
Distributed Methods for Computing
Approximate Equilibria

Artur Czumaj1, Argyrios Deligkas2, Michail Fasoulakis1, John Fearnley2,
Marcin Jurdziński1, and Rahul Savani2(B)

1 Department of Computer Science and DIMAP, University of Warwick,
Coventry, UK

2 Department of Computer Science, University of Liverpool, Liverpool, UK
{a.deligkas,rahul.savani}@liverpool.ac.uk

Abstract. We present a new, distributed method to compute approx-
imate Nash equilibria in bimatrix games. In contrast to previous
approaches that analyze the two payoff matrices at the same time (for
example, by solving a single LP that combines the two players’ pay-
offs), our algorithm first solves two independent LPs, each of which
is derived from one of the two payoff matrices, and then computes
an approximate Nash equilibrium using only limited communication
between the players. Our method gives improved bounds on the com-
plexity of computing approximate Nash equilibria in a number of dif-
ferent settings. Firstly, it gives a polynomial-time algorithm for com-
puting approximate well supported Nash equilibria (WSNE) that always
finds a 0.6528-WSNE, beating the previous best guarantee of 0.6608.
Secondly, since our algorithm solves the two LPs separately, it can be
applied to give an improved bound in the limited communication set-
ting, giving a randomized expected-polynomial-time algorithm that uses
poly-logarithmic communication and finds a 0.6528-WSNE, which beats
the previous best known guarantee of 0.732. It can also be applied to
the case of approximate Nash equilibria, where we obtain a randomized
expected-polynomial-time algorithm that uses poly-logarithmic commu-
nication and always finds a 0.382-approximate Nash equilibrium, which
improves the previous best guarantee of 0.438. Finally, the method can
also be applied in the query complexity setting to give an algorithm that
makes O(n log n) payoff queries and always finds a 0.6528-WSNE, which
improves the previous best known guarantee of 2/3.

1 Introduction

The problem of finding equilibria in non-cooperative games is a central problem
in game theory. Nash’s seminal theorem proved that every finite normal-form

The first, third and fifth author are partially supported by Research partially sup-
ported by the Centre for Discrete Mathematics and its Applications (DIMAP) and
by EPSRC award EP/D063191/1. The second, fourth and sixth author are supported
by EPSRC grant EP/L011018/1. The second author is also supported by ISF grant
#2021296. The full version of this paper, with complete proofs, is available at http://
arxiv.org/abs/1512.03315.

c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 15–28, 2016.
DOI: 10.1007/978-3-662-54110-4 2

http://arxiv.org/abs/1512.03315
http://arxiv.org/abs/1512.03315

16 A. Czumaj et al.

game has at least one Nash equilibrium [17], and this raises the natural question
of whether we can find one efficiently. After several years of extensive research,
it was shown that finding a Nash equilibrium is PPAD-complete [6] even for two-
player bimatrix games [2], which is considered to be strong evidence that there
is no polynomial-time algorithm for this problem.

Approximate Equilibria. The fact that computing an exact Nash equilibrium
of a bimatrix game is unlikely to be tractable, has led to the study of approximate
Nash equilibria. There are two natural notions of approximate equilibrium, both
of which will be studied in this paper. An ε-approximate Nash equilibrium (ε-
NE) is a pair of strategies in which neither player can increase their expected
payoff by more than ε by unilaterally deviating from their assigned strategy. An
ε-well-supported Nash equilibrium (ε-WSNE) is a pair of strategies in which both
players only place probability on strategies whose payoff is within ε of the best
response payoff. Every ε-WSNE is an ε-NE but the converse does not hold, so a
WSNE is a more restrictive notion.

Approximate Nash equilibria are the more well studied of the two concepts.
A line of work has studied the best guarantee that can be achieved in poly-
nomial time [1,5,7]. The best algorithm known so far is the gradient descent
method of Tsaknakis and Spirakis [19] that finds a 0.3393-NE in polynomial
time, and examples upon which the algorithm finds no better than a 0.3385-NE
have been found [11]. On the other hand, progress on computing approximate-
well-supported Nash equilibria has been less forthcoming. The first correct algo-
rithm was provided by Kontogiannis and Spirakis [15] (which shall henceforth
be referred to as the KS algorithm), who gave a polynomial time algorithm for
finding a 2

3 -WSNE. This was later slightly improved by Fearnley et al. [9] (whose
algorithm we shall refer to as the FGSS-algorithm), who gave a new polynomial-
time algorithm that extends the KS algorithm and finds a 0.6608-WSNE; prior
to this work, this was the best known approximation guarantee for WSNEs. For
the special case of symmetric games, there is a polynomial-time algorithm for
finding a 1

2 -WSNE [4].
Previously, it was considered a strong possibility that there is a PTAS for this

problem (either for finding an ε-NE or ε-WSNE, since their complexity is polyno-
mially related). A very recent result of Rubinstein [18] sheds serious doubt on this
possibility. EndOfTheLine is the canonical problem that defines the complex-
ity class PPAD. The “Exponential Time Hypothesis” (ETH) for EndOfTheLine
says that any algorithm that solves an EndOfTheLine instance with n-bit cir-
cuits, requires 2Ω̃(n) time. Rubinstein’s result says that, subject to the ETH for
EndOfTheLine, there exists a constant, but so far undetermined, ε∗, such that
for ε < ε∗, every algorithm for finding an ε-NE takes quasi-polynomial time, so
the quasi-PTAS of Lipton et al. [16] is optimal.

