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Abstract. Peer-prediction [19] is a (meta-)mechanism which, given any
proper scoring rule, produces a mechanism to elicit prie information from
self-interested agents. Formally, truth-telling is a strict Nash equilibrium
of the mechanism. Unfortunately, there may be other equilibria as well
(including uninformative equilibria where all players simply report the
same fixed signal, regardless of their true signal) and, typically, the truth-
telling equilibrium does not have the highest expected payoff. The main
result of this paper is to show that, in the symmetric binary setting, by
tweaking peer-prediction, in part by carefully selecting the proper scoring
rule it is based on, we can make the truth-telling equilibrium focal—that
is, truth-telling has higher expected payoff than any other equilibrium.

Along the way, we prove the following: in the setting where agents
receive binary signals we (1) classify all equilibria of the peer-prediction
mechanism; (2) introduce a new technical tool for understanding scoring
rules, which allows us to make truth-telling pay better than any other
informative equilibrium; (3) leverage this tool to provide an optimal ver-
sion of the previous result; that is, we optimize the gap between the
expected payoff of truth-telling and other informative equilibria; and (4)
show that with a slight modification to the peer-prediction framework,
we can, in general, make the truth-telling equilibrium focal—that is,
truth-telling pays more than any other equilibrium (including the unin-
formative equilibria).
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1 Introduction

From Facebook.com’s “What’s on your mind?” to Netflix’s 5-point ratings, from
innumerable survey requests in one’s email inbox to Ebay’s reputation system,
user feedback plays an increasingly central role in our online lives. This feedback
can serve a variety of important purposes, including supporting product recom-
mendations, scholarly research, product development, pricing, and purchasing
decisions. With increasing requests for information, agents must decide where
to turn their attention. When privately held information is elicited, sometimes
agents may be intrinsically motivated to both participate and report the truth.
Other times, self-interested agents may need incentives to compensate for costs
associated with truth-telling and reporting: the effort required to complete the
rating (which could lead to a lack of reviews), the effort required to produce an
accurate rating (which might lead to inaccurate reviews), foregoing the oppor-
tunity to submit an inaccurate review that could benefit the agent in future
interactions [11] (which could, e.g., encourage negative reviews), or a potential
loss of privacy [8] (which could encourage either non-participation or incorrect
reviews).

To overcome a lack of (representative) reviews, a system could reward users
for reviews. However, this can create perverse incentives that lead to inaccurate
reviews. If agents are merely rewarded for participation, they may not take time
to answer the questions carefully, or even meaningfully.

To this end, explicit reward systems for honest ratings have been developed.
If the ratings correspond to objective information that will be revealed at a
future date, this information can be leveraged (e.g., via prediction markets) to
incentive honesty. In this paper, we study situations where this is not the case:
the ratings cannot be independently verified either because no objective truth
exists (the ratings are inherently subjective) or an objective truth exists, but is
not observable.

In such cases, it is known that correlation between user types can be lever-
aged to elicit truthful reports by using side payments [1,2,4,5]. Miller et al. [19]
propose a particular such (meta-)mechanism for truthful feedback elicitation,
known as peer prediction Given any proper scoring rule (a simple class of pay-
ment functions we describe further below), and a prior where each agent’s signal
is “stochastically relevant” (informative about other agents’ signals), the corre-
sponding peer prediction mechanism has truth-telling as a strict Bayesian-Nash
equilibrium.

There is a major problem, however: alternative, non-truthful equilibria may
have higher payoff for the agents than truth-telling. This is the challenge that
our work addresses.

Our Results. The main result of this paper is to show that by tweaking peer
prediction, in part by specially selecting the proper scoring rule it is based on,
we can make the truth-telling equilibrium focal–that is, truth-telling has higher
expected payoff than any other equilibrium.
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Along the way we prove the following: in the setting where agents receive
binary signals we (1) classify all equilibria of the peer prediction mechanism; (2)
introduce a new technical tool, the best response plot, and use it to show that
we can find proper scoring rules so the truth-telling pays more, in expectation,
than any other informative equilibrium; (3) we provide an optimal version of
the previous result, that is we optimize the gap between the expected payoff of
truth-telling and other informative equilibrium; and (4) we show that with a
slight modification to the peer prediction framework, we can, in general, make
the truth-telling equilibrium focal—that is, truth-telling pays more than any
other equilibrium (including the uninformative equilibria).

