
On the Price of Stability of Undirected
Multicast Games

Rupert Freeman, Samuel Haney(B), and Debmalya Panigrahi

Department of Computer Science, Duke University, Durham, NC 27708, USA
{rupert,shaney,debmalya}@cs.duke.edu

Abstract. In multicast network design games, a set of agents choose
paths from their source locations to a common sink with the goal of mini-
mizing their individual costs, where the cost of an edge is divided equally
among the agents using it. Since the work of Anshelevich et al. (FOCS
2004) that introduced network design games, the main open problem in
this field has been the price of stability (PoS) of multicast games. For the
special case of broadcast games (every vertex is a terminal, i.e., has an
agent), a series of works has culminated in a constant upper bound on the
PoS (Bilò et al., FOCS 2013). However, no significantly sub-logarithmic
bound is known for multicast games. In this paper, we make progress
toward resolving this question by showing a constant upper bound on
the PoS of multicast games for quasi-bipartite graphs. These are graphs
where all edges are between two terminals (as in broadcast games) or
between a terminal and a nonterminal, but there is no edge between
nonterminals. This represents a natural class of intermediate generality
between broadcast and multicast games. In addition to the result itself,
our techniques overcome some of the fundamental difficulties of analyz-
ing the PoS of general multicast games, and are a promising step toward
resolving this major open problem.

Keywords: Price of stability · Network design games · Cost sharing
games

1 Introduction

In cost sharing network design games, we are given a graph/network G = (V,E)
with edge costs and a set of users (agents/players) who want to send traffic
from their respective source vertices to sink vertices. Every agent must choose
a path along which to route traffic, and the cost of every edge is shared equally
among all agents having the edge in their chosen path, i.e., using the edge to
route traffic. This creates a congestion game since the players benefit from other
players choosing the same resources. A Nash equilibrium is attained in this game

Rupert Freeman thanks NSF IIS-1527434 and ARO W911NF-12-1-0550 for support.
Samuel Haney and Debmalya Panigrahi were supported in part by NSF Awards
CCF-1527084 and CCF-1535972l.

c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 354–368, 2016.
DOI: 10.1007/978-3-662-54110-4 25

On the Price of Stability of Undirected Multicast Games 355

when no agent has incentive to unilaterally deviate from her current routing path.
The social cost of such a game is the sum of costs of edges being used in at least
one routing path, and efficiency of the game is measured by the ratio of the social
cost in an equilibrium state to that in an optimal state. (The optimal state is
defined as one where the social cost is minimized, but the agents need not be
in equilibrium.) The maximum value of this ratio (i.e., for the most expensive
equilibrium state) is called the price of anarchy of the game, while the minimum
value (i.e., for the least expensive equilibrium state) is called its price of stability.
It is well known that even for the most restricted settings, the price of anarchy
can be Ω(n) for n agents. Therefore, the main question of research interest has
been to bound the price of stability (PoS) of this class of congestion games.

Anshelevich et al. [2] introduced network design games and obtained a bound
of O(log n) on the PoS in directed networks with arbitrary source-sink pairs.
While this is tight for directed networks, they left determining tighter bounds
on the PoS in undirected networks as an open question. Subsequent work has
focused on the case of all agents sharing a common sink (called multicast games)
and its restricted subclass where every vertex has an agent residing at it (called
broadcast games). These problems are natural analogs of the Steiner tree and
minimum spanning tree (MST) problems in a game-theoretic setting. For broad-
cast games, Fiat et al. [13] improved the PoS bound to O(log log n), which was
subsequently improved to O(log log log n) by Lee and Ligett [15], and ultimately
to O(1) by Bilò et al. [5]. For multicast games, however, progress has been much
slower, and the only improvement over the O(log n) result of Anshelevich et al.
is a bound of O(log n/ log log n) due to Li [16]. In contrast, the best known
lower bounds on the PoS of both broadcast and multicast games are small con-
stants [4]. As a result, determining the PoS of multicast games has become a
compelling open question in the area of network games.

In this paper, we achieve progress toward answering this question. In the
multicast setting, a vertex is said to be a terminal if it has an agent on it, else
it is called a nonterminal. Note that in the broadcast problem, there are no
nonterminals and all the edges are between terminal vertices. In this paper, we
consider multicast games in quasi-bipartite graphs: all edges are either between
two terminals, or between a nonterminal and a terminal. (That is, there is no
edge with both nonterminal endpoints.) This is a natural setting of intermediate
generality between broadcast and multicast games. Moreover, quasi-bipartite
graphs have been widely studied for the Steiner tree problem (see, e.g., [6,7,
17,18]) and has provided insights for the problem on general graphs. Our main
result is an O(1) bound on the PoS of multicast games in quasi-bipartite graphs.

Theorem 1. The price of stability of multicast games in quasi-bipartite graphs
is a constant.

In addition to the result itself, our techniques overcome some of the funda-
mental difficulties of analyzing the PoS of general multicast games, and therefore
represent a promising step toward resolving this important open problem. To
illustrate this point, we outline the salient features of our analysis below.

