
Definability of Recursive Predicates
in the Induced Subgraph Order

Ramanathan S. Thinniyam(B)

The Institute of Mathematical Sciences,
CIT Campus, Taramani, Chennai 600113, India

thinniyam@imsc.res.in

Abstract. Consider the set of all finite simple graphs G ordered by the
induced subgraph order ≤i. Building on previous work by Wires [14] and
Jezek and Mckenzie [5–8], we show that every recursive predicate over
graphs is definable in the first order theory of (G,≤i, P3) where P3 is the
path on 3 vertices.

1 Introduction

Finite graphs and graph theory have become of central importance with the
advent of computer science since many computational problems can be modelled
using them. Alongside this, the logical study of graphs has gained importance.

The “graph as a model” way of looking at graphs is the flourishing field of
descriptive complexity, which has had success in creating logical objects equiv-
alent to computational complexity classes. However, we will use a different way
of looking at graphs. We will study the set of all isomorphism types of simple
finite graphs (referred to as “graphs” from here on and denoted G) with a single
relation on G, namely the induced subgraph relation (please see Fig. 1). This and
other such relations such as the subgraph relation and the minor relation form
interesting partial orders and their first order theory has been studied [13,14].

Note in particular that we do not have explicit access to the edge relation
inside a particular graph, since we only have the single order relation as the
vocabulary. Inspite of this, many graph families such as paths, cycles, cliques
etc. and graph theoretical concepts such as connectivity, maximum degree etc.
can be expressed in the first order theory of such objects, though in an indirect
way. Thus we continue the exploration of the definablity and decidability in these
first order theories (and their fragments).

Our work can be considered as continuing that of Jezek and Mckenzie [5–8],
who studied the substructure orderings on various kinds of finite objects such
as posets, lattices etc. This was later extended to the induced subgraph order
by Wires [14]. The primary objective of these model theoretic studies is the
determination of the automorphism group of these objects. On the other hand,
our motivation is to explore the computational content of these objects.

To further this aim, we prove that the set of all recursive predicates is defin-
able in the object (G,≤i, P3) i.e. the induced subgraph order with a constant P3

c© Springer-Verlag GmbH Germany 2017
S. Ghosh and S. Prasad (Eds.): ICLA 2017, LNCS 10119, pp. 211–223, 2017.
DOI: 10.1007/978-3-662-54069-5 16

212 R.S. Thinniyam

for the path on three vertices. The notion of recursive predicate we use is that
of recognizability by a Turing machine of the encodings of graphs as numbers,
for a fixed encoding that we define. We obtain the result by combining classical
results on arithmetical definability and previous work by Jezek and McKenzie,
and Wires.

Other work on orders on combinatorial objects includes that by Kunos [11]
on the subdigraph order; and on word orders by Kuske [12].

Fig. 1. The first few levels of the induced subgraph order. The arrows indicate the
covering relation. ∅ is the empty graph.

While we are able to answer the question about definability of recursive
predicates, our methods are too coarse to handle questions of definability of
complexity classes (which are of course a strict subset of recursive predicates),
say the set of all PTIME predicates over graphs. In addition, we do not take
up the problem of precisely determining the logical resources required for the
result. This paper is part of a preliminary investigation of the strength of such
theories of combinatorial objects.

2 Preliminaries

First we give some definitions regarding graphs.

Definition 1 (Labelled Graph). A (finite) labelled graph g is a structure
(Vg, Eg, Lg) with

1. finite domain (aka vertex) set Vg,

Definability of Recursive Predicates in the Induced Subgraph Order 213

2. a symmetric binary relation Eg ⊆ Vg × Vg which is the edge set of the graph,
and

3. a bijective function Lg : Vg → [n] where [n] stands for the initial segment
{1, 2, 3..., n} of the natural numbers with n = |Vg| i.e. n is the number of
vertices in the graph.

We will write vi to denote the vertex whose image under Lg is i. We will write
vivj to denote the edge (if it exists) between vi and vj . In addition, we restrict
ourselves to simple graphs i.e. graphs which dont have edges of the form (vi, vi)
for some vi ∈ Vg.

