semantic features, but to inferential processes. This could be observed
in Sect. 2 above, where we showed that adverbial modifiers like spielerisch (play-
fully), when combined with schlagen, lead to a defeasible inference of low force.
Hence there are two things that we want to explain here: How do we get from
the lexical meaning of a modifier to the effect of manner modification, and how
do we distinguish between inferred and hard-wired effects of modification?

For reasons of space, we will only look into modification with spielerisch in
some detail. For cases like hart schlagen (hit hard) let us simply point out that
the lexical meaning of this adjective indeed seems to consist in a specification of
a (high) force value of some impact, and remain vague about potential further
meaning components, like the kind of interaction of two surfaces or materials
(but especially German hart seems to suggest some specific kind of mechanical
interaction of two non-elastic bodies, which may be less prominent in the case of
its English cognate). Hence, we have to formulate a rule such that the modifier
hart, by its lexical meaning, interacts with the attribute magnitude (of a force
transmission) so as to restrict the set of feature values admissible here.2 In
other words, it is a subsective modifier acting on a feature set (instead of on
an extension of a predicate, as it would be in a neo-Davidsonian framework; for
some more details we refer the reader to [8], Geuder 2006).

A more tricky case is the adverb spielerisch. We have seen that it presupposes
an animate agent (cf. the agentivity hypothesis in Sect. 2). Furthermore, it does
have an effect on the magnitude of the force posited for the hit, but only a
defeasible one, in contrast to hart. So we conclude, in the first place, that it
contributes a property of the event’s agent, and the force-dynamic effects must
be inferred on the basis of the adjective’s lexical representation and its effect
on the network of attributes in the frame of schlagen. Hence, we now need a
second frame representation of the adjective in order to combine it with the
event frame, and a preliminary inspection of corpus data shows us that this
adjective is highly variable in its meaning as a modifier. We will therefore confine
ourselves to formulating an approximation of the meaning that it assumes in the
present context together with the verb schlagen, without attempting a more
generalisable lexical representation. In the context of spielerisch schlagen (hit
playfully), the outcome is obviously the description of an action that is a hitting,
but one that is not an attack and is not marked by an intention to harm the
patient. Rather, it transports a communicative intention to evoke the possibility
of a real, aggressive hit which constitutes a kind of joke. Hence, we want to take
serious the meaning of the stem play that is present in the adjective. Playing is
arguably an activity that takes place in the real world but whose relevance and
goals reside in a fictional representation. In this way, playing is often (though not
always) an activity that simulates something else. Here, the overall contribution

2 Technically, a feature can be defined as an attribute-value pair.
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of this use of spielerisch involves an intention not to produce the full, real-life
effects of the event that is modified by this adjective, i.e. the “Schlag” or hit.
What the adjective as such is about is rather that the agent intends a “play”
consisting of the simulation of a hit.

Therefore, we propose that the simplified representation in Fig. 5 contains
the essential aspects of this modifier meaning.

spielerischAGENT

RE
AL

IZ
AT

IO
N CONTENT

Fig. 5. A frame representation for spielerisch (playfully)

First of all, we assume that spielerisch selects an argument which is an agent.
Thus, spielerisch always implies that some agent is playing something. Secondly,
we assume an argument role, dubbed here realisation, which introduces the
activity that is really performed in playing. And finally, there is the aspect that
playing aims at a fictional sphere, this is what the activity “means”, shown here
as the content attribute. Now, let us combine this representation with the
event frame for schlagen (cf. Fig. 1) and see what we get from it (cf. Fig. 6).

Resolving the agentivity condition in the modification looks straightforward:
The player must be identified with the hitter. Second, the activity that consti-
tutes the play is the hitting (the realisation attribute). When we say jeman-
den spielerisch schlagen (to hit somebody playfully), then in this case spielerisch
seems to point to a communicative act, a joking activity. Therefore, for this spe-
cific case we take the content feature of the play to be the aggressive act, which
is communicated as an absurd possibility and therefore as a friendly joke. (In
other contexts, the application of the basic concept of playing may lead to differ-
ent results). What we get for our specific case is that the value of the attribute
content of spielerisch is another event description of the type Schlag, but this
time the fully-fledged, aggressive one (which, as just said, is being simulated by
the playful hitting). Therefore, it has all the attributes that are seen in the main
part of the frame (for reasons of space not represented twice in Fig. 6, i.e. the
empty node of the content attribute is taken to be the whole frame of schlagen
again, from the node ‘Schlag’ downwards). If the hit that really occurs is a play-
ful version of a fully-fledged hit, we can posit a correlation: we can reasonably
expect that the force magnitude of the playful hit will be lower than that of
the simulated fully-fledged hit. This use of correlations between values of certain
attributes is part and parcel of frame theory (cf. Barsalou 1992 [1] who intro-
duces correlation as a technical term) and plays an important role throughout in
the analysis of manner modification (as also pointed out in [8], Geuder 2006; see
also [15], Petersen & Gamerschlag 2014, for a slightly different application). Such
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Fig. 6. Combination of the frames for spielerisch (playfully) and schlagen (hit)

correlations can be due to strict laws (of nature, for instance), but others can
also be typical correspondences which are defeasible. We are dealing here with
the latter case. It is simply the felicitous course of events if the playful hitting
does not do any harm. In our questionnaire study above, it was demonstrated
that this is a defeasible inference.

Hence spielerisch as a manner modifier works differently from hart as a man-
ner modifier, and we have now shown the reason for this: hart applies directly
to the force magnitude to change its value. In contrast, spielerisch, while it does
have an influence on the same value, does so only via a prototypical correlation.
The parts of the frame that it directly applies to are different ones than those
that hart directly applies to. However, the frame representation also shows the
way in which the correlation plays itself out: this is the link (arc) from spielerisch
to the node “Schlag”, stating that the hit is realised as a play.

This concludes our sketch of how Frame theory is applied to modelling adver-
bial modification, both with respect to the semantic representation and to the
explanation of inferential effects. Of course our present account only presents a
single and fairly narrow case study, but the mechanisms demonstrated here can
be exploited in a more general way. And while we have glossed over a number of
finer points, these could be integrated thanks to the flexibility of the framework
that allows one to ‘zoom in’ and add more details. For example, we have left
implicit the semantic intuition that the hitting in our example would have to be
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an intentional hitting by the agent, and that likewise playing is an intentional
activity; but such points could be added in more fine-grained versions.

4 Summary and Conclusion

In this paper, we have presented a couple of observations about the force com-
ponent and modification of German hit-verbs, and how these can be modelled
within Frame Semantics.

Firstly, in Sect. 2, we showed how the denial-of-expectation test with but can
be used to test native speakers’ expectations about certain defaults. We were able
to show that when schlagen (hit) is used in the unaccusative construction with an
inanimate theme in subject position, no expectations arise as to the magnitude
of the force (cf. the relative oddness of Die Gitarre schlägt gegen die Tischkante,
aber leicht/hart (The guitar hits the edge of the table, but lightly/hard)). But
when schlagen is used in the simple transitive construction with an animate
agent and patient, there is a tendency to expect the hitting to be done with high
force (cf. the acceptability of the sentence Sie schlägt ihn, aber leicht (She hits
him, but lightly)). Thus, we have shown that German schlagen does not lexically
specify a high amount of force.

Secondly, we were interested in the interaction between the force component
and two distinct types of modifiers, pure manner adverbs such as hart/leicht
(hard/lightly) on the one hand, and agent-oriented adverbs such as spielerisch
(playfully) on the other hand. Crucially, both are able to modify the force com-
ponent of the verb, though they do so via different mechanisms. When schlagen
is combined with modifiers such as spielerisch (playfully), a defeasible infer-
ence arises that the hitting was done with little force. This was again tested
through the use of but in denial-of-expectation construction (cf. the force infer-
ence hypothesis in Sect. 2). However, this effect is only observable for the simple
transitive construction, since agent-oriented modifiers of the type of spielerisch
can only apply to schlagen in this construction (with an animate agent, cf. the
agentivity hypothesis in Sect. 2).

These observations were modelled within Frame Semantics (cf. Sect. 3), a
form of meaning representation based on recursive attribute value structures.
Frame Semantics allows to combine the various meaning components of hit-verbs,
such as force and movement/contact, with the general argument structure of the
verb. We showed that the different grammatical constructions of schlagen can all
be modelled in one frame, and that this mode of representation makes explicit
the connections between the lexical content of the verb and other words in the
sentence (e.g. the recipient of the hit is also characterised as the contactee of
the movement/contact component, the impactee of the force component, and
the patient of the force impact). Furthermore, we were able to integrate the
frame for spielerisch into the verb frame and show explicitly how the defeasible
inference about low force is computed, rooting it in the semantics of the modifier
itself.



Towards Verb Modification in Frames 35

A Appendix — Example Sentences from the
Questionnaires

Sentences testing expectations arising about the force magnitude in the transitive
and unaccusative constructions:

– Sophia schlägt Simon hart.
‘Sophia hits Simon hard.’

– Chris schlägt Alex leicht.
‘Chris hits Alex lightly.’

– Julia schlägt Tobias, aber hart.
‘Julia hits Tobias, but hard.’

– Tobias schlägt Maike, aber leicht.
‘Tobias hits Maike, but lightly.’

– Die Gitarre schlägt hart gegen die Tischkante.
‘The guitar hits the edge of the table hard.’

– Die Gitarre schlägt leicht gegen die Tischkante.
‘The guitar hits the edge of the table lightly.’

– Der Zweig schlägt gegen die Hauswand, aber hart.
‘The branch hits the wall of the house, but hard.’

– Der Zweig schlägt gegen die Hauswand, aber leicht.
‘The branch hits the wall of the house, but lightly.’

– Die Wellen schlagen hart gegen den Deich.
‘The waves hit the dyke hard.’

– Die Wellen schlagen gegen den Deich, aber leicht.
‘The waves hit the dyke, but lightly.’

Sentences testing predictions of the agentivity hypothesis:

– Andrea schlägt Jan spielerisch auf den Arm.
‘Andrea hits Jan playfully on the arm.’

– Chris schlägt Alex leicht auf den Arm.
‘Chris hits Alex lightly on the arm.’

– Die Gitarre schlägt spielerisch gegen die Tischkante.
‘The guitar hits the edge of the table playfully.’

– Der Zweig schlägt leicht gegen die Hauswand.
‘The branch hits the wall of the house lightly.’

Sentences testing predictions of the force inference hypothesis:

– Andrea schlägt Jan spielerisch, aber doch recht leicht, auf den Arm.
‘Andrea hits Jan playfully, but still rather lightly, on the arm.’

– Andrea schlägt Jan spielerisch, aber doch recht hart, auf den Arm.
‘Andrea hits Jan playfully, but still rather hard, on the arm.’
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Abstract. Indefinites (e.g. a man, some woman) have given rise to a
number of puzzles concerning their scopal and dynamic behavior. One
such puzzle about long-distance indefinites seems to be unsettled in the
literature [3]. In this paper we show how Chierchia’s puzzle of long-
distance indefinites can be handled in semantics with dependent types.
The proposal builds on our formal system combining generalized quan-
tifiers [1,17,22] with dependent types [19,20,24] in [9,11].

Keywords: Quantifier scope · Long-distance indefinite · Dependent
type

1 Introduction

It has been observed that indefinites (e.g. a man, some women) often behave
more like referring expressions (e.g. John, Mary) and differ from the so-called
standard quantifier expressions (e.g. every man, most women) with respect to
their scopal and anaphoric properties. This has led to the abandonment of
the uniform treatment of all quantifier expressions in the form of generalized
quantifiers [1] and development of a battery of mechanisms for modeling indefi-
nites: individual/plural variables [7,12–14,23], choice/Skolem function variables
[15,25,29,32], dynamic existential quantification [8,31]. As will be argued in this
paper, adopting a dependent type theoretical approach to generalized quantifi-
cation allows us to restore some of this lost uniformity. In our previous work, we
have defined a new uniform algorithm to account for a wide range of anaphoric
(dynamic) effects associated with natural language quantification [9,11]. In this
paper, we will show how Chierchia’s puzzle about two kinds of long-distance
indefinites [3,27,30] can be handled in our semantics with dependent types,
without giving up the quantificational treatment of indefinites.

The paper is organized as follows. Section 2 introduces informally the main
features of our semantics with dependent types: (i) types, dependent types, and
their interpretation; and (ii) the notion of generalized quantification extended

c© Springer-Verlag GmbH Germany 2017
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to dependent types. In Sect. 3, we use an example of the behavior of indefinites
in ‘donkey anaphora’ contexts to briefly sketch what can be achieved with our
algorithm for the interpretation of anaphoric (dynamic) effects. Section 4 shows
how one can use dependent types to tackle Chierchia’s puzzle of long-distance
indefinites. We propose to credit the problematic long-distance readings to the
presence of (possibly pragmatically induced) dependencies. In the Conclusion, we
compare our proposal to the two recent quantificational accounts of indefinites
in Schwarzschild [28] and Brasoveanu & Farkas [2]. Appendix I and II provide
detailed analyzes of the linguistic examples used in the paper.

2 Dependent Type Semantics

In our previous work, we have developed a new dependent type theoretical
semantics for natural language quantification [9,11]. Our approach combines
elements from the two semantic frameworks: classical Montague-style semantics
and dependent type theories [4,6,18,24]. Like in the classical Montague-style
semantics, our approach makes essential use of generalized quantifiers [1,17,22].
But in the spirit of the dependent type theoretical framework, we adopt a many-
typed analysis (in place of a standard single-sorted analysis). Like in the depen-
dent type theories, we have type dependency in our system [19,20]. But whereas
the existing dependent type theoretical approaches have been proof-theoretic
[4,6,18,24], our semantics is model-theoretic with truth and reference being basic
concepts. In the following, we will introduce the main elements of our framework.

2.1 Types, Dependent Types and Their Interpretation

The variables of our semantic system are always typed. We write x : X to denote
that the variable x is of type X and refer to this as a type specification of the
variable x. Types are interpreted as sets. We write the interpretation of the type
X as ‖X‖. Types can depend on the variables of other types. Thus, if we already
have a type specification x : X, then we can also have type Y (x) depending on
the variable x and we can declare a variable y of type Y (x) in the context x : X,
and form an extended context

x : X, y : Y (x)

The fact that Y depends on X is modeled as a function

π : ‖Y ‖ → ‖X‖.

One example of such a dependence of types is that if m is a variable of the type
of months M , there is a type D(m) of the days in that month

m : M,d : D(m)
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Feb Mar April

〈Feb,1〉
〈Feb,2〉

...

〈Feb,28〉

〈Mar,1〉
〈Mar,2〉

...

〈Mar,31〉

〈Apr,1〉
〈Apr,2〉

...

〈Apr,30〉
‖D‖(April)������

�

‖D‖

‖M‖
�

πD,m

If we interpret type M as a set ‖M‖ of months, then we can interpret type D
as a set of the days of the months in ‖M‖, i.e. as a set of pairs

‖D‖ = {〈a, k〉 : k is (the number of) a day in month a}

equipped with the projection πD,m : ‖D‖ → ‖M‖. The particular sets ‖D‖(a)
of the days of the month a can be recovered as the fibers of this projection (the
preimages of {a} under πD,m)

‖D‖(a) = {d ∈ ‖D‖ : πD,m(d) = a}.

Our system makes no use of assignment functions. Variables serve to determine
dependencies and contribute to the semantics in an indirect way. Our semantics is
defined by directly combining interpretations of quantifier phrases and predicates
via some ‘algebraic’ operations and variables serve as an auxiliary syntactic tool
to determine how these operations are to be applied.

2.2 Generalized Quantifiers on Dependent Types

While Montague-style semantics is single-sorted in the sense that it includes one
type e of all entities (strictly speaking, it has two basic types: type e and type t
of truth values, and a recursive definition of functional types), our semantics is
many-sorted in the sense that it includes many basic types. On the Montague-
style analysis, a quantifier phrase like some woman is interpreted over the uni-
verse of all entities E, i.e. some woman denotes the set of subsets of E

‖∃x : woman x‖ = {X ⊆ E : ‖woman‖ ∩ X 
= ∅}.

As a consequence of our many-sorted analysis, we have a polymorphic inter-
pretation of quantifiers. On our analysis, a quantifier phrase like some woman
is interpreted over the type Woman, i.e. some woman denotes the set of all
non-empty subsets of the set of women

‖∃w:Woman‖ = {X ⊆ ‖Woman‖ : X 
= ∅}.
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As a result of our many sorted-analysis, we also have a polymorphic interpreta-
tion of predicates. On our analysis, a predicate like love is interpreted over types
(e.g. Man, Woman, . . . ), and not over the universe of all entities.

The main novelty of our proposal is in combining generalized quantifiers with
dependent types and thus introducing quantification over fibers, e.g. existential
quantification over the fiber of the days of April ‖D‖(April) (as in some days of
April)

Feb Mar April

〈Feb,1〉
〈Feb,2〉

...

〈Feb,28〉

〈Mar,1〉
〈Mar,2〉

...

〈Mar,31〉

〈Apr,1〉
〈Apr,2〉

...

〈Apr,30〉

‖∃d:D(m)‖(‖D‖(April))
������

�

‖D‖

‖M‖
�

πD,m

In this sense, fibers are considered 1st class citizens of our semantics, i.e. we allow
for quantification over fibers on a par with quantification over sets interpreting
any other types (e.g. Man, Woman, . . .). As will become evident below, the fact
that we have dependent types and quantification over fibers in our semantics
proves crucial to our solutions to some of the key puzzles involving anaphoric
and scopal properties of indefinites (unbound anaphora, exceptional scopes).

3 Indefinites and ‘Donkey Anaphora’

One puzzle about indefinites relates to the phenomenon of ‘donkey anaphora’
(an instance of unbound anaphora)

(1) Every farmer who owns a donkey beats it.

On the so-called universal reading, sentence (1) is understood to mean that every
farmer who owns a donkey beats every donkey he owns. The sentence is consid-
ered problematic, for the indefinite antecedent (a donkey) is contained inside a
relative clause and the pronoun (it) is outside that clause (i.e. the pronoun is
not syntactically bound its quantifier antecedent) but is related anaphorically
to the antecedent. The problem of ‘donkey anaphora’ has been dealt with in
a number of semantic paradigms (DRT, dynamic semantics, Skolem function
accounts, dependent type theoretical approaches). Our analysis of ‘donkey sen-
tences’ makes crucial use of dependent types and quantification over fibers. As
will be briefly explained below, the advantage of our analysis is in allowing a uni-
form and natural solution to some of the main difficulties surrounding ‘donkey
sentences’ (‘proportion problem’, ambiguities claimed for ‘donkey sentences’).
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The overall interpretational architecture of our system is two-dimensional
[9,11]. The two dimensions to the meaning of a sentence in our system are: the
truth value of a sentence and the dynamic effects introduced by the sentence
(dynamic extensions of context). Context for us is a sequence of type specifica-
tions of the individual variables

x : X, y : Y (x), z : Z(x, y), . . .

A sentence extends context by some possibly dependent types. In our work,
we have defined a new algorithm for the interpretation of the main kinds of
dynamic effects (dynamic extensions of context) associated with natural lan-
guage quantification [9,11]. In the ‘donkey anaphora’ case, the modified common
noun farmer who owns a donkey of sentence (1) extends the context by adding
two newly formed types (more precisely, by adding new variable specifications
on two newly formed types)

f : F, d : D(f).

The main clause quantifies universally over the interpretations of the respective
types (unbound anaphoric pronouns are treated as universal quantifiers in our
system)

Al Bo Ed

〈Al,d1〉
〈Al,d2〉

...

〈Al,d8〉

〈Bo,d1〉
〈Bo,d2〉

...

〈Bo,d10〉

〈Ed,d1〉
〈Ed,d2〉

...

〈Ed,d9〉

�

‖D‖

‖F‖
�

πD,f

– the type F interpreted as ‖F‖ (the set of farmers who own some donkeys),
– the dependent type D interpreted for the farmer a in ‖F‖ as ‖D‖(a) (the set

of donkeys owned by the farmer a),

yielding the desired truth conditions: every farmer who owns a donkey beats
every donkey in the corresponding fiber of the donkeys owned.

Importantly, this solution does not run into the ‘proportion problem’. Since
we quantify over farmers and the respective fibers of the donkeys owned (and
not over 〈farmer, donkey〉 pairs), a sentence like Most farmers who own a don-
key beat it comes out false if there are ten farmers who own one donkey and
never beat them, and one farmer who owns twenty donkeys and beats all of
them. Furthermore, ‘donkey sentences’ have been also claimed to be ambiguous
between the so-called (i) strong (universal) reading: Every farmer who owns a
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donkey beats every donkey he owns, and (ii) weak (existential) reading: Every
farmer who owns a donkey beats at least one donkey he owns. Our analysis
can accommodate this observation by taking the weak reading to simply employ
the quantifier some in place of every : every farmer who owns a donkey beats
at least one donkey in the corresponding fiber of the donkeys owned. Here, we
can follow [16] in assuming that in the unmarked case ‘donkey pronouns’ are
‘subject to a maximality constraint’ — then, on our analysis, they are treated
as universal quantifiers. Pragmatic factors (world knowledge, discourse context),
however, can sometimes override this maximality constraint, and then ‘donkey
pronouns’ can be also treated as existential quantifiers. Finally, since our seman-
tics allows for quantification over fibers, our analysis can be extended to account
for some more complicated ‘donkey sentences’ such as Every farmer who owns
donkeys beats most of them.

4 Indefinites and Chierchia’s Puzzle

Yet another puzzle about indefinites concerns their scopal properties and seems
to be unsettled in the literature [3,27,30]. The puzzle arises in connection with
sentences such as

(2) Every linguist has studied every solution that some problem might have.

Sentence (2) noncontroversially allows the so-called narrow scope reading for
some problem (for the ease of exposition, here and in the following examples we
will use formal representations in typed predicate logic; the syntax of our system
is different though — for the details, see Appendix I)

∀l:Linguist∀s:Solution[∃p:Problem solves(s, p) → studied(l, s)].

This narrow scope reading is (pragmatically) implausible, as it is logically equiv-
alent to the reading saying that every linguist l studied every solution s to every
problem p

∀l:Linguist∀s:Solution∀p:Problem[solves(s, p) → studied(l, s)].

As discovered by a number of authors ([25,32] among others), sentence (2) also
allows the so-called long-distance intermediate scope reading for some problem
saying that for every linguist l there is a possibly different problem p such that
l has studied every solution s to p

∀l:Linguist∃p:Problem∀s:Solution[solves(s, p) → studied(l, s)].

This long-distance reading is plausible and intuitively available to many authors
but it is also problematic, for on this reading the indefinite some problem (unlike
standard quantifiers) takes exceptional scope out of its scopal island (relative
clause).

One prominent strategy for handling this puzzling scopal behavior of indefi-
nites is Kratzer-Matthewson’s proposal where they argue that there is a way of
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accounting for the problematic readings without assuming that indefinites scope
out of their islands [15,21]. Chierchia, however, has pointed out to some exam-
ples that prove Kratzer-Matthewson’s strategy crucially insufficient [3]. In the
following, we will first discuss Kratzer-Matthewson’s solution and then explain
what has become to be known as Chierchia’s puzzle [3,27]. Finally, we will show
how one can use dependent types to tackle Chierchia’s puzzle and thus answer
our title question: whence long-distance indefinite readings?

4.1 Kratzer-Matthewson’s Solution

Kratzer in [15] credits the problematic reading in (2) to the presence of a hidden
pronoun/functional element, i.e. the apparent long-distance intermediate reading
is in fact a functional reading and can be expressed by the following paraphrase

(2a) Every linguist has studied every solution that some problem that intrigued
him/her most might have.

The proposed paraphrase can be represented as follows

∀l:Linguist∀s:Solution[solves(s, fproblem(l)) → studied(l, s)]

where fproblem denotes a function that maps every linguist l into the problem
that intrigues l the most. As can be seen from the above representation, func-
tional readings can be obtained with leaving the functional term representing
the indefinite in situ.1

One relatively minor problem for Kratzer’s solution has to do with her
assumption that functional readings only become available when there is a con-
textually salient function, e.g. the most intriguing problem function. Contra to
this assumption, it has been pointed out that one can often get a long-distance
reading for a paraphrase like (2b), even if one has no clue as to which function
is involved

(2b) Every linguist has studied every solution that a certain problem that
intrigued him/her might have.

To solve this problem, Matthewson in [21] proposes that the function variable
should be closed existentially (at the topmost possible level)

∃fproblem∀l:Linguist∀s:Solution[solves(s, fproblem(l)) → studied(l, s)].

Matthewson’s reading says that there is a way of associating problems to linguists
such that every linguist has studied every solution to the problem he/she is
associated with.

1 More precisely, Kratzer claims that indefinites are ambiguous between a (skolemized)
choice function interpretation and a generalized quantifier interpretation. Skolemized
choice function indefinites yield functional readings (masquerading as long-distance
readings). Quantificational indefinites have only local (clause-bounded) scopes.
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4.2 Chierchia’s Puzzle

Chierchia in [3] poses a challenge for Kratzer-Matthewson’s solution by observing
that there is another kind of long-distance readings that cannot be reduced to
functional readings

(3) Not every linguist has studied every solution that some problem might have.

Sentence (3) is intuitively true in a situation where for some linguist there is no
problem such that he/she has studied every solution that this problem might
have. These are the truth-conditions for the negated long-distance intermediate
reading, and NOT for Kratzer/Matthewson’s readings

– long-distance intermediate reading

∀l:Linguist∃p:Problem∀s:Solution[solves(s, p) → studied(l, s)]

– negated version saying that for some linguist l and for every problem p there
is a solution s such that s solves p and l did not study s

∃l:Linguist∀p:Problem∃s:Solution[solves(s, p) ∧ ¬studied(l, s)].

This last representation amounts to the more wieldy paraphrase already men-
tioned above saying that for some linguist there is NO problem such that he/she
has studied every solution that this problem might have. For Kratzer’s reading,
sentence (3) would claim that some linguist didn’t study some solution to the
problem that intrigued him/her most

∃l:Linguist∃s:Solution[solves(s, fproblem(l)) ∧ ¬studied(l, s)].

For Matthewson’s reading, sentence (3) would claim that there is a way of pairing
of linguists and problems such that some linguist did not study some solution
to the problem he/she is paired with

∃fproblem∃L:linguist∃s:Solution[solves(s, fproblem(l)) ∧ ¬studied(l, s)].

Chierchia conlcudes that we need to accommodate both kinds of long-distance
readings: functional and long-distance intermediate. So the puzzle is that we
seem to need heterogeneous mechanisms (e.g. skolemized choice functions, inter-
mediate existential closure of the choice functions variables) to account for the
behavior of long-distance indefinites. Moreover, the mechanisms proposed have
been argued to be problematic on both theoretical and empirical grounds (see
e.g. [23]).

4.3 Whence Long-Distance Indefinite Readings?

Our proposal distinguishes three kinds of long-distance readings

1. pragmatically induced dependent readings (corresponding to Chierchia’s long-
distance intermediate readings)

2. functional readings (corresponding to Kratzer’s readings)
3. dependent referential readings (corresponding to Matthewson’s readings).
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Pragmatically Induced Dependent Readings. We propose to credit Chier-
chia’s long-distance readings to the presence of contextually salient dependencies.
Consider an example in (2) again

(2) Every linguist has studied every solution that some problem might have.

On our analysis, Chierchia’s long-distance intermediate readings are not seman-
tically generated. As explained in Appendix I, in our semantic system a quan-
tifier expression (indefinite) can never escape a modified common noun such as
solution that some problem might have — thus our semantics with dependent
types can only yield a narrow scope reading for the indefinite some problem in
(2). The proposal is, however, that the problematic readings can be sometimes
pragmatically induced by contextually available dependencies. Here we draw on
the observation made by Chierchia himself [3]. As observed by Chierchia, special
context is needed to get a long-distance intermediate reading for a sentence like
(2). Chierchia gives an example of one such context ‘You know, linguists are
really systematic: Lee studied every solution to the problem of weak crossover,
Kim every solution to the problem of donkey sentences, etc.’

Suppose now that some such context can make one posit certain dependen-
cies, in that case that the type of problems depends on (the variable of) the type
of linguists and the type of solutions depends on (the variables of) the type of
linguists and the type of problems

l : L; p : P (l); s : S(l, p)

John Lena Phil Ken Sue Mike

〈John,P1〉
〈John,P2〉〈Lena,P2〉

〈Lena,P3〉
〈Phil,P4〉
〈Phil,P5〉〈Ken,P5〉

〈Ken,P6〉
〈Ken,P7〉

〈Sue,P4〉
〈Mike,P3〉
〈Mike,P4〉

�

‖P‖

‖L‖
�

πP,l

By quantifying over dependent types posited in this way, we get the pragmatic
dependent reading (� Chierchia’s reading) saying that for every linguist a in
‖L‖ there is at least one problem b in the corresponding fiber ‖P‖(a) such that
a has studied every solution c in ‖S‖(a, b)

∀l:L∃p:P (l)∀s:S(l,p)l has studied s.

Notice that the dependencies available in the context force the indefinite some
problem to take scope over every solution — in that case, the pragmatic logical
form OVERRIDES the sentence’s semantic logical form. The negative sentence
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would then claim that for some linguist a in ‖L‖ there is NO problem b in the
corresponding fiber ‖P‖(a) such that a has studied every solution c in ‖S‖(a, b)

∃l:L∀p:P (l)∃s:S(l,p)l did not studied s.

Thus the strategy proposed allows us to account for Chierchia’s truth-conditional
intuitions regarding negative sentences such as (3).

Our proposal perhaps can be further strengthened by the examples of the
following kind

(4) Every accomplished food critic reviewed every restaurant that some million-
aire visited.

(5) Every accomplished food critic reviewed every restaurant that some million-
aire owned.

Our intuitions are that the dependent reading (� Chierchia’s reading) and its
corresponding negative version are hard to get with the example in (4), as it is
rather difficult to come up with a plausible context where the type of millionaires
depends on (the variable of) the type of food critics and the type of the visited
restaurants depends on (the variables of) the type of millionaires and the type of
food critics. This contrasts with the example in (5) where the dependent reading
and its corresponding negative version should be much more readily available,
as it is more natural to assume that the type of the owned restaurants depends
on (the variable of) the type of millionaires and it is also much easier to come up
with a plausible scenario where the type of restaurants depends on (the variables
of) the type of millionaires and the type of food critics (say, Food Critic 1 has
been assigned the task of reviewing all of the restaurants owned by Millionaire
A, Food Critic 2 has been assigned the task of reviewing all of the restaurants
owned by Millionaires B and C, etc.). A number of researchers have observed
that the availability of long-distance intermediate readings is a gradient effect
rather than all or nothing ([3,25,32] among others). Since our proposal takes
such readings to be dependent on the context, we have a ready explanation for
this observation.

Functional and Dependent Referential Readings. Now, what about
Kratzer-Matthewson’s readings? Our proposal distinguishes functional and
dependent referential readings. Consider first an example of Kratzer’s functional
reading in (2a)

(2a) Every linguist has studied every solution that some problem that intrigues
him/her most might have.

On our view, sentence (2a) yields a functional reading saying that every linguist
a has studied every solution to f(a). For our analysis of function terms, see
Appendix II. To explain our account of dependent referential qua Matthewson’s
readings, we need to say something more about indefinites.



Whence Long-Distance Indefinite Readings? 47

Unlike standard quantifiers (e.g. every student, most students), indefinites
(e.g. a student, three students) have been observed to exhibit ambiguity between
the so-called general (quantificational) and specific (referential) reading. To give
an example, I can make a general claim using a sentence I have been friends with
some student and my use of the indefinite will not imply that I am thinking
about any particular student. But I can also use the same sentence to make
a specific claim and my use of the indefinite will introduce some particular one
student that I have in mind. To handle this ambiguity in indefinites, we introduce
into our system two kinds of type-assignment. An indefinite, e.g. some student,
is ambiguous allowing a combination of the determiner some and either:

– the variable of the ‘standard’ type Student, interpreted as the set of all stu-
dents (given in the context) — ‖Student‖, or

– the variable of the ‘referential’ type Student*, interpreted as a certain set
containing a single student that the speaker has in mind — ‖Student*‖.2

Correspondingly to ‘referential’ types, we can also have dependent referential
types in our semantics.

Consider now an example in (2b)

(2b) Every linguist has studied every solution that a certain problem that
intrigued him/her might have.

On our analysis, sentence (2b) quantifies over the dependent referential type
(with one problem per fiber)

l : L; p : P ∗(l)

John Lena Phil Ken Sue Mike

〈John,P1〉

〈Bob,P2〉

〈Phil,P3〉

〈Ken,P4〉

〈Sean,P3〉

〈Mike,P2〉

�

‖P ∗‖

‖L‖
�

πP∗,l

yielding the desired dependent referential reading (Matthewson’s reading). As
already mentioned above (for the details, see Apprendix I), in our semantic sys-
tem a quantifier expression (indefinite) can never escape a modified common
noun such as solution that a certain problem that intrigued him/her might have
— our semantics with dependent types can only yield a narrow scope reading

2 A similar idea with thorough linguistic motivation can be found in [28].
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for the dependent referential indefinite a certain problem that intrigued him/her
in (2b). In that case, however, since there is just one problem per fiber, the
narrow scope reading becomes indistinguishable from the long-distance one (in
Matthewson’s sense) — thus we can obtain the dependent referential reading
(Matthewson’s reading) with the dependent referential indefinite being inter-
preted in situ. Notice also that we can utter a sentence like (2b) without having
any clue as to which pairing is involved.

5 Conclusion and Related Work

In this paper, we propose a new solution to Chierchia’s puzzle of long-distance
indefinites from the perspective of our semantics combining generalized quanti-
fiers with dependent types [9,11]. To the best of our knowledge, our proposal
is the first solution to Chierchia’s puzzle that keeps the quantificational analy-
sis of indefinites. The two recent quantificational accounts of indefinites and
their exceptional scopal properties have been proposed in Schwarzschild [28] and
Brasoveanu & Farkas [2]. Schwarzschild’s approach assumes a unitary analysis
of indefinites as existential quantifiers. On occasion the domain of an indefinite
can be contextually narrowed down to one individual via pragmatic mechanism
— this gives referential readings. Furthermore, the proposal is enriched with
the assumption that the domain restriction of a ‘singleton indefinite’ can involve
bound variables — this accounts for Matthewson’s readings but Chierchia’s inter-
mediate readings are left unexplained. Brasoveanu & Farkas also assume a uni-
form analysis of indefinites as existential quantifiers but they develop a proposal
that follows Independence-Friendly Logic. On this approach, an existential quan-
tifier explicitly specifies which variables it will be dependent or independent of —
this accounts for Chierchia’s intermediate readings but it is not obvious how the
proposal can be extended to include Matthewson’s readings (for a similar worry,
see [23]). At the core of our solution is quantification over fibers. By having
quantification over fibers available, we offer a new pragmatic take on Chierchia’s
intermediate readings that credits the problematic readings to the presence of
contextually induced dependencies. By introducing the device of dependent ref-
erential types, we provide a novel analysis of Matthewson’s readings that does
not require quantification over functions.
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Appendix I

In the appendix, we only discuss the elements of our semantic system relevant
for the linguistic purposes of this paper. For the full system, see [9,11].
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Combining Quantifier Phrases - Chains of Quantifiers

To handle multi-quantifier sentences, the interpretation of quantifier phrases is
extended in our system into the interpretation of (generalized) quantifier prefixes.
(Generalized) quantifier prefixes can be built from quantifier phrases using the
sequential composition ?|? constructor. The corresponding semantical operation
is known as iteration. To illustrate with an example: Every linguist has studied
some problem can be understood to mean that each of the linguists has studied
a potentially different problem. To capture this reading:

– a sequential composition constructor ?|? is used to produce a multi-quantifier
prefix: ∀l:L|∃p:P ;

– the corresponding semantical operation of iteration is defined as follows

‖∀l:L|∃p:P ‖ = {R ⊆ ‖L‖ × ‖P‖ : {a ∈ ‖L‖ : {b ∈ ‖P‖ : 〈a, b〉 ∈ R} ∈ ‖∃p:P ‖} ∈ ‖∀l:L‖}.

The multi-quantifier prefix ∀l:L|∃p:P denotes a set of relations such that the set
of linguists such that each linguist is in this relation to at least one problem
is the set of all linguists. Obviously, the iteration rule gives the same result as
the standard nesting of quantifiers in first-order logic.

Combining Generalized Quantifiers with Dependent Types

The interpretation of generalized quantifier prefixes is further extended to depen-
dent types

‖∀l:L|∃p:P (l)‖ = {R ⊆ ‖P‖ : {a ∈ ‖L‖ : {b ∈ ‖P‖(a) : 〈a, b〉 ∈ R} ∈ ‖∃p:P (l)‖(‖P‖(a))} ∈ ‖∀l:L‖}.

The multi-quantifier prefix ∀l:L|∃p:P (l) denotes a set of relations such that the set
of linguists such that each linguist is in this relation to at least one problem
in the corresponding fiber of problems is the set of all linguists. By extend-
ing the interpretation of generalized quantifier prefixes to dependent types, our
semantics introduces quantification over fibers, e.g. quantification over the fiber
of the problems of John - ‖P‖(John)

John Ann Lena Sean Mai

〈John,P1〉
〈John,P2〉 〈Ann,P2〉

〈Ann,P3〉
〈Lena,P4〉
〈Lena,P5〉

〈Sean,P4〉
〈Mai,P3〉
〈Mai,P4〉

�

‖P‖

‖L‖
�

πP,l
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Our Analysis of Sentence (2)

Alphabet. The alphabet of the system consists of:
type variables: X,Y,Z, . . .;
type constants: Linguist, Problem, Solution, . . .;
type constructor: T;
individual variables: x, y, z, . . .;
predicates: Pn, Pn

1 , . . .;
quantifier symbols: ∃,∀, . . .;
prefix constructors: ?|?, . . ..

English-to-Formal Language Translation. Consider now an example in (2)

(2) Every linguist has studied every solution that some problem might have.

Our English-to-formal language translation process consists of two steps (i) rep-
resentation and (ii) disambiguation. The syntax of the representation language
- for the English fragment considered in this paper - is as follows

S → Prdn(QP1, . . . , QPn);
MCN → Prdn(QP1, . . . , CN , . . . , QPn);
MCN → CN ;
QP → Det MCN ;
Det → every, some, . . .;
CN → linguist, problem, . . .;
Prdn → study, have, . . .

Sentence (2) is accordingly represented as
Study2 (every linguist, every solution that some problem might have).

Multi-quantifier sentences of English, contrary to sentences of our formal lan-
guage, are often ambiguous. Hence one sentence representation can be associ-
ated with more than one sentence in our formal language. The second step thus
involves disambiguation. We take quantifier phrases out of a given representa-
tion and organize them into possible prefixes of quantifiers. In the case of our
example, the sentence translates as

∀l:Linguist|∀ts:TSolution to some problem
Study2(l, ts).

Interpretation. In the Montague-style semantics, common nouns are inter-
preted as predicates (expressions of type e → t). In our type-theoretic setting,
common nouns (CN), e.g. linguist, are treated as types. To handle modified
common nouns (MCN), e.g. solution that some problem might have, we intro-
duce into our system ∗-sentences (= Have2 (some problem, solution) determin-
ing some possibly dependent types (interpreted via the algorithm introduced in
[9,11]).
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In our example, the type Linguist is interpreted as a set of linguists (indi-
cated in the context) ‖Linguist‖ and the type TSolution to some problem, as

‖TSolution to some problem‖ = {c ∈ ‖Solution‖ : {b ∈ ‖Problem‖ : 〈b, c〉 ∈ ‖Have‖} ∈
‖∃p:Problem‖}.

Thus, as can be seen from this analysis, our semantics with dependent types
can only yield a narrow scope reading for the indefinite some problem in (2):
every a in ‖Linguist‖ has studied every c in ‖TSolution to some problem‖.

Appendix II: Interpretation of Function Terms

To complete the semantic account given in [9,11], we need to show how function
terms can be handled in our system. Consider two sentences involving, respec-
tively, a reflexive pronoun (RP) and a function term (FT):

(RP) Every man loves himself.

∀m:ManLove(m,m)

(FT) Every man loves his partner.

∀m:ManLove(m, f(m))

Our method for interpreting reflexive pronouns uses a diagonal function:

δX : X → X × X such that δX(x) = 〈x, x〉, for x ∈ X.

Then for any subset R ⊆ X × X we have δ−1
X (R) ⊆ X, the inverse image of

R under δX . Thus if Love is a binary predicate interpreted as a subset ‖Love‖
of X × X, the interpretation of the formula Love(x, x) is a subset δ−1

X (‖Love‖)
of X, the inverse image of ‖Love‖ under δX . It contains those x ∈ X that
〈x, x〉 ∈ ‖Love‖. What (RP) says then is that the set of men such that they love
themselves is the set of all men.

Reflexive pronouns, as in (RP), are just a special case (involving identity) of
a broader class of function terms, as in (FT). In case of (FT), the function is no
longer diagonal, but otherwise the interpretational procedure is the same. Now
the function Gf is the embedding of X onto the graph of the function ‖f‖ which
is the interpretation of the function symbol f , i.e.

Gf : X → X × Y such that Gf (x) = 〈x, ‖f‖(x)〉, for x ∈ X.

Then for any subset R ⊆ X × Y we have G−1
f (R) ⊆ X, the inverse image of R

under Gf . Thus if Love is a binary predicate interpreted as a subset ‖Love‖ of
X × Y , the interpretation of the formula Love(x, f(x)) is a subset G−1

f (‖Love‖)
of X, the inverse image of ‖Love‖ under Gf . It contains those x ∈ X that
〈x, ‖f‖(x)〉 ∈ ‖Love‖. What (FT) says then is that the set of men such that
they love their partners is the set of all men.
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Abstract. We present a novel method for translating (a fragment of)
first-order abduction into an answer-set program in the context of natural
language understanding since the heretofore used algorithms do not allow
for seamless integration of the process of abduction with deduction. Our
method helps the solver confine the search space by ruling out logically
impossible proofs (with respect to a background theory).

Keywords: Abduction · Natural language processing

1 Introduction

Natural language understanding (NLU), a field of natural language process-
ing (NLP) which interprets sentences at the level of pragmatics, can be thought
of as first-order abduction [10,13]. The sentence we want to interpret is what is
“observed” and the “best” abductive proof tells us what the sentence actually
means. Abductive reasoning is nonmonotonic and ampliative, that is, what we
conclude cannot be proved deductively, but it extends our background knowledge
in a coherent way.

Abduction can be combined with other forms of reasoning, such as deduction.
Indeed, most ontologies consist of both deductive and abductive rules. Particu-
larly useful is weighted abduction, a variant of probabilistic abduction that can
be used to find optimal proofs. What “optimal” means depends on what is being
reasoned about. In discourse analysis, for instance, the least specific proof maxi-
mizing redundancy is preferred [10], that is, we assume as little as possible while
trying to unify as many assumptions as possible with what is already known
and preferring more salient individuals. In the domain of automated planning,
the shortest proof (i.e., the shortest plan leading to the desired goal state) is
considered the best, and so forth.

There is no efficient (polynomial) algorithm for first-order abduction (cf. [1],
“even in the case of propositional Horn clause theories, the problem of comput-
ing an explanation for an arbitrary proposition is NP hard”). In early exper-
iments with interpretation as (weighted, i.e., cost-based) abduction, the only
published algorithm for rule-based (i.e., nonstochastical) abduction proposed by
Hobbs et al. [10], which is based on a Prolog-based abductive theorem prover,
was used but it is too slow.1 Later a more efficient algorithm based on inte-
1 Most sentences of average length take up to 20 min to process.

c© Springer-Verlag GmbH Germany 2017
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ger linear programming was developed [12,13].2 But neither approach allows for
seamless integration of abduction with full-fledged deduction. Although proposi-
tional abduction is known to be implementable as stable model enumeration [5],
in the case of NLU the underlying theory is first-order. In this paper we present
a method based on ideas first presented in [11] for comparatively efficient first-
order abduction implemented as answer-set solving. In our experiments, we used
the solver described in [3].

Our approach is somewhat similar to that of [14], though we additionally
consider salience effects. Since the work described in [14] is very recent, a com-
parison of the two methods has yet to be done.

In Sect. 2 we give an overview of the problem illustrated with a simple exam-
ple. Section 3 describes the translation of a first-order abductive problem into
an answer-set problem. Section 4 briefly describes possible integrity constraints
that significantly constrain the proof search space. Section 5 presents a method
for selecting the best abductive proof in the domain of NLU. Finally, Sect. 6
concludes.

2 Preliminaries

Abduction is the reasoning process of finding explanations for observations. In
NLU, the “observations” are (logical forms of) sentences and the interpretation of
a sentence is the “best” (i.e., most coherent) abductive proof that explains it with
respect to a background theory. Formally, I is an interpretation of observations
O with respect to a background theory T if

T ∪ I � O and T ∪ I �� ⊥ (1)

that is, T ∪ I entails O and is consistent. The sentence John is an elephant may
mean that there is an actual elephant whose name is John, i.e., I can be the
literal meaning of the sentence. But if we know (from context) that John is a
person, T ∪ I will be inconsistent, hence I cannot be the literal meaning of the
sentence and we are forced to find some other (nonliteral) interpretation that
makes sense in the given context.

We use the logical representation proposed by Hobbs [6], which is a “con-
junctivist” scope-free first-order approach to linguistic meaning. Consider the
sentence John sees Mary. Irrelevant details aside, its canonical logical represen-
tation is

(∃e, x, y)see ′(e, x, y) ∧ John(x) ∧ Mary(y) (2)

that is, there is an eventuality e which is a seeing, John does it and Mary undergoes
it. Similarly, the logical representation of John doesn’t see Mary would be

(∃e1, e2, x, y)not ′(e1, e2) ∧ see ′(e2, x, y) ∧ John(x) ∧ Mary(y) (3)

2 There is also a stochastical algorithm [2] but we are concerned only with symbolic
computation in this paper.
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that is, the negation of the eventuality expressed in (2) is asserted. Hobbs [9]
shows that an appropriately rich and precise theory of commonsense reasoning
can be expressed in this way.

Tbilisi(x) office(y) nn(x, y)∧ ∧

location(x) location(y) in(y, x)

Fig. 1. Proof of the Tbilisi office

S

NP

a boy

VP

V

built

NP

a boat

(∃e, x1, y1, x2, y2)boy(x1)∧build (e,x2,y2)∧Past(e)∧boat(y1)

Fig. 2. Parse tree and variable bindings for a boy built a boat

The intended real-world meaning of (2) and (3) is their literal meaning.
But the logical representation can contain linguistic predications that need be
interpreted with respect to a background theory in order to be given a real-world
meaning. The noun phrase (NP) the Tbilisi office is parsed as

(∃x, y)Tbilisi(x) ∧ office(y) ∧ nn(x, y) (4)

that is, there are two entities and an nn (i.e., N-N compound) relation between
them, but the predicate nn only tells us that x and y are adjacent NPs and x
precedes y. If we know from context that there is an office in Tbilisi, we want
to interpret (4) as in(office,Tbilisi). If we have no such information but our
background knowledge contains the facts that Tbilisi is a city and that cities
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and offices are locations, we can still draw the (defeasible) conclusion that there
is an in relation between the entities. Whichever the case, though, we need the
following lexical axiom (we use ⇀ to denote defeasible implications in abductive
rules and ⊃ to denote implications in “hard” rules):

(∀x, y)in(x, y) ⇀ nn(y, x) (5)

that is, the fact that x is located in y can be expressed by a compound nominal
at the lexical level. Of course, axiom (5) is only defeasible, for an in relation
can also be expressed by other linguistic constructions. Thus, to interpret (4)
we have to backchain on axiom (5) and unify both variables. The proof of (4) is
depicted in Fig. 1. As can be seen, the abduction process is first-order even for
simple examples (Fig. 2).

Having exemplified how abduction works in Hobbs’ [10] framework, let us
now turn to stable models used in ASP. We take the definition of a stable model
from [4]. Let us assume that we have a set of rules of the form

A ← B1, . . . , Bm,∼ C1, . . . ,∼ Cn

A model of such a set of rules is the set of atoms that are true. For any set of
atoms I, the reduct of a set of rules R relative to I is the set of rules without
negation obtained from R by dropping the rules that contain ‘∼C’ for an atom
C from I and then dropping all the ‘∼Ci’ from the remaining rules. I is a stable
model of R if I is a model of the reduct of R relative to I.

3 Translation of Deductive and Abductive Rules

Classical deduction poses no problem to the solver. We can have strict rules
such as3

elephant1(x) ⊃ mammal1(x)
mammal1(x) ⊃ animal1(x) (6)

and we can use strong negation and disjunction, as in

person1(x) ⊃ ¬animal1(x)
person1(x) ⊃ man1(x) ∨ woman1(x) (7)

The main result reported in this paper is a method for converting abduction with
observations that contain variables into an answer-set problem. We represent

3 We use subscripted predicates to represent real-world meaning and unsubscripted
predicates to represent lexical meaning. This distinction is necessary in order
to accommodate lexical ambiguity and figurative speech such as metaphors and
metonymy. For example, the literal real-world meaning of John is an elephant (whose
logical form is John(x) ∧ elephant(x)) is John1(x) ∧ elephant1(x), but if we already
know that John is a person (person1(John)) we are forced into a figurative meaning
such as John1(x)∧ clumsy1(x). Thus in this sense, to interpret a sentence is to steer
clear of contradictions in the knowledge base.
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observations and assumptions as follows (⇒ denotes translations from FOL into
ASP):

observations: elephant(x) ⇒ pred(elephant, obsrv, varx)
assumptions: elephant1(x) ⇒ pred(elephant1, asmpt, varx) (8)

that is, variables are encoded as individuals. An abductive rule is encoded as
follows (p ⊃1

0 q means 0{q}1 :- p, that is, the consequent may or may not be
included in the stable model; this rule encodes the fact that assumptions are
optional):4

elephant1(x) ⇀ elephant(x)
⇒

pred(elephant, x, y)∧
x ∈ {obsrv, asmpt} ⊃1

0 pred(elephant1, asmpt, y)∧
explainedBy(elephant, y, rule1(y)) ∧ assumedBy(elephant1, y, rule1(y))

(9)

that is, if there is a predication we want to explain that can be unified with
the consequent of an abductive rule, we may assume the antecedent (but we
may ignore the rule because the cost of assuming the antecedent may be higher
than the cost of assuming the consequent, thus we have to always consider both
cases). The auxiliary predications are used in the following rules, which help us
guarantee that the computed stable model is a correct abductive proof (in the
sense of [10]; ∼denotes default negation):

assumedBy(p, x, r) ⊃ assumed(p, x)
pred(p, asmpt, x)∧ ∼assumed(p, x) ⊃ ⊥

explainedBy(p, x, r1) ∧ explainedBy(p, x, r2) ∧ r1 �= r2 ⊃ ⊥
(10)

that is, a predication can be assumed only if it can be derived by backchaining
on an abductive rule from predications that are already assumed by some other
rule(s) and a predication cannot be explained by more than one rule.

The most important aspect is how variables in observations are handled.
Since an answer-set program (ASP) has to be effectively propositional, we have
to “emulate” equality. If a predication containing a “reified” variable (e.g., varx)
can be unified with another predication, we can bind the variable. For exam-
ple, if the knowledge base contains person1(John) and we observe or assume
person1(varx), we may add eq(John, varx) to the stable model. We may also
decide not to bind a variable, in which case a new individual has to be added
to the knowledge base. Of course, we need axioms that guarantee that eq is an
equivalence relation. We will not list all of them here but let us mention the most
important axiom schema. If P is a predicate, we need P (x) ∧ eq(x, y) ⊃ P (y) in
order for deduction to work. Thus whenever we bind a variable, the knowledge

4 An abductive rule as defined in [10] is an implication whose antecedent and conse-
quent are conjunctions of positive literals, whereby all the literals in the antecedent
are abducible (assumable).
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base grows (in the worst case exponentially). There is no way around this prob-
lem since answer-set solving is propositional. Luckily for us, the logical form of
a sentence contains only few variables (around a dozen), hence the presented
method is viable for NLU. In actual fact, we are sacrificing space for time, since
we need new literals for each variable assignment.

We use defeasible rules to infer what might be true (thus extending our
knowledge) based on what we already now. We process one sentence at a time in
order to keep the proof search space as small as possible. Of course, in a connected
discourse this may lead to a contradiction. Generally we try to assume as little
as possible (see Sect. 5), but if we arrive at a contradiction, we have to backtrack
and reprocess part of the discourse. We plan on using a truth maintenance system
in the future, but for the time being, we simply reinterpret the sentences which
might be affected by the false assumption.

q(x)

p(x) r(x)

p(a) r(b)

= =

Fig. 3. Complete proof graph for (11)

We will now illustrate with a simple example how the solver finds abductive
explanations by generating a proof graph and yielding subgraphs corresponding
to well-formed proofs. Consider the following observation, abductive rules, and
known facts (as usual, x is a variable and a, b are constants):

observation: q(x)
rule: p(x) ⇀ q(x)
rule: r(x) ⇀ q(x)
facts: p(a), r(b)

(11)

The complete proof graph for (11) is given in Fig. 3. The labelled edges are pos-
sible “merges” (syntactically unified predications) and the unlabelled edges are
licensed by backchaining on abductive rules. An abductive proof is equivalent to
a subgraph of the complete proof graph complying with the following conditions:

1. An observation or assumption is explained by no more than one defeasible
rule.5

5 This condition does not mean that a literal cannot be implied by more rules, it only
says that only one (defeasible) rule is taken to be its explanation.
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2. There is a path from any assumption to an observation (that is, we eliminate
assumptions that do not, directly or indirectly, contribute to the explanation
of an observation).

3. Variable assignments conform to the usual constraints on equivalence,
i.e., reflexivity, symmetry, and transitivity.

These constraints on the subgraph guarantee that the corresponding proof
be well-formed.

q(x) q(x)

p(x)

q(x)

r(x)

q(x)

p(x)

p(a)

=

q(x)

r(x)

r(b)

=

Fig. 4. Proofs of (11)

All the proofs of (11) are depicted in Fig. 4. The corresponding hypotheses
(including the observation) are:6

q(x)
p(x) ∧ q(x)
r(x) ∧ q(x)

q(a)
q(b)

(12)

It is not hard to see that each stable model of the translated theory repre-
sents an abductive proof in the original theory. The proof can be sketched by
induction on the size of abductive proofs as follows: If we add no new assump-
tions (no assumed literals), the stable model corresponds to the trivial proof
where all the observations are assumed. Let us now have a stable model that
corresponds to an abductive proof, and a superset of it that contains one more
assumption. Since it could only be derived through a rule like that in (9), we
know that the bigger model also represents a correct abductive proof, because
the additional assumption can be obtained by backchaining on an abductive rule.
Since abductive proofs can be constructed iteratively, each stable model encodes
a well-formed proof. On the other hand, each abductive proof—provided the

6 In the domain of NLU, the logical form of a sentence is an existential closure so we
would have to introduce a new individual for every free variable.
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added assumptions are consistent—corresponds to a stable model, because the
form of the rules like that in (9), namely

0{. . . }1 :- . . .

ensures that all the possible assumptions obtainable by backchaining on a defea-
sible rule in the theory are generated. There is therefore a one-to-one correspon-
dence between abductive proofs and the stable models of the translated ASP
program.

4 Constraining the Proof Search Space

In modern answer-set solvers, aggregate functions such as count, sum, or max
can be used. We can thus define a predicate whose argument tells us the size of
(that is, the number of assumptions in) a proof and rule out any proof that is
too big:

numberOfAssumptions(x) = |{p : assumed(p)}|
numberOfAssumptions(x)∧

∧x > maxNumberOfAssumptions ⊃ ⊥
(13)

We can also have a predicate that tells us the length of the proof path from p1
to p2 and an integrity constraint that rules out any proof whose length is greater
than an integer constant, maxProofLength:

proofLength(p1, p2, l) ∧ l > maxProofLength ⊃ ⊥ (14)

These two simple integrity constraints can significantly constrain the proof search
space, thus speeding up the enumeration of proofs.

5 Ranking Abductive Proofs

Even a relatively simple background theory, as in our experiments, will have at
least hundreds of abductive and deductive rules, which means that the logical
form of an average sentence can have many different proofs (since both deduc-
tion and abduction are explosive). Moreover in a long discourse consisting of
many sentences, the knowledge base will contain many individuals available for
unification, which can multiply the number of proofs. The method of weighted-
abduction [7,8,10] seems to yield good results, but it cannot be used in an
answer-set program because it works with real numbers. While it is possible to
enumerate all the abductive proofs and evaluate them later, we decided to try to
solve the ranking problem within ASP. In this section, we describe how to rank
proofs using the answer-set solver.

The basic idea, coming from [10], is that one should prefer proofs that unify
assumed predications with what is already known and assume as little as possi-
ble. In other words, maximally coherent (with respect to the context) and mini-
mally ampliative proofs are preferred. We add one more criterion: salience. Infor-
mally, individuals that occurred recently in the discourse have higher salience.
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If the pronoun he is used in a sentence, it is interpreted by backchaining on the
following abductive rule:

person1(x) ∧ male1(x) ⇀ he(x) (15)

that is, he refers to a male person. To bind the variable, we have to find an
individual that conforms to the selectional constraints. But there can be many
such individuals in the knowledge base. Thus we rank the proofs with respect to
their salience, which is the sum of the saliences of all individuals unified with a
variable. Newly introduced constants are assigned the highest salience, as in the
case of c for the indefinite NP in

He bought a book.
he(x) ∧ buy′(e, x, c) ∧ book(c) (16)

For example, if there is elephant(x) among the observations and the knowl-
edge base contains elephant1(E1

1), elephant1(E2
2), elephant1(E3

3),7 there are
three literal interpretations in which the variable x is unified, as illustrated in
Fig. 5. Based on a linguistic insight, we want to prefer the proof which unifies the
variable x with the most salient individual. In this simple example there is only
one unified individual, so the salience of the proof equates to this individual’s
salience.

elephant(x)

elephant1 (x)

elephant1 (E1
1) elephant1 (E2

2) elephant1 (E3
3)

= = =

Fig. 5. Literal interpretations of elephant(x)

Unification can help us resolve lexical ambiguity even when there are no indi-
viduals in the knowledge base that could be unified with the variables. Consider
the compound nominal

bank account
bank(x) ∧ account(y) ∧ nn(x, y) (17)

7 The upper index expresses the salience of the individual.
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∧ ∧bank(x) account(y) nn(x, y)

bank1 (x) account1 (y)

appurt1 (y, x)

Fig. 6. Interpretation of bank account

and assume that we have the following background theory (with five lexical rules
and one commonsense rule):

bank1(x) ⇀ bank(x)
bank2(x) ⇀ bank(x)

account1(x) ⇀ account(x)
account2(x) ⇀ account(x)
appurt1 (x, y) ⇀ nn(y, x)

account1(x) ∧ bank1(y) ⇀ appurt1 (x, y)

(18)

that is, accounts (defeasibly) appertain to banks and the relation appurt(enance)
can be expressed by a compound nominal (nn).8 We see in Fig. 6 that two
predications are unified. If we interpreted bank(x) as bank2(x) and/or account(y)
as account2(y), there would be no unification of predications and hence the proof
would be less coherent.

As we have just shown, abduction can be used to lexically disambiguate
phrases even if there is no additional context or previous discourse. Of course,
in order for this method to work background theories are needed that capture
relations between entities that occur in the sentence. Creating commonsense
knowledge bases is generally a very complex task but it is feasible at least for
smaller closed domains.

There can be many proofs with the same number of unified predications, thus
we need a criterion that will help us distinguish them. The simplest criterion is
the size of the proof, i.e., the number of assumptions made. Intuitively, we do not
want to assume more than is necessary; if an assumption does not help us arrive
at a more coherent proof (that is, a proof with more unifications), is should be
omitted. This simple idea seems to be good enough to rule out most undesired
proofs.

8 bankx and accountx are different lexical meanings of bank and account, respectively.
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We can use the predicate numberOfAssumptions defined in Sect. 4 and an
analogously defined predicate numberOfUnifications to select the best proof.
Our method for ranking abductive proofs yields slightly better results than that
proposed by Hobbs el at. [10] in our evaluation,9 but this does not mean that it
is better because the difference is not statistically significant and because Hobbs’
method relies on probabilistic weights which are hard to “get right” empirically.
Nevertheless our method is relatively simple and can be implemented in ASP
(for it uses only natural numbers).

6 Conclusions

We have presented a method for translating (a fragment of) first-order abduction
into an answer-set program in the context of NLU. The heretofore used algo-
rithms do not allow for seamless integration of the process of abduction with
deduction. Our method helps the solver confine the search space by ruling out
logically impossible proofs (with respect to a background theory). We have also
suggested how to rank proofs within the answer-set program, since the original
framework of weighted abduction would require an additional step to evaluate
the proofs. An evaluation has shown that in conjunction with a state-of-the-art
answer-set solver, our method is an order of magnitude faster than the approach
based on a general automated theorem prover. On the other hand, it currently
does not provide significantly better results in terms of precision. The fact that
we could not use weighted abduction as proposed in its original form, for one
cannot use real numbers in ASP, means that our approach of ranking abductive
proofs is not directly comparable to weighted abduction and it remains yet to
be explored whether it can yield comparable results when applied to very large
theories.

There is no doubt that first-order Horn abduction is useful in many areas of
artificial intelligence. Our future work will investigate how the proposed method
for ranking proofs can be applied to automated goal-driven planning with incom-
plete information.
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Abstract. This paper revisits intervention effects in Mandarin Chinese
why-questions. I present new data showing that the ability for quantifiers
to induce intervention hinges upon their monotonicity and their ability
to be interpreted as topics. I then develop a semantic account that cor-
relates topicality with monotone properties. Furthermore, I propose that
why-questions in Chinese are idiosyncratic, in that the Chinese equiva-
lent of why directly merges at a high scope position that stays above a
propositional argument. Combining the semantic idiosyncrasies of why-
questions with the theory of topicality, I conclude that a wide range of
intervention phenomena can be accounted for in terms of interpretation
failure.

Keywords: Intervention effects · Why-questions · Illocutionary acts ·
Wide-scope indefinites · Mandarin Chinese

1 Data

This paper presents a semantic account of the quantifier-induced intervention
effects in Chinese why-questions, schematized as follows.

(1) #[Q [Quant why ]]

That is, unacceptability arises when a quantifier c-commands the interrogative
phrase why. Using Chinese data, this paper argues that the intervention induced
by why-questions is distinct from other intervention effects that arise in non-
why interrogative questions, which have received detailed investigations in the
literature.1 Specifically, I present new data showing that intervention effects in
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one anonymous reviewer for the abstract of the TbiLLC 2015 conference and confer-
ence attendees for their feedback. I am particularly indebted to the two anonymous
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1 See Beck [5] for a semantic account of intervention in non-why wh-questions, Beck
and Kim [6] for a similar account of intervention in alternative questions, and
Tomioka [59] for a pragmatic, information structure-based account of intervention
effects in non-why constituent questions.
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Chinese why-questions are sensitive to the type of quantifier. Since the Mandarin
Chinese-speaking community is huge by population size and internal linguis-
tic/social diversity, there is an important issue as to the extent of variation
in how an exhaustive list of quantifiers is accepted. The previous literature has
(understandably) tended to abstract away from any such variation. While I won’t
be able to offer any characterization of the nature of variation here, to the degree
possible I have tried to minimize variation by focusing on a specific dialect group:
the Mandarin spoken in Beijing and the adjacent Dongbei ‘Northeast’ provinces.
My primary consultants are three female speakers in their twenties. Two addi-
tional male speakers in their thirties are recruited for a subset of the elicited
data. All of them come from the above two regions.

As (2) shows, when weishenme ‘why’ is c-commanded by a monotone decreas-
ing quantificational DP, oddness ensues.2

(2) #{Meiyou
{No

ren
person

/Henshao
/few

ren/Budao
person/Less.than

san-ge
three-CLF

ren}
person}

weishenme
why

cizhi?
resign

#‘{For nobody/For few people/For less than three people}, why did they
resign?’

In contrast, a quantificational DP with a simplex monotone increasing deter-
miner, such as most people, or a few people, does not induce intervention effects.3

(3) {Daduoshu
{Most

ren
person

/Shaoshu
/A.few

ren}
person}

weishenme
why

cizhi?
resign

‘{For a majority group of people/for a minority group of people}, why
did they resign?’

To make things more complex, one class of monotone increasing quantificational
DPs with morphosyntactically complex determiners induce weak intervention.
This class includes modified numerals such as at least three people, more than
three people, etc. Non-monotonic bare numerals, such as three people, also induce
weak intervention. An example is given in (4).

2 The glossing in this paper follows the Leipzig Glossing Rules (https://www.eva.mpg.
de/lingua/resources/glossing-rules.php). A list of the abbreviations in this paper is
given as follows:
ACC: accusative; CLF: classifier; COP: copula; DEM: demonstrative; NEG: nega-
tive, negation; NOM: nominative; LOC: locative; PASS: passive; PL: plural; POSS:
possessive; PRF: perfect; PRS: present; PRT: particle; PST: past; Q: question par-
ticle; REL: relativizer; RES: resultative; TOP: topic marker.

3 Based on monotonicity, I treat the Chinese quantifier henshao ren as an equivalent of
few people, since both require a less-than-half cardinality reading and are monotone
decreasing. Furthermore, I treat shaoshu ren as an equivalent of a few people, as
they pattern together as non-monotonic quantifiers with a less-than-half reading. It
is also worth noting that a few people/shaoshu ren generally give rise to a non-empty
scalar implicature (see Horn [28]), whereas few people/henshao ren generally do not.

https://www.eva.mpg.de/lingua/resources/glossing-rules.php
https://www.eva.mpg.de/lingua/resources/glossing-rules.php
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(4) ??{San-ge
{Three-CLF

ren/
person/

zhishao
at.least

san-ge
three-CLF

ren/
person/

chaoguo
more.than

san-ge
three-CLF

ren}
person}

weishenme
why

cizhi?
resign

‘{For three people/at least three people/more than three people}, why
did they resign?’

My notational choice here, using ?? in (4) to contrast with the use of # in
(2), will be justified in my coming argument that the unacceptability found in
examples in (2) results from interpretation failure, whereas the unacceptability
in (4) is a case of contextual infelicity. The choice also reflects the intuition of
my consulted speakers. When uttered out of the blue, (4) triggers rather low
judgments for some speakers, while for other speakers the oddness is less severe
than that which is induced in monotone decreasing contexts. So far, I have only
discussed matrix why-questions. In an embedded why-question, morphosyntac-
tically simplex monotone increasing quantifiers still induce no intervention, as
shown by the perfectly acceptable sentence as follows:

(5) Wo
I

yijing
already

zhidao-le
know-PRF

{daduoshu
{most

ren/shaoshu
person/a.few

ren}
person}

weishenme
why

cizhi.
resign
‘I already knew for {a majority/a minority group of people}, why they
resigned.’

More noteworthy is the fact that theweak intervention we witness in (4) disappears
in embedded why-questions. This is demonstrated by the acceptability of (6).

(6) Wo
I

yijing
already

zhidao-le
know-PRF

{san-ge
{three-CLF

ren/zhishao
person/at.least

san-ge
three-CLF

ren/chaoguo
person/more.than

san-ge
three-CLF

ren}
person}

weishenme
why

cizhi.
resign

‘I already knew for a group of (at least/more than) three people, why
they resigned.’

By comparison, intervention cannot be circumvented in embedded contexts for
monotone decreasing quantifiers. As (7) illustrates, the unacceptability in an
embedded why-question is as strong as it is in a matrix one.

(7) #Wo
I

yijing
already

zhidao-le
know-PRF

{meiyou
{no

ren/henshao
person/few

ren/budao
person/less.than

san-ge
three-CLF

ren}
person}

weishenme
why

cizhi.
resign

#‘I already knew for {nobody/few people/less than three people}, why
they resigned.’
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In sum, intervention effects in Chinese why-questions are sensitive to quantifier
monotonicity. In addition, they are sensitive to whether why-questions occur in
matrix or embedded contexts. The overall pattern is summarized in (8):

(8) Matrix and embedded why-questions:
1. Monotone decreasing quantifiers consistently induce intervention

effects;
2. Non-monotone increasing, non-numeral quantifiers do not induce

intervention effects;
3. (Monotone increasing) modified numerals and (non-monotonic) bare

numerals induce weak intervention in matrix why-questions, which
is ameliorated under embedded contexts.

Apart from quantificational DPs, adverbs of quantification exhibit similar pat-
terns. (9) illustrates the ban for monotone decreasing quantificational adverbs
to c-command weishenme ‘why’.

(9) a. #Ta
He

congbu
never

weishenme
why

cizhi?
resign

#‘On no occasions, why did he resign?’
b. #Ta

He
henshao
seldom

weishenme
why

cizhi?
resign

#‘On few occasions, why did he resign?’

Furthermore, this ban on c-commanding quantificational adverbs is lifted if the
adverbs are monotone increasing or non-monotonic:

(10) a. Ni
You

dabufen
most

shijian
time

weishenme
why

juede
feel

kun?
be.drowsy

‘For most of the occasions, why did you feel drowsy?’
b. Wo

I
yijing
already

zhidao-le
know-PRF

ta
he

zhishao
at.least

liang-ci
two-token

weishenme
why

bu-gan
NEG-dare

zuo
do

zhei-jian
DEM-CLF

shi.
affair

‘I already knew, for at least two occasions, why he wouldn’t dare
to do that.’

In this paper, I propose to account for this complex array of data in terms of the
idiosyncratic semantics of weishenme ‘why’. In a nutshell, I argue that Chinese
weishenme must be initially merged at the high scope position of [Spec, CP].
When quantifiers are interpreted as taking wide scope over [Spec, CP], we obtain
coherent interpretations. On the other hand, intervention arises when certain
quantifiers are unable to be interpreted at such high scope. Hence, this account
of intervention effects in why-questions does not involve ‘real’ intervention, in
the sense that no mechanism of covert movement is assumed. Rather, my central
claim in this paper is that the unacceptability we are dealing with here is not
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syntactic ill-formedness, but interpretational failure, i.e., a native speaker cannot
assign an interpretation to a why-question in certain scopal relations.4

The rest of this paper is structured as follows. Section 2 reviews previous
syntactic theories of the Chinese intervention effects in why-questions. Section 3
develops a semantic account with reference to why ’s syntactic and semantic
idiosyncrasies. Afterwards, I provide evidence that the intervention patterns of
quantifiers correlate with quantifier monotonicity. Section 4 concludes the paper.

2 Past Accounts of the Quantifier-Induced Intervention
Effects

In this section, I review several recent approaches to the Chinese intervention
effects in why-questions that resort to covert LF movement. I then show that this
line of research holds out little promise in accommodating the full range of data
as discussed in the previous section. In the next section, I develop a semantic
account that achieves the desired empirical coverage.

Building upon Beck [5] and Pesetsky [44], Soh [54] proposes that in situ
weishenme ‘why’ undergoes covert feature movement at LF. According to Soh,
intervention effects detect the movement of wh-feature, such that the feature
cannot be separated from what’s left behind on the wh-phrase by a scope-bearing
element. Cheng [11] echoes Soh’s solution, taking intervention effects as one
crucial piece of evidence for the existence of covert feature movement.

Yang [63,64] reformulates the covert feature movement approach in terms of
the framework of Relativized Minimality [47–49]. In a nutshell, intervention is a
minimality effect, in which the quantificational ‘likeness’ between a quantifier and
the interrogative phrase weishenme ‘why’ means that the feature of weishenme
is attracted to the left periphery scope position only if it is closer to the scope
position than the quantifier is. Yang borrows from recent works of Starke [55]
and Rizzi [49] on Relativized Minimality and provides the following condition,
in which the minimality effect is captured in terms of a filter:

(11) Maximal Matching Filter (Yang 2011, 63)
Let X and Y be bundles of features in a sequence of [...X...Y...]; Y cannot
cross X when Y is maximally matched by X.

If a scopal element A bears feature [F1] and moves to its left periphery scope
position, and if another scopal element B has the feature geometry that includes
the bundle [F1 F2], then the movement of A from its initial merge position to its
scope position is blocked because the bundle [F1 F2] maximally matches [F1].

4 Consequently, I choose to put a # sign before unacceptable Chinese why-question
sentences as well as their English translations to indicate that the examples are
odd because the readings they generate are semantically anomalous. However, I still
consistently use the term ‘intervention effects’ to refer to the types of phenomena
that are already well established in the tradition, without taking this term in its
literal sense.
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In other words, the filter condition rules out the scope-taking of an operator at
the left periphery when a ‘like’ operator is closer to the scope position of said
operator.

The criteria of operator type matching are determined as follows (Rizzi
[49]: 19):

(12) a. Argumental: person, number, gender, case
b. Quantificational: Wh, quantifier, measure, focus...
c. Modifier: evaluative, epistemic, Neg, frequentative, celerative, mea-

sure, manner, ...
d. Topic

Based on this classification, quantifiers as well as focus-sensitive phrases (focus)
possess the same quantificational feature as the interrogative operator (Wh).
Apart from the quantificational feature, quantifier/focus also bear other features.
In a [quantifier < Wh] configuration, the maximal matching filter is violated
during the covert feature movement, because Wh’s quantificational feature is
maximally matched by the intervening quantifier.

Other wh-phrases such as shenme ‘what’ and zenme ‘how’ do not cause inter-
vention in the same way as weishenme ‘why’ [56]. For Soh [54], the absence of
intervention is because thesewh-phrases undergo covert phrasal movement, rather
than feature movement. In phrasal movement, entire wh-phrases are pied-piped
across quantificational interveners. As such, there is no separation between wh-
feature and the restriction on wh-phrases [44]. Yang [64] accounts for the absence
of intervention by resorting to the mechanism of unselective binding [43]. For
instance, Yang cites Cheng and Rooryck [12] and endorses the view that wh-
phrases have the option of being licensed at a distance by a Q operator that merges
directly at [Spec, CP]. According to this view, in weishenme ‘why’-questions,
intervention arises because the weishenme-adjunct does not possess this option,
and ergo must be licensed via covert feature movement. In contrast, other wh-
phrases can be licensed by unselective binding and undergo no movement, in which
case the maximal matching filter is vacuously satisfied and no intervention arises.
Note in addition that Yang’s framework is also compatible with a covert phrasal
movement solution: Pied-piped wh-phrases may be argued to bear more features
than intervening quantifiers, therefore the maximal matching filter is not violated,
unlike in feature movement.

The minimality-based approach as specified above is problematic upon closer
scrutiny. This is because the minimality approach treats all quantifiers (both
quantificational nominal phrases and adverbs of quantification) as legitimate
interveners that block the LF movement of an interrogative operator. Quanti-
fiers are interveners, simply because they bear a quantificational feature. There-
fore, this approach would not predict the Chinese intervention pattern, where the
intervention is sensitive to the types of quantifiers. Instead, the approach as it
stands should predict that a finer distinction within quantifier types will not make
any difference in intervention. If quantifiers in general possess enough features to
maximally match the interrogative operator, then by including monotonicity as a
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further dimension in the feature geometry we only increase the inventory of
the feature set for the quantifiers. Therefore, both monotone increasing and
decreasing quantifiers are supposed to maximally match the interrogative opera-
tor and block its covert movement. Furthermore, it is rather stipulative if we bring
monotonicity into our feature geometry, especially given that we find no indepen-
dent evidence that monotonicity plays a role in other intervention environments
(i.e., those involving non-why interrogative questions). Given the lack of appara-
tus to allow only a subset of quantifiers to block covert LF movement, it seems that
the validity of a minimality account is in question. Finally, in embedded questions,
a minimality account predicts that the covert interrogative operator still moves to
take the embedded [Spec, CP] scope position (crossing the quantificational inter-
veners along the way). Hence, even assuming that quantifier types can be fine-
tuned to accommodate the intervention data in matrix questions that we have
seen in (2)–(4), it is mysterious how a minimality account handles the selective
amelioration phenomenon in the embedded questions of (5)–(7) in a principled
manner.

The restricted set of quantificational interveners, i.e., downward quantifiers
only, is reminiscent of another intervention environment that has received rich
treatment, namely negative islands. It thus evokes the possibility that the inter-
vention phenomenon in Chinese is subsumed under negative island sensitivity.
A full survey of this connection is not available in the literature, in part due
to the lack of dedicated literature of negative islands in Chinese. At present,
I would like to point out that why is generally excluded from discussions of
negative islands for being rather ‘atypical’. Both Szabolcsi and Zwarts [58] and
Abrusán [1] explicitly rule out why-questions in their theories of negative islands,
noticing that why differs from other wh-adjuncts in that its extraction is blocked
in a wider range of environments than others, suggesting that why independently
favors late insertion/high attachment in the structure. The idiosyncratic struc-
tural property of why will be discussed in the following.5

5 On a separate note, the modal obviation effect that is associated with negative islands
(cf. Abrusán [1]) is absent in Chinese why-questions. In (ia), I show that adding the
modal keyi ‘can/might’ circumvents the negative islands in a how many-question. In
(ib), in contrast, I show that adding the same modal fails to improve a why-question.

(i) a. Zai zhongguo, meiyou ren keyi sheng duoshaoge haizi?
At China, no person can give.birth.to how.many children

‘In China, how many childreni can nobody give birth to ti?’
b. #Zai zhongguo, meiyou ren weishenme keyi mianshui?

At China no personwhy can exempt.taxation

#‘In China, whyi can nobody be exempt from taxes ti?’

If the modal obviation effects, as the majority of accounts of negative islands assume,
serve as a diagnostic for islandhood in negative contexts, then the contrast in
(ia-b) provides additional evidence that the intervention pattern witnessed in why-
questions is a different beast.
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3 A Semantic Account of the Intervention Effects
in Chinese Why-Questions

3.1 The Syntax and Semantics of weishenme ‘Why’

In this section, I build on previous observations that the reason/cause wh-
adjunct why behaves in a different way from other wh-phrases. Following Ko [33],
I assume that, crosslinguistically, why-adverbs favor high merge. Specifically, the
East Asian (Chinese, Japanese, Korean, etc.) counterparts of why are directly
merged at [Spec, CP], as opposed to otherwh-phrases that are moved to [Spec, CP]
from a lower initial merge position. In what follows, I cite a few published data that
motivate the above treatment. As early as Lawler [40], it has been proposed that,
in a why-question, why does not associate with any variables in the clause that it
attaches to. For example, in the following mono-clausal sentence, it has been pro-
posed that why does not bind a trace that links to the VP leave [48].

(13) Why did John leave early?

The no-trace property of why is seen more clearly in (14). As Lawler [40] points
out, only one reading is available in the following quantificational environment:

(14) Why did three men leave?
Reading A: ‘Why is it the case that three men left?’
Reading B: #‘What reasoni did three men have t i for leaving?’

In reading A, an event, three men left, is presupposed. By wondering why this
event occurs, we are committed to a situation in which the total number of
people that left has to be three. In reading B, it is also the case that a group
of three individuals left. Yet there is no requirement that, in this situation,
altogether three people left. There could be other individuals who left, but for
some reason the speaker is only concerned with a specific group of three people.
When it happens that only three people left in the context, the two readings are
not distinguishable. Crucially, however, when the context contains more than
three individuals having left, the why-question in (14) cannot be uttered, at
least according to the speakers Lawler [40] consulted.

Furthermore, it has been observed that why cannot be associated with the
embedded clause (or the long-distance construal), and can only be associated
with the matrix clause (or the short-distance construal). This can be exemplified
by the examples in (15) [10,41].

(15) Why did you regret that Dr. Graff left the academia?
Reading A: ‘What reason caused you to regret the fact that Dr. Graff
left the academia?’
Reading B: #‘What reasoni did you regret that Dr. Graff have t i for
leaving the academia?’

Bromberger [9] argues that the above data would again follow if why merges
directly to its scope position, and cannot be incorporated into the rest of the
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sentence by means of a trace. Bromberger points out a further piece of evidence,
in which why and other wh-phrases interact with scopal elements such as focus
operators in different ways.

(16) a. Why did ADAM eat the apples?
b. When did ADAM eat the apples?

Here I use small caps to mark that Adam is a focussed constituent. While (16a)
presupposes that only Adam ate the apples, (16b) is compatible with the reading
in which every individual ate the apples at different times, and the speaker is
simply concerned with the time of Adam’s eating event. Bromberger [9] argues
that we can account for the reading in (16b) if we assume that when is base-
generated in a position below the focus operator and that it binds a trace after
it undergoes movement. Let’s assume that the focus operator provides a focus
value against a set of alternatives. That is, we first have a set of alternatives
in the form of {x eat the apples when | x ranges over contextually relevant
individuals}. The focus operator then applies to the set of alternatives, setting
the value of x to Adam (In Bromberger’s representation: (Wheni) {(∃x: x =
Adam){x ate the apples at ti}}). On the other hand, if why leaves behind no
trace and directly merges above the scope of the focus operator, then the focus
value will be set to Adam first, before we use why to ask for the reason (In
Bromberger’s representation: (Why) {(∃x: x = Adam){x ate the apples}}). As
a result, a why-question presupposes that only Adam, out of all individuals, ate
the apples.

Related to the above observations, Tomioka (2009) demonstrates that, in
downward entailing environments, why triggers different presuppositions from
other wh-phrases. Compare (17a) with (17b), taken from Japanese.

(17) a. Daremo
Anyone

naze
why

ko-nak-atta-no?
come-NEG-PAST-Q

‘Why did no one come?’
Presuppose: No one left.
Not Presuppose: There is a reason that no one left for.

b. Daremo
Anyone

nani-o
what-ACC

yom-ana-katta-no?
read-NEG-PAST-Q

‘Whati did no one read ti?’
Presuppose: There is something such that no one read it.
Not Presuppose: No one read anything.

In line with the above observations, Tomioka formulates the following semantic
constraint for why :

(18) Tomioka’s constraint:
In a why-question and only in a why-question, the proposition that cor-
responds to the non-wh portion of the question must be presupposed.

This constraint calls for a high merge position of why, which Ko [33] assumes to be
[Spec, CP]. Ko’s proposal is exclusively about counterparts of why in East Asian
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languages such as Chinese, Japanese and Korean. Independently, Rizzi [48] argues
that perché ‘why’ in Italian merges directly at [Spec, IntP]. Rizzi assumes that the
head of IntP carries a [+wh] feature inherently, therefore this direct high merge
explains why perché does not trigger auxiliary inversion. Given that there is no
motivation for a structural distinction between [Spec, CP] and [Spec, IntP] in East
Asian languages, we can essentially consider Rizzi’s high attachment analysis of
perché the same as Ko’s proposal for East Asian whys. What is important for our
current purpose is that both [Spec, CP] and [Spec, IntP] are higher than the scope
positions of the focus operator and quantifiers at the left periphery (according to
Rizzi), thus capturing the readings such as in (16) and (17).

3.2 Quantifiers as Plural Indefinites

If Chinese weishenme ‘why’ directly merges at [Spec, CP], it does not take part in
quantifier scope interactions, because it is directly interpreted at a scope position
abovequantifier scope.Moreover,Chinese is known to observe a scope isomorphism
at the left periphery, such that scopal relations at LF are preserved at surface syn-
tax [2,21]. Unlike Japanese or Korean, Chinese quantifiers cannot scramble across
outscopingoperators to create amismatchbetweenwordorder and scopeorder [33].
Therefore, we would expect that quantificational elements, when taking scope as
a generalized quantifier, be c-commanded by weishenme. However, in (19a-b), we
see that weishenme and quantifiers may occur in two relative orderings.

(19) a. Weishenme
Why

daduoshu
most

ren
person

cizhi?
resign

‘Why (is it the case that) most people resigned?’
b. Daduoshu

Most
ren
person

weishenme
why

cizhi?
resign

‘For a certain plurality of individuals that is the majority of all the
context-relevant individuals, why did they resign?’

In (19a), where weishenme c-commands the quantifier duoshu ren ‘most peo-
ple’, we obtain an expected reading in which the latter denotes a standard GQ

meaning, and weishenme takes the entire quantified proposition as its argument.
Importantly, the question in (19b) does not seem to involve a generalized quan-
tifier that scopes below weishenme. What (19b) asks is the reason that causes
one particular plurality of individuals to resign, and this plurality has to be a
majority subset of all the context-relevant individuals. For (19a), an answer can
be given in the form of (20):

(20) Yinwei
Because

zhiyou
only

shaoshu
minority

ren
person

manyi
be.satisfied.with

gongsi
company

de
REL

xinchou
pay

daiyu.
treatment

‘Since only a minority (of employees) were satisfied with the payroll of
the company (and hence didn’t resign).’
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Meanwhile, (20) cannot be an answer for (19b). A felicitous answer must provide
a reason of resignation for a particular plurality of individuals. Therefore, the
reading of (19b) suggests that most people receives the interpretation of a plural
indefinite and exhibits exceptional wide scope, above the scope of why, which
is characteristic of plural indefinites. Both Reinhart and Winter have proposed
that quantifier phrases such as some people or many people can be interpreted as
plural indefinites, in which they do not denote a relation between predicates, in
the traditional sense of Barwise and Cooper [4]. Rather, they denote individuals,
by being coerced into a minimal witness set [19].6

In this paper, I propose that most people may also denote a plural indefi-
nite. To go one step further, I argue that the plural indefinite most people is
a topic when it takes wide scope over weishenme ‘why’. That is, I believe that
exceptional wide scope is a topic phenomenon [19]. A topical reading is possible
for quantifiers interpreted as plural indefinites, because all referring expressions
that are individual-denoting may serve as topics under the right contextual con-
ditions. Importantly, I argue that topics are able to take scope outside of a
speech act (that is, they may scope above the illocutionary operator of a sen-
tence). As such, topics scope above the high initial merge position of weishenme
in a weishenme-question. This accounts for the exceptional wide scope position
of plural indefinites.

3.3 The Wide Scope Behavior of Topical Quantifiers: Some
Evidence

Below I present evidence that topics are able to take scope outside speech acts.
In the next section, I show that the ability for quantifiers to be topics depends
on their monotonicity. Various authors have pointed out that if any part of a
proposition is capable of scoping out of a speech act, it will have to be a topic
[18,36,45]. This is because topic establishment is a separate speech act by itself.
The idea that topics are assigned illocutionary operators of their own is first
raised in Jacobs [31]. Jacobs points out that introducing a topic is an act of
frame setting. In the following, I follow Krifka’s recent position that natural
language allows speech acts to conjoin. A topic-comment structure expresses
two sequential, conjoined speech acts, comprising the topic’s referring act, to
be followed by a basic speech act (assertion, request, command, etc.) that is
performed as an update on the referent established by the topic. Krifka [36]
notes that, in English, overt devices are used to mark topics as scoping out of
questions, commands and curses, such as the following:

(21) a. As for Al, Bill and Carl, which dishes did they make?
b. The hamburger, please hand it to me.
c. This guy, he should go to hell!

6 Witness set refers to the plurality determined by the intersection of the restrictor
and the nuclear scope. That is, given a quantificational determiner D, one predicate
P and another predicate Q, D(P)(Q) gives rise to the witness set W = P ∩ Q [4,57].
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According to Krifka, topics even have to scope out of speech acts, given that
they function as a separate speech act. In Chinese, if we assume that the topic
act conjoins with a subsequent request speech act performed by a weishenme-
question, we would predict that all the expressions that may serve as topics
may occur outside the scope of weishenme without causing intervention. This
prediction is borne out. As (22) demonstrates, proper names, pronouns and
temporal/locative adverbs can legitimately c-command weishenme. These are
expressions that have long been known to allow for a topic reading [21,39].

(22) a. Lisi
Lisi

weishenme
why

mei
NEG

qu
go

paobu?
jogging

‘As for Lisi, why didn’t he go jogging?’
b. Zuotian/Zai

Yesterday/LOC

na’er
there

weishenme
why

dajia
folks

xihuan
enjoy

chi
eat

kaorou?
barbecued.meat

‘As for {yesterday/there}, why do folks enjoy eating barbecued
meat?’

Example (22) additionally shows that when multiple topics are co-occurring, they
can all c-command weishenme. There seems to be a functionally based cognitive
constraint preventing more than three topics from co-occurring in the same sen-
tence in Chinese. But a sentence with three topics is marginally acceptable [62].
In such case, we also find a weishenme-question with three c-commanding topics
acceptable:

(23) ?Zhe-chang
This-CLF

yinyuehui
concert

ni
you

mingtian
tomorrow

weishenme
why

yao
will

qu?
go

‘(As for) This concert, (talking about) tomorrow, why will you go?’

Furthermore, in biscuit conditionals, an if -antecedent may co-occur with a
weishenme-question as its consequent, illustrated in (24):

(24) Ruguo
If

ni
you

bu-jieyi
NEG-mind

wo
I

wen
ask

dehua,
PRT,

ni
you

weishenme
why

cizhi?
resign

‘If you wouldn’t mind me asking you, why did you resign?’

Various proposals have suggested that the antecedents of biscuit conditionals
are topics [18,20], such that they scope out of the speech act performed by the
consequents of the conditionals. If this is valid, then it is readily predicted by
our proposal of topic act that the antecedent in (24) is able to scope above a
weishenme-consequent.

Another prediction is that if an element is by nature not topical, it will
never c-command weishenme. This would readily explain the fact that focus-
sensitive expressions also induce intervention in weishenme-questions, since
they are known to be strongly anti-topical [59]. The following example demon-
strates that focus-sensitive phrases also induce intervention effects in weishenme-
questions. Sentence (25a) is unacceptable, because weishenme is c-commanded
by the focus sensitive only-NP. (25b) and (25c) are similarly unacceptable,
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when weishenme is c-commanded by the focus adverbial zhi ‘only’ and the focus
particle lian. . . ye/dou ‘even’.7

(25) a. #Zhiyou
Only

Lisi
Lisi

weishenme
why

cizhi?
resign

#‘For only Lisi, why did he resign?’
b. #Lisi

Lisi
zhi
only

weishenme
why

cizhi?
resign

#‘It is only the case that why Lisi resigned?’
c. #Lian

LIAN

Lisi
Lisi

ye/dou
YE/DOU

weishenme
why

cizhi?
resign

#‘For even Lisi, why did he resign?’

Apart from topics, the second class of subsentential expressions that scopes out of
illocution are the epistemic attitude adverbs such as daodi ‘on earth’ and jiujing
‘frankly/honestly’. Importantly, this class of adverbs express epistemic attitude
towards speech acts [21,22,30]. As such, they are speech act-level modifiers and
take the illocutionary operator as their argument. Hence, they fall outside the
scope of illocution. In (26), I show that both a speech-act adverb and a topic
may precede weishenme:

(26) Ta
He

jiujing/daodi
in.the.hell/honestly

weishenme
why

cizhi?
resign

‘As for him, why the hell did he resign?’/ ‘As for him, honestly, why did
he resign?’

A contrast exists between this class of speech act-level adverbs and proposition
level attitude adverbs such as yiding ‘definitely’ and kongpa ‘probably/most
likely’, as we can see below:

(27) #Ta
He

yiding/kongpa
definitely/probably

weishenme
why

cizhi?
resign

#‘Definitely/Probably, why did he resign?’

Unlike daodi/jiujing, adverbs such as yiding ‘definitely’ indicate the speaker’s
attitude towards the propositional content or contents of smaller units, rather
than the speaker’s attitude towards the speech act. Interpreting the question
operator within the scope of yiding creates a semantic anomaly, because such
adverb is not compatible with taking question operators as arguments. In other

7 In (25a), zhiyou ‘only’ forms a constituent with an NP and assigns focus value to the
NP. In (25b), zhi ‘only’ is a focus adverb. The lian + NP + ye/dou construction in
(25c) is often assumed to be the Chinese counterpart of the English focus-sensitive
even-NP [27,42,52]. It seems that lian and ye/dou together contribute to the seman-
tics of the English focus particle even, although the exact nature of the division of
labor is still not clear. According to some analyses, lian assigns focus accent to the
NP it combines with, and ye/dou is a maximality operator that overtly expresses
the alternatives in the focus value [24].
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words, an expression is able to precede weishenme if and only if it is able to
take the weishenme-question’s illocutionary operator in its scope. A speech-act
level adverb does so by modifying the speech act itself. As such, it patterns
with topics and does not cause intervention. Note that I have assumed all along
that c-command relation mirrors scopal relation in the Chinese left periphery.
This is because long-distance scrambling is impossible in Chinese [21,29,33].
Importantly, scrambled operators reconstruct their scopes at LF. In Japanese
and Korean, when generalized quantifiers scramble across the why-adjunct at
surface syntax, they reconstruct their scope at the trace position [32]. Because
reconstruction is not available in Chinese, when quantifiers such as meiyou ren
‘no one’ c-commands weishenme, we cannot receive an interpretation in which
meiyou ren is reconstructed below the scope of weishenme.8

3.4 Intervention as a Speech Act Constraint

In the above, I present evidence that topics (together with speech act-modifying
epistemic attitude adverbs) are able to scope above speech act. In this section,
I show that an exceptional wide scope theory of topics renders a straightforward
explanation of the intervention in Chinese why-questions.

