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Abstract. Strategic network formation arises in settings where agents
receive some benefit from their connectedness to other agents, but also
incur costs for forming these links. We consider a new network formation
game that incorporates an adversarial attack, as well as immunization or
protection against the attack. An agent’s network benefit is the expected
size of her connected component post-attack, and agents may also choose
to immunize themselves from attack at some additional cost. Our frame-
work can be viewed as a stylized model of settings where reachability
rather than centrality is the primary interest (as in many technological
networks such as the Internet), and vertices may be vulnerable to attacks
(such as viruses), but may also reduce risk via potentially costly mea-
sures (such as an anti-virus software).

Our main theoretical contributions include a strong bound on the edge
density at equilibrium. In particular, we show that under a very mild
assumption on the adversary’s attack model, every equilibrium network
contains at most only 2n−4 edges for n ≥ 4, where n denotes the number
of agents and this upper bound is tight. We also show that social welfare
does not significantly erode: every non-trivial equilibrium with respect
to several adversarial attack models asymptotically has social welfare at
least as that of any equilibrium in the original attack-free model.

We complement our sharp theoretical results by a behavioral exper-
iment on our game with over 100 participants, where despite the com-
plexity of the game, the resulting network was surprisingly close to
equilibrium.

1 Introduction

In network formation games, distributed and strategic agents receive benefit from
their connectedness to others, but also incur some cost for forming these links.
Much research in this area [4,6,9] studies the structure of equilibrium networks
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formed as the result of various choices for the network benefit function, as well
as the social welfare in equilibria. In many such games, the costs incurred from
forming links are direct: each edge costs CE > 0 for an agent to purchase.
Recently, motivated by scenarios as diverse as financial crises, terrorism and
technological vulnerability, games with indirect connectivity costs have been
considered: an agent’s connections expose her to negative, contagious shocks.

We begin with the well-studied reachability network formation game [4], in
which players purchase links to each other, and enjoy a network benefit equal to
the size of their connected component in the formed graph. We modify this model
by introducing an adversary who is allowed to examine the network, and choose a
single vertex or player to attack. This attack then spreads throughout the entire
connected component of the originally attacked vertex, destroying all of these
vertices. Crucially however, players also have the option of purchasing immuniza-
tion against attack. Thus the attack spreads only to those non-immunized (or
vulnerable) vertices reachable from the originally attacked vertex. We examine
several natural adversarial attacks such as an adversary that seeks to maximize
destruction, an adversary that randomly selects a vertex for the start of infec-
tion and an adversary that seeks to minimize the social welfare of the network
post-attack to name a few. A player’s overall payoff is thus the expected size of
her post-attack component, minus her edge and immunization expenditures.1

Our game can be viewed as a stylized model for settings where reachability
rather than centrality is the primary interest in joining a network vulnerable to
adversarial attack. Examples include technological networks such as the Inter-
net, where packet transmission times are sufficiently low that being “central” [9]
or a “hub” [6] is less of a concern, but in the presence of attacks such as viruses
or DDoS, mere reachability may be compromised. Parties may reduce risks via
costly measures such as anti-virus. In a financial setting, vertices might represent
banks and edges credit/debt agreements. The introduction of an attractive but
extremely risky asset is a threat or attack on the network that naturally seeks its
largest accessible market, but can be mitigated by individual institutions adopt-
ing balance sheet requirements or leverage restrictions. In a biological setting,
vertices could represent humans, and edges physical proximity or contact. The
attack could be an actual biological virus that randomly infects an individual
and spreads by physical contact through the network; again, individuals may
have the option of immunization. While our simplified model is obviously not
directly applicable to any of these examples in detail, we do believe our results
provide some high-level insights about the strategic tensions in such scenarios.

1 The spread of the initial attack to reachable non-immunized vertices is determin-
istic in our model, and the protection of immunized vertices is absolute. It is also
natural to consider relaxations such as probabilistic attack spreading and imper-
fect immunization, as well as generalizations such as multiple initial attack vertices.
However, as we shall see, even the basic model we study here exhibits substantial
complexity. We refer the reader to the full version for a discussion on possible exten-
sions/relaxations.
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Immunization against attack has recently been studied in games played on a
network where risk of contagious shocks are present [7] but only in the setting in
which the network is first designed by a centralized party, after which agents
make individual immunization decisions. We endogenize both these aspects,
which leads to a model incomparable to this earlier work.

