
Random Models for Evaluating Efficient
Büchi Universality Checking

Corey Fisher1(B), Seth Fogarty2, and Moshe Vardi1

1 Rice University, Houston, USA
corey.s.fisher@gmail.com

2 Trinity University, San Antonio, USA

Abstract. Automata-theoretic formal verification approaches the prob-
lem of guaranteeing that a program conforms to its specification by
reducing conformance to language containment. We can prove confor-
mance by representing both programs and specifications as automata
and proving that the specification contains the program. This connec-
tion to the theory of automata on infinite words motivated an extensive
research program into the algorithmic theory of automata on infinite
words, with a focus on algorithms that perform well in practice. The focus
on practical performance is important because of the large gap between
worst-case complexity and practice for many automata-theoretic algo-
rithms. Unfortunately, there are few benchmark instances of automata
in industrial verification. To overcome this challenge, Tabakov and Vardi
proposed a model for generating random automata as test cases.

The Tabakov-Vardi (T-V) model, however, is just one random model,
based on a specific, rather simple model of random graphs. Other models
of random graphs have been studied over the years. While the T-V model
has the advantage of simplicity, it is not clear that performance analy-
sis conducted on this model is robust, and an analogous analysis over
other random models might yield different conclusions. To address this
problem, we introduce three novel models of random automata, yielding
automata that are richer in structure than the automata generated by the
T-V model. By generating large corpora of random automata and using
them to evaluate the performance of universality-checking algorithms,
we show that the T-V model is a robust random model for evaluating
performance of universality-checking algorithms.

1 Introduction

Automata-theoretic formal verification is an approach to the problem of guar-
anteeing that a program (in software or hardware) conforms to its specification,
in which conformance is reduced to the problem to language containment. By
representing both programs and specifications as automata and proving that the
specification contains the program, we can prove conformance [19]. This connec-
tion to automata theory, and, in particular, to the theory of automata on infinite

We recommend viewing the plots in this paper online. For a longer technical report,
see http://www.cs.rice.edu/∼vardi.

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 91–105, 2017.
DOI: 10.1007/978-3-662-54069-5 8

http://www.cs.rice.edu/~vardi

92 C. Fisher et al.

words [21], motivated an extensive research program into the algorithmic theory
of automata on infinite words, cf. [20], and the focus of this program is often on
algorithms that perform well in practice, cf. [12].

We focus here on the Büchi universality-checking problem, which is a sim-
plified case of containment checking, the canonical verification problem [19]. An
automaton A is universal if it accepts all input words; equivalently A is univer-
sal if its complement A is empty, that is it accepts no input words. A simplistic
way to check universality of A is to check emptiness of A, which can be reduced
to reachability analysis of A’s state-transition graphs. Such an approach would
have to deal with the blow-up of Büchi complementation, so extant algorithms
for universality use a variety of heuristics to check emptiness of A without con-
structing it in full, cf. [4].

The focus on performance in practice is important because of the large gap
between worst-case complexity and performance in practice for many automata-
theoretic algorithms. For example, the best upper bound for the complementa-
tion of Büchi automata is 2O(n log n) [15] (realized, for example, by the rank-based
construction in [9]), which matches the known lower bound [13]. This bound is
significantly lower that the earlier upper bound of 2O(n2) [16], which uses Büchi
’s Ramsey-based construction [1]. Yet a comparison of the rank-based construc-
tion with the Ramsey-based construction on real-life instances showed that the
Ramsey-based construction can be quite competitive in practice with the rank-
based construction – each outperforms the other on different problem instances
[5].

