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Abstract. Energy efficiency has become an important measurement of
scheduling algorithms for Infrastructure-as-a-Service (IaaS) clouds. This
paper investigates the energy-efficient virtual machine scheduling prob-
lems in [aaS clouds where users request multiple resources in fixed inter-
vals and non-preemption for processing their virtual machines (VMs)
and physical machines have bounded capacity resources. Many previous
works are based on migration techniques to move on-line VMs from low
utilization hosts and turn these hosts off to reduce energy consumption.
However, the techniques for migration of VMs could not use in our case.
The scheduling problem is NP-hard. Instead of minimizing the number
used physical machines, we propose a scheduling algorithm EMinTRE-
LDTF to minimize the sum of total busy time of all physical machines
that is equivalent to minimize total energy consumption. In this paper,
we present the proved approximation in general and special cases of the
scheduling problem. Using Feitelson’s and Lublin99’s parallel workload
models in the Parallel Workloads Archive, our simulation results show
that algorithm EMinTRE-LDTF could reduce the total energy consump-
tion compared with state-of-the-art algorithms including Tian’s Mod-
ified First-Fit Decreasing Earliest, Beloglazov’s Power-Aware Best-Fit
Decreasing and Vector Bin-Packing Norm-based Greedy. Moreover, the
EMinTRE-LDTF has less total energy consumption compared with our
previous heuristic (e.g. MinDFT) in the simulations.

Keywords: Energy efficiency - Power-aware + Virtual machine - VM
placement - VM allocation - IaaS + Scheduling - Cloud computing

1 Introduction

An Infrastructure-as-a-Service (IaaS) cloud system provides users with com-
puting resources in terms of virtual machines (VMs) to run their applications
[2,3,12,16,24]. These IaaS cloud systems are often built from virtualized data
centers [2,3,24]. Power consumption in a large-scale data center requires multiple
megawatts [8,16]. Le et al. [16] estimate the energy cost of a single data center
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is more than $15M per year. As these data centers have more physical servers,
they will consume more energy. Therefore, advanced scheduling techniques for
reducing energy consumption of these cloud systems are highly concerned for any
cloud providers to reduce energy cost. Increasing energy cost and the need to
environmental sustainability address energy efficiency is a hot research topic in
cloud systems. Energy-aware scheduling of VMs in IaaS cloud is still challenging
[12,16,23,25,27].

Many previous works [3,4,20] proved that the virtual machine allocation is
NP-hard and proposed to address the problem of energy-efficient scheduling of
VMs in cloud data centers. They [3,4,20] present techniques for consolidating
virtual machines in cloud data centers by using bin-packing heuristics (such
as First-Fit Decreasing [20], and/or Best-Fit Decreasing [4]). They attempt to
minimize the number of running physical machines and to turn off as many
idle physical machines as possible. Consider a d-dimensional resource allocation
where each user requests a set of virtual machines (VMs). Each VM requires
multiple resources (such as CPU, memory, and 10) and a fixed quantity of each
resource at a certain time interval. Under this scenario, using a minimum number
of physical machines may not be a good solution. In a homogeneous environment
where all physical servers are identical, the power consumption of each physical
server is linear to its CPU utilization, i.e., a schedule with longer working time
will consume more energy than another schedule with shorter working time.

Table 1. Example showing that using a minimum number of physical servers is not
optimal. (*: demand resources are normalized to the maximum capacity resources of
physical machines).

VM ID | CPU* | RAM* | Network* | Starttime | Dur. (hour)
VM1 0.5 0.1 0.2 0 10
VM2 0.5 0.5 0.2 0 2
VM3 0.2 0.4 0.2 0 2
VM4 0.2 0.4 0.2 0 2
VM5 0.1 0.1 0.1 0 2
VM6 0.5 0.5 0.2 1 9

Our work studies increasing time and resource efficiency-based approach to
allocate VMs onto physical machines in other that it minimizes total energy
consumption of all physical machines. Each VM requests resource allocation in
a fixed starting time and non-preemption for the duration time. We present here
an example to demonstrate our ideas to minimize total energy consumption of
all physical machines in the VM placement with fixed starting time and duration
time. For example, given six virtual machines (VMs) with their resource demands
described in Table 1. Note that the maximum capacity of each resource is 1. In
the example, a bin-packing-based algorithm could result in a schedule S7 in which
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two physical servers are used: one for allocating VM1, VM3, VM4, and VM5;
and another one for allocating VM2 and VM6. The resulted total completion
time is (10 + 10) = 20h. However, in another schedule Sy in which where VMs
are placed on three physical servers, VM1 and VM6 on the first physical server,
VM3, VM4 and VM5 on the second physical server, and VM2 on the third
physical server, then the total completion time of the five VMs is only (10 + 2
+2) =14h.

This paper presents a proposed heuristic, denoted as EMinTRE-LDTF, to
allocate VMs that request multiple resources in the fixed interval time and
non-preemption into physical machines to minimize total energy consumption
of physical machines while meeting all resource requirements. Using numerical
simulations, we compare EMinTRE-LDTF with the state-of-the-art algorithms
include Power-Aware Best-Fit Decreasing (PABFD) [4], vector bin-packing
norm-based greedy (VBP-Norm-L2) [20], and Modified First-Fit-Decreasing-
Earliest (Tian-MFFDE) [26]. Using two parallel workload models [9,17] in the
Feitelson’s Parallel Workloads Archive [10], our simulation results show that
EMinTRE-LDTF could reduce the total energy consumption compared with
PABFD [4], VBP-Norm-L2 [20], and Tian-MFFDE [26]. Moreover, EMinTRE-
LDTF has less total energy consumption compared with MinDFT-LDTF [21] in
the simulations.