The original reachability game [4] permitted a sharp and simple character-
ization of the equilibria: any tree as well as the empty graph. We demonstrate
that once attack and immunization are introduced, the set of possible equilibria
becomes considerably more complex, including networks that contain multiple
cycles, as well as others which are disconnected but nonempty. This diversity
leads to our primary questions of interest: How dense can equilibria become? In
particular, does the presence of the attacker encourage the creation of massive
redundancy of connectivity? Also does the introduction of attack and immuniza-
tion result in dramatically lower social welfare compared to the original game?
Our Results and Techniques. The main theoretical contributions of this
work are to show that our game still exhibits edge sparsity at equilibrium, and
has high social welfare properties despite the presence of attacks. First we show
that under a mild assumption on the adversary’s attack model, the equilibrium
networks with n ≥ 4 players have at most 2n−4 edges, fewer than twice as many
edges as any nonempty equilibria of the original game without attack. We prove
this by introducing an abstract representation of the network and use tools from
graph theory to upper bound the resources globally invested by the players to
mitigate connectivity disruptions due to any attack.

We then show that with respect to several attack models, in any equilib-
rium with at least one edge and one immunized vertex, the resulting network is
connected. This implies that any new equilibrium network (i.e. one which was
not an equilibrium of the original reachability game) is either a sparse but con-
nected graph, or is a forest of unimmunized vertices. The latter occurs only in
the rather unnatural case where the cost of immunization or edges grows with
the population size, and in the former case we further show the social welfare is
at least n2 −O(n5/3) – asymptotically the maximum possible with a polynomial
rate of convergence. These results provide us with a complete picture of welfare
in our model. We prove the welfare lower bound by showing that there cannot be
many targeted vertices who are critical for global connectivity, where critical is
defined formally in terms of both the vertex’s probability of attack and the size of
the components remaining after the attack. Thus players myopically optimizing
their own utility create highly resilient networks in presence of attack.

We conclude by reporting on a behavioral experiment on our network forma-
tion game with over 100 participants, where despite the complexity of the game,
the resulting network was surprisingly close to equilibrium.
Organization. We formally present our model and review some related work
in Sect. 2. In Sect. 3 we briefly describe some interesting topologies that arise as
equilibria and then prove our sparsity result. We present our lower bound on
welfare in Sect. 4. Section 5 describe our behavioral experiment.
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In the full version, we provide simulations demonstrating fast and general
convergence of swapstable best response, a type of limited best response which
generalizes linkstable best response but is more powerful in our game. The com-
putational complexity of full best response dynamics was unknown to us at the
time of conducting our simulations but this question has been recently studied
by Ihde et al. [13]. The simulations illustrate a number of interesting further
features of equilibria e.g. heavy-tailed degree distributions. Whether swapstable
best response provably converges (as seen empirically) is an open question.

2 Model

We assume the n vertices of a graph (network) correspond to individual players.
Each player has the choice to purchase edges to other players at a cost of CE > 0
per edge. Each player additionally decides whether to immunize herself at a cost
of CI > 0 or remain vulnerable.

A (pure) strategy for player i (denoted by si) is a pair consisting of the
subset of players i purchased an edge to and her immunization choice. Formally,
we denote the subset of edges which i buys an edge to as xi ⊆ {1, . . . , n},
and the binary variable yi ∈ {0, 1} as her immunization choice (yi = 1 when i
immunizes). Then si = (xi, yi). We assume that edge purchases are unilateral
i.e. players do not need approval in order to purchase an edge to another but that
the connectivity benefits and risks are bilateral. We restrict our attention to pure
strategy equilibria and our results show they exist and are structurally diverse.

