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Preface

This volume contains the papers and extended abstracts presented at WINE 2016: the
12th Conference on Web and Internet Economics, held during December 11–14, 2016,
in Montreal, Canada.

Over the past decade, researchers in theoretical computer science, artificial intelli-
gence, and microeconomics have joined forces to tackle problems involving incentives
and computation. These problems are of particular importance in application areas like
the Web and the Internet that involve large and diverse populations. The Conference on
Web and Internet Economics (WINE) is an interdisciplinary forum for the exchange of
ideas and results on incentives and computation arising from these various fields.

WINE 2016 built on the previous success of the series, held annually from 2005 to
2015 with published archival proceedings.

WINE 2016 accepted 35 papers. All submissions were rigorously peer reviewed and
evaluated on the basis of originality, soundness, significance, and exposition. The
program also included three invited talks by Kevin Leyton-Brown (University of
British Columbia), Christos Papadimitriou (University of California at Berkeley), and
Rakesh Vohra (University of Pennsylvania). In addition WINE 2016 featured three
tutorials by Hu Fu (University of British Columbia), Brendan Lucier (Microsoft
Research at New England), and Ruta Mehta (University of Illinois at Urbana-
Champaign).

We would like to thank our sponsors, CRM, Facebook, Microsoft Research, Goo-
gle, GERAD, and Springer, for their generous financial support. We are very grateful to
Louis Pelletier and the administrative staff at the CRM for their assistance in the
organization of the event.

We acknowledge the work of the Program Committee for their hard work. Special
thanks goes to Vasilis Gkatzelis for chairing the poster session. In addition we would
like to acknowledge Springer for their help with the proceedings, and the EasyChair
paper management system.

November 2016 Yang Cai
Adrian Vetta
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Computing Equilibria with Partial Commitment

Vincent Conitzer(B)

Duke University, Durham, NC, USA
conitzer@cs.duke.edu

Abstract. In security games, the solution concept commonly used is
that of a Stackelberg equilibrium where the defender gets to commit
to a mixed strategy. The motivation for this is that the attacker can
repeatedly observe the defender’s actions and learn her distribution over
actions, before acting himself. If the actions were not observable, Nash
(or perhaps correlated) equilibrium would arguably be a more natural
solution concept. But what if some, but not all, aspects of the defender’s
actions are observable? In this paper, we introduce solution concepts
corresponding to this case, both with and without correlation. We study
their basic properties, whether these solutions can be efficiently com-
puted, and the impact of additional observability on the utility obtained.

1 Introduction

Algorithms for computing game-theoretic solutions have long been of interest,
but were for a long time not deployed in real-world applications (at least if
we do not count, e.g., computer poker programs—for an overview of those, see
Sandholm [21]—as real-world applications). This changed in 2007 with a series
of deployed applications coming out of Milind Tambe’s TEAMCORE research
group at the University of Southern California. The games in question are what
are now called security games, where a defender has to allocate limited resources
to defend certain targets or patrol a certain area, and an attacker chooses a target
to attack. The deployed applications include airport protection [20], assigning
Federal Air Marshals to flights [22], patrolling in ports [2], fare inspection in
transit systems [25], and patrolling to prevent wildlife poaching [11].

While most of the literature on computing game-theoretic solutions has
focused on the computation of Nash equilibria—including the breakthrough
result that even computing a single Nash equilibrium is PPAD-complete [6,10]—
in the security games applications the focus is instead on computing an optimal
mixed strategy to commit to [8]. In this model, one player (in security games, the
defender) chooses a mixed strategy, and the other (the attacker) observes this
mixed strategy and best-responds to it. This sometimes helps, and never hurts,
the former player [23]. Intriguingly, in two-player normal-form games, such a
strategy can be computed in polynomial time via linear programming [8,23].
Another benefit of this model is that it sidesteps issues of equilibrium selection
that the approach of computing (say) a Nash equilibrium might face.

I dedicate this paper to my sister Jessica, her fiancé Jeremy, and their upcoming full
commitment. I wish them a lifetime of happiness.

c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 1–14, 2016.
DOI: 10.1007/978-3-662-54110-4 1



2 V. Conitzer

Such technical conveniences aside, the standard motivation for assuming that
the defender in security games can commit to a mixed strategy is as follows. The
defender has to choose a course of action every day. The attacker, on the other
hand, does not, and can observe the defender’s actions over a period of time.
Thus, the defender can establish a reputation for playing any particular mixed
strategy. This can be beneficial for the defender: whereas in a simultaneous-
move model (say, using Nash equilibrium as the solution concept), she can play
only best responses to the attacker’s strategy, in the commitment model she can
commit to play something that is not a best response, which may incentivize
the attacker to play something that is better for the defender. Of course, for
this argument to work, it is crucial that the attacker observes over time which
actions the defender takes before taking any action himself. Previous work has
questioned this and considered models where there is uncertainty about whether
the attacker observes the defender’s actions at all [14,15], as well as models where
the attacker only gets a limited number of observations [1,19].

In this paper, we consider a different setting where some defender actions
are (externally) indistinguishable from each other. This captures, for example,
the case where there are both observable and unobservable security measures,
as is often the case. Here, two courses of action are indistinguishable if and
only if they differ only in the unobservable component. It also captures the case
where a guard can be assigned to a visible location (1), or to one of two invisible
locations (2 or 3). In this case, the first action is distinguishable from the latter
two, but the latter two are indistinguishable from each other. Indistinguishability
is an equivalence relation that partitions the player’s strategy space; we call one
element of this partition a SIS (subset of indistinguishable strategies). Thus, the
defender can establish a reputation for playing a particular distribution over the
SISes. However, she cannot establish any reputation for how she plays within
each SIS, because this is not externally observable. Thus, intuitively, when the
defender plays from a particular SIS, she needs to play a strategy that, within
that SIS, is a best response; however, if there is another strategy in a different
SIS that is a better response, that is not a problem, because deviating to that
strategy would be observable.

The specific contributions of this paper are as follows. We formalize solution
concepts for these settings that generalize both Nash and correlated equilib-
rium, as well as the basic Stackelberg model with (full) commitment to mixed
strategies. Further contributions include illustrative examples of these solutions,
basic properties of the concepts, analysis of their computational complexity, and
analysis of how the row player (defender)’s utility varies as a function of the
amount of commitment power (as measured by observability).

2 Definitions and Basic Properties

We are now ready to define some basic concepts. Throughout, the row player
(player 1) is the player with (some) commitment power, in the sense of being
able to build a reputation. R denotes the set of rows, C the set of columns, and
σ1 and σ2 denote mixed strategies over these, respectively.
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Definition 1. A subset of indistinguishable strategies (SIS) S is a maximal
subset of R such that for any two rows r1, r2 ∈ S, the column player’s observation
is identical for r1 and r2. Let S denote the set of all SISes, constituting a partition
of R. Given a mixed strategy σ1 for the row player and a SIS S, let σ1(S) =∑

r∈S σ1(r) (where σ1(r) is the probability σ1 puts on r).

Since our focus is on games in which one player can build up a reputation and
the other cannot, we do not consider SISes for the column player. Equivalently,
we consider all the column player’s strategies to be in the same SIS.

Definition 2. Two mixed strategies σ1, σ
′
1 are indistinguishable to the column

player if for all S ∈ S, σ1(S) = σ′
1(S).

Example. Consider the following game:

A B

a 7,0 2,1

b 6,1 0,0

c 5,0 0,1

d 4,1 1,0

If the players move simultaneously, then a is a strictly dominant strategy
and we obtain (a,B) as the iterated strict dominance solution (and hence the
unique Nash equilibrium), with a utility of 2 for the row player. If the row
player gets to commit to a mixed strategy, then she could commit to play a and
b with probability 1/2 each, inducing the column player to play A,1 resulting in
a utility of 6.5 for the row player. (Even committing to a pure strategy—namely,
b—would result in a utility of 6.) Now suppose S = {{a, b}, {c, d}}, i.e., a and
b are indistinguishable and so are c and d. In this case, playing a and b with
probability 1/2 each (or playing b with probability 1) is indistinguishable from
playing a with probability 1. Hence, it is not credible that the row player would
ever play b, given that a is a strictly dominant strategy. But can the row player
still do better than always playing a (and thereby inducing the column player
to play B)?

We will return to this example shortly, but first we need to formalize the idea
of a deviation that cannot be detected by the column player.

Definition 3. A profile (σ1, σ2) has no undetectable beneficial deviations if (1)
for all σ′

2, u2(σ1, σ
′
2) ≤ u2(σ1, σ2), and (2) for all σ′

1 indistinguishable from σ1,
u1(σ′

1, σ2) ≤ u1(σ1, σ2).

The following simple proposition points out that this is equivalent to the
column player only putting probability on best responses, and the row player
only putting probability on rows that within their SIS are best responses.
1 As is commonly assumed in this model, ties for the column player are broken in the

row player’s favor; if not, the row player can simply commit to 1/2 − ε on a and
1/2 + ε on b.
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Proposition 1. A profile (σ1, σ2) has no undetectable beneficial deviations if
and only if (1) for all c, c′ ∈ C with σ2(c) > 0, u2(σ1, c

′) ≤ u2(σ1, c), and (2)
for all S ∈ S, for all r, r′ ∈ S with σ1(r) > 0, u1(r′, σ2) ≤ u1(r, σ2).

Example Continued. In the game above, consider the profile

(((1/2)c, (1/2)d), ((1/2)A, (1/2)B))

This profile has no undetectable deviations: (1) the column player is playing a
best response, and (2) the only undetectable deviations for the row player do
not put any probability on {a, b}, and c and d are both equally good responses.

Note that a profile that has no undetectable beneficial deviations may still not
be stable, in the sense that player 1 may prefer to deviate to a mixed strategy
that is in fact distinguishable from σ1, and build up a reputation for playing
that strategy instead. But in a sense, these profiles are feasible solutions for
the row player: given that the row player decides to build up a reputation for
the distribution over SISes resulting from σ1, the profile (σ1, σ2) is stable. This
is similar to the sense in which in the regular Stackelberg model, any profile
consisting of a mixed strategy for the row player and a best response for the
column player is feasible: the row player may not have had good reason to
commit to that particular mixed strategy, but given that she did, the profile is
stable. In fact, this just corresponds to the special case of our model where all
rows are distinguishable.

Proposition 2. If |S| = 1 (all rows are indistinguishable), then a profile has
no undetectable beneficial deviations if and only if it is a Nash equilibrium of
the game. If |S| = |R| (all rows are distinguishable), then a profile has no unde-
tectable beneficial deviations if and only if the column player is best-responding.

We can now define an optimal solution.

Definition 4. A profile with no undetectable beneficial deviations is a Stack-
elberg equilibrium with limited observation (SELO) if among such profiles it
maximizes the row player’s utility.

Example Continued. In the game above, consider the profile

(((1/2)a, (1/2)d), ((1/2)A, (1/2)B))

This profile has no undetectable deviations: A and B are both best responses for
the column player, and the row player strictly prefers a to b and is indifferent
between c and d. It gives the row player utility 3.5. We now argue that it is in
fact a SELO. First, note that a SELO must put at least probability 1/2 on d: for,
if it did not, then, because the row player would never play b, the column player
would strictly prefer B, which would result in lower utility for the row player.
Second, the column player must play B at least half the time, because otherwise,
the row player would strictly prefer c to d—but if the row player only plays a
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and c, the column player would strictly prefer B. Under these two constraints,
the row player would be best off having as much as possible of the remaining
probabilities on a and A, and this results in the profile above.

Proposition 3. If |S| = 1 (all rows are indistinguishable), then a profile is a
SELO if and only if it is a Nash equilibrium that maximizes the row player’s
utility among Nash equilibria. If |S| = |R| (all rows are distinguishable), then a
profile is a SELO if and only if it is a Stackelberg equilibrium (with full obser-
vation).

3 Computational Results

We now consider the complexity of computing a SELO. We immediately obtain:

Corollary 1. When |S| = 1, computing a SELO is NP-hard (and the maximum
utility for the row player in a profile with no undetectable beneficial deviations
is inapproximable unless P=NP).

Proof. By Propositions 2 and 3, these problems are equivalent to maximizing the
row player’s utility in a Nash equilibrium, which is known to be NP-hard and
inapproximable [9,13].

This still leaves open the question of whether the problem becomes easier if
the individual SISes have small size. Unfortunately, the next result shows that
the problem remains NP-hard and inapproximable in this case. This motivates
extending the model to one that allows correlation, as we will do in Sect. 4.

Theorem 1. Computing a SELO remains NP-hard even when |S| = 2 for all
S ∈ S (and in fact it is NP-hard to check whether there exists a profile with no
undetectable beneficial deviations that gives the row player positive utility, even
when all payoffs are nonnegative).

Proof. We reduce from the EXACT-COVER-BY-3-SETS problem, in which we
are given a set of elements T (|T | = m, with m divisible by 3) and subsets
Tj ⊆ T that each satisfy |Tj | = 3, and are asked whether there exist m/3 of
these subsets that together cover all of T . For an arbitrary instance of this
problem, we construct the following game. For each Tj , we add a SIS consisting
of two rows, {T+

j , T−
j }, as well as a column Tj . For each element t ∈ T , we add

a column t. The utility functions are as follows.

– u1(T+
j , Tj) = m/3 for any j

– u1(T+
j , Tj′) = 0 for any j, j′ with j �= j′

– u1(T−
j , Tj′) = 1 for any j, j′

– u1(r, t) = 0 for any row r and element t
– u2(r, Tj) = m/3 − 1 for any row r and any j
– u2(T+

j , t) = 0 for any j and t ∈ Tj

– u2(r, t) = m/3 for any element t and row r that is not some T+
j with t ∈ Tj
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First suppose the EXACT-COVER-BY-3-SETS instance has a solution. Let
the row player play uniformly over the m/3 corresponding rows T+

j , and the col-
umn player uniformly over the m/3 corresponding columns Tj . The row player’s
expected utility for any of the rows in her support is 1; deviating to the corre-
sponding T−

j would still only give her 1. The column player’s expected utility is
m/3−1 for any Tj ; because the row player plays an exact cover, deviating to any
t gives him expected utility (m/3)(m/3 − 1)/(m/3) = m/3 − 1. So this profile
has no undetectable beneficial deviations (in fact it is a Nash equilibrium) and
gives the row player an expected utility of 1.

Now suppose that the game has a SELO in which the row player gets pos-
itive utility, which implies that the column player puts total probability p > 0
on his Tj columns. It follows that for every t ∈ T , the total probability that
the row player puts on rows T+

j with t ∈ Tj is at least 3/m, or otherwise the
column player would strictly prefer playing t to playing any Tj . However, note
that the row player can only put positive probability on rows T+

j where the
corresponding column Tj receives probability at least 3p/m (thereby resulting
in expected utility at least p for the row player for playing T+

j ), because oth-
erwise the corresponding row T−

j (which is indistinguishable) would be strictly
preferable (resulting in expected utility p). But of course there can be at most
m/3 such columns Tj , and these Tj must cover all the elements t by what we
said before. Hence the EXACT-COVER-BY-3-SETS instance has a solution.

4 Adding Signaling

The notion of correlated equilibrium [4] results from augmenting a game with a
trusted mediator that sends correlated signals to the agents. As is well known,
without loss of generality, we can assume the signal that an agent receives is
simply the action she is to take. This is for the following reason. If a correlated
equilibrium relies on an agent randomizing among multiple actions conditional
on receiving a particular signal, then we may as well have the mediator do this
randomization on behalf of the agent before sending out the signal. It is well
known that correlated equilibria can outperform Nash equilibria from all agents’
perspectives. For example, consider Shapley’s game, which is a version of rock-
paper-scissors where choosing the same action as the other counts as a loss.

A B C

a 0,0 1,0 0,1

b 0,1 0,0 1,0

c 1,0 0,1 0,0

Whereas the only Nash equilibrium of this game is for both players to ran-
domize uniformly (resulting in 0, 0 payoffs 1/3 of the time), there is a correlated
equilibrium that only results in the 1, 0 and 0, 1 outcomes, each 1/6 of the time.
That is, if the mediator is set up to draw one of these six entries uniformly at
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random, and then tell each agent what she is supposed to play (but not what
the other is supposed to play), then each agent has an incentive to follow the
recommendation: doing so will result in a win half the time, and it is not possible
to do better given what the agent knows.

Correlated equilibria are easier to compute than Nash equilibria: given a
game in normal form, there is a linear program formulation for computing even
optimal correlated equilibria (say, ones that maximize the row player’s utility).
The linear program presented later in Fig. 1 is closely related.

Similar signaling has received attention in the Stackelberg model. One may
assume a more powerful leader in this model that can commit not only to tak-
ing actions in a particular way, but also to sending signals in a way that is
correlated with how she takes actions. (Again, the motivation for using this in
real applications might be that over time the leader develops a reputation for
sending out signals according to a particular distribution, and playing particular
distributions over actions conditional on those signals.) Because the leader can
commit to sending signals in a particular way, there is no need to introduce an
independent mediator entity in this context. As it turns out, in a two-player
normal-form game this additional power does not buy the leader anything, but
with more players it does [7]. Such signaling can also help in Bayesian games [24]
and stochastic games [18], both from the perspective of increasing the leader’s
utility and from the perspective of making the computation easier.

It is straightforward to see that signaling can be useful in our limited com-
mitment model as well. For example, if we just take Shapley’s game with |S| = 1,
then by Proposition 3 without signaling we are stuck with the Nash equilibrium,
but it seems we should be able to obtain the improved correlated equilibrium
outcome with some form of signaling. But what is the right model of signal-
ing here? We consider a very powerful model of signaling in this version of the
paper. The full version of the paper also contains a discussion of weaker signaling
models.

Definition 5. In the trusted mediator model, the row player can design an
independent trusted mediator that sends signals privately to each player according
to a pre-specified joint distribution. After the round of play has completed, the
mediator publicly reveals the signal sent to the row player.

The after-the-fact public revelation of the signal sent to the row player allows
the row player to commit to (i.e., in the long run develop a reputation for)
responding to each signal with a particular distribution of play. Specifically,
after each completed round, the column player learns the signal sent to, and the
SIS played by, the row player.2 Thus, if the row player according to the signal
2 It is easy to get confused here—does the column player not learn more in a round

purely by virtue of his own payoff from that round? It is important to remember
that we are not considering repeated play by the column player. The idea is that the
column player can observe over time the signals and how the row player acts before
the column player ever acts. For discussion of security contexts in which certain
types of players can receive messages that are inaccessible to other types, see Xu
et al. [24].
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that she received was supposed to play an action from a particular SIS, then
the column player can verify that she did. However, the row player may have an
incentive to deviate within a SIS, because this is undetectable.

In the appendix of the full version of the paper, we show that under the
trusted mediator model, without loss of generality a signal consists of just an
action to play. With this in mind, we now define formally what it means for a
correlated profile to have no undetectable beneficial deviations.

Definition 6. A correlated profile σ has no undetectable beneficial deviations
if (1) for all c, c′ ∈ C with

∑
r∈R σ(r, c) > 0, we have

∑
r∈R σ(r, c)(u2(r, c) −

u2(r, c′)) ≥ 0, and (2) for all S ∈ S, for all r, r′ ∈ S with
∑

c∈C σ(r, c) > 0, we
have

∑
c∈C σ(r, c)(u1(r, c) − u1(r′, c)) ≥ 0.

Note that, as is well known in the formulation of correlated equilibrium,
in the first inequality, we can use σ(r, c) rather than the more cumbersome
σ(r, c)/

∑
r′′∈R σ(r′′, c), which would be the conditional probability of seeing

r given a signal of c, because the denominator is a constant (similar for the
second inequality). As a result, the condition that

∑
r∈R σ(r, c) > 0 is in fact

not necessary because the inequality is vacuously true otherwise. This is what
allows the standard linear program formulation of correlated equilibrium, as well
as the linear program we present below in Fig. 1.

Definition 7. A correlated profile with no undetectable beneficial deviations is
a Stackelberg equilibrium with signaling and limited observation (SESLO) if
among such profiles it maximizes the row player’s utility.

Example. Consider the following game:

A B C D

a 0,0 12,0 0,1 0,0

b 0,1 0,0 12,0 0,0

c 12,0 0,1 0,0 0,0

d 5,0 5,0 5,0 0,1

e 7,0 7,0 7,0 1,1

Suppose S = {{a, b, c, d}, {e}}. Then the following correlated profile (in which
the signal an agent receives is which action to take) is a SESLO:

((1/9)(a,B), (1/9)(a,C), (1/9)(b, A), (1/9)(b, C), (1/9)(c,A), (1/9)(c, B),

(1/9)(e,A), (1/9)(e,B), (1/9)(e, C))

With this profile, for any signal the column player can receive, following the
signal will give him utility 1/3, and so will any deviation. For any signal the
row player receives in SIS {a, b, c, d}, following the signal will give her 6; devi-
ating to a, b, or c will give either 0 or 6, and deviating to d will give 5.
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The row player obtains utility 19/3 from this profile.3 In contrast, without
any commitment (if |S| had been 1), the outcome (e,D) would have been a
SESLO, giving the row player utility only 1. Also, without signaling (but still
with S = {{a, b, c, d}, {e}}), the outcome (e,D) would have been a SELO. For
consider a mixed-strategy profile without any undetectable beneficial deviations,
and suppose it puts positive probability on at least one of A, B, and C. Then
at least one of a, b, and c must get positive probability as well, for otherwise
the column player would be better off playing D. Because a, b, and c are all
in the same SIS and perform equally well against D, and because A, B, and C
all perform equally well against d and e, if we condition on the players playing
from a,b,c and A,B,C, the result must be a Nash equilibrium of that 3×3 game,
which means that all of A, B, and C get the same probability. But in that case,
d (which is in the same SIS) is a better response for the row player, and we have
a contradiction. Hence any SELO involves the column player always playing D
and the most the row player can obtain is 1.

We next have the following simple proposition that the ability to signal never
hurts the row player.

Proposition 4. The row player’s utility from a SESLO is always at least that
of a SELO.

Proof. We show that an uncorrelated profile (σ1, σ2) that has no undetectable
deviations (in the sense of Definition 3) also has no undetectable deviations (in
the sense of Definition 6) when interpreted as a correlated profile σ (with σ(r, c) =
σ1(r)σ2(c)); the result follows. First, for all c, c′ ∈ C with

∑
r∈R σ(r, c) > 0

(which is equivalent to σ2(c) > 0), we have
∑

r∈R σ(r, c)(u2(r, c) − u2(r, c′)) =
σ2(c)

∑
r∈R σ1(r)(u2(r, c) − u2(r, c′)) = σ2(c)(u2(σ1, c) − u2(σ1, c

′)) ≥ 0 by the
best-response condition of Definition 3. Similarly, for all S ∈ S, for all r, r′ ∈ S
with

∑
c∈C σ(r, c) > 0 (which is equivalent to σ1(r) > 0), we have

∑
c∈C σ(r, c)

(u1(r, c) − u1(r′, c)) = σ1(r)
∑

c∈C σ2(c)(u1(r, c) − u1(r′, c)) = σ1(r)(u1(r, σ2) −
u1(r′, σ2)) ≥ 0 by the best-response-within-a-SIS condition of Definition 3.

Proposition 5. If |S| = 1 (all rows are indistinguishable), then a profile is
a SESLO if and only if it is a correlated equilibrium that maximizes the row
player’s utility. If |S| = |R| (all rows are distinguishable), then a profile is a
SESLO if and only if it is a Stackelberg equilibrium with signaling (which can do
no better than a Stackelberg equilibrium without signaling).

5 Computational Results

It turns out that with signaling, we do not face hardness. The linear program
in Fig. 1 can be used to compute a SESLO. It is a simple modification of the
standard linear program for correlated equilibrium, the differences being that
(1) for the row player, only deviations within a SIS are considered, and (2) there
3 This was verified to be optimal using the linear program in Fig. 1; same for the next

case.
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maximize
∑

r∈R,c∈C u1(r, c)p(r, c)

(∀ S ∈ S) (∀ r, r′ ∈ S)
∑

c∈C(u1(r
′, c) − u1(r, c))p(r, c) ≤ 0

(∀ c, c′ ∈ C)
∑

r∈R(u2(r, c
′) − u2(r, c))p(r, c) ≤ 0∑

r∈R,c∈C p(r, c) = 1

(∀ r ∈ R, c ∈ C) p(r, c) ≥ 0

Fig. 1. Linear program for computing a SESLO.

is an objective of maximizing the row player’s utility. The special case where
|S| = |R| has no constraints for the row player, and that special case of the
linear program has previously been described by Conitzer and Korzhyk [7].

Theorem 2. A SESLO can be computed in polynomial time.

6 The Value of More Commitment Power

More strategies being distinguishable corresponds to more commitment power
for the row player. As commitment power (in this particular sense) increases,
does the utility the row player can obtain always increase gradually? (Note that
it can never decrease the row player’s utility, because all it will do is remove
constraints in the optimization.) If she has close to full commitment power, does
this guarantee her most of the benefit of full commitment power? Is some non-
trivial minimal amount of commitment power necessary to obtain much benefit
from it? The next two results demonstrate that the answer to all these questions
is “no”: there can be big jumps in the utility that the row player can obtain,
both on the side close to full commitment power (Proposition 6) and on the side
close to no commitment power (Proposition 7). (For an earlier study comparing
the value of being able to commit completely to that of not being able to commit
at all, see Letchford et al. [17]; for one assessing the value of correlation without
commitment, see Ashlagi et al. [3].)

Proposition 6. For any ε > 0 and any n > 1, there exists an n × (n + 1) game
with all payoffs in [0, 1] such that if |S| = |R| = n, the row player can obtain
utility 1 − ε (even without signaling), but for any S with |S| < |R| = n, the row
player can obtain utility at most ε (even with signaling).

Proof. Let R = {1, . . . , n} and C = {1, . . . , n + 1}. Let u1(i, j) = iε/n for j ≤ n,
and let u1(i, n + 1) = 1 − (n − i)ε/n. Let u2(i, j) = (1 + 1/n)/2 for i �= j and
j ≤ n, let u2(i, i) = 0 (for i ≤ n), and let u2(i, n + 1) = 1/2 for all i.

Suppose |S| = |R| = n. Then, by Proposition 3, we are in the regular Stack-
elberg model, and the row player can commit to a uniform strategy, putting
probability 1/n on each i. As a result the expected utility for the column player
for playing some j ≤ n is ((n − 1)/n)(1 + 1/n)/2 = (n − 1)(n + 1)/(2n2) =
(n2 − 1)/(2n2) < 1/2, so to best-respond he needs to play n + 1, resulting in a
utility for the row player that is greater than 1 − (n − 1)ε/n > 1 − ε.



Computing Equilibria with Partial Commitment 11

On the other hand, suppose that |S| < |R| = n. Hence there exists some
S ∈ S with i, i′ ∈ S, i < i′. Note that i′ strictly dominates i, so the row player
will never play i in a SELO or even a SESLO. But then, the column player can
obtain (1+1/n)/2 > 1/2 by playing i, and hence will not play n+1. As a result
the row player obtains at most nε/n = ε.

Proposition 7. For any ε > 0 and any n > 1, there exists an n × (n + 1) game
with all payoffs in [0, 1] such that for any S with |S| > 1, the row player can
obtain utility 1 − ε (even without signaling), but if |S| = 1, the row player can
only obtain utility 0 (even with signaling).

Proof. Let R = {1, . . . , n} and C = {1, . . . , n + 1}. Let u1(i, j) = 1 − ε for
i �= j and j ≤ n, let u1(i, i) = 1 (for i ≤ n), and let u1(i, n + 1) = 0 for all
i. Let u2(i, j) = 1 for i �= j and j ≤ n, let u2(i, i) = 0 (for i ≤ n), and let
u2(i, n + 1) = (n − 1/2)/n for all i.

Suppose |S| > 1. Then, the row player can commit to put 0 probability
on some S ∈ S, and therefore, 0 probability on some i. Hence, this i is a best
response for the column player, and the row player obtains 1−ε. (The row player
may be able to do better yet, but this is a feasible solution.)

On the other hand, suppose |S| = 1. By Proposition 3, the row player can only
obtain the utility of the best Nash equilibrium of the game for her (or, in the case
with signaling, the utility of the best correlated equilibrium, by Proposition 5).
We now show that in every Nash equilibrium (or even correlated equilibrium)
of the game, the column player puts all his probability on n + 1, from which
the result follows immediately. For suppose the column player sometimes plays
some j ≤ n. Then, for the row player to best-respond, she has to maximize
the probability of choosing the same j (conditional on the column player playing
some j ≤ n). (Or, more precisely in the case of correlated equilibrium, conditional
on receiving any signal that leaves open the possibility that the column player
plays some j ≤ n, the row player has to maximize the probability of picking the
same j.) She can always make this probability at least 1/n by choosing uniformly
at random. Hence, the column player’s expected utility (conditional on playing
j ≤ n) is at most (n − 1)/n. But then n + 1 is a strictly better response, so we
do not have a Nash (or correlated) equilibrium.

Of course, the above two results are extreme cases. Can we say anything
about what happens “typically”? To illustrate this, we present the results for
randomly generated games in Fig. 2. For each data point, 1000 games of size
m × n were generated by choosing utilities uniformly at random. The rows were
then evenly (round-robin) spread over a given number of SISes, and the game
was solved using the GNU Linear Programming Kit (GLPK) with the linear
program from Fig. 1. The leftmost points (1 SIS) correspond to no commitment
power (best correlated equilibrium), and the rightmost points (at least when
the number of SISes is at least m) correspond to full commitment power (best
Stackelberg mixed strategy). From this experiment, we can observe that most of
the value of commitment is already obtained when moving from one SIS to two.
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Fig. 2. Utility obtained by the row player as a function of commitment power (number
of SISes), for various sizes of m × n games.

7 Conclusion

The model of the defender being able to commit to a mixed strategy has been
popular in security games, motivated by the idea that the attacker can learn
the distribution over time. This model has previously been questioned, and lim-
ited observability has previously been studied in various senses, including the
attacker obtaining only a limited number of observations [1,19] as well as the
attacker observing (perfectly) only with some probability [14,15]. Here, we con-
sidered a different type of limited observability, where certain courses of action
are distinguishable from each other, but others are not. As a result, the row
player’s pure strategies partition into SISes, and she can commit to a distrib-
ution over SISes but not to how she plays within each SIS. We showed that it
is NP-hard to compute a Stackelberg equilibrium with limited observation in
this context, even when the SISes are small (Theorem 1). We then introduced
a modified model with signaling and showed that in it, Stackelberg equilibria
can be computed in polynomial time (Theorem 2). Finally, we showed that the
cost of introducing a bit of additional unobservability can be large both when
close to full observability (Proposition 6) and close to no observability (Proposi-
tion 7); however, in simulations, introducing a little bit of observability already
gives most of the value of full observability.

Future research may be devoted to the following questions. Are there algo-
rithms for computing a SELO that are efficient for special cases of the problem
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or that run fast on “typical” games? Another direction for future work concerns
learning in games, which is a topic that has been thoroughly studied in the
simultaneous-move case (see, e.g., Fudenberg and Levine [12]), but also already
to some extent in the mixed-strategy commitment case [5,16]. A model of learn-
ing in games with partial commitment needs to generalize models for both of
these cases. Finally, can we mathematically prove what is suggested by the exper-
iment in Fig. 2, namely that in random games most of the value of commitment
is already obtained with only two SISes?
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Marcin Jurdziński1, and Rahul Savani2(B)

1 Department of Computer Science and DIMAP, University of Warwick,
Coventry, UK

2 Department of Computer Science, University of Liverpool, Liverpool, UK
{a.deligkas,rahul.savani}@liverpool.ac.uk

Abstract. We present a new, distributed method to compute approx-
imate Nash equilibria in bimatrix games. In contrast to previous
approaches that analyze the two payoff matrices at the same time (for
example, by solving a single LP that combines the two players’ pay-
offs), our algorithm first solves two independent LPs, each of which
is derived from one of the two payoff matrices, and then computes
an approximate Nash equilibrium using only limited communication
between the players. Our method gives improved bounds on the com-
plexity of computing approximate Nash equilibria in a number of dif-
ferent settings. Firstly, it gives a polynomial-time algorithm for com-
puting approximate well supported Nash equilibria (WSNE) that always
finds a 0.6528-WSNE, beating the previous best guarantee of 0.6608.
Secondly, since our algorithm solves the two LPs separately, it can be
applied to give an improved bound in the limited communication set-
ting, giving a randomized expected-polynomial-time algorithm that uses
poly-logarithmic communication and finds a 0.6528-WSNE, which beats
the previous best known guarantee of 0.732. It can also be applied to
the case of approximate Nash equilibria, where we obtain a randomized
expected-polynomial-time algorithm that uses poly-logarithmic commu-
nication and always finds a 0.382-approximate Nash equilibrium, which
improves the previous best guarantee of 0.438. Finally, the method can
also be applied in the query complexity setting to give an algorithm that
makes O(n log n) payoff queries and always finds a 0.6528-WSNE, which
improves the previous best known guarantee of 2/3.

1 Introduction

The problem of finding equilibria in non-cooperative games is a central problem
in game theory. Nash’s seminal theorem proved that every finite normal-form
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game has at least one Nash equilibrium [17], and this raises the natural question
of whether we can find one efficiently. After several years of extensive research,
it was shown that finding a Nash equilibrium is PPAD-complete [6] even for two-
player bimatrix games [2], which is considered to be strong evidence that there
is no polynomial-time algorithm for this problem.

Approximate Equilibria. The fact that computing an exact Nash equilibrium
of a bimatrix game is unlikely to be tractable, has led to the study of approximate
Nash equilibria. There are two natural notions of approximate equilibrium, both
of which will be studied in this paper. An ε-approximate Nash equilibrium (ε-
NE) is a pair of strategies in which neither player can increase their expected
payoff by more than ε by unilaterally deviating from their assigned strategy. An
ε-well-supported Nash equilibrium (ε-WSNE) is a pair of strategies in which both
players only place probability on strategies whose payoff is within ε of the best
response payoff. Every ε-WSNE is an ε-NE but the converse does not hold, so a
WSNE is a more restrictive notion.

Approximate Nash equilibria are the more well studied of the two concepts.
A line of work has studied the best guarantee that can be achieved in poly-
nomial time [1,5,7]. The best algorithm known so far is the gradient descent
method of Tsaknakis and Spirakis [19] that finds a 0.3393-NE in polynomial
time, and examples upon which the algorithm finds no better than a 0.3385-NE
have been found [11]. On the other hand, progress on computing approximate-
well-supported Nash equilibria has been less forthcoming. The first correct algo-
rithm was provided by Kontogiannis and Spirakis [15] (which shall henceforth
be referred to as the KS algorithm), who gave a polynomial time algorithm for
finding a 2

3 -WSNE. This was later slightly improved by Fearnley et al. [9] (whose
algorithm we shall refer to as the FGSS-algorithm), who gave a new polynomial-
time algorithm that extends the KS algorithm and finds a 0.6608-WSNE; prior
to this work, this was the best known approximation guarantee for WSNEs. For
the special case of symmetric games, there is a polynomial-time algorithm for
finding a 1

2 -WSNE [4].
Previously, it was considered a strong possibility that there is a PTAS for this

problem (either for finding an ε-NE or ε-WSNE, since their complexity is polyno-
mially related). A very recent result of Rubinstein [18] sheds serious doubt on this
possibility. EndOfTheLine is the canonical problem that defines the complex-
ity class PPAD. The “Exponential Time Hypothesis” (ETH) for EndOfTheLine
says that any algorithm that solves an EndOfTheLine instance with n-bit cir-
cuits, requires 2Ω̃(n) time. Rubinstein’s result says that, subject to the ETH for
EndOfTheLine, there exists a constant, but so far undetermined, ε∗, such that
for ε < ε∗, every algorithm for finding an ε-NE takes quasi-polynomial time, so
the quasi-PTAS of Lipton et al. [16] is optimal.

Communication Complexity. Approximate Nash equilibria can also be stud-
ied from the communication complexity point of view, which captures the amount
of communication the players need to find a good approximate Nash equilibrium.
It models a natural scenario where the two players each know their own payoff
matrix, but do not know their opponent’s payoff matrix. The players must then
follow a communication protocol that eventually produces strategies for both
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players. The goal is to design a protocol that produces a sufficiently good ε-NE
or ε-WSNE while also minimizing the amount of communication between the
two players.

Communication complexity of equilibria in games has been studied in pre-
vious works [3,14]. The recent paper of Goldberg and Pastink [12] initiated the
study of communication complexity in the bimatrix game setting. There they
showed Θ(n2) communication is required to find an exact Nash equilibrium of
an n × n bimatrix game. Since these games have Θ(n2) payoffs in total, this
implies that there is no communication-efficient protocol for finding exact Nash
equilibria in bimatrix games. For approximate equilibria, they showed that one
can find a 3

4 -NE without any communication, and that in the no-communication
setting, finding a 1

2 -NE is impossible. Motivated by these positive and negative
results, they focused on the most interesting setting, which allows only a poly-
logarithmic (in n) number of bits to be exchanged between the players. They
showed that one can compute 0.438-NE and 0.732-WSNE in this context.

Query Complexity. The payoff query model is motivated by practical appli-
cations of game theory. It is often the case that we know that there is a game
to be solved, but we do not know what the payoffs are, and in order to discover
the payoffs, we would have to play the game. This may be costly, so it is nat-
ural to ask whether we can find an equilibrium while minimizing the number of
experiments that we must perform.

Payoff queries model this situation. In the payoff query model we are told the
structure of the game, i.e., the strategy space, but we are not told the payoffs.
We can then make payoff queries, where we propose a pure strategy profile, and
we are told the payoff of each player under that strategy profile. Our task is
to compute an equilibrium of the game while minimizing the number of payoff
queries that we make.

The study of query complexity in bimatrix games was initiated by Fearnley
et al. [10], who gave a deterministic algorithm for finding a 1

2 -NE using 2n − 1
payoff queries. A subsequent paper of Fearnley and Savani [8] showed a number
of further results. Firstly, they showed an Ω(n2) lower bound on the query
complexity of finding an ε-NE with ε < 1

2 , which combined with the result above,
gives a complete view of the deterministic query complexity of approximate Nash
equilibria in bimatrix games. They then give a randomized algorithm that finds
a ( 3−√

5
2 +ε)-NE using O(n·log n

ε2 ) queries, and a randomized algorithm that finds
a ( 23 + ε)-WSNE using O(n·log n

ε4 ) queries.

Our Contribution. In this paper we introduce a distributed technique that
allows us to efficiently compute ε-NE and ε-WSNE using limited communication
between the players.

Traditional methods for computing WSNEs have used an LP based approach
that, when used on a bimatrix game (R,C), solves the zero-sum game (R−C,C−
R). The KS algorithm uses the fact that if there is no pure 2

3 -WSNE, then the
solution to this zero-sum game is a 2

3 -WSNE. The slight improvement of the
FGSS-algorithm [9] to 0.6608 was obtained by adding two further methods to
the KS algorithm: if the KS algorithm does not produce a 0.6608-WSNE, then
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either there is a 2 × 2 matching pennies sub-game that is 0.6608-WSNE or the
strategies from the zero-sum game can be improved by shifting the probabilities
of both players within their supports in order to produce a 0.6608-WSNE.

In this paper, we take a different approach. We first show that the bound of
2
3 can be matched using a pair of distributed LPs. Given a bimatrix game (R,C),
we solve the two zero-sum games (R,−R) and (−C,C), and then give a simple
procedure that we call the base algorithm, which uses the solutions to these games
to produce a 2

3 -WSNE of (R,C). Goldberg and Pastink [12] also considered this
pair of LPs, but their algorithm only produces a 0.732-WSNE. We then show
that the base algorithm can be improved by applying the probability-shifting and
matching-pennies ideas from the FGSS-algorithm. That is, if the base algorithm
fails to find a 0.6528-WSNE, then a 0.6528-WSNE can be obtained either by
shifting the probabilities of one of the two players, or by identifying a 2× 2 sub-
game. This gives a polynomial-time algorithm that computes a 0.6528-WSNE,
which provides the best known approximation guarantees for WSNEs.

It is worth pointing out that, while these techniques are thematically similar
to the ones used by the FGSS-algorithm, the actual implementation is signif-
icantly different. The FGSS-algorithm attempts to improve the strategies by
shifting probabilities within the supports of the strategies returned by the two
player game, with the goal of reducing the other player’s payoff. In our algo-
rithm, we shift probabilities away from bad strategies in order to improve that
player’s payoff. This type of analysis is possible because the base algorithm pro-
duces a strategy profile in which one of the two players plays a pure strategy,
which simplifies the analysis that we need to carry out. On the other hand, the
KS-algorithm can produce strategies in which both players play many strategies,
and so the analysis used for the FGSS-algorithm is necessarily more complicated.

Since our algorithm solves the two LPs separately, it can be used to improve
upon the best known algorithms in the limited communication setting. This is
because no communication is required for the row player to solve (R,−R) and
the column player to solve (−C,C). The players can then carry out the rest
of the algorithm using only poly-logarithmic communication. Hence, we obtain
a randomized expected-polynomial-time algorithm that uses poly-logarithmic
communication and finds a 0.6528-WSNE. Moreover, the base algorithm can be
implemented as a communication efficient algorithm for finding a (12 + ε)-WSNE
in a win-lose bimatrix game, where all payoffs are either 0 or 1.

The algorithm can also be used to beat the best known bound in the query
complexity setting. It has already been shown by Goldberg and Roth [13] that
an ε-NE of a zero-sum game can be found by a randomized algorithm that uses
O(n log n

ε2 ) payoff queries. Since the rest of the steps used by our algorithm can
also be carried out using O(n log n) payoff queries, this gives us a query efficient
algorithm for finding a 0.6528-WSNE.

We also show that the base algorithm can be adapted to find a 3−√
5

2 -NE
in a bimatrix game. Once again, this can be implemented in a communication
efficient manner, and so we obtain an algorithm that computes a (3−√

5
2 + ε)-NE

(i.e., 0.382-NE) using only poly-logarithmic communication. For a summary of
our contribution, see Table 1.
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Table 1. Comparison of our approximation guarantees with the previous best-known
guarantees.

Complexity setting Payoffs Solution Previous best
approximation

This paper

Computational (polynomial) [0, 1] ε-WSNE 0.6608 [9] 0.6528

Query (n · log(n) queries) [0, 1] ε-WSNE 0.6667 [8] 0.6528 + ε

Communication (polylogarithmic) [0, 1] ε-WSNE 0.7321 [12] 0.6528 + ε

Communication (polylogarithmic) [0, 1] ε-NE 0.4384 [12] 0.3820 + ε

Communication (polylogarithmic) {0, 1} ε-WSNE 0.7321 [12] 0.5 + ε

2 Preliminaries

Bimatrix Games. Throughout, we use [n] to denote the set of integers
{1, 2, . . . , n}. An n × n bimatrix game is a pair (R,C) of two n × n matri-
ces: R gives payoffs for the row player and C gives the payoffs for the column
player. We make the standard assumption that all payoffs lie in the range [0, 1].
For simplicity, as in [12], we assume that each payoff has constant bit-length1.
A win-lose bimatrix game has all payoffs in {0, 1}.

Each player has n pure strategies. To play the game, both players simultane-
ously select a pure strategy: the row player selects a row i ∈ [n], and the column
player selects a column j ∈ [n]. The row player then receives payoff Ri,j , and
the column player receives payoff Ci,j .

A mixed strategy is a probability distribution over [n]. We denote a mixed
strategy for the row player as a vector x of length n, such that xi is the prob-
ability that the row player assigns to pure strategy i. A mixed strategy of the
column player is a vector y of length n, with the same interpretation. Given a
mixed strategy x for either player, the support of x is the set of pure strategies i
with xi > 0. If x and y are mixed strategies for the row and the column player,
respectively, then we call (x,y) a mixed strategy profile. The expected payoff for
the row player under strategy profile (x,y) is given by xT Ry and for the column
player by xT Cy. We denote the support of a strategy x as supp(x), which gives
the set of pure strategies i such that xi > 0.

Nash Equilibria. Let y be a mixed strategy for the column player. The set of
pure best responses against y for the row player is the set of pure strategies that
maximize the payoff against y. More formally, a pure strategy i ∈ [n] is a best
response against y if, for all pure strategies i′ ∈ [n] we have:

∑
j∈[n] yj · Ri,j ≥

∑
j∈[n] yj · Ri′,j . Column player best responses are defined analogously.
A mixed strategy profile (x,y) is a mixed Nash equilibrium if every pure

strategy in supp(x) is a best response against y, and every pure strategy in

1 The statements of our results can easily be extended to the case where all payoffs
can be represented using b bits by including a factor b in all our communication
complexity bounds.
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supp(y) is a best response against x. Nash [17] showed that all bimatrix games
have a mixed Nash equilibrium.

Approximate Equilibria. There are two commonly studied notions of approx-
imate equilibrium, and we consider both of them in this paper. The first notion
is of an ε-approximate Nash equilibrium (ε-NE), which weakens the requirement
that a player’s expected payoff should be equal to their best response payoff.
Formally, given a strategy profile (x,y), we define the regret suffered by the
row player to be the difference between the best response payoff and actual
payoff, i.e.,

max
i∈[n]

(
(R · y)i

) − xT · R · y.

Regret for the column player is defined analogously. We have that (x,y) is an
ε-NE if and only if both players have regret less than or equal to ε.

The other notion is of an ε-approximate-well-supported equilibrium (ε-
WSNE), which weakens the requirement that players only place probability on
best response strategies. Given a strategy profile (x,y) and a pure strategy
j ∈ [n], we say that j is an ε-best-response for the row player if

max
i∈[n]

(
(R · y)i

) − (R · y)j ≤ ε.

An ε-WSNE requires that both players only place probability on ε-best-
responses. In an ε-WSNE both players place probability only on ε-best-responses.
Formally, the row player’s pure strategy regret under (x,y) is defined to be

max
i∈[n]

(
(R · y)i

) − min
i∈supp(x)

(
(R · y)i

)
.

Pure strategy regret for the column player is defined analogously. A strategy
profile (x,y) is an ε-WSNE if both players have pure strategy regret less than
or equal to ε.

Communication Complexity. We consider the communication model for
bimatrix games introduced by Goldberg and Pastink [12]. In this model, both
players know the payoffs in their own payoff matrix, but do not know the pay-
offs in their opponent’s matrix. The players then follow an algorithm that uses
a number of communication rounds, where in each round they exchange a single
bit of information. Between each communication round, the players are permit-
ted to perform arbitrary randomized computations (although it should be noted
that, in this paper, the players will only perform polynomial-time computations)
using their payoff matrix, and the bits that they have received so far. At the end
of the algorithm, the row player outputs a mixed strategy x, and the column
player outputs a mixed strategy y. The goal is to produce a strategy profile (x,y)
that is an ε-NE or ε-WSNE for a sufficiently small ε while limiting the number
of communication rounds used by the algorithm. The algorithms given in this
paper will use at most O(log2 n) communication rounds. In order to achieve this,
we use the following result of Goldberg and Pastink [12].
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Lemma 1 [12]. Given a mixed strategy x for the row-player and an ε > 0,
there is a randomized expected-polynomial-time algorithm that uses O( log

2 n
ε2 )-

communication to transmit a strategy xs to the column player where |supp(xs)| ∈
O( log n

ε2 ) and for every strategy i ∈ [n] we have:

|(xT · R)i − (xT
s · R)i| ≤ ε.

The algorithm uses the well-known sampling technique of Lipton, Markakis, and
Mehta to construct the strategy xs, so for this reason we will call the strategy
xs the sampled strategy from x. Since this strategy has a logarithmically sized
support, it can be transmitted by sending O( log n

ε2 ) strategy indexes, each of which
can be represented using log n bits. By symmetry, the algorithm can obviously
also be used to transmit approximations of column player strategies to the row
player.

Query Complexity. In the query complexity setting, the algorithm knows that
the players will play an n×n game (R,C), but it does not know any of the entries
of R or C. These payoffs are obtained using payoff queries in which the algorithm
proposes a pure strategy profile (i, j), and then it is told the value of Rij and
Cij . After each payoff query, the algorithm can make arbitrary computations
(although, again, in this paper the algorithms that we consider take polynomial
time) in order to decide the next pure strategy profile to query. After making a
sequence of payoff queries, the algorithm then outputs a mixed strategy profile
(x,y). Again, the goal is to ensure that this strategy profile is an ε-NE or ε-
WSNE, while minimizing the number of queries made overall.

There are two results that we will use for this setting. Goldberg and Roth
[13] have given a randomized algorithm that, with high probability, finds an ε-
NE of a zero-sum game using O(n·log n

ε2 ) payoff queries. Given a mixed strategy
profile (x,y), an ε-approximate payoff vector for the row player is a vector v such
that, for all i ∈ [n] we have |vi − (R · y)i| ≤ ε. Approximate payoff vectors for
the column player are defined symmetrically. Fearnley and Savani [8] observed
that there is a randomized algorithm that when given the strategy profile (x,y),
finds approximate payoff vectors for both players using O(n·log n

ε2 ) payoff queries
and that succeeds with high probability. We summarise these two results in the
following lemma.

Lemma 2 [8,13]. Given an n × n zero-sum bimatrix game, with probability at
least (1 − n− 1

8 )(1 − 2
n )2, we can compute an ε-Nash equilibrium (x,y), and ε-

approximate payoff vectors for both players under (x,y), using O(n·log n
ε2 ) payoff

queries.

3 The Base Algorithm

In this section, we introduce the base algorithm. This algorithm provides a simple
way to find a 2

3 -WSNE. We present this algorithm separately for three reasons.
Firstly, we believe that the algorithm is interesting in its own right, since it
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provides a relatively straightforward method for finding a 2
3 -WSNE that is quite

different from the technique used in the KS-algorithm. Secondly, our algorithm
for finding a 0.6528-WSNE will replace the final step of the algorithm with two
more involved procedures, so it is worth understanding this algorithm before we
describe how it can be improved. Finally, at the end of this section, we will show
that this algorithm can be adapted to provide a communication efficient way to
find a (0.5 + ε)-WSNE in win-lose games.

Algorithm 1

1. Solve the zero-sum games (R,−R) and (−C,C).
– Let (x∗,y∗) be a NE of (R,−R), and let (x̂, ŷ) be a NE of

(−C,C).
– Let vr be the value secured by x∗ in (R,−R), and let vc be the

value secured by ŷ in (−C,C). Without loss of generality assume
that vc ≤ vr.

2. If vr ≤ 2/3, then return (x̂,y∗).
3. If for all j ∈ [n] it holds that CT

j · x∗ ≤ 2/3, then return (x∗,y∗).
4. Otherwise:

– Let j∗ be a pure best response to x∗.
– Find a row i such that Rij∗ > 1/3 and Cij∗ > 1/3.
– Return (i, j∗).

We argue that this algorithm is correct. For that, we must prove that the
row i used in Step 4 actually exists.

Lemma 3. If Algorithm1 reaches Step 4, then there exists a row i such that
Rij∗ > 1/3 and Cij∗ > 1/3.

We now argue that the algorithm always produces a 2
3 -WSNE. There are three

possible strategy profiles that can be returned by the algorithm, which we con-
sider individually.

The algorithm returns in Step 2: Since vc ≤ vr by assumption, and since
vr ≤ 2

3 , we have that (R · y∗)i ≤ 2
3 for every row i, and ((x̂)T · C)j ≤ 2

3 for
every column j. So, both players can have pure strategy regret at most 2

3 in
(x̂,y∗), and thus this profile is a 2

3 -WSNE.
The algorithm returns in Step 3: Much like in the previous case, when the

column player plays y∗, the row player can have pure strategy regret at most
2
3 . The requirement that CT

j x∗ ≤ 2
3 also ensures that the column player has

pure strategy regret at most 2
3 . Thus, we have that (x∗,y∗) is a 2

3 -WSNE.
The algorithm returns in Step 4: Both players have payoff at least 1

3 under
(i, j∗) for the sole strategy in their respective supports. Hence, the maximum
pure strategy regret that can be suffered by a player is 1 − 1

3 = 2
3 .

Observe that the zero-sum game solved in Step 1 can be solved via linear pro-
gramming, and so the algorithm runs in polynomial time. Therefore, we have
shown the following.
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Theorem 1. Algorithm1 always produces a 2
3 -WSNE in polynomial time.

Win-Lose Games. The base algorithm can be adapted to provide a communi-
cation efficient method for finding a (0.5+ ε)-WSNE in win-lose games. In brief,
the algorithm can be modified to find a 0.5-WSNE in a win-lose game by making
Steps 2 and 3 check against the threshold of 0.5. It can then be shown that if
these steps fail, then there exists a pure Nash equilibrium in column j∗. This can
then be implemented as a communication efficient protocol using the algorithm
from Lemma 1.

Theorem 2. For every win-lose game and ε > 0, there is a randomized
expected-polynomial-time algorithm that finds a (0.5 + ε)-WSNE with O

(
log2 n

ε2

)

communication.

4 An Algorithm for Finding a 0.6528-WSNE

In this section, we show how Algorithm 1 can be modified to produce a 0.6528-
WSNE.

Outline. Our algorithm replaces Step 4 of Algorithm 1 with a more involved
procedure. This procedure uses two techniques, that both find an ε-WSNE with
ε < 2

3 . Firstly, we attempt to turn (x∗, j∗) into a WSNE by shifting probabilities.
Observe that, since j∗ is a best response, the column player has a pure strategy
regret of 0 in (x∗, j∗). On the other hand, we have no guarantees about the row
player since x∗ might place a small amount of probability strategies with payoff
strictly less than 1

3 . However, since x∗ achieves a high expected payoff (due to
Step 2,) it cannot place too much probability on these low payoff strategies.
Thus, the idea is to shift the probability that x∗ assigns to entries of j∗ with
payoff less than or equal to 1

3 to entries with payoff strictly greater than 1
3 , and

thus ensure that the row player’s pure strategy regret is below 2
3 . Of course,

this procedure will increase the pure strategy regret of the column player, but if
it is also below 2

3 once all probability has been shifted, then we have found an
ε-WSNE with ε < 2

3 .
If shifting probabilities fails to find an ε-WSNE with ε < 2

3 , then we show
that the game contains a matching pennies sub-game. More precisely, we show
that there exists a column j′, and rows b and s such that the 2 × 2 sub-game
induced by j∗, j′, b, and s has the following form:

�
�
I

II

b

s

j∗ j′

≈ 1 0

0 ≈ 1

0 ≈ 1

≈ 1 0
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Thus, if both players play uniformly over their respective pair of strategies, then
j∗, j′, b, and s with have payoff ≈ 0.5, and so this yields an ε-WSNE with ε < 2

3 .

The Algorithm. We now formalize this approach, and show that it always finds
an ε-WSNE with ε < 2

3 . In order to quantify the precise ε that we obtain, we
parametrise the algorithm by a variable z, which we constrain to be in the range
0 ≤ z < 1

24 . With the exception of the matching pennies step, all other steps
of the algorithm will return a (23 − z)-WSNE, while the matching pennies step
will return a (12 + f(z))-WSNE for some increasing function f . Optimizing the
trade off between 2

3 − z and 1
2 + f(z) then allows us to determine the quality of

WSNE found by our algorithm.
The algorithm is displayed as Algorithm 2. Steps 1, 2, and 3 are versions of

the corresponding steps from Algorithm 1, which have been adapted to produce
a ( 23 − z)-WSNE. Step 4 implements the probability shifting procedure, while
Step 5 finds a matching pennies sub-game.

Observe that the probabilities used in xmp and ymp are only well defined
when z ≤ 1

24 , because we have that 1−15z
2−39z > 1 whenever z > 1

24 , which explains
our required upper bound on z.

The Correctness of Step 5. This step of the algorithm relies on the existence
of the rows b and s, which is shown in the following lemma.

Lemma 4. Suppose that the following conditions hold:

1. x∗ has payoff at least 2
3 − z against j∗.

2. j∗ has payoff at least 2
3 − z against x∗.

3. x∗ has payoff at least 2
3 − z against j′.

4. Neither j∗ or j′ contains a pure ( 23 − z)-WSNE (i, j) with i ∈ supp(x∗).

Then, both of the following are true:

– There exists a row b ∈ B such that Rbj∗ > 1 − 18z
1+3z and Cbj′ > 1 − 18z

1+3z .
– There exists a row s ∈ S such that Csj∗ > 1 − 27z

1+3z and Rsj′ > 1 − 27z
1+3z .

Observe that the preconditions are indeed true if the Algorithm reaches
Step 5. The first and third conditions hold because, due to Step 2, we know
that x∗ is a min-max strategy that secures payoff at least vr > 2

3 − z. The
second condition holds because Step 3 ensures that the column player’s best
response payoff is at least 2

3 − z. The fourth condition holds because Step 5
explicitly checks for these pure strategy profiles.

Quality of Approximation. We now analyse the quality of WSNE our algo-
rithm produces. Steps 2, 3, 4, 5 each return a strategy profile. Observe that
Steps 2 and 3 are the same as the respective steps in the base algorithm, but
with the threshold changed from 2

3 to 2
3−z. Hence, we can use the same reasoning

as we gave for the base algorithm to argue that these steps return (23 −z)-WSNE.
We now consider the other two steps.
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Algorithm 2

1. Solve the zero-sum games (R,−R) and (−C,C).
– Let (x∗,y∗) be a NE of (R,−R), and let (x̂, ŷ) be a NE of (C,−C).

– Let vr be the value secured by x∗ in (R,−R), and let vc be the value
secured by ŷ in (−C,C). Without loss of generality assume that vc ≤
vr.

2. If vr ≤ 2/3 − z, then return (x̂,y∗).

3. If for all j ∈ [n] it holds that CT
j x∗ ≤ 2/3 − z, then return (x∗,y∗).

4. Otherwise:
– Let j∗ be a pure best response against x∗. Define:

S := {i ∈ supp(x∗) : Rij∗ < 1/3 + z}
B := supp(x∗) \ S

– Define the strategy xb as follows. For each i ∈ [n] we have:

(xb)i =

{
1

Pr(B)
· x∗

i if i ∈ B

0 otherwise.

– If (xb
T · C)j∗ ≥ 1

3
+ z, then return (xb, j

∗).

5. Otherwise:
– Let j′ be a pure best response against xb.

– If there exists an i ∈ supp(x∗) such that (i, j∗) or (i, j′) is a pure
( 2
3

− z)-WSNE, then return it.

– Find a row b ∈ B such that Rbj∗ > 1 − 18z
1+3z

and Cbj′ > 1 − 18z
1+3z

.

– Find a row s ∈ S such that Csj∗ > 1 − 27z
1+3z

and Rsj′ > 1 − 27z
1+3z

.

– Define the row player strategy xmp and the column player strategy
ymp as follows. For each i ∈ [n] we have:

xmpi =

⎧
⎪⎨

⎪⎩

1−24z
2−39z

if i = b,
1−15z
2−39z

if i = s,

0 otherwise.

ympi =

⎧
⎪⎨

⎪⎩

1−24z
2−39z

if i = j∗,
1−15z
2−39z

if i = j′,

0 otherwise.

– Return (xmp,ymp).

The algorithm returns in Step 4: By definition all rows r ∈ B satisfy Rij∗ ≥
1
3 + z, so since supp(xb) ⊆ B, the pure strategy regret of the row player can
be at most 1 − (13 + z) = 2

3 − z. For the same reason, since (xT
b · C)j∗ ≥ 1

3 + z
holds, the pure strategy regret of the column player can also be at 2

3 − z.
Thus, the profile (xb, j∗) is a ( 23 − z)-WSNE.
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The algorithm returns in Step 5: Since Rbj∗ > 1 − 18z
1+3z , the payoff of b

when the column player plays ymp is at least:

1 − 24z

2 − 39z
·
(

1 − 18z

1 + 3z

)

=
1 − 39z + 360z2

2 − 33z − 117z2

Similarly, since Rsj′ > 1− 27z
1+3z , the payoff of s when the column player plays

ymp is at least:

1 − 15z

2 − 39z
·
(

1 − 27z

1 + 3z

)

=
1 − 39z + 360z2

2 − 33z − 117z2

In the same way, one can show that the payoffs of j∗ and j′ are also 1−39z+360z2

2−33z−117z2

when the row player plays xmp. Thus, we have that (xmp,ymp) is a (1 −
1−39z+360z2

2−33z−117z2 )-WSNE.

To find the optimal value for z, we need to find the largest value of z for which
the following inequality holds.

1 − 1 − 39z + 360z2

2 − 33z − 117z2
≤ 2

3
− z.

Setting the inequality to an equality and rearranging gives us a cubic polynomial
equation: 117 z3+432 z2−30 z+ 1

3 = 0. Since the discriminant of this polynomial
is positive, this polynomial has three real roots, which can be found via the
trigonometric method. Only one of these roots lies in the range 0 ≤ z < 1

24 ,
which is the following:

z =
1

117

√
3

(√
2434

√
3 cos

(
1
3

arctan
(

39
240073

√
9749

√
3
))

− 3
√

2434 sin
(

1
3

arctan
(

39
240073

√
9749

√
3
))

− 48
√

3

)

.

Thus, we get z ≈ 0.013906376, and we have found an algorithm that always
produces a 0.6528-WSNE. So we have the following theorem.

Theorem 3. There is a polynomial time algorithm that, given a bimatrix game,
finds a 0.6528-WSNE.

Communication Complexity. We claim that our algorithm can be adapted
for the limited communication setting by making the following modifications.
After computing x∗,y∗, x̂, and ŷ, we then use Lemma 1 to construct and com-
municate the sampled strategies x∗

s,y
∗
s , x̂s, and ŷs. These strategies are commu-

nicated between the two players using 4 · (log n)2 bits of communication, and
the players also exchange vr = (x∗

s)
T · Ry∗

s and vc = x̂T
s Cŷs using log n rounds

of communication. The algorithm then continues as before, except the sampled
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strategies are used in place of their non-sampled counterparts. Finally, in Steps 2
and 3, we test against the threshold 2

3 − z + ε instead of 2
3 − z.

Observe that, when sampled strategies are used, all steps of the algorithm can
be carried out in at most (log n)2 communication. In particular, to implement
Step 4, the column player can communicate j∗ to the row player, and then the
row player can communicate Rij∗ for all rows i ∈ supp(x∗

s) using (log n)2 bits
of communication, which allows the column player to determine j′. Once j′ has
been determined, there are only 2 · log n payoffs in each matrix that are relevant
to the algorithm (the payoffs in rows i ∈ supp(x∗

s) in columns j∗ and j′,) and so
the two players can communicate all of these payoffs to each other, and then no
further communication is necessary.

Theorem 4. For every ε > 0, there is a randomized expected-polynomial-time
algorithm that uses O

(
log2 n

ε2

)
communication and finds a (0.6528 + ε)-WSNE.

Query Complexity. We now show that Algorithm 2 can be implemented in a
payoff-query efficient manner. Let ε > 0 be a positive constant. We now outline
the changes needed in the algorithm.

– In Step 1 we use the algorithm of Lemma 2 to find ε
2 -NEs of (R,−R), and

(C,−C). We denote the mixed strategies found as (x∗
a,y∗

a) and (x̂a, ŷa),
respectively, and we use these strategies in place of their original counter-
parts throughout the rest of the algorithm. We also compute ε

2 -approximate
payoff vectors for each of these strategies, and use them whenever we need
to know the payoff of a particular strategy under one of these strategies. In
particular, we set vr to be the payoff of x∗

a according to the approximate
payoff vector of y∗

a, and we set vc to be the payoff of ŷa according to the
approximate payoff vector for x̂a.

– In Steps 2 and 3 we test against the threshold of 2
3 − z + ε rather than 2

3 − z.
– In Step 4 we select j∗ to be the column that is maximal in the approximate

payoff vector against x∗
a. We then spend n payoff queries to query every row

in column j∗, which allow us to proceed with the rest of this step as before.
– In Step 5 we use the algorithm of Lemma 2 to find an approximate payoff

vector v for the column player against xb. We then select j′ to be a column
that maximizes v, and then spend n payoff queries to query every row in j∗,
which allows us to proceed with the rest of this step as before.

Observe that the query complexity of the algorithm is O(n·log n
ε2 ), where the

dominating term arises due to the use of the algorithm from Lemma 2 to approx-
imate solutions to the zero-sum games.

Theorem 5. There is a randomized algorithm that, with high probability, finds
a (0.6528 + ε)-WSNE using O(n·log n

ε2 ) payoff queries.
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Abstract. We study the problem of finding approximate Nash equilibria
that satisfy certain conditions, such as providing good social welfare. In
particular, we study the problem ε-NE δ-SW: find an ε-approximate Nash
equilibrium (ε-NE) that is within δ of the best social welfare achievable
by an ε-NE. Our main result is that, if the randomized exponential-time
hypothesis (RETH) is true, then solving

(
1
8

− O(δ)
)
-NE O(δ)-SW for an

n × n bimatrix game requires n
˜Ω(δΛ log n) time, where Λ is a constant.

Building on this result, we show similar conditional running time lower
bounds on a number of decision problems for approximate Nash equilibria
that do not involve social welfare, including maximizing or minimizing a
certain player’s payoff, or finding approximate equilibria contained in a
given pair of supports. We show quasi-polynomial lower bounds for these
problems assuming that RETH holds, and these lower bounds apply to
ε-Nash equilibria for all ε < 1

8
. The hardness of these other decision

problems has so far only been studied in the context of exact equilibria.

1 Introduction

One of the most fundamental problems in game theory is to find a Nash equilib-
rium of a game. Often, we are not interested in finding any Nash equilibrium, but
instead we want to find one that also satisfies certain constraints. For example,
we may want to find a Nash equilibrium that provides high social welfare, which
is the sum of the player’s payoffs.

In this paper we study such problems for bimatrix games, which are two-
player strategic-form games. Unfortunately, for bimatrix games, it is known that
these problems are hard. Finding any Nash equilibrium of a bimatrix game is
PPAD-complete [10], while finding a constrained Nash equilibrium turns out to
be even harder. Gilboa and Zemel [16] studied several decision problems related
to Nash equilibria. They proved that it is NP-complete to decide whether there
exist Nash equilibria in bimatrix games with some “desirable” properties, such as
high social welfare. Conitzer and Sandholm [7] extended the list of NP-complete
problems of [16] and furthermore proved inapproximability results for some of
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them. Recently, Garg et al. [15] and Bilo and Mavronicolas [4] extended these
results to many player games and provided ETR-completeness results for them.

Approximate Equilibria. Due to the apparent hardness of finding exact Nash
equilibria, focus has shifted to approximate equilibria. There are two natural
notions of approximate equilibrium, both of which will be studied in this paper.
An ε-approximate Nash equilibrium (ε-NE) requires that each player has an
expected payoff that is within ε of their best response payoff. An ε-well-supported
Nash equilibrium (ε-WSNE) requires that both players only play strategies whose
payoff is within ε of the best response payoff. Every ε-WSNE is an ε-NE but the
converse does not hold, so a WSNE is a more restrictive notion.

There has been a long line of work on finding approximate equilibria [5,8,11–
13,18,22]. Since we use an additive notion of approximation, it is common to
rescale the game so that the payoffs lie in [0, 1], which allows different algorithms
to be compared. The state of the art for polynomial-time algorithms is the fol-
lowing. There is a polynomial-time algorithm that computes an 0.3393-NE [22],
and a polynomial-time algorithm that computes a 0.6528-WSNE [8].

There is also a quasi-polynomial time approximation scheme (QPTAS) for
finding approximate Nash equilibria. The algorithm of Lipton, Markakis, and
Mehta finds an ε-NE in nO( log n

ε2
) time [19]. They proved that there is always

an ε-NE with logarithmic support, and then uses a brute-force search over all
possible candidates to find one. We will refer to their algorithm as the LMM
algorithm.

A recent breakthrough of Rubinstein implies that we cannot do better than
a QPTAS like the LMM algorithm [21]: assuming the ETH for PPAD (PETH),
there is a small constant, ε∗, such that for ε < ε∗, every algorithm for finding
an ε-NE requires quasi-polynomial time. Briefly, PETH is the conjecture that
EndOfTheLine, the canonical PPAD-complete problem, cannot be solved faster
than exponential time.

Constrained Approximate Nash Equilibria. While deciding whether a
game has an exact Nash equilibrium that satisfies certain constraints is NP-hard
for most interesting constraints, this is not the case for approximate equilibria,
because the LMM algorithm can be adapted to provide a QPTAS for them. The
question then arises whether these results are tight.

Let the problem ε-NE δ-SW be the problem of finding an ε-NE whose social
welfare is within δ of the best social welfare that can be achieved by an ε-NE.
Hazan and Krauthgamer [17] and Austrin et al. [3] proved that there is a small
but constant ε such that ε-NE ε-SW is at least as hard as finding a hidden clique
of size O(log n) in the random graph Gn,1/2. This was further strengthened by
Braverman et al. [6] who showed a lower bound based on the exponential-time
hypothesis (ETH), which is the conjecture that any deterministic algorithm for
3SAT requires 2Ω(n) time. More precisely, they showed that under the ETH there
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is a small constant ε such that any algorithm for O(ε)-NE O(ε)-SW 1 requires
npoly(ε) log(n)1−o(1)

time 2. We shall refer to this as the BKW result.
It is worth noting that the Rubinstein’s hardness result [21] almost makes

this result redundant. If one is willing to accept that PETH is true, which is a
stronger conjecture than ETH, then Rubinstein’s result says that for small ε we
require quasi-polynomial time to find any ε-NE, which obviously implies that
the same lower bound applies to ε-NE δ-SW for any δ.

Our Results. Our first result is a lower bound for the problem of finding ε-NE
δ-SW. The randomized ETH (RETH) is the conjecture that any randomized
algorithm for 3SAT requires 2Ω(n) time. We show that, assuming RETH, there
exists a small constant Δ such that for all δ ∈ [1/n,Δ] the problem

(
1−4g·δ

8

)
-NE

(
g·δ
4

)
-SW requires n

˜Ω(δΛ log n) time 3, where g = 1
138 , and Λ is a constant.

To understand this result, let us compare it to the BKW result. First, observe
that as δ gets smaller, the ε in our ε-NE gets larger, whereas the approximate
Nash equilibria in the BKW result get smaller. Asymptotically, our ε approaches
1/8. Moreover, since δ ≤ 1, our lower bound applies to all ε-NE with ε ≤ 1−4g

8 ≈
0.1214. This is orders of magnitude larger than the inapproximability bound
given by Rubinstein’s hardness result, and so is not made redundant by that
result. In short, our hardness result is about the hardness of obtaining good social
welfare, rather than the hardness of simply finding an approximate equilibrium.

Secondly, when compared to the BKW result, we obtain a slightly better
lower bound. The exponent in their lower bound is logarithmic only in the limit,
while ours is always logarithmic. In particular, we obtain quasi-polynomial lower
bounds whenever δ is constant.

Finally, our result uses a stronger conjecture when compared to the BKW
result. While they assume ETH, our result requires that we assume RETH. This
is a stronger conjecture, since even if ETH is true, there may exist randomized
sub-exponential algorithms for 3SAT. This means that our result is ultimately
incomparable to the BKW result: we obtain a lower bound for larger ε, and we
have a better lower bound on the running time, but we do so by assuming a
stronger conjecture.

To prove our result, we reduce from the problem of approximating the value
of a free game. Aaronson, Impagliazzo, and Moshkovitz showed quasi-polynomial
lower bounds for this problem assuming ETH [1]. In fact, they give two different
lower bounds: the high error result shows a quasi-polynomial lower bound for
determining whether the value of the game is 1 or 1 − δ for small δ, while

1 While the proof in [6] produces a lower bound for 0.8-NE (1 − O(ε))-SW, this is in
a game with maximum payoff O(1/ε). Therefore, when the payoffs in this game are
rescaled to [0, 1], the resulting lower bound only applies to ε-NE ε-SW.

2 Although the paper claims that they obtain a n
˜O(log n) lower bound, the proof reduces

from the low error result from [1] (cf. Theorem 36 in [2]), which gives only the weaker

lower bound of npoly(ε) log(n)1−o(1)
.

3 Here Ω̃(log n) means Ω( log n
(log log n)c ) for some constant c.
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the low error result shows a weaker almost-quasi-polynomial lower bound on
determining whether the value of the game is 1 or δ for small δ. The BKW
result was proved via a reduction from the low error case, while our result uses
the high error case. We reduce the free game to a bimatrix game, and prove
that in any ε-NE of the game, the players must simulate the free game well
enough so that we can determine whether the value of the free game is 1 or
1 − δ. Our reduction is substantially different from the BKW reduction: we use
a sub-sampling result for free games to reduce the number of questions in the
free game, and then we use a different method to force the players to simulate
the free game.

Once we have our lower bound on the problem of finding ε-NE δ-SW, we use
it to prove lower bounds for other problems regarding constrained approximate
NEs and WSNEs. Table 1 gives a list of the problems that we consider. For each
one, we provide a reduction from ε-NE δ-SW to that problem. Ultimately, we
prove that if RETH is true, then for every ε < 1

8 finding an ε-NE with the given
property requires n

˜Ω(log n) time.

Table 1. The decision problems that we consider. All of them take as input a bimatrix
games and a quality of approximation ε ∈ (0, 1). Problems 1–6 relate to ε-NE, and
Problems 7–10 relate to ε-WSNE.

Problem description Problem definition

Problem 1: Large payoffs u ∈ (0, 1] Is there an ε-NE (x,y) such that
min(xT Ry,xT Cy) ≥ u?

Problem 2: Small total payoff v ∈ [0, 2) Is there an ε-NE (x,y) such that
xT Ry + xT Cy ≤ v?

Problem 3: Small payoff u ∈ [0, 1) Is there an ε-NE (x,y) such that
xT Ry ≤ u?

Problem 4: Restricted support S ⊂ [n] Is there an ε-NE (x,y) with supp
(x) ⊆ S?

Problem 5: Two ε-NE d ∈ (0, 1] apart in
Total Variation (TV) distance

Are there two ε-NE with TV distance
≥ d?

Problem 6: Small largest probability p ∈
(0, 1)

Is there an ε-NE (x,y) with maxi

xi ≤ p?

Problem 7: Large total support size
k ∈ [n]

Is there an ε-WSNE (x,y) such that
|supp(x)| + |supp(y)| ≥ 2k?

Problem 8: Large smallest support size
k ∈ [n]

Is there an ε-WSNE (x,y) such that
min{|supp(x)|, |supp(y)|} ≥ k?

Problem 9: Large support size k ∈ [n] Is there an ε-WSNE (x,y) such that
|supp(x)| ≥ k?

Problem 10: Restricted support SR ⊆ [n] Is there an ε-WSNE (x,y) with SR ⊆
supp(x)?
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Other Related Work. The only positive result for finding ε-NE with good
social welfare that we are aware of was given by Czumaj et al. [9]. They showed
that if there is a polynomial-time algorithm for finding an ε-NE, then for all
ε′ > ε there is also a polynomial-time algorithm for finding an ε′-NE that is
within a constant multiplicative approximation of the best social welfare. They
also give further results for the case where ε > 1

2 .

2 Preliminaries

Throughout the paper, we use [n] to denote the set of integers {1, 2, . . . , n}. An
n × n bimatrix game is a pair (R,C) of two n × n matrices: R gives payoffs for
the row player and C gives the payoffs for the column player.

Each player has n pure strategies. To play the game, both players simultane-
ously select a pure strategy: the row player selects a row i ∈ [n], and the column
player selects a column j ∈ [n]. The row player then receives payoff Ri,j , and
the column player receives payoff Ci,j .

A mixed strategy is a probability distribution over [n]. We denote a mixed
strategy for the row player as a vector x of length n, such that xi is the prob-
ability that the row player assigns to pure strategy i. A mixed strategy of the
column player is a vector y of length n, with the same interpretation. If x and y
are mixed strategies for the row and the column player, respectively, then we
call (x,y) a mixed strategy profile. The expected payoff for the row player under
strategy profile (x,y) is given by xT Ry and for the column player by xT Cy.
We denote the support of a strategy x as supp(x), which gives the set of pure
strategies i such that xi > 0.

Nash Equilibria. Let y be a mixed strategy for the column player. The set of
pure best responses against y for the row player is the set of pure strategies that
maximize the payoff against y. More formally, a pure strategy i ∈ [n] is a best
response against y if, for all pure strategies i′ ∈ [n] we have:

∑
j∈[n] yj · Ri,j ≥

∑
j∈[n] yj · Ri′,j . Column player best responses are defined analogously.
A mixed strategy profile (x,y) is a mixed Nash equilibrium if every pure

strategy in supp(x) is a best response against y, and every pure strategy in
supp(y) is a best response against x. Nash [20] showed that every bimatrix game
has a mixed Nash equilibrium. Observe that in a Nash equilibrium, each player’s
expected payoff is equal to their best response payoff.

Approximate Equilibria. There are two commonly studied notions of approx-
imate equilibrium, and we consider both of them in this paper. The first notion
is that of an ε-approximate Nash equilibrium (ε-NE), which weakens the require-
ment that a player’s expected payoff should be equal to their best response
payoff. Formally, given a strategy profile (x,y), we define the regret suffered by
the row player to be the difference between the best response payoff and the
actual payoff: maxi∈[n]

(
(R · y)i

) − xT · R · y. Regret for the column player is
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defined analogously. We have that (x,y) is an ε-NE if and only if both players
have regret less than or equal to ε.

The other notion is that of an ε-approximate-well-supported equilibrium (ε-
WSNE), which weakens the requirement that players only place probability on
best response strategies. Given a strategy profile (x,y) and a pure strategy
j ∈ [n], we say that j is an ε-best-response for the row player if: maxi∈[n]

(
(R ·

y)i

)− (R ·y)j ≤ ε. An ε-WSNE requires that both players only place probability
on ε-best-responses. Formally, the row player’s pure strategy regret under (x,y) is
defined to be: maxi∈[n]

(
(R ·y)i

)−mini∈supp(x)

(
(R ·y)i

)
. Pure strategy regret for

the column player is defined analogously. A strategy profile (x,y) is an ε-WSNE
if both players have pure strategy regret less than or equal to ε.

Since approximate Nash equilibria use an additive notion of approximation,
it is standard practice to rescale the input game so that all payoffs lie in the
range [0, 1], which allows us to compare different results on this topic. For the
most part, we follow this convention. However, for our result in Sect. 3, we will
construct a game whose payoffs do not lie in [0, 1]. In order to simplify the proof,
we will prove results about approximate Nash equilibria in the unscaled game,
and then rescale the game to [0, 1] at the very end. To avoid confusion, we will
refer to an ε-approximate Nash equilibrium in this game as an ε-UNE, to mark
that it is an additive approximation in an unscaled game.

Two-Prover Games. A two-prover game is defined as follows.

Definition 1 (Two-prover game). A two-prover game T is defined by a tuple
(X,Y,A,B,D, V ) where X and Y are finite sets of questions, A and B are finite
sets of answers, D is a probability distribution defined over ∈ X × Y , and V is
a verification function of the form V : X × Y × A × B → {0, 1}.

The game is a co-operative game played between two players, who are called
Merlin1 and Merlin2, and an adjudicator called Arthur. At the start of the game,
Arthur chooses a question pair (x, y) ∈ X × Y randomly according to D. He
then sends x to Merlin1 and y to Merlin2. Crucially, Merlin1 does not know the
question sent to Merlin2 and vice versa. Having received x, Merlin1 then chooses
an answer from A and sends it back to Arthur. Merlin2 similarly picks an answer
from B and returns it to Arthur. Arthur then computes p = V (x, y, a, b) and
awards payoff p to both players. The size of the game, denoted |T | = |X × Y ×
A × B| is the total number of entries needed to represent V as a table.

A strategy for Merlin1 is a function a : X → A that gives an answer for
every possible question, and likewise a strategy for Merlin2 is a function b : Y →
B. We define Si to be the set of all strategies for Merlini. The payoff of the
game under a pair of strategies (s1, s2) ∈ S1 × S2 is denoted as p(T , s1, s2) =
E(x,y)∼D[V (x, y, s1(x), s2(y))].

The value of the game, denoted ω(T ), is the maximum expected payoff to
the Merlins when they play optimally: ω(T ) = maxs1∈S1 maxs2∈S2 p(T , s1, s2).

Free Games. A two-prover game is called a free game if the probability distrib-
ution D is the uniform distribution U over X ×Y . In particular, this means that
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there is no correlation between the question sent to Merlin1 and the question
sent to Merlin2. We are interested in the problem of approximating the value of
a free game within an additive error of δ.

FreeGameδ

Input: A free game T and a constant δ > 0.

Output: A value p such that | ω(T ) − p | ≤ δ.

The exponential time hypothesis (ETH) is the conjecture that any determin-
istic algorithm for solving 3SAT requires 2Ω(n) time. The randomized exponential
time hypothesis (RETH) is the same hypothesis, but for randomized algorithms.
Aaronson, Impagliazzo, and Moshkovitz have shown that, if ETH holds, then we
have the following inapproximability result [1].

Theorem 2 (Theorem 32 in [2]). If the ETH holds, then there exists a con-
stant Δ such that for all δ ∈ [1/n,Δ] the problem FreeGameδ cannot be solved

faster than n
˜O(log n)

δ .

This theorem was proved by providing a family of games such that, each
game F had either ω(F) = 1, or ω(F) < 1 − δ, and showing that it is hard to
decide which of these is the case. Theorem 2 produces a free game where the size
of the question sets X and Y is proportional to the size of the answer sets A
and B. For our proof we would like the size of X and Y to be logarithmic in
the size of A and B. Fortunately, this can be achieved by applying the following
sub-sampling result from the same paper. Since our results will rely on this sub-
sampling lemma, our lower bounds will depend on RETH, rather than ETH.

Lemma 3 (Corollary 46 in [2]). Given a free game F = (X,Y,A,B,U , V )
and ε > 0, we can randomly select a free game F ′ = (X ′, Y ′, A,B,U , V ) such
that |X| = |Y | = 2 · ε−Λ · log(|A| + |B|) for some constant Λ such that, with high
probability, we have |ω(F) − ω(F ′)| ≤ ε.

3 Hardness of Approximating Social Welfare

Overview. In this section, we study the following social welfare problem. The
social welfare of a pair of strategies (x,y) is denoted by SW(x,y) and is defined
to be xT Ry + xT Cy. Given an ε ≥ 0, we define the set of all ε equilibria as
Eε = {(x,y) : (x,y) is an ε-NE}. Then, we define the best social welfare
achievable by an ε-NE in G as BSW(G, ε) = max{SW(x,y) : (x,y) ∈ Eε}.
Using these definitions we now define the main problem that we consider:

ε-NE δ-SW

Input: A game G, and two constants ε, δ > 0.
Output: An ε-NE (x,y) s.t. SW(x,y) is within δ of BSW(G, ε).
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We show a lower bound for this problem by reducing from FreeGameδ. Let F
be a free game of size n from the family of free games that were used to prove
Theorem 2. We have that either ω(F) = 1 or ω(F) < 1−δ for some fixed constant
δ, and that it is hard to determine which of these is the case. We will construct
a game G such that for ε = 1 − 4g · δ, where g < 5

12 is a fixed constant that we
will define at the end of the proof, we have the following properties.

– (Completeness) If ω(F) = 1, then the unscaled BSW(G, ε) = 2.
– (Soundness) If ω(F) < 1 − δ, then the unscaled BSW(G, ε) < 2(1 − g · δ).

This will allow us to prove our lower bound using Theorem2.

3.1 The Construction

The first step of the proof is to apply Lemma 3 to F with ε = δ/2 to produce a
free game Fs = (X,Y,A,B,U , V ) that will be fixed for the rest of this section.
Since the question sets in F have size O(|F|), we have that the question sets X
and Y in Fs have size log(|F|). Furthermore, with high probability, it is hard to
decide whether ω(Fs) = 1 or ω(Fs) = 1 − δ/2. Next, we use Fs to construct a
bimatrix game, which we will denote as G throughout the rest of this section. The
game is built out of four subgames, which are arranged and defined as follows.

�
�
I

II

R −D2

C D2

D1 0

−D1 0

– The game (R,C) is built from Fs in the following way. Each row of the game
corresponds to a pair (x, a) ∈ X × A and each column corresponds to a pair
(y, b) ∈ Y ×B. Since all free games are cooperative, the payoff for each strategy
pair (x, a), (y, b) is defined to be R(x,a),(y,b) = C(x,a),(y,b) = V (x, y, a(x), b(y)).

– The game (D1,−D1) is a zero-sum game. The game is a slightly modified
version of a game devised by Feder et al. [14]. Let H be the set of all functions
of the form f : Y → {0, 1} such that f(y) = 1 for exactly half 4 of the elements
y ∈ Y . The game has |Y × B| columns and |H| rows. For all f ∈ H and all
(y, b) ∈ Y the payoffs are

(D1)f,(y,b) =

{
4

1+4g·δ if f(y) = 1,
0 otherwise.

4 If |Y | is not even, then we can create a new free game in which each question in |Y |
appears twice. This will not change the value of the free game.
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– The game (−D2,D2) is built in the same way as the game (D1,−D1), but
with the roles of the players swapped. That is, each column of (−D2,D2)
corresponds to a function that picks half of the elements of X.

– The game (0, 0) is a game in which both players have zero matrices.

Observe that the size of (R,C) is the same as the size of Fs, which is at
most |F|. The game (D1,−D1) has the same number of columns as C, and the
number of rows is at most 2|Y | ≤ 22δ−Λ log |F| = |F|2δ−Λ

, where Λ is the con-
stant obtained from Lemma 3. By the same reasoning, the number of columns in
(−D2,D2) is at most |F|2δ−Λ

. Thus, the size of G is |F|O(δ−Λ), and in particular,
for every constant δ > 0, this reduction is polynomial.

3.2 Completeness

To prove completeness, it suffices to show that, if ω(Fs) = 1, then there exists a
(1−4g ·δ)-UNE of G that has social welfare 2. To do this, assume that ω(Fs) = 1,
and take a pair of optimal strategies (s1, s2) for Fs and turn them into strategies
for the players in G. More precisely, the row player will place probability 1

|X| on
each answer chosen by s1, and the column player will place probability 1

|Y | on
each answer chosen by s2. By construction, this gives both players payoff 1, and
hence the social welfare is 2. The hard part is to show that this is an approximate
equilibrium, and in particular, that neither player can gain by playing a strategy
in (D1,−D1) or (−D2,D2). We prove this in the following lemma.

Lemma 4. If ω(Fs) = 1, then there exists a (1 − 4g · δ)-UNE (x,y) of G with
SW(x,y) = 2.

3.3 Soundness

We now suppose that ω(Fs) < 1−δ/2, and we will prove that all (1−4g ·δ)-UNE
provide social welfare at most 2 − 2g · δ. Throughout this subsection, we will fix
(x,y) to be a (1 − 4g · δ)-UNE of G. We begin by making a simple observation
about the amount of probability that is placed on (R,C).

Lemma 5. If SW(x,y) > 2−2g ·δ, then x places at least (1−g ·δ) probability on
rows in (R,C), and y places at least (1− g · δ) probability on columns in (R,C).

So, for the rest of this subsection, we can assume that both x and y place at
least 1 − g · δ probability on the subgame (R,C). We will ultimately show that,
if this is the case, then both players have payoff at most 1 − 1

2 · δ + mg · δ for
some constant m that will be derived during the proof. Choosing g = 1/(2m+2)
then ensures that both players have payoff at most 1 − g · δ, and therefore that
the social welfare is at most 2 − 2g · δ.

A Two-Prover Game. We use (x,y) to create a two-prover game. First, we
define two distributions that capture the marginal probability that a question is
played by x or y. Formally, we define a distribution x′ over X and a distribution
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y′ over Y such that for all x ∈ X and y ∈ Y we have x′(x) =
∑

a∈A x(x, a), and
y′(y) =

∑
b∈B y(y, b). By Lemma 5, we can assume that ‖x′‖1 ≥ 1 − g · δ and

‖y′‖1 ≥ 1 − g · δ.
Our two-prover game will have the same question sets, answer sets, and

verification function as Fs, but a different distribution over the question sets.
Let T(x,y) = (X,Y,A,B,D, V ), where D is the product of x′ and y′. Note that
we have cheated slightly here, since D is not actually a probability distribution.
If ‖D‖1 = c < 1, then we can think of this as Arthur having a 1 − c probability
of not sending any questions to the Merlins and awarding them payoff 0.

The strategies x and y can also be used to give a us a strategy for the Merlins
in T(x,y). Without loss of generality, we can assume that for each question x ∈ X
there is exactly one answer a ∈ A such that x(x, a) > 0, because if there are two
answers a1 and a2 such that x(x, a1) > 0 and x(x, a2) > 0, then we can shift all
probability onto the answer with (weakly) higher payoff, and (weakly) improve
the payoff to the row player. Since (R,C) is cooperative, this can only improve
the payoff of the columns in (R,C), and since the row player does not move
probability between questions, the payoff of the columns in (−D2,D2) does not
change either. Thus, after shifting, we arrive at a (1 − 4g · δ)-UNE of G whose
social welfare is at least as good as SW(x,y). Similarly, we can assume that for
each question y ∈ Y there is exactly one answer b ∈ B such that y(y, b) > 0.

So, we can define a strategy sx for Merlin1 in the following way. For each ques-
tion x ∈ X, the strategy sx selects the unique answer a ∈ A such that x(x, a) > 0.
The strategy sy for Merlin2 is defined symmetrically.

We will use T(x,y) as an intermediary between G and Fs by showing that
the payoff of (x,y) in G is close to the payoff of (sx, sy) in T(x,y), and that the
payoff of (sx, sy) in T(x,y) is close to the payoff of (sx, sy) in Fs. Since we have
a bound on the payoff of any pair of strategies in Fs, this will ultimately allow
us to bound the payoff to both players when (x,y) is played in G.

Relating G to T(x,y). For notational convenience, let us define pr(G,x,y) and
pc(G,x,y) to be the payoff to the row player and column player, respectively,
when (x,y) is played in G. We begin by showing that the difference between
pr(G,x,y) and p(T(x,y), sx, sy) is small. Once again we prove this for the payoff
of the row player, but the analogous result also holds for the column player.

Lemma 6. We have |pr(G,x,y) − p(T(x,y), sx, sy)| ≤ 4g · δ.

Relating T(x,y) to Fs. First we show that if (x,y) is indeed a (1 − 4g · δ)-
UNE, then x′ and y′ must be close to uniform over the questions. We prove this
for y′, but the proof can equally well be applied to x′. The idea is that, if y′ is
sufficiently far from uniform, then there is set B ⊆ Y of |Y |/2 columns where y′

places significantly more than 0.5 probability. This, in turn, means that the row
of (D1,−D1) that corresponds to B, will have payoff at least 2, while the payoff
of (x,y) can be at most 1+3g · δ, and so (x,y) would not be a (1− 4g · δ)-UNE.
We formalise this idea in the following lemma. Define uX to be the uniform
distribution over X, and uY to be the uniform distribution over Y .

Lemma 7. We have ‖uY − y′‖1 < 16g · δ and ‖uX − x′‖1 < 16g · δ.
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With Lemma 7 at hand, we can now prove that the difference between
p(T(x,y), sx, sy) and p(Fs, sx, sy) must be small. This is because the question
distribution D used in T(x,y)is a product of two distributions that are close to
uniform, while the question distribution U used in Fs is a product of two uniform
distributions. In the following lemma, we show that if we transform D into U ,
then we do not change the payoff of (sx, sy) very much.

Lemma 8. We have |p(T(x,y), sx, sy) − p(Fs, sx, sy)| ≤ 64g · δ.

Completing the Soundness Proof. The following lemma uses the bounds
derived in Lemmas 6 and 8, along with a suitable setting for g, to bound the
payoff of both players when (x,y) is played in G.

Lemma 9. If g = 1
138 , then both players have payoff at most 1−g ·δ when (x,y)

is played in G.

Hence, we have proved that SW(x,y) ≤ 2 − 2g · δ.

3.4 The Result

We can now state the theorem that we have proved in this section. We first
rescale the game so that it lies in [0, 1]. The maximum payoff in G is 4

1+4g·δ ≤ 4,
and the minimum payoff is − 4

1+4g·δ ≥ −4. To rescale this game, we add 4 to all
the payoffs, and then divide by 8. Let us refer to the scaled game as Gs. Observe
that an ε-UNE in G is a ε

8 -NE in Gs since adding a constant to all payoffs does
not change the approximation guarantee, but dividing all payoffs by a constant
does change the approximation guarantee. So, we have the following theorem.

Theorem 10. If RETH holds, then there exists a constant Δ such that for all
δ ∈ [1/n,Δ] the problem ( 1−4g·δ

8 )-NE g
4 · δ-SW, where g = 1

138 , cannot be solved
faster than n

˜O(δΛ log n), for some fixed constant Λ.

4 Hardness Results for Other Decision Problems

In this section we study a range of decision problems associated with approxi-
mate equilibria. Most are known to be NP-complete for the case of exact Nash
equilibria [7,16]. Table 1 shows all of the decision problems that we consider.
For each problem, the input includes a bimatrix game and a quality of approx-
imation ε ∈ (0, 1). We consider decision problems related to both ε-NE and
ε-WSNE. Since ε-NE is a weaker concept than ε-WSNE, the hardness results for
ε-NE imply the same hardness for ε-WSNE. We consider problems for ε-WNSE
only where the corresponding problem for ε-NE is trivial. For example, observe
that approximate ε-NE with large support is a trivial problem, since we can
always add a tiny amount of probability to each pure strategy without changing
our expected payoff very much.
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Our conditional quasi-polynomial lower bounds will hold for all ε < 1
8 . Thus

fix ε∗ < 1
8 for the rest of this section. We will appeal to Theorem 10, and thus we

compute from ε∗ the parameters n and δ that we require to apply this theorem.
In particular, compute δ∗ to solve ε∗ = (1−4g·δ∗

8 ), which comes from Theorem 10,
and choose n∗ as 1

δ∗ . Then, for n > n∗ and δ = δ∗ we can apply Theorem 10
to bound the social welfare acheivable if ω(Fs) < 1 − δ∗ as u = 6

8 − 1
522δ∗.

Theorem 10 implies that in order to decide whether the game Gs possess an
ε∗-NE that yields social welfare strictly greater than u requires nÕ(log n) time,
where δ no longer appears in the exponent since we have fixed it as a constant δ∗

according to our choice of ε∗.
The hardness of Problem 1 is a corollary of Theorem10 when we set u = 3

8 .
For the other problems in Table 1, we use Gs to construct two new games: G′,
which adds one row and column to Gs, is used to show hardness of Problems 2–9,
and G′′, which in turn adds one row and column to G′, is used to show hardness
of Problem 10. We define G′ and G′′ using the constants u and ε∗ fixed above.
The game G′ extends Gs by adding the pure strategy i for the row player, and
the pure strategy j for the column player, with payoffs as shown in Fig. 1.

G′ =

j

0, 3
8

+ ε∗

Gs
...

0, 3
8

+ ε∗

i 3
8

+ ε∗, 0 · · · 3
8

+ ε∗, 0 1, 1

Fig. 1. The game G′.

The payoffs for i and j were chosen so that: If the game Gs possess an ε∗-NE
with social welfare 6

8 , then G′ posses at least one ε∗-NE where the players do
not play the pure strategies i and j; if every ε∗-NE of the game Gs yields social
welfare at most u, then in every ε∗-NE of G′, the players place almost all of their
probability on i and j respectively. Lemmas 11 and 12 show further properties
that hold in the first case but not the second.

Notice that the expected payoff for the row player from the pure strategy i is
at least 3

8 + ε∗ irrespective of the strategy the column player chooses. The same
holds for the column player and the pure strategy j, i.e., the expected payoff that
the column players gets from the pure strategy j is at least 3

8 + ε∗ irrespective of
the strategy chosen by the row player. In what follows we will use SR (SC), or S
when it is clear from the context, to denote the set of pure strategies available
to the row (column) from the (R,C) part of Gs that corresponds to different
questions in the free game Fs.

First, we derive some properties of the equilibria of G′ when Gs posses an
ε∗-NE with social welfare 6

8 .
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Lemma 11. If Gs posses an ε∗-NE (x,y) with social welfare 6
8 , then (x,y) is

an ε∗-WSNE for G′ such that:

(a) xT Ry = 3
8 and xT Cy = 3

8 ,
(b) supp(x) ⊆ SR and supp(y) ⊆ SC ,
(c) |supp(x)| = |SR| and |supp(y)| = |SC |,
(d) maxi xi ≤ 1

|SR| and maxj yj ≤ 1
|SC | .

Next, we prove certain properties that all ε∗-NE and ε∗-WSNE of G′ possess
if every ε∗-NE of Gs yields social welfare at most u.

Lemma 12. If every ε∗-NE of Gs yields social welfare at most u, then in every
ε∗-NE (x,y) of G′ it holds that:

(α) xi > 1 − ε∗ and yj > 1 − ε∗,
(β) xT Ry > 1 − 2ε∗ and xT Cy > 1 − 2ε∗.

Furthermore, in every ε∗-WSNE (x,y) of G′ it holds that

(γ) |supp(x)| = |supp(y)| = 1.

Observe that the combination of the claims of Lemmas 11 and 12 give the desired
hardness results for the Problems 2–9. The combination of claim (a) from
Lemma 11 with the claim (β) from Lemma 12 gives the hardness result for the
Problems 2 and 3; the combination of (b) with (α) gives the hardness for Prob-
lems 4 and 5; the combination of (d) with (α) gives the hardness for the Prob-
lem 6; and finally that hardness of Problems 7–9 follows from the combination
of (c) with (γ).

For Problem 10, we define a new game G′′ by extending G′. We add the new
pure strategy i′ for the row player and the new pure strategy j′ for the column
player, with payoffs constructed as shown in Fig. 2. We prove that if the game Gs

posses an ε∗-NE with social welfare 3
8 , then the game G′′ possess an ε∗-WSNE

(x,y) such that i′ ∈ supp(x). Furthermore, we prove that if all ε∗-NE of GS yield
social welfare at most u, then for any ε∗-WSNE (x,y) it holds that i′ /∈ supp(x).

G′′ =

j′

3
8
, 3

8

G′ ...

3
8
, 3

8

i′ 3
8
, 3

8
· · · 3

8
, 3

8
0, 0

Fig. 2. The game G′′.
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Lemma 13. If the game Gs posses an ε∗-NE with social welfare 6
8 , then the

game G′′ posses an ε∗-WSNE (x,y) such that i′ ∈ supp(x).

Lemma 14. If all the ε∗-NE of Gs yield social welfare at most u, then for any
ε∗-WSNE (x,y) of G′′ it holds that i′ /∈ supp(x).

We now summarize the results of this section in the following theorem. Given
the game Gs we can construct games G′ and G′′ such that the answer to the
Problems 2–10 is “Yes” if Gs possess an ε∗-NE with social welfare 3

8 and “No”
if every ε∗-NE of Gs has social welfare at most u.

Theorem 15. Assuming the RETH, any algorithm that solves the Problems 1–10
for any constant ε < 1

8 requires nΩ̃(log n) time.
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Abstract. In many games, players’ decisions consist of multiple sub-
decisions, and hence can give rise to an exponential number of pure
strategies. However, this set of pure strategies is often structured, allow-
ing it to be represented compactly, as in network congestion games, secu-
rity games, and extensive form games. Reduction to the standard normal
form generally introduces exponential blow-up in the strategy space and
therefore are inefficient for computation purposes. Although individual
classes of such games have been studied, there currently exists no general
purpose algorithms for computing solutions. equilibrium.

To address this, we define multilinear games generalizing all. Infor-
mally, a game is multilinear if its utility functions are linear in each
player’s strategy, while fixing other players’ strategies. Thus, if pure
strategies, even if they are exponentially many, are vectors in polyno-
mial dimension, then we show that mixed-strategies have an equivalent
representation in terms of marginals forming a polytope in polynomial
dimension.

The canonical representation for multilinear games can still be expo-
nential in the number of players, a typical obstacle in multi-player games.
Therefore, it is necessary to assume additional structure that allows com-
putation of certain sub-problems in polynomial time. Towards this, we
identify two key subproblems: computation of utility gradients, and opti-
mizing linear functions over strategy polytope. Given a multilinear game,
with polynomial time subroutines for these two tasks, we show the fol-
lowing: (a) We can construct a polynomially computable and continuous
fixed-point formulation, and show that its approximate fixed-points are
approximate NE. This gives containment of approximate NE computa-
tion in PPAD, and settles its complexity to PPAD-complete. (b) Even
though a coarse correlated equilibrium can potentially have exponential
representation , through LP duality and a carefully designed separation
oracle, we provide a polynomial-time algorithm to compute one with
polynomial representation. (c) We show existence of an approximate NE
with support-size logarithmic in the strategy polytope dimensions.
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1 Introduction

The computation of game-theoretic solution concepts is a central problem at the
intersection of game theory and computer science. For games with large numbers
of players, the standard normal form game representation requires exponential
space even if the number of strategies per players is two, and is thus not a
practical option as a basis for computation. Most games of practical interest have
highly structured utility functions, and it is possible to represent them compactly.
A line of research thus exists to look for compact game representations that are
able to succinctly describe structured games, including work on graphical games
[16], multi-agent influence diagrams [17] and action-graph games [15].

In many real-world domains, each player needs to make a decision that con-
sists of multiple sub-decisions (e.g., assigning a set of resources or finding a path
in a network), and hence the number of pure strategies per player itself can be
exponential. The single-player versions of these decision problems have been well
studied in the field of combinatorial optimization, with mature general modeling
languages such as AMPL and solvers like CPLEX. For the multi-player case,
several classes of games studied in the recent literature have structured strat-
egy spaces, including network congestion games [4,7], simultaneous auctions and
other multi-item auctions [23,25], dueling algorithms [12], integer programming
games [18], Blotto games [1], and security games [19,24]. These papers proposed
compact game representations suitable for their specific domains, and corre-
sponding algorithms for computing solution concepts, which take advantage of
the specific structure in the representations. However, it is not obvious whether
algorithmic techniques developed for one domain can be transferred to another.

A general successful approach in the study of efficient computation for com-
pact representations is the following: identify subtasks that are required for most
existing algorithms of these solution concepts, and then speed up these sub-
tasks by exploiting the structure of the compact representation. [7,21] identified
expected utility computation given a mixed strategy as the subtask to compute
correlated equilibrium efficiently, and to show NE computation is in PPAD.
They also showed that games like graphical, polymatrix, and symmetric, this
subtask can be done in polynomial time. A crucial assumption behind these
results is polynomial type: roughly, it is feasible to enumerate pure strategies
of all the players. This is not the case for games with structured strategies, in
which such explicit strategy enumeration can take exponential time. [7] showed
PPAD membership of NE computation for two additional subclasses: network
congestion and extensive form games, but the general case remained open.

In this paper, we present a unified algorithmic framework for games with
structured polytopal strategy spaces, in which each player’s set of pure strategies
is defined to be integer points in a polytope. Our contributions are as follows.
1. We identify multilinearity as an important property of games that enables

us to represent the players’ mixed strategies compactly. Informally, a game
is multilinear if its utility functions are linear in each player’s strategy, while
fixing other players’ strategies. We show that many existing game forms, like
Bayesian, congestion, security, etc., are multilinear (see [5]).
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2. The canonical representation of multilinear games still grows exponentially
in the number of players. Therefore, it is necessary to assume additional
structure that allows some computation in polynomial time, like done in [7,
21]. Towards this, we identify two key subproblems: computation of utility
gradients, and optimizing linear functions over strategy polytopes. Given a
multilinear game, with polynomial time subroutines for these two tasks, we
show the following: (a) computing an approximate Nash equilibrium is in
PPAD and (b) a coarse correlated equilibrium can be computed in polynomial
time. These results are generalizations of [7,21], respectively, from games of
polynomial type to multilinear games.

3. We prove that given a multilinear game, there exists an approximate NE with
support-size logarithmic in the strategy polytope dimensions. This generalizes
[2], which gave bounds logarithmic in the number of strategies.

1.1 Technical Overview

Our approach is based on a compact representation of mixed strategies as mar-
ginal vectors, which is a point in the strategy polytope induced by the mixed
strategy distributions. When the game is multilinear, all mixed strategies with
the same marginal vector are payoff-equivalent (Lemmas 1 and 2). Thus, we
can work in the marginal vector space instead of the exponentially higher-
dimensional space of mixed strategies. We adapt existing algorithmic approaches
such that whenever the algorithm calls for enumeration of pure strategies (e.g.,
for computing a best response), we instead solve a linear optimization problem in
the space of marginal vectors, which can in turn be reduced to the two subprob-
lems, namely computation of utility gradient given a marginal strategy profile,
and optimizing a linear function over the polytope of marginal strategies. Given
polynomial-time procedures for these two, we show a number of computational
results.

Next we analyze complexity of computing an equilibrium. Since normal-form
games are subcase of multilinear games, irrationality of NE [20], and PPAD-
hardness for NE computation [6,8] follows. Due to exponentially many pure
strategies per player, containment of approximate NE computation in PPAD
does not carry forward to multilinear games. Towards this, we design a fixed-
point formulation to capture NE in marginal profiles, and show that correspond-
ing approximate fixed-points exactly capture approximate NE. Furthermore, we
show polynomial-continuity and polynomial-computability (see [5] or [9] for def-
initions) of the function by finding its equivalent representation in terms of
projection operator, and obtaining a convex quadratic formulation for function
evaluation, respectively. Finally, due to a result of [9], all of these together implies
containment of finding an approximate NE in PPAD for multilinear games.

For computing CCE (Theorem 2), we adapt the Ellipsoid Against Hope app-
roach of [21] and its refinement [14]. Applied directly to our setting, this approach
would involve running the ellipsoid method in a space whose dimension is roughly
the total number of pure strategies of all the players, yielding an exponential-
time algorithm. We instead use a related but different convex programming
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formulation, and then (through use of the multilinear property) transform it into
a linear program of polynomial number of variables, which is then amenable to
the ellipsoid method. Although the final output is not in terms of mixed strategies
or marginal vectors (instead it is a correlated distribution with small support), a
crucial intermediate step (the separation oracle of the ellipsoid method) requires
linear optimization over the space of marginal vectors.

Finally, we show existence of approximate NE with logarithmic support using
the probabilistic method, together with applying concentration inequalities on
marginals to avoid union bound on exponentially many terms (Theorem4).

Due to space constraint next we give an overview of our results, while all the
proofs and some of the details can be found in the full paper [5].

2 Preliminaries

Notations. We use boldface letters, like x, to denote vectors, and xi to denote
its ith coordinate. To denote the set of {1, . . . , m} we use [m]. We use Z+ and
R+ to denote the sets of non-negative integers and reals, respectively.

A game is specified by (N,S, u), where N = {1, . . . , n} is the set of players.
Each player i ∈ N chooses from a finite set of pure strategies Si. Denote by
si ∈ Si a pure strategy of player i. Then S =

∏
i Si is the set of pure-strategy

profiles. Moreover, u = (u1, . . . , un) are the utility functions of the players, where
the utility function of player i is ui : S → R.

In normal-form games, strategy sets Sis and utility functions uis are specified
explicitly. Thus, the size of the representation is of the order of n|S| = n

∏
i |Si|.

A mixed strategy σi of player i is a probability distribution over her pure
strategies. Let Σi = Δ(Si) be i’s set of mixed strategies, where Δ(·) denotes the
set of probability distributions over a finite set. Denote by σ = (σ1, . . . ,σn) a
mixed strategy profile, and Σ =

∏
i Σi the set of mixed strategy profiles. Denote

by σ−i the mixed strategy profile of players other than i. σ induces a probability
distribution over pure strategy profiles. Denote by ui(σ) the expected utility
of player i under σ: ui(σ) = Es∼σ[ui(s)] =

∑
s∈S ui(s)

∏
k∈N σk(sk), where

σk(sk) is player k’s probability of playing the pure strategy sk.

Nash Equilibrium (NE). Player i’s strategy σi is a best response to σ−i if
σi ∈ arg maxσ′

i∈Σi
ui(σ′

i,σ−i). A mixed strategy profile σ is a Nash equilibrium
if for each player i ∈ N , σi is a best response to σ−i.

Another important solution concept is Coarse Correlated Equilibrium (CCE).
Consider a distribution over the set of pure-strategy profiles. This can be rep-
resented by a vector x, satisfying x ≥ 0,

∑
s∈S xs = 1. The expected utility

for player i under x is ui(x) =
∑

s∈S xsui(s). Given x, the expected utility for
player i if he deviates to strategy si is: usi

i (x) =
∑

s−i
xs−i

ui(si, s−i), where
xs−i

=
∑

si∈Si
x(si,s−i) is the marginal probability of s−i in distribution x. Let

gi(x) = max
si∈Si

usi
i (x), (1)

i.e. player i’s expected utility if he deviates to a best response against x.
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Definition 1. A distribution x satisfying x ≥ 0,
∑

s∈S xs = 1 is a Coarse
Correlated Equilibrium (CCE) if it satisfies the following incentive constraints:
ui(x) ≥ gi(x),∀i ∈ N.

A rational polytope, P = {x ∈ Rm|Dx ≤ f}, is defined by a set of inequalities
with integer coefficients (i.e., matrix D and vector f consist of integers).

3 Multilinear Games

3.1 Polytopal Strategy Space

We are interested in games in which a pure strategy has multiple components.
Without loss of generality, if each pure strategy of player i has mi components,
we can associate each such pure strategy with an mi-dimensional nonnegative
integer vector. Then the set of pure strategies for each player i is Si ⊂ Zmi

+ . In
general the number of integer points in Si can grow exponentially in mi. Thus,
we need a compact representation of Si.

In most studies of games with structured strategy spaces, each Si can be
expressed as the set of integer points in a rational polytope Pi ⊂ Rmi

+ , i.e.,
Si = Pi ∩ Zmi

+ . We call such an Si a polytopal pure strategy set. We assume
Pi is nonempty, bounded and contained in the nonnegative quadrant Rmi

+ . To
represent the strategy space, we only need to specify the set of linear constraints
defining Pi = {p ∈ Rmi

+ | Dip ≤ fi}, with each linear constraint requiring us to
store O(mi) integers. We call this game a game with polytopal strategy spaces.

For example, one common scenario is when there are k finite sets S1
i , . . . Sk

i ,
and player i needs to simultaneously select one action in each of these sets.
This happens in Bayesian games in which a player needs to choose an action
for each of his type, extensive form games in which a player needs to choose
an action in each information set, and simultaneous auctions, among others.
The player’s pure strategy set Si is a polytopal strategy space with Pi being
the product of k simplices. Second common type of strategy set is a uniform
matroid: given a universe [mi], player i’s pure strategy is a subset of size k. This
can (e.g.) represent security scenarios in which a defender player i in charge of
protecting mi target, but due to limited resources can only cover k of targets
[19]. Then player i’s strategy can be represented as the 0–1 vector encoding the
subset, and the strategy set can be represented as a polytopal strategy set with
Pi = {p ∈ Rmi |∑j∈[mi]

pj = k}. Third common type of strategy is to select a
path in a network, from a given source to a given destination. This can model
routing of data traffic in an network congestion game, or patrol / attack routes
in security settings [13,26]. Here, si can be modeled as a 0–1 vector specifying
the subset of edges forming the chosen path. Si can be represented as a polytopal
strategy space, where Pi consists of a set of flow constraints, as in [7].

3.2 Mixed Strategies and Multilinearity

In this paper, we are focusing on computation of solution concepts in which play-
ers are playing mixed strategies, such as Nash equilibrium. The first challenge we
face is the representation of mixed strategies. Recall that a mixed strategy σi of
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player i is a probability distribution over the set of pure strategies Si. When |Si|
is exponential, representing σi explicitly would take exponential space. Thus we
would like a compact representation of mixed strategies, i.e., a way to represent a
mixed strategy using only polynomial number of bits. One approach would be to
only use mixed strategies of polynomial-sized support, where support is the set of
pure strategies played with non-zero probability. Such strategies can be stored as
sparse vectors requiring polynomial space; however, the space of small-support
mixed strategies is not convex, and this is problematic for computation.

We list a set of desirable features for a compact representation of mixed
strategies: (1) the expected utilities of the game can be expressed in terms of
this compact representation; (2) the space of the resulting compactly-represented
strategies is convex; (3) given this compact representation, we can efficiently
recover a mixed strategy (e.g., as a mixture over a small number of pure strate-
gies, or by providing a way to efficiently pure strategies from the mixed strategy).
We show that such a compact representation is possible if the game is multilinear.

Definition 2. Consider a game Γ with polytopal strategy sets, with Si = Pi ∩
Zmi

+ for each player i. Γ is a multilinear game if

1. for each player i, there exists U i ∈ R
∏

k∈N mk such that for all s ∈ S, ui(s) =∑
(j1...jn)∈∏k[mk]

U i
j1...jn

∏
k∈N sk,jk

, where [mk] = {1, . . . , mk};
2. The extreme points (i.e. vertices) of Pi are integer vectors, which implies that

Pi = conv(Si), where conv(Si) is the convex hull of Si.

In particular, given a fixed s−j , ui is a linear function of sj . In other words, a
multilinear game’s utility functions are multilinear in the players’ strategies.

Condition 2 of Definition 2 is satisfied if Pi’s constraint matrix Di is totally
unimodular. Total unimodularity is a well-studied property satisfied by the con-
straint matrices of many polytopal strategy spaces studied in the literature,
including the network flow constraint matrix of network congestion games, the
uniform matroid constraints of security games [19], and the doubly-stochastic
constraints representing rankings in the search engine ranking duel [12]. When
Condition 2 is not satisfied, we can redefine Pi to be conv(Si), but the new Pi may
have exponentially more constraints. Indeed, dropping Condition 2 would allow
us to express various NP-hard single-agent combinatorial optimization problems
(e.g. set cover, knapsack). See [5] for examples that demonstrates how security,
congestion, extensive-form, and Bayesian games are multilinear.

Given a mixed strategy σi, define the marginal vector πi corresponding to
σi as the expectation over the pure strategy space Si induced by the distrib-
ution σi, i.e., πi = Eσi

[si] =
∑

si∈Si
σi(si)si. Denote by πij the j − th com-

ponent of πi. The set of marginal vectors is exactly conv(Si) = Pi. Given a
mixed strategy profile σ, we call the corresponding collection of marginal vec-
tors π = (π1, . . . ,πn) ∈ P = ×iPi the marginal strategy profile. By slight abuse
of notation let us denote by

ui(π) =
∑

(j1...jn)∈∏k[mk]

U i
j1...jn

∏

k∈N

πk,jk
(2)

player i’s expected utility under marginal strategy profile π.
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Lemma 1. Given a mixed strategy profile σ ∈ Σ and a marginal vector π ∈ P ,
if ∀i, πi =

∑
si∈Si

σi(si)si then ∀i, ui(σ) = ui(π).

That is, marginal vectors capture all payoff-relevant information about mixed
strategies, and thus we can use them to compactly represent the space of mixed
strategies. We note that this property does not hold for arbitrary games.

Suppose a mixed strategy profile σ with marginals π = (π1, . . . ,πn) is a
Nash equilibrium of a multilinear game. By multilinearity any mixed strategy
profile having the same marginals are payoff-equivalent to σ, and therefore also
a Nash equilibrium. Let us define Nash equilibrium in terms of marginals:

Marginal NE. π ∈ P is a marginal NE iff ∀i, ui(π) ≥ ui(π′
i,π−i), ∀π′

i ∈ Pi.

The next lemma follows easily using Lemma 1, and the fact that any vector
πi ∈ Pi can be represented as a convex combination of extreme points of Pi, and
extreme points of Pi are in Si.

Lemma 2. A mixed-strategy profile σ ∈ Σ is a NE iff corresponding marginal
strategy profile π ∈ P , where πi =

∑
si∈Si

σi(si)si, ∀i ∈ N , is a marginal NE.

4 Computation with Multilinear Games

We now show that many algorithmic results for computing various solutions
for normal form games and other game representations of polynomial type can
be adapted to multilinear games, with strategies represented as marginals. We
follow a “modular” approach, similar to [7,21]’s treatment of computation of
Nash equilibrium and correlated equilibrium in games of polynomial type: we
first identify certain key subproblems, then develop general algorithmic results
assuming these subproblems can be efficiently computed. We note that a wide
variety of games do has such specific structure (see [5]).

4.1 Utility Gradient

Recall that we can express the expected utilities of players using marginal vec-
tors by Eq. (2) (Lemma 1). However, a direct computation of expected utility
using (2) would require summing over a number of terms exponential in n. Also,
computing expected utilities may not be enough: consider the task of determin-
ing if a mixed strategy profile (as marginals) is a Nash equilibrium. One needs
to compute the expected utility for each pure strategy deviation of i in order
to verify that i is playing a best response, but that would require enumerating
all pure strategies. Instead, we identify a related but different computational
problem as the key subtask for equilibrium computation for multilinear games.

Due to multilinearity, after fixing the strategies of players N \ {k}, ui(π)
is a linear function of πk1, . . . , πkmk

. We define the utility gradient of player i
with respect to player k’s marginal, ∇k(ui(π−k)) ∈ Rmk , to be the vector of
coefficients of this linear function. Formally, ∀jk ∈ [mk],

(∇kui(π−i))jk
≡

∑

(j1,.,jk−1,jk+1,.,jn)∈∏N\{k}
�=1 [m�]

U i
j1...jn

∏

�∈N\{k}
π�,j�

.
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Problem 1 (UtilGradient). Given a compactly represented game that satisfies
multilinearity, given players i, k ∈ N , and π−k, compute ∇k(ui(π−k)).

Consider the problem of computing the utility gradients. As with expected
utility computation, direct summation would require time exponential in n. With
a compact game representation this problem could be solved in polynomial time.

4.2 PolytopeSolve and Decomposing Marginals

The other key subproblem we identify, PolytopeSolve, is the optimization of an
arbitrary linear objective in each player’s strategy polytope.

Problem 2 (PolytopeSolve). Given a compactly represented game with polytopal
strategy space, player i, and a vector d ∈ Rmi , compute arg maxx∈Pi

dT x.

Let us consider the issue of constructing a mixed strategy given a marginal
vector. First of all, since we have assumed that the extreme points of the polytope
Pi are integer points, and thus Pi = conv(Si), this becomes the problem of
describing a point in a polytope by a convex combination of extreme points of
the polytope. By Caratheodory theorem, given πi ∈ Rmi there exists a mixed
strategy of support size at most (mi + 1) that matches the marginals. Existing
work, such as the Birkhoff-von Neumann theorem and its generalizations [3],
provides efficient constructions for different types of polytopes. The most general
result by Grostchel et al. [11] reduces the problem to the task of optimizing an
arbitrary linear objective over the polytope, i.e., PolytopeSolve.

Theorem 1 (Grostchel et al. [11]). Suppose the PolytopeSolve can be solved
in polynomial time. Then, the following problem DECOMPOS- E(Pi) can be
solved in polynomial time: Given πi ∈ Pi, find a polynomial number of extreme
points of Pi (i.e., pure strategies) s1

i , . . . s
K
i ∈ Si and weights λ1, . . . , λK ≥ 0

such that
∑K

k=1 λk = 1 and πi =
∑K

k=1 λksk
i .

We note that the computational complexity of PolytopeSolve depends only
on the strategy polytopes Pis of the game, and not on the utility functions. Poly-
topeSolve can be definitely solved in polynomial time by linear programming if
Pi is given by a polynomial number of linear constraints; this holds for all exam-
ples we discussed in this paper. Since the objective is linear, arg maxx∈Pi

dT x =
arg maxx∈Si

dT x, i.e., we can alternatively solve the optimization problem over
Si, which may be more amenable to combinatorial methods.

For the case when Pi has exponentially many constraints, Grostchel et al.
[11] also showed that PolytopeSolve is equivalent to the SEPARATION problem
(also known as a separation oracle): Given a vector πi ∈ Rmi , either answers
that πi ∈ Pi, or produces a hyperplane that separates πi and Pi.

4.3 Best Response

We observe that by construction, ui(π) = πT
i ∇iui(π−i). Then given π, the

best response for player i is the solution of the following optimization: maximize
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πT
i ∇iui(π−i) subject to πi ∈ Pi. This is a linear program with feasible region

Pi, which is an instance of the problem PolytopeSolve. The coefficients of the
linear objective are exactly the utility gradient ∇iui(π−i).

Proposition 1. Suppose we have a compact game representation with
polynomial-time procedures for both UtilGradient and PolytopeSolve. Then the
best response problem can be computed in polynomial time.

As a corollary, under the same assumptions, we get that checking if a given
profile π is a Nash equilibrium can be done in polynomial time.

4.4 Computing Coarse Correlated Equilibrium

Approximate CCE. Given a multilinear game, an approximate CCE can be
computed by simulating no-regret dynamics (a.k.a. online convex programming)
for each player. For example, one such no-regret dynamic is Generalized Infin-
itesimal Gradient Ascent (GIGA) [27], where in each iteration, for each player
i we move πi along the direction of the utility gradient ∇iui(π−i), and then
project the resulting point back to Pi. The projection step is a convex optimiza-
tion problem on Pi, and can be solved efficiently given an efficient separation
oracle, or equivalently a procedure for PolytopeSolve. Therefore, under the same
assumptions as Proposition 1, approximate CCE can be found efficiently.

Exact CCE. The above procedure does not guarantee exact CCE in polynomial-
time. Next we obtain such a procedure, using LP duality and carefully designed
separation oracle to get the following theorem.

Theorem 2. Consider a multilinear game, with polynomial time subroutines for
UtilGradient and PolytopeSolve. Then an exact Coarse Correlated Equilibrium
(CCE) can be computed in polynomial time.

Recall that a distribution over the set of pure-strategy profiles can be rep-
resented by a vector x, satisfying x ≥ 0,

∑
s∈S xs = 1. Given a multilin-

ear game, the expected utility for player i under x is ui(x) =
∑

s xsui(s) =∑
s

∑
j1,...,jn

U i
j1,...,jn

xs

∏
k sk,jk

. Given x, the expected utility for player i if
he deviates to strategy si is: usi

i (x) =
∑

s−i
xs−i

ui(si, s−i) =
∑

s−i

∑
j1,...,jn

U i
j1,...,jn

xs−i

∏
k sk,jk

, where xs−i
=

∑
si∈Si

x(si,s−i) is the marginal probabil-
ity of s−i in distribution x. We observe that usi

i (x) is linear in si. Specifically,
usi

i (x) =
∑

ji
si,ji

∑
s−i

∑
j−i

U i
j1,...,jn

xs−i

∏
k �=i sk,jk

. We can extend the defin-
ition of usi

i (x) beyond si ∈ Si to any vector in the convex hull Pi; specifically
for pi ∈ Pi, upi

i (x) is defined to be
∑

ji
pi,ji

∑
s−i

∑
j−i

U i
j1,...,jn

xs−i

∏
k �=i sk,jk

.
Recall from (1) that gi(x) = maxsi∈Si

usi
i (x), i.e. player i’s expected utility if he

deviates to a best response against x. Since usi
i (x) is linear in si, we can write

gi(x) = maxpi∈Pi
upi

i (x). Recall that a distribution x is a Coarse Correlated
Equilibrium (CCE) if it satisfies the incentive constraints: ui(x) ≥ gi(x),∀i.
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Consider the following optimization problem:

max
∑

i

zi (3)

x ≥ 0,
∑

s

xs = 1, (4)

ui(x) − gi(x) − zi ≥ 0,∀i (5)
zi ≤ 0,∀i (6)

The feasible region correspond to a relaxation of CCE, due to the introduction
of slack variables z. A feasible solution (x, z) with z = 0 is an optimal solution
of the above problem (since z ≤ 0); furthermore such a solution corresponds to
a CCE x by construction.

This optimization problem is convex, but is difficult to handle directly
because it has exponential number of variables xs for each s ∈ S. Take the
dual optimization problem:

min
y≥0

max
x∈Δ,z≤0

∑

i

zi +
∑

i

yi(ui(x) − gi(x) − zi) (7)

= min
y≥0

max
x∈Δ,z≤0

∑

i

(1 − yi)zi +
∑

i

min
pi∈Pi

yi(ui(x) − upi

i (x)) (8)

= min
0≤y≤1

max
x∈Δ

min
p1∈P1,...,pn∈Pn

∑

i

yi(ui(x) − upi

i (x)) (9)

= min
0≤y≤1

min
p1∈P1,...,pn∈Pn

max
x∈Δ

∑

i

yi(ui(x) − upi

i (x)) (10)

where Δ = {x ∈ R|S| : x ≥ 0,1T x = 1}. Going from (8) to (9), we used the fact
that if yi > 1, the maximizer can take zi towards −∞ and get arbitrarily high
objective value. Therefore the outer minimizer should keep yi ≤ 1, in which case
it is optimal for the maximizer to set z = 0 and the term (1−yi)zi disappears. In
the last line we used the Minimax Theorem to switch the min and max operators.
Since

∑
i yi(ui(x) − upi

i (x)) is linear in x, it attains its maximum at one of the
extreme points of Δ, i.e., one of the pure strategy profiles. Thus the dual problem
is equivalent to

min
y,p1...pn,t

t (11)

0 ≤ y ≤ 1; pi ∈ Pi ∀i (12)

t ≥
∑

i

yi(ui(s′) − ui(pi, s
′
−i)), ∀s′ ∈ S (13)

This is a nonlinear optimization problem due to the multiplication of yi and pi in
(13), but can be transformed to a linear optimization problem via the following
variable substitution: let wi = yipi. We now try to express the dual problem
in terms of yi and wi. Recall that Pi = {p ∈ Rmi |Dip ≤ fi} ⊂ Rmi

+ . Then wi

satisfies Diwi ≤ yifi. For positive yi, given wi we can recover pi = wi/yi. When
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yi = 0, we need to make sure that wi is also 0. This can be achieved using the
constraints wi ≥ 0 and wij ≤ Mijyi, where the constant Mij = maxpi∈Pi

pij

for all j ∈ [mi]. Note that this a valid bound on wij when yi > 0. Mij can be
computed in polynomial time by calling PolytopeSolve, and hence is polynomial-
sized. The dual problem is then equivalent to

min
y,w1...wn,t

t (14)

0 ≤ y ≤ 1; Diwi ≤ yifi ∀i (15)
wi ≥ 0, wij ≤ Mijyi ∀i,∀j ∈ [mi] (16)

t ≥
∑

i

yiui(s′) − ui(wi, s
′
−i), ∀s′ ∈ S (17)

where ui(wi, s
′
−i) is the linear extension of ui(si, s

′
−i); i.e. ui(wi, s

′
−i) =∑

ji
wi,ji

∑
j−i

U i
j1...jn

∏
k �=i s′

k,jk
. This is a linear program, with polynomial

number of variables and exponential number of constraints. Since we know the
primal objective is less or equal to 0, by LP duality, the optimal t in the dual
is less or equal to 0. The following lemma establishes the existence of CCE in a
way that does not use the existence of NE.

Lemma 3. The dual LP (and therefore the primal LP) has optimal objective 0.

This lemma says that for every candidate solution with t < 0, we can produce
a hyperplane that separates it from the feasible set of the dual LP. We can use
this lemma as a separation oracle in an algorithm similar to Papadimitriou &
Roughgarden’s [21] Ellipsoid Against Hope method to compute a CCE. However
it would encounter similar numerical precision issues as discussed in [14], essen-
tially due to the use of a convex combination of constraints which has a higher
bit complexity than the individual constraints.

On the other hand, if we use a pure separation oracle that given y,w1 . . . wn,
finds s′ such that

∑
i yiui(s′) − ui(wi, s

′
−i) ≥ 0, we can use the approach as

described in [14] to compute a CCE.

Lemma 4. Consider a multilinear game, with polynomial-time subroutines for
UtilGradient and PolytopeSolve. Then there is a polynomial-time algorithm for
the following pure separation oracle problem: given y,w1 . . . wn, find pure strat-
egy profile s′ ∈ S such that

∑
i yiui(s′) − ui(wi, s

′
−i) ≥ 0.

Using Lemmas 3 and 4, in [5] we extend the approach of approach of [14,21]
and complete the proof of Theorem2.

5 Complexity of Approximate NE: Membership in PPAD

In this section we analyze complexity of computing Nash equilibrium in multi-
linear games. Existence of a NE in multilinear game follows from [10] makes the
problem total. On the other hand, since multilinear games contain normal-form
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multi-player games as a subcase, the Nash equilibria may be irrational [20]. In
such a case the standard approach is to try approximation.

ε-approximate NE (ε-NE). Given a rational ε > 0 in binary, a mixed strategy
profile σ is an ε-approximate NE iff ∀i ∈ N,ui(σ) ≥ maxσ′

i∈Σi
ui(σ′

i,σ−i) − ε.
In case of multilinear games, due to Lemma 1, this is iff corresponding marginal
strategy profile π satisfy ui(π) ≥ maxπ′

i∈Pi
ui(π′

i,π−i) − ε.

It is well known that even in two player normal form games, computing
approximate NE is PPAD-complete [6,8,22]. Roughly speaking, PPAD captures
the class of total search problems that can be reduced to End-Of-Line [22],
which includes computing approximate fixed-points. Since normal form games
are contained in multilinear games, the next corollary follows:

Corollary 1. Given a rational ε > 0 in binary, computing ε-approximate NE
in multilinear games is PPAD-hard.

Due to exponential size of the strategy spaces, it seems that computing an
ε-NE in multilinear games could be a much harder problem given its generality.
However, as we will show, it is no harder than computing a NE in 2-player games.

We note that, there has been recent efforts on showing PPAD membership
for different classes of games [7]. However, the techniques are for games with
polynomial type property, i.e. polynomial time computation of expected utility
given mixed-strategy. Instead, we will use the characterization result (Proposi-
tion 2.2) of [9] to show that computing NE in multilinear games is in PPAD. See
[5,9] for relevant definitions, and the proposition statement.

Proposition 2.2 of [9] implies that to show membership of computing ε-NE in
PPAD, it is enough to capture them as approximate fixed-points of a polynomi-
ally continuous and polynomially computable function. Next we will construct
such a function for multi-linear games.

Consider the following function ϕ : Σ → Σ from [10] where ϕ = (ϕ1, ..., ϕn)
and ϕi : Σ → Σi such that, ϕi(σi,σ−i) = argmaxσi∈Σi

[ui(σi,σ−i) − ||σi −
σi||2]. It was used to show existence of NE in concave games which includes
multilinear games. However, notice that for multilinear games, description of
mixed strategies is of exponential size, hence the function is not polynomially-
computable. Its’ polynomial-continuity is unclear. Instead, once again we will
use marginal strategies. Moreover, we can compute the expected utilities using
the marginal strategies efficiently as long as there is polynomial-time procedure
to compute the utility gradient. Let P =

∏
i∈N Pi, we redefine ϕ : P → P where

ϕ = (ϕ1, ..., ϕn) and ϕi : P → Pi is

ϕi(πi,π−i) = argmax
πi∈πi

[ui(πi,π−i) − ||πi − πi||2]. (18)

Clearly, ϕ is a continuous function and therefore has a fixed-point. Next we
show that its approximate fixed-points give approximate NE of the corresponding
game. As the approximation goes to zero in the former we get exact NE in the
latter, in other words exact fixed-points of (18) captures exact NE.
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Lemma 5. Given a rational ε > 0, let ε′ = ε
|S|UmaxHn , where H =

maxi,pi∈Pi
||pi||1 and Umax = maxi,(j1,...,jn)∈∏k[mk] |U i

j1,...,jn
|. Then if π ∈ P

is an ε′-approximate fixed-point of (18), i.e., ||ϕ(π) − π||∞ < ε′ then it is a
2ε-approximate NE of the corresponding multilinear game.

Lemma 5 implies that, for computation of approximate NE, it is enough to
compute approximate fixed-point of function ϕ. Next we show that this function
is polynomially continuous and polynomially computable and therefore comput-
ing its approximate fixed-point is contained in PPAD using Proposition 2.2 of
[9], and therefore containment of approximate NE computation in PPAD fol-
lows. Next lemma shows polynomial-continuity and polynomial-computability
by establishing equivalence of ϕi and a projection operator and by establishing
connection to convex quadratic programming, respectively.

Lemma 6. The function ϕ is polynomially continuous and computable.

Due to the assumption that PolytopeSolve has polynomial-time sub-routine,
the size of maxpi∈Pi

pij , ∀i, ∀j ∈ [mi] is polynomial in the description of
the game. Furthermore, |S| is 2poly(n

∑

i mi). Therefore, if L is the size of the
game description, then in Lemma 5 bit-length of H is polynomially bounded,
and hence size(ε′) = O(log(1/ε), poly(size(L))). Therefore, next theorem follows
using Lemmas 5 and 6, together with Proposition 2.2 of [9], and Corollary 1.

Theorem 3. Given a multilinear game with polynomial-time subroutines for
PolytopeSolve and UtilGradient, and ε > 0 in binary, computing an ε-
approximate NE of the game is in PPAD. Furthermore, it is PPAD-complete.

Small Support Approximate NE. Using discussion of Sect. 4.2, given an ε-
approximate NE π ∈ P , each πi can be represented as distribution over mi + 1
pure strategies from Si. However, existence of smaller support approximate NE
is not clear. In [5], we study the same and obtain the following result.

