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Clinical Orthobiological Approach 
to Acute Cartilage Injury:  
Pros and Cons
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40.1	 �Introduction

Articular cartilage has the ability to absorb stress, 
create low friction and high resistance to wear, 
which provide smooth joint movement and 
weight-bearing capabilities. To enable these spe-
cial properties, cartilage has a peculiar structure. 
Articular cartilage is composed of a small num-
ber of chondrocytes and extracellular matrix 
(ECM). Chondrocytes constitute approximately 
1% of the cartilage tissue and play a vital role in 
maintaining a healthy ECM. The ECM consists 
of a network of collagen fibrils with proteogly-
can. Type 2 collagen is the main component, with 
Type 9 and 11 constituting minor components. 
The structure of the articular cartilage is divided 
into four zones: the superficial, transition, deep, 
and calcified zone. Each zone has a different cell 
size, shape, number, and content, comprising dif-
ferent properties of ECM. The tidemark anchors 
cartilage tissue to the subchondral bone plate. 
Notably, cartilage has neither vascularity nor 
nerves, which make spontaneous repair difficult 
[1]. Thus, untreated cartilage defects, especially 
those greater than 1.5 cm in diameter, will even-
tually progress to osteoarthritis (OA). To prevent 
the progression of OA after cartilage injury, the 
diagnosis and choice of appropriate treatment in 
the acute phase of OA is crucial to the achieve-
ment of biological healing.

Acute cartilage injury occurs in association 
with joint trauma including sprain, dislocation, 
and fracture. In fact, not only cartilage defects 
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but also osteochondral fractures occur frequently, 
which means that both cartilage and subchondral 
bone conditions should be taken into consider-
ation. The subchondral bone plate plays an 
important role in cartilage metabolism, and a 
damaged subchondral bone plate no longer main-
tains cartilage homeostasis, which subsequently 
leads to loss of cartilage proteoglycan and glyco-
protein. The management of subchondral bone 
should be the focus of any cartilage repair strat-
egy. Accurate diagnosis of acute cartilage injury 
is important, in order to avoid further cartilage 
damage and loss of biological healing. However, 
acute cartilage lesions are difficult to diagnose 
because symptoms are not specific and often 
masked by injuries to surrounding tissues, for 
example, ligamentous injury or other intra-
articular pathologies [2, 3]. In addition, symp-
toms are often masked by more obvious and 
significant injuries like fractures. To diagnose 
acute cartilage injury, it is important to know its 
incidence, pathomechanism, and imaging fea-
tures. Various therapeutic trials have been carried 
out to achieve better results than with conven-
tional treatments.

40.2	 �Incidence of Cartilage Injury

Acute cartilage injury is often associated with 
joint injury including fracture, ligament injury, 
and dislocation. To be able to assess the extent of 
the cartilage injury, the incidence of joint-related 
cartilage injury should be understood. The inci-
dence and location of the chondral/osteochondral 
injury in various types of fractures have been 
reported. Cadaveric studies have revealed that 
osteochondral fractures in the knee occur in the 
medial femoral condyle, in the position of both 
knee extension and lateral rotation, or in knee 
flexion with medial rotation. Tibial plateau 
lesions occur in knee extension and medial rota-
tion at the medial plateau or in knee flexion and 
lateral rotation at the lateral plateau [4]. The inci-
dence of isolated osteochondral fractures in acute 
knee injuries is reported to be approximately 4%, 
all as full-thickness lesions which generally 
occur with hyperflexion injury [5]. The incidence 

of articular cartilage lesions as identified on 
arthroscopy is up to 20% in patients with hemar-
throses of the knee [6, 7]. The incidence of carti-
lage injury associated with ankle fracture is 
reported to be high. The incidence of lateral talar 
dome lesions in 50 patients undergoing surgical 
fixation of malleolar ankle fracture is approxi-
mately 38% [8]. Cartilage injury assessed by 
arthroscopy at open reduction internal fixation is 
up to 79% [9, 10]. Cartilage injury can be often 
seen in joint sprain, subluxation, and dislocation, 
including ligament injuries. In an ACL injury, 
bone bruising and cartilaginous damage to the 
lateral femoral condyle occur by valgus stress, 
causing a shearing force across the joint, and the 
incidence of osteochondral fractures with ACL 
injuries is reported to be as high as 80% [11, 12]. 
Patellar dislocation is also common with the 
occurrence of osteochondral fractures, with its 
incidence being approximately 70% [13, 14].