Let s = (s1, . . . , sn) denote the strategy profile for all the players. Fixing s,
the set of edges purchased by all the players induces an undirected graph and
the set of immunization decisions forms a bipartition of the vertices. We denote
a game state as a pair (G, I), where G = (V,E) is the undirected graph induced
by the edges purchased by the players and I ⊆ V is the set of players who decide
to immunize. We use U = V \I to denote the vulnerable vertices i.e. the players
who decide not to immunize. We refer to a subset of vertices of U as a vulnerable
region if they form a maximally connected component. We denote the set of
vulnerable regions by V = {V1, . . . , Vk} where each Vi is a vulnerable region.

Fixing a game state (G, I), the adversary inspects the formed network and
the immunization pattern and chooses to attack some vertex. If the adversary
attacks a vulnerable vertex v ∈ U , then the attack starts at v and spreads, killing
v and any other vulnerable vertices reachable from v. Immunized vertices act as
“firewalls” through which the attack cannot spread. We point out that in this
work we restrict the adversary to only pick one seed to start the attack.

More precisely, the adversary is specified by a function that defines a proba-
bility distribution over vulnerable regions. We refer to a vulnerable region with
non-zero probability of attack as a targeted region and the vulnerable vertices
inside of a targeted region as targeted vertices. We denote the targeted regions
by T = {T1, . . . , Tk′} where each T ′ ∈ T denotes a targeted region.2

2 The index k′ in the definition of T satisfies k′ ≤ k (see k in the definition of V).
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T = ∅ corresponds to the adversary making no attack, so player i’s utility
(or payoff ) is equal to the size of her connected component minus her expenses
(edge purchases and immunization). When |T | > 0, player’s i expected utility
(fixing a game state) is equal to the expected size of her connected component3

less her expenditures, where the expectation is taken over the adversary’s choice
of attack (a distribution on T ). Formally, let Pr[T ′] denote the probability of
attack to targeted region T ′ and CCi(T ′) the size of the connected component
of player i post-attack to T ′. Then the expected utility of i in strategy profile s
denoted by ui(s) is precisely

ui(s) =
∑

T ′∈T

(
Pr [T ′] CCi (T ′)

)
− |xi|CE − yiCI.

We refer to the sum of expected utilities of all the players playing s as the (social)
welfare of s.

Examples of Adversaries. We highlight several natural adversaries that fit
into our framework. We begin with a natural adversary whose goal is to maximize
the number of agents killed.

Definition 1. The maximum carnage adversary attacks the vulnerable region
of maximum size. If there are multiple such regions, the adversary picks one
of them uniformly at random. Once a targeted region is selected, the adversary
selects a vertex inside of that region uniformly at random to start the attack.

So a targeted region with respect to a maximum carnage adversary is a vulner-
able region of maximum size and the adversary defines a uniform distribution
over such regions (see Fig. 1). Another natural but less sophisticated adversary
starts an attack by picking a vulnerable vertex at random.

V3

V2

V1

Fig. 1. Blue and red vertices denote I and U , respectively. The probability of attack
to the vulnerable regions denoted by V1,V2 and V3 (in that order) for each adversary
are as follows. maximum carnage: 0.5, 0, 0.5; random attack: 0.4, 0.2, 0.4; maximum
disruption: 0, 1, 0. (Color figure online)

Definition 2. The random attack adversary attacks a vulnerable vertex uni-
formly at random.

So every vulnerable vertex is targeted with respect to the random attack adver-
sary and the adversary induces a distribution over targeted regions such that
the probability of attack to a targeted region is proportional to its size (see
Fig. 1). Lastly, we define another natural adversary whose goal is to minimize
the post-attack welfare.
3 If a vertex is killed, the size of her connected component is defined to be 0.
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Definition 3. The maximum disruption adversary attacks the vulnerable region
which minimizes the post-attack social welfare. If there are multiple such regions,
the adversary picks one of them uniformly at random. Once a targeted region is
selected for the attack, the adversary selects a vertex inside of that region uni-
formly at random to start the attack.

Thus the maximum disruption adversary only attacks those vulnerable regions
which minimize the post-attack welfare and the adversary defines a uniform
distribution over such regions (see Fig. 1).

