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Evolving Perspectives 
in Orthobiologic Approaches to 
Articular Cartilage Regeneration

Lorenzo Brambilla, Celeste Scotti, Alberto Gobbi, 
and Giuseppe M. Peretti

50.1	 �Why Repairing Articular 
Cartilage Is So Challenging?

Articular cartilage is a unique complex tissue 
with a highly specialized extracellular matrix 
(ECM) made of collagens, proteoglycans, and 
non-collagen proteins that guarantee mechanical 
properties which are located in chondrocytes, the 
unique cellular component. Both the former and 
the latter are disposed in organized fashion, and 
the tissue can be divided into four distinct 
regions [1, 2] (Fig.  50.1). Compressive resis-
tance is bestowed by the large aggregating pro-
teoglycan aggrecan, which is attached to 
hyaluronic acid polymers via link protein. The 
half-life of aggrecan core protein ranges from 3 
to 24 years. The proteoglycans are essential for 
protecting the collagen network, which has a 
half-life of more than 100 years if not subjected 
to inappropriate degradation [3]. Differences in 
the morphologies of zonal subpopulations of 
chondrocytes may be due to matrix composition 
and are largely ascribed to differences in the 
mechanical environment [4]. Differences in the 
expression of molecules may determine the 
zonal differences in matrix composition and 
function [5–7]. How chondrocytes maintain their 
ECM under homeostatic conditions has remained 
somewhat of a mystery since they do not divide 
and the matrix isolates them from each other [3]. 
Moreover, hyaline cartilage is an avascular tis-
sue and ECM normally shields chondrocytes, 
which exist at low oxygen tension within the 
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matrix. This contributes to their low metabolic 
activity, which represents a deficiency, together 
to the absence of vascularization, in the case of 
damage-response necessity.

In a healthy joint, normal alignment, stability 
provided by ligaments, and smooth motion pro-
vided by menisci and articular cartilage maintain 
a noninflammatory microenvironment that 
allows chondrocytes to reside in a quiescent state 
with very little turnover of the ECM. Interestingly, 
physiological loading may protect against carti-
lage loss by inhibiting TAK1 (TGF-β-activated 
kinase 1) phosphorylation [8] as well as inhibit-
ing IKKβ (IƙB kinase-beta) activity in the 
canonical NF-ƙB cascade and attenuating NF-κB 
transcriptional activity [9]. When physiological 
factors are affected by trauma or overload, the 
homeostatic joint environment is disrupted, and 
the chondrocytes become activated with 
increased proliferation, production of matrix-
degrading enzymes, cytokines, and cytokine 
receptors. In the case of chronic overload, the 
consequence could be an increased chondrocyte 

activity as mechano- and osmo-sensors, as osteo-
cytes in bone alter cell metabolism in response to 
physical cues [10, 11]. In the case of trauma, the 
activated phenotype is likely an injury response 
driven by inflammation. Despite the classical 
view of osteoarthritis (OA) as a noninflamma-
tory arthritis, recent literature supports the con-
cept of OA as an inflammation-driven process 
where cartilage destruction is maintained and 
perpetuated by inflammatory mediators [10, 12, 13] 
(Table 50.1).

IL-1β and TNF-α are the main pro-inflammatory 
cytokines produced by activated chondrocytes 
[12]. They have a dual action: the upregulation of 
degradative proteases (starting from ADAMTS-5 
and MMP3) and the synthesis by chondrocytes 
and synovial cells of other inflammatory media-
tors. The result is an autocatalytic process estab-
lished and maintained in an autocrine/paracrine 
manner. Other pathways, as prostaglandin E2, are 
involved in the establishment of a catabolic envi-
ronment, increasing the complexity of the problem 
[27]. In OA, degradative enzymes are produced 
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Fig. 50.1  Articular cartilage structure. Articular cartilage 
is organized in four distinct regions: (1) the gliding zone 
(or superficial tangential), composed of thin collagen 
fibrils in tangential array and associated with a high con-
centration of decorin and a low concentration of aggrecan, 
(2) the transitional zone (or middle) with radial bundles of 
thicker collagen fibrils, (3) the radial zone (or deep) in 
which the collagen bundles are thickest and are arranged 