First, I briefly discuss how a scope theory of topics can be couched in a
formally precise framework of speech act establishment and conjoining. Here I
follow the Wittgensteinian view that the speech act of a sentence corresponds to a
component of the sentence that combines with the sentence radical. The sentence
radical can be seen as unsaturated unless attached to the speech act operator
[3,7,13,38,60]. According to Krifka [36], we can define speech act as a semantic
object with the basic type a. A speech act operator thus can be seen as taking as
input a sentence radical and returning a speech act. For example, the assertion
operator ASSERT is of type <<s,t>, a> (taking as input a proposition, and
returning a speech act). The question operator REQUEST is of type <<<s,t>,
t>, a> (taking as input a set of propositions, and returning a speech act). We
further assume that natural language allows speech acts to conjoin. A topic-
comment structure expresses two sequential, conjoined speech acts, comprising
the referring act of a topic, to be followed by a basic speech act (assertion,
request, command, etc.) that is performed against the referent as established
by the topic. To capture a topic’s referring act, Krifka also posits a referring
speech act operator REF of type <e,a>. Finally, & is a conjunction operator
that conjoins speech acts (type <a, <a, a>>). In the case where a question
is structured into a topic and a comment question, the sentence performs a
conjunction of topic establishment and request, represented as the following:

(28) request (<φtopic, ψcomment>) → refx (φtopic) & request(ψcomment(x))

We can further incorporate speech act, as semantic objects with basic types,
within the sentence grammar. Krifka [36] proposes that the speech act operator

8 For further discussions on Japanese and Korean scrambling and reconstruction, see
[14,26,51]. For the argument that Chinese does not allow scrambling, see Soh [53].
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heads a Speech Act Phrase (SAP) projection that takes the sentence core (CP) as
its complement. In the case of topicalization, Krifka proposes that SAPs can be
recursively defined. The topic merges to the specifier of the first SAP, the head
of which is occupied by another SAP, which is in turn headed by a basic speech
act operator taking a CP complement. For instance, in the why-question (29a),
I analyze the DP daduoshu ren ‘most people’ as a topical quantifier. Under this
analysis, this sentence can be represented as (29b) (QUEST being the label used
by Krifka for a request operator).

(29) a. Daduoshu
Most

ren
person

weishenme
why

cizhi?
resign

‘For most people, why did they resign?’

b. SAP

[DP]topic

Daduoshu ren
‘most people’

SAP

QUEST CP

Spec
weishenme

‘why ’

IP
cizhi

‘resign’

Finally, I provide a simplified semantics of topical quantifiers used as individual-
denoting plural indefinites. To start with, I define a quantifier as witnessable if
and only if the quantifier receives a plural indefinite reading, denoting its witness
set [16,19,46].

(30) A quantifier is witnessable iff it entails the existence of a plurality that
satisfies both the quantifier’s restrictor and its nuclear scope, i.e. it
entails the existence of its witness set.

Following Reinhart [46] and Winter [61], witnessable quantifiers denote type-e
meaning via a covert choice function variable of type <<e,t>,e> that, given a
property (type <e,t>) as input, returns some plurality (type e) that has such
property. The quantifiers in individual-denoting DPs are choice function mod-
ifiers that add a presuppositional restriction on the cardinality of the entity
returned by the function. For example, most is represented as (31).

(31) [[most]] = λf<<e,t>,e>λP<e,t>[f(P)iff|SUM(f(P))| > 1/2|y : atom(y) ∧ P(y)|]

Here SUM is defined over pluralities that consist of atom individuals. Given a
plurality, it outputs the set of all the atoms in the plurality. The witnessable
quantifier most people denotes the plurality returned by the choice function f
when applied to the property of being a majority of all the context-relevant
individuals, represented as follows:
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(32) [[most people]] = [[[fmost] people]]
= f(λxe [people(x) ∧ |SUM(x)| > 1/2|y : atom(y) ∧ person(y)|])

The alternatives generated by ‘[f most ] people’ are computed by substituting
different choice function variable values in the position of [f most ]. Combining
these alternatives with the restrictor people, we produce contrasting pluralities
of individuals, each of them contain a majority of all the context-relevant indi-
viduals. Crucially, I claim that whereas monotone increasing and non-monotonic
quantifiers are witnessable, monotone decreasing quantifiers are not witness-able.
A non-witnessable quantifier, such as few people, may have a verifiable, non-
empty witness set. However, it does not make reference to its witness set by
denoting any choice-function selected pluralities.9

Now we can derive intervention effects from the interaction of topicalization,
conjoined speech acts and witnessability. In a nutshell, if a quantifier is witness-
able and hence is able to be construed as topical, it may scope above weishenme.
On the other hand, if a quantifier cannot be construed as topical, outscoping
would be impossible, due to why ’s high scope. Intervention effects would arise
in such cases, because for the non-topicalizable quantifier, the ordering of the
quantifier preceding weishenme is impossible, hence semantically anomalous.
The so-called intervention effects arise when an expression that cannot scope
above why nevertheless occupies a wide scope position. In other words, there is
no ‘real’ intervention involved here. Rather, the intervention in why-questions
should be better characterized as a scope effect. In (33a), the why-question with
the quantifier daduoshu ren ‘most people’ is acceptable as it is interpreted with
the semantics in (33b). I also provide a less formal paraphrase of the question’s
meaning in (33c):

(33) a. Daduoshu
Most

ren
person

weishenme
why

qu?
go

b. Semantics:
REFy (y = f(λxe[people(x)∧ |SUM(x)| >1/2|y: atom(y)∧person(y)|]
)) & REQUEST (λq ∃r [q =λw [r CAUSE p in w ∧ p = λw’ go (y)(w’)]])

c. Paraphrase:
‘(Speaking of/As for) the plurality returned by the choice function f
when applied to the property of being a majority of all the context-
relevant individuals, why are they going?’

9 Independently, experimental results show that the monotonicity of a quantifier
affects its ability to entail a witness set due to processing reasons [8,23]. To verify
a quantified sentence containing most or more than two, one needs to find posi-
tive instances that members within the restrictor set satisfy the most-relation, the
more-than-two-relation, etc. In other words, one needs to verify the existence of a
witness set. In contrast, for quantified sentences with no, few, or less than two, the
verification procedure more often requires drawing a negative inference based on
the absence of positive instances (in which case the witness set is empty). Although
there is still a paucity of relevant work on this topic, the intuition is that monotone
decreasing quantifiers are not an informative way to denote a witness set.
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On the contrary, the why-question with the quantifier henshao ren ‘few people’ is
unacceptable because henshao ren cannot be a topic. That is, (34a) does not have
the interpretation in (34b). Also, the paraphrase in (34c) is an impossible one:

(34) a. #Henshao
Few

ren
person

weishenme
why

qu?
go

b. Not compatible with the semantics:
REFy (y = f(λxe[people(x) ∧ |SUM(x)| < 1/2|y: atom(y) ∧ person(y)|]))
& REQUEST (λq ∃r [q = λw [r CAUSE p in w ∧ p = λw’ go (y)(w’)]])

c. Paraphrase:
#‘(Speaking of/As for) the plurality returned by the choice function
f when applied to the property of being few of all the context-
relevant individuals, why are they going?’

In sum, when we consider quantifiers in terms of topicality, we immedi-
ately explain why monotone decreasing quantifiers induce intervention effects
in weishenme-questions: they cannot be topical, hence they cannot give rise
to coherent readings in weishenme-questions. Non-decreasing quantifiers are
unproblematic, because they denote individuals that serve as topics.10

Furthermore, this theory claims that bare numerals and monotone increasing
modified numerals can be topics. We still need to explain why these numeral
quantifiers induce weak intervention, as seen in (35) (repeated from 4):

(35) ??{San-ge
{Three-CLF

ren/
person/

zhishao
at.least

san-ge
three-CLF

ren/
person/

chaoguo
more.than

san-ge
three-CLF

ren}
person}

weishenme
why

cizhi?
resign

‘For three people/at least three people/more than three people, tell me
why they resigned?’

10 We should expect that the topicality constraint thus formulated applies even in the
absence of weishenme ‘why’, since the topic position is generally available. This
prediction is borne out. As mentioned above, the class of epistemic attitude adverbs
such as daodi ‘on earth’ and jiujing ‘frankly/honestly’ take scope above speech act
operators. This class of adverbs can be used to identify topic positions, in the absence
of weishenme ‘why’, because when a quantified expression precedes this class of
adverbs, the quantified expression has to reside outside the speech act of the sentence
it occurs with and thus must receive a topical reading rather than a GQ reading.
Importantly, as (i) shows, monotone decreasing quantifiers induce intervention when
they precede epistemic adverbs even in non-why questions. Intervention is absent for
non-decreasing quantifiers.

(i) a. *Budao
Less.than

san-ge
three-CLF

ren
person

daodi/jiujing
on.earth/honestly

qu
go

na’er
where

le?
PRT

‘For less than three people, where on earth did they go?’
b. Daduoshu

Most
ren
person

daodi/jiujing
on.earth/honestly

qu
go

na’er
where

le?
PRT

‘For most people, where on earth did they go?’

It thus seems that we can indeed reduce the ‘intervention’ in why-questions to a
broad phenomenon of topicalizability.
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I believe the weak acceptability in (35) has a pragmatic reason. Following Kratzer
[34,35], I assume that choice function variables receive their values directly from
the context of utterance. If context does not readily offer a particular plurality
as the value for a choice function variable, the speaker won’t know which plu-
rality to pick out with the quantifier, and oddness arises. In the case of numeral
quantifiers, we are required to pick out a particular plurality bearing a specific
cardinal number, which would leave the hearers with no clues if there is no fur-
ther information from the context. Krifka [36] observes the same problem for the
English example in (36):

(36) ??Which dishes did two boys make?
‘For two boys that you select: Which dishes did each of these boys make?’

The acceptability is claimed by Krifka to be marginal. This low acceptabil-
ity of two boys, compared to phrases such as most boys, follows from the fact
that it places a higher requirement on the discourse structure and on hearers’
efforts to infer which particular set of two boys are under discussion. Similarly,
we can explain why the topical use of quantifiers containing a numeral compo-
nent is harder. Without explicit context providing supporting information, it is
not plausible for a naive hearer to make a partition of the relevant individuals
such that one particular plurality of a given cardinality should be distinguished
against other individuals.

The context-based claim I have argued above predicts that why-questions
with witnessable numeral quantifiers should be acceptable in a plausible scenario.
This seems to be indeed the case, as the following example demonstrates.11

(37) (A soccer coach needed a minimum of three more healthy players to fill
up his squad for a match. He felt frustrated that the scheduled operations
on his injured players were two months away.)
Shangyuan
Injured.players

li
inside

de
POSS

zhishao
at.least

san-ge
three-CLF

weishenme
why

bu
NEG

neng
can

xian
first

shoushu?
operate

‘For at least three of the injured players, why can’t they be operated on
first?’

Finally, embedded questions may offer the contextual information to anchor a
particular plurality [57]. I will illustrate with the example in (38) (repeated from
example (6)):

11 According to my consultants, if we use a non-partitive form zhishao san-ge shangyuan
‘at least three injured players’, the sentence is still mildly acceptable, but nowhere
close to the fine judgments we are getting with the partitive quantified expression
in (37). Note that Constant [15,17] also notices (without suggesting an explanation)
that partitive forms of quantifiers more readily license a referential reading than
non-partitive forms. At present, I do not know how to account for this, and have to
leave an answer to future work.
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(38) (In a report investigating employees’ resignation)
Wo
I

yijing
already

zhidaole
know

{chaoguo
{more.than

san-ge
three-CLF

ren/zhishao
person/at.least

san-ge
three-CLF

ren/san-ge
person/three-CLF

ren}
person}

weishenme
why

cizhi.
resign

‘I already found out for more than three people/at least three peo-
ple/three people, why they resigned.’

The indirect question that serves as the complement of found out does not denote
a question type, but rather a fact derived from a question [25,37]. Specifically,
the indirect question is construed as a true answer (true resolution) to the corre-
sponding direct question. Thus, (38) is paraphrased as follows: ‘I already found
out (the answer to the question of) for three people, why they resigned.’ Follow-
ing Rooth [50], this indirect question intuitively answers one subquestion of the
overall question: ‘Why did a contextually-salient set of individuals resign?’ In
order to answer this overall question based on the knowledge of the speaker, the
question is partitioned into two contrasting subquestions. The first asks about a
plurality consisting of three people, of whom the speaker has knowledge about.
The other asks about ‘the rest of the individuals’ of whom the speaker does not
provide an answer due to lack of knowledge.

3.5 Further Evidence for the Type-e Meaning of Topical Quantifiers

In this section, I present evidence that the topicality of quantifiers correlates
with their monotonicity. My diagnostics are based on Constant [15,17]. First,
Constant notices that only witnessable quantifiers (monotone increasing and
non-monotonic) may serve as contrastive topics. In (39), I put forward Chinese
data in support of Constant’s claim (CT for contrastive topic, F for focus):

(39) A: Yanjiusheng-men

Graduate.student-PL

zhu

live

zai

LOC

na’er?

where?

‘Where do the grads live?’

B: [{Daduoshu/Wu-ge/#Henshao

Most/Five-CLF/#Few

yanjiusheng}]CT

graduate.student

zhu

live

zai

LOC

[anhesite]F.

Amherst

‘[{Most of/Five of/#Few of the graduate students}]CT live at

[Amherst]F.’

In (39), monotone increasing quantifiers serve as contrastive topics, but monotone
decreasing quantifiers cannot. If CT-marked quantifiers such as most only have a
standard GQ reading, they would be construed as answering one of the subques-
tions of question A. These subquestions would be the alternatives in {Where did
most grads live? Where did a few grads live? Where did no grads live? . . . }12 This
does not accord with our intuition, in which B’s answer means that B has infor-
mation about where a majority subset of individuals live, as opposed to the rest
12 See Rooth [50] for a discussion of how contrastive topic-marked answer is answering a

subquestion of a preceding overall question.
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of the individuals about whom B has no information. If most grads denotes a spe-
cific plurality of individuals, then the contrasting alternatives will be between dif-
ferent individual grads. This seems to be exactly what (39) does. Furthermore, if
CT-marked quantifiers are standard GQs, it would be mysterious why quantifiers
such as few cannot form an answer. If we subscribe to a choice functional approach,
on the other hand, the reason is obvious, since few cannot denote a choice-function-
selected plurality. If quantifiers such as few lack choice-functional interpretations,
then an answer in (39B) with few only has the standard GQ reading. If we assume
that CT is simply unable to contrast quantifiers of this type, then the sentence will
be ruled out.

One further piece of evidence given by Constant is that quantifiers differ in
their ability to appear in equative copular constructions: In an equative con-
struction, the two-place copula be equates two individual-denoting expressions.
On the left side, the first argument of the copula is a type-e plurality DP. For the
equative construction to be well-formed, the right argument needs also to be an
individual-denoting plurality DP. Therefore, the equative construction provides
yet another diagnostic on which quantifier qualifies as type-e denoting. As it
turns out, the judgment patterns in (40) match well with the patterns we have
seen in the contrastive topic diagnostic.

(40) [Zhan
Stand

zai
LOC

na’er
there

de
REL

ren]
person

shi
COP

[wo
I

de
REL

xuesheng
student

li
inside

de
REL

{daduoshu/wu-ge/#henshao}].
{most/five-CLF/#few}
‘[Those standing over there] are [most/five/#few of my students].’

4 Conclusion

This paper develops an account of intervention effects with Chinese weishenme
‘why’ and monotone decreasing quantifiers. The empirical generalization is that
monotone decreasing quantifiers cannot scope above weishenme at surface, with
weishenme ‘intervening’ between those quantifiers and the rest of the sentence.
My take on this issue is to propose a new way of looking at things. Weishenme is
not only in situ, but also at the position where it, syntactically speaking, checks
off the wh-feature, and where it, semantically speaking, is interpreted. Materials
to the left can only be interpreted as topics, giving rise to a secondary speech act
in the sense of Krifka [36]. Using a notion of topicality involving witnessability
(in the sense of Reinhart [46]), I then derive the quantifier restriction for this
position based on which determiners can lead to witnessability, thus excluding
monotone decreasing quantifiers. Quantificational expressions with monotone
increasing numerals, as well as bare numerals, are also not acceptable in appar-
ent intervention configurations, unless these sentences are embedded. I argue
that this is due to the lack of context in root sentences, thus leaving the choice
function variables without a value. In sum, the current analysis combines rel-
atively independently but under a theoretical perspective disparate ideas, and
arrives at a novel and simple solution to a rich array of empirical facts.
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Abstract. It is very important to draw out deeply annotated text corpora in order to
solve theoretical and applied tasks of the Georgian language. While syntactically
annotated corpora are now available for English, Czech, Russian and the other
languages, for Georgian they are rare. The environment, developed by our research
group, offers several NLP applications, including a module of the morphologic,
syntactic and semantic level, a Universal Networking Language interface and a
natural language interface to access SQL type databases.

The paper gives the description of the automatic syntactic analyzer of the
Georgian Language. It includes syntactic and morphologic levels of the Georgian
language model. The basis of the linguistic model of the Georgian text syntax
annotation is the dependency grammar.

Keywords: Morphological analysis · Parsing · Syntactic relation · Dependent
term · Dominant term

1 Introduction

At present, over 120 corpora for the European and the other languages are available; the
largest of them containing hundreds of millions of words [1–3]. As for Georgian, annotated
corpora did not exist until 2013 when the first version of the Georgian Dialect Corpus was
compiled [4]. Since then, the Georgian corpus linguistics has been developed rapidly and
several groups of researchers have been working on it.

In order to solve theoretical and applied tasks of the Georgian language it is very impor‐
tant to draw out deeply annotated textual corpus. During the last few years, morphologic,
syntactic and semantic marking of the Georgian literary texts has been worked up in the
department of Language and Speech Systems at Archil Eliashvili Institute of Control
Systems of The Georgian Technical University. In the pilot version of the corpus all the
novels of Otar Tchiladze, the famous writer of the XX century have been analyzed.

The following three levels have been envisaged – Morphologic, Syntactic and
Semantic. The corpus annotation is different on each level:

Morphologic annotation: for every word, along with the normal form (lemma) and
the part of speech, a complete set of morphological attributes is specified;
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Syntactically tagged texts: every word is ascribed a syntactic relations marker and a
syntactic link marker.

Semantically tagged texts: every word is ascribed a semantic marker.
Semantic markers of the word contain information about the field of the usage

of the word. Marker points at the words that can be combined with the main word
according to their meaning and shows what kind of semantic relation is between
them. Lexical-semantic information that is ascribed to a word in the texts is cate‐
gorized into the following order: 1. The main characteristics of a word – part of
speech; 2. Lexical-semantic information; 3. Word building (derivation) features [5].

The Georgian texts are annotated with dependency structures – formalism is considered
more suitable for the Georgian language with its relatively free order of words than constit‐
uent structures. The structure not only contains information to which words of the sentence
are syntactically linked, but also relegates each link to one of the several dozen syntactic
types. This is an important feature, since the majority of syntactically annotated corpora
(both already available and under construction) represent the syntactic structure by means
of constituents.

The closest analogues to our work are Dependency Treebank for Russian linguistic
corpora [3] and Prague Dependency Treebank (PDT) – an annotated corpus of Czech
collected at Charles University in Prague [6].

Below markup format (Sect. 2), annotation tools and procedures (Sect. 3), and types of
linguistic data included in the markup (Sect. 4) are described.

2 Markup Overview

We have tried to design syntactic analysis of a sentence the way that clearly introduces
distinguished syntactic pairs, or relations between the members of a sentence; at the same
time it enables to restore its structural tree.

The most natural solution to meet these representations is an XML-based markup
language. We have tried to make our format compatible with TEI [7], introducing new
elements or attributes only in situations where TEI markup does not provide adequate means
to describe the text structure in the dependency grammar framework.

The types of information about text structure that must be encoded in the markup and the
respective tags/attributes used for carrying this information are listed below.

A special container element <S> is used to delimit sentence boundaries. The element
has an attribute ID that supplies a unique identifier for the sentence within the text; the
identifier may be used for storing information about extra-sentential relations in the text.
There are two other attributes attached to the sentence: STATUS is used to visualize the
respective sentence as one needing further (or no) editing and WNUM is used to show the
word number in the sentences.

It also has an attribute – COMMENT, used by linguists for storing notes and obser‐
vations on a particular syntactic phenomena encountered in the sentence.

The words are demarcated by a container element <W>. Like sentences, words may
have a unique ID attribute that is used for referring the position of word within the sentence.
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Morphological information is ascribed to the word by means of two attributes attached
to the <W> tag: LEMMA – normalized word form and MOFE – list of morphological
features.

To annotate the information about the syntactic dependencies, we use two other attrib‐
utes attached to the <W> element: DOM is the ID of the dominant word, W depends on it
and SYFU is the syntactic relation label.

3 Annotation Tools and Procedures

In the input of the system, there is a corpus. As an output, a linguist gets the text divided into
the sentences, where the title form, morphologic characteristics and syntactic characteristics
has been added to each word-form. The relations that provide the connection of a word-form
to the other members of a sentence condition the syntactic characteristics.

The procedure of the corpus data acquisition is semi-automatic. A computer using a
morphological analyzer of general purpose and syntax parser engine generates an initial
version of markup; after that, the results of the automatic processing are submitted to human
post-editing.

This has become necessary because the automatically annotated text contains all
possible versions of morphologic and syntactic parsing and ambiguity must be removed
manually. The system marked 60% of the words with homonymous morphological
markers, 28% – with no homonymous markers in the texts we have processed. Among the
12% of the remaining words, some were the author’s occasional forms and the others were
misprints.

To support the creation of annotated data, a variety of tools have been designed and
implemented. All tools are Windows applications written in C++.

The sentence border marking program converts texts recorded in Word – RTF format
into an SQL database table format. All sentences are given a unique identifier by refer‐
encing the name of the texts (see Fig. 1). Selection of a sentence in the text editor for
processing according to the texts recorded in the base of the corpus is possible. In the lower
window of Fig. 1 information according to the sentences of the texts in the form of the table,
as well as the selected sentence in the middle of the window, is displayed. “S_ID” indicates
the identifier of a sentence in the text.

“St” – status of the sentence processing: “Y” shows that everything is all right and “?”
shows that something is wrong. A sentence is written in the field of the “Sentences”. The
editor can move to the grammatical annotation and can correct annotation results by double-
clicking this field; the number of the words in the sentence is written in the field of
“WNum”. The editor can write any comments in the field of “Comments”.

The amount of manual labor required for building annotations depends on the
complexity of the input data. Most sentences can be reliably processed without any human
intervention; in this case, a linguist should only look through the result of the processing and
endorse it. If the Sentence Properties contain errors, a linguist can edit it using a user-
friendly interface (see screenshot below). This mode involves manual correction of the
morphologic or the syntactic markers to every word in a sentence.
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If a linguist is uncertain whether the morphologic/syntactic properties of the word are
adequate, he/she may mark it as “doubtful”. For that he/she has to write the sign “?” in the
field of “St” (status).

Figure 2 presents the main dialog window for editing sentence properties. An operator
can edit the markups directly in any sentence of the text. The selected sentence for analysis
is written in the top line of the edit window:

k’ibis tavši boša kali kvesk’nelis diasaxlisivit egebeba momavlis šišit aporiakebul tana‐
mokalakeebs – ‘At the top of the stairs a gypsy woman welcomes her citizens, who are
anxious with fear about the future, like an underworld hostess’.

If a linguist is uncertain whether the morphologic/syntactic properties of the word are
adequate, he/she may mark it as “doubtful”. For that he/she has to write the sign “?” in the
field of “St” (status).

Figure 2 presents the main dialog window for editing sentence properties. An operator
can edit the markups directly in any sentence of the text. The selected sentence for analysis
is written in the top line of the edit window:

k’ibis tavši boša kali kvesk’nelis diasaxlisivit egebeba momavlis šišit aporiakebul tana‐
mokalakeebs – ‘At the top of the stairs a gypsy woman welcomes her citizens, who are
anxious with fear about the future, like an underworld hostess’.

How we know, an ambiguous form is one that can have two or more meanings. You can
see more than one dictionary entry with the same lexeme in the program tool. Each entry
represents one meaning. When an ambiguous form occurs in the text, program asks you to
choose between the multiple features.

Fig. 1. The window of the text-processing program
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The information about particular words is written in a list: for this example, the first
word k’ibis ‘of the stairs’ has an identifier ID = 1; the lemmatized form is k’ibe ‘stair’; its
morphological feature list – [N Sg Gen] consists of: part-of-speech – N (noun), number.

– Sg (singular) and case – Gen (genitive case). The word depends on a word with
ID = 2 with the adverbial syntactic relation (link type is Att(N) + Adv(N)).

The editor interface is simple. All fields can be edited except the first and the second (the
words of the sentence and their place number in the sentence). With double-clicking the
field of characteristic the word properties list will pop up. The editor can see all morpho‐
logic/syntactic properties of the single words (see Fig. 2).

4 Types of Linguistic Data Included in the Markup

The morphologic analysis we use is based on the computational dictionary. Lists of lemmas
and affixes structure the dictionary. They connect each other due to the corresponding iden‐
tifier of the patterns of morphotactics representations. The morphologic dictionary that is
incorporated in the program application of the parser includes 100 000 lexemes of the
contemporary Georgian language. The functioning of the program application relies on
morphologic generator, which, in its turn, depends on the morphologic data of each unit of
the computational dictionary. Morphologic generator is used to generate a separate lexeme
from lemma and to analyze a word-form. The morphology analyzer gives one or more
probable derivation patterns. [4, 8, 9].

The morphological analyzer assigns features for every word. The feature set for Geor‐
gian includes part of speech, number, case, auxiliary form (nominal part of compound pred‐
icate), tense, person of subject and object.

The syntactic analyzer divides a sentence into the syntactic pairs and describes them.
(Two members of a sentence that are connected in a certain way make a syntactic unit. This

Fig. 2. The main dialog window for editing of the sentence properties
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type of unit is called Syntactic Pair or Syntagma. A syntactic pair is the smallest syntactic
unit of a sentence).

A parse tree is represented by binary mutual oriented connections between the words of
a sentence. There is a dominant term and a dependent term in each connection.

In order to get a syntactic tree the following rules must be fulfilled:

1. Tree wholeness must be maintained. It is forbidden to divide a sentence into more
than two trees.

2. Every word of the sentence must be involved into a tree structure and each of them must
have a dominant term.

Syntactic Connection is considered as formal means to express syntactic relation between
the members of the sentence. There are three types of the syntactic relation in Georgian:
Agreement, Government and Adjoin [10].

Agreement is a syntactic connection when the dependent term gets the shape of the
dominant term (did-i burt-i – ‘a big ball’ (nom. case), did-ma burt-ma – (erg. case)).

There are four cases of agreement connection in Georgian:

1. A noun agrees with the noun, adjective, numeral, pronoun and participle in case:
2. maγali mta – ‘a high mountain’ (Nom. Case), maγalma mtam – (Erg. Case);
3. A Noun agrees with the other Noun, Adjective, Numeral, Pronoun and Participle in

Number as well as in Case. mta-ni maγal-ni – ‘high mountain’, mta-ta maγal-ta – ‘high
mountains’;

4. A Noun agrees with the Verb in Person: me c’avedi – ‘I went’, šen c’axvedi – ‘you
went’, is c’avida – ‘he/she went’;

5. A Noun agrees with the Verb in Number (it depends is it animated or not): xeebi dgas –
‘the trees is standing’ (instead of ‘trees are standing’).

Government is a syntactic connection when one term requires a certain form from the
other, which it does not have.

There are the following cases of government connections:

1. Noun governs the other Noun in Case
2. Verb governs a Noun in Case
3. A Formless Word (Preposition or Adverb used as a Preposition) governs a Noun in

Case
4. Verb governs a Noun with a Preposition.

Adjoin is a syntactic connection when the dominant term connects the dependent term by
content without any grammatical expression. The dependent term is a word with unchange‐
able form (gvian dabrunda – ‘(he/she) returned late’).

Six basic types of relation are defined according to which part of speech the dominant
term of the syntactic pair belongs to.

There are two kinds of Nominal relations: Substantive (of Noun) and Adjective (Adjec‐
tive, Numeral and Pronoun). In substantive relation the dominant word is a noun and the
dependent word may be a noun, an adjective, a numeral, a pronoun and a verbal noun, rarely
– an adverb.
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In order to write syntactic relations easily the following conventional signs are used: SC
_ Syntactic Connection. On the right of the equation a dominant term and on the left a
dependent term are placed. For example, SC = N/N means that a syntactic pair consists of
two nouns, the first one is the dominant and the other is the dependent one.

The types of Nominal connections:

1. SC = N/N – botli c’qali – ‘a bottle of water’;
2. SC = N/Adj – didi saxli – ‘a big house’;
3. SC = N/Num – mesame c’igni – ‘the third book’;
4. SC = N/Pron – ramdenime st’udent’i – ‘a few students’;
5. SC = N/Adv – gvian γamit – ‘late at night’.

In the types of verbal connections, the dominant term is a verb connecting a noun or an
adverb. The first one expresses an objective connection and the second – Adverbial modi‐
fier. We consider the connection of Verbal-Noun words with the Verbal connection.

The types of Verbal connections:

1. SC = V/N – daxat’a qvavili – ‘(he/she) painted a flower’;
2. SC = V/Adv – daxat’a kargad – ‘(he/she) painted well’;
3. SC = V/Num – xutni movidnen – ‘Five (of them) came’.
4. SC = V/VN (Verbal Noun) – gak’eteba minda – ‘(I) want to do’.

An Adjective appears as a dominant very rarely. Its dependent term may be a Noun or
an Adverb.

1. SC = Adj/N – lomivit ӡlieri – ‘strong as a lion’;
2. SC = Adj/Adv – ӡalian k’argi – ‘very good’.

A Numeral does not appear as a dominant term in a syntactic pairs very often either.

1. SC = Num/Num – p’irveli xuti – ‘the first five’;
2. SC = Num/Pron – qoveli asi – ‘every hundred’;
3. SC = Num/N – siit meate – ‘the tenth on the list’;
4. SC = Num/Adv – bolodan meore – ‘the second from the end’.

Pronoun word connections:

1. SC = Pron/Pron – qvelaferi es – ‘all these’;
2. SC = Pron/Adj – k’argi vinme – ‘someone good’;
3. SC = Pron/Num – erti ram – ‘one thing’;
4. SC = Pron/Ger – qoveli morbenali – ‘every runner’.

Adverbial word connections:

1. SC = Adv/N – c’qlis dasalevad – ‘to drink water’;
2. SC = Adv/Adv – gvian γamit – ‘late at night’.

As a result, there are 23 syntactic pairs realized in Georgian, which differ only by part of
speech variation. Let us consider syntactic pairs by their syntactic function in the sentence.

According to the theory of L. Tesnièr the hierarchy and the direction between the word
connections is determined by the well-ordered actant structure of a Predicate [11]. This point
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of view is proved in the Georgian language. The Verb-Predicate has the ability to connect
with the other members of the sentence. That is because of the originality of the Georgian
verbs [12]. It contains grammatical information necessary for building a syntactic structure
of the sentence. It is a sentence on its own. In the Georgian language, a predicate may be
simple or compound. Compound predicate is considered as a syntactic pair. The following
pairs differ according to variety of the nominal parts of the compound Predicate. According
to what are the nominal parts of the compound predicate expressed with the following types
are defined:

1. Nominal part of a compound predicate is a Noun (CP = V+N) – bavšvebi arian – ‘They
are children’;

2. Nominal part of a compound predicate is an Adjective (CP = V+Adj) – guli k’etili
hkonda (He/she had a kind heart);

3. Nominal part of a compound predicate is a Numeral (CP = V+Num) – ormoci unda iqos
(there must be forty);

4. Nominal part of a compound predicate is a Pronoun (CP = V+Pron) – šen xar – ‘you are’;
5. Nominal part of a compound predicate is a Participle (CP = V+Prtcp) – dač’rili unda

qopiliqo – ‘He/she/it must have been wounded’.

The Predicate forms the largest number of the syntactic pairs with the other members of the
sentence and the Subject forms the lesser number. The other members of the sentence form
syntactic pairs as well.

Thus, 53 types of syntactic pairs have been defined according to these four criteria:

1. The dominant and the dependent term in the syntactic pair;
2. The syntactic relation type of the syntactic pair;
3. The part of speech of the dominant in the syntactic pair;
4. The syntactic role of the dominant in the sentence.

Let us consider an example (A dominant term is marked with bold font. The information
about pairs (which parts of speech they are expressed with) is given in brackets and the
syntactic function that has the given member in the sentence is ascribed on the left of the
brackets):

k’ibis tavši boša kali kvesk’nelis diasaxlisivit egebeba momavlis šišit apor-iakebul tana‐
mokalakeebs – ‘At the top of the stairs a gypsy woman welcomes her citizens, who are
anxious with fear about the future, like an underworld hostess’.

1. kali egebeba – ‘woman welcomes’ – S(N) + P(V), Government in Case, Agreement
in Person and Number;

2. boša kali – ‘gypsy woman’ – Att(N) + S(N), Agreement in Case;
3. egebeba tanamokalakeebs – ‘welcomes citizens’ – P(V) + IndObj (N), Government in

Case;
4. aporiakebul tanamokalakeebs – ‘anxious citizens’ – Att(Participle) + IndObj (N),

Agreement in Case;
5. šišit aporiakebul – ‘anxious with fear’ – IndObj (N) + Att(Prtcp), Government in Case;
6. momavlis šišit – ‘fear about the future’ – Att(N) + IndObj (N), Government in Case;
7. diasaxlisivit egebeba – ‘welcomes like a hostess’ – Adv(N) + P(V), Government in

Case;
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8. kvesk’nelis diasaxlisivit – ‘underworld hostess’ – Att(N) + Adv(N), Government in
Case;

9. tavši egebeba – ‘welcomes at the top’ – Adv(N) + P(V), Government in Case;
10. k’ibis tavši – ‘At the top of the stairs’ – Att(N) + Adv(N), Government in Case.

5 Conclusion

At present, the full syntactic markup has been generated for 25310 sentences (95240
words). The given approach permits to include all information expressed by morphologic
and syntactic means in contemporary Georgian. We expect that the new corpus will stimu‐
late a broad range of further research and development projects.

The corpus will be publicly available on the page http://geocorpora.gtu.ge/#/texts.
The Rustaveli Foundation of Fundamental Research in Georgia has supported this work

with a grant No. 31/65. The project title is “The Full (Morphological, Syntactic, and
Semantic) Annotation System of the Georgian Language Corpora”.
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Abstract. The first part of the paper proposes a formal foundation of a theory
of frames. Frames are embedded into a general ontology. On this background,
we introduce a formal model-theoretic semantics for frames and thereby an
interface to formal semantics. The model-theoretic semantics allows us to define
central notions of frame theory such as the “satisfaction type” for a node in a
given frame, and a semantic definition of subsumption. The second part presents
a case study of decomposition: frames for subtypes of intransitive punctual
verbs of change, such as punctual ‘grow’ and ‘go from A to B’. We introduce
times, events, and time-dependent attributes in the ontology. A crucial element
of the analysis is “comparators”, a novel type of attribute in frame theory.
Comparators are partial two-place attributes that compare two individuals of the
same sort and return comparison values such as ‘=’ vs. ‘ 6¼’ or ‘<’ vs. ‘=’ vs. ‘>’.
Comparators allow us to model within frames and AVMs conditions in terms of
basic abstract relations. The approach proposed offers simplifications of alter-
native proposals for the frame-theoretical decomposition of these types of verb:
(i) standard PL1 is used as a frame description language; (ii) with comparators,
the use of non-functional relations as additional components in frames can be
avoided; (iii) meanings of punctual verbs of change can be represented within
one frame.

Keywords: Frames � Ontology � Comparator � Mereotopology � Time �
Time-dependence � Degree achievement � Verb of change � Verb of
locomotion � Decomposition

1 Background

The work presented here has emanated from joint projects involved with a novel theory
of frames (see Acknowledgments). The research initiative aims at a formally precise and
cognitively plausible theory of frames as a general format of conceptual representation,
in particular, but by no means exclusively, as a general format of semantic represen-
tation, including lexical decomposition and compositional meaning. The enterprise aims
to test the ‘Frame Hypothesis’ that goes back to Barsalou’s work ([2, 3, 4]): that frames
constitute the general format of representation in the human cognitive system.
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Löbner [9] discusses the implication of the Frame Hypothesis for cognition and lin-
guistic theory in general, and for syntax and semantics in particular.

This paper adds various innovations, modifications, and extensions of earlier
approaches such as Petersen [16] and Kallmeyer and Osswald [8]. These include the
following major points:

• relation to a general frame ontology as a global model for admissible frames;
• inclusion of time and time-dependent attributes in the frame ontology, along with

explicit time elements in frames;
• introduction of novel two-place “comparator” attributes that capture basic binary

relations between entities of the same sort, e.g., equality or order relations.

Inclusion of time into frame representations addresses a basic challenge to frame
theory: the representation of dynamic concepts such as the meanings of verbs of change
(see Naumann [15] for introductory discussion). The apparatus developed will be
applied in a decompositional representation of punctual change of state verbs.

2 Frames Related to a Global Frame Ontology

2.1 A Simple Frame Example

Frames in the sense of the frame hypothesis are recursive attribute value structures with
exclusively functional relations; they will be given a formal definition in the next
subsection. A simple example is the frame for a ‘male person with blue eyes’ given in
Fig. 1. It is a frame for an entity typed as a person that is assigned values for two
attributes: EYES and GENDER. The GENDER attribute is specified as ‘male’, which may be
taken as standing for a type of gender, rather than just the individual gender ♂. The
value of the attribute EYES is the eyes of the person (as one complex entity); these are
specified with the attribute COLOR as blue. The value specification ‘blue’ is not a single
discrete color value but stands for a range of color hues.1 Figure 1 displays two
common formats of representing frames: the left part of the figure shows a frame
diagram with labeled nodes and arrows; the right figure is an equivalent attribute-value
matrix (AVM).

1 11 111

12 

EYES COLOR

GENDER

person blue

male

1 person

EYES 11 eyes 
COLOR 111 blue

GENDER 12 male

Fig. 1. Frame example in diagram and AVM representation

1 For the sake of simplicity, the fact is ignored that it is not the whole eyes that are specified for color,
but rather the iris. The complex aspects of color predication are not at issue here.
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The frame diagram displays four circles, or nodes; these contain numbers as labels;
the number label is essentially a variable for the individual represented by the node.
The node labeled2 with 1 represents the entity which the frame is taken to describe; it
is called the “central node” and is marked by a double line border. The arrows represent
attributes as indicated by their labels; the arrows end in the nodes that represent the
values of the attributes. Three nodes carry type information: person, blue, and male
indicating that 1 is a person, 111 is a blue color, 12 is a male gender.

The attribute value matrix in the right part of Fig. 1 contains the same information
as the diagram. It represents the element 1 as the entity described by the whole
structure; 1 is typed as a person. That person has two attributes, EYES and GENDER. The
attribute EYES takes the value 11 , further typed by the embedded matrix: it is eyes (a
tautological categorization deriving from the fact that 11 is the value of the EYES

attribute), and it has the attribute COLOR with value 111 , categorized as blue. The
GENDER attribute of 1 has the value 12 , of type male.

It should be pointed out that in natural language, terms for attributes are system-
atically also used for their values. We talk of ‘the color [attribute term] of the cocktail’
but also of ‘the colors [value term] red, blue, and pink’. This circumstance has caused
some confusion. In this article we will distinguish the two senses of attribute terms
typographically, using SMALL CAPS for their use as attribute terms, and special bold
type in their use as value, i.e. type, terms.3

Frames are essentially graphs in the mathematical sense, i.e. sets of pairs of things,
called “nodes”. The pairing is the result of relations obtaining between the paired
elements. In the case of frames, the pairs are ordered, rendering a directed graph
(“digraph” in mathematical jargon), and the relations are attributes. The first member of
a pair is the bearer (argument) of the attribute, the second member of the pair is the
value. In the use of graphs for frame representation, different attributes may connect
nodes. Crucially, the attributes are functions: one node cannot be connected by the
same attribute to two nodes representing different values.

The term “graph” strongly appeals to network diagram representations like the left
structure in Fig. 1; the connections between nodes are called “edges” or “arcs”. Frame
graphs have topological properties that also appeal to the network diagrams: for
example, we will assume that frame graphs in general are connected. Still, in spite of
their name, graphs are not drawings, but abstract mathematical structures. The dia-
grams are a means of visualization. The nodes carry identifying labels, or indices. The
edges, too, carry labels that are read to define the attribute which an edge stands for.
The nodes may carry predicative type information in addition to being indexed.

For later application, the general definition of a frame structure needs to admit
n-place attributes (n� 1). N-place attributes result in a functional connection between
an n-tuple~x of argument nodes and an additional node for the value. We will represent
such constellations as can be seen in Fig. 2. Edges that connect tuples of nodes are
technically called “hyperedges” in graph theory.

2 The frame around the number is omitted when the label is written into a frame diagram node.
3 For discussion of the relation and the difference between attribute concepts and concepts for their
values see Petersen [16]: 162ff and Löbner [10]: 30–34.
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Definition 1. Frame structure
A frame structure is a sextuple hV, r, A, att, T, typi, such that
a. V is a finite set of nodes.
b. r ∊ V is a distinguished node, the “central node”.
c. A is a finite set of edge labels.
d. att is a function that maps pairs of an n-tuple of nodes (n� 1) and an edge label on

another node.
e. T is a set of type labels.
f. typ is a partial function that assigns type labels to nodes.
g. With E = df {h~x, yi | 9a ∊A att(~x, a) = y}, hV, Ei is a connected digraph with n-to-1

hyperedges (n� 1).

A digraph is connected if there is a connection along one or more edges, in either
direction, between any two nodes of the graph. The frame represented by the diagram
in Fig. 1 is connected. The central node is understood to represent the type of object, or
the individual object, that the frame describes. In the example, the central node is the
node 1 ; its status is indicated by the double-line border.

The above definition of frame structure is essentially equivalent to the definitions
given in Petersen [16], except for the fact that the definition here is more general while
Petersen distinguishes different, more specific types of frame, such as frames for sortal,
relational, and functional nouns (see Löbner [10]: 41–47). The frame structures used
below for verb meanings/event concepts are relational concepts: they have a referential
central node representing the event described and argument nodes for the verb’s role
arguments. The definition here is also compatible with the definition of frames in
Kallmeyer and Osswald [8]; their definition, however, allows arbitrary relations
between the nodes of a frame structure, in addition to the attributes.

2.2 Global Frame Ontologies

The two structures in Fig. 1 are both essentially two-dimensional expressions. Usually,
these types of structure are used with a presupposed interpretation of the attribute and
type labels. When applied in semantics, these labels are in need of a precise formal
interpretation. We will define an underlying ontology for frame interpretation and relate
all frames to it. In an additional step we will translate frame structures into first-order
predicate logic in order to provide an interface to truth-conditional semantics.

x1

x2 xn

y

……

Fig. 2. Frame diagram for an n-place attribute assignment
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Any framework of representation employing frames depends on ontological
assumptions as to which attributes can plausibly figure in a frame and which types are
available for the values they can take. The frame representations used here are pri-
marily representations in terms of attributes of the entities represented and, secondarily,
in terms of the types of attribute values. Therefore the frame ontology is based on
attributes. This distinguishes the approach from frameworks like Carpenter’s [5] theory
of typed feature structures: these are based on a given system of types with a
semi-lattice structure defined by type subsumption. The “types” in the theory proposed
here correspond to Carpenter style “types” in that they subsume cases of the same
description (like, for example, blue-eyed man). However, the types as introduced here
are essentially derivative. In general, attributes are partial functions; they come with a
domain of application, i.e. a type of things that are eligible for carrying this attribute,
and they come with a codomain, the type of possible values. Being partial functions,
they need not return a value for everything in their domain. The attribute COLOR, for
example, is defined for physical bodies and it takes colors as values (including the
value ‘colorless’).

The attributes of the human frame ontology form an infinite space. Attributes can
build chains of arbitrary length by applying an attribute to the value of the first attri-
bute, another one to the value of the second, and so on. Also, arbitrary attributes can be
defined ad hoc, drawing on existing concepts. Nevertheless, frame theory needs a
consistent and plausible framework of available, well-defined attributes that constitute
legitimate elements of frame representations.

In a really cognitive approach, the attributes and types would have to be attribute
concepts and type concepts. This kind of approach is not spelt out yet. The frame
ontology to be introduced here will be an “ontological” ontology, of functions and
entities in the world as we refer to when using language. This decision enables a
straightforward comparison with analyses in the truth-conditional semantic paradigm,
which is based on an “ontological” ontology, too.

A frame ontology has a non-empty universe of individuals, a set U. U is partitioned
into sorts: any individual is of exactly one sort; there is no overlap of sorts. In a
hierarchy of types, the sorts are maximal types. To give a few examples: one will
assume the sorts of persons, of physical objects, of numbers, of temperatures, of
weights, of colors, of truth-values, and so on.

It is assumed that attributes are always restricted to one sort, but their domain need
not exhaust the sort it is a subset of. Also, attributes return values of only one sort. This
appears necessary for the ontological distinction of different attributes denoted by a
polysemous attribute term. For example, the term weight can be used as denoting the
weight attribute of physical objects having mass, but it can also be used for a particular
aspect, roughly importance, of things like arguments or decisions. A frame ontology
properly defined will provide different attributes for the ‘weight’ of physical objects, of
arguments, and of decisions, respectively, because these three kinds of entity are of
different ontological sorts as are the values returned by the ‘weight’ attribute.

Attributes may have more than one argument; for example, DISTANCE and RELA-

TIONSHIP would be two-place attributes.
The attributes form a space which will be postulated to be closed under functional

composition. For example, if HAIR is assumed to be an attribute of persons, and the
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attribute COLOR is applicable to human hair, functional composition yields the attribute
HAIR COLOR for persons with hair. We will further postulate that for injective one-place
attributes, the inverse is also in the ontology. Injective attributes are 1-to-1 mappings.
For example, every person has a body, whence there will be the attribute BODY available
for persons; conversely, every body belongs to exactly one person, and there will be the
inverse attribute BODY

−1 in the ontology; it returns the body-owner for every body.
Every attribute A is associated with the types that constitute its domain of appli-

cation and the range of values it can take. We denote the domain as dom(A) and the
codomain as cod(A). If A is n-place (n > 1), its domain is the Cartesian product of n
types domi(A), i = 1,…, n. We will assume that the set of types is closed under
intersection and that for each individual in U there is a corresponding atomic type, an
atom. If an attribute is applicable to all members of a type t, then the image of t is also a
type in the ontology; conversely, if t is a subtype of the codomain of an attribute, then
its preimage is a type in the ontology. For example, one will assume that there is a type
hair included in the domain of the attribute COLOR; thus the ontology will contain the
type hair color as the image of hair under the COLOR mapping. Conversely, there is the
type red of red colors within the codomain of the COLOR attribute; its preimage is the
type of red objects; it intersects with the type hair to form the type red hair. Due to the
conditions on the ontology, the system of types is closed under attribute-related
operations. It does not, however, exhaust the powerset of U – not if there is more than
one sort in the ontology, which we will certainly want to assume.

According to the definition to follow, the sorts are an a priori part of the ontology,
while the types (except of the sorts) should be considered derivative of the system of
sorts and attributes. Equally a priori is the universe as such, a non-empty set whose
elements are the individuals of the system and correspond to the atomic types. The
types form hierarchical systems, but the hierarchies are each restricted to one sort.

Definition 2. Sorted frame ontology
A sorted frame ontology O is a quadruple hU;S;A;Ti such that
a. U, the universe, is a non-empty set of individuals.
b. S, the system of sorts, is a partition of U: every individual in U belongs to exactly

one sort in S.
c. A, the set of attributes, is a set of non-empty partial functions A: Un ⟶ U. The

attributes are restricted to sorts: for every A: Un⟶ U, there are sorts s1,…, sn,
s 2 S such that domi(A) � si for i = 1,…, n and cod(A) � s.

d. T , the set of types, is a proper subset of ℘(U): every type t is a subset of U. For
every t 2 T , there is an s 2 S with t � s: types contain individuals of only one sort.

Closure conditions on the set A of attributes
e. A is closed under functional composition.
f. If a one-place attribute a 2 A is injective, there is a partial function a�1 2 A, such

that for every x; y 2 U; a�1ðyÞ ¼ x iff aðxÞ ¼ y.

Closure conditions on the set T of types
g. Every sort is a type: S�T .
h. For every x 2 U; fxg 2 T . {{x}: x ∊U} is the set of atomic types in T .
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i. If a 2 A; t 2 T , t � dom(A), then the image of t under A, A[t], is in T ;
if a 2 A; t 2 T ; t � cod(A), then the preimage of t under A, A

−1[t] is in T .
j. For every t, t′ 2 T , t\ t′ 2 T .
k. T contains no other types than those defined by (h)–(k).

While this definition is completely abstract, we want to invest it with the informal
constraint that the attributes to be postulated in any frame ontology used for the
analysis of natural language are to be cognitively plausible, i.e. plausible candidates for
attributes of which humans can be expected to be able to have cognitive representations
in their minds.4 We now introduce the notion of a frame structure related to a given
ontology.

Definition 3. Frame structure related to an ontology
For a frame structure hV, r, A, att, T, typi related to the ontology O ¼ hU;S;A;Ti
a. the elements of V are variables for individuals in U;
b. the elements of A are labels for attributes in A;
c. the elements of T are labels for types in T .

2.3 A Formal Semantics for Frames

A frame structure related to an ontology receives a straightforward semantics by using
identical constants as labels in the frame structure and as expressions in the metalan-
guage of the ontology. A frame structure describes a structure in the ontology with as
many elements as there are nodes in the frame structure indexed with a variable. For
example, the frame structure in Fig. 1 describes triples hx, y, zi such that x is a person
of male gender, with eyes y of color z of a blue color. Hence it describes the type of
blue-eyed male persons in the ontology. As a descriptor of a type, the frame constitutes
a concept. Note that, unlike a predicate expression in a logic language under
truth-conditional interpretation, a frame is not merely associated with a type to fit its
truth conditions; rather it describes the type it represents by use of particular criteria
(i.e. attributes and value assignments) which are irreplaceable components of the
concept.

In order to provide an interface to truth-conditional semantics, we translate frame
structures into an appropriate first-order predicate logic (PL1) language. The type of
PL1 language needed for frame representation is considerably restricted: it has neither
negation, nor disjunction, nor universal quantification.

Definition 4. PL1 frame language associated with an ontology
For a given frame ontology O ¼ hU;S;A;Ti, the associated language PL-O is a
first-order predicate logic language with the following elements:

4 We will make use of an implicitly presupposed ontology when we discuss examples below. To come
up with a concrete definition of a frame ontology for semantic analysis is a task for semantic and
ontological theory for decades of research.
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a. individual terms, including individual variables and individual constants for indi-
viduals in U,

b. type constants: terms for types in T ; type constants include expressions of the form
‘{i}’ (i an arbitrary individual constant) for the atomic types in T ,

c. n-place function constants: terms for the attributes in A,
d. ∊ for statements of the form ˹i ∊ t˺, with individual term i and type term t,
e. = for statements of the form ˹i1 = i2˺ with individual terms i1, i2,
f. ^ propositional conjunction,
g. 9 existential quantifier.

The model-theoretic interpretation of PL-O is obvious: all constants are interpreted
as denoting the individuals, attributes, and types they denote in the metalanguage of the
ontology. Complex expressions are interpreted as usual. In the PL-O applied here, we
use framed symbols for natural numbers as individual variables. There is a straight-
forward way of translating a frame structure into a PL-O representation, rendering a
canonical satisfaction formula (SatFor) that is unique except for the order of conjuncts.

Definition 5. Canonical satisfaction formula
If f = hV, r, A, T, att, typi is a frame based on the ontology O ¼ hU;S;A;Ti, the
canonical satisfaction formula for f – SatFor(fÞ – is the conjunction of the following
PL-O statements:

Example. The frame structure in Fig. 1 yields the SatFor in (1), which can be sim-
plified by variable elimination to the equivalent in (2):

(1) 1 ∊ person ^ EYES( 1 ) = 11 ^ COLOR( 11 ) = 111 ^ 111 ∊ blue ^
GENDER( 1 ) = 12 ^ 12 ∊ male

(2) 1 ∊ person ^ COLOR(EYES( 1 )) ∊ blue ^
GENDER( 1 ) ∊ male

Related to an appropriate ontology, a frame structure represents a type in the ontology
for every variable/node it contains. The type is defined by existential closure applied to
the remaining variables. For the three variables of the example frames, the types are:

(3) a. {x : 9y9z(x ∊ person ^ EYES(x) = y ^ COLOR(y) = z ^ z ∊ blue ^
GENDER(x) ∊ male)}

i.e. the type of male persons with blue eyes
b. {y : 9x9z(x ∊ person ^ EYES(x) = y ^ COLOR(y) = z ^ z ∊ blue ^

GENDER(x) ∊ male)}
i.e. the type of blue eyes of male persons

c. {z : 9x9y(x ∊ person ^ EYES(x) = y ^ COLOR(y) = z ^ z ∊ blue ^
GENDER(x) ∊ male)}

i.e. the type of blue colors of the eyes of male persons.

a. for all i1, …, in, j ∊ V, all A ∊ A, ˹A(i1, …, in) = j˺ if att(i1, …, in,, A) = j,
b. for all i ∊ V, t ∊ T ˹i ∊ t˺ if typ(i) = t
c. for all i ∊ V, u ∊ U ˹i = u˺ if typ(i) = {u}
d. If att and typ are empty and V = {r}, then SatFor(f) is ˹r = r˺.
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The resulting type may be empty, depending on facts given in the ontology. The
“satisfaction type” of a frame is the type it describes with respect to the central node; in
general, a satisfaction type can be defined for every variable/node in the frame:

Definition 6. Satisfaction type
Let f ¼ hV; r;A;T; att, typi be a frame based on the ontology O ¼ hU;S;A;Ti:
The satisfaction type of f is the type
SatTypeðfÞ ¼df fr : 96¼r SatForðfÞg

where 96¼r SatFor(fÞ is the existential closure of SatFor(fÞ for all
variables in V except r.

More generally, if i ∊ V is a node in f; the satisfaction type of f for i is:
SatTypeðf; iÞ ¼df fi : 96¼i SatForðfÞg
The notions defined so far allow for a semantic definition of frame subsumption.

Definition 7. Subsumption
Let f1 and f2 be frames related to the same ontology, let x and y be nodes in f1 and f2,
respectively. f1 for node x subsumes f2 for node y if the satisfaction type for the first
includes the satisfaction type for the second:
f1(x) ⊑ f2(y) iffdf SatTyp(f1, x) � SatTyp(f2, y).
In particular, f1 subsumes f2:
f1 ⊑ f2 iffdf SatTyp(f1) � SatTyp(f2).

The usual definition of subsumption for frames and AVMs relates to the structure of a
frame: a frame subsumes another frame if there is a node in the second frame for every
node in the first frame with compatible respective characteristics (cf., e.g., the definition
in Kallmeyer and Osswald [8]: 280 ff.). The formal semantics defined for frames here
allows a semantic definition of subsumption that is independent of the form in which
the information in a frame is arranged. For example, we might replace the frame
structure in Fig. 1 by the ones in Fig. 3. The three frame structures mutually subsume
each other. The left frame contracts the attribute chain COLOR(EYES(…)) to the functional
composition EYE COLOR; the respective parts of the SatFor’s are logically equivalent. In
the right frame, the attribute EYES is replaced by its inverse EYES-OWNER. Both
replacements are legitimate due to the closure conditions on A in the general definition
of ontologies. Thus defined, subsumption is basically logical entailment for frame
structures or AVMs taken as logical expressions.

1 11

12 

EYECOLOR

GENDER

person blue

male

11 1 12

111

EYES-OWNER COLOR

GENDER

person blue

male

Fig. 3. Alternative frame structures for ‘blue-eyed male person’
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3 Comparators

One point of debate in frame theory is the question of how to model relations in a
framework that is restricted to graphs with exclusively functional connections. This
paper offers a proposal for modeling certain basic intrasortal relations. Kallmeyer and
Osswald [8] proposed to model such relations by admitting non-functional relations as
an additional type of component in a frame. This step is in conflict with the Frame
Hypothesis mentioned in the beginning since Barsalou frames are supposed to employ
exclusively functional attributes as relations in frames. We will introduce special
two-place attributes to capture this type of intrasortal relation; we call them
“comparators”.

Comparators are binary attributes that apply to arguments of the same sort. Their
values are the outcome of comparison with respect to certain basic criteria. For
example, a comparator might compare two real numbers and return one of the com-
parison values ‘=’, ‘>’ and ‘<’. The three values are mutually exclusive alternatives,
whence the comparator is a functional relation. (Note that there is no comparator
function which could in addition also return ‘�’ and ‘�’; there are however com-
parators that return either ‘>’ or ‘�’, or either ‘<’ or ‘�’.) The comparison values are
individuals returned as values by the comparison function; they are not to be confused
with the general relations usually denoted with the same symbols. Comparator values
are ontologically of their own sort, depending on the domain of comparison.

Comparators are cognitively highly plausible conceptual operations. Even the most
primitive organisms are capable of comparisons. For humans, comparators are involved
in recognition and categorization to name only a few cognitive functions.5

Depending on the sort applied to, there may be more than one comparator defin-
able. The basic equality comparator is defined for every sort. If there are partial or
linear orders defined within a sort, there are corresponding comparators; partial
orderings include part-whole relations.

Definition 8. First-order comparators6

First-order comparators in an ontology O ¼ hU;S;A;Ti are two-place attributes with
both arguments of the same sort; they return comparison values.
For every sort s 2 S; the standard comparator ©s is defined as
©s(x, y) =df ‘ 6¼’ / ‘=’ iff x 6¼y / x=y.

When we use comparators, we will express the comparisons in the satisfaction for-
mulae in the conventional way; we will write ‘x = y’ instead of ‘©s(x, y) = =’, and
so on.

5 Barsalou ([4]: 601) uses comparators (although not called so) in his model of truth and falsity for
propositions. Comparators check whether an internal simulation [roughly, a frame] can be “map[ped]
successfully into a perceived scene”. Truth and falsity is envisaged in our approach as a further
application of comparators, probably of second order and hence outside the scope of frame theory
sketched here.

6 These comparators are first-order in that they compare individuals.
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4 Time and Tensed Ontologies

We will now integrate time into the ontology, a step that allows the modeling with
frames of time dependence by using explicit time representations. In their frame
analysis of temporal situation structure, in Kallmeyer and Osswald [8], Naumann [15],
and Gamerschlag, Geuder, and Petersen [7], the authors relate to time implicitly by
employing attributes such as RESULT; their frames do not contain times explicitly. The
approach taken here follows a strategy of maximizing explicitness in frame represen-
tation; in particular, it tries to represent all arguments of attributes in the frame
structure. In addition to this aspect of expressivity, the incorporation of explicit time
parameters in verb meanings is also probably necessary for modeling tense and aspect
in a frame theory of composition. I take it, along with many theories of tense, that tense
is a predication about times, more specifically about the time occupied by an event e, if
e is the event referred to, and aspect is perfective.7

Independently, the question arises if the assumption that times rather than just
events figure in human cognitive representations is psychologically realistic. According
to experimental evidence (Roberts, Coughlin, and Roberts [17]) there is positive evi-
dence of time representation in cognition even for pigeons. This justifies the
assumption of the sort time in our ontology.

We extend the definition of the ontology by introducing the sort time, where times
are understood as being intervals on the time axis. For the comparison of times we
apply the system of temporal relations introduced in Allen [1] which are mutually
exclusive; we will use only three of them, the relation ‘m’ (meet) and its inverse ‘mi’,
and the “earlier” relation ‘<’. Two times x and y “meet” iff x is earlier than y and
immediately adjacent to y; mi obtains between x and y iff y m x. Rather than the
traditional ℝ1 topology assumed e.g. by Dowty [6] for the time axis, it appears psy-
chologically more adequate to apply a topology where two time intervals can be
connected without overlapping or with one being open and the other one closed. In
such a mereotopology, it would be possible to model two consequent days as two
closed time intervals that meet without overlap, the first one ending with 12:00 p.m.
and the next one beginning with 0:00 a.m.; 0:00 a.m. would be the point in time
immediately following 12.00 p.m. Other units of time like years, months, weeks, hours,
and so on would be modeled analogously. This appears to me more in accordance with
intuition than assuming that either 0:00 a.m. or 12:00 p.m. does not belong to a full
day. A topology that allows for connection without overlap is even more plausible for
the cognition of physical space where we are obviously willing to assume that it is
possible that, say, two boxes with plane surfaces can be piled upon each other with
nothing in between and no parts shared. Mereotopologies that implement the notion of
connection without overlap are introduced in Varzi [18] or Muller [14] for systems of
spatio-temporal reasoning. Allen’s temporal relations can be defined for such a
mereotopology if we take ‘adjacent’ as ‘connected without overlap’.

Introducing time into the ontology involves two major changes and additions:
(i) certain attributes will be defined as being time-dependent, i.e. two-place attributes

7 See Löbner [11], Chap. 6, for a basic outline of the theory of tense and aspect supposed here.
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with an additional time argument; (ii) events will be related to times by means of
certain event attributes. As to the first point, it is to be observed that according to
common ontological understanding the values of some attributes are time-dependent,
while the values of other attributes are not. In general, attributes relating things to their
origin are not time-dependent; most property attributes, however, are, since properties
can change during the lifespan of things.

Definition 9. Tensed ontology
A tensed ontology Ot ¼ hU;S;A;Ti fulfills the following conditions in addition to
conditions a.–k. in Definition 2:

l. There is a sort time in S, of non-empty time intervals (including points in time) with
the properties and relations as to be defined in an appropriate mereotopology of
time.

m. There is a comparator ©time in A, defined for the sort time that assigns values for
the Allen relations to pairs of times.

n. There is a sort event in S, of events.
o. Three attributes map events on time:

TE(e) = the time occupied by the event e,
TB(e) = the time before the event e,
TA(e) = the time after e;
for every event e: TB(e) < TE(e) < TA(e); the three times need not be adjacent.

p. Time-dependent attributes: There are two-place attributes A: t1⨯ time ⟶ t2, for
some types t1, t2.

q. Homogeneity condition for attributes with a time argument:
If an attribute A assigns the value v to a time t and possibly further arguments, then
A returns the same value v for all non-empty subintervals of t.

The homogeneity condition is a novel kind of constraint. It is also necessary for
other attributes, e.g. COLOR: COLOR does not yield a unique value for a would-be argument
in case it is of more than one color like, for example, most flags. In general, an attribute
A underlies a homogeneity condition with respect to an argument x iff a value assign-
ment to x by A is true iff the same assignment holds for all relevant proper parts of x. This
is tantamount to the condition that the predication kx A(x) = y (for any y ∊ cod(A)) is
summative in the sense of Löbner ([12]: 237).

5 Lexical Frames for Intransitive Punctual Verbs of Change

We will now present proposals for representing the lexical meaning of certain subtypes
of punctual verbs of change. Verbs of change have been a topic in decompositional
analysis since Dowty [6]. Modeling change is a particular challenge to frame theory
since the original notion of frame is static. The proposal differs from existent alter-
natives in various ways.
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• Unlike the proposals in Kallmeyer and Osswald [8], Gamerschlag et al. [7], and
Naumann [15], it employs explicit time reference.

• Unlike in Gamerschlag et al. [7], and Naumann [15], the meanings of verbs of
change are represented in a single frame.

• Unlike in Kallmeyer and Osswald [8], dynamic verb meanings are modeled with
comparators rather than by adding non-functional relations to the frames used; also
the logical language used for frame description here is more conventional.

The frame model to be proposed represents punctual verbs of change: the event con-
sists of a change in time relating to the time before and the time after the event e. There
is a condition that holds at the time before e and does not hold at the time after, or vice
versa. The frame imposes no conditions on the time TE(e) that the event itself occupies.
The transition may be continuous or an instantaneous change; it may be temporally
extended or not. It is in this sense that these verbs are punctual: the time TE(e), for all
the verb concept tells us, might as well be just a point in time. We need to assume that
the criterial times TB(e) and TA(e) are immediately adjacent to TE(e). Otherwise, there
might be more than one change of the kind between TB(e) and TA(e). We also need to
assume that the times TB(e) and TA(e) are homogeneous with respect to the criterial
condition in order to prevent there being further changes within TB(e) or TA(e); this
constraint will be captured by the general homogeneity condition q in Definition 9 as
the criterial condition will be in terms of the values of a time-dependent attribute. Note
that TB(e) and TA(e) can be just points in time; the homogeneity condition does not
require that there be extended time intervals of no change before or after the event. The
question whether or not TE(e) itself should be imposed a condition to the extent that e
must not host further changes back and forth will be left open here. I take it that we
ought to allow for this; for example, the sentence the light went on may be about a neon
light that goes on and off and on again several times until it is permanently on; to give a
different example, we may say the price of the share rose today after a day of the price
constantly changing up and down.

5.1 A General Frame for Punctual Change

These conditions still leave the proper determination of TB(e) and TA(e) to the individual
context of interpretation. Even so, I assume that ‘the time before the event’ and ‘the
time after the event’ are pragmatically admissible determinate notions, i.e. legitimate
time-dependent attributes in the underlying ontology. TB(e) and TA(e) are determined by
the conditions that they “meet” TE(e) and are homogeneous with respect to the criterial
condition. If, and how far, TB(e) extends into the past and TA(e) into the future does not
make any difference.

The constellation of the event and its attributes TB, TE, and TA is depicted in Fig. 4.
The pale arrow labeled ‘time’ is not part of the frame; it is only added for illustrating
the temporal relationships. Comparators define the Allen relation from TA(e) to TB(e) as
‘m’ and the Allen relation from TB(e) to TE(e) as ‘mi’.

From now on, we will write the atomic values of comparator attributes right into the
nodes of the frame diagrams, as is done in Fig. 4 with the value nodes for the two
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temporal comparison attributes. Thus, the node inscription ‘cv’ replaces the type
annotation ‘{cv}’ and overwrites the variable labeling the node. We will render the
respective conjunct in the SatFor as ‘©..(i, j) = cv’ rather than as ‘©..(i, j) = k ^
k ∊ {cv}’. We will simplify ‘©..(i, j) = cv’ further to ‘i cv j’, using the symbols for the
comparator values as relation symbols between individual terms in the associated PL1
language.

For the subtypes of verbs of change considered here, the criterial condition of
change is in terms of a time-dependent attribute of the theme argument that takes on
different values for TB and TA. We will represent the theme argument by a rectangular
node in the frame diagram, thereby indicating that it represents an open argument.
Argument nodes can be considered providing an interface to syntax, but they do not
receive a different interpretation than the other nodes in the frame.

Figure 5 (next page) displays the general schema of a frame for a verb that denotes
a punctual change of its theme argument in terms of the attribute ATTR;8 the difference
between the state before and after the change is captured by the value of some com-
parator ©s,Rel that is defined on the sort s of entities which the attribute ATTR takes as
values. The value of the comparator has to be such that it entails inequality, as does e.g.
‘<’. The change is punctual in the sense that it does not impose any conditions on the
time TE itself.

Discussion. The frame in Fig. 5 models a variant of Dowty’s BECOME operator in its
second version related to time intervals (cf. the discussion in [6], pp. 139ff.). BECOME

operates on a proposition u; [BECOME u] is true at an interval I if there are intervals J
and K such that ([6], p. 141, (11’)):

1

19 17 18

m mi

TE

TB TA

©time©time

time

Fig. 4. Frame for an event and the related times

8 Note that FPunCh is not a frame structure in accordance with Definition 1 as it contains the attribute
variables ‘ATTR’ and ‘©s,Rel’; FPunCh is a frame schema.
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(i) ¬u is true in J and J contains the initial bound of I,
(ii) u is true in K and K contains the final bound of I,
(iii) I is the smallest time interval that fulfills the conditions (i) and (ii).

The frame schema FPunCh represents a BECOME event where u is defined in terms of
the value of the attribute ATTR of the theme changing into what it becomes. The three
times 19 (time before), 17 (time the event occupies), and 18 (time after), correspond
to Dowty’s time intervals J, I, and K, respectively. As is common practice in many
variants of Montague Grammar, Dowty uses a logical language without expressions
that refer to times; time-dependence is spelt out in the model-theoretic interpretation. It
is therefore not possible to express in the formal frame language used here what would
be Dowty’s u for the frame in Fig. 5. If we omitted the time argument of the attribute
of the theme, we would get ‘ATTR( 11 ) = 111 ’ as the operand u of Dowty’s BECOME.

There are differences, though, between the analysis proposed here and Dowty’s.
One concerns the minimality condition (iii). Dowty’s definition of BECOME aims at
exactly delimiting the interval in which the change takes place. In view of examples

Fig. 5. Frame schema FPunCh for a punctual change of state of the theme in the attribute ATTR,
canonical satisfaction formula
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like those mentioned above (the neon light and the share price examples), I consider
this condition possibly too strong. The second difference concerns the comparison
between the two states; Dowty’s BECOME operator models a change from ¬u to u, while
the comparator model allows for a wider range of relationships between the state before
and the state after. The third difference is the respective topology of time assumed.

5.2 Punctual Degree Achievements

The general frame FPunCh can be spelt out for different types of intransitive punctual
verbs of change. One such type is punctual degree achievements9 with a lexically
specified scale of change. Examples are cases like punctual intransitive ‘grow’:

(4) the number of participants in my seminar grew by 2

The lexical frame for ‘grow’ has SIZE as the attribute ATTR of change. The
respective comparator is ©size,< where size is the sort of sizes, i.e. the sort of things that
can be values of the attribute SIZE; this sort carries a linear ordering < ; in the case of
grow, the comparator returns ‘>’.

Punctual verbs cannot be used in the progressive10 as they do not denote an event
that can be parted into subevents of equal kind. In addition to the punctual use of grow
illustrated in (4), there are senses of English grow where the verb denotes a continuous
change on the size scale. These are not captured with the frame in Fig. 5. Modeling
continuous change would require TE(e) to be temporally extended and would call for
imposing a monotonicity condition on TE(e) to the extent that the value of SIZE is
monotonically increasing during TE(e). Other punctual verbs denoting degree
achievements on specific scales would be represented with a different instantiation of
ATTR: rise with HEIGHT, widen with WIDTH, and so on.

In Japanese, there are degree achievement verbs which in general defy progressive
use, i.e. a progressive reading with the continuative-te iru form.11 These include for
example hutoru ‘get fat(ter)’ and yaseru ‘get thin(ner)’.

In general, punctual degree achievements are characterized by relating to a theme
attribute ATTR that takes values of a sort that is ordered and therefore has a comparator
that returns corresponding values such as ‘>’ or ‘<’.

5.3 Punctual Verbs of Change into a Specific State

Consider go on (of lamps etc.) in the sense of changing into the change of being
[switched] on. The criterial attribute (to be named properly) can take either of two
values, ‘on’ and ‘off’. The value of that attribute at TA(e), i.e. 18 , is specified as ‘on’,
the comparator is the standard © for this sort and returns ‘ 6¼’. Japanese punctual verbs

9 See Dowty [6]: 88ff for the notion of degree achievement verb.
10 The notion ‘progressive’ is to be taken in the functional, semantic sense, as relating to a certain

variant of imperfective aspect, not in the morphological sense.
11 See Martin [13], p. 518 for the punctuality of the Japanese verbs mentioned here and below.
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of change into a specific state include aku ‘come open’, kowareru ‘break’ (intransitive),
or sinu ‘die’. In general, this group of verb can be modeled with the frame in Fig. 5
with a specification of ATTR and its value 111 , and the comparator value being ‘ 6¼’.

5.4 Punctual Verbs of Locomotion

Verbs of locomotion from one location to the other can be represented with a frame
very similar to FPunCh – provided the verbs are conceived as punctual. It is not clear, if
English has such verbs, but Japanese does, e.g. iku ‘go’, kuru ‘come’, kaeru ‘return’,
otiru ‘fall’, deru ‘emerge from’, hairu ‘enter’, and others. The attribute of change is the
location of the subject referent. For the construction ‘x ga [NOM] B ni [LOC] ik-’12, we
assume that both x, the theme, and B, the goal, are arguments of the verb. The goal
attribute will usually be specified as a region that covers more than the space taken in
by the theme when it is there. We cannot, therefore, identify the referent of the goal
specification with the location of the theme that results from the motion; rather, we
have to model the resulting state as the location of the theme being within the specified
goal region. For the spatial relation, we can again use a comparator, ©space, based on an
appropriate mereotopology. We will use two comparator values, ‘in’ for x being within
y and ‘ex’ for x being outside of y. These two are admissible values of the same
comparator because the two spatial relations exclude each other.

We will model the Japanese punctual verb iku ‘go’ in the full construction ‘x ga
[NOM] y kara [SOURCE] z ni [GOAL] ik-’, meaning ‘x go from y to z’ in a punctual sense.
The verb meaning is modeled as ‘LOCATION(THEME(e)) be within SOURCE(e) at TB(e) and
within GOAL(e) at TA(e), where SOURCE(e) is outside of GOAL(e)’. Thus the frame involves
three applications of the spatial comparator; they encode (i) the relation between the
location of the theme and the source, (ii) the relation between the location of the theme
and the goal, and (iii) the relation between source and goal. The latter is necessary
because this type of verb is not applicable to situations where the source is inside the
goal region or overlaps with it: A statement like John went from Tokyo to Japan
violates a presupposition of ‘go from SOURCE to GOAL’. This presupposition is modeled
explicitly by the third comparator condition. Figure 6 displays the frame and the
corresponding canonical satisfaction formula.

The frame can be accommodated to simpler cases such as the punctual Japanese
hair-u ‘enter’. This verb has only two arguments, theme and goal. There is a condition
on the location of the theme at TA(e): it is within the goal, and a second condition on the
location of the theme at TB(e): it is outside of the goal. Switching these two conditions
yields a frame for the verb de-ru ‘leave, emerge from’.

The canonical satisfaction formulae can be considerably simplified; if one omits the
general conditions on TB, TE, and TA, and the general condition on the spatial relation
between SOURCE and GOAL, the remaining conjuncts can be reduced to two, if one makes
use of variable elimination. For the sake of comparability with other approaches, we

12 ik- is the bare stem of the verb, not inflected for tense. The citation form of Japanese verbs carries
the present tense ending -u or -ru.
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replace the variable ‘1 ’ by the conventional event variable ‘e’. The remaining two
conjuncts capture the idiosyncratic meaning components of punctual go/iku.

(5) punctual ‘go from SOURCE to GOAL’, Japanese ‘SOURCE kara GOAL ni ik-’
LOC(THEME(e), TB(e)) in SOURCE(e) ^
LOC(THEME(e), TA(e)) in GOAL(e)

The respective meaning components of hairu and deru are given in (6) and (7):

(6) punctual ‘enter GOAL’, Japanese ‘GOAL ni hair-’
LOC(THEME(e), TB(e)) ex GOAL(e) ^
LOC(THEME(e), TA(e)) in GOAL(e)

(7) punctual ‘leave SOURCE’, Japanese ‘SOURCE o de-’
LOC(THEME(e), TB(e)) in SOURCE(e) ^
LOC(THEME(e), TA(e)) ex SOURCE(e)

6 To Be Continued

The proposal developed here introduces further modules of the ‘Düsseldorf frame
theory’. Major points are (i) the definition of a global frame ontology, (ii) the intro-
duction of times, events, and time-dependent attributes in the ontology, a step paving

Fig. 6. Frame for punctual ‘THEME go from SOURCE to GOAL’, canonical satisfaction formula
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the way for explicit representation of time, time-dependence, and time parameters of
events in frames, and (iii) the introduction of two-place comparator attributes.

The latter enable the modeling of basic intrasortal relations within a framework
with exclusively functional frame-internal relations. Comparators are waiting for fur-
ther applications, e.g. to mereological relationships, or to the modeling of degrees.

The inclusion of time-dependent attributes raises the general logical and ontological
question as to which attributes are time-dependent and which are not. In particular the
question arises if, for principal reasons, dynamic verbs involve at least one
time-dependent attribute of at least one verb argument.

Time-dependent attributes require a homogeneity constraint on the assignment of
values. This raises another general question: which attributes in general underlie a
homogeneity constraint?

In view of the range of possible application of these general theoretical consider-
ations, the proposed lexical analysis of verb meanings is, of course, very selective.
Further extensions would have to address non-punctual verbs of change, as well as all
the other well-known aspectual classes.
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Abstract. Formal semantic theories are designed to explain how it is
possible to produce and understand an infinite number of sentences on
the basis of a finite lexicon and a finite number of composition rules.
According to this architecture, language comprehension completely pro-
ceeds in a bottom-up fashion only driven by linear linguistic input
thereby leaving no room for a predictive component which allows to make
expectations about upcoming words. This is in stark contrast to neuro-
physiological research in the past decades on online semantic process-
ing which has provided ample evidence that prediction plays indeed an
indispensable role in language comprehension (the brain as a predic-
tion machine, [Ber10]). In this article, we present an extension of formal
semantic theory that allows to make predictions of upcoming words. The
basic intuition is: predictions are based on incomplete information. Draw-
ing (defeasible) conclusions based on such information can be modeled
by default reasoning. Since predictions can go wrong, a second strategy
for retracting wrong guesses is needed in order to integrate (unexpected)
words into the prior context. This is modeled by belief revision. We model
both processing stages, making predictions about upcoming words and
integrating them into the prior context, and relate the models to the
empirical findings in neurophysiological research.

Keywords: Default logic · Modal logic · Cognitive semantics · System
Z · N400 · Late positivity

1 The Brain as a Prediction Machine

In formal semantic theories meaning is taken to be a relation between language
and the external world (or reality). This relation is defined inside a logical theory,
e.g. some form of type logic, using notions like ‘reference’, ‘satisfaction’ and
‘truth’. On this view the main goal of natural language semantics is a definition
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of the truth for sentences in a natural language. This goal is achieved by giving a
recursive and compositional analysis of the well-formed expressions of a language.
Based on a finite lexicon and a finite set of composition rules, it then becomes
possible to both produce and parse an infinite set of sentences none of which
needs to be stored in the brain. This characterization is still valid for dynamic
approaches like DRT or DPL in which the notion of truth is replaced by that of
a relation between (information) states.

From a psycholinguistic or neurophysiological point of view the concept of
meaning endorsed in formal semantics is quite unsatisfactory since it completely
leaves out the question of how language is processed in the brain. A prime
example that has emerged during the last three decades both in behavioral and
electro-physical research are predictions or expectations of upcoming words in a
given context.1 Consider the example in (1) taken from [FK99, 469].

(1) Getting himself and his car to work on the neighboring island was time
consuming. Every morning he drove for a few minutes and then boarded
the . . ..

When asked, most people end the second sentence with the word ‘ferry’. This
behavior is remarkably robust across individuals and it is empirically defined in
terms of a word’s cloze probability2 in a given (sentential) context. For exam-
ple, in (1), ‘ferry’ has highest cloze probability (CP) and is therefore the best
completion (BestComp). Since none of the individual words in (1) is strongly
semantically related to ‘ferry’, it seems most likely that the context preced-
ing ‘. . . ’ together with world knowledge is used during language processing to
pre-activate semantic properties which best apply to (the concept expressed by)
‘ferry’ but not to the same degree to other vehicles like gondolas or airplanes. On
this interpretation, both world knowledge and context play a crucial role in set-
ting up semantic properties on the basis of which an expectation (or prediction)
for an upcoming word is formed.

According to Baggio and Hagoort, examples like (1) show that formal seman-
tics ‘is by design insensitive to differences between words of the same syntactic
category denoting objects of the same type’, [BH11, 1343]. Their own example
is (2).

(2) Last Friday the cruiser Arberia entered the port/hippodrome of Trieste.

They argue that the difference between the two continuations after ‘entered the’
must be semantic in nature because pragmatic deviance like the violation of a

1 ‘Prediction’ must not be understood as a conscious or strategic process. Rather,
prediction is understood as the unconscious activation of semantic properties of
upcoming words prior to their occurrence, [FK99, 487].

2 Cloze probability: participants in an offline norming task are presented sentence
frames like that in (1) and are asked to fill in the dots with the first word that
comes to their mind. The proportion, ranging from 0 to 1, of respondents supplying
a particular word is defined as the cloze probability of this word in that context.
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Gricean conversational maxim does not occur (if one assumes that both sentences
are false at speech time). In addition, the difference has nothing to do with the
way the world looks like.

However, note that Baggio and Hagoort’s argument is based on the implicit
assumption that the problem arises only at the level of integration/composition.
After ‘port’ or ‘hippodrome’ have been semantically recognized, they have to be
integrated or combined with (the semantic representation of) the previous con-
text. For ‘port’, being a best completion, this should pose no problems whereas
for ‘hippodrome’ this integration should be much more difficult, if not impossi-
ble, given that this word is not only semantically unrelated but almost semantic
anomalous to the semantic properties of the context. Though integration and
prediction are closely related, the problem of how predictions and/or expecta-
tions can be represented in formal semantic theories cannot be reduced to simply
incorporating it into the integration/composition mechanism.

If prediction (or expectation) is understood in the sense that it is based on
the pre-activation of semantic features of words which are not yet presented to
the comprehension system, the problem of combining or of integrating that word
with the current semantic representation does arise only at a second stage. In a
first stage, the semantic features of the expected upcoming, not yet presented,
word are activated simultaneously (or in parallel) with the semantic features of
words that have already been recognized and combined with the prior context.3

Thus, there must be a separate mechanism which makes it possible to deduce
semantic features (σ) from information that is already part of the semantic rep-
resentation (τ) of the prior context and world knowledge (τ ′) stored in Long
Term Memory (LTM). Then, using τ and τ ′, σ is deduced. Prediction is closely
related to integration. Since predictions are risky – they can go wrong – there
needs to be an additional (or subsequent) mechanism that deals with wrong
guesses by explaining how they can be retracted. Exactly at this point predic-
tion becomes related to integration/composition. Predicted semantic features are
used to build up a semantic representation of the upcoming word, which even-
tually is integrated with the prior context. If a prediction turns out to be wrong
because a non-expected word is encountered, integration is successful only if the
wrong guesses are first retracted because otherwise combining the predicted with
the actual encountered features results in an unsatisfiable semantic representa-
tion. Since predicted and actual features are combined, semantic anomalies like
‘hippodrome’ in (2) is a limiting case of the prediction-integration mechanism.

The above considerations lead to the following questions. At the empirical
level one gets: (i) what neurophysiological evidence is there to support a dis-
tinction between prediction and integration/composition? (ii) given that there
is a distinction between prediction and integration/composition, what type of

3 Note that the pre-activated features used to predict upcoming words cannot simply
be part of information about arguments, say, of verbs or common nouns. For exam-
ple, ‘board’ in isolation does not prime (semantic features of) ‘ferry’ as opposed
to (semantic features of) other semantically possible arguments like ‘gondola’ or
‘airplane’.
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information is predicted (atomic vs. decompositional in terms of semantic fea-
tures)?, and (iii) predictions can be wrong; is there any empirical evidence for
a stage in online semantic processing at which wrong predictions are retracted?
If yes, how is this stage related to integration? These questions will be the topic
of the next section where we will review electrophysiological experiments involv-
ing event-related brain potentials, in particular the N400 and two kinds of late
positivity.

When implementing a predictive mechanisms in a formal semantic theory, the
two principle questions are (i) in what exactly does this mechanism consist?, and
(ii) where in the overall architecture of such a theory is it to be located? These
questions will be the topic of the second part of this paper (see Sect. 3). In the
last part of the paper (Sect. 4), we introduce wide-spread alternative approaches
to interpret results on the N400 and P600 components (N400 as an index of
semantic integration and P600 as an index of syntactic processing) and briefly
discuss their shortcomings and possible implications for our theory.

2 Semantic Processing Online: Evidence from ERPs

For semantic processing, an important event-related potential (ERP) compo-
nent4 is the N400. It is a broad, negative-going deflection that starts around
200–300 ms after a word has been presented, either auditory or visually, and
peaks around 400 ms after stimulus onset. In neuroscience there is an ongoing
dispute of whether the N400 reflects semantic prediction and lexical retrieval
or semantic integration operations [BFH12]. In the following, we focus on the
former view; Sect. 4 critically discusses the latter approach. Thus, our approach
builds on the hypothesis that the N400 is an index that allows one to examine
the impact and the extent long-term memory (LTM) have on on-line seman-
tic sentence processing. Its amplitude for a word in a given context is modu-
lated (though not monotonic to) the word’s off-line cloze probability. It was first
observed in case of semantic anomalies like ‘I like my coffee with cream and
socks’. However, each word in a sentence elicits an N400. Furthermore, it does
not even require a sentential context as shown by semantic priming tasks which
involve the presentation of a semantically related or unrelated word before a
target word: coffee – tea vs. chair – tea. Here ‘tea’ yields a larger N400 when
followed after ‘chair’. Note that, the N400 is not sensitive to negation. E.g., both
‘A carrot is a fruit’ and ‘A carrot is not a fruit’ generate more N400 activity
than ‘A carrot is a vegetable’.
4 An event-related potential (ERP) is the measured brain response that is the direct

result of a specific sensory, cognitive, or motor event. An ERP component is a por-
tion of an ERP waveform that has a characteristic shape, timing and amplitude
distribution across the scalp and a well-characterized pattern of sensitivity to exper-
imental manipulations or neural source, [KF11,LPP08]. It is important to note that
the common statement that a word does not elicit an ERP component (which will
be used in this paper as well) is a simplification. It is meant that it does not trigger
a brain response that significantly differs from the baseline response triggered by
some control word.
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2.1 Fine-Grained Expectations: Semantic Features
are Pre-activated

In their seminal paper [FK99], the authors investigated the following three ques-
tions w.r.t. predictions using N400 effects: (i) what type of information is pre-
dicted in a given context?, (ii) what influence do different kinds of constraining
contexts have on those predictions?, and (iii) what influence do semantic rela-
tions between different target words have on the predictions? The experimental
design consisted of pairs of sentences which were read by participants for com-
prehension. The first sentence established an expectation for a particular exem-
plar of a semantic category, syntactically realized by a common noun, while the
second ended either (a) with this best exemplar, (b) an unexpected exemplar
from the same (expected) category or (c) an unexpected exemplar from another
category. An example is given in (3).

(3) They wanted to make the hotel look more like a tropical resort. So along
the driveway, they planted rows of palms/pines/tulips.

Two of the three words belonged to the same taxonomic category. For exam-
ple, both ‘palm’ and ‘pine’ are subtypes of the category ‘tree’. The third mem-
ber, ‘tulip’ in (3), did not belong to that category but, importantly, there was
a (common) category to which all three words (or the concepts expressed by
them) belong: plant. Unexpected exemplars from the same category are within-
category-violations (WCV) whereas unexpected exemplars from another cate-
gory are between-category-violations (BCV). Completions were ranked according
to their offline cloze probability (CP, cf. footnote 3). Best completions (‘palm’)
have highest CP. Both WCVs and BCVs had the same low CP in a given con-
text. Additionally, sentential contexts were divided into two groups: strongly
constraining and weakly constraining contexts. This distinction was defined by
a median split on the CP of the best completions. For strongly constraining con-
texts best completions had an average value of 0.896 and in weakly constraining
contexts of 0.588. WCVs and BCVs always had a CP < 0.05 across both sen-
tential constraints. (3) is an example of a strongly constraining whereas (4) is a
weakly constraining context.

(4) The gardener really impressed his wife on Valentine’s day. To surprise her,
he had secretly grown some roses/tulips/palms.

The following results were found. Overall, the N400 amplitude was significantly
larger (i) for BCVs than for WCVs and (ii) for WCVs compared to best comple-
tions, i.e. one got BestComp < WCV < BCV (see Fig. 1 for details). Strongly
constraining contexts are associated with overall slightly higher, i.e. more posi-
tive, amplitudes than weakly constraining contexts, [FK99, 481]. However, there
was a difference w.r.t. the factor ‘constraint’ for WCVs. Such violations elicited
a less enhanced N400 amplitude in strongly constraining compared to weakly
constraining contexts (cf. Fig. 1). For both BestComp and BCVs, by contrast,
there were no significant differences between the two kinds of contexts.
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Fig. 1. (a) Comparison of N400s for BestComp (expected exemplar), WCV (within
category violation), and BCV (between category violation). (b) Comparison of N400s
for WCVs in strongly constraining (high constraint) and weakly constraining contexts
(low constraint).

The consequences which these results have for an account of online semantic
processing are the following (for details, see [FK99]). First, the information pro-
vided by the context must be rather specific. This follows from the difference in
N400 amplitude between BestComp and WCVs. If only general taxonomic, say
category level, information were available, members of the same category, say
‘palm’ and ‘pine’, should elicit similar brain responses. Second, the N400 is sen-
sitive to category violations. Words that are unexpected but belong to the same
category as the best completion are processed differently from unexpected ones
belonging to a different category, though both words have the same (low) CP.
Second, predictions/expectations come in degree and depend on the strength of
the context.

According to [FK99, 489], these results constitute evidence for the view that
what gets pre-activated and what is stored in LTM are semantic features of
concepts expressed by words and not (discrete) atoms like ‘ferry’ or ‘palm’. The
features that get activated are those associated with the best completion(s), i.e.
those words having the highest CP in the given context, plus possibly features
that can be inferred using world knowledge. For example, in (3) the context
together with world knowledge pre-activates such features as ‘tropical’, ‘resort’,
‘adornment’, ‘tree’, and ‘evergreen’ since ‘palm’ is the best completion having
the highest CP. Since three of those features equally apply to ‘pine’, its N400
amplitude though larger than that for ‘palm’ is smaller than that for ‘tulip’, for
which only one feature applies. For a strongly constraining context, the number
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of pre-activated features is greater and therefore more constraining than the
number of such features in a corresponding weakly constraining context. The
more features of an upcoming word get pre-activated, the higher the probability
is that even for unexpected but semantically related words (that belong to the
same category) there is sufficient overlap with those features so that lexical
access is facilitated. Hence, since in a strongly constraining context the number
of pre-activated semantic features is greater than in a corresponding weakly
constraining context, WCV should elicit a lower N400 amplitude in strongly
constraining than in weakly constraining contexts, as borne out by the empirical
data. Furthermore, since the overlap between pre-activated and actual semantic
features is equally low for BCVs, the amplitude of the N400 should be the same
for strongly constraining and weakly constraining contexts, again in line with
the empirical data. Consequently, predictions/expectations should be graded
and these degrees should be reflected in the corresponding amplitudes of the
N400. But this is exactly what happens: BestComp < WCV < BCV across
sentence constraint. In sum, if in a particular context a part of the semantic
features representing a word A in the brain, say ‘palm’, is (pre-)activated, the
comprehension system is better prepared to access and semantically process
another word B, say ‘pine’, whose set of semantic features has a greater overlap
to that of A than a word C, say ‘tulip’, for which this overlap is smaller.

2.2 The Risk of Pre-activation: Wrong Guesses

Predictions are risky because they can turn out to be wrong. E.g., if in the con-
text of (3) ‘palm’ is predicted but ‘pine’ is eventually found, some expectations
are wrong and must be deleted or retracted. Thus, there should be a stage in
online semantic processing during which wrong guesses are undone. One candi-
date for such an operation is semantic integration. There are at least two kinds of
evidence for drawing a distinction between a prediction stage in which possibly
wrong features of the upcoming word are predicted and an integration stage of
the semantic of the actual encountered word in which wrong features are deleted
and new ones are added. First, if the N400 would be related not only to the
prediction stage, but to the stage of semantic integration as well, words with
the same meaning should elicit identical or very similar N400 effects, However,
this is not the case as shown by the following empirical result. [DUK05] used
sentence pairs like those in (5) where the sentence frame ended either with ‘a’ or
‘an’. Since these two articles have exactly the same meaning, they should elicit
the same N400 effects.

