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53.1	 �Introduction

Osteoarthritis (OA) is a common disease causing 
joint pain, joint deformity, and functional disabil-
ity and affects the quality of life of both young 
and elderly patients worldwide [1]. Current treat-
ment strategies can be divided into nonsurgical 
(conservative) and surgical therapies according 
to the severity of OA [2–4]. In the early stage of 
OA, pharmacologic and/or physical therapies as 
conservative treatments are typically selected for 
the purpose of reducing pain and, in some cases, 
attempting to delay the progressive structural 
deterioration in affected joints. Surgical therapies 
such as joint replacement and osteotomy are 
available for patients who fail to respond to more 
conservative measures. These treatments are well 
established and effective for reducing pain and 
improving quality of life. Regardless of these 
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therapeutic options, however, there is no method 
available that facilitates complete healing of the 
articular cartilage [5–10]. Recently, several bio-
logical approaches, such as the use of tissue-
engineered materials, have been tested to 
overcome such potential problems. This chapter 
will focus on the feasibility of tissue-engineered 
materials in osteochondral repair and highlight 
recent advances in the biological repair of osteo-
chondral lesions.

53.2	 �Anatomy of Osteochondral 
Tissue

The osteochondral complex consists of both the 
articular cartilage and underlying subchondral 
bone. The conditions of articular cartilage and its 
supporting bone are tightly coupled, and they 
interact with each other biologically as well as 
biomechanically [11, 12]. Therefore, these 
structures could be considered as one osteochon-
dral unit.

Biochemically, cartilage tissue is largely com-
prised of water, chondrocytes, type II collagen, 
and proteoglycan [13–15]. Cartilage can be dif-
ferentiated into four distinct zones: the superfi-
cial, middle, deep, and calcified cartilage zones 
(Fig. 53.1) [16]. Each zone is defined by a par-
ticular composition and organization of cells and 
extracellular matrix (ECM) molecules. The  

differential proportions in ECM composition 
influence the mechanical properties of each zone 
of the cartilage. For example, the superficial zone 
is strong in tension along the alignment of its col-
lagen fibrils and thereby assists in the resistance 
of shear forces at the surface. By comparison, the 
deep zone has more compressive strain.

Subchondral bone is a complex tissue consisting 
of water, collagen type I, and hydroxyapatite, with 
the two latter components providing the tissue’s 
stiffness and compressive strength [14, 15, 17].  
The compressive modulus of subchondral bone is 
higher than that of cartilage. The different morpho-
logical compositions and mechanical properties of 
subchondral bone and cartilage indicate the com-
plexity of the tissue interface.

The osteochondral interface is described by the 
interaction of calcified cartilage and the underly-
ing subchondral bone [18]. Structurally, collagen 
fibers extend from the deep zone to calcified car-
tilage through a wavy tidemark, which enables the 
dispersal of force through the vertical orientation 
of collagen fibrils [19]. However, despite the fact 
that calcified cartilage is mineralized tissue, its 
mechanical strength is lower than that of the sub-
chondral bone [20]. Calcified cartilage is inter-
digitated with subchondral bone, but fibers do not 
extend across the zone into the bone [19, 21]. The 
wavy tidemark and vertically oriented fibers at the 
tidemark, as well as interdigitations present at the 
interface, may allow for reducing stress concen-
trations, as well as better integration with the 
underlying subchondral bone [14, 19].

Osteoarthritic degenerative changes, such as 
articular cartilage loss, subchondral bone thicken-
ing, and osteophyte formation, may be developed, 
triggered by a multitude of factors including aging, 
trauma, obesity, mechanical overload, congenital 
disorder, and infection [22–26]. The primary mor-
phologic changes include thinning, fissuring, and 
fragmentation of articular cartilage. With progres-
sion of the disease comes a continuous loss of 
articular cartilage, accompanied with the decrease 
of collagen type II and aggrecan [27, 28],  
leading to exposure of subchondral bone. 
Secondary changes are frequently seen in the 
underlying bone, such as sclerosis, cystic change, 
and new bone formation (Fig. 53.2).