356 R. Freeman et al.

The previous PoS bounds for multicast games [2,16] are based on analyzing
a potential function φe defined on each edge e as its cost scaled by the harmonic
of the number of agents using the edge, i.e., φe = cost(e) · (1 + 1/2 + 1/3 +
· · · + 1/j) where j is the number of terminals using e. The overall potential
is φ =

∑
e φe. When an agent changes her routing path (called a move), this

potential exactly tracks the change in her shared cost. If the move is an improving
one, then the shared cost of the agent decreases and so too does the potential.
As a consequence, for an arbitrary sequence of improving moves starting with
the optimal Steiner tree, the potential decreases in each move until a Nash
Equilibrium (NE) is reached. This immediately yields a PoS bound of H(n) =
O(log n) [2]. To see this, note that the potential of any configuration is bounded
below by its cost, and above by its cost times H(n). Then, letting SNE be the
Nash equilibrium reached, and T ∗ be the optimal routing tree, we have

c(SNE) ≤ φ(SNE) ≤ φ(T ∗) ≤ H(n)c(T ∗).

This bound was later improved to O(log n/ log log n) by Li [16] with a similar
but more careful accounting argument.

The previous PoS bounds for broadcast games [5,13,15] use a different strat-
egy. As in the case of multicast games, these results analyze a game dynamics
that starts with an optimal solution (MST) and ends in an NE. However, the
sequence of moves is carefully constructed — the moves are not arbitrary improv-
ing moves. At a high level, the sequence follows the same pattern in all the
previous results for broadcast games:

1. Perform a critical move: Allow some terminal v to switch its path to introduce
a single new edge into the solution, that is not in the optimal routing tree
and is adjacent to v. This edge is associated with v and denoted ev. Any
edge introduced by the algorithm in any move other than a critical move uses
only edges in the current routing tree, and edges in the optimal routing tree.
Therefore, we only need to account for edges added by critical moves.

2. Perform a sequence of moves to ensure that the routing tree is homogenous.
That is, the difference in costs of a pair of terminals is bounded by a function
of the length of the path between them on the optimal routing tree. For exam-
ple, suppose two terminals w and w′ differ in cost by more than the length of
the path between them in the optimal routing tree. Then the terminal with
larger cost has an improving move that uses this path, and then the other
terminal’s path to the root. Such a move introduces only edges in the optimal
routing tree.

3. Absorb a set of terminals around v in the shortest path metric defined on
the optimal tree: terminals w replace their current strategy with the path
in the optimal routing tree to v, and then v’s path to the root. If w had
an associated edge ew, introduced via a previous critical move, it is removed
from the solution in this step.

The absorbing step allows us to account for the cost of edges added via
critical moves, by arguing that vertices associated with critical edges of similar

On the Price of Stability of Undirected Multicast Games 357

length must be well-separated on the optimal routing tree. If edges eu and ev are
not far apart, the second edge to be added would be removed from the solution
via the absorbing step.

Homogeneity facilitates absorption: Suppose v has performed a critical move
adding edge ev, and let w be some other terminal. While v pays c(ev) to use
edge ev, w would only pay c(ev)/2 to use ev, since it would split the cost with
v. That is, if w bought a path to v and then used v’s path to the root, it would
save at least c(ev)/2 over v’s current cost. If the current costs paid by v and w
are not too different, and the distance between v and w not too large, then such
a move is improving for w.

The previous results differ in how well they can homogenize: the tighter the
bound on the difference in costs of a pair of terminals as a function of the length
of the path between them in the optimal routing tree, the larger the radius in the
absorb step. In turn, a larger radius of absorption establishes a larger separation
between edges with similar cost, which yields a tighter bound on the PoS.

This homogenization-absorption framework has not previously been extended
to multicast games. The main difficulty is that there can be nonterminals that are
in the routing tree at equilibrium but are not in the optimal tree. No edge incident
on these vertices is in the optimal tree metric, and therefore these vertices cannot
be included in the homogenization process. So, any critical edge incident on
such a vertex cannot be charged via absorption. This creates the following basic
problem: what metric can we use for the homogenization-absorption framework
that will satisfy the following two properties?

1. The metric is feasible – the sum of all edge costs in (a spanning tree of) the
metric is bounded by the cost of the optimal routing tree. These edges can
therefore be added or removed at will, without need to perform another set
of moves to pay for them (in contrast to critical edges). This allows us to
homogenize using these edges.

2. The metric either includes all vertices (as is the case with the optimal tree
metric for broadcast games), or if there are vertices not included in the met-
ric, critical edges adjacent to these vertices can be accounted for separately,
outside the homogenization-absorption framework.