Communication Complexity. Approximate Nash equilibria can also be stud-
ied from the communication complexity point of view, which captures the amount
of communication the players need to find a good approximate Nash equilibrium.
It models a natural scenario where the two players each know their own payoff
matrix, but do not know their opponent’s payoff matrix. The players must then
follow a communication protocol that eventually produces strategies for both

Distributed Methods for Computing Approximate Equilibria 17

players. The goal is to design a protocol that produces a sufficiently good ε-NE
or ε-WSNE while also minimizing the amount of communication between the
two players.

Communication complexity of equilibria in games has been studied in pre-
vious works [3,14]. The recent paper of Goldberg and Pastink [12] initiated the
study of communication complexity in the bimatrix game setting. There they
showed Θ(n2) communication is required to find an exact Nash equilibrium of
an n × n bimatrix game. Since these games have Θ(n2) payoffs in total, this
implies that there is no communication-efficient protocol for finding exact Nash
equilibria in bimatrix games. For approximate equilibria, they showed that one
can find a 3

4 -NE without any communication, and that in the no-communication
setting, finding a 1

2 -NE is impossible. Motivated by these positive and negative
results, they focused on the most interesting setting, which allows only a poly-
logarithmic (in n) number of bits to be exchanged between the players. They
showed that one can compute 0.438-NE and 0.732-WSNE in this context.

Query Complexity. The payoff query model is motivated by practical appli-
cations of game theory. It is often the case that we know that there is a game
to be solved, but we do not know what the payoffs are, and in order to discover
the payoffs, we would have to play the game. This may be costly, so it is nat-
ural to ask whether we can find an equilibrium while minimizing the number of
experiments that we must perform.

Payoff queries model this situation. In the payoff query model we are told the
structure of the game, i.e., the strategy space, but we are not told the payoffs.
We can then make payoff queries, where we propose a pure strategy profile, and
we are told the payoff of each player under that strategy profile. Our task is
to compute an equilibrium of the game while minimizing the number of payoff
queries that we make.

The study of query complexity in bimatrix games was initiated by Fearnley
et al. [10], who gave a deterministic algorithm for finding a 1

2 -NE using 2n − 1
payoff queries. A subsequent paper of Fearnley and Savani [8] showed a number
of further results. Firstly, they showed an Ω(n2) lower bound on the query
complexity of finding an ε-NE with ε < 1

2 , which combined with the result above,
gives a complete view of the deterministic query complexity of approximate Nash
equilibria in bimatrix games. They then give a randomized algorithm that finds
a (3−√

5
2 +ε)-NE using O(n·log n

ε2) queries, and a randomized algorithm that finds
a (23 + ε)-WSNE using O(n·log n

ε4) queries.

Our Contribution. In this paper we introduce a distributed technique that
allows us to efficiently compute ε-NE and ε-WSNE using limited communication
between the players.

Traditional methods for computing WSNEs have used an LP based approach
that, when used on a bimatrix game (R,C), solves the zero-sum game (R−C,C−
R). The KS algorithm uses the fact that if there is no pure 2

3 -WSNE, then the
solution to this zero-sum game is a 2

3 -WSNE. The slight improvement of the
FGSS-algorithm [9] to 0.6608 was obtained by adding two further methods to
the KS algorithm: if the KS algorithm does not produce a 0.6608-WSNE, then

18 A. Czumaj et al.

either there is a 2 × 2 matching pennies sub-game that is 0.6608-WSNE or the
strategies from the zero-sum game can be improved by shifting the probabilities
of both players within their supports in order to produce a 0.6608-WSNE.

In this paper, we take a different approach. We first show that the bound of
2
3 can be matched using a pair of distributed LPs. Given a bimatrix game (R,C),
we solve the two zero-sum games (R,−R) and (−C,C), and then give a simple
procedure that we call the base algorithm, which uses the solutions to these games
to produce a 2

3 -WSNE of (R,C). Goldberg and Pastink [12] also considered this
pair of LPs, but their algorithm only produces a 0.732-WSNE. We then show
that the base algorithm can be improved by applying the probability-shifting and
matching-pennies ideas from the FGSS-algorithm. That is, if the base algorithm
fails to find a 0.6528-WSNE, then a 0.6528-WSNE can be obtained either by
shifting the probabilities of one of the two players, or by identifying a 2× 2 sub-
game. This gives a polynomial-time algorithm that computes a 0.6528-WSNE,
which provides the best known approximation guarantees for WSNEs.