Theorem 4. Given a multilinear game, and given an ε > 0, there exists an
ε-approximate NE with support size O(M2 log(n)+log(m)−log(ε)

ε2 ) for each player,
where m = maxi mi and M = (maxi,π∈P ||∇iui(π)||∞)maxi,πi∈Pi

||πi||1.
Note that M upper bounds the magnitude of the game’s utilities ui(s),∀i,

∀s ∈ S. Finally we provide discussion in [5].
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Abstract. “Net neutrality” often refers to the policy dictating that an
Internet service provider (ISP) cannot charge content providers (CPs)
for delivering their content to consumers. Many past quantitative mod-
els designed to determine whether net neutrality is a good idea have been
rather equivocal in their conclusions. Here we propose a very simple two-
sided market model, in which the types of the consumers and the CPs are
power-law distributed — a kind of distribution known to often arise pre-
cisely in connection with Internet-related phenomena. We derive mostly
analytical, closed-form results for several regimes: (a) Net neutrality, (b)
social optimum, (c) maximum revenue by the ISP, or (d) maximum ISP
revenue under quality differentiation. One unexpected conclusion is that
(a) and (b) will differ significantly, unless average CP productivity is
very high.

1 Introduction

The Internet is by far the world’s most crucial technological artifact. A mere
quarter century after its beginning, it has emerged to become, through connect-
ing over two billion people, the nexus of all human activity — intellectual, social,
economic — and to satisfy, to varying and rapidly evolving degrees, humanity’s
thirst for information and access, communication and interaction, education and
wisdom, entertainment and excitement, opportunity and publicity, let alone jus-
tice, freedom, democracy. The Internet is also a gestalt, complex system; a novel,
mysterious, and fascinating scientific object studied intensely by researchers of
all colors, including computer scientists and economists.

From the point of view of economics (that is to say, efficiency and scarcity)
one useful abstraction of the Internet is that of a two-sided market [1,19]. In such
a market, a platform (e.g., a game console, or an operating system, or an Internet
service provider (ISP)) brings together two populations of agents: players with
game developers, or users with application programmers, or, in the case of ISPs,
Internet users with Internet content providers (CPs, such as Google, NYT, or
Shtetl-optimized). Two-sided markets are interesting because they can exhibit
network effects and other complex externalities. An important question is, if the
c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 59–72, 2016.
DOI: 10.1007/978-3-662-54110-4 5
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two populations are passive price-takers, what is the platform policy (typically,
pricing for access from both sides1) that maximizes platform revenue, and what
is the socially optimum policy? Plus, if these two differ substantially, how should
the two-sided market be optimally regulated?

In the case of the Internet, this question has been known as the net neutral-
ity debate, see [8,21] and the related work section for the complex history and
diverse and precarious current status. The term “net neutrality” has been used
in many different senses. Most fundamentally, and closest to home, net neutral-
ity is the computer science argument that the end-to-end principle in networking
[18] implies that ISPs have no access to the content or origin of packets (as such
information adds nothing to the network’s ability to operate properly). In policy,
law, and economics, by “net neutrality” one typically understands two implied
consequences of the end-to-end principle, namely that ISPs cannot/should not
(a) treat flows differentially depending on the originating CP; or (b) charge CPs
for resource use, or for content delivery to consumers.

There is a substantial and growing literature of economic research on net
neutrality, and the two subtly different interpretations of the term “net neutral-
ity” (a) and (b) above give rise to divergent threads within it (see the Related
Work section). Typically the models include only one ISP (even though inter-
esting analyses of multiple ISPs exist [14]) who charges (or does not) the two
sides of the market for access, while the utility of the two populations is mod-
eled in a number of different natural ways. Unsurprisingly, there is no definitive
answer in the literature to the key question above (“which ISP policy is socially
optimal?”), even though interesting points can be made based on such models
(more in the related work section).

The Model. In this paper we introduce and analyze a new model of two-sided
market motivated by the net neutrality problem. Our goals in defining this model
have been these:

– Keep the model very simple, with very few and crisp parameters and assump-
tions, so that general conclusions can be drawn.

– At the same time, adopt assumptions (e.g. about distributions) compatible
with the acknowledged reality of the Internet. Our model is the first to assume
that the types of both users and CPs are power-law distributed.

Power law distributions [7,13] (see also [9] for their use in economic modeling)
are simple distributions outside the exponential family, with one parameter (the
exponent) typically ranging between 2 and 3 — thus, they also serve our goal of
parametric parsimony. Even though they had been observed in many places since
the early 20th century (in city populations, word frequencies, incomes, etc.2), it
was the Internet that brought them to the center of technical discourse — indeed
1 Possibly negative prices: recall that in the first two examples the practice includes

subsidies.
2 Power law distributions have been called “the signature of human activity,” even

though they also appear in life and the cosmos, and they are easy to confuse with
the lognormal distribution.
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it seems almost impossible to understand and model any aspect of the Internet
and the web without resorting to these types of distributions. It seems natural
to suppose that CP type (capturing the CP’s quality, or market share, or size) is
so distributed, since power-law distributed firm size is a known characteristic of
dynamic industries. It is also natural to accept that consumer types (measuring
motivation, interest in the Internet) are power-law distributed — for example,
incomes are distributed this way. Type distributions lie at the basis of our model.
The product of consumer type x times CP type y, times the speed of the net,
captures the matching probability, the probability that a consumer of type x will
“like” (download content from) a CP of type y. This, together with a simple
assumption on network speed (we take it inversely proportional to total traffic)
defines the expected utility of both CPs and consumers: For a CP we assume
it is proportional to the number of consumers who like it (modeling advertising
income, or else popularity) and for a consumer a concave function, such as the
square root, of the number of CPs that s/he likes. Finally, in the appendix we
also briefly discuss a simple model of quality-of-service differentiation where an
ISP charges CPs for using a privileged channel akin to the so-called “Paris metro
pricing” [16].

Naturally, there are many aspects of this complex problem that we do not
model: We do not model ISP costs, and, most importantly for the net neutral-
ity debate, ISP technology and investment. However, our work can inform this
crucial aspect of the problem, as our analytical results depend explicitly on the
total network capacity. Our model of CP cost is simplistic (we assume that it is,
in expectation, proportional to its type), but we have obtained similar results
under different assumptions. We assume that there is only one ISP (as does
most of the literature); however, our results can be used to solve simple models
with many ISPs. And we do not model one of the salient characteristics of the
Internet, namely its rapid growth; however, our use of power-law distributions
in CP size can be seen as taking into account the exquisitely dynamic nature of
the Internet market.

Our Results. We derive closed-form analytical results for almost all of the ques-
tions raised by our model: For the optimum ISP policy, for the optimum ISP
policy under net neutrality, as well as for the ISP policy that maximizes social
welfare, but also for comparisons between them; for a few points that are hard
to answer analytically, we have very clean computational results.

Our most surprising conclusion is that, in this model, net neutrality is not
socially optimal unless CP costs are very small. That is, there is in general a
socially optimum price the ISP should charge the CPs, and this price is zero only
if a parameter measuring CP costs (essentially, the average inverse productivity
in the CP industry) is below a threshold. Regulation is needed for efficiency,
requiring the ISP to charge CPs not necessarily zero, as in net neutrality, but the
socially optimum price, typically smaller than what the ISP would like to charge.

The question then, for the regime of large CP costs, becomes: among the
two suboptimal extremes (net neutrality or ISP revenue maximization), which
is the more efficient? It turns out that the answer varies (see the computational
results in Fig. 1): For CP costs just above the neutrality threshold, net neutrality
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is better. For larger CP costs, ISP revenue maximization is better. Interestingly,
in both cases the differences in social welfare between the three regimes does
not seem that great. Overall, our model yields concrete, quantitative, and crisp
results for the net neutrality problem, stemming from rather involved analysis,
of the kind we believe had not been available in the literature, for a kind of model
(consumers and CPs of power-law distributed types) that is arguably especially
fit for the problem in hand.

Our results are summarized in Table 1. The parameters shown in this table
will be mentioned in next section.

Table 1. Summary of results

CP costs (a) Optimal CP fee (bopt) Optimal

membership fee (copt)

Max-Rev a > λ
2

x
2−γ
0

γ−2
a 0

(c = 0) 0 ≤ a ≤ λ
2

x
2−γ
0

γ−2
λ

γ−2
x2−γ
0 − a 0

Max-Rev a ≤ 1
2
( γ−2

γ−1
φ′(Ȳ x0) + λ)X̄ λ

γ−2
x2−γ
0 − a φ( 1

β−2
y2−β
0 x0)

(c > 0) a > 1
2
( γ−2

γ−1
φ′(Ȳ x0) + λ)X̄ ( 2λ

γ−1
γ−2 φ′(

√
Ȳ 1

β−2 y∗2−βx0)+λ
− 1)a φ(

√
Ȳ 1

β−2
y∗2−βx0)

Socially a ≤ 1
2
(
∫ ∞

x0
φ′(xȲ )x1−γdx + λX̄) ≤ λ

γ−2
x2−γ
0 − a ≤ φ(

√
Ȳ 1

β−2
ŷ2−βx0)

Optimum a 1
2
(
∫ ∞

x0
φ′(xȲ )x1−γdx + λX̄) ( 2λ

1
X̄

∫ ∞
x0

φ′(
√

Ȳ 1
β−2 ŷ2−βx)x1−γdx+λ

− 1)a ≤ φ(
√

Ȳ 1
β−2

ŷ2−βx0)

Related Work

For aspects of policy, law, and history of the subject see [8,17,20,21]. [12] is an
eloquent advocacy of net neutrality backed by modest quantitative argument,
while [2] is an exploration of possible business models in the CP industry and
the ways they affect the net neutrality issue; the model involves only one CP. [5]
propose a sophisticated and realistic model of CP-consumer interaction, but the
complexity of their model prevents definite conclusions about net neutrality; an
important monotonicity principle is shown, stating that social welfare is always
coterminous with the total content transmitted through the network. In earlier
work [6], a simple model in a similar spirit to ours was proposed, albeit with
CP and consumer types uniformly distributed. Their results are dependent on
parameter value ranges, with CP costs playing an important role, as they do in
our results. In the model of [14] there are many regional monopolist ISPs, and
deviation from net neutrality leads in a tragedy in the commons situation (the
commons being the CP industry). The effect and nature of competition among
ISPs is taken on in [10], through a mostly qualitative analysis.

Net neutrality as differentiation in quality of service has also been addressed
in the economic literature. In [3,4] consumers are connected to two CPs through
a single ISP running a network with realistic (i.e., informed by queueing theory)
delays, and two levels of service (a fast lane sold through bidding in [4], a pri-
ority service in [3]), and the two CPs choose level of service according to their
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profitability. In contrast, [11] models CPs by their tolerance of network delays.
Finally, [15] model the network as a sophisticated extensive-form game, in which
CPs, ISPs, and consumers interact by setting prices and choosing services; they
conclude that net neutrality prevails in several environments, for example in the
presence of priority lanes.

2 The Model

In our basic model an ISP delivers the content of CPs to a population of con-
sumers:

– The consumers are modeled as a continuum of values for the consumer type
X, intuitively, a measure of the value this particular consumer receives from
browsing the Internet. Importantly we assume that X is power-law distributed,
that is, the density function is pγ(x) = x−γ for x ≥ x0, where x0 = ( 1

γ−1 )
1

γ−1

is the minimum type. We denote the expectation of X by X̄ = 1
γ−2 ( 1

γ−1 )
2−γ
γ−1 .

– Similarly, each CP has a type Y with density function pβ(y) = y−β for
all y ≥ y0 = ( 1

β−1 )
1

β−1 , a measure of the CPs quality, or size. Again,

Ȳ = 1
β−2 ( 1

β−1 )
2−β
β−1 .

– Bandwidth and speed: The ISP provides bandwidth B (B is taken to be one
for simplicity, even though our results can be rewritten as functions also of B,
for the study of issues of investment and technology innovation by the ISP).
The speed of the network is then a decreasing function of the total traffic T ,
denoted Sp(T ), specified next.

– Calculation of T . Crucially, we assume that the infinitesimal contribution to
traffic by consumers of type3 x and CPs of type y, or equivalently, the intensity
with which a consumer of type x will like and download the content of a CP
of type y, is proportional to the product of the three magnitudes x, y, and
Sp(T ) (times dx · dy, of course). Therefore, the total traffic is

T =
∫ ∞

xt

∫ ∞

yt

Sp(T )xypγ(x)pβ(y)dxdy

Here xt and yt are the key parameters sought by our analysis, namely the
minimum types of consumers and CPs respectively that participate in the
market (do not drop out), given the charges imposed by the ISP. The maximum
traffic T0 occurs when xt = x0 and yt = y0. We use the relative speed function
Sp(T ) = T0

T . Thus,

T0 =
∫ ∞

x0

∫ ∞

y0

xypγ(x)pβ(y)dxdy =
∫ ∞

x0

x1−γdx

∫ ∞

y0

y1−βdy = X̄Ȳ

Since T only depends on xt, yt,

T =

√∫ ∞

xt

∫ ∞

yt

T0xypγ(x)pβ(y)dxdy =

√

X̄Ȳ

∫ ∞

xt

x1−γdx

∫ ∞

yt

y1−βdy

3 More formally, of types between x and x + dx, etc.
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– Utility functions.
• The utility of a user of type x is assumed to be φ(Nx)−c, where Nx is the

expected number of content providers this user likes, c is the membership
fee imposed on users by the ISP (independent of the traffic), and φ(r) is
a concave function such as

√
r. Therefore, the utility function for a user

of type x is

φ(
∫ ∞

yt

T0

T
xy1−βdy) − c

• Finally, we assume that the utility function of a content provider of type
y is λNy − by − ay where
* λ is a needed “exchange rate” between the utility of consumers and

that of CPs;
* Ny is the expected number of consumers who like this content provider

— notice that we assume advertising income to be proportional to
the number of users;

* ay is the expected costs of a content provider of type y;
* by is the payment that the content provider needs to pay to the plat-

form. Notice here a simplifying modeling maneuver: While we would
like to make the CP’s payment a linear function of the traffic originat-
ing from it, which is roughly Ny, we make it instead a linear function
of its quality y, which is proportional to Ny.

Thus, the utility function of a content provider with quality y is as follows:

λ

∫ ∞

xt

T0

T
x1−γydx − by − ay

– Revenue of the ISP, from charges imposed on consumers and CPs:

R = c

∫ ∞

xt

x−γdx + b

∫ ∞

yt

y × y−βdy = c

∫ ∞

xt

x−γdx + b

∫ ∞

yt

y1−βdy,

– Thus, the parameters of our model are these: power-law exponents γ and β;
the consumer concave function φ; and the CP utility parameters a (expected
cost per unit of size) and λ. The decision variables are b and c (the prices
charged).

3 Revenue Maximization

We calculate the optimum prices for the ISP to charge the two sides of the
market. For technical reasons we start by finding the optimum b (CP fee) when
c = 0 (this is Theorem 1), and then proceed to the general case (Theorem 2).
The proofs are in the Appendix A.

Theorem 1. If c = 0, the optimal pricing strategy is

bopt =

⎧
⎨

⎩

a a > λ
2

x2−γ
0

γ−2

λ
γ−2x2−γ

0 − a 0 ≤ a ≤ λ
2

x2−γ
0

γ−2
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Theorem 2. If c > 0, a ≥ 0 and φ(·) is a positive increasing concave function,
the optimal pricing strategy is

– If a ≤ 1
2 (γ−2

γ−1φ′(Ȳ x0) + λ)X̄,
{

bopt = λ
γ−2x2−γ

0 − a

copt = φ( 1
β−2y2−β

0 x0)

– If a > 1
2 (γ−2

γ−1φ′(Ȳ x0) + λ)X̄,
⎧
⎨

⎩

bopt = ( 2λ
γ−1
γ−2φ′(

√

Ȳ 1
β−2y∗2−βx0)+λ

− 1)a

copt = φ(
√

Ȳ 1
β−2y∗2−βx0)

where y∗ is the solution of yt which satisfies the following equation:

a − 1
2
(
γ − 2
γ − 1

φ′(

√
T0

√∫ ∞
yt

y1−βdy
√∫ ∞

x0
x1−γdx

x0) + λ)

√
T0

√∫ ∞
x0

x1−γdx
√∫ ∞

yt
y1−βdy

= 0

4 Socially Optimum Pricing

While excluding consumers is obviously inefficient, rather surprisingly including
all CPs may not be socially optimal. The intuitive reason is that low quality CPs
clutter the Internet and incur large costs without adding enough value. Again
we must determine the optimal xt and yt, and the corresponding b and c. Let S
denote the social welfare. We have:

S =
∫ ∞

xt

v(x)x−γdx +
∫ ∞

yt

v(y)y−βdy − a

∫ ∞

yt

y1−βdy (1)

where

v(x) = φ(
∫ ∞

yt

T0

T
y1−βxdy) = φ(

√
T0

∫ ∞
yt

y1−βdy
√∫ ∞

xt
x1−γdx

x) (2)

and

v(y) = λ

∫ ∞

xt

T0

T
x1−γydx = λ

√
T0

∫ ∞
xt

x1−γdx
√∫ ∞

yt
y1−βdy

y (3)

Plugging these two equation above into Eq. 1, we get

S =

∫ ∞

xt

φ(

√
T0

∫∞
yt

y1−βdy√∫∞
xt

x1−γdx
x)x−γdx + λ

√
T0

√∫ ∞

xt

x1−γdx

√∫ ∞

yt

y1−βdy − a

∫ ∞

yt

y1−βdy

We can prove the following.
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Theorem 3. To maximize the social welfare, the optimal xt = x0, while the
optimal yt satisfies the following

yt =
{

y0 ifa ≤ 1
2 (

∫ ∞
x0

φ′(xȲ )x1−γdx + λX̄)
ŷ ifa > 1

2 (
∫ ∞

x0
φ′(xȲ )x1−γdx + λX̄)

where ŷ is the solution of the following equation of yt:

a − 1
2
(
∫ ∞

x0

φ′(x

√

Ȳ

∫ ∞

yt

y1−βdy)x1−γdx + λX̄)

√
Ȳ

√∫ ∞
yt

y1−βdy
) = 0

In terms of the pricing strategy,

– If a ≤ 1
2 (

∫ ∞
x0

φ′(xȲ )x1−γdx + λX̄),

{
b̂opt ≤ λ

γ−2x2−γ
0 − a

ĉopt ≤ φ( 1
β−2y2−β

0 x0)

– If a > 1
2 (

∫ ∞
x0

φ′(xȲ )x1−γdx + λX̄)
⎧
⎨

⎩

b̂opt = ( 2λ
1
X̄

∫∞
x0

φ′(
√

Ȳ 1
β−2 ŷ2−βx)x1−γdx+λ

− 1)a

ĉopt ≤ φ(
√

Ȳ 1
β−2 ŷ2−βx0)

Proof. Firstly, we consider the optimal xt to maximize social welfare of the
platform. As we know, S is a function of xt and yt, which is denoted by S(xt, yt).

∂S(xt, yt)

∂xt

=
1

2

x1−γ
t

∫∞
xt

x1−γdx

∫ ∞

xt

φ
′
(

√

T0
∫∞

yt
y1−βdy

√

∫∞
xt

x1−γdx
x)

√

T0
∫∞

yt
y1−βdy

√

∫∞
xt

x1−γdx
x
1−γ

dx

− φ(

√

T0
∫∞

yt
y1−βdy

∫∞
xt

x1−γdx
xt)x

−γ
t − 1

2

√

T0
∫∞

yt
y1−βdy

√

∫∞
xt

x1−γdx
x
1−γ
t

≤ 1

2

x−γ
t

∫∞
xt

x1−γdx

∫ ∞

xt

φ
′
(

√

T0
∫∞

yt
y1−βdy

√

∫∞
xt

x1−γdx
xt)

√

T0
∫∞

yt
y1−βdy

√

∫∞
xt

x1−γdx
xtx

1−γ
dx

− φ(

√

T0
∫∞

yt
y1−βdy

∫∞
xt

x1−γdx
xt)x

−γ
t − 1

2

√

T0
∫∞

yt
y1−βdy

√

∫∞
xt

x1−γdx
x
1−γ
t

≤ 1

2

x−γ
t

∫∞
xt

x1−γdx
φ(

√

T0
∫∞

yt
y1−βdy

∫∞
xt

x1−γdx
xt)

∫ ∞

xt

x
1−γ

dx − φ(

√

T0
∫∞

yt
y1−βdy

∫∞
xt

x1−γdx
xt)x

−γ
t

− 1

2

√

T0
∫∞

yt
y1−βdy

√

∫∞
xt

x1−γdx
x
1−γ
t = − 1

2
φ(

√

T0
∫∞

yt
y1−βdy

∫∞
xt

x1−γdx
xt)x

−γ
t − 1

2

√

T0
∫∞

yt
y1−βdy

√

∫∞
xt

x1−γdx
x
1−γ
t

≤ 0

(4)
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The first inequality in above proof is based on the fact that φ′ is a decreas-
ing function of xt. The second inequality is because ∀x ≥ 0, xφ′(x) ≤ φ(x).
Therefore, the optimal xt is x0.

Next, we consider yt.

∂S(xt, yt)

∂yt
= ay1−β

t − 1

2

∫ ∞

xt

φ′(

√
T0

∫∞
yt

y1−βdy√∫∞
xt

x1−γdx
x)

√
T0y1−β

t√∫∞
xt

x1−γdx
∫∞

yt
y1−βdy

x1−γdx

− 1

2
λ

√
T0

∫∞
xt

x1−γdx√∫
yt

y1−γdy
y1−β

t

= y1−β
t (a − 1

2
(

∫ ∞

xt

φ′(

√
T0

∫∞
yt

y1−βdy√∫∞
xt

x1−γdx
x)x1−γdx+λ

∫ ∞

xt

x1−γdx)

√
Ȳ√∫∞

yt
y1−βdy

)

= y1−β
t (a − 1

2
(

∫ ∞

x0

φ′(x

√
Ȳ

∫ ∞

yt

y1−βdy)x1−γdx + λX̄)

√
Ȳ√∫∞

yt
y1−βdy

)

(5)

Based on the same discussion in the proof of Theorem 2,

h(yt) =
1
2
(
∫ ∞

x0

φ′(x

√

Ȳ

∫ ∞

yt

y1−βdy)x1−γdx + λX̄)

√
Ȳ

√∫ ∞
yt

y1−βdy
)

is an increasing function of yt. Thus,

– If a ≤ h(y0), then ∂S(xt,yt)
∂yt

≤ 0. Thus the optimal yt is y0.
In this case, the optimal pricing strategy is

{
b̂opt ≤ λ

γ−2x2−γ
0 − a

ĉopt ≤ φ( 1
β−2y2−β

0 x0)

– If a > h(y0), then there exists a unique solution ŷ for h(yt) − a = 0. Then the
socially optimal pricing is

⎧
⎨

⎩

b̂opt = ( 2λ
1
X̄

∫∞
x0

φ′(
√

Ȳ 1
β−2 ŷ2−βx)x1−γdx+λ

− 1)a

ĉopt ≤ φ(
√

Ȳ 1
β−2 ŷ2−βx0)

4.1 Comparison of ŷ and y∗

We would like to know the relationship between the socially optimum cut off
point for CPs ŷ and its revenue maximizing counterpart y∗. This relationship
depends on γ, β, and φ. When φ belongs to a natural class of concave functions —
namely, fractional powers — such comparison is possible: Revenue maximization
demands that more CPs be cut off than does efficiency, assuming CP costs are
not very low.
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Let us define two important constants ζ = max{1
2 (γ−2

γ−1φ′(Ȳ x0) + λ)X̄, 1
2

(
∫ ∞

x0
φ′(xȲ )x1−γdx + λX̄)} and η = min{ 1

2 (γ−2
γ−1φ′(Ȳ x0) + λ)X̄, 1

2 (
∫ ∞

x0
φ′(xȲ )

x1−γdx + λX̄)}
Theorem 4. Suppose a > ζ and φ(x) = xθ where 0 < θ < 1. Then ŷ < y∗.

Proof. For y∗,

a =
1
2
(
γ − 2
γ − 1

φ′(

√
T0

√∫ ∞
y∗ y1−βdy

√∫ ∞
x0

x1−γdx
x0) + λ)

√
T0

√∫ ∞
x0

x1−γdx
√∫ ∞

y∗ y1−βdy

=
1
2
(
γ − 2
γ − 1

φ′(

√

Ȳ

∫ ∞

y∗
y1−βdyx0) + λ)

X̄
√

Ȳ
√∫ ∞

y∗ y1−βdy
= g(y∗)

(6)

For ŷ,

a =
1
2
(
∫ ∞

x0

φ′(x

√

Ȳ

∫ ∞

ŷ

y1−βdy)x1−γdx + λX̄)

√
Ȳ

√∫ ∞
ŷ

y1−βdy
) = h(ŷ) (7)

Suppose ŷ = y∗ = y′, then

h(y′) − g(y′)

=
1

2

√
Ȳ√∫∞

y′ y1−βdy
y′(
∫ ∞

x0

φ′(x

√
Ȳ

∫ ∞

y′
y1−βdy)x1−γdx − γ − 2

γ − 1
φ′(x0

√
Ȳ

∫ ∞

y′
y1−βdy)X̄)

(8)

Let
√

Ȳ
∫ ∞

y′ y1−βdy = Z, then
∫ ∞

x0

φ′(Zx)x1−γdx − γ − 2
γ − 1

φ′(Zx0)X̄

=
∫ ∞

x0

θZθ−1xθ−γdx − γ − 2
γ − 1

θ(Zx0)θ−1 1
γ − 2

x2−γ
0

= θZθ−1x1+θ−γ
0 (

1
γ − θ − 1

− 1
γ − 1

) > 0

(9)

Thus, if ŷ = y∗, h(ŷ)−g(y∗) > 0. Since g and h are both increasing functions,
then ŷ < y∗ if h(ŷ) = g(y∗) = a.

4.2 Welfare Comparison

To summarize our results so far:

– In both revenue and welfare maximization, no consumers are left outside the
market.
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– When CP costs are small (a ≤ η), then no CPs are cut off either.
– When η < a ≤ ζ, then no CPs are cut off for social optimality, however, some

CPs will be cut off for revenue optimality.4

– But otherwise, some CPs must be cut off for efficiency (that is, net neutrality is
socially suboptimal), while more will have to be cut off for revenue optimality.5

But the question now arises, how does the social welfare of net neutrality
compare with that of revenue optimality? Simulations show that the answer
depends on CP costs, that is to say, a. In the simulation γ = β = 2.5 and λ = 0.1
where φ(x) = x1/2. Figure 1 shows the social welfare curve for three different
values of a: 1.1ζ, 1.5ζ, 2ζ. When a = 1.1ζ (that is, close to the neutrality region)
net neutrality has better social welfare than revenue, while when a = 1.5ζ, 2ζ
the social welfare in revenue optimum case is quite a bit larger than the social
welfare in net neutrality. In fact, we can show that there is a single transition in
this regard (proof in the Appendix B):

Theorem 5. If φ(x) = xθ(0 < θ < 1), there exists a unique ā such that when
a < ā net neutrality has better welfare than revenue maximization, while the
opposite happens when a > ā.

Fig. 1. Social Welfare Curve

4 This is because 1
2
( γ−2

γ−1
φ′(Ȳ x0) + λ)X̄ < 1

2
(
∫∞

x0
φ′(xȲ )x1−γdx + λX̄) when φ is a

fractional power function.
5 Perhaps what is most striking in this figure (especially to somebody trained in

approximation algorithms and the price of anarchy) is that, in all three cases and
for these parameters and model, neither of the two extreme regimes (revenue maxi-
mization and net neutrality) is catastrophically suboptimal in social welfare.
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5 Conclusion and Further Work

We have presented a parsimonious model of the Internet as a two-sided market
with power-law distributed types from the two sides, with a simple cost structure
for CPs, and utilities for the two sides based on simple and natural assumptions.

– Net neutrality is socially optimum only when CP productivity is very high.
For lower levels of CP productivity (larger a), net neutrality is better than
ISP revenue maximization, but net neutrality is worse than ISP revenue max-
imization for even lower values. The preeminence of CP productivity as the
determining factor of the optimum regulatory regime is one interesting insight
from our model.

There are many possible extensions that seem very interesting, and some of
them appear to be within reach.

1. Here we have adopted the “no payment” interpretation of net neutrality.
What about the “non-differentiation” point of view? We have interesting
preliminary results of this sort (see the Appendix C). Assume that part of the
bandwidth is set aside for paying CPs. The point is that the payment counter-
incentive will increase speed in this “channel” (this is the Paris metro pricing
idea [16]). How large part of the total bandwidth should be so allocated,
and how should it be priced? In the appendix we answer these questions,
analytically and in more detail computationally, for the case a = 0 — that
is, zero costs for CPs. The general a case seems harder, but it would be
interesting to crack it.

2. How could we make our model more realistic, without sacrificing much of its
simplicity? We have tried other forms of CP costs and charges (for example,
constant instead of linear in y) without seeing qualitatively different results.
But how about changing the utility model? One alternative model would
weigh CP revenue by the type of the users it attracts. Another would use more
elaborate and realistic speed functions, for example from queueing theory.

3. We have not considered subsidies of CPs by the ISP (negative b; note that
subsidies are common in two-way markets). Would they ever improve social
welfare, or even ISP revenue?

4. A common argument against net neutrality is that it does not incentivize
ISPs to invest in network technology. What can our model tell us about this?
In our calculations we have used, for simplicity that the bandwidth B is one.
We suspect that re-introducing B into our formulas might reveal interesting
insights about incentives of the ISP to invest.

5. We have assumed a monopolist ISP; how would ISP competition affect the
market? We suspect that many ISPs competing for consumers under revenue
maximization would result in c = 0, and would charge CPs in near-identical
ways, because each of them will be “selling” to the CPs a different lot (in
expectation of the same size) of the same product: the consumers who (ran-
domly) chose this ISP. Hence we suspect that our results summarized in
Theorem 1 come close to obtaining yet another interesting comparison point,
telling us how the ISP’s monopoly is affecting the efficiency of the market.
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The Appendix is available through our ArXiv version.

References

1. Armstrong, M.: Competition in two-sided markets. Rand J. Econ. 37, 668–691
(2006)

2. Altman, E., Legout, A., Xu, Y.: Network non-neutrality debate: an economic analy-
sis (2011). arXiv:1012.5862v2

3. Cheng, H., Bandyipadhyay, S., Guo, H.: The debate on net neutrality: a policy
perspective. Inf. Syst. Res. 22, 60–82 (2011)

4. Choi, J., Kim, B.: Net neutrality and investment incentives. Rand J. Econ. 41,
446–471 (2010)

5. Economides, N., Hermalin, B.: The economics of network neutrality. Rand J. Econ.
43, 602–629 (2012)

6. Economides, N., Tag, J.: Network neutrality in the Internet: a two-sided market
analysis. Inf. Econ. policy 19, 215–248 (2007)

7. Faloutsos, M., Faloutsos, P., Faloutsos, C.: Proceedings of SOGMOD 1999, pp.
251–262 (1999)

8. Frieden, R.: What’s new in the network neutrality debate. Mich. St. Law Rev.
(2015)

9. Gabaix, X.: Power laws in economics and finance. Annu. Rev. Econ. 1, 255–293
(2009)

10. Kocsis, V., de Bijl, P.W.: Network neutrality and the nature of competition between
network operators. Int. Econ. Econ. Policy 4, 159–184 (2010)
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Abstract. In Amazon EC2, cloud resources are sold through a combi-
nation of an on-demand market, in which customers buy resources at a
fixed price, and a spot market, in which customers bid for an uncertain
supply of excess resources. Standard market environments suggest that
an optimal design uses just one type of market. We show the prevalence
of a dual market system can be explained by heterogeneous risk attitudes
of customers. In our stylized model, we consider unit demand risk-averse
bidders. We show the model admits a unique equilibrium, with higher
revenue and higher welfare than using only spot markets. Furthermore,
as risk aversion increases, the usage of the on-demand market increases.
We conclude that risk attitudes are an important factor in cloud resource
allocation and should be incorporated into models of cloud markets.

1 Introduction

Cloud computing allows clients to rent computing resources over the internet to
perform a variety of computing tasks, from hosting simple web servers to comput-
ing complex financial models. By offloading these tasks to the cloud, clients avoid
the necessity of procuring and maintaining expensive servers and infrastructure.
The current market leader in this industry is Amazon who launched its cloud
platform, Amazon Elastic Compute Unit (EC2), in 2006. Amazon uses its cloud
internally for many of its own computations. Additionally, Amazon contracts
with large clients who reserve instances of cloud resources for long usage peri-
ods. Due to natural variation in the nature of computing tasks from Amazon
and its large clients, EC2 has a varying amount of leftover computing resources.
Amazon sells these resources to small clients.

This leads to a natural question: how should a cloud provider price its
resources to these small clients? The pricing model adopted by Amazon has two
main components: an on-demand market and a spot market. In the on-demand
market, clients may buy an instance of cloud resources at a fixed reservation
price.1 After resources have been allocated internally, to large clients, and to

Part of this work was completed while D. Hoy was an intern at Microsoft Research.
1 This might more naturally be called a “reservation market” and we switch to this ter-

minology in the remainder of the paper; however we stick to the term “on-demand”
for the current discussion as this is the term used by Amazon.
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clients in the on-demand market, extra supply might still remain. This supply is
sold in the spot market. In a spot market, clients place bids for instances, and a
price is set so that the available supply equals the total demand at that price.

Viewed through the lens of microeconomic theory, the persistence of this dual
market is a curiosity at first glance. Indeed, in standard economic environments,
a risk-neutral, expected-utility-maximizing client who desires a cloud resource
should simply buy it in whichever market is expected to have the lower price –
typically the spot market. This suggests all sales should happen in the spot
market, leaving the on-demand market defunct.

That this is not reflective of reality stems from several factors. Most apparent
is that clients are rarely risk-neutral. For example, it is easy to imagine that a
company would have a soft budget set aside for computational costs. They would
then spend freely within the confines of this budget, and extend the budget
cautiously when necessary to meet their computing needs. This type of behavior
suggests a tendency towards risk aversion on the part of the clients. As the
budget is freely available, clients might prefer to “overspend” to guarantee the
required resources at the on-demand price.

We show in a stylized setting that the presence of heterogenous risk attitudes
can explain the prevalence of a combined on-demand and spot market. Specif-
ically, this dual market induces a unique equilibrium in which more risk-averse
customers (e.g., those with higher budgets) buy resources in the on-demand
market and the others bid in the spot market. We show that this equilibrium
outcome outperforms the outcomes achieved by running only one of the two
types of markets on its own in many key objectives.

1.1 Results and Techniques

In order to highlight the impact of risk aversion on the market, we focus our
analysis on a simple setting in which there is only one type of computational
resource being sold (e.g., a server with one core for one hour), and each buyer
demands only a single instance of this cloud resource at any given time2. For-
mally, we assume a continuum of buyers, where the type of a buyer consists of
a value for an instance and a utility curve that maps outcomes (i.e., allocation
and price paid) to payoffs. The utility curve describes a buyer’s attitude toward
risk: for example, a buyer with a soft budget (as described above) would likely
prefer to spend all of their budget all the time than to spend twice their budget
half the time, and this preference is captured by a non-linear utility curve. The
buyer types are described by a joint common prior. We assume the market is
large; i.e., no single buyer has significant impact on the market outcome.

The market works as follows. First, the seller sets a price for on-demand
instances. This price should be high enough to guarantee that supply exceeds
2 Of course, this model abstracts away from many reasonable sources of risk aversion

in the cloud, such as clients with diminishing marginal returns for multiple instances,
the cost of prematurely terminating a long-running task. Even ignoring these factors,
our model still generates heterogeneous preferences toward on-demand versus spot
pricing.
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demand, motivated by the fact that resources are always available for purchase
in on-demand markets in practice. Buyers then realize their types (i.e.,
value/budget pairs) and choose whether to buy in the on-demand market. After
these decisions have been made, the unsold supply receives an exogenous shock,
modeling variation in the demand of large clients. Any remaining supply is then
sold to the remaining buyers at a market-clearing price.3

We prove that this system has a unique (subgame-perfect) equilibrium for
each choice of the on-demand market price. We do this by analyzing the rela-
tionship between the spot price distribution and the distributions of clients’
types and corresponding supply and demand. It turns out that the distribution
over spot prices up to a certain value v depends only on the distributions of
clients’ types in the range [0, v], and hence one can explicitly solve for the price
distribution recursively.

This equilibrium satisfies a monotonicity property: agents that are more risk-
averse are more likely to purchase in the on-demand market, whereas agents that
are less risk-averse are more likely to use the spot market. Furthermore, as the
distribution shifts such that agents become more averse to risk (in the sense of
first-order stochastic dominance), we show more clients end up buying instances
in the on-demand market and the revenue correspondingly increases. This result
is perhaps intuitive, but it is not obvious: as clients become more averse to risk,
they shift towards the on-demand market and hence both decrease supply and
demand in the spot market. This in turn could cause the spot price to shift either
up or down, which would impact purchasing decisions of all clients. By further
arguing about the equilibrium of the market, we show the shift towards the on-
demand market in fact causes the spot price to increase thereby reinforcing the
shift towards the on-demand market. Therefore, the equilibrium is monotone
with such shifts in the value and budget distribution. This further illustrates the
connection between the on-demand market and risk attitudes.

We leverage our equilibrium characterization to compare the dual market
outcome to the outcome of a spot-only or on-demand-only market. We are inter-
ested in the welfare, efficiency, and revenue properties of these markets. The
revenue of a market outcome is simply the sum of the payments, and is equal
to the cloud provider’s utility. The welfare of an outcome is the total utility of
all market participants including the cloud provider. The efficiency is the total
value of the cloud clients, ignoring payments. In risk neutral environments, the
welfare and efficiency are equal, but with risk-averse clients the welfare can be
less than the efficiency.

It is easy to see that a spot-only market is more efficient than a dual market,
which in turn is more efficient than an on-demand-only market. This is because
the spot market precisely generates the efficient outcome, even with exogenous

3 Since our model abstracts away from inter-temporal effects, we do not explicitly
model the impact of fluctuating spot prices and changes to on-demand prices over
time. Investigating a repeated-game model of the market, and/or agents with time-
dependent preferences (e.g., minimizing the cost of a large job subject to a deadline),
is left as a direction for future work.
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supply uncertainty: in a spot market, allocation is monotone in value and thus
a lower-valued client is never served in place of the higher-valued one.

Surprisingly, these efficiency comparisons do not extend to welfare. As we
show, the welfare of the dual market is better than the welfare of the spot market
alone, regardless of the price set for the on-demand instances. In particular, this
is true even when the on-demand market price is set to maximize the revenue of
the cloud provider. This is not trivial: the on-demand market adds inefficiency,
since clients with high value but low aversion to risk may not wish to purchase
on-demand, whereas clients with lower value but higher risk-aversion might. This
leads to circumstances where lower-valued clients win but higher-valued clients
lose. However, since the clients that are winning in this scenario are actually more
risk-averse, the transfer of payments to the cloud provider increases welfare. We
show that the welfare increase due to additional transfers from risk-averse clients
offset any inefficiencies in the allocation. Moreover, since this welfare comparison
holds at every setting of the on-demand price, it applies in particular to the price
that maximizes revenue. We show this price must also generate more revenue
than a spot-only market, leading to increases in welfare and revenue.

In summary, a dual spot/on-demand market simultaneously improves both
the revenue and welfare of a spot-only market. We also show by example that
while an on-demand market is revenue-optimal for risk-neutral buyers, a dual
market can generate strictly higher revenue when buyers are risk-averse. Fur-
thermore, while a dual market may sometimes generate less revenue than an
on-demand-only market, a dual market is always more efficient. This suggests
that a cloud provider, especially one that holds a dominant position in the mar-
ketplace, might prefer a dual market system. This phenomenon is driven by
heterogeneous risk attitudes that arise naturally in the context of cloud compu-
tation, leading us to posit that risk aversion is an important element to consider
when one models the cloud marketplace.

1.2 Related Work

A number of papers explore cloud-computing market design. Zhang et al. [17]
consider designing a truthful auction where uncertainty lies in the arrival of
demand and value profiles of bidders, whether they have a large job with deadline
or general demand over time. An et al. [2] design a negotiation-based mechanism
for setting price contracts in the presence of demand uncertainty. Borgs et al.
[5] consider the pricing problem faced by a seller setting on-demand prices over
multiple time periods and uncertain supply, with agents who arrive and have
different deadlines for their tasks. The paradigm of a dual spot+reserve mecha-
nism has also received a lot of attention. Wang et al. [16] uses a Markov decision
process to model the designer’s choice of how to partition supply between the
reserve and spot markets. Abhishek et al. [1] models the cloud market as a queu-
ing model, in which a continuum of jobs arrive and have (private) waiting costs.
They find that a fixed cost model provides greater expected revenue than a spot
market. Additionally, recent works [8,13] have focused on the problem faced by
bidders in such a market: when to use the spot market and when to reserve.



On-Demand or Spot? Selling the Cloud to Risk-Averse Customers 77

Ben-Yehuda et al. [4] analyzes the expected spot prices in comparison to their
reservation prices, and find that it is very likely that Amazon is intentionally
manipulating the price or supply distribution so as to provide users with more
uncertainty in the spot market. In all of the models described above, agents are
risk-neutral and do not have budgets. As far as we are aware, our work is the
first to use risk aversion to explain the prevalence of a spot+reserve market.

Auctions for cloud computation resources share similarities to electricity mar-
kets, where the split between a spot market and a so-called “futures” market
is common. Indeed, the use of both markets has been advocated to account for
risk-averse buyers and sellers (see e.g., [3]). One difference is that, unlike the
on-demand market for cloud computation, futures markets for electricity are
typically resolved years in advance.

While most work in auction theory assumes risk-neutral agents, some work
has been done for auctions with risk-averse bidders. Optimal auctions have
been characterized for simple settings [9,11], but the solutions are generally
not expressible in closed form. It is therefore more common to study the simple
auctions used in practice, with the general finding that second-price or spot-
like auctions do poorly for revenue when compared with first-price auctions
[6,7,15]. Matthews [12] has looked at the preferences of bidders in the auctions,
and showed that first-price auctions not only can get more revenue than the
second-price auction, but also can be preferred by bidders due to reduction in
uncertainty around the payment. Our model of risk-aversion as the presence of
a soft budget is closely related to the capacitated utilities model of Fu et al.
[6], where the capacity in their model corresponds to value minus budget in our
model. They show that with capacitated agents, a simple first-price auction with
reserve has revenue that approximates the revenue of the optimal mechanism.

Our results are of a similar flavor to the eBay-style buy-it-now auction con-
sidered by Mathews and Katzman [10]. As in our model, they find that adding a
buy-it-now option increases revenue, and as agents become more risk-averse, the
optimal price increases. Their model differs from ours in that they consider an
explicitly randomized allocation rule, rather than clearing the market at a spot
price, in order to incentivize use of the buy-it-now (i.e., reservation) option.

2 Preliminaries

In our model, a single cloud provider (the seller) is selling compute resources to
a continuum of clients (the bidders).

Utility Structure. Each bidder i has value vi ∈ [0, 1] for a single compute instance.
As is standard in the economics literature, we model the risk attitude of bidder
i through a utility function ui : R≥0 → R≥0. If the bidder obtains an instance
and pays p, then her utility is ui(vi − p). We will assume that ui(0) = 0, that
ui is continuous and non-decreasing, and that ui is not identically 0. Note that
since ui(0) = 0, we can think of vi as the maximum price at which bidder i is
willing to purchase an instance. A bidder that does not obtain an instance will
pay nothing and have utility 0.
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We focus our attention on agents that are risk averse. That is, we will assume
that utility curves are weakly concave, as is standard when modeling risk aver-
sion. We allow ui to be linear, in which case bidder i is said to be risk-neutral.

Roughly speaking, an agent with a utility curve that is “more concave” will
be more risk averse, in the sense that they are more likely to prefer guaranteed
outcomes to uncertain lotteries. More formally, we say that utility function u
is more risk averse than u∗, and write u � u∗, if for every distribution L over
non-negative real values and every fixed value d ≥ 0, if Ex∼L[u(x)] ≥ u(d), then
Ex∼L[u∗(x)] ≥ u∗(d). In other words, if an agent with utility curve u prefers
a lottery L over a guaranteed payout of d, then an agent with utility curve u∗

would prefer the lottery as well. This defines a partial order over utility curves.
Note that, under this definition, all (weakly) concave utility curves are (weakly)
more risk-averse than a risk-neutral (i.e., linear) curve. Note also that for twice-
differentiable utility curves, u is more risk-averse than u∗ if and only if the
standard Arrow-Pratt measure of risk-averson is nowhere lower for curve u than
for curve u∗ [14].4

Demand Structure. Types are distributed according to a joint distribution F
on pairs (v, u). For ease of exposition, we will assume throughout that F is
supported on a finite collection of (v, u) pairs. Write V and U for the (finite)
sets of values and utility curves that support F , and for (v, u) ∈ V × U we will
write f(v, u) for the probability that an agent has type (v, u).

We will use F (v) to refer to the induced distribution over values; that is, F (v)
is the probability that an agent’s value is at most v. We will assume a large-
market condition, which is that the aggregate demand is distributed exactly
according to the type distribution F .

Supply Structure. The supply of instances, q, is unknown to the bidders and
seller until the instances are to be allocated. The supply is then drawn from a
distribution, Q. We will normalize the supply so that q represents the fraction
of the market that can be simultaneously served, hence q ∈ [0, 1].

2.1 Auction Formats

We will consider three auction formats in this paper: spot auctions, reservation
auctions (previously referred to as on-demand), and dual (or spot+reservation)
auctions.

Spot (Ms). One type of auction to run is a market-clearing auction, or a
spot auction. In this auction, buyers submit bids. A market-clearing price
ps is chosen such that the quantity of bids exceeding ps is equal to the sup-
ply. Under our unit-demand and large market assumptions, it is a dominant
strategy for a bidder to bid her value; henceforth we assume the bids in
the spot market equal the values. We observe that a market-clearing price

4 We define risk aversion with respect to agent preferences directly, rather than via
the Arrow-Pratt measure, to avoid requiring utility curves be twice differentiable.
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always exists in our market, even in the presence of non-linear utilities: with
available supply q, and distribution over values F , the market clearing price,
written ps(q), is precisely5 the value for which q = 1 − F (ps(q)).

Reservation (Mr). In a reservation-only (or “on-demand”) market, the auc-
tioneer sets a fixed price pr per instance, in advance of seeing the realization
of supply. Price pr need not be a market-clearing price. If there is not enough
supply to satisfy the demand for instances at this price, the winning bidders
are chosen uniformly at random from among those who wish to purchase.

Spot+Reservation (Ms+r). In a spot and reservation market, the auctioneer
first sets a fixed price pr and runs a reservation auction. The remaining
inventory of supply (if any) is then sold via a spot auction. The exact timeline
of events in the spot and reservation auction Ms+r is as follows:
1. Auctioneer announces reservation price pr.
2. Bidders realize types (vi, ui) ∼ F (v, u).
3. Each bidder decides whether to purchase an instance in the reservation

auction, indicated by ar ∈ {0, 1}. Let T =
∑

v,u ar(v, u) f(v, u) be the
total volume of reserved instances.

4. Auctioneer realizes supply q ∼ Q, and reserved instances are allocated as
in the reservation market described above.

5. If q > T , the auctioneer runs a market-clearing auction to clear the excess
capacity. Let ps(q) be the resulting market-clearing spot price.

Note that our specification does not ask bidders to decide whether or not to
participate in the spot market. The fact that bidders are unit demand, and
that the spot auction is truthful under our large market assumption, implies
that in equilibrium bidders will bid (truthfully) in the spot auction if (and
only if) they don’t buy an instance in the reservation auction.

For a given (implicit) strategy profile for mechanism Ms+r, we will write
S(ps) for the cumulative distribution function of the resulting spot prices.

Solution Concept: Subgame-Perfect Equilibrium. For each of these auctions, the
solution concept we apply is subgame-perfect equilibrium. A strategy profile for a
multi-stage game forms a subgame-perfect equilibrium (SPE) if, at every stage
t of the game and every possible history of actions by players in previous stages,
no agent can benefit by unilaterally deviating from her prescribed strategy from
stage t onward.

For the spot auction and reservation auction, there is only one stage of the
resulting game and hence equilibria are straightforward: each agent chooses to
purchase her utility-maximizing quantity of instances given the specified price.

For mechanism Ms+r, we can characterize the SPE as follows. In the second
(i.e., spot) stage of the mechanism, the equilibrium condition implies that agents
always purchase instances if and only if their value is above the realized spot
price. Thus, the only strategic choice to be made by agents is in the first (i.e.,
reservation) stage of the mechanism, where each agent must select whether to
5 This price may not be unique if q = 0 or q = 1. In these cases we define ps(q) to be

the supremum of prices satisfying the written condition, which will be ∞ for q = 0.
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purchase an instance in the reservation market. We will therefore define a strat-
egy profile s to be a mapping from a type (v, u) to an action {0, 1}, where s(v, u)
is interpreted as the number of instances to purchase in the reservation mar-
ket. Note that the distribution over market-clearing prices in the second stage
is completely determined by the actions of agents in the first stage, and hence
is determined by s. An equilibrium is then a strategy profile such that no agent
can benefit by unilaterally deviating from strategy s (i.e., by reserving more or
fewer instances), given the distribution of spot prices implied by s.

2.2 Objectives

We consider three objectives when evaluating mechanisms: revenue (REV ), wel-
fare (WEL) and efficiency (EFF ). The revenue of a mechanism M , REV (M),
is the sum of the payments made to the auctioneer. Note that for the
spot+reservation mechanism, REV (Ms+r) = prT + Eq∼Q[ps(q)(q − T )] where
we used the fact that T ≤ q with probability 1. The welfare of a mechanism
WEL(M) is the sum of utilities of all agents, including the auctioneer (whose
utility is precisely the revenue of the mechanism). The efficiency EFF (M) of a
mechanism measures the value created, without considering the welfare lost due
to the (non-linear) utility functions of agents. For the spot+reservation mecha-
nism: EFF (Ms+r) = E(vi,ui)∼F [vi · s(vi, ui) + vi · (1 − s(vi, ui)) · S(vi)]

If an agent reserves, her value generated is vi. If she does not reserve, her
value generated is vi · S(vi), which is her value times the probability that the
spot price is below her value. Note that if agents are risk-neutral (i.e., have the
identity function as their utility functions), then EFF (M) = WEL(M).

3 Equilibrium Behavior and Analysis

In this section, we analyze the choices of bidders and use this to characterize
equilibrium of the spot+reservation market. We begin by noting the relationship
between the spot price distribution and the distributions of supply, type, and
reservation demand in equilibrium. Recall that Q denotes the CDF of the supply
distribution.

Lemma 1. Fix strategy profile s, let S be the distribution of spot prices under
s, and let T (p) be the volume of reserved instances demanded from agents with
value at most p, under s. Then s forms an equilibrium if and only if, for all p,

S(p) = 1 − Q (1 − F (p) + T (p)) , and (1)

T (p) =
∑

v∈V
v≤p

∑

u∈U

f(v, u) · 1 [u(v − pr) ≥ Ep∼S [u(max{v − p, 0})]] . (2)

Proof. The probability that the spot price is at most p is exactly the probabil-
ity that the supply is greater than necessary to satisfy all of the demand for
resources from bidders with higher marginal values than p, plus all reservation
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demand for resources with lower marginal values than p. On the other hand,
the volume of reserved resources demanded from agents with value at most p,
at equilibrium, is precisely the probability that such an agent will prefer the
deterministic reservation outcome to the lottery over outcomes determined by
the distribution over spot market prices.

In light of Lemma 1, we will tend to equate equilibria with the resulting
distributions S and T , rather than with an explicit strategy profile s.

Lemma 2. Purchasing in the reservation stage is monotone in the risk-aversion
of ui: if a (vi, ui) bidder (weakly) prefers to reserve an instance, then a (vi, u∗

i )
bidder with u∗

i � ui (weakly) prefers reserving.

Proof. We begin by considering the special event in which the agent is not allo-
cated an instance even if they reserve, due to the supply being insufficient to
honor all reservations and the agent not being selected randomly as a winner. If
this event occurs, the bidder’s utility will necessarily be 0, and this is indepen-
dent of their utility curve and their chosen action (since, if q < T , no agent that
enters the spot market will obtain an instance). It therefore suffices to consider
the agent’s expected utility conditional on the event that the agent will be allo-
cated an instance with certainty if they choose to reserve. With this in mind,
the utilities of a unit demand agent from reserving or participating only in the
spot market, respectively, are

ur(vi, ui) = ui(vi − pr),
us(vi, ui) = Eps∼S [ui(vi − ps) · 1ps

≥ vi].

We now want to show that ur(vi, ui) ≥ us(vi, ui) implies ur(vi, u∗
i ) ≥ us(vi, u∗

i ).
Note that, fixing vi, the spot market generates a certain lottery L over values

(vi − ps), and the reservation market generates a certain value vi − pr. Thus,
from the definition of risk aversion, if an agent with utility curve ui prefers the
certain outcome to the lottery L, and u∗

i � ui, then an agent with utility curve
u∗
i prefers the certain outcome as well.

3.1 Equilibrium Existence and Uniqueness

We are now ready to establish uniqueness of equilibrium. One subtlety about
equilibrium uniqueness is the manner in which buyers break ties. If a positive
mass of agents is indifferent between the spot and reservation markets, there
may be multiple market outcomes consistent with those preferences. We will
therefore fix some arbitrary manner in which bidders break ties, which could be
randomized and heterogeneous across bidders. Our claim is that for any such
tie-breaking rule, the resulting equilibrium will be unique.

Lemma 3. There is a unique equilibrium of Ms+r. Moreover, this equilibrium is
computable in time proportional to the size of the support of type distribution f .
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Proof. As shown in Lemma 1, the challenge of characterizing equilibrium essen-
tially reduces to characterizing the fraction of bidders who reserve at a given
price, T (p). This is because T determines the distribution S over spot prices, and
S (together with an arbitrary tie-breaking rule) uniquely determines the strategy
profile s, since this can be inferred from the expected utility when choosing the
spot market. Thus, to show uniqueness and existence of equilibrium, it suffices
to show uniqueness of the functions S and T .

We will prove that, for all v ∈ V , T (v) and S(v) are uniquely determined
by the functions T and S restricted to values less than v. The result will then
follow by induction on the elements of V .

Consider first an agent with value v = min V . Recall that the spot price is
always at least v. Thus, if pr < v then the agent will always reserve, if pr > v
then the agent will always choose the spot market, and if pr = v the agent will
be indifferent and apply the fixed tie-breaking rule. In each case, the value of
T (v) is uniquely determined, and thus S(v) is as well.

Now choose v > min V , and suppose T and S are determined for all elements
of V ∩ [0, v). We claim the distribution of the random variable max{v − ps, 0},
where ps is distributed according to S, is then uniquely determined. This is
because the non-zero values of this random variable are distributed according to
S restricted to values in V ∩ [0, v). But, by Lemma 1, this random variable deter-
mines the value of T (v), which in turn determines the value of S(v). Thus T (v)
and S(v) are uniquely determined by S and T on V ∩[0, v), as required. Moreover,
they can be explicitly computed by evaluating the summation in Lemma1.

3.2 An Example: Soft Budgets

In this section we present a special case of risk-aversion, driven by soft budgets,
and give an interpretation of our equilibrium characterization for this case.

Suppose that each buyer i is characterized by their value vi for a compute
instance and a soft budget bi ∈ [0, vi]. We think of bi as a budget of funds
that has been allocated to acquiring a compute instance. If the buyer obtains an
instance but pays less than bi, the residual budget is lost: it is as if they had paid
bi. On the other hand, if the buyer pays more than bi, they suffer no additional
penalty; they simply incur the cost of their payment.

This scenario is captured by a piecewise linear utility curve, ui(z) =
min(z, vi − bi). Note that if a buyer with budget bi obtains an instance and
pays pi > bi their utility is ui(vi −pi) = vi −pi, whereas if they pay pi < bi their
utility is ui(vi −pi) = vi − bi. For a fixed value vi, an agent with a higher budget
is more risk-averse. To see this, note that if a buyer strictly prefers a lottery L
to a deterministic outcome d, then it must be that d < vi − bi (since otherwise d
must be utility-maximizing). In this case, decreasing the budget can only make
the lottery more valuable, while not affecting the utility from the deterministic
outcome. Thus, a decreased budget can only increase the propensity to select a
lottery over a deterministic outcome.

The monotonicity result in Lemma 2 thus results in a partitioning of agents
that prefer the spot market to the reservation market and vice versa by an
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Fig. 1. With soft-budgets, a monotone-decreasing indifference curve partitions agents
into those that reserve an instance and those who rely on the spot market.

indifference curve over budgets. See Fig. 1 for an illustration. Any agent with
(vi, bi) below the curve prefers the spot market; any agent above the curve (such
that vi ≥ bi), prefers the reservation market. Lemma 3 shows that this indif-
ference curve is unique, given the distribution over agent types, and precisely
specifies which agents choose to reserve and which enter the spot market.

4 Comparative Statics

In this section, we first consider the impact of changes to buyer risk attitudes.
We show that as agents become more risk averse, more agents use the reservation
market and revenue increases, for every setting of the reservation price. Second,
we compare the reservation+spot mechanism to the spot market and the reser-
vation market. We first show that the combination mechanism’s outcomes are
more efficient than running a reserve market on its own. We then show that it
generates both more revenue and more welfare than running only a spot market.
Formal proofs are deferred to the full version of the paper.

The results in this section hold under two assumptions on the reservation
price set by the seller. First, we will make the assumption that pr is set high
enough so that, in the resulting equilibrium, Prq∼Q[q < T ] = 0. That is, over
the uncertainty in supply, the mechanism can serve the reserved instances with
certainty. This assumption is motivated by the fact that these instances are
typically viewed as guaranteed by the mechanism.

Another natural and practical property is that the reservation price pr be
set high enough that it will be greater than the expected spot price. That is,
pr is large enough that it is more costly, in expectation, to reserve a guaranteed
instance than to bid for an instance in the spot market.

4.1 Effect of Increased Risk Aversion

We consider the impact of an increase in risk aversion. Consider type distribution
F and a type distribution F+ induced by a pointwise transformation g+(U, V ) →
(U, V ) applied to each point in F which weakly increases risk aversion and does
not affect values. Specifically, for any (u+, v+) = g+(u, v), v+ = v and u+ � u. In
the following lemma, we show that such a change can only increase the fraction
of agents who choose to reserve, and can only increase revenue.
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Lemma 4. For mechanism Ms+r, and for any reserve price pr, if risk aversion
of agents increases then the fraction of agents who purchase in the reservation
stage increases, as does the expected revenue of the mechanism.

The intuition underlying Lemma 4 is as follows. The first order effect from a
change in risk aversion is an increase in T , the fraction of users who choose to
reserve at a given price. This increase in reservations translates into higher spot
prices, since it reduces the quantity sold in the spot market. Higher spot prices
in turn cause more users to prefer to reserve, which can only increase spot prices
further. This can be shown by induction over agent values.

4.2 Comparing Mechanisms

We now compare welfare and revenue of Ms+r to Ms and Mr. Here we make
use of the two assumptions discussed in Sect. 2.1: first, the reservation phase is
not oversubscribed, i.e., the reservation price is set sufficiently high that there
will be sufficient supply to fulfill the demand for reserved instances; and second,
the reservation price is sufficiently high to be above the expected spot price.

We begin by comparing the revenue of the dual mechanism with the expected
revenue of a spot-only market. Note that, trivially, the best revenue of the com-
bined mechanism is at least the revenue of a spot market; this is because, in
the combined mechanism, the reserve price can be set sufficiently high that all
customers buy in the spot market. We show something stronger: for every choice
of reservation price, the revenue of the combined mechanism is at least that of
a spot market run in isolation.

Lemma 5. For any choice of the reservation price satisfying our assumptions,
the expected revenue of the reservation and spot mechanism is weakly greater
than the revenue of the spot-only market.

Proof (sketch). As in Lemma 4, as risk aversion increases, revenue increases for
a fixed reservation price. Fix a reservation price and consider starting with a
distribution of risk-neutral agents. These agents will all bid in the spot market
and thus the outcome (and in particular, the revenue) will be identical to the
spot-only mechanism. By deforming the utility curves of the agents in a manner
that only increases risk aversion, until they match the correct distribution, and
applying Lemma 4, we can conclude that the revenue of the dual market only
increases while the revenue of the spot-only mechanism, which is unaffected by
the utility curves, remains the same.

Example 1. This example illustrates the revenue of the dual mechanism can be
strictly greater than both the spot and the reservation mechanisms. We consider
an example in which agent utility curves are specified by soft budgets, as in
Sect. 3.2. Recall that a budget of 0 corresponds to risk-neutrality. Take ε > 0 to
be sufficiently small, and consider the following distribution over buyer types:
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– with probability 0.5 − ε, (v, b) = (5, 0)
– with probability 0.5, (v, b) = (10, 10 − ε)
– with probability ε, (v, b) = (20, 0)

The supply is distributed such that q = 1− ε with probability 0.8, and otherwise
q = 0.5 + ε/2. In the spot-only auction, the spot price is 5 with supply q = 1 − ε
and 10 with supply q = 0.5 + ε/2, giving revenue of 5 − 3ε. In the reservation
market, the optimal reserve price is 10, which generates a total revenue of 5+9ε.

Consider the dual mechanism with reservation price 10 − ε. At equilibrium,
the buyers of type (10, 10 − ε) strictly prefer to reserve (obtaining utility ε with
probability 1, rather than utility ε with probability 0.8), whereas the buyers of
type (20, 0) strictly prefer to participate in the spot market (obtaining utility
(20 − 5) with probability 0.8, rather than utility 10 + ε with probability 1). The
revenue is then 7− 5

2ε, greater than spot-only revenue 5−3ε, and reservation-only
revenue 5 + 9ε for sufficiently small ε.

Lemma 6. For any choice of the reserve price satisfying the assumptions above,
the expected efficiency of the reservation+spot mechanism is weakly greater than
the efficiency of the reservation market with the same reservation price.

Proof. Recall that the efficiency of a mechanism is the expected value generated
by the agents, ignoring the welfare lost due to the nonlinear utility functions.
For any realized supply q then, weakly more people are served in Ms+r, hence
efficiency is greater.

Theorem 1. In any equilibrium of the the spot and reservation mechanism
where the reservation price is set above the expected spot price, the expected wel-
fare of the reservation and spot mechanism is weakly greater than the expected
welfare of the spot-only mechanism.

Proof (sketch). Note that, relative to a spot market, introducing a reservation
price adds inefficiency. This is because if a bidder is willing to reserve to get a
guaranteed instance, any time they would not have one in the spot market, there
is a higher valued bidder than them who could be allocated.

However, welfare is increased when a bidder chooses to reserve. Consider an
agent with value vi who is willing to reserve at price pr. Reserving increases
his utility and the auctioneer is receiving more revenue, because the reservation
price is greater than the expected spot price (by assumption).

The full proof consists of three parts. First, we define a benchmark Bs+r that
is just like Ms+r except agents who reserve pay the spot price instead of the
reservation price. We then, we show that the welfare of Ms+r is greater than the
welfare of Bs+r, which will follows largely because the expected reservation price
is greater than the expected spot price. Finally, we show that spot prices increase
when agents choose to reserve, which leads to the welfare of Bs+r being greater
than the welfare of Ms, and hence the welfare of Ms+r is greater than Ms.
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Abstract. We study a market model where a data analyst uses mon-
etary incentives to procure private data from strategic data subjects/
individuals. To characterize individuals’ privacy concerns, we consider
a local model of differential privacy, where the individuals do not trust
the analyst so privacy costs are incurred when the data is reported to
the data analyst. We investigate a basic model where the private data
are bits that represent the individuals’ knowledge about an underlying
state, and the analyst pays each individual according to all the reported
data. The data analyst’s goal is to design a payment mechanism such
that at an equilibrium, she can learn the state with an accuracy goal
met and the corresponding total expected payment minimized. What
makes the mechanism design more challenging is that not only the data
but also the privacy costs are unknown to the data analyst, where the
costs reflect individuals’ valuations of privacy and are modeled by “cost
coefficients.” To cope with the uncertainty in the cost coefficients and
drive down the data analyst’s cost, we utilize possible negative payments
(which penalize individuals with “unacceptably” high valuations of pri-
vacy) and explore interim individual rationality. We design a family of
payment mechanisms, each of which has a Bayesian Nash equilibrium
where the individuals exhibit a threshold behavior: the individuals with
cost coefficients above a threshold choose not to participate, and the indi-
viduals with cost coefficients below the threshold participate and report
data with quality guarantee. By choosing appropriate parameters, we
obtain a sequence of mechanisms, as the number of individuals grows
large. Each mechanism in this sequence fulfills the accuracy goal at a
Bayesian Nash equilibrium. The total expected payment at the equilib-
rium goes to zero; i.e., this sequence of mechanisms is asymptotically
optimal.

1 Introduction

Exploiting human-related data such as medical records and financial data has
created great value to the society. However, the ever-improving capability of data
analysis in the advancing big data technology makes it possible to extract per-
sonal information undesirably, giving rise to technical barriers for data collection.
c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 87–101, 2016.
DOI: 10.1007/978-3-662-54110-4 7
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In short, big data analytics is a double edged sword. This in turn necessitates
incentivizing data subjects/individuals for providing quality data while preserv-
ing privacy.

In this paper, we consider a market model where a data analyst uses mone-
tary incentives to procure private data from strategic data subjects/individuals.
Specifically, the data analyst elicits data from a population of N individuals.
Each individual i’s private data is a binary signal Si that reflects her knowledge
about an underlying state, which is represented by a binary random variable W .
Conditional on the state W , the signals are independently generated such that
the probability for Si to be the same as W is θ, where 0.5 < θ < 1. The data
analyst is interested in learning W . This structure is illustrated in Fig. 1.

S1 S2

X2X1

W

Individual i

Signals

Reported Data

State

Si

Xi

C1 CiC2 Types

Fig. 1. System model. The data analyst is interested in the state W , which is a binary
random variable. Each individual i has a private binary signal Si and a type Ci that
characterizes her valuation of privacy. S1, S2, . . . , SN are conditionally i.i.d. given W .
Individual i reports randomized data Xi, which is generated based on Si and Ci.

To provide monetary incentives, the data analyst announces a mechanism,
which is a function that determines the amounts of payments to individuals
according to their reported data. Since an individual’s payment may depend on
others’ reports, this payment mechanism induces a game among the individuals.
Due to privacy concerns, an individual experiences a cost when she releases data
to the analyst. Her payoff is the difference between the payment and the privacy
cost. The goal of the data analyst in this setting is to design a mechanism to
achieve a desired learning accuracy at an equilibrium in a cost-effective manner.

Privacy Cost Model. To quantify the privacy costs, we consider a local model
of differential privacy (an introduction of which can be found in [10]). In this
local model, the individuals do not trust the data analyst with their data, so
they have to evaluate their privacy costs carefully when reporting data to the
analyst. To control the privacy cost, we assume in the paper that an individual
adds random noise to her data and reports the resulting perturbed version.
Intuitively, the more “noisy” the reported data is, the more privacy is retained,
and thus the less privacy cost is incurred. An individual will weigh the privacy
cost against the payment to choose the best way of perturbing her data. In
contrast, in a centralized model of data privacy with a trustworthy data analyst
(e.g., [15]), the action of providing data to the analyst itself, whether truthful
or not, does not cause privacy loss. There privacy costs are incurred when the
analyst releases the outcome of the mechanism, so the individuals cannot control
their privacy costs except choosing to participate or not.
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We remark that the different privacy cost models make the structures of the
mechanism design problem fundamentally different. In a centralized model, the
design goal is to have a mechanism that elicits truthful data reporting and its
outcome satisfies the promised privacy guarantee. However, in the local model
considered in this paper, truthfulness is no longer a focal design goal since it
incurs high privacy costs to individuals that need to be compensated by pay-
ments. Instead, the data analyst seeks for mechanisms that cost-effectively elicit
data with small enough perturbation, and consequently the analyst needs to
manage equilibria consisting of noisy data reporting. Another major difference
is that it is unnecessary to make the outcome of the mechanism guarantee pri-
vacy in the local model since the control of privacy remains in the hand of the
individuals.

Unknown Privacy Valuations and the Impact of Negative Payments.
We consider the natural setting where different individuals may have different
valuations of privacy and their valuations are unknown to the data analyst. In
this model, the analyst is not able to tune the payments to the privacy costs,
which may result in overpayments when some individuals’ costs are lower than
expected. This uncertainty can also introduce unwanted noise in the reported
data. To see this, consider a mechanism that always pays a nonnegative amount
of payment to a participant. For an individual whose valuation of privacy is very
high, participating and reporting only noise is a better strategy than opting
out since she may still receive some nonnegative amount of payment without
incurring any privacy cost. Then the payment does not buy the analyst any
useful information from this individual, and moreover, the analyst has to work
with these unusable reports during data analysis.

With these observations, we consider payment mechanisms that are interim
individually rational; i.e., the expected payoff of each individual in an equilibrium
is nonnegative, although the realizations of the payments can be negative. In
practice, this can model the scenario where there are repeated data collection
(e.g., to learn the ratings of different movies), and in some rounds the payments
received by the individual may be negative, but in the long run, the average
payoff will be nonnegative. Negative payments can be utilized to “filter out”
individuals with high privacy costs; i.e., we design the mechanism such that
their expected payoff is negative if they report only noise. This saves the data
analyst’s payments on poor quality data and simplifies the data analysis. We
will see that we can actually drive the total cost to zero for the data analyst as
the population size becomes large.

We remark that one possible approach to implement negative payments is
to let the data analyst set up an online payment system using virtual currency
or credits. Instead of paying real money to an individual every time she reports
a data, virtual currency or credits can be added to or reduced from the user’s
account. An individual can be paid weekly or monthly with real dollars. Since
the expected payment is nonnegative, the real-dollar payment over a long time
period is nonnegative with a high probability. We remark that negative payments
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may not be feasible in many scenarios. The focus of this paper is to reveal the
fundamental benefit of negative payments to the data analyst when feasible.

Main Results. With the above formulation, we are interested in the following
intriguing questions: (1) How will the individuals behave to reconcile the con-
flict between privacy and rewards? (2) How should the data analyst design the
mechanism such that she can achieve her learning goal cost-effectively?

Let X1,X2, . . . , XN denote the reported bits of the individuals. We model the
privacy cost of an individual as a function of her privacy loss, which is measured
by the level of (local) differential privacy [8,9] of her data reporting strategy. This
cost function of individual i is characterized by her type Ci: when individual i
reports data with a (local) differential privacy level of ε after observing her type
Ci = ci, her privacy loss is ε and the corresponding privacy cost is ciε. The
type of an individual is also called her cost coefficient due to this linear form.
We assume that the types are i.i.d. and an individual’s type is independent
from her private data, which is applicable to the scenario where an individual’s
valuation of privacy is intrinsic and thus is not affected by the specific private
data she has. The reported data and cost coefficients are also illustrated in Fig. 1.
We remark that both the settings where an individual’s valuation of privacy is
independent (e.g., [14]) and correlated (e.g., [15]) with her private data have been
studied in the literature. We further assume that it is possible for individuals to
have valuations arbitrarily close to zero. In this paper, the prior distribution of
the state, signals and types is public information. However, neither the private
signals nor the types are known to the data analyst.

Our main result is centered around constructing a family of payment mecha-
nisms indexed by parameters, which provide answers to the proposed questions
from the following perspectives.

– Behavior of Individuals with Privacy Concerns. We show that the
individuals exhibit a threshold behavior in a Bayesian Nash equilibrium of the
proposed mechanism: the individuals with cost coefficients above a threshold
cth opt out, and the individuals with cost coefficients below cth participate
and report data with a privacy level no smaller than ε, where cth and ε are
parameters of the mechanism. Since a larger privacy level means that the data
is less perturbed, the data analyst can incentivize the participants to limit the
perturbation to a desired extent by choosing an appropriate ε. It can be seen
from this result that this mechanism resolves the otherwise nuisance that
individuals with high privacy costs may participate and report only noise:
they are “filtered out”, and the “remaining” participants all report data with
quality guarantee.

– Tradeoff Between Learning Accuracy and Cost. We show that as the
population size grows to infinity, the data analyst can learn the underly-
ing state with arbitrarily small overall probability of error, with the total
expected payment at the Bayesian Nash equilibrium going to zero. That is
to say, if the data analyst can recruit a large number of individuals, she can
choose appropriate parameters to fulfill her learning goal and in the mean-
while drive her cost to zero at a Bayesian Nash equilibrium. Since the total
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equilibrium expected payment of any mechanism is nonnegative due to indi-
vidual rationality, this implies that the designed mechanism with properly
chosen parameters asymptotically minimizes the cost for achieving any accu-
racy goal.

Related Work. Market approaches for collecting data from privacy-aware indi-
viduals have led to a fruitful line of work [3,5,13–16,20,24,26,29,32,35]. These
papers except [5,29,32] adopt the centralized model for privacy. The seminal
work by Ghosh and Roth [16] and a line of subsequent work [13,14,20,24,26]
considered the setting where the private data is verifiable so the individuals
cannot misreport data, but they can strategically report their privacy costs.
A recent work [5] considered a model where a data analyst procures possi-
bly noisy estimates (data) from data providers. This can be thought of as a
local privacy model, but still the data is verifiable. The setting of the work
[3,15,29,32,35] is more similar to ours, where the individual have the option of
misreporting data. The work [3,15,35] considered the centralized privacy model,
where revealing data to the data analyst does not incur privacy costs. Then
strategically reporting data can alter the individuals’ payments but does affect
their privacy costs. The work [29,32] considered the local privacy model but
assumed the privacy cost functions are known to the data analyst. Our work
studies this problem in a local privacy model, where neither the data nor the
privacy cost functions are known. The mechanism thus needs to deal with the
uncertainty in both sources and work with noisy reports.

The broader field of the interplay between differential privacy and mecha-
nism design, first studied by McSherry and Talwar [22], is surveyed in [25]. The
behavior of individuals with privacy concerns has been studied in [4], which
investigates the types of games in which strategic individuals truthfully follow
randomized response. The market approach for collecting private data also shares
some structural similarity with the problem of information elicitation (e.g., [23]),
especially the effort elicitation in the context of crowdsourcing (e.g., [2,6,21,34]),
where effort, instead of privacy concerns, affects the quality of the data and the
cost of the individuals.

The local model of differential privacy, which generalizes the randomized
response [33], has been studied in the literature [1,4,7–10,17–19,27,28,30]. The
hypothesis testing formulation in our paper is similar to a setting in [18], where
the authors find an optimal locally differentially private privatization mecha-
nism that maximizes the statistical discrimination of the hypotheses. In prac-
tice, Google’s Chrome web browser has implemented the RAPPOR mechanism
[11,12] to collect users’ data using a locally differentially private protocol.

2 Model

We study the setting in which the data analyst is interested in learning an
underlying state W , represented by a binary random variable. Consider a set
[N ] = {1, 2, . . . , N} of individuals. Each individual i possesses a binary signal
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Si, which is her private data, and reports data Xi, which takes values in X =
{0, 1,⊥}, with ⊥ meaning “to opt out.” The data analyst announces a payment
mechanism R : X N → R

N , which takes the reported data X = (X1, . . . , XN )
as input and produces R(X), where Ri(X) is the payment to individual i. The
model is illustrated in Fig. 1. The payment mechanism induces a game among
the individuals. The elements of the game are as follows.

Players. The players in this game are the individuals, who are self-interested,
rational and risk-neutral. Following conventional game theory notation, we let
“−i” denote all the individuals other than some given individual i.

Prior Distributions. The state W follows a probability distribution given by
the PMF PW . We assume that PW (1) > 0 and PW (0) > 0. The individuals’
signals S = (S1, S2, . . . , SN ) reflect their knowledge about the state W . Condi-
tional on the state W , the signals S1, S2, . . . , SN are independently generated
according to P(Si = w | W = w) = θ for w ∈ {0, 1}, where the parameter θ
with 0.5 < θ < 1 is called the quality of signals. We refer to these conditional
distributions as the signal structure of the model.

Types and Strategies. An individual i’s type Ci, also called her cost coeffi-
cient, characterizes her valuation of privacy. We will elaborate on the assump-
tions on the types when we introduce the payoff functions below. Roughly, an
individual with larger Ci experiences more privacy cost for the same privacy loss.
A data reporting strategy for individual i is a plan on what to report according to
her signal Si and her type Ci. Thus it is a mapping σi : {0, 1}×(0,+∞) → D(X ),
where D(X ) is the set of probability distributions on X = {0, 1,⊥}, prescribing
a distribution to the reported data Xi for each possible value pair of Si and
Ci. Therefore, the strategy corresponds to the set of conditional distributions
of Xi given Si and Ci. Since we will discuss different strategies of individual i,
we denote these conditional probabilities by Pσi

(Xi = xi | Si = si, Ci = ci) for
xi ∈ {0, 1,⊥}, si ∈ {0, 1}, and ci ∈ (0,+∞). Let σ = (σ1, σ2, . . . , σN ), which is
called a strategy profile. A strategy profile is said to be homogeneous if all the
strategies in the profile are the same.

Payoff Functions. The payoff of each individual is the difference between the
payment she receives and her privacy cost. An individual experiences a cost due
to the privacy loss during data reporting. Recall that we model the privacy cost
of an individual as consisting of two components: privacy loss and a privacy cost
function, where the privacy loss depends on her data reporting strategy and the
privacy cost function represents her valuation of privacy. For an individual i, con-
ditional on her type Ci = ci, we measure individual i’s privacy loss for reporting
data with strategy σi by the privacy level defined as follows:

ζ(ci, σi) = max
{

ln
Pσi

(Xi ∈ E |Si = si, Ci = ci)
Pσi

(Xi ∈ E |Si = 1 − si, Ci = ci)
: E ⊆{0, 1,⊥}, si ∈{0, 1}

}

,

where we follow the convention that 0/0 = 1. This measure of privacy loss is in
the same vein as the local model of differential privacy [10,19], which views each
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individual’s data as a database of size 1 and quantifies the privacy guarantee of
her local randomizer by the differential privacy level. The difference here is that
the strategy σi has another input Ci, since an individual can choose the way
of perturbing her data according to her cost coefficient. Our measure of privacy
loss is the differential privacy level of the strategy σi when Ci is given.

Then we model individual i’s cost incurred by this privacy loss as a linear
function with Ci as the coefficient, i.e., the cost can be written as g(Ci, σi) =
Ci · ζ(Ci, σi). We call g the privacy cost function.

We assume that the coefficients C1, C2, . . . , CN are i.i.d. positive random
variables with CDF FC , and they are independent of W and S. The randomness
of these coefficients captures the data analyst’s uncertainty of individuals’ val-
uations of privacy. The independence assumption is applicable to the scenario
where individuals’ valuations of privacy are intrinsic and thus are not affected
by the specific private data they have. For ease of exposition, we further assume
that FC is a continuous function and FC(c) > 0 for any c > 0, which means that
it is possible for individuals to have an arbitrarily low valuation of privacy. Sim-
ilar analysis can be carried out for other models for the types (but the resulting
accuracy–payment relation may be different).

Mechanism Design. The data analyst cannot force an individual to report
data with a specific strategy. However, the data analyst can design the payment
mechanism to impact individuals’ strategies to drive the individuals to act in a
desired way since the individuals are rational, i.e., they will choose the strategies
that benefit them most. We consider the Bayesian Nash equilibria in a payment
mechanism, viewing Ci as individual i’s type.

Definition 1. A strategy profile σ is a Bayesian Nash equilibrium of a payment
mechanism R if for any individual i, any ci > 0 and any strategy σ′

i,

Eσ[Ri(X) − g(Ci, σi) | Ci = ci] ≥ E(σ′
i,σ−i)[Ri(X) − g(Ci, σ

′
i) | Ci = ci],

where the subscript σ and (σ′
i, σ−i) indicate that the distribution of X is deter-

mined by the strategy profile σ and (σ′
i, σ−i), respectively.

The data analyst is interested in learning the state W from the reported data
X, so she performs hypothesis testing between the two hypotheses H0 : W = 0
and H1 : W = 1. The learning accuracy is measured by the overall probability of
error, denoted by pe, which is PW (0) · (Type I error) + PW (1) · (Type II error).
An accuracy goal can be written as pe ≤ pmax

e for some pmax
e .

Then the data analyst aims to design a payment mechanism such that her
accuracy goal can be fulfilled at a Bayesian Nash equilibrium and the correspond-
ing total expected payment is minimized. It is easy to see that the equilibrium
total expected payment is nonnegative in any mechanism due to the nonneg-
ativity of privacy cost functions and individual rationality. In this mechanism
design problem, the joint distribution P of the state W , the signal S and the
cost coefficients, which can be represented by (PW , θ, FC), is common knowl-
edge. The data analyst announces the form of the payment mechanism and
then the individuals report data simultaneously. The reported data X is public.
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Each individual i’s signal and type, Si and Ci, are not observable to other indi-
viduals or the data analyst. No one has access to the state W .

3 Asymptotically Optimal Mechanisms

Theorem 1. To achieve any accuracy goal of the data analyst, the total expected
payment needed at an equilibrium is o(1). Specifically, there exists a sequence of
mechanisms, each of which is designed for a different population size N , such
that the accuracy goal can be fulfilled at a Bayesian Nash equilibrium of every
mechanism in the sequence, and the total expected payment goes to zero as the
population size N goes to infinity; i.e., this sequence of mechanisms is asymp-
totically optimal.

In the remainder of this section, we present the design of a family of pay-
ment mechanisms, parameterized by the population size N , the prior P, a cost
coefficient threshold parameter cth and a data quality parameter ε. The asymp-
totically optimal sequence of mechanisms in Theorem 1 is given by a sequence
of mechanisms within this family with properly chosen parameters. In partic-
ular, cth is a threshold on cost coefficients such that an individual is expected
to participate if her coefficient does not exceed the threshold; and ε is the tar-
get quality which is the level noise expected in the reported data. The formula
for calculating cth and ε will be presented in Sect. 5. Theorem 1 is a high level
description of Theorem3, which will be derived in the remainder of this paper.

Payment Mechanism R(N,P,cth,ε)

1. Each individual reports her data (which can also be “to opt out”).
2. Compute the number of participants n.
3. For non-participating individuals, the payment is zero.
4. If there is only one participant, the data analyst pays zero to this participant.

Otherwise, for each participating individual i, compute the majority of other
participants’ reported data, denoted by M−i. Then the data analyst pays
individual i according to Xi and M−i as follows:

R
(N,P,cth,ε)
i (X) = AXi,M−i

cth(eε + 1)2

2eε
+ BM−i

(
cth(eε + 1)

eε
+ cthε

)

,

where A1,1, A0,1, A1,0, A0,0, B1, B0 are given below.

Next we define the coefficients A1,1, A0,1, A1,0, A0,0, B1, B0 used in the mech-
anism R(N,P,cth,ε) through a series of calculations. In a nutshell, A1,1 and A0,0

determine the reward part of the payment to an individual when her reported
data matches the majority of others; similarly, A0,1 and A1,0 determine the
penalty part of the payment to an individual when her reported data does not
match the majority of others. They incentivize the individuals to report data
that reveals certain amount of information about their private signals. The coef-
ficients B1 and B0 offset the payments for the cases that the majority of others’
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reports is 1 and 0, respectively, to discourage the individuals with cost coeffi-
cients above threshold parameter cth from participating. We remark that when
an individual’s reported data does not match with the majority of others, these
coefficients make sure that the payment to this individual is negative.

The definition of the coefficients A1,1, A0,1, A1,0, A0,0, B1, B0 involves some
intermediate quantities, the physical meanings of which will be given after we
characterize a Bayesian Nash equilibrium of the mechanism in Sect. 4. Given a
cth ∈ (0,+∞) and ε ∈ (0,+∞), for each ci ∈ (0, cth), we consider the following
equation with variable ξ: cth(eε +1)2eξ = cie

ε(eξ +1)2. It can be proved that this
equation has a unique solution in (0,+∞). Let this solution define a function
ξ(ci). Specifically,

ξ(ci) = ln

(
1

1
2 −

√
1
4 − ci

cth
eε

(eε+1)2

− 1

)

. (1)

Let

μ =
∫ cth

0

eξ(ci)

eξ(ci) + 1
dFC|Ci≤cth(ci), α = θμ + (1 − θ)(1 − μ), (2)

where FC|Ci≤cth is the conditional distribution of Ci given Ci ≤ cth.
Given that the number of participants is n with n ≥ 2, we define the following

quantities. Consider a random variable that follows the binomial distribution
with parameters n − 1 and α. Let β(n) denote the probability that this random
variable is greater than or equal to 	n−1

2 
 + 1. For convenience, we define the
following quantity to deal with technical details:

γ(n) =

⎧
⎨

⎩

1 −
(

n − 1
n−1
2

)

α
n−1
2 (1 − α)

n−1
2 if n − 1 is even,

1 if n − 1 is odd.

Let P≥1 = 1 − (1 − FC(cth))N−1, where FC is the CDF of Ci. We define

A1,1 =
PW (1)θ(1 − β(n)) + PW (0)(1 − θ)(1 − (γ(n) − β(n)))

P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n))
,

A0,1 = −PW (1)(1 − θ)(1 − β(n)) + PW (0)θ(1 − (γ(n) − β(n)))
P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n))

,

A1,0 = −PW (1)θβ(n) + PW (0)(1 − θ)(γ(n) − β(n))
P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n))

,

A0,0 =
PW (1)(1 − θ)β(n) + PW (0)θ(γ(n) − β(n))
P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n))

,

B1 = −PW (1)(1 − β(n)) − PW (0)(1 − (γ(n) − β(n)))
2P≥1PW (1)PW (0)(2β(n) − γ(n))

,

B0 =
PW (1)β(n) − PW (0)(γ(n) − β(n))
2P≥1PW (1)PW (0)(2β(n) − γ(n))

.
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4 Bayesian Nash Equilibrium

In this section, we first characterize the individuals’ behavior at a Bayesian Nash
equilibrium of the designed mechanism. The equilibrium behavior affects the
quality of the reported data and the payments. Then we leverage the properties of
the Bayesian Nash equilibrium to explain the physical meanings of the quantities
defined during the construction of the mechanism in Sect. 3.

Theorem 2. The mechanism R(N,P,cth,ε) yields a Bayesian Nash equilibrium
σ, in which each individual i’s strategy σi is described as follows:

– If ci > cth, Pσi
(Xi = ⊥ | Si = si, Ci = ci) = 1 for any si ∈ {0, 1}; i.e.,

if individual i’s cost coefficient is larger than the parameter cth, individual i
declines to participate regardless of her signal.

– If ci ≤ cth,

Pσi
(Xi = 1 | Si = 1, Ci = ci) = Pσi

(Xi = 0 | Si = 0, Ci = ci) =
eξ(ci)

eξ(ci) + 1
,

Pσi
(Xi = 0 | Si = 1, Ci = ci) = Pσi

(Xi = 1 | Si = 0, Ci = ci) =
1

eξ(ci) + 1
,

where ξ(ci) is defined in (1); i.e., if individual i’s cost coefficient is no larger
than the parameter cth, individual i flips her signal with a probability depend-
ing on her cost coefficient to generate her reported data.

The following corollary describes the quality of the reported data and each
participant’s expected payment at the Bayesian Nash equilibrium in Theorem2.

Corollary 1. For the mechanism R(N,P,cth,ε), consider the Bayesian Nash equi-
librium σ given in Theorem2.

– For each participating individual i,

Pσi
(Xi = 1 | Si = 1, i participates) = Pσi

(Xi = 0 | Si = 0, i participates) = μ,

where μ is defined in (2) and μ ≥ eε

eε+1 .
– The expected payment to each participating individual i is bounded as

Eσ[R(N,P,cth,ε)
i (X) | i participates] ≤ cth(1 + e−ε + ε).

The proofs of Theorem 2 and Corollary 1 are presented in the full version
[31]. Theorem 2 and Corollary 1 show how individuals with high privacy costs
are “filtered out” in the equilibrium by negative payments. In other words, they
will decide not to participate because the expected payment is negative, which
is a result of the possible negative payments in the proposed mechanism. The
“remaining” individuals, i.e., participants, all report data with quality guarantee.
The roles of the parameters cth and ε in the designed mechanism R(N,P,cth,ε)

are as follows: The parameter cth works as a threshold on the cost coefficients
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for participation; The parameter ε gives a guarantee on the probability that a
participant’s reported data is the same as the signal, which measures the quality
of the reported data. We remark that in this equilibrium, each individual’s exact
cost coefficient is not revealed to other.

The physical meanings of the quantities ξ(ci), μ, α, β(n), γ(n) and P≥1 defined
during the construction of the mechanism in Sect. 3 can be well explained at the
Bayesian Nash equilibrium given in Theorem2. The quantity ξ(ci) shows up in
Theorem 2, characterizing the strategy σi of individual i when ci ≤ cth. It is the
differential privacy level of σi given Ci = ci when ci ≤ cth. Now let us condition
on the event that individual i participates, which, by Theorem2, is equivalent
to the event Ci ≤ cth. The quantity μ shows up in Corollary 1, and it is the
probability that individual i truthfully reports her signal, given whatever the
signal is. Then the quantity α is the probability that the reported data Xi is
consistent with the state W , given whatever the state is. Conditional on the event
that there are n − 1 participants among the individuals other than individual i,
where n ≥ 2, the quantities βn and 1 − (γn − βn) are the probabilities that the
majority of these participants’ reported data agrees with the state, given that the
state is 1 and 0, respectively. Finally, the quantity P≥1 is the probability that at
least one individual among the individuals other than individual i participates.

5 Accuracy and Payment

In this section, we show that the data analyst can achieve any accuracy goal
in the Bayesian Nash equilibrium with proper choice of parameters N, cth and
ε. The cost of the data analyst, which is the total expected payment at the
equilibrium, goes to zero as the number of individuals goes to infinity. Since the
privacy cost of an individual is always nonnegative, the total expected payment
at an equilibrium of any mechanism is nonnegative due to individual rationality.
Therefore, the designed mechanism asymptotically minimizes the cost for the
data analyst to achieve any accuracy goal.

Recall that with the procured data X, the data analyst learns the state W
by performing hypothesis testing between the two hypotheses H0 : W = 0 and
H1 : W = 1. An accuracy goal can be written as pe ≤ pmax

e for some pmax
e ,

where pe is the overall probability of error for hypothesis testing. We consider
the maximum likelihood decision. The values for N, cth, ε are chosen using the
procedure below. The intuition is that we first fix the quality that the analyst
expects to obtain from each participant and the types of individuals the analyst
would like to collect data from, and then the accuracy goal can be met when the
population size is large enough to make sure that there are enough participants.

Parameter Selection Procedure. Pick any ε such that ε ∈ (0,+∞). Let

D(ε) =
1
2

ln
(eε + 1)2

4(θeε + 1 − θ)((1 − θ)eε + θ)
, ne(ε) =

− ln(12pmax
e )

D(ε)
,

ρ(ε) =
1

ne(ε)pmax
e

+ 2 +

√
1

(ne(ε))2(pmax
e )2

+
2

ne(ε)pmax
e

.



98 W. Wang et al.

Then pick any integer N such that N > ρ(ε)ne(ε). For the selected N , let
pth(N, ε) = ρ(ε)ne(ε)/N , which is roughly the participation percentage, and
then let cth(N, ε) = inf{c : FC(c) = pth(N, ε)}.

Recall that we assume FC to be a continuous function, so the set {c : FC(c) =
pth(N, ε)} is nonempty and thus cth(N, ε) ≥ 0 is finite. An example of this
parameter selection procedure (and the resulted upper bound on total expected
payment) can be found in the full version [31].

Theorem 3. For the mechanism R(N,P,cth,ε), consider the Bayesian Nash equi-
librium σ given in Theorem2. Given an accuracy goal pe ≤ pmax

e , let (N, cth, ε) be
chosen according to the parameter selection procedure above and the data analyst
performs hypothesis testing using the maximum likelihood approach.

– The decision function ψ has the following form:

ψ(X) =

{
1 if

∑
i 1{Xi=1} ≥ ∑

i 1{Xi=0},
0 otherwise;

(3)

– The overall probability of error, pe, meets the accuracy goal pe ≤ pmax
e ;

– The total expected payment is bounded as

Eσ

[
N∑

i=1

R
(N,P,cth,ε)
i (X)

]

≤ cth(ε,N)ρ(ε)ne(ε) · (1 + e−ε + ε). (4)

Since ρ(ε) and ne(ε) are constants for given ε, and cth(ε,N) goes to 0 as
N → ∞, this total expected payment goes to zero, with the accuracy goal met,
as N → ∞.

The proof of Theorem3 is presented in the full version [31]. Theorem 3 shows
that choosing parameters according to the parameter selection procedure for
the designed family of mechanisms not only meets the accuracy goal of the
data analyst but is also cost-effective. The intuition is that as N becomes large,
the requirement on the participation percentage becomes lower, which allows
the mechanism to collect data from individuals with lower privacy costs and
thus drives down the data analyst’s cost. This suggests a way of constructing
the asymptotically optimal sequence in Theorem 1: Fix an ε ∈ (0,+∞), and
then choose a sequence of mechanisms, each of which is designed for a different
population size N and has parameter cth, both of which are chosen according to
the parameter selection procedure.

6 Conclusions

We considered incentive mechanisms for collecting private data from strategic,
privacy-aware individuals, whose valuations of privacy are unknown. The data
analyst is interested in learning an underlying state from the private data of
individuals with minimum overall payment. We considered a local model of data
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privacy, where the data analyst is not necessarily trusted, and data subjects
are endowed with the ability to control their own privacy, which frees the data
analyst from the responsibility of privacy protection. We designed a family of
payment mechanisms for the data analyst, which utilize negative payments to
prevent individuals with high privacy valuations from reporting only noise and
cut down the cost of the data analyst. In each designed mechanism, the indi-
viduals exhibit a threshold behavior at a Bayesian Nash equilibrium: only those
with cost coefficients below some threshold participate, and they report data
with certain quality guarantee, where the threshold and the quality guarantee
are both parameters of the mechanism. With appropriate choices of parame-
ters, the data analyst can fulfill any accuracy goal with diminishing cost at the
equilibrium as the number of individuals grows to infinity.
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Abstract. Fantasy sports is a fast-growing, multi-billion dollar industry
[10] in which competitors assemble virtual teams of athletes from real
professional sports leagues and obtain points based on the statistical per-
formance of those athletes in actual games. Users (team managers) can
add, drop, and trade players throughout the season, but the pivotal event
is the player draft that initiates the competition. One common drafting
mechanism is the so-called auction draft: managers bid on athletes in
rounds until all positions on each roster have been filled. Managers start
with the same initial virtual budget and take turns successively nomi-
nating athletes to be auctioned, with the winner of each round making a
virtual payment that diminishes his budget for future rounds. Each man-
ager tries to obtain players that maximize the expected performance of
his own team. In this paper we initiate the study of bidding strategies
for fantasy sports auction drafts, focusing on the design and analysis of
simple strategies that achieve good worst-case performance, obtaining
a constant fraction of the best value possible, regardless of competing
managers’ bids. Our findings may be useful in guiding bidding behavior
of fantasy sports participants, and perhaps more importantly may pro-
vide the basis for a competitive auto-draft mechanism to be used as a
bidding proxy for participants who are absent from their league’s draft.

1 Introduction

In fantasy sports, individuals compete against each other by becoming virtual
managers of a team of professional athletes, choosing players and modifying ros-
ters over the course of a season, competing based on the statistical performance
of the athletes composing their respective teams. Athlete statistics from real-life
games are converted into “fantasy points”, which are compiled and aggregated.
Points may be manually calculated by a participant designated as “league com-
missioner” who coordinates and manages the overall league, or they may be
compiled and calculated by online platforms tracking game results. Managers
draft, trade, and cut athletes over the course of the season in response to chang-
ing evaluations of athlete potentials, analogously to real sports.
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Fantasy sports are a multi-billion dollar industry [10]. According to the
Fantasy Sports Trade Association (FSTA), in 2015 there were 56.8 million people
playing fantasy sports in the USA and Canada. On average, fantasy-sports par-
ticipants (age 18+) spend $465 on league-related costs, single-player challenge
games, and league-related materials over a 12-month period [1]. Each fantasy-
sports league can have up to 20 teams, although most managers prefer to have
leagues of at most 12, presumably because large leagues require drafting lower-
performance and lesser-known athletes.

There are two standard ways to pick (draft) a fantasy team: snake drafts
and auctions. Even though the majority of fantasy leagues use the standard
snake draft (taking turns choosing players), anecdotal evidence suggests that
auction-style drafts—wherein managers take turns nominating players, who are
ultimately allocated based on competitive bidding—are popular among the most
experienced and engaged users. If one of the managers is not present during the
draft, there is typically an auto-draft algorithm, which makes decisions for the
absentee manager. Furthermore, in some cases the auto-draft system is employed
as a practice tool for inexperienced users. The real-time fantasy auction draft
involves sophisticated decision making and strategies [2,7], and being able to
practice such an auction in advance is important for one’s success during the
actual draft.

This paper is motivated by the goal of designing an auto-draft proxy bidder
good enough to keep a manager competitive—in some broad sense—with the rest
of the league. Because this is a competitive and strategic environment, it is nat-
ural to take a game-theoretic approach and consider strategy profiles that form
Nash equilibria. However, we find that plausible pure strategy equilibria often do
not even exist, and in the cases where they do exist their computation would be
completely impractical for non-computer-aided participants, thus removing any
predictive value. We therefore instead focus on strategies with good guarantees,
creating teams with a certain competitive value even when faced with optimal
adversarial opponent bidders.

1.1 Description of the Real Auction

A fantasy sports league is composed of a set of k team managers (or users)
u1, . . . , uk—where k usually ranges from 3 to 20—who form teams from a pool
of n athletes (or players) P1, . . . , Pn.1 Each fantasy team must be composed of
m athletes. The number of athletes m depends on the sport and fantasy games
provider; for example, Yahoo Daily Fantasy NFL team rosters have 9 slots:
1 quarterback, 2 running backs, 3 wide receivers, 1 tight end, 1 flexible position,
and 1 slot for a defensive team.

As mentioned above, leagues are formed via snake draft or auction draft,
with this choice determined by the initiator of the league. In snake drafts users

1 For instance, in the NFL each actual team consists of a 53-man roster (plus a 5-
athlete practice squad). There are 32 NFL teams, making for a total of n ≥ 1, 696
athletes, all of whom are eligible to be drafted.
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successively take athletes, with no bidding or competition. But auction drafts,
which are the focus of the current paper, are strategically complex. Each fan-
tasy manager is given a fixed budget B to draft a team with a set number of
athletes. For instance, Yahoo provides each team manager with a $200 budget,
although the precise value is not extremely relevant. Managers take turns suc-
cessively (in some pre-determined order) nominating athletes for bidding, which
then proceeds via an English auction as follows. The default bid ascribed to the
nominating manager is $1, and it can be raised to any dollar value within the
nominating manager’s budget. Managers are given a fixed amount of time (say
10 s) to place a higher bid; if any manager does so, the clock resets and users
have another 10 s to place a yet higher bid, and so on. Managers are free to
bid any amount as long as they have available funds. When bidding stops, the
manager who submitted the high bid wins the athlete and his bid amount is
subtracted from the funds available to him for future bidding.

There is no incentive to retain budget after the auction, because leftover
money cannot be used for anything else. Managers are allowed to bid only to
a dollar amount that leaves at least one dollar for each currently unfilled spot
on the team. Further, each athlete comes with a fixed position (there are quar-
terbacks, running backs, wide receivers, tight ends, kickers, and defensemen for
NFL fantasy athletes). Each team must meet a fixed distribution of positions
that depends on the sport and fantasy-game provider (for example, an NFL
manager has to acquire exactly 2 running backs). The goal of a manager is to fill
her positions in a way that maximizes the overall value of the team according
to the stats her players accrue during real play throughout the season.

1.2 The Auction that We Analyze

In this work we initiate the study of fantasy-sports auctions. We make some
simplifying assumptions to make the problem amenable to a rigorous theoretical
investigation. Our first simplifying assumption is that team managers agree on
the value of every athlete. This assumption, clearly somewhat of a departure
from reality, is made primarily to simplify presentation; in fact, if value esti-
mates vary across managers, our main results continue to apply with respect
to the manager’s subjective value estimates for the players in the league (see
the Conclusion section for further discussion of this). Moreover, a rough corre-
spondence in value estimates can be expected because previous season statistics
(average number of fantasy points per game, etc.) and next-season projections
are widely available on specialized services on the web (e.g., at rotowire.com),
which many managers consult. Formally, we assume that each athlete Pi has an
associated value vi denoting the expected number of fantasy points he will earn
throughout the season; vi is a shared belief, common knowledge to all managers.

A second simplifying assumption is that each phase of the auction draft is a
second-price sealed-bid auction in which managers are allowed to place arbitrary
fractional bids (limited only by their remaining budget). Even though this also
deviates from reality, the English auction described in the previous section yields
similar results, in theory. If more than one manager announces the highest bid

http://www.rotowire.com/


Bidding Strategies for Fantasy-Sports Auctions 105

in our sealed bid auction, we allocate the athlete to each high-bidding manager
with equal probability. The exception to this rule is when all managers place the
minimal bid. In this case we assume that the athlete is won by the nominating
manager, deterministically. That is, no manager can impose an athlete on others
simply by nominating him. This reflects the real-life policy: an athlete always
goes to a nominating manager if there is no competing bid from other managers.

We assume that managers are allowed to bid anywhere between $0 and their
entire remaining budget for each athlete (recall that in reality bids are capped to
ensure at least $1 remains for every open roster position). If a manager expends
the entire budget before filling her roster, she can pick up lesser-preferred athletes
for free after all other managers have filled their rosters. If there are multiple
managers with zero budget left at the end of the auction, the remaining athletes
are chosen by managers according to the nomination order.

Having fixed the price of each athlete, we can assume that for each position
type the player pool has exactly the number of athletes required to complete
each team. For example, if there are 8 NFL managers, and each manager must
hire 2 running backs, then there exist exactly 16 running backs overall; these
will be the most valuable, as no manager will prefer a lower-ranked running
back (and it is easy to show that no advantage can be gained by putting one up
for bid). We can therefore assume that n = km.

Finally, it will be useful to define the value

V =
1
k

n∑

i=1

vi

This can be considered the fair share of total value each manager would get if
all managers were equally competitive. Against optimally bidding adversaries,
the best a manager can reasonably hope for is to draft a team of value not much
worse than V .

1.3 Summary of Results

After describing related work in Sect. 2, we begin in Sect. 3 by showing that
pure strategy subgame perfect Nash equilibria do not generally exist in the
game representing the fantasy auction draft. In fact, even for what is virtually
the simplest example one can conjure (2 managers, 4 athletes to be drafted),
unless the athletes are nominated in a particular pre-fixed order, there is no
pure strategy Nash equilibrium. That entails—allowing the nomination choices
to be in fact part of the strategy space—that there can be no pure-strategy
subgame perfect equilibrium of the auction draft.

This, along with other practical critiques of an equilibrium-based analy-
sis, motivates us to focus instead on worst-case analysis. In other words, can
we describe a bidding algorithm that performs well no matter what opponent
managers do? In Sect. 4 we provide an analysis of the simplified case where
athletes are automatically nominated in non-increasing order of their values
(v1 ≥ v2 ≥ · · · ≥ vn). For each athlete Pi we define his fair price as ci = vi

V B,
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and we use this fair price as the basis of the following simple (and nonadaptive)
bidding strategy: letting bi be the manager’s current leftover budget before
the ith athlete is nominated, the manager always places bid min{αci, bi}, with
α = 3/2. We show that a manager playing this strategy is guaranteed to obtain
value at least V /3, regardless of the other managers’ bids. Moreover, we show
that this is the best one can do for a strategy of this class, in that any alternative
choice of α will yield a worst-case value no greater than V /3.

In Sect. 5 we analyze a more complex bidding strategy for the general case in
which nominations are made in a general adaptive fashion according to manager
strategies. We prove that the proposed bidding strategy is able to guarantee a
final team with value at least V /16.

2 Related Work

For a general reference to auction theory we refer to [15]. Dynamic auctions
have been extensively studied in a literature that has recently been very active
[3]. Note that there is no mechanism design component in the current paper,
because the draft mechanism is determined by the platform and we are rather
studying how to best engage with it. We focus on the strategic implications for
users who in principle can play very sophisticated bidding strategies. Users can
strategize on the order of nomination of the players and on the bids posted in
each round of the auction. Existence of equilibria in dynamic auctions—subgame
perfect equilibria [17]—indeed requires very strong rationality assumptions on
agents [14].

In this work we do not attempt to analyze the structure of complex equilib-
ria, which, when they even exist, are implausible to reach. We instead propose
bidding strategies that achieve the formation of teams with a guaranteed share
of the total value of the player pool, even in the presence of irrational opponents.
Another difference from classical dynamic auctions is that users cannot partici-
pate in all rounds of the auction. Users pass if their budget is expired or if the
role of the nominated player has already been filled on the team.

The imposition of financial constraints such as budgets is also known to alter
the properties of even simple standard auctions [6]. For example, the VCG mech-
anism [19] does not retain all its glorious properties if payments are restricted
by a budget [9]. Dynamic auctions with budgets have recently been investigated
in the setting of ad auctions for sponsored search [12].

Although bidding and player nomination strategies are at the crux of our
work, the reader may note some commonalities with the vast literature on the
fair division of goods [4,16]. Given the symmetric, full-information setting we
consider, the best outcome that a strategy played by all team managers can
achieve is the proportional share of the total value of the players. Proportionality
is also one of the main goals in the fair-division literature. A second commonality
is the allotment of an equal budget to all users to play in all rounds of the auction.
Competitive equilibrium from equal incomes (CEEI) [5,13] also assumes the
same budget given to each agent to acquire a set of indivisible goods. However,
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differently from CEEI, the prices of the goods in fantasy auctions are decided
by iterative auction rounds rather than by a centralized pricing mechanism.

We also note the connection to an array of prior work analyzing bidding
strategies and autonomous bidding across a diverse spectrum of competitive
environments (see, e.g., [8,11,18]).

3 On the Absence of Equilibria

Given that our setting is one of strategic interaction amongst self-interested
agents, at first blush game theory seems the most natural way to approach an
analysis and evaluation of bidding strategies. However, there are issues in this
approach. For any realistic version of the fantasy auction draft game, comput-
ing equilibria is virtually guaranteed to be computationally intractable. Thus,
in a single-shot world where the participants (save for the one being served by
our bidding proxy) are human rather than computational, it is highly implau-
sible to ascribe predictive power to any given strategy profile merely because it
constitutes a Nash equilibrium.

But there is an even more fundamental issue: generally there will not even
exist any pure strategy subgame perfect equilibria in fantasy draft auctions.
Consider the following simple example:

Example 1. There are two users with equal budgets; each team roster has two
slots; there are four athletes eligible for nomination, two of unequal positive
value, and two of value 0.

Claim 1. In Example 1, if the lower (nonzero) value athlete is nominated first,
there exists no pure strategy Nash equilibrium forward from that point.

Proof. First note that in any equilibrium, regardless of what transpires in the
first round, in the round in which the other nonzero athlete is nominated each
agent must bid as much of his remaining budget as necessary to win (if possible).
Then, if someone wins the first athlete for a nonzero price, he will lose the second
(high-value) athlete; if he can bid instead to lose the first athlete in order to win
the second, this is beneficial.

If bids for the first athlete are 0 and ε > 0, the first manager has a beneficial
deviation in instead bidding δ ∈ (0, ε), losing the low-value athlete and taking
the opposing manager out of contention for the high-value athlete.

If bids for the first athlete are δ > 0 and ε > 0, with ε > δ, the manager
bidding ε has a beneficial deviation in instead bidding γ ∈ (0, δ), taking the
opposing athlete out of contention for the high-value athlete, as above. Similarly,
if the two managers bid the same value ε > 0, they each have positive probability
of winning, and thus each has a beneficial deviation in instead bidding γ ∈ (0, ε).

If bids for the first athlete are 0 and 0, then the nominating manager gets
that athlete, and then can bid B in the second round and also win the high-
value athlete with probability 1/2. The other manager has a beneficial deviation
in bidding any ε > 0 first, since he will then take the low-value athlete for free
(with certainty), and still win the high-value athlete with probability 1/2.



108 A. Anagnostopoulos et al.

This exhausts the space of possible bids in round 1, and none are consistent
with an equilibrium strategy profile.

Since the low-value athlete being nominated first is a possible path of the
full game, and since there is no equilibrium strategy profile forward from that
subgame, we have the following corollary:

Corollary 1. In Example 1 there exists no pure-strategy subgame perfect Nash
equilibrium of the game as a whole.

However, if the high-value athlete is nominated first, there is a straightforward
pure strategy Nash equilibrium of that subgame: both users bid their entire
budgets for each nonzero value athlete. Each user will win one nonzero value
athlete: with probability 1/2 it will be the high-value athlete; deviating by under-
bidding in the first round will only ensure that the user gets the low-value athlete
(or possibly nothing if he bids 0 in the first round).

Therefore, if we look at the game as a whole, recognizing that athlete nom-
ination is a part of the strategizing, is there an equilibrium? There is, but it is
not subgame perfect (which we knew must be the case from Corollary 1), and
thus not very satisfying in any kind of predictive sense. Any equilibrium strategy
profile must specify what happens off the equilibrium path, and there is no way
to do so for the “lower-value athlete nominated first” path that is consistent with
rational users (since there is no equilibrium there). Thus, the existence of pure
strategy equilibria inherently depends on a model of user behavior that subverts
the main rationale for considering equilibrium in the first place, that is, the idea
that agents are rational. Other examples may have no equilibria whatsoever.

4 Analysis of Fair-Price Bidding

In this section we start our adversarial analysis by considering the case where
athlete nomination does not form part of the strategy space. Instead, players are
nominated in non-increasing value order, and the strategy space of each manager
consists in bidding for these players. Recall that we have a second-price auction,
and in the case of (positive bid) ties the athlete is allocated uniformly at random
among the managers that placed the highest bid.

Recall that there are k team managers and m slots per team, that vi is the
value of the athlete with ith highest value, and that V = 1

k

∑km
i=1 vi.

For each athlete Pi we define his fair price as:

ci = vi
B

V
.

We first consider the following natural nonadaptive strategy, which we call simple
fair-price bidding. We will show that it may lead to a bad team, but can be made
robust via a slight modification, motivating in this way our variant solution. Let
bi be the current leftover budget before the ith athlete is nominated. In simple
fair-price bidding the manager always places a bid equal to min{ci, bi}. That is,

Simple-fair-price-bid(bi, vi) = min
{vi

V
B, bi

}
.
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We will show that a manager following the simple fair-price bidding strategy
could end up with a team of value arbitrarily close to V /k (which is bad).
Consider the case where v1 = · · · = vk−1 = V (1 − ε) and vk = · · · = vkm =
V (1+kε−ε)
km−k+1 . Our manager bids (1−ε)B for the first k−1 athletes; imagine that the

other managers bid (1− ε/2)B. This means that after k −1 rounds our manager
did not win any athletes and has his full budget B available for bidding, whereas
the remaining k − 1 managers have each won one athlete of value V (1 − ε) and
have remaining budget εB/2.

We assume that ε is chosen to be small enough that

V (1 + kε − ε)
km − k + 1

· B

V
> ε

B

2
.

In this case our manager bids the fair value of (1+kε−ε)B
km−k+1 for each of the next k

athletes and wins each of these bids. Therefore, the value of the final team for
our manager, who uses the simple fair-price bidding strategy in the auction, is

(1 + kε − ε)V m

km − k + 1
,

which is arbitrarily close to V /k for large enough m and small enough ε.
This example motivates us to modify the simple fair-price bidding strategy.

In the modified fair-price bidding strategy, with parameter α ≥ 1, the manager
always places bid min{αci, bi}. That is,

Fair-price-bid(bi, vi) = min
{αvi

V
B, bi

}
.

Theorem 1. The expected value of the team generated by fair-price-bidding
with parameter α = 3/2 is at least V/3, regardless of the other managers’ bidding
strategies.

Proof. Assume we have r ≥ 0 athletes with values v1 ≥ · · · ≥ vr ≥ V/α. Our
manager bids her whole budget B for these athletes. After r rounds of the auction
our manager gets an athlete of value vi ≥ V/α with probability p ≥ min{1, r/k}.
If r ≥ k then our manager always gets one of these high-value athletes and there
is nothing more to prove. So now assume that r < k.

Let W =
∑r

i=1 vi. We claim that the expected value E′ of the final team
selected by our manager conditioned on the fact that she wins one of the high-
value athletes is at least W /r. Let pi ≥ 1

r−i+1 be the probability that our
manager wins the ith round of the auction conditioned on the fact that she did
not win any of the previous rounds. Then we can estimate:

E′ ≥ v1p1 + v2(1 − p1)p2 + · · · + vr

r−1∏

i=1

(1 − pi)pr ≥
r∑

i=1

vi/r
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by using the standard majorization inequality (it can be proven easily by induc-
tion on t) and the fact that:

p1 + (1 − p1)p2 + · · · +
t−1∏

i=1

(1 − pi)pt = 1 −
t∏

i=1

(1 − pi)

≥ 1 −
t∏

i=1

(

1 − 1
r − i + 1

)

= 1 − r − t

r
=

t

r
.

If our manager does not get a high-value athlete (it happens with probability
1 − p), then the remaining k − r managers with budgets B participate in the
auction to acquire athletes with total value kV − W . Also, all the athletes auc-
tioned in this case have values vi < V/α. When all the managers have spent
their entire budgets or filled all the spots on their rosters, the remaining athletes
are distributed at random in a fair way. We consider two cases:

1. There is a moment during the auction when our manager cannot bid the
target price of αcj for the current athlete Pj , that is, bj < αvj · B/V . We
claim that the value of the athletes on our manager’s roster at this moment
is already at least V

2α .
Assume to the contrary that the value of the athletes on our manager’s roster
at this moment is strictly less than V

2α . Then bj > B/2 and we derive that
vj > V

2α . Therefore, all athletes nominated so far have values higher than V
2α

and our manager did not win any of them (or we are done). Therefore bj = B.
But recall that vj < V/α (the athlete is not one of the r high-value athletes),
which means that our manager can bid the target price of αcj , arriving at a
contradiction. Therefore, the value of the athletes on our manager’s roster is
at least V

2α . Let p′ be the probability that the auction ends in this case.
2. Now take the case where we never reach a situation in which we cannot bid

the target price, and our manager fills all the spots on her roster. Assume
that p′′ is the probability of this case, and note that p + p′ + p′′ = 1.
At any moment during the auction our manager either bids the target price
of αcj for the athlete or does not bid anything because she already filled
positions on her roster of the same type as the position type of the athlete
who is nominated now. Let X be the value of the team of our manager at the
end of the auction. Consider manager u who is one of the remaining k − r −1
managers. We divide the team of manager u into two sets of athletes S+(u)
and S−(u), where S+(u) is the set of athletes that u won for price greater
than or equal to the target price of αcj and S−(u) is the set of athletes that
u won for price strictly smaller than the target price.
We claim that

∑
i∈S+(u) vi ≤ V/α and

∑
i∈S−(u) vi ≤ X. To show the former,

assume that
∑

i∈S+(u) vi > V/α. Then u has paid at least

∑

i∈S+(u)

αvi

V
B = α

B

V

∑

i∈S+(u)

vi > α
B

V
· V

α
= B,
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leading to a contradiction, because the initial budget of manager u is B.
The only way for u to win a bid for an athlete in S−(u) is if our manager
(who bids the target value for each athlete she has a remaining slot for on
her team) does not place a bid. That could only happen when our manager
already filled the spots on its roster corresponding to the position of the
athlete who is currently nominated. That means all athletes in S−(u) have
smaller value than all athletes of the same type on our manager roster, that
is,

∑
i∈S−(u) vi ≤ X.

Analogously, for each manager u who got one of the first r athletes, the value
of the remaining athletes on his team is at most X. Therefore,

kV ≤ kX + (k − r − 1)
V

α
+ W,

which entails that
X ≥ V − W

k
− k − r − 1

k
· V

α
.

Overall, the expected value of the final team for our manager is lower-
bounded by:

W

r
p +

V

2α
p′ + Xp′′ ≥ W

r
p +

V

2α
p′ +

(

V − W

k
− k − r − 1

k

V

α

)

p′′

≥ W

r
·
(
p − r

k
p′′

)
+

V

2α
p′ +

(

1 − k − r

αk

)

V p′′

≥ V

α
·
(
p − r

k
p′′

)
+

V

2α
p′ +

(

1 − k − r

αk

)

V p′′

=
V

α
·
(
p − r

k
p′′

)
+

V

2α
p′ +

(

1 − k − r

k

)
V

α
p′′ +

(

1 − 1
α

)

V p′′

=
V

α
p +

V

2α
p′ +

(

1 − 1
α

)

V p′′ ≥ V

3
.

We now give examples that show that our analysis of the algorithm is tight,
in that for any choice of α, given k > 2 managers, there exists an example where
our manager collects no more than a third of the fair value.

First off, for any α ≤ 1, the example given at the beginning of this section
serves to demonstrate the claim. Now consider any α > 3/2 and the following
example: there are two types of athletes, k managers, and team composition
constraints where we need to choose exactly one athlete of type one and m − 1
athletes of type two. The athletes of type one have value v1 = · · · = vk =
1
3V (1 + ε) (k athletes). There are 2k − 2 athletes of type two with value vk+1 =
· · · = v3k−2 = 1

3V . The remaining athletes are also of type two but have value

v3k−1 = · · · = vkm =
kV − kv1 − (2k − 2)vk+1

km − k − 2(k − 1)
≈ 2V

3km
,

where the approximation is close for large enough m and small enough ε.
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During the first bidding round our manager bids min{αB(1 + ε)/3, B} >
B(1 + ε)/2 for the first athlete. The other managers let our manager win with
this bid and force her to pay B(1 + ε)/2 (by bidding this amount), and they
get the remaining k − 1 athletes of the first type for free (one athlete per each
manager). During the next 2k − 2 bidding rounds our manager bids her whole
remaining budget of B(1 − ε)/2 whereas the other managers bid B/2 and win
each of these rounds. After that our manager wins the next m−1 bidding rounds
and obtains a team of value v1 + (m − 1)v3k−1 ≈ V/3.

We now consider the case where α ≤ 3/2. Consider the example where there
is only one type of athlete, there are k managers, and athletes have the following
values: v1 = · · · = vk−1 = 2

3V (1 − ε) and vk = · · · = vkm = kV −(k−1)v1
km−k+1 . Our

manager bids 2αB(1 − ε)/3 < B for each of the first k − 1 athletes and loses all
of those rounds to other managers who bid their whole budgets B. After that
our manager wins m bids and ends up with a team of value

m · kV − (k − 1)v1
km − k + 1

,

which is arbitrarily close to V /3 for large enough m and small enough ε.

5 Arbitrary Nomination Order

We now consider the more general (and realistic) setting in which each manager
is allowed to nominate an arbitrary athlete when his turn comes up, with the
order of nominators pre-determined arbitrarily.

5.1 Algorithm Description

Our algorithm for this expanded version of the problem, which we call
Selective-fair-bidding, will depend on three parameters: α, β, and γ, with
β > α ≥ 1 and γ ≥ 1. We define two groups of athletes: L = {i : vi ≥ V/β} and
S = {i : vi < V/β}.

If
∑

i∈L vi ≥ ∑
i∈S vi, our manager ignores (bids 0 for) all athletes with

indices in the set S and only bids for athletes with indices in L. The bid value
is always the whole budget B.

Now we describe the strategy in the case that
∑

i∈L vi <
∑

i∈S vi. Letting
t be the number of distinct types of athletes that each team must have, let
dj be the number of athletes of type j = 1, . . . , t the team must have, with
∑t

j=1 dj = m. All athletes in the set S are partitioned into t sets S1, . . . , St by
type. Let

Aj =

∑
i∈Sj

vi

kdj

be the average value for the athlete of type j = 1, . . . , t (among the athletes in
group S) per available spot on the team roster.
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Our manager only bids for an athlete Pi if either i ∈ L, or i ∈ Sj and
vi ≥ Aj/γ for some j ∈ {1, . . . , t}. We will call such athletes desirable. The bid
value for desirable athletes is min{αci, bt} where bt is the remaining budget in
the current period t of the bidding procedure and ci is the fair value of athlete i.
The athletes from the set S of value less than Aj/γ will be called undesirable,
and our manager bids 0 for all of them.

Our manager always nominates the highest-value available athlete that can
fill one of the positions on her roster.

5.2 Analysis

Theorem 2. The expected value of the team generated by selective-fair-
bidding with α = 16/3, β = 8, and γ = 2 is at least V/16.

Proof Sketch. The proof can be divided into two cases, the second of which we
only sketch here due to limitations on space (the proof is otherwise complete).

Case 1. Assume that
∑

i∈L vi ≥ ∑
i∈S vi. Recall that our manager bids her

whole budget B for each athlete in L until she either wins one or there are no
more athletes in L left. There are |L| rounds of the auction that are relevant to
our manager (as she bids zero in the others); let pj ≥ 1/k be the probability
that our manager wins an athlete during the jth round our manager bids in, for
j = 1, . . . , |L|, conditioned on the fact that she did not win an athlete during
the previous rounds. And let vL(j) be the value of the athlete nominated in the
jth round our manager bids in. Then the expected value of the athletes won by
our manager is at least

E′ = vL(1)p1 + vL(2)(1 − p1)p2 + · · · + vL(|L|)

|L|−1∏

i=1

(1 − pi)p|L|.

If
∏|L|

i=1(1 − pi) ≤ 1/2, then

E′ ≥
⎛

⎝1 −
|L|∏

i=1

(1 − pi)

⎞

⎠ min
i

vL(i) ≥ V

2β
.

Otherwise, that is, if
∏|L|

i=1(1 − pi) > 1/2, then

E′ >
∑

i∈L

vL(i)pi

2
≥

∑

i∈L

vL(i)

2k
≥

n∑

i=1

vL(i)

4k
=

V

4
.

Case 2. Assume that
∑

i∈L vi <
∑

i∈S vi. This is the more difficult of the two
cases, and due to space constraints we must omit much of the analysis. However,
it can be established that in this case:

E′ ≥ V

(
1
2

min
{

1
γ

, 1 − 1
γ

}

− 1
α

)

,
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If we choose γ = 2, combining bounds for the various cases, the expected
value of our manager’s team at the end of the auction is at least:

V · min
{

1
4

− 1
α

,
1
α

− 1
β

,
1
4
,

1
2β

}

.

Now choosing α = 16/3 and β = 8, we derive the lower bound of V /16 on
the expected value of the final team.

6 Conclusion

In this paper we initiated the study of fantasy auction drafts, which play an
important role in the large and growing market of fantasy sports. We abstracted
the problem by defining a simple but realistic auction, which models the real-
life process. We studied pure-strategy Nash equilibria and showed that even for
two players, there are no pure-strategy subgame perfect Nash equilibria. We
thus turned our attention to worst-case outcomes and designed a deterministic
algorithm for bidding in fantasy auction drafts, which guarantees the creation
of a team with a total value that in expectation (over the random choices of the
allocation mechanism in case of ties in the highest bids) is at least a constant
(1/16) approximation of the optimal possible.

Throughout the paper we assumed that for each athlete Pi there exists a
universal value vi; yet our results are more general. Our worst-case bounds hold
also for the setting where each manager uj can have an idiosyncratic value vi,j

for each athlete Pi. Our algorithm can guarantee the creation of a team that has
a value of at least Vj/16, where

Vj =
1
k

km∑

i=1

vi,j .

Consideration of equilibrium outcomes was a nonstarter for our purposes
quite apart from concerns about collusion and the like. However, one can show
rather easily that if other managers do collude, it can have an adverse effect on
the quality of the team our manager ends up with. Yet our algorithm is collusion
resistant with respect to the worst case: even if other managers collude, the
guarantees remain unchanged.

The main open theoretical question regards closing the gap between what we
guarantee with our strategy and what is possible to guarantee. We have given
an algorithm that provides a constant approximation (1/16) to the best one can
hope for. Can the constant be improved? Can one show any upper bound?

Finally, there are empirical angles that we hope will be pursued. The fact
that the worst-case guarantee of the algorithm we propose is V /16 does not at
all indicate that it will not be competitive in practice. If such bidding strategies
are ultimately implemented via auto-draft proxies in actual fantasy auctions,
this will yield an intriguing dataset that can be studied and perhaps used as the
basis for an empirically grounded iteration on the work we initiated here.
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Abstract. quasilinearity is a ubiquitous and questionable assumption
in the standard study of Walrasian equilibria. Quasilinearity implies that
a buyer’s value for goods purchased in a Walrasian equilibrium is always
additive with goods purchased with unspent money. It is a particularly
suspect assumption in combinatorial auctions, where buyers’ complex
preferences over goods would naturally extend beyond the items obtained
in the Walrasian equilibrium.

We study Walrasian equilibria in combinatorial auctions when quasi-
linearity is not assumed. We show that existence can be reduced to an
Arrow-Debreu style market with one divisible good and many indivisible
goods, and that a “fractional” Walrasian equilibrium always exists. We
also show that standard integral Walrasian equilibria are related to inte-
gral solutions of an induced configuration LP associated with a fractional
Walrasian equilibrium, generalizing known results for both quasilinear
and non-quasilnear settings.

1 Introduction

Money is inherently useless; it only holds value because of the promise that it
can be used to buy something useful. Thus, an agent’s utility for money will
depend substantially on what she already has and the alternative ways that it
can be spent. A student who saves money on her habitual cup of coffee can spend
it on many things. On the other hand, a corporate event planner who is given
a dedicated budget for drinks may not receive any benefit for discounted coffee;
on the contrary, she cannot spend the money on herself, and her budget may get
cut next time if she doesn’t spend enough on the current event.

General market equilibria capture the ephemerality of money. Arrow and
Debreu’s exchange model is simple: agents have goods; they sell those goods,
then buy what they want most. In this setting, money has no inherent value
and is simply a lubricant facilitating exchange. This works because Arrow and
Debreu capture the entire economy, so there is nothing outside the market on
which to spend money.
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In contrast, Walrasian (competitive) equilbria only capture a slice of the
overall market. To do so, they must attribute utility to unspent money, since
it can be spent elsewhere. In a Walrasian equilibrium model, agents arrive with
money and only spend it if the received value outweighs the cost.

The default way to capture the implicit value of money is through a quasi-
linear utility function, i.e. a bidder’s utility u is the difference between her value
v and the price she pays p. Quasilinearity assumes that an agent’s total value
is additive in what she gets now and what she gets from an outside option, and
that the amount of utility she gets from an outside option scales linearly with
the amount of money she applies to it. Both are plausible modeling assumptions,
but assuming that they are always true is only somewhat more defensible than
assuming that a bidder always has an additive valuation over all items in the
market.

We can illustrate one simple violation with our coffee example. Suppose our
student will buy exactly one cup of coffee each day. If she doesn’t buy coffee
now, she will spend $3 on coffee elsewhere, so her value for coffee now is $3;
however, if we give her both a cup of coffee and $3, she will spend the extra
$3 on something completely different, like a movie ticket (she already has her
cup of coffee). Whether this movie ticket gives her the same utility as a cup of
coffee, or half the utility, or a quarter of the utility — there is nothing in our
market model to imply that her utility from an extra $3 is in any way tied to her
utility for a cup of coffee, except that it is plausibly at most her utility for a cup
of coffee.1 In effect, the student’s marginal utility for $3 is completely different
depending on whether or not she gets coffee now.

Relaxing quasilinearity for Walrasian equilbria is thus a fundamental ques-
tion, particularly in combinatorial auction domains where bidders are assumed
to have complex preferences over sets of items. This is the topic of our paper.
Existing relaxations of quasilinearity focus on unit demand agents, and the lit-
erature is quite limited. The existence of Walrasian equilibria was first shown
by Quinzii (1984). Later, Alaei et al. (2011) show that Walrasian equilibria exist
using a direct approach and have the same kind of lattice structure as standard
Walrasian equilibria for unit demand bidders. Maskin (1987) studies a super-
ficially different problem and adds a single divisible good (i.e. money) to a
standard general market model with indivisible goods; his result is that mar-
ket equilibria always exist. We study Walrasian equilibria with general utilities
in an even more obvious setting: combinatorial auctions. In a combinatorial auc-
tion, bidders may have complex preferences over the multiple goods being sold.
Thus it is natural that one should extend these complex preferences to items
outside the Walrasian micromarket by allowing non-quasilinear preferences for
money. Our main results establish conditions under which a Walrasian equilib-
rium exists.

1 We know that she chose a cup of coffee over a movie ticket initially, so that implies
her value for a cup of coffee is less than her value for a movie ticket. On the other
hand, there might also be complementarities here if the student is unable to enjoy
the movie without first having a cup of coffee...
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Fractional Walrasian Equilibria and Market Equilibria
Walrasian equilibria capture a microcosm of a larger market. To do so, they cap-
ture both an agent’s utility for unspent money and goods’ inherent indivisibility
at small scales. As our prior discussion suggests, money is simply a proxy for the
portion of the general market outside the goods available in the Walrasian equi-
librium. It is therefore not surprising that the first step in our work constructs
a reduction from a Walrasian equilibrium problem to a general Arrow-Debreu
market with an extra good (money), and an extra agent (the seller). Together,
the extra good and agent capture the market outside the Walrasian equilibrium.
This market is special because all goods except money have supply 1 and are
indivisible. Maskin (1987) studies a similar market without adding the seller as
an agent. Our first result shows that the equilibria are the same:

Lemma 1 (Informal). A set of prices and allocations for a combinatorial auc-
tion are a Walrasian equilibrium if and only if they correspond to a market equi-
librium of the associated special Arrow-Debreu market.

The relationship with the special Arrow-Debreu market also lays the foundation
for our first main result — “fractional” Walrasian equilibria always exist:

Theorem 1 (Informal). In a combinatorial auction setting, a fractional
Walrasian equilibrium always exists, that is there exists a set of prices and, for
each player, a distribution over sets of goods whose support is the collection of
all demanded sets under the equilibrium prices, and market clears in expectation.

This follows by proving that an auction’s associated general market model always
has a fixed point, and that demand of a bidder at the fixed point can always be
decomposed into a distribution over goods.

Configuration LPs and True Walrasian Equilibria
To understand true (non-fractional) Walrasian equilibria, we must understand
the combinatorial auction’s configuration linear program. In a quasilinear set-
ting, the configuration LP captures the way goods can be (fractionally) assigned
to bidders; the LP’s objective is the total value generated by the assignment.
Walrasian equilibria here are known to be equivalent to integral optima of an
auction’s configuration LP.

Unfortunately, the configuration LP is not available without quasilinearity
because a bidder’s value is not well-defined. Instead, we introduce an induced
configuration LP that is associated with a particular price vector p∗. This LP
is constructed by fixing bidders’ utilities at p∗ and assuming they are otherwise
quasilinear. Integral optima are again related to Walrasian equilibria, but only
if p∗ already supported a fractional Walrasian equilibrium:

Theorem 2 (Informal). A Walrasian equilibrium for a combinatorial auction
exists if and only if there is a price vector p∗ supporting a fractional Walrasian
equilibrium for which the induced configuration LP has an integral optimum.

This theorem has a couple of interesting corollaries. First, we can see how it
relates to the results of Maskin (1987), Quinzii (1984), and Alaei et al. (2011):
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Corollary 1. If the induced configuration LP is always integral, a combinatorial
auction always has a Walrasian equilibrium.

In unit-demand settings, the induced configuration LP is a matching LP at any
fixed price p∗. Thus, it is integral and always has an integral optimum, and Wal-
rasian equilibria will always exist. This generalizes the results of Maskin, Quinzii
and Alaei et al. — Maskin studied a sibling of our general market model and
effectively showed that when bidders are unit demand, there is always an inte-
gral solution for every fixed point, while Alaei et al. directly show that Walrasian
equilibria exist for unit demand settings.

Another simple but useful corollary happens when the configuration LP is
independent of p∗:

Corollary 2. If the induced configuration LP is independent of p∗, then a com-
binatorial auction has a Walrasian equilibrium if and only if the configuration
LP has an integral optimum, regardless of any properties of p∗.

The dependence on p∗ cancels when utilities are quasilinear, and it explains why
we can simply talk about the configuration LP without talking about a specific
set of prices p∗.

Together, these results build a picture of the equilibrium landscape outside
quasilinearity — Walrasian equilibria still exist at least in a fractional form, but
testing existence in general is substantially more complicated. Existence is still
related to a configuration LP, but that LP can only be defined once prices p∗

are in hand.

Related Work. The objective of this paper is establishing existence characteri-
zation for competitive equilibria in combinatorial auction. The problem is closely
related to the existing literature in economics and theoretical computer science
from different directions. First, there is a prominent literature on competitive
equilibrium in combinatorial auctions for the quasilinear setting. These papers
characterize existence conditions for a Walrasian equilibrium and provide practi-
cal necessary conditions for a competitive equilibrium to exist in the quasilinear
setting such as gross substitute, e.g. Gul and Stacchetti (1999), Bikhchandani
and Mamer (1997), Bevia et al. (1999), Murota and Tamura (2001). People have
also thought about using the properties of competitive equilibria in quasilin-
ear settings when valuations are satisfying the gross substitute, such as lattice
structure (Gul and Stacchetti 1999), in order to design ascending auctions and
identifying the connections between the well-known VCG mechanism (Vickrey
1961; Groves 1973; Clarke 1971) and Walrasian equilibria (Kelso Jr and Crawford
1982; Cramton et al. 2006; Nisan et al. 2007). Closely related is the literature
on assignment games and core allocations, in which they tried to generalize the
stable matching concept (either one-to-one matching, one-to-many matching,
or many-to-many matching) to two-sided markets with indivisible goods and
quasilinear utilities, e.g. Shapley and Shubik (1971) and Echenique et al. (2004).