We create such a metric for quasi-bipartite graphs, allowing us to extend the
homogenization-absorption framework to multicast games. Our metric is based
on a dynamic tree containing all the terminals and a dynamic set of nonterminals.
We show that under certain conditions, we can include the shortest edge incident
on a nonterminal vertex, even if it is not in the optimal routing tree, in this
dynamic tree. These edges are added and removed throughout the course of the
algorithm. Our new metric is now defined by shortest path distances on this
dynamic tree: the optimal routing tree extended with these special edges. We
ensure homogeneity not on the optimal routing tree, but on this dynamic metric.
Likewise, absorption happens on this new metric. We define the metric in such
a way that the following hold:

1. The metric is feasible. That is, the total cost of all edges in the dynamic tree
is within a constant factor of the cost of the optimal tree.

358 R. Freeman et al.

2. Consider some critical edge ev such that the corresponding vertex v is not in
the metric. That is, it was not possible to add the shortest edge adjacent to v
to the dynamic tree while keeping it feasible. Therefore, v is at infinite distance
from every other vertex in this metric, ruling out homogenization. Then,
ev can be accounted for separately, outside the homogenization-absorption
framework.

For the remaining edges ev such that v is in the metric, we account for them by
using the homogenization-absorption framework. Our main technical contribu-
tion is in creating this feasible dynamic metric, going beyond the use of static
optimal metrics in broadcast games. While the proof of feasibility currently relies
on the quasi-bipartiteness of the underlying graph, we believe that this new idea
of a feasible dynamic metric is a promising ingredient for multicast games in
general graphs.

In the rest of the paper, we present the algorithm in detail, and provide an
outline of its analysis. Details of the analysis are deferred to the full version of
the paper due to space constraints.

1.1 Related Work

Recall that the upper bounds for PoS are a (large) constant and O
(

log n
log log n

)

for broadcast and multicast games, respectively. The corresponding best known
lower bounds are 1.818 and 1.862 respectively by Bilò et al. [4], leaving a signifi-
cant gap, even for broadcast games. Moreover, Lee and Ligett [15] show that
obtaining superconstant lower bounds, even for multicast games where they
might exist, is beyond current techniques. While this lends credence to the belief
that the PoS of multicast games is O(1), Kawase and Makino [14] have shown
that the potential function approach of Anshelevich et al. [2] cannot yield a
constant bound on the PoS, even for broadcast games. In fact, Bilò et al. [5]
used a different approach for broadcast games, as do we for multicast games on
quasi-bipartite graphs.

Various special cases of network design games have also been considered.
For small instances (n = 2, 3, 4), both upper [10] and lower [3] bounds have
been studied. [10] show upper bounds of 1.65 and 4/3 for two and three players
respectively. For weighted players, Anshelevich et al. [2] showed that pure Nash
equilibria exist for n = 2, but the possibility of a corresponding result for n ≥ 3
was refuted by Chen and Roughgarden [9], who also provided a logarithmic
upper bound on the PoS. An almost matching lower bound was later given by
Albers [1]. Recently, Fanelli et al. [12], showed that the PoS of network design
games on undirected rings is 3/2.

Network design games have also been studied for specific dynamics. In par-
ticular, starting with an empty graph, suppose agents arrive online and choose
their best response paths. After all arrivals, agents make improving moves until
an NE is reached. The worst-case inefficiency of this process was determined
to be poly-logarithmic by Charikar et al. [8], who also posed the question of
bounding the inefficiency if the arrivals and moves are arbitrarily interleaved.

On the Price of Stability of Undirected Multicast Games 359

This question remains open. Upper and lower bounds for the strong PoA of
undirected network design games have also been investigated [1,11]. They show
that the price of anarchy in this setting is Θ(log n).

2 Preliminaries

Let G = (V,E) be an undirected edge-weighted graph and let c(e) denote the
cost of edge e. Let U ⊆ V be a set of terminals and r ∈ U . In an instance of
a network design game, each terminal u is associated with a player, or agent,
that must select a path from u to r. We consider instances in which G is quasi-
bipartite, that is no edge e has two nonterminal end points.

A solution, or state, is a set of paths connecting each player to the root. Let
S be the set of all possible solutions. For a solution S, a terminal u, and some
subset E′ of the edges in the graph, let cE′

u (S) =
∑

e∈E′ c(e)/ne(S) be the cost
paid by u for using edges in E′, where ne(S) is the number of players using edge
e in state S. Let pu(S) be the set of edges used by u to connect to the root in S

and let cu(S) = c
pu(S)
u (S) be the total cost paid by u to use those edges. For a

nonterminal v, if every terminal u with v ∈ pu(S) uses the same path from v to
the root then define pv(S) to be this path from v to r, and cv(S) = c

pv(S)
u (S).

Additionally, we will sometimes refer to the cost a vertex v pays, even if v is a
nonterminal. By this we mean cv(S). For any vertex v ∈ S, let ev be the edge in
pv(S) with v as an endpoint.

Let Φ : S → R+ be the potential function introduced by Rosenthal [19],
defined by

Φ(S) =
∑

e∈E

c(e)Hne(S) = c(e)
(

1 +
1
2

+ · · · +
1

ne(S)

)

.