It is worth pointing out that, while these techniques are thematically similar
to the ones used by the FGSS-algorithm, the actual implementation is signif-
icantly different. The FGSS-algorithm attempts to improve the strategies by
shifting probabilities within the supports of the strategies returned by the two
player game, with the goal of reducing the other player’s payoff. In our algo-
rithm, we shift probabilities away from bad strategies in order to improve that
player’s payoff. This type of analysis is possible because the base algorithm pro-
duces a strategy profile in which one of the two players plays a pure strategy,
which simplifies the analysis that we need to carry out. On the other hand, the
KS-algorithm can produce strategies in which both players play many strategies,
and so the analysis used for the FGSS-algorithm is necessarily more complicated.

Since our algorithm solves the two LPs separately, it can be used to improve
upon the best known algorithms in the limited communication setting. This is
because no communication is required for the row player to solve (R,−R) and
the column player to solve (−C,C). The players can then carry out the rest
of the algorithm using only poly-logarithmic communication. Hence, we obtain
a randomized expected-polynomial-time algorithm that uses poly-logarithmic
communication and finds a 0.6528-WSNE. Moreover, the base algorithm can be
implemented as a communication efficient algorithm for finding a (12 + ε)-WSNE
in a win-lose bimatrix game, where all payoffs are either 0 or 1.

The algorithm can also be used to beat the best known bound in the query
complexity setting. It has already been shown by Goldberg and Roth [13] that
an ε-NE of a zero-sum game can be found by a randomized algorithm that uses
O(n log n

ε2) payoff queries. Since the rest of the steps used by our algorithm can
also be carried out using O(n log n) payoff queries, this gives us a query efficient
algorithm for finding a 0.6528-WSNE.

We also show that the base algorithm can be adapted to find a 3−√
5

2 -NE
in a bimatrix game. Once again, this can be implemented in a communication
efficient manner, and so we obtain an algorithm that computes a (3−√

5
2 + ε)-NE

(i.e., 0.382-NE) using only poly-logarithmic communication. For a summary of
our contribution, see Table 1.

Distributed Methods for Computing Approximate Equilibria 19

Table 1. Comparison of our approximation guarantees with the previous best-known
guarantees.

Complexity setting Payoffs Solution Previous best
approximation

This paper

Computational (polynomial) [0, 1] ε-WSNE 0.6608 [9] 0.6528

Query (n · log(n) queries) [0, 1] ε-WSNE 0.6667 [8] 0.6528 + ε

Communication (polylogarithmic) [0, 1] ε-WSNE 0.7321 [12] 0.6528 + ε

Communication (polylogarithmic) [0, 1] ε-NE 0.4384 [12] 0.3820 + ε

Communication (polylogarithmic) {0, 1} ε-WSNE 0.7321 [12] 0.5 + ε

2 Preliminaries

Bimatrix Games. Throughout, we use [n] to denote the set of integers
{1, 2, . . . , n}. An n × n bimatrix game is a pair (R,C) of two n × n matri-
ces: R gives payoffs for the row player and C gives the payoffs for the column
player. We make the standard assumption that all payoffs lie in the range [0, 1].
For simplicity, as in [12], we assume that each payoff has constant bit-length1.
A win-lose bimatrix game has all payoffs in {0, 1}.

Each player has n pure strategies. To play the game, both players simultane-
ously select a pure strategy: the row player selects a row i ∈ [n], and the column
player selects a column j ∈ [n]. The row player then receives payoff Ri,j , and
the column player receives payoff Ci,j .

A mixed strategy is a probability distribution over [n]. We denote a mixed
strategy for the row player as a vector x of length n, such that xi is the prob-
ability that the row player assigns to pure strategy i. A mixed strategy of the
column player is a vector y of length n, with the same interpretation. Given a
mixed strategy x for either player, the support of x is the set of pure strategies i
with xi > 0. If x and y are mixed strategies for the row and the column player,
respectively, then we call (x,y) a mixed strategy profile. The expected payoff for
the row player under strategy profile (x,y) is given by xT Ry and for the column
player by xT Cy. We denote the support of a strategy x as supp(x), which gives
the set of pure strategies i such that xi > 0.

Nash Equilibria. Let y be a mixed strategy for the column player. The set of
pure best responses against y for the row player is the set of pure strategies that
maximize the payoff against y. More formally, a pure strategy i ∈ [n] is a best
response against y if, for all pure strategies i′ ∈ [n] we have:

∑
j∈[n] yj · Ri,j ≥

∑
j∈[n] yj · Ri′,j . Column player best responses are defined analogously.
A mixed strategy profile (x,y) is a mixed Nash equilibrium if every pure

strategy in supp(x) is a best response against y, and every pure strategy in

1 The statements of our results can easily be extended to the case where all payoffs
can be represented using b bits by including a factor b in all our communication
complexity bounds.