The main technical tool we use is a best response plot, which allows us
to easily reason about the payoffs of different equilibria. We first prove that no
asymmetric equilibria exist. The naive approach then would be to simply plot the
payoffs of different symmetric strategies. However, for even the simplest proper-
scoring rules, these payoff curves are paraboloid, and hence difficult to analyze
directly. The best response plot differs from this naive approach in two ways:
first, instead of plotting the strategies of agents explicitly, the best response plot
aggregates the results of these actions; second, instead of plotting the payoffs of
all agents, the best response plot analyzes the payoff of one distinguished agent
which, given the strategies of the remaining agents, plays her best response.
This makes the plot piece-wise linear for all proper scoring rules, which makes
analysis tractable. We hope that the best response plot will be useful in future
work using proper scoring rules.

1.1 Related Work

Since the seminal work of Miller et al. introducing peer prediction [19], a host of
results in closely related models have followed (see, e.g., [9,11,12,14]), primarily
motivated by opinion elicitation in online settings where there is no objective
ground truth.

Recent research [7] indicates that individuals in lab experiments do not always
truth-tell when faced with peer prediction mechanisms; this may in part be
related to the issue of equilibrium multiplicity. Gao et al. [7] ran studies over
Mechanical Turk using two treatments: in the first they compensated the par-
ticipants according to peer prediction payments, and in the second they gave
them a flat reward for participation. In their work, the mechanism had complete
knowledge of the prior. The participants responded truthfully more often when
the payoffs were fixed than in response to the peer prediction payments. How-
ever, it should be noted that the task the agents were asked to perform took
little effort (report the received signal), and the participants were not primed
with any information about the truthful equilibrium of the peer prediction mech-
anism (they were only told the payoffs)–an actual surveyor would have incentive
to prime the participants to report truthfully.

The most closely related work is a series of papers by Jurca and Faltings
[12,14], which studies collusion between the reporting agents. In a weak model
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of collusion, the agents may be able to coordinate ahead of time (before receiv-
ing their signals) to select the equilibrium with the highest payoff. Jurca and
Faltings use techniques from algorithmic mechanism design to design a mech-
anism where, in most situations, the only symmetric pure Nash equilibria are
truth-telling. They explicitly state the challenge of analysing mixed-Nash equi-
librium as an open question, and show challenges to doing this in their algorith-
mic mechanism design framework [12,14]. Our techniques, in contrast, allow us
to analyse all Nash equilibria of the peer prediction mechanism including both
mixed-strategy and asymmetric equilibria. Instead of eliminating equilibria, we
enforce that they have a lower expected payoff than truth-telling. Additionally,
the algorithmic mechanism design framework used by Jurca and Faltings sac-
rifices “the simplicity of specifying the payments through closed-form scoring
rules” [12] that was present in the peer prediction paper. Our work recovers a
good deal of that simplicity.

Jurca and Faltings further analyze other settings where colluding agents can
make transfer payments, or may collude after receiving their signals. In par-
ticular, they again use automated mechanism design to show that in the case
where agents coordinate after receiving their signals that even without trans-
fer payments, there will always be multiple equilibria; in this setting, they pose
the question of whether the truth-telling equilibrium can be endowed with the
highest expected payoff. We do not deal with this setting explicitly, but in the
settings we consider, we show that even in the face of multiple equilibria, we can
ensure that the truth-telling equilibrium has the highest expected payoff and no
other equilibrium is paid the same with truth-telling.

In a different paper [11], Jurca and Faltings show how to minimize payments
in the peer prediction framework. Their goal is to discover how much “cost”
is associated with a certain marginal improvement of truth-telling over lying.
In this paper, they also consider generalizations of peer prediction, where more
than one other agent’s report is used as a reference. Our work takes this to the
extreme (as did [8] before us) using all of the other agents’ reports as references.