Let u ∈ U and suppose S and S′ are states for which pv(S) = pv(S′) for all
players v �= u. Then Φ(S′) − Φ(S) = cu(S′) − cu(S). In particular, if a single
player changes their path to a path of lower cost, the potential decreases.

The goal of each player is to find a path of minimum cost. A solution where
no player can benefit by unilaterally changing their path is called a Nash Equi-
librium. Let T ∗ be a solution that minimizes the total cost paid. Note that T ∗ is
a minimum Steiner tree for G. The price of stability (PoS) is the ratio between
the minimum cost of a Nash equilibrium and the cost of T ∗.

Let pT ∗(u, v) be the path in T ∗ between u and v. Let v1, . . . , vn be the ver-
tices of T ∗ in the order they appear in a depth first search of T ∗. Let MC,
the “main cycle”, be the concatenation of pT ∗(v1, v2), pT ∗(v2, v3), . . . , pT ∗(vn−1,
vn), pT ∗(vn, v1). Note that each edge in T ∗ appears exactly twice in MC. The fol-
lowing property will be helpful:

Fact 2. Any x to y path in MC completely contains pT ∗(x, y).

Define the class of edge e, class(e), as α if 256α ≤ c(e) < 256α+1. Without
loss of generality, we assume that c(e) ≥ 1 for all e ∈ E, so the minimum possible

360 R. Freeman et al.

edge class is 0. For simplicity, define �c(e)	 = 256class(e), a lower bound for c(e),
and
c(e)� = 256class(e)+1, an upper bound for c(e).

For each nonterminal v, let σv be the minimum cost edge adjacent to
v in G. Let tv be the terminal adjacent to σv. Let T+ be the extended
optimal metric: T ∗ ∪ {σv}v∈V . We maintain a dynamic set of nonterminals
ZS = {w /∈ T ∗ : c(σw) ≤ �c(ew)	/64}. That is, ZS are those nonterminals w
in solution S whose first edge ew has cost within a constant factor of the cost
of σw For any w ∈ S, if σw is added to S while w ∈ ZS , then we show that we
will be able to pay for σw if it remains in the final solution. In the algorithm, we
denote the current state by Scurr. For ease of notation, we define Z = ZScurr

.
The remaining definitions are modifications of key definitions from [5]. The

interval around vertex v ∈ T ∗ with budget y, Iv,y, is the concatenation of its right
and left intervals, I+v,y and I−

v,y, where I+v,y is the maximal contiguous interval in
MC with v a left endpoint such that

2
∑

α≥0

256α+1H2
nI+,α

≤ y,

where nI+,α is the number of edges of class α in I+v,y (repeated edges are counted
every time they appear). We define I−

v,y similarly.
The neighborhood of v in state S, NS(v) is an interval around v as well as

certain w �∈ T ∗ with tw in the interval. Formally,

NS(v) =

⎧
⎪⎪⎨

⎪⎪⎩

I
v,

�c(ev)�
56

∪
{

w ∈ ZS

∣
∣
∣
∣tw ∈ I

v,
�c(ev)�

56
and c(σw) ≤ �c(ev)�

64

}

if v ∈ T ∗,

I
tv,

�c(ev)�
56

∪
{

w ∈ ZS

∣
∣
∣
∣tw ∈ I

tv,
�c(ev)�

56
and c(σw) ≤ �c(ev)�

64

}

otherwise.

N+
S (v) and N−

S (v) are the right and left intervals of the neighborhood respec-
tively (that is, the portions of NS(v) to the right and left of v or tv respectively).
We denote NScurr

(v) as N(v). Roughly speaking, we are going to charge the cost
of edges in the final solution not in T ∗ to the interval portions of non-overlapping
right neighborhoods. A path X = pT ∗(x, y) is homogenous if

|cx(S) − cy(S)| ≤ 4
∑

α≥0

256α+1H2
nX,α

.

If X = pT ∗(x, y) ⊆ N(v) ∩ T ∗ is a homogenous path then

|cx(S) − cy(S)| ≤ 4
∑

α≥0

256α+1H2
nX,α

≤ 8
∑

α≥0

256α+1H2
nN+(v),α

≤ �c(e)	/14.

N(v) is homogenous if the following holds: For all x, y ∈ N(v) with x, y �= uv,
a special vertex to be defined later, such that the path in T+ from x to y does
not contain v, |cx(Scurr) − cy(Scurr)| ≤ 23�c(ev)�

112 . Homogenous neighborhoods
allow us to bound the difference in cost between any two vertices in N(v) which
will be useful when arguing that players have improving strategy changes.

On the Price of Stability of Undirected Multicast Games 361

3 Algorithm

The initial state of the algorithm is the minimum cost tree T ∗ connecting all
the terminals to the root. The algorithm carefully schedules a series of potential-
reducing moves. (Recall the potential function Φ(S) =

∑
e∈E c(e)Hne(S) intro-

duced in Sect. 2). Since there are finitely many states possible, such a series of
moves must always be finite. Since any improving move reduces potential, we
must be at a Nash equilibrium if there is no potential reducing move. These
moves are scheduled such that if any edge outside of T ∗ is introduced, it is sub-
sequently accounted for by charging to some part of T ∗. In particular, we will
show that at any point in the process, and therefore in the equilibrium state at
the end, the total cost of these edges is bounded by O(1) · c(T ∗).

a

r

a

r

a

r

b

b
ea eb eaeb

Fig. 1. Types of critical improving moves. Dotted edges represent the new edges being
added.