Superficial zone

Middle zone

Deep zone

Tidemark

Calcified cartilage

Subchondral bone

Fig. 53.1  Schematic drawing of the different zones of 
articular cartilage and subchondral bone
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53.3	 �Strategy for Osteochondral 
Repair

For an ideal repair of osteochondral lesions, it is 
important to regenerate subchondral bone and to 
facilitate zonal restoration of cartilage and sub-
chondral bone, layer by layer, mimicking the 
natural articular structure [11, 29–34]. As a strat-
egy to regenerate these structures in a layer-by-
layer fashion, biphasic or triphasic constructs 
have been developed due to both mechanical and 
biological reasons, including the acquisition of 

initial mechanical strength, mimicking a natural 
articulate structure, a uniform tidemark at the 
osteochondral junction, and integration of the 
biphasic implant with host tissue to sustain bio-
logical function [9, 35–44]. For satisfying the 
biological requirements, an osteochondral 
implant should ideally have a rigid osseous layer 
(to support the overlying cartilage and integrate 
with the native bone) and a chondral layer (to 
allow the seeding and proliferation of chondro-
cytes or mesenchymal stem cells (MSCs) and 
subsequent deposition of cartilaginous ECM).

53.4	 �Choice of Cells

The most direct cell source may be the biopsy 
specimens taken from the patients, from which 
mature osteoblasts and chondrocytes may be 
obtained. However, as the number of cells 
obtained is usually limited, it is typically not 
enough to allow seeding onto the scaffolds. Also, 
the expansion of primary cells may result in a loss 
of differentiation capacity; for example, the 
expansion of articular chondrocytes can lead to 
dedifferentiation into fibroblast [45–47]. To over-
come such potential problems with respect to 
dedifferentiation, a three-dimensional (3D) cul-
ture can be used to retain the cellular phenotype 
and avoid dedifferentiation [48]. The most com-
mon method is the use of various scaffolds to pro-
duce a 3D culture condition [49, 50] and may be 
combined with the supplementation of growth 
factors [51], the use of bioreactor [52], mechani-
cal stimulation of the cells [53, 54], and the use of 
low oxygen tension [55, 56] during cultivation. 
Also, even if chondrocytes lose their differenti-
ated phenotype, dedifferentiated chondrocytes 
can regain their differentiated phenotype through 
the redifferentiation process of cultivation in a 3D 
scaffold combined with growth factors [57, 58].

As an additional option, stem cells may repre-
sent promising alternatives [59, 60]. Specifically, 
mesenchymal stem cells (MSCs) have the capabil-
ity to differentiate into a variety of connective tis-
sue cell types, including bone, cartilage, tendon, 
muscle, and adipose tissue [10, 61]. These cells 
may be isolated from various tissues, such as bone 

Fig. 53.2  Radiography of osteoarthritic knee joint. In 
osteoarthritis, the loss of cartilage (joint space narrowing) 
and subchondral bone change such as sclerosis, cystic 
change, and new bone formation (osteophyte) are fre-
quently seen (arrows)

53  Osteochondral Repair Using a Hybrid Implant Composed of Stem Cells and Biomaterial



674

marrow, skeletal muscle, synovial membrane, adi-
pose tissue, and umbilical cord blood [5, 6, 61–64]. 
Moreover, allogeneic MSCs [10, 65] or induced 
pluripotent stem (iPS) cells [66, 67] may also be 
considered. However, there have not been much 
evidence using these cells forth coming in terms of 
preclinical and clinical safety, and thus further 
studies with such cells are likely necessary.