The rest of this paper is structured as follows. Section2 discusses related
works. Section 3 describes the energy-aware VM allocation problem with mul-
tiple requested resources, fixed starting and duration time. We also formulate
the objective of scheduling, and present our theorems. The proposed EMinTRE-
LDTF algorithm present in Sect.4. Section 5 discusses our performance eval-
uation using simulations. Section 6 concludes this paper and introduces future
works.

2 Related Work

The interval scheduling problems have been studied for many years with objec-
tive to minimizing total busy time. In 2007, Kovalyov et al. [15] has presented
work to describe characteristics of a fixed interval scheduling problem in which
each job has fixed starting time, fixed processing time, and is only processed in
the fixed duration time on a available machine. The scheduling problem can be
applied in other domains. Angelelli et al. [1] considered interval scheduling with
a resource constraint in parallel identical machines. The authors proved the deci-
sion problem is NP-complete if number of constraint resources in each parallel
machine is a fixed number greater than two. Flammini et al. [11] studied using
new approach of minimizing total busy time to optical networks application.
Tian et al. [26] proposed a Modified First-Fit Decreasing Earliest algorithm,
denoted as Tian-MFFDE, for placement of VMs energy efficiency. The Tian-
MFFDE sorts list of VMs in queue order by longest their running times first)
and places a VM (in the sorted list) to any first available physical machine that
has enough VM’s requested resources. Our VM placement problem differs from
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these interval scheduling problems [1,15,26], where each VM requires for multi-
ple resource (e.g. computing power, physical memory, network bandwidth, etc.)
instead of all jobs in the interval scheduling problems are equally on demanded
computing resource (i.e. each physical machine can process the maximum of g
jobs in concurrently).

Energy-aware resource management in cloud virtualized data centers is crit-
ical. Many previous research [3,4,7,14,25] proposed algorithms that consolidate
VMs onto a small set of physical machines (PMs) in virtualized datacenters to
minimize energy /power consumption of PMs. A group in Microsoft Research [20]
has studied first-fit decreasing (FFD) based heuristics for vector bin-packing to
minimize number of physical servers in the VM allocation problem. Some other
works also proposed meta-heuristic algorithms to minimize the number of physi-
cal machines. Beloglazov et al. [3,4] have presented a modified best-fit decreasing
heuristic in bin-packing problem, denoted as PABFD, to place a new VM to a
host. PABFD sorts all VMs in a decreasing order of CPU utilization and tends to
allocate a VM to an active physical server that would take the minimum increase
of power consumption. Knauth et al. [14] proposed the OptSched scheduling
algorithm to reduce cumulative machine up-time (CMU) by 60.1% and 16.7% in
comparison to a round-robin and First-fit. The OptSched uses an minimum of
active servers to process a given workload. In a heterogeneous physical machines,
the OptSched maps a VM to a first available and the most powerful machine
that has enough VM’s requested resources. Otherwise, the VM is allocated to
a new unused machine. In the VM allocation problem, however, minimizing the
number of used physical machines is not equal to minimizing total of total energy
consumption of all physical machines. Previous works do not consider multiple
resources, fixed starting time and non-preemptive duration time of these VMs.
Therefore, it is unsuitable for the power-aware VM allocation considered in this
paper, i.g. these previous solutions can not result in a minimized total energy
consumption for VM placement problem with certain interval time while still
fulfilling the quality-of-service.

Chen et al. [7] observed there exists VM resource utilization patterns. The
authors presented an VM allocation algorithm to consolidate complementary
VMs with spatial and temporal-awareness in physical machines. They introduce
resource efficiency and use norm-based greedy algorithm, which is similar to
in [20], to measure distance of each used resource’s utilization and maximum
capacity of the resource in a host. Their VM allocation algorithm selects a host
that minimizes the value of this distance metric to allocate a new VM. Our
proposed EMinTRE-LDTF uses a different metric that unifies both increasing
time and resource efficiency. In our proposed metric, the increasing time is the
difference between two completion time of a host after and before allocating a
VM.

Our proposed EMinTRE-LDTF algorithm that differs from these previous
works. Our EMinTRE-LDTF algorithm use the VM’s fixed starting time and
duration to minimize the total busy time on physical machines, and consequently
minimize the total energy consumption in all physical servers. To the best of
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our knowledge, no existing works that surveyed in [5,13,18,19] have thoroughly
considered these aspects in addressing the problem of VM placement.

3 Problem Description

3.1 Notations

We use the following notations in this paper:

vm;: The it" virtual machine to be scheduled.

M;: The j*" physical server.

S: A feasible schedule.

Pidle: The idle power consumption of a physical machine.

P The maximum power consumption of a physical machine.

P;(t): The power consumption of M; at a time point ¢.

ts;: The fixed starting time of vm,.

d;: The duration time of vm,;.

T: The maximum schedule length, which is the time that the last virtual
machine will be finished.

Fi+ The set of virtual machines that are allocated to A; in the whole
schedule.

T;: The total busy time (working time) of M.

e;: The energy consumption for running vm; in the physical machine that
vm; is allocated.

¢g: The maximum number of virtual machines that can be assigned to any
physical machine.