in a radial fashion, and (4) the calcified cartilage zone, 
located immediately below the tidemark and above the 
subchondral bone. The interterritorial cartilage matrix 
bestows tensile strength and consists primarily of type II 
collagen fibrils with type XI within the fibril and type IX 
integrated in the fibril surface with the non-collagen 
domain projecting outward, permitting association with 
other matrix components and retention of proteoglycans
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Table 50.1  Summary of biologic effects and molecules involved in inflamed joints

Stimulatory molecules Inhibitory molecules References

ECM breakdown ADAMTS, MMPs TIMPs, IL-4, IL-10 [14–18]
Recruitment of inflammatory 
cells

IL-8, VEGF, MCP-1 NSAIDs, IL-4, IL-10 [15, 19, 20]

Synovial cell activation IL-1β, TNF- α IL-4, IL-10 [16, 21, 22]
Synthesis of ECM components IGF-1, BMPs, TGF-β1 IL-1β, TNF-α, IL-6 [15, 17, 23, 24]
Cell proliferation, cell survival FGF-2, PDGF IL-1β, TNF-α [25]
Cell differentiation SOX9, TGF-β1 IL-1β, TNF-α [25, 26]
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Fig. 50.2  Articular cartilage destruction due to mechani-
cal loading and biologic factors. ADAMTS a disintegrin 
and metalloproteinase with thrombospondin-1 domains, 
C/EBP CCAAT enhancer-binding protein, ESE1 
epithelial-specific ETS, ETS E26 transformation specific, 
GADD45β growth arrest and DNA damage 45 beta, 

HIF-1α hypoxia-inducible factor-1-alpha, NF-κB nuclear 
factor-kappa-B, PA plasminogen activator, TIMPs tissue 
inhibitors of metalloproteinases. (Modified from Goldring 
MB, Marcu KB. Cartilage homeostasis in health and rheu-
matic diseases. Arthritis Res Ther 11(3), 224, 2009)

primarily by chondrocytes, but the episodic intra-
articular inflammation with synovitis indicates 
that the synovia may also be a source of cyto-
kines and cartilage-degrading proteinases [28, 29]. 
In addition, the cartilage and bone are tightly 
interlinked with a cellular and molecular commu-
nication through the WNT and BMP signaling 

pathways [30, 31]. Consequently, when chondro-
cytes acquire the activated phenotype, enhanced 
matrix remodeling occurs in the articular carti-
lage and in the subchondral bone, ultimately 
leading to damage the articular surface, to sub-
chondral bone sclerosis [31, 32] and osteophyte 
formation (Fig. 50.2).
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50.2	 �The Reparative Potential 
Rising from the Subchondral 
Bone: Microfractures

For these reasons, the well-known problem of the 
poor cartilage spontaneous healing potential is 
worsened by the generation of an inflammatory 
microenvironment by the interlinked intra-
articular structures. However, the network 
between joint tissues is the starter point for repa-
ration, too. In fact, the subchondral bone is in con-
tinuity/contiguity with the underlying bone, and 
its vascular system allows for the migration of 
mesenchymal progenitor cells from the bottom of 
the lesion and of chondrocytes from the margins 
of the adjacent cartilage [33]. These are the theo-
retical bases of the microfracture (MF) technique, 
which was introduced by Pride in the 1950s under 
the name of drilling and spread rapidly after the 
work of Steadman in 1998 [34]. However, in the 
case of an injury, the fine equilibrium between 
anabolic and catabolic cytokines [4] is disrupted, 
and the imbalance is not beneficial to cartilage 
repair, as it is in the bone, but typically results in a 
flawed regenerative process, which resembles 
endochondral ossification and leads to chondro-
cyte hypertrophy and death, cartilage calcifica-
tion, and scar fibrous healing. In fact, while the 
role of IL-1β and TNF-α in the initiation of the 
regenerative process has long been known, espe-
cially for bone tissue [7], different experimental 
settings demonstrated the detrimental effect of the 
exposure of IL-1β to articular cartilage [14, 35, 
36]. The limited response of articular cartilage 
together with the multipotent potential of the bone 
explains the prevalence of the bone over cartilage 
after bone marrow stimulation techniques such as 
MF [37–39] and the formation of a fibrous repair 
tissue that might not be able to preserve the articu-
lar cartilage function for the long term.