The second direction that connects our work to the literature is the exist-
ing work on non-quasilinear utilities (or non-transferable utilities) and two-sided
matching markets or general Arrow-Debreu market (Arrow and Debreu, 1954)
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with only one divisible good and unit-demand agents. The problem formulation
is as introduced by Demange and Gale (1985). The existence of competitive equi-
libria for non-quasilinear utilities was first proved by Quinzii (1984), Gale (1984),
Svensson (1984), and later by Kaneko and Yamamoto (1986). They showed if
there is a single divisible good (say money) in an economy and if agents are
unit-demand then there still exists a competitive equilibrium under certain rea-
sonable (monotonicity) conditions. There is also the work of Maskin (1987) on
fair allocation of indivisible goods with money, that provides a simpler proof
for the existence of the equilibrium with indivisible goods and only one divis-
ible item in the unit-demand case. More recently, there has been a work on
two-sided matching markets with non-transferable utilities by Alaei et al. (2011)
that followed a different combinatorial approach. They showed the existence of
competitive equilibrium when utility functions are monotone, and generalized
the lattice structure and properties associated with the minimum lattice point
to a general non-quasilinear setting.

2 Settings and Notations

We are looking at a combinatorial auction, in which we have a set I of m items
and a set B of n buyers interested in these items. For every x ∈ {0, 1}m and price
p ∈ R+, let ui(x, p) be the utility of bidder i if she gets bundle X = {j ∈ I :
xj = 1} of items under the price p. We assume utilities are strictly decreasing
and continuous with respect to the price p, and increasing with respect to xj for
every item j. The competitive equilibrium (also known as Walrasian equilibrium)
can be defined in this setting as follows.

Definition 1. A Walrasian Equilibrium (WE) is a pair of allocation and prices
({x(i)}ni=1, {pj}mj=1) that satisfies the following conditions:

– ∀i ∈ B and j ∈ I : x(i) ∈ {0, 1}m and pj ∈ R+.
– [Feasibility] ∀j ∈ I :

∑n
i=1 x

(i)
j ≤ 1.

– [Satisfaction] ∀i ∈ B : x(i) ∈ argmax
x′∈{0,1}m

ui(x′,
∑m

j=1 pjx
′
j),

– [Market clearance] ∀j ∈ I, if pj > 0 then
∑n

i=1 x
(i)
j = 1.

Besides WE, we also need to define a fractional equilibrium, in which each buyer
has a distribution over bundles of items. However, such an allocation is only
feasible in expectation, meaning that each item gets allocated with probability
less than or equal to 1. Note that such an equilibrium cannot be realized in
reality and it is just a solution concept that will shed insight on the structure
of WE, as we show later in this paper. More precisely, we have the following
definition:
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Definition 2. In a combinatorial auction (I,B, {ui(.)}i∈B), a fractional WE is
defined to be a pair of allocation and prices ({xi,S}, {pj}) such that

– ∀(i, S) ∈ B × 2I and j ∈ I : xi,S ∈ R+ and pj ∈ R+.
– [Feasibility] ∀j ∈ I :

∑

i∈B,S:j∈S

xi,S ≤ 1, ∀i ∈ B :
∑

S⊆I
xi,S = 1.

– [Satisfaction] ∀i ∈ B, if xi,S > 0 then 1S ∈ argmax
x′∈{0,1}m

ui(x′,
∑m

j=1 pjx
′
j).

– [Market clearance] ∀j ∈ I, if pj > 0 then
∑

i∈B,S:j∈S

xi,S = 1.

In this paper, we also talk about a special case of Arrow-Debreu markets
in which all commodities except one are indivisible. In such markets, there is
a set A of N of agents in the market who are interested in trading a set C
of M commodities. We assume all commodities are indivisible except the last
commodity j = M (we sometimes call this commodity ‘money’). Each agent i will
bring an endowment w(i) ∈ R

M
+ of commodities to the market to trade. Agent

i gets a utility of ũi(x) for an allocation x ∈ {0, 1}M−1 × R+ of commodities.
Moreover, we assume ũi(x) is strictly increasing with respect to xj for all j ∈ C
and continuous with respect to allocation of money, i.e. xM . We next define the
general market equilibrium for such a market.

Definition 3. A General Market Equilibrium (GME) is a pair of allocation and
prices ({x(i)}Ni=1, {pj}Mj=1) that satisfies the following conditions:

– ∀i ∈ A and j ∈ C/{M} : x
(i)
j ∈ {0, 1} and pj ∈ R+.

– ∀i ∈ A : x
(i)
M ∈ R+ and PM ∈ R+.

– [Satisfaction] ∀i ∈ A : x(i) ∈ argmax
j �=M :x′

j∈{0,1},x′
M∈R+

ũi(x′) s.t.
∑M

j=1 x′
jpj ≤

∑M
j=1 w

(i)
j pj.

– [Market clearance] ∀j ∈ C, if pj > 0 then
∑N

i=1 x
(i)
j =

∑N
i=1 w

(i)
j .

To define more notations for an Arrow-Debreu market with only one divisible
good, let Di({pj}j∈C) be the collection of feasible allocation of commodities to
agent i, such that each maximizes utility of agent i under prices {pj}j∈C and
they satisfy the budget constraint of agent i. In other words:

Di({pj}j∈C) � argmax
j �=M :x′

j∈{0,1},x′
M∈R+

ũi(x′) s.t.
M∑

j=1

x′
jpj ≤

M∑

j=1

w
(i)
j pj (1)

Let D̄i({pj}j∈C) be all vectors in Di({pj}j∈C) when we delete the allocation of
the divisible good, i.e. last coordinate, from all vectors. Define total demand
to be D({pj}j∈C) �

∑
i∈A Di({pj}j∈C) and the total demand for items to be

D̄({pj}j∈C) �
∑

i∈A D̄i({pj}j∈C), where summations are Minkowski summa-
tions of sets. Moreover, let D̃i = Conv(Di) and D̃ = Conv(D) where Conv(.) is
the convex hull of its argument. Clearly, all these sets are finite (because utility
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is strictly increasing in money and hence given an allocation of indivisible items
the allocation of money will be the unique number that fills the budget slack)
and hence convex hulls are well defined. Also, from the definition of convex hull
and Minkowski summation, D̃ =

∑
i∈A D̃i.

3 Reduction from Combinatorial Auction
to Arrow-Debreu Market

We start by defining a general Arrow-Debreu market with one divisible good.

Definition 4. Given a combinatorial auction (I,B, {ui(.)}i∈B), its correspond-
ing Arrow-Debreu market (C,A, {ũi(.)}i∈A, {w(i)}i∈A) is the following:

– There are M = m + 1 commodities, where the first m indivisible commodities
in C are items in I, and the last divisible commodity is a special commodity
called ‘money’.

– There are N = n + 1 agents:
• For every i ∈ [n] we have ũi(x, y) = ui(x, Z

n −y) for every x ∈ {0, 1}m, y ∈
R+, where Z is large enough such that Z >

∑n
i=1 ui(1, 0),

• The last agent is a special agent called the ‘seller’ and her utility is com-
puted as ũn+1(x, y) = y for every x ∈ {0, 1}m, y ∈ R+.

– For every i ∈ [n], endowment of agent i is w(i) = (0, . . . , 0, Z
n ). For the seller,

wn+1 = (1, . . . , 1, 0).

We now have the following lemma, which basically shows that the correspondence
described in Definition 4 preserves the equilibrium. The proof is provided in the
online version of this paper (Niazadeh and Wilkens 2016).

Lemma 2. A pair ({x(i)}ni=1, {pj}mj=1) is a WE for the combinatorial auction
(I,B, {ui(.)}i∈B) if and only if there exists a GME ({x̃(i)}Ni=1, {p̃j}Mj=1) for its
corresponding Arrow-Debreu market denoted by (C,A, {ũi(.)}i∈A, {w(i)}i∈A) as
in Definition 4 such that ∀(i, j) ∈ [N −1]× [M −1] : x̃

(i)
j = x

(i)
j , x̃

(N)
M =

∑m
j=1 pj,

∀j ∈ [M − 1] : p̃j

p̃M
= pj and p̃M > 0.

4 A Generalization of Configuration LP

In this section, we start exploring the connections between welfare maximization
and WE for non-quasilinear utilities in combinatorial auctions. In the quasilinear
world, where ui(x, p) = vi(x) − p, the following connections are known:

– The combinatorial auction configuration LP, i.e. the following linear program

maximize
∑

i∈B,S⊆I
xi,Svi(1S)

subject to
∑

S⊆I
xi,S ≤ 1, i ∈ B.

∑

i∈B

∑

S⊆I:j∈S

xi,S ≤ 1, j ∈ I.

xi,S ≥ 0, i ∈ B, S ⊆ I.
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that characterizes maximum welfare allocations, has an integral optimal solu-
tion if and only if WE exists.

– A vector of prices is a WE price vector if it forms an optimal solution to the
dual of the configuration LP. Moreover, if a dual solution can be supported
by an integral feasible primal, then it is a WE price vector.

The question we address here is how can one generalize these concepts to the
case of non-quasilinear utilities, in the hope that they shed some insights on
existence and structural properties of WE for non-quasilinear utilities. To this
end, we first define an equivalent quasilinear value function for each bidder,
which will act similar to the value function in the quasilinear configuration LP.

Definition 5. Fix a vector of prices p∗. For bidder i with utility function
ui(x, p), the equivalent quasilinear value function at price vector p∗ is defined as

v
(p∗)
i (x) � ui(x,

m∑

j=1

xjp
∗
j ) +

m∑

j=1

p∗
j (2)

As it can be seen from the definition, the equivalent quasi-linear value func-
tion, together with prices p∗, will generate the same utility as the original utility
function, if we assume quasi-linearity. Given the definition of an equivalent qua-
silinear value function for each bidder at a fixed price vector p∗, here is a natural
generalization to the configuration LP. The program maximizes welfare with
respect to the equivalent quasilinear value function.

Definition 6 (Induced configuration LP at price p∗). Fixing a price vector
p∗, the induced configuration LP at price p∗ is defined as the following linear
program with variables {xi,S}i∈B,S⊆I (allocation):

maximize
∑

i∈B,S⊆I
xi,Sv

(p∗)
i (1S)

subject to
∑

S⊆I
xi,S ≤ 1, i ∈ B.

∑

i∈B

∑

S⊆I:j∈S

xi,S ≤ 1, j ∈ I.

xi,S ≥ 0, i ∈ B, S ⊆ I.

Similar to the quasilinear utilities, one can look at the dual program of the linear
program in Definition 6 which sheds more insights on the structure of the WE,
as we show later in this paper.

Definition 7 (Dual induced configuration LP at price p∗). Fixing a price
vector p∗, the dual of the induced configuration LP in Definition 6 is the following
linear program with variable {ui}i∈B(utilities) and {pj}j∈I(prices).

minimize
∑

i∈B
ui +

∑

j∈I
pj

subject to
∑

j∈S

pj + ui ≥ v
(p∗)
i (1S), i ∈ B, S ⊆ I.

ui ≥ 0, pj ≥ 0, i ∈ B, j ∈ I.
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In the next section we show how the linear programs in Definitions 6 and 7 are
related to the existence of WE in non-quasilinear settings.

5 Main Results and Their Applications

Our main result is proving the existence of WE under necessary and sufficient
structural conditions, and bridging the gap between the concept of WE and con-
figuration LP for non-quasilinear utilities. More accurately, we show the induced
configuration LP in Definition 6 is strong enough to provide us with necessary
and sufficient conditions for the existence of equilibrium, however we have to
look at this LP when p∗ is also an equilibrium price vector. Using the reduction
in Sect. 4 to general markets, we show such item prices always exist. Moreover,
it turned out that by using the primal-dual LP machinery one can show such
prices will get supported by an integral allocation to form a WE if and only if
the corresponding induced configuration LP has an integral optimal solution.

Definition 8. Fix a combinatorial auction (I,B, {ui(.)}i∈B) and consider its
corresponding Arrow-Debreu market (C,A, {ũi(.)}i∈A, {w(i)}i∈A), as defined in
Sect. 4. The market correspondence φ is defined as follows.

∀(p, d) ∈ R
M
+ × R

M
+ : φ(p, d) = (D̃(p),F(d)), (3)

where F(d) � argmax
p̂∈R

M
+

p̂.(d − (1, 1, . . . , 1, Z)) and D̃(p) is the convex hull of

total demand set D(p). We say a point (p, d) is a fixed point of the market
correspondence if

(p, d) ∈ φ(p, d) = (D̃(p)),F(d)). (4)

As we will show later, the fixed point of market correspondence φ defined
in Definition 8 always exists, under monotonicity assumptions on utility func-
tions. This fixed point is essentially giving us an equilibrium price vector that
can be supported by a fractional allocation of items to buyers in a way that
it produces an envy-free market clearing outcome (i.e. an outcome that every-
one gets an optimal allocation under prices and market clears). However, we
expect integral allocations in a WE of the combinatorial auction. To address this
we utilize the induced configuration LP defined in Definition 6 and its dual in
Definition 7 at the fixed point price to see if the supporting fractional allocation
can basically be decomposed into integral allocations. This helps us to find a
structural characterization for WE. Putting all the pieces together, we get two
main results.

Theorem 3. Given a combinatorial auction (I,B, {ui(.)}i∈B) in which for
every buyer i the utility function ui(x, p) is increasing with respect to alloca-
tion of items, and strictly decreasing and continuous with respect to the money,
a fractional WE (Definition 2) always exists.
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Theorem 4. Given a combinatorial auction (I,B, {ui(.)}i∈B) that satis-
fies conditions in Theorem3, and its corresponding Arrow-Debreu market
(C,A, {ũi(.)}i∈A, {w(i)}i∈A) as in Definition 4, a pair of prices and allocation
({pj}j∈I , {x(i)}i∈B) is a WE if and only if:

– ∃ p̃ ∈ R
M
+ and d̃ ∈ R

M
+ s.t. p̃M > 0, d̃M = Z, j ∈ [m] : pj = p̃j

p̃M
and (p̃, d̃) is

a fixed point of φ.
– {xi,S} is an optimal integral solution for the induced configuration LP at prices

p∗ = p, where ∀i ∈ B, S ⊆ I : xi,S = 1 ⇐⇒ j ∈ S : x
(i)
j = 1.

While our main results in Theorems 3 and 4 characterize structural necessary
and sufficient conditions for the existence of competitive equilibria, there are
simple corollaries of these theorems that are of interest. The first corollary, whose
proof can be seen from the proofs of Theorems 3 and 4 in Sect. 6, states the
relationship between the dual of induced configuration LP at some price p∗ and
prices in a competitive equilibrium (either fractional or integral).

Corollary 3. For a combinatorial auction (I,B, {ui(.)}i∈B) and its correspond-
ing Arrow-Debreu market (C,A, {ũi(.)}i∈A, {w(i)}i∈A), these statements are
equivalent:

– Price vector p is a fractional WE price vector, as in Definition 2.
– There exists a price vector p̃ ∈ R

M
+ s.t. (p̃, d̃) is a fixed point of the market

correspondence φ and pj = p̃j

p̃M
.

– Let ui = max
S⊆I

v
(p)
i (1S) − ∑

j∈S pj. Then (u, p) is an optimal solution to the

dual of induced configuration LP at price p.

Another corollary of our main result is the connection between fractional
WE, as in Defintion 2, and true (integral) WE, as in Definition 1. In fact, by
directly applying Corollary 3 to Theorem 4 one can restate Theorem 4 through
the following corollary, which bypasses the relationship to markets and reveals
the relationship between fractional and integral WE.

Corollary 4. Given a combinatorial auction (I,B, {ui(.)}i∈B) that satisfies
conditions in Theorem3, a pair of prices and allocation ({pj}j∈I , {x(i)}i∈B) is a
WE if and only if:

– p is a price vector of a fractional WE, as in Definition 2.
– {xi,S} is an optimal integral solution for the induced configuration LP at prices

p∗ = p, where ∀i ∈ B, S ⊆ I : xi,S = 1 ⇐⇒ j ∈ S : x
(i)
j = 1.

The next corollary of our results is the existence of competitive equilibrium
for the special case of unit-demand bidders (or matching markets). In this case,
each buyer is interested in at most one item and a feasible allocation is an
integral matching. Our result, somehow surprisingly, will give a simple proof
for the existence of WE in this setting, which has been observed and proved
in the literature first by Quinzii (1984), and later by Alaei et al. (2011) and
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Maskin (1987) - Maskin and Quinzii studied the matching markets with one
divisible goods and showed the existence of an envy-free outcome in such a
market, while Alaei et al. directly showed that competitive equilibrium exists by
a combinatorial proof.

Corollary 5. (Alaei et al. 2011; Quinzii 1984; Maskin 1987) In a special case
of unit-demand bidders, if the utilities are increasing with respect to the alloca-
tion and strictly decreasing and continuous with respect to money, competitive
equilibrium always exists.

Proof. Pick any price vector p∗ and look at the induced configuration LP at this
price. Interestingly, the feasible polytope of such LP is the matching polytope.
We know matching polytope is integral (Schrijver 1983), and hence there always
exists an integral optimal solution to the induced configuration LP at any price
vector p∗. As we show later in the proof of Theorem 3, there always exists a frac-
tional WE price vector p under the conditions in the statement of the corollary.
Now, induced configuration LP at price p has an optimal integral primal solution
x that supports any optimal solution (p̂, û) of the dual program (meaning that
for each bidders i the item she gets in x is her preferred item under prices p̂, she
gets a utility ûi and also market clears). According to Corollary 3, p is also an
optimal dual solution for the induced configuration LP at price p, and hence x
supports p. So (x, p) forms a WE for the matching market.

The last corollary of our result is a simple proof for the classic result of
Gul and Stacchetti (1999), in which they demonstrate the relationship between
competitive equilibria and configuration LP in the case of quasilinear utilities
(which is the case when ui(x, p) = vi(x) − p for all i ∈ B, where vi(1S) denotes
the value of bidder i for bundle S). In fact, in the special case of quasilinear,
the induced configuration LP at any price p∗ will not be a function of p∗, as
v
(p∗)
i (1S) = ui(1S ,

∑
j∈S p∗

j )+
∑

j∈S p∗
j = vi(1S). We therefore have the following

corollary.

Corollary 6. (Gul and Stacchetti 1999) Given a combinatorial auction with
quasilinear utilities, a WE exists if and only if the configuration LP has an
integral optimal solution.

Proof. Mixing Theorem3 and Corollary 4, we conclude there always exist a price
vector p such that it is a factional WE price vector and together with {ui},
where ui = max

S⊆I
vi(1S) − ∑

j∈S pj , forms an optimal solution to the dual of

configuration LP. So, using Theorem4 a WE exists if and only if there exists an
integral optimal solution for the configuration LP.

6 Proofs of the Main Results

6.1 Proof of Theorem3

We begin by looking at the market correspondence φ (Definition 8). We have
the following lemma, whose proof is basically by Kakutani’s fixed point the-
orem (Kakutani et al. 1941) and is provided in the online version of this
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paper (Niazadeh and Wilkens 2016). Checking the conditions of this theorem
is technical and we omit the details for the sake of brevity. We assert that the
proof is similar to the fixed-point proof in (Arrow and Debreu 1954) or (Maskin
1987) with some minor modifications.

Lemma 3. If for all i ∈ B, ui(x, p) satisfies the following conditions:

– Continuous with respect to p,
– Increasing with respect to xj : j ∈ I,
– Strictly decreasing with respect to p,

then the market correspondence φ will have a fixed point.

6.2 Proof of Theorem4.

[Part 1, ‘if ’ Direction]. Suppose (p̃, d̃) is a fixed point of the correspondence
φ (this fixed point always exists, due to Lemma 3, and p̃M > 0). Now, following
the proof of Theorem3, there exists a fractional WE ({x̃i,S}i∈B,S⊆I , {pj}j∈I),
as in Definition 2, such that j ∈ [m] : pj = p̃j

p̃M
. Now fix p∗ = p and consider the

induced configuration LP at p∗. Note that {x̃i,S} is a feasible solution for this LP
by the definition of fractional WE. For every i ∈ B let ui = max

S⊆I
ui(1S ,

∑
j∈S pj).

Then (u, p) will form a feasible solution for the dual of induced configuration LP
at price p∗ = p, simply because ∀i ∈ B : ui ≥ 0, ∀j ∈ I : pj ≥ 0 and we have:

∀i ∈ B,S ⊆ I : ui +
∑

j∈S

pj ≥ ui(1S ,
∑

j∈S

pj) +
∑

j∈S

pj = v
(p∗)
i (1S) (5)

We next prove that (u, p) will form an optimal solution for the dual of induced
configuration LP at price p∗ = p, by supporting this feasible dual solution with
the feasible primal solution {x̃i,S}. This can be done by the method of comple-
mentary slackness as following:

– if x̃i,S > 0, then by Definition 2 we have 1S ∈ argmax
x′∈{0,1}m

ui(x′,
∑m

j=1 pjx
′
j).

Therefore,

ui +
∑

j∈S

pj = ui(1S ,
∑

j∈S

pj) +
∑

j∈S

pj = v
(p∗)
i (1S). (6)

– if pj > 0, then by Definition 2 we have
∑

i∈B,S:j∈S x̃i,S = d̃j = 1.
– Due to the proof of Theorem3, there always exists at least one point in the

convex combination of demanded vectors of buyer i, and hence if ui > 0 then∑
S⊆I xi,S = 1.

So (u, p) is an optimal dual solution. Now suppose {xi,S} be an optimal integral
solution to configuration LP at price p. Accordingly, {xi,S} and (u, p) should sat-
isfy complementary slackness conditions. These conditions show why ({xi,S}, p)
will form a WE:
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– Proof of satisfaction: due to complementary slackness, if buyer i gets bundles
S, then xi,S = 1 > 0, and therefore:

ui +
∑

j∈S

pj = v
(p∗)
i (1S) ⇒ ui(1S ,

∑

j∈S

pj) = ui = max
S′⊆I

ui(1S′ ,
∑

j∈S′
pj). (7)

– Proof of market clearance: due to complementary slackness, if pj > 0, then
∑

i∈B,S:j∈S

xi,S = 1

as desired.

So, putting all pieces together, we conclude that (x, p) is a WE for the combinato-
rial auction, where pj = p̃j

p̃M
, (p̃, d̃) is a fixed point of the market correspondence

φ, as stated in the Theorem 4, and x
(i)
j = 1 ⇐⇒ j ∈ S, xi,S = 1. 
�

[Part 2, ‘only If’ Direction]. The proof is provided in the online version of
this paper (Niazadeh and Wilkens 2016).

7 Conclusion

In the study of Walrasian equilibria, it is standard to assume that bidders have
utilities that are quasilinear in money. Unfortunately, this is a strong assumption
that has attracted little attention. We strive to study Walrasian equilibria in
general combinatorial auction settings without assuming utilities are quasilinear,
and our main results shed light on when they exist. Unsurprisingly, we find
that some of the strong results for quasilinear bidders break when we relax our
utility model. We show structure that does exist, and how it connects to a few
key results for general quasilinear and unit demand non-quasilinear settings;
however, we have only touched a small fraction of what is known about the
quasilinear setting, and that is one source of interesting open questions. For
example:

– What natural properties of utility functions guarantee the existence of Wal-
rasian equilibria? In quasilinear settings, it is known that gross substitutes is
sufficient in a combinatorial auction.

– When do equilibria have a lattice structure? It is known that in quasilinear
settings and in unit-demand non-quasilinear ones, Walrasian equilibria have a
lattice structure. Does this exist more generally?

Another direction for research surrounds generalizations of Walrasian equilibria:

– When do combinatorial Walrasian equilibria exist in general? In quasilinear
settings where Walrasian equilibria fail to exist, one line of research shows
that a kind of combinatorial equilibrium does exist (Feldman et al. 2016).
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A third direction for research is to ask when quasilinearity is justified:

– What kinds of micromarkets naturally lead to quasilinear relationships with
the global market? Taking the view that Walrasian equilibria capture a small
slice of a market, one should be able to identify conditions under which a
micromarket naturally has a quasilinear relationship with the other options
available to an agent.

References

Alaei, S., Jain, K., Malekian, A.: Competitive equilibrium in two sided matching mar-
kets with general utility functions. ACM SIGecom Exchanges 10(2), 34–36 (2011)

Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econo-
metrica: J. Econom. Soc. 22, 265–290 (1954)

Bevia, C., Quinzii, M., Silva, J.A.: Buying several indivisible goods. Math. Soc. Sci.
37(1), 1–23 (1999)

Bikhchandani, S., Mamer, J.W.: Competitive equilibrium in an exchange economy with
indivisibilities. J. Econ. Theor. 74(2), 385–413 (1997)

Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)
Cramton, P.C., Shoham, Y., Steinberg, R., et al.: Combinatorial Auctions, vol. 475.

MIT press, Cambridge (2006)
Demange, G., Gale, D.: The strategy structure of two-sided matching markets. Econo-

metrica: J. Econom. Soc. 53, 873–888 (1985)
Echenique, F., Oviedo, J.: A theory of stability in many-to-many matching markets

(2004)
Feldman, M., Gravin, N., Lucier, B.: Combinatorial walrasian equilibrium. SIAM J.

Comput. 45(1), 29–48 (2016)
Gale, D.: Equilibrium in a discrete exchange economy with money. Int. J. Game Theor.

13(1), 61–64 (1984)
Groves, T.: Incentives in teams. Econometrica: J. Econom. Soc. 41, 617–631 (1973)
Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. Econ. Theor.

87(1), 95–124 (1999)
Kakutani, S., et al.: A Generalization of Brouwer’s Fixed Point Theorem. Duke

University Press, Durham (1941)
Kaneko, M., Yamamoto, Y.: The existence and computation of competitive equilibria

in markets with an indivisible commodity. J. Econ. Theor. 38(1), 118–136 (1986)
Kelso Jr., A.S., Crawford, V.P.: Job matching, coalition formation, gross substitutes.

Econometrica: J. Econom. Soc. 50, 1483–1504 (1982)
Maskin, E.S.: On the fair allocation of indivisible goods. In: Feiwel, G.R. (ed.) Arrow

and the Foundations of the Theory of Economic Policy, pp. 341–349. Springer,
Heidelberg (1987)

Murota, K., Tamura, A.: Computation of Competitive Equilibria of Indivisible Com-
modities Via M-convex Submodular Flow Problem. Kyoto University, Research Insti-
tute for Mathematical Sciences, Kyoto (2001)

Niazadeh, R., Wilkens, C.A.: Competitive equilibria for non-quasilinear bidders in com-
binatorial auctions. CoRR, abs/1606.06846 (2016)

Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory,
vol. 1. Cambridge University Press, Cambridge (2007)



130 R. Niazadeh and C.A. Wilkens

Quinzii, M.: Core and competitive equilibria with indivisibilities. Int. J. Game Theor.
13(1), 41–60 (1984)

Schrijver, A.: Short proofs on the matching polyhedron. J. Comb. Theor. Ser. B 34(1),
104–108 (1983)

Shapley, L.S., Shubik, M.: The assignment game I: the core. Int. J. Game Theor. 1(1),
111–130 (1971)

Svensson, L.-G.: Competitive equilibria with indivisible goods. J. Econ. 44(4), 373–386
(1984)

Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finan.
16(1), 8–37 (1961)



Correlated and Coarse Equilibria of Single-Item
Auctions

Michal Feldman1,2, Brendan Lucier2(B), and Noam Nisan2,3

1 Tel Aviv University, Tel Aviv, Israel
michal.feldman@cs.tau.ac.il

2 Microsoft Research, Redmond, USA
brlucier@microsoft.com

3 Hebrew University, Jerusalem, Israel
noam@cs.huji.ac.il

Abstract. We study correlated equilibria and coarse equilibria of sim-
ple first-price single-item auctions in the simplest auction model of full
information. Nash equilibria are known to always yield full efficiency and
a revenue that is at least the second-highest value. We prove that the
same is true for all correlated equilibria, even those in which agents over-
bid – i.e., bid above their values.

Coarse equilibria, in contrast, may yield lower efficiency and revenue.
We show that the revenue can be as low as 26% of the second-highest
value in a coarse equilibrium, even if agents are assumed not to overbid,
and this is tight. We also show that when players do not overbid, the
worst-case bound on social welfare at coarse equilibrium improves from
63% of the highest value to 81%, and this bound is tight as well.

1 Introduction

A very basic tenet of economic theory is to analyze strategic situations such as
games or markets in equilibrium. The logic being that systems will typically reach
an equilibrium point, following some dynamic, a dynamic that may be difficult
to understand or analyze. Of course, in order for the equilibrium concept to be
predictive, it must correspond to outcomes of the types of dynamics we consider
possible. In Game Theory, the leading equilibrium concept is a Nash equilibrium.

In Algorithmic Game Theory, Nash equilibrium is not the only notion of
equilibrium that is considered. On the one hand, it is typically computationally-
hard to find a Nash equilibrium, and so it is questionable whether a Nash equi-
librium can be viewed as a reasonable prediction of an outcome of a game. In
contrast, there are a host of natural “learning-like” dynamics that converge to
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more general notions of equilibria, specifically to correlated equilibria or to the
even more general coarse equilibria1 which often seem to be more natural predica-
tions than Nash equilibria. It is thus common to consider also these more general
notions of equilibrium in scenarios studied in Algorithmic Mechanism Design.

This extension of our concept of the class of possible equilibria has a bright
side and a dark side. On the negative side, if we accept that one of these gener-
alized equilibria notions is a possible outcome, then we need to ensure that all
such equilibria produce whatever result is desired by us (in terms of “Price of
Anarchy”, we can get worse bounds as we need to take the worst case perfor-
mance over a wider set of equilibria.) On the positive side, in cases where we can
control the equilibrium reached (e.g. by coding specific dynamics into software),
we may take advantage of the extra flexibility to obtain better equilibrium points
(in terms of “Price of Stability”, we may get better bounds, as we can choose
an equilibrium within a wider class).

In this paper we study correlated equilibria and coarse equilibria in the sim-
plest auction model: a full-information first-price auction of a single item. This
is the simplest instance in the class of simultaneous auctions, which has received
much attention lately [1,3,9,12,18]. Here too the literature is concerned both
about the difficulty of reaching equilibria [2,5–7] and about the additional loss
of efficiency or revenue in these generalized types of equilibria.2 A loss of effi-
ciency here corresponds to misallocation of the item (i.e., the winner not being
the bidder with the highest value), while a loss of revenue may also be viewed
as a type of implicit self-stabilizing collusion between the bidders [14].

For concreteness, consider the case where Alice has value 1 for the item
and Bob has value 2, where the values are common knowledge and they are
participating in a first price auction. In this game the strategy space of each
bidder is the set of possible bids (non-negative numbers), and the outcome from
a pair of bids a by Alice and b by Bob is that Alice wins whenever a > b and
pays a (so her utility is 1 − a and Bob’s utility is 0) and Bob wins whenever
b > a and pays b (so his utility is 2− b and Alice’s utility is 0). For simplicity, let
us assume that ties are broken in favor of Bob, i.e. that he wins whenever b ≥ a.

It is quite easy to analyze the pure Nash equilibria of this game: for every
value of 1 ≤ v ≤ 2 there exists an equilibrium where both Alice and Bob bid the
same value v, and Bob wins the tie. In the general case of first price auctions,
the price v may be anything between the first price and the second price in the
auction.3 While non-trivial, it is also not difficult to analyze the mixed Nash
equilibria of this game, where it turns out that every mixed Nash equilibrium is
outcome-equivalent to a pure Nash equilibrium [4]. “Outcome equivalent” means
that we get the same distribution of the identity of the winner and of his payment.
In particular, all mixed (or pure) Nash equilibria of a full-information first price
auction attain perfect social welfare (i.e., the player with highest value always

1 Sometimes called “coarse correlated equilibria” [19] or “Hannan consistent” [10].
2 For example, while pure Nash equilibria of simultaneous first-price auctions are

known to be fully efficient, mixed Nash equilibria may not [12].
3 This requires that the player with the highest value – Bob in our example – wins

the tie; otherwise no pure equilibrium exists but arbitrarily close ε-equilibria do.
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wins) and have revenue that is bounded below by the second highest value in
the auction (and from above by the highest value).

What about correlated equilibria and coarse equilibria? Correlated equilibria
give a richer class of outcomes, since certainly a single correlated equilibrium can
mix between several pure equilibria. Our first result shows that this is all that
can be obtained, so in particular, correlated equilibria also yield perfect social
welfare and a revenue that is at least the second highest value.

Theorem: Every correlated equilibrium of a first-price auction is outcome-
equivalent to a mixture of pure Nash equilibria.

In [14] a similar theorem was proved for the special case of symmetric bidders,
even in Bayesian settings. Whether or not correlated equilibria can be richer in
non-symmetric Bayesian settings remains open.4 There are several other known
cases of games where correlated equilibria cannot improve upon Nash equilibria
(see [15] and references therein). In [8] it was shown, in a more general setting
than the one described here, that there is a unique correlated equilibrium if
one eliminates weakly dominated strategies. That is, if no player ever bids above
their value. Indeed, the only correlated equilibrium satisfying this constraint is
the pure Nash equilibrium in which both agents bid the second-highest value.

We then turn our attention to coarse equilibria, and it turns out that a wider
set of outcomes becomes possible. In [17] a coarse equilibrium is exhibited in
a two-player single-item auction that is not outcome-equivalent to a mixture of
pure auctions. In fact, its welfare is only 1 − 1/e ≈ 63% of the optimum. This
matches the general Price of Anarchy upper bound given in [18] (established
via the smoothness technique [16,18]), which applies even to general multi-item
simultaneous auctions with XOS bidders. For multi-item simultaneous auctions,
this bound of 1 − 1/e is tight even with respect to Nash equilibria [4], but for
single-item auctions, as we have seen, it is only tight for coarse equilibira and
not for correlated or for Nash equilibria.

The example that attains this low welfare has the undesirable property that
it uses weakly dominated strategies. That is, in this example, the support of the
coarse equilibrium contains strategies where one of the players bids above his
value. This use of dominated bidding strategies seems highly unnatural, so it is
natural to ask whether there exist other inefficient coarse equilibria that do not
use overbidding. Consider the example given in Table 1, of a coarse equilibrium,
where ε is some small enough constant (e.g. ε = 10−4).

One may directly verify that this is indeed a coarse equilibrium.5 This finite
equilibrium allocates the item to Alice sometimes, and so the social welfare that

4 Note, however, that in asymmetric Bayesian settings, even in (Bayesian) Nash equi-
libria, the winner is not necessarily the bidder with the highest valuation [13].

5 Ignoring O(ε) terms, at equilibrium we have: For Alice: uA = 0.02 ∗ 1 + 0.02 ∗
0.9 = 0.038 while deviating to 0 would yield utility 0.02, deviating to 0.1 yield
utility 0.036, deviating to 0.5 yield utility 0.035, deviating to 0.8 yield utility 0.036,
deviating to 0.9 yield utility 0.37 and deviating to 1 yield utility 0. For Bob we have
uB = 0.03 ∗ 1.5 + 0.11 ∗ 1.2 + 0.19 ∗ 1.1 + 0.63 ∗ 1 = 1.016, but deviating to 1 would
give utility 1, and deviating to anything below 1 would loose with probability of at
least 63% leading to utility that is certainly less than 1.
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Table 1. A coarse equilibrium in an auction with vAlice = 1, vBob = 2

Probability Alice’s Bid Bob’s Bid

2% ε 0

2% 0.1 + ε 0.1

3% 0.5 − ε 0.5

11% 0.8 − ε 0.8

19% 0.9 − ε 0.9

63% 1 − ε 1

it reaches is not perfect! Also notice that the winner pays at most 1 for the item,
but sometimes pays strictly less than 1, and thus the revenue is strictly smaller
than the second price!

This leads us to a natural question: what is the lowest welfare possible in a
coarse equilibrium where no player overbids? We might term this ratio “PoUA”
– “the price of undominated anarchy”. We show that indeed insisting that players
never overbid ensures a significantly higher share of welfare, and provide tight
bounds for it. To the best of our knowledge, this is the first indication that a no-
overbidding restriction improves worst case guarantees in first-price auctions.6

Theorem: In every coarse equilibrium of a single-item first-price auction where
players never bid above their value, the social welfare is at least a c fraction of
the optimal, where c ≈ 0.813.

Theorem: There exists a single-item first-price auction with two players that
has a coarse equilibrium where players never bid above their value, whose social
welfare is only a c ≈ 0.813 fraction of the optimal welfare.

We then focus our attention on the revenue of the auction. While Nash equi-
libria and correlated equilibria always yield revenue that is at least the second
highest value, our example above has shown that coarse equilibrium may yield
lower revenue. We ask how low may this revenue be, and provide a tight bound:

Theorem: In every coarse equilibrium of any single-item first-price auction, the
revenue is at least 1 − 2/e ≈ 26% of the second highest value.

Theorem: There exists a single-item first-price auction with two players that
has a coarse equilibrium where players never bid above their value whose revenue
is only 1 − 2/e ≈ 26% of the second highest value.

Notice that here we get the same bound whether or not players may bid
above their value. This lower bound is obtained in a symmetric instance (i.e.,
where the two players have the same value). We remark that in large symmetric
instances the revenue approaches the value of the players. We also show that
as the gap between the highest value and the second highest value increases,

6 In contrast, for multi-item simultaneous auctions, the 1−1/e bound is tight for XOS
valuations even without overbidding [3].



Correlated and Coarse Equilibria of Single-Item Auctions 135

the revenue approaches the second highest value. This is in contrast to social
welfare, where noted above the inefficiency may persist even when the gap in
the players’ values is arbitrarily large.

2 Preliminaries

We will focus on an auction with n players and a single item for sale. Player i
has value vi for the item, and we index the players so that v1 ≥ v2 ≥ . . . ≥ vn.

The auction proceeds as follows: the players simultaneously submit real-
valued bids, x = (x1, . . . , xn). Ties are broken according to a fixed tie-breaking
function, which maps the (maximal) bids to a winner. Player i wins when xi ≥ xj

for all j and the tie at value xi (if any) is broken in favor of player i, which we
denote by xi � x−i. The winner pays his or her bid.

Given a joint distribution D over the bids of the players, the expected
payment of player i is Ex∼D[xi · 1xi�x−i

], so his expected utility is ui =
vi · Prx∼D[xi � x−i] − Ex∼D[xi · 1xi�x−i

].
We will study correlated and coarse correlated equilibria. The following defi-

nitions are tailored to our auction setting; a more general definition of correlated
equilibria for infinite games can be found in Hart and Schmeidler [11].

Definition 1. A joint distribution D over bids is a correlated equilibrium if,
for every player i and every (measurable) deviation function bi : R → R of player
i, it holds that

vi · Prx∼D[xi � x−i] − Ex∼D[xi · 1xi�x−i
]

≥ vi · Prx∼D[bi(xi) � x−i] − Ex∼D[bi(xi) · 1bi(xi)�x−i
].

Definition 2. A joint distribution D over bids is a coarse correlated equilibrium
(or coarse equilibrium for short) if, for every player i and for every unilateral
deviation x′

i ∈ R of player i, it holds that

vi · Prx∼D[xi � x−i]− Ex∼D[xi · 1xi�x−i
] ≥ vi · Prx∼D[x′

i � x−i]− Ex∼D[x′
i · 1x′

i�x−i
].

In each of these definitions, we can interpret xi as a bid that is recommended
to agent i by a coordinator of the equilibrium. We will sometimes refer to agent
i as being “told to bid xi” when this interpretation is convenient. Under this
interpretation, correlated equilibria are immune to deviations that can condition
on the recommended bid, whereas coarse equilibria need only be immune to
unconditional deviations (i.e., constant bidding functions).

2.1 Tie Breaking

Before we continue, a word about tie-breaking is in order. All of our theorems
that claim something for all equilibria will hold for every tie breaking rule. In our
constructions, we will allow ourself to choose a tie breaking rule to our liking.
Note however that if the tie breaking rule is not to the reader’s liking, in a joint
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distribution over x we can always avoid any dependence on it by increasing one
of the maximal bids by ε, which would give us an ε-equilibrium (rather than an
exact one). Thus every construction of an equilibrium that we provide using a
particular tie-breaking rule immediately implies also an ε-equilibrium for any tie
breaking rule and any ε > 0.

2.2 The Distribution on the Winning Price

When analysing revenue and welfare in an equilibrium, it will be most convenient
to consider the single-dimensional distribution on the winning price, i.e., on
maxi{xi}. We will denote the cumulative distribution on the winning price by
F . The revenue can be easily expressed in terms of F as Revenue = Ex∼F [x] =∫

(1 − F (x))dx (where the integration is over the support of the distribution).
The starting point for our analysis of coarse equilibria is the following. Sup-

pose there are n = 2 players, say Alice and Bob, with values 1 and v ≤ 1
respectively. If Alice chooses to deviate from the equilibrium to some fixed bid
x, then her utility will be (1 − x) · FBob(x) ≥ (1 − x) · F (x) (this expression
ignores the possibility of a tie), where FBob is the cumulative distribution of
Bob’s bid, which is certainly stochastically dominated by the cumulative dis-
tribution on the winning bid. In our constructions we will typically have both
Alice and Bob always bidding the same value x = y (where this joint value is
distributed according to F ), and thus will have FBob = F .

Denoting Alice’s utility at equilibrium by α, a necessary condition that this
deviation is not profitable is thus α ≥ (1 − x) · F (x), i.e. that F (x) ≤ α/(1 − x).
Similarly for Bob we must have F (x) ≤ β/(v − x), where β is Bob’s utility
at equilibrium. Thus if F corresponds to a coarse equilibrium then it must be
stochastically dominated by the minimum of these two expressions.

The following simple calculation states the closed form expression for the
revenue of a distribution of this form.

Lemma 1. Let the cumulative distribution function G = Ga,b be defined by
G(x) = a/(b − x) for 0 ≤ x ≤ b − a. Then, EG[x] = b − a + a ln(a/b).

3 Correlated Equilibrium

The goal of this section is to establish that every correlated equilibrium of a
first-price auction is outcome-equivalent to a mixture of pure Nash equilibria.
This characterization implies that the revenue of the auctioneer is always at least
the second-highest value, v2. We begin by showing that the winning bid is never
lower than the second-highest of the players’ values.

Lemma 2. For every correlated equilibrium D, Prx∼D[maxi{xi} < v2] = 0

Proof. Assume otherwise. We will derive a contradiction by finding a utility-
improving deviation for one of the two highest-valued bidders.
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Let S = {p|Prx∼D[maxi{xi} < p] > 0}, and let p∗ = inf(S) < v2. That is, p∗

is the infimum of the support of winning bids, which by assumption is less than
v2. Fix some p∗ < p < (p∗ + v2)/2, and define δ = Prx∼D[maxi{xi} < p] > 0.

Consider players 1 and 2. (Recall that players are indexed from largest value
to smallest.) One of the two players must be winning with a bid less than p with
probability at most δ/2, say player j. That is, Prx∼D[p > xj � x−i] ≤ δ/2,
recalling that xj � x−i means that either xj is strictly larger than the other
bids, or that it is weakly larger and the tie is broken in favor of player j.

Player j is the bidder for which we will construct a deviation. As expected, we
will exploit the non-coarse nature of the equilibrium, constructing a deviation
for bidder j that depends on the bid suggested by the (supposed) correlated
equilibrium. Choose ε > 0 so that p + 2ε < (p∗ + v2)/2 (which is possible by
the choice of p above). Then define a deviation function bj by bj(xj) = p + ε for
all xj ≤ p, and bj(xj) = xj for all xj > p. That is, when being told any value
xj ≤ p, player j bids instead p + ε. On the up side, this will certainly win all
the cases where maxi{xi} < p, increasing the probability of winning by at least
δ/2 and thus increasing his utility by at least δ · (v2 − p − ε)/2. On the down
side, player j now pays p + ε when he wins rather than his original bid xj . Since
player j never won when xj < p∗ (as Prx∼D[maxi{xi} < p∗] = 0, by definition
of p∗) he pays at most (p − p∗) + ε more whenever he wins, which happened
with probability of at most δ/2. Thus the down side of player j’s utility from
deviation is at most δ · (p − p∗ + ε)/2. So the deviation is profitable whenever
δ · (v2 − p − ε)/2 > δ · (p − p∗ + ε)/2 which is the case due to our choice of ε.

We next show that only the players with the highest value can win in a
correlated equilibrium.

Lemma 3. For every correlated equilibrium D, and any player i such that vi <
v1, we have Prx∼D[xi � x−i] = 0.

Proof. By Lemma 2, no bidder ever wins with a bid (and hence price) strictly
less than v2. On the other hand, if any player i > 1 ever wins with a price that
is strictly more than vi, their utility will be negative, making a deviation to a
bid 0 profitable. This immediately implies the desired result if v2 = v1, so from
this point onward we will assume v2 < v1.

The only case we further need to consider is if some player i ≥ 2 with vi = v2
wins at price exactly v2, say with some probability δ > 0. But then player 1
would prefer to deviate from any x1 ≤ v2 to v2 + ε, gaining utility of at least
δ(v1 − v2 − ε) due to winning all cases in which maxi{xi} ≤ v2, and losing at
most ε due to the additional payment (since, by Lemma2 and the first-price
nature of the auction, player 1 never pays less than v2 when she wins). Choosing
ε small enough, this deviation becomes profitable.

In conclusion we have a complete characterization of correlated equilibria in
terms of their outcomes. Clearly every mixture of pure equilibria is a correlated
equilibrium, and this turns out to be all that is possible:
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Theorem 1. Every correlated equilibrium of the single-item first-price auction
is equivalent (in terms of winning probabilities and payments) to a mixture of
pure equilibria (where Alice always wins the ties).

Proof. First suppose v1 > v2. By Lemma 3, player 1 always wins and never pays
less than v2, so she must always bid at least v2. Clearly player 1 can never bid
more than v1 since that will give her negative utility (as she does always win).
Thus player 1’s bid x1 is supported on the interval [v2, v1] and she always wins.
The outcome is thus equivalent to that of a similar distribution on the pure
equilibria in which all players bid x ∈ [v2, v1] (with player 1 winning the ties).

Next suppose v1 = v2. By Lemma 3, only the maximum-valued players ever
win, and the winner always pays at least v1. The utility of every player is there-
fore exactly 0. The outcome is thus equivalent to a similar distribution on the
pure equilibria, in which all players bid v1 and ties are broken in favor of the
appropriate maximum-value player.

4 Price of Undominated Anarchy

The following theorem shows that if players do not overbid, the welfare guarantee
in any coarse correlated equilibrium improves from 63% to 81%.

Theorem 2. In every coarse equilibrium of the single-item first-price auc-
tion where players never bid above their value, the social welfare is at least a
0.813559... fraction of the optimal.

Proof. Our approach to the proof will be to consider the distribution of the price
paid by the winner of the auction. We will bound the CDF of this distribution,
using the coarse equilibrium condition that no bidder wishes to unilaterally devi-
ate to any constant bid x that is at most their value. Since the social welfare is
the sum of the expected revenue and the expected buyer utilities, we can then
translate these bounds on the prices directly into a bound on welfare.

Let us start by normalizing the values of the players in the auction: let us
call the player with highest value Alice, and normalize this value to 1, and let
us call the player with second highest value Bob, so his value is v ≤ 1. There
could be other players in the auction but our analysis will ignore them. Fix
a coarse equilibrium of that auction. Let us further denote Alice’s utility in
the equilibrium by α and Bob’s utility by β. Since Bob never uses dominated
strategies, he always bids at most v and thus Alice can always deviate to v + ε
obtaining a utility of 1−v−ε, for any positive ε. We must therefore have α ≥ 1−v.

Denote by FCE the cumulative distribution on the price paid by the win-
ner of the auction. The fact that Alice does not want to deviate implies that
FCE(x) ≤ α/(1 − x) for all 0 ≤ x ≤ 1 − α. The fact that Bob does not want to
deviate implies that FCE(x) ≤ β/(v−x) for all 0 ≤ x ≤ v−β. Thus, the distrib-
ution FCE stochastically dominates the following distribution whose cumulative
distribution function is:

F (x) =

{
min{ α

1−x , β
v−x} 0 ≤ x ≤ max(v − β, 1 − α)

1 x > max(v − β, 1 − α)
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The revenue raised by the auction is simply the expected value of the winning
price, which is bounded from below by the expected value of x that is drawn
according to F . Thus, Revenue ≥ ∫ 1

0
(1 − F (x))dx, and a lower bound on the

welfare is obtained by adding this revenue to the sum of utilities; i.e., to α + β.
We will calculate such a lower bound, over all possible values of α ≥ 1 − v, β,
and v ≤ 1. That is, we will show that for all possible values of α, β, and v, we
have that α + β +

∫ 1

0
(1 − F (x))dx ≥ 0.813559....

In calculating
∫ 1

0
(1 − F (x))dx we will split into two cases.

Case 1: β ≥ vα. This is the easy case since here β/(v − x) ≥ α/(1 − x) for all
0 ≤ x ≤ v and thus F simplifies to F (x) = α/(1 − x) for all 0 ≤ x ≤ 1 − α, and
so our integral simplifies to

Revenue =
∫ 1−α

0

(

1 − α

1 − x

)

dx = 1 − α + α log α.

Thus a lower bound on the welfare is α + β + 1 − α + α log α. In this case we
had that β ≥ αv ≥ α(1 − α) so our lower bound on welfare, over all β and v is

Welfare ≥ 1 + α(1 − α) + α log α.

The last expression attains its minimum of 0.838... over all 0 ≤ α ≤ 1 at α =
0.203.. (where α is the solution to the equation 2x − log x − 2 = 0) and so we
have that for the case β ≥ vα the welfare is at least 0.838... > 0.813559....7

Case 2: β < vα. This is the more complex case. In this case we have that
β/(v − x) < α/(1 − x) exactly when x < θ = (αv − β)/(α − β), and thus the
revenue is obtained as

Revenue =
∫ θ

0

(1 − β/(v − x))dx +
∫ 1−α

θ

(1 − α/(1 − x))dx

= α log
(

α − β

1 − v

)

+ β log
(

β(1 − v)
v(α − β)

)

+ 1 − α.

Our lower bound for the welfare is thus

Welfare ≥ β + α log
(

α − β

1 − v

)

+ β log
(

β(1 − v)
v(α − β)

)

+ 1.

Taking the derivative with respect to v, we get the expression (αv−β)/((1−v)v)
which is always positive in our range and thus for every α and β, the minimum
is obtained at the lowest possible value v = 1 − α.
7 To get an auction with these parameters we need to specify when each of the players

wins in a way that will achieve these values of α and β. The following parameters
yield these utilities: Alice and Bob bid the same value of x distributed according to
the same F that provided the lower bound: α that is the solution of the equation
2x − log x − 2 = 0, v = 1 − α and β = vα. Alice wins whenever x = 0 and Bob wins
otherwise. Thus the probability that Alice wins is α = F (0) and she pays nothing,
indeed obtaining utility of α. Bob wins probability p = 1 − α and pays the entire
revenue obtaining net utility of pv − Revenue = (1 − α)(1 − α) − (1 − α + α log α)
which for our α is indeed (1 − α)α = β.
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Substituting this value of v, we get that the minimum possible welfare is the
minimum of the function

β + α log
(

α − β

α

)

+ β log
(

βα

(1 − α)(α − β)

)

+ 1. (1)

The following claim shows that the minimum of this function is 0.813559..., as
promised (proof deferred to the full version), completing the proof of Theorem2.

Claim. The minimum of the function in Eq. (1) is 0.813559....

We show this bound is tight by exhibiting an auction with matching welfare.

Theorem 3. There exists a single-item two-player auction with player values
1 and v ≤ 1, and a coarse equilibrium of that auction where players never
bid above their values, whose social welfare matches the bound from Theorem2
(0.813559...).

Proof. Our approach is to construct an equilibrium in which the distribution
over prices paid precisely matches the “bounding” distribution F from the proof
of Theorem 2, and the agent utilities precisely match the values for which the
welfare expression attained its minimum in that proof. Call the player with value
1 Alice, and the player with value v ≤ 1 Bob.

Guided by the proof of Theorem2, we will choose a parameter α, then set

β =
α − α2

eα − α + 1
and v = 1 − α. (2)

We will arrange the parameters so that α and β are Alice’s and Bob’s utilities
at equilibrium, respectively.

Define F (x) = min{ α
1−x , β

v−x}, for x ∈ [0, v]. In the equilibrium we construct,
a value will be drawn from the distribution with CDF F and both players will
bid that value. Note that neither Alice nor Bob has a profitable deviation in
such an equilibrium, as long as their utilities are α and β, respectively. Thus, to
show that an equilibrium exists for a certain choice of α, we must specify when
each of the players wins so that they achieve the utilities α and β.

We will show that an equilibrium exists for all α ∈ [0.27, 0.28]. This will imply
the desired result, since in particular this includes the value of α for which the
welfare bound from Theorem2 is achieved. Recall from the proof of Theorem 2
that, if an equilibrium exists, its welfare will be

W = α log
(

eα

(e − 1)α + 1

)

+ 1.

Write q for the solution to W = v(1 − q) + q, so that

q = W−v
1−v . (3)

We first claim that if we are able to specify when Alice wins, so that she wins
with probability q and her utility is α, then it necessarily follows that Bob will
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have utility β. This is because, writing pA and pB for the expected payment of
Alice and Bob respectively,

q + (1 − q)v = W = pA + pB + α + β.

So if indeed q−pA = α, we can conclude that (1−q)v−pB = β and hence Bob’s
utility is precisely β. We will therefore focus on Alice’s utility for the remainder
of the proof. We can substitute the expressions for β and v (Eq. (2)) into our
expression for q to yield

q = 2 + log
(

α
1+(e−1)α

)
. (4)

This expression is non-decreasing on the interval [0.27, 0.28], so we can con-
clude (by evaluating the expression on the endpoints) that q ∈ [0.3, 0.4] for
α ∈ [0.27, 0.28].

The minimum total utility that can be achieved by Alice, while winning with
probability q, is if she wins when prices are highest. That is, whenever the price
is at or above F−1(1 − q). Under this specification, the utility of Alice would be

umin = q −
∫ v

F −1(1−q)

xF ′(x)dx.

Similarly, the maximum possible utility achievable by Alice is if she wins when
prices are lowest; that is, when prices are at or below F−1(q). Under this choice,
the utility of Alice would be

umax = q −
∫ F −1(q)

0

xF ′(x)dx.

Since F is continuous on the range (0, v), it is enough to show that α ∈
[umin, umax], since this implies the existence of an interval upon which Alice
could win so that her utility is exactly α.

Proposition 1. For any α ∈ [0.27, 0.28] it holds that α ∈ [umin, umax].

The proof of Proposition 1 appears in the full version of the paper. The high-
level idea behind the proof is to first show that F (x) = β

v−x for x ∈ [0, F−1(q)]
and F (x) = α

1−x for x ∈ [F−1(1 − q), 1]. With this we can derive closed-form
formulas for umin and umax. The desired inequalities of Proposition 1 then follow
from standard functional analysis, concluding the proof of Theorem3.

5 Revenue in Coarse Equilibria

We start with a construction of a two-bidder first-price auction that admits a
coarse equilibrium whose revenue is 1 − 2/e fraction of the second highest bid.

Lemma 4. There exists a coarse equilibrium of a single-item two-player auction
with player values 1 and 1 whose revenue is 1 − 2/e ≤ 0.27.
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Proof. Here is a coarse equilibrium: the two players bid (x, x) where x is dis-
tributed according to the cumulative distribution function F (x) = e−1/(1 − x)
(for all 0 ≤ x ≤ 1 − 1/e), and each of then wins exactly half the time (at each
price). Applying the calculation in the previous lemma, the total revenue of this
auction is 1 − e−1 + e−1 ln e−1 = 1 − 2e−1, and each player’s utility is thus e−1.
A possible deviation of one of the players to x will yield utility F (x)(1−x) = e−1

and is thus not strictly profitable. Thus we are indeed in a coarse equilibrium.

We show that the construction above is essentially the worst possible case
across all first price auctions. We first establish this bound for the two-bidder
case, then prove the general theorem by reducing an auction with an arbitrary
number of bidders and arbitrary values to the two-bidder case. To state this
cleanly, we will fix the value of the second highest bidder, Bob, to 1 and let
Alice’s value v be any quantity that is at least 1.

Lemma 5. Consider a coarse equilibrium of the single-item 2-player first price
auction where Bob has value 1 and Alice has value v ≥ 1. Then, the revenue of
the seller is at least 1 − 2/e ≥ 0.26.

The proof of Lemma 5 appears in the full version of the paper. The main
idea is to consider the distribution of prices paid at equilibrium, and use the
equilibrium conditions to bound its cumulative distribution function. Subject to
these conditions, one can show that the expected price paid is maximized when
the distribution is F from the proof of Lemma4. We can now easily conclude
the main theorem of this section.

Theorem 4. In every first price auction, with any number of bidders, the rev-
enue in every coarse equilibrium is at least a 1−2/e ≥ 0.26 fraction of the second
highest value.

Proof. Take an equilibrium of an auction with k bidders with values v1 ≥ v2 ≥
· · · ≥ vk. We will now construct an equilibrium of the two-player auction with
values v1 ≥ v2 that has the same revenue as does the original auction. After
scaling, the main lemma bounds the revenue of the two-player auction to be at
least (1 − 2/e)v2 and so this is also the bound on the original one.

To get the coarse equilibrium for the two player auction, simply take the same
distribution on bids as in the original auction, but assigning the winning bids of
players i ≥ 3 to one of the first two bidders (arbitrarily). Notice that since none
of the players i ≥ 3 had a negative utility in the original auction (otherwise they
would deviate to 0), and furthermore, each of the first two players gets at least
as much utility from winning as do any of the players i ≥ 3, thus we are only
increasing the utilities of the first and second player in the new equilibrium. On
the other hand, notice that we have not changed the utilities from deviations at
all since these utilities depend only on the distribution of the winning price and
not on the identity of the winner. It follows that the first two players still do not
want to deviate and so we have a coarse equilibrium in the two-player game.
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We remark that as the competition increases, the auctioneer’s revenue grows.
For the case of two symmetric bidders (with value 1), Lemma 4 shows a coarse
equilibrium with revenue 1 − 2/e. For the case of n symmetric bidders we show
the following.

Theorem 5. In every first price auction, with any number of symmetric bidders
with value v, the revenue in every coarse equilibrium is at least (1− n

en−1 )v. This
is tight.

Proof. We first show that the revenue is always at least (1 − n
en−1 )v. Let F

be the distribution of the price. The sum of the bidders’ utilities is v − E[x]
(where x is distributed according to F ). Clearly, one of them has utility at most
1
n (v − E[x]); denote this value by α. Since no deviation to any x is profitable
for that player, it holds that F (x)(v − x) ≤ α for all x, that is F (x) ≤ α

v−x .
It follows that the expected value of x according to F is at least the expected
value of x according to the distribution α/(v −x) which is v −α+α ln(α/v) (by
Lemma 1). Substitute E[x] = v − αn (by the definition of α) to get α ≤ v/en−1.
It follows that E[x] = v − αn ≥ v(1 − n

en−1 ).
We now construct a coarse equilibrium with revenue at most (1 − n

en−1 )v.
Consider a profile where bidders bid x according to the distribution F (x) =
α/(v − x), where α = v/en−1; and each bidder wins with probability 1/n. The
expected payment is E[x] = v − α + α ln(α/v). The expected utility of a bidder
is 1/n(v − E[x]) and this should be at least α (the deviation utility). Solving
for α, we get α ≤ v/en−1. So this is an equilibrium, and the revenue is E[x] =
v − α + α ln(α/v) = v(1 − n

en−1 ).

We can also show that as the gap between the highest value and the second
highest value increases, the revenue must get close to the second highest value.
To state this in the cleanset way, we will fix the value of the second highest
bidder, Bob, to 1 and let Alice’s value v approach infinity.

Theorem 6. For very ε > 0 there exsits v0 = O(ε−4) such that in any auction
where Alice has value v ≥ v0 and Bob has value 1 (and perhaps other players
with other values), the revenue is at least 1 − ε.

Proof. Assume by way of contradiction that the total revenue is less than 1−ε. It
follows that with probability of at least ε/3 the price paid by the winner is at most
1 − ε/3 (otherwise the reveneue would be bounded below by (1 − ε/3)2 ≥ 1 − ε,
for small enough ε). It follows that Bob must win the item with probability of
at least ε2/9 as otherwsie his utility would be less than that while deviating
to 1 − ε/3 would ensure utility of at least that. Now the bound on the revenue
implies that the probability that the wining price is very high, greater than 18/ε2

can be at most ε2/18. Now consider a deviation of Alice to 18/ε2: her probability
of winning goes up by at least ε2/9−ε2/18 (the probability that Bob wins minus
the probability of any bids above 18/ε2). Her utility changes as follows: on the
up side it increases by at least ε2v/18 due to the increased winning probability,
and on the down side it decreases by at most 18/ε2 due to the increased price.
The deviation must be beneficial whenever v > 182/ε4.
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Abstract. We study large markets with a single seller who can produce
many types of goods, and many multi-minded buyers. The seller chooses
posted prices for its many items, and the buyers purchase bundles to
maximize their utility. For this setting, we consider the following ques-
tions: what fraction of the optimum social welfare does a revenue max-
imizing solution achieve? Are there pricing mechanisms which achieve
both good revenue and good welfare simultaneously? To address these
questions, we give envy-free pricing schemes which are guaranteed to
result in both good revenue and welfare, as long as the buyer valuations
for the goods they desire have a nice (although reasonable) structure,
e.g., the aggregate buyer demand has a monotone hazard rate or is not
too convex. We also show that our pricing schemes have implications
for any solution which achieves high revenue: specifically that in many
settings, prices that maximize (approximately) profit also result in high
social welfare. Our results holds for general multi-minded buyers in large
markets with production costs; we also provide improved guarantees for
the important special case of unit-demand buyers.

1 Introduction

Social Welfare and Profit1 are the two canonical objectives in the extensive liter-
ature dealing with envy-free algorithmic pricing. The study of these two objec-
tives, in isolation from each other, has inspired the design of novel pricing
mechanisms for revenue maximization [4,14] in a variety of interesting markets,
and an equally voluminous body of work on welfare maximization [12,16]. While
the significance of profit and social welfare is clear, it is easy to overlook the
fact that the two objectives do not exist in a vacuum. For instance, although a
monopolistic seller may only be interested in profits, myopically increasing prices
while compromising on buyer welfare can lead to poor long-term revenue. This
is distinctly true for large markets with repeated engagement where singularly
optimizing for one objective while ignoring the other (as in the existing litera-
ture) could adversely affect the health of the marketplace [3]. Therefore, not only
is it desirable to promote the design of holistic pricing solutions that optimize
on both counts simultaneously, it is also crucial to gain a better understanding

1 For convenience, we will use revenue and profit interchangeably in this work.
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of how existing algorithms perform in a bicriteria sense. Against this backdrop,
we seek to address the following questions.

What fraction of the optimum social welfare does a revenue maximizing
solution achieve? Are there pricing mechanisms which achieve both good
revenue and good welfare simultaneously?

Both in economics and in computer science [18], it is well understood that
the goals of maximizing revenue and social welfare are often at odds with each
other. Bearing this in mind, we seek to quantify the exact amount of friction
between these two objectives in large markets. In particular, we are interested
in understanding the surplus achieved by a profit maximizing solution, a prob-
lem that has received considerable attention in Auction theory [1,18]. The fact
that we restrict our attention to the revenue end of the spectrum is motivated
partly by the observation that welfare maximizing prices can result in negligible
profits (see Example 3) even for trivial instances. However, unlike most analo-
gous work in the theory of auctions, we are interested in understanding these
trade-offs as well as designing bicriteria approximation algorithms in multi-item
markets where the seller’s modus operandi involves posting prices on the individ-
ual goods. In that sense, this work is a high-level extension of the recent body of
work on envy-free revenue-maximization [2,14,17] towards additional ambitious
objectives.

1.1 Market Model: Item Pricing for Multi-minded Buyers

In this work, we adopt a simple posted-pricing mechanism that captures the
operation of most real-life large markets: the seller posts a single price per good,
and each buyer purchases a bundle of goods that maximizes their utility. The
seller controls a set T of available goods, and can produce any desired quantity
xt of a good t ∈ T , for which he incurs a cost of Ct(xt). The market consists
of a large number of buyers who are multi-minded, meaning that each buyer
i has a ‘desired set of bundles of goods’: the buyer has the same value vi for
each of these bundles and under a given set of prices, purchases the bundle that
maximizes her utility.

Multi-minded buyers represent a class of computationally attractive yet com-
binatorially non-trivial buyer valuations that have recently been featured in a
number of papers [8,19]. Perhaps, more importantly, the class strictly general-
izes highly popular models such as unit-demand and single-minded valuations.
Secondly, the convex production costs considered in our framework strictly gen-
eralize models with limited (or unlimited) supply, which are usually the norm
in the pricing literature. As [2,6] point out, limited supply is often too rigid
for realistic, large markets where the seller may be able to increase production,
albeit at a higher cost. Bicriteria algorithms notwithstanding, our work actu-
ally presents the first profit-maximization algorithms for general multi-minded
buyers even with limited supply.

Our model captures several scenarios of interest wherein a typically profit
maximizing seller may be driven to ensure good overall social utility. For
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instance, consider a market for plug-in electric vehicle (PEV) charging stations:
each good represents a time slot, and each buyer may desire specific (sets of)
slots based on time constraints and charging capacity. Varying demand and elec-
tricity generation costs necessitate differential pricing across time slots [2,5]. In
such a large market application, it is clearly in the seller’s long-term interest to
not drive away a significant population of its customer base.

Circumventing Computational Complexity via Oblivious Guarantees.
One of the challenges in essentially any non-trivial setting (including all the
settings which we consider), is that computing profit-maximizing prices is NP-
Hard. This is largely due to the fact that the seller is not allowed to price-
discriminate, i.e., it must charge the same price for each good to all the buyers,
instead of having different prices for each buyer. In view of the computational
barriers surrounding the optimal profit solution, a seller which cares about profit
may use a variety of strategies, from approximation algorithms to heuristics. The
uncertainty regarding the actual strategy adopted by the seller in turn casts
aspersions on the practical significance of our goal of characterizing the social
welfare at optimal-revenue solutions. One of the contributions of this work is
a framework that allows us to completely circumvent the complexity question:
our guarantees on the social welfare do not depend on the exact details of the
pricing mechanism used by the seller, and instead would hold for a wide variety
of pricing mechanisms, as long as these prices achieve decent revenue guarantees.

Inverse Demand Functions and α-Strong Regularity. In order to concisely
represent the large number of buyers in the market, we classify the buyers into
a finite set of buyer types B such that all of the multi-minded buyers belonging
to a certain type desire the same set of bundles. Then, each buyer type can be
fully captured by a subset of 2T along with an inverse demand distribution λi(x)
describing the valuations of buyers having this type. Formally, for any buyer type
i ∈ B, λi(x) = p implies exactly x amount of buyers of type i have a valuation
of p or more for each bundle in their common desired set. Although different
buyer types may have different demand functions, it is natural to assume that
the valuations of all buyers are often sampled (albeit differently) from some
global distribution. Because of this, we will make the assumption that the buyer
valuations for every type have the same support [λmin, λmax].

A first stab at the problem reveals that the above framework is too coarse to
obtain meaningful trade-offs between welfare and profit. Indeed, it is not hard
to reason that a precise characterization of the revenue-welfare trade-offs would
depend heavily on the distributions of the buyer valuations. To better understand
this dependence, we study a class of inverse demand functions parameterized by
a single parameter α ∈ [0, 1] known as α-strongly regular distributions.

Definition 1 (α-Strong Regularity [10]). A buyer type i is said to have an
α-Strongly regular demand function (α-SR) for α ∈ [0, 1] if for any x1 < x2, we
have λi(x2)

|λ′
i(x2)| − λi(x1)

|λ′
i(x1)| ≤ α(x2 − x1).

α-Strongly regular distributions were introduced in [10] as a strict generalization
of monotone hazard rate (MHR) distributions that smoothly interpolate between
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MHR (α = 0) and regular distributions (α = 1). Our main contribution is the
design of mechanisms that simultaneously obtain good revenue and welfare for
small α, and degrade gracefully as α increases. Note that even the set of α-SR
functions with α = 0, for which we obtain the strongest results, contains a large
class of important distributions, including exponential (e.g., e−x), polynomial
(e.g., 1 − x2), and all log-concave functions. The reader is asked to refer to
Sect. 2 for a more detailed discussion regarding this class of distributions.

1.2 Our Contributions

The primary algorithmic contribution of this work is a new (profit, welfare)-
bicriteria approximation for general markets with multi-minded buyers and pro-
duction costs, stated below.

(Informal Theorem). We can compute in poly-time a set of item prices
that guarantee a (Θ( log Δ

1−α ))-approximation to the optimum profit, and a
Θ( 1

1−α )-approximation for welfare, where Δ is the ratio of the size of the largest
bundle desired by any buyer to the smallest one.

There are several exciting aspects to this result: (i) Ours is also the first non-
trivial profit-maximization algorithm for multi-minded buyers in the envy-free
literature. (ii) When buyers desire small bundles (e.g., for unit-demand valua-
tions where all bundles are unit-size), our solution extracts a constant portion of
the social welfare as revenue, as illustrated in Fig. 1(a). Moreover, for the impor-
tant special case of unit-demand valuations (Δ = 1), we provide a much simpler
pricing mechanism with slightly better constant approximation factors than in
the theorem statement. (iv) Finally, even when buyers desire large bundles, it
is reasonable to expect that in markets with similar types of goods, the various
bundles are of approximately the same size, i.e., Δ is small. In the PEV example,
one expects different electric vehicles to have similar charging capacity.

Profit-Welfare Trade-Offs. The approximation guarantees in the theorem
statement are only the worst-case bounds derived independently for each objec-
tive. In fact, as illustrated in Fig. 1(b), we prove that the two worst-case factors
never occur simultaneously and the actual bicriteria bound lies on a trade-off
curve, resulting in improved approximations for at least one objective, i.e., if the
actual welfare is close to the worst-case guarantee, then the profit is much better
than in the theorem and vice-versa.

Social Welfare of Other Revenue-Maximizing Solutions. All of the rev-
enue guarantees in this paper are shown by comparing the profit of our solu-
tion to the optimum welfare, an approach that has strong implications towards
bounding the social welfare of other profit-maximizing solutions. Specifically,
we design a simple framework using our bicriteria bounds as a black-box result
and show that any pricing mechanism which achieves revenue better than our
(efficiently computable) mechanism is guaranteed to deliver at least a Θ( log Δ

1−α )-
approximation to the optimum welfare. This holds whether the seller computes
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Fig. 1. (a) Exact bounds for profit and welfare as a function of α for unit-demand
buyers. We obtain constant-factor bicriteria approximations when the demand is close
to MHR (α = 0), and good guarantees for larger α even when the demand is close
to the equal-revenue distribution (α = 1). (b) Actual Revenue-Welfare Curve for unit-
demand buyers, α = 0: The exact bicriteria guarantees lie on the trade-off curve, so that
one of the two approximation factors is significantly better than the worst-case bound
(point X). For e.g., when welfare is only half-optimal, the revenue factor improves from
2e to 2.

revenue-maximizing prices (an NP-Hard problem even for unit-demand with
α = 0), or uses a more efficient mechanism. Thus, one of the main messages
of this paper is that even a seller interested solely in maximizing profits can
guarantee a good social welfare without sacrificing any revenue. For example, in
unit-demand markets with MHR valuations, there is no reason for such a seller
to not also achieve at least a 2e-approximation to the optimum social welfare
irrespective of their preferred pricing mechanism.

Technical Difficulties. Although our large market model falls in the realm
of settings where it is possible to efficiently compute social welfare maximizing
prices, exploiting this for profit-maximization as in [4,14] leads to poor approx-
imation guarantees, for e.g., O(λmax

λmin )-bounds even for unit-demand instances.
Instead, our techniques rely crucially on exploiting the structure of α-strongly
regular functions to efficiently compute prices that compromise neither on rev-
enue nor welfare. Finally, in this work, we will focus solely on deterministic
pricing mechanisms. While randomized mechanisms that mix between welfare
and profit maximizing solutions are theoretically interesting, the ensuing price
fluctuations render them unsuitable for many settings of interest [13,20].

Related Work: Existing Bicriteria Algorithms. The primary barrier
towards designing envy-free revenue-maximizing prices — a lack of insight
regarding the optimum solution — is also the chief architect behind the exis-
tence of many (implicit) bi-criteria approximation algorithms in the algorith-
mic pricing literature. More concretely, a majority of the revenue-maximization
algorithms in the literature [4,7,14,17] achieve their approximation factors for
revenue by comparing it to the optimum social welfare. Exploiting these revenue-
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welfare ties further, it is not hard to see that such a β-approximation algorithm
for revenue trivially results in a (β, β)-bicriteria approximation. For instance, the
results from [4,14] immediately imply (Θ(log |B|), Θ(log |B|))-bicriteria approx-
imation algorithms for unit-demand and unlimited supply markets respectively.

In contrast to the trivial (β, β) type bounds in previous work, our specific
focus on bicriteria approximations leads to significant improvements in social
welfare without sacrificing much profit. We also remark that while specific bicri-
teria bounds were also provided in [2], their results only apply to the easiest
version of our setting (α = 0,Δ = 1). Moreover, the setting studied in this work,
that of multi-minded buyers and production costs is significantly more general
than most previous work on envy-free pricing, which looked at unit-demand or
single-minded valuations in markets with (un)limited supply.

1.3 Other Related Work

While (revenue,welfare)-bicriteria approximations have not specifically been
studied beyond the single good case, the broader understanding of trade-offs
between the two objectives has been a prominent motif in the pricing literature.
We first highlight two overarching differences between our results and other
work on profit-welfare trade-offs, specifically in auctions: (i) we study reason-
ably general combinatorial markets with multi-minded buyers and production
cost functions, and not just limited-supply settings with unit-demand buyers as
in other work, and (ii) unlike similar (types of) results in Bayesian auctions, our
pricing mechanisms are non-discriminatory, and therefore, envy-free.

Characterizing the efficiency of revenue-optimal mechanisms is a fundamen-
tal question that has spurred multiple avenues of research; most pertinent to
the questions posed in this work are the tight bounds on the (in)efficiency of
the Myerson revenue-maximizing mechanism for single good settings appearing
in [1,18]: in particular, [18] provides welfare bounds for general single-parameter
auctions as a function of the distribution of buyer valuations, as we do in this
work.

Moving beyond lower bounds, other researchers have adopted a more con-
structive approach by explicitly taking into account both the objectives either via
bicriteria mechanisms [11,22], or by optimizing linear combinations of revenue
and welfare [20], or even characterizing the revenue-welfare Pareto curve [13]. We
reiterate that all of the above papers consider simple single good settings, where
the revenue-optimal mechanism is well understood. Moreover, in comparison to
the revenue-welfare Pareto curves in [13], the implicit trade-off curves in our
work are of a different nature as they are obtained for a single instance on top
of the worst-case bounds. Finally, multi-objective trade-offs are quite popular in
the Sponsored Search literature [3,12,21], which are repeated engagement mar-
kets with tight competition. Such settings can essentially be viewed as a special
case of unit-demand markets.
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2 Model and Preliminaries

Our market model comprises of a single seller controlling a set T of goods and
a large number of infinitesimal buyers. The buyers can be concisely represented
using a finite set of multi-minded buyer types B: for a given type i ∈ B, all
the buyers having this type desire the same set of item bundles Bi ⊆ 2T , and
each buyer is indifferent between the bundles in Bi. Notice that when all of the
desired bundles are of unit cardinality, our model reduces to the unit-demand
case; when each buyer type desires only a single bundle (|Bi| = 1), we get single-
minded valuations. Finally, buyers belonging to the same type may hold different
valuations for the same bundles, this is modeled by way of an inverse demand
function λi(x) for every i ∈ B; λi(x) = p implies that exactly x amount of buyers
of type i value the bundles in Bi at valuation p or more. Given λi(x) = p, it is
not hard to see that the total utility derived when x amount of buyers purchase
some bundle at price p is ui(x) =

∫ x

z=0
λi(z)dz.

The market operates according to a natural pricing mechanism with the
seller posting a price pt for each good t ∈ T . Buyers purchase one of the utility-
maximizing bundles available to them, i.e., a buyer belonging to type i will
purchase the cheapest bundle in Bi as long as its price is no larger than her
valuation for the same. Therefore, if p̄i denotes the bundle in Bi with the smallest
price and x̄i is the population of buyers of this type who purchased some bundle,
then λi(x̄i) = p̄i.

Pricing Solutions, Social Welfare, and Revenue. We use (p,x,y) to rep-
resent the outcome of the market mechanism. Here p is the vector of prices,
x denotes the allocation to the buyers with xi being the total amount of good
purchased by buyers of type i, and finally yt is the total amount of good t ∈ T
sold to the buyers. We now define the two main metrics that form the crux of
this paper.

– The social welfare of a solution (p,x,y) is defined to be the total utility of all
the buyers and the seller and therefore, is equal to the utility of the buyers
minus the production cost incurred by the seller, i.e.,

SW (p,x,y) =
∑

i∈B

∫ xi

x=0

λi(x)dx −
∑

t∈T

Ct(yt).

– The (seller’s) profit at the solution (p,x,y) is the total income due to each
good in the market minus the total production cost incurred, i.e.,

π(p,x,y) =
∑

t∈T

[ptyt − Ct(yt)].

Notice that the social welfare is independent of the prices, and depends only
on (x,y). One of the main goals of this paper is to obtain a lower bound on the
social welfare of the profit maximizing solution. We will use (popt,xopt,yopt)
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to denote the maximum profit solution, and (p∗,x∗,y∗) to denote the solu-
tion maximizing welfare. Sometimes we will also use SW ∗ = SW (p∗,x∗,y∗)
and πopt = π(popt,xopt,yopt). Thus the quantity we are interested in is

SW (p∗,x∗,y∗)
SW (popt,xopt,yopt) .

We remark that the maximum social welfare solution should ideally be repre-
sented as (x∗,y∗). However, it is not particularly hard to see that there always
exist prices p∗, defined as p∗

t = ct(y∗
t ) for all t ∈ T , such that (p∗,x∗,y∗) is

a valid (envy-free) solution of our pricing problem. More importantly, such a
welfare maximizing solution can be computed efficiently via a simple convex
program.

Structure of the Demand and Cost Functions. In this work, we take
both the inverse demand and production cost functions to be continuously dif-
ferentiable. In addition, we also make the standard assumption that the utility
function ui(x) is concave for all i ∈ B and therefore its derivative λi(x) is non-
increasing with x. Finally, we consider production cost functions that are doubly
convex i.e., both Ct and its derivative ct(x) = d

dxCt(x) are convex and non-
decreasing for all t ∈ T and further, Ct(0) = ct(0) = 0. A number of well studied
cost functions fall within our framework [6].

As mentioned previously, it is often natural to assume that the inverse
demand distributions for different buyer types have the same support
[λmin, λmax]. In fact, all of our results hold under the more general uniform
peak assumption, which will be assumed for the rest of this work.

Definition 2. (Uniform Peak Assumption) For every i ∈ B, λi(0) = λmax.

α-SR inverse demand (Definition 1) Recently, α-strong regularity has gained
some popularity [9,10] as an elegant characterization of the class of regular
functions, which encompasses most well-studied demand distributions including
polynomial (λ(x) = 1 − x2; α = 0), exponential (λ(x) = e−x; α = 0), power law
(λ(x) = 1√

x
; α = 1

2 ), and the equal-revenue distribution (λ(x) = 1
x ; α = 1). For

such functions, one can interpret α as a measure of the convexity of the function
as larger values as α imply greater convexity or alternatively as a bound on the
volatility of the inverse demand λi(x) as every α-SR demand function satisfies
d
dx

(
λ(x)

|λ′(x)|
)

≤ α. As expected, the equal-revenue distribution (α = 1) leads to the
worst-case bounds for all of our results: in fact even in single good, single buyer
type markets, the revenue-optimal solution for α = 1 only extracts a negligible
fraction of the optimum social welfare. However, what is surprising (as evidenced
by Fig. 1(a)) is that we obtain reasonably good performance guarantees even
when α is larger than 1

2 .

3 Warm-Up: Profit and Welfare for Unit-Demand
Markets

As a first step towards stating our general results in Sect. 5, we consider the
important special case of unit-demand markets [7,14]. Recall that unit-demand
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valuations are a simple sub-class of multi-minded functions, wherein for each
buyer (type) i ∈ B, the bundles desired by i are singleton sets. Our main result
in this section is a simple pricing rule that achieves a (Θ( 1

1−α ), 2−α
1−α )-bicriteria

approximation algorithm for revenue and welfare respectively when the buyers
have α-SR inverse demand functions. While we present a generalized version of
this theorem in Sect. 5, the algorithm in that case is much more involved.

That said, our reasons for dedicating an entire section to unit-demand buyers
is two-fold: (i) the algorithm presented in this section is extremely simple and
the constant factors hidden by the asymptotic bound are smaller, and (ii) the
unit-demand case provides a platform for us to discuss the various implications of
our results including the profit-welfare trade-off and the ability to derive welfare
bounds for the profit-maximizing solution. Before stating our main theorem, we
give a simple example to highlight the poor revenue guarantees obtained by the
welfare maximizing prices even for single-good markets.

Example 3. Consider a single good market with a negligible production cost
function, say C(x) = εx. Obviously, there is only one buyer type, and suppose
that its inverse demand is λ(x) = 1 − x (α-SR for α = 0). It is easy to observe
that at the social welfare maximizing solution, the good is priced at p∗ = ε,
resulting in near-zero revenue. On the contrary, one can price at popt = 1

2 to
obtain a constant fraction of the optimum welfare as profit.

Theorem 4. For any unit-demand instance where buyers have α-strongly reg-
ular inverse demand functions, there is a poly-time (ζ, 2−α

1−α )-bicriteria approxi-
mation algorithm for revenue and social welfare respectively, where

ζ = 2(
1

1 − α
)

1
α +

α

1 − α
= Θ

(
1

1 − α

)

.

The exact guarantees for profit and welfare are illustrated in Fig. 1(a).
Detailed proofs of all of our results can be found in the full version of this paper.
(Algorithm) The bicriteria approximation factor is achieved by the following
simple pricing mechanism

– Compute the max-welfare solution (p∗,x∗,y∗).
– For every good t, set its price p̃t = max (p∗

t , λ
max(1 − α)

1
α ).

Proof Sketch: We now give some intuition for why this pricing solution pro-
duces a good approximation to both profit and welfare. Let p̃ = λmax(1 − α)

1
α .

We begin by analyzing these types of thresholded pricing schemes, in which the
price is simply the maximum of the optimum price p∗

t and a constant; our algo-
rithm uses such a scheme with constant p̃. In the following lemma, we show that
such solutions have nice structure; essentially we can think of buyers who pur-
chase goods priced at p̃ and those who purchase goods priced at p∗

t as separate
systems.

Lemma 5. Suppose that ((p̃)t∈T , (x̃)i∈B , (ỹ)t∈T ) is a pricing solution resulting
from a thresholded pricing vector. Then,
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1. The market can be clustered into two mutually disjoint sets of buyers and
goods (BH , TH) and (BL, TL) so that the buyers in each cluster only purchase
the goods in the same cluster and (a) for (i, t) ∈ (BH , TH), p̃t = p∗

t , x̃i = x∗
i ,

and ỹt = y∗
t ; (b) for (i, t) ∈ (BL, TL), p̃t ≥ p∗

t , and ct(ỹt) ≤ ct(y∗
t ).

2. ỹ is a welfare-maximizing allocation with respect to the demand vector x̃.

We then prove that due to our choice of p̃ the following two bounds hold:
(i) SW (p̃, x̃, ỹ) ≤ O( 1

1−α )π(p̃, x̃, ỹ), and (ii) SW (p∗,x∗,y∗) − SW (p̃, x̃, ỹ) ≤
O( 1

1−α )π(p̃, x̃, ỹ). Once we show these lower bounds on the profit of our pricing
scheme, the approximation guarantee follows trivially. ��

Henceforth, we will unambiguously use ζ to denote the exact approximation
factor appearing in the statement of the above theorem. Interestingly, in the
proof of Theorem 4, the revenue guarantee of ζ is shown with respect to the
optimum social welfare, which in turn has important consequences for other
profit-maximizing solutions (see Sect. 4).

Profit-Welfare Trade-offs. We further exploit the close ties between revenue
and social welfare, and present a revenue-welfare trade-off that improves upon
the bicriteria bound in Theorem4 by showing that at least one of revenue or
welfare is better than the factor guaranteed by the theorem. The bounds in The-
orem 4 are actually somewhat misleading as they represent the worst-case bound
for each objective, which is derived independently from the other objective by
simply bounding the worst-case revenue (or welfare) over all instances. However,
the worst-case performance for revenue (ζ) and the worst-case performance for
social welfare ( 2−α

1−α ) need not and as we show, do not occur for the same instance.
As a matter of fact, for a given instance, if the actual welfare obtained is close to
the guarantee provided in Theorem4, the large gap between welfare and revenue
as in Fig. 1(a) completely vanishes and the approximation factors coincide. We
first state the main structural claim that enables this trade-off.

Claim. Suppose that a pricing algorithm Alg satisfies SW (Alg) ≤ c1π(Alg),
SW ∗ −SW (Alg) ≤ c2π(Alg). Then for every instance there exists some 1 ≤ c ≤
c2 + 1 such that Alg is a bicriteria approximation (min(cc1, cc2

c−1 ), c) for revenue
and welfare respectively.

Unfortunately, the designer has no control over the factor c as its exact value
depends on the particular instance. Applying this claim to Theorem4 yields the
following corollary.

Corollary 6. For every given instance, there exists a constant 1 ≤ c ≤ 2−α
1−α so

that the solution returned by the prices of Theorem4 has a social welfare that is
within a factor c of the optimum welfare and such that

πopt ≤ SW ∗ ≤ min(
c

c − 1
.

1
1 − α

, ζ)π(Alg).

For example, for MHR demand functions the statement of Theorem4 makes it
seem that this pricing scheme may return a solution which is a 2e-approximation
for revenue and a 2-approximation for welfare. Corollary 6 points out that the
actual results are far better.
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4 Consequences for Solutions with High Revenue

In Sects. 3 and 5, we give efficient pricing mechanisms which simultaneously
achieve good approximations for both revenue and welfare. Consider, however, a
seller whose main priority is to simply maximize profits. This seller may choose
to use a different pricing mechanism with better revenue guarantees than the
ones offered in this paper. For example, the seller may choose prices which are
guaranteed to come closer to achieving optimum revenue (these are efficiently
computable for unit-demand settings [2,15] under certain additional assump-
tions), or even use a large amount of resources to solve the intractable problem
of actually computing the prices popt which yield the highest possible revenue.
One of the main messages of our paper is as follows:

No matter what pricing mechanism the seller uses to optimize revenue, they
can instead use a pricing mechanism which guarantees at least 1/ζ fraction of
the optimum welfare, without sacrificing any revenue.

In this section, we use a simple albeit highly general framework to derive
results of this form. Consider an arbitrary profit maximization algorithm Alg
that achieves a good approximation with respect to πopt. How do we go about
characterizing the social welfare at these solutions? The following theorem uses
an existing profit-maximization algorithm whose guarantees hold with respect
to the optimum welfare as a black-box to bound the welfare due to Alg.

Theorem 7. Consider a benchmark profit maximization algorithm Algb whose
profit π(Algb) is always within a factor c of SW ∗ for some c ≥ 1. Consider any
other pricing algorithm Alg for the same class of valuations that obtains at least
as much profit as guaranteed by Algb on all instances. Then the social welfare
obtained by Alg is at least a factor 1

c times that of the optimum welfare.

Implications for Unit-Demand Markets. We now apply the framework
provided by Theorem7 for unit-demand using our result from Theorem4 as a
black-box to obtain our first oblivious guarantee: namely that any algorithm for
unit-demand markets that obtains at least as much profit as guaranteed by the
algorithm of Theorem 4 on all instances guarantees a social welfare that is within
a factor ζ of the optimum welfare.

Thus, consider the case when a seller is using any arbitrary pricing mechanism
Alg, with the main goal being to maximize profit. By simply computing the
revenue given by our pricing schemes from Sect. 3, and then choosing the one
which guarantees better revenue (i.e., choosing between Alg and our pricing
scheme), we form a new pricing algorithm which does not sacrifice any revenue
compared to Alg, and due to the above theorem, is also guaranteed to have good
social welfare. Moreover, we also get the following trivial consequence:

Corollary 8. The ratio of the optimum social welfare SW ∗ to the social welfare
at the maximum profit solution SW (popt,xopt,yopt) is at most ζ = Θ

(
1

1−α

)
.
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For MHR demand functions (α = 0), this implies that even for sellers who
only care about profits, there is essentially no excuse not to also guarantee at
least 1/2e of the optimum social welfare. Thus, for the settings we consider, one
can strive for truly high revenue, without sacrificing much in welfare.

5 Multi-minded Buyers

We now move on to our most general case with multi-minded buyers, wherein
every buyer wishes to purchase one bundle from a desired set (of bundles). We
use 
max to denote the cardinality of the maximum sized bundle desired by any
buyer type, and 
min for the minimum sized bundle. The main result in this
section is a bicriteria approximation algorithm that extends our results for the
unit-demand case. Our algorithm still achieves a Θ( 1

1−α )-approximation to the
optimum welfare; as for profit, we obtain a Θ( 1

1−α ) bound further discounted
by a log(Δ) factor, where Δ = �max

�min . Moreover, as in the previous section, our
profit bound is obtained in terms of the optimum social welfare, which allows
the consequences mentioned in Sect. 4 to hold, i.e., we are able to show that the
true lower bounds are better what than the theorem states.

Theorem 9. For any given instance with multi-minded buyers, there exists a
poly-time

(
Θ( log(Δ)

1−α ), Θ( 1
1−α )

)
-bicriteria approximation algorithm for profit and

welfare respectively.

Proof Sketch: The proof is quite involved, so here we provide a high level
overview of the various ingredients that combine to form the proof.
Step 1: Benchmark Solution. The first step involves defining a benchmark solu-
tion (xb,yb) such that its social welfare SW b and the non envy-free profit
(πb :=

∑
i∈B λi(xb

i )x
b
i − C(yb)) obtained via discriminatory payments both

approximate SW ∗ up to a Θ( 1
1−α ) factor. However, this does not immediately

lead to a bicriteria approximation as there may not exist any pricing vector that
implements such a solution. Therefore, we will attempt to compute item prices
which approximate the benchmark solution with respect to both the objectives.
Step 2: Augmented Walrasian Equilibrium. As a first step towards approximating
the benchmark solution, we extend the notion of a Walrasian equilibrium with
reserve prices that was introduced in [14] to settings where buyers purchase
bundles of arbitrary sizes. Such a solution does not admit any infinitesimal buyer
whose valuation is smaller than the reserve price and can be easily implemented
using a pricing solution. Our plan then, is to form a sequence of equilibrium
solutions resulting from different reserve prices that together behave like the
benchmark solution; then, we will consider the ‘best’ among these solutions.
Step 3: Sequence of Solutions. We identify a starting point for our sequence of
solutions via a crucial claim showing that there exists a carefully chosen reserve
r̃ such that the Walrasian equilibrium at this reserve extracts a good fraction
of SW b and, when buyers desire bundles of the same cardinality, also results in
good profit compared to πb. When there is a large disparity in the bundle sizes,
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however, the profit returned by the solution does not meet our approximation
guarantee as buyers may gravitate towards the smaller sized bundles. To fix this,
we consider reserve prices that are scaled versions of the original reserve r̃.

In conclusion, our algorithm works by computing a series of pricing solutions
corresponding to the Walrasian equilibria at reserve prices 2j r̃ for j = 0 to
1 + log(Δ) (with welfare SW (j), profit π(j)) and returning the smallest index
of j at which the profit equals the term guaranteed by the theorem. The rest of
the proof follows from the following chain of lemmas that we prove: (i) SW (0)
is comparable to SW b, (ii) SW (j) − SW (j + 1) ≤ 3π(j) + 3π(j + 1), and (iii)
SW (1 + log(Δ)) ≤ O( 1

1−α )π(1 + log(Δ)). ��
Consequences for Other High-Revenue Solutions. A direct application
of Theorem 7 using our newly obtained bounds on multi-minded buyers as an
intermediate yields the following claim.

Claim. Let Alg be any algorithm that obtains at least as much profit as guar-
anteed by the algorithm of Theorem9 on all instances. Then the social welfare
obtained by Alg is at most a factor Θ( log(Δ)

1−α ) away from the optimum welfare.

6 Conclusions and Future Directions

In this work, we were able to provide envy-free posted pricing algorithms that
simultaneously approximate both profit and social welfare for markets with quite
general buyer valuations and production costs. We used our profit-maximization
guarantees as a black-box and showed that any solution with reasonable profit
guarantees (including the maximum profit solution) generates good welfare. In
the process, we provide a partial characterization of the exact friction between
these two objectives. The multi-objective approach to pricing taken in this work
is motivated by the fact that different types of agents in the system care about
different objectives, i.e., sellers care about maximizing profit whereas larger wel-
fare benefits the buyers. Given that social welfare is a combination of both
profit and buyer surplus, an equally natural bicriteria approach would involve
the maximization of profit and surplus, as opposed to welfare. Unfortunately,
one can design simple instances where the only possible non-trivial envy-free
pricing solutions result in zero surplus. This raises a more fundamental open
question: can we identify markers in repeated engagement markets other than
welfare and profit that correspond to the needs of the various agents, and that
admit non-trivial multi-objective approximation guarantees?

All the omitted proofs can be found in a full version of this paper available
publicly on arXiV: https://arxiv.org/abs/1610.04071.
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Abstract. Recent work by Babaioff et al. [1], Yao [30], and Cai et al. [7]
shows how to construct an approximately optimal auction for additive
bidders, given access to the priors from which the bidders’ values are
drawn. In this paper, building on the single sample approach of Dhang-
watnotai et al. [15], we show how the auctioneer can obtain approx-
imately optimal expected revenue in this setting without knowing the
priors, as long as the item distributions are regular.

Keywords: Mechanism design · Approximately optimal auctions ·
Prior-independence · Additive bidders

1 Introduction

In a multiple additive bidders setting, there are n agents and a seller selling a
set of m distinct items. Each agent i has a private value vij for item j, and
value vi(S) =

∑
j∈S vij for the set of items S. The seller runs an auction to

determine who (if anyone) to sell each item to and at what price. The auction
(or mechanism) takes as input the collection of bids, and determines a feasible
allocation and a price to charge each agent. The seller knows ahead of time the
distribution from which each vij is drawn.1 A key question is how to design a
truthful and optimal2 (or approximately optimal) auction.

This is a notoriously difficult problem, but in the past decade, several break-
through results have been obtained. There are three main lines of work related to
optimal auctions for additive bidders. For the case of finite type spaces, [3–6,29]
are able to use linear and convex programming techniques to formulate and solve
the optimal auction problem. This gives a black-box reduction from mechanism
design to algorithm design that yields a polynomial time algorithm for rev-
enue maximization in additive settings. A second strand of work [1,7,20,22,30]

This research was done in part while the authors were visiting the Simons Institute
for Theoretical Computer Science. The authors are funded by the National Science
Foundation under CCF grant 1420381.

1 Thus, from the seller’s perspective this value is a random variable Vij .
2 i.e., revenue-maximizing, in expectation.
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handles arbitrary distributions and develops approximately optimal auctions.
Finally, [10–12,16,18,19] use duality frameworks to optimally solve the problem
for certain settings with a small number of items, and to provide necessary and
sufficient conditions under which grand bundle selling is optimal.

In this paper, we consider the question of prior-independent optimal mech-
anism design in the multiple additive bidders setting. By prior-independent we
mean two things: first, that there exist prior distributions from which the agents’
values are drawn (as in all the work discussed above), and, second, that the mech-
anism designer has no knowledge of these priors. Thus, without any knowledge
of the priors, we seek to construct a mechanism that guarantees a constant frac-
tion of the expected profit achieved by the optimal mechanism tailored to the
particular prior distributions. This guarantee should hold no matter what the
distributions happen to be, as long as they satisfy the fairly standard condition
of regularity. A growing body of work obtains prior-independent mechanisms in
a number of settings [13,15,17,25,26].

The main result of this paper is an auction that achieves this goal for the
additive bidder setting when the Vij ’s are all independent and drawn from regular
distributions. We give a mechanism that requires only a single sample from
the distribution of each Vij , and when there are at least two bidders from any
prior distribution, we can implement a sample mechanism as a prior-independent
mechanism. Thus, we add to the short list of prior-independent results in multi-
parameter settings [13,26].

Our work builds on the breakthrough results of Babaioff, Imorlica, Lucier,
and Weinberg [1] and Yao [30], on the one hand, and Dhangwatnotai, Rough-
garden, and Yan [15] on prior-independent mechanism design on the other hand.
A crucial lemma in [15]3 is that, for a single-item single-bidder problem, access
to a single sample from a regular distribution is sufficient to approximate the
optimal revenue, which in this case is the revenue that results from pricing at
the reserve price for the distribution.

Amazingly, the approximately optimal auctions of Babaioff et al., Yao, and
Cai et al. essentially only use second-price auctions and reserve pricing for either
single items or bundles of items, and therefore, the single sample paradigm nearly
suffices to construct a prior-independent version of these auctions. There is only
one detail to resolve and that relates to the issue of pricing bundles: the sum
of regular random variables is not necessarily regular. However, delving into the
proof from Babaioff et al., we find that the solution to this problem essentially
writes itself: in the “bad” case, when bundle pricing is necessary for approxi-
mating the optimal revenue, it happens to be that the relevant random variable
concentrates so that, in fact, a sample bundle price is sufficient.

1.1 Other Related Work

An important line of recent research [9,14,21,23,24] has explored the sample
complexity of auctions. For example, [15] shows that with a single sample, one

3 This is a reinterpretation of the Bulow-Klemperer Theorem [2].
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can design an auction that gets a constant factor approximation to the optimal
single item auction. How much better can you do with more samples? This
question has been explored in a number of auction settings; e.g. by Morgenstern
and Roughgarden [23] in the additive bidder setting we study in this paper.

1.2 Organization

After preliminaries, we show in Sect. 2 how to approximate the optimal single
additive bidder revenue when given access to a sample from each item distribu-
tion. Then, in Sect. 3, we use the latter result to give two approximately optimal
auctions for the multiple additive bidders setting: one that is given access to a
sample from every item distribution from each bidder and one is that is fully
prior-independent. In Sect. 4 we discuss an improved analysis for bidders with
finite support distributions. We conclude with open problems in Sect. 5.

1.3 Preliminaries

In this paper, we consider the setting of a revenue-maximizing monopolist seller
with m items to sell to n additive bidders. Each bidder i has his value Vij for
item j drawn from an unknown prior distribution Fij . All bidders are additive:
for any set of items S, bidder i’s value for the set is

Vi(S) =
∑

j∈S

Vij .

We will assume that each of the distributions Fij is regular. That is, ϕij(v) =
v − 1−Fij(v)

fij(v)
is non-decreasing.

We also use the following notation:

– The revenue curve R(·) gives the expected revenue for selling an item at a
price x to a bidder with value V drawn from distribution F . That is, R(x) :=
x · Pr[V ≥ x].

– The monopoly price r∗ is the price that maximizes revenue: r∗ :=
argmaxx R(x).

– Consider a single additive bidder with value Vj ∼ Gj for item j. Then
SRev(V1, . . . , Vm) denotes the optimal expected revenue that can be obtained
by posting a price for each item j individually. That is,

SRev(V1, . . . , Vm) :=
∑

j

max
xj

Rj(xj),

where Rj is the revenue curve associated with the distribution Gj .
– BRev(V1, . . . , Vm) denotes the optimal expected revenue for posting a price

on the “grand bundle” of all of the items to this same additive bidder with
Vj ∼ Gj . That is,

BRev(V1, . . . , Vm) := max
x

x · Pr[
∑

j

Vj ≥ x].

– For any number x, let (x)+ denote max{x, 0}.
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2 A Prior Independent Mechanism for a Single Additive
Bidder, Given Samples

Our mechanism draws heavily on two prior results. The first demonstrates that
access to a single sample from a bidder’s distribution can be used to obtain a
1
2 -approximation of optimal revenue in the single-item setting.

Theorem 1 (Dhangwatnotai, Roughgarden, and Yan 2010). Consider a
bidder whose value for a particular item is drawn from F , a regular distribution
with monopoly price r∗ and revenue function R(·). Let S ∼ F be a random
sample from the distribution F . Then, for every nonnegative number t,

E(R(max{t, S})) ≥ 1
2
R(max{t, r∗}).

Therefore, in particular, for t = 0, the expected revenue from posting a price of
S yields at least half of the optimal posted price revenue, which is R(r∗).

The second result we use demonstrates that a combination of two very simple
mechanisms can be used to obtain a constant factor of the optimal revenue in
the single additive bidder setting.

Theorem 2 (Babaioff, Immorlica, Lucier, and Weinberg 2014). Con-
sider a single additive bidder with value Vj for item j drawn independently from
distribution Gj. Denote by opt(V1, . . . , Vm) the revenue of the optimal mech-
anism. Let t = SRev(V1, . . . , Vm) denote the optimal expected revenue from
selling the items separately, and define V :=

∑m
j=1 Vj, the bidder’s value for the

grand bundle. Then

– If E[V | Vj ≤ t ∀j] ≤ 4SRev(V1, . . . , Vm), then

E[opt(V1, . . . , Vm)] ≤ 6SRev(V1, . . . , Vm).

– Otherwise, if E[V | Vj ≤ t ∀j] > 4SRev(V1, . . . , Vm), then

Pr
[

V ≥ 2
5

· E[V | Vj ≤ t ∀j]
]

≥ 47
72

and

E[opt(V1, . . . , Vm)] ≤ 2SRev(V1, . . . , Vm) + E[V | Vj ≤ t ∀j].

From this, Babaioff et al. obtain the following corollary:

Corollary 1 (Babaioff, Immorlica, Lucier, and Weinberg 2014). Con-
sider a single additive bidder with value Vj for item j drawn independently
from distribution Gj. Let SRev(V1, . . . , Vm) denote the optimal expected revenue
from selling the items separately and let BRev(V1, . . . , Vm) denote the optimal
expected revenue from selling the grand bundle. Then

E[opt(V1, . . . , Vm)] ≤ 6 · max{SRev(V1, . . . , Vm) + BRev(V1, . . . , Vm)}.
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We now combine the single additive bidder analysis with samples from the
distributions to give an approximately optimal mechanism for a single additive
bidder that does not rely on knowledge of the priors, but rather uses a single
sample from each distribution.

The multi-bidder analogue of the better of selling separately or selling the
grand bundle is a two-part tariff mechanism as used in [7,8,30]. Here, each bidder
is offered a list of item prices and an entry fee. Typically in these mechanisms,
some item prices are determined first. Then, the buyer’s surplus values above
each item’s price are analyzed to understand either (a) whether to increase the
item prices or to use an entry-fee or (b) how to compute the entry fee. This is
equivalent to the buyer’s prior distribution for each item shifted down by the
item’s price. We define the mechanism in a slightly more general way than is
necessary here with a parameter Δ in order to easily extend to the case where
we want to analyze the shifted distributions. In the single bidder setting, we do
not shift the distributions, so we will set the shift Δj = 0 for all j. However, this
parameter will allow us to use this mechanism as a black box in the multiple
bidders setting.

Definition 1. Define the Sample Mechanism as follows. Given a set
(S1, . . . , Sm) of samples from an additive bidder’s distribution, and a set of non-
negative values Δ1, . . . ,Δm,

(a) with probability 1
2 : Offer a price of max{Δj , Sj} for each item j separately.

(b) with probability 1
2 : Offer the bidder a price of S+ =

∑m
j=1(Sj −Δj)+ to enter

the auction. If he pays the entrance fee, he can take any item j he wants at
price Δj. (When Δ = 0, this is simply pricing the grand bundle.)

Denote the revenue from this mechanism as Samp(V1, . . . , Vm;Δ).

Theorem 3. Consider a single additive bidder with value Vj for item j drawn
independently from regular distribution Gj. Let Δ1, . . . ,Δj ≥ 0, and define V +

j =
(Vj − Δj)+. The Sample Mechanism has expected revenue which is a constant
fraction of the optimal expected revenue for (V +

1 , . . . , V +
m ).

Proof. The first step of the Sample Mechanism obtains expected revenue which
is a constant fraction of SRev(V +

1 , . . . , V +
m ). To see this, note that

SRev(V +
1 , . . . , V +

m ) =
∑

j

max
x≥Δj

[
(x − Δj)+(1 − Gj(x))

]

≤
∑

j

max
x≥Δj

Rj(x) ≤
∑

j

Rj(max{Δj , r
∗
j }),

where Rj(·) is the revenue curve for Gj and r∗
j is the optimal reserve price for Gj .

The last inequality follows from regularity of Gj , and thus concavity of Rj(·). An
application of Theorem1 shows that offering the bidder a price of max{Δj , Sj}
for item j yields expected revenue at least half of Rj(max{Δj , r

∗
j }), hence step

(a) is a 1
4 -approximation to SRev(V +

1 , . . . , V +
m ).
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To complete the proof, we show how the Sample Mechanism approximates
E[opt(V +

1 , . . . , V +
m )] within a constant factor using the two cases of Theorem 2.

To this end, let t = SRev(V +
1 , . . . , V +

m ) and define C := E[V +| V +
j ≤ t ∀j],

where V + =
∑

j V +
j . If C ≤ 4t, we are in the first case of Theorem 2 applied to

the random variables (V +
1 , . . . , V +

m ), hence

E[opt(V +
1 , . . . , V +

m )] ≤ 6SRev(V +
1 , . . . , V +

m ) ≤ 24Samp(V1, . . . , Vm;Δ).

Otherwise, C > 4t, and we also need to consider the revenue from the second
step of the Sample Mechanism. In this case, from Theorem 2, we have

E[opt(V +
1 , . . . , V +

m )] ≤ 2SRev(V +
1 , . . . , V +

m )+C and Pr
[

V + ≥ 2
5
C

]

≥ 47
72

.

Next, recall that S+ =
∑m

j=1(Sj − Δj)+ is entry fee that is offered. Observe
that if V + > S+, then the bidder will enter the auction, since his utility will
then be

∑
j|Vj≥Δj

(Vj − Δj) − S+ = V + − S+. Therefore, the expected revenue
from step (b), the entry fee portion of the auction, can be bounded as follows:

E
[
S+

∣
∣ V + ≥ S+

]
Pr[V + ≥ S+]

≥ E

[

S+

∣
∣
∣
∣ V + ≥ S+, V +, S+ ≥ 2

5
C

]

· Pr
[

V +, S+ ≥ 2
5
C, V + ≥ S+

]

≥ 2
5
C · Pr

[

V + ≥ S+

∣
∣
∣
∣ V +, S+ ≥ 2

5
C

]

·
(

47
72

)2

>
1
2

· 1
6
C

=
1
12

C. (1)

The third line follows from the second part of Theorem2, and the indepen-
dence of V + and S+. The fourth line follows from the fact that V + and S+ are
identically distributed.

In this case, it is now clear that the Sample Mechanism obtains a constant
factor approximation:

E[opt(V +
1 , . . . , V +

m )] ≤ 2SRev(V +
1 , . . . , V +

m ) + C ≤ 24Samp(V1, . . . , Vm;Δ).

Thus in either case, E[opt(V +
1 , . . . , V +

m )] ≤ 24Samp(V1, . . . , Vm;Δ). This mech-
anism loses a factor of 4 compared to the prior-dependent max{SRev,BRev}
mechanism in [1].

Corollary 2. Consider a single additive bidder with value Vj for item j drawn
independently from regular distribution Gj. The Sample Mechanism with Δj = 0
for all j has expected revenue which is a constant fraction of the optimal expected
revenue E[opt(V1, . . . , Vm)].
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3 Multiple Additive Bidders

Our mechanism builds on the following breakthrough result from which Yao
constructs a simple, approximately optimal mechanism for the multiple additive
bidders setting.

Theorem 4 (Yao 2015). Consider n additive bidders, where Vij is the value
bidder i has for item j, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Assume the set
of random variables {Vij}m

j=1 are independent for each i. Define the following
auxiliary random variables:

Xij := max
k �=i

Vkj and Aij := (Vij − Xij)+.

Then for V j = (V1j , . . . , Vnj), the expected revenue of the optimal mechanism
for the multiple additive bidders setting satisfies

E[opt(V 1, . . . ,V m)] ≤ 8
∑

i

E[opt(Ai1, . . . , Aim)] + 9E[SPA(V 1, . . . ,V m)],

where SPA(·) is the revenue from running a separate second-price auction for
each item and opt(Ai1, . . . , Aim) denotes the revenue obtained by the optimal
single additive bidder auction, when that bidder’s value for item j is Aij.

3.1 A Sample Auction for Multiple Bidders

By randomly choosing to either (a) run a second-price auction separately on
each item or (b) run sample mechanisms on each bidder with Δij = Xij , we
can achieve a constant-fraction of the optimal revenue from only samples in the
multiple-additive-bidder setting as well.

Definition 2. Define the Multiple-Additive-Bidders Sample Mechanism para-
meterized by p as follows, given a sample Sij from each bidder i’s distribution
for item j:

(a) with probability p: Run a Second-Price Auction on each item j. That is, offer
each bidder i the option to take item j at a price equal to Xij.

(b) with probability 1 − p: Offer each bidder i an entry fee of
∑

j(Sij − Xij)+.
Any bidder willing to pay the entry fee can then take4 item j at price Xij.

Let MAB-Samp(V 1, . . . ,V m; p) denote the revenue from the Multiple-Additive-
Bidders Sample Mechanism with parameter p.

Theorem 5. In the setting of Theorem4, when the random variables Vij are
all independent and, for each j, the random variables Vij is drawn from regular
distribution Fij for each bidder i and item j, with access to a sample Sij from
each Fij, the Multiple-Additive-Bidders Sample Mechanism with parameter p =
9

201 obtains at least a constant fraction of the optimal expected revenue.

4 This guarantees that each item is taken by at most one bidder.
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Proof. Recall that Xij := maxk �=i Vkj is the highest bid for item j excluding
bidder i’s bid, and Aij := (Vij − Xij)+ is the surplus from buyer i’s value for
item j over this price.

Given sample Sij for each item j, an application of Theorem3 on each bidder
i where Δij = Xij gives that opt(Ai1, . . . , Aim) ≤ 24Samp(Vi1, . . . , Vim;Xi),
where Xi = (Xi1, . . . , Xim). Using Theorem 4, this gives that

E[opt(V 1, . . . ,V m)] ≤ 8
∑

i

E[opt(Ai1, . . . , Aim)] + 9E[SPA(V 1, . . . ,V m)]

≤ 8 · 24
∑

i

EXi
[Samp(Vi1, . . . , Vim;Xi)]

+ 9E[SPA(V 1, . . . ,V m)]

≤ 201MAB-Samp(V 1, . . . ,V m;
9

201
)

Running the sample mechanisms with probability 192
201 and a second-price

auction separately on each item with probability 9
201 gives a 201-approximation.

Similarly to the single bidder case, this loses less than a factor of 4 compared to
the Bundling Mechanism in [30] which requires full knowledge of all of the prior
distributions and achieves a 57-approximation.

3.2 A Prior-Independent Auction

We can also use sample mechanisms to sell to multiple additive bidders without
extra samples. Analogously to [15], if the seller can identify which bidders come
from the same distribution, she can take a sample bidder from each group a of
identically distributed bidders and use it to set the prices for the rest of the
group. This requires at least two bidders from each distribution group a. The
mechanism is the same as the Multiple-Additive-Bidders Sample Mechanism,
but with randomly excluded bidders used as samples.

Definition 3. Define the Multiple-Additive-Bidders Prior-Independent Mech-
anism parameterized by p as follows:

(a) with probability p: Run a Second-Price Auction on each item j. That is, offer
each bidder i the option to take item j at a price equal to Xij.

(b) with probability 1−p: Remove a random bidder ia from each group of bidders
a and let Saj be his bid for item j (i.e., Saj := Viaj). Let S be the set of
bidders sampled from each group a. Also, let βij = maxk �∈S, k �=i Vkj. Offer
each remaining bidder i from group a an entry fee of

∑
j(Saj − βij)+.

Any bidder willing to pay the entry fee can then take item j at price βij.

Let MAB-PI(V 1, . . . ,V m; p) denote the revenue from the Multiple-Additive-
Bidders Prior-Independent Mechanism with parameter p.
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Theorem 6. In the setting of Theorem4, when the random variables Vij are
all independent and, for each j, the random variables Vij is drawn from regular
distribution Fij for each bidder i and item j, with at least 2 bidders from every
distribution group a, the Multiple-Additive-Bidders Prior-Independent Mecha-
nism with parameter p = 9

1161 obtains at least a constant fraction of the optimal
expected revenue.

Proof. If na is the number of bidders from distribution group a and nmin
a is the

number of bidders in the smallest such group, then
∑

i

E[opt(Ai1, . . . , Aim)] ≤
∑

a

na

na − 1

∑

i∈a,i�∈S
E[opt(Ai1, . . . , Aim)]

≤ nmin
a

nmin
a − 1

∑

i�∈S
E[opt(Ai1, . . . , Aim)].

Also notice that

Aij :=
(
Vij − max{max

a
{Saj}, βij}

)+

and define V +
ij := (Vij − βij)+.

Clearly, the random variable V +
ij dominates the random variable Aij (i.e.,

Pr(V +
ij ≥ x) ≥ Pr(Aij ≥ x) for all x). Therefore,

SRev(Ai1, . . . , Aim) ≤ SRev(V +
i1 , . . . , V +

im)

and
BRev(Ai1, . . . , Aim) ≤ BRev(V +

i1 , . . . , V +
im)

Thus, by Corollary 1, it suffices to obtain a constant fraction of E[opt(V +
i1 , . . . ,

V +
im)] for each i.

Using the analysis from Theorem 5, we put it all together to see that

E[opt(V 1, . . . ,V m)] ≤ 8 · nmin
a

nmin
a − 1

∑

i�∈S
E[opt(Ai1, . . . , Aim)]

+ 9E[SPA(V 1, . . . ,V m)]

≤ 8 · nmin
a

nmin
a − 1

· 6
∑

i�∈S
E[opt(V +

i1 , . . . , V +
im)]

+ 9E[SPA(V 1, . . . ,V m)]

≤ 8 · nmin
a

nmin
a − 1

· 6 · 24
∑

i�∈S
Eβi

[Samp(Vi1, . . . , Vim;βi)]

+ 9E[SPA(V 1, . . . ,V m)]

≤ 1161 · nmin
a

nmin
a − 1

MAB-PI(V 1, . . . ,V m;
9

1161
)

where of course, since nmin
a ≥ 2, then nmin

a

nmin
a −1

≤ 2.
Note that the loss due to excluding bidders to use as samples is a factor of

6 nmin
a

nmin
a −1

.
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4 Finite Support Distributions

Cai, Devanur, and Weinberg [7] present a new framework that analyzes revenue
from multiple additive bidders with finite support distributions (over discrete
value spaces) via a similar core-tail decomposition. These results also hold for
discretizing a continuous value space and losing at most a factor of 1 + ε in the
revenue due to the discretization. Utilizing this analysis improves the constant
of our approximation.

Precisely, they show that

E[opt(V 1, . . . ,V m)] ≤ 4SRev(V 1, . . . ,V m) + Core

where, for the highest other bid Xij := maxk �=i Vkj ,

Core = E[
n∑

i=1

m∑

j=1

(Vij − Xij)+1Vij∈[Xij ,Xij+ti]]

and
ti = SRev((Vi1 − Xi1)+, . . . , (Vim − Xim)+).

Then if Aij = (Vij − Xij)+ · 1Vij∈[Xij ,Xij+ti]], we have that

Core =
n∑

i=1

EV −i
[EVi

[
m∑

j=1

Aij ]].

Then in a proof nearly identical to that of Theorem3, we can show that
Core ≤ 24

∑
i EV −i

[Samp(Vi1, . . . , Vim;Xi)]. For each bidder, we set Δj = Xij

and bound E[
∑m

j=1 Aij ] ≤ 24Samp(Vi1, . . . , Vim;Δ).
In one case, E[

∑m
j=1 Aij ] ≤ 4t = 4SRev((Vi1 − Xi1)+, . . . , (Vim − Xim)+) ≤

16Samp(Vi1, . . . , Vim;Xi). In the other case, E[
∑m

j=1 Aij ] > 4t. In this case,
similarly to the proof of Theorem2, we get that

Pr[|
∑

j

Aij − E[
m∑

j=1

Aij ]| ≥ 3
5
E[

m∑

j=1

Aij ]]

≤ var(
∑m

j=1 Aij)
3
5

2
E[

∑m
j=1 Aij ]2

by Chebyshev’s inequality

<
var(

∑m
j=1 Aij)

9
25

2 · 16t2
since E[

∑

j

Aij ] > 4t

≤ 2t2

9
25

2 · 16t2
=

25
72

.

The final inequality follows from the fact that var(
∑m

j=1 Aij) ≤ t2 by Lemma 9
of [7].
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Identically to the proof of Theorem 3, we get that if we offer the bidder a
price of S+ =

∑m
j=1(Sij − Xij)+ that

E[
m∑

j=1

Aij ] ≤ 12E[S+ · Pr[
m∑

j=1

Aij ≥ S+]] ≤ 24Samp(Vi1, . . . , Vim;Xi).

Hence Core ≤ 24
∑

i EV −i
[Samp(Vi1, . . . , Vim;Xi)]. Moreover, since (Vij −

βij)+ stochastically dominates (Vij −Xij)+, then we only lose a factor of nmin
a

nmin
a −1

for excluding bidders to use as samples to make a prior-independent auction.
As in the proof of Theorem3, an application of Theorem1 gives that a second-

price auction on each item is a constant factor of the revenue from selling each
item separately. Then again, since βij = maxk �∈S, k �=i Vkj ,

E[opt(V 1, . . . ,V m)] ≤ 4SRev(V 1, . . . ,V m) + Core

≤ 8SPA(V 1, . . . ,V m)+

24 · nmin
a

nmin
a − 1

∑

i�∈S
Eβi

[Samp(Vi1, . . . , Vim;βi)]

≤ 32 · nmin
a

nmin
a − 1

MAB-PI(V 1, . . . ,V m;
1
4
)

We lose a factor of 4 compared to the mechanism of [7] when given samples, and
a factor of 4 · nmin

a

nmin
a −1 without samples.

5 Open Problems

Beyond Additive Bidders. One interesting problem for future work is to
design prior-independent mechanisms for more general valuations. Recent work
in revenue maximization for more general multi-item settings gives mechanisms
that have constant-factor approximation guarantees for a single subadditive
buyer [28] and for multiple matroid-constrained buyers [8]. Both of these results
rely on an analysis that chooses prices in the bidders’ distributions that would
sell with a constrained ex-ante probability. As these probabilities are aimed at
segmenting off the tails of the distributions and samples are unlikely to come
from the tail, it is unclear how to design a prior independent mechanism for
these settings.

Lower Bounds. Another interesting open problem is to obtain a lower bound
on the gap in revenue between the optimal mechanism and the Sample Mecha-
nism, and for the Multiple-Additive-Bidders Sample Mechanism as well. How-
ever, stronger lower bounds are still open problems for the mechanisms from
[1,7,30] as well.

A lower bound from [15] shows that the factor of 2 in Theorem1 is tight when
a bidder’s distribution for a single item is the distribution where the revenue
curve is a triangle, that is, where F (v) = v

v+1 on [0,H) as H → ∞.
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The best known lower bound on the approximation of the max{SRev,
BRev} is a factor of 2. The example, given by Rubinstein [27], has n items
from the equal revenue distribution and n rare but expensive items. The opti-
mal revenue gets an equal fraction of revenue from each group; however, selling
the grand bundle does well for the first set and poorly for the second while selling
separately captures the revenue of the second set but not the first. Of course,
this gap gives the Sample Mechanism a lower bound of 2 as well.
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Abstract. We consider the design of an optimal mechanism for a
seller selling two items to a single buyer so that the expected rev-
enue to the seller is maximized. The buyer’s valuation of the two items
is assumed to be the uniform distribution over an arbitrary rectangle
[c1, c1 + b1] × [c2, c2 + b2] in the positive quadrant. The solution to the
case when (c1, c2) = (0, 0) was already known. We provide an explicit
solution for arbitrary nonnegative values of (c1, c2, b1, b2). We prove that
the optimal mechanism is to sell the two items according to one of eight
simple menus. We also prove that the solution is deterministic when
either c1 or c2 is beyond a threshold. Finally, we conjecture that our
methodology can be extended to a wider class of distributions. We also
provide some preliminary results to support the conjecture.

1 Introduction

Optimal mechanism design is the problem of finding a mechanism that generates
the highest expected revenue to the seller. While the solution to the problem of
selling a single item is well-known (Myerson [8]), optimal mechanism design
for selling multiple items is a harder problem. Even the simplest setting with
two items and one buyer remains as yet unsolved. Partial characterizations and
solutions to some special cases are known. For example, Rochet and Choné
[10] provided a partial characterization of the optimal mechanism as one whose
parameters solve a system of partial differential equations. Manelli and Vincent
[6,7] derived the optimal mechanism when the number of items m = 2, and the
valuation z = (z1, z2) of those items is such that z ∼ Unif[0, 1]2. Giannakapoulos
and Koutsoupias [4] provided a solution when m ≤ 6 and z = (z1, . . . , zm) ∼
Unif[0, 1]m. In another paper [5], the same authors provided closed form solutions
when m = 2 and the distribution of z satisfies some sufficient conditions. Wang
and Tang [12] proved that the optimal mechanisms have simple menus, when
the distribution of z satisfies a certain power rate condition (that is satisfied
by the uniform distribution). Each menu has at most four regions of constant
allocations. However, the exact menus and associated allocations were left open.
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Daskalakis et al. [1–3] considered the most general class of distributions till
date, and gave an optimal solution when the distributions give rise to a so-called
“well-formed” canonical partition (to be described in Sect. 4) of the support set.

The papers [1–5] rely on a result of Rochet [11] that transforms the search for
an optimal mechanism into a search for a positive function. This function repre-
sents the valuation of the buyer minus the payment to the seller, and maximizes
the expected payment subject to the function being positive, increasing, convex,
and 1-Lipschitz. The above papers identify a dual problem, solve it, and exploit
this solution to identify a primal solution. The assumption that the support set
D of the distribution is [0, bi]2 is crucially used in finding the dual solution.
We are aware of only two examples where the support sets [c, c + 1]2, c > 0,
and [4, 16] × [4, 7], for which the solutions are known, are not bordered by the
coordinate axes. These were considered by Pavlov [9] and Daskalakis et al. [2],
respectively. Daskalakis et al. [1,2] do consider other distributions but they must
satisfy f(z)(z · n(z)) = 0 on the boundaries of D, where n(z) is the normal to
the boundary at z. The uniform distribution on arbitrary rectangles (which we
consider in this paper) has f(z)(z · n(z)) < 0 in general on the left and bottom
boundaries, and this requires additional nontrivial care in its handling.

1.1 Contribution, Method, and Outline

We solve the two-item single-buyer optimal mechanism design problem when z ∼
Unif[c1, c1+b1]×[c2, c2+b2], for arbitrary nonnegative values of (c1, c2, b1, b2). We
prove that the structure of the optimal solution falls within a class of eight simple
menus. Each has at most four constant allocation regions. In each region, goods
are allocated with fixed probabilities. Our proof is constructive and provides a
method to compute the exact solution. We also establish an interesting property
of the optimal mechanism: given any value of c1, we find a threshold value of c2
beyond which the mechanism becomes deterministic.

Our method is as follows. From [2,3], we know that the dual problem is
an optimal transport problem that transfers mass from the support set D to
itself, subject to the constraint that the difference between the mass densities
before and after the transfer convex dominates a signed measure defined by
the distribution of the valuations. When (c1, c2) = (0, 0), Daskalakis et al. [1]
provided a solution where the difference between the densities not just convex
dominates the signed measure, but equals it. In another work, Daskalakis et al.
[2] provided an example (z ∼ Unif[4, 16]×[4, 7]) where the difference between the
densities strictly convex dominates the signed measure. They construct a line
measure that convex dominates 0, add it to the signed measure, and then solve
the example using the same method that they used to solve the (c1, c2) = (0, 0)
case. They call this line measure as the “shuffling measure”.

Their method can be used to find the optimal solution for more general
distributions, provided we know what shuffling measure must be used to arrive
at the solution. It is not clear, a priori, what shuffling measure must be used,
even for the restricted setting of uniform distributions. We prove that for the
setting of uniform distributions, the optimal solution is always arrived at by
using a shuffling (line) measure of certain forms. We do the following.
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• We start with the shuffling (line) measure in [2]. We parametrize this measure
using its depth (pa1), slope (a1), and the length (m1), and find the relation
between these parameters so that the line measure convex dominates 0.

• We then derive the conditions that these parameters must satisfy in order to
solve the optimal transport problem. The conditions turn out to be polyno-
mial equations of degree at most 4.

• We identify conditions on the parameters (c1, c2, b1, b2) so that the solutions
to the polynomials yield a valid menu (allocation probability is at most 1 and
the canonical partition is within D). We thus arrive at eight different menus.
We prove that the optimal menu is one of the eight, for any (c1, c2, b1, b2) ≥ 0.

• We then generalize the shuffling measure, and use it to solve an example linear
density function. We thus conjecture that this class of shuffling measures will
help identify the optimal mechanism for distributions with negative constant
power rate.

Our work thus provides a method to construct an appropriate shuffling mea-
sure, and hence to arrive at the optimal solution, for various distributions whose
support sets are not bordered by the coordinate axes. In our view, this is a non-
trivial step towards understanding optimal mechanisms in multi-item settings.

The rest of the paper is organized as follows. In Sect. 2, we formulate an opti-
mization problem that describes the two-item single-buyer optimal mechanism.
In Sect. 3, we discuss the space of solutions and highlight a few interesting out-
comes. In Sect. 4, we define the shuffling measures required to find the optimal
mechanism for the uniform distribution on arbitrary rectangles. We prove that
the optimal solution is one of the eight simple menus. In Sect. 5, we discuss the
conjecture and possible extension to other classes of distributions.

2 Preliminaries

Consider a two-item one-buyer setting. The buyer’s valuation is z = (z1, z2)
for the two items, sampled according to the joint density f(z) = f1(z1)f2(z2),
where f1(z1) and f2(z2) are marginal densities. The support set of f is defined as
D := {z : f(z) > 0}. Throughout this paper, we restrict attention to an arbitrary
rectangle D = [c1, c1 + b1] × [c2, c2 + b2], where c1, c2, b1, b2 are all nonnegative.
A quasilinear mechanism comprises an allocation function q : D → [0, 1]2 and
a payment function t : D → R+ that represent, respectively, the probabilities
of allocation of the items to the buyer and the amount that the buyer pays. In
other words, for a reported valuation vector ẑ = (ẑ1, ẑ2), item i is allocated with
probability qi(ẑ), where (q1(ẑ), q2(ẑ)) = q(ẑ), and the seller collects a revenue of
t(ẑ) from the buyer. If the buyer’s true valuation is z, and he reports ẑ, then his
utility is û(z, ẑ) := z · q(ẑ) − t(ẑ), which is the valuation minus the payment.

A quasilinear mechanism is incentive compatible when truth telling is a
weakly dominant strategy for the buyer, i.e., û(z, z) ≥ û(z, ẑ) for every z, ẑ ∈ D.
In this case the buyer’s realized utility is

u(z) := û(z, z) = z · q(z) − t(z). (1)
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The following result is well known:

Theorem 1 [11]. A quasilinear mechanism (q, t), with u(z) = z · q(z) − t(z), is
incentive compatible iff u is convex and ∇u(z) = q(z) for a.e. z ∈ D.

An incentive compatible mechanism is individually rational if the buyer is
not worse off by participating in the mechanism, i.e., u(z) ≥ 0 for every z ∈ D.

An optimal mechanism is one that maximizes the expected revenue to the
seller subject to incentive compatibility and individual rationality. By virtue of
Theorem 1 and (1), an optimal mechanism solves the problem

max
u

Ez∼f [t(z)] =
∫

D

(z · ∇u(z) − u(z))f(z) dz (2)

subject to {(a)u convex, (b)∇u(z) ∈ [0, 1]2 a.e. z ∈ D, (c)u(z) ≥ 0 ∀z ∈ D.}
The condition ∇u ∈ [0, 1]2 holds because, by Theorem 1, ∇u(z) = q(z) ∈ [0, 1]2.
Since the components of ∇u are nonnegative, the nonnegativity condition in
(2) is equivalent to having u(c1, c2) ≥ 0. We further set u(c1, c2) = 0, since
the objective function can be only lower when u(c1, c2) is larger. Using integra-
tion by parts, the objective function of (2) can be written as

∫
D

u(z)μ(z) dz +∫
∂D

u(z)μs(z) dσ(z), where μ(z) := −z · ∇f(z) − 3f(z) for all z ∈ D, and
μs(z) := (z · n(z))f(z) for all z ∈ ∂D.

The vector n(z) is the normal to the surface ∂D at z. We regard μ and μs

as the densities of signed measures on D and ∂D that are absolutely continuous
with respect to the two-dimensional and one-dimensional Lebesgue measures dz
and dσ(z), respectively. Often, by an abuse of notation, we use μ and μs to
represent the measures instead of just the densities. By taking u(z) = 1 ∀z ∈ D,
we observe that∫

D

μ(z) dz +
∫

∂D

μs(z) dσ(z) =
∫

D

u(z)μ(z) dz +
∫

∂D

u(z)μs(z) dσ(z)

=
∫

D

(z · ∇u(z) − u(z))f(z) dz = −1.

By defining a point measure μp := δ{(c1,c2)}, we have that μ̄ := μ + μs + μp has
μ̄(D) = 0. (By μ̄ = μ + μs + μp, we mean μ̄(A) = μ(A) + μs(A ∩ ∂D) + μp(A ∩
{(c1, c2)}).) The optimization problem (2) can now be written as

max
u

∫
D

u dμ̄ (3)

subject to {(a)u convex, (b)∇u(z) ∈ [0, 1]2 a.e. z ∈ D, (c)u(c1, c2) = 0.}
The objective function remains unchanged upon the addition of the point mea-
sure μp since u(c1, c2) = 0. We now recall the definition of the convex ordering
relation. A function f is increasing if z ≥ z′ component-wise implies f(z) ≥ f(z′).

Definition 2 [2]. Let α and β be measures defined on a set D. We say α convex
dominates β (α 
cvx β) if

∫
D

f dα ≥ ∫
D

f dβ for all convex and increasing f .
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The dual of problem (3) is found to be [2, Theorem 2]

inf
γ:D×D→R+

∫
D×D

c(x, y) dγ(x, y) (4)

subject to {γ1 − γ2 
cvx μ̄, where γ(·,D) = γ1(·) and γ(D, ·) = γ2(·)}

where c(x, y) =
∑2

i=1(xi − yi)+. The next lemma gives a sufficient condition for
strong duality.

Lemma 3 [2, Corollary 1]. Let u∗ and γ∗ be feasible for the aforementioned
primal (3) and dual (4) problems, respectively. Then

∫
D

u∗ dμ̄ =
∫

D×D
c dγ∗ iff

(i)
∫

D
u∗ d(γ1 − γ2) =

∫
D

u∗ dμ̄, and (ii) u∗(x) − u∗(y) = c(x, y), γ∗ − a.e.

Our problem now reduces to that of finding a γ such that γ1 − γ2 convex
dominates μ̄, and satisfies the conditions stated in Lemma 3. The key, nontrivial
technical contribution of our paper is to identify such a γ when z ∼ Unif[c1, c1 +
b1] × [c2, c2 + b2], for all (c1, c2, b1, b2) ≥ 0.

3 A Discussion of Optimal Solutions for the General Case

We now discuss the space of solutions for any nonnegative c1, c2, b1, b2. The main
result of this paper is that the optimal mechanism is given as follows.

When the values of c1 and c2 are small, in the sense that

{c1 ≤ b1, c2 ≤ 2b2(b1 + c1)/(b1 + 3c1)}∪{c2 ≤ b2, c1 ≤ 2b1(b2 + c2)/(b2 + 3c2)} ,
(5)

the optimal menu is one of the four menus in Fig. 1. We discuss this in detail in
Sect. 4.1. We describe the exact menu and associated allocations in Theorem 6.

When the value of c2 is large but c1 is small, in the sense that

{c1 ≤ b1, c2 > 2b2(b1 + c1)/(b1 + 3c1)} ,

the optimal menu is one of the three menus in Fig. 2. We discuss this in detail
in Sect. 4.2. We give the exact menu and associated allocations in Theorem 8.