3.2 Problem Formulation

Consider the following scheduling problem. We are given a set of n virtual
machines ¥ = {vmg,...,vm,} to be scheduled on a set of m identical phys-
ical servers .# = {Mj,..., My}, each server can host a maximum number of
g virtual machines. Each VM needs d-dimensional demand resources in a fixed
interval with non-migration. Each vm; is started at a fixed starting time (ts;)
and is non-preemptive during its duration time (d;). Types of resource consid-
ered in the problem include computing power (i.e., the total Million Instruction
Per Seconds (MIPS) of all cores in a physical machine), physical memory (i.e.,
the total MBytes of RAM in a physical machine), network bandwidth (i.e., the
total Kb/s of network bandwidth in a physical machine), and storage (i.e., the
total free GBytes of file system in a physical machine), etc.

The objective scheduling is to find out a feasible schedule S to minimize
the total energy consumption of m physical servers. The objective scheduling is
presented as:

m n

Minimize (P x ZT] + Z e) (1)
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where T} is the total busy time of M. The P“¢ x T} is the minimum energy
consumption of M;, denoted as E;-”m, to keep it is on and active for during its
total busy time (T}), i.c., Ej*" = P'¢ x T;. The P* x 33" | Tj is sum of the
minimum energy consumption of m used physical servers. The 7} is defined as
the length of union of interval times of all VMs that are allocated to a physical
machine M;. Let _Z; be set of virtual machines that are allocated to M in the
whole schedule. T} is defined as following:

T; = len( U [tsi,ts; + d;]) (2)
vm,;":'/j

The scheduling problem has the following hard constraints, which are firstly
described in our previous work [21], as following:

— Constraint 1: Each VM is only processed by a physical server at any time with
non-migration and non-preemption.

— Constraint 2: Each VM does not request any resource larger than the maxi-
mum total capacity resource of any physical server.

— Constraint 3: The sum of total demand resources of these allocated VMs
is less than or equal to the total capacity of the resources of M;. Each
VM is represented as a d-dimensional vector of demand resources, i.e.
vm; = (x1, %2, .., %iq). Similarly, each physical machine is denoted as a
d-dimensional vector of capacity resources, i.e. M; = (yj,1,9;,2,---,Yj,4). Thus
we have Vr € {1,...,d},i € {1,2,...,n},j € {1,2,...,m}:

Z Ti,r S yj,r (3)
vm; € 7
where:
- x;r is resource of type r (e.g. CPU core, computing power, memory, etc.)
requested by the vm; (i=1, 2,..., n).
- y; r is capacity resource of type r (e.g. CPU core, computing power, memory,
etc.) of the physical machine M; (j =1,2,...,m).
With at least one type of resource (i.e., d > 1), the scheduling problem is
NP-hard [20].

3.3 Power Consumption Model

In this paper, we use the following energy consumption model proposed in [§]
for a physical machine. The power consumption of M;, denoted as P;(.), is
formulated as follow Vj € {1,2,...,m}:

Pj (t) _ Pidle + (Pmaw _ Pidle)Uj (t) (4)

in which Uj(t) is the CPU utilization of M; at time ¢, P‘¥¢ and P™ are the
idle power and the maximum power consumed at 0% and 100% CPU utilization
respectively of a physical machine (all physical machines are homogeneous).
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We assume that all cores in CPU are homogeneous, i.e. Vc = 1,2,..., PE; :
MIPS; .= MIPS;. The U;(t) is formulated as follow:

PE;
1 J
Uj(t) = (gm—se) S S mips;.. 5
]() (PE]XMIPS]J) . =, mips;, ()
c=1 vmy; J

The energy consumption of M; in the time period [t1, 2] is formulated as
follow:
ta
B = [ Bwma ®
1
where:
U;(t): The CPU utilization of M; at time ¢ and 0 < U;(t) < 1.
PE;: The number of processing elements (i.e. cores) of M;.
MIPS; . The maximum total computing power (in MIPS) of cth processing
element on M;.
mips; c: The allocated MIPS of the cth processing element to vm; by M;.

3.4 Preliminaries

Definition 1 (Length of intervals). Given a time interval I = [s, f], the
length of Tis len(I) = f — s. Extensively, to a set & of intervals, length of .7 is

len(F) =3 ey len(I).

Definition 2 (Span of intervals). For a set & of intervals, we define the span
of Z as span(.¥) =len(J &).

Definition 3 (Optimal schedule). An optimal schedule is the schedule that
minimizes the total busy time of physical machines. For any instance # and
parameter g > 1, OPT(_#,g) denotes the cost of an optimal schedule.

In this paper, we denote ¢ is set of time intervals that derived from given
set of all requested VMs. In general, we use instance _Z is alternative meaning
to a given set of all requested VMs in context of this paper.

Observations: Cost, capacity, span bounds. For any instance _#, which is
set of time intervals derived from given set of all requested VMs, and capacity
parameter g > 1, which is the maximum number of VMs that can be allocated
on any physical machine, the following bounds are held:

e The optimal cost bound: OPT(_#,g) < len( 7).
l
e The capacity bound: OPT( ¢, g) > M.
g
o The span bound: OPT(_#,g) > span(_ 7).
For any feasible schedule s on a given set of virtual machines, the total busy

time of all physical machines that are used in the schedule s is bounded by the
maximum total length of all time intervals in a given instance _#. Therefore,
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the optimal cost bound holds because OPT(_#, g) = len(_#) iff all intervals are
non-overlapping, i.e., VI, Io € ¢ then I NI, = 0.

l
Intuitively, the capacity bound holds because OPT(_#,g) = M iff, for

each physical server, exactly g VMs are neatly scheduled in that physical server.
The span bound holds because at any time ¢ € |J _# at least one machine is
working.