Nevertheless, the quest for automata-theoretic algorithms that perform well
in practice is hampered by the fact that there is a shortage of benchmark
instances of automata that arise in industrial verification (see discussion below).
To overcome this challenge, Tabakov and Vardi proposed a model for generating
random automata on which different algorithms can be evaluated and compared
[17,18]. The model has three parameters: (1) the size (number of states) of
the automaton, (2) the density of transitions (ratio of transitions to states),
and (3) The density of accepting states (ratio of accepting to total number of
states). Subject to these parameters, the model generates automata randomly.
The Tabakov-Vardi (T-V, for short) model is attractive for two reasons [17]:
First, the model gives rise to an interesting universality terrain, which describes
the relationship between the probability of automaton universality (which means
that all input words are accepted) and the density parameters. Second, the model
gives rise to an interesting performance terrain, which describes the relationship
between algorithmic performance and the density parameters. (We discuss these
two terrains in detail in the body of the paper.) In subsequent years, this model
has become the standard model for the evaluation of Büchi -complementation
tools, cf. [2,4,11,14].

The T-V model, however, is just one specific random model, based on a spe-
cific, and quite simple model of random graphs [8]. As we show in this paper,
several other models of random graphs have been studied over the years. While
the T-V model has the advantage of simplicity, it is not a priori clear that perfor-
mance analyses conducted on this model are robust, as it is entirely possible that

Random Models for Evaluating Efficient Büchi Universality Checking 93

analogous analyses over other random models would yield different conclusions.
Since performance analyses over random models are used in this context as a
substitute to such analyses over a benchmark suite of real-life problem instances,
it is desirable at least to know whether analyses over random models yield robust
conclusions.

To address this problem, we introduce three1 novel models of structured ran-
dom automata, based on existing random graph models – the vertex-copying
model [7], the Frank-Strauss model [6], and the co-accessible model [10]. These
models are based on different models that have been proposed for random graphs.
While the T-V model is uniformly random, generating unstructured automata,
these new models constrain randomness in some way to provide structural guar-
antees about the resulting automata: The vertex-copying model guarantees a
power-law degree distribution, the Frank-Strauss model restricts which transi-
tions are valid, and the co-accessible model guarantees that each state in the
resulting automaton can reach an accepting state.

These structural properties help the models represent a wide variety of pos-
sible types of problem instances that might be encountered in the real world.
Furthermore, these model generate problem instances that are quite unlikely to
be generated by the T-V model. Our goal is to compare performance analysis on
the T-V model against performance analysis on the three new models. If perfor-
mance analyses on the a variety of different models all reach similar conclusions,
then we can conclude that these conclusions are likely robust. If, on the other
hand, performance analyses on different models reach different conclusions, then
we would gain a deeper understanding of how structure affects algorithmic per-
formance and learn that the choice of algorithm should depend on the structure
of the problem instance being solved.

By generating large corpora of random automata and using them to evaluate
the performance of universality-checking algorithms we first show that the new
models possess the same useful properties for universality as the T-V model. We
then replicate results of Fogarty and Vardi [4] for universality checking, using all
four random models. We show that the finding reached in [4], concluding that
the two tools compared are competitive, is robust across the four models. Finally,
we compare Fogarty and Vardi’s Rank tool [4], the most recent implementation
of the rank-based algorithm, with a modern Ramsey-based tool, RABIT 2.32,
and show that the Ramsey-based tool strongly outperforms the rank-based tool,
again over all four models. We conclude, therefore, that the T-V model, in spite
of its simplicity, is an adequate random model for evaluating performance of
universality-checking algorithms.

1 The full version of the paper, with more models, can be found in the technical
report [3].

2 http://languageinclusion.org/doku.php?id=tools.

http://languageinclusion.org/doku.php?id=tools

94 C. Fisher et al.

2 Background

Automata Theory. A Büchi automaton is a tuple A = (Σ,Q,Q0, δ, F), where
Σ is a finite alphabet, Q is the finite set of states, Q0 ⊆ Q is the set of initial
states, δ ⊆ Q×Σ×Q is the transition relation, and F ⊆ Q is the set of accepting
states. Büchi automata take infinite words from Σω as input. A run of a Büchi
automaton on a word w0, w1, ... ∈ Σω is any infinite sequence q0, q1, ... ∈ QωS
such that q0 ∈ Q0, and (qi, wi, qi+1) ∈ δ. A run is accepting if some accepting
state qi ∈ F occurs infinitely often in the run. The Büchi automaton accepts
a word w if there is some run of w that is accepting. The set of all words an
automaton A accepts is called the language of A, or L (A). A complement A
of an automaton A is an automaton whose language is Σω\L (A). Finding the
complement of an automaton is called complementation.