A key motivation of one branch of the related work is removing the assump-
tion that the mechanism knows the common prior [3,6,10,13,15,18,20–22,24,25].
Dasgupta and Ghosh [3], Kamble et al. [15], Kong and Schoenebeck [16],
Shnayder et al. [23] study a different setting where agents are asked to answer
several a priori similar questions. Our results can be applied even when there is
just a single questions (thus we do not need to assume any relation between ques-
tions). Kamble et al. [15]’s mechanism applies to both homogeneous and hetero-
geneous population but requires a large number of a priori similar tasks. How-
ever, Kamble et al. [15]’s mechanism contains non-truthful equilibria that are paid
higher than truth-telling. Dasgupta and Ghosh [3]’s mechanism has truth-telling
as the equilibrium with the highest payoff, but contains a non-truthful equilibrium
that is paid as much as truth-telling. Prelec [20] shows that in his Bayesian Truth
Serum (BTS), truth-telling maximizes each individual’s expected “Information-
score” across all equilibria. However, this guarantee is not strict, and requires the
number of agents to be infinite, even to just have truth-telling be an equilibrium.
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Moreover, it is hard to classify the equilibria or optimize mechanism in Prelec’s
setting. Another drawback of BTS is that it requires agents to report “prediction”
while our mechanism only requires agents to report a single signal. Radanovic and
Faltings [21]’s mechanism solves this drawback but that mechanism is in a sens-
ing scenario and needs to compare the information of an sensor’s local neighbours
with the information of global sensors while our mechanism does not require this
local/global structure. Moreover, like BTS, Radanovic and Faltings [21]’s mech-
anism does not have the strictness guarantee and requires the number of agents
to be infinite even to have truth-telling as an equilibrium. In addition, Lambert
and Shoham [18] provide a mechanism such that no equilibrium pays more than
truth-telling, but here all equilibria pay the same amount; and while truth-telling
is a Bayesian Nash equilibrium, unlike in peer prediction it generally is not a
strict Bayesian Nash equilibrium. Minimal Truth Serum (MTS) [22] is a mech-
anism where agents have the option to report or not report their predictions, and
also lacks analysis of non-truthful equilibria. MTS uses a typical zero-sum tech-
nique such that all equilibria are paid equally.

Equilibrium multiplicity is clearly a pervasive problem in this literature. While
our present work only applies to the classical peer prediction mechanism, it pro-
vides an important step in addressing equilibrium multiplicity, and a new toolkit
for reasoning about proper scoring rules.

Subsequent Work. Kong and Schoenebeck [17] show analogous results in the set-
ting where mechanism does not know the prior; however, they also prove that
results as strong as those in this paper are impossible in that setting.

2 Preliminaries, Background, and Notation

2.1 Game Setting

Consider a setting with n agents A. If A′ ⊆ A, we let −A′ denote A \ A′. Each
agent i has a private signal σi ∈ Σ. We consider a game in which each agent i
reports some signal σ̂i ∈ Σ. Let σ denote the vector of signals and σ̂ denote the
vector of reports. Let σ−i and σ̂−i denote the signals and reports excluding that
of agent i; we regularly use the −i notation to exclude an agent i.

We would like to encourage truth-telling, namely that agent i reports σ̂i = σi.
To this end, agent i will receive some payment νi(σ̂i, σ̂−i) from our mechanism. In
this paper, the game will be anonymous, in that each player’s payoffs will depend
only on the player’s own report and the fraction of other players giving each pos-
sible report ∈ Σ, and not on the identities of those players.

Assumption 1 (Binary Signals). We will refer to the case when Σ = {0, 1} as
the binary signal setting, and we focus on this setting in this paper.

Assumption 2 (Symmetric Prior). We assume throughout that the agents’
signals σ are drawn from some joint symmetric prior Q: a priori, each agent’s
signal is drawn from the same distribution. We in fact only leverage a weaker
assumption, that ∀σ, σ′, and ∀i �= j and k �= l, we have Pr[σj = σ′|σi = σ] =
Pr[σl = σ′|σk = σ].
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That is, the inference your signal lets you draw about others’ signals does not
depend on your identity or on the identity of the other agent.

Given the prior Q, for σ ∈ Σ, let q(σ) be the fraction of agents that an agent
expects will have σj = σ a priori. Let

q(σ′|σ) := Pr[σj = σ′|σi = σ]

(where j �= i) be the fraction of other agents that a user i expects have received
signal σ′ given that he has signal σ.

Assumption 3 (Signals Positively Correlated). We assume throughout that
the prior Q is positively correlated, namely that q(σ|σ) > q(σ), for all σ ∈ Σ.

That is, once a player sees that his signal is σ, this strictly increases his belief
that others will have signal σ, when compared with his prior. Notice that even
after an agent receives his signal, he may still believe that he is in the minority.
Thus, simply encouraging agent agreement is not sufficient to incentivize truthful
reporting.