The algorithm is a series of loops, which we run repeatedly until we reach a
Nash equilibrium. Each loop begins with a terminal, a, performing either a safe
improving move, or a critical improving move. In both cases, a switches strategy
to follow a new path to the root. Let S be the state before the start of the loop.
A safe improving move is one which results in some state S′ ⊆ T ∗ ∪ S, i.e., the
new path of a contains edges currently in S and edges in the optimal tree T ∗.
A safe improving move requires no additional accounting on our part. A critical
improving move on the other hand introduces one or two new edges that must
be accounted for (see Fig. 1). We will show later that in any non-equilibrium
state, a safe or critical improving move always exists (see Lemma 3).

The algorithm will use a sequence of (potential-reducing) moves to account
for the new edges introduced by a critical move. At a high level, each of these
edges is accounted for in the following way. Let ev be the edge in question, and
v be the first vertex using ev on its path to the root.

1. In some neighborhood around v, perform a sequence of moves to ensure that
for every pair of vertices (excluding v and at most one other special vertex),
the difference in shared costs of these vertices is not too large. (Recall that
the while nonterminals do not pay anything, the shared cost of a nonterminal
u is defined to be cu(S), the cost that a terminal using u pays on its subpath
from u to the root). This sequence of moves must be potential-reducing, and
cannot add any edges outside of T ∗ ∪ S to the solution.

362 R. Freeman et al.

2. For every vertex y in the neighborhood around v, v has an alternative path
to the root consisting of the path in T+ to y, and y’s path to the root. (Recall
from Sect. 2 that T+ is the optimal tree, T ∗, augmented with minimum cost
edges incident on nonterminals {σw : w is a nonterminal}).
(a) If a y exists for which this alternative path is improving for v, then v can

switch to this new path and ev will be removed from the solution.
(b) If every path is not improving for v, then we show that every vertex in

the neighborhood of v has an improving move that uses ev.

These steps ensure that we either remove ev from the solution, or else for any
vertex y in the neighborhood we remove edge ey �∈ T ∗ from the solution. We elab-
orate on the steps above, referencing the subroutines described in Algorithm2 –
Homogenize, Absorb, and MakeTree:

Step 1: This is accomplished in two ways. For any path in T ∗, the Homogenize
subroutine ensures that a path in T ∗ is homogenous. Recall that this gives a
bound (relative to the cost of ev) on the difference in shared costs of the endpoints
of the path. Additionally, for any pair of adjacent vertices, if the difference in the
shared costs is more than the cost of the edge between them, then one vertex must
have an improving move through this edge. This move adds no edges outside of
T ∗. The second way of bounding differences in shared cost is much weaker, but
we will use it only a small number of times. Overall, the path between any two
vertices in the neighborhood will comprise homogenous segments connected by
edges whose cost is bounded by the second method above. Adding up the cost
bounds for these segments gives us the total bound.

Step 2(a): The purpose of this step is to establish that either the shared cost of v
is not much larger than the shared cost of every other vertex in its neighborhood,
or that we can otherwise remove ev from the solution. If the shared cost of v is
much larger than some other vertex in the neighborhood, then it is also much
larger than the shared cost of an adjacent vertex (call it q) in T+. This is because
every pair of vertices in the neighborhood have a similar shared cost (by Step 1).
Then, v has a lower cost path to the root consisting of the (v, q) edge, combined
with q’s current path to the root. Such a move would remove ev from the solution.

Step 2(b): If we reach this step, we need to account for the cost of ev by making
every other vertex in the neighborhood give up its first edge, if that edge is not
in T+. This ensures that at the end, the edges in the solution that are not in
T+ will be very far apart. This is accomplished via the Absorb function: v is
currently paying the entire cost of ev, while any vertex that would switch to using
v’s path to the root would only pay at most half the cost of ev. Furthermore,
if vertices close to v in T+ switch first, vertices farther from v (who must pay
a higher cost to buy a path to v) will reap the benefits of more sharing, and
therefore a further reduction in shared cost. This is formalized in the definition
of Absorb.

On the Price of Stability of Undirected Multicast Games 363

There are some other details which we mention here before moving on to a
more formal description of the algorithm:

– If v is a nonterminal, let uv be the terminal that added v as part the critical
move. We avoid including uv in any path provided to the Homogenize sub-
routine. This is because Homogenize switches the strategies of terminals to
follow the strategy of some terminal on input path. If terminals were switched
to follow uv’s path, this would increase the sharing on ev, when it is required
at the beginning of Step (2b) that only one terminal is using ev. When v is a
terminal, then uv is undefined and this problem does not exist. We define two
versions of a loop of the algorithm, defined as MainLoop in Algorithm 1, to
account for this difference.