Definition 2. An isomorphism between two labelled graphs g1 and g2 is a bijec-
tion η : Vg1 → Vg2 such that for any two vertices vi, vj of g1, the edge vivj exists
if and only if there is an edge between vertices η(vi), η(vj) in g2.

We say g1 is isomorphic to g2 if there is an isomorphism between them, and
write g1 � g2. The relation � is an equivalence relation on the set of all finite
labelled graphs.

Definition 3 (Graph). By a graph g, we mean an equivalence class under the
relation � over the set of all finite labelled graphs. The set of all graphs will be
denoted G.

We will write g = [g′] to denote that the graph g is the isomorphism type of the
labelled graph g′.

All variables x, y, z occuring in formulae denote graphs and not labelled
graphs. However, we will however need to talk about specific vertices or edges
inside a graph and thus will require a labelling. So we will abuse notation and
use u, v to talk of vertices of a graph (not a labelled one), uv for the edge joining
u and v, and e to denote the edge of a graph. We denote graphs by g, h, and
graph families by caligraphic letters such as P, C.

We will denote by Ni,Ki, Ci, Si, Pi the graph consisting of i isolated vertices,
the i-clique, the cycle on i vertices, the star on i vertices and the path on i
vertices respectively (see Fig. 2); and by N ,K, C,S,P the corresponding families
of isolated vertices, cliques, cycles, stars and paths. We denote the cardinality
(number of vertices) of a graph g by |g|, and the disjoint union of graphs g and
h by g ∪ h.

Next we need some definitions regarding the first order structures we study
and definability in them.

For the standard syntax and semantics of first order logic, we refer the reader
to Enderton [2].

Definition 4 (Induced Subgraph Order). We consider the first order theory
of the structure (G,≤i, P3) where P3 is a constant symbol for the path on three
vertices and the ≤i is the induced subgraph order which is defined as: g ≤i g′ iff
g can be obtained from g′ by deleting some (arbitrarily many) vertices of g′.

214 R.S. Thinniyam

The constant symbol P3 is used to break the symmetry of the induced subgraph
order which by itself cannot distinguish between a graph and its complement
since the map sending a graph to its complement is an automorphism of the
order.

Definition 5 (Arithmetic). By arithmetic, we mean the first order theory of
the structure (N, φ+, φ×) where N is the set of all natural numbers and φ+, φ×
are ternary predicates for addition and multiplication respectively.

We will also use variables x, y, z to denote numbers in arithmetical formulae;
and lower case letters k, l,m, n to denote numbers.

Definition 6 (Constant Definability). Fix a first order language L. Let e be
an element of the domain of an L-structure A. We say that e is definable in A,
if there exists an L formula αe(x) in one free variable, such that A, e � αe(x)
and for any e′ �= e in the domain of A, A, e′

� αe(x).

For any definable domain element e, we use e as a constant symbol repre-
senting the domain element because an equivalent formula can be written in the
language L via use of the defining formula αe.

Definition 7 (Covering Relation of a Poset). Given elements x, y of a
poset (P,≤) we define the covering relation x � y as x � y iff x < y and there
exists no element z of P such that x < z < y. This can easily written using a
first order formula in the vocabulary of {≤}.
Definition 8 (Definability of Predicates). We say a predicate is definable
in arithmetic iff it is definable in (N, φ+, φ×) and a predicate is definable in
graph theory iff it is definable in (G,≤i, P3).

We use the symbol φ for arithmetical formulae and ψ for graph theory formulae
to aid the reader.

Observation 1. For any definable family F of (G,≤i, P3) which forms a total
order under ≤i, every member of F is definable as a constant.

To see this, first observe that there exists a minimum element f1 in F by well
foundedness of the order ≤i.

f1(x) := F(x) ∧ (∀y F(y) ⊃ (y ≤i x))

Assuming fn (the nth smallest element of F) has been defined, fn+1 can be
defined as the unique cover of fn in F .

Next we have the definitions we need to formalize the meaning of “recursive
predicate over graphs.” There exist notions of computability and recursive pred-
icates over abstract structures (see [3]), but these are fairly technical. For our
purposes, we use a fixed encoding of graphs as strings so that the standard notion
of a computable predicate as one accepted by a Turing machine can be used. We
encode graphs as numbers (equivalently binary strings). These encodings were
originally introduced by us in previous work [13].