53.5	 �Choice of Materials

Several methods have been proposed to develop 
biphasic scaffolds with the hybridization of two 
distinct biomaterials, each of which being ade-
quate to integrate with the respective surrounding 
tissue [68]. Many specific material types have 
been developed for both cartilage and bone regen-
eration, which are typically made of biocompati-
ble and biodegradable polymers. For the cartilage 
layer, natural or synthetic polymer-based scaf-
folds are commonly used. On the other hand, for a 
scaffold of the subchondral bone layer, it is impor-
tant to choose materials with initial mechanical 
strength, good bone ingrowth, and integration of 
native surrounding bone. Ceramics, glasses, and 
metallic materials are commonly used. Also, nat-
ural or synthetic polymers, similar to cartilage 
layer, could be used alone or combined with 
ceramics [36, 37, 69–72].

The natural polymers could provide a naturally 
occurring environment for the cells and tissues and 
thereby potentially facilitate cell proliferation and 
differentiation [73, 74]. Moreover, natural poly-
mers usually contain specific molecular domains 
that can support and guide cells at various stages 
of their development [14, 68]; thus biological 
interaction of the scaffold with the host tissue can 
be enhanced. However, they are, in general, bio-
mechanically weak and less stiff than other materi-
als [14]. As a source of materials, collagen, gelatin, 
glycosaminoglycan, chitosan, starch, hyaluronic 
acid, alginate, and bacterial-sourced polymers 
(hydroxyalkanoates) are commonly used.

Biodegradable synthetic polymers offer several 
advantages over other materials for developing 
scaffolds in tissue engineering. The main advan-
tages are being able to control mechanical proper-

ties (i.e., strength and stiffness) and degradation 
speed [75]. Synthetic polymers are also attractive 
because they can be fabricated into various shapes 
with a desired pore according to the speed of cell 
migration or tissue ingrowth [76]. Moreover, the 
progression of current techniques such as electros-
pinning methods and the 3D printer have enabled 
the simple design and fabrication of scaffolds, 
which mimic the original tissue structure [77–79]. 
On the other hand, synthetic polymers have limita-
tions in bioactivity due to their hydrophobic sur-
face not supporting cell attachment and 
proliferation [80–83]. Surface treatment with 
chondroitin sulfate [84], silicate [85], and alkaline 
[81] could increase hydrophilicity and provide a 
suitable scaffold for tissue engineering. As a 
source of biodegradable synthetic polymers, 
poly(glycolic acid) (PGA), poly(d,l-lactic-co-gly-
colic acid) (PLGA), poly(l-lactic acid) (PLLA), 
poly(caprolactone) (PCL), and poly(ethylene gly-
col) (PEG) have been commonly used.

Ceramics, such as hydroxyapatite (HA) or 
other calcium phosphates, such as tricalcium 
phosphate (TCP), are widely used for bone tissue 
engineering [86–89]. These materials promote 
the formation of a bone-like tissue and enhance 
integration of the scaffold to the host tissue due to 
excellent osteoconductivity and osteoinductivity. 
On the other hand, these scaffolds have low struc-
tural integrity being brittle and unsuitable for 
applications under mechanical stress, although 
they exhibit suitable stiffness [14]. The degrada-
tion behavior of these scaffolds can be controlled 
by changes in the porous structures, which can be 
tailored in terms of their degradation kinetics 
appropriate for bone tissue engineering. It is also 
well known that increasing porosity impairs fur-
ther the mechanical properties of bioceramic 
scaffolds. This problem can be solved by modify-
ing any porous scaffolds with infiltration or coat-
ing by biodegradable polymers [90–92].

53.6	 �Current Status and Issues

There have been many therapeutic procedures 
investigated to biologically repair damaged carti-
lage, some of which are already at the stage of 
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clinical application. On the contrary, considering 
the higher incidence of OA, which involves sub-
chondral bone pathology, by comparison to iso-
lated chondral injury [3, 93–97], there is an 
urgent need to develop novel therapeutic methods 
for osteochondral repair with clinical relevance. 
In this regard, the number of animal experiments 
and clinical trials to treat osteochondral lesions 
has been recently increased [40, 98–102]. Also, 
we have originally developed a hybrid implant 
composed of artificial bone coupled with a mes-
enchymal stem cell (MSC)-based scaffold-free 
tissue-engineered construct (TEC) and demon-
strated its feasibility for osteochondral repair in a 
rabbit osteochondral defect model [12, 103]. Our 
experimental details are described below.