An automaton A is contained in an automaton B when L (A) ⊆ L (B). In
automata-theoretic verification [19], we prove that a program satisfies a specifi-
cation by modeling the program as a Büchi automaton A and the specification
as a Büchi automaton B, and then proving that A is contained in B. To check
this containment, we check that the intersection of L (A) with L

(
B

)
is empty.

If it is not empty, then a word in the intersection is a trace of A that violates
the specification B. In practice, efficient containment algorithms do not explic-
itly construct the complement B, using instead various strategies for on-the-fly
complementation and symbolic construction, cf. [4]. Nevertheless, because these
strategies are still fundamentally based on complementation, there is a close link
between the efficiency of complementation and the efficiency of containment. The
two complementation constructions that have been studied in the context of con-
tainment checking are the Ramsey-based construction of [16] and the rank-based
construction of [9]. While the rank-based construction has a better worst-case
complexity, the Ramsey-based approach is quite competitive in the context of
containment checking [4]. Since the hard step in containment checking is the
need to construct (at least implicitly) B, papers on the subject, e.g. [4,17,18],
usually focus on universality checking, where L (A) = Σω – that is, checking if
L (B) contains the set of all words.

Evaluating Automata-Theoretic Algorithms. The quest for automata-theoretic
algorithms that perform well in practice is hampered by a shortage of bench-
mark instances of automata that arise in industrial verification. The automaton
B above corresponds to a formal specification of intended design functionality.
Industrial specifications are typically proprietary and not openly available. To
overcome this challenge, Tabakov and Vardi (T-V) proposed a model for gener-
ating random automata on which different algorithms can be evaluated and com-
pared [17,18]. In subsequent years, this model has become the standard model
for the evaluation of automata-theoretic tools, cf. [2,4,11,14]. Specifically, the
T-V model was used in [4] to show that despite the worst-case-complexity gap
between the Ramsey-based and the rank-based approaches, the two approaches
are co-competitive in practice – that is, they each can outperform the other in
non-trivial cases, depending on the properties of the automata being checked.

Random Models for Evaluating Efficient Büchi Universality Checking 95

The T-V model generates automata using the uniformly random choice of
elements from a set. The T-V model takes three parameters - an integral size n, a
positive real transition density r, and a real accepting-state density f between 0
and 1. The transition density is the average out-degree of each state in the result
automaton per input symbol. The accepting-state density is the percentage of
states in the result automaton that are accepting states. Formally, a (n, r, f)
T-V random automaton is defined as follows. Each random automaton A =
(Σ,Q,Q0, δ, F) has the alphabet Σ = {1, 0} and set of states Q = {0, . . . , n−1}.
The set Q0 of initial states is {0}. For each σ ∈ Σ, the model generates a
digraph (directed graph) Dσ over the nodes {0, . . . , n − 1} with n ∗ r edges
chosen uniformly at random from the set of all possible edges (u, v) ∈ Q×Q. The
transition relation δ is then defined as {(u, σ, v) | (u, v) ∈ Dσ}. The accepting
states F comprise �n∗f� states selected uniformly at random from Q. Note that
each element of Dσ is a random digraph - specifically, a Karp [8] random digraph.
Thus, we say that the T-V model lifts the Karp model of random digraphs into
automata.