20 A. Czumaj et al.

supp(y) is a best response against x. Nash [17] showed that all bimatrix games
have a mixed Nash equilibrium.

Approximate Equilibria. There are two commonly studied notions of approx-
imate equilibrium, and we consider both of them in this paper. The first notion
is of an ε-approximate Nash equilibrium (ε-NE), which weakens the requirement
that a player’s expected payoff should be equal to their best response payoff.
Formally, given a strategy profile (x,y), we define the regret suffered by the
row player to be the difference between the best response payoff and actual
payoff, i.e.,

max
i∈[n]

(
(R · y)i

) − xT · R · y.

Regret for the column player is defined analogously. We have that (x,y) is an
ε-NE if and only if both players have regret less than or equal to ε.

The other notion is of an ε-approximate-well-supported equilibrium (ε-
WSNE), which weakens the requirement that players only place probability on
best response strategies. Given a strategy profile (x,y) and a pure strategy
j ∈ [n], we say that j is an ε-best-response for the row player if

max
i∈[n]

(
(R · y)i

) − (R · y)j ≤ ε.

An ε-WSNE requires that both players only place probability on ε-best-
responses. In an ε-WSNE both players place probability only on ε-best-responses.
Formally, the row player’s pure strategy regret under (x,y) is defined to be

max
i∈[n]

(
(R · y)i

) − min
i∈supp(x)

(
(R · y)i

)
.

Pure strategy regret for the column player is defined analogously. A strategy
profile (x,y) is an ε-WSNE if both players have pure strategy regret less than
or equal to ε.

Communication Complexity. We consider the communication model for
bimatrix games introduced by Goldberg and Pastink [12]. In this model, both
players know the payoffs in their own payoff matrix, but do not know the pay-
offs in their opponent’s matrix. The players then follow an algorithm that uses
a number of communication rounds, where in each round they exchange a single
bit of information. Between each communication round, the players are permit-
ted to perform arbitrary randomized computations (although it should be noted
that, in this paper, the players will only perform polynomial-time computations)
using their payoff matrix, and the bits that they have received so far. At the end
of the algorithm, the row player outputs a mixed strategy x, and the column
player outputs a mixed strategy y. The goal is to produce a strategy profile (x,y)
that is an ε-NE or ε-WSNE for a sufficiently small ε while limiting the number
of communication rounds used by the algorithm. The algorithms given in this
paper will use at most O(log2 n) communication rounds. In order to achieve this,
we use the following result of Goldberg and Pastink [12].

Distributed Methods for Computing Approximate Equilibria 21

Lemma 1 [12]. Given a mixed strategy x for the row-player and an ε > 0,
there is a randomized expected-polynomial-time algorithm that uses O(log

2 n
ε2)-

communication to transmit a strategy xs to the column player where |supp(xs)| ∈
O(log n

ε2) and for every strategy i ∈ [n] we have:

|(xT · R)i − (xT
s · R)i| ≤ ε.

The algorithm uses the well-known sampling technique of Lipton, Markakis, and
Mehta to construct the strategy xs, so for this reason we will call the strategy
xs the sampled strategy from x. Since this strategy has a logarithmically sized
support, it can be transmitted by sending O(log n

ε2) strategy indexes, each of which
can be represented using log n bits. By symmetry, the algorithm can obviously
also be used to transmit approximations of column player strategies to the row
player.

Query Complexity. In the query complexity setting, the algorithm knows that
the players will play an n×n game (R,C), but it does not know any of the entries
of R or C. These payoffs are obtained using payoff queries in which the algorithm
proposes a pure strategy profile (i, j), and then it is told the value of Rij and
Cij . After each payoff query, the algorithm can make arbitrary computations
(although, again, in this paper the algorithms that we consider take polynomial
time) in order to decide the next pure strategy profile to query. After making a
sequence of payoff queries, the algorithm then outputs a mixed strategy profile
(x,y). Again, the goal is to ensure that this strategy profile is an ε-NE or ε-
WSNE, while minimizing the number of queries made overall.

There are two results that we will use for this setting. Goldberg and Roth
[13] have given a randomized algorithm that, with high probability, finds an ε-
NE of a zero-sum game using O(n·log n

ε2) payoff queries. Given a mixed strategy
profile (x,y), an ε-approximate payoff vector for the row player is a vector v such
that, for all i ∈ [n] we have |vi − (R · y)i| ≤ ε. Approximate payoff vectors for
the column player are defined symmetrically. Fearnley and Savani [8] observed
that there is a randomized algorithm that when given the strategy profile (x,y),
finds approximate payoff vectors for both players using O(n·log n

ε2) payoff queries
and that succeeds with high probability. We summarise these two results in the
following lemma.