Articular cartilage injury in acute joint injury 
has been shown to occur frequently, so the exis-
tence of cartilage injury should be taken into con-
sideration during the management of acute joint 
injury.

40.3	 �Diagnosis/Imaging

Diagnostic imaging plays an important role in the 
assessment of the extent, instability, and progres-
sion of the lesion [15]. Cartilage injury is poorly 
visualized by standard radiograph. Even an osteo-
chondral fracture is not easily identified due to a 
small bone fragment associated with an articular 
cartilage fragment [16]. Standard arthroscopic 
radiography of the knee detected osteochondral 
lesions in only 32% of cases [14]. It is reported 
that up to 60% of lesions are missed on initial pre-
sentation after patella dislocation [17]. 
Osteochondral lesions in the talus are reportedly 
detected on radiograph in 69% of cases [18].

MRI and CT are superior to radiography  
for the detection of chondral/osteochondral 
lesions [19]. CT can detect small osteochondral 
fragments with high resolution images, but it is 
not able to depict bone marrow edema. On the 
other hand, MRI, especially short tau inversion 
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recovery (STIR) sequence, can detect bone 
edema with highly sensitivity [20]. MRI can 
detect articular cartilage defects in the knee with 
86% sensitivity and 97% specificity [21]. MRI 
can detect a femoral condyle lesion with the sen-
sitivity and specificity of 86–93% and 72–88%, 
respectively [22]. Regarding osteochondral 
lesion of the talar dome, the MRI is able to detect 
them with 95% sensitivity and 100% specificity 
[23]. In addition to high sensitivity and specificity 
for the detection of chondral/osteochondral 
lesions, MRI has the advantage of detecting other 
soft tissue abnormalities that are often associated 
with chondral/osteochondal injuries. Moreover, 
MRI can evaluate the stability of a chondral/
osteochondral fragment (Fig.  40.1). The sign of 
instability on MRI is the presence of a fluid signal 
interposed between the chondral/osteochondral 
fragment and the underlying bone, and extensive 
bone marrow edema at the donor bone and irregu-
larity of the articular surface [24]. However, MRI 
might overdiagnose or overestimate the extent of 
a chondral/osteochondral lesion or the size of a 
fragment due to bone edema, which may be more 
difficult to treat [25, 26].

40.4	 �Treatment

Although it has been reported that smaller lesions 
do not develop into advanced arthritis, chondral 
defects tend to progress extensively, leading to 
early-stage osteoarthritis. Chondral/osteochondral 
defects are treated surgically in many cases. 
However, the time frame for surgical treatment for 
an osteochondral fragment in the acute phase is 
tight because a loose osteochondral fragment 
swells, causing further cartilage degeneration. 
Moreover, a loose osteochondral fragment can 
damage the other cartilage surfaces in the joint. 
The most ideal treatment is the reattachment of the 
osteochondral fragment to the donor site, which 
can anatomically restore the cartilage surface. In 
the case of the fragment being unsalvageable, it 
should be removed and the donor site resurfaced 
by several techniques including microfracture, 
osteochondral graft, and the tissue-engineering 
technique. However, such repaired tissue covering 
the donor site differs from native cartilage in terms 
of its histological and mechanical properties. Each 
procedure has the pros and cons, and appropriate 
procedure should be chosen (Table 40.1).

a b

Fig. 40.1  Magnetic resonance imaging (MRI) of acute cartilage injury in patella. (a) Osteochondral fragment can be 
seen (arrow). (b) Cartilage defect on the patella (arrow)
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40.4.1	 �Fixation of Chondral/
Osteochondral Fragment