53.7	 �Our MSC-Based Hybrid 
Implant for Osteochondral 
Repair

Currently, artificial bones generated from hydroxy-
apatite (HA) or beta-tricalcium phosphate (bTCP) 
have been widely used for clinical treatment of 
bone defects after fractures or after resection of 
bone tumors [88, 104, 105]. We have developed a 
novel fully interconnected HA artificial bone with 
a sufficient initial strength, as well as an excellent 
bone formation capacity [88, 89] and previously 
reported the feasibility of this implant to repair sub-
chondral bone [88]. In addition, we have developed 
a scaffold-free three-dimensional tissue-engineered 

construct (TEC) composed of MSCs derived from 
the synovium and extracellular matrices (ECMs) 
synthesized by the cells [6] and demonstrated the 
feasibility of the resultant TEC to facilitate carti-
lage repair in a large animal model [5, 10]. These 
TECs are developed without an artificial scaffold, 
and, thus, their implantation could eliminate or 
minimize the risk of potential side effects induced 
by extrinsic chemical or biological materials. 
Furthermore, such TECs are highly adherent to 
cartilage matrix, and secure integration of the 
TEC to adjacent cartilage tissue is observed after 
implantation. Therefore, we hypothesized that 
combined constructs of TEC and the fully inter-
connected HA-based artificial bone would effec-
tively repair an osteochondral lesion and test this 
hypothesis using a rabbit osteochondral defect 
model (Fig. 53.3). At 6 months post implantation, 
osteochondral defects treated with the hybrid 
implants exhibited more rapid subchondral bone 
repair coupled with the development of cartilagi-
nous tissue with good tissue integration to the 
adjacent host cartilage (Fig. 53.4). Conversely, the 
control group, in which HA alone was implanted 
into the osteochondral defect, exhibited delayed 
subchondral bone repair (Fig. 53.4). In addition, 
the repair cartilaginous tissue in this group had 
poor integration to adjacent cartilage and con-
tained clustered chondrocytes, suggesting an 
early OA-like degenerative change at 6  months 
post implantation. Biomechanically, the osteo-
chondral repair tissue treated with the combined 
implants at 6  months restored tissue stiffness, 

TEC

Adjacent cartilage

Artificial bone

a b c

Fig. 53.3  (a) The hybrid implant generated with a tissue-
engineered construct (TEC) and an artificial bone. (b) 
Osteochondral defects in the femoral groove of the rabbit 

knee. (c) Schematic representation of implantation of 
TEC and artificial bone. Quoted and modified from [103] 
(Shimomura et al., Tissue Eng Part A, 2014)
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similar to normal osteochondral tissue. Therefore, 
we concluded that the hybrid implants significantly 
accelerated and improved osteochondral repair 
[103].

To further improve the repair quality and 
shorten the maturation time, additional options 
for the artificial bone component should be eval-
uated and compared with outcomes with HA. 
bTCP is an alternative to consider, as it is a 
highly biocompatible material that provides a 
resorbable interlocking network to implants and 
is resorbed more rapidly than HA in vivo [89]. 
Therefore, the use of bTCP might be advanta-
geous and may result in more efficient and rapid 
subchondral bone remodeling after implantation. 
We hypothesized that a bTCP-based hybrid 
implant coupled with a synovial MSC-derived 
TEC would exhibit superior osteochondral repair 
when compared with an HA-based hybrid 
implant and test this hypothesis using a rabbit 
osteochondral defect model mentioned above. 