When the value of c1 is large but c2 is small, in the sense that

{c2 ≤ b2, c1 > 2b1(b2 + c2)/(b2 + 3c2)} ,

the optimal menu is one of the three menus in Fig. 3. Notice that this is sym-
metric to the case where c2 is large but c1 is small.

In the remaining cases when c1 and c2 are large, in the sense that

{c1 ≥ b1, c2 ≥ b2} ,

the optimal mechanism is given by pure bundling as in, for example, Fig. 1d.
Figure 4 provides a self-explanatory ‘phase diagram’ of optimal menus as a

function of c1
b1

and c2
b2

. Interesting cases occur when either c1 ≤ b1 or c2 ≤ b2.
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Fig. 1. The structure of optimal mechanism when both c1 and c2 are small. The (q1, q2)
in each region indicates the corresponding allocation probabilities.

Fig. 2. The structure of optimal mechanism when c1 is small, c2 is large.

Fig. 3. The structure of optimal mechanism when c2 is small, c1 is large.

Defining the power rate Δ : D → R as Δ(z1, z2) := −3 − z1f
′
1(z1)/f1(z1) −

z2f
′
2(z2)/f2(z2), Wang and Tang [12] proved that the optimal mechanism for

a distribution with Δ equaling a negative constant, has at most four constant
allocation regions. The uniform distribution has power rate −3 for all z ∈ D.
Observe that in each of the menus in Figs. 1, 2, and 3, the number of regions is
at most four, in agreement with the result in [12].

When c1 is small and c2 is large, in the sense that {c1 ≤ b1, c2 ≥ 2b2(b1/(b1 −
c1))2}, we show (in Theorem 8) that the optimal mechanism is to sell the second
item with probability 1 for the least valuation c2, and sell item 1 at a reserve
price as indicated by Myerson’s revenue maximizing mechanism. This is of course
intuitive. Similar is the case when c2 is small and c1 is sufficiently large.
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When both c1 and c2 are large, {c1 ≥ b1, c2 ≥ b2}, the optimal mechanism
is to bundle the two goods and sell the bundle at the reserve price. The reserve
price c1 + c2 + p is such that p =

(√
(c1 + c2)2 + 6b1b2 − c1 − c2

)
/3. So as

c1 + c2 → ∞, the reserve price is c1 + c2 + O(b1b2/(c1 + c2)). When c1 < b1, the
mechanism is deterministic for any c2 ≥ 2b2(b1/(b1 − c1))2, and when c1 ≥ b1, it
is deterministic for any c2 ≥ b2.

4 The Solution for the Uniform Density on a Rectangle

In this section, we determine the optimal mechanism when z ∼ Unif[c1, c1 +
b1]× [c2, c2+b2]. The solution proceeds similar to the general characterization in
[1, Sect. 10] that uses the optimal transport method. We compute the compo-
nents of μ̄ (i.e., μ, μs, μp), with f(z) = 1

b1b2
for z ∈ D = [c1, c1+b1]× [c2, c2+b2],

as

(area density) μ(z) = −3/(b1b2), z ∈ D

(line density) μs(z) =
2∑

i=1

(−ci1(zi = ci) + (ci + bi)1(zi = ci + bi))/(b1b2),

z ∈ ∂D

(point measure) μp({c1, c2}) = 1.

We define the functions si : [ci, ci + bi) → [c−i, c−i + b−i), i = 1, 2, as follows.

si(zi) :={
z∗
−i ∈ [c−i, c−i + b−i) :

∫ c−i+b−i

z∗
−i

μ̄(zi, z−i) dz−i + μ̄(zi, c−i + b−i) = 0

}
.

The integral denotes the integration of the densities of μ̄, and the equation
an equation of appropriate densities. Now we define the zero set Z as the set
formed by the intersection of {(z1, z2) : z2 ≤ s1(z1)}, {(z1, z2) : z1 ≤ s2(z2)}, and
{(z1, z2) : z1+z2 ≤ c1+c2+p}, with p chosen to satisfy μ̄(Z) = 0. We denote the
point of intersection between the curves z2 = s1(z1) and z1 + z2 = c1 + c2 + p by
P , and that between z1 = s2(z2) and z1+z2 = c1+c2+p by Q. Let P = (P1, P2)
and Q = (Q1, Q2) denote the respective co-ordinates of P and Q. The regions
A,B, and W , see Fig. 5, are defined as

A := ([c1, P1] × [P2, c2 + b2])\Z; B := ([Q1, c1 + b1] × [c2, Q2])\Z;
W := D\(Z ∪ A ∪ B).

The partition of D into A, B, Z, and W is termed a canonical partition.
Suppose (c1, c2) = (0, 0). Then we have si(zi) = 2b−i/3 for all zi ∈ [0, bi). So

the si functions turn out to be constants when (c1, c2) = (0, 0). When ci > 0, the
function si is not defined for zi = ci, because the density of μ̄(ci, z−i) is negative
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Fig. 4. A phase diagram of the optimal
mechanism.

Fig. 5. The canonical partition of the
set D.

for all z−i. Thus when (c1, c2) = (0, 0), we need to shuffle μ̄ to get around this
issue. We add to μ̄ a “shuffling measure” ᾱ that convex dominates 0. We then
find si(zi) associated with μ̄ + ᾱ, instead of μ̄.

We now investigate the possible structure of such a shuffling measure. We
know (from [9]) that the optimal menu is as in Fig. 1a when z ∼ Unif[c, c + 1]2,
c ≤ 0.077, and also that a1 = a2 = 0 when z ∼ Unif[0, 1]2. In other words, the
functions si(zi) are constant when c = 0, and linear when c ∈ (0, 0.077]. Thus
we anticipate that adding a linear shuffling measure on the top-left and bottom-
right boundaries, with point measures at the top-left and bottom-right corners
to neutralize the negative line densities at zi = ci, would yield the solution.

Daskalakis et al. [2] identify such a shuffling measure when they solve for
D = [4, 16]× [4, 7]. In this paper, we identify shuffling measures for all rectangles
D on the positive quadrant. We first suitably parametrize the shuffling measure
ᾱ. For each candidate ᾱ, we identify the partition associated with μ̄+ᾱ. Then for
each rectangle D, we identify the parameters of ᾱ so that the partition becomes
a canonical partition. We begin by describing a simple shuffling measure ᾱ.

4.1 The Menus When c1 and c2 Are Small

For pa1 ,m1 > 0, define a linear function α
(1)
s : [c1, c1 + m1] → R given by

α(1)
s (x) := (2b2 − c2 − 3pa1 + 3a1(x − c1))/(b1b2), x ∈ [c1, c1 + m1]. (6)

As before, we will reuse α
(1)
s to denote the measure with density given by (6).

Define α
(1)
p := c1(b2−pa1)/(b1b2)δc1 , a point measure of mass c1(b2−pa1)/(b1b2)

at location c1. Finally, define ᾱ(1) := α
(1)
s + α

(1)
p . See Fig. 6a. We assert the

following. All proofs are found in the archival version of this paper.

Proposition 4. Suppose m1 = 4c1(b2−pa1 )

c2−2b2+3pa1
and a1 = (c2−2b2+3pa1 )

2

8c1(b2−pa1 )
. Then,

ᾱ(1)([c1, c1 + m1]) =
∫
[c1,c1+m1]

x ᾱ(1)(dx) = 0, and hence
∫
[c1,c1+m1]

f dᾱ(1) = 0
for any affine function f on [c1, c1 + m1]. Furthermore, ᾱ(1) 
cvx 0.
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Fig. 6. (a) The measure ᾱ. (b) The measure β̄.

For pa2 ,m2 > 0, we define a similar line measure α
(2)
s at the interval [c2, c2 +

m2], a point measure α
(2)
p at c2, and ᾱ(2) := α

(2)
s + α

(2)
p . Define D̃(1) := [c1, c1 +

m1] × {c2 + b2}, an interval on the top boundary of D starting from the top-left
corner, and D̃(2) := {c1 + b1} × [c2, c2 + m2], an interval on the right boundary
of D starting from bottom-right corner. We add ᾱ(i) measure at D̃(i). Define
ᾱ := ᾱ(1) + ᾱ(2) on D. The functions si(·) associated with μ̄ + ᾱ are given by

si(zi) =

{
c−i + pai

− ai(zi − ci), ci ≤ zi ≤ ci + mi

2
3 (c−i + b−i), ci + mi < zi ≤ ci + bi.

We have thus found a shuffling measure ᾱ such that si(·) associated with
μ̄ + ᾱ are defined everywhere in [ci, ci + bi), and also such that ᾱ 
cvx 0. The
functions si(zi) are indicated in Fig. 5. Observe that fixing pai

fixes the slopes
of segments PP ′ and QQ′ to be −a1 and −1/a2, where

a1 =
(c2 − 2b2 + 3pa1)

2

8c1(b2 − pa1)
, a2 =

(c1 − 2b1 + 3pa2)
2

8c2(b1 − pa2)
. (7)

The point P = (c1 + m1, c2 + pa1 − m1a1), and the point Q = (c1 + pa2 −
m2a2, c2 + m2), are also fixed to be

P = (c1 + 4c1(b2 − pa1)/(c2 − 2b2 + 3pa1), c2 + (2b2 − c2 − pa1)/2) ,

Q = (c1 + (2b1 − c1 − pa2)/2, c2 + 4c2(b1 − pa2)/(c1 − 2b1 + 3pa2)) . (8)

To complete the canonical partition, it remains to construct the zero set Z.
Recall that the zero set is the intersection of the sets {z1 ≤ s2(z2)}, {z2 ≤
s1(z1)}, and {z1 + z2 ≤ c1 + c2 + p}, where p is fixed so that μ̄(Z) = 0. The
construction of Z in Fig. 1a thus imposes two constraints: (1) The points P and
Q lie on the line z1 + z2 = c1 + c2 + p, and (2) μ̄(Z) = 0.

The points P and Q lie on the line z1 + z2 = c1 + c2 + p for some p, when
P1 + P2 = Q1 + Q2 holds. Substituting the expressions for P and Q (from (8))
and simplifying, we have

(c1 − c2 − 2(b1 − b2) − (pa1 − pa2))(c1 − 2b1 + 3pa2)(c2 − 2b2 + 3pa1)
+ 8c1(b2 − pa1)(c1 − 2b1 + 3pa2) − 8c2(b1 − pa2)(c2 − 2b2 + 3pa1) = 0. (9)
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We now have P1 + P2 = Q1 + Q2 = c1 + c2 + p, from which we derive p as

p =
4c1(b2 − pa1)

c2 − 2b2 + 3pa1

+
2b2 − c2 − pa1

2
=

2b1 − c1 − pa2

2
+

4c2(b1 − pa2)
c1 − 2b1 + 3pa2

. (10)

The values of pa1 and pa2 are thus constrained to satisfy (9). Now we have
only one free variable, say pa1 , which when fixed identifies the canonical partition.
This is done via the constraint μ̄(Z) = 0. Note that the regions A and B have
been constructed to satisfy μ̄(A) = μ̄(B) = 0, and we have already established
in Sect. 2 that μ̄(D) = 0. So asking for μ̄(Z) = 0 is the same as asking μ̄(W ) =
0. From an examination of Fig. 1a and simple geometry considerations, it is
immediate that −μ̄(W ) = 0 iff

3(b1 − (P1 − c1))(b2 − (Q2 − c2)) − (c2 + b2)(b1 − (P1 − c1)) − (c1+b1)(b2 − (Q2 − c2))

− 3

2
(P2 − Q2)(Q1 − P1) = 0. (11)

This upon substitution of the expressions for P and Q yields

3Π2
i=1(bi(c−i − 2b−i + 3pai

) − 4ci(b−i − pai
))

−
2∑

i=1

((bi(c−i − 2b−i + 3pai
) − 4ci(b−i − pai

))(ci − 2bi + 3pa−i
)(c−i + b−i))

− 3/8Π2
i=1((2b−i − c−i − pai

)(ci − 2bi + 3pa−i
) − 4c−i(bi − pa−i

)) = 0. (12)

We now proceed to find the values of ci, bi for which ∃ (pa1 , pa2) ∈ [0, b2] ×
[0, b1] solving (9) and (12) simultaneously. We observe from (7) and (8) that the
slopes ai and the points P and Q change as a function of pai

, as follows.

Observation 5. Assume pai
∈ [(2b−i − c−i)/3, b−i]. Then, an increase in pa1

increases a1, and moves P towards south-west (i.e., decreases both P1 and P2).
Similarly, an increase in pa2 increases a2, and moves Q towards south-west.

We now define p∗
ai

:= 2b−i−c−i

3 − 4ci
9 + 2

9

√
2ci(2ci + 3(b−i + c−i)) and ri :=

2b−i(2bi+5ci)−c−i(2bi−3ci)
3(2bi+3ci)

. Observe that ai = 1 when pai
= p∗

ai
, and that p∗

ai
∈

[(2b−i − c−i)/3, b−i]. We consider four cases based on the values of ri and p∗
ai

.
Consider case 1, when ri ≤ p∗

ai
, i = 1, 2. Then we have ai ≤ 1 at pai

= ri.
We now make a series of claims, proofs of which are in the archival version.

1. When ci, bi satisfy (5), then ri ∈ [(2b−i −c−i)/3, b−i], i = 1, 2. When pai
= ri,

we have P = Q, i.e., the points P and Q coincide. Moreover, μ̄(W ) ≥ 0.
2. Fixing pai

= ri, we now increase pa1 , and adjust pa2 so that P1+P2 = Q1+Q2

holds (i.e., (9) is satisfied). Then, we claim that pa2 increases as well. We also
claim that P lies to the north-west of Q, if pai

∈ [ri, p
∗
ai

].
3. If P is to the north-west of Q, then μ̄(W ) decreases with increase in pai

.
4. If μ̄(W ) = 0 for some pai

∈ [ri, p
∗
ai

], then the optimal menu is as in Fig. 1a.
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5. Suppose now that pa2 equals p∗
a2

, but still μ̄(W ) > 0 and pa1 < p∗
a1

. Then, a2

equals 1, and we stop further increase in pa2 . The menu in Fig. 1a coincides
with the menu in Fig. 1b, and the regions B and W of the canonical partition
merge. The picture is as in Fig. 7a. As we increase pa1 to p′

a1
> pa1 further,

we hold Q, pa2 , and s2(z2) corresponding to the pa1 that led to a2 = 1. So
the partition moves from Fig. 7a to b, when we increase pa1 . We now claim
that increasing pa1 moves P towards south-west, and also decreases μ̄(W ).

6. Equating −μ̄(W ) = 0 for Fig. 1b, and substituting for a1 and p, we have

− 8c1b
2
2 + (c2b1 − b2b1 − b2c1)(c2 − 2b2) + (c2/2 − b1) (c2 − 2b2)

2 − 3/8(c2 − 2b2)
3

+
(
c1(4c2 − 3b2) + 3b1b2 + 2(c2 − 2c1)(c2 − 2b2) − 15/8(c2 − 2b2)

2) pa1

+ (3c2/2 − 21/8(c2 − 2b2)) p2
a1 − (9/8)p3

a1 = 0. (13)

If μ̄(W ) = 0 for some pa1 ≤ p∗
a1

, then the optimal menu is as in Fig. 1b.
7. Suppose now that pa1 equals p∗

a1
, but still μ̄(W ) > 0. Then a1 equals 1,

and the picture is as in Fig. 8a. The regions A and W in the canonical par-
tition merge, and the menu in Fig. 1b coincides with the menu in Fig. 1d.
At this point, we stop further increase in pa1 , and decrease p. We hold P
and s1(z1) corresponding to pa1 = p∗

a1
. The partition moves from Fig. 8a to

b. We claim that a decrease in p decreases μ̄(W ). Furthermore, it is easy
to see that μ̄(W ) < 0 when p = 0+. Hence, by the continuity of μ̄(W ) in
the p parameter, there must be a p when μ̄(W ) = 0. This happens when
p = p∗ :=

(√
(c1 + c2)2 + 6b1b2 − c1 − c2

)
/3. The resulting partition is opti-

mal, and the menu is as in Fig. 1d.
8. If in point 5, we have pa1 = p∗

a1
, but still μ̄(W ) > 0 and pa2 < p∗

a2
, then all

arguments hold by symmetry, but the menu is as in Fig. 1c instead of 1b.

Consider case 2, when r1 ≤ p∗
a1

but r2 > p∗
a2

. Then we have a1 ≤ 1 and
a2 > 1 at pai

= ri. In this case, we hold Q and s2(z2) corresponding to pa2 = r2,
but change the line joining Q and pa2 to a line of slope −1, as illustrated in
Fig. 9. Now the menu is the same as the menu in Fig. 1b, with pa1 = r1. We
claim that the case is now similar to case 1, from point 5 onwards. The results
are symmetric for case 3, when r2 ≤ p∗

a2
but r1 > p∗

a1
. Finally, we claim that the

optimal menu is as in Fig. 1d for case 4, when ri ≥ p∗
ai

, i = 1, 2.
The decision tree in Fig. 10 summarizes the procedure described in cases 1–4.

We now have the following theorem.

Theorem 6. If ci, bi satisfy (5), then the optimal menu is one of the four menus
in Fig. 1. The exact menu, and the values of (pai

, ai, p), are given as follows.

(a) The optimal menu is as in Fig. 1a, if ∃ pai
∈ [ri, p

∗
ai

], i = 1, 2, solving (9)
and (12) simultaneously. Values of (ai, p) are found from (7) and (10).

(b) The optimal menu is as in Fig. 1b, if (i) the condition in (a) fails, and (ii)
∃ pa1 ∈ [r1, p∗

a1
] that solves (13). Values of (a1, p) are found from (7) and

(10). The optimal menu is as in Fig. 1c, when an analogous statement holds.
(c) The optimal menu is as in Fig. 1d with p = p∗, if conditions in (a),(b) fail.
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Fig. 7. Illustration of the transition
from Fig. 1a to b.

Fig. 8. Illustration of the transition
from Fig. 1b to d.

Fig. 9. An illustration of change of
slope in case 2, when r1 ≤ p∗

a1 but
r2 > p∗

a2 .

Fig. 10. The decision tree illustrating
how to choose optimal menu in Fig. 1.
Case i starts from State i, i = 1, 2, 3, 4.

4.2 The Menus for Other Values of c1 and c2

Consider the case when c1 ≤ b1, but c2 > 2b2(b1 + c1)/(b1 + 3c1). Notice that
c2 > b2 for any value of c1 ≤ b1, and thus this case violates (5). When c2 crosses
2b2(b1 + c1)/(b1 + 3c1), we claim that the point P moves outside D (proof in
the archival version). At c2 = 2b2(b1 + c1)/(b1 + 3c1), we have P2 = c2, i.e.,
P touches the bottom boundary of D. The menu in Fig. 1b coincides with the
menu in Fig. 2b. We anticipate that adding on the top-left boundary a shuffling
measure that is linear in [c1, c1+pa1/a1] and is a constant in [c1+pa1/a1, c1+p],
would yield the menu in Fig. 2b. We now construct such a shuffling measure β̄
(see Fig. 6b). Define the density βs in the interval [c1, c1 + p] as

βs(x) := (2b2 + (3a1(x − c1) − c2 − 3pa1)1(x ≤ c1 + pa1/a1))/(b1b2). (14)

As before, we will reuse βs to denote the measure with density given by (14).
Define βp := c1(b2 − pa1)/(b1b2)δc1 , a point measure at c1 with mass c1(b2 −
pa1)/(b1b2). Define β̄ := βs + βp. This shuffling measure is added at the interval
D̃(1) = [c1, c1 + p]×{c2 + b2}. Observe that the structures of β̄ and ᾱ differ only
in the interval [c1 + pa1/a1, c1 + p]. A jump occurs when βs reaches 2b2 − c2.

The function s1 : [c1, c1 +p] → [c2, c2 + b2], associated with μ̄+ β̄, is given by
s1(z1) = c2 +(pa1 − a1(z1 − c1))+. We now derive the parameters (pa1 , a1, p), by
imposing (1) β̄ 
cvx 0, (2)

∫
D̃(1) f dβ̄ = 0 for any affine f , and (3) μ̄(W ) = 0.

Proposition 7. Consider the menu in Fig. 2b. Then, μ̄(W ) equals 0 when p =
(b1 − c1)/2. Furthermore, the conditions (1) β̄ 
cvx 0, and (2)

∫
D̃(1) f dβ̄ = 0

for any affine f , are satisfied, if pa1 is a solution to
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2b21b
2
2c2 − c22b2(b1 − c1)2 + pa1(2b21b

2
2 − 4b1b2c1c2 − 3c2b2(b1 − c1)2)

+ p2a1
(2c21c2 − 4b1b2c1 − 9b2(b1 − c1)2/4) + p3a1

(2c21) = 0, (15)

and if a1 satisfies

a1 = pa1((3/2)pa1 +c2)/(b1b2−c1pa1) = pa1

(√
2(pa1 + c2)/b2

)
/(b1−c1). (16)

We now have the following theorem.

Theorem 8. Let {c1 ≤ b1, c2 ∈ [2b2(b1 + c1)/(b1 + 3c1), 2b2(b1/(b1 − c1))2]}.
Then, ∃ pa1 ∈ [(2b2 − c2)+, b2] that solves (15). If a1 found from (16) is at most
1, then the optimal menu is as in Fig. 2b, with (pa1 , a1) as found above, and p =
(b1−c1)/2. If instead, a1 > 1, then the optimal menu is as in Fig. 2a, with p = p∗.
The optimal menu is as in Fig. 2c, when {c1 ≤ b1, c2 ≥ 2b2(b1/(b1 − c1))2}.
In the proof, we analyze how (a1, pa1/a1, p) change, when pa1 changes. We then
decrease pa1 starting from b2, modify (a1, p) according to certain equations, and
arrive at some pa1 ≥ (2b2 − c2)+ that satisfies all the required conditions. The
dynamics of the proof is similar to how we arrive at optimal menus in Sect. 4.1.

For the case when c2 < b2 but c1 > 2b1(b2 + c2)/(b2 + 3c2), the arguments
are symmetric. An assertion similar to Theorem 8 can be made. When ci ≥ bi,
we have the following theorem.

Theorem 9. The optimal menu is as in Fig. 1d, when {c1 ≥ b1, c2 ≥ b2}.

5 Extension to Other Distributions

Optimal mechanism for uniform distribution over any rectangle was found only
using ᾱ and its variants as shuffling measures. We can now ask if there is a gen-
eralization of ᾱ for other distributions. For distributions with constant negative
power rate, we anticipate that the optimal menus would be of the same form
as in uniform distributions (based on the result of Wang and Tang [12]), and
that they can be arrived using similar ᾱ. We now consider an example of such a
distribution. Let f1(z) = f2(z) = 2z/(2c+1) when z ∈ [c, c+1]. The power rate
Δ = −5, a negative constant. We use a “generalized” ᾱ, whose components are

αs(z1, c2 + b2) = f1(z1)(−Δ(1 − F2(pa1 − a1(z1 − c1))) − (c2 + b2)f2(c2 + b2)),
z ∈ [c1, P1],

αp(c1, c2 + b2) = c1f1(c1)(1 − F2(pa1)). (17)

Observe that this ᾱ reduces to the ᾱ used in the case of uniform distributions,
when we substitute fi(zi) = 1, and Δ = −3. We now have the following theorem.

Theorem 10. Let fi(z) = 2z/(2c + 1), z ∈ [c, c + 1]. For c = 0.1, the optimal
menu is as in Fig. 1a, with pa1 = 0.79615, a1 = 0.23198, and P1 = 0.364655.

The proof traces the same steps as in Sect. 4.1. This suggests that our method
of constructing ᾱ is useful for a wider class of distributions. We conjecture that
our method works for all distributions with constant negative power rate.
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Abstract. Auctions like sponsored search often implicitly or explicitly
require that bidders are treated fairly. This may be because large bidders
have market power to negotiate equal treatment, because small bidders
are difficult to identify, or for many other reasons. We study so-called
anonymous auctions to understand the revenue tradeoffs and to develop
simple anonymous auctions that are approximately optimal.

We begin with the canonical digital goods setting and show that the
optimal anonymous, ex-post incentive compatible auction has an intu-
itive structure — imagine that bidders are randomly permuted before
the auction, then infer a posterior belief about bidder i’s valuation from
the values of other bidders and set a posted price that maximizes revenue
given this posterior.

We prove that no anonymous mechanism can guarantee an approx-
imation better than Θ(n) to the optimal revenue in the worst case (or
Θ(log n) for regular distributions) and that even posted price mecha-
nisms match those guarantees. Understanding that the real power of
anonymous mechanisms comes when the auctioneer can infer the bid-
der identities accurately, we show a tight Θ(k) approximation guarantee
when each bidder can be confused with at most k “higher types”. More-
over, we introduce a simple mechanism based on n target prices that
is asymptotically optimal. Finally, we return to our original motivation
and build on this mechanism to extend our results to m-unit auctions
and sponsored search.

Keywords: Revenue maximization · Auction design · Anonymous
mechanisms

1 Introduction

In 1981, Myerson elegantly derived the revenue-optimal way to sell a single
item [13] — each buyer’s bid is transformed through a personalized virtual valu-
ation function and then submitted to a standard second-price auction. Myerson’s
auction leverages precise prior beliefs in order to identify the bidder who gener-
ates the highest marginal expected revenue, allowing the seller to discriminate
among bidders and extract more money from those with a higher willingness
to pay.
c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 188–206, 2016.
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For all its mathematical beauty, Myerson’s optimal auction violates an inher-
ently desirable property: fairness. One definition of fairness says that the auc-
tioneer should not a priori discriminate among the auction’s participants. It is
a property that may be both desirable and necessary — it is undeniably philo-
sophically important in many applications; moreover, many settings lack a strong
notion of identity, precluding explicit discrimination.

Sponsored search illustrates the practical importance and limitations of treat-
ing bidders equally ex-ante. A typical sponsored search auction run by Google,
Bing, or Yahoo matches bidders to ad slots on a page of search results — higher
slots get more clicks, so higher bidders get higher slots. Suppose that the search
engine identifies a group of queries where the market is thin, so the top bid is
much higher than the second one. The search engine would like to enforce a
premium price for the top slot; however, this effectively requires discriminating
against the highest bidder.1 Unfortunately, ex-ante discrimination may not be
possible. Advertisers who are large will desire and demand “fair” treatment; due
to their size, they may have the negotiating power to get it. Advertisers who are
small lack the clout to demand equality; however, they are plentiful and could
copy their accounts, blending into the masses to avoid explicit discrimination.
As a result, search platforms like Google, Bing, and Yahoo may be prohibited
from such discrimination out of necessity.

In this paper, we study the value of discriminating among your opponents in
advance. Myerson’s optimal auction critically requires that the seller know the
identities of bidders ex-ante, so that he can price discriminate among them —
our goal is to quantify tradeoff inherent in requiring ex-ante fairness in ex-post
incentive compatible auctions.

Anonymous Mechanism Design. An anonymous auction treats all bidders
equally ex-ante. While the auctioneer may know information about the kinds
of bidders who will participate — even knowing precise prior beliefs about bid-
ders’ values — this information cannot ex-ante be used to discriminate among
them. Alternatively, one may say that the auctioneer knows precise priors but
does not know which prior belongs to which bidder. Technically, an auction is
anonymous if and only if it is symmetric in the sense that permuting bids will
analogously permute allocations and prices.

Anonymity is a weaker property compared to uniform pricing and envy-
freeness that require that all bidders pay the same price if they receive the
same goods. To see the potential power of anonymous mechanisms, consider the
following example: in a sponsored search auction for two identical slots, two
bidders have values v1 = $2 and v2 = $1 for a click, and the auctioneer knows
these values precisely. The optimal mechanism gives a slot to the first bidder at

1 In some sense, the search engine would like to set a reserve price for the top slot.
However, this must be carefully defined when no bidder meets the reserve price or
when more than one bidder meets it; the decreasing price mechanism we discuss
later in this paper may be considered a natural interpretation of setting different
reserve prices for different slots in a sponsored search auction.
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a price of p1 = $2 per click and a slot to the second bidder at a price p2 = $1 per
click. This mechanism however is not anonymous since it discriminates among
bidders based on their identity. What can anonymous mechanisms do in this
setting? If a common price per click was used, it would result into revenue loss
because either the price would be too high for bidder 2 to afford or too low
compared to the value of bidder 1. On the other hand, the following anonymous
mechanism can extract the optimal revenue:

– if one bidder bids $2, the other needs to bid at least $1 to win a slot;
– if one bidder bids $1, the other needs to bid at least $2 to win a slot.

We begin by characterizing the optimal anonymous auction that is ex-post
incentive compatible and ex-post individually rational. We show that it has
a simple intuition in the digital goods setting: (1) imagine that bidders are
relabeled uniformly at random before participating in the auction, then (2) use
v−i to infer a posterior belief about vi and (3) choose a posted price for bidder
i that maximizes revenue given this posterior. This intuition generalizes beyond
the digital goods setting when the inferred posterior is regular. Some simple cases
bear mention here: if the auctioneer’s prior is the same for all bidders (an IID
setting) or if it is impossible to confuse bidders, the optimal anonymous auction
will correctly deduce everyone’s identity and coincide with the unconstrained
optimal auction.

With a basic understanding of anonymous auctions in hand, we study the per-
formance of anonymous digital-goods auctions; our results are not immediately
encouraging. We begin with a single-price mechanism — a simple and naturally
anonymous auction — and show that it offers only a Θ(n) approximation in
general and a Θ(log n) approximation when priors are regular. Moreover, we
show that the above results are tight even for the class of all anonymous mech-
anisms: prior beliefs exist so that no anonymous auction can guarantee revenue
approximation better than Θ(n) to the revenue of Myerson’s optimal auction
while if bidders’ values are known to be drawn from uniform distributions, we
can prove a lower-bound of Ω(log n). Together, these suggest that general anony-
mous mechanisms cannot achieve better asymptotic guarantees than pricing in
general settings and can be very far from optimal.

Having shown that anonymity can hurt revenue substantially in the worst
case, we ask whether there are particular conditions under which anonymous
auctions perform well. Our characterization of the optimal mechanism gives us
hope: if all bidders are almost identical or almost perfectly distinguishable, then
the optimal anonymous mechanism should be close to the unconstrained optimal
one. In order to formalize this observation, we consider k-ambiguous distribu-
tions where each bidder can be confused with at most k bidders with “higher
ranked distributions” and show that anonymous mechanisms can guarantee a
Θ(k) approximation to the optimal revenue.

Moreover, we introduce the decreasing price mechanism, a simple mechanism
that naturally generalizes single price mechanisms and matches the asymptotic
guarantees of the best anonymous auction. Intuitively, the mechanism is suc-
cinctly defined by a set of n prices p1 ≥ · · · ≥ pn, where pi is the price that
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Table 1. Worst-case approximation bounds for the case of digital goods. The table
compares the revenue of optimal non-anonymous mechanisms to the maximum rev-
enue achievable by pricing mechanisms, the decreasing-price mechanism and optimal
anonymous auctions.

Distributions Single-price mechanism Decreasing-price mechanism/
Optimal anonymous auction

Identical 1 [Myerson’s auction] 1 [Myerson’s auction]

Deterministic Θ(log n) [Theorem 4.2] 1 [Corollary 3.1]

k-Ambiguous Θ(k + log n) [Lemma 5.1] Θ(k) [Theorem 5.2]

MHR / Regular Θ(log n) [Theorem 4.2] Θ(log n) [Theorem 4.4]

General Θ(n) [Theorem 4.1] Θ(n) [Theorem 4.3]

the i-th-highest bidder should pay. The decreasing price mechanism implements
this idea with the minimal modifications required to maintain incentive com-
patibility. Notably, this auction has linear description complexity, whereas the
description complexity of the true optimal anonymous mechanism may be expo-
nential or even unbounded for continuous distributions since it might offer a
wide range of different prices to a bidder depending on what others bid.

Finally, we return to sponsored search. As motivated above, a sponsored
search platform may wish to charge a premium for certain slots based on the
demand profile of a market. Without the ability to discriminate among bidders,
the platform may be constrained to run an anonymous auction.2 A slight mod-
ification to our decreasing price mechanism offers a way to do this and achieve
the same Θ(k) guarantee for k-ambiguous distributions in both sponsored search
and m-unit auctions.

We provide a detailed comparison of pricing mechanisms and anonymous
mechanisms with the optimal non-anonymous mechanisms in Table 1.

Related Work. Deb and Pai [7] also study the problem of designing a revenue
maximizing mechanism under the anonymity constraint. They devise a set of
allocation and payment functions such that in equilibrium bidders pay the Myer-
son virtual values of their corresponding distributions and the seller achieves
revenue that matches the optimal revenue in the unrestricted case. Their results
are only for a single item and their mechanisms are Bayesian IC and Bayesian
IR. In contrast, attempting to get more robust and practical results, we require
our mechanisms to be ex-post IC and ex-post IR.

Ashlagi [3] characterizes anonymous truth-revealing position auctions. He
shows that under two different notions of anonymity, namely anonymity of the

2 Many factors, such as click-through-rates (CTRs) and relevance scores, will break
symmetry in a sponsored search auction. As discussed in Ashlagi [3], these can be
handled in a variety of ways, e.g. by requiring symmetry among bidders with the
same CTR or score. We follow Ashlagi and consider a simple model without such
parameters to avoid these complexities.
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allocation rule and utility symmetry, every truth-revealing position auction is a
VCG position auction. His work applies to deterministic auctions and doesn’t
consider optimizing revenue.

A variety of problems in the optimal auction literature employ similar ideas to
reach different ends. Hartline and Roughgarden [12] study simple mechanisms
that maximize seller revenue for selling a single item. They show that when
bidder distributions are regular, a second price auction with a single reserve
— a simple anonymous mechanism — offers a constant fraction of the revenue
that is achievable by Myerson’s optimal auction [13]. This constant was recently
improved in [1]. For multiple items, work on envy free auctions [5,9–11] provides
tight approximation guarantees for uniform pricing mechanisms compared to the
Myerson optimal auction.

Also related to our work is literature on prior-independent mechanisms
(e.g. [8,16]) that use the other bids to infer the valuation of an agent. How-
ever, they assume that values are drawn I.I.D. from an unknown prior distrib-
ution. In contrast, anonymity will only be a significant constraint when values
are non-I.I.D. and the optimal auction must discriminate among them. Optimal
auctions for correlated bidders also use the bids of other agents v−i to infer a
posterior over the bid of the i-th agent vi (see e.g. [6,15]). We will see that the
optimal anonymous auction is closely related to the optimal general auction for
a particular correlated prior.

2 Model and Preliminaries

A seller has m identical items to sell to n bidders. We will refer to the case where
m = n as a digital goods setting. Each bidder i has a private valuation vi for
getting one item. The profile of agent valuations is denoted by v = (v1, . . . , vn).
The valuations of the agents are drawn from a product distribution F = F1 ×
· · · × Fn.

A mechanism M = (A,P) consists of an allocation function A and a pric-
ing function P. If agents choose strategies s = (s1, ..., sn), Ai(s) indicates the
probability that bidder i gets the item and Pi(s) indicates the price that he
pays.

A tuple of strategy functions s1(·), ..., sn(·) is an ex-post Nash-Equilibrium if

Ai(si(vi), s−i(v−i))vi − Pi(si(vi), s−i(v−i)) ≥ Ai(s
′
i, s−i(v−i))vi − Pi(s

′
i, s−i(v−i))

for all agents i, agent valuations v and alternative strategies s′
i for agent i.

We are interested in anonymous mechanisms M = (A,P). A mechanism is
anonymous if A and P are symmetric functions in the sense that permuting
their arguments also permutes the resulting allocations and prices, i.e. for all
permutations π = (π1, ..., πn) and strategies s = (s1, ..., sn) it holds:

Ai(s1, ..., sn) = Aπi (sπ1 , ..., sπn ) and Pi(s1, ..., sn) = Pπi (sπ1 , ..., sπn ) for all agents i
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Anonymous mechanisms might have multiple ex-post Nash-Equilibria. How-
ever, we restrict our attention to symmetric equilibria, i.e. for every value v,
s1(v) = s2(v) = ... = sn(v) = s(v). This assumption is natural as it only requires
that agents know their own value and not necessarily the identity assigned to
them by the mechanism designer. It also removes trivial solutions where a mech-
anism asks agents to report their identities together with their bids and charges
them according to their reported identities3.

By the Revelation Principle for any symmetric ex-post Nash-Equilibrium
s(·) in an anonymous mechanism M̂ = (Â, P̂) there exists an equivalent anony-
mous mechanism M = (A,P) that is direct, i.e. the strategy of every agent
is to truthfully report his value si(vi) = vi. Mechanism M has allocation
function A(v1, ..., vn) = Â(s(v1), ..., s(vn)) and price function P(v1, ..., vn) =
P̂(s(v1), ..., s(vn)). We can thus consider direct mechanisms. The ex-post Nash
Equilibrium constraint translates to the following ex-post incentive compatibility
constraint:

Ai(v) · vi − Pi(v) ≥ Ai(v−i, v
′
i) · vi − Pi(v−i, v

′
i) for all v, v′

i, i (IC)

Moreover, the mechanism must satisfy ex-post individual rationality so that
players participate voluntarily:

Ai(v) · vi − Pi(v) ≥ 0 for all v, i (IR)

An additional property that is desirable from mechanisms is the following
monotonicity guarantee.

Definition 2.1 (Monotone Mechanisms). A mechanism is monotone if for
all profiles v, we have that Ai(v) ≥ Aj(v) ⇔ vi ≥ vj for all i, j.

3 Optimal Anonymous Auctions

First, we study optimal anonymous auctions and show that they have a natural
structure — informally, the mechanism uses the values of others v−i to infer a
posterior belief h about bidder i’s value, then maximizes revenue in the standard
way subject to the posterior beliefs h (maximizing virtual value and charging
the associated single-parameter payments [2,13]). In the special case of a digital
goods auction, each bidder is offered the item at the optimal posted price for
her inferred distribution h.

First, since anonymous mechanisms generate the same outcome when bidders
are permuted, we observe the following:

Observation 1. The optimal anonymous mechanism remains optimal if we
randomly rename bidders before running the auction.

3 Truthful reporting by the agents can be made an ex-post Nash Equilibrium by can-
celing the auction completely if an agent misreported his identity and the mechanism
receives an identity twice.
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Thus, if the prior knowledge about the bidders was the correlated distribution

g(x) =
1
n!

∑

π∈Π(n)

∏

i∈N

fi(xπi
)

the optimal anonymous auction would still achieve exactly the same revenue.
Moreover, in the setting where the prior knowledge is the distribution g, the
anonymity constraint doesn’t hurt the achievable revenue since the prior beliefs
about the bidders are symmetric and we can assume without loss of generality
that the optimal mechanism treats all bidders equally ex-ante.

Observation 2. Suppose that prior beliefs F are symmetric (possibly corre-
lated). Then there exists a symmetric mechanism that maximizes revenue.

These observations immediately lead to the following claim that allows us to
reduce the problem of finding the optimal symmetric auction to optimizing with
respect to a symmetric distribution of bidders:

Claim. Any mechanism that is optimal among ex-post IC and ex-post IR mech-
anisms for the symmetric distribution

g(x) =
1
n!

∑

π∈Π(n)

∏

i∈N

fi(xπi
)

can be transformed into a mechanism that is optimal among symmetric, ex-post
IC, and ex-post IR auctions for the beliefs F by relabeling bidders according to
a uniformly random permutation.

Building on this claim, our characterization theorem for digital goods follows by
characterizing the optimal auction for g:

Theorem 3.1. The optimal anonymous digital goods auction offers bidder i a
copy of the item at the revenue-maximizing price given h(vi|v−i), the posterior
belief about vi given v−i.

For mechanisms beyond digital goods, the k-lookahead mechanism of Ronnen [14]
achieves at least half of the revenue of the optimal auction for correlated distrib-
utions. We can also apply a theorem of Roughgarden and Talgam-Cohen [15] to
characterize the optimal auction for g for special cases where the inferred poste-
rior h is regular — the resulting optimal mechanism will infer h and maximize
virtual value with respect to h. We defer additional details to the full version of
the paper.

Proof. Following Claim 3, it is equivalent to study the optimal auction for the
correlated distribution g. We know from Myerson and others [2,13], that a nor-
malized mechanism M will be ex-post IC if and only if Ai is monotone in vi and
payments are given by P(v) = vA(v) − ∫ v

0
A(z)dz.



Anonymous Auctions Maximizing Revenue 195

We can thus write the expected revenue Ri from bidder i as

Ri =
∫

�n
+

Pi(v)g(v)dv

=
∫

�n
+

(

viAi(v) −
∫ vi

0

Ai(v−i, z)dz

)

g(v)dv

=
∫

�n−1
+

∫

�+

g(v−i, vi)Ai(v−i, vi)

(

vi −
∫ ∞

vi
g(v−i, z)dvi

g(v−i, vi)

)

dvidv−i

If we let h(vi|v−i) denote the density of vi that we can infer given v−i, H the
associated CDF, and φh|v−i(vi) its Myersonian virtual value, we have

h(vi|v−i) =
g(v−i, vi)∫ ∞

0
g(v−i, z)dz

and φh|v−i(vi) = vi − 1 − H(vi|v−i)
h(vi|v−i)

and can rearrange to get

Ri =
∫

�n−1
+

(∫ ∞

0

g(v−i, z)dz

) ∫

�+

h(vi|v−i)Ai(v−i, vi)φh|v−i(vi)dvidv−i .

It remains to choose A, which can be done in an arbitrary (monotone) way for
digital goods. The inner integral

∫
hAiφdvi is precisely the revenue when bidder

i has value distributed according to h(vi|v−i), so Myerson [13] tells us that
the optimal allocation Ai(v−i, vi) is a posted price to bidder i that maximizes
revenue given the distribution h. ��

A few noteworthy extreme cases arise when the auctioneer can identify bidder
i given only the bids v−i:

Corollary 3.1. If the distributions fi are point distributions (bidders’ values
are known precisely to the auctioneer), have non-overlapping support, or are
the same for all bidders, then the optimal anonymous mechanism coincides with
Myerson’s optimal mechanism.

In all three cases, the posterior distribution inferred from v−i is precisely fi,
therefore the auction precisely identifies each bidder and runs the optimal auc-
tion. Note that if bidders’ distributions have overlapping supports but are not
identical, then the distribution inferred from the posterior will likely be different
from fi and the resulting algorithm will not correspond with Myerson’s optimal
one.

These results suggest that anonymous mechanisms perform best when we
can differentiate among the bidders; indeed, we will see that this is necessary.
In Sect. 4, we show that the anonymity constraint substantially limits revenue
even when distributions are discrete over n points and that assumptions like
regularity of fi are insufficient. In Sect. 5, we show that the performance degrades
continuously with the auctioneer’s ability to differentiate among the bidders.
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4 Worst-Case Approximations

We compare the revenue guarantees of single price and anonymous mechanisms
and find that anonymous mechanisms can do no better in the worst case.

4.1 Single Price Mechanisms

We first look at how well single price mechanisms for m-unit auctions perform
compared to the optimal. A single price mechanism allocates items to the m
highest bidders with values exceeding p and charges them the maximum of p
and the m+1 highest bid.4 It is easy to see that single price mechanisms can get
at least a 1

n fraction of the revenue by choosing as price the Myerson reserve price
of a bidder’s distribution chosen uniformly at random. However, such a linear
approximation guarantee is unavoidable as we can also show a lower bound of
Ω(n) for the approximation. The proof is a simple extension of Proposition 5.1
in [1] and we give it here for completeness.

Theorem 4.1 (Single Price for General Distributions [1]). For general
distributions, a single price mechanism achieves a Θ(n) approximation to the
optimal revenue.

Proof. We already saw that single price mechanisms achieve 1
n fraction of the

optimal revenue. Now, consider a case where each bidder i has a value of 1
εi with

probability εi and 0 otherwise for some constant ε < 1
2 . We show that even for

a single item the optimal auction achieves revenue Ω(n) while any single price
auction gets at most O(1) even if there is an unlimited supply of goods (digital
goods).

First, consider a non-anonymous sequential posted price mechanism for a
single item that asks every bidder i (from largest to smallest index) to pay 1

εi

until the item is sold. The expected revenue it gets from bidder i is equal to
1
εi ε

i · Prob[bidder i reached]. But the probability that bidder i is reached is at
least 1−∑n

j=i+1 εj ≥ 1− ε
1−ε = Ω(1). Thus the total revenue achievable by this

mechanism and hence by the optimal mechanism is Ω(n).
Finally, it is easy to see that even in a digital goods setting, a single price

mechanism gives revenue at most maxi
1
εi

∑
j≥i εj ≤ 1

1−ε = O(1). ��
However, when all distributions are regular, we show that single price mech-

anisms perform much better.

Theorem 4.2 (Single Price for Regular Distributions). For regular dis-
tributions, a single price mechanism achieves a Θ(log m) approximation to the
optimal revenue.

Proof. To prove the theorem we will apply Theorem 4.1 from [4] which states
that running VCG with the median of each agent’s distribution as a reserve price

4 This is a regular VCG mechanism with a reserve price p.
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(VCG-m) gives a 4-approximation to the optimal revenue. Therefore, it suffices
to prove that the revenue of single price mechanisms is a Θ(log m) approximation
to the revenue of VCG-m.

Let pi be the median prices for each bidder and assume that p1 ≥ p2 ≥ · · · ≥
pn.

The revenue of VCG-m comes from 2 different sources: reserve prices, where
a bidder is charged his reserve price, and competition between bidders, where a
bidder is charged the bid of someone else.

More formally, let Pi be the random variable that gives the price agent i pays
to the mechanism. Pi = 0 whenever bidder i doesn’t get an item. We can write
the expected revenue of the mechanism as

∑
i E[Pi] =

∑
i E[Pi|Pi = pi]Pr[Pi =

pi] + E[Pi|Pi > pi]Pr[Pi > pi].
If more than half of the revenue comes from competition between bidders, i.e.∑

i E[Pi|Pi > pi]Pr[Pi > pi] ≥ 1
2

∑
i E[Pi], then setting a price 0 for all bidders

and running a simple VCG gives a 2-approximation. This is because in VCG-m
whenever someone doesn’t get charged his reserve price pi, he is charged the m+1
largest bid that exceeds the reserve price. Therefore,

∑
i E[Pi|Pi > pi]Pr[Pi > pi]

is at most m times the expectation of the m+1 largest bid overall which is equal
to the revenue of VCG with no reserve prices.

Otherwise, more than half of the revenue comes from charging the reserve
prices to bidders, i.e.

∑

i

E[Pi|Pi = pi]Pr[Pi = pi] ≥ 1
2

∑

i

E[Pi]

In this case, the revenue is at most equal to 2
∑m

i=1 pi. Consider a mechanism
that charges each price pi with probability qi = (iHm)−1. The revenue of this
mechanism is

∑m
i=1 qipiE[# bids ≥ pi]. However, we have that E[# bids ≥ pi] ≥

i/2 since each of the first i bidders has at least 1/2 of exceeding pi. This gives
a revenue of

∑m
i=1(iHm)−1pi(i/2) =

∑m
i=1 pi

2Hm
which is a 4Hm approximation to

2
∑m

i=1 pi. ��
This bound is tight even for bidders coming from point distributions. Suppose

that each bidder i has a value of 1/i. The best single price gets revenue of 1 while
the optimal mechanism gets revenue Hm = Θ(log m).

4.2 General Anonymous Mechanisms

For general anonymous mechanisms, we show that even the best mechanism
cannot get any better asymptotic guarantees than single price mechanisms for
general distributions.

Theorem 4.3 (Optimal Anonymous Mechanism for General Distribu-
tions). The optimal anonymous mechanism M gives a Θ(n) approximation to
the optimal revenue for general distributions.
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Proof. We revisit the construction from the Theorem 4.1 but lower the probabil-
ity that a bidder gets a high value even further. Each bidder i now has a value of
1
εi with probability δεi and 0 otherwise. The optimal non-anonymous mechanism
gets a revenue of Ω(nδ). The optimal anonymous mechanism must charge the
same price whenever there is only one bidder with a high bid. Let E be the event
that at least two bidders value the item high. Given ¬E, the mechanism is identi-
cal to a single price mechanism. So the approximation of the optimal anonymous
mechanism is upper bounded by O

(
δ 1

1−ε+Pr[E]Rev[E]

nδ

)
= O

(
1
n + Pr[E]Rev[E]

nδ

)
.

The theorem follows since Pr[E]Rev[E]
nδ goes to 0 as δ → 0 because Pr[E] =

O(δ2). ��
Moreover, we can show that general anonymous mechanisms cannot beat the

asymptotic guarantees that single price mechanisms achieve for regular distrib-
utions. In fact, we can show that this is true even for uniform distributions.

Theorem 4.4 (Uniform Distributions Lower Bound). For uniform distri-
butions, the best anonymous mechanism gets at least a Θ(log m) approximation
to the optimal revenue.

Proof of Theorem 4.4. To construct the lower bound instance, we consider the
case where there are N = (2n − 1)L agents and m = N items and exactly 2iL
agents have distributions in U [0, 2−i] for i ∈ {0, ..., n − 1}. We can see that the
optimal non-anonymous mechanism gets a revenue of Ln

4 by charging each agent
his monopoly price which is at the midpoint of his distribution.

We will now upper bound the revenue that the optimal anonymous mecha-
nism achieves. To do this we consider an instance where a vector of values v is
reported.

Let bi = #{j|vj > 2−i}, i.e. the number of agents with values greater than
2−i. We will show that if all bi’s are large, the optimal anonymous mechanism
charges a very low price to each agent.

Lemma 4.1. If bi > ( 232i − 1)L + 1 for all i ∈ {1, . . . , n − 1}, the optimal
anonymous mechanism charges a price lower than 2−(n−1) to every agent.

Proof. Since we are in a digital goods setting we can apply Theorem 3.1 and
consider the distribution that the mechanism infers for an agent k’s value
by looking at all bids of the other agents. The probability density of agent’s
k value at a point x given the bids v−k of the other agents is h(x|v−k) =
1
n!

∑
π∈Π(n) fπk

(x)
∏

i�=k fπi
(vi), which is proportional to the number of ways to

match agents to probability distributions for the bid vector v′ = (v−k, x).
We can compute the number of ways exactly in terms of b′

i = #{j|v′
j > 2−i}

as
∏n−1

i=0 ((2i+1 −1)L− b′
i)b′

i+1−b′
i
where the notation (a)b ≡ a(a−1) ... (a− b+1)

denotes the falling factorial and b′
n is defined to be equal to N . This is because

the b′
1 agents that have values in [1/2, 1] can only be in the distributions U [0, 1] so

there are L choices for distributions which means there are L(L−1) ... (L−b′
1+1)
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ways to match them. For the b′
2 − b′

1 agents that have values in [1/4, 1/2], there
are 3L possible distributions (L that are U[0, 1] and 2L that are U[0, 1/2]) but
b′
1 of them are already taken so there are exactly (3L − b′

1)b′
2−b′

1
choices over all

and so on.
We now show that 4h(x|v−k) < h(y|v−k) for x ∈ (2−t, 2−(t−1)), y ∈

(2−(t+1), 2−t) and 1 ≤ t ≤ n − 1. That is the probability density at the inter-
val (2−t, 2−(t−1)) is at most a fourth of the probability density at the interval
(2−(t+1), 2−t). Let b′(x) and b′(y) be the corresponding b′ parameters for x and y
respectively. It is easy to see that b′

i(x) = b′
i(y) for i 
= t and that b′

t(x) = b′
t(y)+1.

We have that:

h(x|v−k)

h(y|v−k)
=

∏n−1
i=0 ((2i+1 − 1)L − b′

i(x))b′
i+1(x)−b′

i(x)∏n−1
i=0 ((2i+1 − 1)L − b′

i(y))b′
i+1(y)−b′

i(y)

=

∏t
i=t−1((2

i+1 − 1)L − b′
i(x))b′

i+1(x)−b′
i(x)∏t

i=t−1((2
i+1 − 1)L − b′

i(y))b′
i+1(y)−b′

i(y)

=
(2t − 1)L − b′

t(y)

(2t+1 − 1)L − b′
t(y)

cancelling all identical terms

<
(2t − 1)L − ( 2

3
2t − 1)L

(2t+1 − 1)L − ( 2
3
2t − 1)L

since b′
t(y) ≥ bt − 1 > (

2

3
2t − 1)L

=
1
3
2t

4
3
2t

=
1

4

We now show that the optimal price for the inferred distribution is less than
2−(n−1). Assume that this is not the case and the optimal price is p > 2−(n−1).
We will show that by charging p/2 we get strictly more revenue. We will prove
by induction that Pr[x > p] < Pr[x > p/2]/2 for p ∈ [2−(n−1), 2). This is trivial
to see if p ∈ [1, 2) since Pr[x > p] = 0 while Pr[x > p/2] > 0. Assume that
Pr[x > p] < Pr[x > p/2]/2 for p ∈ [2−i, 2−i+1). Then for p ∈ [2−i−1, 2−i) we
have that:

Pr[x > p] =Pr[x > 2−i] + Pr[x ∈ (p, 2−i)]

<
Pr[x > 2−i−1]

2
+ Pr[x ∈ (p, 2−i)] by the induction hypothesis

<
Pr[x > 2−i−1]

2
+

Pr[x ∈ ( p
2
, 2−i−1)]

2
since

h(x|v−k)

h(x/2|v−k)
<

1

4
for x ∈ (p, 2−i)

=Pr[x > p/2]/2

We conclude that Pr[x > p] < Pr[x > p/2]/2 which implies that pPr[x >
p] < pPr[x > p/2]/2, i.e. the revenue we get by charging p is less than charging
p/2 if p > 2−(n−1). ��

We show that for large L the conditions of Lemma 4.1 are satisfied with
extremely high probability.
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Lemma 4.2. Let L = 25n and let E the event that bi > ( 232i − 1)L + 1 for all
i. Then Pr[E] > 1 − ne−2n−2

.

Proof. Consider the expectation of bi.

E[bi] =
∑

j

Pr[vj > 2−i] = L20(1 − 2−i) + L21(1 − 2−i+1) + ... + L2i−1(1 − 2−1)

= L

⎛
⎝2i − 1 − 2i

i∑
j=1

2−2j

⎞
⎠ = L

(
2i − 1 − 2i 1 − 2−2i

3

)
= L

(
2

3
2i − 1 +

2−i

3

)

We have that E[bi](1−2−2n) > 25n
(

2
32i − 1 + 2−i

3

)
−23n 2

32i > 25n
(
2
32i − 1

)

+ 1. Therefore,

Pr[bi < (
2

3
2i − 1)L + 1] < Pr

[
bi < E[bi]

(
1 − 2−2n)]

≤ e−2−4nE[bi]/2 applying a Chernoff bound

≤ e−2n−2
since E[bi] ≥ L/2 = 25n−1

By a union bound for all n possible values of i we get that Pr[E] > 1 −
ne−2n−2

. ��
Therefore, the revenue of the optimal anonymous mechanism is at most

N2−(n−1) = L(2n − 1)2−(n−1) ≤ 2L when event E happens and at most Ln
otherwise since the total value of all agents is always at most Ln. Thus, the
expected revenue is at most L(2+n2e−2n−2

). Since the optimal non-anonymous
mechanism achieves revenue Ln/4, the approximation ratio is n/8 + o(1). Since
the number of agents is at most N ≤ 26n, we have that n ≥ log N/6. Thus the
approximation ratio in terms of N is log N

48 + o(1) = Θ(log N) = Θ(log m) since
m = N in the digital goods setting.

5 Anonymous Auctions with Limited Ambiguity

In the previous section, we showed that the best anonymous auction cannot
offer better worst-case revenue guarantees than single price mechanisms, even
when distributions are regular or have a monotone hazard rate. In this section,
we explore a key property called limited ambiguity that separates anonymous
mechanisms from single price mechanisms and demonstrates their power.

One natural model of limited ambiguity is that the auctioneer can roughly
order the bidders in terms of their values. Two bidders who are close together in
this ordering may be ordered incorrectly (their distributions overlap), but two
bidders who are far apart in the ordering will have distributions that do not
overlap. The following definition is a particular formalization of that idea:
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Definition 5.1. Let [ai, bi] be the support of the distribution of agent i and
assume without loss of generality that a1 ≥ a2 ≥ ... ≥ an. We say that the set
of distributions is k-ambiguous if bi < ai−1−k for all i, i.e. a sample from the
i-th distribution can be confused with at most k distributions ahead of it.

The extreme case where k = 0 — i.e. bidders’ values are drawn from dis-
tributions with disjoint supports — gives our first separation between general
anonymous auctions and single price mechanisms. Consider the single point dis-
tribution 1/i for each agent i — it is easy to see that the approximation ratio
of any single price is log m. In contrast, we showed that the optimal anonymous
auction achieves the same revenue as the optimal non-anonymous auction in
Sect. 3. For general k, Lemma 5.1 gives the following bound for pricing mecha-
nisms. The proof of the lemma is given in the full version of the paper.

Lemma 5.1. Single price mechanisms can get O(k + log m) approximation to
the optimal revenue.

In this section, we will show that anonymous mechanisms can guarantee an
approximation ratio of O(k) for k-ambiguous distributions, and that this is tight.
We focus first on the case of digital goods, where m = n, and then extend to
m < n as well as to sponsored search auctions.

To show that anonymous mechanisms can achieve an O(k) approximation
to the optimal revenue, we construct a simple mechanism called the Decreasing
Price Mechanism (DPM) that is efficiently defined by n prices. We will begin
with a slight variation that is not ex-post incentive compatible to motivate the
choice of mechanism.

Definition 5.2 (Non-IC Decreasing Price Mechanism). The Non-IC
Decreasing Price Mechanism is defined by a set of prices p1 ≥ p2 ≥ ... ≥ pn and
works as follows: incoming bids are sorted in decreasing order, then bidder i is
offered an item at price pi.

This mechanism is both simple and anonymous, but unfortunately it is not
ex-post IC, since a bidder can lower the price she pays simply by ranking lower
in the ordering of bids (indeed, she can always get an item at price pn simply
by placing the lowest bid). We add two key ingredients to define our ex-post IC
decreasing price mechanism.

The first ingredient we add limits a bidder’s ability to win the item at a lower
price: the auction only sells an item at price pi if it has successfully sold items
at all higher prices. Consequently, for example, bidder i + 1 must be willing to
pay pi in order for bidder i to have a chance to win an item at a lower price.
When the auction fails to sell an item at price pi and therefore stops selling more
items, we call this a “drop” event.

The second ingredient we add restores incentive compatibility: if a bidder
could have won an item at a lower price by ranking lower in the bid order, then
we automatically charge her the lower price instead. Observe that given our first
modification, bidder i can win an item at a lower price pl if and only if bj ≥ pj−1
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for all j ∈ {i + 1, . . . , l}. We call this a “chain” effect since there is a chain of
bidders with bj ≥ pj−1.

These two additional ingredients are the intuition for our decreasing price
mechanism:

Definition 5.3 (Decreasing Price Mechanism). The Decreasing Price
Mechanism (DPM) is defined by a set of prices p1 ≥ p2 ≥ ... ≥ pn and works
as follows:

– Sort bids in decreasing order.
– Starting with i = 1, allocate items as long as bi ≥ pi, then stop allocating

items.
– Each winner i is charged pj(i), where j(i) is the smallest j ≥ i such that exactly

j bidders are bidding above pj.

We note that single price mechanisms are a special case of DPM where all
the prices p1 = ... = pn = p. The following lemma shows several interesting
properties of DPM.

Lemma 5.2. The Decreasing Price Mechanism is anonymous, ex-post IR, ex-
post IC, and monotone in the sense that if bi > bj, then Ai(b) ≥ Aj(b).

Proof. It is clear that the mechanism is anonymous because it ignores any initial
labeling and relabels bidders in decreasing order of their bids. The auction is
individually rational because a bidder only wins if bi ≥ pi and pays a price pj(i) ≤
pi. The claimed monotonicity property is also easy to see as the mechanism
considers bids in decreasing order and allocates items only until it reaches the
first bidder with bi < pi.

To see that the mechanism is ex-post IC, we look at an agent i and show
that i cannot win an item at a lower price. Note that if i changes her bid to
b′
i < pj(i), then there will be j(i) − 1 bids ≥ pj(i) (there were exactly j(i) such

bids before i changed her bid) and the auction must stop by the time it reaches
reaches bidder j(i). Thus, the auction will not sell an item for less than pj(i),
so i will not get an item. On the other hand, keeping other bids fixed, if i bids
bi ≥ pj(i), there will be exactly j(i) bidders bidding ≥ pj(i), so i cannot win at a
price less than pj(i). ��

We will now show that the decreasing price mechanism achieves an approxi-
mation ratio of O(k) for k-ambiguous distributions. To illustrate the significant
ideas in the proof we will first show the statement for k = 1 before proving the
general case.

5.1 The Case of k = 1

For 1-ambiguous distributions, we prove the following theorem:

Theorem 5.1. The optimal Decreasing Price Mechanism approximates the rev-
enue of the optimal auction within a factor of 5 for 1-ambiguous distributions.
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Proof. The proof has two parts. First, we use a distribution over DPM pricing
schemes to approximate the revenue contribution of agents 3 to n. This distribu-
tion will have expected revenue that is a 3-approximation to the welfare of those
agents and therefore also to the revenue they contribute in the optimal auction.
Second, we use our single price results to cover the revenue from the first two
agents.

First, to cover the revenue contributions of agents 3 to n, DPM prices are
chosen as follows (the parameters ri will be chosen later):

pi =

{
ai−1 with probability ri

ai otherwise.

Intuitively, choosing pi = ai is safe because vi ≥ ai, whereas pi = ai−1 extracts
more revenue at the risk of triggering a drop event that prevents selling items
to bidders > i. We take r1 = 0 so p1 = a1.

Let qi be the probability that vi ≥ ai−1 and define q1 = 0. We define ci, the
conditional likelihood of a chain effect, and di, the conditional likelihood of a
drop event, as follows:

ci ≡ Pr[vi ≥ ai−1 and pi = ai] = (1 − ri)qi

di ≡ Pr[vi < pi] = ri(1 − qi)

By definition of the auction, agent i pays at least at for some t ≥ i if and
only if (a) all bidders j ≤ i have vj ≥ pj so that bidder i wins an item, and
(b) there exists a j ∈ {i + 1, . . . , t + 1} such that exactly j bidders have bids
bj ≥ pj . Condition (a) is equivalent to saying that a drop event does not occur
among the first i bidders and happens with probability

∏i
j=1(1−dj). Condition

(b), assuming truthfulness and using 1-ambiguity, happens if and only if there
is some j ∈ {i + 1, . . . , t + 1} such that either vj < aj−1 or pj = aj−1, which
happens precisely when j does not trigger a chain effect, so the likelihood that
such a j exists is 1 − ∏t+1

j=i+1 cj .
Let xt denote the expected number of bidders who pay at and yt =

∑t
i=1 xi

the expected number who pay at least at. We can now write yt as

yt ≥
t∑

i=1

Pr[Agent i pays at least at] ≥
t∑

i=1

⎡

⎣

⎛

⎝1 −
t+1∏

j=i+1

cj

⎞

⎠
i∏

j=1

(1 − dj)

⎤

⎦ .

To bound this sum, we relate the ci’s and di’s with the following lemma:

Lemma 5.3. We can choose ri such that di ≤ ρ and ci ≤ (1 − √
ρ)2 for any

ρ ∈ [0, 1].

Proof. For any such ρ choose ri = min( ρ
(1−qi)

, 1). We have that di = (1− qi)ri ≤
ρ. We also have that ci = (1−ri)qi. If ri = 1 then ci = 0 ≤ (1−√

ρ)2. Otherwise
ri = ρ

(1−qi)
and ci = (1− ρ

(1−qi)
)qi which achieves a maximum value at (1−√

ρ)2

for qi = 1 − √
ρ, ��
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Applying this lemma with ρ = 1/i2 gives ri’s such that di ≤ 1/i2 and ci ≤ (1 −
1/i)2 for i ≥ 2. This makes

∏i
j=1(1 − di) ≥ ∏i

j=2(1 − 1/i2) = (1 + 1/i)/2 ≥ 1/2.
Moreover,

∏t+1
j=i+1 ci ≤ ∏t+1

j=i+1(1 − 1/i)2 = (i/(t + 1))2. Therefore,

yt ≥ 1
2

t∑

i=1

[

1 −
(

i

t + 1

)2
]

=
1
2

(

t − t(t + 1)(2t + 1)
6(t + 1)2

)

≥ 1
2
(t − t/3) ≥ t/3

The total expected revenue of the mechanism is
∑n

i=1 xiai. Since yt =
∑t

i=1 xi ≥ t/3 for all t, it must be that
∑n

i=1 xiai ≥ ∑n
i=1 ai/3. Moreover, since

at > bt+2 ≥ Rev[Agentt+2], it follows that
∑n

t=1 at/3 ≥ ∑n
t=3 Rev[Agentt]/3,

i.e. the revenue is at least 1/3 of the optimal revenue generated by agents 3 to n.
It remains to handle the revenue contributed by the first two agents. To do

so, we use the single price lemma that says that a single price p is a 2-factor
approximation for 2 distributions. If we choose prices p1 = ... = pn = p with
probability 2/5 or the pricing scheme that is defined above with probability 3/5,
we get an expected revenue of at least:

2

5

(
Rev[Agent1] + Rev[Agent2]

2

)
+

3

5

(∑n
t=3 Rev[Agentt]

3

)
=

∑n
t=1 Rev[Agentt]

5

Since we are randomizing over DPM pricing schemes, there exists a single
pricing scheme that achieves the necessary approximation. This completes the
proof and shows a 5 approximation. ��

5.2 The General Case

For general k-ambiguous distributions, the following theorem shows an O(k)
approximation.

Theorem 5.2. The Decreasing Price Mechanism achieves an approximation
ratio of (3e2 + 2)k for k-ambiguous distributions.

The proof of this theorem is given in the full version of the paper and mimics
the 1-ambiguous case. We split agents into blocks of size k such that an agent in
block t cannot be confused with any agents in blocks < t − 1. Then, a technical
lemma analogous to Lemma 5.3 bounds the drop and chain rates between blocks
to achieve an O(k) approximation to the revenue from blocks 3 to n/k. Finally,
a single price mechanism covers the revenue from the top two blocks.

5.3 Extension to m-goods and Position Auctions

We extend the results of the previous section from digital goods, where we have
an unlimited supply of identical goods, to the m-unit setting where we have m
copies of a good and to position auctions.
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Definition 5.4 (Position Auction). In a position auction, there are m items
for sale, each with a scale factor sj ∈ [0, 1]. We assume that s1 ≥ s2 ≥ ... ≥ sm.
The utility of an agent i with value vi that receives an item j and pays p is equal
to sjvi − p.

In sponsored search auctions, the items are slots on a page of search results and
the scale factors correspond to the click through rate of each slot. We prove the
following theorem in the full version of the paper.

Theorem 5.3. In any m-good or position auction setting, there exists an anony-
mous mechanism that achieves an approximation of O(k) for k-ambiguous dis-
tributions.

6 Conclusion

Anonymity imposes real constraints on an auction and, as we have seen, on
the revenue it can achieve. In the worst case, we have shown that anonymous
mechanisms are quite limited, and that the best anonymous mechanism cannot
substantially beat a simple single price. The real advantage of an anonymous
mechanism is directly related to the auctioneer’s ability to infer information
about fi and vi from the bids of other advertisers, v−i, in essence circumventing
the ex-ante anonymity requirement.

Our work leaves a few immediate open questions about anonymous auc-
tions with limited ambiguity. We showed that anonymous auctions can achieve
a Θ(k) approximation for general k-ambiguous distributions. For single price
mechanisms, we saw that the worst-case approximation improves from Θ(n) to
Θ(log n) when distributions are regular — can we show an analogous Θ(log k)
bound in the k-ambiguous setting when distributions are regular? Another inter-
esting research direction is to identify alternative metrics for measuring ambigu-
ity. For example, what can we say about the revenue from an anonymous auction
when the differential entropy between fi and the inferred posterior h is small?

More broadly, our work suggests many general questions about anonymous
mechanisms. Can anonymous auctions achieve good approximations beyond the
settings we have studied? Interesting dependencies arise outside the digital goods
setting because one bidder’s bid can affect the auctioneer’s inference about
another bidder, affecting the outcome of the auction in a complicated way.
Another question is one of computational complexity — how difficult is it to
compute the optimal anonymous auction?
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Abstract. We study envy-free pricing mechanisms in matching markets
with m items and n budget constrained buyers. Each buyer is interested
in a subset of the items on sale, and she appraises at some single-value
every item in her preference-set. Moreover, each buyer has a budget that
constraints the maximum affordable payment, while she aims to obtain
as many items as possible of her preference-set. Our goal is to compute
an envy-free pricing allocation that maximizes the revenue. This pricing
problem is hard to approximate better than Ω(min{n, m}1/2−ε) for any
ε > 0, unless P = NP [7]. The goal of this paper is to circumvent the
hardness result by restricting ourselves to specific settings of valuations
and budgets. Two particularly significant scenarios are: each buyer has a
budget that is greater than her single-value valuation, and each buyer has
a budget that is lower than her single-value valuation. Surprisingly, in
both scenarios we are able to achieve a 1/4-approximation to the optimal
envy-free revenue.

1 Introduction

In this paper we study revenue maximization with envy-free pricing in matching
markets. Imagine a seller that would like to sell m different items to n buyers.
Every buyer i is interested in a subset of items Si (the preference-set) and has
a budget bi that represents her maximum affordable payment. Moreover, every
buyer i appraises each item in her preference-set at value vi, and any other item
has zero-value for her. The buyers are willing to get the largest number of items
in their preference-sets. But every buyer i doesn’t want to pay more than her
value vi for an item and more than her budget bi for the whole set of obtained
items. The seller has full knowledge on the buyer types and aims to compute an
outcome that maximizes her revenue. The outcome is composed by a payment
vector (a payment pi for each buyer i) and an allocation vector (a, potentially
empty, set of items Xi for each buyer i).

This work is partly supported by the EU FET project MULTIPLEX no. 317532 and
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Every buyer i, given a payment pi and an allocation Xi, has a utility equal
to vi · |Xi ∩Si|−pi if the payment is less than or equal to the budget, i.e. pi ≤ bi.
However, the utility becomes −∞ if the payment exceeds the budget, i.e. pi > bi.

Our goal is to design a pricing algorithm that is able to provide a good
revenue to the seller and observes some fairness criterion for the buyers. In order
to model fairness, we consider two notions: (i) the individual rationality, and
(ii) the envy-freeness. The individual rationality is obtained if at the end of the
auction no buyer will experience a negative utility. The envy-freeness is obtained
if, given a pricing scheme (an assignment of prices to items or sets of items), every
buyer obtains the most desired set of items.

Different notions of envy-freeness have been studied in literature, and a
detailed discussion about them is deferred to Sect. 1.1. In classical economics,
the standard envy-free definition embodies bundle pricing [12,17]. In the bundle
pricing scheme each (different) set of items has a (potentially) different price.
Thus in a bundle-price envy-free allocation no buyer has an incentive to barter
her bundle with the bundle of someone else. More recently, envy-freeness has
been often studied in the more restrictive setting of item pricing [3,5,14]. In
an item pricing scheme each (different) item has a (potentially) different price.
Thus, the price for a bundle is obtained by summing the single items’ prices
contained in it. Consequently, in item-price envy-free allocations every buyer
receives the bundle that maximizes her own utility. The difference is that the
former definition of envy-freeness allows a buyer to envy only bundles that are
assigned to someone else. Instead, the latter definition allows a buyer to be
envious if the obtained bundle is not the utility-maximizer bundle (even if the
utility-maximizer bundle is not allocated at all). In this paper we will use both
definitions, and we will explicitly state which envy-free condition is satisfied for
each provided algorithm. All our algorithms use as a benchmark the optimal
bundle-price envy-free revenue.1

The envy-free revenue-maximization problem with budget constraints has
been initially studied by Feldman et al. [10] in the multi-unit setting that con-
siders one single kind of items (no matching constraints). The authors discussed
the limitations of different pricing schemes, specifically they showed through sep-
aration examples that an item-pricing scheme cannot achieve more than O(1/m)
fraction of the optimal envy-free bundle-price revenue on some specific examples.
Thus, relying on a bundle pricing scheme, they provided a 2-approximation algo-
rithm to the optimal envy-free bundle-price revenue for multi-unit setting with
budgeted buyers. More recently, Branzei et al. [4] studied the same multi-unit
setting in the context of item-pricing schemes, and they gave an FPTAS for the
optimal envy-free item-price revenue (and an exact algorithm for special cases)
using an item-pricing scheme.

The envy-free revenue-maximization problem in matching markets with bud-
get constraints has been considered for the first time in Colini-Baldeschi et al. [7].

1 A bundle pricing scheme is able to extract more revenue than an item pricing scheme.
Thus, competing against the optimal bundle-price envy-free revenue is the hardest
task in this context. See Sect. 1.1.
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They proved that for n buyers and m items, the optimal revenue cannot be
approximated by a polynomial time algorithm within Ω(min{n,m}1/2−ε) for
any ε > 0, unless P = NP . In this paper we present a novel approach that
allows us to circumvent the Ω(min{n,m}1/2−ε) impossibility result for relevant
special cases.

Our Results. We first consider the case where every buyer has a budget that is
greater than or equal to her valuation. For example, in online advertising, it is
typical that the advertisers’ budgets are greater than their CPM valuations for a
block of impressions, and the advertisers are interested in buying multiple blocks
of impressions from different publishers. Second, complementary to the first case,
we study the case where every buyer has a budget that is less than her valuation.
In the two cases we are able to provide: (i) an individually-rational and item-price
envy-free algorithm that achieves a 4-approximation to the optimal bundle-price
envy-free revenue, when bi ≥ vi for every buyer i, and (ii) an individually-
rational and bundle-price envy-free algorithm that achieves a 4-approximation
to the optimal bundle-price envy-free revenue, when bi < vi for every buyer i.
The key ingredient needed to achieve these results is the design of an ascending
price auction (inspired by the Ausubel auction [1]) for the matching market
setting. The main idea is to use in the selling procedure proper arguments from
matching theory (B-matchings and their properties) to compute an envy-free
allocation of items to buyers.

Besides envy-freeness we are interested to secure the fairest pricing scheme to
the buyers. The fix-price scheme (one single price for all the items) is the stan-
dard way to achieve fairness in setting with identical items. But, as expected, in
setting with different items (like matching markets) a fixed-price scheme cannot
obtain more than a logarithmic fraction of the optimal revenue regardless of com-
putational complexity considerations (see [8]). Thus different prices for different
items is a strict requirement to achieve a constant approximation. Nonetheless
our aim is still to diversify the prices of the items as little as possible to avoid
discrimination among buyers.

Since the ascending price auction approach can be adapted in either special
cases. We conclude that the general inapproximability result of this problem
provided in Colini-Baldeschi et al. [7] is the result of the interaction between
the above mentioned buyer classes. Due to space limitations some proofs are
omitted, but they are available in [8].

1.1 Related Work

Envy-Free Pricing. The notion of envy-freeness was initially introduced by
Foley [12] and Varian [17]. The key property of an envy-free allocation is that
no buyer has incentive to exchange her bundle-payment pair with the bundle-
payment pair of another buyer. That is to say, given a set of bundles and the
corresponding prices, every buyer obtains the bundle that maximizes her utility.
This definition became the standard definition in the economics literature. More
recently, the notion of envy-freeness has been deeply studied with a different
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perspective that involves item-pricing instead of bundle-pricing. Indeed the key
property of an envy-free allocation has been reshaped as follows: given a set of
items and the corresponding (per-item) prices, every buyer obtains the bundle
that maximizes her utility. Notice that the price of a bundle is automatically
obtained from the sum of the items’ prices contained in it. It is easy to see that
this definition is more difficult to satisfy than the classical economics definition.
The item-pricing version of envy-freeness has been considered in [3,5,14]. The
envy-freeness was studied in the context of different pricing schemes by Feldman
et al. [10]. Specifically, they focused they attention on: (i) the bundle-pricing
scheme, where it is possible to specify different prices for different bundles, (ii)
the item-pricing scheme, where different prices can be assigned to different items,
and (iii) proportional-pricing scheme, that embody an item-pricing scheme plus
the possibility to specify a maximum or a minimum size on the bundles that
can be demanded by the buyers. Moreover, the authors were able to rank these
pricing schemes with respect to two distinct criteria: the customer experience
(how much the customers judge fair a pricing scheme) or the obtainable revenue
(how much a pricing scheme is able to extract from the customers). In terms of
customer experience the most desired pricing scheme is the item-pricing scheme,
then the proportional-pricing scheme, and finally the bundle-pricing scheme.
This is because the customers prefer the pricing schemes that allow less discrim-
ination and are more uniform (uniformity is perceived as fairness). As expected,
on the revenue perspective the ranking is reversed: the bundle-pricing scheme is
able to produce the highest revenue, then proportional-pricing scheme is able to
extract something less, and then the item-pricing scheme is the scheme that is
able to extract less. Feldman et al. [10] have shown several separation examples
that clearly state the limits of the different pricing schemes.

Revenue-Maximization. Moreover, Feldman et al. [10] proved that the problem
of computing an optimal bundle-pricing envy-free revenue is NP-hard. Thus,
they provided a 2-approximation algorithm for multi-unit setting with budget
constraints, it is also proved that this result is tight. Colini-Baldeschi et al. [7]
investigated the problem in the context of multi-unit fixed-price auctions with
budget constraints and matching markets with budget constraints. Particu-
larly relevant for our paper is the hardness result presented there. Indeed, they
proved that the revenue maximizing envy-free problem in matching markets is
Ω(min{n,m}1/2−ε) inapproximable for any ε > 0, unless P = NP . This is why
we are forced to study (particularly relevant) special cases. The envy-free revenue
maximization problem in multi-unit setting with budgets is also studied in [4].
They provided algorithms that approximate optimal social welfare and optimal
revenue with an item-pricing scheme when buyers are price takers, and an impos-
sibility result for price making buyers. The main difference between [7] and [4] is
that the former considered bundle-pricing envy-freeness (pairwise envy-freeness),
while the latter focused on the definition of item-pricing envy-freeness. Recently,
the item-pricing envy-free problem for general valuations in multi-unit markets
without budgets is considered in [16], and a dynamic programming algorithm is
provided in such setting.
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Ascending Price Auctions. Ascending price auctions were used in FCC spectrum
auctions and were initially studied in [1,2,15]. Later, ascending price auctions
were widely applied in the context of sponsored search auctions. Dobzinski et al.
[9] designed a Pareto-optimal, incentive compatible ascending price auction for
a multi-unit setting when buyers have budget constraints. Numerous subsequent
papers extended this setting, see [6,11,13].

2 Preliminaries

An instance of the revenue-maximizing envy-free pricing problem in matching
markets can be formally depicted by the tuple A = 〈I, J,S,v,b〉. There is a set
of |I| = n buyers and a set of |J | = m different items in the market. Every buyer
i ∈ I is interested in a set of items Si ⊆ J , which we refer as the preference-set
of buyer i. Buyers equally value the items in their preference-sets. Specifically,
every buyer i has a valuation vi ∈ R>0 for each item j ∈ Si and has a valuation
of zero for any item j /∈ Si. Every buyer i has a budget bi ∈ R>0 that is the
maximum payment she can afford.

An algorithm computes an outcome 〈X,p〉 for every possible instance A,
where X = 〈X1, . . . , Xn〉 is the allocation vector, and p = 〈p1, . . . , pn〉 is the
payment vector. That is, for each buyer i, Xi ⊆ J is the set of items allocated
to buyer i, and pi ∈ R≥0 is the payment charged to buyer i. Moreover, we
use p̄i to denote the per-item-price paid by a buyer i, i.e., p̄i = pi

|Xi| . Given an
allocation Xi and a payment pi, the utility ui(Xi, pi) of a buyer i is defined as vi ·
|Xi ∩ Si| − pi if bi ≥ pi and −∞ otherwise.

A feasible outcome 〈X,p〉 must satisfy the following constraints: (i) feasibility
(or supply constraint): for any pair of buyers i, i′ ∈ I, Xi ∩ Xi′ = ∅, and (ii)
individual rationality : for any buyer i ∈ I, ui(Xi, pi) ≥ 0.

Furthermore, we incline toward our algorithm to produce envy-free outcomes.
An outcome 〈X,p〉 is:

– envy-free: if given an item-pricing vector ρ = {ρ1, . . . , ρm} such that the price
for the item j is ρj . Then pi =

∑
j∈Xi

ρj , and there is no bundle X ′ ⊆ J such
that ui(X ′,

∑
j∈X′ ρj) > ui(Xi, pi). And,

– pairwise envy-free: if given a set of proposed bundles X such that every bundle
Xi ∈ X has a corresponding price pi ∈ p, and every bundle X ′ �∈ X has price
equal to ∞. Then for every buyer i and every bundle Xj ∈ X, buyer i prefers
her own bundle, i.e., ui(Xi, pi) ≥ ui(Xj , pj).

Given outcome 〈X,p〉, the revenue (i.e., the revenue of the algorithm on
instance A) is the sum of the payments of all buyers, i.e., R(X,p) =

∑
i∈I pi.

Our goal is to design an envy-free algorithm that approximates the optimal
envy-free revenue for every possible instance A.

Ascending Price Auction. Our technique to design revenue-maximizing envy-
free algorithms relies on the implementation of an ascending price auction. The
standard implementation of an ascending price auction is as follows: (i) the
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price (initialized at zero) is raised until some condition is met (usually referred
as selling condition), (ii) when the selling condition is met an appropriate sell-
ing procedure is executed, and the auction goes back to (i) (if there is at least
one buyer with positive demand). The novelty of the ascending price auction
described in this paper is about the selling procedure. We will give a detailed
description of the selling procedures in Sects. 3 and 4, but in either cases the
selling procedure relies on the graph representation of the problems and their
properties.

To facilitate our future presentation and analysis, here we introduce some
necessary notations. For a price p, the demand of buyer i is defined as follows:

Di(p) =

{
min{� bi

p , |Si|}, if p ≤ vi

0, if p > vi

(2.1)

Intuitively, Di(p) is the number of the items that maximizes the utility of
buyer i if all items in Si are priced at p.

Given price p, we define three sets of buyers Ap, Qp, and Ip. Ap contains the
buyers whose valuations are strictly greater than p and having positive demands,
i.e., Ap = {i ∈ I|vi > p ∧ Di(p) > 0}. Qp contains the buyers whose valuations
are equal to p and having positive demands, i.e., Qp = {i ∈ I|vi = p∧Di(p) > 0}.
Finally, let Ip be the union of Ap and Qp, i.e., Ip = Ap ∪ Qp.

Graph Representation. Matching markets have a very intuitive bipartite
graph representation. Consider a set of buyers I ′ ⊆ I and a set of items J ′ ⊆ J
as two disjoint sets of nodes in a bipartite graph. Given a price p, there exists
an edge between i ∈ I ′ and j ∈ J ′ if buyer i demands item j at price p, i.e.,
(j ∈ Si) ∧ min{vi, bi} ≥ p. More specifically, taking the notations established
above, given a particular price p and a subset of items J ′ ⊆ J , we define a bipar-
tite graph Gp = (Ip ∪ J ′, Ep), where Ep = {(i, j)|i ∈ Ip, j ∈ J ′ ∩ Si}. Similarly,
we define Ḡp = (Ap ∪ J ′, Ēp) as the bipartite graph that only includes buyers in
Ap. In this paper we refer to Gp and Ḡp as preference-graphs.

Additionally, allocations in matching markets can be seen as matchings in
preference-graphs, because an allocation essentially “maps” buyers to a subset
of items. To formalize this idea, we introduce the concept of B-matching.

Definition 2.1. Given a bipartite graph Gp = (Ip ∪ J ′, Ep), a B-matching
M(Gp) is a sub-graph of Gp such that every buyer is not matched to a number
of items greater than her demand, i.e., ∀i ∈ Ip, |{j ∈ J ′ : (i, j) ∈ M(Gp)}| ≤
Di(p), and every item is not matched to more than one buyer, i.e., ∀j ∈ Jp,
|{i ∈ Ip : (i, j) ∈ M(Gp)}| ≤ 1.

Similarly, we use M(Ḡp) to denote the B-matching on graph Ḡp. From now on,
we will simply write matchings instead of B-matchings, and the notation M(Gp)
will refer to a maximum matching on Gp. By the matching’s definition, the
allocations constructed from the matchings would satisfy the supply constraint
and the budget constraint.
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Finally, we introduce the concept of augmenting path. Given a preference-
graph, an augmenting path starts with a buyer and ends with an unallocated
item in the preference-graph. We mainly use augmenting paths to produce envy-
free outcomes.

Definition 2.2. Given a B-matching M(Gp) (resp. M(Ḡp)), an augmenting
path π between buyer i and item j is a path π = {i = y1, z1, y2, z2, . . . , yh, zh = j}
such that the following conditions hold:

1. ∀k ∈ [1, . . . , h], yk is a buyer. That is, yk ∈ Ip(resp. yk ∈ Ap).
2. ∀k ∈ [1, . . . , h], zk is an item. That is, zk ∈ J ′.
3. ∀k ∈ [1, . . . , h], zk ∈ Syk

and (yk, zk) /∈ M(Gp) (resp. (yk, zk) /∈ M(Ḡp)).
4. ∀k ∈ [1, . . . , h − 1], (zk, yk+1) ∈ M(Gp) (resp. (zk, yk+1) ∈ M(Ḡp)).

In an augmenting path defined above, if item zh is allocated to a buyer
i /∈ {y1, . . . , yh} at price p, we will also allocate some item to every buyer in
{y1, . . . , yh}. We use this technique to achieve the envy-freeness among buyers.

3 An Ascending Price Algorithm for bi ≥ vi

In this section we present an algorithm that obtains a 4-approximation to the
optimal bundle-price envy-free revenue when all buyers have budgets that are
equal to or greater than their valuations, i.e., ∀i ∈ I, bi ≥ vi. We remark that
this is an item pricing algorithm, and it achieves a constant approximation with
respect to the optimal bundle-price envy-free revenue.

The general idea is to implement an ascending price auction with selling
conditions and selling procedures accurately designed to take advantage of this
scenario. The implementation of the ascending price auction is described in
Algorithm 1. At the beginning the price is set to zero. Then the algorithm
increases the price until a proper selling condition is satisfied (line 4). When
the selling condition is matched, the algorithm executes a selling procedure and
assigns items and payments to the involved buyers. Notice that in Algorithm 1
there are two different selling procedures: Compute-Allocation-I described
by Algorithm 2, and Compute-Allocation-II described by Algorithm 3. The
selling condition and the two selling procedures will be described in the next
subsections. The omitted proofs are available in [8].

Selling Condition and Critical Prices. Algorithm 1 uses a selling condition
to catch the correct price at which a selling procedure can be executed. Intu-
itively, the notion of correct price relies on the following abstraction: nothing
can be sold if the buyers’ cumulative demand is too high (the sum of the buyers’
demands is greater than the available items). In order to determine if the buyers’
cumulative demand can be satisfied, we have to tackle two main difficulties: (i)
in a matching markets setting the demand can be too high on a particular set
of items but too low on a different set, and (ii) the demand functions are not
continuous, thus we can have a cumulative demand that is too high at p and too
low at p + ε.
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So, we want to detect each price p that is borderline between a too high and
a too low cumulative demand. These prices are called critical prices. To detect
critical prices, we have to compute two maximum matchings for each price p: a
maximum matching at price p and a maximum matching at price p+ε. If the size
of the maximum matching at p is greater than the size of the maximum matching
at p+ ε, then we know that on some set of items the cumulative demand will be
too low at any price higher than p. So, we have to check if something should be
sold at p. To be more formal, we define the set of critical prices as follows:

Definition 3.1. Given a price p, let Gp = (Ip ∪ J ′, Ep) where J ′ ⊆ J is the
set of unsold items. The price p is critical if, for ε small enough, |M(Gp)| >
|M(Gp+ε)|, where M(Gp) and M(Gp+ε) are the maximum matchings in Gp and
Gp+ε, respectively.

Detailed Description and Selling Procedures. For each critical price p,
the Algorithm 1 checks why p is a critical price. It can be because the demand
of some buyer in Qp goes to zero when the price is increased above p (line 5).
In this case, Procedure Compute-Allocation-I computes an envy-free partial
assignment, where every item is sold at p. The other reason is that some buyer in
Ap cannot afford the same amount of items at a slightly higher price (for budget
limitations). In this case, Procedure Compute-Allocation-II computes an
envy-free partial assignment, where every item is sold at p + ε.

In either procedures the key element is the computation of an envy-free
partial assignment. In order to describe how an envy-free partial assignment is
computed, we introduce some further notation. Given a graph Gp = (Ip∪J ′, Ep),

Algorithm 1. An ascending price algorithm for matching markets when bi ≥ vi

Input: < I, J,S,v,b >
Output: 〈X,p〉
1: p ← 0; /*p is the uniform price for all items and it is dynamically increasing*/
2: Gp = (Ip ∪ J, Ep); /*Gp is the preference-graph for unsold items at price p */
3: while |M(Gp)| �= ∅ do
4: Increase p until |M(Gp)| > |M(Gp+ε)|;
5: if |M(Gp)| > |M(Ḡp)| then
6: M ←Compute-Allocation-I(I, J,S,v,b, p);
7: for each edge (i, j) ∈ M do
8: J = J \ {j}, Xi = Xi ∪ {j}, pi = pi + p, bi = bi − p;
9: end for

10: else
11: M ←Compute-Allocation-II(I, J,S,v,b, p);
12: for each edge (i, j) ∈ M do
13: J = J \ {j}, Xi = Xi ∪ {j}, pi = pi + (p + ε), bi = bi − (p + ε);
14: end for
15: Remove all the items that are not demanded anymore.
16: end if
17: end while
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a maximum matching M(Gp) on Gp, and a subset of items J ′ ⊆ J , we denote
with J̄p ⊆ J ′ the set of items that are not matched in M(Gp), and with N(J̄p) ⊆
Ip the set of buyers that are connected with an augmenting path in M(Gp) to
some item in J̄p. Now, an envy-free partial assignment is computed as follows:
(i) a maximum matching M(Gp) on the graph Gp = (Ip ∪ J,Ep) is computed,
(ii) let J̄p ⊆ J ′ be the subset of items that are not matched in M(Gp), (iii) an
envy-free partial assignment is the subgraph of M(Gp) that involves only buyers
in N(J̄p). Restrict the allocation to the buyers in N(J̄p) is the key to obtain
envy-freeness and a good revenue from a partial assignment. Indeed, we claim
that if a buyer i is connected with an augmenting path to an item j, but that
item j remains unmatched in a maximum matching, then the buyer i obtains as
many items as she demands.

The next paragraphs will discuss the details of the two procedures. Pro-
cedure Compute-Allocation-I and Procedure Compute-Allocation-II
implement the computation of envy-free partial assignment with different details,
but the two procedures are similar in spirit.

Compute-Allocation-I. Algorithm 2 is executed when the price becomes equal
to the valuation of some buyer, and it is not possible to sell the same amount of
items at a slightly higher price. Notice that these buyers belong to the set Qp.
Moreover, recall that, by definition of envy-freeness, every buyer in Qp cannot
envy any other buyer that obtains items at price p. Let us denote with Jp

Q the
set of available items in the preference sets of buyers in Qp. Thus, the general
idea is to compute an envy-free partial assignment such that most of the items
in Jp

Q are assigned to the buyers in Ap. In succession, the items that remain
unmatched will be assigned to the buyers in Qp.

To achieve this, the algorithm computes a maximum matching M(Ḡp) with
the minimal number of items in Jp

Q matched (line 3 in Algorithm 2). This can
be done computing a maximal weight matching. In order to allocate the remain-
ing items to buyers in Qp and preserve the envy-freeness of the outcome, the

Algorithm 2. Compute-Allocation-I

1: procedure Compute-Allocation-I(I, J,S,v,b, p)
2: Let Jp

Q be the set of items in the preference-sets of buyers in Qp at price p, i.e.
Jp

Q =
⋃

i∈Qp Si;

3: Compute a maximum B-matching M(Ḡp) with minimum number of items in
Jp

Q matched;

4: Let J̄p be the set of items that are not matched in M(Ḡp);
5: Let N(J̄p) be the set of buyers that are connected to an item in J̄p with an

augmenting path in M(Ḡp);
6: Let M = {(i, j) ∈ M(Ḡp)|i ∈ N(J̄p)};
7: Assign items in J̄p to buyers in Qp such that the allocation satisfies the supply

constraint and budget constraint;
8: Include the assignment of J̄p to M;
9: return M

10: end procedure
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algorithm first allocates items to buyers in Ap who have augmenting paths to
any remaining item in M(Ḡp). Essentially, if an item is allocated to a buyer
in Qp at price p, every buyer i in Ap who is connected to the item by an aug-
menting path obtains � bi

p  items and pays p · � bi
p . Thus, buyer i will not envy

the buyers in Qp. Every envy-free partial assignment M ⊆ M(Ḡp) computed
by procedure Compute-Allocation-I satisfies two important properties: (i)
every buyer i ∈ M receives an amount of items exactly equal to her demand,
i.e., |{(i, j) ∈ M}| = Di(p) ∀i ∈ M, and (ii) every item that is not assigned
at the end of procedure Compute-Allocation-I is requested by at least one
buyer after procedure Compute-Allocation-I. These properties are formally
proved by the following lemmata.

Lemma 3.1. Let M(Ḡp) be a maximum matching on graph Ḡp and Jp
Q �= ∅,

then each buyer i ∈ N(J̄p) is matched to Di(p) items in M(Ḡp), where J̄p is
the set of items not matched in M(Ḡp).

Lemma 3.2. In Procedure Compute-Allocation-I, all items in J̄p can be
allocated to the buyers in Qp at price p per each.

Compute-Allocation-II. Algorithm 3 is executed when it is not possible to
sell the same amount of items at a slightly higher price, but no buyer in Qp

is responsible for that. Notice that in this case, the buyers that decrease their
demands are in Ap. Namely, the buyers drop their demands because budgets
and not valuations. Thus, there are no buyers in Qp that are relevant for us.
Consequently, it is enough to compute an envy-free partial assignment at price
p+ε. Similarly to the previous case, to preserve the envy-freeness of the outcome,
the algorithm allocates items to buyers in Ap who have an augmenting path to
an unmatched items in M(Gp+ε). Given the fact that all items are matched in
M(Gp), if an items is not matched to any buyer in M(Gp+ε), then it implies
that all buyers who have augmenting paths to this item must be fully matched
in M(Gp+ε). In other words, those buyers do not have enough budgets to buy
one more item. Otherwise, the size of M(Gp+ε) can be increased. We prove this
property in the following lemma.

Algorithm 3. Compute-Allocation-II

1: procedure Compute-Allocation-II(I, J,S,v,b, p)
2: Compute a maximum B-matching M(Gp+ε);
3: Let J̄p+ε be the set of items that are not matched in M(Gp+ε);
4: Let N(J̄p+ε) be the set of buyers that are connected to an item J̄p+ε with an

augmenting path;
5: Let M = {(i, j) ∈ M(Gp+ε)|i ∈ N(J̄p+ε)};
6: Remove items in J̄p+ε from J ;
7: return M
8: end procedure
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Lemma 3.3. Let M(Gp+ε) be a maximum matching on graph Gp+ε, and let
J̄p+ε �= ∅ be the set of items not matched in the maximum matching M(Gp+ε).
Then for each buyers i ∈ N(J̄p+ε) the followings hold: (i) vi > p, and (ii) buyer
i is matched to Di(p + ε) items in M(Gp+ε).

Notice that at the end of the procedure it is possible that some items remain
unassigned but no buyer will demand them anymore. This is a potential problem
for the revenue, because unassigned items can be translated in unused budgets.
But, the next lemma shows that the number of unassigned items is bounded.

Lemma 3.4. Let M(Gp+ε) be a maximum matching on graph Gp+ε, and let
J̄p+ε be the set of items not matched in the maximum matching M(Gp+ε), then
|J̄p+ε| ≤ |N(J̄p+ε)|.
Main result. Finally, we are ready to prove that the outcome computed by
Algorithm 1 is envy-free and achieves a 4-approximation to the optimal bundle-
price envy-free revenue.

We start with some auxiliary lemmata:

Lemma 3.5. Let 〈X,p〉 be the outcome obtained by Algorithm 1. If Xi �= ∅, the
buyer i obtains all the items in Xi at a unique price-per-item p̄i = pi

|Xi| .

Lemma 3.6. If buyer i obtains Xi at price-per-item p̄i, then all the items
assigned at a price p′ < p̄i are not in her preference-set.

Lemma 3.7. If buyer i does not obtain any item, i.e., Xi = ∅, then all items
in Si are sold at a price greater than or equal to vi.

Now we show that Algorithm 1 is envy-free.

Theorem 3.1. The outcome 〈X,p〉 produced by Algorithm 1 is envy-free.

Proof. First, by Lemma 3.7, we know that the buyers that do not obtain any
item do not envy anyone. Furthermore, by Lemma 3.5, we know that, for the
rest of buyers, they obtain all items in Xi at a unique per-item-price p̄i = pi

|Xi| .
The rest of the proof is divided into two cases. (i) p̄i = vi: The buyer i would not
envy any buyer j that gets her bundle Xj at a price-per-item p̄j ≥ p̄i. Moreover,
by Lemma 3.6, buyer i is not interested in any item allocated at a price p < p̄i.
This implies that buyer i cannot envy any buyer j who obtains the bundle at
price-per-item j ≤ p̄i. (ii) p̄i < vi: Buyer i obtains Xi in either Compute-
Allocation-I or Compute-Allocation-II. In both cases, by Lemmas 3.1
and 3.3, buyer i obtains Di(p̄i) = |Xi| items. Hence, buyer i does not envy any
buyer who obtains her bundle at price-per-item p ≥ p̄i. Moreover, by Lemma
3.6, buyer i is not interested in any item allocated at a price p < p̄i. This implies
that buyer i cannot envy any buyer j who obtains the bundle at price-per-item
p̄j ≤ p̄i. Thus we conclude that Algorithm 1 is envy-free. ��

Now, we show that the outcome computed by Algorithm 1 is a 4-approxi-
mation to the optimal bundle-price envy-free revenue.

Theorem 3.2. Algorithm 1 achieves a 4-approximation to the optimal envy-free
revenue when all buyers have budgets that are at least their valuations.
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4 An Ascending Price Algorithm for bi < vi

In this section we present an algorithm that obtains a 4-approximation to the
optimal bundle-price envy-free revenue in matching markets when all buyers
have budgets less than their valuations, i.e., ∀i ∈ I, bi < vi. Due to a separation
example showed in Feldman et al. [10], we know that the optimal bundle-price
envy-free revenue cannot be approximated within O( 1

m ) using an item pricing
scheme. Thus the algorithm presented in this section will embody a bundle
pricing scheme, and it will produce a pairwise envy-free outcome. Before the
description of the algorithm, we overload some notations. Given price p, let Ap

contain the buyers whose budget are strictly greater than p and having positive
demands, i.e., Ap = {i ∈ I|bi > p∧Di(p) > 0}. Let Qp contain the buyers whose
budgets are equal to p and having positive demands, i.e., Qp = {i ∈ I|bi =
p ∧ Di(p) > 0}. Finally, let Ip be the union of Ap and Qp, i.e., Ip = Ap ∪ Qp.

Detailed Description. The algorithm, which is referred to as Algorithm 4,
shares the similar spirit as Algorithm 1 but possesses some tweaks on the actions
performed at critical prices. The algorithm starts with an initial price p = 0 for
all items and keeps increasing the price for all items until the price becomes a

Algorithm 4. An ascending price algorithm for matching markets when vi > bi

Input: < I, J,S,v,b >
Output: 〈X,p〉
1: p ← 0; /*p is the price per-item and it is dynamically increasing*/
2: Gp = (Ip ∪ J, Ep); /*Gp is the preference-graph for unsold items at price p */
3: while |M(Gp)| �= ∅ do
4: Increase p until |M(Gp)| > |M(Gp+ε)|;
5: Partition (N(J̄p) ∪ Qp) into sets of buyers Y1, . . . , Yk, where for any Yt and Yt′

there do not exist buyers y ∈ Yt and y′ ∈ Yt′ such that Sy ∩ Sy′ �= ∅;
6: for each Yt do
7: if

∑
i∈(Yt∩Qp)\Î bi <

∑
i∈Yt∩N(J̄p) bi then

8: M ←Compute-Allocation-II(Yt, J,S,v,b, p + ε);
9: for each edge (i, j) ∈ M do

10: Î = Î ∪ {i}, J = J \ {j}, Xi = Xi ∪ {j}, pi = pi + p, bi = bi − p;
11: end for
12: else
13: if ∃ a matching M s.t. every buyer in Yt \ Î is matched to one item then
14: Compute such a matching M;
15: else
16: M ←Compute-Allocation-II(Yt, J,S,v,b, p + ε);
17: end if
18: for each edge (i, j) ∈ M do
19: Î = Î ∪ {i}, J = J \ {j}, Xi = Xi ∪ {j}, pi = pi + p, bi = bi − p;
20: end for
21: end if
22: end for
23: end while
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critical price. The reason of a price being a critical price is a little different from
the previous case. Since vi > bi for all buyers, a price becomes a critical price
when it is equal to the budget of some buyer, or buyers cannot afford the same
amount of items at higher prices. At each critical price, the algorithm divides
buyers into different partitions (a partition is denoted by Yt). One property of
these partitions is that no buyers from different partitions have a common item
in their preference sets. It allows us to focus on each partition separately. Then
the following actions are performed on each partition.

The algorithm compares the remaining budgets between buyers in (Yt∩Qp)\Î
and buyers in Yt ∩N(J̄p) where Î is the set of buyers who have obtained items at
previous critical prices and still have budgets to demand more items. Recall that
J̄p is the set of items that are not matched in M(Ḡp) and N(J̄p) is the set of
buyers that are connected to an item in J̄p in M(Ḡp). If the sum of the budgets
of buyers in (Yt ∩ Qp) \ Î is relatively small, then the algorithm “ignores” them
(i.e. does not allocate them any item) but allocates items to buyers in Yt∩N(J̄p)
at p + ε each.

It can be achieved by the same as Procedure Compute-Allocation-II. It
would extract at least half of the budgets of buyers in Yt ∩ N(J̄p), which in
turn is a good approximation to the optimal revenue from all buyers in Yt \ Î.
On the other case, when the sum of the budgets of buyers in (Yt ∩ Qp) \ Î is
relatively large, the algorithm checks if it is possible to give one item to every
buyer in Yt \ Î. If yes, the algorithm allocates one item to each of them. By doing
so, the algorithm extracts all the budgets of buyers in (Yt ∩ Qp) \ Î since their
budgets are equal to the price. It gives us a good approximation to the optimal
revenue extracted from buyers in Yt. Otherwise, the algorithm “ignores” buyers
in (Yt ∩ Qp) \ Î and allocate items to buyers in Yt ∩ N(J̄p) at price p + ε each.
We show that it does not hurt the revenue since the optimal envy-free algorithm
cannot extract any revenue from those buyers either.

Main Result. Our main result is the following. The proof is available in [8].

Theorem 4.1. Algorithm 4 is pairwise envy-free and achieves a 4-approxi-
mation to the optimal revenue in envy-free outcomes when for each i ∈ I bi < vi.
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Abstract. We consider the Conference Program Design (CPD) prob-
lem, a multi-round generalization of (the maximization versions of) q-
Facility Location and the Chamberlin-Courant multi-winner election,
introduced by (Caragiannis, Gourvès and Monnot, IJCAI 2016). CPD
asks for the selection of kq items and their assignment to k disjoint sets
of size q each. The agents receive utility only from their best item in each
set and we want to maximize the total utility derived by all agents from
all sets. Given that CPD is NP-hard for general utilities, we focus on
utility functions that are either single-peaked or single-crossing. For gen-
eral single-peaked utilities, we show that CPD is solvable in polynomial
time and that Percentile Mechanisms are truthful. If the agent utilities
are given by distances in the unit interval, we show that a Percentile
Mechanism achieves an approximation ratio 1/3, if q = 1, and at least
(2q−3)/(2q−1), for any q ≥ 2. On the negative side, we show that a gen-
eralization of CPD, where some items must be assigned to specific sets
in the solution, is NP-hard for dichotomous single-peaked preferences.
For single-crossing preferences, we present a dynamic programming exact
algorithm that runs in polynomial time if k is constant.

1 Introduction

Many problems in Social Choice deal with selecting q items (or candidates), from
a given set of m items, based on the preferences of n agents. In more than a few,
each agent derives utility from his best item in the solution and the objective is
to maximize the total utility of the agents.

An instance of this general setting is the classical q-Facility Location problem,
where we place q facilities in a metric space, based on the locations suggested by
n agents. Each agent uses his nearest facility in the solution and the objective is
to minimize the total distance of the agents to their facilities. Facility Location
has studied extensively as an optimization problem. In Social Choice, the rele-
vant literature mostly focuses on strategic agents with single-peaked preferences
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over the possible facility locations. The goal is to characterize the class of truthful
mechanisms and to determine the best approximation ratio achievable by truth-
ful mechanisms when the agent preferences are quantified by distances on the
real line (see e.g., [10,14,16,18] and the references therein).

A different specimen appears in the context of multi-winner elections. In the
model introduced by Chamberlin and Courant [3], we form a committee of q rep-
resentatives so as to minimize the committee’s “misrepresentation” with respect
to a set of n agents. Similarly to Facility Location, each agent is associated
with the committee member that represents him best, and we want to minimize
the total “misrepresentation cost” of the agents. The winner determination prob-
lem for the multi-winner election of Chamberlin-Courant has received significant
attention recently, with NP-hardness results and approximation algorithms for
general agent preferences and polynomial-time algorithms for restricted prefer-
ences, such as single-peaked or single-crossing (see e.g., [1,2,15,17]).

In this work, we study the Conference Program Design problem, or CPD
in short, which was recently introduced by Caragiannis et al. [2] and can be
regarded as a generalization of (the maximization versions of) q-Facility Location
and the Chamberlin-Courant election. An instance of CPD consists of a set of
m items X = {x1, . . . , xm}, a set of n agents L = {1, . . . , n}, each with a utility
function u� : X → R≥0, and two positive integers k and q. A feasible solution
S = {S1, . . . , Sk} is a collection of k pairwise disjoint subsets of X (or slots) such
that each slot Si contains at most q items. The agents derive utility only from
their most preferred item in each slot and have additive utilities for different slots.
Hence, the utility of an agent � for a solution S is u�(S) =

∑k
i=1 maxx∈Si

u�(x).
We want to maximize the total utility of all agents, which is U(S) =

∑
�∈L u�(S)

for any given solution S = {S1, . . . , Sk}. We underline that although a greater
total utility could be achieved by assigning some items to multiple slots, we
require that the slots S1, . . . , Sk should be pairwise disjoint.
Example. We consider 5 items {x1, x2, x3, x4, x5}, 3 agents and k = q = 2.
The utility functions of the agents are u1 = (4, 3, 5, 1, 2), u2 = (1, 2, 3, 9, 2) and
u3 = (6, 1, 4, 0, 7) (the i-th coordinate in uj denotes the utility of agent j for
item xi). The total utility of the solution S = ({x1, x2}, {x3, x4}) is U(S) =
(u1(x1) + u1(x3)) + (u2(x2) + u2(x4)) + (u3(x1) + u3(x3)) = 30. �

The name of Conference Program Design is motivated by the possibility of
regarding each item as a conference talk. The conference has q parallel sessions
and k time slots. In each slot Si, at most q talks are given and each agent can
attend only one of them. We assume that every agent attends the talk that
maximizes his utility in each slot. More generally, CPD should be regarded as
an abstraction of multi-round multi-winner elections, where the set of winners in
different rounds must be disjoint, each agent is represented by his most preferred
winner in each round, and the utility functions of the agents are additive with
respect to their representatives in different rounds (see also [2]).

Previous Work. CPD incorporates both q-Facility Location and the election
of Chamberlin-Courant (for k = 1): each item is a facility/candidate and the
utilities are the opposite of the distance/misrepresentation costs. Since the multi-
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winner election of Chamberlin-Courant and q-Facility Location [11,15] are known
to be NP-hard for general cost functions, CPD is NP-hard for general utilities.
Interestingly, Caragiannis et al. [2] proved that CPD remains NP-hard (and
hard to approximate) in the special case where agent utilities are either 0 or
1 (a.k.a. uniformly dichotomous preferences), all items fit in the solution, i.e.,
m = kq, and either k = 2 or q = 3. The only case where CPD is known to be
polynomially solvable is for q = 2, by a reduction to maximum matching. Based
on a natural Integer Linear Programming formulation, [2] obtained polynomial-
time approximation algorithms for CPD with general utilities, with ratios 1−1/e,
if q is a constant, and 1/e − 1/e2, if q is part of the input.

However, many positive results are known for natural special cases of q-
Facility Location and of the Chamberlin-Courant election, especially for the line
metric and for single-peaked or single-crossing preferences. Specifically, q-Facility
Location and its fault tolerant version, where each agent must connect to k dif-
ferent facilities, are polynomially solvable on the line [12]. As for the approxima-
bility of q-Facility Location on the line by truthful deterministic mechanisms,
the Median Mechanism is optimal for q = 1 [14,16], the 2-Extremes Mechanism
achieves a best possible approximation ratio of n − 2 for q = 2 [10,16], and the
Percentile Mechanisms comprise the only known general class of truthful deter-
ministic mechanisms for all q ≥ 2 [18], but their worst-case approximation ratio
cannot be bounded in terms of n and q [10] (all these mechanisms are actually
known to be group strategyproof). However, all these results on the approxima-
bility of Facility Location by truthful mechanisms are about cost minimization
and assume that a facility can be placed at any point on the real line. So they are
not directly relevant for CPD, where we want to maximize the total utility and
the item locations are restricted by the input. In a recent work, Feldman et al. [9]
characterized the approximability of 1-Facility Location on the line metric when
the potential facility locations are restricted by the input.

For the Chamberlin-Courant election, it is reasonable to assume that the
agent preferences on the candidates are consistent with a placement of the candi-
dates on a societal axis. The line metric is a special case of two popular classes of
structured preferences in Social Choice, namely single-peaked and single-crossing
preferences. Recent work presents polynomial-time exact algorithms for the win-
ner determination problem of the Chamberlin-Courant election when the agent
preferences are either single-peaked [1] or single-crossing [17].

Contribution and Techniques. Motivated by the many interesting positive
results for q-Facility Location and for the Chamberlin-Courant election when the
agent preferences either are determined by the line metric or are single-peaked or
single-crossing, we investigate the algorithmic properties of the Conference Pro-
gram Design problem for such preferences. We give an almost complete picture
for CPD with single-peaked preferences and show that CPD with single-crossing
preferences is polynomially solvable if the number of slots k is constant.

An interesting observation is that for single-peaked utility functions, the
best k items of any agent occupy consecutive positions on the societal axis
(Proposition 1). Therefore, for any set M of items, |M | ≤ kq, a simple greedy
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assignment of the items to slots ensures that any agent can derive utility from
his best k items in M . So, we can focus on the item selection aspect of CPD
for single-peaked preferences. Combining this observation with a generalization
of the Linear Programming approach of [12], in Sect. 3, we show that CPD can
be solved in polynomial-time for general single-peaked utility functions (Theo-
rem 1).

In Sects. 4 and 5, we study the approximability of CPD with single-peaked
preferences by truthful mechanisms. To achieve truthfulness, we exploit the idea
of Percentile Mechanisms, which are known to be group strategyproof for single-
peaked preferences [18, Theorem 1]. To optimize the approximation guarantees,
we apply Percentile Mechanisms to the set of all tuples consisting of k consecutive
items on the societal axis. We show that the extension of any single-peaked utility
function on items to a utility function on tuples of k consecutive items is also
single-peaked (Lemma 1). Consequently, this variant of Percentile Mechanisms
is truthful (Theorem2, we can also show that it is group strategyproof).

We analyze the approximation for the special case of linear preferences where
the items and the agents lie in the unit interval [0, 1] and the utility of an
agent � located at v� for an item j located at xj is u�(xj) = 1 − |v� − xj |. The
restriction to the unit interval is wlog., since all our results hold for any interval
length B, provided that the utility functions are u�(xj) = B − |xj − v�|. We
first observe that if k = q = 1, the optimal solution is not truthful and any
deterministic truthful mechanism must have an approximation ratio at most
5/7. For q = 1 and any k ≥ 1, we show that the approximation ratio of the
1/2-Percentile Mechanism is 1/3 (Lemmas 3 and 4). For any q ≥ 2 and k ≥ 1,
we show that if the number of agents is a multiple of q, the approximation
ratio of the ( 1

2q , 3
2q , . . . , 2q−1

2q )-Percentile Mechanism is at least (2q − 3)/(2q − 1)
(Theorem 3) and at most (2q − 1)/(2q − 1/q). Interestingly, the approximation
ratio tends to 1, as q increases. If the number of agents n is not a multiple of q,
we obtain an approximation ratio of (2q − 3)/(2q − 1) − O(q/n) (Theorem 4).

To the best of our knowledge, this is the first analysis of the approximation
ratio of Percentile Mechanisms for linear preferences. As for the proof technique,
for the general case where q ≥ 2, we introduce the notion of the width of a subset
of agents, which allows to bound the approximation ratio by analyzing indepen-
dently the approximation ratio of non-overlapping groups with n/q agents each.

Nevertheless, single-peaked preferences are not enough to make CPD poly-
nomially solvable if some items need to be assigned to specific slots. Using a
reduction from PreColoring Extension, which is known to be NP-complete
in unit interval graphs [13], we show that this generalization of CPD is NP-hard
if the agent utilities are single-peaked and either 0 or 1 for each item (a.k.a.
dichotomous single-peaked preferences, see Theorem 5, in Sect. 6).

Finally, in Sect. 7, we extend the dynamic programming approach applied
in [17] to the Chamberlin-Courant election with single-crossing preferences and
show that CPD with single-crossing preferences can be solved in O(m(nq)k+1)
time (Theorem 6). An interesting open question is whether CPD with single-
crossing preferences is polynomially solvable if k is part of the input.
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2 Notation and Preliminaries

CPD is introduced in Sect. 1. We introduce here some additional notation and
terminology. For any integer p ≥ 1, we let [p] = {1, . . . , p}. We write x �� x′ to
denote that an agent � prefers item x to item x′, which happens iff u�(x) > u�(x′).
In such cases, we write that �� is the preference order induced by the utility
function u�. We always break ties in an arbitrary fixed deterministic way.

The best item of an agent � in a set Y ⊆ X is Y ’s most valuable item to �,
i.e., arg maxy∈Y u�(y). We define the second, . . ., the k-th best item of an agent
� in Y similarly. Given a set of items Y ⊆ X, and assuming that k = 1, i.e., that
each agent uses a single item, we let u�(Y ) = maxy∈Y {u�(y)} denote the utility
of an agent � for his best item in Y , and let U(Y ) =

∑n
�=1 u�(Y ) denote the

total utility derived by the agents from Y . Similarly, we let U(x) =
∑n

�=1 u�(x)
denote the total utility derived by the agents from an item x ∈ X.

Conference Program Design with Item Preselection. In Sect. 6, we con-
sider a natural generalization of CPD, where a specified subset of items X ′ ⊆ X
must appear in the final solution and the assignment of the items in X ′ to slots
is fully specified by the input. We call this variant Conference Program Design
with Item Preselection, or pre-CPD, in short.

More formally, in addition to the input of CPD, the input of pre-CPD
includes a subset X ′ ⊆ X of items and a mapping g : X ′ → [k]. A solution
S is a collection of k disjoint subsets S1, . . . , Sk of X, such that each Si contains
at most q items and g−1(i) = {x ∈ X ′ : g(x) = i} ⊆ Si. In particular, we assume
|g−1(i)| ≤ q. Thus, CPD corresponds to pre-CPD with X ′ = ∅.

Approximation Ratio. An algorithm achieves an approximation ratio of ρ ∈
(0, 1], if for any instance I of CPD, the solution S computed by the algorithm
satisfies U(S) ≥ ρU(S∗), where S∗ denotes the optimal solution to instance I.

Truthfulness. A mechanism A for CPD is truthful (or strategyproof ) if for any
pair of instances I and I ′ that differ in the utility function of any single agent
�, with u� denoting �’s utility in I, we have that u�(S) ≥ u�(S ′), where S (resp.
S ′) is the solution of A on instance I (resp. I ′).

A mechanism A for CPD is group strategyproof if for any pair of instances I
and I ′ that differ in the utilities of any nonempty subset L′ ⊆ L of agents, with
u1, . . . , un denoting the utility functions in I, there exists an agent � ∈ L′ such
that u�(S) ≥ u�(S ′), where S (resp. S ′) is the solution of A on I (resp. I ′).

Single-Peaked Preferences. A societal axis is a linear order � over X. An
agent’s preference order � is consistent with �, if for each three items xa, xb, xc ∈
X, ((xa � xb � xc) ∨ (xc � xb � xa)) ⇒ (xa � xb ⇒ xb � xc). We say that a
utility function u� of an agent � ∈ L is single-peaked wrt axis �, if the preference
order �� induced by u� is consistent with �. An instance of CPD is single-peaked
(or has single-peaked utilities or preferences) wrt axis �, if the utility functions
u� of all agents � ∈ L are single-peaked wrt axis �. An instance of CPD is
single-peaked if it is single-peaked wrt some societal axis.
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One can determine in polynomial time whether a set of utility functions
u1, . . . , un is single-peaked (see e.g., [8]). For instances of CPD with single-peaked
utilities wrt axis �, we always index the items according to �, i.e., we have that
x1 � x2 � · · · � xm. We sometimes abuse the notation and use xi � xj to
denote that either xi precedes xj in � or xi = xj .

For instances of CPD with single-peaked preferences wrt some axis �, we say
that two items xi and xj are consecutive, if there is no other item x′ such that
xi � x′ � xj or xj � x′ � xi. This definition extends to any number of items.

E.g., let us consider 4 items x1, x2, x3, x4 and 5 agents with preferences:

1 : x1 �1 x2 �1 x3 �1 x4 2 : x2 �2 x1 �2 x3 �2 x4 3 : x2 �3 x3 �3 x1 �3 x4

4 : x3 �4 x2 �4 x4 �4 x1 5 : x3 �5 x4 �5 x2 �5 x1

This set of preferences is single-peaked wrt the societal axis x1 � x2 � x3 �
x4. In this example, the items e.g., x1, x2 and x3 are consecutive.

Optimal Item Allocation. For instances with single-peaked preferences wrt
axis �, we can allocate any set of items M , |M | = kq, to slots S1, . . . , Sk in
a greedy manner, so that each slot gets q items and the utility of each agent
� is maxS⊆M,|S|=k

∑
x∈S u�(x), i.e., equal to the maximum utility that � can

derive from M . Specifically, we arrange the items in M according to �, so that
x1 � x2 � · · · � xkq, and let each slot Si = {xi, xi+k, . . . , xi+(q−1)k}. This
ensures that any k items consecutive in � are assigned to k different slots.

Proposition 1. Let X be a set of m items arranged as x1 � x2 � · · · � xm,
according to the societal axis �, and let u : X → R≥0 be any utility function that
is single-peaked wrt �. Then, for any k ∈ [m], the maximum utility obtained
from k items in X is achieved by considering k consecutive items in �, i.e.,
maxS⊆X,|S|=k

∑
xp∈S u(xp) = maxxj∈X

∑k+j−1
p=j u(xp).

Proposition 1 implies that for instances with single-peaked utilities, we can
assume a greedy allocation of the items to slots and focus on the item selection
aspect of CPD. Hence, given any set of items M ⊆ X, with |M | ≤ kq, we avoid
referring to any particular allocation of M . Moreover, we assume that |X| > kq,
since otherwise, CPD is easily solvable.

Linear Preferences. An interesting special case of single-peaked preferences
are linear preferences (or linear utilities), where both the items and the agents lie
in [0, 1] and the utility of an agent � for an item j is a linear decreasing function
of their distance. For such instances, we assume that the items are located at
0 ≤ x1 < x2 < · · · < xm ≤ 1 and the agents are located 0 ≤ v1 ≤ v2 ≤ · · · ≤
vn ≤ 1. The utility of an agent � for an item xj is u�(xj) = 1 − |xj − v�|.
Single-Crossing Preferences. A profile of preferences is single-crossing if there
exists an ordering of the agents, say π : [n] → L, such that for every pair of items
xi, xj ∈ X, either all the agents rank xi and xj in the same way, or there is an
index tij ∈ {1, . . . n} such that agents π(1) to π(tij) all agree to rank xi and xj
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in the same way, and agents π(tij + 1) to π(n) all agree to rank xi and xj in the
opposite way. So, either all the agents agree on the relative positions of two given
items, or there is a dichotomy L1, L \ L1 such that both L1 and L \ L1 contain
consecutive agents with respect to ordering π. One can determine whether a
preference profile is single-crossing in polynomial time [5].

E.g., let us consider 4 items x1, x2, x3, x4 and 5 agents with preferences:

1 : x1 �1 x2 �1 x3 �1 x4 2 : x1 �2 x2 �2 x4 �2 x3 3 : x1 �3 x4 �3 x2 �3 x3

4 : x4 �4 x1 �4 x2 �4 x3 5 : x4 �5 x1 �5 x3 �5 x2

These preferences are single-crossing, where π is the identity permutation
of L.

3 CPD with Single-Peaked Preferences

Theorem 1. CPD with single-peaked preferences is solvable in polynomial time.

Proof (sketch). By Proposition 1, we can assume a greedy allocation of the
selected items to the slots and focus on the item selection aspect of CPD. Hence,
we can consider a simplified Integer Linear Programming formulation of CPD.

(SLP) maximize
∑

�∈N

∑

xi∈X

z�i · u�(xi)

subjectto : yi − z�i ≥ 0, ∀� ∈ N,xi ∈ X (1)
∑

xi∈X

z�i ≤ k, ∀� ∈ N (2)

∑

xi∈X

yi ≤ k · q (3)

yi, z�i ∈ {0, 1}, ∀� ∈ N,xi ∈ X

In (SLP), each variable yi indicates whether an item xi is included in the
solution and each variable z�i indicates whether an agent � derives utility from
an item xi. (1) ensures that an agent � derives utility from an item xi only if xi

is included in the solution. (2) ensures that every agent derives utility from at
most k items. (4) ensures that at most kq items are selected in the solution.

The optimum of (SLP) is equal to the optimal total utility. Let us denote
by (R-SLP) the relaxation of (SLP) where the constraints yi, z�i ∈ {0, 1} are
replaced by yi, z�i ∈ [0, 1]. Thus, the optimal value of (R-SLP) is no less than the
value of (SLP). We solve (R-SLP) and let X ′ = {xi ∈ X : ∃� ∈ L with z�i > 0}.
We say that the usage of an item xi ∈ X ′ by an agent � is full when z�i = yi,
null when z�i = 0 and intermediate when 0 < z�i < yi.

We can show that for any agent � and any two consecutive items xa, xb ∈ X ′

with xa �� xb, the intermediate or null usage of xa by � implies a null usage
of xb by �. Therefore, the items of X ′ for which a given agent has a non-null
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usage are consecutive. Moreover, within this set of consecutive items, only the
two extreme items can be used in an intermediate way. Using this observation,
we modify X ′ as done in [12, Sect. 3], in the context of fault tolerant q-Facility
Location on the line. Working as in [12], we write a new Linear Program (FLP)
for the modified instance such that (i) the optimum of (FLP) is as good as
the optimum of (R-SLP); and (ii) (FLP) satisfies the consecutive ones property,
and thus, has an integral optimal solution. Obtaining an optimal selection of
kq items from the solution of (FLP), we allocate the selected items using the
optimal greedy allocation described in Sect. 2. ��

4 A Truthful Mechanism for Single-Peaked Preferences

Next, we present a truthful mechanism for CPD with single-peaked preferences.
Given a set X of m items arranged as x1 � x2 � · · · � xm on axis �, we
consider the set X = {C1, . . . , Cm−k+1} of k-tuples of consecutive items, where
Ci = (xi, . . . , xk+i−1) for each i ∈ [m − k + 1]. These k-tuples can be naturally
arranged on �, as C1 � C2 � · · · � Cm−k+1, according to their first coordinate.

For each agent � and each k-tuple Ci, we let ū�(Ci) =
∑k+i−1

j=i u�(xj) be
the utility of agent � for the items in Ci. Then, utilities ū�(C1), . . . , ū�(Cm−k+1)
define the preference relation of agent � on the set X of k-tuples of consecutive
items. We can show that if u� is single-peaked on X, ū� is single-peaked on X .

Lemma 1. Let u : X → R≥0 be a single-peaked utility function wrt x1 � x2 �
· · · � xm and let ū : X → R≥0 be its extension on the set X = {C1, . . . , Cm−k+1}
of k-tuples of consecutive items, where ū(Ci) =

∑k+i−1
j=i u(xj) for each Ci ∈ X .

Then, ū is single-peaked wrt C1 � C2 � · · · � Cm−k+1.

Percentile Mechanism. In an (α1, . . . , αq)-Percentile Mechanism for CPD,
with 0 ≤ α1 < · · · < αq ≤ 1, each agent � casts a vote for his best k-tuple C� =
arg maxC∈X {ū�(C)}. For each k-tuple Ci, we let cnt(Ci) denote the number of
agents voting for Ci, i.e., cnt(Ci) = {� ∈ L : Ci = C�}. The mechanism selects q
tuples from X . For each j ∈ [q], the k-tuple Ci ∈ X is selected as the j-th tuple of
the (α1, . . . , αq)-Percentile Mechanism if

∑i−1
p=1 cnt(Cp) < αjn ≤ ∑i

p=1 cnt(Cp).
Let C(1), . . . , C(q) be the k-tuples selected by the Percentile Mechanism, in

the order of selection, and let M =
⋃q

j=1 C(j) be the set of items selected by
the mechanism. It may be |M | < kq, since C(1), . . . , C(q) do not need to be
disjoint. The items in M are assigned greedily to slots, as explained in Sect. 2.
By Proposition 1, the greedy allocation is optimal and ensures that the utility
u�(M) of each agent � from the outcome of the mechanism is best possible. �

Using Lemma 1, we can now show that Percentile Mechanisms are truthful.

Theorem 2. For any tuple (α1, . . . , αq), with 0 ≤ α1 < · · · < αq ≤ 1, the
(α1, . . . , αq)-Percentile Mechanism is truthful for the Conference Program Design
problem with single-peaked preferences.
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Proof (sketch). The greedy allocation of the items in M to slots ensures that
all agents get a maximum utility from M . Thus, they do not have any incentive
to manipulate the greedy assignment. We can also show that the agents cannot
change the item selected by the mechanism in their favor. The intuition is the
same as the intuition in the proofs that Generalized Median and Percentile
Mechanisms [14,18] are truthful for agents with single-peaked preferences. If an
agent � lies and votes for a k-tuple C ′ on the left (resp. on the right) of C�,
this could only push a k-tuple C(j) selected by the mechanism further on the
left (resp. on the right) of C�. Since agent � has single-peaked preferences over
X , such a change is not profitable for him. In fact, working as in the proof of
[18, Theorem 1], we can show that Percentile Mechanisms for CPD with single-
peaked preferences are group strategyproof. ��

5 The Approximation Ratio for Linear Preferences

In this section, we analyze the approximation ratio of Percentile Mechanisms for
the special case of linear preferences. The items are located at 0 ≤ x1 < x2 <
· · · < xm ≤ 1 and the agents are located at 0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ 1. The
utility of an agent � for an item xj is u�(xj) = 1 − |xj − v�|.
The Approximation Ratio for Selecting a Single Item. We start with
the case where k = q = 1. In contrast to 1-Facility Location, where the Median
Mechanism is optimal (see e.g., [16]), the approximation ratio for this special
case of CPD is 1/3 and we can show that any deterministic truthful mechanism
has approximation ratio at most 5/7.

In the 1/2-Percentile Mechanism, each agent � votes for his best item, i.e.
for the item xj that minimizes |v� − xj |. We recall that cnt(xj) is the number
of agents that vote for xj . Then, the 1/2-Percentile Mechanism selects the item
xi that satisfies

∑i−1
j=1 cnt(xj) < n/2 ≤ ∑i

j=1 cnt(xj). So, because it cannot
select the location of the median agent, the 1/2-Percentile Mechanism selects
the item closest to the location vmed of the median agent. The analysis of the
approximation ratio is based on the following.

Lemma 2. Let 0 ≤ v1 ≤ · · · ≤ vn ≤ 1 be n agent locations in [0, 1] and let vmed

be the location of the median agent. For any items z, y ∈ [0, 1] with |vmed − z| ≤
|vmed − y|, U(y) ≤ 3U(z).

We can now determine the approximation ratio for the case where k = q = 1.

Lemma 3. If k = q = 1, the 1/2-Percentile Mechanism achieves an approxima-
tion ratio of 1/3.

Proof. For the lower bound on the approximation ratio, we apply Lemma2 with
the item selected by the mechanism as z and the item selected by the optimal
solution as y. Since |vmed − z| ≤ |vmed − y|, Lemma 2 immediately implies that
the approximation ratio of the 1/2-Percentile Mechanism is at least 1/3.
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To conclude the proof, we present a class of instances where the mechanism
has an approximation ratio of 1/3 + ε, for any ε > 0. Such instances consist of
n/2 agents located at 1/2 − ε, where ε > 0 is arbitrarily small, and n/2 agents
located at 1, and of 2 items, one at 0 and the other at 1. The optimal solution
selects the item at 1 and has a total utility of 3n/4 − nε/2. The 1/2-Percentile
Mechanism selects the item at 0 and has a total utility of n/4 + nε/2. ��
The Approximation Ratio for Singleton Slots. We now use Lemma 2 and
show that for q = 1 and any k ≥ 1, the approximation ratio of the 1/2-Percentile
Mechanism is 1/3. In this case, each agent � votes for his best k-tuple of consec-
utive items. The mechanism selects the k-tuple Ci that satisfies

∑i−1
j=1 cnt(Cj) <

n/2 ≤ ∑i
j=1 cnt(Cj). Therefore, the k-tuple Ci selected by the mechanism is the

best k-tuple of the median agent, i.e., Ci = arg maxCj∈X {ū�(n+1)/2	(Cj)}.

Lemma 4. If q = 1, for any k ≥ 2, the 1/2-Percentile Mechanism on k-tuples
of consecutive items achieves an approximation ratio of 1/3.

Proof. Let Z = {z1, . . . , zk} be the solution of the mechanism and let Y be the
optimal solution. Since z1, . . . , zk are consecutive in [0, 1] and correspond to the
k items closest to the location vmed of the median agent, we can arrange the
items in Y as y1, . . . , yk so that for each j ∈ [k], |zj − vmed| < |yj − vmed|.
Hence, Lemma 2 implies that for each pair of items zj and yj , U(yj) ≤ 3U(zj).
Since the optimal utility is U(Y ) =

∑k
j=1 U(yj) and the mechanism’s utility is

U(Z) =
∑k

j=1 U(zj), the approximation ratio is at least 1/3.
Moreover, for any k ≥ 2, we can generalize the tight example in the proof of

Lemma 3. To this end, we consider the same agent locations and 2k items, k of
them are essentially collocated at 0 and k of them are essentially collocated at
1. One can verify that the approximation ratio of the 1/2-Percentile Mechanism
for this class of instances can be arbitrarily close to 1/3. ��
The Approximation Ratio for the General Case. We proceed to bound
the approximation of the ( 1

2q , 3
2q , . . . , 2q−1

2q )-Percentile Mechanism for agents with
linear preferences. The tight example in the proof of Lemma 3 shows that the
distances |y − z| and vn −v1 essentially determine the approximation ratio. This
motivates us to introduce the notion of the width for a subset of agents.

We let L be a set of n agents with locations 0 ≤ v1 ≤ · · · ≤ vn ≤ 1 in
[0, 1], let z ∈ [0, 1] be an item, and let Y ⊆ [0, 1] be a nonempty set of items.
Assuming that L, z and Y are fixed, we denote yl = arg maxy∈Y ∪{z} u1(y) and
yr = arg maxy∈Y ∪{z} un(y) the leftmost and the rightmost items in Y ∪{z} used
by some agent in L. The width β(L, z, Y ) of the agent set L with respect to the
item z and to the set Y is defined as:

β(L, z, Y ) =
{

0 ifY ∩ [yl, yr] ⊆ {z}
max{vn − min{z, v1},max{z, vn} − v1} otherwise

Namely, if the only useful item in Y ∪ {z} is z, the width is 0. Otherwise, the
width of L is either vn −v1, if z ∈ [v1, vn], or vn −z, if z < v1, or z−v1, if z > vn.
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We can show that when a set of agents is partitioned into groups that occupy
non-overlapping intervals in [0, 1], the total width of all groups is at most 2.

Lemma 5. Let L be a set of n agents partitioned into groups L1, . . . , Lq, where
each group consists of agents at consecutive locations. For any j ∈ [q], let vj

med

be the location of the median agent in group Lj, and for any set Z of items, let
zj = arg minz∈Z |vj

med − z|. For any set Z with at most q items and any set Y

of items with |vj
med − zj | ≤ miny∈Y |vj

med − y|, let βj denote the width of group
Lj with respect to zj and Y . Then,

∑q
j=1 βj ≤ 2.

The following lemma determines the approximation ratio for a group of
agents L that use the same item z, as a function of the width β. Note that
using β = 1 and Y = {y}, we can obtain Lemma 2 as a special case of Lemma 6.