Assumption 4 (Signal Asymmetric Prior). An additional assumption we
will often use is that the prior is signal asymmetric. For binary signals, as we
consider in this paper, this simply means that q(0) �= q(1).

For a richer signal space, intuitively, a signal asymmetric prior is one that
changes under a relabeling of the signals, so that lying can potentially be distin-
guishable from truth-telling.

We say that an agent plays response σ → σ̂, if the agent reports signal σ̂ when
he receives signal σ. Let X be the set of all responses (e.g. X = {0 → 0, 0 → 1, 1 →
0, 1 → 1} when Σ = {0, 1}). In a pure-strategy an agent chooses a response for
each σ ∈ Σ, and thus there are |Σ||Σ| possible pure strategies. Let S be the set
of pure strategies and let si ∈ S denote a pure-strategy for agent i. We will also
consider mixed strategies θi, where agent i randomizes over pure strategies. Here
we write

θi(σ′|σ) := Pr[σ̂i = σ′|σi = σ].

A strategy profile θ = (θ1, . . . , θn) consists of a strategy for each agent.
We can think of each θ as a linear transformation from a distribution over

received signals to a distribution of reported signals. Given a set of agents A′ ⊂ A,
we define

θ′
A(σ′|σ) := Ei←A[θi(σ′|σ)]

where i ← A′ means i is chosen uniformly at random from A′. When discussing
symmetric strategy profiles where all players use the same strategy, we will often
abuse notation and use notation for one agent’s strategy to denote the entire strat-
egy profile.

A Bayesian Nash equilibrium consists of a strategy profile θ = (θ1, . . . , θn)
such that no player wishes to change his strategy, given the strategies of the other
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players and the information contained the prior and his signal: for all i and for all
alternative strategies θ′

i for i, E[νi(θ)] ≥ E[νi(θ′
i,θ−i)], where the expectations are

over the realizations of the randomized strategies and the prior Q. We call such
an equilibrium focal if it provides a strictly larger payoff, in expectation, to each
agent, than any other equilibrium and weakly focal if it provides a larger payoff
(maybe not strictly).

Given a symmetric prior Q and strategy profile θ = (θ1, . . . , θn), we define

q̂j(σ′|σ) := Pr[σ̂j = σ′|σi = σ] =
∑

σ′′∈Σ

q(σ′′|σ)θj(σ′|σ′′)

for i �= j. Intuitively, q̂j(σ′|σ) is the probability of player j reporting σ′, given that
another player i sees signal σ; note that this probability does not depend on the
identity of i, by symmetry of the prior. Given a set of agents A′ ⊂ A, we define

q̂′
A(σ′|σ) := Ej←A′ q̂j(σ′|σ)

where j ← A′ means j is chosen uniformly at random from A′ (again assuming
that the implicit reference agent i �∈ A′). If θ = (θ, . . . , θ) is symmetric, we simplify
our notation to q̂(σ′|σ) because the referenced set of agents does not matter.

In the binary signal setting when θ is symmetric, we have:

q̂(1|0) = θ(1|0)q(0|0) + θ(1|1)q(1|0) (1)
q̂(1|1) = θ(1|0)q(0|1) + θ(1|1)q(1|1) (2)

Additionally, we observe that q(1|b) = 1 − q(0|b), θi(1|b) = 1 − θi(0|b) ∀i, and
q̂(1|b) = 1− q̂(0|b). Note that we will typically use b instead of σ to refer to binary
signals (bits).

There are four pure strategies for playing the game in the binary signal setting:
always 0, always 1, truth-telling, lying:

S =
{(

0 → 0
1 → 0

)
,

(
0 → 1
1 → 1

)
,

(
0 → 0
1 → 1

)
,

(
0 → 1
1 → 0

)}
= {0,1,T,F}.

We will denote mixed strategies as
(

0 → θ(1|0)
1 → θ(1|1)

)
.

2.2 Proper Scoring Rules

A scoring rule PS : Σ × ΔΣ → R takes in signal σ ∈ Σ and a distribution over
signals δΣ ∈ ΔΣ and outputs a real number. A scoring rule is proper if, whenever
the first input is drawn from a distribution δΣ , then the expectation of PS is max-
imized by δΣ . A scoring rule is called strictly proper if this maximum is unique.
We will assume throughout that the scoring rules we use are strictly proper. By
slightly abusing notation, we can extend a scoring rule to be PS : ΔΣ ×ΔΣ → R

by simply taking PS(δΣ , δ′
Σ) = Eσ←δΣ

(σ, δ′
Σ).