The large osteochondral fragment should be reat-
tached whenever possible. It is reported that a 
mean fragment size of 436  mm2 no longer 
responds to conservative treatment and that the 
prognosis of larger lesions is worse than that of 
smaller lesions [27, 28]. Fixation of osteochondal 
fragment can anatomically restore the articular 
cartilage surface. In a previous report about 
osteochondritis dissecans, it was revealed that the 
articular cartilage regenerated after fixation of an 
unstable lesion by histological analysis [29]. The 
osteochondral fragment can be fixed with metal-
lic screws with countersunk heads, a bone peg, 
and bioabsorbable pins. Metallic screws may 
damage the opposite side of articular cartilage 
surface and the removal of these screws may also 
damage the articular cartilage [30]. Therefore, 
using a bioabsorbable implant to fix the osteo-
chondral fragment has been popular [31, 32] 
(Fig. 40.2). Bioabsorbable implants are degraded 
and replaced by surrounding tissue, which leads 
to the biological healing of the lesions. However, 
several complications such as aseptic synovitis 
due to biological reactivity and back-out have 
been reported [33, 34].

When fixing the osteochondral fragment, heal-
ing of the lesion is expected to occur via the bone-
to-bone healing. However, a purely cartilaginous 

fragment, without bone attached, rarely exists. In 
this case, the fixation of a large chondral fragment 
is quite challenging but worthwhile since it has 
the potential to achieve the biological healing. 
Several reports have described the successful 
repair of an isolated chondral fragment involving 
acute trauma and stress reaction, using bioabsorb-
able pins, autograft bone pegs, and suture anchors 
[35–37]. With or without bone attached, fixation 
of the chondral/osteochondral fragment should be 
the main method of treatment when reconstruct-
ing the native cartilage surface.

40.4.2	 �Microfracture

Microfracture is a common procedure to produce 
a fibrocartilage repair surface in small chondral/
osteochondral fragments (Fig.  40.3). The sub-
chondral bone in the defect is perforated to allow 
bleeding and to form a clot which contains mes-
enchymal stem cells. These cells differentiate 
into chondrocytes and fibrochondrocytes and 
then form a fibrocartilage to fill the defects. A 
matrix of fibrocartilage mainly consists of Type 1 
collagen and other non-collagenous proteins, 
which means inferior mechanical properties 
compared to normal articular cartilage [38]. Due 
to these properties, repaired tissue in the defect 
gradually deteriorates and long-term results of 
microfracture have been reported to be poor [39]. 

Table 40.1  Pros and cons of cartilage repair procedures

Cartilage repair procedure for 
acute cartilage injury Pros Cons

Fixation of osteochondral 
fragment

• �Anatomical restoration by original 
cartilage surface

• Complications by fixation devices

Microfracture • �Quick, minimally invasive and short 
recovery time

• �Replacement by non-hyaline cartilage 
tissue

• Poor long term results
Cartilage Autograft 
Implantation System (CAIS)

• �Replacement by chondrocytes and 
cartilage matrix without cell culture

• Harvesting normal cartilage

Juvenile particulated cartilage 
allografts

• �Replacement by chondrocytes and 
cartilage matrix without cell culture 
and harvesting normal cartilage

• One step procedure

• Potential risk of disease transmission
• High cost
• �Inability to put the product back on the 

shelf once open
Autologous matrix-induced 
chondrogenesis (AMIC)

• No donor site morbidity
• �Possibility of all-transarthroscopic 

cartilage repair
• Low cost compared to ACI

• �Replacement by non-hyaline cartilage 
tissue

• �Influence of age-related MSC in donor 
site
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a b

Fig. 40.2  Articular cartilage injury of patella in accor-
dance with patella dislocation. (a) Osteochondral defect 
on the patella. (b) Osteochondral fragment was reattached 

using bioabsorbable pins, and osteochondral graft was 
implanted into the severe damaged area

a

c d

b

Fig. 40.3  Microfracture for small cartilage defect at lateral femoral condyle. (a) Cartilage defect. (b) After the removal 
of cartilage fragment. (c) Drilling using K-wire. (d) After the drilling
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Recently, the procedure of microfracture has 
been changed to improve the clinical outcome 
regarding the depth and diameter of the channel 
for marrow access, called second-generation 
microfracture. The penetration depth ranges from 
2 to 4 mm, being deeper than that of conventional 
microfracture, which hardly reaches the marrow-
rich subchondral spogiosa below the sclerotic 
subchondral bone plate [40]. However, a new 
microfracture procedure, which is able to create 
repaired tissue with the native cartilage proper-
ties, is also required.