(5) The day was breezy so the boy went out to fly a/an . . .

[DUK05] found a larger N400 amplitude for ‘an’ compared to ‘a’. Since both
articles have the same meaning, there should be no difference in brain response
when it comes to integrating it with the semantic representation of the previ-
ous context because the semantic relation to this context must be exactly the
same for both words. By contrast, if one assumes that the context preceding the
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article establishes a particular prediction for the most expected word ‘kite’, this
difference can easily be explained. Since ‘kite’ begins with a consonant, ‘a’ is
expected and not ‘an’.

Second, there is post-N400 brain activity which is related to the semantic
distinctions on which the N400 is based: late positivities. [FWODK07] considered
pairs of sentences like those in (6).

(6) a. The children went outside to play/look. (strongly constraining context)
b. Joy was too frightened to move/look. (weakly constraining context)

In both kinds of context the unexpected ending, ‘look’ for example, had the same
(low) CP.5 In addition, the unexpected ending was not semantically related to
the best completion and were considered plausible in an off-line norming task.
Thus, any difference w.r.t. N400 effects could be attributed to the constraint of
the sentence context. The results of the experiment showed that the N400 effects
were graded by CP. The N400 amplitude was smallest for the best completion
in the strongly constraining context; it was intermediate for the best completion
in the weakly constraining context and highest for the unexpected completion
for both kinds of constraint. However, the unexpected ending differed w.r.t.
another ERP-component: a late frontal positivity between 500 and 900 ms over
frontal electrode sites emerged for unexpected words in strongly constraining but
not in weakly constraining contexts. The authors comment [FWODK07]: ‘This
processing stage thus seems to be sensitive to the greater degree of mismatch
between the rich information provided by a strongly constraining sentence and
an unrelated (though plausible) unexpected word, leading to the possibility of
surprise and/or increased resource demands entailed by the need to override or
suppress a strong prediction for a different word or concept.’ This result was
reproduced by [DQK14] using sentences like that in (7).

(7) For the snowman’s eyes the kids used two pieces of coal. For his nose they
used a carrot/banana/groan from the fridge.

According to [DQK14], the contexts in (7) were strongly constraining since the
mean CP of the best completion, ‘carrot’, was 73.9%. Besides a best completion
therewas a semantically related andplausible continuation, ‘banana’, anda seman-
tically unrelated and implausible (or impossible) continuation, ‘groan’ in (7).
The CP for both kinds of continuation was equally low: <0.01%. In addition to
the late frontal positivity the authors found an increased parietal post-N400 pos-
itivity (PNP) for unexpected and semantically implausible words. Importantly,
this positivity was not exhibited by unexpected but plausible words like ‘banana’
in (7). Similarly, the late frontal positivity was only found for plausible but not for
implausible (impossible) continuations.

Since both kinds of late positivity are not graded (in contrast to N400 effects)
and apply only to one particular type of unexpected continuations, they can
neither be taken to simply reflect some process of plausibility evaluation nor be
interpreted as a ‘mismatch’ detector.
5 Cloze probabilities: ‘play’: 91%; ‘move’: 31% and ‘look’: 3% in both contexts.



126 R. Naumann and W. Petersen

When taken together, the results in this section provide evidence for the
following picture of online semantic processing.6 Semantic processing in the brain
unfolds over several stages, [FK99,DQK14,BFH12]. The first stage is indexed
by the N400 and has to do with lexical access. Semantic features of an upcoming
word are activated in parallel with features of words that are currently being
processed in order to access that word in LTM. The more features are already
activated, the easier it is to retrieve that item from LTM. At the neural level this
correlation is reflected by the amplitude of the N400: the greater the overlap with
pre-activated features, and, therefore, the less features have to be additionally
activated, the lower the amplitude. At this stage the item is not (yet) integrated
with the semantic representation of the context. When it comes to integration,
indexed by the two late positivities, what is at stake are no longer those features
that are common to both the pre-activated and the actually encountered set but
those feature which do not apply to the semantic representation of the word
encountered. Two principle cases have to be distinguished: the target word is
either of a type to which the best completion belongs or not. In the first case those
features that have been pre-activated but which do not apply to the semantic
representation of the word encountered have to be retracted. By contrast, in the
second case, e.g. ‘groan’ in (7), a different strategy must be chosen because the
semantic representation of the target word is incompatible with the semantic
constraints imposed by the context.

Thus, we have arrived at the following three constraints on a formal semantic
theory: (a) there must be a mechanism which combines semantic information
already present in the context and world knowledge to deduce information about
upcoming, but not yet presented words; (ii) the combinatory process must be
sensitive to a semantic decomposition in terms of semantic features in order
to account for the graded character of expectations; and (iii) there must be a
separate mechanism for retracting wrong guesses made on the basis of incomplete
information.

3 The Formal Theory: Defaults and Belief Revision

The description at the end of the previous section suggests that online seman-
tic processing involves some kind of nonmonotonicity. Reconsider example (3);
after semantically processing the context prior to the target word at the end
of the second sentence, all that is known about the concept expressed by
that word is (i) the resort is supposed to look tropical and that (therefore)
(ii) something is planted along the driveway. From this information conclusions
about semantic features of the theme argument are drawn. Likely candidates are
(a) type=plant, (b) category=tree, and (c) habitat=tropics. However, these con-
clusions are defeasible. If the upcoming word is eventually semantically recog-
nized, the predictions made on the basis of the prior context can turn out to be
false. This always happens for within-context-violations and between-context-
violations. E.g., if in (3) ‘pine’ is the theme argument, ‘habitat=tropics’ turns
6 Section 4 discusses alternative interpretations of the results..
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out to be false though the other predictions turn out to be true. As an effect,
‘habitat=tropics’ has to be withdrawn because it is not part of the semantic rep-
resentation of ‘pine’. By contrast, for the best completion ‘palm’, all information
predicted before the word is encountered applies.

Nonmonotonicity will be modelled by default rules. Such rules describe the
expectations of the comprehension system. Schematically, such expectations have
the form A ⇒ B, with A being some piece of (factual) information provided by
the context through bottom-up processing and B being the conclusions which
normally follow from A. Here, ‘normally’ refers to the fact that A is all that
is known about an object. The conclusions B are defeasible. For example, if in
addition to A ⇒ B one has C ⇒ ¬B and C ⇒ A then C is an exceptional A
w.r.t. the property expressed by B. Thus, if in addition to A C is also known
about the object (so that A is not only known), ¬B should (normally) be true of
the object. Applied to our running example of the resort which should look trop-
ical, one has A

.= (i)∧ (ii); B
.= (a)∧ (b)∧ (c) and C = (sort=pine∨ sort=tulip).

Thus, additional factual information can invalidate a prior inference based on
less specific information. One therefore has: if both A ⇒ B and A ∧ C ⇒ ¬B,
A ∧ C ⇒ ¬B should be used to draw the (default) conclusion ¬B since one has
A ∧ C ⊃ A, i.e. the antecedent of the second default rule A ∧ C ⇒ ¬B implies
that of the first one A ⇒ B. This reflects the fact that during online seman-
tic processing conclusions drawn by more specific (less incomplete) information
always overwrite conclusions drawn on the basis of less specific (more incom-
plete) information. What is required, therefore is an ordering on default rules
which reflects this strategy. Since default conclusions can turn out to be wrong,
there must be an additional mechanism of how to retract such wrong guesses.
On the account just sketched, semantic processing therefore not only comprises
decompositional semantic representations of items in the lexicon together with a
set of recursive composition rules but, in addition, the following two components:
(i) a set of default rules, which are used to draw defeasible conclusions (B) from
factual information (A), and (ii) a mechanism for retracting conclusions got from
applying rules in (i).

The relation to the ERP components, the N400 and the two kinds of late
positivity, is the following. Default rules are correlated to the N400 and therefore
to the first stage of online semantic processing. The relevant parameter is the
difference between those semantic features derived after semantic recognition
of the target word and those features derived prior to that recognition. This
difference reflects the additional features that have to be activated. The two late
positivities are correlated with those semantic features that were predicted prior
to the semantic recognition of the target word but which turn out to be false
and which therefore have to be retracted.

We will develop the formal theory in two steps. Building on [Bou94], we begin
by defining default rules as a conditional ⇒ in a modal logic with a Kripke-
style semantics based on a normality ordering which reflects the expectations a
comprehender has for a particular constituent of a sentence in a given context.
Such models are the appropriate level to reason about the whole set of defaults
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represented by that model. Which default conclusions can be drawn depends on
the available factual information. Such reasoning is best modeled in a particular
model based on a (priority) ordering on defaults. This leads to system Z, [GP92],
which will be introduced in the second step.

3.1 Formal Theory I: ⇒ and CO-models

The conditional logic chosen is that of Boutilier, [Bou94]. In this theory, the con-
ditional connective ⇒ is not a primitive but is defined inside a modal logic using
modal operators. One reason for choosing this framework is its generality. Besides
default reasoning, it also allows to model belief revision. In addition, Boutilier’s
logic incorporates other approaches, in particular that of Pearl, [Pea90], in the
sense that those logics are equivalent to fragments of Pearl’s logic. This makes
it possible to use either of these formalisms, depending on the context.

The basic idea underlying [Bou94] is to order situations (modeled as possible
worlds in terms of valuations in a Kripke model) according to some measure of
normality. This measure is represented by an accessibility relation ≥N on worlds.
One has w ≥N v iff v is at least as normal as w. w >N v holds if v is strictly more
normal than w, that is if w ≥N v and not v ≥N w. The relation ≥N is required to
be (i) transitive and (ii) totally connected from which together reflexivity follows:
(i) ∀uvw : u ≥N w ∧ w ≥N v ⊃ u ≥N v, and (ii) ∀wv : w ≥N v ∨ v ≥N w.
Models in which (i) and (ii) hold consist of totally ordered clusters of worlds,
where a cluster is any maximal set of worlds s.t. w ≥N v for each w, v in this set,
i.e. the elements of a cluster are all equally normal and the cluster is maximal
w.r.t. this condition. If the set of worlds is finite, this chain of clusters has
both a minimal and a maximal element. Furthermore, this ordering determines
a normality ranking for each cluster and, therefore, for each world in W .7

Next, the language LFrame is defined. As was shown in the first section, the
information predicted is rather specific. We will therefore use a frame-based app-
roach [Pet07]. Frames are recursive rooted attribute-value structures.8 A modal
language for talking about such structures is given by a set {Pσ}σ∈Σ of sort sym-
bols (Σ = {tree, palm, . . .}) and a set {Attrat}at∈ATTR of attribute symbols
(ATTR = {habitat, look, . . .}). Elements of {Pσ}σ∈Σ are interpreted as unary
relations and elements of {Attrat}at∈ATTR as binary relations on a set of nodes.

7 The ordering ≥N depends both on the kind of context and the comprehender. The
dependency on the context corresponds to the distinction between strongly con-
straining and weakly constraining contexts. In a strongly constraining context there
are more expectations than in a weakly constraining context. The dependency on
a comprehender is illustrated by the following example concerning the moral value
system of a comprehender. [BHN+09] presented examples like ‘I think euthanasia
is an acceptable course of action’ to members of a relatively strict Dutch Christian
party and to non-Christian respondents with sufficiently contrasting moral value
systems. The result was that for both groups there was an enhanced N400 though
it was larger for members of the strict Dutch Christian party.

8 Note that [Pet07] allows unrooted frames as well, but such frames are of no interest
for our purpose.
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Formulae are of the form at1 : at2 : . . . atn = σ, expressing that the value at
the end of the sequence of attributes at1 : at2 . . . atn is of sort σ. They therefore
express properties of nodes, as can be seen by looking at the standard translation
of such a formula in first-order logic: λx∃y1 . . . ∃yn.at∗1(x, y1)∧. . .∧at∗n(yn−1, yn)∧
σ∗(yn) (see [PO14] for details). By interpreting such formulae at the root of a
frame, a frame can be described by what is true at its root. On this perspective,
frames can be taken as points (possible worlds) in a model. Formulae of the form
at1 : at2 . . . atn = σ are then atomic propositions in the language LFrame. In addi-
tion, LFrame has three modal operators �,

←
� and �>. While �A refers to all acces-

sible (i.e. equally or more normal) worlds in the ordering ≥N ,
←
�A means that A

is true at all inaccessible worlds, i.e. at all worlds which are strictly less normal
than the world at which

←
� is evaluated. �> is the strict variant of �. Models for

LFrame are defined below.

Definition 1 (A CO-model; [Bou94, 101]). A CO-model is a triple 〈W,≥N

, V 〉 s.t. (i) W is a non-empty, finite set of worlds, (ii) ≥N is a binary relation
on W that is transitive and totally connected and (iii) V is a valuation function
for the atomic formulas in LFrame.

Truth of a formula is defined as follows.

Definition 2. Let M = 〈W,≥N , V 〉 be a CO-model with w ∈ W . The truth of
a formula A at w in M is defined inductively by

(i) M |=w A iff w ∈ V (A) for atomic sentence A.
(ii) M |=w A ⊃ B iff M |=w B or not M |=w A.
(iii) M |=w ¬A iff not M |=w A.
(iv) M |=w �A iff for each v s.t. w ≥N v : M |=v A.
(v) M |=w

←
� A iff for each v s.t. w �N v : M |=v A.

(vi) M |=w �>A iff for each v s.t. w >N v : M |=v A.

In terms of � and
←
� the following modal operators are defined.

Definition 3 (Defined modal operators).

1. ♦A ≡df ¬�¬A.

2.
←
♦ A ≡df ¬ ←

� ¬A.

3.
↔
� A ≡df �A∧ ←

� A.

4.
↔
♦ A ≡df ♦A∧ ←

♦ A.

One has: ♦A is true at w ∈ W iff A is true at some equally or more normal world
v; similarly,

←
♦ A holds at w just in case A holds at some strictly less normal

world v;
↔
� A holds at a world w iff A is true at each world w ∈ W ;

↔
♦ A is true

at w iff A is true somewhere in the model, i.e. if there is a world v ∈ W at which
A is true. The conditional ⇒ is defined in Definition 4.
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Definition 4 ([Bou94, 104]). A ⇒ B ≡df

↔
� ¬A∨ ↔

♦ (A ∧ �(A ⊃ B)).

According to Definition 4, A ⇒ B is true at a world w just in case either A
is false at every world in the chain of worlds, i.e. the conditional is satisfied
vacuously, or at the most normal A-worlds (A ⊃ B) holds. The truth of A ⇒ B
is independent of a particular possible world. If A ⇒ B holds at some w, then it
holds at all v ∈ W . This follows from the fact that the disjuncts in the definition
of ⇒ are modally decorated by

↔
� and

↔
♦, respectively. As a consequence, the

truth of A ⇒ B only depends on the complete ordering of worlds.
A CO-model represents the set of default rules ΔD of a comprehender w.r.t.

an argument (or a constituent) of a sentence in a given context. Together with
factual information A got from bottom-up processing of the prior context (and,
possibly, world knowledge), default rules A ⇒ B are used to (defeasibly) infer
B. More generally, one has: the local epistemic state of a comprehender w.r.t.
an upcoming word is a quadruple ES = 〈Γ, Γ ∗,ΔD,ΔE〉. ΔD is a set of defaults
of the form A ⇒ B and ΔE is the set of expectation rules given by the cor-
responding material conditionals A ⊃ B.9 Γ is the set of factual information
about the word. Before the word is semantically recognized it contains informa-
tion got from the context. Upon recognition of the word, sortal information, e.g.
sort= palm is added. Γ ∗ is a set of default conclusions pertaining to the target
word. They are inferred using Γ and ΔE .

The reason for distinguishing Γ and Γ ∗ is directly related to the way semantic
information is used in default rules A ⇒ B. The antecedent contains factual
information from bottom-up semantic processing. This information is stored
in Γ . By contrast, the information B in the consequent of a default rule is
used to build up a partial semantic representation of an upcoming word. Since
this information is in general defeasible (the problem of ‘wrong guesses’), it
is not directly integrated with the factual information stored in Γ but stored
separately in Γ ∗. This reflects the distinction between lexical access (first stage
of semantic processing) and integration (second stage of semantic processing).
During semantic processing, Γ and Γ ∗ are constantly updated whereas both ΔD

and ΔE remain fixed.

3.2 Defaults and Online Semantic Processing

Next we will apply CO-models to online semantic processing. As our running
example we will take (3), repeated below for convenience.

(8) They wanted to make the hotel look more like a tropical resort. So along
the driveway, they planted rows of palms/pines/tulips.

After processing (8) up to the final world, the comprehender has got the following
factual information which is relevant for drawing default conclusions about the
object planted.
9 The reason for distinguishing ΔD and ΔE will become clear if a ranking on the set

ΔD of default rules using System Z is defined. See below for details.
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(9) a. resort:look=tropical.
b. resort:driveway:adornment=.

Let this information be A0. This information is related to the following default
rules.

(10) a. A0 ⇒ resort:driveway:adornment:type=plant.
b. A0 ⇒ resort:driveway:adornment:category=tree.
c. A0 ⇒ resort:driveway:adornment:sort:habitat=tropics.

When taken together, one gets default rule r0 in (11).

(11) r0 : A0 ⇒
resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=tropics.

The material conditional r∗
0 corresponding to r0 is (12).

(12) r∗
0 : A0 ⊃

resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=tropics.

What happens if the upcoming word is eventually encountered and seman-
tically recognized? In our frame theory, the information provided by a common
noun like ‘palm’ is taken as sortal information. In (8), this is the value of the
sort-attribute. Thus, if ‘palm’ is semantically recognized

resort:driveway:adornment:sort=palm

is added to Γ . The default rule corresponding to this information is r1.

(13) r1: A0∧ resort:driveway:adornment:sort=palm ⇒
resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=tropics.

Rule r1 differs from r0 in one respect. Its antecedent is more specific than that
of r0 (A1 ⊃ A0). This reflects the fact that r0 is used in a situation of incomplete
information, i.e. the upcoming word has not yet been semantically recognized
whereas r1 is used after that recognition has taken place. The consequents are the
same because ‘palm’ is the best completion and therefore all predicted properties
apply to the word encountered. The general pattern between these two default
rules is given in (14).

(14) r0 : A ⇒ B.
r1 : A ∧ C ⇒ B.
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This pattern can be taken as showing that encountering the best completion
amounts to a confirmation of the expectations drawn when this word is not
yet encountered.10 The situation is different if instead of the best completion a
within-context-violation like ‘pine’ is found. Similar to the case of ‘palm’, new
sortal information is added to the factual information,

Γ : resort:driveway:adornment:sort=pine.

One also has that the antecedent of the corresponding default rule is more specific
than that of r0. But in this case the two consequents are logically incompatible
because B0 contains resort:driveway:adornment:sort:habitat=tropics whereas B2

contains resort:driveway:adornment:sort:habitat=moderate.

(15) r2: A0∧ resort:driveway:adornment:sort=pine ⇒
resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=moderate.

The general relation between the two default rules is given in (16).

(16) r0 : A ⇒ B.
r2 : A ∧ C ⇒ ¬B.

The case for ‘tulip’ should by now pose no problems. The default rule is r3.

(17) r3: A0∧ resort:driveway:adornment:sort=tulip ⇒
resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=flower ∧
resort:driveway:adornment:sort:habitat=moderate.

10 According to rule r0, an expectation w.r.t. to the theme argument of ‘plant’ does
not include sortal information. Thus, there is no bias towards any tropical tree in
the context of A0. For example, both ‘palm’ and ‘eucalyptus’ are equally expected.
However, if ‘palm’ is the best completion one may argue that this information is
already activated prior to the encounter of the argument. Thus, rule r0 seems to apply
to weakly constraining and not to strongly constraining contexts. However, if sortal
information is part of the consequent of the default rule, alternatives (‘eucalyptus’)
to the best completion (‘palm’) are excluded. E.g., rule r0 becomes r00.

(i) r00 A0 ⇒ B0 ∧ resort:driveway:adornment:sort=palm.

Using r00, r1 becomes redundant because upon encountering ‘palm’ no new infor-
mation needs to be added. Rule r1 is replaced by the following rule for the sort
‘eucalyptus’.

(ii) r1 : A0 ∧ resort :driveway :adornment :sort=eucalyptus ⇒
B0 ∧ resort :driveway :adornment :sort=eucalyptus.

An open empirical question is the relation between N400 effects both in strongly
constraining and weakly constraining contexts for ‘palm’ and ‘eucalyptus’, i.e. two
concepts that are of the same type, here ‘plant’, but also of the same category. here
‘tree’, and that both fulfill the conditions specified in the consequent of rule r0.
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Similar to the case of ‘pine’, the consequent is logically incompatible with that
of r0 (and also with that of r2). In contrast to ‘pine’, there are two conjuncts
which are logically incompatible. Besides the one specifying the value of the
habitat-attribute, this also holds for the value of the sort-attribute.11

A drawback of the rules r1–r3 is that they contain redundant information.
This is the case whenever they contain information that is also specified in the
rule r0. This information will not be retracted even when a non-best comple-
tion is encountered. An alternative is to only specify that information which is
incompatible with information given by r0. Applied to the processing level, this
means that once a feature is activated it need not be activated a second time.
At the formal level, one uses the following property of formulae.

Definition 5 (Downward closed property). A formula A is downward
closed iff

↔
� (A ⊃ �>A).

According to this definition, a formula is downward closed if its truth at a
world w implies that it holds at all strictly more normal worlds. The revised
rules r′

1 − r′
3 are given in (18).

(18) r′
1: A0∧ resort:driveway:adornment:sort=palm ⇒ true.

r′
2: A0∧ resort:driveway:adornment:sort=pine ⇒

resort:driveway:adornment:sort:habitat=moderate.
r′
3: A0∧ resort:driveway:adornment:sort=tulip ⇒

resort:driveway:adornment:category=flower ∧
resort:driveway:adornment:sort:habitat=moderate.

A possible model for the default rules is given in Fig. 2. This model is based
on a knowledge base corresponding to our running example: the objects planted
are either palms, pines or trees and there are no ‘abnormal’ instances of those
sorts.12

In LFrame, the four clusters can be formally characterized as follows. To begin,
note that the formula �A∧ ←

� ¬A holds at a world w0 if A is true at all equally
or more normal worlds w1 whereas at all worlds w2 which are strictly less normal

11 One may argue that rules r1 − r3 are strict and not defeasible. For example, a palm
is a tree and not a flower. However, in the present context we are interested in the
way a comprehender uses information, both top-down and bottom-up, to build a
semantic representation of a constituent. What matters, therefore, is the relation
between the various rules he uses (the priority ordering) and not the status of an
individual rule as defeasible or strict. For example, rule r2 has a higher priority than
rules r0 and r1 because it describes a situation which is assumed to be less normal.
In addition, not all conjuncts in the consequent of a rule are non-defeasible, given
the antecedent. For example, the tropics are only normally the habitat of palms, but
they grow in moderate habitats as well (e.g., in botanical gardens in Europe).

12 These restrictions are due to the fact that we do not have any information about
the way, say, orchids (tropical flowers) or palms whose habitat are not the tropics
are semantically processed online. Additional experimental data is needed to tackle
this question.
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Fig. 2. Possible model for the running example

Fig. 3. Relation between clusters and properties of objects adorning the driveway

A is false. This formula can therefore be seen as expressing a kind of ‘frontier’.
All worlds above the frontier satisfy A whereas all worlds below it fail to satisfy
it. The relation between this formula, properties of the objects adorning the
driveway and clusters are shown in Fig. 3. Thus, cluster 0 is a frontier for the
property habitat=tropcis (for ease of readability, only the last attribute of a
chain of attributes is displayed) whereas clusters 1 and 2 are frontiers for the
properties category=tree and type=plant, respectively. This correlation between
clusters and properties shows that of the three properties assumed in a most
normal situation, habitat=tropics is the least entrenched one or the first to be
given up. Similarly, type=plant is the most entrenched one whereas category=tree
has a position intermediate between those two properties. Intuitively, one can
say that ‘tropics’-worlds only see ‘tropics’-world and similarly for ‘tree’- and
‘plant’-worlds. The difference shows up if one looks backwards. ‘tree’-worlds are
either seen by ‘non-tropics’-worlds or if in the same non-minimal cluster, ‘tree’-
worlds are always ‘non-tropics’-worlds:

↔
� (tree ⊃ (tree ∧ ¬tropics)∨ ←

� ¬tropics).
Thus, ‘tropics’-worlds are more normal than ‘tree’-worlds. Furthermore, one has
↔
� (flower ⊃ ♦�tree): ‘flower’-worlds are no more normal than ‘tree’-worlds.
Finally, one has

↔
� (plant ⊃ (tree ∨ flower)). The above properties are global in

the sense that their truth is independent of a particular world.
General CO-models are appropriate for specifying global properties of the

local epistemic state of a comprehender w.r.t. an upcoming word. If a compre-
hender uses a CO-model to draw conclusions, it is more convenient to use a
particular CO-model which is based on a priority ordering on default rules.

3.3 Formal Theory II: Defining an Ordering on Defaults

An ordering on default rules can be defined using procedure Z, [GP92]. Defeasible
rules can be verified, falsified or satisfied at a world w.
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Definition 6 (Verifying, falsifying and satisfying a default rule). A pos-
sible world w in a model M verifies a conditional A ⇒ B iff M |=w A ∧ B; it
falsifies A ⇒ B iff M |=w A ∧ ¬B, and it satisfies A ⇒ B iff M |=w A ⊃ B.

The derivation of a Z-ordering of default rules is based on the notion of toleration,
Definition 7.

Definition 7 (Toleration). ΔD is said to tolerate a default A ⇒ B iff there
is a world w that verifies A ⇒ B and falsifies no rule in ΔD, i.e.

(19) A ∧ B ∧ ∧
rj∈ΔD

Aj ⊃ Bj.

Toleration is used to define a natural ordering on a set of defaults by partitioning
this set. The procedure for finding this partition works as follows. Let Δ be the
set of defaults. In a first step all rules in Δ which are tolerated by all other
rules are in Δ0. Next, the set Δ′ = Δ − Δ0 is considered. All rules in Δ′ which
are tolerated by all other rules in Δ′ are in Δ1. Next, the set Δ′′ = Δ′ − Δ1

is considered. Continuing in this way, yields a partition Δ0,Δ1, . . . ,Δn of Δ
(provided Δ is consistent). This procedure is defined inductively in Definition 8
where Γ (Δ) is the set of defaults in Δ which are tolerated by Δ.

Definition 8 (Partition of a set of defaults). Δ0 = Γ (Δ) and Δτ+1 =
Γ (Δ − (

⋃
σ≤τ Δσ))

Given this partition of Δ, the rank of a default A ⇒ B ∈ Δ is defined by
Z(A ⇒ B) = τ iff A ⇒ B ∈ Δτ . The intuition is that lower ranked defaults are
more general and have a lower priority.

Next, the ranking of a world w is defined. The rank of a world w is the smallest
integer τ s.t. all defaults having a rank higher or equal to τ are not falsified
by w. This condition is expressed by: w satisfies

⋃
σ≥τ Δσ or, equivalently by

Z(w) = min{τ : M |=w A ⊃ B for all r ∈ Δ and Z(r) ≥ τ}. The intuition
is that lower ranked worlds are more normal. Thus, the Z-ranking on worlds
determines a unique preferred structure ZT .

The rank of a (non default) formula A is defined as follows.

(20) κz(A) = min{i |A ∧ ∧
j:Z(rj)≥i Aj ⊃ Bj is satisfiable}.

Using this ranking on formulae, a formula B is said to be Z-entailed by a
formula A iff the worlds in which A and B hold are strictly lower ranked than
the worlds in which A and ¬B hold, that is if the rank of A ∧ B is strictly lower
than the rank of A ∧ ¬B.

Definition 9 (Z-entailment). A formula B is Z-entailed by a formula A w.r.t.
Δ, written A �Z B, iff κz(A ∧ B) < κz(A ∧ ¬B).

(19) and (20) can be used to construct a theory Th(A) which characterizes
precisely the set of conclusions B that defeasibly follow from factual information
A, given a set ΔD of default rules: A �Z B iff Th(A) ⊃ B.
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(21) Th(A) = A ∧ ∧
i:Z(ri)≥κz(A) Ai ⊃ Bi.

In our application, A is always factual information about an upcoming word
(or an argument) got by bottom-up processing and stored in Γ . ΔD (or ΔE) is a
set of default rules (expectations) which pertain to this argument. In our running
example, this is the theme argument of the verb ‘plant’ in a given context. The
Ai ⊃ Bi are elements of ΔE , i.e. material counterparts of default rules in ΔD.
The elements of Γ ∗ are those Bi which follow from Th(A), i.e. from A and the
Ai ⊃ Bi with A ⊃ Ai.

3.4 Drawing Default Conclusions from Factual Information

Let us next apply system Z to our running example. We first construct a Z-
ranking on ΔD = {r0, r1, r2, r3}. Rules r1 and r0 are tolerated by all the other
rules. The following valuation verifies both rules:

resort:look=tropical ∧ resort:driveway:adornment:
∧ resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=tropics ∧
resort:driveway:adornment:sort=palm.

Furthermore, one sets ¬resort:driveway:adornment:sort=X for X ∈ {pine,
tulip}. Since the antecedents of the rules r2 and r3 are pairwise logically incom-
patible, each rule tolerates the others. For example, verifying r2 requires

resort:driveway:adornment:sort=pine.

Setting ¬resort:driveway:adornment:sort=tulip satisfies r3. Here it is assumed
that one has e.g. tree ⊃ ¬flower . Therefore, for j �= k with j, k ∈ {2, 3} we
get that if a world verifies Aj ⇒ Bj , it satisfies Ak ⇒ Bk because Ak is false at
that world. The Z-ranking on rules is Δ0 = {r0, r1} and Δ1 = {r2, r3}.

As long as no factual information about the theme is given, one has A = true.
No conclusions using the set of expectations ΔE can be drawn. Furthermore,
Γ = {true}, ΔD = {r0, r1, r2, r3}, ΔE = {r∗

0 , r∗
1 , r∗

2 , r∗
3} and Γ ∗

0 = ∅. After
processing the prior context, one has A = A0 and Γ = {A0}. Since κZ(A0) = 0,
one gets Th (A0) = A0 ∧ ∧

i:Z(ri)≥κz(A0)=0 Ai ⊃ Bi. Thus, ΔD = {r0, r1, r2, r3}
and ΔE = {r∗

0 , r∗
1 , r∗

2 , r∗
3}. The set of defeasible consequences Γ ∗

0 is deduced
from A = A0 and A0 ⊃ B0 yielding Γ ∗

0 = {B0}. If ‘palm’ is encountered, the
sortal information sort=palm is added to Γ so that A = A1. Since κZ(A1) = 0,
one has ΔD = {r0, r1, r2, r3} and ΔE = {r∗

0 , r∗
1 , r∗

2 , r∗
3}. The set of defeasible

consequences is got from A0, A1, and A0 ⊃ B0 and A1 ⊃ B1, which yields
Γ ∗

1 = {B1} since B1 ⊃ B0. If instead of r1, r′
1 is used no new (defeasible)

information is added to Γ ∗.
If a within-context-violation or a between-context-violation is encountered,

the new sortal information is sort=pine or sort=tulip in our running example.
It is added to Γ , yielding A = A2 (‘pine’) or A = A3 (‘tulip’). In contrast to A0 or
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A1, one has κZ(A2) = κZ(A3) = 1 so that Th (A2) = A2∧∧
i:Z(ri)≥κz(A2)=1 Ai ⊃

Bi and Th (A3) = A3 ∧∧
i:Z(ri)≥κz(A3)=1 Ai ⊃ Bi. This means that the situation

is not described as most normal. As a result, r0 and r1 can no longer be used.
One rather gets ΔD = {r2, r3} and ΔE = {r∗

2 , r∗
3}.

For A2 ( .= sort= pine), the conclusions one gets are given by A2, A2 ⊃ B2,
yielding B2. Using r′

2 instead of r∗
2 , one has B2 = {habitat=moderate}, i.e.

Γ ∗
1 = {habitat=moderate}. For the BCV ‘tulip’, the situation is similar. Con-

clusions are got from A3 and A3 ⊃ B3, yielding B3. Using r′
3 instead of

r∗
3 , the new derived information is habitat=moderate and category=flower, i.e.

Γ ∗
1 = {habitat=moderate, category=flower}. Both for A2 and A3, it is not

possible to directly add B2 or B3 to Γ ∗, i.e. to use Γ ∗
0 ∪Γ ∗

1 . This would result in
an unsatisfiable set because one would have both habitat=tropics (from the pre-
vious application of rule r0 prior to the semantic recognition of the theme) and
habitat=moderate from applying r∗

2 or r∗
3 . In addition r∗

3 yields category=flower
which conflicts with category=tree, again got from applying r0 prior to encoun-
tering the theme argument. Despite the fact that Γ ∗

0 (got from applying r∗
0)

and Γ ∗
1 (the information got from applying r∗

2 or r∗
3) are logically incompatible,

their union contains all semantic features necessary for building up a semantic
representation of the theme argument.

Let us take stock and compare a best completion, a within-context-violation
and a between-context-violation. One has: (a) in each case sortal information
is added to the default conclusions got prior to encountering the argument,
(b) they differ w.r.t. the set Γ ∗

1 − Γ ∗
0 , and (c) they differ w.r.t. the set Γ ∗

0 − Γ ∗
1 .

The set Γ ∗
1 − Γ ∗

0 is the set of semantic features that have to be activated in
addition to those that were activated prior to the semantic recognition of the
target word. By contrast, the set Γ ∗

0 − Γ ∗
1 (using the rules ri and not the rules

r′
i) is the set of semantic features that have to be retracted because they are

‘wrong guesses’. Now consider the two hypotheses in (22).

(22) (i) The set Γ ∗
1 − Γ ∗

0 , i.e. the set of additional features to be activated, is
related to the N400 effect, i.e. it is related to the first stage of online
semantic processing: semantic access.

(ii) Predicting semantic features of an upcoming word can lead to wrong
guesses. Those wrong guesses must be eliminated before the semantic
representation of the target word can be added to the representation
of the prior context. The set Γ ∗

0 − Γ ∗
1 , containing those wrong guesses,

is related to the two late positivities and therefore to the second stage
of online semantic processing.

In the introduction it was argued that online semantic processing can be split in
(at least) two separate stages: lexical semantic access, indexed by the N400, and
semantic integration, indexed by two late positivities. The former, lexical access,
is based on predictions which are made prior to encountering the target word,
and, therefore, on the basis of incomplete information. Such predictions are risky
because they can turn out to be wrong. On the account presented in this paper,
wrong guesses are directly related to the two stages of online semantic processing.
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A wrong guess activates less semantic features of the actual target word; thus,
lexical access is aggravated. Accessing additional semantic features comes with
a computational cost because information needs to be retrieved from LTM. This
cost is reflected in an enhanced amplitude of the N400. This is only one side of
the coin. The other is, of course, that a wrong guess has to be retracted. This
follows from the fact that predictions, be they based on incomplete information
or on information after the word is encountered, are related to accessing the
associated features in LTM. Thus, once a semantic feature has been activated
using rule r0, it has to be retracted if it turns out to be wrong after the target has
been semantically recognized and before the target is integrated into the prior
context. This operation is related to the second stage, the integration stage. As
a result, integration becomes a two stage process: first retracting wrong guesses
and only then integrating the semantic representation of the target with the
representation of the prior context. The above correlations will be explained in
more detail in the following sections.

3.5 The N400 and Default Reasoning

We hypothesize the following correlation between the N400 effect and default
reasoning.

(23) Correlation N400 – default reasoning:
The N400 effect is monotonic to the difference between semantic features
got after semantic recognition of the target word and prior to its semantic
recognition.

According to (23), the N400 effect is correlated to the difference between the
pre-activated features Γ ∗

r0
if only rule r0 is used, representing the most normal

expectations, and those features contained in the consequent of the rule used
after the upcoming word is eventually being semantically recognized. One cal-
culates the cardinality of Γ ∗

ri
− Γ ∗

r0
. The greater this cardinality, the greater the

N400 effect. Thus, the N400 is a measure of the cost of activating additional
semantic features after recognition of the target word. For our running example,
this correlation is shown in Fig. 4.

Fig. 4. Default rules and N400 effects

If ‘palm’ is encountered, rules r0 and r1 apply. As shown above, no new
features need to be activated so that all features already pre-activated become
part of the frame-representation of the concept expressed by this word. If ‘pine’
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is encountered, neither rule r0 nor rule r1 apply. Instead rule r2 is used. In this
case only one feature does not apply: habitat=tropics so that one new feature
habitat:moderate of the concept expressed by ‘pine’ must be activated. For ‘tulip’,
the situation is similar. The difference is that even fewer pre-activated features
apply: type=plant. Therefore, more additional features have to be activated:
category=flower and habitat=moderate.

The above criterion for the amplitude of the N400 can be refined in the
following way. Instead of just counting the number of attributes, one considers
in addition the degree of entrenchment of an attribute. For example, the attribute
‘category’, with its value ‘plant’, is more entrenched than the attribute ‘type’,
with values ‘tree’ or ‘flower’. Formally, such distinctions can be made in an
extension of system Z, system Z∗, [GP91]. In Z∗, a default rule is of the form
A

δ⇒ B. Intuitively, δ is a measure of strength or the degree of surprise of finding
the default rule violated. Applied to the above example, one gets: the value of δ
for type=plant is greater than that for category=tree.

3.6 Late Positivities and Belief Revision

Frontal Late Positivity. One difference between a best completion on the
one hand and a within-context-violation and a between-context-violation on the
other is the fact that for the latter but not for the former there are wrong
guesses. At the formal level, this corresponds to the distinction between Γ ∗

0 −Γ ∗
1

being empty or not. If this set is empty, the default conclusions drawn before the
target word is encountered are completely confirmed. Formally, this process is
an addition. First, A, the sortal information, is added to Γ ∗ and next Γ ∗ ∪ {A}
is added to Γ .

(24) a. Γ ∗
i+1 = Γ ∗

i ∪ {A}.
b. Γi+1 = Γi ∪ Γ ∗

i+1.

If a non-best completion is encountered, processing is more involved. This is a
simple consequence of the fact that the comprehender knows that the situation
described is not most normal and that therefore at least some of his expectations
are not satisfied. First, default rule r0 can no longer be used because the theory
w.r.t. the target word has changed. Instead of Th(A0), Th(Ai) with 2 ≤ i ≤ 3 has
to be used. Second, Th(A0) and Th(Ai) are incompatible. Using (21), this is the
case for the information Bi contained in the consequent of rule ri. For example,
if ‘pine’ is encountered, one gets habitat=moderate, which is incompatible with
habitat=tropics got from applying r0 during the first stage. Let this information,
i.e. habitat=moderate, be A. One then has Γ ∗ |= ¬A. Therefore, it is not possible
to simply add A to Γ ∗ because this would result in a set which is not satisfiable.
Rather, one first has to retract ¬A from Γ ∗. Only after this has been done, the
addition operation given in (24) can be applied. Formally, this amounts to a
revision operation in terms of the Levi-identity.
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(25) Levi-identity: KB
∗− A = (KB

·− ¬A) + A.

Revising a knowledge base KB with A amounts to first making KB consistent with
A by removing ¬A from KB and then adding A to the resulting KB from which
¬A has been retracted. For a best completion, the retraction step does not apply
because there is no new default information which is incompatible with informa-
tion got during the first stage. As an effect, revising reduces to a simple addition.
In the present context, KB is always Γ ∗, i.e. the set of default conclusions got by
applying r0. A is the conjunction of the literals in the consequent of rule ri, i.e.
the conjunction of those literals which differ in the value assigned to an attribute
from those in the consequent of r0. Thus, the retraction operation is always applied
to Γ ∗ and therefore to defeasible conclusions. This reflects the fact that defeasible
information, i.e. information got from top-down processing using default rules, is
always less entrenched than information got by bottom-up processing.

We hypothesize the following relation between the frontal late positivity and
the formal process described above.

(26) Correlation frontal late positivity – belief revision:

A frontal late positivity is triggered whenever Γ ∗ ∗− A is a proper revision,
i.e. if there is a non-empty retraction operation. In this case default con-
clusions drawn before the target word is encountered have to be retracted.

Parietal Late Positivity. As was shown in the previous section, the revision
of Γ ∗

i by the new information got from processing the target word is successful,
not only for the best completion but also for a within-context-violation or a
between-context-violation. This follows from the fact that both kinds of violation
satisfy the minimal appropriateness condition imposed on the theme argument
of the verb ‘plant’, namely the type of the object must be ‘plant’. At the level
of CO-models, this is expressed by the integrity constraint,

↔
� (type=plant).

The effect of this constraint is that any attempt to update with information
which does not satisfy this constraint, say sort=groan ∧ type=sound, will fail
because it leads to an inconsistent knowledge base. One has both type=plant
and type=sound. The only way of blocking this result is to retract type=plant
from the knowledge base. However, this is not admissible because it violates the
integrity constraint (or, from the point of view of an attribute-value structure,
the appropriateness condition). We hypothesize the following relation between
a parietal late positivity effect and our model of semantic processing.

(27) Correlation parietal late positivity – belief revision:
A parietal late positivity is triggered whenever an integrity constraint is
violated s.t. a ‘normal’ revision operation is not applicable.

It seems that a sentence like ‘For the snowman’s eyes the kids used two pieces
of coal. For his nose they used a groan from the fridge’ is interpretable only if at
least part of the sentence is not taken in its literal sense. For example, the word
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‘groan’ could be used in such a way that it refers to a nose-like object which emits
a groan-like noise when squeezed. The general interpretative strategy behind this
example can be described as follows. The information provided by the head noun
is not taken as specifying the sort of the frame (e.g., it is a groan) but rather as
giving a particular property of the object denoted by that frame, e.g. the value
of a sound quality. The task of making sense of such sentences, then, consists in
finding a frame s.t. (a) it satisfies the appropriateness condition, and (b) it has
an attribute whose value can be of the sort denoted by the head noun.

Parietal late positivity also shows that during online semantic processing con-
clusions derived from more specific information do not always win out. Though
it is true that semantic features got after semantic recognition overwrite con-
trary semantic features got prior to semantic recognition, features imposed on
the argument can never be overwritten. Formally, this is expressed by having
such a constraint be true at all worlds in a CO-model.

On the account developed above, integration/composition is always done
w.r.t. a consistent set of features that are either imposed, predicted prior
to recognition or got after semantic recognition. As a consequence, integra-
tion/composition are sensitive to differences between words of the same syntactic
category denoting objects of the same type.

Summarizing, we have arrived at the following correlations. Late positivity
effects are triggered whenever a prediction must be given up. Frontal late pos-
itivities are correlated with wrong guesses which do not violate a sortal type
restriction on an argument of the verb. This is the case for within-context-
violations and for between-context-violations. In this case integration, defined
by the revision operation ∗, is possible. By contrast, for parietal late positivity
effects, a violation of such a sortal type restriction occurs. In such a case normal
integration is not possible.

4 Comparison to Other Approaches

In this section we will compare our model with other approaches and discuss some
possible objections. First, we summarize the main theses underlying our model.

1. The N400 effect is related to lexical retrieval of items in LTM. In particular, it
is directly related to the number of additional features (attribute-value pairs)
that must be activated compared to the features which have already been
activated during prediction. Hence, the N400 is not related to integration
and/or composition.

2. The two late positivities are related to integration/composition: in order to
arrive at a consistent new semantic representation (or knowledge base), pre-
dictions that are incompatible with the information got by bottom-up process-
ing have to be given up. Formally, this amounts to revising the predictions
with the (true) bottom-up information.

3. When taken together, (1) and (2) yield the following model of semantic process-
ing in the brain: The first stage, indexed by the N400, is related to seman-
tic retrieval whereas the second stage is related to integration/composition,
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which consists in a revision component made up by a retraction followed by an
addition.

Thesis (1) is incompatible with a widely held view of N400 effects: the integration
view. We will therefore begin by providing a critical assessment of this view in
Sect. 4.1. According to thesis (2), the P600 is a semantic effect, However, this is at
odds with the widely held view according to which it reflects syntactic violations
and syntactic repairing. Evidence for our interpretation will be discussed in
Sect. 4.2.

4.1 Integration View of the N400

On the integration view, the amplitude of the N400 is related to the effort of
integrating a word in the current context, i.e. in the semantic representation
built up so far. On this interpretation, N400 effects are (i) post lexical, i.e. they
occur after a word has (semantically) been recognized and (ii) result from a
combinatorial process. After a word has been accessed in LTM, the task consists
in combining the semantic representation of the prior context with the semantic
representation of that word. Thus, at any moment during semantic processing
the set of semantic features is solely built up by words that have already been
processed (or recognized) and not by features of (expected) upcoming words
farther down the sentence.

As noted by [Pyl12], a general problem of this account of the N400 is that the
notion of ‘semantic integration’ is usually not sharply defined. As was already
shown in the introduction, according to (most) formal semantic theories, com-
posing a word after accessing it with the previous context does not depend on the
way it is semantically related to this context in detail but merely on its general
syntactic and semantic type. Furthermore, it is usually not explained why seman-
tic expectedness and/or relatedness should affect semantic integration. Besides
these theoretical weaknesses, this account also faces a number of severe empirical
problems. First, the mismatch between the set of semantic features pre-activated
by a prior context and a within-context-violation is greater in a strongly con-
straining than in a weakly constraining context so that it should be more difficult
to integrate a WCV, like ‘pine’, in a strongly constraining context compared to
a weakly constraining context. As an effect, the N400 amplitude in a strongly
constraining context should exceed that in a weakly constraining context, con-
trary to the empirical findings. Second, the integration view predicts that for
two words which are synonymous the difficulty in integrating them should be
the same since they are necessarily semantically related to the prior context in
exactly the same way. This prediction is falsified by example (5) in Sect. 2.2.
Since ‘a’ and ‘an’ have exactly the same meaning, they should elicit the same
N400 effects. However, the amplitude of the N400 was larger for ‘an’ compared
to ‘a’.
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4.2 The P600 as a Measure of Multimodal Updating Processes

According to our model, the late positivity (P600) is related to semantic integra-
tion.13 Some predictions that have been made have to be given up because they
are incompatible with the (semantic) information provided by the target word.
This integration view of the P600 seems to be at odds with the popular syntactic
view of this ERP-component. On this view, the P600 is interpreted as indexing
the difficulty of revising or repairing a syntactic analysis when the target word
makes the sentence based on this analysis ungrammatical (see [BFH12, 135] and
[GPKP10] for an overview).

The syntactic view of the P600 has been challenged by a number of empir-
ical results. First, [KHGH00] (see also [BFH12]) compared sentences with long
distance wh-dependencies.

(28) a. Emily wonders who the performers in the concert imitate . . .
b. Emily wonders whether the performers in the concert imitate . . .

Only for (28a), but not for (28b), a P600 was found. Since (28a) is neither
syntactically ill-formed nor does it contain a garden-path, this effect has to be
explained in a different way. [KHGH00] suggest that in this case this effect
reflects a process of syntactic integration: the verb ‘imitate’ has to be linked
to the wh-pronoun ‘who’ whereas no such additional operation is needed in the
case of (28b). Thus, the P600 is related to integration and not only to repairing.
In addition, the linking that is required can be interpreted as being semantic in
nature. A further example of a semantic P600 effect is given by so-called bridging
phenomena, [Bur06,Sch13].

(29) Yesterday, a PhD. student was shot/killed/found dead downtown. The press
reported that the pistol was probably from army stocks.

Both for ‘killed’ and ‘found dead’, [Bur06] found a P600 effect but not for ‘shot’.
According to [Bur06], this can be explained by assuming that in the former two
cases establishing a coherent discourse relation (say, elaboration) requires more
inferential work. Again, this is a purely semantic (or pragmatic) task which is
related to integrating new information into the semantic representation of the
previous context. In their discussion of the findings by [RGF11,Bur06], [BFH12,
136] conclude that ‘what their materials have in common is that they require
additional processing (as compared to the control condition) in order to arrive
at a coherent mental representation of what the speaker or writer meant to
communicate’. The authors hypothesize that all P600 effects can be described
in terms of the construction, revision, or updating of a mental representation of
what is being communicated, [BFH12, 137]. They argue that on this account of
the P600 the observed effect reflects the efforts in reworking an initial mental
representation and not the revision of a syntactic analysis. Thus for them, the
P600 reflects integration difficulty. This difficulty is determined by how much the

13 This section owes much to the review article [BFH12].
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current mental representation needs to be adapted to incorporate the current
input. They summarize their view of the P600 as follows [BFH12, 138]: ‘The
P600 component is the brain’s natural electrophysiological reflection of updating
a mental representation with new information.’ Hence syntactic complexities
and violations elicit a P600 effect because they reflect difficulties in building up
a coherent mental representation at the syntactic level. Even more important
than [BFH12]’s account of the P600 effect is the way they relate the N400 to
this ERP-component. According to them, the N400 reflects the retrieval of the
meaning of a word from LTM, [BFH12, 128].

5 Summary

In this paper we showed how a semantic theory can be extended to incorporate a
‘predictive’ and a ‘revision’ component in order to account for neurophysiological
data on online semantic processing. The general idea is to use a decompositional
frame semantics based on typed attribute-value structures together with a set
of default rules. Such rules are in part pragmatic because their use is context
dependent. Yet, the information inferred is always part of the semantic repre-
sentation of a concept in LTM since the context only determines which part of
the frame representing the concept is activated.
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Abstract. In this paper, we attempt to answer the vexing question why
it should be the case that only certain types of noun meanings exhibit
a mass/count variation in the lexicalization of their semantic proper-
ties, while others do not. This question has so far remained unanswered,
or been set aside. We will do so by focusing on the role of context-
sensitivity (already highlighted in recent theories of the mass/count dis-
tinction), and argue that it gives rise to a conflict between two pressures
that influence the encoding of noun meanings as mass or count, one
stemming from learnability constraints (reliability) and the other from
constraints on informativeness (individuation). This will also lead us to
identifying four semantic classes of nouns, and to showing why variation
in mass/count encoding is, on our account, to be expected to occur widely
in just two of them. Context-sensitivity forces a choice between prioritiz-
ing individuation, which aligns with count lexicalization, and prioritizing
consistency, which aligns with mass lexicalization.

Keywords: Count/Mass · Probabilistic semantics · Mereology · Vague-
ness · Context-sensitivity

1 Introduction

The focus of this paper is on some of the most puzzling data in the domain of
the mass/count distinction, which have so far seemed intractable or have been
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set aside in current accounts. In a substantial number of cases, we observe cross-
and intralinguistic variation in the lexicalization of nouns as mass or count. As
is well-known, but puzzling, in languages with a fully-developed grammaticized
lexical mass/count distinction, things in the world like furniture, jewelry, hair,
lentils fall under a count or a mass description, but cats are uniformly describable
by basic lexical count nouns, while air or mud by mass nouns. The questions to
ask are: ‘Why do certain types of noun meanings exhibit a mass/count variation
in the lexicalization of their semantic properties, while others do not?’ ‘Is this
variation ad hoc, arbitrary, or is it due to some general principles that underlie
the form-meaning mappings in the noun domain?’ We will address these ques-
tions by developing two key ideas from recent work on the mass/count distinction
that both highlight the importance of context-sensitivity. First, some nouns are
context-sensitive in that what counts as minimal in a number neutral predicate’s
denotation varies with context. This form of context sensitivity is also associ-
ated with vagueness (Chierchia [2]). For example, what counts, minimally, as
rice or mud is context dependent. A single grain of rice or a single fleck of mud
is sufficient to count as rice or mud in some contexts, but not in others. Second,
what counts as ‘one’ unit with respect to a given noun varies with context, as
well (Rothstein [20], Landman [12]). For example, in some ‘counting contexts’
(Rothstein [20]), a teacup and saucer will count as one item of kitchenware, in
other contexts as two items, and in other cases a teacup and saucer may “simul-
taneously in the same context” count as both one and two items of kitchenware
(Landman [12]).

We argue that a more general level of explanation underlies the impact of
context on countability, namely, that context-sensitivity of either of the two
varieties just mentioned can be understood as giving rise to a conflict between
two pressures on how languages encode the meanings of nouns, and which lead
to predictions about when exactly variation in the mass/count lexicalization
patterns is to be expected. One pressure, reliability, is derived from learnability
constraints, and has to do with consistent criteria guiding the acquisition of
noun meanings and their felicitous use in a variety of contexts. The second
pressure, individuation, is derived from constraints on informativeness, which,
for nouns, as we argue, amounts to the pressure to encode what counts as ‘one’
entity in their denotation. In other words, and put in the simplest terms, what is
understood as individuation, as a prerequisite for counting, is here recast partly
in information-theoretic terms.

The two varieties of context-sensitivity (one related to ‘quantity vagueness’
and the other to what counts as ‘one’) and the conflict they generate between
the pressures coming from learnability constraints and constraints on informa-
tiveness, which impact on how languages encode the meanings of nouns, leads
us to identifying four semantic classes of nouns. Most importantly, we moti-
vate why only two of these, granulars and collective artifacts and homogeneous
objects are systematically subject to the striking variation in the mass and count
lexicalization, while the other two, prototypical objects and substances, liquids,
gasses, are not. In brief, context-sensitivity forces a choice between prioritizing
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individuation, which aligns with count lexicalization, and prioritizing consis-
tency, which aligns with mass lexicalization. As far as we know, no motivation
of this kind has yet been provided.

We formally represent these ideas in a probabilistic mereological theory, prob-
abilistic mereological Type Theory with Records (probM-TTR) which is an enrich-
ment of probabilistic Type Theory with Records (Cooper et al. [5]). This theory
has the advantage that it provides us with rich representational means to model
the key ideas and processes that, as we argue, underly the mass/count distinc-
tion: namely, vagueness, counting-context sensitivity, overlap between entities
that count as one, the impact of semantic learning on meaning representations,
reliability of application criteria for nouns, and why, in some cases, multiple
individuation criteria are licensed.

In Sect. 2, we summarize some of the leading recent contributions to the
semantics of the mass/count distinction and we highlight and connect the role
of context in each of them. In Sect. 3, we argue that the two notions of context
sensitivity identified in Sect. 2 can be used to demarcate four semantic classes
of nouns. We then argue for the presence of two competing pressures on natural
language predicates that we call reliability and individuation. In Sect. 4, we briefly
introduce our formal framework, probM-TTR. In Sects. 5 and 6, we show how
the two types of context sensitivity from Sect. 2 give rise to conflicts between
individuation and reliability, and so also give rise to the licensing of either mass
or count encoding. We summarize these findings in Sect. 7.

2 Context-Sensitivity and the Mass/Count Distinction

2.1 Vagueness as a Variation in Extensions Across Contexts:
Chierchia (2010)

Chierchia’s [2] main claim is that mass nouns are vague in a way that count
nouns are not. While count nouns have stable atoms in their denotation, that is,
they have entities in their denotation that are atoms in every context, mass noun
denotations lack stable atoms. If a noun lacks stable atoms, there is no entity that
is an atom in the denotation of the predicate at all contexts. In this sense then,
mass nouns have only unstable individuals in their denotation. But counting is
counting of stable atoms only. Therefore, mass nouns are uncountable.

Chierchia enriches mereological semantics with a form of supervaluationism
wherein vague nouns interpreted at ground contexts have extension gaps (vague-
ness bands). Contexts then play the role of classical completions of a partial
model in other supervaluationist formalisms such that at every (total) context,
a nominal predicate is a total function on the domain.

Contexts stand in a partial order to one another such that if c′ precisifies
c (c ∝ c′), then the denotation of a predicate P at c and at a world w is a
(possibly not proper) subset of P at c′ and w. For an interpretation function F :
F (P )(c)(w) ⊆ F (P )(c′)(w).
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On Chierchia’s supervaluationist account, mass nouns such as rice are vague
in the following way. It is not the case that across all contexts, for example, a few
grains, single grains, half grains, and rice dust always count as rice. Thus these
quantities of rice are in the vagueness band of rice. There may be some total
precisifications of the ground context c, in which single grains are rice atoms.
There may also be some c′ such that c ∝ c′, where half grains are rice atoms.
There may also be some c′′ such that c′ ∝ c′′, in which rice dust particles are
rice atoms. Most importantly, there is, therefore, no entity that is a rice atom
at every total precisification of rice. The denotation of rice lacks stable atoms,
but counting is counting stable atoms, and so rice is mass.

2.2 Disjointness in Context

Rothstein [20] argues that neither formal atomicity (defined in mereological terms
with reference to a Boolean lattice structure, presupposed by Chierchia [1]),
nor natural atomicity (understood in terms of a “natural unit” in the sense of
Krifka [10]) are sufficient or necessary to account for the differences between mass
nouns and count nouns. A major contribution of Rothstein’s work is to provide
a formal model of how nouns such as fence, wall, which are not naturally atomic,
nonetheless exhibit the hallmark grammatical properties of count nouns.

In contrast to Chierchia’s use of context, Rothstein [20] coins the term “count-
ing context”, and defines count nouns as typally distinct from mass nouns. Mass
nouns are of type 〈e, t〉. Count nouns are indexed via entity–context pairs and
so are of type 〈e × k, t〉. The following is Rothstein’s example. Suppose that
a square field is encircled by fencing. The answer to the question How many
fences encircle the field? is wholly dependent on context. In some contexts, it
would be natural to answer four (one for each side of the field). In other con-
texts, it would be more natural to answer one (one fence encircling the whole
field). By indexing count nouns to contexts, Rothstein is able to capture how
there can be one answer to the above question in any particular context (either
one or four), despite fence lacking natural atoms, atoms that are independent of
counting-context.

Rothstein’s and Chierchia’s context differ in their formal properties. On the
assumption that we restrict our discussion to what Rothstein refers to as “default
contexts” (relative to which the denotations of predicates are disjoint), Roth-
stein’s contexts are not precisifications definable as a partial order. For example,
let us again consider the field surrounded by fences a, b, c, d. Then at the con-
text, k, at which a, b, c, d each individually counts as a single fence, their sum
a ∪ b ∪ c ∪ d is excluded from the denotation of fence, while at the context k′ at
which a∪ b∪ c∪d jointly count as a single fence, a, b, c, d each taken individually
are excluded from the denotation of fence. Clearly, therefore, one context does
not precisify another.

There is, however, arguably a formal connection between the use of ‘context’
in Rothstein [20] and Chierchia [2]. Take the following quote from Chierchia,
where, for ease of comparison, we added Rothstein’s fence example to his moun-
tain(s) example.
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“We must independently require (on anyone’s theory) that for a concrete
sortal noun N, its atoms are chosen so as not to overlap spatiotemporally.
To put it differently, a disagreement over whether what you see in (43) is
one or two mountains [one or four fences, in our field example
above, Sutton & Filip] is, in the first place, a disagreement on how to
resolve the contextual parameters. The key difference between nouns like
heap or mountain [or fence, Sutton & Filip] and mass nouns like rice is
that minimal rice amounts, once contextually set, can still be viewed as
units or aggregates without re-negotiating the ground rules.” Chierchia [2]
p. 123.

From this point of view, we could therefore, tentatively, associate the role
of ground contexts (the contexts that set the “ground rules”) in Chierchia [2]
with the role of counting contexts in Rothstein [20]. Ground contexts, for Chier-
chia, set upper bounds on precisifications. This means that they set the positive
extension for predicates. Formally speaking, ground contexts set the precisifica-
tion g such that for all precisifications c, if c ∝ g, then c = g.1 In this sense we
have two distinct notions of context. For counting one must, as per Rothstein’s
account, set a schema of individuation (via a counting context). However, as
per Chierchia’s account, there may still be ways to resolve the extension of a
predicate across contexts of use that can undermine countability by obscuring
what the individuals for counting are. In Sects. 5 and 6, we make these two types
of contexts explicit in our formalism and analyze how they interact.2

2.3 Overlap in Context

In Landman [12] the set of generators, gen(X), of the regular set X is the
set of semantic building blocks, which are either “the things that we would
want to count as one” Landman [12, p. 26], relative to a context, or are con-
textually determined minimal parts. If the elements in the generator set are
non-overlapping, as in the case of count nouns, then counting is sanctioned:
Counting is counting of generators and there is only one way to count. However,
if generators overlap, as in the case of mass nouns, counting goes wrong. One of
Landman’s innovations is to provide a new delimitation of the two cases when
this happens, and hence two subcategories of mass nouns: mess mass nouns like
mud, and neat mass nouns like furniture. A mass noun is neat if its intension
at every world specifies a regular set whose set of minimal elements is non-
overlapping. A noun is a mess mass noun if its intension at every world specifies
a regular set whose set of minimal elements is overlapping.
1 Thanks to a reviewer who pointed out this formulation.
2 Our association of ground context and counting context is only tentative, however.

They may, formally, operate in a similar manner, but there are clear informal differ-
ences. For example, Rothstein’s counting contexts are meant to set the ground rules
in the sense of determining what count as ‘one’. Chierchia’s ground contexts set the
ground rules more in the sense of determining the boundary between the positive
extension and the vagueness band.



A Probabilistic, Mereological Account of the Mass/Count Distinction 151

For Landman, counting goes wrong when the variants of the generator set
have different cardinalities simultaneously, but under different “perspectives”
on one and the same set of entities. Variants of a set are maximally disjoint
subsets of a set. For example, for the set X = {a, b, c, d, a ∪ b, c ∪ d}, there
are four variants of X: v1 = {a, b, c, d}, v2 = {a, b, c ∪ d}, v3 = {a ∪ b, c, d},
v4 = {a ∪ b, c ∪ d}. Clearly, therefore, the effect of deriving variants of a set
can be associated with the effect of applying a default counting context (from
Rothstein [20]) to a predicate: every variant marks one way that an overlapping
denotation could be made disjoint.

Context, although not a prominent part of Landman’s account, is mentioned
in relation to neat mass nouns. His paradigm example of a neat mass noun is
kitchenware:

“The teapot, the cup, the saucer, and the cup and saucer all count as
kitchenware and can all count as one simultaneously in the same context. ...
In other words: the denotations of neat nouns are sets in which the distinc-
tion between singular individuals and plural individuals is not properly artic-
ulated.” Landman [12] pp. 34–35.

A striking idea here is that there are contexts which allow overlap in the
denotation of a noun N with respect to what counts as one N. In other words,
there are contexts in which, either one simply does not apply an individua-
tion schema, or, alternatively, that the individuation schema one applies fails to
resolve overlap. The former possibility is in effect a description of Rothstein’s
typal distinction between mass and count nouns wherein mass nouns are not
indexed to counting contexts. However, equally possible is that, for some reason,
one may choose a schema of individuation that fails to remove overlap. We will
motivate this latter option in Sect. 3.

3 Count/Mass Variation, Reliability, and Individuation

3.1 Four Semantic Classes of Nouns and the Variation
in Mass/Count Encoding

Considering just concrete nouns, as most do, we observe a considerable amount
of puzzling data with respect to the variation in mass/count encoding between
and within languages. This variation is not random, however. We may distinguish
five classes of nouns depending on their main lexicalization patterns. They are
summarized in Table 1 where the ‘Noun Class’ is a cover term for the descriptive
labels below it. We then argue that these may be grouped into four classes in
terms of the semantic properties given in Table 2.

The first striking pattern that we observe is markedly little variation in the
mass/count encoding in two groups: namely, first, there is a strong tendency
for substances, gasses, liquids to be encoded as mass (mud, blood, air), and sec-
ond, a strong tendency for both animate and inanimate prototypical individuals
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Table 1. Classes of nouns and mass/count variation

Noun class Examples

Proto-typical
objects

chair+c; tuoli+c (‘chair’ Finnish); Stuhl+c (‘chair’ German)

dog+c; koira+c (‘dog’ Finnish); Hund+c (‘dog’ German)

boy+c; poika+c (‘boy’ Finnish); Junge+c (‘boy’ German)

Collective
artifacts

furniture−c; huonekalu-t+c,pl (‘furniture’ Finnish)

meubel-s+c,pl, meubilair−c (‘furniture’ Dutch)

kitchenware−c; Küchengerät-e+c,pl (German, lit. kitchen device-s)

footwear−c; jalkinee-t+c,pl (‘footwear’ Finnish)

Homogeneous
objects

fence+c, fencing−c; hedge+c, hedging−c

wall+c, walling−c; shrub+c, shrubbery−c

Granulars lentil-s+c,pl; linse-n+c,pl (‘lentils’ German)

lešta−c (‘lentils’ Bulgarian); čočka−c (‘lentils’ Czech)

oat-s+c,pl; oatmeal−c;

kaura−c (‘oats’ Finnish); kaurahiutale-et+c,pl (Finnish, lit. oat.flake-s)

Substances,
liquids, gases

mud−c; muta−c (‘mud’ Finnish); Schlamm−c (‘mud’ German)

blood−c; veri−c (‘blood’ Finnish); Blut−c (‘blood’ German)

air−c; lenta−c (‘air’ Finnish); Luft−c (‘air’ German)

Table 2. Interpretation of theories of the mass/count distinction

Noun class Variation Chierchia [2] Landman [12] Rothstein [20]

Prototypical
objects

Little Not vague Not overlapping
generators

Not context sensitive

Collective
artifacts &
homogeneous
objects

Much Not vague Overlapping
generators

Context sensitive

Granulars Much Vague Not overlapping
generators

Not context sensitive

Substances,
liquids, gases

Little Vague Overlapping
generators

(Context sensitive)

(prototypical objects) to be encoded as count (cat, boy, chair). The second strik-
ing pattern is a substantial amount of variation in the encoding of collective
artifacts as mass/count furniture, footwear, kitchenware; homogeneous objects
(‘homogeneous’ in the sense of Rothstein [20]) like fence, wall, hedge; granulars
like rice, lentils. Such observations immediately prompt the question what is
the reason why the mass/count variation is rife for some nouns, but scarce for
others? What semantic facts or constraints allow us to make predictions when
the mass/count variation is expected?
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Let us first consider in more detail the groupings which display much
mass/count variation (Table 2) and their attribution of properties, which are
based on Rothstein [20], Chierchia [2], and Landman [12].

Prototypical objects: These nouns are not vague in the sense of Chierchia [2].
In Landman’s [12] terms, they are count and so have non-overlapping minimal
generators and non-overlapping generators. In Rothstein’s [20] terms, these count
nouns and as such indexed to counting contexts, and they have atoms in their
denotations that do not vary across counting contexts. A dog, a chair, or a boy
will count as one dog, chair, or boy by any reasonable schema of individuation.

Collective artifacts: These nouns contain typical cases of what Chierchia [2] calls
“fake mass” nouns (following a long-standing tradition), and for which Land-
man [12] coins the term “neat mass” nouns: e.g., furniture, footwear, kitchen-
ware. Chierchia takes the mass encoding of these nouns to be independent of
vagueness, because they have stable atoms. Landman takes these nouns to have
overlapping generators (but their minimal generators are non-overlapping). If it
is the case that, from counting context to counting context, what counts as ‘one
P ’ varies, then, these nouns are counting context sensitive. Most importantly,
they also have count counterparts, cross- and intralinguistically. Take footwear
versus jalkineet+c,pl (‘footwear’, Finnish). On Landman’s account, a shoe, and
a pair of shoes can count as single items of footwear simultaneously in the same
context. On Rothstein’s account, being indexed to a (default) counting context
would prohibit this, but it is not the case that Finnish must pick a single count-
ing context. In some contexts a pair of shoes will count as one item of footwear.
In another context, a pair of shoes will count as two items of footwear.

Homogeneous objects: Following Rothstein [20], we use “homogeneous” as a
description of nouns such as fence, wall, hedge. The homogeneity is meant to cap-
ture that, at least for relatively large samples, a single stretch of fence or wall
could be viewed, in another context, as two or more stretches of fence or wall.
According to Chierchia (see Sect. 2.2), nouns such as fence and wall do not denote
unstable entities relative to a ground context (e.g. relative to a counting context).
On Rothstein’s account, these are central cases of context-indexed nouns that are
counting context sensitive. Most significantly, notice that these count nouns have
mass counterparts (fencing, walling, hedging). As mass nouns, they presumably
have, on Landman’s account, overlapping generators. It seems reasonable to con-
clude that, for example, fencing denotes overlapping entities that can, simulta-
neously and in the same context, count as single items of fencing. Furthermore,
Landman categorizes fencing as neat mass (p.c.). This would lead one to expect
a felicitous cardinality comparison with, for example, more than constructions.
However, native speakers are divided on the felicity of this reading. If this is an
accurate description, then homogeneous objects pattern along with collective arti-
facts as not vague, overlapping, and counting context sensitive, hence the grouping
of the two in Table 2.
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Granulars: The denotations of granular nouns (rice, lentils) contain small grains.
On Chierchia’s [2] account, these nouns are vague, since no quantities of grains
or parts of grains are stable atoms (in some contexts parts of grains would
suffice, in other contexts, more than one grain may be required). Notably, those
mass nouns in these categories often have cross-linguistic count-counterparts.
On Landman’s account, these count-counterparts should have non-overlapping
generators. For example, the generators of lentil are presumably the individual
lentils (they count as one).3 However, it is hard to see how less than or more than
a single lentil could equally count as one lentil, thus these granular count nouns
arguably have non-overlapping minimal generators (they are neat). Similarly,
for nouns such as lentil, it is hard to see how counting context could affect this
individuation criteria. If single lentils count as one on one counting context for
lentil, then, like nouns such as cat, they should count as one across all counting
contexts. Although nouns such as lentil should be indexed to counting contexts
on Rothstein’s account, they are not counting context sensitive. Despite the mass
encoding of granular nouns such as rice, we take similar considerations to apply.4

Furthermore, reasons for thinking that nouns such as rice are neat, not mess,
are given in [19].

Substances, gasses, liquids: These nouns are also vague on Chierchia’s [2] account.
On Landman’s [12] account, such nouns are mess mass (because they have over-
lapping minimal generators). Insofar as these nouns are rarely encoded as count,
it is hard to say whether or not they are counting context sensitive. However, in
Yudja (Lima [14]), at least for nouns such as mud which do display count noun
behavior, it seems that the quantities of mud that can count as one could vary
from context to context (a pile in one context, a bucketful in another). Hence,
we may tentatively conclude that mud is counting context sensitive (hence the
parenthesis in Table 2).5

3.2 Two Competing Pressures: Reliability and Individuation

In the formal framework we propose in Sects. 4, 5, and 6, we will investi-
gate a hypothesis that could account for much of the cross- and intralinguistic

3 This is a vexed issue, however. Prima facie, rice and lentil-s should be treated simi-
larly, however the mass noun rice should have overlapping generators, but the count
noun lentil should have non-overlapping generators.

4 Actually, this issue is also somewhat vexed. Nouns such as lentil cause problems for
Landman [12] since, if subparts of lentils are not in the generator set and constitute
proper parts of elements of the generator set, then they should not be in the deno-
tation of lentil(s), but this prediction is not accurate. This problem is remedied in
Landman [13], where generators are replaced by “bases”.

5 There are also nouns which denote fibrous entities like hair(s), string(s) which, on
the one hand seem to pattern with granulars like rice insofar as they denote saliently
perceptually distinguishable entities and are lexicalized as mass, but on the other
hand, they also pattern with context-sensitive count nouns like fence insofar as what
counts as one is contextually determined.
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mass/count data. Our hypothesis supposes that there are (at least) two com-
peting pressures on natural languages, one derived from learnability, the other
from being a tool for effective communication. We take a cue for this proposal
from work on information theoretic models of communication. For an example
of how this type of approach of balancing learning and communicative pressures
can be used to derive a theory of vagueness in information theoretic terms, see
Sutton [17]. For a comparable approach applied to ambiguity, see [15].

Generally, there is an informational trade-off between being more informative
and being learnable. For example, in the extreme case, a language could have one
and only one predicate to describe all entities. This would be easily learnable, but
maximally underdetermined, and so be a highly inefficient means of communica-
tion. At the other extreme, one could have a lexicalized classifier for every dis-
cernible property (e.g. a different lexical items for one N, two Ns, two big Ns etc.).
Each of these classifiers would be highly informative, but would make languages
unstable and unlearnable, since a learner would not receive sufficient instances of
all classifiers to be able to infer their denotations (this is a form of the ‘bottleneck’
problem as discussed in the iterative learning paradigm [9]). Typically, classifiers
convey an amount of information that in some way balances these pressures.

These general pressures are instantiated in the learning of concrete nomi-
nal predicates. On the one hand, there is a pressure for nominal predicate to
be informative. In these cases, the amount of information conveyed is linked
to how much of the domain is excluded by a classifier. Intuitively, a predicate
which allows one to individuate, to pick out individual entities, is more informa-
tive than one which conveys no individuation schema, hence there is a general
pressure towards establishing an individuation schema if this is possible given
other perceptual and/or functional properties of the entities in the denotation of
the relevant predicate. Individuation can be set in information theoretic terms.
If the meaning of a noun (the signal) determines a specific criteria for counting,
as opposed to something more ambiguous or vague, then the message will be
more informative (carry a higher informational value). For example, if N1 spec-
ifies {a, b, c} as countable entities with some high probability (and so excludes
sums thereof), but N2 is has a level distribution between the sets {a, b, c} and
{a ∪ b, a ∪ c, b ∪ c}, then in information theoretic terms, N1 carries more infor-
mation than N2.

On the other hand, there is a pressure for learnability. One’s criteria for
classifying should be a reliable indicator of the correct way to apply the pred-
icate, and consistently across various contexts. Call this pressure reliability.
In the context of countability, if the individuation criteria sometimes correctly
but sometimes wrongly excludes entities from the denotation of a noun, then it
is unreliable. This very simple pressure, in effect requires that the probability of
correctly applying a predicate, given the individuation schema is high.

As we will discuss in Sects. 5 and 6, these pressures may sometimes push
in opposing directions. However, in the case of prototypical count nouns, relia-
bility pushes in the same direction as individuation. There is a single and spe-
cific individuation schema for cat, namely being a cat individual (a single cat).
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Furthermore, being a cat individual (or a sum thereof) is a very good indicator
of being in the denotation of cat(s).

4 Formal Framework

4.1 Type Theory with Records (TTR)

Type Theory with Records (Cooper [6], and references therein) is a richly typed
formalism with a wide number of possible applications. In the following, we
discuss only its application to natural language semantics and the representation
of semantic structures as a form of compositional frame semantics (for discussion
see Cooper [3,6]). In its application to natural language semantics, TTR is a
system that combines insights from Fillmore’s frame semantics [7] and situation
theory, but also from formal semantics in the Montague tradition. In this section,
we briefly introduce readers to the aspects of TTR that we will use in this article.
Full formal details can be found in Cooper [6].

Two formal structures that are central to TTR are records and record types.
Records are approximately situations from situation theoretic semantics, and
record types are situation types from the same tradition, frames in the sense of
Fillmore, but also what act as the TTR equivalent of propositions, namely, inten-
sional structures that are made true by parts of the world, i.e. records/situations.

Record Types are represented as Field-Type matrices such as the one in (1)
which details a highly simplified cat-frame.

[
x : Ind
scat : 〈λv:Ind(cat(v)), 〈x〉〉

]

(1)

The fields (to the left of the colons) contain the labels x, scat will deter-
mine what values are provided by the record (situation) to which this frame is
applied. For those more familiar with frameworks such as DRT, labels can also
be thought of a approximating discourse referents. To the right of the colons
are types. Ind is the basic type for individuals. In the spirit of semantics in the
Frege-Montague tradition, predicates are functions. 〈λv.cat(x), 〈x〉〉 is a predi-
cate which is a function from entities of type Ind to a type of situation. It is
important to note that predicates apply to vales for labels, not labels themselves.
For example, if the value for x is felix, then this will yield a type of situation,
cat(felix) in which Felix is a cat.

To form properties (the equivalent of expression of expressions of type 〈e, t〉),
frames can be abstracted over to take a record as an argument. This is shown in
(2) and provides a highly simplified representation of the English cat. What (2)
requires is an application to a situation (record) which contains an individual.
Now the type is restricted to take the value for the label x in the record (r.x),
and apply it to the type statements in the record type/cat frame.

λr : [x : Ind].
[
scat : 〈λv:Ind(cat(v)), 〈r.x〉〉 ]

(2)
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Such a record could be the one given in (3). Records are finite sets of ordered
pairs of labels and values. This is shown in matrix format in (3) where the label
is x and the value is felix.

[x = felix] (3)

For our purposes, felix could be thought of as the actual cat, and the label
is just a way of tracking and accessing this object. Applying the record in (3) to
the function in (2) yields a proposition: [scat : cat(felix)] which will be true just
in case there is a situation in which Felix is a cat. In other words, propositions
are the equivalent of 〈s, t〉 expressions, except that TTR propositions are true
of situations, which are partial and more cognitively plausible as truth makers
than non-partial worlds (usually understood as sets of propositions).6

For this very brief introduction to TTR, another important point to note is
the role of agents in the formalism. Agents can make a judgement that some
object or situation a is of some type T (A judges that a : T ). In an Austinian
spirit, type judgements of this kind can be true or false. In Sect. 4.2 we will
expand on how the notion of an agent’s judgement set is linked to a probabilistic
learning model (fully detailed in Cooper et al. [4,5]).

Finally, with respect to notation, we henceforth follow the standard brevity
convention in TTR by simplifying how predicates are represented. Instead of
〈λv(P (v)), 〈x〉〉 we will use just P (x). For example, the frame in (1) will, under
the convention, be represented as in (4).

[
x : Ind
scat : cat(x)

]

(4)

4.2 Probabilistic Type Theory with Records (prob-TTR)

A full outline of prob-TTR may be found in Cooper et al. [4,5], we again intro-
duce only that which will be necessary for our purposes. The central enrichment
of TTR made in prob-TTR is to replace truth/falsity conditions of judgements
with probability conditions. In later work, Cooper et al. [5] say that this is
the probability of a judgement being the case, however, more in the spirit of the
learning centric approach detailed in prob-TTR, we find that a more informative
gloss on probability value for a judgement is the probability an agent ascribes to
a competent speaker making that judgement (estimated with respect to her lin-
guistic experiences and learning data).7 Once integrated with a Bayesian learning
model, probabilistic judgements are symbolized pA,J(a : T ) = k or the probabil-
ity that agent A judges that a is of type T with respect to her judgement set

6 Another feature of TTR is that types are inherently intensional. This is because types
are themselves viewed as objects to which other objects/situations belong, not merely
as sets of objects/situations. As such, two distinct types may be coextensional.

7 This formulation is due to Shalom Lappin p.c.
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J is k ∈ [0, 1]. Judgement sets record type judgements made of particular situa-
tions along with a probability value. Judgement sets are updated and form the
basis for novel type judgements by the agent. The value k in (5) will represent
the prior probability an agent A has for some individual being a cat, given her
judgement set J. Conditional probabilities are then computed as in (6) using a
type theoretic version of Bayes’ Rule where ||T ||J is the sum of all probabilities
associated with T in J.

pA,J(s :
[

x : Ind
scat : cat(x)

]

) = k (5)

pA,J(s : T1|s : T2) =
||T1 ∧ T2||J

||T2||J (6)

4.3 Probabilistic, Mereological Type Theory with Records
(probM-TTR)

The simple enrichment we make to prob-TTR is to expand the domain of the
basic type Ind from individuals to individuals and mereological sums thereof.8

That is to say that we replace the basic type for individuals with the type
of ‘stuff’ which we express as the basic type ∗Ind. A learner’s task will be to
establish what, if anything, the individuals denoted by a particular predicate
are. For example, given a world full of stuff, a learner of the predicate cat must
learn which portions of stuff are individual cats. The type of individual for a
predicate P will be represented IndP , so the type of single cat individuals will
be Indcat.

Following Krifka [10,11], we distinguish between a qualitative and a quantita-
tive criterion for applying nominal predicates.9 Qualitative criteria may include
perceptual properties such as color, shape, size and perceptual individuability
(for example, grains of sand are harder to perceive and differentiate than grains
of rice), but also functional properties. For simplicity, here we simply refer to
this cluster of properties for a predicate P as the predicate PQual. This sim-
ple looking predicate should actually represent an entire frame that details, for
example, functional and perceptual aspects of denotations relevant for forming
predicate judgements. We will elaborate on the details of these frames in fur-
ther work. This qualitative frame then acts as an argument for a ‘quantitative’
function fPquant

: (RecType → NatNum). This is a function which outputs a
natural number as a quantity value for some stuff with some combination of the
relevant P qualities.

8 This could equally be achieved using sets. For a set of formal atoms {a, b, c}, the
domain of Ind entities would be {a, b, c, {a, b}, {a, c}, {b, c}, {a, b, c}}.

9 As pointed out by a reviewer, a related concept is discussed by Geach [8]. However,
Geach’s criteria of identity is not identical with, for example, Krifka’s Natural Unit
function.
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

spstuff
:
[

x : ∗Ind
spqual

: PQual(x)

]

fpquant
: (

[
x : ∗Ind
spqual

: PQual(x)

]

→ N)

i : N
spquant

: fpquant
(spstuff

) = i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)

⎡

⎢
⎢
⎢
⎢
⎣

sricestuff
:
[

x : ∗Ind
sricequal

: riceQual(x)

]

fricequant
: (

[
x : ∗Ind
sricequal

: riceQual(x)

]

→ N)

sricequant
: fricequant

(sricestuff
) = 1

⎤

⎥
⎥
⎥
⎥
⎦

(8)

Examples of how we represent the qualitative frame and the quantitative
function are given as a schema in (7) and for the predicate rice(x) in (8). In
both, the first field labels a type of situation in which some stuff has the relevant
P -qualities/rice-qualities. The second field specifies a function from the quality
record type to a natural number. The fourth field in (7) and the third field in
(8) show the output to this function. In (8), this has been specified as 1. For
this special case, this will be the type for single rice grains since the percep-
tually salient partition of rice is into grains. In this special case, we adopt an
abbreviation convention in which (8) is rewritten as [x : Indrice].

4.4 Prototypical Count Nouns

We can now specify the lexical entry for a concrete noun. Landman [12] specifies
lexical entries as pairs of sets 〈denotation, counting base〉. We emulate this idea
with frames and also adopt the terminology of Landman [13] of body for the
regular denotation of a predicate, and base for the counting base. It should be
emphasised, however, that the precise meaning of body and base for us differs
from Landman’s proposal. For a predicate such as cat(x), we get:

λr : [x : ∗Ind].
[

sbody : [scat : cat(r.x) ]
sbase : [ r.x : Indcat ]

]

(9)

Entities of the type for the label sbody are in the denotation of the number
neutral cat-property. Entities of the type for the label sbase provide the poten-
tially countable entities for the number neutral property (the single cats).

This pair of types balances the pressures of individuation and reliability.
Picking out single cats from the type of stuff is highly informative, since there
is very little uncertainty as to which set of entities should be judged as cat indi-
viduals. The individuation schema provided by Indcat is also a highly reliable
indication that one may apply the predicate cat(x). If something is a cat indi-
vidual in one context, it will rarely if ever be the case that one cannot apply the
predicate cat(x) to this individual across contexts. To see why the two pressure
of individuation and reliability are both satisfied in this case, consider an alter-
native individuation schema that would be roughly as informative, for example,
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one which selected with a high probability, all cat pairs (every sum of two single
cats). Unlike the good case, this schema would not be reliable, since it would,
for example, incorrectly exclude single cats from being judged as cats.

In Sects. 5 and 6 we will consider two reasons when or why the type labelled
sbase (the IndP type) is unavailable as a counting base for other nouns.

5 Counting-Context Sensitivity, Overlap,
and Disjointness

In standard mereological approaches, overlap (not-disjoint) is a higher-order
property of sets. Within our type theoretic paradigm, we will define it as a
higher order type (a type of types). In the case of concrete nouns this will be
a type of type of individuals. Other than this difference in approach, disjoint-
ness may be defined in a relatively standard way. However, one further added
complexity is how the probabilistic aspect of our formalism interacts with the
mereology. We introduce a (possibly context sensitive) probability threshold θ
above which agents make judgements. A type is disjoint if all entities judged
with sufficient certainty to be of that type are disjoint. For those types which
have no clear instances, disjointness is undefined (one should not make a judge-
ment either way with respect to disjointness). The intuitive idea here is that
one cannot judge something to be disjoint or overlapping with respect to, say, a
predicate, if one is not at all certain what falls under the predicate.

Definition 1. A type T is disjoint relative to a probability threshold θ (Disjθ):

IF there is at least some a such that p(a : T ) ≥ θ,
THEN T : Disjθ iff, for all a, b such that p(a : T ) ≥ θ and p(b : T ) ≥ θ,

if a �= b, then a ∩ b = ∅,
ELSE Undefined.

We follow Landman [12] in making the grammatical counting function sen-
sitive to disjointness. We also assume that the function applies to the type in a
lexical entry labelled sbase (what is counted are the entities of the type in the
counting base). Hence, for a counting function fcount and probability threshold
θ, we propose a type restriction:

fcount,θ : (RecType : Disjθ → NatNum) (10)

This type restriction means that the counting function is only defined for types
that are disjoint (relative to some probability threshold).

For prototypical count nouns such as cat, woman, and chair, the types for
the counting base are Indcat, Indwoman, and Indchair, respectively. These are
not are not overlapping. Thus they are defined for grammatical counting.

There are two classes of data that we need to explain, namely, the mass/count
variation in collective artifacts and in homogenous objects. We do this by showing
how context sensitivity with respect to individuation schemas results in a tension
between the pressures of individuation and reliability.
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5.1 Collective Artifacts

For mass nouns such as furniture, kitchenware, fencing, and count nouns such
as huonekalu-t (‘furniture’, Finnish), Küchengerät-e (‘kitchenware’, German),
and fence, the story is a little more complex. In Sutton and Filip [19] we sug-
gested a treatment for neat mass nouns (furniture, kitchenware) and their count-
counterparts. Here, using our more developed formal apparatus, we extend this
analysis to context-sensitive semantically atomic nouns analyzed in Rothstein
[20] (fence, hedge), and their mass-counterparts (fencing, hedging).

As we argued in Sects. 2.2 and 2.3, for both of these groups of nouns, the
difference between mass and count encoding can be seen as involving either the
non-resolution of overlap at a general context (‘counting as one simultaneously
and in the same context’), or as the resolution of overlap at a specific con-
text. One aspect of Rothstein’s [20] and Landman’s [12] work that we suggested
could be further developed is an account of what counting contexts are. Here
we further develop the inchoate suggestion made in Sutton and Filip [19] that
counting contexts can be modeled as schemas of individuation (formally mod-
eled as quantitative functions). Furthermore, that, under pressure from individ-
uation, variation in how we interact with the denotations of such nouns leads us
to develop distinct individuation schemas (quantitative functions) and thereby
distinct IndP types. We will give two examples: furniture−c vs. huonekalu-t+c

(‘furniture’, Finnish), and fencing−c vs. fence+c.
furniture−c vs. huonekalu-t+c: Informally speaking, when learning what

counts as ‘one’ with respect to furniture (or what counts as ‘one’ with respect to
huonekalu), one is faced with inconsistent evidence. For example, vanity tables
seem to be single items of furniture, but so do the framed mirrors that can be
part of them. This creates a categorization problem, since both the part and
the whole should not be counted as one (even if both seemingly do count as one).
This variation creates a conflict. A single individuation schema, represented as
one quantitative function, would not be a reliable indicator of what counts as one
item of furniture across contexts, since, for example, a single schema might cor-
rectly exclude counting the mirror in the vanity context, but incorrectly exclude
counting such mirrors in other contexts. To remedy this, one must adopt differ-
ent schemas in different contexts meaning that no one schema is wholly reliable.
Hence, prioritizing the pressure towards individuation gives rise to unreliability.

To accommodate the pressure towards reliability, one could form a general-
ized individuation schema (formed from all admissible quantitative functions).
This generalized schema would be a reliable indicator, since at every context,
what counts as one would be included by at least one of the individuation
schemas. In terms of the probabilistic semantics, this would mean that the condi-
tional probability of correctly applying furniture, given the individuation schema
would be very high. However, the generalized schema would no longer individ-
uate since it would include as in counting as ‘one’ all entities that could count
as one irrespective of whether they overlap (it would include the vanity table
and the mirror that is a part of it). No longer individuating, in information
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theoretic terms, means carrying a lower informational value than a expression
that transmits a single individuation schema, since the more general schema is
equivocal between all admissible specific schemas. Hence, prioritizing the pres-
sure towards reliability gives rise to less individuation.

For lexical items in this class, languages may, seemingly as a matter of con-
vention, take one of two paths: prioritize individuation (at the expense of relia-
bility), but allow the individuation schema to vary across situations; or prioritize
reliability (at the expense of individuation), and form a generalized schema to
cover all situations. We now formally outline how these two paths may be repre-
sented, then we show how the choice of path leads to a difference in mass/count
encoding.

Formally speaking, for each noun where a clash of pressures arises, multiple
quantitative functions are inferred by a learner. For example, with furniture, one
function will map the type of situation which includes a vanity to the value 1 (the
vanity as a whole counts as one). A different function which will map this same
type of situation onto the value 2 (for the table and the mirror to be counted
separately). In the later case, the same function would map the type of situation
containing just the table (without mirror), or just the mirror (without table) to
the value 1. Since our terminology Indfurniture is just shorthand for the type of
situation where some entity receives a quantitative function value of 1, we can
describe there being two functions in terms of an agent tracking two Indfurniture

types. Call these Indfurniture,1 and Indfurniture,2. When more than one IndP

type is being tracked, there are two strategies available for classifying individual
P -items:

1. Prioritize individuation. For the case in hand, furniture, one could either
apply only one type in any given instance. However, as noted above neither
Indfurniture,1 nor Indfurniture,2 is reliable. To remedy this, one could make
the choice of individuation schema context sensitive, namely to sometimes
apply Indfurniture,1 and sometimes applying Indfurniture,2.

2. Prioritize reliability. To do this one need merely form a more generalized type
to cover all cases. This would obviate the need to add in context sensitivity.
In TTR, a more generalized type can be formed via a disjunction (or join)
between types as shown in (11).

IndP,gen = IndP,1 ∨ IndP,2 ∨ ... ∨ IndP,n (11)

However, now the generalized schema does not fully individuate since it equivo-
cates between whether a sum counts as one or more than one item of furniture.

The availability of a ‘choice’ of which pressure to prioritize explains
mass/count variation via a difference in lexical entries for mass nouns such as fur-
niture (12) as opposed to cross linguistic count-counterparts such as the Finnish
huonekalu (‘item of furniture’) (13).
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[[furniture]] = λr :
[
x : ∗Ind

]
.

[
sbody : [sfurn : furn(r.x) ]
sbase : [ r.x : Indfurn,gen ]

]

(12)

[[huonekalu]] = λr :
[
x : ∗Ind

]
.

[
sbody : [sfurn : furn(r.x) ]
sbase : [ r.x : Indfurn,i ]

]

(13)

The reason these entries lead to the mass encoding of furniture, but the count
encoding of huonekalu is due to the semantic qualities of the type for the label
sbase in each case. In (12), the type Indfurn,gen is not disjoint. This is because, for
example, both a dressing table (including mirror) and a dressing table (excluding
mirror) will be of this type. Other examples of overlap include tables that are
pushed together (are they one or many tables?), and chairs with cushions (should
the chairs be counted separately from the cushions or together?). Non-disjoint
types are not defined for the counting function (10), and so furniture is mass.
In contrast, because, in (13), huonekalu is encoded to select a specific quantitative
function (determined, for example, by the context of use), each type Indfurn,i is
disjoint. As such, huonekalu will be defined for counting. That said, from context
to context, the counting result may vary. In some contexts, the dressing table
(including mirror) will count as one huonekalu, in others it may count as two.

This pattern in which counting results may differ from context to context
should sound familiar from the case of fence. Recall Rothstein’s example of a
square field enclosed by fencing. Whether we count this as one fence around the
field, or two, three or four may depend on the context. We are able to use exactly
the same tools as we use for furniture versus huonekalu to model this. The entry
for fence is given in (14) and the entry for fencing is given in (15).

[[fence]] = λr :
[
x : ∗Ind

]
.

[
sbody : [sfence : fence(r.x) ]
sbase : [ r.x : Indfence,i ]

]

(14)

[[fencing]] = λr :
[
x : ∗Ind

]
.