Lemma 6. Let L be a set of n agents located at 0 ≤ v1 ≤ · · · ≤ vn ≤ 1 and
let vmed be the location of the median agent in L. For any item z and any set
of items Y such that |vmed − z| ≤ miny∈Y |vmed − y|, U(Y ) ≤ 4−β

4−3β U(z), where
β ∈ [0, 1] is the width of L with respect to z and Y .

Proof (sketch). We use integer division by 2 and deal with both even and odd
n = |L|. Since we are interested in the ratio of U(Y )/U(z), we focus on the
set of useful items (for the agents in L) in Y . Specifically, we assume that Y =
(Y ∩ [yl, yr]) ∪ {z}. In case where Y = {z}, the lemma holds trivially, because
β = 0 and U(Y ) = U(z). So, from now on, we assume that {z} ⊂ Y .

We let y = arg miny′∈Y \{z} |vmed − y′| and consider the case where z < y
(the case where z > y is symmetric). So, β = max{vn − v1, vn − z} (if z > y,
β = max{vn − v1, z − v1}). We denote δ = (y − z)/2. We distinguish two cases
depending on whether z ≥ v1 or z < v1.

We first consider the case where z ≥ v1. For convenience, we let γ = z−v1. In
this case, β = vn−v1. Wlog., we assume that y ≤ vn and that γ+2δ ≤ β. (These
inequalities can be enforced if we add to Y an artificial item at vn, which does
not change the value of β, can only increase U(Y ) and does not change U(z)).
We let n1 be the number of agents located in [v1, z), n2 (resp. L2) denote the
number (resp. the set) of agents located in [z, z + δ], and n3 denote the number
of agents in (z + δ, vn]. Since z < y and |vmed −z| ≤ |vmed −y|, the median agent
is located in [v1, z+δ]. Therefore, n3 ≤ n/2. Moreover, we assume that n1 ≤ n/2
(i.e., we assume that vmed ≥ z). Otherwise, the median agent is located on the
left of z and this case is similar to the case where y < z. We have that

U(Y ) ≤ n −
∑

j∈L2

(z − vj) , (4)

because each agent j ∈ L2 has utility at most 1 − (z − vj) for his best item in
Y , while all the remaining agents have utility at most 1 for y. Similarly,

U(z) ≥ n − n1γ −
∑

j∈L2

(z − vj) − n3(β − γ) , (5)
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because n1 agents have utility at least 1−(z−v1) = 1−γ for z, each agent j ∈ L2

has utility 1 − (z − vj) for z, and n3 agents have utility at least 1 − (vn − z) =
1 − (β − γ) for z. Using (5), we can show that for any α ≥ 1,

αU(z) +
∑

j∈L2

(z − vj) ≥ αn − 3α−1
4 βn (6)

Then, using α = (4−β)/(4−3β), we obtain that (3α−1)β/4 = α−1. Combining
this equation with (6), we conclude that 4−β

4−3β U(z) ≥ n−∑
j∈L2

(z−vj) ≥ U(Y ).
The analysis for the case where z < v1 follows exactly the same steps, but it

is simpler, since we have n1 = γ = 0 in this case. ��
The following provides a lower bound on the approximation ratio in case

where the number of agents is a multiple of q. The proof of Theorem 3 is based
on the analysis in the proof of Lemma6 and on Lemma 5.

Theorem 3. For any integers k ≥ 1 and q ≥ 2, m > qk items and qn agents,
the approximation ratio of the ( 1

2q , 3
2q , . . . , 2q−1

2q )-Percentile Mechanism for CPD
instances with linear preferences is at least (2q − 3)/(2q − 1).

Proof (idea). The mechanism partitions the agents into groups Lj , j ∈ [q], with
n consecutive agents each. Given the optimal set of items Yi assigned to each slot
i, we can determine, for each group Lj , an item zj

i ∈ M (different for each slot i)
so that |zj

i − vj
med| ≤ miny∈Yi

|y − vj
med|, where vj

med is the median of Lj . Using
the width βj

i of group Lj wrt zj
i and Yi, we can lower bound the total utility of

the agents in Lj for item zj
i by an inequality similar to (6). Then, we sum up all

these inequalities and use
∑q

j=1 βj
i ≤ 2, by Lemma 5. The approximation ratio

follows by an upper bound similar to (4) on the total optimal utility. ��
There are instances with nq agents and k = 1 where the approximation ratio

of the Percentile Mechanism tends to (2q − 1)/(2q − 1/q). E.g., for some odd
integer n ≥ 3, we consider (n − 1)/2 agents at 0, n − 1 agents at each point i/q,
i ∈ [q − 1], (n − 1)/2 agents at 1, and a single agent at each point (2i + 1)/(2q),
i = 0, . . . , q − 1. We have 2q items located at points i/q, i ∈ [q], and at points
(2i + 1)/(2q), i = 0, . . . , q − 1. The optimal solution is to select the items at i/q,
for a total utility of roughly (n − 1)q − (n − 1)/(2q). The mechanism selects the
items at (2i+1)/(2q), i = 0, . . . , q−1, for a total utility of roughly nq−(n−1)/2.

If the number of agents is not a multiple of q, we obtain a slightly weaker
approximation ratio. The proof is similar to the proof of Theorem3.

Theorem 4. For any k ≥ 1 and q ≥ 2, any m > qk and any num-
ber of agents |L| ≥ q + 1, the approximation ratio of the ( 1

2q , 3
2q , . . . , 2q−1

2q )-
Percentile Mechanism for CPD instances with linear preferences is at least
(2q − 3 − 3q/|L|)/(2q − 1 − q/|L|) = (2q − 3)/(2q − 1) − O(q/|L|).
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6 Conference Program Design with Item Preselection

In this section, we show that despite CPD being polynomially solvable for single-
peaked preferences (Theorem 1), pre-CPD is NP-hard for single-peaked prefer-
ences, even with the additional restriction of dichotomous preferences.

The agent preferences are dichotomous if each agent “likes” a subset of items
and “dislikes” the remaining ones. This induces a preorder with two indifference
classes for every agent. In general, this implies ui(x) ∈ {a, b} where a, b are two
nonnegative reals satisfying a < b. It is called approval-based utility when a = 0
and b = 1. Dichotomous preferences have received attention by the community
of Computational Social Choice, especially in the case of committee selection
rules for voters [6,7] or in judgment aggregation [4]. In our setting, dealing with
approval utilities is not restrictive with respect to algorithmic complexity issues,
after a rescaling. So, we can assume that u�(x) ∈ {0, 1} for � ∈ L and x ∈ X.

The preferences are dichotomous single-peaked if they are both single-peaked
and dichotomous. Equivalently, the items are located on a line and each agent
� corresponds to a closed interval I�, where u�(x) = 1 if x ∈ I� and u�(x) = 0
otherwise. This is also known as Voter Interval in Voting Theory [6] or Single-
Plateauedness in majority judgments [4]. We can show that:

Theorem 5. pre-CPD is NP-hard for dichotomous single-peaked preferences.

7 CPD with Single-Crossing Preferences

In this section, we consider CPD with single-crossing preferences. Wlog., we
assume that the preference profile is single-crossing for the identity permutation
of the agents and that agent 1 prefers xi to xj if and only if i < j.

We extend the dynamic programming approach applied to the Chamberlin-
Courant election in [17]. We exploit the contiguous blocks property of the optimal
solution of Chamberlin-Courant with single-crossing preferences [17, Lemma 5],
which directly extends to CPD. For a slot Sj of a solution to CPD such that
xi ∈ Sj , we let L(j, i) be the set of agents who consider xi as their best item
in Sj . The contiguous blocks property for CPD states that for every j ∈ [k] and
xi ∈ Sj , either L(j, i) = ∅ or there are two indices, tji and t′ji, such that tji ≤ t′ji

and L(j, i) = {tji, tji +1, . . . , t′ji}. Moreover, for each i < i′ such that L(j, i) �= ∅
and L(j, i′) �= ∅, it holds that t′ji < tji′ . Namely, an item is considered as the
most preferred in a slot by a set of consecutive agents and such sets of agents
who prefer different items of the same slot do not overlap with each other.

Theorem 6. A dynamic programming algorithm solves every single-crossing
instance of CPD in O(m(nq)k+1) time.

Proof. Let U(j, (i1, t1), . . . , (ik, tk)) be the maximum total utility if we use items
from set Xj = {x1, . . . , xj} only, and in each slot Sp, only the agents 1, . . . , ip
are considered and only tp items are used. The function U is defined for all
j = 0, . . . ,m and for all tuples (ip, tp) with t1 + · · · + tk ≤ j. If j = 0, X0 = ∅.
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We start with U(0, (i1, t1), . . . , (ik, tk)) = 0, for all pairs (i1, t1), . . . , (ik, tk).
For each j ≥ 0, the next item xj+1 either is not selected (provided that t1+ · · ·+
tk ≤ j), in which case U(j + 1, (i1, t1), . . . , (ik, tk)) = U(j, (i1, t1), . . . , (ik, tk)),
or it is assigned to some slot Sp, in which case U(j + 1, (i1, t1), . . . , (ik, tk)) =

max
0≤�≤ip

⎧
⎨

⎩
U(j, (i1, t1), . . . , (�, tp − 1), . . . , (ik, tk)) +

ip∑

ν=�+1

uν(xj+1)

⎫
⎬

⎭

Therefore, for each j ≥ 0 and each fixed (i1, t1), . . . , (ik, tk), with t1 + · · · + tk ≤
j + 1, U(j + 1, (i1, t1), . . . , (ik, tk)) can be defined recursively as follows:

max

⎧
⎪⎪⎨

⎪⎪⎩

U(j, (i1, t1), . . . , (ik, tk))

max1≤p≤k max0≤�≤ip

⎧
⎨

⎩
U(j, . . . , (�, tp − 1), . . .) +

ip∑

ν=�+1

uν(xj+1)

⎫
⎬

⎭

⎫
⎪⎪⎬

⎪⎪⎭

in case where t1 + · · · + tk ≤ j, or

max
1≤p≤k

max
0≤�≤ip

⎧
⎨

⎩
U(j, . . . , (�, tp − 1), . . .) +

ip∑

ν=�+1

uν(xj+1)

⎫
⎬

⎭

in case where t1+· · ·+tk = j+1. The optimal solution is given by U(m, (n, k), . . . ,
(n, k)). The number of values that we need to compute is O(m(nq)k) and the
total running time is O(m(nq)k+1). ��
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Abstract. We study the truthful facility assignment problem, where a
set of agents with private most-preferred points on a metric space are
assigned to facilities that lie on the metric space, under capacity con-
straints on the facilities. The goal is to produce such an assignment
that minimizes the social cost, i.e., the total distance between the most-
preferred points of the agents and their corresponding facilities in the
assignment, under the constraint of truthfulness, which ensures that
agents do not misreport their most-preferred points.

We propose a resource augmentation framework, where a truthful
mechanism is evaluated by its worst-case performance on an instance
with enhanced facility capacities against the optimal mechanism on the
same instance with the original capacities. We study a well-known mech-
anism, Serial Dictatorship, and provide an exact analysis of its per-
formance. Among other results, we prove that Serial Dictatorship has
approximation ratio g/(g − 2) when the capacities are multiplied by
any integer g ≥ 3. Our results suggest that even a limited augmen-
tation of the resources can have wondrous effects on the performance
of the mechanism and in particular, the approximation ratio goes to 1
as the augmentation factor becomes large. We complement our results
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with bounds on the approximation ratio of Random Serial Dictatorship,
the randomized version of Serial Dictatorship, when there is no resource
augmentation.

1 Introduction

We study the facility assignment problem, in which there is a set of agents
and a set of facilities with finite capacities; facilities are located on a metric
space at points Fi and each agent has a most-preferred point Ai, which is her
private information. The goal is to produce an assignment of agents to facilities,
such that no capacity is exceeded and the sum of distances between agents and
their assigned facilities, the social cost, is minimized. A mechanism is a function
that elicits the points Ai from the agents and outputs an assignment. We will
be interested in truthful mechanisms, i.e., mechanisms that do not incentivize
agents to misreport their most-preferred locations and we will be aiming to
find mechanisms that achieve a social cost as close as possible to that of the
optimal assignment when applied to the true points Ai of the agents. Our setting
has various applications such as assigning patients to personal GPs, vehicles to
parking spots, children to schools and pretty much any matching environment
where there is some notion of distance involved.

Our work falls under the umbrella of approximate mechanism design without
money, a term coined by Procaccia and Tennenholtz [16] to describe problems
where some objective function is optimized under the hard constraints imposed
by the requirement of truthfulness. The standard measure of performance for
truthful mechanisms is the approximation ratio, which for our objective, is the
worst-case ratio between the social cost of the truthful mechanism in question
over the minimum social cost, calculated over all input instances of the problem.

However, it is arguably unfair to compare the performance of a mechanism
that is severely limited by the requirement of truthfulness to that of an omnipo-
tent mechanism that operates under no restrictions and has access to the real
inputs of the agents, without giving the truthful mechanism any additional capa-
bilities. This is even more evident in general settings, where strong impossibility
results restrict the performance of all truthful mechanisms to be rather poor. The
need for a departure from the worst-case approach has been often advocated in
the literature, but the suggestions mainly involve some average case analysis or
experimental evaluations.

Instead, we will adopt a different approach, that has been made popular
in the field of online algorithms and competitive analysis [13,17]; the approach
suggests enhancing the capabilities of the mechanism operating under some very
limiting requirement (such as truthfulness or lack of information) before compar-
ing to the optimal solution. Our main conceptual contribution is the adoption
of a resource augmentation approach to approximate mechanism design. In the
resource augmentation framework, we evaluate the performance of a truthful
mechanism on an input with additional resources, when compared to the opti-
mal solutions for the set of original resources. For our problem, we consider the
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social cost achievable by a truthful mechanism on some input with augmented
facility capacities against the optimal assignment under the original capacities
given as input.

More precisely, let I be an input instance to the facility assignment problem
and let Ig be the same instance where each capacity has been multiplied by some
integer constant g, that we call the augmentation factor. Then, the approximation
ratio with augmentation g of a truthful mechanism M is the worst-case ratio
of the social cost achievable by M on Ig over the social cost of the optimal
assignment on I, over all possible inputs of the problem. The idea is that if the
ratio achievable by a mechanism with small augmentation is much better when
compared to the standard approximation ratio, it might make sense to invest in
additional resources. At the same time, such a result would imply that the set
of “bad” instances in the worst-case analysis is rather pathological and not very
likely to appear in practice. To the best of our knowledge, this is the first time
that such a resource augmentation framework has been explicitly proposed in
algorithmic mechanism design.

1.1 Our Results

As our main contribution, we study the well-known truthful mechanisms for
assignment problems, Serial Dictatorship (SD) and Random Serial Dictatorship
(RSD). For SD, we provide an exact analysis, obtaining tight bounds on the
approximation ratio of the mechanism for all possible augmentation factors g.
Specifically, we prove that when n is the number of agents, while without any
augmentation, the approximation ratio of SD is 2n − 1, the approximation ratio
with augmentation factor g = 2 is exactly log(n + 1) whereas for g ≥ 3, the
approximation ratio is g/(g − 2), i.e., a small constant. In particular, our results
imply that as the augmentation factor becomes large, the approximation ratio of
SD with augmentation goes to 1 and the convergence is rather fast. Our results
for SD improve and extend some results in the field of online algorithms [12].

To prove the approximation ratios for all augmentation factors, we use an
interesting technique based on linear programming. Specifically, we first provide
a directed graph interpretation of the assignment produced by SD and the opti-
mal assignment, and then prove that the worst-case instances appear on g-trees,
i.e., trees where (practically) every vertex has exactly g successors. Then, we
formulate the problem of calculating the worst ratio on such trees as a linear
program and bound the ratio by obtaining feasible solutions to its dual. Such a
solution can be seen as a “path covering” of the assignment graph and we obtain
the bounds by constructing appropriate path coverings of low cost.

We also consider randomized mechanisms and the very well-known Random
Serial Dictatorship mechanism. We prove that for augmentation factor 1 (i.e., no
resource augmentation), the approximation ratio of the mechanism is between
n0.26 and n; the result suggests that even a small augmentation (g = 2) is a
more powerful tool than randomization.
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1.2 Related Work

Assignment problems are central in the literature of economics and computer
science. The literature on one-sided matchings dates back to the seminal paper
by Hylland and Zeckhauser [10] and includes many very influential papers
[5,18] in economics as well as a rich recent literature in computer science
[2,8,9,15]. Serial Dictatorships (or their randomized counterparts) have been in
the focus of much of this literature, mainly due to their simplicity and the frag-
ile nature of truthfulness, which makes it quite hard to construct more involved
truthful mechanisms. In a celebrated result, Svensson [18] characterized a large
class of truthful mechanisms by serial dictatorships. Random Serial Dictatorship
has also been extensively studied [1,15] and recently it was proven [8] that is
asymptotically the best truthful mechanism for one-sided matchings under the
general cardinal preference domain.

The facility assignment problem can be interpreted as a matching problem;
somewhat surprisingly, matching problems in metric spaces have only recently
been considered in the mechanism design literature. Emek et al. [7] study a
setting very closely related to ours, where the goal is to find matchings on met-
ric spaces, but they are interested in how well a mechanism that produces a
stable matching can approximate the cost of the optimal matching. In a con-
ceptually similar work, Anshelevich and Shreyas [3] study the performance of
ordinal matching mechanisms on metric spaces, when the limitation is the lack
of information. The fundamental difference between those works and ours is
that we consider truthful mechanisms and bound their performance due to the
truthfulness requirement; to the best of our knowledge, this is the first time
where truthful mechanisms have been considered in a matching setting with
metric preferences. Another difference between our work and the aforementioned
papers is that they do not consider resource augmentation and only bound the
performance of mechanisms on the same set of resources.1 However, given the
generality of the augmentation framework, the same idea could be applied to
their settings. In that sense, our paper proposes a resource augmentation app-
roach to algorithmic mechanism design that could be adopted in most resource
allocation and assignment settings.

As we mentioned earlier, the idea of resource augmentation was popularized
by the field of online algorithms and competitive analysis and is tightly related
to the literature on weak adversaries where an online competitive algorithm is
compared to the adversary that uses a smaller number of resources. The idea
for this approach originated in the seminal paper by Sleator and Tarjan [17] and
has been adopted by others ever since [14,19]; the term “resource augmentation”
was explicitly introduced by Kalyanasundaram and Pruhs [13].

Most closely related to our problem is the online transportation problem [12]
(also known as the minimum online metric bipartite matching). In particular,
results about the greedy algorithm in the online transportation problem imply
bounds for the facility assignment problem. However, contrary to [12], our analy-
sis is exact, i.e. our results involve no asymptotics. Furthermore, compared to the
1 With the exception of the bi-criteria result in [3].
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related result in [12], we remark that our analysis is substantially different due to
the use of linear programming; our primal-dual technique could be applicable for
greedy assignment mechanisms on other resource augmentation settings, beyond
the problem studied here. For a detailed discussion of the connection between
the two settings, the reader might refer to the full version of this paper.

Finally, there is some resemblance between our problem and the facility loca-
tion problem [16] that has been studied extensively in the literature of approxi-
mate mechanism design, in the sense that in both settings, agents specify their
most preferred positions on a metric space. Note that the settings are funda-
mentally different however, since in the facility location problem, the task is to
identify the appropriate point to locate a facility whereas in our setting, facilities
are already in place and we are looking for an assignment of agents to them.

2 Preliminaries

In the facility assignment problem, there is a set N = {1, . . . , n} of agents and
a set M = {1, . . . ,m} of facilities, where agents and facilities are located on a
metric space, equipped with a distance function d. Each facility has a capacity
ci ∈ N+, which is the number of agents that the facility can accommodate. We
assume that

∑m
i=1 ci ≥ n, i.e., all agents can be accommodated by some facility.

Each agent has a most preferred position Ai on the space and his cost di(j) from
facility j is the distance d(Ai, Fj) between Ai and the position Fj of the facility.
Let A = (A1, . . . , An) be a vector of preferred positions and call it a location
profile. Let F = (F1, . . . , Fm) be the corresponding set of points of the facilities.
A pair of agents’ most preferred points and facility points (A,F ) is called an
instance of the facility assignment problem and is denoted by I.

The locations of the facilities are known but the location profiles are not
known; agents are asked to report them to a central planner, who then decides
on an assignment S, i.e., a pairing of agents and facilities such that no agent
is assigned to more than one facility and no facility capacity is exceeded. Let
Si be the restriction of the assignment to the i’th coordinate, i.e., the facility
to which agent i is assigned in S and let S be the set of all assignments. The
social cost of an assignment S on input I is the sum of the agents’ costs from
their facilities assigned by S i.e.,

∑n
i=1 di(Si). A deterministic mechanism maps

instances to assignments whereas a randomized mechanism maps instances to
probability distributions over assignments.

A mechanism is truthful if no agent has an incentive to misreport his
most preferred location. Formally, this is guaranteed when for every location
profile A, any report A′

i, and any reports A−i of all agents besides agent
i, it holds that di(Si) ≥ di(S′

i), where S = M(I) and S′ = M(I ′), with
I = (A,F ) and I ′ = ((A′

i, A−i), F ). For randomized mechanisms, the corre-
sponding notion is truthfulness-in-expectation, where an agent can not decrease
her expected distance from the assigned facilities by deviating, i.e., it holds that
ES∼D[di(Si)] ≥ ES∼D′ [di(Si)], where D and D′ are the probability distributions
output by the mechanism on inputs I and I ′ respectively. A stronger notion of
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truthfulness for randomized mechanisms is that of universal truthfulness, which
guarantees that for every realization of randomness, there will not be any agent
with an incentive to deviate. Alternatively, one can view a universally truthful
mechanism as a mechanism that runs a deterministic truthful mechanism at
random, according to some distribution.

As our main conceptual contribution, we will consider a resource augmen-
tation framework where the minimum social cost of any assignment will be
compared with the social cost achievable by a mechanism on a location profile
with augmented facility capacities. Given an instance I, we will use the term
g-augmented instance to refer to an instance of the problem where the input is
I and the facility of each capacity has been multiplied by g. We will denote that
instance by Ig and we will call g the augmentation factor of I. For example,
when g = 2, we will compare the minimum social cost with the social cost of a
mechanism on the same inputs but with double capacities.

For the facility assignment problem, the optimal mechanism computes a min-
imum cost matching (which can be computed using an algorithm for maximum
weight bipartite matching) and it can be easily shown that it is not truthful;
in order to achieve truthfulness, we have to output suboptimal solutions. As
performance measure, we define the approximation ratio with augmentation of
a mechanism M as

ratiog(M) = sup
I

SCM (Ig)
SCOPT (I)

where SCM (Ig) =
∑n

i=1 di(M(Ig)i) is the social cost of the assignment pro-
duced by mechanism M on input instance I with augmentation factor g and
SCOPT (I) is the minimum social cost of any assignment on I i.e., SCOPT (I) =
minS∈S

∑n
i=1 di(Si). For randomized mechanisms, the definitions involve the

expected social cost and are very similar. Obviously, if we set g = 1, we obtain
the standard notion of the approximation ratio for truthful mechanisms [16]. For
consistency with the literature, we will denote ratio1(M) by ratio(M).

We will be interested in two natural truthful mechanisms that assign agents
to facilities in a greedy nature. A serial dictatorship (SD) is a mechanism that
first fixes an ordering of the agents and then assigns each agent to his most
preferred facility, from the set of facilities with non-zero residual capacities. Its
randomized counterpart, Random Serial Dictatorship (RSD), is the mechanism
that first fixes the ordering of agents uniformly at random and then assigns them
to their favorite facilities that still have capacities left. In other words, RSD runs
one of the n! possible serial dictatorships uniformly at random and hence it is
universally truthful.

3 Approximation Guarantees for Serial Dictatorships

In this section we provide our main results, the upper bounds on the approxima-
tion ratio with augmentation of Serial Dictatorship, for all possible augmentation
factors. In Sect. 4, we state the theorem that ensures that the bounds proven here
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are tight. At the end of the section, we also consider Random Serial Dictatorship,
when there is no resource augmentation.

Theorem 1. The approximation ratio of SD with augmentation factor g in
facility assignment instances with n agents is

1. ratio(SD) ≤ 2n − 1,
2. ratio2(SD) ≤ log(n + 1),
3. ratiog(SD) ≤ g

g−2 when g ≥ 3.

In order to prove the theorem,2 we first need to introduce a different interpre-
tation of the assignment produced by SD and the optimal assignment, in terms
of a directed graph. We begin with a roadmap of the proof of Theorem1.

1. We show how to represent an instance of facility assignment together with an
optimal solution and a solution computed by the SD mechanism as a directed
graph and argue that the instances in which the SD mechanism has the worst
approximation ratio are specifically structured as directed trees.

2. We observe that the cost of the SD mechanism in these instances is upper-
bounded by the objective value of a maximization linear program defined over
the corresponding directed trees.

3. We use duality to upper-bound the objective value of this LP by the value of a
feasible solution for the dual LP. This reveals a direct relation of the approx-
imation ratio of the SD mechanism to a graph-theoretic quantity defined on
a directed tree, which we call the cost of a path covering.

4. Our last step is to prove bounds on this quantity; these might be of indepen-
dent interest and could find applications in other contexts.

Consider an instance I of facility assignment. Recall the interpretation of
the problem as a metric bipartite matching and note that without loss of gen-
erality, each facility can be assumed to have capacity 1 and m ≥ n. Unless
otherwise specified, agents and facilities are identified by the integers in [n] and
[m], respectively.

Now, let O be any assignment on input I, and let S be an assignment returned
by the SD mechanism when applied on the instance Ig (where each facility has
capacity g). We use a directed graph to represent the triplet I, O, and S as
follows. The graph has a node for each facility. Each directed edge corresponds
to an agent. A directed edge from a node corresponding to facility j1 to a node
corresponding to facility j2 indicates that the agent corresponding to the edge
is assigned to facility j1 in O and facility j2 in S. Observe that there is at most
one edge outgoing from each node; this edge corresponds to the agent that is
assigned to the facility corresponding to the node in solution O. Furthermore, a

2 We point out here that statement 1 and a weaker version of statement 2 in Theorem 1
can be obtained as corollaries of results in the literature for the online transportation
problem (see [11,12]). However, we will prove the three statements of Theorem 1 as
part of our more general framework.
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node may have up to g incoming edges, corresponding to agents assigned to the
facility by the SD mechanism.

Representations as directed g-trees are of particular importance. A directed
g-tree T is an acyclic directed graph that has a root node r of in-degree 1 and
out-degree 0, leaves with in-degree 0 and out-degree 1, and intermediate nodes
with in-degree g and out-degree 1. We now show that it suffices to restrict our
attention to directed g-trees as graph representations of instances in which the
SD mechanism achieves its worst performance.

Lemma 1. Given a instance I with n agents, an optimal solution O for I and a
solution S consistent with the SD mechanism when applied to instance Ig, there
is another instance I ′ with at most n agents, with an optimal solution O′ and a
solution S′ consistent with the application of the SD mechanism on the instance
I ′
g such that the representation graph of the triplet (I ′, O′, S′) is a directed g-tree
and such that

cost(S, Ig)
cost(O, I)

≤ cost(S′, I ′
g)

cost(O′, I ′)
.

Proof. Let oi and si denote the facility to which agent i is connected in assign-
ments O and S, respectively. We say that agent i is optimal if oi = si. We say that
agent i is greedy if si �= oi and less than g agents are assigned to facility oi when
SD decides the assignment of agent i. This means that d(Ai, Fsi

) ≤ d(Ai, Foi
).

We say that agent i is blocked if g agents are already assigned to facility oi when
SD decides the assignment of agent i.

Starting from (I,O, S), we construct a new triplet (I ′, O′, S′) as follows:

– First, we remove all optimal agents. This corresponds to removing loops from
the representation graph.

– Then, we repeat the following process as long as there exists a blocked agent
i that is connected under S to a facility j that is the optimal facility of a
greedy agent. In this case, we introduce a new facility j′ at point Fj′ such
that d(Ai, Fj′) = d(Ai, Fj) and d(Fj′ ,X) = d(Ai, Fj′) + d(Ai,X) for every
other point X of the space. The second equality guarantees that the set of all
points corresponding to locations of agents and facilities that have survived
and the newly introduced point Fj′ is a metric. This can easily be achieved by
placing the new facility j′ such that it coincides with j on the metric space.
We assign agent i to facility j′ instead of j; by the first equality above, this is
consistent to the definition of the SD mechanism. In the representation graph,
this step adds a new node corresponding to the new facility j′ and modifies
the directed edge corresponding to blocked agent i so that it is directed to the
new node.

– Then, we remove all greedy agents that are not connected under S to optimal
facilities of blocked agents together with their optimal facilities.

– Then, for each facility j that is used by t ≥ 2 agents i1, i2, . . . , it in S
but is not used by any agent in O, we remove facility j and introduce t
new facilities j1, j2, . . . , jt such that d(Aik , jk) = d(Aik , j) for k = 1, . . . , t
and d(X, jk) = d(X,Aik) + d(Aik , jk) for every other point X of the space.
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Again, the second equality guarantees that the set of all points corresponding
to locations of agents and facilities that have survived and the newly intro-
duced points Fj1 , . . . , Fjt is a metric. For k = 1, . . . , t, we assign agent ik to
facility jk; by the first equality above, this is consistent to the definition of
the SD mechanism. In the representation graph, this step adds t nodes corre-
sponding to the new facilities j1, . . . , jt and, for k = 1, . . . , t, it modifies the
directed edge corresponding to blocked agent ik so that it is directed to the
new node jk, and removes node corresponding to facility j.

– Finally, we remove any facility that is not used by any of the non-removed
agents in any of the two solutions.

We denote by I ′ the resulting instance and by O′ the restriction of O to
the survived agents. Also, S′ is the assignment obtained by the modification of
S and considering the survived agents only. We remark that the representation
graph of (I ′, O′, S′) is a forest of directed g-trees. Indeed, the optimal facility of
a greedy agent is not used by any agent in S′; the corresponding node is a leaf in
the representation graph. Now, assume that the representation graph contains
a directed cycle; this should consist of directed edges corresponding to blocked
agents. By the definition above, this would mean that, for every agent j in this
cycle, the assignment of all agents that were assigned by the SD mechanism to the
optimal facility oj took place before the assignment of agent j to a facility; this
yields a contradiction and no such cycle exists. The optimal facility of a blocked
agent has out-degree 1 and in-degree g. Nodes with zero out-degree have degree
exactly 1; these are nodes corresponding to the newly added facilities and serve
as roots of the directed g-trees.

Let R be the set of (greedy and optimal) agents removed and observe that
d(Ai, Fsi

) ≤ d(Ai, Foi
) for each such agent i ∈ R. Hence, it is

cost(S, Ig)
cost(O, I)

=

∑
i∈[n] d(Ai, Fsi

)
∑

i∈[n] d(Ai, Foi
)

≤
∑

i∈[n] d(Ai, Fsi
) − ∑

i∈R d(Ai, Fsi
)

∑
i∈[n]\R d(Ai, Foi

) − ∑
i∈R d(Ai, Foi

)

=

∑
i∈[n]\R d(Ai, Fs′

i
)

∑
i∈[n]\R d(Ai, Fo′

i
)
.

Clearly, if the representation of triplet I ′, O′, S′ consists of more than one
g-trees, there is an instance I ′′ and assignments O′′ and S′′ corresponding to
the restriction of (I ′, O′, S′) in one of the g-trees which satisfies cost(S,Ig)

cost(O,I) ≤
cost(S′′,I′′

g )

cost(O′′,I′′) . If O′′ is indeed an optimal solution for instance I ′′, the proof is
complete. Otherwise, we repeat the whole process using instance I ′′ as I, solution
O to be the optimal solution for instance I ′′, and the SD solution S′′ until the
solution O′′ obtained is optimal for the g-tree instance obtained at the final step
(this condition will eventually be satisfied as the optimal cost decreases in each
application of the process). By setting Ĩ = I ′′, Õ = O′′, and S̃ = S′′ will then
yield the triplet with the desired characteristics. ��

So, in the following, we will focus on triplets (I,O, S) of a facility assignment
instance I with at most n agents, with an optimal solution O, and with an SD
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solution S for instance Ig that have a graph representations as a directed g-tree
T . Below, we use P to denote the set of all paths that originate from leaves.
Given an edge e of a g-tree, we use Pe (respectively, P̃e) to denote the set of all
paths that originate from a leaf and cross (respectively, terminate with) edge e.
We always use er to denote the edge incident to the root of a g-tree.

Our next observation is that cost(S, Ig) is upper-bounded by the objective
value of the following linear program.

maximize
∑

e∈T

ze

subject to: ze −
∑

a∈p\{e}
za ≤

∑

a∈p

d(Aa, Foa
), e ∈ T, p ∈ P̃e

ze ≥ 0, e ∈ T

To see why, interpret variable ze as the distance of agent corresponding to edge
e of T to the facility it is connected to under assignment S. Then, clearly, the
objective

∑
e∈T ze represents cost(S, Ig). Now, how high can cost(S, I) be? The

LP essentially answers this question (partially, becauses it does not use all con-
straints of the SD mechanism but sufficiently for our purposes). In particular, the
LP takes into account the fact that the distance of agent e to the facility to which
it is connected in S is not higher than the distance from the agent to any leaf
facility in its subtree; this follows by the definition of the SD mechanism since leaf
facilities are by definition available throughout the execution of the SD mecha-
nism. Indeed, consider agent e and a path p ∈ P̃e. Since agent e is connected to
facility se under SD and not to the facility corresponding to the leaf from which
path p originates from, this means that the distance d(Ae, Fse

) is not higher than
the distance of Ae from the location of the facility corresponding to that leaf.
Since d is a metric, this distance is at most d(Ae, Foe

) +
∑

a∈p\{e} d(Fsa
, Foa

) ≤
d(Ae, Foe

) +
∑

a∈p\{e} (d(Aa, Fsa
) + d(Aa, Foa

)). So, the constraint associated
with path p ∈ P̃e in the LP captures the inequality d(Ae, Fse

) ≤ d(Ae, Foe
) +∑

a∈p\{e} d(Fsa
, Foa

) ≤ d(Ae, Foe
) +

∑
a∈p\{e} (d(Aa, Fsa

) + d(Aa, Foa
)), by

replacing d(Ae, Fse
) with ze and d(Aa, Fsa

) with za and rearranging the terms.
By duality, the cost cost(Ig, S) of solution S is upper-bounded by the objec-

tive value of the dual linear program, defined as follows:

minimize
∑

p∈P
xp

∑

e∈p

d(Ae, Foe
)

subject to:
∑

p∈Per

xp ≥ 1

∑

p∈P̃e

xp −
∑

p∈Pe\P̃e

xp ≥ 1, e ∈ T, e �= er

xp ≥ 0, p ∈ P
Actually, for any feasible solution x of the dual LP, cost(S, Ig) is upper bounded
by the quantity

∑
p∈P xp

∑
e∈p d(Ae, Foe

). We will refer to any assignment x over
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the paths of P that satisfies the constraints of the dual LP as a path covering of
the directed g-tree T and will denote its cost by c(x) = maxe∈T

∑
p∈Pe

xp. We
repeat these definitions for clarity:

Definition 1. Let T be a directed tree. A function x : P → R
+ is called a path

covering of T if the following conditions hold:

–
∑

p∈Per
xp ≥ 1 for the edge er incident to the root of T ;

–
∑

p∈P̃e
xp − ∑

p∈Pe∩Pf
xp ≥ 1 if e �= er and f denotes the parent edge of e.

The cost c(x) of x is equal to maxe∈T

∑
p∈Pe

xp.

Lemma 2. Let g ≥ 2 be an integer, I be a facility assignment instance with
an optimal solution O, S be a solution of the SD mechanism when applied on
instance Ig, so that the triplet (I,O, S) is represented as a directed g-tree T which
has a path covering x. Then, cost(S, Ig) ≤ c(x) · cost(O, I).

Proof. Using the interpretation of the variables of the primal LP, duality, and
the definition of the cost of path covering x, we have that

cost(S, Ig) =
∑

e∈T

ze ≤
∑

p∈P
xp

∑

e∈p

d(Ae, Foe
) =

∑

e∈T

d(Ae, Foe
) ·

∑

p∈Pe

xp

≤ c(x) ·
∑

e∈T

d(Ae, Foe
) = c(x) · cost(O, I)

as desired. ��
In order to establish the upper bounds in Theorem1, it remains to show

that path coverings with low cost do exist; this is what we do in the next three
lemmas. We start with the Lemma for no augmentation. The proof of the lemma
is omitted due to lack of space.

Lemma 3. Let T be a 1-tree. Then, there is a path covering of T of cost 2n −1.

In the following, we identify path coverings of low cost for the case of g ≥ 3 and
g = 2. The next two lemmas complete the part of Theorem 1 that regards the
upper bounds.

Lemma 4. Let g ≥ 3 be an integer and T be a g-tree. Then, there is a path
covering of T of cost g

g−2 .

Proof. We prove the lemma using the following assignment x: for every path p
of length �, we set xp = 1

g−2g2−� if it contains and edge that is adjacent to the
root and xp = g−1

g−2g1−� otherwise.
We will first show that

∑
p∈Pe

xp = g
g−2 for every edge e using induction.

We will do so by visiting the edges in a bottom-up manner (i.e., an edge will be
visited only after its child-edges have been visited) and prove that the equality
for edge e using the information that the equality holds for its child-edges. As
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the basis of our induction, consider an edge e that is adjacent to a leaf at depth
� ≥ 1 from the root. If � = 1, this means that the tree consists of a single edge
and there is a single path p with xp = g

g−2 . If � ≥ 2, then the paths that contain
edge e are those who end at each ancestor of the leaf adjacent to e. Hence,

∑

p∈Pe

xp =
�−1∑

i=1

g − 1
g − 2

g1−i +
1

g − 2
g2−� =

g

g − 2
.

Now, let us focus on a non-leaf edge e and assume that
∑

p∈Pei
xp = g

g−2 for
each child-edge ei (for i ∈ [g]) of e (this is the induction hypothesis). Let u be
the node to which edges e and ei with i ∈ [g] are incident. The set of paths in Pe

consists of the following disjoint sets of paths: for each edge ei and for each path
p ∈ P̃ei

, set Pe contains all super-paths of p, i.e., paths originating from the leaf-
node reached by p and ending at each ancestor of node u; we use the notation
sup(p) to denote the set of super-paths of p. Observe that, the definition of x
implies that a super-path q of p that is longer than p by j has xq = 1

g−1g1−jxp if
q is adjacent to the root and xq = g−jxp otherwise. Hence, assuming that node
u is at depth � ≥ 1 from the root, we have that

∑

p∈Pe

xp =
g∑

i=1

∑

p∈P̃ei

∑

q∈sup(p)

xq =

⎛

⎝
�−1∑

j=1

g−j +
1

g − 1
g1−�

⎞

⎠
g∑

i=1

∑

p∈P̃ei

xp

=
1

g − 1

⎛

⎝
g∑

i=1

∑

p∈Pei

xp −
∑

p∈Pe

xp

⎞

⎠ ,

which yields
∑

p∈Pe
xp = g

g−2 as desired, since
∑

p∈Pei
xp = g

g−2 by the induction
hypothesis.

It remains to show feasibility. Clearly,
∑

p∈Pe
xp = g

g−2 ≥ 1 if e is adjacent
to the root. Otherwise, consider an edge e, its parent edge f , and their common
endpoint u. Assuming that u is at depth � from the root (and using definitions
and observations we used above), we have

∑

p∈Pe∩Pf

xp =
∑

p∈P̃e

∑

q∈sup(p)

xq =

⎛

⎝
�−1∑

j=1

g−j +
1

g − 1
g1−�

⎞

⎠
∑

p∈P̃e

xp =
1

g − 1

∑

p∈P̃e

xp,

which, together with the fact that g
g−2 =

∑
p∈Pe

xp =
∑

p∈Pe∩Pf
xp +

∑
p∈P̃e

xp

yields
∑

p∈Pe∩Pf
xp = 1

g−2 and
∑

p∈P̃e
xp = g−1

g−2 and, consequently,
∑

p∈P̃e
xp −

∑
p∈Pe∩Pf

xp = 1 as desired. ��
Finally, we state the lemma for augmentation factor g = 2. The proof is omitted
due to lack of space.

Lemma 5. Let T be an N -node 2-tree. Then, there is a path covering of T of
cost at most log N .
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We have shown that the performance of SD significantly improves even with a
small augmentation factor. A natural next question is to study its randomized
counterpart, RSD. Could randomization help in achieving much better ratios?
In the following, we state an approximation guarantee for RSD, when there is
no resource augmentation. The proof is omitted due to lack of space.

Theorem 2. The approximation ratio of RSD without resource augmentation
is ratio(RSD) ≤ n.

4 Lower Bounds

In this section, we provide lower bounds on the approximation ratio with aug-
mentation of the two mechanisms that we study. Interestingly, the constructed
instances are all on a simple metric space, the real line metric.

Theorem 3. The approximation ratio of Serial Dictatorship with augmentation
factor g in facility assignment instances with n agents is

1. ratio(SD) ≥ 2n − 1
2. ratio2(SD) ≥ log (n + 1)
3. ratiog(SD) ≥ g

g−2 − δ for any δ > 0 when g ≥ 3.

The approximation ratio of Random Serial Dictatorship is at least ratio(RSD) ≥
n0.26 (without resource augmentation).

We omit the proof of the theorem due to lack of space. The instances that
provide the lower bounds as well as the proofs are included in the full version of
the paper.

5 Discussion

We proposed a resource augmentation framework for algorithmic mechanism
design, where a mechanism, severely limited by the need for truthfulness is
given some additional allocative power before being compared to the optimal
mechanism, which operates under no restrictions. The framework is applicable
to other related problems as well; for example, the bi-criteria algorithms of [3]
can be seen as instances of resource augmentation. The framework can also be
applied to broader settings where the loss in performance is due to restrictions
other than truthfulness, such as fairness [6], stability [7] or ordinality [4,8]; all
the problems in those papers can be studied through the resource augmentation
lens. It is not hard to imagine that similar notions like the price of fairness [6],
could be redefined in terms of resource augmentation.

For the facility assignment problem, we took a positive step in the study of
Random Serial Dictatorship, proving approximation ratio bounds when there
is no augmentation. It seems like an interesting technical question to obtain
(tight) bounds for RSD and for different augmentation factors. It would also be
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meaningful to consider augmentation factors smaller than 2; note that a similar
construction to the one in our main lower bound can be used to show that
additive factors can not achieve significantly improved approximations. Finally,
it makes sense to consider other truthful mechanisms, beyond the greedy ones.
In the full version, we actually prove that for two facilities and no resource
augmentation, the approximation ratio of SD is 3, which is optimal among all
truthful mechanisms, even randomized ones.
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1. Abdulkadiroğlu, A., Sönmez, T.: Random serial dictatorship and the core from ran-
dom endowments in house allocation problems. Econometrica 66, 689–701 (1998)

2. Anshelevich, E., Das, S.: Matching, cardinal utility, and social welfare. ACM SIGE-
Com Exch. 9(1), 4 (2010)

3. Anshelevich, E., Sekar, S.: Blind, greedy, random: algorithms for matching and
clustering using only ordinal information. In: Proceedings of the 30th AAAI Con-
ference on Artificial Intelligence (AAAI), pp. 390–396 (2016)

4. Aziz, H., Chen, J., Filos-Ratsikas, A., Mackenzie, S., Mattei, N.: Egalitarianism of
random assignment mechanisms. In: Proceedings of the 10th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS) (2016)

5. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem.
J. Econ. Theory 100, 295–328 (2001)

6. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M.: The efficiency
of fair division. Theory Comput. Syst. 50(4), 589–610 (2012)

7. Emek, Y., Langner, T., Wattenhofer, R.: The price of matching with metric prefer-
ences. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 459–470.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3 39

8. Filos-Ratsikas, A., Frederiksen, S.K.S., Zhang, J.: Social welfare in one-sided
matchings: random priority and beyond. In: Lavi, R. (ed.) SAGT 2014. LNCS,
vol. 8768, pp. 1–12. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44803-8 1

9. Guo, M., Conitzer, V.: Strategy-proof allocation of multiple items between two
agents without payments or priors. In: Proceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 881–888
(2010)

10. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J.
Polit. Econ. 87(2), 293–314 (1979)

11. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993)

12. Kalyanasundaram, B., Pruhs, K.: The online transportation problem. SIAM J.
Discrete Math. 13(3), 370–383 (2000)

13. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM
47(4), 617–643 (2000)

14. Koutsoupias, E.: Weak adversaries for the k-server problem. In: Proceedings of
the 40th Annual Symposium on Foundations of Computer Science (FOCS), pp.
444–449 (1999)

15. Krysta, P., Manlove, D., Rastegari, B., Zhang, J.: Size versus truthfulness in the
house allocation problem. In: Proceedings of the 15th ACM Conference on Eco-
nomics and Computation (EC), pp. 453–470 (2014)

http://dx.doi.org/10.1007/978-3-662-48350-3_39
http://dx.doi.org/10.1007/978-3-662-44803-8_1


250 I. Caragiannis et al.

16. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
ACM Trans. Econ. Comput. 1(4), Article No. 18 (2013)

17. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

18. Svensson, L.-G.: Strategy-proof allocation of indivisble goods. Soc. Choice Welfare
16(4), 557–567 (1999)

19. Young, N.: The k-server dual and loose competitiveness for paging. Algorithmica
11(6), 525–541 (1994)



Putting Peer Prediction Under
the Micro(economic)scope and Making

Truth-Telling Focal

Yuqing Kong1(B), Katrina Ligett2,3, and Grant Schoenebeck1

1 University of Michigan, Ann Arbor, USA
{yuqkong,schoeneb}@umich.edu

2 California Institute of Technology, Pasadena, USA
katrina@caltech.edu

3 Hebrew University, Jerusalem, Israel
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1 Introduction

From Facebook.com’s “What’s on your mind?” to Netflix’s 5-point ratings, from
innumerable survey requests in one’s email inbox to Ebay’s reputation system,
user feedback plays an increasingly central role in our online lives. This feedback
can serve a variety of important purposes, including supporting product recom-
mendations, scholarly research, product development, pricing, and purchasing
decisions. With increasing requests for information, agents must decide where
to turn their attention. When privately held information is elicited, sometimes
agents may be intrinsically motivated to both participate and report the truth.
Other times, self-interested agents may need incentives to compensate for costs
associated with truth-telling and reporting: the effort required to complete the
rating (which could lead to a lack of reviews), the effort required to produce an
accurate rating (which might lead to inaccurate reviews), foregoing the oppor-
tunity to submit an inaccurate review that could benefit the agent in future
interactions [11] (which could, e.g., encourage negative reviews), or a potential
loss of privacy [8] (which could encourage either non-participation or incorrect
reviews).

To overcome a lack of (representative) reviews, a system could reward users
for reviews. However, this can create perverse incentives that lead to inaccurate
reviews. If agents are merely rewarded for participation, they may not take time
to answer the questions carefully, or even meaningfully.

To this end, explicit reward systems for honest ratings have been developed.
If the ratings correspond to objective information that will be revealed at a
future date, this information can be leveraged (e.g., via prediction markets) to
incentive honesty. In this paper, we study situations where this is not the case:
the ratings cannot be independently verified either because no objective truth
exists (the ratings are inherently subjective) or an objective truth exists, but is
not observable.

In such cases, it is known that correlation between user types can be lever-
aged to elicit truthful reports by using side payments [1,2,4,5]. Miller et al. [19]
propose a particular such (meta-)mechanism for truthful feedback elicitation,
known as peer prediction Given any proper scoring rule (a simple class of pay-
ment functions we describe further below), and a prior where each agent’s signal
is “stochastically relevant” (informative about other agents’ signals), the corre-
sponding peer prediction mechanism has truth-telling as a strict Bayesian-Nash
equilibrium.

There is a major problem, however: alternative, non-truthful equilibria may
have higher payoff for the agents than truth-telling. This is the challenge that
our work addresses.

Our Results. The main result of this paper is to show that by tweaking peer
prediction, in part by specially selecting the proper scoring rule it is based on,
we can make the truth-telling equilibrium focal–that is, truth-telling has higher
expected payoff than any other equilibrium.
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Along the way we prove the following: in the setting where agents receive
binary signals we (1) classify all equilibria of the peer prediction mechanism; (2)
introduce a new technical tool, the best response plot, and use it to show that
we can find proper scoring rules so the truth-telling pays more, in expectation,
than any other informative equilibrium; (3) we provide an optimal version of
the previous result, that is we optimize the gap between the expected payoff of
truth-telling and other informative equilibrium; and (4) we show that with a
slight modification to the peer prediction framework, we can, in general, make
the truth-telling equilibrium focal—that is, truth-telling pays more than any
other equilibrium (including the uninformative equilibria).

The main technical tool we use is a best response plot, which allows us
to easily reason about the payoffs of different equilibria. We first prove that no
asymmetric equilibria exist. The naive approach then would be to simply plot the
payoffs of different symmetric strategies. However, for even the simplest proper-
scoring rules, these payoff curves are paraboloid, and hence difficult to analyze
directly. The best response plot differs from this naive approach in two ways:
first, instead of plotting the strategies of agents explicitly, the best response plot
aggregates the results of these actions; second, instead of plotting the payoffs of
all agents, the best response plot analyzes the payoff of one distinguished agent
which, given the strategies of the remaining agents, plays her best response.
This makes the plot piece-wise linear for all proper scoring rules, which makes
analysis tractable. We hope that the best response plot will be useful in future
work using proper scoring rules.

1.1 Related Work

Since the seminal work of Miller et al. introducing peer prediction [19], a host of
results in closely related models have followed (see, e.g., [9,11,12,14]), primarily
motivated by opinion elicitation in online settings where there is no objective
ground truth.

Recent research [7] indicates that individuals in lab experiments do not always
truth-tell when faced with peer prediction mechanisms; this may in part be
related to the issue of equilibrium multiplicity. Gao et al. [7] ran studies over
Mechanical Turk using two treatments: in the first they compensated the par-
ticipants according to peer prediction payments, and in the second they gave
them a flat reward for participation. In their work, the mechanism had complete
knowledge of the prior. The participants responded truthfully more often when
the payoffs were fixed than in response to the peer prediction payments. How-
ever, it should be noted that the task the agents were asked to perform took
little effort (report the received signal), and the participants were not primed
with any information about the truthful equilibrium of the peer prediction mech-
anism (they were only told the payoffs)–an actual surveyor would have incentive
to prime the participants to report truthfully.

The most closely related work is a series of papers by Jurca and Faltings
[12,14], which studies collusion between the reporting agents. In a weak model
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of collusion, the agents may be able to coordinate ahead of time (before receiv-
ing their signals) to select the equilibrium with the highest payoff. Jurca and
Faltings use techniques from algorithmic mechanism design to design a mech-
anism where, in most situations, the only symmetric pure Nash equilibria are
truth-telling. They explicitly state the challenge of analysing mixed-Nash equi-
librium as an open question, and show challenges to doing this in their algorith-
mic mechanism design framework [12,14]. Our techniques, in contrast, allow us
to analyse all Nash equilibria of the peer prediction mechanism including both
mixed-strategy and asymmetric equilibria. Instead of eliminating equilibria, we
enforce that they have a lower expected payoff than truth-telling. Additionally,
the algorithmic mechanism design framework used by Jurca and Faltings sac-
rifices “the simplicity of specifying the payments through closed-form scoring
rules” [12] that was present in the peer prediction paper. Our work recovers a
good deal of that simplicity.

Jurca and Faltings further analyze other settings where colluding agents can
make transfer payments, or may collude after receiving their signals. In par-
ticular, they again use automated mechanism design to show that in the case
where agents coordinate after receiving their signals that even without trans-
fer payments, there will always be multiple equilibria; in this setting, they pose
the question of whether the truth-telling equilibrium can be endowed with the
highest expected payoff. We do not deal with this setting explicitly, but in the
settings we consider, we show that even in the face of multiple equilibria, we can
ensure that the truth-telling equilibrium has the highest expected payoff and no
other equilibrium is paid the same with truth-telling.

In a different paper [11], Jurca and Faltings show how to minimize payments
in the peer prediction framework. Their goal is to discover how much “cost”
is associated with a certain marginal improvement of truth-telling over lying.
In this paper, they also consider generalizations of peer prediction, where more
than one other agent’s report is used as a reference. Our work takes this to the
extreme (as did [8] before us) using all of the other agents’ reports as references.

A key motivation of one branch of the related work is removing the assump-
tion that the mechanism knows the common prior [3,6,10,13,15,18,20–22,24,25].
Dasgupta and Ghosh [3], Kamble et al. [15], Kong and Schoenebeck [16],
Shnayder et al. [23] study a different setting where agents are asked to answer
several a priori similar questions. Our results can be applied even when there is
just a single questions (thus we do not need to assume any relation between ques-
tions). Kamble et al. [15]’s mechanism applies to both homogeneous and hetero-
geneous population but requires a large number of a priori similar tasks. How-
ever, Kamble et al. [15]’s mechanism contains non-truthful equilibria that are paid
higher than truth-telling. Dasgupta and Ghosh [3]’s mechanism has truth-telling
as the equilibrium with the highest payoff, but contains a non-truthful equilibrium
that is paid as much as truth-telling. Prelec [20] shows that in his Bayesian Truth
Serum (BTS), truth-telling maximizes each individual’s expected “Information-
score” across all equilibria. However, this guarantee is not strict, and requires the
number of agents to be infinite, even to just have truth-telling be an equilibrium.
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Moreover, it is hard to classify the equilibria or optimize mechanism in Prelec’s
setting. Another drawback of BTS is that it requires agents to report “prediction”
while our mechanism only requires agents to report a single signal. Radanovic and
Faltings [21]’s mechanism solves this drawback but that mechanism is in a sens-
ing scenario and needs to compare the information of an sensor’s local neighbours
with the information of global sensors while our mechanism does not require this
local/global structure. Moreover, like BTS, Radanovic and Faltings [21]’s mech-
anism does not have the strictness guarantee and requires the number of agents
to be infinite even to have truth-telling as an equilibrium. In addition, Lambert
and Shoham [18] provide a mechanism such that no equilibrium pays more than
truth-telling, but here all equilibria pay the same amount; and while truth-telling
is a Bayesian Nash equilibrium, unlike in peer prediction it generally is not a
strict Bayesian Nash equilibrium. Minimal Truth Serum (MTS) [22] is a mech-
anism where agents have the option to report or not report their predictions, and
also lacks analysis of non-truthful equilibria. MTS uses a typical zero-sum tech-
nique such that all equilibria are paid equally.

Equilibrium multiplicity is clearly a pervasive problem in this literature. While
our present work only applies to the classical peer prediction mechanism, it pro-
vides an important step in addressing equilibrium multiplicity, and a new toolkit
for reasoning about proper scoring rules.

Subsequent Work. Kong and Schoenebeck [17] show analogous results in the set-
ting where mechanism does not know the prior; however, they also prove that
results as strong as those in this paper are impossible in that setting.

2 Preliminaries, Background, and Notation

2.1 Game Setting

Consider a setting with n agents A. If A′ ⊆ A, we let −A′ denote A \ A′. Each
agent i has a private signal σi ∈ Σ. We consider a game in which each agent i
reports some signal σ̂i ∈ Σ. Let σ denote the vector of signals and σ̂ denote the
vector of reports. Let σ−i and σ̂−i denote the signals and reports excluding that
of agent i; we regularly use the −i notation to exclude an agent i.

We would like to encourage truth-telling, namely that agent i reports σ̂i = σi.
To this end, agent i will receive some payment νi(σ̂i, σ̂−i) from our mechanism. In
this paper, the game will be anonymous, in that each player’s payoffs will depend
only on the player’s own report and the fraction of other players giving each pos-
sible report ∈ Σ, and not on the identities of those players.

Assumption 1 (Binary Signals). We will refer to the case when Σ = {0, 1} as
the binary signal setting, and we focus on this setting in this paper.

Assumption 2 (Symmetric Prior). We assume throughout that the agents’
signals σ are drawn from some joint symmetric prior Q: a priori, each agent’s
signal is drawn from the same distribution. We in fact only leverage a weaker
assumption, that ∀σ, σ′, and ∀i �= j and k �= l, we have Pr[σj = σ′|σi = σ] =
Pr[σl = σ′|σk = σ].
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That is, the inference your signal lets you draw about others’ signals does not
depend on your identity or on the identity of the other agent.

Given the prior Q, for σ ∈ Σ, let q(σ) be the fraction of agents that an agent
expects will have σj = σ a priori. Let

q(σ′|σ) := Pr[σj = σ′|σi = σ]

(where j �= i) be the fraction of other agents that a user i expects have received
signal σ′ given that he has signal σ.

Assumption 3 (Signals Positively Correlated). We assume throughout that
the prior Q is positively correlated, namely that q(σ|σ) > q(σ), for all σ ∈ Σ.

That is, once a player sees that his signal is σ, this strictly increases his belief
that others will have signal σ, when compared with his prior. Notice that even
after an agent receives his signal, he may still believe that he is in the minority.
Thus, simply encouraging agent agreement is not sufficient to incentivize truthful
reporting.

Assumption 4 (Signal Asymmetric Prior). An additional assumption we
will often use is that the prior is signal asymmetric. For binary signals, as we
consider in this paper, this simply means that q(0) �= q(1).

For a richer signal space, intuitively, a signal asymmetric prior is one that
changes under a relabeling of the signals, so that lying can potentially be distin-
guishable from truth-telling.

We say that an agent plays response σ → σ̂, if the agent reports signal σ̂ when
he receives signal σ. Let X be the set of all responses (e.g. X = {0 → 0, 0 → 1, 1 →
0, 1 → 1} when Σ = {0, 1}). In a pure-strategy an agent chooses a response for
each σ ∈ Σ, and thus there are |Σ||Σ| possible pure strategies. Let S be the set
of pure strategies and let si ∈ S denote a pure-strategy for agent i. We will also
consider mixed strategies θi, where agent i randomizes over pure strategies. Here
we write

θi(σ′|σ) := Pr[σ̂i = σ′|σi = σ].

A strategy profile θ = (θ1, . . . , θn) consists of a strategy for each agent.
We can think of each θ as a linear transformation from a distribution over

received signals to a distribution of reported signals. Given a set of agents A′ ⊂ A,
we define

θ′
A(σ′|σ) := Ei←A[θi(σ′|σ)]

where i ← A′ means i is chosen uniformly at random from A′. When discussing
symmetric strategy profiles where all players use the same strategy, we will often
abuse notation and use notation for one agent’s strategy to denote the entire strat-
egy profile.

A Bayesian Nash equilibrium consists of a strategy profile θ = (θ1, . . . , θn)
such that no player wishes to change his strategy, given the strategies of the other
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players and the information contained the prior and his signal: for all i and for all
alternative strategies θ′

i for i, E[νi(θ)] ≥ E[νi(θ′
i,θ−i)], where the expectations are

over the realizations of the randomized strategies and the prior Q. We call such
an equilibrium focal if it provides a strictly larger payoff, in expectation, to each
agent, than any other equilibrium and weakly focal if it provides a larger payoff
(maybe not strictly).

Given a symmetric prior Q and strategy profile θ = (θ1, . . . , θn), we define

q̂j(σ′|σ) := Pr[σ̂j = σ′|σi = σ] =
∑

σ′′∈Σ

q(σ′′|σ)θj(σ′|σ′′)

for i �= j. Intuitively, q̂j(σ′|σ) is the probability of player j reporting σ′, given that
another player i sees signal σ; note that this probability does not depend on the
identity of i, by symmetry of the prior. Given a set of agents A′ ⊂ A, we define

q̂′
A(σ′|σ) := Ej←A′ q̂j(σ′|σ)

where j ← A′ means j is chosen uniformly at random from A′ (again assuming
that the implicit reference agent i �∈ A′). If θ = (θ, . . . , θ) is symmetric, we simplify
our notation to q̂(σ′|σ) because the referenced set of agents does not matter.

In the binary signal setting when θ is symmetric, we have:

q̂(1|0) = θ(1|0)q(0|0) + θ(1|1)q(1|0) (1)
q̂(1|1) = θ(1|0)q(0|1) + θ(1|1)q(1|1) (2)

Additionally, we observe that q(1|b) = 1 − q(0|b), θi(1|b) = 1 − θi(0|b) ∀i, and
q̂(1|b) = 1− q̂(0|b). Note that we will typically use b instead of σ to refer to binary
signals (bits).

There are four pure strategies for playing the game in the binary signal setting:
always 0, always 1, truth-telling, lying:

S =
{(

0 → 0
1 → 0

)

,

(
0 → 1
1 → 1

)

,

(
0 → 0
1 → 1

)

,

(
0 → 1
1 → 0

)}

= {0,1,T,F}.

We will denote mixed strategies as
(

0 → θ(1|0)
1 → θ(1|1)

)

.

2.2 Proper Scoring Rules

A scoring rule PS : Σ × ΔΣ → R takes in signal σ ∈ Σ and a distribution over
signals δΣ ∈ ΔΣ and outputs a real number. A scoring rule is proper if, whenever
the first input is drawn from a distribution δΣ , then the expectation of PS is max-
imized by δΣ . A scoring rule is called strictly proper if this maximum is unique.
We will assume throughout that the scoring rules we use are strictly proper. By
slightly abusing notation, we can extend a scoring rule to be PS : ΔΣ ×ΔΣ → R

by simply taking PS(δΣ , δ′
Σ) = Eσ←δΣ

(σ, δ′
Σ).

In the case of scoring rules over binary signals, a distribution can be repre-
sented by a number in the unit interval, denoting the probability placed on the
signal 1. In the binary signal setting, then, we extend proper scoring rules to be
defined on [0, 1] × [0, 1].
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Example 1 (Example of Proper Scoring Rule). The Brier Scoring Rule for predict-
ing a binary event is defined as follows. Let I be the indicator random variable for
the binary event to be predicted. Let q be the predicted probability of the event
occurring. Then:

B(I, q) = 2I · q + 2(1 − I) · (1 − q) − q2 − (1 − q)2.

Note that if the event occurs with probability p, then the expected payoff of report-
ing a guess q is (abusing notation slightly):

B(p, q) = 2p · q + 2(1 − p) · (1 − q) − q2 − (1 − q)2 = 1 − 2(p − 2p · q + q2)

This is (uniquely) maximized when p = q, and so the Brier scoring rule is a strictly
proper scoring rule. Note also that B(p, q) is a linear function in p. Hence, if p is
drawn from a distribution, we have: Ep[B(p, q)] = B(E[p], q), and so this is also
maximized by reporting q = E[p].

2.3 Peer Prediction

Peer Prediction [19] with n agents receiving positively correlated binary signals b,
with symmetric prior Q, consists of the following mechanism M(b̂):

1. Each agent i reports a signal b̂i.
2. Each agent i is uniformly randomly matched with an individual j �= i, and is

then paid PS(b̂j , q(1|b̂i)), where PS is a proper scoring rule.

That is, agent i is paid according to a proper scoring rule, based on i’s prediction
that b̂j = 1, where i’s prediction is computed as either q(1|0) or q(1|1), depending
on i’s report to the mechanism. This can be thought of as having agent i bet on
what agent j’s reported signal will be.

Notice that if agent j is truth-telling, then the Bayesian agent i would also be
incentivized to truth-tell (strictly incentivized, if the proper scoring rule is strict).
Agent i’s expected payoff (according to his own posterior distribution) for report-
ing his true type bi has a premium compared to reporting ¬bi of:

PS
(
b̂j , q (1|bi)

)
− PS

(
b̂j , q (1|¬bi)

)
≥ 0

(strictly, for strict proper scoring rules) because we know that the expectation of
PS(b̂j , ·) is (uniquely) maximized at q(1|bi). Now we introduce a convenient way
to represent peer prediction mechanism.

Definition 1 (Payoff Function Matrix). Each agent i who reports b̂i and is
paired with agent j who reports b̂j, will be paid hb̂j ,b̂i

. Then the peer prediction mech-
anism can be naturally represented as a 2 × 2 matrix:

(
h1,1 h1,0

h0,1 h0,0

)

=
(

PS(1, q(1|1)) PS(1, q(1|0))
PS(0, q(1|1)) PS(0, q(1|0))

)

which we call the payoff function matrix.
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An example of a peer-prediction setting is included in the full version.
While truth-telling is always an equilibrium of the peer prediction mechanism,

as we will see, it is not the only equilibrium. Two more equilibria are to always play
0 or always play 1. In Sect. 3.1, we further investigate equilibria of the peer pre-
diction game. Based our the analysis of these multiple equilibria, we will develop
a modified peer prediction mechanism, wherein players are paid according
to the peer prediction based on a carefully-designed proper scoring rule, modulo
some punishment imposed on the all playing 0 or all playing 1 strategy profiles.
This modified mechanism will make the truth-telling equilibrium focal.

3 Summary of Main Results

In this section, we introduce our modified peer prediction mechanism and sketch
the main theorem of this paper, that for almost any symmetric prior, there exists
a modified peer prediction mechanism such that truth-telling is the focal equilib-
rium. Recall, we use the term focal to refer to an equilibrium with expected payoff
strictly higher than that of any other Bayesian Nash equilibrium.

3.1 Our Modified Peer Prediction Mechanism MPPM

Recall that modified peer prediction mechanism is the mechanism wherein players
are paid according to peer prediction based on a carefully-designed proper scor-
ing rule, modulo some punishment imposed on the all playing 0 or all playing 1
strategy profiles. So our approach differentiates between two types of equilibria:

Definition 2 (Informative Strategy). We call always reporting 1 and always
reporting 0 uninformative strategies; we call all other strategies (equilibria) infor-
mative.

Designing the Optimal Peer Prediction Mechanism. We start to describe our mod-
ified peer prediction mechanism MPPM. We use two steps to design our MPPM.
First we define the PPM:

Definition 3. Given any binary, symmetric, positively correlated, and signal
asymmetric prior Q, with q(1|1) > q(0|0) (the q(0|0) < q(1|1) case is analogous),
we first design our peer prediction mechanism PPM(Q) and represent it as a payoff
function matrix (See Definition 1). PPM(Q) depends on the region that Q belongs
to, we defer the definitions of regions R1, R2, R3 to full version but provide Fig. 1
here to illustrate them.

1. If Q ∈ R1, then PPM(Q) = M1(Q)

2. If Q ∈ R2, then PPM(Q) = M2(Q)

3. If Q ∈ R3, then we pick a small number ε > 0 and PPM(Q, ε) = M3(Q, ε)
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where

M1(Q) =

⎛

⎝
ζ(Q) 0

0 1

⎞

⎠ ,M2(Q) =

⎛

⎝
1 0

0 η(Q)

⎞

⎠ ,M3(Q, ε) =

⎛

⎝
ζ(Q, ε) δ(Q, ε)

0 1

⎞

⎠

and

0 ≤ ζ(Q), η(Q) ≤ 1 are constants that only depend on common prior Q. 0 ≤
ζ(Q, ε), δ(Q, ε) ≤ 1 are constants that only depend on common prior Q and ε > 0.1

Fig. 1. The regions R1, R2, R3 are good “priors” where we can make truth-telling focal
when the number of agents is sufficient large. The white diagonals are “bad” priors we
cannot make truth-telling focal. In the top-right to bottom-left diagonal, q(1|0) = q(1|1),
so the private signal does not have any information. We call this diagonal the set of non-
informative priors. In the top-left to bottom-right diagonal, q(0|0) = q(1|1) (actually we
can see q(0|0) = q(1|1) iff q(0) = q(1) via some calculations). This diagonal is the set of
signal symmetric priors. The yellow region is the set of the negative correlated priors.
(Color figure online)

Note that actually PPM(Q) is a quite simple mechanism. We use region R1

as example: if the prior belongs to region R1, for every i, agent i will receive 0
payment if the agent paired with agent i, call him agent j, reports a different signal
than him. If both agent i and agent j report 1, agent i will receive a payment of
0 ≤ ζ(Q) ≤ 1, if both agent i and agent j report 0, agent i will receive payment
of 1.

Actually for regions R1, R2, the PPM(Q) we define here is the optimal peer
prediction mechanism in that it maximizes the advantage of truth-telling over the
informative equilibria which have the second largest expected payoff over all Peer-
prediction mechanisms with payoffs in [0, 1]. For region R3, the optimal peer pre-
diction mechanism does not exist, but the advantage of the PPM(Q, ε) we define
approaches the optimal advantage as ε goes to 0.
1 Explicit statement in full version.
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Definition 4. We define Δ∗(Q) to be the supremum of the advantage of truth-
telling over the informative equilibria which have the second largest expected payoff
over all Peer-prediction mechanisms with payoffs in [0, 1].

Add Punishment. In our PPM(Q), an uninformative strategy can still obtain
the highest payoff. For example, in mechanism M1, agents will receive maximal
payment 1 by simply always reporting 0.

Our final MPPM(Q) Mechanism is the same as the PPM(Q) except that we
add a punishment designed to hurt the all 0 or all 1 equilibria.

Definition 5. Our Modified Peer-Prediction Mechanism MPPM(Q)
(or MPPM(Q, ε) has payoffs identical to PPM(Q) (or MPM(Q, ε)) except that,
in the event all the other agents play all 0 or all 1, it will issue an agent a punish-
ment of p = 1−t

2(1−εQ) + Δ∗(Q)
2εQ

where εQ is the maximum probability that a fixed set
of n − 1 agents receive the same signal (either all 0 or all 1); t is the expected of
payoff of truth-telling T in the PPM(Q), and Δ∗(Q) is as defined in Definition 4.

To make truth-telling focal, we would like to impose a punishment to the agents
if everyone reports the same signal. However, such a punishment may distort the
equilibria of the mechanism. To avoid this, we punish an agent by p when all the
other agents report the same signal. Because an agent’s strategy does not influence
his punishment, his marginal benefit for deviation remains the same and so the
equilibrium remain the same. However, while all 0 and all 1 remain equilibrium,
in them, MPPM(Q) will punish each agent by p.

A difficulty arises: if the number of agents is too small like 2 or 3, it is possible
(and even probable) that all agents report their true signals, yet are still punished
by the MPPM(Q) mechanism. Punishments like this might distort the payoffs
among the informative equilibrium. However, if εQ (the probability that n − 1
agents receives the same signal) is sufficient small, this is no longer a problem.
For most reasonable priors, as the number of agents increases, εQ will go to zero.
Formally we will need that the number of agents is large enough such that εQ <

Δ∗(Q)
1−t+Δ∗(Q) .

If the number of agents is too small such that εQ ≤ Δ∗(Q)
1−t+Δ∗(Q) , we cannot show

that MPPM(Q) has truth-telling as a focal equilibrium.
In particular, we can see if εQ → 0 (say as the number of agents increases), then

at some point, truth-telling will be focal. We know that such a limit is necessary
because, for example, with two agents making truth-telling focal is impossible.

Note that if the prior tells us the probability of a 1 event is concentrated far
away from 0 and 1, the number of agents we need to make truth-telling focal will
be very small since uninformative equilibria (all 1 and all 0) are far away from
truth-telling.

Theorem 5. (Main Theorem (Informal)) Let Q be a binary, symmetric, positively
correlated and signal asymmetric prior, and let εQ be the maximum probability that
a fixed set of n − 1 agents receive the same signal (either all 0 or all 1). Then
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1. In our PPM, truth-telling has the largest expected payoff among all informa-
tive equilibria. Moreover, over the space of Peer-Prediction mechanisms, our
PPM(Q) maximizes the advantage truth-telling has over the informative equi-
librium which have the second largest expected payoff, over all Peer-prediction
mechanisms with payoffs in [0, 1] for regions R1, R2 and PPM(Q, ε) approaches
the maximal advantage for region R3 as ε goes to 0.

2. There exists a constant ξq(1|1),q(1|0) which only depends on q(1|1) and q(1|0) such
that, if εQ < ξ, our MPPM(Q) makes truth-telling focal.

Now we list all equilibria of the peer prediction mechanism in the below
theorem (Fig. 2).

Definition 6. For a prior Q, proper scoring rule PS, and a binary signal space,
we define q∗ to be the fraction of other agents reporting 1 that would make an agent
indifferent between reporting 0 or 1, i.e.,

q∗ := {p | PS(p, q(b|1)) = PS(p, q(b|0)), 0 ≤ p ≤ 1}.

Fig. 2. Illustration of the 7 equilibria of a peer prediction mechanism under a specific
scoring rule (see the full version). Note that to the right of the dashed red line where
q̂(1|0) = q∗, the best response is to increase θ(1|0); to the left of the dashed red line,
the best response is to decrease θ(1|0); and on the line an agent is indifferent. Similarly,
above the dotted blue line where q̂(1|1) = q∗, the best response is to increase θ(1|1);
below the dotted blue line, the best response is to decrease θ(1|1); and on the line an
agent is indifferent. (Color figure online)

Theorem 6. Let Q be a symmetric and positively correlated prior on {0, 1}n, and
let M be a peer-prediction mechanism run with a strictly proper scoring rule with
break-even q∗ (Definition 6). Then there are no asymmetric equilibria. All equilib-
ria are symmetric and depend only on q∗; they are

0,1,T,Q∗ �
(

0 → q∗

1 → q∗

)

,
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T0 �
(

0 → 0
1 → q∗

q(1|1)

)

,T1 �
(

0 → q∗−q(1|0)
q(0|0)

1 → 1

)

and also conditionally include

F if q(0|1) ≤ q∗ ≤ q(0|0) (3)

F1 �
(

0 → 1
1 → q∗−q(0|1)

q(1|1)

)

if q(0|1) ≤ q∗ (4)

F0 �
(

0 → q∗

q(0|0)
1 → 0

)

if q∗ ≤ q(0|0) (5)

Due to the space limitation, we defer all proofs to our full version (see https://
arxiv.org/abs/1603.07319).
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Abstract. We study truthful mechanisms for matching and related
problems in a partial information setting, where the agents’ true util-
ities are hidden, and the algorithm only has access to ordinal preference
information. Our model is motivated by the fact that in many settings,
agents cannot express the numerical values of their utility for differ-
ent outcomes, but are still able to rank the outcomes in their order
of preference. Specifically, we study problems where the ground truth
exists in the form of a weighted graph of agent utilities, but the algo-
rithm can only elicit the agents’ private informatison in the form of a
preference ordering for each agent induced by the underlying weights.
Against this backdrop, we design truthful algorithms to approximate
the true optimum solution with respect to the hidden weights. Our
techniques yield universally truthful algorithms for a number of graph
problems: a 1.76-approximation algorithm for Max-Weight Matching, 2-
approximation algorithm for Max k-matching, a 6-approximation algo-
rithm for Densest k-subgraph, and a 2-approximation algorithm for Max
Traveling Salesman as long as the hidden weights constitute a metric.
Our results are the first non-trivial truthful approximation algorithms
for these problems, and indicate that in many situations, we can design
robust algorithms even when the agents may lie and only provide ordinal
information instead of precise utilities.

1 Introduction

In recent years, the field of algorithm design has been marked by a steady shift
towards newer paradigms that take into the account the behavioral aspects and
communication bottlenecks pertaining to self-interested agents. In contrast to
traditional algorithms that are assumed to have complete information regarding
the inputs, mechanisms that interact with autonomous individuals commonly
assume that the input to the algorithm is controlled by the agents themselves. In
this context, a natural constraint that governs the process by which the algorithm
elicits inputs from these agents is truthfulness: agents cannot improve upon
the resulting outcome by misreporting the inputs. Another constraint that has
recently gained traction in optimization problems on weighted graphs (where
the agents correspond to the nodes) is that of ordinality : here, each agent can
only submit a preference list of their neighbors ranked in the order of the edge

c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 265–278, 2016.
DOI: 10.1007/978-3-662-54110-4 19



266 E. Anshelevich and S. Sekar

weights. The need for algorithms that are both truthful and ordinal arises in a
number of important settings; however, it is well known that it is impossible to
obtain optimum solutions even when the algorithm is required to satisfy only
one of these two constraints.

In this work, we study the design of approximation algorithms for popular
graph optimization problems including matching, clustering, and team formation
with the goal of understanding the combined price of truthfulness and ordinality.
To be more specific, we consider the above optimization problems on a weighted
graph whose vertices represent the agents, and where the edge weights (that
correspond to agent utilities) are private to the agents constituting that edge,
and pose the following natural question: “How does a computationally efficient,
truthful algorithm that only has access to each agent’s edge weights in the form
of preference rankings perform in comparison to an optimal algorithm that has
full knowledge of the weighted graph?”.

Truthfulness in an Ordinal World. Mechanisms that are either truthful or ordinal
have received extensive attention across the spectrum of optimization problems.
However, non-trivial algorithms that satisfy both of these considerations exist
only for very specific settings [1,11]. For instance, the price of ordinality (also
referred to as distortion) is well understood for a number of applications such
as voting [2,5], matching [4,13], facility location [11], and subset selection [4,7].
The common thread in all of these settings where the (input) information is
often held by the users is that it may be impossible or prohibitively expensive
for the agents to express their full utilities to the mechanism; the same agents
may incur a smaller overhead if they communicate preference lists over the other
users or candidates in the system. Our main contention in this paper is that in
exactly the same types of settings, it is reasonable to expect strategic agents to
lie about their preferences if it improves their resulting utilities. Motivated by
this, we study ordinal algorithms that are also truthful. Even though such mech-
anisms are clearly less powerful than their ‘ordinal but not necessarily truthful’
counterparts, our high level-level contribution is that for several well-studied
graph maximization problems, one can obtain solutions that are only a constant
factor away from the (social welfare of the) optimum, omniscient solution.

Model and Problem Statements. The high-level model in this paper is the same as
the one in [4], with the addition of truthfulness as a constraint. The common set-
ting for all the problems studied in this work is an undirected, complete weighted
graph G whose nodes are the set of self-interested agents N with |N | = N . We
use w(x, y) to denote the weight of the edge (x, y) in the graph for x, y ∈ N . All
of the optimization problems studied in this work involve selecting a subset of
edges from G that obey some condition, with the objective of maximizing the
weight of the edges chosen.

Max k-Matching. Compute the maximum weight matching consisting of
exactly k edges. We refer to the k = N

2 case as the Weighted Perfect Matching
problem.
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k-Sum Clustering. Given an integer k, partition the nodes into k disjoint sets
(S1, . . . , Sk) of equal size in order to maximize

∑k
i=1

∑
x,y∈Si

w(x, y). (It is
assumed that N is divisible by k). When k = N/2, k-sum clustering reduces
to the weighted perfect matching problem.

Densest k-subgraph. Given an integer k, compute a set S ⊆ N of size k to
maximize the weight of the edges inside S.

Max TSP. In the maximum traveling salesman problem, the objective is to
compute a tour T (cycle that visits each node in N exactly once) to maximize∑

(x,y)∈T w(x, y).

A crucial but reasonably natural assumption that we make in this work
is that the edge weights satisfy the triangle inequality, i.e., for x, y, z ∈ N ,
w(x, y) ≤ w(x, z) + w(z, y). For the specific kind of the problems that we study,
the metric structure occurs in a number of well-motivated environments such as:
(i) social networks, where the property captures a specific notion of friendship,
(ii) Euclidean metrics: each agent is a point in a metric space which denotes her
skills or beliefs, and (iii) edit distances: each agent could be represented by a
string over a finite alphabet (for e.g., a gene sequence) and the graph weights
represent the edit or Levenshtein distances [19]. The reader is asked to refer
to [4] for additional details on these specific applications and a mathematical
treatment of friendship in social networks.

Our framework and problem set models a multitude of interesting appli-
cations, and not surprisingly, all of the problems described above (with the
metric assumption) have been the subject of a dense body of algorithmic
work [4,12,14,16]. In many of these applications, it becomes imperative that
the algorithm provide good approximation guarantees even in the absence of
precise numerical information regarding the graph weights. For instance, one
can imagine partitioning a set of wedding guests to form a table assignment (k-
sum clustering) or selecting a diverse team of agents in order to tackle a complex
task (dense subgraph).

Algorithmic Framework. In this work, we are interested in the design of
algorithms that are both ordinal and truthful. Suppose that for any one of the
above problems, we are given an instance described by a weighted graph; then
an algorithm A for this problem is said to be ordinal if it has access only to
a vector of preference orderings induced by the graph weights. That is, the
input to this algorithm consists of a set of N preference orderings reported by
each of the agents, where the preference list corresponding to agent i ∈ I is a
ranking over the agents in N − {i} such that ∀j, k ∈ N , if i prefers j to k, then
w(i, j) ≥ w(i, k).

The algorithm is truthful if no single agent can improve their utility by
submitting a preference ordering different from the ‘true ranking’ induced by the
graph weights. Here, the utility of each agent i is simply the total weight of the
edges incident to i which are chosen. These utilities have a natural interpretation
with respect to the problems considered in this work. For instance, for matching
problems, an agent’s utility corresponds to her affinity or weight to the agent
to whom she is matched, and for densest subgraph as well as k-sum clustering,
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the utility is her aggregate weight to the agents in the same team or cluster.
Our objective in this paper is to design mechanisms that maximize the overall
social welfare, i.e., the sum of the utilities of all the agents. Thus, the goal is
to select a maximum-weight set of edges while knowing only ordinal preferences
(instead of the true weights w), with even the ordinal preferences possibly being
misrepresented by the self-interested agents.

Finally, A is said to be an ordinal α-approximation algorithm for α ≥ 1 if
for any given instance along with the graph weights, the total objective value of
the maximum weight solution with respect to the instance weights is at most a
factor α times the value of the solution returned by A, when the input corre-
sponds to the preference rankings induced by the weights. In other words, such
algorithms produce solutions which are always a factor α away from optimum,
without actually knowing what the weights w are. We conclude by pointing out
that despite the extensive body of work on all of the problems described pre-
viously, hardly any of the proposed mechanisms satisfy either truthfulness or
ordinality (see Related Work for exceptions), motivating the need for a new line
of algorithmic thinking.

Our Contributions. Our main results are summarized in Table 1. All of the
non-matching problems that we study are NP-Hard even in the full information
setting [12,15,18]. Our truthful ordinal algorithms provide constant approxima-
tion factors for a variety of problems in this setting, showing that even if only
ordinal information is presented to the algorithm, and even if the agents can
lie about their preferences, we can still form solutions efficiently with close to
optimal utility. Note that as seen in Table 1, in [4] the authors already gave
ordinal approximation algorithms for matching problems: those algorithms were
not truthful, however, and achieving non-trivial approximation bounds while
always giving players incentive to tell the truth requires significant additional
work. For example, even the natural, greedy 2-approximation algorithm for Max
k-matching from [4] is not truthful.

Table 1. Approximation factors provided in this paper by both truthful and non-
truthful ordinal algorithms. (*) A bicriteria result for Densest k-subgraph where the
set size is relaxed to βk but the approximation factor is improved from 4 to 4

β2 for
β ≥ 1.

Problem Our results

Truthful ordinal Non-truthful ordinal

Weighted perfect matching 1.7638 1.6 [4]

Max k-matching 2 2 [4]

k-Sum clustering 2 2

Densest k-subgraph 6 ( 4
β2 , β) (*)

Max TSP 2 1.88
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In addition to considering truthful mechanisms, we also develop new approx-
imation algorithms for the setting where the agents are not able to lie, and
thus the algorithm knows their true preference ordering. By dropping the truth-
fulness constraint, we are able to obtain better approximation factors for clus-
tering, densest subgraph, and max TSP. The improved results are enabled by
more involved algorithmic techniques that invariably sacrifice truthfulness; they
establish a clear separation between the performance of an unconstrained ordinal
algorithm and one that is required to be truthful. Owing to space constraints,
we do not present these theorems in this version of the paper. The algorithms
for the non-truthful versions of the problems can be found in the full version of
this paper.

Techniques. Our proof techniques involve carefully stitching together greedy,
random, and serial dictatorship based solutions. Understandably, and perhaps
unavoidably for ordinal settings, the algorithmic paradigms that form the
bedrock for our mechanisms are rather simple. However, beating the guaran-
tees obtained by a naive application of these techniques involves a more intricate
understanding of the interplay between the various approaches. For instance, our
algorithm for the weighted perfect matching problem involves mixing between
two simple 2-approximation algorithms (greedy, random) to achieve a 1.764-
guarantee: towards this end, we establish new tradeoffs between greedy and ran-
dom matchings showing that when one is far away from the optimum solution,
the other one must provably be close to optimum.

1.1 Related Work

Broadly speaking, the truthful mechanisms in our work fall under the umbrella
of ‘mechanism design without money’ [1,6,10,13,17], a recent line of work on
designing strategyproof mechanisms for settings like ours, where monetary trans-
fers are irrelevant. A majority of the papers in this domain deal with mechanisms
that elicit agent utilities, specifically for one-sided matchings, assignments and
facility location problems that are somewhat different from the graph problems
we are interested in. The notable exceptions are the recent papers on truthful,
ordinal mechanisms for one-sided matchings [6,13] and general allocation prob-
lems [1]. While [13] looks at normalized agent utilities and shows that no ordinal
algorithm can provide an approximation factor better than Θ(

√
N), [6] considers

minimum cost metric matching under a resource augmentation framework. The
main differences between our work and these two papers are (1) we consider
two-sided matching instead of one-sided, as well as other clustering problems,
as well as non-truthful algorithms with better approximation factors, and (2)
we consider maximization objectives in which users attempt to maximize their
utility instead of minimize their cost. The latter may seem like a small differ-
ence, but it completely changes the nature of these problems, allowing us to
create many different truthful mechanisms and achieve constant-factor approx-
imations. Finally, [1] looks at the problem of allocating goods to buyers in a
‘fair fashion’. In that paper, the focus is on maximizing a popular non-linear
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objective known as the maximin share, which is incompatible with our objective
of social welfare maximization. That said, an interesting direction is to see if our
techniques extend to other objectives.

As discussed in the Introduction, this paper improves on several results from
[4]. In [4], the authors focused on the problem of maximum-weight matching for
the non-truthful setting, with the main result being an ordinal 1.6-approximation
algorithm. In the current paper, we greatly extend the techniques from [4] so
that they may be applied to other problems in addition to matching. Moreover,
we introduce several new techniques for this setting in order to create truthful
algorithms; such algorithms require a somewhat different approach and make
much more sense for many of the settings that we are interested in. Other than
[6], these are the first known truthful algorithms for matching and clustering
with metric utilities.

Our work is similar in motivation to the growing body of research study-
ing settings where the voter preferences are induced by a set of hidden utili-
ties [2,3,5,7,8,11]. The voting protocols in these papers are essentially ordinal
approximation algorithms, albeit for a very specific problem of selecting the
utility-maximizing candidate from a set of alternatives.

2 Preliminaries

2.1 Truthful Ordinal Mechanisms

As mentioned previously, we are interested in designing incentive-compatible
mechanisms that elicit ordinal preference information from the users, i.e., mech-
anisms where agents are incentivized to truthfully report their preferences in
order to maximize their utility. We now formally define the notions of truthful-
ness pertinent to our setting. Throughout the rest of this paper, we will use Pi

to represent the private ordinal preference of agent i (i.e., one that is induced
by the weights w(i, j)), and si to represent the preference ordering that agent i
submits to the mechanisms (which will be equal to Pi if i tells the truth).

Definition 1 (Truthful Mechanism). A deterministic mechanism M is said to
be truthful if for every i ∈ N , all s−i, s

′
i, we have that ui(Pi, s−i) ≥ ui(s′

i, s−i),
where ui is the utility guaranteed to agent i by the mechanism.

Definition 2 (Universally Truthful Mechanisms). A randomized mechanism is
said to be universally truthful if it is a probability distribution over truthful deter-
ministic mechanisms.

Informally, in a universally truthful mechanism, a user is incentivized to be
truthful even when she knows the exact realization of the random variables
involved in determining the mechanism. All of the algorithms in this work are
universally truthful, not just in expectation. The reader is asked to refer to [9]
for a useful discussion on the types of randomized mechanisms.
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2.2 Approaches for Designing Truthful Matching Mechanisms

As a concrete first step towards designing truthful ordinal mechanisms, we intro-
duce three high-level algorithmic paradigms that will form the backbone of all
the results in this work. These paradigms are based on the popular algorith-
mic notions of Greedy, Serial Dictatorship, and Uniformly Random. For each of
these paradigms, we develop approaches towards designing truthful mechanisms
for the maximum matching problem. In Sects. 3 and 4, we develop more sophis-
ticated truthful mechanisms that build upon the simple paradigms presented
here, leading to improved approximation factors. All of the missing proofs from
this section can be found in the full version of our paper.

Greedy via Undominated Edges. Our first algorithm is the ordinal analogue
of the classic greedy matching algorithm, that has been extensively applied across
the matching literature. In order to better understand this algorithm, we first
define the notion of an undominated edge.

Definition 3 (Undominated Edge). Given a set E of edges, (x, y) ∈ E is said
to be an undominated edge if for all (x, a) and (y, b) in E, w(x, y) ≥ w(x, a) and
w(x, y) ≥ w(y, b).

We make two simple observations here regarding undominated edges based
on which we define Algorithm 1.

1. Every edge set E has at least one undominated edge. In particular, any max-
imum weight edge in E is obviously an undominated edge.

2. Given an edge set E, one can efficiently find at least one undominated edge
using only the ordinal preference information.

M := ∅, T is the valid set of edges initialized to the complete graph on N ;
while T is not empty do

pick an undominated edge e = (x, y) from T and add it to M ;
remove all edges containing x or y from T ; if |M | = k, T = ∅.

end

Algorithm 1. Greedy Algorithm for Max k-Matching

It is not difficult to see that this algorithm gives a 2-approximation for Max-
Weight Perfect Matching, and is truthful for that case. Unfortunately, for Max k-
Matching with smaller k, it is no longer truthful, and thus none of the algorithms
that use Greedy as a subroutine (such as the algorithms from [4]) are truthful.

Proposition 4. Algorithm1 is truthful for the Max k-Matching problem only
when k = N

2 .

Proof. We need to prove that for any given strategy profile adopted by the
other players s−i, player i maximizes her utility when she is truthful, i.e., when
si = Pi. Our proof will proceed via contradiction and will make use of the
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following fundamental property: if Algorithm1 (for some input) matches agent
i to j during some iteration, then both i and j prefer each other to every other
agent that is unmatched during the same round.

We introduce some notation: suppose that M denotes the matching output
by Algorithm 1 for input (Pi, s−i), and for every x ∈ N , m(x) is the agent to
whom x is matched to under M . Let ej be the edge added to the matching M in
round j of Algorithm 1, denote the round in which i is matched to m(i) as round
k. Assume to the contrary that for input (s′

i, s−i), i is matched to an agent she
prefers more than m(i). Let the altered matching be referred to as M ′, and let
m′(x) be the agent who x is matched with in M ′.

We begin by proving the following claim: For eachj < k, we have thatej ∈ M ′.
In other words, all the edges which are included into M before i is matched by
Algorithm 1 must appear in both matchings no matter what i does. Once we
prove this claim, we are done, since ek is the highest-weight edge from i to
any node not in e1, . . . , ek−1, so i maximizes its utility by telling the truth and
receiving utility equal to the weight of ek.

To prove the claim above, we proceed by induction. Note that if k = 1, then i
is trivially truthful, since m(i) is its top choice in the entire graph. Now suppose
that we have shown the claim for edges e1, . . . , ej−1. Let ej = (x, y), and without
loss of generality suppose that x is matched in our algorithm constructing M ′

before y. At the time that x is matched with m′(x), it must be that m′(x) is the
top choice of x from all available nodes. But, by the definition of our algorithm,
y is the top choice of x that is not contained in e1, . . . , ej−1. Since m′(x) is
not contained in e1, . . . , ej−1 due to our inductive hypothesis, this means that x
prefers y over m′(x), and since y is not matched yet, this means that x and y
will become matched together in M ′. Thus, ej is in M ′ as well. This completes
the proof of truthfulness for k = N

2 . �	
Can we use a similar approach to design algorithms for the other problems

that we are interested in? For k-sum clustering and Densest k-subgraph, one
can follow the approach taken in [4,14], and use the above matching as an
intermediate to compute 4-approximations for the above problems. For Max
TSP, we can directly leverage the above algorithm by maintaining M as a (forest
of) path(s) instead of a matching in order to obtain a 2-approximate Hamiltonian
tour. Unfortunately, as we show in the full version, these approaches do not lead
to truthful algorithms at all.

Serial Dictatorship. Another popular approach to compute incentive compat-
ible matchings (albeit usually for one-sided matchings [6,13]) is serial dictator-
ship, which we formally define below for our two-sided matching setting.

Proposition 5. Algorithm2 is universally truthful for the Max k-Matching
problem for all k.

Serial dictatorship is among the most prominent of algorithms to feature in
this work: our primary approximation algorithms for Max k-matching and Max
TSP involve randomized versions of serial dictatorship.
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M := ∅, T is the set of available agents initialized to N ;
while T is not empty do

pick an available agent x arbitrarily from T ;
let y denote x’s most preferred agent in T − {x}; add (x, y) to M ;
remove all edges containing x or y from T ; if |M | = k, T = ∅.

end

Algorithm 2. Serial Dictatorship for Max k-Matching

Randomness. A much simpler approach that is completely oblivious to the
input preferences involves selecting a solution uniformly at random. Such an
algorithm (described in Algorithm 3) is obviously truthful. Many of the tech-
niques in this paper rely on carefully combining these three types of algorithms
in order to produce good approximation factors while retaining truthfulness.

M := ∅, T is the valid set of edges initialized to the complete graph on N ;
while T is not empty do

pick an edge e = (x, y) from T uniformly at random and add it to M ;
remove all edges containing x or y from T ; if |M | = k, T = ∅.

end

Algorithm 3. Random Algorithm for Max k-matching

3 Truthful Mechanisms for Matching

3.1 Weighted Perfect Matching

So far, we have looked at two simply approaches for designing truthful mecha-
nisms (Greedy and Random) for the weighted perfect matching problem, both
of which yield 2-approximations [4] to the optimum matching. Can we do any
better? In [4], the authors use a complex interleaving of greedy and random
approaches to extract a non-truthful 1.6-approximation algorithm. In this paper,
we instead present a simpler algorithm and rather surprising result: a simple ran-
dom combination of Algorithms 1 and 3 results in a 1.764-approximation to the
optimum matching. The main insight driving this result is the fact that the ran-
dom and greedy approaches are in some senses complementary to each other,
i.e., on instances where the approximation guarantee for the greedy algorithm is
close to 2, the random algorithm performs much better.

Theorem 6. The following algorihm is a universally truthful mechanism for
the weighted perfect matching problem that obtains a 1.7638-approximation to
the optimum matching.

Greedy-Random Mix Algorithm for Weighted Perfect Matching. With
probability 3

7 , return the output of Algorithm1 for k = N
2 and with probability 4

7 ,
return the output of Algorithm3 for k = N

2 .



274 E. Anshelevich and S. Sekar

Proof Sketch: Although the algorithm is exceedingly simple, the proof of the
approximation factor is quite involved (see full version for the proof). The high-
level argument proceeds as follows.

Suppose that GR is the output of the greedy algorithm for the given instance,
OPT is the weight of the maximum-weight matching, and w(RD) is the expected
weight of the random matching for the same instance. Begin by dividing the
graph into two sets as follows. Define T to be the set of nodes which are included
in the top (i.e., highest-weight) N/4 edges of GR, and let B be the rest of the
nodes. It is not difficult to show that the edges of GR in T have weight at least
OPT

2 ; suppose that the weight of the edges of GR in B equals xOPT for some
x ≥ 0. This means that w(GR) ≥ 1

2OPT + xOPT. The main part of the proof
consists of proving the following claim, which essentially shows that when the
greedy algorithm performs poorly, the randomized algorithm must do well.

Claim 7. The weight of the random matching is always at least

E[w(RD)] ≥ 5
8
OPT − x(1 − 3

2
x)OPT.

Moreover, when x ≤ 1
8 , the following is a tighter lower bound for the random

matching: E[w(RD)] ≥ 5
8OPT − x(1 − 2x)OPT.

Once this claim is proven, the desired approximation bound of our algorithm
follows from simple algebra. Proving this claim, however, requires forming some
non-trivial machinery to analyze the quality of random metric matchings com-
pared with maximum-weight matching. For any set of nodes S, define w(S) to
be the total weight of all edges in S, and w(S1, S2) to be the weight of all edges
between S1 and S2. By heavily using the triangle inequality, we know that

OPT ≤ 4
N

w(B) +
2
N

w(T,B) and
N · OPT

4
≤ 2w(T ).

Since N · w(RD) = w(T ) + w(B) + w(T,B), this tells us that w(RD) ≥
5
8OPT − w(B)

N . Most of the work from this point on is to obtain an upper bound
on w(B) in terms of xOPT . The main idea involves splitting B into two parts
B1 and B2, where B1 consists of the nodes that make up the top xN

2 edges in B
with respect to GR. Suppose that the weight of the greedy edges in B1 equals
αxOPT , where α is a measure of how ‘concentrated’ the heaviest edges in the
bottom half of GR are. Now, what if α is not very large: in this case, the weight
of the greedy edges in B are somewhat evenly distributed across B1 and B2, and
the random matching performs quite well on such instances. If α is high, then
the concentration is uneven and several edges in GR (namely, those inside B2)
have a small weight. Here, we show that the random matching performs well
owing to the high-weight edges from T ∪ B1 to B2. Applying these insights to
the following generic lower bound for the weight of the random matching allows
us to complete the proof of Claim 7 and hence, the theorem.

N · w(RD) ≥ w(T ) − w(B2) +
1
2
[w(T,B1) + (|B| + |B2|)OPT − w(B1, B2)].�	
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3.2 Max k-Matching

We now move on to the more general Max k-matching problem, where the objec-
tive is to compute a maximum weight matching consisting only of k ≤ N

2 edges.
Our previous results do not carry over to this problem. While we know from [4]
that the greedy algorithm is half-optimal, one can easily construct examples
where this is not truthful. On the other hand, the random matching algorithm
is truthful but its approximation factor can be as large as N

k . Our main result in
this section is based on the Random Serial Dictatorship algorithm that in some
sense combines the best of greedy and random into a single algorithm. Such
algorithms have received attention for other matching problems [6,13]; ours is
the first result showing that these algorithms can approximate the optimum
matching up to a small constant factor for metric settings. Specifically, while
serial dictatorship is usually easy to analyze, our algorithm greatly exploits the
randomness to select good edges in expectation.

Definition: Random Serial Dictatorship is the same algorithm as Serial Dic-
tatorship (Algorithm 2), except the agents x from T are picked uniformly at
random.

Theorem 8. Random serial dictatorship is a universally truthful mechanism
that provides a 2-approximation for the Max k-matching problem.

4 Truthful Mechanisms for Other Problems

We remark that the proofs of all of the results in this section are available in the
full version of the paper.

4.1 Densest k-Subgraph

In this section we present our truthful, ordinal algorithm for Densest k-subgraph,
which requires techniques somewhat different from the ones outlined in Sect. 2.
While “conventional” approaches such as Greedy and Serial Dictatorship do lead
to good approximations for this problem, they are not truthful, whereas random
approaches are truthful but result in poor worst-case approximation factors. We
combat this problem with a somewhat novel approach that combines the best
of both worlds by designing a semi-oblivious algorithm that has the following
property: if agent i is included in the solution, then changing her preference
ordering si does not affect the mechanism’s output.

Theorem 9. Algorithm4 is a universally truthful mechanism that yields a 6-
approximation for the Densest k-Subgraph problem.

To see why this is truthful, note that for any particular choice of the anchor
agent a, the only case in which a’s preference ordering makes a difference is
when a is definitely not added to the final team. Therefore, by lying a cannot
influence her utility in the event that she is actually chosen.
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S := ∅, T is the set of available agents initialized to N ;
while |S| < k do

pick an anchor agent a and another node x, both uniformly at random from
T ;
let b denote a’s most preferred agent in T − {a, x};
with probability 1

2
, add a, x to S, and set T = T − {a, x};

with probability 1
2
, add b, x to S and set T = T − {a, b, x};

end

Algorithm 4. Hybrid Algorithm for Densest k-Subgraph

4.2 A 2-approximation Algorithm for k-Sum Clustering

In the literature, the k-sum clustering problem has only been studied in a full
information setting, sometimes amidst the class of dispersion problems [14]. The
best known approximation algorithm for this is a 2-approximation that uses
the optimum matching as an intermediate. Instead, we give a much simpler
algorithm with the same factor that is completely oblivious to the input, and
is therefore truthful. Specifically, we prove that simply choosing the clusters
uniformly at random is enough to provide a 2-approximate solution in expec-
tation. Although the analysis of the algorithm involves new upper bounds on
the optimum solution, it is still not difficult, so we include this result mostly for
completeness.

4.3 Max Traveling Salesman Problem

The max traveling salesman problem has received a lot of attention in the liter-
ature despite not being as popular as the minimization variant, and has seen a
plethora of algorithms for both the metric and the non-metric versions [15,16].
Such algorithms usually work by looking at the optimum matching and cycle
cover and cleverly interspersing the two solutions to form a Hamiltonian cycle.
In adapting this approach to our setting, we would be bottlenecked by the best
possible ordinal algorithms for the above two problems. Instead, we take a direct
approach towards computing a tour and show that a simple algorithm based on
Serial Dictatorship results in a 2-approximation factor.

Theorem 10. Algorithm5 is a universally truthful mechanism that provides a
2-approximation to the optimum tour. Moreover, the algorithm provides a (2+ε)-
approximation, where ε → 0 as N → ∞, even when the edge weights do not obey
the metric assumption.

It is easy to see that this algorithm is truthful: when an agent i is asked for
its preferences, the first edge of T incident to agent i has already been decided,
so i cannot affect it. Thus, to form the second edge of T incident to i, it may
as well specify its most-preferred edge. Note that the randomization in the first
step is essential: if we had selected the first edge based on the input preferences,
then the first node could improve its utility by lying, and the algorithm would
no longer be strategy-proof.
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Initialize T to be a random edge from the complete graph on N ;
Let S be the set of available agents initialized to N ;
while S �= ∅ do

pick one of the end-points of T , say x ;
let y denote x’s most preferred agent in S; add (x, y) to T and remove y
from S;

end
Complete T to form a Hamiltonian cycle;

Algorithm 5. Serial Dictatorship for Max TSP

5 Conclusion

In this paper we study ordinal algorithms, i.e., algorithms which are aware only
of preference orderings instead of the hidden weights or utilities which generate
such orderings. Perhaps surprisingly, our results indicate that for many prob-
lems including Matching, k-sum clustering, Densest Subgraph, and Traveling
Salesman, ordinal algorithms perform almost as well as algorithms which know
the underlying metric weights, even when the agents involved can lie about their
preferences. This indicates that for settings involving strategic agents where it
is expensive, or impossible to obtain the true numerical weights or utilities, one
can use ordinal mechanisms without much loss in welfare.

How do these algorithms stand in comparison to unconstrained ordinal algo-
rithms that do not obey truthfulness? In the full version of this paper, we
present non-truthful, ordinal algorithms for the same set of problems includ-
ing a 4-approximation algorithm for Densest subgraph and a 1.88-approximation
algorithm for Max TSP. In conjunction with the ordinal 1.6-approximation algo-
rithm for perfect matching from [4], the improved approximation factors indicate
a clear separation between the two classes of algorithms. On the surface, the
improvement is not surprising since in many settings, truthfulness often places
strong constraints on the set of allowed algorithms and techniques; indeed, all of
our truthful mechanisms are derived using the three simple techniques outlined
in Sect. 2. That said, given the absence of matching lower bounds in this work,
the resolution of the gap between these two classes of algorithms is perhaps the
most important question that is yet to be addressed.

The full version of this paper is publicly available on arXiv and can be
accessed at https://arxiv.org/abs/1610.04069.
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Abstract. We explore techniques from computer-aided verification to
construct formal proofs of incentive properties. Because formal proofs
can be automatically checked, agents do not need to manually check the
properties, or even understand the proof. To demonstrate, we present the
verification of a sophisticated mechanism: the generic reduction from
Bayesian incentive compatible mechanism design to algorithm design
given by Hartline, Kleinberg, and Malekian. This mechanism presents
new challenges for formal verification, including essential use of random-
ness from both the execution of the mechanism and from the prior type
distributions.

1 Introduction

Recent years have seen a surge of interest in mechanism design, as researchers
explore connections between computer science and economics. This fruitful col-
laboration has produced many sophisticated mechanisms, including mechanism
deployed in high-stakes auctions. Many mechanisms satisfy properties that incen-
tivize agents to behave in a straightforward and easily modeled manner; the gold
standard properties are dominant strategy truthful (in settings of complete infor-
mation) and Bayesian incentive compatible (in settings of incomplete informa-
tion). While existing mechanisms are impressive achievements, their increasing
complexity raises two concerns.

The first concern is correctness. As mechanisms become more sophisticated,
proofs of their incentive properties have also grown in complexity, sometimes
involving delicate reasoning about randomization or tedious case analysis. Com-
plex mechanisms are also more prone to implementation errors. The second con-
cern is more subtle. At its heart, mechanism design is algorithm design together
with a predictive model of how agents will decide to behave. Unlike algorithm
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design, where correctness can be verified in a vacuum, the success of a mecha-
nism requires a realistic behavioral model of the participants. How will agents
behave when faced with a complex mechanism?

Different behavioral models assume different answers to this question. At
one extreme, we may assume that agents will coordinate to play a Nash equi-
librium of the game and we can study concepts like the price of anarchy [8,22].
However, Nash equilibria are generally not unique, requiring coordination and
communication to achieve [16]. Even if information is centralized, equilibria can
be computationally hard to find [12]. Assuming that agents play at a Nash equi-
librium may be unrealistic unless agents possess strong computational resources.

At the other extreme, we may ask for mechanisms which are dominant strat-
egy truthful or Bayesian incentive compatible. In such mechanisms, agents can do
no better than truthfully reporting their type, even in the worst case or in expec-
tation over the other agents’ types. These solution concepts assume little about
the bidders: When interacting with truthful mechanisms, agents do not have to
engage in complicated counter-speculation, communication, or computation—
they merely have to tell the truth!

However, even with mechanisms that are dominant strategy truthful or
Bayesian incentive compatible, participating agents must still believe that the
mechanism is truthful. For complicated mechanisms this is no small matter,
as the incentive properties may require significant domain expertise to verify.
We are not the first to raise these concerns. When designing the FCC auction
for reallocating radio spectrum, Milgrom and Segal [20] advocated an “obvi-
ously strategy-proof” mechanism; formalizing this notion is an ongoing area of
investigation [19]. However, some useful mechanisms are just too complex to be
obvious. Instead of restricting mechanisms, can we give users evidence for the
incentive properties?

In this work, we consider using formal proofs as certificates. Formal proofs
bear a resemblance to pen-and-paper proofs, but they are constructed in a rig-
orous fashion: They use a formal syntax, have a precise interpretation as a
mathematical proof, and can be built with a rich palette of computer-assisted
proof-construction tools. Compared to pen-and-paper proofs, the major benefit
of formal proofs is that once constructed, they can be checked independently
and fully automatically by a proof checker program.

Several previous works have explored formal methods for verifying mecha-
nisms; Kerber et al. [18] provide an extensive survey. Broadly speaking, prior
work falls into two groups. Automated approaches check properties via exten-
sive search, guided by intelligent heuristics. These techniques are more suited to
verifying simpler properties of mechanisms, perhaps instantiated on a specific
input; properties like BIC lie beyond the reach of existing approaches.

More manual (sometimes called interactive) techniques divide the verification
task into two separate stages. In the first stage, the formal proof is constructed.
This step typically involves human assistance, perhaps encoding the mechanism
in a specific form or constructing a formal proof. With the help of the human,
these techniques can prove rich properties like BIC and support the level of



Computer-Aided Verification for Mechanism Design 281

generality that is typical of existing proofs—say, for an arbitrary number of
agents, or for any type space. In the second stage, the formal proof is checked.
This step proceeds fully automatically: a proof checking program verifies that the
formal proof is constructed correctly. This neat division of the verification task
is a natural fit for mechanism design. We could imagine that the mechanism
designer—a sophisticated party who is intimately familiar with the details of
the proof—has the resources and knowledge to construct the formal proof. This
proof could then be transmitted to the agents, who can automatically check the
proof with no knowledge of the details.

The main difference between manual techniques is in the amount of human
labor for proof construction, the most challenging phase. Existing verification
approaches formalize the proof at a level that is far more detailed than existing
proofs on paper, requiring extensive expertise in formal methods. Furthermore,
existing works focus on general correctness properties—the output of a mecha-
nism should be a partition, the prices should be non-negative, etc., rather than
incentive properties.

In our work, we look to combine the best of both worlds: enabling a high
level of automation during proof construction, while supporting formal proofs
that can capture rich incentive properties. To demonstrate our approach, the
primary technical contribution of our paper is a challenging case study: a formal
proof of Bayesian incentive compatibility (BIC) for the generic reduction from
algorithm design to mechanism design by Hartline, Kleinberg, and Malekian [17].
This example is an attractive proof-of-concept for several reasons.

1. Both the reduction and the proof of Bayesian incentive compatibility are
complex. The mechanism is far from obviously strategy proof—indeed, the
proof is a research contribution first published at SODA 2011.

2. It is a general reduction, so certifying its correctness once certifies the incen-
tive properties for any instantiation of the reduction.

3. It relies on truthfulness of the Vickrey-Clarke-Groves (VCG) mechanism. As
part of our efforts, we provide the first formal verification of truthfulness for
this classical mechanism.

4. It employs randomization both within the algorithm and within the agent
behavior—agent types are drawn from the known Bayesian prior.

The formal proofs bear a resemblance to the original proof, both easing formaliza-
tion and making the proofs more accessible to the mechanism design community.

To formalize the proofs, we adapt techniques from program verification. We
view incentive properties as a property of the mechanism and the agent’s payoff
function, both expressed as programs. Formal verification has developed sophisti-
cated tools and techniques for verifying program properties, but general-purpose
tools require significant manual work. Verifying even moderately complex mech-
anisms seems well beyond the reach of current technology. To ease the task, we
view incentive properties as relational properties: statements about the relation-
ship between the outputs in two runs of the same program. Specifically, consider
the program which calculates an agent’s payoff under the mechanism and assume
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agents play their true value in the first run, while an agent may deviate arbi-
trarily in the second run. If the output in the first run is at least the output in
the second run, then the mechanism is incentive compatible.

With this point of view, we can use tools specialized for relational properties.
Such tools are significantly easier to use and have achieved notable successes for
verifying proofs from differential privacy and cryptography. We use HOARe2, a
recently-developed programming language that can express and check relational
properties [4]. HOARe2 has been used to verify differential privacy and basic
truthfulness in simple mechanisms under complete information, like the fixed
price auction and the random sampling mechanism of Goldberg et al. [13] for
digital goods.

Our work goes significantly beyond prior efforts in several respects. First,
the mechanism we verify is significantly more complex than previously consid-
ered mechanisms, and we analyze all uses of the reduction, rather than just a
single instance. Second, the mechanism operates in the partial information set-
ting, so the proof requires careful reasoning about randomization (from both the
mechanism and from the prior distribution on types).

The main strength of our approach lies in the high degree of automation
during proof construction. Once the mechanism and payoff functions have been
encoded as programs, and once we have supplied some annotations, we can
construct most of the formal proof automatically with the aid of automated
solvers. However, there are a handful of particularly complex steps that HOARe2

fails to automatically prove. To finish the proof, we manually build a formal
proof for these missing pieces using EasyCrypt, a proof assistant for relational
properties, and Coq, a general purpose proof assistant.1

Related Work. Closely related to our work, a recent paper by Caminati et al.
[7] uses the theorem prover Isabelle to verify basic properties of the celebrated
Vickrey-Clarke-Groves (VCG) mechanism. They consider general auction prop-
erties: the prices should be non-negative, VCG should produce a partition of
goods, etc. Moreover, their framework can be used to automatically produce a
correct, executable implementation of the mechanism. While their work demon-
strates that formal verification can be applied to verify properties of mechanisms,
their results are limited in two respects. First, they do not consider incentive
properties, arguably the properties at the heart of mechanism design. Second,
they apply general techniques from computer-aided verification that are not
specifically tailored to mechanism design, requiring substantial effort to pro-
duce the machine-checked proof. Our work uses verification techniques that are
particularly suited for incentive properties.

In the extended version we provide a primer on formal verification and dis-
cuss related work; a recent survey by Kerber et al. [18] provides a comprehensive
review of formal methods for verifying mechanism design properties. The algo-
rithmic game theory literature has for the most part ignored the problem of

1 Our formal proofs, along with code for the HOARe2 tool, are available online: https://
github.com/ejgallego/HOARe2/tree/master/examples/bic.

https://github.com/ejgallego/HOARe2/tree/master/examples/bic
https://github.com/ejgallego/HOARe2/tree/master/examples/bic
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verifying incentive properties, with a few notable exceptions. Recently, Brânzei
and Procaccia [6] define verifiably truthful mechanisms. Informally, such a mech-
anism is selected from a fixed family of mechanisms such that for every truthful
mechanism in that family, a certificate showing truthfulness can be found in
polynomial time. Brânzei and Procaccia [6] consider mechanisms represented as
decision trees and show that for the one-dimensional facility location problem,
truthfulness for mechanisms in this class can be efficiently verified by linear pro-
gramming. In contrast, we investigate significantly more complex mechanisms in
exchange for forgoing worst-case polynomial time complexity.

Mu’alem [21] considers the problem of property testing for truthfulness in sin-
gle parameter domains, which reduces to testing for a variant of monotonicity.
Mu’alem [21] gives a tester that can test whether there exist payments that guar-
antee that truthful reporting is a dominant strategy with probability 1−ε, given
a poly(1/ε) number of arbitrary evaluations of an allocation rule and assuming
agents have uniformly random valuations. In contrast, we assume direct access to
the code specifying the auction instead of merely black box access to the alloca-
tion rule, and we achieve verification of exact truthfulness, not just approximate
truthfulness. We are also able to verify mechanisms in more complex settings,
e.g., arbitrary type spaces, randomized mechanisms, and arbitrary priors.

Our work is also related to the literature on automated mechanism design,
initiated by Conitzer and Sandholm [11] (see Sandholm [23] or Conitzer [10,
Chapter 6] for an introduction). In broad strokes, automated mechanism design
seeks to generate truthful mechanisms which optimize the designer’s objectives.
This is often accomplished by solving explicitly for the distribution on out-
comes defining a mechanism using a mixed integer linear program encoding
the incentive constraints and objective, an NP hard problem that can often be
solved efficiently on typical instances [10]. Automated mechanism design targets
a more difficult problem than we do: it seeks not just to verify the truthfulness
of a given mechanism, but to optimize over all truthful mechanisms. However,
these techniques have some limitations: they produce explicit representations of
mechanisms requiring size exponential in the number of bidders, and they use an
explicit integer linear program, requiring a finite type space. In contrast, by only
requiring full automation for proof verification and not proof construction, we
are able to use a much more sophisticated toolkit—including symbolic manip-
ulation, not just numeric optimization—and verify significantly more complex
mechanisms that can have infinite outcome and type spaces.

2 Main Example: RSM

As our main proof of concept, we verify that the Replica-Surrogate-Matching
(RSM) mechanism due to Hartline et al. [17] is Bayesian incentive compati-
ble. The RSM mechanism reduces mechanism design to algorithm design: given
an algorithm A that takes in agents’ reported types and selects an outcome,
the RSM mechanism turns A into a Bayesian incentive compatible mechanism.
Accordingly, our formal proof will carry over to any instantiation of RSM. We
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first review the original proof by Hartline et al. [17]. Then, we describe our
verification process, from pseudocode to a fully verified mechanism.

Let’s begin with the standard notion of Bayesian incentive compatibility. We
assume there are n agents, each with a type ti drawn from some set of types T .
Furthermore, we have access to a distribution μ on types, the prior. A mechanism
is a (possibly randomized) function from the inputs—one per agent—to a single
outcome o from set O, and a real-valued payment pi for each agent. Without
loss of generality, we will assume that the agents each report a type from T as
their input. Agents have a valuation v(t, o) for type t and outcome o. Agents
have quasi-linear utility : their utility for outcome o and payment p is v(t, o)− p.
We will write (s, t−i) for the vector obtained by inserting s into the ith slot of
t. Then, we want to check the following property.

Definition 1. A mechanism M is Bayesian incentive compatible (BIC) if for
every agent i and types ti, t

′
i, we have

Et−i∼µn−1 [v(ti,M(ti, t−i))−pi(ti, t−i)]≥Et−i∼µn−1 [v(ti,M(t′i, t−i)) − pi(ti, t−i)].

The expectation is taken over the types t−i of the other agents (drawn indepen-
dently from μ) and any randomness used by the mechanism.

2.1 The RSM Mechanism

Now, let’s consider the mechanism: the RSM mechanism in the “idealized model”
by Hartline et al. [17]. We will first recapitulate their proof, before explaining in
detail how we verify it.

Hartline et al. RSM is a construction for turning an algorithm A : Tn → O
into a BIC mechanism. The process is easy to describe: each agent individually
transforms their type ti to a surrogate type si by applying the Replica-Surrogate-
Matching procedure R. This procedure also produces a payment pi for the agent.
Then, the surrogates s are fed into the algorithm A, which produces the final
outcome.

Fig. 1. Procedure R with parameter m

The procedure R is described in Fig. 1. Let m be an integer parameter—the
number of replicas. Given input type t, we take m−1 independent samples from
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μ, the (r)eplicas. We then take m independent samples from μ, the (s)urrogates.
Finally, we select an index i uniformly at random from [m], and place the original
type t in the ith “slot” of the replicas r. We will consider the replicas as “buyers”,
and the surrogates as “goods”, and assign a numeric “value” for every pair of
buyer and good. The value of replica r for surrogate s is set to be

w(r, s) = Et−i∼µn−1 [v(r,A(s, t−i))], (1)

that is, the expected utility of an agent with true type r reporting type s. Finally,
RSM runs the well-known Vickrey-Clarke-Groves mechanism [9,14,24] to match
each replica with a surrogate in this market. The output is the surrogate matched
to replica in slot i (the original type t), along with the payment charged.

The Original Proof. The proof of BIC from Hartline et al. [17] proceeds in two
steps. First, they show that R is distribution preserving.

Lemma 1 (Hartline et al. [17]). Sampling a type t ∼ μ as input to R gives
the same distribution (μ) on the surrogates output.

Proof. When R constructs the list of buyers before applying VCG, the distrib-
ution over buyers is simply m independent samples from μ, no matter the value
of i. So, we can delay sampling i and selecting the surrogate until after running
VCG (via the principle of deferred decision). VCG produces a perfect matching
of replicas to surrogates, and the surrogates are also m independent samples
from μ. So, sampling a random replica i and returning the matched surrogate is
an unbiased sample from μ.

With the lemma in hand, Hartline et al. [17] show that RSM is BIC.

Theorem 1 (Hartline et al. [17]). The RSM mechanism is BIC.

Proof. Consider bidder i with type ti, and fix the randomness for bidder i. In
the VCG procedure of R, the value of i’s replica for surrogate s is w(ti, s): the
expected utility for submitting s to A while having true type ti, assuming that
all other inputs to A are drawn from μ.

In the RSM mechanism, the other inputs to A are computed by sampling
a type tj ∼ μ, and taking the surrogate produced by R(tj). By Lemma 1, the
distribution over surrogates is μ. Therefore, w(ti, s) is bidder i’s expected utility
in the RSM mechanism for ending up matched to s. Since VCG is incentive
compatible, bidder i has no incentive to deviate to any other bid t′i. By taking
expectation over the randomness of i, we get the result.

Crucially, Theorem1 relies on the truthfulness property of the VCG mecha-
nism. We have also verified this property but we postpone our discussion to the
extended version; the verification of RSM is more interesting.
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3 Verifying RSM

program encoding the mechanism

annotated program

collection of VCs

VCs not solvable automatically

proof of incentive property

expert adds assertions

proof checker generates VCs

automatic solver checks VCs

solve VCs in interactive solver

Now that we have seen the mechanism, we present
our verification step by step.

1. We write the RSM mechanism as a program in
the HOARe2 programming language.

2. We annotate the program with assertions
expressing the BIC property, and some addi-
tional intermediate facts (lemmas).

3. The tool automatically generates the verifica-
tion conditions (VCs), which imply BIC.

4. The tool uses automatic solvers to check the
verification conditions; they may fail to prove
some assertions.

5. Finally, we prove the remaining verification
conditions by using an interactive prover.

The outcome of these five steps is a formal proof that the RSM mechanism
enjoys the BIC property. In the following, we will combine the description of
different steps in the same subsection.

Step 1: Modeling the Mechanism

To express RSM as a program, we will code a single agent’s utility function
when running the RSM mechanism, when all the other agents report truthfully
and have types drawn from μ. Remembering that we consider truthfulness as
a relational property, we will then reason about what happens when the agent
reports truthfully, compared to what happens when the agent deviates.

We model types and outcomes as drawn from (unspecified) sets T and O,
and we assume an algorithm alg mapping Tn → O. We will consider what
happens when the first bidder deviates. This is without loss of generality: if j
deviates, we can consider the RSM mechanism with alg replaced by a version
alg’ that first rotates the jth bidder to the first slot, when proving BIC for the
first bidder under alg’ implies BIC for the jth bidder under A. For the values,
we will assume an arbitrary valuation function value mapping T × O → R. In
the code, we will write mu for the prior distribution µ.

Let’s begin by coding the RSM transformation R, which transforms an
agent’s type into a surrogate type and a payment. It will be convenient to sepa-
rate the randomness from R. We encode R as a deterministic function Rsmdet,
which takes as input the agent number j, the random coins coins, and the input
type report. We will have Rsmdet take an additional parameter truety repre-
senting an agent’s true type. This variable does not show up in the code–RSM
does not have access to this information—but will be useful later for expressing
Bayesian incentive compatibility as a relational property. We will model the slot
as a natural number.
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In the extended version we will discuss our treatment of VCG in more detail,
but it is enough to know that VCG takes a list of buyers and a list of goods.
VCG will output a permutation of goods (representing the assignment), and a
corresponding list of payments. In Fig. 2, bolded words are keywords and prim-
itive operations of HOARe2. For a brief explanation, line (2) names the three
components of coins: the replicas rs−i, the surrogates ss, and the slot i; line
(3) puts the agent’s input type report in the proper slot for the replicas; line
(4) calls VCG on the list of buyers vcgbuyers produced at line (3) and the list
of surrogates ss as goods; and line (5) returns the surrogate and payment.

Fig. 2. Defining RSM Fig. 3. Defining weights

The Expwts function in Fig. 3 implements the w function from Eq. (1), with
the additional parameter j to indicate the agent. In Fig. 3, line (2) samples n−1
types others−j from μ for the other agents. These are the types on which the
expectation is taken in Eq. (1). Line (4) uses the algorithm alg to compute the
outcome outcome when the agent j report type s. Finally, the expect num on line
(5) takes the expected value of the distribution over reals defined by evaluating
the value function value on the true type r and on the randomized outcome of
the alg.

To check the BIC property, we will code the expected utility for the first
bidder and then check that it is maximized by truthful reporting. To break
down the code, we will suppose that the function takes in a list of functions
othermoves that transform each of the other bidder’s type.

Fig. 4. Defining utility Fig. 5. Defining other reports

The distribution rsmcoins defines the distribution over the coins to R, i.e.,
sampling the replicas r−i, the surrogates s, and the coin i. We encoded this
distribution in HOARe2, but we elide it for lack of space. In the code in Fig. 4,



288 G. Barthe et al.

on line (2) we take expectation of the function Helper over the distribution
rsmcoins, with expect. In Helper, we then call Rsmdet on line (6) to compute
the surrogate and payment for the agent, passing 1 since we are calculating the
utility for the first agent. We sample the other agents’ types and transform them
on lines (9–11), and we take expectation of the first agent’s value for the outcome
on lines (7–14). Finally, we subtract off the payment on line (15), giving the final
utility for the first agent.

To complete our modeling of RSM, in Fig. 5 we plug in Others into the utility
function: it simply takes an agent number and a type as input, samples the coins
from rsmcoins, and returns the surrogate from calling Rsmdet. So far, we have
just written code describing how to implement the RSM mechanism and how to
calculate the utility for a single bidder. Now, we express the BIC property as a
property about this program and check it with HOARe2.

Step 2: Adding Assertions

We specify properties in HOARe2 by annotating variable and functions with
assertions of the form {x :: Q | φ}, read as “x is an element of set Q and satisfies
the logical formula φ”. These assertions serve two purposes: (1) they express
facts to be proved about the code and (2) they assert mathematical facts about
primitive operations like expect and expect num. The system will then formally
verify that the first kind of annotations are correct, while assuming the assertions
of the second kind as axioms.

A key feature of HOARe2 is that the assertion φ is relational : it can refer
to two copies of each variable x, denoted x1 and x2. Roughly, we may make
assertions about two runs of the same program where in the first program we use
variables x1, and in the second run we use variables x2. For instance, truthfulness
corresponds to the following assertions:

{ty ::T | ty1 = ty2} (true type is equal on both runs)
{bid :: T | bid1 = ty1} (bid is the true type in the first run)

{utility ::R | utility1 ≥ utility2} (utility is higher in the first run)

Our goal is to check these assertions for the function MyUtil, which com-
putes an agent’s utility in expectation over the other types. Along the way we
will use several intermediate facts, encoded as assertions in HOARe2. Assertions
on primitive operations, like expect and expect num, are the axioms. Asser-
tions on larger chunks of code are proved correct from the assertions on the
subcomponents.

Monotonicity of Expectation. Since the BIC property refers to expected utility, we
use an expectation operation expect when computing an agent’s utility (line (2)
of the Util code). To show BIC, we need a standard fact about monotonicity of
expected value: for functions f ≤ g, E[f ] ≤ E[g] taken over the same distribution.
This can be encoded with an annotation for expect:

distr {c :: C | c1 = c2} → {f ::C → R | ∀x. f1(x) ≤ f2(x)} → {e ::R | e1 ≤ e2}.
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This annotation indicates that expect is a function that takes two arguments
and returns a real number. In each of the three components, the annotation
before the bar specifies the type of the value: The first argument is a distribution
over C, the second argument is a real-valued function C → R, and the return
value is a real number. The logical formulas after the pipe describe how two runs
of the expectation function are related. The first component states that in the
two runs, the distributions are the same. The second component states that the
function f in the first run is pointwise less than f in the second run. The final
component asserts that the expected value—a real number—is less on the first
run than on the second run.

If think of the distribution as being over the coins rsmcoins, this fact allows
us to prove deterministic truthfulness for each setting of the coins, then take
expectation over the coins in order to show truthfulness in expectation. This is
what we need to prove for the BIC property, and is precisely the first step in the
original proof of Theorem1.

Distribution Preservation. When we consider a single agent, truthful bidding may
not be BIC for arbitrary transformations of the other agents’ types (othermoves
in the Util code). As indicated by Lemma 1, we also need the transformation to be
distribution preserving: the output distribution on surrogates must be the same
as the distribution on input types.

Much as we did above, we can capture this property with appropriate anno-
tations. While we have so far used rather simple formulas φ that only mention
variables in {x :: T | φ}, in general the formulas φ can describe assertions about
programs. We can annotate the othermoves argument to Util to require distri-
bution independence:

{othermoves : list (T → distr T ) | ∀j ∈ [n]. (sample ot = mu; othermoves[j](ot)) = mu}

To read this, othermoves is a list of functions fj that take a type and return
a distribution on types, such that if we sample a type from mu and feed it to fj ,
the resulting distribution (including randomness over the initial choice of type)
is equal to mu. In other words, this asserts the distribution preservation property
of Lemma 1 for each of the other agent’s transformations.

Facts about VCG. Recall that Vcg takes a list of bidders and a list of goods,
and produces a permutation of the goods and a list of payments as output. In
our case, the bidders and goods are both represented as types in T , so we can
annotate the Vcg as:

{buys :: listT} → {goods :: listT} → {(alloc, pays) :: listT × listR | vcgTruth ∧ vcgPerm}.

The two assertions vcgTruth and vcgPerm reflect two facts about VCG. The first
is that VCG is incentive compatible; this can be encoded like we have already
seen, with a slight twist: We require that VCG is IC for a deviation by any



290 G. Barthe et al.

player rather than just the first player, since the possibly deviating player may
be in any slot. More precisely, we define the formula

vcgTruth := ∀j ∈ [m]. (bids−j,1 = bids−j,2) =⇒ Expwts(j, bids1[j], alloc1[j]) − pays1[j]

≥ Expwts(j, bids1[j], alloc2[j])) − pays2[j].

We treat the bid in the first run (bids1[j]) as the true type, and the bid on
the second run (bids2[j]) as a possible deviation—this is why we evaluate the
jth bidder’s expected utility using the same true type in the two runs. The
second fact we use is that VCG matches buyers to the goods. In fact, since the
number of goods (surrogates) and the number of buyers (replicas) are equal, VCG
produces a perfect matching. We express this by asserting that VCG outputs an
assignment that is a permutation of the goods:

vcgPerm := isPerm goods1 alloc1 ∧ isPerm goods2 alloc2.

We verify these properties for a general version of VCG. The verification follows
much like the current verification; we discuss the details in the extended version.

Step 3: Handling Proof Obligations

After providing the annotations, HOARe2 is able to automatically check most
of the annotations with SMT solvers—fully automated solvers that check the
validity of logical formulas. Such solvers are a staple of modern formal verifica-
tion. While the underlying problem is often undecidable, modern solvers employ
sophisticated heuristics that can efficiently handle large formulas in practice.

We are able to use SMT solvers to automatically check all but three proof
obligations; for these three facts the SMT solvers time out without finding a
proof. The first two are uninteresting, and we manually construct the formal
proof using the Coq proof assistant. The last obligation is more interesting: it
corresponds to Lemma 1. Concretely, when we define an agent’s expected utility

def MyUtil(ty,bid) = Util(Others,ty,bid),

recall that Util asserts that Others is distribution preserving. This is precisely
Lemma 1, and the automated solvers fail to prove this automatically.

To handle this assertion we use a more manual tool called EasyCrypt [2,3], a
proof assistant that allows the user prove equivalence of two programs A and B
by manually transforming the source code of A until the source code is identical
to B. We prove that Others is equivalent to the program that simply samples
from mu by transforming the code for Others (including the code sampling the
coins of the mechanism, rsmcoins) in several stages. We present the code in
Fig. 6 with two replicas, for simplicity.

The proof boils down to showing that each step transforms a program to
an equivalent program. Our starting point is stage1, the program that samples
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Fig. 6. Code transformations to prove Lemma 1.

an agent’s type from mu and runs Others on the sampled value. Unfolding the
definition of Others, Rsmdet, rsmcoins and including the code that puts the
agent’s input type in the proper slot for the replicas, we obtain program stage2.
From there, the main step is to show that we don’t need to place the replicas
in a random order before calling Vcg. Then, we can move the sampling for i
down past the Vcg call, giving stage3. Finally, using the fact that the output
assignment ss of Vcg is a permutation of the goods (s1, s2), we obtain the
program stage4 and conclude that this is equivalent to taking a single sample
from mu. This chain of transformations has been verified with EasyCrypt.

4 Perspective

Now that we have presented our verification of the RSM mechanism, what have
we learned and what does formal verification have to offer mechanism design
going forward? In our experience, while formal verification of game theoretic
mechanisms is by no means trivial, verification tools are maturing to a point
where practical verification of complex mechanisms can be envisioned. Our ver-
ification of RSM, for instance, involved only coding the utility function and
adding annotations, most of which can be checked automatically. The most time-
consuming part was manually proving the last few assertions.

At the same time, the range of mechanisms that can be verified is less clear.
There is an art to encoding a mechanism in the right way, and some mech-
anisms are easier to verify than others. Since we are trying to verify proofs,
the crucial factor is the complexity of the proof rather than the complexity of
the mechanism. Clean proofs where, each step reasons about localized parts of
the program, are more amenable to verification; proof patterns—like universal
truthfulness—also help.

In sum, formal verification can manage the increasing complexity of mecha-
nisms by formally proving incentive properties for everyone—mechanism design-
ers, mechanism users, and even mechanism programmers. We believe that the
tools to verify one-shot mechanisms are already here. So, we propose a challenge:
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Try using tools like HOARe2 to verify your own mechanisms, putting formal ver-
ification techniques to the test. We hope that one day soon, verification for
mechanisms will be both easy and commonplace.
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Abstract. We study social welfare of learning outcomes in mechanisms
with admission. In our repeated game there are n bidders and m mech-
anisms, and in each round each mechanism is available for each bidder
only with a certain probability. Our scenario is an elementary case of sim-
ple mechanism design with incomplete information, where availabilities
are bidder types. It captures natural applications in online markets with
limited supply and can be used to model access of unreliable channels in
wireless networks. If mechanisms satisfy a smoothness guarantee, existing
results show that learning outcomes recover a significant fraction of the
optimal social welfare. These approaches, however, have serious draw-
backs in terms of plausibility and computational complexity. Also, the
guarantees apply only when availabilities are stochastically independent
among bidders. In contrast, we propose an alternative approach where
each bidder uses a single no-regret learning algorithm and applies it in
all rounds. This results in what we call availability-oblivious coarse corre-
lated equilibria. It exponentially decreases the learning burden, simplifies
implementation (e.g., as a method for channel access in wireless devices),
and thereby addresses some of the concerns about Bayes-Nash equilibria
and learning outcomes in Bayesian settings. Our main results are general
composition theorems for smooth mechanisms when valuation functions
of bidders are lattice-submodular. They rely on an interesting connection
to the notion of correlation gap of submodular functions over product
lattices.