The T-V model is attractive for performance evaluation for two reasons
[17,18]: First, the useful properties of its universality terrain, which describes
the relationship between the probability of automaton universality (which means
that all input words are accepted) and the density parameters. When transition
and accepting-state densities are low, the probability for universality is low, while
at higher densities the probability steadily increases. Thus, the model provides
a way to evaluate the performance of universality-checking algorithms on both
universal and non-universal automata. We call a model “interesting” when its
universality probabilities vary with the input parameters and increase from low
to high probability. Second, the model gives rise to an interesting performance
terrain, which describes the relationship between algorithmic performance and
the density parameters. Specifically, at low and high densities universality check-
ing is easier than at intermediate densities. Thus, the model provides a way to
evaluate the performance of universality-checking tools on both easy and hard
problems. We take these two features, universality terrain and performance ter-
rain to be desiderata that we expect to have in other models of random automata.

3 Random Models

Our goal in this work is to compare the T-V model to other models of random
automata as a framework for evaluating the performance of universality-checking
algorithms. We take advantage of the fact that the Tabakov-Vardi technique of
lifting digraphs into automata is not limited to Karp random digraphs. By sub-
stituting other random-digraph models, we can generate new models of random
automata.

The Tabakov-Vardi lifting is as follows. A random automata model that
lifts a random digraph model has all of the parameters of the digraph model,
plus an accepting-state density parameter f . Each random automaton is a tuple
(Σ,Q,Q0, δ, F), with the elements defined as follows. We take the alphabet

96 C. Fisher et al.

Σ = {0, 1} for all models. For each character σ ∈ Σ, create a random digraph
Dσ using the digraph parameter values of the automaton model. The set Q of
states of the random automaton is equivalent to the set N of Dσ’s nodes, usually
N = {0, . . . , n − 1}, where n is the size parameter. The initial state set Q0 ⊆ Q
is a singleton set containing one state from Q, usually 0. The transition relation
δ is the union of all sets {(q, σ, r) | (q, r) ∈ Dσ} for σ ∈ Σ. Finally, the set
F ⊆ Q of accepting states consists of �|N | ∗ f� elements of Q chosen uniformly
at random (without repetition). Not all models we study use the Tabakov-Vardi
lifting; see details below.

In the rest of this section, we introduce three3 new models based on this
lifting - the vertex-copying model, the Frank-Strauss model, and the co-accessible
model. The first two models are based on existing models of structured random
digraphs which have found common use in other disciplines, and the co-accessible
model guarantees a particular automaton property. While the lack of existing
benchmarks makes it difficult to compare these models directly to industrial
problem instances, we can use a variety of structured random models to more
fully explore the problem space. If these models disagree with the Tabakov-Vardi
model, then the T-V model is not rich enough to fully represent the space on its
own – if they agree, then it is likely that the conclusions of the T-V model are
quite robust.

We show each of the models to have a universality terrain that is somewhat
similar but not identical to that of the T-V model, using experiments run on the
DAVinCI cluster4 at Rice University. To show that each model has an interesting
universality terrain, we present with each model a terrain plot showing how likely
the automata generated by the model are to be universal when made with certain
parameters. We generated and tested 100 automata using the parameters at each
point on the plot. The universality terrains show that the random models we
introduce generate automata whose likelihood of being universal ranges from 0
to 1, just as in the T-V model.

Vertex-Copying Automata. The random vertex-copying model presented here is
a simplification of the model defined by Kleinberg et al. [7]. A vertex-copying
digraph starts out as an empty set of nodes, and adds edges over time. By
sometimes choosing edges at random, and at other times copying edges from one
node to another, it creates a heavy-tailed distribution – a “rich get richer” effect
as nodes with many edges steadily gain more and more edges. This copying is
intended to model hyperlinks on the Web – links are often created when someone
discovers a link to a site they’re interested in on another site, then adds a link to
it on their own website, thus “copying” the link from one site to another. This
approach may also model code reuse - when a code block is reused, then calls to
functions are duplicated.