[
sbody : [sfence : fence(r.x) ]
sbase : [ r.x : Indfence,gen ]

]

(15)

The reason these entries lead to the count encoding of fence, and the mass
encoding of fencing parallels that of the previous case. Given that, at any context,
the entry for fence selects a single quantitative function, the type Indfence,i is
disjoint, and so defined for counting, even if the exact result of counting the same
portion of fencing may result in different answers across contexts. In contrast,
fencing does not distinguish between contexts and is defined in terms of more
generalized join type Indfence,gen that is not disjoint. The reason that it is not
disjoint is that, for example, in Rothstein’s square field example, the sum of
four fence sides is of type Indfence,gen, but so are the four fence-sides taken
individually. Non-disjoint types are undefined for countability, and so fencing is
mass.

Furthermore, these different conceptions are driven by which pressure is pri-
oritized. If one prioritizes individuation, then the pressure is to find a single
counting schema (at least in a context) from the possible schemas. However, in
order to be reliable, the schema one uses must be context sensitive. This means
that at each context, one has a non-equivocating individuation schema from the
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set of possible schemas. Choosing a single one (at a context) is maximally infor-
mative, thus the pressure of individuation is satisfied. On the other hand, one can
prioritize reliability and adopt a generalized schema that (Indfence,gen) that is
a reliable indicator of when to apply the number neutral predicate fence. How-
ever, this generalized schema does not fully satisfy the pressure of individuation
since it equivocates between specific schemas.

In this section we have argued that counting-context sensitivity gives rise to
a competition between the pressures of individuation and reliability. Prioritizing
one of these pressures over the other seems to be a matter of convention. Prioritiz-
ing individuation yields count encoding. Prioritizing reliability yields mass encod-
ing. With this form of context-sensitivity, we cannot yet explain count/mass vari-
ation in granular nouns such as lentil, rice which we have assumed have disjoint
IndP types (the types for single rice grains and single lentils). Nor can we, at this
point, say anything about substance mass nouns such as mud and air. For this, we
will need to appeal to another form of context-sensitivity, one related to vague-
ness. In Sect. 6, we will argue that vagueness can also lead to a clash between the
pressures of individuation and reliability and so also to variation in mass/count
encoding.

6 Contextual Variation and Vagueness

The conception of vagueness we adopt is based loosely on Sutton ([17,18]).
On this conception, vagueness is represented as a form of metalinguistic uncer-
tainty that arises, in part, from inconsistent learning data. For example, for color
predicates, we have good evidence for judging canonical cases of green as ‘green’,
and likewise for blue. Towards the blurred boundary between green and blue, we
either have a dearth of evidence for making ‘blue’/‘green’ judgements, or we have
conflicting information (sometimes a shade will be described as ‘blue’, sometimes
not). Either way, we infer a distribution that describes a gradual trailing off of
the probability of a competent speaker making a ‘blue’ judgement as the shade
of the object in question becomes ever greener, mutatis mutandis for ‘green’.

Following Chierchia ([2]) we argue that a similar mechanism affects the
semantic representations of some nouns, however, that the graded increase in
uncertainty varies with the output of the quantitative function. This mecha-
nism is again a form of context sensitivity. The variation in what counts as, for
example, rice, across contexts yields metalinguistic uncertainty (vagueness) with
respect to what quantity of rice-stuff is sufficient to classify that stuff as rice.

6.1 Granular Nouns

The context-sensitivity of granular and substance nouns differs from that of col-
lective nouns such as kitchenware and furniture. As Chierchia [2] observes, our
judgements about whether granular and other substances are in the denotation of
a given predicate vary depending on their amount in a given context. For exam-
ple, whether we are willing to accept that we have mud on our shoes varies with
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context. In clean-room manufacturing or scientific contexts, even small specks of
mud count as mud, because the tolerance for even tiny quantities of mud is near
zero. In contexts like entering the apartment after a walk, our tolerance for mud
is much higher, and in contexts like entering the garden shed it is even higher. For
nouns such as rice or lentils one could truly say that we do not have any rice/lentils
for dinner when only a few grains/lentils remain in the packet, but equally truly
say that some rice/lentils fell on the floor during a meal even though the number
of grains/lentils may be identical in both cases. Context matters. However, from
a probabilistic learning perspective, these cases provide inconsistent data with
respect to the categorical application of classifiers such as mud, rice, and lentils.
The rational response for a learner (aside from seeking aspects of the contexts to
explain this variation) is to lower the confidence with which she would apply the
predicate for the specific amount of mud/rice/lentils in question. We model this
as a Bayesian update given the judgement set. The judgement set consists of sit-
uations (which can be understood as contexts from a situation theoretic point of
view) and probabilistic type judgements made about those situations (contexts).
In other words, the agent calculates the probability of applying e.g. the rice condi-
tional with respect to the context with some quantity of stuff with the appropriate
rice qualities. This is represented in (16) for some quantity value of 10. The value
0.5 would reflect the borderline case where the agent has as much reason to clas-
sify some quantity (of grains) of rice as rice as she has reason to judge them not
to be rice.

pA,J(r :

[
x : ∗Ind
srice : rice(x)

]
| r :

⎡
⎢⎢⎢⎢⎢⎢⎣

sricestuff
:

[
x : ∗Ind
sricequal

: riceQual(x)

]

fricequant : (

[
x : ∗Ind
sricequal

: riceQual(x)

]
→ N)

i : N
sricequant : fricequant (sricestuff

) = 10

⎤
⎥⎥⎥⎥⎥⎥⎦
) = 0.5 (16)

For nouns such as rice, numerical values need not be taken to align perfectly
with numbers of grains. For higher values, the output of the function could just as
easily indicate some range of numbers of grains as some specific number. Either
way, uncertainty about whether to apply the rice predicate will increase with
smaller quantitative function values. This means a gradual increase of uncer-
tainty about applying the predicate as quantities of rice get smaller. The idea
that this represents is simply that one is safer, across contexts, using rice to
describe larger quantities (a bowlful, a whole packet) than much smaller quan-
tities (a grain, a few grains). The uncertainty involved in using the predicate
across these cases reflects this.

Unlike with nouns such as furniture and kitchenware as well as with fence
and fencing, this uncertainty is not about what counts as one (leading to a pro-
liferation in individuation functions), but uncertainty about how much rice is
enough to safely form a rice judgement. Yet, similarly to the furniture, kitchen-
ware, fence and fencing cases, mass/count encoding of granular nouns can be
seen as arising from the competition between the pressures of reliability and
individuation.
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The pressure of individuation pushes in one direction, namely that, for nouns
such as rice and lentils, the types for the counting bases of the nouns should be
the types Indrice and Indlentil, respectively. For furniture- and fence-like nouns,
there were multiple competing equally informative individuation schemas (e.g.
one which counts the table and mirror as two and another schema that counts
the table and mirror as one, a vanity). However, for granular-like nouns, there is
really only one plausible individuation schema, namely, that which counts grains,
flakes etc.10 However, the gradation in probability values in the representation
of nouns such as rice, and lentils means that, types for lower quantity values
such as 1 (represented as types Indrice, Indlentil) are not reliable indicators of
when to apply rice or lentils. In other words, prioritizing individuation leads
to a fall in reliability. This is because single grains of rice or single lentils will
not qualify as rice or lentils, respectively, reliably in all contexts. A strategy of
prioritizing individuation will simply enter the IndP type as the counting base.
The lexical entry for granular nouns could resemble far more closely the one for
cat in (9). This is what we suggest occurs for nouns such as the English lentil
as in (19). Individuation is prioritized since types such as Indlentil are disjoint,
but reliability is forfeit since this type is not a wholly reliable indication of when
one may apply the predicate lentil(x).

The pressure of reliability pushes in the opposite direction to the pressure of
individuation for granular nouns. Prioritizing reliability militates against taking,
for example, the type for single grains of rice (Indrice) or single lentils (Indlentils)
as a counting base. Recall that reliability entails finding a counting base such that
the probability of (correctly) applying a predicate is high given that some entity
is of that type specified in the base. One way to boost this probability and so
prioritize reliability, as we find with the English rice, is to lexically encoding the
counting base not with the type Indrice, but with the less specific predicate rice
as in (17). Reliability is maximized here since, trivially, pA,J(a : T |a : T ) = 1, and
so the type labelled sbase in (17) is a perfect predictor of the type labelled sbody.
On this strategy, individuation is forfeit, since those entities which perceptually
saliently count as one (such as individual rice grains), are not clear cases of the
predicate rice across contexts.

In summary, for nouns such as rice and lentils, the context sensitivity that
gives rise to graded probability judgements for entities in terms of applying a
predicate, given some qualitative properties and a quantitative function value, in
turn, creates a conflict between the pressures of individuation and consistency.
The result is to prioritize one pressure. If one prioritizes reliability, the base does
not individuate. Examples are given in (17) for the English rice and in (18) for
the Bulgarian mass noun lešta (‘lentil’). If one prioritizes individuation, the base
is simply the relevant IndP type. An example of this is given in (19) for the
English ‘lentil’.

10 This may not be universally true. For example, grains that come in easily separable
halves might have two viable schemas, one which counts halves and one which counts
wholes.
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[[rice]] = λr :
[
x : ∗Ind

]
.

[
sbody : [srice : rice(r.x) ]
sbase : [srice : rice(r.x) ]

]

(17)

[[lešta]] = λr :
[
x : ∗Ind

]
.

[
sbody : [slentil : lentil(r.x) ]
sbase : [ r.x : lentil(r.x) ]

]

(18)

[[lentil]] = λr :
[
x : ∗Ind

]
.

[
sbody : [slentil : lentil(r.x) ]
sbase : [ r.x : Indlentil ]

]

(19)

The difference between (17) and (18) on the one hand and (19) on the other
is in the type for the label sbase. In (19), the type Indlentil is a disjoint type
and so is suitable for counting. Hence lentil is count. In (17), the type for the
labels sbody and sbase are the same. Depending on the probability threshold, this
type contains parts of grains, grains, or collections of grains of rice and sums
thereof. As such, the type labelled sbase is not disjoint, and so is not defined for
grammatical counting.

6.2 Substance Nouns

As we stated above, substance nouns like mud are vague in the same way as gran-
ular nouns in that what counts as mud varies from context to context, thus gen-
erating an inconsistent set of evidence for what counts as mud. We may assume,
therefore, that the same ways of balancing the pressures of reliability and indi-
viduation that we employed for vague granular nouns like rice and lentil could be
adopted for substance nouns, namely one of the two entries (20) or (21).

[[mud]] = λr :
[
x : ∗Ind

]
.

[
sbody : [smud : mud(r.x) ]
sbase : [ r.x : Indmud ]

]

(20)

[[mud]] = λr :
[
x : ∗Ind

]
.

[
sbody : [smud : mud(r.x) ]
sbase : [smud : mud(r.x) ]

]

(21)

Prioritizing reliability yields the entry in (21) which would lead to the mass
encoding of mud for the same reason as we got a mass encoding for rice in
English. The type for the label sbase is not disjoint.

In contrast to lentil, however, the entry in (20) will not yield count encod-
ing. For object count nouns, collective artifacts, and granular nouns (where the
granules are not too small) there is relatively clear perceptual and/or functional
based evidence for establishing what counts as ‘one’ item in the denotation of
the relevant noun. In probM-TTR terms that means that for such a predicate
P , there are at least some objects a, such that an agent is able to judge that
a : IndP with a reasonably high probability. This is not the case for substance,
liquid and gas nouns. Unlike nouns like cat and rice, the denotations of these
nouns are such that there is little, perceptually speaking, to aid in the identifica-
tion of salient individuated units. Unlike nouns such as chair and furniture, nor
do the denotations of substance nouns typically get partitioned in terms of func-
tion. This distinction in itself can be viewed as a further form of vagueness: what
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the perceptually/functionally salient entities of substance noun denotations are
is highly uncertain.

In terms of reliability and individuation, this, in contrast to the granular case,
means that types such as Indmud fail to carry a sufficiently high informational
content (fail to specify a sufficiently specific portion of mud such that portion
would count as one unit of mud). Furthermore, unless a language imports a signif-
icant amount of context-sensitivity in what counts as an individuated mud unit
(as could be argued is the case in languages such as Yudja), the pressure of indi-
viduation cannot be satisfied. We therefore would expect (21) and not (20) to be
the lexical entry for mud. Put another way, unless made radically dependent on
the context of application, the type Indmud is simply not useful since it is neither
a good indicator for the applicability of mud (not consistent), nor does it convey
a high enough informational content (does not individuate).

In probM-TTR terms that means that for such a substance/liquid predicate
P , there are no objects a, such that an agent is able to judge that a : IndP with a
high probability. With respect to the disjointness (Definition 1), this means that
types such as Indmud are undefined for disjointness. Since the counting function
requires a disjoint type as input, this means that substance nouns such as mud
will be encoded as mass, even if their lexical entries are of a similar form to (20).

7 Conclusions and Summary

We hypothesized that there are two competing pressures on natural language
predicates: (i) to individuate (recast partly in information-theoretic terms as
being informationally rich); (ii) to find a reliable criterion for counting (a crite-
rion which reliably predicts the type for the whole extension of P, modelled as
a high conditional probability that something is of the body type, given that it
is of the base type).

Inductive evidence for this hypothesis is provided by the predictions it makes
with respect to the variation in the mass/count encoding. We show that the ways
in which these two pressures can (or cannot) be satisfied in dependence on the
different types of context-sensitivity represented in our formal model, predict
the expected range of constraints on the variation in the mass/count encoding.
In addition, this allows us to cover a broader range of data than other leading
accounts.

Prototypical object nouns: The types that pick out the individuable entities in the
denotations of prototypical object nouns are also highly consistent indicators of
when to apply the nouns. The pressures on individuation and reliability work in
the same direction, i.e., they converge on the count encoding. We, therefore, have
no reason to expect much, if any, mass encoding, cross- and intralinguistically.11

11 One possible counter example to this is Brazilian Portuguese which seems to encode
mass readings of most or even all object count nouns when used in the bare singular.
For example, the bare singular ‘How much book...?’ can get a non-coerced measure
(weight) reading. See [16].
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Collective and homogeneous object nouns: Context-sensitivity with these nouns
affects the reliability with which individual types apply. For example, across
contexts, a sum can count as one fence, one item of kitchenware or two fences,
two items of kitchenware. This means that any particular individuation schema
will inconsistently determine the extension. To prioritize individuation, multiple
individuation schemas, each indexed to a context, can be used. This yields count
nouns such as fence, and Küchengeräte (‘kitchenware’ German). Alternatively,
to prioritize reliability, all individuation schemas can be merged together. This
yields a non-disjoint schema and so mass nouns such as fencing and kitchenware.

Granular nouns: Context-sensitivity with granular noun denotations has an effect
on what quantities of the relevant stuff are needed to qualify for that stuff to fall
under a given noun denotation. Granular nouns tend to be easily perceptually
individuable (in terms of salient individual grains), but given that single grains are
not always enough to qualify as falling under a given noun denotation across all
contexts, the type for single grains, that prioritizes individuation, is inconsistent as
a basis for applying a noun. Prioritizing individuation yields a count noun encod-
ing, which is commonly presupposed by pluralization, e.g. lentils, kaurahiutale-et
(‘oatmeal’ Finnish), oats. On the other hand, prioritizing reliability yields a non-
disjoint individuation schema, and so leads to a mass noun encoding, as in oatmeal,
kaura (‘oats’, Finnish), čočka (‘lentils’, Czech).

Substance nouns: Similarly as with granular noun denotations, context-sensitivity
has an effect on amounts of quantities (e.g., of substances, liquids, and gases)
reaching a certain threshold to qualify as falling under a given noun (e.g., mud,
blood, and air). However, the perceptual qualities of the denotations of these nouns
do not easily enable the prioritization of individuation that could be achieved for
count granular nouns.12 If individuation cannot be prioritized, then reliability will
be prioritized, therefore, we expect a heavy tendency towards mass encoding for
these nouns.

Our formal account can capture these competing pressures either in terms of
how sharply and specifically (as opposed to generally and vaguely) types relate
to entities in the world. Our link to learning models also allows us to describe
how (un)reliability can arise out of a process of classifier learning. Together,
this means that we are not only able to formally represent noun meanings and
countability, but we have also outlined the general mechanisms that give rise to
the variation in the mass/count encoding.
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Abstract. Dependency Grammar has been taken as a formalism for
syntactic representation, comparable to close competitors such as phrase
structure grammar or categorial grammar. This paper argues that in fact
the dependency graphs (DGs) should—like semantic frames—be seen as
a semantic formalism like e.g. FOL, Montague’s IL or Discourse Rep-
resentation Structures. For this, arrows must have semantically inter-
pretable labels and two additional kinds of arrows need to be added:
scope arrows and anaphoric arrows.

1 Introduction

Dependency Grammar (Tesnière 1959; Baum 1976; Hudson 1984, 2007) has been
taken too often as a formalism for syntactic representation, comparable to close
competitors such as phrase structure grammar or categorial grammar. This paper
argues that in fact the dependency graphs (DGs) should, like semantic frames
(Barsalou 1992; Löbner 2014; Löbner 2015; Petersen 2007), be seen as a seman-
tic formalism like e.g. FOL, Montague’s Intensional Logic (Montague 1973) or
Discourse Representation Structures (Kamp and Reyle 1993). The view is not
neutral with respect to the dependency graphs that must be employed. Arrows
must have semantically interpretable labels and two additional kinds of arrows
need to be added, scope arrows and anaphoric arrows. The extra arrows break a
standard property of dependency graphs, namely having at most one incoming
arrow per node.

In Zeevat (2014), a dependency parser is defined for semantic parsing, i.e. for
the task of linking arguments to their predicates, of modifiers to what they mod-
ify, of pronouns to their antecedents, of quantifiers to their restrictors and scopes.
The result is a special kind of dependency structure which is then transformed
into a variable-free prolog notation, where references to objects are always made
by the term that originally introduced them. This paper explores the alternative
strategy of directly defining satisfaction and update on the dependency struc-
tures in a way that generalises to other ways of obtaining dependency structures.

The paper however makes no assumptions about how one should arrive at
these structures, but takes as an obvious starting point that recent advances in
deriving dependency structure within computational linguistics1 make it more
1 Since Lin (1998) parser correctness is measured on the correctness of the derived

DGs, leading to many algorithms that map trees to dependency structures.

c© Springer-Verlag GmbH Germany 2017
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and more plausible that one can arrive at such structures using a variety of
methods and knowledge sources.

The typical dependency graphs obtained in these enterprises (Lin 1998; Nivre
and Scholz 2004) fall short of what one needs for semantic interpretation, but
can be seen as underdetermined semantic structures, in which the arrows stand
in need of further labeling or to which further arrows need to be added.

Formally, a dependency graph < N,LA > is a set of labeled nodes n =<
i, l >∈ N where l is drawn from a lexicon L and i is an index2 and labeled
arrows LA of the form < n1, n2, l > with n1 and n2 drawn from N and l a label
drawn from a different set of labels AL. < N,LA > is proper iff the nodes are
connected by arrows and the arrows connect nodes and there is a single root
node r that has no incoming arrows and all other nodes can be reached from r
by following arrows. A node k can be reached in this sense if there is a number
n > 0 such that there is a node j that can be reached in n − 1 steps from r and
an arrow < j, k, v >.

Having a root is a feature of dependency grammar that does not seem to fit well
with the kind of semantic graphs that are needed for lexical semantics. Petersen
(2007) uses the example of the noun father whose intuitive root note should para-
doxically refer to a person with an incoming father-arrow from a child of that per-
son. Such problems do not arise in syntax. The assumption of roots is harmless
however since in the contexts the more complex semantic frames—like the ones
used by Petersen—can be reconstructed as combinations of rooted DGs.

The lexicon is divided into heads, operators and marks. The arrow labels
(AL) can be technical (scope, restrictor, anap or marking mark) or be the names
of functional relations between objects in the domain. The heads are lexical
words, operators functional words like the negation not or the quantifier each,
while marks are a remainder category containing articles, verbal markings like
to and others.

Scope arrows run from heads to operators. Mark arrows do not run to heads
but to mark labels like the, to or ing and originate in heads. Anap-arrows link
heads with heads. Non-technical and non-marking arrows also connect heads
with heads.

A sequence of dependency graphs is a context. Contexts optionally include
a set of anap-labeled arrows < n,m, anap > where n and m are nodes from
different DGs and n is taken from a DG that is later in the sequence than the
DG in which m occurs.3 There are arguments for also allowing other arrows in
the contexts. In (1) he should be connected by a contextual anap-arrow to its
antecedent John.

2 Needed to keep nodes with the same labels separate. This is not necessary when one
thinks of DGs as graphical objects where such nodes can be distinguished by their
spatial position. The assumption made is that different nodes have different indices,
even in contexts.

3 An alternative is to make contexts into graphs. Then these anap-arrows are normal
graph arrows. The current presentation seems marginally more perspicuous, since it
unburdens the graph notation by some set-theoretic notation.
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(1) John came in. He smiled.

In the corresponding Italian example (2) however, he is omitted and one
could have a contextual agent-arrow directly going to Giovanni instead.

(2) Entrava Giovanni. Sorrideva.

Other constraints may include the presence of certain attributes for certain
heads (e.g. an agent arrow for a head like cough), at least one incoming arrow
for an operator and the requirement that a marker node (a non-head and non-
operator node) can only be the target of a mark arrow.

A different way of interpreting this paper is as a specific proposal for assign-
ing truth-conditions to semantic frames, in combination with specific proposals
for representing context-dependency, anaphora and scope within such semantic
frames.

The existence of this alternative interpretation can be taken as a point
of departure for various programmes to de-emphasize the distinction between
semantic and syntactic representations.

Two important issues in this connection are the equivalence between differ-
ent parses and lexical disambiguation. Arguably the natural equivalence class
between parses is leading to the same class of fully disambiguated readings. The
theory developed in this paper would be a way of filling in this notion which is
often not well-motivated, since the DGs are not interpreted. Lexical disambigua-
tion is arguably the most complex problem in determining the truth-conditional
meaning of sentences4 and impossible without computing the contribution of the
context. Arguably, the reinterpretation of the dependency structure as a logical
representation language can be a great help in dealing with lexical ambiguity,
since it immediately gives access to consistency.

Zeevat (2014) makes the additional claim that formalisms like the depen-
dency graphs discussed in this paper provide a formalisation of the pre-Fregean
psychologistic logic based on mental representations, since the formalism makes
sense in a systematic way of the idea that representations are both propositional
and denoting, while maintaining a strict connection between the object of a
representation and the way in which that object is given. It is also argued in
Zeevat (2014) that formalisations of classical mental representations have advan-
tages over modern representational formalisms such as DRT in which the link
between the “discourse referents” and the way in which they were introduced is
severed. For example, the formalism developed in this paper allows a uniform
analysis of definiteness that incorporates familiarity, functionality and Russellian
unique description, as a logical distinction between head nodes and a notion of
intensional identity reminiscent of Carnap’s between representations, that can
be employed in the semantics of propositional attitudes.

4 The number of readings of sentences can be estimated as mn where n is the number
of words and for a language like English m is roughly 5 of which 2.5 is due to lexical
ambiguity alone.
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2 What Are Dependency Graphs?

The following picture gives a typical example of a dependency graph as found
in the literature5.

(3)

PRP NN RB VBZ VBG NN
My dog also likes eating sausage

root

poss

nsubj

advmod xcomp dobj

It does as such not meet the additional criteria that need to be imposed
for semantic interpretation. The label poss must be interpreted by the attribute
owner (the referent of a possessive pronoun can bear a number of relations to
the referent of the head on which it depends, compare e.g. his friends, his book,
his soup), nsubj should be replaced by experiencer, advmod is currently out of
reach6, xcomp should be theme and an agent link from eating to dog must be
added. Also dobj should read theme.

The emendations would give the following new graph.

(4)

PRP NN RB VBZ VBG NN
My dog also likes eating sausage

root

owner

experiencer

???? theme

agent

theme

We can now interpret the dependency graph as saying (5).

(5) there is a dog
there is the speaker
the speaker owns the dog
there is a liking state
the experiencer of the liking state is the dog
the theme of the liking state is an activity of eating
the theme of the eating activity is sausage
the agent of the eating activity is the dog

5 Taken from the tikz-dependency package documentation.
6 Also has a syntactic associate X. The presupposition associated with also is that

the clause already holds for some Y distinct from X. This can be checked if Y is
connected by an anap-arrow to also. Such a treatment is however difficult, because
the associates can be syntactically complex which needs a treatment of anap-arrows
which allows for complex antecedents.
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And the basic idea of the interpretation is straightforward, as in (6).

1. nodes with a lexical label denote an object that meets the label
2. if an arrow with a label L goes from A to B then the denotation f of the label

L applied to the denotation of A is the denotation of B.

As a whole, the dependency graph can be understood as expressing its satis-
fiability: one should be able to find denotations for the lexical nodes that meet
conditions (1) and (2).

Applied to my dog likes the sausage, assuming a denotation function den this
gives the constraints in (6).

(6) den(owner)(den(< i, dog >) = den(< l,me >)
den(< i, dog >) ∈ (den(me) = den(dog)
den(< j, like >) ∈ den(like)
den(< k, sausage >) ∈ den(sausage)
den(experiencer)(den(< j, like >) = den(< i, dog >)

As a whole, the dependency graph can be understood as expressing its satis-
fiability: one should be able to find denotations for the lexical nodes that meet
conditions (1) and (2). But such a way of satisfying also assigns a denotation
to the root node (and to the other head nodes), in the example an event of lik-
ing, that—because it is functionally related to the denotation of the other head
nodes—is the object denoted by the whole DG. Both the root node and the head
nodes therefore both denote an object and express a proposition.

It makes sense to let the determiner every to be, like other determiners, a
marker of the noun it depends on, while at the same time it must take in scope
and restrictor arrows as an operator. Other hybrid cases are nodes that are both
lexical and operators (nobody, everywhere, belief).

Operators can be defined as the targets of scope and restrictor arrows, and
markers as the targets of mark arrows.

In this section, a run of the mill DG was turned into a DG that can be seman-
tically interpreted in an intuitive way. What is needed for the map from ordinary
DG to semantically interpretable DG is lexical knowledge to find out which the-
matic role is expressed by which syntactic function and further disambiguation.
In the next section, the full requirements on semantically interpretable DGs will
be presented.

3 What Should Be a Semantic Dependency Graph?

1. Attributes

The labels on the non-technical arrows should be interpretable as attributes in
the‘sense of frame semantics, i.e. as partial functions over the domain of the
model. The subject of a verb is not a good attribute since it defies a definition in
purely semantic terms. The thematic roles that are employed in this paper also
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can be criticized from this point of view. Dowty (1991) decomposes the notion of
agent and theme into proto-agent properties and proto-patient properties only
some of which apply in particular uses that are described as agents and patients.
This shows that agent and patient cannot be taken as semantic primitives. The
ideal of doing away entirely with thematic roles cannot be realised in abstracto
and requires detailed lexical semantics for verbs and nouns. Since that is beyond
the scope of this paper, it is therefore unavoidable to stick with thematic roles
and pretend contrafactually that they correspond with natural semantic func-
tions. In this sense the proposal made in this paper is only an approximation.

2. Anaphora

Aanphora in the broad sense also contains ellipsis of various kinds, presupposi-
tion resolution and accommodation, the treatment of different missing arguments
and contextual restrictions on the interpretation of predicates. These phenomena
should be represented in the dependency graph and this is a non-trivial matter
for most of these cases. The only device that is considered here are anap-arrows.

X → anap → Y

These can link heads to heads, even across the boundary of a DG to its
context and are interpreted by referential identity.

3. Scope

Operators have scope and English is notorious for undermarking the scope of
operators. The DG should represent scopes, but also take account of the typo-
logical possibility that scope is marked syntactically (e.g. the split negations of
French and Afrikaans are often interpreted as marking scope).

The proposal is to let the elements in the scope of an operator connect to the
operator by a scope or restrictor arrow. The operators themselves can be treated
as markers of various categories, e.g. not as a verbal marker, no as a nominal
marker. For an operator like the verb believe, it seems most proper to treat it as
both a head and an operator. That means that it can be the target of modifiers
and also have scope.

Some of these new representational devices are illustrated in (7).

(7)

CONTEXT It ticks

root

causeanap

John arrived yesterday He saw Mary Everybody laughed

root

agent modifier

anap
root

exp theme

root

agentscope
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4 Dependency Graphs as Semantic Structures

Anaphora brings in the context in an essential way. Very few utterances have a
truth-value without anaphoric links to the linguistic and non-linguistic context.
For interpreting DGs it is therefore necessary to place them in contexts.

(8) Definition
A context is a finite sequence of DGs which may come with a set of anap-
arrows of the form < n → anap → m with a non-empty class of models
where n and m are nodes of different DGs in the context and m comes from
a DG that precedes the DG that contains m.

As sequences, contexts C and C ′ can be concatenated to C ◦C ′ and a context
C can be split up as follows: C =< DG|Crest >. <> is the empty sequence.
Contexts are necessary for evaluating trans-sentential anaphora. We will adopt
an incremental regime in which we define truth in a model given a precontext
C (C,M |= DG) where C is already true on the model and where the DG is
added as the last element of the context.

(9) Definition
A model is a structure M = (DM , oM , wM , iM , bM ) where
1. oM : a partial map that assigns objects in wM to a set of head nodes.
2. wM : a complete map that assigns sets of objects from DM to the head

node labels L (and thereby to the nodes bearing the label).
3. iM : a complete map that assigns partial functions over D to the arrow

labels in AL.
4. b: assigns belief states (contexts) to a subset of objects from DM .

The one innovation in the definition of a model is to give two values to head
nodes: they define both a set of objects and a referent. This corresponds with the
ambiguity of the notion of mental representation in the philosophical tradition
as representing an object and as the proposition that there is an object that
meets the representation. This ambiguity is eliminated in the treatment below:
the node man is satisfied iff it denotes a man, but satisfaction and denotation
are not the same thing.

Some auxiliary definitions.
A main node of a DG is a head node or operator node that is not the source

of a scope or restrictor arrow.
Main nodes are the objects in the DG that have a referent and correspond

with the discourse referents in DRT.
The extension (M,f) of a model M . If f is a function from a set of nodes to

DM , (M,f) = (DM , oM ∪ f, wM , iM , bM ) if oM ∪ f is a function.
(M,f) provides a way to extend models of a context to a model of an extended

context.
A context is true on a model M iff each of its DGs is true on the model given

its precontext and each of its anap-links connects head nodes with an identical
value under oM .
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But the models should be incrementable and this has to be spelled out in
detail. So more precisely, M |= C iff <>,M, (M, g) |= C. C,M,M ′ |= D is
defined in two steps.

(10) 1. C,M,M |=<>
2. C,M,Mout |=< DG|Crest > iff there is an f from the main nodes of DG
to DM such that C, (M,f) |= DG and C◦ < DG >, (M,f),Mout |= Crest

The definition of truth for a DG in a given context is given in (11).

(11) C, (M,f) |= DG iff
M |= C and dom(oM ) is the set of main head nodes of C,
f is a function from the main head nodes of DG to DM and for each of its
main nodes m
(M,f) |= m

And finally, we need to define what it means for a model to satisfy a node
of the DG. All the action is in this definition: the constraints deriving from the
node labels, from the attribute labels and from the marking devices are treated
here. In addition, each operator needs to be defined by a separate clause. Below,
only negation, universal quantification and belief are treated, but it would not
be difficult to come up with clauses for more operators. The markers need to be
treated as extra conditions on the nodes m that they mark. This is dealt with
below when the mark is an operator, but not in the other cases. A mark definite
is a constraint on the interpretation of the head node: it should have, possibly
through the addition of an anap-arrow, a definite interpretation. Conversely, a
node marked as indefinite cannot have a definite interpretation. From the point
of view of the model theory, both types of marking have no proper contribution.
They invoke or prevent anaphora.

(12) If m is an unmarked head node
C,M |= m iff
oM (m) ∈ wM (m) and for each of the non-scope arrows m → l → k of m
iM (l)(oM (m)) = oM (k)

If m is a head node marked by x
C,M |= m iff
oM (m) ∈ wM (m), oM meets x and for each of the non-scope arrows m →
l → k
iM (l)(oM (m)) = oM (k)

If m is a negation node
C,M |= m iff
for the context Cscope = {k : k → scope → m} there is no function f from
the head nodes of Cscope to DM such that C,M, (M,f) |= Cscope
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If m is an all node,
C,M |= m iff
Crestrictor = {k : k → restrictor → m} and Cscope = {k : k → scope → m}
and for all f from the main head nodes of Crestrictor to DM such that
C,M, (M,f) |= Crestrictor there is a g from the main head nodes of Cscope

to DM such that C, (M,f), (M,f ∪ g) |= Cscope.

If m is a belief node,
C,M |= m iff m → experiencer → k and oM (k) = d and bd = D, there is
a subcontext C0 of C and other activated information such that C0 ∪ D is
a consistent context and C0 ∪ D |= Cscope ⊆ D

This last definition requires the definition in (13) of C |= D ⊆ E. Note that
nodes n1 and n2 can be equivalent in a context C in two ways. In the place,
when n1 and n2 are head nodes, it can be the case that in all models of C, n1

and n2 have the same denotation. In the other case, n1 and n2 are operator
nodes with scopes and restrictors that can be equivalent in the sense of having
the same truth-value.

(13) C |= E ⊆ F iff
there is an injection i from the main nodes of E to the main nodes of F
such that for all x ∈ dom(i) either x is a head node and C |= ix = x or
x is an operator node and ix is an operator node with the same operator
and C |= ix ↔ x

Let’s illustrate these definitions with some examples. The basic case is the
interpretation of head nodes. Here models assign both a class (wH) and a referent
(oH) to the head. The condition imposed by the head node is that oH ∈ wH. If
the head node has an anap-arrow, a further constraint is that oH = oX where X
is the target of the anap-arrow. If H has other non-scope arrows with a label l,
these give further constraints on oH, namely that it is mapped by the attribute
i(l) to oX where X is the target of the arrow. Heads finally may be marked, e.g.
as indefinite. This will impose the further constraint that {oH} �= wH.7

Consider the following example (14) which can be taken as the representation
of “cat runs” in a language like Russian, Japanese or Latin in which definiteness
and indefiniteness is not obligatorily marked.

(14) H = run
H → agent → J
J = cat

This leads to the constraints on M stated in (15).

(15) oH a running event
wH the class of running events

7 While this constraint seems correct for indefinite NPs, it is unlikely to exhaust the
contribution of indefiniteness marking.
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oJ a cat
wJ the cats
the agent of oH is oJ

The second example (16) illustrates the indefinite marker.

(16) A man sleeps.
o sleep ∈ w sleep
o man ∈ w man
i(theme)(o sleep) = o man
w man �= {o man}

Intersective modification can be captured by an attribute mod that is inter-
preted as identity. This is illustrated in (17). We assume here that yesterday
is the set of events that happened yesterday. A more complete analysis would
capture the deictic identification of the day before the contextually given now
and derive the set of yesterday’s events by applying an operation: yesterday is
a day as well as the set of events that happened in the course of yesterday and
the set of states that held yesterday.

(17) John slept yesterday.

slept → theme → John
slept → mod → yesterday

o sleep ∈ w sleep
o john ∈ w john
i theme(o sleep) = o john
o yesterday ∈ w yesterday
o yesterday = o sleep

Anaphoric links (anap-arrows) are interpreted in exactly the same way as
intersective modification, by identifying referents. In (18), it is assumed that
there is an anap-arrow to a H in an earlier element of the context.

(18) The man slept

sleep → theme → man
man → mark → the
man → anap → H
i theme(o sleep) = o man
o man = o H
o man ∈ w man
o sleep = w sleep
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Notice that there is no separate interpretation of definiteness marking: it
is already interpreted by the anap-arrow and should in a proper treatment of
the interpretation be regarded as the cause of the anap-arrow. Here the view
of Zeevat (2014) is followed that definiteness is a logical notion. Translated
to the current context, that view can be described as the view that a head
node can—given its dependents, the context and any model of that context—
only receive a single value. This captures the three possibilities that have been
defended as analyses of the linguistic feature of definiteness. Russell analysed def-
inite descriptions—following Frege—as definitions. In Hawkins’ familiarity the-
ory they are anaphora. In the view of Löbner, they are attribute values for a given
object. The speaker indicates by means of the definite marker that the noun—
possibly with its dependents—should be interpreted as definite. The hearer has
to check and disambiguate, possibly by creating an anap-arrow (the Hawkins
case) or by creating an attribute arrow from the noun to a salient object in the
context (the Löbner case). The Russell-Frege case is the one where checking is
directly successful: the noun with its dependents picks out a unique object. The
extra anap-link or the attribute link turns the noun (with its old and new depen-
dents) into a definite concept.8 Such additions however are part of the inference
of the DG and therefore fall outside the scope of this paper. (19) is an example
of the inference of an extra attribute arrow on the basis of definiteness marking.

(19) John is having trouble. The father thinks that he can solve the problem.
Inferred: john → father → father

4.1 Negation and Logic

The negation rule repeated here as (20) takes up the DRT-style negation that
incorporates quantification. The main head nodes are the discourse referents, so
that the negation and its scope expresses a formula of the form ¬∃x1 . . . xnϕ.
As is well known, the negation suffices for the expressive power of first order
logic and can be used to define the DRT implication (here called all) and the
basic quantifiers. Later occurrences of the same discourse referents need to be
represented by anap- and mod-arrows. A restriction are anap-arrows into the
scope of operators. They only make sense under special circumstances.9

(20) If m is a negation node
C,M |= m iff
for the context Cscope = {k : k → scope → m} there is no function f from
the head nodes of Cscope to DM such that (C,M |= Cscope

8 A comprehensive discussion of definiteness within a related framework is in Chap. 5
of Zeevat (2014).

9 The restriction captures the accessibility relation in Discourse Representation The-
ory: a pronoun cannot be bound by a bound variable. There are cases where the
accessibility does not seem to operate. A famous case is: A wolf might come in. It
would eat you first. A proper treatment of these cases is outside the scope of this
paper.
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An example is given in (21).

(21) A farmer didn’t see a donkey

a farmer didn’t see a donkey

root

experiencer

det det

theme

scope

scope

CONTEXT

4.2 Attitudes

The motivation for the somewhat complicated semantics for belief sentences
repeated in (22) is twofold.

(22) If m is a belief node,
C,M |= m iff m → experiencer → k and oM (k) = d and bd = D, there is
a subcontext C0 of C and other activated information such that C0 ∪ D is
a consistent context and C0 ∪ D |= Cscope ⊆ D

C |= E ⊆ F iff
there is an injection i from the main nodes of E to the main nodes of F
such that for all x ∈ dom(i) either x is a head node and C |= ix = x or
x is an operator node and ix is an operator node with the same operator
and C |= ix ↔ x

In the first place, there are cases like (23) where John who does not know
your brother (or knows about him or you) could never report his belief in this
way.

(23) John believes that your brother is wounded.

The context must in that case have enough information about your brother
and John’s beliefs that makes it the case that “your brother” and “that guy”
are the same in all models of the contextual information. The injection required
asks that the main head nodes in the complement can be identified with the
head nodes in the DG that represents the subject’s belief state.10

Second, in Edelberg’s famous story (Edelberg 1992), Arsky and Barsky are
detectives investigating what they think is the murder of Smith, who in fact died
from accidental causes. Arsky and Barsky operate without communication and
after a time, Arsky but not Barsky has formed the belief that the murderer also
killed Jones, in fact another case of an accidental death. It then holds that (24),

10 This means there is a problem with the operators. A semantics of this kind requires
that operator nodes also denote. A solution to this problem is in preparation.
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(24) Barsky believes that someone murdered Smith and Arsky believes he killed
Jones.

but not that (25).

(25) Arsky believes that someone killed Jones and Barsky believes that he killed
Smith.

The anap-arrows in these cases go from the pronoun to the someone in the
complement of the first belief-clause. The semantics provided can deal with the
case only if it is possible to add that complement to the context under which the
second belief is evaluated. This is needed for any case of intentional identity. So
“he killed Jones” should be part of Arsky’s beliefs where we can use “someone
killed Smith” and consistent parts of the general context C to show that “he
killed Jones” is part of those beliefs. That is unproblematic. The anap-arrow
makes “he” into the murderer of Smith, the guy Arsky believes killed Jones.

The same procedure does not work for (0). The anap-arrow makes “he” into
the murderer of Jones, while the constructed context lacks any means to identify
the murderer of Jones with the murderer of Smith.

5 Conclusion

This paper explored the road of leaving the dependency structure intact rather
than reconstructing mental representations as in Zeevat (2014) and it seems
safe to conclude that this is another way of giving a variable-free version of
DRT which moreover has the advantage of being very close to a very reasonable
syntactic representation. The treatment of definites and beliefs sketched above
is not possible in DRT where discourse referents and their introducing lexical
elements are separated, in line with Frege’s rejection of psychologism.

It is unclear to me whether the version in Zeevat (2014) has any advan-
tages over the current version in terms of semantic potential. Anaphora is still
a neglected theme in frame semantics and there are obviously two ways to go:
build ever larger frames by unifying nodes in different frames or adding the
anap-arrows of this paper. The brief discussion of the Edelberg asymmetry can
be used as an argument for the anap-arrows.

Obvious further work should be directed towards incorporating plural NPs,
tense and other semantic phenomena. Essential is also the incorporation of lexical
semantics, including the proposal for disambiguation in Zeevat et al. (2015). It
is only if that connection is made that the current proposal can be properly
evaluated.

It cannot be stressed enough that enterprises such as word sense disambigua-
tion, the detection of semantic roles, anaphora resolution, stochastic parsing,
stochastic models of pragmatics are all partial answers in the battle to overcome
the underdetermination of meaning by form, something that the human inter-
preter in a human conversation seems to do effortlessly. In this sense the current
proposal is one of a common scoreboard where the results of different techniques
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can be gathered and which is close enough to syntax and morphology on the
one hand to allow evaluation of syntactic and morphological criteria and on the
hand semantically fully interpreted so that proof-theoretic and model-theoretic
techniques can be directly applied.
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Abstract. Reflexive (most..., including himself and reciprocal (no...
except each other) determiners are anaphoric determiners. They form
arguments of transitive verbs which cannot occur in subject position
of sentences. Various logical properties (invariance, conservativity, a-
conservativity, a-intersectivity) of functions denoted by these determin-
ers are studied. These properties account for their anaphoricity and show
formal differences between anaphoric and ordinary determiners.

1 Introduction

According to the well-established terminology, (“ordinary”) determiners are
functional expressions which take one or more common nouns (CNs) as argu-
ments and give a noun phrase, (NP), as result. For instance every, most, five,
no except two and more... than... are determiners. Syntactically NPs are argu-
ments of intransitive, transitive or ditransitive verb phrases (VPs), that is they
can occur as subjects, direct or indirect objects. There are, however, expressions
which are arguments of verbs but which cannot occur in all argumental position
of the verb, and thus, which are not, strictly speaking NPs:

(1) a. Leo and Lea kissed each other.
b. * Each other kissed Leo and Lea.

(2) a. Leo and Lea washed themselves.
b. *(They)selves washed Leo and Lea.

The reciprocal each other is an argument of the verb kiss in (1) where it
occurs as a direct object. As shown in (1b) this reciprocal cannot occur in the
subject position. Similarly, the reflexive themselves occurs in the object position
in (2a) but it does not have the (corresponding) nominative form which could
occur in the subject position.

Reciprocals and reflexives belong to the class of generalised NPs (GNPs)
that is these nominal expression which typically fulfil the function of arguments
of the main clause and thus can serve as arguments of (transitive) VPs. Obvi-
ously “ordinary” NPs are also GNPs. However, reciprocals and reflexives are
proper (genuine) GNPs because, contrary to “ordinary” NPs, proper GNPs can-
not occur in all argumental positions of a transitive VP, in particular they can-
not occur in the subject positions, not even in the subject positions of simple
c© Springer-Verlag GmbH Germany 2017
H.H. Hansen et al. (Eds.): TbiLLC 2015, LNCS 10148, pp. 185–201, 2017.
DOI: 10.1007/978-3-662-54332-0 11
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intransitive sentences. Typical examples of such GNPs are the reflexive pronouns
himself/herself/themselves and the reciprocal pronoun each other. These can be
Booleanly combined with other GNPs, proper or “ordinary”, to give complex
GNPs such as each other but not themselves, himself and most students, ten
students including each other and themselves, etc. Here are some examples of
sentences containing Booleanly complex GNPs:

(3) a. Leo admires himself and most linguists.
b. * Himself and most linguists admire Leo.

(4) a. Leo and Lea admire themselves and each other.
b. *Themselves and each other admire Leo and Lea.

In this paper I do not study GNPs in general, even if some differences between
ordinary NPs and genuine GNPs will be indicated in Sect. 4. I will study here,
in a preliminary way, functional expressions forming some GNPs. Functional
expressions forming ordinary NPs, that is (nominal) determiners forming a DP
(or a NP) from a CN have been extensively studied. Formal properties of (full)
reciprocals and reflexives are studied in Zuber (2016). In this paper I analyse
formal properties of (1) reflexive determiners (RefDets) that is functional expres-
sions which take a CN as argument and form a reflexive GNP (like for instance
most..., including himself and Lea) and (2) reciprocal determiners (RecDets),
that is functional expressions which take a CN as argument and give a recipro-
cal GNP as result (like for instance no... except each other and themselves). Both
these classes of functional expressions form generalised determiners (GDets). In
addition, as will be shown below, GNPs formed by GDets considered here are
anaphors. In that sense they are different from other GDets forming GNPs such
as the same or a different number of, which do not form anaphors when applied
to a CN.

I will be specifically interested in logical and semantic properties of func-
tions denoted by RefDets and by RecDets. These properties will indicate for-
mal similarities and differences between “ordinary” determiners (those forming
“ordinary” DPs with a CN) and GDets considered here. They will also indi-
cate differences and similarities between reflexives and reciprocals. Two kinds of
such properties wiil be discussed: those related to the anaphoricity of reflexive
and reciprocal determiners and those related to the conservativity of functions
they denote. Concerning conservativity, two, logically related, types of it will be
discussed, one of which is characteristic for anaphoric determiners.

In the next section we indicate in some detail the data we will be concerned
with. Then formal tools from the extended Generalised Quantifier Theory are
recalled. In Sect. 4 the semantics of various RefDets and RecDets is provided
and Sect. 5 discusses formal properties which show differences and similarities
between functions denoted by anaphoric determiners and quantifiers denoted by
ordinary determiners.
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2 Some Data

RefDets and RecDetds have been only scarcely discussed even if much more have
been written about RefDets. Both these classes can be divided into possessive
and non-possessive GDets. Some (but not all) languages have “marked” or mor-
phologically simple possessive RefDets. The possessive anaphoric pronoun SVOJ
in Slavic languages (as opposed to EGO) or hans in Norwegian (both meaning
roughly his/her own) are probably well-known (Zuber 2009). The Polish pronoun
swój can in addition combine with virtually any other “ordinary” determiner to
give a series of complex possessive RefDets which in English corresponds to the
series like all of his own, most of his own, ten of his own, etc.

Concerning possessive RecDets we have the possessive form each other’s and
various Boolean combination of it with “ordinary” (non anaphoric) possessives
determiners. Thus each other’s but not Bill’s ..., everybody’s, including each
other’s... are possessive RecDets as in the following examples:

(5) a. Leo and Lea help each other’s but not Bill’s (students).
b. Leo and Lea help each other’s and their own (students).

Interestingly, in Polish, the possessive RefDet SVOJ can, in many situations
have the meaning corresponding to possessive RecDet each other’s.

Non-possessive RefDets and RecDets are obtained from specific “ordinary”
determiners. One can distinguish two classes of such RefDets: those obtained
from, roughly speaking, inclusive determiners, and those obtained from exclusive
determiners (Zuber 1998, Zuber 2010b). Inclusive determiners are discontinuous
determiners of the form Det,..., including EXP (where Det is an ordinary simple
determiner denoting a monotone increasing (on the second argument) type 〈1, 1〉
quantifier) and exclusive determiners are determiners of the form every/no...
except EXP The expression EXP is the complement of including or of except.
Both these classes of determiners form a NP when applied to a CN.

By replacing the complement EXP of including by an expression which
denotes a PI function (see below) we get inclusive anaphoric RefDets. Thus
inclusive anaphoric RefDets are expressions of the form Det, including him-
self/herself or of the form Det, including NP and himself/herself. For example
the following expressions are RefDets: most...including herself, most...including
some Albanians and himself, ten...including herself and two Japanese, etc. The
last determiner occurs in (6a). Observe that (6a) means (6b) and apparently
cannot mean (6c). This fact is related to the anaphoricity of the determiner
involved in (6a):

(6) a. Lea admires ten students, including herself and two Japanese.
b. Lea admires ten students including herself and two Japanese stu-

dents.
c. Lea admires ten students including herself and two Japanese which

are not students.
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There are also “negative” inclusive determiners from which we can obtain
Ref Dets and RecDets. In the following examples no..., not even himself is such
a RefDet and no... not even each other is such a RecDet:

(7) a. Leo admires no linguist, not even himself.
b. Leo and Leo admire no linguist, not even each other

We will not analyse here such “negative” inclusive anaphoric determiners.
Exclusive ordinary determiners are determiners such as every...except Leo,

every... but two, no...except Japanese, no...except Albanian and Sue, etc. By
replacing in them the complement of except by a reflexive GNP (that is an
expression whose denotation satisfies PI and does not satisfy EC) we can form
RefDets like the following: every... except himself, no...except Leo and herself.
The following sentence contains such a RefDet:

(8) Leo and Lea hate every linguist except themselves.

Not surprizingly, non-possessive RecDets can also be formed from the inclu-
sive and exclusive “ordinary” determiners by putting as the complement of
including or of except a reciprocal GNP. Thus in (9a) and (9b) we have RecDets
based on inclusive “ordinary” determiners and in (10a), (10b) and (10c) -
RecDets based on exclusive determiners:

(9) a. Leo and Lea hate most vegetarians, including each other.
b. Most teachers admire some Japanese, including each other and

themselves.

(10) a. Leo and Lea admire no philosopher except each other and Plato.
b. Three linguists admire every linguist except each other.
c. Two monks admire no philosopher, except each other and themselves.

This way of constructing non-possessive RefDets and RecDets from the ordi-
nary inclusive and exclusive determiners is productive in many languages.

Let us see now some differences between possessive and non-possessive
anaphoric determiners in their relation to the class of “ordinary” determiners.
Up to now we have considered only unary determiners. Natural languages have
also n-ary determiners (Keenan and Moss 1985). For instance (11a) can natu-
rally mean what (11b) means in which case most...and... should be considered
as binary determiner. In other words the admiration of Leo concerns two groups
of people: a group of linguists and a group of philosophers. Similarly in (12) we
have a binary determiner more...than...:

(11) a. Leo admires most linguists and philosophers.
b. Leo admires most linguists and most philosophers.

(12) Lea knows more linguists than philosophers.
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One observes that possessive RefDets and RecDets can take many CNs as
arguments as seen in (13) and (14):

(13) Leo burnt more of his own paintings than letters.

(14) Leo and Bill like each other’s books and articles.

It does not seem that there are non-possessive RefDets or non-possessive
RecDets taking many nominal arguments: in (15) and in (16) only one group of
people is involved, those who are linguists and philosophers “at the same time”:

(15) Leo and Lea admire most linguists and philosophers, including
themselves.

(16) Leo and Lea admire all linguists and philosophers, except each other.

In addition to except and including some other connectors can be used to
form non-possessive anaphoric determiners. This is the case with apart from and,
possibly, in addition to. Constructions with such connectors will be ignored in
what follows.

In the next section we give the semantics for various types of anaphoric
determiners presented above. Even if it is possible to extend various definitions
given in the preceeding section to n-ary determiners, we will consider only the
semantics of unary determiners. Furthermore, we will not provide the semantic
description of possessive anaphoric determiners. Semantic properties of some
possessive determiners are discussed in Zuber (2009).

3 Formal Preliminaries

We will consider binary relations and functions over a universe E, assumed to
be finite throughout this paper. D(R) denotes the domain of the relation R. The
relation I is the identity relation: I = {〈x, y〉 : x = y}. If R is a binary relation
and X a set then R/X = R ∩ (X × X). The binary relation RS is the greatest
symmetric part of the relation R, that is RS = R ∩ R−1. A symmetric relation
R is cross-product iff R = A × A or R = (A × A) ∩ I ′ for some A ⊆ E. If R is
a symmetric relation then Π(R) is the least fine partition of R such that every
of its blocks is a cross-product relation and every two blocks have incompatible
domain: if B1 ∈ Π(R) and B2 ∈ Π(R) then D(B1) ∩ D(B2) = ∅. A partition
is 1. atomic iff every of its blocks is a singleton; 2. simgular iff it contains only
one block (which is not a singleton); 3. non-trivial iff it is neither atomic nor
singular.

If a function takes only a binary relation as argument, its type is noted 〈2 : τ〉,
where τ is the type of the output; if a function takes a set and a binary relation
as arguments, its type is noted 〈1, 2 : τ〉. If τ = 1 then the output of the function
is a set of individuals and thus its type is 〈2 : 1〉 or 〈1, 2 : 1〉. The function
SELF , denoted by the reflexive himself defined as SELF (R) = {x : 〈x, x〉 ∈
R}, is of type 〈2 : 1〉 and the function denoted by the anaphoric determiner
every...but himself is of type 〈1, 2 : 1〉. We will consider here also the case when
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τ corresponds to a set of type 〈1〉 quantifiers and thus τ equals, in Montagovian
notation, 〈〈〈e, t〉t〉t〉. The type of such functions will be noted either 〈2 : 〈1〉〉 -
functions from binary relations to sets of type 〈1〉 quantifiers)) or 〈1, 2 : 〈1〉〉 -
functions from sets and binary relations to sets of type 〈1〉 quantifiers.

Basic type 〈1〉 quantifiers are functions from sets to truth-values. In this case
they are denotations of subject NPs. However, NPs can also occur in the direct
object positions and in this case their denotations do not take sets (denotations
of VPs) as arguments but denotations of TVPs (relations) as arguments. To
account for this eventuality one extends the domain of application of basic type
〈1〉 quantifiers so that they apply to n-ary relations and have as output an (n–
1)-ary relation. Since we are basically interested in binary relations, the domain
of application of basic type 〈1〉 quantifiers will be extended by adding to their
domain the set of binary relations. When a quantifier Q acts as a “direct object”
we get its accusative case extension Qacc (Keenan and Westerstahl 1997):

Definition 1. For each type 〈1〉 quantifier Q, QaccR = {a : Q(aR) = 1}, where
aR = {y : 〈a, y〉 ∈ R}.

A type 〈1〉 quantifier Q is positive iff Q(∅) = 0 and Q is atomic iff it contains
exactly one element, that is if Q = {A} for some A ⊆ E. We will call a type 〈1〉
quantifier Q natural iff either Q is positive and E ∈ Q or Q is not positive and
E /∈ Q; Q is plural, Q ∈ PL, iff if X ∈ Q then |X| ≥ 2.

A special class of type 〈1〉 quantifiers is formed by individuals: Ia is an individ-
ual (generated by a ∈ E) iff Ia = {X : a ∈ X}. More generally, Ft(A), the (prin-
cipal) filter generated by a set.A, is defined as Ft(A) = {X : X ⊆ E ∧ A ⊆ X}.
Principal filters generated by singletons are called ultrafilters. Thus individuals
are ultrafilters. They are denotations of proper names. NPs of the form Every
CN denote principal filters generated by the denotation of CN. Meets of two
principal filters are principal filters: Ft(A) ∩ Ft(B) = Ft(A ∪ B). Thus con-
junctions (supposed to denote meets) of proper names denote principal filters
generated by the union of referents of the proper names.

We will use also the property of living on (cf. Barwise and Cooper 1981).
The basic type 〈1〉 quantifier lives on a set A (where A ⊆ E) iff for all X ⊆ E,
Q(X) = Q(X ∩ A). If E is finite then there is always a smallest set on which a
quantifier Q lives. If A is a set on which Q lives we will write Li(Q,A) and the
smallest set on which Q lives will be noted SLi(Q).

A related notion is the notion of a witness set of the quantifier Q, relative to
the set A on which Q lives:

Definition 2. W ∈ WtQ(A) iff W ∈ Q ∧ W ⊆ A ∧ Li(Q,A).

Thus WtQ(A) is the class of witness sets of Q relative to the set A on which
Q lives.

Observe that any principal filter lives on the set by which it is generated,
and, moreover, this set is its witness set. Atomic quantifiers live on the universe
E only and weakly live on their unique elements.



Reflexive and Reciprocal Determiners 191

“Ordinary” determiners denote functions from sets to type 〈1〉 quantifiers.
They are thus type 〈1, 1〉 quantifiers.

Accusative extensions of type 〈1〉 quantifiers are specific type 〈2 : 1〉 func-
tions. They satisfy the invariance property called accusative extension condition
EC (Keenan and Westerstahl 1997):

Definition 3. A type 〈2 : 1〉 function F satisfies EC iff for R and S binary
relations, and a, b ∈ E, if aR = bS then a ∈ F (R) iff b ∈ F (S).

Observe that if F satisfies EC then for all X ⊆ E either F (E × X) = ∅
or F (E × X) = E. Given that SELF (E × A) = A the function SELF does
not satisfy EC. The function SELF satisfies the following weaker predicate
invariance condition PI (Keenan 2007):

Definition 4. A type 〈2 : 1〉 function F is predicate invariant (PI) iff for R
and S binary relations, and a ∈ E, if aR = aS then a ∈ F (R) iff a ∈ F (S).

This condition is also satisfied for instance by the function ONLY -SELF
defined as follows: ONLY -SELF (R) = {x : xR = {x}}. Given that ONLY -
SELF (E × {a}) = {a}, the function ONLY -SELF does not satisfy EC.

The following proposition indicates another way to define PI:

Proposition 1. A type 〈2 : 1〉 function F is predicate invariant iff for any
x ∈ E and any binary relation R, x ∈ F (R) iff x ∈ F ({x} × xR).

The conditions EC and PI concern type 〈2 : 1〉 functions, considered here as
being denoted by “full” verbal arguments or GNPs. Such verbal arguments can
be syntactically complex in the sense that they are formed by the application of
generalised determiners (GDets) to CNs. For instance the GDet every...except
himself can apply to the CN student to give a genuine GNP every student except
himself. In this case GDets denote type 〈1, 2 : 1〉 functions. Such functions also
are constrained by invariance conditions. Thus:

Definition 5. A type 〈1, 2 : 1〉 function F satisfies D1EC iff for R and S
binary relations, X ⊆ E and a, b ∈ E, if aR ∩ X = bS ∩ X then a ∈ F (X,R) iff
b ∈ F (X,S).

Observe that if F (X,R) satisfies D1EC then for all X,A ⊆ E either
F (X,E × A) = ∅ or F (X,E × A) = E. Denotations of ordinary determin-
ers occurring in NPs which are in the direct object position satisfy D1EC.
More precisely, if D is a type 〈1, 1〉 (conservative) quantifier, then the func-
tion F (X,R) = D(X)acc(R) satisfies D1EC. Indeed, in this case F (X,R) =
{y : D(X)(yR ∩ X) = 1} and F (X,S) = {y : D(X)(yS ∩ X) = 1}. So if
aR ∩ X = bS ∩ X then a ∈ F (X,R) iff b ∈ F (X,S).

Functions denoted by properly anaphoric determiners (ones which form
GNPs denoting functions satisfying PI but failing EC) do not satisfy D1EC.
For instance the function F (X,R) = {y : X ∩ yR = {y}} denoted by the
anaphoric determiner no... except himself/herself does not satisfy D1EC. To see
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this observe that for A = {a} and X such that a ∈ X one has F (X,E×A) = {a}
and thus F (X,E × X) �= ∅ and F (X,E × X) �= E.

Type 〈1, 2 : 1〉 functions denoted by anaphoric determiners do not satisfy
D1EC. They satisfy the following weaker condition (Zuber 2010b):

Definition 6. A type 〈1, 2 : 1〉 function F satisfies D1PI (predicate invariance
for unary determiners) iff for R and S binary relations X ⊆ E, and x ∈ E, if
xR ∩ X = xS ∩ X then x ∈ F (X,R) iff x ∈ F (X,S).

The following proposition indicates an equivalent way to define D1PI:

Proposition 2. A type 〈1, 2 : 1〉 function F satisfies D1PI iff for any x ∈ E,
X ⊆ E, any binary relation R one has x ∈ F (X,R) iff x ∈ F (X, ({x}×X)∩R).

The above invariance principles concern type 〈2 : 1〉 and type 〈1, 2 : 1〉
functions. We need to present similar “higher order” invariance principles for
type 〈2 : 〈1〉〉 and type 〈1, 2 : 〈1〉〉 functions that is functions having as output a
set of type 〈1〉 quantifiers. This is necessary because, as we will see, some type
〈1, 2 : 〈1〉〉 functions are denotations of RecDets.

One can distinguish various kinds of type 〈2 : 〈1〉〉 and type 〈1, 2 : 〈1〉〉
functions. Observe first that any type 〈2 : 1〉 function whose output is denoted
by a VP can be lifted to a type 〈2 : 〈1〉〉 (type 〈〈〈e, t〉t〉t〉 in Montague notation)
function. This is in particular the case with the accusative extensions of a type
〈1〉 quantifier. For instance the accusative extension of a type 〈1〉 quantifier can
be lifted to type 〈2 : 〈1〉〉 function in the way indicated in (17). Such functions
will be called accusative lifts. More generally, if F is a type 〈2 : 1〉 function, its
lift FL, a type 〈2 : 〈1〉〉 function, is defined in (18):

(17) QL
acc(R) = {Z : Z(Qacc(R)) = 1}.

(18) FL(R) = {Z : Z(F (R)) = 1}.

The variable Z above runs over the set of type 〈1〉 quantifiers.
For type 〈2 : 〈1〉〉 functions which are lifts of type 〈2 : 1〉 functions we have:

Proposition 3. If a type 〈2 : 〈1〉〉 function F is a lift of a type 〈2 : 1〉 function
then for any type 〈1〉 quantifiers Q1 and Q2 and any binary relation R, if Q1 ∈
F (R) and Q2 ∈ F (R) then (Q1 ∧ Q2) ∈ F (R).

For type 〈2 : 〈1〉〉 functions which are accusative lifts we have:

Proposition 4. Let F be a type 〈2 : 〈1〉〉 function which is an accusative lift.
Then for any A,B ⊆ E, any binary relation R, Ft(A) ∈ F (R) and Ft(B) ∈
F (R) iff Ft(A ∪ B) ∈ F (R).

Accusative lifts satisfy the following higher order extension condition HEC
(Zuber 2014):
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Definition 7. A type 〈2 : 〈1〉〉 function F satisfies HEC (higher order extension
condition) iff for any natural type 〈1〉 quantifiers Q1 and Q2 with the same
polarity, any A,B ⊆ E, any binary relations R,S, if Li(Q1, A), Li(Q2, B) and
∀a∈A∀b∈B(aR = bS) then Q1 ∈ F (R) iff Q2 ∈ F (S).

Functions satisfying HEC have the following property:

Proposition 5. Let F satisfies HEC and let R = E × C, for C ⊆ E arbitrary.
Then for any X ⊆ E either Ft(X) ∈ F (R) or for any X, Ft(X) /∈ F (R)

Thus a function satisfying HEC condition and whose argument is the cross-
product relation of the form E × A, has in its output either all principal filters
or no principal filter.

It follows from Proposition 5 that lifts of genuine predicate invariant functions
do not satisfy HEC. They satisfy the following weaker condition (Zuber 2014):

Definition 8. A type 〈2 : 〈1〉〉 function F satisfies HPI (higher order predicate
invariance) iff for type 〈1〉 quantifier Q, any A ⊆ E, any binary relations R,S,
if Li(Q,A) and ∀a∈A(aR = aS) then Q ∈ F (R) iff Q ∈ F (S).

An equivalent way to define HPI is given in Proposition 6:

Proposition 6. Function F satisfies HPI iff if Li(Q,A) then Q ∈ F (R) iff
Q ∈ F ((A × E) ∩ R)

The above definitions of HEC and of HPI easily extend to type 〈1, 2 : 〈1〉〉
functions, which are, as we will see, denotations of RecDets:

Definition 9. A type 〈1, 2 : 〈1〉〉 function F satisfies D1HEC (higher order
extension condition for unary determiners) iff for any natural type 〈1〉 quantifiers
Q1 and Q2 with the same polarity, any A,B ⊆ E, any binary relations R,S, if
Li(Q1, A), Li(Q2, B) and ∀a∈A∀b∈B(aR ∩ X = bS ∩ X) then Q1 ∈ F (X,R) iff
Q2 ∈ F (X,S).

Definition 10. A type 〈1, 2 : 〈1〉〉 function F satisfies D1HPI (higher order
predicate invariance for unary determiners) iff for any type 〈1〉 quantifier Q,
any A ⊆ E, any binary relations R,S, if Li(Q,A) and ∀a∈A(aR ∩ X = aS ∩ X)
then Q ∈ F (X,R) iff Q ∈ F (X,S).

The condition D1HPI can also be characterised as in:

Proposition 7. F (X,R) satisfies D1HPI iff if Q lives on A then Q ∈ F (X,R)
iff Q ∈ F (X, (A × X) ∩ R)

The second series of properties of functions we will discuss concerns conser-
vativity. Recall first the constraint of conservativity for type 〈1, 1〉 quantifiers:

Definition 11. F ∈ CONS iff F (X,Y ) = F (X,X ∩ Y ) for any X,Y ⊆ E
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Conservative quantifiers have two important sub-classes: intersective and co-
intersective quantifiers (Keenan 1993): a type 〈1, 1〉 quantifier F is intersective
(resp. co-intersective) iff F (X1, Y1) = F (X2, Y2) whenever X1 ∩ Y1 = X2 ∩ Y2

(resp. X1 ∩ Y ′
1 = X2 ∩ Y ′

2).
All the above properties of quantifiers can be generalised so that they apply

to simple and higher order functions (Zuber 2010a):

Definition 12. A function F of type 〈1, 2 : τ〉 is conservative iff F (X,R) =
F (X, (E × X) ∩ R).

Definition 13. A type 〈1, 2 : τ〉 function is intersective iff F (X1, R1) =
F (X2, R2) whenever (E × X1) ∩ R1 = (E × X2) ∩ R2.

Definition 14. A type 〈1, 2 : τ〉 function is co-intersective iff F (X1, R1) =
F (X2, R2) whenever (E × X1) ∩ R′

1 = (E × X2) ∩ R′
2.

As in the case of type 〈1, 1〉 quantifiers it is possible to give other, equivalent,
definitions of intersectivity for type 〈1, 2 : τ〉 functions:

Proposition 8. F is intersective iff F (X,R) = F (E, (E × X) ∩ R).

One can notice that intersective and co-intersective functions are conserva-
tive. Furthermore, the type 〈1, 2 : 1〉 function F (X,R) = D(X)acc(R) and the
type 〈1, 2 : 〈1〉〉 function F (X,R) = D(X)Lacc(R) are intersective if D is an
intersective type 〈1, 1〉 quantifier. In Sect. 5 we will additionally define stronger
properties of conservativity, intersectivity and co-intersectivity, properties which
are displayed by anaphoric but not by ordinary determiners.

Interestingly for functions satisfying D1PI or D1HPI we have:

Proposition 9. Any function satisfying D1PI or D1HPI is conservative.

Observe that most of the above definitions do not depend on the type τ and
thus they apply to type 〈1, 2 : 1〉 and type 〈1.2 : 〈1〉〉 functions.

4 Semantics of Anaphoric Determiners

For simplicity we will consider that reciprocals formed from RecDets give rise
only to full (logical) reciprocity. This means, informally, that given a group of
participants in an action described by a transitive verb which can be interpreted
as involving reciprocity, all members of the group are in this relation with each
other. Indeed, it seems that contrary to the interpretation of the full recipro-
cal each other complex reciprocals cannot easily get a weaker interpretation of
reciprocity (cf. Dalrymple et al. 1998).

As we have seen, we are considering sentences of the form given in (19) - for
RefDets and in (20) - for RecDets:
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(19) NP TV P RefDet(CN)

(20) NP TV P RecDet(CN)

In order to present semantics and some formal properties of RefDets and
RecDets the first thing we have to do is to determine their grammatical category
and the type of functions they denote. This problem is solved for RefDets: since
they form reflexive GNPs by applying to a CN and reflexive GNPs denote type
〈2 : 1〉 functions, RefDets denote a type 〈1, 2 : 1〉 function. Reciprocal GNPs and
RecDets differ in many respects from reflexive GNPs and RefDets respectively.
Both these classes also differ from ordinary dets and ordinary NPs. We have
already seen some syntactic differences. To see semantic differences between
genuine (anaphoric) GNPs and ordinary NPs consider the following examples:

(21) a. Leo and Lea hug each other.
b. Bill and Sue hug each other.

(22) Leo, Lea, Bill and Sue hug each other.

Clearly (21a) in conjunction with (21b) does not entail (22). Thus, given Propo-
sition 3, functions denoted by reciprocal GNPs are not lifts of type 〈2 : 1〉
functions and the conjunction and is not understood pointwise. Hence, to avoid
the type mismatch and get the right interpretations we will consider that the
GNPs each other denotes a type 〈2 : 〈1〉〉 function and RecDets denote type
〈1, 2 : 〈1〉〉 functions.

We can now look at the semantics of anaphoric determiners. We consider
first the class of inclusive anaphoric determiners. As we have seen, a frequent
form of inclusive RefDets is given in (23), (where Det is an ordinary determiners
denoting a monotonic (on the second place) type 〈1, 1〉 quantifier), CONJ is
a binary operator. The part CONJ NP can be omitted. An example of the
determiner of the form (23) is given in (6a). Some other examples are given in
(24a) and (24b). As these examples show the Boolean operator CONJ needs not
to be a “simple conjunction”:

(23) Det...including himself CONJ NP

(24) a. Dan kissed most students including himself, Leo and Lea.
b. Dan hates most monks including himself but not most Japanese

(monks).
c. Dan hates ten logicians including himself or Leo.

The functions denoted by RefDets of the from (23) is given in (25), where D
is the denotation of Det, ⊗ - the denotation of CONJ and NP denotes Q:

(25) F (X,R) = {y : y ∈ X ∧ 〈y, y〉 ∈ R ∧ y ∈ D(X)acc(R) ⊗ y ∈ Qacc(R) ∧
SLi(Q,A) ⊆ X}
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To give the semantics of anaphoric RecDets we will use the partition
Π(RS/X). Our definitions will be definitions “be cases” which are determined
by the fact that the partition Π(RS/X) is atomic, singular or non-trivial. Thus
(27) gives the semantics for RecDets of the form (26), where the Ft(G)NP is a
NP denoting the principal filter generated by the set G and EXT (X) = {X}:

(26) Det... including each other CONJ Ft(G)NP

(27) (i) F (X,R) = ∅ if RS/X = ∅ or Π(RS/X) is atomic
(ii) F (X,R) = {Q : Q ∈ PL ∧ Li(Q,X) ∧ EXT (D(B)) ⊆ Q ⊗ Q ∈
Ft(X ∩ G)Lacc(R)} if Π(RS/X) is singular and B is its only block.
(iii) F (X,R) = {Q : Q ∈ PL ∧ Li(Q,X) ∧ ∃B(B ∈ Π(RS/X) ∧
Q(D(B)) = 1) ⊗ Q ∈ Ft(X ∩ G)Lacc(R)} if Π(RS/X) is non-trivial.

Clause (i) takes into account the fact that NP s like nobody, no two individuals,
no three students, etc. cannot occur in the subject position of sentences of the
form (26). When the partition has only one block B (clause (ii)) then this block
is a product relation and only members of the domain of B are in the mutual
relation determined by R.

Let us see now functions denoted by exclusive Ref Dets and exclusive
RecDets. Various results concerning exclusive RefDets are given in Zuber
(2010b). Exclusive determiners denote intersective or co-intersective type 〈1, 1〉
quantifiers. Such quantifiers form atomic Boolean algebras whose atoms are
uniquely determined by sets. More precisely atoms of the intersective algebra
are functions AtA such that AtA(X)(Y ) = 1 iff X ∩Y = A and atoms of the co-
intersective algebra are functions AtB such that AtB(X)(Y ) = 1 iff X ∩Y ′ = B,
(A,B,X, Y ⊆ E).

Atoms of intersective and co-intersective algebras are denoted precisely by
exclusive dets which have as the complement of except a conjonction of proper
names. Thus, roughly speaking, exclusive determiners with No denote atoms of
the intersective algebra and exclusive determiners with Every denote atoms of
the co-intersective algebra. For instance the determiner no...except Leo denotes
the atomic intersective quantifier determined by the singleton {L} whose only
element is Leo and the determiner every...except Leo and Lea denotes the atom
of co-intersective functions determined by the set composed of Leo and Lea.

Consider now some examples of type 〈1, 2 : 1〉 functions and RefDets denoting
them (cf. Zuber 2010b). Let AtA be the (intersective or co-intersective) atom
determined by the set A. The type 〈1.2 : 1〉 function FAtA given in (28) is an
anaphoric function based on the atomic quantifier AtA. Furthermore, if AtA is
intersective then FAtA is intersective and if AtA is co-intersective then FAtA is
co-intersective:

(28) FAtA(X,R) = {x : x /∈ A ∧ AtA∪{x}(X)(xR) = 1}
Let us see some functions which are instances of (28) for illustration. Take

the type 〈1, 1〉 quantifier NO. It is the atomic intersective quantifier determined
by the empty set. Thus A = ∅, At∅ = NO and consequently, given the values of
NO, the anaphoric function FNO based on NO is given in (29):
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(29) FNO(X,R) = {x : X ∩ xR = {x}}
The function in (29) is the denotation of the RefDet no...except himself/herself.

If AtA = EV ERY -BUT -{L} (where EV ERY -BUT -{L}(X,Y ) = 1 iff X ∩
Y ′ = {L}) then the anaphoric function based on EV ERY -BUT -{L} is given in
(30). This function is the denotation of the anaphoric determiner every... except
Leo and himself (if Leo refers to L) which occurs in (31):

(30) FEV ERY −BUT−{L}(X,R) = {x : X ∩ xR′ = {x,L}}
(31) Dan admires every linguist except Leo and himself.

Thus (28) gives us a class of functions which are denotable by RefDets.
Let us see now the functions denoted by some exclusive RecDets. To do this

we will also use the partition Π(RS/X). In (32) we have the function denoted
by the reciprocal determiner no...except each other :

(32) (i) F (X,R) = {Q : Q ∈ PL∧¬TWO(E) ⊆ Q} if RS/X = ∅ or Π(RS/X)
is atomic
(ii) F (X,R) = {Q : Q ∈ PL ∧ D(B) × D′(B) ∩ R = ∅ ∧ B ∩ I ′ =
B ∧ EXT ((D(B)) ⊆ Q} if Π(RS/X) has B as its only block.
(iii) F (X,R) = {Q : Q ∈ PL ∧ ∃B(B ∈ Π(RS/X))∃W (W ∈
WtQ(SLi(Q)∧(W ×W )∩I ′) = B∧D(B)×D′(B)∩R = ∅} if Π(RS/X)
is non-trivial.

To illustrate (32) let R = {〈a, b〉, 〈b, a〉, 〈a, c〉, 〈c, d〉, 〈d, c〉} and E = X =
{a, b, c, d}. In this case RS/X = {B1, B2}, where B1 = {〈a, b〉, 〈b, a〉} and B2 =
{〈c, d〉, 〈d, c〉} and thus the clause (iii) applies. Consequently (Ia∧Ib) �∈ F (X,R) -
because 〈a, c〉 ∈ R, and (Ic ∧Id) ∈ F (X,R). If R = (A×A)∩I ′, where A = X =
{a, b, c} then Π(RS/X is singular with B = R and D(B) = A. Hence, given
clause (ii) EXT (A) ∈ F (X,R), Ia ∧ Ib ∧ Ic) ∈ F (X,R), Ib ∧ Ic) ∈ F (X,R). In
addition, for instance Q = ¬(Ic ∧ Id) ∈ F (X,R) because EXT (A) ⊆ Q.

To obtain the function denoted by every... except each other observe the
following equivalence (supposing that like is the negation of dislike):

(33) Leo and Lea like every student except each other.

(34) Leo and Lea dislike no student except each other.

We can thus consider that the function G(X,R) denoted by every...except
each other can be obtained from the function F (X,R) denoted by no... except
each other by changing the relational argument into its Boolean complement:
G(X,R) = F (X,R′).

5 Formal Properties

The functions described in the previous section are anaphoric in the sense that
they satisfy predicate invariance conditions D1PI or D1HPI and do not satisfy
the weaker conditions D1EC or D1HEC. This is easy to see for functions in
(25), (29) and (30). To show that functions denoted by RecDets do not satisfy
D1HEC we can use Proposition 10, analogous to Proposition 5:
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Proposition 10. Let F satisfies D1HEC and let R = E × C, for C ⊆ E
arbitrary. Then for any A ⊆ E either Ft(A) ∈ F (X,R) or for any X, Ft(A) /∈
F (X,R)

Using Proposition 10 one can show that function in (32) and the function
denoted by every..., except each are anaphoric.

Examples of RefDets discussed above suggest that functions they denote
satisfy a constraint stronger than conservativity. Observe that the anaphoric
functions given in (25), (28) and (29) all have the property given in (35):

(35) F (X,R) ⊆ X.

This is also true of denotations of anaphoric determiners formed with self and
other connectives than except or including. It is easy to see that the determiner
like five..., in addition to Lea and himself also denotes a function which satisfies
the condition given in (35). We see for instance that in (6a) Lea is a student and
in (8) Leo and Lea are linguists.

Interestingly, the anaphoric condition D1PI and the condition given in
(35) entail a specific version of conservativity, anaphoric conservativity (or a-
conservativity), specific to non possessive anaphoric determiners. It is defined as
follows:

Definition 15. A type 〈1, 2 : τ〉 function F is a-conservative iff F (X,R) =
F (X, (X × X) ∩ R).

The following proposition makes clearer what a-conservativity is:

Proposition 11. A type 〈1, 2 : τ〉 function F is a-conservative iff for any X ⊆
E and any binary relations R1 and R2 if (X × X) ∩ R1 = (X × X) ∩ R2 then
F (X,R1) = F (X,R2).

Thus, informally, second, relational arguments of an a-conservative function
give rise to different values of the function only if they differ by a specific sym-
metric part formed from the first argument of the function.

Any a-conservative function is conservative. Ordinary determiners in object
position in general do not denote a-conservativce functions: if D is a (con-
servative) type 〈1, 1〉 quantifier, then the type 〈1, 2 : 1〉 function F (R,X) =
D(X)acc(R) is not a-conservative. For instance if D = ALL and R = E ×A then
F (X,R) = ALL(X)acc(E × A) = E if X ⊆ A but in this case F (X, (X × X) ∩
R) = ALL(X)acc((X × X) ∩ (E × A) = X. Thus F (X,R) �= F (X, (X × X) ∩ R)
which means that F (X,R) = ALL(X)acc(R) is not a-conservative (though it is
conservative).

Concerning RefDets and a-conservativity we have:

Proposition 12. A type 〈1, 2 : 1〉 function F satisfying D1PI such that
F (X,R) ⊆ X is a-conservative.
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Thus the functions denoted by (non-possessive) reflexive anaphoric determiners
are a-conservative.

When one looks at type 〈1, 2 : 〈1〉〉 functions F (X,R), denotations of non-
possessive RecDets, one observes that they have the property given in (36):

(36) If Q ∈ F (X,R), then Q lives on X.

For instance in (9a) Leo and Lea are vegetarians and thus the quantifier
denoted by Leo and Lea weakly lives on the set V EGETARIAN . Similarly, in
(9b) most teachers are Japanese and thus the quantifier MOST (TEACHER)
weakly lives on the set JAPANESE.

Properties indicated in (35) and (36) are related to the meaning of the con-
nectors including and except. occurring in non-possessive anaphoric determiners.
Possessive anaphoric determiners do not have these properties.

For functions denoted by non-possessive RecDets which satisfy the condition
in (36) we have:

Proposition 13. Any type 〈1, 2 : 〈1〉〉 conservative functions satisfying D1HPI
and the condition in (36) is a-conservative.

We can thus suppose that self and each other type anaphoric determiners
denote a-conservative functions.

More can be said with respect to the class of functions denoted by anaphoric
exclusive determiners. Since they are related either to “ordinary” intersective
determiners (like no... except Leo) or to “ordinary’ co-intersective determiners
(like every... except Lea) they are provably either intersective or co-intersective
(in the sense of definitions D13 and D14 respectively). The function in (32)
is intersective and the function denoted by every..., except each other is co-
intersective.

In addition, given that the functions we consider satisfy predicate invari-
ance and condition like (35) or (36), they have a stronger property than just
intersectivity or co-intersectivity: they are a-intersective or a-co-intersective:

Definition 16. A type 〈1, 2 : τ〉 function F is a-intersective iff F (X1, R1) =
F (X2, R2) whenever (X1 × X1) ∩ R1 = (X2 × X2) ∩ R2.

Definition 17. A type 〈1, 2 : τ〉 function F is a-co-intersective iff F (X1, R1) =
F (X2, R2) whenever (X1 × X1) ∩ R′

1 = (X2 × X2) ∩ R′
2.

The following proposition gives another characterisation of the a-
intersectivity and a-co-intersectivity:

Proposition 14. A type 〈1, 2 : τ〉 function F is a-intersective iff F (X,R) =
F (E, (X × X) ∩ R).

Proposition 15. A type 〈1, 2 : τ〉 function F is a-co-intersective iff F (X,R) =
F (E, ((X × X)′) ∪ R).

Functions which are a-intersective or a-co-intersective are a-conservative.
Functions in (29) and in (32) are a-intersective and functions in (30) and the
one denoted by every ..., except each other are a-cointersective.
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6 Conclusive Remarks

Any discussion of the meaning of (full) reflexives and reciprocals necessitates the
use of simple logical tools from the theory of relations. In this paper such tools,
in addition to the generalised quantifier theory, have been used to discuss logical
properties of anaphoric determiners, that is functional expressions which apply to
CNs and form reflexive or reciprocals. Syntactically, anaphoric determiners are
discontinuous formatives which contain as their parts “ordinary” determiners
and anaphoric pronouns like himself or each other. This fact entails the pro-
posal made here concerning the logical type of functions denoted by anaphoric
determiners: these functions take two arguments: the first argument is a set,
because they are denoted by determiners and the second argument is a binary
relation because they form simple nominal anaphors. Formal properties of such
anaphoric determiners are inherited from the properties of their parts: they are
conservative (intersective, co-intersective) because the “ordinary” determiners
that compose them are conservative (intersective, co-intersective) and they are
predicate invariant because anaphoric pronouns that compose them are predi-
cate invariant. Their anaphoricity is characterised in addition by a-conservativity
(a-intersectivity, a-co-intersectivity), a property which is not displayed by “ordi-
nary” determiners.

The results presented in this paper show that though the existence of
anaphoric determiners extends the expressive power of NLs because the functions
they denote lie outside the class of generalised quantifiers classically defined,
these functions resemble quantifiers denoted by “ordinary” nominal determiners
in certain important ways.
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(eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 432–445. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-52921-8 26

http://dx.doi.org/10.1007/978-3-662-52921-8_26


Logic and Computation



The Topology of Full and Weak Belief

Alexandru Baltag1, Nick Bezhanishvili1, Aybüke Özgün1,2(B),
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Abstract. We introduce a new topological semantics for belief logics
in which the belief modality is interpreted as the interior of the closure
of the interior operator. We show that the system wKD45, a weakened
version of KD45, is sound and complete with respect to the class of
all topological spaces. While generalizing the topological belief seman-
tics proposed in [1,2] to all spaces, we model conditional beliefs and
updates and give complete axiomatizations of the corresponding logics
with respect to the class of all topological spaces.
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spaces

1 Introduction

Understanding the relation between knowledge and belief is an issue of central
importance in formal epistemology. Especially after the birth of the knowledge-
first epistemology in [36], the question of what exactly distinguishes an item of
belief from an item of knowledge and how one can be defined in terms of the other
has become even more pertinent. This problem has been tackled from two rather
opposite perspectives in the literature. On the one hand, there has been proposals
in the line of justified true belief account of knowledge (JTB), accepting the
conceptual priority of belief over knowledge. According to this approach, one
starts with a weak notion of belief (which is at least justified and true) and tries
to reach knowledge by making the chosen notion of belief stronger in such a
way that the defined notion of knowledge would no longer be subject to Gettier-
type counterexamples [15]. Among this category, we can mention the conception
of knowledge as correctly justified belief : not only the content of belief has to
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be true, but its justification has to be correct. This approach can be formalized
via topologies under the interior-based semantics (see, e.g., Sect. 2.2). Other
responses falling under the first category include the defeasibility analysis of
knowledge [20,21], the sensitivity account [24], the contextualist account [12]
and the safety account [29]1.

The second perspective, on the other hand, challenges the ‘conceptual pri-
ority of belief over knowledge’ [36] and reverts the relation by giving priority
to knowledge. When knowledge has priority, other attitudes (e.g. beliefs) should
be explainable or definable in terms of it. One of the few philosophers who has
worked out a formal system that ties in with this second approach is Stalnaker. In
[30], Stalnaker uses a relational semantics for knowledge based on reflexive, tran-
sitive and directed Kripke models. In his work, he analyses the relation between
knowledge and belief and builds a combined modal system for these notions with
the axioms extracted from this analysis. He intends to capture a strong notion
of belief based on the conception of ‘subjective certainty’

Bϕ → BKϕ

meaning that believing implies believing that one knows [30, p. 179]. Stalnaker
refers to this concept as ‘strong belief’, but following our previous work [1,2]
we prefer to call it full belief. In fact, the above axiom holds biconditionally
in his system and belief therefore becomes subjectively indistinguishable from
knowledge: an agent (fully) believes ϕ iff she (fully) believes that she knows ϕ
[1,2]. Moreover, Stalnaker argues that the ‘true’ logic of knowledge is S4.2 and
that (full) belief can be defined as the epistemic possibility of knowledge. More
precisely,

Bϕ = ¬K¬Kϕ

meaning that an agent believes ϕ iff she does’t know that she does’t know ϕ2.
He moreover states that his system embeds the logic of belief KD45 when B is
defined as 〈K〉K3 (and K is an S4.2 modality).

In [1,2] Stalnaker’s semantics was generalized from a relational setting to a
topological setting. In particular, a topological semantics was given for full belief
extending the interior semantics for knowledge with a semantic clause for the
belief modality via the closure of the interior operator and it was shown that the
proposed semantics on extremally disconnected spaces constitutes the canonical
(most general) semantics for Stalnaker’s axiom. In this way, Stalnaker’s formal-
ization was generalized by making it independent from its relational semantics.
[1,2] focused on the unimodal cases for knowledge and belief and proved that
while the knowledge logic of extremally disconnected spaces under the interior-
based semantics is indeed S4.2, its belief logic under the proposed topological
semantics is KD45. In this paper (Sect. 3), we give a brief overview of the work

1 For an overview of responses to the Gettier challenge and a detailed discussion, we
refer the reader to [18,27].

2 For a more detailed discussion on Stalnaker’s approach, we refer the reader to [2].
3 〈K〉 denotes the dual of K, i.e., ¬K¬ϕ := 〈K〉ϕ.
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done in [1,2]. We refer to [1,2] for a more detailed discussion. This framework,
however, comes with a problem when extended to a dynamic setting by adding
update modalities in order to capture the action of learning (conditioning with)
new ‘hard’ (true) information P , as also elaborated in [2]. Conditioning with
new ‘hard’ (true) information P is commonly modelled by deleting the ‘non-P ’
worlds from the initial model. Its natural topological analogue, as recognized in
[5,6,38] (among others) and also applied in [2], is a topological update operator,
using the restriction of the original topology to the subspace induced by the set
P . In order for this interpretation to be successfully implemented, the subspace
induced by the new information P should possess the same structural proper-
ties as the initial topology that renders the axioms of the underlying knowl-
edge/belief system sound. More precisely, we demand the subspace induced by
the new information P to be in the class of structures with respect to which the
(static) knowledge/belief logics in questions are sound and complete. However,
extremally disconnectedness is not a hereditary property. In other words, it is not
guaranteed that an arbitrary subspace of a given extremally disconnected space
is extremally disconnected. Therefore, the aforementioned topological interpre-
tation of conditioning with true, hard information cannot be implemented on
extremally disconnected spaces. In [2], we present a solution for this problem by
modelling updates on the topological spaces whose every subspace is extremally
disconnected, i.e., by modelling updates on hereditarily extremally disconnected
spaces.

In this paper, we propose another solution for this problem via arbitrary topo-
logical spaces. More precisely, we do it by introducing a topological semantics
for belief based on all topological spaces in terms of the interior of the clo-
sure of the interior operator. It is important that this semantics coincides with
the topological belief semantics introduced in [1,2] on extremally disconnected
space, thus, we here generalize the semantics proposed in [1,2] to all topological
spaces. Further, while the complete logic of knowledge is actually S4 (McKinsey
and Tarski [23]), we show that the complete logic of belief is a weaker system
than KD45, namely the logic wKD45. The latter result follows by translating
S4 fully and faithfully into wKD45. The restriction of this translation to S4.2
coincides with Stannaker’s embedding of KD45 into S4.2. We also formalize a
notion of conditional belief Bϕψ by relativizing the semantic clause for simple
belief modality to the extension of the learnt formula ϕ. We moreover formalize
updates 〈!ϕ〉ψ again as a topological update operator using the restriction of the
initial topology to its subspace induced by the new information ϕ and show that
we no longer encounter the problem about updates risen in the case of extremally
disconnected spaces: updates on all topological spaces are ‘well-behaved’.

We note that the interior of the closure of the interior operator is also inter-
esting from a purely topological point of view. This operation can be seen as a
regularization of an open set. Geometrically this operation ‘patches up cracks’ of
an open region (see Sect. 4.1 for more details on this as well as for an epistemic
interpretation of this operation). Furthermore, from a purely syntactical point
of view, part of our work can be seen as studying the B := K〈K〉K-fragment of
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the system S4 for K and providing a complete axiomatization for this modality
(which is interpreted as belief (B) in this particular setting). Given that our work
is inspired by Stalnaker’s [30], one natural question to ask is why we are inter-
ested in the K〈K〉K-fragment of S4 rather than the 〈K〉K-fragment as a belief
system. In fact, the latter approach, namely logics of belief as epistemic possi-
bility of knowledge, stemming from knowledge modalities of different strength,
has been of interest in recent years. Klein et al. [19] investigate this fragment
when K is not positively introspective, more precisely, when K is of type KT.2.
To the best of our knowledge, finding a complete axiomatization of the 〈K〉K-
fragment of S4 is still an open and interesting question from a proof theoretical
perspective. However, we know that it is neither a normal modal logic nor does
it include the (D)-axiom. It therefore does not form a ‘good’ logic of belief in
this particular setting with highly idealized agents. The K〈K〉K-fragment on
the other hand is equivalent to the 〈K〉K-fragment when K is of S4.2 type.
Moreover, it is the only non-empty, positive modality that is normal in S4 and
not equivalent to the knowledge modality K (see e.g., [10, Ex. 3.14, p. 102]).
Hence, it is the only alternative for Stalnaker’s belief as subjective certainty that
can satisfy most of the standard axioms of belief.

The paper is structured as follows. In Sect. 2 we introduce the topological pre-
liminaries used in this paper and present the interior-based topological semantics
as well as its connection to the standard Kripke semantics and to the topologi-
cal interpretation of knowledge. Section 3 gives a brief overview of the previous
related work. Sections 4 and 5 constitute the main parts of this paper: while
the former presents a topological semantics for belief based on all topological
spaces, the latter is concerned with the topological interpretation of conditional
beliefs and updates. In Sect. 6 we conclude by giving a summary of our results
and pointing out a number of directions for future research.

2 Background

2.1 Topological Preliminaries

In this section, we introduce the basic topological concepts that will be used
throughout this paper. For more detailed discussion we refer the reader to [13,14].

A topological space is a pair (X, τ), where X is a non-empty set and τ is a
family of subsets of X containing X and ∅ and is closed under finite intersections
and arbitrary unions. The set X is called a space . The subsets of X belonging
to τ are called open sets (or opens) in the space; the family τ of open subsets
of X is called a topology on X. Complements of open sets are called closed
sets. An open set containing x ∈ X is called an open neighbourhood of x.
The interior Int(A) of a set A ⊆ X is the largest open set contained in A
whereas the closure Cl(A) of A is the least closed set containing A. It is easy
to see that Cl is the De Morgan dual of Int (and vice versa) and can be written
as Cl(A) = X\Int(X\A). Moreover, the set of boundary points of a set A ⊆ X,
denoted by Bd(A), is defined as Bd(A) = Cl(A)\Int(A).