Lemma 2 [8,13]. Given an n × n zero-sum bimatrix game, with probability at
least (1 − n− 1

8)(1 − 2
n)2, we can compute an ε-Nash equilibrium (x,y), and ε-

approximate payoff vectors for both players under (x,y), using O(n·log n
ε2) payoff

queries.

3 The Base Algorithm

In this section, we introduce the base algorithm. This algorithm provides a simple
way to find a 2

3 -WSNE. We present this algorithm separately for three reasons.
Firstly, we believe that the algorithm is interesting in its own right, since it

22 A. Czumaj et al.

provides a relatively straightforward method for finding a 2
3 -WSNE that is quite

different from the technique used in the KS-algorithm. Secondly, our algorithm
for finding a 0.6528-WSNE will replace the final step of the algorithm with two
more involved procedures, so it is worth understanding this algorithm before we
describe how it can be improved. Finally, at the end of this section, we will show
that this algorithm can be adapted to provide a communication efficient way to
find a (0.5 + ε)-WSNE in win-lose games.

Algorithm 1

1. Solve the zero-sum games (R,−R) and (−C,C).
– Let (x∗,y∗) be a NE of (R,−R), and let (x̂, ŷ) be a NE of

(−C,C).
– Let vr be the value secured by x∗ in (R,−R), and let vc be the

value secured by ŷ in (−C,C). Without loss of generality assume
that vc ≤ vr.

2. If vr ≤ 2/3, then return (x̂,y∗).
3. If for all j ∈ [n] it holds that CT

j · x∗ ≤ 2/3, then return (x∗,y∗).
4. Otherwise:

– Let j∗ be a pure best response to x∗.
– Find a row i such that Rij∗ > 1/3 and Cij∗ > 1/3.
– Return (i, j∗).

We argue that this algorithm is correct. For that, we must prove that the
row i used in Step 4 actually exists.

Lemma 3. If Algorithm1 reaches Step 4, then there exists a row i such that
Rij∗ > 1/3 and Cij∗ > 1/3.

We now argue that the algorithm always produces a 2
3 -WSNE. There are three

possible strategy profiles that can be returned by the algorithm, which we con-
sider individually.

The algorithm returns in Step 2: Since vc ≤ vr by assumption, and since
vr ≤ 2

3 , we have that (R · y∗)i ≤ 2
3 for every row i, and ((x̂)T · C)j ≤ 2

3 for
every column j. So, both players can have pure strategy regret at most 2

3 in
(x̂,y∗), and thus this profile is a 2

3 -WSNE.
The algorithm returns in Step 3: Much like in the previous case, when the

column player plays y∗, the row player can have pure strategy regret at most
2
3 . The requirement that CT

j x∗ ≤ 2
3 also ensures that the column player has

pure strategy regret at most 2
3 . Thus, we have that (x∗,y∗) is a 2

3 -WSNE.
The algorithm returns in Step 4: Both players have payoff at least 1

3 under
(i, j∗) for the sole strategy in their respective supports. Hence, the maximum
pure strategy regret that can be suffered by a player is 1 − 1

3 = 2
3 .

Observe that the zero-sum game solved in Step 1 can be solved via linear pro-
gramming, and so the algorithm runs in polynomial time. Therefore, we have
shown the following.

Distributed Methods for Computing Approximate Equilibria 23

Theorem 1. Algorithm1 always produces a 2
3 -WSNE in polynomial time.

Win-Lose Games. The base algorithm can be adapted to provide a communi-
cation efficient method for finding a (0.5+ ε)-WSNE in win-lose games. In brief,
the algorithm can be modified to find a 0.5-WSNE in a win-lose game by making
Steps 2 and 3 check against the threshold of 0.5. It can then be shown that if
these steps fail, then there exists a pure Nash equilibrium in column j∗. This can
then be implemented as a communication efficient protocol using the algorithm
from Lemma 1.

Theorem 2. For every win-lose game and ε > 0, there is a randomized
expected-polynomial-time algorithm that finds a (0.5 + ε)-WSNE with O

(
log2 n

ε2

)

communication.

4 An Algorithm for Finding a 0.6528-WSNE

In this section, we show how Algorithm 1 can be modified to produce a 0.6528-
WSNE.