An (n, b, r) vertex-copying random digraph takes as parameters the size
n, the copying probability b, and the transition density r. The vertices are
{0, . . . , n − 1}. The model begins with no edges and adds edges (u, v) to the

3 Other models can be found in the technical report [3].
4 http://www.rcsg.rice.edu/sharecore/davinci/.

http://www.rcsg.rice.edu/sharecore/davinci/

Random Models for Evaluating Efficient Büchi Universality Checking 97

Fig. 1. A vertex-copying universality terrain for n = 20. The transition density r ranges
from 1 to 3, and the copying probability b ranges from 0.2 to 0.8. The accepting-state
density f was set to 0.3. The universality probability is comparable to that of the T-V
model for most values of r. Note that increasing b does not monotonically increase
universality probability – after a certain point it actually reduces it. This may be
because all transitions go to a small number of states, with few transitions leaving
them, increasing the likelihood of rejection.

graph one at a time until there are �n ∗ r� edges. Each time it does so, it has
a probability b of copying an edge from one node to another, and a probability
1 − b of simply generating an edge uniformly at random. If it copies, then it
chooses an edge (u, v) ∈ E and a node u′ ∈ V \u uniformly at random. It then
adds (u′, v) to E. If it generates the edge at random, it acts as in the T-V model.
This digraph model extends to automata by directly using the standard lifting.
Its universality terrain is given in Fig. 1.

Frank-Strauss Automata. The Frank-Strauss random graph model, based on an
approach by Frank and Strauss5 [6], limits the space of possible edges. Instead of
the vertices being integers, vertices are unordered pairs of integers. The Frank-
Strauss model permits edges only between vertices that share an element – the
vertex (0, 1) can connect to (0, 3) and (1, 3), but not to (2, 3). Within this space,
edges are generated uniformly at random. The Frank-Strauss model can repre-
sent systems that require some relationship between actors. For example, it can
be used to represent binary relationships between individuals in a social setting.
Alternatively, we may have a program such that if one module calls another,
5 Referred to in their paper as a “Markov graph”.

98 C. Fisher et al.

Fig. 2. A Frank-Strauss universality terrain for l = 21. r ranges from 1 to 3 and f
ranges from 0.2 to 0.8. While the universality probably scales more quickly with r than
in the T-V model, there are still a number of points where universality is neither nearly
guaranteed nor always absent.

then there must be some relation between them – for example, operating on
shared data.

An (l, r) Frank-Strauss random graph takes as parameters a label size l and
a transition density r. The set V of vertices is the set {(i, j) | i, j ∈ 0, . . . , l − 1}
of unordered pairs of elements. Since we allow the case where i = j, there are(
l+1
2

)
= l(l+1)

2 such vertices. We generate �|V | ∗ r� edges. To generate each edge,
first choose a vertex (u1, u2) uniformly at random as the source, and then choose
a vertex (v1, v2) ∈ {u1, u2} × {0, . . . , l} uniformly at random as the destination.
This digraph model extends to automata directly by using the standard lifting.
The universality terrain is presented in Fig. 2.

Co-accessible Automata. The co-accessible model of random automata is so
named because it guarantees that the resulting automata are co-accessible, where
an automaton is co-accessible if all states q ∈ Q are co-accessible, that is, can
reach an accepting state. Because this property is meaningful only for automata,
the co-accessible model cannot be based on lifting a model of random digraphs.
It is loosely based on Leslie’s generation of connected automata [10]. Automata
possessing this property correspond to useful program properties – for exam-
ple, a co-accessible automaton may specify that the program can recover and
perform its intended function from every state.

Random Models for Evaluating Efficient Büchi Universality Checking 99

The co-accessible model takes as parameters a size n, a transition density r,
and an accepting state density f . The co-accessible model does not define the
transition relation based on an underlying digraph. Instead, we start with a set
Q = {0, . . . , n − 1} of states and initial and accepting state sets Q0 and F as in
the T-V model. The transition relation δ is initially empty.