1 Introduction

Truthful mechanism design is a central challenge at the intersection of economics
and computer science, but many fundamental techniques are only very rarely
used in practice. For example, sponsored search auctions are used on a daily
basis and generate billions of dollars in revenue, but they are based on simple
and non-truthful procedures to allocate ads on search result pages. In contrast,
truthful mechanisms often involve heavy algorithmic machinery, complicated
allocation techniques, or other hurdles to easy and transparent implementation.
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A recent trend is to study non-truthful and conceptually “simple” mecha-
nisms for allocation in markets and their inherent loss in system performance.
The idea is to analyze the induced game among the bidders and bound the
quality of (possibly manipulated) outcomes in equilibrium. In a seminal paper,
Syrgkanis and Tardos [22] propose a general technique for bounding social wel-
fare of these equilibria, based on a so-called “smoothness” technique. These
guarantees apply even to mixed Bayes-Nash equilibria in environments with
composition of mechanisms. For example, in a combinatorial auction we might
not sell all items via a complicated truthful mechanism, but instead sell each
item simultaneously via simple individual single-item auctions. Such a mecha-
nism is obviously not truthful, since bidders are not even able to express their
valuations for all subsets of items. However, if bidders have complement-free
XOS valuations, the (expected) social welfare of allocations in a mixed Bayes-
Nash equilibrium turns out to be a constant-factor approximation of the optimal
social welfare.

While this is a fundamental insight into non-truthful mechanisms, it is not
well-understood how this result extends under more realistic conditions. In par-
ticular, there has been recent concern about the plausibility and computational
complexity of exact and approximate Bayes-Nash equilibria [5]. For more gen-
eral Bayesian concepts based on no-regret learning strategies in repeated games,
there are two natural approaches – either bidder types are drawn newly with
bids, or types are drawn only once initially. While the latter is not really in line
with the idea of incomplete information (bidders could communicate their type
in the course of learning, see [5]), the former is in general hard to obtain. Also,
the composition theorem applies only if bidders’ types are drawn independently.

In this paper, we study a variant of simultaneous composition of mechanisms
and show how to avoid the drawbacks of the Bayesian approach. Our scenario is
motivated by limited availability or admission: Suppose bidders try to acquire
items in a repeated online market, in which m items are sold simultaneously
via, say, first-price auctions. However, in each round only some of the items are
actually available for purchase. This scenario can be phrased in the Bayesian
framework when bidder i’s type is given by the set of items available to him. To
obtain an equilibrium in the Bayesian sense, each bidder would have to consider
a complicated bid vector and satisfy an equilibrium condition for each of the
possible 2m subsets of items.

In contrast, here we assume that bidders do not even get to know (or are not
able to account for) their own availabilities before making bids in each round.
We assume they learn with no-regret strategies in a way that is oblivious to
their own and all other bidders’ availabilities. Thereby, bidders arrive at what
one might term an availability-oblivious coarse-correlated equilibrium – a bid
distribution not tailored to the specific availabilities of bidders, which can be
computed (approximately) in polynomial time. Our main result is that for a large
class of valuation functions, we can apply smoothness ideas in this framework
and prove bounds that mirror the guarantees above. The guarantees apply even if
some bidders learn obliviously and others follow a Bayes-Nash bidding strategy.
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In particular, we cover a broad domain with simultaneous composition of weakly
smooth mechanisms in the sense of [22] when bidders have lattice-submodular
valuations. Our study covers cases where availabilities are correlated among bid-
ders and provides lower bounds for combinatorial auctions with item-bidding
and XOS valuations. As a part of our analysis, we use the concept of correlation
gap from [1] for submodular functions over product lattices.

1.1 Our Contribution

We assume that every mechanism satisfies a weak smoothness bound (for more
details see Sect. 2 below) with parameters λ, μ1, μ2 ≥ 0. It is known that for each
individual mechanism, this implies an upper bound of (max(1, μ1) + μ2)/λ on
the price of anarchy for no-regret learning outcomes and Bayes-Nash equilibria.
Furthermore, the same bound also applies for outcomes of multiple simultaneous
mechanisms that are tailored to availabilities, i.e., not oblivious.

In Sect. 3 we consider smoothness for oblivious learning and composition with
independent availabilities, where in each round t, each mechanism j is available
to each bidder i independently with probability qi,j . Our smoothness bound
involves the above parameters and the correlation gap of the class of valuation
functions. In particular, if valuations vi come from a class V with a correlation
gap of γ(V), the price of anarchy becomes γ(V) · (max(1, μ1) + μ2)/λ.

Our construction uses smoothness of simultaneous composition from [22].
However, since learning is oblivious, the deviations establishing smoothness must
be independent of availability. Here we use correlation gap to relate the value
for independent deviations to that of type-dependent Bayesian deviations. Cor-
relation gap is a notion originally defined for submodular set functions in [2]. It
captures the worst-case ratio between the expected value of independent and cor-
related distributions over elements with the same marginals. We use an extension
of this notion from [1] to Cartesian products of outcome spaces such as product
lattices. For the class V of monotone lattice-submodular valuations, we prove a
correlation gap of γ(V) = e/(e−1), which simplifies and slightly extends previous
results.

In Sect. 4, we analyze oblivious learning for composition with correlated avail-
abilities in the form of “everybody-or-nobody” – each mechanism is either avail-
able to all bidders or to no bidder. The probability for availability of mechanism
j is qj , and availabilities are independent among mechanisms. In this case, we
simulate independence by assuming that each bidder draws random types and
outcomes for himself. We also consider distributions where outcomes are drawn
independently according to the marginals from the optimal correlated distribu-
tion over outcomes. While these two distributions are directly related via correla-
tion gap, the technical challenge is to show that there is a connection to the value
obtained by the bidder. For lattice-submodular functions, we show a smoothness
bound that implies a price of anarchy of 4e/(e − 1) · (max(1, μ1) + μ2)/λ2.

For neither of the results is it necessary that all bidders follow our oblivious-
learning approach. We only require that bidders have no regret compared to this
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strategy. This is also fulfilled if some or all bidders determine their bids based
on the actually available items rather than in the oblivious way.

Finally, in Sect. 5 we show a lower bound for simultaneous composition of
single-item first-price auctions with general XOS valuation functions. The corre-
lation gap for such functions is known to be large [2], but this does not directly
imply a lower bound on the price of anarchy for oblivious learning. We provide
a class of instances where the price of anarchy for oblivious learning becomes
Ω((log m)/(log m log m)). This shows that for XOS functions it is impossible to
generalize the constant price of anarchy for single-item first-price auctions.

Our results have additional implications beyond auctions for the analysis of
regret learning in wireless networks. We discuss these in the full version [15,
Appendix A].

1.2 Related Work

Closely related to our work are combinatorial auctions with item bidding, where
multiple items are being sold in separate auctions. Bidders are generally inter-
ested in multiple items. However, depending on the bidder, some items may
be substitutes for others. As the auctions work independently, bidders have to
strategize in order to buy not too many items simultaneously. In a number of
papers [3,7,12,14] the efficiency of Nash and Bayes-Nash equilibria has been
studied. It has been shown that, if the single items are sold in first or second
price auctions and if the valuation functions are XOS or subadditive, the price
of anarchy is constant. Limitations of this approach are shown in [8,21].

Many of these proofs follow a similar pattern, namely showing smoothness.
This concept has been introduced by [19,20] to analyze correlated and Bayes-
Nash equilibria of general games. In [22] it was adjusted to mechanisms, and it
was shown that simultaneous or sequential composition of smooth mechanisms
is again smooth. Combinatorial auctions with item bidding are an example of
a simultaneous composition. To show smoothness of the combined mechanism,
it is thus enough to show smoothness of each single auction. Other examples
of smooth mechanisms are position auctions with generalized second price [6,
18] and greedy auctions [16]. The smoothness approach for mixed Bayes-Nash
equilibria shown in [22] is, in fact, slightly more general and continues to hold
for variants of Bayesian correlated equilibrium [13].

The complexity of finding such equilibria has been studied only very recently.
It has been shown in [5,11] that equilibria are hard to find in some settings. In
contrast, in [10] a different auction format is studied that yields good bounds
on social welfare for equilibria that can be found more easily. Although similar
in spirit, our approach is different – it shows that in some scenarios agents can
reduce the computational effort and still obtain reasonably good states with
existing mechanisms.

As such, our approach is closer to recent work [9] that shows hardness results
for learning full-information coarse-correlated equilibria in simultaneous single-
item second-price auctions with unit-demand bidders. As a remedy, a form of
so-called no-envy learning is proposed, in which bidders use a different form of
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bidding that enables convergence in polynomial time. While achieving a general
no-regret guarantee against all possible bid vectors is hard, we note here that
our approach based on smoothness requires only a guarantee with respect to
bids that are derived directly from the XOS representation of the bidder val-
uation. As such, bidders can obtain the guarantees required for our results in
polynomial time. Conceptually, we here treat a different problem – the impact
of availabilities, and more generally, different bidder types on learning outcomes
in repeated mechanism design.

A model with dynamic populations in games has recently been considered
in [17]. Each round a small portion of players are replaced by others with differ-
ent utility functions. When players use algorithms that minimize a notion called
adaptive regret, smoothness conditions and the resulting bounds on the price of
anarchy continue to hold if there are solutions which remain near-optimal over
time with a small number of structural changes. Using tools from differential
privacy, these conditions are shown for some special classes of games, including
first-price auctions with unit-demand or gross-substitutes valuations. In con-
trast, our scenario is orthogonal, since we consider much more general classes of
mechanims and allow changes in each round for possibly all players. However,
our model of change captures the notion of availability and therefore is much
more specific than the adversarial approach of [17].

The notion of correlation gap was defined and analyzed for stochastic opti-
mization in [1,2]. The notion was used in [23] for analyzing revenue maximization
with sequential auctions, which is very different from our approach.

2 Model and Preliminaries

There are n bidders that participate in m simultaneous mechanisms. Each mech-
anism j ∈ [m] is a pair Mj = (fj , pj), consisting of an outcome function and
payment functions. More formally, function fj : Bj → Xj maps every bid vector
b·,j on mechanism j into an outcome space Xj . The function pj = (p1,j , . . . , pn,j)
defines a payment for each bidder. That is, depending on the bid vector,
pi,j : Bj → R≥0 defines the non-negative payment for bidder i in mechanism j.

We consider a repeated framework with oblivious learning in a simultane-
ous composition of mechanisms with availabilities. There are T rounds and in
each round the bidders participate in m simultaneous mechanisms. In round
t = 1, . . . , T , each bidder places a bid bt

i,j for each mechanism, the mechanism
determines the outcome and the payments, and bidder i has a utility func-
tion ui(bt) = vi(f(bt)) − pi(bt), where vi is a valuation function over vectors
of outcomes and pi =

∑
j pi,j(bt). In addition, in each round we assume that

each mechanism is available to each bidder with a certain probability. We let
the Bernoulli random variable Ai,j = 1 if mechanism j is available to bidder
i. Due to availability, the mechanisms must also be applicable when only sub-
sets of bidders are placing bids. For this reason, it will be convenient to assume
that the outcome space for mechanism j ∈ [m] is Xj = X1,j × . . . × Xn,j and
xj ∈ Xj is xj = (xi,j)i∈[n]. We assume that each bidder, for whom the mecha-
nism is not available, must place a bid of “0”. If bidder i bids 0 for mechanism
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j, we assume fj(0, b−i,j) = ⊥i,j , where ⊥i,j is a “losing” outcome, and payment
pi,j(0, b−i,j) = 0. For convenience, we will denote by f = (fj)j∈[m] the composed
mechanism and by X = X1 × . . . × Xm its outcome space.

Oblivious Learning. We assume oblivious learning – each bidder runs a single
no-regret learning algorithm and uses the utility of every round as feedback, no
matter how the availability in each round turns out. In hindsight, the average
history of play for oblivious learning becomes an availability-oblivious variant
of coarse-correlated equilibrium [4]. Hence, the outcomes of oblivious learning
are captured by the coarse-correlated equilibria in the following one-shot game:
First, all bidders simultaneously place a bid for every mechanism. They know
only the probability distribution of the availabilities. Only after they placed their
bids, the availability of each mechanism for each bidder is determined at random.

Definition 1. An availability-oblivious coarse-correlated equilibrium is a dis-
tribution over bid vectors b (independent of A) such that, in expectation over all
availabilities, it is not beneficial for any bidder i to switch to another bid b′

i. For
each i and each b′

i, we have E [ui(b′
i, b−i)] ≤ E [ui(b)].

Indeed, our results also hold for a larger class of equilibria, in which a subset of
bidders might not be oblivious to availabilities. For our guarantees, it is enough to
consider distributions over bidding strategies b which might dependent on A such
that, in expectation over all availabilities, it is not beneficial for any bidder i to
switch to another bid b′

i. For each i and each b′
i, we have E [ui(b′

i, b−i)] ≤ E [ui(b)].
Note that both ordinary coarse-correlated equilibria and availability-oblivious
ones fulfill this property.

We bound the performance of these equilibria by deriving suitable smooth-
ness bounds.

Smoothness. We assume that each mechanism j satisfies weak smoothness as
defined in [22]. For any valuations vi,j : Xj → R

≥0 there are (possibly random-
ized) deviations1 b′

i,j for each i ∈ [n] such that for all bid vectors b·,j

E

⎡

⎣
∑

i∈[n]

vi,j(fj(b′
i,j , b−i,j)) − pi,j(b′

i,j , b−i,j)

⎤

⎦ (1)

≥ λ · max
xj∈Xj

∑

i∈[n]

vi,j(xj) − μ1 ·
∑

i∈[n]

pi,j(b·,j) − μ2

∑

i∈[n]

hi,j(bi,j , fj(b·,j)),

where hi,j(bi,j , xj) = maxb−i,j :fj(b·,j)=xj
pi,j(b·,j). For intuition, assume that (1)

holds with μ2 = 0. Consider a learning outcome with a no-regret guarantee where

1 In slight contrast to [22], we here assume that the smoothness deviations of a bidder
do not depend on his own current bid. This serves to simplify our exposition and
can be incorporated into our analysis.



300 M. Hoefer et al.

every bidder i can gain at most ε in any fixed deviation, i.e., E[vi,j(fj(b·,j)) −
pi,j(b·,j)] ≥ E

[
vi,j(fj(b′

i,j , b−i,j)) − pi,j(b′
i,j , b−i,j)

] − ε. Applying (1) pointwise
∑

i∈[n]

E[vi,j(fj(b·,j))−pi,j(b·,j)] ≥ λ · max
xj∈Xj

∑

i∈[n]

vi,j(xj)−μ1 ·
∑

i∈[n]

E[pi,j(b·,j)]−nε,

which implies for social welfare
∑

i∈[n]

E [vi,j(fj(b·,j))] ≥ λ · max
xj∈Xj

∑

i∈[n]

vi,j(xj)+(1−μ1) ·
∑

i∈[n]

E[pi,j(b·,j)]−nε.

Every bidder i can stay away from the market and payments are non-negative,
so 0 ≤ E[pi,j(b·,j)] ≤ E[vi,j(fj(b·,j))] + ε and

max(1, μ1)
∑

i∈[n]

E [vi,j(fj(b·,j))] ≥ λ · max
xj∈Xj

∑

i∈[n]

vi,j(xj) − (n + μ1)ε.

Thus, for ε → 0, the price of anarchy tends to max(1, μ1)/λ. More generally, (1)
implies a bound on the price of anarchy of (μ2 +max(1, μ1))/λ for many equilib-
rium concepts. If μ2 > 0, then the bound relies on an additional no-overbidding
assumption, which directly transfers to our results. For details see [22].

Valuation Functions. Our main results apply for the class of monotone lattice-
submodular valuations. Suppose for every mechanism j the set Xij of possible
outcomes for bidder i forms a lattice (Xij ,�ij) with a partial order �ij . Bidder
i has a lattice-submodular valuation vi if and only if it is submodular on the
product lattice (Xi,�i) of outcomes for bidder i: ∀xi, x̃i ∈ Xi : vi(xi∨x̃i)+vi(xi∧
x̃i) ≤ vi(xi) + vi(x̃i). In the paper, we concentrate on distributive lattices, for
which this definition is equivalent to the diminishing marginal returns property:

∀zi �i yi ∈ Xi =⇒ ∀t ∈ Xi : vi(t ∨ yi) − v(yi) ≥ vi(t ∨ zi) − v(zi).

Lattice-submodular functions generalize submodular set functions but are a
strict subclass of XOS functions. Bidder i has an XOS valuation vi if and only
if there are additive functions v1

i , v2
i , . . . with vki

i (xi) =
∑

j vki
ij (xij) for every

xi,j ∈ Xi,j and vi(xi) = maxki
vki

i (xi).

3 Composition with Independent Admission

We first consider simultaneous composition of smooth mechanisms with inde-
pendent availabilities. Here, all random variables Ai,j are independent, and we
let qi,j = Pr [Ai,j = 1].

Definition 2. Let v be a valuation function on a product lattice, coming
from a class of valuation functions V. Given vectors x1, . . . , xk and numbers
α1, . . . , αk ∈ [0, 1] such that

∑k
j=1 αj = 1, determine another vector y at ran-

dom by setting component yi to xj
i independently with probability αj. Then, the

smallest γ s.t.
∑k

j=1 αjv(xj) ≤ γ · E [v(y)] is the correlation gap of class V.
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Theorem 1. Suppose bidder valuations are monotone and come from a class
V with a correlation gap of γ(V). The price of anarchy for oblivious learn-
ing for simultaneous composition of weakly (λ, μ1, μ2)-smooth mechanisms with
valuations from V and fully independent availability is at most γ(V) · (μ2 +
max(1, μ1))/λ.

Before the proof of the main theorem of this section, we note that in the
full version [15, Appendix C.1] we also prove an upper bound of e/(e − 1) on
the correlation gap of lattice-submodular valuations with diminishing marginal
returns. This result slightly generalizes the result of [1] from composition of
totally ordered sets to arbitrary product lattices.

Lemma 1 (Correlation Gap on a Product Lattice). Let v be a function
with diminishing marginal returns on a product lattice. Given vectors x1, . . . , xk

and numbers α1, . . . , αk ∈ [0, 1] such that
∑k

j=1 αj = 1, determine another vector
y at random by setting component yi to xj

i independently with probability αj.
Then E [v(y)] ≥ (

1 − 1
e

) ∑k
j=1 αjv(xj).

From here, we arrive at the following corrolary of the main theorem.

Corollary 1. The price of anarchy for oblivious learning for simultaneous
composition of weakly (λ, μ1, μ2)-smooth mechanisms with monotone lattice-
submodular valuations and fully independent availability is at most e/(e − 1) ·
(μ2 + max(1, μ1))/λ.

Proof of Theorem 1. We will prove the theorem by defining an availability-
oblivious (randomized) deviation b′

i for each player i such that the following
inequality will hold for any (not necessarily availability-oblivious) bidding strat-
egy b:

∑

i

E [ui(b′
i, b−i)]

≥ 1
γ(V)

· λ ·
∑

i

E [vi(x∗)] − μ1

∑

i

E [pi(b)] − μ2

∑

i

E [hi(bi, f(b))] , (2)

where x∗ denotes the (random) optimal outcome. From this inequality, whose
form is in fact exactly that of the smoothness condition (1), the claim of the
theorem follows as described in Sect. 2.

In more detail, to attain the aforementioned inequality, we will relate each
player’s utility for deviating to b′

i to the utility he could achieve if he was
allowed to see and react upon the availabilities. In that case, he could sim-
ply use the smoothness deviation tailored to the specific availability profile
Ai = (Ai,1, . . . , Ai,m) that he is encountering. We denote this non-oblivious
smoothness deviation by bAi

i . Because the global mechanism is a simultaneous
composition of (λ, μ1, μ2)-smooth mechanisms, it is again (λ, μ1, μ2)-smooth.
Therefore we know that the non-oblivious deviations bAi

i do exist, and they
satisfy the smoothness inequality (1) by definition.
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We proceed to define, for each player i, the availability-oblivious deviation
b′
i. First, bidder i assumes for himself a reduced valuation function v̄i = α · vi,

for some appropriate α to be chosen later. The deviation b′
i is a composition of

component-wise independent deviations b′
i,j , i.e. b′

i = (b′
i,1, . . . , b

′
i,m) where each

b′
i,j is chosen independently. To arrive at b′

i,j , bidder i assumes that mechanism
j is available to him and draws all other availabilities independently according
to probabilities qi′,j′ . This means that he draws availabilities for all other play-
ers on all mechanisms and also his own availabilities on all mechanisms other
than j. Now he has a full availability profile, and therefore he can consider
the non-oblivious smoothness deviation. He observes the j-th component of this
smoothness deviation and sets b′

i,j to be equal to it. Note that b′
i,j will be applied

only with the probability that mechanism j is in fact available to bidder i, i.e.
with probability qi,j .

Next, we want to compare ui(b′
i, b−i) and ui(bAi

i , b−i). Let us focus on the
valuation vi(f(b′

i, b−i)) first. The non-oblivious smoothness deviation bAi
i is a

vector whose components are correlated. More precisely, to form this bid we
observe Ai, sample the availabilities A−i and bids b−i of other players, and
take the optimal allocation x∗ for the resulting availability profile A. Then, we
determine the � for which v̄i(x∗

i ) =
∑

j v̄�
i,j(x

∗
i,j) and use v̄�

i,j for determining
bAi
i,j (note that Ai can be regarded as bidder i’s type in a Bayesian sense, for

more details see [22]). Therefore, the components of bAi
i are correlated through

the common choice of �. Our deviation b′
i is assembled by setting b′

i,j = (bAi
i,j )kj

independently for each j.
Formally, let r�

i,j denote the conditional probability that the optimum yields
an outcome vector x∗ that attains its maximum value for bidder i in v̄�

i , given
that Ai,j = 1. Then, the marginal probability of observing bAi

i,j = (bAi
i,j )�

is r�
i,jqi,j . In b′

i we pick � independently for each mechanism with probabil-
ity r�

i,j , which yields a combined probability of r�
i,jqi,j for availability and

deviation. Thus, b′
i simulates the marginal probabilities of outcomes in bAi

i ,

i.e., Pr [fj(b′
i, b−i) = yi,j | A−i, b−i] = Pr

[
fj(bAi

i , b−i) = yi,j | A−i, b−i

]
for all

yi,j ∈ Xi,j , for each j ∈ [m]. Hence, for fixed A−i, b−i, the two expected val-

uations E [vi(f(b′
i, b−i)) | A−i, b−i] and E

[
vi(f(bAi

i , b−i)) | A−i, b−i

]
are related

via correlation gap.
Thus, setting α = 1/γ(V) and v̄i(x) = 1/γ(V) · vi(x) we get

E [vi(f(b′
i, b−i)) | A−i, b−i] =

∑

y∈X
vi(y) · Pr [f(b′

i, b−i) = y | A−i, b−i]

=
∑

y∈X
vi(y) ·

∏

j

Pr [fj(b′
i, b−i) = yi,j | A−i, b−i]

≥ 1
γ(V)

·
∑

y∈X
vi(y) · Pr

[
f(bAi

i , b−i) = y | A−i, b−i

]
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=
1

γ(V)
· E

[
vi(f(bAi

i , b−i)) | A−i, b−i

]

= E
[
v̄i(f(bAi

i , b−i)) | A−i, b−i

]
.

In addition, because payments are simply additive across mechanisms, it is
straightforward to see that for every bidder i

E [pi(b′
i, b−i) | A−i, b−i] = E

[
pi(bAi

i , b−i) | A−i, b−i

]
.

This allows to apply the smoothness bound for Bayesian mechanisms with inde-
pendent types from [22] to derive

∑

i

E [ui(b′
i, b−i)]

=
∑

i

E [vi(f(b′
i, b−i))] − E [pi(b′

i, b−i)]

≥
∑

i

E
[
v̄i(f(bAi

i , b−i))
]

− E
[
pi(bAi

i , b−i)
]

≥ λ ·
∑

i

E [v̄i(x∗)] − μ1

∑

i

E [pi(b)] − μ2

∑

i

E [hi(bi, f(b))]

=
λ

γ(V)
·
∑

i

E [vi(x∗)] − μ1

∑

i

E [pi(b)] − μ2

∑

i

E [hi(bi, f(b))]

This proves the desired smoothness guarantee and implies the theorem. �

4 Composition with Everybody-or-Nobody Admission

We consider the case in which at each point in time each mechanism is either
available to all bidders or to none. We let Aj = Ai,j for all i ∈ [n] and qj =
Pr [Aj = 1]. Note that all Aj are assumed to be independent.

Let the social optimum be denoted by x∗. We assume that x∗
j = ⊥j if Aj =

0. Otherwise, x∗ might have different values, depending on the availabilities
of other mechanisms. Let us denote the possible outcomes by x1

j , x
2
j , . . . and

let r�
j := Pr

[
x∗

j = x�
j |Aj = 1

]
. That is, r�

j is the marginal probability of x�
j

conditioned on j being available. Theorem 2 formulates our main result in this
section.

Theorem 2. The price of anarchy for oblivious learning for simultane-
ous composition of weakly (λ, μ1, μ2)-smooth mechanisms with monotone
lattice-submodular valuations and everybody-or-nobody admission is at most
4e/(e − 1) · (μ2 + max(1, μ1))/λ2.

Proof. We will prove that, for each bidder i and each mechanism j there are
randomized deviation strategies b′

i,j that are independent of the availabilities
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such that the following smoothness guarantee holds against any (potentially
non-oblivious) bidding strategy b:

∑

i

E [ui(b′
i, b−i)]

≥
(

1 − 1
e

)
λ2

4

∑

i

E [vi(x∗)] − μ1

∑

i

E [pi(b)] − μ2

∑

i

E [hi(bi, f(b))] .

From this guarantee the claim of the theorem again follows as described in Sect. 2.
To define b′

i,j , every bidder i draws two vectors zi and t̃i at random as follows.
He sets zi

j to x�
j with probability r�

j/α, where α = 2/λ, and to ⊥j with the
remaining probability. Furthermore, he sets t̃ij to x�

j with probability qjr
�
j and

to ⊥j with the remaining probability. These draws are performed independent
of any availabilities. Observe that for each i, we have E

[∑
i′ vi′(t̃i)

] ≥ (1 −
1
e )E [

∑
i′ vi′(x∗)] by Lemma 1.

Due to the random draws, each bidder i′ defines functions wi′
i,j : Ωj → R

for each bidder i and each mechanism j. Function wi′
i,j maps an outcome of

mechanism j, denoted by yj , to a real number as follows

wi′
i,j(yj) = vi(t̃i

′
1 , . . . , t̃i

′
j−1, yj ∧ zi′

j ,⊥j+1, . . . ,⊥m) − vi(t̃i
′
1 , . . . , t̃i

′
j−1,⊥j , . . . ,⊥m).

Note that these functions do not necessarily reflect the actual value any out-
come might have. They are only used to define the deviation strategy: bidder
i′ pretends all bidders i, including himself, would have valuations wi′

i,j for the
outcome of mechanism j. This gives him a deviation strategy b′

i′,j by setting
b′
i′,j = b∗

i′,j(w
i′
1,j , . . . , w

i′
n,j) as defined by the smoothness of mechanism j.

The proofs for the following three lemmas are presented in the full version [15,
Appendix C.2, C.3, C.4].

Lemma 2. For every bidder i and deviating bids b′
i,j = b∗

i,j(w
i
1,j , . . . , w

i
n,j),

E [vi(f(b′
i, b−i))] ≥

∑

j

E
[
wi

i,j(fj(b′
i,j , b−i))

] − 1
α(α + 1)

E
[
vi(t̃i)

]
.

Lemma 3. For the adjusted functions w we can apply smoothness to obtain
∑

i

∑

j

E
[
wi

i,j(fj(b′
i,j , b−i)) − pi,j(b′

i,j , b−i)
]

≥ λ
∑

i

∑

j

qjE
[
w1

i,j(z
1
j )

] − μ1

∑

i

E [pi(b)] − μ2

∑

i

E [hi(bi, f(b))] .

Lemma 4. For function w1, random vectors z1j and t̃1, and every mechanism j

∑

j

qjE
[
w1

i,j(z
1
j )

]
=

1
α
E

[
vi(t̃1)

]
.
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The bound from Lemma 3 has striking similarities to the smoothness bound
(1). However, it is expressed in terms of the functions wi′

i,j rather than the actual
valuation functions vi. The other two Lemmas show that, in expectation, these
functions are close enough to the functions vi so that this bound actually suffices
to prove the main result:

∑

i

E [ui(b′
i, b−i)] =

∑

i

E

⎡

⎣vi(f(b′
i, b−i)) −

∑

j

pi,j(b′
i,j , b−i)

⎤

⎦

≥
∑

i

∑

j

E
[
wi

i,j(fj(b′
i,j , b−i)) − pi,j(b′

i,j , b−i)
] − 1

α(α + 1)

∑

i

E
[
vi(t̃i)

]

(by Lemma 2)

≥ λ
∑

i

∑

j

qjE
[
w1

i,j(z
1
j )

] − μ1

∑

i

E [pi(b)] − μ2

∑

i

E [hi(bi, f(b))]

− 1
α(α + 1)

∑

i

E
[
vi(t̃1)

]

(by Lemma 3)

=
∑

i

(
λ

α
− 1

α(α + 1)

)

E
[
vi(t̃i)

] − μ1

∑

i

E [pi(b)] − μ2

∑

i

E [hi(bi, f(b))] .

(by Lemma 4)

By setting α = 2
λ

∑

i

E [ui(b′
i, b−i)] ≥ λ2

4

∑

i

E
[
vi(t̃1)

] − μ1

∑

i

E [pi(b)] − μ2

∑

i

E [hi(bi, f(b))]

≥
(

1 − 1
e

)
λ2

4

∑

i

E [vi(x∗)] − μ1

∑

i

E [pi(b)] − μ2

∑

i

E [hi(bi, f(b))] .

The last step follows from Lemma 1.
Note that technically the mechanism could be randomized itself. Our results

extend to this case in a straightforward way.

5 A Lower Bound for General XOS Functions

In this section we consider combinatorial auctions with item bidding and first-
price auctions. We can apply the previous analysis, since for each bidder the
outcomes form a trivial 2-element lattice – winning an item is the supremum
outcome, not winning is the infimum outcome. In the analysis, observe that each
bidder determines a random allocation of items according to the probabilities
in the optimum. Based on these allocations, bidders determine the valuations
wi′

i,j , which in turn form the basis for the deviation. The first-price auction with
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general bidding space is (1 − 1/e, 1, 0)-smooth [22]. If valuation functions are
submodular, the composition theorems can be applied to yield the following
corollary.

Corollary 2. The price of anarchy for oblivious learning for simultaneous com-
position of single-item first-price auctions with monotone submodular valuations
and fully independent availability is at most 1/(1−1/e)2; for everybody-or-nobody
admission it is at most 4/(1 − 1/e)3.

For more general XOS valuations, we prove a lower bound that with obliv-
ious bidding we will not be able to show a guarantee based on the smoothness
parameters – even for a single bidder, so the bound applies without assumptions
on correlation among bidders. The proof can be found in the full version [15,
Appendix C.5].

Theorem 3. In a simultaneous composition of discrete first-price single-item
auctions with m items and XOS valuations, the price of anarchy for pure Nash
equilibria with oblivious bidding can be as large as Ω((log m)/(log log m)), while
each single mechanism is weakly (1/2, 1, 0)-smooth.

6 Conclusion

In this paper, we have studied an oblivious variant for no-regret learning in
repeated games with incomplete information and proved a composition theorem
for smooth mechanisms. The bounds show that even if bidders apply learning
algorithms independently of their types, they can still obtain outcomes that
approximate the optimal social welfare within a small ratio.

Our primary motivation are changes over time on the supply side. That is,
bidders value items the same at all times but are constrained when they can buy
them. A different interpretation that leads to the same model is when bidders
value items differently from time to time. Here the valuation for a bundle has
the special structure that it is given by the value of a fixed submodular function
evaluated on the intersection of this bundle with a random set.

There is potential to generalize this approach to other interesting settings.
For example, one could consider general independent types, where the complete
availability-vector of a single bidder is drawn from a bidder-specific distribution,
and for each bidder this is done independently. In the full version [15, Appendix B],
we give a partial answer and show how our techniques can be extended to the
following case. Consider simultaneous single-item auctions with unit-demand val-
uations, i.e., vi(S) = maxj∈S vi,j . The distribution over valuations is such that
for each item the value vi,j is independently drawn from a distribution of small
support. Independent availabilities can be captured in this setting by setting vi,j

to a fixed value or to 0 with the respective probabilities.
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Abstract. We study the complexity of motivating time-inconsistent
agents to complete long term projects in a graph-based planning model
as proposed by Kleinberg and Oren [5]. Given a task graph G with n
nodes, our objective is to guide an agent towards a target node t under
certain budget constraints. The crux is that the agent may change its
strategy over time due to its present-bias. We consider two strategies to
guide the agent. First, a single reward is placed at t and arbitrary edges
can be removed from G. Secondly, rewards can be placed at arbitrary
nodes of G but no edges must be deleted. In both cases we show that it is
NP-complete to decide if a given budget is sufficient to guide the agent.
For the first setting, we give complementing upper and lower bounds on
the approximability of the minimum required budget. In particular, we
devise a (1 +

√
n)-approximation algorithm and prove NP-hardness for

ratios greater than
√
n/3. Finally, we argue that the second setting does

not permit any efficient approximation unless P = NP.

Keywords: Approximation algorithms · Behavioral economics · Com-
putational complexity · Planning and scheduling · Time-inconsistency

1 Introduction

In this paper we study the phenomenon of time-inconsistent behavior from
a computational perspective. Time-inconsistency is a fundamental problem in
behavioral economics and has many examples in every day life including acad-
emia. For instance, consider a referee who agrees to evaluate a scientific proposal.
Despite good intentions, the referee gets distracted and never submits a report.
Or consider a student who enrolls in a course. After completing the first home-
work assignments, the student drops out without earning any credit. In general,
these situations have a reoccurring pattern: An agent makes a plan to complete
a set of tasks in the future, but changes the plan at a later point in time. This
behavior is sometimes the result of unforeseen circumstances. However, in many
cases the plan is changed or abandoned even if the circumstances stay the same.
This paradox behavior of procrastination and abandonment is well-known in the
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field of behavioral economics and might severely affect the performance of agents
in an economic or social domain, see e.g. [1,9,11].

A sensible explanation for time-inconsistent behavior is that agents assign
disproportionately greater value to current cost than to future expenses. For
example, consider a simple car wash problem in which Alice commissions Bob to
wash her car. Each day Bob can either do the chore or postpone it to the next
day. However, the longer he waits, the dirtier the car gets. On day i cleaning
the car incurs a cost of i/50 while the cost of waiting another day is 0. After
completing the task, Bob will receive a reward of 1 from Alice. Because Bob
is present-biased, he perceives any current cost according to its true value, but
discounts future costs and rewards by a factor of β ∈ [0, 1]. On day i he compares
the cost of washing the car right away, which is i/50, to his perceived cost of
washing it on the next day, which is β(i+1)/50. Suppose that β = 1/3. Because
i/50 > β(i + 1)/50, he procrastinates with good intentions of doing the job on
the following day. On day i = 50, Bob’s perceived cost for washing the car on
the next day or any of the following days is at least β(50 + 1)/50. This exceeds
his perceived reward of β and therefore he abandons the project.

Previous Work: There exists an extensive body of work on time-inconsistent
behavior in the economic literature, cf. again [1,9,11]. In particular, the car wash
problem as stated above is a special case of quasi-hyperbolic discounting [7]. We
build on work by Kleinberg and Oren, who proposed a graph-based model that
captures time-inconsistent behavior in general planning problems [5]. Since its
introduction, their work has sparked an active line of research at the intersection
of economics, mathematics and computer science, see e.g. [4,6].

We will give a formal definition of our model in Sect. 2. Essentially, it consists
of a directed acyclic task graph G with n nodes. Each node represents a certain
state of the project, whereas the edges are tasks necessary to transition between
states. The workload of individual tasks is modeled by edge costs. To complete
the project, an agent with bias factor β ∈ [0, 1] must move from a designated
source s to a target t. As a motivation, rewards are placed on the nodes of G.
When located at some node of G, the agent considers all possible paths to t.
However, because of its time inconsistency, the agent only evaluates the cost of
incident edges accurately. All other costs and rewards are discounted by a factor
of β. Let P be a path that minimizes the agent’s perceived net cost . If this cost
is at most 0, the agent traverses the first edge of P and then reassesses its plan.
Otherwise the agent abandons the project. A graph in which the agent always
reaches t is called motivating .

In this paper, we will take the perspective of a project designer, whose
main objective is budget-efficiency. In other words, we try to minimize the
reward we must spend to get the project completed. In general, various strategic
arrangements can be made to increase budget-efficiency. Because the aim of such
arrangements is to commit the agent to finish the project, they are also called
commitment devices [2]. Consider, for instance, the car wash example. As the
project designer Alice can introduce a deadline to keep Bob from procrastinat-
ing. As we will show in Sect. 2, this is beneficial to both of them. In general,
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the introduction of deadlines belongs to a broader range of popular commitment
devices that reduce the agent’s set of choices, see e.g. [9,10]. Note that the graph-
based model lends itself to this approach as we can model any reduction of the
agent’s choices by simply removing the corresponding edges from G [5].

A second popular commitment device is to hand out rewards at intermediate
states of the project [10]. In the graph-based model, we can do this by placing
rewards at non-terminal nodes of G. We call such an assignment a reward config-
uration. This approach is especially interesting if the project designer’s budget
is only affected by rewards that are actually collected by the agent. As we will
show in Sect. 2, this allows the construction of exploitative projects in which the
agent is motivated by rewards it never claims. Considering the power and versa-
tility of the two commitment devices mentioned above, Kleinbeg and Oren pose
the complexity of computing motivating subgraphs and reward configurations
as two important open problems [5].

In an unpublished manuscript, Tang et al. address both of these prob-
lems [12]. First, they show that it is NP-hard to decide if G contains a moti-
vating subgraph for a fixed reward placed at t. Secondly, they give NP-hardness
results for three variations of the reward configuration problem: One in which
the rewards must be positive, one in which rewards may also be negative and
one in which every reward that is laid out must be collected. In each setting, the
project designer is charged the absolute sum of the rewards placed on G.

Our Contribution: We will thoroughly analyze the complexity and approx-
imability of computing motivating subgraphs as well as reward configurations.
In Sect. 3, we will settle the complexity of finding a motivating subgraph for a
fixed reward at t. First, we will show that the problem is polynomially solvable if
β = 0 or β = 1. We will then prove that it is NP-complete to decide the existence
of a motivating subgraph for general β ∈ (0, 1). Tang et al. showed NP-hardness
via a reduction from 3-SAT [12]. In contrast, we use reduction from k DIS-
JOINT CONNECTING PATHS. We believe this reduction to be simpler. More
importantly, we will be able to generalize the reduction to obtain a hardness of
approximation result at a later point.

Considering the hardness of the motivating subgraph problem, Sect. 4 will
focus on an optimization version of the problem. More formally, we want to
compute the minimum reward that must be placed at t such that G contains
a motivating subgraph. We will propose a simple (1 +

√
n)-approximation algo-

rithm that outputs the reward and a corresponding motivating subgraph. As the
main technical contribution of this paper, we will show that this approximation
is asymptotically tight. In particular, we will prove that the problem cannot be
approximated efficiently within a ratio less than

√
n/3 unless P = NP. Thus, we

resolve the approximability of the motivating subgraph problem.
Finally, Sect. 5 will explore the problem of finding reward configurations

within a fixed total budget of at most b. We will examine a version of the
problem that, in our view, is the most sensible one. First, only positive rewards
may be laid out. This assumption is reasonable as it is not entirely clear how
negative rewards should be implemented in practice and how they are accounted



312 S. Albers and D. Kraft

for in the designer’s budget. Secondly, the designer must only pay for rewards
that are actually collected by the agent. This setting is fundamentally different
from the settings analyzed by Tang et al. as it allows exploitative solutions. We
show that the problem can be solved in polynomial-time if β = 0 or β = 1.
Using a reduction from SET PACKING, we prove that deciding the existence
of a motivating reward configuration is NP-complete for general β ∈ (0, 1), even
if b = 0. This immediately implies that the optimization problem of finding
the minimum b for which a motivating reward configuration exists cannot be
approximated efficiently within any ratio greater or equal to 1 unless P = NP.

2 The Formal Model

In the following, we will present Kleinberg and Oren’s graph-based model [5]. Let
G = (V,E) be a finite directed acyclic graph. Associated with each edge (v, w)
is a non-negative cost cG(v, w). Furthermore, the project designer may lay out
positive rewards rG(v) at arbitrary nodes v. We call r a reward configuration.
An agent with bias factor β ∈ [0, 1] has to incrementally construct a path from
a source s to a target t. Located at some node v different from t, the agent
evaluates its lowest perceived net cost . For this purpose it considers all paths P
from v to t. However, only the initial edge of P is accounted for by its actual
value. All other costs and rewards along P are discounted by a factor of β. More
precisely, let dG,r(w) denote the cost of a cheapest path from some node w to t
with respect to the actual costs and rewards. Note that although dG,r(w) might
be negative depending on r, no negative cycles can occur as G is acyclic. If
no path exists, we assume that dG,r(w) = ∞. The lowest perceived net cost is
defined as ζG,r(v) = min{cG(v, w) + βdG(w) | (v, w) ∈ E} if v has at least one
outgoing edge. Otherwise, ζG,r(v) = ∞. If ζG,r(v) > 0, then the agent has no
motivation to continue the project and abandons. Conversely, if ζG,r(v) ≤ 0, the
agent traverses an edge (v, w) for which cG,r(v, w) + βdG,r(w) = ζG,r(v). Ties
are broken arbitrarily. Note that the agent could take more than one path from
s to t. A project is called motivating if the agent successfully reaches t along all
such paths. To simplify our notation, we will omit G and r in the index of c, r,
d and ζ whenever the graph and reward configuration is clear from context.

To illustrate the model, we consider the car wash problem from Sect. 1 once
more. Assume that Alice’s car must be washed during the next m days with
m > 50. The task graph G is depicted in Fig. 1. For each day i with 1 ≤ i ≤ m
there is a node vi. Let v1 be the source. There is an edge (vi, t) of cost i/50 that

s
v2 v3 vm−1 vm

t

. . .

. . .

0 0 0

1
50

2
50

3
50

m−1
50

m
50

Fig. 1. Task graph of the car wash problem
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represents the task of washing the car on day i. To keep the drawing simple,
the edges (vi, t) merge in Fig. 1. Furthermore, for every i < m there is an edge
(vi, vi+1) of cost 0 to postpone the task to the next day. Assume for now that
Bob is located at some vi with i < m. His perceived cost for procrastinating
is at least β(i + 1)/50. This bound is tight if he plans to traverse (vi, vi+1)
and then (vi+1, t). Alternatively, his perceived cost for using (vi, t) and washing
the car on day i is i/50. Recall that Alice offers Bob a single reward r(t) = 1
upon completing the car wash. Furthermore, β = 1/3. As a result, the minimum
perceived net cost is ζ(vi) = β(i + 1)/50 − β. We conclude that Bob always
prefers to wash the car on the next day instead of doing it right away. Moreover,
for i < 50 it holds true that ζ(vi) ≤ 0. This means that during the first 49 days,
Bob moves along (vi, i + 1) believing that he will finish the project the next
day. However, once Bob reaches v50 he suddenly realizes that ζ(v50) > 0 and
abandons. Therefore, the car wash problem in its current form is not motivating.

Next, assume that (v16, v17) is deleted from G. This can be thought of as a
deadline set by Alice at day i = 16. Let G′ be the resulting subgraph. When
Bob reaches v16, he cannot procrastinate anymore but must wash the car to get
a reward. The perceived net cost is ζG′(v16) = 16/50 − β = −1/75. Because this
is less than 0, he washes the car. This makes G′ a motivating subgraph. It is
interesting to note that no reward configuration in G is motivating for a budget
of b < (m/50)/β. This is because no matter how much reward is placed at any
of the nodes, Bob prefers to procrastinate until the very last day.

To illustrate the power of reward configurations, we will consider a second
scenario. Suppose that Alice offers Bob a new job. If he first washes her car,
which by now incurs a cost of 1, and afterwards also mows her lawn, which has
a cost of 6, he receives a reward of 10. What Bob is unaware of is that Alice
does not care about the lawn. Instead, she tries to get Bob to wash the car for
free. We model this project with a task graph G consisting of a path from s to t
via the intermediate node v and another path from v to t via w. The edge (s, v)
corresponds to the car wash and has a cost of 1. Furthermore, (v, w) corresponds
to mowing of the lawn and has a cost of 6. The edges (v, t) and (w, t) are of cost 0.
Assuming that β = 1/3, there is a reward configuration r for which Bob will
wash the car but will not claim a reward. Suppose Alice sets r(w) = 10. In this
case, Bob traverses (s, v) with a minimum perceived net cost of ζ(s) = −1/3
along the path s, v, w, t. When at v, Bob reevaluates the net cost for traversing
(v, w) to 8/3. In contrast, finishing the project right away along (v, t) has cost 0.
As a result, Bob changes his plan and moves to t without collecting the reward,
although he already washed the car.

3 Finding Motivating Subgraphs

In this Section, we assume that the project designer may only place a single
reward at t. This way, no exploitative reward configurations are possible. We
first argue that the problem of finding a motivating subgraph can be solved in
polynomial-time if β = 0 or β = 1. Although this claim might seem intuitive,
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we will be able to generalize the idea to show the existence of an (1 +
√

n)-
approximation algorithm for general β ∈ (0, 1) in Sect. 4.

Proposition 1. If β = 0 or β = 1, it is possible to find a motivating subgraph
in polynomial-time for arbitrary r(t) ≥ 0.

Proof. First, assume β = 0. Because the agent has no value for future rewards, it
must walk along a path of cost 0. Otherwise, it would abandon once it encounters
an edge of positive cost. If such a path exists, it itself is a motivating subgraph.
Conversely, if no such path exists, no subgraph can be motivating. Next, assume
β = 1. In this case, the agent behaves time-consistent and follows a cheapest
path from s to t. Therefore, G contains a motivating subgraph if and only if there
is a path from s to t with a total edge cost less or equal to r(t). Any subgraph
containing such a path is motivating. Clearly, if a motivating subgraph exists, it
can be found efficiently in both scenarios, i.e. β = 0 and β = 1. ��

Unfortunately, computing motivating subgraphs for general β ∈ (0, 1) is more
challenging. We will give evidence for this in Theorem1 by showing that the
corresponding decision problem, which we name MOTIVATING SUBGRAPH
(MS), is NP-complete for general β ∈ (0, 1).

Definition 1. Given a task graph G, a reward r(t) ≥ 0 and a bias factor
β ∈ [0, 1], decide the existence of a motivating subgraph of G.

To prove NP-completeness of MS, we must first show that MS is contained
in NP. For this purpose we will argue that it can be decided in polynomial-time
whether a task graph is motivating for a given reward configuration. Note that
a naive approach that simply simulates the agents walk through G must fail as
the agent might take more than one path whenever it is indifferent between two
options. A possible solution that preserves polynomial-time bounds is presented
in the following proposition.

Proposition 2. For any task graph G, reward configuration r and bias factor
β ∈ [0, 1], it can be decided in polynomial-time if G is motivating.

Proof. We modify G in the following way. For each node v we calculate the
lowest perceived net cost ζG,r(v). Next, we take a copy of G, say G′, in which we
remove all edges (v, w) for which ζG,r(v) < cG(v, w) + βdG,r(w) or ζG,r(v) > 0.
In other words, we remove all edges from G′ that do not minimize the agent’s
perceived net cost or are not motivating. Let V ′ be the set of all nodes that
can be reached from s in G′. Observe that V ′ contains exactly those nodes that
might be visited by the agent in G. Clearly, G is motivating if and only if the
agent can reach t from all nodes of V ′ via some path in G′. This condition can
be checked in polynomial-time. ��

To show NP-hardness, we will use a reduction from k DISJOINT CONNECT-
ING PATHS (k-DCP), which is defined as follows [3]:
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Definition 2. Given a graph H and k disjoint node pairs (s1, t1), . . . , (sk, tk),
decide if H contains k mutually node-disjoint paths, one connecting every si to
the corresponding ti.

Lynch showed that k-DCP is NP-complete if H is undirected [8]. A simple
modification of Lynch’s reduction, which can be found in the full version of this
paper, implies that k-DCP is also NP-complete if H is directed and acyclic.

Before we finally tackle Theorem 1, we want to draw attention to a useful price
structure that is common to all reductions presented in this paper. Imagine a
directed path along k+1 edges, such that the i-th edge has a cost of (1−β)k+1−i.
According to the following Lemma, the agent’s perceived cost for following the
path to its end is 1 at every node except for the last.

Lemma 1. For every positive integer k and bias factor β ∈ [0, 1] it holds that:

(1 − β)k + β

(k−1∑

i=0

(1 − β)i

)

= 1.

The proof of Lemma 1 can be found in the full version of this paper. We are
now ready to show NP-completeness of MS.

Theorem 1. MS is NP-complete for any bias factor β ∈ (0, 1).

Proof. By Proposition 2, any motivating subgraph G′ serves as a certificate for
a “yes”-instance of MS. Consequently, MS is in NP. To complete the proof, we
will establishes NP-hardness via a polynomial reduction from k-DCP.

Consider an instance I of k-DCP consisting of a directed acyclic graph H
and k disjoint node pairs (s1, t1), . . . , (sk, tk). We will embed H into the task
graph G of an MS instance J such that G has a motivating subgraph if and
only if H has k disjoint connecting paths. For this purpose we assume that the
encoding length of β ∈ (0, 1) is polynomial in that of I and set r(t) = 1/β. The
task graph G, which is illustrated in Fig. 2, is constructed as follows:

To get from s to t, the agent must follow the so called main path along
intermediate nodes v1, . . . , vk+3. The first k + 1 edges of this main path each
have a cost of (1 − β)3 − ε, with ε being a positive constant satisfying

ε < min
{

β
1 − β

k + 1
, β

(1 − β)3

1 + β

}

.

The last three edges have a cost of (1−β)2, 1−β and 1, respectively. To keep the
agent motivated, we introduce k shortcuts that connect every vi with 1 ≤ i ≤ k
to t via the embedding of H. More formally, the i-th shortcut starts at vi and
is routed through a distinct node wi via an edge of cost (1 − β)2. Node wi is
then connected to si via an edge of cost (k + 1 − i)(1 − β)/(k + 1). Finally, ti is
connected to t via an edge of cost i(1 − β)/(k + 1) + 1. To keep Fig. 2 simple,
the edges (ti, t) are merged and their cost is depicted as two terms, namely
i(1 − β)/(k + 1) and +1. Note that the prices of (wi, si) and (ti, t) complement
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(1 − β)3 − ε (1 − β)3 − ε (1 − β)3 − ε

(1 − β)2

1 − β

1

(1 − β)2 (1 − β)2 (1 − β)2

k(1−β)
k+1

(k−1)(1−β)
k+1

1−β
k+1

k(1−β)
k+1

2(1−β)
k+1
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Fig. 2. Reduction from a general k-DCP instance: H

each other, i.e. they sum to (1−β)+1. The edges of H all have a cost of 0. The
resulting graph G is acyclic and its encoding length polynomial in I.

It remains to show, that J has a solution if and only if I has one. (⇒) First,
suppose I has a solution, i.e. there exist k node-disjoint connecting paths. Let
G′ be a subgraph of G obtained by deleting all edges of H that are not part of
one of these paths. Furthermore, let s = v0 and assume the agent is located at vi

with 0 ≤ i ≤ k. According to Lemma 1, the agent perceives a net cost of −ε for
taking the (i+1)-st shortcut or if i = k for following the main path. In contrast,
if 0 < i ≤ k, the perceived net cost of the i-th shortcut is 0. As a result, the
agent follows the main path to vk+1 and then for lack of other options continues
to t. We conclude that G′ is a motivating subgraph of G.

(⇐) Due to space constraints, we only sketch this direction of the proof.
A thorough analysis can be found in the full version of this paper. Suppose I
has no k node-disjoint connecting paths. Consequently, any subgraph of G must
contain at least one shortcut i such that the cheapest path from vi to t via wi

is different from (1 − β)2 + (1 − β) + 1. We call such a shortcut degenerate.
We distinguish between two scenarios: either the degenerate shortcuts are too
expensive, and the agent looses motivation on the main path, or a degenerate
shortcut is so cheap that the agent enters it. In the first case, the agent clearly
abandons. In the latter case, the agent must traverse one of the edges (ti, t) to
reach t. However, since the price of (ti, t) is greater than 1, a reward of r(t) = 1/β
is not sufficiently motivating for the agent to take this step. Again, it abandons.
Therefore, no subgraph can be motivating. ��

4 Approximating Reward Optimal Subgraphs

Considering that the decision problem MS is NP-hard, the next and arguably
natural question is whether good approximation algorithms exist. Therefore, we
restate MS as an optimization problem that we call MS-OPT.
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Definition 3. Given a task graph G and a bias factor β ∈ (0, 1), determine the
minimum reward r(t) such that G contains a motivating subgraph.

We will present two simple approximation algorithms: one that performs well
for small values of β and one that leads to good solutions for large β. The algo-
rithms return a reward r(t) as well as a corresponding motivating subgraph G′.
Combining both algorithms eventually yields a general approximation algorithm
with a ratio of (1 +

√
n) for any β ∈ (0, 1).

First, we assume that β is small. Because the agent is highly oblivious to
the future, it is sensible to guide it along a path with minimal maximum edge
cost. Paths with this property are called minmax paths. A minmax path can
be computed easily in polynomial-time. For instance, starting with an empty
subgraph, the edges of G can be inserted in non-decreasing order of cost until s
and t become connected for the first time. Any path from s to t in the resulting
subgraph is a minmax path. Our first algorithm, called MinmaxPathApprox,
computes a minmax path P from s to t and returns a subgraph G′ whose edges
are that of P . Furthermore, r(t) is chosen such that max{ζG′,r(v) | v ∈ P} = 0.
Clearly, this reward is sufficient to make G′ motivating.

Proposition 3. MinmaxPathApprox has an approximation ratio of 1 + βn.

Proof. Let c denote the maximum cost among the edges of the minmax path
P computed by MinmaxPathApprox. By definition of P , the agent must
encounter an edge of cost c or more in any subgraph that connects s with
t. Thus the optimal reward is lower bounded by c/β. Conversely, the cost
of every edge in P , of which there are at most n − 1, is c or less. This
means that the reward returned by MinmaxPathApprox is upper bounded
by r(t) ≤ c/β + (n − 2)c ≤ c/β + nc. From this the desired approximation ratio
of 1 + βn follows immediately. ��

Next, suppose that β is large and the agent is hardly present-biased at all.
Our second algorithm, called CheapestPathApprox, simply computes a path
P of minimum cost from s to t and returns a subgraph G′ containing the edges
of P . Again, the algorithm chooses r(t) such that max{ζG′,r(v) | v ∈ P} = 0.

Proposition 4. CheapestPathApprox has an approximation ratio of 1/β.

Proof. Let P be the path computed by CheapestPathApprox and c the
total cost of P . At any node v of P the agent’s perceived net cost is at most
dG′,r(v) − βr(t), which is less than c − βr(t). The reward returned by Cheap-
estPathApprox is therefore at most c/β. Conversely, when located at s, the
agent perceives a cost of at least βc in any subgraph of G, including the optimal
one. Consequently, a reward of c or more is required to motivate the agent. This
establishes the approximation ratio of 1/β. ��

It is interesting to see how MinmaxPathApprox and CheapestPathAp-
prox generalize the algorithmic ideas of Proposition 1. If we combine the two and
use MinmaxPathApprox whenever β ≤ 1/

√
n and CheapestPathApprox

otherwise, we obtain a general approximation algorithm called CombinedAp-
prox. Propositions 3 and 4 directly imply the following result.
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Theorem 2. CombinedApprox has an approximation ratio of 1 +
√

n.

Although the algorithmic techniques of CombinedApprox are simple, the
following Theorem implies that asymptotically the approximation ratio is the
best we can hope for in polynomial-time.

Theorem 3. MS-OPT is NP-hard to approximate within a ratio less than√
n/3.

Proof. To establish hardness of approximation, we will use another reduction
from k-DCP. Let I be an instance of k-DCP that consists of a directed acyclic
graph H and k disjoint node pairs (s1, t1), . . . , (sk, tk). Furthermore, let � be an
arbitrary positive integer. The best choice of � will be determined later. We will
construct an instance J of MS-OPT that consists of a task graph G and has the
following two properties: (a) If I has a solution, then G has a subgraph that is
motivating for a reward of r(t) = 1/β. (b) If I does not have a solution, then
no subgraph of G is motivating for a reward of r(t) = �/β or less. Consequently,
any algorithm achieving an approximation ratio of � or better must solve I.

Unlike Theorem 1, the bias factor cannot be chosen arbitrarily anymore. Con-
sidering that Proposition 4 gives a (1/β)-approximation, β must be less than 1/�.
For convenience, we set β = 1/(3� + 3). From a structural point of view, the
task graph G consists of two units: the embedding unit and the amplification
unit . The first unit contains an embedding of H, while the second unit amplifies
approximation errors occurring in the embedding unit.

The overall structure of the embedding unit is similar to the task graph of
Theorem 1. There exists a main path and k shortcuts that link to the embedding
of H. However, there are some differences. First, the main path starts at the last
node of the amplification unit u9�2 and passes k + 3� + 3 intermediate nodes
v1, . . . , vk+3�+3 before it ends in t. The first k + 1 edges of the main path each
have a cost of (1 − β)3�+3 − ε, where ε is a positive value satisfying

ε < min
{

β
(1 − β)3�+1

k + 1
, β

(1 − β)3�+3

1 + β
,

1
1 + �

, (1 − β)3�+3 − 1
3

}

.

The remaining edges (vi, vi+1) of the main path, with k < i ≤ k + 3� + 3 and
t = vk+3�+3+1, have an increasing cost of (1 − β)k+3�+3−i. Furthermore, the
initial edge (vi, wi) of each shortcut has a cost of (1 − β)3�+2, while the edges
(wi, si) and (ti, t) have complementing prices of (k + 1 − i)(1 − β)3�+1/(k + 1)
and i(1 − β)3�+1/(k + 1) +

∑3�
j=0(1 − β)j . All edges of H are again free of

charge. As a result, the cost of each shortcut sums up to
∑3�+2

j=0 (1 − β)j .
The amplification unit, which is shown in Fig. 3, consists of an amplification

path connecting s to u9�2 along the intermediate nodes u1, . . . , u9�2−1. Each edge
of the amplification path has a cost of (1−β)3�+3−ε. From every ui there is also
an edge of cost (1 − β)3�+2 to a common node z. Node z is in turn connected to
t via an edge of cost

∑3�+1
j=0 (1 − β)j .

To conclude the proof, we must show that our construction satisfies properties
(a) and (b) stated above. We start with (a) and assume that k node-disjoint
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Fig. 3. Amplification unit

paths exist in H. Let G′ be a subgraph of G obtained by deleting all edges
of H that are not part of such a path. Furthermore, we set r(t) = 1/β and
s = u0. When located at ui with 0 ≤ i ≤ 9�2, Lemma 1 suggests that the agent
perceives a net cost of −ε for traversing (ui, ui+1) and then following (ui+1, z)
or the first shortcut of the embedding unit if i = 9�2. Conversely, if i > 0, the
agent evaluates the net cost of walking along (ui, z) to 0. As a result, the agent
follows the amplification path until it reaches v1. From this point on it travels
along the main path of the embedding unit until it eventually arrives at t for the
same reasons given in Theorem 1. This means that G′ is a motivating subgraph
for a reward of r(t) = 1/β.

Due to space constraints, we refer to the full version of this paper for a
thorough proof of statement (b). At this point we will confine ourselves to a brief
sketch of the main ideas. Assume that I has no k node-disjoint paths. As argued
before in Theorem 1, at least one degenerate shortcut must exist in any subgraph
of G whose minimum cost is different from the target value of

∑3�+2
j=0 (1 − β)j .

As a result, two scenarios are conceivable. First, the perceived cost of some
shortcut is so low that the agent diverts from the main path. However, in this
case the agent must pass one of the edges (ti, t), whose cost is greater than �,
to reach t. Consequently, no reward r(t) ≤ �/β can be motivating. If the first
case does not apply, one can argue that the perceived net cost of the main path
at u9�2 is greater than 1 − βr(t). To prevent the agent from moving to z, which
results in cost greater than � at (z, t), all edges (ui, z) must be removed from the
amplification unit. However, in this case the agent perceives a net cost greater
than � − βr(t) at s. Again, no reward r(t) ≤ �/β is sufficiently motivating. If �
is the number of nodes in H, then our lower bound on the approximability of
MS-OPT converges to

√
n/3 as the size of H increases. ��

5 Motivation Through Intermediate Rewards

In this section, we study the complexity of motivating agents through the strate-
gic placement of rewards. In this scenario, the task graph must not be pruned.
The goal is to minimize the total value of the rewards along the agent’s walk from
s to t. Similar to the previous setting of Sects. 3 and 4, a motivating reward con-
figuration within a given budget b can be computed in polynomial-time if β = 0
or β = 1.
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Proposition 5. A motivating reward configuration within budget b can be com-
puted in polynomial-time for β = 0 or β = 1.

Proof. First, suppose that β = 0. In this case, the agent does not care for any
future rewards and only traverses edges of cost 0. Let V ′ be the set of nodes that
can be reached from s for cost 0. Note that V ′ contains exactly those nodes that
might be visited by the agent independent of the specific reward configuration.
As a result, G has a motivating reward configuration if and only if t can be
reached from every node of V ′ for a cost of 0. Because no rewards need to be
placed in this scenario, the budget constraint is always satisfied. Next, assume
that β = 1. In this case the agent is time-consistent. Let c be the cost of a
cheapest path from s to t. Setting r(t) = c yields a motivating and also optimal
reward configuration. The required budget is c. Clearly both cases, β = 0 and
β = 1 can be solved in polynomial time. ��

As before, the problem becomes much harder for general β ∈ (0, 1). In partic-
ular, the corresponding decision problem MOTIVATING REWARD CONFIG-
URATION (MRC), which we define below, is NP-hard.

Definition 4. Given a task graph G, a budget b and a bias factor β ∈ [0, 1],
decide the existence of a motivating reward configuration r such that the total
reward collected on any walk of the agent is at most b.

The following proposition establishes membership of MRC in NP.

Proposition 6. For any task graph G, reward configuration r and bias factor
β ∈ [0, 1], it is possible to decide in polynomial-time if r is motivating within a
given budget b.

A proof of Proposition 6 can be found in the full version of this paper. To
show NP-hardness of MRC, we will use a reduction form SET PACKING (SP),
cf. [3]. For convenience, the definition of SP is stated below.

Definition 5. Given a collection of finite sets S1, . . . , S� and an integer k ≤ �,
decide if at least k of these sets are mutually disjoint.

We are now ready to prove NP-completeness of MRC. Note that the problem
remains hard even if the budget is 0.

Theorem 4. MRC is NP-complete for any bias factor β ∈ (0, 1), even if b = 0.

Proof. By Proposition 6, we can use any motivating reward configuration r
within budge b as certificate for a “yes”-instance of MRC. This establishes mem-
bership of MRC in NP. To prove NP-hardness we will present a polynomial-time
reduction from SP to MRC. We focus on the case that b = 0. A modified reduc-
tion for budgets b > 0 can be found in the full version of this paper.

Let I be an instance of SP consisting of finite sets S1, . . . , S� and an integer
k ≤ �. We start by constructing an MRC instance J that has a motivating
reward configuration within a budget of b = 0 if and only if I has a solution.



Motivating Time-Inconsistent Agents 321
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Fig. 4. Reduction from the SP instance: S1 = {a, c, d}, S2 = {a, b}, S3 = {b, c, e},
S4 = {b, e} and k = 2

Figure 4 depicts the task graph G for a small sample instance of SP. In general, G
consists of a source s, a target t and 1 ≤ i ≤ k levels of nodes vi,j with 1 ≤ j ≤ �.
For every vi,j with i < k there is a so called upward edge to every node vi+1,j′ on
the next level. To maintain readability, upward edges are omitted in Fig. 4. In
addition to the upward edges, there is an edge from s to every node v1,j on the
bottom level and an edge towards t from every node vk,j on the top level. The
idea behind this construction is that the agent walks along the upward edges
from s to t in such a way that the nodes v1,j , . . . , vk,j′ on its path correspond to
a collection of k mutually disjoint sets Sj , . . . , Sj′ . The cost of the initial edges
(s, v1,j) and all upward edges (vi,j , vi+1,j′) is 1−β−ε. Note that β ∈ (0, 1) might
be an arbitrary value with an encoding length that is polynomial in that of I.
Moreover ε is a positive value satisfying

ε < min
{

(1 − β)2

k
,

β − β2

k − 1 + β

}

.

The cost of the edges (vk,j , t) is 0.
In order to motivate the agent, we add shortcuts to G that connect every

vi,j to t via an intermediate node wi,j . The first edge (vi,j , wi,j) has cost 1 and
the second edge (wi,j , t) has cost 0. In Fig. 4 the second edges are omitted for
the sake of readability. Note that a reward of value less than 1/β can be placed
on wi,j without the agent claiming it. Furthermore, if the reward is at least
(1 − ε)/β, all edges (vi−1,j′ , vi,j), or (s, vi,j) if i = 1, become motivating.

We finish our construction by connecting each node vi,j with all nodes wi′,j′

for which i′ < i and Sj ∩ Sj′ �= ∅ via a downward path. Each downward path
consists of two edges: the first one is of cost 0 and the second one is of cost
(1 − β − kε)/(β − β2). In Fig. 4, downward paths are drawn as single dashed
edges. The idea behind these paths is to enforce the disjointness constraint of I.
In the next paragraph we will address this in more detail. But first note that G
is an acyclic graph that is polynomial in the size of I. It remains to show that
J has a solution if and only if I has one.

Due to space constraints, we refer to the full version of this paper for a
detailed proof. To offer some more insight, we briefly present a sketch of the main
ideas. We first observe that the agent cannot enter any shortcut or downward
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path on its way from s to t. The reason for this is that a positive reward must
be placed onto such a path for the agent to enter it. However, once the agent
enters a shortcut or downward path it either collects the reward or abandons.
In both cases the given reward configuration is not motivating for a budget of 0.
Consequently, the agent must climb from level to level until it reaches t. As a
motivation, rewards need to be placed on selected nodes wi,j . If the reward is
chosen correctly, for instance r(wi,j) = (1 − ε)/β, this is sufficiently motivating
for the agent to move from any node on level i − 1 to vi,j , but not motivating
enough for the agent to enter the shortcut from vi,j to t. Next, assume that
the agent is located at some node vi,j . To prevent it from taking the downward
path, no substantial rewards may be placed on any node wi′,j′ with i′ < i and
Sj ∩Sj′ �= ∅. By construction of G such a reward configuration is possible if and
only if I has a feasible solution. ��

Finally, we look at the optimization variant of MRC called MRC-OPT.

Definition 6. Given a task graph G and a bias factor β ∈ (0, 1), determine the
infimum of all budgets b for which there exists a reward configuration r such that
the total reward collected on any of the agent’s walks is at most b.

The fact that MRC is NP-complete for b = 0 immediately implies that MRC-
OPT does not permit any efficient approximation algorithm unless P = NP.

Corollary 1. MRC-OPT is NP-hard to approximate within any ratio greater
or equal to 1.
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Abstract. We investigate the existence of approximation algorithms
for maximization of submodular functions, that run in fixed parameter
tractable (FPT) time. Given a non-decreasing submodular set function
v : 2X → R the goal is to select a subset S of K elements from X
such that v(S) is maximized. We identify two properties of set func-
tions, referred to as p-separability properties, and we argue that many
real-life problems can be expressed as maximization of submodular, p-
separable functions, with low values of the parameter p. We present FPT
approximation schemes for the minimization and maximization variants
of the problem, for several parameters that depend on characteristics
of the optimized set function, such as p and K. We confirm that our
algorithms are applicable to a broad class of problems, in particular to
problems from computational social choice, such as item selection or
winner determination under several multiwinner election systems.

1 Introduction

We study (exponential-time) approximation algorithms for maximizing non-
decreasing submodular set functions. A set function v : 2X → R is submodular
if for each two subsets A ⊆ B ⊂ X and each element x ∈ X \ B it holds that
v(A∪{x})−v(A) ≥ v(B∪{x})−v(B); v is non-decreasing if for each two subsets
A ⊆ B ⊂ X it holds that v(A) ≤ v(B). Our goal is to select a subset S of K
elements from X such that the value v(S) is maximal.

Maximization of non-decreasing submodular functions is a very general prob-
lem that is extensively used in various research areas, from recommendation sys-
tems [21,28], through voting theory [21,29], image engineering [12,13,25], infor-
mation retrieval [19,34], network design [15,16], clustering [22], speech recogni-
tion [20], to sparse methods [1,6]. Algorithms for maximization of non-decreasing
submodular functions are applicable to other general problems of fundamental
significance, such as the MaxCover problem [4,27]. The universal relevance of
the problem implies that the existence of good (approximation) algorithms for
it is highly desired.

Indeed, the problem has already received a considerable amount of attention
in the scientific community. For instance, it is known that the greedy algorithm,
i.e., the algorithm that starts with the empty set and in each of K consecutive
steps adds to the partial solution such an element from X that increases the value
c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 324–338, 2016.
DOI: 10.1007/978-3-662-54110-4 23



FPT Approximation Schemes for Maximizing Submodular Functions 325

of the optimized function most, is an (1−1/e)-approximation algorithm for max-
imization of non-decreasing submodular functions [23]. The same approximation
ratio can be achieved for the distributed [17] and online [30] variants of the prob-
lem. Algorithms for maximizing non-monotone submodular functions have been
studied by Feige et al. [9], and the approximability of the problem with addi-
tional constraints has been investigated by Calinescu et al. [2], Sviridenko [31],
Lee et al. [18], and Vondrák et al. [33]. Iwata et al. [11] have provided algorithmic
view on minimizing submodular functions. For the survey on maximization of sub-
modular functions we refer the reader to the work of Krause and Golovin [14].

Unfortunately, the approximation guarantees of the greedy algorithm cannot
be improved without compromising the efficiency of computation. For example,
the MaxCover problem can be expressed as maximization of a non-decreasing
submodular function, yet it is known that under standard complexity assump-
tions no polynomial-time algorithm can approximate it better than with ratio
(1 − 1/e) [8]. Motivated by this fact, and provoked by the desire to obtain bet-
ter approximation guarantees, we turn our attention to algorithms that run in
super-polynomial time. In our studies we follow the approach of parameterized
complexity theory and look for algorithms that run in fixed parameter tractable
time (in FPT time), for some natural parameters. To the best of our knowledge,
FPT approximation of optimizing submodular functions has not been considered
in the literature before.

Parameterized complexity theory aims at investigating how the complexity
of a problem depends on the size of different parts of input instances, called
parameters. An algorithm runs in FPT time for a parameter P if it solves each
instance I of the problem in time O(f(|P |) · poly(|I|)), where f is a computable
function. This definition excludes a large class of algorithms, such as the ones
with complexity O(|I||P |). From the point of view of parameterized complexity,
FPT is seen as the class of easy problems. Intuitively, the complexity of an FPT
algorithm consists of two parts: f(|P |), which is relatively low for small values
of the parameter, and poly(|I|) which is relatively low even for larger instances,
because of polynomial relation between the computation time and the size of an
instance. For details on parameterized complexity theory, we point the reader to
appropriate overviews [5,7,10,24].

We identify several parameters that we believe are suitable for a complex-
ity analysis of maximization of non-decreasing submodular functions. Perhaps
the most natural parameter to consider is the required size of solutions, K.
Our other parameters depend on characteristics of the optimized set function.
Specifically, we define a new property of set functions, called p-separability, and
provide evidence that p is a natural parameter to consider. We do that in Sect. 4,
by presenting several examples of real-life computational problems that can be
expressed as maximization of submodular p-separable set functions, where the
value of p is small.

Our main contribution is presentation and analysis of algorithms for the
problem. We construct fixed parameter tractable approximation schemes, i.e.,
collections of algorithms that run in FPT time and that can achieve arbitrar-
ily good approximation ratios. We provide algorithms for two variants of the
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problem: in the first variant, referred to as the maximization variant, the goal is
to maximize the value v(S). In the second one, referred to as the minimization
variant, the goal is to minimize

(
v(X) − v(S)

)
. While these two variants of the

problem have the same optimal solutions, they are not equivalent in terms of
their approximability. Indeed, if there exists a solution S with objectively high
value, i.e., if v(S) is close to v(X), then approximation algorithm for the mini-
mization variant of the problem will be usually superior. For instance, if there
exists a solution S such that v(S) = 0.95·v(X), then a 2-approximation algorithm
for the minimization variant of the problem is guaranteed to return a solution
with the value better than 0.9 · v(X). On the other hand, a 1/2-approximation
algorithm for the maximization variant of the problem is allowed to return, in
such a case, a solution with value 0.475 · v(X). Conversely, if the value of an
optimal solution is significantly lower than the value of the whole set X, then a
good approximation algorithm for the maximization variant of the problem will
produce solutions of a better quality.

Our algorithms run in FPT time for the parameter (K, p), where K is the
size of the solution, and p is the lowest value such that the set function is p-
separable. To address the case of functions which are not p-separable for any
reasonable values p, we define a weaker form of approximability, referred to as
approximation of the minimization-or-maximization variant—here, the goal is
to find a subset S that is good in one of the previous two metrics. Such algorithms
are also desired as they are guaranteed to find good approximation solutions,
provided high quality solutions exist (i.e., if values of the optimal solutions are
close to v(X)). We show that there exists a randomized FPT approximation
scheme for minimization-or-maximization variant of the problem for the para-
meter (K,

∑
x∈X v({x})/v(X)).

We believe that the consequences of our general results are quite significant.
In particular, in Sect. 4, we prove the existence of FPT approximation schemes
for some natural problems in the computational social choice, in the matching
theory, and in the theoretical computer science.

2 Notation and Definitions

Let X denote the universe set. We consider a set function v : 2X → R that is non-
negative, i.e., such that for each S ⊆ X we have v(S) ≥ 0. We say that a function
v is non-decreasing if for each two subsets A ⊆ B ⊆ X it holds that v(B) ≥ v(A).
A set function v is submodular if for each two subsets A ⊆ B ⊂ X and each
element x ∈ X \ B it holds that v(A ∪ {x}) − v(A) ≥ v(B ∪ {x}) − v(B). There
are numerous equivalent conditions characterizing submodular functions—for
a survey we refer the reader to the seminal article of Nemhauser et. al. [23].
It is easy to see that if the set function v is non-decreasing and submodular,
then for each two subsets A ⊆ B ⊂ X and each element x ∈ X it holds that
v(A ∪ {x}) − v(A) ≥ v(B ∪ {x}) − v(B) (here, we do not have to assume that
x ∈ X \ B).

Below, we define a new class of properties of set functions.
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Definition 1 (p-separable set function). A submodular set function v :
2X → R is:

1. p-superseparable, if for each S ⊆ X we have:

∑

x∈X

(
v(S ∪ {x}) − v(S)

) ≥
(

∑

x∈X

v({x})

)

− p · v(S), (1)

2. p-subseparable, if for each S ⊆ X we have:
∑

x∈X

(
v(S ∪ {x}) − v(S)

) ≤ p · v(X) − p · v(S). (2)

For better intuition on the above definitions, we refer the reader to Sect. 4 where
we present several examples of natural problems which can be expressed as
optimization of separable functions for low values of the parameter p. Indeed,
p can be naturally bounded by |X|: it is easy to see that each monotone and
submodular function is |X|-superseparable and |X|-subseparable. Yet, in Sect. 4
we show that the value of parameter p in many natural problems is significantly
lower.

We observe that a linear combination of p-superseparable functions is p-
superseparable. The same comment applies to p-subseparability. As we will see
in Sect. 4, this observation is helpful in proving that certain set functions are
p-separable.

In this paper we investigate the problem of selecting K elements from X
that, altogether, maximize the value of the set function v.

Definition 2 (BestKSubset). For a set of elements X, a polynomially com-
putable set function v : 2X → R, and an integer K, the solution to the BestK-
Subset problem is such a set S ⊆ X that |S| ≤ K and that v(S) is maximal.

We are specifically interested in finding approximation algorithms for the
BestKSubset problem. We focus on approximating two metrics: (i) the value
v(S) in the maximization variant of the problem, and (ii) the value

(
v(X)−v(S)

)

in its minimization variant.

Definition 3 (Approximation algorithms). Let S∗ denote an optimal solu-
tion for BestKSubset:

1. Fix α, 0 < α < 1. A is an α-approximation algorithm for the maximization
variant of BestKSubset, if for each instant I of BestKSubset it returns
a set S such that v(S) ≥ αv(S∗).

2. Fix α, α > 1. A is an α-approximation algorithm for the minimization
variant of BestKSubset, if for each instant I of BestKSubset it returns
a set S such that

(
v(X) − v(S)

) ≤ α
(
v(X) − v(S∗)

)
.

3. Fix α, α > 1. A is an α-approximation algorithm for the minimization-or-
maximization variant of BestKSubset, if for each instant I of BestK-
Subset it returns a set S such that v(S) ≥ 1

αv(S∗) or
(
v(X) − v(S)

) ≤
α
(
v(X) − v(S∗)

)
.
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The definition of an approximation algorithm for minimization-or-
maximization variant of BestKSubset requires some additional comment: this
definition guarantees that the algorithm finds a good solution provided a high
quality solution exists. In other words, if there exists an optimal solution S∗

such that the value
(
v(X) − v(S∗)

)
is low compared to v(S∗), then the good

approximation solution for the minimization variant of the problem is also a
good solution for its maximization variant. For some parameters we present
good approximation algorithms for the minimization-or-maximization variant of
BestKSubset, even though we do not have as good algorithms neither for the
minimization nor maximization variants of the problem.

We are specifically interested in FPT approximation schemes. A collection of
algorithms A is an FPT approximation scheme for a parameter P , if for each
constant α there exists an α-approximation algorithm in A that runs in an FPT
time for the parameter P .

3 Algorithms for Maximizing p-Separable Submodular
Functions

In this section we present our approximation algorithms for the two variants
of the problem, formally stated in Definition 3, of the BestKSubset problem.
Our methods are inspired by the algorithms of Skowron and Faliszewski [27] for
the MaxCover problem. We extend these algorithms to be applicable to the
problem of maximizing more general submodular functions.

We start with presenting an FPT approximation scheme for BestKSubset
for submodular p-superseparable set functions. The algorithm, formally defined
as Algorithm 1, gets as an input an instance of the problem and the required
approximation ratio, β. It proceeds in two steps: first, it restricts the universe
set by selecting a certain number of elements from X with the highest values of
the set function v. Second, it takes the set A of elements that were selected in
the first step, computes the value of the set function for all K-element subsets
of A, and returns a subset with the highest value.

Algorithm 1 is an FPT approximation scheme for the maximization variant
of the problem for the parameter (K, p). Before we prove this fact, however, we
note that under standard complexity theoretic assumptions, there exists no FPT

Algorithm 1. An algorithm for the BestKSubset problem for non-negative,

non-decreasing, submodular, and p-superseparable set functions.

Parameters:
X — the set of elements.
v — the submodular function v : 2X → R that is p-superseparable.
β — the required approximation ratio of the algorithm.

A ← � pK
(1−β)

+ K� elements x from X with highest values v({x}) ;

return K-element subset of A with the highest value of v ;
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exact algorithm for the problem. There even exists no FPT exact algorithm for
the parameter K if p is a constant. This follows from our observation in Sect. 4.1,
where we show that the MaxCover problem with frequencies bounded by p can
be expressed as maximization of a non-negative, non-decreasing, submodular, p-
superseparable set function, and from the fact that the MaxCover problem
with frequencies bounded by a constant, for the parameter K belongs to the
complexity class W[1] [27], and it is unlikely that W[1] ⊆ FPT.

Theorem 1. For each non-negative, non-decreasing, submodular, and p-
superseparable set function v : 2X → R and for each 0 ≤ β < 1, Algorithm1
outputs a β-approximate solution for the maximization variant of BestKSub-

set, in time poly(n,m) · ( pK
(1−β)+K

K

)
.

Proof. Consider an input instance I of the BestKSubset problem. Let S and S∗

be, respectively, the solution returned by Algorithm1 and some optimal solution.
We set OPT = v(S∗) as the value of an optimal solution.

We will show that v(S) ≥ βOPT. Naturally, the value v(S) might be lower
than v(S∗). This might happen because A, the set of the elements considered
by the algorithm in its second step, might not contain some elements from S∗.
We will show that � = |S∗ \ A| elements from S∗ \ A might be replaced by some
elements from A which are not present in S∗, in a way that decreases the value
of S∗ by at most a small fraction. After such replacement, we will end up with
the set containing the elements from A only. From this we will infer that the
value of the best solution in A is lower than the value of an optimal solution by
at most a small factor.

Let us order the elements from S∗ \ A in some arbitrary way, and let us use
the notation S∗ \ A = {x1, . . . , x�}. We will replace the elements {x1, . . . , x�}
with the elements {x′

1, . . . , x
′
�} (we will define these elements later), one by one,

in � consecutive steps. Thus, in the i-th step we will replace xi with x′
i in the

set (S∗ \{x1, . . . , xi−1})∪{x′
1, . . . , x

′
i−1}. The elements x′

1, . . . , x
′
� are defined by

induction, in the following way. Assume that we have already found elements
x′
1, . . . , x

′
i−1 (for i = 1 it means we have not yet found any element, i.e., that we

are looking for the first element in the sequence). We define x′
i to be an element

from A \ (S∗ ∪ {x′
1, . . . , x

′
i−1}) that maximizes the value v

(
(S∗ \ {x1, . . . , xi}) ∪

{x′
1, . . . , x

′
i}

)
.

It may happen that after replacing xi with x′
i, the value of the function v for

the new set decreases. Let Δi denote the value of such decrease (or increase if
the algorithm were lucky—in such case Δi would be negative):

Δi = v
(
(C∗ \ {x1, . . . , xi−1}) ∪ {x′

1, . . . , x
′
i−1}

)

− v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i}

)
.

By the construction of the set A and the fact that xi /∈ A, for every y ∈
A \ (S∗ ∪ {x′

1, . . . , x
′
i−1}) we have that v({xi}) ≤ v({y}). By the way we choose

the element x′
i, we know that for every y ∈ A \ (S∗ ∪ {x′

1, . . . , x
′
i−1}), we have:



330 P. Skowron

Δi ≤ v
(
(C∗ \ {x1, . . . , xi−1}) ∪ {x′

1, . . . , x
′
i−1}

)

− v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1, y}

)
.

Using submodularity and after reformulation we get:

Δi ≤ v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1}

)
+ v({xi}) − v(∅)

− v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1, y}

)

≤ v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1}

)
+ v({y}) − v(∅)

− v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1, y}

)
.

For any y ∈ X (in particular for y /∈ A\(S∗ ∪{x′
1, . . . , x

′
i−1})), by submodularity

and monotonicity, we have that:

0 ≤ v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1}

)
+ v({y}) − v(∅)

− v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1, y}

)
.

Since the set function is non-negative, the inequalities above will still hold if we
skip the fragment v(∅). Consequently, since the set function is p-superseparable,
we get:

(|A| − K)Δi ≤
∑

y∈X

(

v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1}

)
+ v({y})

− v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1, y}

))

≤ p · v
(
(C∗ \ {x1, . . . , xi}) ∪ {x′

1, . . . , x
′
i−1}

)
≤ pOPT.

Which leads to:

Δi ≤ pOPT
|A| − K

=
OPTp(1 − β)

pK
=

OPT(1 − β)
K

.

Since � ≤ K, we conclude that:

�∑

i=1

Δi ≤ (1 − β)OPT.

That is, after replacing the elements from S∗ that do not appear in A with sets
from A, the optimal value is decreased by at most (1−β)OPT. This means that
there are K elements in A for which the function v achieves the value equal to at
least βOPT. Since the algorithm tries all size-K subsets of A, it finds a solution
with such a value. 
�
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Algorithm 2. An algorithm for the minimization variant of the BestKSubset

problem with a non-negative, non-decreasing, submodular, and p-subseparable

set function.
Parameters:

X — the set of elements.
v — the submodular function v : 2X → R that is p-subseparable.
β — the required approximation ratio of the algorithm
ε — the allowed probability of achieving worse than β approximation ratio

SingleRun():
S ← ∅;
for i ← 0 to K do

xr ← randomly select an element from X \ S
with probability of selecting x proportional to v(S ∪ {x}) − v(S) ;

S ← S ∪ {xr};

return S;
Main(): run SingleRun() for �− ln ε/(β−1

pβ
)K� times; return the best solution;

Next, we consider the minimization variant of BestKSubset for the case
of p-subseparable submodular set functions. In Algorithm2 we present a ran-
domized algorithm for the problem: the algorithm performs several independent
runs. Each run, in Algorithm2 described by the SingleRun procedure, builds the
solution by selecting random elements in K consecutive steps. In each step, an
element x is selected with the probability proportional to the marginal increase
of the value of the set function caused by adding x to the partial solution.
Theorem 2 below shows that if we repeat SingleRun a sufficient number of times,
we are very likely to find a solution with the required approximation ratio.

Theorem 2. For each non-negative, non-decreasing, submodular, p-subseparable
set function v : 2X → R and for each 0 ≤ β < 1, Algorithm2 outputs a β-
approximate solution for the minimization variant of BestKSubset, with proba-
bility (1− ε). The time complexity of the algorithm is poly(n,m) · �− ln ε/(β−1

pβ )K.

Proof. Let I be an instance of the BestKSubset problem with v : 2X → R

being a non-negative, submodular, p-subseparable function. Let β, β > 1, and
ε, 0 < ε < 1 be the parameters of Algorithm 2. Let S∗ be some optimal solution
for I.

Let us consider a single call to SingleRun from the “for” loop within the
function Main. Let ps denote the probability that such a single invocation of the
function SingleRun returns a β-approximate solution. We will prove the lower-
bound of (β−1

pβ )K for the value of ps. Let Ev denote the event that during such
an invocation, at the beginning of each iteration of the “for” loop within the
function SingleRun, it holds that:

v(X) − v(S) > β
(
v(X) − v(S∗)

)
. (3)
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Note that if the complementary event, denoted Ev , occurs, then SingleRun
definitely returns a β-approximate solution. The condition in Inequality 3 can
be reformulated as follows:

v(S∗) − v(S)
v(X) − v(S)

>
β − 1

β
. (4)

Now, let us consider a single iteration of the “for” loop within the function
SingleRun. Let S be the value of the partial solution at the beginning of this
iteration and let phit denote the probability that in this iteration the element
from S∗ is added to the partial solution (thus, using notation from Algorithm2,
phit is the probability that xr ∈ S∗). Let us assess the conditional probability
phit|Ev :

phit|Ev =

∑
x∈S∗

(
v(S ∪ {x}) − v(S)

)

∑
x∈X

(
v(S ∪ {x}) − v(S)

)

≥
(
v(S ∪ {x1}) − v(S)

)
+

(
v(S ∪ {x1, x2}) − v(S ∪ {x1})

)
+ . . .

∑
x∈X

(
v(S ∪ {x}) − v(S)

)

=
v(S ∪ S∗) − v(S)

∑
x∈X

(
v(S ∪ {x}) − v(S)

)

≥ v(S∗) − v(S)
∑

x∈X

(
v(S ∪ {x}) − v(S)

) non-decreasing

≥ v(S∗) − v(S)

p
(
v(X) − v(S)

) p-subseparability

≥ β − 1
pβ

. Eq. 4

Let popt denote the probability that the function SingleRun returns S∗, an
optimal solution. We have that:

popt|Ev ≥
(
phit|Ev

)K

≥
(

β − 1
pβ

)K

.

Altogether, combining all the above findings, we know that the probability that
SingleRun returns a β-approximate solution is at least:

ps ≥ P(Ev) + P(Ev)popt|Ev ≥ popt|Ev ≥
(

β − 1
pβ

)K

. (5)

The estimation in Inequality 5 can be obtained by observing that either the event
Ev or Ev must happen. If Ev happens, then SingleRun definitely returns a β-
approximate solution; if Ev happens, then we can lower-bound the probability
of finding a β-approximate solution by the probability of finding an optimal one.
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To conclude, we use the standard argument that if we make x = �− ln ε
ps


independent calls to SingleRun, then the best output from these calls is a β-
approximate solution with probability at least equal to:

1 − (
1 − ps

)x ≥ 1 − eln ε = 1 − ε.

This completes the proof. 
�
Interestingly, we can slightly modify the proof of Theorem2 so that it would

apply with the more general parameter
∑

x∈X v({x})
v(X) . On the other hand, for

this parameter we give weaker approximation guarantees, by approximating
the minimization-or-maximization instead of the minimization variant of the
problem.

Theorem 3. For each non-negative, non-decreasing and submodular set func-
tion v : 2X → R there exists an FPT approximation scheme for the
minimization-or-maximization variant of BestKSubset problem with the para-
meter (K,

∑

x∈X v({x})
v(X) ).

Proof. Let us fix β, β > 1, the required approximation ratio. Let p = β
β−1 ·

∑

x∈X v({x})
v(X) . We will show that Algorithm 2 with such value of the parameter p

(this parameter is used to determine the number of iterations of the algorithm)
is a β-approximation algorithm for the minimization-or-maximization variant
of the problem. We repeat the reasoning from the proof of Theorem2, with
the following small modification. In the proof of Theorem2 we defined Ev to
denote the event that during a single invocation of the SingleRun function from
Algorithm 2, at the beginning of each iteration of the “for” loop, it holds that:
v(X) − v(S) > β

(
v(X) − v(S∗)

)
. In this proof we modify this definition saying

that Ev denotes the event when at the beginning of each iteration of the “for”
loop within the function SingleRun, the following two conditions hold:

v(X) − v(S) > β
(
v(X) − v(S∗)

)
,

v(S) <
1
β

v(S∗).

Naturally, if the complementary event occurs, then SingleRun definitely returns
a β-approximate solution for the minimization-or-maximization variant of the
problem. In the proof of Theorem2, we used at-most-p-subseparability in the
part that assumes that the event Ev happened, to show that:

∑

x∈X

(
v(S ∪ {x}) − v(S)

)
≤ p

(
v(X) − v(S)

)
(6)

Here, we show that Inequality 6 also holds if we assume that the event Ev (using
our redefinition of Ev) happened:
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∑

x∈X

(
v(S ∪ {x}) − v(S)

)
≤

∑

x∈X

(
v({x}) − v(∅)

)
≤

∑

x∈X

v({x})

= p · β − 1
β

· v(X) = p · v(X) − p · v(X)
β

≤ p · v(X) − p · v(S).

With these modifications the proof of Theorem2 can be used in this case. 
�
Algorithm 2 can be applied to yet another variant of the problem. Let Best-
Subset be defined similarly to BestKSubset, with the following difference.
In BestSubset we are not putting any constraints on the size of the solution,
but we rather look for the smallest possible set S such that v(S) = v(X). Inter-
estingly, Algorithm 2 can be used to find exact solutions to BestSubset for
non-negative, non-decreasing, submodular, p-subseparable set functions, and it
will run in FPT time for the parameter (K, p).

Theorem 4. For each non-negative, non-decreasing, submodular, p-subseparable
set function v : 2X → R, the algorithm that runs Algorithm2 for consecutive values
of the parameter K until it finds a solution S, such that v(S) = v(X), is a random-
ized FPT exact algorithm for the BestSubset problem for the parameter (K, p).

Proof. The proof is provided in the full version of the paper [26].

4 Applications of the Algorithms

In this section we show that the assumption about p-separability of submodular
set functions is plausible. We provide several examples of known computational
problems that can be expressed as maximization of p-separable, submodular
functions.

4.1 The MAXWEIGHTCOVER Problem

In this subsection we show that our algorithms are applicable to MaxWeight-
Cover, a generalized variant of the MaxCover problem.

In the MaxWeightCover problem, we are given a universe set N =
{e1, e2, . . . en} of n elements and a collection X = {S1, . . . , Sm} of m subsets
of N . Each element ei has its weight wi. The goal is to find a subcollection C
of X of size at most K that maximizes the total weight of covered elements:∑

i:i∈S for some S∈C wi.
A frequency of an element ei is the number of sets that contain ei. Frequency

of elements is a natural parameter considered in the context of approximability
of covering problems [32]. To the best of our knowledge, for polynomial-time
algorithms, there exists no better guarantee for the MaxCover problem with
bounded frequencies of elements than (1 − 1/e). This is specifically interest-
ing, since such an approximation algorithm exists for the very similar problem
SetCover [32].
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Lemma 1. The MaxWeightCover problem with the frequency of elements
upper-bounded by p can be expressed as the maximization of a nonnegative,
nondecreasing submodular function which is (i) p-superseparable, and (ii) p-
subseparable.

Proof. For each set C ⊆ X we define v(C) as the total weight of elements covered
by the sets from C. Such defined v is nonnegative and submodular.

We observe that the weighted sum of p-superseparable set functions is also p-
superseparable, and that the same argument applies to p-subseparability. Thus,
it is sufficient to consider a function ui which returns 1 for collections of sets
that cover ei, and 0 for the remaining ones. Observe that if the frequency of the
elements is bounded by p, then

∑
S∈X ui({S}), the number of sets that cover ei,

is also bounded by p.
Let us fix a collection of sets C ⊆ X and let us consider two cases. If ei is

covered by C, then
∑

S∈X

(
ui(C ∪ {S}) − ui(C)

)
is equal to 0. But, in such case

pui(C) = p and the condition for p-superseparability holds. Naturally, ui(X) = 1,
thus the conditions for p-subseparability also holds.

If ei is not covered by C, then
∑

S∈X

(
ui(C ∪ {S}) − ui(C)

)
is equal to

the number of sets that cover ei, thus to
∑

S∈X ui({S}). This means that
the condition for p-superseparability holds. If the frequency of the elements is
upper-bounded by p, then

∑
S∈X

(
ui(C ∪ {S}) − ui(C)

)
is upper bounded by

p, and since ui(C) = 0, the condition for p-subseparability holds. This proves
the thesis. 
�
Corollary 1. There exists an FPT approximation scheme for the maximization
and minimization variant of the MaxWeightCover for the parameter (K, p),
where p is the upper-bound on the frequency of the elements.

Corollary 1 extends the recent results for the MaxCover problem [27].
Interestingly, Theorem 3 says that there exists a randomized FPT approxima-
tion scheme for the minimization-or-maximization variant of the MaxWeight-
Cover problem, for the parameter (K, pav), where pav is an average frequency
of an element.

4.2 Other Applications

Due to space restrictions in this section we describe the other two applications
of our results very briefly. For the thoughtful analysis of these two cases we refer
the reader to the full version of the paper [26].

Matching and assignment problems. In the Weighted-B-K-Matching
problem we are given a set of vertices X ∪ Y , a set of edges E (there are no
edges neither between the vertices from X nor between the vertices from Y ),
a weight function w : E → R, and a capacity function c : X → Z. The goal
is to find a subset of edges with the maximal total weight, such that each
vertex x ∈ X belongs to at most c(x) of the selected edges, each vertex y ∈ Y
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belongs to at most one of the selected edges, and altogether there are at most
K vertices from X which belong to some of the selected edges.
Our results can be used to prove that there exists an FPT approximation
scheme for the maximization variant of the Weighted-B-K-Matching for
the parameter (K, p), where p is a bound on the degree of vertices from Y .

Item selection in multi-agent systems. Our results can be also applied to
the remarkably general model describing the problem of selecting a set of
collective items for agents [28]. Let N = {1, 2, . . . n} be the set of agents and
let C = {a1, a2, . . . , am} be the set of items. Each agent i ∈ N is endowed
with a utility function ui : C → R that measures how much i desires each of
the items. Our goal is to select K items, called winners, that in some sense
would make the agents most satisfied. An OWA vector α is a vector of K
elements, α = 〈α1, . . . , αK〉. Given an OWA vector α, for each agent i and
for each set of K items S, we define ui(S), the satisfaction of i from S, in
the following way. Let u1, u2, . . . uK be the utilities from {ui(x) : x ∈ S},
sorted in the descending order; then ui(S) =

∑K
j=1 αjuj . The satisfaction of

all agents from S is defined as the sum of satisfactions of all the individuals
from S.
This model captures various natural problems, from winner determination in
multiwinner election systems, through recommendation systems, to location
problems. For instance the problem of selecting K items under the OWA
vector α = 〈1, 0, . . . , 0〉 boils down to the problem of winner determination
under Chamberlin and Courant rule [3], or to the facility location problem.
The problem for α = 〈1, 1/2, . . . , 1/K〉 is equivalent to winner determination
in the Proportional Approval Voting (PAV) system. For more examples of
applications of this general model we refer the reader to the original work of
Skowron et al. [28].
We say that the agents have k-approval utilities if each agent assigns utility
equal to 1 to exactly k items, and utility equal to 0 to the remaining ones.
Such k-approval utilities are very popular in the context of social choice, in
particular in case of multi-winner election rules.
Our results can be used to prove that there exists an FPT approximation
scheme for the maximization and minimization variants of the problem of
selecting K items with k-approval utilities for the parameter (K, k).

5 Conclusions

We have considered FPT approximation schemes for the problem of maximizing
submodular set functions. There are many natural ways in which this research
can be extended. We believe that one of the promising approaches is to consider
the problem with additional constraints, such as knapsack constraints or matroid
constraints.

Acknowledgements. The author thanks Piotr Faliszewski for his helpful comments.
This research has been supported by Europe Research Grant ERC-StG 639945.
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Abstract. We study the convergence time of local search for a stan-
dard machine scheduling problem in which jobs are assigned to identi-
cal or related machines. Local search corresponds to the best response
dynamics that arises when jobs selfishly try to minimize their costs. We
assume that each machine runs a coordination mechanism that deter-
mines the order of execution of jobs assigned to it. We obtain various
new polynomial and pseudo-polynomial bounds for the well-studied coor-
dination mechanisms Makespan and Shortest-Job-First, using worst-case
and smoothed analysis. We also introduce a natural coordination mech-
anism FIFO, which takes into account the order in which jobs arrive at
a machine, and study both its impact on the convergence time and its
price of anarchy.

1 Introduction

We analyze the following scheduling problem: Given m machines and n jobs, find
an assignment of the jobs to the machines minimizing the maximum costs of a
job, which are defined according to a coordination mechanism. The jobs may
have different job sizes and the machines may have different machine speeds.
A typical definition of the costs of a job is the sum of the job sizes assigned to
the same machine divided by the machine speed, which is a natural choice when
the makespan is to be minimized. In other contexts it might be more realistic
to assume an order in which the jobs on a machine are executed and that a job
only pays for the execution time of itself and all previous jobs.

Even in the case of identical machine speeds, the problem is known to be
strongly NP-hard [10] and local search is a popular tool to approximate good
solutions. Here, a job unilaterally changes its assignment and moves to another
machine if it can reduce its costs this way. Throughout this paper, we assume a
best response policy, i.e., a moving job selects a machine that minimizes its costs.
If there is no job left that can improve its costs, we have attained a local optimum,
which is guaranteed to be reached after a finite number of steps. Although the
quality of the worst local optimum has been thoroughly analyzed [3,5,6,9,16],
there is not much work about the convergence time needed to find one via local
search.
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1.1 Terminology

Let us first describe the studied problem in detail. Consider an instance with m
machines and n jobs. Each machine i has a speed si ∈ Q>0 and each job j has a
job size pj ∈ Q>0. Let smin, smax, pmin, and pmax be the minimal and maximal
speeds and job sizes. Let W =

∑n
j=1 pj be the sum of the job sizes. For identical

machines, smax = smin = 1, and for unit-weight jobs, pmax = pmin = 1.
For an assignment σ : {1, . . . , n} → {1, . . . , m} that maps the jobs to the

machines, let Li =
∑

j∈σ−1(i) pj/si be the load of machine i. The maximum load
is called makespan. The costs of a job j are defined according to a coordination
mechanism, which assigns costs to every job depending only on the set of jobs
that have chosen the same machine, but not on the residual schedule.

1. In the Makespan model, all jobs assigned to the same machine are executed
simultaneously such that the costs cσ

j = Lσ(j) of a job j correspond to the
load of its machine. This is the most common coordination mechanism and
it corresponds to linear weighted congestion games on parallel links.

2. In the FIFO model, the jobs on each machine are executed one after another.
Therefore, we need a permutation π on the jobs that determines the order
in which the jobs on a machine get processed. The costs of a job j are then
c
(σ,π)
j =

∑
j′∈Jπ

σ (j)

pj′
sσ(j)

, where Jπ
σ (j) is the set of jobs j′ on the same machine

with π(j′) ≤ π(j). If a job j jumps to another machine, it is inserted as the
last job, i.e., π(j) = n.

3. In the SJF (shortest job first) model, the jobs are executed one after another,
but the permutation of the jobs is at any time implicitly given by their job
sizes where the smallest job on a machine is executed first. Ties for jobs of
equal size are broken arbitrarily. This means that the costs of a job are defined
as cσ

j =
∑

j′ : σ(j′)=σ(j)∧π(j′)≤π(j)

pj′
sσ(j)

, where π is a permutation of the jobs
assigned to machine σ(j) such that π(j′) < π(j) if pj′ < pj and π(j′) > π(j)
if pj′ > pj .

The FIFO model is not a coordination mechanism in the classical sense as the
order in which the jobs are executed depends on previous iterations. Neverthe-
less, we believe that this model can easily be motivated by many real-world
applications where the first-come, first-served principle is ubiquitous.

In the case of the Makespan and SJF models, we call σ a schedule. In the FIFO
model, we call the tuple (σ, π) a schedule. Often, we omit the parameters σ and π
if they are clear from the context, or we replace them by an iteration number t.
Then we mean the schedule before the move of iteration t gets executed.

We say that a job is unsatisfied if it could improve its costs by jumping to a
different machine. When an unsatisfied job jumps, it always jumps to a machine
minimizing its costs, i.e., we consider best response dynamics. If there is no
unsatisfied job, we call the current schedule a local optimum. The convergence
time for an instance is the maximum number of jumps it can take starting from
an arbitrary schedule until a local optimum is reached. The price of anarchy is
the ratio of the makespans of the worst local optimum and the global optimum.
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If there are several unsatisfied jobs, we choose the next job to jump according
to a pivot rule:

– Best Improvement : Select a job for which the largest improvement of its costs
is possible.

– Random: Select a job uniformly at random from the set of unsatisfied jobs.
– Min Weight : Select a smallest unsatisfied job.
– Max Weight : Select a largest unsatisfied job.
– Fixed Priority : Select the unsatisfied job with the largest priority according

to a given order on the jobs. This pivot rule includes Min Weight and Max
Weight as special cases.

1.2 Smoothed Analysis

Despite its bad running time, which can be exponential, and the large price
of anarchy in theory, local search is a popular tool in practice as it typically
delivers good local optima very quickly. At first glance, this seems like a contra-
diction, but the instances in the theoretical proofs are rather contrived and rarely
observed in practice. To have a more realistic understanding of local search in
theory, we use the framework of smoothed analysis introduced by Spielman and
Teng [17] to explain the practical success of the simplex method. This model
can be considered as a less pessimistic variant of worst-case analysis in which
the adversarial input is subject to a small amount of random noise and it is by
now a well-established alternative to worst-case analysis. This random noise can
be motivated, for example, by measurement errors, numerical imprecision, and
rounding errors, which often occur in practice. It can also model influences that
cannot be quantified exactly but for which there is no reason to believe that they
are adversarial.

We follow the more general model of smoothed analysis introduced by Beier
and Vöcking [1]. In this model, the adversary is even allowed to specify the prob-
ability distribution of the random noise. The influence he can exert is described
by a parameter φ ≥ 1 denoting the maximum density of the noise. The model is
formally defined as follows.

Definition 1. In a φ-smooth instance I, the adversary chooses the following
input data:

– the number m of machines;
– arbitrary machine speeds s1, . . . , sm in the case of non-identical machines;
– the number n of jobs;
– for each pj, a probability density fj : [0, 1] → [0, φ] according to which pj is

chosen independently of the processing requirements of the other jobs.

The smoothed convergence time is the worst expected convergence time of any
φ-smooth instance and the smoothed price of anarchy is the worst expected price
of anarchy of any φ-smooth instance.
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Note that the only perturbed part of the instance are the processing
requirements. Formally, a φ-smooth instance is not a single instance but a distri-
bution over instances. The parameter φ determines how powerful the adversary
is. He can, for example, define an interval of length 1/φ for each job size from
which it is drawn uniformly at random. Hence, for φ = 1 the model corresponds
to an average-case analysis and for φ → ∞ the adversary becomes as powerful
as in a worst-case analysis.

2 Related Work and Results

Since its invention, smoothed analysis has been successfully applied in a variety
of contexts. Two surveys [14,18] summarize some of these results.

The notion of coordination mechanisms has been introduced by
Christodoulou et al. [4] in the context of congestion games. There has been
extensive research about the price of anarchy for the different coordination mech-
anisms. In the Makespan model it is constant for identical machines [9,16] and
Θ

(
min

{
log m

log log m , log smax
smin

})
for related machines [5]. The smoothed price of

anarchy for related machines is Θ(log φ) regardless of whether the job sizes [3]
or the machine speeds [6] are perturbed.

Immorlica et al. [13] showed a price of anarchy of 2 − 1/m for identical and
Θ(log m) for related machines for the SJF model, which is the same as for list
schedules, i.e., schedules that are generated by a greedy assignment.

The FIFO model has been introduced implicitly by Brunsch et al. [3] through
the equivalent concept of near list schedules which was used as a generalization of
local optima w.r.t. the Makespan model and list schedules. They showed that the
smoothed price of anarchy is Θ(log φ). We complement this by the corresponding
worst-case results for identical and related machines to obtain the same tight
bounds as in the SJF model.

There is less known about the convergence times in the different models. As
we are up to our knowledge the first ones who consider the FIFO model, there are
no previous results about convergence times. We show tight results for special
cases like identical machines and several upper bounds depending on W/pmin

for different pivot rules in the general case. Although we conjecture polynomial
bounds for all cases, we give the first non-trivial proofs for this natural problem.
Immorlica et al. [13] showed for the SJF model that if the jobs are asked on a
rotational basis if they want to jump, the convergence time is in O(n2). This is
in sharp contrast to our result that for the Min Weight pivot rule it can take an
exponential number of iterations even in the case of two identical machines.

Brucker et al. [2] considered the Makespan model with the difference that
only jobs from a machine with maximum load—a so-called critical machine—
are allowed to jump, i.e., a local optimum is reached as soon as every job on a
critical machine is satisfied. They gave an algorithm that finds a local optimum
after O(n2) improving steps for identical machines. From this, one can easily
derive an algorithm for identical machines in the Makespan model: Run Brucker’s
algorithm exhaustively until every job on a critical machine is satisfied. As on
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identical machines the minimum load of a machine is monotonically increasing,
these jobs cannot become unsatisfied again by any sequence of improving steps.
Hence, the jobs on the critical machine are fixed and therefore we can remove the
critical machine together with its assigned jobs from the instance. Repeating this
argument yields a running time of O(n2m) improving steps. As the monotonicity
argument does not hold anymore in the case of related machines, we are not
aware of a way to use similar results by Schuurman and Vredeveld [16] and
Hurkens and Vredeveld [12] for Brucker’s model on related machines.

For the Makespan model and identical machines, Goldberg [11] considers ran-
domized local search, where in each step a job and a machine are selected uni-
formly at random, and the job moves to that machine if it is an improving step.
He shows that random local search converges in expected (m+n+ pmax

pmin
)O(1) time.

In the Makespan model, Feldmann et al. [8] provided an O(nm2)-time
Nashification algorithm, which, given an arbitrary schedule, computes a local
optimum without increasing the social cost, i.e., the makespan in our case.
They further showed that the convergence time on identical machines is bounded
by Ω(2

√
n) and O(2n). To be more precise, Even-Dar et al. [7] showed (again for

identical machines) that the Max Weight and the Random pivot rule converge
in n and O(n2) steps, respectively, while the Min Weight pivot rule can take an
exponential number of steps. We extend this result by showing that every pivot
rule converges in O(n · W/pmin) steps, which can be seen as a generalization of
their result that every pivot rule converges in O(W + n) steps in the case of
integer weights. For related machines and unit-weight jobs, Even-Dar et al. [7]
showed that there is a pivot rule that converges in mn steps. We improve this by
showing that the convergence time for any pivot rule with best response policy
is exactly n. For the case of related machines and integral job sizes and machine
speeds, they showed that any pivot rule converges in O(W 2 · s2max/smin) steps.
We prove a similar bound for the Best Improvement pivot rule on arbitrary
weights. An overview of our results on convergence times is given in Tables 1, 2,
and 3.

Table 1. FIFO convergence times

Identical machines n − 1 (Theorem1)

Unit-weight jobs n (Theorem4)

Two machines Θ(n) (Theorem5)

Best improvement O(m2n · W/pmin) (Theorem6)

Random O(m2n2 · W/pmin) (Theorem7)

Fixed priority O(n2 · W/pmin) (Theorem8)

lower bounds Ω(mn), Ω(m2) for Min Weight (Theorem9)

2.1 Paper Organization

The remainder of this paper is organized as follows. In Sect. 3 we show
how to convert superpolynomial deterministic convergence times to smoothed
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Table 2. Makespan convergence times

Identical machines O(n · W/pmin) (Theorem2)

Unit-weight jobs n (Theorem4)

Best improvement O(m2n · W 2/p2
min) (Theorem10)

Table 3. SJF convergence times

Max weight on two identical machines 2Ω(n) (Theorem3)

Max weight on two identical machines with random weights 2Ω(
√

n) (Theorem3)

Min weight n (Theorem11)

Random O(n2) (Theorem11)

polynomial convergence times. In Sects. 4 and 5 we deal with the special cases
of identical machines and unit-weight jobs, respectively, before we turn to the
more general case of related machines in Sect. 6. We conclude with the analysis
of the price of anarchy in the FIFO model in Sect. 7 and some remarks in Sect. 8.
Some of the proofs are deferred to a full version of this paper.

3 Smoothed Analysis

Some of our shown convergence times include the factor W/pmin. While in the
worst case this fraction can be exponentially large, in the smoothed setting they
turn into expected polynomial convergence times.

Lemma 1. If the convergence time is bounded by f(m,n) · W/pmin for some
polynomial f , then the smoothed convergence time is bounded by O(f(m,n) ·
n3 log(m) · φ).

Unfortunately, our result about the convergence time of the Best Improve-
ment pivot rule in the Makespan model depends quadratically on pmin. This does
not allow us to derive an expected polynomial convergence time, but instead
we can show that with high probability the convergence time is polynomially
bounded.

Lemma 2. The smoothed convergence time of the Best Improvement pivot rule
in the Makespan model is in m2n7φ2 with probability at least 1 − 1/n.

4 Identical Machines

In the FIFO model, the costs of a job decrease monotonically while the minimum
load of a machine increases monotonically when considering identical machines.
As a moving job always jumps to a machine with minimum load, every job can
jump at most once. This leads to the following result.
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Theorem 1. In the FIFO model, for any pivot rule the worst-case running time
is exactly n − 1.

For the Makespan model, Even-Dar et al. [7] proved that the Min Weight
pivot rule can take as many as Ω((n/m2)m−1) steps. They also showed that this
is near to the worst case as every pivot rule terminates after O(( n

K +1)K) steps,
where K is the number of different job weights. We derive the bound O(n · W

pmin
)

for arbitrary pivot rules, which is a significant improvement if W
pmin

is small. This
bound is almost optimal as it is easy to see that the worst case instance used
in [7] has pmax

pmin
= (n/(m − 1))m−2. It is also a generalization of the result that

every pivot rule converges in O(W + n) steps in the case of integer weights.

Theorem 2. In the Makespan model, every pivot rule terminates after O(n ·
W

pmin
) steps.

Proof. As Even-Dar et al. [7] pointed out (without proof), after a job j moved to
machine i, it can only be unsatisfied again after a strictly greater job moved to
machine i in the meantime: A job always jumps to a machine with minimum load
and the minimum load increases monotonically. Consider the last job j′ entering
machine i in iteration t′ before job j jumps away from machine i in iteration t.
Then machine i must be a machine with minimum load before iteration t′. Now
if pj > pj′ , then Lt+1

i would be stricly smaller than Lt′
i , which is a minimum

load in a former iteration. If pj = pj′ , then job j cannot be unsatisfied because
job j′ is not unsatisfied.

Based on their idea of push-out potentials, we define the potential φ :=∑m
i=1 ut

i ≤ W , where ut
i is the maximum total weight of jobs on machine i that

could consecutively move away from i, starting in the schedule before iteration t.
When a job j jumps from machine i to machine i′, then ut

i′ was 0 beforehand. As
mentioned above, no job from any other machine than machine i′ can become
unsatisfied by the move of job j and thus the potential φ decreases by at least
ut

i − ut+1
i − ut+1

i′ .
If ut+1

i′ was larger than pj , then there would be a sequence of moves from
jobs away from machine i′ such that the load of machine i′ after these moves
would be less than Lt

i′ . But machine i′ was a machine with minimum load before
iteration t, a contradiction. Note also that ut

i − ut+1
i ≥ pj : Let J ′ be the jobs

on machine i with total weight ut+1
i which could consecutively jump away from

machine i after iteration t. Then J ′ ∪ {j} could consecutively jump away before
iteration t and thus ut

i ≥ ∑
j′∈J ′∪{j} pj′ = ut+1

i + pj′ . We can conclude that
ut

i − ut+1
i − ut+1

i′ ≥ 0 and thus that φ is actually a potential.
We call a jump of job j to machine i in iteration t stable if after that jump,

another job moves to i before a job leaves i. As discussed above, through the
stable jump the total potential of all machines except machine i decreases by
at least pj ≥ pmin and ut′

i = 0 at time t′ when the next job enters or leaves
machine i. Hence, every stable jump induces a potential drop of at least pmin.
We maintain a set of indices: In the initial schedule, every job has an index
attached to it. When a job j moves away from machine i, then the indices
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attached to j get transferred to the job j′ that moved last to machine i. If no
such job exists, the indices get deleted. Afterwards, a new index gets attached
to job j on its new machine if it was a stable jump.

When a job j moves to machine i, then no job on machine i was unsatis-
fied beforehand as j jumps to a machine with minimum load. Thus, when an
index gets reattached from job j′ to job j, then j made j′ unsatisfied and thus
pj is strictly greater than pj′ because only larger jobs can make smaller jobs
unsatisfied. Therefore, every index can be reattached at most n times. Further-
more, every time a job j jumps away from a machine i, it has at least one index
attached to it: Assume to the contrary that it is the first jump without attached
indices. If it is the first jump by job j or its last jump was stable, then there is
by definition an attached index. Otherwise, there is a job j′ that left machine i
such that job j is the last job entering machine i beforehand and thus job j′

transferred its indices to job j. Hence, the number of indices is at least one nth
of the total number of jumps. There can only be W/pmin many stable jumps as
otherwise φ would be negative. This yields the desired bound. �	

Finally let us consider the SJF model. The Max Weight pivot rule in the SJF
model can take an exponential number of steps even on two identical machines.
Also an average-case analysis yields a superpolynomial convergence time. We
do not consider the Random pivot rule and the Min Weight pivot rule in this
section because for these rules we prove in Sect. 6.3 polynomial upper bounds
even for the more general setting of related machines. We leave it as an open
question whether the convergence time of the Best Improvement pivot rule is
polynomial for identical machines.

Theorem 3. In the SJF model, the convergence time of the Max Weight pivot
rule is 2Ω(n) even for two identical machines. The smoothed convergence time of
the Max Weight pivot rule is 2Ω(

√
n) even for two identical machines and φ = 1.

5 Unit-Weight Jobs

In the case of unit-weight jobs, Even-Dar et al. [7] claimed that for Makespan,
there exists a pivot rule which converges in mn steps and that there is a pivot
rule with convergence time Ω(mn) if jobs do not necessarily move to the machine
yielding the biggest improvement but only have to improve their costs by jump-
ing. We show that all pivot rules have linear convergence time if jobs have to
jump to the best machine.

Theorem 4. In both the FIFO and the Makespan model for unit-weight jobs,
the convergence time for any pivot rule is n for any number m ≥ 2 of machines.

6 Related Machines

For the most general case of related machines we use potential functions in order
to show pseudo-polynomial convergence times for different pivot rules in both
the FIFO and the Makespan model.
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The potential φFIFO used in the FIFO model is the Rosenthal potential
introduced in [15], which is the sum of the execution times of the jobs. It is
easy to see that φFIFO decreases by at least Δ when the jumping job improves
its execution time by Δ. It decreases even more if the jumping job was not on
top of its original machine.

For the Makespan model, we use the potential

φMakespan :=
m∑

i=1

1
si

·

⎛

⎜
⎝

⎛

⎝
∑

j∈σ−1(i)

pj

⎞

⎠

2

+
∑

j∈σ−1(i)

p2j

⎞

⎟
⎠ ,

defined by Even-Dar et al. [7].
The fastest machine has always load at most W/smax. If there is a machine

with load greater than 2W/smax, then a job from this machine can improve its
costs by at least W/smax by jumping to the fastest machine. This gives rise to
the following lemma.

Lemma 3. The following two statements hold:

1. If there is a machine with load greater than 2W/smax, the best improvement
can be achieved by a jump from some job from a machine with load greater
than W/smax to a machine with load at most W/smax.

2. If there is no machine with load greater than 2W/smax, then φFIFO = O(n ·
W

smax
) and φMakespan = O( W 2

smax
).

Corollary 1. For the Best Improvement pivot rule after n iterations and for
the Random pivot rule after expected O(n log n) iterations there is no machine
left with load greater than 2W/smax.

6.1 FIFO

Before we come to the general cases, let us first mention a linear-time result for
the special case of m = 2 machines.

Theorem 5. In the FIFO model, the convergence time for any pivot rule on
two related machines is at least n and at most 2n − 2. There are pivot rules for
which 2n − 2 is tight.

The main idea of the following proofs is that if a job jumps that is not on
top of its machine, the costs of all jobs above the moving job and thus the
potential φFIFO decrease by at least pmin/smax. We are able to show that this
must happen after a polynomial number of steps for the Best Improvement and
for Fixed Priority pivot rules.

Theorem 6. In the FIFO model, the convergence time of the Best Improvement
pivot rule is in O(m2n · W/pmin).
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Proof. According to Lemma 3 and Corollary 1, after O(n) iterations the potential
φFIFO is in O(n · W/smax). Hence, it suffices to show that in every sequence of
m2 consecutive iterations, φFIFO drops by at least pmin/smax. Therefore, let us
consider a sequence S of maximum length in which φFIFO drops by strictly less
than pmin/smax. It is obvious that only jobs that are on top of some machine
can jump as the running times of all the jobs above the moving job decrease by
at least pmin/smax.

For a given point in time, we call a job active if it jumps until the end of
the sequence S. At any time, there can only be at most one active job on any
machine. To see this, assume to the contrary that there are two active jobs j1
and j2 at the same time t1 on a machine i. Let job j1 w.l.o.g. be directly above
job j2, and let t2 > t1 be the first iteration in which job j2 leaves machine i again.
Define α := ct1

j1
− ct2

j1
as the difference of j1’s running times at time t1 and t2.

As job j2 was a top-most job in iteration t2 and no job below j2 could jump
before j2 jumped, job j1 would have a running time of Lt1

i − pj2/si if it jumped
to machine i in the next step, yielding a total improvement of j1’s running time
of at least pmin/smax. If j1 does not jump back to machine i in the next step,
then either we have reached an equilibrium (then pj2/si ≤ α) or there is a job
(possibly also j1) that can improve by strictly more than pj2/si − α. Hence, the
potential drops by at least pj2/si ≥ pmin/smax during all the jumps of job j1
between t1 and t2 and the iteration following t2 + 1.

Thus, we have shown that also at the beginning of the sequence S there are
at most m active jobs as on each machine there is at most one active job. It also
implies that no job j can jump back to a machine i it has already been onto as
all jobs lying underneath j stay on machine i until the end of the sequence S.
Hence, every job jumps at most m − 1 times and the length of S is bounded
from above by m(m − 1). �	
Theorem 7. In the FIFO model, the expected convergence time of the Random
pivot rule is in O(m2n2 · W/pmin).

For Fixed Priority pivot rules, we cannot assume anymore that after a linear
number of iterations there is no machine with load more than 2W/smax left
and thus that φFIFO is small. On the other hand, we know that the sum of the
running times of all jobs that have already jumped is bounded by O(n ·W/smax)
and we are able to show that during O(n) consecutive iterations, either a job
jumps for the first time or the potential φFIFO drops by at least pmin/smax. In
order to bound the potential by O(n · W/smax), we use the modified potential
function

φ′
FIFO :=

n∑

j=1

min
{

cj ,
W

smax

}

.

Theorem 8. In the FIFO model, the convergence time of any Fixed Priority
pivot rule is in O(n2 · W/pmin).

Proof. As 0 ≤ φ′
FIFO ≤ n · W/smax, we only have to show that during every

sequence of n + 1 steps, either φ′
FIFO drops by at least pmin/smax or a job must
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jump for the very first time. In such a sequence, it must be the case that a job j2
jumps directly after a job j1, where the priority of j2 is greater than the priority
of j1. This means that j2 jumps to the old machine i of job j1 as it could not
jump before the move of j1. If it was not j1’s first jump, let t2 be the point in
time between the two jumps by j1 and j2, and let t1 be the point in time before
j1 jumps the last time before t2−1. As j2 does not want to jump to machine i at
time t1, but does this later at time t2, it must be the case that Lt1

i > Lt2
i . Hence,

between t1 + 1 and t2 − 1 a job j′ assigned to machine i at time t1 must leave
its machine. But during this time, job j1 lies above job j′ yielding a running
time improvement of pj′/si ≥ pmin/smax for job j1 through the jump by j′.
As j1 has jumped before, its running time before the jump by j′ was already at
most W/smax, meaning that also φ′

FIFO drops by at least pmin/smax. �	
The machine speeds do not occur in our bounds for the convergence times.

Nevertheless, different machine speeds result in a higher convergence time than
in the case of identical machines, as the following result shows. We believe that
our proofs for the upper bounds on the convergence times are too pessimistic
and thus we conjecture polynomial convergence times for all pivot rules. This
is in contrast to the superpolynomial lower bounds in the Makespan and SJF
model but a crucial difference is that the costs of a job can never increase in the
FIFO model.

Theorem 9. In the FIFO model, local search can take Ω(mn) steps. The con-
vergence time for the Min Weight pivot rule is in Ω(m2).

Proof. For the lower bound Ω(mn), let 	 ≥ 1 and k ≥ 1 be two integers. There
are m = 2k + 1 machines and n = k	 + k + 1 jobs split up in 2k + 1 job classes
J1, . . . , J2k+1. The machine speeds are si = 2i−1 for 1 ≤ i ≤ 2k and s2k+1 =
22k+1. The job classes J1, . . . , Jk each contain 	 jobs with sizes 20, . . . , 2�−1 and
the job classes Jk+1, . . . , J2k+1 each contain a single job with size 2�+j for job
class Jj .

Initially, each job class Jj is assigned to machine j and the jobs on a machine
are processed in monotonically increasing order of the job sizes. We consider the
following k rounds 1, . . . , k. Before round i begins, the jobs from job class Jj ,
j ≤ k, are on machine j + i − 1 such that they are processed in increasing order
of the sizes, the jobs from job classes Jk+1, . . . , Jk+i−1 are on machine 2k+1 and
the other jobs have not moved before. Then we let the single job from class Jk+i

move from machine k + i to machine 2k + 1. Thereupon, the jobs from class Jk

move in ascending order of the sizes from machine k + i−1 to machine k + i, the
jobs from class Jk−1 move in ascending order of the sizes from machine k+i−2 to
machine k + i − 1 and so on. One can easily see that every job strictly decreases
its costs while moving. All jobs from the job classes J1, . . . , Jk move in every
round. Hence, there are Ω(k2	) = Ω(mn) iterations.

For the lower bound Ω(m2) for the Min Weight pivot rule, let again k be an
integer and let ε > 0 be appropriately small. There are m = n = 2k+1 machines
and jobs. The machine speeds are si = 1 + i · ε for 1 ≤ i ≤ 2k and s2k+1 = 4k.
The job sizes are pj = 1 − j · ε for 1 ≤ j ≤ k, pj = 2 + 2j · ε for k + 1 ≤ j ≤ 2k,
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and p2k+1 = 4k. Initially, every job j is assigned to machine j and the loads
on the first k machines are less than 1, Lk+1 = . . . = L2k = 2 and L2k+1 = 1.
One can easily see that every job k + 1, . . . , 2k can move to machine 2k + 1 as
L2k+1 remains to be less than 2 and that every such jump induces jumps from
the jobs 1, . . . , k. Hence, there are Ω(k2) = Ω(m2) iterations. �	

6.2 Makespan

In this section, we consider the Best Improvement pivot rule in the Makespan
model. We use the fact that the potential φMakespan decreases by at least 2pmin ·
pmin/smax if a sequence of jobs decrease their running time by a total
of pmin/smax through jumping. This is due to a lemma by Even-Dar et al. [7]
that if a jumping job j improves its execution time by Δ, then φMakespan drops
exactly by 2pjΔ.

Suppose that a job j wants to jump away from machine i to machine i′ and
there is a smaller job j′ on machine i. At the current time, the costs of j and j′

are the same as they are on the same machine. But the additional costs job j′

would generate on any machine are strictly smaller than the additional costs
job j would generate. Hence, job j′ would have smaller costs on machine i′ than
job j. This leads to the following observation.

Observation 1. When a job jumps away from a machine i according to the
Best Improvement pivot rule, it was a smallest job on machine i.

Let us now provide the main ideas of our proof. Imagine there are two
jobs j1, j2 on the same machine i and job j1 jumps away in iteration t1 making a
small improvement directly before job j2 leaves machine i in iteration t2 = t1+1.
Then job j1 could improve its running time by pj2/si by jumping back to
machine i in iteration t2 + 1. If, however, t2 > t1 + 1, it could happen that
another job j3 from job j1’s new machine leaves this machine leaving job j1
unable to jump back. But then job j3 is smaller than j1 according to Observa-
tion 1 and thus could jump to machine i in iteration t2+1 unless it already made
a big improvement or another job from job j3’s new machine jumped away in
the meantime etc. Lemma 4 proves that the potential drops significantly during
such a sequence.

Lemma 4. If two jobs jump away from a machine i at iterations t < t′ and
no job enters machine i between t and t′, then the potential φMakespan drops
by at least p2min/smax during the iterations t, . . . , t′ + 1 when using the Best
Improvement pivot rule.

Imagine now there are two jobs j1, j2 entering the same machine i in two
consecutive iterations t1 and t2 = t1 + 1, where job j1 moves first. Then job j2
would improve its running time by at least pj1/si if it jumped in iteration t1
as it also has the incentive to move to machine i after job j1’s jump. But if
t2 > t1 + 1, it could be that in iteration t1 job j2’s running time is smaller than
in iteration t2 and in the meantime another job j3 enters job j2’s machine. If
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job j3 is much larger than job j2, then job j2 would improve much by jumping
to job j3’s old machine. Otherwise, job j3 could have moved to machine i in
iteration t1 unless another job entered job j3’s old machine in the meantime etc.
Lemma 5 shows that also in this case the potential drops significantly.

Lemma 5. If two jobs enter a machine i at iterations t′ < t and no job leaves
machine i between t′ and t, then the potential φMakespan drops by at least p2min/(2·
smax) between t′ and t + 1 when using the Best Improvement pivot rule.

Hence, we are able to show that if there is a machine to which two jobs
migrate without a job leaving or from which two jobs leave without a job entering,
the potential φMakespan drops significantly. The proof then concludes with the
observation that this must happen every O(m2n) iterations.

Theorem 10. In the Makespan model, the convergence time of the Best
Improvement pivot rule is in O(m2n · W 2/p2min).

Proof. According to Lemma 3, after O(n) iterations the potential φMakespan is in
O(W 2/smax). Hence, it suffices to show that in every sequence of m2n consecutive
iterations, φMakespan drops by at least p2min/(2smax).

Let S be a sequence of maximum length such that φMakespan drops by less
than p2min/(2smax), lasting from iteration t0 to iteration t�. We maintain a set
of indices, which is empty at time t0. When a job j jumps from a machine i1 to
a machine i2 at iteration t ∈ {t0, . . . , t�} and if there has not been a job that
jumped to machine i1 during the iterations t0, . . . , t, generate a new index which
gets attached to machine i2. Otherwise, reattach the index previously attached
to machine i1 to machine i2. Lemma 4 shows that this is well-defined as there
cannot be another job leaving machine i1 before another index gets attached to
this machine.

At the end of the sequence, there can only be at most m indices. If an index
gets reattached from machine i1 to machine i2 at iteration t, then Lt

i1
> Lt+1

i2
, i.e.,

the running time of the machine an index is attached to is strictly monotonically
decreasing.

Consider an index that jumps with job j at iteration t and with job j′ at
iteration t′ to the same machine i. Let j = j1, j2, . . . , j� be the jobs that entered
machine i and let j′

1, . . . , j
′
� be the jobs that left machine i during the itera-

tions t, . . . , t′ − 1 in this order. Lemmas 4 and 5 show that the order in which
this happened must be j1, j

′
1, j2, j

′
2, . . . , j�, j

′
� and that the sequences have the

same length, i.e., the sequences are well-defined. As always only a smallest job
on a machine is able to achieve the best improvement and for every k, job jk is
on machine i when job j′

k leaves this machine, it must be the case that Lt
i ≤ Lt′

i .
But in the iterations t + 1 and t′ + 1, the same index is attached to machine i,
meaning that Lt

i +pj/si = Lt+1
i > Lt′+1

i = Lt′
i +pj′/si, i.e., pj > pj′ . This means

that an index cannot be attached twice to the same machine by a jump of the
same job and thus an index gets reattached at most n · m times. This concludes
the proof. �	
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6.3 SJF

Theorem 11. In the SJF model, the convergence time of the Min Weight pivot
rule is exactly n, even on two machines. The expected convergence time of the
Random pivot rule is less than n2.

7 Price of Anarchy for FIFO

Brunsch et al. [3] already showed that the smoothed price of anarchy for near
list schedules in the Makespan model, which correspond to local optima in the
FIFO model, is Θ(log φ). We give matching bounds for the deterministic case.

Theorem 12. In the FIFO model, the price of anarchy for local search is
Θ(log m) on related machines and 2 − 1/m on identical machines.

8 Concluding Remarks

We have shown several bounds for the convergence times of local search regarding
three different coordination mechanisms on rational inputs. The choice of the
right pivot rule decides in the Shortest Job First model between linear and
exponential convergence times. The FIFO model is new but we believe that it is
a realistic choice for many different real-life applications. We were able to show
that every pivot rule converges in this model in linear time on identical machines
and a large class of reasonable pivot rules converges in smoothed polynomial time
on related machines. An interesting observation is that the machine speeds do not
occur in any bound. We leave it as a conjecture that every pivot rule converges
in polynomial time in the FIFO model. Another interesting open problem is
whether the Best Improvement pivot rule in the Makespan model converges in
smoothed or even deterministic polynomial time on related machines. We were
only able to show that this happens with high probability when the input is
perturbed.

Acknowledgments. We thank Clemens Rösner for helpful discussions about the
lower bounds for the SJF model and the proof of Theorem2.
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14. Manthey, B., Röglin, H.: Smoothed analysis: analysis of algorithms beyond worst
case. IT - Information Technology 53(6), 280–286 (2011)

15. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Inter-
nat. J. Game Theor. 2, 65–67 (1973)

16. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multi-
processor scheduling. Informs J. Comput. 19(1), 52–63 (2007)

17. Spielman, D., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algo-
rithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

18. Spielman, D., Teng, S.-H.: Smoothed analysis: an attempt to explain the behavior
of algorithms in practice. Commun. ACM 52(10), 76–84 (2009)

http://dx.doi.org/10.1007/978-3-540-27836-8_31
http://dx.doi.org/10.1007/978-3-642-45030-3_20
http://dx.doi.org/10.1007/978-3-642-45030-3_20
http://dx.doi.org/10.1007/3-540-45061-0_41
http://dx.doi.org/10.1007/3-540-45061-0_41
http://dx.doi.org/10.1007/3-540-45061-0_42
http://dx.doi.org/10.1145/1011767.1011787
http://dx.doi.org/10.1016/j.tcs.2008.12.032
http://dx.doi.org/10.1016/j.tcs.2008.12.032


On the Price of Stability of Undirected
Multicast Games

Rupert Freeman, Samuel Haney(B), and Debmalya Panigrahi

Department of Computer Science, Duke University, Durham, NC 27708, USA
{rupert,shaney,debmalya}@cs.duke.edu

Abstract. In multicast network design games, a set of agents choose
paths from their source locations to a common sink with the goal of mini-
mizing their individual costs, where the cost of an edge is divided equally
among the agents using it. Since the work of Anshelevich et al. (FOCS
2004) that introduced network design games, the main open problem in
this field has been the price of stability (PoS) of multicast games. For the
special case of broadcast games (every vertex is a terminal, i.e., has an
agent), a series of works has culminated in a constant upper bound on the
PoS (Bilò et al., FOCS 2013). However, no significantly sub-logarithmic
bound is known for multicast games. In this paper, we make progress
toward resolving this question by showing a constant upper bound on
the PoS of multicast games for quasi-bipartite graphs. These are graphs
where all edges are between two terminals (as in broadcast games) or
between a terminal and a nonterminal, but there is no edge between
nonterminals. This represents a natural class of intermediate generality
between broadcast and multicast games. In addition to the result itself,
our techniques overcome some of the fundamental difficulties of analyz-
ing the PoS of general multicast games, and are a promising step toward
resolving this major open problem.