MF is a feasible, cost-effective, and simple 
first-line option but only when performed in 
young patients with small, single lesions and low 
postoperative demands. Deterioration of the 
repair tissue frequently begins between 2 and 
5 years posttreatment, and degenerative changes 
are seen at long-term follow-up, regardless of 
lesion size [40]. Older athletes with large and 
multiple lesions typically display higher failure 

rates [41]. The poorer results in older patients 
could be explained by inflammation and gene 
expression. The former enhances endochondral 
ossification by human bone marrow-derived mes-
enchymal stem cell [42–44] and is likely present 
in older patients who have higher IL-1β, MMP-
13, and oxidative stress levels [45]. The latter is 
similar in aged chondrocytes and in OA chondro-
cytes, suggesting an intrinsic lower healing 
potential of aged cartilage, independently from 
the inflammatory state [26].

Hyaluronic acid (HA) and platelet-rich plasma 
(PRP) have been tested as adjuvant therapies for 
MF with encouraging results [46–51]; neverthe-
less, a recent meta-analysis showed that when OA 
degenerative changes are established, viscosupple-
mentation with HA is associated with a small and 
clinically irrelevant benefit [52], and HA alone 
may not be sufficient to restore joint environment 
in these patients. Besides, given the wide variabil-
ity in PRP composition, it is difficult to define 
properly its dual anti-inflammatory and trophic 
effect and additional studies should be promoted.

50.3	 �Regenerative Strategies: 
Cellular Therapies

As far as researchers try to improve MF reparative 
tissue, it is still mechanically and biologically far 
from native articular cartilage. To bridge this gap, 
they focused on the cellular component, essential 
for the recovery and maintenance of the complex 
tissue structure, and they developed new treatment 
strategies. The main field of application of this 
paradigm is the autologous chondrocyte implanta-
tion, but, in the last few years, new perspectives 
(i.e., mesenchymal stem cells) are springing up.

50.3.1	 �Autologous Chondrocyte 
Implantation (ACI) Procedures

Since Peterson and Brittberg first introduced ACI 
technique in the clinical practice in 1994 [53], it 
has become popular and widespread with more 
than 20,000 patients treated. Yet their efficacy and 
cost-effectiveness are still debated [54, 55]. The 
technique is two-step, expensive, and complicated 
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with short-term clinical results comparable to 
those of MF, but potentially has the capacity to 
develop a more durable hyaline-like and func-
tional repair tissue thanks to the chondrogenic 
cellular component implanted. A series of clini-
cal trials have been reported with improvement of 
symptoms at medium- to long-term follow-up 
[54], but recently published results of the longest 
follow-up investigation (i.e., 14–15 years) com-
paring MF and ACI confirmed the absence of sig-
nificant difference in clinical outcomes and 
radiographic signs of OA between the two groups 
[56]. It is important to underline that more than 
half of the patients had radiographic evidence of 
OA as determined by the Kellgren and Lawrence 
scale. Patients who had undergone prior surgery 
and patients with a history of symptoms of more 
than 2–3  years’ duration frequently have worse 
results at 5-year follow-up when compared to 
those with traumatic/acute lesions [57–59]. These 
findings highlight how an “activated environ-
ment” could potentially lead to failure in healthy 
tissue regeneration, even when differentiated 
cells are used. Consistent with what was described 
for the microfracture procedure, it may be crucial 
to develop strategies to restore the proper balance 
between anabolism and catabolism before sur-
gery and during the long process of graft matura-
tion. A further intriguing application of this 
concept is the use of intra-articular PRP to estab-
lish a regenerative microenvironment to improve 
results of ACI, similar to that reported for the MF 
procedure. A crucial step forward would be rep-
resented by the identification of the most suitable 
PRP preparation to be used as adjuvant for carti-
lage repair procedure [60, 61]. Interestingly, 
P-PRP (a pure platelet concentrate without leu-
kocytes with a lower amount of platelets) appears 
to have more anabolic and anti-inflammatory 
properties than L-PRP (with high concentration 
of both platelets and leukocytes) [60, 61] high-
lighting the need for studies focused on the iden-
tification of the optimal ratio of cellular and 
molecular components of PRP according to the 
different requirements. Moreover, a recent sys-
tematic review showed no evidence supporting 
the use of intra-articular injections of PRP for pre-
venting OA progression. This demonstrates that 
further knowledge is needed for the identification 