– We have only described how to account for a single edge, but sometimes a
critical move adds two new edges that must be accounted for. Suppose ea and
eb are the new edges added by a (a is a terminal and b is a nonterminal). Then
we run MainLoop(eb) first, and then MainLoop(ea). The first loop does not
increase sharing on ea, so the second loop is still valid.

– We assume the existence of a function MakeTree. This function takes as
input a set of strategies. Its output is a new set of strategies such that
(1) the new set of strategies has lower potential than the old set, (2) the
edge set of the new strategies is a subset of the old edge set, and (3) the
edge set of the new strategies is a tree. In particular, MakeTree(Scurr \
{puv

(Scurr), pv(Scurr)}), used on line 9 does not increase sharing on ev, since
v and uv are the only two vertices using ev on their path to the root. Make-
Tree(Scurr \ {puv

(Scurr), pv(Scurr)}) will also not increase sharing on euv
if

this edge has just been added (and therefore uv is the only vertex using the
edge). We will not go into more detail about this function, since an identical
function was used in both [5,13].

– We assume that all edges in E with c(e) > c(T ∗) have been removed from
the graph. This is without loss of generality: if the final state Sf is a Nash
equilibrium, then Sf is still an equilibrium after reintroducing e with c(e) >
c(T ∗). This is because any vertex with an improving move that adds such an
edge e also has a path to the root (in T ∗) with total cost less than c(e).

We walk through the peusdocode next: We execute the MainLoop function
given in Algorithm 1 either once or twice, once for each edge not in T ∗ ∪S that is
added by a critical move. If two edges have been added, we execute in the order
MainLoop(eb) then MainLoop(ea) (where a is the terminal and b the nonter-
minal). We define two versions of MainLoop(ev), one when v is a terminal, and
one when v is a nonterminal, appearing on lines 17 and 1 respectively. When v
is a nonterminal, we denote the terminal which added ev to the solution as part
of the initial improving move as uv. For brevity, we define uv as “empty” when
v is a terminal. Thus if v is a terminal, define N(v) \ {uv} = N(v).

The while loops at lines 2 and 18 terminate with N(v) being homogenous.
For any violated if statement within the while loop, we perform a move that
reduces potential, and does not increase sharing on ev, or on euv

if it was
added along with ev as part of uv’s critical move. If none of these if conditions

364 R. Freeman et al.

1: function MainLoop(ev) � v is a nonterminal and uv the terminal which added
ev as part of a critical move.

2: while any of the following if conditions are true do
3: if ∃X = pT∗(x, y) ∈ N(v)∩T ∗ with uv, v �∈ X and X not homogenous then

Homogenize(X)

4: if ∃x, y ∈ N(v) \ {v} adjacent to uv with cx(Scurr) − cy(Scurr) > c(x, uv) +
c(uv, y) then

5: Replace x’s strategy with (x, uv) ∪ (uv, y) ∪ py(Scurr).

6: if ∃w ∈ N(v)\T ∗ such that tw �= v, uv with |cw(Scurr) − ctw (Scurr)| > c(σw)
then

7: Assuming WLOG ctw (Scurr) > cw(Scurr), replace tw’s strategy with
σw ∪ pw(Scurr).

8: if Scurr \ {puv (Scurr), pv(Scurr)} is not a tree then
9: MakeTree(Scurr \ {puv (Scurr), pv(Scurr)})

10: for q ∈ N(v) \ {v, uv} adjacent in T+ to either v or uv do
11: if c(v, q) + cq(Scurr) < cv(Scurr) then
12: v changes strategy to (v, q) ∪ pq(Scurr).
13: return
14: Repeat the previous 3 lines substituting uv for v.
15: � Note that uv changing strategy will remove v from the solution.

16: Absorb(v)

17: function MainLoop(ev) � v a terminal.
18: while any of the following if conditions are true do
19: if ∃X = pT∗(x, y) ∈ N(v) ∩ T ∗ with v �∈ X and X is not homogenous then

Homogenize(X)

20: if ∃w ∈ N(v) \ T ∗ such that tw �= v with |cw(Scurr) − ctw (Scurr)| > c(σw)
then

21: Assuming WLOG ctw (Scurr) > cw(Scurr), replace tw’s strategy with
σw ∪ pw(Scurr).

22: if Scurr \ {pv(Scurr)} is not a tree then MakeTree(Scurr \ {pv(Scurr)})

23: for q ∈ N(v) adjacent in T+ to v do
24: if c(v, q) + cq(Scurr) < cv(Scurr) then
25: v changes strategy to (v, q) ∪ pq(Scurr).
26: return
27: Absorb(v)

Algorithm 1. Main loop to be executed for each edge added to the solution as
part of a critical move.

hold, N(v) is homogenous. Therefore, this while loop eventually terminates in
a homogenous state.

We next ensure that the cost that v pays is similar to the cost every other
vertex in N(v) pays. If these costs are not close, we can show that the condition
at line 11/24 will be true, and ev will be deleted from the solution.