Only if the chondral/osteochondral fragment 
is severely damaged an alternative procedure is 
used, such as osteochondral autograft or allograft, 
or autologous chondral implantation (ACI) for 
large cartilage defects [41]. For the treatment of 
cartilage defects, cell therapies using chondro-
cytes, MSCs, and other cell sources have been 
used [42, 43]. However, in the acute phase of car-
tilage injury, a point-of-care approach including 
the use of an “off-the-shelf” product is desirable. 
In addition to the conventional methods, cartilage 
fragment implantation without culture, a combi-
nation of various materials, as well as biological 
factors are applicable to accelerate and improve 
the repair process.

40.4.3	 �Minced Cartilage

Autologous chondrocytes may result in good 
repair tissue for the cartilage defect. However, 
the procedure with cell culture such as ACI is not 
appropriate for an acute cartilage defect. Using a 
cartilage fragment is an alternative procedure to 
repair a cartilage defect using chondrocytes with-
out cell culture. It is reported that coverage with 
minced cartilage from a large cartilage fragment 
for an acute cartilage defect achieves good clini-
cal results [44]. In this report, a large chondral 
fragment was retrieved and minced into multiple 
small fragments (<1 × 1 × 1 mm) using a scalpel. 
The cartilage defect was debrided and drilled into 
the subchondral bone using a 1.4 K-wire. Then, 
minced cartilage fragments were placed into the 
cartilage defect and fixed using fibrin glue. This 
concept was already proposed in the 1980s, and 

the procedure using minced cartilage has been 
modified and developed in combination with var-
ious materials to become CAIS (Cartilage 
Autograft Implantation System) [45, 46]. 
Moreover, the juvenile allograft cartilage frag-
ment has become available recently as an “off-
the-shelf” product. In an in  vitro study, 
chondrocytes have been proven to grow from car-
tilage fragments and the cartilage matrix [47, 48]. 
As for the size of cartilage fragment, a compara-
tive study with fish scales (diameter 8 mm, thick-
ness 0.3 mm), cubes with 2 mm side, cubes with 
1  mm side, and cartilage paste (<0.3  mm) 
revealed that cartilage paste exhibits good ECM 
production compared to other groups [49]. The 
optimum degree of chondral fragmentation for 
ECM production should be considered when 
mincing the cartilage fragment.

A clinical randomized control trial showed 
that at 2 years follow-up, the CAIS group showed 
significantly better results in the International 
Knee Documentation Committee (IKDC) score 
and Knee injury and Osteoarthritis Outcome 
Score (KOOS) when compared to the microfrac-
ture group [50]. In this study, the surgical proce-
dure of CAIS is as follows. The articular cartilage 
is arthroscopically harvested from a minimal 
load-bearing area. Then, the harvested cartilage 
is minced into 1–2 mm pieces. The minced carti-
lage is dispersed onto the biodegradable scaffold 
and fixed by fibrin glue. The scaffold is trimmed 
to adjust to the debrided cartilage defect and is 
implanted with the fixation using bioabsorbable 
staples.

Juvenile particulated cartilage allografts have 
been available for clinical use since 2007. 
Numerous clinical results of their use for carti-
lage defects of the knee and ankle joint have 
shown good outcomes at the short-term follow-
up [51–53]. Although this procedure could suc-
cessfully restore cartilage defects, there are 
several disadvantages including the potential risk 
of disease transmission, high cost, and the inabil-
ity to preserve the product for any length of time 
once open [52]. Cartilage repair using minced 
cartilage, CAIS, and Juvenile-particulated carti-
lage allografts is a relatively novel procedure, so 
clinical data to support this procedure is limited. 
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However, this procedure has the potential to be a 
good option to repair acute cartilage defects.