Definability of Recursive Predicates in the Induced Subgraph Order 215

Fig. 2. Isolated points, path, cycle, clique and star of order 5 from left to right.

Definition 9 (Number Representation of a Graph). A number represen-
tation of a graph g is defined using the following procedure.

1. Choose an labelled graph g′ such that g = [g′]. The order on vertices given by
Lg′ induces an order ≤e on set S of all tuples of vertices (vi, vj) of g with
j < i. Let (vi, vj) and (vk, vl) belong to S (i.e. j < i, l < k). Then (vi, vj) ≤e

(vk, vl) iff i < k or i = k, j < l.
2. Arrange all the tuples belonging to S in descending order by ≤e to form the

sequence seq.
3. Create the number m whose binary expansion is

(
n
2

)
+ 1 bits long and has the

following property: the most significant bit is 1 (always true for a number).
The ith most significant bit is 0 or 1 according to whether the i − 1th tuple in
seq corresponds to a non-edge or edge (respectively) of the labelled graph g′.

The number m is called a number representation of the graph g.

Definition 10 (Unique Number Representation). The unique number
representation of a graph g is the least number m such that it is a number
representation of g and is denoted UN(g). Note that the map UN : G → N is
a one-one map. (See Fig. 3 for an example.)

Fig. 3. Two different number representations of P3 corresponding to two different
labellings. The one on the left (i.e. 1011 in binary which is the number 11) is UN(P3).

Observation 2. The representation UN induces an ordering on the vertices of
the graph which comes from the underlying labelled graph.

We can finally state what we mean by recursive predicates over graphs.

216 R.S. Thinniyam

Definition 11. We say a predicate R ⊆ Gn is recursive if there exists a Turing
machine M such that

R(ḡ) ⇐⇒ UN(ḡ) ∈ L(M)

i.e. the Turing machine accepts exactly the tuples of strings which correspond to
UN encodings of tuples belonging to R.

3 Main Result

We note that the richness of a structure (for instance, its ability to interpret
arithmetic) does not automatically imply the obtained result. Something more
is required: the ability of the structure to perform operations on its elements,
and in some sense, access its own internal structure in a way that is first order
definable.

We will state the main result and show how the various modules come
together to form the proof. Some of the details are postponed to make the
presentation more understandable.

Theorem 1. Every recursive predicate R ⊆ Gn on graphs is definable in
(G,≤i, P3).

We need to show that for every recursive predicate R ⊆ Gn over graphs, there
exists a formula ψR(x̄) (where |x̄| = n) in graph theory such that for any n-tuple
of graphs ḡ,

R(ḡ) ⇐⇒ (G,≤i, P3) |= ψR(ḡ)

Since R is a recursive predicate, by Definition 11 there exists a machine M which
accepts the UN number encodings of the set of graphs which belong to R.

R(ḡ) ⇐⇒ UN(ḡ) ∈ L(M)

The following is a classical theorem (see Appendix for a proof sketch):

Theorem 2. Every recursive predicate R on numbers is definable in arithmetic.

Thus there is an arithmetic formula φUN(R)(x̄) such that for any tuple n̄ of
numbers,

(N, φ+, φ×) |= φUN(R)(n̄) ⇐⇒ n̄ ∈ UN(R)

Next we recall that

Theorem 3 (Wires [14]). Arithmetic i.e. (N, φ+, φ×), is definable in graph
theory i.e.,(G,≤i, P3).

In particular, the image set of the following map from numbers to graphs is
definable:

UG : G → N

Definability of Recursive Predicates in the Induced Subgraph Order 217

UG takes a number n to the graph Nn which consists of n isolated points. There
also exist defining formulae in graph theory for the predicates:

ψ(+)(x, y, z) iff ;x, y, z ∈ N and |x| + |y| = |z|.
ψ×(x, y, z) iff ;x, y, z ∈ N and |x| × |y| = |z|

We will write |x| to denote the graph N|x| since there is a formula which
defines the binary predicate Norder(x, y) iff |x| = |y| and y ∈ N .