Equilibrium Concepts. We analyze the networks formed in our game under
two types of equilibria. We model each of the n players as strategic agents who
choose deterministically which edges to purchase and whether or not to immu-
nize, knowing the exogenous behavior of the adversary defined as above. We say
a strategy profile s is a pure strategy Nash equilibrium (Nash equilibrium for
short) if, for any player i, fixing the behavior of the other players to be s−i, the
expected utility for i cannot strictly increase playing any action s′

i over si.
In addition to Nash, we study another equilibrium concept that is closely

related to linkstable equilibrium [5], a bounded-rationality generalization of
Nash. We call this concept swapstable equilibrium.4 A strategy profile is a swap-
stable equilibrium if no agent’s expected utility (fixing other agents’ strategies)
can strictly improve under any of the following swap deviations: (1) dropping any
single purchased edge, (2) purchasing any single unpurchased edge, (3) dropping
any single purchased edge and purchasing any single unpurchased edge, (4) any
one of the deviations above and also changing the immunization status.

The first two deviations correspond to the standard linkstability. The third
permits the more powerful swapping of one purchased edge for another. The last
additionally allows reversing immunization status. Our interest in swapstable
networks derives from the fact that while they only consider “simple” or “local”
deviation rules, they share several properties with Nash networks that linkstable
networks do not. Hence, swapstability is a bounded rationality concept that
moves us closer to full Nash. Intuitively, in our game (and in many of our proofs),
we exploit the fact that if a player is connected to some other set of vertices via
an edge to a targeted vertex, and that set also contains an immune vertex, the
player would prefer to connect to the immune vertex instead. This deviation
involves a swap not just a single addition or deletion. It is worth mentioning
explicitly that by definition every Nash equilibrium is a swapstable equilibrium
and every swapstable equilibrium is a linkstable equilibrium. The reverse of none
of these statements are true in our game. Also the set of equilibrium networks
with respect to adversaries defined in Definitions 1, 2 and 3 are disjoint.

2.1 Related Work

Our paper is a contribution to the study of strategic network design and defense.
The problem has been extensively studied in economics, electrical engineering,

4 Lenzner [17] introduced this equilibrium concept under the name greedy equilibrium.
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and computer science (see e.g. [1,2,11,18]). Most of the existing work takes the
network as given and examines optimal security choices (see e.g. [3,8,12,14,16]).
To the best of our knowledge, our paper offers the first model in which both
links and defense (immunization) are chosen by the players.

Combining linking and immunization within a common framework yields
new insights. We start with a discussion of the network formation literature. In
a setting with no attack, our model with respect to the maximum carnage adver-
sary reduces to the original model of one-sided reachability network formation
of Goyal [4]. They showed that a Nash equilibrium network is either a tree or an
empty network. By contrast, we show that in the presence of a security threat,
Nash networks exhibit very different properties: both networks containing cycles
and partially connected networks can emerge in equilibrium. We also show that
while networks may contain cycles, they are sparse (we provide a tight upper
bound on the number of links in any equilibrium network of our game).

Regarding security, a recent paper by Cerdeiro et al. [7] studies optimal design
of networks in a setting where players make immunization choices against a
maximum carnage adversary but the network design is given. They show that an
optimal network is either a hub-spoke or a network containing k-critical vertices5

or a partially connected network (a k-critical vertex can secure n − k vertices
by immunization). We extend this work by showing that there is a pressure
toward the emergence of k-critical vertices even when linking is decentralized.
We also contribute to the study of welfare costs of decentralization. Cerdeiro
et al. [7] show that the Price of Anarchy (PoA) is bounded, when the network
is centrally designed while immunization is decentralized (their welfare measure
includes the edge expenditures of the planner). By contrast, we show that the
PoA is unbounded when both decisions are decentralized. Although we also show
that non-trivial equilibrium networks with respect to various adversaries have a
PoA very near 1. This highlights the key role of linking and resonates with the
original results on the PoA of pure network formation games [10].