To fill in δ, we construct a random spanning inverted forest over Q. This is
a set of trees over the automaton which contains every state, each rooted at an
accepting state, and where edges go from children to parents instead of parents
to children. A forest can be found as follows: make a set of co-accessible states
C = F and states that are not yet co-accessible U = Q\F , then select some
u ∈ U , c ∈ C and σ ∈ Σ uniformly at random. Add (u, σ, c) to δ, then remove u
from U and add it to C, repeating until U is empty.

Once the spanning forest has been constructed, the model must fill in the rest
of the transition relation. It then ensures that each character σ ∈ Σ is associated
with exactly �n ∗ r� edges. If some σ0 has more than �n ∗ r� transitions, replace
random transitions (u, σ0, v) with (u, σ1, v) for σ0 �= σ1 and σ1 ∈ Σ. Then
generate new edges uniformly at random, as in the T-V model, for each character
with fewer than �n ∗ r� transitions. We assume r ≥ 1. The universality terrain
is given in Fig. 3.

Fig. 3. A co-accessible universality terrain for n = 20. The transition density r ranges
from 1 to 3, and f ranges from 0.2 to 0.8. Notice that the slope is much shallower than
in previous models. This gives us an extremely wide range of useful configurations for
testing.

100 C. Fisher et al.

4 Experiments

Methodology. Having defined three new random models and, via universality
testing, proven them to be interesting for performance evaluation, we then used
these models to run timing experiments for three universality checkers. We first
compared the Rank and Ramsey tools6 from [4]. To acquire a more recent pic-
ture of the comparison between algorithms, we also compared these tools with
the RABIT 2.3 tool7, a more recent Ramsey-based containment checker. As in
the previous section, experiments were run on the DAVinCI cluster at Rice Uni-
versity, which consists of many Westmere nodes with 2.83 GHz processors and
48 GB of memory per node. We limited each job to 30 GB of memory and one
hour of time. Jobs that did not finish were marked as timeouts.

We ran two types of experiments: terrain experiments and scaling experi-
ments. In terrain experiments, the size of the automata is held constant, and
two other parameters are changed to see the effects on running time. In scaling
experiments, all parameters are held constant except those affecting the size of
the automaton, and we steadily increase the size to see how the implementa-
tions respond to larger problems. We conduct scaling experiments with parame-
ters that are particularly difficult for at least one tool to handle, as determined
by the terrain experiments, to test practical worst-case performance. We gener-
ated 100 automata using each combination of parameter values in both kinds of
experiments, and report median running time.

Fig. 4. For terrain experiments on the Tabakov-Vardi model, we tested parameter
values of n = 100, or l = 14, r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}.
These graphs show results for the Rank and Ramsey tools. Note that Rank and Ramsey
are not directly comparable - Ramsey tends to be slower at points where r = 1.5 and
r = 2, while Rank tends to be slower at f = 0.02 and f = 0.26. This agrees with
previous results [4] using the Tabakov-Vardi model.

6 https://www.cs.rice.edu/CS/Verification/Software/software.html.
7 http://www.languageinclusion.org/doku.php?id=tools.

https://www.cs.rice.edu/CS/Verification/Software/software.html
http://www.languageinclusion.org/doku.php?id=tools

Random Models for Evaluating Efficient Büchi Universality Checking 101

Fig. 5. For terrain experiments on the Frank-Strauss model, we tested parameter values
of n = 105, or l = 14, r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}. These
graphs show results for the Rank and Ramsey tools. Again, the Rank model tends to
perform the slowest at low f and low r, while Ramsey is slowest at r = 2. This agrees
with our results on the Tabakov-Vardi model, as do the terrains of other models found
in the technical report [3].

Results. We find both that choice of model does not seriously impact tool com-
parisons, and that RABIT noticeably outperforms Rank and Ramsey.