3.5 Theorems

Theorem 1. Given a cloud system with a set of identical physical machines,
assume that the power consumption of a physical machine is P(u) = Pl +
(pmaz — pidle)y, where P js the idle power consumption, P™® is the maxi-
mum power consumption, and u is the CPU utilization in percentage (0 < u < 1).
We denote e;; is energy consumption of the virtual machine it" that is sched-
uled or mapped on the physical machine j**. If the utilization u of the mapped
virtual machine is a constant, then the energy consumption of each wvirtual
machine, e;;, is independent of any mapping (i.e. any schedule). We have
Vie{l,...,n},j€{l,...,m} :e;; = e;.

Proof. Recall that the energy consumption is formulated in Eq. (6), and power
consumption, P(u), is a linear function of CPU utilization, u. Therefore Vi €
{1,...,n},5 € {1,...,m}, we see that e;; is the integral of the P(u) over any
time interval [t1, t2], and is the same value, denoted as e;.

From Theorem 1, we can imply the following theorem.

Theorem 2. Minimizing total energy consumption in (1) is equivalent to min-
imizing the sum of total busy time of all physical machines (Z;":l T;).

Minimize (P"¢ x ZTj + Zei) ~ Minimize (Z T;) (7)
j=1 =1 j=1
Proof. According to the objective function described in (1), P is constant
while e; is independent of any mapping (i.e. any schedule).

Based on the above observations, we propose our energy-aware algorithms
denoted as EMinTRE-LDTF which is presented in the next section.

Definition 4. For any schedule we denote by _Z; the set of virtual machines
allocated to the physical machine M; by the schedule. Let T; denote the total
busy time of M; is the span of #;, i.e., T; = span(_#;).

Definition 5. For any instance #, the total busy time of the entire schedule
of Z computed by the algorithm H, which denoted as costH(/), is defined as:

span( Z)
cost!(7) = /0 N (1)t (8)
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in which N (t) is the number of physical machines used at the time t by the
algorithm H.

Definition 6. For any instance ¢ and parameter g > 1, EOPT(j,g), which
is denoted as the minimized total energy consumption of all physical machines
in an optimal schedule for the ¢, is formulated as: EOTT( ¢ g) = Pidle .

OPT( 7. 9) + Xi_y €i-

Theorem 3. For any instance ¢, the lower and upper of the total energy con-
sumption in an optimal schedule are bounded by: P*¥e. len(% < EOPT(/, g) <
pmerlen( 7).

Proof. For any instance ¢, let OPT(_#, g) be the total busy time of the optimal
schedule for the ¢, and let E* be the total energy consumption for the optimal
schedule for the #.

The total energy consumption of an optimal schedule needs to account
for all physical machines running during OPT(_#,g). We have: E* = pidle .

OPT(/,Q) + Z?ZI €i-
From Definition 6, we have EOPT(_¢ . g) = E*.

Apply the capacity bound in Theorem 3.4, we have OPT(_#,g) > %.
Thus, B* > pidle. enlZ) 570 e

Recall that the energy consumption of each virtual machine is non-negative,
thus e; > 0. Therefore, E* > Pidle. %. Thus

EOPT(j7g) > pide le”(g/) 9)

We prove the upper bound of the minimized total energy consumption
as following. Apply the optimal cost bound in the Observations, we have

OPT( #,g) < len( 7).
Thus

E* < P den( 7) + ) e (10)
1=1

Apply the linear power consumption as in the Egs. (4) and (6), the energy
consumption of each i-th virtual machine in period time of [ts;,ts; + d;] that
denotes as ¢; is:

ts;+d;
e = / Pj Uy, )dt = (P]"** — Pj%¢) - Uy, - d;
ts;
where Uy, is the percentage of CPU usage of the i-th virtual machine on a j-th
physical machine.
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Because any virtual machine always requests CPU usage lesser than or equal
to the maximum total capacity CPU of every physical machine, i.e., Uy, < 1.

= ¢; < (P — PJ¥°) - d;

Note that in this proof, all physical machines are identical with same power
consumption model thus P and P'¥¢ are the maximum power consumption
and the idle power consumption of each physical machine. Thus:

e; < (Pmaz o Pidle) . dz

Let I; is interval of each i-th virtual machine, I, = [ts;,ts; + d;]. By the
definition the length of interval is len(I;) = d; that is duration time of each i-th
virtual machine. Thus:

e < (Pmaz o Pidle) . len(IZ)

The total energy consumption of n virtual machines is formulated as:

Z e; < Z Pmaw Pzdle len <:> Z e; < Pmaw Pzdle Z len

i=1

@Ze,_ (pmax — pidley . jen( 7). (11)

From Equation (10), we have:
E* < pidie len(/) + Zé_l e, B* < pidle len(/) + (Pmaw N Pidle) . len(/)

E* < (Pidle + (Pmaa: _ Pidle)) . len(/) (12)
From the Equation (12):

E* < P™% . len( 7) (13)
& EOPT( 7,9) < P™7 -len( #) (14)
From both of two Egs. (9) and (14), we have:
Pidle . len(f) < EOPT(/,Q) < pmaz len(/) (15)
g

We prove the theorem.
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4 Scheduling Algorithm

4.1 EMinTRE-LDTF Scheduling Algorithm

In this section, we present our energy-aware scheduling algorithm, namely,
EMinTRE-LDTF. EMinTRE-LDTF presents a metric to unify the increasing
time and estimated resource efficiency when mapping a VM onto a physical
machine. Then, EMinTRE-LDTF will choose a host that minimizes the met-
ric. Our previous MinDFT-LDTF and MinDFT-LFT, which use core algorithm
MinDFT in [21], only focused on minimizing the increasing time when map-
ping a VM onto a physical machine. MinDFT-LDTF sorts the list of VM oder
by longest duration time first, and MinDFT-LFT sorts the list of VM oder by
latest finishing time first. Algorithm EMinTRE-LDTF additionally considers
resource efficiency during an execution period of a physical machine in order to
fully utilize resources in a physical machine. Algorithm EMinTRE-LDTF differs
from EMIinRET [22] in the equation of TRE and EMinTRE-LDTF does not
have swapping step as in EMinRET.