On the Price of Stability of Undirected Multicast Games 365

25: function Homogenize(X = pT∗(x, y))
26: Let X = (x = x1, x2, . . . , xk, xk+1 = y)
27: Let S′ be the current state.
28: for i ← 1 to k do
29: for j ← i down to 1 do
30: Change xj ’s strategy to pT∗(xj , xi+1) ∪ pxi(S).

31: if Φ(Scurr) < Φ(S′) then return
32: else Reset state to S′

Require: cq(S) ≥ cv(S) − 2·�c(ev)�
7

∀q ∈ N(v) \ {uv}
33: function Absorb(v) � v absorbs N(v) \ {uv}
34: for q ∈ N(v) ∩ T ∗ \ {uv} in breadth-first order from r according to T ∗ do
35: if v �∈ T ∗ then Change q’s strategy along with its descendants to

pT∗(q, tv) ∪ σv ∪ pv(S).
36: else Change q’s strategy along with its descendants to pT∗(q, v) ∪ pv(S).

37: Let S′ be the current state.
38: for q ∈ N(v) \ T ∗, in reverse breadth-first order from r according to S′ do
39: Change q’s strategy along with its descendants to σq ∪ ptq (S′).

Algorithm 2. Helper functions for Algorithm 1.

If ev is still present at this point, we finally call the Absorb function. We
use the precondition of the Absorb function to show that the switches made by
all the vertices in N(v) are improving, and therefore reduce potential.

Note that although we do not make this explicit, if at any point Scurr contains
edges that are not part of pu(Scurr) for any terminal u, these edges are deleted
immediately. This ensures that any nonterminal in Scurr is always used as part
of some terminal’s path to r.
Outline of Analysis. We first show that all parts of the algorithm reduce
potential, guaranteeing that the algorithm terminates (by the definition of the
potential function, the minimum decrease in potential is bounded away from 0).
Most steps in the algorithm involve single terminals making improving moves,
and therefore these steps reduce potential. There are two parts of the algo-
rithm for which it is not immediately obvious that potential is reduced: the
Homogenize function and the Absorb function. The lemma below states that
Homogenize reduces potential, and we give its proof in the full paper.

Lemma 1. Suppose there is a path X = pT ∗(x, y) ∈ N(v) which is not homoge-
nous. Let (x = x1, x2, . . . , xk, xk+1 = y) be the sequence of vertices in X. Then
there exists a prefix of X, (x1, . . . , xi), such that the sequence of moves in which
each xj , j ∈ {1, . . . , i}, switches its strategy to pT ∗(xj , xi+1) ∪ pxi+1(S) reduces
potential.

Proof that the precondition for the Absorb function is satisfied (homogeneity
is required here) is deferred to the full version. If it is satisfied, we can show that
the Absorb function reduces potential.

366 R. Freeman et al.

Lemma 2. If cq(Scurr) ≥ cv(Scurr)− 2·�c(ev)�
7 for all q �= uv ∈ N(v), then every

strategy change in Absorb reduces potential.

Lemmas 1 and 2 imply that the entire main loop is potential reducing. Since
the minimum decrease in potential is bounded away from zero, and the potential
is always at least zero, the algorithm necessarily terminates. However, termina-
tion alone does not guarantee that the final state is a Nash equilibrium. Since we
have restricted the set of moves that the algorithm can perform, we must show
that whenever an improving move is available to some terminal, there is also an
improving move that is either a safe or critical move (proof in full version).

Lemma 3. The final state reached by the algorithm, Sf , is a Nash equilibrium.

Finally, we show our main result, i.e., that c(Sf) = O(c(T ∗)). To establish
the theorem, it is sufficient to show that c(Sf \ T ∗) = O(c(T ∗)). We devise a
charging scheme that distributes the cost of edges in Sf \ T ∗ among edges in
T ∗. Each e ∈ Sf \ T ∗ must be an ev edge for some vertex v. Furthermore, these
ev edges were not later removed as the result of an absorbing process initiated
from another ev′ . At a high level, this allows us to distribute the cost of each
ev to the edges in the neighborhood N(v) ∩ T ∗, since the Absorb(v) function
removes many other ev′ edges where v′ ∈ N(v) from the solution.

We first consider a set of edges that we will not charge to their neighborhood.
Define Eσ =

{
ev ∈ Sf |v is a nonterminal, �c(ev)�

64 ≤ c(σv)
}

. We bound the cost
of Eσ by the cost of edges in Sf \ Eσ (proof in full version).

Lemma 4. c(Eσ) = O(c(Sf \ Eσ)).

Our goal now is to find a set of edges ev such that the right neighborhoods
associated with edges of the same class are not overlapping. In the absence of
nonterminals, this is simple: For every edge in Sf \ T ∗, the right neighborhoods
of vertices corresponding to edges of the same class being overlapping implies
that each edge is contained in the other’s neighborhood. Therefore, we argue
that the second edge to arrive would have deleted the first through the Absorb
function, which gives a contradiction. With nonterminals, the same property
does not hold. When edge ev is added for some nonterminal v, euv

will not be
deleted from the solution, even if uv falls in v’s neighborhood. The presence of σv

for which no MainLoop(σv) was run (added, e.g., in line 35) further complicates
things. To show that no right neighborhoods overlap, we will therefore remove
some edges from Sf \ (T ∗ ∪ Eσ).