The Topology of Full and Weak Belief 209

2.2 The Interior Semantics for Modal (Epistemic) Logic

In this section we provide the formal background for the aforementioned interior-
based topological semantics for modal (epistemic) logic that originated in the
work of McKinsey and Tarski [23]. Moreover, we present important complete-
ness results concerning logics of knowledge S4, S4.2 and S4.3 based on the
interior semantics, explain the connection between the interior and standard
Kripke semantics, and focus on the topological (evidence-based) interpretation
of knowledge.

Syntax. We consider the standard unimodal (epistemic) language LK with a
countable set of propositional letters Prop, Boolean operators ¬ and ∧ and a
modal operator K. Formulas of LK are defined as usual by the following grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ

where p ∈ Prop. Abbreviations for the connectives ∨, →, ↔ are standard. More-
over, the existential modal operator 〈K〉 and ⊥ are defined as 〈K〉ϕ := ¬K¬ϕ
and ⊥ := p ∧ ¬p,

Semantics. Given a topological space (X, τ), we define a topological model (or
simply a topo-model) as M = (X, τ, ν) where ν : Prop → P(X) is a valuation
function.

Definition 1. Given a topo-model M = (X, τ, ν), we define the interior
semantics for the language LK recursively as:

M, x |= p iff x ∈ ν(p)
M, x |= ¬ϕ iff not M, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= Kϕ iff (∃U ∈ τ)(x ∈ U ∧ ∀y ∈ U, M, y |= ϕ)

where p ∈ Prop4.

We let [[ϕ]]M = {x ∈ X | M, x |= ϕ} denote the extension of a modal
formula ϕ in a topo-model M, i.e., the extension of a formula ϕ in a topo-model
M is defined as the set of points in M satisfying ϕ. We skip the index when it is
clear in which model we are working. It is now easy to see that [[Kϕ]] = Int([[ϕ]])
and [[〈K〉ϕ]] = Cl([[ϕ]]). We use this extensional notation throughout the paper
as it makes clear the fact that the modalities, K and 〈K〉, are interpreted in
terms of specific and natural topological operators. More precisely, K and 〈K〉
are modelled as the interior and the closure operators, respectively.

We say that ϕ is true in a topo-model M = (X, τ, ν) if [[ϕ]]M = X, and
that ϕ is valid in (X, τ) if [[ϕ]]M = X for all topo-models M based on (X, τ),
and finally we say that ϕ is valid in a class of topological spaces if ϕ is valid in
every member of the class [33]. Soundness and completeness with respect to the
interior semantics are defined as usual.
4 Originally, McKinsey and Tarski [23] introduce the interior semantics for the basic
modal language. Since we talk about this semantics in the context of knowledge, we
use the basic epistemic language.
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Theorem 1 ([23]). S4 is sound and complete with respect to the class of all
topological spaces under the interior semantics.

Topological interpretation of knowledge: open sets as pieces of evi-
dences. One of the reasons as to why the interior operator is interpreted as
knowledge is that the Kuratowski properties (see, e.g., [13,14]) of the interior
operator amount to S4 axioms written in topological terms. This implies that
(as we can also read from Theorem 1), topologically, knowledge is Truthful

Kϕ → ϕ,

Positively Introspective
Kϕ → KKϕ,

but not necessarily Negatively Introspective

¬Kϕ → K¬Kϕ.

From a philosophical point of view, the principle of Negative Introspection is
arguably the most controversial axiom regarding the characterization of knowl-
edge. It leads to some undesirable consequences, such as Voorbraak’s paradox
(see e.g., [1,35]), and is rejected by some prominent people in the field such as
Hintikka [17], Lenzen [22], Stalnaker [30] (among others).

Another argument in favour of knowledge as the interior operator conception
is of a more ‘semantic’ nature: the interior semantics provides a deeper insight
into the evidence-based interpretation of knowledge. We can interpret opens in a
topological model as ‘pieces of evidence’ and, in particular, open neighborhoods
of a state x as the pieces of true (sound, correct) evidence that are observable by
the agent at state x. If an open set U is included in the extension of a proposition
ϕ in a topo-model M, i.e. if U ⊆ [[ϕ]]M, we say that the piece of evidence U
entails (supports, justifies) the proposition ϕ. Recall that, for any topo-model
M = (X, τ, ν), any x ∈ X and any ϕ ∈ LK , we have

x ∈ [[Kϕ]]M iff (∃U ∈ τ)(x ∈ U ∧ U ⊆ [[ϕ]]M).

Thus, taking open sets as pieces of evidence and in fact open neighbourhoods of
a point x as true pieces of evidence (that the agent can observe at x), we obtain
the following evidence-based interpretation for knowledge: the agent knows ϕ
iff she has a true piece of evidence U that justifies ϕ. In other words, knowing
ϕ is the same as having a correct justification for ϕ. The necessary and suffi-
cient conditions for one’s belief to qualify as knowledge consist in it being not
only truthful, but also in having a correct (evidential) justification. Therefore,
the interior semantics implements the widespread intuitive response to Gettier’s
challenge: knowledge is correctly justified belief (rather than being simply true
justified belief) [1,2].

Connection between Kripke frames and topological spaces. The interior
semantics is closely related to the standard Kripke semantics of S4 (and of its
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normal extensions): every reflexive and transitive Kripke frame corresponds to
a special kind of (namely, Alexandroff) topological spaces.

Let us now fix some notation and terminology. We denote a Kripke frame
by F = (X,R), a Kripke model by M = (X,R, ν) and ‖ϕ‖M denotes the
extension of a formula ϕ in a Kripke model M = (X,R, ν)5. A topological space
(X, τ) is called Alexandroff if τ is closed under arbitrary intersections, i.e.,⋂ A ∈ τ for any A ⊆ τ. Equivalently, a topological space (X, τ) is Alexandroff
iff every point in X has a least neighborhood. As mentioned, there is a one-to-one
correspondence between reflexive and transitive Kripke frames and Alexandroff
spaces. More precisely, given a reflexive and transitive Kripke frame F = (X,R),
we can construct a topological space, indeed an Alexandroff space, X = (X, τR)
by defining τR to be the set of all upsets6 of F . Moreover, the evaluation of
modal formulas in a reflexive and transitive Kripke model coincides with their
evaluation in the corresponding (Alexandroff) topological space (see e.g., [26,
p. 306]). As a result of this connection, the Kripke completeness of the normal
extensions of S4 implies topological completeness under the interior semantics
(see, e.g., [33]).

Normal extensions of S4: the logics S4.2 and S4.3. There are two other
knowledge systems, namely S4.2 and S4.3 , that are of particular interest for
us. Both S4.2 and S4.3 are strengthenings of S4 which are defined as

S4.2 := S4 + 〈K〉Kϕ → K〈K〉ϕ, and
S4.3 := S4 + K(Kϕ → ψ) ∨ K(Kψ → ϕ)

where L + ϕ denotes the smallest logic containing L and ϕ.
We recall that a topological space (X, τ) is extremally disconnected if the

closure of every open subset of X is open and it is hereditarily extremally dis-
connected if every subspace of (X, τ) is extremally disconnected. We here would
like to remind that extremally disconnectedness is, in general, not a hereditary
property7.

Theorem 2 (cf. [33]). S4.2 is sound and complete with respect to the class of
extremally disconnected spaces under the interior semantics.

Theorem 3 ([2,7]). S4.3 is sound and complete with respect to the class of
hereditarily extremally disconnected spaces under the interior semantics.

We note that the completeness parts of Theorems 2 and 3 follow from the
Kripke completeness of S4.2 and S4.3 (which is a direct consequence of the

5 The reader who is not familiar with the standard Kripke semantics is referred to
[8,11] for an extensive introduction to the topic.

6 A set A ⊆ X is called an upset of (X, R) if for each x, y ∈ X, xRy and x ∈ A imply
y ∈ A.

7 A topological property is said to be hereditary if for any topological space (X, τ)
that has the property, every subspace of (X, τ) also has it [14, p. 68].
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Sahlqvist theorem) and the fact that Alexandroff spaces corresponding to tran-
sitive, reflexive and directed Kripke frames (S4.2-frames) are extremally discon-
nected and Alexandroff spaces corresponding to reflexive and transitive Kripke
frames with no branching to the right (S4.3-frames) are hereditarily extremally
disconnected. The soundness with respect to the topological semantics, however,
needs some argumentation. The detailed proofs can be found in [33, p. 253] and
[7, Proposition 3.1]. The logical counterpart of the fact that extremally discon-
nected spaces (S4.2-spaces) are not closed under subspaces is that S4.2 is not
a subframe logic [10, Sect. 9.4]. The logical counterpart of the fact that heredi-
tarily extremally disconnected spaces (S4.3-spaces) are extremally disconnected
spaces closed under subspaces is that the subframe closure of S4.2 is S4.3,
see [37, Sect. 4.7]. For examples of extremally disconnected and hereditarily
extremally disconnected spaces, we refer to [2,7,28].

3 The Topology of Full Belief: Overview of [1]

3.1 Stalnaker’s Combined Logic of Knowledge and Belief

In his paper [30], Stalnaker focuses on the properties of knowledge and belief and
the relation between the two and he approaches the problem of understanding
the concrete relation between knowledge and belief from an unusual perspective.
Unlike most research in the formal epistemology literature, he starts with a
chosen notion of knowledge and weakens it to obtain belief. He bases his analysis
on a conception of belief as ‘subjective certainty’: from the point of the agent
in question, her belief is subjectively indistinguishable from her knowledge [1]. In
this section, we briefly recall Stalnaker’s proposal of the ‘true’ logic of knowledge
and belief. Throughout this paper, following [1,2,25], we will refer to Stalnaker’s
notion as ‘full belief’.

The bimodal language LKB of knowledge and (full) belief is obtained by
extending LK by a belief modality B:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ.

We define the doxastic possibility modality 〈B〉ϕ by ¬B¬ϕ. We call Stalnaker’s
system, given in the following Table 1, KB.

We refer to [1,2,25] for a discussion on the axioms of KB and continue with
some conclusions of philosophical importance derived by Stalnaker in [30] and
stated in the following proposition:

Proposition 1 (Stalnaker [30]). The following equivalence is provable in the
system KB:

Bϕ ↔ 〈K〉Kϕ. (1)

Moreover, the axioms (K) B(ϕ → ψ) → (Bϕ → Bψ), (D) Bϕ → 〈B〉ϕ, (4)
Bϕ → BBϕ, (5) ¬Bϕ → B¬Bϕ of the system KD45 and the (.2)-axiom
〈K〉Kϕ → K〈K〉ϕ of the system S4.2 are provable in KB.

Proposition 1 thus shows that full belief is definable in terms of knowledge as
‘epistemic possibility of knowledge’ via equivalence (1), the ‘true’ logic of belief
is KD45 and the ‘true’ logic of knowledge is S4.2 (see [2] for the proof).
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Table 1. Stalnaker’s System KB

Stalnaker’s axioms

(K) K(ϕ → ψ) → (Kϕ → Kψ) Knowledge is additive

(T) Kϕ → ϕ Knowledge implies truth

(KK) Kϕ → KKϕ Positive introspection for K

(CB) Bϕ → ¬B¬ϕ Consistency of belief

(PI) Bϕ → KBϕ (Strong) positive introspection of B

(NI) ¬Bϕ → K¬Bϕ (Strong) negative introspection of B

(KB) Kϕ → Bϕ Knowledge implies Belief

(FB) Bϕ → BKϕ Full Belief

Inference rules

(MP) From ϕ and ϕ → ψ infer ψ Modus Ponens

(K-Nec) From ϕ infer Kϕ Necessitation

3.2 The Topological Semantics of Full Belief

In [1,2,25], a topological semantics for full belief and knowledge is proposed by
extending the interior semantics for knowledge with a semantic clause for belief.
The belief modality B is interpreted as the closure of the interior operator on
extremally disconnected spaces. Several topological soundness and completeness
results for both bimodal and unimodal cases, in particular for KB and KD45,
with respect to the proposed semantics are also proved. We now briefly overview
the topological semantics for full belief introduced in [1,2,25] and state the
completeness results. The proofs can be found in [2,25].

Definition 2 (Topological Semantics for Full Belief and Knowledge).
Given a topo-model M = (X, τ, ν), the semantics for the formulas in LKB is
defined for Boolean cases and Kϕ the same way as in the interior semantics.
The semantics for Bϕ is defined as

[[Bϕ]]M = Cl(Int([[ϕ]]M)).

Truth and validity of a formula, soundness and completeness are defined the
same way as in the interior semantics.

Proposition 2. A topological space validates all the axioms and rules of Stal-
naker’s system KB (under the semantics given above) iff it is extremally dis-
connected.

Theorem 4. The sound and complete logic of knowledge and belief on
extremally disconnected spaces is given by Stalnaker’s system KB.
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Besides, as far as full belief is concerned, the above topological semantics
constitutes the most general extensional semantics for Stalnaker’s system KB
[1,2,25]. Moreover, Stalnaker’s combined logic of knowledge and belief yields the
system S4.2 as the unimodal logic of knowledge and the system KD45 as the
unimodal logic of belief (see Proposition 1). It has been already proven that
S4.2 is complete with respect to the class of extremally disconnected spaces
under the interior semantics. This raises the question of topological soundness
and completeness for KD45 under the proposed semantics for belief in terms of
the closure and the interior operator :

Theorem 5 ([1,2,25]). KD45 is sound and complete with respect to the class
of extremally disconnected spaces under the topological belief semantics.

Theorem 5 therefore shows that the belief logic of extremally disconnected
spaces is KD45 when B is interpreted as the closure of the interior operator.
These results on extremally disconnected spaces, however, encounter problems
when extended to a dynamic setting by adding update modalities formalized as
model restriction by means of subspaces.

Topological Semantics for Update Modalities. We now consider the lan-
guage L!KB obtained by adding to the language LKB (existential) dynamic
update modalities 〈!ϕ〉ψ meaning that ϕ is true and after the agent learns ϕ, ψ
becomes true. As also observed in [5,6,38], the topological analogue of updates
corresponds to taking the restriction of a topology τ on X to a subset P ⊆ X,
i.e., it corresponds to the restriction of the original topology to its subspace
induced by the new, true information P .

Given a topological space (X, τ) and a non-empty set P ⊆ X, a space (P, τP )
is called a subspace of (X, τ) where τP = {U ∩ P : U ∈ τ}.

For a topo-model (X, τ, ν) and ϕ ∈ L!KB , we denote by Mϕ the restricted
model Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]]) where [[ϕ]] = [[ϕ]]M and ν[[ϕ]](p) = ν(p) ∩ [[ϕ]] for
any p ∈ Prop. Then, the semantics for the dynamic language L!KB is obtained
by extending the semantics for LKB with:

[[〈!ϕ〉ψ]]M = [[ψ]]Mϕ .

To explain the problem: Given that the underlying static logic of knowledge
and belief is the logic of extremally disconnected spaces (see e.g., Theorems 2, 4
and 5) and extremally disconnectedness is not inherited by arbitrary subspaces,
we cannot guarantee that the restricted model induced by an arbitrary formula
ϕ remains extremally disconnected. Under the topological belief semantics, both
the (K)-axiom (also known as the axiom of Normality) B(ϕ ∧ ψ) ↔ (Bϕ ∧ Bψ)
and the (D)-axiom (also named as the Consistency of Belief ) Bϕ → 〈B〉ϕ char-
acterize extremally disconnected spaces [2,25]. Therefore, if the restricted model
is not extremally disconnected, the agent comes to have inconsistent beliefs after
an update with true information: the formula Bϕ ∧ B¬ϕ is satisfiable in a non-
extremally disconnected topo-model. For an example illustrating this problem,
we refer to [2, p. 21].



The Topology of Full and Weak Belief 215

One possible solution for this problem is a further limitation on the class
of spaces we work with: we can restrict our attention to hereditarily extremally
disconnected spaces, thereby, we guarantee that no model restriction leads to
inconsistent beliefs. As the logic of hereditarily extremally disconnected spaces
under the interior semantics is S4.3, the underlying static logic, in this case,
would consist in S4.3 as the logic of knowledge but again KD45 as the logic
of belief. In [2], we examine this solution. In this paper, we present another
solution which approaches the issue from the opposite direction: we propose to
work with all topological spaces instead of working with a restricted class. This
solution, unsurprisingly, leads to a weakening of the underlying static logic of
knowledge and belief. As we already mentioned earlier, it is a classic result that
the knowledge logic of all topological spaces is S4 and here we will explore the
(weak) belief logic of all topological spaces under the topological belief semantics.

4 The Topology of Weak Belief

4.1 Topological Semantics of Weak Belief

Recall that given an extremally disconnected space (X, τ), we have

Cl(Int(A)) = Int(Cl(Int(A)))

for any A ⊆ X. Hence, given a topo-model M = (X, τ, ν), the semantic clause
for the belief modality can be written in the following equivalent forms

[[Bϕ]]M
(1)
= Cl(Int([[ϕ]]M))

(2)
= Int(Cl(Int([[ϕ]]M)))

if (X, τ) is an extremally disconnected space. However, Cl(Int(A)) =
Int(Cl(Int(A))) is not always the case for all topological spaces and all A ⊆ X;
the equation demands the restriction to extremally disconnected spaces. Besides,
if we evaluate B as the closure of the interior operator on all topological spaces,
we obtain that neither the (K)-axiom nor the (D)-axiom is sound. Syntactically
speaking, B defined as 〈K〉K does not yield a ‘good’ logic of belief when K is
an S4-type modality: 〈K〉K is neither normal nor does satisfy the (D)-axiom.
Moreover, purely S4-type knowledge could not have been what Stalnaker had
in mind while considering B as 〈K〉K since this would violate his principles
(CB) and (PI). Moreover, given that K is interpreted as the interior opera-
tor on topological spaces, equation (1) makes the schema Bϕ ↔ 〈K〉Kϕ and
equation (2) makes the schema Bϕ ↔ K〈K〉Kϕ valid on all topological spaces.
While S4.2 � 〈K〉Kϕ ↔ K〈K〉Kϕ, we have S4 �� 〈K〉Kϕ ↔ K〈K〉Kϕ and B
as K〈K〉K is the only alternative holding the property of being equivalent to
〈K〉K in S4.2 and being not equivalent to 〈K〉K in S4. Moreover, K〈K〉K is
the only non-empty and positive modality that is normal and is not equivalent
to knowledge in S4 [10, Ex. 3.14, p. 102]. Therefore, a notion of belief that works
well on all topological spaces and coincides with Stalnaker’s belief as subjective
certainty on extremally disconnected spaces demands the alternative interpre-
tation of belief in terms of the interior of the closure of the interior operator.
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We thus concentrate on the latter equation: we interpret B as the interior of the
closure of the interior operator on all topological spaces.

Semantics. Let M = (X, τ, ν) be a topo-model. The semantic clauses for the
propositional variables and the Boolean connectives are the same as in the inte-
rior semantics. For the modal operator B, we put

[[Bϕ]]M = Int(Cl(Int([[ϕ]]M)))

and the semantic clause for 〈B〉 is easily obtained as

[[〈B〉ϕ]]M = Cl(Int(Cl([[ϕ]]M))).

Validity of a formula is defined as usual. We call this semantics w-topological
belief semantics referring to the system wKD45 for which we will prove sound-
ness and completeness. This way we distinguish it from the topological belief
semantics presented in Sect. 3.2 w.r.t. to which we proved the soundness and
completeness of the system KD45.

Our new topological interpretation of belief also comes with intrinsic philo-
sophical motivation that fits well with the topologically defined notions of close-
ness and small/negligible sets. To elaborate, it is well-known that the closure
operator represents a topological conception of ‘closeneess’. Intuitively speaking,
we can read x ∈ Cl(A) as x is very close to the set A, i.e., it cannot be sharply
distinguished from the elements of A via an open set. Therefore, recalling that
K is interpreted as the interior modality, according to the semantics for (full)
belief in terms of the closure and the interior operator introduced in Sect. 3.2,
‘the agent fully believes ϕ at a state x iff she cannot sharply distinguish x from
the worlds in which she has knowledge of ϕ’ [2, p. 24]. Therefore, full belief is
very close to knowledge when ‘close’ is interpreted topologically [2]. This inter-
pretation in fact captures the notion of belief as subjective certainty. Our new
interpretation of belief in terms of the interior of the closure of the interior oper-
ator [[Bϕ]] = Int(Cl([[Kϕ]])), on the other hand, makes the connection between
these two notions even stronger: the belief operator interpreted this way comes
even closer to knowledge, yet does not coincide with it. According to the new
interpretation of belief, the agent believes ϕ at a state x iff there exists an open
neighbourhood U of x such that U ⊆ Cl([[Kϕ]]). This implies, since [[Kϕ]] is
open, that x ∈ U ⊆ [[Kϕ]] ∪ Bd([[Kϕ]]), where Bd([[Kϕ]]) is the set of boundary
points of [[Kϕ]]. As U ⊆ [[Kϕ]] ∪ Bd[[Kϕ]], the set U ∩ [[¬Kϕ]] = U ∩ Bd([[Kϕ]])
and it is possibly non-empty. Thus, it is still not guaranteed that the agent can
distinguish the states in which she knows ϕ from the ones in which she does not.
However,

U ∩ [[¬Kϕ]] = U ∩ Bd([[Kϕ]]) ⊆ Bd([[Kϕ]])

and, since [[Kϕ]] = Int[[ϕ]] is an open set, Bd([[Kϕ]]) is nowhere dense8. Therefore,
U ∩ [[¬Kϕ]] is also nowhere dense. As nowhere dense sets constitute one of the
topological notions of ‘small, negligible sets’ and U ⊆ [[Kϕ]]∪Bd([[Kϕ]]), we can

8 A subset A ⊆ X is called nowhere dense in (X, τ) if Int(Cl(A)) = ∅.
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say that the agent believes ϕ at x iff she can almost sharply distinguish x from
the states in which she does not know ϕ. The part of U that is consistent with
¬Kϕ is topologically negligibly small. We therefore further argue that this is
the “closest-to-knowledge” notion of belief that can be defined in terms of the
topological tools at hand and that is not identical with the notion of knowledge
taken as the primitive operator.

Topologically, our new belief operator behaves like a ‘regularization’ operator
for the opens in a topology. Given a topological space (X, τ), we can define
B : τ → τ such that B(U) = Int(Cl(U)). Therefore, B takes an open set and
makes it regular open9. In fact, for any open set U ∈ τ , the set Int(Cl(U)) is
the smallest regular open such that U ⊆ Int(Cl(U))10. Therefore, this operator
extends an open set in a minimal way by gluing its holes and cracks together.
To illustrate, consider the natural topology on the real line (R, τ) and let P =
[−2, 3) ∪ (3, 5) ∪ {7} (see Fig. 1).

[
−2 7

)(
30

| )
5

Fig. 1. (R, τ)

We have Int(P ) = (−2, 3) ∪ (3, 5) and Int(P ) is not regular open. However,
B(Int(P )) = Int(Cl(Int(P ))) = (−2, 5), which is the smallest regular open con-
taining Int(P ). Similarly, on the Euclidean plane, the belief operator patches up
the cracks of an open set (see Fig. 2).

IntCl

Fig. 2. From U to Int(Cl(U))

4.2 The Axiomatization of wKD45

We define the logic wKD45 as

wKD45 = K + (Bϕ → 〈B〉ϕ) + (Bϕ → BBϕ) + (B〈B〉Bϕ → Bϕ)
9 A subset A ⊆ X of a topological space (X, τ) satisfying the condition A = Int(Cl(A)
is called regular open [14].

10 In fact, for any A ⊆ X, the set Int(Cl(A)) is regular open, however, it is not always
the case that A ⊆ Int(Cl(A)).
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and call it weak KD45. This logic is weaker than KD45 since it is obtained by
replacing the (5)-axiom with the axiom B〈B〉Bϕ → Bϕ, and while B〈B〉Bϕ →
Bϕ is a theorem of KD45, the (5)-axiom is not a theorem of wKD45. More
precisely, KD45 � B〈B〉Bϕ → Bϕ but wKD45 �� 〈B〉ϕ → B〈B〉ϕ. We find
it hard to give a direct and clear interpretation for this axiom as is given for
the axiom of Negative Introspection, since it is too complex in the sense that
it includes three consecutive modalities. However, we can interpret it on the
basis of the axioms that we have already given an interpretation, in particular,
based on the interpretation of Negative Introspection. It is easier to see the
correspondence if we state the weak axiom in the following equivalent form:

¬Bϕ → 〈B〉B¬Bϕ.

Recall that the principle of Negative Introspection says that if an agent does not
believe ϕ, then she believes that she does not believe ϕ. On the other hand, taking
the reading of Negative Introspection as the reference point, a direct doxastic
reading for this axiom is if the agent does not believe ϕ, then it is doxastically
possible to her that she believes that she does not believe ϕ. Therefore, in this
section, we work with consistent, positively introspective yet not fully negatively
introspective belief. This weakened system wKD45 stands between KD4 and
KD45. While the latter is commonly used as the standard logic for belief, the
former has also been studied as a belief system [16,31,32].

4.3 Soundness and Completeness of wKD45

In this section, we prove that wKD45 for B is sound and complete with respect
to the class of all topological spaces. Soundness proof can be presented in a stan-
dard way by checking the validity of the axioms and inference rules of wKD45
with respect to the w-topological belief semantics. We leave this proof to the
reader and argue for soundness in a different way. For completeness, we follow
a technique which allows us to reduce the completeness problem of wKD45
to the topological completeness of S4 in the interior semantics. We do this so
by defining a translation (.)� from the doxastic language LB to the epistemic
language LK such that for any ϕ ∈ LB , we obtain

S4 � ϕ� iff wKD45 � ϕ.

Although we only need the direction from left-to-right for completeness, the
other direction comes almost for free and we use this direction to argue for
soundness. The above implication can be seen as the key intermediate result
for the topological completeness proof of wKD45. In order to reach this result,
we also make use of soundness and completeness of S4 and wKD45 in the stan-
dard Kripke semantics. Moreover, we believe that the full and faithful translation
of wKD45 into S4 given by (.)� is also of interest from a purely modal logi-
cal perspective. It implies that the K〈K〉K-fragment of S4 is wKD45. In the
same way, a full and faithful translation of KD45 into S4.2 given by the 〈K〉K-
modality implies that the 〈K〉K-fragment of S4.2 is KD45 [2]. To the best of
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our knowledge it is still an (interesting) open question how to axiomatize the
(non-normal) modal logic L which is the 〈K〉K-fragment of S4.

Throughout this section, we use the notation [ϕ]M for the extension of a
formula ϕ ∈ LK w.r.t. the interior semantics in order to make clear in which
semantics we work. We reserve the notation [[ϕ]]M for the extensions of the
formulas ϕ ∈ LB w.r.t. the w-topological belief semantics. We skip the index
when confusion is unlikely to occur.

Definition 3 (Translation (.)� : LB → LK). For any ϕ ∈ LB, the translation
(ϕ)� of ϕ into LK is defined recursively as follows:

1. (p)� = p, where p ∈ Prop 3. (ϕ ∧ ψ)� = ϕ� ∧ ψ�

2. (¬ϕ)� = ¬ϕ� 4. (Bϕ)� = K〈K〉Kϕ�

Note that (〈B〉ϕ)� = 〈K〉K〈K〉ϕ�.

Proposition 3. For any topo-model M = (X, τ, ν) and for any formula ϕ ∈ LB

we have
[[ϕ]]M = [ϕ�]M.

Proof. We prove the lemma by induction on the complexity of ϕ. The cases for
the propositional variables and Booleans are straightforward. Now let ϕ = Bψ,
then

[[ϕ]]M =[[Bψ]]M

=Int(Cl(Int([[ψ]]M))) (by the w-topological belief semantics for LB)

=Int(Cl(Int([ψ�]M))) (by I.H.)

=[K〈K〉Kψ�]M (by the interior semantics for LK)

=[(Bψ)�]M (by the translation �)

=[ϕ�]M.

We now recall some frame conditions concerning the relational completeness
of the respective systems.

Let (X,R) be a transitive Kripke frame. Recall that a cluster is an equivalence
class wrt the equivalence relation ∼ defined by x ∼ y if xRy and yRx for each
x, y ∈ X. We denote the set of final clusters of (X,R) by CR. A transitive
Kripke frame (X,R) having at least one final cluster is called weakly cofinal if
for each x ∈ X there is a C ∈ CR such that for all y ∈ C we have xRy. In fact,
every finite reflexive and transitive frame is weakly cofinal. We call a weakly
cofinal frame a weak brush if X\ ⋃

CR is an irreflexive anti-chain, i.e., for each
x, y ∈ X\ ⋃

CR we have ¬(xRy). A weak brush with a singleton X\⋃
CR is

called a weak pin11. By definition, every weak brush and every weak pin is
transitive and also serial. A transitive frame (X,R) is called rooted , if there is

11 Brushes and pins are introduced in [25] and a similar terminology is used in this
paper.
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an x ∈ X, called a root, such that for each y ∈ X with x �= y we have xRy.
Finally, we say that a transitive frame (X,R) is of depth n if there is a chain of
points x1Rx2R . . . Rxn such that ¬(xi+1Rxi) for any i ≤ n and there is no chain
of greater length satisfying this condition. It is hard to draw a generic picture
of a weak brush, but the following figures illustrate weak pins and how a weak
brush could look like (where top squares correspond to final clusters) (Figs. 3
and 4).

It is well-known that the (D)-axiom corresponds to seriality and the (4)-
axiom corresponds to transitivity of a Kripke frame, under the standard Kripke
interpretation (see, e.g., [8, Chap. 4]). It is not very hard to see that the contra-
position equivalent 〈B〉ϕ → 〈B〉B〈B〉ϕ of our new axiom B〈B〉Bϕ → Bϕ is a
Sahlqvist formula and the first order property corresponding to this axiom is

∀x∀y(xRy ⇒ ∃z(xRz ∧ ∀w(zRw ⇒ wRy))). (wE)

Therefore, a wKD45 frame is a serial and transitive Kripke frame satisfying the
above property (wE). We refer the reader to [8, Chap. 3.6] for a more detailed
discussion on Sahlqvist formulas.

Let us recall that a point y in a reflexive and transitive Kripke frame (X,R)
is called quasi-maximal if yRz for some z ∈ X implies zRy.

Lemma 1. A rooted Kripke frame F = (X,R) is a wKD45 frame iff it is a
cluster or it is a weak pin.

Proof. The right-to-left direction is trivial. For the other direction, suppose F =
(X,R) is a rooted wKD45 frame that is not a cluster and assume x ∈ X is the
root. As F is serial, every quasi-maximal point of it is in a final cluster. Hence,
for any y ∈ X, y is a quasi-maximal point iff there is a final cluster C of F
such that y ∈ C, i.e. the set of quasi-maximal points of F is

⋃
CR. Recall that

a weak pin is a weakly cofinal frame with a singleton irreflexive X\⋃
CR. We

hence need to show that (1) x is an irreflexive point and (2) every successor of
x is a quasi-maximal point. Since x is the root and F = (X,R) is not a cluster,
there exists y ∈ X such that xRy and ¬(yRx).

For (1), suppose that we have xRx. Then, by (wE), there exists z0 ∈ X such
that xRz0 and for all w ∈ X with z0Rw, we have wRx. Since R is serial, z0
has at least one successor w, therefore, it is guarateed that there is at least one
element w ∈ X such that wRx. Since wRxRy and R is transitive, we obtain

...

Fig. 3. Weak pin Fig. 4. An example of a weak brush
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wRy implying, again by taransitivity, that z0Ry. Therefore, by (wE), we have
yRx, contradicting ¬(yRx). So x is irreflexive.

For (2), suppose there exists y0 ∈ X such that xRy0 and y0 is not a quasi-
maximal element. This means that there is t0 ∈ X such that y0Rt0 but ¬(t0Ry0).
By (wE), xRy0 implies that there exists z0 ∈ X such that xRz0 and for all
w ∈ X with z0Rw, we have wRy0. Similarly to the argument above, since it is
guaranteed that z0 has at least one successor w, R is transitive and z0RwRy0Rt0
implies z0Rt0. Therefore, again by (wE), t0Ry0 contradicting our assumption.
Thus, every successor of x is a quasi-maximal point. Finally, (1) and (2) together
yield that (X,R) is a weak pin.

Lemma 2

1. Each reflexive and transitive weakly cofinal frame is an S4-frame. Moreover,
S4 is sound and complete w.r.t. the class of finite rooted reflexive and tran-
sitive weakly cofinal frames.

2. Each weak brush is a wKD45-frame. Moreover, wKD45 is sound and com-
plete w.r.t. the class of finite weak brushes, indeed, w.r.t. the class of finite
weak pins.

Proof. (1) is well known, see e.g., [8,10]. For (2), we proved in Lemma 1 that the
wKD45-frames are of finite depth. It is well known that every logic over K4
that has finite depth is locally tabular and has the finite model property (e.g.,
[10, Theorem 12.21]). This implies that wKD45 as well has the finite model
property and thus it has the finite model property w.r.t. finite rooted wKD45-
frames. Then by Lemma 1, we have that wKD45 is in fact complete w.r.t. finite
weak brushes and weak pins.

For any reflexive and transitive weakly cofinal frame (X,R) we define RB on X by

xRBy if y ∈
⋃

CR(x)

for each x, y ∈ X, where
⋃
CR(x) = R(x) ∩ ⋃

CR. In other words, RB(x) =⋃
CR(x) for each x ∈ X. Moreover, we have the following equivalence.

Lemma 3. For any reflexive and transitive weakly cofinal frame (X,R) we have
⋃

CRB
=

⋃
CR.

Proof. Let (X,R) be a reflexive and transitive weakly cofinal frame and x ∈ X.
(⊆) Suppose x ∈ ⋃

CRB
and x �∈ ⋃

CR. Then x ∈ ⋃
CRB

means that x ∈ C
for some C ∈ CRB

. As C is a final cluster, there is no y ∈ X such that xRBy
and ¬(yRBx). On the other hand, since (X,R) is a weakly cofinal frame, there
is a C ′ ∈ CR such that xRz for all z ∈ C ′. Hence, C ′ ⊆ ⋃

CR(x). Thus, by the
definition of RB, we have C ′ ⊆ RB(x). However, as x �∈ ⋃

CR, we have that
¬(zRx) and thus ¬(zRBx) for any z ∈ C ′ contradicting x ∈ C for a final cluster
C of (X,RB). In fact, there is a unique C ∈ CRB

such that RB(x) = C since C
is a final cluster.
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(⊇) Suppose x ∈ ⋃
CR. Then, there is a (unique) C ∈ CR such that x ∈ C and

in fact R(x) = C. Also suppose that x �∈ ⋃
CRB

. Hence, there is a y0 ∈ X such
that xRBy0 and ¬(y0RBx). Then, y0 ∈ ⋃

CR(x) but x �∈ ⋃
CR(y0) by definition of

RB. By definition of RB, we have that xRBy0 implies xRy0. Hence, as y0 ∈ R(x),
we also have R(y0) = R(x) = C. Thus,

⋃
CR(y0) =

⋃
CR(x). As R is reflexive,

x ∈ ⋃
CR(x) and hence x ∈ ⋃

CR(y0) contradicting ¬(y0RBx).

Lemma 4. For any reflexive and transitive weakly cofinal Kripke model M =
(X,R, ν), any ϕ ∈ LK and any x ∈ X, we have

⋃
CR(x) ⊆ ‖ϕ‖M iff x ∈ ‖K〈K〉Kϕ‖M.

Proof. Let M = (X,R, ν) be a reflexive and transitive weakly cofinal model,
ϕ ∈ LK and x ∈ X.

(⇒) Suppose
⋃
CR(x) ⊆ ‖ϕ‖M. Let y ∈ X be such that xRy. As R is

transitive and xRy, we have R(y) ⊆ R(x) implying that
⋃
CR(y) ⊆ ⋃

CR(x).
Hence, by our assumption,

⋃
CR(y) ⊆ ‖ϕ‖M. Thus, there is a C ∈ CR such that

C ⊆ R(y) and C ⊆ ‖ϕ‖M. Since for all z ∈ C, we have R(z) = C and C ⊆ ‖ϕ‖M,
we obtain C ⊆ ‖Kϕ‖M. As C ⊆ R(y), we have y ∈ ‖〈K〉Kϕ‖M. Therefore, as
y has been chosen arbitrarily from R(x) we obtain x ∈ ‖K〈K〉Kϕ‖M.

(⇐) Suppose
⋃
CR(x) �⊆ ‖ϕ‖M. This implies that there exists a y ∈ ⋃

CR(x)

such that y �∈ ‖ϕ‖M. Now y ∈ ⋃
CR(x) implies that there is a C ∈ CR such that

R(y) = C and R(y) ⊆ R(x). As zRy for all z ∈ C and y �∈ ‖ϕ‖M, we have
z �∈ ‖Kϕ‖M for all z ∈ C. Then, R(y) = C yields y �∈ ‖〈K〉Kϕ‖M. Finally,
since xRy, we obtain x �∈ ‖K〈K〉Kϕ‖M.

Lemma 5. For any reflexive and transitive weakly cofinal frame (X,R),

1. (X,RB) is a weak brush.
2. For any valuation ν on X and for each formula ϕ ∈ LB we have ‖ϕ�‖M =

‖ϕ‖MB , where M = (X,R, ν) and MB = (X,RB , ν).

Proof. Let (X,R) be a reflexive and transitive weakly cofinal frame.

1. – Transitivity: Let x, y, z ∈ X such that xRBy and yRBz. This means
that y ∈ ⋃

CR(x) and z ∈ ⋃
CR(y). As R is transitive and xRy we have⋃

CR(y) ⊆ ⋃
CR(y). Hence, z ∈ ⋃

CR(x), i.e., xRBz.
– Seriality: Let x ∈ X. Since (X,R) is weakly cofinal, there is a y ∈ ⋃

CR(x),
i.e., xRBy.

– Irreflexive, antichain: Suppose there is an x ∈ X\⋃
CRB

such that xRBx.
This implies, x ∈ ⋃

CR(x), thus, x ∈ ⋃
CR. By Lemma 3, x ∈ ⋃

CRB

which contradicts our assumption. Moreover, suppose that X\⋃
CRB

is
not an antichain, i.e., there are x, y ∈ X\ ⋃

CRB
such that either xRBy

or yRBx. W.l.o.g., assume xRBy. Hence, by definition of RB, we have
y ∈ ⋃

CR(x). Thus, y ∈ ⋃
CR and, by Lemma 3, y ∈ ⋃

CRB
contradicting

y ∈ X\ ⋃
CRB

.
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2. We prove this item by induction on the complexity of ϕ. Let M = (X,R, ν)
be a model on (X,R). The cases for ϕ = ⊥, ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are
straightforward. Now let ϕ = Bψ.
(⊆) Let x ∈ ‖(Bψ)�‖M = ‖K〈K〉Kψ�‖M. Then, by Lemma 4,

⋃
CR(x) ⊆

‖ψ�‖M. By I.H, we obtain
⋃
CR(x) ⊆ ‖ψ‖MB . Since

⋃
CR(x) = RB(x), we

have RB(x) ⊆ ‖ψ‖MB implying that x ∈ ‖Bψ‖MB .
(⊇) Let x ∈ ‖Bψ‖MB . Then, by the standard Kripke semantics, we
have RB(x) ⊆ ‖ψ‖MB . By I.H, we obtain RB(x) ⊆ ‖ψ�‖M. Since⋃

CR(x) = RB(x), we have
⋃
CR(x) ⊆ ‖ψ�‖M. Thus, by Lemma 4, x ∈

‖K〈K〉Kψ�‖M = ‖(Bψ)�‖M.

Lemma 6. For any weak brush (X,R),

1. (X,R+) is a reflexive and transitive weakly cofinal frame.
2. For any valuation ν on X and for each formula ϕ ∈ LB we have ‖ϕ‖M =

‖ϕ�‖M+
, where M = (X,R, ν) and M+ = (X,R+, ν).

Proof. Let (X,R) be a serial weak brush.

1. Since R is transitive, R+ is also transitive and it is reflexive by definition.
Moreover, (X,R+) is weakly cofinal since (X,R) is a weak brush.

2. We prove (2) by induction on the complexity of ϕ. Let M = (X, τ, ν) be a
model on (X,R). The cases for ϕ = ⊥, ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are
straightforward. Let ϕ = Bψ.
(⊆) Let x ∈ ‖Bψ‖M. Then, by the standard Kripke semantics, we have
R(x) ⊆ ‖ψ‖M. Hence, by I.H., R(x) ⊆ ‖ψ�‖M+

. Since (X,R) is a weak
brush, R(x) =

⋃
CR(x) ⊆ ⋃

CR+(x). Hence, x ∈ ⋃
CR+(x). Then, by Lemma 4,

x ∈ ‖K〈K〉Kψ�‖M+
.

(⊇) Let x ∈ ‖K〈K〉Kψ�‖M+
. Then, by Lemma 4,

⋃
CR+(x) ⊆ ‖ψ�‖M+

.
Thus, by I.H.,

⋃
CR+(x) ⊆ ‖ψ‖M. Then, as above, R(x) ⊆ ‖ψ‖M implying

that x ∈ ‖Bψ‖M.

Theorem 6. For each formula ϕ ∈ LB, S4 � ϕ� iff wKD45 � ϕ.

Proof. Let ϕ ∈ LB .

(⇒) Suppose wKD45 �� ϕ. By Lemma 2(2), there exists a Kripke model M =
(X,R, ν), where (X,R) is a finite weak pin such that ‖ϕ‖M �= X. Then,
by Lemma 6, M+ is a model based on the finite reflexive and transitive
weakly cofinal frame (X,R+) and ‖ϕ�‖M+ �= X. Hence, by Lemma 2(1),
we have S4 �� ϕ�.

(⇐) Suppose S4 �� ϕ�. By Lemma 2(1), there exists a Kripke model M =
(X,R, ν) where (X,R) is a finite reflexive and transitive weakly cofinal
frame such that ‖ϕ�‖M �= X. Then, by Lemma 5, MB is a model based on
the (finite) weak brush (X,RB) and ‖ϕ‖MB �= X. Hence, by Lemma 2(2),
we have wKD45 �� ϕ.
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Theorem 7. wKD45 is sound and complete w.r.t. the class of all topological
spaces in the w-topological belief semantics.

Proof. As we noted in the beginning of this section, soundness can be proven
directly. Another way of arguing for the topological soundness of wKD45 is via
Theorem 6: let ϕ ∈ LB such that wKD45 � ϕ. Then, by Theorem 6, S4 � ϕ�.
By the topological soundness of S4 w.r.t. the class of all topological spaces in
the interior semantics, we obtain that for any topological space (X, τ) we have
(X, τ) |= ϕ�. Then, by Proposition 3, we conclude that in the w-topological
belief semantics (X, τ) |= ϕ.

For completeness, let ϕ ∈ LB be such that wKD45 �� ϕ. By Theorem 6,
S4 �� ϕ�. Hence, by topological completeness of S4 w.r.t. the class of all topo-
logical spaces in the interior semantics, there exists a topo-model M = (X, τ, ν)
such that [ϕ�]M �= X. Then, by Proposition 3, [[ϕ]]M �= X. Thus, we found
a topological space (X, τ) which refutes ϕ in the w-topological belief seman-
tics. Hence, wKD45 is complete w.r.t. the class of all topological spaces in the
w-topological belief semantics.

We point out that the above completeness proof crucially uses reasoning in
Kripke frames rather than topology. However, as already mentioned earlier in
the paper, topological (and geometrical) reading of our belief modality is key
for its intuitive understanding as well as for viewing it as a Stalnaker-like belief
operator.

5 The Topology of Static and Dynamic Belief Revision

5.1 Static Belief Revision: Conditional Beliefs

In this section, we explore the topological analogue of static conditioning by pro-
viding a topological semantics for conditional belief modalities based on arbitrary
topological spaces12. We obtain the semantics for a conditional belief modality
Bϕψ in a natural and standard way, as in [2], by relativizing the semantics
for the simple belief modality to the extension of the learnt formula ϕ. Unlike
model restriction in the case of updates, our conditional belief semantics does
not lead to a change in the initial model. Conditional belief modalities intend
to capture the hypothetical belief changes of an agent in case she would receive
new information (see, e.g., [2] for a more detailed discussion on the topological
interpretation of conditional beliefs).

Syntax and Semantics. We now consider the language LKCB obtained by
adding conditional belief modalities Bϕψ to LKB , where Bϕψ reads if the agent
would learn ϕ, then she would come to believe that ψ was the case before the
learning [4, p. 12].

12 In [2], we propose topological semantics for conditional beliefs based on hereditarily
extremally disconnected spaces.
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For any subset P of a topological space (X, τ), we can generalize the belief
modality B on the topo-models by relativizing the closure and the interior oper-
ators to the set P . More precisely, given a topological model M = (X, τ, ν), the
additional semantic clause reads

[[Bϕψ]]M = Int([[ϕ]]M → Cl([[ϕ]]M ∩ Int([[ϕ]]M → [[ψ]]M)))

where [[ϕ]]M → [[ψ]]M := (X\[[ϕ]]M) ∪ [[ψ]]M.
One possible justification for the above semantics of conditional belief is that

it validates an equivalence that generalizes the one for belief in a natural way:

Proposition 4. The following equivalence is valid in all topological spaces wrt
the refined topological semantics for conditional beliefs and knowledge

Bϕψ ↔ K(ϕ → 〈K〉(ϕ ∧ K(ϕ → ψ))).

This shows that, just like simple beliefs, conditional beliefs can be defined
in terms of knowledge and this identity corresponds to the definition of the
“conditional connective ⇒” in [9]. Moreover, as a corollary of Proposition 4, we
obtain that the equivalences

B�ψ
(1)↔ K(� → 〈K〉(� ∧ K(� → ψ))

(2)↔ K〈K〉Kψ
(3)↔ Bψ

valid in all topological spaces, and thus our semantics for conditional beliefs and
simple beliefs (in terms of the interior of the closure of the interior operator) are
perfectly compatible with each other. Last but not least, we obtain the complete
logic KCB of knowledge and conditional beliefs w.r.t. all topological spaces in
the following way.

Theorem 8. The logic KCB of knowledge and conditional beliefs is axiomatized
completely by the system S4 for the knowledge modality K together with the
following equivalences:

1. Bϕψ ↔ K(ϕ → 〈K〉(ϕ ∧ K(ϕ → ψ)))
2. Bϕ ↔ B�ϕ.

5.2 Dynamic Belief Revision: Updates on All Topological Spaces

In this section, we implement updates on arbitrary topological spaces and show
that the problems occurred when we work with extremally disconnected spaces
do not arise here: we in fact obtain a complete dynamic logic of knowledge and
conditional beliefs with respect to the class of all topological spaces.

We now consider the language L!KCB obtained by adding (existential)
dynamic modalities 〈!ϕ〉ψ to LKCB and we model 〈!ϕ〉ψ by means of subspaces
exactly the same way as formalized in Sect. 3.2 , i.e., by using the restricted
model Mϕ with the semantic clause

[[〈!ϕ〉ψ]]M = [[ψ]]Mϕ .



226 A. Baltag et al.

In this setting, however, as the underlying static logic KCB is the logic of all
topological spaces, we implement updates on arbitrary topological spaces. Since
the resulting restricted model Mϕ is always based on a topological (sub)space
and no additional property of the initial topology needs to be inherited by the
corresponding subspace (unlike the case for extremally disconnected spaces), we
do not face the problem of loosing some validities of the corresponding static
system: all the axioms of KCB (and, in particular, of S4 and wKD45) will still
be valid in the restricted space. Moreover, we obtain a complete axiomatization
of the dynamic logic of knowledge and conditional beliefs:

Theorem 9. The complete and sound dynamic logic !KCB of knowledge and
conditional beliefs with respect to the class of all topological spaces is obtained
by adding the following reduction axioms to any complete axiomatization of the
logic KCB:

1. 〈!ϕ〉p ↔ (ϕ ∧ p) 4. 〈!ϕ〉Kψ ↔ (ϕ ∧ K(ϕ → 〈!ϕ〉ψ))
2. 〈!ϕ〉¬ψ ↔ (ϕ ∧ ¬〈!ϕ〉ψ) 5. 〈!ϕ〉Bθψ ↔ (ϕ ∧ B〈!ϕ〉θ〈!ϕ〉ψ)
3. 〈!ϕ〉(ψ ∧ θ) ↔ (〈!ϕ〉ψ ∧ 〈!ϕ〉θ) 6. 〈!ϕ〉〈!ϕ〉θ ↔ 〈!〈!ϕ〉ψ〉θ

Proof. Proof of this theorem follows, in a standard way, by the soundness of the
reduction axioms with respect to all topological spaces. For proof details, we
refer to [2, Theorem 12].

6 Conclusion and Future Work

In this paper, we proposed a new topological semantics for belief in terms of
the interior of the closure of the interior operator which coincides with the one
introduced in [1,2,25] on extremally disconnected spaces and diverges from it on
arbitrary topological spaces. This new topological semantics for belief comes with
significant advantages especially concerning static and dynamic belief revision
(in particular, concerning conditional belief and update semantics) and a few
disadvantages compared to the setting in [1,2].

In [1,2], we worked with the knowledge system S4.2 and the standard belief
system KD45, however, on a restricted class of topological spaces, namely on
extremally disconnected spaces. Although the framework of [1,2] provides a solid
ground for the static systems of knowledge and belief and the relation between
the two, the topological semantics based on extremally disconnected spaces falls
short of dealing with updates as shown in Sect. 3.2. In particular, in order to deal
with updates one needs to further restrict the class of extremally disconnected
spaces to hereditarily extremely disconnected spaces.

In this paper, we did not only provide a semantics for belief based on all topo-
logical spaces but we also showed that its natural extension to conditional beliefs
and updates gave us a ‘well-behaved’ semantics. In other words, while extending
the class of topo-models we could work within the context of knowledge and
belief, we also resolved the problem about updates present in the previous set-
ting. The price we had to pay for these results, however, was a weakening of the
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underlying static knowledge and belief logics: we weakened the knowledge logic
S4.2 to S4 and the belief logic KD45 to a slightly weaker one wKD45.

This paper can be seen as a continuation of the research program that we
have been pursuing on a topological semantics for belief: in [1] we proposed
a topological belief semantics based on extremally disconnected spaces and in
[2] we investigated a topological belief semantics on hereditarily extremally dis-
connected spaces and further extended this setting with conditional beliefs and
updates. The current work takes a broader perspective and examines belief,
conditional beliefs and updates on arbitrary topological spaces.

In on-going work, we investigate a more natural axiomatization of the logic
of knowledge and conditional beliefs KCB and its dynamic counterpart with
respect to arbitrary topological spaces. Moreover, we also investigate the topo-
logical semantics for evidence and evidence-based justification in connection with
topological interpretations of knowledge and belief in [3] and, following [34], we
further explore the dynamics of evidence in a topological setting in the extended
version of [3].

Acknowledgments. We thank the anonymous referees for their valuable comments
that help us improve the presentation of the paper significantly.
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25. Özgün, A.: Topological Models for Belief and Belief Revision. Master’s thesis,
ILLC. University of Amsterdam, The Netherlands (2013)

26. Parikh, R., Moss, L.S., Steinsvold, C.: Topology and epistemic logic. In: Aiello,
M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp.
299–341. Springer, Amsterdam (2007)

27. Rott, H.: Stability, strength and sensitivity: converting belief into knowledge.
Erkenntnis 61, 469–493 (2004)

28. Sikorski, R.: Boolean Algebras. Springer, Heidelberg (1964)
29. Sosa, E.: How to defeat opposition to moore. Nos 33, 141–153 (1999)
30. Stalnaker, R.: On logics of knowledge and belief. Phil. Stud. 128, 169–199 (2006)
31. Steinsvold, C.: Topological models of belief logics. Ph.D. thesis, New York, NY,

USA (2007)
32. Steinsvold, C.: A grim semantics for logics of belief. J. Philos. Logic 37, 45–56

(2008)
33. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M.,

van Benthem, J., Pratt-Hartman, I. (eds.) Handbook of Spatial Logics, pp. 217–
298. Springer, Amsterdam (2007)

34. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Stud. Logica
99(1), 61–92 (2011)

35. Voorbraak, F. As Far as I Know. Ph.D. thesis, Utrecht University (1993)
36. Williamson, T.: Knowledge and its Limits. Oxford University Press, Oxford (2000)
37. Wolter, F. Lattices of Modal Logics. Ph.D. thesis. Free University, Berlin (1993)
38. Zvesper, J.: Playing with Information. Ph.D. thesis, ILLC. University of Amsterdam

(2010)

http://dx.doi.org/10.1007/978-3-662-48561-3_16


Universal Models for the Positive Fragment
of Intuitionistic Logic

Nick Bezhanishvili1, Dick de Jongh1, Apostolos Tzimoulis2,
and Zhiguang Zhao2(B)

1 ILLC, University of Amsterdam, Amsterdam, The Netherlands
{N.Bezhanishvili,D.H.J.deJongh}@uva.nl

2 Delft University of Technology, Delft, The Netherlands
apostolos@tzimoulis.eu, zhaozhiguang23@gmail.com

Abstract. We describe the n-universal model U�(n) of the positive frag-
ment of the intuitionistic propositional calculus IPC. We show that U�(n)
is isomorphic to a generated submodel of U(n) – the n-universal model
of IPC. Using U�(n), we give an alternative proof of Jankov’s theorem
stating that the intermediate logic KC, the logic of the weak law of
excluded middle, is the greatest intermediate logic extending IPC that
proves exactly the same positive formulas as IPC.

Keywords: Universal models · Positive morphism · Fragment of
intuitionistic logic · Jankov’s theorem

1 Introduction

In this paper, we use the tools of universal models to study the positive frag-
ment of intuitionistic propositional calculus IPC, i.e., formulas containing only
propositional variables, ∧, ∨ and →. Fragments of intuitionistic logic have been
thoroughly investigated in the literature. For a detailed historic account we refer
to [20]. Among these fragments, the locally finite ones, i.e., the fragments where
for each n ∈ ω there are only finitely many non-equivalent formulas in n vari-
ables, attracted more attention. For example, [13] proved a classic result that
the [∧,→]-fragment of IPC is locally finite. The positive fragment is not locally
finite, and as a result it has not received much attention in the literature. The
major interest for the study of this fragment comes from minimal logic [19], the
sublogic of intuitionistic logic obtained by dropping the axiom ⊥ → ϕ.

Universal models of intuitionistic logic can be seen as duals to free Heyt-
ing algebras. The basic idea underlying the construction of universal models
can be traced back to [9]. Universal models for the full IPC were described in
[1,16,21,22]; for a detailed exposition see also [4, Sect. 3.2], [6, Sect. 8.7] and
[11, Sect. 3]. We refer to [15, Sect. 3.2.1] for an overview of the history of univer-
sal models. The universal model for the [∧,→]-fragment of IPC is characterized

c© Springer-Verlag GmbH Germany 2017
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in [5,14,23]. Universal models for other locally finite fragments of IPC are dis-
cussed1 in [10,17]. In this paper we focus on the [∧,∨,→]-fragment of IPC.

The contribution of the present paper can be listed as follows:

– We describe the n-universal model U�(n) of the positive fragment of IPC and
show that it is isomorphic to a generated submodel of the n-universal model
U(n) of IPC and at the same time is a (positive morphism) quotient of U(n).
We study the properties of U�(n) as well as its connection with the n-Henkin
model H�(n) for the positive fragment of IPC.

– Using U�(n), we give an alternative proof of Jankov’s theorem that the inter-
mediate logic KC, the logic of the weak law of excluded middle, is the greatest
intermediate logic extending IPC that proves exactly the same positive formu-
las as IPC.

The paper is organized as follows: In Sect. 2, we recall all the basic notions and
results used consequently in the paper. We also discuss the top-model property
and its relationship with the positive fragment of IPC. In Sect. 3, we define the
universal models for the positive fragment of IPC. We also recall the definition of
positive morphisms and show that every finite Kripke model can be mapped via
a positive morphism into the universal model. We also define positive Jankov-
de Jongh formulas and prove an analogue of the Jankov-de Jongh theorem for
these formulas. In Sect. 4, we discuss the relationship between the n-Henkin
models and the n-universal models of the positive fragment and in Sect. 5 we
give an alternative proof of Jankov-de Jongh and Jankov’s theorems. In Sect. 6
we summarize obtained results and discuss some future research directions.

2 Preliminaries

2.1 Basic Notations

In this section, we briefly recall the relational semantics for the intuitionistic
propositional calculus IPC. For a detailed study of IPC we refer to [6].

Definition 1 (Kripke frames and models). A Kripke frame is a pair F =
(W,R) where W is a set and R is a partial order on it. A Kripke model is a
triple M = (W,R, V ) where (W,R) is a Kripke frame and V is a partial map
V : Prop → P(W ) (where Prop is the set of propositional variables and P(W )
is the powerset of W ) such that for any w,w′ ∈ W we have that w ∈ V (p) and
wRw′ imply w′ ∈ V (p).

The valuation can be extended to all formulas in a standard way. We call the
upward closed subsets of W (with respect to R) upsets. The set of all upsets of
W is denoted by Up(W ). As usual w ∈ V (ϕ) will be denoted as w |= ϕ.

1 We note that [10,17] do not discuss universal (exact in their terminology) models of
non-locally finite fragments of IPC.
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Definition 2 (General frames).

1. A general frame is a triple F = (W,R,P), where (W,R) is a Kripke frame and
P is a family of upsets containing ∅ and closed under ∩,∪ and the following
operation ⇒: for every X,Y ⊆ W ,

X ⇒ Y = {x ∈ W : ∀y ∈ W (xRy ∧ y ∈ X → y ∈ Y )}.2

Elements of the set P are called admissible sets.
2. A general frame F = (W,R,P) is called refined if for any x, y ∈ W ,

∀X ∈ P(x ∈ X → y ∈ X) ⇒ xRy.

3. F is called compact, if for any families X ⊆ P and Y ⊆ {W\X : X ∈ P},
for which X ∪ Y has the finite intersection property (i.e., finite intersections
of the elements of X ∪ Y are non-empty), we have

⋂
(X ∪ Y) = ∅.

4. A general frame F is called a descriptive frame if it is refined and compact.3

By an n-formula we mean a formula built from p1, . . . , pn. An n-model is a
model where Prop = {p1, . . . , pn}. Next we recall some frame and model con-
structions that will be used consequently.

Definition 3 (Generated subframe and generated submodel).

1. For any Kripke frame F = (W,R) and X ⊆ W , the subframe of F generated
by X is FX = (R(X), R′), where R(X) = {w′ ∈ W : wRw′ for some w ∈ X}
and R′ is the restriction of R to R(X). If X = {w}, then we denote FX by
Fw and R(X) by R(w).

2. For any Kripke frame F = (W,R), any valuation V on F and X ⊆ W , the
submodel of M = (F, V ) generated by X is MX = (FX , V ′), where V ′ is
the restriction of V to R(X). If X is a singleton {w}, then we denote MX

by Mw.
3. For any general frame F = (W,R,P) and any X ⊆ W , the (general) subframe

of F generated by X is FX = (R(X), R′,Q), where (R(X), R′) is the subframe
of (W,R) generated by X, and Q = {U ∩ R(X) : U ∈ P}.
Let F = (W,R,P) be a descriptive frame and let W ′ ∈ P. Let G =

(W ′, R′,Q) denote a general frame such that R′ is the restriction of R to W ′

and Q = {U ∩W ′ : U ∈ P}. For a proof of the next lemma we refer to, e.g., [23].
In terms of Esakia spaces this lemma states that a restriction of the order and
topology of an Esakia space to a clopen upset in it yields again an Esakia space.

Lemma 4. Let F = (W,R,P) be a descriptive frame and let W ′ ∈ P. Then
G = (W ′, R′,Q) is a descriptive frame.
2 In fact, ⇒ is just the Heyting implication of the Heyting algebra of all upsets of W.
3 Descriptive general frames are essentially the same as Esakia spaces (see e.g., [4,
Sect. 2.3]). This topological perspective explains why compact general frames are
called “compact” (the corresponding topology is compact). This also explains why
Q in Definition 3(3) is defined this way.
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Let F = (W,R,P) be a descriptive frame. A descriptive (or an admissible)
valuation on F is a map V : Prop → P. A pair (F, V ) is a descriptive model
is F is a descriptive frame and V a descriptive valuation on F. The truth and
validity of formulas in Kripke and descriptive frames and models are defined in
a standard way. Next we recall the definition of p-morphisms.

Definition 5 (p-morphism).

1. Let F = (W,R) and F′ = (W ′, R′) be Kripke frames. A map f : W → W ′ is
called a p-morphism from F to F′ if
– wRw′ implies f(w)R′f(w′) for any w,w′ ∈ W ;
– f(w)R′v′ implies ∃v ∈ W (wRv ∧ f(v) = v′).

2. Let F = (W,R,P) and G = (V, S,Q) be general frames. We call a Kripke
frame p-morphism f of (W,R) to (V, S) a (general frame)p-morphism of F
to G, if

∀X ∈ Q, f−1(X) ∈ P.

3. A p-morphism f from M = (W,R, V ) to M′ = (W ′, R′, V ′) is a p-morphism
from (W,R) to (W ′, R′) such that w ∈ V (p) ⇔ f(w) ∈ V ′(p) for every p ∈
Prop. For models based on general frames, we also require the condition for
p-morphisms between general frames. For n-models, the definition is similar.

The extra condition on p-morphisms in Definition 5.2 is again best explained
by viewing descriptive frames as Esakia spaces. This condition is then just equiv-
alent to continuity.

Next we recall the definition of n-Henkin model, which is the canonical model
for the n-variable fragment of IPC.

Definition 6 (n-Henkin model).

1. An n-theory is a set of n-formulas closed under deduction in IPC.
2. A set of formulas Γ has the disjunction property, if for all n-formulas ϕ,ψ,

we have that ϕ ∨ ψ ∈ Γ implies ϕ ∈ Γ or ψ ∈ Γ .
3. The n-canonical model or n-Henkin model H(n) = (Wn, Rn, Vn) is a model

where Wn consists of all consistent n-theories with the disjunction property,
Rn is the subset relation, and Γ ∈ Vn(p) iff p ∈ Γ .

2.2 The n-universal Model for the Full Language of IPC

In this section we recall the definition of the n-universal model for the full lan-
guage of IPC, state its main properties, recall the definition of the de Jongh
formulas and the statement of the Jankov-de Jongh theorem. Proofs of all the
results stated here can be found in [4, Chap. 3], [6, Sect. 8.6] and [11, Sect. 3].

In the following, we use the terminology color to denote the valuation at
a world in an n-model. In general, an n-color (n can be omitted if it is clear
from the context) is a sequence c1 . . . cn of 0’s and 1’s. The set of all n-colors is
denoted by Cn. We define the order on colors as follows:

c1 . . . cn ≤ c′
1 . . . c′

n iff ci ≤ c′
i, for 1 ≤ i ≤ n.
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We write c1 . . . cn < c′
1 . . . c′

n if c1 . . . cn ≤ c′
1 . . . c′

n but c1 . . . cn = c′
1 . . . c′

n.
A coloring on F = (W,R) is a map col : W → Cn satisfying uRv ⇒ col(u) ≤

col(v). It is easy to see that colorings and valuations are in 1-1 correspondence.
Given M = (W,R, V ), we can reconstruct the valuation by the coloring colV :
W → Cn, where colV (w) = c1 . . . cn, and for each 1 ≤ i ≤ n we have ci = 1 if
w ∈ V (pi), and 0 otherwise. We call colV (w) the color of w under V .

In any frame F = (W,R), we say that X ⊆ W totally covers w (notation:
w ≺ X), if X is the set of all immediate successors of w. When X = {v}, we
write w ≺ v. A set X ⊆ W is called an anti-chain if |X| > 1 and for every
w, v ∈ X, w = v implies that ¬(wRv) and ¬(vRw). If uRv we say that u is
under v.

We can now inductively define the n-universal model U(n) by cumulative
layers U(n)k for k ∈ ω, where each layer contains all the points w such that the
longest chain starting from w has length k, omitting n if it is clear from the
context.

Definition 7 (n-universal model).

– The first layer U(n)1 consists of 2n nodes with the 2n different n-colors under
the discrete ordering.

– For k ≥ 1, under each element w in U(n)k, for each color s < col(w), we put
a new node v in U(n)k+1 such that v ≺ w with col(v) = s, and we take the
reflexive transitive closure of the ordering.

– For k ≥ 1, under any finite anti-chain X with at least one element in U(n)k

and any color s with s ≤ col(w) for all w ∈ X, we put a new element v in
U(n)k+1 such that col(v) = s and v ≺ X and we take the reflexive transitive
closure of the ordering.

The whole model U(n) is the union of its layers.

It is easy to see from the construction that every U(n)k is finite. As a conse-
quence, the generated submodel U(n)w is finite for any node w in U(n).

We now state some properties of the n-universal model. For a proof of the next
lemma, we refer to, e.g., [6, Sect. 8.6], [23, Theorem 3.2.3] and [11, Lemma 11].

Lemma 8. Let M be a finite rooted Kripke n-model. Then there exist a unique
w ∈ U(n) and a unique p-morphism f mapping M onto U(n)w.

The next theorem shows that U(n) is a counter-model to every n-formula
not provable in IPC. This justifies the name “universal model” for U(n). For a
proof, we refer to, e.g., [11, Theorem 13] and [23, Theorem 3.2.4].

Theorem 9.

1. For any n-formula ϕ we have U(n) |= ϕ iff �IPC ϕ.
2. For any n-formulas ϕ and ψ, and for all w ∈ U(n) we have

(U(n), w |= ϕ ⇒ U(n), w |= ψ) iff ϕ �IPC ψ.
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In the following, we recall the definition of de Jongh formulas for the full lan-
guage of IPC and the fact that these formulas define point-generated submodels
of universal models.

For any node w in an n-model M, if w ≺ {w1, . . . , wm}, then we let

prop(w) = {pi|w |= pi, 1 ≤ i ≤ n},
notprop(w) = {qi|w � qi, 1 ≤ i ≤ n},
newprop(w) = {rj |w � rj and wi |= rj for each 1 ≤ i ≤ m, for 1 ≤ j ≤ n}
Here newprop(w) denotes the set of atoms which are “about to be true in

w”, i.e., the atoms that are false in w but are true in its all proper successors.
For the definition of a depth of a point in a frame we refer to [4, Definition 3.1.9]
or [6, p. 43]. Roughly speaking, a point w of a universal model has depth k if
belongs to the k-th layer of U(n). The depth of a point w will be denoted by
d(w).

Definition 10. Let w be a point in U(n). We inductively define the correspond-
ing de Jongh formulas ϕw and ψw:

If d(w) = 1, then let

ϕw =
∧

prop(w) ∧
∧

{¬pk|pk ∈ notprop(w), 1 ≤ k ≤ n},

and
ψw = ¬ϕw.

If d(w) > 1, and {w1, . . . , wm} is the set of all immediate successors of w, then
define

ϕw =
∧

prop(w) ∧ (
∨

newprop(w) ∨
m∨

i=1

ψwi
→

m∨

i=1

ϕwi
),

and

ψw = ϕw →
m∨

i=1

ϕwi
.

The most important properties of the de Jongh formulas are recalled in the
following proposition. For a proof, we refer to [4, Theorem 3.3.2].

Proposition 11. For every w ∈ U(n), we have:

– V (ϕw) = R(w),
– V (ψw) = U(n)\R−1(w), where R−1(w) = {w′ ∈ U(n) : w′Rw}.

Now we state more properties of the universal model and de Jongh formulas.
For a proof of the next proposition we refer to [11, Corollary 19]. We let

Cnn(ϕ) = {ψ : ψ is an n-formula such that �IPC ϕ → ψ},
Thn(M, w) = {ϕ : ϕ is an n-formula such that M, w |= ϕ},

We will omit n if it is clear from the context.
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Proposition 12. For any point w in U(n), Thn(U(n), w) = Cnn(ϕw).

The next lemma states that U(n)w is isomorphic to the submodel of H(n)
generated by the theory axiomatized by the de Jongh formula of w. For a proof,
we refer to [11, Lemma 20].

Lemma 13. For any w ∈ U(n), let ϕw be the de Jongh formula of w, then we
have that H(n)Cn(ϕw) is isomorphic to U(n)w.

Let Upper(M) denote the submodel M{w∈W |d(w)<ω} generated by all the
points of finite depth. Intuitively, Upper(M) is the “upper” part of M. It can
be shown that the n-universal model is isomorphic to the upper part of the n-
Henkin model, i.e., to Upper(H(n)). For a proof, we refer to, e.g., [4, Theorem
3.2.9] and [11, Theorem 39].

Theorem 14. Upper(H(n)) is isomorphic to U(n).

The following result follows from Proposition 11 and Lemma 13. For a proof
see [11, Corollary 21].

Proposition 15. Let M be any model and w be a point in U(n) = (W,R, V ).
For any point x in M, if M, x |= ϕw, then there exists a unique point v satisfying
M, x |= ϕv,M, x � ϕv1 , . . . ,M, x � ϕvm

, where v ≺ {v1, . . . , vm}, and wRv.

In the following we state the Jankov-de Jongh theorem for the full language
of IPC. For a proof we refer to [4, Theorem 3.3.3] and [11, Theorem 26].

Theorem 16 (Jankov-de Jongh theorem for IPC). Let G be a descriptive
frame and w ∈ U(n) for some n ∈ ω. Then G � ψw iff there is an n-valuation V
on G such that U(n)w is a p-morphic image of a generated submodel of (G, V ).

Notice that for each finite rooted frame F there is a valuation V such that
(F, V ) is isomorphic to U(n)w for some n ∈ ω and w ∈ U(n). (For this it is
sufficient to introduce a new propositional variable ps for each s in F and let
V (ps) = R(s).) So the above theorem applies to any finite rooted F.

2.3 The Top-Model Property

The positive fragment of IPC consists of the formulas constructed only by ∧,∨,→.
We denote this language by L∧,∨,→. Formulas in this fragment will be called
positive formulas4. For the other fragments of IPC the notation is similar.

By replacing every occurrence of ⊥ by ¬(p → p), every formula is IPC-
equivalent to a ⊥-free formula. For simplicity of discussion, we restrict our atten-
tion to ⊥-free formulas (i.e. formulas in L∧,∨,→,¬) only.

Definition 17 (Top model). A Kripke model M = (W,R, V ) is called a top
model, if it has a node t ∈ W such that:
4 Notice that some authors, e.g., [6] call such formulas negation-free.
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– t is a successor of all nodes, i.e., we have wRt for each w ∈ W ;
– all propositional variables are true in t.

The node t is called the top point of M.

Definition 18 (Top-model property). We say that a formula ϕ has the top-
model property, if for all Kripke models M = (W,R, V ), all w ∈ W we have
M, w |= ϕ iff M+, w |= ϕ, where M+ = (W+, R+, V +) is obtained by adding a
top point t to M.

The next proposition states that there is a procedure which with any intu-
itionistic formula ϕ associates a positive formula ϕ∗ or ⊥ equivalent to ϕ over
top models. The algorithm describing how to compute ϕ∗ given ϕ is provided in
[12, Theorem 5].

Proposition 19. There is an algorithm which transforms any formula ϕ in
L∧,∨,→,¬ into a formula ϕ∗ in L∧,∨,→ ∪{⊥} such that for any top model M and
any node w in M, we have M, w |= ϕ ↔ ϕ∗. Furthermore if ϕ∗ = ⊥ and ψ∗ = ⊥
then (ϕ → ψ)∗ = ϕ∗ → ψ∗, (ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗ and (ϕ ∨ ψ)∗ = ϕ∗ ∨ ψ∗.

3 The Universal Models for the Positive Fragment of IPC

3.1 The Universal Model

We will now proceed by defining the n-universal model, U�(n), for the positive
fragment of IPC. This model closely resembles the n-universal model for IPC:
it is a generated submodel of it, and as we shall see below, is also a positive
morphism quotient (see Definition 22 and Lemma 27). We now define U�(n) =
(U�(n), R�, V �) inductively in a similar way as we defined U(n).

Definition 20.

– The first layer U�(n)1 consists of 2n −1 nodes with all the different n-colors—
excluding the color 1 . . . 1—under the discrete ordering.

– For k ≥ 1, under each element w in U�(n)k, for each color s < col(w), we put
a new node v in U�(n)k+1 such that v ≺ w with col(v) = s, and we take the
reflexive transitive closure of the ordering.

– For k ≥ 1, under any finite anti-chain X with at least one element in U�(n)k

and any color s with s ≤ col(w) for all w ∈ X, we put a new element v in
U�(n)k+1 such that col(v) = s and v ≺ X, and we take the reflexive transitive
closure of the ordering.

The whole model U�(n) is the union of its layers.

Notice that U�(1) is very different from the Rieger-Nishimura ladder U(1).
It is well known that U(1) is infinite while U�(1) consists of a single point that
does not satisfy p. The only formulas satisfied at this point are the classical
tautologies. For n > 1 we have that U�(n) is infinite. Below we present the first
two layers of U�(2) (Fig. 1). The third layer consists of 72 points.
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Fig. 1. The first two layers of U�(2)

It is known (see e.g., [4, Theorem 3.2.19]) that U(n), where n ≥ 2, has
uncountably many upsets, and therefore, as our language is countable, not all of
them are definable. A similar result holds for U�(n).

Lemma 21. There are uncountably many upsets in U�(n) for n ≥ 2. Thus, not
all upsets of U�(n) are definable.

Proof. We prove the result for n = 2. The case n > 2 follows since the underlying
frame of U�(2) is a generated subframe of the underlying frame of U�(n) for
n ≥ 2. We show that U�(2) has a countable anti-chain. As every subset of this
anti-chain generates a unique upset, the latter implies that there are 2ℵ0 upsets
of U�(2). This, in turn, means that not all upsets of U�(2) are definable.

The proof proceeds similarly to the proof that U(2) has a countable anti-chain
(see e.g., [4, Theorem 3.2.19(2)]). The points of the first layer of U�(2) are of the
colors 01, 00 and 10. It is easy to see that we can embed the Rieger-Nishimura
ladder into the submodel of U�(2) that contains the points that are not below
the 10-point. Hence there exists a countable chain of points below the 00-point,
let us call them an (where anR�am for n ≥ m), such that the upsets they
generate do not contain the 10-point. This means that the 10-point and an form
an anti-chain for each n ∈ ω. Therefore for each n ∈ ω there exists a point bn

totally covered by an and the 10-point. We will now argue that {bn : n ∈ ω} is a
countable anti-chain. Indeed, let m = n. We have that ¬(anR�bm), which implies
that ¬(bnR�bm) by the definition of bn. By a symmetric argument, we also have
¬(amR�bn) and thus ¬(bmR�bn). This concludes the proof of the lemma. ��

3.2 Positive Morphisms

We will now recall the definition of positive morphisms between descriptive
frames and models. In [6, Sect. 9.1] these morphisms are called dense subreduc-
tions. Positive morphisms are closely related to strong partial Esakia morphisms
of [2]. However, strong Esakia morphisms satisfy additional conditions which
guarantee a duality between these morphisms and (∧,∨,→)-homomorphisms
between Heyting algebras.

Given two intuitionistic models (W,R, V ) and (W ′, R′, V ′) and a partial map
f : W → W ′, for each X ⊆ W ′ we let f∗(X) = W\R−1(f−1[W ′\X]).
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Definition 22. Let (W,R, V ) and (W ′, R′, V ′) be models. A positive morphism
is a partial map f : (W,R, V ) → (W ′, R′, V ′) such that:

1. If w, v ∈ dom(f) and wRv then f(w)R′f(v) (forth condition);
2. If w ∈ dom(f) and f(w)R′v, then there exists some u ∈ dom(f) such that

f(u) = v and wRu (back condition);
3. If w ∈ dom(f) and vRw, then v ∈ dom(f);
4. For every p ∈ Prop we have V (p) = f∗(V ′(p)).

The last condition of Definition 22 guarantees that f∗(V ′(p)) is an admissi-
ble upset. For descriptive frames (W,R,P) and (W ′, R′,P ′′), the corresponding
condition is: U ∈ P ′ implies f∗(U) ∈ P, which ensures that f∗ is a well-defined
map between P ′ and P. In fact, conditions (1)-(2) ensure that it preserves ∧
and →, and condition (3) yields that it also preserves ∨, so f∗ is a (∧,∨,→)-
homomorphism.

Lemma 23. Let f : W → W ′ be a positive morphism. If X ⊆ W ′ is an upset
of W ′, then f∗(X) = f−1[X] ∪ (W\dom(f)).

Proof. Let X be an upset of W ′. Then W ′\X is a downset of W ′. By Def-
inition 22(3), w ∈ dom(f) and u ∈ R−1(w) imply u ∈ dom(f) and Defini-
tion 22(1) yields f(u)Rf(w). Since W ′\X is a downset, w ∈ f−1[W ′\X] implies
u ∈ f−1[W ′\X]. Thus, R−1(f−1[W ′\X]) = f−1[W ′\X].

Therefore, we have that f∗(X) = W\R−1(f−1[W ′\X]) = W \ f−1[W ′\X].
But W\f−1[W ′\X] = f−1[X] ∪ (W\dom(f)), which finishes the proof of the
lemma. ��

We will now give a more convenient characterization of positive morphisms.

Lemma 24. A partial function f : (W,R, V ) → (W ′, R′, V ′) is a positive mor-
phism iff the following conditions hold:

1∗. If w, v ∈ dom(f) and wRv then f(w)R′f(v);
2∗. If w ∈ dom(f) and f(w)R′v then there exists some u ∈ dom(f) such that

f(u) = v and wRu;
3∗. If w ∈ dom(f) and vRw, then v ∈ dom(f);
4∗. For every p ∈ Prop and w ∈ dom(f) we have w ∈ V (p) ⇐⇒ f(w) ∈ V ′(p);
5∗. dom(f) ⊇ {w ∈ W : ∃p ∈ Prop w /∈ V (p)}.
Proof. We need to prove that under the assumptions (1)–(3) of the definition of
positive morphisms, (4) is equivalent to (4∗) and (5∗).

Let us assume (4∗) and (5∗). By Lemma 23 we have that f∗(V ′(p)) =
f−1[V ′(p)] ∪ W\dom(f). By (4∗) we have that f−1[V ′(p)] = V (p) ∩ dom(f).
We also have that (5∗) implies W\dom(f) ⊆ V (p) since every element out-
side the domain of f satisfies all propositional variables. Therefore V (p) =
(V (p) ∩ dom(f)) ∪ W\dom(f) and thus f∗(V ′(p)) = V (p).

For the other direction assume (4). Then w ∈ dom(f) and f−1[V ′(p)] ∪
W\dom(f) = V (p) yield that w ∈ V (p) iff f(w) ∈ V ′(p). So (4∗) holds. Also, for
any p ∈ Prop we have that W\dom(f) ⊆ V (p) and hence all elements outside
the domain of f satisfy all propositional variables. So (5∗) holds. ��
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From now on, we will use this alternative characterization of positive mor-
phisms. Obviously, every p-morphism is a positive morphism. Moreover, notice
that if for all w ∈ W , there is some propositional variable p such that p is not
satisfied in w, then the positive morphisms are p-morphisms. Finally, it is easy
to check that the composition of two positive morphisms is a positive morphism.

The essential difference between p-morphisms and positive morphisms is that
the latter are partial maps – domains of such maps may not contain worlds that
satisfy all propositional variables. The reason why we can ignore these worlds
when dealing with the positive fragment of IPC lies in a simple fact (which can
be easily checked by induction) that in such worlds all positive formulas are true.
Next we show that positive morphisms preserve positive formulas.

Proposition 25. Let f : (W,R, V ) → (W ′, R′, V ′) be a positive morphism.
Then for every positive formula ϕ and w ∈ dom(f) we have

(W,R, V ), w |= ϕ iff (W ′, R′, V ′), f(w) |= ϕ.

Proof. We proceed by induction on the complexity of ϕ. The base case, i.e. when
ϕ is a propositional variable, follows directly from Lemma 24(4). Now suppose
that f preserves the positive formulas ϕ and ψ. That f also preserves ϕ∨ψ and
ϕ ∧ ψ trivially follows from the semantic definitions of the connectives and the
induction hypothesis.

Let us now assume that (W,R, V ), w |= ϕ → ψ. Let f(w)R′v and assume
that (W ′, R′, V ′), v |= ϕ. Then by the definition of the positive morphisms, there
is some u ∈ dom(f) such that f(u) = v and wRu. By the induction hypothesis,
we have (W,R, V ), u |= ϕ. Hence (W,R, V ), u |= ψ, which by the induction
hypothesis gives us that (W ′, R′, V ′), f(u) |= ψ. So (W ′, R′, V ′), f(w) |= ϕ → ψ.

For the converse direction, let us assume that (W ′, R′, V ′), f(w) |= ϕ → ψ
and for some u such that wRu we have (W,R, V ), u |= ϕ. If u ∈ dom(f), then
the induction hypothesis readily implies that (W,R, V ), u |= ψ. If u /∈ dom(f),
then by Lemma 24(5) for every propositional variable p we have that u ∈ V (p),
which implies that (W,R, V ), u |= ψ, since all positive formulas are true in such
worlds. ��

The next corollary is a consequence of the proposition above.

Corollary 26. Every formula in L∧,∨,→ ∪ {⊥} has the top-model property.

Proof. Let M = (W,R, V ) be an arbitrary Kripke model. We define a partial
map f : M+ → M such that it is the identity on all the elements of W and it is
undefined in the top node. It is easy to see that f is a positive morphism. The
result now follows directly from Proposition 25 for positive formulas. Finally,
notice that for ⊥ the result is trivially true. ��

By the construction of the two universal models, we can see that U�(n)
contains all the points in U(n) which are not below the node where all propo-
sitional variables are true. Therefore, it follows that U�(n) is isomorphic to
N = (N,R, V ) with N = {w ∈ U(n) : w� /∈ R(w)}, a generated submodel
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of U(n), where w� is the greatest node of U(n) such that col(w�)i = 1 for every
i ≤ n. By Corollary 26, (U�(n))+ satisfies the same positive formulas as U�(n).
Again, by the construction of the models, it follows that (U�(n))+ is (isomorphic
to) a generated submodel of U(n), whose domain consists of the elements of U(n)
whose only successor of depth 1 satisfies all propositional variables. Let us call
this submodel M(n), and let G : (U�(n))+ → M(n) be this isomorphism.

The models U�(n) and (U�(n))+ can be viewed as two different ways of
describing the universal models of the positive fragment of IPC. In the first
approach, there are IPC-satisfiable positive formulas (for example p1 ∧ . . . ∧ pn)
that are satisfied nowhere in U�(n) and hence are indistinguishable from ⊥ in
this model. This is not the case in U(n), where every IPC-satisfiable formula is
satisfied in some world. In (U�(n))+ all positive formulas are satisfied at the
topmost point, and hence this model can distinguish positive formulas from ⊥.
As we will see below, every finite rooted model can be mapped onto a generated
submodel of U�(n) via a positive morphism, which is not the case for (U�(n))+.
On the other hand, for every finite rooted model M, the model M+ can be
mapped onto a generated submodel of (U�(n))+ via a p-morphism.

Lemma 27. There exists a surjective positive morphism F : U(n) → U�(n) with
dom(F ) = {w ∈ U(n) : ∃p ∈ Prop(w /∈ V (p))}, and for every w ∈ dom(F ) we
have that the restriction of F to U(n)w maps U(n)w onto U�(n)F (w).

Proof. We will define F by induction on the depth of the elements of U(n) in
such a way that the color of F (w) is the same as the color of w. If d(w) = 1,
then F (w) = w′, where d(w′) = 1 and col(w) = col(w′). Let us now assume
that F is defined for the elements of U(n) of depth m. Let d(w) = m + 1 and
let us assume that w ≺ {w1, . . . , wk}. Let A ⊆ F [{w1, . . . , wk}] be the set of
the R-minimal elements of F [{w1, . . . , wk}]. Then A is finite as it is a subset
of a finite set. If A is empty then let F (w) be the element of U�(n) of depth 1
with the same color as w. If A = {u} and u has the same color as w, then let
F (w) = u. Otherwise, by the construction of U�(n), there is a unique v ≺ A (by
the induction hypothesis for F ) with the same color as w and we let F (w) = v.

It remains to show that F is a surjective positive morphism, and that for
every w ∈ dom(F ), the restriction of F to U(n)w maps U(n)w onto U�(n)F (w).

That w ∈ V (p) if an only if F (w) ∈ V �(p) follows from the construction of F .
It is also easy to see by the above construction that if uRw then F (u)R�F (w).
The surjectivity of F can be shown by viewing U�(n) as the generated submodel
N of U(n) presented above. Then it is routine to check that F is the identity
function on N .

Next we show that the restriction of F to U(n)w maps U(n)w onto U�(n)F (w).
Since all elements of U�(n) have finite depth, it suffices to show that for all
u ∈ dom(F ), all the immediate successors of F (u) are images of successors of
u. Indeed, from the definition of F , the immediate successors of F (w) form a
subset of F [{w1, . . . , wk}], where w1, . . . , wk are the only immediate successors
of w. Therefore, by an easy induction on immediate successors we can show that
every element in U�(n)F (w) is the image of some element in U(n)w.
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Finally, the back clause that F (w)R�v implies the existence of some u with
wRu and such that F (u) = v follows from the fact that the restriction of F to
U(n)w maps U(n)w onto U�(n)F (w). ��

In the proof of Lemma 27 the map F is defined explicitly. An alternative
proof of this lemma can be obtained by describing the same map F indirectly
in the following way. Let us fix the injective partial map i : (U�(n))+ → U�(n)
between the two versions of the universal models to be the identity on U�(n)
and undefined in the top node of (U�(n))+ (similarly to the positive morphism
defined in the proof of Corollary 26). Moreover, by Proposition 25, for every w ∈
U(n) we have that w satisfies the same positive formulas in U(n) and (U(n))+.
Furthermore, by Lemma 8, there exists a unique p-morphism fw from ((U(n))+)w

to U(n), and in particular to M(n) (see the paragraph after Corollary 26), since
M(n) is a top model. By the uniqueness, we have that f =

⋃
w∈U(n) fw is a

p-morphism from (U(n))+ onto M(n). Then we can define F = i ◦ G−1 ◦ f
(where G is as in the paragraph after Corollary 26). This function is a positive
morphism since it is a composition of positive morphisms. It is onto because f
covers M(n) and G−1 and i are onto. Finally, since f was a union of maps from
((U(n))+)w onto U(n)f(w), it follows that the restriction of F to U(n)w maps
U(n)w onto U�(n)F (w).

Lemma 27 gives analogues of Lemma 8 and Theorem 9 for positive mor-
phisms.

Lemma 28. Let M = (W,R, V ) be a finite rooted intuitionistic n-model such
that there exist x ∈ W and p ∈ Prop with x /∈ V (p). Then there exist a unique
w ∈ U�(n) and a unique positive morphism f mapping M onto U�(n)w.

Proof. Given any finite rooted intuitionistic n-model M, Lemma 8 implies that
there is a unique w ∈ U(n) and a p-morphism f from M onto U(n)w. By taking
the F from Lemma 27, it follows that F ◦ f (with domain {x ∈ W : f(x) ∈
dom(F )}) is a positive morphism (as a composition of positive morphisms) of
M onto U�(n)F (w). Finally, since there exist x ∈ W and p ∈ Prop such that
x /∈ V (p) it follows that dom(F ◦ f) = ∅.

To show the uniqueness, we first observe that given two positive morphisms
g1, g2 from M to U�(n), we have

dom(g1) = dom(g2) = {x ∈ W : ∃p ∈ Prop(x /∈ V (p))},

because there do not exist points of U�(n) that satisfy all p ∈ Prop. Notice
that when restricted to dom(g1) both g1 and g2 become p-morphisms. Thus, if
g1 = g2, then there exist two different p-morphisms (g1 and g2) from dom(g1) to
U(n) (since U�(n) is a generated subframe of U(n)), contradicting Lemma 8. ��

The next theorem shows that U�(n) is indeed a “universal model” for all
positive formulas.

Theorem 29. For every positive n-formula ϕ, U�(n) |= ϕ iff �IPC ϕ.
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Proof. The right to left direction is trivial. For the converse, let us assume that
�IPC ϕ, i.e. there is a finite rooted model M such that M, x � ϕ, where x is
the root of M. Since ϕ is positive, we have that x does not satisfy all propo-
sitional variables. Then, by Lemma 28, there exists a unique w ∈ U�(n) and a
positive morphism f from M onto U�(n)w. By Proposition 25, it follows that
U�(n), f(x) � ϕ. ��

3.3 The Jankov-de Jongh Formulas

We will now define the de Jongh formulas for the positive fragment of IPC (for
the description of the de Jongh formulas for the [∧,→]-fragment of IPC, see [5]).
These will be used in the next section for proving Jankov’s theorem. We will
present two ways of constructing the formulas: one that mirrors the construction
of the standard de Jongh formulas, and one that derives the formulas through
the procedure cited in Sect. 2.3. For w ∈ U�(n) let prop(w),newprop(w) and
notprop(w) be defined as for the elements of U(n).

Definition 30. Let w ∈ U�(n). We will define the formulas ϕ�
w and ψ�

w by
induction on the depth of w:

– If d(w) = 1, then define

ϕ�
w =

∧
prop(w) ∧ (

∨
notprop(w) →

∧
notprop(w))

and
ψ�

w = ϕ�
w →

∧

i∈n

pi.

– If d(w) > 1, then let w ≺ {w1, . . . , wr} and define

ϕ�
w =

∧
prop(w) ∧ (

∨
newprop(w) ∨

∨

i≤r

ψ�
wi

→
∨

i≤r

ϕ�
wi

)

and
ψ�

w = ϕ�
w →

∨

i≤r

ϕ�
wi

.

The construction is motivated by the following observation: As we noted
(U�(n))+ is a generated submodel of U�(n). Using the original de Jongh formula
ϕw, for w the greatest element of (U�(n))+, we can define the de Jongh formulas
from depth 2, using exactly the same construction as for the standard de Jongh
formulas. Only now there is no need to take into consideration the ψw formula.
This is because every positive formula is satisfied in a world that satisfies all
propositional variables, and hence all positive formulas are true in w.

The above leads to the second way of constructing the de Jongh formulas for
U�(n).

Definition 31. For every w ∈ U�(n), we define ϕ�
w and ψ�

w as [ϕG(w)]∗ and
[ψG(w)]∗ respectively, where [·]∗ is the operation discussed in Proposition 19.
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The next proposition shows that the two definitions are in fact equivalent.

Proposition 32. The formulas defined in Definitions 30 and 31 are equivalent.

Proof. The proof is by induction on the depth of w. For d(w) = 1, we note that
[ϕG(w)]∗ is

∧
prop(w) ∧ (

∨
notprop(w) → ∧

prop(w) ∧ ∧
notprop(w)), which is

clearly equivalent to
∧

prop(w) ∧ (
∨

notprop(w) → ∧
notprop(w)). So ϕ�

w is
equivalent to [ϕG(w)]∗. Next we show that ψ�

w is equivalent to [ψG(w)]∗. Since
G(w) is of depth 2 and its only successor is the node w� where all propositional
variables are true, by Proposition 19, [ψG(w)]∗ = [ϕG(w) → ϕw� ]∗ = [ϕG(w)]∗ →
[ϕw� ]∗ = [ϕG(w)]∗ → ∧

i∈n pi, which is equivalent to ψ�
w = ϕ�

w → ∧
i∈n pi.

For d(w) = k + 1, since ϕ and ψ formulas are inductively constructed in the
same manner (in Definitions 10 and 30), by the induction hypothesis and the
preservation of operations mentioned in Proposition 19, the equivalence follows
immediately. ��

We can now show that these formulas are indeed “positive analogues” of the
standard de Jongh formulas (see Proposition 11).

Proposition 33. For every w ∈ U�(n), we have:

– V �(ϕw) = R�(w);
– V �(ψw) = U�(n)\(R�)−1(w).