Outline. Our algorithm replaces Step 4 of Algorithm 1 with a more involved
procedure. This procedure uses two techniques, that both find an ε-WSNE with
ε < 2

3 . Firstly, we attempt to turn (x∗, j∗) into a WSNE by shifting probabilities.
Observe that, since j∗ is a best response, the column player has a pure strategy
regret of 0 in (x∗, j∗). On the other hand, we have no guarantees about the row
player since x∗ might place a small amount of probability strategies with payoff
strictly less than 1

3 . However, since x∗ achieves a high expected payoff (due to
Step 2,) it cannot place too much probability on these low payoff strategies.
Thus, the idea is to shift the probability that x∗ assigns to entries of j∗ with
payoff less than or equal to 1

3 to entries with payoff strictly greater than 1
3 , and

thus ensure that the row player’s pure strategy regret is below 2
3 . Of course,

this procedure will increase the pure strategy regret of the column player, but if
it is also below 2

3 once all probability has been shifted, then we have found an
ε-WSNE with ε < 2

3 .
If shifting probabilities fails to find an ε-WSNE with ε < 2

3 , then we show
that the game contains a matching pennies sub-game. More precisely, we show
that there exists a column j′, and rows b and s such that the 2 × 2 sub-game
induced by j∗, j′, b, and s has the following form:

�
�
I

II

b

s

j∗ j′

≈ 1 0

0 ≈ 1

0 ≈ 1

≈ 1 0

24 A. Czumaj et al.

Thus, if both players play uniformly over their respective pair of strategies, then
j∗, j′, b, and s with have payoff ≈ 0.5, and so this yields an ε-WSNE with ε < 2

3 .

The Algorithm. We now formalize this approach, and show that it always finds
an ε-WSNE with ε < 2

3 . In order to quantify the precise ε that we obtain, we
parametrise the algorithm by a variable z, which we constrain to be in the range
0 ≤ z < 1

24 . With the exception of the matching pennies step, all other steps
of the algorithm will return a (23 − z)-WSNE, while the matching pennies step
will return a (12 + f(z))-WSNE for some increasing function f . Optimizing the
trade off between 2

3 − z and 1
2 + f(z) then allows us to determine the quality of

WSNE found by our algorithm.
The algorithm is displayed as Algorithm 2. Steps 1, 2, and 3 are versions of

the corresponding steps from Algorithm 1, which have been adapted to produce
a (23 − z)-WSNE. Step 4 implements the probability shifting procedure, while
Step 5 finds a matching pennies sub-game.

Observe that the probabilities used in xmp and ymp are only well defined
when z ≤ 1

24 , because we have that 1−15z
2−39z > 1 whenever z > 1

24 , which explains
our required upper bound on z.

The Correctness of Step 5. This step of the algorithm relies on the existence
of the rows b and s, which is shown in the following lemma.

Lemma 4. Suppose that the following conditions hold:

1. x∗ has payoff at least 2
3 − z against j∗.

2. j∗ has payoff at least 2
3 − z against x∗.

3. x∗ has payoff at least 2
3 − z against j′.

4. Neither j∗ or j′ contains a pure (23 − z)-WSNE (i, j) with i ∈ supp(x∗).

Then, both of the following are true:

– There exists a row b ∈ B such that Rbj∗ > 1 − 18z
1+3z and Cbj′ > 1 − 18z

1+3z .
– There exists a row s ∈ S such that Csj∗ > 1 − 27z

1+3z and Rsj′ > 1 − 27z
1+3z .

Observe that the preconditions are indeed true if the Algorithm reaches
Step 5. The first and third conditions hold because, due to Step 2, we know
that x∗ is a min-max strategy that secures payoff at least vr > 2

3 − z. The
second condition holds because Step 3 ensures that the column player’s best
response payoff is at least 2

3 − z. The fourth condition holds because Step 5
explicitly checks for these pure strategy profiles.

Quality of Approximation. We now analyse the quality of WSNE our algo-
rithm produces. Steps 2, 3, 4, 5 each return a strategy profile. Observe that
Steps 2 and 3 are the same as the respective steps in the base algorithm, but
with the threshold changed from 2

3 to 2
3−z. Hence, we can use the same reasoning

as we gave for the base algorithm to argue that these steps return (23 −z)-WSNE.
We now consider the other two steps.

Distributed Methods for Computing Approximate Equilibria 25

Algorithm 2

1. Solve the zero-sum games (R,−R) and (−C,C).
– Let (x∗,y∗) be a NE of (R,−R), and let (x̂, ŷ) be a NE of (C,−C).

– Let vr be the value secured by x∗ in (R,−R), and let vc be the value
secured by ŷ in (−C,C). Without loss of generality assume that vc ≤
vr.

2. If vr ≤ 2/3 − z, then return (x̂,y∗).

3. If for all j ∈ [n] it holds that CT
j x∗ ≤ 2/3 − z, then return (x∗,y∗).

4. Otherwise:
– Let j∗ be a pure best response against x∗. Define:

S := {i ∈ supp(x∗) : Rij∗ < 1/3 + z}
B := supp(x∗) \ S

– Define the strategy xb as follows. For each i ∈ [n] we have:

(xb)i =

{
1

Pr(B)
· x∗

i if i ∈ B

0 otherwise.