In both terrain (Figs. 4, 5 and 6) and scaling (Fig. 7) experiments, we find
that the relative efficiency of tools is very similar across models. All models show
that, as in the Tabakov-Vardi model in [4], the Rank and Ramsey are not directly
comparable – which parameters are used to generate an automaton determine
which tool solves it most efficiently, as seen in the terrain experiments in Fig. 5.
Since all models agree with T-V here, it is reasonable to use the T-V model
to compare tools. Nevertheless, while models agree on the comparison between
tools, they do not have the same running time. For example, in Fig. 7, we see
on a log scale that there is a factor 10 difference between the running time of
Ramsey on the Tabakov-Vardi and co-accessible models. Thus, the T-V model
should be relied on for relative comparisons, but not for predicting runtimes.

Since there was little difference in comparison between models, Rank and
Ramsey compare similarly to their results in [4]. Yet, when we compare Rank to
RABIT, we saw a massive speedup at all difficult points – sometimes thousands
of times faster. At n = 100, the terrain was flat, with most cases terminating in
just over a tenth of a second. Therefore, the improved modern Ramsey tools are
more suited for practical use than Rank-based ones. However, as seen in Fig. 6,
random models can still provide interesting performance terrain on the more
efficient tools by scaling up the size of the problems.

There is one noticeable difference between algorithms not shown – both
Ramsey-based algorithms used much more memory than Rank did. When pro-
vided with 5 GB of memory, the Rank tool performed acceptably, but Ramsey
and RABIT crashed regularly. 30 GB of memory provided was necessary to avoid
crashes due to running out of memory.

102 C. Fisher et al.

Fig. 6. For all terrain experiments at n = 100 for RABIT, we found that the ter-
rain was entirely flat - very few problems took more than one second to terminate.
Therefore we show results for RABIT on n = 400, instead, with parameter values
r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}. Note that the maximum
Y-axis value is only 800 seconds, because at no point was the median result a timeout.
RABIT has the most difficulty at high transition density and extremely low acceptance
densities, with orders of magnitude slower performance on f = 0.02. While it does not
appear on this graph, we also find that RABIT takes about two orders of magnitude
more time at r = 2.0 and high f than other areas, and one order of magnitude less than
the extremely difficult areas. Also, we find that at r = 1.5, we consistently had a small
(5 %) chance of timeouts at all values of n tested with few to no timeouts elsewhere,
though the median time taken was no higher.

5 Concluding Remarks

While formal verification provides important software tools, it has been unclear
whether these tools are efficient enough to be used in practice. Thus, the T-V
model is a powerful tool for automata-theoretic formal verification, allowing us
to test the efficiency of algorithms for determining conformance to a specifica-
tion. Due to concerns about whether the model accurately reflected real-world
performance, we tested other models to see if the structure of a problem would
influence the results; we found that it did not. Future work in the area can pro-
ceed to test algorithms and tools on the T-V model, more confident that it is
robust and that its results are widely applicable.

This work gives reason to believe that the Tabakov-Vardi model is a robust
model with results that are likely to be close to the real-world. Complementation,

Random Models for Evaluating Efficient Büchi Universality Checking 103

Fig. 7. For this set of scaling experiments, we set r = 1.5 and f = 0.98, and scale
n from 10 to 100. In the Frank-Strauss model, l scales from 4 to 14. This point was
chosen for scaling because it is particularly difficult for Ramsey. On this log-scale plot,
different tools (indicated by shared color and marker shape) tend to have similar slopes
regardless of model (indicated by shared line style). Notably, an obvious exponential
gap exists between other models and Ramsey at these parameters for every model
except the trivally-easy vertex-copying model. Since f is high, this is an easy point
for Rank. The relationship between tools found by T-V is also reflected in the other
random models shown here.

and thus containment checking, should be practical on real-world problems. We
also discovered an improvement of many orders of magnitude in modern contain-
ment checkers using a Ramsey-based approach. RABIT outperformed both older
Ramsey and rank-based tools significantly, and can scale up much higher. Since
little work has been done on rank-based solvers since 2010, current heuristics-
driven Ramsey-based approaches are the best available options for containment
checking for Büchi automata.