Based on Eq. 5, the utilization of a resource r (resource r can be CPU, phys-
ical memory, network bandwidth, storage, etc.) of the M, denoted as U, is

formulated as: v
Ujpr= > = (16)

sen; Jr

where n; is the list of virtual machines that are assigned to the M;, V; , is the
amount of requested resource r of the virtual machine s (note that in our study
the value of V; . is fixed for each user request), and H; , is the maximum capacity
of the resource r in M;.

Inspired by the work from Microsoft research team [7,20], the resource effi-
ciency of a physical machine j**, denoted by RE;, is Norm-based distant [20]
of two vectors: normalized resource utilization vector and unit vector 1. The
resource efficiency is formulated as:

RE; = > ((1-Uj,) x w,)? (17)
rex

where R is the set of resource types in a host (#Z = {cpu, ram, netbw, io, storage})
and w, is weight of resource r in a physical machine.

In this paper, we propose a unified metric for increasing time and resource
efficiency of the host j-th that is calculated as:

RE; iftdiff — 0.
TRE: — \/i’ A
’ {(t:’)dfsgg X wT:time)m, if t4iff £ 0.

EMinTRE-LDTF chooses a physical host that has a minimum value of the
TRE metric to allocate for a VM. We present the pseudo-code of EMinTRE-
LDTF in Algorithm 1. EMinTRE-LDTF has two (2) steps: firstly, EMinTRE-
LDTF sorts the list of VMs by longest duration time first, and secondly,

(18)
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Algorithm 1. EMinTRE-LDTF: Energy-Aware Minimizing Resource Effi-
ciency - Time

1: function EMINTRE-LDTF

2: Input: vmList - a list of virtual machines to be scheduled, hostList - a list of physical

servers
Output: a feasible schedule or null
vmList = sortVmListByOrderLongestDurationTimeFirst( vmList ) > 1
m = hostList.size(); n = vmList.size();
T(j] = 0, Vj € [1,m]
for i =1 ton do > on the VMs list
vm = vmList.get(i)
allocatedHost = null
T1 = sumTotalHostCompletionTime( T )
minTRE = +oco
for j =1 to m do > on the hosts list
host = hostList.get( j )
hostVMList = sortVmListByOrder( host.getVms(), order=[starttime, finishtime])
if host.checkAvailableResource( vin ) then

preTime = T host.id ]
T|[ host.id ] = host.estimateHostTotalCompletionTime( vm )
T2 = sumTotalHostCompletionTime( T )
diff Time = Math.max( T2 - T1, 0)
TRE = EstimateMetricTimeResEff( diffTime, host )
if (minTRE > TRE ) then
minTRE = TRE
allocatedHost = host

DR DD DD DD DD DN = = = = = = =
e N e R R R R TR S R

end if
T[ host.id | = preTime > Next iterate over the hostList and choose the host
that minimize the value of different time and resource efficiency
27: end if
28: end for
29: if (allocatedHost != null) then
30: allocate the vm to the host
31: add the pair of vm (key) and host to the mapping
32: end if
33: end for
34: return mapping

35: end function
36: sumTotalHostCompletionTime(T[]) = >0, Tj > T[l...m]: Array of total completion times
of m physical servers

EMinTRE-LDTF schedule the first VM in the sorted list of VMs to a host
that has the minimum of the TRE. The EMinTRE-LDTF solves the scheduling
problem in time complexity of &(n x m x ¢) where n is the number of VMs to be
scheduled, m is the number of physical machines, and ¢ is the maximum number
of allocated VMs in the physical machines M;,Vj =1,2,...,m.

4.2 Approximation Algorithm for General Case

In this section, we claim that algorithm EMinTRE-LDTF for general instance
yields its approximation ratio are g, where g is the maximal number of virtual



136 N. Quang-Hung et al.

Algorithm 2. Estimating the metric for increasing time and resource efficiency
1: function ESTIMATEMETRICTIMERESEFF

weights[] < Read resource weights from configuration file

Calculate the different time and resource efficiency metric for host j denoted as TRE
as in the Equaltion (18)
11: return TRE
12: end function

2: Input: (t%SF host) - t4F7 is a different time, host is a candidate physical machine
3: Output: TRE - a value of metric time and resource efficiency

4: Set Z={cpu, ram, netbw, io, storage, time}

5: j = host.getId(); n; = host.getVMList();

6: for r € Z do

T Calculate the resource utilization, Uj ;- as in the Equaltion (16).

8: end for

9:

10:

machines can be assigned to each physical machine. EMinTRE-LDTF sorts the
list of virtual machines in order of their longest duration time first.