40.4.4	 �Microfracture with Biological 
Augmentations

Microfracture is widely recognized as a first-line 
procedure for cartilage repair although it has lim-
itations regarding lesion size and long-term func-
tional improvements. To enhance the results of 
microfracture, several procedures in combination 
with the collagen scaffold and biological alterna-
tives, such as platelet-rich plasma (PRP) and 
bone marrow aspirate concentration (BMAC) 
have been developed and their clinical results are 
displayed in Table  40.2. These one-step proce-
dures may also be applied for acute cartilage 
injuries.

40.4.5	 �Autologous Matrix-Induced 
Chondrogenesis (AMIC)

Autologous matrix-induced chondrogenesis 
(AMIC) has emerged as a relatively new tech-
nique modification of microfracture with a por-
cine collagen scaffold [54, 55]. The indications of 
AMIC are basically as follows: focal chondral or 
osteochondral defect with outerbridge classifica-
tion grade 3–4 with a defect size of approximately 
1.0–8.0 cm2 and patient age of 18–55 years old. 
The microfractured cartilage defect is covered 
with collagen scaffold to allow for the ingrowth of 
MSCs from the subchondral bone into the scaf-

fold, which induces differentiation into the chon-
drogenic lineage. AMIC has several advantages 
such as no donor-site morbidity, the possibility of 
all-transarthroscopic cartilage repair, and low cost 
compared to ACI. New trials using polyglycolic 
acid-hydroxyapatite (PGA-HA) scaffolds instead 
of porcine collagen scaffold have been conducted 
[56, 57]. Good clinical results of AMIC in mid-
term follow-ups have been reported [58, 59].

40.4.6	 �Bone Marrow Aspirate 
Concentration (BMAC)

MSC has been well recognized as an attractive 
cell source to regenerate repaired tissue due to its 
ability to multi-differentiate [60]. However, MSC 
only represents 0.0001–0.01% of mononuclear 
cells in bone marrow aspirates [61]. BMAC is 
commonly produced by the concentration of the 
bone aspirates. BMAC has plenty of growth fac-
tors including the platelet-derived growth factor 
(PDGF), transforming growth factor-beta  
(TGF-β), and bone morphogenetic proteins 
(BMP)-2 and BMP-7, which have anabolic and 
anti-inflammatory effects [62]. Good clinical out-
comes using BMAC for focal cartilage defect 
(>3 cm2) have been reported [63]. BMAC is used 
in combination with microfracture and scaffold 
including collagen I/III membrane although 
some cases omit the microfracture technique  
[64, 65]. Although BMAC is one of the most 
attractive sources for cartilage defect repair, sev-
eral aspects such as safety, amount of aspirate, and 
scaffold requirement need further exploration.

Table 40.2  Pros and cons of biological alternatives

Biological alternatives Pros Cons

Bone marrow aspirate 
concentration  
(BMAC)

• Easy harvesting and processing
• �Anabolic effects on chondrocytes by 

growth factors
• Anti-inflammatory effects
• �Possibility of arthroscopic implantation 

with scaffold

• Amount of the aspirate not yet unclear
• Need of scaffold not yet clear
• Influence of host condition not yet clear

Platelet rich  
plasma (PRP)

• Easy preparation and delivery technique
• �Stimulation chondrocytes proliferation and 

synthesis of collagen and proteoglycans
• Anti-inflammatory effects
• Nociceptive effect

• �Optimal platelet concentration, leukocyte 
content, growth factor and cytokines 
profile and yet clear

• No standardized dosing protocol
• Influence of host condition not yet clear
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40.4.7	 �Platelet-Rich Plasma (PRP)

Autologous platelet-rich plasma (PRP) has been 
reported as having plenty of cytokines, growth 
factors, and inflammatory mediators, which can 
stimulate the healing of cartilage, bone, and other 
soft tissues. Due to these properties and their easy 
administration, PRP has been widely used for the 
treatment of musculoskeletal disorders [66]. Since 
several studies revealed that PRP is able to stimu-
late chondrocyte proliferation and increase their 
synthesis of collagen and proteoglycans, the 
application of PRP for osteochondral pathologies 
(including osteochondral lesion and osteoarthri-
tis) has increased [67, 68]. In addition, PRP has 
anti-inflammatory and nociceptive effects for OA.