– If (xb
T · C)j∗ ≥ 1

3
+ z, then return (xb, j

∗).

5. Otherwise:
– Let j′ be a pure best response against xb.

– If there exists an i ∈ supp(x∗) such that (i, j∗) or (i, j′) is a pure
(2
3

− z)-WSNE, then return it.

– Find a row b ∈ B such that Rbj∗ > 1 − 18z
1+3z

and Cbj′ > 1 − 18z
1+3z

.

– Find a row s ∈ S such that Csj∗ > 1 − 27z
1+3z

and Rsj′ > 1 − 27z
1+3z

.

– Define the row player strategy xmp and the column player strategy
ymp as follows. For each i ∈ [n] we have:

xmpi =

⎧⎪⎨
⎪⎩

1−24z
2−39z

if i = b,
1−15z
2−39z

if i = s,

0 otherwise.

ympi =

⎧⎪⎨
⎪⎩

1−24z
2−39z

if i = j∗,
1−15z
2−39z

if i = j′,

0 otherwise.

– Return (xmp,ymp).

The algorithm returns in Step 4: By definition all rows r ∈ B satisfy Rij∗ ≥
1
3 + z, so since supp(xb) ⊆ B, the pure strategy regret of the row player can
be at most 1 − (13 + z) = 2

3 − z. For the same reason, since (xT
b · C)j∗ ≥ 1

3 + z
holds, the pure strategy regret of the column player can also be at 2

3 − z.
Thus, the profile (xb, j∗) is a (23 − z)-WSNE.

26 A. Czumaj et al.

The algorithm returns in Step 5: Since Rbj∗ > 1 − 18z
1+3z , the payoff of b

when the column player plays ymp is at least:

1 − 24z

2 − 39z
·
(

1 − 18z

1 + 3z

)

=
1 − 39z + 360z2

2 − 33z − 117z2

Similarly, since Rsj′ > 1− 27z
1+3z , the payoff of s when the column player plays

ymp is at least:

1 − 15z

2 − 39z
·
(

1 − 27z

1 + 3z

)

=
1 − 39z + 360z2

2 − 33z − 117z2

In the same way, one can show that the payoffs of j∗ and j′ are also 1−39z+360z2

2−33z−117z2

when the row player plays xmp. Thus, we have that (xmp,ymp) is a (1 −
1−39z+360z2

2−33z−117z2)-WSNE.

To find the optimal value for z, we need to find the largest value of z for which
the following inequality holds.

1 − 1 − 39z + 360z2

2 − 33z − 117z2
≤ 2

3
− z.

Setting the inequality to an equality and rearranging gives us a cubic polynomial
equation: 117 z3+432 z2−30 z+ 1

3 = 0. Since the discriminant of this polynomial
is positive, this polynomial has three real roots, which can be found via the
trigonometric method. Only one of these roots lies in the range 0 ≤ z < 1

24 ,
which is the following:

z =
1

117

√
3

(√
2434

√
3 cos

(
1
3

arctan
(

39
240073

√
9749

√
3
))

− 3
√

2434 sin
(

1
3

arctan
(

39
240073

√
9749

√
3
))

− 48
√

3

)

.

Thus, we get z ≈ 0.013906376, and we have found an algorithm that always
produces a 0.6528-WSNE. So we have the following theorem.

Theorem 3. There is a polynomial time algorithm that, given a bimatrix game,
finds a 0.6528-WSNE.

Communication Complexity. We claim that our algorithm can be adapted
for the limited communication setting by making the following modifications.
After computing x∗,y∗, x̂, and ŷ, we then use Lemma 1 to construct and com-
municate the sampled strategies x∗

s,y
∗
s , x̂s, and ŷs. These strategies are commu-

nicated between the two players using 4 · (log n)2 bits of communication, and
the players also exchange vr = (x∗

s)
T · Ry∗

s and vc = x̂T
s Cŷs using log n rounds

of communication. The algorithm then continues as before, except the sampled

Distributed Methods for Computing Approximate Equilibria 27

strategies are used in place of their non-sampled counterparts. Finally, in Steps 2
and 3, we test against the threshold 2

3 − z + ε instead of 2
3 − z.

Observe that, when sampled strategies are used, all steps of the algorithm can
be carried out in at most (log n)2 communication. In particular, to implement
Step 4, the column player can communicate j∗ to the row player, and then the
row player can communicate Rij∗ for all rows i ∈ supp(x∗

s) using (log n)2 bits
of communication, which allows the column player to determine j′. Once j′ has
been determined, there are only 2 · log n payoffs in each matrix that are relevant
to the algorithm (the payoffs in rows i ∈ supp(x∗

s) in columns j∗ and j′,) and so
the two players can communicate all of these payoffs to each other, and then no
further communication is necessary.