Keywords: Price of stability · Network design games · Cost sharing
games

1 Introduction

In cost sharing network design games, we are given a graph/network G = (V,E)
with edge costs and a set of users (agents/players) who want to send traffic
from their respective source vertices to sink vertices. Every agent must choose
a path along which to route traffic, and the cost of every edge is shared equally
among all agents having the edge in their chosen path, i.e., using the edge to
route traffic. This creates a congestion game since the players benefit from other
players choosing the same resources. A Nash equilibrium is attained in this game
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when no agent has incentive to unilaterally deviate from her current routing path.
The social cost of such a game is the sum of costs of edges being used in at least
one routing path, and efficiency of the game is measured by the ratio of the social
cost in an equilibrium state to that in an optimal state. (The optimal state is
defined as one where the social cost is minimized, but the agents need not be
in equilibrium.) The maximum value of this ratio (i.e., for the most expensive
equilibrium state) is called the price of anarchy of the game, while the minimum
value (i.e., for the least expensive equilibrium state) is called its price of stability.
It is well known that even for the most restricted settings, the price of anarchy
can be Ω(n) for n agents. Therefore, the main question of research interest has
been to bound the price of stability (PoS) of this class of congestion games.

Anshelevich et al. [2] introduced network design games and obtained a bound
of O(log n) on the PoS in directed networks with arbitrary source-sink pairs.
While this is tight for directed networks, they left determining tighter bounds
on the PoS in undirected networks as an open question. Subsequent work has
focused on the case of all agents sharing a common sink (called multicast games)
and its restricted subclass where every vertex has an agent residing at it (called
broadcast games). These problems are natural analogs of the Steiner tree and
minimum spanning tree (MST) problems in a game-theoretic setting. For broad-
cast games, Fiat et al. [13] improved the PoS bound to O(log log n), which was
subsequently improved to O(log log log n) by Lee and Ligett [15], and ultimately
to O(1) by Bilò et al. [5]. For multicast games, however, progress has been much
slower, and the only improvement over the O(log n) result of Anshelevich et al.
is a bound of O(log n/ log log n) due to Li [16]. In contrast, the best known
lower bounds on the PoS of both broadcast and multicast games are small con-
stants [4]. As a result, determining the PoS of multicast games has become a
compelling open question in the area of network games.

In this paper, we achieve progress toward answering this question. In the
multicast setting, a vertex is said to be a terminal if it has an agent on it, else
it is called a nonterminal. Note that in the broadcast problem, there are no
nonterminals and all the edges are between terminal vertices. In this paper, we
consider multicast games in quasi-bipartite graphs: all edges are either between
two terminals, or between a nonterminal and a terminal. (That is, there is no
edge with both nonterminal endpoints.) This is a natural setting of intermediate
generality between broadcast and multicast games. Moreover, quasi-bipartite
graphs have been widely studied for the Steiner tree problem (see, e.g., [6,7,
17,18]) and has provided insights for the problem on general graphs. Our main
result is an O(1) bound on the PoS of multicast games in quasi-bipartite graphs.

Theorem 1. The price of stability of multicast games in quasi-bipartite graphs
is a constant.

In addition to the result itself, our techniques overcome some of the funda-
mental difficulties of analyzing the PoS of general multicast games, and therefore
represent a promising step toward resolving this important open problem. To
illustrate this point, we outline the salient features of our analysis below.
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The previous PoS bounds for multicast games [2,16] are based on analyzing
a potential function φe defined on each edge e as its cost scaled by the harmonic
of the number of agents using the edge, i.e., φe = cost(e) · (1 + 1/2 + 1/3 +
· · · + 1/j) where j is the number of terminals using e. The overall potential
is φ =

∑
e φe. When an agent changes her routing path (called a move), this

potential exactly tracks the change in her shared cost. If the move is an improving
one, then the shared cost of the agent decreases and so too does the potential.
As a consequence, for an arbitrary sequence of improving moves starting with
the optimal Steiner tree, the potential decreases in each move until a Nash
Equilibrium (NE) is reached. This immediately yields a PoS bound of H(n) =
O(log n) [2]. To see this, note that the potential of any configuration is bounded
below by its cost, and above by its cost times H(n). Then, letting SNE be the
Nash equilibrium reached, and T ∗ be the optimal routing tree, we have

c(SNE) ≤ φ(SNE) ≤ φ(T ∗) ≤ H(n)c(T ∗).

This bound was later improved to O(log n/ log log n) by Li [16] with a similar
but more careful accounting argument.

The previous PoS bounds for broadcast games [5,13,15] use a different strat-
egy. As in the case of multicast games, these results analyze a game dynamics
that starts with an optimal solution (MST) and ends in an NE. However, the
sequence of moves is carefully constructed — the moves are not arbitrary improv-
ing moves. At a high level, the sequence follows the same pattern in all the
previous results for broadcast games:

1. Perform a critical move: Allow some terminal v to switch its path to introduce
a single new edge into the solution, that is not in the optimal routing tree
and is adjacent to v. This edge is associated with v and denoted ev. Any
edge introduced by the algorithm in any move other than a critical move uses
only edges in the current routing tree, and edges in the optimal routing tree.
Therefore, we only need to account for edges added by critical moves.

2. Perform a sequence of moves to ensure that the routing tree is homogenous.
That is, the difference in costs of a pair of terminals is bounded by a function
of the length of the path between them on the optimal routing tree. For exam-
ple, suppose two terminals w and w′ differ in cost by more than the length of
the path between them in the optimal routing tree. Then the terminal with
larger cost has an improving move that uses this path, and then the other
terminal’s path to the root. Such a move introduces only edges in the optimal
routing tree.

3. Absorb a set of terminals around v in the shortest path metric defined on
the optimal tree: terminals w replace their current strategy with the path
in the optimal routing tree to v, and then v’s path to the root. If w had
an associated edge ew, introduced via a previous critical move, it is removed
from the solution in this step.

The absorbing step allows us to account for the cost of edges added via
critical moves, by arguing that vertices associated with critical edges of similar
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length must be well-separated on the optimal routing tree. If edges eu and ev are
not far apart, the second edge to be added would be removed from the solution
via the absorbing step.

Homogeneity facilitates absorption: Suppose v has performed a critical move
adding edge ev, and let w be some other terminal. While v pays c(ev) to use
edge ev, w would only pay c(ev)/2 to use ev, since it would split the cost with
v. That is, if w bought a path to v and then used v’s path to the root, it would
save at least c(ev)/2 over v’s current cost. If the current costs paid by v and w
are not too different, and the distance between v and w not too large, then such
a move is improving for w.

The previous results differ in how well they can homogenize: the tighter the
bound on the difference in costs of a pair of terminals as a function of the length
of the path between them in the optimal routing tree, the larger the radius in the
absorb step. In turn, a larger radius of absorption establishes a larger separation
between edges with similar cost, which yields a tighter bound on the PoS.

This homogenization-absorption framework has not previously been extended
to multicast games. The main difficulty is that there can be nonterminals that are
in the routing tree at equilibrium but are not in the optimal tree. No edge incident
on these vertices is in the optimal tree metric, and therefore these vertices cannot
be included in the homogenization process. So, any critical edge incident on
such a vertex cannot be charged via absorption. This creates the following basic
problem: what metric can we use for the homogenization-absorption framework
that will satisfy the following two properties?

1. The metric is feasible – the sum of all edge costs in (a spanning tree of) the
metric is bounded by the cost of the optimal routing tree. These edges can
therefore be added or removed at will, without need to perform another set
of moves to pay for them (in contrast to critical edges). This allows us to
homogenize using these edges.

2. The metric either includes all vertices (as is the case with the optimal tree
metric for broadcast games), or if there are vertices not included in the met-
ric, critical edges adjacent to these vertices can be accounted for separately,
outside the homogenization-absorption framework.

We create such a metric for quasi-bipartite graphs, allowing us to extend the
homogenization-absorption framework to multicast games. Our metric is based
on a dynamic tree containing all the terminals and a dynamic set of nonterminals.
We show that under certain conditions, we can include the shortest edge incident
on a nonterminal vertex, even if it is not in the optimal routing tree, in this
dynamic tree. These edges are added and removed throughout the course of the
algorithm. Our new metric is now defined by shortest path distances on this
dynamic tree: the optimal routing tree extended with these special edges. We
ensure homogeneity not on the optimal routing tree, but on this dynamic metric.
Likewise, absorption happens on this new metric. We define the metric in such
a way that the following hold:

1. The metric is feasible. That is, the total cost of all edges in the dynamic tree
is within a constant factor of the cost of the optimal tree.
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2. Consider some critical edge ev such that the corresponding vertex v is not in
the metric. That is, it was not possible to add the shortest edge adjacent to v
to the dynamic tree while keeping it feasible. Therefore, v is at infinite distance
from every other vertex in this metric, ruling out homogenization. Then,
ev can be accounted for separately, outside the homogenization-absorption
framework.

For the remaining edges ev such that v is in the metric, we account for them by
using the homogenization-absorption framework. Our main technical contribu-
tion is in creating this feasible dynamic metric, going beyond the use of static
optimal metrics in broadcast games. While the proof of feasibility currently relies
on the quasi-bipartiteness of the underlying graph, we believe that this new idea
of a feasible dynamic metric is a promising ingredient for multicast games in
general graphs.

In the rest of the paper, we present the algorithm in detail, and provide an
outline of its analysis. Details of the analysis are deferred to the full version of
the paper due to space constraints.

1.1 Related Work

Recall that the upper bounds for PoS are a (large) constant and O
(

log n
log log n

)

for broadcast and multicast games, respectively. The corresponding best known
lower bounds are 1.818 and 1.862 respectively by Bilò et al. [4], leaving a signifi-
cant gap, even for broadcast games. Moreover, Lee and Ligett [15] show that
obtaining superconstant lower bounds, even for multicast games where they
might exist, is beyond current techniques. While this lends credence to the belief
that the PoS of multicast games is O(1), Kawase and Makino [14] have shown
that the potential function approach of Anshelevich et al. [2] cannot yield a
constant bound on the PoS, even for broadcast games. In fact, Bilò et al. [5]
used a different approach for broadcast games, as do we for multicast games on
quasi-bipartite graphs.

Various special cases of network design games have also been considered.
For small instances (n = 2, 3, 4), both upper [10] and lower [3] bounds have
been studied. [10] show upper bounds of 1.65 and 4/3 for two and three players
respectively. For weighted players, Anshelevich et al. [2] showed that pure Nash
equilibria exist for n = 2, but the possibility of a corresponding result for n ≥ 3
was refuted by Chen and Roughgarden [9], who also provided a logarithmic
upper bound on the PoS. An almost matching lower bound was later given by
Albers [1]. Recently, Fanelli et al. [12], showed that the PoS of network design
games on undirected rings is 3/2.

Network design games have also been studied for specific dynamics. In par-
ticular, starting with an empty graph, suppose agents arrive online and choose
their best response paths. After all arrivals, agents make improving moves until
an NE is reached. The worst-case inefficiency of this process was determined
to be poly-logarithmic by Charikar et al. [8], who also posed the question of
bounding the inefficiency if the arrivals and moves are arbitrarily interleaved.
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This question remains open. Upper and lower bounds for the strong PoA of
undirected network design games have also been investigated [1,11]. They show
that the price of anarchy in this setting is Θ(log n).

2 Preliminaries

Let G = (V,E) be an undirected edge-weighted graph and let c(e) denote the
cost of edge e. Let U ⊆ V be a set of terminals and r ∈ U . In an instance of
a network design game, each terminal u is associated with a player, or agent,
that must select a path from u to r. We consider instances in which G is quasi-
bipartite, that is no edge e has two nonterminal end points.

A solution, or state, is a set of paths connecting each player to the root. Let
S be the set of all possible solutions. For a solution S, a terminal u, and some
subset E′ of the edges in the graph, let cE′

u (S) =
∑

e∈E′ c(e)/ne(S) be the cost
paid by u for using edges in E′, where ne(S) is the number of players using edge
e in state S. Let pu(S) be the set of edges used by u to connect to the root in S

and let cu(S) = c
pu(S)
u (S) be the total cost paid by u to use those edges. For a

nonterminal v, if every terminal u with v ∈ pu(S) uses the same path from v to
the root then define pv(S) to be this path from v to r, and cv(S) = c

pv(S)
u (S).

Additionally, we will sometimes refer to the cost a vertex v pays, even if v is a
nonterminal. By this we mean cv(S). For any vertex v ∈ S, let ev be the edge in
pv(S) with v as an endpoint.

Let Φ : S → R+ be the potential function introduced by Rosenthal [19],
defined by

Φ(S) =
∑

e∈E

c(e)Hne(S) = c(e)
(

1 +
1
2

+ · · · +
1

ne(S)

)

.

Let u ∈ U and suppose S and S′ are states for which pv(S) = pv(S′) for all
players v �= u. Then Φ(S′) − Φ(S) = cu(S′) − cu(S). In particular, if a single
player changes their path to a path of lower cost, the potential decreases.

The goal of each player is to find a path of minimum cost. A solution where
no player can benefit by unilaterally changing their path is called a Nash Equi-
librium. Let T ∗ be a solution that minimizes the total cost paid. Note that T ∗ is
a minimum Steiner tree for G. The price of stability (PoS) is the ratio between
the minimum cost of a Nash equilibrium and the cost of T ∗.

Let pT ∗(u, v) be the path in T ∗ between u and v. Let v1, . . . , vn be the ver-
tices of T ∗ in the order they appear in a depth first search of T ∗. Let MC,
the “main cycle”, be the concatenation of pT ∗(v1, v2), pT ∗(v2, v3), . . . , pT ∗(vn−1,
vn), pT ∗(vn, v1). Note that each edge in T ∗ appears exactly twice in MC. The fol-
lowing property will be helpful:

Fact 2. Any x to y path in MC completely contains pT ∗(x, y).

Define the class of edge e, class(e), as α if 256α ≤ c(e) < 256α+1. Without
loss of generality, we assume that c(e) ≥ 1 for all e ∈ E, so the minimum possible
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edge class is 0. For simplicity, define �c(e)	 = 256class(e), a lower bound for c(e),
and 
c(e)� = 256class(e)+1, an upper bound for c(e).

For each nonterminal v, let σv be the minimum cost edge adjacent to
v in G. Let tv be the terminal adjacent to σv. Let T+ be the extended
optimal metric: T ∗ ∪ {σv}v∈V . We maintain a dynamic set of nonterminals
ZS = {w /∈ T ∗ : c(σw) ≤ �c(ew)	/64}. That is, ZS are those nonterminals w
in solution S whose first edge ew has cost within a constant factor of the cost
of σw For any w ∈ S, if σw is added to S while w ∈ ZS , then we show that we
will be able to pay for σw if it remains in the final solution. In the algorithm, we
denote the current state by Scurr. For ease of notation, we define Z = ZScurr

.
The remaining definitions are modifications of key definitions from [5]. The

interval around vertex v ∈ T ∗ with budget y, Iv,y, is the concatenation of its right
and left intervals, I+v,y and I−

v,y, where I+v,y is the maximal contiguous interval in
MC with v a left endpoint such that

2
∑

α≥0

256α+1H2
nI+,α

≤ y,

where nI+,α is the number of edges of class α in I+v,y (repeated edges are counted
every time they appear). We define I−

v,y similarly.
The neighborhood of v in state S, NS(v) is an interval around v as well as

certain w �∈ T ∗ with tw in the interval. Formally,

NS(v) =

⎧
⎪⎪⎨

⎪⎪⎩

I
v,

�c(ev)�
56

∪
{

w ∈ ZS

∣
∣
∣
∣tw ∈ I

v,
�c(ev)�

56
and c(σw) ≤ �c(ev)�

64

}
if v ∈ T ∗,

I
tv,

�c(ev)�
56

∪
{

w ∈ ZS

∣
∣
∣
∣tw ∈ I

tv,
�c(ev)�

56
and c(σw) ≤ �c(ev)�

64

}
otherwise.

N+
S (v) and N−

S (v) are the right and left intervals of the neighborhood respec-
tively (that is, the portions of NS(v) to the right and left of v or tv respectively).
We denote NScurr

(v) as N(v). Roughly speaking, we are going to charge the cost
of edges in the final solution not in T ∗ to the interval portions of non-overlapping
right neighborhoods. A path X = pT ∗(x, y) is homogenous if

|cx(S) − cy(S)| ≤ 4
∑

α≥0

256α+1H2
nX,α

.

If X = pT ∗(x, y) ⊆ N(v) ∩ T ∗ is a homogenous path then

|cx(S) − cy(S)| ≤ 4
∑

α≥0

256α+1H2
nX,α

≤ 8
∑

α≥0

256α+1H2
nN+(v),α

≤ �c(e)	/14.

N(v) is homogenous if the following holds: For all x, y ∈ N(v) with x, y �= uv,
a special vertex to be defined later, such that the path in T+ from x to y does
not contain v, |cx(Scurr) − cy(Scurr)| ≤ 23�c(ev)�

112 . Homogenous neighborhoods
allow us to bound the difference in cost between any two vertices in N(v) which
will be useful when arguing that players have improving strategy changes.
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3 Algorithm

The initial state of the algorithm is the minimum cost tree T ∗ connecting all
the terminals to the root. The algorithm carefully schedules a series of potential-
reducing moves. (Recall the potential function Φ(S) =

∑
e∈E c(e)Hne(S) intro-

duced in Sect. 2). Since there are finitely many states possible, such a series of
moves must always be finite. Since any improving move reduces potential, we
must be at a Nash equilibrium if there is no potential reducing move. These
moves are scheduled such that if any edge outside of T ∗ is introduced, it is sub-
sequently accounted for by charging to some part of T ∗. In particular, we will
show that at any point in the process, and therefore in the equilibrium state at
the end, the total cost of these edges is bounded by O(1) · c(T ∗).

a

r

a

r

a

r

b

b
ea eb eaeb

Fig. 1. Types of critical improving moves. Dotted edges represent the new edges being
added.

The algorithm is a series of loops, which we run repeatedly until we reach a
Nash equilibrium. Each loop begins with a terminal, a, performing either a safe
improving move, or a critical improving move. In both cases, a switches strategy
to follow a new path to the root. Let S be the state before the start of the loop.
A safe improving move is one which results in some state S′ ⊆ T ∗ ∪ S, i.e., the
new path of a contains edges currently in S and edges in the optimal tree T ∗.
A safe improving move requires no additional accounting on our part. A critical
improving move on the other hand introduces one or two new edges that must
be accounted for (see Fig. 1). We will show later that in any non-equilibrium
state, a safe or critical improving move always exists (see Lemma 3).

The algorithm will use a sequence of (potential-reducing) moves to account
for the new edges introduced by a critical move. At a high level, each of these
edges is accounted for in the following way. Let ev be the edge in question, and
v be the first vertex using ev on its path to the root.

1. In some neighborhood around v, perform a sequence of moves to ensure that
for every pair of vertices (excluding v and at most one other special vertex),
the difference in shared costs of these vertices is not too large. (Recall that
the while nonterminals do not pay anything, the shared cost of a nonterminal
u is defined to be cu(S), the cost that a terminal using u pays on its subpath
from u to the root). This sequence of moves must be potential-reducing, and
cannot add any edges outside of T ∗ ∪ S to the solution.
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2. For every vertex y in the neighborhood around v, v has an alternative path
to the root consisting of the path in T+ to y, and y’s path to the root. (Recall
from Sect. 2 that T+ is the optimal tree, T ∗, augmented with minimum cost
edges incident on nonterminals {σw : w is a nonterminal}).
(a) If a y exists for which this alternative path is improving for v, then v can

switch to this new path and ev will be removed from the solution.
(b) If every path is not improving for v, then we show that every vertex in

the neighborhood of v has an improving move that uses ev.

These steps ensure that we either remove ev from the solution, or else for any
vertex y in the neighborhood we remove edge ey �∈ T ∗ from the solution. We elab-
orate on the steps above, referencing the subroutines described in Algorithm2 –
Homogenize, Absorb, and MakeTree:

Step 1: This is accomplished in two ways. For any path in T ∗, the Homogenize
subroutine ensures that a path in T ∗ is homogenous. Recall that this gives a
bound (relative to the cost of ev) on the difference in shared costs of the endpoints
of the path. Additionally, for any pair of adjacent vertices, if the difference in the
shared costs is more than the cost of the edge between them, then one vertex must
have an improving move through this edge. This move adds no edges outside of
T ∗. The second way of bounding differences in shared cost is much weaker, but
we will use it only a small number of times. Overall, the path between any two
vertices in the neighborhood will comprise homogenous segments connected by
edges whose cost is bounded by the second method above. Adding up the cost
bounds for these segments gives us the total bound.

Step 2(a): The purpose of this step is to establish that either the shared cost of v
is not much larger than the shared cost of every other vertex in its neighborhood,
or that we can otherwise remove ev from the solution. If the shared cost of v is
much larger than some other vertex in the neighborhood, then it is also much
larger than the shared cost of an adjacent vertex (call it q) in T+. This is because
every pair of vertices in the neighborhood have a similar shared cost (by Step 1).
Then, v has a lower cost path to the root consisting of the (v, q) edge, combined
with q’s current path to the root. Such a move would remove ev from the solution.

Step 2(b): If we reach this step, we need to account for the cost of ev by making
every other vertex in the neighborhood give up its first edge, if that edge is not
in T+. This ensures that at the end, the edges in the solution that are not in
T+ will be very far apart. This is accomplished via the Absorb function: v is
currently paying the entire cost of ev, while any vertex that would switch to using
v’s path to the root would only pay at most half the cost of ev. Furthermore,
if vertices close to v in T+ switch first, vertices farther from v (who must pay
a higher cost to buy a path to v) will reap the benefits of more sharing, and
therefore a further reduction in shared cost. This is formalized in the definition
of Absorb.
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There are some other details which we mention here before moving on to a
more formal description of the algorithm:

– If v is a nonterminal, let uv be the terminal that added v as part the critical
move. We avoid including uv in any path provided to the Homogenize sub-
routine. This is because Homogenize switches the strategies of terminals to
follow the strategy of some terminal on input path. If terminals were switched
to follow uv’s path, this would increase the sharing on ev, when it is required
at the beginning of Step (2b) that only one terminal is using ev. When v is a
terminal, then uv is undefined and this problem does not exist. We define two
versions of a loop of the algorithm, defined as MainLoop in Algorithm 1, to
account for this difference.

– We have only described how to account for a single edge, but sometimes a
critical move adds two new edges that must be accounted for. Suppose ea and
eb are the new edges added by a (a is a terminal and b is a nonterminal). Then
we run MainLoop(eb) first, and then MainLoop(ea). The first loop does not
increase sharing on ea, so the second loop is still valid.

– We assume the existence of a function MakeTree. This function takes as
input a set of strategies. Its output is a new set of strategies such that
(1) the new set of strategies has lower potential than the old set, (2) the
edge set of the new strategies is a subset of the old edge set, and (3) the
edge set of the new strategies is a tree. In particular, MakeTree(Scurr \
{puv

(Scurr), pv(Scurr)}), used on line 9 does not increase sharing on ev, since
v and uv are the only two vertices using ev on their path to the root. Make-
Tree(Scurr \ {puv

(Scurr), pv(Scurr)}) will also not increase sharing on euv
if

this edge has just been added (and therefore uv is the only vertex using the
edge). We will not go into more detail about this function, since an identical
function was used in both [5,13].

– We assume that all edges in E with c(e) > c(T ∗) have been removed from
the graph. This is without loss of generality: if the final state Sf is a Nash
equilibrium, then Sf is still an equilibrium after reintroducing e with c(e) >
c(T ∗). This is because any vertex with an improving move that adds such an
edge e also has a path to the root (in T ∗) with total cost less than c(e).

We walk through the peusdocode next: We execute the MainLoop function
given in Algorithm 1 either once or twice, once for each edge not in T ∗ ∪S that is
added by a critical move. If two edges have been added, we execute in the order
MainLoop(eb) then MainLoop(ea) (where a is the terminal and b the nonter-
minal). We define two versions of MainLoop(ev), one when v is a terminal, and
one when v is a nonterminal, appearing on lines 17 and 1 respectively. When v
is a nonterminal, we denote the terminal which added ev to the solution as part
of the initial improving move as uv. For brevity, we define uv as “empty” when
v is a terminal. Thus if v is a terminal, define N(v) \ {uv} = N(v).

The while loops at lines 2 and 18 terminate with N(v) being homogenous.
For any violated if statement within the while loop, we perform a move that
reduces potential, and does not increase sharing on ev, or on euv

if it was
added along with ev as part of uv’s critical move. If none of these if conditions
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1: function MainLoop(ev) � v is a nonterminal and uv the terminal which added
ev as part of a critical move.

2: while any of the following if conditions are true do
3: if ∃X = pT∗(x, y) ∈ N(v)∩T ∗ with uv, v �∈ X and X not homogenous then

Homogenize(X)

4: if ∃x, y ∈ N(v) \ {v} adjacent to uv with cx(Scurr) − cy(Scurr) > c(x, uv) +
c(uv, y) then

5: Replace x’s strategy with (x, uv) ∪ (uv, y) ∪ py(Scurr).

6: if ∃w ∈ N(v)\T ∗ such that tw �= v, uv with |cw(Scurr) − ctw (Scurr)| > c(σw)
then

7: Assuming WLOG ctw (Scurr) > cw(Scurr), replace tw’s strategy with
σw ∪ pw(Scurr).

8: if Scurr \ {puv (Scurr), pv(Scurr)} is not a tree then
9: MakeTree(Scurr \ {puv (Scurr), pv(Scurr)})

10: for q ∈ N(v) \ {v, uv} adjacent in T+ to either v or uv do
11: if c(v, q) + cq(Scurr) < cv(Scurr) then
12: v changes strategy to (v, q) ∪ pq(Scurr).
13: return
14: Repeat the previous 3 lines substituting uv for v.
15: � Note that uv changing strategy will remove v from the solution.

16: Absorb(v)

17: function MainLoop(ev) � v a terminal.
18: while any of the following if conditions are true do
19: if ∃X = pT∗(x, y) ∈ N(v) ∩ T ∗ with v �∈ X and X is not homogenous then

Homogenize(X)

20: if ∃w ∈ N(v) \ T ∗ such that tw �= v with |cw(Scurr) − ctw (Scurr)| > c(σw)
then

21: Assuming WLOG ctw (Scurr) > cw(Scurr), replace tw’s strategy with
σw ∪ pw(Scurr).

22: if Scurr \ {pv(Scurr)} is not a tree then MakeTree(Scurr \ {pv(Scurr)})

23: for q ∈ N(v) adjacent in T+ to v do
24: if c(v, q) + cq(Scurr) < cv(Scurr) then
25: v changes strategy to (v, q) ∪ pq(Scurr).
26: return
27: Absorb(v)

Algorithm 1. Main loop to be executed for each edge added to the solution as
part of a critical move.

hold, N(v) is homogenous. Therefore, this while loop eventually terminates in
a homogenous state.

We next ensure that the cost that v pays is similar to the cost every other
vertex in N(v) pays. If these costs are not close, we can show that the condition
at line 11/24 will be true, and ev will be deleted from the solution.
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25: function Homogenize(X = pT∗(x, y))
26: Let X = (x = x1, x2, . . . , xk, xk+1 = y)
27: Let S′ be the current state.
28: for i ← 1 to k do
29: for j ← i down to 1 do
30: Change xj ’s strategy to pT∗(xj , xi+1) ∪ pxi(S).

31: if Φ(Scurr) < Φ(S′) then return
32: else Reset state to S′

Require: cq(S) ≥ cv(S) − 2·�c(ev)�
7

∀q ∈ N(v) \ {uv}
33: function Absorb(v) � v absorbs N(v) \ {uv}
34: for q ∈ N(v) ∩ T ∗ \ {uv} in breadth-first order from r according to T ∗ do
35: if v �∈ T ∗ then Change q’s strategy along with its descendants to

pT∗(q, tv) ∪ σv ∪ pv(S).
36: else Change q’s strategy along with its descendants to pT∗(q, v) ∪ pv(S).

37: Let S′ be the current state.
38: for q ∈ N(v) \ T ∗, in reverse breadth-first order from r according to S′ do
39: Change q’s strategy along with its descendants to σq ∪ ptq (S′).

Algorithm 2. Helper functions for Algorithm 1.

If ev is still present at this point, we finally call the Absorb function. We
use the precondition of the Absorb function to show that the switches made by
all the vertices in N(v) are improving, and therefore reduce potential.

Note that although we do not make this explicit, if at any point Scurr contains
edges that are not part of pu(Scurr) for any terminal u, these edges are deleted
immediately. This ensures that any nonterminal in Scurr is always used as part
of some terminal’s path to r.
Outline of Analysis. We first show that all parts of the algorithm reduce
potential, guaranteeing that the algorithm terminates (by the definition of the
potential function, the minimum decrease in potential is bounded away from 0).
Most steps in the algorithm involve single terminals making improving moves,
and therefore these steps reduce potential. There are two parts of the algo-
rithm for which it is not immediately obvious that potential is reduced: the
Homogenize function and the Absorb function. The lemma below states that
Homogenize reduces potential, and we give its proof in the full paper.

Lemma 1. Suppose there is a path X = pT ∗(x, y) ∈ N(v) which is not homoge-
nous. Let (x = x1, x2, . . . , xk, xk+1 = y) be the sequence of vertices in X. Then
there exists a prefix of X, (x1, . . . , xi), such that the sequence of moves in which
each xj , j ∈ {1, . . . , i}, switches its strategy to pT ∗(xj , xi+1) ∪ pxi+1(S) reduces
potential.

Proof that the precondition for the Absorb function is satisfied (homogeneity
is required here) is deferred to the full version. If it is satisfied, we can show that
the Absorb function reduces potential.
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Lemma 2. If cq(Scurr) ≥ cv(Scurr)− 2·�c(ev)�
7 for all q �= uv ∈ N(v), then every

strategy change in Absorb reduces potential.

Lemmas 1 and 2 imply that the entire main loop is potential reducing. Since
the minimum decrease in potential is bounded away from zero, and the potential
is always at least zero, the algorithm necessarily terminates. However, termina-
tion alone does not guarantee that the final state is a Nash equilibrium. Since we
have restricted the set of moves that the algorithm can perform, we must show
that whenever an improving move is available to some terminal, there is also an
improving move that is either a safe or critical move (proof in full version).

Lemma 3. The final state reached by the algorithm, Sf , is a Nash equilibrium.

Finally, we show our main result, i.e., that c(Sf ) = O(c(T ∗)). To establish
the theorem, it is sufficient to show that c(Sf \ T ∗) = O(c(T ∗)). We devise a
charging scheme that distributes the cost of edges in Sf \ T ∗ among edges in
T ∗. Each e ∈ Sf \ T ∗ must be an ev edge for some vertex v. Furthermore, these
ev edges were not later removed as the result of an absorbing process initiated
from another ev′ . At a high level, this allows us to distribute the cost of each
ev to the edges in the neighborhood N(v) ∩ T ∗, since the Absorb(v) function
removes many other ev′ edges where v′ ∈ N(v) from the solution.

We first consider a set of edges that we will not charge to their neighborhood.
Define Eσ =

{
ev ∈ Sf |v is a nonterminal, �c(ev)�

64 ≤ c(σv)
}

. We bound the cost
of Eσ by the cost of edges in Sf \ Eσ (proof in full version).

Lemma 4. c(Eσ) = O(c(Sf \ Eσ)).

Our goal now is to find a set of edges ev such that the right neighborhoods
associated with edges of the same class are not overlapping. In the absence of
nonterminals, this is simple: For every edge in Sf \ T ∗, the right neighborhoods
of vertices corresponding to edges of the same class being overlapping implies
that each edge is contained in the other’s neighborhood. Therefore, we argue
that the second edge to arrive would have deleted the first through the Absorb
function, which gives a contradiction. With nonterminals, the same property
does not hold. When edge ev is added for some nonterminal v, euv

will not be
deleted from the solution, even if uv falls in v’s neighborhood. The presence of σv

for which no MainLoop(σv) was run (added, e.g., in line 35) further complicates
things. To show that no right neighborhoods overlap, we will therefore remove
some edges from Sf \ (T ∗ ∪ Eσ).

For nonterminal v, if v is adjacent to at least two edges in Sf \ (T ∗ ∪ Eσ)
and σv is one such edge, remove σv and charge it to one of the remaining edges
adjacent to v. Next, for any pair of edges eu and ev in Sf \ (T ∗ ∪Eσ) such that u
was the terminal which added ev, we delete the smaller of eu and ev and charge
it to the remaining edge. We are left with a set of edges which we denote E∗,
each of which has been charged by at most two edges that were removed (and
each edge removed is charged to some edge in E∗).

Our argument will charge to each edge in T ∗ at most one edge in E∗ of each
class. To make the argument simpler, it is desirable to charge those σv’s for
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which MainLoop(σv) was never run to higher classes than their actual classes.
To this end, we increase the cost of each such σv to c(eσv

), the cost of the first
edge on v’s path in the state just before σv was added.

Lemma 5. For edges eu, ev ∈ E∗, if class(ev) = class(eu), then N+(v) and
N+(u) are disjoint.

Given Lemma 5, the scheme from [5] for distributing the cost of each ev to its
neighborhood can be applied directly. This leads to Theorem1. For the details
of this analysis, the reader is referred to the full version of the paper.
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Abstract. We study efficiency and budget balance for designing mecha-
nisms in general quasi-linear domains. Green and Laffont [13] proved that
one cannot generically achieve both. We consider strategyproof budget-
balanced mechanisms that are approximately efficient. For deterministic
mechanisms, we show that a strategyproof and budget-balanced mech-
anism must have a sink agent whose valuation function is ignored in
selecting an alternative, and she is compensated with the payments made
by the other agents. We assume the valuations of the agents come from
a bounded open interval. This result strengthens Green and Laffont’s
impossibility result by showing that even in a restricted domain of val-
uations, there does not exist a mechanism that is strategyproof, bud-
get balanced, and takes every agent’s valuation into consideration—a
corollary of which is that it cannot be efficient. Using this result, we
find a tight lower bound on the inefficiencies of strategyproof, budget-
balanced mechanisms in this domain. The bound shows that the ineffi-
ciency asymptotically disappears when the number of agents is large—a
result close in spirit to Green and Laffont [13, Theorem 9.4]. However,
our results provide worst-case bounds and the best possible rate of con-
vergence. Next, we consider minimizing any convex combination of inef-
ficiency and budget imbalance. We show that if the valuations are unre-
stricted, no deterministic mechanism can do asymptotically better than
minimizing inefficiency alone. Finally, we investigate randomized mech-
anisms and provide improved lower bounds on expected inefficiency. We
give a tight lower bound for an interesting class of strategyproof, budget-
balanced, randomized mechanisms. We also use an optimization-based
approach—in the spirit of automated mechanism design—to provide a
lower bound on the minimum achievable inefficiency of any random-
ized mechanism. Experiments with real data from two applications show
that the inefficiency for a simple randomized mechanism is 5–100 times
smaller than the worst case. This relative difference increases with the
number of agents.

1 Introduction

Consider a group a friends deciding which movie to watch together. The movie
can be watched in someone’s home by renting it or at any of a number of
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movie theaters. Each of these choices incurs a cost. Since individual preferences
are different and sometimes conflicting, the final choice may not make every-
body maximally satisfied. This may cause some of the agents to misreport their
preferences or drop out of the plan. To alleviate this problem, one can think of
monetary transfers so that the friends who get their more-preferred choice pay
more than the friends that get their less-preferred choice. Desirable properties of
such a choice and payment rule are that (1) the total side payments (transfers
among the friends) should sum to zero, so there is no surplus or deficit, and
(2) the choice is efficient, that is, the movie that is selected maximizes the sum
of all the friends’ valuations. Since the valuations are private information of the
friends, an efficient decision requires the valuations to be revealed truthfully. This
simple example is representative of many joint decision-making problems that
often involve monetary transfers. Consider, for example, a group of firms sharing
time on a jointly-owned supercomputer, city dwellers deciding on the location
and choice of a public project (e.g., stadium, subway, or library), mobile ser-
vice providers dividing spectrum among themselves, or a student body deciding
which musician or art performer to invite to entertain at their annual function.
These problems all call for efficient joint decision making and involve—or could
involve depending on the application—monetary transfers.

This is a ubiquitous problem in practice and a classic problem in the acad-
emic literature. We study the standard model of this problem where the agents’
utilities are quasi-linear: each agent’s utility is her valuation for the selected
alternative (e.g., the choice of movie) minus the money she has to pay. A clas-
sic goal is to select an efficient alternative, that is, the one that maximizes the
sum of the agents’ valuations (also known as social welfare). We will study the
problem of designing strategyproof mechanisms, that is, mechanisms where each
agent is best off revealing the truth regardless of what other agents reveal.

Even though there are mechanisms that select efficient alternatives in a truth-
ful manner (e.g., the Vickrey-Clarke-Groves (VCG) mechanism [5,14,34]), the
transfers by the individuals do not sum to zero (in public goods settings, the
VCG mechanisms leads to too much money being collected from the agents).
The execution of such a mechanism needs an external mediator who consumes
the surplus (or may need to pay the deficit), to keep the mechanism truthful and
efficient—a phenomenon known as ‘money burning’ in literature. In our movie
selection example, this implies that we need a third party who will collect the
additional money paid by the individuals, which is highly impractical in many
settings. This has attracted significant criticism of the VCG mechanism [30].
Ideally, one would like to design strategyproof mechanisms that are efficient and
budget balanced, that is, they do not have any surplus or deficit. Green and Laf-
font [13] proved a seminal impossibility for this setting: in the general quasi-linear
domain, strategyproof, efficient mechanisms cannot be budget balanced.

In this paper, we primarily focus on the problem of minimizing inefficiency
subject to budget balance in the general setting of quasi-linear utilities. This is
because, in the applications of interest to this paper (e.g., movie selection),
budget balance is more critical than efficiency. However, we show that for
a large set of agents, the per-agent inefficiency vanishes. We also show that
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for deterministic settings, optimizing the sum (or any convex combination) of
efficiency and budget balance—which seems to be the most sensible objective—
does not provide any asymptotic benefit over maximizing efficiency subject to
budget balance.

1.1 Contributions of this Paper

In this paper, we assume that the agents’ valuations are picked from a bounded
open interval. In Sect. 3, we characterize the structure of truthful, budget bal-
anced, deterministic mechanisms in this restricted domain, and show that any
such mechanism must have a sink agent,1 whose reported valuation function does
not impact the choice of alternative and she gets the payments made by the other
agents (Theorem 1). This result strengthens the Green and Laffont impossibility
by showing that even in a restricted domain of bounded valuations, there does
not exist a mechanism that is strategyproof, budget balanced, and takes every
agent’s valuation into consideration—a corollary of which is that it cannot be
efficient. With the help of this characterization, we find the optimal determinis-
tic mechanism that minimizes the inefficiency. This provides a tight lower bound
on the inefficiency of deterministic, strategyproof, budget-balanced mechanisms.
By inefficiency of a mechanism in this paper, we mean the worst-case inefficiency
over all valuation profiles. We provide a precise rate of decay ( 1

n ) of the ineffi-
ciency with the increase in the number of agents (Theorem2). This implies that
the inefficiency vanishes for large number of agents. To contrast this mechanism
with the class of mechanisms that minimize budget imbalance subject to effi-
ciency, we considered the joint minimization problem of a convex combination
of inefficiency and budget imbalance, and observed that it does not provide any
asymptotic benefit over the previous problem. Due to limited space, we discuss
this only in the full version of this paper [28].

We investigate the advantages of randomized mechanisms in Sect. 4. We first
consider the class of generalized sink mechanisms. These mechanisms have, for
every possible valuation profile, a probability distribution over the agents that
determines each agent’s chance of becoming the sink. This class of mechanisms
is budget balanced by design. We show examples where mechanisms from this
class are not strategyproof (Algorithm 2), and then isolate an interesting subclass
whose mechanisms are strategyproof, the modified irrelevant sink mechanisms
(Algorithm 3). We show that no mechanism from this class can perform better
than the deterministic mechanisms if the number of alternatives is greater than
the number of agents (Theorem 3). Since inefficiency (weakly) increases with the

1 Mechanisms using this idea have been presented with different names in the liter-
ature. The original paper by Green and Laffont [13] refers to this kind of agents
as a sample of the population. Later Gary-Bobo and Jaaidane [11] formalized
the randomized version of this mechanism which is known as polling mechanism.
Faltings [9] refers to this as an excluded coalition (when there are multiple such
agents) and Moulin [25] mentions this as residual claimants. However, we use the
term ‘sink’ for brevity and convenience, and our paper considers a different setup
and optimization objective.
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number of alternatives (Theorem 4), we consider the extreme case of two alter-
natives and compare the performances of different mechanisms. We show that a
näıve uniform random sink mechanism and the modified irrelevant sink mech-
anism (Algorithm 3) perform equally well (Theorems 5 and 6) and reduce the
inefficiency by a constant factor of 2 from that of the deterministic mechanisms.
However, the optimal, strategyproof, budget-balanced, randomized mechanism
performs better than these mechanisms. Since the structure of strategyproof
randomized mechanisms for general quasi-linear utilities is unknown,2 we take
an optimization-based approach to find the best mechanism for the special case
of two agents. This approach is known in the literature as automated mechanism
design [6]. For an overview, see [32]. We discretize the range of the valuations into
finite levels and show that when the number of levels increases—thereby making
the lower bound tighter to the actual open-interval problem—the improvement
factor reduces to less than 5 (Fig. 1). This is a significant improvement over the
class of randomized sink mechanisms, which only improve over the best deter-
ministic mechanism by a factor of 2.

We present experiments using real data from two applications. They show
that in practice the inefficiency is significantly smaller and has a faster rate of
decay than the worst case bounds (Sect. 5). We conclude the paper in Sect. 6 and
present future research directions. Owing to the page limitation, the complete
details of the results and the proofs are available in the full version of this
paper [28].

1.2 Relationships to Prior Literature

The Green-Laffont impossibility result motivated the research direction of
designing efficient mechanisms that are minimally budget imbalanced. The app-
roach is to redistribute the surplus money in a way that satisfies truthfulness of
the mechanism [3,4]. The worst case optimal and optimal in expectation guaran-
tees have been given for this class of mechanisms in restricted settings [16,17,25].
The performance of this class of redistribution mechanisms has been evaluated in
interesting special domains such as allocating single or multiple (identical or het-
erogeneous) objects [15]. Also, mechanisms have been developed and analyzed
that are budget balanced (or no deficit) and minimize the inefficiency in special
settings [18,22,24]. Characterization of strategyproof budget-balanced mecha-
nisms in the setting of cost-sharing is explored by Moulin and Shenker [26] and
its quantitative guarantees are presented by Roughgarden and Sundararajan [31].
If the distribution of the agents’ valuations is known and we assume common
knowledge among the agents over those priors, the strategyproofness requirement
can be weakened to Bayesian incentive compatibility. In that weaker framework,
mechanisms can extract full expected efficiency and achieve budget balance [1,7].
However, those mechanisms use knowledge of the priors. Therefore, in the gen-
eral quasi-linear setting, for mechanisms without priors, it is an important open
2 For randomized mechanisms, results involving special domains are known, e.g., facil-

ity location [10,29,33], auctions [8], kidney exchange [2], and most of these mecha-
nisms aim for specific objectives.
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question to characterize the class of strategyproof budget-balanced mechanisms,
to find such mechanisms that minimize inefficiency, and to find strategyproof
mechanisms that minimize the sum (or other convex combination) of inefficiency
and budget imbalance. This paper addresses this important research gap in the
general quasi-linear setting, for both deterministic and randomized settings. Our
approach is also prior-free—the strategyproofness guarantees consider the worst-
case scenarios. We show that the answers are asymptotically positive: even in
such a general setup, the Green-Laffont impossibility is not too restrictive when
the number of agents is large, and our mechanisms seem to work well on real-
world datasets.

2 Model and Definitions

We denote the set of agents by N = {1, 2, . . . , n} and the set of alternatives
by A = {a1, a2, . . . , am}. We assume that each agent’s valuation is drawn from
an open interval (−M

2 , M
2 ) ⊂ R, that is, the valuation of agent i is a mapping

vi : A → (−M
2 , M

2 ),∀i ∈ N and is a private information. Denote the set of all
such valuations of agent i as Vi and the set of valuation profiles by V = ×i∈NVi.

A mechanism is a tuple of two functions 〈f,p〉, where f is called the social
choice function (SCF) that selects the allocation and p = (p1, p2, . . . , pn) is
the vector of payments, pi : V → R,∀i ∈ N . The utility of agent i for an
alternative a and valuation profile v ≡ (vi, v−i) is given by the quasi-linear
function: vi(a) − pi(vi, v−i). For deterministic mechanisms, f : V → A is a
deterministic mapping, while for randomized mechanisms, the allocation function
f is a lottery over the alternatives, that is, f : V → ΔA. With a slight abuse
of notation, we denote vi(f(vi, v−i)) ≡ Ea∼f(vi,v−i)vi(a) = f(vi, v−i) · vi to be
the expected valuation of agent i for a randomized mechanism. The following
definitions are standard in the mechanism design literature.

Definition 1 (Strategyproofness). A mechanism 〈f,p〉 is strategyproof if
for all v ≡ (vi, v−i) ∈ V ,

vi(f(vi, v−i)) − pi(vi, v−i) ≥ vi(f(v′
i, v−i)) − pi(v′

i, v−i), ∀ v′
i ∈ Vi, i ∈ N.

Definition 2 (Efficiency). An allocation f is efficient if it maximizes social
welfare, that is, f(v) ∈ argmaxa∈A

∑
i∈N vi(a), ∀v ∈ V .

Definition 3 (Budget Balance). A payment function pi : V → R, i ∈ N is
budget balanced if

∑
i∈N pi(v) = 0, ∀v ∈ V .

In addition, in parts of this paper we will consider mechanisms that are oblivious
to the alternatives—a property known as neutrality. To define this, we consider
a permutation π : A → A of the alternatives. Therefore, π over a randomized
mechanism and over a valuation profile will imply that the probability masses
and the valuations of the agents are permuted over the alternatives according to
π, respectively.3

3 We have overloaded the notation of π following the convention in social choice litera-
ture (see, e.g., Myerson [27]). The notation π(v) denotes the valuation profile where
the alternatives are permutated according to π.
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Definition 4 (Neutrality). A mechanism 〈f,p〉 is neutral if for every per-
mutation of the alternatives π (where π(v) 
= v) we have

π(f(v)) = f(π(v)) and pi(π(v)) = pi(v), ∀v ∈ V,∀i ∈ N.

Note that efficient social choice functions are neutral and the Green-Laffont
result implicitly assumes this property.

The most important class of allocation functions in the context of determin-
istic mechanisms are affine maximizers, defined as follows.

Definition 5 (Affine Maximizers). An allocation function f is an affine
maximizer if there exist real numbers wi ≥ 0, i ∈ N , not all zeros, and a function
κ : A → R such that f(v) ∈ argmaxa∈A

(∑
i∈N wivi(a) + κ(a)

)
.

As we will explain in the body of this paper, we will focus on neutral affine
maximizers [23], where the function κ is zero.

f(v) ∈ argmax
a∈A

∑

i∈N

wivi(a) neutral affine maximizer (1)

The following property of the mechanism ensures that two different payment
functions of an agent, say i, that implement the same social choice function differ
from each other by a function that does not depend on the valuation of agent i.4

Definition 6 (Revenue Equivalence). An allocation f satisfies revenue
equivalence if for any two payment rules p and p′ that make f strategyproof,
there exist functions hi : V−i → R, such that

pi(vi, v−i) = p′
i(vi, v−i) + hi(v−i), ∀vi ∈ Vi,∀v−i ∈ V−i,∀i ∈ N.

The metrics of inefficiency we consider in this paper are defined as follows.

Definition 7 (Sample Inefficiency). The sample inefficiency for a determin-
istic mechanism 〈f,p〉 is:

rMn (f) :=
1

nM
sup
v∈V

[

max
a∈A

∑

i∈N

vi(a) −
∑

i∈N

vi(f(v))

]

. (2)

The metric is adapted to expected sample inefficiency for randomized
mechanisms:

rMn (f) :=
1

nM
sup
v∈V

{

Ef(v)

[

max
a∈A

∑

i∈N

vi(a) −
∑

i∈N

vi(f(v))

]}

. (3)

The majority of this paper is devoted to finding strategyproof and budget bal-
anced mechanisms 〈f,p〉 that minimize the sample inefficiency.
4 This definition is a generalization of auction revenue equivalence and is commonly

used in the social choice literature (see, e.g., Heydenreich et al. [21]).
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A different, but commonly used, metric of inefficiency in the literature is the
worst-case ratio of the social welfare of the mechanism and the maximum social
welfare: infv∈V

∑

i∈N vi(f(v))

maxa∈A

∑

i∈N vi(a)
. A conclusion similar to what we prove in this

paper: “inefficiency vanishes when n → ∞”, holds in that metric as well, but
unlike our metric, that metric would require an additional assumption that the
valuations are positive, which is not always the case in a quasi-linear domain.

We are now ready to start presenting our results. We begin with deterministic
mechanisms that are strategyproof and budget balanced.

3 Deterministic, Strategyproof, Budget-Balanced
Mechanisms

Before presenting the main result of this section, we formally define a class of
mechanisms we call sink mechanisms. A sink mechanism has one or more sink
agents, given by the set S ⊂ N , picked a priori, whose valuations are not used
when computing the allocation (i.e., f(v) = f(v−S)) and the sink agents do not
pay anything and together they receive the payments made by the other agents.
The advantage of a sink mechanism is that it is strategyproof if it is strate-
gyproof for the agents other than the sink agents and the surplus is divided
among the sink agents in some reasonable manner, and sink mechanisms are
budget balanced by design. An example of a sink mechanism is where S = {is}
(only one sink agent) and f(v−is) chooses an alternative that would be effi-
cient had agent is not exist, that is, f(v−is) = argmaxa∈A

∑
i∈N\{is} vi(a).

The Clarke [5] payment rule can be applied here to make the mechanism
strategyproof for the rest of the agents—that is, for agents other than is,
pi(v−is) = maxa∈A

∑
j∈N\{is,i} vj(a) − ∑

j∈N\{is,i} vj(f(v−is)), ∀i ∈ N \ {is}.

Paying agent is the ‘leftover’ money (that is, pis(v−is) = −∑
j∈N\{is} pj(v−is))

makes the mechanism budget balanced. Our first result establishes that the exis-
tence of a sink agent is not only sufficient but also necessary for deterministic
mechanisms.

Theorem 1. Any deterministic, strategyproof, budget-balanced, neutral mecha-
nism 〈f,p〉 in the domain V has at least one sink agent.5

All proofs are provided in the full version of this paper [28]. This proof involves
two steps. First, we leverage the fact that a mechanism that satisfies the stated
axioms must necessarily be a neutral affine maximizer (Eq. 1) and has a specific
structure for payments. The characterization of the payment structure comes

5 Green and Laffont’s impossibility result holds for efficient mechanisms, and all effi-
cient mechanisms are neutral. However, there could be instances where multiple
alternatives are efficient, i.e., there is a tie. The neutrality of an efficient rule is up to
tie-breaking, and Green-Laffont applies no matter how the tie is broken. Similarly,
our result also holds irrespective of how the tie is broken. Therefore, this theorem
covers and generalizes that result since having at least one sink agent implies that
the outcome cannot be efficient.
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from the revenue equivalence result. The second part of the proof shows that
for such payment functions, it is impossible to have no sink agents (identified as
agents that have zero weights, wi = 0, in the affine maximizer). This is shown
in a contrapositive manner—assuming that there is no sink agent, we construct
valuation profiles that lead to a contradiction to budget balance.

The next goal is to find the mechanism in this class that gives the lowest
sample inefficiency (Eq.2). In the proof of the next theorem (presented in [28])
we show that this is achieved when there is exactly one sink and the neutral
affine maximizer weights are equal for all other agents. This, in turn, yields the
following lower bound on inefficiency.

Theorem 2. For every deterministic, strategyproof, budget-balanced, neutral
mechanism 〈f,p〉 over V , rMn (f) ≥ 1

n . This bound is tight.

4 Randomized, Strategyproof, Budget-Balanced
Mechanisms

In Sect. 3, we saw that the best sample inefficiency achieved by a deterministic
budget balanced mechanism is 1

n . In this section, we discuss how the inefficiency
can be reduced by considering randomized mechanisms. An intuitive approach is
to consider a mechanism where each agent is picked as a sink with probability 1

n .

Definition 8 (Näıve Randomized Sink). A näıve randomized sink (NRS)
mechanism picks every agent as a sink w.p. 1

n and takes the efficient allocation
without that agent. The payments of the non-sink agents are VCG payments
without the sink. The surplus is transferred to the sink.

Clearly, this mechanism is strategyproof, budget balanced, and neutral by design.
One can anticipate that this may not yield the best achievable inefficiency bound.
Unlike deterministic mechanisms, very little is known about the structure of
randomized strategyproof mechanisms in the general quasi-linear setting. Fur-
thermore, we consider mechanisms that are budget-balanced in addition. Hence,
even though we can obtain an upper bound on the expected sample inefficiency
(rMn (f)) by considering specific mechanisms like the NRS mechanism described
above, the problem of providing a lower bound (i.e., no randomized mechanism
can achieve a smaller rMn (f) than a given number), seems elusive in the general
quasi-linear setting.

Therefore, in the following two subsections, we consider two approaches,
respectively. First, we show lower bounds in a special class of strategyproof,
budget-balanced, randomized mechanisms. Second, we provide a lower bound
of the optimal, strategyproof, budget-balanced, randomized mechanism for two
agents and two alternatives, using a discrete relaxation of the original problem
(in the spirit of automated mechanism design [6,32]). However, the problems of
finding a mechanism that matches this lower bound and extending the lower
bound to any number of agents and alternatives are left as future work.
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4.1 Generalized Sink Mechanisms

In the first approach, we consider a broad class of randomized, budget-balanced
mechanisms, which we coin generalized sink mechanisms. In this class, the prob-
ability of an agent i to become a sink is dependent on the valuation profile v ∈ V ,
and we consider mechanisms with only one sink, i.e., if the probability vector
returned by a generalized sink mechanism is g(v), then w.p. gi(v), agent i is
treated as the only sink agent.6 Clearly, the näıve randomized sink mechanism
belongs to this class. Once agent i is picked as a sink, the alternative chosen
is the efficient one without agent i. All agents j 
= i are charged a Clarke tax
payment in the world without i, and the surplus amount of money is transferred
to the sink agent i. Algorithm 1 shows the steps of a generic mechanism in this
class.

ALGORITHM 1. Generalized Sink Mechanisms, G
1: Input: a valuation profile v ∈ V
2: A generic mechanism in this class is characterized by a probability

distribution over the agents N (which may depend on the valuation
profile), g : V → ΔN

3: The mechanism randomly picks one agent i in N with probability gi(v)
4: Treat agent i as the sink

Clearly, not every mechanism in this class is strategyproof. The crucial aspect
is how the probabilities of choosing the sink are decided. If the probability gi(v)
depends on the valuation of agent i, that is, vi, then there is a chance for agent i
to misreport vi to have higher (or lower) probability of being a sink (being a sink
could be beneficial since she gets all the surplus). For example, the irrelevant
sink mechanism given in Algorithm 2 is not strategyproof.

ALGORITHM 2. Irrelevant Sink Mechanism (not strategyproof)
1: Input: a valuation profile v ∈ V
2: for agent i in N do
3: Define: a∗(v−i) = argmaxa∈A

∑
j �=i vj(a)

4: if
∑

j �=i vj(a
∗(v−i)) − ∑

j �=i vj(a) > M for all a ∈ A \ {a∗(v−i)} then
5: Call i an irrelevant agent
6: if irrelevant agent is found then
7: Arbitrarily pick one of them as a sink with probability 1
8: else
9: Pick an agent i with probability 1

n and treat as sink

In the full version of this paper [28], we provide an counterexample to strat-
egyproofness of this mechanism. However, a small modification of the previous
mechanism leads to a strategyproof generalized sink mechanism. This shows
6 One can think of a more general class of sink mechanisms where multiple agents

are treated as sink agents simultaneously. However, it is easy to see—by a similar
argument to that in the context of deterministic mechanisms—that using multiple
sinks cannot decrease inefficiency.
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that the class of generalized sink mechanisms is indeed richer than the constant
probability sink mechanisms. In the modified version, we pick a default sink with
a certain probability, which will be the sink if there exists no irrelevant agent
among the rest of the agents. The change here is that when an agent is picked as
a default sink, her valuation has no effect in deciding the sink. See Algorithm3.

ALGORITHM 3. Modified Irrelevant Sink Mechanism (strategyproof)
1: Input: a valuation profile v ∈ V
2: Pick agent i as a default sink with probability pi
3: for agent j in N \ {i} do
4: if irrelevant agent(s) found within N \ {i} then
5: Arbitrarily pick one of them as a sink
6: Irrelevant agent is found
7: if no irrelevant agent is found within N \ {i} then
8: Treat agent i as sink

It is easy to verify that this mechanism is strategyproof. Interestingly, no
generalized sink mechanism can improve the expected sample inefficiency over
deterministic mechanisms if there are more alternatives than agents (m > n).

Theorem 3 (Generalized Sink for m > n). If m > n, every generalized sink
mechanism has expected sample inefficiency ≥ 1

n .

The proof is critically dependent on m > n. However, we can hope for a smaller
inefficiency if the number of alternatives is small. We state this intuition formally
as follows.

Theorem 4 (Increasing Inefficiency with m). For every mechanism f and
for a fixed number of agents n, the expected sample inefficiency is non-decreasing
in m, i.e., rMn,m1

(f) ≥ rMn,m2
(f),∀m1 > m2.7

Theorems 3 and 4 suggest that in order to minimize inefficiency, one must
have a small number of alternatives. So from now on, we consider the extreme
case with m = 2, where we investigate the advantages of randomization.

For two alternatives, the following theorem shows that the näıve randomized
sink (NRS) mechanism reduces the inefficiency by a factor of two.

Theorem 5 (Näıve Randomized Sink). For m = 2, the expected sample
inefficiency of the NRS mechanism is 1

n2

⌈
n
2

⌉ ∼ 1
2n .

Even though the modified irrelevant sink (MIS) mechanism (Algorithm3) is
more sophisticated than NRS, it turns out that both of them have the same
inefficiency on every valuation profile. Both mechanisms choose a single agent
as a sink. The default sink for MIS is chosen uniformly at random, identical to
the choice of the sink for NRS. If there does not exist an irrelevant sink in the
rest of the agents, the inefficiency remains the same as that for the default sink,
7 We overload the notation for the expected sample inefficiency rn with rn,m to make

the number of alternatives explicit.
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which is identical to the inefficiency of NRS for that choice of sink. But even if
an irrelevant sink exists, by the construction of the irrelevant sink, the resulting
alternative is the efficient alternative for the agents except the default sink. This
outcome would have resulted even if the default sink were chosen as the sink.
Therefore, the inefficiencies in MIS and NRS mechanisms are the same. Hence,
we get the following theorem.

Theorem 6 (Modified Irrelevant Sink). For m = 2, the expected sample
inefficiency of the MIS mechanism (Algorithm3) is at least 1

n2

⌈
n
2

⌉ ∼ 1
2n .

4.2 Unrestricted Randomized Mechanisms

We now move on to study optimal randomized mechanisms without restrict-
ing attention necessarily to generalized sink mechanisms. For a fixed number
of agents, minimizing the expected sample inefficiency is equivalent to minimiz-
ing the expected absolute inefficiency given by nrMn (f). Finding a mechanism
that achieves the minimum absolute inefficiency can be posed as the following
optimization problem.

min
f,p

sup
v∈V

[

max
a∈A

∑

i∈N

vi(a) −
∑

i∈N

vi(f(v))

]

s.t. vi(f(vi, v−i)) − pi(vi, v−i)
≥ vi(f(v′

i, v−i)) − pi(v′
i, v−i), ∀vi, v

′
i, v−i,∀i ∈ N

∑

a∈A

fa(v) = 1, ∀v ∈ V,

∑

i∈N

pi(v) = 0, ∀v ∈ V,

fa(v) ≥ 0, ∀v ∈ V, a ∈ A.

(4)

Fig. 1. Lower bound for the discrete relax-
ation of the inefficiency minimization LP.

The objective function denotes
the absolute inefficiency. The first
set of inequalities in the con-
straints denote the strategyproof-
ness requirement, where the term
vi(f(v)) = vi · f(v) denotes the
expected valuation of agent i due
to the randomized mechanism f .
The second and last set of inequali-
ties ensure that the fa(v)’s are valid
probability distributions, and the
third set of inequalities ensure that
the budget is balanced. The opti-
mization is over the social choice
functions f and the payments p,
where the f variables are non-
negative but the p variables are unrestricted. Clearly, this is a linear program
(LP), which has an uncountable number of constraints (because the equalities
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and inequalities have to be satisfied at all v ∈ V , which are the profiles of
valuation functions mapping alternatives to an open interval). We address this
optimization problem using finite constrained optimization techniques by dis-
cretizing the valuation levels. We assume that each agent’s valuations are uni-
formly discretized with k levels in [−M/2,M/2], which makes the set of valuation
profiles V finite. The optimal value of such a discretized relaxation of the con-
straints provides a lower bound on the optimal value of the original problem.
This is because the discretized relaxation of the valuations only increases the
feasible set since some of the constraints are removed, that is, more f ’s and p’s
satisfy the constraints, allowing a potentially lower value to be achieved for the
minimization objective.

We conducted a form of automated mechanism design [6,32] by solving this
LP using Gurobi [19] for increasing values of k. We apply the same optimization-
based approach for generalized sink and the deterministic cases as well, even
though for these cases we have theoretical bounds. The solid lines in Fig. 1 show
the optimization-based results (denoted as AMD) and the dotted lines show
the theoretical bounds. Note that for deterministic case, the theoretical and
optimization-based approaches overlap since the inefficiency is unity even with
two valuation levels. The convergence of the optimization-based approach for
generalized sink mechanism shows the efficacy of the approach and helps to
predict the convergence point for the optimal randomized mechanism. One can
see that the lower bound is greater than 0.2 for the optimal mechanism, but it
seems to converge to a value much lower than 0.5.

5 Experiments with Real Data

In this section we investigate the average and worst-sink performances of the the
näıve randomized sink (NRS) (Definition 8) mechanism on real datasets of user
preferences. Going back to the example of movie selection by a group of friends
(Sect. 1), we consider several sizes of the group. A small group consists of tens of
friends, while if the decision involves screening a movie at a school auditorium,
the group size could easily be in the hundreds. This is why we consider group
sizes spanning from 10 to 210 in steps of 50.

Fig. 2. Näıve random sink mechanism

A similar situation occurs when a
group of people decides which come-
dian/musician to invite in a social gath-
ering, where they need to pay the cost
of bringing the performer. Keeping these
motivating situations in mind, we used
two datasets that closely represent the
scenarios discussed. We used the Movie-
Lens 20M dataset [20] and the Jester
dataset [12] to compare the average and
worst-case performances of NRS. The first
dataset contains preferences for movies,
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while the second contains preferences for online jokes. The MovieLens 20M
dataset (ml-20m) describes users’ ratings between 1 and 5 stars from Movie-
Lens, a movie recommendation service. It contains 20,000,263 ratings across
27,278 movies. These data were created from the ratings of 138,493 users between
January 09, 1995 and March 31, 2015. For our experiment, we sampled the pref-
erences of a specific number of users (shown as agents on the x-axis of Figs. 2
and 3) 100 times uniformly at random from the whole set of users that rated a
particular genre of movies, and computed the sample inefficiency on this sampled
set and plotted it along with the standard deviation.

Fig. 3. Worst-sink behavior

The Jester dataset (jester-data-1)
used in our experiment contains data from
24,983 users who have rated 36 or more
jokes, a matrix with dimensions 24983 X
100, and is obtained from Jester, an online
joke recommendation system.8

Figure 2 shows that the real preferences
of users yield much lower expected sam-
ple inefficiencies for the näıve randomized
sink (NRS) mechanism than the theoret-
ical worst-case guarantee. The improve-
ment ranges from roughly a factor of 5 (for
a group size of 10) to almost 100 (for a
group size of 210). This also indicates that
the rate of decay of the inefficiency with the size of the group is faster than the
theoretical guarantee. The bars in Figs. 2 and 3 show the average (w.r.t. the ran-
domly selected users) expected sample inefficiency (Eq. 3) and the inefficiency of
the worst sink of the NRS mechanism respectively with the standard deviations
around them.

By the arguments preceding Theorem 6 and since MIS (Algorithm 3) also
picks exactly one sink, it is easy to see that the average inefficiency and ineffi-
ciency of the worst sink of MIS will be same as NRS.

6 Conclusions and Future Research

In this paper, we considered the classic question of the interplay between effi-
ciency and budget balance, properties that are incompatible with strategyproof-
ness due to the Green-Laffont impossibility result, in the general quasi-linear
setting. We proved the limits of possibility in the context of deterministic

8 In both datasets there are missing values because a user has typically not rated all
movies/jokes. Before our experiment, we filled the missing values with a random real-
ization of ratings drawn from the empirical distribution for that alternative (movie
or joke). The empirical distribution of an alternative is created from the histogram
of the available ratings of the users. We cleaned the dataset by keeping only those
alternatives that have at least 10 or more available ratings and filled the rest using
their empirical distributions.
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mechanisms for both efficiency and budget balance. For randomized mechanisms,
we identified a class of mechanisms that perform better than deterministic ones.
We used an optimization-based scheme to find the optimal randomized mecha-
nism. Experiments with real datasets showed that the values (rate of decay) of
inefficiency are significantly smaller (faster) than those of the theoretical worst
case. Future research includes studying the structure of the optimal randomized
mechanisms that achieve the (theoretical) improved efficiency. Future work also
includes investigating the rate of improvement of the optimal bound for a general
number of agents.

References

1. Arrow, K.: The property rights doctrine and demand revelation under incomplete
information. In: Economics and Human Welfare. New York Academic Press (1979)

2. Ashlagi, I., Fischer, F., Kash, I.A., Procaccia, A.D.: Mix and match: a strategyproof
mechanism for multi-hospital kidney exchange. Games Econ. Behav. 91, 284–296
(2015)

3. Bailey, M.J.: The demand revealing process: to distribute the surplus. Public
Choice 91(2), 107–126 (1997)

4. Cavallo, R.: Optimal decision-making with minimal waste: strategyproof redistrib-
ution of VCG payments. In: Proceedings of the Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 882–889 (2006)

5. Clarke, E.: Multipart pricing of public goods. Public Choice 8, 19–33 (1971)
6. Conitzer, V., Sandholm, T.: Complexity of mechanism design. In: Proceedings

of the Conference on Uncertainty in Artificial Intelligence (UAI), pp. 103–110.
Morgan Kaufmann Publishers Inc. (2002)

7. d’Aspremont, C., Gérard-Varet, L.A.: Incentives and incomplete information. J.
Public Econ. 11(1), 25–45 (1979)

8. Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for com-
binatorial auctions. In: Proceedings of the Annual ACM Symposium on Theory of
Computing, pp. 644–652. ACM (2006)

9. Faltings, B.: A budget-balanced, incentive-compatible scheme for social choice. In:
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Abstract. In participatory budgeting, communities collectively decide
on the allocation of public tax dollars for local public projects. In this
work, we consider the question of fairly aggregating preferences to deter-
mine an allocation of funds to projects. We argue that the classic game
theoretic notion of core captures fairness in the setting. To compute the
core, we first develop a novel characterization of a public goods mar-
ket equilibrium called the Lindahl equilibrium. We then provide the first
polynomial time algorithm for computing such an equilibrium for a broad
set of utility functions. We empirically show that the core can be effi-
ciently computed for utility functions that naturally model data from real
participatory budgeting instances, and examine the relation of the core
with the welfare objective. Finally, we address concerns of incentives and
mechanism design by developing a randomized approximately dominant-
strategy truthful mechanism building on the Exponential Mechanism
from differential privacy.

1 Introduction

Transparency and citizen involvement are fundamental goals for a healthy
democracy. Participatory Budgeting (PB) [4,22] is a process by which a munic-
ipal organization (eg. a city or a district) puts a small amount of its budget to
direct vote by its residents. PB is growing in popularity, with over 30 such elec-
tions conducted in 2015. Implementing participatory budgeting requires careful
consideration of how to aggregate the preferences of community members into
an actionable project funding plan. In this work, we model participatory budget-
ing as a fair resource allocation problem. We note that this problem is different
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from standard fair resource allocation because of public goods: The allocated
goods benefit all users simultaneously. We model this problem as a central body
fairly allocating public goods according to preferences reported by the commu-
nity members (or users), subject to a budget constraint. It is important to note
that in participatory democracy, equitable and fair outcomes are an important
systemic goal.

Model of Fairness: In a participatory budgeting setting, there are k projects
(or items) and n voters (or agents) who participate. Unlike in a private good
economy, it is usually the case that k � n. There is an overall budget B available
for funding projects. An allocation is a k-dimensional vector x ∈ R

k with x ≥ 0
and

∑k
j=1 xj ≤ B. The quantity xj denotes the funding for project j. We assume

voters report a cardinal utility function. We denote the utility of an agent i
given an allocation x as Ui(x), and we assume this function is continuous, non-
decreasing, and concave.

In this model, we study fair allocations. In this paper, the concept of fairness
with which we work is the core. This notion is borrowed from cooperative game
theory and was first phrased in game theoretic terms in [25]. It has been studied
extensively even in public goods settings [8,19].

Definition 1. An allocation x is a core solution if there is no subset S of agents
who, given a budget of (|S|/n)B, could compute an allocation y where every user
in S receives strictly more utility in y than x, i.e., ∀i ∈ S, Ui(y) > Ui(x).

Definition 2. For α > 1, an allocation x lies in the α-approximate multi-
plicative (resp. additive) core if for any subset S of agents, there is no allocation
y using a budget of (|S|/n)B, s.t. Ui(y) > αUi(x) (resp. Ui(y) > Ui(x) + α) for
all i ∈ S.

Note that when S = {1, 2, . . . , n}, the above constraints encode (weak)
Pareto-Efficiency. Further, when S is a singleton voter, the core captures Sharing
Incentive, meaning that the voter gets at least as much utility as she would have
obtained with budget B/n dedicated to just her. In general, the core captures a
group sharing incentive: No community of users suffers envy with respect to its
share of the overall budget.

Some Clarifying Examples: We briefly consider some examples to clarify the
concept of the core and compare it with other definitions of fairness. For sim-
plicity in these examples, assume the utility function of the agents is linear,
so Ui(x) =

∑k
j=1 uijxj . Also, assume that there is a unit size budget and all

projects are of unit size. First note that the core will produce a very different
outcome from approval voting. In the example in Fig. 1(a), the majority has
one more vote than the minority, yet they are exclusively privileged by approval
voting (funding projects in order of number of votes). The remaining examples
compare the core with other fair allocations. Figure 1(b) shows that the naive
fair allocation to allow every agent to determine 1/n of the overall allocation is
not Pareto-efficient. In Fig. 1(c), while a max-min fair allocation favors one voter
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at the expense of all others, the core solution funds items in proportion to the
number of voters preferring them.

High-Level Goals: At a high level, we explore three related questions in
Sects. 2, 3, and 4 respectively: (i) Can we efficiently compute core allocations
for reasonably general utility functions? (ii) What do these allocations look like
for data generated by real participatory budgeting instances under utility func-
tions motivated by that data? (iii) For simple utility functions, can we develop
a truthful mechanism for computing core allocations without payments?

We positively answer the first and third question using techniques from opti-
mization and differential privacy to develop the algorithmic understanding of
the Lindahl Equilibrium; a market based notion we will define shortly. For the
second question, we use our theoretical results to develop principled heuristics
that we validate using real voting data. Before proceeding however, we turn to
consider utility functions more precisely.

Agent i ui,1 ui,2

1 1 0
2 1 0
...

...
...

�(n/2)� + 1 1 0
�(n/2)� + 2 0 1

...
...

...
n 0 1

(a)

Agent i ui,1 ui,2 ui,3

1 3/5 0 2/5
2 3/5 0 2/5
...

...
...

...
�(n/2)� 3/5 0 2/5

�(n/2)� + 1 0 3/5 2/5
...

...
...

...
n 0 3/5 2/5

(b)

Agent i ui,1 ui,2

1 1 0
2 1 0
...

...
...

n − 1 1 0
n 0 1

(c)

Fig. 1. Some examples clarifying the concept of core.

1.1 Utility Functions

We consider utility functions generalizing the linear utility functions used in
previous examples. These utility functions, which we term Scalar Separable,
have the form

Ui(x) =
∑

j

uijfj(xj)

for every agent i where {fj} are smooth, non-decreasing, and concave, and
ui ≥ 0. By

∑
j we always mean the sum over the k projects. Scalar Separable

utilities are fairly general and well-motivated. First, this concept encompasses
linear utilities and several other canonical utility functions (see below). Sec-
ondly, if voters express scalar valued preferences (such as up/down approval
voting), Scalar Separable utilities provide a natural way of converting these
votes into cardinal utility functions. In fact, as we discuss below, we will do
precisely this when handling real data. We consider two subclasses that we term
Non-satiating and Saturating utilities respectively. Each arises naturally in
settings related to participatory budgeting.
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Non-satiating Functions: For our main computational result in Sect. 2, we con-
sider a subclass of utility functions that we term Non-satiating.

Definition 3. A differentiable, strictly increasing, concave function f is called
Non-Satiating if xf ′

j(x) is monotonically increasing and equal to 0 when x = 0.

This is effectively a condition that the functions grow at least as fast as lnx.
Several utility functions used for modeling substitutes and complements fall in
this class. For instance, constant elasticity of substitution (CES) utility functions
where

Ui(x) =

⎛

⎝
∑

j

uijx
ρ
j

⎞

⎠

1
ρ

for ρ ∈ (0, 1]

can be monotonically transformed into Non-satiating utilities.1 CES functions
are also homogeneous of degree 1, meaning that Ui(αx) = αUi(x) for any scalar
α ≥ 0. When ρ = 1, this captures linear utilities. When ρ → 0, these are Cobb-
Douglas utilities which for αij > 0 such that

∑
j αij = 1, can be written as

Ui(x) =
∏

j x
αij

j .

Saturating Functions: Note that Scalar Separable utilities assume projects
are divisible. Fractional allocations make sense in their own right in several
scenarios: Budget allocations between goals such as defense and education at a
state or national level are typically fractional, and so are allocations to improve
utilities such as libraries, parks, gyms, roads, etc. However, in the settings for
which we have real data, the projects are indivisible and have a monetary cost
sj , so that we have the additional constraint xj ∈ {0, sj} on the allocations. We
describe such data from the Stanford Participatory Budgeting Platform [21] in
greater detail in Sect. 3. We therefore need utility functions that model budgets
in individual projects. These utility functions must also be simple to account
for the limited information elicited in practice. For example, in the voting data
that we use in our experiments, each voter receives an upper bound on how
many projects she can select, and the ballot cast by a voter is simply the subset
of projects she selects. A related voting scheme implemented in practice, called
Knapsack Voting [10], has similar elicitation properties. For modeling these two
considerations, we consider Saturating utilities.

Definition 4. Saturating utility functions Ui(x) have the form
∑

j uij min
(

xj

sj
, 1

)
.

For converting our voting data into a Saturating utility, we set sj to be the
budget of project j, and set uij to 1 if agent i votes for project j and 0 otherwise.
Note that if xj = sj , then the utility of any agent who voted for this item is 1.
This implies the total utility of an agent is the number (or total fraction) of items
that he voted for that are present in the final allocation. Clearly, Saturating

1 Note that the core remains unchanged if utilities undergo a monotone transform.
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utilities do not satisfy Definition 3. However, we will connect Non-satiating and
Saturating utilities by developing an approximation algorithm and heuristic
for computing core allocations in the saturating model using results developed
for the Non-satiating model.

1.2 Computing Core Solutions via the Lindahl Equilibrium

In a fairly general public goods setting, there is a market based notion of fairness
due to Lindahl [15] and Samuelson [24] termed the Lindahl equilibrium, which
is based on setting different prices for the public goods for different agents. The
market on which the Lindahl equilibrium is defined is a mixed market of public
and private goods. We present a definition below that is specialized to just a
public goods market relevant for participatory budgeting.

Definition 5. In a public goods market with budget B, per-voter prices
p1,p2, ...,pn each in R

k
+ and allocation x ∈ R

k
+ constitute a Lindahl equi-

librium if the following two conditions hold:

1. For every agent i, the utility Ui(yi) is maximized subject to pi · yi ≤ B/n
when yi = x; and

2. The profit defined as (
∑

i pi) · z − ‖z‖1, subject to z ≥ 0 is maximized when
z = x.

The price vector for every agent is traditionally interpreted as a tax. However,
unlike in private goods markets, in our case these prices (or taxes) are purely
hypothetical; we are only interested in the allocation that results at equilibrium
(in fact, we eliminate the prices from our characterization of the equilibrium).
Under innocuous conditions for the mixed public and private goods market,
Foley proved that the Lindahl equilibrium exists and lies in the core [8]. This
remains true in our specialized instance of the problem; the omitted proof is a
trivial adaption from [8]. Thus, computing a Lindahl equilibrium is sufficient for
the purpose of computing a core allocation. However, Foley only proves existence
of the equilibrium via a fixed point argument that does not lend itself to efficient
computation.

1.3 Our Results

In Sect. 2, we present a simple characterization of the Lindahl equilibrium in
terms of the allocation variables and a means of efficient computation for Non-
satiating utilities. Together, this results in an efficient algorithm for computing
the core exactly for Non-satiating utilities via convex programming. As far as
we are aware, this is the first non-trivial computational result for the Lindahl
equilibrium.

As a consequence of our characterization, if the utility functions are homoge-
neous of degree 1 and concave (or any monotone transform thereof), then the pro-
portionally fair allocation, the extentsion of the Nash Bargaining solution [20])
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that maximizes
∑

i log Ui(x), computes the Lindahl equilibrium. This mirrors
similar results for computing a Fisher equilibrium in private good markets [12].
In addition, we show that for homogeneous functions, quadratic voting [14] can
be used to elicit the gradient of the proportional fairness objective, pointing to
practical implementations in the field. For more general utility functions, our
potential function can be viewed as a regularized version of the proportional
fairness objective written on a non-linear transform of the utility function – a
result that is new to the best of our knowledge. We also note that the class of
Non-satiating utilities includes many functions that are not monotone trans-
forms of homogeneous functions of degree 1, and for some of these functions,
computing a Fisher equilibrium is intractable [27].

In Sect. 3, we consider the question of computing core solutions for real world
data sets from the Stanford Participatory Budgeting Platform [21] that we model
using Saturating utility functions as discussed in Sect. 1.1. We present an
approximation algorithm as well as a heuristic implementation inspired by our
characterization. On real data, we find that this heuristic efficiently computes
the exact core. Surprisingly, the resulting outcomes match the welfare optimal
solutions on the same utility functions.

In Sect. 4, we address incentive concerns. Truthfulness has long been con-
sidered a serious problem for the allocation of public goods [11,19]. We study
asymptotic approximate truthfulness [16]. Truthfulness means that for any agent
i, reporting the true utility function Ui(x) maximizes the expected utility of
agent i, subject to all agents i′ 	= i reporting true utility functions and agent
i knowing these. Our notion is asymptotic in the sense that n 
 k, which is
reasonable in practice. We show that when agents’ utilities are linear (and more
generally, homogeneous of degree 1), there is an efficient randomized mechanism
that implements an ε-approximate core solution as a dominant strategy for large
n. We use the Exponential Mechanism [18] from differential privacy to achieve
this. The application of the Exponential Mechanism is not straightforward since
the proportional fairness objective (that computes the Lindahl equilibrium) is
not separable when used as a scoring function; the allocation variables are com-
mon to all agents. Furthermore, this objective varies widely when one agent
misreports utility. We define a scoring function directly based on the gradient
condition of proportional fairness to circumvent this hurdle.

Most proofs are omitted throughout and can be found in the full version of
the paper [7]. We also relegate many of the details in Sect. 4 to the full version.

1.4 Related Work

The general literature characterizing private good market equilibrium and com-
putation is extensive [12,13,26,27]; however, there is relatively little known about
computational results for public goods. The proportional fairness algorithm,
which has been extensively studied in private good markets [12,20], need not
find solutions in the core for Scalar Separable utilities, and we can view our
computational results as providing a non-trivial generalization of the propor-
tional fairness concept to Lindahl equilibria.
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Our work is related to designing truthful mechanisms for combinatorial pub-
lic projects [6]. However, these works focused on the social welfare objective
and utilized payments as does the well known VCG mechanism [5,28], which is
impractical for the application of participatory budgeting. Though public good
markets are truthful in the Bayesian sense in the large market limit [1–3] because
they are envy-free by definition, we seek dominant strategy truthful mechanisms.
These are non-trivial to design for public good markets even in the large market
limit. The problem of truthful allocation of public goods without payments is
considered in the context of the facility location problem in [23]; however, the
setting is unrelated to ours and the authors are concerned with the social welfare
or the total dis-utility, not the core.

2 Non-Satiating Utilities: Characterization and
Computation

Recall that in the participatory budgeting problem, there are k items (or
projects) and n agents (or voters). It is typically the case that k � n. We will
denote a generic voter by i and a generic item by j. There is an overall budget of
B. An allocation is a k-dimensional vector x ∈ R

k with x ≥ 0 and
∑k

j=1 xj ≤ B.
We consider scalar separable utility, where the utility of an agent i given an
allocation x is Ui(x) =

∑
j uijfj(xj), where {fj} are smooth, non-decreasing,

and concave, and ui ≥ 0.

2.1 Characterization

Recall that in order to compute a core allocation it is sufficient to compute a
Lindahl equilibrium (Definition 5). Our first result is a characterization of the
Lindahl equilibrium that uses the optimality conditions to eliminates the price
variables entirely.

Theorem 1. An allocation x ≥ 0 corresponds to a Lindahl equilibrium if and
only if

∑

i

(
uijf

′
j(xj)

∑
m uimxmf ′

m(xm)

)

≤ n

B
(1)

for all items j, where this inequality is tight when xj > 0.

2.2 Efficient Computation

We now present our main computational result that builds on the characteri-
zation above to give the first non-trivial poly-time method for computing the
Lindahl equilibrium. We need the non-satiation assumption on the functions
{fj} given in Definition 3.

Theorem 2. When Ui(x) =
∑

j uijfj(xj) where {fj} satisfy Definition 3, the
Lindahl equilibrium (and therefore a core solution) is the solution to a convex
program.
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Proof. Recall the characterization of the Lindahl equilibrium from Theorem1.
Define zj = xjf

′
j(xj). Note that xj = 0 iff zj = 0. Since fj satisfies non-satiation,

this function is continuous and monotonically increasing, and hence invertible.
Let hj be this inverse such that hj(zj) = xj . Let rj(zj) = hj(zj)/zj = 1/f ′

j(xj).
The Lindahl equilibrium characterization therefore simplifies to:

∑

i

(
uij∑

m uimzm

)

≤ n

B
rj(zj)

with the inequality being tight when zj > 0. Let Rj(zj) be the indefinite integral
of rj (with respect to zj). Define the following potential function

Φ(z) =
∑

i

log

⎛

⎝
∑

j

uijzj

⎞

⎠ −
( n

B

) ∑

j

Rj(zj) (2)

We claim that Φ(z) is concave in z. The first term in the summation is trivially
concave. Also, since f ′

j(xj) is a decreasing function, 1/f ′
j(xj) is increasing in xj .

Since rj(zj) = 1/f ′
j(xj), this is increasing in xj and hence in zj . This implies

Rj(zj) is convex, showing the second term in the summation is concave as well.
It is easy to check that the optimality conditions of maximizing Φ(z) subject
to z ≥ 0 are exactly the conditions for the Lindahl equilibrium. This shows
that the Lindahl equilibrium corresponds to the solution to the convex program
maximizing Φ(z). ��

As we show in the full paper [7], an approximately optimal solution to the
convex program gives an approximate core solution, which implies polynomial
time computation to arbitrary accuracy. We note that the non-satiation condi-
tion essentially implies that fj(xj) should grow faster than lnxj . In combination
with the assumption that fj(xj) is concave, this leaves us with a broad class of
concave functions for which the Lindahl equilibrium and hence the core can be
efficiently computed.

2.3 Connection to Proportional Fairness

The following is now a simple corollary of Theorem2.

Corollary 1. If Ui(x) is linear, i.e., Ui(x) =
∑

j uijxj, or more generally, if
it is homogeneous of degree 1, then the Lindahl equilibrium coincides with the
proportionally fair allocation that maximizes

∑
i log Ui(x) subject to ‖x‖1 ≤ B

and x ≥ 0.

The proof for the linear case is direct, and that for homogeneous functions
uses a standard change of variables [13] and is omitted. As mentioned in Sect. 1.1,
an interesting special case of homogeneous functions concerns Cobb-Douglas
utilities, where Ui(x) =

∏
j x

αij

j where
∑

j αij = 1 and αij > 0. In this case, if
a single agent could choose the whole allocation, the optimal choice would be
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xj = αijB. Suppose every agent i reveals these optimal allocations for themselves
for every item j; call this xij . Then it is easy to check that the Lindahl equilibrium
sets xj = 1

n

∑
i xij , which is simply the average of the individual monetary

allocations.

Elicitation via Quadratic Voting. For homogeneous functions, it is easy to show
that the gradient of the proportional fairness objective in direction xj is given
by:

∑

i

∂
∂xj

Ui(x)
∑

m xm
∂

∂xm
Ui(x)

− n

B

Suppose users i are drawn from some large population, and we were to perform
stochastic gradient descent by sampling a random user i, and estimating the
gradient. The above expression shows that this needs estimating the relative
magnitudes of

{
∂

∂xm
Ui(x)

}
, since these terms are present both in the numerator

and denominator. The relative magnitudes at any point xt can be estimated
by presenting user i with a ball of radius ε around xt and asking the user to
maximize her utility, Ui(x). This is termed quadratic voting [14], and gives a way
to elicit enough information from individual voters in order to perform stochastic
gradient descent and compute the proportionally fair allocation.

Beyond Proportional Fairness. When the utility functions are not homoge-
neous, it is not clear how to express the potential function in Eq. (2) as run-
ning proportional fairness on a transformed space of allocations. For instance, if
Ui(x) =

∑
j uijx

αj

j ,

Φ(x) =
∑

i

log

⎛

⎝
∑

j

αjuijx
αj

j

⎞

⎠ − n

B

∑

j

αjxj

This involves a non-linear transform of the utility function and a regularization
term, which proportional fairness on any transformed input space does not cap-
ture. We also observe that running proportional fairness directly can be far away
from the core. Consider an instance where agents are partitioned into groups Gj

where all agents in a group have non-zero utility for only item j, with util-
ity function uijfj(xj) = x

αj

j for some αj ∈ (0, 1). Since all groups have disjoint
preferences, the core solution allocates xj in proportion to |Gj |. However, propor-
tional fairness maximizes

∑
j |Gj | log

(
x

αj

j

)
=

∑
j αj |Gj | log xj , which allocates

xj in proportion to αj |Gj |.

3 Saturating Utilities: Approximation and Experiments

We now move to the question of modeling and analyzing real participatory bud-
geting data. We use data from seven different elections that used the Stanford
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Participatory Budgeting Platform (SPBP). This platform (http://pbstanford.
org) [9,10] has been used by over 25 PB elections for digital voting and incorpo-
rates multiple voting mechanisms including K-approval, knapsack, ranking, and
comparisons.

Voters are presented with a ballot containing descriptions of the candidate
public projects with associated budgets as well as an overall budget. They can
vote for at most a certain number of these projects, typically 4 or 5 (this voting
method is called K-approval). Note that the projects chosen by a voter can
exceed the total budget. The data set is therefore a 0/1 matrix on projects and
voters, where a 1 denotes a vote by the voter for the project. The number of
voters, n, ranges between 200 and 3000 in our datasets, and the number of items
k is at most 30. A typical example is presented in Table 1.

For modeling such data, we need utility functions that respect the budget
constraints of individual projects. It is natural to use the Saturating utility
model (see Sect. 1.1), where the utility of user i is

Ui(x) =
∑

j

uij min (xj/sj , 1)

where sj is the budget of project j, and uij is 1 if i votes for j and 0 otherwise.
Therefore, the utility for i if j is chosen in the final allocation is uij ∈ {0, 1}.
Clearly, this function does not satisfy Definition 3. We first show that an approx-
imation to the core (see Definition 2) can be efficiently computed using a Non-
satiating relaxation of the utility model. The proof is relegated to the full
version [7].

Theorem 3. Given a collection of saturating utility functions, let s =
minj sj. Then, for any ε > 0, an α-approximate multiplicative core can be effi-
ciently computed, where α = (1/ε) (B/s)ε + 1 − 1/ε. For ε = log(B/s), we have
a O

(
log B

s

)
approximation to the core.

3.1 Heuristically Computing the Exact Core

We now show an even stronger result empirically: We can efficiently compute
the exact core solutions under the Saturating utility model on our real-world
data sets. We conclude this section with some observations on the relationship
between welfare maximizing and core allocations in the saturating model.

Our heuristic crucially uses the characterization in Theorem1. Let xj ∈ [0, sj ]
denote the current allocation to item j, and let yj = f ′

j(xj). The following
complementarity condition relates xj and yj :

∀j, yj ≤ 1
sj

and xj < sj ⇒ yj =
1
sj

The Lindahl equilibrium condition in Theorem1 can be written as:

∀j,
B

n

∑

i

uijyj∑
m uimxmym

≤ 1

http://pbstanford.org
http://pbstanford.org
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with equality when xj > 0. Given x−j and y−j , we perform binary search on
xj , yj to satisfy the above non-linear equation subject to complementarity on
xj , yj . We repeat this process, at each step choosing that item j with the largest
additive violation in the above inequality. We iterate until the Lindahl conditions
for all items are satisfied to accuracy ε. (e.g., ε = 1/n). As we show in the full
version of the paper, if this process converges, the result is an ε-approximate
additive core solution.

One issue is that these dynamics are not theoretically guaranteed to converge.
Even empirically, there are instances where we observe cycling. To address this
issue, we perturb the vote matrix by small additive noise, so that uij ← uij +
Uniform (0, α), where α is a small constant like 1/k2. We empirically observe that
the process now converges. In Fig. 2, we show this behavior for three datasets
with at least 2000 voters and 10 items each. The convergence is comparable for
all seven of our data sets; only three are shown for the sake of readability.

Fig. 2. Plot of error ε in Lindahl conditions as a function of number of iterations.

Observation 1. Despite lacking a theoretical guarantee of convergence for
Saturating utilities, we are able to consistently compute near-exact core solu-
tions for our data sets using binary search on the complementarity conditions.

3.2 Comparing the Core with WELFARE

Given that we can compute the core exactly, we investigate its structure on
our datasets. For item j, let nj denote the number of votes received. Recall
that these votes come from simple approval voting and that sj is the budget
(cost) of the project. We define the following vote aggregation schemes that we
will use for comparison. We can compute fractional welfare and core allocations
straightforwardly, but the final allocation needs to be integral. To do this, the
items are sorted in a certain order. Consider items in this order and add the item
if its budget is less than the remaining total budget, stopping when all items are
exhausted. Importantly, both aggregation schemes use the same utility model.
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– Core: Compute a fractional core allocation as described in Sect. 3.1. Let xj

denote the fractional allocation of item j. Sort the items in descending of order
xj

sj
, which is the fraction to which item j is funded in the fractional allocation.

– Welfare: Sort the items in descending order of nj

sj
. This is the allocation

that maximizes total (fractional) utility in the Saturating utility model
(Definition 4).

We compare the outcomes of these algorithms for data sets from seven differ-
ent real world instances of participatory budgeting. We consider two measures of
the similarities of outcomes: the Jaccard index and Budget similarity. The Jac-
card index for two integral allocations is the ratio of the size of their intersection
to the size of their union. The Budget similarity for two fractional allocations x
and z is defined as

∑

j min(xj ,zj)

B . Here, x is the actual monetary amount allocated
to the project in the fractional allocation. Our results are shown in Fig. 3, and
one example is presented in Table 1.

Observation 2. Core and Welfare compute the same integer allocations
on almost all of our data sets, showing Welfare produces fair allocations in
practice. Furthermore, since the fractional allocation produced by Welfare is
an integer allocation except for one item, the high Budget similarity between
Welfare and Core implies that the fractional core produces almost integer
allocations.

Fig. 3. Similarity Scores for Core vs Welfare.

The above observation that the Core empirically coincides with Welfare is
quite surprising. It is easy to construct examples where the core allocation will
be very different from welfare maximization. This is particularly pronounced
when there is a significant minority of voters who have orthogonal preferences
from the majority. One possible explanation for our observation is that users
might have approximately independent random preferences over the projects.
We explore this possibility more formally in the full version [7], where we show
that this is not the complete explanation.
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Table 1. Aggregation results for Boston. The Budget column lists the project’s budget
in dollars. The final two columns list the allocation of the project as a fraction of its
budget, so that an integral allocation corresponds to 1.

Project Budget Votes Core Welfare

Wicked Free Wifi 2.0 $119,000 2,054 1.00 1.00

Water Bottle Refill Stations at Parks $260,000 1,794 1.00 1.00

Hubway Extensions $101,600 737 1.00 1.00

Bowdoin St. Roadway Resurfacing $100,000 611 1.00 1.00

Bike Lane Installation $200,000 771 0.74 1.00

Track at Walker Park $240,000 672 0.33 0.91

BCYF HP Dance Studio Renovation $286,000 759 0.31 0.00

BLA Gym Renovations $475,000 1,044 0.20 0.00

Ringer Park Renovation $280,000 546 0.02 0.00

Green Renovation for BCYF Pino $250,000 452 0.01 0.00

4 Homogeneous Utilities: Mechanism Design

In this section, we develop a randomized mechanism that finds an approxi-
mately core solution with high probability while ensuring approximate dominant-
strategy truthfulness for all agents. In the spirit of [16], we assume the large
market limit so that n 
 k; in particular, we assume k = o(

√
n). We present

the mechanism for linear utility functions where Ui(x) =
∑k

j=1 uijxj , noting
that it easily generalizes to degree one homogeneous functions. The values of uij

are reported by the agents. Without loss of generality, these are normalized so
that ‖ui‖1 = 1. Also without loss of generality, let B be normalized to 1. Recall
from Corollary 1 that for linear utility functions, the proportional fairness algo-
rithm that maximizes

∑
i log Ui(x) subject to ‖x‖1 ≤ 1 and x ≥ 0 computes the

Lindahl equilibrium.
We will design additive approximations to the core (see Definition 2) that

achieve approximate truthfulness in an additive sense. We use the Exponential
Mechanism [18] to achieve approximate truthfulness.

Fix a constant γ ∈ (0, 1) to be chosen later. We first define the convex set
of feasible allocations as P := {x : x ≥ n−γ , ‖x‖1 ≤ 1}. Note that all such
allocations are restricted to allocating at least n−γ to each project. Since the
utility vector of any agent is normalized so ‖ui‖1 = 1, this implies that every
agent gets a baseline utility of at least n−γ , a fact we use frequently. We define the
following scoring function, which is based on the gradient optimality condition
of Proportional Fairness:

q(x) := n − n−γ max
y∈P

(
∑

i

Ui(y)
Ui(x)

)
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We will approximately and truthfully maximize this scoring function. The
trade off in defining the scoring function is between reducing the sensitivity of
the function to the report of an individual agent and thus improving the approxi-
mation to truthfulness, and having just enough sensitivity so that the mechanism
defined in terms of the scoring function provides a good approximation to the
core. This scoring function, derived from the gradient condition of the propor-
tional fairness program, provides this balance. There are several details, which
we present in [7]. The formal mechanism is defined below.

Definition 6. Define μ to be a uniform probability distribution over all feasible
allocations x ∈ P. For a given set of utilities, let the mechanism ζε

q be given by
the rule:

ζε
q := choose x with probability proportional to eεq(x)μ(x)

The primary result of this section demonstrates that ζε
q can find an approxi-

mate core solution while providing approximate truthfulness.

Theorem 4. ζε
q is

(
e2ε − 1

)
-approximately truthful. Furthermore, if k is o(

√
n)

and 1
ε > kn

(n−k2) lnn then ζε
q can be used to choose an allocation x that is an

O
(

k lnn
ε
√

n

)
-approximate additive core solution w.p. 1 − 1

n .

It can be shown that eεq(x)μ(x) is log-concave, so that ζε
q can be sampled in

polynomial time [17] with small additive error in truthfulness.

5 Conclusion

In this paper, we have initiated the computational study of the Lindahl equilib-
rium in order to address fair resource allocation in the context of participatory
budgeting. Our work is just the first step towards understanding participatory
budgeting specifically and the fair allocation of public goods more generally. We
do not yet understand the computational complexity for more general utility
functions. Is computing the Lindahl equilibrium for public goods computation-
ally hard or is there a polynomial time algorithm even without the non-satiating
assumption? Our experimental results leave open intriguing questions about
modeling real voting data. In particular, is there a more formal explanation
of why welfare appears fair in practice? Also, is there a different way to elicit
more information from voters for a more precise modeling of their utility than
just approval voting?

Acknowledgements. We thank Anilesh Krishnaswamy for useful discussions, and
the Stanford Crowdsourced Democracy Team for the use of their data.
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Abstract. We consider the design of platforms that facilitate trade
between a single seller and a single buyer. The most efficient mecha-
nisms for such settings are complex and sometimes even intractable, and
we therefore aim to design simple mechanisms that perform approxi-
mately well. We devise a mechanism that always guarantees at least
1/e of the optimal expected gain-from-trade for every set of distribu-
tions (assuming monotone hazard rate of the buyer’s distribution). Our
main mechanism is extremely simple, and achieves this approximation
in Bayes-Nash equilibrium. Moreover, our mechanism approximates the
optimal gain-from-trade, which is a strictly harder task than approximat-
ing efficiency. Our main impossibility result shows that no Bayes-Nash
incentive compatible mechanism can achieve better approximation than
2/e to the optimal gain from trade. We also bound the power of Bayes-
Nash incentive compatible mechanisms for approximating the expected
efficiency.

1 Introduction

When we look at the global commerce landscape in the Internet era, we can
see that most of the products and services are sold on platforms that involve
users of different roles, usually sellers and buyers. In such environments, the
“auctioneer” or the “social planner” is the platform designer and not any one
of the sellers (as in classic auction settings). For example, online ads are sold
via exchange markets where advertisers bid for ad slots and content providers
seek to maximize profit. Another example is the recent Incentive Auctions run
by the US FCC [1], where spectrum is traded between TV stations and wireless
communication companies. Internet commerce giants like Amazon and eBay are
essentially large-scale platforms that mitigate trade between sellers and buyers
for a myriad of products, and Airbnb is a marketplace where travelers seek to
purchase accommodation from various vendors. The design of such two-sided
markets brings in major challenges for mechanism designers, and it has been the
focus of a series of recent papers (e.g., [13,14,23,24,26]).

In this paper we study the simplest two-sided market, known as the Bilateral
Trade setting. In this setting, a single seller owns an item, and can consume
it and gain a value s; a single buyer is interested in purchasing the item that
c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 400–413, 2016.
DOI: 10.1007/978-3-662-54110-4 28
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can give him a value b. Since both values are private, agreeing on a price in an
incentive-compatible mechanism may be hard. Indeed, the celebrated impossibil-
ity result by Myerson and Satterthwaite [21] claims that no Bayes-Nash incentive
compatible mechanism can simultaneously achieve full efficiency (that is, per-
form a trade when b > s) and be budget balanced (BB) and individually rational
(IR).1 In situations where budget balance and individual rationality are hard
constraints, one thus have to compromise and design mechanisms with approxi-
mate expected efficiency. In their original paper, Myerson and Satterthwaite [21]
characterized the “second-best” mechanism, that is, the mechanism that maxi-
mizes efficiency subject to the BB and IR constraints. However, this second-best
mechanism is often too complex to implement, as it involves solving a set of dif-
ferential equations which is a challenging task in the bilateral-trade setting, and
seems to be completely intractable when the setting is even slightly generalized.
Moreover, even if one is able to implement it, determining how well this second-
best mechanism performs, compared to the optimal (“first-best”) efficiency, is
not a trivial task.

There are two standard measures that quantify the efficiency of allocations
in mechanisms. The first one is the expected efficiency (or social welfare), that
is, the expected value of the player that obtains the item. The second measure is
the expected gain from trade (GFT), which is the expected value of: b−s when a
trade happens, and 0 otherwise. While the maximal efficiency and the maximal
gain-from-trade are achieved by the same allocation rule, it is clear that from
an approximation perspective approximating the GFT is a harder task. Every c
approximation to the gain-from-trade implies a c approximation to the expected
efficiency, but the opposite does not hold (this easy observation will be discussed
in the sequel of the paper). For example, think about an instance where both
s and b are distributed over the support [1, 2]. Every mechanism clearly gains
efficiency of at least 1 and of at most 2, and thus every mechanism guarantees 1/2
approximation to the efficiency. However, designing a mechanism that attains
1/2 of the expected GFT is completely non trivial. Approximating the GFT
is a notoriously hard analytical problem, and in this paper we devise simple
mechanisms that approximate this objective function.

1.1 Our Results

A series of recent works compared the power of simple mechanisms and optimal
(yet complex) mechanisms (e.g., [2,6–8,11,16,18]). most of these results consider
simple mechanisms that are dominant-strategy incentive compatible (DSIC). For
the bilateral-trade problem, however, it was shown by Blumrosen and Dobzinski
[5] that no DSIC mechanism can guarantee any constant approximation to the
expected GFT. The weakness of DSIC mechanisms relates to the fact that they

1 A mechanism is budget balanced if the mechanism does not gain any profit nor
requires any subsidies. A mechanism is individually rational if the utility of each
player cannot decrease by participating in the mechanism. Formal definitions will be
given later in the paper.



402 L. Blumrosen and Y. Mizrahi

are essentially restricted to posting a single price to the agents, where this price
cannot depend on the actual bids of the agents. In this paper, we devise a mecha-
nism that achieves approximate efficiency in Bayes-Nash incentive compatibility
(BNIC). This follows a recent line of research, mostly for combinatorial auction
settings, that compared the power of simple BNIC mechanism to optimal out-
comes (see, e.g., [3,9,25]). Our main result in this paper is a mechanism with
extremely simple rules in which simple Bayes-Nash equilibrium strategies obtain
a constant approximation ratio. This mechanism circumvents the DSIC limita-
tions, and the final price may depend on the seller’s value. More precisely, this
mechanism admits a unique Bayes-Nash equilibrium with at least 1/e of the opti-
mal (“first-best”) GFT whenever the distribution of the buyer’s value satisfies
the monotone hazard rate (MHR) property (with no restrictions on the seller’s
distribution). We stress that, as we observe later in the paper, no DSIC mech-
anism can approximate the GFT even for distributions that satisfy the MHR
condition.

Theorem 1. When the distribution of the buyer’s value satisfies the monotone
hazard rate condition, there is a “simple” Bayes-Nash incentive-compatible,
individually-rational and budget-balanced mechanism which always achieves at
least a 1

e -fraction of the optimal expected gain from trade.
In this mechanism, the seller offers a take-it-or-leave-it price to the buyer, who

then decides whether to accept it or not.2 This mechanism is simple in several
ways: first, the mechanism designer needs no distributional knowledge. The seller
does need to know the distribution of the buyer in order to compute his optimal
offer, but the buyer’s strategy does not involve any distributional considerations.
The computation required from the seller for computing her optimal offer is as
complex as determining the monopoly price in the presence of a single buyer,
which is known to have a simple closed-from formula and can be computed easily
even in practical settings (e.g., [22]).

We note that this approximation result also implies the same approximation
factor for the “second-best” mechanism.3 That is, it follows that the expected
gain-from-trade in the optimal BNIC mechanism cannot fall below a 1/e
fraction of the optimal (first-best) gain-from-trade. Furthermore, the theorem
demonstrates how this bound can be achieved even by simple, more practical,
mechanisms.

We strengthen this approximation result in two respects. We first prove
that the approximation ratio achieved by the mechanism is actually 1+c

e , where
c ∈ [0, 1] is a constant that depends on the buyer’s distribution (and more specif-
ically, on the steepness of the virtual valuation function); for example, for the

2 We note that our mechanism satisfies two stronger and desired versions of the above
economic properties: it is strongly budget balanced, i.e., the sum of payments is
always exactly zero; it is also ex-post individually rational, i.e., agents cannot lose
in every instance and not only in expectation.

3 Note that the characterization of the “second-best” mechanism by [21] requires that
both agents have Myerson-regular distributions, while we require the stronger MHR
assumption for the buyer and require nothing for the seller.
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uniform distribution c = 0.5, so the approximation bound in this case is actually
1.5
e

∼= 0.55. We then prove that given a stronger condition on the buyer’s distrib-
ution, namely, that the hazard-rate is concave, we can significantly improve the
approximation bound for the GFT to 2/e ∼= 0.74.4 We give an example for an
MHR distribution with a non-concave hazard rate, for which the approximation
achieved by our mechanism is strictly worse than 2/e; therefore, the concavity
assumption is necessary for the analysis of our mechanism.

Our main impossibility result in this paper shows that no BNIC mechanism
can guarantee an approximation ratio better than 2/e.

Theorem 2. There is no Bayes-Nash incentive compatible, individually ratio-
nal5 and budget balanced mechanism that guarantees a 2

e -fraction of the optimal
expected gain from trade. Moreover, this holds even when both distributions admit
the MHR property.

Unlike the impossibility results for DSIC mechanisms [4,10], there is no sim-
ple characterization for BNIC mechanisms; therefore, our proof relies on solving
the complex “second-best” mechanism by [21] for carefully chosen distributions,
and analyze its equilibrium properties. The buyer’s distribution for which the
bound is proven admits concave hazard rate, so this bound matches the above
2/e bound for this family of distributions.

Our final impossibility result bounds the power of BNIC mechanisms for
approximating the expected efficiency (all the results described so far concerned
approximating gains-from-trade). We show that no BNIC mechanism can guar-
antee better than a 0.93-approximation to the optimal efficiency. Although this
bound appears to be weak compared to the other impossibility results, this is the
strongest impossibility result for BNIC mechanisms that we are aware of. We
know [5] that there are BNIC mechanisms (actually, even DSIC mechanisms)
that achieve a 1 − 1/e approximation to the optimal efficiency. This leaves a
considerable gap for BNIC mechanisms between 0.63 and 0.93.

1.2 More Related Work

McAfee [18] studied a similar problem to ours, i.e., how simple mechanisms can
approximate the gain-from-trade in bilateral-trade settings. He proved that half
of the expected gain from trade can be achieved via a DSIC mechanism for set-
tings where the median of the buyer distribution is greater than the median of the
seller’s distribution. The mechanism simply posts any price between the medi-
ans as a take-it-or-leave-it offer to both agents. As mentioned, this bound cannot
be generalized with DSIC mechanisms for general distributions [5], or even to
MHR distributions. We overcome this impossibility by relaxing the incentive con-
straints from DSIC to BNIC. The Bilateral Trade problem for non quasi-linear
settings was recently studied in [15].
4 Concavity of the hazard rate is satisfied by some standard distributions (e.g., expo-

nential, Weibull(2,1), etc.), and does not hold for some other distributions (e.g.,
uniform on [0, 1]).

5 We consider the weaker version of interim IR, which makes the proof only harder.
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Blumrosen and Dobzinski [4,5] designed simple DSIC mechanisms that
approximate the expected efficiency for Bilateral trade and more complex set-
tings. [4,5] were inspired by McAfee’s work and used the medians of the distrib-
utions as a major design tool. [4,5] showed how features that are used in mecha-
nisms for Bilateral Trade can be used in more general exchange frameworks, and
even constructed black-box reductions from other settings to Bilateral Trade.
This highlights the importance of understanding the basic bilateral-trade prob-
lem for the design of more complex markets. Colini-Baldeschi et al. [10] further
studied approximation mechanisms in exchange settings under strong budget
balance, and proved, among other results, an impossibility result of 0.749 for the
efficiency approximation obtained by DSIC mechanisms in the bilateral trade
problem.

Two-sided markets have been extensively studied in the last three decades.
McAfee [17] designed an elegant DSIC, BB and IR mechanism for two sided
markets with homogenous goods, which is nearly efficient in large markets.
Other work about asymptotic efficiency of two-sided markets include [14,23,24].
Dutting et al. [13] developed a modular approach for the design of two-sided
markets, based on the deferred-acceptance heuristics from [19].

We continue as follows: We present the model and a brief survey of some
relevant existing results in Sect. 2. Our main positive results are given in Sect. 3,
and our negative results appear in Sect. 4.

2 Model

The bilateral trade problem involves two agents, a seller and a buyer. The seller
owns one indivisible item from which he gains a value s. The buyer gains a
value b from the same item after purchasing it. In fact, s and b are drawn
from two independent distributions Fs and Fb which correspond to the two
random variables S and B respectively. Each of the two agents does not know the
realization of the other agent’s value, but the distributions are public knowledge.
In our analysis we shall assume the existence of the density functions fs and fb

for the seller and the buyer respectively. Furthermore, we assume that both
agents are risk neutral and that the prices and values are commensurable.

Based on their values, the seller and the buyer simultaneously report their
bids, denoted by σ (s) and β (b) respectively, to the trading mechanism. The
mechanism is defined by the two functions t (β, σ) and p (β, σ), both known
to the agents, such that the item is transferred from the seller to the buyer
at price t (β, σ) with probability p (β, σ). We will be focusing on deterministic
mechanisms, such that the item is transferred iff p (β, σ) = 1.

As previously mentioned, the two main measures that will be analyzed
throughout this paper are the expected gains from trade and the expected effi-
ciency. Given a mechanism M = 〈t, p〉 and two agents with distributions Fb and
Fs, these two measures, denoted by GFTFb,Fs

M and EFFFb,Fs

M respectively, are
defined as follows (when they are clear, the notations M, Fs or Fb are omitted):
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GFTFb,Fs

M = E[(B − S) · p (β (B) , σ (S))]

EFFFb,Fs

M = E[B · p (β (B) , σ (S)) + S · (1 − p (β (B) , σ (S)))]

From these definitions it becomes clear that EFFFb,Fs

M = GFTFb,Fs

M + E[S]. In
the fully efficient case (i.e., when p (β (b) , σ (s)) = 1 iff b ≥ s), the measures
are GFTFb,Fs

OPT = E[max{B − S, 0}] and EFFFb,Fs

OPT = E[max{B,S}]. We note
that, by definition, maximizing GFT also implies maximizing efficiency. The
fully efficient allocation is our benchmark for our approximation results; we say
that for a pair of such distributions, a mechanism M achieves a k-approximation

to the optimal GFT if GFT
Fb,Fs
M

GFT
Fb,Fs
OP T

≥ k and similarly for EFF , and we note that

it always holds that EFF
Fb,Fs
M

EFF
Fb,Fs
OP T

≥ GFT
Fb,Fs
M

GFT
Fb,Fs
OP T

.6

2.1 The Hazard Rate of a Distribution

We now present some definitions, properties and notations regarding the Hazard
Rate of a general distribution F with density f that has a non-negative support.
These are used in our main approximation results in the next section.

We begin by defining the Hazard Rate of such distribution by h (x) = f(x)
1−F (x) .

The Cumulative Hazard Function of F is defined by H (x) = −ln (1 − F (x)) for
every x ≥ 0 (which is not to the right of F ’s support). We note that e−H(x) =
1 − F (x), and that H (0) = 0. Differentiating yields H ′ (x) = h (x), and we get
that H (x) =

∫ x

0
h (t) dt + k for some k. Placing x = 0 shows that k = 0.

We continue by defining the Virtual Valuation Function of an agent with
such distribution by ϕ (x) = x − 1−F (x)

f(x) .
Moreover, we also define the Monotone Hazard Rate (MHR) property of

a distribution, which simply states that h is monotone non-decreasing. This
property also implies that ϕ is monotone increasing, a state in which we often
call F a regular distribution7. We note that in this case, since ϕ is strictly
monotone, its inverse function exists.

In this paper, we only require such hazard rate assumptions for the buyer’s
distribution; thus, when we use these notations they shall be associated with Fb.

2.2 Bayes-Nash IC: The Second-Best Mechanism

While it was proved in [21] that no IR and BB mechanism is fully efficient
in BNIC, the same paper present a characterization of the mechanisms that

6 This follows from EFFM · GFTOPT ≥ GFTM · EFFOPT which is equivalent by
definition to the inequality (GFTM + E[S]) · GFTOPT ≥ GFTM · (GFTOPT + E[S])
that holds by GFTOPT ≥ GFTM .

7 Most of the literature assumes a weaker condition, that the ϕ is non-decreasing. In
our paper we often use the inverse function of ϕ, and the notations become much
simpler when ϕ is strictly increasing. Moreover, our main results consider MHR
distributions that imply that ϕ is always strictly increasing.
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maximize GFT subject to the IR and BB constraints. We will now describe this
“second-best” mechanism for bilateral trade from [21], which is used later in our
inapproximability results. We will denote this mechanism by MS.

As stated [21], in order to derive the correct approximation results using this
mechanism, we need to assume that the support of Fb is [b, b] or [b,∞) for some
b ≥ b ≥ 0 and that the support of Fs is [s, s] or [s,∞) for some s ≥ s ≥ 0. As in
[21], we assume regularity of the distributions, i.e., that the functions b− 1−Fb(b)

fb(b)

and s + Fs(s)
fs(s)

are monotone increasing. Using the fact that this mechanism is
truthful, i.e., in a Bayes-Nash equilibrium β (b) = b and σ (s) = s, the mechanism
is defined by:

pα (β (b) , σ (s)) =

{
1 if s + α · Fs(s)

fs(s)
≤ b − α · 1−Fb(b)

fb(b)

0 otherwise.

The appropriate parameter is the unique (as proved in [21]) α ∈ (0, 1] that solves
the following equation, presented for the bounded supports case (and similar for
the unbounded case):

b∫

b

s∫

s

((

b − 1 − Fb (b)
fb (b)

)

−
(

s +
Fs (s)
fs (s)

))

· pα (b, s) fb (b) fs (s) dsdb = 0

The appropriate payment function can be determined ad hoc, given the distri-
butions. Nonetheless, we note that it is not necessary in order to analyze the
GFT and EFF measures.

3 A Constant Approximation for the Gains from Trade

In this section we present a simple mechanism that approximates the optimal
gains from trade for bilateral trade settings. The mechanism has no dominant-
strategy equilibrium, and the results are achieved in Bayes-Nash equilibrium.
We call this mechanism the Seller-Offering Mechanism (abbreviated as SO).

The Seller-Offering (SO) Mechanism:

– The seller offers a take-it-or-leave-it price t to the buyer, who chooses whether
to accept it or not.

– If the buyer accepts the price, a trade occurs at price t. Otherwise, no trade
occurs and no payments are transferred.

We note that at first glance, it seems as if this mechanism does not fall
into formal model of bilateral trade mechanisms we defined earlier, since it is
two-staged and not simultaneous. However, using p (β, σ) = 1{β≥σ} (β, σ) and
t (β, σ) = σ in the original scheme yields the same results.
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3.1 Some Technical Definitions and Observations

For our results in this section, it suffices to assume that the support of Fb is
[b, b] or [b,∞) for some b ≥ 0, the support of Fs is contained in [0,∞), fb is
differentiable and Fb adheres to the MHR assumption.

The inverse virtual valuation ϕ−1 (·) turns out to be very useful in our analy-
sis. This inverse function is not well defined for all possible values, therefore we
frequently use its extension denoted by ϕ−1 (·).
Definition 1. Under the aforementioned assumptions, we define the Extended
Inverse Virtual Valuation Function, ϕ−1 (x), to be the continuous extension of
ϕ−1 (x):
Since ϕ (x) is increasing, ϕ−1 (x) is undefined for x ≤ ϕ (b), and in case Fb’s
support is [b, b], it is also undefined for x ≥ ϕ

(
b
)

= b. The left part is extended
using ϕ−1 (x) = b and the right part using ϕ−1 (x) = x.8

We continue by showing some useful technical observations regarding these
functions, used later in our proofs:

Observation 2. For every x in their domain, ϕ (x) ≤ x and ϕ−1 (x) ≥ x.

Proof. The first inequality follows from ϕ (x) = x − 1
h(x) ≤ x since h is positive.

The second follows from the fact that ϕ−1 is the reflection of ϕ with respect to
the line y=x, and since the extension of it preserves the inequality.

Observation 3. For every x ≥ ϕ (b):

1. If b ≥ x then ϕ−1 (x) − x =
1−Fb(ϕ−1(x))

fb(ϕ−1(x)) = 1
h(ϕ−1(x)) .

2. If b ≤ x then ϕ−1 (x) − x = 0.

Proof. For the first case, it holds that ϕ−1 (x) − x = ϕ−1 (x) − ϕ
(
ϕ−1 (x)

)
=

ϕ−1 (x) − ϕ−1 (x) +
1−Fb(ϕ−1(x))

fb(ϕ−1(x)) =
1−Fb(ϕ−1(x))

fb(ϕ−1(x)) = 1
h(ϕ−1(x)) by the definitions

of ϕ and h. For the second case, by the definition of the right extension of ϕ−1,
it holds that ϕ−1 (x) − x = x − x = 0.

Observation 4. For every b ≥ x ≥ ϕ (b) it holds that dϕ−1(x)
dx = 1

1+
h′(ϕ−1(x))

(h(ϕ−1(x)))2

∈

[0, 1] under the MHR assumption.

Proof. We remind that ϕ (x) = x − 1
h(x) . By the reciprocal rule, differentiating

yields ϕ′ (x) = 1− 0−h′(x)
(h(x))2

= 1+ h′(x)
(h(x))2

. Furthermore, dϕ−1(x)
dx = 1

ϕ′(ϕ−1(x)) by the
derivative of an inverse function. Thus, the identity follows by plugging ϕ−1 (x)

in the derviative. We also note that by the MHR assumption,
h′(ϕ−1(x))
(h(ϕ−1(x)))2

≥ 0,

hence dϕ−1(x)
dx ∈ [0, 1].

8 We note that ϕ−1 (x) is defined for every x, even when Fb’s support is [b, ∞), since
ϕ (x) is unbounded from above in that case. This can be seen by noticing that
for every y ∈ R, choosing x > max{ 1

h(b)
+ y + 1, b} yields ϕ (x) = x − 1

h(x)
≥

1
h(b)

+ y + 1 − 1
h(b)

> y by the MHR assumption.



408 L. Blumrosen and Y. Mizrahi

3.2 Analysis of the Seller-Offering Mechanism

Although not admitting a dominant-strategy equilibrium, the above Seller- Offer-
ing mechanism induces quite straightforward Bayes-Nash equilibrium strategies
for the agents. In equilibrium, the seller offers the monopoly price given his own
value for the item, that is, ϕ−1 (s) (as in [20]), and the bidder will simply bid
truthfully to accept the deal if its value exceeds the offered price.9 This is an
immediate application of Myerson’s theory [20], but for completeness, a proof is
given in the full version of the paper.

Proposition 5. For every MHR distribution Fb for the buyer and every distrib-
ution Fs for the seller, the bids β (b) = b and σ (s) = ϕ−1 (s) form a Bayes-Nash
equilibrium in the Seller-Offering Mechanism.

In the following lemma we present a convenient representation of GFTOPT

and GFTSO which we heavily use. The representation of GFTOPT is also shown
in [18]. We prove this lemma in the full version of the paper.

Lemma 6. For every MHR distribution Fb for the buyer and every distribution
Fs for the seller, the following equalities hold:

GFTOPT =

∞∫

0

Fs (s) · (1 − Fb (s)) ds

GFTSO =

∞∫

0

Fs (s) ·
(

1 +
dϕ−1 (s)

ds

)

· (1 − Fb(ϕ−1(s)))ds

We now turn to proving the main result of the paper, concerning the constant
approximation guarantee obtained using the Seller-Offering mechanism. This
approximation result is parameterized by a parameter c that describes the steep-
ness of the buyer’s virtual function.

Definition 7. We define the Virtual Steepness Constant of an MHR distribu-
tion F with a differentiable density f by c = mins

dϕ−1(s)
ds . We note that c is

in fact the reciprocal of the virtual valuation function’s Lipschitz constant, since
mins

dϕ−1(s)
ds = mins

1
ϕ′(ϕ−1(s)) = 1

maxsϕ′(s) .

Our theorem shows that given the MHR condition on the buyer’s valuation,
our mechanism attains a 1+c

e fraction of the optimal gains-from-trade. Since by
Observation 4 we have that c ∈ [0, 1], this approximation is at least 1

e for all
possible distributions.

Theorem 8. For every MHR distribution Fb for the buyer and every dis-
tribution Fs for the seller, the Seller-Offering Mechanism obtains a 1+c

e -
approximation to the optimal gains from trade.
9 Recall that ϕ denotes the virtual valuation of the buyer, and the seller use the details

of this distribution to determine what price to post.
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Proof. We remind that in Lemma 6, we concluded that GFTOPT =
∫ ∞
0

Fs (s) ·
(1 − Fb (s)) ds and that GFTSO =

∫ ∞
0

Fs(s) · (1 + dϕ−1(s)
ds ) · (1 − Fb(ϕ−1(s)))ds.

We therefore analyze the relation between (1 + dϕ−1(s)
ds ) · (1 − Fb(ϕ−1(s))) and

(1 − Fb(s)) for every s ≥ 0.
If s ≥ b, both terms are 0 (we use Observation 2 for the first term). If s ≤ ϕ(b)

then (1+ dϕ−1(s)
ds ) · (1−Fb(ϕ−1(s))) = (1+0) · (1−Fb(b)) = 1 = (1−Fb(s)). The

first equality follows from ϕ−1(s) = b for such s, and the last equality follows
from b ≥ ϕ(b) as noted in Observation 2. The ratio between these two terms is
1, which is greater than 1+c

e .
We now focus on the case where b ≥ s ≥ max{0, ϕ(b)}, such that ϕ−1(s) =

ϕ−1(s), and we show that e·(1−Fb(ϕ−1(s))) ≥ 1−Fb(s). The Cumulative Hazard
Function H of the buyer is the integral of the monotone increasing function h,
hence H is convex. Therefore, the line tangent to H at any point is below the
function. In other words, fixing x0 ∈ [0, b], for every x ∈ [0, b] it holds that
H(x) ≥ H(x0) + h(x0) · (x − x0). By Observation 3.3, choosing x0 = ϕ−1(s) we
get that for every x ∈ [0, b], and specifically x = s, it holds that:

H(x) ≥ H(ϕ−1(x)) + h(ϕ−1(x)) · (x − ϕ−1(x)) =

= H(ϕ−1(x)) + h(ϕ−1(x)) ·
(

− 1
h(ϕ−1(x))

)

= H(ϕ−1(x)) − 1

Hence:

1 − Fb(s) = e−H(s) ≤ e−H(ϕ−1(s))+1 = e · e−H(ϕ−1(s)) = e · (1 − Fb(ϕ−1(s)))

The first and the last equalities in the last line follow from the definition of H
as described in Sect. 2.1.

Concluding, we get that for every s ≥ 0 it holds that

Fs(s) · (1 +
dϕ−1(s)

ds
) · (1 − Fb(ϕ−1(s))) ≥ Fs(s) · 1 + c

e
· (1 − Fb(s))

Integrating both parts and by the monotonicity of the integral, we get that by
Lemma 6 we have that GFTSO ≥ 1+c

e · GFTOPT .

We now proceed to proving an amplified version of this theorem. In the proof of
Theorem 8 we relied on a linear approximation of H. The next theorem utilizes a
quadratic approximation of H (via the Taylor expansion) to improve the bound,
but requires an additional assumption, the concavity of h. With this additional
assumption, the approximation can be improved to 2/e.

The following technical lemma, which is proved in the full version, manifests
the importance of the concavity assumption and is used for proving the theorem
below.

Lemma 9. Let f be a twice differentiable function that has a concave deriva-
tive, and let T (x) be a second degree Taylor polynomial at x0, i.e., a quadratic
approximation at this point. Then for every x ≤ x0 it holds that T (x) ≤ f (x).
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Theorem 10. For every MHR distribution Fb with a concave hazard rate for
the buyer and every distribution Fs for the seller, the Seller-Offering Mechanism
obtains a 2

e -approximation to the optimal gains from trade.

A proof can be found in the full version of the paper.
We can now use Theorem 10 to separate the power of DSIC and BNIC mecha-

nisms in terms of approximating the gains from trade. The following proposition
shows that there are instances where no DSIC mechanism can obtain a constant
approximation to the gains from trade, but as the relevant distributions satisfy
MHR and admit a concave hazard function, Theorem10 implies the existence of
BNIC mechanisms with 2

e approximation.

Proposition 11. There exists a pair of distributions Fb for the buyer and Fs

for the seller, for which no DSIC mechanism that is IR and BB can achieve
a constant approximation to the optimal gains from trade, while there exists a
BNIC mechanism that is IR and BB that does achieve a 2/e-approximation to
the optimal gains from trade for them.

Proof. Consider the two distributions Fb ∼ Exponential (1) and Fs (x) =
λ (ex−t − e−t) with λ = 1

1−e−t on the support [0, t]. In [5], Blumrosen and
Dobzinski analyze the scenario in which Fb (x) = λ (1 − e−x) on the support
[0, t] and Fs is the same as above. They show that every fixed price mechanism
achieves at most O (1/t)-approximation to the optimal gains from trade in this
case. By taking t that tends to infinity, this buyer’s distribution converges to
Exponential(1) while 1/t converges to 0. Alternatively, a direct calculation using
the original distributions yields these results. Since it is well known that every
DSIC mechanism that is IR and BB is a fixed price mechanism (see, e.g., [10,12]
and the references therein), the first part follows.

We note that in this case, h (x) = 1 which is a constant function and there-
fore the MHR and concavity assumptions hold. Thus, by Theorem 3.10 the SO
Mechanism indeed obtains a 2/e-approximation to the optimal gains from trade.

Lastly, the following proposition signifies the necessity of h’s concavity
assumption for Theorem 10. We also show that the analysis of Theorem 10 is
tight, and for some distributions (that satisfy MHR and concave hazard rate)
our mechanism achieves exactly 2/e approximation. A proof can be found in the
full version of the paper.

Proposition 12. Using the Seller-Offering Mechanism:

1. There exists an MHR distribution Fb with a non-concave hazard rate, and a
distribution Fs for the seller, such that the mechanism achieves an approxi-
mation to the optimal GFT which is strictly worse than 2/e.

2. There exists an MHR distribution Fb with a concave hazard rate h and a
distribution Fs for the seller, such that h is concave and GFTSO

GFTOP T
= 2

e .
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4 Inapproximability Results

In this section, we present impossibility results for approximating the gains from
trade and efficiency using BNIC mechanism.

In the previous section, we presented an IR, BB and BNIC mechanism that
guarantees a 1/e-approximation to the optimal gains from trade for any pair
of distributions under standard MHR assumptions. A question that naturally
arises concerns the limitations of BNIC mechanisms in this our setting. The
following theorem addresses that question and shows that no BNIC mechanism
can maintain IR and BB and guarantee more than 2/e approximation. Moreover,
this holds even when the distributions satisfy the MHR condition.10 We also note
that this result is proven for the case where the buyer’s distribution has concave
hazard rate, and thus it matches the positive result in Theorem10 when this
condition is satisfied.

Theorem 13. No BNIC mechanism which is IR and BB can guarantee an
approximation to the optimal gains from trade which is better than 2/e. This
holds even if both distributions satisfy the MHR condition.

The proof relies on the Second-Best mechanism devised by Myerson and
Satterthwaite in [21]. We show that for every ε > 0 there exists a pair of dis-
tributions such that GFTMS

GFTOP T
< 2

e + ε. Since by its definition, no BNIC mecha-
nism which is IR and BB can achieve a better approximation than this mech-
anism for these distributions, the claim follows. In fact, the relevant distribu-
tions are exactly the ones used in Proposition 11, i.e., Fb ∼ Exponential (1) and
Fs (x) = λ (ex−t − e−t) with λ = 1

1−e−t on the support [0, t]. The distributions
satisfy the MHR property. We remind that the second-best solution requires
that b− 1−Fb(b)

fb(b)
and s+ Fs(s)

fs(s)
are monotone increasing, and indeed this property

holds for b − 1−Fb(b)
fb(b)

= b − 1 and s + Fs(s)
fs(s)

= s + 1 − e−s. The full proof can be
found in the full version of the paper.

We conclude by showing a similar result for the expected efficiency in the
bilateral trade setting. As the previous proof illustrates, and as supported by
simulations using various distributions, the Second-Best mechanism achieves a
relatively low approximation to the optimal GFT when the buyer’s values tend to
be low and the seller’s values tend to be high. Since this is normally associated
with low expected gains from trade, and since EFF = GFT + E[S], these
scenarios often produce high approximation to the optimal efficiency. Thus, it
seems that tackling the question of finding an approximation to that measure
that cannot be guaranteed requires observing somewhat more balanced scenarios.

We remark that [10] studied this question for the DSIC case, and showed that
no DSIC mechanism which is IR and BB can guarantee a 0.749-approximation
to the optimal efficiency. The following theorem shows a similar result for BNIC
mechanisms, and is proved in the full version of the paper. While this bound

10 This theorem holds for a weaker notion of interim individual rationality (as in [21]);
This clearly strengthens the result.
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appears to be weak compared to the bound on the GFT in Theorem13, we
are not aware of any stronger bound for this problem. The best positive result
to date for this problem is by [5], who showed a DSIC (and thus also BNIC)
mechanism that guarantees about 0.63 fraction of the optimal efficiency.

Theorem 14. No BNIC mechanism which is IR and BB can guarantee an
approximation to the optimal efficiency which is better than 0.934.

5 Conclusion

This paper considers the bilateral-trade problem, which is a fundamental problem
in economics for more than three decades and it demonstrates the simplest form
of two sided markets. We hope that developing understanding of this fundamental
problem may also be helpful in the design of more general two sided markets.

Our main result is a mechanism that achieves at least 1/e fraction of the opti-
mal gain from trade, assuming that the distribution of the buyer satisfies MHR.
The mechanism is simple, Bayes-Nash incentive compatible, strongly budget bal-
anced and ex-post individually rational. The bound also implies that the most
efficient mechanism subject to the IR and BB, which was characterized in the
seminal paper of [21], must also achieve at least the same fraction of the optimal
gain-from-trade. Our main impossibility result shows that no BNIC mechanism
can guarantee an approximation which is better than 2/e.

The main open question that is raised in this paper is whether the MHR
assumption (on the buyer’s side) is really required for achieving a constant
approximation to the gain from trade via BNIC mechanisms. In other words,
is there a BNIC, IR and BB mechanism that guarantees a constant approxi-
mation to the gain from trade for all distributions? We note that Myerson and
Satterthwaite’s [21] characterization of the “second-best” mechanism was not
general, and assumed that the distributions are regular (a slightly weaker
assumption than MHR).

A second interesting open question concerns closing the relatively-wide gap
between the lower and the upper bound for the efficiency-maximizing problem
by DSIC mechanisms. The best currently known approximation for this problem
is 0.63 [5], while our impossibility result gives a bound of 0.93. As these results
are given for Bayes-Nash incentive compatible mechanisms, the analysis can be
challenging.
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Abstract. We study a type of reverse (procurement) auction problems
in the presence of budget constraints. The general algorithmic problem is
to purchase a set of resources, which come at a cost, so as not to exceed
a given budget and at the same time maximize a given valuation func-
tion. This framework captures the budgeted version of several well known
optimization problems, and when the resources are owned by strategic
agents the goal is to design truthful and budget feasible mechanisms.
We first obtain mechanisms with an improved approximation ratio for
weighted coverage valuations, a special class of submodular functions.
We then provide a general scheme for designing randomized and deter-
ministic polynomial time mechanisms for a class of XOS problems. This
class contains problems whose feasible set forms an independence sys-
tem (a more general structure than matroids), and some representative
problems include, among others, finding maximum weighted matchings
and maximum weighted matroid members. For most of these problems,
only randomized mechanisms with very high approximation ratios were
known prior to our results.

1 Introduction

In this work, we study a class of mechanism design problems under a budget
constraint. Consider a reverse auction setting, where a single buyer wants to
select a subset, among a set A of agents, for performing some tasks. Each agent
i comes at a cost ci, in the case that he is chosen. The buyer has a budget B and
a valuation function v(·), so that v(S) is the derived value if S ⊆ A is the chosen
set. The purely algorithmic version then asks to maximize the generated value
subject to the constraint that the total cost of the selected agents should not
exceed B. Some of these problems are motivated by crowdsourcing scenarios and
related applications, where agents can be viewed as workers, e.g., [4]. Apart from
that, they form natural budgeted versions of well known optimization problems.