Although a range of PRP preparation methods 
have been reported, all methods are relatively 
easy and growing interest in PRP enables us to 
use the several commercially available PRP prep-
aration kits. With this availability of PRP prepara-
tion, simple-and-easy delivery techniques, such as 
an intra-articular injection of PRP for osteochon-
dral pathologies, is a notable advantage in clinical 
use. Indeed, the majority of studies using PRP for 
osteochondal pathology is for osteoarthritis. 
Overall, clinical scores improved in short-term 
although it remains unclear whether these clinical 
benefits can be maintained. Some previous reports 
on focal cartilage lesions of the knee and talus 
using PRP showed short-term benefits [69]. In the 
management of acute cartilage injury, administra-
tion of PRP as an adjunct to surgical treatment 
may provide a better clinical outcome. However, 
several problems still remain. Optimal platelet 
concentration, leukocyte content, growth factor, 
and cytokines profile, as well as influence of the 
host condition require elucidation. Moreover, a 
standardized dosing protocol should be estab-
lished. Further investigation to accumulate evi-
dence on PRP rationale is required.

40.5	 �Future Perspective

To improve the conventional methods or to 
develop a more efficient treatment for acute car-
tilage injury, several animal studies have been 

conducted. For acute cartilage injury, “point-of-
care” procedures are desirable so that growth 
factors and gene therapy can be focused on.

Growth factors have potent roles with the 
stimulation of cell proliferation and differentia-
tion through the specific binding of transmem-
brane receptors with target cells [70]. The effects 
of growth factors on cartilage repair have been 
investigated due to their strong anabolic effects. 
Among the growth factors, the transforming 
growth factor-β (TGF-β) super family, the fibro-
blast growth factor (FGF) family, and the insulin-
like growth factor (IGF) have been well 
investigated. In the TGF-β family, TGF-β1, 2, 
and 3 and bone morphologic proteins (BMP) 2, 4, 
and 7 play an important role in chondrogenesis 
and cartilage homeostasis regarding cartilage 
repair. TGF-β1, 2, and 3 are recognized as a 
potent stimulators of chondrogenesis [71]. An 
in vivo study demonstrated that using TGF-β1 in 
conjunction with a calcium alginate bead scaf-
fold was more successful in repairing the osteo-
chondral defect than the scaffold alone [72]. 
However, it has been reported that an intra-
articular injection of TGF-β may cause synovial 
fibrosis and endochondral ossification [73]. It 
should not be forgotten that TGF-β has a multi-
functional role in various cells, thus efficient car-
tilage defect application systems are needed.

The BMP family also has similar chondro-
genic effects to TGF-β. Therefore, application of 
BMPs for cartilage repair has been examined. 
Administration of BMPs into the cartilage defect, 
when combined with a scaffold such as alginate 
gel and collagen sponge, promotes an effective 
cartilage repair [74–77].

IGF-1 is an anabolic cartilage factor, which 
plays an important role in cartilage homeostasis 
[77]. In vivo studies have shown that administra-
tion of IGF-1 can result in good repair tissue in 
the cartilage defect but that its beneficial effect is 
increased when combined with other growth fac-
tors such as TGF-β and BMPs [78, 79]. To 
improve cartilage repair, further investigation 
into the combination of IGF-1 with other growth 
factors is needed.

The FGF family also plays an important role 
in cartilage homeostasis. Among the FGF family, 
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several in  vivo studies have shown that FGF-2 
has the potential to promote good cartilage repair 
due to its potent mitogenic effect on MSCs and 
chondrocytes [80]. Notably, administration of 
FGF-2 has been found to improve not only carti-
lage repair but also the subchondral bone 
condition [81, 82]. However, several in vivo stud-
ies reported that FGF-2 has the potential to 
induce OA-like features in chondrocytes [83]. 
The development of a proper growth factor deliv-
ery system to the cartilage defect site is required 
to preclude any potential adverse effects on clini-
cal cartilage repair.