Theorem 4. For any instance ¢, EMinTRE-LDTF is a g-approximation algo-
rithm where g is the maximal number of virtual machines can be assigned to
each physical machine, i.e. the total busy time of schedule for ¢ outputted by
EMinTRE-LDTF is the mazimum g times the total busy time of optimal sched-
ule. We denote EMinTRE — LDTF(_#) is cost of algorithm EMinTRE-LDTF
for a given instance # that is defined in the Definition 5. Formally,

EMinTRE — LDTF( 7)< g-OPT( 7). (19)

Proof. Let N(t) denote the number of virtual machines that could be placed at
time t. Let N*(¢) denote the number of used physical machines at time ¢ in a
schedule that is resulted by algorithm EMinTRE-LDTF, and NPT (t) denotes
the number of machines used at time ¢ in an optimal schedule.

For any time ¢ > 0, each of using N (t) physical machines has at least one
allocated virtual machine, i.e., N(t) > N (t). Clearly, at any time ¢ > 0 and
g>1, NOPT(¢) > N@) _ NH(t)

The total busy time of the entire schedule of an instance _# denoted as
EMinTRE — LDTF(_#) is calculated by taking the integral of N (t) with all
values of ¢ € [0, span(/)} Thus, we have:

NOPT(3) > NT (t) s NH(t) < g- NOPT(¢)

span( 7 ) span( 7 )
= [ NH@dt<g- [ NOFPT(t)dt
0 0

<= EMinTRE — LDTF( 7)< g-OPT( 7)

Thus, by applying the same reasoning to other algorithms such as EMinTRE-
LDTF, we have:
EMinTRE — LDTF( 7)<g-OPT( ¢)
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4.3 Approximations for Special Cases

Proper Interval Graphs. In this section we consider instances in which no
virtual machine’s time interval is properly contained in another. The intersec-
tion graphs for such instances are known as proper interval graphs. Algorithm
EMinTRE-LDTF for proper interval graphs includes two steps. In the first step,
the list of virtual machines is sorted by their earliest starting time first. In
the second step, each virtual machine is placed at the currently filled physical
machine so that TRE metric of the physical machine is minimized, unless the
placement violates the hard constraint on capacity of the physical machine, in
which case a new physical machine is opened.

Theorem 5. Algorithm EMinTRE-LDTF yields a (3 — %) for proper interval
graphs, where g is the mazimum number of virtual machines that could be placed
on a physical machine in satisfying all their resource requirement

Proof. Let N(t) denote the number of virtual machines that could be placed at
time t. Let N*(t) denote the number of used physical machines at time ¢ in
a schedule that is resulted by algorithm EMinTRE-LDTF (H), and NOFT(¢)
denotes the number of machines used at time ¢ in an optimal schedule (OPT).

Theorem 6. (Proposition). For any t, N(t) > (N2 (t) — 2)g + 2.

Proof. For a given t > 0, let m = N!(t) denote number of used physi-
cal machines at time ¢. There are m — 2 additional used machines denote as
Ms, ..., M,,_1. The first machine M; has at least one virtual machine that is
placed on the M;, and other machines Mo, ..., M,,_1 are assigned fully g virtual
machines on each, and the m-th machine M,, is assigned at least one virtual
machine. Since the graph is proper, suppose that the first machine processes at
time ¢ one virtual machine u, any virtual machine v is placed to another machine
starts after the v and ends after w, thus v is running at time ¢. With m used
physical machines at time ¢, the number of running virtual machines at time ¢
is at least (m — 2)g + 2. Therefore N(t) > (m — 2)g + 2.

For any ¢, NOPT(¢) > %. Applying the proposition, we have at any t,
N(t) = (N (t) - 2)g +2

> (NH () —2)g+2

NOPT t
(t) 7

Recall g > 0, thus

NH () < NOPT (1) +2 — 2
g

The total busy time of entire schedule of ¢ is:

span( 7)
EMinTRE — LDTF( ¢) = / N (t)dt
0
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span(_#) 2
EMinTRE — LDTF( #) < / (NOFT(t) +2 — Z)dt
0 g

EMinTRE — LDTF( ¢) < OPT(_#) + (2 — 3) Cspan( ) (20)

With related to the span bound in Definition5, we have OPT( 7) >
span(_#) thus inequality (20) equivalent to:

EMinTRE — LDTF( 7) <OPT(Z)+ (2—--)-OPT( 7)

EMinTRE — LDTF(j)
OPT( 7)

This gives the statement of the Theorem 5.

<3-

2
g
2
- (21)
9

Theorem 7. If all virtual machines are homogeneous and each physical machine
processes only one virtual machine then the EMinTRE-LDTF algorithm yields
an optimal solution for proper interval graphs.

Proof. In case all virtual machines are homogeneous and each physical machine
processes only one virtual machine, thus k = 1 and g = 1. We have EMinTRE —
LDTF(_¢)> OPT(_¢#)and apply Theorem 5, thus EMinTRE—-LDTF( ) =
OPT( 7).

5 Performance Evaluation

5.1 Algorithms
In this section, we study the following VM allocation algorithms:

— PABFD, a power-aware and modified best-fit decreasing heuristic [3,4]. The
PABFD sorts the list of VM; (i=1, 2,..., n) by their total requested CPU
utilization, and assigns new VM to any host that has a minimum increase in
power consumption.

— VBP-Norm-L2, a vector packing heuristics that is presented as Norm-based
Greedy with degree 2 [20]. Weights of these Norm-based Greedy heuristics use
FFDAvgSum which are exp(z), which is the value of the exponential function
at the point x, where z is average of sum of demand resources (e.g. CPU,
memory, storage, network bandwidth, etc.). VBP-Norm-L2 assigns new VM
to any host that has minimum of these norm values.