of the proper use and the ideal formulation of PRP 
in the OA patients.

50.3.2	 �A New Promising Cellular 
Therapy: Mesenchymal Stem 
Cells

In most recent years, a new cellular source has 
been introduced as orthobiologic approach to 
cartilage treatment: the mesenchymal stem cells 
(MSC), also known as multipotent mesenchymal 
stromal cells. They are a non-hematopoietic adult 
stem cell population, which is present in various 
tissues (e.g., bone marrow, adipose tissue, syno-
vial membrane), which has the ability to differen-
tiate into mesenchymal lineages including 
chondrogenic, and, therefore, is a promising 
source in regenerative medicine. It was initially 
believed that engraftment and differentiation of 
MSC would lead to neotissue formation and tis-
sue repair [62]. However, more recently, it has 
been shown that MSC can stimulate tissue repair 
by the secretion of potent paracrine factors, and 
only a limited amount, if any, of MSC actually 
engraft and differentiate in vivo [63]. According 
to recent literature, the beneficial effects of MSC 
are due to the release of a cocktail of trophic and 
immunomodulatory factors, rather than to an 
active participation in tissue regeneration, thus 
working as “medicinal signaling cells” [64]. This 
twofold activity has the potential to address the 
complexity of joint disorders, which require both 
immunomodulation and tissue regeneration.

Chondrocyte implantation presents some dis-
advantages such as a two-stage surgical procedure 
that may cause further cartilage damage and 
degeneration [53, 65, 66] and the chondrocyte 
dedifferentiation during culture that might result 
in fibrocartilage rather than hyaline cartilage [65, 
67]. MSC, on the other hand, are promising, as 
they would eliminate the need for ex vivo chon-
drocyte expansion, which is necessary for the ACI 
procedure. Additionally, from the patient, from 
the treating physician, and from an economic per-
spective, a single-stage non-cultured cell-based 
therapy would represent a great advantage [68].

As a source of MSC, bone marrow aspirate con-
centrate (BMAC) has been tested. Gobbi et  al. 
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reported a satisfactory clinical outcome in patients 
with grade 4 cartilage lesions of the knee who 
received one-step BMAC implantation with a hyal-
uronan-based scaffold [69]. Interestingly, this 
proved to be mainly affected by lesion size and 
number and not by age. In addition, it allows to 
address the older than 45-year-old population, with 
results comparable to younger patients. 
Alternatively, intra-articular bone marrow-derived 
MSC injection following isolation and in  vitro 
expansion showed positive clinical and MRI out-
comes [70] as an adjuvant treatment following high 
tibial osteotomy (HTO) for early unicompartmen-
tal OA and genu varum, further supporting the role 
of MSC in the restoration of the articular surface.

As the concentration of active cells present in 
the bone marrow was found to be particularly 
low, other cell sources were tested for the same 
purpose and a higher concentration of MSC was 
founded in adipose tissue, the so-called adipose 
tissue-derived MSC (AD-MSC). However, to 
date, few clinical studies have examined this 
option. The injection of stromal vascular fraction 
containing adipose-derived MSC as an adjuvant 
of MF for osteochondral lesions of talus showed 
encouraging clinical and MRI results even in 
patients with poor prognostic factors [71]. 
Another study highlighted the benefit of injecting 
a high dose of in  vitro expanded AD-MSC 
(1  ×  108 cells) in OA knees with no adverse 
events, improvement of function, and, foremost, 
histological regeneration of hyaline-like articular 
cartilage [68].