Gene therapy has great potential as a therapeu-
tic strategy for various diseases including cartilage 
injury. Transgenes are delivered by viral or nonvi-
ral vectors, generating nascent proteins which are 
synthesized locally with post-translational modifi-
cation. Several animal studies using gene therapy 
have been conducted through two approaches. 
One approach is via direct gene transfer into the 
cartilage defect, whereby the recombinant adeno-
associated virus is loaded with FGF-2, and IGF-1 
and SOX9 are applied directly to the osteochon-
dral lesion [84–86]. Another approach involves the 
bone marrow clot being mixed with adenovirus 
vectors to become what is known as a “gene plug,” 
and is then transferred into the cartilage defect. 
Promising results of cartilage defect in vivo stud-
ies using a gene plug containing cDNA encoding 
anabolic factors such as BMP-2, Indian hedgehog 
protein, and TGFB1 have been reported [87–89]. 
The efficacy of genetically modified allogeneic 
chondrocytes in a large animal model has also 
been reported. Implantation of allogeneic chon-
drocytes following adenoviral transduction with 
IGF-1 into full-thickness chondral defects can 
achieve successful repair [90]. Clinical trials using 
allograft chondrocytes modified genetically have 
been already undertaken [91]. Human chondro-
cytes from a newborn with polydactyly transduced 
with a retrovirus encoding TGFB1, and cDNA 
were introduced into cartilage lesions with a fibrin 
scaffold. Transduced cells were irradiated prior to 
implantation due to the carcinogenic potential of 
the retrovirus. The effectiveness and safety of gene 
therapy for cartilage lesions should be carefully 
examined.

Recently, microRNAs (miRNAs) have been 
attracting attention due to their important role in 
the pathogenesis of diseases and their potential as 
therapeutic targets. MiRNAs are short (around 
22  nt) non-coding RNA which regulate gene 
expression at the post-transcriptional level. 
MiRNAs are conserved across the phyla and 
exhibit a tissue-specific or developmental stage-
specific expression pattern [92, 93]. Aberrant 
expressions of miRNAs causing several diseases 
have been explored, including those which cause 
cancer and systemic diseases such as rheumatoid 
arthritis [94, 95]. Regarding the development and 
disease pathogenesis of cartilage, evidence of the 
importance of miRNAs has drastically increased 
[96, 97]. MiRNAs can serve as a novel therapeu-
tic target molecule because the up- or downregu-
lation of endogenous miRNAs is possible. Using 
miRNA mimics can increase the function of 
endogenous miRNAs and synthetic complemen-
tary oligonucleotides of miRNA, miRNAs 
sponges, and small molecules for repression of 
transcription can be used to silence endogenous 
miRNAs. Many in  vivo studies have been con-
ducted into the administration of miRNA mimics 
or antisense for several disease models except for 
cartilage defects. Clinical trials targeting miR-
NAs in human diseases such as hepatitis C have 
been already conducted [98]. The identification 
of cartilage-specific miRNAs and the clarifica-
tion of their function will be accompanied by the 
anticipation of miRNA-based drug cartilage 
repair. Therapeutic trials using miRNA mimics in 
rat models have reported on ACL and meniscus 
injuries which accompany cartilage injury. An 
intra-articular injection of a miR-210 mimic, 
which is a potent inducer of angiogenesis, can 
promote the healing of the ACL and meniscus 
tear in a rat model [99, 100]. If these specific 
hurdles of miRNA-based drugs such as off-
target-effect are overcome, an effective therapeu-
tic strategy to target miRNAs for acute cartilage 
injury will be realized in the near future.

At present, multiple procedures for acute car-
tilage injury are present, but fixation of the chon-
dral/osteochondral fragment is the only procedure 
capable of regenerating articular cartilage. The 
biology of the articular cartilage must be fully 
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elucidated before cartilage repair technologies 
can advance. Accumulating evidence of experi-
mental studies on cartilage repair will enable us 
to develop a clinical application of novel proce-
dures for biological healing.
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