We will abuse notation by writing i instead of Ni and expressions such as
i + j, ij will be taken to mean the member of N such that its order equals
i + j, i × j respectively. Similarly, since the order relation < over the naturals
is definable using addition, we will use quantifiers such as ∀1 < j < n in graph
theory whose meaning is really ∀j N (j) ∧ N1 ≤i j ∧ j ≤i Nn.

Observation 3. For every formula φ(x̄) in arithmetic there is a formula ψt(x̄)
in graph theory such that

(N, φ+, φ×) |= φ(n̄) ⇐⇒ (G,≤i, P3) |= ψt(UG(n̄))

Applying this translation to the formula φUN(R)(n̄) gives us the graph formula
ψt
UN(R)(UG(n̄)).

Given a graph g, the above formula essentially states what we require but in
terms of the graph UG(UN(g)). If there were a definable way to go between these
two graphs inside the induced order, we could potentially “do the computation
inside arithmetic and come back”. This is essentially what we do to get the
formula we require. In order to do this we require two things:

1. Acess to the edge relation inside arithmetic so that we can carry out the
required computation inside arithmetic.

2. The ability to access the internal structure of a graph using the induced
subgraph order.

The first of these has already been accomplished in previous work:

Theorem 4 ([13]). The following predicates are definable in arithmetic:

1. φUN (x) iff x is a number which represents an isomorphism type of a graph as
given in Definition 10.

2. φedge(x, i, j) iff x is a number representation of graph gx and vivj ∈ Egx .
3. φlength(n, x) iff the length of the binary representation of x is n. We will just

write length(x) to denote n.

Now we tackle the second problem i.e. that of accessing the internal structure
of a graph. This is accomplished by using definable “vertex labelled representa-
tions” of graphs (which are themselves graphs), called o-presentations. This was
first introduced by Jezek and Mckenzie, and defined for graphs by Wires.

Definition 12 (o-presentation). An o-presentation of g ∈ G is another graph
g̃ defined as follows: Fix an enumeration v1, v1, .., vn of vertices of g. Let g′ be the
graph formed by the disjoint union of g and the cycles Cn+i+2 for each 1 ≤ i ≤ n.
Add n additional edges to g′ connecting each cycle Cn+i+2 to the corresponding
vertex vi. The resulting graph is denoted g̃.

218 R.S. Thinniyam

Fig. 4. Top left: the star graph S4. Bottom left: a vertex labelling of S4. Right: the
o-presentation corresponding to the vertex labelling.

Given a graph g, an o-presentation can be regarded as the representation of a
labelled graph g′ with g = [g′], as another graph g̃. From the example in the
Fig. 4, it is clear that there is a bijective correspondence between o-presentations
and labellings of a graph.

The proof of the following lemma is deferred to the end of the section so as
to not obstruct the flow of the main proof:

Lemma 1. The following predicates are definable in (G ≤i, P3):

1. The set of all o-presentations, denoted G̃ i.e. G̃(x) holds iff there is a graph y
such that x is an o-presentation of y.

2. The predicate ψopres(x, y) iff y is an o-presentation x̃ of x, also written y = x̃
for short.

3. ψedgeOP (x, i, j) iff there exists a graph y such that y = x̃ and in the vertex
labelling corresponding to the o-presentation, there is an edge between vertices
vi and vj in the graph y.

Using Lemma 1 and Theorem 4 we can now define the binary relation n =
UG(UN(x)) by the formula ψenc(x, n):

ψenc(x, n) :=n ∈ N ∧ ∃y y = x̃ ∧ ψt
graphOrder(n, |x|)

∧ ψt
UN (n) ∧ ∀1 ≤ i < j ≤ |x|

ψt
edge(n, i, j) ⇐⇒ ψedgeOP (y, i, j)

The formula asserts that n is a trivial graph (has no edges) and there exists an
o-presentation y of x such that there exists an edge between vertices vi and vj in
the enumeration of the graph g corresponding to the o-presentation if and only
if there is an edge between vertices vi and vj in an enumeration of the graph
which is consistent with the UN representation.