Theorem 4. For every ε > 0, there is a randomized expected-polynomial-time
algorithm that uses O

(
log2 n

ε2

)
communication and finds a (0.6528 + ε)-WSNE.

Query Complexity. We now show that Algorithm 2 can be implemented in a
payoff-query efficient manner. Let ε > 0 be a positive constant. We now outline
the changes needed in the algorithm.

– In Step 1 we use the algorithm of Lemma 2 to find ε
2 -NEs of (R,−R), and

(C,−C). We denote the mixed strategies found as (x∗
a,y∗

a) and (x̂a, ŷa),
respectively, and we use these strategies in place of their original counter-
parts throughout the rest of the algorithm. We also compute ε

2 -approximate
payoff vectors for each of these strategies, and use them whenever we need
to know the payoff of a particular strategy under one of these strategies. In
particular, we set vr to be the payoff of x∗

a according to the approximate
payoff vector of y∗

a, and we set vc to be the payoff of ŷa according to the
approximate payoff vector for x̂a.

– In Steps 2 and 3 we test against the threshold of 2
3 − z + ε rather than 2

3 − z.
– In Step 4 we select j∗ to be the column that is maximal in the approximate

payoff vector against x∗
a. We then spend n payoff queries to query every row

in column j∗, which allow us to proceed with the rest of this step as before.
– In Step 5 we use the algorithm of Lemma 2 to find an approximate payoff

vector v for the column player against xb. We then select j′ to be a column
that maximizes v, and then spend n payoff queries to query every row in j∗,
which allows us to proceed with the rest of this step as before.

Observe that the query complexity of the algorithm is O(n·log n
ε2), where the

dominating term arises due to the use of the algorithm from Lemma 2 to approx-
imate solutions to the zero-sum games.

Theorem 5. There is a randomized algorithm that, with high probability, finds
a (0.6528 + ε)-WSNE using O(n·log n

ε2) payoff queries.

28 A. Czumaj et al.

References

1. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria
in bimatrix games. Theoret. Comput. Sci. 411(1), 164–173 (2010)

2. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3), 14:1–14:57 (2009)

3. Conitzer, V., Sandholm, T.: Communication complexity as a lower bound for learn-
ing in games. In: Proceedings of ICML, pp. 185–192 (2004)

4. Czumaj, A., Fasoulakis, M., Jurdzinski, M.: Approximate well-supported Nash
equilibria in symmetric bimatrix games. In: Proceedings of SAGT, pp. 244–254
(2014)

5. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate Nash
equilibria. In: Proceedings of EC, pp. 355–358 (2007)

6. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

7. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash
equilibria. Theoret. Comput. Sci. 410(17), 1581–1588 (2009)

8. Fearnley, J., Savani, R.: Finding approximate Nash equilibria of bimatrix games
via payoff queries. In: Proceedings of EC, pp. 657–674 (2014)

9. Fearnley, J., Goldberg, P.W., Savani, R., Sørensen, T.B.: Approximate well-
supported Nash equilibria below two-thirds. In: Serna, M. (ed.) SAGT 2012.
LNCS, vol. 7615, pp. 108–119. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33996-7 10

10. Fearnley, J., Gairing, M., Goldberg, P.W., Savani, R.: Learning equilibria of games
via payoff queries. In: Proceedings of EC, pp. 397–414 (2013)

11. Fearnley, J., Igwe, T.P., Savani, R.: An empirical study of finding approximate
equilibria in bimatrix games. In: Proceedings of SEA, pp. 339–351 (2015)

12. Goldberg, P.W., Pastink, A.: On the communication complexity of approximate
Nash equilibria. Games Econ. Behav. 85, 19–31 (2014)

13. Goldberg, P.W., Roth, A.: Bounds for the query complexity of approximate equi-
libria. In: Proceedings of EC, pp. 639–656 (2014)

14. Hart, S., Mansour, Y.: How long to equilibrium? The communication complexity
of uncoupled equilibrium procedures. Games Econ. Behav. 69(1), 107–126 (2010)

15. Kontogiannis, S.C., Spirakis, P.G.: Well supported approximate equilibria in bima-
trix games. Algorithmica 57(4), 653–667 (2010)

16. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proceedings of EC, pp. 36–41 (2003)

17. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
18. Rubinstein, A.: Settling the complexity of computing approximate two-player Nash

equilibria. In: Proceedings of FOCS, pp. 258–265 (2016)
19. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash

equilibria. Internet Math. 5(4), 365–382 (2008)

http://dx.doi.org/10.1007/978-3-642-33996-7_10
http://dx.doi.org/10.1007/978-3-642-33996-7_10

	Distributed Methods for Computing Approximate Equilibria
	1 Introduction
	2 Preliminaries
	3 The Base Algorithm
	4 An Algorithm for Finding a 0.6528-WSNE
	References