Proof. By Proposition 19 we have that any formula σ is equivalent to [σ]∗ in
the top models. Hence ϕ�

w is satisfied in the same worlds of M(n) (which is
isomorphic to (U�(n))+, see the paragraph after Corollary 26) as ϕw (and likewise
for ψw). But since ϕ�

w are positive formulas, by Corollary 26, they will be satisfied
in the same worlds in (U�(n)). ��

The proposition above implies that two distinct points of U�(n) can be dis-
tinguished via a positive formula. Indeed, if w1 = w2 are two worlds in U�(n),
then either ¬(w1Rw2) or ¬(w2Rw1). In the first case U�(n), w2 � ϕw1 , while in
the second case U�(n), w1 � ϕw2 .

4 n-Henkin Models

Let us denote the n-Henkin model for the positive fragment of IPC by H�(n).
We write

Cn�
n(ϕ) = {ψ ∈ L∧,∨,→ : ψ is an n-formula and �IPC ϕ → ψ}

and

Th�
n(M, w) = {ϕ ∈ L∧,∨,→ : ϕ is an n-formula and M, w |= ϕ}.

The following proposition is analogous to Proposition 12.

Proposition 34. For any point w ∈ U�(n) we have Th�
n(U�(n), w) = Cn�

n(ϕ�
w).
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Proof. It follows from Proposition 33 that the right hand side is a subset of the
left hand side. For the other direction, assume U�(n), w |= σ. Then if �IPC ϕ�

w →
σ, there is a finite model M whose root, x, satisfies ϕ�

w and does not satisfy
σ. Then, since x does not satisfy all positive formulas, it does not satisfy all
propositional variables. Hence there is a positive morphism f with non-empty
domain from M to U�(n). Since x satisfies ϕw, by Proposition 25 we have that
f(x) also satisfies ϕw. By Proposition 33, this implies that f(x) ∈ R�(w). Finally,
since U�(n), w |= σ we get U�(n), f(x) |= σ, which contradicts Proposition 25 as
M, x � σ. ��

The next lemma will be used in the proof that the universal model is isomor-
phic to the upper part of the Henkin model (Theorem 37).

Lemma 35. Let Γ be an n-theory of the positive fragment of IPC. If Γ ⊇
Cn�

n(ϕ�
w) for some w ∈ U�(n), then either there exists some v ∈ R�(w) such

that Γ = Cn�
n(ϕ�

v), or Γ contains all positive formulas.

Proof. Let Γ ⊇ Cn�
n(ϕ�

w) and let v be such that wRv and ϕ�
v ∈ Γ while for all

immediate successors of v (let v1, . . . , vk be all the immediate successors of v)
we have that Γ ∩ {ϕ�

v1
, . . . , ϕ�

vk
} = ∅.

If this v is unique we can see that Γ = Cn�
n(ϕ�

v). The right to left inclusion
is trivial. For the converse inclusion we observe that for every σ ∈ Γ we have
σ ∧ ϕ�

v � ϕ�
v1

∨ · · · ∨ ϕ�
vk

which implies by Theorem 29 that there is a point of
U�(n) that satisfies σ ∧ ϕ�

v but not ϕ�
v1

∨ · · · ∨ ϕ�
vk

. By Proposition 33, there is
only one such element, v. Hence σ ∈ Th�

n(U�(n), v), which by Proposition 34
means that σ ∈ Cn�

n(ϕ�
v).

To complete the proof, we will show that the aforementioned v is unique or
has depth 1. If d(v) > 1 and there is an element u (v = u) with the aforemen-
tioned property, then Proposition 33 implies that ¬(vR�w) and ¬(wR�v) and
hence ψ�

v ∈ Th�
n(U�(n), u), thus ψ�

v ∈ Γ . Therefore, since Γ has the disjunction
property, there is some immediate successor vi of v, such that ϕ�

vi
∈ Γ . This is

a contradiction. So if d(v) > 1, then v is unique.
Finally, if ϕ�

v, ϕ�
u ∈ Γ , where v = u and d(v) = d(u) = 1, then we can assume

without loss of generality that there is some propositional variable q true in v
but not true in u. By the definition of ϕ�

v we have that q ∈ Γ . By the definition
of ϕ�

u we have that q → ∧
i≤n pi ∈ Γ . Hence all propositional variables are in Γ ,

which implies that Γ contains all positive formulas. ��
The next three statements are the positive-fragment analogues of Lemmas 13

and 14 and Proposition 15, respectively. Notice that the n-Henkin model here
contains a top point where every positive formula is true.

Lemma 36. For any w ∈ U�(n) we have that H�(n)Cn�(ϕ�
w) is isomorphic to

(U�(n)w)+.

Proof. We will show that the function g : (U�(n)w)+ → H�(n)Cn�(ϕ�
w), where

g(v) = Cn�
n(ϕ�

v) and the topmost element is mapped to the set of all positive
formulas, is the required isomorphism. Proposition 33 implies that g is injective
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and Lemma 35 implies that g is surjective. The frame relations are preserved
back and forth by the following chain of equivalences:

uR�v
iff R�(v) ⊆ R�(u)
iff V �(ϕ�

v) ⊆ V �(ϕ�
u) (Proposition 33)

iff �IPC ϕ�
v → ϕ�

u (Theorem 29)
iff ϕ�

u ∈ Cn�
n(ϕ�

v)
iff Cn�

n(ϕ�
u) ⊆ Cn�

n(ϕ�
v)

iff g(u) ⊆ g(v). ��
The next theorem shows that in the same way n-universal models for IPC are

the “upper-parts” of the n-Henkin models, the n-universal models for positive
IPC are the “upper-parts” of the n-Henkin models of positive IPC.

Theorem 37. Upper(H�(n)) is isomorphic to (U�(n))+.

Proof. As above, the isomorphism will be given by the function g : (U�(n))+ →
Upper(H�(n)), such that g(v) = Cn�

n(ϕ�
v) and the topmost element is mapped to

the set of all positive formulas. That this map is injective follows from Proposi-
tion 34 and the fact that two distinct points of (U�(n))+ are separated by a pos-
itive formula (see the paragraph after Proposition 33). That the map preserves
the relation follows from the fact that intuitionistic truth is upward preserving.
What is left to show is that it is onto. Let x ∈ Upper(H�(n)), and x does not
contain all positive formulas. Then, by Lemma 28, there is a positive morphism,
f (which is non-empty by the assumptions for x) from Upper(H�(n))x onto
some U�(n)w. Then we observe by Proposition 25 that Th�

n(U�(n), w) = x, i.e.,
by Proposition 34, x = Cn�

n(ϕ�
w). Therefore, g is surjective. ��

Corollary 38. Let M = (W,R, V ) be any n-model and let X ⊆ V (ϕ�
w) be a

non-empty set for some w ∈ U�(n). Then there is a unique positive morphism
f from MX to U�(n)w. Furthermore, if MX is rooted and does not satisfy all
positive formulas, then there is a unique v ∈ U�(n) with wR�v and such that f
maps MX onto U�(n)v.

Proof. Since X ⊆ V (ϕ�
w), for each x ∈ X and y ∈ W with xRy we have

Th�
n(M, y) ⊇ Cn�

n(ϕ�
w). By Lemma 35 such a theory is equal to some Cn�

n(ϕ�
v)

or contains all positive formulas. We define a positive morphism f as follows:

f(y) =
{

u, if ∃u such that Th�
n(M, y) = Cn�

n(ϕ�
u);

undefined, otherwise.

If the domain of f is empty then it is vacuously a positive morphism. If the
domain is non-empty, by the definition of f the only non-trivial step to show
that f is a positive morphism is the back condition. For this we have: if vR�u
and f(y) = v, then by Proposition 33, it is the case that M, y � ψ�

u. Hence there
is some z ∈ W with yRz such that M, z |= ϕ�

u and M, z �
∨

i≤l ϕ
�
ui

. This yields
that Th�

n(M, z) = Cn�
n(ϕ�

u), i.e. f(z) = u.
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Finally, if MX is rooted and does not satisfy all positive formulas, then
the root, x, is in the domain of f . Then we let v = f(x). The back condition
immediately yields that f is onto. ��

Note that the underlying Kripke frame of U�(n)w = (U�(n)w, R�(n)w,
V �(n)w) described in the previous lemma can be viewed as the general frame
(U�(n)w, R�(n)w, Up(U�(n)w)), which is a descriptive frame since W is finite.

5 Jankov’s Theorem for KC

In this section, we will first prove an analogue of the Jankov-de Jongh theorem
(Theorem 16). This theorem will be used afterwards for an alternative proof of
Jankov’s theorem for KC.

Theorem 39 (Jankov-de Jongh theorem for positive fragment of IPC).
For every descriptive frame G and w ∈ U�(n) we have that G � ψ�

w iff there is an
n-valuation V on G such that U�(n)w is the image, through a positive morphism,
of a generated submodel of (G, V ).

Proof. Let U�(n)w be the image, through a positive morphism f , of a generated
submodel K of (G, V ). Proposition 33 implies that U�(n)w, w � ψ�

w. Since f is a
positive morphism, Proposition 25 yields that K, x � ψ�

w for every x ∈ f−1[{w}].
Now, because K is a generated submodel of (G, V ), we have that (G, V ), x � ψ�

w,
i.e. G � ψ�

w.
For the other direction, let us assume that there is some valuation and some x

such that (G, V ), x � ψ�
w. This implies that there is some y0 such that xRy0 and

(G, V ), y0 |= ϕ�
w, while (G, V ), y0 � ϕ�

wi
, for all immediate successors wi of w.

We take (G, V )V (ϕ�
w), the submodel of (G, V ) generated by V (ϕ�

w). We
note that by the above observation V (ϕ�

w) = ∅. Furthermore, we have that
(G, V )V (ϕ�

w) does not satisfy all positive formulas since y0 ∈ V (ϕ�
w) and

(G, V ), y0 � ϕ�
wi

, for all immediate successors wi of w.
Therefore, by Corollary 38, we have that there is a positive morphism f from

(G, V )V (ϕ�
w) to U�(n)w. It is onto because Th�((G, V ), y0) = Cn�

n(ϕ�
w) and hence

f(y0) = w.
Finally, we have that (G, V )V (ϕw) is a descriptive model, by Lemma 4, since

it is based on V (ϕw). To show that the positive morphism is also descriptive,
we only need to show that f−1[R�(v)] ∪ (G\dom(f)) = V (ϕ�

v), for v ∈ U�(n)w.
For the left to right inclusion we observe that anything outside the domain of
f satisfies all positive formulas and f preserves positive formulas. For the right
to left assume that x ∈ V (ϕ�

v). Then x ∈ V (ϕ�
w) and by Lemma 35 we get that

f(x) ∈ R�(w) or x satisfies all propositional variables and hence it is not in the
domain of f . ��

We recall that KC is complete with respect to the finite frames with a topmost
node. Thus, by reflecting on Corollary 26, one can easily see that KC proves
exactly the same positive formulas as IPC. In [18], Jankov proved that KC is
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maximal with that property (see also [6, Ex. 9.17] for a proof via Zakharyaschev’s
canonical formulas). In [11] an alternative proof based on the universal model
for IPC is given.

Using the universal model for positive formulas we will provide yet another
proof of this theorem, more perspicuous than the one in [11]. For this we will
need the following auxiliary lemma.

Lemma 40. Let F be a descriptive frame with a topmost element, let G be a
descriptive frame, V and V ′ be admissible valuations and f : (G, V ) → (F, V ′)
a descriptive positive morphism between models. Then f can be extended to a
descriptive frame p-morphism.

Proof. First assume that the map f is total. Then it is a frame p-morphism. Now
suppose f is not total. Then we extend f to f ′ such that for every y ∈ G\dom(f)
we have f ′(y) = x0, where x0 is the topmost element of F. We claim that f ′ is the
desired frame p-morphism. That the forth condition holds is easy to see, since
everything in F is below x0. For the back condition the only possible problem
may arise if some f ′(y)Rx0. In that case, if y ∈ dom(f) then f(y)Rx0 and by
the definition of positive morphisms a witness for the back condition exists. If
y /∈ dom(f) then the witness is y. It remains to show that the f ′-pre-image of an
admissible set is admissible. Let Q be an admissible set in F. By the construction
of f we have that f ′−1[Q] = f−1[Q]∪ (G\dom(f)), which is admissible since, by
Lemma 23, it is equal to f∗(Q) and f is a positive morphism between descriptive
frames. ��

Finally, we will give our alternative proof of Jankov’s theorem stating that KC
is the greatest intermediate logic that proves exactly the same positive formulas
as IPC.

Theorem 41. (Jankov) For every logic L � KC there exists some positive for-
mula σ such that L � σ while IPC � σ.

Proof. Let us assume that L � KC. Then L � χ and KC � χ for some formula χ.
As KC is complete with respect to finite rooted frames with a topmost element
(see, e.g., [6, Proposition 2.37 and Theorem 5.33]), there is a finite rooted frame
with a topmost element, F = (W,R) with F � χ. We define a valuation, V ,
on F such that each of its elements has a different color and that there is a
propositional variable, q, not satisfied at the topmost element. A way to do this
is to introduce a propositional variable px for each x ∈ W such that V (px) =
R(x) and V (q) = ∅. By Lemma 28, there is some w ∈ U(n) and a positive
morphism from (F, V ) onto U�(n)w. Since each element of (F, V ) has a different
color, the positive morphism is 1-1 and since in every element of W at least
one propositional variable is not satisfied, the positive morphism has W as its
domain, hence (F, V ) is isomorphic to U�(n)w.

We claim that the required positive formula, σ is ψ�
w. For contradiction, let us

assume that L � ψ�
w. Then, as every logic is complete with respect to descriptive

frames (e.g., [6, Theorem 8.36]), there exists a descriptive L-frame, G such that
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G � ψ�
w. By Theorem 39 there is a valuation V ′ on G, a generated submodel K of

(G, V ′), and a descriptive positive morphism f , from K onto (F, V ). By Lemma
40, f can be extended to a descriptive frame p-morphism f ′. Since G is an L-
frame and χ ∈ L, we have that G |= χ. As f ′ is a descriptive frame p-morphism,
G |= χ implies that F |= χ, contradicting the assumption that F � χ. ��

6 Conclusions and Future Directions

In this paper we described the universal models for the positive fragment of IPC,
and using these models gave an alternative proof of Jankov’s theorem which
states that the logic KC of the weak law of excluded middle is the greatest logic
that proves the same positive formulas as IPC. The main technical ingredients
of our proofs are positive morphisms and Jankov-de Jongh formulas.

We also briefly underline some future research directions. In this paper we
do not discuss algebraic aspects of universal models for positive IPC. It would be
interesting to describe in all detail the algebraic counterparts of these universal
models together with a full duality theory for the corresponding algebras. We
refer to recent work [3] and [7] for topological dualities for similar algebraic
structures. Here we only give a small hint towards algebraic analogues of the
two different n-universal models U�(n) and (U�(n))+ for positive IPC discussed
in Sect. 3.

From an algebraic point of view, the two universal models correspond to
the Lindenbaum-Tarski algebras for the languages L∧,∨,→ and L∧,∨,→ ∪ {⊥},
respectively. In fact, one can show that the definable upsets of U�(n) form an
algebra isomorphic to the Lindenbaum-Tarski algebra of the positive IPC. On the
other hand, the definable upsets of (U�(n))+ form an algebra which is isomorphic
to the Lindenbaum-Tarski algebra of the positive IPC with an additional bottom
element ⊥.

Finally, we point out a connection with minimal logic. Minimal logic can be
seen as arising from positive intuitionistic logic by interpreting one propositional
variable as the falsum without giving it any special properties and defining nega-
tion in the standard manner. The n-universal model for minimal logic is there-
fore directly available as the n+1-universal model of positive intuitionistic logic
developed above. Recently, minimal logic with negation as a primitive and its
sublogics have been studied in [8]. Colacito extended this work in [7] with proof-
theoretic and algebraic results using top frames. We believe that the universal
models for positive intuitionistic logic described in this paper will find fruitful
application in this area as will the construction of the accompanying Jankov-de
Jongh formulas.

Acknowledgement. We would like to thank the referees of this paper for careful
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Abstract. Beside algebraic and proof-theoretical studies, a number of
different approaches have been pursued in order to provide a complete
intuitive semantics for many-valued logics. Our intention is to use the
powerful tools offered by formal concept analysis (FCA) to obtain fur-
ther intuition about the intended semantics of a prominent many-valued
logic, namely Gödel, or Gödel-Dummett, logic. In this work, we take a
first step in this direction. Gödel logic seems particularly suited to the
approach we aim to follow, thanks to the properties of its correspond-
ing algebraic variety, the class of Gödel algebras. Furthermore, Gödel
algebras are prelinear Heyting algebras. This makes Gödel logic an ideal
contact-point between intuitionistic and many-valued logics.

In the literature one can find several studies on relations between
FCA and fuzzy logics. These approaches often amount to equipping
both intent and extent of concepts with connectives taken by some
many-valued logic. Our approach is different. Since Gödel algebras are
(residuated) lattices, we want to understand which type of concepts are
expressed by these lattices. To this end, we investigate the concept lat-
tice of the standard context obtained from the lattice reduct of a Gödel
algebra. We provide a characterization of Gödel implication between con-
cepts, and of the Gödel negation of a concept. Further, we characterize
a Gödel algebra of concepts. Some concluding remarks will show how
to associate (equivalence classes of) formulæ of Gödel logic with their
corresponding formal concepts.

Keywords: Intended semantics · Concept lattice · Many-valued logic ·
FCA · Formal concept analysis · Fuzzy logic · Gödel Logic

1 Introduction

Gödel logic can be semantically defined as a many-valued logic, as follows.
Consider the set FORM of well-formed formulæ over propositional variables
{x1, x2, x3, . . . } in the language (∧,∨,→,⊥,�). An assignment is a function μ
from FORM to [0, 1] ⊆ R, such that, for any ϕ,ψ ∈ FORM,
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H.H. Hansen et al. (Eds.): TbiLLC 2015, LNCS 10148, pp. 251–262, 2017.
DOI: 10.1007/978-3-662-54332-0 14



252 P. Codara and D. Valota

μ(⊥) = 0 , μ(�) = 1 ,

μ(ϕ ∧ ψ) = min{μ(ϕ), μ(ψ)} ,

μ(ϕ ∨ ψ) = max{μ(ϕ), μ(ψ)} ,

μ(ϕ → ψ) =

{
1 if μ(ϕ) ≤ μ(ψ) ,

μ(ψ) otherwise .

A formula ϕ such that μ(ϕ) = 1 for every assignment μ is called a tautology. To
indicate such a case we write � ϕ.

Gödel logic can also be syntactically defined as a schematic extension of
intuitionistic propositional calculus by the prelinearity axiom

(ϕ → ψ) ∨ (ψ → ϕ). (P)

We write 
 ϕ to mean that the formula ϕ is derivable from the axioms of Gödel
logic using modus ponens as the only deduction rule. Gödel logic is complete
with respect to the many-valued semantics defined above: in symbols, 
 ϕ if and
only if � ϕ. Details and proofs can be found in [22].

Even though Gödel logic is an axiomatic extension of intuitionistic logic,
the constructive intended semantics1 of the latter is not suitable for the former.
Indeed, think of formulæ of FORM as problems for which we have an algorithmic
solution. Then, (P) states that, for every choice of ϕ and ψ in FORM, the solution
to ϕ can be reduced to the solution to ψ, or the solution to ψ can be reduced
to the solution to ϕ. A rather strong assumption. This is a common problem of
informal intended semantics. They are tailored over a specific logic. Applying
them to some extension is not straightforward, or not even possible.

On the other hand, beside algebraic and proof-theoretical studies, a number
of different approaches have been attempted to provide semantics for Gödel
logics. To mention a few, we cite [5,18], where temporal-like and game-theoretic
semantics, respectively, are investigated.

The possibility of connecting descriptions of real-world contexts with power-
ful formal instruments is what makes formal concept analysis (FCA) a promising
framework, merging the intuitions of intended semantics with the advantages
of formal semantics. In the present work, we study formal contexts associated
with Gödel logic from the algebraic point of view. The algebraic semantics of
Gödel logic is the subvariety of Heyting algebras satisfying prelinearity. A Heyt-
ing algebra is a structure A = (A,∧,∨,→,�,⊥) of type (2, 2, 2, 0, 0) such that
(A,∧,∨,�,⊥) is a distributive lattice and the couple (∧,→) forms a residu-
ated pair. This means that the unique operation → that satisfies the residuation
property, x ∧ z ≤ y if and only if z ≤ x → y, is the residuum of ∧, defined as

x → y = max{z | x ∧ z ≤ y}. (1)

1 The intended semantics of a logical language consists of the collection of models that
intuitively the language talks about. In this specific case the intended semantics’ is
the informal description of truth as provability given by Brouwer.
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Hence, a Gödel algebra is a Heyting algebra satisfying the prelinearity equation
(x → y) ∨ (y → x) = �, for x, y ∈ A. Horn [23] showed that the variety of
Gödel algebras is locally finite. That is, the classes of finite, finitely generated
and finitely presented algebras coincide.

For an integer n ≥ 1, let FORMn be the set of all formulæ whose propositional
variables are contained in {x1, . . . , xn}. Two formulæ ϕ,ψ ∈ FORMn are called
logically equivalent if both 
 ϕ → ψ and 
 ψ → ϕ hold. Logical equivalence is an
equivalence relation, denoted by ≡. We denote the equivalence class of a formula
ϕ by [ϕ]≡. It is straightforward to see that the quotient set FORMn/ ≡, endowed
with the operations ∧,∨,�,⊥ induced by the corresponding logical connectives,
is a distributive lattice with top and bottom element � and ⊥, respectively.
If, in addition, FORMn/ ≡ is endowed with the operation → induced by the
logical implication, then FORMn/ ≡ becomes a Gödel algebra. The specific
Gödel algebra Gn = FORMn/ ≡ is, by construction, the Lindenbaum algebra of
Gödel logic over the language {x1, . . . , xn}. Lindenbaum algebras are isomorphic
to free algebras, thus Gn is the free n-generated Gödel algebra. Moreover, since
the variety of Gödel algebras is locally finite, every finite Gödel algebra can be
obtained as a quotient of a free n-generated Gödel algebra. For the rest of this
paper, all Gödel algebras are assumed to be finite.

In the next section, we recall some basic notions on FCA. In Sect. 3 we deal
with the concept lattice CA of the standard context obtained from a Gödel
algebra A. We prove that endowing CA with a suitable implication between
concepts, we obtain an algebra of concepts isomorphic to A. Further, we charac-
terize the Gödel negation in terms of concepts. In Sect. 4 we characterize Gödel
algebras of concepts. In Sect. 5 we show how to associate concepts belonging
to a Gödel algebras of concepts with Gödel logic formulæ. Finally, in Sect. 6
we discuss the integration of this approach with the studies on many-valued
(substructural) logics aimed to investigate their intended semantics.

2 Basic Notions on FCA

We recollect the basic definitions and facts about formal concept analysis needed
in this work. For further details on this topics we refer the reader to [20].

Recall that an element j of a distributive lattice L is called a join-irreducible if
j is not the bottom of L and if whenever j = a∨b, then j = a or j = b, for a, b ∈ L.
Meet-irreducible elements are defined dually. Given a lattice L = (L,,�, 1), we
denote by J(L) the set of its join-irreducible elements, and by M(L) the set of
its meet-irreducible elements.

Let G and M be arbitrary sets of objects and attributes, respectively, and let
I ⊆ G × M be an arbitrary binary relation. Then, the triple K = (G,M, I) is
called a formal context. For g ∈ G and m ∈ M , we interpret (g,m) ∈ I as “the
object g has attribute m”. For A ⊆ G and B ⊆ M , a Galois connection between
the powersets of G and M is defined through the following operators:

A′ = {m ∈ M | ∀g ∈ A : gIm} B′ = {g ∈ G | ∀m ∈ B : gIm}
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Every pair (A,B) such that A′ = B and B′ = A is called a formal concept.
A and B are the extent and the intent of the concept, respectively. Given a
context K, the set B(K) of all formal concepts of K is partially ordered by
(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (or, equivalently, B2 ⊆ B1). The
basic theorem on concept lattices [20, Theorem 3] states that the set of formal
concepts of the context K is a complete lattice (B(K),,�), called concept lattice,
where meet and join are defined by:

�

j∈J

(Aj , Bj) =

⎛

⎝
⋂

j∈J

Aj ,

⎛

⎝
⋃

j∈J

Bj

⎞

⎠

′′⎞

⎠ ,

⊔

j∈J

(Aj , Bj) =

⎛

⎝

⎛

⎝
⋃

j∈J

Aj

⎞

⎠

′′

,
⋂

j∈J

Bj

⎞

⎠ ,

(2)

for a set J of indexes. The following proposition is fundamental for our treatise.

Proposition 1 ([20, Proposition 12]). For every finite lattice L there is (up to
isomorphisms) a unique context KL, with L ∼= B(KL):

KL := (J(L),M(L),≤).

The context KL is called the standard context of the lattice L.
Since L is finite, J(L) is finite. Hence, the concept (J(L), ∅) is the top ele-

ment of B(KL). We denote it �G, emphasizing the fact that the join-irreducible
elements of L are the objects of our context. Analogously, the concept (∅,M(L))
is the bottom element of B(KL), and we denote it by ⊥M .

Example 1. Let L = ({a, b, c, d, e, f},≤) be the finite distributive lattice in
Fig. 1(a). Then, J(L) = {b, c, e}, and M(L) = {b, d, e}. Let G = {g1, g2, g3},
and M = {m1,m2,m3}. We relabel J(L), and M(L) via the labeling functions
λJ : J(L) → G, and λM : M(L) → M such that λJ(b) = g1, λJ(c) = g2,
λJ(e) = g3, λM (b) = m1, λM (d) = m2, and λM (e) = m3. The following tables
show the standard context KL, and its relabeling in terms of G and M :

≤ b d e

b × ×
c × ×
e ×

≤ m1 m2 m3

g1 × ×
g2 × ×
g3 ×

The concept lattice B(KL) is depicted in Fig. 1(b).

3 Gödel Algebras of Concepts

Definition 1. Let K be a finite context, and let B(K) be its concept lattice. For
every two concepts C1 = (G1,M1) and C2 = (G2,M2) in B(K), we define the
p-implication (⇒) as:
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f

e d

c b

a
(a) L

(G, ∅)

({g2, g3}, {m3}) ({g1, g2}, {m2})

({g2}, {m2, m3}) ({g1}, {m1, m2})

(∅, M)

(b) B(KL)

Fig. 1. A finite distributive lattice L, and its corresponding concept lattice B(KL).

C1 ⇒ C2 =
⊔

{(Gk,Mk) ∈ B(K) | Mk ⊇ M2\M1} . (⇒)

The following example better clarifies the previous definition.

Example 2. Consider the concept lattice depicted in Fig. 1(b). Then,

({g1, g2}, {m2}) ⇒ ({g2}, {m2,m3}) = ({g2, g3}, {m3}) ,

({g2}, {m2,m3}) ⇒ (∅,M) = ({g1}, {m1,m2}) .

The following proposition provides a way to build a concept lattice isomorphic
to every Gödel algebra.

Proposition 2. Let A = (A,∧,∨,→,�,⊥) be a Gödel algebra, and let CA =
B((J(A),M(A),≤)) be the concept lattice of its standard context. Then, the alge-
bra CA = (CA,,�,⇒,�G,⊥M ), where ⇒ is the p-implication, is isomorphic
to A.

Proof. Since each Gödel algebra is a finite lattice, it is isomorphic to the concept
lattice of the associated standard context (c.f. Proposition 1). Let f : A → CA
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be such an isomorphism. We have to show that f extends to an isomorphism of
Gödel algebras, that is

f(x → y) = f(x) ⇒ f(y) , (3)

for each x, y ∈ A. To this end, it suffices to prove the following claim.

Claim. The couple (,⇒) is a residuated pair.

We need to show that (,⇒) satisfies the residuum Eq. (1). That is

(C1 ⇒ C2) =
⊔

{Ci ∈ CA | Ci  C1 ≤ C2} , (4)

for every C1 = (G1,M1) and C2 = (G2,M2) in CA. We call Cz = (Gz,Mz) =⊔ {Ci ∈ CA | Ci  C1 ≤ C2}. By Definition 1, we have:

(C1 ⇒ C2) =
⊔

{(Gi,Mi) ∈ CA | Mi ⊇ M2\M1} = Cs = (Gs,Ms) . (5)

We have to show that Ms = Mz (equivalently, Gs = Gz). By (4), Mz is the
smallest subset of M that belongs to a concept, and such that Mz ∪ M1 ⊇ M2.
In other words, Mz is precisely the smallest Mt such that Mt ⊇ M2\M1. Hence,
by (5), Mz coincides with Ms. This settles the claim.

By the preceding claim, ⇒ is precisely the unique (Gödel) residuum of .
Since the lattice isomorphisms f also preserves , we have shown (3), and our
statement is proved. �

We have derived the natural notion of implication between concepts in case
the concept lattice is a Gödel algebra. Indeed, the p-implication satisfy the resid-
uation law. It is now easy to provide a characterization of the Gödel negation of
a concept.

Definition 2. Let B(K) be a concept lattice over a context K, and let
(G1,M1) ∈ B(K). We call the p-complement of (G1,M1) the following oper-
ation:

∼ (G1,M1) =
⊔

{(Gk,Mk) ∈ B(K) | Mk ⊇ M\M1} .

Corollary 1. The p-complement is the Gödel negation in a Gödel algebra of
concepts.

Proof. In Gödel logic the negation connective is derived from the implication:
¬x := x → ⊥. An easy computation shows that, if C is a concept of a Gödel
algebra of concepts, then ∼ C = C ⇒ ⊥. �
Example 3. Consider the concept lattice depicted in Fig. 1(b). Then,

∼ ({g1, g2}, {m2}) = (∅,M) ,

∼ ({g2}, {m2,m3}) = ({g1}, {m1,m2}).

Compare the second negation with Example 2.
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4 Characterizing Gödel Algebras of Concepts

Let K be a finite context, and let (B(K),,�) be its concept lattice. If, for each
C1, C2 ∈ B(K), there exists a greatest context C ∈ B(K) such that C1C ≤ C2,
then B(K) is a residuated lattice. The concept C is called the residuum, and
it is denoted by C1 ⇒ C2. Since the residuum, if it exists, is unique, we have
that ⇒ must be exactly the p-implication defined in Definition 1. Indeed, in the
proof of Proposition 2 it is shown that (,⇒) is a residuated pair. In general,
a concept lattice need not be a distributive lattice. However, the existence of a
residuum respect to the  implies distributivity. Hence, in order to provide a
characterization of Gödel algebras of concepts, we do not need to characterize
distributivity. Nonetheless, the characterization of distributivity in concept lat-
tices is an important topic in itself. An intrinsic characterization of distributivity
in the finite case is provided in [26]. The infinite case has also been investigated,
see [15].

The following proposition characterizes those concept lattices which are
Gödel algebras.

Proposition 3. Let K be a finite context, and let (B(K),,�) be its concept
lattice. Then,

(i) (B(K),,�,⇒,�G,⊥M ) is a Heyting algebra if and only if for each C1 =
(G1,M1), C2 = (G2,M2) ∈ B(K) there exists a greatest contest C ∈ B(K)
such that C1  C ≤ C2.

Moreover, let Cl = (Gl,Ml) ∈ B(K) be such that Ml is the smallest set of
attributes satisfying Ml ⊇ M2\M1. Analogously, let Cr = (Gr,Mr) ∈ B(K) be
such that Mr is the smallest set of attributes satisfying Mr ⊇ M1\M2.

(ii) The Heyting algebra (B(K),,�,⇒,�G,⊥M ) is a Gödel algebra if and only
if Ml ∩ Mr = ∅.

Proof. The first part of the proposition is an immediate translation of the resid-
uation property in terms of concepts. It has already been discussed in the begin-
ning of the present section. We just need to prove (ii). Recall that Gödel algebras
are Heyting algebras with a prelinear implication. We have to prove that the p-
implication ⇒ satisfies the prelinearity equation (C1 ⇒ C2) � (C2 ⇒ C1) = �G,
for every C1, C2 ∈ B(K), if, and only if, Ml ∩ Mr = ∅.

Let

C1 ⇒ C2 = Cs = (Gs,Ms) =
⊔

{(Gi,Mi) ∈ B(K) | Mi ⊇ M2\M1} ,

C2 ⇒ C1 = Cz = (Gz,Mz) =
⊔

{(Gi,Mi) ∈ B(K) | Mi ⊇ M1\M2} .

Hence, prelinearity equation can be rewritten as:

Cs � Cz = (J(B(K)), ∅) .

We observe that Ml = Ms, and Mr = Mz. Thus, Cs � Cz = (J(B(K)), ∅) is
equivalent to Ml ∩ Mr = ∅, and (ii) is proved. �
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5 Formal Concepts Described by Gödel Logic Sentences

In Sect. 3 we have associated formal concepts with elements of a finite Gödel
algebra. Moreover, we have endowed the concept lattice with suitable operations,
showing that every Gödel algebra is isomorphic to its associated concept lattice
endowed with a p-implication. In this section, we advance some remarks on the
logical counterpart of Gödel algebras, namely Gödel logic. Consider the free
n-generated Gödel algebra Gn. Since every finite Gödel algebra can be obtained
as a quotient of a free n-generated Gödel algebra, we can effectively associate
every Gödel logic formula with a corresponding concept. Knowing that Gn is
a finite (distributive) lattice whose elements are formulæ in n variables (up to
logical equivalence), and since for every finite lattice there is a unique reduced
context K, one can, indeed, relate (equivalence classes of) logical formulæ in Gn

with the concepts in K. That is precisely what we do in this section.
We start with a small example that can be dealt with via a trivial computa-

tion: the free 1-generated Gödel algebra G1. Comparing Figs. 1 and 2, one imme-
diately notes that the lattice structure of G1 is isomorphic to B(KL) in Fig. 1(b).
Hence, by Proposition 1, there exists a lattice isomorphism f : L(G1) → B(KL)
such that

f(�) = (G, ∅) , f(¬¬x) = ({g2, g3}, {m3}) ,

f(x ∧ ¬x) = ({g1, g2}, {m2}) , f(x) = ({g2}, {m2,m3}) ,

f(¬x) = ({g1}, {m1,m2}) , f(⊥) = (∅,M) .

Moreover, by Proposition 2, B(KL) = CG1 and f is an isomorphism of algebras.
Then,

f([x ∨ ¬x]≡ → [x]≡) = f([¬¬x]≡)
= ({g2, g3}, {m3}) = ({g1, g2}, {m2}) ⇒ ({g2}, {m2,m3}) ,

f([x]≡ → [⊥]≡) = f([¬x]≡)
= ({g1}, {m1,m2}) = ({g2}, {m2,m3}) ⇒ (∅,M) .

Compare with Example 2.
Let us consider a more complicated structure. Take the formula ψ = ¬¬x1 ∧

¬¬x2 ∧ (x1 ∨ x2) over {x1, x2}, and let A be the Gödel algebra G2/(ψ = �)
depicted in Fig. 3 (note that the equivalence classes displayed are the ones of
G2/(ψ = �), not of G2).

Observe that J(A) = {[x1]≡, [x2]≡, [x1 ∧ x2]≡}, and M(A) = {[x1]≡, [x2]≡}.
Let G = {g1, g2, g3}, and M = {m1,m2}, and define the labeling functions
λJ : J(L) → G and λM : M(L) → M by λJ([x1 ∧ x2]≡) = g1, λJ([x1]≡) = g2,
λJ([x2]≡) = g3, λM ([x1]≡) = m1, and λM ([x1]≡) = m2. The following two tables
provide the standard context CA, and its relabeling in terms of G and M .
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[ ]≡

[¬¬x]≡ [x ∨ ¬x]≡

[x]≡ [¬x]≡

[ ]

Fig. 2. The free 1-generated Gödel algebra G1.

[ψ]≡

[x1]≡ [x2]≡

[x1 ∧ x2]≡

[ ]

Fig. 3. A quotient of the free 2-generated Gödel algebra.

≤ [x1]≡ [x2]≡
[x1 ∧ x2]≡ × ×
[x1]≡ ×
[x2]≡ ×

≤ m1 m2

g1 × ×
g2 ×
g3 ×

Figure 4 shows the concept lattice associated with the Gödel algebra A =
G2/(ψ = �).

The characterization of free finitely generated Gödel algebras is a well-
investigated topic that is beyond the scope of this paper. A functional represen-
tation is given in [21], while [1] is a state-of-the-art treatise on representations
of many-valued logics. For our purposes it is sufficient to know that [2] con-
tains a recursive description of Gn, together with normal forms for Gödel logic,
while in [14] the authors provide a combinatorial method to generate Gn and its
quotients.

A general procedure to associate formal concepts with Gödel logic formulæ
can be sketched out, based on the preceding examples. Let ϕ1, . . . , ϕm, ψ be
Gödel logic formulæ over {x1, . . . , xn}, with m ≥ 0, and n ≥ 1. Generate Gn

(see [2,14]) and apply Proposition 1, obtaining CGn
. Then, {ϕ1, . . . , ϕm} 
 ψ
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({g1, g2, g3}, ∅)

({g1, g2}, {m1}) ({g1, g3}, {m2})

({g1}, {m1, m1})

( , m1, m2 )

Fig. 4. The concept lattice associated with the Gödel algebra G2/(ψ = �)

amounts to evaluating ψ over Gn/(ϕ1 = �, . . . , ϕm = �). Proposition 2 states
that CGn

is isomorphic to Gn. Hence, such evaluation provides also a concept in
CGn

, that is, precisely the concept associated with ψ. This allows us to express
formal concepts associated with ψ, for every theory {ϕ1, . . . , ϕm} in Gödel logic.

6 Concluding Remarks

In the basic setting of FCA (see Sect. 2) it is assumed that concepts are crisp.
In the literature one can find several studies whose aim is the “fuzzification”
of I, the relation between G and M . The first one being [10], while [7,8] are
good overview of these investigations. A further generalization of this type of
approach is given in [6], where the author considers both relation and order in
FCA as defined over fuzzy sets (or residuated lattices in general). Our method
diverges from those approaches. We exploit the classical notions of FCA to obtain
new insight on algebraic semantics of many-valued logics. Indeed, in the above
sections we have shown that it is possible to associate a formal concept with
every formula of Gödel logic. Further, we have provided a characterization of
concept lattices isomorphic to Gödel algebras in terms of formal contexts. In
this way we could effectively find contexts over which Gödel logic can be used
to reason about.

In other words, whenever a concept lattice satisfies Proposition 3, we are
dealing with a Gödel algebra of concepts. Under such conditions, concepts can
be combined via the lattice operators meet and join – see (2) –, but also via
the operations of p-implication and p-complement introduced in Sect. 3. The
latter operations correspond, respectively, with the Gödel logic implication and
negation, as shown in Proposition 2 and Corollary 1. In this sense we can say that
our new interpretation can be viewed as an alternative semantics for Gödel logic.
In order to acquire a full understanding of this semantics, we aim to investigate,
in future work, the effect of the p-implication and p-complement over concepts
obtained from contexts describing real-world scenarios. The ultimate goal is
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to get more insight about the meaning of Gödel logic by running empirical
experiments over real data. Through this work we believe that this can be done.

The approach used in this work is not limited to Gödel logic, but it can be
generally applied to many non-classical logics. Broadly speaking, it is sufficient
that the corresponding algebraic semantics has a complete lattice reduct. As
a many-valued logic, Gödel logic is a schematic extension of the fundamental
system BL introduced by Hájek in [22], which in turn is a schematic extension
of the Monoidal T-norm Logic (MTL) [16]. Hence, we believe that extending
our method to other logics in this hierarchy could be an interesting task. The
first issue to deal with is the fact that these logics have a monoidal conjunction
in addition to the lattice one. A good starting point would be investigate log-
ics where representations of free algebras are already available, e.g., Nilpotent
Minimum logic [3,11], or Revised Drastic Product logic [27]. Further, many-
valued logics are just particular substructural logics whose algebraic semantics
is provided by the class of residuated lattices [19], giving thus space for further
generalizations.

Additional research has to be done to compare our method with other inves-
tigations regarding alternative semantics and intended meaning of many-valued
logics. For the former we can cite probabilistic [3,4], temporal [9] and game-
theoretic [17] approaches, and [12,13,24,25] for the latter.
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ject of the paper. We acknowledge the support of our Marie Curie INdAM-COFUND
fellowships.
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Abstract. Stratified complete lattices are complete lattices equipped
with a sequence of preorderings associated with the ordinals less than
a given nonzero ordinal, typically a limit ordinal. They have been used
to give semantics to recursive definitions involving nonmonotonic opera-
tions. We provide representation theorems for stratified complete lattices
by inverse limits of complete lattices.

1 Introduction

A novel approach to the semantics of logic programs with negation, using an infi-
nite supply of truth values, was introduced in [10]. The development of a fixed
point theory underlying this approach has recently been undertaken in [4,6,7].
This fixed point theory has been applied to higher-order logic programs with nega-
tion [1] and to Boolean context-free languages [7].

The structures studied in this novel fixed point theory are stratified complete
lattices, i.e., complete lattices (L,≤), equipped with a family of preorderings �α,
indexed by the ordinals α strictly less than a fixed nonzero ordinal κ, which with-
out loss of generality can be taken to be a limit ordinal. In [6,7], several systems
of axioms have been introduced. Some of the results, such as the ‘Lattice The-
orem’ or the ‘Fixed Point Theorem’ of [6], were proved for a weaker class of
stratified complete lattices, whereas some others, such as the ‘Model Intersec-
tion Theorem’ of [7], were established for stronger classes of stratified complete
lattices. The Lattice Theorem asserts that every stratified complete lattice sat-
isfying the axioms can be equipped with another complete lattice ordering �
by defining x � y iff either x = y, or there is some α < κ with x �α y (i.e.,
x �α y but y ��α x). The Fixed Point Theorem states that certain nonmonotone
functions L → L over an appropriate stratified complete lattice L have least
fixed points w.r.t. the ordering �.

In this paper, we mainly deal with two systems of axioms introduced in [6,7]
that seem to be the most relevant for applications. In the stratified complete
lattices satisfying these systems of axioms, called models and strong models,
resp., the preorderings �α, α < κ, are completely determined by the complete
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lattice order ≤ and the equivalence relations =α corresponding to the preorder-
ings �α.

The main results of the paper are:

1. Every model L is isomorphic to the stratified complete lattice determined by
an inverse limit of complete lattices with locally completely additive projec-
tions, cf. Theorem 2.

2. Every strong model L is isomorphic to the stratified complete lattice deter-
mined by an inverse limit of complete lattices with completely additive pro-
jections, cf. Corollary 15.

3. A general result (Theorem 3) based on the above representation theorems
implying the Lattice Theorem, the Fixed Point Theorem, and the fact that
for every model L and weakly monotone function f : L → L w.r.t. �, the fixed
points of L form a complete lattice w.r.t. the ordering � (cf. Corollary 19).

2 Models and Examples

In this section, we introduce axioms for the structures we are going to discuss
throughout the paper. We will also provide some examples and a construction.
For unexplained notions regarding lattices we refer to [2].

Suppose that κ is a fixed limit ordinal. We will be considering structures of
the sort L = (L,≤, (�α)α<κ), called stratified complete lattices, such that (L,≤)
is a complete lattice with bottom and top elements ⊥ and �, resp., and for each
α < κ, �α is a preordering of L.

Our stratified complete lattices will satisfy the following axioms, where for
each α, =α denotes the equivalence relation determined by �α.

A1. For all α < β < κ, �β is included in =α, so that if x �β y then x =α y.
A2. The intersection of all the relations =α for α < κ is the identity relation,

so that if x =α y for all α < κ, then x = y.
A3. For all x and α < κ there exists y such that x =α y and for all z, if x �α z

then y ≤ z.

It follows from the first two axioms that the intersection of all relations �α,
α < κ, is also the identity relation. It is clear that the element y in A3 is uniquely
determined by x and α and also satisfies y �α z whenever x �α z. We will denote
it by x|α.

A4. For all α with α < κ and xi and y with xi =α y, i ∈ I, where I is any
nonempty index set, it holds that

∨
i∈I xi =α y.

A5. For all x, y and α < κ, if x ≤ y then x|α ≤ y|α.
A6. For all x, y and α < κ, if x ≤ y and x =β y for all β < α, then x �α y.

A stratified complete lattice satisfying the above axioms A1–A6 will be called a
model, for short. Sometimes we will require a stronger variant of A4.

A4∗. For all α with α < κ and xi, yi with xi =α yi, i ∈ I, where I is any
nonempty index set, it holds that

∨
i∈I xi =α

∨
i∈I yi.
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Models satisfying A4∗ will be called strong. We will discuss several conse-
quences of the axioms in Sect. 5.

The following motivating example is from [6,10]. Consider the following lin-
early ordered set V = Vκ of truth values:

F0 < F1 < · · · < Fα < · · · < 0 < · · · < Tα < · · · < T1 < T0,

where α ranges over the ordinals strictly less than κ. Let Z denote a nonempty
set of propositional variables and consider the set L = V Z , equipped with the
pointwise ordering. Thus, for all f, g ∈ L, f ≤ g iff f(z) ≤ g(z) for all z ∈ Z.
Then (L,≤) is a complete lattice. For each f, g ∈ L and α < κ, define f �α g iff
for all z ∈ Z,

(i) ∀β < α (f(z) = Fβ ⇔ g(z) = Fβ) ∧ (f(z) = Tβ ⇔ g(z) = Tβ), and
(ii) (g(z) = Fα ⇒ f(z) = Fα) ∧ (f(z) = Tα ⇒ g(z) = Tα).

Then L is a strong model. When f ∈ L and α < κ, then for all z ∈ Z, f |α(z) =
f(z) if f(z) is in the set {Fβ , Tβ : β < α}, and f |α(z) = Fα+1, otherwise. For
κ being the least uncountable ordinal, this example was used in [10] to give
semantics to possibly countably infinite propositional logic programs involving
negation. The idea is to associate with a logic program P over Z a function
fP : V Z

Ω → V Z
Ω , and to define the semantics of P as the unique least fixed point

of fP with respect to a new ordering �, canonically defined for interpretations
I, J ∈ V Z

Ω by I � J iff I = J or there is some α < Ω with fP (I) �α fP (J)
(i.e., fP (I) �α fP (J) but fP (J) ��α fP (I)). The function fP is not necessarily
monotone with respect to �. It is argued in [10] that the semantics corresponds to
the view of negation as failure. See Example 3 for more details. For an extension
to higher order logic programs, see [1].

In particular, Z can be chosen to be a singleton set. It follows that Vκ is
itself a strong model with the relations �α, α < κ, defined by x �α y iff x = y
or x, y ∈ {Fγ , Tγ : γ ≥ α} ∪ {0} such that if x = Tα then y = Tα and if y = Fα

then x = Fα.
The axioms A1–A6 are from [6,7]. Actually A3 is a weaker version of the

corresponding axiom in [6] that we will denote A3∗. (Axiom A3∗ will be recalled
and established in all models in Proposition 5.)

3 Inverse Limits

In this section, we recall the notion of inverse systems and limits of inverse
systems of complete lattices. Inverse limits will be used to construct further
models of the axioms. We will make use of the following concept.

Suppose that L = (L,≤) and L′ = (L′,≤) are complete lattices. We say that
h : L′ → L preserves all infima if h(

∧
Y ) =

∧
h(Y ) for all Y ⊆ L. Similarly,

we say that k : L → L′ preserves all suprema, or that k is completely additive,
if k(

∨
X) =

∨
k(X) for all X ⊆ L. It is clear that if h : L′ → L preserves all

infima, then it is monotone and preserves the greatest element. If h is additionally
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surjective, then it preserves the least element. Similar facts hold for functions
preserving all suprema.

Suppose that L and L′ are complete lattices and h : L′ → L and k : L → L′

are monotone functions. We say that (h, k) is a (monotone) Galois connection
[2] (with h being the upper and k being the lower adjoint) if the identity function
on L is less than or equal to h◦k : L → L and k◦h : L′ → L′ is less than or equal
to the identity function on L′ with respect to the pointwise ordering of functions.
It is known, cf. [2], that for complete lattices L and L′ and functions h : L′ → L
and k : L → L′, (h, k) is a Galois connection iff h preserves all infima and k
preserves all suprema. Moreover, we say that (h, k) is a projection-embedding
pair [11] if h ◦ k : L → L is the identity function on L and k ◦ h : L′ → L′ is
less than or equal to the identity function on L′ with respect to the pointwise
ordering of functions. Thus, a projection-embedding pair is a Galois connection.

Suppose that (h, k) is a Galois connection between complete lattices L,L′

as above. If (h, k) is a projection embedding pair, then h is clearly surjective
and k is injective. Conversely, if h is surjective or k is injective, then (h, k) is a
projection-embedding pair (also called a Galois insertion). It is also clear that h
uniquely determines k and vice versa. Indeed, for each x ∈ L, k(x) is the least
element y of L′ with x ≤ h(y). And for each y ∈ L′, h(y) is the greatest x ∈ L
with k(x) ≤ y.

We call a monotone function h : L′ → L a projection if there is a correspond-
ing embedding L → L′ (which is then uniquely determined), and call a monotone
function k : L → L′ an embedding if there is a corresponding projection L′ → L.
A well-known useful fact is that any composition of projections is a projection
and corresponds to the composition of the respective embeddings.

Suppose that for each α < κ, Lα = (Lα,≤) is a complete lattice and a family
of projections hα

β : Lα → Lβ for β < α < κ is specified such that hβ
γ ◦ hα

β = hα
γ ,

for all γ < β < α. Then we say that the complete lattices Lα, α < κ, form an
inverse system, c.f. [11],1 with projections hα

β , β < α < κ.
For the rest of this section, suppose that we are given such an inverse system

of complete lattices. We denote the embedding corresponding to each hα
β by kα

β .
As noted above, it follows that kα

β ◦ kβ
γ = kα

γ , for all γ < β < α < κ. Also, for
each β < α < κ, hα

β preserves all infima and kα
β preserves all suprema. We will

sometimes also suppose that the projections hα
β are completely additive, or at

least locally completely additive, see below. It will be convenient to define hα
α

and kα
α for α < κ as the identity function Lα → Lα.

Let L∞ be the inverse limit determined by the above inverse system. Thus,
L∞ ⊆ ∏

α<κ Lα is the collection of all κ-sequences x = (xα)α<κ in
∏

α<κ Lα with
hα

β(xα) = xβ for all β < α < κ, ordered by the relation ≤ defined pointwise.
A sequence in L∞ will be referred to as a ‘compatible sequence’. Since the
functions hα

β preserve all infima, L∞ is indeed a complete lattice in which the

1 The complete lattices and projections of an inverse system of [11] are continuous,
and the ordinal κ is ω, the least infinite ordinal. Inverse systems of complete lattices
over arbitrary directed partial orders are considered in [9], where following [11], the
projections are usually assumed to be continuous as well.
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infimum
∧

X of any set X ⊆ L∞ is formed pointwise. This follows by noting that
the pointwise infimum of any set of compatible sequences is compatible, since
the functions hα

β preserve all infima. The least element of L∞ is the compatible
sequence (⊥α)α<κ composed of the least elements of the lattices Lα. The greatest
element is the sequence (�α)α<κ, where for each α < κ, �α is the greatest
element of Lα. If the functions hα

β , β < α < κ, are all completely additive, then
the supremum

∨
X of any set X of sequences in L∞ is also formed pointwise.

To facilitate notation, we will denote the supremum and the infimum of a subset
X of Lα by

∨
α X and

∧
α X, respectively.

For each α < κ, let h∞
α denote the function L∞ → Lα mapping each x ∈ L∞

to the α-component xα of x. These functions form a cone over the inverse system
hα

β : Lα → Lβ , since hα
β ◦ h∞

α = h∞
β for all β < α < κ.

Lemma 1. Suppose that the complete lattices Lα, α < κ, form an inverse sys-
tem with projections hα

β : Lα → Lβ, β < α < κ, and limit L∞. Then each
function h∞

α : L∞ → Lα for α < κ is also a projection.

Proof. For each x ∈ Lα, where α < κ, let k∞
α (x) = (yβ)β<κ with yβ = hα

β(x) if
β ≤ α, and yβ = kβ

α(x) if β > α, where kβ
α is the embedding corresponding to

hβ
α. Then k∞

α (x) ∈ L∞ and clearly h∞
α (k∞

α (x)) = x. And if z = (zβ)β<κ is in
L∞, then k∞

α (h∞
α (z)) ≤ z, since if β ≤ α then the β-component of k∞

α (h∞
α (z))

is zβ , and if β > α, then the β-component of k∞
α (h∞

α (z)) is kβ
α(zα) ≤ zβ , since

zα = hβ
α(zβ) and (hα

β , kα
β ) is a projection-embedding pair. Thus, h∞

α : L∞ → Lα

is a projection with corresponding embedding k∞
α : Lα → L∞. ��

It follows that the functions h∞
α preserve all infima and the functions k∞

α

preserve all suprema.
The complete lattice L∞ has the following property. Suppose that L is a

complete lattice and the functions gα : L → Lα form another cone, where α < κ,
so that gβ = hα

β ◦ gα for all β < α < κ. Then there is a unique function
g : L → L∞ such that h∞

α ◦ g = gα, for all α < κ. Indeed, for each y ∈ L,
g(y) = (gα(y))α<κ. If the functions gα, α < κ, are monotone, then so is this
mediating function g, and vice versa. We will call the functions h∞

α , α < κ, limit
functions, or limit projections.

Lemma 2. Suppose that the complete lattices Lα, α < κ, form an inverse
system with projections hα

β : Lα → Lβ, β < α < κ, and limit L∞. Let
L be a complete lattice with a cone of projections gα : L → Lα and corre-
sponding embeddings fα : Lα → L, for each α < κ, and let g denote the
mediating function L → L∞, y �→ (gα(y))α<κ. Define f : L∞ → L by
f(x) =

∧{y : y ∈ L, ∀γ < κ xγ ≤ gγ(y)} =
∧{y : y ∈ L, x ≤ g(y)} for

all x = (xγ)γ<κ ∈ L∞. Then the pair of functions g and f forms a Galois
connection between L∞ and L.

Proof. Indeed, we have already noted that g is monotone, and it is clear that
f is also monotone. Let x = (xγ)γ<κ ∈ L∞. Then for all α < κ, gα(f(x)) =
gα(

∧{y : y ∈ L, ∀γ < κ xγ ≤ gγ(y)}) =
∧

α{gα(y) : y ∈ L, ∀γ < κ xγ ≤ gγ(y)},



268 Z. Ésik

since gα preserves arbitrary infima. It is clear that xα ≤ ∧
α{gα(y) ∈ L : ∀γ <

κ xγ ≤ gγ(y)}, thus xα ≤ gα(f(x)). Since this holds for all α < κ, it follows
that the identity function over L∞ is less than or equal to g ◦ f with respect to
the pointwise ordering. We still need to prove that f ◦ g is less than or equal to
the identity function over L. But for all y ∈ L, f(g(y)) =

∧{z : z ∈ L, g(y) ≤
g(z)} ≤ y, since g(y) ≤ g(y). ��
Remark 1. For later use we note that if the mediating function g of Lemma 2
is surjective, or if for each x = (xγ)γ<κ in L∞ and α < κ there is some y ∈ L
with xα = gα(y) and xγ ≤ gγ(y) for all γ < κ, then g is a projection. Indeed, if
either of these assumptions applies, then xα = gα(f(x)) for all α < κ and x ∈ L,
where f is defined as in Lemma 2.

If the projections hα
β , β < α < κ, satisfy a weak form of complete additivity,

then we can prove that the mediating morphism g is in fact a projection. Call
a monotone function L′ → L locally completely additive if for all Y ⊆ L′ and
x ∈ L with h(Y ) = {x} (i.e., Y is nonempty and h maps each element of Y to
x), it holds that h(

∨
Y ) = x. It is clear that when a function h : L′ → L is

completely additive, then it is locally completely additive.
There exist finite complete lattices L and L′ and a projection L′ → L which

is not locally completely additive, cf. [5]. An example of finite lattices L and L′

with a locally completely additive projection L′ → L which is not completely
additive is given in [5].

Lemma 3. Let L and L′ be complete lattices and let g : L′ → L be monotone
and surjective. Then g is locally completely additive iff

∨
g−1(x) ∈ g−1(x) for

all x ∈ L.

Proof. Suppose first that g is locally completely additive. Let x ∈ L and Y =
g−1(x). Then g(Y ) = {x}, thus g(

∨
Y ) = x and

∨
g−1(x) =

∨
Y ∈ g−1(x),

since g is locally completely additive.
Suppose now that

∨
g−1(x) ∈ g−1(x) for all x ∈ L. Let x ∈ L and Y ⊆ L′

with g(Y ) = {x}. Then Y is not empty, say y0 ∈ Y . Since y0 ≤ ∨
Y ≤ ∨

g−1(x)
and g is monotone, it holds that x = g(y0) ≤ g(

∨
Y ) ≤ g(

∨
g−1(x)) = x. Thus,

g(
∨

Y ) = x. ��
Lemma 4. Let L∞ be the limit of the inverse system of complete lattices Lα,
α < κ, with locally completely additive projections hα

β : Lα → Lβ, β < α < κ.
Then the limit projections h∞

β : L∞ → Lβ, β < κ, are also locally completely
additive.

Proof. Suppose that x ∈ Lβ and Y = (h∞
β )−1(x), where β < κ is a fixed ordinal.

We need to prove that h∞
β (

∨
Y ) = x.

For each α with β < α < κ, let Yα = (hα
β)−1(x). If β < α < α′ < κ,

then (hα′
β )−1(x) = (hα′

α )−1((hα
β )−1(x)), hence Yα′ = (hα′

α )−1(Yα). Moreover,
hα′

α (Yα′) = Yα. Also, Y = (h∞
α )−1(Yα) and h∞

α (Y ) = Yα for all α with β < α < κ.
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For each α with β < α < κ, define yα =
∨

Yα. When α ≤ β, let yα = hβ
α(x).

We intend to show that the sequence (yα)α<κ is compatible, so that y = (yα)α<κ

is in L∞.
We have yα ∈ Yα for all α with β < α < κ, since hα

β is locally completely
additive. Thus, if β < α < α′, then hα′

α (yα′) = yα, since hα′
α (yα′) is necessarily

the greatest element of Yα. When α < α′ < κ with α ≤ β, then hα′
α (yα′) =

hβ
α(xβ) = yα. Thus, y ∈ L∞.

We claim that y =
∨

Y in L∞. We have already shown that y ∈ L∞. We
know that for each α with β < α < κ, it holds that yα =

∨
Yα. Thus, our claim

holds if for all such α, Yα is equal to the set of all α-components of the sequences
in Y . But this is clear, since Yα = h∞

α (Y ).
It follows now that h∞

β is locally completely additive. ��
Lemma 5. Let L∞ be the limit of an inverse system of complete lattices Lα,
α < κ, with locally completely additive projections hα

β : Lα → Lβ, β < α < κ.
Suppose that L is a complete lattice and the locally completely additive projections
gα : L → Lα, α < κ, form a cone. Then the unique mediating function g : L→L∞
is a projection.

Proof. We already know that g is a projection if it is surjective, cf. Lemma 2
and Remark 1. Below we prove that g is indeed surjective. We will also give a
new description of the corresponding embedding.

For each α < κ, let fα denote the embedding corresponding to gα. When
x = (xα)α<κ is in L∞, define f(x) =

∨
α<κ fα(xα). We prove that g(f(x)) = x

for all x ∈ L∞ and that f is the embedding corresponding to g.
So let x = (xα)α<κ in L∞. If β < α < κ, then fβ(xβ) =

∧{y : y ∈ L, xβ ≤
gβ(y)} ≤ ∧{y : y ∈ L, xα ≤ gα(y)} = fα(xα), since if xα ≤ gα(y) for some
y ∈ L, then xβ = hα

β(xα) ≤ hα
β(gα(y)) = gβ(y). Hence the sequence (fα(xα))α<κ

is increasing. If γ ≤ α < κ, then gγ(fα(xα)) = hα
γ (gα(fα(xα))) = hα

γ (xα) = xγ .
Thus, gγ(

∨
α<κ fα(xα)) = gγ(

∨
γ≤α<κ fα(xα)) = xγ , since gγ is locally com-

pletely additive. Since this holds for all γ < κ, we conclude that g(f(x)) = x for
all x ∈ L∞.

Suppose now that y ∈ L. Then f(g(y)) = f((gα(y))α<κ) =
∨

α<κ fα(gα(y)) ≤
y, since fα(gα(y)) ≤ y for all α < κ.

��
Corollary 1. Under the assumptions of the previous lemma, for all (xα)α<κ ∈
L∞,

∧{y : y ∈ L, ∀α < κ xα ≤ gα(y)} =
∨

α<κ fα(xα).

Lemma 6. Let L∞ be the limit of an inverse system of complete lattices Lα,
α < κ, with locally completely additive projections hα

β : Lα → Lβ, β < α < κ.
Suppose that L is a complete lattice and the locally completely additive projections
gα : L → L∞, α < κ, form a cone. Then the unique mediating function g :
L→L∞ is a locally completely additive projection.

Proof. Let h∞
α : L∞ → Lα, α < κ, be the limit functions defined above. We

know that they are locally completely additive projections. Suppose that Y ⊆ L,
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x = (xα)α<κ ∈ L∞ and g(Y ) = {x}. Then gα(Y ) = h∞
α (g(Y )) = xα, hence

gα(
∨

Y ) = xα for all α < κ, since gα is locally completely additive. Since this
holds for all α, we have g(

∨
Y ) = x. On the other hand, g is a projection by

Lemma 5. ��
We now consider inverse systems with completely additive projections.

Lemma 7. Let L∞ be the limit of an inverse system of complete lattices Lα,
α < κ, with projections hα

β : Lα → Lβ, β < α < κ. Suppose that each hα
β is

completely additive. Then the limit projections h∞
α : L∞ → Lα, α < κ, are also

completely additive.

Proof. Let X ⊆ L∞ and α < κ. Let Xα denote the set of α-components of the
sequences in X. Since the supremum of X in L∞ is formed pointwise, h∞

α (
∨

X) =∨
α Xα =

∨
α h∞

α (X). ��
Lemma 8. Let L∞ be the limit of an inverse system of complete lattices Lα,
α < κ, with projections hα

β : Lα → Lβ, β < α < κ. Suppose that each hα
β for

β < α < κ is also completely additive. Let L be a complete lattice and suppose
that the completely additive functions gα : L → Lα, α < κ form a cone. Then
the mediating function g : L → L∞ is also completely additive.

Proof. Indeed, for all X ⊆ L, g(
∨

X) = (gα(
∨

X))α<κ = (
∨

α gα(X))α<κ =∨{(gα(x))α<κ : x ∈ X} =
∨

g(X). ��

4 Inverse Limit Models

In this section, our aim is to prove that the limit of an inverse system of com-
plete lattices with locally completely additive projections determines a model.
Moreover, when the projections of the inverse system are completely additive,
then the limit determines a strong model.

Suppose that Lα, α < κ, is an inverse system of complete lattices with
projections hα

β : Lα → Lβ , β < α < κ. Let L∞ denote the limit of the inverse
system with limit projections h∞

α : L∞ → Lα.
For each α < κ, define the relation �α on Lα by x �α y iff x ≤ y and

hα
β(x) = hα

β(y) for all β < α. Clearly, �α is a partial ordering of Lα which is
included in the complete lattice order ≤ on Lα.

We also define preorderings �α on L∞. For all α < κ and x = (xγ)γ<κ and
y = (yγ)γ<κ in L∞, let x �α y iff xα �α yα in Lα, i.e., when xα ≤ yα and
xβ = yβ for all β < α. Thus, for all x, y ∈ L∞ and α < κ, if x �α y then
h∞

α (x) �α h∞
α (y), hence h∞

α (x) ≤ h∞
α (y) and h∞

β (x) = h∞
β (y) for all β < α.

By the above definition, each �α is a preorder, so that L∞ is a stratified com-
plete lattice. Moreover, the intersection of all equivalence relations =α, deter-
mined by the preorderings �α, α < κ, is the identity relation on L∞. Thus, A1
and A2 hold. We show that A3 holds.
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Lemma 9. Let L∞ be the stratified complete lattice determined by the limit of
an inverse system of complete lattices Lα, α < κ, with projections hα

β : Lα → Lβ,
β < α < κ. Then for all x ∈ L∞ and α < κ there is some y ∈ L∞ with x =α y
and such that for all z ∈ L∞, if x �α z then y ≤ z.

Proof. Suppose that x = (xγ)γ<κ is in L∞. Let α < κ and define y = (yγ)γ<κ

as follows. Let yγ = xγ for all γ ≤ α. And if α < γ, define yγ = kγ
α(xα), where

kγ
α is the embedding determined by the projection hγ

α. Note that y ∈ L∞ and
y =α x, since yα = x. In fact, y = k∞

α (h∞
α (x)), where the limit projection h∞

α

and corresponding embedding k∞
α were defined above.

Let z = (zγ)γ<κ in L∞. Suppose that x �α z. Then yα = xα ≤ zα and
yβ = xβ = zβ for all β < α. Suppose now that α < β < κ. Then yβ =
kβ

α(yα) = kβ
α(xα) ≤ kβ

α(zα) ≤ zβ , since xα ≤ zα and kβ
α is monotone, and since

hβ
α(zβ) = zα. Thus, y ≤ z and y �α z. ��

Under the assumptions of Lemma 9, we denote x|α = k∞
α (h∞

α (x)) for all
x ∈ L∞ and α < κ.

Lemma 10. Let L∞ be the stratified complete lattice determined by the limit of
an inverse system of complete lattices Lα, α < κ, with projections hα

β : Lα → Lβ,
β < α < κ. Then for all x ∈ L∞, it holds that x =

∨
α<κ x|α.

Proof. For all α < κ, x|α ≤ x and x =α x|α, i.e., the α-component of x agrees
with the α-component of x|α. Thus,

∨
α<κ x|α ≤ x and x ≤ y whenever x|α ≤ y

for all α < κ. ��
It is also clear that A5 and A6 hold. We thus have:

Corollary 2. Let L∞ be the stratified complete lattice determined by the limit of
an inverse system of complete lattices Lα, α < κ, with projections hα

β : Lα → Lβ,
β < α < κ. Then L∞, equipped with the relations �α, α < κ, satisfies A1, A2,
A3, A5, A6. Moreover, x =

∨
α<κ x|α for all x ∈ L∞.

Lemma 11. Suppose that L∞ is the stratified complete lattice determined by the
limit of an inverse system of complete lattices Lα, α < κ, with locally completely
additive projections hα

β : Lα → Lβ, β < α < κ. Suppose that X is a nonempty
subset of L∞, y ∈ L∞ and α < κ with X =α y, i.e., x =α y for all x ∈ X. Then∨

X =α y.

Proof. Since X =α y, it holds that h∞
α (X) = y. Since by Lemma 4, h∞

α is locally
completely additive, we conclude that h∞

α (
∨

X) = y, i.e.,
∨

X =α y. ��
Proposition 1. Let Lα, α < κ, be the stratified complete lattice determined by
an inverse system of complete lattices with projections hα

β : Lα → Lβ, β < α < κ.
Then the inverse limit L∞ is a model satisfying the axioms A1–A6 iff each of
the projections hα

β for β < α < κ is locally completely additive. Moreover, in this
case, the limit functions h∞

α : L∞ → Lα, α < κ, are locally completely additive
projections.
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Proof. Suppose first that the projections hα
β are locally completely additive.

Then L is a model by Corollary 2 and Lemma 11. Moreover, the limit functions
h∞

α are locally completely additive projections by Lemmas 1 and 4.
Suppose now that L∞ is a model. We want to prove that each hα

β is locally
completely additive. First we show that each h∞

α is. Suppose that Y ⊆ L∞ is
not empty and h∞

α (Y ) = x. Then Y =α k∞
α (x), since the α-component of each

sequence in Y is x as is the α-component of k∞
α (x). Since L∞ is a model, it

follows that
∨

Y =α k∞
α (x). This means that the α-component of

∨
Y agrees

with the α-component x of k∞
α (x), hence h∞

α (
∨

α Y ) = x.
Suppose now that β < α < κ and x ∈ Lβ . Let Y = (hα

β)−1(x) and Z =
(h∞

β )−1(x) = (h∞
α )−1(Y ). Since h∞

β is locally completely additive,
∨

Z ∈ Z and
thus h∞

α (
∨

Z) ∈ Y . But Y = h∞
α (Z) ≤ h∞

α (
∨

Z), thus
∨

α Y = h∞
α (

∨
Z) ∈ Y . ��

If the projections hα
β are completely additive, then the stronger version A4∗

of axiom A4 holds.

Lemma 12. Suppose that L∞ is the model determined by the limit of an inverse
system of complete lattices Lα, α < κ, with completely additive projections hα

β :
Lα → Lβ, β < α < κ. Suppose that α < κ and xi �α yi in L∞ for all i ∈ I.
Then

∨
i∈I xi �α

∨
i∈I yi.

Proof. By our assumption, the β-component of xi agrees with the β-component
of yi for all i ∈ I and β < α. Moreover, for all i ∈ I, the α-component of xi is less
than or equal to the α-component of yi. Since the supremum is formed pointwise
(cf. Lemma 7), it follows that for all β < α, the β-component of

∨
i∈I xi agrees

with the β-component of
∨

i∈I yi, and the α-component of
∨

i∈I xi is less than
or equal to the α-component of

∨
i∈I yi. Thus

∨
i∈I xi �α

∨
i∈I yi. ��

Proposition 2. Let Lα, α < κ, be an inverse system of complete lattices with
projections hα

β : Lα → Lβ, β < α < κ, and denote by L∞ the stratified complete
lattice determined by limit of the system. If the projections hα

β are completely
additive, then the inverse limit L∞ is a strong model, i.e., it satisfies A1, A2,
A3, A4∗, A5 and A6. Moreover, the limit projections h∞

α : L∞ → Lα, α < κ,
are completely additive.

Conversely, if L∞ is a strong model, then the projections hα
β , β < α < κ, are

completely additive.

Proof. Suppose that the projections hα
β , β < α < κ, are completely additive.

Then they are locally completely additive, hence L∞ is a model by Proposition 1.
Thus, by Lemma 12, L∞ is a strong model.

Suppose now that L∞ is a strong model. Let X ⊆ L∞ and α < κ. Since
x =α k∞

α (h∞
α (x)) for all x ∈ X and L∞ is a strong model, we have

∨
X =α∨

k∞
α (h∞

α (X)) = k∞
α (

∨
α(h∞

α (X)), where the last equality holds since k∞
α pre-

serves all suprema. Applying h∞
α this gives h∞

α (
∨

X) = h∞
α (k∞

α (
∨

α h∞
α (X))) =∨

α h∞
α (X). Thus each h∞

α is completely additive. It follows that for each
β < α < κ, hα

β = h∞
β ◦ k∞

α , hα
β is also completely additive. ��
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Example 1. Let κ = Ω be the least uncountable ordinal, and for each α < Ω,
let Lα be the linearly ordered lattice F0 < · · · < Fα < 0 < Tα < · · · < T0.
For all β < α < Ω, define hα

β : Lα → Lβ by hα
β(Fγ) = Fγ and hα

β(Tγ) = Tγ ,
for all γ ≤ β, and let hα

β(x) = 0, otherwise. Then all of the assumptions of
Proposition 2 are satisfied so that L∞ is a strong model. In fact, L∞ is isomorphic
to VΩ . An isomorphism L∞ → VΩ is given by the assignment that maps the
sequence (0, 0, . . . , Fα, Fα, . . .) to Fα, the sequence (0, 0, . . . , Tα, Tα, . . .) to Tα,
where α < Ω and the first Fα or Tα occurs in position α, and the 0-sequence
(0, 0, . . .) to 0.

We will prove in Sect. 7 that every model satisfying the axioms A1–A6 is
isomorphic to a model determined by the limit of an inverse system of complete
lattices with locally completely additive projections. Moreover, we will prove
that every strong model is isomorphic to a model determined by the limit of an
inverse system of complete lattices with completely additive projections.

5 Some Properties of Models

In this section, we establish several consequences of the axioms. These results will
be used in our proof of the fact that every model is isomorphic to an inverse limit
model. Suppose that L satisfies the axioms A1–A6. For each x ∈ L and α < κ,
let [x]α = {y ∈ L : x =α y}. Moreover, for each α < κ, let L|α = {x|α : x ∈ L}.

Lemma 13. For each x ∈ L and α < κ, it holds that x =α x|α, x|α ≤ x, and
x|α is the ≤-least element of [x]α.

Proof. The first claim is clear, since by A3, x =α x|α. Suppose that y ∈ [x]α.
Then x =α y and so x �α y. Thus, x|α ≤ y, by A3 and the definition of x|α.
In particular, since x ∈ [x]α, it holds that x|α ≤ x. ��
Corollary 3. For all x∈L and α<κ, it holds that x|α =

∧
[x]α =

∧{y : x �α y}.
Corollary 4. For all x ∈ L,

∨
α<κ x|α ≤ x.

Corollary 5. For all x, y ∈ L and α < κ, it holds that x �α y iff x|α �α y iff
x �α y|α iff x|α �α y|α.

Proof. This follows from the fact x =α x|α and y =α y|α, proved in Lemma 13.
��

Corollary 6. For all x, y ∈ L and α < κ, it holds that x =α y iff x|α =α y iff
x|α =α y|α. Moreover, x =α y iff x|α = y|α.

Proof. This follows from Corollary 5 and Lemma 13, by noting that if x =α y,
then [x]α = [y]α, so x|α and y|α are ≤-least elements of the same set. ��
Lemma 14. Suppose that x∈L and α < β<κ. Then x|α =α x|β and x|α ≤ x|β.



274 Z. Ésik

Proof. By Lemma 13, it holds that x|α =α x =β x|β . Since by A1 the relation =β

is included in the relation =α, we conclude that x|α =α x|β . Since [x]β ⊆ [x]α,
the ≤-least element of [x]α is less than or equal to the ≤-least element of [x]β .
Thus, by Lemma 13, x|α ≤ x|β . ��
Lemma 15. Suppose that x ∈ L and α, β < κ. If α ≤ β then (x|α)|β = x|α. If
β < α then (x|α)|β = x|β.

Proof. By Lemma 13, it holds that (x|α)|β ≤ x|α. If α ≤ β then, since x|α =α x,
by A1 we have [x|α]β ⊆ [x]α, hence the ≤-least element of [x]α is less than or
equal to the ≤-least element of [x|α]β . Thus, by Lemma 13, x|α ≤ (x|α)|β . We
conclude that (x|α)|β = x|α.

Suppose now that β < α. Then by x|α =α x, which holds by Lemma 13, and
by the fact that the relation =α is included in =β , which holds by A1, we have
[x|α]β = [x]β . Thus, (x|α)|β = x|β by Lemma 13. ��
Corollary 7. For all x ∈ L and α < κ, x ∈ L|α iff x = x|α.

Proof. Recall that L|α = {y|α : y ∈ L}. Thus, if x = y|α is in L|α, then
x|α = (y|α)|α = y|α = x. If x = x|α, then clearly x ∈ L|α. ��
Corollary 8. For all x, y ∈ L|α, x =α y iff x = y.

Proof. Suppose that x, y ∈ L|α. Then x = x|α and y = y|α. We conclude by
Corollary 6. ��
Lemma 16. For all x, y ∈ L and α < κ, if x �α y then x|α ≤ y|α.

Proof. If x �α y then by y =α y|α, also x �α y|α, hence x|α ≤ y|α by A3. ��
Corollary 9. For all α < κ and x, y ∈ L|α, if x �α y then x ≤ y.

The above facts were all consequences of the first and the third axiom. We
will now make use of A2 and A4 in order to prove a strengthened version of
Corollary 4.

Lemma 17. For all x ∈ L and α < κ, x =
∨

α<κ x|α.

Proof. Let γ < κ be any ordinal. By Lemma 14, the sequence (x|α)α<κ is an
increasing chain in L. Thus

∨
α<κ x|α =

∨
γ≤α<κ x|α. But for all α with γ ≤ α,

x|α =γ x|γ =γ x by Lemmas 13 and 14. Hence, by A4,
∨

γ≤α<κ x|α =γ x and
thus

∨
α<κ x|α =γ x. Since this holds for all γ < κ, we conclude by A2 that

x =
∨

α<κ x|α. ��
Lemma 18. For all α < κ, nonempty families xi ∈ L, i ∈ I, and y ∈ L, if
xi|α = y for all i ∈ I, then (

∨
i∈I xi)|α = y.

Proof. This is clear from A4 and Corollary 8, since our assumption implies that
y ∈ L|α. ��
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Remark 2. A certain converse of Lemma 18 also holds. If A1, A2, A3 and the
condition formulated in Lemma 18 hold, and if y ∈ L and xi ∈ L with xi =α y
for all i ∈ I, where I is a nonempty set, then by Corollary 8, xi|α = y|α for all
i ∈ I, hence (

∨
i∈I xi)|α = y|α. By Corollary 8 this means that

∨
i∈I xi =α y,

i.e., A4 holds.

The next facts also use A5.

Corollary 10. For all x, y ∈ L, x ≤ y iff x|α ≤ y|α for all α < κ.

Proof. Suppose that x|α ≤ y|α for all α < κ. Then by Lemma 17, x =∨
α<κ x|α ≤ ∨

α<κ y|α = y. The reverse direction holds by A5. ��
Corollary 11. For all x, y ∈ L and α < κ, x|α ≤ y iff x|α ≤ y|α.

Proof. This follows from Corollary 10 using the fact that (x|α)|α = x|α, proved
in Lemma 15. ��

The next facts depend on A6.

Lemma 19. The following conditions are equivalent for all x, y ∈ L and α < κ:
(i) x �α y, (ii) x|α ≤ y|α and x =β y for all β < α, (iii) x|α ≤ y and x =β y
for all β < α.

Proof. Suppose that x �α y. Then x =β y for all β < α by A1, and x|α ≤ y|α
by Lemma 16. But if x|α ≤ y|α, then also x|α ≤ y, since by Lemma 13, y|α ≤ y.

Suppose that x|α ≤ y and x =β y for all β < α. Then x|α =β y for all β < α,
hence x|α �α y by A6. Thus, by Lemma 13, x �α y. ��
Corollary 12. For all x, y ∈ L and α < κ, x|α �α y|α iff x|α ≤ y|α and
x|β =β y|β for all β < α.

Proof. Immediate from Lemma 19 and Corollaries 7 and 8. ��
Corollary 13. For all x, y ∈ L|α, x �α y iff x|α ≤ y|α and x|β = y|β for all
β < α.

Proof. This is immediate from Corollaries 9 and 12. ��
For each set X ⊆ L and ordinal α < κ, let us define X|α = {x|α : x ∈ X}.

Note that this notation is consistent with the notation L|α introduced earlier.
Suppose now that L is a strong model satisfying A4∗.

Lemma 20. For all X ⊆ L and α < κ,
∨

X|α = (
∨

X)|α.

Proof. Let X ⊆ L and α < κ. Since by Lemma 13 x =α x|α for all x ∈ X, it holds
by A4∗ that

∨
X =α

∨
X|α. Thus, (

∨
X)|α ≤ ∨

X|α, again by Lemma 13.
Since x ≤ ∨

X for all x ∈ X, by A5 we have x|α ≤ (
∨

X)|α for all x ∈ X.
It follows that

∨
X|α ≤ (

∨
X)|α. ��
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Remark 3. Suppose that A1, A2 and A3 hold. Moreover, suppose that the prop-
erty described in Lemma 20 holds. Then we can show that A4∗ and A5 hold.
Thus, in the definition of strong models, these two axioms may be replaced by
the property in Lemma 20.

Indeed, if x ≤ y then for all α < κ, y|α = (x ∨ y)|α = x|α ∨ y|α, hence
x|α ≤ y|α. And if xi =α yi for all i ∈ I, where α < κ, then by Corollary 6,
xi|α = yi|α for all i ∈ I, thus (

∨
i∈I xi)|α =

∨
i∈I xi|α =

∨
i∈I yi|α = (

∨
i∈I yi)|α.

We conclude that
∨

i∈I xi =α

∨
i∈I yi.

6 An Alternative Axiomatization

We used axiom A3 to equip a model L with an operation |α : L → L for each
α < κ, mapping x ∈ L to x|α in L|α ⊆ L. In this section we give an alternative
axiomatization using these operations |α instead of the preorderings �α.

Theorem 1. Suppose that L is a model satisfying the axioms A1–A6. For each
α < κ and x ∈ L, let x|α be defined by the following property (cf. A3):

C. x|α =α x and for all y ∈ L, if x �α y then x|α ≤ y.

Then, equipped with the operations |α : L → L for α < κ, the following hold:

B1. For all x ∈ L and β ≤ α < κ, (x|α)|β = x|β.
B2. For all x, y ∈ L and α < κ, if x ≤ y then x|α ≤ y|α.
B3. For all x ∈ L, x =

∨
α<κ x|α.

B4. For all α < κ and y and xi ∈ L, i ∈ I, where I is a nonempty index set, if
xi|α = y then (

∨
i∈I xi)|α = y.

Moreover, the following holds:

D. For each α < κ and x, y ∈ L, it holds that x �α y iff x|α ≤ y|α and x|β = y|β
for all β < α.

Suppose that (L,≤) is a complete lattice equipped with a family of functions
|α : L → L, α < κ, satisfying the axioms B1–B4. For each α < κ, define the
relation �α on L by the condition D. Then, equipped with these relations �α, L
is a model satisfying the axioms A1–A6. Moreover, C holds.

Proof. We have already proved that when L is a model satisfying the axioms
A1–A6, then equipped with the operations |α : L → L, α < κ, uniquely defined
by C, L satisfies B1–B4. In fact, B2 is the same as A5. Moreover, D holds. (See
Lemmas 15, 17, 18 and Corollary 13.)

Suppose now that L is a complete lattice equipped with a family of functions
|α : L → L, α < κ, satisfying B1–B4. Define the relations �α, α < κ, by D.
Then each of the relations �α, α < κ, is clearly a preordering, and if β < α,
then �α is contained in =β . Thus A1 holds.

In order to prove that A2 holds, note first that if x ≤ y then x|α ≤ y|α for
all α < κ, by B2, and if x|α ≤ y|α for all α < κ, then x ≤ y, by B3. Thus, x ≤ y
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iff x|α ≤ y|α for all α < κ, and x = y iff x|α = y|α for all α < κ iff x =α y for all
α < κ, proving A2.

Now we prove A3. First note that for all α < κ and x ∈ L, x =α x|α, since
by B1, (x|α)|β = x|β for all β ≤ α. Moreover, if x �α y, then by D and B3,
x|α ≤ y|α ≤ y.

Axiom A4 holds by B4 and Remark 2. Axiom A5 holds since it is the same
as B2. Finally, axiom A6 holds, since if x ≤ y in L and x|β = y|β for all β < α,
where α < κ, then, by B2, also x|α ≤ y|α and thus x �α y by D. ��
Corollary 14. Suppose that L is a strong model satisfying the axioms A1, A2,
A3, A4∗, A5 and A6. For each α < κ and x ∈ L, let x|α be defined by the
property C above. Then, equipped with the operations |α : L → L for α < κ, B1,
B3 and the following hold:

B2∗. For all X ⊆ L and α < κ, (
∨

X)|α =
∨

X|α.

Moreover, D holds.
Suppose that L is a complete lattice equipped with a family of functions |α :

L → L, α < κ, satisfying the axioms B1, B2∗ and B3. For each α < κ, define
the relation �α on L by the condition D. Then, equipped with these relations
�α, L is a strong model. Moreover, C holds.

Proof. One uses Lemma 20 and Remark 3. ��
Remark 4. The proof of Theorem 1 entails also the following result. Suppose
that L is a stratified complete lattice satisfying the axioms A1, A2, A3, A5, A6
and B3, where for each α < κ and x ∈ L, x|α is defined by the property C. Then,
equipped with the operations |α : L → L for α < κ, B1, B2 and D hold.

Suppose that (L,≤) is a complete lattice equipped with a family of functions
|α : L → L, α < κ, satisfying the axioms B1, B2, B3. For each α < κ, define the
relation �α on L by the condition D. Then, equipped with these relations �α,
L satisfies A1, A2, A3, A5 and A6. Moreover, C holds.

7 The Representation Theorem

In this section, we prove that every model satisfying the axioms A1–A6 intro-
duced in Sect. 2 is isomorphic to an inverse limit model. In our argument, we
will make use of the properties of models established in the previous sections.

Proposition 3. Suppose that L is a model satisfying A1–A6. Then for each
α < κ, L|α, equipped with the ordering inherited from L, is a complete lattice.
Moreover, for all X ⊆ L|α, the infimum

∧
α X of X in L|α is (

∧
X)|α, where∧

X is the infimum of X in L. Similarly, the supremum
∨

α X of X in L|α is
(
∨

X)|α, where
∨

X is the supremum of X in L.
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Proof. Suppose that L is a model. Let α < κ and X ⊆ L|α.
Since by Lemma 13 (or B3), (

∧
X)|α ≤ ∧

X, we have (
∧

X)|α ≤ X. Suppose
that z ∈ L|α with z ≤ X. Then z ≤ ∧

X, hence z ≤ (
∧

X)|α by Corollaries 7
and 11, or B1 and B2. We have completed the proof of the fact that (

∧
X)|α is

the infimum of X in L|α, i.e.,
∧

α X = (
∧

X)|α.
The proof of

∨
α X = (

∨
X)|α is similar. First, X ≤ ∨

X, hence X ≤ (
∨

X)|α
by Corollary 11, or B1 and B2. And if z ∈ L|α with X ≤ z, then

∨
X ≤ z, hence

(
∨

X)|α ≤ z by Lemma 13 (or B3). ��
An example of a five-element model L such that there exist x, y ∈ L|0 with

x ∧ y �= x ∧0 y is given in [5].

Proposition 4. Suppose that L is a model satisfying A1–A6. For any ordinals
α, β with β ≤ α < κ, define hα

β : L|α → L|β by hα
β(x) = x|β for all x ∈ L|α.

Then each of the functions hα
β for β ≤ α < κ is surjective. For all α < κ, hα

α

is the identity function L|α → L|α, and for all γ < β < α < κ, hβ
γ ◦ hα

β = hα
γ .

Moreover, the following hold:

(i) For all β < α < κ, hα
β : L|α → L|β is a projection.

(ii) For all β < α < κ, hα
β is locally completely additive.

(iii) For all α < κ and x, y ∈ L|α, x �α y iff x ≤ y and hα
β(x) = hα

β(y) for all
β < α.

Proof. Suppose that β ≤ α < κ. For all x ∈ L, it holds by Lemma 15 (or B1)
that (x|α)|β = x|β . Thus, hα

β is surjective.
By Lemma 15 (or B1), hα

α is the identity function L|α → L|α for all α < κ.
The fact that hβ

γ ◦ hα
β = hα

γ for all γ < β < α also follows from Lemma 15
(or B1), since for all x ∈ L, ((x|α)|β)|γ = x|γ = (x|α)|γ .

Suppose that β < α < κ. If x ≤ y in L|α, then x|β ≤ y|β by A5 or B2. Thus,
hα

β is monotone. It follows from Lemma 15 that for all β < α < κ, L|β ⊆ L|α.
Let x ∈ L|β and y ∈ L|α with x ≤ y|β . Since x ∈ L|β , it holds that x = x|β ,
by Lemma 15 or B1. But again by Lemma 13 (or B3), x|β = x ≤ y|β ≤ y, so
x ≤ y. Also, if x ≤ y, then x ≤ y|β . Thus, hα

β is a projection with corresponding
embedding kα

β : L|β → L|α being the inclusion function.
Next we prove that each function hα

β for β < α < κ is locally completely
additive. To this end, suppose that Y ⊆ L|α and x ∈ L|β with hα

β(Y ) = {x},
so that Y is not empty and y|β = x for all y ∈ Y . Then, by Corollary 7 and
Corollary 8, or B1 and D, y =β x for all y ∈ Y , i.e., Y =β x. We conclude by A4
that

∨
Y =β x and thus (

∨
Y )|β = x, again by Corollaries 7 and 8, or B1 and

D. Thus, hα
β(

∨
α Y ) = (

∨
α Y )|β = ((

∨
Y )|α)|β = (

∨
Y )|β = x, by Proposition 3

and either Lemma 15 or B1.
The last claim holds by Corollary 13 or D. ��
We are now ready to prove the Representation Theorem. By Proposition 4, for

every model L satisfying the axioms A1–A6, the complete lattices L|α equipped
with the locally completely additive projections hα

β : L|α → L|β defined by
hα

β(x) = x|β for all x ∈ L|α and β < α < κ form an inverse system. We can thus
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form the limit model L∞ as in Sect. 4. We know that L∞ is a model satisfying
the axioms A1–A6. But actually L∞ is isomorphic to L.

Theorem 2. Every model L satisfying the axioms A1–A6 is isomorphic to the
model determined by the limit of the inverse system of the complete lattices L|α,
α < κ, with locally completely additive projections hα

β : L|α → L|β, defined by
hα

β(x) = x|β for all x ∈ L|α, where β < α < κ.

Proof. Let L∞ denote the inverse limit. We intend to show that L is isomorphic
to L∞. Recall that for each α < κ, the limit projection h∞

α : L∞ → L|α maps
a sequence x ∈ L∞ to its α-component xα. We know from Proposition 1 that
these functions are locally completely additive projections and constitute a cone
over the inverse system hα

β : L|α → L|β .
We define another cone. For each α < κ, let fα : L → L|α be defined by

fα(x) = x|α. Note that each fα is monotone and locally completely additive
(Lemma 18) and a projection (Corollaries 7 and 11). Moreover, by Lemma 15
(or B1), hα

β(fα(x)) = (x|α)|β = x|β = fβ(x) for all β < α and x ∈ L. Thus,
there is a unique function f : L → L∞ with h∞

α ◦ f = fα for all α < κ. We know
that the function f , given by f(x) = (x|α)α<κ, is a locally completely additive
projection (Lemmas 5 and 6). By Corollary 10, f is an isomorphism.

To complete the proof, we still need to show that f creates an isomorphism
between (L,�α) and (L∞,�α) for each α. But this is clear, since for all x, y ∈ L,
x �α y iff x|α �α y|α, as shown above (Corollary 5). ��
Example 2. Consider the model L = VΩ defined above and recall Example 1.
Then for each α < Ω, L|α is isomorphic to Lα and the functions hα

β : L|α → L|β
given by x �→ x|β correspond to the functions hα

β : Lα → Lβ described in
Example 1.

Corollary 15. Every strong model L is isomorphic to the model determined
by the limit of the inverse system of the complete lattices L|α, α < κ, with
completely additive projections hα

β : L|α → L|β, defined by hα
β(x) = x|β for all

x ∈ L|α, where β < α < κ.

Proof. By Theorem 2 and Proposition 2. ��
Corollary 16. Let L be a stratified complete lattice equipped with a preordering
�α for each α < κ. Then L is a model satisfying the axioms A1–A6 iff L is
isomorphic to the model determined by the limit of an inverse system of complete
lattices Lα, α < κ, with locally completely additive projections hα

β : Lα → Lβ,
β < α < κ.

Corollary 17. Let L be a stratified complete lattice equipped with a preordering
�α for each α < κ. Then L is a strong model iff L is isomorphic to the model
determined by the limit of an inverse system of complete lattices Lα, α < κ, with
completely additive projections hα

β : Lα → Lβ, β < α < κ.
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8 Some Further Properties of Models

In this section, we establish several further properties of models. Some of these
properties have been axioms in [6,7], see Propositions 5, 6. Some others, such
as the ones formulated in Corollaries 20 and 21, were proved in [6] for a larger
class of models. Our aim here is to use the Representation Theorem to provide
alternative proofs of these results. In Corollary 20, we will prove that if L is a
model, then it may naturally be equipped with another complete partial order
�. Then, in Corollary 21, we will show that certain weakly monotone functions
over L have least pre-fixed points with respect to the ordering �, and that these
least pre-fixed points are in fact fixed points. Actually we will derive these facts
from a new technical result formulated in Theorem 3, which also implies that
the collection of all fixed points is in fact a complete lattice in itself w.r.t. the
ordering �, cf. Corollary 19.