Recently Blume et al. [6] study network formation where new links generate
direct (but not reachability) benefits, infection can flow through paths of connec-
tions and immunization is not a choice. They demonstrate a fundamental tension
between socially optimal and stable networks: the former lie just below a linking
threshold that keeps contagion under check, while the latter admit linking just
above this threshold, leading to extensive contagion and very low payoffs.

Finally, Kliemann [15] introduced a reachability game with attacks but with-
out defense. In their model, the attack happens after the network is formed and
the adversary destroys exactly one link (with no spread) according to a proba-
bility distribution over links that can depend on the structure of the network.
They show equilibrium networks are chord-free and hence sparse. We also show
an abstract representation of equilibrium networks in our model corresponds to
chord-free graphs and then use this observation to prove sparsity. While both
models lead to chord-free graphs in equilibria, the analysis of why these graphs

5 Vertex v is k-critical in a connected network if the size of the largest connected
component after removing v is k.
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are chord-free is quite different. In their model, the deletion of a single link
destroys at most one path between any pair of vertices. So if there were two
edge-disjoint paths between any pairs of vertices, they will certainly remain con-
nected after any attack. In our model the adversary attacks a vertex and the
attack can spread and delete many links. This leads to a more delicate analysis.
The welfare analysis is also quite different, since the deletion of an edge can
cause a network to have at most two connected components, while the deletion
of vertices might lead to many connected components.

3 Sparsity

In contrast to the original game [4], our game exhibits equilibrium networks
with cycles, as well as disconnected but non-empty graphs. Figure 2 gives several
examples of Nash networks with respect to the maximum carnage adversary for
small populations, each of which is representative of a broad family of equilibria
for large populations and a range of values for CE and CI.6 So the tight char-
acterization of the original game, where equilibrium networks are either empty
graph or trees, fails to hold for our game. However, we show that an approximate
version of this characterization continues to hold for several adversaries.

(a) (b) (c) (d)

Fig. 2. Examples of equilibria with respect to the maximum carnage adversary: (a)
Forest equilibrium, CE = 1 and CI = 9; (b) cycle equilibrium, CE = 1.5 and CI = 3; (c)
4-petal flower equilibrium, CE = 0.1 and CI = 3, (d) Complete bipartite equilibrium,
CE = 0.1 and CI = 4. (Color figure online)

We show that despite the existence of equilibria containing cycles as shown
in Fig. 2, under a very mild restriction on the adversary, any Nash, swapstable or
linkstable equilibrium network of our game has at most 2n− 4 edges and is thus
quite sparse. Moreover, this upper bound is tight as the generalized complete
bipartite graph in Fig. 2d has exactly 2n − 4 edges.

The rest of this section is organized as follows. We start by defining a natural
restriction on the adversary. We then propose an abstract view of the networks
in our game and proceed to show that the abstract network is chord-free in
equilibria with respect to the restricted adversary. We finally derive the edge
density of the original network by connecting its edge density to the density of
the abstract network. We start by defining equivalence classes for networks.
6 We represent immunized and vulnerable vertices as blue and red, respectively.

Although we treat the networks as undirected (the benefits and risks are bilateral),
we use directed edges in some figures to denote which player purchased the edge.
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Definition 4. Let G1 = (V,E1) and G2 = (V,E2) be two networks. G1 and G2

are equivalent if for all vertices v ∈ V , the connected component of v is the same
in both G1 and G2 for every possible choice of initial attack vertex in V .

Based on equivalence, we make the following natural restriction on the adversary.

Assumption 1. An adversary is well-behaved if on any pair of equivalent net-
works G1 = (V,E1) and G2 = (V,E1), the probability that a vertex v ∈ V is
chosen for attack, is the same.

The adversaries in Definitions 1–3 are all well-behaved. Next, we abstract the
network formed by the agents and analyze the edge density in the abstraction.