By use of Lemma 1, we are able to write y = x̃. The formulae ψt
edge

and ψt
UN (n) are the translations of the formulae from Theorem4 by using

Definability of Recursive Predicates in the Induced Subgraph Order 219

Observation 3. ψt
graphOrder is the translation of the following arithmetic formula

φgraphOrder(n,m) := length(n) = 1 + m(m − 1)/2

Note that the arguments in the translated formulae have to be members of
the family N and are applied to the image graph under the map UG while the
arithmetic formulae are on the numbers obtained from the inverse of this map.
Also note the use of ∀1 ≤ i < j ≤ |x| which is syntactic sugar for a more involved
formula we can write in graph theory due to definability of arithmetic (recall
remarks under Theorem3). We can now define R in the induced subgraph order:

ψR(x̄) := ∃ȳ

n∧

i=1

ψenc(xi, yi) ∧ ψt
UN(R)(ȳ)

ψR essentially inverts the encoding function UN to go back from the number
encodings to the graphs.

All that remains to be done is the proof of Lemma1. In order to do so, we
need some machinery:

Lemma 2 (Wires [14]). The following predicates are definable in (G,≤i, P3).

1. The families N ,K, C,P standing for trivial graphs, complete graphs (cliques),
cycles and paths respectively.

2. |x| = |y| iff x and y have the same cardinality (i.e. same number of vertices,
also known as order of the graph).

3. maxComp(x, y) iff x is a maximal connected component of y.
4. cover(x, y, n) iff there are exactly n − 1 graphs between x and y in the order

and x ≤i y. Also denoted x �
n
i y.

cover(x, y, n) := |x| + n = |y|
The order of the graph defines a layering of the induced subgraph order.

5. z = x ∪ y iff z is the disjoint union of x and y.
6. C→1(x) iff x is the connected graph formed by adding one extra vertex and

one extra edge to a cycle.
7. conn(x) iff x is a connected graph.
8. C→2(x) iff x is graph formed by taking a graph g with C→1(g) and adding an

additional vertex and joining it to the unique degree 1 vertex in g.
9. pointedCycleSum(x, y, z) iff x and y are incomparable cycles and z is formed

by starting with the graph x ∪ y and adding one extra vertex v and two extra
edges, one from v to any vertex of x and another from v to any vertex of y.
We will write z = x +p y for short.

Notice that from the definability of C→1(x) we also have definability of the graph
Ci→1 which stands for the member of C→1 of order i + 1 because the family is
totally ordered by number of vertices and for similar reasons as Observation 1.
Additionally, given a parameter n, we can obtain Cn→1.

We are now ready to give a proof of Lemma 1:

Proof of Lemma 1. We recollect the statement. The following are definable in
graphs:

220 R.S. Thinniyam

1. The set of all o-presentations, denoted G̃ i.e. G̃(x) holds iff there is a graph y
such that x is an o-presentation of y.

2. The predicate ψopres(x, y) iff y is an o-presentation x̃ of x, also written y = x̃
for short.

3. ψedgeOP (x, i, j) iff there exists a graph y such that y = x̃ and in the ver-
tex labelling corresponding to the o-presentation, there is an edge between
vertices vi and vj in the graph y.

Proof. We take up the definition of the family G̃. First we note that given a
number n, we can construct the object

⋃n
i=1 Cn+i+2 as follows:

csum(n, x) iff n ∈ N and x =
n⋃

i=1

Cn+i+2.

csum(n, x) := ∀z maxComp(z, x) ⊃ C(z)
∧ cardCond(n, x) ∧ allCycles(n, x)
where

cardCond(n, x) := N (n) ∧ |x| = n2 + n(n + 1)/2 + 3n
allCycles(n, x) := ∀m (n + 3 ≤ m ≤ 2n + 2) ⊃ Cm ≤i x

The formula constrains every maximal component to be a cycle using the
maxComp predicate. This forces all the cycles to be disjoint. Enforcing the
cardinality condition and the fact that each cycle has to be present (allCycles)
makes sure that the graph is made up of exactly one copy of each cycle and
nothing else.