In this section, we will without loss of generality suppose that a model L is
given as the model determined by the limit L∞ of an inverse system of complete
lattices Lα, α < κ, with locally completely additive projections hα

β : Lα → Lβ

and corresponding embeddings kα
β : Lβ → Lα, β < α < κ. As before, we will

denote the limit projection L → Lα for α < κ by h∞
α . As noted above, the

embeddings kα
β , as well as the embeddings k∞

α : Lα → L, corresponding to the
projections h∞

α , are locally completely additive. Recall that an element of an
inverse limit model L∞ is a sequence x = (xα)α<κ, which is compatible in the
sense that hα

β(xα) = xβ for all β < α < κ. As opposed to previous sections,
instead of

∨
α X and

∧
α X, we will simply denote the supremum and infimum

of a set X ⊆ Lα, α < κ, by
∨

X and
∧

X, respectively.
The properties established in all models by Propositions 5 and 6 below have

been axioms in [6]. We include these propositions in order to connect this paper
with [6].

Proposition 5. Suppose that L is model satisfying A1–A6. Let x ∈ L, α < κ
and X ⊆ (x]α = {z : ∀β < α x =β z}. Then there exists some y ∈ (x]α with the
following properties:

(i) X �α y (i.e., x �α y for all x ∈ X),
(ii) for all z ∈ (x]α, if X �α z then y ≤ z and y �α z.

Proof. Before giving the proof, let us remark that for the notion of model as
used in this paper, Proposition 5 greatly simplifies. Using the above assumption
and notation, since X ⊆ (x]α and y, z ∈ (x]α, X �α y holds iff X|α ≤ y, and
similarly for X �α z. Moreover, y �α z iff y|α ≤ z. See Lemma 19. But since
y|α ≤ y (cf. Lemma 13), we have y �α z and y ≤ z iff y ≤ z. Thus, the above
property amounts to the following assertion: for each X ⊆ (x]α in a model L
satisfying A1–A6, there is some y ∈ (x]α with X|α ≤ y and such that for all
z ∈ L, if X|α ≤ z then y ≤ z.

In our proof, we make use of Theorem 2. So without loss of generality suppose
that L = L∞ is the model determined by the limit of an appropriate inverse
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system as described above. Then x = (xβ)β<κ is a compatible sequence, and
(x]α = {(zβ)β<κ ∈ L : ∀β < α xβ = zβ}.

If X is empty, let y =
∨

γ<α k∞
γ (xγ), which is the least element of (x]α.

Indeed, for any β < α, h∞
β (y) = h∞

β (
∨

γ<α k∞
γ (xγ)) = h∞

β (
∨

β≤γ<α k∞
γ (xγ)),

since the sequence (k∞
γ (xγ))γ<α is increasing. But for all γ with β ≤ γ < α,

h∞
β (k∞

γ (xγ)) = hγ
β(xγ) = xβ . Thus, since h∞

β is locally completely additive, we
have h∞

β (
∨

γ<α k∞
γ (xγ)) =

∨
β≤γ<α h∞

β (k∞
γ (xγ)) =

∨
β≤γ<α xβ = xβ . And if

z = (zβ)β<κ ∈ (x]α, then xβ = zβ = h∞
β (z) for all β < α, hence k∞

β (xβ) ≤ z for
all β < α, so that y =

∨
β<α k∞

β (xβ) ≤ z.
If X is not empty, then define y = k∞

α (
∨

Xα) =
∨

k∞
α (Xα), where Xα is the

set of all α-components of the elements of X. Since (h∞
α , k∞

α ) is a projection-
embedding pair, y is the least element of L with Xα ≤ h∞

α (y), or equivalently,∨
Xα ≤ h∞

α (y). To complete the proof, we still need to show that y ∈ (x]α. But
for all β < α, h∞

β (y) = h∞
β (k∞

α (
∨

Xα)) = hα
β(

∨
Xα) = xβ , since hα

β(Xα) = xβ

and hα
β is locally completely additive. ��

We will denote the element y constructed above by
⊔

α X. Note that when X
is empty,

⊔
α X depends on x, but if X is not empty, then

⊔
α X is independent

of x. In particular, we may use the notation
⊔

α X without specifying the element
x whenever X is not empty and z =β z′ holds for all z, z′ ∈ X and β < α.

We note that a short description of
⊔

α X is
∨

(X|α ∪ {x̄}), where x̄ is the
least element of (x]α.

Proposition 6. Suppose that L is a strong model. Let I be an arbitrary non-
empty index set and xi,n ∈ L for all i ∈ I and n ≥ 0. Suppose that α < κ
and xi,n �α xi,n+1 for all i ∈ I and n ≥ 0. Then

∨
i∈I

⊔
α{xi,n : n ≥ 0} =α⊔

α{∨
i∈I xi,n : n ≥ 0}.

Proof. First note that
⊔

α{∨
i∈I xi,n : n ≥ 0} exists, since by Lemma 12 we have∨

i∈I xi,n �α

∨
i∈I xi,n+1 for all n ≥ 0, hence

∨
i∈I xi,n =β

∨
i∈I xi,n+1 for all

n ≥ 0 and β < α.
Again, we assume that L is an inverse limit model. A routine calculation

shows that both sides of the required equality are equal to
∨

i∈I,n≥0(xi,n)α,
where for each i ∈ I and n ≥ 0, (xi,n)α is the α-component of xi,n. ��

Actually the above fact extends to all nonempty chains.
Suppose that L is model satisfying A1–A6. Following [6], we define the rela-

tion � on L by x � y iff x = y, or there is some α < κ with x �α y, i.e., x �α y
but y ��α x. When L is an inverse limit model and x = (xα)α<κ, y = (yα)α<κ,
this gives x � y iff either x = y, i.e., xα = yα for all α < κ, or there is some
α < κ with xα < yα and xβ = yβ for all β < α.

Lemma 21. For every model L satisfying A1–A6, the relation � is a partial
order. Moreover, for every x, y ∈ L, if x ≤ y then x � y.
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Proof. Let L be the model determined by the limit of an inverse system Lα,
α < κ, of complete lattices with locally completely additive projections hα

β :
Lα → Lβ , β < α < κ. Let x = (xα)α<κ and y = (yα)α<κ in L. If x = y then
clearly x � y. Suppose that x < y. Then there is some α with xα < yα and
xβ = yβ for all β < α. Thus, x �α y and x � y.

It is clear � is reflexive and transitive. To prove that it is anti-symmetric, let
x, y in L. Suppose that x � y and y � x. If x �= y then there exist α, β < κ such
that x �α y and y �β x. Then x =γ y for all γ < max{α, β}, which implies that
α = β and hence xα < yα and yα < xα, a contradiction. Thus x = y. We note
that when each Lα is linearly ordered, then � is a linear ordering of L. ��

Note that on inverse limit models, � is the lexicographic order. In [5], it is
shown that it is necessary that the projections be locally completely additive in
order to have the result of Lemma 21.

Below we will often make use of the following observation. Let L be the model
determined by the limit of an inverse system of complete lattices Lα, α < κ, with
locally completely additive projections hα

β : Lα → Lβ , where β < α < κ. Suppose
that α < κ and (xβ)β<α is a (partial) compatible sequence, so that hβ

γ (xβ) = xγ

for all γ < β < α. Then there is a least element xα of Lα such that the sequence
(xβ)β≤α is still compatible, namely xα =

∨
β<α kα

β (xβ). Moreover, the set of all
elements xα with this property is a complete sublattice of Lα which is a closed
interval. Indeed, if Y is a nonempty set of such elements of Lα, then so is

∨
Y ,

since hα
β(Y ) = {xβ} and thus hα

β(
∨

Y ) =
∨

hα
β(Y ) = xβ for all β < α. Finally, if

xα and x′
α in Lα satisfy hα

β(xα) = hα
β(x′

α) = xβ for all β < α, and if xα ≤ y ≤ x′
α,

then by hα
β(xα) ≤ hα

β(y) ≤ hα
β(x′

α) we must have hα
β(y) = xβ for all β < α.

Suppose that f : L → L, where L is a model. Following [6], we say that f is α-
monotone for some α < κ if x �α y implies f(x) �α f(y) for all x, y ∈ L. When
L is an inverse limit model as above, this means that if x, y ∈ L are such that for
each β < α, the β-component of x agrees with the corresponding component of y
and the α-component of x is less than or equal to the corresponding component
of y, then the same hold for f(x) and f(y). Call a function g : Lα → Lα

conditionally monotone if for all x, y ∈ Lα, if hα
β(x) = hα

β(y) for all β < α and
x ≤ y, then g(x) ≤ g(y).

Lemma 22. Suppose that L is a model determined by an inverse system of
complete lattices Lα, α < κ, with locally completely additive projections hα

β :
Lα → Lβ, β < α < κ. Let f : L → L. Then f is α-monotone for all α < κ iff
there exist conditionally monotone functions fα : Lα → Lα, α < κ, such that
f((xα)α<κ) = (fα(xα))α<κ for all (xα)α<κ in L.

Proof. In order to prove the sufficiency part of the lemma, suppose that f :
L → L and fγ , γ < κ, is a family of conditionally monotone functions such that
f(x) = (fγ(xγ))γ<κ for all x = (xγ)γ<κ ∈ L. Let α < κ and x, y ∈ L with
x �α y. Suppose that x = (xγ)γ<κ and y = (yγ)γ<κ. We want to prove that
f(x) = x′ �α y′ = f(y). But for all β < α, the β-component x′

β of x′ agrees with
the β-component y′

β of y′, since by xβ = yβ we have x′
β = fβ(xβ) = fβ(yβ) = y′

β .
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Also, since xα ≤ yα and fα is conditionally monotone, for the α-components we
have x′

α = fα(xα) ≤ fα(yα) = y′
α.

In order to prove the necessity part of the lemma, suppose that f is α-monotone
for all α < κ. For each α < κ, define fα : Lα → Lα as the function h∞

α ◦ f ◦ k∞
α . If

x ≤ y in Lα with hα
β(x) = hα

β(y) for all β < α, then for all β < α, the β-component
of k∞

α (x) agrees with the β-component of k∞
α (y), while the α-component of k∞

α (x)
is x and the α-component of k∞

α (y) is y, so that the α-component of k∞
α (x) is less

than or equal to the α-component of k∞
α (y). Since f is α-monotone, the same holds

for f(k∞
α (x)) and f(k∞

α (y)). In particular, the α-component of f(k∞
α (x)) is less

than or equal to the α-component of f(k∞
α (y)), i.e., fα(x) = h∞

α (f(k∞
α (x))) ≤

h∞
α (f(k∞

α (y))) = fα(y).
We still need to prove that f(x) = (fα(xα))α<κ for all x = (xα)α<κ in

L. Let α < κ be a fixed ordinal. Since f is α-monotone and x =α k∞
α (xα), also

f(x) =α f(k∞
α (x)), hence the α-component of f(x) agrees with the α-component

of f(k∞
α (xα)), which is in turn equal to fα(xα). Since α was an arbitrary ordinal

less than κ, this proves the required equality. ��
In particular, when f is α-monotone for all α < κ, then f0 is a monotone

function over L0.
A function L → L which is α-monotone for all α < κ need not be monotone

w.r.t. the partial order �, cf. [6].

Remark 5. Thus, if L is an inverse limit model as above and f : L → L is α-
monotone for all α < κ, then f determines and is determined by a necessarily
unique family of conditionally monotone functions fα : Lα → Lα, α < κ. More-
over, this family of functions is compatible in the sense that hα

β ◦ fα = fβ ◦ hα
β

for all β < α < κ.
Conversely, if fα, α < κ, is a compatible sequence of conditionally monotone

functions, then for each compatible sequence x = (xα)α<κ, the sequence
(fα(xα))α<κ is also compatible, and the function f : L → L defined by
f(x) = (fα(xα))α<κ for all x = (xα)α<κ in L is α-monotone for all α < κ.

We will also use the following fact. Suppose that L is an inverse limit model
as above and f : L → L is α-monotone for all α < κ. Suppose that (xβ)β<α

is a compatible sequence, so that hβ
γ (xβ) = xγ for all γ < β < α. Consider the

sublattice Zα of Lα of those elements xα such that the sequence (xβ)β≤α is still
compatible. If for each β < α, xβ is a fixed point of fβ , see below, then fα maps
Zα into itself and is monotone on Zα.

Recall that a pre-fixed point (resp. post-fixed point) of a function f over a
partially ordered set P is an element x ∈ P with f(x) ≤ x (resp. x ≤ f(x)).
Moreover, x is a fixed point of f if f(x) = x, i.e., when x is both a pre-fixed point
and a post-fixed point. By the well-known Knaster-Tarski fixed point theorem
[2], every monotone endofunction over a complete lattice has a least fixed point
which is also the least pre-fixed point. Dually, every monotone endofunction over
a complete lattice has a greatest fixed point, which is also the greatest post-fixed
point. And if L is a complete lattice and f : L → L is monotone, then the fixed
points of f form a complete lattice. This immediately follows from the existence
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of the least fixed point using the fact that if x is a post-fixed point, then there
is a least pre-fixed point over x which is a fixed point. More generally, if X is a
set of post-fixed points, then there is a least pre-fixed point over X which is a
fixed point. Of course, the dual statement also holds.

In order to prove the above claim, suppose that L is a complete lattice, f :
L → L is monotone, and X is a set of post-fixed points of f . Let Z = {z ∈ L :
X ≤ z, f(z) ≤ z} and y =

∧
Z. We need to prove that y is a fixed point of f .

We have X ≤ y and thus f(X) ≤ f(y), hence X ≤ f(y) since X is a set of
post fixed points. And if z ∈ Z then y ≤ z, hence f(y) ≤ f(z) ≤ z. Since this
holds for all z ∈ Z and y =

∧
Z, we conclude that f(y) ≤ y. But then f(y) ∈ Z

and thus y ≤ f(y), proving f(y) = y.

Theorem 3. Let L be a model satisfying the axioms A1–A6 and f : L → L be
α-monotone for all α < κ. Suppose that X ⊆ L is a set of post-fixed points of f
with respect to the ordering ≤. Then there is a (necessarily unique) y ∈ L with
the following properties:

(i) X � y and f(y) = y,
(ii) for all z ∈ L, if X � z and f(z) � z, then y � z.

Proof. Without loss of generality we may assume that L is the model determined
by the limit of an inverse system of complete lattices Lα, α < κ, with locally
completely additive projections hα

β : Lα → Lβ , β < α < κ. Since f is α-monotone
for all α < κ, it is determined by a family of conditionally monotone functions
fα : Lα → Lα, α < κ.

For each α < κ, let Xα denote the set of all α-components xα of the elements
x of X. Define Yα = {z ∈ Xα : ∀β < α hα

β(z) = yβ}, and let yα be the least
(pre-)fixed point of fα over Yα in Zα, where Zα is the set of all elements z of
Lα with hα

β(z) = yβ for all β < α. In particular, Y0 = X0 and y0 is the least
(pre-)fixed point of f0 in Z0 = L0.

It is clear that the sequence y = (yα)α<κ is in L. Moreover, f(y) = y, as each
yα is a fixed point of fα. The fact that X � y follows from the following:

Claim. For all x ∈ X and α < κ, either xβ = yβ for all β < α, or there is some
β ≤ α with xβ < yβ .

Indeed, if xα ∈ Yα for all α < κ, then xα = yα for all α < κ. In the opposite
case there is a least α with xα �∈ Yα. Then α > 0, and xβ ∈ Yβ for all β < α.
Hence, if β < α, then xγ = yγ for all γ < β, showing that α is not a limit ordinal.
Thus, α is successor ordinal, say α = β + 1. Moreover, xβ ∈ Yβ and xα �∈ Yα.
This implies that xβ < yβ and xγ = yγ for all γ < β, so that x �β y.

Claim. Let z = (zα)α<κ ∈ L with X � z and f(z) � z. Then for all α < κ,
either yβ = zβ for all β < α, or there is some β < α with yβ < zβ .

Indeed, suppose that α < κ and the claim holds for all ordinals less than α.
If yβ < zβ for some β < α then we are done. Suppose now that yβ = zβ for all
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β < α. Then fβ(zβ) = fβ(yβ) = yβ = zβ for all β < α. Thus, if Yα is empty,
then yα is the least (pre-)fixed point of fα in Zα, whereas zα is another pre-fixed
point of fα in Zα. Hence yα ≤ zα. Suppose now that Yα is not empty. Then yα is
the least pre-fixed point of fα in Zα above Yα, while zα is another such pre-fixed
point, since by f(z) � z, X � z and fβ(zβ) = zβ and yβ = zβ for all β < α we
have fα(zα) ≤ zα and Yα ≤ zα. We conclude that yα ≤ zα. It follows now that
y � z whenever X � z and f(z) � z. ��
Corollary 18. Let L be a model satisfying the axioms A1–A6 and f : L → L be
α-monotone for all α < κ. Suppose that X ⊆ L is a set of pre-fixed points of f
with respect to the ordering ≤. Then there is a (necessarily unique) y ∈ L with
the following properties:

(i) y � X and f(y) = y,
(ii) for all z ∈ L, if z � X and z � f(z), then z � y.

Proof. Again, we may assume that L is a limit model. Using the notation intro-
duced in the previous proof, for each α < κ define Yα = {x ∈ Xα : ∀β <
α hα

β(x) = yβ} and let yα be the greatest (post-)fixed point of fα below Yα in
Zα, where Zα is the set of all elements z of Lα with hα

β(z) = yβ for all β < α.
Then y = (yα)α<κ is the required element of L. ��
Corollary 19. Suppose that L is a model and f : L → L is α-monotone for
all α < κ. Then the fixed points of f form a complete lattice with respect to the
ordering �.

Corollary 20. For every model L satisfying the axioms A1–A6, (L,�) is a
complete lattice.

Proof. Let f be the identity function in Corollary 19. In particular, we obtain
that if X ⊆ L, then the supremum

⊔
X of X w.r.t. the ordering � can be

constructed as follows. For each α < κ, define Yα = {x ∈ Xα : ∀β < α hα
β(x) =

yβ} and let yα be the supremum of Yα and the least element of Zα in the
complete lattice Lα (or in Zα). Then

⊔
X = (yα)α<κ. Note that if Yα is empty,

then yα =
∨

α<κ kα
β (yβ).

The infimum
�

X can be constructed dually. ��
Corollary 21. Let L be a model satisfying the axioms A1–A6 and suppose that
f : L → L is α-monotone for all α < κ. Then f has a least pre-fixed point w.r.t.
the ordering � which is a fixed point. Hence, if x is the least fixed point of f and
f(y) � y, then x � y.

Remark 6. Suppose that L is a model and f : L → L is α-monotone for all
α < κ. Let x denote the least (pre-)fixed point of f w.r.t. �. If f(z) ≤ z for
some z ∈ L, then also f(z) � z, hence x � z.
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Example 3. Suppose that Z is a denumerable set of propositional variables and
P is an at most countably infinite propositional logic program over Z, possibly
involving negation. Thus P is a countable set of instructions of the form z ←
�1∧· · ·∧�k, where z ∈ Z and �i is a literal for each i. Consider the model L = V Z

Ω ,
defined in Sect. 2, where Ω is the least uncountable ordinal. Then P induces a
function fP : L → L which maps an interpretation I ∈ L to the interpretation
J = fP (I) such that J(z) =

∨
z←�1∧···∧�k∈P (I(�1) ∧ · · · ∧ I(�k)), where for a

negative literal � = ¬y, I(�) = Tα+1 if I(y) = Fα, I(�) = Fα+1 if I(y) = Tα, and
I(�) = 0 if I(y) = 0. Then fP is α-monotone for all α < Ω. The semantics of P
is defined in [10] as the least fixed point of fP w.r.t. �.

We end this section by mentioning a result from [7]. A new proof of it, based
on the inverse limit representation, can be found in [5].

Theorem 4. Suppose that L is a model satisfying A1–A6 and f : L → L is
α-monotone for each α < κ. Let X ⊆ L be a set of post-fixed points of f w.r.t.
the ordering ≤. Then y =

⊔
X is also a post-fixed point of f w.r.t. ≤.

9 Symmetric Models

The first two axioms A1 and A2 and the axiom A6 introduced in Sect. 2 are self
dual, but the others are not. The dual forms of A3, A4 and A6 are given below.
(For missing proofs, see [5].)

A3d. For all x and α < κ there exists y such that x =α y and for all z, if z �α x
then z ≤ y. (It is clear that y is uniquely determined by x and α and we
will denote it by x|α.)

A4d. For all α < κ and xi, y, i ∈ I, where I is a nonempty index set, if xi =α y
for all i ∈ I, then

∧
i∈I xi =α y.

A5d. For all x, y and α < κ, if x ≤ y then x|α ≤ y|α.

We also define the dual of A4∗.

A4∗d. For all α < κ and xi, yi with xi =α yi, i ∈ I, where I is any index set, it
holds that

∧
i∈I xi =α

∧
i∈I yi.

Lemma 23. There is a model not satisfying A3d.

Lemma 24. Every model satisfying the axioms A1–A6 satisfies A4∗d.

Lemma 25. Every strong model satisfies A3d and A5d.

Suppose that L is a stratified complete lattice. We say that L is a dual model
if it satisfies A1, A2, A3d, A4d, A5d and A6. Moreover we call L a strong dual
model if it satisfies A1, A2, A3d, A4∗d, A5d and A6. Alternatively, L is a (strong)
dual model iff its dual Lop, obtained by reversing the relation ≤ and each relation
�α, is a (strong) model.
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Of course, if a property holds in all models, then the dual property holds in
all dual models, and similarly for strong models. In particular, every (strong)
dual model can be constructed as an inverse limit model. However, one uses
dual projection-embedding pairs and locally infimum preserving or infimum pre-
serving functions hα

β : Lα → Lβ of complete lattices. Here, when L and L′ are
complete lattices, we say that g : L′ → L is a dual projection with corresponding
dual embedding f : L → L′ if f and g are monotone, g ◦ f : L → L is the iden-
tity function on L, and f ◦ g : L′ → L′ is greater than or equal to the identity
function on L′. Alternatively, this means that g is a projection (L′)op → Lop

and f is the corresponding embedding Lop → (L′)op. And a function h : L′ → L
is locally infimum preserving if for all Y ⊆ L′ and x ∈ L with h(Y ) = x, it holds
that h(

∧
Y ) = x. This clearly means that h is locally completely additive as a

mapping of (L′)op into Lop.
Every dual model is isomorphic to a model determined by the limit of an

inverse system hα
β : Lα → Lβ of locally infimum preserving dual projections.

Moreover, every strong dual model is determined by such an inverse system
where each hα

β is a dual projection preserving all infima. Dual models share
several properties of models, e.g., each dual model L gives rise to a complete
lattice (L,�), and if f : L → L is α-monotone for all α < κ, where L is a dual
model, then the set of all fixed points of f , ordered by �, is a complete lattice.

We also define symmetric models which are both models and dual models.
Similarly, a strong symmetric model is a strong model that is a strong dual
model. As an immediate consequence of Lemma 24 we have:

Corollary 22. A model is symmetric iff it satisfies A3d and A5d.

The standard model V Z discussed in Sect. 2 is a strong symmetric model.
But a model may not be symmetric. See Lemma 23. However, we have:

Theorem 5. The following conditions are equivalent for a model L satisfying
the axioms A1–A6: (i) L is a strong model, (ii) L is a strong symmetric model,
(iii) L is a symmetric model.

Proof. By Corollary 22, Lemmas 24 and 25. ��
Corollary 23. Let L be a model determined by an inverse system of complete
lattices Lα, α < κ, with locally completely additive projections hα

β : Lα → Lβ.
Then L is a (strong) symmetric model iff the functions hα

β , β < α < κ are
completely additive.

Thus, in this case, the functions hα
β preserve arbitrary infima and suprema.

Corollary 24. A model is a (strong) symmetric model iff it is isomorphic to
the model determined by an inverse system of complete lattices Lα, α < κ, with
completely additive projections hα

β : Lα → Lβ.
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10 Conclusion

An axiomatic framework as an abstraction of the treatment of the semantics
of logic programs with negation in [10] has recently been introduced in [6,7].
Here, we dealt with the models of two of the axiom systems of [6,7], and estab-
lished representation theorems for them. We proved that every model can be
constructed from an inverse system of complete lattices with locally completely
additive projections, and that every strong model can be constructed from an
inverse system of complete lattices with completely additive projections. Using
the inverse limit representation, we proved that the fixed points of a weakly
monotone function over a model form a complete lattice with respect to a new
ordering, cf. Corollary 19. In particular, there is a least fixed point, called the
stratified least fixed point.

We also studied models satisfying, together with each axiom, the dual axiom.
We proved that such symmetric models are exactly the strong models, and in
fact the strong symmetric models. For the future, it would be interesting to
extend the representation theorem to more general classes of models introduced
in [6], where the preorderings �α are not completely determined by the ordering
≤ and the equivalence relations =α.

Since the semantics of recursive definitions is usually captured by fixed points
of functions, or functors, or other constructors, fixed point operations appear
in almost all branches of computer science including automata and languages,
semantics, concurrency, programming logics, the characterization of complexity
classes using formal logic, etc. Our aim with this paper and its predecessors has
been to contribute to the development of a novel general framework for solving
fixed point equations involving non-monotone operations as an alternative of
the bilattice based approach [3,8]. This method has already found applications
in logic programming and Boolean context-free grammars, and it appears to
be applicable in other situations including Boolean automata, fuzzy sets, and
quantitative logics. A nice feature of the approach is that the stratified least
fixed point operation over weakly monotonic functions also satisfies the standard
equational laws, cf. [4].
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Abstract. We connect two different forms of game based semantics:
Hintikka’s game for Independence Friendly logic (IF logic) and Giles’s
game for �Lukasiewicz logic. An interpretation of truth values in [0, 1] as
equilibrium values in semantic games of imperfect information emerges
for a logic that extends both, �Lukasiewicz logic and IF logic. We prove
that already on the propositional level all rational truth values can be
obtained as equilibrium values.
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1 Introduction

Already in the 1960s Jaakko Hintikka [12] introduced a game based characteriza-
tion of Tarski’s central semantic notion of ‘truth in a model’. The game features
moves by two antagonistic players, one in the role of the verifier or proponent
of a formula, the other one in the role of the falsifier or opponent. The game
proceeds according to the outermost connective or quantifier of the formula cur-
rently at stake: disjunction and existential quantification trigger a move by the
proponent, while conjunction and universal quantification elicit a move by the
opponent; negation corresponds to a role switch. In this manner the formula cur-
rently in focus is replaced by one of its immediate sub-formulas in every round.
At the atomic level a given model determines who won the actual run of the
game. Other connectives, in particular implication, could be defined from the
mentioned ones in classical logic, of course, but it is an important observation
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for our current endeavor that such a reduction of a richer set of connectives to
just (this form of) conjunction, disjunction, and negation is no longer available
in general, once we move on to a non-classical setting.

Hintikka’s game-theoretic semantics deploys its full capacity when we con-
sider imperfect information: the players may not be fully informed about previ-
ous moves during a run of the game. In particular Independence Friendly logic
(IF logic) results from attaching “slash sets” to the quantifiers, containing those
variables for which the current player is ignorant of corresponding assignments of
domain elements that result from previous moves. For example ∀x∃y/{x}y = x
corresponds to a game, where first the opponent chooses an arbitrary domain
element for the variable x and then the proponent has to choose an element
for y without knowing which element has been picked for x. This entails that
(in contrast to the game for ∀x∃y y = x) the opponent has no winning strategy if
there are two or more domain elements. The fact that games for IF formulas are
not determined in general leads to equilibrium semantics [18,21], which arises if
one considers mixed Nash equilibria for corresponding strategic games. Indeed, if
we identify losing a game with payoff 0 and winning with payoff 1, we may asso-
ciate a unique value v ∈ [0, 1] to every IF formula ϕ1 with respect to any given
finite model, such that v is the expected payoff for the proponent of ϕ in the corre-
sponding game when the players employ mixed strategies that are in equilibrium
(i.e., neither player has an incentive to unilaterally change her strategy).

Motivated by the challenge to model reasoning in physics, Robin Giles devel-
oped another game based approach to logic in the 1970s [7,8]. Giles was seemingly
unaware of Hintikka’s game-theoretic semantics, but referred to Paul Lorenzen’s
attempts to justify intuitionistic logic in terms of an idealized dialogue between
a proponent and an opponent of a given formula. Giles’s game consists of two
components: first, the players stepwise reduce logically complex formulas to their
sub-formulas, similar as in Hintikka’s game, but not bound by the restriction
that at any state of the game only a single formula is asserted by the proponent
and attacked by the opponent. Rather a whole multiset, called tenet, of formu-
las is asserted by each of the players at any given state. The second stage of the
game commences when only atomic formulas are left in both players’ tenets. For
each atomic assertion a corresponding experiment is performed. If the experiment
fails, then the asserting player has to pay 1e (one Euro) to the other player. If
for every given atomic formula the corresponding experiment either always fails
or always succeeds then Giles’s game leads to an alternative characterization of
classical logic. However, Giles stipulates that any experiment may be dispersive:
it may yield different results when repeated—only a specific failure probability
(risk value) is known for each experiment. A player’s payoff at the final state of
Giles’s game is identified with the expected amount of money that she has to pay
minus the expected amount that she receives from her opponent. Giles proved that

1 In fact there are certain complications if one admits formulas corresponding to games
where a player may not have access to her own previous moves. We will circumvent
these problems by insisting on perfect recall. Moreover, we follow [18,21] in moving
negations to the atomic level.
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the payoffs enforceable by optimal strategies correspond to the (inverse of) truth
values resulting from evaluating the initial formula according to the truth func-
tions for �Lukasiewicz logic �L.

At first sight, Hintikka’s and Giles’s games seem to serve different purposes
and moreover are quite different in detail as well as in their overall structure.
Nevertheless we propose a combination of the two games that corresponds to a
rather expressive logic, which we shall call �L(IF). The formulas of �L(IF) are two-
tiered: they can be thought of as formulas of �L where the atomic formulas are
replaced by (arbitrarily complex) IF formulas. Accordingly, the combined game
proceeds in two stages: first, Giles’s game is played until only IF formulas occur
in the players’ tenets and then an instance of Hintikka’s game is employed as
a dispersive experiment (in the sense of Giles) for each IF formula. The overall
evaluation is like for Giles’s game. In this setting intermediate truth values turn
out to correspond to equilibrium values for IF formulas that in turn may be
combined to yield truth values for formulas of an expressive many-valued logic.
The adequateness of the combined game for �L(IF) emerges as a corollary to the
adequateness of Giles’s and Hintikka’s games for �L and for IF logic, respectively.
The achieved gain arises on a conceptual level in two different directions:

(1) Skeptics of many-valued logics rightfully challenge their defenders by asking
for an explanation of intermediate truth values and of corresponding truth
functions in terms of first principles about reasoning. Giles’s game only pro-
vides a partial answer by replacing classical (bivalent) interpretations with
assignments of risk values (probabilities) to atomic formulas. Our combined
game can be understood as an explanation of risk values as equilibrium val-
ues, arising from evaluations with respect to classical interpretations under
imperfect information.

(2) Equilibrium semantics for IF logic supports a many-valued interpretation of
disjunction and conjunction as maximum and minimum, respectively. Some-
what indirectly also the truth function 1−x for negation is justified. However
the more general format of Giles’s game is needed to interpret the consid-
erably richer set of connectives (including implication, strong conjunction,
and strong disjunction) of �Lukasiewicz logic. From this perspective IF logic
provides only a limited way of modeling the effects of imperfect information.
At least some of these limitations are lifted in �L(IF). For example, simple
schematic �L(IF) formulas (but not IF formulas) express that instances of
Hintikka’s game are always constant-sum, but not determined in general.

In the light of item 1 it is important to note that indeed all rationals in [0, 1]
can be obtained as equilibrium values [21]. (For the related framework of Depen-
dence Logic a similar result is shown in [6].) The corresponding constructions
involve first-order formulas and particular models. This triggers the question
whether one can obtain all rational truth values already on the propositional
level. We provide a positive answer by showing that for every rational r ∈ [0, 1]
there is constant propositional IF formula ϕr with equilibrium value r. (Proposi-
tional IF formulas arise from classical propositional formulas if there is imperfect
information about the choice of conjuncts and disjuncts in Hintikkas game. The
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formula is constant if it is built up from the atomic formulas ⊥ and � only.)
In fact we will present two constructions: a simpler one for IF formulas with
n-ary conjunction and disjunction for any n ≥ 2 and a more involved one for
ordinary binary connectives.

The rest of the paper is organized as follows. Section 2 reviews Hintikka’s
game for classical logic and moves on to explain equilibrium logic for (a particular
type of) IF formulas. Section 3 is devoted to Giles’s game for �Lukasiewicz logic.
The logic �L(IF) and the corresponding combination the two types of semantic
games is introduced in Sect. 4. The announced results regarding the realization
of all rationals as equilibrium values are the topic of Sect. 5. We conclude in
Sect. 6 with a short summary and some hints on directions for further research.

2 Hintikka’s Game

Let us revisit Hintikka’s game-theoretic semantics (cf. [12,13]). We will call the
game that characterizes truth in a (classical) model the H-game. There are two
players, say I and you, who are either in the role of the Proponent P or the
Opponent O2. Initially I am P and you are O. At each state of H-game the
player in role P seeks to defend the claim that a certain formula is true in a
given model I under a given variable assignment ξ, while the player in role O
aims at refuting this claim. We will use DI to denote the domain of I. Formulas
are built up as usual from atomic formulas, including equalities, as well as � and
⊥, using the propositional connectives ∧, ∨, ¬, and the quantifiers ∀ and ∃. The
game rules are symmetric in the sense that we only need to refer to the roles
P and O, but not to the identity of the players. The formula ϕ together with
the variable assignment ξ that is at stake at a given state is called the current
(augmented) formula.3 We will also say that P asserts the current formula ϕ[ξ],
while O attacks it.

(RH
∧ ) If the current formula is (ϕ ∧ ψ)[ξ], then O chooses whether the game

continues with P’s assertion of ϕ[ξ] or of ψ[ξ].
(RH

∨ ) If the current formula is (ϕ ∨ ψ)[ξ], then P chooses whether the game
continues with P’s assertion of ϕ[ξ] or of ψ[ξ].

(RH
¬ ) If the current formula is ¬ϕ[ξ], then game continues with P’s assertion of

ϕ[ξ], except that the roles of the players are switched (i.e., P now is the
player that attacked ¬ϕ[ξ]).

(RH
∀ ) If the current formula is (∀xϕ)[ξ] then O chooses a c ∈ DI and the game

continues with P’s assertion of ϕ[ξ[c/x]]4.
2 Hintikka uses Myself and Nature as names for the players and Verfier and Falisifer

for the two roles.
3 It is more customary to attach the variable assignment to the interpretation instead

of to the formula that is to evaluated. For the H-game this does not make any
difference. However we will later introduce games, where several formulas are to be
evaluated over the same interpretation, but each with respect to a (possibly) different
variable assignment.

4 ξ[c/x] denotes the variable assignment that is like ξ, except for assigning c to x.
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(RH
∃ ) If the current formula is ∃xϕ[ξ] then P chooses a c ∈ DI and the game

continues with P’s assertion of ϕ[ξ[c/x]].
(RH

at) If the current formula is an atomic formula A[ξ] then the game ends. P
wins if A is true in I under assignment ξ, otherwise O wins.

We speak of the H-game for ϕ[ξ] with respect to I, if the game starts with the
augmented formula ϕ[ξ]. The adequateness of this game for classical logic is
expressed as follows.

Theorem 1 (Hintikka). I have a winning strategy in the H-game for ϕ[ξ] with
respect to I iff ϕ is true in I under assignment ξ.

Above, we have tacitly assumed that the players of the H-game have perfect,
complete and common knowledge. This means that they share knowledge not
only about the rules, but also about all previous moves at each state of an
instance of the game. A whole new branch of logic, called Independence F riendly
logic (IF logic) arises by investigating the consequences of imperfect knowledge
in the H-game. Following [18], formulas of IF-logic are defined as follows.

Definition 1. We fix a language with an infinite supply of constants and pred-
icate symbols. Terms of the language are either constants or variables.

– � and ⊥ are IF formulas.
– If s and t are terms, then s = t and ¬(s = t), henceforth written as s 
= t, are

IF formulas.
– If P is an n-ary predicate symbol and t1, . . . , tn are terms, then P (t1, . . . , tn)

and ¬P (t1, . . . , tn) are IF formulas.
– If ϕ and ψ are IF formulas, then ϕ ∧ ψ and ϕ ∨ ψ are IF formulas.
– If ϕ is an IF formula, x a variable, and W a finite set of variables not con-

taining x, then (∃x/W )ϕ and (∀x/W )ϕ are IF formulas, where ϕ is called the
scope of the exhibited quantifier occurrence and W is called a slash set. We
abbreviate (∃x/∅)ϕ by ∃xϕ and (∀x/∅)ϕ by ∀xϕ.

The intended (game-theoretic) semantics of IF formulas is specified with respect
to a version of the H-game, where the players have to choose the witness ele-
ments for bound variables without knowing the choices that may have been made
for the variables in the corresponding slash sets at earlier stages of the game
(see [18] for details). Moreover, we modify rule RH

at and let the game end when
the current formula is a literal, i.e. either an atomic formula or a negation of an
atomic formula, augmented by a variable assignment. Consequently the negation
rule (RH

¬ ) is no longer needed and hence no role change takes place during the
run of an H-game for an IF formula. Therefore we may now identify the players
with their initial roles: I am P and you are O throughout every run of the game.
P wins and O loses the game for an IF formula ϕ with respect to a given inter-
pretation I if the literal with which the game ends is true in I; otherwise P loses
and O wins. We identify winning with payoff 1 and losing with payoff 0. The
effect of imperfect information is rather dramatic: in contrast to the H-game for
classical formulas, it may be the case that none of the players has a winning
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strategy in an H-game for an IF formula, in general. In other words the game is
not determined.

Remark 1. As just discussed, negation is pushed to the atomic level in IF for-
mulas. Accordingly, we may define the dual ϕ¬ of a given IF formula ϕ by
interchanging all occurrences of ∨ and ∧ as well as ∀ and ∃, respectively, and
replacing negated atomic formulas with unnegated ones and vice versa.

Example 1. Consider the IF formula ∀x(∃y/{x})x = y. If the formula is eval-
uated with respect to an interpretation I with two domain elements, then it is
called MP (for Matching Pennies). In the H-game for MP, O starts by assigning
one of the elements of I to the variable x. In the second stage of the game P
has to choose a domain element for y, without knowing O’s choice for x.

For DI = {c, d} the H-game for MP is represented by the following tree:

O

P

c = c

y/c

c = d

y/d

x/c

P

d = c

y/c

d = d

y/d

x/d

The dashed line between the two P-nodes indicates that the two nodes are in
the same information set. Consequently, P (just like O) has only two possible
strategies. In contrast, we obtain the (perfect information) game for the classical
formula ∀x∃y x = y, in which P has four possible strategies, by simply deleting
the dashed line.

Because of her imperfect knowledge, P has no winning strategy in the H-game
for MP. Clearly O does not have a winning strategy either. The dual MP¬ =
∀x(∃y/{x})x 
= y of MP is called IMP (for Inverse Matching Pennies); its H-game
is undetermined as well, of course. But also, e.g., the H-game for ∀x(∃y/{x})x =
y ∨ ∀u(∃v/{u})v 
= u) is undetermined whenever DI consists of more than one
element.

Throughout the paper, we will assume that each player has perfect recall.
This means that a player is always aware of her own previous choices in any run
of the game. Moreover, each bound variable should refer to a unique quantifier
occurrence. This motivates the following definition.

Definition 2. An IF formula ϕ is called recall regular if the following condi-
tions are satisfied:

– For each variable x there is at most one occurrence of (Qx/W ) in ϕ, where
Q ∈ {∀,∃}.

– If (∀x/W ) occurs in ϕ then for each v ∈ W this occurrence is in the scope of
a quantifier occurrence of the form (∃v/V ).
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– If (∃x/W ) occurs in ϕ then for each v ∈ W this occurrence is in the scope of
a quantifier occurrence of the form (∀v/V ).

Note that all formulas in Example 1 are recall regular. In the rest of the paper
all IF formulas are assumed to be recall regular, even when not stated explicitly.

We will restrict attention to finite models. Consequently the H-game is always
finite. While the H-game is presented as an extensive game, we may as well
consider its strategic form and will simply speak of the strategic H-game for a
given formula and (finite) interpretation.

Example 2. Consider an interpretation I, where DI = {c, d}. Then the strategic
H-game for MP = ∀x(∃y/{x})x = y corresponding to the extensive H-game
depicted in Example 1 is given by the following payoff matrix:

( y/c y/d

x/c 1 0
x/d 0 1

)

The matrix entries denote the payoff for P, where O chooses a row, while P
chooses a column. Since the payoff for O is 1 − x whenever x is the payoff for
P, we refrain from specifying the payoff for O explicitly from now on.

The payoff matrix for the strategic form of the (perfect information extensive
form) H-game for ∀x∃y x = y can be specified as follows:

( y/cc y/cd y/dc y/dd

x/c 1 1 0 0
x/d 0 1 0 1

)

where we have used y/ξρ, for ξ, ρ ∈ {c, d}, to denote the following strategy
of P: “if O assigned c to x then assign ξ to y, otherwise assign ρ to y.” Note
that in contrast to the game for MP, P now has a strategy (namely y/cd) that
guarantees her the payoff 1.

Mixed strategies for a player X in an extensive game come in two versions:
(1) behavior strategies, where for each information set of X, a probability dis-
tribution over all possible moves is attached; (2) strategies that consist in a
single probability distribution over all pure strategies that are available to X in
the game. In general, only in the second case the strategies directly correspond
to those of the strategic form of the game and consequently lead to unique a
equilibrium value in finite, constant-sum games, like (instances of) the H-game.
However by Kuhn’s Theorem [15] the two types of strategies are in one-one cor-
respondence in games where all players have perfect recall. This justifies our
focus on recall regular IF formulas.

Since the strategic H-game is finite and constant-sum, von Neumann’s Min-
imax Theorem can be applied to obtain the following result. (Cf. [18,21], where
the term equilibrium semantics is introduced in this context.)
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Theorem 2. For every finite interpretation I, every IF formula ϕ, and every
corresponding variable assignment there is a unique value v ∈ [0, 1] such that v
is the expected payoff for P and 1 − v is the expected payoff for O under the
(unique) mixed Nash equilibrium of the strategic H-game for ϕ[ξ] and I.

We will call the value v mentioned in Theorem 2 the equilibrium value of ϕ
with respect to I and ξ and use veq

I (ϕ[ξ]) to denote it. If ϕ is a closed formula
then the reference to the (empty) assignment ξ is dropped.

Example 3. Let n be the cardinality of the domain of the interpretation I.
In the corresponding strategic H-game for ∀x(∃y/{x})x = y (see Example 2)
the only Nash equilibrium arises if P and O both randomize uniformly over their
n strategies, which consist in picking an element of the domain of I. The same
holds for the strategic H-game for the dual formula ∀x(∃y/{x})x 
= y. Conse-
quently veq

I (∀x(∃y/{x})x = y) = 1/n and veq
I (∀x(∃y/{x})x 
= y) = (n − 1)/n.

As shown in [18,21], equilibrium semantics provides a link to some standard
truth functions for many-valued logics in the following sense.

Theorem 3. Let I be a finite interpretation, ϕ and ψ two IF formulas, and
ξ a variable assignment. Moreover remember that ξ[c/x] denotes the variable
assignment that is like ξ, except for assigning the element c to the variable x.
Each of the following statements holds:

– veq
I ((ϕ ∧ ψ)[ξ]) = min{veq

I (ϕ[ξ]), veq
I (ψ[ξ])},

– veq
I ((ϕ ∨ ψ)[ξ]) = max{veq

I (ϕ[ξ]), veq
I (ψ[ξ])},

– veq
I (∀xF ) = inf{veq

I (ϕ[ξ[c/x]]) | c ∈ DI},
– veq

I (∃xF ) = sup{veq
I (ϕ[ξ[c/x]]) | c ∈ DI}.

Theorem 3 can be read as a justification of minimum, maximum, infimum,
and supremum as truth functions for conjunction, disjunction, existential and
universal quantification in a many-valued logic, where the set of truth values
is identified with the unit interval [0, 1]. While negation only occurs in front of
atomic formulas for IF formulas, it is clear that also λx(1 − x) as truth function
for negation fits the picture provided by equilibrium semantics.

3 Giles’s Game for �Lukasiewicz logic

In the last section we have seen that equilibrium semantics relates IF logic to a
propositional many-valued logic, where an assignment M of truth values in the
real unit interval [0, 1] to atomic formulas—in the following just called many-
valued interpretation—is extended to logically complex formulas as follows.

vM(ϕ ∧ ψ) = min(vM(ϕ), vM(ψ)),
vM(ϕ ∨ ψ) = max(vM(ϕ), vM(ψ)),
vM(¬ϕ) = 1 − vM(ϕ),
vM(⊥) = 0,
vM(�) = 1.
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This logic is sometimes simply identified with ‘fuzzy logic’, (e.g. in [19]). Follow-
ing [1], we call it Kleene-Zadeh logic, or KZ for short. Using the notation for vari-
able assignments introduced in Sect. 2, KZ is extended to the first order level by

vM(∀xϕ) = inf{vM(ϕ[ξ[c/x]]) | c ∈ DI},
vM(∃xϕ) = sup{vM(ϕ[ξ[c/x]]) | c ∈ DI}.

If we restrict attention to interpretations over finite domains, these clauses cor-
respond to equilibrium semantics as well (cf. Theorem 3).

From the point of view of mathematical fuzzy logic, the logic KZ is rather
unsatisfying. Following a paradigm developed by Petr Hájek [10], the connectives
of KZ should be augmented at least by an implication ⊃ and a so-called strong
conjunction & , where & is interpreted by a continuous t-norm5 and ⊃ by its
residuum. Arguably the most important logic of that kind is �Lukasiewicz logic �L,
which is obtained from KZ by adding the following truth functions (⊕ is called
strong disjunction):

vM(ϕ ⊃ ψ) = min(1, (1 − vM(ϕ)) + vM(ψ)),
vM(ϕ & ψ) = max(0, vM(ϕ) + vM(ψ) − 1),
vM(ϕ ⊕ ψ) = min(1, vM(ϕ) + vM(ψ)).

In fact all other propositional connectives could by defined in �L, e.g., from ⊃ and
⊥, or from & and ¬, alone. But neither ⊃ nor & nor ⊕ can be defined in KZ.6

The increased expressiveness of �L over KZ is particularly prominent at the first-
order level: while in KZ there are no valid formulas at all, except those involving
truth constants in some obvious manner, the set of valid first-order formulas in
�L (with or without truth constants) is not even recursively enumerable due to a
classic result of Scarpellini [20].

Independently of Hintikka, Robin Giles devised a game-theoretic interpreta-
tion of �Lukasiewicz logic in the 1970s [7,8]. Rather than referring to Hintikka’s
game (which he seemingly was not aware of) Giles refers to the logical dialogue
game suggested by Lorenzen [16,17] as a foundation for constructive reason-
ing. Initially Giles was interested in modeling logical reasoning within theories
of physics and only later motivated his game for �L explicitly as an attempt to
provide “tangible meaning” for fuzzy logic [9].

We briefly review the essential features of Giles’s game, called G-game here,
but refer to [5,7,8] for more detailed presentations, including adequateness
proofs. Like in the H-game, I and you are the players and we can both act in the
roles P or O with respect to given formulas augmented by variable assignments.
In contrast to the H-game, there may be more than one formula at stake at any
state of the G-game. We say that an augmented formula ϕ[ξ] is currently asserted
by you, if you act as P and I act as O with respect to it; and vice versa for a
formula asserted by me. Since it will matter how often a formula is asserted at a

5 A t-norm is a commutative and associative function ◦ : [0, 1]2 → [0, 1] such that
x ◦ 1 = x and x < y implies x ◦ z ≤ y ◦ z.

6 KZ is sometimes called the ‘weak fragment of �Lukasiewicz logic’.
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given state, we collect the formulas currently asserted by you in a multiset, called
your tenet. Likewise, my tenet consists of the multiset of augmented formulas
currently asserted by me. We denote a state by

[
ϕ1[ξ1], . . . , ϕm[ξm] ψ1[ξ′

1], . . . , ψn[ξ′
n]

]
,

where {ϕ1[ξ1], . . . , ϕm[ξm]} is your tenet and {ψ1[ξ′
1], . . . , ψn[ξ′

n]} is my tenet. At
any given state an occurrence of a non-atomic augmented formula is picked ran-
domly either from my or from your tenet and distinguished as current formula.7

States that only contain atomic formulas are called elementary. At non-
elementary states the game proceeds according to the following rules. Like for
the H-game, we do not have to refer to the players’ identity directly, but only
to their roles with respect to the current formula (which by definition is an
occurrence of some non-atomic augmented formula in P’s tenet).

(RG
∧) If the current formula is (ϕ ∧ ψ)[ξ] then O chooses whether to replace it

by ϕ[ξ] or by ψ[ξ] in P’s tenet.
(RG

∨) If the current formula is (ϕ ∧ ψ)[ξ] then P chooses whether to replace it
by ϕ[ξ] or by ψ[ξ] in P’s tenet.

(RG
¬) If the current formula is ¬ϕ[ξ] then it is replaced by ⊥ in P’s tenet and

ϕ[ξ] is added to O’s tenet.
(RG

⊃) If the current formula is (ϕ ⊃ ψ)[ξ] then O chooses whether to remove it
or else to replace it by ψ[ξ] in P’s tenet and add ϕ[ξ] to O’s tenet.

(RG
& ) If the current formula is (ϕ &ψ)[ξ] then P chooses whether to replace it

by both, ψ[ξ] and ϕ[ξ], or by ⊥ in P’s tenet.
(RG

⊕) If the current formula is (ϕ ⊕ ψ)[ξ] then O chooses whether to remove it
or to replace it by ψ[ξ] and ϕ[ξ] in P’s tenet while adding ⊥ to O’s tenet.

(RG
∀ ) If the current formula is (∀xϕ(x))[ξ] then it is replaced in P’s tenet by

ϕ(x)[ξ[c/x]], where c ∈ DI is chosen by O.
(RG

∃ ) If the current formula is (∃xϕ(x))[ξ] then it is replaced in P’s tenet by
ϕ(x)[ξ[c/x]], where c ∈ DI is chosen by P.

Note that rules RG
∧, RG

∨, RG
∀ , and RG

∃ directly correspond to RH
∧ , RH

∨ , RH
∀ , and

RH
∃ , respectively. However the rules for implication (RG

⊃), negation (RG
¬), strong

conjunction (RG
& ), and strong disjunction (RG

⊕), involve more than just one
formula at the succeeding state and therefore cannot be formulated in the format
of the H-game, where only one formula is asserted at any state.

If there is no non-atomic formula left to pick as current formula, the game
has reached an elementary state

[
A1[ξ1], . . . , Am[ξm] B1[ξ′

1], . . . , Bn[ξ′
n]

]
,

where the Ai[ξi] and Bi[ξ′
i] are augmented atomic formulas. To define the play-

ers’ payoffs at an elementary state Giles introduces the concept of dispersive
7 The powers of the players of a G-game do not depend on the manner in which the

current formula is picked at any state. In more formal presentations of the G-game
one may introduce the concepts of a regulation and of so-called internal states in
formalizing state transitions. We refer to [5] for details.
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elementary experiments. For each (augmented) atomic formula A[ξ] there is a
corresponding experiment8 EA[ξ] that yields either ‘yes’ or ‘no’ at each trial.
Dispersiveness refers to the fact that the same experiment may give different
answers when repeated. However a fixed probability (risk) 〈A[ξ]〉 of yielding a
negative answer is associated with EA[ξ]. Experiment E⊥ always yields a neg-
ative result and thus 〈⊥〉 = 1; similarly 〈�〉 = 0. It is stipulated that at the
end of any run of the game, i.e. at an elementary state, the experiment EA[ξ] is
performed for each occurrence of an augmented atomic formula A[ξ] in my tenet
and that I have to pay a fixed amount of money, say 1e, to you if EA[ξ] yields
‘no’. Likewise you have to pay 1e to me for each assertion in your tenet, where
the corresponding experiment yields a negative answer. Therefore the expected
(average) total amount of money (in e) that I have to pay to you is given by

∑
1≤i≤n

〈Bi[ξi]〉 −
∑

1≤i≤m

〈Ai[ξ′
i]〉 .

We call this value my (total) risk in a run of the G-game that ends at the
elementary state

[
A1[ξ1], . . . , Am[ξm] B1[ξ′

1], . . . , Bn[ξ′
n]

]
. (This amount could

also be negative, indicating that the total risk associated with my assertions
is smaller than that associated with your assertions. Moreover, remember that
empty sums evaluate to 0, reflecting the fact that empty tenets carry no pos-
itive risk.) Risk value assignments can be seen as inverted many-valued inter-
pretations. More precisely, given a many-valued interpretation M, we define a
corresponding assignment of risk values 〈·〉M to augmented atomic formulas by
〈A[ξ]〉M = 1 − vM((A[ξ])).

Definition 3. Given a formula ϕ, a variable assignment ξ, and an assignment
〈·〉 of risk values ∈ [0, 1] to all augmented atomic formulas, an instance of the
G-game starting in state

[
ϕ[ξ]

]
, where final (elementary) states are evaluated

with respect to 〈·〉, is called a G-game for ϕ[ξ] under 〈·〉.
The value of such a game is 1 − w if I have a strategy that guarantees that

my risk at the final state is at most w, while you have a strategy that guarantees
that my risk is at least 1 − w.

Remember that we insist on finite domains. Under this assumption, the ade-
quateness of the G-game for �Lukasiewicz logic (Giles’s Theorem) can be formu-
lated as follows.9

Theorem 4. Let ϕ be an �L formula, ξ be a variable assignment, and M a
(many-valued) interpretation. Then any G-game for ϕ[ξ] has value w under the
risk value assignment 〈·〉M iff vM(ϕ[ξ]) = w.

8 The idea is that for each atomic formula A there is schematic experimental setup
that turns into a concrete experiment if elements of the domain of discourse are
assigned to the free variables in A.

9 Giles actually never considered strong conjunction and strong disjunction. For a
detailed proof including strong conjunction we refer to [5]. That paper also features a
link between the G-game and an analytic proof system for �L based on hypersequents.
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4 Connecting the G-game and the H-game

In Sect. 2 we have seen that equilibrium semantics for IF logic provides an inter-
pretation of the connectives of the many-valued logic KZ. However, as discussed
in Sect. 3, game semantics for (full) �Lukasiewicz logic �L calls for Giles’s more
general concept of a game state consisting of multisets of formulas currently
asserted by you and me, respectively.10 In this section we want combine equilib-
rium semantics for IF logic with Giles’s game for �L.

Arguably the most straightforward way to connect IF logic with �L allows for
imperfect information about the choice of witness elements for the quantifiers in
�L-formulas in the same manner as for (classical) IF formulas. We would just have
to attach slash sets to the quantifiers and treat these in a corresponding version
of the G-game exactly as in the H-game: the players’ choices of assignments
for quantified variables have to remain independent of any assignment to vari-
ables in corresponding slash sets. While the resulting “Independence Friendly
�Lukasiewicz logic” might well be worth studying, we think that the following
alternative way to connect equilibrium semantics and Giles’s game for �L is actu-
ally more interesting.

The G-game allows one to derive the truth functions for all connectives and
quantifiers of �L from principles of reasoning about logically complex statements
as encoded in the rules of the game. Notice that this derivation is completely
independent of Giles’s interpretation of truth values for atomic formulas in terms
of the risk involved in claiming that certain dispersive experiments will yield pos-
itive results. Indeed, if one insists that atomic formulas are either simply true
or false in any given interpretation, then this does not affect the rules of the
G-game, but leads to a characterization of classical logic (∧ and & both collapse
to classical conjunction in this version of the G-game; likewise ∨ and ⊕ both
turn into classical disjunction). On the other hand, the H-game for IF formulas
provides an interpretation of intermediate truth values without departing from
classical evaluation at the atomic level: the interpretation I, with respect to
which a given IF formula is to be evaluated, assigns either 1 (true) or 0 (false)
to each (augmented) atomic formula. We propose to combine these two different
semantic concepts by replacing the atomic formulas of �L and corresponding dis-
persive experiments of the G-game by IF formulas and corresponding instances
of the H-game.

To implement the idea sketched above, we define a two-tiered syntax for
a new logic �L(IF), where atomic subformulas of �L formulas are replaced by IF
formulas.11

10 As shown in [2] and in [4] one may in fact formulate alternative semantic games for �L
that, like the H-game, keep a single formula in focus at any given state, if either an
explicit truth value or a stack of formulas is added. These and related variants of
semantic games are discussed in [3], but they hardly are relevant in our context.

11 This is somewhat reminiscent of [11], where an inner language for representing events
and an outer, many-valued language for expressing assertions about the probability
of such events is combined.
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Definition 4. With respect to any language as specified in Definition 1, the set
of �L(IF) formulas is defined as follows:

– Every recall regular IF formula (see Definition 2) is an �L(IF) formula.
– If F and G are �L(IF) formulas then also ¬F , F∧G, F∨G, F&G, F⊕G, F⊃G,

∀xF , and ∃xF are �L(IF) formulas.

Note that the logical connectives and quantifiers of �L are underlined in order
to clearly separate the outer (many-valued) level of �L(IF) formulas from the inner
level of (classical) IF formulas. �L(IF) formulas are not evaluated with respect to
a many-valued interpretation (like �L formulas), but with respect to a (finite)
classical interpretation I, as for IF formulas. The intended semantics of �L(IF) is
given by the following combination of the G-game and the H-game, which we
call GH-game. Suppose we want to evaluate an (augmented) �L(IF) formula χ[ξ],
then the corresponding GH-game proceeds as follows:

Phase 1: The G-game with initial state
[

χ[ξ]
]

is played until the game reaches
a state S =

[
ϕ1[ξ1], . . . , ϕm[ξm] ψ1[ξ′

1], . . . , ψn[ξ′
n]

]
, in which all augmented

formulas are (recall regular) IF formulas.
Phase 2: For each occurrence of an augmented IF formula ϕ[ξ] in S a corre-

sponding H-game is played. If ϕ[ξ] is in my tenet, then the H-game starts
with me as P and you as O, as usual. But if ϕ[ξ] is in your tenet, then the
initial roles are reversed: I act as O and you as P. No information about other
instances of the H-game initiated at state S is available to the players.

For the final evaluation we proceed like in the G-game, where each instance
ϕ[ξ] of an augmented IF formula in S is treated like an atomic formula for
which the corresponding dispersive experiment Eϕ[ξ] is the H-game with initial
formula ϕ[ξ] as specified for Phase 2. If ϕ[ξ] is in my tenet of S then I have to
pay 1e to you if you (initially acting as O) win the game. On the other hand,
if ϕ[ξ] is in your tenet of S then I initially act as O and you have to pay 1e
to me if I win the game. Assuming that we employ mixed strategies and play
rationally, this setup guarantees that my risk associated with ϕ[ξ] is equal to the
inverse of my expected payoff at a Nash equilibrium of the H-game for ϕ[ξ]. In
other words, the risk value for ϕ[ξ] is 1 − veq

I (ϕ[ξ]), where veq
I (ϕ[ξ]) is the value

of the H-game for the IF formula ϕ[ξ], as defined in Sect. 2.

Definition 5. In analogy to Definition 3, we speak of a GH-game for ϕ[ξ] with
respect to the (classical) interpretation I if the game starts in state

[
ϕ[ξ]

]
and

the evaluation is as indicated above: we compute the overall risk like for the
G-game that arises if each ϕ′[ξ′], where ϕ′ is a largest sub-formula of ϕ that
is an IF formula, is treated like an atomic formula for which the corresponding
dispersive experiment consists in a run of the H-game for ϕ′[ξ′] with respect to I.

The value of such a GH-game is w if I have a strategy that guarantees that
my overall risk evaluates to at most 1−w, while you have a strategy that ensures
that my risk is at least 1 − w.

Definition 6. The truth value vI(ϕ[ξ]) of an augmented �L(IF) formula ϕ[ξ]
under a classical interpretation I is defined as follows.
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– If the outermost connective or quantifier of ϕ is an (underlined) connective
or quantifier of �L then vI(ϕ[ξ]) is obtained from the value(s) of the immediate
sub-formula(s) just like specified for �L at the beginning of Sect. 3.

– Otherwise, ϕ is a recall regular IF formula and we set vI(ϕ[ξ]) = veq
I (ϕ[ξ]).

The match between the game-theoretic semantics according to Definition 5
and the truth functional semantics specified in Definition 6 is obtained as a corol-
lary to Giles’s Theorem for �Lukasiewicz logic (Theorem 4) and the adequateness
of equilibrium semantics for IF formulas (Theorem 2).

Corollary 1. Let ϕ be an �L(IF) formula, I a classical interpretation, and ξ a
variable assignment. Any GH-game for ϕ[ξ] with respect to I has value w iff
vM(ϕ[ξ]) = w.

Before analyzing some (schemes of) formulas in the light of Corollary 1, let
us emphasize that neither implication nor strong disjunction can be expressed by
IF formulas. Negation is represented, indirectly, by dualization. This latter fact
can now be expressed in the object language by the (schematic) �L(IF) formula
¬ϕ↔ ϕ¬, where ψ ↔χ abbreviates (ψ ⊃χ) ∧ (χ⊃ ψ). However, remember that
ψ ⊃ χ is not equivalent to ¬ψ ∨ χ in �L (or in any other t-norm based logic for
that matter). Therefore one should not define implication for IF formulas by
ψ¬ ∨ χ.

Example 4. Let ϕ be an arbitrary recall regular IF formula and consider the
following �L(IF) formulas:

(1) ϕ⊃ ϕ
(2) ϕ∨ ¬ϕ
(3) ϕ⊕ ¬ϕ

For (1), remember that ψ ⊃ ψ is valid in �Lukasiewicz logic for any �L for-
mula ψ. Consequently also (1) always evaluates to 1. In terms of the GH-game
starting in state

[
ϕ⊃ ϕ

]
this can be seen as follows. According to the rule for

implication, you (acting as O) can choose whether the next state of the game
is the empty state

[ ]
(resulting from removing ϕ⊃ ϕ from my tenet) or else is[

ϕ ϕ
]
. Clearly my risk is 0 in the first case. But it is also 0 in the second case,

where we continue with two instances of the H-game for ϕ: whatever amount
of money I am expected to pay to you for the H-game corresponding to the
instance of ϕ in my tenet, it obviously equals the amount that you have to pay
to me for the instance of ϕ in your tenet.

For (2), I can choose whether the GH-game starting in state
[

ϕ∨ ¬ϕ
]

will
result in state

[
ϕ
]

or in state
[ ¬ϕ

]
, which further reduces to

[
ϕ ⊥]

in Phase 1
of the game. In the first case my risk is 1 − veq

I (ϕ), i.e., the inverse of the
equilibrium value for the IF formula ϕ. In second case, I definitely have to pay
1e to you, but expect to receive (1 − veq

I (ϕ))e from you, resulting from the
H-game for ϕ in your tenet where you are in role P. Consequently I have a
strategy that limits my expected loss to min(1 − veq

I (ϕ), veq
I (ϕ)). The value of
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the game is the inverse of that overall risk, i.e. 1 − min(1 − veq
I (ϕ), veq

I (ϕ)) =
max(veq

I (ϕ), 1 − veq
I (ϕ)), which matches the truth value calculated according to

Definition 6.
In contrast to (2), formula (3) always evaluates to 1. This is obvious from

Definition 6. To see it also for the corresponding GH-game, recall that, by rule
RG

⊕, O can choose whether the initial state
[

ϕ⊕ ϕ
]

is succeeded by the empty
state

[ ]
or by the state

[⊥ ϕ,¬ϕ
]
, which reduces to

[
ϕ,⊥ ϕ⊥]

in the next
round. Clearly, I have no positive risk in either case. Therefore the value of the
game is 1, as required.

Note that, since ¬ϕ is equivalent to ϕ¬ the validity of formula (3) corresponds
to the fact that the H-game is constant-sum. On the other hand, the fact that
formula (2) is not valid corresponds to the indeterminateness of the H-game,
in general. Indeed, the value of ϕ∨ ¬ϕ is below 1 iff I have neither a winning
strategy in the H-game for ϕ nor in the one for ϕ¬, where the players’ roles are
switched.

The above examples look at �L(IF) as an extension of IF logic. The correspond-
ing GH-game widens the scope of equilibrium semantics by providing game based
interpretations of a richer set of (truth functional) connectives for combining IF
formulas.

On the other hand, one may understand the combined game as an extension
of the original G-game, where IF-formulas take the place of atomic �Lukasiewicz
formulas: results of previously unspecified dispersive experiments are now
obtained as results of runs of Hintikka-styles games with imperfect information.
This amounts to an interpretation of intermediate truth values as equilibria in
games of imperfect information that involve only classical truth and falsity.

5 Propositional IF Logic and Realizable Truth Values

One of our motivations for introducing the GH-game was to address philosoph-
ical worries about the nature of intermediate truth values by building a many-
valued logic over classical models that evaluate all atomic formulas over {0, 1}.
An important question in this context is, whether IF logic is rich enough to
cover a sufficient range of truth values. Equilibrium semantics for IF logic refers
to constant-sum, two-player games with 0 and 1 as the only possible payoff val-
ues. It is a well known game-theoretic fact that the value of every such game
is rational [24], hence the values of IF formulas under equilibrium semantics
must be rationals from the interval [0, 1]. As the functions of the connectives of
�Lukasiewicz logic are closed under rational numbers, we do not obtain the full
real interval [0, 1], usually understood as the standard set of truth values for
fuzzy logics. But can we get at least all rational values in the interval [0, 1]? In
particular, is there for any q ∈ [0, 1] ∩ Q an IF formula ϕ such that the value of
ϕ is q?
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Mann, Sandu and Sevenster in [18] deal with this question within the frame-
work of predicate IF logic and give two solutions [p. 184]. The first one is based
on a random quantifier expressed by an IF formula, which over an interpretation
with a domain of size n and a unary predicate satisfied by exactly m elements of
the domain has the value m/n. The second one is more general—it shows how
to construct an IF formula which has the value m/n over every domain with
more than two objects.

We present two solutions of the same problem within the framework of propo-
sitional IF logic: for any rational q ∈ [0, 1] we define a formula ϕ that evaluates
to q according to equilibrium semantics under any (classical propositional) inter-
pretation.

From a game-theoretic point of view there is no reason to limit imperfect
information in semantic games to the quantifier moves: it is natural to consider
independent choices already on the propositional level. This leads to proposi-
tional IF logic, discussed e.g. by Pietarinen [23] and Sandu and Pietarinen [22].

The minimal version of propositional IF logic introduces formulas express-
ing independence of disjunctions from immediately preceding conjunctions and,
likewise, independence of conjunctions from immediately preceding disjunctions.
The language of this logic is an extension of a standard propositional language
by correspondingly slashed formulas.

Definition 7. The propositional IF formulas (IFP formulas) are built up over
propositional variables and truth constants, �,⊥ using ∧,∨,¬ as usual. In addi-
tion we have two following clauses:

– If ϕ1, ϕ2, ψ1, ψ2 are IFP formulas, then
(ϕ1 ∨ / ∧ ψ1) ∧ (ϕ2 ∨ / ∧ ψ2) is an IFP formula

– If ϕ and ψ are IFP formulas, then
(ϕ1 ∧ / ∨ ψ1) ∨ (ϕ2 ∧ / ∨ ψ2) is an IFP formula

The interpretation of standard disjunction and conjunction remains the same:
it consists of the choice by the Proponent P or the Opponent O, respectively.
The slashed disjunction (conjunction) is, analogically to the first order case,
interpreted as a game of imperfect information: one player chooses a disjunct
(conjunct) without any information about the previous choice of the other player.

The moves for slashed disjunction (conjunction) cannot be labeled by the cor-
responding disjuncts (conjuncts), because perfect information would be recov-
ered. If, in the semantic game for (ϕ1 ∨ / ∧ ψ1) ∧ (ϕ2 ∨ / ∧ ψ2) P were asked to
choose between ϕ1 and ψ1, she would know that in the previous move O must
have chosen the left conjunct. Thus the players’ choices are specified using labels
(“Left disjunct”, “Right disjunct”, etc.).

The semantic game for the formula (ϕ1 ∨ / ∧ ψ1) ∧ (ϕ2 ∨ / ∧ ψ2) has the
following extensive form:
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O

P

ϕ1

L

ψ1

R

L

P

ϕ2

L

ψ2

R

R

This game is the simplest (non-trivial) case of incomplete information as we
can also see from its strategic form:

(O\P L R

L ϕ1 ψ1

R ϕ2 ψ2

)

More general versions of propositional IF logic are discussed in the literature
that, e.g., allow one to express that a disjunction is independent from any pre-
ceding conjunction. This requires a more substantial modification of syntax, that
we will not introduce here, since the indicated minimal version is sufficient for
our purposes. However, we will use a more concise notation suggested by Sandu
and Pietarinen:

(ϕ1 ∨ / ∧ ψ1) ∧ (ϕ2 ∨ / ∧ ψ2) = W (ϕ1, ψ1, ϕ2, ψ2)

Our first solution for recovering arbitrary rationals in [0, 1] as equilibrium
values requires an extension of the syntax from binary to n-ary conjunctions
and disjunctions. We replace the clause for (binary) slashed disjunction from
Definition 7 by the following one for n-ary disjunction:

– let m,n ≥ 2 and let ϕj
i for i = 1, . . . ,m, j = 1, . . . , n be IFP formulas, then

(ϕ1
1 ∨ / ∧ ϕ1

2 ∨ / ∧ · · · ∨ / ∧ ϕ1
m) ∧ · · · ∧ (ϕn

1 ∨ / ∧ ϕn
2 ∨ / ∧ · · · ∨ / ∧ ϕn

m) is an
IFP formula

and a similarly in the case of slashed conjunction. Like in the binary case, the
independence of the slashed connective is with respect to the immediately pre-
ceding connective. Thus n-ary slashed disjunction corresponds to the following
game tree:

O

P

ϕ1
1

1

ϕ1
2

2

... ϕ1
j ...

j

ϕ1
m

m

1

P

... ...

P

ϕn
1

1

ϕn
2

2

... ϕn
j ...

j

ϕn
m

m

n

The corresponding strategic form is represented by the following m × n
matrix:
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⎛
⎜⎝

P\O 1 . . . n

1 ϕ1
1 . . . ϕn

1
...

...
...

m ϕ1
m . . . ϕn

m

⎞
⎟⎠

We will use the matrix form of the game interpreting the n-ary conjunc-
tion/disjunction in our first proof of realizability of rationals.

Theorem 5. For every non-negative rational number q there is a strategic two-
person, zero-sum game with payoffs in {0, 1} such that:

1. the value of the game is q,
2. the equilibrium strategy for both players is the uniform distribution.

Proof. For a given rational q = m/n, where m,n ∈ N, 0 ≤ m < n we construct
an n × n payoff matrix M with exactly m ones in each row and each column:

– ai,j = 1 if 1 ≤ i ≤ j ≤ i + m − 1 and j ≤ n
– ai,j = 1 if 1 ≤ j ≤ (i + m − 1)modn and i + m − 1 > n
– ai,j = 0 otherwise

The pure strategies of both players consist in picking i, j ∈ {1, ..., n}. We
denote their mixed strategies by (p1, ...pn) and (q1, ..., qn), respectively. The ele-
ment ai,j is the payoff of the row player if she is playing i and the column player
is playing j, the payoff of the column player for the same profile (couple) of pure
strategies is 1 − ai,j .

It is clear that if both players play the mixed strategy corresponding to
the uniform distribution (pi = qj = 1/n), the probability of each payoff ai,j is
1/n2. As there are m ones in each of the n rows, the payoff of the row player is
1

n2 m · n · 1 = m/n.
It remains to check that the mixed strategy profile corresponding to uniform

distributions for both players is an equilibrium pair. A standard characterization
of equilibrium says that no player can improve her payoff by a unilateral devi-
ation from her equilibrium strategy. As is well known, it is sufficient to check
this condition with respect to pure strategies. If the first player deviates from
uniform distribution playing i-th row against the uniform distribution played by
the column player, her payoff is 1/n · m (as there are exactly m ones in each
row and each of them has probability 1/n). This is the same as the equilibrium
payoff, so no improvement is gained. The condition for the second player can be
checked in a similar way.

The following theorem about realizability of rationals just translates the
strategic game from Theorem 5 into the language of propositional IF logic.

Theorem 6. For any q ∈ [0, 1] ∩ Q there is an IFP formula ψ (using n-ary
slashed disjunction) such that the value of ψ according to equilibrium semantics
is q under any interpretation.
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Proof. Assume q = m/n, where m,n ∈ N, 0 ≤ m < n. From Theorem 5 we
obtain an n × n matrix (aj

i ), a
j
i ∈ {0, 1}, representing a strategic game with

the equilibrium value m/n. We can straightforwardly express this matrix in IF
notation using n-ary slashed disjunction and the constants � and ⊥ as follows:
ψ = (ϕ1

1 ∨ / ∧ ϕ1
2 ∨ / ∧ · · · ∨ / ∧ ϕ1

n) ∧ ... ∧ (ϕn
1 ∨ / ∧ ϕn

2 ∨ / ∧ · · · ∨ / ∧ ϕn
n), where

ϕj
i = � if aj

i = 1 and ϕj
i = ⊥ if aj

i = 0.

We now present a second construction for realizing all rationals in [0, 1] as
equilibrium values, using IFP formulas logic with only binary connectives, as
specified in Definition 7. It is based on iterating the connective W (encod-
ing the simplest proper game of imperfect information). In analogy to the
first-order case (in Sect. 2) we will denote by veq

I (ϕ) the value of the formula
ϕ according to equilibrium semantics. As the choice of a particular propo-
sitional interpretation I plays no role, we omit the index I. We also intro-
duce the operator W̄ of type [0, 1]4 → [0, 1] corresponding to the connec-
tive W : W̄ (x, y, z, u) = veq(W (ϕ1, ϕ2, ψ1, ψ2)), where veq(ϕ1) = x, veq(ϕ2) =
y, veq(ψ1) = z, veq(ψ2) = u.

Observe that W allows us to express random choice between two formu-
las ϕ,ψ. The equilibrium strategy of the game corresponding to W (ϕ,ψ, ψ, ϕ)
amounts to picking up with the same probability one of the elements ϕ,ψ.
Consequently its equilibrium value is a mean of the values of ϕ and ψ:
veq(W (ϕ,ψ, ψ, ϕ)) = (veq(ϕ) + veq(ψ)/2). The resulting random choice con-
nective is denoted by Π, where Π(ϕ,ψ) = W (ϕ,ψ, ψ, ϕ), Π̄ will be the cor-
responding function (operator), hence veq(Π(⊥,�)) = veq(W (⊥,�,�,⊥)) =
W̄ (0, 1, 1, 0) = 1/2. The corresponding game is the one of inverse Matching
Pennies (IMP) with the following payoff matrix:

(L R

L 0 1
R 1 0

)

It is easy to see that iterating the Π-operator gives us powers of 1/2:
Π̄(0, Π̄(0, 1)) = 1/4, Π̄(0, Π̄(0, Π̄(0, 1))) = 1/8 etc. We can represent this
schematically as “pluggin-in” IMP into IMP :

( L R

L 0 IMP
R IMP 0

)

The choices (L,L) and (R,R) lead to the payoff for the first player, while for
the choices (L,R) and (R,L) the game continues by playing IMP. This corre-
sponds to symmetric iterations of the W̄ -operator: for example (Π̄(0, Π̄(0, 1))) =
W̄ (0, W̄ (0, 1, 1, 0),W (0, 1, 1, 0), 0). What happens in the case of “asymmetric”
iterations? Consider the game which is the result of the simplest case of an
asymmetric plug-in of IMP:
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(L R

L 0 IMP
R 1 0

)
with the payoff matrix

(L R

L 0 1/2
R 1 0

)
.

This corresponds to the substitution of the random choice operator at the sec-
ond argument position of the W̄ -operator: W̄ (0, Π̄(0, 1), 1, 0). We can easily
check that the value of the game is 1/3 and the equilibrium strategy profile is
〈(2/3, 1/3), (1/3, 2/3)〉. We show that this simple kind of iteration in combination
with negation is already sufficient to obtain all rationals. To simplify notation
we introduce a unary connective O, defined by O(ϕ) = W (⊥, ϕ,�,⊥). Thus
the formula corresponding to the above game can be written as O(ϕ), where
veq(ϕ) = 1/2 and Ō(1/2) = 1/3. In fact we obtain Ō(1/n) = 1/(n + 1) for every
n ∈ N, n ≥ 1, as follows from the following Lemma.

Lemma 1. The constant sum, two players strategic game represented by the
payoff matrix

( L R

L 0 k/n
R 1 0

)

where n, k ∈ N, n ≥ 1 and 0 ≤ k ≤ n, has the unique Nash equilibrium (equi-
librium strategy profile) 〈(n/(n + k), k/(n + k)), (k/(n + k), n/(n + k))〉 and the
corresponding equilibrium value for the row player is k/(n + k).

Proof. The case for k = 0 is trivial: the column player has a pure winning
strategy R and the payoff of the row player is 0 = 0/(n+0). Except for this trivial
case no pure strategy is an equilibrium, so every mixed equilibrium strategy is
proper—both pure strategies will be played with a non-zero probability (i.e.,
both of them belong to the support of mixed equilibrium strategies). It is a well
known game-theoretic fact that in this case an equilibrium strategy (p, 1 − p) of
the first player must yield the same payoff in response to both pure strategies of
the second player, which gives us the equation: p · k

n = 1 − p. This allows us to
calculate the required probability values: p = n

n+k , 1−p = k
n+k . A similar line of

reasoning leads to the values for the second player: q = k
n+k , 1 − q = n

n+k . The
equilibrium value of the game is n

n+k · k
n+k ·0+( n

n+k )2· k
n +( k

n+k )2·1+ k
n+k · n

n+k ·0 =

( n
n+k )2 · k

n + ( k
n+k )2 · 1 = n·k+k2

n+k2 = k
n+k .

Lemma 1 shows that Ō(k/n) = k/(k + n). To obtain all rationals in [0, 1] as
equilibrium values of IFP formulas we have to use negation in addition to the
connective O. The following theorem shows that this is sufficient.

Theorem 7. Every q ∈ [0, 1] ∩ Q can be obtained as the result of iteratively
applying the functions Ō(x) and 1 − x to either 0 or 1.
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Proof. We show by induction on k that we can get all values q = k/n for 0 ≤
k ≤ n, where n, k ∈ N and n ≥ 1. In fact it is sufficient to show we can get k/n
for all 0 ≤ k < n/2 because the rest of the values is obtained by applying 1 − x.

Base step: For the cases k = 0, k = n we obtain from Lemma 1 that
Ō(0) = 0 and Ō(n/n) = Ō(1) = 1/2.

Induction step: Assume that we have all the values k′/n′ where 1 ≤ n′ < n
and 1 ≤ k′ ≤ n′. We show, that we can get k/n for all k, 1 ≤ k < n/2. It follows
from Lemma 1 that k

n = k
m+k = Ō( k

m ) for m = n − k. As we only need k < n
2 ,

it holds that 2k < n and k < n − k. But then k < n − k = m < n and the value
k
m is guaranteed by the induction hypothesis.

We obtain an expression of the form ±Ō(±Ō(· · · ± Ō(x))), where +Ō( ) is
Ō( ), −Ō( ) is (1 − Ō( )) and x equals 0 or 1. In fact we only need x = 0 in the
case our q = 0, so we get either Ō(0) or ±Ō(±Ō(· · ·± Ō(1))) The corresponding
formula is ±O(±O(. . . ±O(�))), or O(⊥) where +O( ) is O( ), −O( ) is (¬O( )).

The only remaining step is to translate the iterated Ō-operator back to the
language of propositional IF logic.

Theorem 8. For every q ∈ [0, 1] ∩ Q there is an IFP formula ψ built up from
� and ⊥ using only binary slashed disjunction and negation such that the value
of ψ according to equilibrium semantics is q under any interpretation.

Proof. Remember that O(ϕ) = W (⊥, ϕ,�,⊥) = (⊥ ∨ / ∧ ϕ) ∧ (� ∨ / ∧ ⊥).
Therefore the claim immediately follows from Theorem 7.

Example 5. We illustrate the previous results by constructing a propositional
IF formula the value of which is 2/5. We start by expressing this value in the
terms of the operator Ō using the formula k/(n + k) = Ō(k/n) from Lemma 1
iteratively. Our initial value can be expressed as 2/5 = Ō(2/3). In the second
step we need the value 2/3. As it is bigger than 1/2 we obtain it by comple-
mentation: 1 − Ō(1/2) = 1 − 1/3. We already know that Ō(1) = 1/2. Putting
together all these expressions we get 2/5 = Ō(1 − Ō(Ō(1))). The translation to
IF propositional logic is less compact, but it straightforwardly encodes the corre-
sponding game tree. Using the connective O, corresponding to the Ō-operator,
we get O(¬O(O(�))), which we can expand using O(ϕ) = W (⊥, ϕ,�,⊥) =
(⊥ ∨ / ∧ ϕ) ∧ (� ∨ / ∧ ⊥):

O(¬O(O(�))) = W (⊥,¬W (⊥,W (⊥,�,�,⊥),�,⊥),�,⊥)

= (⊥ ∨ / ∧ ¬(⊥ ∨ / ∧ (⊥ ∨ / ∧ �) ∧ (� ∨ / ∧ ⊥)) ∧ (� ∨ / ∧ ⊥)) ∧ (� ∨ / ∧ ⊥)

6 Conclusion

We have revisited two different types of semantic games: On the one hand, there
is Hintikka’s game-theoretic characterization of classical truth in a model, gen-
eralized by Hintikka and Sandu to IF logic that incorporates imperfect informa-
tion, syntactically encoded by slashed quantifiers and connectives. Equilibrium
semantics for IF logic provides an interpretation in which intermediate truth
values arise from equilibrium strategies in the corresponding H-game. On the
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other hand, there is Giles’s game (G-game) for �Lukasiewicz logic, an expressive
many-valued logic that, e.g., features two different forms of conjunction and dis-
junction. The H-game and the G-game are quite different, not only regarding
their respective target logic, but also in their basic structure. Nevertheless they
nicely fit together from a certain perspective. We introduced the GH-game and
the corresponding logic �L(IF), which allows one to combine IF formulas with
the connectives and quantifiers of �Lukasiewicz logic. In this manner interme-
diary truth values retain their interpretation in terms of equilibria in imper-
fect information games, while featuring a set of propositional connectives and
corresponding truth functions that reaches well beyond just min (weak conjunc-
tion), max (weak disjunction), and 1−x (negation). Thus �L(IF) generalizes both,
�Lukasiewicz logic �L as well as IF logic.

We have also addressed an interesting issue that already arises for IF logic:
Can one represent all rational truth values already at the propositional level? We
provided a positive answer in two different manners. If one allows for “slashed”
conjunction or disjunction with arbitrary finite arity, formulas of minimal nesting
depth built up from � and ⊥ are sufficient to represent all rational truth values. If
one insists on binary disjunction and conjunction a more elaborate construction,
involving unbounded nesting of slashed connectives, is needed for this purpose.

We conclude by listing a number of possible directions for further investi-
gations triggered by our considerations. As already indicated at the beginning
of Sect. 4, it might be worthwhile to work out an independence friendly version
of �Lukasiewicz logic, which calls for a different generalization of the H- and the
G-game. Yet another combination and generalization of the underlying games
will arise if one considers arbitrary nestings of slashed (classical) connectives
and �Lukasiewicz connectives, instead of the strictly two-tiered syntax suggested
here. One might also consider other many-valued logics for combining and/or
generalizing IF formulas, e.g., Gödel or Product logic. Finally, we want to hint
at subtle connections to Japaridze’s Computability Logic (see, e.g., [14]). While
Japaridze’s game model of computation is quite different in several respects,
there emerges some similarity in the options for representing various forms of
combining (sub-)games by corresponding connectives, at least if one is willing to
go beyond the truth functional setting induced by the two-tired syntax of �L(IF).
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für mathemathische Logik und Grundlagenforschung 11, 32–55, 73–100 (1968)

18. Mann, A.L., Sandu, G., Sevenster, M.: Independence-Friendly Logic: A Game-
Theoretic Approach. Cambridge University Press, Cambridge (2011)
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Abstract. Justification logics connect with modal logics via Realization
Theorems. The first such theorem was proved constructively by Artemov,
[1]. It showed how to translate an S4 sequent proof, as a whole, into
an LP proof. We present a different algorithmic Realization proof for
LP/S4, proceeding step by step instead of working on the entire proof,
and dividing the argument into two natural parts, one specific to LP/S4,
the other widely applicable to justification/modal pairs. This structure
makes an implementation easier, and we provide a link to one in Prolog.

Keywords: Justification logic · Modal logic · Realization · Quasi-
Realization · Tableau · Prolog

1 Introduction

Justification logics are similar to modal logics, but with modal operators replaced
by an infinite family of justifications. The first justification logic, LP (logic of
proofs), was introduced by Artemov [1]. It played an essential role in Artemov’s
arithmetic completeness result for intuitionistic logic, finishing a line of research
that began with Gödel, [13]. A step in that work shows that LP has a direct
connection with modal S4, via a Realization Theorem. This says that every S4
theorem has a Realization, a replacement of modal operators by justification
terms, that is a theorem of LP. In a sense, a Realization represents the flow of
information hidden in the modal operators. One sometimes sees references to S4
as a logic of implicit knowledge, while LP explicitly represents that knowledge.

Since Artemov’s work, many justification logics have been created, and many
proofs of Realization have been developed. It is now known that the family of
modal/justification pairs is infinite, and much work has gone into the investiga-
tion of justification counterparts of familiar modal logics such as K, T, K4, S5,
and so on. See [2,8] for a discussion of the family of justification logics. Recently
quantification has been added, but this is another story, see [3,9].

The first proof of a Realization theorem can be found in [1]. It is constructive.
Constructive proofs commonly use cut-free Gentzen sequent systems but prefixed
tableaus/nested sequents have also been used, providing a modular approach
applicable to a basic family of modal logics, [14]. There are non-constructive
proofs based on semantics, [6]. Recently there is a non-constructive proof using
the model existence theorem, [11].
c© Springer-Verlag GmbH Germany 2017
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Here we give a new constructive proof of Realization. We present it for LP and
S4, but the argument is clearly more general. We use semantic tableaus rather
than a sequent calculus, but there is a well-known connection between them. The
central fact is that our Realization algorithm proceeds step by step, rather than
working with a tableau proof as a whole, and this makes implementation easier.
A link to a Prolog implementation can be found at [5]. In addition, our algorithm
divides into two parts. First a Quasi-Realization Theorem is shown (formulated
as Theorem 3 in Sect. 6 and finally proved in Sect. 9). This extracts a Quasi-
Realization from a modal tableau proof—a simpler thing to do than getting a
Realization proper. This part depends on details of S4, and needs modification
for other modal logics. Algorithmic conversion from Quasi-Realization to Real-
ization is independent of the particular logic, and can be found in [12]. This part
is only sketched here (in Sect. 10).

2 The Logic LP

This section contains a brief formulation of LP axiomatically, which comes
from [1]. A semantics will not be needed in this paper.

Justification terms are built up from justification variables, v1, v2, . . . , and
justification constants, c1, c2, . . . , using the function symbols ·, +, and !. If t is
a justification term, so is !t, and if t and u are justification terms, so are (t + u)
and (t · u). (We may omit some parenthesis when no harm is done.) Ground
justification terms are those without variables.

Formulas are built up from propositional variables, P , Q, . . . , and the propo-
sitional constant ⊥ using ⊃ (with other connectives defined in the usual way),
and an extra rule of formation: if t is a justification term and X is a formula
then t:X is a formula.

The formula t:X can be read: “t is a justification of X.” Justification constants
represent justifications of basic, assumed truths—axioms. Justification variables
are thought of as representing arbitrary justifications. If t is a justification of
X ⊃ Y and u is a justification of X, think of t · u as a justification of Y . The
operation ! is a checker: if t is a justification of X then !t is a verification that
t is such a justification. The operation + combines justifications, in that t + u
justifies all the things that t justifies plus all the things that u justifies.

The following axiom system for LP is from [1]. Axioms are specified by giving
axiom schemas and rules, and these are:

A0. Classical Enough classical propositional axiom schemes
A1. Application t:(X ⊃ Y ) ⊃ (s:X ⊃ (t·s):Y )
A2. Factivity t:X ⊃ X
A3. Justification Checker t:X ⊃ !t:(t:X)
A4. Weakening s:X ⊃ (s+t):X

t:X ⊃ (s+t):X
R1. Modus Ponens � Y provided � X and � X ⊃ Y
R2. Axiom Necessitation � c:X where X is an axiom A0 – A4

and c is a justification constant.
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A proof is a finite sequence of formulas each of which is an axiom or comes
from earlier terms by one of the rules of inference. Derivations can be introduced
either directly or indirectly by defining Γ �LP X to mean that (G1∧. . .∧Gn) ⊃ X
is a theorem for some finite subset {G1, . . . , Gn} of Γ .

Which constants are associated with which axioms for rule R2 applications
is called a constant specification. More formally, a constant specification is a set
C whose members are of the form c:A where c is a justification constant and
A is an axiom. A proof uses constant specification C if each instance of Axiom
Necessitation is in C. A constant specification can be given ahead of time, or cre-
ated during the course of a proof. We will assume all constant specifications are
axiomatically appropriate: each instance of one of the axiom schemes is assigned
at least one constant. In addition, all such assignments will be injective, no jus-
tification constant is used for more than one axiom. Many other conditions have
been investigated, but we are not interested in constant specification details here.

If Z is any theorem of LP, and we replace every proof polynomial by � (the
forgetful projection), the result is a theorem of S4. This is easy to see: it is the
case for each axiom of LP, and is preserved by the LP rules of derivation. The
Artemov Realization Theorem, from [1], is a converse to this.

Theorem 1 (Realization Theorem). If Z is a theorem of S4, there is some
replacement of � symbols with justification terms to produce a theorem of LP,
provable using an injective, axiomatically appropriate constant specification).
This can be done so that negative occurrences of � in Z are replaced with distinct
justification variables, and positive occurrences by justification terms that may
involve those variables.

Negative occurrences of justification variables can be thought of as inputs,
and positive justification terms as outputs. Thus theorems of S4 carry implicit
constructive functional content which their LP Realizations make explicit.

A fundamental result is the Lifting Lemma, from [1,2], not proved here,
which says that proofs and derivations in LP can be internalized. We present a
somewhat simplified version, which is enough for our purposes in this paper.

Theorem 2 (Lifting Lemma). Assume we have an axiomatically appropri-
ate constant specification. Suppose s1 :X1, . . . , sn :Xn �LP Z. Then there is a
justification term t(s1, . . . , sn) such that s1:X1, . . . , sn:Xn �LP t(s1, . . . , sn):Z.

Corollary 1. With an axiomatically appropriate constant specification, if Z has
an LP proof, then for some ground proof polynomial t, t:Z will have an LP proof.

3 Tableaus

Tableaus are refutation proof systems. Informally, one assumes a formula X
could be false under some circumstances and derives a syntactic contradiction.
Classical formulas are built up from propositional letters and ⊥ using ∧, ∨, ⊃,
and ¬, though other binary connectives could also be admitted. Smullyan’s uni-
form notation is useful here, [15,16], both for theoretical purposes and to simplify
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tableau implementations. We use signed formulas. Two special symbols, T and
F , are introduced and T X and F X are signed formulas if X is a formula. The
intended reading is that X is true, or false respectively. Signed formulas involv-
ing binary connectives divide into α cases, conjunctive, and β cases, disjunctive.
For each case, two components are also specified. This is given in Fig. 1.

Conjunctive Disjunctive
α α1 α2 β β1 β2

T X Y T X T Y F X Y F X F Y
F X Y F X F Y T X Y T X T Y
F X Y T X F Y T X Y F X T Y

Fig. 1. α- and β-formulas and components

A tableau proof is a special labeled binary tree. A proof of X begins with
a tree having only a root node, labeled F X. Then a tree is ‘grown’ using the
branch extension rules, given in Fig. 2. All trees produced this way are tableaus.