Let G = (V,E) be any network, I ⊆ V the immunized vertices and V1, . . . ,Vk

the vulnerable regions in G. In the abstract network every vulnerable region in
G is contracted to a single vertex. Formally, let G′ = (V ′, E′) be the abstract
network. Define V ′ = I ∪ {u1, . . . uk} where each ui represents a contracted
vulnerable region of G. E′ is constructed as follows. For any edge (v1, v2) ∈ E
such that v1, v2 ∈ I there is an edge (v1, v2) ∈ E′. For any edge (v1, v2) ∈ E
such that v1 ∈ Vi for some i and v2 ∈ I there is an edge (ui, v2) ∈ E′ where ui

denotes the contracted vulnerable region of G that v1 belongs to. For any edge
(v1, v2) such that v1, v2 ∈ Vi for some i there is no edge in G′ (see Fig. 3).

V3

V2

V1

(a) original
(b) abstract

Fig. 3. Example of original and abstract network. Blue: immunized vertices in both
networks. Red: the vulnerable vertices and regions in the original and abstract network,
respectively. (Color figure online)

We next show that if G is an equilibrium network then G′ is a chord-free
graph. We defer all the omitted proofs to the full version.

Lemma 1. Let G = (V,E) be a Nash, swapstable or linkstable equilibrium net-
work and G′ = (V ′, E′) the abstraction of G. Then G′ is a chord-free graph if
the adversary is well-behaved.

As the next step we bound the edge density of chord-free networks in Theo-
rem 1 using tools from the graph theory literature.

Theorem 1. Let G = (V,E) be a chord-free graph on n ≥ 4 vertices. Then
|E| ≤ 2n − 4.7

7 Kliemann [15] proved Theorem 1 with a different technique for a density bound of
2n − 1 for all n.
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Theorem 1 implies the edge density of the abstract network G′ = (V ′, E′) is
at most 2|V ′| − 4. To derive the edge density of the original network, we first
show that any vulnerable region in G is a tree when G is an equilibrium network.

Lemma 2. Let G = (V,E) be a Nash, swapstable or linkstable equilibrium net-
work. Then any vulnerable region in G is a tree if the adversary is well-behaved.

We use Lemmas 1, 2 and Theorem 1 to prove our sparsity result.

Theorem 2. Let G = (V,E) be a Nash, swapstable or linkstable equilibrium
network on n ≥ 4 vertices. Then |E| ≤ 2n − 4 for any well-behaved adversary.

4 Connectivity and Social Welfare in Equilibria

The results of Sect. 3 show that despite the potential presence of cycles at equi-
librium, there are still sharp limits on collective expenditure on edges. However,
they do not directly lower bound the welfare, due to connectivity concerns: if the
graph could become highly fragmented after the attack, or is sufficiently frag-
mented prior to the attack, the reachability benefits to players could be sharply
lower than in the attack-free reachability game. We now show that when CI and
CE > 1 are both constants with respect to n,8 none of these concerns are realized
in any “interesting” equilibrium network, described precisely below.

In the original reachability game [4], the maximum welfare achievable in any
equilibrium is n2 − O(n). Here we will show that the welfare achievable in any
“non-trivial” equilibrium is n2 − O(n5/3). Obviously with no restrictions on the
adversary and the parameters this cannot be true. Just as in the original game,
for CE > 1, the empty graph with a social welfare of only O(n) remains an
equilibrium in our game with respect to all the natural adversaries in Sect. 2.
We thus assume the equilibrium network contains at least one edge and at least
one immunized vertex. We refer to all equilibrium networks that satisfy the
above assumption as non-trivial equilibria. They capture the equilibria that are
new to our game compared to the original attack-free setting — the network is
not empty, and at least one player has chosen immunization.

Limiting attention to non-trivial equilibria is necessary if we hope to guar-
antee that the welfare at equilibrium is Ω(n2) when CE > 1. As already noted,
without the edge assumption, the empty graph is an equilibrium with respect
to several natural adversaries. Furthermore, without the immunization assump-
tion, n/3 disjoint components where each component consists of 3 vulnerable
vertices is an equilibrium (for carefully chosen CE and CI) with respect to e.g.
the maximum carnage adversary. In both cases, the social welfare is only O(n).

Similar to Sect. 3, to get any meaningful results for the welfare we need to
restrict the adversary. To simplify presentation, we state and analyze our results
for the maximum carnage adversary. We later show how these results (or their
slight modifications) can be extended to several other adversaries.