Now we can define the set of o-presentations as follows:

G̃(x) := ∃n cardCond(n, x) ∧ hasC1s(n, x)
∧ hasUnionOfCycles(n, x)
where

cardCond(n, x) := N (n) ∧ |x| = n2 + n(n + 1)/2 + 3n
hasC1s(n, x) := ∀i (1 ≤ i ≤ n) ⊃ Ci+n+2→1 ≤i x

hasUnionOfCycles(n, x) :=
n⋃

i=1

Cn+i+2 ≤i x

The formula cardCond states that the graph has as many vertices as required to
contain as induced subgraph a graph on n vertices and cycles of order n+i+2 for
each i between 1 and n. hasCycles states that the C→1 are induced subgraphs.
hasUnionOfCycles states that the disjoint union of all the required cycles is an
induced subgraph. Because of the cardinality constraint already imposed, this
implies that there is a unique copy of each cycle in x. In addition, there are no
chord or edges between the cycles. No restriction is place on the edges between
the non-cycle vertices. Thus the resulting graph x is of the required form.

Definability of Recursive Predicates in the Induced Subgraph Order 221

We take up the second predicate, ψopres(x, y) iff y is an o-presentation of x.

ψopres(x, y) := |y| = |x|2 + |x|(|x| + 1)/2 + 3|x| ∧ G̃(y)

∧ ∃z z = x ∪
|x|⋃

i=1

P|x|+1+i ∧ z �
|x|
i y

The object
⋃n

i=1 Pn+i+1 can be constructed given n by taking the appropriate⋃n
i=1 Cn+i+2, deleting n vertices from it, and enforcing the condition that no

cycles are present.
The formula ψopres states that y is an o-presentation of appropriate order

and deletion of |x| vertices from y gives the disjoint union of x with paths of size
|x| + 2 to 2|x| + 1. The only way to get an o-presentation by adding |x| vertices
to z is to add two edges between every new vertex and and ends of one of the
paths and one edge from the new vertex to a vertex in x. Thus any such y must
be an o-presentation of x.

Moving on to the last predicate ψedgeOP (x, i, j), we first need the following
intermediate predicate:

CP4C(x, i, j) iff i, j ∈ N , 3 < i < j and x is formed by adding to the graph
Ci ∪ Cj two additional vertices v1, v2 and the edge v1v2, one edge between Ci

and v1 and one edge between Cj and v2. We denote x by CP4C(i, j).

CP4C(x, i, j) := conn(x) ∧ N (i) ∧ N (j) ∧ 3 < i < j

∧ Ci +p Cj �i x

∧ Ci→1 ∪ Cj �i x ∧ Cj→1 ∪ Ci �i x

From the definition, x has to be obtained by adding one new vertex v to
g0 = Ci→1 ∪ Cj and some number of edges which are incident on v. Notice
that there is only one copy of Cj present as subgraph in x because of cardinality
constraints. Thus there is exactly one edge between v and Cj (connectivity con-
straint). If there were multiple edges, we cannot get Cj→1 as induced subgraph.
Now suppose there is also exactly one edge from v to copy of Ci in g0, then we
can get Ci +p Cj as induced subgraph, which is not allowed. Suppose there are
multiple edges between v and copy of Ci in g0, then we cannot get Cj→1 ∪ Ci as
induced subgraph from x by deleting a single vertex (since v remains connected
to the rest of the graph not considering Cj on deleting only one vertex). But
given the connectivity constraint, there must be an edge from v to the dangling
vertex of Ci→1 inside g0. Thus the graph we get is the required graph.

We can now write

ψedgeOP (x, i, j) := ∃y x = ỹ ∧ ∃m (|x| = m2 + m(m + 1)/2 + 3m)
∧ CP4C(m + i + 2,m + j + 2) ≤i x

The existence of an edge between vertices vi and vj in the graph x is captured
by the presense of a CP4C induced subgraph in y (which is an o-presentation of
x) with appropriate parameters and this is stated by the formula ψedgeOP . ��

This concludes the proof of Lemma 1 and thus completes the proof of
Theorem 1.

222 R.S. Thinniyam

4 Discussion

Our result leads to a number of interesting questions and potential areas for
research.

There has been considerable work in the area of bounded arithmetic sys-
tems and their connection to complexity theory [1,10]. An intimate connection
has been shown between propositional proof systems, systems of bounded arith-
metic and complexity theory. Characterizing complexity classes of graph prob-
lems using fragments of the induced subgraph order may prove useful.