Acknowledging their limited power, these 
pioneering studies support the potential of intra-
articular MSC injection and highlight the need 
for a high number of MSC to obtain a clinical 
improvement, encouraging further studies involv-
ing cohorts of patients [72].

50.4	 �Shifting the Paradigm: 
Tissue Therapy

Despite the general clinical improvement, current 
strategies are far from generating a long-lasting 
repair tissue that matches native cartilage in terms 
of tissue quality and mechanical performance [73].

A tissue therapy [74] based on a more mature 
tissue with high cell density and a more abundant 
cartilaginous ECM could potentially have a bet-
ter chance of coping with the stresses of an 
inflammatory environment and therefore regen-
erating hyaline tissue. This is suggested by differ-
ent basic studies, which demonstrated that 
cytokine synthesis and response to IL-1β by 
human articular chondrocytes are modulated by 
their differentiation stage [14, 15, 36, 75], and, in 
particular, more developed engineered tissues are 
more able to preserve the deposited cartilaginous 
matrix and to release lower amounts of MMP and 
higher amounts of anabolic factors [15]. These 
studies prompt the idea that more mature carti-
lage constructs might represent a better graft for 
cartilage regeneration as it might be more resis-
tant to pro-inflammatory chemokines and more 
effective in recruiting/committing cells involved 
in tissue repair processes. In MF and in ACI tech-
niques, cells are exposed to the joint environment 
without the protection typically provided by the 
cartilaginous ECM from inflammatory and 
mechanical insults.

A promising proof of principle of tissue ther-
apy was recently reported [74] showing success-
ful alar lobule cartilage regeneration with 
restoration of function and aesthetic satisfaction. 
Despite the notable difference in terms of envi-
ronment and function with the articular cartilage, 
it is important to highlight the mechanical resil-
iency of the engineered graft, which is a valuable 
feature also for articular cartilage repair.

A further interesting advancement, which 
stems from this clinical experience and from sev-
eral experimental basic science studies [14, 76–
78], is represented by the use of autologous nasal 
chondrocytes as cell source for engineering a car-
tilaginous graft. Nasal chondrocytes demonstrated 
capacity of self-renewal and environmental plas-
ticity [77]. They showed positive response to 
dynamic compression mimicking joint loading 
[76], higher chondrogenic capacity than articular 
chondrocytes (from matched human donors) [14], 
more efficient recover than articular chondrocytes 
from exposure to IL-1β (from matched human 
donor) [14], and a greater survival and integration in 
the joint environment together with the acquisition 
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of a mesodermal phenotype [77]. Moreover, the 
use of nasal chondrocytes for tissue therapies has 
insignificant morbidity for their harvest from the 
nasal septum, which represents a crucial improve-
ment compared to the use of articular chondro-
cytes. Taken together, these features render nasal 
chondrocytes a superior cell source for cartilage 
tissue engineering. Consistently, a phase I clinical 
trial for the treatment of traumatic cartilage 
defects is currently ongoing with an approved 
extension to 25 patients (http://www.clinicaltrials.
gov/ Identifier:NCT01605210), and it represents 
the first clinical application of “tissue therapy” 
using autologous nasal chondrocytes, as opposed 
to the standard “cell therapy” procedure of deliv-
ering articular chondrocytes by a scaffold mate-
rial. Promising results about the first ten patients 
have recently been published. For each patient, 
the nasal-derived engineered tissues were stable 
through handling with forceps and could be 
secured in the injured joints. No adverse reactions 
were recorded and self-assessed clinical scores 
for pain, knee function, and quality of life were 
improved significantly from before surgery to 
24  months after surgery. Radiological assess-
ments indicated variable degrees of defect filling 
and development of repair tissue approaching the 
composition of native cartilage [79]. This encour-
aging data confirmed the value of tissue therapy 
strategy and the need for future clinical experi-
mentation before offering this approach to 
chronic/early OA patients. Based on the experi-
mental and preclinical studies performed [74, 77], 
this strategy has the potential to overcome the 
classical limitations of cartilage regeneration such 
as kissing lesions, larger defects, and older 
patients [72]. A randomized phase 2 clinical trial 
has been planned to address these issues.