8 We view this condition as the most interesting regime, since in natural circumstances
we do not expect the edge or immunization costs to grow with the population size.
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Consider any connected component that contains an immunized vertex and
an edge in a non-trivial equilibrium network with respect to the maximum car-
nage adversary. We first show that any targeted region in such component (if
exists) has size 1 when CE > 1.

Lemma 3. Let G be a non-trivial Nash or swapstable equilibrium network with
respect to the maximum carnage adversary. Then in any component of G with
at least one immunized vertex and at least one edge, the targeted regions (if they
exist) are singletons when CE > 1.

We then show that non-trivial equilibrium networks with respect to the max-
imum carnage adversary are connected when CE > 1.

Theorem 3. Let G be a non-trivial Nash, swapstable or linkstable equilibrium
network with respect to the maximum carnage adversary. Then, G is a connected
graph when CE > 1.

So any non-trivial equilibrium network with respect to maximum car-
nage adversary is a connected network with targeted regions of size 1. Finally,
we state our main result regarding the welfare in such non-trivial equilibria.

Theorem 4. Let G be a non-trivial Nash or swapstable equilibrium network on
n vertices with respect to the maximum carnage adversary. If CE and CI are
constants (independent of n) and CE > 1 then the welfare of G is n2 − O(n5/3).

Our proof techniques for Theorem 4 might not extend to non-trivial linkstable
equilibrium networks with respect to the maximum carnage adversary since such
networks can have targeted regions of size bigger than 1 when CE > 1.
Remarks. We proved our sparsity result with a rather mild restriction on the
adversary. However, we presented our welfare results only with respect to the
maximum carnage adversary. Our proofs in this section only rely on the following
two properties of the maximum carnage adversary: (1) Adding an edge between
any 2 vertices (at least 1 of which is immunized) does not change the distribu-
tion of the attack and (2) Breaking a link inside of a targeted region does not
increase the probability of attack to the targeted region while at the same time
does not decrease the probability of attack to any other vulnerable region. The
same properties hold for the random attack adversary and other adversaries that
set the probability of attack to a vulnerable region directly proportional to an
increasing function of the size of the region. Thus our welfare results extend to
random attack adversary and other such adversaries without any modifications.

However, some natural adversaries (e.g. the maximum disruption adversary)
might not satisfy these properties. While the same techniques might not be
directly applicable to such adversaries, it is still possible to reason about the
welfare using different methods e.g. we can still show that in any non-trivial and
connected equilibrium with respect to the maximum disruption adversary, when
CE and CI are constants and CE > 1, then the welfare is n2 − O(n5/3). See the
full version for more details.
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5 A Behavioral Experiment

To complement our theory, we conducted a behavioral experiment on our game
with 118 participants. The participants were students in an undergraduate sur-
vey course on network science at the University of Pennsylvania. As training,
participants were given a detailed document and lecture on the game, with sim-
ple examples of payoffs for players on small graphs under various edge pur-
chase and immunization decisions. (See http://www.cis.upenn.edu/∼mkearns/
teaching/NetworkedLife/NetworkFormationExperiment2015.pdf for the train-
ing document provided to participants.) Participation was a course requirement,
and students were instructed that their grade on the assignment would be exactly
equal to their payoffs according to the rules of the game.

The payoffs used the maximum carnage adversary, with costs of CE = 5 and
CI = 20. With n = 118 participants (so a maximum connectivity benefit of 118
points), it felt that these values made edge purchases and immunization signifi-
cant expenses and thus worth careful deliberation. Second, running swapstable
best response simulations using these values generally resulted in non-trivial
equilibria with high welfare, whereas raising CE and CI significantly generally
resulted in empty or fragmented graphs with low welfare.

In a game of such complexity, with so many participants, it is unreason-
able and uninteresting to formulate the experiment as a one-shot simultaneous
move game. Rather, some form of communication must be allowed. We chose to
conduct the experiment in a courtyard with the single ground rule that all con-
versations be quiet and local i.e. in order to hear what a participant was saying
to others, one should have to stand next to them.