— MinDFT-LDTF and MinDFT-LFT: core of both MinDFT-LDTF and
MinDFT-LFT algorithms is MinDFT [21]. MinDFT-LDTF sorts the list of
VM; (i=1, 2,..., n) by their starting time (ts;) and respectively by their fin-
ished time (ts; + dur;), then MinDFT-LDTF allocates each VM (in a given
sorted list of VMs) to a host that has a minimum increase in total comple-
tion times of hosts. MinDFT-LFT differs MinDFT-LDTF in sorting the list of
VMs, MinDFT-LFT sorts the list of VMs by their respectively finished time
in latest finishing time first.
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— EMinTRE-LDTF, the algorithm is proposed in the Sect.4. EMinTRE-LDTF
sorts the list of VMs (input) by VM’s longest duration time first and host’s
allocated VMs by its finishing time and place a VM to any physical machine
that minimizes time-resource efficiency (T'RE) metric.

5.2 Methodology

We evaluate these algorithms by simulation using the CloudSim [6] to create a
simulated cloud data center system that has identical physical machines, het-
erogeneous VMs, and with thousands of CloudSim’s cloudlets [6] (we assume
that each HPC job’s task is modeled as a cloudlet that is run on a single VM).
The information of VMs (and also cloudlets) in these simulated workloads is
extracted from two parallel job models are Feitelson’s parallel workload model
[9] and Lublin99’s parallel workload model [17] in Feitelson’s Parallel Workloads
Archive (PWA) [10]. When converting from the generated log-trace files, each
cloudlet’s length is a product of the system’s processing time and CPU rating
(we set the CPU rating is equal to included VM’s MIPS). We convert job’s sub-
mission time, job’s start time (if the start time is missing, then the start time
is equal to sum of job’s submission time and job’s waiting time), job’s request
run-time, and job’s number of processors in job data from the log-trace in the
PWA to VM’s submission time, starting time and duration time, and number of
VMs (each VM is created in round-robin in the four types of VMs in Table 2 on
the number of VMs). Eight (08) types of VMs as presented in the Table2 are
used in the [26] that are similar to categories in Amazon EC2’s VM instances:
high-CPU VM, high-memory VM, small VM, and micro VM, etc. All physical
machines are identical and each physical machine is a typical physical machine
(Hosts) with 16 cores CPU (3250 MIPS/core), 136.8 GBytes of available physical
memory, 10 Gb/s of network bandwidth, 10 TBytes of available storage. Power
model of each physical machine is 175 W at idle power and 250 W at maximum
power consumption (the idle power is 70% of the maximum power consump-
tion as in [3,4,8]). In the simulations, we use weights as following: (i) weight of
increasing time of mapping a VM to a host: {0.001, 0.01, 1, 100, 3600}; (ii) all
weights of computing resources (e.g. number of MIPS per CPU core, physical

Table 2. Eight (08) VM types in simulations.

VM type | MIPS | Cores | Memory (Unit: MBytes) | Network (Unit: Mbits/s) | Storage (Unit: GBytes)
Type 1 2500 |8 6800 100 1000

Type 2 2500 2 1700 100 422.5

Type 3 3250 8 68400 100 1000

Type 4 3250 |4 34200 100 845

Type 5 3250 2 17100 100 422.5

Type 6 2000 |4 15000 100 1690

Type 7 2000 |2 7500 100 845

Type 8 | 1000 |1 1875 100 211.25
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Table 3. Information of a typical physical machine (host) with 16 cores CPU (3250
MIPS/core), 136.8 GBytes of available physical memory, 10 Gb/s of network band-
width, 10 TBytes of storage and idle, maximum power consumption is 175, 250 (W).

Type | MIPS | Cores | Memory (Unit: | Network (Unit: | Storage (Unit: | P*#€ (Unit: | P™%® (Unit:
MBytes) Mbits/s) GBytes) Watts) Watts)
M1 3250 16 140084 10000 10000 175 250

Table 4. The normalized total energy consumption. Simulation results of scheduling
algorithms solving scheduling problems with 12681 VMs and 5000 physical machines
(hosts) using Feiltelson’s parallel workload model [9].

Algorithms #Hosts | #VMs | Energy (KWh) Norm. energy
PABFD 5000 12681 | 1,055.42 1.598
VBP-Norm-L2 5000 12681 | 1,054.69 1.597
Tian-MFFDE 5000 12681 660.30 1.000
MinDFT-LDTF | 5000 12681 603.90 0.915
MinDFT-LFT 5000 12681 503.43 0.762
EMinTRE-LDTF | 5000 12681 496.55 0.752

Table 5. The normalized total energy consumption. Simulation results of scheduling
algorithms solving scheduling problems with 29,177 VMs and 10,000 physical machines
(hosts) using Feiltelson’s parallel workload model [9].

Algorithms #Hosts | #VMs | Energy (KWh) | Norm. energy
PABFD 10000 | 29177 |2261.878 1.540
VBP-Norm-L2 10000 | 29177 |2260.615 1.539
Tian-MFFDE 10000 | 29177 |1468.409 1.000
MinDFT-LDTF | 10000 | 29177 |1373.764 0.936
MinDFT-LFT 10000 | 29177 | 1109.852 0.756
EMinTRE-LDTF | 10000 | 29177 |1092.365 0.744

memory (RAM), network bandwidth, and storage) are equally to 1. We sim-
ulate on combination of these weights. The total energy consumption of each
EMinTRE-LDTF is the average of five times simulation with various weights of
increasing time (e.g. 0.001, 0.01, 1, 100, or 3600) (Tables4, 5, 6 and 7).