In the mechanism design version that we focus on, the cost ci is private infor-
mation for each agent i. Hence, we want to design mechanisms that are incentive
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compatible, individually rational, and budget feasible, i.e. the sum of the pay-
ments to the agents does not exceed B. Note that the payments here can be
higher than the actual costs in order to induce truthfulness. Budget feasibility is
a tricky property that makes the problem more challenging, as it already rules
out well known mechanisms such as VCG. Although the algorithmic versions of
such problems often admit constant factor approximation algorithms, it is not
clear how to appropriately convert them into truthful budget feasible mecha-
nisms. Therefore, the question of interest is to find mechanisms that achieve the
best possible approximation for the optimal value of v(·) under these constraints.
We stress that the question is nontrivial even if we allow exponential time algo-
rithms, since computational power does not necessarily make the problem easier
(see also the discussion in [9]).

Budgeted mechanism design was first studied by Singer [14] when v(·) is
an additive or a nondecreasing submodular function. Later on, follow up works
have also provided more results for XOS and subadditive functions. Although
these results shed more light on our understanding of the problem, there are still
several interesting issues that remain unresolved. First, the current results on
submodular valuations are not known to be tight. Further, and most importantly,
when going beyond submodularity, to XOS functions, we are not even aware of
general mechanisms with small approximation guarantees, let alone deterministic
polynomial time mechanisms.

Contribution: We first demonstrate (Sect. 3) how to obtain improved deter-
ministic budget feasible mechanisms for weighted coverage valuations, a notable
subclass of submodular functions. This class has already received attention in
previous works [14,15], motivated by problems related to influence maximiza-
tion in social networks. Our mechanism reduces roughly by half (from 31.03 to
15.45) the known approximation of [15] and also generalizes it to the weighted
version of coverage functions. We then move to our main result (Sect. 4), which
is a general scheme for obtaining randomized and deterministic polynomial time
approximations for a subclass of XOS problems, that contains the budgeted ver-
sions of several well known optimization problems. We first illustrate our ideas
in Sect. 4.1 on the budgeted matching problem, where v(S) is defined as the
maximum weight matching that can be derived from the edges of S. For this
problem only a randomized 768-approximation was known [5]. Our approach
yields a randomized 3-approximation and a deterministic 4-approximation. Then
in Sect. 4.2 we show how to generalize these results to problems with a similar
combinatorial structure, where the set of feasible solutions forms an indepen-
dence system. These structures are more general than matroids (they do not
always satisfy the exchange property) and some representative problems that
are captured include finding maximum weighted matroid members, maximum
weighted k-D-matchings, and maximum weighted independent sets.

Related Work: The study of budget feasible mechanisms, as considered here,
was initiated by Singer [14], who gave a randomized constant factor approxima-
tion mechanism for nondecreasing submodular functions. Later, Chen et al. [7]



416 G. Amanatidis et al.

significantly improved these approximation ratios, obtaining a randomized, poly-
nomial time mechanism achieving a 7.91-approximation and a deterministic one
with a 8.34-approximation. Their deterministic mechanism does not run in poly-
nomial time in general, but it can be modified to do so for special cases (see
Sect. 3). As an example, Singer [15] followed a similar approach to obtain a deter-
ministic, polynomial time, 31.03-approximation mechanism for the unweighted
version of Budgeted Max Coverage, a class that we also consider in Sect. 3.
Along these lines, Horel et al. [12] consider another family of submodular func-
tions and give a deterministic, polynomial time, constant approximation for the
so-called Experimental Design Problem, under a mild relaxation on truthfulness.
For subadditive functions Dobzinski et al. [9] suggested a randomized O(log2 n)-
approximation mechanism. This was later improved to O (log n/ log log n) by Bei
et al. [5], who also gave a randomized O(1)-approximation mechanism for XOS
functions, albeit in exponential time. Recently, there is also a line of works under
the large market assumption (where no participant can affect significantly the
market outcome). Under this assumption, Anari et al. [4] resolved the additive
case, giving a e

e−1 -approximation mechanism and a matching lower bound. Fur-
ther results for large markets were obtained by Goel et al. [11] for a crowdsourcing
problem with matching constraints (and hence a non submodular objective).

2 Definitions and Notation

We use A = [n] = {1, 2, ..., n} to denote a set of n agents. Each agent i is asso-
ciated with a private cost ci, denoting the cost for participating in the solution.
We consider a procurement auction, where the auctioneer is equipped with a
valuation function v : 2A → Q

+ and a positive budget B. For S ⊆ A, v(S) is
the value derived by the auctioneer if the set S is selected. Therefore, the goal
is to select a set S that maximizes v(S) subject to the constraint

∑
i∈S ci ≤ B.

We consider valuation functions that are non-decreasing, i.e. v(S) ≤ v(T ) for
any S ⊆ T ⊆ A. Throughout our work, we will focus on valuations that come
from two natural classes of functions, namely submodular and XOS functions
defined below.

Definition 1. A valuation function, defined on 2A for some set A, is
(i) submodular, if v(S ∪ {i}) − v(S) ≥ v(T ∪ {i}) − v(T ) for any S ⊂ T ⊂ A,
and i �∈ T .
(ii) XOS or fractionally subadditive, if there exist additive functions α1, ..., αr,
for some finite r, such that v(S) = max{α1(S), α2(S), ..., αr(S)}.
We note that the class XOS is a strict superclass of submodular valuations.

Mechanism Design. Each agent here only has his cost as private information,
hence we are in the domain of single-parameter problems. A mechanism M =
(f, p) in our context consists of an outcome rule f and a payment rule p. Given
a vector of cost declarations, b = (bi)i∈A, where bi denotes the cost reported
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by agent i, the mechanism selects the set f(b). At the same time, it computes
payments p(b) = (pi(b))i∈N where pi(b) denotes the payment issued to agent i.

The main properties we want to ensure for our mechanisms in this work are
truthfulness (reporting ci is a dominant strategy for every agent i), individual
rationality (pi(b) ≥ 0 for every i ∈ A, and pi(b) ≥ ci, for every i ∈ f(b)), and
budget feasibility (

∑
i∈A pi(b) ≤ B for every b).

When referring to randomized mechanisms, the notion of truthfulness we
use is universal truthfulness, which means that the mechanism is a probability
distribution over deterministic truthful mechanisms.

For single-parameter problems we use the characterization by Myerson [13]
for deriving truthful mechanisms. In particular, we say that an outcome rule f
is monotone, if for every agent i ∈ A, and any vector of cost declarations b, if
i ∈ f(b), then i ∈ f(b′

i, b−i) for b′
i ≤ bi. This simply means that if an agent is

selected in the outcome by declaring a cost bi, then he should also be selected if
he declares a lower cost.

Lemma 1. Given a monotone algorithm f , there is a unique payment scheme
p such that (f, p) is a truthful and individually rational mechanism, given by
pi(b) = supbi∈[ci,∞){bi : i ∈ f(bi, b−i)} when i ∈ f(b), and pi(b) = 0 otherwise.

Lemma 1 is known as Myerson’s lemma, and the payments are often referred
to as threshold payments. Myerson’s lemma simplifies the design of truthful mech-
anisms by focusing only on constructing monotone algorithms and not having
to worry about the payment scheme. In this work, we always assume that the
underlying payment scheme is given by Myerson’s lemma.

3 Deterministic Mechanisms for Submodular Objectives

We begin our exposition with submodular valuations, and show in Sect. 3.1 how
to obtain an improved approximation for a subclass of such functions. To do
this, we exploit the approach by Chen et al. [7], starting with their mechanism:

Mechanism-SM(A,B) [7]

1 Set A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A v(i)

2 if 1+4e+
√
1+24e2

2(e−1) · v(i∗) ≥ OPT(A {i∗}, B) then

3 return i∗

4 else
5 return Greedy-SM(A,B/2)
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In Mechanism-SM, an agent i∗ of maximum value is compared with an
optimal solution at the instance A {i∗} with budget B. Then, either i∗ or
Greedy-SM(A,B/2) is returned.

Greedy-SM(A,B/2) [7]

1 Let k = 1 and S = ∅
2 while k ≤ |A| and ck ≤ B

2 · v(S∪{k})−v(S)
v(S∪{k}) do

3 S = S ∪ {k}
4 k = k + 1

5 return S

Greedy-SM is a greedy algorithm that picks agents according to their
ratio of marginal value over cost, given that this cost is not too large. For
the sake of presentation, we assume the agents are sorted in descending order
with respect to this ratio. The marginal value of each agent is calculated with
respect to the previous agents in the ordering, i.e. 1 = arg maxj∈A

v(j)
cj

and

i = arg maxj∈A\[i−1]
v([j])−v([j−1])

cj
for i ≥ 2.

Lemma 2 [7]. Greedy-SM(A,B/2) is monotone and outputs a set S such that
v(S) ≥ e−1

3e · OPT(A,B) − 2
3 · v(i∗). Using the payments of Myerson’s lemma,

the mechanism is truthful, individually rational, and budget feasible.

Mechanism-SM is deterministic and by using Lemma 2, it can be shown that
it achieves an approximation factor of 8.34 for any nondecreasing submodular
objective. However, it is not guaranteed to run in polynomial time, since we need
to compute OPT(A {i∗}, B), and more often than not, submodular maximiza-
tion problems turn out to be NP-hard. An obvious question here is whether we
can use an approximate solution instead, but it is not hard to see that by doing
so we might sacrifice truthfulness. As a way out, Chen et al. [7] mention that
instead of OPT(A {i∗}, B), an optimal solution to a fractional relaxation of the
problem can be used. Although this does not always make the mechanism run
in polynomial time, it helps in some cases.

Suppose that for a specific submodular objective, the budgeted maximiza-
tion problem can be expressed as an ILP, the corresponding LP relaxation of
which can be solved in polynomial time. Further, suppose that for any instance
I and any budget B, the optimal fractional solution OPTf (I,B) is within
a constant factor of the optimal integral solution OPT(I,B). Then replac-
ing OPT(A {i∗}, B) by OPTf (A {i∗}, B) in Mechanism-SM still gives a
truthful, constant approximation. In fact, we give a variant of Mechanism-
SM below, where the constants have been appropriately tuned, so as to opti-
mize the achieved approximation ratio. Specifically, suppose that the valuation
function is such that OPTf (I,B) ≤ ρ · OPT(I,B), for any I and any B. Let
γ =

√
1 + 4(ρ − 1)e + 4(ρ2 + 4ρ + 1)e2 and α = 1+2(ρ+1)e+γ

2(e−1) .
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Mechanism-SM-frac(A,B)

1 Set A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A v(i)
2 if α · v(i∗) ≥ OPTf (A {i∗}, B) then
3 return i∗

4 else
5 return Greedy-SM(A,B/2)

Theorem 1. Mechanism-SM-frac is truthful, individually rational, and bud-
get feasible with approximation ratio 2(ρ+2)e−1+γ

2(e−1) . Moreover, it is deterministic
and runs in polynomial time given a polynomial time exact algorithm for com-
puting OPTf (A {i∗}, B).

Due to space constraints, the proof of Theorem 1 (as well as all the missing
proofs in the subsequent sections) is deferred to the full version of the paper.

3.1 Budgeted Max Weighted Coverage

We consider the class of weighted coverage valuations, a special class of submod-
ular functions. Their unweighted version was studied by Singer in [14] and [15],
motivated by the problem of influence maximization over social networks. On a
different note, the problem can also be thought of as a crowdsourcing problem,
where each (single-minded) worker i is able to execute only the set of tasks Si.
Budgeted Max Weighted Coverage. Given a set of subsets {Si | i ∈ [m]} of a
ground set [n], along with costs c1, c2, ..., cm, on the subsets, weights w1, ..., wn,
on the ground elements, and a positive budget B, find X ⊆ [m] so that v(X) =∑

j∈T wj , where T =
⋃

i∈X Si, is maximized subject to
∑

i∈X ci ≤ B.
In [15], Singer takes an approach similar to what led to Mechanism-SM-

frac, but suggests a different polynomial time mechanism for Budgeted Max
Coverage that is deterministic, truthful, budget feasible, and achieves approxima-
tion ratio 31.03. Here we generalize and improve this result by showing that there
is a deterministic, truthful, budget feasible, polynomial time 15.45-approximate
mechanism for the Budgeted Weighted Max Coverage problem.

For all j ∈ [n] define Tj = {i | j ∈ Si}. We begin with a LP formulation of
this problem, where without loss of generality we assume that ci ≤ B,∀i ∈ [n]
(otherwise we could just discard any subsets with cost greater than B).

maximize:
∑

j∈[n]

wjzj (1)

subject to:
∑

i∈Tj

xi ≥ zj , ∀j ∈ [n] (2)

∑

i∈[m]

cixi ≤ B (3)

0 ≤ xi, zj ≤ 1 , ∀i ∈ [m], ∀j ∈ [n] (4)
xi ∈ {0, 1} , ∀i ∈ [m] (5)
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It is not hard to see that (1)–(5) is a natural ILP formulation for Budgeted
Max Weighted Coverage and (1)–(4) is its linear relaxation. For the rest of
this subsection, let OPT(I,B) and OPTf (I,B) denote the optimal solutions to
(1)–(5) and (1)–(4) respectively for instance I and budget B.

To show how these two are related we use the technique of pipage rounding
[1,2]. We should note here that Ageev and Sviridenko [2] use the above linear
programs to obtain a (non-truthful) e

e−1 -approximation LP-based algorithm that
uses pipage rounding on a number of different instances of the problem. However,
in their algorithm OPT(I,B) is never compared directly to OPTf (I,B), and
therefore we cannot get the desired bound from there.

Lemma 3. Given the fractional relaxation (1)–(4) for Budgeted Max Weighted
Coverage, we have that for any instance I and any budget B, OPTf (I,B) ≤
2e

e−1 · OPT(I,B).

Combining Theorem 1 and Lemma 3 we get the following result.

Corollary 1. There exists a deterministic, truthful, individually rational, bud-
get feasible 15.45-approximate mechanism for Budgeted Max Weighted Coverage
that runs in polynomial time.

4 Going Beyond Submodularity

Going beyond submodular valuations is even more challenging. The first attempt
with a non-submodular objective was due to Chen et al. [7], who gave a (2+

√
2)-

approximation mechanism for a non-submodular variation of Knapsack. For the
more general class of subadditive functions Dobzinski et al. [9] suggested a ran-
domized O(log2 n)-approximation mechanism, and later, Bei et al. [5] provided
randomized, truthful, budget feasible mechanisms with approximation ratio 768
for XOS objectives and O

(
log n

log log n

)
for subadditive objectives.

More recently, Goel et al. [11] study a budgeted maximization problem with
matching constraints, which is not submodular, and they achieve an approxima-
tion ratio of 3+o(1) with a deterministic mechanism, but under the large market
assumption1 (their mechanism has an unbounded ratio in general). Essentially,
they use the same greedy approach with Singer [14] and Chen et al. [7] but
seen as a descending price auction. A very similar mechanism was also briefly
discussed in Anari et al. [4] for Knapsack under the large market assumption.

We are building on this idea of gradually decreasing a global upper bound
on the payment per value ratio to get all the results of this section. We first use
Budgeted Max Weighted Matching in Subsect. 4.1, as an illustrative example of
how this approach works, but the exact same approach gives the same approx-
imation guarantees for a number of different XOS problems that can be seen
as appropriately restricted generalizations of Knapsack. We elaborate further
on this in Subsect. 4.2, and we even extend these ideas to problems where the
unbudgeted versions are not easy.
1 A market is said to be large if the number of participants is large enough that no

single person can affect significantly the market outcome, i.e. maxi ci/B = o(1).
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4.1 Budgeted Max Weighted Matching

We revisit the following budgeted matching problem.
Budgeted Max Weighted Matching. Given a budget B, and a graph G = (V,E),
where each edge ei ∈ E has a cost ci and a value vi, find a matching M of
maximum value subject to

∑
i∈M ci ≤ B.

Here we study the mechanism design version of the problem, where the val-
ues are known to the mechanism and the edges are viewed as single-parameter
strategic agents whose cost is private information.2 Note that in order to formu-
late the problem to fit the general description given in the beginning of Sect. 2,
we can define the valuation function as follows (as also mentioned in [5]): for any
subset of edges S ⊆ E, v(S) is taken to be the value of the maximum weighted
matching of G that only uses edges in S. This function turns out to be XOS, but
not submodular. Hence, by [5], there exists a randomized, 768-approximation,
that is truthful and budget feasible.

We provide both deterministic and randomized polynomial time mechanisms
with a much improved approximation ratio, based on selecting an outcome
among two candidate solutions. The first solution comes from the greedy mech-
anism Greedy-ISK described below. The main idea behind the mechanism is
that in each iteration there is an implicit common upper bound on the rate that
determines the payment of each winner in the candidate outcome of that itera-
tion. More specifically, if the ith iteration is the final iteration (i.e. the condition
in line 5 is true), the common payment per value for each of the winners is
upper bounded by min{B/v(M), ci−1/vi−1}. This upper bound decreases with
each iteration, while the set of active agents is shrinking, until budget feasibility
is achieved. At the same time we ensure the mechanism is monotone and returns
enough value.

Greedy-ISK(A, v, c, B, f)

1 Set A = {i | ci ≤ B}
2 Possibly rename elements of A so that c1

v1
≥ c2

v2
≥ ... ≥ cm

vm

3 for i = 1 to m do
4 M = f(A, v)
5 if v(M) · ci

vi
≤ B then

6 return M

7 else
8 A = A {i}

We assume that the mechanism also takes as input a deterministic exact
algorithm f for the unbudgeted Max Weighted Matching, e.g., Edmond’s algo-
rithm [10]. Later, in Subsect. 4.2 the choice of f will depend on the underlying

2 The work of Singer [14] also studies a type of a budgeted matching problem. That
objective, however, is OXS (a subclass of submodular objectives), and differs signif-
icantly from ours, which is not submodular [16].
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unbudgeted problem. Finally, note that our mechanisms are named after the
generalization we study in Subsect. 4.2, namely Independence System Knapsack
problems.
We now exhibit some desirable properties of Greedy-ISK, starting with truth-
fulness.

Lemma 4. Mechanism Greedy-ISK is monotone, and hence truthful and indi-
vidually rational.

Proof. By Lemma 1, we just need to show that the allocation rule is monotone,
i.e. a winning agent remains a winner if he decreases his cost. Initially note that
in line 4 the mechanism computes an optimal matching M (without a budget
constraint) using only the values of the edges, thus it cannot be manipulated
given the set of active edges A.

Fix a vector c−j for the costs of the other agents, and suppose that when
agent j declares cj , he is in the matching M returned in the final iteration, say k,
of Greedy-ISK. Let agent j now report c′

j < cj to the mechanism. This makes
him agent j′ ≥ j in the new instance, but does not affect the relative ordering
of the other agents (although a few of them may move down one position).
Therefore, Greedy-ISK will run exactly as before for each iteration i < k and
in the beginning of the kth iteration, it will produce the exact same matching M .
Then in line 5, there are 2 cases to examine. If in the initial instance j > k, then
we have the exact same ratio ck

vk
to consider, and the algorithm will terminate

with M (since it did so in the initial instance). In the second case, j = k in
the initial instance. This means that now at the kth iteration, we either have
the same agent with the reduced ratio c′

k

vk
(since now c′

k = c′
j) or we have the

agent who was in position k + 1 in the initial instance with ratio equal to the
original ck+1

vk+1
. Therefore, the new ratio ck

vk
that the algorithm considers in this

iteration is at most equal to the original ratio ck
vk

. Thus, the condition in line 5
is satisfied, and the mechanism will return M . We conclude that an agent who
is in the matching, remains in the matching by decreasing his cost. �

We also make the following remark, which can be derived by the same argu-
ments used in the proof of Lemma 4. This property is crucial for derandomizing
our mechanisms both here and in the next subsection.

Remark 1. There is no agent i that can manipulate the output set of Greedy-
ISK given that i is guaranteed to be a winner. That is, fix c−i and let M and
M ′ be the winning sets when i bids ci and c′

i respectively; if i ∈ M ∩ M ′, then
M = M ′.

We move on to prove that the mechanism will never exceed the budget B,
by establishing an appropriate upper bound on every winning bid.

Lemma 5. Mechanism Greedy-ISK is budget feasible.
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Proof. We will show that the threshold payment of Lemma 1 cannot be higher
than viB

v(M) for any winning agent i. Fix a vector c−i for all agents other than
i and recall that the threshold payment, given c−i, is the maximum cost that
i can declare and still be included in the solution. So, towards a contradiction,
suppose that agent i declares a cost ci > viB

v(M) and he is a winner. Let j denote
the iteration where the mechanism Greedy-ISK terminates and the matching
M is returned. By the construction of the mechanism, and since i ∈ M , we
have that cj

vj
≥ ci

vi
. Since j is the last iteration, we also have by line 5 that

v(M) cj
vj

≤ B. Hence v(M) ci
vi

≤ v(M) cj
vj

≤ B that leads to the contradiction

ci ≤ viB
v(M) . Therefore, the payment of each winning agent i is bounded by viB

v(M) ,
and the total payment of the mechanism is

∑
i∈M pi ≤ ∑

i∈M
viB

v(M) = B. �

Finally, we analyze the quality of the solution produced by Greedy-ISK.

Lemma 6. Mechanism Greedy-ISK produces a matching with value at least
1
2 (v(M∗) − vi∗), where M∗ is an optimal solution to the given instance of Bud-
geted Max Weighted Matching, and i∗ has maximum value among the budget
feasible edges of G, i.e. i∗ ∈ arg maxi∈F v(i) where F = {i ∈ E(G) | ci ≤ B}.
We can now state our randomized mechanism for the problem (where the con-
stants below have been optimized to get the best ratio).

Rand-ISK

1 Set A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A v(i)
2 With probability 1/3 return i∗ and with probability 2/3 return
Greedy-ISK(A, v, c, B, f)

Theorem 2. Rand-ISK is a universally truthful, individually rational, budget
feasible, polynomial time randomized mechanism, achieving a 3-approximation
in expectation, for the Budgeted Max Weighted Matching problem.

Proof. Universal truthfulness and individual rationality follow from Lemma 4
and the fact that the simple mechanism that returns i∗ and pays him B is
truthful and individually rational. Regarding budget feasibility, just notice that
if i∗ is returned then the threshold payment is exactly B, otherwise the payments
of Greedy-ISK are used, so budget feasibility follows from Lemma 5. Finally,
if M is the outcome of Rand-ISK, then directly by Lemma 6 we have E(M) ≥
2
3 · 1

2 (v(M∗) − vi∗) + 1
3vi∗ = 1

3v(M∗), thus proving the approximation ratio. �
Derandomization. We close this subsection by providing a deterministic poly-
nomial time mechanism with a slightly worse approximation ratio. Note that in
contrast to Mechanism-SM or Mechanism-SM-frac, here i∗ is directly com-
pared to its alternative, which is just an approximate solution, without sacrificing
truthfulness. This is due to Remark 1. Moreover, although taking the maximum
of two truthful algorithms does not always yield a truthful mechanism, this is
the case for the mechanism below.
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Det-ISK

1 Set A = {i | ci ≤ B} and i∗ ∈ arg maxi∈A v(i)
2 if vi∗ ≥ Greedy-ISK(A {i∗}, v, c−i∗ , B, f) then
3 return i∗

4 else
5 return Greedy-ISK(A {i∗}, v, c−i∗ , B, f)

Theorem 3. Det-ISK is a truthful, individually rational, budget feasible, poly-
nomial time deterministic mechanism, achieving a 4-approximation ratio for the
Budgeted Max Weighted Matching problem.

Although the proof is omitted, we should mention that the analysis of Det-
ISK is tight, i.e. there exist instances where the value of the optimal solution is
four times the value of the mechanism’s output.

Remark 2. Chen et al. [7] prove lower bounds for Knapsack, namely there is no
deterministic (resp. randomized) truthful, budget feasible mechanism for Knap-
sack that achieves an approximation ratio better than 1 +

√
2 (resp. 2). These

lower bounds hold here as well, because when the given graph G is a matching
to begin with, Budgeted Max Weighted Matching reduces to Knapsack.

4.2 A Generalization to Other Objectives

Our approach can tackle a number of different problems that have certain struc-
tural similarities with Budgeted Max Weighted Matching. Here, we define a class
of such problems for which Greedy-ISK—given an appropriate subroutine f—
produces truthful, individually rational, budget feasible mechanisms with good
approximation guarantees. Two crucial properties of the matching problem were
used in the previous subsection: (i) every subset of a matching is itself a match-
ing, and (ii) the objective function becomes additive when restricted to match-
ings. These two properties is all we need, and note that (i) and (ii) are exactly
what makes the set of matchings of a graph an independence system.

Definition 2. An independence system is a pair (U, I), where U is an arbi-
trary finite set and I ⊆ 2U is a family of subsets, whose members are called the
independent sets of U and satisfy:

(i) ∅ ∈ I
(ii) If B ∈ I and A ⊆ B, then A ∈ I.

Below we define a variant of Knapsack where the feasible solutions are con-
strained to an independence system. This is a generalization of knapsack prob-
lems subject to matroid constraints, which are more common in the literature.

Independence System Knapsack. Given an independence system (U, I) with costs
ci and values vi on the elements of U , as well as a budget B, find M ∈ I that
maximizes

∑
i∈M vi subject to

∑
i∈M ci ≤ B.
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Note that for plain Knapsack U = [n], I = 2[n], while for Budgeted Max
Weighted Matching U is the set of edges of a given graph G and I is the set of
all matchings of G. There exist several other problems that are special cases of
Independence System Knapsack, like

– Budgeted Max Weighted Forest where U is the set of edges of a given graph
G and I is the set of acyclic subgraphs of G,

– Budgeted Max Weighted Matroid Member where (U, I) is a matroid3 (Bud-
geted Max Weighted Forest is a special case of this problem),

– Budgeted Max Independent Set where U is the set of vertices of a given graph
G and I is the set of independence sets of G, and

– Budgeted Max Weighted k-D-Matching where U is the set of hyperedges of
a k-uniform k-partite hypergraph H and I is the set of all k-dimensional
matchings of H.

The following can be easily derived as in the case of Budgeted Max Weighted
Matching.

Lemma 7. Every problem that can be formulated as an Independence System
Knapsack problem belongs to the class XOS.

Clearly it is not always possible to find an optimal solution to Independence
System Knapsack in polynomial time, even if we remove the budget constraint.
Putting the running time aside, however, Greedy-ISK combined with an exact
algorithm f for the problem makes Rand-ISK (resp. Det-ISK) a 3-approximate
randomized (resp. 4-approximate deterministic) truthful, individually rational,
budget feasible mechanism.

Moreover, when the unbudgeted underlying problem is easy—as is the case
for Max Weighted Matching, Max Weighted Forest, and Max Weighted Matroid
Member—the mechanisms run in polynomial time. Even if the unbudgeted
underlying problem is NP -hard, as long as there is a polynomial time ρ(n)-
approximation we get O(ρ(n))-approximate, truthful, individually rational, bud-
get feasible mechanisms, e.g., for Budgeted Max Weighted k-D-Matching this
translates to a O(k)-approximation mechanism. Here, n is the size of the input,
and we should mention that the independent sets of U may not be explicitly
given. Typically we assume an independence oracle that decides for any X ⊆ U
whether X ∈ I. However, note that in most of the cases of Independence Sys-
tem Knapsack mentioned above (with the exception of Budgeted Max Weighted
Matroid Member) we are given a combinatorial, succinct representation of I and
therefore there is no need to assume access to an oracle.

When using a ρ(n)-approximation algorithm we should adjust the probabil-
ities in Rand-ISK, namely we should use 2ρ(n)

2ρ(n)+1 instead of 2/3 and 1
2ρ(n)+1

instead of 1/3. Moreover, for both mechanisms and without loss of generality,
we assume that for every i ∈ U we have {i} ∈ I, or else i can be excluded from
the initial set A of active elements that is given as input to the mechanisms.
3 A matroid (U, I) is an independence system that also has the exchange property :

If A,B ∈ I and |A| < |B|, then there exists x ∈ B A such that A ∪ {x} ∈ I.
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Following closely the analysis of Subsect. 4.1, we get the next theorem.

Theorem 4. If a deterministic ρ(n)-approximation algorithm f for the unbud-
geted version of Independence System Knapsack is given as an auxiliary input
to Greedy-ISK, then Rand-ISK (resp. Det-ISK) becomes a (2ρ(n) + 1)-
approximate randomized (resp. (2ρ(n) + 2)-approximate deterministic) truthful,
individually rational, budget feasible mechanism. Moreover, if f runs in polyno-
mial time so do the mechanisms.

Combining Theorem 4 with the polynomial time (k−1)-approximation algo-
rithm of Chan and Lau [6] for Max Weighted k-D-Matching, and the fact that
Max Weighted Forest and Max Weighted Matroid Member (given a polynomial
time independence oracle) can be solved in polynomial time (see, e.g., [8]), we
get the following corollary.

Corollary 2. We can obtain
(i) randomized 3-approximation mechanisms and deterministic 4-approximation
mechanisms for Budgeted Max Weighted Forest and Budgeted Max Weighted
Matroid Member that run in polynomial time.
(ii) randomized 3-approximation mechanisms and deterministic 4-approximation
mechanisms for Budgeted Max Weighted Independent Set and Budgeted Max
Weighted k-D-Matching.
(iii) for any k ≥ 3, a randomized (2k − 1)-approximation mechanism and a
deterministic 2k-approximation mechanism for Budgeted Max Weighted k-D-
Matching that run in polynomial time.

Remark 3. Max Weighted Independent Set and Max Weighted k-D-Matching are
not submodular, as was the case for Max Weighted Matching. Max Weighted
Matroid Member (and thus Max Weighted Forest), on the other hand, is submod-
ular and therefore the results of [7] apply. However, our approach significantly
improves both the approximation ratio and the running time.

Naturally, Remark 2 applies here as well. For every problem stated in this
section there is no deterministic (resp. randomized) truthful, budget feasible
mechanism with better approximation ratio than 1 +

√
2 (resp. 2). These lower

bounds are independent of any complexity assumption.

5 Conclusions

We have studied further the problem of designing truthful and budget feasible
mechanisms for budgeted versions of well known optimization problems. Espe-
cially for the XOS problems we considered, only randomized mechanisms with
very high approximation ratios were known prior to our result. There are still
many interesting open problems that are worth further exploration in the con-
text of budgeted mechanism design. First, for the case of submodular functions,
even though we do have a better understanding for designing mechanisms given
all the previous works, the current results are still not known to be tight. We also
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want to stress that the literature has mostly considered nondecreasing submod-
ular functions. Dobzinski et al. [9] gave a constant approximation mechanism
for the Budgeted Max Cut problem, however it remains a very interesting prob-
lem for future work to obtain mechanisms for general non-monotone submodular
valuations. Furthermore, for the XOS class, the picture is way more challeng-
ing. We would like to identify more problems that admit better approximation
guarantees, even with exponential time mechanisms. A component that seems
to be missing at the moment is a characterization of truthful and budget feasible
mechanisms. We believe that obtaining characterization results would be crucial
in resolving the above questions.
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Abstract. Strategic network formation arises in settings where agents
receive some benefit from their connectedness to other agents, but also
incur costs for forming these links. We consider a new network formation
game that incorporates an adversarial attack, as well as immunization or
protection against the attack. An agent’s network benefit is the expected
size of her connected component post-attack, and agents may also choose
to immunize themselves from attack at some additional cost. Our frame-
work can be viewed as a stylized model of settings where reachability
rather than centrality is the primary interest (as in many technological
networks such as the Internet), and vertices may be vulnerable to attacks
(such as viruses), but may also reduce risk via potentially costly mea-
sures (such as an anti-virus software).

Our main theoretical contributions include a strong bound on the edge
density at equilibrium. In particular, we show that under a very mild
assumption on the adversary’s attack model, every equilibrium network
contains at most only 2n−4 edges for n ≥ 4, where n denotes the number
of agents and this upper bound is tight. We also show that social welfare
does not significantly erode: every non-trivial equilibrium with respect
to several adversarial attack models asymptotically has social welfare at
least as that of any equilibrium in the original attack-free model.

We complement our sharp theoretical results by a behavioral exper-
iment on our game with over 100 participants, where despite the com-
plexity of the game, the resulting network was surprisingly close to
equilibrium.

1 Introduction

In network formation games, distributed and strategic agents receive benefit from
their connectedness to others, but also incur some cost for forming these links.
Much research in this area [4,6,9] studies the structure of equilibrium networks

The full version of this paper with all the omitted details is available at https://
arxiv.org/abs/1511.05196.
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formed as the result of various choices for the network benefit function, as well
as the social welfare in equilibria. In many such games, the costs incurred from
forming links are direct: each edge costs CE > 0 for an agent to purchase.
Recently, motivated by scenarios as diverse as financial crises, terrorism and
technological vulnerability, games with indirect connectivity costs have been
considered: an agent’s connections expose her to negative, contagious shocks.

We begin with the well-studied reachability network formation game [4], in
which players purchase links to each other, and enjoy a network benefit equal to
the size of their connected component in the formed graph. We modify this model
by introducing an adversary who is allowed to examine the network, and choose a
single vertex or player to attack. This attack then spreads throughout the entire
connected component of the originally attacked vertex, destroying all of these
vertices. Crucially however, players also have the option of purchasing immuniza-
tion against attack. Thus the attack spreads only to those non-immunized (or
vulnerable) vertices reachable from the originally attacked vertex. We examine
several natural adversarial attacks such as an adversary that seeks to maximize
destruction, an adversary that randomly selects a vertex for the start of infec-
tion and an adversary that seeks to minimize the social welfare of the network
post-attack to name a few. A player’s overall payoff is thus the expected size of
her post-attack component, minus her edge and immunization expenditures.1

Our game can be viewed as a stylized model for settings where reachability
rather than centrality is the primary interest in joining a network vulnerable to
adversarial attack. Examples include technological networks such as the Inter-
net, where packet transmission times are sufficiently low that being “central” [9]
or a “hub” [6] is less of a concern, but in the presence of attacks such as viruses
or DDoS, mere reachability may be compromised. Parties may reduce risks via
costly measures such as anti-virus. In a financial setting, vertices might represent
banks and edges credit/debt agreements. The introduction of an attractive but
extremely risky asset is a threat or attack on the network that naturally seeks its
largest accessible market, but can be mitigated by individual institutions adopt-
ing balance sheet requirements or leverage restrictions. In a biological setting,
vertices could represent humans, and edges physical proximity or contact. The
attack could be an actual biological virus that randomly infects an individual
and spreads by physical contact through the network; again, individuals may
have the option of immunization. While our simplified model is obviously not
directly applicable to any of these examples in detail, we do believe our results
provide some high-level insights about the strategic tensions in such scenarios.

1 The spread of the initial attack to reachable non-immunized vertices is determin-
istic in our model, and the protection of immunized vertices is absolute. It is also
natural to consider relaxations such as probabilistic attack spreading and imper-
fect immunization, as well as generalizations such as multiple initial attack vertices.
However, as we shall see, even the basic model we study here exhibits substantial
complexity. We refer the reader to the full version for a discussion on possible exten-
sions/relaxations.
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Immunization against attack has recently been studied in games played on a
network where risk of contagious shocks are present [7] but only in the setting in
which the network is first designed by a centralized party, after which agents
make individual immunization decisions. We endogenize both these aspects,
which leads to a model incomparable to this earlier work.

The original reachability game [4] permitted a sharp and simple character-
ization of the equilibria: any tree as well as the empty graph. We demonstrate
that once attack and immunization are introduced, the set of possible equilibria
becomes considerably more complex, including networks that contain multiple
cycles, as well as others which are disconnected but nonempty. This diversity
leads to our primary questions of interest: How dense can equilibria become? In
particular, does the presence of the attacker encourage the creation of massive
redundancy of connectivity? Also does the introduction of attack and immuniza-
tion result in dramatically lower social welfare compared to the original game?
Our Results and Techniques. The main theoretical contributions of this
work are to show that our game still exhibits edge sparsity at equilibrium, and
has high social welfare properties despite the presence of attacks. First we show
that under a mild assumption on the adversary’s attack model, the equilibrium
networks with n ≥ 4 players have at most 2n−4 edges, fewer than twice as many
edges as any nonempty equilibria of the original game without attack. We prove
this by introducing an abstract representation of the network and use tools from
graph theory to upper bound the resources globally invested by the players to
mitigate connectivity disruptions due to any attack.

We then show that with respect to several attack models, in any equilib-
rium with at least one edge and one immunized vertex, the resulting network is
connected. This implies that any new equilibrium network (i.e. one which was
not an equilibrium of the original reachability game) is either a sparse but con-
nected graph, or is a forest of unimmunized vertices. The latter occurs only in
the rather unnatural case where the cost of immunization or edges grows with
the population size, and in the former case we further show the social welfare is
at least n2 −O(n5/3) – asymptotically the maximum possible with a polynomial
rate of convergence. These results provide us with a complete picture of welfare
in our model. We prove the welfare lower bound by showing that there cannot be
many targeted vertices who are critical for global connectivity, where critical is
defined formally in terms of both the vertex’s probability of attack and the size of
the components remaining after the attack. Thus players myopically optimizing
their own utility create highly resilient networks in presence of attack.

We conclude by reporting on a behavioral experiment on our network forma-
tion game with over 100 participants, where despite the complexity of the game,
the resulting network was surprisingly close to equilibrium.
Organization. We formally present our model and review some related work
in Sect. 2. In Sect. 3 we briefly describe some interesting topologies that arise as
equilibria and then prove our sparsity result. We present our lower bound on
welfare in Sect. 4. Section 5 describe our behavioral experiment.
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In the full version, we provide simulations demonstrating fast and general
convergence of swapstable best response, a type of limited best response which
generalizes linkstable best response but is more powerful in our game. The com-
putational complexity of full best response dynamics was unknown to us at the
time of conducting our simulations but this question has been recently studied
by Ihde et al. [13]. The simulations illustrate a number of interesting further
features of equilibria e.g. heavy-tailed degree distributions. Whether swapstable
best response provably converges (as seen empirically) is an open question.

2 Model

We assume the n vertices of a graph (network) correspond to individual players.
Each player has the choice to purchase edges to other players at a cost of CE > 0
per edge. Each player additionally decides whether to immunize herself at a cost
of CI > 0 or remain vulnerable.

A (pure) strategy for player i (denoted by si) is a pair consisting of the
subset of players i purchased an edge to and her immunization choice. Formally,
we denote the subset of edges which i buys an edge to as xi ⊆ {1, . . . , n},
and the binary variable yi ∈ {0, 1} as her immunization choice (yi = 1 when i
immunizes). Then si = (xi, yi). We assume that edge purchases are unilateral
i.e. players do not need approval in order to purchase an edge to another but that
the connectivity benefits and risks are bilateral. We restrict our attention to pure
strategy equilibria and our results show they exist and are structurally diverse.

Let s = (s1, . . . , sn) denote the strategy profile for all the players. Fixing s,
the set of edges purchased by all the players induces an undirected graph and
the set of immunization decisions forms a bipartition of the vertices. We denote
a game state as a pair (G, I), where G = (V,E) is the undirected graph induced
by the edges purchased by the players and I ⊆ V is the set of players who decide
to immunize. We use U = V \I to denote the vulnerable vertices i.e. the players
who decide not to immunize. We refer to a subset of vertices of U as a vulnerable
region if they form a maximally connected component. We denote the set of
vulnerable regions by V = {V1, . . . , Vk} where each Vi is a vulnerable region.

Fixing a game state (G, I), the adversary inspects the formed network and
the immunization pattern and chooses to attack some vertex. If the adversary
attacks a vulnerable vertex v ∈ U , then the attack starts at v and spreads, killing
v and any other vulnerable vertices reachable from v. Immunized vertices act as
“firewalls” through which the attack cannot spread. We point out that in this
work we restrict the adversary to only pick one seed to start the attack.

More precisely, the adversary is specified by a function that defines a proba-
bility distribution over vulnerable regions. We refer to a vulnerable region with
non-zero probability of attack as a targeted region and the vulnerable vertices
inside of a targeted region as targeted vertices. We denote the targeted regions
by T = {T1, . . . , Tk′} where each T ′ ∈ T denotes a targeted region.2

2 The index k′ in the definition of T satisfies k′ ≤ k (see k in the definition of V).



Strategic Network Formation with Attack and Immunization 433

T = ∅ corresponds to the adversary making no attack, so player i’s utility
(or payoff ) is equal to the size of her connected component minus her expenses
(edge purchases and immunization). When |T | > 0, player’s i expected utility
(fixing a game state) is equal to the expected size of her connected component3

less her expenditures, where the expectation is taken over the adversary’s choice
of attack (a distribution on T ). Formally, let Pr[T ′] denote the probability of
attack to targeted region T ′ and CCi(T ′) the size of the connected component
of player i post-attack to T ′. Then the expected utility of i in strategy profile s
denoted by ui(s) is precisely

ui(s) =
∑

T ′∈T

(
Pr [T ′] CCi (T ′)

)
− |xi|CE − yiCI.

We refer to the sum of expected utilities of all the players playing s as the (social)
welfare of s.

Examples of Adversaries. We highlight several natural adversaries that fit
into our framework. We begin with a natural adversary whose goal is to maximize
the number of agents killed.

Definition 1. The maximum carnage adversary attacks the vulnerable region
of maximum size. If there are multiple such regions, the adversary picks one
of them uniformly at random. Once a targeted region is selected, the adversary
selects a vertex inside of that region uniformly at random to start the attack.

So a targeted region with respect to a maximum carnage adversary is a vulner-
able region of maximum size and the adversary defines a uniform distribution
over such regions (see Fig. 1). Another natural but less sophisticated adversary
starts an attack by picking a vulnerable vertex at random.

V3

V2

V1

Fig. 1. Blue and red vertices denote I and U , respectively. The probability of attack
to the vulnerable regions denoted by V1,V2 and V3 (in that order) for each adversary
are as follows. maximum carnage: 0.5, 0, 0.5; random attack: 0.4, 0.2, 0.4; maximum
disruption: 0, 1, 0. (Color figure online)

Definition 2. The random attack adversary attacks a vulnerable vertex uni-
formly at random.

So every vulnerable vertex is targeted with respect to the random attack adver-
sary and the adversary induces a distribution over targeted regions such that
the probability of attack to a targeted region is proportional to its size (see
Fig. 1). Lastly, we define another natural adversary whose goal is to minimize
the post-attack welfare.
3 If a vertex is killed, the size of her connected component is defined to be 0.
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Definition 3. The maximum disruption adversary attacks the vulnerable region
which minimizes the post-attack social welfare. If there are multiple such regions,
the adversary picks one of them uniformly at random. Once a targeted region is
selected for the attack, the adversary selects a vertex inside of that region uni-
formly at random to start the attack.

Thus the maximum disruption adversary only attacks those vulnerable regions
which minimize the post-attack welfare and the adversary defines a uniform
distribution over such regions (see Fig. 1).

Equilibrium Concepts. We analyze the networks formed in our game under
two types of equilibria. We model each of the n players as strategic agents who
choose deterministically which edges to purchase and whether or not to immu-
nize, knowing the exogenous behavior of the adversary defined as above. We say
a strategy profile s is a pure strategy Nash equilibrium (Nash equilibrium for
short) if, for any player i, fixing the behavior of the other players to be s−i, the
expected utility for i cannot strictly increase playing any action s′

i over si.
In addition to Nash, we study another equilibrium concept that is closely

related to linkstable equilibrium [5], a bounded-rationality generalization of
Nash. We call this concept swapstable equilibrium.4 A strategy profile is a swap-
stable equilibrium if no agent’s expected utility (fixing other agents’ strategies)
can strictly improve under any of the following swap deviations: (1) dropping any
single purchased edge, (2) purchasing any single unpurchased edge, (3) dropping
any single purchased edge and purchasing any single unpurchased edge, (4) any
one of the deviations above and also changing the immunization status.

The first two deviations correspond to the standard linkstability. The third
permits the more powerful swapping of one purchased edge for another. The last
additionally allows reversing immunization status. Our interest in swapstable
networks derives from the fact that while they only consider “simple” or “local”
deviation rules, they share several properties with Nash networks that linkstable
networks do not. Hence, swapstability is a bounded rationality concept that
moves us closer to full Nash. Intuitively, in our game (and in many of our proofs),
we exploit the fact that if a player is connected to some other set of vertices via
an edge to a targeted vertex, and that set also contains an immune vertex, the
player would prefer to connect to the immune vertex instead. This deviation
involves a swap not just a single addition or deletion. It is worth mentioning
explicitly that by definition every Nash equilibrium is a swapstable equilibrium
and every swapstable equilibrium is a linkstable equilibrium. The reverse of none
of these statements are true in our game. Also the set of equilibrium networks
with respect to adversaries defined in Definitions 1, 2 and 3 are disjoint.

2.1 Related Work

Our paper is a contribution to the study of strategic network design and defense.
The problem has been extensively studied in economics, electrical engineering,

4 Lenzner [17] introduced this equilibrium concept under the name greedy equilibrium.
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and computer science (see e.g. [1,2,11,18]). Most of the existing work takes the
network as given and examines optimal security choices (see e.g. [3,8,12,14,16]).
To the best of our knowledge, our paper offers the first model in which both
links and defense (immunization) are chosen by the players.

Combining linking and immunization within a common framework yields
new insights. We start with a discussion of the network formation literature. In
a setting with no attack, our model with respect to the maximum carnage adver-
sary reduces to the original model of one-sided reachability network formation
of Goyal [4]. They showed that a Nash equilibrium network is either a tree or an
empty network. By contrast, we show that in the presence of a security threat,
Nash networks exhibit very different properties: both networks containing cycles
and partially connected networks can emerge in equilibrium. We also show that
while networks may contain cycles, they are sparse (we provide a tight upper
bound on the number of links in any equilibrium network of our game).

Regarding security, a recent paper by Cerdeiro et al. [7] studies optimal design
of networks in a setting where players make immunization choices against a
maximum carnage adversary but the network design is given. They show that an
optimal network is either a hub-spoke or a network containing k-critical vertices5

or a partially connected network (a k-critical vertex can secure n − k vertices
by immunization). We extend this work by showing that there is a pressure
toward the emergence of k-critical vertices even when linking is decentralized.
We also contribute to the study of welfare costs of decentralization. Cerdeiro
et al. [7] show that the Price of Anarchy (PoA) is bounded, when the network
is centrally designed while immunization is decentralized (their welfare measure
includes the edge expenditures of the planner). By contrast, we show that the
PoA is unbounded when both decisions are decentralized. Although we also show
that non-trivial equilibrium networks with respect to various adversaries have a
PoA very near 1. This highlights the key role of linking and resonates with the
original results on the PoA of pure network formation games [10].

Recently Blume et al. [6] study network formation where new links generate
direct (but not reachability) benefits, infection can flow through paths of connec-
tions and immunization is not a choice. They demonstrate a fundamental tension
between socially optimal and stable networks: the former lie just below a linking
threshold that keeps contagion under check, while the latter admit linking just
above this threshold, leading to extensive contagion and very low payoffs.

Finally, Kliemann [15] introduced a reachability game with attacks but with-
out defense. In their model, the attack happens after the network is formed and
the adversary destroys exactly one link (with no spread) according to a proba-
bility distribution over links that can depend on the structure of the network.
They show equilibrium networks are chord-free and hence sparse. We also show
an abstract representation of equilibrium networks in our model corresponds to
chord-free graphs and then use this observation to prove sparsity. While both
models lead to chord-free graphs in equilibria, the analysis of why these graphs

5 Vertex v is k-critical in a connected network if the size of the largest connected
component after removing v is k.
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are chord-free is quite different. In their model, the deletion of a single link
destroys at most one path between any pair of vertices. So if there were two
edge-disjoint paths between any pairs of vertices, they will certainly remain con-
nected after any attack. In our model the adversary attacks a vertex and the
attack can spread and delete many links. This leads to a more delicate analysis.
The welfare analysis is also quite different, since the deletion of an edge can
cause a network to have at most two connected components, while the deletion
of vertices might lead to many connected components.

3 Sparsity

In contrast to the original game [4], our game exhibits equilibrium networks
with cycles, as well as disconnected but non-empty graphs. Figure 2 gives several
examples of Nash networks with respect to the maximum carnage adversary for
small populations, each of which is representative of a broad family of equilibria
for large populations and a range of values for CE and CI.6 So the tight char-
acterization of the original game, where equilibrium networks are either empty
graph or trees, fails to hold for our game. However, we show that an approximate
version of this characterization continues to hold for several adversaries.

(a) (b) (c) (d)

Fig. 2. Examples of equilibria with respect to the maximum carnage adversary: (a)
Forest equilibrium, CE = 1 and CI = 9; (b) cycle equilibrium, CE = 1.5 and CI = 3; (c)
4-petal flower equilibrium, CE = 0.1 and CI = 3, (d) Complete bipartite equilibrium,
CE = 0.1 and CI = 4. (Color figure online)

We show that despite the existence of equilibria containing cycles as shown
in Fig. 2, under a very mild restriction on the adversary, any Nash, swapstable or
linkstable equilibrium network of our game has at most 2n− 4 edges and is thus
quite sparse. Moreover, this upper bound is tight as the generalized complete
bipartite graph in Fig. 2d has exactly 2n − 4 edges.

The rest of this section is organized as follows. We start by defining a natural
restriction on the adversary. We then propose an abstract view of the networks
in our game and proceed to show that the abstract network is chord-free in
equilibria with respect to the restricted adversary. We finally derive the edge
density of the original network by connecting its edge density to the density of
the abstract network. We start by defining equivalence classes for networks.
6 We represent immunized and vulnerable vertices as blue and red, respectively.

Although we treat the networks as undirected (the benefits and risks are bilateral),
we use directed edges in some figures to denote which player purchased the edge.
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Definition 4. Let G1 = (V,E1) and G2 = (V,E2) be two networks. G1 and G2

are equivalent if for all vertices v ∈ V , the connected component of v is the same
in both G1 and G2 for every possible choice of initial attack vertex in V .

Based on equivalence, we make the following natural restriction on the adversary.

Assumption 1. An adversary is well-behaved if on any pair of equivalent net-
works G1 = (V,E1) and G2 = (V,E1), the probability that a vertex v ∈ V is
chosen for attack, is the same.

The adversaries in Definitions 1–3 are all well-behaved. Next, we abstract the
network formed by the agents and analyze the edge density in the abstraction.

Let G = (V,E) be any network, I ⊆ V the immunized vertices and V1, . . . ,Vk

the vulnerable regions in G. In the abstract network every vulnerable region in
G is contracted to a single vertex. Formally, let G′ = (V ′, E′) be the abstract
network. Define V ′ = I ∪ {u1, . . . uk} where each ui represents a contracted
vulnerable region of G. E′ is constructed as follows. For any edge (v1, v2) ∈ E
such that v1, v2 ∈ I there is an edge (v1, v2) ∈ E′. For any edge (v1, v2) ∈ E
such that v1 ∈ Vi for some i and v2 ∈ I there is an edge (ui, v2) ∈ E′ where ui

denotes the contracted vulnerable region of G that v1 belongs to. For any edge
(v1, v2) such that v1, v2 ∈ Vi for some i there is no edge in G′ (see Fig. 3).

V3

V2

V1

(a) original
(b) abstract

Fig. 3. Example of original and abstract network. Blue: immunized vertices in both
networks. Red: the vulnerable vertices and regions in the original and abstract network,
respectively. (Color figure online)

We next show that if G is an equilibrium network then G′ is a chord-free
graph. We defer all the omitted proofs to the full version.

Lemma 1. Let G = (V,E) be a Nash, swapstable or linkstable equilibrium net-
work and G′ = (V ′, E′) the abstraction of G. Then G′ is a chord-free graph if
the adversary is well-behaved.

As the next step we bound the edge density of chord-free networks in Theo-
rem 1 using tools from the graph theory literature.

Theorem 1. Let G = (V,E) be a chord-free graph on n ≥ 4 vertices. Then
|E| ≤ 2n − 4.7

7 Kliemann [15] proved Theorem 1 with a different technique for a density bound of
2n − 1 for all n.



438 S. Goyal et al.

Theorem 1 implies the edge density of the abstract network G′ = (V ′, E′) is
at most 2|V ′| − 4. To derive the edge density of the original network, we first
show that any vulnerable region in G is a tree when G is an equilibrium network.

Lemma 2. Let G = (V,E) be a Nash, swapstable or linkstable equilibrium net-
work. Then any vulnerable region in G is a tree if the adversary is well-behaved.

We use Lemmas 1, 2 and Theorem 1 to prove our sparsity result.

Theorem 2. Let G = (V,E) be a Nash, swapstable or linkstable equilibrium
network on n ≥ 4 vertices. Then |E| ≤ 2n − 4 for any well-behaved adversary.

4 Connectivity and Social Welfare in Equilibria

The results of Sect. 3 show that despite the potential presence of cycles at equi-
librium, there are still sharp limits on collective expenditure on edges. However,
they do not directly lower bound the welfare, due to connectivity concerns: if the
graph could become highly fragmented after the attack, or is sufficiently frag-
mented prior to the attack, the reachability benefits to players could be sharply
lower than in the attack-free reachability game. We now show that when CI and
CE > 1 are both constants with respect to n,8 none of these concerns are realized
in any “interesting” equilibrium network, described precisely below.

In the original reachability game [4], the maximum welfare achievable in any
equilibrium is n2 − O(n). Here we will show that the welfare achievable in any
“non-trivial” equilibrium is n2 − O(n5/3). Obviously with no restrictions on the
adversary and the parameters this cannot be true. Just as in the original game,
for CE > 1, the empty graph with a social welfare of only O(n) remains an
equilibrium in our game with respect to all the natural adversaries in Sect. 2.
We thus assume the equilibrium network contains at least one edge and at least
one immunized vertex. We refer to all equilibrium networks that satisfy the
above assumption as non-trivial equilibria. They capture the equilibria that are
new to our game compared to the original attack-free setting — the network is
not empty, and at least one player has chosen immunization.

Limiting attention to non-trivial equilibria is necessary if we hope to guar-
antee that the welfare at equilibrium is Ω(n2) when CE > 1. As already noted,
without the edge assumption, the empty graph is an equilibrium with respect
to several natural adversaries. Furthermore, without the immunization assump-
tion, n/3 disjoint components where each component consists of 3 vulnerable
vertices is an equilibrium (for carefully chosen CE and CI) with respect to e.g.
the maximum carnage adversary. In both cases, the social welfare is only O(n).

Similar to Sect. 3, to get any meaningful results for the welfare we need to
restrict the adversary. To simplify presentation, we state and analyze our results
for the maximum carnage adversary. We later show how these results (or their
slight modifications) can be extended to several other adversaries.

8 We view this condition as the most interesting regime, since in natural circumstances
we do not expect the edge or immunization costs to grow with the population size.
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Consider any connected component that contains an immunized vertex and
an edge in a non-trivial equilibrium network with respect to the maximum car-
nage adversary. We first show that any targeted region in such component (if
exists) has size 1 when CE > 1.

Lemma 3. Let G be a non-trivial Nash or swapstable equilibrium network with
respect to the maximum carnage adversary. Then in any component of G with
at least one immunized vertex and at least one edge, the targeted regions (if they
exist) are singletons when CE > 1.

We then show that non-trivial equilibrium networks with respect to the max-
imum carnage adversary are connected when CE > 1.

Theorem 3. Let G be a non-trivial Nash, swapstable or linkstable equilibrium
network with respect to the maximum carnage adversary. Then, G is a connected
graph when CE > 1.

So any non-trivial equilibrium network with respect to maximum car-
nage adversary is a connected network with targeted regions of size 1. Finally,
we state our main result regarding the welfare in such non-trivial equilibria.

Theorem 4. Let G be a non-trivial Nash or swapstable equilibrium network on
n vertices with respect to the maximum carnage adversary. If CE and CI are
constants (independent of n) and CE > 1 then the welfare of G is n2 − O(n5/3).

Our proof techniques for Theorem 4 might not extend to non-trivial linkstable
equilibrium networks with respect to the maximum carnage adversary since such
networks can have targeted regions of size bigger than 1 when CE > 1.
Remarks. We proved our sparsity result with a rather mild restriction on the
adversary. However, we presented our welfare results only with respect to the
maximum carnage adversary. Our proofs in this section only rely on the following
two properties of the maximum carnage adversary: (1) Adding an edge between
any 2 vertices (at least 1 of which is immunized) does not change the distribu-
tion of the attack and (2) Breaking a link inside of a targeted region does not
increase the probability of attack to the targeted region while at the same time
does not decrease the probability of attack to any other vulnerable region. The
same properties hold for the random attack adversary and other adversaries that
set the probability of attack to a vulnerable region directly proportional to an
increasing function of the size of the region. Thus our welfare results extend to
random attack adversary and other such adversaries without any modifications.

However, some natural adversaries (e.g. the maximum disruption adversary)
might not satisfy these properties. While the same techniques might not be
directly applicable to such adversaries, it is still possible to reason about the
welfare using different methods e.g. we can still show that in any non-trivial and
connected equilibrium with respect to the maximum disruption adversary, when
CE and CI are constants and CE > 1, then the welfare is n2 − O(n5/3). See the
full version for more details.



440 S. Goyal et al.

5 A Behavioral Experiment

To complement our theory, we conducted a behavioral experiment on our game
with 118 participants. The participants were students in an undergraduate sur-
vey course on network science at the University of Pennsylvania. As training,
participants were given a detailed document and lecture on the game, with sim-
ple examples of payoffs for players on small graphs under various edge pur-
chase and immunization decisions. (See http://www.cis.upenn.edu/∼mkearns/
teaching/NetworkedLife/NetworkFormationExperiment2015.pdf for the train-
ing document provided to participants.) Participation was a course requirement,
and students were instructed that their grade on the assignment would be exactly
equal to their payoffs according to the rules of the game.

The payoffs used the maximum carnage adversary, with costs of CE = 5 and
CI = 20. With n = 118 participants (so a maximum connectivity benefit of 118
points), it felt that these values made edge purchases and immunization signifi-
cant expenses and thus worth careful deliberation. Second, running swapstable
best response simulations using these values generally resulted in non-trivial
equilibria with high welfare, whereas raising CE and CI significantly generally
resulted in empty or fragmented graphs with low welfare.

In a game of such complexity, with so many participants, it is unreason-
able and uninteresting to formulate the experiment as a one-shot simultaneous
move game. Rather, some form of communication must be allowed. We chose to
conduct the experiment in a courtyard with the single ground rule that all con-
versations be quiet and local i.e. in order to hear what a participant was saying
to others, one should have to stand next to them.

Other than the quiet rule, there were no restrictions on the nature of conver-
sations: participants were free to enter agreements, make promises or threats and
move freely. However, it was made clear that any agreements or bargains struck
would not be enforced by the rules of the experiment (thus were non-binding).
Each subject was given a handout that required them to indicate which other
subjects they chose to purchase edges to (if any), and whether or not they chose
to purchase immunization. The handout contained a list of subject names, along
with a unique identification number for each subject used to indicate edge pur-
chases. Thus subjects knew the names of the others as well as their assigned ID
numbers. An entire class session was devoted to the experiment, but subjects
were free to (irrevocably) turn in their handout at any time and leave. Subjects
committed and exited sequentially, and the entire duration was approximately
30 min. During the experiment, subjects tended to gather quickly in small discus-
sion groups that reformed frequently, with subjects moving freely from group to
group. It is clear from the outcome that despite adherence to the quiet rule, the
subjects engaged in widespread coordination via this rapid mixing.

In the left panel of Fig. 4, we show the final undirected network formed by
the edge purchases and immunization decisions. The graph is clearly anchored
by two main immunized hub vertices, each with many spokes who purchased
their single edge to the respective hub. These two large hubs are both directly
connected, as well as by a longer “bridge” of three vulnerable vertices. There is

http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/NetworkFormationExperiment2015.pdf
http://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/NetworkFormationExperiment2015.pdf
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also a smaller hub with just a handful of spokes, again connected to one of the
larger hubs via a chain of two vulnerable vertices.

For the payoffs, inspection of the network reveals that there are 2 groups
of 3 vertices that are the largest vulnerable connected components, and thus
are the targets of the attack. These 6 players are each killed with probability
1/2 for a payoff that is only half that of the wealthiest players (the vulnerable
spokes of degree 1). In between are the players who purchased immunization
including the 3 hubs and 2 immunized spokes. The immunized spoke of the
upper hub is unnecessarily so, while the immunized spoke in the lower hub
is best responding — had they not purchased immunization, they would have
formed a unique largest vulnerable component of size 4 and thus been killed with
certainty.

Fig. 4. Left: the final undirected network formed by the edge purchases and immu-
nization decisions (blue for immunized, red for vulnerable). Right: a “nearby” Nash
network. (Color figure online)

It is striking how many properties the behavioral network shares with the
theory: multiple hub-spoke structures with sparse connecting bridges, resulting
in high welfare and a heavy-tailed degree distribution; a couple of cycles. To
quantify how far the behavioral network is from equilibrium we use it as the
starting point for swapstable best response dynamics and run it until conver-
gence. In the right panel of Fig. 4, we show the resulting Nash network reached
from the behavioral network in only 4 rounds of swapstable dynamics, and with
only 15 of 118 vertices updating their choices. The dynamics simply clean up
some suboptimal behavioral decisions — the vulnerable bridges between hubs
are replaced by direct edges, the other targeted group of three spokes drops
theirs fatal edges, and immunizing spokes no longer do so.

Participants were required to complete a survey after the experiment: they
were asked to comment on any strategies they contemplated prior to the exper-
iment; whether and how those strategies changed during the experiment; and
what strategies or behaviors they observed in other participants.

Many subjects reported entering the experiment with not just a strategy for
themselves, but also a “master plan” they hoped to convince others to join. One
frequently reported plan involved variations on cycles. Though little thought
seems to have been given to how to coordinate a global ordering in a cycle
via only the quiet rule. Another frequently cited plan involved the hub-spoke.
Although most strategies are based on abstractions, others reported planning to
use real-world social relationships e.g. connecting to students they know.

Of course, of particular interest are the surveys of the hubs. One seems to
report an altruistic motivation for purchasing immunization, hoping to maximize
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welfare. In contrast, the other displays a more Machiavellian attitude and was
willing to immunize in the hopes of creating 3 distinct groups of participants:
the “winners” who would connect to the hub; the hub with slightly lower payoff;
a large group of “losers” deliberately left out of the hub-spoke structure.

It is clear from the surveys that the word quickly spread during the experi-
ment to connect to hubs and that many participants joined though not without
some reported mistrust and hesitation.
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Abstract. We introduce opinion formation games with dynamic social
influences, where opinion formation and social relationships co-evolve in
a cross-influencing manner. We show that these games always admit an
ordinal potential, and so, pure Nash equilibria, and we design a poly-
nomial time algorithm for computing the set of all pure Nash equilibria
and the set of all social optima of a given game. We also derive non-tight
upper and lower bounds on the price of anarchy and stability which only
depend on the players’ stubbornness, that is, on the scaling factor used
to counterbalance the cost that a player incurs for disagreeing with the
society and the cost she incurs for disagreeing with her innate believes.

1 Introduction

Opinion formation is a sociological process by which an individual, possibly
starting from her innate viewpoint, shapes her belief on a certain subject as a
result of the interaction with others (social influence).

Several interesting models have been proposed in the literature to assess this
phenomenon. In the seminal DeGroot model [4], each individual i has an opinion
zi, lying on a real line, which is iteratively updated to the average of the opinions
expressed by her acquaintances, e.g., neighbors in a social network. Subsequent
models, as the HK model by Hegselmann and Krause [8] and the DW model by
Weisbuch et al. [13], restrict the social influence to only those individuals whose
expressed opinion is within a certain distance to zi (the confidence region of indi-
vidual i). The FJ model by Friedkin and Johnsen [7] assumes that individual i
also has an innate opinion si and i’s expressed opinion is then updated by coun-
terbalancing the effects of the social influence with the disagreement between zi

and si.
All the above models share the common assumption that the social influence

each individual has to undergo remains fixed during the whole duration of the
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process, e.g., the social network is a static graph. This assumption has been
relaxed in some recent works [1,5,9,10] which are based on the evidence that
opinion formation and friends selection are often co-evolving processes in real
life. In particular, Holme and Newman [10] consider the DeGroot model (and its
generalizations) in which at each step a certain individual i is selected and (i)
with probability α, i replaces a random individual from her set of acquaintances
with a random individual from the set of people whose expressed opinion coin-
cides with zi; (ii) with probability 1 − α, a random individual in the set of i’s
acquaintances changes her opinion to zi. Bhawalkar et al. [1], instead, consider
the FJ model in which the disagreement with the innate opinion and the social
influence are both expressed as individual’s specific functions; moreover, for a
given positive integer K, they also investigate the variant in which, for each indi-
vidual i, the set of acquaintances is formed by the K individuals whose expressed
opinion is at minimum distance from si.

The co-evolutionary opinion formation models of Holme and Newman [10]
and Bhawalkar et al. [1] still assume that the underlying social relationships
are not completely dynamic, as they only allow for an individual’s set of
acquaintances to vary over time. Quantitatively speaking, this means that the
social influence that an individual exercises on somebody else can only have
a dichotomic behavior: it may appear or disappear, but, whenever present, its
magnitude remains fixed.

Since real-life social relationships may either strengthen or weaken over time,
it is natural to assume that so will also evolve the attitude that an individual
may have on influencing a friend’s opinion. Moreover, due to homophyly, i.e.,
the tendency of individuals to associate and bond with similar others, it also
happens that an individual’s expressed opinion influences in turn the strength of
her social relationships. Based on these evidences, Bhawalkar et al. [1] conclude
their paper by proposing a general co-evolutionary opinion formation game with
dynamic (i.e., opinion-dependent) social relationships.

1.1 Our Contribution

Bhawalkar et al. [1] only show that their proposed co-evolutionary opinion forma-
tion games with dynamic social relationships always admit pure Nash equilibria.
To the best of our knowledge, despite the relevance of their paper, no progresses
have been done so far on (specializations of) this model. In this work, we try to
fill this gap by embarking on the study of a basic, yet interesting class of opinion
formation games with dynamic social relationships.

Let z be the vector containing the expressed opinions of all players, so that
zi is the expressed opinion of player i. We define a cost-minimization n-player
game in which the cost incurred by player i in the profile defined by z is given by

ci(z) =

∑
j �=i wij(z) · (zi − zj)2

∑
j �=i wij(z)

+ ρ · (si − zi)2,

where wij(z) is the social influence that j exercises over i which, being a function
of z, changes dynamically as the game evolves. More particularly, for a fixed
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k > 0, we set wij(z) = (1 − |si − zj |)k. As it can be easily seen, the more zj is
close to si, the more j influences i’s opinion. The first term of ci(z) is the cost
that i incurs for disagreeing with the society and is defined as the average of the
quadratic distances of i’s expressed opinion from the expressed opinion of the
others weighted by their social influences. The second term of ci(z), instead, is
the quadratic distance of i’s expressed opinion from her innate one, scaled by the
player’s stubbornness (we assume that all players have the same stubbornness).
The higher ρ, the less a player is willing to deviate from her innate opinion
because of the social pressure.

In this work, we focus on the case in which, for each player i, the innate
opinion si ∈ [0, 1], while the expressed opinion zi ∈ {0, 1}. Despite their appar-
ently simplicity, these games are able to capture several interesting scenarios.
For instance, think of the situation in which one has to decide whether or not
to buy a certain product given that she is not yet completely in favor of one of
the two alternatives, or of the situation in which one has to choose between two
candidates that might not both exactly reflect her own political ideas.

We show that any game in this class always admits an ordinal potential which
implies the existence of pure Nash equilibria and convergence of better-response
dynamics starting from any arbitrary strategy profile. Moreover, we prove that
any pure Nash equilibrium and any social optimum (with respect to the problem
of minimizing the sum of the players’ costs) share the same structural property:
if one numbers the players in non-decreasing order according to their innate
opinions, the sequence of expressed opinions is also non-decreasing, i.e., it can
be split into two (possibly empty) subsequences such that the first is made up of
only zeroes and the second is made up of only ones. As a consequence, one obtains
a simple and efficient algorithm for computing the set of pure Nash equilibria
and social optima of a given game (since one has to discriminate among n + 1
candidate strategy profiles only).

We also focus on the efficiency losses due to selfish behavior and give upper
and lower bounds on the price of anarchy and lower bounds on the price of
stability that only depend on the players’ stubbornness, i.e., they neither involve
the variable k nor the number of players n. In particular, we show that the price

of anarchy is unbounded for ρ ∈ (0, 1], while it is between
(

ρ+1
ρ−1

)2

and 2
(

ρ+1
ρ−1

)2

for ρ > 1. For any value of ρ, the lower bound is attained in the situation in which
both consensuses (i.e., all players expressing opinion 0, or all players expressing
opinion 1) are pure Nash equilibria, but the players reach the wrong one, that
is, the one yielding the highest social cost. We conjecture that our lower bound
is tight, but proving a matching upper bound seems to be quite a challenging
task, perhaps requiring tedious machineries. For such a reason, even if we are
able to derive a better result than the above mentioned factor-2 upper bound, we
decided to present a simpler (but still intricate) proof in this conference version.
For the price of stability, instead, we only have some preliminary results, as we
can just show a lower bound of ρ2+6ρ+1

(ρ+1)2 for the case of ρ > 1 (holding even
when n = 2), and that there is a 5-player game for which the price of stability
is greater than one whenever ρ ∈ (

217
566 , 1

]
.
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1.2 Related Work

To the best of our knowledge, Bindel et al. [2] have been the first to revisit
opinion formation games under an Algorithmic Game Theory point of view.
They consider the case in which both the innate and the expressed opinions
are real values and the social influences are defined by an edge-weighted graph
G. More formally, they analyze cost-minimization games in which the cost that
player i incurs in the strategy profile z is defined as

ci(z) =
∑

j �=i

wij · (zi − zj)2 + wi · (si − zi)2,

where wij is the weight of edge (i, j) in G and wi is player i’s stubbornness. In
this type of games, players converge to a unique pure Nash equilibrium, so that
the prices of anarchy and stability coincide. For symmetric social influences, i.e.,
the case in which G is undirected, they show a tight price of anarchy of 9/8.
For the asymmetric case, instead, the price of anarchy can grow up to Ω(n) and
better, i.e. constant, upper bounds are shown when G belongs to two subclasses
of Eulerian graphs.

Ferraioli et al. [6] investigate the above opinion formation games under the
assumptions that zi ∈ {0, 1} (as in our model). They show that these games are
exact potential games [11], thus isomorphic to congestion games [12]. As to the
efficiency of equilibria, the price of anarchy is shown to be unbounded, while, for
the price of stability, exact bounds of 2 and 1 are proven for the cases in which
the edge weights of G are integer and rational numbers, respectively. Then, they
presents several results bounding the rate of convergence of decentralized best-
response dynamics and logit dynamics.

Bhawalkar et al. [1] extend the model of Bindel et al. [2] by considering co-
evolutionary opinion formation games in which the cost of player i in the strategy
profile z is defined as

ci(z) =
∑

j �=i

fij(zi − zj) + wi · gi(si − zi),

where fij and gi are fixed real valued functions with the assumption that fij =
fji (observe that the model of Bindel et al. [2] can be reobtained by setting
fij(x) = wij · x2 and gi(x) = x2). They show that, when the f and g functions
are either not convex or not differentiable, the price of anarchy is unbounded.
When these functions are either convex and differentiable, instead, they show a
tight bound of 2 on the price of anarchy. Moreover, for the particular case of
f(x) = g(x) = |x|α a closed formula expressing the exact price of anarchy is
derived.

Bhawalkar et al. [1] also consider the setting in which, for a given integer
K > 0, each player i gets influenced by the K other players whose expressed
opinions are closest to si. Denoted this set of acquaintances in the strategy profile
z as S(z, i), the cost of player i in z is defined as

ci(z) =
∑

j∈S(z,i)

(zi − zj)2 + ρ · K · (si − zi)2.
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They show that, for ρ = 1+ ε > 1, the robust price of anarchy of this game is at
most (7+ε)(2+ε)

ε(1+ε) which is independent from K. Similarly to our results, the price
of anarchy tends to 1 as ρ increases and it gets unbounded as ρ goes below 1,
since they show a lower bound of at least 1/ρ2 for ρ < 1.

Furthermore, Bhawalkar et al. [1] propose a model accounting for dynamic
social influences by defining

ci(z) =
∑

j �=i

wij(z) · (zi − zj)2 + ρi · (si − zi)2,

where wij(z) is a continuous function depending on two variables, namely, the
distance between si and zj , and the total distance between si and the expressed
opinions of all the players other than i and j. For these games, they prove
existence of pure Nash equilibria.

Finally, Chierichetti et al. [3] studied the price of stability a similar model
with an unweighted social graph G: each player tries to minimize the distance
from her internal opinion and the sum of distances from the expressed opinions
of the players adjacent to her in G.

1.3 Paper Organization

The paper is organized as follows. Next section contains the game definition and
preliminary material. In Sect. 3, we derive the ordinal potential function for our
games, while in Sect. 4, we show the structural properties of pure Nash equilibria
and social optima. Section 5 describes our upper and lower bounds on the price
of anarchy, and Sect. 6 contains lower bounds on the price of stability. Finally,
in Sect. 7, we discuss open problems.

2 Model

The opinion formation games we consider in this paper are defined as follows. We
are given a set of players N = {1, 2, . . . , n}. Every player i ∈ N has an internal
opinion si ∈ [0, 1]. We will always assume si ≤ sj for every 0 ≤ i ≤ j ≤ n. The
strategy of player i is a real number in [0, 1], which is referred to as the expressed
opinion of player i. A state of the game is denoted by a strategy vector, that is a
vector in [0, 1]n whose i-th coordinate denotes the expressed opinion of player i.
We denote by Z = [0, 1]n the set of states of the game.

For every state z = (zj)j∈N ∈ Z, we denote by z−i the strategy vector
obtained from z by removing the i-th coordinate, i.e., z−i = (zj)j∈N\{i}, and by
(z−i, z

′
i) ∈ Z the new state obtained from z by replacing the i-th coordinate zi

with z′
i.

For every pair of players i, j ∈ N we have a state-dependent weight function
wij : Z �→ R≥0, which denotes the influence of player j on i in a certain state.
We assume wii(z) = 0, for every z ∈ Z and every i ∈ N . We define di(z) =∑

j∈N wij(z), for every i ∈ N . We assume that, for any i ∈ N , di(z) > 0 (i.e.,
for every players i there exists at least another player j such that wij > 0).
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The cost of player i in a state z = (zj)j∈N ∈ Z is

ci(z) =
1

di(z)

∑

j∈N

wij(z) · (zj − zi)2 + ρ · (si − zi)2,

where ρ > 0 is the stubbornness factor of each player.
A state e ∈ Z is a pure Nash equilibrium if ci(e) ≤ ci(e−i, e

′
i), for every i ∈ N

and every e′
i ∈ [0, 1]. We denote by E ⊆ Z the set of pure Nash equilibria of the

game.
The social cost of a state z is a measure of the social welfare. In this

work we define the social cost of z as C(z) =
∑

i∈N ci(z). A state o ∈ Z
is a social optimum if it is one of the states minimizing the social cost, i.e.,
C(o) = minz∈Z C(z). We denote by O ⊆ Z the set of social optima, i.e.,
O = arg minz∈Z C(z), and by Opt the cost of any state in O.

The price of anarchy of the game is defined as PoA = maxe∈E
C(e)
Opt , if Opt >

0. If Opt = 0 then PoA = 1 if E = O, and PoA = +∞ otherwise. The price of
stability of the game is defined as PoS = mine∈E

C(e)
Opt , if Opt > 0. If Opt = 0

then PoS = 1.

2.1 Discrete Strategies and Polynomially Distance Decreasing
Weights

In this paper we restrict to the discrete setting in which each player can choose
only an element in {0, 1}; hence, in this case, Z corresponds to the set of vectors
{0, 1}n. Moreover, if i �= j, we define wij(z) = (1 − |si − zj |)k, with k > 0, and
we keep the assumption that wii = 0, for every i ∈ N . Notice that in general the
weights, as defined herein, are asymmetric, i.e., it may happen that wij �= wji.
Given the two previous restrictions, it is easy to see that the cost function of
each player i becomes

ci(z) =

∑
j∈N :zj �=zi

(1 − |si − zj |)k

∑
j∈N\{i}(1 − |si − zj |)k

+ ρ · (si − zi)2. (1)

For every state z ∈ Z, we define 1(z) = |{j ∈ N : zj = 1}| and O(z) = |{j ∈
N : zj = 0}|. It is useful to notice that 1(z) +O(z) = n, and, for every player i,
1(z−i)+O(z−i) = n−1. Finally 1(z) = 1(z−i) when zi = 0, and O(z) = O(z−i)
when zi = 1. We will extensively use the previous relations in our calculations.

For instance, we trivially obtain that

∑

j∈N :zj �=zi

(1 − |si − zj |)k =

⎧
⎪⎨

⎪⎩

1(z)ski = 1(z−i)s
k
i = (n− 1)ski −O(z−i)s

k
i if zi = 0

O(z)(1 − si)
k = O(z−i)(1 − si)

k if zi = 1.
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Moreover,
∑

j∈N\{i}
(1 − |si − zj |)k =

∑

j∈N\{i}:
zj=0

(1 − |si − zj |)k +
∑

j∈N\{i}:
zj=1

(1 − |si − zj |)k

= O(z−i)(1 − si)k + 1(z−i)sk
i

= O(z−i)
[
(1 − si)k − sk

i

]
+ (n − 1)sk

i .

By combining the previous two equalities, according to (1), we get that the
cost of player i can be written as follows

ci(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n−1)sk
i −O(z−i)s

k
i

O(z−i)
[
(1−si)k−sk

i

]
+(n−1)sk

i

+ ρ · s2i if zi = 0

O(z−i)(1−si)
k

O(z−i)
[
(1−si)k−sk

i

]
+(n−1)sk

i

+ ρ · (1 − si)2 if zi = 1.

(2)

In order to characterize a player’s best-response in a given state, we make
use of the function fρ,k : [0, 1] �→ R≥0 defined as follows

fρ,k(x) =
xk

[
1 + ρ(2x − 1)

]

(1 − x)k
[
1 − ρ(2x − 1)

]
+ xk

[
1 + ρ(2x − 1)

] . (3)

Lemma 1. For every player i ∈ N and every state z = (zj)j∈N ∈ Z, we have
that ci((z−i, 0)) ≤ ci((z−i, 1)) if and only if fρ,k(si) ≤ O(z−i)

n−1 .

Proof. By making use of Eqs. (2) and (3), elementary calculations show that
ci((z−i, 0)) ≤ ci((z−i, 1)) if and only if fρ,k(si) ≤ O(z−i)

n−1 .

Corollary 1. For every pure Nash equilibrium e = (ej)j∈N ∈ E and for every
player i ∈ N , if fρ,k(si) ≤ 0 then ei = 0, while if fρ,k(si) ≥ 1 then ei = 1.

Proof. The claim easily follows from Lemma 1 and the fact that O(e−i)
n−1 always

gets values in the interval [0, 1], for every player i ∈ N . 
�

3 Potential Function

In this section, we show that opinion formation games admit an ordinal potential
function.

Theorem 1. For every state z = (zj)j∈N ∈ Z, let

Φ(z) =
1
2

· O(z)1(z) − 1
4
(n − 1)

∑

j∈N

(2zj − 1)(2fρ,k(sj) − 1).

Φ is an ordinal potential function for the opinion formation game.
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Proof. We need to prove that, for every player i, it holds that

Φ((z−i, 1)) − Φ((z−i, 0)) > 0 ⇐⇒ c((z−i, 1)) − c((z−i, 0)) > 0. (4)

We trivially obtain that

Φ((z−i, 1)) =
1
2

· O(z−i)
(
1(z−i) + 1

)
− 1

4
(n − 1)(2f(si) − 1)

−1
4
(n − 1)

∑

j∈N :
j �=i

(2zj − 1)(2f(sj) − 1)

=
1
2

· O(z−i)1(z−i) +
1
2

· O(z−i) − 1
4
(n − 1)(2f(si) − 1)

−1
4
(n − 1)

∑

j∈N :
j �=i

(2zj − 1)(2f(sj) − 1),

and

Φ((z−i, 0)) =
1
2

(
O(z−i) + 1

)
1(z−i) +

1
4
(n − 1)(2f(si) − 1)

−1
4
(n − 1)

∑

j∈N :
j �=i

(2zj − 1)(2f(sj) − 1)

=
1
2

· O(z−i)1(z−i) +
1
2

· 1(z−i) +
1
4
(n − 1)(2f(si) − 1)

−1
4
(n − 1)

∑

j∈N :
j �=i

(2zj − 1)(2f(sj) − 1).

From the previous two equalities, we get that

Φ((z−i, 1) − Φ((z−i, 0)) =
1
2

(
O(z−i) − 1(z−i)

)
− 1

2
(n − 1)(2f(si) − 1)

= O(z−i) − 1
2
(n − 1) − 1

2
(n − 1)(2f(si) − 1)

= O(z−i) − (n − 1)f(si),

which implies that

Φ((z−i, 1)) − Φ((z−i, 0)) > 0 ⇐⇒ O(z−i) − (n − 1)fρ,k(si) > 0. (5)

On the other hand, from Lemma1, we know that

c((z−i, 1)) − c((z−i, 0)) > 0 ⇐⇒ O(z−i) − (n − 1)fρ,k(si) > 0. (6)

The claim follows by combining (5) and (6). 
�
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4 Social Optima and Pure Nash Equilibria

In this section, we characterize the social optima of opinion formation games,
and provide a polynomial time algorithm for computing them.

Proposition 1. For every ρ > 0 and k > 0, fρ,k satisfies the following
properties:

(a) fρ,k(0) = 0, fρ,k( 12 ) = 1
2 , and fρ,k(1) = 1;

(b) 1 − fρ,k( 12 + y) = fρ,k( 12 − y), for every y > 0;
(c) if ρ > 1,

(1) fρ,k(x) ≤ 0, for every x ∈ [0, 1
2 − 1

2ρ ];
(2) fρ,k(x) ∈ [0, 1], for every x ∈ [12 − 1

2ρ , 1
2 + 1

2ρ ];
(3) fρ,k(x) ≥ 1, for every x ∈ [12 + 1

2ρ , 1];
(d) if ρ ∈ (0, 1], fρ,k(x) ∈ [0, 1], for every x ∈ [0, 1];
(e) if ρ > 1, fρ,k is increasing in the interval [12 − 1

2ρ , 1
2 + 1

2ρ ];
(f) if ρ ∈ (0, 1], fρ,k is increasing in the interval [0, 1].

Proposition 2. For every pair of players u, v ∈ N with su < sv, and every pair
of states z = (zj)j∈N , z′ = (z′

j)j∈N ∈ Z we have that

(a) if zu = z′
v = 1 and O(z−u) = O(z′

−v) then cu(z) > cv(z′);
(b) if z′

u = zv = 0 and O(z′
−u) = O(z−v) then cu(z′) < cv(z).

Lemma 2. Every pure Nash equilibrium e = (ej)j∈N ∈ E is such that there is
an index t ∈ {0, 1, . . . , n} such that ei = 0 if and only if i ≤ t.

Proof. Let us assume ρ > 1. By combining Proposition 1.c with Corollary 1, we
get that for every player i with si ∈ [0, 1

2 − 1
2ρ ] we have ei = 0, and for every

player i with si ∈ [12 + 1
2ρ , 1] we have ei = 1. By the way of contradiction, let

us assume that there is a player h with sh ∈ [ 12 − 1
2ρ , 1

2 + 1
2ρ ], such that eh = 1

and eh+1 = 0. We want to prove that if player h + 1 is in equilibrium then
player h is not in equilibrium. From Lemma1 we know that if player h + 1 is
in equilibrium then fρ,k(sh+1) ≤ O(e−(h+1))

n−1 . Since from Proposition 1.e fρ,k is

increasing in the interval [12 − 1
2ρ , 1

2 + 1
2ρ ], this implies that fρ,k(sh) ≤ O(e−(h+1))

n−1 .

Given that O(e−(h+1)) = O(e−h) − 1, we obtain that fρ,k(sh) ≤ O(e−h)
n−1 , which

contradicts Lemma 1.
By using claim (d) and (f) of Proposition (1), instead of (c) and (e), the same

argument applies for ρ ∈ (0, 1]. 
�
Lemma 3. Every social optimum o = (oj)j∈N ∈ O is such that there is an
index t ∈ {0, 1, . . . , n} such that oi = 0 if and only if i ≤ t.

Proof. By the way of contradiction, let us assume that there is a player i < n
such that oi = 1 and oi+1 = 0. Let o′ = (o′

j)j∈N be the state obtained from o
by changing the strategy of i to 0 and the strategy of i + 1 to 1. We want to
prove that o′ has a lower cost that o. From the definition of cost in Eq. (2) we
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notice that for every player h ∈ N \ {i, i + 1}, since O(o−h) = O(o′
−h), the cost

in o is the same as the cost in o′, i.e., ch(o) = ch(o′). Hence, C(o) − C(o′) =
ci(o) − ci(o′) + ci+1(o) − ci+1(o′). We can apply Proposition 2 by setting u = i,
v = i + 1, z = o and z′ = o′. In particular, from Proposition 2.a we obtain that
ci(o) > ci+1(o′), and from Proposition 2.b we obtain that ci(o′) < ci+1(o). We
can conclude that C(o) − C(o′) > 0, hence a contradiction. 
�
Since there are at most n+1 possible states with a suffix of x ones and a postfix
of n − x zeros, from Lemmas 2 and 3 the following theorem easily follows.

Theorem 2. All pure Nash equilibria and social optima of the game can be
enumerated in polynomial time.

5 Price of Anarchy

In this section, we provide asymptotically matching upper and lower bounds on
the price of anarchy of opinion formation games. We first provide lower bounds
holding for different values of ρ and then we focus on the corresponding upper
bounds.

Theorem 3. If ρ > 1, there exists an instance of opinion formation game such

that PoA ≥
(

ρ+1
ρ−1

)2

; if ρ ≤ 1, there exists an instance of opinion formation
game such that PoA = ∞.

Proof. Given s ∈ [0, 1], consider an instance such that si = s for every 1 ≤ i ≤ n
and k = 1. Let z0 = (0, 0, . . . , 0) and z1 = (1, 1, . . . , 1) the states corresponding to
the two possible consensuses. It trivially holds that C(z0) = nρs2 and C(z1) =
nρ(1 − s)2. Clearly, Opt ≤ C(z0). By Lemma 1, z1 ∈ E if fρ,1(s) ≥ 0. We
consider two cases, depending on the value of ρ.

If ρ > 1, by Proposition 1.c, fρ,1(s) ≥ 0 if s ≥ ρ−1
2ρ . Therefore, we obtain

PoA ≥ C(z1)
C(z0)

=
(

1 − s

s

)2

=
(

ρ + 1
ρ − 1

)2

,

where the last equality holds by choosing s = ρ−1
2ρ .

If ρ ≤ 1, by Proposition 1.d, fρ,1(s) ≥ 0 for any value of s ≥ 0. Therefore,
we obtain that Opt = C(z0) = 0 and C(z1) > 0, for an unbounded price of
anarchy. 
�

Theorem 4. If ρ > 1 then PoA ≤ 2
(

ρ+1
ρ−1

)2

.

Proof (Sketch). Given an instance of opinion formation game G with ρ > 1, fix
a pure Nash equilibrium e ∈ E and a social optimum o ∈ O. By Lemmas 3 and
2, both e and o can be determined by O(e) and O(o), i.e., the number of players
choosing strategy 0 (in fact, we know that in e and o all players choosing strategy
0 precede the ones choosing strategy 1). Moreover, without loss of generality, we
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can assume that O(o) ≥ O(e). In fact, if it holds that O(o) < O(e), we can build
a “symmetric” game G′ in which, if αi is internal opinion of player i in G, the
internal opinion of player i in G′ is 1 − αi. It is easy to check that G′ is such
that any state z = (zj)j∈N of G has the same social cost of the symmetric state
z′ = (z′

j)j∈N of G′ (z′ is such that z′
i = 1−zi for every i ∈ N), and moreover z is

a Nash equilibrium for G if and only if z′ is a Nash equilibrium for G′. Therefore,
if O(o) < O(e) we can study the symmetric instance G′ in which O(o′) ≥ O(e′),
where o′ and e′ are the symmetric states of o and e, respectively.

We partition N into three sets of consecutive players as follows: N1 contains
the first O(e) players, i.e., all players in N1 choose strategy 0 both in e and in
o; N3 contains the last n − O(o) players, i.e., all players in N3 choose strategy
1 both in e and in o; N2 contains the remaining O(o) − O(e) players, i.e., all
players in N2 choose strategy 0 in o and strategy 1 in e.

Since the case in which O(e) = 0 is quite straightforward, we omit its dis-
cussion in this sketch.

We now analyze the case in which O(e) = 1. In this case, N1 = {1} and, by
Eq. (2), c1(o) ≥ ρs21 and c1(e) ≤ 1 + ρs21. Moreover, ci(e) ≤ ci(o) for any player
i ∈ N3. In fact, for any of these players, by Eq. (2), the cost of disagreement with
her innate opinion is the same in both e and o, while then cost of disagreement
with the society is higher in o since 1(e) > 1(o).

Given a state z ∈ Z and a player i ∈ N , again by Eq. (2), we have
ci(z−i, 0) + ci(z−i, 1) = 1 + 2ρs2i + ρ(1 − 2si). Thus, for any player i ∈ N2,
ci(e) ≤ 1+2ρs2

i+ρ(1−2si)
2 , otherwise e would not be a Nash equilibrium, and

ci(o) ≥ ρs2i .
Therefore, we obtain that

PoA ≤ 1 + ρs21 + 1
2

∑
i∈N2

(
1 + 2ρs2i + ρ(1 − 2si)

)

ρs21 +
∑

i∈N2
ρs2i

≤ 1 + 1
2

∑
i∈N2

(
1 + 2ρs2i + ρ(1 − 2si)

)

∑
i∈N2

ρs2i

≤ |N2| + 1
2

∑
i∈N2

(
1 + 2ρs2i + ρ(1 − 2si)

)

∑
i∈N2

ρs2i

=

∑
i∈N2

(
1 + 1

2

(
1 + 2ρs2i + ρ(1 − 2si)

))

∑
i∈N2

ρs2i

≤ max
i∈N2

1 + 1
2

(
1 + 2ρs2i + ρ(1 − 2si)

)

ρs2i
.

Since
1+ 1

2 (1+2ρs2+ρ(1−2s))
ρs2 is a decreasing function in s (for 0 ≤ s ≤ 1 its

partial first derivative with respect to variable si is negative), it is upper bounded
by ρ2+6ρ+1

(ρ−1)2 because, by Proposition 1.c, we know that for every player i ∈ N2 it

holds that si ≥ ρ−1
2ρ . Therefore, we obtain PoA ≤ ρ2+6ρ+1

(ρ−1)2 ≤ 2
(

ρ+1
ρ−1

)2

.
It remains to prove the claim for the case in which O(e) > 1.
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By the same arguments used in the previous case, for any player i ∈ N3,
ci(e) ≤ ci(o).

We further partition N1 into two sets of consecutive players N<
1 and N≥

1

such that every player i ∈ N<
1 is such that si < ρ−1

2ρ and every player i ∈ N≥
1 is

such that si ≥ ρ−1
2ρ .

As in the previous case, for every player i ∈ N≥
1 ∪ N2, we have that ci(e) ≤

1+2ρs2
i+ρ(1−2si)

2 and ci(o) ≥ ρs2i . Since 1+2ρs2
i+ρ(1−2si)

2ρs2
i

is a decreasing function in
s (for 0 ≤ s ≤ 1 its partial first derivative with respect to variable si is negative),

it holds that max
i∈N

≥
1 ∪N2

1+2ρs2
i+ρ(1−2si)

2ρs2
i

≤
(

ρ+1
ρ−1

)2

< 2
(

ρ+1
ρ−1

)2

because, by

Proposition 1.c and by the definition of N≥
1 , we know that for every player in

i ∈ N≥
1 ∪ N2 it holds that si ≥ ρ−1

2ρ .
It follows that, in order to prove the claim, it is sufficient to show that

∑

i∈N<
1

ci(e)
∑

i∈N<
1

ci(o)
≤ 2

(
ρ+1
ρ−1

)2

.

Given a player i ∈ N and a state z ∈ Z, define c̄i(z) = ci(z)−ρ(si − zi)2, i.e.
c̄i(z) is the cost of player i for disagreeing with the society. Denote g(n, x, s, k) =

(n−x)sk

(n−x)sk+(x−1)(1−s)k
. It is easy to check that, for every player i ∈ N<

1 , c̄i(e) =
g(n,O(e), si, k) and c̄i(o) = g(n,O(o), si, k).

We obtain
∑

i∈N<
1

ci(e)
∑

i∈N<
1

ci(o)
=

∑
i∈N<

1

(
ρs2i + c̄i(e)

)

∑
i∈N<

1
(ρs2i + c̄i(o))

≤
∑

i∈N<
1

c̄i(e)
∑

i∈N<
1

c̄i(o)
≤ max

i∈N<
1

c̄i(e)
c̄i(o)

.

Since c̄i(e)
c̄i(o)

is a decreasing function in si (for 0 ≤ si ≤ 1 its partial first derivative
with respect to variable si is negative), it is maximized when si tends to 0 (notice
that if si = 0, player i can be discarded because she contributes 0 both to c(e)
and c(o)). By standard calculation,

lim
si→0+

c̄i(e)
c̄i(o)

=
(O(o) − 1)(n − O(e))
(O(e) − 1)(n − O(o))

.

Note that |N2| = O(o)−O(e) > 0. Then, limsi→0+
c̄i(e)
c̄i(o)

= (O(e)+|N2|−1)(n−O(e))
(O(e)−1)(n−O(e)−|N2|) .

Define

δ =
(ρ2 + 6ρ + 1)(O(e) − 1)(n − O(e))

O(e)(ρ2 + 6ρ + 1) + n(ρ − 1)2 − 2(ρ + 1)2
;

it can be checked that, if |N2| ≤ δ, (O(e)+|N2|−1)(n−O(e))
(O(e)−1)(n−O(e)−|N2|) ≤ 2

(
ρ+1
ρ−1

)2

, thus prov-
ing the claim.
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Therefore, in order to complete the proof, we can assume that |N2| > δ. The
idea now is to spread the costs c̄1(e), . . . , c̄|N<

1 |(e) of the players in N<
1 on the

players in N2. More formally,

PoA ≤
∑

i∈N<
1

c̄i(e) +
∑

i∈N2

1
2

(
1 + 2ρs2i + ρ(1 − 2si)

)

∑
i∈N<

1 ∪N2
ρs2i

≤
∑

i∈N<
1

g
(
n,O(e), ρ−1

2ρ , k
)

+
∑

i∈N2

1
2

(
1 + 2ρs2i + ρ(1 − 2si)

)

∑
i∈N2

ρs2i
(7)

=

∑
i∈N2

( |N<
1 |

|N2| g
(
n,O(e), ρ−1

2ρ , k
)

+ 1+2ρs2
i+ρ(1−2si)

2

)

∑
i∈N2

ρs2i

≤
∑

i∈N2

(
O(e)

δ g
(
n,O(e), ρ−1

2ρ , k
)

+ 1+2ρs2
i+ρ(1−2si)

2

)

∑
i∈N2

ρs2i
(8)

≤ max
i∈N2

O(e)
δ g

(
n,O(e), ρ−1

2ρ , k
)

+ 1+2ρs2
i+ρ(1−2si)

2

ρs2i
,

where inequality 7 holds because c̄i(e) is increasing in si and si < ρ−1
2ρ for every

player in N<
1 , and inequality 8 holds because |N<

1 | ≤ O(e) and |N2| > δ.
By performing a smart and accurate calculation, in particular optimizing

with respect to parameters n and si, it can be checked that

O(e)
δ g

(
n,O(e), ρ−1

2ρ , k
)

+ 1+2ρs2
i+ρ(1−2si)

2

ρs2i
≤ 2

(
ρ + 1
ρ − 1

)2

.


�

6 Price of Stability

In this section, we provide (some) lower bounds on the price of stability of opinion
formation games.

Theorem 5. If ρ > 1, there exists an instance of opinion formation game such
that PoS ≥ ρ2+6ρ+1

(ρ+1)2 . Moreover, if ρ ∈ (
217
566 , 1

]
, there exists an instance of

opinion formation game such that PoS > 1.

Proof. Consider an instance G of opinion formation game, with N = {1, 2} and
s =

(
ρ−1
2ρ − ε, 1

)
. By Lemma 1 and Proposition 1.c, it follows that the unique

pure Nash equilibrium for G is e = (0, 1); it can be checked that, when ε tends

to 0, C(e) = ρ2+6ρ+1
4ρ , because c1(e) = 1+ρ

(
ρ−1
2ρ − ε

)2

and c2(e) = 1. Consider

state z = (1, 1); it can be checked that, when ε tends to 0, C(e) = (ρ+1)2

4ρ , because

c1(z) = ρ
(
1 − ρ−1

2ρ − ε
)2

and c2(z) = 0. It follows that PoS ≥ C(e)
C(z) = ρ2+6ρ+1

(ρ+1)2 .
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For the case of ρ ∈ (
217
566 , 1

]
let us consider an instance G such that n = 5,

k = 1 and s = ( 1
1000 , 3

20 , 1
2 + ε, 1, 1), where ε > 0 is an arbitrarily small number.

As we have shown in Sect. 4, we can compute the price of stability of G by
analyzing n + 1 = 6 different strategy profiles. It is easy to see that, of all
of these candidate profiles, only z1 = (0, 0, 1, 1, 1) and z2 = (1, 1, 1, 1, 1) are
pure Nash equilibria for G. As to their social cost, as ε goes to 0, we have
C(z1) ≈ 3687

4342 + 0.272501ρ and C(z2) ≈ 1.970501ρ. We lower bound the price
of stability of G by comparing the minimum of these two costs with the value
C(z∗) ≈ 0.651 + 0.272501ρ, where z∗ = (0, 0, 0, 1, 1). When C(z1) ≤ C(z2), we
get PoS ≥ C(z1)

C(z∗) ≈ 3687
4342+0.272501ρ

0.651+0.272501ρ > 1 for any value of ρ. When C(z1) > C(z2),

we get PoS ≥ C(z2)
C(z∗) ≈ 1.970501ρ

0.651+0.272501ρ > 1 for any value of ρ > 217
566 . 
�

7 Conclusions and Open Problems

Our work can be seen as an opening step in the investigation of opinion formation
games with dynamic social influences, thus leaving a host of open questions to
be solved. The most challenging ones are those regarding the characterization
of the inefficiency of pure Nash equilibria. Bridging the gap between upper and
lower bounds on the price of anarchy for the case of ρ > 1 seems to require clever
arguments. To this aim we conjecture that our lower bound is tight, that is, the
price of anarchy equals the worst-case ratio between the social values of the
strategy profiles realizing the two possible consensuses. Even more complicated
appears to be the situation for the price of stability, for which, at the moment,
no upper bounds are known (except for the one holding for the price of anarchy
when ρ > 1) and lower bounds are also missing for some values of ρ. Moreover, we
only focused on the case in which the expressed opinion of each player is binary
and the social influences are defined by the function wij(z) = (1 − |si − zj |)k for
any value of k > 0. Clearly, more general models can be considered, also with
respect to the definition of the players’ cost functions.
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Abstract. In this paper we analyze k-complex contagions (sometimes
called bootstrap percolation) on configuration model graphs with a
power-law distribution. Our main result is that if the power-law expo-
nent α ∈ (2, 3), then with high probability, the single seed of the high-
est degree node will infect a constant fraction of the graph within time

O
(
log

α−2
3−α (n)

)
. This complements the prior work which shows that for

α > 3 boot strap percolation does not spread to a constant fraction of
the graph unless a constant fraction of nodes are initially infected. This
also establishes a threshold at α = 3.

The case where α ∈ (2, 3) is especially interesting because it captures
the exponent parameters often observed in social networks (with approx-
imate power-law degree distribution). Thus, such networks will spread
complex contagions even lacking any other structures.

We additionally show that our theorem implies that ω(
(
n

α−2
α−1

)
ran-

dom seeds will infect a constant fraction of the graph within time

O
(
log

α−2
3−α (n)

)
with high probability. This complements prior work

which shows that o
(
n

α−2
α−1

)
random seeds will have no effect with high

probability, and this also establishes a threshold at n
α−2
α−1 .

1 Introduction

Social behavior is one of the defining characteristics of us as a species. Social
acts are influenced by the behavior of others while influencing them at the same
time. These interactions have been observed in a wide array of activities including
financial practices [8,14], healthy/unhealthy habits [23], and voting practices [1].
Some of these are beneficial (e.g., adopting a healthy lifestyle) or profitable (e.g.,
viral marketing), while others are destructive and undesirable (e.g., teenager
smoking, drug abuse).

To effectively promote desirable contagions and discourage undesirable ones,
the first step is to understand how these contagions spread in networks and what
are the important parameters that lead to fast spreading.
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#1452915
F.-Y. Yu—Supported by National Science Foundation Algorithms in the Field Award
#1535912.

c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 459–472, 2016.
DOI: 10.1007/978-3-662-54110-4 32



460 G. Schoenebeck and F.-Y. Yu

The high level objective is to understand how these behaviors spread in a
social network. Two key factors determine the scope and rate of such diffusion:
the model of contagions, i.e., how a node is influenced by its neighbors; and the
network topology.

The copying of behaviors leading to a social cascade of behavioral changes
is attributed to two effects: the informational benefit (inferring hidden, private
information others may know) and direct benefit effects (resulting from coor-
dinated actions or social pressure). In the threshold model [19], introduced by
Granovetter, each agent has a threshold and when an agent’s number of infected
neighbors reaches her threshold, then she adopts the cascade.

We deal with a simplified version of this model where all agents have the
same threshold. This is called k-complex contagion [18] or bootstrap percolation –
the latter is generally used in the physics community where it was originally
studied in the context of magnetic disordered systems [2,13], but has since been
applied to describe several complex phenomena including neuronal activity and
the dynamics of the Ising model at zero temperature. In the context of social
networks, bootstrap percolation provides a model of complex contagions [12]
which model for the spread of ideas, beliefs, and behaviors.

A k-complex contagion is a deterministic process on a graph G that evolves
in rounds. In each round every node has two possible states: it is either infected
or uninfected. The network begins with a seed set I of infected nodes. In each
subsequent round every uninfected node become infected if it has at least k edges
incident on infected neighbors, otherwise it remains uninfected. Once a node has
become infected, it remains infected forever.

A key trait of k-complex contagions is that they are not “submodular”. This
implies that the marginal influence of an additional neighbor is not decreasing.
While many cascade models, such as the Independent Cascade model and the
Linear Threshold model have the submodularity property [21], many real-world
cascades seem not to. Non-submodular contagions are observed by sociologists
in the case of the adoption of pricey technology innovations, the change of social
behaviors, and the decision to participate in a migration, etc [15,22], and by
data scientists on LiveJournal [6], DBLP [6], Twitter [26], and Facebook [28].
An additional confirmation is crucial, suggesting the model of complex contagion.

Janson et al. [20] show that k-complex contagions do not spread on sparse
G(n, p) random graphs. Such cascades require Ω(n) seeds to infect a constant
fraction of vertices. [7] extended these results to configuration model graphs with
regular degree distributions.

However, many networks do not have regular degree distributions. In a graph
with power law degree distribution, the number of nodes having degree d is pro-
portional to 1/dα, for a positive constant α. In 1965, Price [25] showed that the
number of citations to papers follows a power law distribution. Later, studies of
the World Wide Web reported that the network of webpages also has a power
law degree distribution [9,11]. Observations of many different types of social net-
works also found power law degree distributions, as well as biological, economic
and semantic networks [3,24,27].
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Additional work by [4] studies the configuration model with power-law degree
distribution for α > 3 and showed and shows theorem which implies (see Sect. 7)
that, with high probability, infecting a constant fraction of the nodes requires
an initial seed that comprises a constant fraction of the graph.

Intuitively complex contagions spread well in the presence of additional com-
munity structure, and several networks with such structure have been analyzed
including the Watts-Strogatz model [18], the Kleinberg Small World graph [17],
and the preferential attachment graph [16].

Amini and Fountoulakis [5] also have examined the Chung-Lu model with
power-law exponent 2 < α < 3. They show that there exists a function a(n) =
o(n) such that if the number of initial seeds is �a(n), the process does not evolve
w.h.p.; and if the number of initial seeds is �a(n), then a constant fraction of
the graph is infected with high probability. However, this function is still super-
constant—nΩ(1).

The question remained open, can non-submodular cascades spread and
spread quickly from a constant-sized seed set on sparse graphs with no other
structure imposed besides a skewed degree distribution.

1.1 Our Contributions

Our main result is that for a configuration model graph with power-law expo-
nent α ∈ (2, 3), with high probability, the single seed of the highest degree node
will infect a constant fraction of the graph within time O(log

α−2
3−α (n)). This com-

plements the prior work which showed that for α > 3 boot strap percolation
does not spread to a constant fraction of the graph unless a constant fraction of
nodes are initially infected. This also establishes a threshold at α = 3.

The case where α ∈ (2, 3) is especially interesting because it captures the
exponent parameters often observed in social networks (with approximate power-
law degree distribution). Thus, such networks will spread complex contagions
even lacking any other structure.

We additionally show that our main theorem implies that ω(n
α−2
α−1 ) random

seeds will infect a constant fraction of the graph within time O(log
α−2
3−α (n)). This

complements the prior work which shows that o(n
α−2
α−1 ) random seeds will have

no effect with high probability. This also establishes a threshold at n
α−2
α−1 .

To prove these results, we provide new analysis that circumvents previous
difficulties. While our results are similar to those of [16] (they study the preferen-
tial attachment model, while we study the configuration model), the techniques
required are completely different. For example, it is an easy observation that
k-complex contagions spread on the configuration model (if k is greater than the
minimum degree), but much more difficult to show it spreads quickly.

The previous analyses on the configuration model required that the graph
was locally tree-like, an assumption that fails in our case, and then were able to
approximate the process using differential equations and obtain rigorous results
by applying Wormald’s Theorem [30]. However, their analysis fails when the
degree distribution is power-law with exponent between 2 and 3.
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2 Preliminaries

Let [m] := {1, 2, ...,m}. We say an event would be true with high probability if
its probability of being true is 1 − o(1). When we use Θ(1), the constant may
depend on various constant parameters, but should not depend on n.

Definition 1. A k-complex contagion CC(G, k, I) is a contagion that initially
infects vertices of I ⊆ V (G) and spreads over the graph G. The contagion pro-
ceeds in rounds. At each round, each vertex with at least k edges incident on
infected neighbors becomes infected. The vertices of I are called the initial seeds.
Let |CC(G, k, I)| denote the random variable of the final size of such a cascade.

We use the configuration model introduced by [10] to define a distributions
over multigraphs.

Definition 2. Let d = (d1, ..., dn) be a decreasing degree sequence where the sum
of the terms is even. Define V = [n] (Here we use integers {1, 2, ..., n} to denote
the vertices, and call nodes with lower indexes “earlier”. Because the degrees
decrease, earlier nodes have higher degrees). Let m be such that 2m =

∑
i di. To

create the m (multi-)edges, we first assign each node i di stubs. Next we choose a
perfect matching of the stubs uniformly at random and for each pair of matched
stubs construct an edge connecting the corresponding nodes.

We use CM(d) to denote the Configuration Model with respect to the degree
distribution d.

2.1 Power-Law Degree Distributions

For any decreasing degree sequence d = (d1, ..., dn) where the sum of the terms
is even, we define

– the empirical distribution function of the degree distribution Fd

Fd(x) =
1
n

n∑

i=1

I[di ≤ x] ∀x ∈ [1,∞)

—the fraction of nodes that have degree less than x.
– Let Nd(x) = n(1 − Fd(x)) be the number of nodes with degree at least x.
– Let Sd(x) be the number of stubs from nodes with degree at least x.
– Let sd(x) be the number of stubs from nodes with index less than x.

We will omit the index d when there is no ambiguity.

Definition 3 (Power-Law Degree Distributions). Adopting the notation of
[29], we say a series d has power-law distribution with exponent α if there exists
0 < C1 < C2 and 0 < x0 such that (1) Fd(x) = 0 for x < x0; (2) Fd = 1 for
x > d1 = n2/(α+1), and (3) for all x0 ≤ x ≤ d1 then

C1x
−α+1 ≤ 1 − Fd(x) ≤ C2x

−α+1
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Let d have power-law distribution of power law with exponent α then it is
easy to check that:

1. N(x) = Θ(nx−α+1)
2. S(x) = Θ(nx−α+2).
3. d(i) = Θ

(
(n

i

)1/(α−1)
)

4. s(i) = Θ(n1/(α−1)i
α−2
α−1 )

3 Main Theorem

In this section, we state and prove our main theorem: in a configuration model
graph with the power-law exponent α ∈ (2, 3), with high probability, the single
seed of the highest degree node will infect a constant fraction of the graph within
time O(log

α−2
3−α (n)).

Theorem 1. Given a power law distribution d = (d1, ..., dn) with exponent α ∈
(2, 3) and d1 > n

3−α
α+1 , with probability 1 − O

(
log

α−1
3−α n
n

)
, the k-complex contagion

on configuration model CM(d) with constant k and initial infection being the
highest degree node I = {1}, CC(CM(d), k, I), infects Ω(n) vertices within time
O(log

α−2
3−α n).

3.1 Proof Setup

We consider a restricted form of contagion where nodes can only be infected
by those proceeding them in the ordering. Formally, recall the nodes {di} are
ordered in terms of their degree. Node di will only be infected if |{j : j <
i and dj is infected}| ≥ k neighbors are infected. Hence, the total number of
infected nodes in this process will be fewer than the number of infected nodes in
original complex contagions, and it is sufficient to prove that a constant fraction
of nodes become infected in this restricted contagion with high probability.

Buckets We first partition the nodes V = [n] into buckets. We design the
buckets to have at least (and about the same number of) stubs b = Θ( n

log
α−2
3−α n

).

We can define N� as follows

N1 =
n

log
α−1
3−α n

, and N�+1 = arg min
i>N�

{s(i) − s(N�) ≥ b}

Since d(N1) = Θ(log1/(3−α) n) = o(b) and ∀i > N1, d(i) ≤ d(N1),

b < s(N�+1) − s(N�) ≤ b + o(b) < 2b.

Therefore, we have �b ≤ s(N�) ≤ 2�b and N� = Θ
(

n

log
α−1
3−α n

�
α−1
α−2

)
by (4), and so

the total number of buckets is L ≤ s(n)
b = O(log

α−2
3−α n).

We define our buckets to be B1 = {1, .., N1}, B2 = {N1 +1, .., N2}, .., B�+1 =
{N� + 1, .., N�+1}, ..., BL = {NL−1 + 1, .., NL}.
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Filtration. We now state our filtration.

F0: The node i starts with di stubs of edges without revealing any edges.
F1: In the first stage we reveal all edges within the first bucket B1,
F�, 1 ≤ � ≤ L: In the stage � > 1, we reveal/match all the edges from B� to

early nodes in B<�.

3.2 Proof Summary

There are two parts of the proof.

1. All of the nodes in the first bucket would be infected with high probability.
2. For some constant ρ > 0, in the first L′ = ρL buckets B1, .., BL′ a constant

fraction ε of nodes will be infected. Because NL′ = Ω(n) nodes, the total
number of infection also constant fraction.

In the first part of the proof is capture by the following lemma:

Lemma 1 (Base). Given at F0 d1 > n
3−α
α+1 , at F1 all the nodes in B1 will be

infected within O(log log(n)) steps with probability greater than 1 − O( 1
n ).

To prove this lemma we further decompose the first bucket into O(log log(n))
finer intervals, which we call bins. We first argue that every node in the first bin
will have at least k multi-edges to the first node, and we inductively show the
nodes in following bin will have at least k edges to the previous bins. The analysis
is by straight-forward probabilistic techniques.

The time for the first bucket’s infection is at most the number of the bins
because inclusion of each bin only costs 1 step.

We need some additional notation to state the lemma which will imply the
second part. Let X� be the number of stubs from buckets B<� to B≥�. Let Y�

be the number of uninfect stubs from B<� to B≥� before stage �, of which Y
(1)
�

issue from B<�−1 and the remaining Y
(2)
� issue from B�−1. We use Ii as the

indicator variable that node i ∈ B� is not infected after stage �. Let ε > 0 be
some constant we define later. Let δn = Θ( 1

log
α−2
3−α n

).

Now we can formally define A� as the intersection of the following three
events:

1. connection: (1 − δn)E[X�] ≤ X� ≤ (1 + δn)E[X�];

2. number of uninfected nodes:
∑

i∈B�−1
Ii ≤ 2μH where μH = K |B�|�

3−α
α−2

log n for
some constant K independent of � and n;

3. number of uninfected stubs: Y� ≤ εX�.

Lemma 2 (Induction). Fix sufficiently small ε > 0, ρ > 0. Let � < ρL, and
suppose Pr[A�] > 0.5, then we have

Pr[A�+1|A�] = 1 − O(1)
(log n)

α−1
3−α

n�1/(α−2)
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This lemma will be proved by showing that each of three events happens
with high probability conditioned on A�. The most technically challenging of
these is the second event, where we need to apply Chebychev’s Inequality twice.
One challenging is that the edges from B<� to B� are not independent. Another
challenge is that if the buckets are to small, we fail to have concentration prop-
erties, but if they are too large, then the fraction of infected nodes at each stage
will drop too quickly.

3.3 Proof of Theorem1

Proof. If
⋂L′

�=1 A� happens, then the total fraction of infected nodes is Ω(n).
Using Lemma 1 as the base case and Lemma 2 as the induction steps we see

that

Pr

⎡

⎣
L′
⋂

�=1

A�

⎤

⎦ ≥ 1 −
L′
∑

�=1

O(1)
(log n)

α−1
3−α

n�1/(α−2)
− O

(
1
n

)

= 1 − O

(
log

α−1
3−α n

n

)

which is arbitrarily close to 1.
Moreover, the total time spent is the time in first bucket plus the number

of buckets (because the infection spreads from bucket to bucket in only 1 step).
Therefore the total time spent is

O(log log n) + O(log
α−2
3−α n) = O(log

α−2
3−α n)

which completes our proof.

4 Proof of Lemma1: Contagion in the First Bucket

In this section, we will show that with high probability, the contagion process
infects all nodes within the first bucket. Recall that N1 = n

log
α−1
3−α n

and the

number of stubs within the first bucket is S(N1) = b.
We partition the first bucket into finer bins such that B1 =

⋃T
t=1 Vt and

Vt = {vt−1 + 1, ..., vt}, t = 1, ..., T with ascending order and v0 = 1. The vt

will be specified in Lemma 4. We define the event that every nodes in bin Vt is
infected as Et, then the event that all the nodes in B1 are infected is equal to⋂T

t=1 Et.
We recall Lemma 1:

Lemma 1 (Base). Given at F0 d1 > n
3−α
α+1 , at F1 all the nodes in B1 will be

infected within O(log log(n)) steps with probability greater than 1 − O( 1
n ).

We will use two Lemmas in the proof of Lemma 1, which will be a proof by
induction. The first lemma will form the base case of the induction. It states
the high degree nodes will all be infected by the first node by showing any high
degree node forms k multi-edges to the first node.
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Lemma 3. Given d1 > n
3−α
α+1 we define node v1 = max{v : d(v) ≥ n

3−α
α+1 }.

(Recall nodes are ordered by degree.) Then all the nodes in V1 = {1, ..., v1} will
be infected in one step with probability

Pr[E1] = 1 − n
3−α
α+1 exp

( − Θ(1)n
3−α
α+1 )

)
.

The second Lemma will form the inductive step in the proof of Lemma 1. It
can be proved by induction itself.

Lemma 4. Let v ∈ Vt = {vt−1 + 1, ..., vt} and vt = max{v : d(vt) ≥
n

log
α−1
3−α n(α−2)t

}, then

Pr

[

u is not infected |
t−1⋂

s=1

Es

]

≤ 1
n2

Moreover, T = O(log log n).

The proofs for Lemmas 3 and 4 are the simple application of a Chernoff bound
and a union bound which is in the full version.

Proof (Lemma 1). The proof is by induction. For the base case, Lemma 3 ensures
every node in the first bin will be infected. Suppose all nodes before vt−1 are
infected. We can use a union bound to show every node in Vt will be also infected.
Moreover, in each bin the contagion only takes one time step which implies that
the infection time for the first bucket is at most O(log log n).

For the probability that all these events hold, we apply a union bound.

Pr[all the nodes in B1 are infected]

= Pr

[
T⋂

t=1

Et

]

≥1 − Pr[¬E1] −
T∑

t=2

Pr

[

¬Et |
t−1⋂

s=1

Es

]

(union bound)

≥1 − n
3−α
α+1 exp

( − Θ(1)n
3−α
α+1 )

) − 1
n2

|B1| by Lemmas 3 and 4

5 Proof of Lemma2: Contagion from Buckets to Bucket

In this section we prove Lemma 2.

Lemma 2 (Induction). Fix sufficiently small ε > 0, ρ > 0. Let � < ρL, and
suppose Pr[A�] > 0.5, then we have

Pr[A�+1|A�] = 1 − O(1)
(log n)

α−1
3−α

n�1/(α−2)

Recall that A� is the intersection of the three events, we will show that at
stage � if these three events happen, then the requirements in Lemma 2 will be
met, and those events would be proven in Lemmas 5, 6 and 8 respectively.
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5.1 First Event: Connection

We first note that the first event holds with high probability. This follows almost
immediately from a standard Chernoff bound application, and the proof is in
the full version.

Lemma 5. Let δn = Θ

(
1

log
α−2
3−α n

)

, if Pr[A�] ≥ 0.5

Pr
[|X�+1 − E[X�+1]| ≤ δnE[X�+1]|A�

] ≥ 1 − 4 exp

(

−Θ(
n

log6· α−2
3−α n

)

)

.

Here the constant only depends on the product of δn and L.

5.2 Second Event: Number of Infected Nodes

Now we will prove the second events holds with high probability.

Lemma 6 (Number of Uninfected Nodes in a Single Bucket). For suf-
ficiently small ε > 0, conditioned on A�

Pr

[
∑

i∈B�

Ii ≥ 2μH | A�

]

≤ O(1)
(log n)

α−1
3−α

n�1/(α−2)

where µH = K |B�|�
3−α
α−2

log n and K is independent of � and n.

The proof relies on an application of Chebyshev’s inequality and the following
Lemma, which is in turn proved using Chebyshev’s inequality. The full proof is
in the full version.

Lemma 7 (Infection of a single node). If F� ⊆ A� for some constant 0 <
ε < 1/2 and δn = Θ( 1

log
α−2
3−α n

) < 1/2, then the probability any node i ∈ B� is not

infected is

Pr[Ii|A�] ≤ O(1)
�

3−α
α−2

log n

where the constant O(1) only depends on α, k, ρ if δn, ε is small enough, and
ρ ≤ 0.3α−1

α−2k
α−2
3−α .

The main proof idea of Lemma 7 is that because the events that a infected
stub from B<� to a node i in B� are negative dependent, the variance of the
number of infected stubs from B<� to node i is small, and we can use Chebyshev’s
inequality to show each node has a high chance of being infected when fraction
of uninfected stubs from B<�, ε, is small. The full proof is in the full version.
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5.3 Third Event: Number of Uninfected Stubs

Lemma 8. Suppose A�, the first event, (1 − δn)E[X�+1] ≤ X�+1 ≤ (1 +
δn)E[X�+1] and the second event,

∑
i∈B�

Ii ≤ 2μH is true (this is the conclu-
sion of Lemma 6), then

Pr

[

Y�+1 ≤ εX�+1

∣
∣
∣
∣|X�+1 − E[X�+1]| ≤ δnE[X�+1] ∧

∑

i∈B�

Ii ≤ 2μH ∧ A�

]

is greater than 1 − exp
(

−Θ( n

log
5· α−2

3−α

)
)

when ρ > 0 is small enough and δn > 0

is smaller than some constant.

For the third event, in Lemma8 we want to argue the fraction of uninfected
stubs is smaller then ε after stage �. That requires both that X�+1 is large and
that Y�+1—which is the summation of Y

(1)
�+1 and Y

(2)
�+1—is small. Upper bounds

on Y
(1)
�+1 and Y

(2)
�+1 will be proven by Lemmas 9 and 10 respectively. The full proof

for Lemma 8 is in the full version.

Lemma 9. Let Y
(1)
� be the number of free uninfected stubs from B<� to B>�

over the probability space F�+1|F�, then

Pr
[
Y

(1)
�+1 ≥ (1 + δn)εX�|A�

]
≤ exp

(

−Θ(
n

log5· α−2
3−α

)

)

Here the constant only depends on δn · L, ε and ρ.

Lemma 10. Suppose A� and the
∑

i∈B�
Ii ≤ 2μH is true (this is the conclusion

of Lemma 6), then Y
(2)
�+1, the total number of uninfected stubs from B� to B>� is

Y
(2)
�+1 = O(1)

(log n)
α

3−α

n�2/(α−2)

The full proofs for Lemmas 9 and 10 are in the full version.

5.4 Proof of Lemma 2

Proof. Recall the the event A�+1 is the intersection of the three events, so

Pr[A�+1|A�] ≥ 1 − Pr[¬(|X� − E[X�]| ≤ δnE[X�])|A�] (1)

−Pr

⎡

⎣
∑

i∈B�−1

Ii ≥ 2μH |A�

⎤

⎦ (2)

−Pr

⎡

⎣Y� ≤ εX�|(|X� − E[X�]| ≤ δnE[X�]) ∧
∑

i∈B�−1

Ii ≤ 2μH ∧ A�

⎤

⎦ (3)
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Applying Lemma 5 to Eq. 1, Lemma 6 to Eq. 2, and Lemma 8 to Eq. 3, and
we have

Pr[A�+1|A�] ≥ 1 − 4 exp

(

−Θ(
n

log6· α−2
3−α n

)

)

− O(1)
(log n)

α−1
3−α

n�1/(α−2)

− exp

(

−Θ(
n

log5· α−2
3−α

)

)

Therefore

Pr[A�+1|A�] ≥ 1 − O(1)
(log n)

α−1
3−α

n�1/(α−2)

6 Infection with Random Seeds

Theorem 1 together with prior results in Ebrahimi et al. [16] immediately implies
the following corollary:

Corollary 1. For a configuration model graph with power-law exponent α, if
Ω(n

α−2
α−1 ) initially random seeds are chosen, then with probability 1 − o(1) k-

complex contagion infects a constant fraction of nodes.

We first restate two results from [16].

Proposition 2 [16]. For any graph, let u be a node with degree d. If Ω(d/n)
initial random seeds are chosen, then with probability 1 − o(1) u is infected after
one round.

Proof. The initial node has Θ(n
1

α−1 ) neighbors. If there are Ω(n
α−2
α−1 ) initial seeds

then by Proposition 2 the first seed is infected with probability 1−o(1). However,
then by Theorem 1 a constant fraction of the remaining nodes are infected in
logO(α)(1) rounds.

This is tight as in Ebrahimi et al. [16] the following was proven:

Proposition 3 [16]. For any graph, with power law distribution α, if o(n
α−2
α−1 )

initially random seeds are chosen, then with probability 1 − o(1), no additional
nodes are infected.

7 α > 3

For the case of power-law degree distribution with α > 3, Amini [4] shows how
to analyze k-complex contagions using a differential equation method [30]. This
approach heavily depends on the variance of the degree distribution and fails
when α < 3. For the case where the seed set contains all nodes with degree
greater than ρ > 0 we can state their theorem as follows:
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Theorem 4 [4]. Given a power law distribution d with exponent α > 3 and
d1 < n1/α−1, the k-complex contagion on configuration CM(d) with constant k
and seed set Iρ = {i|di ≥ ρ} where 0 ≤ ρ ≤ n. Then with high probability

|CC(CM(d), k, Iρ)| = n

⎛

⎜
⎜
⎝1 −

∑

1≤d<ρ,
0≤j<k

pd(d)
(

d

j

)

(y∗)d−j(1 − y∗)j + o(1)

⎞

⎟
⎟
⎠ (4)

where pd(d) = (Fd(d + 1) − Fd(d)) and 0 < y∗ ≤ 1 is the largest root such that
f(y) = 0 and

f(y) = y2

⎛

⎝
∑

1≤d

d pd(d)

⎞

⎠ − y

⎛

⎜
⎜
⎝

∑

1≤d<ρ,
0≤j<k

d pd(d)
(

d − 1
j

)

yd−1−j(1 − y)j

⎞

⎟
⎟
⎠ (5)

Before stating our corollary, we wish to give a brief idea of the proof of
Theorem 4. They consider a Markov chain which results in the same number
infected nodes as a k-complex contagion, but proceeds using the randomness
of the configuration model. The Markov chain starts with the initially infected
nodes and at each step the process reveals one of the unmatched edges from the
set of infected nodes. This process needs only track: the number of unmatched
edges, and the number of d-degree uninfected nodes with j infected neighbors,
for each j < k. The Markov chain stops when all the agent are infected, or there
are no unmatched edges from already infected nodes. It turns out, that if α > 3,
the process is smooth and we can use the corresponding differential equations
to approximate this Markov chain and derive the fraction of infections.

With their results we can prove that to infect a constant fraction of nodes
requires the initial seed need to also be a constant fraction of nodes. Note that
if our initial seed set infects the highest degree nodes, but does not infect a
constant fraction of the nodes, then the greatest degree node not in the initially
infected set has degree ω(1).

Corollary 2. Given a power law distribution d with exponent α > 3 and d1 <
n1/α−1, the k-complex contagion on configuration CM(d) with constant k and
seed set Iρ = {i|di ≥ ρ} where ρ = ω(1), the |CC(CM(d), k, Iρ)| = o(n) with
high probability.

The proof of the corollary requires some delicate calculations and is in the
full version.
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Abstract. In many centralized school admission systems, a significant
fraction of allocated seats are later vacated, often due to students obtain-
ing better outside options. We consider the problem of reassigning these
seats in a fair and efficient manner while also minimizing the movement
of students between schools. Centralized admissions are typically con-
ducted using the deferred acceptance (DA) algorithm, with a lottery
used to break ties caused by indifference in school priorities. For reas-
signment, we propose a class of mechanisms called Permuted Lottery
Deferred Acceptance (PLDA). After the initial (first-round) assignment
is computed via DA, students’ preferences change (get truncated) due to
the revelation of their outside options. A PLDA mechanism then com-
putes a reassignment of the students by re-running DA; however, stu-
dents are guaranteed to get at least their first-round assignment (if they
still want it) or a school they prefer, and ties are broken according to
a permutation of the first-round lottery order. We show that a PLDA
based on a reversal of the first-round lottery order performs well.

Our theoretical analysis takes place in a continuum model with no
school priorities. We characterize PLDA mechanisms as the class of mech-
anisms that satisfy a few natural properties, which include not removing
students from their first-round assignments against their will, a strong
form of strategyproofness (against manipulations involving misreporting
both the original and changed preferences), and certain efficiency and
fairness axioms. We then identify a technical condition, called the order
condition, essentially requiring that the change in preferences does not
modify the relative overdemand for schools. When the order condition is
satisfied, all PLDA mechanisms yield identical allocative efficiency, and
among all of them, the lottery-reversal based PLDA reassigns the mini-
mal amount of students (from their first-round assignments). Finally, we
conduct computational experiments and obtain results that support our
theoretical findings. Specifically, we use data from NYC’s school choice
program to simulate the performance of different PLDA mechanisms in
the presence of school priorities, and find that all simulated PLDAs have
similar allocative efficiency, while the lottery-reversal based PLDA min-
imizes the number of reassigned students.

A full version is available at: http://www.columbia.edu/∼yk2577/realloca-
tion.pdf
c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, p. 475, 2016.
DOI: 10.1007/978-3-662-54110-4
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Abstract. We study the design of mechanisms without money for
repeated allocation of resources among competing agents. Such mech-
anisms are gaining widespread use in allocating computing resources in
universities and companies, and also distributing of public goods like
vaccines among hospitals and food donations among food banks. We
consider repeated allocation mechanisms based on artificial currencies,
wherein we first allot each agent a chosen endowment of credits, which
they can then use over time to bid for the item in a chosen auction
format. Our main contribution is in showing that a simple mechanism,
based on a repeated all-pay auction with personalized endowments and
static pricing rules, simultaneously guarantees vanishing gains from non-
truthful bidding as well as vanishing loss in efficiency. Our work lies at
the intersection of dynamic mechanism design and mechanisms without
money, and the techniques we develop here may prove of independent
interest in these settings.

Our work studies the question of whether the incentive properties and allocative
efficiency of mechanisms with money can be approximated via mechanisms based
on an artificial currency – one which has no independent valuation outside the
setting of the mechanism. This has attracted a lot of attention in recent times
due to the establishment of platforms that use artificial-currency systems to
solve real-world problems such as university course allocation and food banks.

We consider a problem of allocating a single item between 2 agents {a, b} in T
consecutive periods t = 1, 2, . . . , T . At time t, agent s ∈ {a, b} has i.i.d valuation
Vs,t = v with probability {qs(v)}; valuations are independent across agents, and
distributions are known publicly. Given any mechanism M not involving money,
agent s’s utility is UM

s �
∑T

t=1 Vs,tx
M
s,t, where xM

s,t is the allocation to s at time
t. In this setting, it is easy to see that for T = 1, no mechanism can be both
incentive compatible and efficient; our aim is to use the repeated nature of the
process to ensure approximate efficiency and incentive compatibility.

Formally, we define a mechanism to be an (α, β)−approximate mechanism
if it simultaneously guarantees that (i) truthful play is an α-equilibrium, i.e.,
c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 476–477, 2016.
DOI: 10.1007/978-3-662-54110-4
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for any agent s, assuming all other agents play truthfully, the utility gain from
deviating from truthful play is at most αT , and (ii) the mechanism is β-efficient,
i.e., assuming all agents play truthfully, the loss in welfare from the optimal is
at most βT . For example, a uniform lottery achieves (α, β) = (0,Ω(1)); on the
other hand, we show that a second-price auction with artificial currency has
(α, β) = (Ω(1), 0). This raises the question as to whether there are mechanisms
where both α and β are o(1). To this end, we propose the Repeated Endowed All-
Pay (or REAP) mechanism, wherein we first give each agent an endowment of
credits, and then in each period, agents are charged credits to report a valuation
according to a personalized price function; the item is then allocated to the
highest reported valuation. Our main result is the following:

Theorem 1. REAP is an (α, β)-approximate mechanism with α = O

(√
log T
T

)

,

β = O

(
1
T

)

.

Our result is based on setting prices via a novel LP-based analysis of an aux-
iliary game, and then showing the sample paths of the mechanism concentrate
close to this auxiliary game. In addition, our work suggests several future direc-
tions for research on the scope and practicality of mechanisms without money.
For details, refer to our full version: https://papers.ssrn.com/sol3/papers.cfm?
abstract id=2852895.
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Motivated by applications in clustering and information retrieval, we extend the
classical Hotelling setting (see [1]) to address the scenario where players may
control more than one facility. In his seminal work, Hotelling considers a duel
between two parties who compete over consumers distributed uniformly over
the interval [0, 1]; each party locates its facility on that interval, and grabs the
proportion of the population closer to it. As it turns out, the only equilibrium in
that setting is for both parties to locate their facility at 1

2 . Interestingly, while
overwhelming many extensions of that basic setting exist, the economic studies
refer to competition between single-facility owners only, which make that work
non-applicable to many applications, e.g. in clustering we are typically after
selecting several centroids/clusters.

Consider for example the strategic behavior of publishers in the web. Assume
a “strong” publisher who controls several outlets of its site which it can maintain,
e.g. two different Internet versions of its newspaper. This publisher can be viewed
as being able to locate two “facilities” in the space of published data rather
than only one; however, a “weak” publisher who can not maintain two such
versions will need and be able to locate only one “facility”. How would these
different powers effect the behavior of the publishers? What would be optimal
strategies for the different publishers? This is a novel challenge and question,
which illustrates how valuable and deep the understanding of these games may
be for theory and practice.

We extend the Hotelling setting to multi-unit facility location games, where
there are n players, where player i may control several facilities. We first analyze
competition among the owner of k facilities to the owner of l facilities, for arbi-
trary (l, k), where l ≤ k. Our message for this extended Hotelling duel is quite
striking: in no equilibrium of any such (l, k) facility location duel a facility will
materialize in a location which is not part of the social welfare maximizing loca-
tions of the player who has k facilities, if she were to locate her facilities under
no competition. This is obtained despite the lack of pure strategy equilibrium in
any (l, k) duel whenever l �= k.

Moreover, for the n-player setting, we provide sufficient and necessary con-
ditions for a pure strategy profile to be an equilibrium in such game. In partic-
ular, we show that a pure-strategy equilibrium exist if and only if there is no
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dominant player who controls more than half of the facilities; in the latter case,
under some conditions, a mixed strategy equilibrium of the form obtained in the
(l, k) duel does exist.
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