T ¬X
F X

F ¬X
T X

α

α1

α2

β

β1 | β2

Fig. 2. Classical branch extension rules

Tableaus are displayed as downward branching trees. Think of a tree as rep-
resenting the disjunction of its branches, and a branch as representing the con-
junction of the signed formulas on it. The members of a tableau branch can
be thought of as constituting a set, or a multi-set, or even a sequence. We
treat branches as sets. Tableau rules are non-deterministic. At each stage we
choose a signed formula occurrence on a branch and apply a rule to it. Since
the order of choice is arbitrary, there can be many tableaus for a single signed
formula. A tableau branch is closed if it contains T A and F A for some for-
mula A, or if it contains T ⊥. If each branch is closed, the tableau is closed.
A closed tableau for F X is a tableau proof of X. A branch is atomically closed
if it contains T P and F P where P is atomic. If a tableau can be closed, it can
continued to closure at the atomic level, so we will require atomic closure. Clas-
sical branch extension rules can be restricted to single use: a classical tableau
rule is never applied to a signed formula occurrence on a branch more than once.
(This does not work for all logics, however.)

An example of a classical tableau proof is given in Fig. 3. Numbers are for
reference purposes only. In it, 2 and 3 are from 1 by α; 4 and 5 are from 3 by α;
6 and 7 are from 5 by α; 8 and 9 are from 2 by β. 10 and 11 are from 4 by β.
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10. T P 11. T S

8. F P 9. T Q ⊃ R

1. F [(P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))]

2. T P ⊃ (Q ⊃ R)

3. F (P ∨ S) ⊃ ((Q ⊃ R) ∨ S)

4. T P ∨ S

5. F (Q ⊃ R) ∨ S

6. F Q ⊃ R

7. F S

Fig. 3. Classical proof of (P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))

Reading from left to right, the branches are closed because of 8 and 10, 7 and
11, and 6 and 9. Notice that on one of the branches closure is on a non-atomic
formula. This branch can be continued to yield atomic closure.

Justification logics make little use of possibility, so there is no advantage now
to modal uniform notation, and we do not use it. Syntactically �, but not ♦, is
added to the classical language. We present what are called destructive tableaus.
The name comes from the fact that certain modal rules cause branch information
to disappear. Such tableaus exist for K, T, D, D4, K4, S4, among others, but not
for S5. Here we only give rules for S4.

Definition 1. Let S be a set of signed formulas. S� = {T �X | T �X ∈ S}.
The destructive tableau rules for S4 are the classical tableau rules together

with those in Fig. 4. The first rule embodies reflexivity in an obvious way. The
second rule is different, and is destructive, indicated by the double line. Suppose
we have a branch containing F �X, with S being the set of other formulas on
the branch. The entire branch can be replaced with a new branch consisting of
the members of S�, and F X. Note that information is lost passing from S to
S�, hence the name destructive.

T X

T X

S, F X

S , F X

Fig. 4. S4 branch extension rules



318 M. Fitting

With classical propositional tableaus, any order of rule application is accept-
able. This is not the case for S4. If both F �X and F �Y are present, applying
a rule to one eliminates the other, and it may be that only one of the two possi-
bilities will lead to a proof. Now backtracking becomes critical to proof search.

Figure 5 shows a proof, using the S4 rules, of �X ⊃ �(�X ∨ Y ). We have
indicated branch replacement with horizontal lines. Lines 2 and 3 are from 1
by α. Next, the second S4 modal rule from Fig. 4 is applied to F �(�X ∨ Y ),
adding 4 while replacing S by S� eliminates 1 and 3. Now an α-rule application
to 4 adds 5 and 6, and produces a closed tableau, though not an atomically
closed one. Continuing, we apply the S4 modal rule again, to 5, adding 7 while
eliminating 4, 5, and 6. Applying the first S4 modal rule from Fig. 4 to 2 adds
8, and we have atomic closure.

1. F X ⊃ ( X ∨ Y )
2. T X
3. F ( X ∨ Y )

2. T X
4. F X ∨ Y
5. F X
6. F Y

2. T X
7. F X
8. T X

Fig. 5. S4 proof of �X ⊃ �(�X ∨ Y )

The rule S, F �X ⇒ S�, F X is automatically single use since applying it
with F �X eliminates the formula. The rule T �X ⇒ T X is trickier. For S4, if
T �X ⇒ T X is applied to a signed formula occurrence it need not be applied
again, until the rule S, F �X ⇒ S�, F X has been applied. The intuition is simple:
the destructive rule might eliminate the conclusion of T �X ⇒ T X but for S4
it will not eliminate the premise, so a new application may be useful.

4 Annotated Formulas and Tableaus

Mapping modal formulas to formulas of justification logic requires that we keep
track of the occurrences of �. In [7] we introduced annotated formulas for this;
we use a simpler version here.

Definition 2. An annotated modal formula is like a standard modal formula,
except that instead of a single modal operator � there is an infinite family, �1,
�2, . . . , of indexed modal operators. In an annotated formula, no index may
occur twice.

If A is an annotated formula and A′ is the result of replacing all indexed
modal operators, �n, with �, regardless of index, we say A is an annotated
version of A′, and A′ is an unannotated version of A.
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Annotations are purely for bookkeeping purposes. The α/β classification is
exactly as with unannotated formulas, as is the definition of components. For
instance, T �1P ∧ �2Q counts as an α, with α1 = T �1P and α2 = T �2Q.
In tableau constructions, branch extension rules apply to annotated formulas
exactly as to unannotated ones. The annotated version of the � operation is
S� = {T �iX | T �iX ∈ S}. Since we are requiring atomic closure, closure
conditions are not affected by annotations.

Figure 6 is an annotated version of the proof shown in Fig. 5. Every S4 tableau
proof can be turned into an annotated proof by annotating the modal opera-
tors appearing in the root, and then propagating these annotations downward
through the tree.

1. F 1X ⊃ 2( 3X ∨ Y )
2. T 1X
3. F 2( 3X ∨ Y )

2. T 1X
4. F 3X ∨ Y
5. F 3X
6. F Y

2. T 1X
7. F X
8. T X

Fig. 6. Annotated S4 proof of �1X ⊃ �2(�3X ∨ Y )

5 Changing the Tableau Representation

So far tableaus have been trees, and formula occurrences could be common to
multiple branches. While this has advantages for some purposes, it does not
when our Quasi-Realization algorithm is introduced. We will be associating a
set of Quasi-Realizers with each signed formula occurrence in a tableau. How
that is done depends on the history of the branch containing a given occurrence.
If an occurrence is common to more than one branch, it is part of more than
one history and things become ambiguous. Our solution is to change the way
tableaus are represented, something that also brings us much closer to the data
structure used in our Prolog implementation.

From now on a tableau is not a tree, but instead it is the set of its branches,
where each branch is the set of signed formulas on it. When we write a branch

as B, Z, or more graphically
B
Z, we mean it is the set whose members are those

of B, together with signed formula Z. This notation assumes that Z is not part
of B. We reformulate the S4 tableau rules in this style, building in the notion
of single-use for tableau rules. Here are the formal details, which apply equally
well to tableaus of signed formulas or of annotated signed formulas.
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Definition 3 (Classical Tableau Revised). A classical tableau is a finite set
of finite sets (called branches) of signed formulas. A branch is closed if T P and
F P are members for some atomic P , or if T ⊥ is a member. A tableau is closed
if each of its branches is closed. We say a signed formula is on a branch if it is a
member of it, and a branch is in a tableau if it is a member of it. A tableau proof
of X is a sequence of tableaus, beginning with a single branch tableau where that
branch contains only F X, continuing using the Branch Extension Rules given
in Figs. 7 and 8, and ending with a closed tableau.

B
T ¬X

B
F X

B
F ¬X

B
T X

B
α

B
α1

α2

B
β

B B
β1 β2

Fig. 7. Classical branch extension rules revised

As an example, the β rule in Fig. 7 is to be read as follows. If a tableau has
B, β as a branch, then the result of removing the branch from the tableau and
replacing it with two branches, B, β1 and B, β2 is another tableau, which we call
a successor of the original tableau. Similarly for the other rules. Note that the
new branches do not contain β, but have β1 and β2 respectively instead. This
is our general strategy for enforcing single use. That branches do not share any
common parts is essential here.

There is one misleading aspect to the notation above. In the rule for T ¬ for
instance, it may happen that F X already occurs in B, in which case the display
of B, F X below the line is not correct—it should be simply B. We allow this
mild abuse, rather than complicating notation.

Single use is trickier for modal rules. As noted earlier, single use for the F �
rule is automatic, but for the T � rule of S4 single use only applies until the
next application of the F � rule. We build this into Fig. 8 by crossing off an
occurrence of T �X when a rule has been applied to it, and providing no rule
that has a crossed off signed formula as a trigger. A cross off mark is removed,
as part of the definition of B�, when an F � rule is applied.

T X

T X
T X

F X

F X

where = T X T X or T X

Fig. 8. S4 Modal branch extension rules revised



Quasi-Realization 321

1. F (P Q) ⊃ ( P Q)
2. T (P Q), F P Q
3. T (P Q), T P Q, F P Q
4. T (P Q), T P Q, T P, F Q
5. T (P Q), T P, F Q
6. T (P Q), T P Q, T P, F Q
7. T (P Q), F P, T P, F Q , {T (P Q), T Q, T P, F Q
8. T (P Q), F P, T P , T P, F Q , T (P Q), T Q, T P, F Q

Fig. 9. Tableau as set of sets

Figure 9 shows a revised tableau proof of �(P ⊃ Q) ⊃ (�P ⊃ �Q). It is not
the shortest, by the way.

6 Quasi-Realizations

Our algorithm for computing Realizations divides into two halves. The first half
constructs an intermediate object, a Quasi-Realization, from a tableau proof.
The second half converts a Quasi-Realization into a proper Realization. The
construction of Quasi-Realizations is logic dependent—we present an algorithm
for S4 only. Input to this algorithm is a tableau proof. The input to the Quasi-
Realization to Realization algorithm is a Quasi-Realization, not a formal proof,
and the construction is independent of the particular logic involved. Because
space is limited, the Quasi-Realization to Realization algorithm is not given
here. It can be found in both [10,12].

Informally the goal is to associate a Quasi-Realization with each signed
formula occurrence in a tableau proof. This Quasi-Realization is constructed
according to how the branch on which the signed formula appears is continued
to closure. A problem is that a particular signed formula occurrence can be on
more than one branch, appearing before the branch splits. A Quasi-Realization
computed on one branch might be different than a Quasi-Realization computed
on another. If we were dealing with Realizations, a merging solution to this
problem would involve the + operation and substitution, and would be of some
complexity since the entire nested structure of the realizing formulas would need
to be taken into consideration. Our approach here bypasses this problem by
allowing a set of Quasi-Realizations rather than insisting on a single one. In fact
+ does not appear until we reach the Quasi-Realization to Realization algorithm.

From now on we assume that v1, v2, . . . is an enumeration of all justification
variables of LP with no variable repeated, fixed once and for all. Case 4 of the
definition below always uses vk in Quasi-Realizations where the sign is T and
�k is involved. It does not matter whether a formula T �nA occurs crossed out
or not, and crossing out is suppressed in our current notation. In case 3 two
conjunctive, or α, signed formulas are mentioned. For one we use α with α1

and α2 as components. For the other we use α′ with α′
1 and α′

2 as components.
Similarly for disjunctive, or β, signed formulas.
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Definition 4 (Quasi-Realization Function). The mapping 〈〈·〉〉 is defined
recursively on the set of signed annotated modal formulas.

1. If A is atomic, 〈〈T A〉〉 = {T A} and 〈〈F A〉〉 = {F A}.
2. 〈〈T ¬A〉〉 = {T ¬U | F U ∈ 〈〈F A〉〉}.

〈〈F ¬A〉〉 = {F ¬U | T U ∈ 〈〈T A〉〉}.
3. 〈〈α〉〉 = {α′ | α′

1 ∈ 〈〈α1〉〉 and α′
2 ∈ 〈〈α2〉〉}.

〈〈β〉〉 = {β′ | β′
1 ∈ 〈〈β1〉〉 and β′

2 ∈ 〈〈β2〉〉}.
4. 〈〈T �nA〉〉 = {T vn:U | T U ∈ 〈〈T A〉〉}.

〈〈F �nA〉〉 = {F t : (U1 ∨ . . . ∨ Uk) | F U1, . . . , F Uk ∈ 〈〈F A〉〉 and
t is any justification term}.

5. The mapping is extended to sets of signed annotated formulas by letting
〈〈S〉〉 = ∪{〈〈Z〉〉 | Z ∈ S}.

Members of 〈〈Z〉〉 are called Quasi-Realizers of Z.

As an example, suppose t, u, and w are justification terms and P and Q are
atomic formulas. Here are some Quasi-Realization calculations, leading up to
F �1(�2P ∨ ¬�3Q). We do not produce all Quasi-Realizations, an infinite set.
Here’s the reasoning for one case. F �2P ∨ ¬�3Q, in item 5, is an α, with
α1 = F �2P and α2 = F ¬�3Q. By items 2 and 4, we can take α′

1 = F t:P and
α′
2 = F ¬v3 :Q, and then α′ = F t:P ∨ ¬v3 :Q, which is taken to be one of the

members of 〈〈F �2P ∨ ¬�3Q〉〉.
1. {F P} = 〈〈F P 〉〉 and {T Q} = 〈〈T Q〉〉
2. {F t:P, F u:P} ⊆ 〈〈F �2P 〉〉
3. {T v3:Q} = 〈〈T �3Q〉〉
4. {F ¬v3:Q} = 〈〈F ¬�3Q〉〉
5. {F t:P ∨ ¬v3:Q,F u:P ∨ ¬v3:Q} ⊆ 〈〈F �2P ∨ ¬�3Q〉〉
6. {F t:((t:P ∨ ¬v3:Q) ∨ (u:P ∨ ¬v3:Q)), F w:(u:P ∨ ¬v3:Q)} ⊆ 〈〈F �1(�2P ∨

¬�3Q)〉〉
We can now formulate the main contribution of this paper. It will be proved

in Sects. 7 and 9 using an algorithm given in Sect. 8.

Theorem 3. Let X be an annotated modal formula. Given a tableau proof of X
in S4, a finite set {F Q1, . . . , F Qk} of quasi-realizers for F X can be constructed
so that Q1 ∨ . . . ∨ Qk is a theorem of LP.

7 Mixed Tableaus

We now introduce what we call mixed tableaus, which unite modal features with
justification logic features. They are based on tableaus as defined in Sect. 5, using
a set of sets representation. Informally, a mixed tableau expands an S4 tableau
by associating a set of Quasi-Realizers to each signed annotated modal formula
appearing in it.
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Definition 5 (Mixed Tableau). A mixed S4 tableau is like a tableau except
that members of branches are pairs (M,S) where M is a signed annotated modal
formula and S is a finite, non-empty set of signed justification formulas, meeting
the following requirements.

1. If (M,S) occurs in a mixed tableau, it is required that S ⊆ 〈〈M〉〉.
2. If, in a mixed tableau, we replace each entry (M,S) by just M , the result must

be an annotated S4 tableau.

In a mixed tableau, we refer to M as the modal part of (M,S), and to S as the
justification part of (M,S). We say a mixed tableau T mix is an expansion of
an S4 tableau T if T results from T mix by eliminating the justification parts of
node labels, as in item 2 of Definition 5.

Remark: A referee for this paper observed that while an empty S cannot
produce a justification-sound mixed tableau, allowing it leaves open the possi-
bility of using it for trivial expansions. We have not explored this suggestion,
but believe it might plausibly make a simplification in the presentation of the
main algorithm of this paper.

Definition 6 (Justification Sound). Let B be a branch of a mixed tableau. By
the associated justification formula for B we mean

∧Bjust
T ⊃ ∨ Bjust

F where Bjust
T

is the set of all justification formulas X such that T X occurs in the justification
part of some member of B and Bjust

F is the set of X such that F X occurs in the
justification part of some member of B.

We say a mixed S4 tableau branch is justification sound provided that its
associated justification formula is provable in axiomatic LP. We say a mixed S4
tableau is justification sound if each branch is.

The heart of our Quasi-Realization work is the following theorem, proved in
Sect. 9, which immediately gives us a proof of Theorem 3.

Theorem 4. Let T be an annotated S4 tableau that can be continued to one
that is closed (or is closed already). Then T has a mixed tableau expansion T mix

that is justification sound, where T mix can be algorithmically constructed from
any closed modal tableau extending T .

Proof (of Theorem 3). Suppose X is an annotated modal formula, and we have
a closed S4 tableau proof for X. The construction of that proof begins with
the single-branch modal tableau consisting of just a root node, labeled F X.
Since this trivial tableau can be continued to a closed tableau, by Theorem4 it
can be expanded to a mixed tableau that is justification sound. Such a mixed
tableau must consist of just a root node, labeled (F X, {F Q1, . . . , F Qk}), where
{F Q1, . . . , F Qk} ⊆ 〈〈F X〉〉. Since this expanded tableau is justification sound,
the formula

∧ ∅ ⊃ ∨{Q1, . . . , Qk} is axiomatically LP provable. That is, Q1 ∨
. . . ∨ Qk is provable, where F Q1, . . . , F Qk are quasi-realizers for F X.
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8 The Quasi-Realization Algorithm

Figure 10 contains an algorithm to construct justification-sound mixed tableaus
from closed S4 tableaus, followed by an example in Figs. 11 and 12. In Sect. 9 a
proof of the correctness of the algorithm is given, and this establishes Theorem4.
The construction is a kind of ‘backward induction’. Suppose T1, T2, . . . , Tk is a
sequence of annotated S4 tableaus, in which each arises from the preceding by a
single application of an S4 branch extension rule, as given in Sect. 5. Suppose also
that Tk is closed. We show Tk has a mixed tableau expansion that is justification
sound. Then, using this, we show the same for Tk−1, then for Tk−2, and so on back
to T1. A bit more properly, the algorithm produces a mixed tableau expansion
for each Ti; the correctness proof in the following section shows that it must be
justification sound.

A branch extension rule application modifies only one branch—all others
remain unchanged. Consequently the algorithm is stated in terms of branch
extension rules applied to single branches. The rest of the mixed tableau being
constructed does not change, so unaffected branches are not explicitly displayed.

S4 tableaus are understood as sets of branches, with branches being sets of
signed annotated formulas, as in Sect. 5. We make use of the notion convention

introduced there, where B, Z, or
B
Z, is a branch consisting of the members of B,

and Z (which is understood not to occur in B).
The idea is to expand branches of an annotated S4 tableau so they become

branches of a mixed tableau. If B is an S4 tableau branch, we will write BE to
denote an expansion of it to a mixed tableau branch. Each signed annotated
formula M in B is transformed into a pair (M,S) in BE so that S ⊆ 〈〈M〉〉.
Of course BE is not unique—it is simply some expansion. In one case of the
algorithm more than one branch expansion must be referenced, and we use BE1

and BE2 as notation. We write B exp−−−−→ BE to indicate that annotated S4
tableau branch B expands to mixed tableau branch BE .

If BE1 and BE2 are both expansions of the same branch, B, by BE1 ∪̇ BE2 we
mean the mixed tableau branch consisting of all (M,S1 ∪ S2) where (M,S1) ∈
BE1 and (M,S2) ∈ BE2 .

In a few of the algorithm cases we refer to a trivial expansion. A trivial
expansion of a signed formula M is (M,S) where S is any finite set such that
S ⊆ 〈〈M〉〉. A trivial expansion of an S4 branch replaces each member with a
trivial expansion. In our Prolog implementation a particular easily computed
trivial expansion is used, but the details don’t matter here.

The algorithm is stated schematically below. We give a reading of the α Case
as a representative example of how the algorithm notation should be understood.
The idea is, we say how to expand the S4 tableau branch B, α provided we
already know how to expand B, α1, α2. So, assume we have an expansion for
S4 tableau branch B, α1, α2, where B expands to BE , α1 expands to (α1, S1),
and α2 expands to (α2, S2). Then S4 tableau branch B, α expands to BE , (α, S),
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where S consists of all α signed formulas for which α1 ∈ S1 and α2 ∈ S2.
(In the schematic we used α′, α′

1, and α′
2 in characterizing S, simply because α,

α1, and α2 were already in use to designate members of S4 tableau branches.)
Recall that v1, v2, . . . is a fixed enumeration of all justification variables of

LP with no variable repeated.
In the F � case of Fig. 10,

∧ A ⊃ ∨
S appears as the associated justification

formula for the branch (B�)E , (F X,S0). In fact, A = ((B�)E)just
T , using the

notation of Definition 6, but such detailed notation distracts from the basic idea
and we have suppressed it here. The existence of a term t such that �LP

∧ A ⊃
t:
∨

S will be guaranteed by the Lifting Lemma. Also note that the combination
B� and B − B� below the line simply amounts to B, though the separation is
useful for our purposes.

We give an example to illustrate how the Quasi-Realization Algorithm works.
Figure 11 shows an S4 proof of the annotated formula (�1A∨�2B) ⊃ �3(A∨B)
where A and B are atomic, using the representation of tableaus described in
Sect. 5. Each numbered item should be thought of as the set of signed formu-
las making up a tableau branch. A detailed description follows. 1 is the initial
single-branch tableau. Single-branch tableau 2 follows from 1 by α. A β rule
application creates a tableau with two branches, 3 and 4. Modal rule appli-
cations on F �3(A ∨ B) in 3 and 4 produce the two-branched tableau having
branches 5 and 6. Modal rule applications on T �1A and T �2B in these give
the two branches 7 and 8. Finally, α rule applications give the two branches 9
and 10, both of which are atomically closed.

Next, the proof created in Fig. 11 is converted to a mixed tableau, displayed in
Fig. 12. The work is from bottom up. In Fig. 11, 9 is an atomically closed branch.
For this, the algorithm makes use of a trivial expansion, giving the corresponding
9 of Fig. 12, and similarly for 10. Branch 7 in Fig. 11 yields branch 9 by an α
rule. Since 9 in Fig. 11 expands to 9 in Fig. 12, 7 of Fig. 11 converts to 7 of Fig. 12
by the α case of the Algorithm. Similarly for 8 and 10. Then branch 5 of Fig. 11
converts to 5 of Fig. 12 because of the 7 conversion, and the T � case of the
Algorithm, and similarly for 6 and 8. Branch 3 of Fig. 11 yields branch 5 by the
F� rule. The associated justification formula for branch 5 is v1 :A ⊃ (A ∨ B).
Justification term t, in 3, is such that v1 :A ⊃ t : (A ∨ B) is provable in LP.
Existence is guaranteed by the Lifting Lemma 2. Similarly u in branch 4 is such
that v2:B ⊃ u:(A ∨ B) is provable in LP. Branch 2 yields branches 3 and 4 using
the β rule. Note that in branch 2 in Fig. 12, the justification part associated with
F �3(A ∨ B) is the union of those parts from branches 3 and 4. Finally 1 is a
straightforward application of the α rule.

Then, according to the algorithm, {F (v1:A ∨ v2:B) ⊃ t:(A ∨ B), F (v1:A ∨ v2:
B) ⊃ u:(A ∨ B)} is a set of quasi-realizers for F (�1A ∨ �2B) ⊃ �3(A ∨ B).
In fact, the following is provable in LP.

∨
{(v1:A ∨ v2:B) ⊃ t:(A ∨ B), (v1:A ∨ v2:B) ⊃ u:(A ∨ B)}
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Atomic Cases

B
T P
F P

exp−−−−−→
BE

(T P, {T P})
(F P, {F P})

where BE trivially expands B

B
T ⊥

exp−−−−−→ BE

(T ⊥, {T ⊥})
where BE trivially expands B

α Cases

B
α1

α2

exp−−−−−→
BE

(α1, S1)
(α2, S2)

B
α

exp−−−−−→ BE

(α, S)

where S = {α | α1 ∈ S1 and α2 ∈ S2}

β Cases

B
β1

exp−−−−−→ BE1

(β1, S1)
B
β2

exp−−−−−→ BE2

(β2, S2)

B
β

exp−−−−−→ BE

(β, S)

where S = {β | β1 ∈ S1

and β2 ∈ S2} and BE = BE1 ∪̇ BE2

Negation Cases

B
F X

exp−−−−−→ BE

(F X, S0)

B
T ¬X

exp−−−−−→ BE

(T ¬X, S)

where S = {T ¬Z | F Z ∈ S0}

B
T X

exp−−−−−→ BE

(T X, S0)

B
F ¬X

exp−−−−−→ BE

(F ¬X, S)

where S = {F ¬Z | T Z ∈ S0}

T Case

B
T kX
T X

exp−−−−−→
BE

(T kX, S0)
(T X, S1)

B
T kX

exp−−−−−→ BE

(T kX, S)

where S = S0 ∪ {T vk:Z | TZ ∈ S1}

F Case

B
F X

exp−−−−−→ (B )E

(F X, S0)

B
B − B
F nX

exp−−−−−→
(B )E

(B − B )E

(F nX, {F t: S})

where (B − B )E trivially expands B − B ,
S = {Z | F Z ∈ S0},

A ⊃ S is the associated justification

formula for branch (B )E , (F X, S0)
and LP A ⊃ t: S

Fig. 10. Quasi-Realization Algorithm
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1. F ( 1A ∨ 2B) ⊃ 3(A ∨ B)

2.
T 1A ∨ 2B
F 3(A ∨ B)

3.
T 1A
F 3(A ∨ B)

4.
T 2B
F 3(A ∨ B)

5.
T 1A
F A ∨ B

6.
T 2B
F A ∨ B

7.
T 1A
F A ∨ B
T A

8.
T 2B
F A ∨ B
T B

9.

T 1A
T A
F A
F B

10.

T 2B
T B
F A
F B

Fig. 11. S4 tableau proof (to be expanded)

1. (F ( 1A ∨ 2B) ⊃ 3(A ∨ B), {F (v1:A ∨ v2:B) ⊃ t:(A ∨ B),
F (v1:A ∨ v2:B) ⊃ u:(A ∨ B)})

2.
(T 1A ∨ 2B, {T v1:A ∨ v2:B})
(F 3(A ∨ B), {F t:(A ∨ B), F u:(A ∨ B)})

3.
(T 1A, {T v1:A})
(F 3(A ∨ B), {F t:(A ∨ B)})

4.
(T 2B, {T v2:B})
(F 3(A ∨ B), {F u:(A ∨ B)})

5.
(T 1A, {T v1:A})
(F A ∨ B, {F A ∨ B})

6.
(T 2B, {T v2:B})
(F A ∨ B, {F A ∨ B})

7.
(T 1A, {T v1:A})
(F A ∨ B, {F A ∨ B})
(T A, {T A})

8.
(T 2B, {T v2:B})
(F A ∨ B, {F A ∨ B})
(T B, {T B})

9.

(T 1A, {T v1:A})
(T A, {T A})
(F A, {F A})
(F B, {F B})

10.

(T 2B, {T v2:B})
(T B, {T B})
(F A, {F A})
(F B, {F B})

Justification term t, in 3, is such that v1:A ⊃ t:(A ∨ B) is provable in LP. Similarly u
in 4 is such that v2:B u:(A B) is LP provable.

Fig. 12. S4 tableau proof (expanded)
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9 Quasi-Realization Algorithm Correctness Proof

This section is devoted to showing the correctness of the Quasi-Realization
Algorithm, and hence proving Theorem4. It is straightforward that the
algorithm produces a mixed tableau expansion. We concentrate on showing the
resulting mixed tableau must be justification sound, Definition 6. To do this, we
show it for the Atomic Cases, and show that each rule of the algorithm preserves
justification soundness.

Proof (Correctness for Quasi-Realization Algorithm)

Atomic Cases. Consider the first of the two atomic cases—the second is sim-
ilar. The mixed tableau branch produced is BE , (T P, {T P}), (F P, {F P}).
The associated justification formula is [

∧
(BE)just

T ∧ P ] ⊃ [
∨

(BE)just
F ∨ P ],

and this is trivially an LP theorem, so the branch is justification sound.
α Case. Assume that BE , (α1, S1), (α2, S2) is a mixed tableau branch that is

justification sound. We must show the same for BE , (α, S) where S = {α′ |
α′
1 ∈ S1 and α′

2 ∈ S2}. Since S1 ⊆ 〈〈α1〉〉 and S2 ⊆ 〈〈α2〉〉, it is easy to see
from Definition 4 that S ⊆ 〈〈α〉〉. After this case we leave such arguments to
the reader. We must show the branch is justification sound.
Since we only consider ∧, ∨, and ⊃, there are three possibilities for α. We
look at one of them, with α = F A ⊃ B; the other two cases are simi-
lar. All three could be condensed into a single argument by making use
of uniform notation, but this would be a bit of a diversion just now. So,
assume BE , (T A, S1), (F B, S2) is justification sound; we show the same for
BE , (F A ⊃ B,S).
Let us say S1 = {T A1, . . . , T Am} and S2 = {F B1, . . . , F Bn}. Then the
associated justification formula for BE , (T A, S1), (F B, S2) is the following.

[∧
(BE)just

T ∧
∧

{A1, . . . , Am}
]

⊃
[∨

(BE)just
F ∨

∨
{B1, . . . , Bn}

]

By classical logic we also have provability of the following, where i ranges
over 1, . . . ,m and j ranges over 1, . . . , n.

∧
(BE)just

T ⊃
⎡

⎣
∨

(BE)just
F ∨

∨

i,j

(Ai ⊃ Bj)

⎤

⎦

Thus the associated justification formula for B, (F A ⊃ B,S) is provable.
β Case. Assume that BE1 , (β1, S1) and BE2 , (β2, S2) are justification sound. We

show this also to be the case for βE , (β, S), where S = {β′ | β′
1 ∈ S1 and β′

2 ∈
S2} and BE = BE1 ∪̇ BE2 . As with α there are three cases, and we only
consider one of them, where β = T A ⊃ B. So, assume that BE1 , (F A, S1)
and BE2 , (T B, S2) are justification sound.
Suppose S1 = {F A1, . . . , F Am} and S2 = {T B1, . . . , T Bn}. Then the prov-
able associated justification formulas for BE1 , (F A, S1) and BE2 , (T B, S2)
are the following.
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∧
(BE1)just

T ⊃
[∨

(BE1)just
F ∨

∨
{A1, . . . , Am}

]

[∧
(BE2)just

T ∧
∧

{B1, . . . , Bn}
]

⊃
∨

(BE2)just
F

BE = BE1 ∪̇ BE2 , and it follows easily that (BE)just
T = (BE1)just

T ∪ (BE2)just
T

and (BE)just
F = (BE1)just

F ∪ (BE2)just
F . Then we have provability of the follow-

ing. ∧
(BE)just

T ⊃
[∨

(BE)just
F ∨

∨
{A1, . . . , Am}

]

[∧
(BE)just

T ∧
∧

{B1, . . . , Bn}
]

⊃
∨

(BE)just
F

By classical logic this gives provability of the following, where i ranges over
1, 2, . . . ,m and j ranges over 1, 2, . . . , n.

⎡

⎣
∧

(BE)just
T ∧

∧

i,j

(Ai ⊃ Bj)

⎤

⎦ ⊃
∨

(BE)just
F

Thus the associated justification formula for B, (T A ⊃ B,S) is provable.
Negation Cases. These cases are similar to the α and β cases, but are simpler

and are left to the reader.
T � Case. Assume that BE , (����T �kX,S0), (T X, S1) is a justification-sound

mixed tableau branch. Then BE , (T �kX,S) is a mixed tableau branch, where
S = S0 ∪ {T vk:Z | TZ ∈ S1}. We show it is justification sound.
Suppose S0 = {T vk:W1, . . . , T vk:Wm} and S1 = {T Z1, . . . , T Zh}. Then the
provable associated justification formula for BE , (����T �kX,S0), (T X, S1) is the
following.

[∧
(BE)just

T ∧
∧

{vk:W1, . . . , vk:Wm} ∧
∧

{Z1, . . . , Zh}
]

⊃
∨

(BE)just
F

Using Factivity, Axiom A2, we have LP provability of the following.
[∧

(BE)just
T ∧

∧
{vk:W1, . . . , vk:Wm, vk:Z1, . . . , vk:Zh}

]
⊃

∨
(BE)just

F

This is the associated justification formula for BE , (T �kX,S).
F � Case. Assume that (B�)E , (F X,S0) is a justification-sound mixed tableau

branch. Then (B�)E , (B−B�)E , (F �nX, {F t:
∨

S}) is a mixed tableau branch,
where (B − B�)E trivially expands B − B�, S = {Z | F Z ∈ S0}, and t
is any justification term. We show (B�)E , (B − B�)E , (F �nX, {F t:

∨
S}) is

justification sound, given the right choice of t.
Note that since all members of B� are T -signed, the LP-provable associated
justification formula for (B�)E , (F X,S0) is simply

∧
((B�)E)just

T ⊃ ∨
S, where

S = {Z | F Z ∈ S0}. Also members of B� are necessitated, so by the Lifting
Lemma 2, for some justification term t, �LP

∧
((B�)E)just

T ⊃ t :
∨

S. Then,
trivially, the following is also LP-provable

[∧
((B�)E)just

T ∧
∧

((B − B�)E)just
T

]
⊃

[
t:
∨

S ∨
∨

((B − B�)E)just
F

]

and this is the associated justification formula for (B�)E , (B − B�)E ,
(F �nX, {F t:

∨
S}) as specified by the algorithm.



330 M. Fitting

10 Realizations

Quasi-Realizations convert to Realizations. There is an algorithm for doing this
in [12] that does not depend on tableau proofs, but only on the structure of a
Quasi-Realization formula. It applies uniformly to a wide range of justification
logics, not just to LP. Because of space limitations we omit the algorithm, and
just state what it gives us.

We begin with a definition of Realization equivalent to the usual one, but
following the lines of Definition 4. Differences are confined to case 4 where a dis-
junction appearing in the definition of quasi-realizer is folded into a justification
term by using the + operator. We still assume that v1, v2, . . . is an enumeration
of all justification variables of LP, with no justification variable repeated.

Definition 7. The mapping [[·]] is defined recursively on the set of signed anno-
tated modal formulas.

1. If A is atomic, [[T A]] = {T A} and [[F A]] = {F A}.
2. [[T ¬A]] = {T ¬U | F U ∈ [[F A]]}.

[[F ¬A]] = {F ¬U | T U ∈ [[T A]]}.
3. [[α]] = {α′ | α′

1 ∈ [[α1]] and α′
2 ∈ [[α2]]}.

[[β]] = {β′ | β′
1 ∈ [[β1]] and β′

2 ∈ [[β2]]}.
4. [[T �nA]] = {T vn:U | T U ∈ [[T A]]}.

[[F �nA]] = {F t:U | F U ∈ [[F A]] and t is any justification term}.
5. The mapping is extended to sets of signed annotated formulas by letting [[S]] =

∪{[[Z]] | Z ∈ S}.
Members of [[Z]] are Realizers of Z, where Z is a signed, annotated modal for-
mula. A normal Realization of annotated modal A is any justification formula
U where F U ∈ [[F A]]. For a modal formula A without annotations, a normal
Realization for A is any normal Realization for A′, where A′ is an annotated
version of A.

Substitutions are fundamental. A substitution σ replaces justification vari-
ables with justification terms. For a justification formula A the result of applying
a substitution σ is denoted Aσ. It is easy to show that substitutions turn LP the-
orems into LP theorems, though generally the constant specification will change.
Substitution σ meets the no new variable condition if, for every vk in the domain
of σ, the justification term vkσ contains no variables other than vk. σ lives on an
annotated modal formula A if, for every justification variable vk in the domain
of σ, �k occurs in A.

Definition 8. Let A be an annotated modal formula, A be a set of justification
formulas, A′ be a single justification formula, and σ be a substitution.

1. A T A−−−−−→ (A′, σ) means: σ lives on A and meets the no new variable condi-
tion; T A ⊆ 〈〈T A〉〉; T A′ ∈ [[T A]]; and �LP A′ ⊃ (

∧ A)σ.
2. A F A−−−−−→ (A′, σ) means: σ lives on A and meets the no new variable condi-

tion; F A ⊆ 〈〈F A〉〉; F A′ ∈ [[F A]]; and �LP (
∨ A)σ ⊃ A′.
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One can read A T A−−−−−→ (A′, σ) as saying that the set of quasi-realizers A for
T A condenses to the single realizer T A′ using substitution σ, and similarly for
A F A−−−−−→ (A′, σ).

Theorem 5 (Condensing). Let A be an annotated modal formula. For each
finite set A of justification formulas:

1. If T A ⊆ 〈〈T A〉〉 then there are A′ and σ so that A T A−−−−−→ (A′, σ).
2. If F A ⊆ 〈〈F A〉〉 then there are A′ and σ so that A F A−−−−−→ (A′, σ).

As has been said several times, the proof of Theorem 5 is algorithmic, and
[12] can be consulted for details.

Corollary 2 (Realization). Every formula provable in S4 has a normal Real-
ization that is provable in LP.

Proof. Suppose X is a theorem of S4. Let A be an annotated version of X, any
one will do. Then from Theorem 3, proved using the algorithm given in Fig. 10,
there are Q1, . . . , Qk with {F Q1, . . . , F Qk} ⊆ 〈〈F A〉〉 such that Q1 ∨ . . . ∨ Qk is
a theorem of LP. By part 2 of Theorem5 there is a substitution σ and a formula
A′ with F A′ ∈ [[F A]] such that (Q1 ∨ . . . ∨ Qk)σ ⊃ A′ is a theorem of LP. Since
(Q1 ∨ . . . ∨ Qk)σ must also be provable in LP, so is A′, and this is a normal
Realization of A, and hence of X.

At the end of Sect. 8 we presented an example showing that the annotated
modal formula (�1A ∨ �2B) ⊃ �3(A ∨ B), provable in S4, has the following
Quasi-Realization set, {(v1 : A ∨ v2 : B) ⊃ t : (A ∨ B), (v1 : A ∨ v2 : B) ⊃ u :
(A ∨ B)}, where �LP v1 :A ⊃ t : (A ∨ B) and �LP v2 :B ⊃ u : (A ∨ B). Then
�LP [(v1 :A ∨ v2 :B) ⊃ t:(A ∨ B)] ∨ [(v1 :A ∨ v2 :B) ⊃ u:(A ∨ B)]. Applying the
(unstated) algorithm converting Quasi-Realizers to Realizers, we obtain that,
(v1 :A ∨ v2 :B) ⊃ (c · t + c · u) : (A ∨ B) is a provable normal Realization of
(�1A ∨ �2B) ⊃ �3(A ∨ B), where c internalizes a proof of (A ∨ B) ⊃ (A ∨ B).

11 What Next?

Here is a brief summary of work that remains undone. It is extensive.
We have given a constructive proof of Quasi-Realization from modal S4 to

justification LP. As noted several times, a uniform algorithmic conversion from
Quasi-Realizers to Realizers is available, [12]. The ideas extend directly to any
modal logic having a similar destructive tableau system. Other cut-free proof
methods extend things to a still richer variety of logics. In [12] it is shown
that the family of modal logics having justification logic counterparts is infinite,
which is somewhat surprising. But the proof is non-constructive. It is not known
whether something similar can be shown constructively.

Recently LP has been extended to admit quantifiers, [3,9], with a Realiza-
tion theorem connecting it with first-order S4. But a monotonicity condition is
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assumed. Work is in progress on a constant domain version, but this is incom-
plete. Varying domain assumptions have not yet been considered. No modal logic
except S4 has been examined.

Hybrid logic and paraconsistent modal logics are largely unexplored as far
as justification counterparts are concerned.

There are still things to do.
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Abstract. The subintuitionistic logics introduced by Corsi and Restall
are developed in a uniform manner. In this way Restall’s contributions
are clarified. Hilbert type proof systems are given for derivations with-
out and with assumptions. The results are applied to give conservation
theorems for intuitionistic logic IPC over Corsi’s system F. For Visser’s
basic logic additional conservation results are obtained.
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1 Introduction

G. Corsi, in [3], introduced sublogics of intuitionistic propositional logic IPC
which are characterized by classes of Kripke models in which no assumption
of truth preservation is made. She made a systematic study of these systems,
considering the finite model property, disjunction property and translations into
modal logic as well as proving strong completeness for some of them. Her basic
system was called F. G. Restall [6] made a similar study, also considering truth
preservation, using different methods and a somewhat different notion of validity
and proved a special type of completeness theorem. His basic system was called
SJ and is considered to be equivalent to F (see Remark 2). The proofs in his
paper are somewhat sketchy.

In 1981, A. Visser [10] had already introduced Basic Logic, BPC, an exten-
sion of F with truth preservation, in the natural deduction form, and proved
completeness of BPC for finite and transitive Kripke models. In 1997, Suzuki
and Ono [9] introduced a Hilbert style proof system for BPC as an extension of
Corsi’s system [3]. They proved a weak completeness theorem.

Another line of research was initiated by K. Došen [4] in 1994. As Corsi he
considered translations and obtained a system Kσ, the result of a translation of
K, with regard to theorems equivalent to F. He also studied the correspondent of
the logic D. These investigations were continued by S. Celani and R. Jansana [2]
in 2001. They concentrated on the types of consequence relations, classified the
logics according to the hierarchy of abstract algebraic logic and proved strong
completeness theroems, e.g. for BPC.
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The structure of this paper is as follows. In Sect. 2 we leisurely introduce the
logic F, provide a Hilbert type proof system without and with assumptions and
prove a weak and strong completeness theorem. The results here are not new,
they have been proved before in [2–4].

It is important to note that we consider the logics discussed strictly as their
sets of theorems. The consequence relation we use, Γ � B, can be defined in terms
of theoremhood as � A1, . . . , An → B for some A1, . . . , An ∈ Γ (see Corollary 1).
The strong completeness theorems we prove are w.r.t. this definable consequence
relation. This should particularly be kept in mind in the case of BPC because
this system was introduced by Visser with its own different consequence relation.

In Sect. 3 we will focus on Restall’s validity notion [6] using the methods
and the type of proof systems set up in Sect. 2, and we make his notions more
explicit. We show that any prime theory Π satisfying some specific good prop-
erties can be treated in much the same way as F with the same proofs. From
this the form of strong completeness of F due to Restall is shown. This relates to
the consequence relations studied by Celani and Jansana [2], in particular to the
system Kσ, although this is not quite the same. We then apply the results to
logics stronger than F. In all of this we expose the role of the rules of modus
ponens, conjunction and a fortiori.

In Sect. 4 we will introduce two special classes of formulas and show that IPC
is conservative over F with respect to these classes. This clarifies what theorems
of IPC can be proved in F. We will prove that IPC is in addition conservative
over BPC with respect to the NNIL formulas of [11]. This clarifies what more
BPC can prove than F. We relate the second result to the bounded translation
for IPC into BPC given by M. Aghaei and M. Ardeshir in [1].

2 Subintuitionistic Logic

The Kripke models of subintuitionistic logics have a relation R that lacks
the properties of reflexivity, transitivity and truth preservation of intuitionis-
tic Kripke models.

Definition 1. A rooted subintuitionistic Kripke frame is a triple
〈W, g,R〉. R is a binary relation on W; g ∈ W , the root is omniscient, i.e. gRw
for each w ∈ W . A rooted subintuitionistic Kripke model is a quadruple
〈W, g,R, V 〉 with V : P → 2W a valuation function on the set of propositional
variables P. The binary relation � is defined on w ∈ W as follows.

1. w � p ⇔ w ∈ V (p), for any p ∈ P ,
2. w � A ∧ B ⇔ w � A and w � B,
3. w � A ∨ B ⇔ w � A or w � B,
4. w � A → B ⇔ for each v with wRv, if v � A then v � B.

The constant f representing the contradiction is treated as a propositional vari-
able. M � A if, for all w ∈ W , M,w � A, and if all models force A, we write
�A and call A valid.
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This validity notion is Corsi’s. We use Restall’s omniscient roots (also called
base points) because they play an essential role in his validity notion. We will
discuss Restall’s notion in Sect. 3.2, and we will show immediately that the two
validities coincide. This follows from the next proposition.

Proposition 1. If for all M , M, g � A, then for all M,w, M,w � A.

Proof. It is not difficult to see that for each A′ there exists a with respect to
forcing equivalent A which is a conjunction of disjunctions of implications and
atoms (compare Theorem 16). So, we can assume M, g � A for an A of this form.

Let us first assume A is a disjunctions of implications and atoms, (C1 →
D1)∨· · ·∨(Cn → Dn)∨p1∨· · ·∨pk, and let M,w � A. Then for each i (1 ≤ i ≤ n),
there exists wi with wRwi � Ci, � Di. We now add an omniscient root g to M ,
and define the atoms p1, . . . , pk to be false in g. Then g � A.

In case A is a conjunction of such formulas we start with a countermodel to
one of the conjuncts of A and continue as above. ��
Definition 2. F is the logic given by the following axioms and rules,

1. A → A ∨ B 7. A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)
2. B → A ∨ B 8. (A → B) ∧ (B → C) → (A → C)
3. A ∧ B → A 9. (A → B) ∧ (A → C) → (A → B ∧ C)
4. A ∧ B → B 10. A → A
5. A B

A∧B 11. (A → C) ∧ (B → C) → (A ∨ B → C)
6. A A→B

B 12. A
B→A

As Restall we haven’t included Corsi’s f → A as an axiom, which we can safely
do because negation doesn’t play any role in our discussions. The rules are to
be applied in such a way that, if the formulas above the line are theorems of F,
then the formula below the line is a theorem as well. We may write � for �F.
We will call rule 5 the conjunction rule and, after Corsi, rule 12 the a fortiori
rule (it is also called weakening rule). We return to the rules when we discuss
deduction from hypotheses. In [6] SJ has different rules and axioms but has been
considered to be the same system as F though it misses the a fortiori rule 12
(see Remark 2 after Proposition 3).

For clarity’s sake we prefer to prove weak completeness first, using only direct
deduction without hypotheses.

Proposition 2 (Soundness of F). In any rooted subintuitionistic Kripke
model 〈W, g,R, V 〉, for each w ∈ W and each formula A, if �F A then w � A.

Proof. We only check the cases 6 and 12 of F. The other cases are simpler.
(6) Let for all M and for all w ∈ W , w � A and also for all M and for all

w ∈ W , w � A → B. We want to show that for all M and for all w ∈ W , w � B.
By assumption, M, g � A → B. We know that g is omniscient, so gRw and
w � B, because w � A.

(12) Let � A. We have to show that for all models M and w ∈ M , M,w �
B → A. let wRv and v � B. By assumption we have M,v � A. That is M,w �
B → A. ��
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By soundness the following example shows that � p → (q → p).

Example 1. Let W = {g, w0, w1} and define M = 〈W, g,R, V 〉 as follows:
R = {(g, g), (g, w0), (g, w1), (w0, w1)}.
V (p) = {w0} , V (q) = {g, w1}.

In this model M, g � p → (q → p).

Next we will show F to be complete. Similarly to Došen [4] and by the same
method we will first show that F has the disjunction property.

Definition 3. [5] We define |A by induction on A, as follows

1. |p iff � p,
2. |A ∧ B iff |A and |B,
3. |A ∨ B iff |A or |B,
4. |A → B iff � A → B and (if |A then |B).

Theorem 1. |A ⇔ � A

Proof. The proof is a trivial modification of the standard one for IPC. ��
Theorem 2. If � A ∨ B then � A or � B.

Proof. Let � A ∨ B. By Theorem 1(⇐), |A ∨ B. So |A or |B. By Theorem 1(⇒),
� A or � B. ��
Remark 1. Now that we have the disjunction property the following rules
adopted by Restall follow from the corresponding rules without ∨.

A ∨ C (A → B) ∨ C

B ∨ C
and

(A → B) ∨ E (C → D) ∨ E

((B → C) → (A → D)) ∨ E

Because let � A ∨ C and � (A → B) ∨ C. By Theorem 2, � A or � C, and
� A → B or � C. If � C then � B ∨ C. So, let � C. Then � A and � A → B.
By rule 6 of F we conclude that � B and hence � B ∨ C. The proof of the other
rule is similar to this.

We show that we do not need Restall’s rule (A→B) (C→D)
(B→C)→(A→D) , because it follows

from the a fortiori rule.

Proposition 3. Let � A → B and � C → D then � (B → C) → (A → D).

Proof. Let � A → B and � C → D then,

1. � (B → C) → (A → B) rule 12
2. � (B → C) → (B → C)
3. � ((B → C) → (A → B)) ∧ ((B → C) → (B → C))
4. � (B → C) → (A → B) ∧ (B → C) From 3 using axiom 9 and rule 6
5. � (A → B) ∧ (B → C) → (A → C)
6. � (B → C) → (A → C) From 4, 5 using axiom 8
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7. � (B → C) → (C → D) From assumption and rule 12
8. � (B → C) → (A → C) ∧ (C → D) From 6, 7 using axiom 9
9. � (B → C) → (A → D) Frome 8 using axiom 8. ��
Remark 2. We haven’t been able to go the other way around, i.e. to derive the
a fortiori rule from Restall’s rules and axioms. We do need this rule in Sect. 3
to prove Restall’s theorems for F. So, strictly speaking our proofs do not apply
to SJ. The simplest solution seems to be as we do to assume the a fortiori rule
to be part of SJ. It is valid in the intended semantics as we have shown by
Propositions 1 and 2. All the other rules and axioms of F are easily derivable in
SJ and vice versa. In any case, our theorems do apply to the logic F.

To show weak completeness of F we need some definitions.

Definition 4. 1. A set of sentences Δ is a theory if and only if
(a) A,B ∈ Δ ⇒ A ∧ B ∈ Δ,
(b) � A → B ⇒ (if A ∈ Δ, then B ∈ Δ),
(c) F is contained in Δ.

2. For theories Γ,Δ, ΓRΔ iff, for all A → B ∈ Γ , A ∈ Δ ⇒ B ∈ Δ.
3. A set of sentences Δ is prime if and only if

if A ∨ B ∈ Δ, then A ∈ Δ or B ∈ Δ.

Theorem 3. Let Γ be a prime theory and C → D /∈ Γ . Then there is a prime
theory Δ such that ΓRΔ, C ∈ Δ and D /∈ Δ.

Proof. Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and
define

Δ0 = {E | C → E ∈ Γ},
Δn+1 = Δn ∪ {Bn} if for no B̄1, ..., B̄m ∈ Δn, B̄1 ∧ ... ∧ B̄m ∧ Bn → D ∈ Γ ,
Δn+1 = Δn otherwise.

Take Δ to be the union of all Δn.
1. First we will show that Δ is a theory.
(a) Assume that F ∈ Δ, G ∈ Δ and F ∧ G /∈ Δ. Let F = Bi, G = Bj and

F ∧ G = Bn such that, i ≥ n and j ≥ n. So there exist B̄1, ..., B̄m ∈ Δn such
that

(B̄1 ∧ ... ∧ B̄m) ∧ (F ∧ G) → D ∈ Γ (1)

W.l.o.g. let i ≥ j, then B̄1, ..., B̄m, G ∈ Δi. By (1) we conclude that F /∈ Δ and
this is in contradiction with our assumption.

(b) Let � A → B and A ∈ Δ. We must show that B ∈ Δ. Let B = Bn and
B /∈ Δ. So there exist B̄1, ..., B̄m ∈ Δn, such that

B̄1 ∧ ... ∧ B̄m ∧ B → D ∈ Γ

We know � A → B. We conclude by axiom 9 and Modus Ponens that

� (B̄1 ∧ ... ∧ B̄m ∧ A) → (B̄1 ∧ ... ∧ B̄m ∧ B)
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and so (B̄1 ∧ ... ∧ B̄m ∧ A) → (B̄1 ∧ ... ∧ B̄m ∧ B) ∈ Γ . Now we have

((B̄1 ∧ ...∧ B̄m ∧A) → (B̄1 ∧ ...∧ B̄m ∧B))∧ ((B̄1 ∧ ...∧ B̄m ∧B)) → D) ∈ Γ (2)

Γ is a theory, so by (2) and axiom 8 we have (B̄1 ∧ ... ∧ B̄m ∧ A → D ∈ Γ and
this is a contradiction, because A ∈ Δ.

(c) Assume that � F , we want to show that F ∈ Δ. Assume F = Bn and
F /∈ Δ, then for some B̄1, ..., B̄m ∈ Δn, we have

(B̄1 ∧ ... ∧ B̄m ∧ F ) → D ∈ Γ (3)

We have � B̄1 ∧ ... ∧ B̄m → F , so

(B̄1 ∧ ... ∧ B̄m) → (B̄1 ∧ ... ∧ B̄m ∧ F ) ∈ Γ. (4)

Γ is a theory therefore by (3) and (4) and axiom 8 we conclude that

B̄1 ∧ ... ∧ B̄m → D ∈ Γ

and this is a contradiction. Hence F ∈ Δ.
2. We will show that ΓRΔ. Let A → B ∈ Γ and A ∈ Δ. Let B /∈ Δ and

B = Bn. Then there exist B̄1, ..., B̄m ∈ Δn such that

B̄1 ∧ ... ∧ B̄m ∧ B → D ∈ Γ (5)

We call B̄1 ∧ ... ∧ B̄m = C. We have

� (C ∧ A → A) ∧ (A → B) → (C ∧ A → B) (6)

We know that (C ∧ A → A) ∧ (A → B) ∈ Γ and Γ is a theory. So by (6)
C ∧ A → B ∈ Γ . On the other hand we have

� (C ∧ A → B) ∧ (C ∧ A → C) → (C ∧ A → B ∧ C) (7)

We know that (C ∧ A → B) ∧ (C ∧ A → C) ∈ Γ and Γ is a theory, so by (7)
C ∧ A → B ∧ C ∈ Γ . That is

B̄1 ∧ ... ∧ B̄m ∧ A → B̄1 ∧ ... ∧ B̄m ∧ B ∈ Γ (8)

Γ is a theory so by (5) and (8) and axiom 8 we have B̄1 ∧ ... ∧ B̄m ∧ A → D ∈ Γ
and this is a contradiction, because A ∈ Δ. So ΓRΔ.

3. Assume that F ∨ G ∈ Δ, and F /∈ Δ, G /∈ Δ. Let F = Bn and G = Bk.
Then there exist B̄1, ..., B̄m ∈ Δn such that B̄1 ∧ ...∧ B̄m ∧F → D ∈ Γ and also
there exist B

′
1, ..., B

′

m′ ∈ Δk such that B
′
1 ∧ ...∧B

′

m′ ∧G → D ∈ Γ . W.l.o.g. take
n ≥ k, then B̄1, ..., B̄m, B

′
1, ..., B

′

m′ ∈ Δn. Thus by axiom 11 and some steps we
will have

(B̄1 ∧ ... ∧ B̄m) ∧ (B
′
1 ∧ ... ∧ B

′

m′ ) ∧ (F ∨ G) → D ∈ Γ

But that cannot be true since F ∨ G ∈ Δ. So Δ is prime.
Finally, we know that C → C ∈ Γ , so by definition C ∈ Δ0 and hence C ∈ Δ.

Also we have D → D ∈ Γ , so D /∈ Δ. ��
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Definition 5. We call {A | � A} the empty theory.

Proposition 4. The empty theory Δ is a prime theory.

Proof. First we will show that Δ is a theory.

(a) Let A,B ∈ Δ, then � A and � B, so � A ∧ B. By definition, A ∧ B ∈ Δ.
(b) Let � A → B and A ∈ Δ. Then � A, so � B. By definition B ∈ Δ.
(c) Trivial. And that Δ is prime follows from Theorem 2. ��
Definition 6. The Canonical Model MF = 〈WF,Δ,R,�〉 of F is defined by:

1. Δ is the empty theory,
2. WF is the set of all prime theories,
3. The canonical valuation is defined by Γ � p iff p ∈ Γ.

In the canonical model MF = 〈WF,Δ,R,�〉, Δ is omniscient. Because let
Γ ∈ WF. If A → B ∈ Δ, then � A → B. So, if A ∈ Γ , then B ∈ Γ .

Lemma 1 (Truth lemma). For each Γ ∈ WF and for every formula C,

Γ � C iff C ∈ Γ.

Proof. By induction on C. We skip the proof because it is standard. We just
mention that Theorem 3 is used for the →-case. ��
Theorem 4 (Weak Completeness). For any formula A if � A, then � A.

Proof. Let � A and let Δ be the empty theory. By the definition of empty theory
A /∈ Δ. So, we have MF,Δ � A. That is, � A. ��

Next we prove strong completeness with the semantics as in Corsi [3]. First
we introduce a notion of derivation from hypotheses.

Definition 7

(a) We define Γ � A if there is a derivation of A from Γ and theorems of F
using the rules A B

A∧B , and A A→B
B (only if �F A → B).

(b) We define Γ � A iff for all M,w ∈ M , if M,w � Γ then M,w � A.

Remark 3. Note that if Γ � A then it does not follow that Γ � B → A. For
example if we assume that Γ = F ∪ {p}, then Γ � p and Γ � q → p.

Surprisingly, the weak Deduction Theorem holds for F and �.

Theorem 5 (Weak Deduction Theorem). A � B if and only if � A → B.

Proof. ⇒: By induction on the length of the proof.
If B is a theorem of F. Then � B, so by rule 12, � A → B.
A � A is covered by � A → A.
If A � B and A � C. By induction hypothesis � A → B and � A → C, so
� A → B ∧ C.
If A � B and � B → C. Then by induction hypothesis � A → B, so � A → C.
⇐: By definition this direction is straightforward. ��
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Corollary 1. 1. A1, ..., An � B iff � A1 ∧ ... ∧ An → B.
2. Δ � B iff A1 ∧ ... ∧ An � B for some A1, ..., An ∈ Δ.

Proof. The proof is easy. ��
Proposition 5. Δ is a theory ⇐⇒ Δ � A if and only if A ∈ Δ.

Proof. ⇒: The proof from right to left is immediate. The other direction is by
induction on the length of the derivation. If A ∈ Δ there is nothing to prove. If
A is a theorem of F, then by definition of theory A ∈ Δ.

If Δ � A and Δ � B, by induction hypothesis A ∈ Δ and B ∈ Δ. So, by the
definition of theory A ∧ B ∈ Δ.

If � A → B and Δ � A, by induction hypothesis A ∈ Δ, and by definition of
theory B ∈ Δ.
⇐: This is straightforward. ��
Theorem 6. If Σ � D then there is a prime theory Δ such that Δ ⊇ Σ, D /∈ Δ.

Proof. By assumption and by definition of provability we conclude that D /∈ Σ.
Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and define

Δ0 = Σ ∪ F,
Δn+1 = Δn ∪ {Bn} if Δn, Bn � D,
Δn+1 = Δn otherwise.

Take Δ to be the union of all Δn. The proof now runs as for Theorem3. ��
Theorem 7 (Strong Completeness). For any formula A, Σ � A if and only
if Σ � A.

Proof. Left to right is easy. For the other direction, Let Σ � A. Then by The-
orem 6, there is a prime theory Γ ⊇ Σ such that A /∈ Γ . So, we will have
MF, Γ � Σ and MF, Γ � A. That is Σ � A. ��
We will not discuss the finite model property in this paper, or translations into
modal logic. We have no new results in that area and refer the reader to Corsi [3],
Došen [4] and Sano and Ma [7].

3 Π-Provability and Restall’s Strong Completeness

In this section we reprove Restall’s completeness theorem in a clearer form and
use its concepts to prove a very general completeness theorem. We disentangle
the notions of Π-provability and strong provability from a set of assumptions,
and we clarify the obscure role of the a fortiori rule, first using a restricted form.

In 3.1 we develop the notion of Π-provability. This is a notion of proof from a
theory Π which allows use of Π in a strong way that includes a restricted a for-
tiori rule. One may say that Π is considered as a true axiom system. We assume
that Π has good properties, here called ‘adequate’. A completeness theorem is
proved for Π-provability in much the same way as for provability in F.
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In 3.2 the notion of Π-provability is developed into a more general notion
�r of r-provability from arbitrary hypothesis sets Σ. It is based on Restall’s
validity notion. He considers validity in a model as truth in the root, and validity
of a consequence accordingly. We develop the two notions of provability and
consequence along the lines of Sect. 2 still relying on the restricted a fortiori
rule. We prove the form of strong completeness connected with �r, which can
be called Restall’s completeness theorem. It states that if a set of assumptions
doesn’t �r-prove A, then the set of assumptions can be extended to an adequate
theory that still doesn’t prove A and is the root of its canonical model. Strong
completeness in the ordinary sense does not follow for adequate theories.

In 3.3 we strengthen the concept of adequate theory to fully adequate theory
satisfying the full a fortiori rule, and prove a very general completeness theorem
showing that such theories can occur as the root of canonical models in such a
way that strong completeness follows for such theories. The method is quite the
same as developed in Sect. 2. We sketch how this can be applied to provability
in logics stronger than F. We in particular consider BPC.

3.1 Π-Provability

We start by introducing properties for a theory Π which will guarantee that
provability from Π can be treated to a large extent just as provability in F itself
so that we can proceed in proving completeness of Π-provability in much the
same way as for provability in F (e.g. in modus ponens A → B is assumed to be
in Π, and Π-theories behave much as theories).

Definition 8. Δ is a Π-theory if and only if:

1. If A,B ∈ Δ, then A ∧ B ∈ Δ,
2. If A → B ∈ Π and A ∈ Δ, then B ∈ Δ,
3. The set Π→ of members of Π of the form A → B is contained in Δ,
4. F is contained in Δ.

Definition 9. Π is an adequate theory if Π is a prime Π-theory closed under
the restricted a fortiori rule, if A ∈ Π→, then for all B, B → A ∈ Π.

Lemma 2. Π is an adequate theory iff Π is a prime theory closed under modus
ponens and the restricted a fortiori rule.

Proof. Obvious. ��
In all of Sect. 3, Π will be assumed to be an adequate theory. This implies

that Π is closed under its own Π-provability rules (see Corollary 3) and will turn
out to make Π suitable to be the set of formulas true in the root of a model.

Definition 10. We define Γ �Π A as: there is a derivation of A from Γ∪Π→∪F
using the rules A B

A∧B , A A→B
B with A → B ∈ Π in the latter case.

Proposition 6. Δ is a Π-theory ⇐⇒ Δ �Π A if and only if A ∈ Δ.
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Proof. ⇒: From right to left is trivial. The other direction is by induction on
the length of the proof. If A ∈ Δ ∪ F ∪ Π→ there is nothing to prove.

Let Δ �Π A and Δ �Π B. By induction hypothesis A ∈ Δ and B ∈ Δ. So,
by definition of Π-theory A ∧ B ∈ Δ.

If A → B ∈ Π and Δ �Π A. By induction hypothesis A ∈ Δ and by definition
of Π-theory B ∈ Δ.
⇐: Straightforward. ��

So, under the assumption that Π is an adequate theory:

Corollary 2. Π �Π A iff A ∈ Π.

Theorem 8. If Γ is a prime Π-theory with C → D /∈ Γ , then there is a prime
Π-theory Δ with ΓRΔ, C ∈ Δ and D /∈ Δ.

Proof. Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and
define

Δ0 = {E | C → E ∈ Γ} ∪ F,
Δn+1 = Δn ∪{Bn} if for all B̄1, ..., B̄m ∈ Δn, Γ �Π B̄1 ∧ ...∧ B̄m ∧Bn → D,
Δn+1 = Δn otherwise.

Take Δ to be the union of all Δn. We show that

1. ΓRΔ,
2. Δ is a prime Π-theory,
3. C ∈ Δ,
4. D /∈ Δ.

1. Let A → B ∈ Γ and A ∈ Δ. We must show that B ∈ Δ. Let B = Bn and
B /∈ Δ. So there exist B̄1, ..., B̄m ∈ Δn such that

Γ �Π B̄1 ∧ ... ∧ B̄m ∧ B → D (9)

A → B ∈ Γ so, Γ �Π A → B and Γ �Π B̄1 ∧ ... ∧ B̄m ∧ A → A then,

Γ �Π B̄1 ∧ ... ∧ B̄m ∧ A → B

Also we have Γ �Π B̄1 ∧ ... ∧ B̄m ∧ A → B̄1 ∧ ... ∧ B̄m, therefore

Γ �Π (B̄1 ∧ ... ∧ B̄m ∧ A → B̄1 ∧ ... ∧ B̄m) ∧ (B̄1 ∧ ... ∧ B̄m ∧ A → B). (10)

By (10) and axiom 9 we conclude that

Γ �Π B̄1 ∧ ... ∧ B̄m ∧ A → B̄1 ∧ ... ∧ B̄m ∧ B. (11)

By (9) and (11), we have

Γ �Π (B̄1 ∧ ... ∧ B̄m ∧ A → B̄1 ∧ ... ∧ B̄m ∧ B) ∧ (B̄1 ∧ ... ∧ B̄m ∧ B → D). (12)
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Again by (12) and axiom 8 we have Γ �Π B̄1 ∧ ... ∧ B̄m ∧ A → D and this is a
contradiction, because A ∈ Δ. So B ∈ Δ and hence ΓRΔ.
2. Let A ∈ Δ, A → B ∈ Π. So, also A → B ∈ Γ because Γ is a Π-theory. As in
(1) B ∈ Δ follows.

Let F ∈ Π→. We want to show that F ∈ Δ. We know that Π is closed under
the restricted a fortiori rule, so C → F ∈ Π→ and therefore C → F ∈ Γ . So by
definition of Δ0, F ∈ Δ0 and thus F ∈ Δ.

As in the proof of Theorem3, we can conclude that Δ is prime and closed
under conjunction.
3. We know that C → C ∈ Γ , so C ∈ Δ0 and then C ∈ Δ.
4. D /∈ Δ, since Γ �Π D → D. ��
Definition 11. In the Π-canonical model MΠ = 〈WΠ ,Π,R,�〉 of F

1. WΠ is the set of all prime Π-theories,
2. The canonical valuation is defined by Γ � p if and only if p ∈ Γ.

Lemma 3 (Truth lemma). For each Γ ∈ WΠ and for every formula C,

Γ � C iff C ∈ Γ.

Proof. By induction on C exactly as in the proof of Lemma1. ��
This truth lemma lead as usual to completeness of Π-provability.

Theorem 9 (Weak Completeness of Π-provability).
Π �Π A ⇔ MΠ ,Π � A.

Proof. Immediate by Proposition 6 and Lemma 3. ��
This is of course only a weak completeness theorem. To get a strong form we

need the unrestricted a fortiori rule for Π. This we will do in 3.3. But first we
prove Restall’s form of completeness in the next subsection because our proof
there uses the restricted rule.

3.2 Restall’s Form of Strong Completeness

We first introduce a stronger notion of proof Γ �r from a set of assumptions Γ .
It will include full modus ponens as well as the restricted a fortiori rule. We do
not assume that the set of assumptions is a prime theory or even a theory. The
fact that as in Restall [6] no disjunction property is assumed means that the
proof rules will have to be more complex. The idea is that it will be ultimately
be possible to extend any set of assumptions to an adequate theory which is the
essential step leading to Restall’s completeness theorem.

As far as we can see we do need to restrict the a fortiori rule to implications
to be able to prove Lemma 5 which is crucial for the Completeness Theorem 10.
The consequence relation �r is close to the consequence relation of the system
Kσ introduced by Celani and Jansana [2]. The logic Kσ is one of the variations
of F introduced in [2] with different consequence relations. But Kσ has the full a
fortiori rule (called (W) for weakening in that article) contrary to �r. Specifically,
p �Kσ

q → p but p �r q → p.
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Definition 12. (a) We define Γ �r A if there is a derivation of A from Γ and
theorems of F using the rules

A B

A ∧ B
,

A A → B

B
,

A ∨ C (A → B) ∨ C

B ∨ C

and

A

B → A
,

A ∨ C

(B → A) ∨ C

with in the latter two cases the restriction that A has to be an implication.
(b) We define, Γ �r A iff for all M = 〈W, g,R, V 〉, if M, g � Γ then M, g � A.

We now first clarify the relationship between �r and �Π .

Proposition 7. Π �r A ⇔ A ∈ Π.

Proof. ⇒: By induction on the length of the proof.
If A ∈ Π there is nothing to prove.
If Π �r A and Π �r B, then, by induction hypothesis, A ∈ Π and B ∈ Π.

So, by the definition of Π-theory A ∧ B ∈ Π.
If Π �r A → B and Π �r A, then, by induction hypothesis, A ∈ Π and

A → B ∈ Π. So, by the definition of Π-theory B ∈ Π.
If Π �r (A → B) ∨ C and Π �r A ∨ C, then, by induction hypothesis,

(A → B) ∨ C ∈ Π and A ∨ C ∈ Π. So, A → B ∈ Π or C ∈ Π, and A ∈ Π or
C ∈ Π, since Π is prime. Therefore C ∈ Π, or A → B ∈ Π and A ∈ Π. In the
latter case, by definition of Π-theory, B ∈ Π. So, in both cases B ∨ C ∈ Π.

If Π �r A and A is an implication, then, by the induction hypothesis and
the closure of Π under the a restricted a fortiori rule, for all B, B → A ∈ Π.

If Π �r A ∨ C and A is an implication, then, by the induction hypothesis
A ∨ C ∈ Π. So A ∈ Π or C ∈ Π, since Π is prime. If A ∈ Π, then for all B,
B → A ∈ Π, since Π is closed under the a restricted a fortiori rule. So, in both
cases (B → A) ∨ C ∈ Π.
⇐: If A ∈ Π, then by definition, Π �r A. ��
Corollary 3. Π �r A ⇔ Π �Π A.

Proof. Immediate from Propositions 6 and 7. ��
Next, following Restall [6], we show how to reason with ∨ in case we do not have
the disjunction property for the assumptions.

Lemma 4. If A �r B then C ∨ A �r C ∨ B.

Proof. The proof is easy by induction on the length of the proof. ��
Proposition 8. If A �r C and B �r C, then A ∨ B �r C.

Proof. By Lemma 4, A ∨ B �r C ∨ B, and also, C ∨ B �r C ∨ C. It is simple to
show that �r C ∨ C → C, so A ∨ B �r C. ��



Subintuitionistic Logics with Kripke Semantics 345

Now we have shown that reasoning from disjunctions can be executed prop-
erly we have reached the point at which we can show that an arbitrary set of
formulas not proving a certain formula A can be extended to an adequate theory
not proving A, the point of which is that an adequate theory is the root of its
own canonical model (Theorem 9).

Lemma 5. If Σ �r A, then there is a Π ⊇ Σ such that Π is an adequate theory
and Π �r A.

Proof. Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and
define

Π0 = {B | Σ �r B},
Πn+1 = Πn ∪ {Bn} if for no B̄1, ..., B̄m ∈ Πn, B̄1, ..., B̄m, Bn �r A,
Πn+1 = Πn otherwise.

Take Π to be the union of all Πn. By definition of Π, it is clear that Π �r A.
We must show that Π is a Π-theory. Assume that E ∈ Π, F ∈ Π and

E ∧ F /∈ Π. Let E = Bi, F = Bj and E ∧ F = Bn such that, i ≥ n and j ≥ n.
So there exist B̄1, ..., B̄m ∈ Πn, such that

B̄1, ..., B̄m, E ∧ F �r A

and so,
B̄1, ..., B̄m, E, F �r A

But E,F, B̄1, ..., B̄m ∈ Πj , so B̄1, ..., B̄m, E, F �r A, a contradiction.
Now let C → D ∈ Π and C ∈ Π we must show that D ∈ Π. Let D = Bn

and D /∈ Δ. So there exist B̄1, ..., B̄m ∈ Δn, such that

B̄1, ..., B̄m,D �r A

and so
B̄1, ..., B̄m, C → D,C �r A

This is a contradiction.
Assume that E ∨ F ∈ Π, and E /∈ Π, F /∈ Π. Let E = Bn and F = Bk.

Then there exist B̄1, ..., B̄m ∈ Δn, such that B̄1, ..., B̄m, E �r A and therefore

B̄1 ∧ ... ∧ B̄m ∧ E �r A (13)

and also there exist B
′
1, ..., B

′

m′ ∈ Δk, such that B
′
1, ..., B

′

m′ , F �r A and there-
fore

B
′
1 ∧ ... ∧ B

′

m′ ∧ F �r A (14)

By (13) and (14), the distributive law and Proposition 8 we can conclude B̄1∧ ...∧
B̄m ∧ B

′
1 ∧ ... ∧ B

′

m′ ∧ (E ∨ F ) �r A and hence

B̄1, ..., B̄m, B
′
1, ..., B

′

m′ , E ∨ F �r A (15)
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But this is a contradiction, since E ∨ F ∈ Π. So Π is a prime Π-theory.
Finally let E ∈ Π be an implication. We need to show that for all B, B →

E ∈ Π. Let B → E /∈ Π, then there exist B̄1, ..., B̄m ∈ Δn, such that

B̄1, ..., B̄m, B → E �r A (16)

So, by (16) we have B̄1, ..., B̄m, E �r A, since from E we can derive B → E. But
this is a contradiction, hence B → E ∈ Π. ��
Theorem 10 (Restall’s Completeness Theorem). Σ �r A if and only if
Σ �r A.

Proof. ⇒: Suppose Σ �r A. We use induction on the length of the derivation of
A from Σ to prove that Σ �r A. We only check one case.

Let A be an implication and Σ �r A. We want to show that for all formulas
B, Σ �r B → A. Let M = 〈W, g,R,�〉 and M, g � Σ. By assumption M, g � A,
the root g is omniscient and A is an implication formula, so let A = C → D. We
will show that for all v ∈ W , M,v � A. For this purpose let vRz and M, z � C.
Then M, z � D, since gRz and M, g � C → D. Hence for all v ∈ W , M,v � A
and then M, g � B → A.
⇐: Let Σ �r A. By Lemma 5 there is a prime Π-theory, Π ⊇ Σ such that A /∈ Π.
So, in the canonical model MΠ = 〈WΠ ,Π,R,�〉, MΠ ,Π � Σ and MΠ ,Π � A,
since A /∈ Π. So Σ �r A. ��

3.3 Π-Provability and Stronger Logics

In this subsection we strengthen the conditions on Π to ensure that it satisfies
the full a fortiori rule. This makes it possible to prove strong completeness for
Π-provability very much again along the lines of proof of Sect. 2. Note though
that the consequence relation �r sticks to the restricted a fortiori rule.

Definition 13. Π is a fully adequate theory if Π is an adequate theory con-
taining no formulas without implications.

A fully adequate theory can be said to make no purely local statements.

Lemma 6. A fully adequate theory Π is closed under the (unrestricted) a for-
tiori rule.

Proof. We have to prove A ∈ Π ⇒ D → A ∈ Π. We prove it by induction on the
complexity of A. Note that the base case is that A is an implication. Statements
without implication are not in Π.

If A ∈ Π is an implication, then D → A ∈ Π by assumption.
If A ∈ Π is B ∧ C, then, by axioms 3 and 4 and modus ponens B ∈ Π and

C ∈ Π. By induction hypothesis, D → B ∈ Π and D → C ∈ Π. Then, by the
conjunction rule, axiom 9 and modus ponens, D → B ∧ C ∈ Π.

If A ∈ Π is B ∨ C, then, since Π is prime, B ∈ Π or C ∈ Π. By induction
hypothesis D → B ∈ Π or D → C ∈ Π, and by axiom 1 or 2, axiom 8 and
modus ponens, D → B ∨ C ∈ Π. ��
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Theorem 11. If Π is a fully adequate theory and Σ �Π D, then there is a prime
Π-theory Δ ⊇ Σ such that D /∈ Δ.

Proof. Enumerate all formulas, with infinitely many repetitions: B0, B1, ... and
define

Δ0 = Σ ∪ Π→ ∪ F,
Δn+1 = Δn ∪ {Bn} if for no B̄1, ..., B̄m ∈ Δn, �Π B̄1 ∧ B̄m ∧ ... ∧ Bn → D,
Δn+1 = Δn otherwise.

Take Δ to be the union of all Δn. By assumption D /∈ Δ0 and also we have
�Π D → D, so D /∈ Δ.

We show that Δ is a prime Π-theory. This simply goes exactly as in the
proof of Theorems 3 and 6, Π has all the relevant properties of F that were used
in these proofs. ��
Theorem 12. If Π is a fully adequate theory then Σ �Π A if and only if for all
Γ in the Π-Canonical model MΠ , if Γ � Σ then Γ � A.

Proof. Left to right is easy by induction on the length of the proof. The other
direction follows by Theorem 11. ��
Definition 14. We define Δ �Π A iff for all M = 〈W, g,R, V 〉 such that M, g �
Π, and all w ∈ W, if M,w � Δ, then M,w � A.

This now allows us to state a very general completeness theorem.

Theorem 13 (Π-completeness theorem). If Π is a fully adequate theory,
then Δ �Π A ⇔ Δ �Π A.

Proof. Left to right is easy, the other direction follows by Theorem12. ��
This theorem can be applied to any logic extending F as long as it has the

rules of modus ponens, conjunction and the a fortiori rule. Of course, a logic will
usually be closed under substitution but there is no need for this. To get useful
completeness theorems we of course will have to prove that the canonical model
of the logic has the desired properties. As an example consider the case of BPC.
Strong completeness has been proved before for a similar proof system in [2],
but for the next section it is good to get an idea of this system.

BPC is interpreted in Kripke models similarly to intuitionistic propositional
logic except that the accessibility relation is not necessarily reflexive. Suzuki and
Ono [9] introduced a Hilbert style proof system for BPC. Their axiomatization is
an extension of the logic F by the axioms, A → (B →A), f →A and A → (B →
A ∧ B).

It is to be remarked that A → (B → A∧B) follows from F+(A → (B → A))
using the conjunction rule (rule 5):

1. � A → (B → A)
2. � B → B
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3. � (B → B) → (A → (B → B)) Axiom
4. � A → (B → B) From 2, 3 by modus ponens
5. � (A → (B → A))∧ (A → (B → B)) From 1, 4 using rule 5 (conjunction)
6. � A → (B → A) ∧ (B → B) Follows from 5 using axiom 9
7. � (B → A) ∧ (B → B) → (B → A ∧ B)
8. � A → (B → A ∧ B) Follows from 6, 7 using axiom 8

In the step from 2 to 4 one sees how a fortiori can be circumvented by using
A → (B → A). In reasoning without assumptions the conjunction rule (rule 5)
is superfluous if A → (B → A ∧ B) is present; it then follows by modus ponens.
But in reasoning with assumptions one would need unrestricted modus ponens.

The next Lemma and the strong completeness theorem for BPC can be found
in Restall [6] and Celani and Jansana [2].

Lemma 7. Let MΠ = 〈WΠ ,Π,R,�〉 be the Π-canonical model for some Π
containing A → (B → A) for all A,B. Then the relation R is transitive and
satisfies preservation of truth.

Proof. First we will show that R is transitive. Let Γ,Δ and Σ are in WΠ and
let ΓRΔ and ΔRΣ, we want to prove that ΓRΣ. So let A → B ∈ Γ and
A ∈ Σ. We have (A → B) → (� → (A → B)) ∈ Π. So by definition of Π-
theory � → (A → B) ∈ Γ . However � ∈ Δ and ΓRΔ, so by definition of R,
A → B ∈ Δ. Again by definition of R, B ∈ Σ, since A ∈ Σ and ΔRΣ. That is,
R is transitive.

Now we will show that � preserves truth in the Π-canonical model. Assume
that A ∈ Γ and ΓRΔ. As Δ is nonempty, there is a B ∈ Δ. The assumption
gives B → A ∈ Γ (since A → (B → A) ∈ Π), and so A ∈ Δ. ��
Theorem 14 (Completeness Theorem for BPC). Σ �BPC A ⇔ Σ �BPC A.

Proof. Immediate by Lemma 7 and Theorem 13. ��

4 Relation of F to Intuitionistic Propositional Logic

In this section, we prove conservativity results for IPC over F and over BPC. This
clarifies what part of IPC these systems can prove.

Definition 15. If L1 and L2 are logics with L2 extending L1, and Σ is a class
of formulas, then L2 is conservative over L1 with respect to Σ if, all S ∈ Σ,
if L2 � S, then L1 � S.

4.1 Conservativity Results for IPC over F

We will provide two classes of formulas with respect to which IPC is conservative
over F, the class of simple implications and the class of basic implications.
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Definition 16. Let us call a formula A → B with A and B containing only ∧
and ∨ a simple implication, and a formula that is obtained by applying only ∧
and ∨ to simple implications a basic formula. Finally a formula A → B with
A and B basic formulas is a basic implication.

Theorem 15. If �F A ↔ B, then �F E [A/p] ↔ E [B/p], where p is an atom.

Proof. The proof is easy by induction on E. ��
Theorem 16. Let A be a formula such that A is constructed by applying only
∧ and ∨ to formulas from a class Θ. Then there are formulas A

′
, A

′′
such that

1. �F A ↔ A
′
and A

′
is a disjunction of conjunctions of formulas in Θ.

2. �F A ↔ A
′′

and A
′′

is a conjunction of disjunctions of formulas in Θ.

Proof. The proof is straightforward. ��
We will apply Theorem16 to Θ as the class of atoms, and as the class of simple

implications. Now by the previous theorems, a simple implication A → B can
be replaced by an F- and IPC-equivalent A

′ → B
′

such that A
′

is a disjunction
of conjunctions and B

′
is a conjunction of disjunctions.

Lemma 8.

1. For all formulas A,B,C, �F (A ∨ B → C) ↔ (A → C) ∧ (B → C),
2. For all formulas A,B,C, �F (A → B ∧ C) ↔ (A → B) ∧ (A → C),
3. For all formulas Ai, 1 ≤ i ≤ k and Bi, 1 ≤ j ≤ m,

� A1 ∨ ... ∨ AK → B1 ∧ ... ∧ Bm iff � Ai → Bj for all i, j,

where � can be read as �F as well as �IPC.

Proof. Easy. ��
Definition 17. A formula A → B called a very simple implication if A is
conjunction of atoms and B is disjunction of atoms. A formula A → B is called
very basic implication if A is conjunction of very simple implications and B
is disjunction of very simple implications.

ByLemma 8andTheorem 15we can conclude that to show that IPC is conserva-
tive over Fwith respect to simple implications and basic implications it is sufficient
to do so for very simple implications and very basic implications. We can do so now
for very simple implications, and in fact even for CPC instead of IPC.

Theorem 17. If CPC proves a very simple implication (and a fortiori if IPC
does), then F proves it as well.
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Proof. Let A → B is a very simple implication, so A =
∧

i(pi) and B =
∨

j(qj).
Assume �F A → B. Then by the completeness theorem there exists a rooted
subintuitionistic model M and w ∈ M , such that M,w � A → B. So there exists
v ∈ M , such that M,v � A and M,v � B. Now we select this point v from M
and then we make the one point CPC model MCPC = 〈v, (v, v),�〉 such that for
all propositional variables p, MCPC, v � p if and only if M,v � p. Clearly

MCPC, v � pi, for all i

MCPC, v � qj , for all j

That is MCPC, v � A → B, so CPC � A → B. ��
Up to now CPC (classical logic) did just as well as IPC, but to restrict the class

of very basic implications further we need disjunction properties only available
in (sub)intuitionistic logics. We need the slash | for this purpose also under
assumptions. The following both applies if � is read as �F and as �IPC. Similarly
for the | defined in terms of �.

Definition 18. Let Γ be a set of formulas. We define the slash Γ |A inductively
on the structure of A as follows

1. Γ | p iff Γ � p,
2. Γ |A ∧ B iff Γ |A and Γ |B,
3. Γ |A ∨ B iff Γ |A or Γ |B,
4. Γ |A → B iff Γ � A → B and (if Γ |A then Γ |B).

Theorem 18. [5] If Γ |A for all A ∈ Γ , then (Γ |B ⇔ Γ � B).

Proof. As in [5]. ��
Theorem 19. [5] If Γ |C for all C ∈ Γ and Γ � A ∨ B, then Γ � A or Γ � B.

Proof. Let Γ � A ∨ B. By Theorem 18, Γ |A ∨ B. So Γ |A or Γ |B. Again by
Theorem 18, Γ � A or Γ � B. ��
Lemma 9. If A = A1 ∧ ...∧Ak, such that for all 1 ≤ i ≤ k, Ai is a very simple
implication, then A|A. Similarly if, for all 1 ≤ i ≤ k, Ai is an atom.

Proof. By assumption for all 1 ≤ i ≤ n, Ai = Bi → Ci. Clearly, A1 ∧ ... ∧ Ak �
Bi → Ci. We have A1 ∧ ...∧Ak � Bi, because we can make a model M such that
M � A1 ∧ ... ∧ Ak and M � Bi (we make all atoms false). So A1 ∧ ... ∧ Ak � Bi

and therefore A1 ∧ ... ∧ Ak|Bi → Ci. So, A1 ∧ ... ∧ Ak|A1 ∧ ... ∧ Ak. ��
Theorem 20. For arbitrary A,D, if A|A and � A → D, then A|D.

Proof. Let Γ = {A}. Then by Theorem 18, Γ � A, and by assumption � A → D.
So, Γ � D. Again by Theorem18, Γ |D. That is A|D. ��
Lemma 10. If A|A, then � A → E ∨ C ⇔ � A → E or � A → C, for both
F and IPC.
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Proof. By Theorem 20, we have A|E ∨C, so A|E or A|C. By Theorem 18, A � E
or A � C. Therefore by the weak Deduction Theorem we conclude that � A → E
or � A → C. By using F rules and axioms the other direction is easy. ��
Definition 19. A very basic implication A → B is an extremely basic impli-
cation if B is a sole very simple implication.

By Lemmas 8 and 10, we can conclude that to show that IPC is conservative
over F with respect to basic implications it is sufficient to do so for extremely
basic implications.

Theorem 21. IPC is conservative over F with respect to basic implications.

Proof. By the above, we can assume �F A with A an extremely basic implication:

A = (A1 → B1) ∧ ... ∧ (An → Bn) → (C → D).

Then there exist M,w ∈ M such that

M,w � (A1 → B1) ∧ ... ∧ (An → Bn) → (C → D)

So, there exists v ∈ M with wRv and M,v � Ai → Bi for each 1 ≤ i ≤ n and

M,v � C → D

So, there exists vRu with M,u � C and M,u � D, and, if M,u � Ai then
M,u � Bi for each i.

Now we select the point u from M and then we make the one point model
MIPC = 〈u, (u, u),�I〉, such that for all propositional variables p, MIPC, u �I p if
and only if M,u � p. We will show that

MIPC, u �I(A1 → B1) ∧ ... ∧ (An → Bn) → (C → D).

It is easy to see that for any conjunction or disjunction E of atoms MIPC, u �I E
iff M,u � E. This applies to each of the Ai, Bi, C and D. So, MIPC, u �IC,
MIPC, u �ID, and if MIPC, u �I Ai, then MIPC, u �IBi. So, MIPC, u �I(A1 →
B1) ∧ ... ∧ (An → Bn) → (C → D). Therefore IPC � A. ��

To see that the conservativity result does not apply to CPC just note that
the formula (p → q ∨ r) → (p → q) ∨ (p → r) is a very basic implication which
is not provable in IPC or F, but is provable in CPC.

The conservativity result for IPC over F can be extended to conjunctions and
disjunctions of simple implications and basic implications. In the case of simple
implications CPC can no longer take the role of IPC however as the following
example shows: �CPC (p → q) ∨ (q → p), but �IPC (p → q) ∨ (q → p).

It is important to note that the result cannot be extended by mixing propo-
sitional variables and implications. If we define a mixed implication as a formula
A → B in which the A and B are obtained by applying conjunctions and dis-
junctions to atoms and simple implications, then Theorems 17 and 21 do not
extend to this wider class. Even such a simple IPC-theorem as p ∧ (p → q) → q
cannot be proved in F.
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Finally, we can state the following corollary:

Corollary 4. Assuming the rules of modus ponens, conjunction and a fortiori
the system F is exactly the part of IPC axiomatized by its simple implications
and basic implications.

Proof. Just check that all the axioms of F are simple implications or basic impli-
cations. ��

4.2 A Conservativity Result for IPC over BPC

Of course, the above conservativity results apply to stronger logics than F, but
for BPC we can prove an additional theorem. In this subsection we give a formal
definition of NNIL formulas [11] and we will prove that IPC is conservative over
BPC with respect to NNIL formulas.

Definition 20. The smallest class satisfying the following clauses is called NNIL.

1. All propositional variables are in NNIL,
2. if A,B ∈ NNIL then A ∧ B ∈ NNIL,
3. if A,B ∈ NNIL then A ∨ B ∈ NNIL,
4. if A ∈ NNIL and B does not contain implications, then B → A ∈ NNIL.

Definition 21. The smallest class satisfying the following is the class of nor-
mal NNIL formulas,

1. All propositional variables are in normal NNIL,
2. if A,B is in normal NNIL, then A ∧ B is in normal NNIL,
3. if A,B is in normal NNIL, then A ∨ B is in normal NNIL,
4. if A is in normal NNIL and B is conjunction of atoms then B → A is in

normal NNIL.

In F we have that A∨B → C is equivalent to (A → C)∧ (B → C), so any NNIL
formula is provably equivalent to a normal NNIL formula.

In IPC the normal form for NNIL-formulas is simpler, in the third clause one
can take B to be an atom instead of a conjunction of atoms. This relies on the fact
that �IPC (p → (q → r)) ↔ (p∧ q → r). Since �BPC (p → (q → r)) ↔ (p∧ q → r)
we cannot use this simplification here.1

Theorem 22. If A ∈ NNIL and �IPC A, then �BPC A.

Proof. Let M = 〈W,R, V 〉 be a model for Basic Logic BPC. Then we define the
intuitionistic model M̄ = 〈W, R̄, V 〉, by R̄ = R∪{(w,w) | w ∈ W}. By induction
on the complexity of A ∈ NNIL, we will show that for all w ∈ W , if M,w �BPC A,
then M̄, w �IPC A. We only check implication cases, the other cases are easy.
1 Neither is it the case that the class of NNIL-formulas is locally finite in BPC as it is
in IPC, the fact that �BPC (p → (p → q)) ↔ (p → q) quickly leads to infinitely many
non-equivalent NNIL-formulas in two variables.
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Let A = ∧pi → C and M,w �B ∧pi → C, then there exist v ∈ W such that,
wRv and M,v �B ∧pi, M,v �B C. Then M̄, v �IPC ∧pi and by induction
hypothesis M̄, v �IPC C. We know vR̄v, so M̄, v �IPC ∧pi → C. We can conclude
that M̄, w �IPC ∧pi → C, since we have preservation and wRv.

Now, assume �BPC A. Then by the completeness theorem for BPC there exists
a BPC-model M and w ∈ M , such that M,w �B A, so M̄, w �IPC A. Then, by
soundness �IPC A. ��

Returning to the example �F p ∧ (p → q) → q, BPC is still not able to prove
this formula: even in the case of BPC we cannot mix implications and atoms in
the conservativity result.

This conservation result is to a certain extent related to the bounded trans-
lation of IPC into BPC given by Aghaei and Ardeshir [1]. There is only room
here for a quick sketch. In [1] it is proved that �IPC A iff �BPC [A]n for some n
where [ ]n is the n-th iterate of [ ]1 (and a bound for the n is provided). By an
extension of the method of the proof of Theorem22 it can be shown that for
NNIL-formulas A in particular, �BPC A iff �BPC [A]1 and hence also �BPC A iff
�BPC [A]n. Theorem 22 then follows from the translation result.

5 Conclusion

We developed the subintuitionistic logics introduced by Corsi and Restall in a
uniform manner. Proof systems for Corsi’s basic system F are given for deriva-
tions without and with assumptions, and completeness theorems are proved,
clarifying the role of the rules of modus ponens, conjunction and a fortiori.

Restall’s notion of proof from a theory Π is then developed in the same
manner. A related notion of proof corresponding to Restall’s validity notion is
extracted from Restall’s paper leading to a transparent form of Restall’s com-
pleteness theorem and an extension to a general completeness theorem that is
related to but not the same as a completeness theorem proved by Celani and
Jansana [2] thereby establishing a link between Restall’s work and [2].

The more important results of this paper are the conservation results. First
two classes of formulas are introduced, simple implications and basic implica-
tions, and the completeness results are then used to give a conservation theorem
for intuitionistic logic IPC over Corsi’s system F with respect to these two classes
of formulas. In several ways this is shown to be a best result. For BPC an addi-
tional conservation result is given with respect to the class of NNIL formulas.

Our methods have been fruitfully used in investigations of a weaker logic WF
characterized by neighborhood models. The system WF as developed by us is
presumably the minimal one with a neighborhood semantics and is obtained by
weakening the axioms 8, 9 and 11 to the corresponding rules [8]. The conserva-
tivity result applies in that case only to the simple implications, clearly showing
the difference in strength of the logics F and WF.

Clearly, it is important now to further study BPC and the other known
logics between F and IPC as well as the logics between F and WF with regard
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to conservativity properties. Also, the connection between Restall’s and Celani
and Jansana’s consequence relations deserves further study.
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