In the case of scoring rules over binary signals, a distribution can be repre-
sented by a number in the unit interval, denoting the probability placed on the
signal 1. In the binary signal setting, then, we extend proper scoring rules to be
defined on [0, 1] × [0, 1].
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Example 1 (Example of Proper Scoring Rule). The Brier Scoring Rule for predict-
ing a binary event is defined as follows. Let I be the indicator random variable for
the binary event to be predicted. Let q be the predicted probability of the event
occurring. Then:

B(I, q) = 2I · q + 2(1 − I) · (1 − q) − q2 − (1 − q)2.

Note that if the event occurs with probability p, then the expected payoff of report-
ing a guess q is (abusing notation slightly):

B(p, q) = 2p · q + 2(1 − p) · (1 − q) − q2 − (1 − q)2 = 1 − 2(p − 2p · q + q2)

This is (uniquely) maximized when p = q, and so the Brier scoring rule is a strictly
proper scoring rule. Note also that B(p, q) is a linear function in p. Hence, if p is
drawn from a distribution, we have: Ep[B(p, q)] = B(E[p], q), and so this is also
maximized by reporting q = E[p].

2.3 Peer Prediction

Peer Prediction [19] with n agents receiving positively correlated binary signals b,
with symmetric prior Q, consists of the following mechanism M(b̂):

1. Each agent i reports a signal b̂i.
2. Each agent i is uniformly randomly matched with an individual j �= i, and is

then paid PS(b̂j , q(1|b̂i)), where PS is a proper scoring rule.

That is, agent i is paid according to a proper scoring rule, based on i’s prediction
that b̂j = 1, where i’s prediction is computed as either q(1|0) or q(1|1), depending
on i’s report to the mechanism. This can be thought of as having agent i bet on
what agent j’s reported signal will be.

Notice that if agent j is truth-telling, then the Bayesian agent i would also be
incentivized to truth-tell (strictly incentivized, if the proper scoring rule is strict).
Agent i’s expected payoff (according to his own posterior distribution) for report-
ing his true type bi has a premium compared to reporting ¬bi of:

PS
(
b̂j , q (1|bi)

)
− PS

(
b̂j , q (1|¬bi)

)
≥ 0

(strictly, for strict proper scoring rules) because we know that the expectation of
PS(b̂j , ·) is (uniquely) maximized at q(1|bi). Now we introduce a convenient way
to represent peer prediction mechanism.

Definition 1 (Payoff Function Matrix). Each agent i who reports b̂i and is
paired with agent j who reports b̂j, will be paid hb̂j ,b̂i

. Then the peer prediction mech-
anism can be naturally represented as a 2 × 2 matrix:

(
h1,1 h1,0

h0,1 h0,0

)
=

(
PS(1, q(1|1)) PS(1, q(1|0))
PS(0, q(1|1)) PS(0, q(1|0))

)

which we call the payoff function matrix.
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An example of a peer-prediction setting is included in the full version.
While truth-telling is always an equilibrium of the peer prediction mechanism,

as we will see, it is not the only equilibrium. Two more equilibria are to always play
0 or always play 1. In Sect. 3.1, we further investigate equilibria of the peer pre-
diction game. Based our the analysis of these multiple equilibria, we will develop
a modified peer prediction mechanism, wherein players are paid according
to the peer prediction based on a carefully-designed proper scoring rule, modulo
some punishment imposed on the all playing 0 or all playing 1 strategy profiles.
This modified mechanism will make the truth-telling equilibrium focal.

3 Summary of Main Results

In this section, we introduce our modified peer prediction mechanism and sketch
the main theorem of this paper, that for almost any symmetric prior, there exists
a modified peer prediction mechanism such that truth-telling is the focal equilib-
rium. Recall, we use the term focal to refer to an equilibrium with expected payoff
strictly higher than that of any other Bayesian Nash equilibrium.

3.1 Our Modified Peer Prediction Mechanism MPPM

Recall that modified peer prediction mechanism is the mechanism wherein players
are paid according to peer prediction based on a carefully-designed proper scor-
ing rule, modulo some punishment imposed on the all playing 0 or all playing 1
strategy profiles. So our approach differentiates between two types of equilibria:

Definition 2 (Informative Strategy). We call always reporting 1 and always
reporting 0 uninformative strategies; we call all other strategies (equilibria) infor-
mative.