The way we have arrived at our result is very roundabout in the sense that
we dont use any “natural computational predicates” over graphs. There may
be such predicates over graphs which are the equivalent of the bit predicate and
exponentiation in arithmetic. It is by carefully controlling these two (and further
expanding the language) that the bounded arithmetic theories were discovered.
In addition, we note that the method of computation we use essentially puts a
total order on the vertices of the graph (via the o-presentation). This is closely
related to the question of “order-invariant querying” which is of much interest
in finite model theory and descriptive complexity [4].

There are related objects such as the subgraph order and the graph minor
order whose expressive power is enough to interpret arithmetic [13] but it is not
clear if o-presentations can be defined in them. On the other hand we do not have
the tools to tackle the problem of proving inexpressibility in such rich structures.
It would be interesting (though doubtful) to see if there are any general methods
to generate o-presentations in different types of structures.

Acknowledgment. I would like to thank my guide Prof. R. Ramanujam for his advice
and discussions on both technical matter and the presentation of this paper.

Appendix: Proof Sketch of Theorem2

Theorem Statement: Every recursive predicate R on numbers is definable in first
order arithmetic.

Proof (sketch). For simplicity we look at the case of only unary predicates,
assume R ⊆ N. Let M = (Q, δ, s, F) be a turing machine over the alphabet
{0, 1}. First, consider strings over the alphabet Σ = (0, 1,#, s, q1, ..., qn) where
Q = {s, q1, ..., qn}. They can be encoded as binary strings by using some encod-
ing e.g. 0 is mapped to 01, 1 to 001, # to 0001, s to 00001, qi to 0i+41. Given any
input x, we can encode the run of the Turing machine as a number y, which we
will think of a string over the extended alphabet Σ (ignoring the 1 in the most
significant digit). y = c1#c2#...#cm where each ci is a string containing exactly
one state symbol and remaining 0’s and 1’s. The placement of the head of the
machine is given by the position just after the state symbol. c1 is sx i.e. the
starting state s concatenated with the input x, cm is a configuration containing
a final state and the relationship between any two consecutive configurations
is restricted based on the transition function δ. All of this can be written as a

Definability of Recursive Predicates in the Induced Subgraph Order 223

formula φR(x) which essentially states “there exists a number y such that the
binary encoding of the number represents an accepting run of the machine on
x”, making crucial use of the bit predicate and exponentiation. For details on
definability in arithmetic, please see Kaye [9]. ��

References

1. Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge Uni-
versity Press, Cambridge (2010)

2. Enderton, H.: A Mathematical Introduction to logic. Academic Press, Burlington
(2001)

3. Fitting, M.: Fundamentals of Generalized Recursion Theory. Elsevier, Amsterdam
(2011)

4. Grohe, M.: The quest for a logic capturing PTIME. In: 23rd Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2008, pp. 267–271. IEEE (2008)

5. Ježek, J., McKenzie, R.: Definability in substructure orderings, IV: finite lattices.
Algebra Univers. 61(3–4), 301–312 (2009)

6. Ježek, J., McKenzie, R.: Definability in substructure orderings, I: finite semilattices.
Algebra Univers. 61(1), 59–75 (2009)

7. Ježek, J., McKenzie, R.: Definability in substructure orderings, III: finite distrib-
utive lattices. Algebra Univers. 61(3–4), 283–300 (2009)

8. Ježek, J., McKenzie, R.: Definability in substructure orderings, II: finite ordered
sets. Order 27(2), 115–145 (2010)

9. Kaye, R.: Models of Peano arithmetic. Oxford University Press, Oxford (1991)
10. Krajicek, J.: Bounded Arithmetic, Propositional Logic and Complexity Theory.

Cambridge University Press, Cambridge (1995)
11. Kunos, Á.: Definability in the embeddability ordering of finite directed graphs.

Order 32(1), 117–133 (2015)
12. Kuske, D.: Theories of orders on the set of words. RAIRO Theor. Inform. Appl.

40(01), 53–74 (2006)
13. Ramanujam, R., Thinniyam, R.S.: Definability in first order theories of graph

orderings. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp.
331–348. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27683-0 23

14. Wires, A.: Definability in the substructure ordering of simple graphs. Ann. Comb.
20(1), 139–176 (2016)

http://dx.doi.org/10.1007/978-3-319-27683-0_23

	Definability of Recursive Predicates in the Induced Subgraph Order
	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Discussion
	References