We choose Modified First-Fit Decreasing Earliest (denoted as Tian-MFFDE)
[26] as the baseline because Tian-MFFDE is the best algorithm in the energy-
aware scheduling algorithm to time interval scheduling. We also compare our
proposed VM allocation algorithms with PABFD [4] because the PABFD is a
famous power-aware best-fit decreasing in the energy-aware scheduling research
community, and two vector bin-packing algorithms (VBP-Norm-L1/L2) to show
the importance of with/without considering VM’s starting time and finish time
in reducing the total energy consumption of VM placement problem.
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Table 6. The normalized total energy consumption. Simulation results of scheduling
algorithms solving scheduling problems with 8847 VMs and 5000 physical machines
(hosts) using Lublin99’s parallel workload model [17].

Algorithms #Hosts | #VMs | Energy (KWh) | Norm. energy
PABFD 5000 8847 |460.664 1.601
VBP-Norm-L2 5000 8847 | 453.229 1.575
Tian-MFFDE 5000 8847 | 287.779 1.000
MinDFT-LDTF | 5000 8847 | 263.860 0.917
MinDFT-LFT 5000 8847 | 232.286 0.807
EMinTRE-LDTF | 5000 8847 |220.675 0.767

Table 7. The normalized total energy consumption. Simulation results of scheduling
algorithms solving scheduling problems with 19853 VMs and 5000 physical machines
(hosts) using Lublin99’s parallel workload model [17].
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Algorithms #Hosts | #VMs | Energy (KWh) | Norm. energy
PABFD 5000 19853 | 3107.78 1.424
VBP-Norm-L2 5000 19853 | 3106.56 1.423
Tian-MFFDE 5000 19853 | 2182.54 1.000
MinDFT-LDTF | 5000 19853 | 1927.52 0.883
MinDFT-LFT 5000 19853 | 1746.12 0.800
EMinTRE-LDTF | 5000 19853 | 1485.13 0.680
1.598 1.597
1.000
“0g1s
I I .............. 0762, . 0.752
PABFD VBP-Norm-L2 Tian-MFFDE MinDFT-LDTF MinDFT-LFT EMinTRE-LDTF

Fig. 1. The normalized total energy consumption compare to Tian-MFFDE. Result of
simulations with Feitelson’s Parallel Workload Archive Model [9] that includes 1,000
jobs have total of 12,681 VMs.
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Fig. 2. The normalized total energy consumption compare to Tian-MFFDE. Result of
simulations with Feitelson’s parallel workload model [9] that includes 2,000 jobs have

total of 29,177 VMs.
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Fig. 3. The normalized total energy consumption compare to Tian-MFFDE. Result of
simulations with Lublin99’s parallel workload model [17] that includes 1,000 jobs have
total of 8,847 VMs.

5.3 Results and Discussions

The Tables4 and 5 show simulation results of scheduling algorithms solving
scheduling problems with 12681 VMs - 5000 physical machines (hosts) and 29,177
VMs - 10,000 physical machines (hosts), in which VM’s data is converted from
the Feiltelson’s parallel workload model [9] with 1000 jobs and 2000 jobs. The
Tables 6 and 7 show simulation results of scheduling algorithms solving schedul-
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Fig. 4. The normalized total energy consumption compare to Tian-MFFDE. Result of
simulations with Lublin99’s parallel workload model [17] that includes 2,000 jobs have
total of 19,853 VMs.

ing problems with 8847 VMs - 5000 physical machines (hosts) and 19853 VMs
- 5000 physical machines (hosts), in which VM’s data is converted from the
Lublin99’s parallel workload model [17].

Four (04) figures include Figs.1, 2, 3, and 4 show bar charts comparing
energy consumption of VM allocation algorithms that are normalized with the
Tian-MFFDE. None of the algorithms use VM migration techniques, and all
of them satisfy the Quality of Service (e.g. the scheduling algorithm provisions
maximum of user VM’s requested resources). We use total energy consumption
as the performance metric for evaluating these VM allocation algorithms.

Simulated results show that, compared with Tian-MFFDE [26] EMinTRE-
LDTF can reduce the total energy consumption by average 26.5%. EMinTRE-
LDTF also can reduce the total energy consumption in compared with PABFD
[4], VBP-Norm-L2 [20] and MinDFT-LDTF, MinDFT-LFT.

6 Conclusions and Future Work

In this paper, we formulated an energy-aware VM allocation problem with mul-
tiple resource, fixed interval and non-preemption constraints. We also discussed
our key observation in the VM allocation problem, i.e., minimizing total energy
consumption is equivalent to minimize the sum of total completion time of all
physical machines (PMs). Our proposed algorithm EMinTRE-LDTF can reduce
the total energy consumption of the physical servers compared with the state-of-
the-art algorithms in simulation results using two (02) parallel workload models
[9,17]. Algorithm EMinTRE-LDTF is proved g approximations in general case
and (3 — 2/g) in proper interval graphs.
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As future work, we are developing EMinTRE-LDTF into a cloud resource
management software (e.g. OpenStack Nova Scheduler). Additionally, we are
working on IaaS cloud systems with heterogeneous physical servers and job
requests consisting of multiple VMs using EPOBF [23]. We are studying the
use of Machine Learning techniques to choose the right weights of time and
resources (e.g. computing power, physical memory, and network bandwidth).
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