Designing the Optimal Peer Prediction Mechanism. We start to describe our mod-
ified peer prediction mechanism MPPM. We use two steps to design our MPPM.
First we define the PPM:

Definition 3. Given any binary, symmetric, positively correlated, and signal
asymmetric prior Q, with q(1|1) > q(0|0) (the q(0|0) < q(1|1) case is analogous),
we first design our peer prediction mechanism PPM(Q) and represent it as a payoff
function matrix (See Definition 1). PPM(Q) depends on the region that Q belongs
to, we defer the definitions of regions R1, R2, R3 to full version but provide Fig. 1
here to illustrate them.

1. If Q ∈ R1, then PPM(Q) = M1(Q)

2. If Q ∈ R2, then PPM(Q) = M2(Q)

3. If Q ∈ R3, then we pick a small number ε > 0 and PPM(Q, ε) = M3(Q, ε)
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where

M1(Q) =

⎛

⎝
ζ(Q) 0

0 1

⎞

⎠ ,M2(Q) =

⎛

⎝
1 0

0 η(Q)

⎞

⎠ ,M3(Q, ε) =

⎛

⎝
ζ(Q, ε) δ(Q, ε)

0 1

⎞

⎠

and

0 ≤ ζ(Q), η(Q) ≤ 1 are constants that only depend on common prior Q. 0 ≤
ζ(Q, ε), δ(Q, ε) ≤ 1 are constants that only depend on common prior Q and ε > 0.1

Fig. 1. The regions R1, R2, R3 are good “priors” where we can make truth-telling focal
when the number of agents is sufficient large. The white diagonals are “bad” priors we
cannot make truth-telling focal. In the top-right to bottom-left diagonal, q(1|0) = q(1|1),
so the private signal does not have any information. We call this diagonal the set of non-
informative priors. In the top-left to bottom-right diagonal, q(0|0) = q(1|1) (actually we
can see q(0|0) = q(1|1) iff q(0) = q(1) via some calculations). This diagonal is the set of
signal symmetric priors. The yellow region is the set of the negative correlated priors.
(Color figure online)

Note that actually PPM(Q) is a quite simple mechanism. We use region R1

as example: if the prior belongs to region R1, for every i, agent i will receive 0
payment if the agent paired with agent i, call him agent j, reports a different signal
than him. If both agent i and agent j report 1, agent i will receive a payment of
0 ≤ ζ(Q) ≤ 1, if both agent i and agent j report 0, agent i will receive payment
of 1.

Actually for regions R1, R2, the PPM(Q) we define here is the optimal peer
prediction mechanism in that it maximizes the advantage of truth-telling over the
informative equilibria which have the second largest expected payoff over all Peer-
prediction mechanisms with payoffs in [0, 1]. For region R3, the optimal peer pre-
diction mechanism does not exist, but the advantage of the PPM(Q, ε) we define
approaches the optimal advantage as ε goes to 0.
1 Explicit statement in full version.
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Definition 4. We define Δ∗(Q) to be the supremum of the advantage of truth-
telling over the informative equilibria which have the second largest expected payoff
over all Peer-prediction mechanisms with payoffs in [0, 1].

Add Punishment. In our PPM(Q), an uninformative strategy can still obtain
the highest payoff. For example, in mechanism M1, agents will receive maximal
payment 1 by simply always reporting 0.

Our final MPPM(Q) Mechanism is the same as the PPM(Q) except that we
add a punishment designed to hurt the all 0 or all 1 equilibria.

Definition 5. Our Modified Peer-Prediction Mechanism MPPM(Q)
(or MPPM(Q, ε) has payoffs identical to PPM(Q) (or MPM(Q, ε)) except that,
in the event all the other agents play all 0 or all 1, it will issue an agent a punish-
ment of p = 1−t

2(1−εQ) + Δ∗(Q)
2εQ

where εQ is the maximum probability that a fixed set
of n − 1 agents receive the same signal (either all 0 or all 1); t is the expected of
payoff of truth-telling T in the PPM(Q), and Δ∗(Q) is as defined in Definition 4.