For nonterminal v, if v is adjacent to at least two edges in Sf \ (T ∗ ∪ Eσ)
and σv is one such edge, remove σv and charge it to one of the remaining edges
adjacent to v. Next, for any pair of edges eu and ev in Sf \ (T ∗ ∪Eσ) such that u
was the terminal which added ev, we delete the smaller of eu and ev and charge
it to the remaining edge. We are left with a set of edges which we denote E∗,
each of which has been charged by at most two edges that were removed (and
each edge removed is charged to some edge in E∗).

Our argument will charge to each edge in T ∗ at most one edge in E∗ of each
class. To make the argument simpler, it is desirable to charge those σv’s for

On the Price of Stability of Undirected Multicast Games 367

which MainLoop(σv) was never run to higher classes than their actual classes.
To this end, we increase the cost of each such σv to c(eσv

), the cost of the first
edge on v’s path in the state just before σv was added.

Lemma 5. For edges eu, ev ∈ E∗, if class(ev) = class(eu), then N+(v) and
N+(u) are disjoint.

Given Lemma 5, the scheme from [5] for distributing the cost of each ev to its
neighborhood can be applied directly. This leads to Theorem1. For the details
of this analysis, the reader is referred to the full version of the paper.

References

1. Albers, S.: On the value of coordination in network design. SIAM J. Comput.
38(6), 2273–2302 (2009)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T.,
Roughgarden, T.: The price of stability for network design with fair cost allocation.
SIAM J. Comput. 38(4), 1602–1623 (2008)

3. Bilò, V., Bove, R.: Bounds on the price of stability of undirected network design
games with three players. J. Interconnect. Netw. 12(1–2), 1–17 (2011)

4. Bilò, V., Caragiannis, I., Fanelli, A., Monaco, G.: Improved lower bounds on the
price of stability of undirected network design games. Theory Comput. Syst. 52(4),
668–686 (2013)

5. Bilò, V., Flammini, M., Moscardelli, L.: The price of stability for undirected broad-
cast network design with fair cost allocation is constant. In: FOCS, pp. 638–647
(2013)

6. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 6 (2013)

7. Chakrabarty, D., Devanur, N.R., Vazirani, V.V.: New geometry-inspired relax-
ations and algorithms for the metric steiner tree problem. Math. Program. 130(1),
1–32 (2011)

8. Charikar, M., Karlo, H.J., Mathieu, C., Naor, J., Saks, M.E.: Online multicast with
egalitarian cost sharing. In: Proceedings of the 20th Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2008, Munich, Germany, 14–16
June 2008, pp. 70–76 (2008)

9. Chen, H.-L., Roughgarden, T.: Network design with weighted players. Theory Com-
put. Syst. 45(2), 302–324 (2009)

10. Christodoulou, G., Chung, C., Ligett, K., Pyrga, E., Stee, R.: On the price of sta-
bility for undirected network design. In: Bampis, E., Jansen, K. (eds.) WAOA
2009. LNCS, vol. 5893, pp. 86–97. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12450-1 8

11. Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing con-
nection games. Games Econ. Behav. 67(1), 51–68 (2009)

12. Fanelli, A., Leniowski, D., Monaco, G., Sankowski, P.: The ring design game with
fair cost allocation. Theor. Comput. Sci. 562, 90–100 (2015)

13. Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of stability for
designing undirected networks with fair cost allocations. In: Bugliesi, M., Preneel, B.,
Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 608–618. Springer,
Heidelberg (2006). doi:10.1007/11786986 53

http://dx.doi.org/10.1007/978-3-642-12450-1_8
http://dx.doi.org/10.1007/978-3-642-12450-1_8
http://dx.doi.org/10.1007/11786986_53

368 R. Freeman et al.

14. Kawase, Y., Makino, K.: Nash equilibria with minimum potential in undirected
broadcast games. Theor. Comput. Sci. 482, 33–47 (2013)

15. Lee, E., Ligett, K.: Improved bounds on the price of stability in network cost
sharing games. In: EC, pp. 607–620 (2013)

16. Li, J.: An o(log(n)/log(log(n))) upper bound on the price of stability for undirected
shapley network design games. Inf. Process. Lett. 109(15), 876–878 (2009)

17. Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation for the metric
steiner tree problem. In: SODA, pp. 742–751 (1999)

18. Robins, G., Zelikovsky, A.: Tighter bounds for graph steiner tree approximation.
SIAM J. Discret. Math. 19(1), 122–134 (2005)

19. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int.
J. Game Theory 2(1), 65–67 (1973)

	On the Price of Stability of Undirected Multicast Games
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Algorithm
	References