50.5	 �Could Allogeneic Therapies 
Be an Option?

The standard for cell therapies for musculoskele-
tal condition has typically been autologous cells, 
while allogeneic cells were mainly used for onco-
hematological disorders [80]. However, following 
the first studies that demonstrated the safety of 

this approach [81], clinical trials involving alloge-
neic cells increased in number [82–84]. A grow-
ing body of literature proving the low 
immunogenicity of allogeneic MSC [85] supports 
their use, which has the potential to tackle the 
classic limitations of autologous cell therapies 
such as interindividual variability and the need for 
additional surgery for cell harvest. To ensure suf-
ficient cells, expanded allogeneic MSC could be 
used as on off-the-shelf cell product [86]. This 
shift could improve the cost-effectiveness and the 
sustainability of the cell-based therapies.

De Windt et al. [86] reported positive results 
for allogeneic MSC implantation for single-stage 
cartilage repair. They demonstrated that the proof 
of concept, in which rapidly isolated chondrons 
were recycled from debrided cartilage instead of 
harvested from a non-load-bearing site of the 
knee, combined with allogeneic human bone 
marrow MSC, is feasible, stimulates reproduc-
ible tissue regeneration, and provides clinical 
improvement. This study was the first showing 
allogeneic MSC as safe and effective in stimulat-
ing cartilage regeneration in the knee when com-
bined with autologous chondrons. The fact that 1 
year after surgery no stem cell DNA could be 
traced in the regenerative tissue may confirm the 
recent view on MSC as cellular moderators, 
which stimulate autologous repair through para-
crine mechanisms.

Allogeneic human umbilical cord blood-
derived MSC (hUCB-MSC) has been tested as a 
source of MSC, too. Park et al. [87] showed the 
safety and efficacy of articular cartilage regenera-
tion by a stem cell-based medicinal product (a 
composite of culture-expanded allogeneic hUCB-
MSC and hyaluronic acid hydrogel [Cartistem®]) 
in patients with Kellgren-Lawrence grade 3 OA 
and International Cartilage Repair Society 
(ICRS) grade 4 cartilage defects. Seven partici-
pants were enrolled. Maturing repair tissue was 
observed at the 12-week arthroscopic evaluation. 
The VAS and IKDC scores were improved at 
24 weeks. The improved clinical outcomes were 
stable over 7 years of follow-up. The histological 
findings at 1 year showed hyaline-like cartilage. 
MRI at 3 years showed persistence of the regen-
erated cartilage. Only five mild to moderate 
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treatment-emergent adverse events were observed. 
There were no cases of osteogenesis or tumor 
genesis over 7 years.

On the other hand, the increased immunoge-
nicity and upregulation of cell surface antigenic 
antigens of MSC as they differentiate [85] create 
the need of assessing the feasibility of allogeneic 
cell therapies in the latest intriguing orthobio-
logic field of research: tissue therapy. The func-
tion of Fas ligand and induction of immune 
privilege in tissue-engineered cartilage have been 
recently studied, and the subsequent suppression 
of uncontrolled inflammation and macrophage 
activity resulted in increased formation of carti-
lage [88]. Although performed in a mouse model, 
with limited translational value, this work sheds 
light on a fundamental aspect of cartilage regen-
eration and paves the way to a broader applica-
tion of regenerative therapies based on allogeneic 
cells. This could be achieved by treating the 
tissue-engineered cartilage with granulocyte 
colony-stimulating factor (G-CSF) [88] or by 
preventing IL-6 downregulation [89]. However, 
the pro-inflammatory activity of IL-6, which 
inhibits ECM synthesis, might limit its use to 
improve tolerance of the implanted graft.