To make truth-telling focal, we would like to impose a punishment to the agents
if everyone reports the same signal. However, such a punishment may distort the
equilibria of the mechanism. To avoid this, we punish an agent by p when all the
other agents report the same signal. Because an agent’s strategy does not influence
his punishment, his marginal benefit for deviation remains the same and so the
equilibrium remain the same. However, while all 0 and all 1 remain equilibrium,
in them, MPPM(Q) will punish each agent by p.

A difficulty arises: if the number of agents is too small like 2 or 3, it is possible
(and even probable) that all agents report their true signals, yet are still punished
by the MPPM(Q) mechanism. Punishments like this might distort the payoffs
among the informative equilibrium. However, if εQ (the probability that n − 1
agents receives the same signal) is sufficient small, this is no longer a problem.
For most reasonable priors, as the number of agents increases, εQ will go to zero.
Formally we will need that the number of agents is large enough such that εQ <

Δ∗(Q)
1−t+Δ∗(Q) .

If the number of agents is too small such that εQ ≤ Δ∗(Q)
1−t+Δ∗(Q) , we cannot show

that MPPM(Q) has truth-telling as a focal equilibrium.
In particular, we can see if εQ → 0 (say as the number of agents increases), then

at some point, truth-telling will be focal. We know that such a limit is necessary
because, for example, with two agents making truth-telling focal is impossible.

Note that if the prior tells us the probability of a 1 event is concentrated far
away from 0 and 1, the number of agents we need to make truth-telling focal will
be very small since uninformative equilibria (all 1 and all 0) are far away from
truth-telling.

Theorem 5. (Main Theorem (Informal)) Let Q be a binary, symmetric, positively
correlated and signal asymmetric prior, and let εQ be the maximum probability that
a fixed set of n − 1 agents receive the same signal (either all 0 or all 1). Then
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1. In our PPM, truth-telling has the largest expected payoff among all informa-
tive equilibria. Moreover, over the space of Peer-Prediction mechanisms, our
PPM(Q) maximizes the advantage truth-telling has over the informative equi-
librium which have the second largest expected payoff, over all Peer-prediction
mechanisms with payoffs in [0, 1] for regions R1, R2 and PPM(Q, ε) approaches
the maximal advantage for region R3 as ε goes to 0.

2. There exists a constant ξq(1|1),q(1|0) which only depends on q(1|1) and q(1|0) such
that, if εQ < ξ, our MPPM(Q) makes truth-telling focal.

Now we list all equilibria of the peer prediction mechanism in the below
theorem (Fig. 2).

Definition 6. For a prior Q, proper scoring rule PS, and a binary signal space,
we define q∗ to be the fraction of other agents reporting 1 that would make an agent
indifferent between reporting 0 or 1, i.e.,

q∗ := {p | PS(p, q(b|1)) = PS(p, q(b|0)), 0 ≤ p ≤ 1}.

Fig. 2. Illustration of the 7 equilibria of a peer prediction mechanism under a specific
scoring rule (see the full version). Note that to the right of the dashed red line where
q̂(1|0) = q∗, the best response is to increase θ(1|0); to the left of the dashed red line,
the best response is to decrease θ(1|0); and on the line an agent is indifferent. Similarly,
above the dotted blue line where q̂(1|1) = q∗, the best response is to increase θ(1|1);
below the dotted blue line, the best response is to decrease θ(1|1); and on the line an
agent is indifferent. (Color figure online)

Theorem 6. Let Q be a symmetric and positively correlated prior on {0, 1}n, and
let M be a peer-prediction mechanism run with a strictly proper scoring rule with
break-even q∗ (Definition 6). Then there are no asymmetric equilibria. All equilib-
ria are symmetric and depend only on q∗; they are

0,1,T,Q∗ �
(

0 → q∗

1 → q∗

)
,
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T0 �
(

0 → 0
1 → q∗

q(1|1)

)
,T1 �

(
0 → q∗−q(1|0)

q(0|0)
1 → 1

)

and also conditionally include

F if q(0|1) ≤ q∗ ≤ q(0|0) (3)

F1 �
(

0 → 1
1 → q∗−q(0|1)

q(1|1)

)
if q(0|1) ≤ q∗ (4)

F0 �
(

0 → q∗

q(0|0)
1 → 0

)
if q∗ ≤ q(0|0) (5)

Due to the space limitation, we defer all proofs to our full version (see https://
arxiv.org/abs/1603.07319).

Acknowledgments. We thank David Parkes and Paul Resnick for helpful suggestions.
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