Other than the quiet rule, there were no restrictions on the nature of conver-
sations: participants were free to enter agreements, make promises or threats and
move freely. However, it was made clear that any agreements or bargains struck
would not be enforced by the rules of the experiment (thus were non-binding).
Each subject was given a handout that required them to indicate which other
subjects they chose to purchase edges to (if any), and whether or not they chose
to purchase immunization. The handout contained a list of subject names, along
with a unique identification number for each subject used to indicate edge pur-
chases. Thus subjects knew the names of the others as well as their assigned ID
numbers. An entire class session was devoted to the experiment, but subjects
were free to (irrevocably) turn in their handout at any time and leave. Subjects
committed and exited sequentially, and the entire duration was approximately
30 min. During the experiment, subjects tended to gather quickly in small discus-
sion groups that reformed frequently, with subjects moving freely from group to
group. It is clear from the outcome that despite adherence to the quiet rule, the
subjects engaged in widespread coordination via this rapid mixing.

In the left panel of Fig. 4, we show the final undirected network formed by
the edge purchases and immunization decisions. The graph is clearly anchored
by two main immunized hub vertices, each with many spokes who purchased
their single edge to the respective hub. These two large hubs are both directly
connected, as well as by a longer “bridge” of three vulnerable vertices. There is

http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/NetworkFormationExperiment2015.pdf
http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/NetworkFormationExperiment2015.pdf
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also a smaller hub with just a handful of spokes, again connected to one of the
larger hubs via a chain of two vulnerable vertices.

For the payoffs, inspection of the network reveals that there are 2 groups
of 3 vertices that are the largest vulnerable connected components, and thus
are the targets of the attack. These 6 players are each killed with probability
1/2 for a payoff that is only half that of the wealthiest players (the vulnerable
spokes of degree 1). In between are the players who purchased immunization
including the 3 hubs and 2 immunized spokes. The immunized spoke of the
upper hub is unnecessarily so, while the immunized spoke in the lower hub
is best responding — had they not purchased immunization, they would have
formed a unique largest vulnerable component of size 4 and thus been killed with
certainty.

Fig. 4. Left: the final undirected network formed by the edge purchases and immu-
nization decisions (blue for immunized, red for vulnerable). Right: a “nearby” Nash
network. (Color figure online)

It is striking how many properties the behavioral network shares with the
theory: multiple hub-spoke structures with sparse connecting bridges, resulting
in high welfare and a heavy-tailed degree distribution; a couple of cycles. To
quantify how far the behavioral network is from equilibrium we use it as the
starting point for swapstable best response dynamics and run it until conver-
gence. In the right panel of Fig. 4, we show the resulting Nash network reached
from the behavioral network in only 4 rounds of swapstable dynamics, and with
only 15 of 118 vertices updating their choices. The dynamics simply clean up
some suboptimal behavioral decisions — the vulnerable bridges between hubs
are replaced by direct edges, the other targeted group of three spokes drops
theirs fatal edges, and immunizing spokes no longer do so.

Participants were required to complete a survey after the experiment: they
were asked to comment on any strategies they contemplated prior to the exper-
iment; whether and how those strategies changed during the experiment; and
what strategies or behaviors they observed in other participants.

Many subjects reported entering the experiment with not just a strategy for
themselves, but also a “master plan” they hoped to convince others to join. One
frequently reported plan involved variations on cycles. Though little thought
seems to have been given to how to coordinate a global ordering in a cycle
via only the quiet rule. Another frequently cited plan involved the hub-spoke.
Although most strategies are based on abstractions, others reported planning to
use real-world social relationships e.g. connecting to students they know.

Of course, of particular interest are the surveys of the hubs. One seems to
report an altruistic motivation for purchasing immunization, hoping to maximize
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welfare. In contrast, the other displays a more Machiavellian attitude and was
willing to immunize in the hopes of creating 3 distinct groups of participants:
the “winners” who would connect to the hub; the hub with slightly lower payoff;
a large group of “losers” deliberately left out of the hub-spoke structure.

It is clear from the surveys that the word quickly spread during the experi-
ment to connect to hubs and that many participants joined though not without
some reported mistrust and hesitation.
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