50.6	 �Future Perspectives: 
Targeted Therapies

Another valuable option could be the develop-
ment of more targeted therapies, capable of inter-
acting with specific signaling pathways to alter 
the joint balance toward the trophic side, both 
modulating inflammation and enhancing carti-
lage anabolism.

IL-4 and IL-10 are modulatory cytokines and 
capable of reestablishing the joint homeostasis 
through inhibition of pro-inflammatory cytokines 
like IL-1β [16, 21, 22]. Additionally, IL-4 and 
IL-10 are known for their anti-inflammatory 
properties, and their combination is suggested to 
be beneficial [90], also preventing the potential 
harmful effects of IL-4 alone [91]. Strategies 
based on human recombinant IL-10 and IL-4 
with a longer half-life, on autologous/allogeneic 
cells modified to overexpress IL-10/IL-4, or on 

smart scaffolds capable of controlled release of 
IL-10/IL-4 may be used alone or as a support to 
regenerative therapies. It has also been demon-
strated that IL-4 increases IGF-1 expression, sug-
gesting a cross talk between the two pathways. In 
addition, it possesses a synergistic effect with 
IGF-1 with greater type II collagen upregulation, 
inflammatory cytokine downregulation, and 
nitric oxide level decrease [92]. A recent study 
demonstrated that IL-4 is downregulated in 
human OA cartilage, compared to healthy carti-
lage, and directly involved in the downregulation 
of IL-1β-induced MMP13 [93]. These in  vitro 
studies prompt further in vivo orthotopic studies 
to demonstrate the potential of these cytokines 
for cartilage repair in the most challenging 
scenarios.

A further interesting approach involved the 
modulation of the PGE2 signal through a specific 
E2 receptor agonist [5, 94]. In a first study, authors 
demonstrated successful cartilage tissue regenera-
tion in a rabbit orthotopic model through micro-
sphere-based release at 12-week follow-up. In a 
second study, the same authors reported a transient 
prevention of OA changes upon anterior cruciate 
ligament transection and subsequent intra-articu-
lar injection of the E2 receptor agonist [5, 94]. 
These studies highlighted the need for delivery 
systems capable of a long-term controlled release 
to harness the potential of a more targeted modula-
tion of the inflammatory environment.

In a recently published paper, Johnson et  al. 
[95] provided new insights for the control of 
chondrogenesis introducing kartogenin, a small 
molecule that promotes chondrocyte differentia-
tion, shows chondroprotective effect in vitro, is 
efficacious in two OA animal models, and may 
ultimately lead to a stem cell-targeted therapy for 
OA.  Most importantly, kartogenin selectively 
interacts with RUNX1, thus promoting hyaline 
cartilage formation, and does not activate RUNX2 
signaling, which would lead to an undesired 
hypertrophic differentiation.

Dahlberg and colleagues [96] published the 
first in human clinical trial of sprifermin (Merck 
kGA, Germany), a recombinant, truncated, non-
glycosylated form of human FGF18, tested as a 
disease-modifying OA drug. Their study revealed 
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no serious safety concerns for intra-articular 
administration of single and multiple ascending 
doses of rhFGF18 from 3 to 300 μg in knee OA 
patients scheduled for total knee replacement; nei-
ther sprifermin was systemically found, nor anti-
FGF18 antibodies were detected. Additionally, a 
1-year proof-of-concept trial examining multiple 
dose regimens up to 100 μg in 192 patients with 
less severe OA has recently been completed with 
encouraging results [97].

�Conclusions

All these experimental studies represent feasi-
ble and clinically compliant steps forward that 
can be easily implemented as an adjuvant to 
currently available procedures. Combining cell 
and tissue therapies with targeted therapies 
represents a valuable paradigm for next-gener-
ation cartilage regeneration strategies capable 
of reestablishing both a normal joint environ-
ment and a functional articular surface to 
extend the good results of cartilage restoration 
procedures both to chronic cartilage defects 
and to early OA.
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