Osteochondral defects treated with the TEC/
bTCP implants showed more rapid subchondral 
bone repair at 1 month, but the cartilaginous tis-
sue deteriorated over time out to 6 months post 
implantation (Fig. 53.5a, b). On the other hand, 
osteochondral defect treated with TEC/HA 
showed the delayed subchondral bone repair at 
1 month but similar quality of subchondral bone 
repair to TEC/bTCP at 2 months (Fig. 53.5a, b). 
Notably, the repair tissue maintained good histo-
logical quality out to 6 months after implantation 
and also exhibited better biomechanical proper-
ties at 6  months as compared with the TEC/
bTCP implants (Fig.  53.6). Contrary to our 
hypothesis, the TEC/HA hybrid implant facili-
tated better osteochondral repair than did the 
TEC/bTCP implant. The results of the present 
study suggest the importance of a stable restora-
tion of subchondral bone for long-term effective 
osteochondral repair rather than rapid remodel-
ing of subchondral bone.

Control TEC/HA

Fig. 53.4  Toluidine blue staining of repair tissues in con-
trol (HA alone) and TEC/HA group. Note that the repair 
tissue in defects treated with the TEC/HA implant sus-
tained good tissue integration to the adjacent host tissue, 
while that of control group showed poor integration 
(arrow). Cellular morphology in defects treated with the 

TEC/HA implant showed round-shaped cells in lacuna, 
while that in control group showed cell clustering in 
lacuna. Bar = 1 mm (upper images). Bar = 20 μm (lower 
images). Quoted and modified from [103] (Shimomura 
et al., Tissue Eng Part A, 2014)
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Fig. 53.5  (a) Hematoxylin and eosin (H&E) staining of 
repair tissue resulting from the implantation of TEC/HA 
or TEC/bTCP hybrid implants. The osteochondral defect 
treated with TEC/bTCP showed rapid subchondral bone 
repair at 1 month. The osteochondral defect treated with 
TEC/HA showed the delayed subchondral bone repair at 
1 month but similar quality of subchondral bone repair to 
TEC/bTCP at 2 months. Bar = 1 mm. (b) Toluidine blue 
staining of repair tissue resulting from the implantation of 

TEC/HA or TEC/bTCP hybrid implants at 6 months after 
surgery. The repair tissue exhibited fibrocartilaginous-like 
tissue with weak toluidine blue staining in the TEC/bTCP 
group, while that did in hyaline cartilage-like features, 
and the chondrocytes were arranged in longitudinal col-
umns in TEC/HA group. Bar  =  1  mm (upper images). 
Bar = 20 μm (lower images). Quoted and modified from 
[12] (Shimomura et al., Am J Sports Med, 2017)
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53.8	 �Future Directions

The management of OA remains challenging and 
controversial. Considering the steady progres-
sion of tissue engineering and cell-based tech-
nologies over the past decade, we may have new 
therapeutic options for osteochondral repair in 

clinical practice. In this chapter, we have focused 
on the current techniques and recent advances of 
tissue-engineered biomaterial scaffolds as well as 
our novel MSC-based hybrid implant for the 
treatment of osteochondral lesion. There have 
been many promising scaffolds developed, some 
of which contribute to good osteochondral repair 
in  vivo. In addition, the recent work has been 
focused on not only investigating the effective-
ness of materials or cells but also to apply several 
new concepts and techniques such as mechanical 
[100], microstructural [76], and local microenvi-
ronment modification [106] for the design and 
fabrication of scaffolds. Therefore, the application 
of additional new implants to osteochondral 
lesions could be expected in the near future. On 
the other hand, the most suitable biomaterials for 
the cartilage or subchondral bone layers have not 
been fully investigated, while there are many bio-
materials available for osteochondral repair. 
Therefore, the comparison of these materials 
should be performed to ultimately determine the 
ideal material. Further studies will be needed and 
should be conducted in a methodologically rigor-
ous fashion.
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Fig. 53.6  The cartilage tissue stiffness of a healthy rabbit and 
after implantation of a TEC/HA or TEC/bTCP hybrid implant 
at 6 months after surgery. The TEC/HA hybrid implant exhib-
ited enhanced mechanical properties compared with the TEC/
bTCP hybrid implant. *p < 0.05. Quoted and modified from 
[12] (Shimomura et al., Am J Sports Med, 2017)
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Fig. 53.5  (continued)
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