Acknowledgements. Work supported in part by NSF grants CCF-1319459 and IIS-
1527668, by NSF Expeditions in Computing project “ExCAPE: Expeditions in Com-
puter Augmented Program Engineering”, as well as the Data Analysis and Visualiza-
tion Cyberinfrastructure funded by NSF grant OCI-0959097 and Rice University.

104 C. Fisher et al.

References

1. Büchi, J.R.: Turing-machines and the Entscheidungsproblem. Math. Ann. 148(3),
201–213 (1962)

2. Doyen, L., Raskin, J.: Antichains for the automata-based approach to model-
checking. arXiv preprint arXiv:0902.3958 (2009)

3. Fisher, C., Fogarty, S., Vardi, M.: Random models for efficient Büchi universal-
ity checking. Technical report. Department of Computer Science, Rice University,
Houston, TX, October 2016. http://www.cs.rice.edu/∼vardi

4. Fogarty, S., Vardi, M.Y.: Efficient Büchi Universality Checking. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12002-2 17

5. Fogarty, S., Vardi, M.Y.: Büchi complementation and size-change termination. In:
Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00768-2 2

6. Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)
7. Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The

web as a graph: measurements, models, and methods. In: Asano, T., Imai, H.,
Lee, D.T., Nakano, S., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627,
pp. 1–17. Springer, Heidelberg (1999). doi:10.1007/3-540-48686-0 1

8. Karp, R.M.: The transitive closure of a random digraph. Random Struct. Alg. 1(1),
73–93 (1990)

9. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Logic (TOCL) 2(3), 408–429 (2001)

10. Leslie, T.: Efficient approaches to subset construction. Technical report. University
of Waterloo, Canada (1995)

11. de Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). doi:10.1007/
11817963 5

12. Tsai, M.-H., Fogarty, S., Vardi, M.Y., Tsay, Y.-K.: State of Büchi complementation.
In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 261–271.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-18098-9 28

13. Michel, M.: Complementation is more difficult with automata on infinite words.
CNET, Paris (1988). 15

14. Abdulla, P.A., Chen, Y.-F., Clemente, L., Hoĺık, L., Hong, C.-D., Mayr, R., Voj-
nar, T.: Advanced ramsey-based Büchi automata inclusion testing. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23217-6 13

15. Safra, S.: On the complexity of ω-automata. In: 29th Annual Symposium on Foun-
dations of Computer Science, pp. 319–327. IEEE (1988)

16. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theor. Comput. Sci. 49(2), 217–237
(1987)

17. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 396–
411. Springer, Heidelberg (2005). doi:10.1007/11591191 28

18. Tabakov, D., Vardi, M.Y.: Model checking Büchi specifications. In: Proceedings of
1st International Conference on Language and Automata Theory and Applications,
pp. 565–576 (2007)

http://arxiv.org/abs/0902.3958
http://www.cs.rice.edu/~vardi
http://dx.doi.org/10.1007/978-3-642-12002-2_17
http://dx.doi.org/10.1007/978-3-642-00768-2_2
http://dx.doi.org/10.1007/3-540-48686-0_1
http://dx.doi.org/10.1007/11817963_5
http://dx.doi.org/10.1007/11817963_5
http://dx.doi.org/10.1007/978-3-642-18098-9_28
http://dx.doi.org/10.1007/978-3-642-23217-6_13
http://dx.doi.org/10.1007/11591191_28

Random Models for Evaluating Efficient Büchi Universality Checking 105

19. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of the First Symposium on Logic in Computer Science,
pp. 322–331. IEEE Computer Society (1986)

20. Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-70918-3 2

21. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

http://dx.doi.org/10.1007/978-3-540-70918-3_2
http://dx.doi.org/10.1007/978-3-540-70918-3_2

	Random Models for Evaluating Efficient Büchi Universality Checking
	1 Introduction
	2 Background
	3 Random Models
	4 Experiments
	5 Concluding Remarks
	References

